summaryrefslogtreecommitdiffstats
path: root/third_party/rust/libsqlite3-sys
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/rust/libsqlite3-sys
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/libsqlite3-sys')
-rw-r--r--third_party/rust/libsqlite3-sys/.cargo-checksum.json1
-rw-r--r--third_party/rust/libsqlite3-sys/Cargo.toml110
-rw-r--r--third_party/rust/libsqlite3-sys/LICENSE19
-rw-r--r--third_party/rust/libsqlite3-sys/README.md248
-rw-r--r--third_party/rust/libsqlite3-sys/Upgrade.md18
-rw-r--r--third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0.rs3043
-rw-r--r--third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0_ext.rs6956
-rw-r--r--third_party/rust/libsqlite3-sys/build.rs836
-rw-r--r--third_party/rust/libsqlite3-sys/sqlcipher/LICENSE24
-rw-r--r--third_party/rust/libsqlite3-sys/sqlcipher/bindgen_bundled_version.rs3626
-rw-r--r--third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.c247125
-rw-r--r--third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.h12896
-rw-r--r--third_party/rust/libsqlite3-sys/sqlcipher/sqlite3ext.h701
-rw-r--r--third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version.rs3661
-rw-r--r--third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version_ext.rs8430
-rw-r--r--third_party/rust/libsqlite3-sys/sqlite3/sqlite3.c252611
-rw-r--r--third_party/rust/libsqlite3-sys/sqlite3/sqlite3.h13257
-rw-r--r--third_party/rust/libsqlite3-sys/sqlite3/sqlite3ext.h719
-rw-r--r--third_party/rust/libsqlite3-sys/sqlite3/wasm32-wasi-vfs.c690
-rw-r--r--third_party/rust/libsqlite3-sys/src/error.rs304
-rw-r--r--third_party/rust/libsqlite3-sys/src/lib.rs44
-rwxr-xr-xthird_party/rust/libsqlite3-sys/upgrade.sh43
-rwxr-xr-xthird_party/rust/libsqlite3-sys/upgrade_sqlcipher.sh35
-rw-r--r--third_party/rust/libsqlite3-sys/wrapper.h5
-rw-r--r--third_party/rust/libsqlite3-sys/wrapper_ext.h2
25 files changed, 555404 insertions, 0 deletions
diff --git a/third_party/rust/libsqlite3-sys/.cargo-checksum.json b/third_party/rust/libsqlite3-sys/.cargo-checksum.json
new file mode 100644
index 0000000000..8966780443
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.toml":"19eb105a387dc88e701018ca00da996ca603f881917e3d296dac987963b6f286","LICENSE":"f59ba65550f2a5adff98ec6478d783402c8e0a3eb515025c0b3438f3d30dc39e","README.md":"3ee43dc667cbc03092311fa1ad8c9baa8fee82a6afc11289cfa0d4b1d8cc173e","Upgrade.md":"d151a67d4bbb1a5a300d084d210d6cd238d833a6d4bd5d958ae7469a9deccb36","bindgen-bindings/bindgen_3.14.0.rs":"21074ddbc5ef6bb7fb7c04ef48c730a2b074b9d695c93c685cf01f870248844b","bindgen-bindings/bindgen_3.14.0_ext.rs":"2988b5f0670d7862166d3820b8a176d3da329b6105567e66e45aafb17d736fa6","build.rs":"c05d6fbd288a57bc529a85edeaa285359896802a4ce8dbdfee941fe66a247c48","sqlcipher/LICENSE":"ea4fcb309f14a22065e1ea45362d494d320012249ed865fe9c7c0946db754131","sqlcipher/bindgen_bundled_version.rs":"b90cdb889a74ce82af24a78932979c59df4d9dbb31228d05e6574a2fd852d0ba","sqlcipher/sqlite3.c":"2dc94cbc5f013078ad7e48b65fe1c63cb79b4d25aba9ccaef1699724ae6640f7","sqlcipher/sqlite3.h":"46bf1085dbe8063fe002f667a4ff9cf953ae7896d2893cdfb7be47260b2489cd","sqlcipher/sqlite3ext.h":"7f9ae3bab94bbc62d909fbb0149861b4a0832299f12d7ccbfecc7f28a8d27aa2","sqlite3/bindgen_bundled_version.rs":"df27f70e4b8b50aa521815cc5f514a6a8f20047fd85d04c656829ee1f1b3de58","sqlite3/bindgen_bundled_version_ext.rs":"59dcc604ce53c31121a9857e0e6f8ca0a6b4e86339468556aaad409cb2c2fb77","sqlite3/sqlite3.c":"7b31410f2e3bb48be92d6c4ba6450034a9bd314c99ae9f9a06327091f005668c","sqlite3/sqlite3.h":"9e2f65a6607545b278ab2cb520d93aec977aee0e19dc374d51b18300507ed20f","sqlite3/sqlite3ext.h":"b184dd1586d935133d37ad76fa353faf0a1021ff2fdedeedcc3498fff74bbb94","sqlite3/wasm32-wasi-vfs.c":"b95842044da2b8777876b7d3fef8c9711e8c201fb4a4255dbac98729a456bb5d","src/error.rs":"73ce88d90e3d5a99fc4fdc146fe5405e7d9cdcc5334eb4f0f53e0919c9b19c05","src/lib.rs":"b85a07e8cfe221df01cd890729c7fda84904e202ff916124ba83b16181da90e0","upgrade.sh":"aafa7a36b0ebe0c0cb6cb65e0e6b2d77b77d9b58d9e7317756b1861040cf2a4b","upgrade_sqlcipher.sh":"0372ba89bb41427c2c2010a3d41f1363d77eb73bbfecc2fde20aae8499a42a21","wrapper.h":"652f14b2bcbc7a7b32d11365afa513b0977a3dc0a800dfde4cb85b3e23baf3b3","wrapper_ext.h":"fa7a53fea99318ee29d75e6d5fab4d7ed26e9599803268e6a24396265f2a6f3a"},"package":"cf4e226dcd58b4be396f7bd3c20da8fdee2911400705297ba7d2d7cc2c30f716"} \ No newline at end of file
diff --git a/third_party/rust/libsqlite3-sys/Cargo.toml b/third_party/rust/libsqlite3-sys/Cargo.toml
new file mode 100644
index 0000000000..c8d40917ea
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/Cargo.toml
@@ -0,0 +1,110 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+edition = "2021"
+name = "libsqlite3-sys"
+version = "0.27.0"
+authors = ["The rusqlite developers"]
+build = "build.rs"
+links = "sqlite3"
+description = "Native bindings to the libsqlite3 library"
+readme = "README.md"
+keywords = [
+ "sqlite",
+ "sqlcipher",
+ "ffi",
+]
+categories = ["external-ffi-bindings"]
+license = "MIT"
+repository = "https://github.com/rusqlite/rusqlite"
+
+[dependencies.openssl-sys]
+version = "0.9"
+optional = true
+
+[build-dependencies.bindgen]
+version = "0.69"
+features = ["runtime"]
+optional = true
+default-features = false
+
+[build-dependencies.cc]
+version = "1.0"
+optional = true
+
+[build-dependencies.pkg-config]
+version = "0.3.19"
+optional = true
+
+[build-dependencies.prettyplease]
+version = "0.2"
+optional = true
+
+[build-dependencies.quote]
+version = "1"
+optional = true
+default-features = false
+
+[build-dependencies.syn]
+version = "2.0"
+features = [
+ "full",
+ "extra-traits",
+ "visit-mut",
+]
+optional = true
+
+[build-dependencies.vcpkg]
+version = "0.2"
+optional = true
+
+[features]
+buildtime_bindgen = [
+ "bindgen",
+ "pkg-config",
+ "vcpkg",
+]
+bundled = [
+ "cc",
+ "bundled_bindings",
+]
+bundled-sqlcipher = ["bundled"]
+bundled-sqlcipher-vendored-openssl = [
+ "bundled-sqlcipher",
+ "openssl-sys/vendored",
+]
+bundled-windows = [
+ "cc",
+ "bundled_bindings",
+]
+bundled_bindings = []
+default = ["min_sqlite_version_3_14_0"]
+in_gecko = []
+loadable_extension = [
+ "prettyplease",
+ "quote",
+ "syn",
+]
+min_sqlite_version_3_14_0 = [
+ "pkg-config",
+ "vcpkg",
+]
+preupdate_hook = ["buildtime_bindgen"]
+session = [
+ "preupdate_hook",
+ "buildtime_bindgen",
+]
+sqlcipher = []
+unlock_notify = []
+wasm32-wasi-vfs = []
+winsqlite3 = []
+with-asan = []
diff --git a/third_party/rust/libsqlite3-sys/LICENSE b/third_party/rust/libsqlite3-sys/LICENSE
new file mode 100644
index 0000000000..9e5b9f721c
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/LICENSE
@@ -0,0 +1,19 @@
+Copyright (c) 2014-2021 The rusqlite developers
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
diff --git a/third_party/rust/libsqlite3-sys/README.md b/third_party/rust/libsqlite3-sys/README.md
new file mode 100644
index 0000000000..13db5ff67d
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/README.md
@@ -0,0 +1,248 @@
+# Rusqlite
+
+[![Latest Version](https://img.shields.io/crates/v/rusqlite.svg)](https://crates.io/crates/rusqlite)
+[![Documentation](https://docs.rs/rusqlite/badge.svg)](https://docs.rs/rusqlite)
+[![Build Status (GitHub)](https://github.com/rusqlite/rusqlite/workflows/CI/badge.svg)](https://github.com/rusqlite/rusqlite/actions)
+[![Build Status (AppVeyor)](https://ci.appveyor.com/api/projects/status/github/rusqlite/rusqlite?branch=master&svg=true)](https://ci.appveyor.com/project/rusqlite/rusqlite)
+[![Code Coverage](https://codecov.io/gh/rusqlite/rusqlite/branch/master/graph/badge.svg)](https://codecov.io/gh/rusqlite/rusqlite)
+[![Dependency Status](https://deps.rs/repo/github/rusqlite/rusqlite/status.svg)](https://deps.rs/repo/github/rusqlite/rusqlite)
+[![Discord Chat](https://img.shields.io/discord/927966344266256434.svg?logo=discord)](https://discord.gg/nFYfGPB8g4)
+
+Rusqlite is an ergonomic wrapper for using SQLite from Rust.
+
+Historically, the API was based on the one from [`rust-postgres`](https://github.com/sfackler/rust-postgres). However, the two have diverged in many ways, and no compatibility between the two is intended.
+
+## Usage
+
+In your Cargo.toml:
+
+```toml
+[dependencies]
+# `bundled` causes us to automatically compile and link in an up to date
+# version of SQLite for you. This avoids many common build issues, and
+# avoids depending on the version of SQLite on the users system (or your
+# system), which may be old or missing. It's the right choice for most
+# programs that control their own SQLite databases.
+#
+# That said, it's not ideal for all scenarios and in particular, generic
+# libraries built around `rusqlite` should probably not enable it, which
+# is why it is not a default feature -- it could become hard to disable.
+rusqlite = { version = "0.30.0", features = ["bundled"] }
+```
+
+Simple example usage:
+
+```rust
+use rusqlite::{Connection, Result};
+
+#[derive(Debug)]
+struct Person {
+ id: i32,
+ name: String,
+ data: Option<Vec<u8>>,
+}
+
+fn main() -> Result<()> {
+ let conn = Connection::open_in_memory()?;
+
+ conn.execute(
+ "CREATE TABLE person (
+ id INTEGER PRIMARY KEY,
+ name TEXT NOT NULL,
+ data BLOB
+ )",
+ (), // empty list of parameters.
+ )?;
+ let me = Person {
+ id: 0,
+ name: "Steven".to_string(),
+ data: None,
+ };
+ conn.execute(
+ "INSERT INTO person (name, data) VALUES (?1, ?2)",
+ (&me.name, &me.data),
+ )?;
+
+ let mut stmt = conn.prepare("SELECT id, name, data FROM person")?;
+ let person_iter = stmt.query_map([], |row| {
+ Ok(Person {
+ id: row.get(0)?,
+ name: row.get(1)?,
+ data: row.get(2)?,
+ })
+ })?;
+
+ for person in person_iter {
+ println!("Found person {:?}", person.unwrap());
+ }
+ Ok(())
+}
+```
+
+### Supported SQLite Versions
+
+The base `rusqlite` package supports SQLite version 3.14.0 or newer. If you need
+support for older versions, please file an issue. Some cargo features require a
+newer SQLite version; see details below.
+
+### Optional Features
+
+Rusqlite provides several features that are behind [Cargo
+features](https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section). They are:
+
+* [`load_extension`](https://docs.rs/rusqlite/~0/rusqlite/struct.LoadExtensionGuard.html)
+ allows loading dynamic library-based SQLite extensions.
+* [`backup`](https://docs.rs/rusqlite/~0/rusqlite/backup/index.html)
+ allows use of SQLite's online backup API. Note: This feature requires SQLite 3.6.11 or later.
+* [`functions`](https://docs.rs/rusqlite/~0/rusqlite/functions/index.html)
+ allows you to load Rust closures into SQLite connections for use in queries.
+ Note: This feature requires SQLite 3.7.3 or later.
+* `window` for [window function](https://www.sqlite.org/windowfunctions.html) support (`fun(...) OVER ...`). (Implies `functions`.)
+* [`trace`](https://docs.rs/rusqlite/~0/rusqlite/trace/index.html)
+ allows hooks into SQLite's tracing and profiling APIs. Note: This feature
+ requires SQLite 3.6.23 or later.
+* [`blob`](https://docs.rs/rusqlite/~0/rusqlite/blob/index.html)
+ gives `std::io::{Read, Write, Seek}` access to SQL BLOBs. Note: This feature
+ requires SQLite 3.7.4 or later.
+* [`limits`](https://docs.rs/rusqlite/~0/rusqlite/struct.Connection.html#method.limit)
+ allows you to set and retrieve SQLite's per connection limits.
+* `chrono` implements [`FromSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.FromSql.html)
+ and [`ToSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.ToSql.html) for various
+ types from the [`chrono` crate](https://crates.io/crates/chrono).
+* `serde_json` implements [`FromSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.FromSql.html)
+ and [`ToSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.ToSql.html) for the
+ `Value` type from the [`serde_json` crate](https://crates.io/crates/serde_json).
+* `time` implements [`FromSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.FromSql.html)
+ and [`ToSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.ToSql.html) for various
+ types from the [`time` crate](https://crates.io/crates/time).
+* `url` implements [`FromSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.FromSql.html)
+ and [`ToSql`](https://docs.rs/rusqlite/~0/rusqlite/types/trait.ToSql.html) for the
+ `Url` type from the [`url` crate](https://crates.io/crates/url).
+* `bundled` uses a bundled version of SQLite. This is a good option for cases where linking to SQLite is complicated, such as Windows.
+* `sqlcipher` looks for the SQLCipher library to link against instead of SQLite. This feature overrides `bundled`.
+* `bundled-sqlcipher` uses a bundled version of SQLCipher. This searches for and links against a system-installed crypto library to provide the crypto implementation.
+* `bundled-sqlcipher-vendored-openssl` allows using bundled-sqlcipher with a vendored version of OpenSSL (via the `openssl-sys` crate) as the crypto provider.
+ - As the name implies this depends on the `bundled-sqlcipher` feature, and automatically turns it on.
+ - If turned on, this uses the [`openssl-sys`](https://crates.io/crates/openssl-sys) crate, with the `vendored` feature enabled in order to build and bundle the OpenSSL crypto library.
+* `hooks` for [Commit, Rollback](http://sqlite.org/c3ref/commit_hook.html) and [Data Change](http://sqlite.org/c3ref/update_hook.html) notification callbacks.
+* `unlock_notify` for [Unlock](https://sqlite.org/unlock_notify.html) notification.
+* `vtab` for [virtual table](https://sqlite.org/vtab.html) support (allows you to write virtual table implementations in Rust). Currently, only read-only virtual tables are supported.
+* `series` exposes [`generate_series(...)`](https://www.sqlite.org/series.html) Table-Valued Function. (Implies `vtab`.)
+* [`csvtab`](https://sqlite.org/csv.html), CSV virtual table written in Rust. (Implies `vtab`.)
+* [`array`](https://sqlite.org/carray.html), The `rarray()` Table-Valued Function. (Implies `vtab`.)
+* `i128_blob` allows storing values of type `i128` type in SQLite databases. Internally, the data is stored as a 16 byte big-endian blob, with the most significant bit flipped, which allows ordering and comparison between different blobs storing i128s to work as expected.
+* `uuid` allows storing and retrieving `Uuid` values from the [`uuid`](https://docs.rs/uuid/) crate using blobs.
+* [`session`](https://sqlite.org/sessionintro.html), Session module extension. Requires `buildtime_bindgen` feature. (Implies `hooks`.)
+* `extra_check` fail when a query passed to execute is readonly or has a column count > 0.
+* `column_decltype` provides `columns()` method for Statements and Rows; omit if linking to a version of SQLite/SQLCipher compiled with `-DSQLITE_OMIT_DECLTYPE`.
+* `collation` exposes [`sqlite3_create_collation_v2`](https://sqlite.org/c3ref/create_collation.html).
+* `winsqlite3` allows linking against the SQLite present in newer versions of Windows
+
+## Notes on building rusqlite and libsqlite3-sys
+
+`libsqlite3-sys` is a separate crate from `rusqlite` that provides the Rust
+declarations for SQLite's C API. By default, `libsqlite3-sys` attempts to find a SQLite library that already exists on your system using pkg-config, or a
+[Vcpkg](https://github.com/Microsoft/vcpkg) installation for MSVC ABI builds.
+
+You can adjust this behavior in a number of ways:
+
+* If you use the `bundled`, `bundled-sqlcipher`, or `bundled-sqlcipher-vendored-openssl` features, `libsqlite3-sys` will use the
+ [cc](https://crates.io/crates/cc) crate to compile SQLite or SQLCipher from source and
+ link against that. This source is embedded in the `libsqlite3-sys` crate and
+ is currently SQLite 3.44.0 (as of `rusqlite` 0.30.0 / `libsqlite3-sys`
+ 0.27.0). This is probably the simplest solution to any build problems. You can enable this by adding the following in your `Cargo.toml` file:
+ ```toml
+ [dependencies.rusqlite]
+ version = "0.30.0"
+ features = ["bundled"]
+ ```
+* When using any of the `bundled` features, the build script will honor `SQLITE_MAX_VARIABLE_NUMBER` and `SQLITE_MAX_EXPR_DEPTH` variables. It will also honor a `LIBSQLITE3_FLAGS` variable, which can have a format like `"-USQLITE_ALPHA -DSQLITE_BETA SQLITE_GAMMA ..."`. That would disable the `SQLITE_ALPHA` flag, and set the `SQLITE_BETA` and `SQLITE_GAMMA` flags. (The initial `-D` can be omitted, as on the last one.)
+* When using `bundled-sqlcipher` (and not also using `bundled-sqlcipher-vendored-openssl`), `libsqlite3-sys` will need to
+ link against crypto libraries on the system. If the build script can find a `libcrypto` from OpenSSL or LibreSSL (it will consult `OPENSSL_LIB_DIR`/`OPENSSL_INCLUDE_DIR` and `OPENSSL_DIR` environment variables), it will use that. If building on and for Macs, and none of those variables are set, it will use the system's SecurityFramework instead.
+
+* When linking against a SQLite (or SQLCipher) library already on the system (so *not* using any of the `bundled` features), you can set the `SQLITE3_LIB_DIR` (or `SQLCIPHER_LIB_DIR`) environment variable to point to a directory containing the library. You can also set the `SQLITE3_INCLUDE_DIR` (or `SQLCIPHER_INCLUDE_DIR`) variable to point to the directory containing `sqlite3.h`.
+* Installing the sqlite3 development packages will usually be all that is required, but
+ the build helpers for [pkg-config](https://github.com/alexcrichton/pkg-config-rs)
+ and [vcpkg](https://github.com/mcgoo/vcpkg-rs) have some additional configuration
+ options. The default when using vcpkg is to dynamically link,
+ which must be enabled by setting `VCPKGRS_DYNAMIC=1` environment variable before build.
+ `vcpkg install sqlite3:x64-windows` will install the required library.
+* When linking against a SQLite (or SQLCipher) library already on the system, you can set the `SQLITE3_STATIC` (or `SQLCIPHER_STATIC`) environment variable to 1 to request that the library be statically instead of dynamically linked.
+
+
+### Binding generation
+
+We use [bindgen](https://crates.io/crates/bindgen) to generate the Rust
+declarations from SQLite's C header file. `bindgen`
+[recommends](https://github.com/servo/rust-bindgen#library-usage-with-buildrs)
+running this as part of the build process of libraries that used this. We tried
+this briefly (`rusqlite` 0.10.0, specifically), but it had some annoyances:
+
+* The build time for `libsqlite3-sys` (and therefore `rusqlite`) increased
+ dramatically.
+* Running `bindgen` requires a relatively-recent version of Clang, which many
+ systems do not have installed by default.
+* Running `bindgen` also requires the SQLite header file to be present.
+
+As of `rusqlite` 0.10.1, we avoid running `bindgen` at build-time by shipping
+pregenerated bindings for several versions of SQLite. When compiling
+`rusqlite`, we use your selected Cargo features to pick the bindings for the
+minimum SQLite version that supports your chosen features. If you are using
+`libsqlite3-sys` directly, you can use the same features to choose which
+pregenerated bindings are chosen:
+
+* `min_sqlite_version_3_14_0` - SQLite 3.14.0 bindings (this is the default)
+
+If you use any of the `bundled` features, you will get pregenerated bindings for the
+bundled version of SQLite/SQLCipher. If you need other specific pregenerated binding
+versions, please file an issue. If you want to run `bindgen` at buildtime to
+produce your own bindings, use the `buildtime_bindgen` Cargo feature.
+
+If you enable the `modern_sqlite` feature, we'll use the bindings we would have
+included with the bundled build. You generally should have `buildtime_bindgen`
+enabled if you turn this on, as otherwise you'll need to keep the version of
+SQLite you link with in sync with what rusqlite would have bundled, (usually the
+most recent release of SQLite). Failing to do this will cause a runtime error.
+
+## Contributing
+
+Rusqlite has many features, and many of them impact the build configuration in
+incompatible ways. This is unfortunate, and makes testing changes hard.
+
+To help here: you generally should ensure that you run tests/lint for
+`--features bundled`, and `--features "bundled-full session buildtime_bindgen"`.
+
+If running bindgen is problematic for you, `--features bundled-full` enables
+bundled and all features which don't require binding generation, and can be used
+instead.
+
+### Checklist
+
+- Run `cargo fmt` to ensure your Rust code is correctly formatted.
+- Ensure `cargo clippy --workspace --features bundled` passes without warnings.
+- Ensure `cargo clippy --workspace --features "bundled-full session buildtime_bindgen"` passes without warnings.
+- Ensure `cargo test --workspace --features bundled` reports no failures.
+- Ensure `cargo test --workspace --features "bundled-full session buildtime_bindgen"` reports no failures.
+
+## Author
+
+Rusqlite is the product of hard work by a number of people. A list is available
+here: https://github.com/rusqlite/rusqlite/graphs/contributors
+
+## Community
+
+Feel free to join the [Rusqlite Discord Server](https://discord.gg/nFYfGPB8g4) to discuss or get help with `rusqlite` or `libsqlite3-sys`.
+
+## License
+
+Rusqlite and libsqlite3-sys are available under the MIT license. See the LICENSE file for more info.
+
+### Licenses of Bundled Software
+
+Depending on the set of enabled cargo `features`, rusqlite and libsqlite3-sys will also bundle other libraries, which have their own licensing terms:
+
+- If `--features=bundled-sqlcipher` is enabled, the vendored source of [SQLcipher](https://github.com/sqlcipher/sqlcipher) will be compiled and statically linked in. SQLcipher is distributed under a BSD-style license, as described [here](libsqlite3-sys/sqlcipher/LICENSE).
+
+- If `--features=bundled` is enabled, the vendored source of SQLite will be compiled and linked in. SQLite is in the public domain, as described [here](https://www.sqlite.org/copyright.html).
+
+Both of these are quite permissive, have no bearing on the license of the code in `rusqlite` or `libsqlite3-sys` themselves, and can be entirely ignored if you do not use the feature in question.
diff --git a/third_party/rust/libsqlite3-sys/Upgrade.md b/third_party/rust/libsqlite3-sys/Upgrade.md
new file mode 100644
index 0000000000..989e8aab24
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/Upgrade.md
@@ -0,0 +1,18 @@
+# Checks
+* new [error code(s)](https://sqlite.org/rescode.html)
+ => Update [libsqlite3-sys/src/error.rs](https://github.com/rusqlite/rusqlite/blob/006c8b77e7d235a3072237f006ebabd66b937911/libsqlite3-sys/src/error.rs#L127)
+ And [code_to_str](https://github.com/rusqlite/rusqlite/blob/006c8b77e7d235a3072237f006ebabd66b937911/libsqlite3-sys/src/error.rs#L195)
+* new [SQLITE_OPEN_*](https://www.sqlite.org/c3ref/c_open_autoproxy.html)
+ => Update [struct OpenFlags](https://github.com/rusqlite/rusqlite/blob/19d08871799500d64336f413dc329cc964149f10/src/lib.rs#L999)
+* new [SQLITE_LIMIT_*](https://sqlite.org/c3ref/c_limit_attached.html)
+ => Update [enum Limit](https://github.com/rusqlite/rusqlite/blob/66ace52c4a24a811b405ffd9e9010163352a6186/libsqlite3-sys/src/lib.rs#L27)
+* new [SQLITE_DBCONFIG_*](https://sqlite.org/c3ref/c_dbconfig_defensive.html)
+ => Update [enum DbConfig](https://github.com/rusqlite/rusqlite/blob/7056e656ac92330a3d78f5ac456dea1e56f6bfee/src/config.rs#L15)
+* new [Authorizer Action Codes](https://sqlite.org/c3ref/c_alter_table.html)
+ => Update [enum AuthAction](https://github.com/rusqlite/rusqlite/blob/2ddbebad9763ab8054e55ef509672b7537ba7cf5/src/hooks.rs#L63)
+* new [SQLITE_STMTSTATUS_*](https://www.sqlite.org/c3ref/c_stmtstatus_counter.html)
+ => Update [enum StatementStatus](https://github.com/rusqlite/rusqlite/blob/ce90b519bb9946bf1cbab77479bb92d0fbc467c0/src/statement.rs#L937)
+* new [SQLITE_INDEX_CONSTRAINT_*](https://sqlite.org/c3ref/c_index_constraint_eq.html)
+ => Update [enum IndexConstraintOp](https://github.com/rusqlite/rusqlite/blob/5d42ba7c29a35dbb8eeb047e84ae0739cb152754/src/vtab/mod.rs#L267)
+* new [function flag(s)](https://sqlite.org/c3ref/c_deterministic.html)
+ => Update [struct FunctionFlags](https://github.com/rusqlite/rusqlite/blob/0312937d6a75b45d7e603fa8c6b083bc7774270b/src/functions.rs#L317) \ No newline at end of file
diff --git a/third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0.rs b/third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0.rs
new file mode 100644
index 0000000000..d853ca8a49
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0.rs
@@ -0,0 +1,3043 @@
+/* automatically generated by rust-bindgen 0.60.1 */
+
+extern "C" {
+ pub fn sqlite3_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+
+extern "C" {
+ pub fn sqlite3_cancel_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+
+pub const SQLITE_VERSION: &[u8; 7usize] = b"3.14.0\0";
+pub const SQLITE_VERSION_NUMBER: i32 = 3014000;
+pub const SQLITE_SOURCE_ID: &[u8; 61usize] =
+ b"2016-08-08 13:40:27 d5e98057028abcf7217d0d2b2e29bbbcdf09d6de\0";
+pub const SQLITE_OK: i32 = 0;
+pub const SQLITE_ERROR: i32 = 1;
+pub const SQLITE_INTERNAL: i32 = 2;
+pub const SQLITE_PERM: i32 = 3;
+pub const SQLITE_ABORT: i32 = 4;
+pub const SQLITE_BUSY: i32 = 5;
+pub const SQLITE_LOCKED: i32 = 6;
+pub const SQLITE_NOMEM: i32 = 7;
+pub const SQLITE_READONLY: i32 = 8;
+pub const SQLITE_INTERRUPT: i32 = 9;
+pub const SQLITE_IOERR: i32 = 10;
+pub const SQLITE_CORRUPT: i32 = 11;
+pub const SQLITE_NOTFOUND: i32 = 12;
+pub const SQLITE_FULL: i32 = 13;
+pub const SQLITE_CANTOPEN: i32 = 14;
+pub const SQLITE_PROTOCOL: i32 = 15;
+pub const SQLITE_EMPTY: i32 = 16;
+pub const SQLITE_SCHEMA: i32 = 17;
+pub const SQLITE_TOOBIG: i32 = 18;
+pub const SQLITE_CONSTRAINT: i32 = 19;
+pub const SQLITE_MISMATCH: i32 = 20;
+pub const SQLITE_MISUSE: i32 = 21;
+pub const SQLITE_NOLFS: i32 = 22;
+pub const SQLITE_AUTH: i32 = 23;
+pub const SQLITE_FORMAT: i32 = 24;
+pub const SQLITE_RANGE: i32 = 25;
+pub const SQLITE_NOTADB: i32 = 26;
+pub const SQLITE_NOTICE: i32 = 27;
+pub const SQLITE_WARNING: i32 = 28;
+pub const SQLITE_ROW: i32 = 100;
+pub const SQLITE_DONE: i32 = 101;
+pub const SQLITE_IOERR_READ: i32 = 266;
+pub const SQLITE_IOERR_SHORT_READ: i32 = 522;
+pub const SQLITE_IOERR_WRITE: i32 = 778;
+pub const SQLITE_IOERR_FSYNC: i32 = 1034;
+pub const SQLITE_IOERR_DIR_FSYNC: i32 = 1290;
+pub const SQLITE_IOERR_TRUNCATE: i32 = 1546;
+pub const SQLITE_IOERR_FSTAT: i32 = 1802;
+pub const SQLITE_IOERR_UNLOCK: i32 = 2058;
+pub const SQLITE_IOERR_RDLOCK: i32 = 2314;
+pub const SQLITE_IOERR_DELETE: i32 = 2570;
+pub const SQLITE_IOERR_BLOCKED: i32 = 2826;
+pub const SQLITE_IOERR_NOMEM: i32 = 3082;
+pub const SQLITE_IOERR_ACCESS: i32 = 3338;
+pub const SQLITE_IOERR_CHECKRESERVEDLOCK: i32 = 3594;
+pub const SQLITE_IOERR_LOCK: i32 = 3850;
+pub const SQLITE_IOERR_CLOSE: i32 = 4106;
+pub const SQLITE_IOERR_DIR_CLOSE: i32 = 4362;
+pub const SQLITE_IOERR_SHMOPEN: i32 = 4618;
+pub const SQLITE_IOERR_SHMSIZE: i32 = 4874;
+pub const SQLITE_IOERR_SHMLOCK: i32 = 5130;
+pub const SQLITE_IOERR_SHMMAP: i32 = 5386;
+pub const SQLITE_IOERR_SEEK: i32 = 5642;
+pub const SQLITE_IOERR_DELETE_NOENT: i32 = 5898;
+pub const SQLITE_IOERR_MMAP: i32 = 6154;
+pub const SQLITE_IOERR_GETTEMPPATH: i32 = 6410;
+pub const SQLITE_IOERR_CONVPATH: i32 = 6666;
+pub const SQLITE_IOERR_VNODE: i32 = 6922;
+pub const SQLITE_IOERR_AUTH: i32 = 7178;
+pub const SQLITE_LOCKED_SHAREDCACHE: i32 = 262;
+pub const SQLITE_BUSY_RECOVERY: i32 = 261;
+pub const SQLITE_BUSY_SNAPSHOT: i32 = 517;
+pub const SQLITE_CANTOPEN_NOTEMPDIR: i32 = 270;
+pub const SQLITE_CANTOPEN_ISDIR: i32 = 526;
+pub const SQLITE_CANTOPEN_FULLPATH: i32 = 782;
+pub const SQLITE_CANTOPEN_CONVPATH: i32 = 1038;
+pub const SQLITE_CORRUPT_VTAB: i32 = 267;
+pub const SQLITE_READONLY_RECOVERY: i32 = 264;
+pub const SQLITE_READONLY_CANTLOCK: i32 = 520;
+pub const SQLITE_READONLY_ROLLBACK: i32 = 776;
+pub const SQLITE_READONLY_DBMOVED: i32 = 1032;
+pub const SQLITE_ABORT_ROLLBACK: i32 = 516;
+pub const SQLITE_CONSTRAINT_CHECK: i32 = 275;
+pub const SQLITE_CONSTRAINT_COMMITHOOK: i32 = 531;
+pub const SQLITE_CONSTRAINT_FOREIGNKEY: i32 = 787;
+pub const SQLITE_CONSTRAINT_FUNCTION: i32 = 1043;
+pub const SQLITE_CONSTRAINT_NOTNULL: i32 = 1299;
+pub const SQLITE_CONSTRAINT_PRIMARYKEY: i32 = 1555;
+pub const SQLITE_CONSTRAINT_TRIGGER: i32 = 1811;
+pub const SQLITE_CONSTRAINT_UNIQUE: i32 = 2067;
+pub const SQLITE_CONSTRAINT_VTAB: i32 = 2323;
+pub const SQLITE_CONSTRAINT_ROWID: i32 = 2579;
+pub const SQLITE_NOTICE_RECOVER_WAL: i32 = 283;
+pub const SQLITE_NOTICE_RECOVER_ROLLBACK: i32 = 539;
+pub const SQLITE_WARNING_AUTOINDEX: i32 = 284;
+pub const SQLITE_AUTH_USER: i32 = 279;
+pub const SQLITE_OK_LOAD_PERMANENTLY: i32 = 256;
+pub const SQLITE_OPEN_READONLY: i32 = 1;
+pub const SQLITE_OPEN_READWRITE: i32 = 2;
+pub const SQLITE_OPEN_CREATE: i32 = 4;
+pub const SQLITE_OPEN_DELETEONCLOSE: i32 = 8;
+pub const SQLITE_OPEN_EXCLUSIVE: i32 = 16;
+pub const SQLITE_OPEN_AUTOPROXY: i32 = 32;
+pub const SQLITE_OPEN_URI: i32 = 64;
+pub const SQLITE_OPEN_MEMORY: i32 = 128;
+pub const SQLITE_OPEN_MAIN_DB: i32 = 256;
+pub const SQLITE_OPEN_TEMP_DB: i32 = 512;
+pub const SQLITE_OPEN_TRANSIENT_DB: i32 = 1024;
+pub const SQLITE_OPEN_MAIN_JOURNAL: i32 = 2048;
+pub const SQLITE_OPEN_TEMP_JOURNAL: i32 = 4096;
+pub const SQLITE_OPEN_SUBJOURNAL: i32 = 8192;
+pub const SQLITE_OPEN_MASTER_JOURNAL: i32 = 16384;
+pub const SQLITE_OPEN_NOMUTEX: i32 = 32768;
+pub const SQLITE_OPEN_FULLMUTEX: i32 = 65536;
+pub const SQLITE_OPEN_SHAREDCACHE: i32 = 131072;
+pub const SQLITE_OPEN_PRIVATECACHE: i32 = 262144;
+pub const SQLITE_OPEN_WAL: i32 = 524288;
+pub const SQLITE_IOCAP_ATOMIC: i32 = 1;
+pub const SQLITE_IOCAP_ATOMIC512: i32 = 2;
+pub const SQLITE_IOCAP_ATOMIC1K: i32 = 4;
+pub const SQLITE_IOCAP_ATOMIC2K: i32 = 8;
+pub const SQLITE_IOCAP_ATOMIC4K: i32 = 16;
+pub const SQLITE_IOCAP_ATOMIC8K: i32 = 32;
+pub const SQLITE_IOCAP_ATOMIC16K: i32 = 64;
+pub const SQLITE_IOCAP_ATOMIC32K: i32 = 128;
+pub const SQLITE_IOCAP_ATOMIC64K: i32 = 256;
+pub const SQLITE_IOCAP_SAFE_APPEND: i32 = 512;
+pub const SQLITE_IOCAP_SEQUENTIAL: i32 = 1024;
+pub const SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN: i32 = 2048;
+pub const SQLITE_IOCAP_POWERSAFE_OVERWRITE: i32 = 4096;
+pub const SQLITE_IOCAP_IMMUTABLE: i32 = 8192;
+pub const SQLITE_LOCK_NONE: i32 = 0;
+pub const SQLITE_LOCK_SHARED: i32 = 1;
+pub const SQLITE_LOCK_RESERVED: i32 = 2;
+pub const SQLITE_LOCK_PENDING: i32 = 3;
+pub const SQLITE_LOCK_EXCLUSIVE: i32 = 4;
+pub const SQLITE_SYNC_NORMAL: i32 = 2;
+pub const SQLITE_SYNC_FULL: i32 = 3;
+pub const SQLITE_SYNC_DATAONLY: i32 = 16;
+pub const SQLITE_FCNTL_LOCKSTATE: i32 = 1;
+pub const SQLITE_FCNTL_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_FCNTL_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_FCNTL_LAST_ERRNO: i32 = 4;
+pub const SQLITE_FCNTL_SIZE_HINT: i32 = 5;
+pub const SQLITE_FCNTL_CHUNK_SIZE: i32 = 6;
+pub const SQLITE_FCNTL_FILE_POINTER: i32 = 7;
+pub const SQLITE_FCNTL_SYNC_OMITTED: i32 = 8;
+pub const SQLITE_FCNTL_WIN32_AV_RETRY: i32 = 9;
+pub const SQLITE_FCNTL_PERSIST_WAL: i32 = 10;
+pub const SQLITE_FCNTL_OVERWRITE: i32 = 11;
+pub const SQLITE_FCNTL_VFSNAME: i32 = 12;
+pub const SQLITE_FCNTL_POWERSAFE_OVERWRITE: i32 = 13;
+pub const SQLITE_FCNTL_PRAGMA: i32 = 14;
+pub const SQLITE_FCNTL_BUSYHANDLER: i32 = 15;
+pub const SQLITE_FCNTL_TEMPFILENAME: i32 = 16;
+pub const SQLITE_FCNTL_MMAP_SIZE: i32 = 18;
+pub const SQLITE_FCNTL_TRACE: i32 = 19;
+pub const SQLITE_FCNTL_HAS_MOVED: i32 = 20;
+pub const SQLITE_FCNTL_SYNC: i32 = 21;
+pub const SQLITE_FCNTL_COMMIT_PHASETWO: i32 = 22;
+pub const SQLITE_FCNTL_WIN32_SET_HANDLE: i32 = 23;
+pub const SQLITE_FCNTL_WAL_BLOCK: i32 = 24;
+pub const SQLITE_FCNTL_ZIPVFS: i32 = 25;
+pub const SQLITE_FCNTL_RBU: i32 = 26;
+pub const SQLITE_FCNTL_VFS_POINTER: i32 = 27;
+pub const SQLITE_FCNTL_JOURNAL_POINTER: i32 = 28;
+pub const SQLITE_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_LAST_ERRNO: i32 = 4;
+pub const SQLITE_ACCESS_EXISTS: i32 = 0;
+pub const SQLITE_ACCESS_READWRITE: i32 = 1;
+pub const SQLITE_ACCESS_READ: i32 = 2;
+pub const SQLITE_SHM_UNLOCK: i32 = 1;
+pub const SQLITE_SHM_LOCK: i32 = 2;
+pub const SQLITE_SHM_SHARED: i32 = 4;
+pub const SQLITE_SHM_EXCLUSIVE: i32 = 8;
+pub const SQLITE_SHM_NLOCK: i32 = 8;
+pub const SQLITE_CONFIG_SINGLETHREAD: i32 = 1;
+pub const SQLITE_CONFIG_MULTITHREAD: i32 = 2;
+pub const SQLITE_CONFIG_SERIALIZED: i32 = 3;
+pub const SQLITE_CONFIG_MALLOC: i32 = 4;
+pub const SQLITE_CONFIG_GETMALLOC: i32 = 5;
+pub const SQLITE_CONFIG_SCRATCH: i32 = 6;
+pub const SQLITE_CONFIG_PAGECACHE: i32 = 7;
+pub const SQLITE_CONFIG_HEAP: i32 = 8;
+pub const SQLITE_CONFIG_MEMSTATUS: i32 = 9;
+pub const SQLITE_CONFIG_MUTEX: i32 = 10;
+pub const SQLITE_CONFIG_GETMUTEX: i32 = 11;
+pub const SQLITE_CONFIG_LOOKASIDE: i32 = 13;
+pub const SQLITE_CONFIG_PCACHE: i32 = 14;
+pub const SQLITE_CONFIG_GETPCACHE: i32 = 15;
+pub const SQLITE_CONFIG_LOG: i32 = 16;
+pub const SQLITE_CONFIG_URI: i32 = 17;
+pub const SQLITE_CONFIG_PCACHE2: i32 = 18;
+pub const SQLITE_CONFIG_GETPCACHE2: i32 = 19;
+pub const SQLITE_CONFIG_COVERING_INDEX_SCAN: i32 = 20;
+pub const SQLITE_CONFIG_SQLLOG: i32 = 21;
+pub const SQLITE_CONFIG_MMAP_SIZE: i32 = 22;
+pub const SQLITE_CONFIG_WIN32_HEAPSIZE: i32 = 23;
+pub const SQLITE_CONFIG_PCACHE_HDRSZ: i32 = 24;
+pub const SQLITE_CONFIG_PMASZ: i32 = 25;
+pub const SQLITE_CONFIG_STMTJRNL_SPILL: i32 = 26;
+pub const SQLITE_DBCONFIG_LOOKASIDE: i32 = 1001;
+pub const SQLITE_DBCONFIG_ENABLE_FKEY: i32 = 1002;
+pub const SQLITE_DBCONFIG_ENABLE_TRIGGER: i32 = 1003;
+pub const SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER: i32 = 1004;
+pub const SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION: i32 = 1005;
+pub const SQLITE_DENY: i32 = 1;
+pub const SQLITE_IGNORE: i32 = 2;
+pub const SQLITE_CREATE_INDEX: i32 = 1;
+pub const SQLITE_CREATE_TABLE: i32 = 2;
+pub const SQLITE_CREATE_TEMP_INDEX: i32 = 3;
+pub const SQLITE_CREATE_TEMP_TABLE: i32 = 4;
+pub const SQLITE_CREATE_TEMP_TRIGGER: i32 = 5;
+pub const SQLITE_CREATE_TEMP_VIEW: i32 = 6;
+pub const SQLITE_CREATE_TRIGGER: i32 = 7;
+pub const SQLITE_CREATE_VIEW: i32 = 8;
+pub const SQLITE_DELETE: i32 = 9;
+pub const SQLITE_DROP_INDEX: i32 = 10;
+pub const SQLITE_DROP_TABLE: i32 = 11;
+pub const SQLITE_DROP_TEMP_INDEX: i32 = 12;
+pub const SQLITE_DROP_TEMP_TABLE: i32 = 13;
+pub const SQLITE_DROP_TEMP_TRIGGER: i32 = 14;
+pub const SQLITE_DROP_TEMP_VIEW: i32 = 15;
+pub const SQLITE_DROP_TRIGGER: i32 = 16;
+pub const SQLITE_DROP_VIEW: i32 = 17;
+pub const SQLITE_INSERT: i32 = 18;
+pub const SQLITE_PRAGMA: i32 = 19;
+pub const SQLITE_READ: i32 = 20;
+pub const SQLITE_SELECT: i32 = 21;
+pub const SQLITE_TRANSACTION: i32 = 22;
+pub const SQLITE_UPDATE: i32 = 23;
+pub const SQLITE_ATTACH: i32 = 24;
+pub const SQLITE_DETACH: i32 = 25;
+pub const SQLITE_ALTER_TABLE: i32 = 26;
+pub const SQLITE_REINDEX: i32 = 27;
+pub const SQLITE_ANALYZE: i32 = 28;
+pub const SQLITE_CREATE_VTABLE: i32 = 29;
+pub const SQLITE_DROP_VTABLE: i32 = 30;
+pub const SQLITE_FUNCTION: i32 = 31;
+pub const SQLITE_SAVEPOINT: i32 = 32;
+pub const SQLITE_COPY: i32 = 0;
+pub const SQLITE_RECURSIVE: i32 = 33;
+pub const SQLITE_TRACE_STMT: i32 = 1;
+pub const SQLITE_TRACE_PROFILE: i32 = 2;
+pub const SQLITE_TRACE_ROW: i32 = 4;
+pub const SQLITE_TRACE_CLOSE: i32 = 8;
+pub const SQLITE_LIMIT_LENGTH: i32 = 0;
+pub const SQLITE_LIMIT_SQL_LENGTH: i32 = 1;
+pub const SQLITE_LIMIT_COLUMN: i32 = 2;
+pub const SQLITE_LIMIT_EXPR_DEPTH: i32 = 3;
+pub const SQLITE_LIMIT_COMPOUND_SELECT: i32 = 4;
+pub const SQLITE_LIMIT_VDBE_OP: i32 = 5;
+pub const SQLITE_LIMIT_FUNCTION_ARG: i32 = 6;
+pub const SQLITE_LIMIT_ATTACHED: i32 = 7;
+pub const SQLITE_LIMIT_LIKE_PATTERN_LENGTH: i32 = 8;
+pub const SQLITE_LIMIT_VARIABLE_NUMBER: i32 = 9;
+pub const SQLITE_LIMIT_TRIGGER_DEPTH: i32 = 10;
+pub const SQLITE_LIMIT_WORKER_THREADS: i32 = 11;
+pub const SQLITE_INTEGER: i32 = 1;
+pub const SQLITE_FLOAT: i32 = 2;
+pub const SQLITE_BLOB: i32 = 4;
+pub const SQLITE_NULL: i32 = 5;
+pub const SQLITE_TEXT: i32 = 3;
+pub const SQLITE3_TEXT: i32 = 3;
+pub const SQLITE_UTF8: i32 = 1;
+pub const SQLITE_UTF16LE: i32 = 2;
+pub const SQLITE_UTF16BE: i32 = 3;
+pub const SQLITE_UTF16: i32 = 4;
+pub const SQLITE_ANY: i32 = 5;
+pub const SQLITE_UTF16_ALIGNED: i32 = 8;
+pub const SQLITE_DETERMINISTIC: i32 = 2048;
+pub const SQLITE_INDEX_SCAN_UNIQUE: i32 = 1;
+pub const SQLITE_INDEX_CONSTRAINT_EQ: i32 = 2;
+pub const SQLITE_INDEX_CONSTRAINT_GT: i32 = 4;
+pub const SQLITE_INDEX_CONSTRAINT_LE: i32 = 8;
+pub const SQLITE_INDEX_CONSTRAINT_LT: i32 = 16;
+pub const SQLITE_INDEX_CONSTRAINT_GE: i32 = 32;
+pub const SQLITE_INDEX_CONSTRAINT_MATCH: i32 = 64;
+pub const SQLITE_INDEX_CONSTRAINT_LIKE: i32 = 65;
+pub const SQLITE_INDEX_CONSTRAINT_GLOB: i32 = 66;
+pub const SQLITE_INDEX_CONSTRAINT_REGEXP: i32 = 67;
+pub const SQLITE_MUTEX_FAST: i32 = 0;
+pub const SQLITE_MUTEX_RECURSIVE: i32 = 1;
+pub const SQLITE_MUTEX_STATIC_MASTER: i32 = 2;
+pub const SQLITE_MUTEX_STATIC_MEM: i32 = 3;
+pub const SQLITE_MUTEX_STATIC_MEM2: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_OPEN: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_PRNG: i32 = 5;
+pub const SQLITE_MUTEX_STATIC_LRU: i32 = 6;
+pub const SQLITE_MUTEX_STATIC_LRU2: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_PMEM: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_APP1: i32 = 8;
+pub const SQLITE_MUTEX_STATIC_APP2: i32 = 9;
+pub const SQLITE_MUTEX_STATIC_APP3: i32 = 10;
+pub const SQLITE_MUTEX_STATIC_VFS1: i32 = 11;
+pub const SQLITE_MUTEX_STATIC_VFS2: i32 = 12;
+pub const SQLITE_MUTEX_STATIC_VFS3: i32 = 13;
+pub const SQLITE_TESTCTRL_FIRST: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_SAVE: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_RESTORE: i32 = 6;
+pub const SQLITE_TESTCTRL_PRNG_RESET: i32 = 7;
+pub const SQLITE_TESTCTRL_BITVEC_TEST: i32 = 8;
+pub const SQLITE_TESTCTRL_FAULT_INSTALL: i32 = 9;
+pub const SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: i32 = 10;
+pub const SQLITE_TESTCTRL_PENDING_BYTE: i32 = 11;
+pub const SQLITE_TESTCTRL_ASSERT: i32 = 12;
+pub const SQLITE_TESTCTRL_ALWAYS: i32 = 13;
+pub const SQLITE_TESTCTRL_RESERVE: i32 = 14;
+pub const SQLITE_TESTCTRL_OPTIMIZATIONS: i32 = 15;
+pub const SQLITE_TESTCTRL_ISKEYWORD: i32 = 16;
+pub const SQLITE_TESTCTRL_SCRATCHMALLOC: i32 = 17;
+pub const SQLITE_TESTCTRL_LOCALTIME_FAULT: i32 = 18;
+pub const SQLITE_TESTCTRL_EXPLAIN_STMT: i32 = 19;
+pub const SQLITE_TESTCTRL_NEVER_CORRUPT: i32 = 20;
+pub const SQLITE_TESTCTRL_VDBE_COVERAGE: i32 = 21;
+pub const SQLITE_TESTCTRL_BYTEORDER: i32 = 22;
+pub const SQLITE_TESTCTRL_ISINIT: i32 = 23;
+pub const SQLITE_TESTCTRL_SORTER_MMAP: i32 = 24;
+pub const SQLITE_TESTCTRL_IMPOSTER: i32 = 25;
+pub const SQLITE_TESTCTRL_LAST: i32 = 25;
+pub const SQLITE_STATUS_MEMORY_USED: i32 = 0;
+pub const SQLITE_STATUS_PAGECACHE_USED: i32 = 1;
+pub const SQLITE_STATUS_PAGECACHE_OVERFLOW: i32 = 2;
+pub const SQLITE_STATUS_SCRATCH_USED: i32 = 3;
+pub const SQLITE_STATUS_SCRATCH_OVERFLOW: i32 = 4;
+pub const SQLITE_STATUS_MALLOC_SIZE: i32 = 5;
+pub const SQLITE_STATUS_PARSER_STACK: i32 = 6;
+pub const SQLITE_STATUS_PAGECACHE_SIZE: i32 = 7;
+pub const SQLITE_STATUS_SCRATCH_SIZE: i32 = 8;
+pub const SQLITE_STATUS_MALLOC_COUNT: i32 = 9;
+pub const SQLITE_DBSTATUS_LOOKASIDE_USED: i32 = 0;
+pub const SQLITE_DBSTATUS_CACHE_USED: i32 = 1;
+pub const SQLITE_DBSTATUS_SCHEMA_USED: i32 = 2;
+pub const SQLITE_DBSTATUS_STMT_USED: i32 = 3;
+pub const SQLITE_DBSTATUS_LOOKASIDE_HIT: i32 = 4;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: i32 = 5;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: i32 = 6;
+pub const SQLITE_DBSTATUS_CACHE_HIT: i32 = 7;
+pub const SQLITE_DBSTATUS_CACHE_MISS: i32 = 8;
+pub const SQLITE_DBSTATUS_CACHE_WRITE: i32 = 9;
+pub const SQLITE_DBSTATUS_DEFERRED_FKS: i32 = 10;
+pub const SQLITE_DBSTATUS_CACHE_USED_SHARED: i32 = 11;
+pub const SQLITE_DBSTATUS_MAX: i32 = 11;
+pub const SQLITE_STMTSTATUS_FULLSCAN_STEP: i32 = 1;
+pub const SQLITE_STMTSTATUS_SORT: i32 = 2;
+pub const SQLITE_STMTSTATUS_AUTOINDEX: i32 = 3;
+pub const SQLITE_STMTSTATUS_VM_STEP: i32 = 4;
+pub const SQLITE_CHECKPOINT_PASSIVE: i32 = 0;
+pub const SQLITE_CHECKPOINT_FULL: i32 = 1;
+pub const SQLITE_CHECKPOINT_RESTART: i32 = 2;
+pub const SQLITE_CHECKPOINT_TRUNCATE: i32 = 3;
+pub const SQLITE_VTAB_CONSTRAINT_SUPPORT: i32 = 1;
+pub const SQLITE_ROLLBACK: i32 = 1;
+pub const SQLITE_FAIL: i32 = 3;
+pub const SQLITE_REPLACE: i32 = 5;
+pub const SQLITE_SCANSTAT_NLOOP: i32 = 0;
+pub const SQLITE_SCANSTAT_NVISIT: i32 = 1;
+pub const SQLITE_SCANSTAT_EST: i32 = 2;
+pub const SQLITE_SCANSTAT_NAME: i32 = 3;
+pub const SQLITE_SCANSTAT_EXPLAIN: i32 = 4;
+pub const SQLITE_SCANSTAT_SELECTID: i32 = 5;
+pub const NOT_WITHIN: i32 = 0;
+pub const PARTLY_WITHIN: i32 = 1;
+pub const FULLY_WITHIN: i32 = 2;
+pub const __SQLITESESSION_H_: i32 = 1;
+pub const SQLITE_CHANGESET_DATA: i32 = 1;
+pub const SQLITE_CHANGESET_NOTFOUND: i32 = 2;
+pub const SQLITE_CHANGESET_CONFLICT: i32 = 3;
+pub const SQLITE_CHANGESET_CONSTRAINT: i32 = 4;
+pub const SQLITE_CHANGESET_FOREIGN_KEY: i32 = 5;
+pub const SQLITE_CHANGESET_OMIT: i32 = 0;
+pub const SQLITE_CHANGESET_REPLACE: i32 = 1;
+pub const SQLITE_CHANGESET_ABORT: i32 = 2;
+pub const FTS5_TOKENIZE_QUERY: i32 = 1;
+pub const FTS5_TOKENIZE_PREFIX: i32 = 2;
+pub const FTS5_TOKENIZE_DOCUMENT: i32 = 4;
+pub const FTS5_TOKENIZE_AUX: i32 = 8;
+pub const FTS5_TOKEN_COLOCATED: i32 = 1;
+extern "C" {
+ pub static mut sqlite3_version: [::std::os::raw::c_char; 0usize];
+}
+extern "C" {
+ pub fn sqlite3_libversion() -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_sourceid() -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_libversion_number() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_compileoption_used(
+ zOptName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_compileoption_get(N: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_threadsafe() -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3 {
+ _unused: [u8; 0],
+}
+pub type sqlite_int64 = ::std::os::raw::c_longlong;
+pub type sqlite_uint64 = ::std::os::raw::c_ulonglong;
+pub type sqlite3_int64 = sqlite_int64;
+pub type sqlite3_uint64 = sqlite_uint64;
+extern "C" {
+ pub fn sqlite3_close(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_close_v2(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_callback = ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+>;
+extern "C" {
+ pub fn sqlite3_exec(
+ arg1: *mut sqlite3,
+ sql: *const ::std::os::raw::c_char,
+ callback: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ errmsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_file {
+ pub pMethods: *const sqlite3_io_methods,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_io_methods {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xRead: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *mut ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xWrite: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *const ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file, size: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pSize: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnlock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCheckReservedLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileControl: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSectorSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xDeviceCharacteristics: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xShmMap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iPg: ::std::os::raw::c_int,
+ pgsz: ::std::os::raw::c_int,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ offset: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmBarrier: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_file)>,
+ pub xShmUnmap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ deleteFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ iAmt: ::std::os::raw::c_int,
+ pp: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnfetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ p: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_api_routines {
+ _unused: [u8; 0],
+}
+pub type sqlite3_syscall_ptr = ::std::option::Option<unsafe extern "C" fn()>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vfs {
+ pub iVersion: ::std::os::raw::c_int,
+ pub szOsFile: ::std::os::raw::c_int,
+ pub mxPathname: ::std::os::raw::c_int,
+ pub pNext: *mut sqlite3_vfs,
+ pub zName: *const ::std::os::raw::c_char,
+ pub pAppData: *mut ::std::os::raw::c_void,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ pOutFlags: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ syncDir: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xAccess: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ flags: ::std::os::raw::c_int,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFullPathname: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ nOut: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDlOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zFilename: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xDlError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zErrMsg: *mut ::std::os::raw::c_char,
+ ),
+ >,
+ pub xDlSym: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ) -> ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ),
+ >,
+ >,
+ pub xDlClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub xRandomness: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSleep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ microseconds: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTime: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut f64) -> ::std::os::raw::c_int,
+ >,
+ pub xGetLastError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTimeInt64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: sqlite3_syscall_ptr,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> sqlite3_syscall_ptr,
+ >,
+ pub xNextSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+}
+extern "C" {
+ pub fn sqlite3_initialize() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_shutdown() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_os_init() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_os_end() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_config(arg1: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mem_methods {
+ pub xMalloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xRealloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xRoundup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub pAppData: *mut ::std::os::raw::c_void,
+}
+extern "C" {
+ pub fn sqlite3_extended_result_codes(
+ arg1: *mut sqlite3,
+ onoff: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_last_insert_rowid(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_total_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_interrupt(arg1: *mut sqlite3);
+}
+extern "C" {
+ pub fn sqlite3_complete(sql: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_complete16(sql: *const ::std::os::raw::c_void) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_busy_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_busy_timeout(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_get_table(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ pazResult: *mut *mut *mut ::std::os::raw::c_char,
+ pnRow: *mut ::std::os::raw::c_int,
+ pnColumn: *mut ::std::os::raw::c_int,
+ pzErrmsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_free_table(result: *mut *mut ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_mprintf(arg1: *const ::std::os::raw::c_char, ...)
+ -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_snprintf(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_malloc(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_malloc64(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_realloc(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_realloc64(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_free(arg1: *mut ::std::os::raw::c_void);
+}
+extern "C" {
+ pub fn sqlite3_msize(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64;
+}
+extern "C" {
+ pub fn sqlite3_memory_used() -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_memory_highwater(resetFlag: ::std::os::raw::c_int) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_randomness(N: ::std::os::raw::c_int, P: *mut ::std::os::raw::c_void);
+}
+extern "C" {
+ pub fn sqlite3_set_authorizer(
+ arg1: *mut sqlite3,
+ xAuth: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pUserData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_trace(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_profile(
+ arg1: *mut sqlite3,
+ xProfile: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_trace_v2(
+ arg1: *mut sqlite3,
+ uMask: ::std::os::raw::c_uint,
+ xCallback: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_progress_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ );
+}
+extern "C" {
+ pub fn sqlite3_open(
+ filename: *const ::std::os::raw::c_char,
+ ppDb: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_open16(
+ filename: *const ::std::os::raw::c_void,
+ ppDb: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_open_v2(
+ filename: *const ::std::os::raw::c_char,
+ ppDb: *mut *mut sqlite3,
+ flags: ::std::os::raw::c_int,
+ zVfs: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_uri_parameter(
+ zFilename: *const ::std::os::raw::c_char,
+ zParam: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_uri_boolean(
+ zFile: *const ::std::os::raw::c_char,
+ zParam: *const ::std::os::raw::c_char,
+ bDefault: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_uri_int64(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_extended_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_errmsg(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_errmsg16(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_errstr(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_stmt {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_limit(
+ arg1: *mut sqlite3,
+ id: ::std::os::raw::c_int,
+ newVal: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare_v2(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16_v2(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_sql(pStmt: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_expanded_sql(pStmt: *mut sqlite3_stmt) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_stmt_readonly(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_busy(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Mem {
+ _unused: [u8; 0],
+}
+pub type sqlite3_value = Mem;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_context {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_bind_blob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_blob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_double(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_int(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_int64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_null(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ encoding: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_value(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_zeroblob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_zeroblob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_count(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_index(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_clear_bindings(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_name(
+ arg1: *mut sqlite3_stmt,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_name16(
+ arg1: *mut sqlite3_stmt,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_database_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_database_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_table_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_table_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_origin_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_origin_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_decltype(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_decltype16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_step(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_data_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_blob(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_bytes(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_bytes16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_double(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> f64;
+}
+extern "C" {
+ pub fn sqlite3_column_int(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_int64(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_column_text(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_column_text16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_type(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_value(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value;
+}
+extern "C" {
+ pub fn sqlite3_finalize(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_reset(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function16(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_void,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function_v2(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_aggregate_count(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_expired(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_transfer_bindings(
+ arg1: *mut sqlite3_stmt,
+ arg2: *mut sqlite3_stmt,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_global_recover() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_thread_cleanup();
+}
+extern "C" {
+ pub fn sqlite3_memory_alarm(
+ arg1: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_int64,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_blob(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_bytes(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_bytes16(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_double(arg1: *mut sqlite3_value) -> f64;
+}
+extern "C" {
+ pub fn sqlite3_value_int(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_int64(arg1: *mut sqlite3_value) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_value_text(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_value_text16(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text16le(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text16be(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_numeric_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_subtype(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint;
+}
+extern "C" {
+ pub fn sqlite3_value_dup(arg1: *const sqlite3_value) -> *mut sqlite3_value;
+}
+extern "C" {
+ pub fn sqlite3_value_free(arg1: *mut sqlite3_value);
+}
+extern "C" {
+ pub fn sqlite3_aggregate_context(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_user_data(arg1: *mut sqlite3_context) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_context_db_handle(arg1: *mut sqlite3_context) -> *mut sqlite3;
+}
+extern "C" {
+ pub fn sqlite3_get_auxdata(
+ arg1: *mut sqlite3_context,
+ N: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_set_auxdata(
+ arg1: *mut sqlite3_context,
+ N: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+pub type sqlite3_destructor_type =
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>;
+extern "C" {
+ pub fn sqlite3_result_blob(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_blob64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_double(arg1: *mut sqlite3_context, arg2: f64);
+}
+extern "C" {
+ pub fn sqlite3_result_error(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_error16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_error_toobig(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_error_nomem(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_error_code(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_int(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_int64(arg1: *mut sqlite3_context, arg2: sqlite3_int64);
+}
+extern "C" {
+ pub fn sqlite3_result_null(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_text(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ encoding: ::std::os::raw::c_uchar,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16le(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16be(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_value(arg1: *mut sqlite3_context, arg2: *mut sqlite3_value);
+}
+extern "C" {
+ pub fn sqlite3_result_zeroblob(arg1: *mut sqlite3_context, n: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_zeroblob64(
+ arg1: *mut sqlite3_context,
+ n: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_result_subtype(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_uint);
+}
+extern "C" {
+ pub fn sqlite3_create_collation(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_collation_v2(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_collation16(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_void,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_collation_needed(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_collation_needed16(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_sleep(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub static mut sqlite3_temp_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub static mut sqlite3_data_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_get_autocommit(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_handle(arg1: *mut sqlite3_stmt) -> *mut sqlite3;
+}
+extern "C" {
+ pub fn sqlite3_db_filename(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_db_readonly(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_next_stmt(pDb: *mut sqlite3, pStmt: *mut sqlite3_stmt) -> *mut sqlite3_stmt;
+}
+extern "C" {
+ pub fn sqlite3_commit_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_rollback_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_update_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_enable_shared_cache(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_release_memory(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_release_memory(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_soft_heap_limit64(N: sqlite3_int64) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_soft_heap_limit(N: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_table_column_metadata(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ zTableName: *const ::std::os::raw::c_char,
+ zColumnName: *const ::std::os::raw::c_char,
+ pzDataType: *mut *const ::std::os::raw::c_char,
+ pzCollSeq: *mut *const ::std::os::raw::c_char,
+ pNotNull: *mut ::std::os::raw::c_int,
+ pPrimaryKey: *mut ::std::os::raw::c_int,
+ pAutoinc: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_load_extension(
+ db: *mut sqlite3,
+ zFile: *const ::std::os::raw::c_char,
+ zProc: *const ::std::os::raw::c_char,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_enable_load_extension(
+ db: *mut sqlite3,
+ onoff: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_reset_auto_extension();
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_module {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xConnect: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBestIndex: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: *mut sqlite3_index_info,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDisconnect: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ ppCursor: *mut *mut sqlite3_vtab_cursor,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ idxNum: ::std::os::raw::c_int,
+ idxStr: *const ::std::os::raw::c_char,
+ argc: ::std::os::raw::c_int,
+ argv: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xNext: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xEof: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ arg2: *mut sqlite3_context,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ pRowid: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ arg4: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBegin: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xCommit: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xRollback: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xFindFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ nArg: ::std::os::raw::c_int,
+ zName: *const ::std::os::raw::c_char,
+ pxFunc: *mut ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ ppArg: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRename: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ zNew: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSavepoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRelease: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRollbackTo: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_info {
+ pub nConstraint: ::std::os::raw::c_int,
+ pub aConstraint: *mut sqlite3_index_constraint,
+ pub nOrderBy: ::std::os::raw::c_int,
+ pub aOrderBy: *mut sqlite3_index_orderby,
+ pub aConstraintUsage: *mut sqlite3_index_constraint_usage,
+ pub idxNum: ::std::os::raw::c_int,
+ pub idxStr: *mut ::std::os::raw::c_char,
+ pub needToFreeIdxStr: ::std::os::raw::c_int,
+ pub orderByConsumed: ::std::os::raw::c_int,
+ pub estimatedCost: f64,
+ pub estimatedRows: sqlite3_int64,
+ pub idxFlags: ::std::os::raw::c_int,
+ pub colUsed: sqlite3_uint64,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint {
+ pub iColumn: ::std::os::raw::c_int,
+ pub op: ::std::os::raw::c_uchar,
+ pub usable: ::std::os::raw::c_uchar,
+ pub iTermOffset: ::std::os::raw::c_int,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_orderby {
+ pub iColumn: ::std::os::raw::c_int,
+ pub desc: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint_usage {
+ pub argvIndex: ::std::os::raw::c_int,
+ pub omit: ::std::os::raw::c_uchar,
+}
+extern "C" {
+ pub fn sqlite3_create_module(
+ db: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ p: *const sqlite3_module,
+ pClientData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_module_v2(
+ db: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ p: *const sqlite3_module,
+ pClientData: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab {
+ pub pModule: *const sqlite3_module,
+ pub nRef: ::std::os::raw::c_int,
+ pub zErrMsg: *mut ::std::os::raw::c_char,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab_cursor {
+ pub pVtab: *mut sqlite3_vtab,
+}
+extern "C" {
+ pub fn sqlite3_declare_vtab(
+ arg1: *mut sqlite3,
+ zSQL: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_overload_function(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_blob {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_blob_open(
+ arg1: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ zTable: *const ::std::os::raw::c_char,
+ zColumn: *const ::std::os::raw::c_char,
+ iRow: sqlite3_int64,
+ flags: ::std::os::raw::c_int,
+ ppBlob: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_reopen(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_close(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_bytes(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_read(
+ arg1: *mut sqlite3_blob,
+ Z: *mut ::std::os::raw::c_void,
+ N: ::std::os::raw::c_int,
+ iOffset: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_write(
+ arg1: *mut sqlite3_blob,
+ z: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ iOffset: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vfs_find(zVfsName: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs;
+}
+extern "C" {
+ pub fn sqlite3_vfs_register(
+ arg1: *mut sqlite3_vfs,
+ makeDflt: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vfs_unregister(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_alloc(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex;
+}
+extern "C" {
+ pub fn sqlite3_mutex_free(arg1: *mut sqlite3_mutex);
+}
+extern "C" {
+ pub fn sqlite3_mutex_enter(arg1: *mut sqlite3_mutex);
+}
+extern "C" {
+ pub fn sqlite3_mutex_try(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_leave(arg1: *mut sqlite3_mutex);
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex_methods {
+ pub xMutexInit: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexEnd: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexAlloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub xMutexFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexEnter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexTry: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexLeave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexHeld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexNotheld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+}
+extern "C" {
+ pub fn sqlite3_mutex_held(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_notheld(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_mutex(arg1: *mut sqlite3) -> *mut sqlite3_mutex;
+}
+extern "C" {
+ pub fn sqlite3_file_control(
+ arg1: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ op: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_test_control(op: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_status(
+ op: ::std::os::raw::c_int,
+ pCurrent: *mut ::std::os::raw::c_int,
+ pHighwater: *mut ::std::os::raw::c_int,
+ resetFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_status64(
+ op: ::std::os::raw::c_int,
+ pCurrent: *mut sqlite3_int64,
+ pHighwater: *mut sqlite3_int64,
+ resetFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_status(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ pCur: *mut ::std::os::raw::c_int,
+ pHiwtr: *mut ::std::os::raw::c_int,
+ resetFlg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_status(
+ arg1: *mut sqlite3_stmt,
+ op: ::std::os::raw::c_int,
+ resetFlg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_page {
+ pub pBuf: *mut ::std::os::raw::c_void,
+ pub pExtra: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods2 {
+ pub iVersion: ::std::os::raw::c_int,
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ szExtra: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache_page,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+ pub xShrink: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods {
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_backup {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_backup_init(
+ pDest: *mut sqlite3,
+ zDestName: *const ::std::os::raw::c_char,
+ pSource: *mut sqlite3,
+ zSourceName: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup;
+}
+extern "C" {
+ pub fn sqlite3_backup_step(
+ p: *mut sqlite3_backup,
+ nPage: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_finish(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_remaining(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_pagecount(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_unlock_notify(
+ pBlocked: *mut sqlite3,
+ xNotify: ::std::option::Option<
+ unsafe extern "C" fn(
+ apArg: *mut *mut ::std::os::raw::c_void,
+ nArg: ::std::os::raw::c_int,
+ ),
+ >,
+ pNotifyArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stricmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strnicmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strglob(
+ zGlob: *const ::std::os::raw::c_char,
+ zStr: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strlike(
+ zGlob: *const ::std::os::raw::c_char,
+ zStr: *const ::std::os::raw::c_char,
+ cEsc: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_log(
+ iErrCode: ::std::os::raw::c_int,
+ zFormat: *const ::std::os::raw::c_char,
+ ...
+ );
+}
+extern "C" {
+ pub fn sqlite3_wal_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_wal_autocheckpoint(
+ db: *mut sqlite3,
+ N: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_wal_checkpoint(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_wal_checkpoint_v2(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ eMode: ::std::os::raw::c_int,
+ pnLog: *mut ::std::os::raw::c_int,
+ pnCkpt: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_on_conflict(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus(
+ pStmt: *mut sqlite3_stmt,
+ idx: ::std::os::raw::c_int,
+ iScanStatusOp: ::std::os::raw::c_int,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus_reset(arg1: *mut sqlite3_stmt);
+}
+extern "C" {
+ pub fn sqlite3_db_cacheflush(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_hook(
+ db: *mut sqlite3,
+ xPreUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ db: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ zDb: *const ::std::os::raw::c_char,
+ zName: *const ::std::os::raw::c_char,
+ iKey1: sqlite3_int64,
+ iKey2: sqlite3_int64,
+ ),
+ >,
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_old(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_count(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_depth(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_new(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_system_errno(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_snapshot {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_snapshot_get(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ ppSnapshot: *mut *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_open(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ pSnapshot: *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_free(arg1: *mut sqlite3_snapshot);
+}
+extern "C" {
+ pub fn sqlite3_snapshot_cmp(
+ p1: *mut sqlite3_snapshot,
+ p2: *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_rtree_dbl = f64;
+extern "C" {
+ pub fn sqlite3_rtree_geometry_callback(
+ db: *mut sqlite3,
+ zGeom: *const ::std::os::raw::c_char,
+ xGeom: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_rtree_geometry,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut sqlite3_rtree_dbl,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pContext: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_geometry {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+}
+extern "C" {
+ pub fn sqlite3_rtree_query_callback(
+ db: *mut sqlite3,
+ zQueryFunc: *const ::std::os::raw::c_char,
+ xQueryFunc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_rtree_query_info) -> ::std::os::raw::c_int,
+ >,
+ pContext: *mut ::std::os::raw::c_void,
+ xDestructor: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_query_info {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub aCoord: *mut sqlite3_rtree_dbl,
+ pub anQueue: *mut ::std::os::raw::c_uint,
+ pub nCoord: ::std::os::raw::c_int,
+ pub iLevel: ::std::os::raw::c_int,
+ pub mxLevel: ::std::os::raw::c_int,
+ pub iRowid: sqlite3_int64,
+ pub rParentScore: sqlite3_rtree_dbl,
+ pub eParentWithin: ::std::os::raw::c_int,
+ pub eWithin: ::std::os::raw::c_int,
+ pub rScore: sqlite3_rtree_dbl,
+ pub apSqlParam: *mut *mut sqlite3_value,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_session {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_changeset_iter {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3session_create(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ppSession: *mut *mut sqlite3_session,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_delete(pSession: *mut sqlite3_session);
+}
+extern "C" {
+ pub fn sqlite3session_enable(
+ pSession: *mut sqlite3_session,
+ bEnable: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_indirect(
+ pSession: *mut sqlite3_session,
+ bIndirect: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_attach(
+ pSession: *mut sqlite3_session,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_table_filter(
+ pSession: *mut sqlite3_session,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ );
+}
+extern "C" {
+ pub fn sqlite3session_changeset(
+ pSession: *mut sqlite3_session,
+ pnChangeset: *mut ::std::os::raw::c_int,
+ ppChangeset: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_diff(
+ pSession: *mut sqlite3_session,
+ zFromDb: *const ::std::os::raw::c_char,
+ zTbl: *const ::std::os::raw::c_char,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_patchset(
+ pSession: *mut sqlite3_session,
+ pnPatchset: *mut ::std::os::raw::c_int,
+ ppPatchset: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_isempty(pSession: *mut sqlite3_session) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start(
+ pp: *mut *mut sqlite3_changeset_iter,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_next(pIter: *mut sqlite3_changeset_iter) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_op(
+ pIter: *mut sqlite3_changeset_iter,
+ pzTab: *mut *const ::std::os::raw::c_char,
+ pnCol: *mut ::std::os::raw::c_int,
+ pOp: *mut ::std::os::raw::c_int,
+ pbIndirect: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_pk(
+ pIter: *mut sqlite3_changeset_iter,
+ pabPK: *mut *mut ::std::os::raw::c_uchar,
+ pnCol: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_old(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_new(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_conflict(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_fk_conflicts(
+ pIter: *mut sqlite3_changeset_iter,
+ pnOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_finalize(pIter: *mut sqlite3_changeset_iter) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_invert(
+ nIn: ::std::os::raw::c_int,
+ pIn: *const ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_concat(
+ nA: ::std::os::raw::c_int,
+ pA: *mut ::std::os::raw::c_void,
+ nB: ::std::os::raw::c_int,
+ pB: *mut ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_changegroup {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3changegroup_new(pp: *mut *mut sqlite3_changegroup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_add(
+ arg1: *mut sqlite3_changegroup,
+ nData: ::std::os::raw::c_int,
+ pData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_output(
+ arg1: *mut sqlite3_changegroup,
+ pnData: *mut ::std::os::raw::c_int,
+ ppData: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_delete(arg1: *mut sqlite3_changegroup);
+}
+extern "C" {
+ pub fn sqlite3changeset_apply(
+ db: *mut sqlite3,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_strm(
+ db: *mut sqlite3,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_concat_strm(
+ xInputA: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pInA: *mut ::std::os::raw::c_void,
+ xInputB: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pInB: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_invert_strm(
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_strm(
+ pp: *mut *mut sqlite3_changeset_iter,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_changeset_strm(
+ pSession: *mut sqlite3_session,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_patchset_strm(
+ pSession: *mut sqlite3_session,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_add_strm(
+ arg1: *mut sqlite3_changegroup,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_output_strm(
+ arg1: *mut sqlite3_changegroup,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Context {
+ _unused: [u8; 0],
+}
+pub type fts5_extension_function = ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *const Fts5ExtensionApi,
+ pFts: *mut Fts5Context,
+ pCtx: *mut sqlite3_context,
+ nVal: ::std::os::raw::c_int,
+ apVal: *mut *mut sqlite3_value,
+ ),
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5PhraseIter {
+ pub a: *const ::std::os::raw::c_uchar,
+ pub b: *const ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5ExtensionApi {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xUserData: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xColumnCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xRowCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnRow: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnTotalSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ pCtx: *mut ::std::os::raw::c_void,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ arg6: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInstCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnInst: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iIdx: ::std::os::raw::c_int,
+ piPhrase: *mut ::std::os::raw::c_int,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Context) -> sqlite3_int64>,
+ pub xColumnText: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pz: *mut *const ::std::os::raw::c_char,
+ pn: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xQueryPhrase: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ pUserData: *mut ::std::os::raw::c_void,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const Fts5ExtensionApi,
+ arg2: *mut Fts5Context,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pAux: *mut ::std::os::raw::c_void,
+ xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ bClear: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xPhraseFirst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNext: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ),
+ >,
+ pub xPhraseFirstColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNextColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ ),
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Tokenizer {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_tokenizer {
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ azArg: *mut *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ppOut: *mut *mut Fts5Tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Tokenizer)>,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Tokenizer,
+ pCtx: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ tflags: ::std::os::raw::c_int,
+ pToken: *const ::std::os::raw::c_char,
+ nToken: ::std::os::raw::c_int,
+ iStart: ::std::os::raw::c_int,
+ iEnd: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_api {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreateTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pContext: *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFindTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ ppContext: *mut *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCreateFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pContext: *mut ::std::os::raw::c_void,
+ xFunction: fts5_extension_function,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
diff --git a/third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0_ext.rs b/third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0_ext.rs
new file mode 100644
index 0000000000..0f46645e49
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/bindgen-bindings/bindgen_3.14.0_ext.rs
@@ -0,0 +1,6956 @@
+/* automatically generated by rust-bindgen 0.69.1 */
+
+pub const SQLITE_VERSION: &[u8; 7] = b"3.14.0\0";
+pub const SQLITE_VERSION_NUMBER: i32 = 3014000;
+pub const SQLITE_SOURCE_ID: &[u8; 61] =
+ b"2016-08-08 13:40:27 d5e98057028abcf7217d0d2b2e29bbbcdf09d6de\0";
+pub const SQLITE_OK: i32 = 0;
+pub const SQLITE_ERROR: i32 = 1;
+pub const SQLITE_INTERNAL: i32 = 2;
+pub const SQLITE_PERM: i32 = 3;
+pub const SQLITE_ABORT: i32 = 4;
+pub const SQLITE_BUSY: i32 = 5;
+pub const SQLITE_LOCKED: i32 = 6;
+pub const SQLITE_NOMEM: i32 = 7;
+pub const SQLITE_READONLY: i32 = 8;
+pub const SQLITE_INTERRUPT: i32 = 9;
+pub const SQLITE_IOERR: i32 = 10;
+pub const SQLITE_CORRUPT: i32 = 11;
+pub const SQLITE_NOTFOUND: i32 = 12;
+pub const SQLITE_FULL: i32 = 13;
+pub const SQLITE_CANTOPEN: i32 = 14;
+pub const SQLITE_PROTOCOL: i32 = 15;
+pub const SQLITE_EMPTY: i32 = 16;
+pub const SQLITE_SCHEMA: i32 = 17;
+pub const SQLITE_TOOBIG: i32 = 18;
+pub const SQLITE_CONSTRAINT: i32 = 19;
+pub const SQLITE_MISMATCH: i32 = 20;
+pub const SQLITE_MISUSE: i32 = 21;
+pub const SQLITE_NOLFS: i32 = 22;
+pub const SQLITE_AUTH: i32 = 23;
+pub const SQLITE_FORMAT: i32 = 24;
+pub const SQLITE_RANGE: i32 = 25;
+pub const SQLITE_NOTADB: i32 = 26;
+pub const SQLITE_NOTICE: i32 = 27;
+pub const SQLITE_WARNING: i32 = 28;
+pub const SQLITE_ROW: i32 = 100;
+pub const SQLITE_DONE: i32 = 101;
+pub const SQLITE_IOERR_READ: i32 = 266;
+pub const SQLITE_IOERR_SHORT_READ: i32 = 522;
+pub const SQLITE_IOERR_WRITE: i32 = 778;
+pub const SQLITE_IOERR_FSYNC: i32 = 1034;
+pub const SQLITE_IOERR_DIR_FSYNC: i32 = 1290;
+pub const SQLITE_IOERR_TRUNCATE: i32 = 1546;
+pub const SQLITE_IOERR_FSTAT: i32 = 1802;
+pub const SQLITE_IOERR_UNLOCK: i32 = 2058;
+pub const SQLITE_IOERR_RDLOCK: i32 = 2314;
+pub const SQLITE_IOERR_DELETE: i32 = 2570;
+pub const SQLITE_IOERR_BLOCKED: i32 = 2826;
+pub const SQLITE_IOERR_NOMEM: i32 = 3082;
+pub const SQLITE_IOERR_ACCESS: i32 = 3338;
+pub const SQLITE_IOERR_CHECKRESERVEDLOCK: i32 = 3594;
+pub const SQLITE_IOERR_LOCK: i32 = 3850;
+pub const SQLITE_IOERR_CLOSE: i32 = 4106;
+pub const SQLITE_IOERR_DIR_CLOSE: i32 = 4362;
+pub const SQLITE_IOERR_SHMOPEN: i32 = 4618;
+pub const SQLITE_IOERR_SHMSIZE: i32 = 4874;
+pub const SQLITE_IOERR_SHMLOCK: i32 = 5130;
+pub const SQLITE_IOERR_SHMMAP: i32 = 5386;
+pub const SQLITE_IOERR_SEEK: i32 = 5642;
+pub const SQLITE_IOERR_DELETE_NOENT: i32 = 5898;
+pub const SQLITE_IOERR_MMAP: i32 = 6154;
+pub const SQLITE_IOERR_GETTEMPPATH: i32 = 6410;
+pub const SQLITE_IOERR_CONVPATH: i32 = 6666;
+pub const SQLITE_IOERR_VNODE: i32 = 6922;
+pub const SQLITE_IOERR_AUTH: i32 = 7178;
+pub const SQLITE_LOCKED_SHAREDCACHE: i32 = 262;
+pub const SQLITE_BUSY_RECOVERY: i32 = 261;
+pub const SQLITE_BUSY_SNAPSHOT: i32 = 517;
+pub const SQLITE_CANTOPEN_NOTEMPDIR: i32 = 270;
+pub const SQLITE_CANTOPEN_ISDIR: i32 = 526;
+pub const SQLITE_CANTOPEN_FULLPATH: i32 = 782;
+pub const SQLITE_CANTOPEN_CONVPATH: i32 = 1038;
+pub const SQLITE_CORRUPT_VTAB: i32 = 267;
+pub const SQLITE_READONLY_RECOVERY: i32 = 264;
+pub const SQLITE_READONLY_CANTLOCK: i32 = 520;
+pub const SQLITE_READONLY_ROLLBACK: i32 = 776;
+pub const SQLITE_READONLY_DBMOVED: i32 = 1032;
+pub const SQLITE_ABORT_ROLLBACK: i32 = 516;
+pub const SQLITE_CONSTRAINT_CHECK: i32 = 275;
+pub const SQLITE_CONSTRAINT_COMMITHOOK: i32 = 531;
+pub const SQLITE_CONSTRAINT_FOREIGNKEY: i32 = 787;
+pub const SQLITE_CONSTRAINT_FUNCTION: i32 = 1043;
+pub const SQLITE_CONSTRAINT_NOTNULL: i32 = 1299;
+pub const SQLITE_CONSTRAINT_PRIMARYKEY: i32 = 1555;
+pub const SQLITE_CONSTRAINT_TRIGGER: i32 = 1811;
+pub const SQLITE_CONSTRAINT_UNIQUE: i32 = 2067;
+pub const SQLITE_CONSTRAINT_VTAB: i32 = 2323;
+pub const SQLITE_CONSTRAINT_ROWID: i32 = 2579;
+pub const SQLITE_NOTICE_RECOVER_WAL: i32 = 283;
+pub const SQLITE_NOTICE_RECOVER_ROLLBACK: i32 = 539;
+pub const SQLITE_WARNING_AUTOINDEX: i32 = 284;
+pub const SQLITE_AUTH_USER: i32 = 279;
+pub const SQLITE_OK_LOAD_PERMANENTLY: i32 = 256;
+pub const SQLITE_OPEN_READONLY: i32 = 1;
+pub const SQLITE_OPEN_READWRITE: i32 = 2;
+pub const SQLITE_OPEN_CREATE: i32 = 4;
+pub const SQLITE_OPEN_DELETEONCLOSE: i32 = 8;
+pub const SQLITE_OPEN_EXCLUSIVE: i32 = 16;
+pub const SQLITE_OPEN_AUTOPROXY: i32 = 32;
+pub const SQLITE_OPEN_URI: i32 = 64;
+pub const SQLITE_OPEN_MEMORY: i32 = 128;
+pub const SQLITE_OPEN_MAIN_DB: i32 = 256;
+pub const SQLITE_OPEN_TEMP_DB: i32 = 512;
+pub const SQLITE_OPEN_TRANSIENT_DB: i32 = 1024;
+pub const SQLITE_OPEN_MAIN_JOURNAL: i32 = 2048;
+pub const SQLITE_OPEN_TEMP_JOURNAL: i32 = 4096;
+pub const SQLITE_OPEN_SUBJOURNAL: i32 = 8192;
+pub const SQLITE_OPEN_MASTER_JOURNAL: i32 = 16384;
+pub const SQLITE_OPEN_NOMUTEX: i32 = 32768;
+pub const SQLITE_OPEN_FULLMUTEX: i32 = 65536;
+pub const SQLITE_OPEN_SHAREDCACHE: i32 = 131072;
+pub const SQLITE_OPEN_PRIVATECACHE: i32 = 262144;
+pub const SQLITE_OPEN_WAL: i32 = 524288;
+pub const SQLITE_IOCAP_ATOMIC: i32 = 1;
+pub const SQLITE_IOCAP_ATOMIC512: i32 = 2;
+pub const SQLITE_IOCAP_ATOMIC1K: i32 = 4;
+pub const SQLITE_IOCAP_ATOMIC2K: i32 = 8;
+pub const SQLITE_IOCAP_ATOMIC4K: i32 = 16;
+pub const SQLITE_IOCAP_ATOMIC8K: i32 = 32;
+pub const SQLITE_IOCAP_ATOMIC16K: i32 = 64;
+pub const SQLITE_IOCAP_ATOMIC32K: i32 = 128;
+pub const SQLITE_IOCAP_ATOMIC64K: i32 = 256;
+pub const SQLITE_IOCAP_SAFE_APPEND: i32 = 512;
+pub const SQLITE_IOCAP_SEQUENTIAL: i32 = 1024;
+pub const SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN: i32 = 2048;
+pub const SQLITE_IOCAP_POWERSAFE_OVERWRITE: i32 = 4096;
+pub const SQLITE_IOCAP_IMMUTABLE: i32 = 8192;
+pub const SQLITE_LOCK_NONE: i32 = 0;
+pub const SQLITE_LOCK_SHARED: i32 = 1;
+pub const SQLITE_LOCK_RESERVED: i32 = 2;
+pub const SQLITE_LOCK_PENDING: i32 = 3;
+pub const SQLITE_LOCK_EXCLUSIVE: i32 = 4;
+pub const SQLITE_SYNC_NORMAL: i32 = 2;
+pub const SQLITE_SYNC_FULL: i32 = 3;
+pub const SQLITE_SYNC_DATAONLY: i32 = 16;
+pub const SQLITE_FCNTL_LOCKSTATE: i32 = 1;
+pub const SQLITE_FCNTL_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_FCNTL_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_FCNTL_LAST_ERRNO: i32 = 4;
+pub const SQLITE_FCNTL_SIZE_HINT: i32 = 5;
+pub const SQLITE_FCNTL_CHUNK_SIZE: i32 = 6;
+pub const SQLITE_FCNTL_FILE_POINTER: i32 = 7;
+pub const SQLITE_FCNTL_SYNC_OMITTED: i32 = 8;
+pub const SQLITE_FCNTL_WIN32_AV_RETRY: i32 = 9;
+pub const SQLITE_FCNTL_PERSIST_WAL: i32 = 10;
+pub const SQLITE_FCNTL_OVERWRITE: i32 = 11;
+pub const SQLITE_FCNTL_VFSNAME: i32 = 12;
+pub const SQLITE_FCNTL_POWERSAFE_OVERWRITE: i32 = 13;
+pub const SQLITE_FCNTL_PRAGMA: i32 = 14;
+pub const SQLITE_FCNTL_BUSYHANDLER: i32 = 15;
+pub const SQLITE_FCNTL_TEMPFILENAME: i32 = 16;
+pub const SQLITE_FCNTL_MMAP_SIZE: i32 = 18;
+pub const SQLITE_FCNTL_TRACE: i32 = 19;
+pub const SQLITE_FCNTL_HAS_MOVED: i32 = 20;
+pub const SQLITE_FCNTL_SYNC: i32 = 21;
+pub const SQLITE_FCNTL_COMMIT_PHASETWO: i32 = 22;
+pub const SQLITE_FCNTL_WIN32_SET_HANDLE: i32 = 23;
+pub const SQLITE_FCNTL_WAL_BLOCK: i32 = 24;
+pub const SQLITE_FCNTL_ZIPVFS: i32 = 25;
+pub const SQLITE_FCNTL_RBU: i32 = 26;
+pub const SQLITE_FCNTL_VFS_POINTER: i32 = 27;
+pub const SQLITE_FCNTL_JOURNAL_POINTER: i32 = 28;
+pub const SQLITE_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_LAST_ERRNO: i32 = 4;
+pub const SQLITE_ACCESS_EXISTS: i32 = 0;
+pub const SQLITE_ACCESS_READWRITE: i32 = 1;
+pub const SQLITE_ACCESS_READ: i32 = 2;
+pub const SQLITE_SHM_UNLOCK: i32 = 1;
+pub const SQLITE_SHM_LOCK: i32 = 2;
+pub const SQLITE_SHM_SHARED: i32 = 4;
+pub const SQLITE_SHM_EXCLUSIVE: i32 = 8;
+pub const SQLITE_SHM_NLOCK: i32 = 8;
+pub const SQLITE_CONFIG_SINGLETHREAD: i32 = 1;
+pub const SQLITE_CONFIG_MULTITHREAD: i32 = 2;
+pub const SQLITE_CONFIG_SERIALIZED: i32 = 3;
+pub const SQLITE_CONFIG_MALLOC: i32 = 4;
+pub const SQLITE_CONFIG_GETMALLOC: i32 = 5;
+pub const SQLITE_CONFIG_SCRATCH: i32 = 6;
+pub const SQLITE_CONFIG_PAGECACHE: i32 = 7;
+pub const SQLITE_CONFIG_HEAP: i32 = 8;
+pub const SQLITE_CONFIG_MEMSTATUS: i32 = 9;
+pub const SQLITE_CONFIG_MUTEX: i32 = 10;
+pub const SQLITE_CONFIG_GETMUTEX: i32 = 11;
+pub const SQLITE_CONFIG_LOOKASIDE: i32 = 13;
+pub const SQLITE_CONFIG_PCACHE: i32 = 14;
+pub const SQLITE_CONFIG_GETPCACHE: i32 = 15;
+pub const SQLITE_CONFIG_LOG: i32 = 16;
+pub const SQLITE_CONFIG_URI: i32 = 17;
+pub const SQLITE_CONFIG_PCACHE2: i32 = 18;
+pub const SQLITE_CONFIG_GETPCACHE2: i32 = 19;
+pub const SQLITE_CONFIG_COVERING_INDEX_SCAN: i32 = 20;
+pub const SQLITE_CONFIG_SQLLOG: i32 = 21;
+pub const SQLITE_CONFIG_MMAP_SIZE: i32 = 22;
+pub const SQLITE_CONFIG_WIN32_HEAPSIZE: i32 = 23;
+pub const SQLITE_CONFIG_PCACHE_HDRSZ: i32 = 24;
+pub const SQLITE_CONFIG_PMASZ: i32 = 25;
+pub const SQLITE_CONFIG_STMTJRNL_SPILL: i32 = 26;
+pub const SQLITE_DBCONFIG_LOOKASIDE: i32 = 1001;
+pub const SQLITE_DBCONFIG_ENABLE_FKEY: i32 = 1002;
+pub const SQLITE_DBCONFIG_ENABLE_TRIGGER: i32 = 1003;
+pub const SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER: i32 = 1004;
+pub const SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION: i32 = 1005;
+pub const SQLITE_DENY: i32 = 1;
+pub const SQLITE_IGNORE: i32 = 2;
+pub const SQLITE_CREATE_INDEX: i32 = 1;
+pub const SQLITE_CREATE_TABLE: i32 = 2;
+pub const SQLITE_CREATE_TEMP_INDEX: i32 = 3;
+pub const SQLITE_CREATE_TEMP_TABLE: i32 = 4;
+pub const SQLITE_CREATE_TEMP_TRIGGER: i32 = 5;
+pub const SQLITE_CREATE_TEMP_VIEW: i32 = 6;
+pub const SQLITE_CREATE_TRIGGER: i32 = 7;
+pub const SQLITE_CREATE_VIEW: i32 = 8;
+pub const SQLITE_DELETE: i32 = 9;
+pub const SQLITE_DROP_INDEX: i32 = 10;
+pub const SQLITE_DROP_TABLE: i32 = 11;
+pub const SQLITE_DROP_TEMP_INDEX: i32 = 12;
+pub const SQLITE_DROP_TEMP_TABLE: i32 = 13;
+pub const SQLITE_DROP_TEMP_TRIGGER: i32 = 14;
+pub const SQLITE_DROP_TEMP_VIEW: i32 = 15;
+pub const SQLITE_DROP_TRIGGER: i32 = 16;
+pub const SQLITE_DROP_VIEW: i32 = 17;
+pub const SQLITE_INSERT: i32 = 18;
+pub const SQLITE_PRAGMA: i32 = 19;
+pub const SQLITE_READ: i32 = 20;
+pub const SQLITE_SELECT: i32 = 21;
+pub const SQLITE_TRANSACTION: i32 = 22;
+pub const SQLITE_UPDATE: i32 = 23;
+pub const SQLITE_ATTACH: i32 = 24;
+pub const SQLITE_DETACH: i32 = 25;
+pub const SQLITE_ALTER_TABLE: i32 = 26;
+pub const SQLITE_REINDEX: i32 = 27;
+pub const SQLITE_ANALYZE: i32 = 28;
+pub const SQLITE_CREATE_VTABLE: i32 = 29;
+pub const SQLITE_DROP_VTABLE: i32 = 30;
+pub const SQLITE_FUNCTION: i32 = 31;
+pub const SQLITE_SAVEPOINT: i32 = 32;
+pub const SQLITE_COPY: i32 = 0;
+pub const SQLITE_RECURSIVE: i32 = 33;
+pub const SQLITE_TRACE_STMT: i32 = 1;
+pub const SQLITE_TRACE_PROFILE: i32 = 2;
+pub const SQLITE_TRACE_ROW: i32 = 4;
+pub const SQLITE_TRACE_CLOSE: i32 = 8;
+pub const SQLITE_LIMIT_LENGTH: i32 = 0;
+pub const SQLITE_LIMIT_SQL_LENGTH: i32 = 1;
+pub const SQLITE_LIMIT_COLUMN: i32 = 2;
+pub const SQLITE_LIMIT_EXPR_DEPTH: i32 = 3;
+pub const SQLITE_LIMIT_COMPOUND_SELECT: i32 = 4;
+pub const SQLITE_LIMIT_VDBE_OP: i32 = 5;
+pub const SQLITE_LIMIT_FUNCTION_ARG: i32 = 6;
+pub const SQLITE_LIMIT_ATTACHED: i32 = 7;
+pub const SQLITE_LIMIT_LIKE_PATTERN_LENGTH: i32 = 8;
+pub const SQLITE_LIMIT_VARIABLE_NUMBER: i32 = 9;
+pub const SQLITE_LIMIT_TRIGGER_DEPTH: i32 = 10;
+pub const SQLITE_LIMIT_WORKER_THREADS: i32 = 11;
+pub const SQLITE_INTEGER: i32 = 1;
+pub const SQLITE_FLOAT: i32 = 2;
+pub const SQLITE_BLOB: i32 = 4;
+pub const SQLITE_NULL: i32 = 5;
+pub const SQLITE_TEXT: i32 = 3;
+pub const SQLITE3_TEXT: i32 = 3;
+pub const SQLITE_UTF8: i32 = 1;
+pub const SQLITE_UTF16LE: i32 = 2;
+pub const SQLITE_UTF16BE: i32 = 3;
+pub const SQLITE_UTF16: i32 = 4;
+pub const SQLITE_ANY: i32 = 5;
+pub const SQLITE_UTF16_ALIGNED: i32 = 8;
+pub const SQLITE_DETERMINISTIC: i32 = 2048;
+pub const SQLITE_INDEX_SCAN_UNIQUE: i32 = 1;
+pub const SQLITE_INDEX_CONSTRAINT_EQ: i32 = 2;
+pub const SQLITE_INDEX_CONSTRAINT_GT: i32 = 4;
+pub const SQLITE_INDEX_CONSTRAINT_LE: i32 = 8;
+pub const SQLITE_INDEX_CONSTRAINT_LT: i32 = 16;
+pub const SQLITE_INDEX_CONSTRAINT_GE: i32 = 32;
+pub const SQLITE_INDEX_CONSTRAINT_MATCH: i32 = 64;
+pub const SQLITE_INDEX_CONSTRAINT_LIKE: i32 = 65;
+pub const SQLITE_INDEX_CONSTRAINT_GLOB: i32 = 66;
+pub const SQLITE_INDEX_CONSTRAINT_REGEXP: i32 = 67;
+pub const SQLITE_MUTEX_FAST: i32 = 0;
+pub const SQLITE_MUTEX_RECURSIVE: i32 = 1;
+pub const SQLITE_MUTEX_STATIC_MASTER: i32 = 2;
+pub const SQLITE_MUTEX_STATIC_MEM: i32 = 3;
+pub const SQLITE_MUTEX_STATIC_MEM2: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_OPEN: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_PRNG: i32 = 5;
+pub const SQLITE_MUTEX_STATIC_LRU: i32 = 6;
+pub const SQLITE_MUTEX_STATIC_LRU2: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_PMEM: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_APP1: i32 = 8;
+pub const SQLITE_MUTEX_STATIC_APP2: i32 = 9;
+pub const SQLITE_MUTEX_STATIC_APP3: i32 = 10;
+pub const SQLITE_MUTEX_STATIC_VFS1: i32 = 11;
+pub const SQLITE_MUTEX_STATIC_VFS2: i32 = 12;
+pub const SQLITE_MUTEX_STATIC_VFS3: i32 = 13;
+pub const SQLITE_TESTCTRL_FIRST: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_SAVE: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_RESTORE: i32 = 6;
+pub const SQLITE_TESTCTRL_PRNG_RESET: i32 = 7;
+pub const SQLITE_TESTCTRL_BITVEC_TEST: i32 = 8;
+pub const SQLITE_TESTCTRL_FAULT_INSTALL: i32 = 9;
+pub const SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: i32 = 10;
+pub const SQLITE_TESTCTRL_PENDING_BYTE: i32 = 11;
+pub const SQLITE_TESTCTRL_ASSERT: i32 = 12;
+pub const SQLITE_TESTCTRL_ALWAYS: i32 = 13;
+pub const SQLITE_TESTCTRL_RESERVE: i32 = 14;
+pub const SQLITE_TESTCTRL_OPTIMIZATIONS: i32 = 15;
+pub const SQLITE_TESTCTRL_ISKEYWORD: i32 = 16;
+pub const SQLITE_TESTCTRL_SCRATCHMALLOC: i32 = 17;
+pub const SQLITE_TESTCTRL_LOCALTIME_FAULT: i32 = 18;
+pub const SQLITE_TESTCTRL_EXPLAIN_STMT: i32 = 19;
+pub const SQLITE_TESTCTRL_NEVER_CORRUPT: i32 = 20;
+pub const SQLITE_TESTCTRL_VDBE_COVERAGE: i32 = 21;
+pub const SQLITE_TESTCTRL_BYTEORDER: i32 = 22;
+pub const SQLITE_TESTCTRL_ISINIT: i32 = 23;
+pub const SQLITE_TESTCTRL_SORTER_MMAP: i32 = 24;
+pub const SQLITE_TESTCTRL_IMPOSTER: i32 = 25;
+pub const SQLITE_TESTCTRL_LAST: i32 = 25;
+pub const SQLITE_STATUS_MEMORY_USED: i32 = 0;
+pub const SQLITE_STATUS_PAGECACHE_USED: i32 = 1;
+pub const SQLITE_STATUS_PAGECACHE_OVERFLOW: i32 = 2;
+pub const SQLITE_STATUS_SCRATCH_USED: i32 = 3;
+pub const SQLITE_STATUS_SCRATCH_OVERFLOW: i32 = 4;
+pub const SQLITE_STATUS_MALLOC_SIZE: i32 = 5;
+pub const SQLITE_STATUS_PARSER_STACK: i32 = 6;
+pub const SQLITE_STATUS_PAGECACHE_SIZE: i32 = 7;
+pub const SQLITE_STATUS_SCRATCH_SIZE: i32 = 8;
+pub const SQLITE_STATUS_MALLOC_COUNT: i32 = 9;
+pub const SQLITE_DBSTATUS_LOOKASIDE_USED: i32 = 0;
+pub const SQLITE_DBSTATUS_CACHE_USED: i32 = 1;
+pub const SQLITE_DBSTATUS_SCHEMA_USED: i32 = 2;
+pub const SQLITE_DBSTATUS_STMT_USED: i32 = 3;
+pub const SQLITE_DBSTATUS_LOOKASIDE_HIT: i32 = 4;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: i32 = 5;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: i32 = 6;
+pub const SQLITE_DBSTATUS_CACHE_HIT: i32 = 7;
+pub const SQLITE_DBSTATUS_CACHE_MISS: i32 = 8;
+pub const SQLITE_DBSTATUS_CACHE_WRITE: i32 = 9;
+pub const SQLITE_DBSTATUS_DEFERRED_FKS: i32 = 10;
+pub const SQLITE_DBSTATUS_CACHE_USED_SHARED: i32 = 11;
+pub const SQLITE_DBSTATUS_MAX: i32 = 11;
+pub const SQLITE_STMTSTATUS_FULLSCAN_STEP: i32 = 1;
+pub const SQLITE_STMTSTATUS_SORT: i32 = 2;
+pub const SQLITE_STMTSTATUS_AUTOINDEX: i32 = 3;
+pub const SQLITE_STMTSTATUS_VM_STEP: i32 = 4;
+pub const SQLITE_CHECKPOINT_PASSIVE: i32 = 0;
+pub const SQLITE_CHECKPOINT_FULL: i32 = 1;
+pub const SQLITE_CHECKPOINT_RESTART: i32 = 2;
+pub const SQLITE_CHECKPOINT_TRUNCATE: i32 = 3;
+pub const SQLITE_VTAB_CONSTRAINT_SUPPORT: i32 = 1;
+pub const SQLITE_ROLLBACK: i32 = 1;
+pub const SQLITE_FAIL: i32 = 3;
+pub const SQLITE_REPLACE: i32 = 5;
+pub const SQLITE_SCANSTAT_NLOOP: i32 = 0;
+pub const SQLITE_SCANSTAT_NVISIT: i32 = 1;
+pub const SQLITE_SCANSTAT_EST: i32 = 2;
+pub const SQLITE_SCANSTAT_NAME: i32 = 3;
+pub const SQLITE_SCANSTAT_EXPLAIN: i32 = 4;
+pub const SQLITE_SCANSTAT_SELECTID: i32 = 5;
+pub const NOT_WITHIN: i32 = 0;
+pub const PARTLY_WITHIN: i32 = 1;
+pub const FULLY_WITHIN: i32 = 2;
+pub const FTS5_TOKENIZE_QUERY: i32 = 1;
+pub const FTS5_TOKENIZE_PREFIX: i32 = 2;
+pub const FTS5_TOKENIZE_DOCUMENT: i32 = 4;
+pub const FTS5_TOKENIZE_AUX: i32 = 8;
+pub const FTS5_TOKEN_COLOCATED: i32 = 1;
+extern "C" {
+ pub static sqlite3_version: [::std::os::raw::c_char; 0usize];
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3 {
+ _unused: [u8; 0],
+}
+pub type sqlite_int64 = ::std::os::raw::c_longlong;
+pub type sqlite_uint64 = ::std::os::raw::c_ulonglong;
+pub type sqlite3_int64 = sqlite_int64;
+pub type sqlite3_uint64 = sqlite_uint64;
+pub type sqlite3_callback = ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_file {
+ pub pMethods: *const sqlite3_io_methods,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_io_methods {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xRead: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *mut ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xWrite: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *const ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file, size: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pSize: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnlock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCheckReservedLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileControl: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSectorSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xDeviceCharacteristics: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xShmMap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iPg: ::std::os::raw::c_int,
+ pgsz: ::std::os::raw::c_int,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ offset: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmBarrier: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_file)>,
+ pub xShmUnmap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ deleteFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ iAmt: ::std::os::raw::c_int,
+ pp: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnfetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ p: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex {
+ _unused: [u8; 0],
+}
+pub type sqlite3_syscall_ptr = ::std::option::Option<unsafe extern "C" fn()>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vfs {
+ pub iVersion: ::std::os::raw::c_int,
+ pub szOsFile: ::std::os::raw::c_int,
+ pub mxPathname: ::std::os::raw::c_int,
+ pub pNext: *mut sqlite3_vfs,
+ pub zName: *const ::std::os::raw::c_char,
+ pub pAppData: *mut ::std::os::raw::c_void,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ pOutFlags: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ syncDir: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xAccess: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ flags: ::std::os::raw::c_int,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFullPathname: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ nOut: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDlOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zFilename: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xDlError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zErrMsg: *mut ::std::os::raw::c_char,
+ ),
+ >,
+ pub xDlSym: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ) -> ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ),
+ >,
+ >,
+ pub xDlClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub xRandomness: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSleep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ microseconds: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTime: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut f64) -> ::std::os::raw::c_int,
+ >,
+ pub xGetLastError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTimeInt64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: sqlite3_syscall_ptr,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> sqlite3_syscall_ptr,
+ >,
+ pub xNextSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mem_methods {
+ pub xMalloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xRealloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xRoundup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub pAppData: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_stmt {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Mem {
+ _unused: [u8; 0],
+}
+pub type sqlite3_value = Mem;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_context {
+ _unused: [u8; 0],
+}
+pub type sqlite3_destructor_type =
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>;
+extern "C" {
+ pub static mut sqlite3_temp_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub static mut sqlite3_data_directory: *mut ::std::os::raw::c_char;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_module {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xConnect: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBestIndex: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: *mut sqlite3_index_info,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDisconnect: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ ppCursor: *mut *mut sqlite3_vtab_cursor,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ idxNum: ::std::os::raw::c_int,
+ idxStr: *const ::std::os::raw::c_char,
+ argc: ::std::os::raw::c_int,
+ argv: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xNext: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xEof: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ arg2: *mut sqlite3_context,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ pRowid: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ arg4: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBegin: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xCommit: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xRollback: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xFindFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ nArg: ::std::os::raw::c_int,
+ zName: *const ::std::os::raw::c_char,
+ pxFunc: *mut ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ ppArg: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRename: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ zNew: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSavepoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRelease: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRollbackTo: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_info {
+ pub nConstraint: ::std::os::raw::c_int,
+ pub aConstraint: *mut sqlite3_index_constraint,
+ pub nOrderBy: ::std::os::raw::c_int,
+ pub aOrderBy: *mut sqlite3_index_orderby,
+ pub aConstraintUsage: *mut sqlite3_index_constraint_usage,
+ pub idxNum: ::std::os::raw::c_int,
+ pub idxStr: *mut ::std::os::raw::c_char,
+ pub needToFreeIdxStr: ::std::os::raw::c_int,
+ pub orderByConsumed: ::std::os::raw::c_int,
+ pub estimatedCost: f64,
+ pub estimatedRows: sqlite3_int64,
+ pub idxFlags: ::std::os::raw::c_int,
+ pub colUsed: sqlite3_uint64,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint {
+ pub iColumn: ::std::os::raw::c_int,
+ pub op: ::std::os::raw::c_uchar,
+ pub usable: ::std::os::raw::c_uchar,
+ pub iTermOffset: ::std::os::raw::c_int,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_orderby {
+ pub iColumn: ::std::os::raw::c_int,
+ pub desc: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint_usage {
+ pub argvIndex: ::std::os::raw::c_int,
+ pub omit: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab {
+ pub pModule: *const sqlite3_module,
+ pub nRef: ::std::os::raw::c_int,
+ pub zErrMsg: *mut ::std::os::raw::c_char,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab_cursor {
+ pub pVtab: *mut sqlite3_vtab,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_blob {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex_methods {
+ pub xMutexInit: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexEnd: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexAlloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub xMutexFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexEnter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexTry: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexLeave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexHeld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexNotheld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_page {
+ pub pBuf: *mut ::std::os::raw::c_void,
+ pub pExtra: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods2 {
+ pub iVersion: ::std::os::raw::c_int,
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ szExtra: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache_page,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+ pub xShrink: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods {
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_backup {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_snapshot {
+ _unused: [u8; 0],
+}
+pub type sqlite3_rtree_dbl = f64;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_geometry {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_query_info {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub aCoord: *mut sqlite3_rtree_dbl,
+ pub anQueue: *mut ::std::os::raw::c_uint,
+ pub nCoord: ::std::os::raw::c_int,
+ pub iLevel: ::std::os::raw::c_int,
+ pub mxLevel: ::std::os::raw::c_int,
+ pub iRowid: sqlite3_int64,
+ pub rParentScore: sqlite3_rtree_dbl,
+ pub eParentWithin: ::std::os::raw::c_int,
+ pub eWithin: ::std::os::raw::c_int,
+ pub rScore: sqlite3_rtree_dbl,
+ pub apSqlParam: *mut *mut sqlite3_value,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Context {
+ _unused: [u8; 0],
+}
+pub type fts5_extension_function = ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *const Fts5ExtensionApi,
+ pFts: *mut Fts5Context,
+ pCtx: *mut sqlite3_context,
+ nVal: ::std::os::raw::c_int,
+ apVal: *mut *mut sqlite3_value,
+ ),
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5PhraseIter {
+ pub a: *const ::std::os::raw::c_uchar,
+ pub b: *const ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5ExtensionApi {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xUserData: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xColumnCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xRowCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnRow: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnTotalSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ pCtx: *mut ::std::os::raw::c_void,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ arg6: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInstCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnInst: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iIdx: ::std::os::raw::c_int,
+ piPhrase: *mut ::std::os::raw::c_int,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Context) -> sqlite3_int64>,
+ pub xColumnText: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pz: *mut *const ::std::os::raw::c_char,
+ pn: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xQueryPhrase: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ pUserData: *mut ::std::os::raw::c_void,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const Fts5ExtensionApi,
+ arg2: *mut Fts5Context,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pAux: *mut ::std::os::raw::c_void,
+ xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ bClear: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xPhraseFirst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNext: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ),
+ >,
+ pub xPhraseFirstColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNextColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ ),
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Tokenizer {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_tokenizer {
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ azArg: *mut *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ppOut: *mut *mut Fts5Tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Tokenizer)>,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Tokenizer,
+ pCtx: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ tflags: ::std::os::raw::c_int,
+ pToken: *const ::std::os::raw::c_char,
+ nToken: ::std::os::raw::c_int,
+ iStart: ::std::os::raw::c_int,
+ iEnd: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_api {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreateTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pContext: *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFindTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ ppContext: *mut *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCreateFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pContext: *mut ::std::os::raw::c_void,
+ xFunction: fts5_extension_function,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_api_routines {
+ pub aggregate_context: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub aggregate_count: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int,
+ >,
+ pub bind_blob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_double: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_int: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_int64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_null: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_parameter_count: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub bind_parameter_index: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_parameter_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub bind_text: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_text16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_value: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub busy_handler: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub busy_timeout: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub changes:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub close:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub collation_needed: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub collation_needed16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_blob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_bytes: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_bytes16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_count: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub column_database_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_database_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_decltype: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ i: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_decltype16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_double: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> f64,
+ >,
+ pub column_int: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_int64: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> sqlite_int64,
+ >,
+ pub column_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_origin_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_origin_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_table_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_table_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_text: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar,
+ >,
+ pub column_text16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_type: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_value: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value,
+ >,
+ pub commit_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub complete: ::std::option::Option<
+ unsafe extern "C" fn(sql: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+ pub complete16: ::std::option::Option<
+ unsafe extern "C" fn(sql: *const ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub create_collation: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_collation16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_function: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_function16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_module: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub data_count: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub db_handle:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *mut sqlite3>,
+ pub declare_vtab: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub enable_shared_cache: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub errcode:
+ ::std::option::Option<unsafe extern "C" fn(db: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub errmsg: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char,
+ >,
+ pub errmsg16: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void,
+ >,
+ pub exec: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_callback,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub expired: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub finalize: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub free: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub free_table:
+ ::std::option::Option<unsafe extern "C" fn(result: *mut *mut ::std::os::raw::c_char)>,
+ pub get_autocommit:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub get_auxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub get_table: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut *mut *mut ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ arg6: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub global_recover: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub interruptx: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3)>,
+ pub last_insert_rowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite_int64>,
+ pub libversion: ::std::option::Option<unsafe extern "C" fn() -> *const ::std::os::raw::c_char>,
+ pub libversion_number: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub malloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub mprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub open: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub open16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_void,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub profile: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite_uint64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub progress_handler: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ),
+ >,
+ pub realloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub reset: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub result_blob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_double:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: f64)>,
+ pub result_error: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ pub result_error16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ pub result_int: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int),
+ >,
+ pub result_int64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: sqlite_int64)>,
+ pub result_null: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ pub result_text: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text16be: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text16le: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_value: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: *mut sqlite3_value),
+ >,
+ pub rollback_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub set_authorizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub set_auxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub snprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub step: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub table_column_metadata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *mut *const ::std::os::raw::c_char,
+ arg6: *mut *const ::std::os::raw::c_char,
+ arg7: *mut ::std::os::raw::c_int,
+ arg8: *mut ::std::os::raw::c_int,
+ arg9: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub thread_cleanup: ::std::option::Option<unsafe extern "C" fn()>,
+ pub total_changes:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub trace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub transfer_bindings: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: *mut sqlite3_stmt,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub update_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub user_data: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub value_blob: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_bytes: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_bytes16: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_double: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_value) -> f64>,
+ pub value_int: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_int64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_value) -> sqlite_int64>,
+ pub value_numeric_type: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_text: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_uchar,
+ >,
+ pub value_text16: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_text16be: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_text16le: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_type: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub vmprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub overload_function: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare16_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub clear_bindings: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub create_module_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_zeroblob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub blob_bytes: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int,
+ >,
+ pub blob_close: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int,
+ >,
+ pub blob_open: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_int,
+ arg7: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub blob_read: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub blob_write: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_collation_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg6: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub file_control: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub memory_highwater:
+ ::std::option::Option<unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> sqlite3_int64>,
+ pub memory_used: ::std::option::Option<unsafe extern "C" fn() -> sqlite3_int64>,
+ pub mutex_alloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub mutex_enter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub mutex_free: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub mutex_leave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub mutex_try: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub open_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ arg3: ::std::os::raw::c_int,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub release_memory: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub result_error_nomem: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ pub result_error_toobig:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ pub sleep: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub soft_heap_limit: ::std::option::Option<unsafe extern "C" fn(arg1: ::std::os::raw::c_int)>,
+ pub vfs_find: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs,
+ >,
+ pub vfs_register: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vfs_unregister: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int,
+ >,
+ pub xthreadsafe: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub result_zeroblob: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int),
+ >,
+ pub result_error_code: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int),
+ >,
+ pub test_control: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int,
+ >,
+ pub randomness: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub context_db_handle:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context) -> *mut sqlite3>,
+ pub extended_result_codes: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub limit: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub next_stmt: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3, arg2: *mut sqlite3_stmt) -> *mut sqlite3_stmt,
+ >,
+ pub sql: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char,
+ >,
+ pub status: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub backup_finish: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int,
+ >,
+ pub backup_init: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup,
+ >,
+ pub backup_pagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int,
+ >,
+ pub backup_remaining: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int,
+ >,
+ pub backup_step: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_backup,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub compileoption_get: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char,
+ >,
+ pub compileoption_used: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+ pub create_function_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_config: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_mutex:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> *mut sqlite3_mutex>,
+ pub db_status: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub extended_errcode:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub log: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int, arg2: *const ::std::os::raw::c_char, ...),
+ >,
+ pub soft_heap_limit64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: sqlite3_int64) -> sqlite3_int64>,
+ pub sourceid: ::std::option::Option<unsafe extern "C" fn() -> *const ::std::os::raw::c_char>,
+ pub stmt_status: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub strnicmp: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub unlock_notify: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub wal_autocheckpoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub wal_checkpoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub wal_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub blob_reopen: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_blob, arg2: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_config: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_on_conflict:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub close_v2:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub db_filename: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub db_readonly: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_release_memory:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub errstr: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char,
+ >,
+ pub stmt_busy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub stmt_readonly: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub stricmp: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub uri_boolean: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub uri_int64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64,
+ >,
+ pub uri_parameter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub vsnprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub wal_checkpoint_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub auto_extension: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_blob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_text64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg6: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub cancel_auto_extension: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub load_extension: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub malloc64: ::std::option::Option<
+ unsafe extern "C" fn(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void,
+ >,
+ pub msize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64,
+ >,
+ pub realloc64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub reset_auto_extension: ::std::option::Option<unsafe extern "C" fn()>,
+ pub result_blob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg5: ::std::os::raw::c_uchar,
+ ),
+ >,
+ pub strglob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub value_dup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const sqlite3_value) -> *mut sqlite3_value,
+ >,
+ pub value_free: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_value)>,
+ pub result_zeroblob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_zeroblob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub value_subtype: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint,
+ >,
+ pub result_subtype: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_uint),
+ >,
+ pub status64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut sqlite3_int64,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub strlike: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_cacheflush:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub system_errno:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub trace_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_uint,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub expanded_sql: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *mut ::std::os::raw::c_char,
+ >,
+}
+pub type sqlite3_loadext_entry = ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+>;
+static __SQLITE3_AGGREGATE_CONTEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_aggregate_context(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_AGGREGATE_CONTEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, nBytes)
+}
+
+static __SQLITE3_BIND_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_blob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, n, arg4)
+}
+
+static __SQLITE3_BIND_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_double(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BIND_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_int(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BIND_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_int64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite_int64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite_int64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BIND_NULL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_null(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_NULL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_BIND_PARAMETER_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_parameter_count(
+ arg1: *mut sqlite3_stmt,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_PARAMETER_COUNT
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BIND_PARAMETER_INDEX: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_parameter_index(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_PARAMETER_INDEX
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, zName)
+}
+
+static __SQLITE3_BIND_PARAMETER_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_parameter_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_BIND_PARAMETER_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_BIND_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_text(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, n, arg4)
+}
+
+static __SQLITE3_BIND_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_text16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_BIND_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_value(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BUSY_HANDLER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_busy_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BUSY_HANDLER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BUSY_TIMEOUT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_busy_timeout(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BUSY_TIMEOUT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, ms)
+}
+
+static __SQLITE3_CHANGES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CHANGES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_CLOSE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_close(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CLOSE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_COLLATION_NEEDED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_collation_needed(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLLATION_NEEDED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_COLLATION_NEEDED16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_collation_needed16(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLLATION_NEEDED16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_COLUMN_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_blob(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_BYTES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_bytes(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_BYTES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_BYTES16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_bytes16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_BYTES16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_COUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_COLUMN_DATABASE_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_database_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_DATABASE_NAME
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_DATABASE_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_database_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_DATABASE_NAME16
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_DECLTYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_decltype(
+ arg1: *mut sqlite3_stmt,
+ i: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_DECLTYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ i: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, i)
+}
+
+static __SQLITE3_COLUMN_DECLTYPE16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_decltype16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_DECLTYPE16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_double(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> f64 {
+ let ptr = __SQLITE3_COLUMN_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> f64 = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_int(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_int64(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> sqlite_int64 {
+ let ptr = __SQLITE3_COLUMN_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> sqlite_int64 = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_NAME16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_ORIGIN_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_origin_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_ORIGIN_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_ORIGIN_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_origin_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_ORIGIN_NAME16
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_TABLE_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_table_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_TABLE_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_TABLE_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_table_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_TABLE_NAME16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_text(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_uchar {
+ let ptr = __SQLITE3_COLUMN_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_text16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_TYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_type(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_TYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_value(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *mut sqlite3_value {
+ let ptr = __SQLITE3_COLUMN_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COMMIT_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_commit_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COMMIT_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_COMPLETE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_complete(
+ sql: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COMPLETE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ sql: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(sql)
+}
+
+static __SQLITE3_COMPLETE16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_complete16(
+ sql: *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COMPLETE16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ sql: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(sql)
+}
+
+static __SQLITE3_CREATE_COLLATION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_collation(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_COLLATION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_CREATE_COLLATION16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_collation16(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_COLLATION16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_CREATE_FUNCTION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_function(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_FUNCTION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xFunc, xStep, xFinal)
+}
+
+static __SQLITE3_CREATE_FUNCTION16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_function16(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_FUNCTION16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xFunc, xStep, xFinal)
+}
+
+static __SQLITE3_CREATE_MODULE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_module(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_MODULE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_DATA_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_data_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DATA_COUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_DB_HANDLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_handle(arg1: *mut sqlite3_stmt) -> *mut sqlite3 {
+ let ptr = __SQLITE3_DB_HANDLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *mut sqlite3 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DECLARE_VTAB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_declare_vtab(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DECLARE_VTAB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_ENABLE_SHARED_CACHE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_enable_shared_cache(
+ arg1: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_ENABLE_SHARED_CACHE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_ERRCODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_ERRCODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(db: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(db)
+}
+
+static __SQLITE3_ERRMSG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errmsg(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_ERRMSG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_ERRMSG16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errmsg16(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_ERRMSG16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_EXEC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_exec(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_callback,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: *mut *mut ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_EXEC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_callback,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_FINALIZE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_finalize(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_FINALIZE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_FREE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_free(arg1: *mut ::std::os::raw::c_void) {
+ let ptr = __SQLITE3_FREE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_FREE_TABLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_free_table(result: *mut *mut ::std::os::raw::c_char) {
+ let ptr = __SQLITE3_FREE_TABLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(result: *mut *mut ::std::os::raw::c_char) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(result)
+}
+
+static __SQLITE3_GET_AUTOCOMMIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_autocommit(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_GET_AUTOCOMMIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_GET_AUXDATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_auxdata(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_GET_AUXDATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_GET_TABLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_table(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut *mut *mut ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ arg6: *mut *mut ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_GET_TABLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut *mut *mut ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ arg6: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_INTERRUPT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_interrupt(arg1: *mut sqlite3) {
+ let ptr = __SQLITE3_INTERRUPT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_LAST_INSERT_ROWID: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_last_insert_rowid(arg1: *mut sqlite3) -> sqlite_int64 {
+ let ptr = __SQLITE3_LAST_INSERT_ROWID.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_LIBVERSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_libversion() -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_LIBVERSION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> *const ::std::os::raw::c_char = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_LIBVERSION_NUMBER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_libversion_number() -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_LIBVERSION_NUMBER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_MALLOC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_malloc(
+ arg1: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_MALLOC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_OPEN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_open(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OPEN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_OPEN16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_open16(
+ arg1: *const ::std::os::raw::c_void,
+ arg2: *mut *mut sqlite3,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OPEN16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_void,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_PREPARE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_PREPARE16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare16(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_PROFILE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_profile(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite_uint64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_PROFILE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite_uint64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_PROGRESS_HANDLER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_progress_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+) {
+ let ptr = __SQLITE3_PROGRESS_HANDLER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_REALLOC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_realloc(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_REALLOC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESET: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_reset(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_RESET.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_RESULT_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_blob(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_double(arg1: *mut sqlite3_context, arg2: f64) {
+ let ptr = __SQLITE3_RESULT_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: f64) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_ERROR: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ERROR.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_RESULT_ERROR16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ERROR16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_RESULT_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_int(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_int64(arg1: *mut sqlite3_context, arg2: sqlite_int64) {
+ let ptr = __SQLITE3_RESULT_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: sqlite_int64) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_NULL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_null(arg1: *mut sqlite3_context) {
+ let ptr = __SQLITE3_RESULT_NULL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT16BE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text16be(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT16BE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT16LE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text16le(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT16LE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_value(
+ arg1: *mut sqlite3_context,
+ arg2: *mut sqlite3_value,
+) {
+ let ptr = __SQLITE3_RESULT_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *mut sqlite3_value,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_ROLLBACK_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_rollback_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_ROLLBACK_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_SET_AUTHORIZER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_set_authorizer(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SET_AUTHORIZER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_SET_AUXDATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_set_auxdata(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_SET_AUXDATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_STEP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_step(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STEP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TABLE_COLUMN_METADATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_table_column_metadata(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *mut *const ::std::os::raw::c_char,
+ arg6: *mut *const ::std::os::raw::c_char,
+ arg7: *mut ::std::os::raw::c_int,
+ arg8: *mut ::std::os::raw::c_int,
+ arg9: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TABLE_COLUMN_METADATA
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *mut *const ::std::os::raw::c_char,
+ arg6: *mut *const ::std::os::raw::c_char,
+ arg7: *mut ::std::os::raw::c_int,
+ arg8: *mut ::std::os::raw::c_int,
+ arg9: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9)
+}
+
+static __SQLITE3_TOTAL_CHANGES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_total_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TOTAL_CHANGES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TRACE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_trace(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_TRACE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, xTrace, arg2)
+}
+
+static __SQLITE3_UPDATE_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_update_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_UPDATE_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_USER_DATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_user_data(
+ arg1: *mut sqlite3_context,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_USER_DATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_blob(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_BYTES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_bytes(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_BYTES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_BYTES16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_bytes16(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_BYTES16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_double(arg1: *mut sqlite3_value) -> f64 {
+ let ptr = __SQLITE3_VALUE_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> f64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_int(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_int64(arg1: *mut sqlite3_value) -> sqlite_int64 {
+ let ptr = __SQLITE3_VALUE_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> sqlite_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_NUMERIC_TYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_numeric_type(
+ arg1: *mut sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_NUMERIC_TYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_uchar {
+ let ptr = __SQLITE3_VALUE_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_uchar = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text16(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT16BE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text16be(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_TEXT16BE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT16LE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text16le(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_TEXT16LE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_TYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_OVERLOAD_FUNCTION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_overload_function(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OVERLOAD_FUNCTION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, zFuncName, nArg)
+}
+
+static __SQLITE3_PREPARE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_PREPARE16_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare16_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE16_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_CLEAR_BINDINGS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_clear_bindings(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CLEAR_BINDINGS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_CREATE_MODULE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_module_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_MODULE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, xDestroy)
+}
+
+static __SQLITE3_BIND_ZEROBLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_zeroblob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_ZEROBLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BLOB_BYTES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_bytes(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_BYTES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BLOB_CLOSE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_close(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_CLOSE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BLOB_OPEN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_open(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_int,
+ arg7: *mut *mut sqlite3_blob,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_OPEN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_int,
+ arg7: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6, arg7)
+}
+
+static __SQLITE3_BLOB_READ: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_read(
+ arg1: *mut sqlite3_blob,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_READ.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_BLOB_WRITE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_write(
+ arg1: *mut sqlite3_blob,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_WRITE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_CREATE_COLLATION_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_collation_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg6: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_COLLATION_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg6: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_FILE_CONTROL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_file_control(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_FILE_CONTROL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_MEMORY_HIGHWATER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_memory_highwater(arg1: ::std::os::raw::c_int) -> sqlite3_int64 {
+ let ptr = __SQLITE3_MEMORY_HIGHWATER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_MEMORY_USED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_memory_used() -> sqlite3_int64 {
+ let ptr = __SQLITE3_MEMORY_USED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> sqlite3_int64 = ::std::mem::transmute(ptr);
+ (fun)()
+}
+
+static __SQLITE3_MUTEX_ALLOC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_alloc(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex {
+ let ptr = __SQLITE3_MUTEX_ALLOC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_ENTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_enter(arg1: *mut sqlite3_mutex) {
+ let ptr = __SQLITE3_MUTEX_ENTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_FREE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_free(arg1: *mut sqlite3_mutex) {
+ let ptr = __SQLITE3_MUTEX_FREE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_LEAVE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_leave(arg1: *mut sqlite3_mutex) {
+ let ptr = __SQLITE3_MUTEX_LEAVE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_TRY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_try(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_MUTEX_TRY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_OPEN_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_open_v2(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ arg3: ::std::os::raw::c_int,
+ arg4: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OPEN_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ arg3: ::std::os::raw::c_int,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RELEASE_MEMORY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_release_memory(
+ arg1: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_RELEASE_MEMORY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_ERROR_NOMEM: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error_nomem(arg1: *mut sqlite3_context) {
+ let ptr = __SQLITE3_RESULT_ERROR_NOMEM.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_ERROR_TOOBIG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error_toobig(arg1: *mut sqlite3_context) {
+ let ptr = __SQLITE3_RESULT_ERROR_TOOBIG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_SLEEP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_sleep(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SLEEP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_SOFT_HEAP_LIMIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_soft_heap_limit(arg1: ::std::os::raw::c_int) {
+ let ptr = __SQLITE3_SOFT_HEAP_LIMIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: ::std::os::raw::c_int) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VFS_FIND: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vfs_find(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs {
+ let ptr = __SQLITE3_VFS_FIND.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_vfs = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VFS_REGISTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vfs_register(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VFS_REGISTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VFS_UNREGISTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vfs_unregister(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VFS_UNREGISTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_THREADSAFE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_threadsafe() -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_THREADSAFE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_RESULT_ZEROBLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_zeroblob(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ZEROBLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_ERROR_CODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error_code(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ERROR_CODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RANDOMNESS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_randomness(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+) {
+ let ptr = __SQLITE3_RANDOMNESS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_CONTEXT_DB_HANDLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_context_db_handle(arg1: *mut sqlite3_context) -> *mut sqlite3 {
+ let ptr = __SQLITE3_CONTEXT_DB_HANDLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) -> *mut sqlite3 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_EXTENDED_RESULT_CODES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_extended_result_codes(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_EXTENDED_RESULT_CODES
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_LIMIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_limit(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_LIMIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_NEXT_STMT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_next_stmt(
+ arg1: *mut sqlite3,
+ arg2: *mut sqlite3_stmt,
+) -> *mut sqlite3_stmt {
+ let ptr = __SQLITE3_NEXT_STMT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut sqlite3_stmt,
+ ) -> *mut sqlite3_stmt = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_SQL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_sql(arg1: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_SQL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STATUS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_status(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STATUS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_BACKUP_FINISH: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_finish(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_FINISH.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BACKUP_INIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_init(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3,
+ arg4: *const ::std::os::raw::c_char,
+) -> *mut sqlite3_backup {
+ let ptr = __SQLITE3_BACKUP_INIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_BACKUP_PAGECOUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_pagecount(
+ arg1: *mut sqlite3_backup,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_PAGECOUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BACKUP_REMAINING: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_remaining(
+ arg1: *mut sqlite3_backup,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_REMAINING.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BACKUP_STEP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_step(
+ arg1: *mut sqlite3_backup,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_STEP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_backup,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COMPILEOPTION_GET: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_compileoption_get(
+ arg1: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COMPILEOPTION_GET.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_COMPILEOPTION_USED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_compileoption_used(
+ arg1: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COMPILEOPTION_USED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_CREATE_FUNCTION_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_function_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_FUNCTION_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xFunc, xStep, xFinal, xDestroy)
+}
+
+static __SQLITE3_DB_CONFIG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_config(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_CONFIG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_DB_MUTEX: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_mutex(arg1: *mut sqlite3) -> *mut sqlite3_mutex {
+ let ptr = __SQLITE3_DB_MUTEX.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *mut sqlite3_mutex = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DB_STATUS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_status(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_STATUS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_EXTENDED_ERRCODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_extended_errcode(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_EXTENDED_ERRCODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_LOG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_log(
+ arg1: ::std::os::raw::c_int,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+) {
+ let ptr = __SQLITE3_LOG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *const ::std::os::raw::c_char,
+ ...
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_SOFT_HEAP_LIMIT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_soft_heap_limit64(arg1: sqlite3_int64) -> sqlite3_int64 {
+ let ptr = __SQLITE3_SOFT_HEAP_LIMIT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: sqlite3_int64) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_SOURCEID: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_sourceid() -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_SOURCEID.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> *const ::std::os::raw::c_char = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_STMT_STATUS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_status(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_STATUS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_STRNICMP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_strnicmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRNICMP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_UNLOCK_NOTIFY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_unlock_notify(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_UNLOCK_NOTIFY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_WAL_AUTOCHECKPOINT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_autocheckpoint(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_WAL_AUTOCHECKPOINT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_WAL_CHECKPOINT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_checkpoint(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_WAL_CHECKPOINT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_WAL_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_WAL_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BLOB_REOPEN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_reopen(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_REOPEN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VTAB_CONFIG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_CONFIG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, op)
+}
+
+static __SQLITE3_VTAB_ON_CONFLICT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_on_conflict(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_ON_CONFLICT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_CLOSE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_close_v2(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CLOSE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DB_FILENAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_filename(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_DB_FILENAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_DB_READONLY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_readonly(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_READONLY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_DB_RELEASE_MEMORY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_release_memory(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_RELEASE_MEMORY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_ERRSTR: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errstr(
+ arg1: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_ERRSTR.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STMT_BUSY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_busy(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_BUSY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STMT_READONLY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_readonly(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_READONLY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STRICMP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stricmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRICMP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_URI_BOOLEAN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_boolean(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_URI_BOOLEAN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_URI_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_int64(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+) -> sqlite3_int64 {
+ let ptr = __SQLITE3_URI_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64 = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_URI_PARAMETER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_parameter(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_URI_PARAMETER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VSNPRINTF: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vsnprintf(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_char {
+ let ptr = __SQLITE3_VSNPRINTF.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_WAL_CHECKPOINT_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_checkpoint_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_WAL_CHECKPOINT_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_AUTO_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_auto_extension(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_AUTO_EXTENSION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_BIND_BLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_blob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_BLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_BIND_TEXT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_text64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg6: ::std::os::raw::c_uchar,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_TEXT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ arg6: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_CANCEL_AUTO_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_cancel_auto_extension(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CANCEL_AUTO_EXTENSION
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_LOAD_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_load_extension(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_LOAD_EXTENSION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_MALLOC64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_malloc64(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_MALLOC64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_MSIZE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_msize(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64 {
+ let ptr = __SQLITE3_MSIZE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_REALLOC64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_realloc64(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_REALLOC64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESET_AUTO_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_reset_auto_extension() {
+ let ptr = __SQLITE3_RESET_AUTO_EXTENSION
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() = ::std::mem::transmute(ptr);
+ (fun)()
+}
+
+static __SQLITE3_RESULT_BLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_blob64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_BLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg5: ::std::os::raw::c_uchar,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ arg5: ::std::os::raw::c_uchar,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_STRGLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_strglob(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRGLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VALUE_DUP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_dup(arg1: *const sqlite3_value) -> *mut sqlite3_value {
+ let ptr = __SQLITE3_VALUE_DUP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *const sqlite3_value) -> *mut sqlite3_value = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_FREE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_free(arg1: *mut sqlite3_value) {
+ let ptr = __SQLITE3_VALUE_FREE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_ZEROBLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_zeroblob64(
+ arg1: *mut sqlite3_context,
+ arg2: sqlite3_uint64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_RESULT_ZEROBLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_BIND_ZEROBLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_zeroblob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_ZEROBLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_VALUE_SUBTYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_subtype(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint {
+ let ptr = __SQLITE3_VALUE_SUBTYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_SUBTYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_subtype(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_uint,
+) {
+ let ptr = __SQLITE3_RESULT_SUBTYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_uint,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_STATUS64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_status64(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut sqlite3_int64,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STATUS64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut sqlite3_int64,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_STRLIKE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_strlike(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRLIKE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_DB_CACHEFLUSH: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_cacheflush(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_CACHEFLUSH.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_SYSTEM_ERRNO: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_system_errno(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SYSTEM_ERRNO.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TRACE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_trace_v2(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_uint,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TRACE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_uint,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_EXPANDED_SQL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_expanded_sql(
+ arg1: *mut sqlite3_stmt,
+) -> *mut ::std::os::raw::c_char {
+ let ptr = __SQLITE3_EXPANDED_SQL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ ) -> *mut ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+/// Like SQLITE_EXTENSION_INIT2 macro
+pub unsafe fn rusqlite_extension_init2(
+ p_api: *mut sqlite3_api_routines,
+) -> ::std::result::Result<(), crate::InitError> {
+ if let Some(fun) = (*p_api).malloc {
+ __SQLITE3_MALLOC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).libversion_number {
+ let version = fun();
+ if SQLITE_VERSION_NUMBER > version {
+ return Err(crate::InitError::VersionMismatch {
+ compile_time: SQLITE_VERSION_NUMBER,
+ runtime: version,
+ });
+ }
+ } else {
+ return Err(crate::InitError::NullFunctionPointer);
+ }
+ if let Some(fun) = (*p_api).aggregate_context {
+ __SQLITE3_AGGREGATE_CONTEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_blob {
+ __SQLITE3_BIND_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_double {
+ __SQLITE3_BIND_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_int {
+ __SQLITE3_BIND_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_int64 {
+ __SQLITE3_BIND_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_null {
+ __SQLITE3_BIND_NULL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_parameter_count {
+ __SQLITE3_BIND_PARAMETER_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_parameter_index {
+ __SQLITE3_BIND_PARAMETER_INDEX
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_parameter_name {
+ __SQLITE3_BIND_PARAMETER_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_text {
+ __SQLITE3_BIND_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_text16 {
+ __SQLITE3_BIND_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_value {
+ __SQLITE3_BIND_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).busy_handler {
+ __SQLITE3_BUSY_HANDLER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).busy_timeout {
+ __SQLITE3_BUSY_TIMEOUT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).changes {
+ __SQLITE3_CHANGES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).close {
+ __SQLITE3_CLOSE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).collation_needed {
+ __SQLITE3_COLLATION_NEEDED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).collation_needed16 {
+ __SQLITE3_COLLATION_NEEDED16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_blob {
+ __SQLITE3_COLUMN_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_bytes {
+ __SQLITE3_COLUMN_BYTES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_bytes16 {
+ __SQLITE3_COLUMN_BYTES16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_count {
+ __SQLITE3_COLUMN_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_database_name {
+ __SQLITE3_COLUMN_DATABASE_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_database_name16 {
+ __SQLITE3_COLUMN_DATABASE_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_decltype {
+ __SQLITE3_COLUMN_DECLTYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_decltype16 {
+ __SQLITE3_COLUMN_DECLTYPE16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_double {
+ __SQLITE3_COLUMN_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_int {
+ __SQLITE3_COLUMN_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_int64 {
+ __SQLITE3_COLUMN_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_name {
+ __SQLITE3_COLUMN_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_name16 {
+ __SQLITE3_COLUMN_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_origin_name {
+ __SQLITE3_COLUMN_ORIGIN_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_origin_name16 {
+ __SQLITE3_COLUMN_ORIGIN_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_table_name {
+ __SQLITE3_COLUMN_TABLE_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_table_name16 {
+ __SQLITE3_COLUMN_TABLE_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_text {
+ __SQLITE3_COLUMN_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_text16 {
+ __SQLITE3_COLUMN_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_type {
+ __SQLITE3_COLUMN_TYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_value {
+ __SQLITE3_COLUMN_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).commit_hook {
+ __SQLITE3_COMMIT_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).complete {
+ __SQLITE3_COMPLETE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).complete16 {
+ __SQLITE3_COMPLETE16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_collation {
+ __SQLITE3_CREATE_COLLATION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_collation16 {
+ __SQLITE3_CREATE_COLLATION16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_function {
+ __SQLITE3_CREATE_FUNCTION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_function16 {
+ __SQLITE3_CREATE_FUNCTION16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_module {
+ __SQLITE3_CREATE_MODULE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).data_count {
+ __SQLITE3_DATA_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_handle {
+ __SQLITE3_DB_HANDLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).declare_vtab {
+ __SQLITE3_DECLARE_VTAB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).enable_shared_cache {
+ __SQLITE3_ENABLE_SHARED_CACHE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errcode {
+ __SQLITE3_ERRCODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errmsg {
+ __SQLITE3_ERRMSG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errmsg16 {
+ __SQLITE3_ERRMSG16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).exec {
+ __SQLITE3_EXEC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).finalize {
+ __SQLITE3_FINALIZE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).free {
+ __SQLITE3_FREE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).free_table {
+ __SQLITE3_FREE_TABLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_autocommit {
+ __SQLITE3_GET_AUTOCOMMIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_auxdata {
+ __SQLITE3_GET_AUXDATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_table {
+ __SQLITE3_GET_TABLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).interruptx {
+ __SQLITE3_INTERRUPT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).last_insert_rowid {
+ __SQLITE3_LAST_INSERT_ROWID
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).libversion {
+ __SQLITE3_LIBVERSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).libversion_number {
+ __SQLITE3_LIBVERSION_NUMBER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).open {
+ __SQLITE3_OPEN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).open16 {
+ __SQLITE3_OPEN16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare {
+ __SQLITE3_PREPARE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare16 {
+ __SQLITE3_PREPARE16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).profile {
+ __SQLITE3_PROFILE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).progress_handler {
+ __SQLITE3_PROGRESS_HANDLER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).realloc {
+ __SQLITE3_REALLOC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).reset {
+ __SQLITE3_RESET
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_blob {
+ __SQLITE3_RESULT_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_double {
+ __SQLITE3_RESULT_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error {
+ __SQLITE3_RESULT_ERROR
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error16 {
+ __SQLITE3_RESULT_ERROR16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_int {
+ __SQLITE3_RESULT_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_int64 {
+ __SQLITE3_RESULT_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_null {
+ __SQLITE3_RESULT_NULL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text {
+ __SQLITE3_RESULT_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text16 {
+ __SQLITE3_RESULT_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text16be {
+ __SQLITE3_RESULT_TEXT16BE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text16le {
+ __SQLITE3_RESULT_TEXT16LE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_value {
+ __SQLITE3_RESULT_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).rollback_hook {
+ __SQLITE3_ROLLBACK_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).set_authorizer {
+ __SQLITE3_SET_AUTHORIZER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).set_auxdata {
+ __SQLITE3_SET_AUXDATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).step {
+ __SQLITE3_STEP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).table_column_metadata {
+ __SQLITE3_TABLE_COLUMN_METADATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).total_changes {
+ __SQLITE3_TOTAL_CHANGES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).trace {
+ __SQLITE3_TRACE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).update_hook {
+ __SQLITE3_UPDATE_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).user_data {
+ __SQLITE3_USER_DATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_blob {
+ __SQLITE3_VALUE_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_bytes {
+ __SQLITE3_VALUE_BYTES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_bytes16 {
+ __SQLITE3_VALUE_BYTES16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_double {
+ __SQLITE3_VALUE_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_int {
+ __SQLITE3_VALUE_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_int64 {
+ __SQLITE3_VALUE_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_numeric_type {
+ __SQLITE3_VALUE_NUMERIC_TYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text {
+ __SQLITE3_VALUE_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text16 {
+ __SQLITE3_VALUE_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text16be {
+ __SQLITE3_VALUE_TEXT16BE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text16le {
+ __SQLITE3_VALUE_TEXT16LE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_type {
+ __SQLITE3_VALUE_TYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).overload_function {
+ __SQLITE3_OVERLOAD_FUNCTION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare_v2 {
+ __SQLITE3_PREPARE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare16_v2 {
+ __SQLITE3_PREPARE16_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).clear_bindings {
+ __SQLITE3_CLEAR_BINDINGS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_module_v2 {
+ __SQLITE3_CREATE_MODULE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_zeroblob {
+ __SQLITE3_BIND_ZEROBLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_bytes {
+ __SQLITE3_BLOB_BYTES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_close {
+ __SQLITE3_BLOB_CLOSE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_open {
+ __SQLITE3_BLOB_OPEN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_read {
+ __SQLITE3_BLOB_READ
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_write {
+ __SQLITE3_BLOB_WRITE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_collation_v2 {
+ __SQLITE3_CREATE_COLLATION_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).file_control {
+ __SQLITE3_FILE_CONTROL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).memory_highwater {
+ __SQLITE3_MEMORY_HIGHWATER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).memory_used {
+ __SQLITE3_MEMORY_USED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_alloc {
+ __SQLITE3_MUTEX_ALLOC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_enter {
+ __SQLITE3_MUTEX_ENTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_free {
+ __SQLITE3_MUTEX_FREE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_leave {
+ __SQLITE3_MUTEX_LEAVE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_try {
+ __SQLITE3_MUTEX_TRY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).open_v2 {
+ __SQLITE3_OPEN_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).release_memory {
+ __SQLITE3_RELEASE_MEMORY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error_nomem {
+ __SQLITE3_RESULT_ERROR_NOMEM
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error_toobig {
+ __SQLITE3_RESULT_ERROR_TOOBIG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).sleep {
+ __SQLITE3_SLEEP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).soft_heap_limit {
+ __SQLITE3_SOFT_HEAP_LIMIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vfs_find {
+ __SQLITE3_VFS_FIND
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vfs_register {
+ __SQLITE3_VFS_REGISTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vfs_unregister {
+ __SQLITE3_VFS_UNREGISTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).xthreadsafe {
+ __SQLITE3_THREADSAFE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_zeroblob {
+ __SQLITE3_RESULT_ZEROBLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error_code {
+ __SQLITE3_RESULT_ERROR_CODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).randomness {
+ __SQLITE3_RANDOMNESS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).context_db_handle {
+ __SQLITE3_CONTEXT_DB_HANDLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).extended_result_codes {
+ __SQLITE3_EXTENDED_RESULT_CODES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).limit {
+ __SQLITE3_LIMIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).next_stmt {
+ __SQLITE3_NEXT_STMT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).sql {
+ __SQLITE3_SQL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).status {
+ __SQLITE3_STATUS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_finish {
+ __SQLITE3_BACKUP_FINISH
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_init {
+ __SQLITE3_BACKUP_INIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_pagecount {
+ __SQLITE3_BACKUP_PAGECOUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_remaining {
+ __SQLITE3_BACKUP_REMAINING
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_step {
+ __SQLITE3_BACKUP_STEP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).compileoption_get {
+ __SQLITE3_COMPILEOPTION_GET
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).compileoption_used {
+ __SQLITE3_COMPILEOPTION_USED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_function_v2 {
+ __SQLITE3_CREATE_FUNCTION_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_config {
+ __SQLITE3_DB_CONFIG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_mutex {
+ __SQLITE3_DB_MUTEX
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_status {
+ __SQLITE3_DB_STATUS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).extended_errcode {
+ __SQLITE3_EXTENDED_ERRCODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).log {
+ __SQLITE3_LOG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).soft_heap_limit64 {
+ __SQLITE3_SOFT_HEAP_LIMIT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).sourceid {
+ __SQLITE3_SOURCEID
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_status {
+ __SQLITE3_STMT_STATUS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).strnicmp {
+ __SQLITE3_STRNICMP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).unlock_notify {
+ __SQLITE3_UNLOCK_NOTIFY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_autocheckpoint {
+ __SQLITE3_WAL_AUTOCHECKPOINT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_checkpoint {
+ __SQLITE3_WAL_CHECKPOINT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_hook {
+ __SQLITE3_WAL_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_reopen {
+ __SQLITE3_BLOB_REOPEN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_config {
+ __SQLITE3_VTAB_CONFIG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_on_conflict {
+ __SQLITE3_VTAB_ON_CONFLICT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).close_v2 {
+ __SQLITE3_CLOSE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_filename {
+ __SQLITE3_DB_FILENAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_readonly {
+ __SQLITE3_DB_READONLY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_release_memory {
+ __SQLITE3_DB_RELEASE_MEMORY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errstr {
+ __SQLITE3_ERRSTR
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_busy {
+ __SQLITE3_STMT_BUSY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_readonly {
+ __SQLITE3_STMT_READONLY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stricmp {
+ __SQLITE3_STRICMP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_boolean {
+ __SQLITE3_URI_BOOLEAN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_int64 {
+ __SQLITE3_URI_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_parameter {
+ __SQLITE3_URI_PARAMETER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vsnprintf {
+ __SQLITE3_VSNPRINTF
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_checkpoint_v2 {
+ __SQLITE3_WAL_CHECKPOINT_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).auto_extension {
+ __SQLITE3_AUTO_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_blob64 {
+ __SQLITE3_BIND_BLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_text64 {
+ __SQLITE3_BIND_TEXT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).cancel_auto_extension {
+ __SQLITE3_CANCEL_AUTO_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).load_extension {
+ __SQLITE3_LOAD_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).malloc64 {
+ __SQLITE3_MALLOC64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).msize {
+ __SQLITE3_MSIZE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).realloc64 {
+ __SQLITE3_REALLOC64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).reset_auto_extension {
+ __SQLITE3_RESET_AUTO_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_blob64 {
+ __SQLITE3_RESULT_BLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text64 {
+ __SQLITE3_RESULT_TEXT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).strglob {
+ __SQLITE3_STRGLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_dup {
+ __SQLITE3_VALUE_DUP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_free {
+ __SQLITE3_VALUE_FREE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_zeroblob64 {
+ __SQLITE3_RESULT_ZEROBLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_zeroblob64 {
+ __SQLITE3_BIND_ZEROBLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_subtype {
+ __SQLITE3_VALUE_SUBTYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_subtype {
+ __SQLITE3_RESULT_SUBTYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).status64 {
+ __SQLITE3_STATUS64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).strlike {
+ __SQLITE3_STRLIKE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_cacheflush {
+ __SQLITE3_DB_CACHEFLUSH
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).system_errno {
+ __SQLITE3_SYSTEM_ERRNO
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).trace_v2 {
+ __SQLITE3_TRACE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).expanded_sql {
+ __SQLITE3_EXPANDED_SQL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ Ok(())
+}
+
diff --git a/third_party/rust/libsqlite3-sys/build.rs b/third_party/rust/libsqlite3-sys/build.rs
new file mode 100644
index 0000000000..cff173eb29
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/build.rs
@@ -0,0 +1,836 @@
+use std::env;
+use std::path::Path;
+
+/// Tells whether we're building for Windows. This is more suitable than a plain
+/// `cfg!(windows)`, since the latter does not properly handle cross-compilation
+///
+/// Note that there is no way to know at compile-time which system we'll be
+/// targetting, and this test must be made at run-time (of the build script) See
+/// https://doc.rust-lang.org/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts
+fn win_target() -> bool {
+ env::var("CARGO_CFG_WINDOWS").is_ok()
+}
+
+/// Tells whether we're building for Android.
+/// See [`win_target`]
+#[cfg(any(feature = "bundled", feature = "bundled-windows"))]
+fn android_target() -> bool {
+ env::var("CARGO_CFG_TARGET_OS").map_or(false, |v| v == "android")
+}
+
+/// Tells whether a given compiler will be used `compiler_name` is compared to
+/// the content of `CARGO_CFG_TARGET_ENV` (and is always lowercase)
+///
+/// See [`win_target`]
+fn is_compiler(compiler_name: &str) -> bool {
+ env::var("CARGO_CFG_TARGET_ENV").map_or(false, |v| v == compiler_name)
+}
+
+/// Copy bindgen file from `dir` to `out_path`.
+fn copy_bindings<T: AsRef<Path>>(dir: &str, bindgen_name: &str, out_path: T) {
+ let from = if cfg!(feature = "loadable_extension") {
+ format!("{dir}/{bindgen_name}_ext.rs")
+ } else {
+ format!("{dir}/{bindgen_name}.rs")
+ };
+ std::fs::copy(from, out_path).expect("Could not copy bindings to output directory");
+}
+
+fn main() {
+ let out_dir = env::var("OUT_DIR").unwrap();
+ let out_path = Path::new(&out_dir).join("bindgen.rs");
+ if cfg!(feature = "in_gecko") {
+ // When inside mozilla-central, we are included into the build with
+ // sqlite3.o directly, so we don't want to provide any linker arguments.
+ copy_bindings("sqlite3", "bindgen_bundled_version", out_path);
+ return;
+ }
+
+ println!("cargo:rerun-if-env-changed=LIBSQLITE3_SYS_USE_PKG_CONFIG");
+ if env::var_os("LIBSQLITE3_SYS_USE_PKG_CONFIG").map_or(false, |s| s != "0")
+ || cfg!(feature = "loadable_extension")
+ {
+ build_linked::main(&out_dir, &out_path);
+ } else if cfg!(all(
+ feature = "sqlcipher",
+ not(feature = "bundled-sqlcipher")
+ )) {
+ if cfg!(feature = "bundled") || (win_target() && cfg!(feature = "bundled-windows")) {
+ println!(
+ "cargo:warning=For backwards compatibility, feature 'sqlcipher' overrides
+ features 'bundled' and 'bundled-windows'. If you want a bundled build of
+ SQLCipher (available for the moment only on Unix), use feature 'bundled-sqlcipher'
+ or 'bundled-sqlcipher-vendored-openssl' to also bundle OpenSSL crypto."
+ );
+ }
+ build_linked::main(&out_dir, &out_path);
+ } else if cfg!(feature = "bundled")
+ || (win_target() && cfg!(feature = "bundled-windows"))
+ || cfg!(feature = "bundled-sqlcipher")
+ {
+ #[cfg(any(
+ feature = "bundled",
+ feature = "bundled-windows",
+ feature = "bundled-sqlcipher"
+ ))]
+ build_bundled::main(&out_dir, &out_path);
+ #[cfg(not(any(
+ feature = "bundled",
+ feature = "bundled-windows",
+ feature = "bundled-sqlcipher"
+ )))]
+ panic!("The runtime test should not run this branch, which has not compiled any logic.")
+ } else {
+ build_linked::main(&out_dir, &out_path);
+ }
+}
+
+#[cfg(any(
+ feature = "bundled",
+ feature = "bundled-windows",
+ feature = "bundled-sqlcipher"
+))]
+mod build_bundled {
+ use std::env;
+ use std::ffi::OsString;
+ use std::path::{Path, PathBuf};
+
+ use super::{is_compiler, win_target};
+
+ pub fn main(out_dir: &str, out_path: &Path) {
+ let lib_name = super::lib_name();
+
+ // This is just a sanity check, the top level `main` should ensure this.
+ assert!(!(cfg!(feature = "bundled-windows") && !cfg!(feature = "bundled") && !win_target()),
+ "This module should not be used: we're not on Windows and the bundled feature has not been enabled");
+
+ #[cfg(feature = "buildtime_bindgen")]
+ {
+ use super::{bindings, HeaderLocation};
+ let header = HeaderLocation::FromPath(lib_name.to_owned());
+ bindings::write_to_out_dir(header, out_path);
+ }
+ #[cfg(not(feature = "buildtime_bindgen"))]
+ {
+ super::copy_bindings(lib_name, "bindgen_bundled_version", out_path);
+ }
+ println!("cargo:rerun-if-changed={lib_name}/sqlite3.c");
+ println!("cargo:rerun-if-changed=sqlite3/wasm32-wasi-vfs.c");
+ let mut cfg = cc::Build::new();
+ cfg.file(format!("{lib_name}/sqlite3.c"))
+ .flag("-DSQLITE_CORE")
+ .flag("-DSQLITE_DEFAULT_FOREIGN_KEYS=1")
+ .flag("-DSQLITE_ENABLE_API_ARMOR")
+ .flag("-DSQLITE_ENABLE_COLUMN_METADATA")
+ .flag("-DSQLITE_ENABLE_DBSTAT_VTAB")
+ .flag("-DSQLITE_ENABLE_FTS3")
+ .flag("-DSQLITE_ENABLE_FTS3_PARENTHESIS")
+ .flag("-DSQLITE_ENABLE_FTS5")
+ .flag("-DSQLITE_ENABLE_JSON1")
+ .flag("-DSQLITE_ENABLE_LOAD_EXTENSION=1")
+ .flag("-DSQLITE_ENABLE_MEMORY_MANAGEMENT")
+ .flag("-DSQLITE_ENABLE_RTREE")
+ .flag("-DSQLITE_ENABLE_STAT2")
+ .flag("-DSQLITE_ENABLE_STAT4")
+ .flag("-DSQLITE_SOUNDEX")
+ .flag("-DSQLITE_THREADSAFE=1")
+ .flag("-DSQLITE_USE_URI")
+ .flag("-DHAVE_USLEEP=1")
+ .flag("-D_POSIX_THREAD_SAFE_FUNCTIONS") // cross compile with MinGW
+ .warnings(false);
+
+ if cfg!(feature = "bundled-sqlcipher") {
+ cfg.flag("-DSQLITE_HAS_CODEC").flag("-DSQLITE_TEMP_STORE=2");
+
+ let target = env::var("TARGET").unwrap();
+ let host = env::var("HOST").unwrap();
+
+ let is_windows = host.contains("windows") && target.contains("windows");
+ let is_apple = host.contains("apple") && target.contains("apple");
+
+ let lib_dir = env("OPENSSL_LIB_DIR").map(PathBuf::from);
+ let inc_dir = env("OPENSSL_INCLUDE_DIR").map(PathBuf::from);
+ let mut use_openssl = false;
+
+ let (lib_dir, inc_dir) = match (lib_dir, inc_dir) {
+ (Some(lib_dir), Some(inc_dir)) => {
+ use_openssl = true;
+ (lib_dir, inc_dir)
+ }
+ (lib_dir, inc_dir) => match find_openssl_dir(&host, &target) {
+ None => {
+ if is_windows && !cfg!(feature = "bundled-sqlcipher-vendored-openssl") {
+ panic!("Missing environment variable OPENSSL_DIR or OPENSSL_DIR is not set")
+ } else {
+ (PathBuf::new(), PathBuf::new())
+ }
+ }
+ Some(openssl_dir) => {
+ let lib_dir = lib_dir.unwrap_or_else(|| openssl_dir.join("lib"));
+ let inc_dir = inc_dir.unwrap_or_else(|| openssl_dir.join("include"));
+
+ assert!(
+ Path::new(&lib_dir).exists(),
+ "OpenSSL library directory does not exist: {}",
+ lib_dir.to_string_lossy()
+ );
+
+ if !Path::new(&inc_dir).exists() {
+ panic!(
+ "OpenSSL include directory does not exist: {}",
+ inc_dir.to_string_lossy()
+ );
+ }
+
+ use_openssl = true;
+ (lib_dir, inc_dir)
+ }
+ },
+ };
+
+ if cfg!(feature = "bundled-sqlcipher-vendored-openssl") {
+ cfg.include(env::var("DEP_OPENSSL_INCLUDE").unwrap());
+ // cargo will resolve downstream to the static lib in
+ // openssl-sys
+ } else if use_openssl {
+ cfg.include(inc_dir.to_string_lossy().as_ref());
+ let lib_name = if is_windows { "libcrypto" } else { "crypto" };
+ println!("cargo:rustc-link-lib=dylib={}", lib_name);
+ println!("cargo:rustc-link-search={}", lib_dir.to_string_lossy());
+ } else if is_apple {
+ cfg.flag("-DSQLCIPHER_CRYPTO_CC");
+ println!("cargo:rustc-link-lib=framework=Security");
+ println!("cargo:rustc-link-lib=framework=CoreFoundation");
+ } else {
+ // branch not taken on Windows, just `crypto` is fine.
+ println!("cargo:rustc-link-lib=dylib=crypto");
+ }
+ }
+
+ // on android sqlite can't figure out where to put the temp files.
+ // the bundled sqlite on android also uses `SQLITE_TEMP_STORE=3`.
+ // https://android.googlesource.com/platform/external/sqlite/+/2c8c9ae3b7e6f340a19a0001c2a889a211c9d8b2/dist/Android.mk
+ if super::android_target() {
+ cfg.flag("-DSQLITE_TEMP_STORE=3");
+ }
+
+ if cfg!(feature = "with-asan") {
+ cfg.flag("-fsanitize=address");
+ }
+
+ // If explicitly requested: enable static linking against the Microsoft Visual
+ // C++ Runtime to avoid dependencies on vcruntime140.dll and similar libraries.
+ if cfg!(target_feature = "crt-static") && is_compiler("msvc") {
+ cfg.static_crt(true);
+ }
+
+ // Older versions of visual studio don't support c99 (including isnan), which
+ // causes a build failure when the linker fails to find the `isnan`
+ // function. `sqlite` provides its own implementation, using the fact
+ // that x != x when x is NaN.
+ //
+ // There may be other platforms that don't support `isnan`, they should be
+ // tested for here.
+ if is_compiler("msvc") {
+ use cc::windows_registry::{find_vs_version, VsVers};
+ let vs_has_nan = match find_vs_version() {
+ Ok(ver) => ver != VsVers::Vs12,
+ Err(_msg) => false,
+ };
+ if vs_has_nan {
+ cfg.flag("-DHAVE_ISNAN");
+ }
+ } else {
+ cfg.flag("-DHAVE_ISNAN");
+ }
+ if !win_target() {
+ cfg.flag("-DHAVE_LOCALTIME_R");
+ }
+ // Target wasm32-wasi can't compile the default VFS
+ if env::var("TARGET").map_or(false, |v| v == "wasm32-wasi") {
+ cfg.flag("-DSQLITE_OS_OTHER")
+ // https://github.com/rust-lang/rust/issues/74393
+ .flag("-DLONGDOUBLE_TYPE=double");
+ if cfg!(feature = "wasm32-wasi-vfs") {
+ cfg.file("sqlite3/wasm32-wasi-vfs.c");
+ }
+ }
+ if cfg!(feature = "unlock_notify") {
+ cfg.flag("-DSQLITE_ENABLE_UNLOCK_NOTIFY");
+ }
+ if cfg!(feature = "preupdate_hook") {
+ cfg.flag("-DSQLITE_ENABLE_PREUPDATE_HOOK");
+ }
+ if cfg!(feature = "session") {
+ cfg.flag("-DSQLITE_ENABLE_SESSION");
+ }
+
+ if let Ok(limit) = env::var("SQLITE_MAX_VARIABLE_NUMBER") {
+ cfg.flag(&format!("-DSQLITE_MAX_VARIABLE_NUMBER={limit}"));
+ }
+ println!("cargo:rerun-if-env-changed=SQLITE_MAX_VARIABLE_NUMBER");
+
+ if let Ok(limit) = env::var("SQLITE_MAX_EXPR_DEPTH") {
+ cfg.flag(&format!("-DSQLITE_MAX_EXPR_DEPTH={limit}"));
+ }
+ println!("cargo:rerun-if-env-changed=SQLITE_MAX_EXPR_DEPTH");
+
+ if let Ok(limit) = env::var("SQLITE_MAX_COLUMN") {
+ cfg.flag(&format!("-DSQLITE_MAX_COLUMN={limit}"));
+ }
+ println!("cargo:rerun-if-env-changed=SQLITE_MAX_COLUMN");
+
+ if let Ok(extras) = env::var("LIBSQLITE3_FLAGS") {
+ for extra in extras.split_whitespace() {
+ if extra.starts_with("-D") || extra.starts_with("-U") {
+ cfg.flag(extra);
+ } else if extra.starts_with("SQLITE_") {
+ cfg.flag(&format!("-D{extra}"));
+ } else {
+ panic!("Don't understand {} in LIBSQLITE3_FLAGS", extra);
+ }
+ }
+ }
+ println!("cargo:rerun-if-env-changed=LIBSQLITE3_FLAGS");
+
+ cfg.compile(lib_name);
+
+ println!("cargo:lib_dir={out_dir}");
+ }
+
+ fn env(name: &str) -> Option<OsString> {
+ let prefix = env::var("TARGET").unwrap().to_uppercase().replace('-', "_");
+ let prefixed = format!("{prefix}_{name}");
+ let var = env::var_os(prefixed);
+
+ match var {
+ None => env::var_os(name),
+ _ => var,
+ }
+ }
+
+ fn find_openssl_dir(_host: &str, _target: &str) -> Option<PathBuf> {
+ let openssl_dir = env("OPENSSL_DIR");
+ openssl_dir.map(PathBuf::from)
+ }
+}
+
+fn env_prefix() -> &'static str {
+ if cfg!(any(feature = "sqlcipher", feature = "bundled-sqlcipher")) {
+ "SQLCIPHER"
+ } else {
+ "SQLITE3"
+ }
+}
+
+fn lib_name() -> &'static str {
+ if cfg!(any(feature = "sqlcipher", feature = "bundled-sqlcipher")) {
+ "sqlcipher"
+ } else if cfg!(all(windows, feature = "winsqlite3")) {
+ "winsqlite3"
+ } else {
+ "sqlite3"
+ }
+}
+
+pub enum HeaderLocation {
+ FromEnvironment,
+ Wrapper,
+ FromPath(String),
+}
+
+impl From<HeaderLocation> for String {
+ fn from(header: HeaderLocation) -> String {
+ match header {
+ HeaderLocation::FromEnvironment => {
+ let prefix = env_prefix();
+ let mut header = env::var(format!("{prefix}_INCLUDE_DIR")).unwrap_or_else(|_| {
+ panic!(
+ "{}_INCLUDE_DIR must be set if {}_LIB_DIR is set",
+ prefix, prefix
+ )
+ });
+ header.push_str(if cfg!(feature = "loadable_extension") {
+ "/sqlite3ext.h"
+ } else {
+ "/sqlite3.h"
+ });
+ header
+ }
+ HeaderLocation::Wrapper => if cfg!(feature = "loadable_extension") {
+ "wrapper_ext.h"
+ } else {
+ "wrapper.h"
+ }
+ .into(),
+ HeaderLocation::FromPath(path) => format!(
+ "{}/{}",
+ path,
+ if cfg!(feature = "loadable_extension") {
+ "sqlite3ext.h"
+ } else {
+ "sqlite3.h"
+ }
+ ),
+ }
+ }
+}
+
+mod build_linked {
+ #[cfg(feature = "vcpkg")]
+ extern crate vcpkg;
+
+ use super::{bindings, env_prefix, is_compiler, lib_name, win_target, HeaderLocation};
+ use std::env;
+ use std::path::Path;
+
+ pub fn main(_out_dir: &str, out_path: &Path) {
+ let header = find_sqlite();
+ if (cfg!(any(
+ feature = "bundled_bindings",
+ feature = "bundled",
+ feature = "bundled-sqlcipher"
+ )) || (win_target() && cfg!(feature = "bundled-windows")))
+ && !cfg!(feature = "buildtime_bindgen")
+ {
+ // Generally means the `bundled_bindings` feature is enabled.
+ // Most users are better off with turning
+ // on buildtime_bindgen instead, but this is still supported as we
+ // have runtime version checks and there are good reasons to not
+ // want to run bindgen.
+ super::copy_bindings(lib_name(), "bindgen_bundled_version", out_path);
+ } else {
+ bindings::write_to_out_dir(header, out_path);
+ }
+ }
+
+ #[cfg(not(feature = "loadable_extension"))]
+ fn find_link_mode() -> &'static str {
+ // If the user specifies SQLITE3_STATIC (or SQLCIPHER_STATIC), do static
+ // linking, unless it's explicitly set to 0.
+ match &env::var(format!("{}_STATIC", env_prefix())) {
+ Ok(v) if v != "0" => "static",
+ _ => "dylib",
+ }
+ }
+ // Prints the necessary cargo link commands and returns the path to the header.
+ fn find_sqlite() -> HeaderLocation {
+ let link_lib = lib_name();
+
+ println!("cargo:rerun-if-env-changed={}_INCLUDE_DIR", env_prefix());
+ println!("cargo:rerun-if-env-changed={}_LIB_DIR", env_prefix());
+ println!("cargo:rerun-if-env-changed={}_STATIC", env_prefix());
+ if cfg!(feature = "vcpkg") && is_compiler("msvc") {
+ println!("cargo:rerun-if-env-changed=VCPKGRS_DYNAMIC");
+ }
+
+ // dependents can access `DEP_SQLITE3_LINK_TARGET` (`sqlite3` being the
+ // `links=` value in our Cargo.toml) to get this value. This might be
+ // useful if you need to ensure whatever crypto library sqlcipher relies
+ // on is available, for example.
+ #[cfg(not(feature = "loadable_extension"))]
+ println!("cargo:link-target={link_lib}");
+
+ if win_target() && cfg!(feature = "winsqlite3") {
+ #[cfg(not(feature = "loadable_extension"))]
+ println!("cargo:rustc-link-lib=dylib={link_lib}");
+ return HeaderLocation::Wrapper;
+ }
+
+ // Allow users to specify where to find SQLite.
+ if let Ok(dir) = env::var(format!("{}_LIB_DIR", env_prefix())) {
+ // Try to use pkg-config to determine link commands
+ let pkgconfig_path = Path::new(&dir).join("pkgconfig");
+ env::set_var("PKG_CONFIG_PATH", pkgconfig_path);
+ #[cfg(not(feature = "loadable_extension"))]
+ if pkg_config::Config::new().probe(link_lib).is_err() {
+ // Otherwise just emit the bare minimum link commands.
+ println!("cargo:rustc-link-lib={}={link_lib}", find_link_mode());
+ println!("cargo:rustc-link-search={dir}");
+ }
+ return HeaderLocation::FromEnvironment;
+ }
+
+ if let Some(header) = try_vcpkg() {
+ return header;
+ }
+
+ // See if pkg-config can do everything for us.
+ if let Ok(mut lib) = pkg_config::Config::new()
+ .print_system_libs(false)
+ .probe(link_lib)
+ {
+ if let Some(header) = lib.include_paths.pop() {
+ HeaderLocation::FromPath(header.to_string_lossy().into())
+ } else {
+ HeaderLocation::Wrapper
+ }
+ } else {
+ // No env var set and pkg-config couldn't help; just output the link-lib
+ // request and hope that the library exists on the system paths. We used to
+ // output /usr/lib explicitly, but that can introduce other linking problems;
+ // see https://github.com/rusqlite/rusqlite/issues/207.
+ #[cfg(not(feature = "loadable_extension"))]
+ println!("cargo:rustc-link-lib={}={link_lib}", find_link_mode());
+ HeaderLocation::Wrapper
+ }
+ }
+
+ fn try_vcpkg() -> Option<HeaderLocation> {
+ if cfg!(feature = "vcpkg") && is_compiler("msvc") {
+ // See if vcpkg can find it.
+ if let Ok(mut lib) = vcpkg::Config::new().probe(lib_name()) {
+ if let Some(header) = lib.include_paths.pop() {
+ return Some(HeaderLocation::FromPath(header.to_string_lossy().into()));
+ }
+ }
+ None
+ } else {
+ None
+ }
+ }
+}
+
+#[cfg(not(feature = "buildtime_bindgen"))]
+mod bindings {
+ #![allow(dead_code)]
+ use super::HeaderLocation;
+
+ use std::path::Path;
+
+ static PREBUILT_BINDGENS: &[&str] = &["bindgen_3.14.0"];
+
+ pub fn write_to_out_dir(_header: HeaderLocation, out_path: &Path) {
+ let name = PREBUILT_BINDGENS[PREBUILT_BINDGENS.len() - 1];
+ super::copy_bindings("bindgen-bindings", name, out_path);
+ }
+}
+
+#[cfg(feature = "buildtime_bindgen")]
+mod bindings {
+ use super::HeaderLocation;
+ use bindgen::callbacks::{IntKind, ParseCallbacks};
+
+ use std::path::Path;
+
+ use super::win_target;
+
+ #[derive(Debug)]
+ struct SqliteTypeChooser;
+
+ impl ParseCallbacks for SqliteTypeChooser {
+ fn int_macro(&self, name: &str, _value: i64) -> Option<IntKind> {
+ if name == "SQLITE_SERIALIZE_NOCOPY"
+ || name.starts_with("SQLITE_DESERIALIZE_")
+ || name.starts_with("SQLITE_PREPARE_")
+ {
+ Some(IntKind::UInt)
+ } else {
+ None
+ }
+ }
+ }
+
+ // Are we generating the bundled bindings? Used to avoid emitting things
+ // that would be problematic in bundled builds. This env var is set by
+ // `upgrade.sh`.
+ fn generating_bundled_bindings() -> bool {
+ // Hacky way to know if we're generating the bundled bindings
+ println!("cargo:rerun-if-env-changed=LIBSQLITE3_SYS_BUNDLING");
+ match std::env::var("LIBSQLITE3_SYS_BUNDLING") {
+ Ok(v) => v != "0",
+ Err(_) => false,
+ }
+ }
+
+ pub fn write_to_out_dir(header: HeaderLocation, out_path: &Path) {
+ let header: String = header.into();
+ let mut bindings = bindgen::builder()
+ .default_macro_constant_type(bindgen::MacroTypeVariation::Signed)
+ .disable_nested_struct_naming()
+ .trust_clang_mangling(false)
+ .header(header.clone())
+ .parse_callbacks(Box::new(SqliteTypeChooser));
+ if cfg!(feature = "loadable_extension") {
+ bindings = bindings.ignore_functions(); // see generate_functions
+ } else {
+ bindings = bindings
+ .blocklist_function("sqlite3_auto_extension")
+ .raw_line(
+ r#"extern "C" {
+ pub fn sqlite3_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}"#,
+ )
+ .blocklist_function("sqlite3_cancel_auto_extension")
+ .raw_line(
+ r#"extern "C" {
+ pub fn sqlite3_cancel_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}"#,
+ );
+ }
+
+ if cfg!(any(feature = "sqlcipher", feature = "bundled-sqlcipher")) {
+ bindings = bindings.clang_arg("-DSQLITE_HAS_CODEC");
+ }
+ if cfg!(feature = "unlock_notify") {
+ bindings = bindings.clang_arg("-DSQLITE_ENABLE_UNLOCK_NOTIFY");
+ }
+ if cfg!(feature = "preupdate_hook") {
+ bindings = bindings.clang_arg("-DSQLITE_ENABLE_PREUPDATE_HOOK");
+ }
+ if cfg!(feature = "session") {
+ bindings = bindings.clang_arg("-DSQLITE_ENABLE_SESSION");
+ }
+ if win_target() && cfg!(feature = "winsqlite3") {
+ bindings = bindings
+ .clang_arg("-DBINDGEN_USE_WINSQLITE3")
+ .blocklist_item("NTDDI_.+")
+ .blocklist_item("WINAPI_FAMILY.*")
+ .blocklist_item("_WIN32_.+")
+ .blocklist_item("_VCRT_COMPILER_PREPROCESSOR")
+ .blocklist_item("_SAL_VERSION")
+ .blocklist_item("__SAL_H_VERSION")
+ .blocklist_item("_USE_DECLSPECS_FOR_SAL")
+ .blocklist_item("_USE_ATTRIBUTES_FOR_SAL")
+ .blocklist_item("_CRT_PACKING")
+ .blocklist_item("_HAS_EXCEPTIONS")
+ .blocklist_item("_STL_LANG")
+ .blocklist_item("_HAS_CXX17")
+ .blocklist_item("_HAS_CXX20")
+ .blocklist_item("_HAS_NODISCARD")
+ .blocklist_item("WDK_NTDDI_VERSION")
+ .blocklist_item("OSVERSION_MASK")
+ .blocklist_item("SPVERSION_MASK")
+ .blocklist_item("SUBVERSION_MASK")
+ .blocklist_item("WINVER")
+ .blocklist_item("__security_cookie")
+ .blocklist_type("size_t")
+ .blocklist_type("__vcrt_bool")
+ .blocklist_type("wchar_t")
+ .blocklist_function("__security_init_cookie")
+ .blocklist_function("__report_gsfailure")
+ .blocklist_function("__va_start");
+ }
+
+ // When cross compiling unless effort is taken to fix the issue, bindgen
+ // will find the wrong headers. There's only one header included by the
+ // amalgamated `sqlite.h`: `stdarg.h`.
+ //
+ // Thankfully, there's almost no case where rust code needs to use
+ // functions taking `va_list` (It's nearly impossible to get a `va_list`
+ // in Rust unless you get passed it by C code for some reason).
+ //
+ // Arguably, we should never be including these, but we include them for
+ // the cases where they aren't totally broken...
+ let target_arch = std::env::var("TARGET").unwrap();
+ let host_arch = std::env::var("HOST").unwrap();
+ let is_cross_compiling = target_arch != host_arch;
+
+ // Note that when generating the bundled file, we're essentially always
+ // cross compiling.
+ if generating_bundled_bindings() || is_cross_compiling {
+ // Get rid of va_list, as it's not
+ bindings = bindings
+ .blocklist_function("sqlite3_vmprintf")
+ .blocklist_function("sqlite3_vsnprintf")
+ .blocklist_function("sqlite3_str_vappendf")
+ .blocklist_type("va_list")
+ .blocklist_item("__.*");
+ }
+
+ let bindings = bindings
+ .layout_tests(false)
+ .generate()
+ .unwrap_or_else(|_| panic!("could not run bindgen on header {}", header));
+
+ #[cfg(feature = "loadable_extension")]
+ {
+ let mut output = Vec::new();
+ bindings
+ .write(Box::new(&mut output))
+ .expect("could not write output of bindgen");
+ let mut output = String::from_utf8(output).expect("bindgen output was not UTF-8?!");
+ super::loadable_extension::generate_functions(&mut output);
+ std::fs::write(out_path, output.as_bytes())
+ .unwrap_or_else(|_| panic!("Could not write to {:?}", out_path));
+ }
+ #[cfg(not(feature = "loadable_extension"))]
+ bindings
+ .write_to_file(out_path)
+ .unwrap_or_else(|_| panic!("Could not write to {:?}", out_path));
+ }
+}
+
+#[cfg(all(feature = "buildtime_bindgen", feature = "loadable_extension"))]
+mod loadable_extension {
+ /// try to generate similar rust code for all `#define sqlite3_xyz
+ /// sqlite3_api->abc` macros` in sqlite3ext.h
+ pub fn generate_functions(output: &mut String) {
+ // (1) parse sqlite3_api_routines fields from bindgen output
+ let ast: syn::File = syn::parse_str(output).expect("could not parse bindgen output");
+ let sqlite3_api_routines: syn::ItemStruct = ast
+ .items
+ .into_iter()
+ .find_map(|i| {
+ if let syn::Item::Struct(s) = i {
+ if s.ident == "sqlite3_api_routines" {
+ Some(s)
+ } else {
+ None
+ }
+ } else {
+ None
+ }
+ })
+ .expect("could not find sqlite3_api_routines");
+ let sqlite3_api_routines_ident = sqlite3_api_routines.ident;
+ let p_api = quote::format_ident!("p_api");
+ let mut stores = Vec::new();
+ let mut malloc = Vec::new();
+ // (2) `#define sqlite3_xyz sqlite3_api->abc` => `pub unsafe fn
+ // sqlite3_xyz(args) -> ty {...}` for each `abc` field:
+ for field in sqlite3_api_routines.fields {
+ let ident = field.ident.expect("unamed field");
+ let span = ident.span();
+ let name = ident.to_string();
+ if name == "vmprintf" || name == "xvsnprintf" || name == "str_vappendf" {
+ continue; // skip va_list
+ } else if name == "aggregate_count"
+ || name == "expired"
+ || name == "global_recover"
+ || name == "thread_cleanup"
+ || name == "transfer_bindings"
+ {
+ continue; // omit deprecated
+ }
+ let sqlite3_name = match name.as_ref() {
+ "xthreadsafe" => "sqlite3_threadsafe".to_owned(),
+ "interruptx" => "sqlite3_interrupt".to_owned(),
+ _ => {
+ format!("sqlite3_{name}")
+ }
+ };
+ let ptr_name =
+ syn::Ident::new(format!("__{}", sqlite3_name.to_uppercase()).as_ref(), span);
+ let sqlite3_fn_name = syn::Ident::new(&sqlite3_name, span);
+ let method =
+ extract_method(&field.ty).unwrap_or_else(|| panic!("unexpected type for {name}"));
+ let arg_names: syn::punctuated::Punctuated<&syn::Ident, syn::token::Comma> = method
+ .inputs
+ .iter()
+ .map(|i| &i.name.as_ref().unwrap().0)
+ .collect();
+ let args = &method.inputs;
+ // vtab_config/sqlite3_vtab_config: ok
+ let varargs = &method.variadic;
+ if varargs.is_some() && "db_config" != name && "log" != name && "vtab_config" != name {
+ continue; // skip ...
+ }
+ let ty = &method.output;
+ let tokens = if "db_config" == name {
+ quote::quote! {
+ static #ptr_name: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(::std::ptr::null_mut());
+ pub unsafe fn #sqlite3_fn_name(#args arg3: ::std::os::raw::c_int, arg4: *mut ::std::os::raw::c_int) #ty {
+ let ptr = #ptr_name.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(!ptr.is_null(), "SQLite API not initialized");
+ let fun: unsafe extern "C" fn(#args #varargs) #ty = ::std::mem::transmute(ptr);
+ (fun)(#arg_names, arg3, arg4)
+ }
+ }
+ } else if "log" == name {
+ quote::quote! {
+ static #ptr_name: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(::std::ptr::null_mut());
+ pub unsafe fn #sqlite3_fn_name(#args arg3: *const ::std::os::raw::c_char) #ty {
+ let ptr = #ptr_name.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(!ptr.is_null(), "SQLite API not initialized");
+ let fun: unsafe extern "C" fn(#args #varargs) #ty = ::std::mem::transmute(ptr);
+ (fun)(#arg_names, arg3)
+ }
+ }
+ } else {
+ quote::quote! {
+ static #ptr_name: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(::std::ptr::null_mut());
+ pub unsafe fn #sqlite3_fn_name(#args) #ty {
+ let ptr = #ptr_name.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(!ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(#args #varargs) #ty = ::std::mem::transmute(ptr);
+ (fun)(#arg_names)
+ }
+ }
+ };
+ output.push_str(&prettyplease::unparse(
+ &syn::parse2(tokens).expect("could not parse quote output"),
+ ));
+ output.push('\n');
+ if name == "malloc" {
+ &mut malloc
+ } else {
+ &mut stores
+ }
+ .push(quote::quote! {
+ if let Some(fun) = (*#p_api).#ident {
+ #ptr_name.store(
+ fun as usize as *mut (),
+ ::std::sync::atomic::Ordering::Release,
+ );
+ }
+ });
+ }
+ // (3) generate rust code similar to SQLITE_EXTENSION_INIT2 macro
+ let tokens = quote::quote! {
+ /// Like SQLITE_EXTENSION_INIT2 macro
+ pub unsafe fn rusqlite_extension_init2(#p_api: *mut #sqlite3_api_routines_ident) -> ::std::result::Result<(),crate::InitError> {
+ #(#malloc)* // sqlite3_malloc needed by to_sqlite_error
+ if let Some(fun) = (*#p_api).libversion_number {
+ let version = fun();
+ if SQLITE_VERSION_NUMBER > version {
+ return Err(crate::InitError::VersionMismatch{compile_time: SQLITE_VERSION_NUMBER, runtime: version});
+ }
+ } else {
+ return Err(crate::InitError::NullFunctionPointer);
+ }
+ #(#stores)*
+ Ok(())
+ }
+ };
+ output.push_str(&prettyplease::unparse(
+ &syn::parse2(tokens).expect("could not parse quote output"),
+ ));
+ output.push('\n');
+ }
+
+ fn extract_method(ty: &syn::Type) -> Option<&syn::TypeBareFn> {
+ match ty {
+ syn::Type::Path(tp) => tp.path.segments.last(),
+ _ => None,
+ }
+ .map(|seg| match &seg.arguments {
+ syn::PathArguments::AngleBracketed(args) => args.args.first(),
+ _ => None,
+ })?
+ .map(|arg| match arg {
+ syn::GenericArgument::Type(t) => Some(t),
+ _ => None,
+ })?
+ .map(|ty| match ty {
+ syn::Type::BareFn(r) => Some(r),
+ _ => None,
+ })?
+ }
+}
diff --git a/third_party/rust/libsqlite3-sys/sqlcipher/LICENSE b/third_party/rust/libsqlite3-sys/sqlcipher/LICENSE
new file mode 100644
index 0000000000..e8fd629d50
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlcipher/LICENSE
@@ -0,0 +1,24 @@
+Copyright (c) 2008-2020 Zetetic LLC
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+ * Neither the name of the ZETETIC LLC nor the
+ names of its contributors may be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/third_party/rust/libsqlite3-sys/sqlcipher/bindgen_bundled_version.rs b/third_party/rust/libsqlite3-sys/sqlcipher/bindgen_bundled_version.rs
new file mode 100644
index 0000000000..941dbfb418
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlcipher/bindgen_bundled_version.rs
@@ -0,0 +1,3626 @@
+/* automatically generated by rust-bindgen 0.63.0 */
+
+extern "C" {
+ pub fn sqlite3_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+
+extern "C" {
+ pub fn sqlite3_cancel_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+
+pub const SQLITE_VERSION: &[u8; 7usize] = b"3.39.4\0";
+pub const SQLITE_VERSION_NUMBER: i32 = 3039004;
+pub const SQLITE_SOURCE_ID: &[u8; 85usize] =
+ b"2022-09-29 15:55:41 a29f9949895322123f7c38fbe94c649a9d6e6c9cd0c3b41c96d694552f26alt1\0";
+pub const SQLITE_OK: i32 = 0;
+pub const SQLITE_ERROR: i32 = 1;
+pub const SQLITE_INTERNAL: i32 = 2;
+pub const SQLITE_PERM: i32 = 3;
+pub const SQLITE_ABORT: i32 = 4;
+pub const SQLITE_BUSY: i32 = 5;
+pub const SQLITE_LOCKED: i32 = 6;
+pub const SQLITE_NOMEM: i32 = 7;
+pub const SQLITE_READONLY: i32 = 8;
+pub const SQLITE_INTERRUPT: i32 = 9;
+pub const SQLITE_IOERR: i32 = 10;
+pub const SQLITE_CORRUPT: i32 = 11;
+pub const SQLITE_NOTFOUND: i32 = 12;
+pub const SQLITE_FULL: i32 = 13;
+pub const SQLITE_CANTOPEN: i32 = 14;
+pub const SQLITE_PROTOCOL: i32 = 15;
+pub const SQLITE_EMPTY: i32 = 16;
+pub const SQLITE_SCHEMA: i32 = 17;
+pub const SQLITE_TOOBIG: i32 = 18;
+pub const SQLITE_CONSTRAINT: i32 = 19;
+pub const SQLITE_MISMATCH: i32 = 20;
+pub const SQLITE_MISUSE: i32 = 21;
+pub const SQLITE_NOLFS: i32 = 22;
+pub const SQLITE_AUTH: i32 = 23;
+pub const SQLITE_FORMAT: i32 = 24;
+pub const SQLITE_RANGE: i32 = 25;
+pub const SQLITE_NOTADB: i32 = 26;
+pub const SQLITE_NOTICE: i32 = 27;
+pub const SQLITE_WARNING: i32 = 28;
+pub const SQLITE_ROW: i32 = 100;
+pub const SQLITE_DONE: i32 = 101;
+pub const SQLITE_ERROR_MISSING_COLLSEQ: i32 = 257;
+pub const SQLITE_ERROR_RETRY: i32 = 513;
+pub const SQLITE_ERROR_SNAPSHOT: i32 = 769;
+pub const SQLITE_IOERR_READ: i32 = 266;
+pub const SQLITE_IOERR_SHORT_READ: i32 = 522;
+pub const SQLITE_IOERR_WRITE: i32 = 778;
+pub const SQLITE_IOERR_FSYNC: i32 = 1034;
+pub const SQLITE_IOERR_DIR_FSYNC: i32 = 1290;
+pub const SQLITE_IOERR_TRUNCATE: i32 = 1546;
+pub const SQLITE_IOERR_FSTAT: i32 = 1802;
+pub const SQLITE_IOERR_UNLOCK: i32 = 2058;
+pub const SQLITE_IOERR_RDLOCK: i32 = 2314;
+pub const SQLITE_IOERR_DELETE: i32 = 2570;
+pub const SQLITE_IOERR_BLOCKED: i32 = 2826;
+pub const SQLITE_IOERR_NOMEM: i32 = 3082;
+pub const SQLITE_IOERR_ACCESS: i32 = 3338;
+pub const SQLITE_IOERR_CHECKRESERVEDLOCK: i32 = 3594;
+pub const SQLITE_IOERR_LOCK: i32 = 3850;
+pub const SQLITE_IOERR_CLOSE: i32 = 4106;
+pub const SQLITE_IOERR_DIR_CLOSE: i32 = 4362;
+pub const SQLITE_IOERR_SHMOPEN: i32 = 4618;
+pub const SQLITE_IOERR_SHMSIZE: i32 = 4874;
+pub const SQLITE_IOERR_SHMLOCK: i32 = 5130;
+pub const SQLITE_IOERR_SHMMAP: i32 = 5386;
+pub const SQLITE_IOERR_SEEK: i32 = 5642;
+pub const SQLITE_IOERR_DELETE_NOENT: i32 = 5898;
+pub const SQLITE_IOERR_MMAP: i32 = 6154;
+pub const SQLITE_IOERR_GETTEMPPATH: i32 = 6410;
+pub const SQLITE_IOERR_CONVPATH: i32 = 6666;
+pub const SQLITE_IOERR_VNODE: i32 = 6922;
+pub const SQLITE_IOERR_AUTH: i32 = 7178;
+pub const SQLITE_IOERR_BEGIN_ATOMIC: i32 = 7434;
+pub const SQLITE_IOERR_COMMIT_ATOMIC: i32 = 7690;
+pub const SQLITE_IOERR_ROLLBACK_ATOMIC: i32 = 7946;
+pub const SQLITE_IOERR_DATA: i32 = 8202;
+pub const SQLITE_IOERR_CORRUPTFS: i32 = 8458;
+pub const SQLITE_LOCKED_SHAREDCACHE: i32 = 262;
+pub const SQLITE_LOCKED_VTAB: i32 = 518;
+pub const SQLITE_BUSY_RECOVERY: i32 = 261;
+pub const SQLITE_BUSY_SNAPSHOT: i32 = 517;
+pub const SQLITE_BUSY_TIMEOUT: i32 = 773;
+pub const SQLITE_CANTOPEN_NOTEMPDIR: i32 = 270;
+pub const SQLITE_CANTOPEN_ISDIR: i32 = 526;
+pub const SQLITE_CANTOPEN_FULLPATH: i32 = 782;
+pub const SQLITE_CANTOPEN_CONVPATH: i32 = 1038;
+pub const SQLITE_CANTOPEN_DIRTYWAL: i32 = 1294;
+pub const SQLITE_CANTOPEN_SYMLINK: i32 = 1550;
+pub const SQLITE_CORRUPT_VTAB: i32 = 267;
+pub const SQLITE_CORRUPT_SEQUENCE: i32 = 523;
+pub const SQLITE_CORRUPT_INDEX: i32 = 779;
+pub const SQLITE_READONLY_RECOVERY: i32 = 264;
+pub const SQLITE_READONLY_CANTLOCK: i32 = 520;
+pub const SQLITE_READONLY_ROLLBACK: i32 = 776;
+pub const SQLITE_READONLY_DBMOVED: i32 = 1032;
+pub const SQLITE_READONLY_CANTINIT: i32 = 1288;
+pub const SQLITE_READONLY_DIRECTORY: i32 = 1544;
+pub const SQLITE_ABORT_ROLLBACK: i32 = 516;
+pub const SQLITE_CONSTRAINT_CHECK: i32 = 275;
+pub const SQLITE_CONSTRAINT_COMMITHOOK: i32 = 531;
+pub const SQLITE_CONSTRAINT_FOREIGNKEY: i32 = 787;
+pub const SQLITE_CONSTRAINT_FUNCTION: i32 = 1043;
+pub const SQLITE_CONSTRAINT_NOTNULL: i32 = 1299;
+pub const SQLITE_CONSTRAINT_PRIMARYKEY: i32 = 1555;
+pub const SQLITE_CONSTRAINT_TRIGGER: i32 = 1811;
+pub const SQLITE_CONSTRAINT_UNIQUE: i32 = 2067;
+pub const SQLITE_CONSTRAINT_VTAB: i32 = 2323;
+pub const SQLITE_CONSTRAINT_ROWID: i32 = 2579;
+pub const SQLITE_CONSTRAINT_PINNED: i32 = 2835;
+pub const SQLITE_CONSTRAINT_DATATYPE: i32 = 3091;
+pub const SQLITE_NOTICE_RECOVER_WAL: i32 = 283;
+pub const SQLITE_NOTICE_RECOVER_ROLLBACK: i32 = 539;
+pub const SQLITE_WARNING_AUTOINDEX: i32 = 284;
+pub const SQLITE_AUTH_USER: i32 = 279;
+pub const SQLITE_OK_LOAD_PERMANENTLY: i32 = 256;
+pub const SQLITE_OK_SYMLINK: i32 = 512;
+pub const SQLITE_OPEN_READONLY: i32 = 1;
+pub const SQLITE_OPEN_READWRITE: i32 = 2;
+pub const SQLITE_OPEN_CREATE: i32 = 4;
+pub const SQLITE_OPEN_DELETEONCLOSE: i32 = 8;
+pub const SQLITE_OPEN_EXCLUSIVE: i32 = 16;
+pub const SQLITE_OPEN_AUTOPROXY: i32 = 32;
+pub const SQLITE_OPEN_URI: i32 = 64;
+pub const SQLITE_OPEN_MEMORY: i32 = 128;
+pub const SQLITE_OPEN_MAIN_DB: i32 = 256;
+pub const SQLITE_OPEN_TEMP_DB: i32 = 512;
+pub const SQLITE_OPEN_TRANSIENT_DB: i32 = 1024;
+pub const SQLITE_OPEN_MAIN_JOURNAL: i32 = 2048;
+pub const SQLITE_OPEN_TEMP_JOURNAL: i32 = 4096;
+pub const SQLITE_OPEN_SUBJOURNAL: i32 = 8192;
+pub const SQLITE_OPEN_SUPER_JOURNAL: i32 = 16384;
+pub const SQLITE_OPEN_NOMUTEX: i32 = 32768;
+pub const SQLITE_OPEN_FULLMUTEX: i32 = 65536;
+pub const SQLITE_OPEN_SHAREDCACHE: i32 = 131072;
+pub const SQLITE_OPEN_PRIVATECACHE: i32 = 262144;
+pub const SQLITE_OPEN_WAL: i32 = 524288;
+pub const SQLITE_OPEN_NOFOLLOW: i32 = 16777216;
+pub const SQLITE_OPEN_EXRESCODE: i32 = 33554432;
+pub const SQLITE_OPEN_MASTER_JOURNAL: i32 = 16384;
+pub const SQLITE_IOCAP_ATOMIC: i32 = 1;
+pub const SQLITE_IOCAP_ATOMIC512: i32 = 2;
+pub const SQLITE_IOCAP_ATOMIC1K: i32 = 4;
+pub const SQLITE_IOCAP_ATOMIC2K: i32 = 8;
+pub const SQLITE_IOCAP_ATOMIC4K: i32 = 16;
+pub const SQLITE_IOCAP_ATOMIC8K: i32 = 32;
+pub const SQLITE_IOCAP_ATOMIC16K: i32 = 64;
+pub const SQLITE_IOCAP_ATOMIC32K: i32 = 128;
+pub const SQLITE_IOCAP_ATOMIC64K: i32 = 256;
+pub const SQLITE_IOCAP_SAFE_APPEND: i32 = 512;
+pub const SQLITE_IOCAP_SEQUENTIAL: i32 = 1024;
+pub const SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN: i32 = 2048;
+pub const SQLITE_IOCAP_POWERSAFE_OVERWRITE: i32 = 4096;
+pub const SQLITE_IOCAP_IMMUTABLE: i32 = 8192;
+pub const SQLITE_IOCAP_BATCH_ATOMIC: i32 = 16384;
+pub const SQLITE_LOCK_NONE: i32 = 0;
+pub const SQLITE_LOCK_SHARED: i32 = 1;
+pub const SQLITE_LOCK_RESERVED: i32 = 2;
+pub const SQLITE_LOCK_PENDING: i32 = 3;
+pub const SQLITE_LOCK_EXCLUSIVE: i32 = 4;
+pub const SQLITE_SYNC_NORMAL: i32 = 2;
+pub const SQLITE_SYNC_FULL: i32 = 3;
+pub const SQLITE_SYNC_DATAONLY: i32 = 16;
+pub const SQLITE_FCNTL_LOCKSTATE: i32 = 1;
+pub const SQLITE_FCNTL_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_FCNTL_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_FCNTL_LAST_ERRNO: i32 = 4;
+pub const SQLITE_FCNTL_SIZE_HINT: i32 = 5;
+pub const SQLITE_FCNTL_CHUNK_SIZE: i32 = 6;
+pub const SQLITE_FCNTL_FILE_POINTER: i32 = 7;
+pub const SQLITE_FCNTL_SYNC_OMITTED: i32 = 8;
+pub const SQLITE_FCNTL_WIN32_AV_RETRY: i32 = 9;
+pub const SQLITE_FCNTL_PERSIST_WAL: i32 = 10;
+pub const SQLITE_FCNTL_OVERWRITE: i32 = 11;
+pub const SQLITE_FCNTL_VFSNAME: i32 = 12;
+pub const SQLITE_FCNTL_POWERSAFE_OVERWRITE: i32 = 13;
+pub const SQLITE_FCNTL_PRAGMA: i32 = 14;
+pub const SQLITE_FCNTL_BUSYHANDLER: i32 = 15;
+pub const SQLITE_FCNTL_TEMPFILENAME: i32 = 16;
+pub const SQLITE_FCNTL_MMAP_SIZE: i32 = 18;
+pub const SQLITE_FCNTL_TRACE: i32 = 19;
+pub const SQLITE_FCNTL_HAS_MOVED: i32 = 20;
+pub const SQLITE_FCNTL_SYNC: i32 = 21;
+pub const SQLITE_FCNTL_COMMIT_PHASETWO: i32 = 22;
+pub const SQLITE_FCNTL_WIN32_SET_HANDLE: i32 = 23;
+pub const SQLITE_FCNTL_WAL_BLOCK: i32 = 24;
+pub const SQLITE_FCNTL_ZIPVFS: i32 = 25;
+pub const SQLITE_FCNTL_RBU: i32 = 26;
+pub const SQLITE_FCNTL_VFS_POINTER: i32 = 27;
+pub const SQLITE_FCNTL_JOURNAL_POINTER: i32 = 28;
+pub const SQLITE_FCNTL_WIN32_GET_HANDLE: i32 = 29;
+pub const SQLITE_FCNTL_PDB: i32 = 30;
+pub const SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: i32 = 31;
+pub const SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: i32 = 32;
+pub const SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: i32 = 33;
+pub const SQLITE_FCNTL_LOCK_TIMEOUT: i32 = 34;
+pub const SQLITE_FCNTL_DATA_VERSION: i32 = 35;
+pub const SQLITE_FCNTL_SIZE_LIMIT: i32 = 36;
+pub const SQLITE_FCNTL_CKPT_DONE: i32 = 37;
+pub const SQLITE_FCNTL_RESERVE_BYTES: i32 = 38;
+pub const SQLITE_FCNTL_CKPT_START: i32 = 39;
+pub const SQLITE_FCNTL_EXTERNAL_READER: i32 = 40;
+pub const SQLITE_FCNTL_CKSM_FILE: i32 = 41;
+pub const SQLITE_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_LAST_ERRNO: i32 = 4;
+pub const SQLITE_ACCESS_EXISTS: i32 = 0;
+pub const SQLITE_ACCESS_READWRITE: i32 = 1;
+pub const SQLITE_ACCESS_READ: i32 = 2;
+pub const SQLITE_SHM_UNLOCK: i32 = 1;
+pub const SQLITE_SHM_LOCK: i32 = 2;
+pub const SQLITE_SHM_SHARED: i32 = 4;
+pub const SQLITE_SHM_EXCLUSIVE: i32 = 8;
+pub const SQLITE_SHM_NLOCK: i32 = 8;
+pub const SQLITE_CONFIG_SINGLETHREAD: i32 = 1;
+pub const SQLITE_CONFIG_MULTITHREAD: i32 = 2;
+pub const SQLITE_CONFIG_SERIALIZED: i32 = 3;
+pub const SQLITE_CONFIG_MALLOC: i32 = 4;
+pub const SQLITE_CONFIG_GETMALLOC: i32 = 5;
+pub const SQLITE_CONFIG_SCRATCH: i32 = 6;
+pub const SQLITE_CONFIG_PAGECACHE: i32 = 7;
+pub const SQLITE_CONFIG_HEAP: i32 = 8;
+pub const SQLITE_CONFIG_MEMSTATUS: i32 = 9;
+pub const SQLITE_CONFIG_MUTEX: i32 = 10;
+pub const SQLITE_CONFIG_GETMUTEX: i32 = 11;
+pub const SQLITE_CONFIG_LOOKASIDE: i32 = 13;
+pub const SQLITE_CONFIG_PCACHE: i32 = 14;
+pub const SQLITE_CONFIG_GETPCACHE: i32 = 15;
+pub const SQLITE_CONFIG_LOG: i32 = 16;
+pub const SQLITE_CONFIG_URI: i32 = 17;
+pub const SQLITE_CONFIG_PCACHE2: i32 = 18;
+pub const SQLITE_CONFIG_GETPCACHE2: i32 = 19;
+pub const SQLITE_CONFIG_COVERING_INDEX_SCAN: i32 = 20;
+pub const SQLITE_CONFIG_SQLLOG: i32 = 21;
+pub const SQLITE_CONFIG_MMAP_SIZE: i32 = 22;
+pub const SQLITE_CONFIG_WIN32_HEAPSIZE: i32 = 23;
+pub const SQLITE_CONFIG_PCACHE_HDRSZ: i32 = 24;
+pub const SQLITE_CONFIG_PMASZ: i32 = 25;
+pub const SQLITE_CONFIG_STMTJRNL_SPILL: i32 = 26;
+pub const SQLITE_CONFIG_SMALL_MALLOC: i32 = 27;
+pub const SQLITE_CONFIG_SORTERREF_SIZE: i32 = 28;
+pub const SQLITE_CONFIG_MEMDB_MAXSIZE: i32 = 29;
+pub const SQLITE_DBCONFIG_MAINDBNAME: i32 = 1000;
+pub const SQLITE_DBCONFIG_LOOKASIDE: i32 = 1001;
+pub const SQLITE_DBCONFIG_ENABLE_FKEY: i32 = 1002;
+pub const SQLITE_DBCONFIG_ENABLE_TRIGGER: i32 = 1003;
+pub const SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER: i32 = 1004;
+pub const SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION: i32 = 1005;
+pub const SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE: i32 = 1006;
+pub const SQLITE_DBCONFIG_ENABLE_QPSG: i32 = 1007;
+pub const SQLITE_DBCONFIG_TRIGGER_EQP: i32 = 1008;
+pub const SQLITE_DBCONFIG_RESET_DATABASE: i32 = 1009;
+pub const SQLITE_DBCONFIG_DEFENSIVE: i32 = 1010;
+pub const SQLITE_DBCONFIG_WRITABLE_SCHEMA: i32 = 1011;
+pub const SQLITE_DBCONFIG_LEGACY_ALTER_TABLE: i32 = 1012;
+pub const SQLITE_DBCONFIG_DQS_DML: i32 = 1013;
+pub const SQLITE_DBCONFIG_DQS_DDL: i32 = 1014;
+pub const SQLITE_DBCONFIG_ENABLE_VIEW: i32 = 1015;
+pub const SQLITE_DBCONFIG_LEGACY_FILE_FORMAT: i32 = 1016;
+pub const SQLITE_DBCONFIG_TRUSTED_SCHEMA: i32 = 1017;
+pub const SQLITE_DBCONFIG_MAX: i32 = 1017;
+pub const SQLITE_DENY: i32 = 1;
+pub const SQLITE_IGNORE: i32 = 2;
+pub const SQLITE_CREATE_INDEX: i32 = 1;
+pub const SQLITE_CREATE_TABLE: i32 = 2;
+pub const SQLITE_CREATE_TEMP_INDEX: i32 = 3;
+pub const SQLITE_CREATE_TEMP_TABLE: i32 = 4;
+pub const SQLITE_CREATE_TEMP_TRIGGER: i32 = 5;
+pub const SQLITE_CREATE_TEMP_VIEW: i32 = 6;
+pub const SQLITE_CREATE_TRIGGER: i32 = 7;
+pub const SQLITE_CREATE_VIEW: i32 = 8;
+pub const SQLITE_DELETE: i32 = 9;
+pub const SQLITE_DROP_INDEX: i32 = 10;
+pub const SQLITE_DROP_TABLE: i32 = 11;
+pub const SQLITE_DROP_TEMP_INDEX: i32 = 12;
+pub const SQLITE_DROP_TEMP_TABLE: i32 = 13;
+pub const SQLITE_DROP_TEMP_TRIGGER: i32 = 14;
+pub const SQLITE_DROP_TEMP_VIEW: i32 = 15;
+pub const SQLITE_DROP_TRIGGER: i32 = 16;
+pub const SQLITE_DROP_VIEW: i32 = 17;
+pub const SQLITE_INSERT: i32 = 18;
+pub const SQLITE_PRAGMA: i32 = 19;
+pub const SQLITE_READ: i32 = 20;
+pub const SQLITE_SELECT: i32 = 21;
+pub const SQLITE_TRANSACTION: i32 = 22;
+pub const SQLITE_UPDATE: i32 = 23;
+pub const SQLITE_ATTACH: i32 = 24;
+pub const SQLITE_DETACH: i32 = 25;
+pub const SQLITE_ALTER_TABLE: i32 = 26;
+pub const SQLITE_REINDEX: i32 = 27;
+pub const SQLITE_ANALYZE: i32 = 28;
+pub const SQLITE_CREATE_VTABLE: i32 = 29;
+pub const SQLITE_DROP_VTABLE: i32 = 30;
+pub const SQLITE_FUNCTION: i32 = 31;
+pub const SQLITE_SAVEPOINT: i32 = 32;
+pub const SQLITE_COPY: i32 = 0;
+pub const SQLITE_RECURSIVE: i32 = 33;
+pub const SQLITE_TRACE_STMT: i32 = 1;
+pub const SQLITE_TRACE_PROFILE: i32 = 2;
+pub const SQLITE_TRACE_ROW: i32 = 4;
+pub const SQLITE_TRACE_CLOSE: i32 = 8;
+pub const SQLITE_LIMIT_LENGTH: i32 = 0;
+pub const SQLITE_LIMIT_SQL_LENGTH: i32 = 1;
+pub const SQLITE_LIMIT_COLUMN: i32 = 2;
+pub const SQLITE_LIMIT_EXPR_DEPTH: i32 = 3;
+pub const SQLITE_LIMIT_COMPOUND_SELECT: i32 = 4;
+pub const SQLITE_LIMIT_VDBE_OP: i32 = 5;
+pub const SQLITE_LIMIT_FUNCTION_ARG: i32 = 6;
+pub const SQLITE_LIMIT_ATTACHED: i32 = 7;
+pub const SQLITE_LIMIT_LIKE_PATTERN_LENGTH: i32 = 8;
+pub const SQLITE_LIMIT_VARIABLE_NUMBER: i32 = 9;
+pub const SQLITE_LIMIT_TRIGGER_DEPTH: i32 = 10;
+pub const SQLITE_LIMIT_WORKER_THREADS: i32 = 11;
+pub const SQLITE_PREPARE_PERSISTENT: i32 = 1;
+pub const SQLITE_PREPARE_NORMALIZE: i32 = 2;
+pub const SQLITE_PREPARE_NO_VTAB: i32 = 4;
+pub const SQLITE_INTEGER: i32 = 1;
+pub const SQLITE_FLOAT: i32 = 2;
+pub const SQLITE_BLOB: i32 = 4;
+pub const SQLITE_NULL: i32 = 5;
+pub const SQLITE_TEXT: i32 = 3;
+pub const SQLITE3_TEXT: i32 = 3;
+pub const SQLITE_UTF8: i32 = 1;
+pub const SQLITE_UTF16LE: i32 = 2;
+pub const SQLITE_UTF16BE: i32 = 3;
+pub const SQLITE_UTF16: i32 = 4;
+pub const SQLITE_ANY: i32 = 5;
+pub const SQLITE_UTF16_ALIGNED: i32 = 8;
+pub const SQLITE_DETERMINISTIC: i32 = 2048;
+pub const SQLITE_DIRECTONLY: i32 = 524288;
+pub const SQLITE_SUBTYPE: i32 = 1048576;
+pub const SQLITE_INNOCUOUS: i32 = 2097152;
+pub const SQLITE_WIN32_DATA_DIRECTORY_TYPE: i32 = 1;
+pub const SQLITE_WIN32_TEMP_DIRECTORY_TYPE: i32 = 2;
+pub const SQLITE_TXN_NONE: i32 = 0;
+pub const SQLITE_TXN_READ: i32 = 1;
+pub const SQLITE_TXN_WRITE: i32 = 2;
+pub const SQLITE_INDEX_SCAN_UNIQUE: i32 = 1;
+pub const SQLITE_INDEX_CONSTRAINT_EQ: i32 = 2;
+pub const SQLITE_INDEX_CONSTRAINT_GT: i32 = 4;
+pub const SQLITE_INDEX_CONSTRAINT_LE: i32 = 8;
+pub const SQLITE_INDEX_CONSTRAINT_LT: i32 = 16;
+pub const SQLITE_INDEX_CONSTRAINT_GE: i32 = 32;
+pub const SQLITE_INDEX_CONSTRAINT_MATCH: i32 = 64;
+pub const SQLITE_INDEX_CONSTRAINT_LIKE: i32 = 65;
+pub const SQLITE_INDEX_CONSTRAINT_GLOB: i32 = 66;
+pub const SQLITE_INDEX_CONSTRAINT_REGEXP: i32 = 67;
+pub const SQLITE_INDEX_CONSTRAINT_NE: i32 = 68;
+pub const SQLITE_INDEX_CONSTRAINT_ISNOT: i32 = 69;
+pub const SQLITE_INDEX_CONSTRAINT_ISNOTNULL: i32 = 70;
+pub const SQLITE_INDEX_CONSTRAINT_ISNULL: i32 = 71;
+pub const SQLITE_INDEX_CONSTRAINT_IS: i32 = 72;
+pub const SQLITE_INDEX_CONSTRAINT_LIMIT: i32 = 73;
+pub const SQLITE_INDEX_CONSTRAINT_OFFSET: i32 = 74;
+pub const SQLITE_INDEX_CONSTRAINT_FUNCTION: i32 = 150;
+pub const SQLITE_MUTEX_FAST: i32 = 0;
+pub const SQLITE_MUTEX_RECURSIVE: i32 = 1;
+pub const SQLITE_MUTEX_STATIC_MAIN: i32 = 2;
+pub const SQLITE_MUTEX_STATIC_MEM: i32 = 3;
+pub const SQLITE_MUTEX_STATIC_MEM2: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_OPEN: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_PRNG: i32 = 5;
+pub const SQLITE_MUTEX_STATIC_LRU: i32 = 6;
+pub const SQLITE_MUTEX_STATIC_LRU2: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_PMEM: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_APP1: i32 = 8;
+pub const SQLITE_MUTEX_STATIC_APP2: i32 = 9;
+pub const SQLITE_MUTEX_STATIC_APP3: i32 = 10;
+pub const SQLITE_MUTEX_STATIC_VFS1: i32 = 11;
+pub const SQLITE_MUTEX_STATIC_VFS2: i32 = 12;
+pub const SQLITE_MUTEX_STATIC_VFS3: i32 = 13;
+pub const SQLITE_MUTEX_STATIC_MASTER: i32 = 2;
+pub const SQLITE_TESTCTRL_FIRST: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_SAVE: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_RESTORE: i32 = 6;
+pub const SQLITE_TESTCTRL_PRNG_RESET: i32 = 7;
+pub const SQLITE_TESTCTRL_BITVEC_TEST: i32 = 8;
+pub const SQLITE_TESTCTRL_FAULT_INSTALL: i32 = 9;
+pub const SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: i32 = 10;
+pub const SQLITE_TESTCTRL_PENDING_BYTE: i32 = 11;
+pub const SQLITE_TESTCTRL_ASSERT: i32 = 12;
+pub const SQLITE_TESTCTRL_ALWAYS: i32 = 13;
+pub const SQLITE_TESTCTRL_RESERVE: i32 = 14;
+pub const SQLITE_TESTCTRL_OPTIMIZATIONS: i32 = 15;
+pub const SQLITE_TESTCTRL_ISKEYWORD: i32 = 16;
+pub const SQLITE_TESTCTRL_SCRATCHMALLOC: i32 = 17;
+pub const SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: i32 = 17;
+pub const SQLITE_TESTCTRL_LOCALTIME_FAULT: i32 = 18;
+pub const SQLITE_TESTCTRL_EXPLAIN_STMT: i32 = 19;
+pub const SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: i32 = 19;
+pub const SQLITE_TESTCTRL_NEVER_CORRUPT: i32 = 20;
+pub const SQLITE_TESTCTRL_VDBE_COVERAGE: i32 = 21;
+pub const SQLITE_TESTCTRL_BYTEORDER: i32 = 22;
+pub const SQLITE_TESTCTRL_ISINIT: i32 = 23;
+pub const SQLITE_TESTCTRL_SORTER_MMAP: i32 = 24;
+pub const SQLITE_TESTCTRL_IMPOSTER: i32 = 25;
+pub const SQLITE_TESTCTRL_PARSER_COVERAGE: i32 = 26;
+pub const SQLITE_TESTCTRL_RESULT_INTREAL: i32 = 27;
+pub const SQLITE_TESTCTRL_PRNG_SEED: i32 = 28;
+pub const SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: i32 = 29;
+pub const SQLITE_TESTCTRL_SEEK_COUNT: i32 = 30;
+pub const SQLITE_TESTCTRL_TRACEFLAGS: i32 = 31;
+pub const SQLITE_TESTCTRL_TUNE: i32 = 32;
+pub const SQLITE_TESTCTRL_LOGEST: i32 = 33;
+pub const SQLITE_TESTCTRL_LAST: i32 = 33;
+pub const SQLITE_STATUS_MEMORY_USED: i32 = 0;
+pub const SQLITE_STATUS_PAGECACHE_USED: i32 = 1;
+pub const SQLITE_STATUS_PAGECACHE_OVERFLOW: i32 = 2;
+pub const SQLITE_STATUS_SCRATCH_USED: i32 = 3;
+pub const SQLITE_STATUS_SCRATCH_OVERFLOW: i32 = 4;
+pub const SQLITE_STATUS_MALLOC_SIZE: i32 = 5;
+pub const SQLITE_STATUS_PARSER_STACK: i32 = 6;
+pub const SQLITE_STATUS_PAGECACHE_SIZE: i32 = 7;
+pub const SQLITE_STATUS_SCRATCH_SIZE: i32 = 8;
+pub const SQLITE_STATUS_MALLOC_COUNT: i32 = 9;
+pub const SQLITE_DBSTATUS_LOOKASIDE_USED: i32 = 0;
+pub const SQLITE_DBSTATUS_CACHE_USED: i32 = 1;
+pub const SQLITE_DBSTATUS_SCHEMA_USED: i32 = 2;
+pub const SQLITE_DBSTATUS_STMT_USED: i32 = 3;
+pub const SQLITE_DBSTATUS_LOOKASIDE_HIT: i32 = 4;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: i32 = 5;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: i32 = 6;
+pub const SQLITE_DBSTATUS_CACHE_HIT: i32 = 7;
+pub const SQLITE_DBSTATUS_CACHE_MISS: i32 = 8;
+pub const SQLITE_DBSTATUS_CACHE_WRITE: i32 = 9;
+pub const SQLITE_DBSTATUS_DEFERRED_FKS: i32 = 10;
+pub const SQLITE_DBSTATUS_CACHE_USED_SHARED: i32 = 11;
+pub const SQLITE_DBSTATUS_CACHE_SPILL: i32 = 12;
+pub const SQLITE_DBSTATUS_MAX: i32 = 12;
+pub const SQLITE_STMTSTATUS_FULLSCAN_STEP: i32 = 1;
+pub const SQLITE_STMTSTATUS_SORT: i32 = 2;
+pub const SQLITE_STMTSTATUS_AUTOINDEX: i32 = 3;
+pub const SQLITE_STMTSTATUS_VM_STEP: i32 = 4;
+pub const SQLITE_STMTSTATUS_REPREPARE: i32 = 5;
+pub const SQLITE_STMTSTATUS_RUN: i32 = 6;
+pub const SQLITE_STMTSTATUS_FILTER_MISS: i32 = 7;
+pub const SQLITE_STMTSTATUS_FILTER_HIT: i32 = 8;
+pub const SQLITE_STMTSTATUS_MEMUSED: i32 = 99;
+pub const SQLITE_CHECKPOINT_PASSIVE: i32 = 0;
+pub const SQLITE_CHECKPOINT_FULL: i32 = 1;
+pub const SQLITE_CHECKPOINT_RESTART: i32 = 2;
+pub const SQLITE_CHECKPOINT_TRUNCATE: i32 = 3;
+pub const SQLITE_VTAB_CONSTRAINT_SUPPORT: i32 = 1;
+pub const SQLITE_VTAB_INNOCUOUS: i32 = 2;
+pub const SQLITE_VTAB_DIRECTONLY: i32 = 3;
+pub const SQLITE_ROLLBACK: i32 = 1;
+pub const SQLITE_FAIL: i32 = 3;
+pub const SQLITE_REPLACE: i32 = 5;
+pub const SQLITE_SCANSTAT_NLOOP: i32 = 0;
+pub const SQLITE_SCANSTAT_NVISIT: i32 = 1;
+pub const SQLITE_SCANSTAT_EST: i32 = 2;
+pub const SQLITE_SCANSTAT_NAME: i32 = 3;
+pub const SQLITE_SCANSTAT_EXPLAIN: i32 = 4;
+pub const SQLITE_SCANSTAT_SELECTID: i32 = 5;
+pub const SQLITE_SERIALIZE_NOCOPY: i32 = 1;
+pub const SQLITE_DESERIALIZE_FREEONCLOSE: i32 = 1;
+pub const SQLITE_DESERIALIZE_RESIZEABLE: i32 = 2;
+pub const SQLITE_DESERIALIZE_READONLY: i32 = 4;
+pub const NOT_WITHIN: i32 = 0;
+pub const PARTLY_WITHIN: i32 = 1;
+pub const FULLY_WITHIN: i32 = 2;
+pub const __SQLITESESSION_H_: i32 = 1;
+pub const SQLITE_SESSION_OBJCONFIG_SIZE: i32 = 1;
+pub const SQLITE_CHANGESETSTART_INVERT: i32 = 2;
+pub const SQLITE_CHANGESETAPPLY_NOSAVEPOINT: i32 = 1;
+pub const SQLITE_CHANGESETAPPLY_INVERT: i32 = 2;
+pub const SQLITE_CHANGESET_DATA: i32 = 1;
+pub const SQLITE_CHANGESET_NOTFOUND: i32 = 2;
+pub const SQLITE_CHANGESET_CONFLICT: i32 = 3;
+pub const SQLITE_CHANGESET_CONSTRAINT: i32 = 4;
+pub const SQLITE_CHANGESET_FOREIGN_KEY: i32 = 5;
+pub const SQLITE_CHANGESET_OMIT: i32 = 0;
+pub const SQLITE_CHANGESET_REPLACE: i32 = 1;
+pub const SQLITE_CHANGESET_ABORT: i32 = 2;
+pub const SQLITE_SESSION_CONFIG_STRMSIZE: i32 = 1;
+pub const FTS5_TOKENIZE_QUERY: i32 = 1;
+pub const FTS5_TOKENIZE_PREFIX: i32 = 2;
+pub const FTS5_TOKENIZE_DOCUMENT: i32 = 4;
+pub const FTS5_TOKENIZE_AUX: i32 = 8;
+pub const FTS5_TOKEN_COLOCATED: i32 = 1;
+extern "C" {
+ pub static sqlite3_version: [::std::os::raw::c_char; 0usize];
+}
+extern "C" {
+ pub fn sqlite3_libversion() -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_sourceid() -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_libversion_number() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_compileoption_used(
+ zOptName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_compileoption_get(N: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_threadsafe() -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3 {
+ _unused: [u8; 0],
+}
+pub type sqlite_int64 = ::std::os::raw::c_longlong;
+pub type sqlite_uint64 = ::std::os::raw::c_ulonglong;
+pub type sqlite3_int64 = sqlite_int64;
+pub type sqlite3_uint64 = sqlite_uint64;
+extern "C" {
+ pub fn sqlite3_close(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_close_v2(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_callback = ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+>;
+extern "C" {
+ pub fn sqlite3_exec(
+ arg1: *mut sqlite3,
+ sql: *const ::std::os::raw::c_char,
+ callback: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ errmsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_file {
+ pub pMethods: *const sqlite3_io_methods,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_io_methods {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xRead: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *mut ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xWrite: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *const ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file, size: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pSize: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnlock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCheckReservedLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileControl: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSectorSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xDeviceCharacteristics: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xShmMap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iPg: ::std::os::raw::c_int,
+ pgsz: ::std::os::raw::c_int,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ offset: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmBarrier: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_file)>,
+ pub xShmUnmap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ deleteFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ iAmt: ::std::os::raw::c_int,
+ pp: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnfetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ p: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_api_routines {
+ _unused: [u8; 0],
+}
+pub type sqlite3_syscall_ptr = ::std::option::Option<unsafe extern "C" fn()>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vfs {
+ pub iVersion: ::std::os::raw::c_int,
+ pub szOsFile: ::std::os::raw::c_int,
+ pub mxPathname: ::std::os::raw::c_int,
+ pub pNext: *mut sqlite3_vfs,
+ pub zName: *const ::std::os::raw::c_char,
+ pub pAppData: *mut ::std::os::raw::c_void,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ pOutFlags: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ syncDir: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xAccess: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ flags: ::std::os::raw::c_int,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFullPathname: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ nOut: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDlOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zFilename: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xDlError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zErrMsg: *mut ::std::os::raw::c_char,
+ ),
+ >,
+ pub xDlSym: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ) -> ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ),
+ >,
+ >,
+ pub xDlClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub xRandomness: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSleep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ microseconds: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTime: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut f64) -> ::std::os::raw::c_int,
+ >,
+ pub xGetLastError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTimeInt64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: sqlite3_syscall_ptr,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> sqlite3_syscall_ptr,
+ >,
+ pub xNextSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+}
+extern "C" {
+ pub fn sqlite3_initialize() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_shutdown() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_os_init() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_os_end() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_config(arg1: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mem_methods {
+ pub xMalloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xRealloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xRoundup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub pAppData: *mut ::std::os::raw::c_void,
+}
+extern "C" {
+ pub fn sqlite3_extended_result_codes(
+ arg1: *mut sqlite3,
+ onoff: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_last_insert_rowid(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_set_last_insert_rowid(arg1: *mut sqlite3, arg2: sqlite3_int64);
+}
+extern "C" {
+ pub fn sqlite3_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_changes64(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_total_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_total_changes64(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_interrupt(arg1: *mut sqlite3);
+}
+extern "C" {
+ pub fn sqlite3_complete(sql: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_complete16(sql: *const ::std::os::raw::c_void) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_busy_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_busy_timeout(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_get_table(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ pazResult: *mut *mut *mut ::std::os::raw::c_char,
+ pnRow: *mut ::std::os::raw::c_int,
+ pnColumn: *mut ::std::os::raw::c_int,
+ pzErrmsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_free_table(result: *mut *mut ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_mprintf(arg1: *const ::std::os::raw::c_char, ...)
+ -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_snprintf(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_malloc(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_malloc64(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_realloc(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_realloc64(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_free(arg1: *mut ::std::os::raw::c_void);
+}
+extern "C" {
+ pub fn sqlite3_msize(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64;
+}
+extern "C" {
+ pub fn sqlite3_memory_used() -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_memory_highwater(resetFlag: ::std::os::raw::c_int) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_randomness(N: ::std::os::raw::c_int, P: *mut ::std::os::raw::c_void);
+}
+extern "C" {
+ pub fn sqlite3_set_authorizer(
+ arg1: *mut sqlite3,
+ xAuth: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pUserData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_trace(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_profile(
+ arg1: *mut sqlite3,
+ xProfile: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_trace_v2(
+ arg1: *mut sqlite3,
+ uMask: ::std::os::raw::c_uint,
+ xCallback: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_progress_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ );
+}
+extern "C" {
+ pub fn sqlite3_open(
+ filename: *const ::std::os::raw::c_char,
+ ppDb: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_open16(
+ filename: *const ::std::os::raw::c_void,
+ ppDb: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_open_v2(
+ filename: *const ::std::os::raw::c_char,
+ ppDb: *mut *mut sqlite3,
+ flags: ::std::os::raw::c_int,
+ zVfs: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_uri_parameter(
+ zFilename: *const ::std::os::raw::c_char,
+ zParam: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_uri_boolean(
+ zFile: *const ::std::os::raw::c_char,
+ zParam: *const ::std::os::raw::c_char,
+ bDefault: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_uri_int64(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_uri_key(
+ zFilename: *const ::std::os::raw::c_char,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_filename_database(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_filename_journal(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_filename_wal(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_database_file_object(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_file;
+}
+extern "C" {
+ pub fn sqlite3_create_filename(
+ zDatabase: *const ::std::os::raw::c_char,
+ zJournal: *const ::std::os::raw::c_char,
+ zWal: *const ::std::os::raw::c_char,
+ nParam: ::std::os::raw::c_int,
+ azParam: *mut *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_free_filename(arg1: *mut ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_extended_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_errmsg(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_errmsg16(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_errstr(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_error_offset(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_stmt {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_limit(
+ arg1: *mut sqlite3,
+ id: ::std::os::raw::c_int,
+ newVal: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare_v2(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare_v3(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ prepFlags: ::std::os::raw::c_uint,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16_v2(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16_v3(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ prepFlags: ::std::os::raw::c_uint,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_sql(pStmt: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_expanded_sql(pStmt: *mut sqlite3_stmt) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_stmt_readonly(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_isexplain(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_busy(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_value {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_context {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_bind_blob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_blob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_double(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_int(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_int64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_null(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ encoding: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_value(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_pointer(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_zeroblob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_zeroblob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_count(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_index(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_clear_bindings(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_name(
+ arg1: *mut sqlite3_stmt,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_name16(
+ arg1: *mut sqlite3_stmt,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_database_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_database_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_table_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_table_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_origin_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_origin_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_decltype(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_decltype16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_step(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_data_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_blob(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_double(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> f64;
+}
+extern "C" {
+ pub fn sqlite3_column_int(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_int64(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_column_text(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_column_text16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_value(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value;
+}
+extern "C" {
+ pub fn sqlite3_column_bytes(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_bytes16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_type(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_finalize(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_reset(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function16(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_void,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function_v2(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_window_function(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xValue: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xInverse: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_aggregate_count(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_expired(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_transfer_bindings(
+ arg1: *mut sqlite3_stmt,
+ arg2: *mut sqlite3_stmt,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_global_recover() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_thread_cleanup();
+}
+extern "C" {
+ pub fn sqlite3_memory_alarm(
+ arg1: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_int64,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_blob(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_double(arg1: *mut sqlite3_value) -> f64;
+}
+extern "C" {
+ pub fn sqlite3_value_int(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_int64(arg1: *mut sqlite3_value) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_value_pointer(
+ arg1: *mut sqlite3_value,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_value_text16(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text16le(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text16be(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_bytes(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_bytes16(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_numeric_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_nochange(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_frombind(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_subtype(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint;
+}
+extern "C" {
+ pub fn sqlite3_value_dup(arg1: *const sqlite3_value) -> *mut sqlite3_value;
+}
+extern "C" {
+ pub fn sqlite3_value_free(arg1: *mut sqlite3_value);
+}
+extern "C" {
+ pub fn sqlite3_aggregate_context(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_user_data(arg1: *mut sqlite3_context) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_context_db_handle(arg1: *mut sqlite3_context) -> *mut sqlite3;
+}
+extern "C" {
+ pub fn sqlite3_get_auxdata(
+ arg1: *mut sqlite3_context,
+ N: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_set_auxdata(
+ arg1: *mut sqlite3_context,
+ N: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+pub type sqlite3_destructor_type =
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>;
+extern "C" {
+ pub fn sqlite3_result_blob(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_blob64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_double(arg1: *mut sqlite3_context, arg2: f64);
+}
+extern "C" {
+ pub fn sqlite3_result_error(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_error16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_error_toobig(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_error_nomem(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_error_code(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_int(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_int64(arg1: *mut sqlite3_context, arg2: sqlite3_int64);
+}
+extern "C" {
+ pub fn sqlite3_result_null(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_text(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ encoding: ::std::os::raw::c_uchar,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16le(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16be(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_value(arg1: *mut sqlite3_context, arg2: *mut sqlite3_value);
+}
+extern "C" {
+ pub fn sqlite3_result_pointer(
+ arg1: *mut sqlite3_context,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_zeroblob(arg1: *mut sqlite3_context, n: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_zeroblob64(
+ arg1: *mut sqlite3_context,
+ n: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_result_subtype(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_uint);
+}
+extern "C" {
+ pub fn sqlite3_create_collation(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_collation_v2(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_collation16(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_void,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_collation_needed(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_collation_needed16(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_key(
+ db: *mut sqlite3,
+ pKey: *const ::std::os::raw::c_void,
+ nKey: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_key_v2(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ pKey: *const ::std::os::raw::c_void,
+ nKey: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_rekey(
+ db: *mut sqlite3,
+ pKey: *const ::std::os::raw::c_void,
+ nKey: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_rekey_v2(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ pKey: *const ::std::os::raw::c_void,
+ nKey: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_activate_see(zPassPhrase: *const ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_sleep(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub static mut sqlite3_temp_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub static mut sqlite3_data_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_win32_set_directory(
+ type_: ::std::os::raw::c_ulong,
+ zValue: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_win32_set_directory8(
+ type_: ::std::os::raw::c_ulong,
+ zValue: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_win32_set_directory16(
+ type_: ::std::os::raw::c_ulong,
+ zValue: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_get_autocommit(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_handle(arg1: *mut sqlite3_stmt) -> *mut sqlite3;
+}
+extern "C" {
+ pub fn sqlite3_db_name(
+ db: *mut sqlite3,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_db_filename(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_db_readonly(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_txn_state(
+ arg1: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_next_stmt(pDb: *mut sqlite3, pStmt: *mut sqlite3_stmt) -> *mut sqlite3_stmt;
+}
+extern "C" {
+ pub fn sqlite3_commit_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_rollback_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_autovacuum_pages(
+ db: *mut sqlite3,
+ arg1: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ arg4: ::std::os::raw::c_uint,
+ arg5: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_uint,
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_update_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_enable_shared_cache(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_release_memory(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_release_memory(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_soft_heap_limit64(N: sqlite3_int64) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_hard_heap_limit64(N: sqlite3_int64) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_soft_heap_limit(N: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_table_column_metadata(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ zTableName: *const ::std::os::raw::c_char,
+ zColumnName: *const ::std::os::raw::c_char,
+ pzDataType: *mut *const ::std::os::raw::c_char,
+ pzCollSeq: *mut *const ::std::os::raw::c_char,
+ pNotNull: *mut ::std::os::raw::c_int,
+ pPrimaryKey: *mut ::std::os::raw::c_int,
+ pAutoinc: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_load_extension(
+ db: *mut sqlite3,
+ zFile: *const ::std::os::raw::c_char,
+ zProc: *const ::std::os::raw::c_char,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_enable_load_extension(
+ db: *mut sqlite3,
+ onoff: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_reset_auto_extension();
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_module {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xConnect: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBestIndex: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: *mut sqlite3_index_info,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDisconnect: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ ppCursor: *mut *mut sqlite3_vtab_cursor,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ idxNum: ::std::os::raw::c_int,
+ idxStr: *const ::std::os::raw::c_char,
+ argc: ::std::os::raw::c_int,
+ argv: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xNext: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xEof: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ arg2: *mut sqlite3_context,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ pRowid: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ arg4: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBegin: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xCommit: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xRollback: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xFindFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ nArg: ::std::os::raw::c_int,
+ zName: *const ::std::os::raw::c_char,
+ pxFunc: *mut ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ ppArg: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRename: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ zNew: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSavepoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRelease: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRollbackTo: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShadowName: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_info {
+ pub nConstraint: ::std::os::raw::c_int,
+ pub aConstraint: *mut sqlite3_index_constraint,
+ pub nOrderBy: ::std::os::raw::c_int,
+ pub aOrderBy: *mut sqlite3_index_orderby,
+ pub aConstraintUsage: *mut sqlite3_index_constraint_usage,
+ pub idxNum: ::std::os::raw::c_int,
+ pub idxStr: *mut ::std::os::raw::c_char,
+ pub needToFreeIdxStr: ::std::os::raw::c_int,
+ pub orderByConsumed: ::std::os::raw::c_int,
+ pub estimatedCost: f64,
+ pub estimatedRows: sqlite3_int64,
+ pub idxFlags: ::std::os::raw::c_int,
+ pub colUsed: sqlite3_uint64,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint {
+ pub iColumn: ::std::os::raw::c_int,
+ pub op: ::std::os::raw::c_uchar,
+ pub usable: ::std::os::raw::c_uchar,
+ pub iTermOffset: ::std::os::raw::c_int,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_orderby {
+ pub iColumn: ::std::os::raw::c_int,
+ pub desc: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint_usage {
+ pub argvIndex: ::std::os::raw::c_int,
+ pub omit: ::std::os::raw::c_uchar,
+}
+extern "C" {
+ pub fn sqlite3_create_module(
+ db: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ p: *const sqlite3_module,
+ pClientData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_module_v2(
+ db: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ p: *const sqlite3_module,
+ pClientData: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_drop_modules(
+ db: *mut sqlite3,
+ azKeep: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab {
+ pub pModule: *const sqlite3_module,
+ pub nRef: ::std::os::raw::c_int,
+ pub zErrMsg: *mut ::std::os::raw::c_char,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab_cursor {
+ pub pVtab: *mut sqlite3_vtab,
+}
+extern "C" {
+ pub fn sqlite3_declare_vtab(
+ arg1: *mut sqlite3,
+ zSQL: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_overload_function(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_blob {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_blob_open(
+ arg1: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ zTable: *const ::std::os::raw::c_char,
+ zColumn: *const ::std::os::raw::c_char,
+ iRow: sqlite3_int64,
+ flags: ::std::os::raw::c_int,
+ ppBlob: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_reopen(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_close(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_bytes(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_read(
+ arg1: *mut sqlite3_blob,
+ Z: *mut ::std::os::raw::c_void,
+ N: ::std::os::raw::c_int,
+ iOffset: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_write(
+ arg1: *mut sqlite3_blob,
+ z: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ iOffset: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vfs_find(zVfsName: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs;
+}
+extern "C" {
+ pub fn sqlite3_vfs_register(
+ arg1: *mut sqlite3_vfs,
+ makeDflt: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vfs_unregister(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_alloc(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex;
+}
+extern "C" {
+ pub fn sqlite3_mutex_free(arg1: *mut sqlite3_mutex);
+}
+extern "C" {
+ pub fn sqlite3_mutex_enter(arg1: *mut sqlite3_mutex);
+}
+extern "C" {
+ pub fn sqlite3_mutex_try(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_leave(arg1: *mut sqlite3_mutex);
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex_methods {
+ pub xMutexInit: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexEnd: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexAlloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub xMutexFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexEnter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexTry: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexLeave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexHeld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexNotheld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+}
+extern "C" {
+ pub fn sqlite3_mutex_held(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_notheld(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_mutex(arg1: *mut sqlite3) -> *mut sqlite3_mutex;
+}
+extern "C" {
+ pub fn sqlite3_file_control(
+ arg1: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ op: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_test_control(op: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_keyword_count() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_keyword_name(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_keyword_check(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_str {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_str_new(arg1: *mut sqlite3) -> *mut sqlite3_str;
+}
+extern "C" {
+ pub fn sqlite3_str_finish(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_str_appendf(arg1: *mut sqlite3_str, zFormat: *const ::std::os::raw::c_char, ...);
+}
+extern "C" {
+ pub fn sqlite3_str_append(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+ N: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_str_appendall(arg1: *mut sqlite3_str, zIn: *const ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_str_appendchar(
+ arg1: *mut sqlite3_str,
+ N: ::std::os::raw::c_int,
+ C: ::std::os::raw::c_char,
+ );
+}
+extern "C" {
+ pub fn sqlite3_str_reset(arg1: *mut sqlite3_str);
+}
+extern "C" {
+ pub fn sqlite3_str_errcode(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_str_length(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_str_value(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_status(
+ op: ::std::os::raw::c_int,
+ pCurrent: *mut ::std::os::raw::c_int,
+ pHighwater: *mut ::std::os::raw::c_int,
+ resetFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_status64(
+ op: ::std::os::raw::c_int,
+ pCurrent: *mut sqlite3_int64,
+ pHighwater: *mut sqlite3_int64,
+ resetFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_status(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ pCur: *mut ::std::os::raw::c_int,
+ pHiwtr: *mut ::std::os::raw::c_int,
+ resetFlg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_status(
+ arg1: *mut sqlite3_stmt,
+ op: ::std::os::raw::c_int,
+ resetFlg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_page {
+ pub pBuf: *mut ::std::os::raw::c_void,
+ pub pExtra: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods2 {
+ pub iVersion: ::std::os::raw::c_int,
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ szExtra: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache_page,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+ pub xShrink: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods {
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_backup {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_backup_init(
+ pDest: *mut sqlite3,
+ zDestName: *const ::std::os::raw::c_char,
+ pSource: *mut sqlite3,
+ zSourceName: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup;
+}
+extern "C" {
+ pub fn sqlite3_backup_step(
+ p: *mut sqlite3_backup,
+ nPage: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_finish(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_remaining(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_pagecount(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_unlock_notify(
+ pBlocked: *mut sqlite3,
+ xNotify: ::std::option::Option<
+ unsafe extern "C" fn(
+ apArg: *mut *mut ::std::os::raw::c_void,
+ nArg: ::std::os::raw::c_int,
+ ),
+ >,
+ pNotifyArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stricmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strnicmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strglob(
+ zGlob: *const ::std::os::raw::c_char,
+ zStr: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strlike(
+ zGlob: *const ::std::os::raw::c_char,
+ zStr: *const ::std::os::raw::c_char,
+ cEsc: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_log(
+ iErrCode: ::std::os::raw::c_int,
+ zFormat: *const ::std::os::raw::c_char,
+ ...
+ );
+}
+extern "C" {
+ pub fn sqlite3_wal_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_wal_autocheckpoint(
+ db: *mut sqlite3,
+ N: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_wal_checkpoint(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_wal_checkpoint_v2(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ eMode: ::std::os::raw::c_int,
+ pnLog: *mut ::std::os::raw::c_int,
+ pnCkpt: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_on_conflict(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_nochange(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_collation(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_vtab_distinct(arg1: *mut sqlite3_index_info) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_in(
+ arg1: *mut sqlite3_index_info,
+ iCons: ::std::os::raw::c_int,
+ bHandle: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_in_first(
+ pVal: *mut sqlite3_value,
+ ppOut: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_in_next(
+ pVal: *mut sqlite3_value,
+ ppOut: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_rhs_value(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ ppVal: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus(
+ pStmt: *mut sqlite3_stmt,
+ idx: ::std::os::raw::c_int,
+ iScanStatusOp: ::std::os::raw::c_int,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus_reset(arg1: *mut sqlite3_stmt);
+}
+extern "C" {
+ pub fn sqlite3_db_cacheflush(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_hook(
+ db: *mut sqlite3,
+ xPreUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ db: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ zDb: *const ::std::os::raw::c_char,
+ zName: *const ::std::os::raw::c_char,
+ iKey1: sqlite3_int64,
+ iKey2: sqlite3_int64,
+ ),
+ >,
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_old(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_count(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_depth(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_new(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_blobwrite(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_system_errno(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_snapshot {
+ pub hidden: [::std::os::raw::c_uchar; 48usize],
+}
+extern "C" {
+ pub fn sqlite3_snapshot_get(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ ppSnapshot: *mut *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_open(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ pSnapshot: *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_free(arg1: *mut sqlite3_snapshot);
+}
+extern "C" {
+ pub fn sqlite3_snapshot_cmp(
+ p1: *mut sqlite3_snapshot,
+ p2: *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_recover(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_serialize(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ piSize: *mut sqlite3_int64,
+ mFlags: ::std::os::raw::c_uint,
+ ) -> *mut ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_deserialize(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ pData: *mut ::std::os::raw::c_uchar,
+ szDb: sqlite3_int64,
+ szBuf: sqlite3_int64,
+ mFlags: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_rtree_dbl = f64;
+extern "C" {
+ pub fn sqlite3_rtree_geometry_callback(
+ db: *mut sqlite3,
+ zGeom: *const ::std::os::raw::c_char,
+ xGeom: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_rtree_geometry,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut sqlite3_rtree_dbl,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pContext: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_geometry {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+}
+extern "C" {
+ pub fn sqlite3_rtree_query_callback(
+ db: *mut sqlite3,
+ zQueryFunc: *const ::std::os::raw::c_char,
+ xQueryFunc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_rtree_query_info) -> ::std::os::raw::c_int,
+ >,
+ pContext: *mut ::std::os::raw::c_void,
+ xDestructor: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_query_info {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub aCoord: *mut sqlite3_rtree_dbl,
+ pub anQueue: *mut ::std::os::raw::c_uint,
+ pub nCoord: ::std::os::raw::c_int,
+ pub iLevel: ::std::os::raw::c_int,
+ pub mxLevel: ::std::os::raw::c_int,
+ pub iRowid: sqlite3_int64,
+ pub rParentScore: sqlite3_rtree_dbl,
+ pub eParentWithin: ::std::os::raw::c_int,
+ pub eWithin: ::std::os::raw::c_int,
+ pub rScore: sqlite3_rtree_dbl,
+ pub apSqlParam: *mut *mut sqlite3_value,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_session {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_changeset_iter {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3session_create(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ppSession: *mut *mut sqlite3_session,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_delete(pSession: *mut sqlite3_session);
+}
+extern "C" {
+ pub fn sqlite3session_object_config(
+ arg1: *mut sqlite3_session,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_enable(
+ pSession: *mut sqlite3_session,
+ bEnable: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_indirect(
+ pSession: *mut sqlite3_session,
+ bIndirect: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_attach(
+ pSession: *mut sqlite3_session,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_table_filter(
+ pSession: *mut sqlite3_session,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ );
+}
+extern "C" {
+ pub fn sqlite3session_changeset(
+ pSession: *mut sqlite3_session,
+ pnChangeset: *mut ::std::os::raw::c_int,
+ ppChangeset: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_changeset_size(pSession: *mut sqlite3_session) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3session_diff(
+ pSession: *mut sqlite3_session,
+ zFromDb: *const ::std::os::raw::c_char,
+ zTbl: *const ::std::os::raw::c_char,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_patchset(
+ pSession: *mut sqlite3_session,
+ pnPatchset: *mut ::std::os::raw::c_int,
+ ppPatchset: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_isempty(pSession: *mut sqlite3_session) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_memory_used(pSession: *mut sqlite3_session) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3changeset_start(
+ pp: *mut *mut sqlite3_changeset_iter,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_v2(
+ pp: *mut *mut sqlite3_changeset_iter,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_next(pIter: *mut sqlite3_changeset_iter) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_op(
+ pIter: *mut sqlite3_changeset_iter,
+ pzTab: *mut *const ::std::os::raw::c_char,
+ pnCol: *mut ::std::os::raw::c_int,
+ pOp: *mut ::std::os::raw::c_int,
+ pbIndirect: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_pk(
+ pIter: *mut sqlite3_changeset_iter,
+ pabPK: *mut *mut ::std::os::raw::c_uchar,
+ pnCol: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_old(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_new(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_conflict(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_fk_conflicts(
+ pIter: *mut sqlite3_changeset_iter,
+ pnOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_finalize(pIter: *mut sqlite3_changeset_iter) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_invert(
+ nIn: ::std::os::raw::c_int,
+ pIn: *const ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_concat(
+ nA: ::std::os::raw::c_int,
+ pA: *mut ::std::os::raw::c_void,
+ nB: ::std::os::raw::c_int,
+ pB: *mut ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_changegroup {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3changegroup_new(pp: *mut *mut sqlite3_changegroup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_add(
+ arg1: *mut sqlite3_changegroup,
+ nData: ::std::os::raw::c_int,
+ pData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_output(
+ arg1: *mut sqlite3_changegroup,
+ pnData: *mut ::std::os::raw::c_int,
+ ppData: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_delete(arg1: *mut sqlite3_changegroup);
+}
+extern "C" {
+ pub fn sqlite3changeset_apply(
+ db: *mut sqlite3,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_v2(
+ db: *mut sqlite3,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ppRebase: *mut *mut ::std::os::raw::c_void,
+ pnRebase: *mut ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rebaser {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3rebaser_create(ppNew: *mut *mut sqlite3_rebaser) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_configure(
+ arg1: *mut sqlite3_rebaser,
+ nRebase: ::std::os::raw::c_int,
+ pRebase: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_rebase(
+ arg1: *mut sqlite3_rebaser,
+ nIn: ::std::os::raw::c_int,
+ pIn: *const ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_delete(p: *mut sqlite3_rebaser);
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_strm(
+ db: *mut sqlite3,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_v2_strm(
+ db: *mut sqlite3,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ppRebase: *mut *mut ::std::os::raw::c_void,
+ pnRebase: *mut ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_concat_strm(
+ xInputA: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pInA: *mut ::std::os::raw::c_void,
+ xInputB: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pInB: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_invert_strm(
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_strm(
+ pp: *mut *mut sqlite3_changeset_iter,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_v2_strm(
+ pp: *mut *mut sqlite3_changeset_iter,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_changeset_strm(
+ pSession: *mut sqlite3_session,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_patchset_strm(
+ pSession: *mut sqlite3_session,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_add_strm(
+ arg1: *mut sqlite3_changegroup,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_output_strm(
+ arg1: *mut sqlite3_changegroup,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_rebase_strm(
+ pRebaser: *mut sqlite3_rebaser,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_config(
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Context {
+ _unused: [u8; 0],
+}
+pub type fts5_extension_function = ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *const Fts5ExtensionApi,
+ pFts: *mut Fts5Context,
+ pCtx: *mut sqlite3_context,
+ nVal: ::std::os::raw::c_int,
+ apVal: *mut *mut sqlite3_value,
+ ),
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5PhraseIter {
+ pub a: *const ::std::os::raw::c_uchar,
+ pub b: *const ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5ExtensionApi {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xUserData: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xColumnCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xRowCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnRow: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnTotalSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ pCtx: *mut ::std::os::raw::c_void,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ arg6: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInstCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnInst: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iIdx: ::std::os::raw::c_int,
+ piPhrase: *mut ::std::os::raw::c_int,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Context) -> sqlite3_int64>,
+ pub xColumnText: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pz: *mut *const ::std::os::raw::c_char,
+ pn: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xQueryPhrase: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ pUserData: *mut ::std::os::raw::c_void,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const Fts5ExtensionApi,
+ arg2: *mut Fts5Context,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pAux: *mut ::std::os::raw::c_void,
+ xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ bClear: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xPhraseFirst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNext: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ),
+ >,
+ pub xPhraseFirstColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNextColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ ),
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Tokenizer {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_tokenizer {
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ azArg: *mut *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ppOut: *mut *mut Fts5Tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Tokenizer)>,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Tokenizer,
+ pCtx: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ tflags: ::std::os::raw::c_int,
+ pToken: *const ::std::os::raw::c_char,
+ nToken: ::std::os::raw::c_int,
+ iStart: ::std::os::raw::c_int,
+ iEnd: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_api {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreateTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pContext: *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFindTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ ppContext: *mut *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCreateFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pContext: *mut ::std::os::raw::c_void,
+ xFunction: fts5_extension_function,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
diff --git a/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.c b/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.c
new file mode 100644
index 0000000000..b88b7815bf
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.c
@@ -0,0 +1,247125 @@
+/******************************************************************************
+** This file is an amalgamation of many separate C source files from SQLite
+** version 3.39.4. By combining all the individual C code files into this
+** single large file, the entire code can be compiled as a single translation
+** unit. This allows many compilers to do optimizations that would not be
+** possible if the files were compiled separately. Performance improvements
+** of 5% or more are commonly seen when SQLite is compiled as a single
+** translation unit.
+**
+** This file is all you need to compile SQLite. To use SQLite in other
+** programs, you need this file and the "sqlite3.h" header file that defines
+** the programming interface to the SQLite library. (If you do not have
+** the "sqlite3.h" header file at hand, you will find a copy embedded within
+** the text of this file. Search for "Begin file sqlite3.h" to find the start
+** of the embedded sqlite3.h header file.) Additional code files may be needed
+** if you want a wrapper to interface SQLite with your choice of programming
+** language. The code for the "sqlite3" command-line shell is also in a
+** separate file. This file contains only code for the core SQLite library.
+*/
+#define SQLITE_CORE 1
+#define SQLITE_AMALGAMATION 1
+#ifndef SQLITE_PRIVATE
+# define SQLITE_PRIVATE static
+#endif
+/************** Begin file sqliteInt.h ***************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal interface definitions for SQLite.
+**
+*/
+#ifndef SQLITEINT_H
+#define SQLITEINT_H
+
+/* Special Comments:
+**
+** Some comments have special meaning to the tools that measure test
+** coverage:
+**
+** NO_TEST - The branches on this line are not
+** measured by branch coverage. This is
+** used on lines of code that actually
+** implement parts of coverage testing.
+**
+** OPTIMIZATION-IF-TRUE - This branch is allowed to alway be false
+** and the correct answer is still obtained,
+** though perhaps more slowly.
+**
+** OPTIMIZATION-IF-FALSE - This branch is allowed to alway be true
+** and the correct answer is still obtained,
+** though perhaps more slowly.
+**
+** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread
+** that would be harmless and undetectable
+** if it did occur.
+**
+** In all cases, the special comment must be enclosed in the usual
+** slash-asterisk...asterisk-slash comment marks, with no spaces between the
+** asterisks and the comment text.
+*/
+
+/*
+** Make sure the Tcl calling convention macro is defined. This macro is
+** only used by test code and Tcl integration code.
+*/
+#ifndef SQLITE_TCLAPI
+# define SQLITE_TCLAPI
+#endif
+
+/*
+** Include the header file used to customize the compiler options for MSVC.
+** This should be done first so that it can successfully prevent spurious
+** compiler warnings due to subsequent content in this file and other files
+** that are included by this file.
+*/
+/************** Include msvc.h in the middle of sqliteInt.h ******************/
+/************** Begin file msvc.h ********************************************/
+/*
+** 2015 January 12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to MSVC.
+*/
+#ifndef SQLITE_MSVC_H
+#define SQLITE_MSVC_H
+
+#if defined(_MSC_VER)
+#pragma warning(disable : 4054)
+#pragma warning(disable : 4055)
+#pragma warning(disable : 4100)
+#pragma warning(disable : 4127)
+#pragma warning(disable : 4130)
+#pragma warning(disable : 4152)
+#pragma warning(disable : 4189)
+#pragma warning(disable : 4206)
+#pragma warning(disable : 4210)
+#pragma warning(disable : 4232)
+#pragma warning(disable : 4244)
+#pragma warning(disable : 4305)
+#pragma warning(disable : 4306)
+#pragma warning(disable : 4702)
+#pragma warning(disable : 4706)
+#endif /* defined(_MSC_VER) */
+
+#if defined(_MSC_VER) && !defined(_WIN64)
+#undef SQLITE_4_BYTE_ALIGNED_MALLOC
+#define SQLITE_4_BYTE_ALIGNED_MALLOC
+#endif /* defined(_MSC_VER) && !defined(_WIN64) */
+
+#endif /* SQLITE_MSVC_H */
+
+/************** End of msvc.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/*
+** Special setup for VxWorks
+*/
+/************** Include vxworks.h in the middle of sqliteInt.h ***************/
+/************** Begin file vxworks.h *****************************************/
+/*
+** 2015-03-02
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Wind River's VxWorks
+*/
+#if defined(__RTP__) || defined(_WRS_KERNEL)
+/* This is VxWorks. Set up things specially for that OS
+*/
+#include <vxWorks.h>
+#include <pthread.h> /* amalgamator: dontcache */
+#define OS_VXWORKS 1
+#define SQLITE_OS_OTHER 0
+#define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1
+#define SQLITE_OMIT_LOAD_EXTENSION 1
+#define SQLITE_ENABLE_LOCKING_STYLE 0
+#define HAVE_UTIME 1
+#else
+/* This is not VxWorks. */
+#define OS_VXWORKS 0
+#define HAVE_FCHOWN 1
+#define HAVE_READLINK 1
+#define HAVE_LSTAT 1
+#endif /* defined(_WRS_KERNEL) */
+
+/************** End of vxworks.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/*
+** These #defines should enable >2GB file support on POSIX if the
+** underlying operating system supports it. If the OS lacks
+** large file support, or if the OS is windows, these should be no-ops.
+**
+** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
+** system #includes. Hence, this block of code must be the very first
+** code in all source files.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: Red Hat 7.2) but you want your code to work
+** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+**
+** The previous paragraph was written in 2005. (This paragraph is written
+** on 2008-11-28.) These days, all Linux kernels support large files, so
+** you should probably leave LFS enabled. But some embedded platforms might
+** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
+**
+** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# ifndef _FILE_OFFSET_BITS
+# define _FILE_OFFSET_BITS 64
+# endif
+# define _LARGEFILE_SOURCE 1
+#endif
+
+/* The GCC_VERSION and MSVC_VERSION macros are used to
+** conditionally include optimizations for each of these compilers. A
+** value of 0 means that compiler is not being used. The
+** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific
+** optimizations, and hence set all compiler macros to 0
+**
+** There was once also a CLANG_VERSION macro. However, we learn that the
+** version numbers in clang are for "marketing" only and are inconsistent
+** and unreliable. Fortunately, all versions of clang also recognize the
+** gcc version numbers and have reasonable settings for gcc version numbers,
+** so the GCC_VERSION macro will be set to a correct non-zero value even
+** when compiling with clang.
+*/
+#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
+#else
+# define GCC_VERSION 0
+#endif
+#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define MSVC_VERSION _MSC_VER
+#else
+# define MSVC_VERSION 0
+#endif
+
+/*
+** Some C99 functions in "math.h" are only present for MSVC when its version
+** is associated with Visual Studio 2013 or higher.
+*/
+#ifndef SQLITE_HAVE_C99_MATH_FUNCS
+# if MSVC_VERSION==0 || MSVC_VERSION>=1800
+# define SQLITE_HAVE_C99_MATH_FUNCS (1)
+# else
+# define SQLITE_HAVE_C99_MATH_FUNCS (0)
+# endif
+#endif
+
+/* Needed for various definitions... */
+#if defined(__GNUC__) && !defined(_GNU_SOURCE)
+# define _GNU_SOURCE
+#endif
+
+#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
+# define _BSD_SOURCE
+#endif
+
+/*
+** Macro to disable warnings about missing "break" at the end of a "case".
+*/
+#if GCC_VERSION>=7000000
+# define deliberate_fall_through __attribute__((fallthrough));
+#else
+# define deliberate_fall_through
+#endif
+
+/*
+** For MinGW, check to see if we can include the header file containing its
+** version information, among other things. Normally, this internal MinGW
+** header file would [only] be included automatically by other MinGW header
+** files; however, the contained version information is now required by this
+** header file to work around binary compatibility issues (see below) and
+** this is the only known way to reliably obtain it. This entire #if block
+** would be completely unnecessary if there was any other way of detecting
+** MinGW via their preprocessor (e.g. if they customized their GCC to define
+** some MinGW-specific macros). When compiling for MinGW, either the
+** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
+** defined; otherwise, detection of conditions specific to MinGW will be
+** disabled.
+*/
+#if defined(_HAVE_MINGW_H)
+# include "mingw.h"
+#elif defined(_HAVE__MINGW_H)
+# include "_mingw.h"
+#endif
+
+/*
+** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
+** define is required to maintain binary compatibility with the MSVC runtime
+** library in use (e.g. for Windows XP).
+*/
+#if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
+ defined(_WIN32) && !defined(_WIN64) && \
+ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
+ defined(__MSVCRT__)
+# define _USE_32BIT_TIME_T
+#endif
+
+/* Optionally #include a user-defined header, whereby compilation options
+** may be set prior to where they take effect, but after platform setup.
+** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include
+** file.
+*/
+#ifdef SQLITE_CUSTOM_INCLUDE
+# define INC_STRINGIFY_(f) #f
+# define INC_STRINGIFY(f) INC_STRINGIFY_(f)
+# include INC_STRINGIFY(SQLITE_CUSTOM_INCLUDE)
+#endif
+
+/* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear
+** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for
+** MinGW.
+*/
+/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
+/************** Begin file sqlite3.h *****************************************/
+/*
+** 2001-09-15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve the right to make minor changes
+** if experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are supposed to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
+*/
+#ifndef SQLITE3_H
+#define SQLITE3_H
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+extern "C" {
+#endif
+
+
+/*
+** Facilitate override of interface linkage and calling conventions.
+** Be aware that these macros may not be used within this particular
+** translation of the amalgamation and its associated header file.
+**
+** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the
+** compiler that the target identifier should have external linkage.
+**
+** The SQLITE_CDECL macro is used to set the calling convention for
+** public functions that accept a variable number of arguments.
+**
+** The SQLITE_APICALL macro is used to set the calling convention for
+** public functions that accept a fixed number of arguments.
+**
+** The SQLITE_STDCALL macro is no longer used and is now deprecated.
+**
+** The SQLITE_CALLBACK macro is used to set the calling convention for
+** function pointers.
+**
+** The SQLITE_SYSAPI macro is used to set the calling convention for
+** functions provided by the operating system.
+**
+** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and
+** SQLITE_SYSAPI macros are used only when building for environments
+** that require non-default calling conventions.
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+#ifndef SQLITE_CDECL
+# define SQLITE_CDECL
+#endif
+#ifndef SQLITE_APICALL
+# define SQLITE_APICALL
+#endif
+#ifndef SQLITE_STDCALL
+# define SQLITE_STDCALL SQLITE_APICALL
+#endif
+#ifndef SQLITE_CALLBACK
+# define SQLITE_CALLBACK
+#endif
+#ifndef SQLITE_SYSAPI
+# define SQLITE_SYSAPI
+#endif
+
+/*
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are supported for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
+**
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
+*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers
+**
+** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
+** evaluates to a string literal that is the SQLite version in the
+** format "X.Y.Z" where X is the major version number (always 3 for
+** SQLite3) and Y is the minor version number and Z is the release number.)^
+** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
+** numbers used in [SQLITE_VERSION].)^
+** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
+** be larger than the release from which it is derived. Either Y will
+** be held constant and Z will be incremented or else Y will be incremented
+** and Z will be reset to zero.
+**
+** Since [version 3.6.18] ([dateof:3.6.18]),
+** SQLite source code has been stored in the
+** <a href="http://www.fossil-scm.org/">Fossil configuration management
+** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
+** a string which identifies a particular check-in of SQLite
+** within its configuration management system. ^The SQLITE_SOURCE_ID
+** string contains the date and time of the check-in (UTC) and a SHA1
+** or SHA3-256 hash of the entire source tree. If the source code has
+** been edited in any way since it was last checked in, then the last
+** four hexadecimal digits of the hash may be modified.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+*/
+#define SQLITE_VERSION "3.39.4"
+#define SQLITE_VERSION_NUMBER 3039004
+#define SQLITE_SOURCE_ID "2022-09-29 15:55:41 a29f9949895322123f7c38fbe94c649a9d6e6c9cd0c3b41c96d694552f26alt1"
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers
+** KEYWORDS: sqlite3_version sqlite3_sourceid
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
+** but are associated with the library instead of the header file. ^(Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus ensure that the application is
+** compiled with matching library and header files.
+**
+** <blockquote><pre>
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+** </pre></blockquote>)^
+**
+** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
+** macro. ^The sqlite3_libversion() function returns a pointer to the
+** to the sqlite3_version[] string constant. The sqlite3_libversion()
+** function is provided for use in DLLs since DLL users usually do not have
+** direct access to string constants within the DLL. ^The
+** sqlite3_libversion_number() function returns an integer equal to
+** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns
+** a pointer to a string constant whose value is the same as the
+** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built
+** using an edited copy of [the amalgamation], then the last four characters
+** of the hash might be different from [SQLITE_SOURCE_ID].)^
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+*/
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
+
+/*
+** CAPI3REF: Run-Time Library Compilation Options Diagnostics
+**
+** ^The sqlite3_compileoption_used() function returns 0 or 1
+** indicating whether the specified option was defined at
+** compile time. ^The SQLITE_ prefix may be omitted from the
+** option name passed to sqlite3_compileoption_used().
+**
+** ^The sqlite3_compileoption_get() function allows iterating
+** over the list of options that were defined at compile time by
+** returning the N-th compile time option string. ^If N is out of range,
+** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
+** prefix is omitted from any strings returned by
+** sqlite3_compileoption_get().
+**
+** ^Support for the diagnostic functions sqlite3_compileoption_used()
+** and sqlite3_compileoption_get() may be omitted by specifying the
+** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
+**
+** See also: SQL functions [sqlite_compileoption_used()] and
+** [sqlite_compileoption_get()] and the [compile_options pragma].
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
+SQLITE_API const char *sqlite3_compileoption_get(int N);
+#else
+# define sqlite3_compileoption_used(X) 0
+# define sqlite3_compileoption_get(X) ((void*)0)
+#endif
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe
+**
+** ^The sqlite3_threadsafe() function returns zero if and only if
+** SQLite was compiled with mutexing code omitted due to the
+** [SQLITE_THREADSAFE] compile-time option being set to 0.
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** ^The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
+** sqlite3_threadsafe() function shows only the compile-time setting of
+** thread safety, not any run-time changes to that setting made by
+** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
+** is unchanged by calls to sqlite3_config().)^
+**
+** See the [threading mode] documentation for additional information.
+*/
+SQLITE_API int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** and [sqlite3_close_v2()] are its destructors. There are many other
+** interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
+
+/*
+** CAPI3REF: 64-Bit Integer Types
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** ^The sqlite3_int64 and sqlite_int64 types can store integer values
+** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
+** sqlite3_uint64 and sqlite_uint64 types can store integer values
+** between 0 and +18446744073709551615 inclusive.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+# ifdef SQLITE_UINT64_TYPE
+ typedef SQLITE_UINT64_TYPE sqlite_uint64;
+# else
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+# endif
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection
+** DESTRUCTOR: sqlite3
+**
+** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
+** for the [sqlite3] object.
+** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
+** the [sqlite3] object is successfully destroyed and all associated
+** resources are deallocated.
+**
+** Ideally, applications should [sqlite3_finalize | finalize] all
+** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and
+** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
+** with the [sqlite3] object prior to attempting to close the object.
+** ^If the database connection is associated with unfinalized prepared
+** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
+** sqlite3_close() will leave the database connection open and return
+** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
+** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
+** it returns [SQLITE_OK] regardless, but instead of deallocating the database
+** connection immediately, it marks the database connection as an unusable
+** "zombie" and makes arrangements to automatically deallocate the database
+** connection after all prepared statements are finalized, all BLOB handles
+** are closed, and all backups have finished. The sqlite3_close_v2() interface
+** is intended for use with host languages that are garbage collected, and
+** where the order in which destructors are called is arbitrary.
+**
+** ^If an [sqlite3] object is destroyed while a transaction is open,
+** the transaction is automatically rolled back.
+**
+** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
+** must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
+** argument is a harmless no-op.
+*/
+SQLITE_API int sqlite3_close(sqlite3*);
+SQLITE_API int sqlite3_close_v2(sqlite3*);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface
+** METHOD: sqlite3
+**
+** The sqlite3_exec() interface is a convenience wrapper around
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
+** that allows an application to run multiple statements of SQL
+** without having to use a lot of C code.
+**
+** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
+** semicolon-separate SQL statements passed into its 2nd argument,
+** in the context of the [database connection] passed in as its 1st
+** argument. ^If the callback function of the 3rd argument to
+** sqlite3_exec() is not NULL, then it is invoked for each result row
+** coming out of the evaluated SQL statements. ^The 4th argument to
+** sqlite3_exec() is relayed through to the 1st argument of each
+** callback invocation. ^If the callback pointer to sqlite3_exec()
+** is NULL, then no callback is ever invoked and result rows are
+** ignored.
+**
+** ^If an error occurs while evaluating the SQL statements passed into
+** sqlite3_exec(), then execution of the current statement stops and
+** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
+** is not NULL then any error message is written into memory obtained
+** from [sqlite3_malloc()] and passed back through the 5th parameter.
+** To avoid memory leaks, the application should invoke [sqlite3_free()]
+** on error message strings returned through the 5th parameter of
+** sqlite3_exec() after the error message string is no longer needed.
+** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
+** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
+** NULL before returning.
+**
+** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
+** routine returns SQLITE_ABORT without invoking the callback again and
+** without running any subsequent SQL statements.
+**
+** ^The 2nd argument to the sqlite3_exec() callback function is the
+** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
+** callback is an array of pointers to strings obtained as if from
+** [sqlite3_column_text()], one for each column. ^If an element of a
+** result row is NULL then the corresponding string pointer for the
+** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
+** sqlite3_exec() callback is an array of pointers to strings where each
+** entry represents the name of corresponding result column as obtained
+** from [sqlite3_column_name()].
+**
+** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
+** to an empty string, or a pointer that contains only whitespace and/or
+** SQL comments, then no SQL statements are evaluated and the database
+** is not changed.
+**
+** Restrictions:
+**
+** <ul>
+** <li> The application must ensure that the 1st parameter to sqlite3_exec()
+** is a valid and open [database connection].
+** <li> The application must not close the [database connection] specified by
+** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
+** <li> The application must not modify the SQL statement text passed into
+** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
+** </ul>
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes
+** KEYWORDS: {result code definitions}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicate success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [extended result code definitions]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* Generic error */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Internal use only */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Not used */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */
+#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes
+** KEYWORDS: {extended result code definitions}
+**
+** In its default configuration, SQLite API routines return one of 30 integer
+** [result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8]
+** and later) include
+** support for additional result codes that provide more detailed information
+** about errors. These [extended result codes] are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API. Or, the extended code for
+** the most recent error can be obtained using
+** [sqlite3_extended_errcode()].
+*/
+#define SQLITE_ERROR_MISSING_COLLSEQ (SQLITE_ERROR | (1<<8))
+#define SQLITE_ERROR_RETRY (SQLITE_ERROR | (2<<8))
+#define SQLITE_ERROR_SNAPSHOT (SQLITE_ERROR | (3<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8))
+#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8))
+#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8))
+#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8))
+#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8))
+#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8))
+#define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8))
+#define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8))
+#define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8))
+#define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8))
+#define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8))
+#define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8))
+#define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8))
+#define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8))
+#define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8))
+#define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8))
+#define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8))
+#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8))
+#define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8))
+#define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8))
+#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8))
+#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8))
+#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8))
+#define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8))
+#define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) /* Not Used */
+#define SQLITE_CANTOPEN_SYMLINK (SQLITE_CANTOPEN | (6<<8))
+#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8))
+#define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8))
+#define SQLITE_CORRUPT_INDEX (SQLITE_CORRUPT | (3<<8))
+#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8))
+#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8))
+#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8))
+#define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8))
+#define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8))
+#define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8))
+#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8))
+#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8))
+#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8))
+#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8))
+#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8))
+#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8))
+#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8))
+#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8))
+#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8))
+#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8))
+#define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8))
+#define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8))
+#define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8))
+#define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8))
+#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
+#define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8))
+#define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8))
+#define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8))
+#define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */
+
+/*
+** CAPI3REF: Flags For File Open Operations
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
+**
+** Only those flags marked as "Ok for sqlite3_open_v2()" may be
+** used as the third argument to the [sqlite3_open_v2()] interface.
+** The other flags have historically been ignored by sqlite3_open_v2(),
+** though future versions of SQLite might change so that an error is
+** raised if any of the disallowed bits are passed into sqlite3_open_v2().
+** Applications should not depend on the historical behavior.
+**
+** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into
+** [sqlite3_open_v2()] does *not* cause the underlying database file
+** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into
+** [sqlite3_open_v2()] has historically be a no-op and might become an
+** error in future versions of SQLite.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
+#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_SUPER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */
+#define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */
+
+/* Reserved: 0x00F00000 */
+/* Legacy compatibility: */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+
+
+/*
+** CAPI3REF: Device Characteristics
+**
+** The xDeviceCharacteristics method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
+** after reboot following a crash or power loss, the only bytes in a
+** file that were written at the application level might have changed
+** and that adjacent bytes, even bytes within the same sector are
+** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+** flag indicates that a file cannot be deleted when open. The
+** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
+** read-only media and cannot be changed even by processes with
+** elevated privileges.
+**
+** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying
+** filesystem supports doing multiple write operations atomically when those
+** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and
+** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800
+#define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000
+#define SQLITE_IOCAP_IMMUTABLE 0x00002000
+#define SQLITE_IOCAP_BATCH_ATOMIC 0x00004000
+
+/*
+** CAPI3REF: File Locking Levels
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+**
+** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
+** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
+** settings. The [synchronous pragma] determines when calls to the
+** xSync VFS method occur and applies uniformly across all platforms.
+** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
+** energetic or rigorous or forceful the sync operations are and
+** only make a difference on Mac OSX for the default SQLite code.
+** (Third-party VFS implementations might also make the distinction
+** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
+** operating systems natively supported by SQLite, only Mac OSX
+** cares about the difference.)
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object
+**
+** Every file opened by the [sqlite3_vfs.xOpen] method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The
+** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
+** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
+** to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [file control opcodes | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts. VFS implementations should
+** return [SQLITE_NOTFOUND] for file control opcodes that they do not
+** recognize.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
+** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
+** <li> [SQLITE_IOCAP_IMMUTABLE]
+** <li> [SQLITE_IOCAP_BATCH_ATOMIC]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Methods above are valid for version 1 */
+ int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
+ int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
+ void (*xShmBarrier)(sqlite3_file*);
+ int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
+ /* Methods above are valid for version 2 */
+ int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
+ int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
+ /* Methods above are valid for version 3 */
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes
+** KEYWORDS: {file control opcodes} {file control opcode}
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** <ul>
+** <li>[[SQLITE_FCNTL_LOCKSTATE]]
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and is only available when the SQLITE_TEST
+** compile-time option is used.
+**
+** <li>[[SQLITE_FCNTL_SIZE_HINT]]
+** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
+** layer a hint of how large the database file will grow to be during the
+** current transaction. This hint is not guaranteed to be accurate but it
+** is often close. The underlying VFS might choose to preallocate database
+** file space based on this hint in order to help writes to the database
+** file run faster.
+**
+** <li>[[SQLITE_FCNTL_SIZE_LIMIT]]
+** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that
+** implements [sqlite3_deserialize()] to set an upper bound on the size
+** of the in-memory database. The argument is a pointer to a [sqlite3_int64].
+** If the integer pointed to is negative, then it is filled in with the
+** current limit. Otherwise the limit is set to the larger of the value
+** of the integer pointed to and the current database size. The integer
+** pointed to is set to the new limit.
+**
+** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
+** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
+** extends and truncates the database file in chunks of a size specified
+** by the user. The fourth argument to [sqlite3_file_control()] should
+** point to an integer (type int) containing the new chunk-size to use
+** for the nominated database. Allocating database file space in large
+** chunks (say 1MB at a time), may reduce file-system fragmentation and
+** improve performance on some systems.
+**
+** <li>[[SQLITE_FCNTL_FILE_POINTER]]
+** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with a particular database
+** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER].
+**
+** <li>[[SQLITE_FCNTL_JOURNAL_POINTER]]
+** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with the journal file (either
+** the [rollback journal] or the [write-ahead log]) for a particular database
+** connection. See also [SQLITE_FCNTL_FILE_POINTER].
+**
+** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
+** No longer in use.
+**
+** <li>[[SQLITE_FCNTL_SYNC]]
+** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
+** sent to the VFS immediately before the xSync method is invoked on a
+** database file descriptor. Or, if the xSync method is not invoked
+** because the user has configured SQLite with
+** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
+** of the xSync method. In most cases, the pointer argument passed with
+** this file-control is NULL. However, if the database file is being synced
+** as part of a multi-database commit, the argument points to a nul-terminated
+** string containing the transactions super-journal file name. VFSes that
+** do not need this signal should silently ignore this opcode. Applications
+** should not call [sqlite3_file_control()] with this opcode as doing so may
+** disrupt the operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
+** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
+** and sent to the VFS after a transaction has been committed immediately
+** but before the database is unlocked. VFSes that do not need this signal
+** should silently ignore this opcode. Applications should not call
+** [sqlite3_file_control()] with this opcode as doing so may disrupt the
+** operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
+** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
+** retry counts and intervals for certain disk I/O operations for the
+** windows [VFS] in order to provide robustness in the presence of
+** anti-virus programs. By default, the windows VFS will retry file read,
+** file write, and file delete operations up to 10 times, with a delay
+** of 25 milliseconds before the first retry and with the delay increasing
+** by an additional 25 milliseconds with each subsequent retry. This
+** opcode allows these two values (10 retries and 25 milliseconds of delay)
+** to be adjusted. The values are changed for all database connections
+** within the same process. The argument is a pointer to an array of two
+** integers where the first integer is the new retry count and the second
+** integer is the delay. If either integer is negative, then the setting
+** is not changed but instead the prior value of that setting is written
+** into the array entry, allowing the current retry settings to be
+** interrogated. The zDbName parameter is ignored.
+**
+** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
+** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
+** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary
+** write ahead log ([WAL file]) and shared memory
+** files used for transaction control
+** are automatically deleted when the latest connection to the database
+** closes. Setting persistent WAL mode causes those files to persist after
+** close. Persisting the files is useful when other processes that do not
+** have write permission on the directory containing the database file want
+** to read the database file, as the WAL and shared memory files must exist
+** in order for the database to be readable. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
+** WAL mode. If the integer is -1, then it is overwritten with the current
+** WAL persistence setting.
+**
+** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
+** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
+** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting
+** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
+** xDeviceCharacteristics methods. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
+** mode. If the integer is -1, then it is overwritten with the current
+** zero-damage mode setting.
+**
+** <li>[[SQLITE_FCNTL_OVERWRITE]]
+** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
+** a write transaction to indicate that, unless it is rolled back for some
+** reason, the entire database file will be overwritten by the current
+** transaction. This is used by VACUUM operations.
+**
+** <li>[[SQLITE_FCNTL_VFSNAME]]
+** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
+** all [VFSes] in the VFS stack. The names are of all VFS shims and the
+** final bottom-level VFS are written into memory obtained from
+** [sqlite3_malloc()] and the result is stored in the char* variable
+** that the fourth parameter of [sqlite3_file_control()] points to.
+** The caller is responsible for freeing the memory when done. As with
+** all file-control actions, there is no guarantee that this will actually
+** do anything. Callers should initialize the char* variable to a NULL
+** pointer in case this file-control is not implemented. This file-control
+** is intended for diagnostic use only.
+**
+** <li>[[SQLITE_FCNTL_VFS_POINTER]]
+** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
+** [VFSes] currently in use. ^(The argument X in
+** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
+** of type "[sqlite3_vfs] **". This opcodes will set *X
+** to a pointer to the top-level VFS.)^
+** ^When there are multiple VFS shims in the stack, this opcode finds the
+** upper-most shim only.
+**
+** <li>[[SQLITE_FCNTL_PRAGMA]]
+** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
+** file control is sent to the open [sqlite3_file] object corresponding
+** to the database file to which the pragma statement refers. ^The argument
+** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
+** pointers to strings (char**) in which the second element of the array
+** is the name of the pragma and the third element is the argument to the
+** pragma or NULL if the pragma has no argument. ^The handler for an
+** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
+** of the char** argument point to a string obtained from [sqlite3_mprintf()]
+** or the equivalent and that string will become the result of the pragma or
+** the error message if the pragma fails. ^If the
+** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
+** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA]
+** file control returns [SQLITE_OK], then the parser assumes that the
+** VFS has handled the PRAGMA itself and the parser generates a no-op
+** prepared statement if result string is NULL, or that returns a copy
+** of the result string if the string is non-NULL.
+** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
+** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
+** that the VFS encountered an error while handling the [PRAGMA] and the
+** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA]
+** file control occurs at the beginning of pragma statement analysis and so
+** it is able to override built-in [PRAGMA] statements.
+**
+** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
+** ^The [SQLITE_FCNTL_BUSYHANDLER]
+** file-control may be invoked by SQLite on the database file handle
+** shortly after it is opened in order to provide a custom VFS with access
+** to the connection's busy-handler callback. The argument is of type (void**)
+** - an array of two (void *) values. The first (void *) actually points
+** to a function of type (int (*)(void *)). In order to invoke the connection's
+** busy-handler, this function should be invoked with the second (void *) in
+** the array as the only argument. If it returns non-zero, then the operation
+** should be retried. If it returns zero, the custom VFS should abandon the
+** current operation.
+**
+** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
+** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
+** to have SQLite generate a
+** temporary filename using the same algorithm that is followed to generate
+** temporary filenames for TEMP tables and other internal uses. The
+** argument should be a char** which will be filled with the filename
+** written into memory obtained from [sqlite3_malloc()]. The caller should
+** invoke [sqlite3_free()] on the result to avoid a memory leak.
+**
+** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
+** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
+** maximum number of bytes that will be used for memory-mapped I/O.
+** The argument is a pointer to a value of type sqlite3_int64 that
+** is an advisory maximum number of bytes in the file to memory map. The
+** pointer is overwritten with the old value. The limit is not changed if
+** the value originally pointed to is negative, and so the current limit
+** can be queried by passing in a pointer to a negative number. This
+** file-control is used internally to implement [PRAGMA mmap_size].
+**
+** <li>[[SQLITE_FCNTL_TRACE]]
+** The [SQLITE_FCNTL_TRACE] file control provides advisory information
+** to the VFS about what the higher layers of the SQLite stack are doing.
+** This file control is used by some VFS activity tracing [shims].
+** The argument is a zero-terminated string. Higher layers in the
+** SQLite stack may generate instances of this file control if
+** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
+**
+** <li>[[SQLITE_FCNTL_HAS_MOVED]]
+** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
+** pointer to an integer and it writes a boolean into that integer depending
+** on whether or not the file has been renamed, moved, or deleted since it
+** was first opened.
+**
+** <li>[[SQLITE_FCNTL_WIN32_GET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the
+** underlying native file handle associated with a file handle. This file
+** control interprets its argument as a pointer to a native file handle and
+** writes the resulting value there.
+**
+** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This
+** opcode causes the xFileControl method to swap the file handle with the one
+** pointed to by the pArg argument. This capability is used during testing
+** and only needs to be supported when SQLITE_TEST is defined.
+**
+** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
+** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
+** be advantageous to block on the next WAL lock if the lock is not immediately
+** available. The WAL subsystem issues this signal during rare
+** circumstances in order to fix a problem with priority inversion.
+** Applications should <em>not</em> use this file-control.
+**
+** <li>[[SQLITE_FCNTL_ZIPVFS]]
+** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
+** VFS should return SQLITE_NOTFOUND for this opcode.
+**
+** <li>[[SQLITE_FCNTL_RBU]]
+** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
+** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for
+** this opcode.
+**
+** <li>[[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]]
+** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then
+** the file descriptor is placed in "batch write mode", which
+** means all subsequent write operations will be deferred and done
+** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems
+** that do not support batch atomic writes will return SQLITE_NOTFOUND.
+** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to
+** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or
+** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make
+** no VFS interface calls on the same [sqlite3_file] file descriptor
+** except for calls to the xWrite method and the xFileControl method
+** with [SQLITE_FCNTL_SIZE_HINT].
+**
+** <li>[[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically.
+** This file control returns [SQLITE_OK] if and only if the writes were
+** all performed successfully and have been committed to persistent storage.
+** ^Regardless of whether or not it is successful, this file control takes
+** the file descriptor out of batch write mode so that all subsequent
+** write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back.
+** ^This file control takes the file descriptor out of batch write mode
+** so that all subsequent write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_LOCK_TIMEOUT]]
+** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS
+** to block for up to M milliseconds before failing when attempting to
+** obtain a file lock using the xLock or xShmLock methods of the VFS.
+** The parameter is a pointer to a 32-bit signed integer that contains
+** the value that M is to be set to. Before returning, the 32-bit signed
+** integer is overwritten with the previous value of M.
+**
+** <li>[[SQLITE_FCNTL_DATA_VERSION]]
+** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
+** a database file. The argument is a pointer to a 32-bit unsigned integer.
+** The "data version" for the pager is written into the pointer. The
+** "data version" changes whenever any change occurs to the corresponding
+** database file, either through SQL statements on the same database
+** connection or through transactions committed by separate database
+** connections possibly in other processes. The [sqlite3_total_changes()]
+** interface can be used to find if any database on the connection has changed,
+** but that interface responds to changes on TEMP as well as MAIN and does
+** not provide a mechanism to detect changes to MAIN only. Also, the
+** [sqlite3_total_changes()] interface responds to internal changes only and
+** omits changes made by other database connections. The
+** [PRAGMA data_version] command provides a mechanism to detect changes to
+** a single attached database that occur due to other database connections,
+** but omits changes implemented by the database connection on which it is
+** called. This file control is the only mechanism to detect changes that
+** happen either internally or externally and that are associated with
+** a particular attached database.
+**
+** <li>[[SQLITE_FCNTL_CKPT_START]]
+** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint
+** in wal mode before the client starts to copy pages from the wal
+** file to the database file.
+**
+** <li>[[SQLITE_FCNTL_CKPT_DONE]]
+** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint
+** in wal mode after the client has finished copying pages from the wal
+** file to the database file, but before the *-shm file is updated to
+** record the fact that the pages have been checkpointed.
+** </ul>
+**
+** <li>[[SQLITE_FCNTL_EXTERNAL_READER]]
+** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect
+** whether or not there is a database client in another process with a wal-mode
+** transaction open on the database or not. It is only available on unix.The
+** (void*) argument passed with this file-control should be a pointer to a
+** value of type (int). The integer value is set to 1 if the database is a wal
+** mode database and there exists at least one client in another process that
+** currently has an SQL transaction open on the database. It is set to 0 if
+** the database is not a wal-mode db, or if there is no such connection in any
+** other process. This opcode cannot be used to detect transactions opened
+** by clients within the current process, only within other processes.
+** </ul>
+**
+** <li>[[SQLITE_FCNTL_CKSM_FILE]]
+** Used by the cksmvfs VFS module only.
+** </ul>
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_FCNTL_GET_LOCKPROXYFILE 2
+#define SQLITE_FCNTL_SET_LOCKPROXYFILE 3
+#define SQLITE_FCNTL_LAST_ERRNO 4
+#define SQLITE_FCNTL_SIZE_HINT 5
+#define SQLITE_FCNTL_CHUNK_SIZE 6
+#define SQLITE_FCNTL_FILE_POINTER 7
+#define SQLITE_FCNTL_SYNC_OMITTED 8
+#define SQLITE_FCNTL_WIN32_AV_RETRY 9
+#define SQLITE_FCNTL_PERSIST_WAL 10
+#define SQLITE_FCNTL_OVERWRITE 11
+#define SQLITE_FCNTL_VFSNAME 12
+#define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13
+#define SQLITE_FCNTL_PRAGMA 14
+#define SQLITE_FCNTL_BUSYHANDLER 15
+#define SQLITE_FCNTL_TEMPFILENAME 16
+#define SQLITE_FCNTL_MMAP_SIZE 18
+#define SQLITE_FCNTL_TRACE 19
+#define SQLITE_FCNTL_HAS_MOVED 20
+#define SQLITE_FCNTL_SYNC 21
+#define SQLITE_FCNTL_COMMIT_PHASETWO 22
+#define SQLITE_FCNTL_WIN32_SET_HANDLE 23
+#define SQLITE_FCNTL_WAL_BLOCK 24
+#define SQLITE_FCNTL_ZIPVFS 25
+#define SQLITE_FCNTL_RBU 26
+#define SQLITE_FCNTL_VFS_POINTER 27
+#define SQLITE_FCNTL_JOURNAL_POINTER 28
+#define SQLITE_FCNTL_WIN32_GET_HANDLE 29
+#define SQLITE_FCNTL_PDB 30
+#define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE 31
+#define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE 32
+#define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE 33
+#define SQLITE_FCNTL_LOCK_TIMEOUT 34
+#define SQLITE_FCNTL_DATA_VERSION 35
+#define SQLITE_FCNTL_SIZE_LIMIT 36
+#define SQLITE_FCNTL_CKPT_DONE 37
+#define SQLITE_FCNTL_RESERVE_BYTES 38
+#define SQLITE_FCNTL_CKPT_START 39
+#define SQLITE_FCNTL_EXTERNAL_READER 40
+#define SQLITE_FCNTL_CKSM_FILE 41
+
+/* deprecated names */
+#define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE
+#define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE
+#define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO
+
+
+/*
+** CAPI3REF: Mutex Handle
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: Loadable Extension Thunk
+**
+** A pointer to the opaque sqlite3_api_routines structure is passed as
+** the third parameter to entry points of [loadable extensions]. This
+** structure must be typedefed in order to work around compiler warnings
+** on some platforms.
+*/
+typedef struct sqlite3_api_routines sqlite3_api_routines;
+
+/*
+** CAPI3REF: OS Interface Object
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system". See
+** the [VFS | VFS documentation] for further information.
+**
+** The VFS interface is sometimes extended by adding new methods onto
+** the end. Each time such an extension occurs, the iVersion field
+** is incremented. The iVersion value started out as 1 in
+** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2
+** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased
+** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields
+** may be appended to the sqlite3_vfs object and the iVersion value
+** may increase again in future versions of SQLite.
+** Note that due to an oversight, the structure
+** of the sqlite3_vfs object changed in the transition from
+** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0]
+** and yet the iVersion field was not increased.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** [[sqlite3_vfs.xOpen]]
+** ^SQLite guarantees that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname() with an optional suffix added.
+** ^If a suffix is added to the zFilename parameter, it will
+** consist of a single "-" character followed by no more than
+** 11 alphanumeric and/or "-" characters.
+** ^SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter to xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. ^Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** ^(SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_SUPER_JOURNAL]
+** <li> [SQLITE_OPEN_WAL]
+** </ul>)^
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases and their journals, transient
+** databases, and subjournals.
+**
+** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is <i>not</i> used to indicate the file should be opened
+** for exclusive access.
+**
+** ^At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** [[sqlite3_vfs.xAccess]]
+** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The SQLITE_ACCESS_READ
+** flag is never actually used and is not implemented in the built-in
+** VFSes of SQLite. The file is named by the second argument and can be a
+** directory. The xAccess method returns [SQLITE_OK] on success or some
+** non-zero error code if there is an I/O error or if the name of
+** the file given in the second argument is illegal. If SQLITE_OK
+** is returned, then non-zero or zero is written into *pResOut to indicate
+** whether or not the file is accessible.
+**
+** ^SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
+** interfaces are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. ^The xCurrentTime()
+** method returns a Julian Day Number for the current date and time as
+** a floating point value.
+** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
+** Day Number multiplied by 86400000 (the number of milliseconds in
+** a 24-hour day).
+** ^SQLite will use the xCurrentTimeInt64() method to get the current
+** date and time if that method is available (if iVersion is 2 or
+** greater and the function pointer is not NULL) and will fall back
+** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
+**
+** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
+** are not used by the SQLite core. These optional interfaces are provided
+** by some VFSes to facilitate testing of the VFS code. By overriding
+** system calls with functions under its control, a test program can
+** simulate faults and error conditions that would otherwise be difficult
+** or impossible to induce. The set of system calls that can be overridden
+** varies from one VFS to another, and from one version of the same VFS to the
+** next. Applications that use these interfaces must be prepared for any
+** or all of these interfaces to be NULL or for their behavior to change
+** from one release to the next. Applications must not attempt to access
+** any of these methods if the iVersion of the VFS is less than 3.
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+typedef void (*sqlite3_syscall_ptr)(void);
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number (currently 3) */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /*
+ ** The methods above are in version 1 of the sqlite_vfs object
+ ** definition. Those that follow are added in version 2 or later
+ */
+ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
+ /*
+ ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
+ ** Those below are for version 3 and greater.
+ */
+ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
+ sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
+ const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
+ /*
+ ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
+ ** New fields may be appended in future versions. The iVersion
+ ** value will increment whenever this happens.
+ */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the named directory is both readable and writable
+** (in other words, if files can be added, removed, and renamed within
+** the directory).
+** The SQLITE_ACCESS_READWRITE constant is currently used only by the
+** [temp_store_directory pragma], though this could change in a future
+** release of SQLite.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
+** currently unused, though it might be used in a future release of
+** SQLite.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */
+#define SQLITE_ACCESS_READ 2 /* Unused */
+
+/*
+** CAPI3REF: Flags for the xShmLock VFS method
+**
+** These integer constants define the various locking operations
+** allowed by the xShmLock method of [sqlite3_io_methods]. The
+** following are the only legal combinations of flags to the
+** xShmLock method:
+**
+** <ul>
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
+** </ul>
+**
+** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
+** was given on the corresponding lock.
+**
+** The xShmLock method can transition between unlocked and SHARED or
+** between unlocked and EXCLUSIVE. It cannot transition between SHARED
+** and EXCLUSIVE.
+*/
+#define SQLITE_SHM_UNLOCK 1
+#define SQLITE_SHM_LOCK 2
+#define SQLITE_SHM_SHARED 4
+#define SQLITE_SHM_EXCLUSIVE 8
+
+/*
+** CAPI3REF: Maximum xShmLock index
+**
+** The xShmLock method on [sqlite3_io_methods] may use values
+** between 0 and this upper bound as its "offset" argument.
+** The SQLite core will never attempt to acquire or release a
+** lock outside of this range
+*/
+#define SQLITE_SHM_NLOCK 8
+
+
+/*
+** CAPI3REF: Initialize The SQLite Library
+**
+** ^The sqlite3_initialize() routine initializes the
+** SQLite library. ^The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+** These routines are designed to aid in process initialization and
+** shutdown on embedded systems. Workstation applications using
+** SQLite normally do not need to invoke either of these routines.
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). ^(Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.)^
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
+**
+** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
+** is not. The sqlite3_shutdown() interface must only be called from a
+** single thread. All open [database connections] must be closed and all
+** other SQLite resources must be deallocated prior to invoking
+** sqlite3_shutdown().
+**
+** Among other things, ^sqlite3_initialize() will invoke
+** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
+** will invoke sqlite3_os_end().
+**
+** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** ^If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** ^The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** <b>The sqlite3_config() interface is not threadsafe. The application
+** must ensure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running.</b>
+**
+** The sqlite3_config() interface
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
+** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
+** Note, however, that ^sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [configuration option]
+** in the first argument.
+**
+** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** ^If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+SQLITE_API int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections
+** METHOD: sqlite3
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument).
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
+** that indicates what aspect of the [database connection] is being configured.
+** Subsequent arguments vary depending on the configuration verb.
+**
+** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
+** the call is considered successful.
+*/
+SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc, xRealloc, and xFree methods must work like the
+** malloc(), realloc() and free() functions from the standard C library.
+** ^SQLite guarantees that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. For example,
+** it might allocate any required mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options
+** KEYWORDS: {configuration option}
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Single-thread. In other words, it disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to change the [threading mode] from its default
+** value of Single-thread and so [sqlite3_config()] will return
+** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
+** configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Multi-thread. In other words, it disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Multi-thread [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
+**
+** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Serialized. In other words, this option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Serialized [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is
+** a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.)^ ^SQLite makes
+** its own private copy of the content of the [sqlite3_mem_methods] structure
+** before the [sqlite3_config()] call returns.</dd>
+**
+** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.)^
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example. </dd>
+**
+** [[SQLITE_CONFIG_SMALL_MALLOC]] <dt>SQLITE_CONFIG_SMALL_MALLOC</dt>
+** <dd> ^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of
+** type int, interpreted as a boolean, which if true provides a hint to
+** SQLite that it should avoid large memory allocations if possible.
+** SQLite will run faster if it is free to make large memory allocations,
+** but some application might prefer to run slower in exchange for
+** guarantees about memory fragmentation that are possible if large
+** allocations are avoided. This hint is normally off.
+** </dd>
+**
+** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
+** interpreted as a boolean, which enables or disables the collection of
+** memory allocation statistics. ^(When memory allocation statistics are
+** disabled, the following SQLite interfaces become non-operational:
+** <ul>
+** <li> [sqlite3_hard_heap_limit64()]
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit64()]
+** <li> [sqlite3_status64()]
+** </ul>)^
+** ^Memory allocation statistics are enabled by default unless SQLite is
+** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
+** allocation statistics are disabled by default.
+** </dd>
+**
+** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd> The SQLITE_CONFIG_SCRATCH option is no longer used.
+** </dd>
+**
+** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
+** that SQLite can use for the database page cache with the default page
+** cache implementation.
+** This configuration option is a no-op if an application-defined page
+** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].
+** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
+** 8-byte aligned memory (pMem), the size of each page cache line (sz),
+** and the number of cache lines (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 65536) plus some extra bytes for each
+** page header. ^The number of extra bytes needed by the page header
+** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].
+** ^It is harmless, apart from the wasted memory,
+** for the sz parameter to be larger than necessary. The pMem
+** argument must be either a NULL pointer or a pointer to an 8-byte
+** aligned block of memory of at least sz*N bytes, otherwise
+** subsequent behavior is undefined.
+** ^When pMem is not NULL, SQLite will strive to use the memory provided
+** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
+** a page cache line is larger than sz bytes or if all of the pMem buffer
+** is exhausted.
+** ^If pMem is NULL and N is non-zero, then each database connection
+** does an initial bulk allocation for page cache memory
+** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
+** of -1024*N bytes if N is negative, . ^If additional
+** page cache memory is needed beyond what is provided by the initial
+** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
+** additional cache line. </dd>
+**
+** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer
+** that SQLite will use for all of its dynamic memory allocation needs
+** beyond those provided for by [SQLITE_CONFIG_PAGECACHE].
+** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
+** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
+** [SQLITE_ERROR] if invoked otherwise.
+** ^There are three arguments to SQLITE_CONFIG_HEAP:
+** An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
+** memory pointer is not NULL then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.
+** The minimum allocation size is capped at 2**12. Reasonable values
+** for the minimum allocation size are 2**5 through 2**8.</dd>
+**
+** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
+** pointer to an instance of the [sqlite3_mutex_methods] structure.
+** The argument specifies alternative low-level mutex routines to be used
+** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of
+** the content of the [sqlite3_mutex_methods] structure before the call to
+** [sqlite3_config()] returns. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.)^
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
+** the default size of lookaside memory on each [database connection].
+** The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE
+** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** option to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.)^ </dd>
+**
+** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is
+** a pointer to an [sqlite3_pcache_methods2] object. This object specifies
+** the interface to a custom page cache implementation.)^
+** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
+**
+** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
+** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of
+** the current page cache implementation into that object.)^ </dd>
+**
+** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
+** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
+** global [error log].
+** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
+** function with a call signature of void(*)(void*,int,const char*),
+** and a pointer to void. ^If the function pointer is not NULL, it is
+** invoked by [sqlite3_log()] to process each logging event. ^If the
+** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
+** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
+** passed through as the first parameter to the application-defined logger
+** function whenever that function is invoked. ^The second parameter to
+** the logger function is a copy of the first parameter to the corresponding
+** [sqlite3_log()] call and is intended to be a [result code] or an
+** [extended result code]. ^The third parameter passed to the logger is
+** log message after formatting via [sqlite3_snprintf()].
+** The SQLite logging interface is not reentrant; the logger function
+** supplied by the application must not invoke any SQLite interface.
+** In a multi-threaded application, the application-defined logger
+** function must be threadsafe. </dd>
+**
+** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
+** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
+** If non-zero, then URI handling is globally enabled. If the parameter is zero,
+** then URI handling is globally disabled.)^ ^If URI handling is globally
+** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
+** [sqlite3_open16()] or
+** specified as part of [ATTACH] commands are interpreted as URIs, regardless
+** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
+** connection is opened. ^If it is globally disabled, filenames are
+** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
+** database connection is opened. ^(By default, URI handling is globally
+** disabled. The default value may be changed by compiling with the
+** [SQLITE_USE_URI] symbol defined.)^
+**
+** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
+** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
+** argument which is interpreted as a boolean in order to enable or disable
+** the use of covering indices for full table scans in the query optimizer.
+** ^The default setting is determined
+** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
+** if that compile-time option is omitted.
+** The ability to disable the use of covering indices for full table scans
+** is because some incorrectly coded legacy applications might malfunction
+** when the optimization is enabled. Providing the ability to
+** disable the optimization allows the older, buggy application code to work
+** without change even with newer versions of SQLite.
+**
+** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
+** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
+** <dd> These options are obsolete and should not be used by new code.
+** They are retained for backwards compatibility but are now no-ops.
+** </dd>
+**
+** [[SQLITE_CONFIG_SQLLOG]]
+** <dt>SQLITE_CONFIG_SQLLOG
+** <dd>This option is only available if sqlite is compiled with the
+** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
+** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
+** The second should be of type (void*). The callback is invoked by the library
+** in three separate circumstances, identified by the value passed as the
+** fourth parameter. If the fourth parameter is 0, then the database connection
+** passed as the second argument has just been opened. The third argument
+** points to a buffer containing the name of the main database file. If the
+** fourth parameter is 1, then the SQL statement that the third parameter
+** points to has just been executed. Or, if the fourth parameter is 2, then
+** the connection being passed as the second parameter is being closed. The
+** third parameter is passed NULL In this case. An example of using this
+** configuration option can be seen in the "test_sqllog.c" source file in
+** the canonical SQLite source tree.</dd>
+**
+** [[SQLITE_CONFIG_MMAP_SIZE]]
+** <dt>SQLITE_CONFIG_MMAP_SIZE
+** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
+** that are the default mmap size limit (the default setting for
+** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
+** ^The default setting can be overridden by each database connection using
+** either the [PRAGMA mmap_size] command, or by using the
+** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size
+** will be silently truncated if necessary so that it does not exceed the
+** compile-time maximum mmap size set by the
+** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
+** ^If either argument to this option is negative, then that argument is
+** changed to its compile-time default.
+**
+** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
+** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
+** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
+** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
+** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
+** that specifies the maximum size of the created heap.
+**
+** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
+** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
+** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
+** is a pointer to an integer and writes into that integer the number of extra
+** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
+** The amount of extra space required can change depending on the compiler,
+** target platform, and SQLite version.
+**
+** [[SQLITE_CONFIG_PMASZ]]
+** <dt>SQLITE_CONFIG_PMASZ
+** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
+** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
+** sorter to that integer. The default minimum PMA Size is set by the
+** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched
+** to help with sort operations when multithreaded sorting
+** is enabled (using the [PRAGMA threads] command) and the amount of content
+** to be sorted exceeds the page size times the minimum of the
+** [PRAGMA cache_size] setting and this value.
+**
+** [[SQLITE_CONFIG_STMTJRNL_SPILL]]
+** <dt>SQLITE_CONFIG_STMTJRNL_SPILL
+** <dd>^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which
+** becomes the [statement journal] spill-to-disk threshold.
+** [Statement journals] are held in memory until their size (in bytes)
+** exceeds this threshold, at which point they are written to disk.
+** Or if the threshold is -1, statement journals are always held
+** exclusively in memory.
+** Since many statement journals never become large, setting the spill
+** threshold to a value such as 64KiB can greatly reduce the amount of
+** I/O required to support statement rollback.
+** The default value for this setting is controlled by the
+** [SQLITE_STMTJRNL_SPILL] compile-time option.
+**
+** [[SQLITE_CONFIG_SORTERREF_SIZE]]
+** <dt>SQLITE_CONFIG_SORTERREF_SIZE
+** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
+** of type (int) - the new value of the sorter-reference size threshold.
+** Usually, when SQLite uses an external sort to order records according
+** to an ORDER BY clause, all fields required by the caller are present in the
+** sorted records. However, if SQLite determines based on the declared type
+** of a table column that its values are likely to be very large - larger
+** than the configured sorter-reference size threshold - then a reference
+** is stored in each sorted record and the required column values loaded
+** from the database as records are returned in sorted order. The default
+** value for this option is to never use this optimization. Specifying a
+** negative value for this option restores the default behaviour.
+** This option is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
+**
+** [[SQLITE_CONFIG_MEMDB_MAXSIZE]]
+** <dt>SQLITE_CONFIG_MEMDB_MAXSIZE
+** <dd>The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter
+** [sqlite3_int64] parameter which is the default maximum size for an in-memory
+** database created using [sqlite3_deserialize()]. This default maximum
+** size can be adjusted up or down for individual databases using the
+** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this
+** configuration setting is never used, then the default maximum is determined
+** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that
+** compile-time option is not set, then the default maximum is 1073741824.
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* No longer used */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* no-op */
+#define SQLITE_CONFIG_GETPCACHE 15 /* no-op */
+#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
+#define SQLITE_CONFIG_URI 17 /* int */
+#define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */
+#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */
+#define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */
+#define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */
+#define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */
+#define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */
+#define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */
+#define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */
+#define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */
+#define SQLITE_CONFIG_MEMDB_MAXSIZE 29 /* sqlite3_int64 */
+
+/*
+** CAPI3REF: Database Connection Configuration Options
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. ^The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_DBCONFIG_LOOKASIDE]]
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd> ^This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** ^The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to a memory buffer to use for lookaside memory.
+** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
+** may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
+** size of each lookaside buffer slot. ^The third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. ^If the second argument to
+** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
+** rounded down to the next smaller multiple of 8. ^(The lookaside memory
+** configuration for a database connection can only be changed when that
+** connection is not currently using lookaside memory, or in other words
+** when the "current value" returned by
+** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
+** Any attempt to change the lookaside memory configuration when lookaside
+** memory is in use leaves the configuration unchanged and returns
+** [SQLITE_BUSY].)^</dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
+** <dd> ^This option is used to enable or disable the enforcement of
+** [foreign key constraints]. There should be two additional arguments.
+** The first argument is an integer which is 0 to disable FK enforcement,
+** positive to enable FK enforcement or negative to leave FK enforcement
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether FK enforcement is off or on
+** following this call. The second parameter may be a NULL pointer, in
+** which case the FK enforcement setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
+** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable triggers,
+** positive to enable triggers or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether triggers are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the trigger setting is not reported back.
+**
+** <p>Originally this option disabled all triggers. ^(However, since
+** SQLite version 3.35.0, TEMP triggers are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** triggers in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_VIEW]]
+** <dt>SQLITE_DBCONFIG_ENABLE_VIEW</dt>
+** <dd> ^This option is used to enable or disable [CREATE VIEW | views].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable views,
+** positive to enable views or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether views are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the view setting is not reported back.
+**
+** <p>Originally this option disabled all views. ^(However, since
+** SQLite version 3.35.0, TEMP views are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** views in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
+** <dd> ^This option is used to enable or disable the
+** [fts3_tokenizer()] function which is part of the
+** [FTS3] full-text search engine extension.
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable fts3_tokenizer() or
+** positive to enable fts3_tokenizer() or negative to leave the setting
+** unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the new setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
+** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
+** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
+** interface independently of the [load_extension()] SQL function.
+** The [sqlite3_enable_load_extension()] API enables or disables both the
+** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
+** There should be two additional arguments.
+** When the first argument to this interface is 1, then only the C-API is
+** enabled and the SQL function remains disabled. If the first argument to
+** this interface is 0, then both the C-API and the SQL function are disabled.
+** If the first argument is -1, then no changes are made to state of either the
+** C-API or the SQL function.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
+** is disabled or enabled following this call. The second parameter may
+** be a NULL pointer, in which case the new setting is not reported back.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
+** <dd> ^This option is used to change the name of the "main" database
+** schema. ^The sole argument is a pointer to a constant UTF8 string
+** which will become the new schema name in place of "main". ^SQLite
+** does not make a copy of the new main schema name string, so the application
+** must ensure that the argument passed into this DBCONFIG option is unchanged
+** until after the database connection closes.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]]
+** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
+** <dd> Usually, when a database in wal mode is closed or detached from a
+** database handle, SQLite checks if this will mean that there are now no
+** connections at all to the database. If so, it performs a checkpoint
+** operation before closing the connection. This option may be used to
+** override this behaviour. The first parameter passed to this operation
+** is an integer - positive to disable checkpoints-on-close, or zero (the
+** default) to enable them, and negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer
+** into which is written 0 or 1 to indicate whether checkpoints-on-close
+** have been disabled - 0 if they are not disabled, 1 if they are.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
+** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
+** the [query planner stability guarantee] (QPSG). When the QPSG is active,
+** a single SQL query statement will always use the same algorithm regardless
+** of values of [bound parameters].)^ The QPSG disables some query optimizations
+** that look at the values of bound parameters, which can make some queries
+** slower. But the QPSG has the advantage of more predictable behavior. With
+** the QPSG active, SQLite will always use the same query plan in the field as
+** was used during testing in the lab.
+** The first argument to this setting is an integer which is 0 to disable
+** the QPSG, positive to enable QPSG, or negative to leave the setting
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
+** following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
+** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not
+** include output for any operations performed by trigger programs. This
+** option is used to set or clear (the default) a flag that governs this
+** behavior. The first parameter passed to this operation is an integer -
+** positive to enable output for trigger programs, or zero to disable it,
+** or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which is written
+** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if
+** it is not disabled, 1 if it is.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
+** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
+** [VACUUM] in order to reset a database back to an empty database
+** with no schema and no content. The following process works even for
+** a badly corrupted database file:
+** <ol>
+** <li> If the database connection is newly opened, make sure it has read the
+** database schema by preparing then discarding some query against the
+** database, or calling sqlite3_table_column_metadata(), ignoring any
+** errors. This step is only necessary if the application desires to keep
+** the database in WAL mode after the reset if it was in WAL mode before
+** the reset.
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
+** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
+** </ol>
+** Because resetting a database is destructive and irreversible, the
+** process requires the use of this obscure API and multiple steps to help
+** ensure that it does not happen by accident.
+**
+** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
+** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
+** "defensive" flag for a database connection. When the defensive
+** flag is enabled, language features that allow ordinary SQL to
+** deliberately corrupt the database file are disabled. The disabled
+** features include but are not limited to the following:
+** <ul>
+** <li> The [PRAGMA writable_schema=ON] statement.
+** <li> The [PRAGMA journal_mode=OFF] statement.
+** <li> Writes to the [sqlite_dbpage] virtual table.
+** <li> Direct writes to [shadow tables].
+** </ul>
+** </dd>
+**
+** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]] <dt>SQLITE_DBCONFIG_WRITABLE_SCHEMA</dt>
+** <dd>The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the
+** "writable_schema" flag. This has the same effect and is logically equivalent
+** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF].
+** The first argument to this setting is an integer which is 0 to disable
+** the writable_schema, positive to enable writable_schema, or negative to
+** leave the setting unchanged. The second parameter is a pointer to an
+** integer into which is written 0 or 1 to indicate whether the writable_schema
+** is enabled or disabled following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]]
+** <dt>SQLITE_DBCONFIG_LEGACY_ALTER_TABLE</dt>
+** <dd>The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates
+** the legacy behavior of the [ALTER TABLE RENAME] command such it
+** behaves as it did prior to [version 3.24.0] (2018-06-04). See the
+** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for
+** additional information. This feature can also be turned on and off
+** using the [PRAGMA legacy_alter_table] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DML]]
+** <dt>SQLITE_DBCONFIG_DQS_DML</td>
+** <dd>The SQLITE_DBCONFIG_DQS_DML option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DML statements
+** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DDL]]
+** <dt>SQLITE_DBCONFIG_DQS_DDL</td>
+** <dd>The SQLITE_DBCONFIG_DQS option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DDL statements,
+** such as CREATE TABLE and CREATE INDEX. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]]
+** <dt>SQLITE_DBCONFIG_TRUSTED_SCHEMA</td>
+** <dd>The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to
+** assume that database schemas are untainted by malicious content.
+** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite
+** takes additional defensive steps to protect the application from harm
+** including:
+** <ul>
+** <li> Prohibit the use of SQL functions inside triggers, views,
+** CHECK constraints, DEFAULT clauses, expression indexes,
+** partial indexes, or generated columns
+** unless those functions are tagged with [SQLITE_INNOCUOUS].
+** <li> Prohibit the use of virtual tables inside of triggers or views
+** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS].
+** </ul>
+** This setting defaults to "on" for legacy compatibility, however
+** all applications are advised to turn it off if possible. This setting
+** can also be controlled using the [PRAGMA trusted_schema] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]]
+** <dt>SQLITE_DBCONFIG_LEGACY_FILE_FORMAT</td>
+** <dd>The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates
+** the legacy file format flag. When activated, this flag causes all newly
+** created database file to have a schema format version number (the 4-byte
+** integer found at offset 44 into the database header) of 1. This in turn
+** means that the resulting database file will be readable and writable by
+** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting,
+** newly created databases are generally not understandable by SQLite versions
+** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there
+** is now scarcely any need to generated database files that are compatible
+** all the way back to version 3.0.0, and so this setting is of little
+** practical use, but is provided so that SQLite can continue to claim the
+** ability to generate new database files that are compatible with version
+** 3.0.0.
+** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on,
+** the [VACUUM] command will fail with an obscure error when attempting to
+** process a table with generated columns and a descending index. This is
+** not considered a bug since SQLite versions 3.3.0 and earlier do not support
+** either generated columns or decending indexes.
+** </dd>
+** </dl>
+*/
+#define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
+#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */
+#define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */
+#define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */
+#define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */
+#define SQLITE_DBCONFIG_WRITABLE_SCHEMA 1011 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE 1012 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DML 1013 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DDL 1014 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_VIEW 1015 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT 1016 /* int int* */
+#define SQLITE_DBCONFIG_TRUSTED_SCHEMA 1017 /* int int* */
+#define SQLITE_DBCONFIG_MAX 1017 /* Largest DBCONFIG */
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes
+** METHOD: sqlite3
+**
+** ^The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. ^The extended result
+** codes are disabled by default for historical compatibility.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid
+** METHOD: sqlite3
+**
+** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
+** has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. ^The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. ^If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
+** the most recent successful [INSERT] into a rowid table or [virtual table]
+** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
+** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred
+** on the database connection D, then sqlite3_last_insert_rowid(D) returns
+** zero.
+**
+** As well as being set automatically as rows are inserted into database
+** tables, the value returned by this function may be set explicitly by
+** [sqlite3_set_last_insert_rowid()]
+**
+** Some virtual table implementations may INSERT rows into rowid tables as
+** part of committing a transaction (e.g. to flush data accumulated in memory
+** to disk). In this case subsequent calls to this function return the rowid
+** associated with these internal INSERT operations, which leads to
+** unintuitive results. Virtual table implementations that do write to rowid
+** tables in this way can avoid this problem by restoring the original
+** rowid value using [sqlite3_set_last_insert_rowid()] before returning
+** control to the user.
+**
+** ^(If an [INSERT] occurs within a trigger then this routine will
+** return the [rowid] of the inserted row as long as the trigger is
+** running. Once the trigger program ends, the value returned
+** by this routine reverts to what it was before the trigger was fired.)^
+**
+** ^An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. ^(When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.)^
+**
+** ^For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** This function is accessible to SQL statements via the
+** [last_insert_rowid() SQL function].
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Set the Last Insert Rowid value.
+** METHOD: sqlite3
+**
+** The sqlite3_set_last_insert_rowid(D, R) method allows the application to
+** set the value returned by calling sqlite3_last_insert_rowid(D) to R
+** without inserting a row into the database.
+*/
+SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the number of rows modified, inserted or
+** deleted by the most recently completed INSERT, UPDATE or DELETE
+** statement on the database connection specified by the only parameter.
+** The two functions are identical except for the type of the return value
+** and that if the number of rows modified by the most recent INSERT, UPDATE
+** or DELETE is greater than the maximum value supported by type "int", then
+** the return value of sqlite3_changes() is undefined. ^Executing any other
+** type of SQL statement does not modify the value returned by these functions.
+**
+** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
+** considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
+** [foreign key actions] or [REPLACE] constraint resolution are not counted.
+**
+** Changes to a view that are intercepted by
+** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
+** returned by sqlite3_changes() immediately after an INSERT, UPDATE or
+** DELETE statement run on a view is always zero. Only changes made to real
+** tables are counted.
+**
+** Things are more complicated if the sqlite3_changes() function is
+** executed while a trigger program is running. This may happen if the
+** program uses the [changes() SQL function], or if some other callback
+** function invokes sqlite3_changes() directly. Essentially:
+**
+** <ul>
+** <li> ^(Before entering a trigger program the value returned by
+** sqlite3_changes() function is saved. After the trigger program
+** has finished, the original value is restored.)^
+**
+** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
+** statement sets the value returned by sqlite3_changes()
+** upon completion as normal. Of course, this value will not include
+** any changes performed by sub-triggers, as the sqlite3_changes()
+** value will be saved and restored after each sub-trigger has run.)^
+** </ul>
+**
+** ^This means that if the changes() SQL function (or similar) is used
+** by the first INSERT, UPDATE or DELETE statement within a trigger, it
+** returns the value as set when the calling statement began executing.
+** ^If it is used by the second or subsequent such statement within a trigger
+** program, the value returned reflects the number of rows modified by the
+** previous INSERT, UPDATE or DELETE statement within the same trigger.
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_total_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** </ul>
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the total number of rows inserted, modified or
+** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
+** since the database connection was opened, including those executed as
+** part of trigger programs. The two functions are identical except for the
+** type of the return value and that if the number of rows modified by the
+** connection exceeds the maximum value supported by type "int", then
+** the return value of sqlite3_total_changes() is undefined. ^Executing
+** any other type of SQL statement does not affect the value returned by
+** sqlite3_total_changes().
+**
+** ^Changes made as part of [foreign key actions] are included in the
+** count, but those made as part of REPLACE constraint resolution are
+** not. ^Changes to a view that are intercepted by INSTEAD OF triggers
+** are not counted.
+**
+** The [sqlite3_total_changes(D)] interface only reports the number
+** of rows that changed due to SQL statement run against database
+** connection D. Any changes by other database connections are ignored.
+** To detect changes against a database file from other database
+** connections use the [PRAGMA data_version] command or the
+** [SQLITE_FCNTL_DATA_VERSION] [file control].
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
+** </ul>
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query
+** METHOD: sqlite3
+**
+** ^This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** ^It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** ^If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** ^The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. ^Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statement count reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. ^New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** ^A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. ^These routines return 1 if the input string
+** appears to be a complete SQL statement. ^A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. ^Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** ^These routines return 0 if the statement is incomplete. ^If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** ^These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.)^
+**
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
+** KEYWORDS: {busy-handler callback} {busy handler}
+** METHOD: sqlite3
+**
+** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
+** that might be invoked with argument P whenever
+** an attempt is made to access a database table associated with
+** [database connection] D when another thread
+** or process has the table locked.
+** The sqlite3_busy_handler() interface is used to implement
+** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
+**
+** ^If the busy callback is NULL, then [SQLITE_BUSY]
+** is returned immediately upon encountering the lock. ^If the busy callback
+** is not NULL, then the callback might be invoked with two arguments.
+**
+** ^The first argument to the busy handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). ^The second argument to
+** the busy handler callback is the number of times that the busy handler has
+** been invoked previously for the same locking event. ^If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] is returned
+** to the application.
+** ^If the callback returns non-zero, then another attempt
+** is made to access the database and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. ^If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** to the application instead of invoking the
+** busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** ^The default busy callback is NULL.
+**
+** ^(There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
+** or evaluating [PRAGMA busy_timeout=N] will change the
+** busy handler and thus clear any previously set busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. In other words,
+** the busy handler is not reentrant. Any such actions
+** result in undefined behavior.
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
+*/
+SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout
+** METHOD: sqlite3
+**
+** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. ^The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. ^After at least "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY].
+**
+** ^Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** ^(There can only be a single busy handler for a particular
+** [database connection] at any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.)^
+**
+** See also: [PRAGMA busy_timeout]
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries
+** METHOD: sqlite3
+**
+** This is a legacy interface that is preserved for backwards compatibility.
+** Use of this interface is not recommended.
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
+**
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** ^(As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+** </pre></blockquote>
+**
+** There are two columns (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array named azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>)^
+**
+** ^The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter and returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the application has finished with the result from sqlite3_get_table(),
+** it must pass the result table pointer to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+** These routines understand most of the common formatting options from
+** the standard library printf()
+** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
+** See the [built-in printf()] documentation for details.
+**
+** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc64()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. ^Both routines return a
+** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf().)^ This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. ^(Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer.)^ We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. ^The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
+**
+** See also: [built-in printf()], [printf() SQL function]
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific [VFS] implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** ^The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** ^If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. ^If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** ^The sqlite3_malloc64(N) routine works just like
+** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
+** of a signed 32-bit integer.
+**
+** ^Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. ^The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** ^The sqlite3_realloc(X,N) interface attempts to resize a
+** prior memory allocation X to be at least N bytes.
+** ^If the X parameter to sqlite3_realloc(X,N)
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N).
+** ^If the N parameter to sqlite3_realloc(X,N) is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(X).
+** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if insufficient memory is available.
+** ^If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc(X,N) and the prior allocation is freed.
+** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
+** prior allocation is not freed.
+**
+** ^The sqlite3_realloc64(X,N) interfaces works the same as
+** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
+** of a 32-bit signed integer.
+**
+** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
+** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
+** sqlite3_msize(X) returns the size of that memory allocation in bytes.
+** ^The value returned by sqlite3_msize(X) might be larger than the number
+** of bytes requested when X was allocated. ^If X is a NULL pointer then
+** sqlite3_msize(X) returns zero. If X points to something that is not
+** the beginning of memory allocation, or if it points to a formerly
+** valid memory allocation that has now been freed, then the behavior
+** of sqlite3_msize(X) is undefined and possibly harmful.
+**
+** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
+** sqlite3_malloc64(), and sqlite3_realloc64()
+** is always aligned to at least an 8 byte boundary, or to a
+** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
+** option is used.
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
+SQLITE_API void sqlite3_free(void*);
+SQLITE_API sqlite3_uint64 sqlite3_msize(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** ^The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
+** ^The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset. ^The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** ^The memory high-water mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. ^The value returned
+** by [sqlite3_memory_highwater(1)] is the high-water mark
+** prior to the reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the built-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** ^A call to this routine stores N bytes of randomness into buffer P.
+** ^The P parameter can be a NULL pointer.
+**
+** ^If this routine has not been previously called or if the previous
+** call had N less than one or a NULL pointer for P, then the PRNG is
+** seeded using randomness obtained from the xRandomness method of
+** the default [sqlite3_vfs] object.
+** ^If the previous call to this routine had an N of 1 or more and a
+** non-NULL P then the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks
+** METHOD: sqlite3
+** KEYWORDS: {authorizer callback}
+**
+** ^This routine registers an authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** ^The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
+** and [sqlite3_prepare16_v3()]. ^At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. ^The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. ^If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. ^When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** ^The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. ^The third through sixth parameters
+** to the callback are either NULL pointers or zero-terminated strings
+** that contain additional details about the action to be authorized.
+** Applications must always be prepared to encounter a NULL pointer in any
+** of the third through the sixth parameters of the authorization callback.
+**
+** ^If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** ^When a table is referenced by a [SELECT] but no column values are
+** extracted from that table (for example in a query like
+** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
+** is invoked once for that table with a column name that is an empty string.
+** ^If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** ^(Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call.)^ ^Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** ^Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+**
+** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
+** returned from the [sqlite3_vtab_on_conflict()] interface.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. ^(The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
+#define SQLITE_RECURSIVE 33 /* NULL NULL */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions
+** METHOD: sqlite3
+**
+** These routines are deprecated. Use the [sqlite3_trace_v2()] interface
+** instead of the routines described here.
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** ^The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
+** SQL statement text as the statement first begins executing.
+** ^(Additional sqlite3_trace() callbacks might occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.)^
+**
+** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
+** the length of [bound parameter] expansion in the output of sqlite3_trace().
+**
+** ^The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. ^The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run. ^The profile callback
+** time is in units of nanoseconds, however the current implementation
+** is only capable of millisecond resolution so the six least significant
+** digits in the time are meaningless. Future versions of SQLite
+** might provide greater resolution on the profiler callback. Invoking
+** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
+** profile callback.
+*/
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*,
+ void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: SQL Trace Event Codes
+** KEYWORDS: SQLITE_TRACE
+**
+** These constants identify classes of events that can be monitored
+** using the [sqlite3_trace_v2()] tracing logic. The M argument
+** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of
+** the following constants. ^The first argument to the trace callback
+** is one of the following constants.
+**
+** New tracing constants may be added in future releases.
+**
+** ^A trace callback has four arguments: xCallback(T,C,P,X).
+** ^The T argument is one of the integer type codes above.
+** ^The C argument is a copy of the context pointer passed in as the
+** fourth argument to [sqlite3_trace_v2()].
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** <dl>
+** [[SQLITE_TRACE_STMT]] <dt>SQLITE_TRACE_STMT</dt>
+** <dd>^An SQLITE_TRACE_STMT callback is invoked when a prepared statement
+** first begins running and possibly at other times during the
+** execution of the prepared statement, such as at the start of each
+** trigger subprogram. ^The P argument is a pointer to the
+** [prepared statement]. ^The X argument is a pointer to a string which
+** is the unexpanded SQL text of the prepared statement or an SQL comment
+** that indicates the invocation of a trigger. ^The callback can compute
+** the same text that would have been returned by the legacy [sqlite3_trace()]
+** interface by using the X argument when X begins with "--" and invoking
+** [sqlite3_expanded_sql(P)] otherwise.
+**
+** [[SQLITE_TRACE_PROFILE]] <dt>SQLITE_TRACE_PROFILE</dt>
+** <dd>^An SQLITE_TRACE_PROFILE callback provides approximately the same
+** information as is provided by the [sqlite3_profile()] callback.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument points to a 64-bit integer which is the estimated of
+** the number of nanosecond that the prepared statement took to run.
+** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes.
+**
+** [[SQLITE_TRACE_ROW]] <dt>SQLITE_TRACE_ROW</dt>
+** <dd>^An SQLITE_TRACE_ROW callback is invoked whenever a prepared
+** statement generates a single row of result.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument is unused.
+**
+** [[SQLITE_TRACE_CLOSE]] <dt>SQLITE_TRACE_CLOSE</dt>
+** <dd>^An SQLITE_TRACE_CLOSE callback is invoked when a database
+** connection closes.
+** ^The P argument is a pointer to the [database connection] object
+** and the X argument is unused.
+** </dl>
+*/
+#define SQLITE_TRACE_STMT 0x01
+#define SQLITE_TRACE_PROFILE 0x02
+#define SQLITE_TRACE_ROW 0x04
+#define SQLITE_TRACE_CLOSE 0x08
+
+/*
+** CAPI3REF: SQL Trace Hook
+** METHOD: sqlite3
+**
+** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
+** function X against [database connection] D, using property mask M
+** and context pointer P. ^If the X callback is
+** NULL or if the M mask is zero, then tracing is disabled. The
+** M argument should be the bitwise OR-ed combination of
+** zero or more [SQLITE_TRACE] constants.
+**
+** ^Each call to either sqlite3_trace() or sqlite3_trace_v2() overrides
+** (cancels) any prior calls to sqlite3_trace() or sqlite3_trace_v2().
+**
+** ^The X callback is invoked whenever any of the events identified by
+** mask M occur. ^The integer return value from the callback is currently
+** ignored, though this may change in future releases. Callback
+** implementations should return zero to ensure future compatibility.
+**
+** ^A trace callback is invoked with four arguments: callback(T,C,P,X).
+** ^The T argument is one of the [SQLITE_TRACE]
+** constants to indicate why the callback was invoked.
+** ^The C argument is a copy of the context pointer.
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** The sqlite3_trace_v2() interface is intended to replace the legacy
+** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
+** are deprecated.
+*/
+SQLITE_API int sqlite3_trace_v2(
+ sqlite3*,
+ unsigned uMask,
+ int(*xCallback)(unsigned,void*,void*,void*),
+ void *pCtx
+);
+
+/*
+** CAPI3REF: Query Progress Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
+** function X to be invoked periodically during long running calls to
+** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
+** database connection D. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** ^The parameter P is passed through as the only parameter to the
+** callback function X. ^The parameter N is the approximate number of
+** [virtual machine instructions] that are evaluated between successive
+** invocations of the callback X. ^If N is less than one then the progress
+** handler is disabled.
+**
+** ^Only a single progress handler may be defined at one time per
+** [database connection]; setting a new progress handler cancels the
+** old one. ^Setting parameter X to NULL disables the progress handler.
+** ^The progress handler is also disabled by setting N to a value less
+** than 1.
+**
+** ^If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
+**
+** The progress handler callback must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+*/
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection
+** CONSTRUCTOR: sqlite3
+**
+** ^These routines open an SQLite database file as specified by the
+** filename argument. ^The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). ^(A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object.)^ ^(If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error following a failure of any
+** of the sqlite3_open() routines.
+**
+** ^The default encoding will be UTF-8 for databases created using
+** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
+** created using sqlite3_open16() will be UTF-16 in the native byte order.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. ^(The flags parameter to
+** sqlite3_open_v2() must include, at a minimum, one of the following
+** three flag combinations:)^
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is created if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>)^
+** </dl>
+**
+** In addition to the required flags, the following optional flags are
+** also supported:
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_URI]</dt>
+** <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
+** <dd>The database will be opened as an in-memory database. The database
+** is named by the "filename" argument for the purposes of cache-sharing,
+** if shared cache mode is enabled, but the "filename" is otherwise ignored.
+** </dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
+** <dd>The new database connection will use the "multi-thread"
+** [threading mode].)^ This means that separate threads are allowed
+** to use SQLite at the same time, as long as each thread is using
+** a different [database connection].
+**
+** ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
+** <dd>The new database connection will use the "serialized"
+** [threading mode].)^ This means the multiple threads can safely
+** attempt to use the same database connection at the same time.
+** (Mutexes will block any actual concurrency, but in this mode
+** there is no harm in trying.)
+**
+** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
+** <dd>The database is opened [shared cache] enabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+**
+** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
+** <dd>The database is opened [shared cache] disabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+**
+** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt>
+** <dd>The database connection comes up in "extended result code mode".
+** In other words, the database behaves has if
+** [sqlite3_extended_result_codes(db,1)] where called on the database
+** connection as soon as the connection is created. In addition to setting
+** the extended result code mode, this flag also causes [sqlite3_open_v2()]
+** to return an extended result code.</dd>
+**
+** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
+** <dd>The database filename is not allowed to be a symbolic link</dd>
+** </dl>)^
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** required combinations shown above optionally combined with other
+** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
+** then the behavior is undefined. Historic versions of SQLite
+** have silently ignored surplus bits in the flags parameter to
+** sqlite3_open_v2(), however that behavior might not be carried through
+** into future versions of SQLite and so applications should not rely
+** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op
+** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause
+** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE
+** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not
+** by sqlite3_open_v2().
+**
+** ^The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. ^If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** ^If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. ^This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** ^If the filename is an empty string, then a private, temporary
+** on-disk database will be created. ^This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
+**
+** ^If [URI filename] interpretation is enabled, and the filename argument
+** begins with "file:", then the filename is interpreted as a URI. ^URI
+** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
+** set in the third argument to sqlite3_open_v2(), or if it has
+** been enabled globally using the [SQLITE_CONFIG_URI] option with the
+** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
+** URI filename interpretation is turned off
+** by default, but future releases of SQLite might enable URI filename
+** interpretation by default. See "[URI filenames]" for additional
+** information.
+**
+** URI filenames are parsed according to RFC 3986. ^If the URI contains an
+** authority, then it must be either an empty string or the string
+** "localhost". ^If the authority is not an empty string or "localhost", an
+** error is returned to the caller. ^The fragment component of a URI, if
+** present, is ignored.
+**
+** ^SQLite uses the path component of the URI as the name of the disk file
+** which contains the database. ^If the path begins with a '/' character,
+** then it is interpreted as an absolute path. ^If the path does not begin
+** with a '/' (meaning that the authority section is omitted from the URI)
+** then the path is interpreted as a relative path.
+** ^(On windows, the first component of an absolute path
+** is a drive specification (e.g. "C:").)^
+**
+** [[core URI query parameters]]
+** The query component of a URI may contain parameters that are interpreted
+** either by SQLite itself, or by a [VFS | custom VFS implementation].
+** SQLite and its built-in [VFSes] interpret the
+** following query parameters:
+**
+** <ul>
+** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
+** a VFS object that provides the operating system interface that should
+** be used to access the database file on disk. ^If this option is set to
+** an empty string the default VFS object is used. ^Specifying an unknown
+** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
+** present, then the VFS specified by the option takes precedence over
+** the value passed as the fourth parameter to sqlite3_open_v2().
+**
+** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
+** "rwc", or "memory". Attempting to set it to any other value is
+** an error)^.
+** ^If "ro" is specified, then the database is opened for read-only
+** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
+** third argument to sqlite3_open_v2(). ^If the mode option is set to
+** "rw", then the database is opened for read-write (but not create)
+** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
+** been set. ^Value "rwc" is equivalent to setting both
+** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
+** set to "memory" then a pure [in-memory database] that never reads
+** or writes from disk is used. ^It is an error to specify a value for
+** the mode parameter that is less restrictive than that specified by
+** the flags passed in the third parameter to sqlite3_open_v2().
+**
+** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
+** "private". ^Setting it to "shared" is equivalent to setting the
+** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
+** sqlite3_open_v2(). ^Setting the cache parameter to "private" is
+** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
+** ^If sqlite3_open_v2() is used and the "cache" parameter is present in
+** a URI filename, its value overrides any behavior requested by setting
+** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
+**
+** <li> <b>psow</b>: ^The psow parameter indicates whether or not the
+** [powersafe overwrite] property does or does not apply to the
+** storage media on which the database file resides.
+**
+** <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
+** which if set disables file locking in rollback journal modes. This
+** is useful for accessing a database on a filesystem that does not
+** support locking. Caution: Database corruption might result if two
+** or more processes write to the same database and any one of those
+** processes uses nolock=1.
+**
+** <li> <b>immutable</b>: ^The immutable parameter is a boolean query
+** parameter that indicates that the database file is stored on
+** read-only media. ^When immutable is set, SQLite assumes that the
+** database file cannot be changed, even by a process with higher
+** privilege, and so the database is opened read-only and all locking
+** and change detection is disabled. Caution: Setting the immutable
+** property on a database file that does in fact change can result
+** in incorrect query results and/or [SQLITE_CORRUPT] errors.
+** See also: [SQLITE_IOCAP_IMMUTABLE].
+**
+** </ul>
+**
+** ^Specifying an unknown parameter in the query component of a URI is not an
+** error. Future versions of SQLite might understand additional query
+** parameters. See "[query parameters with special meaning to SQLite]" for
+** additional information.
+**
+** [[URI filename examples]] <h3>URI filename examples</h3>
+**
+** <table border="1" align=center cellpadding=5>
+** <tr><th> URI filenames <th> Results
+** <tr><td> file:data.db <td>
+** Open the file "data.db" in the current directory.
+** <tr><td> file:/home/fred/data.db<br>
+** file:///home/fred/data.db <br>
+** file://localhost/home/fred/data.db <br> <td>
+** Open the database file "/home/fred/data.db".
+** <tr><td> file://darkstar/home/fred/data.db <td>
+** An error. "darkstar" is not a recognized authority.
+** <tr><td style="white-space:nowrap">
+** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
+** <td> Windows only: Open the file "data.db" on fred's desktop on drive
+** C:. Note that the %20 escaping in this example is not strictly
+** necessary - space characters can be used literally
+** in URI filenames.
+** <tr><td> file:data.db?mode=ro&cache=private <td>
+** Open file "data.db" in the current directory for read-only access.
+** Regardless of whether or not shared-cache mode is enabled by
+** default, use a private cache.
+** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
+** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
+** that uses dot-files in place of posix advisory locking.
+** <tr><td> file:data.db?mode=readonly <td>
+** An error. "readonly" is not a valid option for the "mode" parameter.
+** Use "ro" instead: "file:data.db?mode=ro".
+** </table>
+**
+** ^URI hexadecimal escape sequences (%HH) are supported within the path and
+** query components of a URI. A hexadecimal escape sequence consists of a
+** percent sign - "%" - followed by exactly two hexadecimal digits
+** specifying an octet value. ^Before the path or query components of a
+** URI filename are interpreted, they are encoded using UTF-8 and all
+** hexadecimal escape sequences replaced by a single byte containing the
+** corresponding octet. If this process generates an invalid UTF-8 encoding,
+** the results are undefined.
+**
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
+** features that require the use of temporary files may fail.
+**
+** See also: [sqlite3_temp_directory]
+*/
+SQLITE_API int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Obtain Values For URI Parameters
+**
+** These are utility routines, useful to [VFS|custom VFS implementations],
+** that check if a database file was a URI that contained a specific query
+** parameter, and if so obtains the value of that query parameter.
+**
+** The first parameter to these interfaces (hereafter referred to
+** as F) must be one of:
+** <ul>
+** <li> A database filename pointer created by the SQLite core and
+** passed into the xOpen() method of a VFS implemention, or
+** <li> A filename obtained from [sqlite3_db_filename()], or
+** <li> A new filename constructed using [sqlite3_create_filename()].
+** </ul>
+** If the F parameter is not one of the above, then the behavior is
+** undefined and probably undesirable. Older versions of SQLite were
+** more tolerant of invalid F parameters than newer versions.
+**
+** If F is a suitable filename (as described in the previous paragraph)
+** and if P is the name of the query parameter, then
+** sqlite3_uri_parameter(F,P) returns the value of the P
+** parameter if it exists or a NULL pointer if P does not appear as a
+** query parameter on F. If P is a query parameter of F and it
+** has no explicit value, then sqlite3_uri_parameter(F,P) returns
+** a pointer to an empty string.
+**
+** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
+** parameter and returns true (1) or false (0) according to the value
+** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
+** value of query parameter P is one of "yes", "true", or "on" in any
+** case or if the value begins with a non-zero number. The
+** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
+** query parameter P is one of "no", "false", or "off" in any case or
+** if the value begins with a numeric zero. If P is not a query
+** parameter on F or if the value of P does not match any of the
+** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
+**
+** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
+** 64-bit signed integer and returns that integer, or D if P does not
+** exist. If the value of P is something other than an integer, then
+** zero is returned.
+**
+** The sqlite3_uri_key(F,N) returns a pointer to the name (not
+** the value) of the N-th query parameter for filename F, or a NULL
+** pointer if N is less than zero or greater than the number of query
+** parameters minus 1. The N value is zero-based so N should be 0 to obtain
+** the name of the first query parameter, 1 for the second parameter, and
+** so forth.
+**
+** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
+** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
+** is not a database file pathname pointer that the SQLite core passed
+** into the xOpen VFS method, then the behavior of this routine is undefined
+** and probably undesirable.
+**
+** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
+** parameter can also be the name of a rollback journal file or WAL file
+** in addition to the main database file. Prior to version 3.31.0, these
+** routines would only work if F was the name of the main database file.
+** When the F parameter is the name of the rollback journal or WAL file,
+** it has access to all the same query parameters as were found on the
+** main database file.
+**
+** See the [URI filename] documentation for additional information.
+*/
+SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
+SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
+SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);
+SQLITE_API const char *sqlite3_uri_key(const char *zFilename, int N);
+
+/*
+** CAPI3REF: Translate filenames
+**
+** These routines are available to [VFS|custom VFS implementations] for
+** translating filenames between the main database file, the journal file,
+** and the WAL file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
+** returns the name of the corresponding database file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, or if F is a database filename
+** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
+** returns the name of the corresponding rollback journal file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** that was passed by the SQLite core into the VFS, or if F is a database
+** filename obtained from [sqlite3_db_filename()], then
+** sqlite3_filename_wal(F) returns the name of the corresponding
+** WAL file.
+**
+** In all of the above, if F is not the name of a database, journal or WAL
+** filename passed into the VFS from the SQLite core and F is not the
+** return value from [sqlite3_db_filename()], then the result is
+** undefined and is likely a memory access violation.
+*/
+SQLITE_API const char *sqlite3_filename_database(const char*);
+SQLITE_API const char *sqlite3_filename_journal(const char*);
+SQLITE_API const char *sqlite3_filename_wal(const char*);
+
+/*
+** CAPI3REF: Database File Corresponding To A Journal
+**
+** ^If X is the name of a rollback or WAL-mode journal file that is
+** passed into the xOpen method of [sqlite3_vfs], then
+** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
+** object that represents the main database file.
+**
+** This routine is intended for use in custom [VFS] implementations
+** only. It is not a general-purpose interface.
+** The argument sqlite3_file_object(X) must be a filename pointer that
+** has been passed into [sqlite3_vfs].xOpen method where the
+** flags parameter to xOpen contains one of the bits
+** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use
+** of this routine results in undefined and probably undesirable
+** behavior.
+*/
+SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*);
+
+/*
+** CAPI3REF: Create and Destroy VFS Filenames
+**
+** These interfces are provided for use by [VFS shim] implementations and
+** are not useful outside of that context.
+**
+** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
+** database filename D with corresponding journal file J and WAL file W and
+** with N URI parameters key/values pairs in the array P. The result from
+** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
+** is safe to pass to routines like:
+** <ul>
+** <li> [sqlite3_uri_parameter()],
+** <li> [sqlite3_uri_boolean()],
+** <li> [sqlite3_uri_int64()],
+** <li> [sqlite3_uri_key()],
+** <li> [sqlite3_filename_database()],
+** <li> [sqlite3_filename_journal()], or
+** <li> [sqlite3_filename_wal()].
+** </ul>
+** If a memory allocation error occurs, sqlite3_create_filename() might
+** return a NULL pointer. The memory obtained from sqlite3_create_filename(X)
+** must be released by a corresponding call to sqlite3_free_filename(Y).
+**
+** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
+** of 2*N pointers to strings. Each pair of pointers in this array corresponds
+** to a key and value for a query parameter. The P parameter may be a NULL
+** pointer if N is zero. None of the 2*N pointers in the P array may be
+** NULL pointers and key pointers should not be empty strings.
+** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
+** be NULL pointers, though they can be empty strings.
+**
+** The sqlite3_free_filename(Y) routine releases a memory allocation
+** previously obtained from sqlite3_create_filename(). Invoking
+** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
+**
+** If the Y parameter to sqlite3_free_filename(Y) is anything other
+** than a NULL pointer or a pointer previously acquired from
+** sqlite3_create_filename(), then bad things such as heap
+** corruption or segfaults may occur. The value Y should not be
+** used again after sqlite3_free_filename(Y) has been called. This means
+** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
+** then the corresponding [sqlite3_module.xClose() method should also be
+** invoked prior to calling sqlite3_free_filename(Y).
+*/
+SQLITE_API char *sqlite3_create_filename(
+ const char *zDatabase,
+ const char *zJournal,
+ const char *zWal,
+ int nParam,
+ const char **azParam
+);
+SQLITE_API void sqlite3_free_filename(char*);
+
+/*
+** CAPI3REF: Error Codes And Messages
+** METHOD: sqlite3
+**
+** ^If the most recent sqlite3_* API call associated with
+** [database connection] D failed, then the sqlite3_errcode(D) interface
+** returns the numeric [result code] or [extended result code] for that
+** API call.
+** ^The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** The values returned by sqlite3_errcode() and/or
+** sqlite3_extended_errcode() might change with each API call.
+** Except, there are some interfaces that are guaranteed to never
+** change the value of the error code. The error-code preserving
+** interfaces include the following:
+**
+** <ul>
+** <li> sqlite3_errcode()
+** <li> sqlite3_extended_errcode()
+** <li> sqlite3_errmsg()
+** <li> sqlite3_errmsg16()
+** <li> sqlite3_error_offset()
+** </ul>
+**
+** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** ^(Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.)^
+**
+** ^The sqlite3_errstr() interface returns the English-language text
+** that describes the [result code], as UTF-8.
+** ^(Memory to hold the error message string is managed internally
+** and must not be freed by the application)^.
+**
+** ^If the most recent error references a specific token in the input
+** SQL, the sqlite3_error_offset() interface returns the byte offset
+** of the start of that token. ^The byte offset returned by
+** sqlite3_error_offset() assumes that the input SQL is UTF8.
+** ^If the most recent error does not reference a specific token in the input
+** SQL, then the sqlite3_error_offset() function returns -1.
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+SQLITE_API const char *sqlite3_errstr(int);
+SQLITE_API int sqlite3_error_offset(sqlite3 *db);
+
+/*
+** CAPI3REF: Prepared Statement Object
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement that
+** has been compiled into binary form and is ready to be evaluated.
+**
+** Think of each SQL statement as a separate computer program. The
+** original SQL text is source code. A prepared statement object
+** is the compiled object code. All SQL must be converted into a
+** prepared statement before it can be run.
+**
+** The life-cycle of a prepared statement object usually goes like this:
+**
+** <ol>
+** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
+** <li> Bind values to [parameters] using the sqlite3_bind_*()
+** interfaces.
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the prepared statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits
+** METHOD: sqlite3
+**
+** ^(This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct.)^
+**
+** ^If the new limit is a negative number, the limit is unchanged.
+** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
+** [limits | hard upper bound]
+** set at compile-time by a C preprocessor macro called
+** [limits | SQLITE_MAX_<i>NAME</i>].
+** (The "_LIMIT_" in the name is changed to "_MAX_".))^
+** ^Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper bound.
+**
+** ^Regardless of whether or not the limit was changed, the
+** [sqlite3_limit()] interface returns the prior value of the limit.
+** ^Hence, to find the current value of a limit without changing it,
+** simply invoke this interface with the third parameter set to -1.
+**
+** Run-time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+*/
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories
+** KEYWORDS: {limit category} {*limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+** <dl>
+** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
+**
+** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
+**
+** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>)^
+**
+** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>)^
+**
+** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
+**
+** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement. If [sqlite3_prepare_v2()] or
+** the equivalent tries to allocate space for more than this many opcodes
+** in a single prepared statement, an SQLITE_NOMEM error is returned.</dd>)^
+**
+** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>)^
+**
+** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
+**
+** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
+** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.</dd>)^
+**
+** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
+** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum index number of any [parameter] in an SQL statement.)^
+**
+** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
+** <dd>The maximum depth of recursion for triggers.</dd>)^
+**
+** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
+** <dd>The maximum number of auxiliary worker threads that a single
+** [prepared statement] may start.</dd>)^
+** </dl>
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
+#define SQLITE_LIMIT_WORKER_THREADS 11
+
+/*
+** CAPI3REF: Prepare Flags
+**
+** These constants define various flags that can be passed into
+** "prepFlags" parameter of the [sqlite3_prepare_v3()] and
+** [sqlite3_prepare16_v3()] interfaces.
+**
+** New flags may be added in future releases of SQLite.
+**
+** <dl>
+** [[SQLITE_PREPARE_PERSISTENT]] ^(<dt>SQLITE_PREPARE_PERSISTENT</dt>
+** <dd>The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner
+** that the prepared statement will be retained for a long time and
+** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
+** and [sqlite3_prepare16_v3()] assume that the prepared statement will
+** be used just once or at most a few times and then destroyed using
+** [sqlite3_finalize()] relatively soon. The current implementation acts
+** on this hint by avoiding the use of [lookaside memory] so as not to
+** deplete the limited store of lookaside memory. Future versions of
+** SQLite may act on this hint differently.
+**
+** [[SQLITE_PREPARE_NORMALIZE]] <dt>SQLITE_PREPARE_NORMALIZE</dt>
+** <dd>The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used
+** to be required for any prepared statement that wanted to use the
+** [sqlite3_normalized_sql()] interface. However, the
+** [sqlite3_normalized_sql()] interface is now available to all
+** prepared statements, regardless of whether or not they use this
+** flag.
+**
+** [[SQLITE_PREPARE_NO_VTAB]] <dt>SQLITE_PREPARE_NO_VTAB</dt>
+** <dd>The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler
+** to return an error (error code SQLITE_ERROR) if the statement uses
+** any virtual tables.
+** </dl>
+*/
+#define SQLITE_PREPARE_PERSISTENT 0x01
+#define SQLITE_PREPARE_NORMALIZE 0x02
+#define SQLITE_PREPARE_NO_VTAB 0x04
+
+/*
+** CAPI3REF: Compiling An SQL Statement
+** KEYWORDS: {SQL statement compiler}
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_stmt
+**
+** To execute an SQL statement, it must first be compiled into a byte-code
+** program using one of these routines. Or, in other words, these routines
+** are constructors for the [prepared statement] object.
+**
+** The preferred routine to use is [sqlite3_prepare_v2()]. The
+** [sqlite3_prepare()] interface is legacy and should be avoided.
+** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
+** for special purposes.
+**
+** The use of the UTF-8 interfaces is preferred, as SQLite currently
+** does all parsing using UTF-8. The UTF-16 interfaces are provided
+** as a convenience. The UTF-16 interfaces work by converting the
+** input text into UTF-8, then invoking the corresponding UTF-8 interface.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(),
+** and sqlite3_prepare_v3()
+** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() use UTF-16.
+**
+** ^If the nByte argument is negative, then zSql is read up to the
+** first zero terminator. ^If nByte is positive, then it is the
+** number of bytes read from zSql. ^If nByte is zero, then no prepared
+** statement is generated.
+** If the caller knows that the supplied string is nul-terminated, then
+** there is a small performance advantage to passing an nByte parameter that
+** is the number of bytes in the input string <i>including</i>
+** the nul-terminator.
+**
+** ^If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
+** to NULL. ^If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
+** otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
+** The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
+** are retained for backwards compatibility, but their use is discouraged.
+** ^In the "vX" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave differently in three ways:
+**
+** <ol>
+** <li>
+** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
+** retries will occur before sqlite3_step() gives up and returns an error.
+** </li>
+**
+** <li>
+** ^When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. ^The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and the application would have to make a second call to [sqlite3_reset()]
+** in order to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+** </li>
+**
+** <li>
+** ^If the specific value bound to a [parameter | host parameter] in the
+** WHERE clause might influence the choice of query plan for a statement,
+** then the statement will be automatically recompiled, as if there had been
+** a schema change, on the first [sqlite3_step()] call following any change
+** to the [sqlite3_bind_text | bindings] of that [parameter].
+** ^The specific value of a WHERE-clause [parameter] might influence the
+** choice of query plan if the parameter is the left-hand side of a [LIKE]
+** or [GLOB] operator or if the parameter is compared to an indexed column
+** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
+** </li>
+** </ol>
+**
+** <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
+** the extra prepFlags parameter, which is a bit array consisting of zero or
+** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The
+** sqlite3_prepare_v2() interface works exactly the same as
+** sqlite3_prepare_v3() with a zero prepFlags parameter.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v3(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v3(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPI3REF: Retrieving Statement SQL
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
+** SQL text used to create [prepared statement] P if P was
+** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
+** string containing the SQL text of prepared statement P with
+** [bound parameters] expanded.
+** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
+** string containing the normalized SQL text of prepared statement P. The
+** semantics used to normalize a SQL statement are unspecified and subject
+** to change. At a minimum, literal values will be replaced with suitable
+** placeholders.
+**
+** ^(For example, if a prepared statement is created using the SQL
+** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
+** and parameter :xyz is unbound, then sqlite3_sql() will return
+** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
+** will return "SELECT 2345,NULL".)^
+**
+** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
+** is available to hold the result, or if the result would exceed the
+** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
+**
+** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
+** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time
+** option causes sqlite3_expanded_sql() to always return NULL.
+**
+** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
+** are managed by SQLite and are automatically freed when the prepared
+** statement is finalized.
+** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
+** is obtained from [sqlite3_malloc()] and must be freed by the application
+** by passing it to [sqlite3_free()].
+**
+** ^The sqlite3_normalized_sql() interface is only available if
+** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined.
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);
+#endif
+
+/*
+** CAPI3REF: Determine If An SQL Statement Writes The Database
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
+** and only if the [prepared statement] X makes no direct changes to
+** the content of the database file.
+**
+** Note that [application-defined SQL functions] or
+** [virtual tables] might change the database indirectly as a side effect.
+** ^(For example, if an application defines a function "eval()" that
+** calls [sqlite3_exec()], then the following SQL statement would
+** change the database file through side-effects:
+**
+** <blockquote><pre>
+** SELECT eval('DELETE FROM t1') FROM t2;
+** </pre></blockquote>
+**
+** But because the [SELECT] statement does not change the database file
+** directly, sqlite3_stmt_readonly() would still return true.)^
+**
+** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
+** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
+** since the statements themselves do not actually modify the database but
+** rather they control the timing of when other statements modify the
+** database. ^The [ATTACH] and [DETACH] statements also cause
+** sqlite3_stmt_readonly() to return true since, while those statements
+** change the configuration of a database connection, they do not make
+** changes to the content of the database files on disk.
+** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
+** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
+** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
+** sqlite3_stmt_readonly() returns false for those commands.
+**
+** ^This routine returns false if there is any possibility that the
+** statement might change the database file. ^A false return does
+** not guarantee that the statement will change the database file.
+** ^For example, an UPDATE statement might have a WHERE clause that
+** makes it a no-op, but the sqlite3_stmt_readonly() result would still
+** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a
+** read-only no-op if the table already exists, but
+** sqlite3_stmt_readonly() still returns false for such a statement.
+**
+** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN]
+** statement, then sqlite3_stmt_readonly(X) returns the same value as
+** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted.
+*/
+SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
+** prepared statement S is an EXPLAIN statement, or 2 if the
+** statement S is an EXPLAIN QUERY PLAN.
+** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
+** an ordinary statement or a NULL pointer.
+*/
+SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Determine If A Prepared Statement Has Been Reset
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
+** [prepared statement] S has been stepped at least once using
+** [sqlite3_step(S)] but has neither run to completion (returned
+** [SQLITE_DONE] from [sqlite3_step(S)]) nor
+** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
+** interface returns false if S is a NULL pointer. If S is not a
+** NULL pointer and is not a pointer to a valid [prepared statement]
+** object, then the behavior is undefined and probably undesirable.
+**
+** This interface can be used in combination [sqlite3_next_stmt()]
+** to locate all prepared statements associated with a database
+** connection that are in need of being reset. This can be used,
+** for example, in diagnostic routines to search for prepared
+** statements that are holding a transaction open.
+*/
+SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. ^Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value. The
+** [sqlite3_value_dup()] interface can be used to construct a new
+** protected sqlite3_value from an unprotected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. An internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** ^The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()]
+** are protected.
+** ^The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used as arguments
+** to [sqlite3_result_value()], [sqlite3_bind_value()], and
+** [sqlite3_value_dup()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
+*/
+typedef struct sqlite3_value sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. ^A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
+** METHOD: sqlite3_stmt
+**
+** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifier.)^ ^The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** ^The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** ^The second argument is the index of the SQL parameter to be set.
+** ^The leftmost SQL parameter has an index of 1. ^When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** ^The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. ^The index
+** for "?NNN" parameters is the value of NNN.
+** ^The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
+**
+** ^The third argument is the value to bind to the parameter.
+** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
+** is ignored and the end result is the same as sqlite3_bind_null().
+** ^If the third parameter to sqlite3_bind_text() is not NULL, then
+** it should be a pointer to well-formed UTF8 text.
+** ^If the third parameter to sqlite3_bind_text16() is not NULL, then
+** it should be a pointer to well-formed UTF16 text.
+** ^If the third parameter to sqlite3_bind_text64() is not NULL, then
+** it should be a pointer to a well-formed unicode string that is
+** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
+** otherwise.
+**
+** [[byte-order determination rules]] ^The byte-order of
+** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
+** found in first character, which is removed, or in the absence of a BOM
+** the byte order is the native byte order of the host
+** machine for sqlite3_bind_text16() or the byte order specified in
+** the 6th parameter for sqlite3_bind_text64().)^
+** ^If UTF16 input text contains invalid unicode
+** characters, then SQLite might change those invalid characters
+** into the unicode replacement character: U+FFFD.
+**
+** ^(In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.)^
+** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** is negative, then the length of the string is
+** the number of bytes up to the first zero terminator.
+** If the fourth parameter to sqlite3_bind_blob() is negative, then
+** the behavior is undefined.
+** If a non-negative fourth parameter is provided to sqlite3_bind_text()
+** or sqlite3_bind_text16() or sqlite3_bind_text64() then
+** that parameter must be the byte offset
+** where the NUL terminator would occur assuming the string were NUL
+** terminated. If any NUL characters occurs at byte offsets less than
+** the value of the fourth parameter then the resulting string value will
+** contain embedded NULs. The result of expressions involving strings
+** with embedded NULs is undefined.
+**
+** ^The fifth argument to the BLOB and string binding interfaces controls
+** or indicates the lifetime of the object referenced by the third parameter.
+** These three options exist:
+** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished
+** with it may be passed. ^It is called to dispose of the BLOB or string even
+** if the call to the bind API fails, except the destructor is not called if
+** the third parameter is a NULL pointer or the fourth parameter is negative.
+** ^ (2) The special constant, [SQLITE_STATIC], may be passsed to indicate that
+** the application remains responsible for disposing of the object. ^In this
+** case, the object and the provided pointer to it must remain valid until
+** either the prepared statement is finalized or the same SQL parameter is
+** bound to something else, whichever occurs sooner.
+** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the
+** object is to be copied prior to the return from sqlite3_bind_*(). ^The
+** object and pointer to it must remain valid until then. ^SQLite will then
+** manage the lifetime of its private copy.
+**
+** ^The sixth argument to sqlite3_bind_text64() must be one of
+** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
+** to specify the encoding of the text in the third parameter. If
+** the sixth argument to sqlite3_bind_text64() is not one of the
+** allowed values shown above, or if the text encoding is different
+** from the encoding specified by the sixth parameter, then the behavior
+** is undefined.
+**
+** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** ^A negative value for the zeroblob results in a zero-length BLOB.
+**
+** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
+** [prepared statement] S to have an SQL value of NULL, but to also be
+** associated with the pointer P of type T. ^D is either a NULL pointer or
+** a pointer to a destructor function for P. ^SQLite will invoke the
+** destructor D with a single argument of P when it is finished using
+** P. The T parameter should be a static string, preferably a string
+** literal. The sqlite3_bind_pointer() routine is part of the
+** [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
+** for the [prepared statement] or with a prepared statement for which
+** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
+** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
+** routine is passed a [prepared statement] that has been finalized, the
+** result is undefined and probably harmful.
+**
+** ^Bindings are not cleared by the [sqlite3_reset()] routine.
+** ^Unbound parameters are interpreted as NULL.
+**
+** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
+** [error code] if anything goes wrong.
+** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
+** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
+** [SQLITE_MAX_LENGTH].
+** ^[SQLITE_RANGE] is returned if the parameter
+** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
+ void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*));
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
+
+/*
+** CAPI3REF: Number Of SQL Parameters
+** METHOD: sqlite3_stmt
+**
+** ^This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** ^(This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN form are used,
+** there may be gaps in the list.)^
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_bind_parameter_name(P,N) interface returns
+** the name of the N-th [SQL parameter] in the [prepared statement] P.
+** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.)^
+** ^Parameters of the form "?" without a following integer have no name
+** and are referred to as "nameless" or "anonymous parameters".
+**
+** ^The first host parameter has an index of 1, not 0.
+**
+** ^If the value N is out of range or if the N-th parameter is
+** nameless, then NULL is returned. ^The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name
+** METHOD: sqlite3_stmt
+**
+** ^Return the index of an SQL parameter given its name. ^The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
+** is returned if no matching parameter is found. ^The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
+** [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_name()].
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** ^Use this routine to reset all host parameters to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^Return the number of columns in the result set returned by the
+** [prepared statement]. ^If this routine returns 0, that means the
+** [prepared statement] returns no data (for example an [UPDATE]).
+** ^However, just because this routine returns a positive number does not
+** mean that one or more rows of data will be returned. ^A SELECT statement
+** will always have a positive sqlite3_column_count() but depending on the
+** WHERE clause constraints and the table content, it might return no rows.
+**
+** See also: [sqlite3_data_count()]
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. ^The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. ^The second parameter is the
+** column number. ^The leftmost column is number 0.
+**
+** ^The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** ^If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** ^The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^These routines provide a means to determine the database, table, and
+** table column that is the origin of a particular result column in
+** [SELECT] statement.
+** ^The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. ^The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** ^The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the same information is requested
+** again in a different encoding.
+**
+** ^The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** ^The first argument to these interfaces is a [prepared statement].
+** ^These functions return information about the Nth result column returned by
+** the statement, where N is the second function argument.
+** ^The left-most column is column 0 for these routines.
+**
+** ^If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. ^These routines might also return NULL if a memory allocation error
+** occurs. ^Otherwise, they return the name of the attached database, table,
+** or column that query result column was extracted from.
+**
+** ^As with all other SQLite APIs, those whose names end with "16" return
+** UTF-16 encoded strings and the other functions return UTF-8.
+**
+** ^These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
+**
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^(The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned.)^ ^If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** ^The returned string is always UTF-8 encoded.
+**
+** ^(For example, given the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** and the following statement to be compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).)^
+**
+** ^SQLite uses dynamic run-time typing. ^So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. ^Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement
+** METHOD: sqlite3_stmt
+**
+** After a [prepared statement] has been prepared using any of
+** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
+** or [sqlite3_prepare16_v3()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
+**
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "vX" interfaces
+** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
+** [sqlite3_prepare16_v2()] or the older legacy
+** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "vX" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** ^With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
+**
+** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. ^If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within an
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** ^[SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** ^With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. ^In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** For all versions of SQLite up to and including 3.6.23.1, a call to
+** [sqlite3_reset()] was required after sqlite3_step() returned anything
+** other than [SQLITE_ROW] before any subsequent invocation of
+** sqlite3_step(). Failure to reset the prepared statement using
+** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
+** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1],
+** sqlite3_step() began
+** calling [sqlite3_reset()] automatically in this circumstance rather
+** than returning [SQLITE_MISUSE]. This is not considered a compatibility
+** break because any application that ever receives an SQLITE_MISUSE error
+** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
+** can be used to restore the legacy behavior.
+**
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
+** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "vX" interfaces is recommended.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_data_count(P) interface returns the number of columns in the
+** current row of the result set of [prepared statement] P.
+** ^If prepared statement P does not have results ready to return
+** (via calls to the [sqlite3_column_int | sqlite3_column()] family of
+** interfaces) then sqlite3_data_count(P) returns 0.
+** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
+** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
+** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
+** will return non-zero if previous call to [sqlite3_step](P) returned
+** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
+** where it always returns zero since each step of that multi-step
+** pragma returns 0 columns of data.
+**
+** See also: [sqlite3_column_count()]
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes
+** KEYWORDS: SQLITE_TEXT
+**
+** ^(Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul>)^
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Result Values From A Query
+** KEYWORDS: {column access functions}
+** METHOD: sqlite3_stmt
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
+** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
+** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
+** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
+** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
+** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
+** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an
+** [sqlite3_value|unprotected sqlite3_value] object.
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT result in bytes
+** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
+** datatype of the result
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** ^These routines return information about a single column of the current
+** result row of a query. ^In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. ^The leftmost column of the result set has the index 0.
+** ^The number of columns in the result can be determined using
+** [sqlite3_column_count()].
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
+** each return the value of a result column in a specific data format. If
+** the result column is not initially in the requested format (for example,
+** if the query returns an integer but the sqlite3_column_text() interface
+** is used to extract the value) then an automatic type conversion is performed.
+**
+** ^The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. ^The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
+** The return value of sqlite3_column_type() can be used to decide which
+** of the first six interface should be used to extract the column value.
+** The value returned by sqlite3_column_type() is only meaningful if no
+** automatic type conversions have occurred for the value in question.
+** After a type conversion, the result of calling sqlite3_column_type()
+** is undefined, though harmless. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
+** or sqlite3_column_bytes16() interfaces can be used to determine the size
+** of that BLOB or string.
+**
+** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
+**
+** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
+** the string to UTF-16 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes16() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
+**
+** ^The values returned by [sqlite3_column_bytes()] and
+** [sqlite3_column_bytes16()] do not include the zero terminators at the end
+** of the string. ^For clarity: the values returned by
+** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
+** bytes in the string, not the number of characters.
+**
+** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero-terminated. ^The return
+** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
+**
+** ^Strings returned by sqlite3_column_text16() always have the endianness
+** which is native to the platform, regardless of the text encoding set
+** for the database.
+**
+** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. In a multithreaded environment,
+** an unprotected sqlite3_value object may only be used safely with
+** [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], the behavior is not threadsafe.
+** Hence, the sqlite3_column_value() interface
+** is normally only useful within the implementation of
+** [application-defined SQL functions] or [virtual tables], not within
+** top-level application code.
+**
+** These routines may attempt to convert the datatype of the result.
+** ^For example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. ^(The following table details the conversions
+** that are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is a NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is a NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> [CAST] to BLOB
+** <tr><td> TEXT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> TEXT <td> FLOAT <td> [CAST] to REAL
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL
+** <tr><td> BLOB <td> TEXT <td> [CAST] to TEXT, ensure zero terminator
+** </table>
+** </blockquote>)^
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
+** </ul>
+**
+** ^Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer references will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** The safest policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** ^The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. ^The memory space used to hold strings
+** and BLOBs is freed automatically. Do not pass the pointers returned
+** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** As long as the input parameters are correct, these routines will only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_column_blob()
+** <li> sqlite3_column_text()
+** <li> sqlite3_column_text16()
+** <li> sqlite3_column_bytes()
+** <li> sqlite3_column_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object
+** DESTRUCTOR: sqlite3_stmt
+**
+** ^The sqlite3_finalize() function is called to delete a [prepared statement].
+** ^If the most recent evaluation of the statement encountered no errors
+** or if the statement is never been evaluated, then sqlite3_finalize() returns
+** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
+** sqlite3_finalize(S) returns the appropriate [error code] or
+** [extended error code].
+**
+** ^The sqlite3_finalize(S) routine can be called at any point during
+** the life cycle of [prepared statement] S:
+** before statement S is ever evaluated, after
+** one or more calls to [sqlite3_reset()], or after any call
+** to [sqlite3_step()] regardless of whether or not the statement has
+** completed execution.
+**
+** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
+**
+** The application must finalize every [prepared statement] in order to avoid
+** resource leaks. It is a grievous error for the application to try to use
+** a prepared statement after it has been finalized. Any use of a prepared
+** statement after it has been finalized can result in undefined and
+** undesirable behavior such as segfaults and heap corruption.
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object
+** METHOD: sqlite3_stmt
+**
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** ^Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+**
+** ^The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions
+** KEYWORDS: {function creation routines}
+** METHOD: sqlite3
+**
+** ^These functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only differences between
+** the three "sqlite3_create_function*" routines are the text encoding
+** expected for the second parameter (the name of the function being
+** created) and the presence or absence of a destructor callback for
+** the application data pointer. Function sqlite3_create_window_function()
+** is similar, but allows the user to supply the extra callback functions
+** needed by [aggregate window functions].
+**
+** ^The first parameter is the [database connection] to which the SQL
+** function is to be added. ^If an application uses more than one database
+** connection then application-defined SQL functions must be added
+** to each database connection separately.
+**
+** ^The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
+** representation, exclusive of the zero-terminator. ^Note that the name
+** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
+** ^Any attempt to create a function with a longer name
+** will result in [SQLITE_MISUSE] being returned.
+**
+** ^The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. ^If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
+**
+** ^The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. The application should set this parameter to
+** [SQLITE_UTF16LE] if the function implementation invokes
+** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
+** implementation invokes [sqlite3_value_text16be()] on an input, or
+** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
+** otherwise. ^The same SQL function may be registered multiple times using
+** different preferred text encodings, with different implementations for
+** each encoding.
+** ^When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+**
+** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
+** to signal that the function will always return the same result given
+** the same inputs within a single SQL statement. Most SQL functions are
+** deterministic. The built-in [random()] SQL function is an example of a
+** function that is not deterministic. The SQLite query planner is able to
+** perform additional optimizations on deterministic functions, so use
+** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
+**
+** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
+** flag, which if present prevents the function from being invoked from
+** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions,
+** index expressions, or the WHERE clause of partial indexes.
+**
+** For best security, the [SQLITE_DIRECTONLY] flag is recommended for
+** all application-defined SQL functions that do not need to be
+** used inside of triggers, view, CHECK constraints, or other elements of
+** the database schema. This flags is especially recommended for SQL
+** functions that have side effects or reveal internal application state.
+** Without this flag, an attacker might be able to modify the schema of
+** a database file to include invocations of the function with parameters
+** chosen by the attacker, which the application will then execute when
+** the database file is opened and read.
+**
+** ^(The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].)^
+**
+** ^The sixth, seventh and eighth parameters passed to the three
+** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL function or
+** aggregate. ^A scalar SQL function requires an implementation of the xFunc
+** callback only; NULL pointers must be passed as the xStep and xFinal
+** parameters. ^An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL pointers for all three function
+** callbacks.
+**
+** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue
+** and xInverse) passed to sqlite3_create_window_function are pointers to
+** C-language callbacks that implement the new function. xStep and xFinal
+** must both be non-NULL. xValue and xInverse may either both be NULL, in
+** which case a regular aggregate function is created, or must both be
+** non-NULL, in which case the new function may be used as either an aggregate
+** or aggregate window function. More details regarding the implementation
+** of aggregate window functions are
+** [user-defined window functions|available here].
+**
+** ^(If the final parameter to sqlite3_create_function_v2() or
+** sqlite3_create_window_function() is not NULL, then it is destructor for
+** the application data pointer. The destructor is invoked when the function
+** is deleted, either by being overloaded or when the database connection
+** closes.)^ ^The destructor is also invoked if the call to
+** sqlite3_create_function_v2() fails. ^When the destructor callback is
+** invoked, it is passed a single argument which is a copy of the application
+** data pointer which was the fifth parameter to sqlite3_create_function_v2().
+**
+** ^It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. ^SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. ^A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. ^A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** ^A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** ^Built-in functions may be overloaded by new application-defined functions.
+**
+** ^An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_window_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*)
+);
+
+/*
+** CAPI3REF: Text Encodings
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1 /* IMP: R-37514-35566 */
+#define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */
+#define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* Deprecated */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Function Flags
+**
+** These constants may be ORed together with the
+** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
+** to [sqlite3_create_function()], [sqlite3_create_function16()], or
+** [sqlite3_create_function_v2()].
+**
+** <dl>
+** [[SQLITE_DETERMINISTIC]] <dt>SQLITE_DETERMINISTIC</dt><dd>
+** The SQLITE_DETERMINISTIC flag means that the new function always gives
+** the same output when the input parameters are the same.
+** The [abs|abs() function] is deterministic, for example, but
+** [randomblob|randomblob()] is not. Functions must
+** be deterministic in order to be used in certain contexts such as
+** with the WHERE clause of [partial indexes] or in [generated columns].
+** SQLite might also optimize deterministic functions by factoring them
+** out of inner loops.
+** </dd>
+**
+** [[SQLITE_DIRECTONLY]] <dt>SQLITE_DIRECTONLY</dt><dd>
+** The SQLITE_DIRECTONLY flag means that the function may only be invoked
+** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], or [generated columns].
+** The SQLITE_DIRECTONLY flags is a security feature which is recommended
+** for all [application-defined SQL functions], and especially for functions
+** that have side-effects or that could potentially leak sensitive
+** information.
+** </dd>
+**
+** [[SQLITE_INNOCUOUS]] <dt>SQLITE_INNOCUOUS</dt><dd>
+** The SQLITE_INNOCUOUS flag means that the function is unlikely
+** to cause problems even if misused. An innocuous function should have
+** no side effects and should not depend on any values other than its
+** input parameters. The [abs|abs() function] is an example of an
+** innocuous function.
+** The [load_extension() SQL function] is not innocuous because of its
+** side effects.
+** <p> SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not
+** exactly the same. The [random|random() function] is an example of a
+** function that is innocuous but not deterministic.
+** <p>Some heightened security settings
+** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF])
+** disable the use of SQL functions inside views and triggers and in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], and [generated columns] unless
+** the function is tagged with SQLITE_INNOCUOUS. Most built-in functions
+** are innocuous. Developers are advised to avoid using the
+** SQLITE_INNOCUOUS flag for application-defined functions unless the
+** function has been carefully audited and found to be free of potentially
+** security-adverse side-effects and information-leaks.
+** </dd>
+**
+** [[SQLITE_SUBTYPE]] <dt>SQLITE_SUBTYPE</dt><dd>
+** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
+** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
+** Specifying this flag makes no difference for scalar or aggregate user
+** functions. However, if it is not specified for a user-defined window
+** function, then any sub-types belonging to arguments passed to the window
+** function may be discarded before the window function is called (i.e.
+** sqlite3_value_subtype() will always return 0).
+** </dd>
+** </dl>
+*/
+#define SQLITE_DETERMINISTIC 0x000000800
+#define SQLITE_DIRECTONLY 0x000080000
+#define SQLITE_SUBTYPE 0x000100000
+#define SQLITE_INNOCUOUS 0x000200000
+
+/*
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To encourage programmers to avoid
+** these functions, we will not explain what they do.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
+ void*,sqlite3_int64);
+#endif
+
+/*
+** CAPI3REF: Obtaining SQL Values
+** METHOD: sqlite3_value
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
+** <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
+** <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
+** <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
+** <tr><td><b>sqlite3_value_pointer</b><td>&rarr;<td>Pointer value
+** <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
+** <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
+** the native byteorder
+** <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
+** <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT in bytes
+** <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
+** datatype of the value
+** <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
+** <tr><td><b>sqlite3_value_nochange&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if the column is unchanged in an UPDATE
+** against a virtual table.
+** <tr><td><b>sqlite3_value_frombind&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if value originated from a [bound parameter]
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** These routines extract type, size, and content information from
+** [protected sqlite3_value] objects. Protected sqlite3_value objects
+** are used to pass parameter information into the functions that
+** implement [application-defined SQL functions] and [virtual tables].
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** is not threadsafe.
+**
+** ^These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** ^The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. ^The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
+**
+** ^If [sqlite3_value] object V was initialized
+** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)]
+** and if X and Y are strings that compare equal according to strcmp(X,Y),
+** then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise,
+** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^(The sqlite3_value_type(V) interface returns the
+** [SQLITE_INTEGER | datatype code] for the initial datatype of the
+** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^
+** Other interfaces might change the datatype for an sqlite3_value object.
+** For example, if the datatype is initially SQLITE_INTEGER and
+** sqlite3_value_text(V) is called to extract a text value for that
+** integer, then subsequent calls to sqlite3_value_type(V) might return
+** SQLITE_TEXT. Whether or not a persistent internal datatype conversion
+** occurs is undefined and may change from one release of SQLite to the next.
+**
+** ^(The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
+**
+** ^Within the [xUpdate] method of a [virtual table], the
+** sqlite3_value_nochange(X) interface returns true if and only if
+** the column corresponding to X is unchanged by the UPDATE operation
+** that the xUpdate method call was invoked to implement and if
+** and the prior [xColumn] method call that was invoked to extracted
+** the value for that column returned without setting a result (probably
+** because it queried [sqlite3_vtab_nochange()] and found that the column
+** was unchanging). ^Within an [xUpdate] method, any value for which
+** sqlite3_value_nochange(X) is true will in all other respects appear
+** to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other
+** than within an [xUpdate] method call for an UPDATE statement, then
+** the return value is arbitrary and meaningless.
+**
+** ^The sqlite3_value_frombind(X) interface returns non-zero if the
+** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()]
+** interfaces. ^If X comes from an SQL literal value, or a table column,
+** or an expression, then sqlite3_value_frombind(X) returns zero.
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+** As long as the input parameter is correct, these routines can only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_value_blob()
+** <li> sqlite3_value_text()
+** <li> sqlite3_value_text16()
+** <li> sqlite3_value_text16le()
+** <li> sqlite3_value_text16be()
+** <li> sqlite3_value_bytes()
+** <li> sqlite3_value_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_nochange(sqlite3_value*);
+SQLITE_API int sqlite3_value_frombind(sqlite3_value*);
+
+/*
+** CAPI3REF: Finding The Subtype Of SQL Values
+** METHOD: sqlite3_value
+**
+** The sqlite3_value_subtype(V) function returns the subtype for
+** an [application-defined SQL function] argument V. The subtype
+** information can be used to pass a limited amount of context from
+** one SQL function to another. Use the [sqlite3_result_subtype()]
+** routine to set the subtype for the return value of an SQL function.
+*/
+SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*);
+
+/*
+** CAPI3REF: Copy And Free SQL Values
+** METHOD: sqlite3_value
+**
+** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
+** object D and returns a pointer to that copy. ^The [sqlite3_value] returned
+** is a [protected sqlite3_value] object even if the input is not.
+** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
+** memory allocation fails. ^If V is a [pointer value], then the result
+** of sqlite3_value_dup(V) is a NULL value.
+**
+** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
+** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer
+** then sqlite3_value_free(V) is a harmless no-op.
+*/
+SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*);
+SQLITE_API void sqlite3_value_free(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context
+** METHOD: sqlite3_context
+**
+** Implementations of aggregate SQL functions use this
+** routine to allocate memory for storing their state.
+**
+** ^The first time the sqlite3_aggregate_context(C,N) routine is called
+** for a particular aggregate function, SQLite allocates
+** N bytes of memory, zeroes out that memory, and returns a pointer
+** to the new memory. ^On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function instance,
+** the same buffer is returned. Sqlite3_aggregate_context() is normally
+** called once for each invocation of the xStep callback and then one
+** last time when the xFinal callback is invoked. ^(When no rows match
+** an aggregate query, the xStep() callback of the aggregate function
+** implementation is never called and xFinal() is called exactly once.
+** In those cases, sqlite3_aggregate_context() might be called for the
+** first time from within xFinal().)^
+**
+** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
+** when first called if N is less than or equal to zero or if a memory
+** allocate error occurs.
+**
+** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
+** determined by the N parameter on first successful call. Changing the
+** value of N in any subsequent call to sqlite3_aggregate_context() within
+** the same aggregate function instance will not resize the memory
+** allocation.)^ Within the xFinal callback, it is customary to set
+** N=0 in calls to sqlite3_aggregate_context(C,N) so that no
+** pointless memory allocations occur.
+**
+** ^SQLite automatically frees the memory allocated by
+** sqlite3_aggregate_context() when the aggregate query concludes.
+**
+** The first parameter must be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the xStep or xFinal callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data
+** METHOD: sqlite3_context
+**
+** These functions may be used by (non-aggregate) SQL functions to
+** associate metadata with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated metadata may be preserved. An example
+** of where this might be useful is in a regular-expression matching
+** function. The compiled version of the regular expression can be stored as
+** metadata associated with the pattern string.
+** Then as long as the pattern string remains the same,
+** the compiled regular expression can be reused on multiple
+** invocations of the same function.
+**
+** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata
+** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
+** value to the application-defined function. ^N is zero for the left-most
+** function argument. ^If there is no metadata
+** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
+** returns a NULL pointer.
+**
+** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
+** argument of the application-defined function. ^Subsequent
+** calls to sqlite3_get_auxdata(C,N) return P from the most recent
+** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
+** NULL if the metadata has been discarded.
+** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
+** SQLite will invoke the destructor function X with parameter P exactly
+** once, when the metadata is discarded.
+** SQLite is free to discard the metadata at any time, including: <ul>
+** <li> ^(when the corresponding function parameter changes)^, or
+** <li> ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
+** SQL statement)^, or
+** <li> ^(when sqlite3_set_auxdata() is invoked again on the same
+** parameter)^, or
+** <li> ^(during the original sqlite3_set_auxdata() call when a memory
+** allocation error occurs.)^ </ul>
+**
+** Note the last bullet in particular. The destructor X in
+** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
+** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata()
+** should be called near the end of the function implementation and the
+** function implementation should not make any use of P after
+** sqlite3_set_auxdata() has been called.
+**
+** ^(In practice, metadata is preserved between function calls for
+** function parameters that are compile-time constants, including literal
+** values and [parameters] and expressions composed from the same.)^
+**
+** The value of the N parameter to these interfaces should be non-negative.
+** Future enhancements may make use of negative N values to define new
+** kinds of function caching behavior.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. ^The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function
+** METHOD: sqlite3_context
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** ^The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
+** interfaces set the result of the application-defined function to be
+** a BLOB containing all zero bytes and N bytes in size.
+**
+** ^The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** ^The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** ^SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. ^SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. ^SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 using
+** the same [byte-order determination rules] as [sqlite3_bind_text16()].
+** ^If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** ^If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** ^The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** ^The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. ^By default,
+** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
+** error indicating that a string or BLOB is too long to represent.
+**
+** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
+** error indicating that a memory allocation failed.
+**
+** ^The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** ^The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** ^The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** ^The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** ^The sqlite3_result_text64() interface sets the return value of an
+** application-defined function to be a text string in an encoding
+** specified by the fifth (and last) parameter, which must be one
+** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
+** ^SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result. If the 3rd parameter is non-negative, then it
+** must be the byte offset into the string where the NUL terminator would
+** appear if the string where NUL terminated. If any NUL characters occur
+** in the string at a byte offset that is less than the value of the 3rd
+** parameter, then the resulting string will contain embedded NULs and the
+** result of expressions operating on strings with embedded NULs is undefined.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained
+** from [sqlite3_malloc()] before it returns.
+**
+** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and
+** sqlite3_result_text16be() routines, and for sqlite3_result_text64()
+** when the encoding is not UTF8, if the input UTF16 begins with a
+** byte-order mark (BOM, U+FEFF) then the BOM is removed from the
+** string and the rest of the string is interpreted according to the
+** byte-order specified by the BOM. ^The byte-order specified by
+** the BOM at the beginning of the text overrides the byte-order
+** specified by the interface procedure. ^So, for example, if
+** sqlite3_result_text16le() is invoked with text that begins
+** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the
+** first two bytes of input are skipped and the remaining input
+** is interpreted as UTF16BE text.
+**
+** ^For UTF16 input text to the sqlite3_result_text16(),
+** sqlite3_result_text16be(), sqlite3_result_text16le(), and
+** sqlite3_result_text64() routines, if the text contains invalid
+** UTF16 characters, the invalid characters might be converted
+** into the unicode replacement character, U+FFFD.
+**
+** ^The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy of the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** ^A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an
+** SQL NULL value, just like [sqlite3_result_null(C)], except that it
+** also associates the host-language pointer P or type T with that
+** NULL value such that the pointer can be retrieved within an
+** [application-defined SQL function] using [sqlite3_value_pointer()].
+** ^If the D parameter is not NULL, then it is a pointer to a destructor
+** for the P parameter. ^SQLite invokes D with P as its only argument
+** when SQLite is finished with P. The T parameter should be a static
+** string and preferably a string literal. The sqlite3_result_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
+ sqlite3_uint64,void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*));
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
+
+
+/*
+** CAPI3REF: Setting The Subtype Of An SQL Function
+** METHOD: sqlite3_context
+**
+** The sqlite3_result_subtype(C,T) function causes the subtype of
+** the result from the [application-defined SQL function] with
+** [sqlite3_context] C to be the value T. Only the lower 8 bits
+** of the subtype T are preserved in current versions of SQLite;
+** higher order bits are discarded.
+** The number of subtype bytes preserved by SQLite might increase
+** in future releases of SQLite.
+*/
+SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int);
+
+/*
+** CAPI3REF: Define New Collating Sequences
+** METHOD: sqlite3
+**
+** ^These functions add, remove, or modify a [collation] associated
+** with the [database connection] specified as the first argument.
+**
+** ^The name of the collation is a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string in native byte order for sqlite3_create_collation16().
+** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
+** considered to be the same name.
+**
+** ^(The third argument (eTextRep) must be one of the constants:
+** <ul>
+** <li> [SQLITE_UTF8],
+** <li> [SQLITE_UTF16LE],
+** <li> [SQLITE_UTF16BE],
+** <li> [SQLITE_UTF16], or
+** <li> [SQLITE_UTF16_ALIGNED].
+** </ul>)^
+** ^The eTextRep argument determines the encoding of strings passed
+** to the collating function callback, xCompare.
+** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
+** force strings to be UTF16 with native byte order.
+** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
+** on an even byte address.
+**
+** ^The fourth argument, pArg, is an application data pointer that is passed
+** through as the first argument to the collating function callback.
+**
+** ^The fifth argument, xCompare, is a pointer to the collating function.
+** ^Multiple collating functions can be registered using the same name but
+** with different eTextRep parameters and SQLite will use whichever
+** function requires the least amount of data transformation.
+** ^If the xCompare argument is NULL then the collating function is
+** deleted. ^When all collating functions having the same name are deleted,
+** that collation is no longer usable.
+**
+** ^The collating function callback is invoked with a copy of the pArg
+** application data pointer and with two strings in the encoding specified
+** by the eTextRep argument. The two integer parameters to the collating
+** function callback are the length of the two strings, in bytes. The collating
+** function must return an integer that is negative, zero, or positive
+** if the first string is less than, equal to, or greater than the second,
+** respectively. A collating function must always return the same answer
+** given the same inputs. If two or more collating functions are registered
+** to the same collation name (using different eTextRep values) then all
+** must give an equivalent answer when invoked with equivalent strings.
+** The collating function must obey the following properties for all
+** strings A, B, and C:
+**
+** <ol>
+** <li> If A==B then B==A.
+** <li> If A==B and B==C then A==C.
+** <li> If A&lt;B THEN B&gt;A.
+** <li> If A&lt;B and B&lt;C then A&lt;C.
+** </ol>
+**
+** If a collating function fails any of the above constraints and that
+** collating function is registered and used, then the behavior of SQLite
+** is undefined.
+**
+** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** with the addition that the xDestroy callback is invoked on pArg when
+** the collating function is deleted.
+** ^Collating functions are deleted when they are overridden by later
+** calls to the collation creation functions or when the
+** [database connection] is closed using [sqlite3_close()].
+**
+** ^The xDestroy callback is <u>not</u> called if the
+** sqlite3_create_collation_v2() function fails. Applications that invoke
+** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
+** check the return code and dispose of the application data pointer
+** themselves rather than expecting SQLite to deal with it for them.
+** This is different from every other SQLite interface. The inconsistency
+** is unfortunate but cannot be changed without breaking backwards
+** compatibility.
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks
+** METHOD: sqlite3
+**
+** ^To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** [database connection] to be invoked whenever an undefined collation
+** sequence is required.
+**
+** ^If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** ^A call to either function replaces the existing collation-needed callback.
+**
+** ^(When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
+** required collation sequence.)^
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+/*
+** Specify the key for an encrypted database. This routine should be
+** called right after sqlite3_open().
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+SQLITE_API int sqlite3_key(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The key */
+);
+SQLITE_API int sqlite3_key_v2(
+ sqlite3 *db, /* Database to be rekeyed */
+ const char *zDbName, /* Name of the database */
+ const void *pKey, int nKey /* The key */
+);
+
+/*
+** Change the key on an open database. If the current database is not
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
+** database is decrypted.
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+/* SQLCipher usage note:
+
+ If the current database is plaintext SQLCipher will NOT encrypt it.
+ If the current database is encrypted and pNew==0 or nNew==0, SQLCipher
+ will NOT decrypt it.
+
+ This routine will ONLY work on an already encrypted database in order
+ to change the key.
+
+ Conversion from plaintext-to-encrypted or encrypted-to-plaintext should
+ use an ATTACHed database and the sqlcipher_export() convenience function
+ as per the SQLCipher Documentation.
+*/
+SQLITE_API int sqlite3_rekey(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The new key */
+);
+SQLITE_API int sqlite3_rekey_v2(
+ sqlite3 *db, /* Database to be rekeyed */
+ const char *zDbName, /* Name of the database */
+ const void *pKey, int nKey /* The new key */
+);
+
+/*
+** Specify the activation key for a SEE database. Unless
+** activated, none of the SEE routines will work.
+*/
+SQLITE_API void sqlite3_activate_see(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+/* END SQLCIPHER */
+
+#ifdef SQLITE_ENABLE_CEROD
+/*
+** Specify the activation key for a CEROD database. Unless
+** activated, none of the CEROD routines will work.
+*/
+SQLITE_API void sqlite3_activate_cerod(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time
+**
+** The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** ^SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object. If the xSleep() method
+** of the default VFS is not implemented correctly, or not implemented at
+** all, then the behavior of sqlite3_sleep() may deviate from the description
+** in the previous paragraphs.
+*/
+SQLITE_API int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
+** created by SQLite when using a built-in [sqlite3_vfs | VFS]
+** will be placed in that directory.)^ ^If this variable
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** Applications are strongly discouraged from using this global variable.
+** It is required to set a temporary folder on Windows Runtime (WinRT).
+** But for all other platforms, it is highly recommended that applications
+** neither read nor write this variable. This global variable is a relic
+** that exists for backwards compatibility of legacy applications and should
+** be avoided in new projects.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
+** Except when requested by the [temp_store_directory pragma], SQLite
+** does not free the memory that sqlite3_temp_directory points to. If
+** the application wants that memory to be freed, it must do
+** so itself, taking care to only do so after all [database connection]
+** objects have been destroyed.
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various
+** features that require the use of temporary files may fail. Here is an
+** example of how to do this using C++ with the Windows Runtime:
+**
+** <blockquote><pre>
+** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
+** &nbsp; TemporaryFolder->Path->Data();
+** char zPathBuf&#91;MAX_PATH + 1&#93;;
+** memset(zPathBuf, 0, sizeof(zPathBuf));
+** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
+** &nbsp; NULL, NULL);
+** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
+** </pre></blockquote>
+*/
+SQLITE_API char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Name Of The Folder Holding Database Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all database files
+** specified with a relative pathname and created or accessed by
+** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
+** to be relative to that directory.)^ ^If this variable is a NULL
+** pointer, then SQLite assumes that all database files specified
+** with a relative pathname are relative to the current directory
+** for the process. Only the windows VFS makes use of this global
+** variable; it is ignored by the unix VFS.
+**
+** Changing the value of this variable while a database connection is
+** open can result in a corrupt database.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [data_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [data_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [data_store_directory pragma] should be avoided.
+*/
+SQLITE_API char *sqlite3_data_directory;
+
+/*
+** CAPI3REF: Win32 Specific Interface
+**
+** These interfaces are available only on Windows. The
+** [sqlite3_win32_set_directory] interface is used to set the value associated
+** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
+** zValue, depending on the value of the type parameter. The zValue parameter
+** should be NULL to cause the previous value to be freed via [sqlite3_free];
+** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
+** prior to being used. The [sqlite3_win32_set_directory] interface returns
+** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
+** or [SQLITE_NOMEM] if memory could not be allocated. The value of the
+** [sqlite3_data_directory] variable is intended to act as a replacement for
+** the current directory on the sub-platforms of Win32 where that concept is
+** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and
+** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
+** sqlite3_win32_set_directory interface except the string parameter must be
+** UTF-8 or UTF-16, respectively.
+*/
+SQLITE_API int sqlite3_win32_set_directory(
+ unsigned long type, /* Identifier for directory being set or reset */
+ void *zValue /* New value for directory being set or reset */
+);
+SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
+SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);
+
+/*
+** CAPI3REF: Win32 Directory Types
+**
+** These macros are only available on Windows. They define the allowed values
+** for the type argument to the [sqlite3_win32_set_directory] interface.
+*/
+#define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1
+#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2
+
+/*
+** CAPI3REF: Test For Auto-Commit Mode
+** KEYWORDS: {autocommit mode}
+** METHOD: sqlite3
+**
+** ^The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. ^Autocommit mode is on by default.
+** ^Autocommit mode is disabled by a [BEGIN] statement.
+** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. ^The [database connection]
+** returned by sqlite3_db_handle is the same [database connection]
+** that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Return The Schema Name For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_name(D,N) interface returns a pointer to the schema name
+** for the N-th database on database connection D, or a NULL pointer of N is
+** out of range. An N value of 0 means the main database file. An N of 1 is
+** the "temp" schema. Larger values of N correspond to various ATTACH-ed
+** databases.
+**
+** Space to hold the string that is returned by sqlite3_db_name() is managed
+** by SQLite itself. The string might be deallocated by any operation that
+** changes the schema, including [ATTACH] or [DETACH] or calls to
+** [sqlite3_serialize()] or [sqlite3_deserialize()], even operations that
+** occur on a different thread. Applications that need to
+** remember the string long-term should make their own copy. Applications that
+** are accessing the same database connection simultaneously on multiple
+** threads should mutex-protect calls to this API and should make their own
+** private copy of the result prior to releasing the mutex.
+*/
+SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Return The Filename For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename
+** associated with database N of connection D.
+** ^If there is no attached database N on the database
+** connection D, or if database N is a temporary or in-memory database, then
+** this function will return either a NULL pointer or an empty string.
+**
+** ^The string value returned by this routine is owned and managed by
+** the database connection. ^The value will be valid until the database N
+** is [DETACH]-ed or until the database connection closes.
+**
+** ^The filename returned by this function is the output of the
+** xFullPathname method of the [VFS]. ^In other words, the filename
+** will be an absolute pathname, even if the filename used
+** to open the database originally was a URI or relative pathname.
+**
+** If the filename pointer returned by this routine is not NULL, then it
+** can be used as the filename input parameter to these routines:
+** <ul>
+** <li> [sqlite3_uri_parameter()]
+** <li> [sqlite3_uri_boolean()]
+** <li> [sqlite3_uri_int64()]
+** <li> [sqlite3_filename_database()]
+** <li> [sqlite3_filename_journal()]
+** <li> [sqlite3_filename_wal()]
+** </ul>
+*/
+SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine if a database is read-only
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
+** of connection D is read-only, 0 if it is read/write, or -1 if N is not
+** the name of a database on connection D.
+*/
+SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine the transaction state of a database
+** METHOD: sqlite3
+**
+** ^The sqlite3_txn_state(D,S) interface returns the current
+** [transaction state] of schema S in database connection D. ^If S is NULL,
+** then the highest transaction state of any schema on database connection D
+** is returned. Transaction states are (in order of lowest to highest):
+** <ol>
+** <li value="0"> SQLITE_TXN_NONE
+** <li value="1"> SQLITE_TXN_READ
+** <li value="2"> SQLITE_TXN_WRITE
+** </ol>
+** ^If the S argument to sqlite3_txn_state(D,S) is not the name of
+** a valid schema, then -1 is returned.
+*/
+SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema);
+
+/*
+** CAPI3REF: Allowed return values from [sqlite3_txn_state()]
+** KEYWORDS: {transaction state}
+**
+** These constants define the current transaction state of a database file.
+** ^The [sqlite3_txn_state(D,S)] interface returns one of these
+** constants in order to describe the transaction state of schema S
+** in [database connection] D.
+**
+** <dl>
+** [[SQLITE_TXN_NONE]] <dt>SQLITE_TXN_NONE</dt>
+** <dd>The SQLITE_TXN_NONE state means that no transaction is currently
+** pending.</dd>
+**
+** [[SQLITE_TXN_READ]] <dt>SQLITE_TXN_READ</dt>
+** <dd>The SQLITE_TXN_READ state means that the database is currently
+** in a read transaction. Content has been read from the database file
+** but nothing in the database file has changed. The transaction state
+** will advanced to SQLITE_TXN_WRITE if any changes occur and there are
+** no other conflicting concurrent write transactions. The transaction
+** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or
+** [COMMIT].</dd>
+**
+** [[SQLITE_TXN_WRITE]] <dt>SQLITE_TXN_WRITE</dt>
+** <dd>The SQLITE_TXN_WRITE state means that the database is currently
+** in a write transaction. Content has been written to the database file
+** but has not yet committed. The transaction state will change to
+** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].</dd>
+*/
+#define SQLITE_TXN_NONE 0
+#define SQLITE_TXN_READ 1
+#define SQLITE_TXN_WRITE 2
+
+/*
+** CAPI3REF: Find the next prepared statement
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. ^If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** ^Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** ^The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** ^Any callback set by a previous call to sqlite3_rollback_hook()
+** for the same database connection is overridden.
+** ^The pArg argument is passed through to the callback.
+** ^If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
+** return the P argument from the previous call of the same function
+** on the same [database connection] D, or NULL for
+** the first call for each function on D.
+**
+** The commit and rollback hook callbacks are not reentrant.
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that running any other SQL statements, including SELECT statements,
+** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
+** the database connections for the meaning of "modify" in this paragraph.
+**
+** ^Registering a NULL function disables the callback.
+**
+** ^When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. ^If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** ^The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
+**
+** ^For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** ^The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+**
+** See also the [sqlite3_update_hook()] interface.
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Autovacuum Compaction Amount Callback
+** METHOD: sqlite3
+**
+** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback
+** function C that is invoked prior to each autovacuum of the database
+** file. ^The callback is passed a copy of the generic data pointer (P),
+** the schema-name of the attached database that is being autovacuumed,
+** the the size of the database file in pages, the number of free pages,
+** and the number of bytes per page, respectively. The callback should
+** return the number of free pages that should be removed by the
+** autovacuum. ^If the callback returns zero, then no autovacuum happens.
+** ^If the value returned is greater than or equal to the number of
+** free pages, then a complete autovacuum happens.
+**
+** <p>^If there are multiple ATTACH-ed database files that are being
+** modified as part of a transaction commit, then the autovacuum pages
+** callback is invoked separately for each file.
+**
+** <p><b>The callback is not reentrant.</b> The callback function should
+** not attempt to invoke any other SQLite interface. If it does, bad
+** things may happen, including segmentation faults and corrupt database
+** files. The callback function should be a simple function that
+** does some arithmetic on its input parameters and returns a result.
+**
+** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional
+** destructor for the P parameter. ^If X is not NULL, then X(P) is
+** invoked whenever the database connection closes or when the callback
+** is overwritten by another invocation of sqlite3_autovacuum_pages().
+**
+** <p>^There is only one autovacuum pages callback per database connection.
+** ^Each call to the sqlite3_autovacuum_pages() interface overrides all
+** previous invocations for that database connection. ^If the callback
+** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer,
+** then the autovacuum steps callback is cancelled. The return value
+** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might
+** be some other error code if something goes wrong. The current
+** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other
+** return codes might be added in future releases.
+**
+** <p>If no autovacuum pages callback is specified (the usual case) or
+** a NULL pointer is provided for the callback,
+** then the default behavior is to vacuum all free pages. So, in other
+** words, the default behavior is the same as if the callback function
+** were something like this:
+**
+** <blockquote><pre>
+** &nbsp; unsigned int demonstration_autovac_pages_callback(
+** &nbsp; void *pClientData,
+** &nbsp; const char *zSchema,
+** &nbsp; unsigned int nDbPage,
+** &nbsp; unsigned int nFreePage,
+** &nbsp; unsigned int nBytePerPage
+** &nbsp; ){
+** &nbsp; return nFreePage;
+** &nbsp; }
+** </pre></blockquote>
+*/
+SQLITE_API int sqlite3_autovacuum_pages(
+ sqlite3 *db,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*,
+ void(*)(void*)
+);
+
+
+/*
+** CAPI3REF: Data Change Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted in
+** a [rowid table].
+** ^Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** ^The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted in a rowid table.
+** ^The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** ^The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** ^The final callback parameter is the [rowid] of the row.
+** ^In the case of an update, this is the [rowid] after the update takes place.
+**
+** ^(The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_sequence).)^
+** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
+**
+** ^In the current implementation, the update hook
+** is not invoked when conflicting rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^The sqlite3_update_hook(D,C,P) function
+** returns the P argument from the previous call
+** on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()],
+** and [sqlite3_preupdate_hook()] interfaces.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache
+**
+** ^(This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.)^
+**
+** ^Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]).
+** In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
+**
+** ^(The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue to use the sharing mode
+** that was in effect at the time they were opened.)^
+**
+** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.)^
+**
+** ^Shared cache is disabled by default. It is recommended that it stay
+** that way. In other words, do not use this routine. This interface
+** continues to be provided for historical compatibility, but its use is
+** discouraged. Any use of shared cache is discouraged. If shared cache
+** must be used, it is recommended that shared cache only be enabled for
+** individual database connections using the [sqlite3_open_v2()] interface
+** with the [SQLITE_OPEN_SHAREDCACHE] flag.
+**
+** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
+** and will always return SQLITE_MISUSE. On those systems,
+** shared cache mode should be enabled per-database connection via
+** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
+**
+** This interface is threadsafe on processors where writing a
+** 32-bit integer is atomic.
+**
+** See Also: [SQLite Shared-Cache Mode]
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory
+**
+** ^The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** ^sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
+** ^The sqlite3_release_memory() routine is a no-op returning zero
+** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
+**
+** See also: [sqlite3_db_release_memory()]
+*/
+SQLITE_API int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Free Memory Used By A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
+** memory as possible from database connection D. Unlike the
+** [sqlite3_release_memory()] interface, this interface is in effect even
+** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
+** omitted.
+**
+** See also: [sqlite3_release_memory()]
+*/
+SQLITE_API int sqlite3_db_release_memory(sqlite3*);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size
+**
+** These interfaces impose limits on the amount of heap memory that will be
+** by all database connections within a single process.
+**
+** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
+** soft limit on the amount of heap memory that may be allocated by SQLite.
+** ^SQLite strives to keep heap memory utilization below the soft heap
+** limit by reducing the number of pages held in the page cache
+** as heap memory usages approaches the limit.
+** ^The soft heap limit is "soft" because even though SQLite strives to stay
+** below the limit, it will exceed the limit rather than generate
+** an [SQLITE_NOMEM] error. In other words, the soft heap limit
+** is advisory only.
+**
+** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of
+** N bytes on the amount of memory that will be allocated. ^The
+** sqlite3_hard_heap_limit64(N) interface is similar to
+** sqlite3_soft_heap_limit64(N) except that memory allocations will fail
+** when the hard heap limit is reached.
+**
+** ^The return value from both sqlite3_soft_heap_limit64() and
+** sqlite3_hard_heap_limit64() is the size of
+** the heap limit prior to the call, or negative in the case of an
+** error. ^If the argument N is negative
+** then no change is made to the heap limit. Hence, the current
+** size of heap limits can be determined by invoking
+** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1).
+**
+** ^Setting the heap limits to zero disables the heap limiter mechanism.
+**
+** ^The soft heap limit may not be greater than the hard heap limit.
+** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N)
+** is invoked with a value of N that is greater than the hard heap limit,
+** the the soft heap limit is set to the value of the hard heap limit.
+** ^The soft heap limit is automatically enabled whenever the hard heap
+** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and
+** the soft heap limit is outside the range of 1..N, then the soft heap
+** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the
+** hard heap limit is enabled makes the soft heap limit equal to the
+** hard heap limit.
+**
+** The memory allocation limits can also be adjusted using
+** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit].
+**
+** ^(The heap limits are not enforced in the current implementation
+** if one or more of following conditions are true:
+**
+** <ul>
+** <li> The limit value is set to zero.
+** <li> Memory accounting is disabled using a combination of the
+** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
+** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
+** <li> An alternative page cache implementation is specified using
+** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
+** <li> The page cache allocates from its own memory pool supplied
+** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
+** from the heap.
+** </ul>)^
+**
+** The circumstances under which SQLite will enforce the heap limits may
+** changes in future releases of SQLite.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
+SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N);
+
+/*
+** CAPI3REF: Deprecated Soft Heap Limit Interface
+** DEPRECATED
+**
+** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
+** interface. This routine is provided for historical compatibility
+** only. All new applications should use the
+** [sqlite3_soft_heap_limit64()] interface rather than this one.
+*/
+SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
+
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table
+** METHOD: sqlite3
+**
+** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
+** information about column C of table T in database D
+** on [database connection] X.)^ ^The sqlite3_table_column_metadata()
+** interface returns SQLITE_OK and fills in the non-NULL pointers in
+** the final five arguments with appropriate values if the specified
+** column exists. ^The sqlite3_table_column_metadata() interface returns
+** SQLITE_ERROR if the specified column does not exist.
+** ^If the column-name parameter to sqlite3_table_column_metadata() is a
+** NULL pointer, then this routine simply checks for the existence of the
+** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
+** does not. If the table name parameter T in a call to
+** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is
+** undefined behavior.
+**
+** ^The column is identified by the second, third and fourth parameters to
+** this function. ^(The second parameter is either the name of the database
+** (i.e. "main", "temp", or an attached database) containing the specified
+** table or NULL.)^ ^If it is NULL, then all attached databases are searched
+** for the table using the same algorithm used by the database engine to
+** resolve unqualified table references.
+**
+** ^The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively.
+**
+** ^Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. ^Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
+**
+** ^(<blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
+**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
+** </table>
+** </blockquote>)^
+**
+** ^The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid until the next
+** call to any SQLite API function.
+**
+** ^If the specified table is actually a view, an [error code] is returned.
+**
+** ^If the specified column is "rowid", "oid" or "_rowid_" and the table
+** is not a [WITHOUT ROWID] table and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. ^(If there is no
+** [INTEGER PRIMARY KEY] column, then the outputs
+** for the [rowid] are set as follows:
+**
+** <pre>
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+** </pre>)^
+**
+** ^This function causes all database schemas to be read from disk and
+** parsed, if that has not already been done, and returns an error if
+** any errors are encountered while loading the schema.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension
+** METHOD: sqlite3
+**
+** ^This interface loads an SQLite extension library from the named file.
+**
+** ^The sqlite3_load_extension() interface attempts to load an
+** [SQLite extension] library contained in the file zFile. If
+** the file cannot be loaded directly, attempts are made to load
+** with various operating-system specific extensions added.
+** So for example, if "samplelib" cannot be loaded, then names like
+** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
+** be tried also.
+**
+** ^The entry point is zProc.
+** ^(zProc may be 0, in which case SQLite will try to come up with an
+** entry point name on its own. It first tries "sqlite3_extension_init".
+** If that does not work, it constructs a name "sqlite3_X_init" where the
+** X is consists of the lower-case equivalent of all ASCII alphabetic
+** characters in the filename from the last "/" to the first following
+** "." and omitting any initial "lib".)^
+** ^The sqlite3_load_extension() interface returns
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** ^If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** ^Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] or
+** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL)
+** prior to calling this API,
+** otherwise an error will be returned.
+**
+** <b>Security warning:</b> It is recommended that the
+** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this
+** interface. The use of the [sqlite3_enable_load_extension()] interface
+** should be avoided. This will keep the SQL function [load_extension()]
+** disabled and prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+**
+** See also the [load_extension() SQL function].
+*/
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading
+** METHOD: sqlite3
+**
+** ^So as not to open security holes in older applications that are
+** unprepared to deal with [extension loading], and as a means of disabling
+** [extension loading] while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** ^Extension loading is off by default.
+** ^Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** ^This interface enables or disables both the C-API
+** [sqlite3_load_extension()] and the SQL function [load_extension()].
+** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..)
+** to enable or disable only the C-API.)^
+**
+** <b>Security warning:</b> It is recommended that extension loading
+** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method
+** rather than this interface, so the [load_extension()] SQL function
+** remains disabled. This will prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Automatically Load Statically Linked Extensions
+**
+** ^This interface causes the xEntryPoint() function to be invoked for
+** each new [database connection] that is created. The idea here is that
+** xEntryPoint() is the entry point for a statically linked [SQLite extension]
+** that is to be automatically loaded into all new database connections.
+**
+** ^(Even though the function prototype shows that xEntryPoint() takes
+** no arguments and returns void, SQLite invokes xEntryPoint() with three
+** arguments and expects an integer result as if the signature of the
+** entry point where as follows:
+**
+** <blockquote><pre>
+** &nbsp; int xEntryPoint(
+** &nbsp; sqlite3 *db,
+** &nbsp; const char **pzErrMsg,
+** &nbsp; const struct sqlite3_api_routines *pThunk
+** &nbsp; );
+** </pre></blockquote>)^
+**
+** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
+** point to an appropriate error message (obtained from [sqlite3_mprintf()])
+** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
+** is NULL before calling the xEntryPoint(). ^SQLite will invoke
+** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
+** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
+**
+** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
+** on the list of automatic extensions is a harmless no-op. ^No entry point
+** will be called more than once for each database connection that is opened.
+**
+** See also: [sqlite3_reset_auto_extension()]
+** and [sqlite3_cancel_auto_extension()]
+*/
+SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Cancel Automatic Extension Loading
+**
+** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
+** initialization routine X that was registered using a prior call to
+** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)]
+** routine returns 1 if initialization routine X was successfully
+** unregistered and it returns 0 if X was not on the list of initialization
+** routines.
+*/
+SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading
+**
+** ^This interface disables all automatic extensions previously
+** registered using [sqlite3_auto_extension()].
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void);
+
+/*
+** The interface to the virtual-table mechanism is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object
+** KEYWORDS: sqlite3_module {virtual table module}
+**
+** This structure, sometimes called a "virtual table module",
+** defines the implementation of a [virtual table].
+** This structure consists mostly of methods for the module.
+**
+** ^A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** ^The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+ /* The methods above are in version 1 of the sqlite_module object. Those
+ ** below are for version 2 and greater. */
+ int (*xSavepoint)(sqlite3_vtab *pVTab, int);
+ int (*xRelease)(sqlite3_vtab *pVTab, int);
+ int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
+ /* The methods above are in versions 1 and 2 of the sqlite_module object.
+ ** Those below are for version 3 and greater. */
+ int (*xShadowName)(const char*);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information
+** KEYWORDS: sqlite3_index_info
+**
+** The sqlite3_index_info structure and its substructures is used as part
+** of the [virtual table] interface to
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** ^(The aConstraint[] array records WHERE clause constraints of the form:
+**
+** <blockquote>column OP expr</blockquote>
+**
+** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
+** stored in aConstraint[].op using one of the
+** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
+** ^(The index of the column is stored in
+** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.)^
+**
+** ^The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** ^The aConstraint[] array only reports WHERE clause terms that are
+** relevant to the particular virtual table being queried.
+**
+** ^Information about the ORDER BY clause is stored in aOrderBy[].
+** ^Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The colUsed field indicates which columns of the virtual table may be
+** required by the current scan. Virtual table columns are numbered from
+** zero in the order in which they appear within the CREATE TABLE statement
+** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
+** the corresponding bit is set within the colUsed mask if the column may be
+** required by SQLite. If the table has at least 64 columns and any column
+** to the right of the first 63 is required, then bit 63 of colUsed is also
+** set. In other words, column iCol may be required if the expression
+** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to
+** non-zero.
+**
+** The [xBestIndex] method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. ^If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and might not be checked again by the byte code.)^ ^(The
+** aConstraintUsage[].omit flag is an optimization hint. When the omit flag
+** is left in its default setting of false, the constraint will always be
+** checked separately in byte code. If the omit flag is change to true, then
+** the constraint may or may not be checked in byte code. In other words,
+** when the omit flag is true there is no guarantee that the constraint will
+** not be checked again using byte code.)^
+**
+** ^The idxNum and idxPtr values are recorded and passed into the
+** [xFilter] method.
+** ^[sqlite3_free()] is used to free idxPtr if and only if
+** needToFreeIdxPtr is true.
+**
+** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** ^The estimatedCost value is an estimate of the cost of a particular
+** strategy. A cost of N indicates that the cost of the strategy is similar
+** to a linear scan of an SQLite table with N rows. A cost of log(N)
+** indicates that the expense of the operation is similar to that of a
+** binary search on a unique indexed field of an SQLite table with N rows.
+**
+** ^The estimatedRows value is an estimate of the number of rows that
+** will be returned by the strategy.
+**
+** The xBestIndex method may optionally populate the idxFlags field with a
+** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag -
+** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite
+** assumes that the strategy may visit at most one row.
+**
+** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then
+** SQLite also assumes that if a call to the xUpdate() method is made as
+** part of the same statement to delete or update a virtual table row and the
+** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback
+** any database changes. In other words, if the xUpdate() returns
+** SQLITE_CONSTRAINT, the database contents must be exactly as they were
+** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not
+** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by
+** the xUpdate method are automatically rolled back by SQLite.
+**
+** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
+** structure for SQLite [version 3.8.2] ([dateof:3.8.2]).
+** If a virtual table extension is
+** used with an SQLite version earlier than 3.8.2, the results of attempting
+** to read or write the estimatedRows field are undefined (but are likely
+** to include crashing the application). The estimatedRows field should
+** therefore only be used if [sqlite3_libversion_number()] returns a
+** value greater than or equal to 3008002. Similarly, the idxFlags field
+** was added for [version 3.9.0] ([dateof:3.9.0]).
+** It may therefore only be used if
+** sqlite3_libversion_number() returns a value greater than or equal to
+** 3009000.
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column constrained. -1 for ROWID */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+ /* Fields below are only available in SQLite 3.8.2 and later */
+ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */
+ /* Fields below are only available in SQLite 3.9.0 and later */
+ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */
+ /* Fields below are only available in SQLite 3.10.0 and later */
+ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */
+};
+
+/*
+** CAPI3REF: Virtual Table Scan Flags
+**
+** Virtual table implementations are allowed to set the
+** [sqlite3_index_info].idxFlags field to some combination of
+** these bits.
+*/
+#define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */
+
+/*
+** CAPI3REF: Virtual Table Constraint Operator Codes
+**
+** These macros define the allowed values for the
+** [sqlite3_index_info].aConstraint[].op field. Each value represents
+** an operator that is part of a constraint term in the WHERE clause of
+** a query that uses a [virtual table].
+**
+** ^The left-hand operand of the operator is given by the corresponding
+** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand
+** operand is the rowid.
+** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET
+** operators have no left-hand operand, and so for those operators the
+** corresponding aConstraint[].iColumn is meaningless and should not be
+** used.
+**
+** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through
+** value 255 are reserved to represent functions that are overloaded
+** by the [xFindFunction|xFindFunction method] of the virtual table
+** implementation.
+**
+** The right-hand operands for each constraint might be accessible using
+** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand
+** operand is only available if it appears as a single constant literal
+** in the input SQL. If the right-hand operand is another column or an
+** expression (even a constant expression) or a parameter, then the
+** sqlite3_vtab_rhs_value() probably will not be able to extract it.
+** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and
+** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand
+** and hence calls to sqlite3_vtab_rhs_value() for those operators will
+** always return SQLITE_NOTFOUND.
+**
+** The collating sequence to be used for comparison can be found using
+** the [sqlite3_vtab_collation()] interface. For most real-world virtual
+** tables, the collating sequence of constraints does not matter (for example
+** because the constraints are numeric) and so the sqlite3_vtab_collation()
+** interface is no commonly needed.
+*/
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+#define SQLITE_INDEX_CONSTRAINT_LIKE 65
+#define SQLITE_INDEX_CONSTRAINT_GLOB 66
+#define SQLITE_INDEX_CONSTRAINT_REGEXP 67
+#define SQLITE_INDEX_CONSTRAINT_NE 68
+#define SQLITE_INDEX_CONSTRAINT_ISNOT 69
+#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70
+#define SQLITE_INDEX_CONSTRAINT_ISNULL 71
+#define SQLITE_INDEX_CONSTRAINT_IS 72
+#define SQLITE_INDEX_CONSTRAINT_LIMIT 73
+#define SQLITE_INDEX_CONSTRAINT_OFFSET 74
+#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation
+** METHOD: sqlite3
+**
+** ^These routines are used to register a new [virtual table module] name.
+** ^Module names must be registered before
+** creating a new [virtual table] using the module and before using a
+** preexisting [virtual table] for the module.
+**
+** ^The module name is registered on the [database connection] specified
+** by the first parameter. ^The name of the module is given by the
+** second parameter. ^The third parameter is a pointer to
+** the implementation of the [virtual table module]. ^The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** ^The sqlite3_create_module_v2() interface has a fifth parameter which
+** is a pointer to a destructor for the pClientData. ^SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer. ^The destructor will also
+** be invoked if the call to sqlite3_create_module_v2() fails.
+** ^The sqlite3_create_module()
+** interface is equivalent to sqlite3_create_module_v2() with a NULL
+** destructor.
+**
+** ^If the third parameter (the pointer to the sqlite3_module object) is
+** NULL then no new module is created and any existing modules with the
+** same name are dropped.
+**
+** See also: [sqlite3_drop_modules()]
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
+);
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Remove Unnecessary Virtual Table Implementations
+** METHOD: sqlite3
+**
+** ^The sqlite3_drop_modules(D,L) interface removes all virtual
+** table modules from database connection D except those named on list L.
+** The L parameter must be either NULL or a pointer to an array of pointers
+** to strings where the array is terminated by a single NULL pointer.
+** ^If the L parameter is NULL, then all virtual table modules are removed.
+**
+** See also: [sqlite3_create_module()]
+*/
+SQLITE_API int sqlite3_drop_modules(
+ sqlite3 *db, /* Remove modules from this connection */
+ const char **azKeep /* Except, do not remove the ones named here */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object
+** KEYWORDS: sqlite3_vtab
+**
+** Every [virtual table module] implementation uses a subclass
+** of this object to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
+**
+** ^Virtual tables methods can set an error message by assigning a
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
+** prior to assigning a new string to zErrMsg. ^After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* Number of open cursors */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
+** to loop through the virtual table. Cursors are created using the
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cursors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table
+**
+** ^The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table
+** METHOD: sqlite3
+**
+** ^(Virtual tables can provide alternative implementations of functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
+** must exist in order to be overloaded.)^
+**
+** ^(This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created.)^ ^The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
+*/
+SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** The interface to the virtual-table mechanism defined above (back up
+** to a comment remarkably similar to this one) is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** CAPI3REF: A Handle To An Open BLOB
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** ^Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_blob
+**
+** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** </pre>)^
+**
+** ^(Parameter zDb is not the filename that contains the database, but
+** rather the symbolic name of the database. For attached databases, this is
+** the name that appears after the AS keyword in the [ATTACH] statement.
+** For the main database file, the database name is "main". For TEMP
+** tables, the database name is "temp".)^
+**
+** ^If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. ^If the flags parameter is zero, the BLOB is opened for
+** read-only access.
+**
+** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
+** in *ppBlob. Otherwise an [error code] is returned and, unless the error
+** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
+** the API is not misused, it is always safe to call [sqlite3_blob_close()]
+** on *ppBlob after this function it returns.
+**
+** This function fails with SQLITE_ERROR if any of the following are true:
+** <ul>
+** <li> ^(Database zDb does not exist)^,
+** <li> ^(Table zTable does not exist within database zDb)^,
+** <li> ^(Table zTable is a WITHOUT ROWID table)^,
+** <li> ^(Column zColumn does not exist)^,
+** <li> ^(Row iRow is not present in the table)^,
+** <li> ^(The specified column of row iRow contains a value that is not
+** a TEXT or BLOB value)^,
+** <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
+** constraint and the blob is being opened for read/write access)^,
+** <li> ^([foreign key constraints | Foreign key constraints] are enabled,
+** column zColumn is part of a [child key] definition and the blob is
+** being opened for read/write access)^.
+** </ul>
+**
+** ^Unless it returns SQLITE_MISUSE, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** A BLOB referenced by sqlite3_blob_open() may be read using the
+** [sqlite3_blob_read()] interface and modified by using
+** [sqlite3_blob_write()]. The [BLOB handle] can be moved to a
+** different row of the same table using the [sqlite3_blob_reopen()]
+** interface. However, the column, table, or database of a [BLOB handle]
+** cannot be changed after the [BLOB handle] is opened.
+**
+** ^(If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.)^
+** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
+** ^(Changes written into a BLOB prior to the BLOB expiring are not
+** rolled back by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.)^
+**
+** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. ^The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function may be used to create a
+** zero-filled blob to read or write using the incremental-blob interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+**
+** See also: [sqlite3_blob_close()],
+** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
+** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Move a BLOB Handle to a New Row
+** METHOD: sqlite3_blob
+**
+** ^This function is used to move an existing [BLOB handle] so that it points
+** to a different row of the same database table. ^The new row is identified
+** by the rowid value passed as the second argument. Only the row can be
+** changed. ^The database, table and column on which the blob handle is open
+** remain the same. Moving an existing [BLOB handle] to a new row is
+** faster than closing the existing handle and opening a new one.
+**
+** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
+** it must exist and there must be either a blob or text value stored in
+** the nominated column.)^ ^If the new row is not present in the table, or if
+** it does not contain a blob or text value, or if another error occurs, an
+** SQLite error code is returned and the blob handle is considered aborted.
+** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
+** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
+** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
+** always returns zero.
+**
+** ^This function sets the database handle error code and message.
+*/
+SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
+
+/*
+** CAPI3REF: Close A BLOB Handle
+** DESTRUCTOR: sqlite3_blob
+**
+** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
+** unconditionally. Even if this routine returns an error code, the
+** handle is still closed.)^
+**
+** ^If the blob handle being closed was opened for read-write access, and if
+** the database is in auto-commit mode and there are no other open read-write
+** blob handles or active write statements, the current transaction is
+** committed. ^If an error occurs while committing the transaction, an error
+** code is returned and the transaction rolled back.
+**
+** Calling this function with an argument that is not a NULL pointer or an
+** open blob handle results in undefined behaviour. ^Calling this routine
+** with a null pointer (such as would be returned by a failed call to
+** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
+** is passed a valid open blob handle, the values returned by the
+** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB
+** METHOD: sqlite3_blob
+**
+** ^Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. ^The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.)^
+**
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** ^The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** ^An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.)^
+**
+** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+** ^Unless SQLITE_MISUSE is returned, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** ^If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. The size of the
+** BLOB (and hence the maximum value of N+iOffset) can be determined
+** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
+** than zero [SQLITE_ERROR] is returned and no data is written.
+**
+** ^An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** ^Names are case sensitive.
+** ^Names are zero-terminated UTF-8 strings.
+** ^If there is no match, a NULL pointer is returned.
+** ^If zVfsName is NULL then the default VFS is returned.
+**
+** ^New VFSes are registered with sqlite3_vfs_register().
+** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
+** ^The same VFS can be registered multiple times without injury.
+** ^To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** ^(If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.)^
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_PTHREADS
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_PTHREADS and
+** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
+** and Windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** ^The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
+** routine returns NULL if it is unable to allocate the requested
+** mutex. The argument to sqlite3_mutex_alloc() must one of these
+** integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
+** cause sqlite3_mutex_alloc() to create
+** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
+** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
+** a pointer to a static preexisting mutex. ^Nine static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. ^For the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** ^The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. Attempting to deallocate a static
+** mutex results in undefined behavior.
+**
+** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. ^If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. ^(Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** In such cases, the
+** mutex must be exited an equal number of times before another thread
+** can enter.)^ If the same thread tries to enter any mutex other
+** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
+**
+** ^(Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable
+** behavior.)^
+**
+** ^The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated.
+**
+** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the application has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the application
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** ^The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** ^The xMutexInit routine is called by SQLite exactly once for each
+** effective call to [sqlite3_initialize()].
+**
+** ^The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. ^The xMutexEnd()
+** interface is invoked exactly once for each call to [sqlite3_shutdown()].
+**
+** ^(The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>)^
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case. The results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. It must be harmless to
+** invoke xMutexInit() multiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. The SQLite core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** The implementation is not required to provide versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+#ifndef NDEBUG
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+#endif
+
+/*
+** CAPI3REF: Mutex Types
+**
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MAIN 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_randomness() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */
+#define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */
+#define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */
+#define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */
+#define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */
+
+/* Legacy compatibility: */
+#define SQLITE_MUTEX_STATIC_MASTER 2
+
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** ^If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files
+** METHOD: sqlite3
+** KEYWORDS: {file control}
+**
+** ^The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. ^The
+** name of the database is "main" for the main database or "temp" for the
+** TEMP database, or the name that appears after the AS keyword for
+** databases that are added using the [ATTACH] SQL command.
+** ^A NULL pointer can be used in place of "main" to refer to the
+** main database file.
+** ^The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. ^The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** A few opcodes for [sqlite3_file_control()] are handled directly
+** by the SQLite core and never invoke the
+** sqlite3_io_methods.xFileControl method.
+** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes
+** a pointer to the underlying [sqlite3_file] object to be written into
+** the space pointed to by the 4th parameter. The
+** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns
+** the [sqlite3_file] object associated with the journal file instead of
+** the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns
+** a pointer to the underlying [sqlite3_vfs] object for the file.
+** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter
+** from the pager.
+**
+** ^If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. ^This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. The underlying xFileControl method might
+** also return SQLITE_ERROR. There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method.
+**
+** See also: [file control opcodes]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface
+**
+** ^The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. ^The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FIRST 5
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7 /* NOT USED */
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14 /* NOT USED */
+#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
+#define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */
+#define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */
+#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17
+#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18
+#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */
+#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19
+#define SQLITE_TESTCTRL_NEVER_CORRUPT 20
+#define SQLITE_TESTCTRL_VDBE_COVERAGE 21
+#define SQLITE_TESTCTRL_BYTEORDER 22
+#define SQLITE_TESTCTRL_ISINIT 23
+#define SQLITE_TESTCTRL_SORTER_MMAP 24
+#define SQLITE_TESTCTRL_IMPOSTER 25
+#define SQLITE_TESTCTRL_PARSER_COVERAGE 26
+#define SQLITE_TESTCTRL_RESULT_INTREAL 27
+#define SQLITE_TESTCTRL_PRNG_SEED 28
+#define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29
+#define SQLITE_TESTCTRL_SEEK_COUNT 30
+#define SQLITE_TESTCTRL_TRACEFLAGS 31
+#define SQLITE_TESTCTRL_TUNE 32
+#define SQLITE_TESTCTRL_LOGEST 33
+#define SQLITE_TESTCTRL_LAST 33 /* Largest TESTCTRL */
+
+/*
+** CAPI3REF: SQL Keyword Checking
+**
+** These routines provide access to the set of SQL language keywords
+** recognized by SQLite. Applications can uses these routines to determine
+** whether or not a specific identifier needs to be escaped (for example,
+** by enclosing in double-quotes) so as not to confuse the parser.
+**
+** The sqlite3_keyword_count() interface returns the number of distinct
+** keywords understood by SQLite.
+**
+** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
+** makes *Z point to that keyword expressed as UTF8 and writes the number
+** of bytes in the keyword into *L. The string that *Z points to is not
+** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns
+** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
+** or L are NULL or invalid pointers then calls to
+** sqlite3_keyword_name(N,Z,L) result in undefined behavior.
+**
+** The sqlite3_keyword_check(Z,L) interface checks to see whether or not
+** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
+** if it is and zero if not.
+**
+** The parser used by SQLite is forgiving. It is often possible to use
+** a keyword as an identifier as long as such use does not result in a
+** parsing ambiguity. For example, the statement
+** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
+** creates a new table named "BEGIN" with three columns named
+** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid
+** using keywords as identifiers. Common techniques used to avoid keyword
+** name collisions include:
+** <ul>
+** <li> Put all identifier names inside double-quotes. This is the official
+** SQL way to escape identifier names.
+** <li> Put identifier names inside &#91;...&#93;. This is not standard SQL,
+** but it is what SQL Server does and so lots of programmers use this
+** technique.
+** <li> Begin every identifier with the letter "Z" as no SQL keywords start
+** with "Z".
+** <li> Include a digit somewhere in every identifier name.
+** </ul>
+**
+** Note that the number of keywords understood by SQLite can depend on
+** compile-time options. For example, "VACUUM" is not a keyword if
+** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also,
+** new keywords may be added to future releases of SQLite.
+*/
+SQLITE_API int sqlite3_keyword_count(void);
+SQLITE_API int sqlite3_keyword_name(int,const char**,int*);
+SQLITE_API int sqlite3_keyword_check(const char*,int);
+
+/*
+** CAPI3REF: Dynamic String Object
+** KEYWORDS: {dynamic string}
+**
+** An instance of the sqlite3_str object contains a dynamically-sized
+** string under construction.
+**
+** The lifecycle of an sqlite3_str object is as follows:
+** <ol>
+** <li> ^The sqlite3_str object is created using [sqlite3_str_new()].
+** <li> ^Text is appended to the sqlite3_str object using various
+** methods, such as [sqlite3_str_appendf()].
+** <li> ^The sqlite3_str object is destroyed and the string it created
+** is returned using the [sqlite3_str_finish()] interface.
+** </ol>
+*/
+typedef struct sqlite3_str sqlite3_str;
+
+/*
+** CAPI3REF: Create A New Dynamic String Object
+** CONSTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_new(D)] interface allocates and initializes
+** a new [sqlite3_str] object. To avoid memory leaks, the object returned by
+** [sqlite3_str_new()] must be freed by a subsequent call to
+** [sqlite3_str_finish(X)].
+**
+** ^The [sqlite3_str_new(D)] interface always returns a pointer to a
+** valid [sqlite3_str] object, though in the event of an out-of-memory
+** error the returned object might be a special singleton that will
+** silently reject new text, always return SQLITE_NOMEM from
+** [sqlite3_str_errcode()], always return 0 for
+** [sqlite3_str_length()], and always return NULL from
+** [sqlite3_str_finish(X)]. It is always safe to use the value
+** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter
+** to any of the other [sqlite3_str] methods.
+**
+** The D parameter to [sqlite3_str_new(D)] may be NULL. If the
+** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
+** length of the string contained in the [sqlite3_str] object will be
+** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
+** of [SQLITE_MAX_LENGTH].
+*/
+SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*);
+
+/*
+** CAPI3REF: Finalize A Dynamic String
+** DESTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
+** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
+** that contains the constructed string. The calling application should
+** pass the returned value to [sqlite3_free()] to avoid a memory leak.
+** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
+** errors were encountered during construction of the string. ^The
+** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
+** string in [sqlite3_str] object X is zero bytes long.
+*/
+SQLITE_API char *sqlite3_str_finish(sqlite3_str*);
+
+/*
+** CAPI3REF: Add Content To A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces add content to an sqlite3_str object previously obtained
+** from [sqlite3_str_new()].
+**
+** ^The [sqlite3_str_appendf(X,F,...)] and
+** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
+** functionality of SQLite to append formatted text onto the end of
+** [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
+** onto the end of the [sqlite3_str] object X. N must be non-negative.
+** S must contain at least N non-zero bytes of content. To append a
+** zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
+** method instead.
+**
+** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
+** zero-terminated string S onto the end of [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
+** single-byte character C onto the end of [sqlite3_str] object X.
+** ^This method can be used, for example, to add whitespace indentation.
+**
+** ^The [sqlite3_str_reset(X)] method resets the string under construction
+** inside [sqlite3_str] object X back to zero bytes in length.
+**
+** These methods do not return a result code. ^If an error occurs, that fact
+** is recorded in the [sqlite3_str] object and can be recovered by a
+** subsequent call to [sqlite3_str_errcode(X)].
+*/
+SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...);
+SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list);
+SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N);
+SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn);
+SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C);
+SQLITE_API void sqlite3_str_reset(sqlite3_str*);
+
+/*
+** CAPI3REF: Status Of A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces return the current status of an [sqlite3_str] object.
+**
+** ^If any prior errors have occurred while constructing the dynamic string
+** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
+** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns
+** [SQLITE_NOMEM] following any out-of-memory error, or
+** [SQLITE_TOOBIG] if the size of the dynamic string exceeds
+** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
+**
+** ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
+** of the dynamic string under construction in [sqlite3_str] object X.
+** ^The length returned by [sqlite3_str_length(X)] does not include the
+** zero-termination byte.
+**
+** ^The [sqlite3_str_value(X)] method returns a pointer to the current
+** content of the dynamic string under construction in X. The value
+** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
+** and might be freed or altered by any subsequent method on the same
+** [sqlite3_str] object. Applications must not used the pointer returned
+** [sqlite3_str_value(X)] after any subsequent method call on the same
+** object. ^Applications may change the content of the string returned
+** by [sqlite3_str_value(X)] as long as they do not write into any bytes
+** outside the range of 0 to [sqlite3_str_length(X)] and do not read or
+** write any byte after any subsequent sqlite3_str method call.
+*/
+SQLITE_API int sqlite3_str_errcode(sqlite3_str*);
+SQLITE_API int sqlite3_str_length(sqlite3_str*);
+SQLITE_API char *sqlite3_str_value(sqlite3_str*);
+
+/*
+** CAPI3REF: SQLite Runtime Status
+**
+** ^These interfaces are used to retrieve runtime status information
+** about the performance of SQLite, and optionally to reset various
+** highwater marks. ^The first argument is an integer code for
+** the specific parameter to measure. ^(Recognized integer codes
+** are of the form [status parameters | SQLITE_STATUS_...].)^
+** ^The current value of the parameter is returned into *pCurrent.
+** ^The highest recorded value is returned in *pHighwater. ^If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. ^(Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.)^
+** ^(Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.)^
+**
+** ^The sqlite3_status() and sqlite3_status64() routines return
+** SQLITE_OK on success and a non-zero [error code] on failure.
+**
+** If either the current value or the highwater mark is too large to
+** be represented by a 32-bit integer, then the values returned by
+** sqlite3_status() are undefined.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+SQLITE_API int sqlite3_status64(
+ int op,
+ sqlite3_int64 *pCurrent,
+ sqlite3_int64 *pHighwater,
+ int resetFlag
+);
+
+
+/*
+** CAPI3REF: Status Parameters
+** KEYWORDS: {status parameters}
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
+** <dd>This parameter records the number of separate memory allocations
+** currently checked out.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
+** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to the [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_SCRATCH_USED]] <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_SIZE]] <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>The *pHighwater parameter records the deepest parser stack.
+** The *pCurrent value is undefined. The *pHighwater value is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3 /* NOT USED */
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_COUNT 9
+
+/*
+** CAPI3REF: Database Connection Status
+** METHOD: sqlite3
+**
+** ^This interface is used to retrieve runtime status information
+** about a single [database connection]. ^The first argument is the
+** database connection object to be interrogated. ^The second argument
+** is an integer constant, taken from the set of
+** [SQLITE_DBSTATUS options], that
+** determines the parameter to interrogate. The set of
+** [SQLITE_DBSTATUS options] is likely
+** to grow in future releases of SQLite.
+**
+** ^The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. ^If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections
+** KEYWORDS: {SQLITE_DBSTATUS options}
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+** <dl>
+** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
+** <dd>This parameter returns the number of malloc attempts that were
+** satisfied using lookaside memory. Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to the amount of
+** memory requested being larger than the lookaside slot size.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to all lookaside
+** memory already being in use.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used by all pager caches associated with the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]]
+** ^(<dt>SQLITE_DBSTATUS_CACHE_USED_SHARED</dt>
+** <dd>This parameter is similar to DBSTATUS_CACHE_USED, except that if a
+** pager cache is shared between two or more connections the bytes of heap
+** memory used by that pager cache is divided evenly between the attached
+** connections.)^ In other words, if none of the pager caches associated
+** with the database connection are shared, this request returns the same
+** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are
+** shared, the value returned by this call will be smaller than that returned
+** by DBSTATUS_CACHE_USED. ^The highwater mark associated with
+** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0.
+**
+** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used to store the schema for all databases associated
+** with the connection - main, temp, and any [ATTACH]-ed databases.)^
+** ^The full amount of memory used by the schemas is reported, even if the
+** schema memory is shared with other database connections due to
+** [shared cache mode] being enabled.
+** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** and lookaside memory used by all prepared statements associated with
+** the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
+** <dd>This parameter returns the number of pager cache hits that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
+** <dd>This parameter returns the number of pager cache misses that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk. Specifically, the number of pages written to the
+** wal file in wal mode databases, or the number of pages written to the
+** database file in rollback mode databases. Any pages written as part of
+** transaction rollback or database recovery operations are not included.
+** If an IO or other error occurs while writing a page to disk, the effect
+** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
+** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(<dt>SQLITE_DBSTATUS_CACHE_SPILL</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk in the middle of a transaction due to the page
+** cache overflowing. Transactions are more efficient if they are written
+** to disk all at once. When pages spill mid-transaction, that introduces
+** additional overhead. This parameter can be used help identify
+** inefficiencies that can be resolved by increasing the cache size.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
+** <dd>This parameter returns zero for the current value if and only if
+** all foreign key constraints (deferred or immediate) have been
+** resolved.)^ ^The highwater mark is always 0.
+** </dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+#define SQLITE_DBSTATUS_CACHE_USED 1
+#define SQLITE_DBSTATUS_SCHEMA_USED 2
+#define SQLITE_DBSTATUS_STMT_USED 3
+#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6
+#define SQLITE_DBSTATUS_CACHE_HIT 7
+#define SQLITE_DBSTATUS_CACHE_MISS 8
+#define SQLITE_DBSTATUS_CACHE_WRITE 9
+#define SQLITE_DBSTATUS_DEFERRED_FKS 10
+#define SQLITE_DBSTATUS_CACHE_USED_SHARED 11
+#define SQLITE_DBSTATUS_CACHE_SPILL 12
+#define SQLITE_DBSTATUS_MAX 12 /* Largest defined DBSTATUS */
+
+
+/*
+** CAPI3REF: Prepared Statement Status
+** METHOD: sqlite3_stmt
+**
+** ^(Each prepared statement maintains various
+** [SQLITE_STMTSTATUS counters] that measure the number
+** of times it has performed specific operations.)^ These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** ^(This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS counter]
+** to be interrogated.)^
+** ^The current value of the requested counter is returned.
+** ^If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements
+** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+** <dl>
+** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
+** <dd>^This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
+** <dd>^This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
+** <dd>^This is the number of rows inserted into transient indices that
+** were created automatically in order to help joins run faster.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance by adding permanent indices that do not
+** need to be reinitialized each time the statement is run.</dd>
+**
+** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
+** <dd>^This is the number of virtual machine operations executed
+** by the prepared statement if that number is less than or equal
+** to 2147483647. The number of virtual machine operations can be
+** used as a proxy for the total work done by the prepared statement.
+** If the number of virtual machine operations exceeds 2147483647
+** then the value returned by this statement status code is undefined.
+**
+** [[SQLITE_STMTSTATUS_REPREPARE]] <dt>SQLITE_STMTSTATUS_REPREPARE</dt>
+** <dd>^This is the number of times that the prepare statement has been
+** automatically regenerated due to schema changes or changes to
+** [bound parameters] that might affect the query plan.
+**
+** [[SQLITE_STMTSTATUS_RUN]] <dt>SQLITE_STMTSTATUS_RUN</dt>
+** <dd>^This is the number of times that the prepared statement has
+** been run. A single "run" for the purposes of this counter is one
+** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()].
+** The counter is incremented on the first [sqlite3_step()] call of each
+** cycle.
+**
+** [[SQLITE_STMTSTATUS_FILTER_MISS]]
+** [[SQLITE_STMTSTATUS_FILTER HIT]]
+** <dt>SQLITE_STMTSTATUS_FILTER_HIT<br>
+** SQLITE_STMTSTATUS_FILTER_MISS</dt>
+** <dd>^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join
+** step was bypassed because a Bloom filter returned not-found. The
+** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of
+** times that the Bloom filter returned a find, and thus the join step
+** had to be processed as normal.
+**
+** [[SQLITE_STMTSTATUS_MEMUSED]] <dt>SQLITE_STMTSTATUS_MEMUSED</dt>
+** <dd>^This is the approximate number of bytes of heap memory
+** used to store the prepared statement. ^This value is not actually
+** a counter, and so the resetFlg parameter to sqlite3_stmt_status()
+** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED.
+** </dd>
+** </dl>
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+#define SQLITE_STMTSTATUS_AUTOINDEX 3
+#define SQLITE_STMTSTATUS_VM_STEP 4
+#define SQLITE_STMTSTATUS_REPREPARE 5
+#define SQLITE_STMTSTATUS_RUN 6
+#define SQLITE_STMTSTATUS_FILTER_MISS 7
+#define SQLITE_STMTSTATUS_FILTER_HIT 8
+#define SQLITE_STMTSTATUS_MEMUSED 99
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache_page object represents a single page in the
+** page cache. The page cache will allocate instances of this
+** object. Various methods of the page cache use pointers to instances
+** of this object as parameters or as their return value.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache_page sqlite3_pcache_page;
+struct sqlite3_pcache_page {
+ void *pBuf; /* The content of the page */
+ void *pExtra; /* Extra information associated with the page */
+};
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+**
+** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods2 structure.)^
+** In many applications, most of the heap memory allocated by
+** SQLite is used for the page cache.
+** By implementing a
+** custom page cache using this API, an application can better control
+** the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** The alternative page cache mechanism is an
+** extreme measure that is only needed by the most demanding applications.
+** The built-in page cache is recommended for most uses.
+**
+** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.)^
+**
+** [[the xInit() page cache method]]
+** ^(The xInit() method is called once for each effective
+** call to [sqlite3_initialize()])^
+** (usually only once during the lifetime of the process). ^(The xInit()
+** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
+** The intent of the xInit() method is to set up global data structures
+** required by the custom page cache implementation.
+** ^(If the xInit() method is NULL, then the
+** built-in default page cache is used instead of the application defined
+** page cache.)^
+**
+** [[the xShutdown() page cache method]]
+** ^The xShutdown() method is called by [sqlite3_shutdown()].
+** It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+** ^The xShutdown() method may be NULL.
+**
+** ^SQLite automatically serializes calls to the xInit method,
+** so the xInit method need not be threadsafe. ^The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** ^SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** [[the xCreate() page cache methods]]
+** ^SQLite invokes the xCreate() method to construct a new cache instance.
+** SQLite will typically create one cache instance for each open database file,
+** though this is not guaranteed. ^The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. ^szPage will always a power of two. ^The
+** second parameter szExtra is a number of bytes of extra storage
+** associated with each page cache entry. ^The szExtra parameter will
+** a number less than 250. SQLite will use the
+** extra szExtra bytes on each page to store metadata about the underlying
+** database page on disk. The value passed into szExtra depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** ^The third argument to xCreate(), bPurgeable, is true if the cache being
+** created will be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
+** false will always have the "discard" flag set to true.
+** ^Hence, a cache created with bPurgeable false will
+** never contain any unpinned pages.
+**
+** [[the xCachesize() page cache method]]
+** ^(The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
+** parameter, the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** [[the xPagecount() page cache methods]]
+** The xPagecount() method must return the number of pages currently
+** stored in the cache, both pinned and unpinned.
+**
+** [[the xFetch() page cache methods]]
+** The xFetch() method locates a page in the cache and returns a pointer to
+** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
+** The pBuf element of the returned sqlite3_pcache_page object will be a
+** pointer to a buffer of szPage bytes used to store the content of a
+** single database page. The pExtra element of sqlite3_pcache_page will be
+** a pointer to the szExtra bytes of extra storage that SQLite has requested
+** for each entry in the page cache.
+**
+** The page to be fetched is determined by the key. ^The minimum key value
+** is 1. After it has been retrieved using xFetch, the page is considered
+** to be "pinned".
+**
+** If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. If the requested page is not already in the cache, then the
+** cache implementation should use the value of the createFlag
+** parameter to help it determined what action to take:
+**
+** <table border=1 width=85% align=center>
+** <tr><th> createFlag <th> Behavior when page is not already in cache
+** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
+** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** </table>
+**
+** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
+** will only use a createFlag of 2 after a prior call with a createFlag of 1
+** failed.)^ In between the xFetch() calls, SQLite may
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache.
+**
+** [[the xUnpin() page cache method]]
+** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page must be evicted from the cache.
+** ^If the discard parameter is
+** zero, then the page may be discarded or retained at the discretion of
+** page cache implementation. ^The page cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** The cache must not perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().
+**
+** [[the xRekey() page cache methods]]
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument. If the cache
+** previously contains an entry associated with newKey, it must be
+** discarded. ^Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** [[the xDestroy() page cache method]]
+** ^The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. ^After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods2
+** functions.
+**
+** [[the xShrink() page cache method]]
+** ^SQLite invokes the xShrink() method when it wants the page cache to
+** free up as much of heap memory as possible. The page cache implementation
+** is not obligated to free any memory, but well-behaved implementations should
+** do their best.
+*/
+typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
+struct sqlite3_pcache_methods2 {
+ int iVersion;
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
+ void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
+ unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+ void (*xShrink)(sqlite3_pcache*);
+};
+
+/*
+** This is the obsolete pcache_methods object that has now been replaced
+** by sqlite3_pcache_methods2. This object is not used by SQLite. It is
+** retained in the header file for backwards compatibility only.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+
+/*
+** CAPI3REF: Online Backup Object
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. ^The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+**
+** The backup API copies the content of one database into another.
+** It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** ^SQLite holds a write transaction open on the destination database file
+** for the duration of the backup operation.
+** ^The source database is read-locked only while it is being read;
+** it is not locked continuously for the entire backup operation.
+** ^Thus, the backup may be performed on a live source database without
+** preventing other database connections from
+** reading or writing to the source database while the backup is underway.
+**
+** ^(To perform a backup operation:
+** <ol>
+** <li><b>sqlite3_backup_init()</b> is called once to initialize the
+** backup,
+** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
+** the data between the two databases, and finally
+** <li><b>sqlite3_backup_finish()</b> is called to release all resources
+** associated with the backup operation.
+** </ol>)^
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
+**
+** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
+** [database connection] associated with the destination database
+** and the database name, respectively.
+** ^The database name is "main" for the main database, "temp" for the
+** temporary database, or the name specified after the AS keyword in
+** an [ATTACH] statement for an attached database.
+** ^The S and M arguments passed to
+** sqlite3_backup_init(D,N,S,M) identify the [database connection]
+** and database name of the source database, respectively.
+** ^The source and destination [database connections] (parameters S and D)
+** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
+** an error.
+**
+** ^A call to sqlite3_backup_init() will fail, returning NULL, if
+** there is already a read or read-write transaction open on the
+** destination database.
+**
+** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
+** returned and an error code and error message are stored in the
+** destination [database connection] D.
+** ^The error code and message for the failed call to sqlite3_backup_init()
+** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
+** [sqlite3_errmsg16()] functions.
+** ^A successful call to sqlite3_backup_init() returns a pointer to an
+** [sqlite3_backup] object.
+** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
+**
+** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
+** the source and destination databases specified by [sqlite3_backup] object B.
+** ^If N is negative, all remaining source pages are copied.
+** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
+** are still more pages to be copied, then the function returns [SQLITE_OK].
+** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
+** from source to destination, then it returns [SQLITE_DONE].
+** ^If an error occurs while running sqlite3_backup_step(B,N),
+** then an [error code] is returned. ^As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
+** <ol>
+** <li> the destination database was opened read-only, or
+** <li> the destination database is using write-ahead-log journaling
+** and the destination and source page sizes differ, or
+** <li> the destination database is an in-memory database and the
+** destination and source page sizes differ.
+** </ol>)^
+**
+** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). ^If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
+** sqlite3_backup_step() can be retried later. ^If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. ^(If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal.)^ The application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** ^The first call to sqlite3_backup_step() obtains an exclusive lock
+** on the destination file. ^The exclusive lock is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
+** sqlite3_backup_step() obtains a [shared lock] on the source database that
+** lasts for the duration of the sqlite3_backup_step() call.
+** ^Because the source database is not locked between calls to
+** sqlite3_backup_step(), the source database may be modified mid-way
+** through the backup process. ^If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be automatically
+** restarted by the next call to sqlite3_backup_step(). ^If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is automatically
+** updated at the same time.
+**
+** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
+**
+** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the application
+** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
+** ^The sqlite3_backup_finish() interfaces releases all
+** resources associated with the [sqlite3_backup] object.
+** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
+** active write-transaction on the destination database is rolled back.
+** The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
+** sqlite3_backup_step() errors occurred, regardless or whether or not
+** sqlite3_backup_step() completed.
+** ^If an out-of-memory condition or IO error occurred during any prior
+** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
+** sqlite3_backup_finish() returns the corresponding [error code].
+**
+** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
+** is not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
+** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
+**
+** ^The sqlite3_backup_remaining() routine returns the number of pages still
+** to be backed up at the conclusion of the most recent sqlite3_backup_step().
+** ^The sqlite3_backup_pagecount() routine returns the total number of pages
+** in the source database at the conclusion of the most recent
+** sqlite3_backup_step().
+** ^(The values returned by these functions are only updated by
+** sqlite3_backup_step(). If the source database is modified in a way that
+** changes the size of the source database or the number of pages remaining,
+** those changes are not reflected in the output of sqlite3_backup_pagecount()
+** and sqlite3_backup_remaining() until after the next
+** sqlite3_backup_step().)^
+**
+** <b>Concurrent Usage of Database Handles</b>
+**
+** ^The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** ^If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination
+** [database connection] is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). SQLite does not currently check to see
+** if the application incorrectly accesses the destination [database connection]
+** and so no error code is reported, but the operations may malfunction
+** nevertheless. Use of the destination database connection while a
+** backup is in progress might also also cause a mutex deadlock.
+**
+** If running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the disk file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** METHOD: sqlite3
+**
+** ^When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** ^This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** ^This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** ^Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** ^When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. ^After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. ^The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connection's transaction.
+**
+** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().)^
+**
+** ^If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** ^(There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is canceled. ^The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** <b>Callback Invocation Details</b>
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connection's transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. ^If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** <b>Deadlock Detection</b>
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. ^If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. ^Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. ^Any
+** number of levels of indirection are allowed.
+**
+** <b>The "DROP TABLE" Exception</b>
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. ^(If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.)^
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+**
+** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
+** and extensions to compare the contents of two buffers containing UTF-8
+** strings in a case-independent fashion, using the same definition of "case
+** independence" that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_stricmp(const char *, const char *);
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
+** CAPI3REF: String Globbing
+*
+** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
+** string X matches the [GLOB] pattern P.
+** ^The definition of [GLOB] pattern matching used in
+** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
+** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function
+** is case sensitive.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strlike()].
+*/
+SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);
+
+/*
+** CAPI3REF: String LIKE Matching
+*
+** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
+** string X matches the [LIKE] pattern P with escape character E.
+** ^The definition of [LIKE] pattern matching used in
+** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
+** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without
+** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
+** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
+** insensitive - equivalent upper and lower case ASCII characters match
+** one another.
+**
+** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
+** only ASCII characters are case folded.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strglob()].
+*/
+SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);
+
+/*
+** CAPI3REF: Error Logging Interface
+**
+** ^The [sqlite3_log()] interface writes a message into the [error log]
+** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
+** ^If logging is enabled, the zFormat string and subsequent arguments are
+** used with [sqlite3_snprintf()] to generate the final output string.
+**
+** The sqlite3_log() interface is intended for use by extensions such as
+** virtual tables, collating functions, and SQL functions. While there is
+** nothing to prevent an application from calling sqlite3_log(), doing so
+** is considered bad form.
+**
+** The zFormat string must not be NULL.
+**
+** To avoid deadlocks and other threading problems, the sqlite3_log() routine
+** will not use dynamically allocated memory. The log message is stored in
+** a fixed-length buffer on the stack. If the log message is longer than
+** a few hundred characters, it will be truncated to the length of the
+** buffer.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
+
+/*
+** CAPI3REF: Write-Ahead Log Commit Hook
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_hook()] function is used to register a callback that
+** is invoked each time data is committed to a database in wal mode.
+**
+** ^(The callback is invoked by SQLite after the commit has taken place and
+** the associated write-lock on the database released)^, so the implementation
+** may read, write or [checkpoint] the database as required.
+**
+** ^The first parameter passed to the callback function when it is invoked
+** is a copy of the third parameter passed to sqlite3_wal_hook() when
+** registering the callback. ^The second is a copy of the database handle.
+** ^The third parameter is the name of the database that was written to -
+** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
+** is the number of pages currently in the write-ahead log file,
+** including those that were just committed.
+**
+** The callback function should normally return [SQLITE_OK]. ^If an error
+** code is returned, that error will propagate back up through the
+** SQLite code base to cause the statement that provoked the callback
+** to report an error, though the commit will have still occurred. If the
+** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
+** that does not correspond to any valid SQLite error code, the results
+** are undefined.
+**
+** A single database handle may have at most a single write-ahead log callback
+** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
+** previously registered write-ahead log callback. ^The return value is
+** a copy of the third parameter from the previous call, if any, or 0.
+** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the
+** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
+** overwrite any prior [sqlite3_wal_hook()] settings.
+*/
+SQLITE_API void *sqlite3_wal_hook(
+ sqlite3*,
+ int(*)(void *,sqlite3*,const char*,int),
+ void*
+);
+
+/*
+** CAPI3REF: Configure an auto-checkpoint
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
+** [sqlite3_wal_hook()] that causes any database on [database connection] D
+** to automatically [checkpoint]
+** after committing a transaction if there are N or
+** more frames in the [write-ahead log] file. ^Passing zero or
+** a negative value as the nFrame parameter disables automatic
+** checkpoints entirely.
+**
+** ^The callback registered by this function replaces any existing callback
+** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
+** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
+** configured by this function.
+**
+** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
+** from SQL.
+**
+** ^Checkpoints initiated by this mechanism are
+** [sqlite3_wal_checkpoint_v2|PASSIVE].
+**
+** ^Every new [database connection] defaults to having the auto-checkpoint
+** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
+** pages. The use of this interface
+** is only necessary if the default setting is found to be suboptimal
+** for a particular application.
+*/
+SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
+** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
+**
+** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
+** [write-ahead log] for database X on [database connection] D to be
+** transferred into the database file and for the write-ahead log to
+** be reset. See the [checkpointing] documentation for addition
+** information.
+**
+** This interface used to be the only way to cause a checkpoint to
+** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
+** interface was added. This interface is retained for backwards
+** compatibility and as a convenience for applications that need to manually
+** start a callback but which do not need the full power (and corresponding
+** complication) of [sqlite3_wal_checkpoint_v2()].
+*/
+SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
+** operation on database X of [database connection] D in mode M. Status
+** information is written back into integers pointed to by L and C.)^
+** ^(The M parameter must be a valid [checkpoint mode]:)^
+**
+** <dl>
+** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
+** ^Checkpoint as many frames as possible without waiting for any database
+** readers or writers to finish, then sync the database file if all frames
+** in the log were checkpointed. ^The [busy-handler callback]
+** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
+** ^On the other hand, passive mode might leave the checkpoint unfinished
+** if there are concurrent readers or writers.
+**
+** <dt>SQLITE_CHECKPOINT_FULL<dd>
+** ^This mode blocks (it invokes the
+** [sqlite3_busy_handler|busy-handler callback]) until there is no
+** database writer and all readers are reading from the most recent database
+** snapshot. ^It then checkpoints all frames in the log file and syncs the
+** database file. ^This mode blocks new database writers while it is pending,
+** but new database readers are allowed to continue unimpeded.
+**
+** <dt>SQLITE_CHECKPOINT_RESTART<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
+** that after checkpointing the log file it blocks (calls the
+** [busy-handler callback])
+** until all readers are reading from the database file only. ^This ensures
+** that the next writer will restart the log file from the beginning.
+** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
+** database writer attempts while it is pending, but does not impede readers.
+**
+** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
+** addition that it also truncates the log file to zero bytes just prior
+** to a successful return.
+** </dl>
+**
+** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
+** the log file or to -1 if the checkpoint could not run because
+** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
+** NULL,then *pnCkpt is set to the total number of checkpointed frames in the
+** log file (including any that were already checkpointed before the function
+** was called) or to -1 if the checkpoint could not run due to an error or
+** because the database is not in WAL mode. ^Note that upon successful
+** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
+** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
+**
+** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
+** any other process is running a checkpoint operation at the same time, the
+** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
+** busy-handler configured, it will not be invoked in this case.
+**
+** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
+** exclusive "writer" lock on the database file. ^If the writer lock cannot be
+** obtained immediately, and a busy-handler is configured, it is invoked and
+** the writer lock retried until either the busy-handler returns 0 or the lock
+** is successfully obtained. ^The busy-handler is also invoked while waiting for
+** database readers as described above. ^If the busy-handler returns 0 before
+** the writer lock is obtained or while waiting for database readers, the
+** checkpoint operation proceeds from that point in the same way as
+** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
+** without blocking any further. ^SQLITE_BUSY is returned in this case.
+**
+** ^If parameter zDb is NULL or points to a zero length string, then the
+** specified operation is attempted on all WAL databases [attached] to
+** [database connection] db. In this case the
+** values written to output parameters *pnLog and *pnCkpt are undefined. ^If
+** an SQLITE_BUSY error is encountered when processing one or more of the
+** attached WAL databases, the operation is still attempted on any remaining
+** attached databases and SQLITE_BUSY is returned at the end. ^If any other
+** error occurs while processing an attached database, processing is abandoned
+** and the error code is returned to the caller immediately. ^If no error
+** (SQLITE_BUSY or otherwise) is encountered while processing the attached
+** databases, SQLITE_OK is returned.
+**
+** ^If database zDb is the name of an attached database that is not in WAL
+** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
+** zDb is not NULL (or a zero length string) and is not the name of any
+** attached database, SQLITE_ERROR is returned to the caller.
+**
+** ^Unless it returns SQLITE_MISUSE,
+** the sqlite3_wal_checkpoint_v2() interface
+** sets the error information that is queried by
+** [sqlite3_errcode()] and [sqlite3_errmsg()].
+**
+** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
+** from SQL.
+*/
+SQLITE_API int sqlite3_wal_checkpoint_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of attached database (or NULL) */
+ int eMode, /* SQLITE_CHECKPOINT_* value */
+ int *pnLog, /* OUT: Size of WAL log in frames */
+ int *pnCkpt /* OUT: Total number of frames checkpointed */
+);
+
+/*
+** CAPI3REF: Checkpoint Mode Values
+** KEYWORDS: {checkpoint mode}
+**
+** These constants define all valid values for the "checkpoint mode" passed
+** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
+** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the
+** meaning of each of these checkpoint modes.
+*/
+#define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */
+#define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */
+#define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for for readers */
+#define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */
+
+/*
+** CAPI3REF: Virtual Table Interface Configuration
+**
+** This function may be called by either the [xConnect] or [xCreate] method
+** of a [virtual table] implementation to configure
+** various facets of the virtual table interface.
+**
+** If this interface is invoked outside the context of an xConnect or
+** xCreate virtual table method then the behavior is undefined.
+**
+** In the call sqlite3_vtab_config(D,C,...) the D parameter is the
+** [database connection] in which the virtual table is being created and
+** which is passed in as the first argument to the [xConnect] or [xCreate]
+** method that is invoking sqlite3_vtab_config(). The C parameter is one
+** of the [virtual table configuration options]. The presence and meaning
+** of parameters after C depend on which [virtual table configuration option]
+** is used.
+*/
+SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Virtual Table Configuration Options
+** KEYWORDS: {virtual table configuration options}
+** KEYWORDS: {virtual table configuration option}
+**
+** These macros define the various options to the
+** [sqlite3_vtab_config()] interface that [virtual table] implementations
+** can use to customize and optimize their behavior.
+**
+** <dl>
+** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
+** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
+** where X is an integer. If X is zero, then the [virtual table] whose
+** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
+** support constraints. In this configuration (which is the default) if
+** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
+** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
+** specified as part of the users SQL statement, regardless of the actual
+** ON CONFLICT mode specified.
+**
+** If X is non-zero, then the virtual table implementation guarantees
+** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
+** any modifications to internal or persistent data structures have been made.
+** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
+** is able to roll back a statement or database transaction, and abandon
+** or continue processing the current SQL statement as appropriate.
+** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
+** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
+** had been ABORT.
+**
+** Virtual table implementations that are required to handle OR REPLACE
+** must do so within the [xUpdate] method. If a call to the
+** [sqlite3_vtab_on_conflict()] function indicates that the current ON
+** CONFLICT policy is REPLACE, the virtual table implementation should
+** silently replace the appropriate rows within the xUpdate callback and
+** return SQLITE_OK. Or, if this is not possible, it may return
+** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
+** constraint handling.
+** </dd>
+**
+** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implmentation
+** prohibits that virtual table from being used from within triggers and
+** views.
+** </dd>
+**
+** [[SQLITE_VTAB_INNOCUOUS]]<dt>SQLITE_VTAB_INNOCUOUS</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implmentation
+** identify that virtual table as being safe to use from within triggers
+** and views. Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the
+** virtual table can do no serious harm even if it is controlled by a
+** malicious hacker. Developers should avoid setting the SQLITE_VTAB_INNOCUOUS
+** flag unless absolutely necessary.
+** </dd>
+** </dl>
+*/
+#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
+#define SQLITE_VTAB_INNOCUOUS 2
+#define SQLITE_VTAB_DIRECTONLY 3
+
+/*
+** CAPI3REF: Determine The Virtual Table Conflict Policy
+**
+** This function may only be called from within a call to the [xUpdate] method
+** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
+** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
+** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
+** of the SQL statement that triggered the call to the [xUpdate] method of the
+** [virtual table].
+*/
+SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);
+
+/*
+** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
+**
+** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
+** method of a [virtual table], then it might return true if the
+** column is being fetched as part of an UPDATE operation during which the
+** column value will not change. The virtual table implementation can use
+** this hint as permission to substitute a return value that is less
+** expensive to compute and that the corresponding
+** [xUpdate] method understands as a "no-change" value.
+**
+** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
+** the column is not changed by the UPDATE statement, then the xColumn
+** method can optionally return without setting a result, without calling
+** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
+** In that case, [sqlite3_value_nochange(X)] will return true for the
+** same column in the [xUpdate] method.
+**
+** The sqlite3_vtab_nochange() routine is an optimization. Virtual table
+** implementations should continue to give a correct answer even if the
+** sqlite3_vtab_nochange() interface were to always return false. In the
+** current implementation, the sqlite3_vtab_nochange() interface does always
+** returns false for the enhanced [UPDATE FROM] statement.
+*/
+SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*);
+
+/*
+** CAPI3REF: Determine The Collation For a Virtual Table Constraint
+** METHOD: sqlite3_index_info
+**
+** This function may only be called from within a call to the [xBestIndex]
+** method of a [virtual table]. This function returns a pointer to a string
+** that is the name of the appropriate collation sequence to use for text
+** comparisons on the constraint identified by its arguments.
+**
+** The first argument must be the pointer to the [sqlite3_index_info] object
+** that is the first parameter to the xBestIndex() method. The second argument
+** must be an index into the aConstraint[] array belonging to the
+** sqlite3_index_info structure passed to xBestIndex.
+**
+** Important:
+** The first parameter must be the same pointer that is passed into the
+** xBestMethod() method. The first parameter may not be a pointer to a
+** different [sqlite3_index_info] object, even an exact copy.
+**
+** The return value is computed as follows:
+**
+** <ol>
+** <li><p> If the constraint comes from a WHERE clause expression that contains
+** a [COLLATE operator], then the name of the collation specified by
+** that COLLATE operator is returned.
+** <li><p> If there is no COLLATE operator, but the column that is the subject
+** of the constraint specifies an alternative collating sequence via
+** a [COLLATE clause] on the column definition within the CREATE TABLE
+** statement that was passed into [sqlite3_declare_vtab()], then the
+** name of that alternative collating sequence is returned.
+** <li><p> Otherwise, "BINARY" is returned.
+** </ol>
+*/
+SQLITE_API SQLITE_EXPERIMENTAL const char *sqlite3_vtab_collation(sqlite3_index_info*,int);
+
+/*
+** CAPI3REF: Determine if a virtual table query is DISTINCT
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within an [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this
+** interface from outside of xBestIndex() is undefined and probably harmful.
+**
+** ^The sqlite3_vtab_distinct() interface returns an integer between 0 and
+** 3. The integer returned by sqlite3_vtab_distinct()
+** gives the virtual table additional information about how the query
+** planner wants the output to be ordered. As long as the virtual table
+** can meet the ordering requirements of the query planner, it may set
+** the "orderByConsumed" flag.
+**
+** <ol><li value="0"><p>
+** ^If the sqlite3_vtab_distinct() interface returns 0, that means
+** that the query planner needs the virtual table to return all rows in the
+** sort order defined by the "nOrderBy" and "aOrderBy" fields of the
+** [sqlite3_index_info] object. This is the default expectation. If the
+** virtual table outputs all rows in sorted order, then it is always safe for
+** the xBestIndex method to set the "orderByConsumed" flag, regardless of
+** the return value from sqlite3_vtab_distinct().
+** <li value="1"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 1, that means
+** that the query planner does not need the rows to be returned in sorted order
+** as long as all rows with the same values in all columns identified by the
+** "aOrderBy" field are adjacent.)^ This mode is used when the query planner
+** is doing a GROUP BY.
+** <li value="2"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 2, that means
+** that the query planner does not need the rows returned in any particular
+** order, as long as rows with the same values in all "aOrderBy" columns
+** are adjacent.)^ ^(Furthermore, only a single row for each particular
+** combination of values in the columns identified by the "aOrderBy" field
+** needs to be returned.)^ ^It is always ok for two or more rows with the same
+** values in all "aOrderBy" columns to be returned, as long as all such rows
+** are adjacent. ^The virtual table may, if it chooses, omit extra rows
+** that have the same value for all columns identified by "aOrderBy".
+** ^However omitting the extra rows is optional.
+** This mode is used for a DISTINCT query.
+** <li value="3"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 3, that means
+** that the query planner needs only distinct rows but it does need the
+** rows to be sorted.)^ ^The virtual table implementation is free to omit
+** rows that are identical in all aOrderBy columns, if it wants to, but
+** it is not required to omit any rows. This mode is used for queries
+** that have both DISTINCT and ORDER BY clauses.
+** </ol>
+**
+** ^For the purposes of comparing virtual table output values to see if the
+** values are same value for sorting purposes, two NULL values are considered
+** to be the same. In other words, the comparison operator is "IS"
+** (or "IS NOT DISTINCT FROM") and not "==".
+**
+** If a virtual table implementation is unable to meet the requirements
+** specified above, then it must not set the "orderByConsumed" flag in the
+** [sqlite3_index_info] object or an incorrect answer may result.
+**
+** ^A virtual table implementation is always free to return rows in any order
+** it wants, as long as the "orderByConsumed" flag is not set. ^When the
+** the "orderByConsumed" flag is unset, the query planner will add extra
+** [bytecode] to ensure that the final results returned by the SQL query are
+** ordered correctly. The use of the "orderByConsumed" flag and the
+** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful
+** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed"
+** flag might help queries against a virtual table to run faster. Being
+** overly aggressive and setting the "orderByConsumed" flag when it is not
+** valid to do so, on the other hand, might cause SQLite to return incorrect
+** results.
+*/
+SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*);
+
+/*
+** CAPI3REF: Identify and handle IN constraints in xBestIndex
+**
+** This interface may only be used from within an
+** [xBestIndex|xBestIndex() method] of a [virtual table] implementation.
+** The result of invoking this interface from any other context is
+** undefined and probably harmful.
+**
+** ^(A constraint on a virtual table of the form
+** "[IN operator|column IN (...)]" is
+** communicated to the xBestIndex method as a
+** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use
+** this constraint, it must set the corresponding
+** aConstraintUsage[].argvIndex to a postive integer. ^(Then, under
+** the usual mode of handling IN operators, SQLite generates [bytecode]
+** that invokes the [xFilter|xFilter() method] once for each value
+** on the right-hand side of the IN operator.)^ Thus the virtual table
+** only sees a single value from the right-hand side of the IN operator
+** at a time.
+**
+** In some cases, however, it would be advantageous for the virtual
+** table to see all values on the right-hand of the IN operator all at
+** once. The sqlite3_vtab_in() interfaces facilitates this in two ways:
+**
+** <ol>
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero)
+** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint
+** is an [IN operator] that can be processed all at once. ^In other words,
+** sqlite3_vtab_in() with -1 in the third argument is a mechanism
+** by which the virtual table can ask SQLite if all-at-once processing
+** of the IN operator is even possible.
+**
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates
+** to SQLite that the virtual table does or does not want to process
+** the IN operator all-at-once, respectively. ^Thus when the third
+** parameter (F) is non-negative, this interface is the mechanism by
+** which the virtual table tells SQLite how it wants to process the
+** IN operator.
+** </ol>
+**
+** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times
+** within the same xBestIndex method call. ^For any given P,N pair,
+** the return value from sqlite3_vtab_in(P,N,F) will always be the same
+** within the same xBestIndex call. ^If the interface returns true
+** (non-zero), that means that the constraint is an IN operator
+** that can be processed all-at-once. ^If the constraint is not an IN
+** operator or cannot be processed all-at-once, then the interface returns
+** false.
+**
+** ^(All-at-once processing of the IN operator is selected if both of the
+** following conditions are met:
+**
+** <ol>
+** <li><p> The P->aConstraintUsage[N].argvIndex value is set to a positive
+** integer. This is how the virtual table tells SQLite that it wants to
+** use the N-th constraint.
+**
+** <li><p> The last call to sqlite3_vtab_in(P,N,F) for which F was
+** non-negative had F>=1.
+** </ol>)^
+**
+** ^If either or both of the conditions above are false, then SQLite uses
+** the traditional one-at-a-time processing strategy for the IN constraint.
+** ^If both conditions are true, then the argvIndex-th parameter to the
+** xFilter method will be an [sqlite3_value] that appears to be NULL,
+** but which can be passed to [sqlite3_vtab_in_first()] and
+** [sqlite3_vtab_in_next()] to find all values on the right-hand side
+** of the IN constraint.
+*/
+SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle);
+
+/*
+** CAPI3REF: Find all elements on the right-hand side of an IN constraint.
+**
+** These interfaces are only useful from within the
+** [xFilter|xFilter() method] of a [virtual table] implementation.
+** The result of invoking these interfaces from any other context
+** is undefined and probably harmful.
+**
+** The X parameter in a call to sqlite3_vtab_in_first(X,P) or
+** sqlite3_vtab_in_next(X,P) must be one of the parameters to the
+** xFilter method which invokes these routines, and specifically
+** a parameter that was previously selected for all-at-once IN constraint
+** processing use the [sqlite3_vtab_in()] interface in the
+** [xBestIndex|xBestIndex method]. ^(If the X parameter is not
+** an xFilter argument that was selected for all-at-once IN constraint
+** processing, then these routines return [SQLITE_MISUSE])^ or perhaps
+** exhibit some other undefined or harmful behavior.
+**
+** ^(Use these routines to access all values on the right-hand side
+** of the IN constraint using code like the following:
+**
+** <blockquote><pre>
+** &nbsp; for(rc=sqlite3_vtab_in_first(pList, &pVal);
+** &nbsp; rc==SQLITE_OK && pVal
+** &nbsp; rc=sqlite3_vtab_in_next(pList, &pVal)
+** &nbsp; ){
+** &nbsp; // do something with pVal
+** &nbsp; }
+** &nbsp; if( rc!=SQLITE_OK ){
+** &nbsp; // an error has occurred
+** &nbsp; }
+** </pre></blockquote>)^
+**
+** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P)
+** routines return SQLITE_OK and set *P to point to the first or next value
+** on the RHS of the IN constraint. ^If there are no more values on the
+** right hand side of the IN constraint, then *P is set to NULL and these
+** routines return [SQLITE_DONE]. ^The return value might be
+** some other value, such as SQLITE_NOMEM, in the event of a malfunction.
+**
+** The *ppOut values returned by these routines are only valid until the
+** next call to either of these routines or until the end of the xFilter
+** method from which these routines were called. If the virtual table
+** implementation needs to retain the *ppOut values for longer, it must make
+** copies. The *ppOut values are [protected sqlite3_value|protected].
+*/
+SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut);
+SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut);
+
+/*
+** CAPI3REF: Constraint values in xBestIndex()
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within the [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this interface
+** from outside of an xBestIndex method are undefined and probably harmful.
+**
+** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within
+** the [xBestIndex] method of a [virtual table] implementation, with P being
+** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and
+** J being a 0-based index into P->aConstraint[], then this routine
+** attempts to set *V to the value of the right-hand operand of
+** that constraint if the right-hand operand is known. ^If the
+** right-hand operand is not known, then *V is set to a NULL pointer.
+** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if
+** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V)
+** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th
+** constraint is not available. ^The sqlite3_vtab_rhs_value() interface
+** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if
+** something goes wrong.
+**
+** The sqlite3_vtab_rhs_value() interface is usually only successful if
+** the right-hand operand of a constraint is a literal value in the original
+** SQL statement. If the right-hand operand is an expression or a reference
+** to some other column or a [host parameter], then sqlite3_vtab_rhs_value()
+** will probably return [SQLITE_NOTFOUND].
+**
+** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and
+** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such
+** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^
+**
+** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value
+** and remains valid for the duration of the xBestIndex method call.
+** ^When xBestIndex returns, the sqlite3_value object returned by
+** sqlite3_vtab_rhs_value() is automatically deallocated.
+**
+** The "_rhs_" in the name of this routine is an abbreviation for
+** "Right-Hand Side".
+*/
+SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal);
+
+/*
+** CAPI3REF: Conflict resolution modes
+** KEYWORDS: {conflict resolution mode}
+**
+** These constants are returned by [sqlite3_vtab_on_conflict()] to
+** inform a [virtual table] implementation what the [ON CONFLICT] mode
+** is for the SQL statement being evaluated.
+**
+** Note that the [SQLITE_IGNORE] constant is also used as a potential
+** return value from the [sqlite3_set_authorizer()] callback and that
+** [SQLITE_ABORT] is also a [result code].
+*/
+#define SQLITE_ROLLBACK 1
+/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
+#define SQLITE_FAIL 3
+/* #define SQLITE_ABORT 4 // Also an error code */
+#define SQLITE_REPLACE 5
+
+/*
+** CAPI3REF: Prepared Statement Scan Status Opcodes
+** KEYWORDS: {scanstatus options}
+**
+** The following constants can be used for the T parameter to the
+** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a
+** different metric for sqlite3_stmt_scanstatus() to return.
+**
+** When the value returned to V is a string, space to hold that string is
+** managed by the prepared statement S and will be automatically freed when
+** S is finalized.
+**
+** <dl>
+** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be
+** set to the total number of times that the X-th loop has run.</dd>
+**
+** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be set
+** to the total number of rows examined by all iterations of the X-th loop.</dd>
+**
+** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
+** <dd>^The "double" variable pointed to by the V parameter will be set to the
+** query planner's estimate for the average number of rows output from each
+** iteration of the X-th loop. If the query planner's estimates was accurate,
+** then this value will approximate the quotient NVISIT/NLOOP and the
+** product of this value for all prior loops with the same SELECTID will
+** be the NLOOP value for the current loop.
+**
+** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the name of the index or table
+** used for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
+** description for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt>
+** <dd>^The "int" variable pointed to by the V parameter will be set to the
+** "select-id" for the X-th loop. The select-id identifies which query or
+** subquery the loop is part of. The main query has a select-id of zero.
+** The select-id is the same value as is output in the first column
+** of an [EXPLAIN QUERY PLAN] query.
+** </dl>
+*/
+#define SQLITE_SCANSTAT_NLOOP 0
+#define SQLITE_SCANSTAT_NVISIT 1
+#define SQLITE_SCANSTAT_EST 2
+#define SQLITE_SCANSTAT_NAME 3
+#define SQLITE_SCANSTAT_EXPLAIN 4
+#define SQLITE_SCANSTAT_SELECTID 5
+
+/*
+** CAPI3REF: Prepared Statement Scan Status
+** METHOD: sqlite3_stmt
+**
+** This interface returns information about the predicted and measured
+** performance for pStmt. Advanced applications can use this
+** interface to compare the predicted and the measured performance and
+** issue warnings and/or rerun [ANALYZE] if discrepancies are found.
+**
+** Since this interface is expected to be rarely used, it is only
+** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
+** compile-time option.
+**
+** The "iScanStatusOp" parameter determines which status information to return.
+** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
+** of this interface is undefined.
+** ^The requested measurement is written into a variable pointed to by
+** the "pOut" parameter.
+** Parameter "idx" identifies the specific loop to retrieve statistics for.
+** Loops are numbered starting from zero. ^If idx is out of range - less than
+** zero or greater than or equal to the total number of loops used to implement
+** the statement - a non-zero value is returned and the variable that pOut
+** points to is unchanged.
+**
+** ^Statistics might not be available for all loops in all statements. ^In cases
+** where there exist loops with no available statistics, this function behaves
+** as if the loop did not exist - it returns non-zero and leave the variable
+** that pOut points to unchanged.
+**
+** See also: [sqlite3_stmt_scanstatus_reset()]
+*/
+SQLITE_API int sqlite3_stmt_scanstatus(
+ sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
+ void *pOut /* Result written here */
+);
+
+/*
+** CAPI3REF: Zero Scan-Status Counters
+** METHOD: sqlite3_stmt
+**
+** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
+**
+** This API is only available if the library is built with pre-processor
+** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
+*/
+SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Flush caches to disk mid-transaction
+** METHOD: sqlite3
+**
+** ^If a write-transaction is open on [database connection] D when the
+** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
+** pages in the pager-cache that are not currently in use are written out
+** to disk. A dirty page may be in use if a database cursor created by an
+** active SQL statement is reading from it, or if it is page 1 of a database
+** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)]
+** interface flushes caches for all schemas - "main", "temp", and
+** any [attached] databases.
+**
+** ^If this function needs to obtain extra database locks before dirty pages
+** can be flushed to disk, it does so. ^If those locks cannot be obtained
+** immediately and there is a busy-handler callback configured, it is invoked
+** in the usual manner. ^If the required lock still cannot be obtained, then
+** the database is skipped and an attempt made to flush any dirty pages
+** belonging to the next (if any) database. ^If any databases are skipped
+** because locks cannot be obtained, but no other error occurs, this
+** function returns SQLITE_BUSY.
+**
+** ^If any other error occurs while flushing dirty pages to disk (for
+** example an IO error or out-of-memory condition), then processing is
+** abandoned and an SQLite [error code] is returned to the caller immediately.
+**
+** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
+**
+** ^This function does not set the database handle error code or message
+** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
+*/
+SQLITE_API int sqlite3_db_cacheflush(sqlite3*);
+
+/*
+** CAPI3REF: The pre-update hook.
+** METHOD: sqlite3
+**
+** ^These interfaces are only available if SQLite is compiled using the
+** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
+**
+** ^The [sqlite3_preupdate_hook()] interface registers a callback function
+** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
+** on a database table.
+** ^At most one preupdate hook may be registered at a time on a single
+** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
+** the previous setting.
+** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
+** with a NULL pointer as the second parameter.
+** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
+** the first parameter to callbacks.
+**
+** ^The preupdate hook only fires for changes to real database tables; the
+** preupdate hook is not invoked for changes to [virtual tables] or to
+** system tables like sqlite_sequence or sqlite_stat1.
+**
+** ^The second parameter to the preupdate callback is a pointer to
+** the [database connection] that registered the preupdate hook.
+** ^The third parameter to the preupdate callback is one of the constants
+** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
+** kind of update operation that is about to occur.
+** ^(The fourth parameter to the preupdate callback is the name of the
+** database within the database connection that is being modified. This
+** will be "main" for the main database or "temp" for TEMP tables or
+** the name given after the AS keyword in the [ATTACH] statement for attached
+** databases.)^
+** ^The fifth parameter to the preupdate callback is the name of the
+** table that is being modified.
+**
+** For an UPDATE or DELETE operation on a [rowid table], the sixth
+** parameter passed to the preupdate callback is the initial [rowid] of the
+** row being modified or deleted. For an INSERT operation on a rowid table,
+** or any operation on a WITHOUT ROWID table, the value of the sixth
+** parameter is undefined. For an INSERT or UPDATE on a rowid table the
+** seventh parameter is the final rowid value of the row being inserted
+** or updated. The value of the seventh parameter passed to the callback
+** function is not defined for operations on WITHOUT ROWID tables, or for
+** DELETE operations on rowid tables.
+**
+** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
+** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
+** provide additional information about a preupdate event. These routines
+** may only be called from within a preupdate callback. Invoking any of
+** these routines from outside of a preupdate callback or with a
+** [database connection] pointer that is different from the one supplied
+** to the preupdate callback results in undefined and probably undesirable
+** behavior.
+**
+** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns
+** in the row that is being inserted, updated, or deleted.
+**
+** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row before it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE
+** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row after it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE
+** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate
+** callback was invoked as a result of a direct insert, update, or delete
+** operation; or 1 for inserts, updates, or deletes invoked by top-level
+** triggers; or 2 for changes resulting from triggers called by top-level
+** triggers; and so forth.
+**
+** When the [sqlite3_blob_write()] API is used to update a blob column,
+** the pre-update hook is invoked with SQLITE_DELETE. This is because the
+** in this case the new values are not available. In this case, when a
+** callback made with op==SQLITE_DELETE is actuall a write using the
+** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns
+** the index of the column being written. In other cases, where the
+** pre-update hook is being invoked for some other reason, including a
+** regular DELETE, sqlite3_preupdate_blobwrite() returns -1.
+**
+** See also: [sqlite3_update_hook()]
+*/
+#if defined(SQLITE_ENABLE_PREUPDATE_HOOK)
+SQLITE_API void *sqlite3_preupdate_hook(
+ sqlite3 *db,
+ void(*xPreUpdate)(
+ void *pCtx, /* Copy of third arg to preupdate_hook() */
+ sqlite3 *db, /* Database handle */
+ int op, /* SQLITE_UPDATE, DELETE or INSERT */
+ char const *zDb, /* Database name */
+ char const *zName, /* Table name */
+ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
+ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
+ ),
+ void*
+);
+SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_count(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_depth(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *);
+#endif
+
+/*
+** CAPI3REF: Low-level system error code
+** METHOD: sqlite3
+**
+** ^Attempt to return the underlying operating system error code or error
+** number that caused the most recent I/O error or failure to open a file.
+** The return value is OS-dependent. For example, on unix systems, after
+** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be
+** called to get back the underlying "errno" that caused the problem, such
+** as ENOSPC, EAUTH, EISDIR, and so forth.
+*/
+SQLITE_API int sqlite3_system_errno(sqlite3*);
+
+/*
+** CAPI3REF: Database Snapshot
+** KEYWORDS: {snapshot} {sqlite3_snapshot}
+**
+** An instance of the snapshot object records the state of a [WAL mode]
+** database for some specific point in history.
+**
+** In [WAL mode], multiple [database connections] that are open on the
+** same database file can each be reading a different historical version
+** of the database file. When a [database connection] begins a read
+** transaction, that connection sees an unchanging copy of the database
+** as it existed for the point in time when the transaction first started.
+** Subsequent changes to the database from other connections are not seen
+** by the reader until a new read transaction is started.
+**
+** The sqlite3_snapshot object records state information about an historical
+** version of the database file so that it is possible to later open a new read
+** transaction that sees that historical version of the database rather than
+** the most recent version.
+*/
+typedef struct sqlite3_snapshot {
+ unsigned char hidden[48];
+} sqlite3_snapshot;
+
+/*
+** CAPI3REF: Record A Database Snapshot
+** CONSTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
+** new [sqlite3_snapshot] object that records the current state of
+** schema S in database connection D. ^On success, the
+** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
+** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
+** If there is not already a read-transaction open on schema S when
+** this function is called, one is opened automatically.
+**
+** The following must be true for this function to succeed. If any of
+** the following statements are false when sqlite3_snapshot_get() is
+** called, SQLITE_ERROR is returned. The final value of *P is undefined
+** in this case.
+**
+** <ul>
+** <li> The database handle must not be in [autocommit mode].
+**
+** <li> Schema S of [database connection] D must be a [WAL mode] database.
+**
+** <li> There must not be a write transaction open on schema S of database
+** connection D.
+**
+** <li> One or more transactions must have been written to the current wal
+** file since it was created on disk (by any connection). This means
+** that a snapshot cannot be taken on a wal mode database with no wal
+** file immediately after it is first opened. At least one transaction
+** must be written to it first.
+** </ul>
+**
+** This function may also return SQLITE_NOMEM. If it is called with the
+** database handle in autocommit mode but fails for some other reason,
+** whether or not a read transaction is opened on schema S is undefined.
+**
+** The [sqlite3_snapshot] object returned from a successful call to
+** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
+** to avoid a memory leak.
+**
+** The [sqlite3_snapshot_get()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot **ppSnapshot
+);
+
+/*
+** CAPI3REF: Start a read transaction on an historical snapshot
+** METHOD: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read
+** transaction or upgrades an existing one for schema S of
+** [database connection] D such that the read transaction refers to
+** historical [snapshot] P, rather than the most recent change to the
+** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK
+** on success or an appropriate [error code] if it fails.
+**
+** ^In order to succeed, the database connection must not be in
+** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there
+** is already a read transaction open on schema S, then the database handle
+** must have no active statements (SELECT statements that have been passed
+** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()).
+** SQLITE_ERROR is returned if either of these conditions is violated, or
+** if schema S does not exist, or if the snapshot object is invalid.
+**
+** ^A call to sqlite3_snapshot_open() will fail to open if the specified
+** snapshot has been overwritten by a [checkpoint]. In this case
+** SQLITE_ERROR_SNAPSHOT is returned.
+**
+** If there is already a read transaction open when this function is
+** invoked, then the same read transaction remains open (on the same
+** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT
+** is returned. If another error code - for example SQLITE_PROTOCOL or an
+** SQLITE_IOERR error code - is returned, then the final state of the
+** read transaction is undefined. If SQLITE_OK is returned, then the
+** read transaction is now open on database snapshot P.
+**
+** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
+** database connection D does not know that the database file for
+** schema S is in [WAL mode]. A database connection might not know
+** that the database file is in [WAL mode] if there has been no prior
+** I/O on that database connection, or if the database entered [WAL mode]
+** after the most recent I/O on the database connection.)^
+** (Hint: Run "[PRAGMA application_id]" against a newly opened
+** database connection in order to make it ready to use snapshots.)
+**
+** The [sqlite3_snapshot_open()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot *pSnapshot
+);
+
+/*
+** CAPI3REF: Destroy a snapshot
+** DESTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
+** The application must eventually free every [sqlite3_snapshot] object
+** using this routine to avoid a memory leak.
+**
+** The [sqlite3_snapshot_free()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*);
+
+/*
+** CAPI3REF: Compare the ages of two snapshot handles.
+** METHOD: sqlite3_snapshot
+**
+** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages
+** of two valid snapshot handles.
+**
+** If the two snapshot handles are not associated with the same database
+** file, the result of the comparison is undefined.
+**
+** Additionally, the result of the comparison is only valid if both of the
+** snapshot handles were obtained by calling sqlite3_snapshot_get() since the
+** last time the wal file was deleted. The wal file is deleted when the
+** database is changed back to rollback mode or when the number of database
+** clients drops to zero. If either snapshot handle was obtained before the
+** wal file was last deleted, the value returned by this function
+** is undefined.
+**
+** Otherwise, this API returns a negative value if P1 refers to an older
+** snapshot than P2, zero if the two handles refer to the same database
+** snapshot, and a positive value if P1 is a newer snapshot than P2.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp(
+ sqlite3_snapshot *p1,
+ sqlite3_snapshot *p2
+);
+
+/*
+** CAPI3REF: Recover snapshots from a wal file
+** METHOD: sqlite3_snapshot
+**
+** If a [WAL file] remains on disk after all database connections close
+** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control]
+** or because the last process to have the database opened exited without
+** calling [sqlite3_close()]) and a new connection is subsequently opened
+** on that database and [WAL file], the [sqlite3_snapshot_open()] interface
+** will only be able to open the last transaction added to the WAL file
+** even though the WAL file contains other valid transactions.
+**
+** This function attempts to scan the WAL file associated with database zDb
+** of database handle db and make all valid snapshots available to
+** sqlite3_snapshot_open(). It is an error if there is already a read
+** transaction open on the database, or if the database is not a WAL mode
+** database.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Serialize a database
+**
+** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory
+** that is a serialization of the S database on [database connection] D.
+** If P is not a NULL pointer, then the size of the database in bytes
+** is written into *P.
+**
+** For an ordinary on-disk database file, the serialization is just a
+** copy of the disk file. For an in-memory database or a "TEMP" database,
+** the serialization is the same sequence of bytes which would be written
+** to disk if that database where backed up to disk.
+**
+** The usual case is that sqlite3_serialize() copies the serialization of
+** the database into memory obtained from [sqlite3_malloc64()] and returns
+** a pointer to that memory. The caller is responsible for freeing the
+** returned value to avoid a memory leak. However, if the F argument
+** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations
+** are made, and the sqlite3_serialize() function will return a pointer
+** to the contiguous memory representation of the database that SQLite
+** is currently using for that database, or NULL if the no such contiguous
+** memory representation of the database exists. A contiguous memory
+** representation of the database will usually only exist if there has
+** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
+** values of D and S.
+** The size of the database is written into *P even if the
+** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
+** of the database exists.
+**
+** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
+** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
+** allocation error occurs.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API unsigned char *sqlite3_serialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to serialize. ex: "main", "temp", ... */
+ sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */
+ unsigned int mFlags /* Zero or more SQLITE_SERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_serialize
+**
+** Zero or more of the following constants can be OR-ed together for
+** the F argument to [sqlite3_serialize(D,S,P,F)].
+**
+** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return
+** a pointer to contiguous in-memory database that it is currently using,
+** without making a copy of the database. If SQLite is not currently using
+** a contiguous in-memory database, then this option causes
+** [sqlite3_serialize()] to return a NULL pointer. SQLite will only be
+** using a contiguous in-memory database if it has been initialized by a
+** prior call to [sqlite3_deserialize()].
+*/
+#define SQLITE_SERIALIZE_NOCOPY 0x001 /* Do no memory allocations */
+
+/*
+** CAPI3REF: Deserialize a database
+**
+** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the
+** [database connection] D to disconnect from database S and then
+** reopen S as an in-memory database based on the serialization contained
+** in P. The serialized database P is N bytes in size. M is the size of
+** the buffer P, which might be larger than N. If M is larger than N, and
+** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is
+** permitted to add content to the in-memory database as long as the total
+** size does not exceed M bytes.
+**
+** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will
+** invoke sqlite3_free() on the serialization buffer when the database
+** connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then
+** SQLite will try to increase the buffer size using sqlite3_realloc64()
+** if writes on the database cause it to grow larger than M bytes.
+**
+** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the
+** database is currently in a read transaction or is involved in a backup
+** operation.
+**
+** It is not possible to deserialized into the TEMP database. If the
+** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the
+** function returns SQLITE_ERROR.
+**
+** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the
+** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then
+** [sqlite3_free()] is invoked on argument P prior to returning.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API int sqlite3_deserialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to reopen with the deserialization */
+ unsigned char *pData, /* The serialized database content */
+ sqlite3_int64 szDb, /* Number bytes in the deserialization */
+ sqlite3_int64 szBuf, /* Total size of buffer pData[] */
+ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_deserialize()
+**
+** The following are allowed values for 6th argument (the F argument) to
+** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
+**
+** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
+** in the P argument is held in memory obtained from [sqlite3_malloc64()]
+** and that SQLite should take ownership of this memory and automatically
+** free it when it has finished using it. Without this flag, the caller
+** is responsible for freeing any dynamically allocated memory.
+**
+** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
+** grow the size of the database using calls to [sqlite3_realloc64()]. This
+** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
+** Without this flag, the deserialized database cannot increase in size beyond
+** the number of bytes specified by the M parameter.
+**
+** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database
+** should be treated as read-only.
+*/
+#define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */
+#define SQLITE_DESERIALIZE_RESIZEABLE 2 /* Resize using sqlite3_realloc64() */
+#define SQLITE_DESERIALIZE_READONLY 4 /* Database is read-only */
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#if 0
+} /* End of the 'extern "C"' block */
+#endif
+#endif /* SQLITE3_H */
+
+/******** Begin file sqlite3rtree.h *********/
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+
+#if 0
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info;
+
+/* The double-precision datatype used by RTree depends on the
+** SQLITE_RTREE_INT_ONLY compile-time option.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+ typedef sqlite3_int64 sqlite3_rtree_dbl;
+#else
+ typedef double sqlite3_rtree_dbl;
+#endif
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+/*
+** Register a 2nd-generation geometry callback named zScore that can be
+** used as part of an R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_query_callback(
+ sqlite3 *db,
+ const char *zQueryFunc,
+ int (*xQueryFunc)(sqlite3_rtree_query_info*),
+ void *pContext,
+ void (*xDestructor)(void*)
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the
+** argument to scored geometry callback registered using
+** sqlite3_rtree_query_callback().
+**
+** Note that the first 5 fields of this structure are identical to
+** sqlite3_rtree_geometry. This structure is a subclass of
+** sqlite3_rtree_geometry.
+*/
+struct sqlite3_rtree_query_info {
+ void *pContext; /* pContext from when function registered */
+ int nParam; /* Number of function parameters */
+ sqlite3_rtree_dbl *aParam; /* value of function parameters */
+ void *pUser; /* callback can use this, if desired */
+ void (*xDelUser)(void*); /* function to free pUser */
+ sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */
+ unsigned int *anQueue; /* Number of pending entries in the queue */
+ int nCoord; /* Number of coordinates */
+ int iLevel; /* Level of current node or entry */
+ int mxLevel; /* The largest iLevel value in the tree */
+ sqlite3_int64 iRowid; /* Rowid for current entry */
+ sqlite3_rtree_dbl rParentScore; /* Score of parent node */
+ int eParentWithin; /* Visibility of parent node */
+ int eWithin; /* OUT: Visibility */
+ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */
+ /* The following fields are only available in 3.8.11 and later */
+ sqlite3_value **apSqlParam; /* Original SQL values of parameters */
+};
+
+/*
+** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
+*/
+#define NOT_WITHIN 0 /* Object completely outside of query region */
+#define PARTLY_WITHIN 1 /* Object partially overlaps query region */
+#define FULLY_WITHIN 2 /* Object fully contained within query region */
+
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
+
+/******** End of sqlite3rtree.h *********/
+/******** Begin file sqlite3session.h *********/
+
+#if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION)
+#define __SQLITESESSION_H_ 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+extern "C" {
+#endif
+
+
+/*
+** CAPI3REF: Session Object Handle
+**
+** An instance of this object is a [session] that can be used to
+** record changes to a database.
+*/
+typedef struct sqlite3_session sqlite3_session;
+
+/*
+** CAPI3REF: Changeset Iterator Handle
+**
+** An instance of this object acts as a cursor for iterating
+** over the elements of a [changeset] or [patchset].
+*/
+typedef struct sqlite3_changeset_iter sqlite3_changeset_iter;
+
+/*
+** CAPI3REF: Create A New Session Object
+** CONSTRUCTOR: sqlite3_session
+**
+** Create a new session object attached to database handle db. If successful,
+** a pointer to the new object is written to *ppSession and SQLITE_OK is
+** returned. If an error occurs, *ppSession is set to NULL and an SQLite
+** error code (e.g. SQLITE_NOMEM) is returned.
+**
+** It is possible to create multiple session objects attached to a single
+** database handle.
+**
+** Session objects created using this function should be deleted using the
+** [sqlite3session_delete()] function before the database handle that they
+** are attached to is itself closed. If the database handle is closed before
+** the session object is deleted, then the results of calling any session
+** module function, including [sqlite3session_delete()] on the session object
+** are undefined.
+**
+** Because the session module uses the [sqlite3_preupdate_hook()] API, it
+** is not possible for an application to register a pre-update hook on a
+** database handle that has one or more session objects attached. Nor is
+** it possible to create a session object attached to a database handle for
+** which a pre-update hook is already defined. The results of attempting
+** either of these things are undefined.
+**
+** The session object will be used to create changesets for tables in
+** database zDb, where zDb is either "main", or "temp", or the name of an
+** attached database. It is not an error if database zDb is not attached
+** to the database when the session object is created.
+*/
+SQLITE_API int sqlite3session_create(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (e.g. "main") */
+ sqlite3_session **ppSession /* OUT: New session object */
+);
+
+/*
+** CAPI3REF: Delete A Session Object
+** DESTRUCTOR: sqlite3_session
+**
+** Delete a session object previously allocated using
+** [sqlite3session_create()]. Once a session object has been deleted, the
+** results of attempting to use pSession with any other session module
+** function are undefined.
+**
+** Session objects must be deleted before the database handle to which they
+** are attached is closed. Refer to the documentation for
+** [sqlite3session_create()] for details.
+*/
+SQLITE_API void sqlite3session_delete(sqlite3_session *pSession);
+
+/*
+** CAPIREF: Conigure a Session Object
+** METHOD: sqlite3_session
+**
+** This method is used to configure a session object after it has been
+** created. At present the only valid value for the second parameter is
+** [SQLITE_SESSION_OBJCONFIG_SIZE].
+**
+** Arguments for sqlite3session_object_config()
+**
+** The following values may passed as the the 4th parameter to
+** sqlite3session_object_config().
+**
+** <dt>SQLITE_SESSION_OBJCONFIG_SIZE <dd>
+** This option is used to set, clear or query the flag that enables
+** the [sqlite3session_changeset_size()] API. Because it imposes some
+** computational overhead, this API is disabled by default. Argument
+** pArg must point to a value of type (int). If the value is initially
+** 0, then the sqlite3session_changeset_size() API is disabled. If it
+** is greater than 0, then the same API is enabled. Or, if the initial
+** value is less than zero, no change is made. In all cases the (int)
+** variable is set to 1 if the sqlite3session_changeset_size() API is
+** enabled following the current call, or 0 otherwise.
+**
+** It is an error (SQLITE_MISUSE) to attempt to modify this setting after
+** the first table has been attached to the session object.
+*/
+SQLITE_API int sqlite3session_object_config(sqlite3_session*, int op, void *pArg);
+
+/*
+*/
+#define SQLITE_SESSION_OBJCONFIG_SIZE 1
+
+/*
+** CAPI3REF: Enable Or Disable A Session Object
+** METHOD: sqlite3_session
+**
+** Enable or disable the recording of changes by a session object. When
+** enabled, a session object records changes made to the database. When
+** disabled - it does not. A newly created session object is enabled.
+** Refer to the documentation for [sqlite3session_changeset()] for further
+** details regarding how enabling and disabling a session object affects
+** the eventual changesets.
+**
+** Passing zero to this function disables the session. Passing a value
+** greater than zero enables it. Passing a value less than zero is a
+** no-op, and may be used to query the current state of the session.
+**
+** The return value indicates the final state of the session object: 0 if
+** the session is disabled, or 1 if it is enabled.
+*/
+SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable);
+
+/*
+** CAPI3REF: Set Or Clear the Indirect Change Flag
+** METHOD: sqlite3_session
+**
+** Each change recorded by a session object is marked as either direct or
+** indirect. A change is marked as indirect if either:
+**
+** <ul>
+** <li> The session object "indirect" flag is set when the change is
+** made, or
+** <li> The change is made by an SQL trigger or foreign key action
+** instead of directly as a result of a users SQL statement.
+** </ul>
+**
+** If a single row is affected by more than one operation within a session,
+** then the change is considered indirect if all operations meet the criteria
+** for an indirect change above, or direct otherwise.
+**
+** This function is used to set, clear or query the session object indirect
+** flag. If the second argument passed to this function is zero, then the
+** indirect flag is cleared. If it is greater than zero, the indirect flag
+** is set. Passing a value less than zero does not modify the current value
+** of the indirect flag, and may be used to query the current state of the
+** indirect flag for the specified session object.
+**
+** The return value indicates the final state of the indirect flag: 0 if
+** it is clear, or 1 if it is set.
+*/
+SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect);
+
+/*
+** CAPI3REF: Attach A Table To A Session Object
+** METHOD: sqlite3_session
+**
+** If argument zTab is not NULL, then it is the name of a table to attach
+** to the session object passed as the first argument. All subsequent changes
+** made to the table while the session object is enabled will be recorded. See
+** documentation for [sqlite3session_changeset()] for further details.
+**
+** Or, if argument zTab is NULL, then changes are recorded for all tables
+** in the database. If additional tables are added to the database (by
+** executing "CREATE TABLE" statements) after this call is made, changes for
+** the new tables are also recorded.
+**
+** Changes can only be recorded for tables that have a PRIMARY KEY explicitly
+** defined as part of their CREATE TABLE statement. It does not matter if the
+** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY
+** KEY may consist of a single column, or may be a composite key.
+**
+** It is not an error if the named table does not exist in the database. Nor
+** is it an error if the named table does not have a PRIMARY KEY. However,
+** no changes will be recorded in either of these scenarios.
+**
+** Changes are not recorded for individual rows that have NULL values stored
+** in one or more of their PRIMARY KEY columns.
+**
+** SQLITE_OK is returned if the call completes without error. Or, if an error
+** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
+**
+** <h3>Special sqlite_stat1 Handling</h3>
+**
+** As of SQLite version 3.22.0, the "sqlite_stat1" table is an exception to
+** some of the rules above. In SQLite, the schema of sqlite_stat1 is:
+** <pre>
+** &nbsp; CREATE TABLE sqlite_stat1(tbl,idx,stat)
+** </pre>
+**
+** Even though sqlite_stat1 does not have a PRIMARY KEY, changes are
+** recorded for it as if the PRIMARY KEY is (tbl,idx). Additionally, changes
+** are recorded for rows for which (idx IS NULL) is true. However, for such
+** rows a zero-length blob (SQL value X'') is stored in the changeset or
+** patchset instead of a NULL value. This allows such changesets to be
+** manipulated by legacy implementations of sqlite3changeset_invert(),
+** concat() and similar.
+**
+** The sqlite3changeset_apply() function automatically converts the
+** zero-length blob back to a NULL value when updating the sqlite_stat1
+** table. However, if the application calls sqlite3changeset_new(),
+** sqlite3changeset_old() or sqlite3changeset_conflict on a changeset
+** iterator directly (including on a changeset iterator passed to a
+** conflict-handler callback) then the X'' value is returned. The application
+** must translate X'' to NULL itself if required.
+**
+** Legacy (older than 3.22.0) versions of the sessions module cannot capture
+** changes made to the sqlite_stat1 table. Legacy versions of the
+** sqlite3changeset_apply() function silently ignore any modifications to the
+** sqlite_stat1 table that are part of a changeset or patchset.
+*/
+SQLITE_API int sqlite3session_attach(
+ sqlite3_session *pSession, /* Session object */
+ const char *zTab /* Table name */
+);
+
+/*
+** CAPI3REF: Set a table filter on a Session Object.
+** METHOD: sqlite3_session
+**
+** The second argument (xFilter) is the "filter callback". For changes to rows
+** in tables that are not attached to the Session object, the filter is called
+** to determine whether changes to the table's rows should be tracked or not.
+** If xFilter returns 0, changes are not tracked. Note that once a table is
+** attached, xFilter will not be called again.
+*/
+SQLITE_API void sqlite3session_table_filter(
+ sqlite3_session *pSession, /* Session object */
+ int(*xFilter)(
+ void *pCtx, /* Copy of third arg to _filter_table() */
+ const char *zTab /* Table name */
+ ),
+ void *pCtx /* First argument passed to xFilter */
+);
+
+/*
+** CAPI3REF: Generate A Changeset From A Session Object
+** METHOD: sqlite3_session
+**
+** Obtain a changeset containing changes to the tables attached to the
+** session object passed as the first argument. If successful,
+** set *ppChangeset to point to a buffer containing the changeset
+** and *pnChangeset to the size of the changeset in bytes before returning
+** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to
+** zero and return an SQLite error code.
+**
+** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes,
+** each representing a change to a single row of an attached table. An INSERT
+** change contains the values of each field of a new database row. A DELETE
+** contains the original values of each field of a deleted database row. An
+** UPDATE change contains the original values of each field of an updated
+** database row along with the updated values for each updated non-primary-key
+** column. It is not possible for an UPDATE change to represent a change that
+** modifies the values of primary key columns. If such a change is made, it
+** is represented in a changeset as a DELETE followed by an INSERT.
+**
+** Changes are not recorded for rows that have NULL values stored in one or
+** more of their PRIMARY KEY columns. If such a row is inserted or deleted,
+** no corresponding change is present in the changesets returned by this
+** function. If an existing row with one or more NULL values stored in
+** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL,
+** only an INSERT is appears in the changeset. Similarly, if an existing row
+** with non-NULL PRIMARY KEY values is updated so that one or more of its
+** PRIMARY KEY columns are set to NULL, the resulting changeset contains a
+** DELETE change only.
+**
+** The contents of a changeset may be traversed using an iterator created
+** using the [sqlite3changeset_start()] API. A changeset may be applied to
+** a database with a compatible schema using the [sqlite3changeset_apply()]
+** API.
+**
+** Within a changeset generated by this function, all changes related to a
+** single table are grouped together. In other words, when iterating through
+** a changeset or when applying a changeset to a database, all changes related
+** to a single table are processed before moving on to the next table. Tables
+** are sorted in the same order in which they were attached (or auto-attached)
+** to the sqlite3_session object. The order in which the changes related to
+** a single table are stored is undefined.
+**
+** Following a successful call to this function, it is the responsibility of
+** the caller to eventually free the buffer that *ppChangeset points to using
+** [sqlite3_free()].
+**
+** <h3>Changeset Generation</h3>
+**
+** Once a table has been attached to a session object, the session object
+** records the primary key values of all new rows inserted into the table.
+** It also records the original primary key and other column values of any
+** deleted or updated rows. For each unique primary key value, data is only
+** recorded once - the first time a row with said primary key is inserted,
+** updated or deleted in the lifetime of the session.
+**
+** There is one exception to the previous paragraph: when a row is inserted,
+** updated or deleted, if one or more of its primary key columns contain a
+** NULL value, no record of the change is made.
+**
+** The session object therefore accumulates two types of records - those
+** that consist of primary key values only (created when the user inserts
+** a new record) and those that consist of the primary key values and the
+** original values of other table columns (created when the users deletes
+** or updates a record).
+**
+** When this function is called, the requested changeset is created using
+** both the accumulated records and the current contents of the database
+** file. Specifically:
+**
+** <ul>
+** <li> For each record generated by an insert, the database is queried
+** for a row with a matching primary key. If one is found, an INSERT
+** change is added to the changeset. If no such row is found, no change
+** is added to the changeset.
+**
+** <li> For each record generated by an update or delete, the database is
+** queried for a row with a matching primary key. If such a row is
+** found and one or more of the non-primary key fields have been
+** modified from their original values, an UPDATE change is added to
+** the changeset. Or, if no such row is found in the table, a DELETE
+** change is added to the changeset. If there is a row with a matching
+** primary key in the database, but all fields contain their original
+** values, no change is added to the changeset.
+** </ul>
+**
+** This means, amongst other things, that if a row is inserted and then later
+** deleted while a session object is active, neither the insert nor the delete
+** will be present in the changeset. Or if a row is deleted and then later a
+** row with the same primary key values inserted while a session object is
+** active, the resulting changeset will contain an UPDATE change instead of
+** a DELETE and an INSERT.
+**
+** When a session object is disabled (see the [sqlite3session_enable()] API),
+** it does not accumulate records when rows are inserted, updated or deleted.
+** This may appear to have some counter-intuitive effects if a single row
+** is written to more than once during a session. For example, if a row
+** is inserted while a session object is enabled, then later deleted while
+** the same session object is disabled, no INSERT record will appear in the
+** changeset, even though the delete took place while the session was disabled.
+** Or, if one field of a row is updated while a session is disabled, and
+** another field of the same row is updated while the session is enabled, the
+** resulting changeset will contain an UPDATE change that updates both fields.
+*/
+SQLITE_API int sqlite3session_changeset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+);
+
+/*
+** CAPI3REF: Return An Upper-limit For The Size Of The Changeset
+** METHOD: sqlite3_session
+**
+** By default, this function always returns 0. For it to return
+** a useful result, the sqlite3_session object must have been configured
+** to enable this API using sqlite3session_object_config() with the
+** SQLITE_SESSION_OBJCONFIG_SIZE verb.
+**
+** When enabled, this function returns an upper limit, in bytes, for the size
+** of the changeset that might be produced if sqlite3session_changeset() were
+** called. The final changeset size might be equal to or smaller than the
+** size in bytes returned by this function.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Load The Difference Between Tables Into A Session
+** METHOD: sqlite3_session
+**
+** If it is not already attached to the session object passed as the first
+** argument, this function attaches table zTbl in the same manner as the
+** [sqlite3session_attach()] function. If zTbl does not exist, or if it
+** does not have a primary key, this function is a no-op (but does not return
+** an error).
+**
+** Argument zFromDb must be the name of a database ("main", "temp" etc.)
+** attached to the same database handle as the session object that contains
+** a table compatible with the table attached to the session by this function.
+** A table is considered compatible if it:
+**
+** <ul>
+** <li> Has the same name,
+** <li> Has the same set of columns declared in the same order, and
+** <li> Has the same PRIMARY KEY definition.
+** </ul>
+**
+** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables
+** are compatible but do not have any PRIMARY KEY columns, it is not an error
+** but no changes are added to the session object. As with other session
+** APIs, tables without PRIMARY KEYs are simply ignored.
+**
+** This function adds a set of changes to the session object that could be
+** used to update the table in database zFrom (call this the "from-table")
+** so that its content is the same as the table attached to the session
+** object (call this the "to-table"). Specifically:
+**
+** <ul>
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, an INSERT record is added to the session object.
+**
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, a DELETE record is added to the session object.
+**
+** <li> For each row (primary key) that exists in both tables, but features
+** different non-PK values in each, an UPDATE record is added to the
+** session.
+** </ul>
+**
+** To clarify, if this function is called and then a changeset constructed
+** using [sqlite3session_changeset()], then after applying that changeset to
+** database zFrom the contents of the two compatible tables would be
+** identical.
+**
+** It an error if database zFrom does not exist or does not contain the
+** required compatible table.
+**
+** If the operation is successful, SQLITE_OK is returned. Otherwise, an SQLite
+** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg
+** may be set to point to a buffer containing an English language error
+** message. It is the responsibility of the caller to free this buffer using
+** sqlite3_free().
+*/
+SQLITE_API int sqlite3session_diff(
+ sqlite3_session *pSession,
+ const char *zFromDb,
+ const char *zTbl,
+ char **pzErrMsg
+);
+
+
+/*
+** CAPI3REF: Generate A Patchset From A Session Object
+** METHOD: sqlite3_session
+**
+** The differences between a patchset and a changeset are that:
+**
+** <ul>
+** <li> DELETE records consist of the primary key fields only. The
+** original values of other fields are omitted.
+** <li> The original values of any modified fields are omitted from
+** UPDATE records.
+** </ul>
+**
+** A patchset blob may be used with up to date versions of all
+** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(),
+** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly,
+** attempting to use a patchset blob with old versions of the
+** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error.
+**
+** Because the non-primary key "old.*" fields are omitted, no
+** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset
+** is passed to the sqlite3changeset_apply() API. Other conflict types work
+** in the same way as for changesets.
+**
+** Changes within a patchset are ordered in the same way as for changesets
+** generated by the sqlite3session_changeset() function (i.e. all changes for
+** a single table are grouped together, tables appear in the order in which
+** they were attached to the session object).
+*/
+SQLITE_API int sqlite3session_patchset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnPatchset, /* OUT: Size of buffer at *ppPatchset */
+ void **ppPatchset /* OUT: Buffer containing patchset */
+);
+
+/*
+** CAPI3REF: Test if a changeset has recorded any changes.
+**
+** Return non-zero if no changes to attached tables have been recorded by
+** the session object passed as the first argument. Otherwise, if one or
+** more changes have been recorded, return zero.
+**
+** Even if this function returns zero, it is possible that calling
+** [sqlite3session_changeset()] on the session handle may still return a
+** changeset that contains no changes. This can happen when a row in
+** an attached table is modified and then later on the original values
+** are restored. However, if this function returns non-zero, then it is
+** guaranteed that a call to sqlite3session_changeset() will return a
+** changeset containing zero changes.
+*/
+SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Query for the amount of heap memory used by a session object.
+**
+** This API returns the total amount of heap memory in bytes currently
+** used by the session object passed as the only argument.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Create An Iterator To Traverse A Changeset
+** CONSTRUCTOR: sqlite3_changeset_iter
+**
+** Create an iterator used to iterate through the contents of a changeset.
+** If successful, *pp is set to point to the iterator handle and SQLITE_OK
+** is returned. Otherwise, if an error occurs, *pp is set to zero and an
+** SQLite error code is returned.
+**
+** The following functions can be used to advance and query a changeset
+** iterator created by this function:
+**
+** <ul>
+** <li> [sqlite3changeset_next()]
+** <li> [sqlite3changeset_op()]
+** <li> [sqlite3changeset_new()]
+** <li> [sqlite3changeset_old()]
+** </ul>
+**
+** It is the responsibility of the caller to eventually destroy the iterator
+** by passing it to [sqlite3changeset_finalize()]. The buffer containing the
+** changeset (pChangeset) must remain valid until after the iterator is
+** destroyed.
+**
+** Assuming the changeset blob was created by one of the
+** [sqlite3session_changeset()], [sqlite3changeset_concat()] or
+** [sqlite3changeset_invert()] functions, all changes within the changeset
+** that apply to a single table are grouped together. This means that when
+** an application iterates through a changeset using an iterator created by
+** this function, all changes that relate to a single table are visited
+** consecutively. There is no chance that the iterator will visit a change
+** the applies to table X, then one for table Y, and then later on visit
+** another change for table X.
+**
+** The behavior of sqlite3changeset_start_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter.
+**
+** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_start(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset /* Pointer to blob containing changeset */
+);
+SQLITE_API int sqlite3changeset_start_v2(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset, /* Pointer to blob containing changeset */
+ int flags /* SESSION_CHANGESETSTART_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_start_v2
+**
+** The following flags may passed via the 4th parameter to
+** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]:
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset while iterating through it. This is equivalent to
+** inverting a changeset using sqlite3changeset_invert() before applying it.
+** It is an error to specify this flag with a patchset.
+*/
+#define SQLITE_CHANGESETSTART_INVERT 0x0002
+
+
+/*
+** CAPI3REF: Advance A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be used with iterators created by the function
+** [sqlite3changeset_start()]. If it is called on an iterator passed to
+** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE
+** is returned and the call has no effect.
+**
+** Immediately after an iterator is created by sqlite3changeset_start(), it
+** does not point to any change in the changeset. Assuming the changeset
+** is not empty, the first call to this function advances the iterator to
+** point to the first change in the changeset. Each subsequent call advances
+** the iterator to point to the next change in the changeset (if any). If
+** no error occurs and the iterator points to a valid change after a call
+** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned.
+** Otherwise, if all changes in the changeset have already been visited,
+** SQLITE_DONE is returned.
+**
+** If an error occurs, an SQLite error code is returned. Possible error
+** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or
+** SQLITE_NOMEM.
+*/
+SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Obtain The Current Operation From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this
+** is not the case, this function returns [SQLITE_MISUSE].
+**
+** Arguments pOp, pnCol and pzTab may not be NULL. Upon return, three
+** outputs are set through these pointers:
+**
+** *pOp is set to one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the type of change that the iterator currently points to;
+**
+** *pnCol is set to the number of columns in the table affected by the change; and
+**
+** *pzTab is set to point to a nul-terminated utf-8 encoded string containing
+** the name of the table affected by the current change. The buffer remains
+** valid until either sqlite3changeset_next() is called on the iterator
+** or until the conflict-handler function returns.
+**
+** If pbIndirect is not NULL, then *pbIndirect is set to true (1) if the change
+** is an indirect change, or false (0) otherwise. See the documentation for
+** [sqlite3session_indirect()] for a description of direct and indirect
+** changes.
+**
+** If no error occurs, SQLITE_OK is returned. If an error does occur, an
+** SQLite error code is returned. The values of the output variables may not
+** be trusted in this case.
+*/
+SQLITE_API int sqlite3changeset_op(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ const char **pzTab, /* OUT: Pointer to table name */
+ int *pnCol, /* OUT: Number of columns in table */
+ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
+ int *pbIndirect /* OUT: True for an 'indirect' change */
+);
+
+/*
+** CAPI3REF: Obtain The Primary Key Definition Of A Table
+** METHOD: sqlite3_changeset_iter
+**
+** For each modified table, a changeset includes the following:
+**
+** <ul>
+** <li> The number of columns in the table, and
+** <li> Which of those columns make up the tables PRIMARY KEY.
+** </ul>
+**
+** This function is used to find which columns comprise the PRIMARY KEY of
+** the table modified by the change that iterator pIter currently points to.
+** If successful, *pabPK is set to point to an array of nCol entries, where
+** nCol is the number of columns in the table. Elements of *pabPK are set to
+** 0x01 if the corresponding column is part of the tables primary key, or
+** 0x00 if it is not.
+**
+** If argument pnCol is not NULL, then *pnCol is set to the number of columns
+** in the table.
+**
+** If this function is called when the iterator does not point to a valid
+** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise,
+** SQLITE_OK is returned and the output variables populated as described
+** above.
+*/
+SQLITE_API int sqlite3changeset_pk(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
+ int *pnCol /* OUT: Number of entries in output array */
+);
+
+/*
+** CAPI3REF: Obtain old.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** original row values stored as part of the UPDATE or DELETE change and
+** returns SQLITE_OK. The name of the function comes from the fact that this
+** is similar to the "old.*" columns available to update or delete triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_old(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain new.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** new row values stored as part of the UPDATE or INSERT change and
+** returns SQLITE_OK. If the change is an UPDATE and does not include
+** a new value for the requested column, *ppValue is set to NULL and
+** SQLITE_OK returned. The name of the function comes from the fact that
+** this is similar to the "new.*" columns available to update or delete
+** triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_new(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function should only be used with iterator objects passed to a
+** conflict-handler callback by [sqlite3changeset_apply()] with either
+** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function
+** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue
+** is set to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the
+** "conflicting row" associated with the current conflict-handler callback
+** and returns SQLITE_OK.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_conflict(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Value from conflicting row */
+);
+
+/*
+** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be called with an iterator passed to an
+** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
+** it sets the output variable to the total number of known foreign key
+** violations in the destination database and returns SQLITE_OK.
+**
+** In all other cases this function returns SQLITE_MISUSE.
+*/
+SQLITE_API int sqlite3changeset_fk_conflicts(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int *pnOut /* OUT: Number of FK violations */
+);
+
+
+/*
+** CAPI3REF: Finalize A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function is used to finalize an iterator allocated with
+** [sqlite3changeset_start()].
+**
+** This function should only be called on iterators created using the
+** [sqlite3changeset_start()] function. If an application calls this
+** function with an iterator passed to a conflict-handler by
+** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the
+** call has no effect.
+**
+** If an error was encountered within a call to an sqlite3changeset_xxx()
+** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an
+** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding
+** to that error is returned by this function. Otherwise, SQLITE_OK is
+** returned. This is to allow the following pattern (pseudo-code):
+**
+** <pre>
+** sqlite3changeset_start();
+** while( SQLITE_ROW==sqlite3changeset_next() ){
+** // Do something with change.
+** }
+** rc = sqlite3changeset_finalize();
+** if( rc!=SQLITE_OK ){
+** // An error has occurred
+** }
+** </pre>
+*/
+SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Invert A Changeset
+**
+** This function is used to "invert" a changeset object. Applying an inverted
+** changeset to a database reverses the effects of applying the uninverted
+** changeset. Specifically:
+**
+** <ul>
+** <li> Each DELETE change is changed to an INSERT, and
+** <li> Each INSERT change is changed to a DELETE, and
+** <li> For each UPDATE change, the old.* and new.* values are exchanged.
+** </ul>
+**
+** This function does not change the order in which changes appear within
+** the changeset. It merely reverses the sense of each individual change.
+**
+** If successful, a pointer to a buffer containing the inverted changeset
+** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and
+** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are
+** zeroed and an SQLite error code returned.
+**
+** It is the responsibility of the caller to eventually call sqlite3_free()
+** on the *ppOut pointer to free the buffer allocation following a successful
+** call to this function.
+**
+** WARNING/TODO: This function currently assumes that the input is a valid
+** changeset. If it is not, the results are undefined.
+*/
+SQLITE_API int sqlite3changeset_invert(
+ int nIn, const void *pIn, /* Input changeset */
+ int *pnOut, void **ppOut /* OUT: Inverse of input */
+);
+
+/*
+** CAPI3REF: Concatenate Two Changeset Objects
+**
+** This function is used to concatenate two changesets, A and B, into a
+** single changeset. The result is a changeset equivalent to applying
+** changeset A followed by changeset B.
+**
+** This function combines the two input changesets using an
+** sqlite3_changegroup object. Calling it produces similar results as the
+** following code fragment:
+**
+** <pre>
+** sqlite3_changegroup *pGrp;
+** rc = sqlite3_changegroup_new(&pGrp);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB);
+** if( rc==SQLITE_OK ){
+** rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
+** }else{
+** *ppOut = 0;
+** *pnOut = 0;
+** }
+** </pre>
+**
+** Refer to the sqlite3_changegroup documentation below for details.
+*/
+SQLITE_API int sqlite3changeset_concat(
+ int nA, /* Number of bytes in buffer pA */
+ void *pA, /* Pointer to buffer containing changeset A */
+ int nB, /* Number of bytes in buffer pB */
+ void *pB, /* Pointer to buffer containing changeset B */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: Buffer containing output changeset */
+);
+
+
+/*
+** CAPI3REF: Changegroup Handle
+**
+** A changegroup is an object used to combine two or more
+** [changesets] or [patchsets]
+*/
+typedef struct sqlite3_changegroup sqlite3_changegroup;
+
+/*
+** CAPI3REF: Create A New Changegroup Object
+** CONSTRUCTOR: sqlite3_changegroup
+**
+** An sqlite3_changegroup object is used to combine two or more changesets
+** (or patchsets) into a single changeset (or patchset). A single changegroup
+** object may combine changesets or patchsets, but not both. The output is
+** always in the same format as the input.
+**
+** If successful, this function returns SQLITE_OK and populates (*pp) with
+** a pointer to a new sqlite3_changegroup object before returning. The caller
+** should eventually free the returned object using a call to
+** sqlite3changegroup_delete(). If an error occurs, an SQLite error code
+** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL.
+**
+** The usual usage pattern for an sqlite3_changegroup object is as follows:
+**
+** <ul>
+** <li> It is created using a call to sqlite3changegroup_new().
+**
+** <li> Zero or more changesets (or patchsets) are added to the object
+** by calling sqlite3changegroup_add().
+**
+** <li> The result of combining all input changesets together is obtained
+** by the application via a call to sqlite3changegroup_output().
+**
+** <li> The object is deleted using a call to sqlite3changegroup_delete().
+** </ul>
+**
+** Any number of calls to add() and output() may be made between the calls to
+** new() and delete(), and in any order.
+**
+** As well as the regular sqlite3changegroup_add() and
+** sqlite3changegroup_output() functions, also available are the streaming
+** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
+*/
+SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp);
+
+/*
+** CAPI3REF: Add A Changeset To A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Add all changes within the changeset (or patchset) in buffer pData (size
+** nData bytes) to the changegroup.
+**
+** If the buffer contains a patchset, then all prior calls to this function
+** on the same changegroup object must also have specified patchsets. Or, if
+** the buffer contains a changeset, so must have the earlier calls to this
+** function. Otherwise, SQLITE_ERROR is returned and no changes are added
+** to the changegroup.
+**
+** Rows within the changeset and changegroup are identified by the values in
+** their PRIMARY KEY columns. A change in the changeset is considered to
+** apply to the same row as a change already present in the changegroup if
+** the two rows have the same primary key.
+**
+** Changes to rows that do not already appear in the changegroup are
+** simply copied into it. Or, if both the new changeset and the changegroup
+** contain changes that apply to a single row, the final contents of the
+** changegroup depends on the type of each change, as follows:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th style="white-space:pre">Existing Change </th>
+** <th style="white-space:pre">New Change </th>
+** <th>Output Change
+** <tr><td>INSERT <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>INSERT <td>UPDATE <td>
+** The INSERT change remains in the changegroup. The values in the
+** INSERT change are modified as if the row was inserted by the
+** existing change and then updated according to the new change.
+** <tr><td>INSERT <td>DELETE <td>
+** The existing INSERT is removed from the changegroup. The DELETE is
+** not added.
+** <tr><td>UPDATE <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>UPDATE <td>UPDATE <td>
+** The existing UPDATE remains within the changegroup. It is amended
+** so that the accompanying values are as if the row was updated once
+** by the existing change and then again by the new change.
+** <tr><td>UPDATE <td>DELETE <td>
+** The existing UPDATE is replaced by the new DELETE within the
+** changegroup.
+** <tr><td>DELETE <td>INSERT <td>
+** If one or more of the column values in the row inserted by the
+** new change differ from those in the row deleted by the existing
+** change, the existing DELETE is replaced by an UPDATE within the
+** changegroup. Otherwise, if the inserted row is exactly the same
+** as the deleted row, the existing DELETE is simply discarded.
+** <tr><td>DELETE <td>UPDATE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>DELETE <td>DELETE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** </table>
+**
+** If the new changeset contains changes to a table that is already present
+** in the changegroup, then the number of columns and the position of the
+** primary key columns for the table must be consistent. If this is not the
+** case, this function fails with SQLITE_SCHEMA. If the input changeset
+** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is
+** returned. Or, if an out-of-memory condition occurs during processing, this
+** function returns SQLITE_NOMEM. In all cases, if an error occurs the state
+** of the final contents of the changegroup is undefined.
+**
+** If no error occurs, SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);
+
+/*
+** CAPI3REF: Obtain A Composite Changeset From A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Obtain a buffer containing a changeset (or patchset) representing the
+** current contents of the changegroup. If the inputs to the changegroup
+** were themselves changesets, the output is a changeset. Or, if the
+** inputs were patchsets, the output is also a patchset.
+**
+** As with the output of the sqlite3session_changeset() and
+** sqlite3session_patchset() functions, all changes related to a single
+** table are grouped together in the output of this function. Tables appear
+** in the same order as for the very first changeset added to the changegroup.
+** If the second or subsequent changesets added to the changegroup contain
+** changes for tables that do not appear in the first changeset, they are
+** appended onto the end of the output changeset, again in the order in
+** which they are first encountered.
+**
+** If an error occurs, an SQLite error code is returned and the output
+** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
+** is returned and the output variables are set to the size of and a
+** pointer to the output buffer, respectively. In this case it is the
+** responsibility of the caller to eventually free the buffer using a
+** call to sqlite3_free().
+*/
+SQLITE_API int sqlite3changegroup_output(
+ sqlite3_changegroup*,
+ int *pnData, /* OUT: Size of output buffer in bytes */
+ void **ppData /* OUT: Pointer to output buffer */
+);
+
+/*
+** CAPI3REF: Delete A Changegroup Object
+** DESTRUCTOR: sqlite3_changegroup
+*/
+SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*);
+
+/*
+** CAPI3REF: Apply A Changeset To A Database
+**
+** Apply a changeset or patchset to a database. These functions attempt to
+** update the "main" database attached to handle db with the changes found in
+** the changeset passed via the second and third arguments.
+**
+** The fourth argument (xFilter) passed to these functions is the "filter
+** callback". If it is not NULL, then for each table affected by at least one
+** change in the changeset, the filter callback is invoked with
+** the table name as the second argument, and a copy of the context pointer
+** passed as the sixth argument as the first. If the "filter callback"
+** returns zero, then no attempt is made to apply any changes to the table.
+** Otherwise, if the return value is non-zero or the xFilter argument to
+** is NULL, all changes related to the table are attempted.
+**
+** For each table that is not excluded by the filter callback, this function
+** tests that the target database contains a compatible table. A table is
+** considered compatible if all of the following are true:
+**
+** <ul>
+** <li> The table has the same name as the name recorded in the
+** changeset, and
+** <li> The table has at least as many columns as recorded in the
+** changeset, and
+** <li> The table has primary key columns in the same position as
+** recorded in the changeset.
+** </ul>
+**
+** If there is no compatible table, it is not an error, but none of the
+** changes associated with the table are applied. A warning message is issued
+** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most
+** one such warning is issued for each table in the changeset.
+**
+** For each change for which there is a compatible table, an attempt is made
+** to modify the table contents according to the UPDATE, INSERT or DELETE
+** change. If a change cannot be applied cleanly, the conflict handler
+** function passed as the fifth argument to sqlite3changeset_apply() may be
+** invoked. A description of exactly when the conflict handler is invoked for
+** each type of change is below.
+**
+** Unlike the xFilter argument, xConflict may not be passed NULL. The results
+** of passing anything other than a valid function pointer as the xConflict
+** argument are undefined.
+**
+** Each time the conflict handler function is invoked, it must return one
+** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or
+** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned
+** if the second argument passed to the conflict handler is either
+** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler
+** returns an illegal value, any changes already made are rolled back and
+** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different
+** actions are taken by sqlite3changeset_apply() depending on the value
+** returned by each invocation of the conflict-handler function. Refer to
+** the documentation for the three
+** [SQLITE_CHANGESET_OMIT|available return values] for details.
+**
+** <dl>
+** <dt>DELETE Changes<dd>
+** For each DELETE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all non-primary key columns also match the values stored in
+** the changeset the row is deleted from the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the non-primary key fields contains a value different from the original
+** row value stored in the changeset, the conflict-handler function is
+** invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the
+** database table has more columns than are recorded in the changeset,
+** only the values of those non-primary key fields are compared against
+** the current database contents - any trailing database table columns
+** are ignored.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
+** (which can only happen if a foreign key constraint is violated), the
+** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
+** passed as the second argument. This includes the case where the DELETE
+** operation is attempted because an earlier call to the conflict handler
+** function returned [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>INSERT Changes<dd>
+** For each INSERT change, an attempt is made to insert the new row into
+** the database. If the changeset row contains fewer fields than the
+** database table, the trailing fields are populated with their default
+** values.
+**
+** If the attempt to insert the row fails because the database already
+** contains a row with the same primary key values, the conflict handler
+** function is invoked with the second argument set to
+** [SQLITE_CHANGESET_CONFLICT].
+**
+** If the attempt to insert the row fails because of some other constraint
+** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is
+** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT].
+** This includes the case where the INSERT operation is re-attempted because
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>UPDATE Changes<dd>
+** For each UPDATE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all modified non-primary key columns also match the values
+** stored in the changeset the row is updated within the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the modified non-primary key fields contains a value different from an
+** original row value stored in the changeset, the conflict-handler function
+** is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
+** UPDATE changes only contain values for non-primary key fields that are
+** to be modified, only those fields need to match the original values to
+** avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the UPDATE operation is attempted, but SQLite returns
+** SQLITE_CONSTRAINT, the conflict-handler function is invoked with
+** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument.
+** This includes the case where the UPDATE operation is attempted after
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+** </dl>
+**
+** It is safe to execute SQL statements, including those that write to the
+** table that the callback related to, from within the xConflict callback.
+** This can be used to further customize the application's conflict
+** resolution strategy.
+**
+** All changes made by these functions are enclosed in a savepoint transaction.
+** If any other error (aside from a constraint failure when attempting to
+** write to the target database) occurs, then the savepoint transaction is
+** rolled back, restoring the target database to its original state, and an
+** SQLite error code returned.
+**
+** If the output parameters (ppRebase) and (pnRebase) are non-NULL and
+** the input is a changeset (not a patchset), then sqlite3changeset_apply_v2()
+** may set (*ppRebase) to point to a "rebase" that may be used with the
+** sqlite3_rebaser APIs buffer before returning. In this case (*pnRebase)
+** is set to the size of the buffer in bytes. It is the responsibility of the
+** caller to eventually free any such buffer using sqlite3_free(). The buffer
+** is only allocated and populated if one or more conflicts were encountered
+** while applying the patchset. See comments surrounding the sqlite3_rebaser
+** APIs for further details.
+**
+** The behavior of sqlite3changeset_apply_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETAPPLY_NOSAVEPOINT | supported flags] as the 9th parameter.
+**
+** Note that the sqlite3changeset_apply_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_apply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase, /* OUT: Rebase data */
+ int flags /* SESSION_CHANGESETAPPLY_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_apply_v2
+**
+** The following flags may passed via the 9th parameter to
+** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
+**
+** <dl>
+** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
+** Usually, the sessions module encloses all operations performed by
+** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
+** SAVEPOINT is committed if the changeset or patchset is successfully
+** applied, or rolled back if an error occurs. Specifying this flag
+** causes the sessions module to omit this savepoint. In this case, if the
+** caller has an open transaction or savepoint when apply_v2() is called,
+** it may revert the partially applied changeset by rolling it back.
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset before applying it. This is equivalent to inverting
+** a changeset using sqlite3changeset_invert() before applying it. It is
+** an error to specify this flag with a patchset.
+*/
+#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001
+#define SQLITE_CHANGESETAPPLY_INVERT 0x0002
+
+/*
+** CAPI3REF: Constants Passed To The Conflict Handler
+**
+** Values that may be passed as the second argument to a conflict-handler.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_DATA<dd>
+** The conflict handler is invoked with CHANGESET_DATA as the second argument
+** when processing a DELETE or UPDATE change if a row with the required
+** PRIMARY KEY fields is present in the database, but one or more other
+** (non primary-key) fields modified by the update do not contain the
+** expected "before" values.
+**
+** The conflicting row, in this case, is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_NOTFOUND<dd>
+** The conflict handler is invoked with CHANGESET_NOTFOUND as the second
+** argument when processing a DELETE or UPDATE change if a row with the
+** required PRIMARY KEY fields is not present in the database.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** <dt>SQLITE_CHANGESET_CONFLICT<dd>
+** CHANGESET_CONFLICT is passed as the second argument to the conflict
+** handler while processing an INSERT change if the operation would result
+** in duplicate primary key values.
+**
+** The conflicting row in this case is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_FOREIGN_KEY<dd>
+** If foreign key handling is enabled, and applying a changeset leaves the
+** database in a state containing foreign key violations, the conflict
+** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument
+** exactly once before the changeset is committed. If the conflict handler
+** returns CHANGESET_OMIT, the changes, including those that caused the
+** foreign key constraint violation, are committed. Or, if it returns
+** CHANGESET_ABORT, the changeset is rolled back.
+**
+** No current or conflicting row information is provided. The only function
+** it is possible to call on the supplied sqlite3_changeset_iter handle
+** is sqlite3changeset_fk_conflicts().
+**
+** <dt>SQLITE_CHANGESET_CONSTRAINT<dd>
+** If any other constraint violation occurs while applying a change (i.e.
+** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is
+** invoked with CHANGESET_CONSTRAINT as the second argument.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** </dl>
+*/
+#define SQLITE_CHANGESET_DATA 1
+#define SQLITE_CHANGESET_NOTFOUND 2
+#define SQLITE_CHANGESET_CONFLICT 3
+#define SQLITE_CHANGESET_CONSTRAINT 4
+#define SQLITE_CHANGESET_FOREIGN_KEY 5
+
+/*
+** CAPI3REF: Constants Returned By The Conflict Handler
+**
+** A conflict handler callback must return one of the following three values.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_OMIT<dd>
+** If a conflict handler returns this value no special action is taken. The
+** change that caused the conflict is not applied. The session module
+** continues to the next change in the changeset.
+**
+** <dt>SQLITE_CHANGESET_REPLACE<dd>
+** This value may only be returned if the second argument to the conflict
+** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this
+** is not the case, any changes applied so far are rolled back and the
+** call to sqlite3changeset_apply() returns SQLITE_MISUSE.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict
+** handler, then the conflicting row is either updated or deleted, depending
+** on the type of change.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict
+** handler, then the conflicting row is removed from the database and a
+** second attempt to apply the change is made. If this second attempt fails,
+** the original row is restored to the database before continuing.
+**
+** <dt>SQLITE_CHANGESET_ABORT<dd>
+** If this value is returned, any changes applied so far are rolled back
+** and the call to sqlite3changeset_apply() returns SQLITE_ABORT.
+** </dl>
+*/
+#define SQLITE_CHANGESET_OMIT 0
+#define SQLITE_CHANGESET_REPLACE 1
+#define SQLITE_CHANGESET_ABORT 2
+
+/*
+** CAPI3REF: Rebasing changesets
+** EXPERIMENTAL
+**
+** Suppose there is a site hosting a database in state S0. And that
+** modifications are made that move that database to state S1 and a
+** changeset recorded (the "local" changeset). Then, a changeset based
+** on S0 is received from another site (the "remote" changeset) and
+** applied to the database. The database is then in state
+** (S1+"remote"), where the exact state depends on any conflict
+** resolution decisions (OMIT or REPLACE) made while applying "remote".
+** Rebasing a changeset is to update it to take those conflict
+** resolution decisions into account, so that the same conflicts
+** do not have to be resolved elsewhere in the network.
+**
+** For example, if both the local and remote changesets contain an
+** INSERT of the same key on "CREATE TABLE t1(a PRIMARY KEY, b)":
+**
+** local: INSERT INTO t1 VALUES(1, 'v1');
+** remote: INSERT INTO t1 VALUES(1, 'v2');
+**
+** and the conflict resolution is REPLACE, then the INSERT change is
+** removed from the local changeset (it was overridden). Or, if the
+** conflict resolution was "OMIT", then the local changeset is modified
+** to instead contain:
+**
+** UPDATE t1 SET b = 'v2' WHERE a=1;
+**
+** Changes within the local changeset are rebased as follows:
+**
+** <dl>
+** <dt>Local INSERT<dd>
+** This may only conflict with a remote INSERT. If the conflict
+** resolution was OMIT, then add an UPDATE change to the rebased
+** changeset. Or, if the conflict resolution was REPLACE, add
+** nothing to the rebased changeset.
+**
+** <dt>Local DELETE<dd>
+** This may conflict with a remote UPDATE or DELETE. In both cases the
+** only possible resolution is OMIT. If the remote operation was a
+** DELETE, then add no change to the rebased changeset. If the remote
+** operation was an UPDATE, then the old.* fields of change are updated
+** to reflect the new.* values in the UPDATE.
+**
+** <dt>Local UPDATE<dd>
+** This may conflict with a remote UPDATE or DELETE. If it conflicts
+** with a DELETE, and the conflict resolution was OMIT, then the update
+** is changed into an INSERT. Any undefined values in the new.* record
+** from the update change are filled in using the old.* values from
+** the conflicting DELETE. Or, if the conflict resolution was REPLACE,
+** the UPDATE change is simply omitted from the rebased changeset.
+**
+** If conflict is with a remote UPDATE and the resolution is OMIT, then
+** the old.* values are rebased using the new.* values in the remote
+** change. Or, if the resolution is REPLACE, then the change is copied
+** into the rebased changeset with updates to columns also updated by
+** the conflicting remote UPDATE removed. If this means no columns would
+** be updated, the change is omitted.
+** </dl>
+**
+** A local change may be rebased against multiple remote changes
+** simultaneously. If a single key is modified by multiple remote
+** changesets, they are combined as follows before the local changeset
+** is rebased:
+**
+** <ul>
+** <li> If there has been one or more REPLACE resolutions on a
+** key, it is rebased according to a REPLACE.
+**
+** <li> If there have been no REPLACE resolutions on a key, then
+** the local changeset is rebased according to the most recent
+** of the OMIT resolutions.
+** </ul>
+**
+** Note that conflict resolutions from multiple remote changesets are
+** combined on a per-field basis, not per-row. This means that in the
+** case of multiple remote UPDATE operations, some fields of a single
+** local change may be rebased for REPLACE while others are rebased for
+** OMIT.
+**
+** In order to rebase a local changeset, the remote changeset must first
+** be applied to the local database using sqlite3changeset_apply_v2() and
+** the buffer of rebase information captured. Then:
+**
+** <ol>
+** <li> An sqlite3_rebaser object is created by calling
+** sqlite3rebaser_create().
+** <li> The new object is configured with the rebase buffer obtained from
+** sqlite3changeset_apply_v2() by calling sqlite3rebaser_configure().
+** If the local changeset is to be rebased against multiple remote
+** changesets, then sqlite3rebaser_configure() should be called
+** multiple times, in the same order that the multiple
+** sqlite3changeset_apply_v2() calls were made.
+** <li> Each local changeset is rebased by calling sqlite3rebaser_rebase().
+** <li> The sqlite3_rebaser object is deleted by calling
+** sqlite3rebaser_delete().
+** </ol>
+*/
+typedef struct sqlite3_rebaser sqlite3_rebaser;
+
+/*
+** CAPI3REF: Create a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Allocate a new changeset rebaser object. If successful, set (*ppNew) to
+** point to the new object and return SQLITE_OK. Otherwise, if an error
+** occurs, return an SQLite error code (e.g. SQLITE_NOMEM) and set (*ppNew)
+** to NULL.
+*/
+SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew);
+
+/*
+** CAPI3REF: Configure a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Configure the changeset rebaser object to rebase changesets according
+** to the conflict resolutions described by buffer pRebase (size nRebase
+** bytes), which must have been obtained from a previous call to
+** sqlite3changeset_apply_v2().
+*/
+SQLITE_API int sqlite3rebaser_configure(
+ sqlite3_rebaser*,
+ int nRebase, const void *pRebase
+);
+
+/*
+** CAPI3REF: Rebase a changeset
+** EXPERIMENTAL
+**
+** Argument pIn must point to a buffer containing a changeset nIn bytes
+** in size. This function allocates and populates a buffer with a copy
+** of the changeset rebased according to the configuration of the
+** rebaser object passed as the first argument. If successful, (*ppOut)
+** is set to point to the new buffer containing the rebased changeset and
+** (*pnOut) to its size in bytes and SQLITE_OK returned. It is the
+** responsibility of the caller to eventually free the new buffer using
+** sqlite3_free(). Otherwise, if an error occurs, (*ppOut) and (*pnOut)
+** are set to zero and an SQLite error code returned.
+*/
+SQLITE_API int sqlite3rebaser_rebase(
+ sqlite3_rebaser*,
+ int nIn, const void *pIn,
+ int *pnOut, void **ppOut
+);
+
+/*
+** CAPI3REF: Delete a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Delete the changeset rebaser object and all associated resources. There
+** should be one call to this function for each successful invocation
+** of sqlite3rebaser_create().
+*/
+SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p);
+
+/*
+** CAPI3REF: Streaming Versions of API functions.
+**
+** The six streaming API xxx_strm() functions serve similar purposes to the
+** corresponding non-streaming API functions:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th>Streaming function<th>Non-streaming equivalent</th>
+** <tr><td>sqlite3changeset_apply_strm<td>[sqlite3changeset_apply]
+** <tr><td>sqlite3changeset_apply_strm_v2<td>[sqlite3changeset_apply_v2]
+** <tr><td>sqlite3changeset_concat_strm<td>[sqlite3changeset_concat]
+** <tr><td>sqlite3changeset_invert_strm<td>[sqlite3changeset_invert]
+** <tr><td>sqlite3changeset_start_strm<td>[sqlite3changeset_start]
+** <tr><td>sqlite3session_changeset_strm<td>[sqlite3session_changeset]
+** <tr><td>sqlite3session_patchset_strm<td>[sqlite3session_patchset]
+** </table>
+**
+** Non-streaming functions that accept changesets (or patchsets) as input
+** require that the entire changeset be stored in a single buffer in memory.
+** Similarly, those that return a changeset or patchset do so by returning
+** a pointer to a single large buffer allocated using sqlite3_malloc().
+** Normally this is convenient. However, if an application running in a
+** low-memory environment is required to handle very large changesets, the
+** large contiguous memory allocations required can become onerous.
+**
+** In order to avoid this problem, instead of a single large buffer, input
+** is passed to a streaming API functions by way of a callback function that
+** the sessions module invokes to incrementally request input data as it is
+** required. In all cases, a pair of API function parameters such as
+**
+** <pre>
+** &nbsp; int nChangeset,
+** &nbsp; void *pChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xInput)(void *pIn, void *pData, int *pnData),
+** &nbsp; void *pIn,
+** </pre>
+**
+** Each time the xInput callback is invoked by the sessions module, the first
+** argument passed is a copy of the supplied pIn context pointer. The second
+** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no
+** error occurs the xInput method should copy up to (*pnData) bytes of data
+** into the buffer and set (*pnData) to the actual number of bytes copied
+** before returning SQLITE_OK. If the input is completely exhausted, (*pnData)
+** should be set to zero to indicate this. Or, if an error occurs, an SQLite
+** error code should be returned. In all cases, if an xInput callback returns
+** an error, all processing is abandoned and the streaming API function
+** returns a copy of the error code to the caller.
+**
+** In the case of sqlite3changeset_start_strm(), the xInput callback may be
+** invoked by the sessions module at any point during the lifetime of the
+** iterator. If such an xInput callback returns an error, the iterator enters
+** an error state, whereby all subsequent calls to iterator functions
+** immediately fail with the same error code as returned by xInput.
+**
+** Similarly, streaming API functions that return changesets (or patchsets)
+** return them in chunks by way of a callback function instead of via a
+** pointer to a single large buffer. In this case, a pair of parameters such
+** as:
+**
+** <pre>
+** &nbsp; int *pnChangeset,
+** &nbsp; void **ppChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xOutput)(void *pOut, const void *pData, int nData),
+** &nbsp; void *pOut
+** </pre>
+**
+** The xOutput callback is invoked zero or more times to return data to
+** the application. The first parameter passed to each call is a copy of the
+** pOut pointer supplied by the application. The second parameter, pData,
+** points to a buffer nData bytes in size containing the chunk of output
+** data being returned. If the xOutput callback successfully processes the
+** supplied data, it should return SQLITE_OK to indicate success. Otherwise,
+** it should return some other SQLite error code. In this case processing
+** is immediately abandoned and the streaming API function returns a copy
+** of the xOutput error code to the application.
+**
+** The sessions module never invokes an xOutput callback with the third
+** parameter set to a value less than or equal to zero. Other than this,
+** no guarantees are made as to the size of the chunks of data returned.
+*/
+SQLITE_API int sqlite3changeset_apply_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+);
+SQLITE_API int sqlite3changeset_concat_strm(
+ int (*xInputA)(void *pIn, void *pData, int *pnData),
+ void *pInA,
+ int (*xInputB)(void *pIn, void *pData, int *pnData),
+ void *pInB,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_invert_strm(
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_start_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changeset_start_v2_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int flags
+);
+SQLITE_API int sqlite3session_changeset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3session_patchset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3rebaser_rebase_strm(
+ sqlite3_rebaser *pRebaser,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+
+/*
+** CAPI3REF: Configure global parameters
+**
+** The sqlite3session_config() interface is used to make global configuration
+** changes to the sessions module in order to tune it to the specific needs
+** of the application.
+**
+** The sqlite3session_config() interface is not threadsafe. If it is invoked
+** while any other thread is inside any other sessions method then the
+** results are undefined. Furthermore, if it is invoked after any sessions
+** related objects have been created, the results are also undefined.
+**
+** The first argument to the sqlite3session_config() function must be one
+** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The
+** interpretation of the (void*) value passed as the second parameter and
+** the effect of calling this function depends on the value of the first
+** parameter.
+**
+** <dl>
+** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd>
+** By default, the sessions module streaming interfaces attempt to input
+** and output data in approximately 1 KiB chunks. This operand may be used
+** to set and query the value of this configuration setting. The pointer
+** passed as the second argument must point to a value of type (int).
+** If this value is greater than 0, it is used as the new streaming data
+** chunk size for both input and output. Before returning, the (int) value
+** pointed to by pArg is set to the final value of the streaming interface
+** chunk size.
+** </dl>
+**
+** This function returns SQLITE_OK if successful, or an SQLite error code
+** otherwise.
+*/
+SQLITE_API int sqlite3session_config(int op, void *pArg);
+
+/*
+** CAPI3REF: Values for sqlite3session_config().
+*/
+#define SQLITE_SESSION_CONFIG_STRMSIZE 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+}
+#endif
+
+#endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */
+
+/******** End of sqlite3session.h *********/
+/******** Begin file fts5.h *********/
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+
+#if 0
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. Returns SQLITE_OK if successful, or an error
+** code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. Any column filter that applies to
+** phrase iPhrase of the current query is included in $p. For each
+** row visited, the callback function passed as the fourth argument
+** is invoked. The context and API objects passed to the callback
+** function may be used to access the properties of each matched row.
+** Invoking Api.xUserData() returns a copy of the pointer passed as
+** the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension function's
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function,
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 3 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and initialize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, using
+** the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By querying the index for all synonyms of each query term
+** separately. In this case, when tokenizing query text, the
+** tokenizer may provide multiple synonyms for a single term
+** within the document. FTS5 then queries the index for each
+** synonym individually. For example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do so would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entries in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is substituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (2)) or query
+** text (method (3)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppContext,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+/******** End of fts5.h *********/
+
+/************** End of sqlite3.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/*
+** Reuse the STATIC_LRU for mutex access to sqlite3_temp_directory.
+*/
+#define SQLITE_MUTEX_STATIC_TEMPDIR SQLITE_MUTEX_STATIC_VFS1
+
+/*
+** Include the configuration header output by 'configure' if we're using the
+** autoconf-based build
+*/
+#if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
+#include "config.h"
+#define SQLITECONFIG_H 1
+#endif
+
+/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
+/************** Begin file sqliteLimit.h *************************************/
+/*
+** 2007 May 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file defines various limits of what SQLite can process.
+*/
+
+/*
+** The maximum length of a TEXT or BLOB in bytes. This also
+** limits the size of a row in a table or index.
+**
+** The hard limit is the ability of a 32-bit signed integer
+** to count the size: 2^31-1 or 2147483647.
+*/
+#ifndef SQLITE_MAX_LENGTH
+# define SQLITE_MAX_LENGTH 1000000000
+#endif
+
+/*
+** This is the maximum number of
+**
+** * Columns in a table
+** * Columns in an index
+** * Columns in a view
+** * Terms in the SET clause of an UPDATE statement
+** * Terms in the result set of a SELECT statement
+** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
+** * Terms in the VALUES clause of an INSERT statement
+**
+** The hard upper limit here is 32676. Most database people will
+** tell you that in a well-normalized database, you usually should
+** not have more than a dozen or so columns in any table. And if
+** that is the case, there is no point in having more than a few
+** dozen values in any of the other situations described above.
+*/
+#ifndef SQLITE_MAX_COLUMN
+# define SQLITE_MAX_COLUMN 2000
+#endif
+
+/*
+** The maximum length of a single SQL statement in bytes.
+**
+** It used to be the case that setting this value to zero would
+** turn the limit off. That is no longer true. It is not possible
+** to turn this limit off.
+*/
+#ifndef SQLITE_MAX_SQL_LENGTH
+# define SQLITE_MAX_SQL_LENGTH 1000000000
+#endif
+
+/*
+** The maximum depth of an expression tree. This is limited to
+** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
+** want to place more severe limits on the complexity of an
+** expression. A value of 0 means that there is no limit.
+*/
+#ifndef SQLITE_MAX_EXPR_DEPTH
+# define SQLITE_MAX_EXPR_DEPTH 1000
+#endif
+
+/*
+** The maximum number of terms in a compound SELECT statement.
+** The code generator for compound SELECT statements does one
+** level of recursion for each term. A stack overflow can result
+** if the number of terms is too large. In practice, most SQL
+** never has more than 3 or 4 terms. Use a value of 0 to disable
+** any limit on the number of terms in a compount SELECT.
+*/
+#ifndef SQLITE_MAX_COMPOUND_SELECT
+# define SQLITE_MAX_COMPOUND_SELECT 500
+#endif
+
+/*
+** The maximum number of opcodes in a VDBE program.
+** Not currently enforced.
+*/
+#ifndef SQLITE_MAX_VDBE_OP
+# define SQLITE_MAX_VDBE_OP 250000000
+#endif
+
+/*
+** The maximum number of arguments to an SQL function.
+*/
+#ifndef SQLITE_MAX_FUNCTION_ARG
+# define SQLITE_MAX_FUNCTION_ARG 127
+#endif
+
+/*
+** The suggested maximum number of in-memory pages to use for
+** the main database table and for temporary tables.
+**
+** IMPLEMENTATION-OF: R-30185-15359 The default suggested cache size is -2000,
+** which means the cache size is limited to 2048000 bytes of memory.
+** IMPLEMENTATION-OF: R-48205-43578 The default suggested cache size can be
+** altered using the SQLITE_DEFAULT_CACHE_SIZE compile-time options.
+*/
+#ifndef SQLITE_DEFAULT_CACHE_SIZE
+# define SQLITE_DEFAULT_CACHE_SIZE -2000
+#endif
+
+/*
+** The default number of frames to accumulate in the log file before
+** checkpointing the database in WAL mode.
+*/
+#ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
+# define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000
+#endif
+
+/*
+** The maximum number of attached databases. This must be between 0
+** and 125. The upper bound of 125 is because the attached databases are
+** counted using a signed 8-bit integer which has a maximum value of 127
+** and we have to allow 2 extra counts for the "main" and "temp" databases.
+*/
+#ifndef SQLITE_MAX_ATTACHED
+# define SQLITE_MAX_ATTACHED 10
+#endif
+
+
+/*
+** The maximum value of a ?nnn wildcard that the parser will accept.
+** If the value exceeds 32767 then extra space is required for the Expr
+** structure. But otherwise, we believe that the number can be as large
+** as a signed 32-bit integer can hold.
+*/
+#ifndef SQLITE_MAX_VARIABLE_NUMBER
+# define SQLITE_MAX_VARIABLE_NUMBER 32766
+#endif
+
+/* Maximum page size. The upper bound on this value is 65536. This a limit
+** imposed by the use of 16-bit offsets within each page.
+**
+** Earlier versions of SQLite allowed the user to change this value at
+** compile time. This is no longer permitted, on the grounds that it creates
+** a library that is technically incompatible with an SQLite library
+** compiled with a different limit. If a process operating on a database
+** with a page-size of 65536 bytes crashes, then an instance of SQLite
+** compiled with the default page-size limit will not be able to rollback
+** the aborted transaction. This could lead to database corruption.
+*/
+#ifdef SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_PAGE_SIZE
+#endif
+#define SQLITE_MAX_PAGE_SIZE 65536
+
+
+/*
+** The default size of a database page.
+*/
+#ifndef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE 4096
+#endif
+#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+/*
+** Ordinarily, if no value is explicitly provided, SQLite creates databases
+** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
+** device characteristics (sector-size and atomic write() support),
+** SQLite may choose a larger value. This constant is the maximum value
+** SQLite will choose on its own.
+*/
+#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
+#endif
+#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+
+/*
+** Maximum number of pages in one database file.
+**
+** This is really just the default value for the max_page_count pragma.
+** This value can be lowered (or raised) at run-time using that the
+** max_page_count macro.
+*/
+#ifndef SQLITE_MAX_PAGE_COUNT
+# define SQLITE_MAX_PAGE_COUNT 1073741823
+#endif
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Maximum depth of recursion for triggers.
+**
+** A value of 1 means that a trigger program will not be able to itself
+** fire any triggers. A value of 0 means that no trigger programs at all
+** may be executed.
+*/
+#ifndef SQLITE_MAX_TRIGGER_DEPTH
+# define SQLITE_MAX_TRIGGER_DEPTH 1000
+#endif
+
+/************** End of sqliteLimit.h *****************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/* Disable nuisance warnings on Borland compilers */
+#if defined(__BORLANDC__)
+#pragma warn -rch /* unreachable code */
+#pragma warn -ccc /* Condition is always true or false */
+#pragma warn -aus /* Assigned value is never used */
+#pragma warn -csu /* Comparing signed and unsigned */
+#pragma warn -spa /* Suspicious pointer arithmetic */
+#endif
+
+/*
+** WAL mode depends on atomic aligned 32-bit loads and stores in a few
+** places. The following macros try to make this explicit.
+*/
+#ifndef __has_extension
+# define __has_extension(x) 0 /* compatibility with non-clang compilers */
+#endif
+#if GCC_VERSION>=4007000 || __has_extension(c_atomic)
+# define SQLITE_ATOMIC_INTRINSICS 1
+# define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED)
+# define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
+#else
+# define SQLITE_ATOMIC_INTRINSICS 0
+# define AtomicLoad(PTR) (*(PTR))
+# define AtomicStore(PTR,VAL) (*(PTR) = (VAL))
+#endif
+
+/*
+** Include standard header files as necessary
+*/
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#endif
+#ifdef HAVE_INTTYPES_H
+#include <inttypes.h>
+#endif
+
+/*
+** The following macros are used to cast pointers to integers and
+** integers to pointers. The way you do this varies from one compiler
+** to the next, so we have developed the following set of #if statements
+** to generate appropriate macros for a wide range of compilers.
+**
+** The correct "ANSI" way to do this is to use the intptr_t type.
+** Unfortunately, that typedef is not available on all compilers, or
+** if it is available, it requires an #include of specific headers
+** that vary from one machine to the next.
+**
+** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
+** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
+** So we have to define the macros in different ways depending on the
+** compiler.
+*/
+#if defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
+# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
+#elif defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
+# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
+#elif !defined(__GNUC__) /* Works for compilers other than LLVM */
+# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
+# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
+#else /* Generates a warning - but it always works */
+# define SQLITE_INT_TO_PTR(X) ((void*)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(X))
+#endif
+
+/*
+** A macro to hint to the compiler that a function should not be
+** inlined.
+*/
+#if defined(__GNUC__)
+# define SQLITE_NOINLINE __attribute__((noinline))
+#elif defined(_MSC_VER) && _MSC_VER>=1310
+# define SQLITE_NOINLINE __declspec(noinline)
+#else
+# define SQLITE_NOINLINE
+#endif
+
+/*
+** Make sure that the compiler intrinsics we desire are enabled when
+** compiling with an appropriate version of MSVC unless prevented by
+** the SQLITE_DISABLE_INTRINSIC define.
+*/
+#if !defined(SQLITE_DISABLE_INTRINSIC)
+# if defined(_MSC_VER) && _MSC_VER>=1400
+# if !defined(_WIN32_WCE)
+# include <intrin.h>
+# pragma intrinsic(_byteswap_ushort)
+# pragma intrinsic(_byteswap_ulong)
+# pragma intrinsic(_byteswap_uint64)
+# pragma intrinsic(_ReadWriteBarrier)
+# else
+# include <cmnintrin.h>
+# endif
+# endif
+#endif
+
+/*
+** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
+** 0 means mutexes are permanently disable and the library is never
+** threadsafe. 1 means the library is serialized which is the highest
+** level of threadsafety. 2 means the library is multithreaded - multiple
+** threads can use SQLite as long as no two threads try to use the same
+** database connection at the same time.
+**
+** Older versions of SQLite used an optional THREADSAFE macro.
+** We support that for legacy.
+**
+** To ensure that the correct value of "THREADSAFE" is reported when querying
+** for compile-time options at runtime (e.g. "PRAGMA compile_options"), this
+** logic is partially replicated in ctime.c. If it is updated here, it should
+** also be updated there.
+*/
+#if !defined(SQLITE_THREADSAFE)
+# if defined(THREADSAFE)
+# define SQLITE_THREADSAFE THREADSAFE
+# else
+# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
+# endif
+#endif
+
+/*
+** Powersafe overwrite is on by default. But can be turned off using
+** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
+*/
+#ifndef SQLITE_POWERSAFE_OVERWRITE
+# define SQLITE_POWERSAFE_OVERWRITE 1
+#endif
+
+/*
+** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
+** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
+** which case memory allocation statistics are disabled by default.
+*/
+#if !defined(SQLITE_DEFAULT_MEMSTATUS)
+# define SQLITE_DEFAULT_MEMSTATUS 1
+#endif
+
+/*
+** Exactly one of the following macros must be defined in order to
+** specify which memory allocation subsystem to use.
+**
+** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
+** SQLITE_WIN32_MALLOC // Use Win32 native heap API
+** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails
+** SQLITE_MEMDEBUG // Debugging version of system malloc()
+**
+** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
+** assert() macro is enabled, each call into the Win32 native heap subsystem
+** will cause HeapValidate to be called. If heap validation should fail, an
+** assertion will be triggered.
+**
+** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
+** the default.
+*/
+#if defined(SQLITE_SYSTEM_MALLOC) \
+ + defined(SQLITE_WIN32_MALLOC) \
+ + defined(SQLITE_ZERO_MALLOC) \
+ + defined(SQLITE_MEMDEBUG)>1
+# error "Two or more of the following compile-time configuration options\
+ are defined but at most one is allowed:\
+ SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
+ SQLITE_ZERO_MALLOC"
+#endif
+#if defined(SQLITE_SYSTEM_MALLOC) \
+ + defined(SQLITE_WIN32_MALLOC) \
+ + defined(SQLITE_ZERO_MALLOC) \
+ + defined(SQLITE_MEMDEBUG)==0
+# define SQLITE_SYSTEM_MALLOC 1
+#endif
+
+/*
+** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
+** sizes of memory allocations below this value where possible.
+*/
+#if !defined(SQLITE_MALLOC_SOFT_LIMIT)
+# define SQLITE_MALLOC_SOFT_LIMIT 1024
+#endif
+
+/*
+** We need to define _XOPEN_SOURCE as follows in order to enable
+** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
+** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
+** it.
+*/
+#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
+# define _XOPEN_SOURCE 600
+#endif
+
+/*
+** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that
+** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true,
+** make it true by defining or undefining NDEBUG.
+**
+** Setting NDEBUG makes the code smaller and faster by disabling the
+** assert() statements in the code. So we want the default action
+** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
+** is set. Thus NDEBUG becomes an opt-in rather than an opt-out
+** feature.
+*/
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+
+/*
+** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
+*/
+#if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
+# define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
+#endif
+
+/*
+** The testcase() macro is used to aid in coverage testing. When
+** doing coverage testing, the condition inside the argument to
+** testcase() must be evaluated both true and false in order to
+** get full branch coverage. The testcase() macro is inserted
+** to help ensure adequate test coverage in places where simple
+** condition/decision coverage is inadequate. For example, testcase()
+** can be used to make sure boundary values are tested. For
+** bitmask tests, testcase() can be used to make sure each bit
+** is significant and used at least once. On switch statements
+** where multiple cases go to the same block of code, testcase()
+** can insure that all cases are evaluated.
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+# ifndef SQLITE_AMALGAMATION
+ extern unsigned int sqlite3CoverageCounter;
+# endif
+# define testcase(X) if( X ){ sqlite3CoverageCounter += (unsigned)__LINE__; }
+#else
+# define testcase(X)
+#endif
+
+/*
+** The TESTONLY macro is used to enclose variable declarations or
+** other bits of code that are needed to support the arguments
+** within testcase() and assert() macros.
+*/
+#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
+# define TESTONLY(X) X
+#else
+# define TESTONLY(X)
+#endif
+
+/*
+** Sometimes we need a small amount of code such as a variable initialization
+** to setup for a later assert() statement. We do not want this code to
+** appear when assert() is disabled. The following macro is therefore
+** used to contain that setup code. The "VVA" acronym stands for
+** "Verification, Validation, and Accreditation". In other words, the
+** code within VVA_ONLY() will only run during verification processes.
+*/
+#ifndef NDEBUG
+# define VVA_ONLY(X) X
+#else
+# define VVA_ONLY(X)
+#endif
+
+/*
+** Disable ALWAYS() and NEVER() (make them pass-throughs) for coverage
+** and mutation testing
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+
+/*
+** The ALWAYS and NEVER macros surround boolean expressions which
+** are intended to always be true or false, respectively. Such
+** expressions could be omitted from the code completely. But they
+** are included in a few cases in order to enhance the resilience
+** of SQLite to unexpected behavior - to make the code "self-healing"
+** or "ductile" rather than being "brittle" and crashing at the first
+** hint of unplanned behavior.
+**
+** In other words, ALWAYS and NEVER are added for defensive code.
+**
+** When doing coverage testing ALWAYS and NEVER are hard-coded to
+** be true and false so that the unreachable code they specify will
+** not be counted as untested code.
+*/
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+/*
+** Some conditionals are optimizations only. In other words, if the
+** conditionals are replaced with a constant 1 (true) or 0 (false) then
+** the correct answer is still obtained, though perhaps not as quickly.
+**
+** The following macros mark these optimizations conditionals.
+*/
+#if defined(SQLITE_MUTATION_TEST)
+# define OK_IF_ALWAYS_TRUE(X) (1)
+# define OK_IF_ALWAYS_FALSE(X) (0)
+#else
+# define OK_IF_ALWAYS_TRUE(X) (X)
+# define OK_IF_ALWAYS_FALSE(X) (X)
+#endif
+
+/*
+** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is
+** defined. We need to defend against those failures when testing with
+** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches
+** during a normal build. The following macro can be used to disable tests
+** that are always false except when SQLITE_TEST_REALLOC_STRESS is set.
+*/
+#if defined(SQLITE_TEST_REALLOC_STRESS)
+# define ONLY_IF_REALLOC_STRESS(X) (X)
+#elif !defined(NDEBUG)
+# define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0)
+#else
+# define ONLY_IF_REALLOC_STRESS(X) (0)
+#endif
+
+/*
+** Declarations used for tracing the operating system interfaces.
+*/
+#if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
+ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
+ extern int sqlite3OSTrace;
+# define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X
+# define SQLITE_HAVE_OS_TRACE
+#else
+# define OSTRACE(X)
+# undef SQLITE_HAVE_OS_TRACE
+#endif
+
+/*
+** Is the sqlite3ErrName() function needed in the build? Currently,
+** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
+** OSTRACE is enabled), and by several "test*.c" files (which are
+** compiled using SQLITE_TEST).
+*/
+#if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
+ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
+# define SQLITE_NEED_ERR_NAME
+#else
+# undef SQLITE_NEED_ERR_NAME
+#endif
+
+/*
+** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN
+*/
+#ifdef SQLITE_OMIT_EXPLAIN
+# undef SQLITE_ENABLE_EXPLAIN_COMMENTS
+#endif
+
+/*
+** SQLITE_OMIT_VIRTUALTABLE implies SQLITE_OMIT_ALTERTABLE
+*/
+#if defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_ALTERTABLE)
+# define SQLITE_OMIT_ALTERTABLE
+#endif
+
+/*
+** Return true (non-zero) if the input is an integer that is too large
+** to fit in 32-bits. This macro is used inside of various testcase()
+** macros to verify that we have tested SQLite for large-file support.
+*/
+#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0)
+
+/*
+** The macro unlikely() is a hint that surrounds a boolean
+** expression that is usually false. Macro likely() surrounds
+** a boolean expression that is usually true. These hints could,
+** in theory, be used by the compiler to generate better code, but
+** currently they are just comments for human readers.
+*/
+#define likely(X) (X)
+#define unlikely(X) (X)
+
+/************** Include hash.h in the middle of sqliteInt.h ******************/
+/************** Begin file hash.h ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implementation
+** used in SQLite.
+*/
+#ifndef SQLITE_HASH_H
+#define SQLITE_HASH_H
+
+/* Forward declarations of structures. */
+typedef struct Hash Hash;
+typedef struct HashElem HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, some of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+**
+** All elements of the hash table are on a single doubly-linked list.
+** Hash.first points to the head of this list.
+**
+** There are Hash.htsize buckets. Each bucket points to a spot in
+** the global doubly-linked list. The contents of the bucket are the
+** element pointed to plus the next _ht.count-1 elements in the list.
+**
+** Hash.htsize and Hash.ht may be zero. In that case lookup is done
+** by a linear search of the global list. For small tables, the
+** Hash.ht table is never allocated because if there are few elements
+** in the table, it is faster to do a linear search than to manage
+** the hash table.
+*/
+struct Hash {
+ unsigned int htsize; /* Number of buckets in the hash table */
+ unsigned int count; /* Number of entries in this table */
+ HashElem *first; /* The first element of the array */
+ struct _ht { /* the hash table */
+ unsigned int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct HashElem {
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ const char *pKey; /* Key associated with this element */
+};
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash*);
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, void *pData);
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey);
+SQLITE_PRIVATE void sqlite3HashClear(Hash*);
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Hash h;
+** HashElem *p;
+** ...
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
+** SomeStructure *pData = sqliteHashData(p);
+** // do something with pData
+** }
+*/
+#define sqliteHashFirst(H) ((H)->first)
+#define sqliteHashNext(E) ((E)->next)
+#define sqliteHashData(E) ((E)->data)
+/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */
+/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */
+
+/*
+** Number of entries in a hash table
+*/
+#define sqliteHashCount(H) ((H)->count)
+
+#endif /* SQLITE_HASH_H */
+
+/************** End of hash.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include parse.h in the middle of sqliteInt.h *****************/
+/************** Begin file parse.h *******************************************/
+#define TK_SEMI 1
+#define TK_EXPLAIN 2
+#define TK_QUERY 3
+#define TK_PLAN 4
+#define TK_BEGIN 5
+#define TK_TRANSACTION 6
+#define TK_DEFERRED 7
+#define TK_IMMEDIATE 8
+#define TK_EXCLUSIVE 9
+#define TK_COMMIT 10
+#define TK_END 11
+#define TK_ROLLBACK 12
+#define TK_SAVEPOINT 13
+#define TK_RELEASE 14
+#define TK_TO 15
+#define TK_TABLE 16
+#define TK_CREATE 17
+#define TK_IF 18
+#define TK_NOT 19
+#define TK_EXISTS 20
+#define TK_TEMP 21
+#define TK_LP 22
+#define TK_RP 23
+#define TK_AS 24
+#define TK_COMMA 25
+#define TK_WITHOUT 26
+#define TK_ABORT 27
+#define TK_ACTION 28
+#define TK_AFTER 29
+#define TK_ANALYZE 30
+#define TK_ASC 31
+#define TK_ATTACH 32
+#define TK_BEFORE 33
+#define TK_BY 34
+#define TK_CASCADE 35
+#define TK_CAST 36
+#define TK_CONFLICT 37
+#define TK_DATABASE 38
+#define TK_DESC 39
+#define TK_DETACH 40
+#define TK_EACH 41
+#define TK_FAIL 42
+#define TK_OR 43
+#define TK_AND 44
+#define TK_IS 45
+#define TK_MATCH 46
+#define TK_LIKE_KW 47
+#define TK_BETWEEN 48
+#define TK_IN 49
+#define TK_ISNULL 50
+#define TK_NOTNULL 51
+#define TK_NE 52
+#define TK_EQ 53
+#define TK_GT 54
+#define TK_LE 55
+#define TK_LT 56
+#define TK_GE 57
+#define TK_ESCAPE 58
+#define TK_ID 59
+#define TK_COLUMNKW 60
+#define TK_DO 61
+#define TK_FOR 62
+#define TK_IGNORE 63
+#define TK_INITIALLY 64
+#define TK_INSTEAD 65
+#define TK_NO 66
+#define TK_KEY 67
+#define TK_OF 68
+#define TK_OFFSET 69
+#define TK_PRAGMA 70
+#define TK_RAISE 71
+#define TK_RECURSIVE 72
+#define TK_REPLACE 73
+#define TK_RESTRICT 74
+#define TK_ROW 75
+#define TK_ROWS 76
+#define TK_TRIGGER 77
+#define TK_VACUUM 78
+#define TK_VIEW 79
+#define TK_VIRTUAL 80
+#define TK_WITH 81
+#define TK_NULLS 82
+#define TK_FIRST 83
+#define TK_LAST 84
+#define TK_CURRENT 85
+#define TK_FOLLOWING 86
+#define TK_PARTITION 87
+#define TK_PRECEDING 88
+#define TK_RANGE 89
+#define TK_UNBOUNDED 90
+#define TK_EXCLUDE 91
+#define TK_GROUPS 92
+#define TK_OTHERS 93
+#define TK_TIES 94
+#define TK_GENERATED 95
+#define TK_ALWAYS 96
+#define TK_MATERIALIZED 97
+#define TK_REINDEX 98
+#define TK_RENAME 99
+#define TK_CTIME_KW 100
+#define TK_ANY 101
+#define TK_BITAND 102
+#define TK_BITOR 103
+#define TK_LSHIFT 104
+#define TK_RSHIFT 105
+#define TK_PLUS 106
+#define TK_MINUS 107
+#define TK_STAR 108
+#define TK_SLASH 109
+#define TK_REM 110
+#define TK_CONCAT 111
+#define TK_PTR 112
+#define TK_COLLATE 113
+#define TK_BITNOT 114
+#define TK_ON 115
+#define TK_INDEXED 116
+#define TK_STRING 117
+#define TK_JOIN_KW 118
+#define TK_CONSTRAINT 119
+#define TK_DEFAULT 120
+#define TK_NULL 121
+#define TK_PRIMARY 122
+#define TK_UNIQUE 123
+#define TK_CHECK 124
+#define TK_REFERENCES 125
+#define TK_AUTOINCR 126
+#define TK_INSERT 127
+#define TK_DELETE 128
+#define TK_UPDATE 129
+#define TK_SET 130
+#define TK_DEFERRABLE 131
+#define TK_FOREIGN 132
+#define TK_DROP 133
+#define TK_UNION 134
+#define TK_ALL 135
+#define TK_EXCEPT 136
+#define TK_INTERSECT 137
+#define TK_SELECT 138
+#define TK_VALUES 139
+#define TK_DISTINCT 140
+#define TK_DOT 141
+#define TK_FROM 142
+#define TK_JOIN 143
+#define TK_USING 144
+#define TK_ORDER 145
+#define TK_GROUP 146
+#define TK_HAVING 147
+#define TK_LIMIT 148
+#define TK_WHERE 149
+#define TK_RETURNING 150
+#define TK_INTO 151
+#define TK_NOTHING 152
+#define TK_FLOAT 153
+#define TK_BLOB 154
+#define TK_INTEGER 155
+#define TK_VARIABLE 156
+#define TK_CASE 157
+#define TK_WHEN 158
+#define TK_THEN 159
+#define TK_ELSE 160
+#define TK_INDEX 161
+#define TK_ALTER 162
+#define TK_ADD 163
+#define TK_WINDOW 164
+#define TK_OVER 165
+#define TK_FILTER 166
+#define TK_COLUMN 167
+#define TK_AGG_FUNCTION 168
+#define TK_AGG_COLUMN 169
+#define TK_TRUEFALSE 170
+#define TK_ISNOT 171
+#define TK_FUNCTION 172
+#define TK_UMINUS 173
+#define TK_UPLUS 174
+#define TK_TRUTH 175
+#define TK_REGISTER 176
+#define TK_VECTOR 177
+#define TK_SELECT_COLUMN 178
+#define TK_IF_NULL_ROW 179
+#define TK_ASTERISK 180
+#define TK_SPAN 181
+#define TK_ERROR 182
+#define TK_SPACE 183
+#define TK_ILLEGAL 184
+
+/************** End of parse.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <stddef.h>
+
+/*
+** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY.
+** This allows better measurements of where memcpy() is used when running
+** cachegrind. But this macro version of memcpy() is very slow so it
+** should not be used in production. This is a performance measurement
+** hack only.
+*/
+#ifdef SQLITE_INLINE_MEMCPY
+# define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\
+ int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);}
+#endif
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite_int64
+# define float sqlite_int64
+# define LONGDOUBLE_TYPE sqlite_int64
+# ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
+# endif
+# define SQLITE_OMIT_DATETIME_FUNCS 1
+# define SQLITE_OMIT_TRACE 1
+# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+# undef SQLITE_HAVE_ISNAN
+#endif
+#ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (1e99)
+#endif
+
+/*
+** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
+** afterward. Having this macro allows us to cause the C compiler
+** to omit code used by TEMP tables without messy #ifndef statements.
+*/
+#ifdef SQLITE_OMIT_TEMPDB
+#define OMIT_TEMPDB 1
+#else
+#define OMIT_TEMPDB 0
+#endif
+
+/*
+** The "file format" number is an integer that is incremented whenever
+** the VDBE-level file format changes. The following macros define the
+** the default file format for new databases and the maximum file format
+** that the library can read.
+*/
+#define SQLITE_MAX_FILE_FORMAT 4
+#ifndef SQLITE_DEFAULT_FILE_FORMAT
+# define SQLITE_DEFAULT_FILE_FORMAT 4
+#endif
+
+/*
+** Determine whether triggers are recursive by default. This can be
+** changed at run-time using a pragma.
+*/
+#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
+#endif
+
+/*
+** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
+** on the command-line
+*/
+#ifndef SQLITE_TEMP_STORE
+# define SQLITE_TEMP_STORE 1
+#endif
+
+/*
+** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
+** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
+** to zero.
+*/
+#if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
+# undef SQLITE_MAX_WORKER_THREADS
+# define SQLITE_MAX_WORKER_THREADS 0
+#endif
+#ifndef SQLITE_MAX_WORKER_THREADS
+# define SQLITE_MAX_WORKER_THREADS 8
+#endif
+#ifndef SQLITE_DEFAULT_WORKER_THREADS
+# define SQLITE_DEFAULT_WORKER_THREADS 0
+#endif
+#if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
+# undef SQLITE_MAX_WORKER_THREADS
+# define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
+#endif
+
+/*
+** The default initial allocation for the pagecache when using separate
+** pagecaches for each database connection. A positive number is the
+** number of pages. A negative number N translations means that a buffer
+** of -1024*N bytes is allocated and used for as many pages as it will hold.
+**
+** The default value of "20" was chosen to minimize the run-time of the
+** speedtest1 test program with options: --shrink-memory --reprepare
+*/
+#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
+# define SQLITE_DEFAULT_PCACHE_INITSZ 20
+#endif
+
+/*
+** Default value for the SQLITE_CONFIG_SORTERREF_SIZE option.
+*/
+#ifndef SQLITE_DEFAULT_SORTERREF_SIZE
+# define SQLITE_DEFAULT_SORTERREF_SIZE 0x7fffffff
+#endif
+
+/*
+** The compile-time options SQLITE_MMAP_READWRITE and
+** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another.
+** You must choose one or the other (or neither) but not both.
+*/
+#if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+#error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+#endif
+
+/*
+** GCC does not define the offsetof() macro so we'll have to do it
+** ourselves.
+*/
+#ifndef offsetof
+#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
+#endif
+
+/*
+** Macros to compute minimum and maximum of two numbers.
+*/
+#ifndef MIN
+# define MIN(A,B) ((A)<(B)?(A):(B))
+#endif
+#ifndef MAX
+# define MAX(A,B) ((A)>(B)?(A):(B))
+#endif
+
+/*
+** Swap two objects of type TYPE.
+*/
+#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+
+/*
+** Check to see if this machine uses EBCDIC. (Yes, believe it or
+** not, there are still machines out there that use EBCDIC.)
+*/
+#if 'A' == '\301'
+# define SQLITE_EBCDIC 1
+#else
+# define SQLITE_ASCII 1
+#endif
+
+/*
+** Integers of known sizes. These typedefs might change for architectures
+** where the sizes very. Preprocessor macros are available so that the
+** types can be conveniently redefined at compile-type. Like this:
+**
+** cc '-DUINTPTR_TYPE=long long int' ...
+*/
+#ifndef UINT32_TYPE
+# ifdef HAVE_UINT32_T
+# define UINT32_TYPE uint32_t
+# else
+# define UINT32_TYPE unsigned int
+# endif
+#endif
+#ifndef UINT16_TYPE
+# ifdef HAVE_UINT16_T
+# define UINT16_TYPE uint16_t
+# else
+# define UINT16_TYPE unsigned short int
+# endif
+#endif
+#ifndef INT16_TYPE
+# ifdef HAVE_INT16_T
+# define INT16_TYPE int16_t
+# else
+# define INT16_TYPE short int
+# endif
+#endif
+#ifndef UINT8_TYPE
+# ifdef HAVE_UINT8_T
+# define UINT8_TYPE uint8_t
+# else
+# define UINT8_TYPE unsigned char
+# endif
+#endif
+#ifndef INT8_TYPE
+# ifdef HAVE_INT8_T
+# define INT8_TYPE int8_t
+# else
+# define INT8_TYPE signed char
+# endif
+#endif
+#ifndef LONGDOUBLE_TYPE
+# define LONGDOUBLE_TYPE long double
+#endif
+typedef sqlite_int64 i64; /* 8-byte signed integer */
+typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
+typedef INT16_TYPE i16; /* 2-byte signed integer */
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
+typedef INT8_TYPE i8; /* 1-byte signed integer */
+
+/*
+** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
+** that can be stored in a u32 without loss of data. The value
+** is 0x00000000ffffffff. But because of quirks of some compilers, we
+** have to specify the value in the less intuitive manner shown:
+*/
+#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
+
+/*
+** The datatype used to store estimates of the number of rows in a
+** table or index. This is an unsigned integer type. For 99.9% of
+** the world, a 32-bit integer is sufficient. But a 64-bit integer
+** can be used at compile-time if desired.
+*/
+#ifdef SQLITE_64BIT_STATS
+ typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */
+#else
+ typedef u32 tRowcnt; /* 32-bit is the default */
+#endif
+
+/*
+** Estimated quantities used for query planning are stored as 16-bit
+** logarithms. For quantity X, the value stored is 10*log2(X). This
+** gives a possible range of values of approximately 1.0e986 to 1e-986.
+** But the allowed values are "grainy". Not every value is representable.
+** For example, quantities 16 and 17 are both represented by a LogEst
+** of 40. However, since LogEst quantities are suppose to be estimates,
+** not exact values, this imprecision is not a problem.
+**
+** "LogEst" is short for "Logarithmic Estimate".
+**
+** Examples:
+** 1 -> 0 20 -> 43 10000 -> 132
+** 2 -> 10 25 -> 46 25000 -> 146
+** 3 -> 16 100 -> 66 1000000 -> 199
+** 4 -> 20 1000 -> 99 1048576 -> 200
+** 10 -> 33 1024 -> 100 4294967296 -> 320
+**
+** The LogEst can be negative to indicate fractional values.
+** Examples:
+**
+** 0.5 -> -10 0.1 -> -33 0.0625 -> -40
+*/
+typedef INT16_TYPE LogEst;
+
+/*
+** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
+*/
+#ifndef SQLITE_PTRSIZE
+# if defined(__SIZEOF_POINTER__)
+# define SQLITE_PTRSIZE __SIZEOF_POINTER__
+# elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(_M_ARM) || defined(__arm__) || defined(__x86) || \
+ (defined(__APPLE__) && defined(__POWERPC__)) || \
+ (defined(__TOS_AIX__) && !defined(__64BIT__))
+# define SQLITE_PTRSIZE 4
+# else
+# define SQLITE_PTRSIZE 8
+# endif
+#endif
+
+/* The uptr type is an unsigned integer large enough to hold a pointer
+*/
+#if defined(HAVE_STDINT_H)
+ typedef uintptr_t uptr;
+#elif SQLITE_PTRSIZE==4
+ typedef u32 uptr;
+#else
+ typedef u64 uptr;
+#endif
+
+/*
+** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to
+** something between S (inclusive) and E (exclusive).
+**
+** In other words, S is a buffer and E is a pointer to the first byte after
+** the end of buffer S. This macro returns true if P points to something
+** contained within the buffer S.
+*/
+#define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E)))
+
+
+/*
+** Macros to determine whether the machine is big or little endian,
+** and whether or not that determination is run-time or compile-time.
+**
+** For best performance, an attempt is made to guess at the byte-order
+** using C-preprocessor macros. If that is unsuccessful, or if
+** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined
+** at run-time.
+*/
+#ifndef SQLITE_BYTEORDER
+# if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
+ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
+ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
+# define SQLITE_BYTEORDER 1234
+# elif defined(sparc) || defined(__ppc__) || \
+ defined(__ARMEB__) || defined(__AARCH64EB__)
+# define SQLITE_BYTEORDER 4321
+# else
+# define SQLITE_BYTEORDER 0
+# endif
+#endif
+#if SQLITE_BYTEORDER==4321
+# define SQLITE_BIGENDIAN 1
+# define SQLITE_LITTLEENDIAN 0
+# define SQLITE_UTF16NATIVE SQLITE_UTF16BE
+#elif SQLITE_BYTEORDER==1234
+# define SQLITE_BIGENDIAN 0
+# define SQLITE_LITTLEENDIAN 1
+# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
+#else
+# ifdef SQLITE_AMALGAMATION
+ const int sqlite3one = 1;
+# else
+ extern const int sqlite3one;
+# endif
+# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
+# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
+# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
+#endif
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+** These macros are designed to work correctly on both 32-bit and 64-bit
+** compilers.
+*/
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define LARGEST_UINT64 (0xffffffff|(((u64)0xffffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+/*
+** Round up a number to the next larger multiple of 8. This is used
+** to force 8-byte alignment on 64-bit architectures.
+**
+** ROUND8() always does the rounding, for any argument.
+**
+** ROUND8P() assumes that the argument is already an integer number of
+** pointers in size, and so it is a no-op on systems where the pointer
+** size is 8.
+*/
+#define ROUND8(x) (((x)+7)&~7)
+#if SQLITE_PTRSIZE==8
+# define ROUND8P(x) (x)
+#else
+# define ROUND8P(x) (((x)+7)&~7)
+#endif
+
+/*
+** Round down to the nearest multiple of 8
+*/
+#define ROUNDDOWN8(x) ((x)&~7)
+
+/*
+** Assert that the pointer X is aligned to an 8-byte boundary. This
+** macro is used only within assert() to verify that the code gets
+** all alignment restrictions correct.
+**
+** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
+** underlying malloc() implementation might return us 4-byte aligned
+** pointers. In that case, only verify 4-byte alignment.
+*/
+#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
+# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0)
+#else
+# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
+#endif
+
+/*
+** Disable MMAP on platforms where it is known to not work
+*/
+#if defined(__OpenBSD__) || defined(__QNXNTO__)
+# undef SQLITE_MAX_MMAP_SIZE
+# define SQLITE_MAX_MMAP_SIZE 0
+#endif
+
+/*
+** Default maximum size of memory used by memory-mapped I/O in the VFS
+*/
+#ifdef __APPLE__
+# include <TargetConditionals.h>
+#endif
+#ifndef SQLITE_MAX_MMAP_SIZE
+# if defined(__linux__) \
+ || defined(_WIN32) \
+ || (defined(__APPLE__) && defined(__MACH__)) \
+ || defined(__sun) \
+ || defined(__FreeBSD__) \
+ || defined(__DragonFly__)
+# define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */
+# else
+# define SQLITE_MAX_MMAP_SIZE 0
+# endif
+#endif
+
+/*
+** The default MMAP_SIZE is zero on all platforms. Or, even if a larger
+** default MMAP_SIZE is specified at compile-time, make sure that it does
+** not exceed the maximum mmap size.
+*/
+#ifndef SQLITE_DEFAULT_MMAP_SIZE
+# define SQLITE_DEFAULT_MMAP_SIZE 0
+#endif
+#if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
+# undef SQLITE_DEFAULT_MMAP_SIZE
+# define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
+#endif
+
+/*
+** TREETRACE_ENABLED will be either 1 or 0 depending on whether or not
+** the Abstract Syntax Tree tracing logic is turned on.
+*/
+#if !defined(SQLITE_AMALGAMATION)
+SQLITE_PRIVATE u32 sqlite3TreeTrace;
+#endif
+#if defined(SQLITE_DEBUG) \
+ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_SELECTTRACE) \
+ || defined(SQLITE_ENABLE_TREETRACE))
+# define TREETRACE_ENABLED 1
+# define SELECTTRACE(K,P,S,X) \
+ if(sqlite3TreeTrace&(K)) \
+ sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
+ sqlite3DebugPrintf X
+#else
+# define SELECTTRACE(K,P,S,X)
+# define TREETRACE_ENABLED 0
+#endif
+
+/*
+** Macros for "wheretrace"
+*/
+SQLITE_PRIVATE u32 sqlite3WhereTrace;
+#if defined(SQLITE_DEBUG) \
+ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
+# define WHERETRACE(K,X) if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
+# define WHERETRACE_ENABLED 1
+#else
+# define WHERETRACE(K,X)
+#endif
+
+
+/*
+** An instance of the following structure is used to store the busy-handler
+** callback for a given sqlite handle.
+**
+** The sqlite.busyHandler member of the sqlite struct contains the busy
+** callback for the database handle. Each pager opened via the sqlite
+** handle is passed a pointer to sqlite.busyHandler. The busy-handler
+** callback is currently invoked only from within pager.c.
+*/
+typedef struct BusyHandler BusyHandler;
+struct BusyHandler {
+ int (*xBusyHandler)(void *,int); /* The busy callback */
+ void *pBusyArg; /* First arg to busy callback */
+ int nBusy; /* Incremented with each busy call */
+};
+
+/*
+** Name of table that holds the database schema.
+**
+** The PREFERRED names are used whereever possible. But LEGACY is also
+** used for backwards compatibility.
+**
+** 1. Queries can use either the PREFERRED or the LEGACY names
+** 2. The sqlite3_set_authorizer() callback uses the LEGACY name
+** 3. The PRAGMA table_list statement uses the PREFERRED name
+**
+** The LEGACY names are stored in the internal symbol hash table
+** in support of (2). Names are translated using sqlite3PreferredTableName()
+** for (3). The sqlite3FindTable() function takes care of translating
+** names for (1).
+**
+** Note that "sqlite_temp_schema" can also be called "temp.sqlite_schema".
+*/
+#define LEGACY_SCHEMA_TABLE "sqlite_master"
+#define LEGACY_TEMP_SCHEMA_TABLE "sqlite_temp_master"
+#define PREFERRED_SCHEMA_TABLE "sqlite_schema"
+#define PREFERRED_TEMP_SCHEMA_TABLE "sqlite_temp_schema"
+
+
+/*
+** The root-page of the schema table.
+*/
+#define SCHEMA_ROOT 1
+
+/*
+** The name of the schema table. The name is different for TEMP.
+*/
+#define SCHEMA_TABLE(x) \
+ ((!OMIT_TEMPDB)&&(x==1)?LEGACY_TEMP_SCHEMA_TABLE:LEGACY_SCHEMA_TABLE)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
+
+/*
+** Determine if the argument is a power of two
+*/
+#define IsPowerOfTwo(X) (((X)&((X)-1))==0)
+
+/*
+** The following value as a destructor means to use sqlite3DbFree().
+** The sqlite3DbFree() routine requires two parameters instead of the
+** one parameter that destructors normally want. So we have to introduce
+** this magic value that the code knows to handle differently. Any
+** pointer will work here as long as it is distinct from SQLITE_STATIC
+** and SQLITE_TRANSIENT.
+*/
+#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3OomClear)
+
+/*
+** When SQLITE_OMIT_WSD is defined, it means that the target platform does
+** not support Writable Static Data (WSD) such as global and static variables.
+** All variables must either be on the stack or dynamically allocated from
+** the heap. When WSD is unsupported, the variable declarations scattered
+** throughout the SQLite code must become constants instead. The SQLITE_WSD
+** macro is used for this purpose. And instead of referencing the variable
+** directly, we use its constant as a key to lookup the run-time allocated
+** buffer that holds real variable. The constant is also the initializer
+** for the run-time allocated buffer.
+**
+** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
+** macros become no-ops and have zero performance impact.
+*/
+#ifdef SQLITE_OMIT_WSD
+ #define SQLITE_WSD const
+ #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
+ #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
+SQLITE_API int sqlite3_wsd_init(int N, int J);
+SQLITE_API void *sqlite3_wsd_find(void *K, int L);
+#else
+ #define SQLITE_WSD
+ #define GLOBAL(t,v) v
+ #define sqlite3GlobalConfig sqlite3Config
+#endif
+
+/*
+** The following macros are used to suppress compiler warnings and to
+** make it clear to human readers when a function parameter is deliberately
+** left unused within the body of a function. This usually happens when
+** a function is called via a function pointer. For example the
+** implementation of an SQL aggregate step callback may not use the
+** parameter indicating the number of arguments passed to the aggregate,
+** if it knows that this is enforced elsewhere.
+**
+** When a function parameter is not used at all within the body of a function,
+** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
+** However, these macros may also be used to suppress warnings related to
+** parameters that may or may not be used depending on compilation options.
+** For example those parameters only used in assert() statements. In these
+** cases the parameters are named as per the usual conventions.
+*/
+#define UNUSED_PARAMETER(x) (void)(x)
+#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
+
+/*
+** Forward references to structures
+*/
+typedef struct AggInfo AggInfo;
+typedef struct AuthContext AuthContext;
+typedef struct AutoincInfo AutoincInfo;
+typedef struct Bitvec Bitvec;
+typedef struct CollSeq CollSeq;
+typedef struct Column Column;
+typedef struct Cte Cte;
+typedef struct CteUse CteUse;
+typedef struct Db Db;
+typedef struct DbFixer DbFixer;
+typedef struct Schema Schema;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct FKey FKey;
+typedef struct FuncDestructor FuncDestructor;
+typedef struct FuncDef FuncDef;
+typedef struct FuncDefHash FuncDefHash;
+typedef struct IdList IdList;
+typedef struct Index Index;
+typedef struct IndexSample IndexSample;
+typedef struct KeyClass KeyClass;
+typedef struct KeyInfo KeyInfo;
+typedef struct Lookaside Lookaside;
+typedef struct LookasideSlot LookasideSlot;
+typedef struct Module Module;
+typedef struct NameContext NameContext;
+typedef struct OnOrUsing OnOrUsing;
+typedef struct Parse Parse;
+typedef struct ParseCleanup ParseCleanup;
+typedef struct PreUpdate PreUpdate;
+typedef struct PrintfArguments PrintfArguments;
+typedef struct RenameToken RenameToken;
+typedef struct Returning Returning;
+typedef struct RowSet RowSet;
+typedef struct Savepoint Savepoint;
+typedef struct Select Select;
+typedef struct SQLiteThread SQLiteThread;
+typedef struct SelectDest SelectDest;
+typedef struct SrcItem SrcItem;
+typedef struct SrcList SrcList;
+typedef struct sqlite3_str StrAccum; /* Internal alias for sqlite3_str */
+typedef struct Table Table;
+typedef struct TableLock TableLock;
+typedef struct Token Token;
+typedef struct TreeView TreeView;
+typedef struct Trigger Trigger;
+typedef struct TriggerPrg TriggerPrg;
+typedef struct TriggerStep TriggerStep;
+typedef struct UnpackedRecord UnpackedRecord;
+typedef struct Upsert Upsert;
+typedef struct VTable VTable;
+typedef struct VtabCtx VtabCtx;
+typedef struct Walker Walker;
+typedef struct WhereInfo WhereInfo;
+typedef struct Window Window;
+typedef struct With With;
+
+
+/*
+** The bitmask datatype defined below is used for various optimizations.
+**
+** Changing this from a 64-bit to a 32-bit type limits the number of
+** tables in a join to 32 instead of 64. But it also reduces the size
+** of the library by 738 bytes on ix86.
+*/
+#ifdef SQLITE_BITMASK_TYPE
+ typedef SQLITE_BITMASK_TYPE Bitmask;
+#else
+ typedef u64 Bitmask;
+#endif
+
+/*
+** The number of bits in a Bitmask. "BMS" means "BitMask Size".
+*/
+#define BMS ((int)(sizeof(Bitmask)*8))
+
+/*
+** A bit in a Bitmask
+*/
+#define MASKBIT(n) (((Bitmask)1)<<(n))
+#define MASKBIT64(n) (((u64)1)<<(n))
+#define MASKBIT32(n) (((unsigned int)1)<<(n))
+#define SMASKBIT32(n) ((n)<=31?((unsigned int)1)<<(n):0)
+#define ALLBITS ((Bitmask)-1)
+
+/* A VList object records a mapping between parameters/variables/wildcards
+** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer
+** variable number associated with that parameter. See the format description
+** on the sqlite3VListAdd() routine for more information. A VList is really
+** just an array of integers.
+*/
+typedef int VList;
+
+/*
+** Defer sourcing vdbe.h and btree.h until after the "u8" and
+** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
+** pointer types (i.e. FuncDef) defined above.
+*/
+/************** Include pager.h in the middle of sqliteInt.h *****************/
+/************** Begin file pager.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
+*/
+
+#ifndef SQLITE_PAGER_H
+#define SQLITE_PAGER_H
+
+/*
+** Default maximum size for persistent journal files. A negative
+** value means no limit. This value may be overridden using the
+** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
+*/
+#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
+#endif
+
+/*
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
+*/
+typedef u32 Pgno;
+
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
+
+/*
+** Handle type for pages.
+*/
+typedef struct PgHdr DbPage;
+
+/*
+** Page number PAGER_SJ_PGNO is never used in an SQLite database (it is
+** reserved for working around a windows/posix incompatibility). It is
+** used in the journal to signify that the remainder of the journal file
+** is devoted to storing a super-journal name - there are no more pages to
+** roll back. See comments for function writeSuperJournal() in pager.c
+** for details.
+*/
+#define PAGER_SJ_PGNO_COMPUTED(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
+#define PAGER_SJ_PGNO(x) ((x)->lckPgno)
+
+/*
+** Allowed values for the flags parameter to sqlite3PagerOpen().
+**
+** NOTE: These values must match the corresponding BTREE_ values in btree.h.
+*/
+#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
+#define PAGER_MEMORY 0x0002 /* In-memory database */
+
+/*
+** Valid values for the second argument to sqlite3PagerLockingMode().
+*/
+#define PAGER_LOCKINGMODE_QUERY -1
+#define PAGER_LOCKINGMODE_NORMAL 0
+#define PAGER_LOCKINGMODE_EXCLUSIVE 1
+
+/*
+** Numeric constants that encode the journalmode.
+**
+** The numeric values encoded here (other than PAGER_JOURNALMODE_QUERY)
+** are exposed in the API via the "PRAGMA journal_mode" command and
+** therefore cannot be changed without a compatibility break.
+*/
+#define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */
+#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
+#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
+#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
+#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
+#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
+#define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */
+
+/*
+** Flags that make up the mask passed to sqlite3PagerGet().
+*/
+#define PAGER_GET_NOCONTENT 0x01 /* Do not load data from disk */
+#define PAGER_GET_READONLY 0x02 /* Read-only page is acceptable */
+
+/*
+** Flags for sqlite3PagerSetFlags()
+**
+** Value constraints (enforced via assert()):
+** PAGER_FULLFSYNC == SQLITE_FullFSync
+** PAGER_CKPT_FULLFSYNC == SQLITE_CkptFullFSync
+** PAGER_CACHE_SPILL == SQLITE_CacheSpill
+*/
+#define PAGER_SYNCHRONOUS_OFF 0x01 /* PRAGMA synchronous=OFF */
+#define PAGER_SYNCHRONOUS_NORMAL 0x02 /* PRAGMA synchronous=NORMAL */
+#define PAGER_SYNCHRONOUS_FULL 0x03 /* PRAGMA synchronous=FULL */
+#define PAGER_SYNCHRONOUS_EXTRA 0x04 /* PRAGMA synchronous=EXTRA */
+#define PAGER_SYNCHRONOUS_MASK 0x07 /* Mask for four values above */
+#define PAGER_FULLFSYNC 0x08 /* PRAGMA fullfsync=ON */
+#define PAGER_CKPT_FULLFSYNC 0x10 /* PRAGMA checkpoint_fullfsync=ON */
+#define PAGER_CACHESPILL 0x20 /* PRAGMA cache_spill=ON */
+#define PAGER_FLAGS_MASK 0x38 /* All above except SYNCHRONOUS */
+
+/*
+** The remainder of this file contains the declarations of the functions
+** that make up the Pager sub-system API. See source code comments for
+** a detailed description of each routine.
+*/
+
+/* Open and close a Pager connection. */
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs*,
+ Pager **ppPager,
+ const char*,
+ int,
+ int,
+ int,
+ void(*)(DbPage*)
+);
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3*);
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
+
+/* Functions used to configure a Pager object. */
+SQLITE_PRIVATE void sqlite3PagerSetBusyHandler(Pager*, int(*)(void *), void *);
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager*,Pager*);
+#endif
+/* END SQLCIPHER */
+SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager*, Pgno);
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
+SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
+SQLITE_PRIVATE void sqlite3PagerShrink(Pager*);
+SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned);
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*);
+SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
+SQLITE_PRIVATE int sqlite3PagerFlush(Pager*);
+
+/* Functions used to obtain and release page references. */
+SQLITE_PRIVATE int sqlite3PagerGet(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage*);
+
+/* Operations on page references. */
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*);
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
+
+/* Functions used to manage pager transactions and savepoints. */
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*);
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zSuper, int);
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*);
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager);
+
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*);
+SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
+SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*);
+# ifdef SQLITE_ENABLE_SNAPSHOT
+SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager*, sqlite3_snapshot **ppSnapshot);
+SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager*, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager);
+# endif
+#endif
+
+#if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_ENABLE_SETLK_TIMEOUT)
+SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerWalDb(Pager*, sqlite3*);
+#else
+# define sqlite3PagerWalWriteLock(y,z) SQLITE_OK
+# define sqlite3PagerWalDb(x,y)
+#endif
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno);
+#endif
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager);
+#endif
+
+/* Functions used to query pager state and configuration. */
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
+SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
+#endif
+SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager*, int);
+SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
+SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
+SQLITE_PRIVATE void sqlite3PagerClearCache(Pager*);
+SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *);
+
+/* Functions used to truncate the database file. */
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);
+
+SQLITE_PRIVATE void sqlite3PagerRekey(DbPage*, Pgno, u16);
+
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
+void *sqlcipherPagerCodec(DbPage *);
+#endif
+/* END SQLCIPHER */
+
+/* Functions to support testing and debugging. */
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
+#endif
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
+SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
+ void disable_simulated_io_errors(void);
+ void enable_simulated_io_errors(void);
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+#endif /* SQLITE_PAGER_H */
+
+/************** End of pager.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include btree.h in the middle of sqliteInt.h *****************/
+/************** Begin file btree.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+*/
+#ifndef SQLITE_BTREE_H
+#define SQLITE_BTREE_H
+
+/* TODO: This definition is just included so other modules compile. It
+** needs to be revisited.
+*/
+#define SQLITE_N_BTREE_META 16
+
+/*
+** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
+** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+*/
+#ifndef SQLITE_DEFAULT_AUTOVACUUM
+ #define SQLITE_DEFAULT_AUTOVACUUM 0
+#endif
+
+#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
+#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
+#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
+
+/*
+** Forward declarations of structure
+*/
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+typedef struct BtShared BtShared;
+typedef struct BtreePayload BtreePayload;
+
+
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ sqlite3_vfs *pVfs, /* VFS to use with this b-tree */
+ const char *zFilename, /* Name of database file to open */
+ sqlite3 *db, /* Associated database connection */
+ Btree **ppBtree, /* Return open Btree* here */
+ int flags, /* Flags */
+ int vfsFlags /* Flags passed through to VFS open */
+);
+
+/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
+** following values.
+**
+** NOTE: These values must match the corresponding PAGER_ values in
+** pager.h.
+*/
+#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */
+#define BTREE_MEMORY 2 /* This is an in-memory DB */
+#define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */
+#define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */
+
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int);
+#if SQLITE_MAX_MMAP_SIZE>0
+SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
+#endif
+SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
+SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno);
+SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p);
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int,int*);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char*);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int);
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*);
+
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
+#endif
+
+/* Savepoints are named, nestable SQL transactions mostly implemented */
+/* in vdbe.c and pager.c See https://sqlite.org/lang_savepoint.html */
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int);
+
+/* "Checkpoint" only refers to WAL. See https://sqlite.org/wal.html#ckpt */
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
+#endif
+
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
+
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
+
+/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
+** of the flags shown below.
+**
+** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
+** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
+** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With
+** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
+** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL
+** indices.)
+*/
+#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
+#define BTREE_BLOBKEY 2 /* Table has keys only - no data */
+
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, i64*);
+SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree*, int, int);
+
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
+
+SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p);
+
+/*
+** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
+** should be one of the following values. The integer values are assigned
+** to constants so that the offset of the corresponding field in an
+** SQLite database header may be found using the following formula:
+**
+** offset = 36 + (idx * 4)
+**
+** For example, the free-page-count field is located at byte offset 36 of
+** the database file header. The incr-vacuum-flag field is located at
+** byte offset 64 (== 36+4*7).
+**
+** The BTREE_DATA_VERSION value is not really a value stored in the header.
+** It is a read-only number computed by the pager. But we merge it with
+** the header value access routines since its access pattern is the same.
+** Call it a "virtual meta value".
+*/
+#define BTREE_FREE_PAGE_COUNT 0
+#define BTREE_SCHEMA_VERSION 1
+#define BTREE_FILE_FORMAT 2
+#define BTREE_DEFAULT_CACHE_SIZE 3
+#define BTREE_LARGEST_ROOT_PAGE 4
+#define BTREE_TEXT_ENCODING 5
+#define BTREE_USER_VERSION 6
+#define BTREE_INCR_VACUUM 7
+#define BTREE_APPLICATION_ID 8
+#define BTREE_DATA_VERSION 15 /* A virtual meta-value */
+
+/*
+** Kinds of hints that can be passed into the sqlite3BtreeCursorHint()
+** interface.
+**
+** BTREE_HINT_RANGE (arguments: Expr*, Mem*)
+**
+** The first argument is an Expr* (which is guaranteed to be constant for
+** the lifetime of the cursor) that defines constraints on which rows
+** might be fetched with this cursor. The Expr* tree may contain
+** TK_REGISTER nodes that refer to values stored in the array of registers
+** passed as the second parameter. In other words, if Expr.op==TK_REGISTER
+** then the value of the node is the value in Mem[pExpr.iTable]. Any
+** TK_COLUMN node in the expression tree refers to the Expr.iColumn-th
+** column of the b-tree of the cursor. The Expr tree will not contain
+** any function calls nor subqueries nor references to b-trees other than
+** the cursor being hinted.
+**
+** The design of the _RANGE hint is aid b-tree implementations that try
+** to prefetch content from remote machines - to provide those
+** implementations with limits on what needs to be prefetched and thereby
+** reduce network bandwidth.
+**
+** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by
+** standard SQLite. The other hints are provided for extentions that use
+** the SQLite parser and code generator but substitute their own storage
+** engine.
+*/
+#define BTREE_HINT_RANGE 0 /* Range constraints on queries */
+
+/*
+** Values that may be OR'd together to form the argument to the
+** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint():
+**
+** The BTREE_BULKLOAD flag is set on index cursors when the index is going
+** to be filled with content that is already in sorted order.
+**
+** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or
+** OP_SeekLE opcodes for a range search, but where the range of entries
+** selected will all have the same key. In other words, the cursor will
+** be used only for equality key searches.
+**
+*/
+#define BTREE_BULKLOAD 0x00000001 /* Used to full index in sorted order */
+#define BTREE_SEEK_EQ 0x00000002 /* EQ seeks only - no range seeks */
+
+/*
+** Flags passed as the third argument to sqlite3BtreeCursor().
+**
+** For read-only cursors the wrFlag argument is always zero. For read-write
+** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just
+** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will
+** only be used by SQLite for the following:
+**
+** * to seek to and then delete specific entries, and/or
+**
+** * to read values that will be used to create keys that other
+** BTREE_FORDELETE cursors will seek to and delete.
+**
+** The BTREE_FORDELETE flag is an optimization hint. It is not used by
+** by this, the native b-tree engine of SQLite, but it is available to
+** alternative storage engines that might be substituted in place of this
+** b-tree system. For alternative storage engines in which a delete of
+** the main table row automatically deletes corresponding index rows,
+** the FORDELETE flag hint allows those alternative storage engines to
+** skip a lot of work. Namely: FORDELETE cursors may treat all SEEK
+** and DELETE operations as no-ops, and any READ operation against a
+** FORDELETE cursor may return a null row: 0x01 0x00.
+*/
+#define BTREE_WRCSR 0x00000004 /* read-write cursor */
+#define BTREE_FORDELETE 0x00000008 /* Cursor is for seek/delete only */
+
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree*, /* BTree containing table to open */
+ Pgno iTable, /* Index of root page */
+ int wrFlag, /* 1 for writing. 0 for read-only */
+ struct KeyInfo*, /* First argument to compare function */
+ BtCursor *pCursor /* Space to write cursor structure */
+);
+SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void);
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
+SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned);
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...);
+#endif
+
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeTableMoveto(
+ BtCursor*,
+ i64 intKey,
+ int bias,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeIndexMoveto(
+ BtCursor*,
+ UnpackedRecord *pUnKey,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags);
+
+/* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */
+#define BTREE_SAVEPOSITION 0x02 /* Leave cursor pointing at NEXT or PREV */
+#define BTREE_AUXDELETE 0x04 /* not the primary delete operation */
+#define BTREE_APPEND 0x08 /* Insert is likely an append */
+#define BTREE_PREFORMAT 0x80 /* Inserted data is a preformated cell */
+
+/* An instance of the BtreePayload object describes the content of a single
+** entry in either an index or table btree.
+**
+** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
+** an arbitrary key and no data. These btrees have pKey,nKey set to the
+** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem
+** fields give an array of Mem objects that are a decomposition of the key.
+** The nMem field might be zero, indicating that no decomposition is available.
+**
+** Table btrees (used for rowid tables) contain an integer rowid used as
+** the key and passed in the nKey field. The pKey field is zero.
+** pData,nData hold the content of the new entry. nZero extra zero bytes
+** are appended to the end of the content when constructing the entry.
+** The aMem,nMem fields are uninitialized for table btrees.
+**
+** Field usage summary:
+**
+** Table BTrees Index Btrees
+**
+** pKey always NULL encoded key
+** nKey the ROWID length of pKey
+** pData data not used
+** aMem not used decomposed key value
+** nMem not used entries in aMem
+** nData length of pData not used
+** nZero extra zeros after pData not used
+**
+** This object is used to pass information into sqlite3BtreeInsert(). The
+** same information used to be passed as five separate parameters. But placing
+** the information into this object helps to keep the interface more
+** organized and understandable, and it also helps the resulting code to
+** run a little faster by using fewer registers for parameter passing.
+*/
+struct BtreePayload {
+ const void *pKey; /* Key content for indexes. NULL for tables */
+ sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */
+ const void *pData; /* Data for tables. */
+ sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */
+ u16 nMem; /* Number of aMem[] value. Might be zero */
+ int nData; /* Size of pData. 0 if none. */
+ int nZero; /* Extra zero data appended after pData,nData */
+};
+
+SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
+ int flags, int seekResult);
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags);
+SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*);
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*);
+#endif
+SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
+SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*);
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*);
+
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(sqlite3*,Btree*,Pgno*aRoot,int nRoot,int,int*);
+SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
+SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor*);
+
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
+#endif
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
+SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
+SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
+SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree*);
+#else
+# define sqlite3BtreeSeekCount(X) 0
+#endif
+
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
+#endif
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor*);
+
+SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3*, BtCursor*, i64*);
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
+SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
+#endif
+
+SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor*, BtCursor*, i64);
+
+/*
+** If we are not using shared cache, then there is no need to
+** use mutexes to access the BtShared structures. So make the
+** Enter and Leave procedures no-ops.
+*/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
+SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree*);
+#else
+# define sqlite3BtreeEnter(X)
+# define sqlite3BtreeEnterAll(X)
+# define sqlite3BtreeSharable(X) 0
+# define sqlite3BtreeEnterCursor(X)
+# define sqlite3BtreeConnectionCount(X) 1
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
+#ifndef NDEBUG
+ /* These routines are used inside assert() statements only. */
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
+SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
+#endif
+#else
+
+# define sqlite3BtreeLeave(X)
+# define sqlite3BtreeLeaveCursor(X)
+# define sqlite3BtreeLeaveAll(X)
+
+# define sqlite3BtreeHoldsMutex(X) 1
+# define sqlite3BtreeHoldsAllMutexes(X) 1
+# define sqlite3SchemaMutexHeld(X,Y,Z) 1
+#endif
+
+
+#endif /* SQLITE_BTREE_H */
+
+/************** End of btree.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include vdbe.h in the middle of sqliteInt.h ******************/
+/************** Begin file vdbe.h ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Header file for the Virtual DataBase Engine (VDBE)
+**
+** This header defines the interface to the virtual database engine
+** or VDBE. The VDBE implements an abstract machine that runs a
+** simple program to access and modify the underlying database.
+*/
+#ifndef SQLITE_VDBE_H
+#define SQLITE_VDBE_H
+/* #include <stdio.h> */
+
+/*
+** A single VDBE is an opaque structure named "Vdbe". Only routines
+** in the source file sqliteVdbe.c are allowed to see the insides
+** of this structure.
+*/
+typedef struct Vdbe Vdbe;
+
+/*
+** The names of the following types declared in vdbeInt.h are required
+** for the VdbeOp definition.
+*/
+typedef struct sqlite3_value Mem;
+typedef struct SubProgram SubProgram;
+
+/*
+** A single instruction of the virtual machine has an opcode
+** and as many as three operands. The instruction is recorded
+** as an instance of the following structure:
+*/
+struct VdbeOp {
+ u8 opcode; /* What operation to perform */
+ signed char p4type; /* One of the P4_xxx constants for p4 */
+ u16 p5; /* Fifth parameter is an unsigned 16-bit integer */
+ int p1; /* First operand */
+ int p2; /* Second parameter (often the jump destination) */
+ int p3; /* The third parameter */
+ union p4union { /* fourth parameter */
+ int i; /* Integer value if p4type==P4_INT32 */
+ void *p; /* Generic pointer */
+ char *z; /* Pointer to data for string (char array) types */
+ i64 *pI64; /* Used when p4type is P4_INT64 */
+ double *pReal; /* Used when p4type is P4_REAL */
+ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
+ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
+ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
+ Mem *pMem; /* Used when p4type is P4_MEM */
+ VTable *pVtab; /* Used when p4type is P4_VTAB */
+ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
+ u32 *ai; /* Used when p4type is P4_INTARRAY */
+ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */
+ Table *pTab; /* Used when p4type is P4_TABLE */
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ Expr *pExpr; /* Used when p4type is P4_EXPR */
+#endif
+ } p4;
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ char *zComment; /* Comment to improve readability */
+#endif
+#ifdef VDBE_PROFILE
+ u32 cnt; /* Number of times this instruction was executed */
+ u64 cycles; /* Total time spent executing this instruction */
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ u32 iSrcLine; /* Source-code line that generated this opcode
+ ** with flags in the upper 8 bits */
+#endif
+};
+typedef struct VdbeOp VdbeOp;
+
+
+/*
+** A sub-routine used to implement a trigger program.
+*/
+struct SubProgram {
+ VdbeOp *aOp; /* Array of opcodes for sub-program */
+ int nOp; /* Elements in aOp[] */
+ int nMem; /* Number of memory cells required */
+ int nCsr; /* Number of cursors required */
+ u8 *aOnce; /* Array of OP_Once flags */
+ void *token; /* id that may be used to recursive triggers */
+ SubProgram *pNext; /* Next sub-program already visited */
+};
+
+/*
+** A smaller version of VdbeOp used for the VdbeAddOpList() function because
+** it takes up less space.
+*/
+struct VdbeOpList {
+ u8 opcode; /* What operation to perform */
+ signed char p1; /* First operand */
+ signed char p2; /* Second parameter (often the jump destination) */
+ signed char p3; /* Third parameter */
+};
+typedef struct VdbeOpList VdbeOpList;
+
+/*
+** Allowed values of VdbeOp.p4type
+*/
+#define P4_NOTUSED 0 /* The P4 parameter is not used */
+#define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */
+#define P4_STATIC (-1) /* Pointer to a static string */
+#define P4_COLLSEQ (-2) /* P4 is a pointer to a CollSeq structure */
+#define P4_INT32 (-3) /* P4 is a 32-bit signed integer */
+#define P4_SUBPROGRAM (-4) /* P4 is a pointer to a SubProgram structure */
+#define P4_TABLE (-5) /* P4 is a pointer to a Table structure */
+/* Above do not own any resources. Must free those below */
+#define P4_FREE_IF_LE (-6)
+#define P4_DYNAMIC (-6) /* Pointer to memory from sqliteMalloc() */
+#define P4_FUNCDEF (-7) /* P4 is a pointer to a FuncDef structure */
+#define P4_KEYINFO (-8) /* P4 is a pointer to a KeyInfo structure */
+#define P4_EXPR (-9) /* P4 is a pointer to an Expr tree */
+#define P4_MEM (-10) /* P4 is a pointer to a Mem* structure */
+#define P4_VTAB (-11) /* P4 is a pointer to an sqlite3_vtab structure */
+#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
+#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
+#define P4_INTARRAY (-14) /* P4 is a vector of 32-bit integers */
+#define P4_FUNCCTX (-15) /* P4 is a pointer to an sqlite3_context object */
+
+/* Error message codes for OP_Halt */
+#define P5_ConstraintNotNull 1
+#define P5_ConstraintUnique 2
+#define P5_ConstraintCheck 3
+#define P5_ConstraintFK 4
+
+/*
+** The Vdbe.aColName array contains 5n Mem structures, where n is the
+** number of columns of data returned by the statement.
+*/
+#define COLNAME_NAME 0
+#define COLNAME_DECLTYPE 1
+#define COLNAME_DATABASE 2
+#define COLNAME_TABLE 3
+#define COLNAME_COLUMN 4
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
+#else
+# ifdef SQLITE_OMIT_DECLTYPE
+# define COLNAME_N 1 /* Store only the name */
+# else
+# define COLNAME_N 2 /* Store the name and decltype */
+# endif
+#endif
+
+/*
+** The following macro converts a label returned by sqlite3VdbeMakeLabel()
+** into an index into the Parse.aLabel[] array that contains the resolved
+** address of that label.
+*/
+#define ADDR(X) (~(X))
+
+/*
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
+** header file that defines a number for each opcode used by the VDBE.
+*/
+/************** Include opcodes.h in the middle of vdbe.h ********************/
+/************** Begin file opcodes.h *****************************************/
+/* Automatically generated. Do not edit */
+/* See the tool/mkopcodeh.tcl script for details */
+#define OP_Savepoint 0
+#define OP_AutoCommit 1
+#define OP_Transaction 2
+#define OP_Checkpoint 3
+#define OP_JournalMode 4
+#define OP_Vacuum 5
+#define OP_VFilter 6 /* jump, synopsis: iplan=r[P3] zplan='P4' */
+#define OP_VUpdate 7 /* synopsis: data=r[P3@P2] */
+#define OP_Goto 8 /* jump */
+#define OP_Gosub 9 /* jump */
+#define OP_InitCoroutine 10 /* jump */
+#define OP_Yield 11 /* jump */
+#define OP_MustBeInt 12 /* jump */
+#define OP_Jump 13 /* jump */
+#define OP_Once 14 /* jump */
+#define OP_If 15 /* jump */
+#define OP_IfNot 16 /* jump */
+#define OP_IsNullOrType 17 /* jump, synopsis: if typeof(r[P1]) IN (P3,5) goto P2 */
+#define OP_IfNullRow 18 /* jump, synopsis: if P1.nullRow then r[P3]=NULL, goto P2 */
+#define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */
+#define OP_SeekLT 20 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekLE 21 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekGE 22 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekGT 23 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IfNotOpen 24 /* jump, synopsis: if( !csr[P1] ) goto P2 */
+#define OP_IfNoHope 25 /* jump, synopsis: key=r[P3@P4] */
+#define OP_NoConflict 26 /* jump, synopsis: key=r[P3@P4] */
+#define OP_NotFound 27 /* jump, synopsis: key=r[P3@P4] */
+#define OP_Found 28 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekRowid 29 /* jump, synopsis: intkey=r[P3] */
+#define OP_NotExists 30 /* jump, synopsis: intkey=r[P3] */
+#define OP_Last 31 /* jump */
+#define OP_IfSmaller 32 /* jump */
+#define OP_SorterSort 33 /* jump */
+#define OP_Sort 34 /* jump */
+#define OP_Rewind 35 /* jump */
+#define OP_SorterNext 36 /* jump */
+#define OP_Prev 37 /* jump */
+#define OP_Next 38 /* jump */
+#define OP_IdxLE 39 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IdxGT 40 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IdxLT 41 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IdxGE 42 /* jump, synopsis: key=r[P3@P4] */
+#define OP_Or 43 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
+#define OP_And 44 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
+#define OP_RowSetRead 45 /* jump, synopsis: r[P3]=rowset(P1) */
+#define OP_RowSetTest 46 /* jump, synopsis: if r[P3] in rowset(P1) goto P2 */
+#define OP_Program 47 /* jump */
+#define OP_FkIfZero 48 /* jump, synopsis: if fkctr[P1]==0 goto P2 */
+#define OP_IfPos 49 /* jump, synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
+#define OP_IsNull 50 /* jump, same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
+#define OP_NotNull 51 /* jump, same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
+#define OP_Ne 52 /* jump, same as TK_NE, synopsis: IF r[P3]!=r[P1] */
+#define OP_Eq 53 /* jump, same as TK_EQ, synopsis: IF r[P3]==r[P1] */
+#define OP_Gt 54 /* jump, same as TK_GT, synopsis: IF r[P3]>r[P1] */
+#define OP_Le 55 /* jump, same as TK_LE, synopsis: IF r[P3]<=r[P1] */
+#define OP_Lt 56 /* jump, same as TK_LT, synopsis: IF r[P3]<r[P1] */
+#define OP_Ge 57 /* jump, same as TK_GE, synopsis: IF r[P3]>=r[P1] */
+#define OP_ElseEq 58 /* jump, same as TK_ESCAPE */
+#define OP_IfNotZero 59 /* jump, synopsis: if r[P1]!=0 then r[P1]--, goto P2 */
+#define OP_DecrJumpZero 60 /* jump, synopsis: if (--r[P1])==0 goto P2 */
+#define OP_IncrVacuum 61 /* jump */
+#define OP_VNext 62 /* jump */
+#define OP_Filter 63 /* jump, synopsis: if key(P3@P4) not in filter(P1) goto P2 */
+#define OP_Init 64 /* jump, synopsis: Start at P2 */
+#define OP_PureFunc 65 /* synopsis: r[P3]=func(r[P2@NP]) */
+#define OP_Function 66 /* synopsis: r[P3]=func(r[P2@NP]) */
+#define OP_Return 67
+#define OP_EndCoroutine 68
+#define OP_HaltIfNull 69 /* synopsis: if r[P3]=null halt */
+#define OP_Halt 70
+#define OP_Integer 71 /* synopsis: r[P2]=P1 */
+#define OP_Int64 72 /* synopsis: r[P2]=P4 */
+#define OP_String 73 /* synopsis: r[P2]='P4' (len=P1) */
+#define OP_BeginSubrtn 74 /* synopsis: r[P2]=NULL */
+#define OP_Null 75 /* synopsis: r[P2..P3]=NULL */
+#define OP_SoftNull 76 /* synopsis: r[P1]=NULL */
+#define OP_Blob 77 /* synopsis: r[P2]=P4 (len=P1) */
+#define OP_Variable 78 /* synopsis: r[P2]=parameter(P1,P4) */
+#define OP_Move 79 /* synopsis: r[P2@P3]=r[P1@P3] */
+#define OP_Copy 80 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */
+#define OP_SCopy 81 /* synopsis: r[P2]=r[P1] */
+#define OP_IntCopy 82 /* synopsis: r[P2]=r[P1] */
+#define OP_FkCheck 83
+#define OP_ResultRow 84 /* synopsis: output=r[P1@P2] */
+#define OP_CollSeq 85
+#define OP_AddImm 86 /* synopsis: r[P1]=r[P1]+P2 */
+#define OP_RealAffinity 87
+#define OP_Cast 88 /* synopsis: affinity(r[P1]) */
+#define OP_Permutation 89
+#define OP_Compare 90 /* synopsis: r[P1@P3] <-> r[P2@P3] */
+#define OP_IsTrue 91 /* synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 */
+#define OP_ZeroOrNull 92 /* synopsis: r[P2] = 0 OR NULL */
+#define OP_Offset 93 /* synopsis: r[P3] = sqlite_offset(P1) */
+#define OP_Column 94 /* synopsis: r[P3]=PX cursor P1 column P2 */
+#define OP_TypeCheck 95 /* synopsis: typecheck(r[P1@P2]) */
+#define OP_Affinity 96 /* synopsis: affinity(r[P1@P2]) */
+#define OP_MakeRecord 97 /* synopsis: r[P3]=mkrec(r[P1@P2]) */
+#define OP_Count 98 /* synopsis: r[P2]=count() */
+#define OP_ReadCookie 99
+#define OP_SetCookie 100
+#define OP_ReopenIdx 101 /* synopsis: root=P2 iDb=P3 */
+#define OP_BitAnd 102 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
+#define OP_BitOr 103 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
+#define OP_ShiftLeft 104 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
+#define OP_ShiftRight 105 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
+#define OP_Add 106 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
+#define OP_Subtract 107 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
+#define OP_Multiply 108 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
+#define OP_Divide 109 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
+#define OP_Remainder 110 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
+#define OP_Concat 111 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
+#define OP_OpenRead 112 /* synopsis: root=P2 iDb=P3 */
+#define OP_OpenWrite 113 /* synopsis: root=P2 iDb=P3 */
+#define OP_BitNot 114 /* same as TK_BITNOT, synopsis: r[P2]= ~r[P1] */
+#define OP_OpenDup 115
+#define OP_OpenAutoindex 116 /* synopsis: nColumn=P2 */
+#define OP_String8 117 /* same as TK_STRING, synopsis: r[P2]='P4' */
+#define OP_OpenEphemeral 118 /* synopsis: nColumn=P2 */
+#define OP_SorterOpen 119
+#define OP_SequenceTest 120 /* synopsis: if( cursor[P1].ctr++ ) pc = P2 */
+#define OP_OpenPseudo 121 /* synopsis: P3 columns in r[P2] */
+#define OP_Close 122
+#define OP_ColumnsUsed 123
+#define OP_SeekScan 124 /* synopsis: Scan-ahead up to P1 rows */
+#define OP_SeekHit 125 /* synopsis: set P2<=seekHit<=P3 */
+#define OP_Sequence 126 /* synopsis: r[P2]=cursor[P1].ctr++ */
+#define OP_NewRowid 127 /* synopsis: r[P2]=rowid */
+#define OP_Insert 128 /* synopsis: intkey=r[P3] data=r[P2] */
+#define OP_RowCell 129
+#define OP_Delete 130
+#define OP_ResetCount 131
+#define OP_SorterCompare 132 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
+#define OP_SorterData 133 /* synopsis: r[P2]=data */
+#define OP_RowData 134 /* synopsis: r[P2]=data */
+#define OP_Rowid 135 /* synopsis: r[P2]=PX rowid of P1 */
+#define OP_NullRow 136
+#define OP_SeekEnd 137
+#define OP_IdxInsert 138 /* synopsis: key=r[P2] */
+#define OP_SorterInsert 139 /* synopsis: key=r[P2] */
+#define OP_IdxDelete 140 /* synopsis: key=r[P2@P3] */
+#define OP_DeferredSeek 141 /* synopsis: Move P3 to P1.rowid if needed */
+#define OP_IdxRowid 142 /* synopsis: r[P2]=rowid */
+#define OP_FinishSeek 143
+#define OP_Destroy 144
+#define OP_Clear 145
+#define OP_ResetSorter 146
+#define OP_CreateBtree 147 /* synopsis: r[P2]=root iDb=P1 flags=P3 */
+#define OP_SqlExec 148
+#define OP_ParseSchema 149
+#define OP_LoadAnalysis 150
+#define OP_DropTable 151
+#define OP_DropIndex 152
+#define OP_Real 153 /* same as TK_FLOAT, synopsis: r[P2]=P4 */
+#define OP_DropTrigger 154
+#define OP_IntegrityCk 155
+#define OP_RowSetAdd 156 /* synopsis: rowset(P1)=r[P2] */
+#define OP_Param 157
+#define OP_FkCounter 158 /* synopsis: fkctr[P1]+=P2 */
+#define OP_MemMax 159 /* synopsis: r[P1]=max(r[P1],r[P2]) */
+#define OP_OffsetLimit 160 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */
+#define OP_AggInverse 161 /* synopsis: accum=r[P3] inverse(r[P2@P5]) */
+#define OP_AggStep 162 /* synopsis: accum=r[P3] step(r[P2@P5]) */
+#define OP_AggStep1 163 /* synopsis: accum=r[P3] step(r[P2@P5]) */
+#define OP_AggValue 164 /* synopsis: r[P3]=value N=P2 */
+#define OP_AggFinal 165 /* synopsis: accum=r[P1] N=P2 */
+#define OP_Expire 166
+#define OP_CursorLock 167
+#define OP_CursorUnlock 168
+#define OP_TableLock 169 /* synopsis: iDb=P1 root=P2 write=P3 */
+#define OP_VBegin 170
+#define OP_VCreate 171
+#define OP_VDestroy 172
+#define OP_VOpen 173
+#define OP_VInitIn 174 /* synopsis: r[P2]=ValueList(P1,P3) */
+#define OP_VColumn 175 /* synopsis: r[P3]=vcolumn(P2) */
+#define OP_VRename 176
+#define OP_Pagecount 177
+#define OP_MaxPgcnt 178
+#define OP_ClrSubtype 179 /* synopsis: r[P1].subtype = 0 */
+#define OP_FilterAdd 180 /* synopsis: filter(P1) += key(P3@P4) */
+#define OP_Trace 181
+#define OP_CursorHint 182
+#define OP_ReleaseReg 183 /* synopsis: release r[P1@P2] mask P3 */
+#define OP_Noop 184
+#define OP_Explain 185
+#define OP_Abortable 186
+
+/* Properties such as "out2" or "jump" that are specified in
+** comments following the "case" for each opcode in the vdbe.c
+** are encoded into bitvectors as follows:
+*/
+#define OPFLG_JUMP 0x01 /* jump: P2 holds jmp target */
+#define OPFLG_IN1 0x02 /* in1: P1 is an input */
+#define OPFLG_IN2 0x04 /* in2: P2 is an input */
+#define OPFLG_IN3 0x08 /* in3: P3 is an input */
+#define OPFLG_OUT2 0x10 /* out2: P2 is an output */
+#define OPFLG_OUT3 0x20 /* out3: P3 is an output */
+#define OPFLG_INITIALIZER {\
+/* 0 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x01, 0x00,\
+/* 8 */ 0x01, 0x01, 0x01, 0x03, 0x03, 0x01, 0x01, 0x03,\
+/* 16 */ 0x03, 0x03, 0x01, 0x12, 0x09, 0x09, 0x09, 0x09,\
+/* 24 */ 0x01, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x01,\
+/* 32 */ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,\
+/* 40 */ 0x01, 0x01, 0x01, 0x26, 0x26, 0x23, 0x0b, 0x01,\
+/* 48 */ 0x01, 0x03, 0x03, 0x03, 0x0b, 0x0b, 0x0b, 0x0b,\
+/* 56 */ 0x0b, 0x0b, 0x01, 0x03, 0x03, 0x01, 0x01, 0x01,\
+/* 64 */ 0x01, 0x00, 0x00, 0x02, 0x02, 0x08, 0x00, 0x10,\
+/* 72 */ 0x10, 0x10, 0x00, 0x10, 0x00, 0x10, 0x10, 0x00,\
+/* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x02, 0x02,\
+/* 88 */ 0x02, 0x00, 0x00, 0x12, 0x1e, 0x20, 0x00, 0x00,\
+/* 96 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x00, 0x26, 0x26,\
+/* 104 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26,\
+/* 112 */ 0x00, 0x00, 0x12, 0x00, 0x00, 0x10, 0x00, 0x00,\
+/* 120 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x10,\
+/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,\
+/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x00, 0x00, 0x10, 0x00,\
+/* 144 */ 0x10, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,\
+/* 152 */ 0x00, 0x10, 0x00, 0x00, 0x06, 0x10, 0x00, 0x04,\
+/* 160 */ 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
+/* 168 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00,\
+/* 176 */ 0x00, 0x10, 0x10, 0x02, 0x00, 0x00, 0x00, 0x00,\
+/* 184 */ 0x00, 0x00, 0x00,}
+
+/* The resolve3P2Values() routine is able to run faster if it knows
+** the value of the largest JUMP opcode. The smaller the maximum
+** JUMP opcode the better, so the mkopcodeh.tcl script that
+** generated this include file strives to group all JUMP opcodes
+** together near the beginning of the list.
+*/
+#define SQLITE_MX_JUMP_OPCODE 64 /* Maximum JUMP opcode */
+
+/************** End of opcodes.h *********************************************/
+/************** Continuing where we left off in vdbe.h ***********************/
+
+/*
+** Additional non-public SQLITE_PREPARE_* flags
+*/
+#define SQLITE_PREPARE_SAVESQL 0x80 /* Preserve SQL text */
+#define SQLITE_PREPARE_MASK 0x0f /* Mask of public flags */
+
+/*
+** Prototypes for the VDBE interface. See comments on the implementation
+** for a description of what each of these routines does.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*);
+SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe*,int,const char*);
+SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe*,int,const char*,...);
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall(Parse*,int,int,int,int,const FuncDef*,int);
+SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe*,int);
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
+#else
+# define sqlite3VdbeVerifyNoMallocRequired(A,B)
+# define sqlite3VdbeVerifyNoResultRow(A)
+#endif
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int);
+SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn(Vdbe*,int,int,int);
+#else
+# define sqlite3VdbeVerifyAbortable(A,B)
+# define sqlite3VdbeNoJumpsOutsideSubrtn(A,B,C,D)
+#endif
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno);
+#ifndef SQLITE_OMIT_EXPLAIN
+SQLITE_PRIVATE void sqlite3VdbeExplain(Parse*,u8,const char*,...);
+SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse*);
+SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse*);
+# define ExplainQueryPlan(P) sqlite3VdbeExplain P
+# define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P)
+# define ExplainQueryPlanParent(P) sqlite3VdbeExplainParent(P)
+#else
+# define ExplainQueryPlan(P)
+# define ExplainQueryPlanPop(P)
+# define ExplainQueryPlanParent(P) 0
+# define sqlite3ExplainBreakpoint(A,B) /*no-op*/
+#endif
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_EXPLAIN)
+SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char*,const char*);
+#else
+# define sqlite3ExplainBreakpoint(A,B) /*no-op*/
+#endif
+SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*, int, char*, u16);
+SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, int addr, u8);
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
+SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe*, int addr);
+SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
+SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters(Parse*,int addr, int n, u32 mask, int);
+#else
+# define sqlite3VdbeReleaseRegisters(P,A,N,M,F)
+#endif
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
+SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type);
+SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse*);
+SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*);
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
+SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, u8);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3*,Vdbe*,const char*);
+SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString(Vdbe*,const char*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
+SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
+SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
+#ifndef SQLITE_OMIT_TRACE
+SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*);
+#endif
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
+SQLITE_PRIVATE int sqlite3BlobCompare(const Mem*, const Mem*);
+
+SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip(int, const void *, UnpackedRecord *, int);
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo*);
+
+typedef int (*RecordCompare)(int,const void*,UnpackedRecord*);
+SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);
+
+SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
+SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe*);
+
+SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context*);
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3*);
+#endif
+
+/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
+** each VDBE opcode.
+**
+** Use the SQLITE_ENABLE_MODULE_COMMENTS macro to see some extra no-op
+** comments in VDBE programs that show key decision points in the code
+** generator.
+*/
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
+# define VdbeComment(X) sqlite3VdbeComment X
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
+# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
+# ifdef SQLITE_ENABLE_MODULE_COMMENTS
+# define VdbeModuleComment(X) sqlite3VdbeNoopComment X
+# else
+# define VdbeModuleComment(X)
+# endif
+#else
+# define VdbeComment(X)
+# define VdbeNoopComment(X)
+# define VdbeModuleComment(X)
+#endif
+
+/*
+** The VdbeCoverage macros are used to set a coverage testing point
+** for VDBE branch instructions. The coverage testing points are line
+** numbers in the sqlite3.c source file. VDBE branch coverage testing
+** only works with an amalagmation build. That's ok since a VDBE branch
+** coverage build designed for testing the test suite only. No application
+** should ever ship with VDBE branch coverage measuring turned on.
+**
+** VdbeCoverage(v) // Mark the previously coded instruction
+** // as a branch
+**
+** VdbeCoverageIf(v, conditional) // Mark previous if conditional true
+**
+** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken
+**
+** VdbeCoverageNeverTaken(v) // Previous branch is never taken
+**
+** VdbeCoverageNeverNull(v) // Previous three-way branch is only
+** // taken on the first two ways. The
+** // NULL option is not possible
+**
+** VdbeCoverageEqNe(v) // Previous OP_Jump is only interested
+** // in distingishing equal and not-equal.
+**
+** Every VDBE branch operation must be tagged with one of the macros above.
+** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and
+** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch()
+** routine in vdbe.c, alerting the developer to the missed tag.
+**
+** During testing, the test application will invoke
+** sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE,...) to set a callback
+** routine that is invoked as each bytecode branch is taken. The callback
+** contains the sqlite3.c source line number ov the VdbeCoverage macro and
+** flags to indicate whether or not the branch was taken. The test application
+** is responsible for keeping track of this and reporting byte-code branches
+** that are never taken.
+**
+** See the VdbeBranchTaken() macro and vdbeTakeBranch() function in the
+** vdbe.c source file for additional information.
+*/
+#ifdef SQLITE_VDBE_COVERAGE
+SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe*,int);
+# define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__)
+# define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__)
+# define VdbeCoverageAlwaysTaken(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x5000000);
+# define VdbeCoverageNeverTaken(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x6000000);
+# define VdbeCoverageNeverNull(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000);
+# define VdbeCoverageNeverNullIf(v,x) \
+ if(x)sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000);
+# define VdbeCoverageEqNe(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x8000000);
+# define VDBE_OFFSET_LINENO(x) (__LINE__+x)
+#else
+# define VdbeCoverage(v)
+# define VdbeCoverageIf(v,x)
+# define VdbeCoverageAlwaysTaken(v)
+# define VdbeCoverageNeverTaken(v)
+# define VdbeCoverageNeverNull(v)
+# define VdbeCoverageNeverNullIf(v,x)
+# define VdbeCoverageEqNe(v)
+# define VDBE_OFFSET_LINENO(x) 0
+#endif
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+SQLITE_PRIVATE void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*);
+#else
+# define sqlite3VdbeScanStatus(a,b,c,d,e)
+#endif
+
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, VdbeOp*);
+#endif
+
+#endif /* SQLITE_VDBE_H */
+
+/************** End of vdbe.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include pcache.h in the middle of sqliteInt.h ****************/
+/************** Begin file pcache.h ******************************************/
+/*
+** 2008 August 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem.
+*/
+
+#ifndef _PCACHE_H_
+
+typedef struct PgHdr PgHdr;
+typedef struct PCache PCache;
+
+/*
+** Every page in the cache is controlled by an instance of the following
+** structure.
+*/
+struct PgHdr {
+ sqlite3_pcache_page *pPage; /* Pcache object page handle */
+ void *pData; /* Page data */
+ void *pExtra; /* Extra content */
+ PCache *pCache; /* PRIVATE: Cache that owns this page */
+ PgHdr *pDirty; /* Transient list of dirty sorted by pgno */
+ Pager *pPager; /* The pager this page is part of */
+ Pgno pgno; /* Page number for this page */
+#ifdef SQLITE_CHECK_PAGES
+ u32 pageHash; /* Hash of page content */
+#endif
+ u16 flags; /* PGHDR flags defined below */
+
+ /**********************************************************************
+ ** Elements above, except pCache, are public. All that follow are
+ ** private to pcache.c and should not be accessed by other modules.
+ ** pCache is grouped with the public elements for efficiency.
+ */
+ i16 nRef; /* Number of users of this page */
+ PgHdr *pDirtyNext; /* Next element in list of dirty pages */
+ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
+ /* NB: pDirtyNext and pDirtyPrev are undefined if the
+ ** PgHdr object is not dirty */
+};
+
+/* Bit values for PgHdr.flags */
+#define PGHDR_CLEAN 0x001 /* Page not on the PCache.pDirty list */
+#define PGHDR_DIRTY 0x002 /* Page is on the PCache.pDirty list */
+#define PGHDR_WRITEABLE 0x004 /* Journaled and ready to modify */
+#define PGHDR_NEED_SYNC 0x008 /* Fsync the rollback journal before
+ ** writing this page to the database */
+#define PGHDR_DONT_WRITE 0x010 /* Do not write content to disk */
+#define PGHDR_MMAP 0x020 /* This is an mmap page object */
+
+#define PGHDR_WAL_APPEND 0x040 /* Appended to wal file */
+
+/* Initialize and shutdown the page cache subsystem */
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void);
+
+/* Page cache buffer management:
+** These routines implement SQLITE_CONFIG_PAGECACHE.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n);
+
+/* Create a new pager cache.
+** Under memory stress, invoke xStress to try to make pages clean.
+** Only clean and unpinned pages can be reclaimed.
+*/
+SQLITE_PRIVATE int sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *pToInit /* Preallocated space for the PCache */
+);
+
+/* Modify the page-size after the cache has been created. */
+SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *, int);
+
+/* Return the size in bytes of a PCache object. Used to preallocate
+** storage space.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSize(void);
+
+/* One release per successful fetch. Page is pinned until released.
+** Reference counted.
+*/
+SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch(PCache*, Pgno, int createFlag);
+SQLITE_PRIVATE int sqlite3PcacheFetchStress(PCache*, Pgno, sqlite3_pcache_page**);
+SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(PCache*, Pgno, sqlite3_pcache_page *pPage);
+SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*);
+
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
+SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache*);
+
+/* Change a page number. Used by incr-vacuum. */
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno);
+
+/* Remove all pages with pgno>x. Reset the cache if x==0 */
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x);
+
+/* Get a list of all dirty pages in the cache, sorted by page number */
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*);
+
+/* Reset and close the cache object */
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache*);
+
+/* Clear flags from pages of the page cache */
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *);
+
+/* Discard the contents of the cache */
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache*);
+
+/* Return the total number of outstanding page references */
+SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*);
+
+/* Increment the reference count of an existing page */
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*);
+
+SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*);
+
+/* Return the total number of pages stored in the cache */
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*);
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/* Iterate through all dirty pages currently stored in the cache. This
+** interface is only available if SQLITE_CHECK_PAGES is defined when the
+** library is built.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
+#endif
+
+#if defined(SQLITE_DEBUG)
+/* Check invariants on a PgHdr object */
+SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr*);
+#endif
+
+/* Set and get the suggested cache-size for the specified pager-cache.
+**
+** If no global maximum is configured, then the system attempts to limit
+** the total number of pages cached by purgeable pager-caches to the sum
+** of the suggested cache-sizes.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
+#endif
+
+/* Set or get the suggested spill-size for the specified pager-cache.
+**
+** The spill-size is the minimum number of pages in cache before the cache
+** will attempt to spill dirty pages by calling xStress.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *, int);
+
+/* Free up as much memory as possible from the page cache */
+SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*);
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/* Try to return memory used by the pcache module to the main memory heap */
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
+#endif
+
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);
+
+/* Return the header size */
+SQLITE_PRIVATE int sqlite3HeaderSizePcache(void);
+SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void);
+
+/* Number of dirty pages as a percentage of the configured cache size */
+SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*);
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache);
+#endif
+
+#endif /* _PCACHE_H_ */
+
+/************** End of pcache.h **********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include os.h in the middle of sqliteInt.h ********************/
+/************** Begin file os.h **********************************************/
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+**
+** This header file is #include-ed by sqliteInt.h and thus ends up
+** being included by every source file.
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+
+/*
+** Attempt to automatically detect the operating system and setup the
+** necessary pre-processor macros for it.
+*/
+/************** Include os_setup.h in the middle of os.h *********************/
+/************** Begin file os_setup.h ****************************************/
+/*
+** 2013 November 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains pre-processor directives related to operating system
+** detection and/or setup.
+*/
+#ifndef SQLITE_OS_SETUP_H
+#define SQLITE_OS_SETUP_H
+
+/*
+** Figure out if we are dealing with Unix, Windows, or some other operating
+** system.
+**
+** After the following block of preprocess macros, all of SQLITE_OS_UNIX,
+** SQLITE_OS_WIN, and SQLITE_OS_OTHER will defined to either 1 or 0. One of
+** the three will be 1. The other two will be 0.
+*/
+#if defined(SQLITE_OS_OTHER)
+# if SQLITE_OS_OTHER==1
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# else
+# undef SQLITE_OS_OTHER
+# endif
+#endif
+#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
+# define SQLITE_OS_OTHER 0
+# ifndef SQLITE_OS_WIN
+# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \
+ defined(__MINGW32__) || defined(__BORLANDC__)
+# define SQLITE_OS_WIN 1
+# define SQLITE_OS_UNIX 0
+# else
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 1
+# endif
+# else
+# define SQLITE_OS_UNIX 0
+# endif
+#else
+# ifndef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# endif
+#endif
+
+#endif /* SQLITE_OS_SETUP_H */
+
+/************** End of os_setup.h ********************************************/
+/************** Continuing where we left off in os.h *************************/
+
+/* If the SET_FULLSYNC macro is not defined above, then make it
+** a no-op
+*/
+#ifndef SET_FULLSYNC
+# define SET_FULLSYNC(x,y)
+#endif
+
+/* Maximum pathname length. Note: FILENAME_MAX defined by stdio.h
+*/
+#ifndef SQLITE_MAX_PATHLEN
+# define SQLITE_MAX_PATHLEN FILENAME_MAX
+#endif
+
+/* Maximum number of symlinks that will be resolved while trying to
+** expand a filename in xFullPathname() in the VFS.
+*/
+#ifndef SQLITE_MAX_SYMLINK
+# define SQLITE_MAX_SYMLINK 200
+#endif
+
+/*
+** The default size of a disk sector
+*/
+#ifndef SQLITE_DEFAULT_SECTOR_SIZE
+# define SQLITE_DEFAULT_SECTOR_SIZE 4096
+#endif
+
+/*
+** Temporary files are named starting with this prefix followed by 16 random
+** alphanumeric characters, and no file extension. They are stored in the
+** OS's standard temporary file directory, and are deleted prior to exit.
+** If sqlite is being embedded in another program, you may wish to change the
+** prefix to reflect your program's name, so that if your program exits
+** prematurely, old temporary files can be easily identified. This can be done
+** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
+**
+** 2006-10-31: The default prefix used to be "sqlite_". But then
+** Mcafee started using SQLite in their anti-virus product and it
+** started putting files with the "sqlite" name in the c:/temp folder.
+** This annoyed many windows users. Those users would then do a
+** Google search for "sqlite", find the telephone numbers of the
+** developers and call to wake them up at night and complain.
+** For this reason, the default name prefix is changed to be "sqlite"
+** spelled backwards. So the temp files are still identified, but
+** anybody smart enough to figure out the code is also likely smart
+** enough to know that calling the developer will not help get rid
+** of the file.
+*/
+#ifndef SQLITE_TEMP_FILE_PREFIX
+# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
+#endif
+
+/*
+** The following values may be passed as the second argument to
+** sqlite3OsLock(). The various locks exhibit the following semantics:
+**
+** SHARED: Any number of processes may hold a SHARED lock simultaneously.
+** RESERVED: A single process may hold a RESERVED lock on a file at
+** any time. Other processes may hold and obtain new SHARED locks.
+** PENDING: A single process may hold a PENDING lock on a file at
+** any one time. Existing SHARED locks may persist, but no new
+** SHARED locks may be obtained by other processes.
+** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
+**
+** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
+** process that requests an EXCLUSIVE lock may actually obtain a PENDING
+** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
+** sqlite3OsLock().
+*/
+#define NO_LOCK 0
+#define SHARED_LOCK 1
+#define RESERVED_LOCK 2
+#define PENDING_LOCK 3
+#define EXCLUSIVE_LOCK 4
+
+/*
+** File Locking Notes: (Mostly about windows but also some info for Unix)
+**
+** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
+** those functions are not available. So we use only LockFile() and
+** UnlockFile().
+**
+** LockFile() prevents not just writing but also reading by other processes.
+** A SHARED_LOCK is obtained by locking a single randomly-chosen
+** byte out of a specific range of bytes. The lock byte is obtained at
+** random so two separate readers can probably access the file at the
+** same time, unless they are unlucky and choose the same lock byte.
+** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
+** There can only be one writer. A RESERVED_LOCK is obtained by locking
+** a single byte of the file that is designated as the reserved lock byte.
+** A PENDING_LOCK is obtained by locking a designated byte different from
+** the RESERVED_LOCK byte.
+**
+** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
+** which means we can use reader/writer locks. When reader/writer locks
+** are used, the lock is placed on the same range of bytes that is used
+** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
+** will support two or more Win95 readers or two or more WinNT readers.
+** But a single Win95 reader will lock out all WinNT readers and a single
+** WinNT reader will lock out all other Win95 readers.
+**
+** The following #defines specify the range of bytes used for locking.
+** SHARED_SIZE is the number of bytes available in the pool from which
+** a random byte is selected for a shared lock. The pool of bytes for
+** shared locks begins at SHARED_FIRST.
+**
+** The same locking strategy and
+** byte ranges are used for Unix. This leaves open the possibility of having
+** clients on win95, winNT, and unix all talking to the same shared file
+** and all locking correctly. To do so would require that samba (or whatever
+** tool is being used for file sharing) implements locks correctly between
+** windows and unix. I'm guessing that isn't likely to happen, but by
+** using the same locking range we are at least open to the possibility.
+**
+** Locking in windows is manditory. For this reason, we cannot store
+** actual data in the bytes used for locking. The pager never allocates
+** the pages involved in locking therefore. SHARED_SIZE is selected so
+** that all locks will fit on a single page even at the minimum page size.
+** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
+** is set high so that we don't have to allocate an unused page except
+** for very large databases. But one should test the page skipping logic
+** by setting PENDING_BYTE low and running the entire regression suite.
+**
+** Changing the value of PENDING_BYTE results in a subtly incompatible
+** file format. Depending on how it is changed, you might not notice
+** the incompatibility right away, even running a full regression test.
+** The default location of PENDING_BYTE is the first byte past the
+** 1GB boundary.
+**
+*/
+#ifdef SQLITE_OMIT_WSD
+# define PENDING_BYTE (0x40000000)
+#else
+# define PENDING_BYTE sqlite3PendingByte
+#endif
+#define RESERVED_BYTE (PENDING_BYTE+1)
+#define SHARED_FIRST (PENDING_BYTE+2)
+#define SHARED_SIZE 510
+
+/*
+** Wrapper around OS specific sqlite3_os_init() function.
+*/
+SQLITE_PRIVATE int sqlite3OsInit(void);
+
+/*
+** Functions for accessing sqlite3_file methods
+*/
+SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file*);
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
+SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file*,int,void*);
+#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **);
+SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int);
+SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int);
+#endif /* SQLITE_OMIT_WAL */
+SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64, int, void **);
+SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *, i64, void *);
+
+
+/*
+** Functions for accessing sqlite3_vfs methods
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
+SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
+SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
+SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs*);
+SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*);
+
+/*
+** Convenience functions for opening and closing files using
+** sqlite3_malloc() to obtain space for the file-handle structure.
+*/
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
+SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *);
+
+#endif /* _SQLITE_OS_H_ */
+
+/************** End of os.h **************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include mutex.h in the middle of sqliteInt.h *****************/
+/************** Begin file mutex.h *******************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the common header for all mutex implementations.
+** The sqliteInt.h header #includes this file so that it is available
+** to all source files. We break it out in an effort to keep the code
+** better organized.
+**
+** NOTE: source files should *not* #include this header file directly.
+** Source files should #include the sqliteInt.h file and let that file
+** include this one indirectly.
+*/
+
+
+/*
+** Figure out what version of the code to use. The choices are
+**
+** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The
+** mutexes implementation cannot be overridden
+** at start-time.
+**
+** SQLITE_MUTEX_NOOP For single-threaded applications. No
+** mutual exclusion is provided. But this
+** implementation can be overridden at
+** start-time.
+**
+** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
+**
+** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
+*/
+#if !SQLITE_THREADSAFE
+# define SQLITE_MUTEX_OMIT
+#endif
+#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
+# if SQLITE_OS_UNIX
+# define SQLITE_MUTEX_PTHREADS
+# elif SQLITE_OS_WIN
+# define SQLITE_MUTEX_W32
+# else
+# define SQLITE_MUTEX_NOOP
+# endif
+#endif
+
+#ifdef SQLITE_MUTEX_OMIT
+/*
+** If this is a no-op implementation, implement everything as macros.
+*/
+#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
+#define sqlite3_mutex_free(X)
+#define sqlite3_mutex_enter(X)
+#define sqlite3_mutex_try(X) SQLITE_OK
+#define sqlite3_mutex_leave(X)
+#define sqlite3_mutex_held(X) ((void)(X),1)
+#define sqlite3_mutex_notheld(X) ((void)(X),1)
+#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
+#define sqlite3MutexInit() SQLITE_OK
+#define sqlite3MutexEnd()
+#define MUTEX_LOGIC(X)
+#else
+#define MUTEX_LOGIC(X) X
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+#endif /* defined(SQLITE_MUTEX_OMIT) */
+
+/************** End of mutex.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/* The SQLITE_EXTRA_DURABLE compile-time option used to set the default
+** synchronous setting to EXTRA. It is no longer supported.
+*/
+#ifdef SQLITE_EXTRA_DURABLE
+# warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE
+# define SQLITE_DEFAULT_SYNCHRONOUS 3
+#endif
+
+/*
+** Default synchronous levels.
+**
+** Note that (for historcal reasons) the PAGER_SYNCHRONOUS_* macros differ
+** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1.
+**
+** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS
+** OFF 1 0
+** NORMAL 2 1
+** FULL 3 2
+** EXTRA 4 3
+**
+** The "PRAGMA synchronous" statement also uses the zero-based numbers.
+** In other words, the zero-based numbers are used for all external interfaces
+** and the one-based values are used internally.
+*/
+#ifndef SQLITE_DEFAULT_SYNCHRONOUS
+# define SQLITE_DEFAULT_SYNCHRONOUS 2
+#endif
+#ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS
+# define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS
+#endif
+
+/*
+** Each database file to be accessed by the system is an instance
+** of the following structure. There are normally two of these structures
+** in the sqlite.aDb[] array. aDb[0] is the main database file and
+** aDb[1] is the database file used to hold temporary tables. Additional
+** databases may be attached.
+*/
+struct Db {
+ char *zDbSName; /* Name of this database. (schema name, not filename) */
+ Btree *pBt; /* The B*Tree structure for this database file */
+ u8 safety_level; /* How aggressive at syncing data to disk */
+ u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */
+ Schema *pSchema; /* Pointer to database schema (possibly shared) */
+};
+
+/*
+** An instance of the following structure stores a database schema.
+**
+** Most Schema objects are associated with a Btree. The exception is
+** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
+** In shared cache mode, a single Schema object can be shared by multiple
+** Btrees that refer to the same underlying BtShared object.
+**
+** Schema objects are automatically deallocated when the last Btree that
+** references them is destroyed. The TEMP Schema is manually freed by
+** sqlite3_close().
+*
+** A thread must be holding a mutex on the corresponding Btree in order
+** to access Schema content. This implies that the thread must also be
+** holding a mutex on the sqlite3 connection pointer that owns the Btree.
+** For a TEMP Schema, only the connection mutex is required.
+*/
+struct Schema {
+ int schema_cookie; /* Database schema version number for this file */
+ int iGeneration; /* Generation counter. Incremented with each change */
+ Hash tblHash; /* All tables indexed by name */
+ Hash idxHash; /* All (named) indices indexed by name */
+ Hash trigHash; /* All triggers indexed by name */
+ Hash fkeyHash; /* All foreign keys by referenced table name */
+ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
+ u8 file_format; /* Schema format version for this file */
+ u8 enc; /* Text encoding used by this database */
+ u16 schemaFlags; /* Flags associated with this schema */
+ int cache_size; /* Number of pages to use in the cache */
+};
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Db.pSchema->flags field.
+*/
+#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
+#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
+#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P)
+#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P)
+
+/*
+** Allowed values for the DB.pSchema->flags field.
+**
+** The DB_SchemaLoaded flag is set after the database schema has been
+** read into internal hash tables.
+**
+** DB_UnresetViews means that one or more views have column names that
+** have been filled out. If the schema changes, these column names might
+** changes and so the view will need to be reset.
+*/
+#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
+#define DB_UnresetViews 0x0002 /* Some views have defined column names */
+#define DB_ResetWanted 0x0008 /* Reset the schema when nSchemaLock==0 */
+
+/*
+** The number of different kinds of things that can be limited
+** using the sqlite3_limit() interface.
+*/
+#define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
+
+/*
+** Lookaside malloc is a set of fixed-size buffers that can be used
+** to satisfy small transient memory allocation requests for objects
+** associated with a particular database connection. The use of
+** lookaside malloc provides a significant performance enhancement
+** (approx 10%) by avoiding numerous malloc/free requests while parsing
+** SQL statements.
+**
+** The Lookaside structure holds configuration information about the
+** lookaside malloc subsystem. Each available memory allocation in
+** the lookaside subsystem is stored on a linked list of LookasideSlot
+** objects.
+**
+** Lookaside allocations are only allowed for objects that are associated
+** with a particular database connection. Hence, schema information cannot
+** be stored in lookaside because in shared cache mode the schema information
+** is shared by multiple database connections. Therefore, while parsing
+** schema information, the Lookaside.bEnabled flag is cleared so that
+** lookaside allocations are not used to construct the schema objects.
+**
+** New lookaside allocations are only allowed if bDisable==0. When
+** bDisable is greater than zero, sz is set to zero which effectively
+** disables lookaside without adding a new test for the bDisable flag
+** in a performance-critical path. sz should be set by to szTrue whenever
+** bDisable changes back to zero.
+**
+** Lookaside buffers are initially held on the pInit list. As they are
+** used and freed, they are added back to the pFree list. New allocations
+** come off of pFree first, then pInit as a fallback. This dual-list
+** allows use to compute a high-water mark - the maximum number of allocations
+** outstanding at any point in the past - by subtracting the number of
+** allocations on the pInit list from the total number of allocations.
+**
+** Enhancement on 2019-12-12: Two-size-lookaside
+** The default lookaside configuration is 100 slots of 1200 bytes each.
+** The larger slot sizes are important for performance, but they waste
+** a lot of space, as most lookaside allocations are less than 128 bytes.
+** The two-size-lookaside enhancement breaks up the lookaside allocation
+** into two pools: One of 128-byte slots and the other of the default size
+** (1200-byte) slots. Allocations are filled from the small-pool first,
+** failing over to the full-size pool if that does not work. Thus more
+** lookaside slots are available while also using less memory.
+** This enhancement can be omitted by compiling with
+** SQLITE_OMIT_TWOSIZE_LOOKASIDE.
+*/
+struct Lookaside {
+ u32 bDisable; /* Only operate the lookaside when zero */
+ u16 sz; /* Size of each buffer in bytes */
+ u16 szTrue; /* True value of sz, even if disabled */
+ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
+ u32 nSlot; /* Number of lookaside slots allocated */
+ u32 anStat[3]; /* 0: hits. 1: size misses. 2: full misses */
+ LookasideSlot *pInit; /* List of buffers not previously used */
+ LookasideSlot *pFree; /* List of available buffers */
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ LookasideSlot *pSmallInit; /* List of small buffers not prediously used */
+ LookasideSlot *pSmallFree; /* List of available small buffers */
+ void *pMiddle; /* First byte past end of full-size buffers and
+ ** the first byte of LOOKASIDE_SMALL buffers */
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ void *pStart; /* First byte of available memory space */
+ void *pEnd; /* First byte past end of available space */
+};
+struct LookasideSlot {
+ LookasideSlot *pNext; /* Next buffer in the list of free buffers */
+};
+
+#define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0
+#define EnableLookaside db->lookaside.bDisable--;\
+ db->lookaside.sz=db->lookaside.bDisable?0:db->lookaside.szTrue
+
+/* Size of the smaller allocations in two-size lookside */
+#ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+# define LOOKASIDE_SMALL 0
+#else
+# define LOOKASIDE_SMALL 128
+#endif
+
+/*
+** A hash table for built-in function definitions. (Application-defined
+** functions use a regular table table from hash.h.)
+**
+** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
+** Collisions are on the FuncDef.u.pHash chain. Use the SQLITE_FUNC_HASH()
+** macro to compute a hash on the function name.
+*/
+#define SQLITE_FUNC_HASH_SZ 23
+struct FuncDefHash {
+ FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */
+};
+#define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ)
+
+#ifdef SQLITE_USER_AUTHENTICATION
+/*
+** Information held in the "sqlite3" database connection object and used
+** to manage user authentication.
+*/
+typedef struct sqlite3_userauth sqlite3_userauth;
+struct sqlite3_userauth {
+ u8 authLevel; /* Current authentication level */
+ int nAuthPW; /* Size of the zAuthPW in bytes */
+ char *zAuthPW; /* Password used to authenticate */
+ char *zAuthUser; /* User name used to authenticate */
+};
+
+/* Allowed values for sqlite3_userauth.authLevel */
+#define UAUTH_Unknown 0 /* Authentication not yet checked */
+#define UAUTH_Fail 1 /* User authentication failed */
+#define UAUTH_User 2 /* Authenticated as a normal user */
+#define UAUTH_Admin 3 /* Authenticated as an administrator */
+
+/* Functions used only by user authorization logic */
+SQLITE_PRIVATE int sqlite3UserAuthTable(const char*);
+SQLITE_PRIVATE int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
+SQLITE_PRIVATE void sqlite3UserAuthInit(sqlite3*);
+SQLITE_PRIVATE void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
+
+#endif /* SQLITE_USER_AUTHENTICATION */
+
+/*
+** typedef for the authorization callback function.
+*/
+#ifdef SQLITE_USER_AUTHENTICATION
+ typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
+ const char*, const char*);
+#else
+ typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
+ const char*);
+#endif
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing
+** in the style of sqlite3_trace()
+*/
+#define SQLITE_TRACE_LEGACY 0x40 /* Use the legacy xTrace */
+#define SQLITE_TRACE_XPROFILE 0x80 /* Use the legacy xProfile */
+#else
+#define SQLITE_TRACE_LEGACY 0
+#define SQLITE_TRACE_XPROFILE 0
+#endif /* SQLITE_OMIT_DEPRECATED */
+#define SQLITE_TRACE_NONLEGACY_MASK 0x0f /* Normal flags */
+
+/*
+** Maximum number of sqlite3.aDb[] entries. This is the number of attached
+** databases plus 2 for "main" and "temp".
+*/
+#define SQLITE_MAX_DB (SQLITE_MAX_ATTACHED+2)
+
+/*
+** Each database connection is an instance of the following structure.
+*/
+struct sqlite3 {
+ sqlite3_vfs *pVfs; /* OS Interface */
+ struct Vdbe *pVdbe; /* List of active virtual machines */
+ CollSeq *pDfltColl; /* BINARY collseq for the database encoding */
+ sqlite3_mutex *mutex; /* Connection mutex */
+ Db *aDb; /* All backends */
+ int nDb; /* Number of backends currently in use */
+ u32 mDbFlags; /* flags recording internal state */
+ u64 flags; /* flags settable by pragmas. See below */
+ i64 lastRowid; /* ROWID of most recent insert (see above) */
+ i64 szMmap; /* Default mmap_size setting */
+ u32 nSchemaLock; /* Do not reset the schema when non-zero */
+ unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
+ int errCode; /* Most recent error code (SQLITE_*) */
+ int errByteOffset; /* Byte offset of error in SQL statement */
+ int errMask; /* & result codes with this before returning */
+ int iSysErrno; /* Errno value from last system error */
+ u32 dbOptFlags; /* Flags to enable/disable optimizations */
+ u8 enc; /* Text encoding */
+ u8 autoCommit; /* The auto-commit flag. */
+ u8 temp_store; /* 1: file 2: memory 0: default */
+ u8 mallocFailed; /* True if we have seen a malloc failure */
+ u8 bBenignMalloc; /* Do not require OOMs if true */
+ u8 dfltLockMode; /* Default locking-mode for attached dbs */
+ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
+ u8 suppressErr; /* Do not issue error messages if true */
+ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */
+ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
+ u8 mTrace; /* zero or more SQLITE_TRACE flags */
+ u8 noSharedCache; /* True if no shared-cache backends */
+ u8 nSqlExec; /* Number of pending OP_SqlExec opcodes */
+ u8 eOpenState; /* Current condition of the connection */
+ int nextPagesize; /* Pagesize after VACUUM if >0 */
+ i64 nChange; /* Value returned by sqlite3_changes() */
+ i64 nTotalChange; /* Value returned by sqlite3_total_changes() */
+ int aLimit[SQLITE_N_LIMIT]; /* Limits */
+ int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */
+ struct sqlite3InitInfo { /* Information used during initialization */
+ Pgno newTnum; /* Rootpage of table being initialized */
+ u8 iDb; /* Which db file is being initialized */
+ u8 busy; /* TRUE if currently initializing */
+ unsigned orphanTrigger : 1; /* Last statement is orphaned TEMP trigger */
+ unsigned imposterTable : 1; /* Building an imposter table */
+ unsigned reopenMemdb : 1; /* ATTACH is really a reopen using MemDB */
+ const char **azInit; /* "type", "name", and "tbl_name" columns */
+ } init;
+ int nVdbeActive; /* Number of VDBEs currently running */
+ int nVdbeRead; /* Number of active VDBEs that read or write */
+ int nVdbeWrite; /* Number of active VDBEs that read and write */
+ int nVdbeExec; /* Number of nested calls to VdbeExec() */
+ int nVDestroy; /* Number of active OP_VDestroy operations */
+ int nExtension; /* Number of loaded extensions */
+ void **aExtension; /* Array of shared library handles */
+ union {
+ void (*xLegacy)(void*,const char*); /* mTrace==SQLITE_TRACE_LEGACY */
+ int (*xV2)(u32,void*,void*,void*); /* All other mTrace values */
+ } trace;
+ void *pTraceArg; /* Argument to the trace function */
+#ifndef SQLITE_OMIT_DEPRECATED
+ void (*xProfile)(void*,const char*,u64); /* Profiling function */
+ void *pProfileArg; /* Argument to profile function */
+#endif
+ void *pCommitArg; /* Argument to xCommitCallback() */
+ int (*xCommitCallback)(void*); /* Invoked at every commit. */
+ void *pRollbackArg; /* Argument to xRollbackCallback() */
+ void (*xRollbackCallback)(void*); /* Invoked at every commit. */
+ void *pUpdateArg;
+ void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
+ void *pAutovacPagesArg; /* Client argument to autovac_pages */
+ void (*xAutovacDestr)(void*); /* Destructor for pAutovacPAgesArg */
+ unsigned int (*xAutovacPages)(void*,const char*,u32,u32,u32);
+ Parse *pParse; /* Current parse */
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ void *pPreUpdateArg; /* First argument to xPreUpdateCallback */
+ void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */
+ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64
+ );
+ PreUpdate *pPreUpdate; /* Context for active pre-update callback */
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+#ifndef SQLITE_OMIT_WAL
+ int (*xWalCallback)(void *, sqlite3 *, const char *, int);
+ void *pWalArg;
+#endif
+ void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
+ void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
+ void *pCollNeededArg;
+ sqlite3_value *pErr; /* Most recent error message */
+ union {
+ volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
+ double notUsed1; /* Spacer */
+ } u1;
+ Lookaside lookaside; /* Lookaside malloc configuration */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth; /* Access authorization function */
+ void *pAuthArg; /* 1st argument to the access auth function */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int (*xProgress)(void *); /* The progress callback */
+ void *pProgressArg; /* Argument to the progress callback */
+ unsigned nProgressOps; /* Number of opcodes for progress callback */
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int nVTrans; /* Allocated size of aVTrans */
+ Hash aModule; /* populated by sqlite3_create_module() */
+ VtabCtx *pVtabCtx; /* Context for active vtab connect/create */
+ VTable **aVTrans; /* Virtual tables with open transactions */
+ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
+#endif
+ Hash aFunc; /* Hash table of connection functions */
+ Hash aCollSeq; /* All collating sequences */
+ BusyHandler busyHandler; /* Busy callback */
+ Db aDbStatic[2]; /* Static space for the 2 default backends */
+ Savepoint *pSavepoint; /* List of active savepoints */
+ int nAnalysisLimit; /* Number of index rows to ANALYZE */
+ int busyTimeout; /* Busy handler timeout, in msec */
+ int nSavepoint; /* Number of non-transaction savepoints */
+ int nStatement; /* Number of nested statement-transactions */
+ i64 nDeferredCons; /* Net deferred constraints this transaction. */
+ i64 nDeferredImmCons; /* Net deferred immediate constraints */
+ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ /* The following variables are all protected by the STATIC_MAIN
+ ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
+ **
+ ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
+ ** unlock so that it can proceed.
+ **
+ ** When X.pBlockingConnection==Y, that means that something that X tried
+ ** tried to do recently failed with an SQLITE_LOCKED error due to locks
+ ** held by Y.
+ */
+ sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
+ sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
+ void *pUnlockArg; /* Argument to xUnlockNotify */
+ void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
+ sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
+#endif
+#ifdef SQLITE_USER_AUTHENTICATION
+ sqlite3_userauth auth; /* User authentication information */
+#endif
+};
+
+/*
+** A macro to discover the encoding of a database.
+*/
+#define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
+#define ENC(db) ((db)->enc)
+
+/*
+** A u64 constant where the lower 32 bits are all zeros. Only the
+** upper 32 bits are included in the argument. Necessary because some
+** C-compilers still do not accept LL integer literals.
+*/
+#define HI(X) ((u64)(X)<<32)
+
+/*
+** Possible values for the sqlite3.flags.
+**
+** Value constraints (enforced via assert()):
+** SQLITE_FullFSync == PAGER_FULLFSYNC
+** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC
+** SQLITE_CacheSpill == PAGER_CACHE_SPILL
+*/
+#define SQLITE_WriteSchema 0x00000001 /* OK to update SQLITE_SCHEMA */
+#define SQLITE_LegacyFileFmt 0x00000002 /* Create new databases in format 1 */
+#define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */
+#define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */
+#define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */
+#define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */
+#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
+#define SQLITE_TrustedSchema 0x00000080 /* Allow unsafe functions and
+ ** vtabs in the schema definition */
+#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
+ /* result set is empty */
+#define SQLITE_IgnoreChecks 0x00000200 /* Do not enforce check constraints */
+#define SQLITE_ReadUncommit 0x00000400 /* READ UNCOMMITTED in shared-cache */
+#define SQLITE_NoCkptOnClose 0x00000800 /* No checkpoint on close()/DETACH */
+#define SQLITE_ReverseOrder 0x00001000 /* Reverse unordered SELECTs */
+#define SQLITE_RecTriggers 0x00002000 /* Enable recursive triggers */
+#define SQLITE_ForeignKeys 0x00004000 /* Enforce foreign key constraints */
+#define SQLITE_AutoIndex 0x00008000 /* Enable automatic indexes */
+#define SQLITE_LoadExtension 0x00010000 /* Enable load_extension */
+#define SQLITE_LoadExtFunc 0x00020000 /* Enable load_extension() SQL func */
+#define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */
+#define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */
+#define SQLITE_QueryOnly 0x00100000 /* Disable database changes */
+#define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */
+#define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */
+#define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/
+#define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */
+#define SQLITE_ResetDatabase 0x02000000 /* Reset the database */
+#define SQLITE_LegacyAlter 0x04000000 /* Legacy ALTER TABLE behaviour */
+#define SQLITE_NoSchemaError 0x08000000 /* Do not report schema parse errors*/
+#define SQLITE_Defensive 0x10000000 /* Input SQL is likely hostile */
+#define SQLITE_DqsDDL 0x20000000 /* dbl-quoted strings allowed in DDL*/
+#define SQLITE_DqsDML 0x40000000 /* dbl-quoted strings allowed in DML*/
+#define SQLITE_EnableView 0x80000000 /* Enable the use of views */
+#define SQLITE_CountRows HI(0x00001) /* Count rows changed by INSERT, */
+ /* DELETE, or UPDATE and return */
+ /* the count using a callback. */
+#define SQLITE_CorruptRdOnly HI(0x00002) /* Prohibit writes due to error */
+
+/* Flags used only if debugging */
+#ifdef SQLITE_DEBUG
+#define SQLITE_SqlTrace HI(0x0100000) /* Debug print SQL as it executes */
+#define SQLITE_VdbeListing HI(0x0200000) /* Debug listings of VDBE progs */
+#define SQLITE_VdbeTrace HI(0x0400000) /* True to trace VDBE execution */
+#define SQLITE_VdbeAddopTrace HI(0x0800000) /* Trace sqlite3VdbeAddOp() calls */
+#define SQLITE_VdbeEQP HI(0x1000000) /* Debug EXPLAIN QUERY PLAN */
+#define SQLITE_ParserTrace HI(0x2000000) /* PRAGMA parser_trace=ON */
+#endif
+
+/*
+** Allowed values for sqlite3.mDbFlags
+*/
+#define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */
+#define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */
+#define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */
+#define DBFLAG_VacuumInto 0x0008 /* Currently running VACUUM INTO */
+#define DBFLAG_SchemaKnownOk 0x0010 /* Schema is known to be valid */
+#define DBFLAG_InternalFunc 0x0020 /* Allow use of internal functions */
+#define DBFLAG_EncodingFixed 0x0040 /* No longer possible to change enc. */
+
+/*
+** Bits of the sqlite3.dbOptFlags field that are used by the
+** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
+** selectively disable various optimizations.
+*/
+#define SQLITE_QueryFlattener 0x00000001 /* Query flattening */
+#define SQLITE_WindowFunc 0x00000002 /* Use xInverse for window functions */
+#define SQLITE_GroupByOrder 0x00000004 /* GROUPBY cover of ORDERBY */
+#define SQLITE_FactorOutConst 0x00000008 /* Constant factoring */
+#define SQLITE_DistinctOpt 0x00000010 /* DISTINCT using indexes */
+#define SQLITE_CoverIdxScan 0x00000020 /* Covering index scans */
+#define SQLITE_OrderByIdxJoin 0x00000040 /* ORDER BY of joins via index */
+#define SQLITE_Transitive 0x00000080 /* Transitive constraints */
+#define SQLITE_OmitNoopJoin 0x00000100 /* Omit unused tables in joins */
+#define SQLITE_CountOfView 0x00000200 /* The count-of-view optimization */
+#define SQLITE_CursorHints 0x00000400 /* Add OP_CursorHint opcodes */
+#define SQLITE_Stat4 0x00000800 /* Use STAT4 data */
+ /* TH3 expects this value ^^^^^^^^^^ to be 0x0000800. Don't change it */
+#define SQLITE_PushDown 0x00001000 /* The push-down optimization */
+#define SQLITE_SimplifyJoin 0x00002000 /* Convert LEFT JOIN to JOIN */
+#define SQLITE_SkipScan 0x00004000 /* Skip-scans */
+#define SQLITE_PropagateConst 0x00008000 /* The constant propagation opt */
+#define SQLITE_MinMaxOpt 0x00010000 /* The min/max optimization */
+#define SQLITE_SeekScan 0x00020000 /* The OP_SeekScan optimization */
+#define SQLITE_OmitOrderBy 0x00040000 /* Omit pointless ORDER BY */
+ /* TH3 expects this value ^^^^^^^^^^ to be 0x40000. Coordinate any change */
+#define SQLITE_BloomFilter 0x00080000 /* Use a Bloom filter on searches */
+#define SQLITE_BloomPulldown 0x00100000 /* Run Bloom filters early */
+#define SQLITE_BalancedMerge 0x00200000 /* Balance multi-way merges */
+#define SQLITE_ReleaseReg 0x00400000 /* Use OP_ReleaseReg for testing */
+#define SQLITE_FlttnUnionAll 0x00800000 /* Disable the UNION ALL flattener */
+ /* TH3 expects this value ^^^^^^^^^^ See flatten04.test */
+#define SQLITE_AllOpts 0xffffffff /* All optimizations */
+
+/*
+** Macros for testing whether or not optimizations are enabled or disabled.
+*/
+#define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0)
+#define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0)
+
+/*
+** Return true if it OK to factor constant expressions into the initialization
+** code. The argument is a Parse object for the code generator.
+*/
+#define ConstFactorOk(P) ((P)->okConstFactor)
+
+/* Possible values for the sqlite3.eOpenState field.
+** The numbers are randomly selected such that a minimum of three bits must
+** change to convert any number to another or to zero
+*/
+#define SQLITE_STATE_OPEN 0x76 /* Database is open */
+#define SQLITE_STATE_CLOSED 0xce /* Database is closed */
+#define SQLITE_STATE_SICK 0xba /* Error and awaiting close */
+#define SQLITE_STATE_BUSY 0x6d /* Database currently in use */
+#define SQLITE_STATE_ERROR 0xd5 /* An SQLITE_MISUSE error occurred */
+#define SQLITE_STATE_ZOMBIE 0xa7 /* Close with last statement close */
+
+/*
+** Each SQL function is defined by an instance of the following
+** structure. For global built-in functions (ex: substr(), max(), count())
+** a pointer to this structure is held in the sqlite3BuiltinFunctions object.
+** For per-connection application-defined functions, a pointer to this
+** structure is held in the db->aHash hash table.
+**
+** The u.pHash field is used by the global built-ins. The u.pDestructor
+** field is used by per-connection app-def functions.
+*/
+struct FuncDef {
+ i8 nArg; /* Number of arguments. -1 means unlimited */
+ u32 funcFlags; /* Some combination of SQLITE_FUNC_* */
+ void *pUserData; /* User data parameter */
+ FuncDef *pNext; /* Next function with same name */
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */
+ void (*xFinalize)(sqlite3_context*); /* Agg finalizer */
+ void (*xValue)(sqlite3_context*); /* Current agg value */
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**); /* inverse agg-step */
+ const char *zName; /* SQL name of the function. */
+ union {
+ FuncDef *pHash; /* Next with a different name but the same hash */
+ FuncDestructor *pDestructor; /* Reference counted destructor function */
+ } u; /* pHash if SQLITE_FUNC_BUILTIN, pDestructor otherwise */
+};
+
+/*
+** This structure encapsulates a user-function destructor callback (as
+** configured using create_function_v2()) and a reference counter. When
+** create_function_v2() is called to create a function with a destructor,
+** a single object of this type is allocated. FuncDestructor.nRef is set to
+** the number of FuncDef objects created (either 1 or 3, depending on whether
+** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
+** member of each of the new FuncDef objects is set to point to the allocated
+** FuncDestructor.
+**
+** Thereafter, when one of the FuncDef objects is deleted, the reference
+** count on this object is decremented. When it reaches 0, the destructor
+** is invoked and the FuncDestructor structure freed.
+*/
+struct FuncDestructor {
+ int nRef;
+ void (*xDestroy)(void *);
+ void *pUserData;
+};
+
+/*
+** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF
+** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And
+** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There
+** are assert() statements in the code to verify this.
+**
+** Value constraints (enforced via assert()):
+** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg
+** SQLITE_FUNC_ANYORDER == NC_OrderAgg == SF_OrderByReqd
+** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG
+** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG
+** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API
+** SQLITE_FUNC_DIRECT == SQLITE_DIRECTONLY from the API
+** SQLITE_FUNC_UNSAFE == SQLITE_INNOCUOUS
+** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API
+*/
+#define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
+#define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */
+#define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */
+#define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */
+#define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/
+#define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */
+#define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */
+#define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */
+/* 0x0200 -- available for reuse */
+#define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
+#define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
+#define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */
+#define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a
+ ** single query - might change over time */
+#define SQLITE_FUNC_TEST 0x4000 /* Built-in testing functions */
+/* 0x8000 -- available for reuse */
+#define SQLITE_FUNC_WINDOW 0x00010000 /* Built-in window-only function */
+#define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */
+#define SQLITE_FUNC_DIRECT 0x00080000 /* Not for use in TRIGGERs or VIEWs */
+#define SQLITE_FUNC_SUBTYPE 0x00100000 /* Result likely to have sub-type */
+#define SQLITE_FUNC_UNSAFE 0x00200000 /* Function has side effects */
+#define SQLITE_FUNC_INLINE 0x00400000 /* Functions implemented in-line */
+#define SQLITE_FUNC_BUILTIN 0x00800000 /* This is a built-in function */
+#define SQLITE_FUNC_ANYORDER 0x08000000 /* count/min/max aggregate */
+
+/* Identifier numbers for each in-line function */
+#define INLINEFUNC_coalesce 0
+#define INLINEFUNC_implies_nonnull_row 1
+#define INLINEFUNC_expr_implies_expr 2
+#define INLINEFUNC_expr_compare 3
+#define INLINEFUNC_affinity 4
+#define INLINEFUNC_iif 5
+#define INLINEFUNC_sqlite_offset 6
+#define INLINEFUNC_unlikely 99 /* Default case */
+
+/*
+** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
+** used to create the initializers for the FuncDef structures.
+**
+** FUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Used to create a scalar function definition of a function zName
+** implemented by C function xFunc that accepts nArg arguments. The
+** value passed as iArg is cast to a (void*) and made available
+** as the user-data (sqlite3_user_data()) for the function. If
+** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
+**
+** VFUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
+**
+** SFUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and
+** adds the SQLITE_DIRECTONLY flag.
+**
+** INLINE_FUNC(zName, nArg, iFuncId, mFlags)
+** zName is the name of a function that is implemented by in-line
+** byte code rather than by the usual callbacks. The iFuncId
+** parameter determines the function id. The mFlags parameter is
+** optional SQLITE_FUNC_ flags for this function.
+**
+** TEST_FUNC(zName, nArg, iFuncId, mFlags)
+** zName is the name of a test-only function implemented by in-line
+** byte code rather than by the usual callbacks. The iFuncId
+** parameter determines the function id. The mFlags parameter is
+** optional SQLITE_FUNC_ flags for this function.
+**
+** DFUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and
+** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions
+** and functions like sqlite_version() that can change, but not during
+** a single query. The iArg is ignored. The user-data is always set
+** to a NULL pointer. The bNC parameter is not used.
+**
+** MFUNCTION(zName, nArg, xPtr, xFunc)
+** For math-library functions. xPtr is an arbitrary pointer.
+**
+** PURE_DATE(zName, nArg, iArg, bNC, xFunc)
+** Used for "pure" date/time functions, this macro is like DFUNCTION
+** except that it does set the SQLITE_FUNC_CONSTANT flags. iArg is
+** ignored and the user-data for these functions is set to an
+** arbitrary non-NULL pointer. The bNC parameter is not used.
+**
+** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
+** Used to create an aggregate function definition implemented by
+** the C functions xStep and xFinal. The first four parameters
+** are interpreted in the same way as the first 4 parameters to
+** FUNCTION().
+**
+** WAGGREGATE(zName, nArg, iArg, xStep, xFinal, xValue, xInverse)
+** Used to create an aggregate function definition implemented by
+** the C functions xStep and xFinal. The first four parameters
+** are interpreted in the same way as the first 4 parameters to
+** FUNCTION().
+**
+** LIKEFUNC(zName, nArg, pArg, flags)
+** Used to create a scalar function definition of a function zName
+** that accepts nArg arguments and is implemented by a call to C
+** function likeFunc. Argument pArg is cast to a (void *) and made
+** available as the function user-data (sqlite3_user_data()). The
+** FuncDef.flags variable is set to the value passed as the flags
+** parameter.
+*/
+#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define SFUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_DIRECTONLY|SQLITE_FUNC_UNSAFE, \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define MFUNCTION(zName, nArg, xPtr, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \
+ xPtr, 0, xFunc, 0, 0, 0, #zName, {0} }
+#define JFUNCTION(zName, nArg, iArg, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS|\
+ SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define INLINE_FUNC(zName, nArg, iArg, mFlags) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_UTF8|SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \
+ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} }
+#define TEST_FUNC(zName, nArg, iArg, mFlags) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_UTF8|SQLITE_FUNC_INTERNAL|SQLITE_FUNC_TEST| \
+ SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \
+ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} }
+#define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_SLOCHNG|SQLITE_UTF8, \
+ 0, 0, xFunc, 0, 0, 0, #zName, {0} }
+#define PURE_DATE(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \
+ (void*)&sqlite3Config, 0, xFunc, 0, 0, 0, #zName, {0} }
+#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
+ pArg, 0, xFunc, 0, 0, 0, #zName, }
+#define LIKEFUNC(zName, nArg, arg, flags) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
+ (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} }
+#define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \
+ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}}
+#define INTERNAL_FUNCTION(zName, nArg, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_INTERNAL|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \
+ 0, 0, xFunc, 0, 0, 0, #zName, {0} }
+
+
+/*
+** All current savepoints are stored in a linked list starting at
+** sqlite3.pSavepoint. The first element in the list is the most recently
+** opened savepoint. Savepoints are added to the list by the vdbe
+** OP_Savepoint instruction.
+*/
+struct Savepoint {
+ char *zName; /* Savepoint name (nul-terminated) */
+ i64 nDeferredCons; /* Number of deferred fk violations */
+ i64 nDeferredImmCons; /* Number of deferred imm fk. */
+ Savepoint *pNext; /* Parent savepoint (if any) */
+};
+
+/*
+** The following are used as the second parameter to sqlite3Savepoint(),
+** and as the P1 argument to the OP_Savepoint instruction.
+*/
+#define SAVEPOINT_BEGIN 0
+#define SAVEPOINT_RELEASE 1
+#define SAVEPOINT_ROLLBACK 2
+
+
+/*
+** Each SQLite module (virtual table definition) is defined by an
+** instance of the following structure, stored in the sqlite3.aModule
+** hash table.
+*/
+struct Module {
+ const sqlite3_module *pModule; /* Callback pointers */
+ const char *zName; /* Name passed to create_module() */
+ int nRefModule; /* Number of pointers to this object */
+ void *pAux; /* pAux passed to create_module() */
+ void (*xDestroy)(void *); /* Module destructor function */
+ Table *pEpoTab; /* Eponymous table for this module */
+};
+
+/*
+** Information about each column of an SQL table is held in an instance
+** of the Column structure, in the Table.aCol[] array.
+**
+** Definitions:
+**
+** "table column index" This is the index of the column in the
+** Table.aCol[] array, and also the index of
+** the column in the original CREATE TABLE stmt.
+**
+** "storage column index" This is the index of the column in the
+** record BLOB generated by the OP_MakeRecord
+** opcode. The storage column index is less than
+** or equal to the table column index. It is
+** equal if and only if there are no VIRTUAL
+** columns to the left.
+**
+** Notes on zCnName:
+** The zCnName field stores the name of the column, the datatype of the
+** column, and the collating sequence for the column, in that order, all in
+** a single allocation. Each string is 0x00 terminated. The datatype
+** is only included if the COLFLAG_HASTYPE bit of colFlags is set and the
+** collating sequence name is only included if the COLFLAG_HASCOLL bit is
+** set.
+*/
+struct Column {
+ char *zCnName; /* Name of this column */
+ unsigned notNull :4; /* An OE_ code for handling a NOT NULL constraint */
+ unsigned eCType :4; /* One of the standard types */
+ char affinity; /* One of the SQLITE_AFF_... values */
+ u8 szEst; /* Est size of value in this column. sizeof(INT)==1 */
+ u8 hName; /* Column name hash for faster lookup */
+ u16 iDflt; /* 1-based index of DEFAULT. 0 means "none" */
+ u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */
+};
+
+/* Allowed values for Column.eCType.
+**
+** Values must match entries in the global constant arrays
+** sqlite3StdTypeLen[] and sqlite3StdType[]. Each value is one more
+** than the offset into these arrays for the corresponding name.
+** Adjust the SQLITE_N_STDTYPE value if adding or removing entries.
+*/
+#define COLTYPE_CUSTOM 0 /* Type appended to zName */
+#define COLTYPE_ANY 1
+#define COLTYPE_BLOB 2
+#define COLTYPE_INT 3
+#define COLTYPE_INTEGER 4
+#define COLTYPE_REAL 5
+#define COLTYPE_TEXT 6
+#define SQLITE_N_STDTYPE 6 /* Number of standard types */
+
+/* Allowed values for Column.colFlags.
+**
+** Constraints:
+** TF_HasVirtual == COLFLAG_VIRTUAL
+** TF_HasStored == COLFLAG_STORED
+** TF_HasHidden == COLFLAG_HIDDEN
+*/
+#define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */
+#define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */
+#define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */
+#define COLFLAG_UNIQUE 0x0008 /* Column def contains "UNIQUE" or "PK" */
+#define COLFLAG_SORTERREF 0x0010 /* Use sorter-refs with this column */
+#define COLFLAG_VIRTUAL 0x0020 /* GENERATED ALWAYS AS ... VIRTUAL */
+#define COLFLAG_STORED 0x0040 /* GENERATED ALWAYS AS ... STORED */
+#define COLFLAG_NOTAVAIL 0x0080 /* STORED column not yet calculated */
+#define COLFLAG_BUSY 0x0100 /* Blocks recursion on GENERATED columns */
+#define COLFLAG_HASCOLL 0x0200 /* Has collating sequence name in zCnName */
+#define COLFLAG_NOEXPAND 0x0400 /* Omit this column when expanding "*" */
+#define COLFLAG_GENERATED 0x0060 /* Combo: _STORED, _VIRTUAL */
+#define COLFLAG_NOINSERT 0x0062 /* Combo: _HIDDEN, _STORED, _VIRTUAL */
+
+/*
+** A "Collating Sequence" is defined by an instance of the following
+** structure. Conceptually, a collating sequence consists of a name and
+** a comparison routine that defines the order of that sequence.
+**
+** If CollSeq.xCmp is NULL, it means that the
+** collating sequence is undefined. Indices built on an undefined
+** collating sequence may not be read or written.
+*/
+struct CollSeq {
+ char *zName; /* Name of the collating sequence, UTF-8 encoded */
+ u8 enc; /* Text encoding handled by xCmp() */
+ void *pUser; /* First argument to xCmp() */
+ int (*xCmp)(void*,int, const void*, int, const void*);
+ void (*xDel)(void*); /* Destructor for pUser */
+};
+
+/*
+** A sort order can be either ASC or DESC.
+*/
+#define SQLITE_SO_ASC 0 /* Sort in ascending order */
+#define SQLITE_SO_DESC 1 /* Sort in ascending order */
+#define SQLITE_SO_UNDEFINED -1 /* No sort order specified */
+
+/*
+** Column affinity types.
+**
+** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
+** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
+** the speed a little by numbering the values consecutively.
+**
+** But rather than start with 0 or 1, we begin with 'A'. That way,
+** when multiple affinity types are concatenated into a string and
+** used as the P4 operand, they will be more readable.
+**
+** Note also that the numeric types are grouped together so that testing
+** for a numeric type is a single comparison. And the BLOB type is first.
+*/
+#define SQLITE_AFF_NONE 0x40 /* '@' */
+#define SQLITE_AFF_BLOB 0x41 /* 'A' */
+#define SQLITE_AFF_TEXT 0x42 /* 'B' */
+#define SQLITE_AFF_NUMERIC 0x43 /* 'C' */
+#define SQLITE_AFF_INTEGER 0x44 /* 'D' */
+#define SQLITE_AFF_REAL 0x45 /* 'E' */
+
+#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
+
+/*
+** The SQLITE_AFF_MASK values masks off the significant bits of an
+** affinity value.
+*/
+#define SQLITE_AFF_MASK 0x47
+
+/*
+** Additional bit values that can be ORed with an affinity without
+** changing the affinity.
+**
+** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
+** It causes an assert() to fire if either operand to a comparison
+** operator is NULL. It is added to certain comparison operators to
+** prove that the operands are always NOT NULL.
+*/
+#define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */
+#define SQLITE_NULLEQ 0x80 /* NULL=NULL */
+#define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */
+
+/*
+** An object of this type is created for each virtual table present in
+** the database schema.
+**
+** If the database schema is shared, then there is one instance of this
+** structure for each database connection (sqlite3*) that uses the shared
+** schema. This is because each database connection requires its own unique
+** instance of the sqlite3_vtab* handle used to access the virtual table
+** implementation. sqlite3_vtab* handles can not be shared between
+** database connections, even when the rest of the in-memory database
+** schema is shared, as the implementation often stores the database
+** connection handle passed to it via the xConnect() or xCreate() method
+** during initialization internally. This database connection handle may
+** then be used by the virtual table implementation to access real tables
+** within the database. So that they appear as part of the callers
+** transaction, these accesses need to be made via the same database
+** connection as that used to execute SQL operations on the virtual table.
+**
+** All VTable objects that correspond to a single table in a shared
+** database schema are initially stored in a linked-list pointed to by
+** the Table.pVTable member variable of the corresponding Table object.
+** When an sqlite3_prepare() operation is required to access the virtual
+** table, it searches the list for the VTable that corresponds to the
+** database connection doing the preparing so as to use the correct
+** sqlite3_vtab* handle in the compiled query.
+**
+** When an in-memory Table object is deleted (for example when the
+** schema is being reloaded for some reason), the VTable objects are not
+** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
+** immediately. Instead, they are moved from the Table.pVTable list to
+** another linked list headed by the sqlite3.pDisconnect member of the
+** corresponding sqlite3 structure. They are then deleted/xDisconnected
+** next time a statement is prepared using said sqlite3*. This is done
+** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
+** Refer to comments above function sqlite3VtabUnlockList() for an
+** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
+** list without holding the corresponding sqlite3.mutex mutex.
+**
+** The memory for objects of this type is always allocated by
+** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
+** the first argument.
+*/
+struct VTable {
+ sqlite3 *db; /* Database connection associated with this table */
+ Module *pMod; /* Pointer to module implementation */
+ sqlite3_vtab *pVtab; /* Pointer to vtab instance */
+ int nRef; /* Number of pointers to this structure */
+ u8 bConstraint; /* True if constraints are supported */
+ u8 eVtabRisk; /* Riskiness of allowing hacker access */
+ int iSavepoint; /* Depth of the SAVEPOINT stack */
+ VTable *pNext; /* Next in linked list (see above) */
+};
+
+/* Allowed values for VTable.eVtabRisk
+*/
+#define SQLITE_VTABRISK_Low 0
+#define SQLITE_VTABRISK_Normal 1
+#define SQLITE_VTABRISK_High 2
+
+/*
+** The schema for each SQL table, virtual table, and view is represented
+** in memory by an instance of the following structure.
+*/
+struct Table {
+ char *zName; /* Name of the table or view */
+ Column *aCol; /* Information about each column */
+ Index *pIndex; /* List of SQL indexes on this table. */
+ char *zColAff; /* String defining the affinity of each column */
+ ExprList *pCheck; /* All CHECK constraints */
+ /* ... also used as column name list in a VIEW */
+ Pgno tnum; /* Root BTree page for this table */
+ u32 nTabRef; /* Number of pointers to this Table */
+ u32 tabFlags; /* Mask of TF_* values */
+ i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */
+ i16 nCol; /* Number of columns in this table */
+ i16 nNVCol; /* Number of columns that are not VIRTUAL */
+ LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */
+ LogEst szTabRow; /* Estimated size of each table row in bytes */
+#ifdef SQLITE_ENABLE_COSTMULT
+ LogEst costMult; /* Cost multiplier for using this table */
+#endif
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
+ u8 eTabType; /* 0: normal, 1: virtual, 2: view */
+ union {
+ struct { /* Used by ordinary tables: */
+ int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
+ ExprList *pDfltList; /* DEFAULT clauses on various columns.
+ ** Or the AS clause for generated columns. */
+ } tab;
+ struct { /* Used by views: */
+ Select *pSelect; /* View definition */
+ } view;
+ struct { /* Used by virtual tables only: */
+ int nArg; /* Number of arguments to the module */
+ char **azArg; /* 0: module 1: schema 2: vtab name 3...: args */
+ VTable *p; /* List of VTable objects. */
+ } vtab;
+ } u;
+ Trigger *pTrigger; /* List of triggers on this object */
+ Schema *pSchema; /* Schema that contains this table */
+};
+
+/*
+** Allowed values for Table.tabFlags.
+**
+** TF_OOOHidden applies to tables or view that have hidden columns that are
+** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING
+** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden,
+** the TF_OOOHidden attribute would apply in this case. Such tables require
+** special handling during INSERT processing. The "OOO" means "Out Of Order".
+**
+** Constraints:
+**
+** TF_HasVirtual == COLFLAG_VIRTUAL
+** TF_HasStored == COLFLAG_STORED
+** TF_HasHidden == COLFLAG_HIDDEN
+*/
+#define TF_Readonly 0x00000001 /* Read-only system table */
+#define TF_HasHidden 0x00000002 /* Has one or more hidden columns */
+#define TF_HasPrimaryKey 0x00000004 /* Table has a primary key */
+#define TF_Autoincrement 0x00000008 /* Integer primary key is autoincrement */
+#define TF_HasStat1 0x00000010 /* nRowLogEst set from sqlite_stat1 */
+#define TF_HasVirtual 0x00000020 /* Has one or more VIRTUAL columns */
+#define TF_HasStored 0x00000040 /* Has one or more STORED columns */
+#define TF_HasGenerated 0x00000060 /* Combo: HasVirtual + HasStored */
+#define TF_WithoutRowid 0x00000080 /* No rowid. PRIMARY KEY is the key */
+#define TF_StatsUsed 0x00000100 /* Query planner decisions affected by
+ ** Index.aiRowLogEst[] values */
+#define TF_NoVisibleRowid 0x00000200 /* No user-visible "rowid" column */
+#define TF_OOOHidden 0x00000400 /* Out-of-Order hidden columns */
+#define TF_HasNotNull 0x00000800 /* Contains NOT NULL constraints */
+#define TF_Shadow 0x00001000 /* True for a shadow table */
+#define TF_HasStat4 0x00002000 /* STAT4 info available for this table */
+#define TF_Ephemeral 0x00004000 /* An ephemeral table */
+#define TF_Eponymous 0x00008000 /* An eponymous virtual table */
+#define TF_Strict 0x00010000 /* STRICT mode */
+
+/*
+** Allowed values for Table.eTabType
+*/
+#define TABTYP_NORM 0 /* Ordinary table */
+#define TABTYP_VTAB 1 /* Virtual table */
+#define TABTYP_VIEW 2 /* A view */
+
+#define IsView(X) ((X)->eTabType==TABTYP_VIEW)
+#define IsOrdinaryTable(X) ((X)->eTabType==TABTYP_NORM)
+
+/*
+** Test to see whether or not a table is a virtual table. This is
+** done as a macro so that it will be optimized out when virtual
+** table support is omitted from the build.
+*/
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+# define IsVirtual(X) ((X)->eTabType==TABTYP_VTAB)
+# define ExprIsVtab(X) \
+ ((X)->op==TK_COLUMN && (X)->y.pTab!=0 && (X)->y.pTab->eTabType==TABTYP_VTAB)
+#else
+# define IsVirtual(X) 0
+# define ExprIsVtab(X) 0
+#endif
+
+/*
+** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn()
+** only works for non-virtual tables (ordinary tables and views) and is
+** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The
+** IsHiddenColumn() macro is general purpose.
+*/
+#if defined(SQLITE_ENABLE_HIDDEN_COLUMNS)
+# define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
+# define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
+#elif !defined(SQLITE_OMIT_VIRTUALTABLE)
+# define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
+# define IsOrdinaryHiddenColumn(X) 0
+#else
+# define IsHiddenColumn(X) 0
+# define IsOrdinaryHiddenColumn(X) 0
+#endif
+
+
+/* Does the table have a rowid */
+#define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0)
+#define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
+
+/*
+** Each foreign key constraint is an instance of the following structure.
+**
+** A foreign key is associated with two tables. The "from" table is
+** the table that contains the REFERENCES clause that creates the foreign
+** key. The "to" table is the table that is named in the REFERENCES clause.
+** Consider this example:
+**
+** CREATE TABLE ex1(
+** a INTEGER PRIMARY KEY,
+** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
+** );
+**
+** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
+** Equivalent names:
+**
+** from-table == child-table
+** to-table == parent-table
+**
+** Each REFERENCES clause generates an instance of the following structure
+** which is attached to the from-table. The to-table need not exist when
+** the from-table is created. The existence of the to-table is not checked.
+**
+** The list of all parents for child Table X is held at X.pFKey.
+**
+** A list of all children for a table named Z (which might not even exist)
+** is held in Schema.fkeyHash with a hash key of Z.
+*/
+struct FKey {
+ Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */
+ FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */
+ char *zTo; /* Name of table that the key points to (aka: Parent) */
+ FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */
+ FKey *pPrevTo; /* Previous with the same zTo */
+ int nCol; /* Number of columns in this key */
+ /* EV: R-30323-21917 */
+ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
+ u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */
+ Trigger *apTrigger[2];/* Triggers for aAction[] actions */
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
+ int iFrom; /* Index of column in pFrom */
+ char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */
+ } aCol[1]; /* One entry for each of nCol columns */
+};
+
+/*
+** SQLite supports many different ways to resolve a constraint
+** error. ROLLBACK processing means that a constraint violation
+** causes the operation in process to fail and for the current transaction
+** to be rolled back. ABORT processing means the operation in process
+** fails and any prior changes from that one operation are backed out,
+** but the transaction is not rolled back. FAIL processing means that
+** the operation in progress stops and returns an error code. But prior
+** changes due to the same operation are not backed out and no rollback
+** occurs. IGNORE means that the particular row that caused the constraint
+** error is not inserted or updated. Processing continues and no error
+** is returned. REPLACE means that preexisting database rows that caused
+** a UNIQUE constraint violation are removed so that the new insert or
+** update can proceed. Processing continues and no error is reported.
+** UPDATE applies to insert operations only and means that the insert
+** is omitted and the DO UPDATE clause of an upsert is run instead.
+**
+** RESTRICT, SETNULL, SETDFLT, and CASCADE actions apply only to foreign keys.
+** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
+** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
+** key is set to NULL. SETDFLT means that the foreign key is set
+** to its default value. CASCADE means that a DELETE or UPDATE of the
+** referenced table row is propagated into the row that holds the
+** foreign key.
+**
+** The OE_Default value is a place holder that means to use whatever
+** conflict resolution algorthm is required from context.
+**
+** The following symbolic values are used to record which type
+** of conflict resolution action to take.
+*/
+#define OE_None 0 /* There is no constraint to check */
+#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
+#define OE_Abort 2 /* Back out changes but do no rollback transaction */
+#define OE_Fail 3 /* Stop the operation but leave all prior changes */
+#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
+#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
+#define OE_Update 6 /* Process as a DO UPDATE in an upsert */
+#define OE_Restrict 7 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
+#define OE_SetNull 8 /* Set the foreign key value to NULL */
+#define OE_SetDflt 9 /* Set the foreign key value to its default */
+#define OE_Cascade 10 /* Cascade the changes */
+#define OE_Default 11 /* Do whatever the default action is */
+
+
+/*
+** An instance of the following structure is passed as the first
+** argument to sqlite3VdbeKeyCompare and is used to control the
+** comparison of the two index keys.
+**
+** Note that aSortOrder[] and aColl[] have nField+1 slots. There
+** are nField slots for the columns of an index then one extra slot
+** for the rowid at the end.
+*/
+struct KeyInfo {
+ u32 nRef; /* Number of references to this KeyInfo object */
+ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
+ u16 nKeyField; /* Number of key columns in the index */
+ u16 nAllField; /* Total columns, including key plus others */
+ sqlite3 *db; /* The database connection */
+ u8 *aSortFlags; /* Sort order for each column. */
+ CollSeq *aColl[1]; /* Collating sequence for each term of the key */
+};
+
+/*
+** Allowed bit values for entries in the KeyInfo.aSortFlags[] array.
+*/
+#define KEYINFO_ORDER_DESC 0x01 /* DESC sort order */
+#define KEYINFO_ORDER_BIGNULL 0x02 /* NULL is larger than any other value */
+
+/*
+** This object holds a record which has been parsed out into individual
+** fields, for the purposes of doing a comparison.
+**
+** A record is an object that contains one or more fields of data.
+** Records are used to store the content of a table row and to store
+** the key of an index. A blob encoding of a record is created by
+** the OP_MakeRecord opcode of the VDBE and is disassembled by the
+** OP_Column opcode.
+**
+** An instance of this object serves as a "key" for doing a search on
+** an index b+tree. The goal of the search is to find the entry that
+** is closed to the key described by this object. This object might hold
+** just a prefix of the key. The number of fields is given by
+** pKeyInfo->nField.
+**
+** The r1 and r2 fields are the values to return if this key is less than
+** or greater than a key in the btree, respectively. These are normally
+** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree
+** is in DESC order.
+**
+** The key comparison functions actually return default_rc when they find
+** an equals comparison. default_rc can be -1, 0, or +1. If there are
+** multiple entries in the b-tree with the same key (when only looking
+** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to
+** cause the search to find the last match, or +1 to cause the search to
+** find the first match.
+**
+** The key comparison functions will set eqSeen to true if they ever
+** get and equal results when comparing this structure to a b-tree record.
+** When default_rc!=0, the search might end up on the record immediately
+** before the first match or immediately after the last match. The
+** eqSeen field will indicate whether or not an exact match exists in the
+** b-tree.
+*/
+struct UnpackedRecord {
+ KeyInfo *pKeyInfo; /* Collation and sort-order information */
+ Mem *aMem; /* Values */
+ union {
+ char *z; /* Cache of aMem[0].z for vdbeRecordCompareString() */
+ i64 i; /* Cache of aMem[0].u.i for vdbeRecordCompareInt() */
+ } u;
+ int n; /* Cache of aMem[0].n used by vdbeRecordCompareString() */
+ u16 nField; /* Number of entries in apMem[] */
+ i8 default_rc; /* Comparison result if keys are equal */
+ u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
+ i8 r1; /* Value to return if (lhs < rhs) */
+ i8 r2; /* Value to return if (lhs > rhs) */
+ u8 eqSeen; /* True if an equality comparison has been seen */
+};
+
+
+/*
+** Each SQL index is represented in memory by an
+** instance of the following structure.
+**
+** The columns of the table that are to be indexed are described
+** by the aiColumn[] field of this structure. For example, suppose
+** we have the following table and index:
+**
+** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
+** CREATE INDEX Ex2 ON Ex1(c3,c1);
+**
+** In the Table structure describing Ex1, nCol==3 because there are
+** three columns in the table. In the Index structure describing
+** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
+** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
+** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
+** The second column to be indexed (c1) has an index of 0 in
+** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
+**
+** The Index.onError field determines whether or not the indexed columns
+** must be unique and what to do if they are not. When Index.onError=OE_None,
+** it means this is not a unique index. Otherwise it is a unique index
+** and the value of Index.onError indicate the which conflict resolution
+** algorithm to employ whenever an attempt is made to insert a non-unique
+** element.
+**
+** While parsing a CREATE TABLE or CREATE INDEX statement in order to
+** generate VDBE code (as opposed to parsing one read from an sqlite_schema
+** table as part of parsing an existing database schema), transient instances
+** of this structure may be created. In this case the Index.tnum variable is
+** used to store the address of a VDBE instruction, not a database page
+** number (it cannot - the database page is not allocated until the VDBE
+** program is executed). See convertToWithoutRowidTable() for details.
+*/
+struct Index {
+ char *zName; /* Name of this index */
+ i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */
+ LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */
+ Table *pTable; /* The SQL table being indexed */
+ char *zColAff; /* String defining the affinity of each column */
+ Index *pNext; /* The next index associated with the same table */
+ Schema *pSchema; /* Schema containing this index */
+ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */
+ const char **azColl; /* Array of collation sequence names for index */
+ Expr *pPartIdxWhere; /* WHERE clause for partial indices */
+ ExprList *aColExpr; /* Column expressions */
+ Pgno tnum; /* DB Page containing root of this index */
+ LogEst szIdxRow; /* Estimated average row size in bytes */
+ u16 nKeyCol; /* Number of columns forming the key */
+ u16 nColumn; /* Number of columns stored in the index */
+ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ unsigned idxType:2; /* 0:Normal 1:UNIQUE, 2:PRIMARY KEY, 3:IPK */
+ unsigned bUnordered:1; /* Use this index for == or IN queries only */
+ unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */
+ unsigned isResized:1; /* True if resizeIndexObject() has been called */
+ unsigned isCovering:1; /* True if this is a covering index */
+ unsigned noSkipScan:1; /* Do not try to use skip-scan if true */
+ unsigned hasStat1:1; /* aiRowLogEst values come from sqlite_stat1 */
+ unsigned bNoQuery:1; /* Do not use this index to optimize queries */
+ unsigned bAscKeyBug:1; /* True if the bba7b69f9849b5bf bug applies */
+ unsigned bHasVCol:1; /* Index references one or more VIRTUAL columns */
+#ifdef SQLITE_ENABLE_STAT4
+ int nSample; /* Number of elements in aSample[] */
+ int nSampleCol; /* Size of IndexSample.anEq[] and so on */
+ tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */
+ IndexSample *aSample; /* Samples of the left-most key */
+ tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */
+ tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */
+#endif
+ Bitmask colNotIdxed; /* 0 for unindexed columns in pTab */
+};
+
+/*
+** Allowed values for Index.idxType
+*/
+#define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */
+#define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */
+#define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */
+#define SQLITE_IDXTYPE_IPK 3 /* INTEGER PRIMARY KEY index */
+
+/* Return true if index X is a PRIMARY KEY index */
+#define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
+
+/* Return true if index X is a UNIQUE index */
+#define IsUniqueIndex(X) ((X)->onError!=OE_None)
+
+/* The Index.aiColumn[] values are normally positive integer. But
+** there are some negative values that have special meaning:
+*/
+#define XN_ROWID (-1) /* Indexed column is the rowid */
+#define XN_EXPR (-2) /* Indexed column is an expression */
+
+/*
+** Each sample stored in the sqlite_stat4 table is represented in memory
+** using a structure of this type. See documentation at the top of the
+** analyze.c source file for additional information.
+*/
+struct IndexSample {
+ void *p; /* Pointer to sampled record */
+ int n; /* Size of record in bytes */
+ tRowcnt *anEq; /* Est. number of rows where the key equals this sample */
+ tRowcnt *anLt; /* Est. number of rows where key is less than this sample */
+ tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */
+};
+
+/*
+** Possible values to use within the flags argument to sqlite3GetToken().
+*/
+#define SQLITE_TOKEN_QUOTED 0x1 /* Token is a quoted identifier. */
+#define SQLITE_TOKEN_KEYWORD 0x2 /* Token is a keyword. */
+
+/*
+** Each token coming out of the lexer is an instance of
+** this structure. Tokens are also used as part of an expression.
+**
+** The memory that "z" points to is owned by other objects. Take care
+** that the owner of the "z" string does not deallocate the string before
+** the Token goes out of scope! Very often, the "z" points to some place
+** in the middle of the Parse.zSql text. But it might also point to a
+** static string.
+*/
+struct Token {
+ const char *z; /* Text of the token. Not NULL-terminated! */
+ unsigned int n; /* Number of characters in this token */
+};
+
+/*
+** An instance of this structure contains information needed to generate
+** code for a SELECT that contains aggregate functions.
+**
+** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
+** pointer to this structure. The Expr.iAgg field is the index in
+** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
+** code for that node.
+**
+** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
+** original Select structure that describes the SELECT statement. These
+** fields do not need to be freed when deallocating the AggInfo structure.
+*/
+struct AggInfo {
+ u8 directMode; /* Direct rendering mode means take data directly
+ ** from source tables rather than from accumulators */
+ u8 useSortingIdx; /* In direct mode, reference the sorting index rather
+ ** than the source table */
+ int sortingIdx; /* Cursor number of the sorting index */
+ int sortingIdxPTab; /* Cursor number of pseudo-table */
+ int nSortingColumn; /* Number of columns in the sorting index */
+ int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */
+ ExprList *pGroupBy; /* The group by clause */
+ struct AggInfo_col { /* For each column used in source tables */
+ Table *pTab; /* Source table */
+ Expr *pCExpr; /* The original expression */
+ int iTable; /* Cursor number of the source table */
+ int iMem; /* Memory location that acts as accumulator */
+ i16 iColumn; /* Column number within the source table */
+ i16 iSorterColumn; /* Column number in the sorting index */
+ } *aCol;
+ int nColumn; /* Number of used entries in aCol[] */
+ int nAccumulator; /* Number of columns that show through to the output.
+ ** Additional columns are used only as parameters to
+ ** aggregate functions */
+ struct AggInfo_func { /* For each aggregate function */
+ Expr *pFExpr; /* Expression encoding the function */
+ FuncDef *pFunc; /* The aggregate function implementation */
+ int iMem; /* Memory location that acts as accumulator */
+ int iDistinct; /* Ephemeral table used to enforce DISTINCT */
+ int iDistAddr; /* Address of OP_OpenEphemeral */
+ } *aFunc;
+ int nFunc; /* Number of entries in aFunc[] */
+ u32 selId; /* Select to which this AggInfo belongs */
+};
+
+/*
+** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
+** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
+** than 32767 we have to make it 32-bit. 16-bit is preferred because
+** it uses less memory in the Expr object, which is a big memory user
+** in systems with lots of prepared statements. And few applications
+** need more than about 10 or 20 variables. But some extreme users want
+** to have prepared statements with over 32766 variables, and for them
+** the option is available (at compile-time).
+*/
+#if SQLITE_MAX_VARIABLE_NUMBER<32767
+typedef i16 ynVar;
+#else
+typedef int ynVar;
+#endif
+
+/*
+** Each node of an expression in the parse tree is an instance
+** of this structure.
+**
+** Expr.op is the opcode. The integer parser token codes are reused
+** as opcodes here. For example, the parser defines TK_GE to be an integer
+** code representing the ">=" operator. This same integer code is reused
+** to represent the greater-than-or-equal-to operator in the expression
+** tree.
+**
+** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
+** or TK_STRING), then Expr.u.zToken contains the text of the SQL literal. If
+** the expression is a variable (TK_VARIABLE), then Expr.u.zToken contains the
+** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
+** then Expr.u.zToken contains the name of the function.
+**
+** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
+** binary operator. Either or both may be NULL.
+**
+** Expr.x.pList is a list of arguments if the expression is an SQL function,
+** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
+** Expr.x.pSelect is used if the expression is a sub-select or an expression of
+** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
+** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
+** valid.
+**
+** An expression of the form ID or ID.ID refers to a column in a table.
+** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
+** the integer cursor number of a VDBE cursor pointing to that table and
+** Expr.iColumn is the column number for the specific column. If the
+** expression is used as a result in an aggregate SELECT, then the
+** value is also stored in the Expr.iAgg column in the aggregate so that
+** it can be accessed after all aggregates are computed.
+**
+** If the expression is an unbound variable marker (a question mark
+** character '?' in the original SQL) then the Expr.iTable holds the index
+** number for that variable.
+**
+** If the expression is a subquery then Expr.iColumn holds an integer
+** register number containing the result of the subquery. If the
+** subquery gives a constant result, then iTable is -1. If the subquery
+** gives a different answer at different times during statement processing
+** then iTable is the address of a subroutine that computes the subquery.
+**
+** If the Expr is of type OP_Column, and the table it is selecting from
+** is a disk table or the "old.*" pseudo-table, then pTab points to the
+** corresponding table definition.
+**
+** ALLOCATION NOTES:
+**
+** Expr objects can use a lot of memory space in database schema. To
+** help reduce memory requirements, sometimes an Expr object will be
+** truncated. And to reduce the number of memory allocations, sometimes
+** two or more Expr objects will be stored in a single memory allocation,
+** together with Expr.u.zToken strings.
+**
+** If the EP_Reduced and EP_TokenOnly flags are set when
+** an Expr object is truncated. When EP_Reduced is set, then all
+** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
+** are contained within the same memory allocation. Note, however, that
+** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
+** allocated, regardless of whether or not EP_Reduced is set.
+*/
+struct Expr {
+ u8 op; /* Operation performed by this node */
+ char affExpr; /* affinity, or RAISE type */
+ u8 op2; /* TK_REGISTER/TK_TRUTH: original value of Expr.op
+ ** TK_COLUMN: the value of p5 for OP_Column
+ ** TK_AGG_FUNCTION: nesting depth
+ ** TK_FUNCTION: NC_SelfRef flag if needs OP_PureFunc */
+#ifdef SQLITE_DEBUG
+ u8 vvaFlags; /* Verification flags. */
+#endif
+ u32 flags; /* Various flags. EP_* See below */
+ union {
+ char *zToken; /* Token value. Zero terminated and dequoted */
+ int iValue; /* Non-negative integer value if EP_IntValue */
+ } u;
+
+ /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
+ ** space is allocated for the fields below this point. An attempt to
+ ** access them will result in a segfault or malfunction.
+ *********************************************************************/
+
+ Expr *pLeft; /* Left subnode */
+ Expr *pRight; /* Right subnode */
+ union {
+ ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
+ Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */
+ } x;
+
+ /* If the EP_Reduced flag is set in the Expr.flags mask, then no
+ ** space is allocated for the fields below this point. An attempt to
+ ** access them will result in a segfault or malfunction.
+ *********************************************************************/
+
+#if SQLITE_MAX_EXPR_DEPTH>0
+ int nHeight; /* Height of the tree headed by this node */
+#endif
+ int iTable; /* TK_COLUMN: cursor number of table holding column
+ ** TK_REGISTER: register number
+ ** TK_TRIGGER: 1 -> new, 0 -> old
+ ** EP_Unlikely: 134217728 times likelihood
+ ** TK_IN: ephemerial table holding RHS
+ ** TK_SELECT_COLUMN: Number of columns on the LHS
+ ** TK_SELECT: 1st register of result vector */
+ ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid.
+ ** TK_VARIABLE: variable number (always >= 1).
+ ** TK_SELECT_COLUMN: column of the result vector */
+ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
+ union {
+ int iJoin; /* If EP_OuterON or EP_InnerON, the right table */
+ int iOfst; /* else: start of token from start of statement */
+ } w;
+ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
+ union {
+ Table *pTab; /* TK_COLUMN: Table containing column. Can be NULL
+ ** for a column of an index on an expression */
+ Window *pWin; /* EP_WinFunc: Window/Filter defn for a function */
+ struct { /* TK_IN, TK_SELECT, and TK_EXISTS */
+ int iAddr; /* Subroutine entry address */
+ int regReturn; /* Register used to hold return address */
+ } sub;
+ } y;
+};
+
+/* The following are the meanings of bits in the Expr.flags field.
+** Value restrictions:
+**
+** EP_Agg == NC_HasAgg == SF_HasAgg
+** EP_Win == NC_HasWin
+*/
+#define EP_OuterON 0x000001 /* Originates in ON/USING clause of outer join */
+#define EP_InnerON 0x000002 /* Originates in ON/USING of an inner join */
+#define EP_Distinct 0x000004 /* Aggregate function with DISTINCT keyword */
+#define EP_HasFunc 0x000008 /* Contains one or more functions of any kind */
+#define EP_Agg 0x000010 /* Contains one or more aggregate functions */
+#define EP_FixedCol 0x000020 /* TK_Column with a known fixed value */
+#define EP_VarSelect 0x000040 /* pSelect is correlated, not constant */
+#define EP_DblQuoted 0x000080 /* token.z was originally in "..." */
+#define EP_InfixFunc 0x000100 /* True for an infix function: LIKE, GLOB, etc */
+#define EP_Collate 0x000200 /* Tree contains a TK_COLLATE operator */
+#define EP_Commuted 0x000400 /* Comparison operator has been commuted */
+#define EP_IntValue 0x000800 /* Integer value contained in u.iValue */
+#define EP_xIsSelect 0x001000 /* x.pSelect is valid (otherwise x.pList is) */
+#define EP_Skip 0x002000 /* Operator does not contribute to affinity */
+#define EP_Reduced 0x004000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
+#define EP_Win 0x008000 /* Contains window functions */
+#define EP_TokenOnly 0x010000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
+#define EP_MemToken 0x020000 /* Need to sqlite3DbFree() Expr.zToken */
+#define EP_IfNullRow 0x040000 /* The TK_IF_NULL_ROW opcode */
+#define EP_Unlikely 0x080000 /* unlikely() or likelihood() function */
+#define EP_ConstFunc 0x100000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
+#define EP_CanBeNull 0x200000 /* Can be null despite NOT NULL constraint */
+#define EP_Subquery 0x400000 /* Tree contains a TK_SELECT operator */
+#define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */
+#define EP_WinFunc 0x1000000 /* TK_FUNCTION with Expr.y.pWin set */
+#define EP_Subrtn 0x2000000 /* Uses Expr.y.sub. TK_IN, _SELECT, or _EXISTS */
+#define EP_Quoted 0x4000000 /* TK_ID was originally quoted */
+#define EP_Static 0x8000000 /* Held in memory not obtained from malloc() */
+#define EP_IsTrue 0x10000000 /* Always has boolean value of TRUE */
+#define EP_IsFalse 0x20000000 /* Always has boolean value of FALSE */
+#define EP_FromDDL 0x40000000 /* Originates from sqlite_schema */
+ /* 0x80000000 // Available */
+
+/* The EP_Propagate mask is a set of properties that automatically propagate
+** upwards into parent nodes.
+*/
+#define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc)
+
+/* Macros can be used to test, set, or clear bits in the
+** Expr.flags field.
+*/
+#define ExprHasProperty(E,P) (((E)->flags&(P))!=0)
+#define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P))
+#define ExprSetProperty(E,P) (E)->flags|=(P)
+#define ExprClearProperty(E,P) (E)->flags&=~(P)
+#define ExprAlwaysTrue(E) (((E)->flags&(EP_OuterON|EP_IsTrue))==EP_IsTrue)
+#define ExprAlwaysFalse(E) (((E)->flags&(EP_OuterON|EP_IsFalse))==EP_IsFalse)
+
+/* Macros used to ensure that the correct members of unions are accessed
+** in Expr.
+*/
+#define ExprUseUToken(E) (((E)->flags&EP_IntValue)==0)
+#define ExprUseUValue(E) (((E)->flags&EP_IntValue)!=0)
+#define ExprUseXList(E) (((E)->flags&EP_xIsSelect)==0)
+#define ExprUseXSelect(E) (((E)->flags&EP_xIsSelect)!=0)
+#define ExprUseYTab(E) (((E)->flags&(EP_WinFunc|EP_Subrtn))==0)
+#define ExprUseYWin(E) (((E)->flags&EP_WinFunc)!=0)
+#define ExprUseYSub(E) (((E)->flags&EP_Subrtn)!=0)
+
+/* Flags for use with Expr.vvaFlags
+*/
+#define EP_NoReduce 0x01 /* Cannot EXPRDUP_REDUCE this Expr */
+#define EP_Immutable 0x02 /* Do not change this Expr node */
+
+/* The ExprSetVVAProperty() macro is used for Verification, Validation,
+** and Accreditation only. It works like ExprSetProperty() during VVA
+** processes but is a no-op for delivery.
+*/
+#ifdef SQLITE_DEBUG
+# define ExprSetVVAProperty(E,P) (E)->vvaFlags|=(P)
+# define ExprHasVVAProperty(E,P) (((E)->vvaFlags&(P))!=0)
+# define ExprClearVVAProperties(E) (E)->vvaFlags = 0
+#else
+# define ExprSetVVAProperty(E,P)
+# define ExprHasVVAProperty(E,P) 0
+# define ExprClearVVAProperties(E)
+#endif
+
+/*
+** Macros to determine the number of bytes required by a normal Expr
+** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
+** and an Expr struct with the EP_TokenOnly flag set.
+*/
+#define EXPR_FULLSIZE sizeof(Expr) /* Full size */
+#define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
+#define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
+
+/*
+** Flags passed to the sqlite3ExprDup() function. See the header comment
+** above sqlite3ExprDup() for details.
+*/
+#define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
+
+/*
+** True if the expression passed as an argument was a function with
+** an OVER() clause (a window function).
+*/
+#ifdef SQLITE_OMIT_WINDOWFUNC
+# define IsWindowFunc(p) 0
+#else
+# define IsWindowFunc(p) ( \
+ ExprHasProperty((p), EP_WinFunc) && p->y.pWin->eFrmType!=TK_FILTER \
+ )
+#endif
+
+/*
+** A list of expressions. Each expression may optionally have a
+** name. An expr/name combination can be used in several ways, such
+** as the list of "expr AS ID" fields following a "SELECT" or in the
+** list of "ID = expr" items in an UPDATE. A list of expressions can
+** also be used as the argument to a function, in which case the a.zName
+** field is not used.
+**
+** In order to try to keep memory usage down, the Expr.a.zEName field
+** is used for multiple purposes:
+**
+** eEName Usage
+** ---------- -------------------------
+** ENAME_NAME (1) the AS of result set column
+** (2) COLUMN= of an UPDATE
+**
+** ENAME_TAB DB.TABLE.NAME used to resolve names
+** of subqueries
+**
+** ENAME_SPAN Text of the original result set
+** expression.
+*/
+struct ExprList {
+ int nExpr; /* Number of expressions on the list */
+ int nAlloc; /* Number of a[] slots allocated */
+ struct ExprList_item { /* For each expression in the list */
+ Expr *pExpr; /* The parse tree for this expression */
+ char *zEName; /* Token associated with this expression */
+ struct {
+ u8 sortFlags; /* Mask of KEYINFO_ORDER_* flags */
+ unsigned eEName :2; /* Meaning of zEName */
+ unsigned done :1; /* Indicates when processing is finished */
+ unsigned reusable :1; /* Constant expression is reusable */
+ unsigned bSorterRef :1; /* Defer evaluation until after sorting */
+ unsigned bNulls :1; /* True if explicit "NULLS FIRST/LAST" */
+ unsigned bUsed :1; /* This column used in a SF_NestedFrom subquery */
+ unsigned bUsingTerm:1; /* Term from the USING clause of a NestedFrom */
+ unsigned bNoExpand: 1; /* Term is an auxiliary in NestedFrom and should
+ ** not be expanded by "*" in parent queries */
+ } fg;
+ union {
+ struct { /* Used by any ExprList other than Parse.pConsExpr */
+ u16 iOrderByCol; /* For ORDER BY, column number in result set */
+ u16 iAlias; /* Index into Parse.aAlias[] for zName */
+ } x;
+ int iConstExprReg; /* Register in which Expr value is cached. Used only
+ ** by Parse.pConstExpr */
+ } u;
+ } a[1]; /* One slot for each expression in the list */
+};
+
+/*
+** Allowed values for Expr.a.eEName
+*/
+#define ENAME_NAME 0 /* The AS clause of a result set */
+#define ENAME_SPAN 1 /* Complete text of the result set expression */
+#define ENAME_TAB 2 /* "DB.TABLE.NAME" for the result set */
+
+/*
+** An instance of this structure can hold a simple list of identifiers,
+** such as the list "a,b,c" in the following statements:
+**
+** INSERT INTO t(a,b,c) VALUES ...;
+** CREATE INDEX idx ON t(a,b,c);
+** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
+**
+** The IdList.a.idx field is used when the IdList represents the list of
+** column names after a table name in an INSERT statement. In the statement
+**
+** INSERT INTO t(a,b,c) ...
+**
+** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
+*/
+struct IdList {
+ int nId; /* Number of identifiers on the list */
+ u8 eU4; /* Which element of a.u4 is valid */
+ struct IdList_item {
+ char *zName; /* Name of the identifier */
+ union {
+ int idx; /* Index in some Table.aCol[] of a column named zName */
+ Expr *pExpr; /* Expr to implement a USING variable -- NOT USED */
+ } u4;
+ } a[1];
+};
+
+/*
+** Allowed values for IdList.eType, which determines which value of the a.u4
+** is valid.
+*/
+#define EU4_NONE 0 /* Does not use IdList.a.u4 */
+#define EU4_IDX 1 /* Uses IdList.a.u4.idx */
+#define EU4_EXPR 2 /* Uses IdList.a.u4.pExpr -- NOT CURRENTLY USED */
+
+/*
+** The SrcItem object represents a single term in the FROM clause of a query.
+** The SrcList object is mostly an array of SrcItems.
+**
+** Union member validity:
+**
+** u1.zIndexedBy fg.isIndexedBy && !fg.isTabFunc
+** u1.pFuncArg fg.isTabFunc && !fg.isIndexedBy
+** u2.pIBIndex fg.isIndexedBy && !fg.isCte
+** u2.pCteUse fg.isCte && !fg.isIndexedBy
+*/
+struct SrcItem {
+ Schema *pSchema; /* Schema to which this item is fixed */
+ char *zDatabase; /* Name of database holding this table */
+ char *zName; /* Name of the table */
+ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
+ Table *pTab; /* An SQL table corresponding to zName */
+ Select *pSelect; /* A SELECT statement used in place of a table name */
+ int addrFillSub; /* Address of subroutine to manifest a subquery */
+ int regReturn; /* Register holding return address of addrFillSub */
+ int regResult; /* Registers holding results of a co-routine */
+ struct {
+ u8 jointype; /* Type of join between this table and the previous */
+ unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */
+ unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */
+ unsigned isTabFunc :1; /* True if table-valued-function syntax */
+ unsigned isCorrelated :1; /* True if sub-query is correlated */
+ unsigned isMaterialized:1; /* This is a materialized view */
+ unsigned viaCoroutine :1; /* Implemented as a co-routine */
+ unsigned isRecursive :1; /* True for recursive reference in WITH */
+ unsigned fromDDL :1; /* Comes from sqlite_schema */
+ unsigned isCte :1; /* This is a CTE */
+ unsigned notCte :1; /* This item may not match a CTE */
+ unsigned isUsing :1; /* u3.pUsing is valid */
+ unsigned isOn :1; /* u3.pOn was once valid and non-NULL */
+ unsigned isSynthUsing :1; /* u3.pUsing is synthensized from NATURAL */
+ unsigned isNestedFrom :1; /* pSelect is a SF_NestedFrom subquery */
+ } fg;
+ int iCursor; /* The VDBE cursor number used to access this table */
+ union {
+ Expr *pOn; /* fg.isUsing==0 => The ON clause of a join */
+ IdList *pUsing; /* fg.isUsing==1 => The USING clause of a join */
+ } u3;
+ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
+ union {
+ char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */
+ ExprList *pFuncArg; /* Arguments to table-valued-function */
+ } u1;
+ union {
+ Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */
+ CteUse *pCteUse; /* CTE Usage info info fg.isCte is true */
+ } u2;
+};
+
+/*
+** The OnOrUsing object represents either an ON clause or a USING clause.
+** It can never be both at the same time, but it can be neither.
+*/
+struct OnOrUsing {
+ Expr *pOn; /* The ON clause of a join */
+ IdList *pUsing; /* The USING clause of a join */
+};
+
+/*
+** The following structure describes the FROM clause of a SELECT statement.
+** Each table or subquery in the FROM clause is a separate element of
+** the SrcList.a[] array.
+**
+** With the addition of multiple database support, the following structure
+** can also be used to describe a particular table such as the table that
+** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
+** such a table must be a simple name: ID. But in SQLite, the table can
+** now be identified by a database name, a dot, then the table name: ID.ID.
+**
+** The jointype starts out showing the join type between the current table
+** and the next table on the list. The parser builds the list this way.
+** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
+** jointype expresses the join between the table and the previous table.
+**
+** In the colUsed field, the high-order bit (bit 63) is set if the table
+** contains more than 63 columns and the 64-th or later column is used.
+*/
+struct SrcList {
+ int nSrc; /* Number of tables or subqueries in the FROM clause */
+ u32 nAlloc; /* Number of entries allocated in a[] below */
+ SrcItem a[1]; /* One entry for each identifier on the list */
+};
+
+/*
+** Permitted values of the SrcList.a.jointype field
+*/
+#define JT_INNER 0x01 /* Any kind of inner or cross join */
+#define JT_CROSS 0x02 /* Explicit use of the CROSS keyword */
+#define JT_NATURAL 0x04 /* True for a "natural" join */
+#define JT_LEFT 0x08 /* Left outer join */
+#define JT_RIGHT 0x10 /* Right outer join */
+#define JT_OUTER 0x20 /* The "OUTER" keyword is present */
+#define JT_LTORJ 0x40 /* One of the LEFT operands of a RIGHT JOIN
+ ** Mnemonic: Left Table Of Right Join */
+#define JT_ERROR 0x80 /* unknown or unsupported join type */
+
+/*
+** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
+** and the WhereInfo.wctrlFlags member.
+**
+** Value constraints (enforced via assert()):
+** WHERE_USE_LIMIT == SF_FixedLimit
+*/
+#define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
+#define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
+#define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
+#define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
+#define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */
+#define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */
+#define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of
+ ** the OR optimization */
+#define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */
+#define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */
+#define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */
+#define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */
+#define WHERE_AGG_DISTINCT 0x0400 /* Query is "SELECT agg(DISTINCT ...)" */
+#define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */
+#define WHERE_RIGHT_JOIN 0x1000 /* Processing a RIGHT JOIN */
+ /* 0x2000 not currently used */
+#define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */
+ /* 0x8000 not currently used */
+
+/* Allowed return values from sqlite3WhereIsDistinct()
+*/
+#define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */
+#define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */
+#define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */
+#define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */
+
+/*
+** A NameContext defines a context in which to resolve table and column
+** names. The context consists of a list of tables (the pSrcList) field and
+** a list of named expression (pEList). The named expression list may
+** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
+** to the table being operated on by INSERT, UPDATE, or DELETE. The
+** pEList corresponds to the result set of a SELECT and is NULL for
+** other statements.
+**
+** NameContexts can be nested. When resolving names, the inner-most
+** context is searched first. If no match is found, the next outer
+** context is checked. If there is still no match, the next context
+** is checked. This process continues until either a match is found
+** or all contexts are check. When a match is found, the nRef member of
+** the context containing the match is incremented.
+**
+** Each subquery gets a new NameContext. The pNext field points to the
+** NameContext in the parent query. Thus the process of scanning the
+** NameContext list corresponds to searching through successively outer
+** subqueries looking for a match.
+*/
+struct NameContext {
+ Parse *pParse; /* The parser */
+ SrcList *pSrcList; /* One or more tables used to resolve names */
+ union {
+ ExprList *pEList; /* Optional list of result-set columns */
+ AggInfo *pAggInfo; /* Information about aggregates at this level */
+ Upsert *pUpsert; /* ON CONFLICT clause information from an upsert */
+ int iBaseReg; /* For TK_REGISTER when parsing RETURNING */
+ } uNC;
+ NameContext *pNext; /* Next outer name context. NULL for outermost */
+ int nRef; /* Number of names resolved by this context */
+ int nNcErr; /* Number of errors encountered while resolving names */
+ int ncFlags; /* Zero or more NC_* flags defined below */
+ Select *pWinSelect; /* SELECT statement for any window functions */
+};
+
+/*
+** Allowed values for the NameContext, ncFlags field.
+**
+** Value constraints (all checked via assert()):
+** NC_HasAgg == SF_HasAgg == EP_Agg
+** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX
+** NC_OrderAgg == SF_OrderByReqd == SQLITE_FUNC_ANYORDER
+** NC_HasWin == EP_Win
+**
+*/
+#define NC_AllowAgg 0x000001 /* Aggregate functions are allowed here */
+#define NC_PartIdx 0x000002 /* True if resolving a partial index WHERE */
+#define NC_IsCheck 0x000004 /* True if resolving a CHECK constraint */
+#define NC_GenCol 0x000008 /* True for a GENERATED ALWAYS AS clause */
+#define NC_HasAgg 0x000010 /* One or more aggregate functions seen */
+#define NC_IdxExpr 0x000020 /* True if resolving columns of CREATE INDEX */
+#define NC_SelfRef 0x00002e /* Combo: PartIdx, isCheck, GenCol, and IdxExpr */
+#define NC_VarSelect 0x000040 /* A correlated subquery has been seen */
+#define NC_UEList 0x000080 /* True if uNC.pEList is used */
+#define NC_UAggInfo 0x000100 /* True if uNC.pAggInfo is used */
+#define NC_UUpsert 0x000200 /* True if uNC.pUpsert is used */
+#define NC_UBaseReg 0x000400 /* True if uNC.iBaseReg is used */
+#define NC_MinMaxAgg 0x001000 /* min/max aggregates seen. See note above */
+#define NC_Complex 0x002000 /* True if a function or subquery seen */
+#define NC_AllowWin 0x004000 /* Window functions are allowed here */
+#define NC_HasWin 0x008000 /* One or more window functions seen */
+#define NC_IsDDL 0x010000 /* Resolving names in a CREATE statement */
+#define NC_InAggFunc 0x020000 /* True if analyzing arguments to an agg func */
+#define NC_FromDDL 0x040000 /* SQL text comes from sqlite_schema */
+#define NC_NoSelect 0x080000 /* Do not descend into sub-selects */
+#define NC_OrderAgg 0x8000000 /* Has an aggregate other than count/min/max */
+
+/*
+** An instance of the following object describes a single ON CONFLICT
+** clause in an upsert.
+**
+** The pUpsertTarget field is only set if the ON CONFLICT clause includes
+** conflict-target clause. (In "ON CONFLICT(a,b)" the "(a,b)" is the
+** conflict-target clause.) The pUpsertTargetWhere is the optional
+** WHERE clause used to identify partial unique indexes.
+**
+** pUpsertSet is the list of column=expr terms of the UPDATE statement.
+** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING. The
+** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the
+** WHERE clause is omitted.
+*/
+struct Upsert {
+ ExprList *pUpsertTarget; /* Optional description of conflict target */
+ Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */
+ ExprList *pUpsertSet; /* The SET clause from an ON CONFLICT UPDATE */
+ Expr *pUpsertWhere; /* WHERE clause for the ON CONFLICT UPDATE */
+ Upsert *pNextUpsert; /* Next ON CONFLICT clause in the list */
+ u8 isDoUpdate; /* True for DO UPDATE. False for DO NOTHING */
+ /* Above this point is the parse tree for the ON CONFLICT clauses.
+ ** The next group of fields stores intermediate data. */
+ void *pToFree; /* Free memory when deleting the Upsert object */
+ /* All fields above are owned by the Upsert object and must be freed
+ ** when the Upsert is destroyed. The fields below are used to transfer
+ ** information from the INSERT processing down into the UPDATE processing
+ ** while generating code. The fields below are owned by the INSERT
+ ** statement and will be freed by INSERT processing. */
+ Index *pUpsertIdx; /* UNIQUE constraint specified by pUpsertTarget */
+ SrcList *pUpsertSrc; /* Table to be updated */
+ int regData; /* First register holding array of VALUES */
+ int iDataCur; /* Index of the data cursor */
+ int iIdxCur; /* Index of the first index cursor */
+};
+
+/*
+** An instance of the following structure contains all information
+** needed to generate code for a single SELECT statement.
+**
+** See the header comment on the computeLimitRegisters() routine for a
+** detailed description of the meaning of the iLimit and iOffset fields.
+**
+** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
+** These addresses must be stored so that we can go back and fill in
+** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
+** the number of columns in P2 can be computed at the same time
+** as the OP_OpenEphm instruction is coded because not
+** enough information about the compound query is known at that point.
+** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
+** for the result set. The KeyInfo for addrOpenEphm[2] contains collating
+** sequences for the ORDER BY clause.
+*/
+struct Select {
+ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
+ LogEst nSelectRow; /* Estimated number of result rows */
+ u32 selFlags; /* Various SF_* values */
+ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
+ u32 selId; /* Unique identifier number for this SELECT */
+ int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */
+ ExprList *pEList; /* The fields of the result */
+ SrcList *pSrc; /* The FROM clause */
+ Expr *pWhere; /* The WHERE clause */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Expr *pHaving; /* The HAVING clause */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Select *pPrior; /* Prior select in a compound select statement */
+ Select *pNext; /* Next select to the left in a compound */
+ Expr *pLimit; /* LIMIT expression. NULL means not used. */
+ With *pWith; /* WITH clause attached to this select. Or NULL. */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin; /* List of window functions */
+ Window *pWinDefn; /* List of named window definitions */
+#endif
+};
+
+/*
+** Allowed values for Select.selFlags. The "SF" prefix stands for
+** "Select Flag".
+**
+** Value constraints (all checked via assert())
+** SF_HasAgg == NC_HasAgg
+** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX
+** SF_OrderByReqd == NC_OrderAgg == SQLITE_FUNC_ANYORDER
+** SF_FixedLimit == WHERE_USE_LIMIT
+*/
+#define SF_Distinct 0x0000001 /* Output should be DISTINCT */
+#define SF_All 0x0000002 /* Includes the ALL keyword */
+#define SF_Resolved 0x0000004 /* Identifiers have been resolved */
+#define SF_Aggregate 0x0000008 /* Contains agg functions or a GROUP BY */
+#define SF_HasAgg 0x0000010 /* Contains aggregate functions */
+#define SF_UsesEphemeral 0x0000020 /* Uses the OpenEphemeral opcode */
+#define SF_Expanded 0x0000040 /* sqlite3SelectExpand() called on this */
+#define SF_HasTypeInfo 0x0000080 /* FROM subqueries have Table metadata */
+#define SF_Compound 0x0000100 /* Part of a compound query */
+#define SF_Values 0x0000200 /* Synthesized from VALUES clause */
+#define SF_MultiValue 0x0000400 /* Single VALUES term with multiple rows */
+#define SF_NestedFrom 0x0000800 /* Part of a parenthesized FROM clause */
+#define SF_MinMaxAgg 0x0001000 /* Aggregate containing min() or max() */
+#define SF_Recursive 0x0002000 /* The recursive part of a recursive CTE */
+#define SF_FixedLimit 0x0004000 /* nSelectRow set by a constant LIMIT */
+#define SF_MaybeConvert 0x0008000 /* Need convertCompoundSelectToSubquery() */
+#define SF_Converted 0x0010000 /* By convertCompoundSelectToSubquery() */
+#define SF_IncludeHidden 0x0020000 /* Include hidden columns in output */
+#define SF_ComplexResult 0x0040000 /* Result contains subquery or function */
+#define SF_WhereBegin 0x0080000 /* Really a WhereBegin() call. Debug Only */
+#define SF_WinRewrite 0x0100000 /* Window function rewrite accomplished */
+#define SF_View 0x0200000 /* SELECT statement is a view */
+#define SF_NoopOrderBy 0x0400000 /* ORDER BY is ignored for this query */
+#define SF_UFSrcCheck 0x0800000 /* Check pSrc as required by UPDATE...FROM */
+#define SF_PushDown 0x1000000 /* SELECT has be modified by push-down opt */
+#define SF_MultiPart 0x2000000 /* Has multiple incompatible PARTITIONs */
+#define SF_CopyCte 0x4000000 /* SELECT statement is a copy of a CTE */
+#define SF_OrderByReqd 0x8000000 /* The ORDER BY clause may not be omitted */
+
+/* True if S exists and has SF_NestedFrom */
+#define IsNestedFrom(S) ((S)!=0 && ((S)->selFlags&SF_NestedFrom)!=0)
+
+/*
+** The results of a SELECT can be distributed in several ways, as defined
+** by one of the following macros. The "SRT" prefix means "SELECT Result
+** Type".
+**
+** SRT_Union Store results as a key in a temporary index
+** identified by pDest->iSDParm.
+**
+** SRT_Except Remove results from the temporary index pDest->iSDParm.
+**
+** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result
+** set is not empty.
+**
+** SRT_Discard Throw the results away. This is used by SELECT
+** statements within triggers whose only purpose is
+** the side-effects of functions.
+**
+** SRT_Output Generate a row of output (using the OP_ResultRow
+** opcode) for each row in the result set.
+**
+** SRT_Mem Only valid if the result is a single column.
+** Store the first column of the first result row
+** in register pDest->iSDParm then abandon the rest
+** of the query. This destination implies "LIMIT 1".
+**
+** SRT_Set The result must be a single column. Store each
+** row of result as the key in table pDest->iSDParm.
+** Apply the affinity pDest->affSdst before storing
+** results. Used to implement "IN (SELECT ...)".
+**
+** SRT_EphemTab Create an temporary table pDest->iSDParm and store
+** the result there. The cursor is left open after
+** returning. This is like SRT_Table except that
+** this destination uses OP_OpenEphemeral to create
+** the table first.
+**
+** SRT_Coroutine Generate a co-routine that returns a new row of
+** results each time it is invoked. The entry point
+** of the co-routine is stored in register pDest->iSDParm
+** and the result row is stored in pDest->nDest registers
+** starting with pDest->iSdst.
+**
+** SRT_Table Store results in temporary table pDest->iSDParm.
+** SRT_Fifo This is like SRT_EphemTab except that the table
+** is assumed to already be open. SRT_Fifo has
+** the additional property of being able to ignore
+** the ORDER BY clause.
+**
+** SRT_DistFifo Store results in a temporary table pDest->iSDParm.
+** But also use temporary table pDest->iSDParm+1 as
+** a record of all prior results and ignore any duplicate
+** rows. Name means: "Distinct Fifo".
+**
+** SRT_Queue Store results in priority queue pDest->iSDParm (really
+** an index). Append a sequence number so that all entries
+** are distinct.
+**
+** SRT_DistQueue Store results in priority queue pDest->iSDParm only if
+** the same record has never been stored before. The
+** index at pDest->iSDParm+1 hold all prior stores.
+**
+** SRT_Upfrom Store results in the temporary table already opened by
+** pDest->iSDParm. If (pDest->iSDParm<0), then the temp
+** table is an intkey table - in this case the first
+** column returned by the SELECT is used as the integer
+** key. If (pDest->iSDParm>0), then the table is an index
+** table. (pDest->iSDParm) is the number of key columns in
+** each index record in this case.
+*/
+#define SRT_Union 1 /* Store result as keys in an index */
+#define SRT_Except 2 /* Remove result from a UNION index */
+#define SRT_Exists 3 /* Store 1 if the result is not empty */
+#define SRT_Discard 4 /* Do not save the results anywhere */
+#define SRT_DistFifo 5 /* Like SRT_Fifo, but unique results only */
+#define SRT_DistQueue 6 /* Like SRT_Queue, but unique results only */
+
+/* The DISTINCT clause is ignored for all of the above. Not that
+** IgnorableDistinct() implies IgnorableOrderby() */
+#define IgnorableDistinct(X) ((X->eDest)<=SRT_DistQueue)
+
+#define SRT_Queue 7 /* Store result in an queue */
+#define SRT_Fifo 8 /* Store result as data with an automatic rowid */
+
+/* The ORDER BY clause is ignored for all of the above */
+#define IgnorableOrderby(X) ((X->eDest)<=SRT_Fifo)
+
+#define SRT_Output 9 /* Output each row of result */
+#define SRT_Mem 10 /* Store result in a memory cell */
+#define SRT_Set 11 /* Store results as keys in an index */
+#define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */
+#define SRT_Coroutine 13 /* Generate a single row of result */
+#define SRT_Table 14 /* Store result as data with an automatic rowid */
+#define SRT_Upfrom 15 /* Store result as data with rowid */
+
+/*
+** An instance of this object describes where to put of the results of
+** a SELECT statement.
+*/
+struct SelectDest {
+ u8 eDest; /* How to dispose of the results. One of SRT_* above. */
+ int iSDParm; /* A parameter used by the eDest disposal method */
+ int iSDParm2; /* A second parameter for the eDest disposal method */
+ int iSdst; /* Base register where results are written */
+ int nSdst; /* Number of registers allocated */
+ char *zAffSdst; /* Affinity used when eDest==SRT_Set */
+ ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */
+};
+
+/*
+** During code generation of statements that do inserts into AUTOINCREMENT
+** tables, the following information is attached to the Table.u.autoInc.p
+** pointer of each autoincrement table to record some side information that
+** the code generator needs. We have to keep per-table autoincrement
+** information in case inserts are done within triggers. Triggers do not
+** normally coordinate their activities, but we do need to coordinate the
+** loading and saving of autoincrement information.
+*/
+struct AutoincInfo {
+ AutoincInfo *pNext; /* Next info block in a list of them all */
+ Table *pTab; /* Table this info block refers to */
+ int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
+ int regCtr; /* Memory register holding the rowid counter */
+};
+
+/*
+** At least one instance of the following structure is created for each
+** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
+** statement. All such objects are stored in the linked list headed at
+** Parse.pTriggerPrg and deleted once statement compilation has been
+** completed.
+**
+** A Vdbe sub-program that implements the body and WHEN clause of trigger
+** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
+** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
+** The Parse.pTriggerPrg list never contains two entries with the same
+** values for both pTrigger and orconf.
+**
+** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
+** accessed (or set to 0 for triggers fired as a result of INSERT
+** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
+** a mask of new.* columns used by the program.
+*/
+struct TriggerPrg {
+ Trigger *pTrigger; /* Trigger this program was coded from */
+ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
+ SubProgram *pProgram; /* Program implementing pTrigger/orconf */
+ int orconf; /* Default ON CONFLICT policy */
+ u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */
+};
+
+/*
+** The yDbMask datatype for the bitmask of all attached databases.
+*/
+#if SQLITE_MAX_ATTACHED>30
+ typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
+# define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0)
+# define DbMaskZero(M) memset((M),0,sizeof(M))
+# define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7))
+# define DbMaskAllZero(M) sqlite3DbMaskAllZero(M)
+# define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0)
+#else
+ typedef unsigned int yDbMask;
+# define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0)
+# define DbMaskZero(M) (M)=0
+# define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I))
+# define DbMaskAllZero(M) (M)==0
+# define DbMaskNonZero(M) (M)!=0
+#endif
+
+/*
+** An instance of the ParseCleanup object specifies an operation that
+** should be performed after parsing to deallocation resources obtained
+** during the parse and which are no longer needed.
+*/
+struct ParseCleanup {
+ ParseCleanup *pNext; /* Next cleanup task */
+ void *pPtr; /* Pointer to object to deallocate */
+ void (*xCleanup)(sqlite3*,void*); /* Deallocation routine */
+};
+
+/*
+** An SQL parser context. A copy of this structure is passed through
+** the parser and down into all the parser action routine in order to
+** carry around information that is global to the entire parse.
+**
+** The structure is divided into two parts. When the parser and code
+** generate call themselves recursively, the first part of the structure
+** is constant but the second part is reset at the beginning and end of
+** each recursion.
+**
+** The nTableLock and aTableLock variables are only used if the shared-cache
+** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
+** used to store the set of table-locks required by the statement being
+** compiled. Function sqlite3TableLock() is used to add entries to the
+** list.
+*/
+struct Parse {
+ sqlite3 *db; /* The main database structure */
+ char *zErrMsg; /* An error message */
+ Vdbe *pVdbe; /* An engine for executing database bytecode */
+ int rc; /* Return code from execution */
+ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
+ u8 checkSchema; /* Causes schema cookie check after an error */
+ u8 nested; /* Number of nested calls to the parser/code generator */
+ u8 nTempReg; /* Number of temporary registers in aTempReg[] */
+ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */
+ u8 mayAbort; /* True if statement may throw an ABORT exception */
+ u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */
+ u8 okConstFactor; /* OK to factor out constants */
+ u8 disableLookaside; /* Number of times lookaside has been disabled */
+ u8 disableVtab; /* Disable all virtual tables for this parse */
+ u8 withinRJSubrtn; /* Nesting level for RIGHT JOIN body subroutines */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+ u8 earlyCleanup; /* OOM inside sqlite3ParserAddCleanup() */
+#endif
+ int nRangeReg; /* Size of the temporary register block */
+ int iRangeReg; /* First register in temporary register block */
+ int nErr; /* Number of errors seen */
+ int nTab; /* Number of previously allocated VDBE cursors */
+ int nMem; /* Number of memory cells used so far */
+ int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */
+ int iSelfTab; /* Table associated with an index on expr, or negative
+ ** of the base register during check-constraint eval */
+ int nLabel; /* The *negative* of the number of labels used */
+ int nLabelAlloc; /* Number of slots in aLabel */
+ int *aLabel; /* Space to hold the labels */
+ ExprList *pConstExpr;/* Constant expressions */
+ Token constraintName;/* Name of the constraint currently being parsed */
+ yDbMask writeMask; /* Start a write transaction on these databases */
+ yDbMask cookieMask; /* Bitmask of schema verified databases */
+ int regRowid; /* Register holding rowid of CREATE TABLE entry */
+ int regRoot; /* Register holding root page number for new objects */
+ int nMaxArg; /* Max args passed to user function by sub-program */
+ int nSelect; /* Number of SELECT stmts. Counter for Select.selId */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nTableLock; /* Number of locks in aTableLock */
+ TableLock *aTableLock; /* Required table locks for shared-cache mode */
+#endif
+ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
+ Parse *pToplevel; /* Parse structure for main program (or NULL) */
+ Table *pTriggerTab; /* Table triggers are being coded for */
+ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
+ ParseCleanup *pCleanup; /* List of cleanup operations to run after parse */
+ union {
+ int addrCrTab; /* Address of OP_CreateBtree on CREATE TABLE */
+ Returning *pReturning; /* The RETURNING clause */
+ } u1;
+ u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */
+ u32 oldmask; /* Mask of old.* columns referenced */
+ u32 newmask; /* Mask of new.* columns referenced */
+ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
+ u8 bReturning; /* Coding a RETURNING trigger */
+ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
+ u8 disableTriggers; /* True to disable triggers */
+
+ /**************************************************************************
+ ** Fields above must be initialized to zero. The fields that follow,
+ ** down to the beginning of the recursive section, do not need to be
+ ** initialized as they will be set before being used. The boundary is
+ ** determined by offsetof(Parse,aTempReg).
+ **************************************************************************/
+
+ int aTempReg[8]; /* Holding area for temporary registers */
+ Parse *pOuterParse; /* Outer Parse object when nested */
+ Token sNameToken; /* Token with unqualified schema object name */
+
+ /************************************************************************
+ ** Above is constant between recursions. Below is reset before and after
+ ** each recursion. The boundary between these two regions is determined
+ ** using offsetof(Parse,sLastToken) so the sLastToken field must be the
+ ** first field in the recursive region.
+ ************************************************************************/
+
+ Token sLastToken; /* The last token parsed */
+ ynVar nVar; /* Number of '?' variables seen in the SQL so far */
+ u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */
+ u8 explain; /* True if the EXPLAIN flag is found on the query */
+ u8 eParseMode; /* PARSE_MODE_XXX constant */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int nVtabLock; /* Number of virtual tables to lock */
+#endif
+ int nHeight; /* Expression tree height of current sub-select */
+#ifndef SQLITE_OMIT_EXPLAIN
+ int addrExplain; /* Address of current OP_Explain opcode */
+#endif
+ VList *pVList; /* Mapping between variable names and numbers */
+ Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */
+ const char *zTail; /* All SQL text past the last semicolon parsed */
+ Table *pNewTable; /* A table being constructed by CREATE TABLE */
+ Index *pNewIndex; /* An index being constructed by CREATE INDEX.
+ ** Also used to hold redundant UNIQUE constraints
+ ** during a RENAME COLUMN */
+ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
+ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ Token sArg; /* Complete text of a module argument */
+ Table **apVtabLock; /* Pointer to virtual tables needing locking */
+#endif
+ With *pWith; /* Current WITH clause, or NULL */
+#ifndef SQLITE_OMIT_ALTERTABLE
+ RenameToken *pRename; /* Tokens subject to renaming by ALTER TABLE */
+#endif
+};
+
+/* Allowed values for Parse.eParseMode
+*/
+#define PARSE_MODE_NORMAL 0
+#define PARSE_MODE_DECLARE_VTAB 1
+#define PARSE_MODE_RENAME 2
+#define PARSE_MODE_UNMAP 3
+
+/*
+** Sizes and pointers of various parts of the Parse object.
+*/
+#define PARSE_HDR(X) (((char*)(X))+offsetof(Parse,zErrMsg))
+#define PARSE_HDR_SZ (offsetof(Parse,aTempReg)-offsetof(Parse,zErrMsg)) /* Recursive part w/o aColCache*/
+#define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */
+#define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */
+#define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */
+
+/*
+** Return true if currently inside an sqlite3_declare_vtab() call.
+*/
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ #define IN_DECLARE_VTAB 0
+#else
+ #define IN_DECLARE_VTAB (pParse->eParseMode==PARSE_MODE_DECLARE_VTAB)
+#endif
+
+#if defined(SQLITE_OMIT_ALTERTABLE)
+ #define IN_RENAME_OBJECT 0
+#else
+ #define IN_RENAME_OBJECT (pParse->eParseMode>=PARSE_MODE_RENAME)
+#endif
+
+#if defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_OMIT_ALTERTABLE)
+ #define IN_SPECIAL_PARSE 0
+#else
+ #define IN_SPECIAL_PARSE (pParse->eParseMode!=PARSE_MODE_NORMAL)
+#endif
+
+/*
+** An instance of the following structure can be declared on a stack and used
+** to save the Parse.zAuthContext value so that it can be restored later.
+*/
+struct AuthContext {
+ const char *zAuthContext; /* Put saved Parse.zAuthContext here */
+ Parse *pParse; /* The Parse structure */
+};
+
+/*
+** Bitfield flags for P5 value in various opcodes.
+**
+** Value constraints (enforced via assert()):
+** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH
+** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF
+** OPFLAG_BULKCSR == BTREE_BULKLOAD
+** OPFLAG_SEEKEQ == BTREE_SEEK_EQ
+** OPFLAG_FORDELETE == BTREE_FORDELETE
+** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
+** OPFLAG_AUXDELETE == BTREE_AUXDELETE
+*/
+#define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */
+ /* Also used in P2 (not P5) of OP_Delete */
+#define OPFLAG_NOCHNG 0x01 /* OP_VColumn nochange for UPDATE */
+#define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */
+#define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */
+#define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
+#define OPFLAG_APPEND 0x08 /* This is likely to be an append */
+#define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
+#define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */
+#define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */
+#define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */
+#define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */
+#define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */
+#define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */
+#define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */
+#define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */
+#define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */
+#define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */
+#define OPFLAG_NOCHNG_MAGIC 0x6d /* OP_MakeRecord: serialtype 10 is ok */
+#define OPFLAG_PREFORMAT 0x80 /* OP_Insert uses preformatted cell */
+
+/*
+** Each trigger present in the database schema is stored as an instance of
+** struct Trigger.
+**
+** Pointers to instances of struct Trigger are stored in two ways.
+** 1. In the "trigHash" hash table (part of the sqlite3* that represents the
+** database). This allows Trigger structures to be retrieved by name.
+** 2. All triggers associated with a single table form a linked list, using the
+** pNext member of struct Trigger. A pointer to the first element of the
+** linked list is stored as the "pTrigger" member of the associated
+** struct Table.
+**
+** The "step_list" member points to the first element of a linked list
+** containing the SQL statements specified as the trigger program.
+*/
+struct Trigger {
+ char *zName; /* The name of the trigger */
+ char *table; /* The table or view to which the trigger applies */
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
+ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
+ u8 bReturning; /* This trigger implements a RETURNING clause */
+ Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
+ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
+ the <column-list> is stored here */
+ Schema *pSchema; /* Schema containing the trigger */
+ Schema *pTabSchema; /* Schema containing the table */
+ TriggerStep *step_list; /* Link list of trigger program steps */
+ Trigger *pNext; /* Next trigger associated with the table */
+};
+
+/*
+** A trigger is either a BEFORE or an AFTER trigger. The following constants
+** determine which.
+**
+** If there are multiple triggers, you might of some BEFORE and some AFTER.
+** In that cases, the constants below can be ORed together.
+*/
+#define TRIGGER_BEFORE 1
+#define TRIGGER_AFTER 2
+
+/*
+** An instance of struct TriggerStep is used to store a single SQL statement
+** that is a part of a trigger-program.
+**
+** Instances of struct TriggerStep are stored in a singly linked list (linked
+** using the "pNext" member) referenced by the "step_list" member of the
+** associated struct Trigger instance. The first element of the linked list is
+** the first step of the trigger-program.
+**
+** The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
+** "SELECT" statement. The meanings of the other members is determined by the
+** value of "op" as follows:
+**
+** (op == TK_INSERT)
+** orconf -> stores the ON CONFLICT algorithm
+** pSelect -> The content to be inserted - either a SELECT statement or
+** a VALUES clause.
+** zTarget -> Dequoted name of the table to insert into.
+** pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
+** statement, then this stores the column-names to be
+** inserted into.
+** pUpsert -> The ON CONFLICT clauses for an Upsert
+**
+** (op == TK_DELETE)
+** zTarget -> Dequoted name of the table to delete from.
+** pWhere -> The WHERE clause of the DELETE statement if one is specified.
+** Otherwise NULL.
+**
+** (op == TK_UPDATE)
+** zTarget -> Dequoted name of the table to update.
+** pWhere -> The WHERE clause of the UPDATE statement if one is specified.
+** Otherwise NULL.
+** pExprList -> A list of the columns to update and the expressions to update
+** them to. See sqlite3Update() documentation of "pChanges"
+** argument.
+**
+** (op == TK_SELECT)
+** pSelect -> The SELECT statement
+**
+** (op == TK_RETURNING)
+** pExprList -> The list of expressions that follow the RETURNING keyword.
+**
+*/
+struct TriggerStep {
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT,
+ ** or TK_RETURNING */
+ u8 orconf; /* OE_Rollback etc. */
+ Trigger *pTrig; /* The trigger that this step is a part of */
+ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */
+ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */
+ SrcList *pFrom; /* FROM clause for UPDATE statement (if any) */
+ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
+ ExprList *pExprList; /* SET clause for UPDATE, or RETURNING clause */
+ IdList *pIdList; /* Column names for INSERT */
+ Upsert *pUpsert; /* Upsert clauses on an INSERT */
+ char *zSpan; /* Original SQL text of this command */
+ TriggerStep *pNext; /* Next in the link-list */
+ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
+};
+
+/*
+** Information about a RETURNING clause
+*/
+struct Returning {
+ Parse *pParse; /* The parse that includes the RETURNING clause */
+ ExprList *pReturnEL; /* List of expressions to return */
+ Trigger retTrig; /* The transient trigger that implements RETURNING */
+ TriggerStep retTStep; /* The trigger step */
+ int iRetCur; /* Transient table holding RETURNING results */
+ int nRetCol; /* Number of in pReturnEL after expansion */
+ int iRetReg; /* Register array for holding a row of RETURNING */
+};
+
+/*
+** An objected used to accumulate the text of a string where we
+** do not necessarily know how big the string will be in the end.
+*/
+struct sqlite3_str {
+ sqlite3 *db; /* Optional database for lookaside. Can be NULL */
+ char *zText; /* The string collected so far */
+ u32 nAlloc; /* Amount of space allocated in zText */
+ u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */
+ u32 nChar; /* Length of the string so far */
+ u8 accError; /* SQLITE_NOMEM or SQLITE_TOOBIG */
+ u8 printfFlags; /* SQLITE_PRINTF flags below */
+};
+#define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */
+#define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */
+#define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */
+
+#define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)
+
+
+/*
+** A pointer to this structure is used to communicate information
+** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
+*/
+typedef struct {
+ sqlite3 *db; /* The database being initialized */
+ char **pzErrMsg; /* Error message stored here */
+ int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
+ int rc; /* Result code stored here */
+ u32 mInitFlags; /* Flags controlling error messages */
+ u32 nInitRow; /* Number of rows processed */
+ Pgno mxPage; /* Maximum page number. 0 for no limit. */
+} InitData;
+
+/*
+** Allowed values for mInitFlags
+*/
+#define INITFLAG_AlterMask 0x0003 /* Types of ALTER */
+#define INITFLAG_AlterRename 0x0001 /* Reparse after a RENAME */
+#define INITFLAG_AlterDrop 0x0002 /* Reparse after a DROP COLUMN */
+#define INITFLAG_AlterAdd 0x0003 /* Reparse after an ADD COLUMN */
+
+/* Tuning parameters are set using SQLITE_TESTCTRL_TUNE and are controlled
+** on debug-builds of the CLI using ".testctrl tune ID VALUE". Tuning
+** parameters are for temporary use during development, to help find
+** optimial values for parameters in the query planner. The should not
+** be used on trunk check-ins. They are a temporary mechanism available
+** for transient development builds only.
+**
+** Tuning parameters are numbered starting with 1.
+*/
+#define SQLITE_NTUNE 6 /* Should be zero for all trunk check-ins */
+#ifdef SQLITE_DEBUG
+# define Tuning(X) (sqlite3Config.aTune[(X)-1])
+#else
+# define Tuning(X) 0
+#endif
+
+/*
+** Structure containing global configuration data for the SQLite library.
+**
+** This structure also contains some state information.
+*/
+struct Sqlite3Config {
+ int bMemstat; /* True to enable memory status */
+ u8 bCoreMutex; /* True to enable core mutexing */
+ u8 bFullMutex; /* True to enable full mutexing */
+ u8 bOpenUri; /* True to interpret filenames as URIs */
+ u8 bUseCis; /* Use covering indices for full-scans */
+ u8 bSmallMalloc; /* Avoid large memory allocations if true */
+ u8 bExtraSchemaChecks; /* Verify type,name,tbl_name in schema */
+ int mxStrlen; /* Maximum string length */
+ int neverCorrupt; /* Database is always well-formed */
+ int szLookaside; /* Default lookaside buffer size */
+ int nLookaside; /* Default lookaside buffer count */
+ int nStmtSpill; /* Stmt-journal spill-to-disk threshold */
+ sqlite3_mem_methods m; /* Low-level memory allocation interface */
+ sqlite3_mutex_methods mutex; /* Low-level mutex interface */
+ sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */
+ void *pHeap; /* Heap storage space */
+ int nHeap; /* Size of pHeap[] */
+ int mnReq, mxReq; /* Min and max heap requests sizes */
+ sqlite3_int64 szMmap; /* mmap() space per open file */
+ sqlite3_int64 mxMmap; /* Maximum value for szMmap */
+ void *pPage; /* Page cache memory */
+ int szPage; /* Size of each page in pPage[] */
+ int nPage; /* Number of pages in pPage[] */
+ int mxParserStack; /* maximum depth of the parser stack */
+ int sharedCacheEnabled; /* true if shared-cache mode enabled */
+ u32 szPma; /* Maximum Sorter PMA size */
+ /* The above might be initialized to non-zero. The following need to always
+ ** initially be zero, however. */
+ int isInit; /* True after initialization has finished */
+ int inProgress; /* True while initialization in progress */
+ int isMutexInit; /* True after mutexes are initialized */
+ int isMallocInit; /* True after malloc is initialized */
+ int isPCacheInit; /* True after malloc is initialized */
+ int nRefInitMutex; /* Number of users of pInitMutex */
+ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
+ void (*xLog)(void*,int,const char*); /* Function for logging */
+ void *pLogArg; /* First argument to xLog() */
+#ifdef SQLITE_ENABLE_SQLLOG
+ void(*xSqllog)(void*,sqlite3*,const char*, int);
+ void *pSqllogArg;
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ /* The following callback (if not NULL) is invoked on every VDBE branch
+ ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
+ */
+ void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx); /* Callback */
+ void *pVdbeBranchArg; /* 1st argument */
+#endif
+#ifndef SQLITE_OMIT_DESERIALIZE
+ sqlite3_int64 mxMemdbSize; /* Default max memdb size */
+#endif
+#ifndef SQLITE_UNTESTABLE
+ int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */
+#endif
+ int bLocaltimeFault; /* True to fail localtime() calls */
+ int (*xAltLocaltime)(const void*,void*); /* Alternative localtime() routine */
+ int iOnceResetThreshold; /* When to reset OP_Once counters */
+ u32 szSorterRef; /* Min size in bytes to use sorter-refs */
+ unsigned int iPrngSeed; /* Alternative fixed seed for the PRNG */
+ /* vvvv--- must be last ---vvv */
+#ifdef SQLITE_DEBUG
+ sqlite3_int64 aTune[SQLITE_NTUNE]; /* Tuning parameters */
+#endif
+};
+
+/*
+** This macro is used inside of assert() statements to indicate that
+** the assert is only valid on a well-formed database. Instead of:
+**
+** assert( X );
+**
+** One writes:
+**
+** assert( X || CORRUPT_DB );
+**
+** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate
+** that the database is definitely corrupt, only that it might be corrupt.
+** For most test cases, CORRUPT_DB is set to false using a special
+** sqlite3_test_control(). This enables assert() statements to prove
+** things that are always true for well-formed databases.
+*/
+#define CORRUPT_DB (sqlite3Config.neverCorrupt==0)
+
+/*
+** Context pointer passed down through the tree-walk.
+*/
+struct Walker {
+ Parse *pParse; /* Parser context. */
+ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
+ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
+ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
+ int walkerDepth; /* Number of subqueries */
+ u16 eCode; /* A small processing code */
+ union { /* Extra data for callback */
+ NameContext *pNC; /* Naming context */
+ int n; /* A counter */
+ int iCur; /* A cursor number */
+ SrcList *pSrcList; /* FROM clause */
+ struct CCurHint *pCCurHint; /* Used by codeCursorHint() */
+ struct RefSrcList *pRefSrcList; /* sqlite3ReferencesSrcList() */
+ int *aiCol; /* array of column indexes */
+ struct IdxCover *pIdxCover; /* Check for index coverage */
+ struct IdxExprTrans *pIdxTrans; /* Convert idxed expr to column */
+ ExprList *pGroupBy; /* GROUP BY clause */
+ Select *pSelect; /* HAVING to WHERE clause ctx */
+ struct WindowRewrite *pRewrite; /* Window rewrite context */
+ struct WhereConst *pConst; /* WHERE clause constants */
+ struct RenameCtx *pRename; /* RENAME COLUMN context */
+ struct Table *pTab; /* Table of generated column */
+ SrcItem *pSrcItem; /* A single FROM clause item */
+ DbFixer *pFix;
+ } u;
+};
+
+/*
+** The following structure contains information used by the sqliteFix...
+** routines as they walk the parse tree to make database references
+** explicit.
+*/
+struct DbFixer {
+ Parse *pParse; /* The parsing context. Error messages written here */
+ Walker w; /* Walker object */
+ Schema *pSchema; /* Fix items to this schema */
+ u8 bTemp; /* True for TEMP schema entries */
+ const char *zDb; /* Make sure all objects are contained in this database */
+ const char *zType; /* Type of the container - used for error messages */
+ const Token *pName; /* Name of the container - used for error messages */
+};
+
+/* Forward declarations */
+SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
+SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
+SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*);
+SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker*,Select*);
+SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker*,Select*);
+SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker*,Select*);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker*, Select*);
+#endif
+
+#ifndef SQLITE_OMIT_CTE
+SQLITE_PRIVATE void sqlite3SelectPopWith(Walker*, Select*);
+#else
+# define sqlite3SelectPopWith 0
+#endif
+
+/*
+** Return code from the parse-tree walking primitives and their
+** callbacks.
+*/
+#define WRC_Continue 0 /* Continue down into children */
+#define WRC_Prune 1 /* Omit children but continue walking siblings */
+#define WRC_Abort 2 /* Abandon the tree walk */
+
+/*
+** A single common table expression
+*/
+struct Cte {
+ char *zName; /* Name of this CTE */
+ ExprList *pCols; /* List of explicit column names, or NULL */
+ Select *pSelect; /* The definition of this CTE */
+ const char *zCteErr; /* Error message for circular references */
+ CteUse *pUse; /* Usage information for this CTE */
+ u8 eM10d; /* The MATERIALIZED flag */
+};
+
+/*
+** Allowed values for the materialized flag (eM10d):
+*/
+#define M10d_Yes 0 /* AS MATERIALIZED */
+#define M10d_Any 1 /* Not specified. Query planner's choice */
+#define M10d_No 2 /* AS NOT MATERIALIZED */
+
+/*
+** An instance of the With object represents a WITH clause containing
+** one or more CTEs (common table expressions).
+*/
+struct With {
+ int nCte; /* Number of CTEs in the WITH clause */
+ int bView; /* Belongs to the outermost Select of a view */
+ With *pOuter; /* Containing WITH clause, or NULL */
+ Cte a[1]; /* For each CTE in the WITH clause.... */
+};
+
+/*
+** The Cte object is not guaranteed to persist for the entire duration
+** of code generation. (The query flattener or other parser tree
+** edits might delete it.) The following object records information
+** about each Common Table Expression that must be preserved for the
+** duration of the parse.
+**
+** The CteUse objects are freed using sqlite3ParserAddCleanup() rather
+** than sqlite3SelectDelete(), which is what enables them to persist
+** until the end of code generation.
+*/
+struct CteUse {
+ int nUse; /* Number of users of this CTE */
+ int addrM9e; /* Start of subroutine to compute materialization */
+ int regRtn; /* Return address register for addrM9e subroutine */
+ int iCur; /* Ephemeral table holding the materialization */
+ LogEst nRowEst; /* Estimated number of rows in the table */
+ u8 eM10d; /* The MATERIALIZED flag */
+};
+
+
+#ifdef SQLITE_DEBUG
+/*
+** An instance of the TreeView object is used for printing the content of
+** data structures on sqlite3DebugPrintf() using a tree-like view.
+*/
+struct TreeView {
+ int iLevel; /* Which level of the tree we are on */
+ u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */
+};
+#endif /* SQLITE_DEBUG */
+
+/*
+** This object is used in various ways, most (but not all) related to window
+** functions.
+**
+** (1) A single instance of this structure is attached to the
+** the Expr.y.pWin field for each window function in an expression tree.
+** This object holds the information contained in the OVER clause,
+** plus additional fields used during code generation.
+**
+** (2) All window functions in a single SELECT form a linked-list
+** attached to Select.pWin. The Window.pFunc and Window.pExpr
+** fields point back to the expression that is the window function.
+**
+** (3) The terms of the WINDOW clause of a SELECT are instances of this
+** object on a linked list attached to Select.pWinDefn.
+**
+** (4) For an aggregate function with a FILTER clause, an instance
+** of this object is stored in Expr.y.pWin with eFrmType set to
+** TK_FILTER. In this case the only field used is Window.pFilter.
+**
+** The uses (1) and (2) are really the same Window object that just happens
+** to be accessible in two different ways. Use case (3) are separate objects.
+*/
+struct Window {
+ char *zName; /* Name of window (may be NULL) */
+ char *zBase; /* Name of base window for chaining (may be NULL) */
+ ExprList *pPartition; /* PARTITION BY clause */
+ ExprList *pOrderBy; /* ORDER BY clause */
+ u8 eFrmType; /* TK_RANGE, TK_GROUPS, TK_ROWS, or 0 */
+ u8 eStart; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */
+ u8 eEnd; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */
+ u8 bImplicitFrame; /* True if frame was implicitly specified */
+ u8 eExclude; /* TK_NO, TK_CURRENT, TK_TIES, TK_GROUP, or 0 */
+ Expr *pStart; /* Expression for "<expr> PRECEDING" */
+ Expr *pEnd; /* Expression for "<expr> FOLLOWING" */
+ Window **ppThis; /* Pointer to this object in Select.pWin list */
+ Window *pNextWin; /* Next window function belonging to this SELECT */
+ Expr *pFilter; /* The FILTER expression */
+ FuncDef *pWFunc; /* The function */
+ int iEphCsr; /* Partition buffer or Peer buffer */
+ int regAccum; /* Accumulator */
+ int regResult; /* Interim result */
+ int csrApp; /* Function cursor (used by min/max) */
+ int regApp; /* Function register (also used by min/max) */
+ int regPart; /* Array of registers for PARTITION BY values */
+ Expr *pOwner; /* Expression object this window is attached to */
+ int nBufferCol; /* Number of columns in buffer table */
+ int iArgCol; /* Offset of first argument for this function */
+ int regOne; /* Register containing constant value 1 */
+ int regStartRowid;
+ int regEndRowid;
+ u8 bExprArgs; /* Defer evaluation of window function arguments
+ ** due to the SQLITE_SUBTYPE flag */
+};
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3*, Window*);
+SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window*);
+SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p);
+SQLITE_PRIVATE Window *sqlite3WindowAlloc(Parse*, int, int, Expr*, int , Expr*, u8);
+SQLITE_PRIVATE void sqlite3WindowAttach(Parse*, Expr*, Window*);
+SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin);
+SQLITE_PRIVATE int sqlite3WindowCompare(const Parse*, const Window*, const Window*, int);
+SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse*, Select*);
+SQLITE_PRIVATE void sqlite3WindowCodeStep(Parse*, Select*, WhereInfo*, int, int);
+SQLITE_PRIVATE int sqlite3WindowRewrite(Parse*, Select*);
+SQLITE_PRIVATE void sqlite3WindowUpdate(Parse*, Window*, Window*, FuncDef*);
+SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p);
+SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p);
+SQLITE_PRIVATE void sqlite3WindowFunctions(void);
+SQLITE_PRIVATE void sqlite3WindowChain(Parse*, Window*, Window*);
+SQLITE_PRIVATE Window *sqlite3WindowAssemble(Parse*, Window*, ExprList*, ExprList*, Token*);
+#else
+# define sqlite3WindowDelete(a,b)
+# define sqlite3WindowFunctions()
+# define sqlite3WindowAttach(a,b,c)
+#endif
+
+/*
+** Assuming zIn points to the first byte of a UTF-8 character,
+** advance zIn to point to the first byte of the next UTF-8 character.
+*/
+#define SQLITE_SKIP_UTF8(zIn) { \
+ if( (*(zIn++))>=0xc0 ){ \
+ while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
+ } \
+}
+
+/*
+** The SQLITE_*_BKPT macros are substitutes for the error codes with
+** the same name but without the _BKPT suffix. These macros invoke
+** routines that report the line-number on which the error originated
+** using sqlite3_log(). The routines also provide a convenient place
+** to set a debugger breakpoint.
+*/
+SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType);
+SQLITE_PRIVATE int sqlite3CorruptError(int);
+SQLITE_PRIVATE int sqlite3MisuseError(int);
+SQLITE_PRIVATE int sqlite3CantopenError(int);
+#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
+#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
+#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NomemError(int);
+SQLITE_PRIVATE int sqlite3IoerrnomemError(int);
+# define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__)
+# define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__)
+#else
+# define SQLITE_NOMEM_BKPT SQLITE_NOMEM
+# define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM
+#endif
+#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO)
+SQLITE_PRIVATE int sqlite3CorruptPgnoError(int,Pgno);
+# define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptPgnoError(__LINE__,(P))
+#else
+# define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptError(__LINE__)
+#endif
+
+/*
+** FTS3 and FTS4 both require virtual table support
+*/
+#if defined(SQLITE_OMIT_VIRTUALTABLE)
+# undef SQLITE_ENABLE_FTS3
+# undef SQLITE_ENABLE_FTS4
+#endif
+
+/*
+** FTS4 is really an extension for FTS3. It is enabled using the
+** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call
+** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
+*/
+#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
+# define SQLITE_ENABLE_FTS3 1
+#endif
+
+/*
+** The ctype.h header is needed for non-ASCII systems. It is also
+** needed by FTS3 when FTS3 is included in the amalgamation.
+*/
+#if !defined(SQLITE_ASCII) || \
+ (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
+# include <ctype.h>
+#endif
+
+/*
+** The following macros mimic the standard library functions toupper(),
+** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
+** sqlite versions only work for ASCII characters, regardless of locale.
+*/
+#ifdef SQLITE_ASCII
+# define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
+# define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
+# define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
+# define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
+# define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
+# define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
+# define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
+# define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80)
+#else
+# define sqlite3Toupper(x) toupper((unsigned char)(x))
+# define sqlite3Isspace(x) isspace((unsigned char)(x))
+# define sqlite3Isalnum(x) isalnum((unsigned char)(x))
+# define sqlite3Isalpha(x) isalpha((unsigned char)(x))
+# define sqlite3Isdigit(x) isdigit((unsigned char)(x))
+# define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
+# define sqlite3Tolower(x) tolower((unsigned char)(x))
+# define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`')
+#endif
+SQLITE_PRIVATE int sqlite3IsIdChar(u8);
+
+/*
+** Internal function prototypes
+*/
+SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*);
+SQLITE_PRIVATE int sqlite3Strlen30(const char*);
+#define sqlite3Strlen30NN(C) (strlen(C)&0x3fffffff)
+SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*);
+#define sqlite3StrNICmp sqlite3_strnicmp
+
+SQLITE_PRIVATE int sqlite3MallocInit(void);
+SQLITE_PRIVATE void sqlite3MallocEnd(void);
+SQLITE_PRIVATE void *sqlite3Malloc(u64);
+SQLITE_PRIVATE void *sqlite3MallocZero(u64);
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, u64);
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, u64);
+SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64);
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
+SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3*,const char*,const char*);
+SQLITE_PRIVATE void *sqlite3Realloc(void*, u64);
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64);
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
+SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*);
+SQLITE_PRIVATE int sqlite3MallocSize(const void*);
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, const void*);
+SQLITE_PRIVATE void *sqlite3PageMalloc(int);
+SQLITE_PRIVATE void sqlite3PageFree(void*);
+SQLITE_PRIVATE void sqlite3MemSetDefault(void);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
+#endif
+SQLITE_PRIVATE int sqlite3HeapNearlyFull(void);
+
+/*
+** On systems with ample stack space and that support alloca(), make
+** use of alloca() to obtain space for large automatic objects. By default,
+** obtain space from malloc().
+**
+** The alloca() routine never returns NULL. This will cause code paths
+** that deal with sqlite3StackAlloc() failures to be unreachable.
+*/
+#ifdef SQLITE_USE_ALLOCA
+# define sqlite3StackAllocRaw(D,N) alloca(N)
+# define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
+# define sqlite3StackFree(D,P)
+#else
+# define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
+# define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
+# define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
+#endif
+
+/* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they
+** are, disable MEMSYS3
+*/
+#ifdef SQLITE_ENABLE_MEMSYS5
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
+#undef SQLITE_ENABLE_MEMSYS3
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS3
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
+#endif
+
+
+#ifndef SQLITE_MUTEX_OMIT
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void);
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int);
+SQLITE_PRIVATE int sqlite3MutexInit(void);
+SQLITE_PRIVATE int sqlite3MutexEnd(void);
+#endif
+#if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP)
+SQLITE_PRIVATE void sqlite3MemoryBarrier(void);
+#else
+# define sqlite3MemoryBarrier()
+#endif
+
+SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int);
+SQLITE_PRIVATE void sqlite3StatusUp(int, int);
+SQLITE_PRIVATE void sqlite3StatusDown(int, int);
+SQLITE_PRIVATE void sqlite3StatusHighwater(int, int);
+SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3*,int*);
+
+/* Access to mutexes used by sqlite3_status() */
+SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void);
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void);
+
+#if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT)
+SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex*);
+#else
+# define sqlite3MutexWarnOnContention(x)
+#endif
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+# define EXP754 (((u64)0x7ff)<<52)
+# define MAN754 ((((u64)1)<<52)-1)
+# define IsNaN(X) (((X)&EXP754)==EXP754 && ((X)&MAN754)!=0)
+SQLITE_PRIVATE int sqlite3IsNaN(double);
+#else
+# define IsNaN(X) 0
+# define sqlite3IsNaN(X) 0
+#endif
+
+/*
+** An instance of the following structure holds information about SQL
+** functions arguments that are the parameters to the printf() function.
+*/
+struct PrintfArguments {
+ int nArg; /* Total number of arguments */
+ int nUsed; /* Number of arguments used so far */
+ sqlite3_value **apArg; /* The argument values */
+};
+
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
+#endif
+#if defined(SQLITE_TEST)
+SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*);
+#endif
+
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView*, const char *zFormat, ...);
+SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewBareIdList(TreeView*, const IdList*, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewIdList(TreeView*, const IdList*, u8, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewColumnList(TreeView*, const Column*, int, u8);
+SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView*, const SrcList*);
+SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView*, const With*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewUpsert(TreeView*, const Upsert*, u8);
+#if TREETRACE_ENABLED
+SQLITE_PRIVATE void sqlite3TreeViewDelete(const With*, const SrcList*, const Expr*,
+ const ExprList*,const Expr*, const Trigger*);
+SQLITE_PRIVATE void sqlite3TreeViewInsert(const With*, const SrcList*,
+ const IdList*, const Select*, const ExprList*,
+ int, const Upsert*, const Trigger*);
+SQLITE_PRIVATE void sqlite3TreeViewUpdate(const With*, const SrcList*, const ExprList*,
+ const Expr*, int, const ExprList*, const Expr*,
+ const Upsert*, const Trigger*);
+#endif
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3TreeViewTriggerStep(TreeView*, const TriggerStep*, u8, u8);
+SQLITE_PRIVATE void sqlite3TreeViewTrigger(TreeView*, const Trigger*, u8, u8);
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView*, const Window*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8);
+#endif
+SQLITE_PRIVATE void sqlite3ShowExpr(const Expr*);
+SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList*);
+SQLITE_PRIVATE void sqlite3ShowIdList(const IdList*);
+SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList*);
+SQLITE_PRIVATE void sqlite3ShowSelect(const Select*);
+SQLITE_PRIVATE void sqlite3ShowWith(const With*);
+SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert*);
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep*);
+SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep*);
+SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger*);
+SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger*);
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3ShowWindow(const Window*);
+SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window*);
+#endif
+#endif
+
+SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*);
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
+SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3Dequote(char*);
+SQLITE_PRIVATE void sqlite3DequoteExpr(Expr*);
+SQLITE_PRIVATE void sqlite3DequoteToken(Token*);
+SQLITE_PRIVATE void sqlite3TokenInit(Token*,char*);
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
+SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*);
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
+SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse*,int,int);
+#endif
+SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
+SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
+SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse*, Expr*, Select*);
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse*,Expr*, Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, const Token*, int);
+SQLITE_PRIVATE void sqlite3ExprFunctionUsable(Parse*,const Expr*,const FuncDef*);
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32);
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse*, Expr*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*);
+SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse*, int, ExprList*);
+SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList*,int,int);
+SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,const Token*,int);
+SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,const char*,const char*);
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
+SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*);
+SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index*);
+SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
+SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
+SQLITE_PRIVATE int sqlite3InitOne(sqlite3*, int, char**, u32);
+SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName);
+#endif
+SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
+SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
+SQLITE_PRIVATE void sqlite3ColumnSetExpr(Parse*,Table*,Column*,Expr*);
+SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table*,Column*);
+SQLITE_PRIVATE void sqlite3ColumnSetColl(sqlite3*,Column*,const char*zColl);
+SQLITE_PRIVATE const char *sqlite3ColumnColl(Column*);
+SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*);
+SQLITE_PRIVATE void sqlite3GenerateColumnNames(Parse *pParse, Select *pSelect);
+SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
+SQLITE_PRIVATE void sqlite3SelectAddColumnTypeAndCollation(Parse*,Table*,Select*,char);
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*,char);
+SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *, int);
+SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
+SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index*, i16);
+#ifdef SQLITE_OMIT_GENERATED_COLUMNS
+# define sqlite3TableColumnToStorage(T,X) (X) /* No-op pass-through */
+# define sqlite3StorageColumnToTable(T,X) (X) /* No-op pass-through */
+#else
+SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table*, i16);
+SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table*, i16);
+#endif
+SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
+#if SQLITE_ENABLE_HIDDEN_COLUMNS
+SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table*, Column*);
+#else
+# define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
+#endif
+SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token,Token);
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*, const char*, const char*);
+SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*,const char*,const char*);
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3AddGenerated(Parse*,Expr*,Token*);
+SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u32,Select*);
+SQLITE_PRIVATE void sqlite3AddReturning(Parse*,ExprList*);
+SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*,
+ sqlite3_vfs**,char**,char **);
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+SQLITE_PRIVATE int sqlite3CodecQueryParameters(sqlite3*,const char*,const char*);
+#else
+# define sqlite3CodecQueryParameters(A,B,C) 0
+#endif
+/* END SQLCIPHER */
+SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
+
+#ifdef SQLITE_UNTESTABLE
+# define sqlite3FaultSim(X) SQLITE_OK
+#else
+SQLITE_PRIVATE int sqlite3FaultSim(int);
+#endif
+
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
+SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32);
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
+SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
+#endif
+
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*);
+SQLITE_PRIVATE void sqlite3RowSetDelete(void*);
+SQLITE_PRIVATE void sqlite3RowSetClear(void*);
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64);
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64);
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*);
+
+SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int);
+
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
+#else
+# define sqlite3ViewGetColumnNames(A,B) 0
+#endif
+
+#if SQLITE_MAX_ATTACHED>30
+SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask);
+#endif
+SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
+SQLITE_PRIVATE void sqlite3CodeDropTable(Parse*, Table*, int, int);
+SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*);
+SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3*, Index*);
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse);
+SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse);
+#else
+# define sqlite3AutoincrementBegin(X)
+# define sqlite3AutoincrementEnd(X)
+#endif
+SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int, Upsert*);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns(Parse*, int, Table*);
+#endif
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse*, IdList*, Token*);
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(Parse*, SrcList*, int, int);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(Parse*, SrcList*, Token*, Token*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
+ Token*, Select*, OnOrUsing*);
+SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
+SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*);
+SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, SrcItem *);
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse*,SrcList*);
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
+SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3*, OnOrUsing*);
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
+SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
+SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
+ Expr*, int, int, u8);
+SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
+SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
+SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
+ Expr*,ExprList*,u32,Expr*);
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
+SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*);
+#endif
+SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe*,int,const char*);
+SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*);
+SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*,
+ Upsert*);
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,
+ ExprList*,Select*,u16,int);
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
+SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo*);
+SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe*,WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*);
+#define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */
+#define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */
+#define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */
+SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo*);
+SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
+SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn(Parse*, Table*, Column*, int);
+#endif
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int);
+SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
+#define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */
+#define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */
+#define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */
+#define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
+#define LOCATE_VIEW 0x01
+#define LOCATE_NOERR 0x02
+SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*);
+SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char*);
+SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,u32 flags,SrcItem *);
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3Vacuum(Parse*,Token*,Expr*);
+SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*, int, sqlite3_value*);
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, const Token*);
+SQLITE_PRIVATE int sqlite3ExprCompare(const Parse*,const Expr*,const Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr*,Expr*,int);
+SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList*,const ExprList*, int);
+SQLITE_PRIVATE int sqlite3ExprImpliesExpr(const Parse*,const Expr*,const Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr*,int);
+SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker*,Parse*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
+SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx);
+SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse*, Expr*, SrcList*);
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3PrngSaveState(void);
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
+#endif
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
+SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
+SQLITE_PRIVATE void sqlite3EndTransaction(Parse*,int);
+SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
+SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
+SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
+SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char*);
+SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr*);
+SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);
+SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);
+SQLITE_PRIVATE int sqlite3ExprIsTableConstraint(Expr*,const SrcItem*);
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
+#endif
+SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr*, int*);
+SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
+SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
+SQLITE_PRIVATE int sqlite3IsRowid(const char*);
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(
+ Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
+SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
+SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(Expr*,int*,int);
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
+ u8,u8,int,int*,int*,Upsert*);
+#ifdef SQLITE_ENABLE_NULL_TRIM
+SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe*,Table*);
+#else
+# define sqlite3SetMakeRecordP5(A,B)
+#endif
+SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
+SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
+SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
+SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
+SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,const Expr*,int);
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,const ExprList*,int);
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,const SrcList*,int);
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,const IdList*);
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,const Select*,int);
+SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch(int,const char*);
+SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int);
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8);
+SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum*,sqlite3_value*);
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*);
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
+SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3*);
+#endif
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
+SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p);
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, ExprList*,Expr*,int);
+#endif
+
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
+ Expr*,int, int);
+SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
+SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
+SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *);
+SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
+ int, int, int);
+SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
+ void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*,
+ const char*,const char*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(Parse*,Token*, IdList*,
+ Select*,u8,Upsert*,
+ const char*,const char*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(Parse*,Token*,SrcList*,ExprList*,
+ Expr*, u8, const char*,const char*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(Parse*,Token*, Expr*,
+ const char*,const char*);
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
+SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
+SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc(Parse*, TriggerStep*);
+# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
+# define sqlite3IsToplevel(p) ((p)->pToplevel==0)
+#else
+# define sqlite3TriggersExist(B,C,D,E,F) 0
+# define sqlite3DeleteTrigger(A,B)
+# define sqlite3DropTriggerPtr(A,B)
+# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
+# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
+# define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
+# define sqlite3TriggerList(X, Y) 0
+# define sqlite3ParseToplevel(p) p
+# define sqlite3IsToplevel(p) 1
+# define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
+# define sqlite3TriggerStepSrc(A,B) 0
+#endif
+
+SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol);
+SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem*,int);
+SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr*,int,u32);
+SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
+SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
+SQLITE_PRIVATE int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
+#else
+# define sqlite3AuthRead(a,b,c,d)
+# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
+# define sqlite3AuthContextPush(a,b,c)
+# define sqlite3AuthContextPop(a) ((void)(a))
+#endif
+SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName);
+SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
+SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
+SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
+SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
+SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
+SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64);
+SQLITE_PRIVATE void sqlite3Int64ToText(i64,char*);
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8);
+SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
+SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*);
+SQLITE_PRIVATE int sqlite3Atoi(const char*);
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
+#endif
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
+SQLITE_PRIVATE u32 sqlite3Utf8Read(const u8**);
+SQLITE_PRIVATE LogEst sqlite3LogEst(u64);
+SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst,LogEst);
+SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double);
+SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst);
+SQLITE_PRIVATE VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int);
+SQLITE_PRIVATE const char *sqlite3VListNumToName(VList*,int);
+SQLITE_PRIVATE int sqlite3VListNameToNum(VList*,const char*,int);
+
+/*
+** Routines to read and write variable-length integers. These used to
+** be defined locally, but now we use the varint routines in the util.c
+** file.
+*/
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
+SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *);
+SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *);
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
+
+/*
+** The common case is for a varint to be a single byte. They following
+** macros handle the common case without a procedure call, but then call
+** the procedure for larger varints.
+*/
+#define getVarint32(A,B) \
+ (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
+#define getVarint32NR(A,B) \
+ B=(u32)*(A);if(B>=0x80)sqlite3GetVarint32((A),(u32*)&(B))
+#define putVarint32(A,B) \
+ (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
+ sqlite3PutVarint((A),(B)))
+#define getVarint sqlite3GetVarint
+#define putVarint sqlite3PutVarint
+
+
+SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3*, Index*);
+SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int);
+SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2);
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity);
+SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table*,int);
+SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8);
+SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char*, i64*);
+SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
+SQLITE_PRIVATE void sqlite3Error(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3*);
+SQLITE_PRIVATE void sqlite3SystemError(sqlite3*,int);
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
+SQLITE_PRIVATE u8 sqlite3HexToInt(int h);
+SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
+
+#if defined(SQLITE_NEED_ERR_NAME)
+SQLITE_PRIVATE const char *sqlite3ErrName(int);
+#endif
+
+#ifndef SQLITE_OMIT_DESERIALIZE
+SQLITE_PRIVATE int sqlite3MemdbInit(void);
+#endif
+
+SQLITE_PRIVATE const char *sqlite3ErrStr(int);
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
+SQLITE_PRIVATE int sqlite3IsBinary(const CollSeq*);
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
+SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8);
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr);
+SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,const Expr*,const Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(const Parse *pParse, Expr*, const Token*, int);
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(const Parse*,Expr*,const char*);
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr*);
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
+SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3*);
+SQLITE_PRIVATE int sqlite3CheckObjectName(Parse*, const char*,const char*,const char*);
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, i64);
+SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
+SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
+SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64);
+SQLITE_PRIVATE int sqlite3AbsInt32(int);
+#ifdef SQLITE_ENABLE_8_3_NAMES
+SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*);
+#else
+# define sqlite3FileSuffix3(X,Y)
+#endif
+SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,u8);
+
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
+SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
+ void(*)(void*));
+SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*);
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context*);
+#endif
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
+#endif
+SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, const Expr *, u8, u8, sqlite3_value **);
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[];
+SQLITE_PRIVATE const char sqlite3StrBINARY[];
+SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[];
+SQLITE_PRIVATE const char sqlite3StdTypeAffinity[];
+SQLITE_PRIVATE const char sqlite3StdTypeMap[];
+SQLITE_PRIVATE const char *sqlite3StdType[];
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
+SQLITE_PRIVATE const unsigned char *sqlite3aLTb;
+SQLITE_PRIVATE const unsigned char *sqlite3aEQb;
+SQLITE_PRIVATE const unsigned char *sqlite3aGTb;
+SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
+SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
+SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions;
+#ifndef SQLITE_OMIT_WSD
+SQLITE_PRIVATE int sqlite3PendingByte;
+#endif
+#endif /* SQLITE_AMALGAMATION */
+#ifdef VDBE_PROFILE
+SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt;
+#endif
+SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, Pgno, Pgno);
+SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3AlterFunctions(void);
+SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
+SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
+SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int);
+SQLITE_PRIVATE void sqlite3CodeRhsOfIN(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
+SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse*, SrcItem*);
+SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
+SQLITE_PRIVATE int sqlite3MatchEName(
+ const struct ExprList_item*,
+ const char*,
+ const char*,
+ const char*
+);
+SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr*);
+SQLITE_PRIVATE u8 sqlite3StrIHash(const char*);
+SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
+SQLITE_PRIVATE int sqlite3ResolveExprListNames(NameContext*, ExprList*);
+SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
+SQLITE_PRIVATE int sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
+SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
+SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse*, SrcList*, const Token*);
+SQLITE_PRIVATE const void *sqlite3RenameTokenMap(Parse*, const void*, const Token*);
+SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse*, const void *pTo, const void *pFrom);
+SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse*, ExprList*);
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
+SQLITE_PRIVATE char sqlite3AffinityType(const char*, Column*);
+SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
+SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
+SQLITE_PRIVATE void sqlite3SchemaClear(void *);
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
+SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList(Parse*, ExprList*, int, int);
+SQLITE_PRIVATE const char *sqlite3SelectOpName(int);
+SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse*, ExprList*);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*);
+#endif
+SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ void (*)(sqlite3_context*),
+ void (*)(sqlite3_context*),
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ FuncDestructor *pDestructor
+);
+SQLITE_PRIVATE void sqlite3NoopDestructor(void*);
+SQLITE_PRIVATE void *sqlite3OomFault(sqlite3*);
+SQLITE_PRIVATE void sqlite3OomClear(sqlite3*);
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
+
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
+SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum*, int);
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
+SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum*, u8);
+SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*);
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
+SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
+SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3*,const char*);
+SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3*,const Expr*);
+
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *);
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
+
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse*, Expr*);
+#else
+# define sqlite3ExprCheckIN(x,y) SQLITE_OK
+#endif
+
+#ifdef SQLITE_ENABLE_STAT4
+SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue(
+ Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*);
+SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
+SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
+SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
+#endif
+
+/*
+** The interface to the LEMON-generated parser
+*/
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(u64), Parse*);
+SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
+#endif
+SQLITE_PRIVATE void sqlite3Parser(void*, int, Token);
+SQLITE_PRIVATE int sqlite3ParserFallback(int);
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void*);
+#endif
+
+SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
+#else
+# define sqlite3CloseExtensions(X)
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, Pgno, u8, const char *);
+#else
+ #define sqlite3TableLock(v,w,x,y,z)
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3VtabClear(D,T)
+# define sqlite3VtabSync(X,Y) SQLITE_OK
+# define sqlite3VtabRollback(X)
+# define sqlite3VtabCommit(X)
+# define sqlite3VtabInSync(db) 0
+# define sqlite3VtabLock(X)
+# define sqlite3VtabUnlock(X)
+# define sqlite3VtabModuleUnref(D,X)
+# define sqlite3VtabUnlockList(X)
+# define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
+# define sqlite3GetVTable(X,Y) ((VTable*)0)
+#else
+SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*);
+SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe*);
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
+SQLITE_PRIVATE void sqlite3VtabLock(VTable *);
+SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *);
+SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3*,Module*);
+SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*);
+SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *, int, int);
+SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
+SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*);
+SQLITE_PRIVATE Module *sqlite3VtabCreateModule(
+ sqlite3*,
+ const char*,
+ const sqlite3_module*,
+ void*,
+ void(*)(void*)
+ );
+# define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
+#endif
+SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName);
+SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3*,Table*,const char*);
+SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3*, Table*);
+#else
+# define sqlite3ShadowTableName(A,B) 0
+# define sqlite3IsShadowTableOf(A,B,C) 0
+# define sqlite3MarkAllShadowTablesOf(A,B)
+#endif
+SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse*,Module*);
+SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3*,Module*);
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
+SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
+
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
+#if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
+ && !defined(SQLITE_OMIT_VIRTUALTABLE)
+SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(sqlite3_index_info*);
+#endif
+SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
+SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
+SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
+SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse*,sqlite3*);
+SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse*);
+SQLITE_PRIVATE void *sqlite3ParserAddCleanup(Parse*,void(*)(sqlite3*,void*),void*);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_PRIVATE char *sqlite3Normalize(Vdbe*, const char*);
+#endif
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
+SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse*,const Expr*);
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, const Expr*, const Expr*);
+SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
+SQLITE_PRIVATE const char *sqlite3JournalModename(int);
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
+SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
+#endif
+#ifndef SQLITE_OMIT_CTE
+SQLITE_PRIVATE Cte *sqlite3CteNew(Parse*,Token*,ExprList*,Select*,u8);
+SQLITE_PRIVATE void sqlite3CteDelete(sqlite3*,Cte*);
+SQLITE_PRIVATE With *sqlite3WithAdd(Parse*,With*,Cte*);
+SQLITE_PRIVATE void sqlite3WithDelete(sqlite3*,With*);
+SQLITE_PRIVATE With *sqlite3WithPush(Parse*, With*, u8);
+#else
+# define sqlite3CteNew(P,T,E,S) ((void*)0)
+# define sqlite3CteDelete(D,C)
+# define sqlite3CteWithAdd(P,W,C) ((void*)0)
+# define sqlite3WithDelete(x,y)
+# define sqlite3WithPush(x,y,z) ((void*)0)
+#endif
+#ifndef SQLITE_OMIT_UPSERT
+SQLITE_PRIVATE Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*,Upsert*);
+SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3*,Upsert*);
+SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3*,Upsert*);
+SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*);
+SQLITE_PRIVATE void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int);
+SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert*,Index*);
+SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert*);
+#else
+#define sqlite3UpsertNew(u,v,w,x,y,z) ((Upsert*)0)
+#define sqlite3UpsertDelete(x,y)
+#define sqlite3UpsertDup(x,y) ((Upsert*)0)
+#define sqlite3UpsertOfIndex(x,y) ((Upsert*)0)
+#define sqlite3UpsertNextIsIPK(x) 0
+#endif
+
+
+/* Declarations for functions in fkey.c. All of these are replaced by
+** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
+** key functionality is available. If OMIT_TRIGGER is defined but
+** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
+** this case foreign keys are parsed, but no other functionality is
+** provided (enforcement of FK constraints requires the triggers sub-system).
+*/
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
+SQLITE_PRIVATE void sqlite3FkDropTable(Parse*, SrcList *, Table*);
+SQLITE_PRIVATE void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
+SQLITE_PRIVATE int sqlite3FkRequired(Parse*, Table*, int*, int);
+SQLITE_PRIVATE u32 sqlite3FkOldmask(Parse*, Table*);
+SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *);
+SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3*,int);
+#else
+ #define sqlite3FkActions(a,b,c,d,e,f)
+ #define sqlite3FkCheck(a,b,c,d,e,f)
+ #define sqlite3FkDropTable(a,b,c)
+ #define sqlite3FkOldmask(a,b) 0
+ #define sqlite3FkRequired(a,b,c,d) 0
+ #define sqlite3FkReferences(a) 0
+ #define sqlite3FkClearTriggerCache(a,b)
+#endif
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*);
+SQLITE_PRIVATE int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
+#else
+ #define sqlite3FkDelete(a,b)
+ #define sqlite3FkLocateIndex(a,b,c,d,e)
+#endif
+
+
+/*
+** Available fault injectors. Should be numbered beginning with 0.
+*/
+#define SQLITE_FAULTINJECTOR_MALLOC 0
+#define SQLITE_FAULTINJECTOR_COUNT 1
+
+/*
+** The interface to the code in fault.c used for identifying "benign"
+** malloc failures. This is only present if SQLITE_UNTESTABLE
+** is not defined.
+*/
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void);
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void);
+#else
+ #define sqlite3BeginBenignMalloc()
+ #define sqlite3EndBenignMalloc()
+#endif
+
+/*
+** Allowed return values from sqlite3FindInIndex()
+*/
+#define IN_INDEX_ROWID 1 /* Search the rowid of the table */
+#define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */
+#define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */
+#define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */
+#define IN_INDEX_NOOP 5 /* No table available. Use comparisons */
+/*
+** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
+*/
+#define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */
+#define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */
+#define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*, int*);
+
+SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
+#if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
+ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
+#endif
+
+SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p);
+SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
+
+SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
+#if SQLITE_MAX_EXPR_DEPTH>0
+SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *);
+SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int);
+#else
+ #define sqlite3SelectExprHeight(x) 0
+ #define sqlite3ExprCheckHeight(x,y)
+#endif
+
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
+SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
+
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
+SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db);
+SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db);
+#else
+ #define sqlite3ConnectionBlocked(x,y)
+ #define sqlite3ConnectionUnlocked(x)
+ #define sqlite3ConnectionClosed(x)
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
+#endif
+#if defined(YYCOVERAGE)
+SQLITE_PRIVATE int sqlite3ParserCoverage(FILE*);
+#endif
+
+/*
+** If the SQLITE_ENABLE IOTRACE exists then the global variable
+** sqlite3IoTrace is a pointer to a printf-like routine used to
+** print I/O tracing messages.
+*/
+#ifdef SQLITE_ENABLE_IOTRACE
+# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
+SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
+#else
+# define IOTRACE(A)
+# define sqlite3VdbeIOTraceSql(X)
+#endif
+
+/*
+** These routines are available for the mem2.c debugging memory allocator
+** only. They are used to verify that different "types" of memory
+** allocations are properly tracked by the system.
+**
+** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
+** the MEMTYPE_* macros defined below. The type must be a bitmask with
+** a single bit set.
+**
+** sqlite3MemdebugHasType() returns true if any of the bits in its second
+** argument match the type set by the previous sqlite3MemdebugSetType().
+** sqlite3MemdebugHasType() is intended for use inside assert() statements.
+**
+** sqlite3MemdebugNoType() returns true if none of the bits in its second
+** argument match the type set by the previous sqlite3MemdebugSetType().
+**
+** Perhaps the most important point is the difference between MEMTYPE_HEAP
+** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
+** it might have been allocated by lookaside, except the allocation was
+** too large or lookaside was already full. It is important to verify
+** that allocations that might have been satisfied by lookaside are not
+** passed back to non-lookaside free() routines. Asserts such as the
+** example above are placed on the non-lookaside free() routines to verify
+** this constraint.
+**
+** All of this is no-op for a production build. It only comes into
+** play when the SQLITE_MEMDEBUG compile-time option is used.
+*/
+#ifdef SQLITE_MEMDEBUG
+SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8);
+SQLITE_PRIVATE int sqlite3MemdebugHasType(const void*,u8);
+SQLITE_PRIVATE int sqlite3MemdebugNoType(const void*,u8);
+#else
+# define sqlite3MemdebugSetType(X,Y) /* no-op */
+# define sqlite3MemdebugHasType(X,Y) 1
+# define sqlite3MemdebugNoType(X,Y) 1
+#endif
+#define MEMTYPE_HEAP 0x01 /* General heap allocations */
+#define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */
+#define MEMTYPE_PCACHE 0x04 /* Page cache allocations */
+
+/*
+** Threading interface
+*/
+#if SQLITE_MAX_WORKER_THREADS>0
+SQLITE_PRIVATE int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread*, void**);
+#endif
+
+#if defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)
+SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3*);
+#endif
+#if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
+SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3*);
+#endif
+
+SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr);
+SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr*, int);
+SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(Parse*,Expr*,int,int);
+SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse*, Expr*);
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt);
+#endif
+
+#endif /* SQLITEINT_H */
+
+/************** End of sqliteInt.h *******************************************/
+/************** Begin file os_common.h ***************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains macros and a little bit of code that is common to
+** all of the platform-specific files (os_*.c) and is #included into those
+** files.
+**
+** This file should be #included by the os_*.c files only. It is not a
+** general purpose header file.
+*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
+
+/*
+** At least two bugs have slipped in because we changed the MEMORY_DEBUG
+** macro to SQLITE_DEBUG and some older makefiles have not yet made the
+** switch. The following code should catch this problem at compile-time.
+*/
+#ifdef MEMORY_DEBUG
+# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off. Only works
+** on i486 hardware.
+*/
+#ifdef SQLITE_PERFORMANCE_TRACE
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/************** Include hwtime.h in the middle of os_common.h ****************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 and x86_64 class CPUs.
+*/
+#ifndef SQLITE_HWTIME_H
+#define SQLITE_HWTIME_H
+
+/*
+** The following routine only works on pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if !defined(__STRICT_ANSI__) && \
+ (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif !defined(__STRICT_ANSI__) && (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long val;
+ __asm__ __volatile__ ("rdtsc" : "=A" (val));
+ return val;
+ }
+
+#elif !defined(__STRICT_ANSI__) && (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ /*
+ ** asm() is needed for hardware timing support. Without asm(),
+ ** disable the sqlite3Hwtime() routine.
+ **
+ ** sqlite3Hwtime() is only used for some obscure debugging
+ ** and analysis configurations, not in any deliverable, so this
+ ** should not be a great loss.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(SQLITE_HWTIME_H) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in os_common.h ******************/
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
+#else
+#define TIMER_START
+#define TIMER_END
+#define TIMER_ELAPSED ((sqlite_uint64)0)
+#endif
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API extern int sqlite3_io_error_hit;
+SQLITE_API extern int sqlite3_io_error_hardhit;
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_persist;
+SQLITE_API extern int sqlite3_io_error_benign;
+SQLITE_API extern int sqlite3_diskfull_pending;
+SQLITE_API extern int sqlite3_diskfull;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
+#define SimulateIOError(CODE) \
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
+static void local_ioerr(){
+ IOTRACE(("IOERR\n"));
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
+}
+#define SimulateDiskfullError(CODE) \
+ if( sqlite3_diskfull_pending ){ \
+ if( sqlite3_diskfull_pending == 1 ){ \
+ local_ioerr(); \
+ sqlite3_diskfull = 1; \
+ sqlite3_io_error_hit = 1; \
+ CODE; \
+ }else{ \
+ sqlite3_diskfull_pending--; \
+ } \
+ }
+#else
+#define SimulateIOErrorBenign(X)
+#define SimulateIOError(A)
+#define SimulateDiskfullError(A)
+#endif /* defined(SQLITE_TEST) */
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API extern int sqlite3_open_file_count;
+#define OpenCounter(X) sqlite3_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif /* defined(SQLITE_TEST) */
+
+#endif /* !defined(_OS_COMMON_H_) */
+
+/************** End of os_common.h *******************************************/
+/************** Begin file ctime.c *******************************************/
+/* DO NOT EDIT!
+** This file is automatically generated by the script in the canonical
+** SQLite source tree at tool/mkctimec.tcl.
+**
+** To modify this header, edit any of the various lists in that script
+** which specify categories of generated conditionals in this file.
+*/
+
+/*
+** 2010 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements routines used to report what compile-time options
+** SQLite was built with.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* IMP: R-16824-07538 */
+
+/*
+** Include the configuration header output by 'configure' if we're using the
+** autoconf-based build
+*/
+#if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
+/* #include "config.h" */
+#define SQLITECONFIG_H 1
+#endif
+
+/* These macros are provided to "stringify" the value of the define
+** for those options in which the value is meaningful. */
+#define CTIMEOPT_VAL_(opt) #opt
+#define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt)
+
+/* Like CTIMEOPT_VAL, but especially for SQLITE_DEFAULT_LOOKASIDE. This
+** option requires a separate macro because legal values contain a single
+** comma. e.g. (-DSQLITE_DEFAULT_LOOKASIDE="100,100") */
+#define CTIMEOPT_VAL2_(opt1,opt2) #opt1 "," #opt2
+#define CTIMEOPT_VAL2(opt) CTIMEOPT_VAL2_(opt)
+/* #include "sqliteInt.h" */
+
+/*
+** An array of names of all compile-time options. This array should
+** be sorted A-Z.
+**
+** This array looks large, but in a typical installation actually uses
+** only a handful of compile-time options, so most times this array is usually
+** rather short and uses little memory space.
+*/
+static const char * const sqlite3azCompileOpt[] = {
+
+#ifdef SQLITE_32BIT_ROWID
+ "32BIT_ROWID",
+#endif
+#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
+ "4_BYTE_ALIGNED_MALLOC",
+#endif
+#ifdef SQLITE_64BIT_STATS
+ "64BIT_STATS",
+#endif
+#ifdef SQLITE_ALLOW_COVERING_INDEX_SCAN
+# if SQLITE_ALLOW_COVERING_INDEX_SCAN != 1
+ "ALLOW_COVERING_INDEX_SCAN=" CTIMEOPT_VAL(SQLITE_ALLOW_COVERING_INDEX_SCAN),
+# endif
+#endif
+#ifdef SQLITE_ALLOW_URI_AUTHORITY
+ "ALLOW_URI_AUTHORITY",
+#endif
+#ifdef SQLITE_ATOMIC_INTRINSICS
+ "ATOMIC_INTRINSICS=" CTIMEOPT_VAL(SQLITE_ATOMIC_INTRINSICS),
+#endif
+#ifdef SQLITE_BITMASK_TYPE
+ "BITMASK_TYPE=" CTIMEOPT_VAL(SQLITE_BITMASK_TYPE),
+#endif
+#ifdef SQLITE_BUG_COMPATIBLE_20160819
+ "BUG_COMPATIBLE_20160819",
+#endif
+#ifdef SQLITE_CASE_SENSITIVE_LIKE
+ "CASE_SENSITIVE_LIKE",
+#endif
+#ifdef SQLITE_CHECK_PAGES
+ "CHECK_PAGES",
+#endif
+#if defined(__clang__) && defined(__clang_major__)
+ "COMPILER=clang-" CTIMEOPT_VAL(__clang_major__) "."
+ CTIMEOPT_VAL(__clang_minor__) "."
+ CTIMEOPT_VAL(__clang_patchlevel__),
+#elif defined(_MSC_VER)
+ "COMPILER=msvc-" CTIMEOPT_VAL(_MSC_VER),
+#elif defined(__GNUC__) && defined(__VERSION__)
+ "COMPILER=gcc-" __VERSION__,
+#endif
+#ifdef SQLITE_COVERAGE_TEST
+ "COVERAGE_TEST",
+#endif
+#ifdef SQLITE_DEBUG
+ "DEBUG",
+#endif
+#ifdef SQLITE_DEFAULT_AUTOMATIC_INDEX
+ "DEFAULT_AUTOMATIC_INDEX",
+#endif
+#ifdef SQLITE_DEFAULT_AUTOVACUUM
+ "DEFAULT_AUTOVACUUM",
+#endif
+#ifdef SQLITE_DEFAULT_CACHE_SIZE
+ "DEFAULT_CACHE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_CACHE_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_CKPTFULLFSYNC
+ "DEFAULT_CKPTFULLFSYNC",
+#endif
+#ifdef SQLITE_DEFAULT_FILE_FORMAT
+ "DEFAULT_FILE_FORMAT=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_FORMAT),
+#endif
+#ifdef SQLITE_DEFAULT_FILE_PERMISSIONS
+ "DEFAULT_FILE_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_PERMISSIONS),
+#endif
+#ifdef SQLITE_DEFAULT_FOREIGN_KEYS
+ "DEFAULT_FOREIGN_KEYS",
+#endif
+#ifdef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ "DEFAULT_JOURNAL_SIZE_LIMIT=" CTIMEOPT_VAL(SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT),
+#endif
+#ifdef SQLITE_DEFAULT_LOCKING_MODE
+ "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE),
+#endif
+#ifdef SQLITE_DEFAULT_LOOKASIDE
+ "DEFAULT_LOOKASIDE=" CTIMEOPT_VAL2(SQLITE_DEFAULT_LOOKASIDE),
+#endif
+#ifdef SQLITE_DEFAULT_MEMSTATUS
+# if SQLITE_DEFAULT_MEMSTATUS != 1
+ "DEFAULT_MEMSTATUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_MEMSTATUS),
+# endif
+#endif
+#ifdef SQLITE_DEFAULT_MMAP_SIZE
+ "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_PAGE_SIZE
+ "DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_PAGE_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_PCACHE_INITSZ
+ "DEFAULT_PCACHE_INITSZ=" CTIMEOPT_VAL(SQLITE_DEFAULT_PCACHE_INITSZ),
+#endif
+#ifdef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+ "DEFAULT_PROXYDIR_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_PROXYDIR_PERMISSIONS),
+#endif
+#ifdef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+ "DEFAULT_RECURSIVE_TRIGGERS",
+#endif
+#ifdef SQLITE_DEFAULT_ROWEST
+ "DEFAULT_ROWEST=" CTIMEOPT_VAL(SQLITE_DEFAULT_ROWEST),
+#endif
+#ifdef SQLITE_DEFAULT_SECTOR_SIZE
+ "DEFAULT_SECTOR_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_SECTOR_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_SYNCHRONOUS
+ "DEFAULT_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_SYNCHRONOUS),
+#endif
+#ifdef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
+ "DEFAULT_WAL_AUTOCHECKPOINT=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_AUTOCHECKPOINT),
+#endif
+#ifdef SQLITE_DEFAULT_WAL_SYNCHRONOUS
+ "DEFAULT_WAL_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_SYNCHRONOUS),
+#endif
+#ifdef SQLITE_DEFAULT_WORKER_THREADS
+ "DEFAULT_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WORKER_THREADS),
+#endif
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+ "DIRECT_OVERFLOW_READ",
+#endif
+#ifdef SQLITE_DISABLE_DIRSYNC
+ "DISABLE_DIRSYNC",
+#endif
+#ifdef SQLITE_DISABLE_FTS3_UNICODE
+ "DISABLE_FTS3_UNICODE",
+#endif
+#ifdef SQLITE_DISABLE_FTS4_DEFERRED
+ "DISABLE_FTS4_DEFERRED",
+#endif
+#ifdef SQLITE_DISABLE_INTRINSIC
+ "DISABLE_INTRINSIC",
+#endif
+#ifdef SQLITE_DISABLE_LFS
+ "DISABLE_LFS",
+#endif
+#ifdef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ "DISABLE_PAGECACHE_OVERFLOW_STATS",
+#endif
+#ifdef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ "DISABLE_SKIPAHEAD_DISTINCT",
+#endif
+#ifdef SQLITE_ENABLE_8_3_NAMES
+ "ENABLE_8_3_NAMES=" CTIMEOPT_VAL(SQLITE_ENABLE_8_3_NAMES),
+#endif
+#ifdef SQLITE_ENABLE_API_ARMOR
+ "ENABLE_API_ARMOR",
+#endif
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ "ENABLE_ATOMIC_WRITE",
+#endif
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ "ENABLE_BATCH_ATOMIC_WRITE",
+#endif
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+ "ENABLE_BYTECODE_VTAB",
+#endif
+#ifdef SQLITE_ENABLE_CEROD
+ "ENABLE_CEROD=" CTIMEOPT_VAL(SQLITE_ENABLE_CEROD),
+#endif
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ "ENABLE_COLUMN_METADATA",
+#endif
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ "ENABLE_COLUMN_USED_MASK",
+#endif
+#ifdef SQLITE_ENABLE_COSTMULT
+ "ENABLE_COSTMULT",
+#endif
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ "ENABLE_CURSOR_HINTS",
+#endif
+#ifdef SQLITE_ENABLE_DBPAGE_VTAB
+ "ENABLE_DBPAGE_VTAB",
+#endif
+#ifdef SQLITE_ENABLE_DBSTAT_VTAB
+ "ENABLE_DBSTAT_VTAB",
+#endif
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ "ENABLE_EXPENSIVE_ASSERT",
+#endif
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ "ENABLE_EXPLAIN_COMMENTS",
+#endif
+#ifdef SQLITE_ENABLE_FTS3
+ "ENABLE_FTS3",
+#endif
+#ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
+ "ENABLE_FTS3_PARENTHESIS",
+#endif
+#ifdef SQLITE_ENABLE_FTS3_TOKENIZER
+ "ENABLE_FTS3_TOKENIZER",
+#endif
+#ifdef SQLITE_ENABLE_FTS4
+ "ENABLE_FTS4",
+#endif
+#ifdef SQLITE_ENABLE_FTS5
+ "ENABLE_FTS5",
+#endif
+#ifdef SQLITE_ENABLE_GEOPOLY
+ "ENABLE_GEOPOLY",
+#endif
+#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
+ "ENABLE_HIDDEN_COLUMNS",
+#endif
+#ifdef SQLITE_ENABLE_ICU
+ "ENABLE_ICU",
+#endif
+#ifdef SQLITE_ENABLE_IOTRACE
+ "ENABLE_IOTRACE",
+#endif
+#ifdef SQLITE_ENABLE_LOAD_EXTENSION
+ "ENABLE_LOAD_EXTENSION",
+#endif
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+ "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE),
+#endif
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+ "ENABLE_MATH_FUNCTIONS",
+#endif
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ "ENABLE_MEMORY_MANAGEMENT",
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS3
+ "ENABLE_MEMSYS3",
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+ "ENABLE_MEMSYS5",
+#endif
+#ifdef SQLITE_ENABLE_MULTIPLEX
+ "ENABLE_MULTIPLEX",
+#endif
+#ifdef SQLITE_ENABLE_NORMALIZE
+ "ENABLE_NORMALIZE",
+#endif
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ "ENABLE_NULL_TRIM",
+#endif
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ "ENABLE_OFFSET_SQL_FUNC",
+#endif
+#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
+ "ENABLE_OVERSIZE_CELL_CHECK",
+#endif
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ "ENABLE_PREUPDATE_HOOK",
+#endif
+#ifdef SQLITE_ENABLE_QPSG
+ "ENABLE_QPSG",
+#endif
+#ifdef SQLITE_ENABLE_RBU
+ "ENABLE_RBU",
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+ "ENABLE_RTREE",
+#endif
+#ifdef SQLITE_ENABLE_SESSION
+ "ENABLE_SESSION",
+#endif
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ "ENABLE_SNAPSHOT",
+#endif
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ "ENABLE_SORTER_REFERENCES",
+#endif
+#ifdef SQLITE_ENABLE_SQLLOG
+ "ENABLE_SQLLOG",
+#endif
+#ifdef SQLITE_ENABLE_STAT4
+ "ENABLE_STAT4",
+#endif
+#ifdef SQLITE_ENABLE_STMTVTAB
+ "ENABLE_STMTVTAB",
+#endif
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ "ENABLE_STMT_SCANSTATUS",
+#endif
+#ifdef SQLITE_ENABLE_TREETRACE
+ "ENABLE_TREETRACE",
+#endif
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ "ENABLE_UNKNOWN_SQL_FUNCTION",
+#endif
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ "ENABLE_UNLOCK_NOTIFY",
+#endif
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ "ENABLE_UPDATE_DELETE_LIMIT",
+#endif
+#ifdef SQLITE_ENABLE_URI_00_ERROR
+ "ENABLE_URI_00_ERROR",
+#endif
+#ifdef SQLITE_ENABLE_VFSTRACE
+ "ENABLE_VFSTRACE",
+#endif
+#ifdef SQLITE_ENABLE_WHERETRACE
+ "ENABLE_WHERETRACE",
+#endif
+#ifdef SQLITE_ENABLE_ZIPVFS
+ "ENABLE_ZIPVFS",
+#endif
+#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
+ "EXPLAIN_ESTIMATED_ROWS",
+#endif
+#ifdef SQLITE_EXTRA_IFNULLROW
+ "EXTRA_IFNULLROW",
+#endif
+#ifdef SQLITE_EXTRA_INIT
+ "EXTRA_INIT=" CTIMEOPT_VAL(SQLITE_EXTRA_INIT),
+#endif
+#ifdef SQLITE_EXTRA_SHUTDOWN
+ "EXTRA_SHUTDOWN=" CTIMEOPT_VAL(SQLITE_EXTRA_SHUTDOWN),
+#endif
+#ifdef SQLITE_FTS3_MAX_EXPR_DEPTH
+ "FTS3_MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_FTS3_MAX_EXPR_DEPTH),
+#endif
+#ifdef SQLITE_FTS5_ENABLE_TEST_MI
+ "FTS5_ENABLE_TEST_MI",
+#endif
+#ifdef SQLITE_FTS5_NO_WITHOUT_ROWID
+ "FTS5_NO_WITHOUT_ROWID",
+#endif
+/* BEGIN SQLCIPHER */
+#if SQLITE_HAS_CODEC
+ "HAS_CODEC",
+#endif
+/* END SQLCIPHER */
+#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
+ "HAVE_ISNAN",
+#endif
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+# if SQLITE_HOMEGROWN_RECURSIVE_MUTEX != 1
+ "HOMEGROWN_RECURSIVE_MUTEX=" CTIMEOPT_VAL(SQLITE_HOMEGROWN_RECURSIVE_MUTEX),
+# endif
+#endif
+#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
+ "IGNORE_AFP_LOCK_ERRORS",
+#endif
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ "IGNORE_FLOCK_LOCK_ERRORS",
+#endif
+#ifdef SQLITE_INLINE_MEMCPY
+ "INLINE_MEMCPY",
+#endif
+#ifdef SQLITE_INT64_TYPE
+ "INT64_TYPE",
+#endif
+#ifdef SQLITE_INTEGRITY_CHECK_ERROR_MAX
+ "INTEGRITY_CHECK_ERROR_MAX=" CTIMEOPT_VAL(SQLITE_INTEGRITY_CHECK_ERROR_MAX),
+#endif
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ "LIKE_DOESNT_MATCH_BLOBS",
+#endif
+#ifdef SQLITE_LOCK_TRACE
+ "LOCK_TRACE",
+#endif
+#ifdef SQLITE_LOG_CACHE_SPILL
+ "LOG_CACHE_SPILL",
+#endif
+#ifdef SQLITE_MALLOC_SOFT_LIMIT
+ "MALLOC_SOFT_LIMIT=" CTIMEOPT_VAL(SQLITE_MALLOC_SOFT_LIMIT),
+#endif
+#ifdef SQLITE_MAX_ATTACHED
+ "MAX_ATTACHED=" CTIMEOPT_VAL(SQLITE_MAX_ATTACHED),
+#endif
+#ifdef SQLITE_MAX_COLUMN
+ "MAX_COLUMN=" CTIMEOPT_VAL(SQLITE_MAX_COLUMN),
+#endif
+#ifdef SQLITE_MAX_COMPOUND_SELECT
+ "MAX_COMPOUND_SELECT=" CTIMEOPT_VAL(SQLITE_MAX_COMPOUND_SELECT),
+#endif
+#ifdef SQLITE_MAX_DEFAULT_PAGE_SIZE
+ "MAX_DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_DEFAULT_PAGE_SIZE),
+#endif
+#ifdef SQLITE_MAX_EXPR_DEPTH
+ "MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_EXPR_DEPTH),
+#endif
+#ifdef SQLITE_MAX_FUNCTION_ARG
+ "MAX_FUNCTION_ARG=" CTIMEOPT_VAL(SQLITE_MAX_FUNCTION_ARG),
+#endif
+#ifdef SQLITE_MAX_LENGTH
+ "MAX_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LENGTH),
+#endif
+#ifdef SQLITE_MAX_LIKE_PATTERN_LENGTH
+ "MAX_LIKE_PATTERN_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LIKE_PATTERN_LENGTH),
+#endif
+#ifdef SQLITE_MAX_MEMORY
+ "MAX_MEMORY=" CTIMEOPT_VAL(SQLITE_MAX_MEMORY),
+#endif
+#ifdef SQLITE_MAX_MMAP_SIZE
+ "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE),
+#endif
+#ifdef SQLITE_MAX_MMAP_SIZE_
+ "MAX_MMAP_SIZE_=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE_),
+#endif
+#ifdef SQLITE_MAX_PAGE_COUNT
+ "MAX_PAGE_COUNT=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_COUNT),
+#endif
+#ifdef SQLITE_MAX_PAGE_SIZE
+ "MAX_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_SIZE),
+#endif
+#ifdef SQLITE_MAX_SCHEMA_RETRY
+ "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY),
+#endif
+#ifdef SQLITE_MAX_SQL_LENGTH
+ "MAX_SQL_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_SQL_LENGTH),
+#endif
+#ifdef SQLITE_MAX_TRIGGER_DEPTH
+ "MAX_TRIGGER_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_TRIGGER_DEPTH),
+#endif
+#ifdef SQLITE_MAX_VARIABLE_NUMBER
+ "MAX_VARIABLE_NUMBER=" CTIMEOPT_VAL(SQLITE_MAX_VARIABLE_NUMBER),
+#endif
+#ifdef SQLITE_MAX_VDBE_OP
+ "MAX_VDBE_OP=" CTIMEOPT_VAL(SQLITE_MAX_VDBE_OP),
+#endif
+#ifdef SQLITE_MAX_WORKER_THREADS
+ "MAX_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_MAX_WORKER_THREADS),
+#endif
+#ifdef SQLITE_MEMDEBUG
+ "MEMDEBUG",
+#endif
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+ "MIXED_ENDIAN_64BIT_FLOAT",
+#endif
+#ifdef SQLITE_MMAP_READWRITE
+ "MMAP_READWRITE",
+#endif
+#ifdef SQLITE_MUTEX_NOOP
+ "MUTEX_NOOP",
+#endif
+#ifdef SQLITE_MUTEX_OMIT
+ "MUTEX_OMIT",
+#endif
+#ifdef SQLITE_MUTEX_PTHREADS
+ "MUTEX_PTHREADS",
+#endif
+#ifdef SQLITE_MUTEX_W32
+ "MUTEX_W32",
+#endif
+#ifdef SQLITE_NEED_ERR_NAME
+ "NEED_ERR_NAME",
+#endif
+#ifdef SQLITE_NO_SYNC
+ "NO_SYNC",
+#endif
+#ifdef SQLITE_OMIT_ALTERTABLE
+ "OMIT_ALTERTABLE",
+#endif
+#ifdef SQLITE_OMIT_ANALYZE
+ "OMIT_ANALYZE",
+#endif
+#ifdef SQLITE_OMIT_ATTACH
+ "OMIT_ATTACH",
+#endif
+#ifdef SQLITE_OMIT_AUTHORIZATION
+ "OMIT_AUTHORIZATION",
+#endif
+#ifdef SQLITE_OMIT_AUTOINCREMENT
+ "OMIT_AUTOINCREMENT",
+#endif
+#ifdef SQLITE_OMIT_AUTOINIT
+ "OMIT_AUTOINIT",
+#endif
+#ifdef SQLITE_OMIT_AUTOMATIC_INDEX
+ "OMIT_AUTOMATIC_INDEX",
+#endif
+#ifdef SQLITE_OMIT_AUTORESET
+ "OMIT_AUTORESET",
+#endif
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ "OMIT_AUTOVACUUM",
+#endif
+#ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ "OMIT_BETWEEN_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_BLOB_LITERAL
+ "OMIT_BLOB_LITERAL",
+#endif
+#ifdef SQLITE_OMIT_CAST
+ "OMIT_CAST",
+#endif
+#ifdef SQLITE_OMIT_CHECK
+ "OMIT_CHECK",
+#endif
+#ifdef SQLITE_OMIT_COMPLETE
+ "OMIT_COMPLETE",
+#endif
+#ifdef SQLITE_OMIT_COMPOUND_SELECT
+ "OMIT_COMPOUND_SELECT",
+#endif
+#ifdef SQLITE_OMIT_CONFLICT_CLAUSE
+ "OMIT_CONFLICT_CLAUSE",
+#endif
+#ifdef SQLITE_OMIT_CTE
+ "OMIT_CTE",
+#endif
+#if defined(SQLITE_OMIT_DATETIME_FUNCS) || defined(SQLITE_OMIT_FLOATING_POINT)
+ "OMIT_DATETIME_FUNCS",
+#endif
+#ifdef SQLITE_OMIT_DECLTYPE
+ "OMIT_DECLTYPE",
+#endif
+#ifdef SQLITE_OMIT_DEPRECATED
+ "OMIT_DEPRECATED",
+#endif
+#ifdef SQLITE_OMIT_DESERIALIZE
+ "OMIT_DESERIALIZE",
+#endif
+#ifdef SQLITE_OMIT_DISKIO
+ "OMIT_DISKIO",
+#endif
+#ifdef SQLITE_OMIT_EXPLAIN
+ "OMIT_EXPLAIN",
+#endif
+#ifdef SQLITE_OMIT_FLAG_PRAGMAS
+ "OMIT_FLAG_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ "OMIT_FLOATING_POINT",
+#endif
+#ifdef SQLITE_OMIT_FOREIGN_KEY
+ "OMIT_FOREIGN_KEY",
+#endif
+#ifdef SQLITE_OMIT_GET_TABLE
+ "OMIT_GET_TABLE",
+#endif
+#ifdef SQLITE_OMIT_HEX_INTEGER
+ "OMIT_HEX_INTEGER",
+#endif
+#ifdef SQLITE_OMIT_INCRBLOB
+ "OMIT_INCRBLOB",
+#endif
+#ifdef SQLITE_OMIT_INTEGRITY_CHECK
+ "OMIT_INTEGRITY_CHECK",
+#endif
+#ifdef SQLITE_OMIT_INTROSPECTION_PRAGMAS
+ "OMIT_INTROSPECTION_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_JSON
+ "OMIT_JSON",
+#endif
+#ifdef SQLITE_OMIT_LIKE_OPTIMIZATION
+ "OMIT_LIKE_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_LOAD_EXTENSION
+ "OMIT_LOAD_EXTENSION",
+#endif
+#ifdef SQLITE_OMIT_LOCALTIME
+ "OMIT_LOCALTIME",
+#endif
+#ifdef SQLITE_OMIT_LOOKASIDE
+ "OMIT_LOOKASIDE",
+#endif
+#ifdef SQLITE_OMIT_MEMORYDB
+ "OMIT_MEMORYDB",
+#endif
+#ifdef SQLITE_OMIT_OR_OPTIMIZATION
+ "OMIT_OR_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_PAGER_PRAGMAS
+ "OMIT_PAGER_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_PARSER_TRACE
+ "OMIT_PARSER_TRACE",
+#endif
+#ifdef SQLITE_OMIT_POPEN
+ "OMIT_POPEN",
+#endif
+#ifdef SQLITE_OMIT_PRAGMA
+ "OMIT_PRAGMA",
+#endif
+#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
+ "OMIT_PROGRESS_CALLBACK",
+#endif
+#ifdef SQLITE_OMIT_QUICKBALANCE
+ "OMIT_QUICKBALANCE",
+#endif
+#ifdef SQLITE_OMIT_REINDEX
+ "OMIT_REINDEX",
+#endif
+#ifdef SQLITE_OMIT_SCHEMA_PRAGMAS
+ "OMIT_SCHEMA_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
+ "OMIT_SCHEMA_VERSION_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ "OMIT_SHARED_CACHE",
+#endif
+#ifdef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
+ "OMIT_SHUTDOWN_DIRECTORIES",
+#endif
+#ifdef SQLITE_OMIT_SUBQUERY
+ "OMIT_SUBQUERY",
+#endif
+#ifdef SQLITE_OMIT_TCL_VARIABLE
+ "OMIT_TCL_VARIABLE",
+#endif
+#ifdef SQLITE_OMIT_TEMPDB
+ "OMIT_TEMPDB",
+#endif
+#ifdef SQLITE_OMIT_TEST_CONTROL
+ "OMIT_TEST_CONTROL",
+#endif
+#ifdef SQLITE_OMIT_TRACE
+# if SQLITE_OMIT_TRACE != 1
+ "OMIT_TRACE=" CTIMEOPT_VAL(SQLITE_OMIT_TRACE),
+# endif
+#endif
+#ifdef SQLITE_OMIT_TRIGGER
+ "OMIT_TRIGGER",
+#endif
+#ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
+ "OMIT_TRUNCATE_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_UTF16
+ "OMIT_UTF16",
+#endif
+#ifdef SQLITE_OMIT_VACUUM
+ "OMIT_VACUUM",
+#endif
+#ifdef SQLITE_OMIT_VIEW
+ "OMIT_VIEW",
+#endif
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ "OMIT_VIRTUALTABLE",
+#endif
+#ifdef SQLITE_OMIT_WAL
+ "OMIT_WAL",
+#endif
+#ifdef SQLITE_OMIT_WSD
+ "OMIT_WSD",
+#endif
+#ifdef SQLITE_OMIT_XFER_OPT
+ "OMIT_XFER_OPT",
+#endif
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ "PCACHE_SEPARATE_HEADER",
+#endif
+#ifdef SQLITE_PERFORMANCE_TRACE
+ "PERFORMANCE_TRACE",
+#endif
+#ifdef SQLITE_POWERSAFE_OVERWRITE
+# if SQLITE_POWERSAFE_OVERWRITE != 1
+ "POWERSAFE_OVERWRITE=" CTIMEOPT_VAL(SQLITE_POWERSAFE_OVERWRITE),
+# endif
+#endif
+#ifdef SQLITE_PREFER_PROXY_LOCKING
+ "PREFER_PROXY_LOCKING",
+#endif
+#ifdef SQLITE_PROXY_DEBUG
+ "PROXY_DEBUG",
+#endif
+#ifdef SQLITE_REVERSE_UNORDERED_SELECTS
+ "REVERSE_UNORDERED_SELECTS",
+#endif
+#ifdef SQLITE_RTREE_INT_ONLY
+ "RTREE_INT_ONLY",
+#endif
+#ifdef SQLITE_SECURE_DELETE
+ "SECURE_DELETE",
+#endif
+#ifdef SQLITE_SMALL_STACK
+ "SMALL_STACK",
+#endif
+#ifdef SQLITE_SORTER_PMASZ
+ "SORTER_PMASZ=" CTIMEOPT_VAL(SQLITE_SORTER_PMASZ),
+#endif
+#ifdef SQLITE_SOUNDEX
+ "SOUNDEX",
+#endif
+#ifdef SQLITE_STAT4_SAMPLES
+ "STAT4_SAMPLES=" CTIMEOPT_VAL(SQLITE_STAT4_SAMPLES),
+#endif
+#ifdef SQLITE_STMTJRNL_SPILL
+ "STMTJRNL_SPILL=" CTIMEOPT_VAL(SQLITE_STMTJRNL_SPILL),
+#endif
+#ifdef SQLITE_SUBSTR_COMPATIBILITY
+ "SUBSTR_COMPATIBILITY",
+#endif
+#if (!defined(SQLITE_WIN32_MALLOC) \
+ && !defined(SQLITE_ZERO_MALLOC) \
+ && !defined(SQLITE_MEMDEBUG) \
+ ) || defined(SQLITE_SYSTEM_MALLOC)
+ "SYSTEM_MALLOC",
+#endif
+#ifdef SQLITE_TCL
+ "TCL",
+#endif
+#ifdef SQLITE_TEMP_STORE
+ "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE),
+#endif
+#ifdef SQLITE_TEST
+ "TEST",
+#endif
+#if defined(SQLITE_THREADSAFE)
+ "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE),
+#elif defined(THREADSAFE)
+ "THREADSAFE=" CTIMEOPT_VAL(THREADSAFE),
+#else
+ "THREADSAFE=1",
+#endif
+#ifdef SQLITE_UNLINK_AFTER_CLOSE
+ "UNLINK_AFTER_CLOSE",
+#endif
+#ifdef SQLITE_UNTESTABLE
+ "UNTESTABLE",
+#endif
+#ifdef SQLITE_USER_AUTHENTICATION
+ "USER_AUTHENTICATION",
+#endif
+#ifdef SQLITE_USE_ALLOCA
+ "USE_ALLOCA",
+#endif
+#ifdef SQLITE_USE_FCNTL_TRACE
+ "USE_FCNTL_TRACE",
+#endif
+#ifdef SQLITE_USE_URI
+ "USE_URI",
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ "VDBE_COVERAGE",
+#endif
+#ifdef SQLITE_WIN32_MALLOC
+ "WIN32_MALLOC",
+#endif
+#ifdef SQLITE_ZERO_MALLOC
+ "ZERO_MALLOC",
+#endif
+
+} ;
+
+SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt){
+ *pnOpt = sizeof(sqlite3azCompileOpt) / sizeof(sqlite3azCompileOpt[0]);
+ return (const char**)sqlite3azCompileOpt;
+}
+
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/************** End of ctime.c ***********************************************/
+/************** Begin file global.c ******************************************/
+/*
+** 2008 June 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains definitions of global variables and constants.
+*/
+/* #include "sqliteInt.h" */
+
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+**
+** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
+** handle case conversions for the UTF character set since the tables
+** involved are nearly as big or bigger than SQLite itself.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
+#ifdef SQLITE_ASCII
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255,
+#endif
+#ifdef SQLITE_EBCDIC
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
+ 96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111, /* 6x */
+ 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, /* 7x */
+ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, /* 9x */
+ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
+ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
+ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
+ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
+ 224,225,162,163,164,165,166,167,168,169,234,235,236,237,238,239, /* Ex */
+ 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, /* Fx */
+#endif
+/* All of the upper-to-lower conversion data is above. The following
+** 18 integers are completely unrelated. They are appended to the
+** sqlite3UpperToLower[] array to avoid UBSAN warnings. Here's what is
+** going on:
+**
+** The SQL comparison operators (<>, =, >, <=, <, and >=) are implemented
+** by invoking sqlite3MemCompare(A,B) which compares values A and B and
+** returns negative, zero, or positive if A is less then, equal to, or
+** greater than B, respectively. Then the true false results is found by
+** consulting sqlite3aLTb[opcode], sqlite3aEQb[opcode], or
+** sqlite3aGTb[opcode] depending on whether the result of compare(A,B)
+** is negative, zero, or positive, where opcode is the specific opcode.
+** The only works because the comparison opcodes are consecutive and in
+** this order: NE EQ GT LE LT GE. Various assert()s throughout the code
+** ensure that is the case.
+**
+** These elements must be appended to another array. Otherwise the
+** index (here shown as [256-OP_Ne]) would be out-of-bounds and thus
+** be undefined behavior. That's goofy, but the C-standards people thought
+** it was a good idea, so here we are.
+*/
+/* NE EQ GT LE LT GE */
+ 1, 0, 0, 1, 1, 0, /* aLTb[]: Use when compare(A,B) less than zero */
+ 0, 1, 0, 1, 0, 1, /* aEQb[]: Use when compare(A,B) equals zero */
+ 1, 0, 1, 0, 0, 1 /* aGTb[]: Use when compare(A,B) greater than zero*/
+};
+SQLITE_PRIVATE const unsigned char *sqlite3aLTb = &sqlite3UpperToLower[256-OP_Ne];
+SQLITE_PRIVATE const unsigned char *sqlite3aEQb = &sqlite3UpperToLower[256+6-OP_Ne];
+SQLITE_PRIVATE const unsigned char *sqlite3aGTb = &sqlite3UpperToLower[256+12-OP_Ne];
+
+/*
+** The following 256 byte lookup table is used to support SQLites built-in
+** equivalents to the following standard library functions:
+**
+** isspace() 0x01
+** isalpha() 0x02
+** isdigit() 0x04
+** isalnum() 0x06
+** isxdigit() 0x08
+** toupper() 0x20
+** SQLite identifier character 0x40
+** Quote character 0x80
+**
+** Bit 0x20 is set if the mapped character requires translation to upper
+** case. i.e. if the character is a lower-case ASCII character.
+** If x is a lower-case ASCII character, then its upper-case equivalent
+** is (x - 0x20). Therefore toupper() can be implemented as:
+**
+** (x & ~(map[x]&0x20))
+**
+** The equivalent of tolower() is implemented using the sqlite3UpperToLower[]
+** array. tolower() is used more often than toupper() by SQLite.
+**
+** Bit 0x40 is set if the character is non-alphanumeric and can be used in an
+** SQLite identifier. Identifiers are alphanumerics, "_", "$", and any
+** non-ASCII UTF character. Hence the test for whether or not a character is
+** part of an identifier is 0x46.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */
+ 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */
+ 0x01, 0x00, 0x80, 0x00, 0x40, 0x00, 0x00, 0x80, /* 20..27 !"#$%&' */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */
+ 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */
+ 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */
+
+ 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */
+ 0x02, 0x02, 0x02, 0x80, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */
+ 0x80, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */
+ 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */
+
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */
+
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */
+};
+
+/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
+** compatibility for legacy applications, the URI filename capability is
+** disabled by default.
+**
+** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
+** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
+**
+** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally
+** disabled. The default value may be changed by compiling with the
+** SQLITE_USE_URI symbol defined.
+**
+** URI filenames are enabled by default if SQLITE_HAS_CODEC is
+** enabled.
+*/
+#ifndef SQLITE_USE_URI
+/* BEGIN SQLCIPHER */
+# ifdef SQLITE_HAS_CODEC
+# define SQLITE_USE_URI 1
+# else
+# define SQLITE_USE_URI 0
+# endif
+/* END SQLCIPHER */
+#endif
+
+/* EVIDENCE-OF: R-38720-18127 The default setting is determined by the
+** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if
+** that compile-time option is omitted.
+*/
+#if !defined(SQLITE_ALLOW_COVERING_INDEX_SCAN)
+# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
+#else
+# if !SQLITE_ALLOW_COVERING_INDEX_SCAN
+# error "Compile-time disabling of covering index scan using the\
+ -DSQLITE_ALLOW_COVERING_INDEX_SCAN=0 option is deprecated.\
+ Contact SQLite developers if this is a problem for you, and\
+ delete this #error macro to continue with your build."
+# endif
+#endif
+
+/* The minimum PMA size is set to this value multiplied by the database
+** page size in bytes.
+*/
+#ifndef SQLITE_SORTER_PMASZ
+# define SQLITE_SORTER_PMASZ 250
+#endif
+
+/* Statement journals spill to disk when their size exceeds the following
+** threshold (in bytes). 0 means that statement journals are created and
+** written to disk immediately (the default behavior for SQLite versions
+** before 3.12.0). -1 means always keep the entire statement journal in
+** memory. (The statement journal is also always held entirely in memory
+** if journal_mode=MEMORY or if temp_store=MEMORY, regardless of this
+** setting.)
+*/
+#ifndef SQLITE_STMTJRNL_SPILL
+# define SQLITE_STMTJRNL_SPILL (64*1024)
+#endif
+
+/*
+** The default lookaside-configuration, the format "SZ,N". SZ is the
+** number of bytes in each lookaside slot (should be a multiple of 8)
+** and N is the number of slots. The lookaside-configuration can be
+** changed as start-time using sqlite3_config(SQLITE_CONFIG_LOOKASIDE)
+** or at run-time for an individual database connection using
+** sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE);
+**
+** With the two-size-lookaside enhancement, less lookaside is required.
+** The default configuration of 1200,40 actually provides 30 1200-byte slots
+** and 93 128-byte slots, which is more lookaside than is available
+** using the older 1200,100 configuration without two-size-lookaside.
+*/
+#ifndef SQLITE_DEFAULT_LOOKASIDE
+# ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+# define SQLITE_DEFAULT_LOOKASIDE 1200,100 /* 120KB of memory */
+# else
+# define SQLITE_DEFAULT_LOOKASIDE 1200,40 /* 48KB of memory */
+# endif
+#endif
+
+
+/* The default maximum size of an in-memory database created using
+** sqlite3_deserialize()
+*/
+#ifndef SQLITE_MEMDB_DEFAULT_MAXSIZE
+# define SQLITE_MEMDB_DEFAULT_MAXSIZE 1073741824
+#endif
+
+/*
+** The following singleton contains the global configuration for
+** the SQLite library.
+*/
+SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
+ SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */
+ 1, /* bCoreMutex */
+ SQLITE_THREADSAFE==1, /* bFullMutex */
+ SQLITE_USE_URI, /* bOpenUri */
+ SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */
+ 0, /* bSmallMalloc */
+ 1, /* bExtraSchemaChecks */
+ 0x7ffffffe, /* mxStrlen */
+ 0, /* neverCorrupt */
+ SQLITE_DEFAULT_LOOKASIDE, /* szLookaside, nLookaside */
+ SQLITE_STMTJRNL_SPILL, /* nStmtSpill */
+ {0,0,0,0,0,0,0,0}, /* m */
+ {0,0,0,0,0,0,0,0,0}, /* mutex */
+ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */
+ (void*)0, /* pHeap */
+ 0, /* nHeap */
+ 0, 0, /* mnHeap, mxHeap */
+ SQLITE_DEFAULT_MMAP_SIZE, /* szMmap */
+ SQLITE_MAX_MMAP_SIZE, /* mxMmap */
+ (void*)0, /* pPage */
+ 0, /* szPage */
+ SQLITE_DEFAULT_PCACHE_INITSZ, /* nPage */
+ 0, /* mxParserStack */
+ 0, /* sharedCacheEnabled */
+ SQLITE_SORTER_PMASZ, /* szPma */
+ /* All the rest should always be initialized to zero */
+ 0, /* isInit */
+ 0, /* inProgress */
+ 0, /* isMutexInit */
+ 0, /* isMallocInit */
+ 0, /* isPCacheInit */
+ 0, /* nRefInitMutex */
+ 0, /* pInitMutex */
+ 0, /* xLog */
+ 0, /* pLogArg */
+#ifdef SQLITE_ENABLE_SQLLOG
+ 0, /* xSqllog */
+ 0, /* pSqllogArg */
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ 0, /* xVdbeBranch */
+ 0, /* pVbeBranchArg */
+#endif
+#ifndef SQLITE_OMIT_DESERIALIZE
+ SQLITE_MEMDB_DEFAULT_MAXSIZE, /* mxMemdbSize */
+#endif
+#ifndef SQLITE_UNTESTABLE
+ 0, /* xTestCallback */
+#endif
+ 0, /* bLocaltimeFault */
+ 0, /* xAltLocaltime */
+ 0x7ffffffe, /* iOnceResetThreshold */
+ SQLITE_DEFAULT_SORTERREF_SIZE, /* szSorterRef */
+ 0, /* iPrngSeed */
+#ifdef SQLITE_DEBUG
+ {0,0,0,0,0,0} /* aTune */
+#endif
+};
+
+/*
+** Hash table for global functions - functions common to all
+** database connections. After initialization, this table is
+** read-only.
+*/
+SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions;
+
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+/*
+** Counter used for coverage testing. Does not come into play for
+** release builds.
+**
+** Access to this global variable is not mutex protected. This might
+** result in TSAN warnings. But as the variable does not exist in
+** release builds, that should not be a concern.
+*/
+SQLITE_PRIVATE unsigned int sqlite3CoverageCounter;
+#endif /* SQLITE_COVERAGE_TEST || SQLITE_DEBUG */
+
+#ifdef VDBE_PROFILE
+/*
+** The following performance counter can be used in place of
+** sqlite3Hwtime() for profiling. This is a no-op on standard builds.
+*/
+SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt = 0;
+#endif
+
+/*
+** The value of the "pending" byte must be 0x40000000 (1 byte past the
+** 1-gibabyte boundary) in a compatible database. SQLite never uses
+** the database page that contains the pending byte. It never attempts
+** to read or write that page. The pending byte page is set aside
+** for use by the VFS layers as space for managing file locks.
+**
+** During testing, it is often desirable to move the pending byte to
+** a different position in the file. This allows code that has to
+** deal with the pending byte to run on files that are much smaller
+** than 1 GiB. The sqlite3_test_control() interface can be used to
+** move the pending byte.
+**
+** IMPORTANT: Changing the pending byte to any value other than
+** 0x40000000 results in an incompatible database file format!
+** Changing the pending byte during operation will result in undefined
+** and incorrect behavior.
+*/
+#ifndef SQLITE_OMIT_WSD
+SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
+#endif
+
+/*
+** Tracing flags set by SQLITE_TESTCTRL_TRACEFLAGS.
+*/
+SQLITE_PRIVATE u32 sqlite3TreeTrace = 0;
+SQLITE_PRIVATE u32 sqlite3WhereTrace = 0;
+
+/* #include "opcodes.h" */
+/*
+** Properties of opcodes. The OPFLG_INITIALIZER macro is
+** created by mkopcodeh.awk during compilation. Data is obtained
+** from the comments following the "case OP_xxxx:" statements in
+** the vdbe.c file.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;
+
+/*
+** Name of the default collating sequence
+*/
+SQLITE_PRIVATE const char sqlite3StrBINARY[] = "BINARY";
+
+/*
+** Standard typenames. These names must match the COLTYPE_* definitions.
+** Adjust the SQLITE_N_STDTYPE value if adding or removing entries.
+**
+** sqlite3StdType[] The actual names of the datatypes.
+**
+** sqlite3StdTypeLen[] The length (in bytes) of each entry
+** in sqlite3StdType[].
+**
+** sqlite3StdTypeAffinity[] The affinity associated with each entry
+** in sqlite3StdType[].
+**
+** sqlite3StdTypeMap[] The type value (as returned from
+** sqlite3_column_type() or sqlite3_value_type())
+** for each entry in sqlite3StdType[].
+*/
+SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[] = { 3, 4, 3, 7, 4, 4 };
+SQLITE_PRIVATE const char sqlite3StdTypeAffinity[] = {
+ SQLITE_AFF_NUMERIC,
+ SQLITE_AFF_BLOB,
+ SQLITE_AFF_INTEGER,
+ SQLITE_AFF_INTEGER,
+ SQLITE_AFF_REAL,
+ SQLITE_AFF_TEXT
+};
+SQLITE_PRIVATE const char sqlite3StdTypeMap[] = {
+ 0,
+ SQLITE_BLOB,
+ SQLITE_INTEGER,
+ SQLITE_INTEGER,
+ SQLITE_FLOAT,
+ SQLITE_TEXT
+};
+SQLITE_PRIVATE const char *sqlite3StdType[] = {
+ "ANY",
+ "BLOB",
+ "INT",
+ "INTEGER",
+ "REAL",
+ "TEXT"
+};
+
+/************** End of global.c **********************************************/
+/************** Begin file status.c ******************************************/
+/*
+** 2008 June 18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements the sqlite3_status() interface and related
+** functionality.
+*/
+/* #include "sqliteInt.h" */
+/************** Include vdbeInt.h in the middle of status.c ******************/
+/************** Begin file vdbeInt.h *****************************************/
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for information that is private to the
+** VDBE. This information used to all be at the top of the single
+** source code file "vdbe.c". When that file became too big (over
+** 6000 lines long) it was split up into several smaller files and
+** this header information was factored out.
+*/
+#ifndef SQLITE_VDBEINT_H
+#define SQLITE_VDBEINT_H
+
+/*
+** The maximum number of times that a statement will try to reparse
+** itself before giving up and returning SQLITE_SCHEMA.
+*/
+#ifndef SQLITE_MAX_SCHEMA_RETRY
+# define SQLITE_MAX_SCHEMA_RETRY 50
+#endif
+
+/*
+** VDBE_DISPLAY_P4 is true or false depending on whether or not the
+** "explain" P4 display logic is enabled.
+*/
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) \
+ || defined(SQLITE_ENABLE_BYTECODE_VTAB)
+# define VDBE_DISPLAY_P4 1
+#else
+# define VDBE_DISPLAY_P4 0
+#endif
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned Bool;
+
+/* Opaque type used by code in vdbesort.c */
+typedef struct VdbeSorter VdbeSorter;
+
+/* Elements of the linked list at Vdbe.pAuxData */
+typedef struct AuxData AuxData;
+
+/* Types of VDBE cursors */
+#define CURTYPE_BTREE 0
+#define CURTYPE_SORTER 1
+#define CURTYPE_VTAB 2
+#define CURTYPE_PSEUDO 3
+
+/*
+** A VdbeCursor is an superclass (a wrapper) for various cursor objects:
+**
+** * A b-tree cursor
+** - In the main database or in an ephemeral database
+** - On either an index or a table
+** * A sorter
+** * A virtual table
+** * A one-row "pseudotable" stored in a single register
+*/
+typedef struct VdbeCursor VdbeCursor;
+struct VdbeCursor {
+ u8 eCurType; /* One of the CURTYPE_* values above */
+ i8 iDb; /* Index of cursor database in db->aDb[] */
+ u8 nullRow; /* True if pointing to a row with no data */
+ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
+ u8 isTable; /* True for rowid tables. False for indexes */
+#ifdef SQLITE_DEBUG
+ u8 seekOp; /* Most recent seek operation on this cursor */
+ u8 wrFlag; /* The wrFlag argument to sqlite3BtreeCursor() */
+#endif
+ Bool isEphemeral:1; /* True for an ephemeral table */
+ Bool useRandomRowid:1; /* Generate new record numbers semi-randomly */
+ Bool isOrdered:1; /* True if the table is not BTREE_UNORDERED */
+ Bool noReuse:1; /* OpenEphemeral may not reuse this cursor */
+ u16 seekHit; /* See the OP_SeekHit and OP_IfNoHope opcodes */
+ union { /* pBtx for isEphermeral. pAltMap otherwise */
+ Btree *pBtx; /* Separate file holding temporary table */
+ u32 *aAltMap; /* Mapping from table to index column numbers */
+ } ub;
+ i64 seqCount; /* Sequence counter */
+
+ /* Cached OP_Column parse information is only valid if cacheStatus matches
+ ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of
+ ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that
+ ** the cache is out of date. */
+ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
+ int seekResult; /* Result of previous sqlite3BtreeMoveto() or 0
+ ** if there have been no prior seeks on the cursor. */
+ /* seekResult does not distinguish between "no seeks have ever occurred
+ ** on this cursor" and "the most recent seek was an exact match".
+ ** For CURTYPE_PSEUDO, seekResult is the register holding the record */
+
+ /* When a new VdbeCursor is allocated, only the fields above are zeroed.
+ ** The fields that follow are uninitialized, and must be individually
+ ** initialized prior to first use. */
+ VdbeCursor *pAltCursor; /* Associated index cursor from which to read */
+ union {
+ BtCursor *pCursor; /* CURTYPE_BTREE or _PSEUDO. Btree cursor */
+ sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB. Vtab cursor */
+ VdbeSorter *pSorter; /* CURTYPE_SORTER. Sorter object */
+ } uc;
+ KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
+ u32 iHdrOffset; /* Offset to next unparsed byte of the header */
+ Pgno pgnoRoot; /* Root page of the open btree cursor */
+ i16 nField; /* Number of fields in the header */
+ u16 nHdrParsed; /* Number of header fields parsed so far */
+ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
+ u32 *aOffset; /* Pointer to aType[nField] */
+ const u8 *aRow; /* Data for the current row, if all on one page */
+ u32 payloadSize; /* Total number of bytes in the record */
+ u32 szRow; /* Byte available in aRow */
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ u64 maskUsed; /* Mask of columns used by this cursor */
+#endif
+
+ /* 2*nField extra array elements allocated for aType[], beyond the one
+ ** static element declared in the structure. nField total array slots for
+ ** aType[] and nField+1 array slots for aOffset[] */
+ u32 aType[1]; /* Type values record decode. MUST BE LAST */
+};
+
+/* Return true if P is a null-only cursor
+*/
+#define IsNullCursor(P) \
+ ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0)
+
+
+/*
+** A value for VdbeCursor.cacheStatus that means the cache is always invalid.
+*/
+#define CACHE_STALE 0
+
+/*
+** When a sub-program is executed (OP_Program), a structure of this type
+** is allocated to store the current value of the program counter, as
+** well as the current memory cell array and various other frame specific
+** values stored in the Vdbe struct. When the sub-program is finished,
+** these values are copied back to the Vdbe from the VdbeFrame structure,
+** restoring the state of the VM to as it was before the sub-program
+** began executing.
+**
+** The memory for a VdbeFrame object is allocated and managed by a memory
+** cell in the parent (calling) frame. When the memory cell is deleted or
+** overwritten, the VdbeFrame object is not freed immediately. Instead, it
+** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame
+** list is deleted when the VM is reset in VdbeHalt(). The reason for doing
+** this instead of deleting the VdbeFrame immediately is to avoid recursive
+** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the
+** child frame are released.
+**
+** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is
+** set to NULL if the currently executing frame is the main program.
+*/
+typedef struct VdbeFrame VdbeFrame;
+struct VdbeFrame {
+ Vdbe *v; /* VM this frame belongs to */
+ VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */
+ Op *aOp; /* Program instructions for parent frame */
+ i64 *anExec; /* Event counters from parent frame */
+ Mem *aMem; /* Array of memory cells for parent frame */
+ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */
+ u8 *aOnce; /* Bitmask used by OP_Once */
+ void *token; /* Copy of SubProgram.token */
+ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
+ AuxData *pAuxData; /* Linked list of auxdata allocations */
+#if SQLITE_DEBUG
+ u32 iFrameMagic; /* magic number for sanity checking */
+#endif
+ int nCursor; /* Number of entries in apCsr */
+ int pc; /* Program Counter in parent (calling) frame */
+ int nOp; /* Size of aOp array */
+ int nMem; /* Number of entries in aMem */
+ int nChildMem; /* Number of memory cells for child frame */
+ int nChildCsr; /* Number of cursors for child frame */
+ i64 nChange; /* Statement changes (Vdbe.nChange) */
+ i64 nDbChange; /* Value of db->nChange */
+};
+
+/* Magic number for sanity checking on VdbeFrame objects */
+#define SQLITE_FRAME_MAGIC 0x879fb71e
+
+/*
+** Return a pointer to the array of registers allocated for use
+** by a VdbeFrame.
+*/
+#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
+
+/*
+** Internally, the vdbe manipulates nearly all SQL values as Mem
+** structures. Each Mem struct may cache multiple representations (string,
+** integer etc.) of the same value.
+*/
+struct sqlite3_value {
+ union MemValue {
+ double r; /* Real value used when MEM_Real is set in flags */
+ i64 i; /* Integer value used when MEM_Int is set in flags */
+ int nZero; /* Extra zero bytes when MEM_Zero and MEM_Blob set */
+ const char *zPType; /* Pointer type when MEM_Term|MEM_Subtype|MEM_Null */
+ FuncDef *pDef; /* Used only when flags==MEM_Agg */
+ } u;
+ char *z; /* String or BLOB value */
+ int n; /* Number of characters in string value, excluding '\0' */
+ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
+ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
+ u8 eSubtype; /* Subtype for this value */
+ /* ShallowCopy only needs to copy the information above */
+ sqlite3 *db; /* The associated database connection */
+ int szMalloc; /* Size of the zMalloc allocation */
+ u32 uTemp; /* Transient storage for serial_type in OP_MakeRecord */
+ char *zMalloc; /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
+ void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
+#ifdef SQLITE_DEBUG
+ Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */
+ u16 mScopyFlags; /* flags value immediately after the shallow copy */
+#endif
+};
+
+/*
+** Size of struct Mem not including the Mem.zMalloc member or anything that
+** follows.
+*/
+#define MEMCELLSIZE offsetof(Mem,db)
+
+/* One or more of the following flags are set to indicate the
+** representations of the value stored in the Mem struct.
+**
+** * MEM_Null An SQL NULL value
+**
+** * MEM_Null|MEM_Zero An SQL NULL with the virtual table
+** UPDATE no-change flag set
+**
+** * MEM_Null|MEM_Term| An SQL NULL, but also contains a
+** MEM_Subtype pointer accessible using
+** sqlite3_value_pointer().
+**
+** * MEM_Null|MEM_Cleared Special SQL NULL that compares non-equal
+** to other NULLs even using the IS operator.
+**
+** * MEM_Str A string, stored in Mem.z with
+** length Mem.n. Zero-terminated if
+** MEM_Term is set. This flag is
+** incompatible with MEM_Blob and
+** MEM_Null, but can appear with MEM_Int,
+** MEM_Real, and MEM_IntReal.
+**
+** * MEM_Blob A blob, stored in Mem.z length Mem.n.
+** Incompatible with MEM_Str, MEM_Null,
+** MEM_Int, MEM_Real, and MEM_IntReal.
+**
+** * MEM_Blob|MEM_Zero A blob in Mem.z of length Mem.n plus
+** MEM.u.i extra 0x00 bytes at the end.
+**
+** * MEM_Int Integer stored in Mem.u.i.
+**
+** * MEM_Real Real stored in Mem.u.r.
+**
+** * MEM_IntReal Real stored as an integer in Mem.u.i.
+**
+** If the MEM_Null flag is set, then the value is an SQL NULL value.
+** For a pointer type created using sqlite3_bind_pointer() or
+** sqlite3_result_pointer() the MEM_Term and MEM_Subtype flags are also set.
+**
+** If the MEM_Str flag is set then Mem.z points at a string representation.
+** Usually this is encoded in the same unicode encoding as the main
+** database (see below for exceptions). If the MEM_Term flag is also
+** set, then the string is nul terminated. The MEM_Int and MEM_Real
+** flags may coexist with the MEM_Str flag.
+*/
+#define MEM_Undefined 0x0000 /* Value is undefined */
+#define MEM_Null 0x0001 /* Value is NULL (or a pointer) */
+#define MEM_Str 0x0002 /* Value is a string */
+#define MEM_Int 0x0004 /* Value is an integer */
+#define MEM_Real 0x0008 /* Value is a real number */
+#define MEM_Blob 0x0010 /* Value is a BLOB */
+#define MEM_IntReal 0x0020 /* MEM_Int that stringifies like MEM_Real */
+#define MEM_AffMask 0x003f /* Mask of affinity bits */
+
+/* Extra bits that modify the meanings of the core datatypes above
+*/
+#define MEM_FromBind 0x0040 /* Value originates from sqlite3_bind() */
+ /* 0x0080 // Available */
+#define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */
+#define MEM_Term 0x0200 /* String in Mem.z is zero terminated */
+#define MEM_Zero 0x0400 /* Mem.i contains count of 0s appended to blob */
+#define MEM_Subtype 0x0800 /* Mem.eSubtype is valid */
+#define MEM_TypeMask 0x0dbf /* Mask of type bits */
+
+/* Bits that determine the storage for Mem.z for a string or blob or
+** aggregate accumulator.
+*/
+#define MEM_Dyn 0x1000 /* Need to call Mem.xDel() on Mem.z */
+#define MEM_Static 0x2000 /* Mem.z points to a static string */
+#define MEM_Ephem 0x4000 /* Mem.z points to an ephemeral string */
+#define MEM_Agg 0x8000 /* Mem.z points to an agg function context */
+
+/* Return TRUE if Mem X contains dynamically allocated content - anything
+** that needs to be deallocated to avoid a leak.
+*/
+#define VdbeMemDynamic(X) \
+ (((X)->flags&(MEM_Agg|MEM_Dyn))!=0)
+
+/*
+** Clear any existing type flags from a Mem and replace them with f
+*/
+#define MemSetTypeFlag(p, f) \
+ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
+
+/*
+** True if Mem X is a NULL-nochng type.
+*/
+#define MemNullNochng(X) \
+ (((X)->flags&MEM_TypeMask)==(MEM_Null|MEM_Zero) \
+ && (X)->n==0 && (X)->u.nZero==0)
+
+/*
+** Return true if a memory cell has been initialized and is valid.
+** is for use inside assert() statements only.
+**
+** A Memory cell is initialized if at least one of the
+** MEM_Null, MEM_Str, MEM_Int, MEM_Real, MEM_Blob, or MEM_IntReal bits
+** is set. It is "undefined" if all those bits are zero.
+*/
+#ifdef SQLITE_DEBUG
+#define memIsValid(M) ((M)->flags & MEM_AffMask)!=0
+#endif
+
+/*
+** Each auxiliary data pointer stored by a user defined function
+** implementation calling sqlite3_set_auxdata() is stored in an instance
+** of this structure. All such structures associated with a single VM
+** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
+** when the VM is halted (if not before).
+*/
+struct AuxData {
+ int iAuxOp; /* Instruction number of OP_Function opcode */
+ int iAuxArg; /* Index of function argument. */
+ void *pAux; /* Aux data pointer */
+ void (*xDeleteAux)(void*); /* Destructor for the aux data */
+ AuxData *pNextAux; /* Next element in list */
+};
+
+/*
+** The "context" argument for an installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbeInt.h because it uses substructures
+** (Mem) which are only defined there.
+*/
+struct sqlite3_context {
+ Mem *pOut; /* The return value is stored here */
+ FuncDef *pFunc; /* Pointer to function information */
+ Mem *pMem; /* Memory cell used to store aggregate context */
+ Vdbe *pVdbe; /* The VM that owns this context */
+ int iOp; /* Instruction number of OP_Function */
+ int isError; /* Error code returned by the function. */
+ u8 enc; /* Encoding to use for results */
+ u8 skipFlag; /* Skip accumulator loading if true */
+ u8 argc; /* Number of arguments */
+ sqlite3_value *argv[1]; /* Argument set */
+};
+
+/* A bitfield type for use inside of structures. Always follow with :N where
+** N is the number of bits.
+*/
+typedef unsigned bft; /* Bit Field Type */
+
+/* The ScanStatus object holds a single value for the
+** sqlite3_stmt_scanstatus() interface.
+*/
+typedef struct ScanStatus ScanStatus;
+struct ScanStatus {
+ int addrExplain; /* OP_Explain for loop */
+ int addrLoop; /* Address of "loops" counter */
+ int addrVisit; /* Address of "rows visited" counter */
+ int iSelectID; /* The "Select-ID" for this loop */
+ LogEst nEst; /* Estimated output rows per loop */
+ char *zName; /* Name of table or index */
+};
+
+/* The DblquoteStr object holds the text of a double-quoted
+** string for a prepared statement. A linked list of these objects
+** is constructed during statement parsing and is held on Vdbe.pDblStr.
+** When computing a normalized SQL statement for an SQL statement, that
+** list is consulted for each double-quoted identifier to see if the
+** identifier should really be a string literal.
+*/
+typedef struct DblquoteStr DblquoteStr;
+struct DblquoteStr {
+ DblquoteStr *pNextStr; /* Next string literal in the list */
+ char z[8]; /* Dequoted value for the string */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
+** is really a pointer to an instance of this structure.
+*/
+struct Vdbe {
+ sqlite3 *db; /* The database connection that owns this statement */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ Parse *pParse; /* Parsing context used to create this Vdbe */
+ ynVar nVar; /* Number of entries in aVar[] */
+ int nMem; /* Number of memory locations currently allocated */
+ int nCursor; /* Number of slots in apCsr[] */
+ u32 cacheCtr; /* VdbeCursor row cache generation counter */
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ i64 nChange; /* Number of db changes made since last reset */
+ int iStatement; /* Statement number (or 0 if has no opened stmt) */
+ i64 iCurrentTime; /* Value of julianday('now') for this statement */
+ i64 nFkConstraint; /* Number of imm. FK constraints this VM */
+ i64 nStmtDefCons; /* Number of def. constraints when stmt started */
+ i64 nStmtDefImmCons; /* Number of def. imm constraints when stmt started */
+ Mem *aMem; /* The memory locations */
+ Mem **apArg; /* Arguments to currently executing user function */
+ VdbeCursor **apCsr; /* One element of this array for each open cursor */
+ Mem *aVar; /* Values for the OP_Variable opcode. */
+
+ /* When allocating a new Vdbe object, all of the fields below should be
+ ** initialized to zero or NULL */
+
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Slots allocated for aOp[] */
+ Mem *aColName; /* Column names to return */
+ Mem *pResultSet; /* Pointer to an array of results */
+ char *zErrMsg; /* Error message written here */
+ VList *pVList; /* Name of variables */
+#ifndef SQLITE_OMIT_TRACE
+ i64 startTime; /* Time when query started - used for profiling */
+#endif
+#ifdef SQLITE_DEBUG
+ int rcApp; /* errcode set by sqlite3_result_error_code() */
+ u32 nWrite; /* Number of write operations that have occurred */
+#endif
+ u16 nResColumn; /* Number of columns in one row of the result set */
+ u8 errorAction; /* Recovery action to do in case of an error */
+ u8 minWriteFileFormat; /* Minimum file format for writable database files */
+ u8 prepFlags; /* SQLITE_PREPARE_* flags */
+ u8 eVdbeState; /* On of the VDBE_*_STATE values */
+ bft expired:2; /* 1: recompile VM immediately 2: when convenient */
+ bft explain:2; /* True if EXPLAIN present on SQL command */
+ bft changeCntOn:1; /* True to update the change-counter */
+ bft usesStmtJournal:1; /* True if uses a statement journal */
+ bft readOnly:1; /* True for statements that do not write */
+ bft bIsReader:1; /* True for statements that read */
+ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */
+ yDbMask lockMask; /* Subset of btreeMask that requires a lock */
+ u32 aCounter[9]; /* Counters used by sqlite3_stmt_status() */
+ char *zSql; /* Text of the SQL statement that generated this */
+#ifdef SQLITE_ENABLE_NORMALIZE
+ char *zNormSql; /* Normalization of the associated SQL statement */
+ DblquoteStr *pDblStr; /* List of double-quoted string literals */
+#endif
+ void *pFree; /* Free this when deleting the vdbe */
+ VdbeFrame *pFrame; /* Parent frame */
+ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */
+ int nFrame; /* Number of frames in pFrame list */
+ u32 expmask; /* Binding to these vars invalidates VM */
+ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */
+ AuxData *pAuxData; /* Linked list of auxdata allocations */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ i64 *anExec; /* Number of times each op has been executed */
+ int nScan; /* Entries in aScan[] */
+ ScanStatus *aScan; /* Scan definitions for sqlite3_stmt_scanstatus() */
+#endif
+};
+
+/*
+** The following are allowed values for Vdbe.eVdbeState
+*/
+#define VDBE_INIT_STATE 0 /* Prepared statement under construction */
+#define VDBE_READY_STATE 1 /* Ready to run but not yet started */
+#define VDBE_RUN_STATE 2 /* Run in progress */
+#define VDBE_HALT_STATE 3 /* Finished. Need reset() or finalize() */
+
+/*
+** Structure used to store the context required by the
+** sqlite3_preupdate_*() API functions.
+*/
+struct PreUpdate {
+ Vdbe *v;
+ VdbeCursor *pCsr; /* Cursor to read old values from */
+ int op; /* One of SQLITE_INSERT, UPDATE, DELETE */
+ u8 *aRecord; /* old.* database record */
+ KeyInfo keyinfo;
+ UnpackedRecord *pUnpacked; /* Unpacked version of aRecord[] */
+ UnpackedRecord *pNewUnpacked; /* Unpacked version of new.* record */
+ int iNewReg; /* Register for new.* values */
+ int iBlobWrite; /* Value returned by preupdate_blobwrite() */
+ i64 iKey1; /* First key value passed to hook */
+ i64 iKey2; /* Second key value passed to hook */
+ Mem *aNew; /* Array of new.* values */
+ Table *pTab; /* Schema object being upated */
+ Index *pPk; /* PK index if pTab is WITHOUT ROWID */
+};
+
+/*
+** An instance of this object is used to pass an vector of values into
+** OP_VFilter, the xFilter method of a virtual table. The vector is the
+** set of values on the right-hand side of an IN constraint.
+**
+** The value as passed into xFilter is an sqlite3_value with a "pointer"
+** type, such as is generated by sqlite3_result_pointer() and read by
+** sqlite3_value_pointer. Such values have MEM_Term|MEM_Subtype|MEM_Null
+** and a subtype of 'p'. The sqlite3_vtab_in_first() and _next() interfaces
+** know how to use this object to step through all the values in the
+** right operand of the IN constraint.
+*/
+typedef struct ValueList ValueList;
+struct ValueList {
+ BtCursor *pCsr; /* An ephemeral table holding all values */
+ sqlite3_value *pOut; /* Register to hold each decoded output value */
+};
+
+/* Size of content associated with serial types that fit into a
+** single-byte varint.
+*/
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[];
+#endif
+
+/*
+** Function prototypes
+*/
+SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...);
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
+SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe*,VdbeCursor*);
+void sqliteVdbePopStack(Vdbe*,int);
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p);
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor*);
+SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
+SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8);
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in);
+# define swapMixedEndianFloat(X) X = sqlite3FloatSwap(X)
+#else
+# define swapMixedEndianFloat(X)
+#endif
+SQLITE_PRIVATE void sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int);
+
+int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
+SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
+#if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB)
+SQLITE_PRIVATE int sqlite3VdbeNextOpcode(Vdbe*,Mem*,int,int*,int*,Op**);
+SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3*,Op*);
+#endif
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
+SQLITE_PRIVATE char *sqlite3VdbeDisplayComment(sqlite3*,const Op*,const char*);
+#endif
+#if !defined(SQLITE_OMIT_EXPLAIN)
+SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, i64, u8, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
+#else
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeMemSetPointer(Mem*, void*, const char*, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem*,sqlite3*,u16);
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
+#else
+SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem*,int);
+#endif
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem*);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, u8, u8);
+SQLITE_PRIVATE int sqlite3IntFloatCompare(i64,double);
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem*, int ifNull);
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem*,u8,u8);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset(BtCursor*,u32,Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem*p);
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*);
+#endif
+#if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB)
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
+SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*); /* Destructor on Mem */
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); /* Actually deletes the Frame */
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+SQLITE_PRIVATE void sqlite3VdbePreUpdateHook(
+ Vdbe*,VdbeCursor*,int,const char*,Table*,i64,int,int);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p);
+
+SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
+SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
+SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
+SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
+SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *);
+SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
+SQLITE_PRIVATE int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
+SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe*, VdbeCursor*);
+SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe*);
+#else
+# define sqlite3VdbeIncrWriteCounter(V,C)
+# define sqlite3VdbeAssertAbortable(V)
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE)
+SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*);
+#else
+# define sqlite3VdbeEnter(X)
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
+SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*);
+#else
+# define sqlite3VdbeLeave(X)
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
+SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*);
+#endif
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
+#else
+# define sqlite3VdbeCheckFk(p,i) 0
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr);
+#endif
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
+#endif
+
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
+ #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+#else
+ #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
+ #define ExpandBlob(P) SQLITE_OK
+#endif
+
+#endif /* !defined(SQLITE_VDBEINT_H) */
+
+/************** End of vdbeInt.h *********************************************/
+/************** Continuing where we left off in status.c *********************/
+
+/*
+** Variables in which to record status information.
+*/
+#if SQLITE_PTRSIZE>4
+typedef sqlite3_int64 sqlite3StatValueType;
+#else
+typedef u32 sqlite3StatValueType;
+#endif
+typedef struct sqlite3StatType sqlite3StatType;
+static SQLITE_WSD struct sqlite3StatType {
+ sqlite3StatValueType nowValue[10]; /* Current value */
+ sqlite3StatValueType mxValue[10]; /* Maximum value */
+} sqlite3Stat = { {0,}, {0,} };
+
+/*
+** Elements of sqlite3Stat[] are protected by either the memory allocator
+** mutex, or by the pcache1 mutex. The following array determines which.
+*/
+static const char statMutex[] = {
+ 0, /* SQLITE_STATUS_MEMORY_USED */
+ 1, /* SQLITE_STATUS_PAGECACHE_USED */
+ 1, /* SQLITE_STATUS_PAGECACHE_OVERFLOW */
+ 0, /* SQLITE_STATUS_SCRATCH_USED */
+ 0, /* SQLITE_STATUS_SCRATCH_OVERFLOW */
+ 0, /* SQLITE_STATUS_MALLOC_SIZE */
+ 0, /* SQLITE_STATUS_PARSER_STACK */
+ 1, /* SQLITE_STATUS_PAGECACHE_SIZE */
+ 0, /* SQLITE_STATUS_SCRATCH_SIZE */
+ 0, /* SQLITE_STATUS_MALLOC_COUNT */
+};
+
+
+/* The "wsdStat" macro will resolve to the status information
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Stat" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
+# define wsdStat x[0]
+#else
+# define wsdStatInit
+# define wsdStat sqlite3Stat
+#endif
+
+/*
+** Return the current value of a status parameter. The caller must
+** be holding the appropriate mutex.
+*/
+SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int op){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ return wsdStat.nowValue[op];
+}
+
+/*
+** Add N to the value of a status record. The caller must hold the
+** appropriate mutex. (Locking is checked by assert()).
+**
+** The StatusUp() routine can accept positive or negative values for N.
+** The value of N is added to the current status value and the high-water
+** mark is adjusted if necessary.
+**
+** The StatusDown() routine lowers the current value by N. The highwater
+** mark is unchanged. N must be non-negative for StatusDown().
+*/
+SQLITE_PRIVATE void sqlite3StatusUp(int op, int N){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ wsdStat.nowValue[op] += N;
+ if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+}
+SQLITE_PRIVATE void sqlite3StatusDown(int op, int N){
+ wsdStatInit;
+ assert( N>=0 );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ wsdStat.nowValue[op] -= N;
+}
+
+/*
+** Adjust the highwater mark if necessary.
+** The caller must hold the appropriate mutex.
+*/
+SQLITE_PRIVATE void sqlite3StatusHighwater(int op, int X){
+ sqlite3StatValueType newValue;
+ wsdStatInit;
+ assert( X>=0 );
+ newValue = (sqlite3StatValueType)X;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ assert( op==SQLITE_STATUS_MALLOC_SIZE
+ || op==SQLITE_STATUS_PAGECACHE_SIZE
+ || op==SQLITE_STATUS_PARSER_STACK );
+ if( newValue>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = newValue;
+ }
+}
+
+/*
+** Query status information.
+*/
+SQLITE_API int sqlite3_status64(
+ int op,
+ sqlite3_int64 *pCurrent,
+ sqlite3_int64 *pHighwater,
+ int resetFlag
+){
+ sqlite3_mutex *pMutex;
+ wsdStatInit;
+ if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex();
+ sqlite3_mutex_enter(pMutex);
+ *pCurrent = wsdStat.nowValue[op];
+ *pHighwater = wsdStat.mxValue[op];
+ if( resetFlag ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+ sqlite3_mutex_leave(pMutex);
+ (void)pMutex; /* Prevent warning when SQLITE_THREADSAFE=0 */
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
+ sqlite3_int64 iCur = 0, iHwtr = 0;
+ int rc;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag);
+ if( rc==0 ){
+ *pCurrent = (int)iCur;
+ *pHighwater = (int)iHwtr;
+ }
+ return rc;
+}
+
+/*
+** Return the number of LookasideSlot elements on the linked list
+*/
+static u32 countLookasideSlots(LookasideSlot *p){
+ u32 cnt = 0;
+ while( p ){
+ p = p->pNext;
+ cnt++;
+ }
+ return cnt;
+}
+
+/*
+** Count the number of slots of lookaside memory that are outstanding
+*/
+SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3 *db, int *pHighwater){
+ u32 nInit = countLookasideSlots(db->lookaside.pInit);
+ u32 nFree = countLookasideSlots(db->lookaside.pFree);
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ nInit += countLookasideSlots(db->lookaside.pSmallInit);
+ nFree += countLookasideSlots(db->lookaside.pSmallFree);
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( pHighwater ) *pHighwater = db->lookaside.nSlot - nInit;
+ return db->lookaside.nSlot - (nInit+nFree);
+}
+
+/*
+** Query status information for a single database connection
+*/
+SQLITE_API int sqlite3_db_status(
+ sqlite3 *db, /* The database connection whose status is desired */
+ int op, /* Status verb */
+ int *pCurrent, /* Write current value here */
+ int *pHighwater, /* Write high-water mark here */
+ int resetFlag /* Reset high-water mark if true */
+){
+ int rc = SQLITE_OK; /* Return code */
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || pCurrent==0|| pHighwater==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ switch( op ){
+ case SQLITE_DBSTATUS_LOOKASIDE_USED: {
+ *pCurrent = sqlite3LookasideUsed(db, pHighwater);
+ if( resetFlag ){
+ LookasideSlot *p = db->lookaside.pFree;
+ if( p ){
+ while( p->pNext ) p = p->pNext;
+ p->pNext = db->lookaside.pInit;
+ db->lookaside.pInit = db->lookaside.pFree;
+ db->lookaside.pFree = 0;
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ p = db->lookaside.pSmallFree;
+ if( p ){
+ while( p->pNext ) p = p->pNext;
+ p->pNext = db->lookaside.pSmallInit;
+ db->lookaside.pSmallInit = db->lookaside.pSmallFree;
+ db->lookaside.pSmallFree = 0;
+ }
+#endif
+ }
+ break;
+ }
+
+ case SQLITE_DBSTATUS_LOOKASIDE_HIT:
+ case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE:
+ case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: {
+ testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT );
+ testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE );
+ testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL );
+ assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 );
+ assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 );
+ *pCurrent = 0;
+ *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT];
+ if( resetFlag ){
+ db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0;
+ }
+ break;
+ }
+
+ /*
+ ** Return an approximation for the amount of memory currently used
+ ** by all pagers associated with the given database connection. The
+ ** highwater mark is meaningless and is returned as zero.
+ */
+ case SQLITE_DBSTATUS_CACHE_USED_SHARED:
+ case SQLITE_DBSTATUS_CACHE_USED: {
+ int totalUsed = 0;
+ int i;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ int nByte = sqlite3PagerMemUsed(pPager);
+ if( op==SQLITE_DBSTATUS_CACHE_USED_SHARED ){
+ nByte = nByte / sqlite3BtreeConnectionCount(pBt);
+ }
+ totalUsed += nByte;
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ *pCurrent = totalUsed;
+ *pHighwater = 0;
+ break;
+ }
+
+ /*
+ ** *pCurrent gets an accurate estimate of the amount of memory used
+ ** to store the schema for all databases (main, temp, and any ATTACHed
+ ** databases. *pHighwater is set to zero.
+ */
+ case SQLITE_DBSTATUS_SCHEMA_USED: {
+ int i; /* Used to iterate through schemas */
+ int nByte = 0; /* Used to accumulate return value */
+
+ sqlite3BtreeEnterAll(db);
+ db->pnBytesFreed = &nByte;
+ for(i=0; i<db->nDb; i++){
+ Schema *pSchema = db->aDb[i].pSchema;
+ if( ALWAYS(pSchema!=0) ){
+ HashElem *p;
+
+ nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
+ pSchema->tblHash.count
+ + pSchema->trigHash.count
+ + pSchema->idxHash.count
+ + pSchema->fkeyHash.count
+ );
+ nByte += sqlite3_msize(pSchema->tblHash.ht);
+ nByte += sqlite3_msize(pSchema->trigHash.ht);
+ nByte += sqlite3_msize(pSchema->idxHash.ht);
+ nByte += sqlite3_msize(pSchema->fkeyHash.ht);
+
+ for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
+ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
+ }
+ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
+ sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
+ }
+ }
+ }
+ db->pnBytesFreed = 0;
+ sqlite3BtreeLeaveAll(db);
+
+ *pHighwater = 0;
+ *pCurrent = nByte;
+ break;
+ }
+
+ /*
+ ** *pCurrent gets an accurate estimate of the amount of memory used
+ ** to store all prepared statements.
+ ** *pHighwater is set to zero.
+ */
+ case SQLITE_DBSTATUS_STMT_USED: {
+ struct Vdbe *pVdbe; /* Used to iterate through VMs */
+ int nByte = 0; /* Used to accumulate return value */
+
+ db->pnBytesFreed = &nByte;
+ for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
+ sqlite3VdbeDelete(pVdbe);
+ }
+ db->pnBytesFreed = 0;
+
+ *pHighwater = 0; /* IMP: R-64479-57858 */
+ *pCurrent = nByte;
+
+ break;
+ }
+
+ /*
+ ** Set *pCurrent to the total cache hits or misses encountered by all
+ ** pagers the database handle is connected to. *pHighwater is always set
+ ** to zero.
+ */
+ case SQLITE_DBSTATUS_CACHE_SPILL:
+ op = SQLITE_DBSTATUS_CACHE_WRITE+1;
+ /* no break */ deliberate_fall_through
+ case SQLITE_DBSTATUS_CACHE_HIT:
+ case SQLITE_DBSTATUS_CACHE_MISS:
+ case SQLITE_DBSTATUS_CACHE_WRITE:{
+ int i;
+ int nRet = 0;
+ assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 );
+ assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 );
+
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt ){
+ Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt);
+ sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
+ }
+ }
+ *pHighwater = 0; /* IMP: R-42420-56072 */
+ /* IMP: R-54100-20147 */
+ /* IMP: R-29431-39229 */
+ *pCurrent = nRet;
+ break;
+ }
+
+ /* Set *pCurrent to non-zero if there are unresolved deferred foreign
+ ** key constraints. Set *pCurrent to zero if all foreign key constraints
+ ** have been satisfied. The *pHighwater is always set to zero.
+ */
+ case SQLITE_DBSTATUS_DEFERRED_FKS: {
+ *pHighwater = 0; /* IMP: R-11967-56545 */
+ *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
+ break;
+ }
+
+ default: {
+ rc = SQLITE_ERROR;
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/************** End of status.c **********************************************/
+/************** Begin file date.c ********************************************/
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** SQLite processes all times and dates as julian day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implementation requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBN 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+/* #include <assert.h> */
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** The MSVC CRT on Windows CE may not have a localtime() function.
+** So declare a substitute. The substitute function itself is
+** defined in "os_win.c".
+*/
+#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
+ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
+struct tm *__cdecl localtime(const time_t *);
+#endif
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validJD; /* True (1) if iJD is valid */
+ char rawS; /* Raw numeric value stored in s */
+ char validYMD; /* True (1) if Y,M,D are valid */
+ char validHMS; /* True (1) if h,m,s are valid */
+ char validTZ; /* True (1) if tz is valid */
+ char tzSet; /* Timezone was set explicitly */
+ char isError; /* An overflow has occurred */
+};
+
+
+/*
+** Convert zDate into one or more integers according to the conversion
+** specifier zFormat.
+**
+** zFormat[] contains 4 characters for each integer converted, except for
+** the last integer which is specified by three characters. The meaning
+** of a four-character format specifiers ABCD is:
+**
+** A: number of digits to convert. Always "2" or "4".
+** B: minimum value. Always "0" or "1".
+** C: maximum value, decoded as:
+** a: 12
+** b: 14
+** c: 24
+** d: 31
+** e: 59
+** f: 9999
+** D: the separator character, or \000 to indicate this is the
+** last number to convert.
+**
+** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
+** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
+** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
+** the 2-digit day which is the last integer in the set.
+**
+** The function returns the number of successful conversions.
+*/
+static int getDigits(const char *zDate, const char *zFormat, ...){
+ /* The aMx[] array translates the 3rd character of each format
+ ** spec into a max size: a b c d e f */
+ static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
+ va_list ap;
+ int cnt = 0;
+ char nextC;
+ va_start(ap, zFormat);
+ do{
+ char N = zFormat[0] - '0';
+ char min = zFormat[1] - '0';
+ int val = 0;
+ u16 max;
+
+ assert( zFormat[2]>='a' && zFormat[2]<='f' );
+ max = aMx[zFormat[2] - 'a'];
+ nextC = zFormat[3];
+ val = 0;
+ while( N-- ){
+ if( !sqlite3Isdigit(*zDate) ){
+ goto end_getDigits;
+ }
+ val = val*10 + *zDate - '0';
+ zDate++;
+ }
+ if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
+ goto end_getDigits;
+ }
+ *va_arg(ap,int*) = val;
+ zDate++;
+ cnt++;
+ zFormat += 4;
+ }while( nextC );
+end_getDigits:
+ va_end(ap);
+ return cnt;
+}
+
+/*
+** Parse a timezone extension on the end of a date-time.
+** The extension is of the form:
+**
+** (+/-)HH:MM
+**
+** Or the "zulu" notation:
+**
+** Z
+**
+** If the parse is successful, write the number of minutes
+** of change in p->tz and return 0. If a parser error occurs,
+** return non-zero.
+**
+** A missing specifier is not considered an error.
+*/
+static int parseTimezone(const char *zDate, DateTime *p){
+ int sgn = 0;
+ int nHr, nMn;
+ int c;
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
+ p->tz = 0;
+ c = *zDate;
+ if( c=='-' ){
+ sgn = -1;
+ }else if( c=='+' ){
+ sgn = +1;
+ }else if( c=='Z' || c=='z' ){
+ zDate++;
+ goto zulu_time;
+ }else{
+ return c!=0;
+ }
+ zDate++;
+ if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ p->tz = sgn*(nMn + nHr*60);
+zulu_time:
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
+ p->tzSet = 1;
+ return *zDate!=0;
+}
+
+/*
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
+** The HH, MM, and SS must each be exactly 2 digits. The
+** fractional seconds FFFF can be one or more digits.
+**
+** Return 1 if there is a parsing error and 0 on success.
+*/
+static int parseHhMmSs(const char *zDate, DateTime *p){
+ int h, m, s;
+ double ms = 0.0;
+ if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ if( *zDate==':' ){
+ zDate++;
+ if( getDigits(zDate, "20e", &s)!=1 ){
+ return 1;
+ }
+ zDate += 2;
+ if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
+ double rScale = 1.0;
+ zDate++;
+ while( sqlite3Isdigit(*zDate) ){
+ ms = ms*10.0 + *zDate - '0';
+ rScale *= 10.0;
+ zDate++;
+ }
+ ms /= rScale;
+ }
+ }else{
+ s = 0;
+ }
+ p->validJD = 0;
+ p->rawS = 0;
+ p->validHMS = 1;
+ p->h = h;
+ p->m = m;
+ p->s = s + ms;
+ if( parseTimezone(zDate, p) ) return 1;
+ p->validTZ = (p->tz!=0)?1:0;
+ return 0;
+}
+
+/*
+** Put the DateTime object into its error state.
+*/
+static void datetimeError(DateTime *p){
+ memset(p, 0, sizeof(*p));
+ p->isError = 1;
+}
+
+/*
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
+** that the YYYY-MM-DD is according to the Gregorian calendar.
+**
+** Reference: Meeus page 61
+*/
+static void computeJD(DateTime *p){
+ int Y, M, D, A, B, X1, X2;
+
+ if( p->validJD ) return;
+ if( p->validYMD ){
+ Y = p->Y;
+ M = p->M;
+ D = p->D;
+ }else{
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
+ M = 1;
+ D = 1;
+ }
+ if( Y<-4713 || Y>9999 || p->rawS ){
+ datetimeError(p);
+ return;
+ }
+ if( M<=2 ){
+ Y--;
+ M += 12;
+ }
+ A = Y/100;
+ B = 2 - A + (A/4);
+ X1 = 36525*(Y+4716)/100;
+ X2 = 306001*(M+1)/10000;
+ p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
+ p->validJD = 1;
+ if( p->validHMS ){
+ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
+ if( p->validTZ ){
+ p->iJD -= p->tz*60000;
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+ }
+ }
+}
+
+/*
+** Parse dates of the form
+**
+** YYYY-MM-DD HH:MM:SS.FFF
+** YYYY-MM-DD HH:MM:SS
+** YYYY-MM-DD HH:MM
+** YYYY-MM-DD
+**
+** Write the result into the DateTime structure and return 0
+** on success and 1 if the input string is not a well-formed
+** date.
+*/
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
+ int Y, M, D, neg;
+
+ if( zDate[0]=='-' ){
+ zDate++;
+ neg = 1;
+ }else{
+ neg = 0;
+ }
+ if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
+ return 1;
+ }
+ zDate += 10;
+ while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
+ if( parseHhMmSs(zDate, p)==0 ){
+ /* We got the time */
+ }else if( *zDate==0 ){
+ p->validHMS = 0;
+ }else{
+ return 1;
+ }
+ p->validJD = 0;
+ p->validYMD = 1;
+ p->Y = neg ? -Y : Y;
+ p->M = M;
+ p->D = D;
+ if( p->validTZ ){
+ computeJD(p);
+ }
+ return 0;
+}
+
+/*
+** Set the time to the current time reported by the VFS.
+**
+** Return the number of errors.
+*/
+static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
+ p->iJD = sqlite3StmtCurrentTime(context);
+ if( p->iJD>0 ){
+ p->validJD = 1;
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Input "r" is a numeric quantity which might be a julian day number,
+** or the number of seconds since 1970. If the value if r is within
+** range of a julian day number, install it as such and set validJD.
+** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
+*/
+static void setRawDateNumber(DateTime *p, double r){
+ p->s = r;
+ p->rawS = 1;
+ if( r>=0.0 && r<5373484.5 ){
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
+ p->validJD = 1;
+ }
+}
+
+/*
+** Attempt to parse the given string into a julian day number. Return
+** the number of errors.
+**
+** The following are acceptable forms for the input string:
+**
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
+** DDDD.DD
+** now
+**
+** In the first form, the +/-HH:MM is always optional. The fractional
+** seconds extension (the ".FFF") is optional. The seconds portion
+** (":SS.FFF") is option. The year and date can be omitted as long
+** as there is a time string. The time string can be omitted as long
+** as there is a year and date.
+*/
+static int parseDateOrTime(
+ sqlite3_context *context,
+ const char *zDate,
+ DateTime *p
+){
+ double r;
+ if( parseYyyyMmDd(zDate,p)==0 ){
+ return 0;
+ }else if( parseHhMmSs(zDate, p)==0 ){
+ return 0;
+ }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
+ return setDateTimeToCurrent(context, p);
+ }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
+ setRawDateNumber(p, r);
+ return 0;
+ }
+ return 1;
+}
+
+/* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
+** Multiplying this by 86400000 gives 464269060799999 as the maximum value
+** for DateTime.iJD.
+**
+** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
+** such a large integer literal, so we have to encode it.
+*/
+#define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
+
+/*
+** Return TRUE if the given julian day number is within range.
+**
+** The input is the JulianDay times 86400000.
+*/
+static int validJulianDay(sqlite3_int64 iJD){
+ return iJD>=0 && iJD<=INT_464269060799999;
+}
+
+/*
+** Compute the Year, Month, and Day from the julian day number.
+*/
+static void computeYMD(DateTime *p){
+ int Z, A, B, C, D, E, X1;
+ if( p->validYMD ) return;
+ if( !p->validJD ){
+ p->Y = 2000;
+ p->M = 1;
+ p->D = 1;
+ }else if( !validJulianDay(p->iJD) ){
+ datetimeError(p);
+ return;
+ }else{
+ Z = (int)((p->iJD + 43200000)/86400000);
+ A = (int)((Z - 1867216.25)/36524.25);
+ A = Z + 1 + A - (A/4);
+ B = A + 1524;
+ C = (int)((B - 122.1)/365.25);
+ D = (36525*(C&32767))/100;
+ E = (int)((B-D)/30.6001);
+ X1 = (int)(30.6001*E);
+ p->D = B - D - X1;
+ p->M = E<14 ? E-1 : E-13;
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
+ }
+ p->validYMD = 1;
+}
+
+/*
+** Compute the Hour, Minute, and Seconds from the julian day number.
+*/
+static void computeHMS(DateTime *p){
+ int s;
+ if( p->validHMS ) return;
+ computeJD(p);
+ s = (int)((p->iJD + 43200000) % 86400000);
+ p->s = s/1000.0;
+ s = (int)p->s;
+ p->s -= s;
+ p->h = s/3600;
+ s -= p->h*3600;
+ p->m = s/60;
+ p->s += s - p->m*60;
+ p->rawS = 0;
+ p->validHMS = 1;
+}
+
+/*
+** Compute both YMD and HMS
+*/
+static void computeYMD_HMS(DateTime *p){
+ computeYMD(p);
+ computeHMS(p);
+}
+
+/*
+** Clear the YMD and HMS and the TZ
+*/
+static void clearYMD_HMS_TZ(DateTime *p){
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+}
+
+#ifndef SQLITE_OMIT_LOCALTIME
+/*
+** On recent Windows platforms, the localtime_s() function is available
+** as part of the "Secure CRT". It is essentially equivalent to
+** localtime_r() available under most POSIX platforms, except that the
+** order of the parameters is reversed.
+**
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
+**
+** If the user has not indicated to use localtime_r() or localtime_s()
+** already, check for an MSVC build environment that provides
+** localtime_s().
+*/
+#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
+ && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
+#undef HAVE_LOCALTIME_S
+#define HAVE_LOCALTIME_S 1
+#endif
+
+/*
+** The following routine implements the rough equivalent of localtime_r()
+** using whatever operating-system specific localtime facility that
+** is available. This routine returns 0 on success and
+** non-zero on any kind of error.
+**
+** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
+** routine will always fail. If bLocaltimeFault is nonzero and
+** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
+** invoked in place of the OS-defined localtime() function.
+**
+** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
+** library function localtime_r() is used to assist in the calculation of
+** local time.
+*/
+static int osLocaltime(time_t *t, struct tm *pTm){
+ int rc;
+#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
+ struct tm *pX;
+#if SQLITE_THREADSAFE>0
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ sqlite3_mutex_enter(mutex);
+ pX = localtime(t);
+#ifndef SQLITE_UNTESTABLE
+ if( sqlite3GlobalConfig.bLocaltimeFault ){
+ if( sqlite3GlobalConfig.xAltLocaltime!=0
+ && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm)
+ ){
+ pX = pTm;
+ }else{
+ pX = 0;
+ }
+ }
+#endif
+ if( pX ) *pTm = *pX;
+#if SQLITE_THREADSAFE>0
+ sqlite3_mutex_leave(mutex);
+#endif
+ rc = pX==0;
+#else
+#ifndef SQLITE_UNTESTABLE
+ if( sqlite3GlobalConfig.bLocaltimeFault ){
+ if( sqlite3GlobalConfig.xAltLocaltime!=0 ){
+ return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm);
+ }else{
+ return 1;
+ }
+ }
+#endif
+#if HAVE_LOCALTIME_R
+ rc = localtime_r(t, pTm)==0;
+#else
+ rc = localtime_s(pTm, t);
+#endif /* HAVE_LOCALTIME_R */
+#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
+ return rc;
+}
+#endif /* SQLITE_OMIT_LOCALTIME */
+
+
+#ifndef SQLITE_OMIT_LOCALTIME
+/*
+** Assuming the input DateTime is UTC, move it to its localtime equivalent.
+*/
+static int toLocaltime(
+ DateTime *p, /* Date at which to calculate offset */
+ sqlite3_context *pCtx /* Write error here if one occurs */
+){
+ time_t t;
+ struct tm sLocal;
+ int iYearDiff;
+
+ /* Initialize the contents of sLocal to avoid a compiler warning. */
+ memset(&sLocal, 0, sizeof(sLocal));
+
+ computeJD(p);
+ if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */
+ || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */
+ ){
+ /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
+ ** works for years between 1970 and 2037. For dates outside this range,
+ ** SQLite attempts to map the year into an equivalent year within this
+ ** range, do the calculation, then map the year back.
+ */
+ DateTime x = *p;
+ computeYMD_HMS(&x);
+ iYearDiff = (2000 + x.Y%4) - x.Y;
+ x.Y += iYearDiff;
+ x.validJD = 0;
+ computeJD(&x);
+ t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
+ }else{
+ iYearDiff = 0;
+ t = (time_t)(p->iJD/1000 - 21086676*(i64)10000);
+ }
+ if( osLocaltime(&t, &sLocal) ){
+ sqlite3_result_error(pCtx, "local time unavailable", -1);
+ return SQLITE_ERROR;
+ }
+ p->Y = sLocal.tm_year + 1900 - iYearDiff;
+ p->M = sLocal.tm_mon + 1;
+ p->D = sLocal.tm_mday;
+ p->h = sLocal.tm_hour;
+ p->m = sLocal.tm_min;
+ p->s = sLocal.tm_sec + (p->iJD%1000)*0.001;
+ p->validYMD = 1;
+ p->validHMS = 1;
+ p->validJD = 0;
+ p->rawS = 0;
+ p->validTZ = 0;
+ p->isError = 0;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_LOCALTIME */
+
+/*
+** The following table defines various date transformations of the form
+**
+** 'NNN days'
+**
+** Where NNN is an arbitrary floating-point number and "days" can be one
+** of several units of time.
+*/
+static const struct {
+ u8 nName; /* Length of the name */
+ char zName[7]; /* Name of the transformation */
+ float rLimit; /* Maximum NNN value for this transform */
+ float rXform; /* Constant used for this transform */
+} aXformType[] = {
+ { 6, "second", 4.6427e+14, 1.0 },
+ { 6, "minute", 7.7379e+12, 60.0 },
+ { 4, "hour", 1.2897e+11, 3600.0 },
+ { 3, "day", 5373485.0, 86400.0 },
+ { 5, "month", 176546.0, 2592000.0 },
+ { 4, "year", 14713.0, 31536000.0 },
+};
+
+/*
+** Process a modifier to a date-time stamp. The modifiers are
+** as follows:
+**
+** NNN days
+** NNN hours
+** NNN minutes
+** NNN.NNNN seconds
+** NNN months
+** NNN years
+** start of month
+** start of year
+** start of week
+** start of day
+** weekday N
+** unixepoch
+** localtime
+** utc
+**
+** Return 0 on success and 1 if there is any kind of error. If the error
+** is in a system call (i.e. localtime()), then an error message is written
+** to context pCtx. If the error is an unrecognized modifier, no error is
+** written to pCtx.
+*/
+static int parseModifier(
+ sqlite3_context *pCtx, /* Function context */
+ const char *z, /* The text of the modifier */
+ int n, /* Length of zMod in bytes */
+ DateTime *p, /* The date/time value to be modified */
+ int idx /* Parameter index of the modifier */
+){
+ int rc = 1;
+ double r;
+ switch(sqlite3UpperToLower[(u8)z[0]] ){
+ case 'a': {
+ /*
+ ** auto
+ **
+ ** If rawS is available, then interpret as a julian day number, or
+ ** a unix timestamp, depending on its magnitude.
+ */
+ if( sqlite3_stricmp(z, "auto")==0 ){
+ if( idx>1 ) return 1; /* IMP: R-33611-57934 */
+ if( !p->rawS || p->validJD ){
+ rc = 0;
+ p->rawS = 0;
+ }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */
+ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */
+ ){
+ r = p->s*1000.0 + 210866760000000.0;
+ clearYMD_HMS_TZ(p);
+ p->iJD = (sqlite3_int64)(r + 0.5);
+ p->validJD = 1;
+ p->rawS = 0;
+ rc = 0;
+ }
+ }
+ break;
+ }
+ case 'j': {
+ /*
+ ** julianday
+ **
+ ** Always interpret the prior number as a julian-day value. If this
+ ** is not the first modifier, or if the prior argument is not a numeric
+ ** value in the allowed range of julian day numbers understood by
+ ** SQLite (0..5373484.5) then the result will be NULL.
+ */
+ if( sqlite3_stricmp(z, "julianday")==0 ){
+ if( idx>1 ) return 1; /* IMP: R-31176-64601 */
+ if( p->validJD && p->rawS ){
+ rc = 0;
+ p->rawS = 0;
+ }
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ case 'l': {
+ /* localtime
+ **
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
+ ** show local time.
+ */
+ if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
+ rc = toLocaltime(p, pCtx);
+ }
+ break;
+ }
+#endif
+ case 'u': {
+ /*
+ ** unixepoch
+ **
+ ** Treat the current value of p->s as the number of
+ ** seconds since 1970. Convert to a real julian day number.
+ */
+ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
+ if( idx>1 ) return 1; /* IMP: R-49255-55373 */
+ r = p->s*1000.0 + 210866760000000.0;
+ if( r>=0.0 && r<464269060800000.0 ){
+ clearYMD_HMS_TZ(p);
+ p->iJD = (sqlite3_int64)(r + 0.5);
+ p->validJD = 1;
+ p->rawS = 0;
+ rc = 0;
+ }
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
+ if( p->tzSet==0 ){
+ i64 iOrigJD; /* Original localtime */
+ i64 iGuess; /* Guess at the corresponding utc time */
+ int cnt = 0; /* Safety to prevent infinite loop */
+ int iErr; /* Guess is off by this much */
+
+ computeJD(p);
+ iGuess = iOrigJD = p->iJD;
+ iErr = 0;
+ do{
+ DateTime new;
+ memset(&new, 0, sizeof(new));
+ iGuess -= iErr;
+ new.iJD = iGuess;
+ new.validJD = 1;
+ rc = toLocaltime(&new, pCtx);
+ if( rc ) return rc;
+ computeJD(&new);
+ iErr = new.iJD - iOrigJD;
+ }while( iErr && cnt++<3 );
+ memset(p, 0, sizeof(*p));
+ p->iJD = iGuess;
+ p->validJD = 1;
+ p->tzSet = 1;
+ }
+ rc = SQLITE_OK;
+ }
+#endif
+ break;
+ }
+ case 'w': {
+ /*
+ ** weekday N
+ **
+ ** Move the date to the same time on the next occurrence of
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
+ ** date is already on the appropriate weekday, this is a no-op.
+ */
+ if( sqlite3_strnicmp(z, "weekday ", 8)==0
+ && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
+ && (n=(int)r)==r && n>=0 && r<7 ){
+ sqlite3_int64 Z;
+ computeYMD_HMS(p);
+ p->validTZ = 0;
+ p->validJD = 0;
+ computeJD(p);
+ Z = ((p->iJD + 129600000)/86400000) % 7;
+ if( Z>n ) Z -= 7;
+ p->iJD += (n - Z)*86400000;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 's': {
+ /*
+ ** start of TTTTT
+ **
+ ** Move the date backwards to the beginning of the current day,
+ ** or month or year.
+ */
+ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break;
+ if( !p->validJD && !p->validYMD && !p->validHMS ) break;
+ z += 9;
+ computeYMD(p);
+ p->validHMS = 1;
+ p->h = p->m = 0;
+ p->s = 0.0;
+ p->rawS = 0;
+ p->validTZ = 0;
+ p->validJD = 0;
+ if( sqlite3_stricmp(z,"month")==0 ){
+ p->D = 1;
+ rc = 0;
+ }else if( sqlite3_stricmp(z,"year")==0 ){
+ p->M = 1;
+ p->D = 1;
+ rc = 0;
+ }else if( sqlite3_stricmp(z,"day")==0 ){
+ rc = 0;
+ }
+ break;
+ }
+ case '+':
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ double rRounder;
+ int i;
+ for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
+ if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
+ rc = 1;
+ break;
+ }
+ if( z[n]==':' ){
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
+ ** specified number of hours, minutes, seconds, and fractional seconds
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
+ ** omitted.
+ */
+ const char *z2 = z;
+ DateTime tx;
+ sqlite3_int64 day;
+ if( !sqlite3Isdigit(*z2) ) z2++;
+ memset(&tx, 0, sizeof(tx));
+ if( parseHhMmSs(z2, &tx) ) break;
+ computeJD(&tx);
+ tx.iJD -= 43200000;
+ day = tx.iJD/86400000;
+ tx.iJD -= day*86400000;
+ if( z[0]=='-' ) tx.iJD = -tx.iJD;
+ computeJD(p);
+ clearYMD_HMS_TZ(p);
+ p->iJD += tx.iJD;
+ rc = 0;
+ break;
+ }
+
+ /* If control reaches this point, it means the transformation is
+ ** one of the forms like "+NNN days". */
+ z += n;
+ while( sqlite3Isspace(*z) ) z++;
+ n = sqlite3Strlen30(z);
+ if( n>10 || n<3 ) break;
+ if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
+ computeJD(p);
+ rc = 1;
+ rRounder = r<0 ? -0.5 : +0.5;
+ for(i=0; i<ArraySize(aXformType); i++){
+ if( aXformType[i].nName==n
+ && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
+ && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
+ ){
+ switch( i ){
+ case 4: { /* Special processing to add months */
+ int x;
+ assert( strcmp(aXformType[i].zName,"month")==0 );
+ computeYMD_HMS(p);
+ p->M += (int)r;
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ p->validJD = 0;
+ r -= (int)r;
+ break;
+ }
+ case 5: { /* Special processing to add years */
+ int y = (int)r;
+ assert( strcmp(aXformType[i].zName,"year")==0 );
+ computeYMD_HMS(p);
+ p->Y += y;
+ p->validJD = 0;
+ r -= (int)r;
+ break;
+ }
+ }
+ computeJD(p);
+ p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder);
+ rc = 0;
+ break;
+ }
+ }
+ clearYMD_HMS_TZ(p);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** Process time function arguments. argv[0] is a date-time stamp.
+** argv[1] and following are modifiers. Parse them all and write
+** the resulting time into the DateTime structure p. Return 0
+** on success and 1 if there are any errors.
+**
+** If there are zero parameters (if even argv[0] is undefined)
+** then assume a default value of "now" for argv[0].
+*/
+static int isDate(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ DateTime *p
+){
+ int i, n;
+ const unsigned char *z;
+ int eType;
+ memset(p, 0, sizeof(*p));
+ if( argc==0 ){
+ if( !sqlite3NotPureFunc(context) ) return 1;
+ return setDateTimeToCurrent(context, p);
+ }
+ if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
+ || eType==SQLITE_INTEGER ){
+ setRawDateNumber(p, sqlite3_value_double(argv[0]));
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( !z || parseDateOrTime(context, (char*)z, p) ){
+ return 1;
+ }
+ }
+ for(i=1; i<argc; i++){
+ z = sqlite3_value_text(argv[i]);
+ n = sqlite3_value_bytes(argv[i]);
+ if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1;
+ }
+ computeJD(p);
+ if( p->isError || !validJulianDay(p->iJD) ) return 1;
+ return 0;
+}
+
+
+/*
+** The following routines implement the various date and time functions
+** of SQLite.
+*/
+
+/*
+** julianday( TIMESTRING, MOD, MOD, ...)
+**
+** Return the julian day number of the date specified in the arguments
+*/
+static void juliandayFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite3_result_double(context, x.iJD/86400000.0);
+ }
+}
+
+/*
+** unixepoch( TIMESTRING, MOD, MOD, ...)
+**
+** Return the number of seconds (including fractional seconds) since
+** the unix epoch of 1970-01-01 00:00:00 GMT.
+*/
+static void unixepochFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000);
+ }
+}
+
+/*
+** datetime( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD HH:MM:SS
+*/
+static void datetimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int Y, s;
+ char zBuf[24];
+ computeYMD_HMS(&x);
+ Y = x.Y;
+ if( Y<0 ) Y = -Y;
+ zBuf[1] = '0' + (Y/1000)%10;
+ zBuf[2] = '0' + (Y/100)%10;
+ zBuf[3] = '0' + (Y/10)%10;
+ zBuf[4] = '0' + (Y)%10;
+ zBuf[5] = '-';
+ zBuf[6] = '0' + (x.M/10)%10;
+ zBuf[7] = '0' + (x.M)%10;
+ zBuf[8] = '-';
+ zBuf[9] = '0' + (x.D/10)%10;
+ zBuf[10] = '0' + (x.D)%10;
+ zBuf[11] = ' ';
+ zBuf[12] = '0' + (x.h/10)%10;
+ zBuf[13] = '0' + (x.h)%10;
+ zBuf[14] = ':';
+ zBuf[15] = '0' + (x.m/10)%10;
+ zBuf[16] = '0' + (x.m)%10;
+ zBuf[17] = ':';
+ s = (int)x.s;
+ zBuf[18] = '0' + (s/10)%10;
+ zBuf[19] = '0' + (s)%10;
+ zBuf[20] = 0;
+ if( x.Y<0 ){
+ zBuf[0] = '-';
+ sqlite3_result_text(context, zBuf, 20, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, &zBuf[1], 19, SQLITE_TRANSIENT);
+ }
+ }
+}
+
+/*
+** time( TIMESTRING, MOD, MOD, ...)
+**
+** Return HH:MM:SS
+*/
+static void timeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int s;
+ char zBuf[16];
+ computeHMS(&x);
+ zBuf[0] = '0' + (x.h/10)%10;
+ zBuf[1] = '0' + (x.h)%10;
+ zBuf[2] = ':';
+ zBuf[3] = '0' + (x.m/10)%10;
+ zBuf[4] = '0' + (x.m)%10;
+ zBuf[5] = ':';
+ s = (int)x.s;
+ zBuf[6] = '0' + (s/10)%10;
+ zBuf[7] = '0' + (s)%10;
+ zBuf[8] = 0;
+ sqlite3_result_text(context, zBuf, 8, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** date( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD
+*/
+static void dateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int Y;
+ char zBuf[16];
+ computeYMD(&x);
+ Y = x.Y;
+ if( Y<0 ) Y = -Y;
+ zBuf[1] = '0' + (Y/1000)%10;
+ zBuf[2] = '0' + (Y/100)%10;
+ zBuf[3] = '0' + (Y/10)%10;
+ zBuf[4] = '0' + (Y)%10;
+ zBuf[5] = '-';
+ zBuf[6] = '0' + (x.M/10)%10;
+ zBuf[7] = '0' + (x.M)%10;
+ zBuf[8] = '-';
+ zBuf[9] = '0' + (x.D/10)%10;
+ zBuf[10] = '0' + (x.D)%10;
+ zBuf[11] = 0;
+ if( x.Y<0 ){
+ zBuf[0] = '-';
+ sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
+ }
+ }
+}
+
+/*
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
+**
+** Return a string described by FORMAT. Conversions as follows:
+**
+** %d day of month
+** %f ** fractional seconds SS.SSS
+** %H hour 00-24
+** %j day of year 000-366
+** %J ** julian day number
+** %m month 01-12
+** %M minute 00-59
+** %s seconds since 1970-01-01
+** %S seconds 00-59
+** %w day of week 0-6 sunday==0
+** %W week of year 00-53
+** %Y year 0000-9999
+** %% %
+*/
+static void strftimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ size_t i,j;
+ sqlite3 *db;
+ const char *zFmt;
+ sqlite3_str sRes;
+
+
+ if( argc==0 ) return;
+ zFmt = (const char*)sqlite3_value_text(argv[0]);
+ if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
+ db = sqlite3_context_db_handle(context);
+ sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+
+ computeJD(&x);
+ computeYMD_HMS(&x);
+ for(i=j=0; zFmt[i]; i++){
+ if( zFmt[i]!='%' ) continue;
+ if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
+ i++;
+ j = i + 1;
+ switch( zFmt[i] ){
+ case 'd': {
+ sqlite3_str_appendf(&sRes, "%02d", x.D);
+ break;
+ }
+ case 'f': {
+ double s = x.s;
+ if( s>59.999 ) s = 59.999;
+ sqlite3_str_appendf(&sRes, "%06.3f", s);
+ break;
+ }
+ case 'H': {
+ sqlite3_str_appendf(&sRes, "%02d", x.h);
+ break;
+ }
+ case 'W': /* Fall thru */
+ case 'j': {
+ int nDay; /* Number of days since 1st day of year */
+ DateTime y = x;
+ y.validJD = 0;
+ y.M = 1;
+ y.D = 1;
+ computeJD(&y);
+ nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
+ if( zFmt[i]=='W' ){
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
+ wd = (int)(((x.iJD+43200000)/86400000)%7);
+ sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
+ }else{
+ sqlite3_str_appendf(&sRes,"%03d",nDay+1);
+ }
+ break;
+ }
+ case 'J': {
+ sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
+ break;
+ }
+ case 'm': {
+ sqlite3_str_appendf(&sRes,"%02d",x.M);
+ break;
+ }
+ case 'M': {
+ sqlite3_str_appendf(&sRes,"%02d",x.m);
+ break;
+ }
+ case 's': {
+ i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
+ sqlite3_str_appendf(&sRes,"%lld",iS);
+ break;
+ }
+ case 'S': {
+ sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
+ break;
+ }
+ case 'w': {
+ sqlite3_str_appendchar(&sRes, 1,
+ (char)(((x.iJD+129600000)/86400000) % 7) + '0');
+ break;
+ }
+ case 'Y': {
+ sqlite3_str_appendf(&sRes,"%04d",x.Y);
+ break;
+ }
+ case '%': {
+ sqlite3_str_appendchar(&sRes, 1, '%');
+ break;
+ }
+ default: {
+ sqlite3_str_reset(&sRes);
+ return;
+ }
+ }
+ }
+ if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
+ sqlite3ResultStrAccum(context, &sRes);
+}
+
+/*
+** current_time()
+**
+** This function returns the same value as time('now').
+*/
+static void ctimeFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ timeFunc(context, 0, 0);
+}
+
+/*
+** current_date()
+**
+** This function returns the same value as date('now').
+*/
+static void cdateFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ dateFunc(context, 0, 0);
+}
+
+/*
+** current_timestamp()
+**
+** This function returns the same value as datetime('now').
+*/
+static void ctimestampFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ datetimeFunc(context, 0, 0);
+}
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
+
+#ifdef SQLITE_OMIT_DATETIME_FUNCS
+/*
+** If the library is compiled to omit the full-scale date and time
+** handling (to get a smaller binary), the following minimal version
+** of the functions current_time(), current_date() and current_timestamp()
+** are included instead. This is to support column declarations that
+** include "DEFAULT CURRENT_TIME" etc.
+**
+** This function uses the C-library functions time(), gmtime()
+** and strftime(). The format string to pass to strftime() is supplied
+** as the user-data for the function.
+*/
+static void currentTimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ time_t t;
+ char *zFormat = (char *)sqlite3_user_data(context);
+ sqlite3_int64 iT;
+ struct tm *pTm;
+ struct tm sNow;
+ char zBuf[20];
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ iT = sqlite3StmtCurrentTime(context);
+ if( iT<=0 ) return;
+ t = iT/1000 - 10000*(sqlite3_int64)21086676;
+#if HAVE_GMTIME_R
+ pTm = gmtime_r(&t, &sNow);
+#else
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+ pTm = gmtime(&t);
+ if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+#endif
+ if( pTm ){
+ strftime(zBuf, 20, zFormat, &sNow);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+#endif
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){
+ static FuncDef aDateTimeFuncs[] = {
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+ PURE_DATE(julianday, -1, 0, 0, juliandayFunc ),
+ PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ),
+ PURE_DATE(date, -1, 0, 0, dateFunc ),
+ PURE_DATE(time, -1, 0, 0, timeFunc ),
+ PURE_DATE(datetime, -1, 0, 0, datetimeFunc ),
+ PURE_DATE(strftime, -1, 0, 0, strftimeFunc ),
+ DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
+ DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
+ DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
+#else
+ STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
+ STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
+ STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
+#endif
+ };
+ sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
+}
+
+/************** End of date.c ************************************************/
+/************** Begin file os.c **********************************************/
+/*
+** 2005 November 29
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains OS interface code that is common to all
+** architectures.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#endif /* defined(SQLITE_TEST) */
+
+/*
+** When testing, also keep a count of the number of open files.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API int sqlite3_open_file_count = 0;
+#endif /* defined(SQLITE_TEST) */
+
+/*
+** The default SQLite sqlite3_vfs implementations do not allocate
+** memory (actually, os_unix.c allocates a small amount of memory
+** from within OsOpen()), but some third-party implementations may.
+** So we test the effects of a malloc() failing and the sqlite3OsXXX()
+** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
+**
+** The following functions are instrumented for malloc() failure
+** testing:
+**
+** sqlite3OsRead()
+** sqlite3OsWrite()
+** sqlite3OsSync()
+** sqlite3OsFileSize()
+** sqlite3OsLock()
+** sqlite3OsCheckReservedLock()
+** sqlite3OsFileControl()
+** sqlite3OsShmMap()
+** sqlite3OsOpen()
+** sqlite3OsDelete()
+** sqlite3OsAccess()
+** sqlite3OsFullPathname()
+**
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1;
+ #define DO_OS_MALLOC_TEST(x) \
+ if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \
+ void *pTstAlloc = sqlite3Malloc(10); \
+ if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT; \
+ sqlite3_free(pTstAlloc); \
+ }
+#else
+ #define DO_OS_MALLOC_TEST(x)
+#endif
+
+/*
+** The following routines are convenience wrappers around methods
+** of the sqlite3_file object. This is mostly just syntactic sugar. All
+** of this would be completely automatic if SQLite were coded using
+** C++ instead of plain old C.
+*/
+SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file *pId){
+ if( pId->pMethods ){
+ pId->pMethods->xClose(pId);
+ pId->pMethods = 0;
+ }
+}
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xRead(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xWrite(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
+ return id->pMethods->xTruncate(id, size);
+}
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
+ DO_OS_MALLOC_TEST(id);
+ return flags ? id->pMethods->xSync(id, flags) : SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xFileSize(id, pSize);
+}
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xLock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
+ return id->pMethods->xUnlock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xCheckReservedLock(id, pResOut);
+}
+
+/*
+** Use sqlite3OsFileControl() when we are doing something that might fail
+** and we need to know about the failures. Use sqlite3OsFileControlHint()
+** when simply tossing information over the wall to the VFS and we do not
+** really care if the VFS receives and understands the information since it
+** is only a hint and can be safely ignored. The sqlite3OsFileControlHint()
+** routine has no return value since the return value would be meaningless.
+*/
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
+ if( id->pMethods==0 ) return SQLITE_NOTFOUND;
+#ifdef SQLITE_TEST
+ if( op!=SQLITE_FCNTL_COMMIT_PHASETWO
+ && op!=SQLITE_FCNTL_LOCK_TIMEOUT
+ && op!=SQLITE_FCNTL_CKPT_DONE
+ && op!=SQLITE_FCNTL_CKPT_START
+ ){
+ /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite
+ ** is using a regular VFS, it is called after the corresponding
+ ** transaction has been committed. Injecting a fault at this point
+ ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM
+ ** but the transaction is committed anyway.
+ **
+ ** The core must call OsFileControl() though, not OsFileControlHint(),
+ ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably
+ ** means the commit really has failed and an error should be returned
+ ** to the user.
+ **
+ ** The CKPT_DONE and CKPT_START file-controls are write-only signals
+ ** to the cksumvfs. Their return code is meaningless and is ignored
+ ** by the SQLite core, so there is no point in simulating OOMs for them.
+ */
+ DO_OS_MALLOC_TEST(id);
+ }
+#endif
+ return id->pMethods->xFileControl(id, op, pArg);
+}
+SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){
+ if( id->pMethods ) (void)id->pMethods->xFileControl(id, op, pArg);
+}
+
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
+ int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
+ return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
+}
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
+ if( NEVER(id->pMethods==0) ) return 0;
+ return id->pMethods->xDeviceCharacteristics(id);
+}
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){
+ return id->pMethods->xShmLock(id, offset, n, flags);
+}
+SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){
+ id->pMethods->xShmBarrier(id);
+}
+SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){
+ return id->pMethods->xShmUnmap(id, deleteFlag);
+}
+SQLITE_PRIVATE int sqlite3OsShmMap(
+ sqlite3_file *id, /* Database file handle */
+ int iPage,
+ int pgsz,
+ int bExtend, /* True to extend file if necessary */
+ void volatile **pp /* OUT: Pointer to mapping */
+){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
+}
+#endif /* SQLITE_OMIT_WAL */
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* The real implementation of xFetch and xUnfetch */
+SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xFetch(id, iOff, iAmt, pp);
+}
+SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
+ return id->pMethods->xUnfetch(id, iOff, p);
+}
+#else
+/* No-op stubs to use when memory-mapped I/O is disabled */
+SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
+ *pp = 0;
+ return SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The next group of routines are convenience wrappers around the
+** VFS methods.
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ sqlite3_file *pFile,
+ int flags,
+ int *pFlagsOut
+){
+ int rc;
+ DO_OS_MALLOC_TEST(0);
+ /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
+ ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example,
+ ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
+ ** reaching the VFS. */
+ rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut);
+ assert( rc==SQLITE_OK || pFile->pMethods==0 );
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ DO_OS_MALLOC_TEST(0);
+ assert( dirSync==0 || dirSync==1 );
+ return pVfs->xDelete!=0 ? pVfs->xDelete(pVfs, zPath, dirSync) : SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3OsAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ DO_OS_MALLOC_TEST(0);
+ return pVfs->xAccess(pVfs, zPath, flags, pResOut);
+}
+SQLITE_PRIVATE int sqlite3OsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nPathOut,
+ char *zPathOut
+){
+ DO_OS_MALLOC_TEST(0);
+ zPathOut[0] = 0;
+ return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
+}
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ assert( zPath!=0 );
+ assert( strlen(zPath)<=SQLITE_MAX_PATHLEN ); /* tag-20210611-1 */
+ return pVfs->xDlOpen(pVfs, zPath);
+}
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ pVfs->xDlError(pVfs, nByte, zBufOut);
+}
+SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
+ return pVfs->xDlSym(pVfs, pHdle, zSym);
+}
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ pVfs->xDlClose(pVfs, pHandle);
+}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ if( sqlite3Config.iPrngSeed ){
+ memset(zBufOut, 0, nByte);
+ if( ALWAYS(nByte>(signed)sizeof(unsigned)) ) nByte = sizeof(unsigned int);
+ memcpy(zBufOut, &sqlite3Config.iPrngSeed, nByte);
+ return SQLITE_OK;
+ }else{
+ return pVfs->xRandomness(pVfs, nByte, zBufOut);
+ }
+
+}
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
+ return pVfs->xSleep(pVfs, nMicro);
+}
+SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs *pVfs){
+ return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0;
+}
+SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
+ int rc;
+ /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64()
+ ** method to get the current date and time if that method is available
+ ** (if iVersion is 2 or greater and the function pointer is not NULL) and
+ ** will fall back to xCurrentTime() if xCurrentTimeInt64() is
+ ** unavailable.
+ */
+ if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
+ rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut);
+ }else{
+ double r;
+ rc = pVfs->xCurrentTime(pVfs, &r);
+ *pTimeOut = (sqlite3_int64)(r*86400000.0);
+ }
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(
+ sqlite3_vfs *pVfs,
+ const char *zFile,
+ sqlite3_file **ppFile,
+ int flags,
+ int *pOutFlags
+){
+ int rc;
+ sqlite3_file *pFile;
+ pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
+ if( pFile ){
+ rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pFile);
+ *ppFile = 0;
+ }else{
+ *ppFile = pFile;
+ }
+ }else{
+ *ppFile = 0;
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ assert( *ppFile!=0 || rc!=SQLITE_OK );
+ return rc;
+}
+SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *pFile){
+ assert( pFile );
+ sqlite3OsClose(pFile);
+ sqlite3_free(pFile);
+}
+
+/*
+** This function is a wrapper around the OS specific implementation of
+** sqlite3_os_init(). The purpose of the wrapper is to provide the
+** ability to simulate a malloc failure, so that the handling of an
+** error in sqlite3_os_init() by the upper layers can be tested.
+*/
+SQLITE_PRIVATE int sqlite3OsInit(void){
+ void *p = sqlite3_malloc(10);
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ sqlite3_free(p);
+ return sqlite3_os_init();
+}
+
+/*
+** The list of all registered VFS implementations.
+*/
+static sqlite3_vfs * SQLITE_WSD vfsList = 0;
+#define vfsList GLOBAL(sqlite3_vfs *, vfsList)
+
+/*
+** Locate a VFS by name. If no name is given, simply return the
+** first VFS on the list.
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
+ sqlite3_vfs *pVfs = 0;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex;
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return 0;
+#endif
+#if SQLITE_THREADSAFE
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
+ if( zVfs==0 ) break;
+ if( strcmp(zVfs, pVfs->zName)==0 ) break;
+ }
+ sqlite3_mutex_leave(mutex);
+ return pVfs;
+}
+
+/*
+** Unlink a VFS from the linked list
+*/
+static void vfsUnlink(sqlite3_vfs *pVfs){
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) );
+ if( pVfs==0 ){
+ /* No-op */
+ }else if( vfsList==pVfs ){
+ vfsList = pVfs->pNext;
+ }else if( vfsList ){
+ sqlite3_vfs *p = vfsList;
+ while( p->pNext && p->pNext!=pVfs ){
+ p = p->pNext;
+ }
+ if( p->pNext==pVfs ){
+ p->pNext = pVfs->pNext;
+ }
+ }
+}
+
+/*
+** Register a VFS with the system. It is harmless to register the same
+** VFS multiple times. The new VFS becomes the default if makeDflt is
+** true.
+*/
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
+ MUTEX_LOGIC(sqlite3_mutex *mutex;)
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pVfs==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+
+ MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ if( makeDflt || vfsList==0 ){
+ pVfs->pNext = vfsList;
+ vfsList = pVfs;
+ }else{
+ pVfs->pNext = vfsList->pNext;
+ vfsList->pNext = pVfs;
+ }
+ assert(vfsList);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Unregister a VFS so that it is no longer accessible.
+*/
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
+ MUTEX_LOGIC(sqlite3_mutex *mutex;)
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/************** End of os.c **************************************************/
+/************** Begin file fault.c *******************************************/
+/*
+** 2008 Jan 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code to support the concept of "benign"
+** malloc failures (when the xMalloc() or xRealloc() method of the
+** sqlite3_mem_methods structure fails to allocate a block of memory
+** and returns 0).
+**
+** Most malloc failures are non-benign. After they occur, SQLite
+** abandons the current operation and returns an error code (usually
+** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
+** fatal. For example, if a malloc fails while resizing a hash table, this
+** is completely recoverable simply by not carrying out the resize. The
+** hash table will continue to function normally. So a malloc failure
+** during a hash table resize is a benign fault.
+*/
+
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_UNTESTABLE
+
+/*
+** Global variables.
+*/
+typedef struct BenignMallocHooks BenignMallocHooks;
+static SQLITE_WSD struct BenignMallocHooks {
+ void (*xBenignBegin)(void);
+ void (*xBenignEnd)(void);
+} sqlite3Hooks = { 0, 0 };
+
+/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
+** structure. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdHooks can refer directly
+** to the "sqlite3Hooks" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdHooksInit \
+ BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
+# define wsdHooks x[0]
+#else
+# define wsdHooksInit
+# define wsdHooks sqlite3Hooks
+#endif
+
+
+/*
+** Register hooks to call when sqlite3BeginBenignMalloc() and
+** sqlite3EndBenignMalloc() are called, respectively.
+*/
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(
+ void (*xBenignBegin)(void),
+ void (*xBenignEnd)(void)
+){
+ wsdHooksInit;
+ wsdHooks.xBenignBegin = xBenignBegin;
+ wsdHooks.xBenignEnd = xBenignEnd;
+}
+
+/*
+** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
+** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
+** indicates that subsequent malloc failures are non-benign.
+*/
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){
+ wsdHooksInit;
+ if( wsdHooks.xBenignBegin ){
+ wsdHooks.xBenignBegin();
+ }
+}
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){
+ wsdHooksInit;
+ if( wsdHooks.xBenignEnd ){
+ wsdHooks.xBenignEnd();
+ }
+}
+
+#endif /* #ifndef SQLITE_UNTESTABLE */
+
+/************** End of fault.c ***********************************************/
+/************** Begin file mem0.c ********************************************/
+/*
+** 2008 October 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains a no-op memory allocation drivers for use when
+** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented
+** here always fail. SQLite will not operate with these drivers. These
+** are merely placeholders. Real drivers must be substituted using
+** sqlite3_config() before SQLite will operate.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_ZERO_MALLOC
+
+/*
+** No-op versions of all memory allocation routines
+*/
+static void *sqlite3MemMalloc(int nByte){ return 0; }
+static void sqlite3MemFree(void *pPrior){ return; }
+static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
+static int sqlite3MemSize(void *pPrior){ return 0; }
+static int sqlite3MemRoundup(int n){ return n; }
+static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
+static void sqlite3MemShutdown(void *NotUsed){ return; }
+
+/*
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
+}
+
+#endif /* SQLITE_ZERO_MALLOC */
+
+/************** End of mem0.c ************************************************/
+/************** Begin file mem1.c ********************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object. The content of
+** this file is only used if SQLITE_SYSTEM_MALLOC is defined. The
+** SQLITE_SYSTEM_MALLOC macro is defined automatically if neither the
+** SQLITE_MEMDEBUG nor the SQLITE_WIN32_MALLOC macros are defined. The
+** default configuration is to use memory allocation routines in this
+** file.
+**
+** C-preprocessor macro summary:
+**
+** HAVE_MALLOC_USABLE_SIZE The configure script sets this symbol if
+** the malloc_usable_size() interface exists
+** on the target platform. Or, this symbol
+** can be set manually, if desired.
+** If an equivalent interface exists by
+** a different name, using a separate -D
+** option to rename it.
+**
+** SQLITE_WITHOUT_ZONEMALLOC Some older macs lack support for the zone
+** memory allocator. Set this symbol to enable
+** building on older macs.
+**
+** SQLITE_WITHOUT_MSIZE Set this symbol to disable the use of
+** _msize() on windows systems. This might
+** be necessary when compiling for Delphi,
+** for example.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_SYSTEM_MALLOC
+#if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC)
+
+/*
+** Use the zone allocator available on apple products unless the
+** SQLITE_WITHOUT_ZONEMALLOC symbol is defined.
+*/
+#include <sys/sysctl.h>
+#include <malloc/malloc.h>
+#ifdef SQLITE_MIGHT_BE_SINGLE_CORE
+#include <libkern/OSAtomic.h>
+#endif /* SQLITE_MIGHT_BE_SINGLE_CORE */
+static malloc_zone_t* _sqliteZone_;
+#define SQLITE_MALLOC(x) malloc_zone_malloc(_sqliteZone_, (x))
+#define SQLITE_FREE(x) malloc_zone_free(_sqliteZone_, (x));
+#define SQLITE_REALLOC(x,y) malloc_zone_realloc(_sqliteZone_, (x), (y))
+#define SQLITE_MALLOCSIZE(x) \
+ (_sqliteZone_ ? _sqliteZone_->size(_sqliteZone_,x) : malloc_size(x))
+
+#else /* if not __APPLE__ */
+
+/*
+** Use standard C library malloc and free on non-Apple systems.
+** Also used by Apple systems if SQLITE_WITHOUT_ZONEMALLOC is defined.
+*/
+#define SQLITE_MALLOC(x) malloc(x)
+#define SQLITE_FREE(x) free(x)
+#define SQLITE_REALLOC(x,y) realloc((x),(y))
+
+/*
+** The malloc.h header file is needed for malloc_usable_size() function
+** on some systems (e.g. Linux).
+*/
+#if HAVE_MALLOC_H && HAVE_MALLOC_USABLE_SIZE
+# define SQLITE_USE_MALLOC_H 1
+# define SQLITE_USE_MALLOC_USABLE_SIZE 1
+/*
+** The MSVCRT has malloc_usable_size(), but it is called _msize(). The
+** use of _msize() is automatic, but can be disabled by compiling with
+** -DSQLITE_WITHOUT_MSIZE. Using the _msize() function also requires
+** the malloc.h header file.
+*/
+#elif defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE)
+# define SQLITE_USE_MALLOC_H
+# define SQLITE_USE_MSIZE
+#endif
+
+/*
+** Include the malloc.h header file, if necessary. Also set define macro
+** SQLITE_MALLOCSIZE to the appropriate function name, which is _msize()
+** for MSVC and malloc_usable_size() for most other systems (e.g. Linux).
+** The memory size function can always be overridden manually by defining
+** the macro SQLITE_MALLOCSIZE to the desired function name.
+*/
+#if defined(SQLITE_USE_MALLOC_H)
+# include <malloc.h>
+# if defined(SQLITE_USE_MALLOC_USABLE_SIZE)
+# if !defined(SQLITE_MALLOCSIZE)
+# define SQLITE_MALLOCSIZE(x) malloc_usable_size(x)
+# endif
+# elif defined(SQLITE_USE_MSIZE)
+# if !defined(SQLITE_MALLOCSIZE)
+# define SQLITE_MALLOCSIZE _msize
+# endif
+# endif
+#endif /* defined(SQLITE_USE_MALLOC_H) */
+
+#endif /* __APPLE__ or not __APPLE__ */
+
+/*
+** Like malloc(), but remember the size of the allocation
+** so that we can find it later using sqlite3MemSize().
+**
+** For this low-level routine, we are guaranteed that nByte>0 because
+** cases of nByte<=0 will be intercepted and dealt with by higher level
+** routines.
+*/
+static void *sqlite3MemMalloc(int nByte){
+#ifdef SQLITE_MALLOCSIZE
+ void *p;
+ testcase( ROUND8(nByte)==nByte );
+ p = SQLITE_MALLOC( nByte );
+ if( p==0 ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
+ }
+ return p;
+#else
+ sqlite3_int64 *p;
+ assert( nByte>0 );
+ testcase( ROUND8(nByte)!=nByte );
+ p = SQLITE_MALLOC( nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
+ }else{
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
+ }
+ return (void *)p;
+#endif
+}
+
+/*
+** Like free() but works for allocations obtained from sqlite3MemMalloc()
+** or sqlite3MemRealloc().
+**
+** For this low-level routine, we already know that pPrior!=0 since
+** cases where pPrior==0 will have been intecepted and dealt with
+** by higher-level routines.
+*/
+static void sqlite3MemFree(void *pPrior){
+#ifdef SQLITE_MALLOCSIZE
+ SQLITE_FREE(pPrior);
+#else
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 );
+ p--;
+ SQLITE_FREE(p);
+#endif
+}
+
+/*
+** Report the allocated size of a prior return from xMalloc()
+** or xRealloc().
+*/
+static int sqlite3MemSize(void *pPrior){
+#ifdef SQLITE_MALLOCSIZE
+ assert( pPrior!=0 );
+ return (int)SQLITE_MALLOCSIZE(pPrior);
+#else
+ sqlite3_int64 *p;
+ assert( pPrior!=0 );
+ p = (sqlite3_int64*)pPrior;
+ p--;
+ return (int)p[0];
+#endif
+}
+
+/*
+** Like realloc(). Resize an allocation previously obtained from
+** sqlite3MemMalloc().
+**
+** For this low-level interface, we know that pPrior!=0. Cases where
+** pPrior==0 while have been intercepted by higher-level routine and
+** redirected to xMalloc. Similarly, we know that nByte>0 because
+** cases where nByte<=0 will have been intercepted by higher-level
+** routines and redirected to xFree.
+*/
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+#ifdef SQLITE_MALLOCSIZE
+ void *p = SQLITE_REALLOC(pPrior, nByte);
+ if( p==0 ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM,
+ "failed memory resize %u to %u bytes",
+ SQLITE_MALLOCSIZE(pPrior), nByte);
+ }
+ return p;
+#else
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 && nByte>0 );
+ assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */
+ p--;
+ p = SQLITE_REALLOC(p, nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
+ }else{
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM,
+ "failed memory resize %u to %u bytes",
+ sqlite3MemSize(pPrior), nByte);
+ }
+ return (void*)p;
+#endif
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return ROUND8(n);
+}
+
+/*
+** Initialize this module.
+*/
+static int sqlite3MemInit(void *NotUsed){
+#if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC)
+ int cpuCount;
+ size_t len;
+ if( _sqliteZone_ ){
+ return SQLITE_OK;
+ }
+ len = sizeof(cpuCount);
+ /* One usually wants to use hw.acctivecpu for MT decisions, but not here */
+ sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0);
+ if( cpuCount>1 ){
+ /* defer MT decisions to system malloc */
+ _sqliteZone_ = malloc_default_zone();
+ }else{
+ /* only 1 core, use our own zone to contention over global locks,
+ ** e.g. we have our own dedicated locks */
+ _sqliteZone_ = malloc_create_zone(4096, 0);
+ malloc_set_zone_name(_sqliteZone_, "Sqlite_Heap");
+ }
+#endif /* defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) */
+ UNUSED_PARAMETER(NotUsed);
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ return;
+}
+
+/*
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
+}
+
+#endif /* SQLITE_SYSTEM_MALLOC */
+
+/************** End of mem1.c ************************************************/
+/************** Begin file mem2.c ********************************************/
+/*
+** 2007 August 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs while adding lots of additional debugging
+** information to each allocation in order to help detect and fix memory
+** leaks and memory usage errors.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is used only if the
+** SQLITE_MEMDEBUG macro is defined
+*/
+#ifdef SQLITE_MEMDEBUG
+
+/*
+** The backtrace functionality is only available with GLIBC
+*/
+#ifdef __GLIBC__
+ extern int backtrace(void**,int);
+ extern void backtrace_symbols_fd(void*const*,int,int);
+#else
+# define backtrace(A,B) 1
+# define backtrace_symbols_fd(A,B,C)
+#endif
+/* #include <stdio.h> */
+
+/*
+** Each memory allocation looks like this:
+**
+** ------------------------------------------------------------------------
+** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
+** ------------------------------------------------------------------------
+**
+** The application code sees only a pointer to the allocation. We have
+** to back up from the allocation pointer to find the MemBlockHdr. The
+** MemBlockHdr tells us the size of the allocation and the number of
+** backtrace pointers. There is also a guard word at the end of the
+** MemBlockHdr.
+*/
+struct MemBlockHdr {
+ i64 iSize; /* Size of this allocation */
+ struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
+ char nBacktrace; /* Number of backtraces on this alloc */
+ char nBacktraceSlots; /* Available backtrace slots */
+ u8 nTitle; /* Bytes of title; includes '\0' */
+ u8 eType; /* Allocation type code */
+ int iForeGuard; /* Guard word for sanity */
+};
+
+/*
+** Guard words
+*/
+#define FOREGUARD 0x80F5E153
+#define REARGUARD 0xE4676B53
+
+/*
+** Number of malloc size increments to track.
+*/
+#define NCSIZE 1000
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Head and tail of a linked list of all outstanding allocations
+ */
+ struct MemBlockHdr *pFirst;
+ struct MemBlockHdr *pLast;
+
+ /*
+ ** The number of levels of backtrace to save in new allocations.
+ */
+ int nBacktrace;
+ void (*xBacktrace)(int, int, void **);
+
+ /*
+ ** Title text to insert in front of each block
+ */
+ int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
+ char zTitle[100]; /* The title text */
+
+ /*
+ ** sqlite3MallocDisallow() increments the following counter.
+ ** sqlite3MallocAllow() decrements it.
+ */
+ int disallow; /* Do not allow memory allocation */
+
+ /*
+ ** Gather statistics on the sizes of memory allocations.
+ ** nAlloc[i] is the number of allocation attempts of i*8
+ ** bytes. i==NCSIZE is the number of allocation attempts for
+ ** sizes more than NCSIZE*8 bytes.
+ */
+ int nAlloc[NCSIZE]; /* Total number of allocations */
+ int nCurrent[NCSIZE]; /* Current number of allocations */
+ int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
+
+} mem;
+
+
+/*
+** Adjust memory usage statistics
+*/
+static void adjustStats(int iSize, int increment){
+ int i = ROUND8(iSize)/8;
+ if( i>NCSIZE-1 ){
+ i = NCSIZE - 1;
+ }
+ if( increment>0 ){
+ mem.nAlloc[i]++;
+ mem.nCurrent[i]++;
+ if( mem.nCurrent[i]>mem.mxCurrent[i] ){
+ mem.mxCurrent[i] = mem.nCurrent[i];
+ }
+ }else{
+ mem.nCurrent[i]--;
+ assert( mem.nCurrent[i]>=0 );
+ }
+}
+
+/*
+** Given an allocation, find the MemBlockHdr for that allocation.
+**
+** This routine checks the guards at either end of the allocation and
+** if they are incorrect it asserts.
+*/
+static struct MemBlockHdr *sqlite3MemsysGetHeader(const void *pAllocation){
+ struct MemBlockHdr *p;
+ int *pInt;
+ u8 *pU8;
+ int nReserve;
+
+ p = (struct MemBlockHdr*)pAllocation;
+ p--;
+ assert( p->iForeGuard==(int)FOREGUARD );
+ nReserve = ROUND8(p->iSize);
+ pInt = (int*)pAllocation;
+ pU8 = (u8*)pAllocation;
+ assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
+ /* This checks any of the "extra" bytes allocated due
+ ** to rounding up to an 8 byte boundary to ensure
+ ** they haven't been overwritten.
+ */
+ while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 );
+ return p;
+}
+
+/*
+** Return the number of bytes currently allocated at address p.
+*/
+static int sqlite3MemSize(void *p){
+ struct MemBlockHdr *pHdr;
+ if( !p ){
+ return 0;
+ }
+ pHdr = sqlite3MemsysGetHeader(p);
+ return (int)pHdr->iSize;
+}
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+static int sqlite3MemInit(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( (sizeof(struct MemBlockHdr)&7) == 0 );
+ if( !sqlite3GlobalConfig.bMemstat ){
+ /* If memory status is enabled, then the malloc.c wrapper will already
+ ** hold the STATIC_MEM mutex when the routines here are invoked. */
+ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem.mutex = 0;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return ROUND8(n);
+}
+
+/*
+** Fill a buffer with pseudo-random bytes. This is used to preset
+** the content of a new memory allocation to unpredictable values and
+** to clear the content of a freed allocation to unpredictable values.
+*/
+static void randomFill(char *pBuf, int nByte){
+ unsigned int x, y, r;
+ x = SQLITE_PTR_TO_INT(pBuf);
+ y = nByte | 1;
+ while( nByte >= 4 ){
+ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
+ y = y*1103515245 + 12345;
+ r = x ^ y;
+ *(int*)pBuf = r;
+ pBuf += 4;
+ nByte -= 4;
+ }
+ while( nByte-- > 0 ){
+ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
+ y = y*1103515245 + 12345;
+ r = x ^ y;
+ *(pBuf++) = r & 0xff;
+ }
+}
+
+/*
+** Allocate nByte bytes of memory.
+*/
+static void *sqlite3MemMalloc(int nByte){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ int *pInt;
+ void *p = 0;
+ int totalSize;
+ int nReserve;
+ sqlite3_mutex_enter(mem.mutex);
+ assert( mem.disallow==0 );
+ nReserve = ROUND8(nByte);
+ totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
+ mem.nBacktrace*sizeof(void*) + mem.nTitle;
+ p = malloc(totalSize);
+ if( p ){
+ z = p;
+ pBt = (void**)&z[mem.nTitle];
+ pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
+ pHdr->pNext = 0;
+ pHdr->pPrev = mem.pLast;
+ if( mem.pLast ){
+ mem.pLast->pNext = pHdr;
+ }else{
+ mem.pFirst = pHdr;
+ }
+ mem.pLast = pHdr;
+ pHdr->iForeGuard = FOREGUARD;
+ pHdr->eType = MEMTYPE_HEAP;
+ pHdr->nBacktraceSlots = mem.nBacktrace;
+ pHdr->nTitle = mem.nTitle;
+ if( mem.nBacktrace ){
+ void *aAddr[40];
+ pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
+ memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
+ assert(pBt[0]);
+ if( mem.xBacktrace ){
+ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
+ }
+ }else{
+ pHdr->nBacktrace = 0;
+ }
+ if( mem.nTitle ){
+ memcpy(z, mem.zTitle, mem.nTitle);
+ }
+ pHdr->iSize = nByte;
+ adjustStats(nByte, +1);
+ pInt = (int*)&pHdr[1];
+ pInt[nReserve/sizeof(int)] = REARGUARD;
+ randomFill((char*)pInt, nByte);
+ memset(((char*)pInt)+nByte, 0x65, nReserve-nByte);
+ p = (void*)pInt;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return p;
+}
+
+/*
+** Free memory.
+*/
+static void sqlite3MemFree(void *pPrior){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0
+ || mem.mutex!=0 );
+ pHdr = sqlite3MemsysGetHeader(pPrior);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ sqlite3_mutex_enter(mem.mutex);
+ if( pHdr->pPrev ){
+ assert( pHdr->pPrev->pNext==pHdr );
+ pHdr->pPrev->pNext = pHdr->pNext;
+ }else{
+ assert( mem.pFirst==pHdr );
+ mem.pFirst = pHdr->pNext;
+ }
+ if( pHdr->pNext ){
+ assert( pHdr->pNext->pPrev==pHdr );
+ pHdr->pNext->pPrev = pHdr->pPrev;
+ }else{
+ assert( mem.pLast==pHdr );
+ mem.pLast = pHdr->pPrev;
+ }
+ z = (char*)pBt;
+ z -= pHdr->nTitle;
+ adjustStats((int)pHdr->iSize, -1);
+ randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
+ (int)pHdr->iSize + sizeof(int) + pHdr->nTitle);
+ free(z);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** For this debugging implementation, we *always* make a copy of the
+** allocation into a new place in memory. In this way, if the
+** higher level code is using pointer to the old allocation, it is
+** much more likely to break and we are much more liking to find
+** the error.
+*/
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+ struct MemBlockHdr *pOldHdr;
+ void *pNew;
+ assert( mem.disallow==0 );
+ assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */
+ pOldHdr = sqlite3MemsysGetHeader(pPrior);
+ pNew = sqlite3MemMalloc(nByte);
+ if( pNew ){
+ memcpy(pNew, pPrior, (int)(nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize));
+ if( nByte>pOldHdr->iSize ){
+ randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - (int)pOldHdr->iSize);
+ }
+ sqlite3MemFree(pPrior);
+ }
+ return pNew;
+}
+
+/*
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
+}
+
+/*
+** Set the "type" of an allocation.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){
+ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD );
+ pHdr->eType = eType;
+ }
+}
+
+/*
+** Return TRUE if the mask of type in eType matches the type of the
+** allocation p. Also return true if p==NULL.
+**
+** This routine is designed for use within an assert() statement, to
+** verify the type of an allocation. For example:
+**
+** assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+*/
+SQLITE_PRIVATE int sqlite3MemdebugHasType(const void *p, u8 eType){
+ int rc = 1;
+ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
+ if( (pHdr->eType&eType)==0 ){
+ rc = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Return TRUE if the mask of type in eType matches no bits of the type of the
+** allocation p. Also return true if p==NULL.
+**
+** This routine is designed for use within an assert() statement, to
+** verify the type of an allocation. For example:
+**
+** assert( sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
+*/
+SQLITE_PRIVATE int sqlite3MemdebugNoType(const void *p, u8 eType){
+ int rc = 1;
+ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
+ if( (pHdr->eType&eType)!=0 ){
+ rc = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Set the number of backtrace levels kept for each allocation.
+** A value of zero turns off backtracing. The number is always rounded
+** up to a multiple of 2.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
+ if( depth<0 ){ depth = 0; }
+ if( depth>20 ){ depth = 20; }
+ depth = (depth+1)&0xfe;
+ mem.nBacktrace = depth;
+}
+
+SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
+ mem.xBacktrace = xBacktrace;
+}
+
+/*
+** Set the title string for subsequent allocations.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
+ unsigned int n = sqlite3Strlen30(zTitle) + 1;
+ sqlite3_mutex_enter(mem.mutex);
+ if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
+ memcpy(mem.zTitle, zTitle, n);
+ mem.zTitle[n] = 0;
+ mem.nTitle = ROUND8(n);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+SQLITE_PRIVATE void sqlite3MemdebugSync(){
+ struct MemBlockHdr *pHdr;
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ void **pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ mem.xBacktrace((int)pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
+ }
+}
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+ FILE *out;
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ int i;
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ char *z = (char*)pHdr;
+ z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
+ fprintf(out, "**** %lld bytes at %p from %s ****\n",
+ pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
+ if( pHdr->nBacktrace ){
+ fflush(out);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
+ fprintf(out, "\n");
+ }
+ }
+ fprintf(out, "COUNTS:\n");
+ for(i=0; i<NCSIZE-1; i++){
+ if( mem.nAlloc[i] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
+ }
+ }
+ if( mem.nAlloc[NCSIZE-1] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
+ mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
+ }
+ fclose(out);
+}
+
+/*
+** Return the number of times sqlite3MemMalloc() has been called.
+*/
+SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
+ int i;
+ int nTotal = 0;
+ for(i=0; i<NCSIZE; i++){
+ nTotal += mem.nAlloc[i];
+ }
+ return nTotal;
+}
+
+
+#endif /* SQLITE_MEMDEBUG */
+
+/************** End of mem2.c ************************************************/
+/************** Begin file mem3.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The SQLite user supplies a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is only built into the library
+** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
+** mean that the library will use a memory-pool by default, just that
+** it is available. The mempool allocator is activated by calling
+** sqlite3_config().
+*/
+#ifdef SQLITE_ENABLE_MEMSYS3
+
+/*
+** Maximum size (in Mem3Blocks) of a "small" chunk.
+*/
+#define MX_SMALL 10
+
+
+/*
+** Number of freelist hash slots
+*/
+#define N_HASH 61
+
+/*
+** A memory allocation (also called a "chunk") consists of two or
+** more blocks where each block is 8 bytes. The first 8 bytes are
+** a header that is not returned to the user.
+**
+** A chunk is two or more blocks that is either checked out or
+** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
+** size of the allocation in blocks if the allocation is free.
+** The u.hdr.size4x&1 bit is true if the chunk is checked out and
+** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
+** is true if the previous chunk is checked out and false if the
+** previous chunk is free. The u.hdr.prevSize field is the size of
+** the previous chunk in blocks if the previous chunk is on the
+** freelist. If the previous chunk is checked out, then
+** u.hdr.prevSize can be part of the data for that chunk and should
+** not be read or written.
+**
+** We often identify a chunk by its index in mem3.aPool[]. When
+** this is done, the chunk index refers to the second block of
+** the chunk. In this way, the first chunk has an index of 1.
+** A chunk index of 0 means "no such chunk" and is the equivalent
+** of a NULL pointer.
+**
+** The second block of free chunks is of the form u.list. The
+** two fields form a double-linked list of chunks of related sizes.
+** Pointers to the head of the list are stored in mem3.aiSmall[]
+** for smaller chunks and mem3.aiHash[] for larger chunks.
+**
+** The second block of a chunk is user data if the chunk is checked
+** out. If a chunk is checked out, the user data may extend into
+** the u.hdr.prevSize value of the following chunk.
+*/
+typedef struct Mem3Block Mem3Block;
+struct Mem3Block {
+ union {
+ struct {
+ u32 prevSize; /* Size of previous chunk in Mem3Block elements */
+ u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
+ } hdr;
+ struct {
+ u32 next; /* Index in mem3.aPool[] of next free chunk */
+ u32 prev; /* Index in mem3.aPool[] of previous free chunk */
+ } list;
+ } u;
+};
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem3". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static SQLITE_WSD struct Mem3Global {
+ /*
+ ** Memory available for allocation. nPool is the size of the array
+ ** (in Mem3Blocks) pointed to by aPool less 2.
+ */
+ u32 nPool;
+ Mem3Block *aPool;
+
+ /*
+ ** True if we are evaluating an out-of-memory callback.
+ */
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** The minimum amount of free space that we have seen.
+ */
+ u32 mnKeyBlk;
+
+ /*
+ ** iKeyBlk is the index of the key chunk. Most new allocations
+ ** occur off of this chunk. szKeyBlk is the size (in Mem3Blocks)
+ ** of the current key chunk. iKeyBlk is 0 if there is no key chunk.
+ ** The key chunk is not in either the aiHash[] or aiSmall[].
+ */
+ u32 iKeyBlk;
+ u32 szKeyBlk;
+
+ /*
+ ** Array of lists of free blocks according to the block size
+ ** for smaller chunks, or a hash on the block size for larger
+ ** chunks.
+ */
+ u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
+ u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
+} mem3 = { 97535575 };
+
+#define mem3 GLOBAL(struct Mem3Global, mem3)
+
+/*
+** Unlink the chunk at mem3.aPool[i] from list it is currently
+** on. *pRoot is the list that i is a member of.
+*/
+static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
+ u32 next = mem3.aPool[i].u.list.next;
+ u32 prev = mem3.aPool[i].u.list.prev;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ if( prev==0 ){
+ *pRoot = next;
+ }else{
+ mem3.aPool[prev].u.list.next = next;
+ }
+ if( next ){
+ mem3.aPool[next].u.list.prev = prev;
+ }
+ mem3.aPool[i].u.list.next = 0;
+ mem3.aPool[i].u.list.prev = 0;
+}
+
+/*
+** Unlink the chunk at index i from
+** whatever list is currently a member of.
+*/
+static void memsys3Unlink(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ assert( i>=1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+ }
+}
+
+/*
+** Link the chunk at mem3.aPool[i] so that is on the list rooted
+** at *pRoot.
+*/
+static void memsys3LinkIntoList(u32 i, u32 *pRoot){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ mem3.aPool[i].u.list.next = *pRoot;
+ mem3.aPool[i].u.list.prev = 0;
+ if( *pRoot ){
+ mem3.aPool[*pRoot].u.list.prev = i;
+ }
+ *pRoot = i;
+}
+
+/*
+** Link the chunk at index i into either the appropriate
+** small chunk list, or into the large chunk hash table.
+*/
+static void memsys3Link(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( i>=1 );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3LinkIntoList(i, &mem3.aiHash[hash]);
+ }
+}
+
+/*
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3GlobalConfig.bMemStat is true.
+*/
+static void memsys3Enter(void){
+ if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
+ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ sqlite3_mutex_enter(mem3.mutex);
+}
+static void memsys3Leave(void){
+ sqlite3_mutex_leave(mem3.mutex);
+}
+
+/*
+** Called when we are unable to satisfy an allocation of nBytes.
+*/
+static void memsys3OutOfMemory(int nByte){
+ if( !mem3.alarmBusy ){
+ mem3.alarmBusy = 1;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ sqlite3_mutex_leave(mem3.mutex);
+ sqlite3_release_memory(nByte);
+ sqlite3_mutex_enter(mem3.mutex);
+ mem3.alarmBusy = 0;
+ }
+}
+
+
+/*
+** Chunk i is a free chunk that has been unlinked. Adjust its
+** size parameters for check-out and return a pointer to the
+** user portion of the chunk.
+*/
+static void *memsys3Checkout(u32 i, u32 nBlock){
+ u32 x;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( i>=1 );
+ assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
+ assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
+ x = mem3.aPool[i-1].u.hdr.size4x;
+ mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
+ mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
+ return &mem3.aPool[i];
+}
+
+/*
+** Carve a piece off of the end of the mem3.iKeyBlk free chunk.
+** Return a pointer to the new allocation. Or, if the key chunk
+** is not large enough, return 0.
+*/
+static void *memsys3FromKeyBlk(u32 nBlock){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( mem3.szKeyBlk>=nBlock );
+ if( nBlock>=mem3.szKeyBlk-1 ){
+ /* Use the entire key chunk */
+ void *p = memsys3Checkout(mem3.iKeyBlk, mem3.szKeyBlk);
+ mem3.iKeyBlk = 0;
+ mem3.szKeyBlk = 0;
+ mem3.mnKeyBlk = 0;
+ return p;
+ }else{
+ /* Split the key block. Return the tail. */
+ u32 newi, x;
+ newi = mem3.iKeyBlk + mem3.szKeyBlk - nBlock;
+ assert( newi > mem3.iKeyBlk+1 );
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x |= 2;
+ mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
+ mem3.szKeyBlk -= nBlock;
+ mem3.aPool[newi-1].u.hdr.prevSize = mem3.szKeyBlk;
+ x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
+ if( mem3.szKeyBlk < mem3.mnKeyBlk ){
+ mem3.mnKeyBlk = mem3.szKeyBlk;
+ }
+ return (void*)&mem3.aPool[newi];
+ }
+}
+
+/*
+** *pRoot is the head of a list of free chunks of the same size
+** or same size hash. In other words, *pRoot is an entry in either
+** mem3.aiSmall[] or mem3.aiHash[].
+**
+** This routine examines all entries on the given list and tries
+** to coalesce each entries with adjacent free chunks.
+**
+** If it sees a chunk that is larger than mem3.iKeyBlk, it replaces
+** the current mem3.iKeyBlk with the new larger chunk. In order for
+** this mem3.iKeyBlk replacement to work, the key chunk must be
+** linked into the hash tables. That is not the normal state of
+** affairs, of course. The calling routine must link the key
+** chunk before invoking this routine, then must unlink the (possibly
+** changed) key chunk once this routine has finished.
+*/
+static void memsys3Merge(u32 *pRoot){
+ u32 iNext, prev, size, i, x;
+
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ for(i=*pRoot; i>0; i=iNext){
+ iNext = mem3.aPool[i].u.list.next;
+ size = mem3.aPool[i-1].u.hdr.size4x;
+ assert( (size&1)==0 );
+ if( (size&2)==0 ){
+ memsys3UnlinkFromList(i, pRoot);
+ assert( i > mem3.aPool[i-1].u.hdr.prevSize );
+ prev = i - mem3.aPool[i-1].u.hdr.prevSize;
+ if( prev==iNext ){
+ iNext = mem3.aPool[prev].u.list.next;
+ }
+ memsys3Unlink(prev);
+ size = i + size/4 - prev;
+ x = mem3.aPool[prev-1].u.hdr.size4x & 2;
+ mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
+ mem3.aPool[prev+size-1].u.hdr.prevSize = size;
+ memsys3Link(prev);
+ i = prev;
+ }else{
+ size /= 4;
+ }
+ if( size>mem3.szKeyBlk ){
+ mem3.iKeyBlk = i;
+ mem3.szKeyBlk = size;
+ }
+ }
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+static void *memsys3MallocUnsafe(int nByte){
+ u32 i;
+ u32 nBlock;
+ u32 toFree;
+
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( sizeof(Mem3Block)==8 );
+ if( nByte<=12 ){
+ nBlock = 2;
+ }else{
+ nBlock = (nByte + 11)/8;
+ }
+ assert( nBlock>=2 );
+
+ /* STEP 1:
+ ** Look for an entry of the correct size in either the small
+ ** chunk table or in the large chunk hash table. This is
+ ** successful most of the time (about 9 times out of 10).
+ */
+ if( nBlock <= MX_SMALL ){
+ i = mem3.aiSmall[nBlock-2];
+ if( i>0 ){
+ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }else{
+ int hash = nBlock % N_HASH;
+ for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
+ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }
+ }
+
+ /* STEP 2:
+ ** Try to satisfy the allocation by carving a piece off of the end
+ ** of the key chunk. This step usually works if step 1 fails.
+ */
+ if( mem3.szKeyBlk>=nBlock ){
+ return memsys3FromKeyBlk(nBlock);
+ }
+
+
+ /* STEP 3:
+ ** Loop through the entire memory pool. Coalesce adjacent free
+ ** chunks. Recompute the key chunk as the largest free chunk.
+ ** Then try again to satisfy the allocation by carving a piece off
+ ** of the end of the key chunk. This step happens very
+ ** rarely (we hope!)
+ */
+ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
+ memsys3OutOfMemory(toFree);
+ if( mem3.iKeyBlk ){
+ memsys3Link(mem3.iKeyBlk);
+ mem3.iKeyBlk = 0;
+ mem3.szKeyBlk = 0;
+ }
+ for(i=0; i<N_HASH; i++){
+ memsys3Merge(&mem3.aiHash[i]);
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ memsys3Merge(&mem3.aiSmall[i]);
+ }
+ if( mem3.szKeyBlk ){
+ memsys3Unlink(mem3.iKeyBlk);
+ if( mem3.szKeyBlk>=nBlock ){
+ return memsys3FromKeyBlk(nBlock);
+ }
+ }
+ }
+
+ /* If none of the above worked, then we fail. */
+ return 0;
+}
+
+/*
+** Free an outstanding memory allocation.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+static void memsys3FreeUnsafe(void *pOld){
+ Mem3Block *p = (Mem3Block*)pOld;
+ int i;
+ u32 size, x;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
+ i = p - mem3.aPool;
+ assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( i+size<=mem3.nPool+1 );
+ mem3.aPool[i-1].u.hdr.size4x &= ~1;
+ mem3.aPool[i+size-1].u.hdr.prevSize = size;
+ mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
+ memsys3Link(i);
+
+ /* Try to expand the key using the newly freed chunk */
+ if( mem3.iKeyBlk ){
+ while( (mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x&2)==0 ){
+ size = mem3.aPool[mem3.iKeyBlk-1].u.hdr.prevSize;
+ mem3.iKeyBlk -= size;
+ mem3.szKeyBlk += size;
+ memsys3Unlink(mem3.iKeyBlk);
+ x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk;
+ }
+ x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
+ while( (mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x&1)==0 ){
+ memsys3Unlink(mem3.iKeyBlk+mem3.szKeyBlk);
+ mem3.szKeyBlk += mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x/4;
+ mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk;
+ }
+ }
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
+*/
+static int memsys3Size(void *p){
+ Mem3Block *pBlock;
+ assert( p!=0 );
+ pBlock = (Mem3Block*)p;
+ assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
+ return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int memsys3Roundup(int n){
+ if( n<=12 ){
+ return 12;
+ }else{
+ return ((n+11)&~7) - 4;
+ }
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys3Malloc(int nBytes){
+ sqlite3_int64 *p;
+ assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ memsys3Leave();
+ return (void*)p;
+}
+
+/*
+** Free memory.
+*/
+static void memsys3Free(void *pPrior){
+ assert( pPrior );
+ memsys3Enter();
+ memsys3FreeUnsafe(pPrior);
+ memsys3Leave();
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+static void *memsys3Realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ nOld = memsys3Size(pPrior);
+ if( nBytes<=nOld && nBytes>=nOld-128 ){
+ return pPrior;
+ }
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ if( p ){
+ if( nOld<nBytes ){
+ memcpy(p, pPrior, nOld);
+ }else{
+ memcpy(p, pPrior, nBytes);
+ }
+ memsys3FreeUnsafe(pPrior);
+ }
+ memsys3Leave();
+ return p;
+}
+
+/*
+** Initialize this module.
+*/
+static int memsys3Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ if( !sqlite3GlobalConfig.pHeap ){
+ return SQLITE_ERROR;
+ }
+
+ /* Store a pointer to the memory block in global structure mem3. */
+ assert( sizeof(Mem3Block)==8 );
+ mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
+ mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
+
+ /* Initialize the key block. */
+ mem3.szKeyBlk = mem3.nPool;
+ mem3.mnKeyBlk = mem3.szKeyBlk;
+ mem3.iKeyBlk = 1;
+ mem3.aPool[0].u.hdr.size4x = (mem3.szKeyBlk<<2) + 2;
+ mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
+ mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys3Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem3.mutex = 0;
+ return;
+}
+
+
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){
+#ifdef SQLITE_DEBUG
+ FILE *out;
+ u32 i, j;
+ u32 size;
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys3Enter();
+ fprintf(out, "CHUNKS:\n");
+ for(i=1; i<=mem3.nPool; i+=size/4){
+ size = mem3.aPool[i-1].u.hdr.size4x;
+ if( size/4<=1 ){
+ fprintf(out, "%p size error\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
+ fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
+ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( size&1 ){
+ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
+ }else{
+ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
+ i==mem3.iKeyBlk ? " **key**" : "");
+ }
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ if( mem3.aiSmall[i]==0 ) continue;
+ fprintf(out, "small(%2d):", i);
+ for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ for(i=0; i<N_HASH; i++){
+ if( mem3.aiHash[i]==0 ) continue;
+ fprintf(out, "hash(%2d):", i);
+ for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ fprintf(out, "key=%d\n", mem3.iKeyBlk);
+ fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szKeyBlk*8);
+ fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnKeyBlk*8);
+ sqlite3_mutex_leave(mem3.mutex);
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+#else
+ UNUSED_PARAMETER(zFilename);
+#endif
+}
+
+/*
+** This routine is the only routine in this file with external
+** linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
+ static const sqlite3_mem_methods mempoolMethods = {
+ memsys3Malloc,
+ memsys3Free,
+ memsys3Realloc,
+ memsys3Size,
+ memsys3Roundup,
+ memsys3Init,
+ memsys3Shutdown,
+ 0
+ };
+ return &mempoolMethods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS3 */
+
+/************** End of mem3.c ************************************************/
+/************** Begin file mem5.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The application gives SQLite a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
+**
+** This memory allocator uses the following algorithm:
+**
+** 1. All memory allocation sizes are rounded up to a power of 2.
+**
+** 2. If two adjacent free blocks are the halves of a larger block,
+** then the two blocks are coalesced into the single larger block.
+**
+** 3. New memory is allocated from the first available free block.
+**
+** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
+** Concerning Dynamic Storage Allocation". Journal of the Association for
+** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
+**
+** Let n be the size of the largest allocation divided by the minimum
+** allocation size (after rounding all sizes up to a power of 2.) Let M
+** be the maximum amount of memory ever outstanding at one time. Let
+** N be the total amount of memory available for allocation. Robson
+** proved that this memory allocator will never breakdown due to
+** fragmentation as long as the following constraint holds:
+**
+** N >= M*(1 + log2(n)/2) - n + 1
+**
+** The sqlite3_status() logic tracks the maximum values of n and M so
+** that an application can, at any time, verify this constraint.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is used only when
+** SQLITE_ENABLE_MEMSYS5 is defined.
+*/
+#ifdef SQLITE_ENABLE_MEMSYS5
+
+/*
+** A minimum allocation is an instance of the following structure.
+** Larger allocations are an array of these structures where the
+** size of the array is a power of 2.
+**
+** The size of this object must be a power of two. That fact is
+** verified in memsys5Init().
+*/
+typedef struct Mem5Link Mem5Link;
+struct Mem5Link {
+ int next; /* Index of next free chunk */
+ int prev; /* Index of previous free chunk */
+};
+
+/*
+** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
+** mem5.szAtom is always at least 8 and 32-bit integers are used,
+** it is not actually possible to reach this limit.
+*/
+#define LOGMAX 30
+
+/*
+** Masks used for mem5.aCtrl[] elements.
+*/
+#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
+#define CTRL_FREE 0x20 /* True if not checked out */
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem5". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static SQLITE_WSD struct Mem5Global {
+ /*
+ ** Memory available for allocation
+ */
+ int szAtom; /* Smallest possible allocation in bytes */
+ int nBlock; /* Number of szAtom sized blocks in zPool */
+ u8 *zPool; /* Memory available to be allocated */
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /*
+ ** Performance statistics
+ */
+ u64 nAlloc; /* Total number of calls to malloc */
+ u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
+ u64 totalExcess; /* Total internal fragmentation */
+ u32 currentOut; /* Current checkout, including internal fragmentation */
+ u32 currentCount; /* Current number of distinct checkouts */
+ u32 maxOut; /* Maximum instantaneous currentOut */
+ u32 maxCount; /* Maximum instantaneous currentCount */
+ u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
+#endif
+
+ /*
+ ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
+ ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
+ ** aiFreelist[2] holds free blocks of size szAtom*4. And so forth.
+ */
+ int aiFreelist[LOGMAX+1];
+
+ /*
+ ** Space for tracking which blocks are checked out and the size
+ ** of each block. One byte per block.
+ */
+ u8 *aCtrl;
+
+} mem5;
+
+/*
+** Access the static variable through a macro for SQLITE_OMIT_WSD.
+*/
+#define mem5 GLOBAL(struct Mem5Global, mem5)
+
+/*
+** Assuming mem5.zPool is divided up into an array of Mem5Link
+** structures, return a pointer to the idx-th such link.
+*/
+#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
+
+/*
+** Unlink the chunk at mem5.aPool[i] from list it is currently
+** on. It should be found on mem5.aiFreelist[iLogsize].
+*/
+static void memsys5Unlink(int i, int iLogsize){
+ int next, prev;
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ next = MEM5LINK(i)->next;
+ prev = MEM5LINK(i)->prev;
+ if( prev<0 ){
+ mem5.aiFreelist[iLogsize] = next;
+ }else{
+ MEM5LINK(prev)->next = next;
+ }
+ if( next>=0 ){
+ MEM5LINK(next)->prev = prev;
+ }
+}
+
+/*
+** Link the chunk at mem5.aPool[i] so that is on the iLogsize
+** free list.
+*/
+static void memsys5Link(int i, int iLogsize){
+ int x;
+ assert( sqlite3_mutex_held(mem5.mutex) );
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
+ MEM5LINK(i)->prev = -1;
+ if( x>=0 ){
+ assert( x<mem5.nBlock );
+ MEM5LINK(x)->prev = i;
+ }
+ mem5.aiFreelist[iLogsize] = i;
+}
+
+/*
+** Obtain or release the mutex needed to access global data structures.
+*/
+static void memsys5Enter(void){
+ sqlite3_mutex_enter(mem5.mutex);
+}
+static void memsys5Leave(void){
+ sqlite3_mutex_leave(mem5.mutex);
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes.
+** This only works for chunks that are currently checked out.
+*/
+static int memsys5Size(void *p){
+ int iSize, i;
+ assert( p!=0 );
+ i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
+ assert( i>=0 && i<mem5.nBlock );
+ iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
+ return iSize;
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable. Return NULL if nBytes==0.
+**
+** The caller guarantees that nByte is positive.
+**
+** The caller has obtained a mutex prior to invoking this
+** routine so there is never any chance that two or more
+** threads can be in this routine at the same time.
+*/
+static void *memsys5MallocUnsafe(int nByte){
+ int i; /* Index of a mem5.aPool[] slot */
+ int iBin; /* Index into mem5.aiFreelist[] */
+ int iFullSz; /* Size of allocation rounded up to power of 2 */
+ int iLogsize; /* Log2 of iFullSz/POW2_MIN */
+
+ /* nByte must be a positive */
+ assert( nByte>0 );
+
+ /* No more than 1GiB per allocation */
+ if( nByte > 0x40000000 ) return 0;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /* Keep track of the maximum allocation request. Even unfulfilled
+ ** requests are counted */
+ if( (u32)nByte>mem5.maxRequest ){
+ mem5.maxRequest = nByte;
+ }
+#endif
+
+
+ /* Round nByte up to the next valid power of two */
+ for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}
+
+ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
+ ** block. If not, then split a block of the next larger power of
+ ** two in order to create a new free block of size iLogsize.
+ */
+ for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
+ if( iBin>LOGMAX ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
+ return 0;
+ }
+ i = mem5.aiFreelist[iBin];
+ memsys5Unlink(i, iBin);
+ while( iBin>iLogsize ){
+ int newSize;
+
+ iBin--;
+ newSize = 1 << iBin;
+ mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
+ memsys5Link(i+newSize, iBin);
+ }
+ mem5.aCtrl[i] = iLogsize;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /* Update allocator performance statistics. */
+ mem5.nAlloc++;
+ mem5.totalAlloc += iFullSz;
+ mem5.totalExcess += iFullSz - nByte;
+ mem5.currentCount++;
+ mem5.currentOut += iFullSz;
+ if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
+ if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
+#endif
+
+#ifdef SQLITE_DEBUG
+ /* Make sure the allocated memory does not assume that it is set to zero
+ ** or retains a value from a previous allocation */
+ memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
+#endif
+
+ /* Return a pointer to the allocated memory. */
+ return (void*)&mem5.zPool[i*mem5.szAtom];
+}
+
+/*
+** Free an outstanding memory allocation.
+*/
+static void memsys5FreeUnsafe(void *pOld){
+ u32 size, iLogsize;
+ int iBlock;
+
+ /* Set iBlock to the index of the block pointed to by pOld in
+ ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
+ */
+ iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
+
+ /* Check that the pointer pOld points to a valid, non-free block. */
+ assert( iBlock>=0 && iBlock<mem5.nBlock );
+ assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
+ assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
+
+ iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
+ size = 1<<iLogsize;
+ assert( iBlock+size-1<(u32)mem5.nBlock );
+
+ mem5.aCtrl[iBlock] |= CTRL_FREE;
+ mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ assert( mem5.currentCount>0 );
+ assert( mem5.currentOut>=(size*mem5.szAtom) );
+ mem5.currentCount--;
+ mem5.currentOut -= size*mem5.szAtom;
+ assert( mem5.currentOut>0 || mem5.currentCount==0 );
+ assert( mem5.currentCount>0 || mem5.currentOut==0 );
+#endif
+
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ while( ALWAYS(iLogsize<LOGMAX) ){
+ int iBuddy;
+ if( (iBlock>>iLogsize) & 1 ){
+ iBuddy = iBlock - size;
+ assert( iBuddy>=0 );
+ }else{
+ iBuddy = iBlock + size;
+ if( iBuddy>=mem5.nBlock ) break;
+ }
+ if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
+ memsys5Unlink(iBuddy, iLogsize);
+ iLogsize++;
+ if( iBuddy<iBlock ){
+ mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBlock] = 0;
+ iBlock = iBuddy;
+ }else{
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBuddy] = 0;
+ }
+ size *= 2;
+ }
+
+#ifdef SQLITE_DEBUG
+ /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
+ ** not used after being freed */
+ memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
+#endif
+
+ memsys5Link(iBlock, iLogsize);
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys5Malloc(int nBytes){
+ sqlite3_int64 *p = 0;
+ if( nBytes>0 ){
+ memsys5Enter();
+ p = memsys5MallocUnsafe(nBytes);
+ memsys5Leave();
+ }
+ return (void*)p;
+}
+
+/*
+** Free memory.
+**
+** The outer layer memory allocator prevents this routine from
+** being called with pPrior==0.
+*/
+static void memsys5Free(void *pPrior){
+ assert( pPrior!=0 );
+ memsys5Enter();
+ memsys5FreeUnsafe(pPrior);
+ memsys5Leave();
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** The outer layer memory allocator prevents this routine from
+** being called with pPrior==0.
+**
+** nBytes is always a value obtained from a prior call to
+** memsys5Round(). Hence nBytes is always a non-negative power
+** of two. If nBytes==0 that means that an oversize allocation
+** (an allocation larger than 0x40000000) was requested and this
+** routine should return 0 without freeing pPrior.
+*/
+static void *memsys5Realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ assert( pPrior!=0 );
+ assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
+ assert( nBytes>=0 );
+ if( nBytes==0 ){
+ return 0;
+ }
+ nOld = memsys5Size(pPrior);
+ if( nBytes<=nOld ){
+ return pPrior;
+ }
+ p = memsys5Malloc(nBytes);
+ if( p ){
+ memcpy(p, pPrior, nOld);
+ memsys5Free(pPrior);
+ }
+ return p;
+}
+
+/*
+** Round up a request size to the next valid allocation size. If
+** the allocation is too large to be handled by this allocation system,
+** return 0.
+**
+** All allocations must be a power of two and must be expressed by a
+** 32-bit signed integer. Hence the largest allocation is 0x40000000
+** or 1073741824 bytes.
+*/
+static int memsys5Roundup(int n){
+ int iFullSz;
+ if( n<=mem5.szAtom*2 ){
+ if( n<=mem5.szAtom ) return mem5.szAtom;
+ return mem5.szAtom*2;
+ }
+ if( n>0x40000000 ) return 0;
+ for(iFullSz=mem5.szAtom*8; iFullSz<n; iFullSz *= 4);
+ if( (iFullSz/2)>=n ) return iFullSz/2;
+ return iFullSz;
+}
+
+/*
+** Return the ceiling of the logarithm base 2 of iValue.
+**
+** Examples: memsys5Log(1) -> 0
+** memsys5Log(2) -> 1
+** memsys5Log(4) -> 2
+** memsys5Log(5) -> 3
+** memsys5Log(8) -> 3
+** memsys5Log(9) -> 4
+*/
+static int memsys5Log(int iValue){
+ int iLog;
+ for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
+ return iLog;
+}
+
+/*
+** Initialize the memory allocator.
+**
+** This routine is not threadsafe. The caller must be holding a mutex
+** to prevent multiple threads from entering at the same time.
+*/
+static int memsys5Init(void *NotUsed){
+ int ii; /* Loop counter */
+ int nByte; /* Number of bytes of memory available to this allocator */
+ u8 *zByte; /* Memory usable by this allocator */
+ int nMinLog; /* Log base 2 of minimum allocation size in bytes */
+ int iOffset; /* An offset into mem5.aCtrl[] */
+
+ UNUSED_PARAMETER(NotUsed);
+
+ /* For the purposes of this routine, disable the mutex */
+ mem5.mutex = 0;
+
+ /* The size of a Mem5Link object must be a power of two. Verify that
+ ** this is case.
+ */
+ assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
+
+ nByte = sqlite3GlobalConfig.nHeap;
+ zByte = (u8*)sqlite3GlobalConfig.pHeap;
+ assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
+
+ /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
+ nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
+ mem5.szAtom = (1<<nMinLog);
+ while( (int)sizeof(Mem5Link)>mem5.szAtom ){
+ mem5.szAtom = mem5.szAtom << 1;
+ }
+
+ mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
+ mem5.zPool = zByte;
+ mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
+
+ for(ii=0; ii<=LOGMAX; ii++){
+ mem5.aiFreelist[ii] = -1;
+ }
+
+ iOffset = 0;
+ for(ii=LOGMAX; ii>=0; ii--){
+ int nAlloc = (1<<ii);
+ if( (iOffset+nAlloc)<=mem5.nBlock ){
+ mem5.aCtrl[iOffset] = ii | CTRL_FREE;
+ memsys5Link(iOffset, ii);
+ iOffset += nAlloc;
+ }
+ assert((iOffset+nAlloc)>mem5.nBlock);
+ }
+
+ /* If a mutex is required for normal operation, allocate one */
+ if( sqlite3GlobalConfig.bMemstat==0 ){
+ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys5Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem5.mutex = 0;
+ return;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
+ FILE *out;
+ int i, j, n;
+ int nMinLog;
+
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys5Enter();
+ nMinLog = memsys5Log(mem5.szAtom);
+ for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
+ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
+ fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
+ }
+ fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
+ fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
+ fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
+ fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
+ fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
+ fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
+ fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
+ fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
+ memsys5Leave();
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+}
+#endif
+
+/*
+** This routine is the only routine in this file with external
+** linkage. It returns a pointer to a static sqlite3_mem_methods
+** struct populated with the memsys5 methods.
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
+ static const sqlite3_mem_methods memsys5Methods = {
+ memsys5Malloc,
+ memsys5Free,
+ memsys5Realloc,
+ memsys5Size,
+ memsys5Roundup,
+ memsys5Init,
+ memsys5Shutdown,
+ 0
+ };
+ return &memsys5Methods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS5 */
+
+/************** End of mem5.c ************************************************/
+/************** Begin file mutex.c *******************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** This file contains code that is common across all mutex implementations.
+*/
+/* #include "sqliteInt.h" */
+
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
+/*
+** For debugging purposes, record when the mutex subsystem is initialized
+** and uninitialized so that we can assert() if there is an attempt to
+** allocate a mutex while the system is uninitialized.
+*/
+static SQLITE_WSD int mutexIsInit = 0;
+#endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */
+
+
+#ifndef SQLITE_MUTEX_OMIT
+
+#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
+/*
+** This block (enclosed by SQLITE_ENABLE_MULTITHREADED_CHECKS) contains
+** the implementation of a wrapper around the system default mutex
+** implementation (sqlite3DefaultMutex()).
+**
+** Most calls are passed directly through to the underlying default
+** mutex implementation. Except, if a mutex is configured by calling
+** sqlite3MutexWarnOnContention() on it, then if contention is ever
+** encountered within xMutexEnter() a warning is emitted via sqlite3_log().
+**
+** This type of mutex is used as the database handle mutex when testing
+** apps that usually use SQLITE_CONFIG_MULTITHREAD mode.
+*/
+
+/*
+** Type for all mutexes used when SQLITE_ENABLE_MULTITHREADED_CHECKS
+** is defined. Variable CheckMutex.mutex is a pointer to the real mutex
+** allocated by the system mutex implementation. Variable iType is usually set
+** to the type of mutex requested - SQLITE_MUTEX_RECURSIVE, SQLITE_MUTEX_FAST
+** or one of the static mutex identifiers. Or, if this is a recursive mutex
+** that has been configured using sqlite3MutexWarnOnContention(), it is
+** set to SQLITE_MUTEX_WARNONCONTENTION.
+*/
+typedef struct CheckMutex CheckMutex;
+struct CheckMutex {
+ int iType;
+ sqlite3_mutex *mutex;
+};
+
+#define SQLITE_MUTEX_WARNONCONTENTION (-1)
+
+/*
+** Pointer to real mutex methods object used by the CheckMutex
+** implementation. Set by checkMutexInit().
+*/
+static SQLITE_WSD const sqlite3_mutex_methods *pGlobalMutexMethods;
+
+#ifdef SQLITE_DEBUG
+static int checkMutexHeld(sqlite3_mutex *p){
+ return pGlobalMutexMethods->xMutexHeld(((CheckMutex*)p)->mutex);
+}
+static int checkMutexNotheld(sqlite3_mutex *p){
+ return pGlobalMutexMethods->xMutexNotheld(((CheckMutex*)p)->mutex);
+}
+#endif
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int checkMutexInit(void){
+ pGlobalMutexMethods = sqlite3DefaultMutex();
+ return SQLITE_OK;
+}
+static int checkMutexEnd(void){
+ pGlobalMutexMethods = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Allocate a mutex.
+*/
+static sqlite3_mutex *checkMutexAlloc(int iType){
+ static CheckMutex staticMutexes[] = {
+ {2, 0}, {3, 0}, {4, 0}, {5, 0},
+ {6, 0}, {7, 0}, {8, 0}, {9, 0},
+ {10, 0}, {11, 0}, {12, 0}, {13, 0}
+ };
+ CheckMutex *p = 0;
+
+ assert( SQLITE_MUTEX_RECURSIVE==1 && SQLITE_MUTEX_FAST==0 );
+ if( iType<2 ){
+ p = sqlite3MallocZero(sizeof(CheckMutex));
+ if( p==0 ) return 0;
+ p->iType = iType;
+ }else{
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( iType-2>=ArraySize(staticMutexes) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ p = &staticMutexes[iType-2];
+ }
+
+ if( p->mutex==0 ){
+ p->mutex = pGlobalMutexMethods->xMutexAlloc(iType);
+ if( p->mutex==0 ){
+ if( iType<2 ){
+ sqlite3_free(p);
+ }
+ p = 0;
+ }
+ }
+
+ return (sqlite3_mutex*)p;
+}
+
+/*
+** Free a mutex.
+*/
+static void checkMutexFree(sqlite3_mutex *p){
+ assert( SQLITE_MUTEX_RECURSIVE<2 );
+ assert( SQLITE_MUTEX_FAST<2 );
+ assert( SQLITE_MUTEX_WARNONCONTENTION<2 );
+
+#if SQLITE_ENABLE_API_ARMOR
+ if( ((CheckMutex*)p)->iType<2 )
+#endif
+ {
+ CheckMutex *pCheck = (CheckMutex*)p;
+ pGlobalMutexMethods->xMutexFree(pCheck->mutex);
+ sqlite3_free(pCheck);
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ else{
+ (void)SQLITE_MISUSE_BKPT;
+ }
+#endif
+}
+
+/*
+** Enter the mutex.
+*/
+static void checkMutexEnter(sqlite3_mutex *p){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ if( pCheck->iType==SQLITE_MUTEX_WARNONCONTENTION ){
+ if( SQLITE_OK==pGlobalMutexMethods->xMutexTry(pCheck->mutex) ){
+ return;
+ }
+ sqlite3_log(SQLITE_MISUSE,
+ "illegal multi-threaded access to database connection"
+ );
+ }
+ pGlobalMutexMethods->xMutexEnter(pCheck->mutex);
+}
+
+/*
+** Enter the mutex (do not block).
+*/
+static int checkMutexTry(sqlite3_mutex *p){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ return pGlobalMutexMethods->xMutexTry(pCheck->mutex);
+}
+
+/*
+** Leave the mutex.
+*/
+static void checkMutexLeave(sqlite3_mutex *p){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ pGlobalMutexMethods->xMutexLeave(pCheck->mutex);
+}
+
+sqlite3_mutex_methods const *multiThreadedCheckMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ checkMutexInit,
+ checkMutexEnd,
+ checkMutexAlloc,
+ checkMutexFree,
+ checkMutexEnter,
+ checkMutexTry,
+ checkMutexLeave,
+#ifdef SQLITE_DEBUG
+ checkMutexHeld,
+ checkMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+ return &sMutex;
+}
+
+/*
+** Mark the SQLITE_MUTEX_RECURSIVE mutex passed as the only argument as
+** one on which there should be no contention.
+*/
+SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex *p){
+ if( sqlite3GlobalConfig.mutex.xMutexAlloc==checkMutexAlloc ){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ assert( pCheck->iType==SQLITE_MUTEX_RECURSIVE );
+ pCheck->iType = SQLITE_MUTEX_WARNONCONTENTION;
+ }
+}
+#endif /* ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS */
+
+/*
+** Initialize the mutex system.
+*/
+SQLITE_PRIVATE int sqlite3MutexInit(void){
+ int rc = SQLITE_OK;
+ if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
+ /* If the xMutexAlloc method has not been set, then the user did not
+ ** install a mutex implementation via sqlite3_config() prior to
+ ** sqlite3_initialize() being called. This block copies pointers to
+ ** the default implementation into the sqlite3GlobalConfig structure.
+ */
+ sqlite3_mutex_methods const *pFrom;
+ sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;
+
+ if( sqlite3GlobalConfig.bCoreMutex ){
+#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
+ pFrom = multiThreadedCheckMutex();
+#else
+ pFrom = sqlite3DefaultMutex();
+#endif
+ }else{
+ pFrom = sqlite3NoopMutex();
+ }
+ pTo->xMutexInit = pFrom->xMutexInit;
+ pTo->xMutexEnd = pFrom->xMutexEnd;
+ pTo->xMutexFree = pFrom->xMutexFree;
+ pTo->xMutexEnter = pFrom->xMutexEnter;
+ pTo->xMutexTry = pFrom->xMutexTry;
+ pTo->xMutexLeave = pFrom->xMutexLeave;
+ pTo->xMutexHeld = pFrom->xMutexHeld;
+ pTo->xMutexNotheld = pFrom->xMutexNotheld;
+ sqlite3MemoryBarrier();
+ pTo->xMutexAlloc = pFrom->xMutexAlloc;
+ }
+ assert( sqlite3GlobalConfig.mutex.xMutexInit );
+ rc = sqlite3GlobalConfig.mutex.xMutexInit();
+
+#ifdef SQLITE_DEBUG
+ GLOBAL(int, mutexIsInit) = 1;
+#endif
+
+ sqlite3MemoryBarrier();
+ return rc;
+}
+
+/*
+** Shutdown the mutex system. This call frees resources allocated by
+** sqlite3MutexInit().
+*/
+SQLITE_PRIVATE int sqlite3MutexEnd(void){
+ int rc = SQLITE_OK;
+ if( sqlite3GlobalConfig.mutex.xMutexEnd ){
+ rc = sqlite3GlobalConfig.mutex.xMutexEnd();
+ }
+
+#ifdef SQLITE_DEBUG
+ GLOBAL(int, mutexIsInit) = 0;
+#endif
+
+ return rc;
+}
+
+/*
+** Retrieve a pointer to a static mutex or allocate a new dynamic one.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
+ if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
+#endif
+ assert( sqlite3GlobalConfig.mutex.xMutexAlloc );
+ return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
+}
+
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
+ if( !sqlite3GlobalConfig.bCoreMutex ){
+ return 0;
+ }
+ assert( GLOBAL(int, mutexIsInit) );
+ assert( sqlite3GlobalConfig.mutex.xMutexAlloc );
+ return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
+}
+
+/*
+** Free a dynamic mutex.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexFree );
+ sqlite3GlobalConfig.mutex.xMutexFree(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If some other thread already has the mutex, block
+** until it can be obtained.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexEnter );
+ sqlite3GlobalConfig.mutex.xMutexEnter(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
+** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
+*/
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexTry );
+ return sqlite3GlobalConfig.mutex.xMutexTry(p);
+ }
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was previously
+** entered by the same thread. The behavior is undefined if the mutex
+** is not currently entered. If a NULL pointer is passed as an argument
+** this function is a no-op.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexLeave );
+ sqlite3GlobalConfig.mutex.xMutexLeave(p);
+ }
+}
+
+#ifndef NDEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexHeld );
+ return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
+ return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
+}
+#endif
+
+#endif /* !defined(SQLITE_MUTEX_OMIT) */
+
+/************** End of mutex.c ***********************************************/
+/************** Begin file mutex_noop.c **************************************/
+/*
+** 2008 October 07
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** This implementation in this file does not provide any mutual
+** exclusion and is thus suitable for use only in applications
+** that use SQLite in a single thread. The routines defined
+** here are place-holders. Applications can substitute working
+** mutex routines at start-time using the
+**
+** sqlite3_config(SQLITE_CONFIG_MUTEX,...)
+**
+** interface.
+**
+** If compiled with SQLITE_DEBUG, then additional logic is inserted
+** that does error checking on mutexes to make sure they are being
+** called correctly.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_MUTEX_OMIT
+
+#ifndef SQLITE_DEBUG
+/*
+** Stub routines for all mutex methods.
+**
+** This routines provide no mutual exclusion or error checking.
+*/
+static int noopMutexInit(void){ return SQLITE_OK; }
+static int noopMutexEnd(void){ return SQLITE_OK; }
+static sqlite3_mutex *noopMutexAlloc(int id){
+ UNUSED_PARAMETER(id);
+ return (sqlite3_mutex*)8;
+}
+static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
+static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
+static int noopMutexTry(sqlite3_mutex *p){
+ UNUSED_PARAMETER(p);
+ return SQLITE_OK;
+}
+static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ noopMutexInit,
+ noopMutexEnd,
+ noopMutexAlloc,
+ noopMutexFree,
+ noopMutexEnter,
+ noopMutexTry,
+ noopMutexLeave,
+
+ 0,
+ 0,
+ };
+
+ return &sMutex;
+}
+#endif /* !SQLITE_DEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+** In this implementation, error checking is provided for testing
+** and debugging purposes. The mutexes still do not provide any
+** mutual exclusion.
+*/
+
+/*
+** The mutex object
+*/
+typedef struct sqlite3_debug_mutex {
+ int id; /* The mutex type */
+ int cnt; /* Number of entries without a matching leave */
+} sqlite3_debug_mutex;
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+static int debugMutexHeld(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ return p==0 || p->cnt>0;
+}
+static int debugMutexNotheld(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ return p==0 || p->cnt==0;
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int debugMutexInit(void){ return SQLITE_OK; }
+static int debugMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+*/
+static sqlite3_mutex *debugMutexAlloc(int id){
+ static sqlite3_debug_mutex aStatic[SQLITE_MUTEX_STATIC_VFS3 - 1];
+ sqlite3_debug_mutex *pNew = 0;
+ switch( id ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ pNew = sqlite3Malloc(sizeof(*pNew));
+ if( pNew ){
+ pNew->id = id;
+ pNew->cnt = 0;
+ }
+ break;
+ }
+ default: {
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( id-2<0 || id-2>=ArraySize(aStatic) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ pNew = &aStatic[id-2];
+ pNew->id = id;
+ break;
+ }
+ }
+ return (sqlite3_mutex*)pNew;
+}
+
+/*
+** This routine deallocates a previously allocated mutex.
+*/
+static void debugMutexFree(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( p->cnt==0 );
+ if( p->id==SQLITE_MUTEX_RECURSIVE || p->id==SQLITE_MUTEX_FAST ){
+ sqlite3_free(p);
+ }else{
+#ifdef SQLITE_ENABLE_API_ARMOR
+ (void)SQLITE_MISUSE_BKPT;
+#endif
+ }
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void debugMutexEnter(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
+ p->cnt++;
+}
+static int debugMutexTry(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
+ p->cnt++;
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void debugMutexLeave(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( debugMutexHeld(pX) );
+ p->cnt--;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ debugMutexInit,
+ debugMutexEnd,
+ debugMutexAlloc,
+ debugMutexFree,
+ debugMutexEnter,
+ debugMutexTry,
+ debugMutexLeave,
+
+ debugMutexHeld,
+ debugMutexNotheld
+ };
+
+ return &sMutex;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation
+** is used regardless of the run-time threadsafety setting.
+*/
+#ifdef SQLITE_MUTEX_NOOP
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
+ return sqlite3NoopMutex();
+}
+#endif /* defined(SQLITE_MUTEX_NOOP) */
+#endif /* !defined(SQLITE_MUTEX_OMIT) */
+
+/************** End of mutex_noop.c ******************************************/
+/************** Begin file mutex_unix.c **************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for pthreads
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** The code in this file is only used if we are compiling threadsafe
+** under unix with pthreads.
+**
+** Note that this implementation requires a version of pthreads that
+** supports recursive mutexes.
+*/
+#ifdef SQLITE_MUTEX_PTHREADS
+
+#include <pthread.h>
+
+/*
+** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
+** are necessary under two condidtions: (1) Debug builds and (2) using
+** home-grown mutexes. Encapsulate these conditions into a single #define.
+*/
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
+# define SQLITE_MUTEX_NREF 1
+#else
+# define SQLITE_MUTEX_NREF 0
+#endif
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ pthread_mutex_t mutex; /* Mutex controlling the lock */
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ int id; /* Mutex type */
+#endif
+#if SQLITE_MUTEX_NREF
+ volatile int nRef; /* Number of entrances */
+ volatile pthread_t owner; /* Thread that is within this mutex */
+ int trace; /* True to trace changes */
+#endif
+};
+#if SQLITE_MUTEX_NREF
+# define SQLITE3_MUTEX_INITIALIZER(id) \
+ {PTHREAD_MUTEX_INITIALIZER,id,0,(pthread_t)0,0}
+#elif defined(SQLITE_ENABLE_API_ARMOR)
+# define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER, id }
+#else
+#define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER }
+#endif
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements. On some platforms,
+** there might be race conditions that can cause these routines to
+** deliver incorrect results. In particular, if pthread_equal() is
+** not an atomic operation, then these routines might delivery
+** incorrect results. On most platforms, pthread_equal() is a
+** comparison of two integers and is therefore atomic. But we are
+** told that HPUX is not such a platform. If so, then these routines
+** will not always work correctly on HPUX.
+**
+** On those platforms where pthread_equal() is not atomic, SQLite
+** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
+** make sure no assert() statements are evaluated and hence these
+** routines are never called.
+*/
+#if !defined(NDEBUG) || defined(SQLITE_DEBUG)
+static int pthreadMutexHeld(sqlite3_mutex *p){
+ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
+}
+static int pthreadMutexNotheld(sqlite3_mutex *p){
+ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
+}
+#endif
+
+/*
+** Try to provide a memory barrier operation, needed for initialization
+** and also for the implementation of xShmBarrier in the VFS in cases
+** where SQLite is compiled without mutexes.
+*/
+SQLITE_PRIVATE void sqlite3MemoryBarrier(void){
+#if defined(SQLITE_MEMORY_BARRIER)
+ SQLITE_MEMORY_BARRIER;
+#elif defined(__GNUC__) && GCC_VERSION>=4001000
+ __sync_synchronize();
+#endif
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int pthreadMutexInit(void){ return SQLITE_OK; }
+static int pthreadMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *pthreadMutexAlloc(int iType){
+ static sqlite3_mutex staticMutexes[] = {
+ SQLITE3_MUTEX_INITIALIZER(2),
+ SQLITE3_MUTEX_INITIALIZER(3),
+ SQLITE3_MUTEX_INITIALIZER(4),
+ SQLITE3_MUTEX_INITIALIZER(5),
+ SQLITE3_MUTEX_INITIALIZER(6),
+ SQLITE3_MUTEX_INITIALIZER(7),
+ SQLITE3_MUTEX_INITIALIZER(8),
+ SQLITE3_MUTEX_INITIALIZER(9),
+ SQLITE3_MUTEX_INITIALIZER(10),
+ SQLITE3_MUTEX_INITIALIZER(11),
+ SQLITE3_MUTEX_INITIALIZER(12),
+ SQLITE3_MUTEX_INITIALIZER(13)
+ };
+ sqlite3_mutex *p;
+ switch( iType ){
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, we will have to
+ ** build our own. See below. */
+ pthread_mutex_init(&p->mutex, 0);
+#else
+ /* Use a recursive mutex if it is available */
+ pthread_mutexattr_t recursiveAttr;
+ pthread_mutexattr_init(&recursiveAttr);
+ pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
+ pthread_mutex_init(&p->mutex, &recursiveAttr);
+ pthread_mutexattr_destroy(&recursiveAttr);
+#endif
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ p->id = SQLITE_MUTEX_RECURSIVE;
+#endif
+ }
+ break;
+ }
+ case SQLITE_MUTEX_FAST: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ pthread_mutex_init(&p->mutex, 0);
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ p->id = SQLITE_MUTEX_FAST;
+#endif
+ }
+ break;
+ }
+ default: {
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ p = &staticMutexes[iType-2];
+ break;
+ }
+ }
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ assert( p==0 || p->id==iType );
+#endif
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+static void pthreadMutexFree(sqlite3_mutex *p){
+ assert( p->nRef==0 );
+#if SQLITE_ENABLE_API_ARMOR
+ if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE )
+#endif
+ {
+ pthread_mutex_destroy(&p->mutex);
+ sqlite3_free(p);
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ else{
+ (void)SQLITE_MISUSE_BKPT;
+ }
+#endif
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void pthreadMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ }else{
+ pthread_mutex_lock(&p->mutex);
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ pthread_mutex_lock(&p->mutex);
+#if SQLITE_MUTEX_NREF
+ assert( p->nRef>0 || p->owner==0 );
+ p->owner = pthread_self();
+ p->nRef++;
+#endif
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+static int pthreadMutexTry(sqlite3_mutex *p){
+ int rc;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ rc = SQLITE_OK;
+ }else if( pthread_mutex_trylock(&p->mutex)==0 ){
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ if( pthread_mutex_trylock(&p->mutex)==0 ){
+#if SQLITE_MUTEX_NREF
+ p->owner = pthread_self();
+ p->nRef++;
+#endif
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( rc==SQLITE_OK && p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void pthreadMutexLeave(sqlite3_mutex *p){
+ assert( pthreadMutexHeld(p) );
+#if SQLITE_MUTEX_NREF
+ p->nRef--;
+ if( p->nRef==0 ) p->owner = 0;
+#endif
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ if( p->nRef==0 ){
+ pthread_mutex_unlock(&p->mutex);
+ }
+#else
+ pthread_mutex_unlock(&p->mutex);
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ pthreadMutexInit,
+ pthreadMutexEnd,
+ pthreadMutexAlloc,
+ pthreadMutexFree,
+ pthreadMutexEnter,
+ pthreadMutexTry,
+ pthreadMutexLeave,
+#ifdef SQLITE_DEBUG
+ pthreadMutexHeld,
+ pthreadMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+
+ return &sMutex;
+}
+
+#endif /* SQLITE_MUTEX_PTHREADS */
+
+/************** End of mutex_unix.c ******************************************/
+/************** Begin file mutex_w32.c ***************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for Win32.
+*/
+/* #include "sqliteInt.h" */
+
+#if SQLITE_OS_WIN
+/*
+** Include code that is common to all os_*.c files
+*/
+/* #include "os_common.h" */
+
+/*
+** Include the header file for the Windows VFS.
+*/
+/************** Include os_win.h in the middle of mutex_w32.c ****************/
+/************** Begin file os_win.h ******************************************/
+/*
+** 2013 November 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Windows.
+*/
+#ifndef SQLITE_OS_WIN_H
+#define SQLITE_OS_WIN_H
+
+/*
+** Include the primary Windows SDK header file.
+*/
+#include "windows.h"
+
+#ifdef __CYGWIN__
+# include <sys/cygwin.h>
+# include <errno.h> /* amalgamator: dontcache */
+#endif
+
+/*
+** Determine if we are dealing with Windows NT.
+**
+** We ought to be able to determine if we are compiling for Windows 9x or
+** Windows NT using the _WIN32_WINNT macro as follows:
+**
+** #if defined(_WIN32_WINNT)
+** # define SQLITE_OS_WINNT 1
+** #else
+** # define SQLITE_OS_WINNT 0
+** #endif
+**
+** However, Visual Studio 2005 does not set _WIN32_WINNT by default, as
+** it ought to, so the above test does not work. We'll just assume that
+** everything is Windows NT unless the programmer explicitly says otherwise
+** by setting SQLITE_OS_WINNT to 0.
+*/
+#if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT)
+# define SQLITE_OS_WINNT 1
+#endif
+
+/*
+** Determine if we are dealing with Windows CE - which has a much reduced
+** API.
+*/
+#if defined(_WIN32_WCE)
+# define SQLITE_OS_WINCE 1
+#else
+# define SQLITE_OS_WINCE 0
+#endif
+
+/*
+** Determine if we are dealing with WinRT, which provides only a subset of
+** the full Win32 API.
+*/
+#if !defined(SQLITE_OS_WINRT)
+# define SQLITE_OS_WINRT 0
+#endif
+
+/*
+** For WinCE, some API function parameters do not appear to be declared as
+** volatile.
+*/
+#if SQLITE_OS_WINCE
+# define SQLITE_WIN32_VOLATILE
+#else
+# define SQLITE_WIN32_VOLATILE volatile
+#endif
+
+/*
+** For some Windows sub-platforms, the _beginthreadex() / _endthreadex()
+** functions are not available (e.g. those not using MSVC, Cygwin, etc).
+*/
+#if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
+ SQLITE_THREADSAFE>0 && !defined(__CYGWIN__)
+# define SQLITE_OS_WIN_THREADS 1
+#else
+# define SQLITE_OS_WIN_THREADS 0
+#endif
+
+#endif /* SQLITE_OS_WIN_H */
+
+/************** End of os_win.h **********************************************/
+/************** Continuing where we left off in mutex_w32.c ******************/
+#endif
+
+/*
+** The code in this file is only used if we are compiling multithreaded
+** on a Win32 system.
+*/
+#ifdef SQLITE_MUTEX_W32
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ CRITICAL_SECTION mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+#ifdef SQLITE_DEBUG
+ volatile int nRef; /* Number of enterances */
+ volatile DWORD owner; /* Thread holding this mutex */
+ volatile LONG trace; /* True to trace changes */
+#endif
+};
+
+/*
+** These are the initializer values used when declaring a "static" mutex
+** on Win32. It should be noted that all mutexes require initialization
+** on the Win32 platform.
+*/
+#define SQLITE_W32_MUTEX_INITIALIZER { 0 }
+
+#ifdef SQLITE_DEBUG
+#define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id, \
+ 0L, (DWORD)0, 0 }
+#else
+#define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id }
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements.
+*/
+static int winMutexHeld(sqlite3_mutex *p){
+ return p->nRef!=0 && p->owner==GetCurrentThreadId();
+}
+
+static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){
+ return p->nRef==0 || p->owner!=tid;
+}
+
+static int winMutexNotheld(sqlite3_mutex *p){
+ DWORD tid = GetCurrentThreadId();
+ return winMutexNotheld2(p, tid);
+}
+#endif
+
+/*
+** Try to provide a memory barrier operation, needed for initialization
+** and also for the xShmBarrier method of the VFS in cases when SQLite is
+** compiled without mutexes (SQLITE_THREADSAFE=0).
+*/
+SQLITE_PRIVATE void sqlite3MemoryBarrier(void){
+#if defined(SQLITE_MEMORY_BARRIER)
+ SQLITE_MEMORY_BARRIER;
+#elif defined(__GNUC__)
+ __sync_synchronize();
+#elif MSVC_VERSION>=1300
+ _ReadWriteBarrier();
+#elif defined(MemoryBarrier)
+ MemoryBarrier();
+#endif
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static sqlite3_mutex winMutex_staticMutexes[] = {
+ SQLITE3_MUTEX_INITIALIZER(2),
+ SQLITE3_MUTEX_INITIALIZER(3),
+ SQLITE3_MUTEX_INITIALIZER(4),
+ SQLITE3_MUTEX_INITIALIZER(5),
+ SQLITE3_MUTEX_INITIALIZER(6),
+ SQLITE3_MUTEX_INITIALIZER(7),
+ SQLITE3_MUTEX_INITIALIZER(8),
+ SQLITE3_MUTEX_INITIALIZER(9),
+ SQLITE3_MUTEX_INITIALIZER(10),
+ SQLITE3_MUTEX_INITIALIZER(11),
+ SQLITE3_MUTEX_INITIALIZER(12),
+ SQLITE3_MUTEX_INITIALIZER(13)
+};
+
+static int winMutex_isInit = 0;
+static int winMutex_isNt = -1; /* <0 means "need to query" */
+
+/* As the winMutexInit() and winMutexEnd() functions are called as part
+** of the sqlite3_initialize() and sqlite3_shutdown() processing, the
+** "interlocked" magic used here is probably not strictly necessary.
+*/
+static LONG SQLITE_WIN32_VOLATILE winMutex_lock = 0;
+
+SQLITE_API int sqlite3_win32_is_nt(void); /* os_win.c */
+SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */
+
+static int winMutexInit(void){
+ /* The first to increment to 1 does actual initialization */
+ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
+ int i;
+ for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
+#if SQLITE_OS_WINRT
+ InitializeCriticalSectionEx(&winMutex_staticMutexes[i].mutex, 0, 0);
+#else
+ InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
+#endif
+ }
+ winMutex_isInit = 1;
+ }else{
+ /* Another thread is (in the process of) initializing the static
+ ** mutexes */
+ while( !winMutex_isInit ){
+ sqlite3_win32_sleep(1);
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int winMutexEnd(void){
+ /* The first to decrement to 0 does actual shutdown
+ ** (which should be the last to shutdown.) */
+ if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
+ if( winMutex_isInit==1 ){
+ int i;
+ for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
+ DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
+ }
+ winMutex_isInit = 0;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *winMutexAlloc(int iType){
+ sqlite3_mutex *p;
+
+ switch( iType ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+#ifdef SQLITE_DEBUG
+#ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC
+ p->trace = 1;
+#endif
+#endif
+#if SQLITE_OS_WINRT
+ InitializeCriticalSectionEx(&p->mutex, 0, 0);
+#else
+ InitializeCriticalSection(&p->mutex);
+#endif
+ }
+ break;
+ }
+ default: {
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ p = &winMutex_staticMutexes[iType-2];
+#ifdef SQLITE_DEBUG
+#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
+ InterlockedCompareExchange(&p->trace, 1, 0);
+#endif
+#endif
+ break;
+ }
+ }
+ assert( p==0 || p->id==iType );
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+static void winMutexFree(sqlite3_mutex *p){
+ assert( p );
+ assert( p->nRef==0 && p->owner==0 );
+ if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ){
+ DeleteCriticalSection(&p->mutex);
+ sqlite3_free(p);
+ }else{
+#ifdef SQLITE_ENABLE_API_ARMOR
+ (void)SQLITE_MISUSE_BKPT;
+#endif
+ }
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void winMutexEnter(sqlite3_mutex *p){
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ DWORD tid = GetCurrentThreadId();
+#endif
+#ifdef SQLITE_DEBUG
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
+#else
+ assert( p );
+#endif
+ assert( winMutex_isInit==1 );
+ EnterCriticalSection(&p->mutex);
+#ifdef SQLITE_DEBUG
+ assert( p->nRef>0 || p->owner==0 );
+ p->owner = tid;
+ p->nRef++;
+ if( p->trace ){
+ OSTRACE(("ENTER-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n",
+ tid, p->id, p, p->trace, p->nRef));
+ }
+#endif
+}
+
+static int winMutexTry(sqlite3_mutex *p){
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ DWORD tid = GetCurrentThreadId();
+#endif
+ int rc = SQLITE_BUSY;
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
+ /*
+ ** The sqlite3_mutex_try() routine is very rarely used, and when it
+ ** is used it is merely an optimization. So it is OK for it to always
+ ** fail.
+ **
+ ** The TryEnterCriticalSection() interface is only available on WinNT.
+ ** And some windows compilers complain if you try to use it without
+ ** first doing some #defines that prevent SQLite from building on Win98.
+ ** For that reason, we will omit this optimization for now. See
+ ** ticket #2685.
+ */
+#if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400
+ assert( winMutex_isInit==1 );
+ assert( winMutex_isNt>=-1 && winMutex_isNt<=1 );
+ if( winMutex_isNt<0 ){
+ winMutex_isNt = sqlite3_win32_is_nt();
+ }
+ assert( winMutex_isNt==0 || winMutex_isNt==1 );
+ if( winMutex_isNt && TryEnterCriticalSection(&p->mutex) ){
+#ifdef SQLITE_DEBUG
+ p->owner = tid;
+ p->nRef++;
+#endif
+ rc = SQLITE_OK;
+ }
+#else
+ UNUSED_PARAMETER(p);
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ OSTRACE(("TRY-MUTEX tid=%lu, mutex(%d)=%p (%d), owner=%lu, nRef=%d, rc=%s\n",
+ tid, p->id, p, p->trace, p->owner, p->nRef, sqlite3ErrName(rc)));
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void winMutexLeave(sqlite3_mutex *p){
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ DWORD tid = GetCurrentThreadId();
+#endif
+ assert( p );
+#ifdef SQLITE_DEBUG
+ assert( p->nRef>0 );
+ assert( p->owner==tid );
+ p->nRef--;
+ if( p->nRef==0 ) p->owner = 0;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+#endif
+ assert( winMutex_isInit==1 );
+ LeaveCriticalSection(&p->mutex);
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ OSTRACE(("LEAVE-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n",
+ tid, p->id, p, p->trace, p->nRef));
+ }
+#endif
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ winMutexInit,
+ winMutexEnd,
+ winMutexAlloc,
+ winMutexFree,
+ winMutexEnter,
+ winMutexTry,
+ winMutexLeave,
+#ifdef SQLITE_DEBUG
+ winMutexHeld,
+ winMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+ return &sMutex;
+}
+
+#endif /* SQLITE_MUTEX_W32 */
+
+/************** End of mutex_w32.c *******************************************/
+/************** Begin file malloc.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Memory allocation functions used throughout sqlite.
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdarg.h> */
+
+/*
+** Attempt to release up to n bytes of non-essential memory currently
+** held by SQLite. An example of non-essential memory is memory used to
+** cache database pages that are not currently in use.
+*/
+SQLITE_API int sqlite3_release_memory(int n){
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ return sqlite3PcacheReleaseMemory(n);
+#else
+ /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
+ ** is a no-op returning zero if SQLite is not compiled with
+ ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
+ UNUSED_PARAMETER(n);
+ return 0;
+#endif
+}
+
+/*
+** Default value of the hard heap limit. 0 means "no limit".
+*/
+#ifndef SQLITE_MAX_MEMORY
+# define SQLITE_MAX_MEMORY 0
+#endif
+
+/*
+** State information local to the memory allocation subsystem.
+*/
+static SQLITE_WSD struct Mem0Global {
+ sqlite3_mutex *mutex; /* Mutex to serialize access */
+ sqlite3_int64 alarmThreshold; /* The soft heap limit */
+ sqlite3_int64 hardLimit; /* The hard upper bound on memory */
+
+ /*
+ ** True if heap is nearly "full" where "full" is defined by the
+ ** sqlite3_soft_heap_limit() setting.
+ */
+ int nearlyFull;
+} mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
+
+#define mem0 GLOBAL(struct Mem0Global, mem0)
+
+/*
+** Return the memory allocator mutex. sqlite3_status() needs it.
+*/
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void){
+ return mem0.mutex;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. It used to set an alarm callback
+** that was invoked when memory usage grew too large. Now it is a
+** no-op.
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ (void)xCallback;
+ (void)pArg;
+ (void)iThreshold;
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Set the soft heap-size limit for the library. An argument of
+** zero disables the limit. A negative argument is a no-op used to
+** obtain the return value.
+**
+** The return value is the value of the heap limit just before this
+** interface was called.
+**
+** If the hard heap limit is enabled, then the soft heap limit cannot
+** be disabled nor raised above the hard heap limit.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
+ sqlite3_int64 priorLimit;
+ sqlite3_int64 excess;
+ sqlite3_int64 nUsed;
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return -1;
+#endif
+ sqlite3_mutex_enter(mem0.mutex);
+ priorLimit = mem0.alarmThreshold;
+ if( n<0 ){
+ sqlite3_mutex_leave(mem0.mutex);
+ return priorLimit;
+ }
+ if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
+ n = mem0.hardLimit;
+ }
+ mem0.alarmThreshold = n;
+ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
+ sqlite3_mutex_leave(mem0.mutex);
+ excess = sqlite3_memory_used() - n;
+ if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
+ return priorLimit;
+}
+SQLITE_API void sqlite3_soft_heap_limit(int n){
+ if( n<0 ) n = 0;
+ sqlite3_soft_heap_limit64(n);
+}
+
+/*
+** Set the hard heap-size limit for the library. An argument of zero
+** disables the hard heap limit. A negative argument is a no-op used
+** to obtain the return value without affecting the hard heap limit.
+**
+** The return value is the value of the hard heap limit just prior to
+** calling this interface.
+**
+** Setting the hard heap limit will also activate the soft heap limit
+** and constrain the soft heap limit to be no more than the hard heap
+** limit.
+*/
+SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
+ sqlite3_int64 priorLimit;
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return -1;
+#endif
+ sqlite3_mutex_enter(mem0.mutex);
+ priorLimit = mem0.hardLimit;
+ if( n>=0 ){
+ mem0.hardLimit = n;
+ if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
+ mem0.alarmThreshold = n;
+ }
+ }
+ sqlite3_mutex_leave(mem0.mutex);
+ return priorLimit;
+}
+
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE int sqlite3MallocInit(void){
+ int rc;
+ if( sqlite3GlobalConfig.m.xMalloc==0 ){
+ sqlite3MemSetDefault();
+ }
+ mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
+ || sqlite3GlobalConfig.nPage<=0 ){
+ sqlite3GlobalConfig.pPage = 0;
+ sqlite3GlobalConfig.szPage = 0;
+ }
+ rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
+ if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ /* install wrapping functions for memory management
+ that will wipe all memory allocated by SQLite
+ when freed */
+ if( rc==SQLITE_OK ) {
+ extern void sqlcipher_init_memmethods(void);
+ sqlcipher_init_memmethods();
+ }
+#endif
+/* END SQLCIPHER */
+ return rc;
+}
+
+/*
+** Return true if the heap is currently under memory pressure - in other
+** words if the amount of heap used is close to the limit set by
+** sqlite3_soft_heap_limit().
+*/
+SQLITE_PRIVATE int sqlite3HeapNearlyFull(void){
+ return AtomicLoad(&mem0.nearlyFull);
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE void sqlite3MallocEnd(void){
+ if( sqlite3GlobalConfig.m.xShutdown ){
+ sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
+ }
+ memset(&mem0, 0, sizeof(mem0));
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ sqlite3_int64 res, mx;
+ sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
+ return res;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ sqlite3_int64 res, mx;
+ sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
+ return mx;
+}
+
+/*
+** Trigger the alarm
+*/
+static void sqlite3MallocAlarm(int nByte){
+ if( mem0.alarmThreshold<=0 ) return;
+ sqlite3_mutex_leave(mem0.mutex);
+ sqlite3_release_memory(nByte);
+ sqlite3_mutex_enter(mem0.mutex);
+}
+
+/*
+** Do a memory allocation with statistics and alarms. Assume the
+** lock is already held.
+*/
+static void mallocWithAlarm(int n, void **pp){
+ void *p;
+ int nFull;
+ assert( sqlite3_mutex_held(mem0.mutex) );
+ assert( n>0 );
+
+ /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
+ ** implementation of malloc_good_size(), which must be called in debug
+ ** mode and specifically when the DMD "Dark Matter Detector" is enabled
+ ** or else a crash results. Hence, do not attempt to optimize out the
+ ** following xRoundup() call. */
+ nFull = sqlite3GlobalConfig.m.xRoundup(n);
+
+ sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
+ if( mem0.alarmThreshold>0 ){
+ sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ if( nUsed >= mem0.alarmThreshold - nFull ){
+ AtomicStore(&mem0.nearlyFull, 1);
+ sqlite3MallocAlarm(nFull);
+ if( mem0.hardLimit ){
+ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ if( nUsed >= mem0.hardLimit - nFull ){
+ *pp = 0;
+ return;
+ }
+ }
+ }else{
+ AtomicStore(&mem0.nearlyFull, 0);
+ }
+ }
+ p = sqlite3GlobalConfig.m.xMalloc(nFull);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( p==0 && mem0.alarmThreshold>0 ){
+ sqlite3MallocAlarm(nFull);
+ p = sqlite3GlobalConfig.m.xMalloc(nFull);
+ }
+#endif
+ if( p ){
+ nFull = sqlite3MallocSize(p);
+ sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
+ sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
+ }
+ *pp = p;
+}
+
+/*
+** Allocate memory. This routine is like sqlite3_malloc() except that it
+** assumes the memory subsystem has already been initialized.
+*/
+SQLITE_PRIVATE void *sqlite3Malloc(u64 n){
+ void *p;
+ if( n==0 || n>=0x7fffff00 ){
+ /* A memory allocation of a number of bytes which is near the maximum
+ ** signed integer value might cause an integer overflow inside of the
+ ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
+ ** 255 bytes of overhead. SQLite itself will never use anything near
+ ** this amount. The only way to reach the limit is with sqlite3_malloc() */
+ p = 0;
+ }else if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ mallocWithAlarm((int)n, &p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3GlobalConfig.m.xMalloc((int)n);
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
+ return p;
+}
+
+/*
+** This version of the memory allocation is for use by the application.
+** First make sure the memory subsystem is initialized, then do the
+** allocation.
+*/
+SQLITE_API void *sqlite3_malloc(int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return n<=0 ? 0 : sqlite3Malloc(n);
+}
+SQLITE_API void *sqlite3_malloc64(sqlite3_uint64 n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Malloc(n);
+}
+
+/*
+** TRUE if p is a lookaside memory allocation from db
+*/
+#ifndef SQLITE_OMIT_LOOKASIDE
+static int isLookaside(sqlite3 *db, const void *p){
+ return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
+}
+#else
+#define isLookaside(A,B) 0
+#endif
+
+/*
+** Return the size of a memory allocation previously obtained from
+** sqlite3Malloc() or sqlite3_malloc().
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(const void *p){
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ return sqlite3GlobalConfig.m.xSize((void*)p);
+}
+static int lookasideMallocSize(sqlite3 *db, const void *p){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
+#else
+ return db->lookaside.szTrue;
+#endif
+}
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, const void *p){
+ assert( p!=0 );
+#ifdef SQLITE_DEBUG
+ if( db==0 || !isLookaside(db,p) ){
+ if( db==0 ){
+ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ }else{
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ }
+ }
+#endif
+ if( db ){
+ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
+ assert( sqlite3_mutex_held(db->mutex) );
+ return LOOKASIDE_SMALL;
+ }
+#endif
+ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
+ assert( sqlite3_mutex_held(db->mutex) );
+ return db->lookaside.szTrue;
+ }
+ }
+ }
+ return sqlite3GlobalConfig.m.xSize((void*)p);
+}
+SQLITE_API sqlite3_uint64 sqlite3_msize(void *p){
+ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
+}
+
+/*
+** Free memory previously obtained from sqlite3Malloc().
+*/
+SQLITE_API void sqlite3_free(void *p){
+ if( p==0 ) return; /* IMP: R-49053-54554 */
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
+ if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
+ sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
+ sqlite3GlobalConfig.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3GlobalConfig.m.xFree(p);
+ }
+}
+
+/*
+** Add the size of memory allocation "p" to the count in
+** *db->pnBytesFreed.
+*/
+static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
+ *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
+}
+
+/*
+** Free memory that might be associated with a particular database
+** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
+** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
+*/
+SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ assert( p!=0 );
+ if( db ){
+ if( db->pnBytesFreed ){
+ measureAllocationSize(db, p);
+ return;
+ }
+ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+#ifdef SQLITE_DEBUG
+ memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
+#endif
+ pBuf->pNext = db->lookaside.pSmallFree;
+ db->lookaside.pSmallFree = pBuf;
+ return;
+ }
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+#ifdef SQLITE_DEBUG
+ memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
+#endif
+ pBuf->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = pBuf;
+ return;
+ }
+ }
+ }
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ sqlite3_free(p);
+}
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ if( p ) sqlite3DbFreeNN(db, p);
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){
+ int nOld, nNew, nDiff;
+ void *pNew;
+ assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
+ if( pOld==0 ){
+ return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
+ }
+ if( nBytes==0 ){
+ sqlite3_free(pOld); /* IMP: R-26507-47431 */
+ return 0;
+ }
+ if( nBytes>=0x7fffff00 ){
+ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
+ return 0;
+ }
+ nOld = sqlite3MallocSize(pOld);
+ /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
+ ** argument to xRealloc is always a value returned by a prior call to
+ ** xRoundup. */
+ nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
+ if( nOld==nNew ){
+ pNew = pOld;
+ }else if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_int64 nUsed;
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
+ nDiff = nNew - nOld;
+ if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
+ mem0.alarmThreshold-nDiff ){
+ sqlite3MallocAlarm(nDiff);
+ if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
+ sqlite3_mutex_leave(mem0.mutex);
+ return 0;
+ }
+ }
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( pNew==0 && mem0.alarmThreshold>0 ){
+ sqlite3MallocAlarm((int)nBytes);
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ }
+#endif
+ if( pNew ){
+ nNew = sqlite3MallocSize(pNew);
+ sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
+ }
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
+ return pNew;
+}
+
+/*
+** The public interface to sqlite3Realloc. Make sure that the memory
+** subsystem is initialized prior to invoking sqliteRealloc.
+*/
+SQLITE_API void *sqlite3_realloc(void *pOld, int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ if( n<0 ) n = 0; /* IMP: R-26507-47431 */
+ return sqlite3Realloc(pOld, n);
+}
+SQLITE_API void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Realloc(pOld, n);
+}
+
+
+/*
+** Allocate and zero memory.
+*/
+SQLITE_PRIVATE void *sqlite3MallocZero(u64 n){
+ void *p = sqlite3Malloc(n);
+ if( p ){
+ memset(p, 0, (size_t)n);
+ }
+ return p;
+}
+
+/*
+** Allocate and zero memory. If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
+ void *p;
+ testcase( db==0 );
+ p = sqlite3DbMallocRaw(db, n);
+ if( p ) memset(p, 0, (size_t)n);
+ return p;
+}
+
+
+/* Finish the work of sqlite3DbMallocRawNN for the unusual and
+** slower case when the allocation cannot be fulfilled using lookaside.
+*/
+static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
+ void *p;
+ assert( db!=0 );
+ p = sqlite3Malloc(n);
+ if( !p ) sqlite3OomFault(db);
+ sqlite3MemdebugSetType(p,
+ (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
+ return p;
+}
+
+/*
+** Allocate memory, either lookaside (if possible) or heap.
+** If the allocation fails, set the mallocFailed flag in
+** the connection pointer.
+**
+** If db!=0 and db->mallocFailed is true (indicating a prior malloc
+** failure on the same database connection) then always return 0.
+** Hence for a particular database connection, once malloc starts
+** failing, it fails consistently until mallocFailed is reset.
+** This is an important assumption. There are many places in the
+** code that do things like this:
+**
+** int *a = (int*)sqlite3DbMallocRaw(db, 100);
+** int *b = (int*)sqlite3DbMallocRaw(db, 200);
+** if( b ) a[10] = 9;
+**
+** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
+** that all prior mallocs (ex: "a") worked too.
+**
+** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
+** not a NULL pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
+ void *p;
+ if( db ) return sqlite3DbMallocRawNN(db, n);
+ p = sqlite3Malloc(n);
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ return p;
+}
+SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
+#ifndef SQLITE_OMIT_LOOKASIDE
+ LookasideSlot *pBuf;
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( db->pnBytesFreed==0 );
+ if( n>db->lookaside.sz ){
+ if( !db->lookaside.bDisable ){
+ db->lookaside.anStat[1]++;
+ }else if( db->mallocFailed ){
+ return 0;
+ }
+ return dbMallocRawFinish(db, n);
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( n<=LOOKASIDE_SMALL ){
+ if( (pBuf = db->lookaside.pSmallFree)!=0 ){
+ db->lookaside.pSmallFree = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
+ db->lookaside.pSmallInit = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }
+ }
+#endif
+ if( (pBuf = db->lookaside.pFree)!=0 ){
+ db->lookaside.pFree = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }else if( (pBuf = db->lookaside.pInit)!=0 ){
+ db->lookaside.pInit = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }else{
+ db->lookaside.anStat[2]++;
+ }
+#else
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( db->pnBytesFreed==0 );
+ if( db->mallocFailed ){
+ return 0;
+ }
+#endif
+ return dbMallocRawFinish(db, n);
+}
+
+/* Forward declaration */
+static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
+
+/*
+** Resize the block of memory pointed to by p to n bytes. If the
+** resize fails, set the mallocFailed flag in the connection object.
+*/
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
+ assert( db!=0 );
+ if( p==0 ) return sqlite3DbMallocRawNN(db, n);
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
+ if( n<=LOOKASIDE_SMALL ) return p;
+ }else
+#endif
+ if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
+ if( n<=db->lookaside.szTrue ) return p;
+ }
+ }
+ return dbReallocFinish(db, p, n);
+}
+static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
+ void *pNew = 0;
+ assert( db!=0 );
+ assert( p!=0 );
+ if( db->mallocFailed==0 ){
+ if( isLookaside(db, p) ){
+ pNew = sqlite3DbMallocRawNN(db, n);
+ if( pNew ){
+ memcpy(pNew, p, lookasideMallocSize(db, p));
+ sqlite3DbFree(db, p);
+ }
+ }else{
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ pNew = sqlite3Realloc(p, n);
+ if( !pNew ){
+ sqlite3OomFault(db);
+ }
+ sqlite3MemdebugSetType(pNew,
+ (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
+ }
+ }
+ return pNew;
+}
+
+/*
+** Attempt to reallocate p. If the reallocation fails, then free p
+** and set the mallocFailed flag in the database connection.
+*/
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
+ void *pNew;
+ pNew = sqlite3DbRealloc(db, p, n);
+ if( !pNew ){
+ sqlite3DbFree(db, p);
+ }
+ return pNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc(). These
+** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
+** is because when memory debugging is turned on, these two functions are
+** called via macros that record the current file and line number in the
+** ThreadData structure.
+*/
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
+ char *zNew;
+ size_t n;
+ if( z==0 ){
+ return 0;
+ }
+ n = strlen(z) + 1;
+ zNew = sqlite3DbMallocRaw(db, n);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ }
+ return zNew;
+}
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
+ char *zNew;
+ assert( db!=0 );
+ assert( z!=0 || n==0 );
+ assert( (n&0x7fffffff)==n );
+ zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
+ if( zNew ){
+ memcpy(zNew, z, (size_t)n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+
+/*
+** The text between zStart and zEnd represents a phrase within a larger
+** SQL statement. Make a copy of this phrase in space obtained form
+** sqlite3DbMalloc(). Omit leading and trailing whitespace.
+*/
+SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
+ int n;
+ while( sqlite3Isspace(zStart[0]) ) zStart++;
+ n = (int)(zEnd - zStart);
+ while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
+ return sqlite3DbStrNDup(db, zStart, n);
+}
+
+/*
+** Free any prior content in *pz and replace it with a copy of zNew.
+*/
+SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
+ char *z = sqlite3DbStrDup(db, zNew);
+ sqlite3DbFree(db, *pz);
+ *pz = z;
+}
+
+/*
+** Call this routine to record the fact that an OOM (out-of-memory) error
+** has happened. This routine will set db->mallocFailed, and also
+** temporarily disable the lookaside memory allocator and interrupt
+** any running VDBEs.
+**
+** Always return a NULL pointer so that this routine can be invoked using
+**
+** return sqlite3OomFault(db);
+**
+** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
+** common case where no OOM occurs.
+*/
+SQLITE_PRIVATE void *sqlite3OomFault(sqlite3 *db){
+ if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
+ db->mallocFailed = 1;
+ if( db->nVdbeExec>0 ){
+ AtomicStore(&db->u1.isInterrupted, 1);
+ }
+ DisableLookaside;
+ if( db->pParse ){
+ Parse *pParse;
+ sqlite3ErrorMsg(db->pParse, "out of memory");
+ db->pParse->rc = SQLITE_NOMEM_BKPT;
+ for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){
+ pParse->nErr++;
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** This routine reactivates the memory allocator and clears the
+** db->mallocFailed flag as necessary.
+**
+** The memory allocator is not restarted if there are running
+** VDBEs.
+*/
+SQLITE_PRIVATE void sqlite3OomClear(sqlite3 *db){
+ if( db->mallocFailed && db->nVdbeExec==0 ){
+ db->mallocFailed = 0;
+ AtomicStore(&db->u1.isInterrupted, 0);
+ assert( db->lookaside.bDisable>0 );
+ EnableLookaside;
+ }
+}
+
+/*
+** Take actions at the end of an API call to deal with error codes.
+*/
+static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
+ if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomClear(db);
+ sqlite3Error(db, SQLITE_NOMEM);
+ return SQLITE_NOMEM_BKPT;
+ }
+ return rc & db->errMask;
+}
+
+/*
+** This function must be called before exiting any API function (i.e.
+** returning control to the user) that has called sqlite3_malloc or
+** sqlite3_realloc.
+**
+** The returned value is normally a copy of the second argument to this
+** function. However, if a malloc() failure has occurred since the previous
+** invocation SQLITE_NOMEM is returned instead.
+**
+** If an OOM as occurred, then the connection error-code (the value
+** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
+*/
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
+ /* If the db handle must hold the connection handle mutex here.
+ ** Otherwise the read (and possible write) of db->mallocFailed
+ ** is unsafe, as is the call to sqlite3Error().
+ */
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( db->mallocFailed || rc ){
+ return apiHandleError(db, rc);
+ }
+ return rc & db->errMask;
+}
+
+/************** End of malloc.c **********************************************/
+/************** Begin file printf.c ******************************************/
+/*
+** The "printf" code that follows dates from the 1980's. It is in
+** the public domain.
+**
+**************************************************************************
+**
+** This file contains code for a set of "printf"-like routines. These
+** routines format strings much like the printf() from the standard C
+** library, though the implementation here has enhancements to support
+** SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Conversion types fall into various categories as defined by the
+** following enumeration.
+*/
+#define etRADIX 0 /* non-decimal integer types. %x %o */
+#define etFLOAT 1 /* Floating point. %f */
+#define etEXP 2 /* Exponentional notation. %e and %E */
+#define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */
+#define etSIZE 4 /* Return number of characters processed so far. %n */
+#define etSTRING 5 /* Strings. %s */
+#define etDYNSTRING 6 /* Dynamically allocated strings. %z */
+#define etPERCENT 7 /* Percent symbol. %% */
+#define etCHARX 8 /* Characters. %c */
+/* The rest are extensions, not normally found in printf() */
+#define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */
+#define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '',
+ NULL pointers replaced by SQL NULL. %Q */
+#define etTOKEN 11 /* a pointer to a Token structure */
+#define etSRCITEM 12 /* a pointer to a SrcItem */
+#define etPOINTER 13 /* The %p conversion */
+#define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */
+#define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
+#define etDECIMAL 16 /* %d or %u, but not %x, %o */
+
+#define etINVALID 17 /* Any unrecognized conversion type */
+
+
+/*
+** An "etByte" is an 8-bit unsigned value.
+*/
+typedef unsigned char etByte;
+
+/*
+** Each builtin conversion character (ex: the 'd' in "%d") is described
+** by an instance of the following structure
+*/
+typedef struct et_info { /* Information about each format field */
+ char fmttype; /* The format field code letter */
+ etByte base; /* The base for radix conversion */
+ etByte flags; /* One or more of FLAG_ constants below */
+ etByte type; /* Conversion paradigm */
+ etByte charset; /* Offset into aDigits[] of the digits string */
+ etByte prefix; /* Offset into aPrefix[] of the prefix string */
+} et_info;
+
+/*
+** Allowed values for et_info.flags
+*/
+#define FLAG_SIGNED 1 /* True if the value to convert is signed */
+#define FLAG_STRING 4 /* Allow infinite precision */
+
+
+/*
+** The following table is searched linearly, so it is good to put the
+** most frequently used conversion types first.
+*/
+static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
+static const char aPrefix[] = "-x0\000X0";
+static const et_info fmtinfo[] = {
+ { 'd', 10, 1, etDECIMAL, 0, 0 },
+ { 's', 0, 4, etSTRING, 0, 0 },
+ { 'g', 0, 1, etGENERIC, 30, 0 },
+ { 'z', 0, 4, etDYNSTRING, 0, 0 },
+ { 'q', 0, 4, etSQLESCAPE, 0, 0 },
+ { 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
+ { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
+ { 'c', 0, 0, etCHARX, 0, 0 },
+ { 'o', 8, 0, etRADIX, 0, 2 },
+ { 'u', 10, 0, etDECIMAL, 0, 0 },
+ { 'x', 16, 0, etRADIX, 16, 1 },
+ { 'X', 16, 0, etRADIX, 0, 4 },
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ { 'f', 0, 1, etFLOAT, 0, 0 },
+ { 'e', 0, 1, etEXP, 30, 0 },
+ { 'E', 0, 1, etEXP, 14, 0 },
+ { 'G', 0, 1, etGENERIC, 14, 0 },
+#endif
+ { 'i', 10, 1, etDECIMAL, 0, 0 },
+ { 'n', 0, 0, etSIZE, 0, 0 },
+ { '%', 0, 0, etPERCENT, 0, 0 },
+ { 'p', 16, 0, etPOINTER, 0, 1 },
+
+ /* All the rest are undocumented and are for internal use only */
+ { 'T', 0, 0, etTOKEN, 0, 0 },
+ { 'S', 0, 0, etSRCITEM, 0, 0 },
+ { 'r', 10, 1, etORDINAL, 0, 0 },
+};
+
+/* Notes:
+**
+** %S Takes a pointer to SrcItem. Shows name or database.name
+** %!S Like %S but prefer the zName over the zAlias
+*/
+
+/* Floating point constants used for rounding */
+static const double arRound[] = {
+ 5.0e-01, 5.0e-02, 5.0e-03, 5.0e-04, 5.0e-05,
+ 5.0e-06, 5.0e-07, 5.0e-08, 5.0e-09, 5.0e-10,
+};
+
+/*
+** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
+** conversions will work.
+*/
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** "*val" is a double such that 0.1 <= *val < 10.0
+** Return the ascii code for the leading digit of *val, then
+** multiply "*val" by 10.0 to renormalize.
+**
+** Example:
+** input: *val = 3.14159
+** output: *val = 1.4159 function return = '3'
+**
+** The counter *cnt is incremented each time. After counter exceeds
+** 16 (the number of significant digits in a 64-bit float) '0' is
+** always returned.
+*/
+static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
+ int digit;
+ LONGDOUBLE_TYPE d;
+ if( (*cnt)<=0 ) return '0';
+ (*cnt)--;
+ digit = (int)*val;
+ d = digit;
+ digit += '0';
+ *val = (*val - d)*10.0;
+ return (char)digit;
+}
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+
+/*
+** Set the StrAccum object to an error mode.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum *p, u8 eError){
+ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
+ p->accError = eError;
+ if( p->mxAlloc ) sqlite3_str_reset(p);
+ if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError);
+}
+
+/*
+** Extra argument values from a PrintfArguments object
+*/
+static sqlite3_int64 getIntArg(PrintfArguments *p){
+ if( p->nArg<=p->nUsed ) return 0;
+ return sqlite3_value_int64(p->apArg[p->nUsed++]);
+}
+static double getDoubleArg(PrintfArguments *p){
+ if( p->nArg<=p->nUsed ) return 0.0;
+ return sqlite3_value_double(p->apArg[p->nUsed++]);
+}
+static char *getTextArg(PrintfArguments *p){
+ if( p->nArg<=p->nUsed ) return 0;
+ return (char*)sqlite3_value_text(p->apArg[p->nUsed++]);
+}
+
+/*
+** Allocate memory for a temporary buffer needed for printf rendering.
+**
+** If the requested size of the temp buffer is larger than the size
+** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error.
+** Do the size check before the memory allocation to prevent rogue
+** SQL from requesting large allocations using the precision or width
+** field of the printf() function.
+*/
+static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){
+ char *z;
+ if( pAccum->accError ) return 0;
+ if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){
+ sqlite3StrAccumSetError(pAccum, SQLITE_TOOBIG);
+ return 0;
+ }
+ z = sqlite3DbMallocRaw(pAccum->db, n);
+ if( z==0 ){
+ sqlite3StrAccumSetError(pAccum, SQLITE_NOMEM);
+ }
+ return z;
+}
+
+/*
+** On machines with a small stack size, you can redefine the
+** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
+*/
+#ifndef SQLITE_PRINT_BUF_SIZE
+# define SQLITE_PRINT_BUF_SIZE 70
+#endif
+#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
+
+/*
+** Hard limit on the precision of floating-point conversions.
+*/
+#ifndef SQLITE_PRINTF_PRECISION_LIMIT
+# define SQLITE_FP_PRECISION_LIMIT 100000000
+#endif
+
+/*
+** Render a string given by "fmt" into the StrAccum object.
+*/
+SQLITE_API void sqlite3_str_vappendf(
+ sqlite3_str *pAccum, /* Accumulate results here */
+ const char *fmt, /* Format string */
+ va_list ap /* arguments */
+){
+ int c; /* Next character in the format string */
+ char *bufpt; /* Pointer to the conversion buffer */
+ int precision; /* Precision of the current field */
+ int length; /* Length of the field */
+ int idx; /* A general purpose loop counter */
+ int width; /* Width of the current field */
+ etByte flag_leftjustify; /* True if "-" flag is present */
+ etByte flag_prefix; /* '+' or ' ' or 0 for prefix */
+ etByte flag_alternateform; /* True if "#" flag is present */
+ etByte flag_altform2; /* True if "!" flag is present */
+ etByte flag_zeropad; /* True if field width constant starts with zero */
+ etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */
+ etByte done; /* Loop termination flag */
+ etByte cThousand; /* Thousands separator for %d and %u */
+ etByte xtype = etINVALID; /* Conversion paradigm */
+ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */
+ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
+ sqlite_uint64 longvalue; /* Value for integer types */
+ LONGDOUBLE_TYPE realvalue; /* Value for real types */
+ const et_info *infop; /* Pointer to the appropriate info structure */
+ char *zOut; /* Rendering buffer */
+ int nOut; /* Size of the rendering buffer */
+ char *zExtra = 0; /* Malloced memory used by some conversion */
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ int exp, e2; /* exponent of real numbers */
+ int nsd; /* Number of significant digits returned */
+ double rounder; /* Used for rounding floating point values */
+ etByte flag_dp; /* True if decimal point should be shown */
+ etByte flag_rtz; /* True if trailing zeros should be removed */
+#endif
+ PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
+ char buf[etBUFSIZE]; /* Conversion buffer */
+
+ /* pAccum never starts out with an empty buffer that was obtained from
+ ** malloc(). This precondition is required by the mprintf("%z...")
+ ** optimization. */
+ assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
+
+ bufpt = 0;
+ if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){
+ pArgList = va_arg(ap, PrintfArguments*);
+ bArgList = 1;
+ }else{
+ bArgList = 0;
+ }
+ for(; (c=(*fmt))!=0; ++fmt){
+ if( c!='%' ){
+ bufpt = (char *)fmt;
+#if HAVE_STRCHRNUL
+ fmt = strchrnul(fmt, '%');
+#else
+ do{ fmt++; }while( *fmt && *fmt != '%' );
+#endif
+ sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt));
+ if( *fmt==0 ) break;
+ }
+ if( (c=(*++fmt))==0 ){
+ sqlite3_str_append(pAccum, "%", 1);
+ break;
+ }
+ /* Find out what flags are present */
+ flag_leftjustify = flag_prefix = cThousand =
+ flag_alternateform = flag_altform2 = flag_zeropad = 0;
+ done = 0;
+ width = 0;
+ flag_long = 0;
+ precision = -1;
+ do{
+ switch( c ){
+ case '-': flag_leftjustify = 1; break;
+ case '+': flag_prefix = '+'; break;
+ case ' ': flag_prefix = ' '; break;
+ case '#': flag_alternateform = 1; break;
+ case '!': flag_altform2 = 1; break;
+ case '0': flag_zeropad = 1; break;
+ case ',': cThousand = ','; break;
+ default: done = 1; break;
+ case 'l': {
+ flag_long = 1;
+ c = *++fmt;
+ if( c=='l' ){
+ c = *++fmt;
+ flag_long = 2;
+ }
+ done = 1;
+ break;
+ }
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9': {
+ unsigned wx = c - '0';
+ while( (c = *++fmt)>='0' && c<='9' ){
+ wx = wx*10 + c - '0';
+ }
+ testcase( wx>0x7fffffff );
+ width = wx & 0x7fffffff;
+#ifdef SQLITE_PRINTF_PRECISION_LIMIT
+ if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
+ width = SQLITE_PRINTF_PRECISION_LIMIT;
+ }
+#endif
+ if( c!='.' && c!='l' ){
+ done = 1;
+ }else{
+ fmt--;
+ }
+ break;
+ }
+ case '*': {
+ if( bArgList ){
+ width = (int)getIntArg(pArgList);
+ }else{
+ width = va_arg(ap,int);
+ }
+ if( width<0 ){
+ flag_leftjustify = 1;
+ width = width >= -2147483647 ? -width : 0;
+ }
+#ifdef SQLITE_PRINTF_PRECISION_LIMIT
+ if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
+ width = SQLITE_PRINTF_PRECISION_LIMIT;
+ }
+#endif
+ if( (c = fmt[1])!='.' && c!='l' ){
+ c = *++fmt;
+ done = 1;
+ }
+ break;
+ }
+ case '.': {
+ c = *++fmt;
+ if( c=='*' ){
+ if( bArgList ){
+ precision = (int)getIntArg(pArgList);
+ }else{
+ precision = va_arg(ap,int);
+ }
+ if( precision<0 ){
+ precision = precision >= -2147483647 ? -precision : -1;
+ }
+ c = *++fmt;
+ }else{
+ unsigned px = 0;
+ while( c>='0' && c<='9' ){
+ px = px*10 + c - '0';
+ c = *++fmt;
+ }
+ testcase( px>0x7fffffff );
+ precision = px & 0x7fffffff;
+ }
+#ifdef SQLITE_PRINTF_PRECISION_LIMIT
+ if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){
+ precision = SQLITE_PRINTF_PRECISION_LIMIT;
+ }
+#endif
+ if( c=='l' ){
+ --fmt;
+ }else{
+ done = 1;
+ }
+ break;
+ }
+ }
+ }while( !done && (c=(*++fmt))!=0 );
+
+ /* Fetch the info entry for the field */
+ infop = &fmtinfo[0];
+ xtype = etINVALID;
+ for(idx=0; idx<ArraySize(fmtinfo); idx++){
+ if( c==fmtinfo[idx].fmttype ){
+ infop = &fmtinfo[idx];
+ xtype = infop->type;
+ break;
+ }
+ }
+
+ /*
+ ** At this point, variables are initialized as follows:
+ **
+ ** flag_alternateform TRUE if a '#' is present.
+ ** flag_altform2 TRUE if a '!' is present.
+ ** flag_prefix '+' or ' ' or zero
+ ** flag_leftjustify TRUE if a '-' is present or if the
+ ** field width was negative.
+ ** flag_zeropad TRUE if the width began with 0.
+ ** flag_long 1 for "l", 2 for "ll"
+ ** width The specified field width. This is
+ ** always non-negative. Zero is the default.
+ ** precision The specified precision. The default
+ ** is -1.
+ ** xtype The class of the conversion.
+ ** infop Pointer to the appropriate info struct.
+ */
+ assert( width>=0 );
+ assert( precision>=(-1) );
+ switch( xtype ){
+ case etPOINTER:
+ flag_long = sizeof(char*)==sizeof(i64) ? 2 :
+ sizeof(char*)==sizeof(long int) ? 1 : 0;
+ /* no break */ deliberate_fall_through
+ case etORDINAL:
+ case etRADIX:
+ cThousand = 0;
+ /* no break */ deliberate_fall_through
+ case etDECIMAL:
+ if( infop->flags & FLAG_SIGNED ){
+ i64 v;
+ if( bArgList ){
+ v = getIntArg(pArgList);
+ }else if( flag_long ){
+ if( flag_long==2 ){
+ v = va_arg(ap,i64) ;
+ }else{
+ v = va_arg(ap,long int);
+ }
+ }else{
+ v = va_arg(ap,int);
+ }
+ if( v<0 ){
+ testcase( v==SMALLEST_INT64 );
+ testcase( v==(-1) );
+ longvalue = ~v;
+ longvalue++;
+ prefix = '-';
+ }else{
+ longvalue = v;
+ prefix = flag_prefix;
+ }
+ }else{
+ if( bArgList ){
+ longvalue = (u64)getIntArg(pArgList);
+ }else if( flag_long ){
+ if( flag_long==2 ){
+ longvalue = va_arg(ap,u64);
+ }else{
+ longvalue = va_arg(ap,unsigned long int);
+ }
+ }else{
+ longvalue = va_arg(ap,unsigned int);
+ }
+ prefix = 0;
+ }
+ if( longvalue==0 ) flag_alternateform = 0;
+ if( flag_zeropad && precision<width-(prefix!=0) ){
+ precision = width-(prefix!=0);
+ }
+ if( precision<etBUFSIZE-10-etBUFSIZE/3 ){
+ nOut = etBUFSIZE;
+ zOut = buf;
+ }else{
+ u64 n;
+ n = (u64)precision + 10;
+ if( cThousand ) n += precision/3;
+ zOut = zExtra = printfTempBuf(pAccum, n);
+ if( zOut==0 ) return;
+ nOut = (int)n;
+ }
+ bufpt = &zOut[nOut-1];
+ if( xtype==etORDINAL ){
+ static const char zOrd[] = "thstndrd";
+ int x = (int)(longvalue % 10);
+ if( x>=4 || (longvalue/10)%10==1 ){
+ x = 0;
+ }
+ *(--bufpt) = zOrd[x*2+1];
+ *(--bufpt) = zOrd[x*2];
+ }
+ {
+ const char *cset = &aDigits[infop->charset];
+ u8 base = infop->base;
+ do{ /* Convert to ascii */
+ *(--bufpt) = cset[longvalue%base];
+ longvalue = longvalue/base;
+ }while( longvalue>0 );
+ }
+ length = (int)(&zOut[nOut-1]-bufpt);
+ while( precision>length ){
+ *(--bufpt) = '0'; /* Zero pad */
+ length++;
+ }
+ if( cThousand ){
+ int nn = (length - 1)/3; /* Number of "," to insert */
+ int ix = (length - 1)%3 + 1;
+ bufpt -= nn;
+ for(idx=0; nn>0; idx++){
+ bufpt[idx] = bufpt[idx+nn];
+ ix--;
+ if( ix==0 ){
+ bufpt[++idx] = cThousand;
+ nn--;
+ ix = 3;
+ }
+ }
+ }
+ if( prefix ) *(--bufpt) = prefix; /* Add sign */
+ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
+ const char *pre;
+ char x;
+ pre = &aPrefix[infop->prefix];
+ for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
+ }
+ length = (int)(&zOut[nOut-1]-bufpt);
+ break;
+ case etFLOAT:
+ case etEXP:
+ case etGENERIC:
+ if( bArgList ){
+ realvalue = getDoubleArg(pArgList);
+ }else{
+ realvalue = va_arg(ap,double);
+ }
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ length = 0;
+#else
+ if( precision<0 ) precision = 6; /* Set default precision */
+#ifdef SQLITE_FP_PRECISION_LIMIT
+ if( precision>SQLITE_FP_PRECISION_LIMIT ){
+ precision = SQLITE_FP_PRECISION_LIMIT;
+ }
+#endif
+ if( realvalue<0.0 ){
+ realvalue = -realvalue;
+ prefix = '-';
+ }else{
+ prefix = flag_prefix;
+ }
+ if( xtype==etGENERIC && precision>0 ) precision--;
+ testcase( precision>0xfff );
+ idx = precision & 0xfff;
+ rounder = arRound[idx%10];
+ while( idx>=10 ){ rounder *= 1.0e-10; idx -= 10; }
+ if( xtype==etFLOAT ){
+ double rx = (double)realvalue;
+ sqlite3_uint64 u;
+ int ex;
+ memcpy(&u, &rx, sizeof(u));
+ ex = -1023 + (int)((u>>52)&0x7ff);
+ if( precision+(ex/3) < 15 ) rounder += realvalue*3e-16;
+ realvalue += rounder;
+ }
+ /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
+ exp = 0;
+ if( sqlite3IsNaN((double)realvalue) ){
+ bufpt = "NaN";
+ length = 3;
+ break;
+ }
+ if( realvalue>0.0 ){
+ LONGDOUBLE_TYPE scale = 1.0;
+ while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;}
+ while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; }
+ while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; }
+ realvalue /= scale;
+ while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
+ while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
+ if( exp>350 ){
+ bufpt = buf;
+ buf[0] = prefix;
+ memcpy(buf+(prefix!=0),"Inf",4);
+ length = 3+(prefix!=0);
+ break;
+ }
+ }
+ bufpt = buf;
+ /*
+ ** If the field type is etGENERIC, then convert to either etEXP
+ ** or etFLOAT, as appropriate.
+ */
+ if( xtype!=etFLOAT ){
+ realvalue += rounder;
+ if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
+ }
+ if( xtype==etGENERIC ){
+ flag_rtz = !flag_alternateform;
+ if( exp<-4 || exp>precision ){
+ xtype = etEXP;
+ }else{
+ precision = precision - exp;
+ xtype = etFLOAT;
+ }
+ }else{
+ flag_rtz = flag_altform2;
+ }
+ if( xtype==etEXP ){
+ e2 = 0;
+ }else{
+ e2 = exp;
+ }
+ {
+ i64 szBufNeeded; /* Size of a temporary buffer needed */
+ szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15;
+ if( szBufNeeded > etBUFSIZE ){
+ bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded);
+ if( bufpt==0 ) return;
+ }
+ }
+ zOut = bufpt;
+ nsd = 16 + flag_altform2*10;
+ flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
+ /* The sign in front of the number */
+ if( prefix ){
+ *(bufpt++) = prefix;
+ }
+ /* Digits prior to the decimal point */
+ if( e2<0 ){
+ *(bufpt++) = '0';
+ }else{
+ for(; e2>=0; e2--){
+ *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ }
+ }
+ /* The decimal point */
+ if( flag_dp ){
+ *(bufpt++) = '.';
+ }
+ /* "0" digits after the decimal point but before the first
+ ** significant digit of the number */
+ for(e2++; e2<0; precision--, e2++){
+ assert( precision>0 );
+ *(bufpt++) = '0';
+ }
+ /* Significant digits after the decimal point */
+ while( (precision--)>0 ){
+ *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ }
+ /* Remove trailing zeros and the "." if no digits follow the "." */
+ if( flag_rtz && flag_dp ){
+ while( bufpt[-1]=='0' ) *(--bufpt) = 0;
+ assert( bufpt>zOut );
+ if( bufpt[-1]=='.' ){
+ if( flag_altform2 ){
+ *(bufpt++) = '0';
+ }else{
+ *(--bufpt) = 0;
+ }
+ }
+ }
+ /* Add the "eNNN" suffix */
+ if( xtype==etEXP ){
+ *(bufpt++) = aDigits[infop->charset];
+ if( exp<0 ){
+ *(bufpt++) = '-'; exp = -exp;
+ }else{
+ *(bufpt++) = '+';
+ }
+ if( exp>=100 ){
+ *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
+ exp %= 100;
+ }
+ *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
+ *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
+ }
+ *bufpt = 0;
+
+ /* The converted number is in buf[] and zero terminated. Output it.
+ ** Note that the number is in the usual order, not reversed as with
+ ** integer conversions. */
+ length = (int)(bufpt-zOut);
+ bufpt = zOut;
+
+ /* Special case: Add leading zeros if the flag_zeropad flag is
+ ** set and we are not left justified */
+ if( flag_zeropad && !flag_leftjustify && length < width){
+ int i;
+ int nPad = width - length;
+ for(i=width; i>=nPad; i--){
+ bufpt[i] = bufpt[i-nPad];
+ }
+ i = prefix!=0;
+ while( nPad-- ) bufpt[i++] = '0';
+ length = width;
+ }
+#endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */
+ break;
+ case etSIZE:
+ if( !bArgList ){
+ *(va_arg(ap,int*)) = pAccum->nChar;
+ }
+ length = width = 0;
+ break;
+ case etPERCENT:
+ buf[0] = '%';
+ bufpt = buf;
+ length = 1;
+ break;
+ case etCHARX:
+ if( bArgList ){
+ bufpt = getTextArg(pArgList);
+ length = 1;
+ if( bufpt ){
+ buf[0] = c = *(bufpt++);
+ if( (c&0xc0)==0xc0 ){
+ while( length<4 && (bufpt[0]&0xc0)==0x80 ){
+ buf[length++] = *(bufpt++);
+ }
+ }
+ }else{
+ buf[0] = 0;
+ }
+ }else{
+ unsigned int ch = va_arg(ap,unsigned int);
+ if( ch<0x00080 ){
+ buf[0] = ch & 0xff;
+ length = 1;
+ }else if( ch<0x00800 ){
+ buf[0] = 0xc0 + (u8)((ch>>6)&0x1f);
+ buf[1] = 0x80 + (u8)(ch & 0x3f);
+ length = 2;
+ }else if( ch<0x10000 ){
+ buf[0] = 0xe0 + (u8)((ch>>12)&0x0f);
+ buf[1] = 0x80 + (u8)((ch>>6) & 0x3f);
+ buf[2] = 0x80 + (u8)(ch & 0x3f);
+ length = 3;
+ }else{
+ buf[0] = 0xf0 + (u8)((ch>>18) & 0x07);
+ buf[1] = 0x80 + (u8)((ch>>12) & 0x3f);
+ buf[2] = 0x80 + (u8)((ch>>6) & 0x3f);
+ buf[3] = 0x80 + (u8)(ch & 0x3f);
+ length = 4;
+ }
+ }
+ if( precision>1 ){
+ width -= precision-1;
+ if( width>1 && !flag_leftjustify ){
+ sqlite3_str_appendchar(pAccum, width-1, ' ');
+ width = 0;
+ }
+ while( precision-- > 1 ){
+ sqlite3_str_append(pAccum, buf, length);
+ }
+ }
+ bufpt = buf;
+ flag_altform2 = 1;
+ goto adjust_width_for_utf8;
+ case etSTRING:
+ case etDYNSTRING:
+ if( bArgList ){
+ bufpt = getTextArg(pArgList);
+ xtype = etSTRING;
+ }else{
+ bufpt = va_arg(ap,char*);
+ }
+ if( bufpt==0 ){
+ bufpt = "";
+ }else if( xtype==etDYNSTRING ){
+ if( pAccum->nChar==0
+ && pAccum->mxAlloc
+ && width==0
+ && precision<0
+ && pAccum->accError==0
+ ){
+ /* Special optimization for sqlite3_mprintf("%z..."):
+ ** Extend an existing memory allocation rather than creating
+ ** a new one. */
+ assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
+ pAccum->zText = bufpt;
+ pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
+ pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);
+ pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED;
+ length = 0;
+ break;
+ }
+ zExtra = bufpt;
+ }
+ if( precision>=0 ){
+ if( flag_altform2 ){
+ /* Set length to the number of bytes needed in order to display
+ ** precision characters */
+ unsigned char *z = (unsigned char*)bufpt;
+ while( precision-- > 0 && z[0] ){
+ SQLITE_SKIP_UTF8(z);
+ }
+ length = (int)(z - (unsigned char*)bufpt);
+ }else{
+ for(length=0; length<precision && bufpt[length]; length++){}
+ }
+ }else{
+ length = 0x7fffffff & (int)strlen(bufpt);
+ }
+ adjust_width_for_utf8:
+ if( flag_altform2 && width>0 ){
+ /* Adjust width to account for extra bytes in UTF-8 characters */
+ int ii = length - 1;
+ while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++;
+ }
+ break;
+ case etSQLESCAPE: /* %q: Escape ' characters */
+ case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */
+ case etSQLESCAPE3: { /* %w: Escape " characters */
+ i64 i, j, k, n;
+ int needQuote, isnull;
+ char ch;
+ char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
+ char *escarg;
+
+ if( bArgList ){
+ escarg = getTextArg(pArgList);
+ }else{
+ escarg = va_arg(ap,char*);
+ }
+ isnull = escarg==0;
+ if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
+ /* For %q, %Q, and %w, the precision is the number of bytes (or
+ ** characters if the ! flags is present) to use from the input.
+ ** Because of the extra quoting characters inserted, the number
+ ** of output characters may be larger than the precision.
+ */
+ k = precision;
+ for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){
+ if( ch==q ) n++;
+ if( flag_altform2 && (ch&0xc0)==0xc0 ){
+ while( (escarg[i+1]&0xc0)==0x80 ){ i++; }
+ }
+ }
+ needQuote = !isnull && xtype==etSQLESCAPE2;
+ n += i + 3;
+ if( n>etBUFSIZE ){
+ bufpt = zExtra = printfTempBuf(pAccum, n);
+ if( bufpt==0 ) return;
+ }else{
+ bufpt = buf;
+ }
+ j = 0;
+ if( needQuote ) bufpt[j++] = q;
+ k = i;
+ for(i=0; i<k; i++){
+ bufpt[j++] = ch = escarg[i];
+ if( ch==q ) bufpt[j++] = ch;
+ }
+ if( needQuote ) bufpt[j++] = q;
+ bufpt[j] = 0;
+ length = j;
+ goto adjust_width_for_utf8;
+ }
+ case etTOKEN: {
+ if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
+ if( flag_alternateform ){
+ /* %#T means an Expr pointer that uses Expr.u.zToken */
+ Expr *pExpr = va_arg(ap,Expr*);
+ if( ALWAYS(pExpr) && ALWAYS(!ExprHasProperty(pExpr,EP_IntValue)) ){
+ sqlite3_str_appendall(pAccum, (const char*)pExpr->u.zToken);
+ sqlite3RecordErrorOffsetOfExpr(pAccum->db, pExpr);
+ }
+ }else{
+ /* %T means a Token pointer */
+ Token *pToken = va_arg(ap, Token*);
+ assert( bArgList==0 );
+ if( pToken && pToken->n ){
+ sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n);
+ sqlite3RecordErrorByteOffset(pAccum->db, pToken->z);
+ }
+ }
+ length = width = 0;
+ break;
+ }
+ case etSRCITEM: {
+ SrcItem *pItem;
+ if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
+ pItem = va_arg(ap, SrcItem*);
+ assert( bArgList==0 );
+ if( pItem->zAlias && !flag_altform2 ){
+ sqlite3_str_appendall(pAccum, pItem->zAlias);
+ }else if( pItem->zName ){
+ if( pItem->zDatabase ){
+ sqlite3_str_appendall(pAccum, pItem->zDatabase);
+ sqlite3_str_append(pAccum, ".", 1);
+ }
+ sqlite3_str_appendall(pAccum, pItem->zName);
+ }else if( pItem->zAlias ){
+ sqlite3_str_appendall(pAccum, pItem->zAlias);
+ }else{
+ Select *pSel = pItem->pSelect;
+ assert( pSel!=0 );
+ if( pSel->selFlags & SF_NestedFrom ){
+ sqlite3_str_appendf(pAccum, "(join-%u)", pSel->selId);
+ }else{
+ sqlite3_str_appendf(pAccum, "(subquery-%u)", pSel->selId);
+ }
+ }
+ length = width = 0;
+ break;
+ }
+ default: {
+ assert( xtype==etINVALID );
+ return;
+ }
+ }/* End switch over the format type */
+ /*
+ ** The text of the conversion is pointed to by "bufpt" and is
+ ** "length" characters long. The field width is "width". Do
+ ** the output. Both length and width are in bytes, not characters,
+ ** at this point. If the "!" flag was present on string conversions
+ ** indicating that width and precision should be expressed in characters,
+ ** then the values have been translated prior to reaching this point.
+ */
+ width -= length;
+ if( width>0 ){
+ if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
+ sqlite3_str_append(pAccum, bufpt, length);
+ if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
+ }else{
+ sqlite3_str_append(pAccum, bufpt, length);
+ }
+
+ if( zExtra ){
+ sqlite3DbFree(pAccum->db, zExtra);
+ zExtra = 0;
+ }
+ }/* End for loop over the format string */
+} /* End of function */
+
+
+/*
+** The z string points to the first character of a token that is
+** associated with an error. If db does not already have an error
+** byte offset recorded, try to compute the error byte offset for
+** z and set the error byte offset in db.
+*/
+SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3 *db, const char *z){
+ const Parse *pParse;
+ const char *zText;
+ const char *zEnd;
+ assert( z!=0 );
+ if( NEVER(db==0) ) return;
+ if( db->errByteOffset!=(-2) ) return;
+ pParse = db->pParse;
+ if( NEVER(pParse==0) ) return;
+ zText =pParse->zTail;
+ if( NEVER(zText==0) ) return;
+ zEnd = &zText[strlen(zText)];
+ if( SQLITE_WITHIN(z,zText,zEnd) ){
+ db->errByteOffset = (int)(z-zText);
+ }
+}
+
+/*
+** If pExpr has a byte offset for the start of a token, record that as
+** as the error offset.
+*/
+SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3 *db, const Expr *pExpr){
+ while( pExpr
+ && (ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) || pExpr->w.iOfst<=0)
+ ){
+ pExpr = pExpr->pLeft;
+ }
+ if( pExpr==0 ) return;
+ db->errByteOffset = pExpr->w.iOfst;
+}
+
+/*
+** Enlarge the memory allocation on a StrAccum object so that it is
+** able to accept at least N more bytes of text.
+**
+** Return the number of bytes of text that StrAccum is able to accept
+** after the attempted enlargement. The value returned might be zero.
+*/
+SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum *p, int N){
+ char *zNew;
+ assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
+ if( p->accError ){
+ testcase(p->accError==SQLITE_TOOBIG);
+ testcase(p->accError==SQLITE_NOMEM);
+ return 0;
+ }
+ if( p->mxAlloc==0 ){
+ sqlite3StrAccumSetError(p, SQLITE_TOOBIG);
+ return p->nAlloc - p->nChar - 1;
+ }else{
+ char *zOld = isMalloced(p) ? p->zText : 0;
+ i64 szNew = p->nChar;
+ szNew += (sqlite3_int64)N + 1;
+ if( szNew+p->nChar<=p->mxAlloc ){
+ /* Force exponential buffer size growth as long as it does not overflow,
+ ** to avoid having to call this routine too often */
+ szNew += p->nChar;
+ }
+ if( szNew > p->mxAlloc ){
+ sqlite3_str_reset(p);
+ sqlite3StrAccumSetError(p, SQLITE_TOOBIG);
+ return 0;
+ }else{
+ p->nAlloc = (int)szNew;
+ }
+ if( p->db ){
+ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
+ }else{
+ zNew = sqlite3Realloc(zOld, p->nAlloc);
+ }
+ if( zNew ){
+ assert( p->zText!=0 || p->nChar==0 );
+ if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
+ p->zText = zNew;
+ p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
+ p->printfFlags |= SQLITE_PRINTF_MALLOCED;
+ }else{
+ sqlite3_str_reset(p);
+ sqlite3StrAccumSetError(p, SQLITE_NOMEM);
+ return 0;
+ }
+ }
+ return N;
+}
+
+/*
+** Append N copies of character c to the given string buffer.
+*/
+SQLITE_API void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){
+ testcase( p->nChar + (i64)N > 0x7fffffff );
+ if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
+ return;
+ }
+ while( (N--)>0 ) p->zText[p->nChar++] = c;
+}
+
+/*
+** The StrAccum "p" is not large enough to accept N new bytes of z[].
+** So enlarge if first, then do the append.
+**
+** This is a helper routine to sqlite3_str_append() that does special-case
+** work (enlarging the buffer) using tail recursion, so that the
+** sqlite3_str_append() routine can use fast calling semantics.
+*/
+static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
+ N = sqlite3StrAccumEnlarge(p, N);
+ if( N>0 ){
+ memcpy(&p->zText[p->nChar], z, N);
+ p->nChar += N;
+ }
+}
+
+/*
+** Append N bytes of text from z to the StrAccum object. Increase the
+** size of the memory allocation for StrAccum if necessary.
+*/
+SQLITE_API void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
+ assert( z!=0 || N==0 );
+ assert( p->zText!=0 || p->nChar==0 || p->accError );
+ assert( N>=0 );
+ assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 );
+ if( p->nChar+N >= p->nAlloc ){
+ enlargeAndAppend(p,z,N);
+ }else if( N ){
+ assert( p->zText );
+ p->nChar += N;
+ memcpy(&p->zText[p->nChar-N], z, N);
+ }
+}
+
+/*
+** Append the complete text of zero-terminated string z[] to the p string.
+*/
+SQLITE_API void sqlite3_str_appendall(sqlite3_str *p, const char *z){
+ sqlite3_str_append(p, z, sqlite3Strlen30(z));
+}
+
+
+/*
+** Finish off a string by making sure it is zero-terminated.
+** Return a pointer to the resulting string. Return a NULL
+** pointer if any kind of error was encountered.
+*/
+static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){
+ char *zText;
+ assert( p->mxAlloc>0 && !isMalloced(p) );
+ zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
+ if( zText ){
+ memcpy(zText, p->zText, p->nChar+1);
+ p->printfFlags |= SQLITE_PRINTF_MALLOCED;
+ }else{
+ sqlite3StrAccumSetError(p, SQLITE_NOMEM);
+ }
+ p->zText = zText;
+ return zText;
+}
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
+ if( p->zText ){
+ p->zText[p->nChar] = 0;
+ if( p->mxAlloc>0 && !isMalloced(p) ){
+ return strAccumFinishRealloc(p);
+ }
+ }
+ return p->zText;
+}
+
+/*
+** Use the content of the StrAccum passed as the second argument
+** as the result of an SQL function.
+*/
+SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context *pCtx, StrAccum *p){
+ if( p->accError ){
+ sqlite3_result_error_code(pCtx, p->accError);
+ sqlite3_str_reset(p);
+ }else if( isMalloced(p) ){
+ sqlite3_result_text(pCtx, p->zText, p->nChar, SQLITE_DYNAMIC);
+ }else{
+ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
+ sqlite3_str_reset(p);
+ }
+}
+
+/*
+** This singleton is an sqlite3_str object that is returned if
+** sqlite3_malloc() fails to provide space for a real one. This
+** sqlite3_str object accepts no new text and always returns
+** an SQLITE_NOMEM error.
+*/
+static sqlite3_str sqlite3OomStr = {
+ 0, 0, 0, 0, 0, SQLITE_NOMEM, 0
+};
+
+/* Finalize a string created using sqlite3_str_new().
+*/
+SQLITE_API char *sqlite3_str_finish(sqlite3_str *p){
+ char *z;
+ if( p!=0 && p!=&sqlite3OomStr ){
+ z = sqlite3StrAccumFinish(p);
+ sqlite3_free(p);
+ }else{
+ z = 0;
+ }
+ return z;
+}
+
+/* Return any error code associated with p */
+SQLITE_API int sqlite3_str_errcode(sqlite3_str *p){
+ return p ? p->accError : SQLITE_NOMEM;
+}
+
+/* Return the current length of p in bytes */
+SQLITE_API int sqlite3_str_length(sqlite3_str *p){
+ return p ? p->nChar : 0;
+}
+
+/* Return the current value for p */
+SQLITE_API char *sqlite3_str_value(sqlite3_str *p){
+ if( p==0 || p->nChar==0 ) return 0;
+ p->zText[p->nChar] = 0;
+ return p->zText;
+}
+
+/*
+** Reset an StrAccum string. Reclaim all malloced memory.
+*/
+SQLITE_API void sqlite3_str_reset(StrAccum *p){
+ if( isMalloced(p) ){
+ sqlite3DbFree(p->db, p->zText);
+ p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
+ }
+ p->nAlloc = 0;
+ p->nChar = 0;
+ p->zText = 0;
+}
+
+/*
+** Initialize a string accumulator.
+**
+** p: The accumulator to be initialized.
+** db: Pointer to a database connection. May be NULL. Lookaside
+** memory is used if not NULL. db->mallocFailed is set appropriately
+** when not NULL.
+** zBase: An initial buffer. May be NULL in which case the initial buffer
+** is malloced.
+** n: Size of zBase in bytes. If total space requirements never exceed
+** n then no memory allocations ever occur.
+** mx: Maximum number of bytes to accumulate. If mx==0 then no memory
+** allocations will ever occur.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
+ p->zText = zBase;
+ p->db = db;
+ p->nAlloc = n;
+ p->mxAlloc = mx;
+ p->nChar = 0;
+ p->accError = 0;
+ p->printfFlags = 0;
+}
+
+/* Allocate and initialize a new dynamic string object */
+SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3 *db){
+ sqlite3_str *p = sqlite3_malloc64(sizeof(*p));
+ if( p ){
+ sqlite3StrAccumInit(p, 0, 0, 0,
+ db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
+ }else{
+ p = &sqlite3OomStr;
+ }
+ return p;
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
+ char *z;
+ char zBase[SQLITE_PRINT_BUF_SIZE];
+ StrAccum acc;
+ assert( db!=0 );
+ sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
+ db->aLimit[SQLITE_LIMIT_LENGTH]);
+ acc.printfFlags = SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ if( acc.accError==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ return z;
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** Print into memory obtained from sqlite3_malloc(). Omit the internal
+** %-conversion extensions.
+*/
+SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
+ char *z;
+ char zBase[SQLITE_PRINT_BUF_SIZE];
+ StrAccum acc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zFormat==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ return z;
+}
+
+/*
+** Print into memory obtained from sqlite3_malloc()(). Omit the internal
+** %-conversion extensions.
+*/
+SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
+ va_list ap;
+ char *z;
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ va_start(ap, zFormat);
+ z = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** sqlite3_snprintf() works like snprintf() except that it ignores the
+** current locale settings. This is important for SQLite because we
+** are not able to use a "," as the decimal point in place of "." as
+** specified by some locales.
+**
+** Oops: The first two arguments of sqlite3_snprintf() are backwards
+** from the snprintf() standard. Unfortunately, it is too late to change
+** this without breaking compatibility, so we just have to live with the
+** mistake.
+**
+** sqlite3_vsnprintf() is the varargs version.
+*/
+SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
+ StrAccum acc;
+ if( n<=0 ) return zBuf;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zBuf==0 || zFormat==0 ) {
+ (void)SQLITE_MISUSE_BKPT;
+ if( zBuf ) zBuf[0] = 0;
+ return zBuf;
+ }
+#endif
+ sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ zBuf[acc.nChar] = 0;
+ return zBuf;
+}
+SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
+ char *z;
+ va_list ap;
+ va_start(ap,zFormat);
+ z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** This is the routine that actually formats the sqlite3_log() message.
+** We house it in a separate routine from sqlite3_log() to avoid using
+** stack space on small-stack systems when logging is disabled.
+**
+** sqlite3_log() must render into a static buffer. It cannot dynamically
+** allocate memory because it might be called while the memory allocator
+** mutex is held.
+**
+** sqlite3_str_vappendf() might ask for *temporary* memory allocations for
+** certain format characters (%q) or for very large precisions or widths.
+** Care must be taken that any sqlite3_log() calls that occur while the
+** memory mutex is held do not use these mechanisms.
+*/
+static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
+ StrAccum acc; /* String accumulator */
+ char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */
+
+ sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
+ sqlite3StrAccumFinish(&acc));
+}
+
+/*
+** Format and write a message to the log if logging is enabled.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){
+ va_list ap; /* Vararg list */
+ if( sqlite3GlobalConfig.xLog ){
+ va_start(ap, zFormat);
+ renderLogMsg(iErrCode, zFormat, ap);
+ va_end(ap);
+ }
+}
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+/*
+** A version of printf() that understands %lld. Used for debugging.
+** The printf() built into some versions of windows does not understand %lld
+** and segfaults if you give it a long long int.
+*/
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
+ va_list ap;
+ StrAccum acc;
+ char zBuf[SQLITE_PRINT_BUF_SIZE*10];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ va_start(ap,zFormat);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ va_end(ap);
+ sqlite3StrAccumFinish(&acc);
+#ifdef SQLITE_OS_TRACE_PROC
+ {
+ extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf);
+ SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf));
+ }
+#else
+ fprintf(stdout,"%s", zBuf);
+ fflush(stdout);
+#endif
+}
+#endif
+
+
+/*
+** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument
+** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
+*/
+SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
+ va_list ap;
+ va_start(ap,zFormat);
+ sqlite3_str_vappendf(p, zFormat, ap);
+ va_end(ap);
+}
+
+/************** End of printf.c **********************************************/
+/************** Begin file treeview.c ****************************************/
+/*
+** 2015-06-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains C code to implement the TreeView debugging routines.
+** These routines print a parse tree to standard output for debugging and
+** analysis.
+**
+** The interfaces in this file is only available when compiling
+** with SQLITE_DEBUG.
+*/
+/* #include "sqliteInt.h" */
+#ifdef SQLITE_DEBUG
+
+/*
+** Add a new subitem to the tree. The moreToFollow flag indicates that this
+** is not the last item in the tree.
+*/
+static void sqlite3TreeViewPush(TreeView **pp, u8 moreToFollow){
+ TreeView *p = *pp;
+ if( p==0 ){
+ *pp = p = sqlite3_malloc64( sizeof(*p) );
+ if( p==0 ) return;
+ memset(p, 0, sizeof(*p));
+ }else{
+ p->iLevel++;
+ }
+ assert( moreToFollow==0 || moreToFollow==1 );
+ if( p->iLevel<(int)sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow;
+}
+
+/*
+** Finished with one layer of the tree
+*/
+static void sqlite3TreeViewPop(TreeView **pp){
+ TreeView *p = *pp;
+ if( p==0 ) return;
+ p->iLevel--;
+ if( p->iLevel<0 ){
+ sqlite3_free(p);
+ *pp = 0;
+ }
+}
+
+/*
+** Generate a single line of output for the tree, with a prefix that contains
+** all the appropriate tree lines
+*/
+SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){
+ va_list ap;
+ int i;
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ if( p ){
+ for(i=0; i<p->iLevel && i<(int)sizeof(p->bLine)-1; i++){
+ sqlite3_str_append(&acc, p->bLine[i] ? "| " : " ", 4);
+ }
+ sqlite3_str_append(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
+ }
+ if( zFormat!=0 ){
+ va_start(ap, zFormat);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ va_end(ap);
+ assert( acc.nChar>0 || acc.accError );
+ sqlite3_str_append(&acc, "\n", 1);
+ }
+ sqlite3StrAccumFinish(&acc);
+ fprintf(stdout,"%s", zBuf);
+ fflush(stdout);
+}
+
+/*
+** Shorthand for starting a new tree item that consists of a single label
+*/
+static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){
+ sqlite3TreeViewPush(&p, moreFollows);
+ sqlite3TreeViewLine(p, "%s", zLabel);
+}
+
+/*
+** Show a list of Column objects in tree format.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewColumnList(
+ TreeView *pView,
+ const Column *aCol,
+ int nCol,
+ u8 moreToFollow
+){
+ int i;
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewLine(pView, "COLUMNS");
+ for(i=0; i<nCol; i++){
+ u16 flg = aCol[i].colFlags;
+ int colMoreToFollow = i<(nCol - 1);
+ sqlite3TreeViewPush(&pView, colMoreToFollow);
+ sqlite3TreeViewLine(pView, 0);
+ printf(" %s", aCol[i].zCnName);
+ switch( aCol[i].eCType ){
+ case COLTYPE_ANY: printf(" ANY"); break;
+ case COLTYPE_BLOB: printf(" BLOB"); break;
+ case COLTYPE_INT: printf(" INT"); break;
+ case COLTYPE_INTEGER: printf(" INTEGER"); break;
+ case COLTYPE_REAL: printf(" REAL"); break;
+ case COLTYPE_TEXT: printf(" TEXT"); break;
+ case COLTYPE_CUSTOM: {
+ if( flg & COLFLAG_HASTYPE ){
+ const char *z = aCol[i].zCnName;
+ z += strlen(z)+1;
+ printf(" X-%s", z);
+ break;
+ }
+ }
+ }
+ if( flg & COLFLAG_PRIMKEY ) printf(" PRIMARY KEY");
+ if( flg & COLFLAG_HIDDEN ) printf(" HIDDEN");
+#ifdef COLFLAG_NOEXPAND
+ if( flg & COLFLAG_NOEXPAND ) printf(" NO-EXPAND");
+#endif
+ if( flg ) printf(" flags=%04x", flg);
+ printf("\n");
+ fflush(stdout);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Generate a human-readable description of a WITH clause.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView *pView, const With *pWith, u8 moreToFollow){
+ int i;
+ if( pWith==0 ) return;
+ if( pWith->nCte==0 ) return;
+ if( pWith->pOuter ){
+ sqlite3TreeViewLine(pView, "WITH (0x%p, pOuter=0x%p)",pWith,pWith->pOuter);
+ }else{
+ sqlite3TreeViewLine(pView, "WITH (0x%p)", pWith);
+ }
+ if( pWith->nCte>0 ){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ for(i=0; i<pWith->nCte; i++){
+ StrAccum x;
+ char zLine[1000];
+ const struct Cte *pCte = &pWith->a[i];
+ sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
+ sqlite3_str_appendf(&x, "%s", pCte->zName);
+ if( pCte->pCols && pCte->pCols->nExpr>0 ){
+ char cSep = '(';
+ int j;
+ for(j=0; j<pCte->pCols->nExpr; j++){
+ sqlite3_str_appendf(&x, "%c%s", cSep, pCte->pCols->a[j].zEName);
+ cSep = ',';
+ }
+ sqlite3_str_appendf(&x, ")");
+ }
+ if( pCte->eM10d!=M10d_Any ){
+ sqlite3_str_appendf(&x, " %sMATERIALIZED",
+ pCte->eM10d==M10d_No ? "NOT " : "");
+ }
+ if( pCte->pUse ){
+ sqlite3_str_appendf(&x, " (pUse=0x%p, nUse=%d)", pCte->pUse,
+ pCte->pUse->nUse);
+ }
+ sqlite3StrAccumFinish(&x);
+ sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
+ sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+}
+
+/*
+** Generate a human-readable description of a SrcList object.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView *pView, const SrcList *pSrc){
+ int i;
+ if( pSrc==0 ) return;
+ for(i=0; i<pSrc->nSrc; i++){
+ const SrcItem *pItem = &pSrc->a[i];
+ StrAccum x;
+ int n = 0;
+ char zLine[1000];
+ sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
+ x.printfFlags |= SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_appendf(&x, "{%d:*} %!S", pItem->iCursor, pItem);
+ if( pItem->pTab ){
+ sqlite3_str_appendf(&x, " tab=%Q nCol=%d ptr=%p used=%llx",
+ pItem->pTab->zName, pItem->pTab->nCol, pItem->pTab, pItem->colUsed);
+ }
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==(JT_LEFT|JT_RIGHT) ){
+ sqlite3_str_appendf(&x, " FULL-OUTER-JOIN");
+ }else if( pItem->fg.jointype & JT_LEFT ){
+ sqlite3_str_appendf(&x, " LEFT-JOIN");
+ }else if( pItem->fg.jointype & JT_RIGHT ){
+ sqlite3_str_appendf(&x, " RIGHT-JOIN");
+ }else if( pItem->fg.jointype & JT_CROSS ){
+ sqlite3_str_appendf(&x, " CROSS-JOIN");
+ }
+ if( pItem->fg.jointype & JT_LTORJ ){
+ sqlite3_str_appendf(&x, " LTORJ");
+ }
+ if( pItem->fg.fromDDL ){
+ sqlite3_str_appendf(&x, " DDL");
+ }
+ if( pItem->fg.isCte ){
+ sqlite3_str_appendf(&x, " CteUse=0x%p", pItem->u2.pCteUse);
+ }
+ if( pItem->fg.isOn || (pItem->fg.isUsing==0 && pItem->u3.pOn!=0) ){
+ sqlite3_str_appendf(&x, " ON");
+ }
+ sqlite3StrAccumFinish(&x);
+ sqlite3TreeViewItem(pView, zLine, i<pSrc->nSrc-1);
+ n = 0;
+ if( pItem->pSelect ) n++;
+ if( pItem->fg.isTabFunc ) n++;
+ if( pItem->fg.isUsing ) n++;
+ if( pItem->fg.isUsing ){
+ sqlite3TreeViewIdList(pView, pItem->u3.pUsing, (--n)>0, "USING");
+ }
+ if( pItem->pSelect ){
+ if( pItem->pTab ){
+ Table *pTab = pItem->pTab;
+ sqlite3TreeViewColumnList(pView, pTab->aCol, pTab->nCol, 1);
+ }
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ sqlite3TreeViewSelect(pView, pItem->pSelect, (--n)>0);
+ }
+ if( pItem->fg.isTabFunc ){
+ sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:");
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+}
+
+/*
+** Generate a human-readable description of a Select object.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
+ int n = 0;
+ int cnt = 0;
+ if( p==0 ){
+ sqlite3TreeViewLine(pView, "nil-SELECT");
+ return;
+ }
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ if( p->pWith ){
+ sqlite3TreeViewWith(pView, p->pWith, 1);
+ cnt = 1;
+ sqlite3TreeViewPush(&pView, 1);
+ }
+ do{
+ if( p->selFlags & SF_WhereBegin ){
+ sqlite3TreeViewLine(pView, "sqlite3WhereBegin()");
+ }else{
+ sqlite3TreeViewLine(pView,
+ "SELECT%s%s (%u/%p) selFlags=0x%x nSelectRow=%d",
+ ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
+ ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""),
+ p->selId, p, p->selFlags,
+ (int)p->nSelectRow
+ );
+ }
+ if( cnt++ ) sqlite3TreeViewPop(&pView);
+ if( p->pPrior ){
+ n = 1000;
+ }else{
+ n = 0;
+ if( p->pSrc && p->pSrc->nSrc ) n++;
+ if( p->pWhere ) n++;
+ if( p->pGroupBy ) n++;
+ if( p->pHaving ) n++;
+ if( p->pOrderBy ) n++;
+ if( p->pLimit ) n++;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ) n++;
+ if( p->pWinDefn ) n++;
+#endif
+ }
+ if( p->pEList ){
+ sqlite3TreeViewExprList(pView, p->pEList, n>0, "result-set");
+ }
+ n--;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ){
+ Window *pX;
+ sqlite3TreeViewPush(&pView, (n--)>0);
+ sqlite3TreeViewLine(pView, "window-functions");
+ for(pX=p->pWin; pX; pX=pX->pNextWin){
+ sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+#endif
+ if( p->pSrc && p->pSrc->nSrc ){
+ sqlite3TreeViewPush(&pView, (n--)>0);
+ sqlite3TreeViewLine(pView, "FROM");
+ sqlite3TreeViewSrcList(pView, p->pSrc);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( p->pWhere ){
+ sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( p->pGroupBy ){
+ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
+ }
+ if( p->pHaving ){
+ sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pHaving, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWinDefn ){
+ Window *pX;
+ sqlite3TreeViewItem(pView, "WINDOW", (n--)>0);
+ for(pX=p->pWinDefn; pX; pX=pX->pNextWin){
+ sqlite3TreeViewWindow(pView, pX, pX->pNextWin!=0);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+#endif
+ if( p->pOrderBy ){
+ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
+ }
+ if( p->pLimit ){
+ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pLimit->pLeft, p->pLimit->pRight!=0);
+ if( p->pLimit->pRight ){
+ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pLimit->pRight, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+ if( p->pPrior ){
+ const char *zOp = "UNION";
+ switch( p->op ){
+ case TK_ALL: zOp = "UNION ALL"; break;
+ case TK_INTERSECT: zOp = "INTERSECT"; break;
+ case TK_EXCEPT: zOp = "EXCEPT"; break;
+ }
+ sqlite3TreeViewItem(pView, zOp, 1);
+ }
+ p = p->pPrior;
+ }while( p!=0 );
+ sqlite3TreeViewPop(&pView);
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Generate a description of starting or stopping bounds
+*/
+SQLITE_PRIVATE void sqlite3TreeViewBound(
+ TreeView *pView, /* View context */
+ u8 eBound, /* UNBOUNDED, CURRENT, PRECEDING, FOLLOWING */
+ Expr *pExpr, /* Value for PRECEDING or FOLLOWING */
+ u8 moreToFollow /* True if more to follow */
+){
+ switch( eBound ){
+ case TK_UNBOUNDED: {
+ sqlite3TreeViewItem(pView, "UNBOUNDED", moreToFollow);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ case TK_CURRENT: {
+ sqlite3TreeViewItem(pView, "CURRENT", moreToFollow);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ case TK_PRECEDING: {
+ sqlite3TreeViewItem(pView, "PRECEDING", moreToFollow);
+ sqlite3TreeViewExpr(pView, pExpr, 0);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ case TK_FOLLOWING: {
+ sqlite3TreeViewItem(pView, "FOLLOWING", moreToFollow);
+ sqlite3TreeViewExpr(pView, pExpr, 0);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ }
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Generate a human-readable explanation for a Window object
+*/
+SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView *pView, const Window *pWin, u8 more){
+ int nElement = 0;
+ if( pWin==0 ) return;
+ if( pWin->pFilter ){
+ sqlite3TreeViewItem(pView, "FILTER", 1);
+ sqlite3TreeViewExpr(pView, pWin->pFilter, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPush(&pView, more);
+ if( pWin->zName ){
+ sqlite3TreeViewLine(pView, "OVER %s (%p)", pWin->zName, pWin);
+ }else{
+ sqlite3TreeViewLine(pView, "OVER (%p)", pWin);
+ }
+ if( pWin->zBase ) nElement++;
+ if( pWin->pOrderBy ) nElement++;
+ if( pWin->eFrmType ) nElement++;
+ if( pWin->eExclude ) nElement++;
+ if( pWin->zBase ){
+ sqlite3TreeViewPush(&pView, (--nElement)>0);
+ sqlite3TreeViewLine(pView, "window: %s", pWin->zBase);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pWin->pPartition ){
+ sqlite3TreeViewExprList(pView, pWin->pPartition, nElement>0,"PARTITION-BY");
+ }
+ if( pWin->pOrderBy ){
+ sqlite3TreeViewExprList(pView, pWin->pOrderBy, (--nElement)>0, "ORDER-BY");
+ }
+ if( pWin->eFrmType ){
+ char zBuf[30];
+ const char *zFrmType = "ROWS";
+ if( pWin->eFrmType==TK_RANGE ) zFrmType = "RANGE";
+ if( pWin->eFrmType==TK_GROUPS ) zFrmType = "GROUPS";
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"%s%s",zFrmType,
+ pWin->bImplicitFrame ? " (implied)" : "");
+ sqlite3TreeViewItem(pView, zBuf, (--nElement)>0);
+ sqlite3TreeViewBound(pView, pWin->eStart, pWin->pStart, 1);
+ sqlite3TreeViewBound(pView, pWin->eEnd, pWin->pEnd, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pWin->eExclude ){
+ char zBuf[30];
+ const char *zExclude;
+ switch( pWin->eExclude ){
+ case TK_NO: zExclude = "NO OTHERS"; break;
+ case TK_CURRENT: zExclude = "CURRENT ROW"; break;
+ case TK_GROUP: zExclude = "GROUP"; break;
+ case TK_TIES: zExclude = "TIES"; break;
+ default:
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"invalid(%d)", pWin->eExclude);
+ zExclude = zBuf;
+ break;
+ }
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, "EXCLUDE %s", zExclude);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Generate a human-readable explanation for a Window Function object
+*/
+SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView *pView, const Window *pWin, u8 more){
+ if( pWin==0 ) return;
+ sqlite3TreeViewPush(&pView, more);
+ sqlite3TreeViewLine(pView, "WINFUNC %s(%d)",
+ pWin->pWFunc->zName, pWin->pWFunc->nArg);
+ sqlite3TreeViewWindow(pView, pWin, 0);
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Generate a human-readable explanation of an expression tree.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
+ const char *zBinOp = 0; /* Binary operator */
+ const char *zUniOp = 0; /* Unary operator */
+ char zFlgs[200];
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ if( pExpr==0 ){
+ sqlite3TreeViewLine(pView, "nil");
+ sqlite3TreeViewPop(&pView);
+ return;
+ }
+ if( pExpr->flags || pExpr->affExpr || pExpr->vvaFlags ){
+ StrAccum x;
+ sqlite3StrAccumInit(&x, 0, zFlgs, sizeof(zFlgs), 0);
+ sqlite3_str_appendf(&x, " fg.af=%x.%c",
+ pExpr->flags, pExpr->affExpr ? pExpr->affExpr : 'n');
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ sqlite3_str_appendf(&x, " outer.iJoin=%d", pExpr->w.iJoin);
+ }
+ if( ExprHasProperty(pExpr, EP_InnerON) ){
+ sqlite3_str_appendf(&x, " inner.iJoin=%d", pExpr->w.iJoin);
+ }
+ if( ExprHasProperty(pExpr, EP_FromDDL) ){
+ sqlite3_str_appendf(&x, " DDL");
+ }
+ if( ExprHasVVAProperty(pExpr, EP_Immutable) ){
+ sqlite3_str_appendf(&x, " IMMUTABLE");
+ }
+ sqlite3StrAccumFinish(&x);
+ }else{
+ zFlgs[0] = 0;
+ }
+ switch( pExpr->op ){
+ case TK_AGG_COLUMN: {
+ sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
+ pExpr->iTable, pExpr->iColumn, zFlgs);
+ break;
+ }
+ case TK_COLUMN: {
+ if( pExpr->iTable<0 ){
+ /* This only happens when coding check constraints */
+ char zOp2[16];
+ if( pExpr->op2 ){
+ sqlite3_snprintf(sizeof(zOp2),zOp2," op2=0x%02x",pExpr->op2);
+ }else{
+ zOp2[0] = 0;
+ }
+ sqlite3TreeViewLine(pView, "COLUMN(%d)%s%s",
+ pExpr->iColumn, zFlgs, zOp2);
+ }else{
+ assert( ExprUseYTab(pExpr) );
+ sqlite3TreeViewLine(pView, "{%d:%d} pTab=%p%s",
+ pExpr->iTable, pExpr->iColumn,
+ pExpr->y.pTab, zFlgs);
+ }
+ if( ExprHasProperty(pExpr, EP_FixedCol) ){
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ }
+ break;
+ }
+ case TK_INTEGER: {
+ if( pExpr->flags & EP_IntValue ){
+ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
+ }else{
+ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ case TK_FLOAT: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
+ break;
+ }
+#endif
+ case TK_STRING: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
+ break;
+ }
+ case TK_NULL: {
+ sqlite3TreeViewLine(pView,"NULL");
+ break;
+ }
+ case TK_TRUEFALSE: {
+ sqlite3TreeViewLine(pView,"%s%s",
+ sqlite3ExprTruthValue(pExpr) ? "TRUE" : "FALSE", zFlgs);
+ break;
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
+ break;
+ }
+#endif
+ case TK_VARIABLE: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
+ pExpr->u.zToken, pExpr->iColumn);
+ break;
+ }
+ case TK_REGISTER: {
+ sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
+ break;
+ }
+ case TK_ID: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken);
+ break;
+ }
+#ifndef SQLITE_OMIT_CAST
+ case TK_CAST: {
+ /* Expressions of the form: CAST(pLeft AS token) */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+#endif /* SQLITE_OMIT_CAST */
+ case TK_LT: zBinOp = "LT"; break;
+ case TK_LE: zBinOp = "LE"; break;
+ case TK_GT: zBinOp = "GT"; break;
+ case TK_GE: zBinOp = "GE"; break;
+ case TK_NE: zBinOp = "NE"; break;
+ case TK_EQ: zBinOp = "EQ"; break;
+ case TK_IS: zBinOp = "IS"; break;
+ case TK_ISNOT: zBinOp = "ISNOT"; break;
+ case TK_AND: zBinOp = "AND"; break;
+ case TK_OR: zBinOp = "OR"; break;
+ case TK_PLUS: zBinOp = "ADD"; break;
+ case TK_STAR: zBinOp = "MUL"; break;
+ case TK_MINUS: zBinOp = "SUB"; break;
+ case TK_REM: zBinOp = "REM"; break;
+ case TK_BITAND: zBinOp = "BITAND"; break;
+ case TK_BITOR: zBinOp = "BITOR"; break;
+ case TK_SLASH: zBinOp = "DIV"; break;
+ case TK_LSHIFT: zBinOp = "LSHIFT"; break;
+ case TK_RSHIFT: zBinOp = "RSHIFT"; break;
+ case TK_CONCAT: zBinOp = "CONCAT"; break;
+ case TK_DOT: zBinOp = "DOT"; break;
+ case TK_LIMIT: zBinOp = "LIMIT"; break;
+
+ case TK_UMINUS: zUniOp = "UMINUS"; break;
+ case TK_UPLUS: zUniOp = "UPLUS"; break;
+ case TK_BITNOT: zUniOp = "BITNOT"; break;
+ case TK_NOT: zUniOp = "NOT"; break;
+ case TK_ISNULL: zUniOp = "ISNULL"; break;
+ case TK_NOTNULL: zUniOp = "NOTNULL"; break;
+
+ case TK_TRUTH: {
+ int x;
+ const char *azOp[] = {
+ "IS-FALSE", "IS-TRUE", "IS-NOT-FALSE", "IS-NOT-TRUE"
+ };
+ assert( pExpr->op2==TK_IS || pExpr->op2==TK_ISNOT );
+ assert( pExpr->pRight );
+ assert( sqlite3ExprSkipCollate(pExpr->pRight)->op==TK_TRUEFALSE );
+ x = (pExpr->op2==TK_ISNOT)*2 + sqlite3ExprTruthValue(pExpr->pRight);
+ zUniOp = azOp[x];
+ break;
+ }
+
+ case TK_SPAN: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView, "SPAN %Q", pExpr->u.zToken);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+
+ case TK_COLLATE: {
+ /* COLLATE operators without the EP_Collate flag are intended to
+ ** emulate collation associated with a table column. These show
+ ** up in the treeview output as "SOFT-COLLATE". Explicit COLLATE
+ ** operators that appear in the original SQL always have the
+ ** EP_Collate bit set and appear in treeview output as just "COLLATE" */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView, "%sCOLLATE %Q%s",
+ !ExprHasProperty(pExpr, EP_Collate) ? "SOFT-" : "",
+ pExpr->u.zToken, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+
+ case TK_AGG_FUNCTION:
+ case TK_FUNCTION: {
+ ExprList *pFarg; /* List of function arguments */
+ Window *pWin;
+ if( ExprHasProperty(pExpr, EP_TokenOnly) ){
+ pFarg = 0;
+ pWin = 0;
+ }else{
+ assert( ExprUseXList(pExpr) );
+ pFarg = pExpr->x.pList;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pWin = ExprHasProperty(pExpr, EP_WinFunc) ? pExpr->y.pWin : 0;
+#else
+ pWin = 0;
+#endif
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( pExpr->op==TK_AGG_FUNCTION ){
+ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q%s agg=%d[%d]/%p",
+ pExpr->op2, pExpr->u.zToken, zFlgs,
+ pExpr->pAggInfo ? pExpr->pAggInfo->selId : 0,
+ pExpr->iAgg, pExpr->pAggInfo);
+ }else if( pExpr->op2!=0 ){
+ const char *zOp2;
+ char zBuf[8];
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"0x%02x",pExpr->op2);
+ zOp2 = zBuf;
+ if( pExpr->op2==NC_IsCheck ) zOp2 = "NC_IsCheck";
+ if( pExpr->op2==NC_IdxExpr ) zOp2 = "NC_IdxExpr";
+ if( pExpr->op2==NC_PartIdx ) zOp2 = "NC_PartIdx";
+ if( pExpr->op2==NC_GenCol ) zOp2 = "NC_GenCol";
+ sqlite3TreeViewLine(pView, "FUNCTION %Q%s op2=%s",
+ pExpr->u.zToken, zFlgs, zOp2);
+ }else{
+ sqlite3TreeViewLine(pView, "FUNCTION %Q%s", pExpr->u.zToken, zFlgs);
+ }
+ if( pFarg ){
+ sqlite3TreeViewExprList(pView, pFarg, pWin!=0, 0);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ sqlite3TreeViewWindow(pView, pWin, 0);
+ }
+#endif
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_EXISTS: {
+ assert( ExprUseXSelect(pExpr) );
+ sqlite3TreeViewLine(pView, "EXISTS-expr flags=0x%x", pExpr->flags);
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
+ break;
+ }
+ case TK_SELECT: {
+ assert( ExprUseXSelect(pExpr) );
+ sqlite3TreeViewLine(pView, "subquery-expr flags=0x%x", pExpr->flags);
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
+ break;
+ }
+ case TK_IN: {
+ sqlite3_str *pStr = sqlite3_str_new(0);
+ char *z;
+ sqlite3_str_appendf(pStr, "IN flags=0x%x", pExpr->flags);
+ if( pExpr->iTable ) sqlite3_str_appendf(pStr, " iTable=%d",pExpr->iTable);
+ if( ExprHasProperty(pExpr, EP_Subrtn) ){
+ sqlite3_str_appendf(pStr, " subrtn(%d,%d)",
+ pExpr->y.sub.regReturn, pExpr->y.sub.iAddr);
+ }
+ z = sqlite3_str_finish(pStr);
+ sqlite3TreeViewLine(pView, z);
+ sqlite3_free(z);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
+ if( ExprUseXSelect(pExpr) ){
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
+ }else{
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
+ }
+ break;
+ }
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+ /*
+ ** x BETWEEN y AND z
+ **
+ ** This is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** X is stored in pExpr->pLeft.
+ ** Y is stored in pExpr->pList->a[0].pExpr.
+ ** Z is stored in pExpr->pList->a[1].pExpr.
+ */
+ case TK_BETWEEN: {
+ const Expr *pX, *pY, *pZ;
+ pX = pExpr->pLeft;
+ assert( ExprUseXList(pExpr) );
+ assert( pExpr->x.pList->nExpr==2 );
+ pY = pExpr->x.pList->a[0].pExpr;
+ pZ = pExpr->x.pList->a[1].pExpr;
+ sqlite3TreeViewLine(pView, "BETWEEN");
+ sqlite3TreeViewExpr(pView, pX, 1);
+ sqlite3TreeViewExpr(pView, pY, 1);
+ sqlite3TreeViewExpr(pView, pZ, 0);
+ break;
+ }
+ case TK_TRIGGER: {
+ /* If the opcode is TK_TRIGGER, then the expression is a reference
+ ** to a column in the new.* or old.* pseudo-tables available to
+ ** trigger programs. In this case Expr.iTable is set to 1 for the
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
+ ** is set to the column of the pseudo-table to read, or to -1 to
+ ** read the rowid field.
+ */
+ sqlite3TreeViewLine(pView, "%s(%d)",
+ pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
+ break;
+ }
+ case TK_CASE: {
+ sqlite3TreeViewLine(pView, "CASE");
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
+ assert( ExprUseXList(pExpr) );
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
+ break;
+ }
+#ifndef SQLITE_OMIT_TRIGGER
+ case TK_RAISE: {
+ const char *zType = "unk";
+ switch( pExpr->affExpr ){
+ case OE_Rollback: zType = "rollback"; break;
+ case OE_Abort: zType = "abort"; break;
+ case OE_Fail: zType = "fail"; break;
+ case OE_Ignore: zType = "ignore"; break;
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
+ break;
+ }
+#endif
+ case TK_MATCH: {
+ sqlite3TreeViewLine(pView, "MATCH {%d:%d}%s",
+ pExpr->iTable, pExpr->iColumn, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
+ break;
+ }
+ case TK_VECTOR: {
+ char *z = sqlite3_mprintf("VECTOR%s",zFlgs);
+ assert( ExprUseXList(pExpr) );
+ sqlite3TreeViewBareExprList(pView, pExpr->x.pList, z);
+ sqlite3_free(z);
+ break;
+ }
+ case TK_SELECT_COLUMN: {
+ sqlite3TreeViewLine(pView, "SELECT-COLUMN %d of [0..%d]%s",
+ pExpr->iColumn, pExpr->iTable-1,
+ pExpr->pRight==pExpr->pLeft ? " (SELECT-owner)" : "");
+ assert( ExprUseXSelect(pExpr->pLeft) );
+ sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
+ break;
+ }
+ case TK_IF_NULL_ROW: {
+ sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+ case TK_ERROR: {
+ Expr tmp;
+ sqlite3TreeViewLine(pView, "ERROR");
+ tmp = *pExpr;
+ tmp.op = pExpr->op2;
+ sqlite3TreeViewExpr(pView, &tmp, 0);
+ break;
+ }
+ case TK_ROW: {
+ if( pExpr->iColumn<=0 ){
+ sqlite3TreeViewLine(pView, "First FROM table rowid");
+ }else{
+ sqlite3TreeViewLine(pView, "First FROM table column %d",
+ pExpr->iColumn-1);
+ }
+ break;
+ }
+ default: {
+ sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
+ break;
+ }
+ }
+ if( zBinOp ){
+ sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
+ sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
+ }else if( zUniOp ){
+ sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+
+
+/*
+** Generate a human-readable explanation of an expression list.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewBareExprList(
+ TreeView *pView,
+ const ExprList *pList,
+ const char *zLabel
+){
+ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
+ if( pList==0 ){
+ sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
+ }else{
+ int i;
+ sqlite3TreeViewLine(pView, "%s", zLabel);
+ for(i=0; i<pList->nExpr; i++){
+ int j = pList->a[i].u.x.iOrderByCol;
+ char *zName = pList->a[i].zEName;
+ int moreToFollow = i<pList->nExpr - 1;
+ if( j || zName ){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ moreToFollow = 0;
+ sqlite3TreeViewLine(pView, 0);
+ if( zName ){
+ switch( pList->a[i].fg.eEName ){
+ default:
+ fprintf(stdout, "AS %s ", zName);
+ break;
+ case ENAME_TAB:
+ fprintf(stdout, "TABLE-ALIAS-NAME(\"%s\") ", zName);
+ if( pList->a[i].fg.bUsed ) fprintf(stdout, "(used) ");
+ if( pList->a[i].fg.bUsingTerm ) fprintf(stdout, "(USING-term) ");
+ if( pList->a[i].fg.bNoExpand ) fprintf(stdout, "(NoExpand) ");
+ break;
+ case ENAME_SPAN:
+ fprintf(stdout, "SPAN(\"%s\") ", zName);
+ break;
+ }
+ }
+ if( j ){
+ fprintf(stdout, "iOrderByCol=%d", j);
+ }
+ fprintf(stdout, "\n");
+ fflush(stdout);
+ }
+ sqlite3TreeViewExpr(pView, pList->a[i].pExpr, moreToFollow);
+ if( j || zName ){
+ sqlite3TreeViewPop(&pView);
+ }
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3TreeViewExprList(
+ TreeView *pView,
+ const ExprList *pList,
+ u8 moreToFollow,
+ const char *zLabel
+){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewBareExprList(pView, pList, zLabel);
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Generate a human-readable explanation of an id-list.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewBareIdList(
+ TreeView *pView,
+ const IdList *pList,
+ const char *zLabel
+){
+ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
+ if( pList==0 ){
+ sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
+ }else{
+ int i;
+ sqlite3TreeViewLine(pView, "%s", zLabel);
+ for(i=0; i<pList->nId; i++){
+ char *zName = pList->a[i].zName;
+ int moreToFollow = i<pList->nId - 1;
+ if( zName==0 ) zName = "(null)";
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewLine(pView, 0);
+ if( pList->eU4==EU4_NONE ){
+ fprintf(stdout, "%s\n", zName);
+ }else if( pList->eU4==EU4_IDX ){
+ fprintf(stdout, "%s (%d)\n", zName, pList->a[i].u4.idx);
+ }else{
+ assert( pList->eU4==EU4_EXPR );
+ if( pList->a[i].u4.pExpr==0 ){
+ fprintf(stdout, "%s (pExpr=NULL)\n", zName);
+ }else{
+ fprintf(stdout, "%s\n", zName);
+ sqlite3TreeViewPush(&pView, i<pList->nId-1);
+ sqlite3TreeViewExpr(pView, pList->a[i].u4.pExpr, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3TreeViewIdList(
+ TreeView *pView,
+ const IdList *pList,
+ u8 moreToFollow,
+ const char *zLabel
+){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewBareIdList(pView, pList, zLabel);
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Generate a human-readable explanation of a list of Upsert objects
+*/
+SQLITE_PRIVATE void sqlite3TreeViewUpsert(
+ TreeView *pView,
+ const Upsert *pUpsert,
+ u8 moreToFollow
+){
+ if( pUpsert==0 ) return;
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ while( pUpsert ){
+ int n;
+ sqlite3TreeViewPush(&pView, pUpsert->pNextUpsert!=0 || moreToFollow);
+ sqlite3TreeViewLine(pView, "ON CONFLICT DO %s",
+ pUpsert->isDoUpdate ? "UPDATE" : "NOTHING");
+ n = (pUpsert->pUpsertSet!=0) + (pUpsert->pUpsertWhere!=0);
+ sqlite3TreeViewExprList(pView, pUpsert->pUpsertTarget, (n--)>0, "TARGET");
+ sqlite3TreeViewExprList(pView, pUpsert->pUpsertSet, (n--)>0, "SET");
+ if( pUpsert->pUpsertWhere ){
+ sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
+ sqlite3TreeViewExpr(pView, pUpsert->pUpsertWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+ pUpsert = pUpsert->pNextUpsert;
+ }
+ sqlite3TreeViewPop(&pView);
+}
+
+#if TREETRACE_ENABLED
+/*
+** Generate a human-readable diagram of the data structure that go
+** into generating an DELETE statement.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewDelete(
+ const With *pWith,
+ const SrcList *pTabList,
+ const Expr *pWhere,
+ const ExprList *pOrderBy,
+ const Expr *pLimit,
+ const Trigger *pTrigger
+){
+ int n = 0;
+ TreeView *pView = 0;
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, "DELETE");
+ if( pWith ) n++;
+ if( pTabList ) n++;
+ if( pWhere ) n++;
+ if( pOrderBy ) n++;
+ if( pLimit ) n++;
+ if( pTrigger ) n++;
+ if( pWith ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewWith(pView, pWith, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTabList ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "FROM");
+ sqlite3TreeViewSrcList(pView, pTabList);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pWhere ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "WHERE");
+ sqlite3TreeViewExpr(pView, pWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pOrderBy ){
+ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY");
+ }
+ if( pLimit ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "LIMIT");
+ sqlite3TreeViewExpr(pView, pLimit, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTrigger ){
+ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* TREETRACE_ENABLED */
+
+#if TREETRACE_ENABLED
+/*
+** Generate a human-readable diagram of the data structure that go
+** into generating an INSERT statement.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewInsert(
+ const With *pWith,
+ const SrcList *pTabList,
+ const IdList *pColumnList,
+ const Select *pSelect,
+ const ExprList *pExprList,
+ int onError,
+ const Upsert *pUpsert,
+ const Trigger *pTrigger
+){
+ TreeView *pView = 0;
+ int n = 0;
+ const char *zLabel = "INSERT";
+ switch( onError ){
+ case OE_Replace: zLabel = "REPLACE"; break;
+ case OE_Ignore: zLabel = "INSERT OR IGNORE"; break;
+ case OE_Rollback: zLabel = "INSERT OR ROLLBACK"; break;
+ case OE_Abort: zLabel = "INSERT OR ABORT"; break;
+ case OE_Fail: zLabel = "INSERT OR FAIL"; break;
+ }
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, zLabel);
+ if( pWith ) n++;
+ if( pTabList ) n++;
+ if( pColumnList ) n++;
+ if( pSelect ) n++;
+ if( pExprList ) n++;
+ if( pUpsert ) n++;
+ if( pTrigger ) n++;
+ if( pWith ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewWith(pView, pWith, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTabList ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "INTO");
+ sqlite3TreeViewSrcList(pView, pTabList);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pColumnList ){
+ sqlite3TreeViewIdList(pView, pColumnList, (--n)>0, "COLUMNS");
+ }
+ if( pSelect ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "DATA-SOURCE");
+ sqlite3TreeViewSelect(pView, pSelect, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pExprList ){
+ sqlite3TreeViewExprList(pView, pExprList, (--n)>0, "VALUES");
+ }
+ if( pUpsert ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "UPSERT");
+ sqlite3TreeViewUpsert(pView, pUpsert, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTrigger ){
+ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* TREETRACE_ENABLED */
+
+#if TREETRACE_ENABLED
+/*
+** Generate a human-readable diagram of the data structure that go
+** into generating an UPDATE statement.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewUpdate(
+ const With *pWith,
+ const SrcList *pTabList,
+ const ExprList *pChanges,
+ const Expr *pWhere,
+ int onError,
+ const ExprList *pOrderBy,
+ const Expr *pLimit,
+ const Upsert *pUpsert,
+ const Trigger *pTrigger
+){
+ int n = 0;
+ TreeView *pView = 0;
+ const char *zLabel = "UPDATE";
+ switch( onError ){
+ case OE_Replace: zLabel = "UPDATE OR REPLACE"; break;
+ case OE_Ignore: zLabel = "UPDATE OR IGNORE"; break;
+ case OE_Rollback: zLabel = "UPDATE OR ROLLBACK"; break;
+ case OE_Abort: zLabel = "UPDATE OR ABORT"; break;
+ case OE_Fail: zLabel = "UPDATE OR FAIL"; break;
+ }
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, zLabel);
+ if( pWith ) n++;
+ if( pTabList ) n++;
+ if( pChanges ) n++;
+ if( pWhere ) n++;
+ if( pOrderBy ) n++;
+ if( pLimit ) n++;
+ if( pUpsert ) n++;
+ if( pTrigger ) n++;
+ if( pWith ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewWith(pView, pWith, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTabList ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "FROM");
+ sqlite3TreeViewSrcList(pView, pTabList);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pChanges ){
+ sqlite3TreeViewExprList(pView, pChanges, (--n)>0, "SET");
+ }
+ if( pWhere ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "WHERE");
+ sqlite3TreeViewExpr(pView, pWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pOrderBy ){
+ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY");
+ }
+ if( pLimit ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "LIMIT");
+ sqlite3TreeViewExpr(pView, pLimit, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pUpsert ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "UPSERT");
+ sqlite3TreeViewUpsert(pView, pUpsert, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTrigger ){
+ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* TREETRACE_ENABLED */
+
+#ifndef SQLITE_OMIT_TRIGGER
+/*
+** Show a human-readable graph of a TriggerStep
+*/
+SQLITE_PRIVATE void sqlite3TreeViewTriggerStep(
+ TreeView *pView,
+ const TriggerStep *pStep,
+ u8 moreToFollow,
+ u8 showFullList
+){
+ int cnt = 0;
+ if( pStep==0 ) return;
+ sqlite3TreeViewPush(&pView,
+ moreToFollow || (showFullList && pStep->pNext!=0));
+ do{
+ if( cnt++ && pStep->pNext==0 ){
+ sqlite3TreeViewPop(&pView);
+ sqlite3TreeViewPush(&pView, 0);
+ }
+ sqlite3TreeViewLine(pView, "%s", pStep->zSpan ? pStep->zSpan : "RETURNING");
+ }while( showFullList && (pStep = pStep->pNext)!=0 );
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Show a human-readable graph of a Trigger
+*/
+SQLITE_PRIVATE void sqlite3TreeViewTrigger(
+ TreeView *pView,
+ const Trigger *pTrigger,
+ u8 moreToFollow,
+ u8 showFullList
+){
+ int cnt = 0;
+ if( pTrigger==0 ) return;
+ sqlite3TreeViewPush(&pView,
+ moreToFollow || (showFullList && pTrigger->pNext!=0));
+ do{
+ if( cnt++ && pTrigger->pNext==0 ){
+ sqlite3TreeViewPop(&pView);
+ sqlite3TreeViewPush(&pView, 0);
+ }
+ sqlite3TreeViewLine(pView, "TRIGGER %s", pTrigger->zName);
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewTriggerStep(pView, pTrigger->step_list, 0, 1);
+ sqlite3TreeViewPop(&pView);
+ }while( showFullList && (pTrigger = pTrigger->pNext)!=0 );
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* SQLITE_OMIT_TRIGGER */
+
+
+/*
+** These simplified versions of the tree-view routines omit unnecessary
+** parameters. These variants are intended to be used from a symbolic
+** debugger, such as "gdb", during interactive debugging sessions.
+**
+** This routines are given external linkage so that they will always be
+** accessible to the debugging, and to avoid warnings about unused
+** functions. But these routines only exist in debugging builds, so they
+** do not contaminate the interface.
+*/
+SQLITE_PRIVATE void sqlite3ShowExpr(const Expr *p){ sqlite3TreeViewExpr(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList *p){ sqlite3TreeViewExprList(0,p,0,0);}
+SQLITE_PRIVATE void sqlite3ShowIdList(const IdList *p){ sqlite3TreeViewIdList(0,p,0,0); }
+SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList *p){ sqlite3TreeViewSrcList(0,p); }
+SQLITE_PRIVATE void sqlite3ShowSelect(const Select *p){ sqlite3TreeViewSelect(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowWith(const With *p){ sqlite3TreeViewWith(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert *p){ sqlite3TreeViewUpsert(0,p,0); }
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep *p){
+ sqlite3TreeViewTriggerStep(0,p,0,0);
+}
+SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep *p){
+ sqlite3TreeViewTriggerStep(0,p,0,1);
+}
+SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,0); }
+SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,1);}
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3ShowWindow(const Window *p){ sqlite3TreeViewWindow(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window *p){ sqlite3TreeViewWinFunc(0,p,0); }
+#endif
+
+#endif /* SQLITE_DEBUG */
+
+/************** End of treeview.c ********************************************/
+/************** Begin file random.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement a pseudo-random number
+** generator (PRNG) for SQLite.
+**
+** Random numbers are used by some of the database backends in order
+** to generate random integer keys for tables or random filenames.
+*/
+/* #include "sqliteInt.h" */
+
+
+/* All threads share a single random number generator.
+** This structure is the current state of the generator.
+*/
+static SQLITE_WSD struct sqlite3PrngType {
+ unsigned char isInit; /* True if initialized */
+ unsigned char i, j; /* State variables */
+ unsigned char s[256]; /* State variables */
+} sqlite3Prng;
+
+/*
+** Return N random bytes.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *pBuf){
+ unsigned char t;
+ unsigned char *zBuf = pBuf;
+
+ /* The "wsdPrng" macro will resolve to the pseudo-random number generator
+ ** state vector. If writable static data is unsupported on the target,
+ ** we have to locate the state vector at run-time. In the more common
+ ** case where writable static data is supported, wsdPrng can refer directly
+ ** to the "sqlite3Prng" state vector declared above.
+ */
+#ifdef SQLITE_OMIT_WSD
+ struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
+# define wsdPrng p[0]
+#else
+# define wsdPrng sqlite3Prng
+#endif
+
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex;
+#endif
+
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return;
+#endif
+
+#if SQLITE_THREADSAFE
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
+#endif
+
+ sqlite3_mutex_enter(mutex);
+ if( N<=0 || pBuf==0 ){
+ wsdPrng.isInit = 0;
+ sqlite3_mutex_leave(mutex);
+ return;
+ }
+
+ /* Initialize the state of the random number generator once,
+ ** the first time this routine is called. The seed value does
+ ** not need to contain a lot of randomness since we are not
+ ** trying to do secure encryption or anything like that...
+ **
+ ** Nothing in this file or anywhere else in SQLite does any kind of
+ ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
+ ** number generator) not as an encryption device.
+ */
+ if( !wsdPrng.isInit ){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
+ int i;
+ char k[256];
+ wsdPrng.j = 0;
+ wsdPrng.i = 0;
+ if( NEVER(pVfs==0) ){
+ memset(k, 0, sizeof(k));
+ }else{
+ sqlite3OsRandomness(pVfs, 256, k);
+ }
+ for(i=0; i<256; i++){
+ wsdPrng.s[i] = (u8)i;
+ }
+ for(i=0; i<256; i++){
+ wsdPrng.j += wsdPrng.s[i] + k[i];
+ t = wsdPrng.s[wsdPrng.j];
+ wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
+ wsdPrng.s[i] = t;
+ }
+ wsdPrng.isInit = 1;
+ }
+
+ assert( N>0 );
+ do{
+ wsdPrng.i++;
+ t = wsdPrng.s[wsdPrng.i];
+ wsdPrng.j += t;
+ wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
+ wsdPrng.s[wsdPrng.j] = t;
+ t += wsdPrng.s[wsdPrng.i];
+ *(zBuf++) = wsdPrng.s[t];
+ }while( --N );
+ sqlite3_mutex_leave(mutex);
+}
+
+#ifndef SQLITE_UNTESTABLE
+/*
+** For testing purposes, we sometimes want to preserve the state of
+** PRNG and restore the PRNG to its saved state at a later time, or
+** to reset the PRNG to its initial state. These routines accomplish
+** those tasks.
+**
+** The sqlite3_test_control() interface calls these routines to
+** control the PRNG.
+*/
+static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
+SQLITE_PRIVATE void sqlite3PrngSaveState(void){
+ memcpy(
+ &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
+ &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
+ sizeof(sqlite3Prng)
+ );
+}
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
+ memcpy(
+ &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
+ &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
+ sizeof(sqlite3Prng)
+ );
+}
+#endif /* SQLITE_UNTESTABLE */
+
+/************** End of random.c **********************************************/
+/************** Begin file threads.c *****************************************/
+/*
+** 2012 July 21
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file presents a simple cross-platform threading interface for
+** use internally by SQLite.
+**
+** A "thread" can be created using sqlite3ThreadCreate(). This thread
+** runs independently of its creator until it is joined using
+** sqlite3ThreadJoin(), at which point it terminates.
+**
+** Threads do not have to be real. It could be that the work of the
+** "thread" is done by the main thread at either the sqlite3ThreadCreate()
+** or sqlite3ThreadJoin() call. This is, in fact, what happens in
+** single threaded systems. Nothing in SQLite requires multiple threads.
+** This interface exists so that applications that want to take advantage
+** of multiple cores can do so, while also allowing applications to stay
+** single-threaded if desired.
+*/
+/* #include "sqliteInt.h" */
+#if SQLITE_OS_WIN
+/* # include "os_win.h" */
+#endif
+
+#if SQLITE_MAX_WORKER_THREADS>0
+
+/********************************* Unix Pthreads ****************************/
+#if SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) && SQLITE_THREADSAFE>0
+
+#define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */
+/* #include <pthread.h> */
+
+/* A running thread */
+struct SQLiteThread {
+ pthread_t tid; /* Thread ID */
+ int done; /* Set to true when thread finishes */
+ void *pOut; /* Result returned by the thread */
+ void *(*xTask)(void*); /* The thread routine */
+ void *pIn; /* Argument to the thread */
+};
+
+/* Create a new thread */
+SQLITE_PRIVATE int sqlite3ThreadCreate(
+ SQLiteThread **ppThread, /* OUT: Write the thread object here */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ SQLiteThread *p;
+ int rc;
+
+ assert( ppThread!=0 );
+ assert( xTask!=0 );
+ /* This routine is never used in single-threaded mode */
+ assert( sqlite3GlobalConfig.bCoreMutex!=0 );
+
+ *ppThread = 0;
+ p = sqlite3Malloc(sizeof(*p));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ memset(p, 0, sizeof(*p));
+ p->xTask = xTask;
+ p->pIn = pIn;
+ /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a
+ ** function that returns SQLITE_ERROR when passed the argument 200, that
+ ** forces worker threads to run sequentially and deterministically
+ ** for testing purposes. */
+ if( sqlite3FaultSim(200) ){
+ rc = 1;
+ }else{
+ rc = pthread_create(&p->tid, 0, xTask, pIn);
+ }
+ if( rc ){
+ p->done = 1;
+ p->pOut = xTask(pIn);
+ }
+ *ppThread = p;
+ return SQLITE_OK;
+}
+
+/* Get the results of the thread */
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){
+ int rc;
+
+ assert( ppOut!=0 );
+ if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT;
+ if( p->done ){
+ *ppOut = p->pOut;
+ rc = SQLITE_OK;
+ }else{
+ rc = pthread_join(p->tid, ppOut) ? SQLITE_ERROR : SQLITE_OK;
+ }
+ sqlite3_free(p);
+ return rc;
+}
+
+#endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */
+/******************************** End Unix Pthreads *************************/
+
+
+/********************************* Win32 Threads ****************************/
+#if SQLITE_OS_WIN_THREADS
+
+#define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */
+#include <process.h>
+
+/* A running thread */
+struct SQLiteThread {
+ void *tid; /* The thread handle */
+ unsigned id; /* The thread identifier */
+ void *(*xTask)(void*); /* The routine to run as a thread */
+ void *pIn; /* Argument to xTask */
+ void *pResult; /* Result of xTask */
+};
+
+/* Thread procedure Win32 compatibility shim */
+static unsigned __stdcall sqlite3ThreadProc(
+ void *pArg /* IN: Pointer to the SQLiteThread structure */
+){
+ SQLiteThread *p = (SQLiteThread *)pArg;
+
+ assert( p!=0 );
+#if 0
+ /*
+ ** This assert appears to trigger spuriously on certain
+ ** versions of Windows, possibly due to _beginthreadex()
+ ** and/or CreateThread() not fully setting their thread
+ ** ID parameter before starting the thread.
+ */
+ assert( p->id==GetCurrentThreadId() );
+#endif
+ assert( p->xTask!=0 );
+ p->pResult = p->xTask(p->pIn);
+
+ _endthreadex(0);
+ return 0; /* NOT REACHED */
+}
+
+/* Create a new thread */
+SQLITE_PRIVATE int sqlite3ThreadCreate(
+ SQLiteThread **ppThread, /* OUT: Write the thread object here */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ SQLiteThread *p;
+
+ assert( ppThread!=0 );
+ assert( xTask!=0 );
+ *ppThread = 0;
+ p = sqlite3Malloc(sizeof(*p));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a
+ ** function that returns SQLITE_ERROR when passed the argument 200, that
+ ** forces worker threads to run sequentially and deterministically
+ ** (via the sqlite3FaultSim() term of the conditional) for testing
+ ** purposes. */
+ if( sqlite3GlobalConfig.bCoreMutex==0 || sqlite3FaultSim(200) ){
+ memset(p, 0, sizeof(*p));
+ }else{
+ p->xTask = xTask;
+ p->pIn = pIn;
+ p->tid = (void*)_beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id);
+ if( p->tid==0 ){
+ memset(p, 0, sizeof(*p));
+ }
+ }
+ if( p->xTask==0 ){
+ p->id = GetCurrentThreadId();
+ p->pResult = xTask(pIn);
+ }
+ *ppThread = p;
+ return SQLITE_OK;
+}
+
+SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject); /* os_win.c */
+
+/* Get the results of the thread */
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){
+ DWORD rc;
+ BOOL bRc;
+
+ assert( ppOut!=0 );
+ if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT;
+ if( p->xTask==0 ){
+ /* assert( p->id==GetCurrentThreadId() ); */
+ rc = WAIT_OBJECT_0;
+ assert( p->tid==0 );
+ }else{
+ assert( p->id!=0 && p->id!=GetCurrentThreadId() );
+ rc = sqlite3Win32Wait((HANDLE)p->tid);
+ assert( rc!=WAIT_IO_COMPLETION );
+ bRc = CloseHandle((HANDLE)p->tid);
+ assert( bRc );
+ }
+ if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult;
+ sqlite3_free(p);
+ return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR;
+}
+
+#endif /* SQLITE_OS_WIN_THREADS */
+/******************************** End Win32 Threads *************************/
+
+
+/********************************* Single-Threaded **************************/
+#ifndef SQLITE_THREADS_IMPLEMENTED
+/*
+** This implementation does not actually create a new thread. It does the
+** work of the thread in the main thread, when either the thread is created
+** or when it is joined
+*/
+
+/* A running thread */
+struct SQLiteThread {
+ void *(*xTask)(void*); /* The routine to run as a thread */
+ void *pIn; /* Argument to xTask */
+ void *pResult; /* Result of xTask */
+};
+
+/* Create a new thread */
+SQLITE_PRIVATE int sqlite3ThreadCreate(
+ SQLiteThread **ppThread, /* OUT: Write the thread object here */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ SQLiteThread *p;
+
+ assert( ppThread!=0 );
+ assert( xTask!=0 );
+ *ppThread = 0;
+ p = sqlite3Malloc(sizeof(*p));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ if( (SQLITE_PTR_TO_INT(p)/17)&1 ){
+ p->xTask = xTask;
+ p->pIn = pIn;
+ }else{
+ p->xTask = 0;
+ p->pResult = xTask(pIn);
+ }
+ *ppThread = p;
+ return SQLITE_OK;
+}
+
+/* Get the results of the thread */
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){
+
+ assert( ppOut!=0 );
+ if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT;
+ if( p->xTask ){
+ *ppOut = p->xTask(p->pIn);
+ }else{
+ *ppOut = p->pResult;
+ }
+ sqlite3_free(p);
+
+#if defined(SQLITE_TEST)
+ {
+ void *pTstAlloc = sqlite3Malloc(10);
+ if (!pTstAlloc) return SQLITE_NOMEM_BKPT;
+ sqlite3_free(pTstAlloc);
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+#endif /* !defined(SQLITE_THREADS_IMPLEMENTED) */
+/****************************** End Single-Threaded *************************/
+#endif /* SQLITE_MAX_WORKER_THREADS>0 */
+
+/************** End of threads.c *********************************************/
+/************** Begin file utf.c *********************************************/
+/*
+** 2004 April 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used to translate between UTF-8,
+** UTF-16, UTF-16BE, and UTF-16LE.
+**
+** Notes on UTF-8:
+**
+** Byte-0 Byte-1 Byte-2 Byte-3 Value
+** 0xxxxxxx 00000000 00000000 0xxxxxxx
+** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
+** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
+** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+**
+**
+** Notes on UTF-16: (with wwww+1==uuuuu)
+**
+** Word-0 Word-1 Value
+** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
+**
+**
+** BOM or Byte Order Mark:
+** 0xff 0xfe little-endian utf-16 follows
+** 0xfe 0xff big-endian utf-16 follows
+**
+*/
+/* #include "sqliteInt.h" */
+/* #include <assert.h> */
+/* #include "vdbeInt.h" */
+
+#if !defined(SQLITE_AMALGAMATION) && SQLITE_BYTEORDER==0
+/*
+** The following constant value is used by the SQLITE_BIGENDIAN and
+** SQLITE_LITTLEENDIAN macros.
+*/
+SQLITE_PRIVATE const int sqlite3one = 1;
+#endif /* SQLITE_AMALGAMATION && SQLITE_BYTEORDER==0 */
+
+/*
+** This lookup table is used to help decode the first byte of
+** a multi-byte UTF8 character.
+*/
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (u8)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+}
+
+#define WRITE_UTF16LE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (u8)(c&0x00FF); \
+ *zOut++ = (u8)((c>>8)&0x00FF); \
+ }else{ \
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (u8)(c&0x00FF); \
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
+ } \
+}
+
+#define WRITE_UTF16BE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (u8)((c>>8)&0x00FF); \
+ *zOut++ = (u8)(c&0x00FF); \
+ }else{ \
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
+ *zOut++ = (u8)(c&0x00FF); \
+ } \
+}
+
+/*
+** Translate a single UTF-8 character. Return the unicode value.
+**
+** During translation, assume that the byte that zTerm points
+** is a 0x00.
+**
+** Write a pointer to the next unread byte back into *pzNext.
+**
+** Notes On Invalid UTF-8:
+**
+** * This routine never allows a 7-bit character (0x00 through 0x7f) to
+** be encoded as a multi-byte character. Any multi-byte character that
+** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
+**
+** * This routine never allows a UTF16 surrogate value to be encoded.
+** If a multi-byte character attempts to encode a value between
+** 0xd800 and 0xe000 then it is rendered as 0xfffd.
+**
+** * Bytes in the range of 0x80 through 0xbf which occur as the first
+** byte of a character are interpreted as single-byte characters
+** and rendered as themselves even though they are technically
+** invalid characters.
+**
+** * This routine accepts over-length UTF8 encodings
+** for unicode values 0x80 and greater. It does not change over-length
+** encodings to 0xfffd as some systems recommend.
+*/
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+SQLITE_PRIVATE u32 sqlite3Utf8Read(
+ const unsigned char **pz /* Pointer to string from which to read char */
+){
+ unsigned int c;
+
+ /* Same as READ_UTF8() above but without the zTerm parameter.
+ ** For this routine, we assume the UTF8 string is always zero-terminated.
+ */
+ c = *((*pz)++);
+ if( c>=0xc0 ){
+ c = sqlite3Utf8Trans1[c-0xc0];
+ while( (*(*pz) & 0xc0)==0x80 ){
+ c = (c<<6) + (0x3f & *((*pz)++));
+ }
+ if( c<0x80
+ || (c&0xFFFFF800)==0xD800
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
+ }
+ return c;
+}
+
+
+
+
+/*
+** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
+** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
+*/
+/* #define TRANSLATE_TRACE 1 */
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine transforms the internal text encoding used by pMem to
+** desiredEnc. It is an error if the string is already of the desired
+** encoding, or if *pMem does not contain a string value.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
+ sqlite3_int64 len; /* Maximum length of output string in bytes */
+ unsigned char *zOut; /* Output buffer */
+ unsigned char *zIn; /* Input iterator */
+ unsigned char *zTerm; /* End of input */
+ unsigned char *z; /* Output iterator */
+ unsigned int c;
+
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( pMem->flags&MEM_Str );
+ assert( pMem->enc!=desiredEnc );
+ assert( pMem->enc!=0 );
+ assert( pMem->n>=0 );
+
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
+ {
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(pMem, &acc);
+ fprintf(stderr, "INPUT: %s\n", sqlite3StrAccumFinish(&acc));
+ }
+#endif
+
+ /* If the translation is between UTF-16 little and big endian, then
+ ** all that is required is to swap the byte order. This case is handled
+ ** differently from the others.
+ */
+ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
+ u8 temp;
+ int rc;
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc!=SQLITE_OK ){
+ assert( rc==SQLITE_NOMEM );
+ return SQLITE_NOMEM_BKPT;
+ }
+ zIn = (u8*)pMem->z;
+ zTerm = &zIn[pMem->n&~1];
+ while( zIn<zTerm ){
+ temp = *zIn;
+ *zIn = *(zIn+1);
+ zIn++;
+ *zIn++ = temp;
+ }
+ pMem->enc = desiredEnc;
+ goto translate_out;
+ }
+
+ /* Set len to the maximum number of bytes required in the output buffer. */
+ if( desiredEnc==SQLITE_UTF8 ){
+ /* When converting from UTF-16, the maximum growth results from
+ ** translating a 2-byte character to a 4-byte UTF-8 character.
+ ** A single byte is required for the output string
+ ** nul-terminator.
+ */
+ pMem->n &= ~1;
+ len = 2 * (sqlite3_int64)pMem->n + 1;
+ }else{
+ /* When converting from UTF-8 to UTF-16 the maximum growth is caused
+ ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
+ ** character. Two bytes are required in the output buffer for the
+ ** nul-terminator.
+ */
+ len = 2 * (sqlite3_int64)pMem->n + 2;
+ }
+
+ /* Set zIn to point at the start of the input buffer and zTerm to point 1
+ ** byte past the end.
+ **
+ ** Variable zOut is set to point at the output buffer, space obtained
+ ** from sqlite3_malloc().
+ */
+ zIn = (u8*)pMem->z;
+ zTerm = &zIn[pMem->n];
+ zOut = sqlite3DbMallocRaw(pMem->db, len);
+ if( !zOut ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ z = zOut;
+
+ if( pMem->enc==SQLITE_UTF8 ){
+ if( desiredEnc==SQLITE_UTF16LE ){
+ /* UTF-8 -> UTF-16 Little-endian */
+ while( zIn<zTerm ){
+ READ_UTF8(zIn, zTerm, c);
+ WRITE_UTF16LE(z, c);
+ }
+ }else{
+ assert( desiredEnc==SQLITE_UTF16BE );
+ /* UTF-8 -> UTF-16 Big-endian */
+ while( zIn<zTerm ){
+ READ_UTF8(zIn, zTerm, c);
+ WRITE_UTF16BE(z, c);
+ }
+ }
+ pMem->n = (int)(z - zOut);
+ *z++ = 0;
+ }else{
+ assert( desiredEnc==SQLITE_UTF8 );
+ if( pMem->enc==SQLITE_UTF16LE ){
+ /* UTF-16 Little-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ c = *(zIn++);
+ c += (*(zIn++))<<8;
+ if( c>=0xd800 && c<0xe000 ){
+#ifdef SQLITE_REPLACE_INVALID_UTF
+ if( c>=0xdc00 || zIn>=zTerm ){
+ c = 0xfffd;
+ }else{
+ int c2 = *(zIn++);
+ c2 += (*(zIn++))<<8;
+ if( c2<0xdc00 || c2>=0xe000 ){
+ zIn -= 2;
+ c = 0xfffd;
+ }else{
+ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
+ }
+ }
+#else
+ if( zIn<zTerm ){
+ int c2 = (*zIn++);
+ c2 += ((*zIn++)<<8);
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);
+ }
+#endif
+ }
+ WRITE_UTF8(z, c);
+ }
+ }else{
+ /* UTF-16 Big-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ c = (*(zIn++))<<8;
+ c += *(zIn++);
+ if( c>=0xd800 && c<0xe000 ){
+#ifdef SQLITE_REPLACE_INVALID_UTF
+ if( c>=0xdc00 || zIn>=zTerm ){
+ c = 0xfffd;
+ }else{
+ int c2 = (*(zIn++))<<8;
+ c2 += *(zIn++);
+ if( c2<0xdc00 || c2>=0xe000 ){
+ zIn -= 2;
+ c = 0xfffd;
+ }else{
+ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
+ }
+ }
+#else
+ if( zIn<zTerm ){
+ int c2 = ((*zIn++)<<8);
+ c2 += (*zIn++);
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);
+ }
+#endif
+ }
+ WRITE_UTF8(z, c);
+ }
+ }
+ pMem->n = (int)(z - zOut);
+ }
+ *z = 0;
+ assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
+
+ c = MEM_Str|MEM_Term|(pMem->flags&(MEM_AffMask|MEM_Subtype));
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags = c;
+ pMem->enc = desiredEnc;
+ pMem->z = (char*)zOut;
+ pMem->zMalloc = pMem->z;
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);
+
+translate_out:
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
+ {
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(pMem, &acc);
+ fprintf(stderr, "OUTPUT: %s\n", sqlite3StrAccumFinish(&acc));
+ }
+#endif
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine checks for a byte-order mark at the beginning of the
+** UTF-16 string stored in *pMem. If one is present, it is removed and
+** the encoding of the Mem adjusted. This routine does not do any
+** byte-swapping, it just sets Mem.enc appropriately.
+**
+** The allocation (static, dynamic etc.) and encoding of the Mem may be
+** changed by this function.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
+ int rc = SQLITE_OK;
+ u8 bom = 0;
+
+ assert( pMem->n>=0 );
+ if( pMem->n>1 ){
+ u8 b1 = *(u8 *)pMem->z;
+ u8 b2 = *(((u8 *)pMem->z) + 1);
+ if( b1==0xFE && b2==0xFF ){
+ bom = SQLITE_UTF16BE;
+ }
+ if( b1==0xFF && b2==0xFE ){
+ bom = SQLITE_UTF16LE;
+ }
+ }
+
+ if( bom ){
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc==SQLITE_OK ){
+ pMem->n -= 2;
+ memmove(pMem->z, &pMem->z[2], pMem->n);
+ pMem->z[pMem->n] = '\0';
+ pMem->z[pMem->n+1] = '\0';
+ pMem->flags |= MEM_Term;
+ pMem->enc = bom;
+ }
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
+** return the number of unicode characters in pZ up to (but not including)
+** the first 0x00 byte. If nByte is not less than zero, return the
+** number of unicode characters in the first nByte of pZ (or up to
+** the first 0x00, whichever comes first).
+*/
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
+ int r = 0;
+ const u8 *z = (const u8*)zIn;
+ const u8 *zTerm;
+ if( nByte>=0 ){
+ zTerm = &z[nByte];
+ }else{
+ zTerm = (const u8*)(-1);
+ }
+ assert( z<=zTerm );
+ while( *z!=0 && z<zTerm ){
+ SQLITE_SKIP_UTF8(z);
+ r++;
+ }
+ return r;
+}
+
+/* This test function is not currently used by the automated test-suite.
+** Hence it is only available in debug builds.
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Translate UTF-8 to UTF-8.
+**
+** This has the effect of making sure that the string is well-formed
+** UTF-8. Miscoded characters are removed.
+**
+** The translation is done in-place and aborted if the output
+** overruns the input.
+*/
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
+ unsigned char *zOut = zIn;
+ unsigned char *zStart = zIn;
+ u32 c;
+
+ while( zIn[0] && zOut<=zIn ){
+ c = sqlite3Utf8Read((const u8**)&zIn);
+ if( c!=0xfffd ){
+ WRITE_UTF8(zOut, c);
+ }
+ }
+ *zOut = 0;
+ return (int)(zOut - zStart);
+}
+#endif
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Convert a UTF-16 string in the native encoding into a UTF-8 string.
+** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
+** be freed by the calling function.
+**
+** NULL is returned if there is an allocation error.
+*/
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){
+ Mem m;
+ memset(&m, 0, sizeof(m));
+ m.db = db;
+ sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC);
+ sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
+ if( db->mallocFailed ){
+ sqlite3VdbeMemRelease(&m);
+ m.z = 0;
+ }
+ assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
+ assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
+ assert( m.z || db->mallocFailed );
+ return m.z;
+}
+
+/*
+** zIn is a UTF-16 encoded unicode string at least nChar characters long.
+** Return the number of bytes in the first nChar unicode characters
+** in pZ. nChar must be non-negative.
+*/
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
+ int c;
+ unsigned char const *z = zIn;
+ int n = 0;
+
+ if( SQLITE_UTF16NATIVE==SQLITE_UTF16LE ) z++;
+ while( n<nChar ){
+ c = z[0];
+ z += 2;
+ if( c>=0xd8 && c<0xdc && z[0]>=0xdc && z[0]<0xe0 ) z += 2;
+ n++;
+ }
+ return (int)(z-(unsigned char const *)zIn)
+ - (SQLITE_UTF16NATIVE==SQLITE_UTF16LE);
+}
+
+#if defined(SQLITE_TEST)
+/*
+** This routine is called from the TCL test function "translate_selftest".
+** It checks that the primitives for serializing and deserializing
+** characters in each encoding are inverses of each other.
+*/
+SQLITE_PRIVATE void sqlite3UtfSelfTest(void){
+ unsigned int i, t;
+ unsigned char zBuf[20];
+ unsigned char *z;
+ int n;
+ unsigned int c;
+
+ for(i=0; i<0x00110000; i++){
+ z = zBuf;
+ WRITE_UTF8(z, i);
+ n = (int)(z-zBuf);
+ assert( n>0 && n<=4 );
+ z[0] = 0;
+ z = zBuf;
+ c = sqlite3Utf8Read((const u8**)&z);
+ t = i;
+ if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
+ if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
+ assert( c==t );
+ assert( (z-zBuf)==n );
+ }
+}
+#endif /* SQLITE_TEST */
+#endif /* SQLITE_OMIT_UTF16 */
+
+/************** End of utf.c *************************************************/
+/************** Begin file util.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Utility functions used throughout sqlite.
+**
+** This file contains functions for allocating memory, comparing
+** strings, and stuff like that.
+**
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdarg.h> */
+#ifndef SQLITE_OMIT_FLOATING_POINT
+#include <math.h>
+#endif
+
+/*
+** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
+** or to bypass normal error detection during testing in order to let
+** execute proceed futher downstream.
+**
+** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
+** sqlite3FaultSim() function only returns non-zero during testing.
+**
+** During testing, if the test harness has set a fault-sim callback using
+** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
+** each call to sqlite3FaultSim() is relayed to that application-supplied
+** callback and the integer return value form the application-supplied
+** callback is returned by sqlite3FaultSim().
+**
+** The integer argument to sqlite3FaultSim() is a code to identify which
+** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
+** should have a unique code. To prevent legacy testing applications from
+** breaking, the codes should not be changed or reused.
+*/
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE int sqlite3FaultSim(int iTest){
+ int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
+ return xCallback ? xCallback(iTest) : SQLITE_OK;
+}
+#endif
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** Return true if the floating point value is Not a Number (NaN).
+**
+** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
+** Otherwise, we have our own implementation that works on most systems.
+*/
+SQLITE_PRIVATE int sqlite3IsNaN(double x){
+ int rc; /* The value return */
+#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
+ u64 y;
+ memcpy(&y,&x,sizeof(y));
+ rc = IsNaN(y);
+#else
+ rc = isnan(x);
+#endif /* HAVE_ISNAN */
+ testcase( rc );
+ return rc;
+}
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+
+/*
+** Compute a string length that is limited to what can be stored in
+** lower 30 bits of a 32-bit signed integer.
+**
+** The value returned will never be negative. Nor will it ever be greater
+** than the actual length of the string. For very long strings (greater
+** than 1GiB) the value returned might be less than the true string length.
+*/
+SQLITE_PRIVATE int sqlite3Strlen30(const char *z){
+ if( z==0 ) return 0;
+ return 0x3fffffff & (int)strlen(z);
+}
+
+/*
+** Return the declared type of a column. Or return zDflt if the column
+** has no declared type.
+**
+** The column type is an extra string stored after the zero-terminator on
+** the column name if and only if the COLFLAG_HASTYPE flag is set.
+*/
+SQLITE_PRIVATE char *sqlite3ColumnType(Column *pCol, char *zDflt){
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ return pCol->zCnName + strlen(pCol->zCnName) + 1;
+ }else if( pCol->eCType ){
+ assert( pCol->eCType<=SQLITE_N_STDTYPE );
+ return (char*)sqlite3StdType[pCol->eCType-1];
+ }else{
+ return zDflt;
+ }
+}
+
+/*
+** Helper function for sqlite3Error() - called rarely. Broken out into
+** a separate routine to avoid unnecessary register saves on entry to
+** sqlite3Error().
+*/
+static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
+ if( db->pErr ) sqlite3ValueSetNull(db->pErr);
+ sqlite3SystemError(db, err_code);
+}
+
+/*
+** Set the current error code to err_code and clear any prior error message.
+** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
+** that would be appropriate.
+*/
+SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){
+ assert( db!=0 );
+ db->errCode = err_code;
+ if( err_code || db->pErr ){
+ sqlite3ErrorFinish(db, err_code);
+ }else{
+ db->errByteOffset = -1;
+ }
+}
+
+/*
+** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
+** and error message.
+*/
+SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3 *db){
+ assert( db!=0 );
+ db->errCode = SQLITE_OK;
+ db->errByteOffset = -1;
+ if( db->pErr ) sqlite3ValueSetNull(db->pErr);
+}
+
+/*
+** Load the sqlite3.iSysErrno field if that is an appropriate thing
+** to do based on the SQLite error code in rc.
+*/
+SQLITE_PRIVATE void sqlite3SystemError(sqlite3 *db, int rc){
+ if( rc==SQLITE_IOERR_NOMEM ) return;
+ rc &= 0xff;
+ if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
+ db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
+ }
+}
+
+/*
+** Set the most recent error code and error string for the sqlite
+** handle "db". The error code is set to "err_code".
+**
+** If it is not NULL, string zFormat specifies the format of the
+** error string. zFormat and any string tokens that follow it are
+** assumed to be encoded in UTF-8.
+**
+** To clear the most recent error for sqlite handle "db", sqlite3Error
+** should be called with err_code set to SQLITE_OK and zFormat set
+** to NULL.
+*/
+SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
+ assert( db!=0 );
+ db->errCode = err_code;
+ sqlite3SystemError(db, err_code);
+ if( zFormat==0 ){
+ sqlite3Error(db, err_code);
+ }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
+ char *z;
+ va_list ap;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
+ }
+}
+
+/*
+** Add an error message to pParse->zErrMsg and increment pParse->nErr.
+**
+** This function should be used to report any error that occurs while
+** compiling an SQL statement (i.e. within sqlite3_prepare()). The
+** last thing the sqlite3_prepare() function does is copy the error
+** stored by this function into the database handle using sqlite3Error().
+** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
+** during statement execution (sqlite3_step() etc.).
+*/
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
+ char *zMsg;
+ va_list ap;
+ sqlite3 *db = pParse->db;
+ assert( db!=0 );
+ assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
+ db->errByteOffset = -2;
+ va_start(ap, zFormat);
+ zMsg = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ if( db->errByteOffset<-1 ) db->errByteOffset = -1;
+ if( db->suppressErr ){
+ sqlite3DbFree(db, zMsg);
+ if( db->mallocFailed ){
+ pParse->nErr++;
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }else{
+ pParse->nErr++;
+ sqlite3DbFree(db, pParse->zErrMsg);
+ pParse->zErrMsg = zMsg;
+ pParse->rc = SQLITE_ERROR;
+ pParse->pWith = 0;
+ }
+}
+
+/*
+** If database connection db is currently parsing SQL, then transfer
+** error code errCode to that parser if the parser has not already
+** encountered some other kind of error.
+*/
+SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3 *db, int errCode){
+ Parse *pParse;
+ if( db==0 || (pParse = db->pParse)==0 ) return errCode;
+ pParse->rc = errCode;
+ pParse->nErr++;
+ return errCode;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** The input string must be zero-terminated. A new zero-terminator
+** is added to the dequoted string.
+**
+** The return value is -1 if no dequoting occurs or the length of the
+** dequoted string, exclusive of the zero terminator, if dequoting does
+** occur.
+**
+** 2002-02-14: This routine is extended to remove MS-Access style
+** brackets from around identifiers. For example: "[a-b-c]" becomes
+** "a-b-c".
+*/
+SQLITE_PRIVATE void sqlite3Dequote(char *z){
+ char quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ if( !sqlite3Isquote(quote) ) return;
+ if( quote=='[' ) quote = ']';
+ for(i=1, j=0;; i++){
+ assert( z[i] );
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+ z[j] = 0;
+}
+SQLITE_PRIVATE void sqlite3DequoteExpr(Expr *p){
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ assert( sqlite3Isquote(p->u.zToken[0]) );
+ p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
+ sqlite3Dequote(p->u.zToken);
+}
+
+/*
+** If the input token p is quoted, try to adjust the token to remove
+** the quotes. This is not always possible:
+**
+** "abc" -> abc
+** "ab""cd" -> (not possible because of the interior "")
+**
+** Remove the quotes if possible. This is a optimization. The overall
+** system should still return the correct answer even if this routine
+** is always a no-op.
+*/
+SQLITE_PRIVATE void sqlite3DequoteToken(Token *p){
+ unsigned int i;
+ if( p->n<2 ) return;
+ if( !sqlite3Isquote(p->z[0]) ) return;
+ for(i=1; i<p->n-1; i++){
+ if( sqlite3Isquote(p->z[i]) ) return;
+ }
+ p->n -= 2;
+ p->z++;
+}
+
+/*
+** Generate a Token object from a string
+*/
+SQLITE_PRIVATE void sqlite3TokenInit(Token *p, char *z){
+ p->z = z;
+ p->n = sqlite3Strlen30(z);
+}
+
+/* Convenient short-hand */
+#define UpperToLower sqlite3UpperToLower
+
+/*
+** Some systems have stricmp(). Others have strcasecmp(). Because
+** there is no consistency, we will define our own.
+**
+** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
+** sqlite3_strnicmp() APIs allow applications and extensions to compare
+** the contents of two buffers containing UTF-8 strings in a
+** case-independent fashion, using the same definition of "case
+** independence" that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){
+ if( zLeft==0 ){
+ return zRight ? -1 : 0;
+ }else if( zRight==0 ){
+ return 1;
+ }
+ return sqlite3StrICmp(zLeft, zRight);
+}
+SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
+ unsigned char *a, *b;
+ int c, x;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ for(;;){
+ c = *a;
+ x = *b;
+ if( c==x ){
+ if( c==0 ) break;
+ }else{
+ c = (int)UpperToLower[c] - (int)UpperToLower[x];
+ if( c ) break;
+ }
+ a++;
+ b++;
+ }
+ return c;
+}
+SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
+ register unsigned char *a, *b;
+ if( zLeft==0 ){
+ return zRight ? -1 : 0;
+ }else if( zRight==0 ){
+ return 1;
+ }
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
+}
+
+/*
+** Compute an 8-bit hash on a string that is insensitive to case differences
+*/
+SQLITE_PRIVATE u8 sqlite3StrIHash(const char *z){
+ u8 h = 0;
+ if( z==0 ) return 0;
+ while( z[0] ){
+ h += UpperToLower[(unsigned char)z[0]];
+ z++;
+ }
+ return h;
+}
+
+/*
+** Compute 10 to the E-th power. Examples: E==1 results in 10.
+** E==2 results in 100. E==50 results in 1.0e50.
+**
+** This routine only works for values of E between 1 and 341.
+*/
+static LONGDOUBLE_TYPE sqlite3Pow10(int E){
+#if defined(_MSC_VER)
+ static const LONGDOUBLE_TYPE x[] = {
+ 1.0e+001L,
+ 1.0e+002L,
+ 1.0e+004L,
+ 1.0e+008L,
+ 1.0e+016L,
+ 1.0e+032L,
+ 1.0e+064L,
+ 1.0e+128L,
+ 1.0e+256L
+ };
+ LONGDOUBLE_TYPE r = 1.0;
+ int i;
+ assert( E>=0 && E<=307 );
+ for(i=0; E!=0; i++, E >>=1){
+ if( E & 1 ) r *= x[i];
+ }
+ return r;
+#else
+ LONGDOUBLE_TYPE x = 10.0;
+ LONGDOUBLE_TYPE r = 1.0;
+ while(1){
+ if( E & 1 ) r *= x;
+ E >>= 1;
+ if( E==0 ) break;
+ x *= x;
+ }
+ return r;
+#endif
+}
+
+/*
+** The string z[] is an text representation of a real number.
+** Convert this string to a double and write it into *pResult.
+**
+** The string z[] is length bytes in length (bytes, not characters) and
+** uses the encoding enc. The string is not necessarily zero-terminated.
+**
+** Return TRUE if the result is a valid real number (or integer) and FALSE
+** if the string is empty or contains extraneous text. More specifically
+** return
+** 1 => The input string is a pure integer
+** 2 or more => The input has a decimal point or eNNN clause
+** 0 or less => The input string is not a valid number
+** -1 => Not a valid number, but has a valid prefix which
+** includes a decimal point and/or an eNNN clause
+**
+** Valid numbers are in one of these formats:
+**
+** [+-]digits[E[+-]digits]
+** [+-]digits.[digits][E[+-]digits]
+** [+-].digits[E[+-]digits]
+**
+** Leading and trailing whitespace is ignored for the purpose of determining
+** validity.
+**
+** If some prefix of the input string is a valid number, this routine
+** returns FALSE but it still converts the prefix and writes the result
+** into *pResult.
+*/
+#if defined(_MSC_VER)
+#pragma warning(disable : 4756)
+#endif
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ int incr;
+ const char *zEnd;
+ /* sign * significand * (10 ^ (esign * exponent)) */
+ int sign = 1; /* sign of significand */
+ i64 s = 0; /* significand */
+ int d = 0; /* adjust exponent for shifting decimal point */
+ int esign = 1; /* sign of exponent */
+ int e = 0; /* exponent */
+ int eValid = 1; /* True exponent is either not used or is well-formed */
+ double result;
+ int nDigit = 0; /* Number of digits processed */
+ int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
+
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ *pResult = 0.0; /* Default return value, in case of an error */
+ if( length==0 ) return 0;
+
+ if( enc==SQLITE_UTF8 ){
+ incr = 1;
+ zEnd = z + length;
+ }else{
+ int i;
+ incr = 2;
+ length &= ~1;
+ assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ testcase( enc==SQLITE_UTF16LE );
+ testcase( enc==SQLITE_UTF16BE );
+ for(i=3-enc; i<length && z[i]==0; i+=2){}
+ if( i<length ) eType = -100;
+ zEnd = &z[i^1];
+ z += (enc&1);
+ }
+
+ /* skip leading spaces */
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
+ if( z>=zEnd ) return 0;
+
+ /* get sign of significand */
+ if( *z=='-' ){
+ sign = -1;
+ z+=incr;
+ }else if( *z=='+' ){
+ z+=incr;
+ }
+
+ /* copy max significant digits to significand */
+ while( z<zEnd && sqlite3Isdigit(*z) ){
+ s = s*10 + (*z - '0');
+ z+=incr; nDigit++;
+ if( s>=((LARGEST_INT64-9)/10) ){
+ /* skip non-significant significand digits
+ ** (increase exponent by d to shift decimal left) */
+ while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
+ }
+ }
+ if( z>=zEnd ) goto do_atof_calc;
+
+ /* if decimal point is present */
+ if( *z=='.' ){
+ z+=incr;
+ eType++;
+ /* copy digits from after decimal to significand
+ ** (decrease exponent by d to shift decimal right) */
+ while( z<zEnd && sqlite3Isdigit(*z) ){
+ if( s<((LARGEST_INT64-9)/10) ){
+ s = s*10 + (*z - '0');
+ d--;
+ nDigit++;
+ }
+ z+=incr;
+ }
+ }
+ if( z>=zEnd ) goto do_atof_calc;
+
+ /* if exponent is present */
+ if( *z=='e' || *z=='E' ){
+ z+=incr;
+ eValid = 0;
+ eType++;
+
+ /* This branch is needed to avoid a (harmless) buffer overread. The
+ ** special comment alerts the mutation tester that the correct answer
+ ** is obtained even if the branch is omitted */
+ if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
+
+ /* get sign of exponent */
+ if( *z=='-' ){
+ esign = -1;
+ z+=incr;
+ }else if( *z=='+' ){
+ z+=incr;
+ }
+ /* copy digits to exponent */
+ while( z<zEnd && sqlite3Isdigit(*z) ){
+ e = e<10000 ? (e*10 + (*z - '0')) : 10000;
+ z+=incr;
+ eValid = 1;
+ }
+ }
+
+ /* skip trailing spaces */
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
+
+do_atof_calc:
+ /* adjust exponent by d, and update sign */
+ e = (e*esign) + d;
+ if( e<0 ) {
+ esign = -1;
+ e *= -1;
+ } else {
+ esign = 1;
+ }
+
+ if( s==0 ) {
+ /* In the IEEE 754 standard, zero is signed. */
+ result = sign<0 ? -(double)0 : (double)0;
+ } else {
+ /* Attempt to reduce exponent.
+ **
+ ** Branches that are not required for the correct answer but which only
+ ** help to obtain the correct answer faster are marked with special
+ ** comments, as a hint to the mutation tester.
+ */
+ while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
+ if( esign>0 ){
+ if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
+ s *= 10;
+ }else{
+ if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
+ s /= 10;
+ }
+ e--;
+ }
+
+ /* adjust the sign of significand */
+ s = sign<0 ? -s : s;
+
+ if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ result = (double)s;
+ }else{
+ /* attempt to handle extremely small/large numbers better */
+ if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
+ if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
+ LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
+ if( esign<0 ){
+ result = s / scale;
+ result /= 1.0e+308;
+ }else{
+ result = s * scale;
+ result *= 1.0e+308;
+ }
+ }else{ assert( e>=342 );
+ if( esign<0 ){
+ result = 0.0*s;
+ }else{
+#ifdef INFINITY
+ result = INFINITY*s;
+#else
+ result = 1e308*1e308*s; /* Infinity */
+#endif
+ }
+ }
+ }else{
+ LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
+ if( esign<0 ){
+ result = s / scale;
+ }else{
+ result = s * scale;
+ }
+ }
+ }
+ }
+
+ /* store the result */
+ *pResult = result;
+
+ /* return true if number and no extra non-whitespace chracters after */
+ if( z==zEnd && nDigit>0 && eValid && eType>0 ){
+ return eType;
+ }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
+ return -1;
+ }else{
+ return 0;
+ }
+#else
+ return !sqlite3Atoi64(z, pResult, length, enc);
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+}
+#if defined(_MSC_VER)
+#pragma warning(default : 4756)
+#endif
+
+/*
+** Render an signed 64-bit integer as text. Store the result in zOut[].
+**
+** The caller must ensure that zOut[] is at least 21 bytes in size.
+*/
+SQLITE_PRIVATE void sqlite3Int64ToText(i64 v, char *zOut){
+ int i;
+ u64 x;
+ char zTemp[22];
+ if( v<0 ){
+ x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
+ }else{
+ x = v;
+ }
+ i = sizeof(zTemp)-2;
+ zTemp[sizeof(zTemp)-1] = 0;
+ do{
+ zTemp[i--] = (x%10) + '0';
+ x = x/10;
+ }while( x );
+ if( v<0 ) zTemp[i--] = '-';
+ memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
+}
+
+/*
+** Compare the 19-character string zNum against the text representation
+** value 2^63: 9223372036854775808. Return negative, zero, or positive
+** if zNum is less than, equal to, or greater than the string.
+** Note that zNum must contain exactly 19 characters.
+**
+** Unlike memcmp() this routine is guaranteed to return the difference
+** in the values of the last digit if the only difference is in the
+** last digit. So, for example,
+**
+** compare2pow63("9223372036854775800", 1)
+**
+** will return -8.
+*/
+static int compare2pow63(const char *zNum, int incr){
+ int c = 0;
+ int i;
+ /* 012345678901234567 */
+ const char *pow63 = "922337203685477580";
+ for(i=0; c==0 && i<18; i++){
+ c = (zNum[i*incr]-pow63[i])*10;
+ }
+ if( c==0 ){
+ c = zNum[18*incr] - '8';
+ testcase( c==(-1) );
+ testcase( c==0 );
+ testcase( c==(+1) );
+ }
+ return c;
+}
+
+/*
+** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
+** routine does *not* accept hexadecimal notation.
+**
+** Returns:
+**
+** -1 Not even a prefix of the input text looks like an integer
+** 0 Successful transformation. Fits in a 64-bit signed integer.
+** 1 Excess non-space text after the integer value
+** 2 Integer too large for a 64-bit signed integer or is malformed
+** 3 Special case of 9223372036854775808
+**
+** length is the number of bytes in the string (bytes, not characters).
+** The string is not necessarily zero-terminated. The encoding is
+** given by enc.
+*/
+SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
+ int incr;
+ u64 u = 0;
+ int neg = 0; /* assume positive */
+ int i;
+ int c = 0;
+ int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
+ int rc; /* Baseline return code */
+ const char *zStart;
+ const char *zEnd = zNum + length;
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ if( enc==SQLITE_UTF8 ){
+ incr = 1;
+ }else{
+ incr = 2;
+ length &= ~1;
+ assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ for(i=3-enc; i<length && zNum[i]==0; i+=2){}
+ nonNum = i<length;
+ zEnd = &zNum[i^1];
+ zNum += (enc&1);
+ }
+ while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
+ if( zNum<zEnd ){
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum+=incr;
+ }else if( *zNum=='+' ){
+ zNum+=incr;
+ }
+ }
+ zStart = zNum;
+ while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
+ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
+ u = u*10 + c - '0';
+ }
+ testcase( i==18*incr );
+ testcase( i==19*incr );
+ testcase( i==20*incr );
+ if( u>LARGEST_INT64 ){
+ /* This test and assignment is needed only to suppress UB warnings
+ ** from clang and -fsanitize=undefined. This test and assignment make
+ ** the code a little larger and slower, and no harm comes from omitting
+ ** them, but we must appaise the undefined-behavior pharisees. */
+ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
+ }else if( neg ){
+ *pNum = -(i64)u;
+ }else{
+ *pNum = (i64)u;
+ }
+ rc = 0;
+ if( i==0 && zStart==zNum ){ /* No digits */
+ rc = -1;
+ }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
+ rc = 1;
+ }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
+ int jj = i;
+ do{
+ if( !sqlite3Isspace(zNum[jj]) ){
+ rc = 1; /* Extra non-space text after the integer */
+ break;
+ }
+ jj += incr;
+ }while( &zNum[jj]<zEnd );
+ }
+ if( i<19*incr ){
+ /* Less than 19 digits, so we know that it fits in 64 bits */
+ assert( u<=LARGEST_INT64 );
+ return rc;
+ }else{
+ /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
+ c = i>19*incr ? 1 : compare2pow63(zNum, incr);
+ if( c<0 ){
+ /* zNum is less than 9223372036854775808 so it fits */
+ assert( u<=LARGEST_INT64 );
+ return rc;
+ }else{
+ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
+ if( c>0 ){
+ /* zNum is greater than 9223372036854775808 so it overflows */
+ return 2;
+ }else{
+ /* zNum is exactly 9223372036854775808. Fits if negative. The
+ ** special case 2 overflow if positive */
+ assert( u-1==LARGEST_INT64 );
+ return neg ? rc : 3;
+ }
+ }
+ }
+}
+
+/*
+** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
+** into a 64-bit signed integer. This routine accepts hexadecimal literals,
+** whereas sqlite3Atoi64() does not.
+**
+** Returns:
+**
+** 0 Successful transformation. Fits in a 64-bit signed integer.
+** 1 Excess text after the integer value
+** 2 Integer too large for a 64-bit signed integer or is malformed
+** 3 Special case of 9223372036854775808
+*/
+SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( z[0]=='0'
+ && (z[1]=='x' || z[1]=='X')
+ ){
+ u64 u = 0;
+ int i, k;
+ for(i=2; z[i]=='0'; i++){}
+ for(k=i; sqlite3Isxdigit(z[k]); k++){
+ u = u*16 + sqlite3HexToInt(z[k]);
+ }
+ memcpy(pOut, &u, 8);
+ return (z[k]==0 && k-i<=16) ? 0 : 2;
+ }else
+#endif /* SQLITE_OMIT_HEX_INTEGER */
+ {
+ return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
+ }
+}
+
+/*
+** If zNum represents an integer that will fit in 32-bits, then set
+** *pValue to that integer and return true. Otherwise return false.
+**
+** This routine accepts both decimal and hexadecimal notation for integers.
+**
+** Any non-numeric characters that following zNum are ignored.
+** This is different from sqlite3Atoi64() which requires the
+** input number to be zero-terminated.
+*/
+SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
+ sqlite_int64 v = 0;
+ int i, c;
+ int neg = 0;
+ if( zNum[0]=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( zNum[0]=='+' ){
+ zNum++;
+ }
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ else if( zNum[0]=='0'
+ && (zNum[1]=='x' || zNum[1]=='X')
+ && sqlite3Isxdigit(zNum[2])
+ ){
+ u32 u = 0;
+ zNum += 2;
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
+ u = u*16 + sqlite3HexToInt(zNum[i]);
+ }
+ if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
+ memcpy(pValue, &u, 4);
+ return 1;
+ }else{
+ return 0;
+ }
+ }
+#endif
+ if( !sqlite3Isdigit(zNum[0]) ) return 0;
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
+ v = v*10 + c;
+ }
+
+ /* The longest decimal representation of a 32 bit integer is 10 digits:
+ **
+ ** 1234567890
+ ** 2^31 -> 2147483648
+ */
+ testcase( i==10 );
+ if( i>10 ){
+ return 0;
+ }
+ testcase( v-neg==2147483647 );
+ if( v-neg>2147483647 ){
+ return 0;
+ }
+ if( neg ){
+ v = -v;
+ }
+ *pValue = (int)v;
+ return 1;
+}
+
+/*
+** Return a 32-bit integer value extracted from a string. If the
+** string is not an integer, just return 0.
+*/
+SQLITE_PRIVATE int sqlite3Atoi(const char *z){
+ int x = 0;
+ sqlite3GetInt32(z, &x);
+ return x;
+}
+
+/*
+** Try to convert z into an unsigned 32-bit integer. Return true on
+** success and false if there is an error.
+**
+** Only decimal notation is accepted.
+*/
+SQLITE_PRIVATE int sqlite3GetUInt32(const char *z, u32 *pI){
+ u64 v = 0;
+ int i;
+ for(i=0; sqlite3Isdigit(z[i]); i++){
+ v = v*10 + z[i] - '0';
+ if( v>4294967296LL ){ *pI = 0; return 0; }
+ }
+ if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
+ *pI = (u32)v;
+ return 1;
+}
+
+/*
+** The variable-length integer encoding is as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+** C = xxxxxxxx 8 bits of data
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** 28 bits - BBBA
+** 35 bits - BBBBA
+** 42 bits - BBBBBA
+** 49 bits - BBBBBBA
+** 56 bits - BBBBBBBA
+** 64 bits - BBBBBBBBC
+*/
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data write will be between 1 and 9 bytes. The number
+** of bytes written is returned.
+**
+** A variable-length integer consists of the lower 7 bits of each byte
+** for all bytes that have the 8th bit set and one byte with the 8th
+** bit clear. Except, if we get to the 9th byte, it stores the full
+** 8 bits and is the last byte.
+*/
+static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
+ int i, j, n;
+ u8 buf[10];
+ if( v & (((u64)0xff000000)<<32) ){
+ p[8] = (u8)v;
+ v >>= 8;
+ for(i=7; i>=0; i--){
+ p[i] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }
+ return 9;
+ }
+ n = 0;
+ do{
+ buf[n++] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }while( v!=0 );
+ buf[0] &= 0x7f;
+ assert( n<=9 );
+ for(i=0, j=n-1; j>=0; j--, i++){
+ p[i] = buf[j];
+ }
+ return n;
+}
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
+ if( v<=0x7f ){
+ p[0] = v&0x7f;
+ return 1;
+ }
+ if( v<=0x3fff ){
+ p[0] = ((v>>7)&0x7f)|0x80;
+ p[1] = v&0x7f;
+ return 2;
+ }
+ return putVarint64(p,v);
+}
+
+/*
+** Bitmasks used by sqlite3GetVarint(). These precomputed constants
+** are defined here rather than simply putting the constant expressions
+** inline in order to work around bugs in the RVT compiler.
+**
+** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
+**
+** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
+*/
+#define SLOT_2_0 0x001fc07f
+#define SLOT_4_2_0 0xf01fc07f
+
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+*/
+SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ if( ((signed char*)p)[0]>=0 ){
+ *v = *p;
+ return 1;
+ }
+ if( ((signed char*)p)[1]>=0 ){
+ *v = ((u32)(p[0]&0x7f)<<7) | p[1];
+ return 2;
+ }
+
+ /* Verify that constants are precomputed correctly */
+ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
+ assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
+
+ a = ((u32)p[0])<<14;
+ b = p[1];
+ p += 2;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_2_0;
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
+ return 3;
+ }
+
+ /* CSE1 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_2_0;
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 4;
+ }
+
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ b &= SLOT_2_0;
+ s = a;
+ /* s: p0<<14 | p2 (masked) */
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above
+ ** while calculating s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ a &= SLOT_2_0;
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_4_2_0;
+ b &= SLOT_2_0;
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_4_2_0;
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
+
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
+ b &= SLOT_2_0;
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
+}
+
+/*
+** Read a 32-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+**
+** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
+** integer, then set *v to 0xffffffff.
+**
+** A MACRO version, getVarint32, is provided which inlines the
+** single-byte case. All code should use the MACRO version as
+** this function assumes the single-byte case has already been handled.
+*/
+SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
+ u32 a,b;
+
+ /* The 1-byte case. Overwhelmingly the most common. Handled inline
+ ** by the getVarin32() macro */
+ a = *p;
+ /* a: p0 (unmasked) */
+#ifndef getVarint32
+ if (!(a&0x80))
+ {
+ /* Values between 0 and 127 */
+ *v = a;
+ return 1;
+ }
+#endif
+
+ /* The 2-byte case */
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 128 and 16383 */
+ a &= 0x7f;
+ a = a<<7;
+ *v = a | b;
+ return 2;
+ }
+
+ /* The 3-byte case */
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 16384 and 2097151 */
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ *v = a | b;
+ return 3;
+ }
+
+ /* A 32-bit varint is used to store size information in btrees.
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
+ ** A 3-byte varint is sufficient, for example, to record the size
+ ** of a 1048569-byte BLOB or string.
+ **
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very
+ ** rare larger cases can be handled by the slower 64-bit varint
+ ** routine.
+ */
+#if 1
+ {
+ u64 v64;
+ u8 n;
+
+ n = sqlite3GetVarint(p-2, &v64);
+ assert( n>3 && n<=9 );
+ if( (v64 & SQLITE_MAX_U32)!=v64 ){
+ *v = 0xffffffff;
+ }else{
+ *v = (u32)v64;
+ }
+ return n;
+ }
+
+#else
+ /* For following code (kept for historical record only) shows an
+ ** unrolling for the 3- and 4-byte varint cases. This code is
+ ** slightly faster, but it is also larger and much harder to test.
+ */
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 2097152 and 268435455 */
+ b &= (0x7f<<14)|(0x7f);
+ a &= (0x7f<<14)|(0x7f);
+ a = a<<7;
+ *v = a | b;
+ return 4;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 268435456 and 34359738367 */
+ a &= SLOT_4_2_0;
+ b &= SLOT_4_2_0;
+ b = b<<7;
+ *v = a | b;
+ return 5;
+ }
+
+ /* We can only reach this point when reading a corrupt database
+ ** file. In that case we are not in any hurry. Use the (relatively
+ ** slow) general-purpose sqlite3GetVarint() routine to extract the
+ ** value. */
+ {
+ u64 v64;
+ u8 n;
+
+ p -= 4;
+ n = sqlite3GetVarint(p, &v64);
+ assert( n>5 && n<=9 );
+ *v = (u32)v64;
+ return n;
+ }
+#endif
+}
+
+/*
+** Return the number of bytes that will be needed to store the given
+** 64-bit integer.
+*/
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
+ int i;
+ for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
+ return i;
+}
+
+
+/*
+** Read or write a four-byte big-endian integer value.
+*/
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
+#if SQLITE_BYTEORDER==4321
+ u32 x;
+ memcpy(&x,p,4);
+ return x;
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ u32 x;
+ memcpy(&x,p,4);
+ return __builtin_bswap32(x);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ u32 x;
+ memcpy(&x,p,4);
+ return _byteswap_ulong(x);
+#else
+ testcase( p[0]&0x80 );
+ return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
+#endif
+}
+SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
+#if SQLITE_BYTEORDER==4321
+ memcpy(p,&v,4);
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ u32 x = __builtin_bswap32(v);
+ memcpy(p,&x,4);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ u32 x = _byteswap_ulong(v);
+ memcpy(p,&x,4);
+#else
+ p[0] = (u8)(v>>24);
+ p[1] = (u8)(v>>16);
+ p[2] = (u8)(v>>8);
+ p[3] = (u8)v;
+#endif
+}
+
+
+
+/*
+** Translate a single byte of Hex into an integer.
+** This routine only works if h really is a valid hexadecimal
+** character: 0..9a..fA..F
+*/
+SQLITE_PRIVATE u8 sqlite3HexToInt(int h){
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
+#ifdef SQLITE_ASCII
+ h += 9*(1&(h>>6));
+#endif
+#ifdef SQLITE_EBCDIC
+ h += 9*(1&~(h>>4));
+#endif
+ return (u8)(h & 0xf);
+}
+
+/* BEGIN SQLCIPHER */
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
+/*
+** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
+** value. Return a pointer to its binary value. Space to hold the
+** binary value has been obtained from malloc and must be freed by
+** the calling routine.
+*/
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
+ char *zBlob;
+ int i;
+
+ zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
+ n--;
+ if( zBlob ){
+ for(i=0; i<n; i+=2){
+ zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
+ }
+ zBlob[i/2] = 0;
+ }
+ return zBlob;
+}
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
+/* END SQLCIPHER */
+
+/*
+** Log an error that is an API call on a connection pointer that should
+** not have been used. The "type" of connection pointer is given as the
+** argument. The zType is a word like "NULL" or "closed" or "invalid".
+*/
+static void logBadConnection(const char *zType){
+ sqlite3_log(SQLITE_MISUSE,
+ "API call with %s database connection pointer",
+ zType
+ );
+}
+
+/*
+** Check to make sure we have a valid db pointer. This test is not
+** foolproof but it does provide some measure of protection against
+** misuse of the interface such as passing in db pointers that are
+** NULL or which have been previously closed. If this routine returns
+** 1 it means that the db pointer is valid and 0 if it should not be
+** dereferenced for any reason. The calling function should invoke
+** SQLITE_MISUSE immediately.
+**
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
+** open properly and is not fit for general use but which can be
+** used as an argument to sqlite3_errmsg() or sqlite3_close().
+*/
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
+ u8 eOpenState;
+ if( db==0 ){
+ logBadConnection("NULL");
+ return 0;
+ }
+ eOpenState = db->eOpenState;
+ if( eOpenState!=SQLITE_STATE_OPEN ){
+ if( sqlite3SafetyCheckSickOrOk(db) ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ logBadConnection("unopened");
+ }
+ return 0;
+ }else{
+ return 1;
+ }
+}
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
+ u8 eOpenState;
+ eOpenState = db->eOpenState;
+ if( eOpenState!=SQLITE_STATE_SICK &&
+ eOpenState!=SQLITE_STATE_OPEN &&
+ eOpenState!=SQLITE_STATE_BUSY ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ logBadConnection("invalid");
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Attempt to add, substract, or multiply the 64-bit signed value iB against
+** the other 64-bit signed integer at *pA and store the result in *pA.
+** Return 0 on success. Or if the operation would have resulted in an
+** overflow, leave *pA unchanged and return 1.
+*/
+SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){
+#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
+ return __builtin_add_overflow(*pA, iB, pA);
+#else
+ i64 iA = *pA;
+ testcase( iA==0 ); testcase( iA==1 );
+ testcase( iB==-1 ); testcase( iB==0 );
+ if( iB>=0 ){
+ testcase( iA>0 && LARGEST_INT64 - iA == iB );
+ testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
+ if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
+ }else{
+ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
+ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
+ if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
+ }
+ *pA += iB;
+ return 0;
+#endif
+}
+SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){
+#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
+ return __builtin_sub_overflow(*pA, iB, pA);
+#else
+ testcase( iB==SMALLEST_INT64+1 );
+ if( iB==SMALLEST_INT64 ){
+ testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
+ if( (*pA)>=0 ) return 1;
+ *pA -= iB;
+ return 0;
+ }else{
+ return sqlite3AddInt64(pA, -iB);
+ }
+#endif
+}
+SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){
+#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
+ return __builtin_mul_overflow(*pA, iB, pA);
+#else
+ i64 iA = *pA;
+ if( iB>0 ){
+ if( iA>LARGEST_INT64/iB ) return 1;
+ if( iA<SMALLEST_INT64/iB ) return 1;
+ }else if( iB<0 ){
+ if( iA>0 ){
+ if( iB<SMALLEST_INT64/iA ) return 1;
+ }else if( iA<0 ){
+ if( iB==SMALLEST_INT64 ) return 1;
+ if( iA==SMALLEST_INT64 ) return 1;
+ if( -iA>LARGEST_INT64/-iB ) return 1;
+ }
+ }
+ *pA = iA*iB;
+ return 0;
+#endif
+}
+
+/*
+** Compute the absolute value of a 32-bit signed integer, of possible. Or
+** if the integer has a value of -2147483648, return +2147483647
+*/
+SQLITE_PRIVATE int sqlite3AbsInt32(int x){
+ if( x>=0 ) return x;
+ if( x==(int)0x80000000 ) return 0x7fffffff;
+ return -x;
+}
+
+#ifdef SQLITE_ENABLE_8_3_NAMES
+/*
+** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
+** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
+** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
+** three characters, then shorten the suffix on z[] to be the last three
+** characters of the original suffix.
+**
+** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
+** do the suffix shortening regardless of URI parameter.
+**
+** Examples:
+**
+** test.db-journal => test.nal
+** test.db-wal => test.wal
+** test.db-shm => test.shm
+** test.db-mj7f3319fa => test.9fa
+*/
+SQLITE_PRIVATE void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
+#if SQLITE_ENABLE_8_3_NAMES<2
+ if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
+#endif
+ {
+ int i, sz;
+ sz = sqlite3Strlen30(z);
+ for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
+ if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
+ }
+}
+#endif
+
+/*
+** Find (an approximate) sum of two LogEst values. This computation is
+** not a simple "+" operator because LogEst is stored as a logarithmic
+** value.
+**
+*/
+SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
+ static const unsigned char x[] = {
+ 10, 10, /* 0,1 */
+ 9, 9, /* 2,3 */
+ 8, 8, /* 4,5 */
+ 7, 7, 7, /* 6,7,8 */
+ 6, 6, 6, /* 9,10,11 */
+ 5, 5, 5, /* 12-14 */
+ 4, 4, 4, 4, /* 15-18 */
+ 3, 3, 3, 3, 3, 3, /* 19-24 */
+ 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
+ };
+ if( a>=b ){
+ if( a>b+49 ) return a;
+ if( a>b+31 ) return a+1;
+ return a+x[a-b];
+ }else{
+ if( b>a+49 ) return b;
+ if( b>a+31 ) return b+1;
+ return b+x[b-a];
+ }
+}
+
+/*
+** Convert an integer into a LogEst. In other words, compute an
+** approximation for 10*log2(x).
+*/
+SQLITE_PRIVATE LogEst sqlite3LogEst(u64 x){
+ static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
+ LogEst y = 40;
+ if( x<8 ){
+ if( x<2 ) return 0;
+ while( x<8 ){ y -= 10; x <<= 1; }
+ }else{
+#if GCC_VERSION>=5004000
+ int i = 60 - __builtin_clzll(x);
+ y += i*10;
+ x >>= i;
+#else
+ while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
+ while( x>15 ){ y += 10; x >>= 1; }
+#endif
+ }
+ return a[x&7] + y - 10;
+}
+
+/*
+** Convert a double into a LogEst
+** In other words, compute an approximation for 10*log2(x).
+*/
+SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double x){
+ u64 a;
+ LogEst e;
+ assert( sizeof(x)==8 && sizeof(a)==8 );
+ if( x<=1 ) return 0;
+ if( x<=2000000000 ) return sqlite3LogEst((u64)x);
+ memcpy(&a, &x, 8);
+ e = (a>>52) - 1022;
+ return e*10;
+}
+
+/*
+** Convert a LogEst into an integer.
+*/
+SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst x){
+ u64 n;
+ n = x%10;
+ x /= 10;
+ if( n>=5 ) n -= 2;
+ else if( n>=1 ) n -= 1;
+ if( x>60 ) return (u64)LARGEST_INT64;
+ return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
+}
+
+/*
+** Add a new name/number pair to a VList. This might require that the
+** VList object be reallocated, so return the new VList. If an OOM
+** error occurs, the original VList returned and the
+** db->mallocFailed flag is set.
+**
+** A VList is really just an array of integers. To destroy a VList,
+** simply pass it to sqlite3DbFree().
+**
+** The first integer is the number of integers allocated for the whole
+** VList. The second integer is the number of integers actually used.
+** Each name/number pair is encoded by subsequent groups of 3 or more
+** integers.
+**
+** Each name/number pair starts with two integers which are the numeric
+** value for the pair and the size of the name/number pair, respectively.
+** The text name overlays one or more following integers. The text name
+** is always zero-terminated.
+**
+** Conceptually:
+**
+** struct VList {
+** int nAlloc; // Number of allocated slots
+** int nUsed; // Number of used slots
+** struct VListEntry {
+** int iValue; // Value for this entry
+** int nSlot; // Slots used by this entry
+** // ... variable name goes here
+** } a[0];
+** }
+**
+** During code generation, pointers to the variable names within the
+** VList are taken. When that happens, nAlloc is set to zero as an
+** indication that the VList may never again be enlarged, since the
+** accompanying realloc() would invalidate the pointers.
+*/
+SQLITE_PRIVATE VList *sqlite3VListAdd(
+ sqlite3 *db, /* The database connection used for malloc() */
+ VList *pIn, /* The input VList. Might be NULL */
+ const char *zName, /* Name of symbol to add */
+ int nName, /* Bytes of text in zName */
+ int iVal /* Value to associate with zName */
+){
+ int nInt; /* number of sizeof(int) objects needed for zName */
+ char *z; /* Pointer to where zName will be stored */
+ int i; /* Index in pIn[] where zName is stored */
+
+ nInt = nName/4 + 3;
+ assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
+ if( pIn==0 || pIn[1]+nInt > pIn[0] ){
+ /* Enlarge the allocation */
+ sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
+ VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
+ if( pOut==0 ) return pIn;
+ if( pIn==0 ) pOut[1] = 2;
+ pIn = pOut;
+ pIn[0] = nAlloc;
+ }
+ i = pIn[1];
+ pIn[i] = iVal;
+ pIn[i+1] = nInt;
+ z = (char*)&pIn[i+2];
+ pIn[1] = i+nInt;
+ assert( pIn[1]<=pIn[0] );
+ memcpy(z, zName, nName);
+ z[nName] = 0;
+ return pIn;
+}
+
+/*
+** Return a pointer to the name of a variable in the given VList that
+** has the value iVal. Or return a NULL if there is no such variable in
+** the list
+*/
+SQLITE_PRIVATE const char *sqlite3VListNumToName(VList *pIn, int iVal){
+ int i, mx;
+ if( pIn==0 ) return 0;
+ mx = pIn[1];
+ i = 2;
+ do{
+ if( pIn[i]==iVal ) return (char*)&pIn[i+2];
+ i += pIn[i+1];
+ }while( i<mx );
+ return 0;
+}
+
+/*
+** Return the number of the variable named zName, if it is in VList.
+** or return 0 if there is no such variable.
+*/
+SQLITE_PRIVATE int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
+ int i, mx;
+ if( pIn==0 ) return 0;
+ mx = pIn[1];
+ i = 2;
+ do{
+ const char *z = (const char*)&pIn[i+2];
+ if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
+ i += pIn[i+1];
+ }while( i<mx );
+ return 0;
+}
+
+/************** End of util.c ************************************************/
+/************** Begin file hash.c ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables
+** used in SQLite.
+*/
+/* #include "sqliteInt.h" */
+/* #include <assert.h> */
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){
+ assert( pNew!=0 );
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
+ HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ sqlite3_free(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ HashElem *next_elem = elem->next;
+ sqlite3_free(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** The hashing function.
+*/
+static unsigned int strHash(const char *z){
+ unsigned int h = 0;
+ unsigned char c;
+ while( (c = (unsigned char)*z++)!=0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Knuth multiplicative hashing. (Sorting & Searching, p. 510).
+ ** 0x9e3779b1 is 2654435761 which is the closest prime number to
+ ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */
+ h += sqlite3UpperToLower[c];
+ h *= 0x9e3779b1;
+ }
+ return h;
+}
+
+
+/* Link pNew element into the hash table pH. If pEntry!=0 then also
+** insert pNew into the pEntry hash bucket.
+*/
+static void insertElement(
+ Hash *pH, /* The complete hash table */
+ struct _ht *pEntry, /* The entry into which pNew is inserted */
+ HashElem *pNew /* The element to be inserted */
+){
+ HashElem *pHead; /* First element already in pEntry */
+ if( pEntry ){
+ pHead = pEntry->count ? pEntry->chain : 0;
+ pEntry->count++;
+ pEntry->chain = pNew;
+ }else{
+ pHead = 0;
+ }
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+**
+** The hash table might fail to resize if sqlite3_malloc() fails or
+** if the new size is the same as the prior size.
+** Return TRUE if the resize occurs and false if not.
+*/
+static int rehash(Hash *pH, unsigned int new_size){
+ struct _ht *new_ht; /* The new hash table */
+ HashElem *elem, *next_elem; /* For looping over existing elements */
+
+#if SQLITE_MALLOC_SOFT_LIMIT>0
+ if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
+ new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
+ }
+ if( new_size==pH->htsize ) return 0;
+#endif
+
+ /* The inability to allocates space for a larger hash table is
+ ** a performance hit but it is not a fatal error. So mark the
+ ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of
+ ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero()
+ ** only zeroes the requested number of bytes whereas this module will
+ ** use the actual amount of space allocated for the hash table (which
+ ** may be larger than the requested amount).
+ */
+ sqlite3BeginBenignMalloc();
+ new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
+ sqlite3EndBenignMalloc();
+
+ if( new_ht==0 ) return 0;
+ sqlite3_free(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht);
+ memset(new_ht, 0, new_size*sizeof(struct _ht));
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ unsigned int h = strHash(elem->pKey) % new_size;
+ next_elem = elem->next;
+ insertElement(pH, &new_ht[h], elem);
+ }
+ return 1;
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. If no element is found,
+** a pointer to a static null element with HashElem.data==0 is returned.
+** If pH is not NULL, then the hash for this key is written to *pH.
+*/
+static HashElem *findElementWithHash(
+ const Hash *pH, /* The pH to be searched */
+ const char *pKey, /* The key we are searching for */
+ unsigned int *pHash /* Write the hash value here */
+){
+ HashElem *elem; /* Used to loop thru the element list */
+ unsigned int count; /* Number of elements left to test */
+ unsigned int h; /* The computed hash */
+ static HashElem nullElement = { 0, 0, 0, 0 };
+
+ if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/
+ struct _ht *pEntry;
+ h = strHash(pKey) % pH->htsize;
+ pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ }else{
+ h = 0;
+ elem = pH->first;
+ count = pH->count;
+ }
+ if( pHash ) *pHash = h;
+ while( count-- ){
+ assert( elem!=0 );
+ if( sqlite3StrICmp(elem->pKey,pKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ return &nullElement;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void removeElementGivenHash(
+ Hash *pH, /* The pH containing "elem" */
+ HashElem* elem, /* The element to be removed from the pH */
+ unsigned int h /* Hash value for the element */
+){
+ struct _ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ if( pH->ht ){
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ assert( pEntry->count>0 );
+ pEntry->count--;
+ }
+ sqlite3_free( elem );
+ pH->count--;
+ if( pH->count==0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ sqlite3HashClear(pH);
+ }
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){
+ assert( pH!=0 );
+ assert( pKey!=0 );
+ return findElementWithHash(pH, pKey, 0)->data;
+}
+
+/* Insert an element into the hash table pH. The key is pKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created and NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){
+ unsigned int h; /* the hash of the key modulo hash table size */
+ HashElem *elem; /* Used to loop thru the element list */
+ HashElem *new_elem; /* New element added to the pH */
+
+ assert( pH!=0 );
+ assert( pKey!=0 );
+ elem = findElementWithHash(pH,pKey,&h);
+ if( elem->data ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ removeElementGivenHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ elem->pKey = pKey;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
+ if( new_elem==0 ) return data;
+ new_elem->pKey = pKey;
+ new_elem->data = data;
+ pH->count++;
+ if( pH->count>=10 && pH->count > 2*pH->htsize ){
+ if( rehash(pH, pH->count*2) ){
+ assert( pH->htsize>0 );
+ h = strHash(pKey) % pH->htsize;
+ }
+ }
+ insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem);
+ return 0;
+}
+
+/************** End of hash.c ************************************************/
+/************** Begin file opcodes.c *****************************************/
+/* Automatically generated. Do not edit */
+/* See the tool/mkopcodec.tcl script for details. */
+#if !defined(SQLITE_OMIT_EXPLAIN) \
+ || defined(VDBE_PROFILE) \
+ || defined(SQLITE_DEBUG)
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
+# define OpHelp(X) "\0" X
+#else
+# define OpHelp(X)
+#endif
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
+ static const char *const azName[] = {
+ /* 0 */ "Savepoint" OpHelp(""),
+ /* 1 */ "AutoCommit" OpHelp(""),
+ /* 2 */ "Transaction" OpHelp(""),
+ /* 3 */ "Checkpoint" OpHelp(""),
+ /* 4 */ "JournalMode" OpHelp(""),
+ /* 5 */ "Vacuum" OpHelp(""),
+ /* 6 */ "VFilter" OpHelp("iplan=r[P3] zplan='P4'"),
+ /* 7 */ "VUpdate" OpHelp("data=r[P3@P2]"),
+ /* 8 */ "Goto" OpHelp(""),
+ /* 9 */ "Gosub" OpHelp(""),
+ /* 10 */ "InitCoroutine" OpHelp(""),
+ /* 11 */ "Yield" OpHelp(""),
+ /* 12 */ "MustBeInt" OpHelp(""),
+ /* 13 */ "Jump" OpHelp(""),
+ /* 14 */ "Once" OpHelp(""),
+ /* 15 */ "If" OpHelp(""),
+ /* 16 */ "IfNot" OpHelp(""),
+ /* 17 */ "IsNullOrType" OpHelp("if typeof(r[P1]) IN (P3,5) goto P2"),
+ /* 18 */ "IfNullRow" OpHelp("if P1.nullRow then r[P3]=NULL, goto P2"),
+ /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"),
+ /* 20 */ "SeekLT" OpHelp("key=r[P3@P4]"),
+ /* 21 */ "SeekLE" OpHelp("key=r[P3@P4]"),
+ /* 22 */ "SeekGE" OpHelp("key=r[P3@P4]"),
+ /* 23 */ "SeekGT" OpHelp("key=r[P3@P4]"),
+ /* 24 */ "IfNotOpen" OpHelp("if( !csr[P1] ) goto P2"),
+ /* 25 */ "IfNoHope" OpHelp("key=r[P3@P4]"),
+ /* 26 */ "NoConflict" OpHelp("key=r[P3@P4]"),
+ /* 27 */ "NotFound" OpHelp("key=r[P3@P4]"),
+ /* 28 */ "Found" OpHelp("key=r[P3@P4]"),
+ /* 29 */ "SeekRowid" OpHelp("intkey=r[P3]"),
+ /* 30 */ "NotExists" OpHelp("intkey=r[P3]"),
+ /* 31 */ "Last" OpHelp(""),
+ /* 32 */ "IfSmaller" OpHelp(""),
+ /* 33 */ "SorterSort" OpHelp(""),
+ /* 34 */ "Sort" OpHelp(""),
+ /* 35 */ "Rewind" OpHelp(""),
+ /* 36 */ "SorterNext" OpHelp(""),
+ /* 37 */ "Prev" OpHelp(""),
+ /* 38 */ "Next" OpHelp(""),
+ /* 39 */ "IdxLE" OpHelp("key=r[P3@P4]"),
+ /* 40 */ "IdxGT" OpHelp("key=r[P3@P4]"),
+ /* 41 */ "IdxLT" OpHelp("key=r[P3@P4]"),
+ /* 42 */ "IdxGE" OpHelp("key=r[P3@P4]"),
+ /* 43 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"),
+ /* 44 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"),
+ /* 45 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"),
+ /* 46 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"),
+ /* 47 */ "Program" OpHelp(""),
+ /* 48 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"),
+ /* 49 */ "IfPos" OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
+ /* 50 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"),
+ /* 51 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"),
+ /* 52 */ "Ne" OpHelp("IF r[P3]!=r[P1]"),
+ /* 53 */ "Eq" OpHelp("IF r[P3]==r[P1]"),
+ /* 54 */ "Gt" OpHelp("IF r[P3]>r[P1]"),
+ /* 55 */ "Le" OpHelp("IF r[P3]<=r[P1]"),
+ /* 56 */ "Lt" OpHelp("IF r[P3]<r[P1]"),
+ /* 57 */ "Ge" OpHelp("IF r[P3]>=r[P1]"),
+ /* 58 */ "ElseEq" OpHelp(""),
+ /* 59 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]--, goto P2"),
+ /* 60 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"),
+ /* 61 */ "IncrVacuum" OpHelp(""),
+ /* 62 */ "VNext" OpHelp(""),
+ /* 63 */ "Filter" OpHelp("if key(P3@P4) not in filter(P1) goto P2"),
+ /* 64 */ "Init" OpHelp("Start at P2"),
+ /* 65 */ "PureFunc" OpHelp("r[P3]=func(r[P2@NP])"),
+ /* 66 */ "Function" OpHelp("r[P3]=func(r[P2@NP])"),
+ /* 67 */ "Return" OpHelp(""),
+ /* 68 */ "EndCoroutine" OpHelp(""),
+ /* 69 */ "HaltIfNull" OpHelp("if r[P3]=null halt"),
+ /* 70 */ "Halt" OpHelp(""),
+ /* 71 */ "Integer" OpHelp("r[P2]=P1"),
+ /* 72 */ "Int64" OpHelp("r[P2]=P4"),
+ /* 73 */ "String" OpHelp("r[P2]='P4' (len=P1)"),
+ /* 74 */ "BeginSubrtn" OpHelp("r[P2]=NULL"),
+ /* 75 */ "Null" OpHelp("r[P2..P3]=NULL"),
+ /* 76 */ "SoftNull" OpHelp("r[P1]=NULL"),
+ /* 77 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"),
+ /* 78 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"),
+ /* 79 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"),
+ /* 80 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
+ /* 81 */ "SCopy" OpHelp("r[P2]=r[P1]"),
+ /* 82 */ "IntCopy" OpHelp("r[P2]=r[P1]"),
+ /* 83 */ "FkCheck" OpHelp(""),
+ /* 84 */ "ResultRow" OpHelp("output=r[P1@P2]"),
+ /* 85 */ "CollSeq" OpHelp(""),
+ /* 86 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"),
+ /* 87 */ "RealAffinity" OpHelp(""),
+ /* 88 */ "Cast" OpHelp("affinity(r[P1])"),
+ /* 89 */ "Permutation" OpHelp(""),
+ /* 90 */ "Compare" OpHelp("r[P1@P3] <-> r[P2@P3]"),
+ /* 91 */ "IsTrue" OpHelp("r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4"),
+ /* 92 */ "ZeroOrNull" OpHelp("r[P2] = 0 OR NULL"),
+ /* 93 */ "Offset" OpHelp("r[P3] = sqlite_offset(P1)"),
+ /* 94 */ "Column" OpHelp("r[P3]=PX cursor P1 column P2"),
+ /* 95 */ "TypeCheck" OpHelp("typecheck(r[P1@P2])"),
+ /* 96 */ "Affinity" OpHelp("affinity(r[P1@P2])"),
+ /* 97 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"),
+ /* 98 */ "Count" OpHelp("r[P2]=count()"),
+ /* 99 */ "ReadCookie" OpHelp(""),
+ /* 100 */ "SetCookie" OpHelp(""),
+ /* 101 */ "ReopenIdx" OpHelp("root=P2 iDb=P3"),
+ /* 102 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"),
+ /* 103 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"),
+ /* 104 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<<r[P1]"),
+ /* 105 */ "ShiftRight" OpHelp("r[P3]=r[P2]>>r[P1]"),
+ /* 106 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"),
+ /* 107 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"),
+ /* 108 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"),
+ /* 109 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"),
+ /* 110 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"),
+ /* 111 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"),
+ /* 112 */ "OpenRead" OpHelp("root=P2 iDb=P3"),
+ /* 113 */ "OpenWrite" OpHelp("root=P2 iDb=P3"),
+ /* 114 */ "BitNot" OpHelp("r[P2]= ~r[P1]"),
+ /* 115 */ "OpenDup" OpHelp(""),
+ /* 116 */ "OpenAutoindex" OpHelp("nColumn=P2"),
+ /* 117 */ "String8" OpHelp("r[P2]='P4'"),
+ /* 118 */ "OpenEphemeral" OpHelp("nColumn=P2"),
+ /* 119 */ "SorterOpen" OpHelp(""),
+ /* 120 */ "SequenceTest" OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
+ /* 121 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"),
+ /* 122 */ "Close" OpHelp(""),
+ /* 123 */ "ColumnsUsed" OpHelp(""),
+ /* 124 */ "SeekScan" OpHelp("Scan-ahead up to P1 rows"),
+ /* 125 */ "SeekHit" OpHelp("set P2<=seekHit<=P3"),
+ /* 126 */ "Sequence" OpHelp("r[P2]=cursor[P1].ctr++"),
+ /* 127 */ "NewRowid" OpHelp("r[P2]=rowid"),
+ /* 128 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"),
+ /* 129 */ "RowCell" OpHelp(""),
+ /* 130 */ "Delete" OpHelp(""),
+ /* 131 */ "ResetCount" OpHelp(""),
+ /* 132 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
+ /* 133 */ "SorterData" OpHelp("r[P2]=data"),
+ /* 134 */ "RowData" OpHelp("r[P2]=data"),
+ /* 135 */ "Rowid" OpHelp("r[P2]=PX rowid of P1"),
+ /* 136 */ "NullRow" OpHelp(""),
+ /* 137 */ "SeekEnd" OpHelp(""),
+ /* 138 */ "IdxInsert" OpHelp("key=r[P2]"),
+ /* 139 */ "SorterInsert" OpHelp("key=r[P2]"),
+ /* 140 */ "IdxDelete" OpHelp("key=r[P2@P3]"),
+ /* 141 */ "DeferredSeek" OpHelp("Move P3 to P1.rowid if needed"),
+ /* 142 */ "IdxRowid" OpHelp("r[P2]=rowid"),
+ /* 143 */ "FinishSeek" OpHelp(""),
+ /* 144 */ "Destroy" OpHelp(""),
+ /* 145 */ "Clear" OpHelp(""),
+ /* 146 */ "ResetSorter" OpHelp(""),
+ /* 147 */ "CreateBtree" OpHelp("r[P2]=root iDb=P1 flags=P3"),
+ /* 148 */ "SqlExec" OpHelp(""),
+ /* 149 */ "ParseSchema" OpHelp(""),
+ /* 150 */ "LoadAnalysis" OpHelp(""),
+ /* 151 */ "DropTable" OpHelp(""),
+ /* 152 */ "DropIndex" OpHelp(""),
+ /* 153 */ "Real" OpHelp("r[P2]=P4"),
+ /* 154 */ "DropTrigger" OpHelp(""),
+ /* 155 */ "IntegrityCk" OpHelp(""),
+ /* 156 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"),
+ /* 157 */ "Param" OpHelp(""),
+ /* 158 */ "FkCounter" OpHelp("fkctr[P1]+=P2"),
+ /* 159 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"),
+ /* 160 */ "OffsetLimit" OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"),
+ /* 161 */ "AggInverse" OpHelp("accum=r[P3] inverse(r[P2@P5])"),
+ /* 162 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"),
+ /* 163 */ "AggStep1" OpHelp("accum=r[P3] step(r[P2@P5])"),
+ /* 164 */ "AggValue" OpHelp("r[P3]=value N=P2"),
+ /* 165 */ "AggFinal" OpHelp("accum=r[P1] N=P2"),
+ /* 166 */ "Expire" OpHelp(""),
+ /* 167 */ "CursorLock" OpHelp(""),
+ /* 168 */ "CursorUnlock" OpHelp(""),
+ /* 169 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"),
+ /* 170 */ "VBegin" OpHelp(""),
+ /* 171 */ "VCreate" OpHelp(""),
+ /* 172 */ "VDestroy" OpHelp(""),
+ /* 173 */ "VOpen" OpHelp(""),
+ /* 174 */ "VInitIn" OpHelp("r[P2]=ValueList(P1,P3)"),
+ /* 175 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"),
+ /* 176 */ "VRename" OpHelp(""),
+ /* 177 */ "Pagecount" OpHelp(""),
+ /* 178 */ "MaxPgcnt" OpHelp(""),
+ /* 179 */ "ClrSubtype" OpHelp("r[P1].subtype = 0"),
+ /* 180 */ "FilterAdd" OpHelp("filter(P1) += key(P3@P4)"),
+ /* 181 */ "Trace" OpHelp(""),
+ /* 182 */ "CursorHint" OpHelp(""),
+ /* 183 */ "ReleaseReg" OpHelp("release r[P1@P2] mask P3"),
+ /* 184 */ "Noop" OpHelp(""),
+ /* 185 */ "Explain" OpHelp(""),
+ /* 186 */ "Abortable" OpHelp(""),
+ };
+ return azName[i];
+}
+#endif
+
+/************** End of opcodes.c *********************************************/
+/************** Begin file os_unix.c *****************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains the VFS implementation for unix-like operating systems
+** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
+**
+** There are actually several different VFS implementations in this file.
+** The differences are in the way that file locking is done. The default
+** implementation uses Posix Advisory Locks. Alternative implementations
+** use flock(), dot-files, various proprietary locking schemas, or simply
+** skip locking all together.
+**
+** This source file is organized into divisions where the logic for various
+** subfunctions is contained within the appropriate division. PLEASE
+** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
+** in the correct division and should be clearly labeled.
+**
+** The layout of divisions is as follows:
+**
+** * General-purpose declarations and utility functions.
+** * Unique file ID logic used by VxWorks.
+** * Various locking primitive implementations (all except proxy locking):
+** + for Posix Advisory Locks
+** + for no-op locks
+** + for dot-file locks
+** + for flock() locking
+** + for named semaphore locks (VxWorks only)
+** + for AFP filesystem locks (MacOSX only)
+** * sqlite3_file methods not associated with locking.
+** * Definitions of sqlite3_io_methods objects for all locking
+** methods plus "finder" functions for each locking method.
+** * sqlite3_vfs method implementations.
+** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
+** * Definitions of sqlite3_vfs objects for all locking methods
+** plus implementations of sqlite3_os_init() and sqlite3_os_end().
+*/
+/* #include "sqliteInt.h" */
+#if SQLITE_OS_UNIX /* This file is used on unix only */
+
+/*
+** There are various methods for file locking used for concurrency
+** control:
+**
+** 1. POSIX locking (the default),
+** 2. No locking,
+** 3. Dot-file locking,
+** 4. flock() locking,
+** 5. AFP locking (OSX only),
+** 6. Named POSIX semaphores (VXWorks only),
+** 7. proxy locking. (OSX only)
+**
+** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
+** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
+** selection of the appropriate locking style based on the filesystem
+** where the database is located.
+*/
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
+# if defined(__APPLE__)
+# define SQLITE_ENABLE_LOCKING_STYLE 1
+# else
+# define SQLITE_ENABLE_LOCKING_STYLE 0
+# endif
+#endif
+
+/* Use pread() and pwrite() if they are available */
+#if defined(__APPLE__)
+# define HAVE_PREAD 1
+# define HAVE_PWRITE 1
+#endif
+#if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
+# undef USE_PREAD
+# define USE_PREAD64 1
+#elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
+# undef USE_PREAD64
+# define USE_PREAD 1
+#endif
+
+/*
+** standard include files.
+*/
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <sys/ioctl.h>
+#include <unistd.h>
+/* #include <time.h> */
+#include <sys/time.h>
+#include <errno.h>
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+# include <sys/mman.h>
+#endif
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+/* # include <sys/ioctl.h> */
+# include <sys/file.h>
+# include <sys/param.h>
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** Try to determine if gethostuuid() is available based on standard
+** macros. This might sometimes compute the wrong value for some
+** obscure platforms. For those cases, simply compile with one of
+** the following:
+**
+** -DHAVE_GETHOSTUUID=0
+** -DHAVE_GETHOSTUUID=1
+**
+** None if this matters except when building on Apple products with
+** -DSQLITE_ENABLE_LOCKING_STYLE.
+*/
+#ifndef HAVE_GETHOSTUUID
+# define HAVE_GETHOSTUUID 0
+# if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
+ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
+# if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
+ && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\
+ && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0))
+# undef HAVE_GETHOSTUUID
+# define HAVE_GETHOSTUUID 1
+# else
+# warning "gethostuuid() is disabled."
+# endif
+# endif
+#endif
+
+
+#if OS_VXWORKS
+/* # include <sys/ioctl.h> */
+# include <semaphore.h>
+# include <limits.h>
+#endif /* OS_VXWORKS */
+
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
+# include <sys/mount.h>
+#endif
+
+#ifdef HAVE_UTIME
+# include <utime.h>
+#endif
+
+/*
+** Allowed values of unixFile.fsFlags
+*/
+#define SQLITE_FSFLAGS_IS_MSDOS 0x1
+
+/*
+** If we are to be thread-safe, include the pthreads header.
+*/
+#if SQLITE_THREADSAFE
+/* # include <pthread.h> */
+#endif
+
+/*
+** Default permissions when creating a new file
+*/
+#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
+# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
+#endif
+
+/*
+** Default permissions when creating auto proxy dir
+*/
+#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
+#endif
+
+/*
+** Maximum supported path-length.
+*/
+#define MAX_PATHNAME 512
+
+/*
+** Maximum supported symbolic links
+*/
+#define SQLITE_MAX_SYMLINKS 100
+
+/* Always cast the getpid() return type for compatibility with
+** kernel modules in VxWorks. */
+#define osGetpid(X) (pid_t)getpid()
+
+/*
+** Only set the lastErrno if the error code is a real error and not
+** a normal expected return code of SQLITE_BUSY or SQLITE_OK
+*/
+#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
+
+/* Forward references */
+typedef struct unixShm unixShm; /* Connection shared memory */
+typedef struct unixShmNode unixShmNode; /* Shared memory instance */
+typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
+typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
+
+/*
+** Sometimes, after a file handle is closed by SQLite, the file descriptor
+** cannot be closed immediately. In these cases, instances of the following
+** structure are used to store the file descriptor while waiting for an
+** opportunity to either close or reuse it.
+*/
+struct UnixUnusedFd {
+ int fd; /* File descriptor to close */
+ int flags; /* Flags this file descriptor was opened with */
+ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
+};
+
+/*
+** The unixFile structure is subclass of sqlite3_file specific to the unix
+** VFS implementations.
+*/
+typedef struct unixFile unixFile;
+struct unixFile {
+ sqlite3_io_methods const *pMethod; /* Always the first entry */
+ sqlite3_vfs *pVfs; /* The VFS that created this unixFile */
+ unixInodeInfo *pInode; /* Info about locks on this inode */
+ int h; /* The file descriptor */
+ unsigned char eFileLock; /* The type of lock held on this fd */
+ unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
+ int lastErrno; /* The unix errno from last I/O error */
+ void *lockingContext; /* Locking style specific state */
+ UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */
+ const char *zPath; /* Name of the file */
+ unixShm *pShm; /* Shared memory segment information */
+ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
+#if SQLITE_MAX_MMAP_SIZE>0
+ int nFetchOut; /* Number of outstanding xFetch refs */
+ sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */
+ sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */
+ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
+ void *pMapRegion; /* Memory mapped region */
+#endif
+ int sectorSize; /* Device sector size */
+ int deviceCharacteristics; /* Precomputed device characteristics */
+#if SQLITE_ENABLE_LOCKING_STYLE
+ int openFlags; /* The flags specified at open() */
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
+ unsigned fsFlags; /* cached details from statfs() */
+#endif
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ unsigned iBusyTimeout; /* Wait this many millisec on locks */
+#endif
+#if OS_VXWORKS
+ struct vxworksFileId *pId; /* Unique file ID */
+#endif
+#ifdef SQLITE_DEBUG
+ /* The next group of variables are used to track whether or not the
+ ** transaction counter in bytes 24-27 of database files are updated
+ ** whenever any part of the database changes. An assertion fault will
+ ** occur if a file is updated without also updating the transaction
+ ** counter. This test is made to avoid new problems similar to the
+ ** one described by ticket #3584.
+ */
+ unsigned char transCntrChng; /* True if the transaction counter changed */
+ unsigned char dbUpdate; /* True if any part of database file changed */
+ unsigned char inNormalWrite; /* True if in a normal write operation */
+
+#endif
+
+#ifdef SQLITE_TEST
+ /* In test mode, increase the size of this structure a bit so that
+ ** it is larger than the struct CrashFile defined in test6.c.
+ */
+ char aPadding[32];
+#endif
+};
+
+/* This variable holds the process id (pid) from when the xRandomness()
+** method was called. If xOpen() is called from a different process id,
+** indicating that a fork() has occurred, the PRNG will be reset.
+*/
+static pid_t randomnessPid = 0;
+
+/*
+** Allowed values for the unixFile.ctrlFlags bitmask:
+*/
+#define UNIXFILE_EXCL 0x01 /* Connections from one process only */
+#define UNIXFILE_RDONLY 0x02 /* Connection is read only */
+#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
+#ifndef SQLITE_DISABLE_DIRSYNC
+# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
+#else
+# define UNIXFILE_DIRSYNC 0x00
+#endif
+#define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
+#define UNIXFILE_DELETE 0x20 /* Delete on close */
+#define UNIXFILE_URI 0x40 /* Filename might have query parameters */
+#define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/* #include "os_common.h" */
+
+/*
+** Define various macros that are missing from some systems.
+*/
+#ifndef O_LARGEFILE
+# define O_LARGEFILE 0
+#endif
+#ifdef SQLITE_DISABLE_LFS
+# undef O_LARGEFILE
+# define O_LARGEFILE 0
+#endif
+#ifndef O_NOFOLLOW
+# define O_NOFOLLOW 0
+#endif
+#ifndef O_BINARY
+# define O_BINARY 0
+#endif
+
+/*
+** The threadid macro resolves to the thread-id or to 0. Used for
+** testing and debugging only.
+*/
+#if SQLITE_THREADSAFE
+#define threadid pthread_self()
+#else
+#define threadid 0
+#endif
+
+/*
+** HAVE_MREMAP defaults to true on Linux and false everywhere else.
+*/
+#if !defined(HAVE_MREMAP)
+# if defined(__linux__) && defined(_GNU_SOURCE)
+# define HAVE_MREMAP 1
+# else
+# define HAVE_MREMAP 0
+# endif
+#endif
+
+/*
+** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
+** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
+*/
+#ifdef __ANDROID__
+# define lseek lseek64
+#endif
+
+#ifdef __linux__
+/*
+** Linux-specific IOCTL magic numbers used for controlling F2FS
+*/
+#define F2FS_IOCTL_MAGIC 0xf5
+#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
+#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
+#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
+#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
+#define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32)
+#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
+#endif /* __linux__ */
+
+
+/*
+** Different Unix systems declare open() in different ways. Same use
+** open(const char*,int,mode_t). Others use open(const char*,int,...).
+** The difference is important when using a pointer to the function.
+**
+** The safest way to deal with the problem is to always use this wrapper
+** which always has the same well-defined interface.
+*/
+static int posixOpen(const char *zFile, int flags, int mode){
+ return open(zFile, flags, mode);
+}
+
+/* Forward reference */
+static int openDirectory(const char*, int*);
+static int unixGetpagesize(void);
+
+/*
+** Many system calls are accessed through pointer-to-functions so that
+** they may be overridden at runtime to facilitate fault injection during
+** testing and sandboxing. The following array holds the names and pointers
+** to all overrideable system calls.
+*/
+static struct unix_syscall {
+ const char *zName; /* Name of the system call */
+ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
+ sqlite3_syscall_ptr pDefault; /* Default value */
+} aSyscall[] = {
+ { "open", (sqlite3_syscall_ptr)posixOpen, 0 },
+#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
+
+ { "close", (sqlite3_syscall_ptr)close, 0 },
+#define osClose ((int(*)(int))aSyscall[1].pCurrent)
+
+ { "access", (sqlite3_syscall_ptr)access, 0 },
+#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
+
+ { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
+#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
+
+ { "stat", (sqlite3_syscall_ptr)stat, 0 },
+#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
+
+/*
+** The DJGPP compiler environment looks mostly like Unix, but it
+** lacks the fcntl() system call. So redefine fcntl() to be something
+** that always succeeds. This means that locking does not occur under
+** DJGPP. But it is DOS - what did you expect?
+*/
+#ifdef __DJGPP__
+ { "fstat", 0, 0 },
+#define osFstat(a,b,c) 0
+#else
+ { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
+#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
+#endif
+
+ { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
+#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
+
+ { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
+#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
+
+ { "read", (sqlite3_syscall_ptr)read, 0 },
+#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
+
+#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
+ { "pread", (sqlite3_syscall_ptr)pread, 0 },
+#else
+ { "pread", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
+
+#if defined(USE_PREAD64)
+ { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
+#else
+ { "pread64", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
+
+ { "write", (sqlite3_syscall_ptr)write, 0 },
+#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
+
+#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
+ { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
+#else
+ { "pwrite", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
+ aSyscall[12].pCurrent)
+
+#if defined(USE_PREAD64)
+ { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
+#else
+ { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\
+ aSyscall[13].pCurrent)
+
+ { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
+#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
+
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
+ { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
+#else
+ { "fallocate", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
+
+ { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
+#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
+
+ { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
+#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
+
+ { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 },
+#define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
+
+ { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 },
+#define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
+
+#if defined(HAVE_FCHOWN)
+ { "fchown", (sqlite3_syscall_ptr)fchown, 0 },
+#else
+ { "fchown", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
+
+#if defined(HAVE_FCHOWN)
+ { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 },
+#else
+ { "geteuid", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent)
+
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+ { "mmap", (sqlite3_syscall_ptr)mmap, 0 },
+#else
+ { "mmap", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
+
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+ { "munmap", (sqlite3_syscall_ptr)munmap, 0 },
+#else
+ { "munmap", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent)
+
+#if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+ { "mremap", (sqlite3_syscall_ptr)mremap, 0 },
+#else
+ { "mremap", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
+
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+ { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 },
+#else
+ { "getpagesize", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
+
+#if defined(HAVE_READLINK)
+ { "readlink", (sqlite3_syscall_ptr)readlink, 0 },
+#else
+ { "readlink", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
+
+#if defined(HAVE_LSTAT)
+ { "lstat", (sqlite3_syscall_ptr)lstat, 0 },
+#else
+ { "lstat", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
+
+#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+# ifdef __ANDROID__
+ { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 },
+#define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)
+# else
+ { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 },
+#define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent)
+# endif
+#else
+ { "ioctl", (sqlite3_syscall_ptr)0, 0 },
+#endif
+
+}; /* End of the overrideable system calls */
+
+
+/*
+** On some systems, calls to fchown() will trigger a message in a security
+** log if they come from non-root processes. So avoid calling fchown() if
+** we are not running as root.
+*/
+static int robustFchown(int fd, uid_t uid, gid_t gid){
+#if defined(HAVE_FCHOWN)
+ return osGeteuid() ? 0 : osFchown(fd,uid,gid);
+#else
+ return 0;
+#endif
+}
+
+/*
+** This is the xSetSystemCall() method of sqlite3_vfs for all of the
+** "unix" VFSes. Return SQLITE_OK opon successfully updating the
+** system call pointer, or SQLITE_NOTFOUND if there is no configurable
+** system call named zName.
+*/
+static int unixSetSystemCall(
+ sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
+ const char *zName, /* Name of system call to override */
+ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
+){
+ unsigned int i;
+ int rc = SQLITE_NOTFOUND;
+
+ UNUSED_PARAMETER(pNotUsed);
+ if( zName==0 ){
+ /* If no zName is given, restore all system calls to their default
+ ** settings and return NULL
+ */
+ rc = SQLITE_OK;
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( aSyscall[i].pDefault ){
+ aSyscall[i].pCurrent = aSyscall[i].pDefault;
+ }
+ }
+ }else{
+ /* If zName is specified, operate on only the one system call
+ ** specified.
+ */
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ){
+ if( aSyscall[i].pDefault==0 ){
+ aSyscall[i].pDefault = aSyscall[i].pCurrent;
+ }
+ rc = SQLITE_OK;
+ if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
+ aSyscall[i].pCurrent = pNewFunc;
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the value of a system call. Return NULL if zName is not a
+** recognized system call name. NULL is also returned if the system call
+** is currently undefined.
+*/
+static sqlite3_syscall_ptr unixGetSystemCall(
+ sqlite3_vfs *pNotUsed,
+ const char *zName
+){
+ unsigned int i;
+
+ UNUSED_PARAMETER(pNotUsed);
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
+ }
+ return 0;
+}
+
+/*
+** Return the name of the first system call after zName. If zName==NULL
+** then return the name of the first system call. Return NULL if zName
+** is the last system call or if zName is not the name of a valid
+** system call.
+*/
+static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
+ int i = -1;
+
+ UNUSED_PARAMETER(p);
+ if( zName ){
+ for(i=0; i<ArraySize(aSyscall)-1; i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) break;
+ }
+ }
+ for(i++; i<ArraySize(aSyscall); i++){
+ if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
+ }
+ return 0;
+}
+
+/*
+** Do not accept any file descriptor less than this value, in order to avoid
+** opening database file using file descriptors that are commonly used for
+** standard input, output, and error.
+*/
+#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
+# define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
+#endif
+
+/*
+** Invoke open(). Do so multiple times, until it either succeeds or
+** fails for some reason other than EINTR.
+**
+** If the file creation mode "m" is 0 then set it to the default for
+** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
+** 0644) as modified by the system umask. If m is not 0, then
+** make the file creation mode be exactly m ignoring the umask.
+**
+** The m parameter will be non-zero only when creating -wal, -journal,
+** and -shm files. We want those files to have *exactly* the same
+** permissions as their original database, unadulterated by the umask.
+** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
+** transaction crashes and leaves behind hot journals, then any
+** process that is able to write to the database will also be able to
+** recover the hot journals.
+*/
+static int robust_open(const char *z, int f, mode_t m){
+ int fd;
+ mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
+ while(1){
+#if defined(O_CLOEXEC)
+ fd = osOpen(z,f|O_CLOEXEC,m2);
+#else
+ fd = osOpen(z,f,m2);
+#endif
+ if( fd<0 ){
+ if( errno==EINTR ) continue;
+ break;
+ }
+ if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
+ osClose(fd);
+ sqlite3_log(SQLITE_WARNING,
+ "attempt to open \"%s\" as file descriptor %d", z, fd);
+ fd = -1;
+ if( osOpen("/dev/null", O_RDONLY, m)<0 ) break;
+ }
+ if( fd>=0 ){
+ if( m!=0 ){
+ struct stat statbuf;
+ if( osFstat(fd, &statbuf)==0
+ && statbuf.st_size==0
+ && (statbuf.st_mode&0777)!=m
+ ){
+ osFchmod(fd, m);
+ }
+ }
+#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
+ osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+ }
+ return fd;
+}
+
+/*
+** Helper functions to obtain and relinquish the global mutex. The
+** global mutex is used to protect the unixInodeInfo and
+** vxworksFileId objects used by this file, all of which may be
+** shared by multiple threads.
+**
+** Function unixMutexHeld() is used to assert() that the global mutex
+** is held when required. This function is only used as part of assert()
+** statements. e.g.
+**
+** unixEnterMutex()
+** assert( unixMutexHeld() );
+** unixEnterLeave()
+**
+** To prevent deadlock, the global unixBigLock must must be acquired
+** before the unixInodeInfo.pLockMutex mutex, if both are held. It is
+** OK to get the pLockMutex without holding unixBigLock first, but if
+** that happens, the unixBigLock mutex must not be acquired until after
+** pLockMutex is released.
+**
+** OK: enter(unixBigLock), enter(pLockInfo)
+** OK: enter(unixBigLock)
+** OK: enter(pLockInfo)
+** ERROR: enter(pLockInfo), enter(unixBigLock)
+*/
+static sqlite3_mutex *unixBigLock = 0;
+static void unixEnterMutex(void){
+ assert( sqlite3_mutex_notheld(unixBigLock) ); /* Not a recursive mutex */
+ sqlite3_mutex_enter(unixBigLock);
+}
+static void unixLeaveMutex(void){
+ assert( sqlite3_mutex_held(unixBigLock) );
+ sqlite3_mutex_leave(unixBigLock);
+}
+#ifdef SQLITE_DEBUG
+static int unixMutexHeld(void) {
+ return sqlite3_mutex_held(unixBigLock);
+}
+#endif
+
+
+#ifdef SQLITE_HAVE_OS_TRACE
+/*
+** Helper function for printing out trace information from debugging
+** binaries. This returns the string representation of the supplied
+** integer lock-type.
+*/
+static const char *azFileLock(int eFileLock){
+ switch( eFileLock ){
+ case NO_LOCK: return "NONE";
+ case SHARED_LOCK: return "SHARED";
+ case RESERVED_LOCK: return "RESERVED";
+ case PENDING_LOCK: return "PENDING";
+ case EXCLUSIVE_LOCK: return "EXCLUSIVE";
+ }
+ return "ERROR";
+}
+#endif
+
+#ifdef SQLITE_LOCK_TRACE
+/*
+** Print out information about all locking operations.
+**
+** This routine is used for troubleshooting locks on multithreaded
+** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
+** command-line option on the compiler. This code is normally
+** turned off.
+*/
+static int lockTrace(int fd, int op, struct flock *p){
+ char *zOpName, *zType;
+ int s;
+ int savedErrno;
+ if( op==F_GETLK ){
+ zOpName = "GETLK";
+ }else if( op==F_SETLK ){
+ zOpName = "SETLK";
+ }else{
+ s = osFcntl(fd, op, p);
+ sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
+ return s;
+ }
+ if( p->l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( p->l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( p->l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ assert( p->l_whence==SEEK_SET );
+ s = osFcntl(fd, op, p);
+ savedErrno = errno;
+ sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
+ threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
+ (int)p->l_pid, s);
+ if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
+ struct flock l2;
+ l2 = *p;
+ osFcntl(fd, F_GETLK, &l2);
+ if( l2.l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( l2.l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( l2.l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
+ zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
+ }
+ errno = savedErrno;
+ return s;
+}
+#undef osFcntl
+#define osFcntl lockTrace
+#endif /* SQLITE_LOCK_TRACE */
+
+/*
+** Retry ftruncate() calls that fail due to EINTR
+**
+** All calls to ftruncate() within this file should be made through
+** this wrapper. On the Android platform, bypassing the logic below
+** could lead to a corrupt database.
+*/
+static int robust_ftruncate(int h, sqlite3_int64 sz){
+ int rc;
+#ifdef __ANDROID__
+ /* On Android, ftruncate() always uses 32-bit offsets, even if
+ ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
+ ** truncate a file to any size larger than 2GiB. Silently ignore any
+ ** such attempts. */
+ if( sz>(sqlite3_int64)0x7FFFFFFF ){
+ rc = SQLITE_OK;
+ }else
+#endif
+ do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
+ return rc;
+}
+
+/*
+** This routine translates a standard POSIX errno code into something
+** useful to the clients of the sqlite3 functions. Specifically, it is
+** intended to translate a variety of "try again" errors into SQLITE_BUSY
+** and a variety of "please close the file descriptor NOW" errors into
+** SQLITE_IOERR
+**
+** Errors during initialization of locks, or file system support for locks,
+** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
+*/
+static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
+ assert( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
+ switch (posixError) {
+ case EACCES:
+ case EAGAIN:
+ case ETIMEDOUT:
+ case EBUSY:
+ case EINTR:
+ case ENOLCK:
+ /* random NFS retry error, unless during file system support
+ * introspection, in which it actually means what it says */
+ return SQLITE_BUSY;
+
+ case EPERM:
+ return SQLITE_PERM;
+
+ default:
+ return sqliteIOErr;
+ }
+}
+
+
+/******************************************************************************
+****************** Begin Unique File ID Utility Used By VxWorks ***************
+**
+** On most versions of unix, we can get a unique ID for a file by concatenating
+** the device number and the inode number. But this does not work on VxWorks.
+** On VxWorks, a unique file id must be based on the canonical filename.
+**
+** A pointer to an instance of the following structure can be used as a
+** unique file ID in VxWorks. Each instance of this structure contains
+** a copy of the canonical filename. There is also a reference count.
+** The structure is reclaimed when the number of pointers to it drops to
+** zero.
+**
+** There are never very many files open at one time and lookups are not
+** a performance-critical path, so it is sufficient to put these
+** structures on a linked list.
+*/
+struct vxworksFileId {
+ struct vxworksFileId *pNext; /* Next in a list of them all */
+ int nRef; /* Number of references to this one */
+ int nName; /* Length of the zCanonicalName[] string */
+ char *zCanonicalName; /* Canonical filename */
+};
+
+#if OS_VXWORKS
+/*
+** All unique filenames are held on a linked list headed by this
+** variable:
+*/
+static struct vxworksFileId *vxworksFileList = 0;
+
+/*
+** Simplify a filename into its canonical form
+** by making the following changes:
+**
+** * removing any trailing and duplicate /
+** * convert /./ into just /
+** * convert /A/../ where A is any simple name into just /
+**
+** Changes are made in-place. Return the new name length.
+**
+** The original filename is in z[0..n-1]. Return the number of
+** characters in the simplified name.
+*/
+static int vxworksSimplifyName(char *z, int n){
+ int i, j;
+ while( n>1 && z[n-1]=='/' ){ n--; }
+ for(i=j=0; i<n; i++){
+ if( z[i]=='/' ){
+ if( z[i+1]=='/' ) continue;
+ if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
+ i += 1;
+ continue;
+ }
+ if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
+ while( j>0 && z[j-1]!='/' ){ j--; }
+ if( j>0 ){ j--; }
+ i += 2;
+ continue;
+ }
+ }
+ z[j++] = z[i];
+ }
+ z[j] = 0;
+ return j;
+}
+
+/*
+** Find a unique file ID for the given absolute pathname. Return
+** a pointer to the vxworksFileId object. This pointer is the unique
+** file ID.
+**
+** The nRef field of the vxworksFileId object is incremented before
+** the object is returned. A new vxworksFileId object is created
+** and added to the global list if necessary.
+**
+** If a memory allocation error occurs, return NULL.
+*/
+static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
+ struct vxworksFileId *pNew; /* search key and new file ID */
+ struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
+ int n; /* Length of zAbsoluteName string */
+
+ assert( zAbsoluteName[0]=='/' );
+ n = (int)strlen(zAbsoluteName);
+ pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) );
+ if( pNew==0 ) return 0;
+ pNew->zCanonicalName = (char*)&pNew[1];
+ memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
+ n = vxworksSimplifyName(pNew->zCanonicalName, n);
+
+ /* Search for an existing entry that matching the canonical name.
+ ** If found, increment the reference count and return a pointer to
+ ** the existing file ID.
+ */
+ unixEnterMutex();
+ for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
+ if( pCandidate->nName==n
+ && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
+ ){
+ sqlite3_free(pNew);
+ pCandidate->nRef++;
+ unixLeaveMutex();
+ return pCandidate;
+ }
+ }
+
+ /* No match was found. We will make a new file ID */
+ pNew->nRef = 1;
+ pNew->nName = n;
+ pNew->pNext = vxworksFileList;
+ vxworksFileList = pNew;
+ unixLeaveMutex();
+ return pNew;
+}
+
+/*
+** Decrement the reference count on a vxworksFileId object. Free
+** the object when the reference count reaches zero.
+*/
+static void vxworksReleaseFileId(struct vxworksFileId *pId){
+ unixEnterMutex();
+ assert( pId->nRef>0 );
+ pId->nRef--;
+ if( pId->nRef==0 ){
+ struct vxworksFileId **pp;
+ for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
+ assert( *pp==pId );
+ *pp = pId->pNext;
+ sqlite3_free(pId);
+ }
+ unixLeaveMutex();
+}
+#endif /* OS_VXWORKS */
+/*************** End of Unique File ID Utility Used By VxWorks ****************
+******************************************************************************/
+
+
+/******************************************************************************
+*************************** Posix Advisory Locking ****************************
+**
+** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
+** section 6.5.2.2 lines 483 through 490 specify that when a process
+** sets or clears a lock, that operation overrides any prior locks set
+** by the same process. It does not explicitly say so, but this implies
+** that it overrides locks set by the same process using a different
+** file descriptor. Consider this test case:
+**
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
+**
+** Suppose ./file1 and ./file2 are really the same file (because
+** one is a hard or symbolic link to the other) then if you set
+** an exclusive lock on fd1, then try to get an exclusive lock
+** on fd2, it works. I would have expected the second lock to
+** fail since there was already a lock on the file due to fd1.
+** But not so. Since both locks came from the same process, the
+** second overrides the first, even though they were on different
+** file descriptors opened on different file names.
+**
+** This means that we cannot use POSIX locks to synchronize file access
+** among competing threads of the same process. POSIX locks will work fine
+** to synchronize access for threads in separate processes, but not
+** threads within the same process.
+**
+** To work around the problem, SQLite has to manage file locks internally
+** on its own. Whenever a new database is opened, we have to find the
+** specific inode of the database file (the inode is determined by the
+** st_dev and st_ino fields of the stat structure that fstat() fills in)
+** and check for locks already existing on that inode. When locks are
+** created or removed, we have to look at our own internal record of the
+** locks to see if another thread has previously set a lock on that same
+** inode.
+**
+** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
+** For VxWorks, we have to use the alternative unique ID system based on
+** canonical filename and implemented in the previous division.)
+**
+** The sqlite3_file structure for POSIX is no longer just an integer file
+** descriptor. It is now a structure that holds the integer file
+** descriptor and a pointer to a structure that describes the internal
+** locks on the corresponding inode. There is one locking structure
+** per inode, so if the same inode is opened twice, both unixFile structures
+** point to the same locking structure. The locking structure keeps
+** a reference count (so we will know when to delete it) and a "cnt"
+** field that tells us its internal lock status. cnt==0 means the
+** file is unlocked. cnt==-1 means the file has an exclusive lock.
+** cnt>0 means there are cnt shared locks on the file.
+**
+** Any attempt to lock or unlock a file first checks the locking
+** structure. The fcntl() system call is only invoked to set a
+** POSIX lock if the internal lock structure transitions between
+** a locked and an unlocked state.
+**
+** But wait: there are yet more problems with POSIX advisory locks.
+**
+** If you close a file descriptor that points to a file that has locks,
+** all locks on that file that are owned by the current process are
+** released. To work around this problem, each unixInodeInfo object
+** maintains a count of the number of pending locks on tha inode.
+** When an attempt is made to close an unixFile, if there are
+** other unixFile open on the same inode that are holding locks, the call
+** to close() the file descriptor is deferred until all of the locks clear.
+** The unixInodeInfo structure keeps a list of file descriptors that need to
+** be closed and that list is walked (and cleared) when the last lock
+** clears.
+**
+** Yet another problem: LinuxThreads do not play well with posix locks.
+**
+** Many older versions of linux use the LinuxThreads library which is
+** not posix compliant. Under LinuxThreads, a lock created by thread
+** A cannot be modified or overridden by a different thread B.
+** Only thread A can modify the lock. Locking behavior is correct
+** if the appliation uses the newer Native Posix Thread Library (NPTL)
+** on linux - with NPTL a lock created by thread A can override locks
+** in thread B. But there is no way to know at compile-time which
+** threading library is being used. So there is no way to know at
+** compile-time whether or not thread A can override locks on thread B.
+** One has to do a run-time check to discover the behavior of the
+** current process.
+**
+** SQLite used to support LinuxThreads. But support for LinuxThreads
+** was dropped beginning with version 3.7.0. SQLite will still work with
+** LinuxThreads provided that (1) there is no more than one connection
+** per database file in the same process and (2) database connections
+** do not move across threads.
+*/
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular unixInodeInfo object.
+*/
+struct unixFileId {
+ dev_t dev; /* Device number */
+#if OS_VXWORKS
+ struct vxworksFileId *pId; /* Unique file ID for vxworks. */
+#else
+ /* We are told that some versions of Android contain a bug that
+ ** sizes ino_t at only 32-bits instead of 64-bits. (See
+ ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c)
+ ** To work around this, always allocate 64-bits for the inode number.
+ ** On small machines that only have 32-bit inodes, this wastes 4 bytes,
+ ** but that should not be a big deal. */
+ /* WAS: ino_t ino; */
+ u64 ino; /* Inode number */
+#endif
+};
+
+/*
+** An instance of the following structure is allocated for each open
+** inode.
+**
+** A single inode can have multiple file descriptors, so each unixFile
+** structure contains a pointer to an instance of this object and this
+** object keeps a count of the number of unixFile pointing to it.
+**
+** Mutex rules:
+**
+** (1) Only the pLockMutex mutex must be held in order to read or write
+** any of the locking fields:
+** nShared, nLock, eFileLock, bProcessLock, pUnused
+**
+** (2) When nRef>0, then the following fields are unchanging and can
+** be read (but not written) without holding any mutex:
+** fileId, pLockMutex
+**
+** (3) With the exceptions above, all the fields may only be read
+** or written while holding the global unixBigLock mutex.
+**
+** Deadlock prevention: The global unixBigLock mutex may not
+** be acquired while holding the pLockMutex mutex. If both unixBigLock
+** and pLockMutex are needed, then unixBigLock must be acquired first.
+*/
+struct unixInodeInfo {
+ struct unixFileId fileId; /* The lookup key */
+ sqlite3_mutex *pLockMutex; /* Hold this mutex for... */
+ int nShared; /* Number of SHARED locks held */
+ int nLock; /* Number of outstanding file locks */
+ unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
+ unsigned char bProcessLock; /* An exclusive process lock is held */
+ UnixUnusedFd *pUnused; /* Unused file descriptors to close */
+ int nRef; /* Number of pointers to this structure */
+ unixShmNode *pShmNode; /* Shared memory associated with this inode */
+ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
+ unixInodeInfo *pPrev; /* .... doubly linked */
+#if SQLITE_ENABLE_LOCKING_STYLE
+ unsigned long long sharedByte; /* for AFP simulated shared lock */
+#endif
+#if OS_VXWORKS
+ sem_t *pSem; /* Named POSIX semaphore */
+ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
+#endif
+};
+
+/*
+** A lists of all unixInodeInfo objects.
+**
+** Must hold unixBigLock in order to read or write this variable.
+*/
+static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */
+
+#ifdef SQLITE_DEBUG
+/*
+** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not.
+** This routine is used only within assert() to help verify correct mutex
+** usage.
+*/
+int unixFileMutexHeld(unixFile *pFile){
+ assert( pFile->pInode );
+ return sqlite3_mutex_held(pFile->pInode->pLockMutex);
+}
+int unixFileMutexNotheld(unixFile *pFile){
+ assert( pFile->pInode );
+ return sqlite3_mutex_notheld(pFile->pInode->pLockMutex);
+}
+#endif
+
+/*
+**
+** This function - unixLogErrorAtLine(), is only ever called via the macro
+** unixLogError().
+**
+** It is invoked after an error occurs in an OS function and errno has been
+** set. It logs a message using sqlite3_log() containing the current value of
+** errno and, if possible, the human-readable equivalent from strerror() or
+** strerror_r().
+**
+** The first argument passed to the macro should be the error code that
+** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
+** The two subsequent arguments should be the name of the OS function that
+** failed (e.g. "unlink", "open") and the associated file-system path,
+** if any.
+*/
+#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
+static int unixLogErrorAtLine(
+ int errcode, /* SQLite error code */
+ const char *zFunc, /* Name of OS function that failed */
+ const char *zPath, /* File path associated with error */
+ int iLine /* Source line number where error occurred */
+){
+ char *zErr; /* Message from strerror() or equivalent */
+ int iErrno = errno; /* Saved syscall error number */
+
+ /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
+ ** the strerror() function to obtain the human-readable error message
+ ** equivalent to errno. Otherwise, use strerror_r().
+ */
+#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
+ char aErr[80];
+ memset(aErr, 0, sizeof(aErr));
+ zErr = aErr;
+
+ /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
+ ** assume that the system provides the GNU version of strerror_r() that
+ ** returns a pointer to a buffer containing the error message. That pointer
+ ** may point to aErr[], or it may point to some static storage somewhere.
+ ** Otherwise, assume that the system provides the POSIX version of
+ ** strerror_r(), which always writes an error message into aErr[].
+ **
+ ** If the code incorrectly assumes that it is the POSIX version that is
+ ** available, the error message will often be an empty string. Not a
+ ** huge problem. Incorrectly concluding that the GNU version is available
+ ** could lead to a segfault though.
+ */
+#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
+ zErr =
+# endif
+ strerror_r(iErrno, aErr, sizeof(aErr)-1);
+
+#elif SQLITE_THREADSAFE
+ /* This is a threadsafe build, but strerror_r() is not available. */
+ zErr = "";
+#else
+ /* Non-threadsafe build, use strerror(). */
+ zErr = strerror(iErrno);
+#endif
+
+ if( zPath==0 ) zPath = "";
+ sqlite3_log(errcode,
+ "os_unix.c:%d: (%d) %s(%s) - %s",
+ iLine, iErrno, zFunc, zPath, zErr
+ );
+
+ return errcode;
+}
+
+/*
+** Close a file descriptor.
+**
+** We assume that close() almost always works, since it is only in a
+** very sick application or on a very sick platform that it might fail.
+** If it does fail, simply leak the file descriptor, but do log the
+** error.
+**
+** Note that it is not safe to retry close() after EINTR since the
+** file descriptor might have already been reused by another thread.
+** So we don't even try to recover from an EINTR. Just log the error
+** and move on.
+*/
+static void robust_close(unixFile *pFile, int h, int lineno){
+ if( osClose(h) ){
+ unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
+ pFile ? pFile->zPath : 0, lineno);
+ }
+}
+
+/*
+** Set the pFile->lastErrno. Do this in a subroutine as that provides
+** a convenient place to set a breakpoint.
+*/
+static void storeLastErrno(unixFile *pFile, int error){
+ pFile->lastErrno = error;
+}
+
+/*
+** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
+*/
+static void closePendingFds(unixFile *pFile){
+ unixInodeInfo *pInode = pFile->pInode;
+ UnixUnusedFd *p;
+ UnixUnusedFd *pNext;
+ assert( unixFileMutexHeld(pFile) );
+ for(p=pInode->pUnused; p; p=pNext){
+ pNext = p->pNext;
+ robust_close(pFile, p->fd, __LINE__);
+ sqlite3_free(p);
+ }
+ pInode->pUnused = 0;
+}
+
+/*
+** Release a unixInodeInfo structure previously allocated by findInodeInfo().
+**
+** The global mutex must be held when this routine is called, but the mutex
+** on the inode being deleted must NOT be held.
+*/
+static void releaseInodeInfo(unixFile *pFile){
+ unixInodeInfo *pInode = pFile->pInode;
+ assert( unixMutexHeld() );
+ assert( unixFileMutexNotheld(pFile) );
+ if( ALWAYS(pInode) ){
+ pInode->nRef--;
+ if( pInode->nRef==0 ){
+ assert( pInode->pShmNode==0 );
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ closePendingFds(pFile);
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ if( pInode->pPrev ){
+ assert( pInode->pPrev->pNext==pInode );
+ pInode->pPrev->pNext = pInode->pNext;
+ }else{
+ assert( inodeList==pInode );
+ inodeList = pInode->pNext;
+ }
+ if( pInode->pNext ){
+ assert( pInode->pNext->pPrev==pInode );
+ pInode->pNext->pPrev = pInode->pPrev;
+ }
+ sqlite3_mutex_free(pInode->pLockMutex);
+ sqlite3_free(pInode);
+ }
+ }
+}
+
+/*
+** Given a file descriptor, locate the unixInodeInfo object that
+** describes that file descriptor. Create a new one if necessary. The
+** return value might be uninitialized if an error occurs.
+**
+** The global mutex must held when calling this routine.
+**
+** Return an appropriate error code.
+*/
+static int findInodeInfo(
+ unixFile *pFile, /* Unix file with file desc used in the key */
+ unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
+){
+ int rc; /* System call return code */
+ int fd; /* The file descriptor for pFile */
+ struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
+ struct stat statbuf; /* Low-level file information */
+ unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
+
+ assert( unixMutexHeld() );
+
+ /* Get low-level information about the file that we can used to
+ ** create a unique name for the file.
+ */
+ fd = pFile->h;
+ rc = osFstat(fd, &statbuf);
+ if( rc!=0 ){
+ storeLastErrno(pFile, errno);
+#if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
+ if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
+#endif
+ return SQLITE_IOERR;
+ }
+
+#ifdef __APPLE__
+ /* On OS X on an msdos filesystem, the inode number is reported
+ ** incorrectly for zero-size files. See ticket #3260. To work
+ ** around this problem (we consider it a bug in OS X, not SQLite)
+ ** we always increase the file size to 1 by writing a single byte
+ ** prior to accessing the inode number. The one byte written is
+ ** an ASCII 'S' character which also happens to be the first byte
+ ** in the header of every SQLite database. In this way, if there
+ ** is a race condition such that another thread has already populated
+ ** the first page of the database, no damage is done.
+ */
+ if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
+ do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
+ if( rc!=1 ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR;
+ }
+ rc = osFstat(fd, &statbuf);
+ if( rc!=0 ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR;
+ }
+ }
+#endif
+
+ memset(&fileId, 0, sizeof(fileId));
+ fileId.dev = statbuf.st_dev;
+#if OS_VXWORKS
+ fileId.pId = pFile->pId;
+#else
+ fileId.ino = (u64)statbuf.st_ino;
+#endif
+ assert( unixMutexHeld() );
+ pInode = inodeList;
+ while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
+ pInode = pInode->pNext;
+ }
+ if( pInode==0 ){
+ pInode = sqlite3_malloc64( sizeof(*pInode) );
+ if( pInode==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(pInode, 0, sizeof(*pInode));
+ memcpy(&pInode->fileId, &fileId, sizeof(fileId));
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pInode->pLockMutex==0 ){
+ sqlite3_free(pInode);
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+ pInode->nRef = 1;
+ assert( unixMutexHeld() );
+ pInode->pNext = inodeList;
+ pInode->pPrev = 0;
+ if( inodeList ) inodeList->pPrev = pInode;
+ inodeList = pInode;
+ }else{
+ pInode->nRef++;
+ }
+ *ppInode = pInode;
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if pFile has been renamed or unlinked since it was first opened.
+*/
+static int fileHasMoved(unixFile *pFile){
+#if OS_VXWORKS
+ return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId;
+#else
+ struct stat buf;
+ return pFile->pInode!=0 &&
+ (osStat(pFile->zPath, &buf)!=0
+ || (u64)buf.st_ino!=pFile->pInode->fileId.ino);
+#endif
+}
+
+
+/*
+** Check a unixFile that is a database. Verify the following:
+**
+** (1) There is exactly one hard link on the file
+** (2) The file is not a symbolic link
+** (3) The file has not been renamed or unlinked
+**
+** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
+*/
+static void verifyDbFile(unixFile *pFile){
+ struct stat buf;
+ int rc;
+
+ /* These verifications occurs for the main database only */
+ if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return;
+
+ rc = osFstat(pFile->h, &buf);
+ if( rc!=0 ){
+ sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
+ return;
+ }
+ if( buf.st_nlink==0 ){
+ sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
+ return;
+ }
+ if( buf.st_nlink>1 ){
+ sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
+ return;
+ }
+ if( fileHasMoved(pFile) ){
+ sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
+ return;
+ }
+}
+
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+ assert( pFile->eFileLock<=SHARED_LOCK );
+ sqlite3_mutex_enter(pFile->pInode->pLockMutex);
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->pInode->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it.
+ */
+#ifndef __DJGPP__
+ if( !reserved && !pFile->pInode->bProcessLock ){
+ struct flock lock;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = RESERVED_BYTE;
+ lock.l_len = 1;
+ lock.l_type = F_WRLCK;
+ if( osFcntl(pFile->h, F_GETLK, &lock) ){
+ rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
+ storeLastErrno(pFile, errno);
+ } else if( lock.l_type!=F_UNLCK ){
+ reserved = 1;
+ }
+ }
+#endif
+
+ sqlite3_mutex_leave(pFile->pInode->pLockMutex);
+ OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
+
+ *pResOut = reserved;
+ return rc;
+}
+
+/* Forward declaration*/
+static int unixSleep(sqlite3_vfs*,int);
+
+/*
+** Set a posix-advisory-lock.
+**
+** There are two versions of this routine. If compiled with
+** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter
+** which is a pointer to a unixFile. If the unixFile->iBusyTimeout
+** value is set, then it is the number of milliseconds to wait before
+** failing the lock. The iBusyTimeout value is always reset back to
+** zero on each call.
+**
+** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking
+** attempt to set the lock.
+*/
+#ifndef SQLITE_ENABLE_SETLK_TIMEOUT
+# define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x)
+#else
+static int osSetPosixAdvisoryLock(
+ int h, /* The file descriptor on which to take the lock */
+ struct flock *pLock, /* The description of the lock */
+ unixFile *pFile /* Structure holding timeout value */
+){
+ int tm = pFile->iBusyTimeout;
+ int rc = osFcntl(h,F_SETLK,pLock);
+ while( rc<0 && tm>0 ){
+ /* On systems that support some kind of blocking file lock with a timeout,
+ ** make appropriate changes here to invoke that blocking file lock. On
+ ** generic posix, however, there is no such API. So we simply try the
+ ** lock once every millisecond until either the timeout expires, or until
+ ** the lock is obtained. */
+ unixSleep(0,1000);
+ rc = osFcntl(h,F_SETLK,pLock);
+ tm--;
+ }
+ return rc;
+}
+#endif /* SQLITE_ENABLE_SETLK_TIMEOUT */
+
+
+/*
+** Attempt to set a system-lock on the file pFile. The lock is
+** described by pLock.
+**
+** If the pFile was opened read/write from unix-excl, then the only lock
+** ever obtained is an exclusive lock, and it is obtained exactly once
+** the first time any lock is attempted. All subsequent system locking
+** operations become no-ops. Locking operations still happen internally,
+** in order to coordinate access between separate database connections
+** within this process, but all of that is handled in memory and the
+** operating system does not participate.
+**
+** This function is a pass-through to fcntl(F_SETLK) if pFile is using
+** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
+** and is read-only.
+**
+** Zero is returned if the call completes successfully, or -1 if a call
+** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
+*/
+static int unixFileLock(unixFile *pFile, struct flock *pLock){
+ int rc;
+ unixInodeInfo *pInode = pFile->pInode;
+ assert( pInode!=0 );
+ assert( sqlite3_mutex_held(pInode->pLockMutex) );
+ if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){
+ if( pInode->bProcessLock==0 ){
+ struct flock lock;
+ assert( pInode->nLock==0 );
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ lock.l_type = F_WRLCK;
+ rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile);
+ if( rc<0 ) return rc;
+ pInode->bProcessLock = 1;
+ pInode->nLock++;
+ }else{
+ rc = 0;
+ }
+ }else{
+ rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile);
+ }
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int unixLock(sqlite3_file *id, int eFileLock){
+ /* The following describes the implementation of the various locks and
+ ** lock transitions in terms of the POSIX advisory shared and exclusive
+ ** lock primitives (called read-locks and write-locks below, to avoid
+ ** confusion with SQLite lock names). The algorithms are complicated
+ ** slightly in order to be compatible with Windows95 systems simultaneously
+ ** accessing the same database file, in case that is ever required.
+ **
+ ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
+ ** byte', each single bytes at well known offsets, and the 'shared byte
+ ** range', a range of 510 bytes at a well known offset.
+ **
+ ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
+ ** byte'. If this is successful, 'shared byte range' is read-locked
+ ** and the lock on the 'pending byte' released. (Legacy note: When
+ ** SQLite was first developed, Windows95 systems were still very common,
+ ** and Widnows95 lacks a shared-lock capability. So on Windows95, a
+ ** single randomly selected by from the 'shared byte range' is locked.
+ ** Windows95 is now pretty much extinct, but this work-around for the
+ ** lack of shared-locks on Windows95 lives on, for backwards
+ ** compatibility.)
+ **
+ ** A process may only obtain a RESERVED lock after it has a SHARED lock.
+ ** A RESERVED lock is implemented by grabbing a write-lock on the
+ ** 'reserved byte'.
+ **
+ ** A process may only obtain a PENDING lock after it has obtained a
+ ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
+ ** on the 'pending byte'. This ensures that no new SHARED locks can be
+ ** obtained, but existing SHARED locks are allowed to persist. A process
+ ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
+ ** This property is used by the algorithm for rolling back a journal file
+ ** after a crash.
+ **
+ ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
+ ** implemented by obtaining a write-lock on the entire 'shared byte
+ ** range'. Since all other locks require a read-lock on one of the bytes
+ ** within this range, this ensures that no other locks are held on the
+ ** database.
+ */
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode;
+ struct flock lock;
+ int tErrno = 0;
+
+ assert( pFile );
+ OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
+ azFileLock(eFileLock), azFileLock(pFile->eFileLock),
+ azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
+ osGetpid(0)));
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** unixFile, do nothing. Don't use the end_lock: exit path, as
+ ** unixEnterMutex() hasn't been called yet.
+ */
+ if( pFile->eFileLock>=eFileLock ){
+ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
+ azFileLock(eFileLock)));
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct.
+ ** (1) We never move from unlocked to anything higher than shared lock.
+ ** (2) SQLite never explicitly requests a pendig lock.
+ ** (3) A shared lock is always held when a reserve lock is requested.
+ */
+ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
+ assert( eFileLock!=PENDING_LOCK );
+ assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
+
+ /* This mutex is needed because pFile->pInode is shared across threads
+ */
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+
+ /* If some thread using this PID has a lock via a different unixFile*
+ ** handle that precludes the requested lock, return BUSY.
+ */
+ if( (pFile->eFileLock!=pInode->eFileLock &&
+ (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
+ ){
+ rc = SQLITE_BUSY;
+ goto end_lock;
+ }
+
+ /* If a SHARED lock is requested, and some thread using this PID already
+ ** has a SHARED or RESERVED lock, then increment reference counts and
+ ** return SQLITE_OK.
+ */
+ if( eFileLock==SHARED_LOCK &&
+ (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
+ assert( eFileLock==SHARED_LOCK );
+ assert( pFile->eFileLock==0 );
+ assert( pInode->nShared>0 );
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nShared++;
+ pInode->nLock++;
+ goto end_lock;
+ }
+
+
+ /* A PENDING lock is needed before acquiring a SHARED lock and before
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
+ lock.l_len = 1L;
+ lock.l_whence = SEEK_SET;
+ if( eFileLock==SHARED_LOCK
+ || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
+ ){
+ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
+ lock.l_start = PENDING_BYTE;
+ if( unixFileLock(pFile, &lock) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ goto end_lock;
+ }
+ }
+
+
+ /* If control gets to this point, then actually go ahead and make
+ ** operating system calls for the specified lock.
+ */
+ if( eFileLock==SHARED_LOCK ){
+ assert( pInode->nShared==0 );
+ assert( pInode->eFileLock==0 );
+ assert( rc==SQLITE_OK );
+
+ /* Now get the read-lock */
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ if( unixFileLock(pFile, &lock) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ }
+
+ /* Drop the temporary PENDING lock */
+ lock.l_start = PENDING_BYTE;
+ lock.l_len = 1L;
+ lock.l_type = F_UNLCK;
+ if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
+ /* This could happen with a network mount */
+ tErrno = errno;
+ rc = SQLITE_IOERR_UNLOCK;
+ }
+
+ if( rc ){
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ goto end_lock;
+ }else{
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nLock++;
+ pInode->nShared = 1;
+ }
+ }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ }else{
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is
+ ** assumed that there is a SHARED or greater lock on the file
+ ** already.
+ */
+ assert( 0!=pFile->eFileLock );
+ lock.l_type = F_WRLCK;
+
+ assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
+ if( eFileLock==RESERVED_LOCK ){
+ lock.l_start = RESERVED_BYTE;
+ lock.l_len = 1L;
+ }else{
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ }
+
+ if( unixFileLock(pFile, &lock) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ }
+ }
+
+
+#ifdef SQLITE_DEBUG
+ /* Set up the transaction-counter change checking flags when
+ ** transitioning from a SHARED to a RESERVED lock. The change
+ ** from SHARED to RESERVED marks the beginning of a normal
+ ** write operation (not a hot journal rollback).
+ */
+ if( rc==SQLITE_OK
+ && pFile->eFileLock<=SHARED_LOCK
+ && eFileLock==RESERVED_LOCK
+ ){
+ pFile->transCntrChng = 0;
+ pFile->dbUpdate = 0;
+ pFile->inNormalWrite = 1;
+ }
+#endif
+
+
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ pInode->eFileLock = eFileLock;
+ }else if( eFileLock==EXCLUSIVE_LOCK ){
+ pFile->eFileLock = PENDING_LOCK;
+ pInode->eFileLock = PENDING_LOCK;
+ }
+
+end_lock:
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
+ rc==SQLITE_OK ? "ok" : "failed"));
+ return rc;
+}
+
+/*
+** Add the file descriptor used by file handle pFile to the corresponding
+** pUnused list.
+*/
+static void setPendingFd(unixFile *pFile){
+ unixInodeInfo *pInode = pFile->pInode;
+ UnixUnusedFd *p = pFile->pPreallocatedUnused;
+ assert( unixFileMutexHeld(pFile) );
+ p->pNext = pInode->pUnused;
+ pInode->pUnused = p;
+ pFile->h = -1;
+ pFile->pPreallocatedUnused = 0;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
+** the byte range is divided into 2 parts and the first part is unlocked then
+** set to a read lock, then the other part is simply unlocked. This works
+** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
+** remove the write lock on a region when a read lock is set.
+*/
+static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode;
+ struct flock lock;
+ int rc = SQLITE_OK;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
+ pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
+ osGetpid(0)));
+
+ assert( eFileLock<=SHARED_LOCK );
+ if( pFile->eFileLock<=eFileLock ){
+ return SQLITE_OK;
+ }
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ assert( pInode->nShared!=0 );
+ if( pFile->eFileLock>SHARED_LOCK ){
+ assert( pInode->eFileLock==pFile->eFileLock );
+
+#ifdef SQLITE_DEBUG
+ /* When reducing a lock such that other processes can start
+ ** reading the database file again, make sure that the
+ ** transaction counter was updated if any part of the database
+ ** file changed. If the transaction counter is not updated,
+ ** other connections to the same file might not realize that
+ ** the file has changed and hence might not know to flush their
+ ** cache. The use of a stale cache can lead to database corruption.
+ */
+ pFile->inNormalWrite = 0;
+#endif
+
+ /* downgrading to a shared lock on NFS involves clearing the write lock
+ ** before establishing the readlock - to avoid a race condition we downgrade
+ ** the lock in 2 blocks, so that part of the range will be covered by a
+ ** write lock until the rest is covered by a read lock:
+ ** 1: [WWWWW]
+ ** 2: [....W]
+ ** 3: [RRRRW]
+ ** 4: [RRRR.]
+ */
+ if( eFileLock==SHARED_LOCK ){
+#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
+ (void)handleNFSUnlock;
+ assert( handleNFSUnlock==0 );
+#endif
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+ if( handleNFSUnlock ){
+ int tErrno; /* Error code from system call errors */
+ off_t divSize = SHARED_SIZE - 1;
+
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = divSize;
+ if( unixFileLock(pFile, &lock)==(-1) ){
+ tErrno = errno;
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ goto end_unlock;
+ }
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = divSize;
+ if( unixFileLock(pFile, &lock)==(-1) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ goto end_unlock;
+ }
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST+divSize;
+ lock.l_len = SHARED_SIZE-divSize;
+ if( unixFileLock(pFile, &lock)==(-1) ){
+ tErrno = errno;
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ goto end_unlock;
+ }
+ }else
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+ {
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ if( unixFileLock(pFile, &lock) ){
+ /* In theory, the call to unixFileLock() cannot fail because another
+ ** process is holding an incompatible lock. If it does, this
+ ** indicates that the other process is not following the locking
+ ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
+ ** SQLITE_BUSY would confuse the upper layer (in practice it causes
+ ** an assert to fail). */
+ rc = SQLITE_IOERR_RDLOCK;
+ storeLastErrno(pFile, errno);
+ goto end_unlock;
+ }
+ }
+ }
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = PENDING_BYTE;
+ lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
+ if( unixFileLock(pFile, &lock)==0 ){
+ pInode->eFileLock = SHARED_LOCK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, errno);
+ goto end_unlock;
+ }
+ }
+ if( eFileLock==NO_LOCK ){
+ /* Decrement the shared lock counter. Release the lock using an
+ ** OS call only when all threads in this same process have released
+ ** the lock.
+ */
+ pInode->nShared--;
+ if( pInode->nShared==0 ){
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ if( unixFileLock(pFile, &lock)==0 ){
+ pInode->eFileLock = NO_LOCK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, errno);
+ pInode->eFileLock = NO_LOCK;
+ pFile->eFileLock = NO_LOCK;
+ }
+ }
+
+ /* Decrement the count of locks against this same file. When the
+ ** count reaches zero, close any other file descriptors whose close
+ ** was deferred because of outstanding locks.
+ */
+ pInode->nLock--;
+ assert( pInode->nLock>=0 );
+ if( pInode->nLock==0 ) closePendingFds(pFile);
+ }
+
+end_unlock:
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ }
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int unixUnlock(sqlite3_file *id, int eFileLock){
+#if SQLITE_MAX_MMAP_SIZE>0
+ assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
+#endif
+ return posixUnlock(id, eFileLock, 0);
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+static int unixMapfile(unixFile *pFd, i64 nByte);
+static void unixUnmapfile(unixFile *pFd);
+#endif
+
+/*
+** This function performs the parts of the "close file" operation
+** common to all locking schemes. It closes the directory and file
+** handles, if they are valid, and sets all fields of the unixFile
+** structure to 0.
+**
+** It is *not* necessary to hold the mutex when this routine is called,
+** even on VxWorks. A mutex will be acquired on VxWorks by the
+** vxworksReleaseFileId() routine.
+*/
+static int closeUnixFile(sqlite3_file *id){
+ unixFile *pFile = (unixFile*)id;
+#if SQLITE_MAX_MMAP_SIZE>0
+ unixUnmapfile(pFile);
+#endif
+ if( pFile->h>=0 ){
+ robust_close(pFile, pFile->h, __LINE__);
+ pFile->h = -1;
+ }
+#if OS_VXWORKS
+ if( pFile->pId ){
+ if( pFile->ctrlFlags & UNIXFILE_DELETE ){
+ osUnlink(pFile->pId->zCanonicalName);
+ }
+ vxworksReleaseFileId(pFile->pId);
+ pFile->pId = 0;
+ }
+#endif
+#ifdef SQLITE_UNLINK_AFTER_CLOSE
+ if( pFile->ctrlFlags & UNIXFILE_DELETE ){
+ osUnlink(pFile->zPath);
+ sqlite3_free(*(char**)&pFile->zPath);
+ pFile->zPath = 0;
+ }
+#endif
+ OSTRACE(("CLOSE %-3d\n", pFile->h));
+ OpenCounter(-1);
+ sqlite3_free(pFile->pPreallocatedUnused);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+/*
+** Close a file.
+*/
+static int unixClose(sqlite3_file *id){
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile *)id;
+ unixInodeInfo *pInode = pFile->pInode;
+
+ assert( pInode!=0 );
+ verifyDbFile(pFile);
+ unixUnlock(id, NO_LOCK);
+ assert( unixFileMutexNotheld(pFile) );
+ unixEnterMutex();
+
+ /* unixFile.pInode is always valid here. Otherwise, a different close
+ ** routine (e.g. nolockClose()) would be called instead.
+ */
+ assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ if( pInode->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pInode->pUnused list. It will be automatically closed
+ ** when the last lock is cleared.
+ */
+ setPendingFd(pFile);
+ }
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ releaseInodeInfo(pFile);
+ assert( pFile->pShm==0 );
+ rc = closeUnixFile(id);
+ unixLeaveMutex();
+ return rc;
+}
+
+/************** End of the posix advisory lock implementation *****************
+******************************************************************************/
+
+/******************************************************************************
+****************************** No-op Locking **********************************
+**
+** Of the various locking implementations available, this is by far the
+** simplest: locking is ignored. No attempt is made to lock the database
+** file for reading or writing.
+**
+** This locking mode is appropriate for use on read-only databases
+** (ex: databases that are burned into CD-ROM, for example.) It can
+** also be used if the application employs some external mechanism to
+** prevent simultaneous access of the same database by two or more
+** database connections. But there is a serious risk of database
+** corruption if this locking mode is used in situations where multiple
+** database connections are accessing the same database file at the same
+** time and one or more of those connections are writing.
+*/
+
+static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
+ UNUSED_PARAMETER(NotUsed);
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return SQLITE_OK;
+}
+static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return SQLITE_OK;
+}
+
+/*
+** Close the file.
+*/
+static int nolockClose(sqlite3_file *id) {
+ return closeUnixFile(id);
+}
+
+/******************* End of the no-op lock implementation *********************
+******************************************************************************/
+
+/******************************************************************************
+************************* Begin dot-file Locking ******************************
+**
+** The dotfile locking implementation uses the existence of separate lock
+** files (really a directory) to control access to the database. This works
+** on just about every filesystem imaginable. But there are serious downsides:
+**
+** (1) There is zero concurrency. A single reader blocks all other
+** connections from reading or writing the database.
+**
+** (2) An application crash or power loss can leave stale lock files
+** sitting around that need to be cleared manually.
+**
+** Nevertheless, a dotlock is an appropriate locking mode for use if no
+** other locking strategy is available.
+**
+** Dotfile locking works by creating a subdirectory in the same directory as
+** the database and with the same name but with a ".lock" extension added.
+** The existence of a lock directory implies an EXCLUSIVE lock. All other
+** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
+*/
+
+/*
+** The file suffix added to the data base filename in order to create the
+** lock directory.
+*/
+#define DOTLOCK_SUFFIX ".lock"
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+**
+** In dotfile locking, either a lock exists or it does not. So in this
+** variation of CheckReservedLock(), *pResOut is set to true if any lock
+** is held on the file and false if the file is unlocked.
+*/
+static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+ reserved = osAccess((const char*)pFile->lockingContext, 0)==0;
+ OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+**
+** With dotfile locking, we really only support state (4): EXCLUSIVE.
+** But we track the other locking levels internally.
+*/
+static int dotlockLock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ char *zLockFile = (char *)pFile->lockingContext;
+ int rc = SQLITE_OK;
+
+
+ /* If we have any lock, then the lock file already exists. All we have
+ ** to do is adjust our internal record of the lock level.
+ */
+ if( pFile->eFileLock > NO_LOCK ){
+ pFile->eFileLock = eFileLock;
+ /* Always update the timestamp on the old file */
+#ifdef HAVE_UTIME
+ utime(zLockFile, NULL);
+#else
+ utimes(zLockFile, NULL);
+#endif
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+ rc = osMkdir(zLockFile, 0777);
+ if( rc<0 ){
+ /* failed to open/create the lock directory */
+ int tErrno = errno;
+ if( EEXIST == tErrno ){
+ rc = SQLITE_BUSY;
+ } else {
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ }
+ return rc;
+ }
+
+ /* got it, set the type and return ok */
+ pFile->eFileLock = eFileLock;
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** When the locking level reaches NO_LOCK, delete the lock file.
+*/
+static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ char *zLockFile = (char *)pFile->lockingContext;
+ int rc;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
+ pFile->eFileLock, osGetpid(0)));
+ assert( eFileLock<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->eFileLock==eFileLock ){
+ return SQLITE_OK;
+ }
+
+ /* To downgrade to shared, simply update our internal notion of the
+ ** lock state. No need to mess with the file on disk.
+ */
+ if( eFileLock==SHARED_LOCK ){
+ pFile->eFileLock = SHARED_LOCK;
+ return SQLITE_OK;
+ }
+
+ /* To fully unlock the database, delete the lock file */
+ assert( eFileLock==NO_LOCK );
+ rc = osRmdir(zLockFile);
+ if( rc<0 ){
+ int tErrno = errno;
+ if( tErrno==ENOENT ){
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ }
+ return rc;
+ }
+ pFile->eFileLock = NO_LOCK;
+ return SQLITE_OK;
+}
+
+/*
+** Close a file. Make sure the lock has been released before closing.
+*/
+static int dotlockClose(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+ assert( id!=0 );
+ dotlockUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ return closeUnixFile(id);
+}
+/****************** End of the dot-file lock implementation *******************
+******************************************************************************/
+
+/******************************************************************************
+************************** Begin flock Locking ********************************
+**
+** Use the flock() system call to do file locking.
+**
+** flock() locking is like dot-file locking in that the various
+** fine-grain locking levels supported by SQLite are collapsed into
+** a single exclusive lock. In other words, SHARED, RESERVED, and
+** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
+** still works when you do this, but concurrency is reduced since
+** only a single process can be reading the database at a time.
+**
+** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
+*/
+#if SQLITE_ENABLE_LOCKING_STYLE
+
+/*
+** Retry flock() calls that fail with EINTR
+*/
+#ifdef EINTR
+static int robust_flock(int fd, int op){
+ int rc;
+ do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
+ return rc;
+}
+#else
+# define robust_flock(a,b) flock(a,b)
+#endif
+
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it. */
+ if( !reserved ){
+ /* attempt to get the lock */
+ int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
+ if( !lrc ){
+ /* got the lock, unlock it */
+ lrc = robust_flock(pFile->h, LOCK_UN);
+ if ( lrc ) {
+ int tErrno = errno;
+ /* unlock failed with an error */
+ lrc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ rc = lrc;
+ }
+ } else {
+ int tErrno = errno;
+ reserved = 1;
+ /* someone else might have it reserved */
+ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(lrc) ){
+ storeLastErrno(pFile, tErrno);
+ rc = lrc;
+ }
+ }
+ }
+ OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
+
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (rc & 0xff) == SQLITE_IOERR ){
+ rc = SQLITE_OK;
+ reserved=1;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** flock() only really support EXCLUSIVE locks. We track intermediate
+** lock states in the sqlite3_file structure, but all locks SHARED or
+** above are really EXCLUSIVE locks and exclude all other processes from
+** access the file.
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int flockLock(sqlite3_file *id, int eFileLock) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->eFileLock > NO_LOCK) {
+ pFile->eFileLock = eFileLock;
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+
+ if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
+ int tErrno = errno;
+ /* didn't get, must be busy */
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ } else {
+ /* got it, set the type and return ok */
+ pFile->eFileLock = eFileLock;
+ }
+ OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
+ rc==SQLITE_OK ? "ok" : "failed"));
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (rc & 0xff) == SQLITE_IOERR ){
+ rc = SQLITE_BUSY;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ return rc;
+}
+
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int flockUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
+ pFile->eFileLock, osGetpid(0)));
+ assert( eFileLock<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->eFileLock==eFileLock ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (eFileLock==SHARED_LOCK) {
+ pFile->eFileLock = eFileLock;
+ return SQLITE_OK;
+ }
+
+ /* no, really, unlock. */
+ if( robust_flock(pFile->h, LOCK_UN) ){
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ return SQLITE_OK;
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ return SQLITE_IOERR_UNLOCK;
+ }else{
+ pFile->eFileLock = NO_LOCK;
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Close a file.
+*/
+static int flockClose(sqlite3_file *id) {
+ assert( id!=0 );
+ flockUnlock(id, NO_LOCK);
+ return closeUnixFile(id);
+}
+
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
+
+/******************* End of the flock lock implementation *********************
+******************************************************************************/
+
+/******************************************************************************
+************************ Begin Named Semaphore Locking ************************
+**
+** Named semaphore locking is only supported on VxWorks.
+**
+** Semaphore locking is like dot-lock and flock in that it really only
+** supports EXCLUSIVE locking. Only a single process can read or write
+** the database file at a time. This reduces potential concurrency, but
+** makes the lock implementation much easier.
+*/
+#if OS_VXWORKS
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it. */
+ if( !reserved ){
+ sem_t *pSem = pFile->pInode->pSem;
+
+ if( sem_trywait(pSem)==-1 ){
+ int tErrno = errno;
+ if( EAGAIN != tErrno ){
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
+ storeLastErrno(pFile, tErrno);
+ } else {
+ /* someone else has the lock when we are in NO_LOCK */
+ reserved = (pFile->eFileLock < SHARED_LOCK);
+ }
+ }else{
+ /* we could have it if we want it */
+ sem_post(pSem);
+ }
+ }
+ OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
+
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
+** lock states in the sqlite3_file structure, but all locks SHARED or
+** above are really EXCLUSIVE locks and exclude all other processes from
+** access the file.
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int semXLock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ sem_t *pSem = pFile->pInode->pSem;
+ int rc = SQLITE_OK;
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->eFileLock > NO_LOCK) {
+ pFile->eFileLock = eFileLock;
+ rc = SQLITE_OK;
+ goto sem_end_lock;
+ }
+
+ /* lock semaphore now but bail out when already locked. */
+ if( sem_trywait(pSem)==-1 ){
+ rc = SQLITE_BUSY;
+ goto sem_end_lock;
+ }
+
+ /* got it, set the type and return ok */
+ pFile->eFileLock = eFileLock;
+
+ sem_end_lock:
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int semXUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ sem_t *pSem = pFile->pInode->pSem;
+
+ assert( pFile );
+ assert( pSem );
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
+ pFile->eFileLock, osGetpid(0)));
+ assert( eFileLock<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->eFileLock==eFileLock ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (eFileLock==SHARED_LOCK) {
+ pFile->eFileLock = eFileLock;
+ return SQLITE_OK;
+ }
+
+ /* no, really unlock. */
+ if ( sem_post(pSem)==-1 ) {
+ int rc, tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ return rc;
+ }
+ pFile->eFileLock = NO_LOCK;
+ return SQLITE_OK;
+}
+
+/*
+ ** Close a file.
+ */
+static int semXClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ semXUnlock(id, NO_LOCK);
+ assert( pFile );
+ assert( unixFileMutexNotheld(pFile) );
+ unixEnterMutex();
+ releaseInodeInfo(pFile);
+ unixLeaveMutex();
+ closeUnixFile(id);
+ }
+ return SQLITE_OK;
+}
+
+#endif /* OS_VXWORKS */
+/*
+** Named semaphore locking is only available on VxWorks.
+**
+*************** End of the named semaphore lock implementation ****************
+******************************************************************************/
+
+
+/******************************************************************************
+*************************** Begin AFP Locking *********************************
+**
+** AFP is the Apple Filing Protocol. AFP is a network filesystem found
+** on Apple Macintosh computers - both OS9 and OSX.
+**
+** Third-party implementations of AFP are available. But this code here
+** only works on OSX.
+*/
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+** The afpLockingContext structure contains all afp lock specific state
+*/
+typedef struct afpLockingContext afpLockingContext;
+struct afpLockingContext {
+ int reserved;
+ const char *dbPath; /* Name of the open file */
+};
+
+struct ByteRangeLockPB2
+{
+ unsigned long long offset; /* offset to first byte to lock */
+ unsigned long long length; /* nbr of bytes to lock */
+ unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
+ unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
+ unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
+ int fd; /* file desc to assoc this lock with */
+};
+
+#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
+
+/*
+** This is a utility for setting or clearing a bit-range lock on an
+** AFP filesystem.
+**
+** Return SQLITE_OK on success, SQLITE_BUSY on failure.
+*/
+static int afpSetLock(
+ const char *path, /* Name of the file to be locked or unlocked */
+ unixFile *pFile, /* Open file descriptor on path */
+ unsigned long long offset, /* First byte to be locked */
+ unsigned long long length, /* Number of bytes to lock */
+ int setLockFlag /* True to set lock. False to clear lock */
+){
+ struct ByteRangeLockPB2 pb;
+ int err;
+
+ pb.unLockFlag = setLockFlag ? 0 : 1;
+ pb.startEndFlag = 0;
+ pb.offset = offset;
+ pb.length = length;
+ pb.fd = pFile->h;
+
+ OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
+ (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
+ offset, length));
+ err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
+ if ( err==-1 ) {
+ int rc;
+ int tErrno = errno;
+ OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
+ path, tErrno, strerror(tErrno)));
+#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
+ rc = SQLITE_BUSY;
+#else
+ rc = sqliteErrorFromPosixError(tErrno,
+ setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
+#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ return rc;
+ } else {
+ return SQLITE_OK;
+ }
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+ afpLockingContext *context;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+ context = (afpLockingContext *) pFile->lockingContext;
+ if( context->reserved ){
+ *pResOut = 1;
+ return SQLITE_OK;
+ }
+ sqlite3_mutex_enter(pFile->pInode->pLockMutex);
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->pInode->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it.
+ */
+ if( !reserved ){
+ /* lock the RESERVED byte */
+ int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
+ if( SQLITE_OK==lrc ){
+ /* if we succeeded in taking the reserved lock, unlock it to restore
+ ** the original state */
+ lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
+ } else {
+ /* if we failed to get the lock then someone else must have it */
+ reserved = 1;
+ }
+ if( IS_LOCK_ERROR(lrc) ){
+ rc=lrc;
+ }
+ }
+
+ sqlite3_mutex_leave(pFile->pInode->pLockMutex);
+ OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
+
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int afpLock(sqlite3_file *id, int eFileLock){
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode = pFile->pInode;
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+
+ assert( pFile );
+ OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
+ azFileLock(eFileLock), azFileLock(pFile->eFileLock),
+ azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
+ ** unixEnterMutex() hasn't been called yet.
+ */
+ if( pFile->eFileLock>=eFileLock ){
+ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
+ azFileLock(eFileLock)));
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct
+ ** (1) We never move from unlocked to anything higher than shared lock.
+ ** (2) SQLite never explicitly requests a pendig lock.
+ ** (3) A shared lock is always held when a reserve lock is requested.
+ */
+ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
+ assert( eFileLock!=PENDING_LOCK );
+ assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
+
+ /* This mutex is needed because pFile->pInode is shared across threads
+ */
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+
+ /* If some thread using this PID has a lock via a different unixFile*
+ ** handle that precludes the requested lock, return BUSY.
+ */
+ if( (pFile->eFileLock!=pInode->eFileLock &&
+ (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
+ ){
+ rc = SQLITE_BUSY;
+ goto afp_end_lock;
+ }
+
+ /* If a SHARED lock is requested, and some thread using this PID already
+ ** has a SHARED or RESERVED lock, then increment reference counts and
+ ** return SQLITE_OK.
+ */
+ if( eFileLock==SHARED_LOCK &&
+ (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
+ assert( eFileLock==SHARED_LOCK );
+ assert( pFile->eFileLock==0 );
+ assert( pInode->nShared>0 );
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nShared++;
+ pInode->nLock++;
+ goto afp_end_lock;
+ }
+
+ /* A PENDING lock is needed before acquiring a SHARED lock and before
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
+ if( eFileLock==SHARED_LOCK
+ || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
+ ){
+ int failed;
+ failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
+ if (failed) {
+ rc = failed;
+ goto afp_end_lock;
+ }
+ }
+
+ /* If control gets to this point, then actually go ahead and make
+ ** operating system calls for the specified lock.
+ */
+ if( eFileLock==SHARED_LOCK ){
+ int lrc1, lrc2, lrc1Errno = 0;
+ long lk, mask;
+
+ assert( pInode->nShared==0 );
+ assert( pInode->eFileLock==0 );
+
+ mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
+ /* Now get the read-lock SHARED_LOCK */
+ /* note that the quality of the randomness doesn't matter that much */
+ lk = random();
+ pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
+ lrc1 = afpSetLock(context->dbPath, pFile,
+ SHARED_FIRST+pInode->sharedByte, 1, 1);
+ if( IS_LOCK_ERROR(lrc1) ){
+ lrc1Errno = pFile->lastErrno;
+ }
+ /* Drop the temporary PENDING lock */
+ lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
+
+ if( IS_LOCK_ERROR(lrc1) ) {
+ storeLastErrno(pFile, lrc1Errno);
+ rc = lrc1;
+ goto afp_end_lock;
+ } else if( IS_LOCK_ERROR(lrc2) ){
+ rc = lrc2;
+ goto afp_end_lock;
+ } else if( lrc1 != SQLITE_OK ) {
+ rc = lrc1;
+ } else {
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nLock++;
+ pInode->nShared = 1;
+ }
+ }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ }else{
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is
+ ** assumed that there is a SHARED or greater lock on the file
+ ** already.
+ */
+ int failed = 0;
+ assert( 0!=pFile->eFileLock );
+ if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
+ /* Acquire a RESERVED lock */
+ failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
+ if( !failed ){
+ context->reserved = 1;
+ }
+ }
+ if (!failed && eFileLock == EXCLUSIVE_LOCK) {
+ /* Acquire an EXCLUSIVE lock */
+
+ /* Remove the shared lock before trying the range. we'll need to
+ ** reestablish the shared lock if we can't get the afpUnlock
+ */
+ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
+ pInode->sharedByte, 1, 0)) ){
+ int failed2 = SQLITE_OK;
+ /* now attemmpt to get the exclusive lock range */
+ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
+ SHARED_SIZE, 1);
+ if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
+ SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
+ /* Can't reestablish the shared lock. Sqlite can't deal, this is
+ ** a critical I/O error
+ */
+ rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 :
+ SQLITE_IOERR_LOCK;
+ goto afp_end_lock;
+ }
+ }else{
+ rc = failed;
+ }
+ }
+ if( failed ){
+ rc = failed;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ pInode->eFileLock = eFileLock;
+ }else if( eFileLock==EXCLUSIVE_LOCK ){
+ pFile->eFileLock = PENDING_LOCK;
+ pInode->eFileLock = PENDING_LOCK;
+ }
+
+afp_end_lock:
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
+ rc==SQLITE_OK ? "ok" : "failed"));
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int afpUnlock(sqlite3_file *id, int eFileLock) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode;
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+ int skipShared = 0;
+#ifdef SQLITE_TEST
+ int h = pFile->h;
+#endif
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
+ pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
+ osGetpid(0)));
+
+ assert( eFileLock<=SHARED_LOCK );
+ if( pFile->eFileLock<=eFileLock ){
+ return SQLITE_OK;
+ }
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ assert( pInode->nShared!=0 );
+ if( pFile->eFileLock>SHARED_LOCK ){
+ assert( pInode->eFileLock==pFile->eFileLock );
+ SimulateIOErrorBenign(1);
+ SimulateIOError( h=(-1) )
+ SimulateIOErrorBenign(0);
+
+#ifdef SQLITE_DEBUG
+ /* When reducing a lock such that other processes can start
+ ** reading the database file again, make sure that the
+ ** transaction counter was updated if any part of the database
+ ** file changed. If the transaction counter is not updated,
+ ** other connections to the same file might not realize that
+ ** the file has changed and hence might not know to flush their
+ ** cache. The use of a stale cache can lead to database corruption.
+ */
+ assert( pFile->inNormalWrite==0
+ || pFile->dbUpdate==0
+ || pFile->transCntrChng==1 );
+ pFile->inNormalWrite = 0;
+#endif
+
+ if( pFile->eFileLock==EXCLUSIVE_LOCK ){
+ rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
+ if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
+ /* only re-establish the shared lock if necessary */
+ int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
+ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
+ } else {
+ skipShared = 1;
+ }
+ }
+ if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
+ rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
+ }
+ if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
+ rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
+ if( !rc ){
+ context->reserved = 0;
+ }
+ }
+ if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
+ pInode->eFileLock = SHARED_LOCK;
+ }
+ }
+ if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
+
+ /* Decrement the shared lock counter. Release the lock using an
+ ** OS call only when all threads in this same process have released
+ ** the lock.
+ */
+ unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
+ pInode->nShared--;
+ if( pInode->nShared==0 ){
+ SimulateIOErrorBenign(1);
+ SimulateIOError( h=(-1) )
+ SimulateIOErrorBenign(0);
+ if( !skipShared ){
+ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
+ }
+ if( !rc ){
+ pInode->eFileLock = NO_LOCK;
+ pFile->eFileLock = NO_LOCK;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pInode->nLock--;
+ assert( pInode->nLock>=0 );
+ if( pInode->nLock==0 ) closePendingFds(pFile);
+ }
+ }
+
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ }
+ return rc;
+}
+
+/*
+** Close a file & cleanup AFP specific locking context
+*/
+static int afpClose(sqlite3_file *id) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ assert( id!=0 );
+ afpUnlock(id, NO_LOCK);
+ assert( unixFileMutexNotheld(pFile) );
+ unixEnterMutex();
+ if( pFile->pInode ){
+ unixInodeInfo *pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ if( pInode->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pInode->aPending. It will be automatically closed when
+ ** the last lock is cleared.
+ */
+ setPendingFd(pFile);
+ }
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ }
+ releaseInodeInfo(pFile);
+ sqlite3_free(pFile->lockingContext);
+ rc = closeUnixFile(id);
+ unixLeaveMutex();
+ return rc;
+}
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The code above is the AFP lock implementation. The code is specific
+** to MacOSX and does not work on other unix platforms. No alternative
+** is available. If you don't compile for a mac, then the "unix-afp"
+** VFS is not available.
+**
+********************* End of the AFP lock implementation **********************
+******************************************************************************/
+
+/******************************************************************************
+*************************** Begin NFS Locking ********************************/
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+ ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+ ** must be either NO_LOCK or SHARED_LOCK.
+ **
+ ** If the locking level of the file descriptor is already at or below
+ ** the requested locking level, this routine is a no-op.
+ */
+static int nfsUnlock(sqlite3_file *id, int eFileLock){
+ return posixUnlock(id, eFileLock, 1);
+}
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The code above is the NFS lock implementation. The code is specific
+** to MacOSX and does not work on other unix platforms. No alternative
+** is available.
+**
+********************* End of the NFS lock implementation **********************
+******************************************************************************/
+
+/******************************************************************************
+**************** Non-locking sqlite3_file methods *****************************
+**
+** The next division contains implementations for all methods of the
+** sqlite3_file object other than the locking methods. The locking
+** methods were defined in divisions above (one locking method per
+** division). Those methods that are common to all locking modes
+** are gather together into this division.
+*/
+
+/*
+** Seek to the offset passed as the second argument, then read cnt
+** bytes into pBuf. Return the number of bytes actually read.
+**
+** NB: If you define USE_PREAD or USE_PREAD64, then it might also
+** be necessary to define _XOPEN_SOURCE to be 500. This varies from
+** one system to another. Since SQLite does not define USE_PREAD
+** in any form by default, we will not attempt to define _XOPEN_SOURCE.
+** See tickets #2741 and #2681.
+**
+** To avoid stomping the errno value on a failed read the lastErrno value
+** is set before returning.
+*/
+static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
+ int got;
+ int prior = 0;
+#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
+ i64 newOffset;
+#endif
+ TIMER_START;
+ assert( cnt==(cnt&0x1ffff) );
+ assert( id->h>2 );
+ do{
+#if defined(USE_PREAD)
+ got = osPread(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#elif defined(USE_PREAD64)
+ got = osPread64(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#else
+ newOffset = lseek(id->h, offset, SEEK_SET);
+ SimulateIOError( newOffset = -1 );
+ if( newOffset<0 ){
+ storeLastErrno((unixFile*)id, errno);
+ return -1;
+ }
+ got = osRead(id->h, pBuf, cnt);
+#endif
+ if( got==cnt ) break;
+ if( got<0 ){
+ if( errno==EINTR ){ got = 1; continue; }
+ prior = 0;
+ storeLastErrno((unixFile*)id, errno);
+ break;
+ }else if( got>0 ){
+ cnt -= got;
+ offset += got;
+ prior += got;
+ pBuf = (void*)(got + (char*)pBuf);
+ }
+ }while( got>0 );
+ TIMER_END;
+ OSTRACE(("READ %-3d %5d %7lld %llu\n",
+ id->h, got+prior, offset-prior, TIMER_ELAPSED));
+ return got+prior;
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int unixRead(
+ sqlite3_file *id,
+ void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ unixFile *pFile = (unixFile *)id;
+ int got;
+ assert( id );
+ assert( offset>=0 );
+ assert( amt>0 );
+
+ /* If this is a database file (not a journal, super-journal or temp
+ ** file), the bytes in the locking range should never be read or written. */
+#if 0
+ assert( pFile->pPreallocatedUnused==0
+ || offset>=PENDING_BYTE+512
+ || offset+amt<=PENDING_BYTE
+ );
+#endif
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this read request as possible by transfering
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
+ return SQLITE_OK;
+ }else{
+ int nCopy = pFile->mmapSize - offset;
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+ got = seekAndRead(pFile, offset, pBuf, amt);
+ if( got==amt ){
+ return SQLITE_OK;
+ }else if( got<0 ){
+ /* pFile->lastErrno has been set by seekAndRead().
+ ** Usually we return SQLITE_IOERR_READ here, though for some
+ ** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The
+ ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT
+ ** prior to returning to the application by the sqlite3ApiExit()
+ ** routine.
+ */
+ switch( pFile->lastErrno ){
+ case ERANGE:
+ case EIO:
+#ifdef ENXIO
+ case ENXIO:
+#endif
+#ifdef EDEVERR
+ case EDEVERR:
+#endif
+ return SQLITE_IOERR_CORRUPTFS;
+ }
+ return SQLITE_IOERR_READ;
+ }else{
+ storeLastErrno(pFile, 0); /* not a system error */
+ /* Unread parts of the buffer must be zero-filled */
+ memset(&((char*)pBuf)[got], 0, amt-got);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+}
+
+/*
+** Attempt to seek the file-descriptor passed as the first argument to
+** absolute offset iOff, then attempt to write nBuf bytes of data from
+** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
+** return the actual number of bytes written (which may be less than
+** nBuf).
+*/
+static int seekAndWriteFd(
+ int fd, /* File descriptor to write to */
+ i64 iOff, /* File offset to begin writing at */
+ const void *pBuf, /* Copy data from this buffer to the file */
+ int nBuf, /* Size of buffer pBuf in bytes */
+ int *piErrno /* OUT: Error number if error occurs */
+){
+ int rc = 0; /* Value returned by system call */
+
+ assert( nBuf==(nBuf&0x1ffff) );
+ assert( fd>2 );
+ assert( piErrno!=0 );
+ nBuf &= 0x1ffff;
+ TIMER_START;
+
+#if defined(USE_PREAD)
+ do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
+#elif defined(USE_PREAD64)
+ do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
+#else
+ do{
+ i64 iSeek = lseek(fd, iOff, SEEK_SET);
+ SimulateIOError( iSeek = -1 );
+ if( iSeek<0 ){
+ rc = -1;
+ break;
+ }
+ rc = osWrite(fd, pBuf, nBuf);
+ }while( rc<0 && errno==EINTR );
+#endif
+
+ TIMER_END;
+ OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
+
+ if( rc<0 ) *piErrno = errno;
+ return rc;
+}
+
+
+/*
+** Seek to the offset in id->offset then read cnt bytes into pBuf.
+** Return the number of bytes actually read. Update the offset.
+**
+** To avoid stomping the errno value on a failed write the lastErrno value
+** is set before returning.
+*/
+static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
+ return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
+}
+
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int unixWrite(
+ sqlite3_file *id,
+ const void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ unixFile *pFile = (unixFile*)id;
+ int wrote = 0;
+ assert( id );
+ assert( amt>0 );
+
+ /* If this is a database file (not a journal, super-journal or temp
+ ** file), the bytes in the locking range should never be read or written. */
+#if 0
+ assert( pFile->pPreallocatedUnused==0
+ || offset>=PENDING_BYTE+512
+ || offset+amt<=PENDING_BYTE
+ );
+#endif
+
+#ifdef SQLITE_DEBUG
+ /* If we are doing a normal write to a database file (as opposed to
+ ** doing a hot-journal rollback or a write to some file other than a
+ ** normal database file) then record the fact that the database
+ ** has changed. If the transaction counter is modified, record that
+ ** fact too.
+ */
+ if( pFile->inNormalWrite ){
+ pFile->dbUpdate = 1; /* The database has been modified */
+ if( offset<=24 && offset+amt>=27 ){
+ int rc;
+ char oldCntr[4];
+ SimulateIOErrorBenign(1);
+ rc = seekAndRead(pFile, 24, oldCntr, 4);
+ SimulateIOErrorBenign(0);
+ if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
+ pFile->transCntrChng = 1; /* The transaction counter has changed */
+ }
+ }
+ }
+#endif
+
+#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this write request as possible by transfering
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
+ return SQLITE_OK;
+ }else{
+ int nCopy = pFile->mmapSize - offset;
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+ while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){
+ amt -= wrote;
+ offset += wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ SimulateIOError(( wrote=(-1), amt=1 ));
+ SimulateDiskfullError(( wrote=0, amt=1 ));
+
+ if( amt>wrote ){
+ if( wrote<0 && pFile->lastErrno!=ENOSPC ){
+ /* lastErrno set by seekAndWrite */
+ return SQLITE_IOERR_WRITE;
+ }else{
+ storeLastErrno(pFile, 0); /* not a system error */
+ return SQLITE_FULL;
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occurring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** We do not trust systems to provide a working fdatasync(). Some do.
+** Others do no. To be safe, we will stick with the (slightly slower)
+** fsync(). If you know that your system does support fdatasync() correctly,
+** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
+*/
+#if !defined(fdatasync) && !HAVE_FDATASYNC
+# define fdatasync fsync
+#endif
+
+/*
+** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
+** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
+** only available on Mac OS X. But that could change.
+*/
+#ifdef F_FULLFSYNC
+# define HAVE_FULLFSYNC 1
+#else
+# define HAVE_FULLFSYNC 0
+#endif
+
+
+/*
+** The fsync() system call does not work as advertised on many
+** unix systems. The following procedure is an attempt to make
+** it work better.
+**
+** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
+** for testing when we want to run through the test suite quickly.
+** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
+** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
+** or power failure will likely corrupt the database file.
+**
+** SQLite sets the dataOnly flag if the size of the file is unchanged.
+** The idea behind dataOnly is that it should only write the file content
+** to disk, not the inode. We only set dataOnly if the file size is
+** unchanged since the file size is part of the inode. However,
+** Ted Ts'o tells us that fdatasync() will also write the inode if the
+** file size has changed. The only real difference between fdatasync()
+** and fsync(), Ted tells us, is that fdatasync() will not flush the
+** inode if the mtime or owner or other inode attributes have changed.
+** We only care about the file size, not the other file attributes, so
+** as far as SQLite is concerned, an fdatasync() is always adequate.
+** So, we always use fdatasync() if it is available, regardless of
+** the value of the dataOnly flag.
+*/
+static int full_fsync(int fd, int fullSync, int dataOnly){
+ int rc;
+
+ /* The following "ifdef/elif/else/" block has the same structure as
+ ** the one below. It is replicated here solely to avoid cluttering
+ ** up the real code with the UNUSED_PARAMETER() macros.
+ */
+#ifdef SQLITE_NO_SYNC
+ UNUSED_PARAMETER(fd);
+ UNUSED_PARAMETER(fullSync);
+ UNUSED_PARAMETER(dataOnly);
+#elif HAVE_FULLFSYNC
+ UNUSED_PARAMETER(dataOnly);
+#else
+ UNUSED_PARAMETER(fullSync);
+ UNUSED_PARAMETER(dataOnly);
+#endif
+
+ /* Record the number of times that we do a normal fsync() and
+ ** FULLSYNC. This is used during testing to verify that this procedure
+ ** gets called with the correct arguments.
+ */
+#ifdef SQLITE_TEST
+ if( fullSync ) sqlite3_fullsync_count++;
+ sqlite3_sync_count++;
+#endif
+
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op. But go ahead and call fstat() to validate the file
+ ** descriptor as we need a method to provoke a failure during
+ ** coverate testing.
+ */
+#ifdef SQLITE_NO_SYNC
+ {
+ struct stat buf;
+ rc = osFstat(fd, &buf);
+ }
+#elif HAVE_FULLFSYNC
+ if( fullSync ){
+ rc = osFcntl(fd, F_FULLFSYNC, 0);
+ }else{
+ rc = 1;
+ }
+ /* If the FULLFSYNC failed, fall back to attempting an fsync().
+ ** It shouldn't be possible for fullfsync to fail on the local
+ ** file system (on OSX), so failure indicates that FULLFSYNC
+ ** isn't supported for this file system. So, attempt an fsync
+ ** and (for now) ignore the overhead of a superfluous fcntl call.
+ ** It'd be better to detect fullfsync support once and avoid
+ ** the fcntl call every time sync is called.
+ */
+ if( rc ) rc = fsync(fd);
+
+#elif defined(__APPLE__)
+ /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
+ ** so currently we default to the macro that redefines fdatasync to fsync
+ */
+ rc = fsync(fd);
+#else
+ rc = fdatasync(fd);
+#if OS_VXWORKS
+ if( rc==-1 && errno==ENOTSUP ){
+ rc = fsync(fd);
+ }
+#endif /* OS_VXWORKS */
+#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
+
+ if( OS_VXWORKS && rc!= -1 ){
+ rc = 0;
+ }
+ return rc;
+}
+
+/*
+** Open a file descriptor to the directory containing file zFilename.
+** If successful, *pFd is set to the opened file descriptor and
+** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
+** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
+** value.
+**
+** The directory file descriptor is used for only one thing - to
+** fsync() a directory to make sure file creation and deletion events
+** are flushed to disk. Such fsyncs are not needed on newer
+** journaling filesystems, but are required on older filesystems.
+**
+** This routine can be overridden using the xSetSysCall interface.
+** The ability to override this routine was added in support of the
+** chromium sandbox. Opening a directory is a security risk (we are
+** told) so making it overrideable allows the chromium sandbox to
+** replace this routine with a harmless no-op. To make this routine
+** a no-op, replace it with a stub that returns SQLITE_OK but leaves
+** *pFd set to a negative number.
+**
+** If SQLITE_OK is returned, the caller is responsible for closing
+** the file descriptor *pFd using close().
+*/
+static int openDirectory(const char *zFilename, int *pFd){
+ int ii;
+ int fd = -1;
+ char zDirname[MAX_PATHNAME+1];
+
+ sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
+ for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
+ if( ii>0 ){
+ zDirname[ii] = '\0';
+ }else{
+ if( zDirname[0]!='/' ) zDirname[0] = '.';
+ zDirname[1] = 0;
+ }
+ fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
+ if( fd>=0 ){
+ OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
+ }
+ *pFd = fd;
+ if( fd>=0 ) return SQLITE_OK;
+ return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
+}
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+**
+** If dataOnly==0 then both the file itself and its metadata (file
+** size, access time, etc) are synced. If dataOnly!=0 then only the
+** file data is synced.
+**
+** Under Unix, also make sure that the directory entry for the file
+** has been created by fsync-ing the directory that contains the file.
+** If we do not do this and we encounter a power failure, the directory
+** entry for the journal might not exist after we reboot. The next
+** SQLite to access the file will not know that the journal exists (because
+** the directory entry for the journal was never created) and the transaction
+** will not roll back - possibly leading to database corruption.
+*/
+static int unixSync(sqlite3_file *id, int flags){
+ int rc;
+ unixFile *pFile = (unixFile*)id;
+
+ int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
+ int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
+
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL
+ || (flags&0x0F)==SQLITE_SYNC_FULL
+ );
+
+ /* Unix cannot, but some systems may return SQLITE_FULL from here. This
+ ** line is to test that doing so does not cause any problems.
+ */
+ SimulateDiskfullError( return SQLITE_FULL );
+
+ assert( pFile );
+ OSTRACE(("SYNC %-3d\n", pFile->h));
+ rc = full_fsync(pFile->h, isFullsync, isDataOnly);
+ SimulateIOError( rc=1 );
+ if( rc ){
+ storeLastErrno(pFile, errno);
+ return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
+ }
+
+ /* Also fsync the directory containing the file if the DIRSYNC flag
+ ** is set. This is a one-time occurrence. Many systems (examples: AIX)
+ ** are unable to fsync a directory, so ignore errors on the fsync.
+ */
+ if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
+ int dirfd;
+ OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
+ HAVE_FULLFSYNC, isFullsync));
+ rc = osOpenDirectory(pFile->zPath, &dirfd);
+ if( rc==SQLITE_OK ){
+ full_fsync(dirfd, 0, 0);
+ robust_close(pFile, dirfd, __LINE__);
+ }else{
+ assert( rc==SQLITE_CANTOPEN );
+ rc = SQLITE_OK;
+ }
+ pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
+ }
+ return rc;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+static int unixTruncate(sqlite3_file *id, i64 nByte){
+ unixFile *pFile = (unixFile *)id;
+ int rc;
+ assert( pFile );
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE );
+
+ /* If the user has configured a chunk-size for this file, truncate the
+ ** file so that it consists of an integer number of chunks (i.e. the
+ ** actual file size after the operation may be larger than the requested
+ ** size).
+ */
+ if( pFile->szChunk>0 ){
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
+ }
+
+ rc = robust_ftruncate(pFile->h, nByte);
+ if( rc ){
+ storeLastErrno(pFile, errno);
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
+ }else{
+#ifdef SQLITE_DEBUG
+ /* If we are doing a normal write to a database file (as opposed to
+ ** doing a hot-journal rollback or a write to some file other than a
+ ** normal database file) and we truncate the file to zero length,
+ ** that effectively updates the change counter. This might happen
+ ** when restoring a database using the backup API from a zero-length
+ ** source.
+ */
+ if( pFile->inNormalWrite && nByte==0 ){
+ pFile->transCntrChng = 1;
+ }
+#endif
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ /* If the file was just truncated to a size smaller than the currently
+ ** mapped region, reduce the effective mapping size as well. SQLite will
+ ** use read() and write() to access data beyond this point from now on.
+ */
+ if( nByte<pFile->mmapSize ){
+ pFile->mmapSize = nByte;
+ }
+#endif
+
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+static int unixFileSize(sqlite3_file *id, i64 *pSize){
+ int rc;
+ struct stat buf;
+ assert( id );
+ rc = osFstat(((unixFile*)id)->h, &buf);
+ SimulateIOError( rc=1 );
+ if( rc!=0 ){
+ storeLastErrno((unixFile*)id, errno);
+ return SQLITE_IOERR_FSTAT;
+ }
+ *pSize = buf.st_size;
+
+ /* When opening a zero-size database, the findInodeInfo() procedure
+ ** writes a single byte into that file in order to work around a bug
+ ** in the OS-X msdos filesystem. In order to avoid problems with upper
+ ** layers, we need to report this file size as zero even though it is
+ ** really 1. Ticket #3260.
+ */
+ if( *pSize==1 ) *pSize = 0;
+
+
+ return SQLITE_OK;
+}
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+/*
+** Handler for proxy-locking file-control verbs. Defined below in the
+** proxying locking division.
+*/
+static int proxyFileControl(sqlite3_file*,int,void*);
+#endif
+
+/*
+** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
+** file-control operation. Enlarge the database to nBytes in size
+** (rounded up to the next chunk-size). If the database is already
+** nBytes or larger, this routine is a no-op.
+*/
+static int fcntlSizeHint(unixFile *pFile, i64 nByte){
+ if( pFile->szChunk>0 ){
+ i64 nSize; /* Required file size */
+ struct stat buf; /* Used to hold return values of fstat() */
+
+ if( osFstat(pFile->h, &buf) ){
+ return SQLITE_IOERR_FSTAT;
+ }
+
+ nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
+ if( nSize>(i64)buf.st_size ){
+
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
+ /* The code below is handling the return value of osFallocate()
+ ** correctly. posix_fallocate() is defined to "returns zero on success,
+ ** or an error number on failure". See the manpage for details. */
+ int err;
+ do{
+ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
+ }while( err==EINTR );
+ if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE;
+#else
+ /* If the OS does not have posix_fallocate(), fake it. Write a
+ ** single byte to the last byte in each block that falls entirely
+ ** within the extended region. Then, if required, a single byte
+ ** at offset (nSize-1), to set the size of the file correctly.
+ ** This is a similar technique to that used by glibc on systems
+ ** that do not have a real fallocate() call.
+ */
+ int nBlk = buf.st_blksize; /* File-system block size */
+ int nWrite = 0; /* Number of bytes written by seekAndWrite */
+ i64 iWrite; /* Next offset to write to */
+
+ iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
+ assert( iWrite>=buf.st_size );
+ assert( ((iWrite+1)%nBlk)==0 );
+ for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
+ if( iWrite>=nSize ) iWrite = nSize - 1;
+ nWrite = seekAndWrite(pFile, iWrite, "", 1);
+ if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
+ }
+#endif
+ }
+ }
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
+ int rc;
+ if( pFile->szChunk<=0 ){
+ if( robust_ftruncate(pFile->h, nByte) ){
+ storeLastErrno(pFile, errno);
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
+ }
+ }
+
+ rc = unixMapfile(pFile, nByte);
+ return rc;
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+/*
+** If *pArg is initially negative then this is a query. Set *pArg to
+** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
+**
+** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
+*/
+static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
+ if( *pArg<0 ){
+ *pArg = (pFile->ctrlFlags & mask)!=0;
+ }else if( (*pArg)==0 ){
+ pFile->ctrlFlags &= ~mask;
+ }else{
+ pFile->ctrlFlags |= mask;
+ }
+}
+
+/* Forward declaration */
+static int unixGetTempname(int nBuf, char *zBuf);
+#ifndef SQLITE_OMIT_WAL
+ static int unixFcntlExternalReader(unixFile*, int*);
+#endif
+
+/*
+** Information and control of an open file handle.
+*/
+static int unixFileControl(sqlite3_file *id, int op, void *pArg){
+ unixFile *pFile = (unixFile*)id;
+ switch( op ){
+#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+ case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: {
+ int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE);
+ return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK;
+ }
+ case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: {
+ int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE);
+ return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK;
+ }
+ case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: {
+ int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE);
+ return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK;
+ }
+#endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
+
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = pFile->eFileLock;
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_LAST_ERRNO: {
+ *(int*)pArg = pFile->lastErrno;
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_CHUNK_SIZE: {
+ pFile->szChunk = *(int *)pArg;
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_SIZE_HINT: {
+ int rc;
+ SimulateIOErrorBenign(1);
+ rc = fcntlSizeHint(pFile, *(i64 *)pArg);
+ SimulateIOErrorBenign(0);
+ return rc;
+ }
+ case SQLITE_FCNTL_PERSIST_WAL: {
+ unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
+ unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_VFSNAME: {
+ *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_TEMPFILENAME: {
+ char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname );
+ if( zTFile ){
+ unixGetTempname(pFile->pVfs->mxPathname, zTFile);
+ *(char**)pArg = zTFile;
+ }
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_HAS_MOVED: {
+ *(int*)pArg = fileHasMoved(pFile);
+ return SQLITE_OK;
+ }
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ case SQLITE_FCNTL_LOCK_TIMEOUT: {
+ int iOld = pFile->iBusyTimeout;
+ pFile->iBusyTimeout = *(int*)pArg;
+ *(int*)pArg = iOld;
+ return SQLITE_OK;
+ }
+#endif
+#if SQLITE_MAX_MMAP_SIZE>0
+ case SQLITE_FCNTL_MMAP_SIZE: {
+ i64 newLimit = *(i64*)pArg;
+ int rc = SQLITE_OK;
+ if( newLimit>sqlite3GlobalConfig.mxMmap ){
+ newLimit = sqlite3GlobalConfig.mxMmap;
+ }
+
+ /* The value of newLimit may be eventually cast to (size_t) and passed
+ ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a
+ ** 64-bit type. */
+ if( newLimit>0 && sizeof(size_t)<8 ){
+ newLimit = (newLimit & 0x7FFFFFFF);
+ }
+
+ *(i64*)pArg = pFile->mmapSizeMax;
+ if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
+ pFile->mmapSizeMax = newLimit;
+ if( pFile->mmapSize>0 ){
+ unixUnmapfile(pFile);
+ rc = unixMapfile(pFile, -1);
+ }
+ }
+ return rc;
+ }
+#endif
+#ifdef SQLITE_DEBUG
+ /* The pager calls this method to signal that it has done
+ ** a rollback and that the database is therefore unchanged and
+ ** it hence it is OK for the transaction change counter to be
+ ** unchanged.
+ */
+ case SQLITE_FCNTL_DB_UNCHANGED: {
+ ((unixFile*)id)->dbUpdate = 0;
+ return SQLITE_OK;
+ }
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ case SQLITE_FCNTL_SET_LOCKPROXYFILE:
+ case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
+ return proxyFileControl(id,op,pArg);
+ }
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
+
+ case SQLITE_FCNTL_EXTERNAL_READER: {
+#ifndef SQLITE_OMIT_WAL
+ return unixFcntlExternalReader((unixFile*)id, (int*)pArg);
+#else
+ *(int*)pArg = 0;
+ return SQLITE_OK;
+#endif
+ }
+ }
+ return SQLITE_NOTFOUND;
+}
+
+/*
+** If pFd->sectorSize is non-zero when this function is called, it is a
+** no-op. Otherwise, the values of pFd->sectorSize and
+** pFd->deviceCharacteristics are set according to the file-system
+** characteristics.
+**
+** There are two versions of this function. One for QNX and one for all
+** other systems.
+*/
+#ifndef __QNXNTO__
+static void setDeviceCharacteristics(unixFile *pFd){
+ assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 );
+ if( pFd->sectorSize==0 ){
+#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+ int res;
+ u32 f = 0;
+
+ /* Check for support for F2FS atomic batch writes. */
+ res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f);
+ if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){
+ pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC;
+ }
+#endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
+
+ /* Set the POWERSAFE_OVERWRITE flag if requested. */
+ if( pFd->ctrlFlags & UNIXFILE_PSOW ){
+ pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
+ }
+
+ pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
+ }
+}
+#else
+#include <sys/dcmd_blk.h>
+#include <sys/statvfs.h>
+static void setDeviceCharacteristics(unixFile *pFile){
+ if( pFile->sectorSize == 0 ){
+ struct statvfs fsInfo;
+
+ /* Set defaults for non-supported filesystems */
+ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
+ pFile->deviceCharacteristics = 0;
+ if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
+ return;
+ }
+
+ if( !strcmp(fsInfo.f_basetype, "tmp") ) {
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( strstr(fsInfo.f_basetype, "etfs") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ /* etfs cluster size writes are atomic */
+ (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ /* full bitset of atomics from max sector size and smaller */
+ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( strstr(fsInfo.f_basetype, "dos") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ /* full bitset of atomics from max sector size and smaller */
+ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else{
+ pFile->deviceCharacteristics =
+ SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ 0;
+ }
+ }
+ /* Last chance verification. If the sector size isn't a multiple of 512
+ ** then it isn't valid.*/
+ if( pFile->sectorSize % 512 != 0 ){
+ pFile->deviceCharacteristics = 0;
+ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
+ }
+}
+#endif
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int unixSectorSize(sqlite3_file *id){
+ unixFile *pFd = (unixFile*)id;
+ setDeviceCharacteristics(pFd);
+ return pFd->sectorSize;
+}
+
+/*
+** Return the device characteristics for the file.
+**
+** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
+** However, that choice is controversial since technically the underlying
+** file system does not always provide powersafe overwrites. (In other
+** words, after a power-loss event, parts of the file that were never
+** written might end up being altered.) However, non-PSOW behavior is very,
+** very rare. And asserting PSOW makes a large reduction in the amount
+** of required I/O for journaling, since a lot of padding is eliminated.
+** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
+** available to turn it off and URI query parameter available to turn it off.
+*/
+static int unixDeviceCharacteristics(sqlite3_file *id){
+ unixFile *pFd = (unixFile*)id;
+ setDeviceCharacteristics(pFd);
+ return pFd->deviceCharacteristics;
+}
+
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+
+/*
+** Return the system page size.
+**
+** This function should not be called directly by other code in this file.
+** Instead, it should be called via macro osGetpagesize().
+*/
+static int unixGetpagesize(void){
+#if OS_VXWORKS
+ return 1024;
+#elif defined(_BSD_SOURCE)
+ return getpagesize();
+#else
+ return (int)sysconf(_SC_PAGESIZE);
+#endif
+}
+
+#endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
+
+#ifndef SQLITE_OMIT_WAL
+
+/*
+** Object used to represent an shared memory buffer.
+**
+** When multiple threads all reference the same wal-index, each thread
+** has its own unixShm object, but they all point to a single instance
+** of this unixShmNode object. In other words, each wal-index is opened
+** only once per process.
+**
+** Each unixShmNode object is connected to a single unixInodeInfo object.
+** We could coalesce this object into unixInodeInfo, but that would mean
+** every open file that does not use shared memory (in other words, most
+** open files) would have to carry around this extra information. So
+** the unixInodeInfo object contains a pointer to this unixShmNode object
+** and the unixShmNode object is created only when needed.
+**
+** unixMutexHeld() must be true when creating or destroying
+** this object or while reading or writing the following fields:
+**
+** nRef
+**
+** The following fields are read-only after the object is created:
+**
+** hShm
+** zFilename
+**
+** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and
+** unixMutexHeld() is true when reading or writing any other field
+** in this structure.
+*/
+struct unixShmNode {
+ unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
+ sqlite3_mutex *pShmMutex; /* Mutex to access this object */
+ char *zFilename; /* Name of the mmapped file */
+ int hShm; /* Open file descriptor */
+ int szRegion; /* Size of shared-memory regions */
+ u16 nRegion; /* Size of array apRegion */
+ u8 isReadonly; /* True if read-only */
+ u8 isUnlocked; /* True if no DMS lock held */
+ char **apRegion; /* Array of mapped shared-memory regions */
+ int nRef; /* Number of unixShm objects pointing to this */
+ unixShm *pFirst; /* All unixShm objects pointing to this */
+ int aLock[SQLITE_SHM_NLOCK]; /* # shared locks on slot, -1==excl lock */
+#ifdef SQLITE_DEBUG
+ u8 exclMask; /* Mask of exclusive locks held */
+ u8 sharedMask; /* Mask of shared locks held */
+ u8 nextShmId; /* Next available unixShm.id value */
+#endif
+};
+
+/*
+** Structure used internally by this VFS to record the state of an
+** open shared memory connection.
+**
+** The following fields are initialized when this object is created and
+** are read-only thereafter:
+**
+** unixShm.pShmNode
+** unixShm.id
+**
+** All other fields are read/write. The unixShm.pShmNode->pShmMutex must
+** be held while accessing any read/write fields.
+*/
+struct unixShm {
+ unixShmNode *pShmNode; /* The underlying unixShmNode object */
+ unixShm *pNext; /* Next unixShm with the same unixShmNode */
+ u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */
+ u8 id; /* Id of this connection within its unixShmNode */
+ u16 sharedMask; /* Mask of shared locks held */
+ u16 exclMask; /* Mask of exclusive locks held */
+};
+
+/*
+** Constants used for locking
+*/
+#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
+#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
+
+/*
+** Use F_GETLK to check whether or not there are any readers with open
+** wal-mode transactions in other processes on database file pFile. If
+** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are
+** such transactions, or 0 otherwise. If an error occurs, return an
+** SQLite error code. The final value of *piOut is undefined in this
+** case.
+*/
+static int unixFcntlExternalReader(unixFile *pFile, int *piOut){
+ int rc = SQLITE_OK;
+ *piOut = 0;
+ if( pFile->pShm){
+ unixShmNode *pShmNode = pFile->pShm->pShmNode;
+ struct flock f;
+
+ memset(&f, 0, sizeof(f));
+ f.l_type = F_WRLCK;
+ f.l_whence = SEEK_SET;
+ f.l_start = UNIX_SHM_BASE + 3;
+ f.l_len = SQLITE_SHM_NLOCK - 3;
+
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){
+ rc = SQLITE_IOERR_LOCK;
+ }else{
+ *piOut = (f.l_type!=F_UNLCK);
+ }
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ }
+
+ return rc;
+}
+
+
+/*
+** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
+**
+** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
+** otherwise.
+*/
+static int unixShmSystemLock(
+ unixFile *pFile, /* Open connection to the WAL file */
+ int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
+ int ofst, /* First byte of the locking range */
+ int n /* Number of bytes to lock */
+){
+ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
+ struct flock f; /* The posix advisory locking structure */
+ int rc = SQLITE_OK; /* Result code form fcntl() */
+
+ /* Access to the unixShmNode object is serialized by the caller */
+ pShmNode = pFile->pInode->pShmNode;
+ assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) );
+ assert( pShmNode->nRef>0 || unixMutexHeld() );
+
+ /* Shared locks never span more than one byte */
+ assert( n==1 || lockType!=F_RDLCK );
+
+ /* Locks are within range */
+ assert( n>=1 && n<=SQLITE_SHM_NLOCK );
+
+ if( pShmNode->hShm>=0 ){
+ int res;
+ /* Initialize the locking parameters */
+ f.l_type = lockType;
+ f.l_whence = SEEK_SET;
+ f.l_start = ofst;
+ f.l_len = n;
+ res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile);
+ if( res==-1 ){
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY);
+#else
+ rc = SQLITE_BUSY;
+#endif
+ }
+ }
+
+ /* Update the global lock state and do debug tracing */
+#ifdef SQLITE_DEBUG
+ { u16 mask;
+ OSTRACE(("SHM-LOCK "));
+ mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
+ if( rc==SQLITE_OK ){
+ if( lockType==F_UNLCK ){
+ OSTRACE(("unlock %d ok", ofst));
+ pShmNode->exclMask &= ~mask;
+ pShmNode->sharedMask &= ~mask;
+ }else if( lockType==F_RDLCK ){
+ OSTRACE(("read-lock %d ok", ofst));
+ pShmNode->exclMask &= ~mask;
+ pShmNode->sharedMask |= mask;
+ }else{
+ assert( lockType==F_WRLCK );
+ OSTRACE(("write-lock %d ok", ofst));
+ pShmNode->exclMask |= mask;
+ pShmNode->sharedMask &= ~mask;
+ }
+ }else{
+ if( lockType==F_UNLCK ){
+ OSTRACE(("unlock %d failed", ofst));
+ }else if( lockType==F_RDLCK ){
+ OSTRACE(("read-lock failed"));
+ }else{
+ assert( lockType==F_WRLCK );
+ OSTRACE(("write-lock %d failed", ofst));
+ }
+ }
+ OSTRACE((" - afterwards %03x,%03x\n",
+ pShmNode->sharedMask, pShmNode->exclMask));
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Return the minimum number of 32KB shm regions that should be mapped at
+** a time, assuming that each mapping must be an integer multiple of the
+** current system page-size.
+**
+** Usually, this is 1. The exception seems to be systems that are configured
+** to use 64KB pages - in this case each mapping must cover at least two
+** shm regions.
+*/
+static int unixShmRegionPerMap(void){
+ int shmsz = 32*1024; /* SHM region size */
+ int pgsz = osGetpagesize(); /* System page size */
+ assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */
+ if( pgsz<shmsz ) return 1;
+ return pgsz/shmsz;
+}
+
+/*
+** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
+**
+** This is not a VFS shared-memory method; it is a utility function called
+** by VFS shared-memory methods.
+*/
+static void unixShmPurge(unixFile *pFd){
+ unixShmNode *p = pFd->pInode->pShmNode;
+ assert( unixMutexHeld() );
+ if( p && ALWAYS(p->nRef==0) ){
+ int nShmPerMap = unixShmRegionPerMap();
+ int i;
+ assert( p->pInode==pFd->pInode );
+ sqlite3_mutex_free(p->pShmMutex);
+ for(i=0; i<p->nRegion; i+=nShmPerMap){
+ if( p->hShm>=0 ){
+ osMunmap(p->apRegion[i], p->szRegion);
+ }else{
+ sqlite3_free(p->apRegion[i]);
+ }
+ }
+ sqlite3_free(p->apRegion);
+ if( p->hShm>=0 ){
+ robust_close(pFd, p->hShm, __LINE__);
+ p->hShm = -1;
+ }
+ p->pInode->pShmNode = 0;
+ sqlite3_free(p);
+ }
+}
+
+/*
+** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
+** take it now. Return SQLITE_OK if successful, or an SQLite error
+** code otherwise.
+**
+** If the DMS cannot be locked because this is a readonly_shm=1
+** connection and no other process already holds a lock, return
+** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
+*/
+static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){
+ struct flock lock;
+ int rc = SQLITE_OK;
+
+ /* Use F_GETLK to determine the locks other processes are holding
+ ** on the DMS byte. If it indicates that another process is holding
+ ** a SHARED lock, then this process may also take a SHARED lock
+ ** and proceed with opening the *-shm file.
+ **
+ ** Or, if no other process is holding any lock, then this process
+ ** is the first to open it. In this case take an EXCLUSIVE lock on the
+ ** DMS byte and truncate the *-shm file to zero bytes in size. Then
+ ** downgrade to a SHARED lock on the DMS byte.
+ **
+ ** If another process is holding an EXCLUSIVE lock on the DMS byte,
+ ** return SQLITE_BUSY to the caller (it will try again). An earlier
+ ** version of this code attempted the SHARED lock at this point. But
+ ** this introduced a subtle race condition: if the process holding
+ ** EXCLUSIVE failed just before truncating the *-shm file, then this
+ ** process might open and use the *-shm file without truncating it.
+ ** And if the *-shm file has been corrupted by a power failure or
+ ** system crash, the database itself may also become corrupt. */
+ lock.l_whence = SEEK_SET;
+ lock.l_start = UNIX_SHM_DMS;
+ lock.l_len = 1;
+ lock.l_type = F_WRLCK;
+ if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) {
+ rc = SQLITE_IOERR_LOCK;
+ }else if( lock.l_type==F_UNLCK ){
+ if( pShmNode->isReadonly ){
+ pShmNode->isUnlocked = 1;
+ rc = SQLITE_READONLY_CANTINIT;
+ }else{
+ rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);
+ /* The first connection to attach must truncate the -shm file. We
+ ** truncate to 3 bytes (an arbitrary small number, less than the
+ ** -shm header size) rather than 0 as a system debugging aid, to
+ ** help detect if a -shm file truncation is legitimate or is the work
+ ** or a rogue process. */
+ if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){
+ rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
+ }
+ }
+ }else if( lock.l_type==F_WRLCK ){
+ rc = SQLITE_BUSY;
+ }
+
+ if( rc==SQLITE_OK ){
+ assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK );
+ rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
+ }
+ return rc;
+}
+
+/*
+** Open a shared-memory area associated with open database file pDbFd.
+** This particular implementation uses mmapped files.
+**
+** The file used to implement shared-memory is in the same directory
+** as the open database file and has the same name as the open database
+** file with the "-shm" suffix added. For example, if the database file
+** is "/home/user1/config.db" then the file that is created and mmapped
+** for shared memory will be called "/home/user1/config.db-shm".
+**
+** Another approach to is to use files in /dev/shm or /dev/tmp or an
+** some other tmpfs mount. But if a file in a different directory
+** from the database file is used, then differing access permissions
+** or a chroot() might cause two different processes on the same
+** database to end up using different files for shared memory -
+** meaning that their memory would not really be shared - resulting
+** in database corruption. Nevertheless, this tmpfs file usage
+** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
+** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
+** option results in an incompatible build of SQLite; builds of SQLite
+** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
+** same database file at the same time, database corruption will likely
+** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
+** "unsupported" and may go away in a future SQLite release.
+**
+** When opening a new shared-memory file, if no other instances of that
+** file are currently open, in this process or in other processes, then
+** the file must be truncated to zero length or have its header cleared.
+**
+** If the original database file (pDbFd) is using the "unix-excl" VFS
+** that means that an exclusive lock is held on the database file and
+** that no other processes are able to read or write the database. In
+** that case, we do not really need shared memory. No shared memory
+** file is created. The shared memory will be simulated with heap memory.
+*/
+static int unixOpenSharedMemory(unixFile *pDbFd){
+ struct unixShm *p = 0; /* The connection to be opened */
+ struct unixShmNode *pShmNode; /* The underlying mmapped file */
+ int rc = SQLITE_OK; /* Result code */
+ unixInodeInfo *pInode; /* The inode of fd */
+ char *zShm; /* Name of the file used for SHM */
+ int nShmFilename; /* Size of the SHM filename in bytes */
+
+ /* Allocate space for the new unixShm object. */
+ p = sqlite3_malloc64( sizeof(*p) );
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ memset(p, 0, sizeof(*p));
+ assert( pDbFd->pShm==0 );
+
+ /* Check to see if a unixShmNode object already exists. Reuse an existing
+ ** one if present. Create a new one if necessary.
+ */
+ assert( unixFileMutexNotheld(pDbFd) );
+ unixEnterMutex();
+ pInode = pDbFd->pInode;
+ pShmNode = pInode->pShmNode;
+ if( pShmNode==0 ){
+ struct stat sStat; /* fstat() info for database file */
+#ifndef SQLITE_SHM_DIRECTORY
+ const char *zBasePath = pDbFd->zPath;
+#endif
+
+ /* Call fstat() to figure out the permissions on the database file. If
+ ** a new *-shm file is created, an attempt will be made to create it
+ ** with the same permissions.
+ */
+ if( osFstat(pDbFd->h, &sStat) ){
+ rc = SQLITE_IOERR_FSTAT;
+ goto shm_open_err;
+ }
+
+#ifdef SQLITE_SHM_DIRECTORY
+ nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
+#else
+ nShmFilename = 6 + (int)strlen(zBasePath);
+#endif
+ pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename );
+ if( pShmNode==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto shm_open_err;
+ }
+ memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
+ zShm = pShmNode->zFilename = (char*)&pShmNode[1];
+#ifdef SQLITE_SHM_DIRECTORY
+ sqlite3_snprintf(nShmFilename, zShm,
+ SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
+ (u32)sStat.st_ino, (u32)sStat.st_dev);
+#else
+ sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
+ sqlite3FileSuffix3(pDbFd->zPath, zShm);
+#endif
+ pShmNode->hShm = -1;
+ pDbFd->pInode->pShmNode = pShmNode;
+ pShmNode->pInode = pDbFd->pInode;
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pShmNode->pShmMutex==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto shm_open_err;
+ }
+ }
+
+ if( pInode->bProcessLock==0 ){
+ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
+ pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW,
+ (sStat.st_mode&0777));
+ }
+ if( pShmNode->hShm<0 ){
+ pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW,
+ (sStat.st_mode&0777));
+ if( pShmNode->hShm<0 ){
+ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
+ goto shm_open_err;
+ }
+ pShmNode->isReadonly = 1;
+ }
+
+ /* If this process is running as root, make sure that the SHM file
+ ** is owned by the same user that owns the original database. Otherwise,
+ ** the original owner will not be able to connect.
+ */
+ robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid);
+
+ rc = unixLockSharedMemory(pDbFd, pShmNode);
+ if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
+ }
+ }
+
+ /* Make the new connection a child of the unixShmNode */
+ p->pShmNode = pShmNode;
+#ifdef SQLITE_DEBUG
+ p->id = pShmNode->nextShmId++;
+#endif
+ pShmNode->nRef++;
+ pDbFd->pShm = p;
+ unixLeaveMutex();
+
+ /* The reference count on pShmNode has already been incremented under
+ ** the cover of the unixEnterMutex() mutex and the pointer from the
+ ** new (struct unixShm) object to the pShmNode has been set. All that is
+ ** left to do is to link the new object into the linked list starting
+ ** at pShmNode->pFirst. This must be done while holding the
+ ** pShmNode->pShmMutex.
+ */
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ p->pNext = pShmNode->pFirst;
+ pShmNode->pFirst = p;
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ return rc;
+
+ /* Jump here on any error */
+shm_open_err:
+ unixShmPurge(pDbFd); /* This call frees pShmNode if required */
+ sqlite3_free(p);
+ unixLeaveMutex();
+ return rc;
+}
+
+/*
+** This function is called to obtain a pointer to region iRegion of the
+** shared-memory associated with the database file fd. Shared-memory regions
+** are numbered starting from zero. Each shared-memory region is szRegion
+** bytes in size.
+**
+** If an error occurs, an error code is returned and *pp is set to NULL.
+**
+** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
+** region has not been allocated (by any client, including one running in a
+** separate process), then *pp is set to NULL and SQLITE_OK returned. If
+** bExtend is non-zero and the requested shared-memory region has not yet
+** been allocated, it is allocated by this function.
+**
+** If the shared-memory region has already been allocated or is allocated by
+** this call as described above, then it is mapped into this processes
+** address space (if it is not already), *pp is set to point to the mapped
+** memory and SQLITE_OK returned.
+*/
+static int unixShmMap(
+ sqlite3_file *fd, /* Handle open on database file */
+ int iRegion, /* Region to retrieve */
+ int szRegion, /* Size of regions */
+ int bExtend, /* True to extend file if necessary */
+ void volatile **pp /* OUT: Mapped memory */
+){
+ unixFile *pDbFd = (unixFile*)fd;
+ unixShm *p;
+ unixShmNode *pShmNode;
+ int rc = SQLITE_OK;
+ int nShmPerMap = unixShmRegionPerMap();
+ int nReqRegion;
+
+ /* If the shared-memory file has not yet been opened, open it now. */
+ if( pDbFd->pShm==0 ){
+ rc = unixOpenSharedMemory(pDbFd);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ p = pDbFd->pShm;
+ pShmNode = p->pShmNode;
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ if( pShmNode->isUnlocked ){
+ rc = unixLockSharedMemory(pDbFd, pShmNode);
+ if( rc!=SQLITE_OK ) goto shmpage_out;
+ pShmNode->isUnlocked = 0;
+ }
+ assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
+ assert( pShmNode->pInode==pDbFd->pInode );
+ assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
+ assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
+
+ /* Minimum number of regions required to be mapped. */
+ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
+
+ if( pShmNode->nRegion<nReqRegion ){
+ char **apNew; /* New apRegion[] array */
+ int nByte = nReqRegion*szRegion; /* Minimum required file size */
+ struct stat sStat; /* Used by fstat() */
+
+ pShmNode->szRegion = szRegion;
+
+ if( pShmNode->hShm>=0 ){
+ /* The requested region is not mapped into this processes address space.
+ ** Check to see if it has been allocated (i.e. if the wal-index file is
+ ** large enough to contain the requested region).
+ */
+ if( osFstat(pShmNode->hShm, &sStat) ){
+ rc = SQLITE_IOERR_SHMSIZE;
+ goto shmpage_out;
+ }
+
+ if( sStat.st_size<nByte ){
+ /* The requested memory region does not exist. If bExtend is set to
+ ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
+ */
+ if( !bExtend ){
+ goto shmpage_out;
+ }
+
+ /* Alternatively, if bExtend is true, extend the file. Do this by
+ ** writing a single byte to the end of each (OS) page being
+ ** allocated or extended. Technically, we need only write to the
+ ** last page in order to extend the file. But writing to all new
+ ** pages forces the OS to allocate them immediately, which reduces
+ ** the chances of SIGBUS while accessing the mapped region later on.
+ */
+ else{
+ static const int pgsz = 4096;
+ int iPg;
+
+ /* Write to the last byte of each newly allocated or extended page */
+ assert( (nByte % pgsz)==0 );
+ for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
+ int x = 0;
+ if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){
+ const char *zFile = pShmNode->zFilename;
+ rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
+ goto shmpage_out;
+ }
+ }
+ }
+ }
+ }
+
+ /* Map the requested memory region into this processes address space. */
+ apNew = (char **)sqlite3_realloc(
+ pShmNode->apRegion, nReqRegion*sizeof(char *)
+ );
+ if( !apNew ){
+ rc = SQLITE_IOERR_NOMEM_BKPT;
+ goto shmpage_out;
+ }
+ pShmNode->apRegion = apNew;
+ while( pShmNode->nRegion<nReqRegion ){
+ int nMap = szRegion*nShmPerMap;
+ int i;
+ void *pMem;
+ if( pShmNode->hShm>=0 ){
+ pMem = osMmap(0, nMap,
+ pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
+ MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion
+ );
+ if( pMem==MAP_FAILED ){
+ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
+ goto shmpage_out;
+ }
+ }else{
+ pMem = sqlite3_malloc64(nMap);
+ if( pMem==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto shmpage_out;
+ }
+ memset(pMem, 0, nMap);
+ }
+
+ for(i=0; i<nShmPerMap; i++){
+ pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
+ }
+ pShmNode->nRegion += nShmPerMap;
+ }
+ }
+
+shmpage_out:
+ if( pShmNode->nRegion>iRegion ){
+ *pp = pShmNode->apRegion[iRegion];
+ }else{
+ *pp = 0;
+ }
+ if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ return rc;
+}
+
+/*
+** Check that the pShmNode->aLock[] array comports with the locking bitmasks
+** held by each client. Return true if it does, or false otherwise. This
+** is to be used in an assert(). e.g.
+**
+** assert( assertLockingArrayOk(pShmNode) );
+*/
+#ifdef SQLITE_DEBUG
+static int assertLockingArrayOk(unixShmNode *pShmNode){
+ unixShm *pX;
+ int aLock[SQLITE_SHM_NLOCK];
+ assert( sqlite3_mutex_held(pShmNode->pShmMutex) );
+
+ memset(aLock, 0, sizeof(aLock));
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ int i;
+ for(i=0; i<SQLITE_SHM_NLOCK; i++){
+ if( pX->exclMask & (1<<i) ){
+ assert( aLock[i]==0 );
+ aLock[i] = -1;
+ }else if( pX->sharedMask & (1<<i) ){
+ assert( aLock[i]>=0 );
+ aLock[i]++;
+ }
+ }
+ }
+
+ assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) );
+ return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0);
+}
+#endif
+
+/*
+** Change the lock state for a shared-memory segment.
+**
+** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
+** different here than in posix. In xShmLock(), one can go from unlocked
+** to shared and back or from unlocked to exclusive and back. But one may
+** not go from shared to exclusive or from exclusive to shared.
+*/
+static int unixShmLock(
+ sqlite3_file *fd, /* Database file holding the shared memory */
+ int ofst, /* First lock to acquire or release */
+ int n, /* Number of locks to acquire or release */
+ int flags /* What to do with the lock */
+){
+ unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
+ unixShm *p; /* The shared memory being locked */
+ unixShmNode *pShmNode; /* The underlying file iNode */
+ int rc = SQLITE_OK; /* Result code */
+ u16 mask; /* Mask of locks to take or release */
+ int *aLock;
+
+ p = pDbFd->pShm;
+ if( p==0 ) return SQLITE_IOERR_SHMLOCK;
+ pShmNode = p->pShmNode;
+ if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
+ aLock = pShmNode->aLock;
+
+ assert( pShmNode==pDbFd->pInode->pShmNode );
+ assert( pShmNode->pInode==pDbFd->pInode );
+ assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
+ assert( n>=1 );
+ assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
+ assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
+ assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
+ assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
+
+ /* Check that, if this to be a blocking lock, no locks that occur later
+ ** in the following list than the lock being obtained are already held:
+ **
+ ** 1. Checkpointer lock (ofst==1).
+ ** 2. Write lock (ofst==0).
+ ** 3. Read locks (ofst>=3 && ofst<SQLITE_SHM_NLOCK).
+ **
+ ** In other words, if this is a blocking lock, none of the locks that
+ ** occur later in the above list than the lock being obtained may be
+ ** held.
+ **
+ ** It is not permitted to block on the RECOVER lock.
+ */
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ assert( (flags & SQLITE_SHM_UNLOCK) || pDbFd->iBusyTimeout==0 || (
+ (ofst!=2) /* not RECOVER */
+ && (ofst!=1 || (p->exclMask|p->sharedMask)==0)
+ && (ofst!=0 || (p->exclMask|p->sharedMask)<3)
+ && (ofst<3 || (p->exclMask|p->sharedMask)<(1<<ofst))
+ ));
+#endif
+
+ mask = (1<<(ofst+n)) - (1<<ofst);
+ assert( n>1 || mask==(1<<ofst) );
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ assert( assertLockingArrayOk(pShmNode) );
+ if( flags & SQLITE_SHM_UNLOCK ){
+ if( (p->exclMask|p->sharedMask) & mask ){
+ int ii;
+ int bUnlock = 1;
+
+ for(ii=ofst; ii<ofst+n; ii++){
+ if( aLock[ii]>((p->sharedMask & (1<<ii)) ? 1 : 0) ){
+ bUnlock = 0;
+ }
+ }
+
+ if( bUnlock ){
+ rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
+ if( rc==SQLITE_OK ){
+ memset(&aLock[ofst], 0, sizeof(int)*n);
+ }
+ }else if( ALWAYS(p->sharedMask & (1<<ofst)) ){
+ assert( n==1 && aLock[ofst]>1 );
+ aLock[ofst]--;
+ }
+
+ /* Undo the local locks */
+ if( rc==SQLITE_OK ){
+ p->exclMask &= ~mask;
+ p->sharedMask &= ~mask;
+ }
+ }
+ }else if( flags & SQLITE_SHM_SHARED ){
+ assert( n==1 );
+ assert( (p->exclMask & (1<<ofst))==0 );
+ if( (p->sharedMask & mask)==0 ){
+ if( aLock[ofst]<0 ){
+ rc = SQLITE_BUSY;
+ }else if( aLock[ofst]==0 ){
+ rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
+ }
+
+ /* Get the local shared locks */
+ if( rc==SQLITE_OK ){
+ p->sharedMask |= mask;
+ aLock[ofst]++;
+ }
+ }
+ }else{
+ /* Make sure no sibling connections hold locks that will block this
+ ** lock. If any do, return SQLITE_BUSY right away. */
+ int ii;
+ for(ii=ofst; ii<ofst+n; ii++){
+ assert( (p->sharedMask & mask)==0 );
+ if( ALWAYS((p->exclMask & (1<<ii))==0) && aLock[ii] ){
+ rc = SQLITE_BUSY;
+ break;
+ }
+ }
+
+ /* Get the exclusive locks at the system level. Then if successful
+ ** also update the in-memory values. */
+ if( rc==SQLITE_OK ){
+ rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
+ if( rc==SQLITE_OK ){
+ assert( (p->sharedMask & mask)==0 );
+ p->exclMask |= mask;
+ for(ii=ofst; ii<ofst+n; ii++){
+ aLock[ii] = -1;
+ }
+ }
+ }
+ }
+ assert( assertLockingArrayOk(pShmNode) );
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
+ p->id, osGetpid(0), p->sharedMask, p->exclMask));
+ return rc;
+}
+
+/*
+** Implement a memory barrier or memory fence on shared memory.
+**
+** All loads and stores begun before the barrier must complete before
+** any load or store begun after the barrier.
+*/
+static void unixShmBarrier(
+ sqlite3_file *fd /* Database file holding the shared memory */
+){
+ UNUSED_PARAMETER(fd);
+ sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
+ assert( fd->pMethods->xLock==nolockLock
+ || unixFileMutexNotheld((unixFile*)fd)
+ );
+ unixEnterMutex(); /* Also mutex, for redundancy */
+ unixLeaveMutex();
+}
+
+/*
+** Close a connection to shared-memory. Delete the underlying
+** storage if deleteFlag is true.
+**
+** If there is no shared memory associated with the connection then this
+** routine is a harmless no-op.
+*/
+static int unixShmUnmap(
+ sqlite3_file *fd, /* The underlying database file */
+ int deleteFlag /* Delete shared-memory if true */
+){
+ unixShm *p; /* The connection to be closed */
+ unixShmNode *pShmNode; /* The underlying shared-memory file */
+ unixShm **pp; /* For looping over sibling connections */
+ unixFile *pDbFd; /* The underlying database file */
+
+ pDbFd = (unixFile*)fd;
+ p = pDbFd->pShm;
+ if( p==0 ) return SQLITE_OK;
+ pShmNode = p->pShmNode;
+
+ assert( pShmNode==pDbFd->pInode->pShmNode );
+ assert( pShmNode->pInode==pDbFd->pInode );
+
+ /* Remove connection p from the set of connections associated
+ ** with pShmNode */
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
+ *pp = p->pNext;
+
+ /* Free the connection p */
+ sqlite3_free(p);
+ pDbFd->pShm = 0;
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+
+ /* If pShmNode->nRef has reached 0, then close the underlying
+ ** shared-memory file, too */
+ assert( unixFileMutexNotheld(pDbFd) );
+ unixEnterMutex();
+ assert( pShmNode->nRef>0 );
+ pShmNode->nRef--;
+ if( pShmNode->nRef==0 ){
+ if( deleteFlag && pShmNode->hShm>=0 ){
+ osUnlink(pShmNode->zFilename);
+ }
+ unixShmPurge(pDbFd);
+ }
+ unixLeaveMutex();
+
+ return SQLITE_OK;
+}
+
+
+#else
+# define unixShmMap 0
+# define unixShmLock 0
+# define unixShmBarrier 0
+# define unixShmUnmap 0
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** If it is currently memory mapped, unmap file pFd.
+*/
+static void unixUnmapfile(unixFile *pFd){
+ assert( pFd->nFetchOut==0 );
+ if( pFd->pMapRegion ){
+ osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
+ pFd->pMapRegion = 0;
+ pFd->mmapSize = 0;
+ pFd->mmapSizeActual = 0;
+ }
+}
+
+/*
+** Attempt to set the size of the memory mapping maintained by file
+** descriptor pFd to nNew bytes. Any existing mapping is discarded.
+**
+** If successful, this function sets the following variables:
+**
+** unixFile.pMapRegion
+** unixFile.mmapSize
+** unixFile.mmapSizeActual
+**
+** If unsuccessful, an error message is logged via sqlite3_log() and
+** the three variables above are zeroed. In this case SQLite should
+** continue accessing the database using the xRead() and xWrite()
+** methods.
+*/
+static void unixRemapfile(
+ unixFile *pFd, /* File descriptor object */
+ i64 nNew /* Required mapping size */
+){
+ const char *zErr = "mmap";
+ int h = pFd->h; /* File descriptor open on db file */
+ u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */
+ i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */
+ u8 *pNew = 0; /* Location of new mapping */
+ int flags = PROT_READ; /* Flags to pass to mmap() */
+
+ assert( pFd->nFetchOut==0 );
+ assert( nNew>pFd->mmapSize );
+ assert( nNew<=pFd->mmapSizeMax );
+ assert( nNew>0 );
+ assert( pFd->mmapSizeActual>=pFd->mmapSize );
+ assert( MAP_FAILED!=0 );
+
+#ifdef SQLITE_MMAP_READWRITE
+ if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
+#endif
+
+ if( pOrig ){
+#if HAVE_MREMAP
+ i64 nReuse = pFd->mmapSize;
+#else
+ const int szSyspage = osGetpagesize();
+ i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
+#endif
+ u8 *pReq = &pOrig[nReuse];
+
+ /* Unmap any pages of the existing mapping that cannot be reused. */
+ if( nReuse!=nOrig ){
+ osMunmap(pReq, nOrig-nReuse);
+ }
+
+#if HAVE_MREMAP
+ pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
+ zErr = "mremap";
+#else
+ pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
+ if( pNew!=MAP_FAILED ){
+ if( pNew!=pReq ){
+ osMunmap(pNew, nNew - nReuse);
+ pNew = 0;
+ }else{
+ pNew = pOrig;
+ }
+ }
+#endif
+
+ /* The attempt to extend the existing mapping failed. Free it. */
+ if( pNew==MAP_FAILED || pNew==0 ){
+ osMunmap(pOrig, nReuse);
+ }
+ }
+
+ /* If pNew is still NULL, try to create an entirely new mapping. */
+ if( pNew==0 ){
+ pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
+ }
+
+ if( pNew==MAP_FAILED ){
+ pNew = 0;
+ nNew = 0;
+ unixLogError(SQLITE_OK, zErr, pFd->zPath);
+
+ /* If the mmap() above failed, assume that all subsequent mmap() calls
+ ** will probably fail too. Fall back to using xRead/xWrite exclusively
+ ** in this case. */
+ pFd->mmapSizeMax = 0;
+ }
+ pFd->pMapRegion = (void *)pNew;
+ pFd->mmapSize = pFd->mmapSizeActual = nNew;
+}
+
+/*
+** Memory map or remap the file opened by file-descriptor pFd (if the file
+** is already mapped, the existing mapping is replaced by the new). Or, if
+** there already exists a mapping for this file, and there are still
+** outstanding xFetch() references to it, this function is a no-op.
+**
+** If parameter nByte is non-negative, then it is the requested size of
+** the mapping to create. Otherwise, if nByte is less than zero, then the
+** requested size is the size of the file on disk. The actual size of the
+** created mapping is either the requested size or the value configured
+** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
+**
+** SQLITE_OK is returned if no error occurs (even if the mapping is not
+** recreated as a result of outstanding references) or an SQLite error
+** code otherwise.
+*/
+static int unixMapfile(unixFile *pFd, i64 nMap){
+ assert( nMap>=0 || pFd->nFetchOut==0 );
+ assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
+ if( pFd->nFetchOut>0 ) return SQLITE_OK;
+
+ if( nMap<0 ){
+ struct stat statbuf; /* Low-level file information */
+ if( osFstat(pFd->h, &statbuf) ){
+ return SQLITE_IOERR_FSTAT;
+ }
+ nMap = statbuf.st_size;
+ }
+ if( nMap>pFd->mmapSizeMax ){
+ nMap = pFd->mmapSizeMax;
+ }
+
+ assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
+ if( nMap!=pFd->mmapSize ){
+ unixRemapfile(pFd, nMap);
+ }
+
+ return SQLITE_OK;
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/*
+** If possible, return a pointer to a mapping of file fd starting at offset
+** iOff. The mapping must be valid for at least nAmt bytes.
+**
+** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
+** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
+** Finally, if an error does occur, return an SQLite error code. The final
+** value of *pp is undefined in this case.
+**
+** If this function does return a pointer, the caller must eventually
+** release the reference by calling unixUnfetch().
+*/
+static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
+#if SQLITE_MAX_MMAP_SIZE>0
+ unixFile *pFd = (unixFile *)fd; /* The underlying database file */
+#endif
+ *pp = 0;
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFd->mmapSizeMax>0 ){
+ if( pFd->pMapRegion==0 ){
+ int rc = unixMapfile(pFd, -1);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( pFd->mmapSize >= iOff+nAmt ){
+ *pp = &((u8 *)pFd->pMapRegion)[iOff];
+ pFd->nFetchOut++;
+ }
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** If the third argument is non-NULL, then this function releases a
+** reference obtained by an earlier call to unixFetch(). The second
+** argument passed to this function must be the same as the corresponding
+** argument that was passed to the unixFetch() invocation.
+**
+** Or, if the third argument is NULL, then this function is being called
+** to inform the VFS layer that, according to POSIX, any existing mapping
+** may now be invalid and should be unmapped.
+*/
+static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
+#if SQLITE_MAX_MMAP_SIZE>0
+ unixFile *pFd = (unixFile *)fd; /* The underlying database file */
+ UNUSED_PARAMETER(iOff);
+
+ /* If p==0 (unmap the entire file) then there must be no outstanding
+ ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
+ ** then there must be at least one outstanding. */
+ assert( (p==0)==(pFd->nFetchOut==0) );
+
+ /* If p!=0, it must match the iOff value. */
+ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
+
+ if( p ){
+ pFd->nFetchOut--;
+ }else{
+ unixUnmapfile(pFd);
+ }
+
+ assert( pFd->nFetchOut>=0 );
+#else
+ UNUSED_PARAMETER(fd);
+ UNUSED_PARAMETER(p);
+ UNUSED_PARAMETER(iOff);
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Here ends the implementation of all sqlite3_file methods.
+**
+********************** End sqlite3_file Methods *******************************
+******************************************************************************/
+
+/*
+** This division contains definitions of sqlite3_io_methods objects that
+** implement various file locking strategies. It also contains definitions
+** of "finder" functions. A finder-function is used to locate the appropriate
+** sqlite3_io_methods object for a particular database file. The pAppData
+** field of the sqlite3_vfs VFS objects are initialized to be pointers to
+** the correct finder-function for that VFS.
+**
+** Most finder functions return a pointer to a fixed sqlite3_io_methods
+** object. The only interesting finder-function is autolockIoFinder, which
+** looks at the filesystem type and tries to guess the best locking
+** strategy from that.
+**
+** For finder-function F, two objects are created:
+**
+** (1) The real finder-function named "FImpt()".
+**
+** (2) A constant pointer to this function named just "F".
+**
+**
+** A pointer to the F pointer is used as the pAppData value for VFS
+** objects. We have to do this instead of letting pAppData point
+** directly at the finder-function since C90 rules prevent a void*
+** from be cast into a function pointer.
+**
+**
+** Each instance of this macro generates two objects:
+**
+** * A constant sqlite3_io_methods object call METHOD that has locking
+** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
+**
+** * An I/O method finder function called FINDER that returns a pointer
+** to the METHOD object in the previous bullet.
+*/
+#define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \
+static const sqlite3_io_methods METHOD = { \
+ VERSION, /* iVersion */ \
+ CLOSE, /* xClose */ \
+ unixRead, /* xRead */ \
+ unixWrite, /* xWrite */ \
+ unixTruncate, /* xTruncate */ \
+ unixSync, /* xSync */ \
+ unixFileSize, /* xFileSize */ \
+ LOCK, /* xLock */ \
+ UNLOCK, /* xUnlock */ \
+ CKLOCK, /* xCheckReservedLock */ \
+ unixFileControl, /* xFileControl */ \
+ unixSectorSize, /* xSectorSize */ \
+ unixDeviceCharacteristics, /* xDeviceCapabilities */ \
+ SHMMAP, /* xShmMap */ \
+ unixShmLock, /* xShmLock */ \
+ unixShmBarrier, /* xShmBarrier */ \
+ unixShmUnmap, /* xShmUnmap */ \
+ unixFetch, /* xFetch */ \
+ unixUnfetch, /* xUnfetch */ \
+}; \
+static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
+ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
+ return &METHOD; \
+} \
+static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
+ = FINDER##Impl;
+
+/*
+** Here are all of the sqlite3_io_methods objects for each of the
+** locking strategies. Functions that return pointers to these methods
+** are also created.
+*/
+IOMETHODS(
+ posixIoFinder, /* Finder function name */
+ posixIoMethods, /* sqlite3_io_methods object name */
+ 3, /* shared memory and mmap are enabled */
+ unixClose, /* xClose method */
+ unixLock, /* xLock method */
+ unixUnlock, /* xUnlock method */
+ unixCheckReservedLock, /* xCheckReservedLock method */
+ unixShmMap /* xShmMap method */
+)
+IOMETHODS(
+ nolockIoFinder, /* Finder function name */
+ nolockIoMethods, /* sqlite3_io_methods object name */
+ 3, /* shared memory and mmap are enabled */
+ nolockClose, /* xClose method */
+ nolockLock, /* xLock method */
+ nolockUnlock, /* xUnlock method */
+ nolockCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+IOMETHODS(
+ dotlockIoFinder, /* Finder function name */
+ dotlockIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ dotlockClose, /* xClose method */
+ dotlockLock, /* xLock method */
+ dotlockUnlock, /* xUnlock method */
+ dotlockCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ flockIoFinder, /* Finder function name */
+ flockIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ flockClose, /* xClose method */
+ flockLock, /* xLock method */
+ flockUnlock, /* xUnlock method */
+ flockCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+#if OS_VXWORKS
+IOMETHODS(
+ semIoFinder, /* Finder function name */
+ semIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ semXClose, /* xClose method */
+ semXLock, /* xLock method */
+ semXUnlock, /* xUnlock method */
+ semXCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ afpIoFinder, /* Finder function name */
+ afpIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ afpClose, /* xClose method */
+ afpLock, /* xLock method */
+ afpUnlock, /* xUnlock method */
+ afpCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+/*
+** The proxy locking method is a "super-method" in the sense that it
+** opens secondary file descriptors for the conch and lock files and
+** it uses proxy, dot-file, AFP, and flock() locking methods on those
+** secondary files. For this reason, the division that implements
+** proxy locking is located much further down in the file. But we need
+** to go ahead and define the sqlite3_io_methods and finder function
+** for proxy locking here. So we forward declare the I/O methods.
+*/
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+static int proxyClose(sqlite3_file*);
+static int proxyLock(sqlite3_file*, int);
+static int proxyUnlock(sqlite3_file*, int);
+static int proxyCheckReservedLock(sqlite3_file*, int*);
+IOMETHODS(
+ proxyIoFinder, /* Finder function name */
+ proxyIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ proxyClose, /* xClose method */
+ proxyLock, /* xLock method */
+ proxyUnlock, /* xUnlock method */
+ proxyCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ nfsIoFinder, /* Finder function name */
+ nfsIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ unixClose, /* xClose method */
+ unixLock, /* xLock method */
+ nfsUnlock, /* xUnlock method */
+ unixCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+** This "finder" function attempts to determine the best locking strategy
+** for the database file "filePath". It then returns the sqlite3_io_methods
+** object that implements that strategy.
+**
+** This is for MacOSX only.
+*/
+static const sqlite3_io_methods *autolockIoFinderImpl(
+ const char *filePath, /* name of the database file */
+ unixFile *pNew /* open file object for the database file */
+){
+ static const struct Mapping {
+ const char *zFilesystem; /* Filesystem type name */
+ const sqlite3_io_methods *pMethods; /* Appropriate locking method */
+ } aMap[] = {
+ { "hfs", &posixIoMethods },
+ { "ufs", &posixIoMethods },
+ { "afpfs", &afpIoMethods },
+ { "smbfs", &afpIoMethods },
+ { "webdav", &nolockIoMethods },
+ { 0, 0 }
+ };
+ int i;
+ struct statfs fsInfo;
+ struct flock lockInfo;
+
+ if( !filePath ){
+ /* If filePath==NULL that means we are dealing with a transient file
+ ** that does not need to be locked. */
+ return &nolockIoMethods;
+ }
+ if( statfs(filePath, &fsInfo) != -1 ){
+ if( fsInfo.f_flags & MNT_RDONLY ){
+ return &nolockIoMethods;
+ }
+ for(i=0; aMap[i].zFilesystem; i++){
+ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
+ return aMap[i].pMethods;
+ }
+ }
+ }
+
+ /* Default case. Handles, amongst others, "nfs".
+ ** Test byte-range lock using fcntl(). If the call succeeds,
+ ** assume that the file-system supports POSIX style locks.
+ */
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+ if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
+ if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
+ return &nfsIoMethods;
+ } else {
+ return &posixIoMethods;
+ }
+ }else{
+ return &dotlockIoMethods;
+ }
+}
+static const sqlite3_io_methods
+ *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+
+#if OS_VXWORKS
+/*
+** This "finder" function for VxWorks checks to see if posix advisory
+** locking works. If it does, then that is what is used. If it does not
+** work, then fallback to named semaphore locking.
+*/
+static const sqlite3_io_methods *vxworksIoFinderImpl(
+ const char *filePath, /* name of the database file */
+ unixFile *pNew /* the open file object */
+){
+ struct flock lockInfo;
+
+ if( !filePath ){
+ /* If filePath==NULL that means we are dealing with a transient file
+ ** that does not need to be locked. */
+ return &nolockIoMethods;
+ }
+
+ /* Test if fcntl() is supported and use POSIX style locks.
+ ** Otherwise fall back to the named semaphore method.
+ */
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+ if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
+ return &posixIoMethods;
+ }else{
+ return &semIoMethods;
+ }
+}
+static const sqlite3_io_methods
+ *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;
+
+#endif /* OS_VXWORKS */
+
+/*
+** An abstract type for a pointer to an IO method finder function:
+*/
+typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
+
+
+/****************************************************************************
+**************************** sqlite3_vfs methods ****************************
+**
+** This division contains the implementation of methods on the
+** sqlite3_vfs object.
+*/
+
+/*
+** Initialize the contents of the unixFile structure pointed to by pId.
+*/
+static int fillInUnixFile(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ int h, /* Open file descriptor of file being opened */
+ sqlite3_file *pId, /* Write to the unixFile structure here */
+ const char *zFilename, /* Name of the file being opened */
+ int ctrlFlags /* Zero or more UNIXFILE_* values */
+){
+ const sqlite3_io_methods *pLockingStyle;
+ unixFile *pNew = (unixFile *)pId;
+ int rc = SQLITE_OK;
+
+ assert( pNew->pInode==NULL );
+
+ /* No locking occurs in temporary files */
+ assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
+
+ OSTRACE(("OPEN %-3d %s\n", h, zFilename));
+ pNew->h = h;
+ pNew->pVfs = pVfs;
+ pNew->zPath = zFilename;
+ pNew->ctrlFlags = (u8)ctrlFlags;
+#if SQLITE_MAX_MMAP_SIZE>0
+ pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
+#endif
+ if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
+ "psow", SQLITE_POWERSAFE_OVERWRITE) ){
+ pNew->ctrlFlags |= UNIXFILE_PSOW;
+ }
+ if( strcmp(pVfs->zName,"unix-excl")==0 ){
+ pNew->ctrlFlags |= UNIXFILE_EXCL;
+ }
+
+#if OS_VXWORKS
+ pNew->pId = vxworksFindFileId(zFilename);
+ if( pNew->pId==0 ){
+ ctrlFlags |= UNIXFILE_NOLOCK;
+ rc = SQLITE_NOMEM_BKPT;
+ }
+#endif
+
+ if( ctrlFlags & UNIXFILE_NOLOCK ){
+ pLockingStyle = &nolockIoMethods;
+ }else{
+ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
+#if SQLITE_ENABLE_LOCKING_STYLE
+ /* Cache zFilename in the locking context (AFP and dotlock override) for
+ ** proxyLock activation is possible (remote proxy is based on db name)
+ ** zFilename remains valid until file is closed, to support */
+ pNew->lockingContext = (void*)zFilename;
+#endif
+ }
+
+ if( pLockingStyle == &posixIoMethods
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+ || pLockingStyle == &nfsIoMethods
+#endif
+ ){
+ unixEnterMutex();
+ rc = findInodeInfo(pNew, &pNew->pInode);
+ if( rc!=SQLITE_OK ){
+ /* If an error occurred in findInodeInfo(), close the file descriptor
+ ** immediately, before releasing the mutex. findInodeInfo() may fail
+ ** in two scenarios:
+ **
+ ** (a) A call to fstat() failed.
+ ** (b) A malloc failed.
+ **
+ ** Scenario (b) may only occur if the process is holding no other
+ ** file descriptors open on the same file. If there were other file
+ ** descriptors on this file, then no malloc would be required by
+ ** findInodeInfo(). If this is the case, it is quite safe to close
+ ** handle h - as it is guaranteed that no posix locks will be released
+ ** by doing so.
+ **
+ ** If scenario (a) caused the error then things are not so safe. The
+ ** implicit assumption here is that if fstat() fails, things are in
+ ** such bad shape that dropping a lock or two doesn't matter much.
+ */
+ robust_close(pNew, h, __LINE__);
+ h = -1;
+ }
+ unixLeaveMutex();
+ }
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ else if( pLockingStyle == &afpIoMethods ){
+ /* AFP locking uses the file path so it needs to be included in
+ ** the afpLockingContext.
+ */
+ afpLockingContext *pCtx;
+ pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ /* NB: zFilename exists and remains valid until the file is closed
+ ** according to requirement F11141. So we do not need to make a
+ ** copy of the filename. */
+ pCtx->dbPath = zFilename;
+ pCtx->reserved = 0;
+ srandomdev();
+ unixEnterMutex();
+ rc = findInodeInfo(pNew, &pNew->pInode);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pNew->lockingContext);
+ robust_close(pNew, h, __LINE__);
+ h = -1;
+ }
+ unixLeaveMutex();
+ }
+ }
+#endif
+
+ else if( pLockingStyle == &dotlockIoMethods ){
+ /* Dotfile locking uses the file path so it needs to be included in
+ ** the dotlockLockingContext
+ */
+ char *zLockFile;
+ int nFilename;
+ assert( zFilename!=0 );
+ nFilename = (int)strlen(zFilename) + 6;
+ zLockFile = (char *)sqlite3_malloc64(nFilename);
+ if( zLockFile==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
+ }
+ pNew->lockingContext = zLockFile;
+ }
+
+#if OS_VXWORKS
+ else if( pLockingStyle == &semIoMethods ){
+ /* Named semaphore locking uses the file path so it needs to be
+ ** included in the semLockingContext
+ */
+ unixEnterMutex();
+ rc = findInodeInfo(pNew, &pNew->pInode);
+ if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
+ char *zSemName = pNew->pInode->aSemName;
+ int n;
+ sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
+ pNew->pId->zCanonicalName);
+ for( n=1; zSemName[n]; n++ )
+ if( zSemName[n]=='/' ) zSemName[n] = '_';
+ pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
+ if( pNew->pInode->pSem == SEM_FAILED ){
+ rc = SQLITE_NOMEM_BKPT;
+ pNew->pInode->aSemName[0] = '\0';
+ }
+ }
+ unixLeaveMutex();
+ }
+#endif
+
+ storeLastErrno(pNew, 0);
+#if OS_VXWORKS
+ if( rc!=SQLITE_OK ){
+ if( h>=0 ) robust_close(pNew, h, __LINE__);
+ h = -1;
+ osUnlink(zFilename);
+ pNew->ctrlFlags |= UNIXFILE_DELETE;
+ }
+#endif
+ if( rc!=SQLITE_OK ){
+ if( h>=0 ) robust_close(pNew, h, __LINE__);
+ }else{
+ pId->pMethods = pLockingStyle;
+ OpenCounter(+1);
+ verifyDbFile(pNew);
+ }
+ return rc;
+}
+
+/*
+** Directories to consider for temp files.
+*/
+static const char *azTempDirs[] = {
+ 0,
+ 0,
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ "."
+};
+
+/*
+** Initialize first two members of azTempDirs[] array.
+*/
+static void unixTempFileInit(void){
+ azTempDirs[0] = getenv("SQLITE_TMPDIR");
+ azTempDirs[1] = getenv("TMPDIR");
+}
+
+/*
+** Return the name of a directory in which to put temporary files.
+** If no suitable temporary file directory can be found, return NULL.
+*/
+static const char *unixTempFileDir(void){
+ unsigned int i = 0;
+ struct stat buf;
+ const char *zDir = sqlite3_temp_directory;
+
+ while(1){
+ if( zDir!=0
+ && osStat(zDir, &buf)==0
+ && S_ISDIR(buf.st_mode)
+ && osAccess(zDir, 03)==0
+ ){
+ return zDir;
+ }
+ if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break;
+ zDir = azTempDirs[i++];
+ }
+ return 0;
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be allocated
+** by the calling process and must be big enough to hold at least
+** pVfs->mxPathname bytes.
+*/
+static int unixGetTempname(int nBuf, char *zBuf){
+ const char *zDir;
+ int iLimit = 0;
+ int rc = SQLITE_OK;
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ zBuf[0] = 0;
+ SimulateIOError( return SQLITE_IOERR );
+
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ zDir = unixTempFileDir();
+ if( zDir==0 ){
+ rc = SQLITE_IOERR_GETTEMPPATH;
+ }else{
+ do{
+ u64 r;
+ sqlite3_randomness(sizeof(r), &r);
+ assert( nBuf>2 );
+ zBuf[nBuf-2] = 0;
+ sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
+ zDir, r, 0);
+ if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }while( osAccess(zBuf,0)==0 );
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ return rc;
+}
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+/*
+** Routine to transform a unixFile into a proxy-locking unixFile.
+** Implementation in the proxy-lock division, but used by unixOpen()
+** if SQLITE_PREFER_PROXY_LOCKING is defined.
+*/
+static int proxyTransformUnixFile(unixFile*, const char*);
+#endif
+
+/*
+** Search for an unused file descriptor that was opened on the database
+** file (not a journal or super-journal file) identified by pathname
+** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
+** argument to this function.
+**
+** Such a file descriptor may exist if a database connection was closed
+** but the associated file descriptor could not be closed because some
+** other file descriptor open on the same file is holding a file-lock.
+** Refer to comments in the unixClose() function and the lengthy comment
+** describing "Posix Advisory Locking" at the start of this file for
+** further details. Also, ticket #4018.
+**
+** If a suitable file descriptor is found, then it is returned. If no
+** such file descriptor is located, -1 is returned.
+*/
+static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
+ UnixUnusedFd *pUnused = 0;
+
+ /* Do not search for an unused file descriptor on vxworks. Not because
+ ** vxworks would not benefit from the change (it might, we're not sure),
+ ** but because no way to test it is currently available. It is better
+ ** not to risk breaking vxworks support for the sake of such an obscure
+ ** feature. */
+#if !OS_VXWORKS
+ struct stat sStat; /* Results of stat() call */
+
+ unixEnterMutex();
+
+ /* A stat() call may fail for various reasons. If this happens, it is
+ ** almost certain that an open() call on the same path will also fail.
+ ** For this reason, if an error occurs in the stat() call here, it is
+ ** ignored and -1 is returned. The caller will try to open a new file
+ ** descriptor on the same path, fail, and return an error to SQLite.
+ **
+ ** Even if a subsequent open() call does succeed, the consequences of
+ ** not searching for a reusable file descriptor are not dire. */
+ if( inodeList!=0 && 0==osStat(zPath, &sStat) ){
+ unixInodeInfo *pInode;
+
+ pInode = inodeList;
+ while( pInode && (pInode->fileId.dev!=sStat.st_dev
+ || pInode->fileId.ino!=(u64)sStat.st_ino) ){
+ pInode = pInode->pNext;
+ }
+ if( pInode ){
+ UnixUnusedFd **pp;
+ assert( sqlite3_mutex_notheld(pInode->pLockMutex) );
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
+ for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
+ pUnused = *pp;
+ if( pUnused ){
+ *pp = pUnused->pNext;
+ }
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ }
+ }
+ unixLeaveMutex();
+#endif /* if !OS_VXWORKS */
+ return pUnused;
+}
+
+/*
+** Find the mode, uid and gid of file zFile.
+*/
+static int getFileMode(
+ const char *zFile, /* File name */
+ mode_t *pMode, /* OUT: Permissions of zFile */
+ uid_t *pUid, /* OUT: uid of zFile. */
+ gid_t *pGid /* OUT: gid of zFile. */
+){
+ struct stat sStat; /* Output of stat() on database file */
+ int rc = SQLITE_OK;
+ if( 0==osStat(zFile, &sStat) ){
+ *pMode = sStat.st_mode & 0777;
+ *pUid = sStat.st_uid;
+ *pGid = sStat.st_gid;
+ }else{
+ rc = SQLITE_IOERR_FSTAT;
+ }
+ return rc;
+}
+
+/*
+** This function is called by unixOpen() to determine the unix permissions
+** to create new files with. If no error occurs, then SQLITE_OK is returned
+** and a value suitable for passing as the third argument to open(2) is
+** written to *pMode. If an IO error occurs, an SQLite error code is
+** returned and the value of *pMode is not modified.
+**
+** In most cases, this routine sets *pMode to 0, which will become
+** an indication to robust_open() to create the file using
+** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
+** But if the file being opened is a WAL or regular journal file, then
+** this function queries the file-system for the permissions on the
+** corresponding database file and sets *pMode to this value. Whenever
+** possible, WAL and journal files are created using the same permissions
+** as the associated database file.
+**
+** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
+** original filename is unavailable. But 8_3_NAMES is only used for
+** FAT filesystems and permissions do not matter there, so just use
+** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero.
+*/
+static int findCreateFileMode(
+ const char *zPath, /* Path of file (possibly) being created */
+ int flags, /* Flags passed as 4th argument to xOpen() */
+ mode_t *pMode, /* OUT: Permissions to open file with */
+ uid_t *pUid, /* OUT: uid to set on the file */
+ gid_t *pGid /* OUT: gid to set on the file */
+){
+ int rc = SQLITE_OK; /* Return Code */
+ *pMode = 0;
+ *pUid = 0;
+ *pGid = 0;
+ if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
+ char zDb[MAX_PATHNAME+1]; /* Database file path */
+ int nDb; /* Number of valid bytes in zDb */
+
+ /* zPath is a path to a WAL or journal file. The following block derives
+ ** the path to the associated database file from zPath. This block handles
+ ** the following naming conventions:
+ **
+ ** "<path to db>-journal"
+ ** "<path to db>-wal"
+ ** "<path to db>-journalNN"
+ ** "<path to db>-walNN"
+ **
+ ** where NN is a decimal number. The NN naming schemes are
+ ** used by the test_multiplex.c module.
+ **
+ ** In normal operation, the journal file name will always contain
+ ** a '-' character. However in 8+3 filename mode, or if a corrupt
+ ** rollback journal specifies a super-journal with a goofy name, then
+ ** the '-' might be missing or the '-' might be the first character in
+ ** the filename. In that case, just return SQLITE_OK with *pMode==0.
+ */
+ nDb = sqlite3Strlen30(zPath) - 1;
+ while( nDb>0 && zPath[nDb]!='.' ){
+ if( zPath[nDb]=='-' ){
+ memcpy(zDb, zPath, nDb);
+ zDb[nDb] = '\0';
+ rc = getFileMode(zDb, pMode, pUid, pGid);
+ break;
+ }
+ nDb--;
+ }
+ }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
+ *pMode = 0600;
+ }else if( flags & SQLITE_OPEN_URI ){
+ /* If this is a main database file and the file was opened using a URI
+ ** filename, check for the "modeof" parameter. If present, interpret
+ ** its value as a filename and try to copy the mode, uid and gid from
+ ** that file. */
+ const char *z = sqlite3_uri_parameter(zPath, "modeof");
+ if( z ){
+ rc = getFileMode(z, pMode, pUid, pGid);
+ }
+ }
+ return rc;
+}
+
+/*
+** Open the file zPath.
+**
+** Previously, the SQLite OS layer used three functions in place of this
+** one:
+**
+** sqlite3OsOpenReadWrite();
+** sqlite3OsOpenReadOnly();
+** sqlite3OsOpenExclusive();
+**
+** These calls correspond to the following combinations of flags:
+**
+** ReadWrite() -> (READWRITE | CREATE)
+** ReadOnly() -> (READONLY)
+** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
+**
+** The old OpenExclusive() accepted a boolean argument - "delFlag". If
+** true, the file was configured to be automatically deleted when the
+** file handle closed. To achieve the same effect using this new
+** interface, add the DELETEONCLOSE flag to those specified above for
+** OpenExclusive().
+*/
+static int unixOpen(
+ sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
+ const char *zPath, /* Pathname of file to be opened */
+ sqlite3_file *pFile, /* The file descriptor to be filled in */
+ int flags, /* Input flags to control the opening */
+ int *pOutFlags /* Output flags returned to SQLite core */
+){
+ unixFile *p = (unixFile *)pFile;
+ int fd = -1; /* File descriptor returned by open() */
+ int openFlags = 0; /* Flags to pass to open() */
+ int eType = flags&0x0FFF00; /* Type of file to open */
+ int noLock; /* True to omit locking primitives */
+ int rc = SQLITE_OK; /* Function Return Code */
+ int ctrlFlags = 0; /* UNIXFILE_* flags */
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+#if SQLITE_ENABLE_LOCKING_STYLE
+ int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
+#endif
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
+ struct statfs fsInfo;
+#endif
+
+ /* If creating a super- or main-file journal, this function will open
+ ** a file-descriptor on the directory too. The first time unixSync()
+ ** is called the directory file descriptor will be fsync()ed and close()d.
+ */
+ int isNewJrnl = (isCreate && (
+ eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_MAIN_JOURNAL
+ || eType==SQLITE_OPEN_WAL
+ ));
+
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char zTmpname[MAX_PATHNAME+2];
+ const char *zName = zPath;
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+ /* The main DB, main journal, WAL file and super-journal are never
+ ** automatically deleted. Nor are they ever temporary files. */
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
+ );
+
+ /* Detect a pid change and reset the PRNG. There is a race condition
+ ** here such that two or more threads all trying to open databases at
+ ** the same instant might all reset the PRNG. But multiple resets
+ ** are harmless.
+ */
+ if( randomnessPid!=osGetpid(0) ){
+ randomnessPid = osGetpid(0);
+ sqlite3_randomness(0,0);
+ }
+ memset(p, 0, sizeof(unixFile));
+
+#ifdef SQLITE_ASSERT_NO_FILES
+ /* Applications that never read or write a persistent disk files */
+ assert( zName==0 );
+#endif
+
+ if( eType==SQLITE_OPEN_MAIN_DB ){
+ UnixUnusedFd *pUnused;
+ pUnused = findReusableFd(zName, flags);
+ if( pUnused ){
+ fd = pUnused->fd;
+ }else{
+ pUnused = sqlite3_malloc64(sizeof(*pUnused));
+ if( !pUnused ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+ p->pPreallocatedUnused = pUnused;
+
+ /* Database filenames are double-zero terminated if they are not
+ ** URIs with parameters. Hence, they can always be passed into
+ ** sqlite3_uri_parameter(). */
+ assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
+
+ }else if( !zName ){
+ /* If zName is NULL, the upper layer is requesting a temp file. */
+ assert(isDelete && !isNewJrnl);
+ rc = unixGetTempname(pVfs->mxPathname, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zName = zTmpname;
+
+ /* Generated temporary filenames are always double-zero terminated
+ ** for use by sqlite3_uri_parameter(). */
+ assert( zName[strlen(zName)+1]==0 );
+ }
+
+ /* Determine the value of the flags parameter passed to POSIX function
+ ** open(). These must be calculated even if open() is not called, as
+ ** they may be stored as part of the file handle and used by the
+ ** 'conch file' locking functions later on. */
+ if( isReadonly ) openFlags |= O_RDONLY;
+ if( isReadWrite ) openFlags |= O_RDWR;
+ if( isCreate ) openFlags |= O_CREAT;
+ if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
+ openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW);
+
+ if( fd<0 ){
+ mode_t openMode; /* Permissions to create file with */
+ uid_t uid; /* Userid for the file */
+ gid_t gid; /* Groupid for the file */
+ rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
+ if( rc!=SQLITE_OK ){
+ assert( !p->pPreallocatedUnused );
+ assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
+ return rc;
+ }
+ fd = robust_open(zName, openFlags, openMode);
+ OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
+ assert( !isExclusive || (openFlags & O_CREAT)!=0 );
+ if( fd<0 ){
+ if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){
+ /* If unable to create a journal because the directory is not
+ ** writable, change the error code to indicate that. */
+ rc = SQLITE_READONLY_DIRECTORY;
+ }else if( errno!=EISDIR && isReadWrite ){
+ /* Failed to open the file for read/write access. Try read-only. */
+ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
+ openFlags &= ~(O_RDWR|O_CREAT);
+ flags |= SQLITE_OPEN_READONLY;
+ openFlags |= O_RDONLY;
+ isReadonly = 1;
+ fd = robust_open(zName, openFlags, openMode);
+ }
+ }
+ if( fd<0 ){
+ int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
+ if( rc==SQLITE_OK ) rc = rc2;
+ goto open_finished;
+ }
+
+ /* The owner of the rollback journal or WAL file should always be the
+ ** same as the owner of the database file. Try to ensure that this is
+ ** the case. The chown() system call will be a no-op if the current
+ ** process lacks root privileges, be we should at least try. Without
+ ** this step, if a root process opens a database file, it can leave
+ ** behinds a journal/WAL that is owned by root and hence make the
+ ** database inaccessible to unprivileged processes.
+ **
+ ** If openMode==0, then that means uid and gid are not set correctly
+ ** (probably because SQLite is configured to use 8+3 filename mode) and
+ ** in that case we do not want to attempt the chown().
+ */
+ if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){
+ robustFchown(fd, uid, gid);
+ }
+ }
+ assert( fd>=0 );
+ if( pOutFlags ){
+ *pOutFlags = flags;
+ }
+
+ if( p->pPreallocatedUnused ){
+ p->pPreallocatedUnused->fd = fd;
+ p->pPreallocatedUnused->flags =
+ flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
+ }
+
+ if( isDelete ){
+#if OS_VXWORKS
+ zPath = zName;
+#elif defined(SQLITE_UNLINK_AFTER_CLOSE)
+ zPath = sqlite3_mprintf("%s", zName);
+ if( zPath==0 ){
+ robust_close(p, fd, __LINE__);
+ return SQLITE_NOMEM_BKPT;
+ }
+#else
+ osUnlink(zName);
+#endif
+ }
+#if SQLITE_ENABLE_LOCKING_STYLE
+ else{
+ p->openFlags = openFlags;
+ }
+#endif
+
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
+ if( fstatfs(fd, &fsInfo) == -1 ){
+ storeLastErrno(p, errno);
+ robust_close(p, fd, __LINE__);
+ return SQLITE_IOERR_ACCESS;
+ }
+ if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
+ ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
+ }
+ if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
+ ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
+ }
+#endif
+
+ /* Set up appropriate ctrlFlags */
+ if( isDelete ) ctrlFlags |= UNIXFILE_DELETE;
+ if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY;
+ noLock = eType!=SQLITE_OPEN_MAIN_DB;
+ if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK;
+ if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC;
+ if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+#if SQLITE_PREFER_PROXY_LOCKING
+ isAutoProxy = 1;
+#endif
+ if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
+ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
+ int useProxy = 0;
+
+ /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
+ ** never use proxy, NULL means use proxy for non-local files only. */
+ if( envforce!=NULL ){
+ useProxy = atoi(envforce)>0;
+ }else{
+ useProxy = !(fsInfo.f_flags&MNT_LOCAL);
+ }
+ if( useProxy ){
+ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
+ if( rc==SQLITE_OK ){
+ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
+ if( rc!=SQLITE_OK ){
+ /* Use unixClose to clean up the resources added in fillInUnixFile
+ ** and clear all the structure's references. Specifically,
+ ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
+ */
+ unixClose(pFile);
+ return rc;
+ }
+ }
+ goto open_finished;
+ }
+ }
+#endif
+
+ assert( zPath==0 || zPath[0]=='/'
+ || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL
+ );
+ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
+
+open_finished:
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(p->pPreallocatedUnused);
+ }
+ return rc;
+}
+
+
+/*
+** Delete the file at zPath. If the dirSync argument is true, fsync()
+** the directory after deleting the file.
+*/
+static int unixDelete(
+ sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
+ const char *zPath, /* Name of file to be deleted */
+ int dirSync /* If true, fsync() directory after deleting file */
+){
+ int rc = SQLITE_OK;
+ UNUSED_PARAMETER(NotUsed);
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ if( osUnlink(zPath)==(-1) ){
+ if( errno==ENOENT
+#if OS_VXWORKS
+ || osAccess(zPath,0)!=0
+#endif
+ ){
+ rc = SQLITE_IOERR_DELETE_NOENT;
+ }else{
+ rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
+ }
+ return rc;
+ }
+#ifndef SQLITE_DISABLE_DIRSYNC
+ if( (dirSync & 1)!=0 ){
+ int fd;
+ rc = osOpenDirectory(zPath, &fd);
+ if( rc==SQLITE_OK ){
+ if( full_fsync(fd,0,0) ){
+ rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
+ }
+ robust_close(0, fd, __LINE__);
+ }else{
+ assert( rc==SQLITE_CANTOPEN );
+ rc = SQLITE_OK;
+ }
+ }
+#endif
+ return rc;
+}
+
+/*
+** Test the existence of or access permissions of file zPath. The
+** test performed depends on the value of flags:
+**
+** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
+** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
+** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
+**
+** Otherwise return 0.
+*/
+static int unixAccess(
+ sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
+ const char *zPath, /* Path of the file to examine */
+ int flags, /* What do we want to learn about the zPath file? */
+ int *pResOut /* Write result boolean here */
+){
+ UNUSED_PARAMETER(NotUsed);
+ SimulateIOError( return SQLITE_IOERR_ACCESS; );
+ assert( pResOut!=0 );
+
+ /* The spec says there are three possible values for flags. But only
+ ** two of them are actually used */
+ assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );
+
+ if( flags==SQLITE_ACCESS_EXISTS ){
+ struct stat buf;
+ *pResOut = 0==osStat(zPath, &buf) &&
+ (!S_ISREG(buf.st_mode) || buf.st_size>0);
+ }else{
+ *pResOut = osAccess(zPath, W_OK|R_OK)==0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** A pathname under construction
+*/
+typedef struct DbPath DbPath;
+struct DbPath {
+ int rc; /* Non-zero following any error */
+ int nSymlink; /* Number of symlinks resolved */
+ char *zOut; /* Write the pathname here */
+ int nOut; /* Bytes of space available to zOut[] */
+ int nUsed; /* Bytes of zOut[] currently being used */
+};
+
+/* Forward reference */
+static void appendAllPathElements(DbPath*,const char*);
+
+/*
+** Append a single path element to the DbPath under construction
+*/
+static void appendOnePathElement(
+ DbPath *pPath, /* Path under construction, to which to append zName */
+ const char *zName, /* Name to append to pPath. Not zero-terminated */
+ int nName /* Number of significant bytes in zName */
+){
+ assert( nName>0 );
+ assert( zName!=0 );
+ if( zName[0]=='.' ){
+ if( nName==1 ) return;
+ if( zName[1]=='.' && nName==2 ){
+ if( pPath->nUsed<=1 ){
+ pPath->rc = SQLITE_ERROR;
+ return;
+ }
+ assert( pPath->zOut[0]=='/' );
+ while( pPath->zOut[--pPath->nUsed]!='/' ){}
+ return;
+ }
+ }
+ if( pPath->nUsed + nName + 2 >= pPath->nOut ){
+ pPath->rc = SQLITE_ERROR;
+ return;
+ }
+ pPath->zOut[pPath->nUsed++] = '/';
+ memcpy(&pPath->zOut[pPath->nUsed], zName, nName);
+ pPath->nUsed += nName;
+#if defined(HAVE_READLINK) && defined(HAVE_LSTAT)
+ if( pPath->rc==SQLITE_OK ){
+ const char *zIn;
+ struct stat buf;
+ pPath->zOut[pPath->nUsed] = 0;
+ zIn = pPath->zOut;
+ if( osLstat(zIn, &buf)!=0 ){
+ if( errno!=ENOENT ){
+ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
+ }
+ }else if( S_ISLNK(buf.st_mode) ){
+ ssize_t got;
+ char zLnk[SQLITE_MAX_PATHLEN+2];
+ if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){
+ pPath->rc = SQLITE_CANTOPEN_BKPT;
+ return;
+ }
+ got = osReadlink(zIn, zLnk, sizeof(zLnk)-2);
+ if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){
+ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
+ return;
+ }
+ zLnk[got] = 0;
+ if( zLnk[0]=='/' ){
+ pPath->nUsed = 0;
+ }else{
+ pPath->nUsed -= nName + 1;
+ }
+ appendAllPathElements(pPath, zLnk);
+ }
+ }
+#endif
+}
+
+/*
+** Append all path elements in zPath to the DbPath under construction.
+*/
+static void appendAllPathElements(
+ DbPath *pPath, /* Path under construction, to which to append zName */
+ const char *zPath /* Path to append to pPath. Is zero-terminated */
+){
+ int i = 0;
+ int j = 0;
+ do{
+ while( zPath[i] && zPath[i]!='/' ){ i++; }
+ if( i>j ){
+ appendOnePathElement(pPath, &zPath[j], i-j);
+ }
+ j = i+1;
+ }while( zPath[i++] );
+}
+
+/*
+** Turn a relative pathname into a full pathname. The relative path
+** is stored as a nul-terminated string in the buffer pointed to by
+** zPath.
+**
+** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
+** (in this case, MAX_PATHNAME bytes). The full-path is written to
+** this buffer before returning.
+*/
+static int unixFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zPath, /* Possibly relative input path */
+ int nOut, /* Size of output buffer in bytes */
+ char *zOut /* Output buffer */
+){
+ DbPath path;
+ UNUSED_PARAMETER(pVfs);
+ path.rc = 0;
+ path.nUsed = 0;
+ path.nSymlink = 0;
+ path.nOut = nOut;
+ path.zOut = zOut;
+ if( zPath[0]!='/' ){
+ char zPwd[SQLITE_MAX_PATHLEN+2];
+ if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){
+ return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
+ }
+ appendAllPathElements(&path, zPwd);
+ }
+ appendAllPathElements(&path, zPath);
+ zOut[path.nUsed] = 0;
+ if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT;
+ if( path.nSymlink ) return SQLITE_OK_SYMLINK;
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+#include <dlfcn.h>
+static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
+ UNUSED_PARAMETER(NotUsed);
+ return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
+}
+
+/*
+** SQLite calls this function immediately after a call to unixDlSym() or
+** unixDlOpen() fails (returns a null pointer). If a more detailed error
+** message is available, it is written to zBufOut. If no error message
+** is available, zBufOut is left unmodified and SQLite uses a default
+** error message.
+*/
+static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
+ const char *zErr;
+ UNUSED_PARAMETER(NotUsed);
+ unixEnterMutex();
+ zErr = dlerror();
+ if( zErr ){
+ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
+ }
+ unixLeaveMutex();
+}
+static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
+ /*
+ ** GCC with -pedantic-errors says that C90 does not allow a void* to be
+ ** cast into a pointer to a function. And yet the library dlsym() routine
+ ** returns a void* which is really a pointer to a function. So how do we
+ ** use dlsym() with -pedantic-errors?
+ **
+ ** Variable x below is defined to be a pointer to a function taking
+ ** parameters void* and const char* and returning a pointer to a function.
+ ** We initialize x by assigning it a pointer to the dlsym() function.
+ ** (That assignment requires a cast.) Then we call the function that
+ ** x points to.
+ **
+ ** This work-around is unlikely to work correctly on any system where
+ ** you really cannot cast a function pointer into void*. But then, on the
+ ** other hand, dlsym() will not work on such a system either, so we have
+ ** not really lost anything.
+ */
+ void (*(*x)(void*,const char*))(void);
+ UNUSED_PARAMETER(NotUsed);
+ x = (void(*(*)(void*,const char*))(void))dlsym;
+ return (*x)(p, zSym);
+}
+static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
+ UNUSED_PARAMETER(NotUsed);
+ dlclose(pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define unixDlOpen 0
+ #define unixDlError 0
+ #define unixDlSym 0
+ #define unixDlClose 0
+#endif
+
+/*
+** Write nBuf bytes of random data to the supplied buffer zBuf.
+*/
+static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
+ UNUSED_PARAMETER(NotUsed);
+ assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
+
+ /* We have to initialize zBuf to prevent valgrind from reporting
+ ** errors. The reports issued by valgrind are incorrect - we would
+ ** prefer that the randomness be increased by making use of the
+ ** uninitialized space in zBuf - but valgrind errors tend to worry
+ ** some users. Rather than argue, it seems easier just to initialize
+ ** the whole array and silence valgrind, even if that means less randomness
+ ** in the random seed.
+ **
+ ** When testing, initializing zBuf[] to zero is all we do. That means
+ ** that we always use the same random number sequence. This makes the
+ ** tests repeatable.
+ */
+ memset(zBuf, 0, nBuf);
+ randomnessPid = osGetpid(0);
+#if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
+ {
+ int fd, got;
+ fd = robust_open("/dev/urandom", O_RDONLY, 0);
+ if( fd<0 ){
+ time_t t;
+ time(&t);
+ memcpy(zBuf, &t, sizeof(t));
+ memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
+ assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
+ nBuf = sizeof(t) + sizeof(randomnessPid);
+ }else{
+ do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
+ robust_close(0, fd, __LINE__);
+ }
+ }
+#endif
+ return nBuf;
+}
+
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+** The argument is the number of microseconds we want to sleep.
+** The return value is the number of microseconds of sleep actually
+** requested from the underlying operating system, a number which
+** might be greater than or equal to the argument, but not less
+** than the argument.
+*/
+static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
+#if OS_VXWORKS
+ struct timespec sp;
+
+ sp.tv_sec = microseconds / 1000000;
+ sp.tv_nsec = (microseconds % 1000000) * 1000;
+ nanosleep(&sp, NULL);
+ UNUSED_PARAMETER(NotUsed);
+ return microseconds;
+#elif defined(HAVE_USLEEP) && HAVE_USLEEP
+ if( microseconds>=1000000 ) sleep(microseconds/1000000);
+ if( microseconds%1000000 ) usleep(microseconds%1000000);
+ UNUSED_PARAMETER(NotUsed);
+ return microseconds;
+#else
+ int seconds = (microseconds+999999)/1000000;
+ sleep(seconds);
+ UNUSED_PARAMETER(NotUsed);
+ return seconds*1000000;
+#endif
+}
+
+/*
+** The following variable, if set to a non-zero value, is interpreted as
+** the number of seconds since 1970 and is used to set the result of
+** sqlite3OsCurrentTime() during testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write into *piNow
+** the current time and date as a Julian Day number times 86_400_000. In
+** other words, write into *piNow the number of milliseconds since the Julian
+** epoch of noon in Greenwich on November 24, 4714 B.C according to the
+** proleptic Gregorian calendar.
+**
+** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
+** cannot be found.
+*/
+static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
+ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
+ int rc = SQLITE_OK;
+#if defined(NO_GETTOD)
+ time_t t;
+ time(&t);
+ *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
+#elif OS_VXWORKS
+ struct timespec sNow;
+ clock_gettime(CLOCK_REALTIME, &sNow);
+ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
+#else
+ struct timeval sNow;
+ (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */
+ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
+#endif
+
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
+ }
+#endif
+ UNUSED_PARAMETER(NotUsed);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
+ sqlite3_int64 i = 0;
+ int rc;
+ UNUSED_PARAMETER(NotUsed);
+ rc = unixCurrentTimeInt64(0, &i);
+ *prNow = i/86400000.0;
+ return rc;
+}
+#else
+# define unixCurrentTime 0
+#endif
+
+/*
+** The xGetLastError() method is designed to return a better
+** low-level error message when operating-system problems come up
+** during SQLite operation. Only the integer return code is currently
+** used.
+*/
+static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
+ UNUSED_PARAMETER(NotUsed);
+ UNUSED_PARAMETER(NotUsed2);
+ UNUSED_PARAMETER(NotUsed3);
+ return errno;
+}
+
+
+/*
+************************ End of sqlite3_vfs methods ***************************
+******************************************************************************/
+
+/******************************************************************************
+************************** Begin Proxy Locking ********************************
+**
+** Proxy locking is a "uber-locking-method" in this sense: It uses the
+** other locking methods on secondary lock files. Proxy locking is a
+** meta-layer over top of the primitive locking implemented above. For
+** this reason, the division that implements of proxy locking is deferred
+** until late in the file (here) after all of the other I/O methods have
+** been defined - so that the primitive locking methods are available
+** as services to help with the implementation of proxy locking.
+**
+****
+**
+** The default locking schemes in SQLite use byte-range locks on the
+** database file to coordinate safe, concurrent access by multiple readers
+** and writers [http://sqlite.org/lockingv3.html]. The five file locking
+** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
+** as POSIX read & write locks over fixed set of locations (via fsctl),
+** on AFP and SMB only exclusive byte-range locks are available via fsctl
+** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
+** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
+** address in the shared range is taken for a SHARED lock, the entire
+** shared range is taken for an EXCLUSIVE lock):
+**
+** PENDING_BYTE 0x40000000
+** RESERVED_BYTE 0x40000001
+** SHARED_RANGE 0x40000002 -> 0x40000200
+**
+** This works well on the local file system, but shows a nearly 100x
+** slowdown in read performance on AFP because the AFP client disables
+** the read cache when byte-range locks are present. Enabling the read
+** cache exposes a cache coherency problem that is present on all OS X
+** supported network file systems. NFS and AFP both observe the
+** close-to-open semantics for ensuring cache coherency
+** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
+** address the requirements for concurrent database access by multiple
+** readers and writers
+** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
+**
+** To address the performance and cache coherency issues, proxy file locking
+** changes the way database access is controlled by limiting access to a
+** single host at a time and moving file locks off of the database file
+** and onto a proxy file on the local file system.
+**
+**
+** Using proxy locks
+** -----------------
+**
+** C APIs
+**
+** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
+** <proxy_path> | ":auto:");
+** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
+** &<proxy_path>);
+**
+**
+** SQL pragmas
+**
+** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
+** PRAGMA [database.]lock_proxy_file
+**
+** Specifying ":auto:" means that if there is a conch file with a matching
+** host ID in it, the proxy path in the conch file will be used, otherwise
+** a proxy path based on the user's temp dir
+** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
+** actual proxy file name is generated from the name and path of the
+** database file. For example:
+**
+** For database path "/Users/me/foo.db"
+** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
+**
+** Once a lock proxy is configured for a database connection, it can not
+** be removed, however it may be switched to a different proxy path via
+** the above APIs (assuming the conch file is not being held by another
+** connection or process).
+**
+**
+** How proxy locking works
+** -----------------------
+**
+** Proxy file locking relies primarily on two new supporting files:
+**
+** * conch file to limit access to the database file to a single host
+** at a time
+**
+** * proxy file to act as a proxy for the advisory locks normally
+** taken on the database
+**
+** The conch file - to use a proxy file, sqlite must first "hold the conch"
+** by taking an sqlite-style shared lock on the conch file, reading the
+** contents and comparing the host's unique host ID (see below) and lock
+** proxy path against the values stored in the conch. The conch file is
+** stored in the same directory as the database file and the file name
+** is patterned after the database file name as ".<databasename>-conch".
+** If the conch file does not exist, or its contents do not match the
+** host ID and/or proxy path, then the lock is escalated to an exclusive
+** lock and the conch file contents is updated with the host ID and proxy
+** path and the lock is downgraded to a shared lock again. If the conch
+** is held by another process (with a shared lock), the exclusive lock
+** will fail and SQLITE_BUSY is returned.
+**
+** The proxy file - a single-byte file used for all advisory file locks
+** normally taken on the database file. This allows for safe sharing
+** of the database file for multiple readers and writers on the same
+** host (the conch ensures that they all use the same local lock file).
+**
+** Requesting the lock proxy does not immediately take the conch, it is
+** only taken when the first request to lock database file is made.
+** This matches the semantics of the traditional locking behavior, where
+** opening a connection to a database file does not take a lock on it.
+** The shared lock and an open file descriptor are maintained until
+** the connection to the database is closed.
+**
+** The proxy file and the lock file are never deleted so they only need
+** to be created the first time they are used.
+**
+** Configuration options
+** ---------------------
+**
+** SQLITE_PREFER_PROXY_LOCKING
+**
+** Database files accessed on non-local file systems are
+** automatically configured for proxy locking, lock files are
+** named automatically using the same logic as
+** PRAGMA lock_proxy_file=":auto:"
+**
+** SQLITE_PROXY_DEBUG
+**
+** Enables the logging of error messages during host id file
+** retrieval and creation
+**
+** LOCKPROXYDIR
+**
+** Overrides the default directory used for lock proxy files that
+** are named automatically via the ":auto:" setting
+**
+** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+**
+** Permissions to use when creating a directory for storing the
+** lock proxy files, only used when LOCKPROXYDIR is not set.
+**
+**
+** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
+** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
+** force proxy locking to be used for every database file opened, and 0
+** will force automatic proxy locking to be disabled for all database
+** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
+** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
+*/
+
+/*
+** Proxy locking is only available on MacOSX
+*/
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+
+/*
+** The proxyLockingContext has the path and file structures for the remote
+** and local proxy files in it
+*/
+typedef struct proxyLockingContext proxyLockingContext;
+struct proxyLockingContext {
+ unixFile *conchFile; /* Open conch file */
+ char *conchFilePath; /* Name of the conch file */
+ unixFile *lockProxy; /* Open proxy lock file */
+ char *lockProxyPath; /* Name of the proxy lock file */
+ char *dbPath; /* Name of the open file */
+ int conchHeld; /* 1 if the conch is held, -1 if lockless */
+ int nFails; /* Number of conch taking failures */
+ void *oldLockingContext; /* Original lockingcontext to restore on close */
+ sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
+};
+
+/*
+** The proxy lock file path for the database at dbPath is written into lPath,
+** which must point to valid, writable memory large enough for a maxLen length
+** file path.
+*/
+static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
+ int len;
+ int dbLen;
+ int i;
+
+#ifdef LOCKPROXYDIR
+ len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
+#else
+# ifdef _CS_DARWIN_USER_TEMP_DIR
+ {
+ if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
+ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
+ lPath, errno, osGetpid(0)));
+ return SQLITE_IOERR_LOCK;
+ }
+ len = strlcat(lPath, "sqliteplocks", maxLen);
+ }
+# else
+ len = strlcpy(lPath, "/tmp/", maxLen);
+# endif
+#endif
+
+ if( lPath[len-1]!='/' ){
+ len = strlcat(lPath, "/", maxLen);
+ }
+
+ /* transform the db path to a unique cache name */
+ dbLen = (int)strlen(dbPath);
+ for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
+ char c = dbPath[i];
+ lPath[i+len] = (c=='/')?'_':c;
+ }
+ lPath[i+len]='\0';
+ strlcat(lPath, ":auto:", maxLen);
+ OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
+ return SQLITE_OK;
+}
+
+/*
+ ** Creates the lock file and any missing directories in lockPath
+ */
+static int proxyCreateLockPath(const char *lockPath){
+ int i, len;
+ char buf[MAXPATHLEN];
+ int start = 0;
+
+ assert(lockPath!=NULL);
+ /* try to create all the intermediate directories */
+ len = (int)strlen(lockPath);
+ buf[0] = lockPath[0];
+ for( i=1; i<len; i++ ){
+ if( lockPath[i] == '/' && (i - start > 0) ){
+ /* only mkdir if leaf dir != "." or "/" or ".." */
+ if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
+ || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
+ buf[i]='\0';
+ if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
+ int err=errno;
+ if( err!=EEXIST ) {
+ OSTRACE(("CREATELOCKPATH FAILED creating %s, "
+ "'%s' proxy lock path=%s pid=%d\n",
+ buf, strerror(err), lockPath, osGetpid(0)));
+ return err;
+ }
+ }
+ }
+ start=i+1;
+ }
+ buf[i] = lockPath[i];
+ }
+ OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
+ return 0;
+}
+
+/*
+** Create a new VFS file descriptor (stored in memory obtained from
+** sqlite3_malloc) and open the file named "path" in the file descriptor.
+**
+** The caller is responsible not only for closing the file descriptor
+** but also for freeing the memory associated with the file descriptor.
+*/
+static int proxyCreateUnixFile(
+ const char *path, /* path for the new unixFile */
+ unixFile **ppFile, /* unixFile created and returned by ref */
+ int islockfile /* if non zero missing dirs will be created */
+) {
+ int fd = -1;
+ unixFile *pNew;
+ int rc = SQLITE_OK;
+ int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW;
+ sqlite3_vfs dummyVfs;
+ int terrno = 0;
+ UnixUnusedFd *pUnused = NULL;
+
+ /* 1. first try to open/create the file
+ ** 2. if that fails, and this is a lock file (not-conch), try creating
+ ** the parent directories and then try again.
+ ** 3. if that fails, try to open the file read-only
+ ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
+ */
+ pUnused = findReusableFd(path, openFlags);
+ if( pUnused ){
+ fd = pUnused->fd;
+ }else{
+ pUnused = sqlite3_malloc64(sizeof(*pUnused));
+ if( !pUnused ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+ if( fd<0 ){
+ fd = robust_open(path, openFlags, 0);
+ terrno = errno;
+ if( fd<0 && errno==ENOENT && islockfile ){
+ if( proxyCreateLockPath(path) == SQLITE_OK ){
+ fd = robust_open(path, openFlags, 0);
+ }
+ }
+ }
+ if( fd<0 ){
+ openFlags = O_RDONLY | O_NOFOLLOW;
+ fd = robust_open(path, openFlags, 0);
+ terrno = errno;
+ }
+ if( fd<0 ){
+ if( islockfile ){
+ return SQLITE_BUSY;
+ }
+ switch (terrno) {
+ case EACCES:
+ return SQLITE_PERM;
+ case EIO:
+ return SQLITE_IOERR_LOCK; /* even though it is the conch */
+ default:
+ return SQLITE_CANTOPEN_BKPT;
+ }
+ }
+
+ pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew));
+ if( pNew==NULL ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto end_create_proxy;
+ }
+ memset(pNew, 0, sizeof(unixFile));
+ pNew->openFlags = openFlags;
+ memset(&dummyVfs, 0, sizeof(dummyVfs));
+ dummyVfs.pAppData = (void*)&autolockIoFinder;
+ dummyVfs.zName = "dummy";
+ pUnused->fd = fd;
+ pUnused->flags = openFlags;
+ pNew->pPreallocatedUnused = pUnused;
+
+ rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
+ if( rc==SQLITE_OK ){
+ *ppFile = pNew;
+ return SQLITE_OK;
+ }
+end_create_proxy:
+ robust_close(pNew, fd, __LINE__);
+ sqlite3_free(pNew);
+ sqlite3_free(pUnused);
+ return rc;
+}
+
+#ifdef SQLITE_TEST
+/* simulate multiple hosts by creating unique hostid file paths */
+SQLITE_API int sqlite3_hostid_num = 0;
+#endif
+
+#define PROXY_HOSTIDLEN 16 /* conch file host id length */
+
+#if HAVE_GETHOSTUUID
+/* Not always defined in the headers as it ought to be */
+extern int gethostuuid(uuid_t id, const struct timespec *wait);
+#endif
+
+/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
+** bytes of writable memory.
+*/
+static int proxyGetHostID(unsigned char *pHostID, int *pError){
+ assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
+ memset(pHostID, 0, PROXY_HOSTIDLEN);
+#if HAVE_GETHOSTUUID
+ {
+ struct timespec timeout = {1, 0}; /* 1 sec timeout */
+ if( gethostuuid(pHostID, &timeout) ){
+ int err = errno;
+ if( pError ){
+ *pError = err;
+ }
+ return SQLITE_IOERR;
+ }
+ }
+#else
+ UNUSED_PARAMETER(pError);
+#endif
+#ifdef SQLITE_TEST
+ /* simulate multiple hosts by creating unique hostid file paths */
+ if( sqlite3_hostid_num != 0){
+ pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+/* The conch file contains the header, host id and lock file path
+ */
+#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
+#define PROXY_HEADERLEN 1 /* conch file header length */
+#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
+#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
+
+/*
+** Takes an open conch file, copies the contents to a new path and then moves
+** it back. The newly created file's file descriptor is assigned to the
+** conch file structure and finally the original conch file descriptor is
+** closed. Returns zero if successful.
+*/
+static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *conchFile = pCtx->conchFile;
+ char tPath[MAXPATHLEN];
+ char buf[PROXY_MAXCONCHLEN];
+ char *cPath = pCtx->conchFilePath;
+ size_t readLen = 0;
+ size_t pathLen = 0;
+ char errmsg[64] = "";
+ int fd = -1;
+ int rc = -1;
+ UNUSED_PARAMETER(myHostID);
+
+ /* create a new path by replace the trailing '-conch' with '-break' */
+ pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
+ if( pathLen>MAXPATHLEN || pathLen<6 ||
+ (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
+ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
+ goto end_breaklock;
+ }
+ /* read the conch content */
+ readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
+ if( readLen<PROXY_PATHINDEX ){
+ sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
+ goto end_breaklock;
+ }
+ /* write it out to the temporary break file */
+ fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW), 0);
+ if( fd<0 ){
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
+ goto end_breaklock;
+ }
+ if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
+ goto end_breaklock;
+ }
+ if( rename(tPath, cPath) ){
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
+ goto end_breaklock;
+ }
+ rc = 0;
+ fprintf(stderr, "broke stale lock on %s\n", cPath);
+ robust_close(pFile, conchFile->h, __LINE__);
+ conchFile->h = fd;
+ conchFile->openFlags = O_RDWR | O_CREAT;
+
+end_breaklock:
+ if( rc ){
+ if( fd>=0 ){
+ osUnlink(tPath);
+ robust_close(pFile, fd, __LINE__);
+ }
+ fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
+ }
+ return rc;
+}
+
+/* Take the requested lock on the conch file and break a stale lock if the
+** host id matches.
+*/
+static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *conchFile = pCtx->conchFile;
+ int rc = SQLITE_OK;
+ int nTries = 0;
+ struct timespec conchModTime;
+
+ memset(&conchModTime, 0, sizeof(conchModTime));
+ do {
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
+ nTries ++;
+ if( rc==SQLITE_BUSY ){
+ /* If the lock failed (busy):
+ * 1st try: get the mod time of the conch, wait 0.5s and try again.
+ * 2nd try: fail if the mod time changed or host id is different, wait
+ * 10 sec and try again
+ * 3rd try: break the lock unless the mod time has changed.
+ */
+ struct stat buf;
+ if( osFstat(conchFile->h, &buf) ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR_LOCK;
+ }
+
+ if( nTries==1 ){
+ conchModTime = buf.st_mtimespec;
+ unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/
+ continue;
+ }
+
+ assert( nTries>1 );
+ if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
+ conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
+ return SQLITE_BUSY;
+ }
+
+ if( nTries==2 ){
+ char tBuf[PROXY_MAXCONCHLEN];
+ int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
+ if( len<0 ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR_LOCK;
+ }
+ if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
+ /* don't break the lock if the host id doesn't match */
+ if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
+ return SQLITE_BUSY;
+ }
+ }else{
+ /* don't break the lock on short read or a version mismatch */
+ return SQLITE_BUSY;
+ }
+ unixSleep(0,10000000); /* wait 10 sec and try the lock again */
+ continue;
+ }
+
+ assert( nTries==3 );
+ if( 0==proxyBreakConchLock(pFile, myHostID) ){
+ rc = SQLITE_OK;
+ if( lockType==EXCLUSIVE_LOCK ){
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
+ }
+ if( !rc ){
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
+ }
+ }
+ }
+ } while( rc==SQLITE_BUSY && nTries<3 );
+
+ return rc;
+}
+
+/* Takes the conch by taking a shared lock and read the contents conch, if
+** lockPath is non-NULL, the host ID and lock file path must match. A NULL
+** lockPath means that the lockPath in the conch file will be used if the
+** host IDs match, or a new lock path will be generated automatically
+** and written to the conch file.
+*/
+static int proxyTakeConch(unixFile *pFile){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+
+ if( pCtx->conchHeld!=0 ){
+ return SQLITE_OK;
+ }else{
+ unixFile *conchFile = pCtx->conchFile;
+ uuid_t myHostID;
+ int pError = 0;
+ char readBuf[PROXY_MAXCONCHLEN];
+ char lockPath[MAXPATHLEN];
+ char *tempLockPath = NULL;
+ int rc = SQLITE_OK;
+ int createConch = 0;
+ int hostIdMatch = 0;
+ int readLen = 0;
+ int tryOldLockPath = 0;
+ int forceNewLockPath = 0;
+
+ OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
+ osGetpid(0)));
+
+ rc = proxyGetHostID(myHostID, &pError);
+ if( (rc&0xff)==SQLITE_IOERR ){
+ storeLastErrno(pFile, pError);
+ goto end_takeconch;
+ }
+ rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ goto end_takeconch;
+ }
+ /* read the existing conch file */
+ readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
+ if( readLen<0 ){
+ /* I/O error: lastErrno set by seekAndRead */
+ storeLastErrno(pFile, conchFile->lastErrno);
+ rc = SQLITE_IOERR_READ;
+ goto end_takeconch;
+ }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
+ readBuf[0]!=(char)PROXY_CONCHVERSION ){
+ /* a short read or version format mismatch means we need to create a new
+ ** conch file.
+ */
+ createConch = 1;
+ }
+ /* if the host id matches and the lock path already exists in the conch
+ ** we'll try to use the path there, if we can't open that path, we'll
+ ** retry with a new auto-generated path
+ */
+ do { /* in case we need to try again for an :auto: named lock file */
+
+ if( !createConch && !forceNewLockPath ){
+ hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
+ PROXY_HOSTIDLEN);
+ /* if the conch has data compare the contents */
+ if( !pCtx->lockProxyPath ){
+ /* for auto-named local lock file, just check the host ID and we'll
+ ** use the local lock file path that's already in there
+ */
+ if( hostIdMatch ){
+ size_t pathLen = (readLen - PROXY_PATHINDEX);
+
+ if( pathLen>=MAXPATHLEN ){
+ pathLen=MAXPATHLEN-1;
+ }
+ memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
+ lockPath[pathLen] = 0;
+ tempLockPath = lockPath;
+ tryOldLockPath = 1;
+ /* create a copy of the lock path if the conch is taken */
+ goto end_takeconch;
+ }
+ }else if( hostIdMatch
+ && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
+ readLen-PROXY_PATHINDEX)
+ ){
+ /* conch host and lock path match */
+ goto end_takeconch;
+ }
+ }
+
+ /* if the conch isn't writable and doesn't match, we can't take it */
+ if( (conchFile->openFlags&O_RDWR) == 0 ){
+ rc = SQLITE_BUSY;
+ goto end_takeconch;
+ }
+
+ /* either the conch didn't match or we need to create a new one */
+ if( !pCtx->lockProxyPath ){
+ proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
+ tempLockPath = lockPath;
+ /* create a copy of the lock path _only_ if the conch is taken */
+ }
+
+ /* update conch with host and path (this will fail if other process
+ ** has a shared lock already), if the host id matches, use the big
+ ** stick.
+ */
+ futimes(conchFile->h, NULL);
+ if( hostIdMatch && !createConch ){
+ if( conchFile->pInode && conchFile->pInode->nShared>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ } else {
+ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
+ }
+ }else{
+ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
+ }
+ if( rc==SQLITE_OK ){
+ char writeBuffer[PROXY_MAXCONCHLEN];
+ int writeSize = 0;
+
+ writeBuffer[0] = (char)PROXY_CONCHVERSION;
+ memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
+ if( pCtx->lockProxyPath!=NULL ){
+ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
+ MAXPATHLEN);
+ }else{
+ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
+ }
+ writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
+ robust_ftruncate(conchFile->h, writeSize);
+ rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
+ full_fsync(conchFile->h,0,0);
+ /* If we created a new conch file (not just updated the contents of a
+ ** valid conch file), try to match the permissions of the database
+ */
+ if( rc==SQLITE_OK && createConch ){
+ struct stat buf;
+ int err = osFstat(pFile->h, &buf);
+ if( err==0 ){
+ mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
+ S_IROTH|S_IWOTH);
+ /* try to match the database file R/W permissions, ignore failure */
+#ifndef SQLITE_PROXY_DEBUG
+ osFchmod(conchFile->h, cmode);
+#else
+ do{
+ rc = osFchmod(conchFile->h, cmode);
+ }while( rc==(-1) && errno==EINTR );
+ if( rc!=0 ){
+ int code = errno;
+ fprintf(stderr, "fchmod %o FAILED with %d %s\n",
+ cmode, code, strerror(code));
+ } else {
+ fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
+ }
+ }else{
+ int code = errno;
+ fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
+ err, code, strerror(code));
+#endif
+ }
+ }
+ }
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
+
+ end_takeconch:
+ OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
+ if( rc==SQLITE_OK && pFile->openFlags ){
+ int fd;
+ if( pFile->h>=0 ){
+ robust_close(pFile, pFile->h, __LINE__);
+ }
+ pFile->h = -1;
+ fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
+ OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
+ if( fd>=0 ){
+ pFile->h = fd;
+ }else{
+ rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
+ during locking */
+ }
+ }
+ if( rc==SQLITE_OK && !pCtx->lockProxy ){
+ char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
+ rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
+ /* we couldn't create the proxy lock file with the old lock file path
+ ** so try again via auto-naming
+ */
+ forceNewLockPath = 1;
+ tryOldLockPath = 0;
+ continue; /* go back to the do {} while start point, try again */
+ }
+ }
+ if( rc==SQLITE_OK ){
+ /* Need to make a copy of path if we extracted the value
+ ** from the conch file or the path was allocated on the stack
+ */
+ if( tempLockPath ){
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
+ if( !pCtx->lockProxyPath ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pCtx->conchHeld = 1;
+
+ if( pCtx->lockProxy->pMethod == &afpIoMethods ){
+ afpLockingContext *afpCtx;
+ afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
+ afpCtx->dbPath = pCtx->lockProxyPath;
+ }
+ } else {
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
+ }
+ OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
+ rc==SQLITE_OK?"ok":"failed"));
+ return rc;
+ } while (1); /* in case we need to retry the :auto: lock file -
+ ** we should never get here except via the 'continue' call. */
+ }
+}
+
+/*
+** If pFile holds a lock on a conch file, then release that lock.
+*/
+static int proxyReleaseConch(unixFile *pFile){
+ int rc = SQLITE_OK; /* Subroutine return code */
+ proxyLockingContext *pCtx; /* The locking context for the proxy lock */
+ unixFile *conchFile; /* Name of the conch file */
+
+ pCtx = (proxyLockingContext *)pFile->lockingContext;
+ conchFile = pCtx->conchFile;
+ OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
+ osGetpid(0)));
+ if( pCtx->conchHeld>0 ){
+ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
+ }
+ pCtx->conchHeld = 0;
+ OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
+ (rc==SQLITE_OK ? "ok" : "failed")));
+ return rc;
+}
+
+/*
+** Given the name of a database file, compute the name of its conch file.
+** Store the conch filename in memory obtained from sqlite3_malloc64().
+** Make *pConchPath point to the new name. Return SQLITE_OK on success
+** or SQLITE_NOMEM if unable to obtain memory.
+**
+** The caller is responsible for ensuring that the allocated memory
+** space is eventually freed.
+**
+** *pConchPath is set to NULL if a memory allocation error occurs.
+*/
+static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
+ int i; /* Loop counter */
+ int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
+ char *conchPath; /* buffer in which to construct conch name */
+
+ /* Allocate space for the conch filename and initialize the name to
+ ** the name of the original database file. */
+ *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8);
+ if( conchPath==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(conchPath, dbPath, len+1);
+
+ /* now insert a "." before the last / character */
+ for( i=(len-1); i>=0; i-- ){
+ if( conchPath[i]=='/' ){
+ i++;
+ break;
+ }
+ }
+ conchPath[i]='.';
+ while ( i<len ){
+ conchPath[i+1]=dbPath[i];
+ i++;
+ }
+
+ /* append the "-conch" suffix to the file */
+ memcpy(&conchPath[i+1], "-conch", 7);
+ assert( (int)strlen(conchPath) == len+7 );
+
+ return SQLITE_OK;
+}
+
+
+/* Takes a fully configured proxy locking-style unix file and switches
+** the local lock file path
+*/
+static int switchLockProxyPath(unixFile *pFile, const char *path) {
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
+ char *oldPath = pCtx->lockProxyPath;
+ int rc = SQLITE_OK;
+
+ if( pFile->eFileLock!=NO_LOCK ){
+ return SQLITE_BUSY;
+ }
+
+ /* nothing to do if the path is NULL, :auto: or matches the existing path */
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
+ (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
+ return SQLITE_OK;
+ }else{
+ unixFile *lockProxy = pCtx->lockProxy;
+ pCtx->lockProxy=NULL;
+ pCtx->conchHeld = 0;
+ if( lockProxy!=NULL ){
+ rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
+ if( rc ) return rc;
+ sqlite3_free(lockProxy);
+ }
+ sqlite3_free(oldPath);
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
+ }
+
+ return rc;
+}
+
+/*
+** pFile is a file that has been opened by a prior xOpen call. dbPath
+** is a string buffer at least MAXPATHLEN+1 characters in size.
+**
+** This routine find the filename associated with pFile and writes it
+** int dbPath.
+*/
+static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
+#if defined(__APPLE__)
+ if( pFile->pMethod == &afpIoMethods ){
+ /* afp style keeps a reference to the db path in the filePath field
+ ** of the struct */
+ assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
+ strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
+ MAXPATHLEN);
+ } else
+#endif
+ if( pFile->pMethod == &dotlockIoMethods ){
+ /* dot lock style uses the locking context to store the dot lock
+ ** file path */
+ int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
+ memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
+ }else{
+ /* all other styles use the locking context to store the db file path */
+ assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
+ strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Takes an already filled in unix file and alters it so all file locking
+** will be performed on the local proxy lock file. The following fields
+** are preserved in the locking context so that they can be restored and
+** the unix structure properly cleaned up at close time:
+** ->lockingContext
+** ->pMethod
+*/
+static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
+ proxyLockingContext *pCtx;
+ char dbPath[MAXPATHLEN+1]; /* Name of the database file */
+ char *lockPath=NULL;
+ int rc = SQLITE_OK;
+
+ if( pFile->eFileLock!=NO_LOCK ){
+ return SQLITE_BUSY;
+ }
+ proxyGetDbPathForUnixFile(pFile, dbPath);
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
+ lockPath=NULL;
+ }else{
+ lockPath=(char *)path;
+ }
+
+ OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
+ (lockPath ? lockPath : ":auto:"), osGetpid(0)));
+
+ pCtx = sqlite3_malloc64( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(pCtx, 0, sizeof(*pCtx));
+
+ rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
+ if( rc==SQLITE_OK ){
+ rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
+ if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
+ /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
+ ** (c) the file system is read-only, then enable no-locking access.
+ ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
+ ** that openFlags will have only one of O_RDONLY or O_RDWR.
+ */
+ struct statfs fsInfo;
+ struct stat conchInfo;
+ int goLockless = 0;
+
+ if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
+ int err = errno;
+ if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
+ goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
+ }
+ }
+ if( goLockless ){
+ pCtx->conchHeld = -1; /* read only FS/ lockless */
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ if( rc==SQLITE_OK && lockPath ){
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
+ }
+
+ if( rc==SQLITE_OK ){
+ pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
+ if( pCtx->dbPath==NULL ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ /* all memory is allocated, proxys are created and assigned,
+ ** switch the locking context and pMethod then return.
+ */
+ pCtx->oldLockingContext = pFile->lockingContext;
+ pFile->lockingContext = pCtx;
+ pCtx->pOldMethod = pFile->pMethod;
+ pFile->pMethod = &proxyIoMethods;
+ }else{
+ if( pCtx->conchFile ){
+ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
+ sqlite3_free(pCtx->conchFile);
+ }
+ sqlite3DbFree(0, pCtx->lockProxyPath);
+ sqlite3_free(pCtx->conchFilePath);
+ sqlite3_free(pCtx);
+ }
+ OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
+ (rc==SQLITE_OK ? "ok" : "failed")));
+ return rc;
+}
+
+
+/*
+** This routine handles sqlite3_file_control() calls that are specific
+** to proxy locking.
+*/
+static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
+ unixFile *pFile = (unixFile*)id;
+ if( pFile->pMethod == &proxyIoMethods ){
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
+ proxyTakeConch(pFile);
+ if( pCtx->lockProxyPath ){
+ *(const char **)pArg = pCtx->lockProxyPath;
+ }else{
+ *(const char **)pArg = ":auto: (not held)";
+ }
+ } else {
+ *(const char **)pArg = NULL;
+ }
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
+ unixFile *pFile = (unixFile*)id;
+ int rc = SQLITE_OK;
+ int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
+ if( pArg==NULL || (const char *)pArg==0 ){
+ if( isProxyStyle ){
+ /* turn off proxy locking - not supported. If support is added for
+ ** switching proxy locking mode off then it will need to fail if
+ ** the journal mode is WAL mode.
+ */
+ rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
+ }else{
+ /* turn off proxy locking - already off - NOOP */
+ rc = SQLITE_OK;
+ }
+ }else{
+ const char *proxyPath = (const char *)pArg;
+ if( isProxyStyle ){
+ proxyLockingContext *pCtx =
+ (proxyLockingContext*)pFile->lockingContext;
+ if( !strcmp(pArg, ":auto:")
+ || (pCtx->lockProxyPath &&
+ !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
+ ){
+ rc = SQLITE_OK;
+ }else{
+ rc = switchLockProxyPath(pFile, proxyPath);
+ }
+ }else{
+ /* turn on proxy file locking */
+ rc = proxyTransformUnixFile(pFile, proxyPath);
+ }
+ }
+ return rc;
+ }
+ default: {
+ assert( 0 ); /* The call assures that only valid opcodes are sent */
+ }
+ }
+ /*NOTREACHED*/ assert(0);
+ return SQLITE_ERROR;
+}
+
+/*
+** Within this division (the proxying locking implementation) the procedures
+** above this point are all utilities. The lock-related methods of the
+** proxy-locking sqlite3_io_method object follow.
+*/
+
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ if( pCtx->conchHeld>0 ){
+ unixFile *proxy = pCtx->lockProxy;
+ return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
+ }else{ /* conchHeld < 0 is lockless */
+ pResOut=0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int proxyLock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ if( pCtx->conchHeld>0 ){
+ unixFile *proxy = pCtx->lockProxy;
+ rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
+ pFile->eFileLock = proxy->eFileLock;
+ }else{
+ /* conchHeld < 0 is lockless */
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int proxyUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ if( pCtx->conchHeld>0 ){
+ unixFile *proxy = pCtx->lockProxy;
+ rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
+ pFile->eFileLock = proxy->eFileLock;
+ }else{
+ /* conchHeld < 0 is lockless */
+ }
+ }
+ return rc;
+}
+
+/*
+** Close a file that uses proxy locks.
+*/
+static int proxyClose(sqlite3_file *id) {
+ if( ALWAYS(id) ){
+ unixFile *pFile = (unixFile*)id;
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *lockProxy = pCtx->lockProxy;
+ unixFile *conchFile = pCtx->conchFile;
+ int rc = SQLITE_OK;
+
+ if( lockProxy ){
+ rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
+ if( rc ) return rc;
+ rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
+ if( rc ) return rc;
+ sqlite3_free(lockProxy);
+ pCtx->lockProxy = 0;
+ }
+ if( conchFile ){
+ if( pCtx->conchHeld ){
+ rc = proxyReleaseConch(pFile);
+ if( rc ) return rc;
+ }
+ rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
+ if( rc ) return rc;
+ sqlite3_free(conchFile);
+ }
+ sqlite3DbFree(0, pCtx->lockProxyPath);
+ sqlite3_free(pCtx->conchFilePath);
+ sqlite3DbFree(0, pCtx->dbPath);
+ /* restore the original locking context and pMethod then close it */
+ pFile->lockingContext = pCtx->oldLockingContext;
+ pFile->pMethod = pCtx->pOldMethod;
+ sqlite3_free(pCtx);
+ return pFile->pMethod->xClose(id);
+ }
+ return SQLITE_OK;
+}
+
+
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The proxy locking style is intended for use with AFP filesystems.
+** And since AFP is only supported on MacOSX, the proxy locking is also
+** restricted to MacOSX.
+**
+**
+******************* End of the proxy lock implementation **********************
+******************************************************************************/
+
+/*
+** Initialize the operating system interface.
+**
+** This routine registers all VFS implementations for unix-like operating
+** systems. This routine, and the sqlite3_os_end() routine that follows,
+** should be the only routines in this file that are visible from other
+** files.
+**
+** This routine is called once during SQLite initialization and by a
+** single thread. The memory allocation and mutex subsystems have not
+** necessarily been initialized when this routine is called, and so they
+** should not be used.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ /*
+ ** The following macro defines an initializer for an sqlite3_vfs object.
+ ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
+ ** to the "finder" function. (pAppData is a pointer to a pointer because
+ ** silly C90 rules prohibit a void* from being cast to a function pointer
+ ** and so we have to go through the intermediate pointer to avoid problems
+ ** when compiling with -pedantic-errors on GCC.)
+ **
+ ** The FINDER parameter to this macro is the name of the pointer to the
+ ** finder-function. The finder-function returns a pointer to the
+ ** sqlite_io_methods object that implements the desired locking
+ ** behaviors. See the division above that contains the IOMETHODS
+ ** macro for addition information on finder-functions.
+ **
+ ** Most finders simply return a pointer to a fixed sqlite3_io_methods
+ ** object. But the "autolockIoFinder" available on MacOSX does a little
+ ** more than that; it looks at the filesystem type that hosts the
+ ** database file and tries to choose an locking method appropriate for
+ ** that filesystem time.
+ */
+ #define UNIXVFS(VFSNAME, FINDER) { \
+ 3, /* iVersion */ \
+ sizeof(unixFile), /* szOsFile */ \
+ MAX_PATHNAME, /* mxPathname */ \
+ 0, /* pNext */ \
+ VFSNAME, /* zName */ \
+ (void*)&FINDER, /* pAppData */ \
+ unixOpen, /* xOpen */ \
+ unixDelete, /* xDelete */ \
+ unixAccess, /* xAccess */ \
+ unixFullPathname, /* xFullPathname */ \
+ unixDlOpen, /* xDlOpen */ \
+ unixDlError, /* xDlError */ \
+ unixDlSym, /* xDlSym */ \
+ unixDlClose, /* xDlClose */ \
+ unixRandomness, /* xRandomness */ \
+ unixSleep, /* xSleep */ \
+ unixCurrentTime, /* xCurrentTime */ \
+ unixGetLastError, /* xGetLastError */ \
+ unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
+ unixSetSystemCall, /* xSetSystemCall */ \
+ unixGetSystemCall, /* xGetSystemCall */ \
+ unixNextSystemCall, /* xNextSystemCall */ \
+ }
+
+ /*
+ ** All default VFSes for unix are contained in the following array.
+ **
+ ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
+ ** by the SQLite core when the VFS is registered. So the following
+ ** array cannot be const.
+ */
+ static sqlite3_vfs aVfs[] = {
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ UNIXVFS("unix", autolockIoFinder ),
+#elif OS_VXWORKS
+ UNIXVFS("unix", vxworksIoFinder ),
+#else
+ UNIXVFS("unix", posixIoFinder ),
+#endif
+ UNIXVFS("unix-none", nolockIoFinder ),
+ UNIXVFS("unix-dotfile", dotlockIoFinder ),
+ UNIXVFS("unix-excl", posixIoFinder ),
+#if OS_VXWORKS
+ UNIXVFS("unix-namedsem", semIoFinder ),
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
+ UNIXVFS("unix-posix", posixIoFinder ),
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE
+ UNIXVFS("unix-flock", flockIoFinder ),
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ UNIXVFS("unix-afp", afpIoFinder ),
+ UNIXVFS("unix-nfs", nfsIoFinder ),
+ UNIXVFS("unix-proxy", proxyIoFinder ),
+#endif
+ };
+ unsigned int i; /* Loop counter */
+
+ /* Double-check that the aSyscall[] array has been constructed
+ ** correctly. See ticket [bb3a86e890c8e96ab] */
+ assert( ArraySize(aSyscall)==29 );
+
+ /* Register all VFSes defined in the aVfs[] array */
+ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
+ sqlite3_vfs_register(&aVfs[i], i==0);
+ }
+ unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+
+#ifndef SQLITE_OMIT_WAL
+ /* Validate lock assumptions */
+ assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */
+ assert( UNIX_SHM_BASE==120 ); /* Start of locking area */
+ /* Locks:
+ ** WRITE UNIX_SHM_BASE 120
+ ** CKPT UNIX_SHM_BASE+1 121
+ ** RECOVER UNIX_SHM_BASE+2 122
+ ** READ-0 UNIX_SHM_BASE+3 123
+ ** READ-1 UNIX_SHM_BASE+4 124
+ ** READ-2 UNIX_SHM_BASE+5 125
+ ** READ-3 UNIX_SHM_BASE+6 126
+ ** READ-4 UNIX_SHM_BASE+7 127
+ ** DMS UNIX_SHM_BASE+8 128
+ */
+ assert( UNIX_SHM_DMS==128 ); /* Byte offset of the deadman-switch */
+#endif
+
+ /* Initialize temp file dir array. */
+ unixTempFileInit();
+
+ return SQLITE_OK;
+}
+
+/*
+** Shutdown the operating system interface.
+**
+** Some operating systems might need to do some cleanup in this routine,
+** to release dynamically allocated objects. But not on unix.
+** This routine is a no-op for unix.
+*/
+SQLITE_API int sqlite3_os_end(void){
+ unixBigLock = 0;
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_UNIX */
+
+/************** End of os_unix.c *********************************************/
+/************** Begin file os_win.c ******************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Windows.
+*/
+/* #include "sqliteInt.h" */
+#if SQLITE_OS_WIN /* This file is used for Windows only */
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/* #include "os_common.h" */
+
+/*
+** Include the header file for the Windows VFS.
+*/
+/* #include "os_win.h" */
+
+/*
+** Compiling and using WAL mode requires several APIs that are only
+** available in Windows platforms based on the NT kernel.
+*/
+#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
+# error "WAL mode requires support from the Windows NT kernel, compile\
+ with SQLITE_OMIT_WAL."
+#endif
+
+#if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0
+# error "Memory mapped files require support from the Windows NT kernel,\
+ compile with SQLITE_MAX_MMAP_SIZE=0."
+#endif
+
+/*
+** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
+** based on the sub-platform)?
+*/
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
+# define SQLITE_WIN32_HAS_ANSI
+#endif
+
+/*
+** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions
+** based on the sub-platform)?
+*/
+#if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \
+ !defined(SQLITE_WIN32_NO_WIDE)
+# define SQLITE_WIN32_HAS_WIDE
+#endif
+
+/*
+** Make sure at least one set of Win32 APIs is available.
+*/
+#if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE)
+# error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\
+ must be defined."
+#endif
+
+/*
+** Define the required Windows SDK version constants if they are not
+** already available.
+*/
+#ifndef NTDDI_WIN8
+# define NTDDI_WIN8 0x06020000
+#endif
+
+#ifndef NTDDI_WINBLUE
+# define NTDDI_WINBLUE 0x06030000
+#endif
+
+#ifndef NTDDI_WINTHRESHOLD
+# define NTDDI_WINTHRESHOLD 0x06040000
+#endif
+
+/*
+** Check to see if the GetVersionEx[AW] functions are deprecated on the
+** target system. GetVersionEx was first deprecated in Win8.1.
+*/
+#ifndef SQLITE_WIN32_GETVERSIONEX
+# if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE
+# define SQLITE_WIN32_GETVERSIONEX 0 /* GetVersionEx() is deprecated */
+# else
+# define SQLITE_WIN32_GETVERSIONEX 1 /* GetVersionEx() is current */
+# endif
+#endif
+
+/*
+** Check to see if the CreateFileMappingA function is supported on the
+** target system. It is unavailable when using "mincore.lib" on Win10.
+** When compiling for Windows 10, always assume "mincore.lib" is in use.
+*/
+#ifndef SQLITE_WIN32_CREATEFILEMAPPINGA
+# if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINTHRESHOLD
+# define SQLITE_WIN32_CREATEFILEMAPPINGA 0
+# else
+# define SQLITE_WIN32_CREATEFILEMAPPINGA 1
+# endif
+#endif
+
+/*
+** This constant should already be defined (in the "WinDef.h" SDK file).
+*/
+#ifndef MAX_PATH
+# define MAX_PATH (260)
+#endif
+
+/*
+** Maximum pathname length (in chars) for Win32. This should normally be
+** MAX_PATH.
+*/
+#ifndef SQLITE_WIN32_MAX_PATH_CHARS
+# define SQLITE_WIN32_MAX_PATH_CHARS (MAX_PATH)
+#endif
+
+/*
+** This constant should already be defined (in the "WinNT.h" SDK file).
+*/
+#ifndef UNICODE_STRING_MAX_CHARS
+# define UNICODE_STRING_MAX_CHARS (32767)
+#endif
+
+/*
+** Maximum pathname length (in chars) for WinNT. This should normally be
+** UNICODE_STRING_MAX_CHARS.
+*/
+#ifndef SQLITE_WINNT_MAX_PATH_CHARS
+# define SQLITE_WINNT_MAX_PATH_CHARS (UNICODE_STRING_MAX_CHARS)
+#endif
+
+/*
+** Maximum pathname length (in bytes) for Win32. The MAX_PATH macro is in
+** characters, so we allocate 4 bytes per character assuming worst-case of
+** 4-bytes-per-character for UTF8.
+*/
+#ifndef SQLITE_WIN32_MAX_PATH_BYTES
+# define SQLITE_WIN32_MAX_PATH_BYTES (SQLITE_WIN32_MAX_PATH_CHARS*4)
+#endif
+
+/*
+** Maximum pathname length (in bytes) for WinNT. This should normally be
+** UNICODE_STRING_MAX_CHARS * sizeof(WCHAR).
+*/
+#ifndef SQLITE_WINNT_MAX_PATH_BYTES
+# define SQLITE_WINNT_MAX_PATH_BYTES \
+ (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS)
+#endif
+
+/*
+** Maximum error message length (in chars) for WinRT.
+*/
+#ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS
+# define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024)
+#endif
+
+/*
+** Returns non-zero if the character should be treated as a directory
+** separator.
+*/
+#ifndef winIsDirSep
+# define winIsDirSep(a) (((a) == '/') || ((a) == '\\'))
+#endif
+
+/*
+** This macro is used when a local variable is set to a value that is
+** [sometimes] not used by the code (e.g. via conditional compilation).
+*/
+#ifndef UNUSED_VARIABLE_VALUE
+# define UNUSED_VARIABLE_VALUE(x) (void)(x)
+#endif
+
+/*
+** Returns the character that should be used as the directory separator.
+*/
+#ifndef winGetDirSep
+# define winGetDirSep() '\\'
+#endif
+
+/*
+** Do we need to manually define the Win32 file mapping APIs for use with WAL
+** mode or memory mapped files (e.g. these APIs are available in the Windows
+** CE SDK; however, they are not present in the header file)?
+*/
+#if SQLITE_WIN32_FILEMAPPING_API && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+/*
+** Two of the file mapping APIs are different under WinRT. Figure out which
+** set we need.
+*/
+#if SQLITE_OS_WINRT
+WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
+ LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
+
+WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T);
+#else
+#if defined(SQLITE_WIN32_HAS_ANSI)
+WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \
+ DWORD, DWORD, DWORD, LPCSTR);
+#endif /* defined(SQLITE_WIN32_HAS_ANSI) */
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \
+ DWORD, DWORD, DWORD, LPCWSTR);
+#endif /* defined(SQLITE_WIN32_HAS_WIDE) */
+
+WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
+#endif /* SQLITE_OS_WINRT */
+
+/*
+** These file mapping APIs are common to both Win32 and WinRT.
+*/
+
+WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T);
+WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
+#endif /* SQLITE_WIN32_FILEMAPPING_API */
+
+/*
+** Some Microsoft compilers lack this definition.
+*/
+#ifndef INVALID_FILE_ATTRIBUTES
+# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
+#endif
+
+#ifndef FILE_FLAG_MASK
+# define FILE_FLAG_MASK (0xFF3C0000)
+#endif
+
+#ifndef FILE_ATTRIBUTE_MASK
+# define FILE_ATTRIBUTE_MASK (0x0003FFF7)
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+/* Forward references to structures used for WAL */
+typedef struct winShm winShm; /* A connection to shared-memory */
+typedef struct winShmNode winShmNode; /* A region of shared-memory */
+#endif
+
+/*
+** WinCE lacks native support for file locking so we have to fake it
+** with some code of our own.
+*/
+#if SQLITE_OS_WINCE
+typedef struct winceLock {
+ int nReaders; /* Number of reader locks obtained */
+ BOOL bPending; /* Indicates a pending lock has been obtained */
+ BOOL bReserved; /* Indicates a reserved lock has been obtained */
+ BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
+} winceLock;
+#endif
+
+/*
+** The winFile structure is a subclass of sqlite3_file* specific to the win32
+** portability layer.
+*/
+typedef struct winFile winFile;
+struct winFile {
+ const sqlite3_io_methods *pMethod; /*** Must be first ***/
+ sqlite3_vfs *pVfs; /* The VFS used to open this file */
+ HANDLE h; /* Handle for accessing the file */
+ u8 locktype; /* Type of lock currently held on this file */
+ short sharedLockByte; /* Randomly chosen byte used as a shared lock */
+ u8 ctrlFlags; /* Flags. See WINFILE_* below */
+ DWORD lastErrno; /* The Windows errno from the last I/O error */
+#ifndef SQLITE_OMIT_WAL
+ winShm *pShm; /* Instance of shared memory on this file */
+#endif
+ const char *zPath; /* Full pathname of this file */
+ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
+#if SQLITE_OS_WINCE
+ LPWSTR zDeleteOnClose; /* Name of file to delete when closing */
+ HANDLE hMutex; /* Mutex used to control access to shared lock */
+ HANDLE hShared; /* Shared memory segment used for locking */
+ winceLock local; /* Locks obtained by this instance of winFile */
+ winceLock *shared; /* Global shared lock memory for the file */
+#endif
+#if SQLITE_MAX_MMAP_SIZE>0
+ int nFetchOut; /* Number of outstanding xFetch references */
+ HANDLE hMap; /* Handle for accessing memory mapping */
+ void *pMapRegion; /* Area memory mapped */
+ sqlite3_int64 mmapSize; /* Size of mapped region */
+ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
+#endif
+};
+
+/*
+** The winVfsAppData structure is used for the pAppData member for all of the
+** Win32 VFS variants.
+*/
+typedef struct winVfsAppData winVfsAppData;
+struct winVfsAppData {
+ const sqlite3_io_methods *pMethod; /* The file I/O methods to use. */
+ void *pAppData; /* The extra pAppData, if any. */
+ BOOL bNoLock; /* Non-zero if locking is disabled. */
+};
+
+/*
+** Allowed values for winFile.ctrlFlags
+*/
+#define WINFILE_RDONLY 0x02 /* Connection is read only */
+#define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
+#define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
+
+/*
+ * The size of the buffer used by sqlite3_win32_write_debug().
+ */
+#ifndef SQLITE_WIN32_DBG_BUF_SIZE
+# define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD)))
+#endif
+
+/*
+ * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
+ * various Win32 API heap functions instead of our own.
+ */
+#ifdef SQLITE_WIN32_MALLOC
+
+/*
+ * If this is non-zero, an isolated heap will be created by the native Win32
+ * allocator subsystem; otherwise, the default process heap will be used. This
+ * setting has no effect when compiling for WinRT. By default, this is enabled
+ * and an isolated heap will be created to store all allocated data.
+ *
+ ******************************************************************************
+ * WARNING: It is important to note that when this setting is non-zero and the
+ * winMemShutdown function is called (e.g. by the sqlite3_shutdown
+ * function), all data that was allocated using the isolated heap will
+ * be freed immediately and any attempt to access any of that freed
+ * data will almost certainly result in an immediate access violation.
+ ******************************************************************************
+ */
+#ifndef SQLITE_WIN32_HEAP_CREATE
+# define SQLITE_WIN32_HEAP_CREATE (TRUE)
+#endif
+
+/*
+ * This is the maximum possible initial size of the Win32-specific heap, in
+ * bytes.
+ */
+#ifndef SQLITE_WIN32_HEAP_MAX_INIT_SIZE
+# define SQLITE_WIN32_HEAP_MAX_INIT_SIZE (4294967295U)
+#endif
+
+/*
+ * This is the extra space for the initial size of the Win32-specific heap,
+ * in bytes. This value may be zero.
+ */
+#ifndef SQLITE_WIN32_HEAP_INIT_EXTRA
+# define SQLITE_WIN32_HEAP_INIT_EXTRA (4194304)
+#endif
+
+/*
+ * Calculate the maximum legal cache size, in pages, based on the maximum
+ * possible initial heap size and the default page size, setting aside the
+ * needed extra space.
+ */
+#ifndef SQLITE_WIN32_MAX_CACHE_SIZE
+# define SQLITE_WIN32_MAX_CACHE_SIZE (((SQLITE_WIN32_HEAP_MAX_INIT_SIZE) - \
+ (SQLITE_WIN32_HEAP_INIT_EXTRA)) / \
+ (SQLITE_DEFAULT_PAGE_SIZE))
+#endif
+
+/*
+ * This is cache size used in the calculation of the initial size of the
+ * Win32-specific heap. It cannot be negative.
+ */
+#ifndef SQLITE_WIN32_CACHE_SIZE
+# if SQLITE_DEFAULT_CACHE_SIZE>=0
+# define SQLITE_WIN32_CACHE_SIZE (SQLITE_DEFAULT_CACHE_SIZE)
+# else
+# define SQLITE_WIN32_CACHE_SIZE (-(SQLITE_DEFAULT_CACHE_SIZE))
+# endif
+#endif
+
+/*
+ * Make sure that the calculated cache size, in pages, cannot cause the
+ * initial size of the Win32-specific heap to exceed the maximum amount
+ * of memory that can be specified in the call to HeapCreate.
+ */
+#if SQLITE_WIN32_CACHE_SIZE>SQLITE_WIN32_MAX_CACHE_SIZE
+# undef SQLITE_WIN32_CACHE_SIZE
+# define SQLITE_WIN32_CACHE_SIZE (2000)
+#endif
+
+/*
+ * The initial size of the Win32-specific heap. This value may be zero.
+ */
+#ifndef SQLITE_WIN32_HEAP_INIT_SIZE
+# define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_WIN32_CACHE_SIZE) * \
+ (SQLITE_DEFAULT_PAGE_SIZE) + \
+ (SQLITE_WIN32_HEAP_INIT_EXTRA))
+#endif
+
+/*
+ * The maximum size of the Win32-specific heap. This value may be zero.
+ */
+#ifndef SQLITE_WIN32_HEAP_MAX_SIZE
+# define SQLITE_WIN32_HEAP_MAX_SIZE (0)
+#endif
+
+/*
+ * The extra flags to use in calls to the Win32 heap APIs. This value may be
+ * zero for the default behavior.
+ */
+#ifndef SQLITE_WIN32_HEAP_FLAGS
+# define SQLITE_WIN32_HEAP_FLAGS (0)
+#endif
+
+
+/*
+** The winMemData structure stores information required by the Win32-specific
+** sqlite3_mem_methods implementation.
+*/
+typedef struct winMemData winMemData;
+struct winMemData {
+#ifndef NDEBUG
+ u32 magic1; /* Magic number to detect structure corruption. */
+#endif
+ HANDLE hHeap; /* The handle to our heap. */
+ BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */
+#ifndef NDEBUG
+ u32 magic2; /* Magic number to detect structure corruption. */
+#endif
+};
+
+#ifndef NDEBUG
+#define WINMEM_MAGIC1 0x42b2830b
+#define WINMEM_MAGIC2 0xbd4d7cf4
+#endif
+
+static struct winMemData win_mem_data = {
+#ifndef NDEBUG
+ WINMEM_MAGIC1,
+#endif
+ NULL, FALSE
+#ifndef NDEBUG
+ ,WINMEM_MAGIC2
+#endif
+};
+
+#ifndef NDEBUG
+#define winMemAssertMagic1() assert( win_mem_data.magic1==WINMEM_MAGIC1 )
+#define winMemAssertMagic2() assert( win_mem_data.magic2==WINMEM_MAGIC2 )
+#define winMemAssertMagic() winMemAssertMagic1(); winMemAssertMagic2();
+#else
+#define winMemAssertMagic()
+#endif
+
+#define winMemGetDataPtr() &win_mem_data
+#define winMemGetHeap() win_mem_data.hHeap
+#define winMemGetOwned() win_mem_data.bOwned
+
+static void *winMemMalloc(int nBytes);
+static void winMemFree(void *pPrior);
+static void *winMemRealloc(void *pPrior, int nBytes);
+static int winMemSize(void *p);
+static int winMemRoundup(int n);
+static int winMemInit(void *pAppData);
+static void winMemShutdown(void *pAppData);
+
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void);
+#endif /* SQLITE_WIN32_MALLOC */
+
+/*
+** The following variable is (normally) set once and never changes
+** thereafter. It records whether the operating system is Win9x
+** or WinNT.
+**
+** 0: Operating system unknown.
+** 1: Operating system is Win9x.
+** 2: Operating system is WinNT.
+**
+** In order to facilitate testing on a WinNT system, the test fixture
+** can manually set this value to 1 to emulate Win98 behavior.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0;
+#else
+static LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0;
+#endif
+
+#ifndef SYSCALL
+# define SYSCALL sqlite3_syscall_ptr
+#endif
+
+/*
+** This function is not available on Windows CE or WinRT.
+ */
+
+#if SQLITE_OS_WINCE || SQLITE_OS_WINRT
+# define osAreFileApisANSI() 1
+#endif
+
+/*
+** Many system calls are accessed through pointer-to-functions so that
+** they may be overridden at runtime to facilitate fault injection during
+** testing and sandboxing. The following array holds the names and pointers
+** to all overrideable system calls.
+*/
+static struct win_syscall {
+ const char *zName; /* Name of the system call */
+ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
+ sqlite3_syscall_ptr pDefault; /* Default value */
+} aSyscall[] = {
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "AreFileApisANSI", (SYSCALL)AreFileApisANSI, 0 },
+#else
+ { "AreFileApisANSI", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osAreFileApisANSI
+#define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent)
+#endif
+
+#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CharLowerW", (SYSCALL)CharLowerW, 0 },
+#else
+ { "CharLowerW", (SYSCALL)0, 0 },
+#endif
+
+#define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent)
+
+#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CharUpperW", (SYSCALL)CharUpperW, 0 },
+#else
+ { "CharUpperW", (SYSCALL)0, 0 },
+#endif
+
+#define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent)
+
+ { "CloseHandle", (SYSCALL)CloseHandle, 0 },
+
+#define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "CreateFileA", (SYSCALL)CreateFileA, 0 },
+#else
+ { "CreateFileA", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \
+ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CreateFileW", (SYSCALL)CreateFileW, 0 },
+#else
+ { "CreateFileW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
+ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) && \
+ SQLITE_WIN32_CREATEFILEMAPPINGA
+ { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 },
+#else
+ { "CreateFileMappingA", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
+ DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)
+
+#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
+ { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 },
+#else
+ { "CreateFileMappingW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
+ DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CreateMutexW", (SYSCALL)CreateMutexW, 0 },
+#else
+ { "CreateMutexW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \
+ LPCWSTR))aSyscall[8].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "DeleteFileA", (SYSCALL)DeleteFileA, 0 },
+#else
+ { "DeleteFileA", (SYSCALL)0, 0 },
+#endif
+
+#define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "DeleteFileW", (SYSCALL)DeleteFileW, 0 },
+#else
+ { "DeleteFileW", (SYSCALL)0, 0 },
+#endif
+
+#define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent)
+
+#if SQLITE_OS_WINCE
+ { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 },
+#else
+ { "FileTimeToLocalFileTime", (SYSCALL)0, 0 },
+#endif
+
+#define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \
+ LPFILETIME))aSyscall[11].pCurrent)
+
+#if SQLITE_OS_WINCE
+ { "FileTimeToSystemTime", (SYSCALL)FileTimeToSystemTime, 0 },
+#else
+ { "FileTimeToSystemTime", (SYSCALL)0, 0 },
+#endif
+
+#define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \
+ LPSYSTEMTIME))aSyscall[12].pCurrent)
+
+ { "FlushFileBuffers", (SYSCALL)FlushFileBuffers, 0 },
+
+#define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "FormatMessageA", (SYSCALL)FormatMessageA, 0 },
+#else
+ { "FormatMessageA", (SYSCALL)0, 0 },
+#endif
+
+#define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \
+ DWORD,va_list*))aSyscall[14].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "FormatMessageW", (SYSCALL)FormatMessageW, 0 },
+#else
+ { "FormatMessageW", (SYSCALL)0, 0 },
+#endif
+
+#define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \
+ DWORD,va_list*))aSyscall[15].pCurrent)
+
+#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "FreeLibrary", (SYSCALL)FreeLibrary, 0 },
+#else
+ { "FreeLibrary", (SYSCALL)0, 0 },
+#endif
+
+#define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent)
+
+ { "GetCurrentProcessId", (SYSCALL)GetCurrentProcessId, 0 },
+
+#define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent)
+
+#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetDiskFreeSpaceA", (SYSCALL)GetDiskFreeSpaceA, 0 },
+#else
+ { "GetDiskFreeSpaceA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \
+ LPDWORD))aSyscall[18].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetDiskFreeSpaceW", (SYSCALL)GetDiskFreeSpaceW, 0 },
+#else
+ { "GetDiskFreeSpaceW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \
+ LPDWORD))aSyscall[19].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetFileAttributesA", (SYSCALL)GetFileAttributesA, 0 },
+#else
+ { "GetFileAttributesA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetFileAttributesW", (SYSCALL)GetFileAttributesW, 0 },
+#else
+ { "GetFileAttributesW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetFileAttributesExW", (SYSCALL)GetFileAttributesExW, 0 },
+#else
+ { "GetFileAttributesExW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \
+ LPVOID))aSyscall[22].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "GetFileSize", (SYSCALL)GetFileSize, 0 },
+#else
+ { "GetFileSize", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent)
+
+#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetFullPathNameA", (SYSCALL)GetFullPathNameA, 0 },
+#else
+ { "GetFullPathNameA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \
+ LPSTR*))aSyscall[24].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetFullPathNameW", (SYSCALL)GetFullPathNameW, 0 },
+#else
+ { "GetFullPathNameW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \
+ LPWSTR*))aSyscall[25].pCurrent)
+
+ { "GetLastError", (SYSCALL)GetLastError, 0 },
+
+#define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent)
+
+#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
+#if SQLITE_OS_WINCE
+ /* The GetProcAddressA() routine is only available on Windows CE. */
+ { "GetProcAddressA", (SYSCALL)GetProcAddressA, 0 },
+#else
+ /* All other Windows platforms expect GetProcAddress() to take
+ ** an ANSI string regardless of the _UNICODE setting */
+ { "GetProcAddressA", (SYSCALL)GetProcAddress, 0 },
+#endif
+#else
+ { "GetProcAddressA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \
+ LPCSTR))aSyscall[27].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "GetSystemInfo", (SYSCALL)GetSystemInfo, 0 },
+#else
+ { "GetSystemInfo", (SYSCALL)0, 0 },
+#endif
+
+#define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent)
+
+ { "GetSystemTime", (SYSCALL)GetSystemTime, 0 },
+
+#define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent)
+
+#if !SQLITE_OS_WINCE
+ { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 },
+#else
+ { "GetSystemTimeAsFileTime", (SYSCALL)0, 0 },
+#endif
+
+#define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \
+ LPFILETIME))aSyscall[30].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetTempPathA", (SYSCALL)GetTempPathA, 0 },
+#else
+ { "GetTempPathA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetTempPathW", (SYSCALL)GetTempPathW, 0 },
+#else
+ { "GetTempPathW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "GetTickCount", (SYSCALL)GetTickCount, 0 },
+#else
+ { "GetTickCount", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_GETVERSIONEX
+ { "GetVersionExA", (SYSCALL)GetVersionExA, 0 },
+#else
+ { "GetVersionExA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetVersionExA ((BOOL(WINAPI*)( \
+ LPOSVERSIONINFOA))aSyscall[34].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
+ SQLITE_WIN32_GETVERSIONEX
+ { "GetVersionExW", (SYSCALL)GetVersionExW, 0 },
+#else
+ { "GetVersionExW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetVersionExW ((BOOL(WINAPI*)( \
+ LPOSVERSIONINFOW))aSyscall[35].pCurrent)
+
+ { "HeapAlloc", (SYSCALL)HeapAlloc, 0 },
+
+#define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \
+ SIZE_T))aSyscall[36].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "HeapCreate", (SYSCALL)HeapCreate, 0 },
+#else
+ { "HeapCreate", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \
+ SIZE_T))aSyscall[37].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "HeapDestroy", (SYSCALL)HeapDestroy, 0 },
+#else
+ { "HeapDestroy", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[38].pCurrent)
+
+ { "HeapFree", (SYSCALL)HeapFree, 0 },
+
+#define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[39].pCurrent)
+
+ { "HeapReAlloc", (SYSCALL)HeapReAlloc, 0 },
+
+#define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \
+ SIZE_T))aSyscall[40].pCurrent)
+
+ { "HeapSize", (SYSCALL)HeapSize, 0 },
+
+#define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \
+ LPCVOID))aSyscall[41].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "HeapValidate", (SYSCALL)HeapValidate, 0 },
+#else
+ { "HeapValidate", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \
+ LPCVOID))aSyscall[42].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "HeapCompact", (SYSCALL)HeapCompact, 0 },
+#else
+ { "HeapCompact", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapCompact ((UINT(WINAPI*)(HANDLE,DWORD))aSyscall[43].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "LoadLibraryA", (SYSCALL)LoadLibraryA, 0 },
+#else
+ { "LoadLibraryA", (SYSCALL)0, 0 },
+#endif
+
+#define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[44].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
+ !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "LoadLibraryW", (SYSCALL)LoadLibraryW, 0 },
+#else
+ { "LoadLibraryW", (SYSCALL)0, 0 },
+#endif
+
+#define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[45].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "LocalFree", (SYSCALL)LocalFree, 0 },
+#else
+ { "LocalFree", (SYSCALL)0, 0 },
+#endif
+
+#define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[46].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "LockFile", (SYSCALL)LockFile, 0 },
+#else
+ { "LockFile", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osLockFile
+#define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ DWORD))aSyscall[47].pCurrent)
+#endif
+
+#if !SQLITE_OS_WINCE
+ { "LockFileEx", (SYSCALL)LockFileEx, 0 },
+#else
+ { "LockFileEx", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osLockFileEx
+#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
+ LPOVERLAPPED))aSyscall[48].pCurrent)
+#endif
+
+#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
+ { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 },
+#else
+ { "MapViewOfFile", (SYSCALL)0, 0 },
+#endif
+
+#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ SIZE_T))aSyscall[49].pCurrent)
+
+ { "MultiByteToWideChar", (SYSCALL)MultiByteToWideChar, 0 },
+
+#define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \
+ int))aSyscall[50].pCurrent)
+
+ { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 },
+
+#define osQueryPerformanceCounter ((BOOL(WINAPI*)( \
+ LARGE_INTEGER*))aSyscall[51].pCurrent)
+
+ { "ReadFile", (SYSCALL)ReadFile, 0 },
+
+#define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \
+ LPOVERLAPPED))aSyscall[52].pCurrent)
+
+ { "SetEndOfFile", (SYSCALL)SetEndOfFile, 0 },
+
+#define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[53].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "SetFilePointer", (SYSCALL)SetFilePointer, 0 },
+#else
+ { "SetFilePointer", (SYSCALL)0, 0 },
+#endif
+
+#define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \
+ DWORD))aSyscall[54].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "Sleep", (SYSCALL)Sleep, 0 },
+#else
+ { "Sleep", (SYSCALL)0, 0 },
+#endif
+
+#define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[55].pCurrent)
+
+ { "SystemTimeToFileTime", (SYSCALL)SystemTimeToFileTime, 0 },
+
+#define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \
+ LPFILETIME))aSyscall[56].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "UnlockFile", (SYSCALL)UnlockFile, 0 },
+#else
+ { "UnlockFile", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osUnlockFile
+#define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ DWORD))aSyscall[57].pCurrent)
+#endif
+
+#if !SQLITE_OS_WINCE
+ { "UnlockFileEx", (SYSCALL)UnlockFileEx, 0 },
+#else
+ { "UnlockFileEx", (SYSCALL)0, 0 },
+#endif
+
+#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ LPOVERLAPPED))aSyscall[58].pCurrent)
+
+#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+ { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 },
+#else
+ { "UnmapViewOfFile", (SYSCALL)0, 0 },
+#endif
+
+#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)
+
+ { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 },
+
+#define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \
+ LPCSTR,LPBOOL))aSyscall[60].pCurrent)
+
+ { "WriteFile", (SYSCALL)WriteFile, 0 },
+
+#define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \
+ LPOVERLAPPED))aSyscall[61].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "CreateEventExW", (SYSCALL)CreateEventExW, 0 },
+#else
+ { "CreateEventExW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \
+ DWORD,DWORD))aSyscall[62].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "WaitForSingleObject", (SYSCALL)WaitForSingleObject, 0 },
+#else
+ { "WaitForSingleObject", (SYSCALL)0, 0 },
+#endif
+
+#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
+ DWORD))aSyscall[63].pCurrent)
+
+#if !SQLITE_OS_WINCE
+ { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 },
+#else
+ { "WaitForSingleObjectEx", (SYSCALL)0, 0 },
+#endif
+
+#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
+ BOOL))aSyscall[64].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 },
+#else
+ { "SetFilePointerEx", (SYSCALL)0, 0 },
+#endif
+
+#define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \
+ PLARGE_INTEGER,DWORD))aSyscall[65].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 },
+#else
+ { "GetFileInformationByHandleEx", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
+ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)
+
+#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+ { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 },
+#else
+ { "MapViewOfFileFromApp", (SYSCALL)0, 0 },
+#endif
+
+#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
+ SIZE_T))aSyscall[67].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "CreateFile2", (SYSCALL)CreateFile2, 0 },
+#else
+ { "CreateFile2", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \
+ LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[68].pCurrent)
+
+#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "LoadPackagedLibrary", (SYSCALL)LoadPackagedLibrary, 0 },
+#else
+ { "LoadPackagedLibrary", (SYSCALL)0, 0 },
+#endif
+
+#define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \
+ DWORD))aSyscall[69].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "GetTickCount64", (SYSCALL)GetTickCount64, 0 },
+#else
+ { "GetTickCount64", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[70].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "GetNativeSystemInfo", (SYSCALL)GetNativeSystemInfo, 0 },
+#else
+ { "GetNativeSystemInfo", (SYSCALL)0, 0 },
+#endif
+
+#define osGetNativeSystemInfo ((VOID(WINAPI*)( \
+ LPSYSTEM_INFO))aSyscall[71].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "OutputDebugStringA", (SYSCALL)OutputDebugStringA, 0 },
+#else
+ { "OutputDebugStringA", (SYSCALL)0, 0 },
+#endif
+
+#define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[72].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "OutputDebugStringW", (SYSCALL)OutputDebugStringW, 0 },
+#else
+ { "OutputDebugStringW", (SYSCALL)0, 0 },
+#endif
+
+#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)
+
+ { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 },
+
+#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)
+
+#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+ { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
+#else
+ { "CreateFileMappingFromApp", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
+ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
+
+/*
+** NOTE: On some sub-platforms, the InterlockedCompareExchange "function"
+** is really just a macro that uses a compiler intrinsic (e.g. x64).
+** So do not try to make this is into a redefinable interface.
+*/
+#if defined(InterlockedCompareExchange)
+ { "InterlockedCompareExchange", (SYSCALL)0, 0 },
+
+#define osInterlockedCompareExchange InterlockedCompareExchange
+#else
+ { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 },
+
+#define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \
+ SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent)
+#endif /* defined(InterlockedCompareExchange) */
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
+ { "UuidCreate", (SYSCALL)UuidCreate, 0 },
+#else
+ { "UuidCreate", (SYSCALL)0, 0 },
+#endif
+
+#define osUuidCreate ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[77].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
+ { "UuidCreateSequential", (SYSCALL)UuidCreateSequential, 0 },
+#else
+ { "UuidCreateSequential", (SYSCALL)0, 0 },
+#endif
+
+#define osUuidCreateSequential \
+ ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent)
+
+#if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0
+ { "FlushViewOfFile", (SYSCALL)FlushViewOfFile, 0 },
+#else
+ { "FlushViewOfFile", (SYSCALL)0, 0 },
+#endif
+
+#define osFlushViewOfFile \
+ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent)
+
+}; /* End of the overrideable system calls */
+
+/*
+** This is the xSetSystemCall() method of sqlite3_vfs for all of the
+** "win32" VFSes. Return SQLITE_OK opon successfully updating the
+** system call pointer, or SQLITE_NOTFOUND if there is no configurable
+** system call named zName.
+*/
+static int winSetSystemCall(
+ sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
+ const char *zName, /* Name of system call to override */
+ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
+){
+ unsigned int i;
+ int rc = SQLITE_NOTFOUND;
+
+ UNUSED_PARAMETER(pNotUsed);
+ if( zName==0 ){
+ /* If no zName is given, restore all system calls to their default
+ ** settings and return NULL
+ */
+ rc = SQLITE_OK;
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( aSyscall[i].pDefault ){
+ aSyscall[i].pCurrent = aSyscall[i].pDefault;
+ }
+ }
+ }else{
+ /* If zName is specified, operate on only the one system call
+ ** specified.
+ */
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ){
+ if( aSyscall[i].pDefault==0 ){
+ aSyscall[i].pDefault = aSyscall[i].pCurrent;
+ }
+ rc = SQLITE_OK;
+ if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
+ aSyscall[i].pCurrent = pNewFunc;
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the value of a system call. Return NULL if zName is not a
+** recognized system call name. NULL is also returned if the system call
+** is currently undefined.
+*/
+static sqlite3_syscall_ptr winGetSystemCall(
+ sqlite3_vfs *pNotUsed,
+ const char *zName
+){
+ unsigned int i;
+
+ UNUSED_PARAMETER(pNotUsed);
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
+ }
+ return 0;
+}
+
+/*
+** Return the name of the first system call after zName. If zName==NULL
+** then return the name of the first system call. Return NULL if zName
+** is the last system call or if zName is not the name of a valid
+** system call.
+*/
+static const char *winNextSystemCall(sqlite3_vfs *p, const char *zName){
+ int i = -1;
+
+ UNUSED_PARAMETER(p);
+ if( zName ){
+ for(i=0; i<ArraySize(aSyscall)-1; i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) break;
+ }
+ }
+ for(i++; i<ArraySize(aSyscall); i++){
+ if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
+ }
+ return 0;
+}
+
+#ifdef SQLITE_WIN32_MALLOC
+/*
+** If a Win32 native heap has been configured, this function will attempt to
+** compact it. Upon success, SQLITE_OK will be returned. Upon failure, one
+** of SQLITE_NOMEM, SQLITE_ERROR, or SQLITE_NOTFOUND will be returned. The
+** "pnLargest" argument, if non-zero, will be used to return the size of the
+** largest committed free block in the heap, in bytes.
+*/
+SQLITE_API int sqlite3_win32_compact_heap(LPUINT pnLargest){
+ int rc = SQLITE_OK;
+ UINT nLargest = 0;
+ HANDLE hHeap;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ if( (nLargest=osHeapCompact(hHeap, SQLITE_WIN32_HEAP_FLAGS))==0 ){
+ DWORD lastErrno = osGetLastError();
+ if( lastErrno==NO_ERROR ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapCompact (no space), heap=%p",
+ (void*)hHeap);
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ sqlite3_log(SQLITE_ERROR, "failed to HeapCompact (%lu), heap=%p",
+ osGetLastError(), (void*)hHeap);
+ rc = SQLITE_ERROR;
+ }
+ }
+#else
+ sqlite3_log(SQLITE_NOTFOUND, "failed to HeapCompact, heap=%p",
+ (void*)hHeap);
+ rc = SQLITE_NOTFOUND;
+#endif
+ if( pnLargest ) *pnLargest = nLargest;
+ return rc;
+}
+
+/*
+** If a Win32 native heap has been configured, this function will attempt to
+** destroy and recreate it. If the Win32 native heap is not isolated and/or
+** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
+** be returned and no changes will be made to the Win32 native heap.
+*/
+SQLITE_API int sqlite3_win32_reset_heap(){
+ int rc;
+ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */
+ MUTEX_LOGIC( sqlite3_mutex *pMem; ) /* The memsys static mutex */
+ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ MUTEX_LOGIC( pMem = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); )
+ sqlite3_mutex_enter(pMainMtx);
+ sqlite3_mutex_enter(pMem);
+ winMemAssertMagic();
+ if( winMemGetHeap()!=NULL && winMemGetOwned() && sqlite3_memory_used()==0 ){
+ /*
+ ** At this point, there should be no outstanding memory allocations on
+ ** the heap. Also, since both the main and memsys locks are currently
+ ** being held by us, no other function (i.e. from another thread) should
+ ** be able to even access the heap. Attempt to destroy and recreate our
+ ** isolated Win32 native heap now.
+ */
+ assert( winMemGetHeap()!=NULL );
+ assert( winMemGetOwned() );
+ assert( sqlite3_memory_used()==0 );
+ winMemShutdown(winMemGetDataPtr());
+ assert( winMemGetHeap()==NULL );
+ assert( !winMemGetOwned() );
+ assert( sqlite3_memory_used()==0 );
+ rc = winMemInit(winMemGetDataPtr());
+ assert( rc!=SQLITE_OK || winMemGetHeap()!=NULL );
+ assert( rc!=SQLITE_OK || winMemGetOwned() );
+ assert( rc!=SQLITE_OK || sqlite3_memory_used()==0 );
+ }else{
+ /*
+ ** The Win32 native heap cannot be modified because it may be in use.
+ */
+ rc = SQLITE_BUSY;
+ }
+ sqlite3_mutex_leave(pMem);
+ sqlite3_mutex_leave(pMainMtx);
+ return rc;
+}
+#endif /* SQLITE_WIN32_MALLOC */
+
+/*
+** This function outputs the specified (ANSI) string to the Win32 debugger
+** (if available).
+*/
+
+SQLITE_API void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
+ char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
+ int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
+ if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
+ assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zBuf ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ if( nMin>0 ){
+ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
+ memcpy(zDbgBuf, zBuf, nMin);
+ osOutputDebugStringA(zDbgBuf);
+ }else{
+ osOutputDebugStringA(zBuf);
+ }
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
+ if ( osMultiByteToWideChar(
+ osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf,
+ nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){
+ return;
+ }
+ osOutputDebugStringW((LPCWSTR)zDbgBuf);
+#else
+ if( nMin>0 ){
+ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
+ memcpy(zDbgBuf, zBuf, nMin);
+ fprintf(stderr, "%s", zDbgBuf);
+ }else{
+ fprintf(stderr, "%s", zBuf);
+ }
+#endif
+}
+
+/*
+** The following routine suspends the current thread for at least ms
+** milliseconds. This is equivalent to the Win32 Sleep() interface.
+*/
+#if SQLITE_OS_WINRT
+static HANDLE sleepObj = NULL;
+#endif
+
+SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){
+#if SQLITE_OS_WINRT
+ if ( sleepObj==NULL ){
+ sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET,
+ SYNCHRONIZE);
+ }
+ assert( sleepObj!=NULL );
+ osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
+#else
+ osSleep(milliseconds);
+#endif
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
+ SQLITE_THREADSAFE>0
+SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject){
+ DWORD rc;
+ while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
+ TRUE))==WAIT_IO_COMPLETION ){}
+ return rc;
+}
+#endif
+
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
+** or WinCE. Return false (zero) for Win95, Win98, or WinME.
+**
+** Here is an interesting observation: Win95, Win98, and WinME lack
+** the LockFileEx() API. But we can still statically link against that
+** API as long as we don't call it when running Win95/98/ME. A call to
+** this routine is used to determine if the host is Win95/98/ME or
+** WinNT/2K/XP so that we will know whether or not we can safely call
+** the LockFileEx() API.
+*/
+
+#if !SQLITE_WIN32_GETVERSIONEX
+# define osIsNT() (1)
+#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
+# define osIsNT() (1)
+#elif !defined(SQLITE_WIN32_HAS_WIDE)
+# define osIsNT() (0)
+#else
+# define osIsNT() ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
+#endif
+
+/*
+** This function determines if the machine is running a version of Windows
+** based on the NT kernel.
+*/
+SQLITE_API int sqlite3_win32_is_nt(void){
+#if SQLITE_OS_WINRT
+ /*
+ ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
+ ** kernel.
+ */
+ return 1;
+#elif SQLITE_WIN32_GETVERSIONEX
+ if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ OSVERSIONINFOA sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ osGetVersionExA(&sInfo);
+ osInterlockedCompareExchange(&sqlite3_os_type,
+ (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ OSVERSIONINFOW sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ osGetVersionExW(&sInfo);
+ osInterlockedCompareExchange(&sqlite3_os_type,
+ (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
+#endif
+ }
+ return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
+#elif SQLITE_TEST
+ return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
+#else
+ /*
+ ** NOTE: All sub-platforms where the GetVersionEx[AW] functions are
+ ** deprecated are always assumed to be based on the NT kernel.
+ */
+ return 1;
+#endif
+}
+
+#ifdef SQLITE_WIN32_MALLOC
+/*
+** Allocate nBytes of memory.
+*/
+static void *winMemMalloc(int nBytes){
+ HANDLE hHeap;
+ void *p;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+ assert( nBytes>=0 );
+ p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
+ if( !p ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%lu), heap=%p",
+ nBytes, osGetLastError(), (void*)hHeap);
+ }
+ return p;
+}
+
+/*
+** Free memory.
+*/
+static void winMemFree(void *pPrior){
+ HANDLE hHeap;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
+#endif
+ if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */
+ if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%lu), heap=%p",
+ pPrior, osGetLastError(), (void*)hHeap);
+ }
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+static void *winMemRealloc(void *pPrior, int nBytes){
+ HANDLE hHeap;
+ void *p;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
+#endif
+ assert( nBytes>=0 );
+ if( !pPrior ){
+ p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
+ }else{
+ p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes);
+ }
+ if( !p ){
+ sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%lu), heap=%p",
+ pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(),
+ (void*)hHeap);
+ }
+ return p;
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes.
+*/
+static int winMemSize(void *p){
+ HANDLE hHeap;
+ SIZE_T n;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, p) );
+#endif
+ if( !p ) return 0;
+ n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p);
+ if( n==(SIZE_T)-1 ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%lu), heap=%p",
+ p, osGetLastError(), (void*)hHeap);
+ return 0;
+ }
+ return (int)n;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int winMemRoundup(int n){
+ return n;
+}
+
+/*
+** Initialize this module.
+*/
+static int winMemInit(void *pAppData){
+ winMemData *pWinMemData = (winMemData *)pAppData;
+
+ if( !pWinMemData ) return SQLITE_ERROR;
+ assert( pWinMemData->magic1==WINMEM_MAGIC1 );
+ assert( pWinMemData->magic2==WINMEM_MAGIC2 );
+
+#if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE
+ if( !pWinMemData->hHeap ){
+ DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE;
+ DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap;
+ if( dwMaximumSize==0 ){
+ dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE;
+ }else if( dwInitialSize>dwMaximumSize ){
+ dwInitialSize = dwMaximumSize;
+ }
+ pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS,
+ dwInitialSize, dwMaximumSize);
+ if( !pWinMemData->hHeap ){
+ sqlite3_log(SQLITE_NOMEM,
+ "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu",
+ osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize,
+ dwMaximumSize);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pWinMemData->bOwned = TRUE;
+ assert( pWinMemData->bOwned );
+ }
+#else
+ pWinMemData->hHeap = osGetProcessHeap();
+ if( !pWinMemData->hHeap ){
+ sqlite3_log(SQLITE_NOMEM,
+ "failed to GetProcessHeap (%lu)", osGetLastError());
+ return SQLITE_NOMEM_BKPT;
+ }
+ pWinMemData->bOwned = FALSE;
+ assert( !pWinMemData->bOwned );
+#endif
+ assert( pWinMemData->hHeap!=0 );
+ assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void winMemShutdown(void *pAppData){
+ winMemData *pWinMemData = (winMemData *)pAppData;
+
+ if( !pWinMemData ) return;
+ assert( pWinMemData->magic1==WINMEM_MAGIC1 );
+ assert( pWinMemData->magic2==WINMEM_MAGIC2 );
+
+ if( pWinMemData->hHeap ){
+ assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+ if( pWinMemData->bOwned ){
+ if( !osHeapDestroy(pWinMemData->hHeap) ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%lu), heap=%p",
+ osGetLastError(), (void*)pWinMemData->hHeap);
+ }
+ pWinMemData->bOwned = FALSE;
+ }
+ pWinMemData->hHeap = NULL;
+ }
+}
+
+/*
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void){
+ static const sqlite3_mem_methods winMemMethods = {
+ winMemMalloc,
+ winMemFree,
+ winMemRealloc,
+ winMemSize,
+ winMemRoundup,
+ winMemInit,
+ winMemShutdown,
+ &win_mem_data
+ };
+ return &winMemMethods;
+}
+
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32());
+}
+#endif /* SQLITE_WIN32_MALLOC */
+
+/*
+** Convert a UTF-8 string to Microsoft Unicode.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static LPWSTR winUtf8ToUnicode(const char *zText){
+ int nChar;
+ LPWSTR zWideText;
+
+ nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, NULL, 0);
+ if( nChar==0 ){
+ return 0;
+ }
+ zWideText = sqlite3MallocZero( nChar*sizeof(WCHAR) );
+ if( zWideText==0 ){
+ return 0;
+ }
+ nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, zWideText,
+ nChar);
+ if( nChar==0 ){
+ sqlite3_free(zWideText);
+ zWideText = 0;
+ }
+ return zWideText;
+}
+
+/*
+** Convert a Microsoft Unicode string to UTF-8.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winUnicodeToUtf8(LPCWSTR zWideText){
+ int nByte;
+ char *zText;
+
+ nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, 0, 0, 0, 0);
+ if( nByte == 0 ){
+ return 0;
+ }
+ zText = sqlite3MallocZero( nByte );
+ if( zText==0 ){
+ return 0;
+ }
+ nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, zText, nByte,
+ 0, 0);
+ if( nByte == 0 ){
+ sqlite3_free(zText);
+ zText = 0;
+ }
+ return zText;
+}
+
+/*
+** Convert an ANSI string to Microsoft Unicode, using the ANSI or OEM
+** code page.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static LPWSTR winMbcsToUnicode(const char *zText, int useAnsi){
+ int nByte;
+ LPWSTR zMbcsText;
+ int codepage = useAnsi ? CP_ACP : CP_OEMCP;
+
+ nByte = osMultiByteToWideChar(codepage, 0, zText, -1, NULL,
+ 0)*sizeof(WCHAR);
+ if( nByte==0 ){
+ return 0;
+ }
+ zMbcsText = sqlite3MallocZero( nByte*sizeof(WCHAR) );
+ if( zMbcsText==0 ){
+ return 0;
+ }
+ nByte = osMultiByteToWideChar(codepage, 0, zText, -1, zMbcsText,
+ nByte);
+ if( nByte==0 ){
+ sqlite3_free(zMbcsText);
+ zMbcsText = 0;
+ }
+ return zMbcsText;
+}
+
+/*
+** Convert a Microsoft Unicode string to a multi-byte character string,
+** using the ANSI or OEM code page.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winUnicodeToMbcs(LPCWSTR zWideText, int useAnsi){
+ int nByte;
+ char *zText;
+ int codepage = useAnsi ? CP_ACP : CP_OEMCP;
+
+ nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, 0, 0, 0, 0);
+ if( nByte == 0 ){
+ return 0;
+ }
+ zText = sqlite3MallocZero( nByte );
+ if( zText==0 ){
+ return 0;
+ }
+ nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, zText,
+ nByte, 0, 0);
+ if( nByte == 0 ){
+ sqlite3_free(zText);
+ zText = 0;
+ }
+ return zText;
+}
+
+/*
+** Convert a multi-byte character string to UTF-8.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winMbcsToUtf8(const char *zText, int useAnsi){
+ char *zTextUtf8;
+ LPWSTR zTmpWide;
+
+ zTmpWide = winMbcsToUnicode(zText, useAnsi);
+ if( zTmpWide==0 ){
+ return 0;
+ }
+ zTextUtf8 = winUnicodeToUtf8(zTmpWide);
+ sqlite3_free(zTmpWide);
+ return zTextUtf8;
+}
+
+/*
+** Convert a UTF-8 string to a multi-byte character string.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winUtf8ToMbcs(const char *zText, int useAnsi){
+ char *zTextMbcs;
+ LPWSTR zTmpWide;
+
+ zTmpWide = winUtf8ToUnicode(zText);
+ if( zTmpWide==0 ){
+ return 0;
+ }
+ zTextMbcs = winUnicodeToMbcs(zTmpWide, useAnsi);
+ sqlite3_free(zTmpWide);
+ return zTextMbcs;
+}
+
+/*
+** This is a public wrapper for the winUtf8ToUnicode() function.
+*/
+SQLITE_API LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUtf8ToUnicode(zText);
+}
+
+/*
+** This is a public wrapper for the winUnicodeToUtf8() function.
+*/
+SQLITE_API char *sqlite3_win32_unicode_to_utf8(LPCWSTR zWideText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zWideText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUnicodeToUtf8(zWideText);
+}
+
+/*
+** This is a public wrapper for the winMbcsToUtf8() function.
+*/
+SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winMbcsToUtf8(zText, osAreFileApisANSI());
+}
+
+/*
+** This is a public wrapper for the winMbcsToUtf8() function.
+*/
+SQLITE_API char *sqlite3_win32_mbcs_to_utf8_v2(const char *zText, int useAnsi){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winMbcsToUtf8(zText, useAnsi);
+}
+
+/*
+** This is a public wrapper for the winUtf8ToMbcs() function.
+*/
+SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUtf8ToMbcs(zText, osAreFileApisANSI());
+}
+
+/*
+** This is a public wrapper for the winUtf8ToMbcs() function.
+*/
+SQLITE_API char *sqlite3_win32_utf8_to_mbcs_v2(const char *zText, int useAnsi){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUtf8ToMbcs(zText, useAnsi);
+}
+
+/*
+** This function is the same as sqlite3_win32_set_directory (below); however,
+** it accepts a UTF-8 string.
+*/
+SQLITE_API int sqlite3_win32_set_directory8(
+ unsigned long type, /* Identifier for directory being set or reset */
+ const char *zValue /* New value for directory being set or reset */
+){
+ char **ppDirectory = 0;
+ int rc;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
+ ppDirectory = &sqlite3_data_directory;
+ }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
+ ppDirectory = &sqlite3_temp_directory;
+ }
+ assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
+ || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
+ );
+ assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
+ if( ppDirectory ){
+ char *zCopy = 0;
+ if( zValue && zValue[0] ){
+ zCopy = sqlite3_mprintf("%s", zValue);
+ if ( zCopy==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto set_directory8_done;
+ }
+ }
+ sqlite3_free(*ppDirectory);
+ *ppDirectory = zCopy;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+set_directory8_done:
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ return rc;
+}
+
+/*
+** This function is the same as sqlite3_win32_set_directory (below); however,
+** it accepts a UTF-16 string.
+*/
+SQLITE_API int sqlite3_win32_set_directory16(
+ unsigned long type, /* Identifier for directory being set or reset */
+ const void *zValue /* New value for directory being set or reset */
+){
+ int rc;
+ char *zUtf8 = 0;
+ if( zValue ){
+ zUtf8 = sqlite3_win32_unicode_to_utf8(zValue);
+ if( zUtf8==0 ) return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_win32_set_directory8(type, zUtf8);
+ if( zUtf8 ) sqlite3_free(zUtf8);
+ return rc;
+}
+
+/*
+** This function sets the data directory or the temporary directory based on
+** the provided arguments. The type argument must be 1 in order to set the
+** data directory or 2 in order to set the temporary directory. The zValue
+** argument is the name of the directory to use. The return value will be
+** SQLITE_OK if successful.
+*/
+SQLITE_API int sqlite3_win32_set_directory(
+ unsigned long type, /* Identifier for directory being set or reset */
+ void *zValue /* New value for directory being set or reset */
+){
+ return sqlite3_win32_set_directory16(type, zValue);
+}
+
+/*
+** The return value of winGetLastErrorMsg
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated).
+*/
+static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
+ /* FormatMessage returns 0 on failure. Otherwise it
+ ** returns the number of TCHARs written to the output
+ ** buffer, excluding the terminating null char.
+ */
+ DWORD dwLen = 0;
+ char *zOut = 0;
+
+ if( osIsNT() ){
+#if SQLITE_OS_WINRT
+ WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1];
+ dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL,
+ lastErrno,
+ 0,
+ zTempWide,
+ SQLITE_WIN32_MAX_ERRMSG_CHARS,
+ 0);
+#else
+ LPWSTR zTempWide = NULL;
+ dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
+ FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL,
+ lastErrno,
+ 0,
+ (LPWSTR) &zTempWide,
+ 0,
+ 0);
+#endif
+ if( dwLen > 0 ){
+ /* allocate a buffer and convert to UTF8 */
+ sqlite3BeginBenignMalloc();
+ zOut = winUnicodeToUtf8(zTempWide);
+ sqlite3EndBenignMalloc();
+#if !SQLITE_OS_WINRT
+ /* free the system buffer allocated by FormatMessage */
+ osLocalFree(zTempWide);
+#endif
+ }
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ char *zTemp = NULL;
+ dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
+ FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL,
+ lastErrno,
+ 0,
+ (LPSTR) &zTemp,
+ 0,
+ 0);
+ if( dwLen > 0 ){
+ /* allocate a buffer and convert to UTF8 */
+ sqlite3BeginBenignMalloc();
+ zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI());
+ sqlite3EndBenignMalloc();
+ /* free the system buffer allocated by FormatMessage */
+ osLocalFree(zTemp);
+ }
+ }
+#endif
+ if( 0 == dwLen ){
+ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%lx (%lu)", lastErrno, lastErrno);
+ }else{
+ /* copy a maximum of nBuf chars to output buffer */
+ sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
+ /* free the UTF8 buffer */
+ sqlite3_free(zOut);
+ }
+ return 0;
+}
+
+/*
+**
+** This function - winLogErrorAtLine() - is only ever called via the macro
+** winLogError().
+**
+** This routine is invoked after an error occurs in an OS function.
+** It logs a message using sqlite3_log() containing the current value of
+** error code and, if possible, the human-readable equivalent from
+** FormatMessage.
+**
+** The first argument passed to the macro should be the error code that
+** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
+** The two subsequent arguments should be the name of the OS function that
+** failed and the associated file-system path, if any.
+*/
+#define winLogError(a,b,c,d) winLogErrorAtLine(a,b,c,d,__LINE__)
+static int winLogErrorAtLine(
+ int errcode, /* SQLite error code */
+ DWORD lastErrno, /* Win32 last error */
+ const char *zFunc, /* Name of OS function that failed */
+ const char *zPath, /* File path associated with error */
+ int iLine /* Source line number where error occurred */
+){
+ char zMsg[500]; /* Human readable error text */
+ int i; /* Loop counter */
+
+ zMsg[0] = 0;
+ winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg);
+ assert( errcode!=SQLITE_OK );
+ if( zPath==0 ) zPath = "";
+ for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
+ zMsg[i] = 0;
+ sqlite3_log(errcode,
+ "os_win.c:%d: (%lu) %s(%s) - %s",
+ iLine, lastErrno, zFunc, zPath, zMsg
+ );
+
+ return errcode;
+}
+
+/*
+** The number of times that a ReadFile(), WriteFile(), and DeleteFile()
+** will be retried following a locking error - probably caused by
+** antivirus software. Also the initial delay before the first retry.
+** The delay increases linearly with each retry.
+*/
+#ifndef SQLITE_WIN32_IOERR_RETRY
+# define SQLITE_WIN32_IOERR_RETRY 10
+#endif
+#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
+# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
+#endif
+static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY;
+static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;
+
+/*
+** The "winIoerrCanRetry1" macro is used to determine if a particular I/O
+** error code obtained via GetLastError() is eligible to be retried. It
+** must accept the error code DWORD as its only argument and should return
+** non-zero if the error code is transient in nature and the operation
+** responsible for generating the original error might succeed upon being
+** retried. The argument to this macro should be a variable.
+**
+** Additionally, a macro named "winIoerrCanRetry2" may be defined. If it
+** is defined, it will be consulted only when the macro "winIoerrCanRetry1"
+** returns zero. The "winIoerrCanRetry2" macro is completely optional and
+** may be used to include additional error codes in the set that should
+** result in the failing I/O operation being retried by the caller. If
+** defined, the "winIoerrCanRetry2" macro must exhibit external semantics
+** identical to those of the "winIoerrCanRetry1" macro.
+*/
+#if !defined(winIoerrCanRetry1)
+#define winIoerrCanRetry1(a) (((a)==ERROR_ACCESS_DENIED) || \
+ ((a)==ERROR_SHARING_VIOLATION) || \
+ ((a)==ERROR_LOCK_VIOLATION) || \
+ ((a)==ERROR_DEV_NOT_EXIST) || \
+ ((a)==ERROR_NETNAME_DELETED) || \
+ ((a)==ERROR_SEM_TIMEOUT) || \
+ ((a)==ERROR_NETWORK_UNREACHABLE))
+#endif
+
+/*
+** If a ReadFile() or WriteFile() error occurs, invoke this routine
+** to see if it should be retried. Return TRUE to retry. Return FALSE
+** to give up with an error.
+*/
+static int winRetryIoerr(int *pnRetry, DWORD *pError){
+ DWORD e = osGetLastError();
+ if( *pnRetry>=winIoerrRetry ){
+ if( pError ){
+ *pError = e;
+ }
+ return 0;
+ }
+ if( winIoerrCanRetry1(e) ){
+ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
+ ++*pnRetry;
+ return 1;
+ }
+#if defined(winIoerrCanRetry2)
+ else if( winIoerrCanRetry2(e) ){
+ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
+ ++*pnRetry;
+ return 1;
+ }
+#endif
+ if( pError ){
+ *pError = e;
+ }
+ return 0;
+}
+
+/*
+** Log a I/O error retry episode.
+*/
+static void winLogIoerr(int nRetry, int lineno){
+ if( nRetry ){
+ sqlite3_log(SQLITE_NOTICE,
+ "delayed %dms for lock/sharing conflict at line %d",
+ winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno
+ );
+ }
+}
+
+/*
+** This #if does not rely on the SQLITE_OS_WINCE define because the
+** corresponding section in "date.c" cannot use it.
+*/
+#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
+ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
+/*
+** The MSVC CRT on Windows CE may not have a localtime() function.
+** So define a substitute.
+*/
+/* # include <time.h> */
+struct tm *__cdecl localtime(const time_t *t)
+{
+ static struct tm y;
+ FILETIME uTm, lTm;
+ SYSTEMTIME pTm;
+ sqlite3_int64 t64;
+ t64 = *t;
+ t64 = (t64 + 11644473600)*10000000;
+ uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
+ uTm.dwHighDateTime= (DWORD)(t64 >> 32);
+ osFileTimeToLocalFileTime(&uTm,&lTm);
+ osFileTimeToSystemTime(&lTm,&pTm);
+ y.tm_year = pTm.wYear - 1900;
+ y.tm_mon = pTm.wMonth - 1;
+ y.tm_wday = pTm.wDayOfWeek;
+ y.tm_mday = pTm.wDay;
+ y.tm_hour = pTm.wHour;
+ y.tm_min = pTm.wMinute;
+ y.tm_sec = pTm.wSecond;
+ return &y;
+}
+#endif
+
+#if SQLITE_OS_WINCE
+/*************************************************************************
+** This section contains code for WinCE only.
+*/
+#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
+
+/*
+** Acquire a lock on the handle h
+*/
+static void winceMutexAcquire(HANDLE h){
+ DWORD dwErr;
+ do {
+ dwErr = osWaitForSingleObject(h, INFINITE);
+ } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
+}
+/*
+** Release a lock acquired by winceMutexAcquire()
+*/
+#define winceMutexRelease(h) ReleaseMutex(h)
+
+/*
+** Create the mutex and shared memory used for locking in the file
+** descriptor pFile
+*/
+static int winceCreateLock(const char *zFilename, winFile *pFile){
+ LPWSTR zTok;
+ LPWSTR zName;
+ DWORD lastErrno;
+ BOOL bLogged = FALSE;
+ BOOL bInit = TRUE;
+
+ zName = winUtf8ToUnicode(zFilename);
+ if( zName==0 ){
+ /* out of memory */
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+
+ /* Initialize the local lockdata */
+ memset(&pFile->local, 0, sizeof(pFile->local));
+
+ /* Replace the backslashes from the filename and lowercase it
+ ** to derive a mutex name. */
+ zTok = osCharLowerW(zName);
+ for (;*zTok;zTok++){
+ if (*zTok == '\\') *zTok = '_';
+ }
+
+ /* Create/open the named mutex */
+ pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
+ if (!pFile->hMutex){
+ pFile->lastErrno = osGetLastError();
+ sqlite3_free(zName);
+ return winLogError(SQLITE_IOERR, pFile->lastErrno,
+ "winceCreateLock1", zFilename);
+ }
+
+ /* Acquire the mutex before continuing */
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Since the names of named mutexes, semaphores, file mappings etc are
+ ** case-sensitive, take advantage of that by uppercasing the mutex name
+ ** and using that as the shared filemapping name.
+ */
+ osCharUpperW(zName);
+ pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
+ PAGE_READWRITE, 0, sizeof(winceLock),
+ zName);
+
+ /* Set a flag that indicates we're the first to create the memory so it
+ ** must be zero-initialized */
+ lastErrno = osGetLastError();
+ if (lastErrno == ERROR_ALREADY_EXISTS){
+ bInit = FALSE;
+ }
+
+ sqlite3_free(zName);
+
+ /* If we succeeded in making the shared memory handle, map it. */
+ if( pFile->hShared ){
+ pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared,
+ FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
+ /* If mapping failed, close the shared memory handle and erase it */
+ if( !pFile->shared ){
+ pFile->lastErrno = osGetLastError();
+ winLogError(SQLITE_IOERR, pFile->lastErrno,
+ "winceCreateLock2", zFilename);
+ bLogged = TRUE;
+ osCloseHandle(pFile->hShared);
+ pFile->hShared = NULL;
+ }
+ }
+
+ /* If shared memory could not be created, then close the mutex and fail */
+ if( pFile->hShared==NULL ){
+ if( !bLogged ){
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_IOERR, pFile->lastErrno,
+ "winceCreateLock3", zFilename);
+ bLogged = TRUE;
+ }
+ winceMutexRelease(pFile->hMutex);
+ osCloseHandle(pFile->hMutex);
+ pFile->hMutex = NULL;
+ return SQLITE_IOERR;
+ }
+
+ /* Initialize the shared memory if we're supposed to */
+ if( bInit ){
+ memset(pFile->shared, 0, sizeof(winceLock));
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return SQLITE_OK;
+}
+
+/*
+** Destroy the part of winFile that deals with wince locks
+*/
+static void winceDestroyLock(winFile *pFile){
+ if (pFile->hMutex){
+ /* Acquire the mutex */
+ winceMutexAcquire(pFile->hMutex);
+
+ /* The following blocks should probably assert in debug mode, but they
+ are to cleanup in case any locks remained open */
+ if (pFile->local.nReaders){
+ pFile->shared->nReaders --;
+ }
+ if (pFile->local.bReserved){
+ pFile->shared->bReserved = FALSE;
+ }
+ if (pFile->local.bPending){
+ pFile->shared->bPending = FALSE;
+ }
+ if (pFile->local.bExclusive){
+ pFile->shared->bExclusive = FALSE;
+ }
+
+ /* De-reference and close our copy of the shared memory handle */
+ osUnmapViewOfFile(pFile->shared);
+ osCloseHandle(pFile->hShared);
+
+ /* Done with the mutex */
+ winceMutexRelease(pFile->hMutex);
+ osCloseHandle(pFile->hMutex);
+ pFile->hMutex = NULL;
+ }
+}
+
+/*
+** An implementation of the LockFile() API of Windows for CE
+*/
+static BOOL winceLockFile(
+ LPHANDLE phFile,
+ DWORD dwFileOffsetLow,
+ DWORD dwFileOffsetHigh,
+ DWORD nNumberOfBytesToLockLow,
+ DWORD nNumberOfBytesToLockHigh
+){
+ winFile *pFile = HANDLE_TO_WINFILE(phFile);
+ BOOL bReturn = FALSE;
+
+ UNUSED_PARAMETER(dwFileOffsetHigh);
+ UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
+
+ if (!pFile->hMutex) return TRUE;
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Wanting an exclusive lock? */
+ if (dwFileOffsetLow == (DWORD)SHARED_FIRST
+ && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
+ if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
+ pFile->shared->bExclusive = TRUE;
+ pFile->local.bExclusive = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a read-only lock? */
+ else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
+ nNumberOfBytesToLockLow == 1){
+ if (pFile->shared->bExclusive == 0){
+ pFile->local.nReaders ++;
+ if (pFile->local.nReaders == 1){
+ pFile->shared->nReaders ++;
+ }
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a pending lock? */
+ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
+ && nNumberOfBytesToLockLow == 1){
+ /* If no pending lock has been acquired, then acquire it */
+ if (pFile->shared->bPending == 0) {
+ pFile->shared->bPending = TRUE;
+ pFile->local.bPending = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a reserved lock? */
+ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
+ && nNumberOfBytesToLockLow == 1){
+ if (pFile->shared->bReserved == 0) {
+ pFile->shared->bReserved = TRUE;
+ pFile->local.bReserved = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return bReturn;
+}
+
+/*
+** An implementation of the UnlockFile API of Windows for CE
+*/
+static BOOL winceUnlockFile(
+ LPHANDLE phFile,
+ DWORD dwFileOffsetLow,
+ DWORD dwFileOffsetHigh,
+ DWORD nNumberOfBytesToUnlockLow,
+ DWORD nNumberOfBytesToUnlockHigh
+){
+ winFile *pFile = HANDLE_TO_WINFILE(phFile);
+ BOOL bReturn = FALSE;
+
+ UNUSED_PARAMETER(dwFileOffsetHigh);
+ UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
+
+ if (!pFile->hMutex) return TRUE;
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Releasing a reader lock or an exclusive lock */
+ if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
+ /* Did we have an exclusive lock? */
+ if (pFile->local.bExclusive){
+ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
+ pFile->local.bExclusive = FALSE;
+ pFile->shared->bExclusive = FALSE;
+ bReturn = TRUE;
+ }
+
+ /* Did we just have a reader lock? */
+ else if (pFile->local.nReaders){
+ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE
+ || nNumberOfBytesToUnlockLow == 1);
+ pFile->local.nReaders --;
+ if (pFile->local.nReaders == 0)
+ {
+ pFile->shared->nReaders --;
+ }
+ bReturn = TRUE;
+ }
+ }
+
+ /* Releasing a pending lock */
+ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
+ && nNumberOfBytesToUnlockLow == 1){
+ if (pFile->local.bPending){
+ pFile->local.bPending = FALSE;
+ pFile->shared->bPending = FALSE;
+ bReturn = TRUE;
+ }
+ }
+ /* Releasing a reserved lock */
+ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
+ && nNumberOfBytesToUnlockLow == 1){
+ if (pFile->local.bReserved) {
+ pFile->local.bReserved = FALSE;
+ pFile->shared->bReserved = FALSE;
+ bReturn = TRUE;
+ }
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return bReturn;
+}
+/*
+** End of the special code for wince
+*****************************************************************************/
+#endif /* SQLITE_OS_WINCE */
+
+/*
+** Lock a file region.
+*/
+static BOOL winLockFile(
+ LPHANDLE phFile,
+ DWORD flags,
+ DWORD offsetLow,
+ DWORD offsetHigh,
+ DWORD numBytesLow,
+ DWORD numBytesHigh
+){
+#if SQLITE_OS_WINCE
+ /*
+ ** NOTE: Windows CE is handled differently here due its lack of the Win32
+ ** API LockFile.
+ */
+ return winceLockFile(phFile, offsetLow, offsetHigh,
+ numBytesLow, numBytesHigh);
+#else
+ if( osIsNT() ){
+ OVERLAPPED ovlp;
+ memset(&ovlp, 0, sizeof(OVERLAPPED));
+ ovlp.Offset = offsetLow;
+ ovlp.OffsetHigh = offsetHigh;
+ return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp);
+ }else{
+ return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
+ numBytesHigh);
+ }
+#endif
+}
+
+/*
+** Unlock a file region.
+ */
+static BOOL winUnlockFile(
+ LPHANDLE phFile,
+ DWORD offsetLow,
+ DWORD offsetHigh,
+ DWORD numBytesLow,
+ DWORD numBytesHigh
+){
+#if SQLITE_OS_WINCE
+ /*
+ ** NOTE: Windows CE is handled differently here due its lack of the Win32
+ ** API UnlockFile.
+ */
+ return winceUnlockFile(phFile, offsetLow, offsetHigh,
+ numBytesLow, numBytesHigh);
+#else
+ if( osIsNT() ){
+ OVERLAPPED ovlp;
+ memset(&ovlp, 0, sizeof(OVERLAPPED));
+ ovlp.Offset = offsetLow;
+ ovlp.OffsetHigh = offsetHigh;
+ return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp);
+ }else{
+ return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
+ numBytesHigh);
+ }
+#endif
+}
+
+/*****************************************************************************
+** The next group of routines implement the I/O methods specified
+** by the sqlite3_io_methods object.
+******************************************************************************/
+
+/*
+** Some Microsoft compilers lack this definition.
+*/
+#ifndef INVALID_SET_FILE_POINTER
+# define INVALID_SET_FILE_POINTER ((DWORD)-1)
+#endif
+
+/*
+** Move the current position of the file handle passed as the first
+** argument to offset iOffset within the file. If successful, return 0.
+** Otherwise, set pFile->lastErrno and return non-zero.
+*/
+static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){
+#if !SQLITE_OS_WINRT
+ LONG upperBits; /* Most sig. 32 bits of new offset */
+ LONG lowerBits; /* Least sig. 32 bits of new offset */
+ DWORD dwRet; /* Value returned by SetFilePointer() */
+ DWORD lastErrno; /* Value returned by GetLastError() */
+
+ OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset));
+
+ upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
+ lowerBits = (LONG)(iOffset & 0xffffffff);
+
+ /* API oddity: If successful, SetFilePointer() returns a dword
+ ** containing the lower 32-bits of the new file-offset. Or, if it fails,
+ ** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
+ ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
+ ** whether an error has actually occurred, it is also necessary to call
+ ** GetLastError().
+ */
+ dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+
+ if( (dwRet==INVALID_SET_FILE_POINTER
+ && ((lastErrno = osGetLastError())!=NO_ERROR)) ){
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
+ "winSeekFile", pFile->zPath);
+ OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
+ return 1;
+ }
+
+ OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
+ return 0;
+#else
+ /*
+ ** Same as above, except that this implementation works for WinRT.
+ */
+
+ LARGE_INTEGER x; /* The new offset */
+ BOOL bRet; /* Value returned by SetFilePointerEx() */
+
+ x.QuadPart = iOffset;
+ bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN);
+
+ if(!bRet){
+ pFile->lastErrno = osGetLastError();
+ winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
+ "winSeekFile", pFile->zPath);
+ OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
+ return 1;
+ }
+
+ OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
+ return 0;
+#endif
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* Forward references to VFS helper methods used for memory mapped files */
+static int winMapfile(winFile*, sqlite3_int64);
+static int winUnmapfile(winFile*);
+#endif
+
+/*
+** Close a file.
+**
+** It is reported that an attempt to close a handle might sometimes
+** fail. This is a very unreasonable result, but Windows is notorious
+** for being unreasonable so I do not doubt that it might happen. If
+** the close fails, we pause for 100 milliseconds and try again. As
+** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
+** giving up and returning an error.
+*/
+#define MX_CLOSE_ATTEMPT 3
+static int winClose(sqlite3_file *id){
+ int rc, cnt = 0;
+ winFile *pFile = (winFile*)id;
+
+ assert( id!=0 );
+#ifndef SQLITE_OMIT_WAL
+ assert( pFile->pShm==0 );
+#endif
+ assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
+ OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ winUnmapfile(pFile);
+#endif
+
+ do{
+ rc = osCloseHandle(pFile->h);
+ /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
+ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
+#if SQLITE_OS_WINCE
+#define WINCE_DELETION_ATTEMPTS 3
+ {
+ winVfsAppData *pAppData = (winVfsAppData*)pFile->pVfs->pAppData;
+ if( pAppData==NULL || !pAppData->bNoLock ){
+ winceDestroyLock(pFile);
+ }
+ }
+ if( pFile->zDeleteOnClose ){
+ int cnt = 0;
+ while(
+ osDeleteFileW(pFile->zDeleteOnClose)==0
+ && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
+ && cnt++ < WINCE_DELETION_ATTEMPTS
+ ){
+ sqlite3_win32_sleep(100); /* Wait a little before trying again */
+ }
+ sqlite3_free(pFile->zDeleteOnClose);
+ }
+#endif
+ if( rc ){
+ pFile->h = NULL;
+ }
+ OpenCounter(-1);
+ OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed"));
+ return rc ? SQLITE_OK
+ : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(),
+ "winClose", pFile->zPath);
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int winRead(
+ sqlite3_file *id, /* File to read from */
+ void *pBuf, /* Write content into this buffer */
+ int amt, /* Number of bytes to read */
+ sqlite3_int64 offset /* Begin reading at this offset */
+){
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ OVERLAPPED overlapped; /* The offset for ReadFile. */
+#endif
+ winFile *pFile = (winFile*)id; /* file handle */
+ DWORD nRead; /* Number of bytes actually read from file */
+ int nRetry = 0; /* Number of retrys */
+
+ assert( id!=0 );
+ assert( amt>0 );
+ assert( offset>=0 );
+ SimulateIOError(return SQLITE_IOERR_READ);
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
+ "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
+ pFile->h, pBuf, amt, offset, pFile->locktype));
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this read request as possible by transfering
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
+ OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+ }else{
+ int nCopy = (int)(pFile->mmapSize - offset);
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
+ if( winSeekFile(pFile, offset) ){
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_FULL;
+ }
+ while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
+#else
+ memset(&overlapped, 0, sizeof(OVERLAPPED));
+ overlapped.Offset = (LONG)(offset & 0xffffffff);
+ overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
+ while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
+ osGetLastError()!=ERROR_HANDLE_EOF ){
+#endif
+ DWORD lastErrno;
+ if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
+ pFile->lastErrno = lastErrno;
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
+ "winRead", pFile->zPath);
+ }
+ winLogIoerr(nRetry, __LINE__);
+ if( nRead<(DWORD)amt ){
+ /* Unread parts of the buffer must be zero-filled */
+ memset(&((char*)pBuf)[nRead], 0, amt-nRead);
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_IOERR_SHORT_READ;
+ }
+
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+}
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int winWrite(
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
+){
+ int rc = 0; /* True if error has occurred, else false */
+ winFile *pFile = (winFile*)id; /* File handle */
+ int nRetry = 0; /* Number of retries */
+
+ assert( amt>0 );
+ assert( pFile );
+ SimulateIOError(return SQLITE_IOERR_WRITE);
+ SimulateDiskfullError(return SQLITE_FULL);
+
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
+ "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
+ pFile->h, pBuf, amt, offset, pFile->locktype));
+
+#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this write request as possible by transfering
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
+ OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+ }else{
+ int nCopy = (int)(pFile->mmapSize - offset);
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
+ rc = winSeekFile(pFile, offset);
+ if( rc==0 ){
+#else
+ {
+#endif
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ OVERLAPPED overlapped; /* The offset for WriteFile. */
+#endif
+ u8 *aRem = (u8 *)pBuf; /* Data yet to be written */
+ int nRem = amt; /* Number of bytes yet to be written */
+ DWORD nWrite; /* Bytes written by each WriteFile() call */
+ DWORD lastErrno = NO_ERROR; /* Value returned by GetLastError() */
+
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ memset(&overlapped, 0, sizeof(OVERLAPPED));
+ overlapped.Offset = (LONG)(offset & 0xffffffff);
+ overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
+#endif
+
+ while( nRem>0 ){
+#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
+ if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
+#else
+ if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
+#endif
+ if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
+ break;
+ }
+ assert( nWrite==0 || nWrite<=(DWORD)nRem );
+ if( nWrite==0 || nWrite>(DWORD)nRem ){
+ lastErrno = osGetLastError();
+ break;
+ }
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ offset += nWrite;
+ overlapped.Offset = (LONG)(offset & 0xffffffff);
+ overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
+#endif
+ aRem += nWrite;
+ nRem -= nWrite;
+ }
+ if( nRem>0 ){
+ pFile->lastErrno = lastErrno;
+ rc = 1;
+ }
+ }
+
+ if( rc ){
+ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
+ || ( pFile->lastErrno==ERROR_DISK_FULL )){
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_FULL, pFile->lastErrno,
+ "winWrite1", pFile->zPath);
+ }
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
+ "winWrite2", pFile->zPath);
+ }else{
+ winLogIoerr(nRetry, __LINE__);
+ }
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
+ winFile *pFile = (winFile*)id; /* File handle object */
+ int rc = SQLITE_OK; /* Return code for this function */
+ DWORD lastErrno;
+#if SQLITE_MAX_MMAP_SIZE>0
+ sqlite3_int64 oldMmapSize;
+ if( pFile->nFetchOut>0 ){
+ /* File truncation is a no-op if there are outstanding memory mapped
+ ** pages. This is because truncating the file means temporarily unmapping
+ ** the file, and that might delete memory out from under existing cursors.
+ **
+ ** This can result in incremental vacuum not truncating the file,
+ ** if there is an active read cursor when the incremental vacuum occurs.
+ ** No real harm comes of this - the database file is not corrupted,
+ ** though some folks might complain that the file is bigger than it
+ ** needs to be.
+ **
+ ** The only feasible work-around is to defer the truncation until after
+ ** all references to memory-mapped content are closed. That is doable,
+ ** but involves adding a few branches in the common write code path which
+ ** could slow down normal operations slightly. Hence, we have decided for
+ ** now to simply make trancations a no-op if there are pending reads. We
+ ** can maybe revisit this decision in the future.
+ */
+ return SQLITE_OK;
+ }
+#endif
+
+ assert( pFile );
+ SimulateIOError(return SQLITE_IOERR_TRUNCATE);
+ OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n",
+ osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype));
+
+ /* If the user has configured a chunk-size for this file, truncate the
+ ** file so that it consists of an integer number of chunks (i.e. the
+ ** actual file size after the operation may be larger than the requested
+ ** size).
+ */
+ if( pFile->szChunk>0 ){
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
+ }
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFile->pMapRegion ){
+ oldMmapSize = pFile->mmapSize;
+ }else{
+ oldMmapSize = 0;
+ }
+ winUnmapfile(pFile);
+#endif
+
+ /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
+ if( winSeekFile(pFile, nByte) ){
+ rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
+ "winTruncate1", pFile->zPath);
+ }else if( 0==osSetEndOfFile(pFile->h) &&
+ ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){
+ pFile->lastErrno = lastErrno;
+ rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
+ "winTruncate2", pFile->zPath);
+ }
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( rc==SQLITE_OK && oldMmapSize>0 ){
+ if( oldMmapSize>nByte ){
+ winMapfile(pFile, -1);
+ }else{
+ winMapfile(pFile, oldMmapSize);
+ }
+ }
+#endif
+
+ OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc)));
+ return rc;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occuring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+*/
+static int winSync(sqlite3_file *id, int flags){
+#ifndef SQLITE_NO_SYNC
+ /*
+ ** Used only when SQLITE_NO_SYNC is not defined.
+ */
+ BOOL rc;
+#endif
+#if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \
+ defined(SQLITE_HAVE_OS_TRACE)
+ /*
+ ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or
+ ** OSTRACE() macros.
+ */
+ winFile *pFile = (winFile*)id;
+#else
+ UNUSED_PARAMETER(id);
+#endif
+
+ assert( pFile );
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL
+ || (flags&0x0F)==SQLITE_SYNC_FULL
+ );
+
+ /* Unix cannot, but some systems may return SQLITE_FULL from here. This
+ ** line is to test that doing so does not cause any problems.
+ */
+ SimulateDiskfullError( return SQLITE_FULL );
+
+ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n",
+ osGetCurrentProcessId(), pFile, pFile->h, flags,
+ pFile->locktype));
+
+#ifndef SQLITE_TEST
+ UNUSED_PARAMETER(flags);
+#else
+ if( (flags&0x0F)==SQLITE_SYNC_FULL ){
+ sqlite3_fullsync_count++;
+ }
+ sqlite3_sync_count++;
+#endif
+
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op
+ */
+#ifdef SQLITE_NO_SYNC
+ OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+#else
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFile->pMapRegion ){
+ if( osFlushViewOfFile(pFile->pMapRegion, 0) ){
+ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
+ "rc=SQLITE_OK\n", osGetCurrentProcessId(),
+ pFile, pFile->pMapRegion));
+ }else{
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
+ "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(),
+ pFile, pFile->pMapRegion));
+ return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
+ "winSync1", pFile->zPath);
+ }
+ }
+#endif
+ rc = osFlushFileBuffers(pFile->h);
+ SimulateIOError( rc=FALSE );
+ if( rc ){
+ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+ }else{
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
+ "winSync2", pFile->zPath);
+ }
+#endif
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
+ winFile *pFile = (winFile*)id;
+ int rc = SQLITE_OK;
+
+ assert( id!=0 );
+ assert( pSize!=0 );
+ SimulateIOError(return SQLITE_IOERR_FSTAT);
+ OSTRACE(("SIZE file=%p, pSize=%p\n", pFile->h, pSize));
+
+#if SQLITE_OS_WINRT
+ {
+ FILE_STANDARD_INFO info;
+ if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo,
+ &info, sizeof(info)) ){
+ *pSize = info.EndOfFile.QuadPart;
+ }else{
+ pFile->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
+ "winFileSize", pFile->zPath);
+ }
+ }
+#else
+ {
+ DWORD upperBits;
+ DWORD lowerBits;
+ DWORD lastErrno;
+
+ lowerBits = osGetFileSize(pFile->h, &upperBits);
+ *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
+ if( (lowerBits == INVALID_FILE_SIZE)
+ && ((lastErrno = osGetLastError())!=NO_ERROR) ){
+ pFile->lastErrno = lastErrno;
+ rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
+ "winFileSize", pFile->zPath);
+ }
+ }
+#endif
+ OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n",
+ pFile->h, pSize, *pSize, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
+*/
+#ifndef LOCKFILE_FAIL_IMMEDIATELY
+# define LOCKFILE_FAIL_IMMEDIATELY 1
+#endif
+
+#ifndef LOCKFILE_EXCLUSIVE_LOCK
+# define LOCKFILE_EXCLUSIVE_LOCK 2
+#endif
+
+/*
+** Historically, SQLite has used both the LockFile and LockFileEx functions.
+** When the LockFile function was used, it was always expected to fail
+** immediately if the lock could not be obtained. Also, it always expected to
+** obtain an exclusive lock. These flags are used with the LockFileEx function
+** and reflect those expectations; therefore, they should not be changed.
+*/
+#ifndef SQLITE_LOCKFILE_FLAGS
+# define SQLITE_LOCKFILE_FLAGS (LOCKFILE_FAIL_IMMEDIATELY | \
+ LOCKFILE_EXCLUSIVE_LOCK)
+#endif
+
+/*
+** Currently, SQLite never calls the LockFileEx function without wanting the
+** call to fail immediately if the lock cannot be obtained.
+*/
+#ifndef SQLITE_LOCKFILEEX_FLAGS
+# define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY)
+#endif
+
+/*
+** Acquire a reader lock.
+** Different API routines are called depending on whether or not this
+** is Win9x or WinNT.
+*/
+static int winGetReadLock(winFile *pFile){
+ int res;
+ OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
+ if( osIsNT() ){
+#if SQLITE_OS_WINCE
+ /*
+ ** NOTE: Windows CE is handled differently here due its lack of the Win32
+ ** API LockFileEx.
+ */
+ res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0);
+#else
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0,
+ SHARED_SIZE, 0);
+#endif
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ int lk;
+ sqlite3_randomness(sizeof(lk), &lk);
+ pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
+ SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
+ }
+#endif
+ if( res == 0 ){
+ pFile->lastErrno = osGetLastError();
+ /* No need to log a failure to lock */
+ }
+ OSTRACE(("READ-LOCK file=%p, result=%d\n", pFile->h, res));
+ return res;
+}
+
+/*
+** Undo a readlock
+*/
+static int winUnlockReadLock(winFile *pFile){
+ int res;
+ DWORD lastErrno;
+ OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
+ if( osIsNT() ){
+ res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
+ }
+#endif
+ if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno,
+ "winUnlockReadLock", pFile->zPath);
+ }
+ OSTRACE(("READ-UNLOCK file=%p, result=%d\n", pFile->h, res));
+ return res;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. The winUnlock() routine
+** erases all locks at once and returns us immediately to locking level 0.
+** It is not possible to lower the locking level one step at a time. You
+** must go straight to locking level 0.
+*/
+static int winLock(sqlite3_file *id, int locktype){
+ int rc = SQLITE_OK; /* Return code from subroutines */
+ int res = 1; /* Result of a Windows lock call */
+ int newLocktype; /* Set pFile->locktype to this value before exiting */
+ int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
+ winFile *pFile = (winFile*)id;
+ DWORD lastErrno = NO_ERROR;
+
+ assert( id!=0 );
+ OSTRACE(("LOCK file=%p, oldLock=%d(%d), newLock=%d\n",
+ pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** OsFile, do nothing. Don't use the end_lock: exit path, as
+ ** sqlite3OsEnterMutex() hasn't been called yet.
+ */
+ if( pFile->locktype>=locktype ){
+ OSTRACE(("LOCK-HELD file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+
+ /* Do not allow any kind of write-lock on a read-only database
+ */
+ if( (pFile->ctrlFlags & WINFILE_RDONLY)!=0 && locktype>=RESERVED_LOCK ){
+ return SQLITE_IOERR_LOCK;
+ }
+
+ /* Make sure the locking sequence is correct
+ */
+ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
+ assert( locktype!=PENDING_LOCK );
+ assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
+
+ /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
+ ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
+ ** the PENDING_LOCK byte is temporary.
+ */
+ newLocktype = pFile->locktype;
+ if( pFile->locktype==NO_LOCK
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype<=RESERVED_LOCK)
+ ){
+ int cnt = 3;
+ while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
+ PENDING_BYTE, 0, 1, 0))==0 ){
+ /* Try 3 times to get the pending lock. This is needed to work
+ ** around problems caused by indexing and/or anti-virus software on
+ ** Windows systems.
+ ** If you are using this code as a model for alternative VFSes, do not
+ ** copy this retry logic. It is a hack intended for Windows only.
+ */
+ lastErrno = osGetLastError();
+ OSTRACE(("LOCK-PENDING-FAIL file=%p, count=%d, result=%d\n",
+ pFile->h, cnt, res));
+ if( lastErrno==ERROR_INVALID_HANDLE ){
+ pFile->lastErrno = lastErrno;
+ rc = SQLITE_IOERR_LOCK;
+ OSTRACE(("LOCK-FAIL file=%p, count=%d, rc=%s\n",
+ pFile->h, cnt, sqlite3ErrName(rc)));
+ return rc;
+ }
+ if( cnt ) sqlite3_win32_sleep(1);
+ }
+ gotPendingLock = res;
+ if( !res ){
+ lastErrno = osGetLastError();
+ }
+ }
+
+ /* Acquire a shared lock
+ */
+ if( locktype==SHARED_LOCK && res ){
+ assert( pFile->locktype==NO_LOCK );
+ res = winGetReadLock(pFile);
+ if( res ){
+ newLocktype = SHARED_LOCK;
+ }else{
+ lastErrno = osGetLastError();
+ }
+ }
+
+ /* Acquire a RESERVED lock
+ */
+ if( locktype==RESERVED_LOCK && res ){
+ assert( pFile->locktype==SHARED_LOCK );
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0);
+ if( res ){
+ newLocktype = RESERVED_LOCK;
+ }else{
+ lastErrno = osGetLastError();
+ }
+ }
+
+ /* Acquire a PENDING lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res ){
+ newLocktype = PENDING_LOCK;
+ gotPendingLock = 0;
+ }
+
+ /* Acquire an EXCLUSIVE lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res ){
+ assert( pFile->locktype>=SHARED_LOCK );
+ res = winUnlockReadLock(pFile);
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0,
+ SHARED_SIZE, 0);
+ if( res ){
+ newLocktype = EXCLUSIVE_LOCK;
+ }else{
+ lastErrno = osGetLastError();
+ winGetReadLock(pFile);
+ }
+ }
+
+ /* If we are holding a PENDING lock that ought to be released, then
+ ** release it now.
+ */
+ if( gotPendingLock && locktype==SHARED_LOCK ){
+ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
+ }
+
+ /* Update the state of the lock has held in the file descriptor then
+ ** return the appropriate result code.
+ */
+ if( res ){
+ rc = SQLITE_OK;
+ }else{
+ pFile->lastErrno = lastErrno;
+ rc = SQLITE_BUSY;
+ OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n",
+ pFile->h, locktype, newLocktype));
+ }
+ pFile->locktype = (u8)newLocktype;
+ OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n",
+ pFile->h, pFile->locktype, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, return
+** non-zero, otherwise zero.
+*/
+static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int res;
+ winFile *pFile = (winFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+ OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut));
+
+ assert( id!=0 );
+ if( pFile->locktype>=RESERVED_LOCK ){
+ res = 1;
+ OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res));
+ }else{
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE,0,1,0);
+ if( res ){
+ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
+ }
+ res = !res;
+ OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res));
+ }
+ *pResOut = res;
+ OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
+ pFile->h, pResOut, *pResOut));
+ return SQLITE_OK;
+}
+
+/*
+** Lower the locking level on file descriptor id to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** It is not possible for this routine to fail if the second argument
+** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
+** might return SQLITE_IOERR;
+*/
+static int winUnlock(sqlite3_file *id, int locktype){
+ int type;
+ winFile *pFile = (winFile*)id;
+ int rc = SQLITE_OK;
+ assert( pFile!=0 );
+ assert( locktype<=SHARED_LOCK );
+ OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n",
+ pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
+ type = pFile->locktype;
+ if( type>=EXCLUSIVE_LOCK ){
+ winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){
+ /* This should never happen. We should always be able to
+ ** reacquire the read lock */
+ rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(),
+ "winUnlock", pFile->zPath);
+ }
+ }
+ if( type>=RESERVED_LOCK ){
+ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
+ }
+ if( locktype==NO_LOCK && type>=SHARED_LOCK ){
+ winUnlockReadLock(pFile);
+ }
+ if( type>=PENDING_LOCK ){
+ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
+ }
+ pFile->locktype = (u8)locktype;
+ OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
+ pFile->h, pFile->locktype, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/******************************************************************************
+****************************** No-op Locking **********************************
+**
+** Of the various locking implementations available, this is by far the
+** simplest: locking is ignored. No attempt is made to lock the database
+** file for reading or writing.
+**
+** This locking mode is appropriate for use on read-only databases
+** (ex: databases that are burned into CD-ROM, for example.) It can
+** also be used if the application employs some external mechanism to
+** prevent simultaneous access of the same database by two or more
+** database connections. But there is a serious risk of database
+** corruption if this locking mode is used in situations where multiple
+** database connections are accessing the same database file at the same
+** time and one or more of those connections are writing.
+*/
+
+static int winNolockLock(sqlite3_file *id, int locktype){
+ UNUSED_PARAMETER(id);
+ UNUSED_PARAMETER(locktype);
+ return SQLITE_OK;
+}
+
+static int winNolockCheckReservedLock(sqlite3_file *id, int *pResOut){
+ UNUSED_PARAMETER(id);
+ UNUSED_PARAMETER(pResOut);
+ return SQLITE_OK;
+}
+
+static int winNolockUnlock(sqlite3_file *id, int locktype){
+ UNUSED_PARAMETER(id);
+ UNUSED_PARAMETER(locktype);
+ return SQLITE_OK;
+}
+
+/******************* End of the no-op lock implementation *********************
+******************************************************************************/
+
+/*
+** If *pArg is initially negative then this is a query. Set *pArg to
+** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
+**
+** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
+*/
+static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){
+ if( *pArg<0 ){
+ *pArg = (pFile->ctrlFlags & mask)!=0;
+ }else if( (*pArg)==0 ){
+ pFile->ctrlFlags &= ~mask;
+ }else{
+ pFile->ctrlFlags |= mask;
+ }
+}
+
+/* Forward references to VFS helper methods used for temporary files */
+static int winGetTempname(sqlite3_vfs *, char **);
+static int winIsDir(const void *);
+static BOOL winIsLongPathPrefix(const char *);
+static BOOL winIsDriveLetterAndColon(const char *);
+
+/*
+** Control and query of the open file handle.
+*/
+static int winFileControl(sqlite3_file *id, int op, void *pArg){
+ winFile *pFile = (winFile*)id;
+ OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg));
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = pFile->locktype;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_LAST_ERRNO: {
+ *(int*)pArg = (int)pFile->lastErrno;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_CHUNK_SIZE: {
+ pFile->szChunk = *(int *)pArg;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_SIZE_HINT: {
+ if( pFile->szChunk>0 ){
+ sqlite3_int64 oldSz;
+ int rc = winFileSize(id, &oldSz);
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
+ if( newSz>oldSz ){
+ SimulateIOErrorBenign(1);
+ rc = winTruncate(id, newSz);
+ SimulateIOErrorBenign(0);
+ }
+ }
+ OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
+ return rc;
+ }
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_PERSIST_WAL: {
+ winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg);
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
+ winModeBit(pFile, WINFILE_PSOW, (int*)pArg);
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_VFSNAME: {
+ *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_WIN32_AV_RETRY: {
+ int *a = (int*)pArg;
+ if( a[0]>0 ){
+ winIoerrRetry = a[0];
+ }else{
+ a[0] = winIoerrRetry;
+ }
+ if( a[1]>0 ){
+ winIoerrRetryDelay = a[1];
+ }else{
+ a[1] = winIoerrRetryDelay;
+ }
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_WIN32_GET_HANDLE: {
+ LPHANDLE phFile = (LPHANDLE)pArg;
+ *phFile = pFile->h;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+#ifdef SQLITE_TEST
+ case SQLITE_FCNTL_WIN32_SET_HANDLE: {
+ LPHANDLE phFile = (LPHANDLE)pArg;
+ HANDLE hOldFile = pFile->h;
+ pFile->h = *phFile;
+ *phFile = hOldFile;
+ OSTRACE(("FCNTL oldFile=%p, newFile=%p, rc=SQLITE_OK\n",
+ hOldFile, pFile->h));
+ return SQLITE_OK;
+ }
+#endif
+ case SQLITE_FCNTL_TEMPFILENAME: {
+ char *zTFile = 0;
+ int rc = winGetTempname(pFile->pVfs, &zTFile);
+ if( rc==SQLITE_OK ){
+ *(char**)pArg = zTFile;
+ }
+ OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
+ return rc;
+ }
+#if SQLITE_MAX_MMAP_SIZE>0
+ case SQLITE_FCNTL_MMAP_SIZE: {
+ i64 newLimit = *(i64*)pArg;
+ int rc = SQLITE_OK;
+ if( newLimit>sqlite3GlobalConfig.mxMmap ){
+ newLimit = sqlite3GlobalConfig.mxMmap;
+ }
+
+ /* The value of newLimit may be eventually cast to (SIZE_T) and passed
+ ** to MapViewOfFile(). Restrict its value to 2GB if (SIZE_T) is not at
+ ** least a 64-bit type. */
+ if( newLimit>0 && sizeof(SIZE_T)<8 ){
+ newLimit = (newLimit & 0x7FFFFFFF);
+ }
+
+ *(i64*)pArg = pFile->mmapSizeMax;
+ if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
+ pFile->mmapSizeMax = newLimit;
+ if( pFile->mmapSize>0 ){
+ winUnmapfile(pFile);
+ rc = winMapfile(pFile, -1);
+ }
+ }
+ OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
+ return rc;
+ }
+#endif
+ }
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h));
+ return SQLITE_NOTFOUND;
+}
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int winSectorSize(sqlite3_file *id){
+ (void)id;
+ return SQLITE_DEFAULT_SECTOR_SIZE;
+}
+
+/*
+** Return a vector of device characteristics.
+*/
+static int winDeviceCharacteristics(sqlite3_file *id){
+ winFile *p = (winFile*)id;
+ return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN |
+ ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0);
+}
+
+/*
+** Windows will only let you create file view mappings
+** on allocation size granularity boundaries.
+** During sqlite3_os_init() we do a GetSystemInfo()
+** to get the granularity size.
+*/
+static SYSTEM_INFO winSysInfo;
+
+#ifndef SQLITE_OMIT_WAL
+
+/*
+** Helper functions to obtain and relinquish the global mutex. The
+** global mutex is used to protect the winLockInfo objects used by
+** this file, all of which may be shared by multiple threads.
+**
+** Function winShmMutexHeld() is used to assert() that the global mutex
+** is held when required. This function is only used as part of assert()
+** statements. e.g.
+**
+** winShmEnterMutex()
+** assert( winShmMutexHeld() );
+** winShmLeaveMutex()
+*/
+static sqlite3_mutex *winBigLock = 0;
+static void winShmEnterMutex(void){
+ sqlite3_mutex_enter(winBigLock);
+}
+static void winShmLeaveMutex(void){
+ sqlite3_mutex_leave(winBigLock);
+}
+#ifndef NDEBUG
+static int winShmMutexHeld(void) {
+ return sqlite3_mutex_held(winBigLock);
+}
+#endif
+
+/*
+** Object used to represent a single file opened and mmapped to provide
+** shared memory. When multiple threads all reference the same
+** log-summary, each thread has its own winFile object, but they all
+** point to a single instance of this object. In other words, each
+** log-summary is opened only once per process.
+**
+** winShmMutexHeld() must be true when creating or destroying
+** this object or while reading or writing the following fields:
+**
+** nRef
+** pNext
+**
+** The following fields are read-only after the object is created:
+**
+** fid
+** zFilename
+**
+** Either winShmNode.mutex must be held or winShmNode.nRef==0 and
+** winShmMutexHeld() is true when reading or writing any other field
+** in this structure.
+**
+*/
+struct winShmNode {
+ sqlite3_mutex *mutex; /* Mutex to access this object */
+ char *zFilename; /* Name of the file */
+ winFile hFile; /* File handle from winOpen */
+
+ int szRegion; /* Size of shared-memory regions */
+ int nRegion; /* Size of array apRegion */
+ u8 isReadonly; /* True if read-only */
+ u8 isUnlocked; /* True if no DMS lock held */
+
+ struct ShmRegion {
+ HANDLE hMap; /* File handle from CreateFileMapping */
+ void *pMap;
+ } *aRegion;
+ DWORD lastErrno; /* The Windows errno from the last I/O error */
+
+ int nRef; /* Number of winShm objects pointing to this */
+ winShm *pFirst; /* All winShm objects pointing to this */
+ winShmNode *pNext; /* Next in list of all winShmNode objects */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+ u8 nextShmId; /* Next available winShm.id value */
+#endif
+};
+
+/*
+** A global array of all winShmNode objects.
+**
+** The winShmMutexHeld() must be true while reading or writing this list.
+*/
+static winShmNode *winShmNodeList = 0;
+
+/*
+** Structure used internally by this VFS to record the state of an
+** open shared memory connection.
+**
+** The following fields are initialized when this object is created and
+** are read-only thereafter:
+**
+** winShm.pShmNode
+** winShm.id
+**
+** All other fields are read/write. The winShm.pShmNode->mutex must be held
+** while accessing any read/write fields.
+*/
+struct winShm {
+ winShmNode *pShmNode; /* The underlying winShmNode object */
+ winShm *pNext; /* Next winShm with the same winShmNode */
+ u8 hasMutex; /* True if holding the winShmNode mutex */
+ u16 sharedMask; /* Mask of shared locks held */
+ u16 exclMask; /* Mask of exclusive locks held */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+ u8 id; /* Id of this connection with its winShmNode */
+#endif
+};
+
+/*
+** Constants used for locking
+*/
+#define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
+#define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
+
+/*
+** Apply advisory locks for all n bytes beginning at ofst.
+*/
+#define WINSHM_UNLCK 1
+#define WINSHM_RDLCK 2
+#define WINSHM_WRLCK 3
+static int winShmSystemLock(
+ winShmNode *pFile, /* Apply locks to this open shared-memory segment */
+ int lockType, /* WINSHM_UNLCK, WINSHM_RDLCK, or WINSHM_WRLCK */
+ int ofst, /* Offset to first byte to be locked/unlocked */
+ int nByte /* Number of bytes to lock or unlock */
+){
+ int rc = 0; /* Result code form Lock/UnlockFileEx() */
+
+ /* Access to the winShmNode object is serialized by the caller */
+ assert( pFile->nRef==0 || sqlite3_mutex_held(pFile->mutex) );
+
+ OSTRACE(("SHM-LOCK file=%p, lock=%d, offset=%d, size=%d\n",
+ pFile->hFile.h, lockType, ofst, nByte));
+
+ /* Release/Acquire the system-level lock */
+ if( lockType==WINSHM_UNLCK ){
+ rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0);
+ }else{
+ /* Initialize the locking parameters */
+ DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
+ if( lockType == WINSHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
+ rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0);
+ }
+
+ if( rc!= 0 ){
+ rc = SQLITE_OK;
+ }else{
+ pFile->lastErrno = osGetLastError();
+ rc = SQLITE_BUSY;
+ }
+
+ OSTRACE(("SHM-LOCK file=%p, func=%s, errno=%lu, rc=%s\n",
+ pFile->hFile.h, (lockType == WINSHM_UNLCK) ? "winUnlockFile" :
+ "winLockFile", pFile->lastErrno, sqlite3ErrName(rc)));
+
+ return rc;
+}
+
+/* Forward references to VFS methods */
+static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*);
+static int winDelete(sqlite3_vfs *,const char*,int);
+
+/*
+** Purge the winShmNodeList list of all entries with winShmNode.nRef==0.
+**
+** This is not a VFS shared-memory method; it is a utility function called
+** by VFS shared-memory methods.
+*/
+static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
+ winShmNode **pp;
+ winShmNode *p;
+ assert( winShmMutexHeld() );
+ OSTRACE(("SHM-PURGE pid=%lu, deleteFlag=%d\n",
+ osGetCurrentProcessId(), deleteFlag));
+ pp = &winShmNodeList;
+ while( (p = *pp)!=0 ){
+ if( p->nRef==0 ){
+ int i;
+ if( p->mutex ){ sqlite3_mutex_free(p->mutex); }
+ for(i=0; i<p->nRegion; i++){
+ BOOL bRc = osUnmapViewOfFile(p->aRegion[i].pMap);
+ OSTRACE(("SHM-PURGE-UNMAP pid=%lu, region=%d, rc=%s\n",
+ osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
+ UNUSED_VARIABLE_VALUE(bRc);
+ bRc = osCloseHandle(p->aRegion[i].hMap);
+ OSTRACE(("SHM-PURGE-CLOSE pid=%lu, region=%d, rc=%s\n",
+ osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
+ UNUSED_VARIABLE_VALUE(bRc);
+ }
+ if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){
+ SimulateIOErrorBenign(1);
+ winClose((sqlite3_file *)&p->hFile);
+ SimulateIOErrorBenign(0);
+ }
+ if( deleteFlag ){
+ SimulateIOErrorBenign(1);
+ sqlite3BeginBenignMalloc();
+ winDelete(pVfs, p->zFilename, 0);
+ sqlite3EndBenignMalloc();
+ SimulateIOErrorBenign(0);
+ }
+ *pp = p->pNext;
+ sqlite3_free(p->aRegion);
+ sqlite3_free(p);
+ }else{
+ pp = &p->pNext;
+ }
+ }
+}
+
+/*
+** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
+** take it now. Return SQLITE_OK if successful, or an SQLite error
+** code otherwise.
+**
+** If the DMS cannot be locked because this is a readonly_shm=1
+** connection and no other process already holds a lock, return
+** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
+*/
+static int winLockSharedMemory(winShmNode *pShmNode){
+ int rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, WIN_SHM_DMS, 1);
+
+ if( rc==SQLITE_OK ){
+ if( pShmNode->isReadonly ){
+ pShmNode->isUnlocked = 1;
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ return SQLITE_READONLY_CANTINIT;
+ }else if( winTruncate((sqlite3_file*)&pShmNode->hFile, 0) ){
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ return winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(),
+ "winLockSharedMemory", pShmNode->zFilename);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ }
+
+ return winShmSystemLock(pShmNode, WINSHM_RDLCK, WIN_SHM_DMS, 1);
+}
+
+/*
+** Open the shared-memory area associated with database file pDbFd.
+**
+** When opening a new shared-memory file, if no other instances of that
+** file are currently open, in this process or in other processes, then
+** the file must be truncated to zero length or have its header cleared.
+*/
+static int winOpenSharedMemory(winFile *pDbFd){
+ struct winShm *p; /* The connection to be opened */
+ winShmNode *pShmNode = 0; /* The underlying mmapped file */
+ int rc = SQLITE_OK; /* Result code */
+ winShmNode *pNew; /* Newly allocated winShmNode */
+ int nName; /* Size of zName in bytes */
+
+ assert( pDbFd->pShm==0 ); /* Not previously opened */
+
+ /* Allocate space for the new sqlite3_shm object. Also speculatively
+ ** allocate space for a new winShmNode and filename.
+ */
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p==0 ) return SQLITE_IOERR_NOMEM_BKPT;
+ nName = sqlite3Strlen30(pDbFd->zPath);
+ pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 );
+ if( pNew==0 ){
+ sqlite3_free(p);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ pNew->zFilename = (char*)&pNew[1];
+ sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath);
+ sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename);
+
+ /* Look to see if there is an existing winShmNode that can be used.
+ ** If no matching winShmNode currently exists, create a new one.
+ */
+ winShmEnterMutex();
+ for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){
+ /* TBD need to come up with better match here. Perhaps
+ ** use FILE_ID_BOTH_DIR_INFO Structure.
+ */
+ if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break;
+ }
+ if( pShmNode ){
+ sqlite3_free(pNew);
+ }else{
+ int inFlags = SQLITE_OPEN_WAL;
+ int outFlags = 0;
+
+ pShmNode = pNew;
+ pNew = 0;
+ ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE;
+ pShmNode->pNext = winShmNodeList;
+ winShmNodeList = pShmNode;
+
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pShmNode->mutex==0 ){
+ rc = SQLITE_IOERR_NOMEM_BKPT;
+ goto shm_open_err;
+ }
+ }
+
+ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
+ inFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE;
+ }else{
+ inFlags |= SQLITE_OPEN_READONLY;
+ }
+ rc = winOpen(pDbFd->pVfs, pShmNode->zFilename,
+ (sqlite3_file*)&pShmNode->hFile,
+ inFlags, &outFlags);
+ if( rc!=SQLITE_OK ){
+ rc = winLogError(rc, osGetLastError(), "winOpenShm",
+ pShmNode->zFilename);
+ goto shm_open_err;
+ }
+ if( outFlags==SQLITE_OPEN_READONLY ) pShmNode->isReadonly = 1;
+
+ rc = winLockSharedMemory(pShmNode);
+ if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
+ }
+
+ /* Make the new connection a child of the winShmNode */
+ p->pShmNode = pShmNode;
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+ p->id = pShmNode->nextShmId++;
+#endif
+ pShmNode->nRef++;
+ pDbFd->pShm = p;
+ winShmLeaveMutex();
+
+ /* The reference count on pShmNode has already been incremented under
+ ** the cover of the winShmEnterMutex() mutex and the pointer from the
+ ** new (struct winShm) object to the pShmNode has been set. All that is
+ ** left to do is to link the new object into the linked list starting
+ ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
+ ** mutex.
+ */
+ sqlite3_mutex_enter(pShmNode->mutex);
+ p->pNext = pShmNode->pFirst;
+ pShmNode->pFirst = p;
+ sqlite3_mutex_leave(pShmNode->mutex);
+ return rc;
+
+ /* Jump here on any error */
+shm_open_err:
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */
+ sqlite3_free(p);
+ sqlite3_free(pNew);
+ winShmLeaveMutex();
+ return rc;
+}
+
+/*
+** Close a connection to shared-memory. Delete the underlying
+** storage if deleteFlag is true.
+*/
+static int winShmUnmap(
+ sqlite3_file *fd, /* Database holding shared memory */
+ int deleteFlag /* Delete after closing if true */
+){
+ winFile *pDbFd; /* Database holding shared-memory */
+ winShm *p; /* The connection to be closed */
+ winShmNode *pShmNode; /* The underlying shared-memory file */
+ winShm **pp; /* For looping over sibling connections */
+
+ pDbFd = (winFile*)fd;
+ p = pDbFd->pShm;
+ if( p==0 ) return SQLITE_OK;
+ pShmNode = p->pShmNode;
+
+ /* Remove connection p from the set of connections associated
+ ** with pShmNode */
+ sqlite3_mutex_enter(pShmNode->mutex);
+ for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
+ *pp = p->pNext;
+
+ /* Free the connection p */
+ sqlite3_free(p);
+ pDbFd->pShm = 0;
+ sqlite3_mutex_leave(pShmNode->mutex);
+
+ /* If pShmNode->nRef has reached 0, then close the underlying
+ ** shared-memory file, too */
+ winShmEnterMutex();
+ assert( pShmNode->nRef>0 );
+ pShmNode->nRef--;
+ if( pShmNode->nRef==0 ){
+ winShmPurge(pDbFd->pVfs, deleteFlag);
+ }
+ winShmLeaveMutex();
+
+ return SQLITE_OK;
+}
+
+/*
+** Change the lock state for a shared-memory segment.
+*/
+static int winShmLock(
+ sqlite3_file *fd, /* Database file holding the shared memory */
+ int ofst, /* First lock to acquire or release */
+ int n, /* Number of locks to acquire or release */
+ int flags /* What to do with the lock */
+){
+ winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */
+ winShm *p = pDbFd->pShm; /* The shared memory being locked */
+ winShm *pX; /* For looping over all siblings */
+ winShmNode *pShmNode;
+ int rc = SQLITE_OK; /* Result code */
+ u16 mask; /* Mask of locks to take or release */
+
+ if( p==0 ) return SQLITE_IOERR_SHMLOCK;
+ pShmNode = p->pShmNode;
+ if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
+
+ assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
+ assert( n>=1 );
+ assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
+ assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
+
+ mask = (u16)((1U<<(ofst+n)) - (1U<<ofst));
+ assert( n>1 || mask==(1<<ofst) );
+ sqlite3_mutex_enter(pShmNode->mutex);
+ if( flags & SQLITE_SHM_UNLOCK ){
+ u16 allMask = 0; /* Mask of locks held by siblings */
+
+ /* See if any siblings hold this same lock */
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ if( pX==p ) continue;
+ assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
+ allMask |= pX->sharedMask;
+ }
+
+ /* Unlock the system-level locks */
+ if( (mask & allMask)==0 ){
+ rc = winShmSystemLock(pShmNode, WINSHM_UNLCK, ofst+WIN_SHM_BASE, n);
+ }else{
+ rc = SQLITE_OK;
+ }
+
+ /* Undo the local locks */
+ if( rc==SQLITE_OK ){
+ p->exclMask &= ~mask;
+ p->sharedMask &= ~mask;
+ }
+ }else if( flags & SQLITE_SHM_SHARED ){
+ u16 allShared = 0; /* Union of locks held by connections other than "p" */
+
+ /* Find out which shared locks are already held by sibling connections.
+ ** If any sibling already holds an exclusive lock, go ahead and return
+ ** SQLITE_BUSY.
+ */
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ if( (pX->exclMask & mask)!=0 ){
+ rc = SQLITE_BUSY;
+ break;
+ }
+ allShared |= pX->sharedMask;
+ }
+
+ /* Get shared locks at the system level, if necessary */
+ if( rc==SQLITE_OK ){
+ if( (allShared & mask)==0 ){
+ rc = winShmSystemLock(pShmNode, WINSHM_RDLCK, ofst+WIN_SHM_BASE, n);
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+
+ /* Get the local shared locks */
+ if( rc==SQLITE_OK ){
+ p->sharedMask |= mask;
+ }
+ }else{
+ /* Make sure no sibling connections hold locks that will block this
+ ** lock. If any do, return SQLITE_BUSY right away.
+ */
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
+ rc = SQLITE_BUSY;
+ break;
+ }
+ }
+
+ /* Get the exclusive locks at the system level. Then if successful
+ ** also mark the local connection as being locked.
+ */
+ if( rc==SQLITE_OK ){
+ rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, ofst+WIN_SHM_BASE, n);
+ if( rc==SQLITE_OK ){
+ assert( (p->sharedMask & mask)==0 );
+ p->exclMask |= mask;
+ }
+ }
+ }
+ sqlite3_mutex_leave(pShmNode->mutex);
+ OSTRACE(("SHM-LOCK pid=%lu, id=%d, sharedMask=%03x, exclMask=%03x, rc=%s\n",
+ osGetCurrentProcessId(), p->id, p->sharedMask, p->exclMask,
+ sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** Implement a memory barrier or memory fence on shared memory.
+**
+** All loads and stores begun before the barrier must complete before
+** any load or store begun after the barrier.
+*/
+static void winShmBarrier(
+ sqlite3_file *fd /* Database holding the shared memory */
+){
+ UNUSED_PARAMETER(fd);
+ sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
+ winShmEnterMutex(); /* Also mutex, for redundancy */
+ winShmLeaveMutex();
+}
+
+/*
+** This function is called to obtain a pointer to region iRegion of the
+** shared-memory associated with the database file fd. Shared-memory regions
+** are numbered starting from zero. Each shared-memory region is szRegion
+** bytes in size.
+**
+** If an error occurs, an error code is returned and *pp is set to NULL.
+**
+** Otherwise, if the isWrite parameter is 0 and the requested shared-memory
+** region has not been allocated (by any client, including one running in a
+** separate process), then *pp is set to NULL and SQLITE_OK returned. If
+** isWrite is non-zero and the requested shared-memory region has not yet
+** been allocated, it is allocated by this function.
+**
+** If the shared-memory region has already been allocated or is allocated by
+** this call as described above, then it is mapped into this processes
+** address space (if it is not already), *pp is set to point to the mapped
+** memory and SQLITE_OK returned.
+*/
+static int winShmMap(
+ sqlite3_file *fd, /* Handle open on database file */
+ int iRegion, /* Region to retrieve */
+ int szRegion, /* Size of regions */
+ int isWrite, /* True to extend file if necessary */
+ void volatile **pp /* OUT: Mapped memory */
+){
+ winFile *pDbFd = (winFile*)fd;
+ winShm *pShm = pDbFd->pShm;
+ winShmNode *pShmNode;
+ DWORD protect = PAGE_READWRITE;
+ DWORD flags = FILE_MAP_WRITE | FILE_MAP_READ;
+ int rc = SQLITE_OK;
+
+ if( !pShm ){
+ rc = winOpenSharedMemory(pDbFd);
+ if( rc!=SQLITE_OK ) return rc;
+ pShm = pDbFd->pShm;
+ assert( pShm!=0 );
+ }
+ pShmNode = pShm->pShmNode;
+
+ sqlite3_mutex_enter(pShmNode->mutex);
+ if( pShmNode->isUnlocked ){
+ rc = winLockSharedMemory(pShmNode);
+ if( rc!=SQLITE_OK ) goto shmpage_out;
+ pShmNode->isUnlocked = 0;
+ }
+ assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
+
+ if( pShmNode->nRegion<=iRegion ){
+ struct ShmRegion *apNew; /* New aRegion[] array */
+ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
+ sqlite3_int64 sz; /* Current size of wal-index file */
+
+ pShmNode->szRegion = szRegion;
+
+ /* The requested region is not mapped into this processes address space.
+ ** Check to see if it has been allocated (i.e. if the wal-index file is
+ ** large enough to contain the requested region).
+ */
+ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
+ if( rc!=SQLITE_OK ){
+ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
+ "winShmMap1", pDbFd->zPath);
+ goto shmpage_out;
+ }
+
+ if( sz<nByte ){
+ /* The requested memory region does not exist. If isWrite is set to
+ ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
+ **
+ ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
+ ** the requested memory region.
+ */
+ if( !isWrite ) goto shmpage_out;
+ rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
+ if( rc!=SQLITE_OK ){
+ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
+ "winShmMap2", pDbFd->zPath);
+ goto shmpage_out;
+ }
+ }
+
+ /* Map the requested memory region into this processes address space. */
+ apNew = (struct ShmRegion *)sqlite3_realloc64(
+ pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
+ );
+ if( !apNew ){
+ rc = SQLITE_IOERR_NOMEM_BKPT;
+ goto shmpage_out;
+ }
+ pShmNode->aRegion = apNew;
+
+ if( pShmNode->isReadonly ){
+ protect = PAGE_READONLY;
+ flags = FILE_MAP_READ;
+ }
+
+ while( pShmNode->nRegion<=iRegion ){
+ HANDLE hMap = NULL; /* file-mapping handle */
+ void *pMap = 0; /* Mapped memory region */
+
+#if SQLITE_OS_WINRT
+ hMap = osCreateFileMappingFromApp(pShmNode->hFile.h,
+ NULL, protect, nByte, NULL
+ );
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ hMap = osCreateFileMappingW(pShmNode->hFile.h,
+ NULL, protect, 0, nByte, NULL
+ );
+#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
+ hMap = osCreateFileMappingA(pShmNode->hFile.h,
+ NULL, protect, 0, nByte, NULL
+ );
+#endif
+ OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n",
+ osGetCurrentProcessId(), pShmNode->nRegion, nByte,
+ hMap ? "ok" : "failed"));
+ if( hMap ){
+ int iOffset = pShmNode->nRegion*szRegion;
+ int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
+#if SQLITE_OS_WINRT
+ pMap = osMapViewOfFileFromApp(hMap, flags,
+ iOffset - iOffsetShift, szRegion + iOffsetShift
+ );
+#else
+ pMap = osMapViewOfFile(hMap, flags,
+ 0, iOffset - iOffsetShift, szRegion + iOffsetShift
+ );
+#endif
+ OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n",
+ osGetCurrentProcessId(), pShmNode->nRegion, iOffset,
+ szRegion, pMap ? "ok" : "failed"));
+ }
+ if( !pMap ){
+ pShmNode->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno,
+ "winShmMap3", pDbFd->zPath);
+ if( hMap ) osCloseHandle(hMap);
+ goto shmpage_out;
+ }
+
+ pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
+ pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
+ pShmNode->nRegion++;
+ }
+ }
+
+shmpage_out:
+ if( pShmNode->nRegion>iRegion ){
+ int iOffset = iRegion*szRegion;
+ int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
+ char *p = (char *)pShmNode->aRegion[iRegion].pMap;
+ *pp = (void *)&p[iOffsetShift];
+ }else{
+ *pp = 0;
+ }
+ if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
+ sqlite3_mutex_leave(pShmNode->mutex);
+ return rc;
+}
+
+#else
+# define winShmMap 0
+# define winShmLock 0
+# define winShmBarrier 0
+# define winShmUnmap 0
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+/*
+** Cleans up the mapped region of the specified file, if any.
+*/
+#if SQLITE_MAX_MMAP_SIZE>0
+static int winUnmapfile(winFile *pFile){
+ assert( pFile!=0 );
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, "
+ "mmapSize=%lld, mmapSizeMax=%lld\n",
+ osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion,
+ pFile->mmapSize, pFile->mmapSizeMax));
+ if( pFile->pMapRegion ){
+ if( !osUnmapViewOfFile(pFile->pMapRegion) ){
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
+ "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
+ pFile->pMapRegion));
+ return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
+ "winUnmapfile1", pFile->zPath);
+ }
+ pFile->pMapRegion = 0;
+ pFile->mmapSize = 0;
+ }
+ if( pFile->hMap!=NULL ){
+ if( !osCloseHandle(pFile->hMap) ){
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
+ osGetCurrentProcessId(), pFile, pFile->hMap));
+ return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
+ "winUnmapfile2", pFile->zPath);
+ }
+ pFile->hMap = NULL;
+ }
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile));
+ return SQLITE_OK;
+}
+
+/*
+** Memory map or remap the file opened by file-descriptor pFd (if the file
+** is already mapped, the existing mapping is replaced by the new). Or, if
+** there already exists a mapping for this file, and there are still
+** outstanding xFetch() references to it, this function is a no-op.
+**
+** If parameter nByte is non-negative, then it is the requested size of
+** the mapping to create. Otherwise, if nByte is less than zero, then the
+** requested size is the size of the file on disk. The actual size of the
+** created mapping is either the requested size or the value configured
+** using SQLITE_FCNTL_MMAP_SIZE, whichever is smaller.
+**
+** SQLITE_OK is returned if no error occurs (even if the mapping is not
+** recreated as a result of outstanding references) or an SQLite error
+** code otherwise.
+*/
+static int winMapfile(winFile *pFd, sqlite3_int64 nByte){
+ sqlite3_int64 nMap = nByte;
+ int rc;
+
+ assert( nMap>=0 || pFd->nFetchOut==0 );
+ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, size=%lld\n",
+ osGetCurrentProcessId(), pFd, nByte));
+
+ if( pFd->nFetchOut>0 ) return SQLITE_OK;
+
+ if( nMap<0 ){
+ rc = winFileSize((sqlite3_file*)pFd, &nMap);
+ if( rc ){
+ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_IOERR_FSTAT\n",
+ osGetCurrentProcessId(), pFd));
+ return SQLITE_IOERR_FSTAT;
+ }
+ }
+ if( nMap>pFd->mmapSizeMax ){
+ nMap = pFd->mmapSizeMax;
+ }
+ nMap &= ~(sqlite3_int64)(winSysInfo.dwPageSize - 1);
+
+ if( nMap==0 && pFd->mmapSize>0 ){
+ winUnmapfile(pFd);
+ }
+ if( nMap!=pFd->mmapSize ){
+ void *pNew = 0;
+ DWORD protect = PAGE_READONLY;
+ DWORD flags = FILE_MAP_READ;
+
+ winUnmapfile(pFd);
+#ifdef SQLITE_MMAP_READWRITE
+ if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){
+ protect = PAGE_READWRITE;
+ flags |= FILE_MAP_WRITE;
+ }
+#endif
+#if SQLITE_OS_WINRT
+ pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
+ (DWORD)((nMap>>32) & 0xffffffff),
+ (DWORD)(nMap & 0xffffffff), NULL);
+#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
+ pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
+ (DWORD)((nMap>>32) & 0xffffffff),
+ (DWORD)(nMap & 0xffffffff), NULL);
+#endif
+ if( pFd->hMap==NULL ){
+ pFd->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
+ "winMapfile1", pFd->zPath);
+ /* Log the error, but continue normal operation using xRead/xWrite */
+ OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
+ return SQLITE_OK;
+ }
+ assert( (nMap % winSysInfo.dwPageSize)==0 );
+ assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff );
+#if SQLITE_OS_WINRT
+ pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap);
+#else
+ pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap);
+#endif
+ if( pNew==NULL ){
+ osCloseHandle(pFd->hMap);
+ pFd->hMap = NULL;
+ pFd->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
+ "winMapfile2", pFd->zPath);
+ /* Log the error, but continue normal operation using xRead/xWrite */
+ OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
+ return SQLITE_OK;
+ }
+ pFd->pMapRegion = pNew;
+ pFd->mmapSize = nMap;
+ }
+
+ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFd));
+ return SQLITE_OK;
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/*
+** If possible, return a pointer to a mapping of file fd starting at offset
+** iOff. The mapping must be valid for at least nAmt bytes.
+**
+** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
+** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
+** Finally, if an error does occur, return an SQLite error code. The final
+** value of *pp is undefined in this case.
+**
+** If this function does return a pointer, the caller must eventually
+** release the reference by calling winUnfetch().
+*/
+static int winFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
+#if SQLITE_MAX_MMAP_SIZE>0
+ winFile *pFd = (winFile*)fd; /* The underlying database file */
+#endif
+ *pp = 0;
+
+ OSTRACE(("FETCH pid=%lu, pFile=%p, offset=%lld, amount=%d, pp=%p\n",
+ osGetCurrentProcessId(), fd, iOff, nAmt, pp));
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFd->mmapSizeMax>0 ){
+ if( pFd->pMapRegion==0 ){
+ int rc = winMapfile(pFd, -1);
+ if( rc!=SQLITE_OK ){
+ OSTRACE(("FETCH pid=%lu, pFile=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
+ return rc;
+ }
+ }
+ if( pFd->mmapSize >= iOff+nAmt ){
+ assert( pFd->pMapRegion!=0 );
+ *pp = &((u8 *)pFd->pMapRegion)[iOff];
+ pFd->nFetchOut++;
+ }
+ }
+#endif
+
+ OSTRACE(("FETCH pid=%lu, pFile=%p, pp=%p, *pp=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), fd, pp, *pp));
+ return SQLITE_OK;
+}
+
+/*
+** If the third argument is non-NULL, then this function releases a
+** reference obtained by an earlier call to winFetch(). The second
+** argument passed to this function must be the same as the corresponding
+** argument that was passed to the winFetch() invocation.
+**
+** Or, if the third argument is NULL, then this function is being called
+** to inform the VFS layer that, according to POSIX, any existing mapping
+** may now be invalid and should be unmapped.
+*/
+static int winUnfetch(sqlite3_file *fd, i64 iOff, void *p){
+#if SQLITE_MAX_MMAP_SIZE>0
+ winFile *pFd = (winFile*)fd; /* The underlying database file */
+
+ /* If p==0 (unmap the entire file) then there must be no outstanding
+ ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
+ ** then there must be at least one outstanding. */
+ assert( (p==0)==(pFd->nFetchOut==0) );
+
+ /* If p!=0, it must match the iOff value. */
+ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
+
+ OSTRACE(("UNFETCH pid=%lu, pFile=%p, offset=%lld, p=%p\n",
+ osGetCurrentProcessId(), pFd, iOff, p));
+
+ if( p ){
+ pFd->nFetchOut--;
+ }else{
+ /* FIXME: If Windows truly always prevents truncating or deleting a
+ ** file while a mapping is held, then the following winUnmapfile() call
+ ** is unnecessary can be omitted - potentially improving
+ ** performance. */
+ winUnmapfile(pFd);
+ }
+
+ assert( pFd->nFetchOut>=0 );
+#endif
+
+ OSTRACE(("UNFETCH pid=%lu, pFile=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), fd));
+ return SQLITE_OK;
+}
+
+/*
+** Here ends the implementation of all sqlite3_file methods.
+**
+********************** End sqlite3_file Methods *******************************
+******************************************************************************/
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for win32.
+*/
+static const sqlite3_io_methods winIoMethod = {
+ 3, /* iVersion */
+ winClose, /* xClose */
+ winRead, /* xRead */
+ winWrite, /* xWrite */
+ winTruncate, /* xTruncate */
+ winSync, /* xSync */
+ winFileSize, /* xFileSize */
+ winLock, /* xLock */
+ winUnlock, /* xUnlock */
+ winCheckReservedLock, /* xCheckReservedLock */
+ winFileControl, /* xFileControl */
+ winSectorSize, /* xSectorSize */
+ winDeviceCharacteristics, /* xDeviceCharacteristics */
+ winShmMap, /* xShmMap */
+ winShmLock, /* xShmLock */
+ winShmBarrier, /* xShmBarrier */
+ winShmUnmap, /* xShmUnmap */
+ winFetch, /* xFetch */
+ winUnfetch /* xUnfetch */
+};
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for win32 without performing any locking.
+*/
+static const sqlite3_io_methods winIoNolockMethod = {
+ 3, /* iVersion */
+ winClose, /* xClose */
+ winRead, /* xRead */
+ winWrite, /* xWrite */
+ winTruncate, /* xTruncate */
+ winSync, /* xSync */
+ winFileSize, /* xFileSize */
+ winNolockLock, /* xLock */
+ winNolockUnlock, /* xUnlock */
+ winNolockCheckReservedLock, /* xCheckReservedLock */
+ winFileControl, /* xFileControl */
+ winSectorSize, /* xSectorSize */
+ winDeviceCharacteristics, /* xDeviceCharacteristics */
+ winShmMap, /* xShmMap */
+ winShmLock, /* xShmLock */
+ winShmBarrier, /* xShmBarrier */
+ winShmUnmap, /* xShmUnmap */
+ winFetch, /* xFetch */
+ winUnfetch /* xUnfetch */
+};
+
+static winVfsAppData winAppData = {
+ &winIoMethod, /* pMethod */
+ 0, /* pAppData */
+ 0 /* bNoLock */
+};
+
+static winVfsAppData winNolockAppData = {
+ &winIoNolockMethod, /* pMethod */
+ 0, /* pAppData */
+ 1 /* bNoLock */
+};
+
+/****************************************************************************
+**************************** sqlite3_vfs methods ****************************
+**
+** This division contains the implementation of methods on the
+** sqlite3_vfs object.
+*/
+
+#if defined(__CYGWIN__)
+/*
+** Convert a filename from whatever the underlying operating system
+** supports for filenames into UTF-8. Space to hold the result is
+** obtained from malloc and must be freed by the calling function.
+*/
+static char *winConvertToUtf8Filename(const void *zFilename){
+ char *zConverted = 0;
+ if( osIsNT() ){
+ zConverted = winUnicodeToUtf8(zFilename);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ zConverted = winMbcsToUtf8(zFilename, osAreFileApisANSI());
+ }
+#endif
+ /* caller will handle out of memory */
+ return zConverted;
+}
+#endif
+
+/*
+** Convert a UTF-8 filename into whatever form the underlying
+** operating system wants filenames in. Space to hold the result
+** is obtained from malloc and must be freed by the calling
+** function.
+*/
+static void *winConvertFromUtf8Filename(const char *zFilename){
+ void *zConverted = 0;
+ if( osIsNT() ){
+ zConverted = winUtf8ToUnicode(zFilename);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ zConverted = winUtf8ToMbcs(zFilename, osAreFileApisANSI());
+ }
+#endif
+ /* caller will handle out of memory */
+ return zConverted;
+}
+
+/*
+** This function returns non-zero if the specified UTF-8 string buffer
+** ends with a directory separator character or one was successfully
+** added to it.
+*/
+static int winMakeEndInDirSep(int nBuf, char *zBuf){
+ if( zBuf ){
+ int nLen = sqlite3Strlen30(zBuf);
+ if( nLen>0 ){
+ if( winIsDirSep(zBuf[nLen-1]) ){
+ return 1;
+ }else if( nLen+1<nBuf ){
+ zBuf[nLen] = winGetDirSep();
+ zBuf[nLen+1] = '\0';
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** If sqlite3_temp_directory is not, take the mutex and return true.
+**
+** If sqlite3_temp_directory is NULL, omit the mutex and return false.
+*/
+static int winTempDirDefined(void){
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( sqlite3_temp_directory!=0 ) return 1;
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ return 0;
+}
+
+/*
+** Create a temporary file name and store the resulting pointer into pzBuf.
+** The pointer returned in pzBuf must be freed via sqlite3_free().
+*/
+static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ size_t i, j;
+ int nPre = sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX);
+ int nMax, nBuf, nDir, nLen;
+ char *zBuf;
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ SimulateIOError( return SQLITE_IOERR );
+
+ /* Allocate a temporary buffer to store the fully qualified file
+ ** name for the temporary file. If this fails, we cannot continue.
+ */
+ nMax = pVfs->mxPathname; nBuf = nMax + 2;
+ zBuf = sqlite3MallocZero( nBuf );
+ if( !zBuf ){
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+
+ /* Figure out the effective temporary directory. First, check if one
+ ** has been explicitly set by the application; otherwise, use the one
+ ** configured by the operating system.
+ */
+ nDir = nMax - (nPre + 15);
+ assert( nDir>0 );
+ if( winTempDirDefined() ){
+ int nDirLen = sqlite3Strlen30(sqlite3_temp_directory);
+ if( nDirLen>0 ){
+ if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){
+ nDirLen++;
+ }
+ if( nDirLen>nDir ){
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
+ return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0);
+ }
+ sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory);
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ }
+
+#if defined(__CYGWIN__)
+ else{
+ static const char *azDirs[] = {
+ 0, /* getenv("SQLITE_TMPDIR") */
+ 0, /* getenv("TMPDIR") */
+ 0, /* getenv("TMP") */
+ 0, /* getenv("TEMP") */
+ 0, /* getenv("USERPROFILE") */
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ 0 /* List terminator */
+ };
+ unsigned int i;
+ const char *zDir = 0;
+
+ if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
+ if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
+ if( !azDirs[2] ) azDirs[2] = getenv("TMP");
+ if( !azDirs[3] ) azDirs[3] = getenv("TEMP");
+ if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE");
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
+ void *zConverted;
+ if( zDir==0 ) continue;
+ /* If the path starts with a drive letter followed by the colon
+ ** character, assume it is already a native Win32 path; otherwise,
+ ** it must be converted to a native Win32 path via the Cygwin API
+ ** prior to using it.
+ */
+ if( winIsDriveLetterAndColon(zDir) ){
+ zConverted = winConvertFromUtf8Filename(zDir);
+ if( !zConverted ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( winIsDir(zConverted) ){
+ sqlite3_snprintf(nMax, zBuf, "%s", zDir);
+ sqlite3_free(zConverted);
+ break;
+ }
+ sqlite3_free(zConverted);
+ }else{
+ zConverted = sqlite3MallocZero( nMax+1 );
+ if( !zConverted ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( cygwin_conv_path(
+ osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A, zDir,
+ zConverted, nMax+1)<0 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_CONVPATH\n"));
+ return winLogError(SQLITE_IOERR_CONVPATH, (DWORD)errno,
+ "winGetTempname2", zDir);
+ }
+ if( winIsDir(zConverted) ){
+ /* At this point, we know the candidate directory exists and should
+ ** be used. However, we may need to convert the string containing
+ ** its name into UTF-8 (i.e. if it is UTF-16 right now).
+ */
+ char *zUtf8 = winConvertToUtf8Filename(zConverted);
+ if( !zUtf8 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
+ sqlite3_free(zUtf8);
+ sqlite3_free(zConverted);
+ break;
+ }
+ sqlite3_free(zConverted);
+ }
+ }
+ }
+#elif !SQLITE_OS_WINRT && !defined(__CYGWIN__)
+ else if( osIsNT() ){
+ char *zMulti;
+ LPWSTR zWidePath = sqlite3MallocZero( nMax*sizeof(WCHAR) );
+ if( !zWidePath ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osGetTempPathW(nMax, zWidePath)==0 ){
+ sqlite3_free(zWidePath);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
+ return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
+ "winGetTempname2", 0);
+ }
+ zMulti = winUnicodeToUtf8(zWidePath);
+ if( zMulti ){
+ sqlite3_snprintf(nMax, zBuf, "%s", zMulti);
+ sqlite3_free(zMulti);
+ sqlite3_free(zWidePath);
+ }else{
+ sqlite3_free(zWidePath);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ char *zUtf8;
+ char *zMbcsPath = sqlite3MallocZero( nMax );
+ if( !zMbcsPath ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osGetTempPathA(nMax, zMbcsPath)==0 ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
+ return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
+ "winGetTempname3", 0);
+ }
+ zUtf8 = winMbcsToUtf8(zMbcsPath, osAreFileApisANSI());
+ if( zUtf8 ){
+ sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
+ sqlite3_free(zUtf8);
+ }else{
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ }
+#endif /* SQLITE_WIN32_HAS_ANSI */
+#endif /* !SQLITE_OS_WINRT */
+
+ /*
+ ** Check to make sure the temporary directory ends with an appropriate
+ ** separator. If it does not and there is not enough space left to add
+ ** one, fail.
+ */
+ if( !winMakeEndInDirSep(nDir+1, zBuf) ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
+ return winLogError(SQLITE_ERROR, 0, "winGetTempname4", 0);
+ }
+
+ /*
+ ** Check that the output buffer is large enough for the temporary file
+ ** name in the following format:
+ **
+ ** "<temporary_directory>/etilqs_XXXXXXXXXXXXXXX\0\0"
+ **
+ ** If not, return SQLITE_ERROR. The number 17 is used here in order to
+ ** account for the space used by the 15 character random suffix and the
+ ** two trailing NUL characters. The final directory separator character
+ ** has already added if it was not already present.
+ */
+ nLen = sqlite3Strlen30(zBuf);
+ if( (nLen + nPre + 17) > nBuf ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
+ return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0);
+ }
+
+ sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX);
+
+ j = sqlite3Strlen30(zBuf);
+ sqlite3_randomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ zBuf[j+1] = 0;
+ *pzBuf = zBuf;
+
+ OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf));
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the named file is really a directory. Return false if
+** it is something other than a directory, or if there is any kind of memory
+** allocation failure.
+*/
+static int winIsDir(const void *zConverted){
+ DWORD attr;
+ int rc = 0;
+ DWORD lastErrno;
+
+ if( osIsNT() ){
+ int cnt = 0;
+ WIN32_FILE_ATTRIBUTE_DATA sAttrData;
+ memset(&sAttrData, 0, sizeof(sAttrData));
+ while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
+ GetFileExInfoStandard,
+ &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
+ if( !rc ){
+ return 0; /* Invalid name? */
+ }
+ attr = sAttrData.dwFileAttributes;
+#if SQLITE_OS_WINCE==0
+ }else{
+ attr = osGetFileAttributesA((char*)zConverted);
+#endif
+ }
+ return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY);
+}
+
+/* forward reference */
+static int winAccess(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to check */
+ int flags, /* Type of test to make on this file */
+ int *pResOut /* OUT: Result */
+);
+
+/*
+** Open a file.
+*/
+static int winOpen(
+ sqlite3_vfs *pVfs, /* Used to get maximum path length and AppData */
+ const char *zName, /* Name of the file (UTF-8) */
+ sqlite3_file *id, /* Write the SQLite file handle here */
+ int flags, /* Open mode flags */
+ int *pOutFlags /* Status return flags */
+){
+ HANDLE h;
+ DWORD lastErrno = 0;
+ DWORD dwDesiredAccess;
+ DWORD dwShareMode;
+ DWORD dwCreationDisposition;
+ DWORD dwFlagsAndAttributes = 0;
+#if SQLITE_OS_WINCE
+ int isTemp = 0;
+#endif
+ winVfsAppData *pAppData;
+ winFile *pFile = (winFile*)id;
+ void *zConverted; /* Filename in OS encoding */
+ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
+ int cnt = 0;
+
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char *zTmpname = 0; /* For temporary filename, if necessary. */
+
+ int rc = SQLITE_OK; /* Function Return Code */
+#if !defined(NDEBUG) || SQLITE_OS_WINCE
+ int eType = flags&0xFFFFFF00; /* Type of file to open */
+#endif
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+
+#ifndef NDEBUG
+ int isOpenJournal = (isCreate && (
+ eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_MAIN_JOURNAL
+ || eType==SQLITE_OPEN_WAL
+ ));
+#endif
+
+ OSTRACE(("OPEN name=%s, pFile=%p, flags=%x, pOutFlags=%p\n",
+ zUtf8Name, id, flags, pOutFlags));
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+ /* The main DB, main journal, WAL file and super-journal are never
+ ** automatically deleted. Nor are they ever temporary files. */
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
+ );
+
+ assert( pFile!=0 );
+ memset(pFile, 0, sizeof(winFile));
+ pFile->h = INVALID_HANDLE_VALUE;
+
+#if SQLITE_OS_WINRT
+ if( !zUtf8Name && !sqlite3_temp_directory ){
+ sqlite3_log(SQLITE_ERROR,
+ "sqlite3_temp_directory variable should be set for WinRT");
+ }
+#endif
+
+ /* If the second argument to this function is NULL, generate a
+ ** temporary file name to use
+ */
+ if( !zUtf8Name ){
+ assert( isDelete && !isOpenJournal );
+ rc = winGetTempname(pVfs, &zTmpname);
+ if( rc!=SQLITE_OK ){
+ OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc)));
+ return rc;
+ }
+ zUtf8Name = zTmpname;
+ }
+
+ /* Database filenames are double-zero terminated if they are not
+ ** URIs with parameters. Hence, they can always be passed into
+ ** sqlite3_uri_parameter().
+ */
+ assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) ||
+ zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 );
+
+ /* Convert the filename to the system encoding. */
+ zConverted = winConvertFromUtf8Filename(zUtf8Name);
+ if( zConverted==0 ){
+ sqlite3_free(zTmpname);
+ OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+
+ if( winIsDir(zConverted) ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTmpname);
+ OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name));
+ return SQLITE_CANTOPEN_ISDIR;
+ }
+
+ if( isReadWrite ){
+ dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
+ }else{
+ dwDesiredAccess = GENERIC_READ;
+ }
+
+ /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
+ ** created. SQLite doesn't use it to indicate "exclusive access"
+ ** as it is usually understood.
+ */
+ if( isExclusive ){
+ /* Creates a new file, only if it does not already exist. */
+ /* If the file exists, it fails. */
+ dwCreationDisposition = CREATE_NEW;
+ }else if( isCreate ){
+ /* Open existing file, or create if it doesn't exist */
+ dwCreationDisposition = OPEN_ALWAYS;
+ }else{
+ /* Opens a file, only if it exists. */
+ dwCreationDisposition = OPEN_EXISTING;
+ }
+
+ if( 0==sqlite3_uri_boolean(zName, "exclusive", 0) ){
+ dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
+ }else{
+ dwShareMode = 0;
+ }
+
+ if( isDelete ){
+#if SQLITE_OS_WINCE
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
+ isTemp = 1;
+#else
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
+ | FILE_ATTRIBUTE_HIDDEN
+ | FILE_FLAG_DELETE_ON_CLOSE;
+#endif
+ }else{
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
+ }
+ /* Reports from the internet are that performance is always
+ ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
+#if SQLITE_OS_WINCE
+ dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
+#endif
+
+ if( osIsNT() ){
+#if SQLITE_OS_WINRT
+ CREATEFILE2_EXTENDED_PARAMETERS extendedParameters;
+ extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
+ extendedParameters.dwFileAttributes =
+ dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK;
+ extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK;
+ extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS;
+ extendedParameters.lpSecurityAttributes = NULL;
+ extendedParameters.hTemplateFile = NULL;
+ do{
+ h = osCreateFile2((LPCWSTR)zConverted,
+ dwDesiredAccess,
+ dwShareMode,
+ dwCreationDisposition,
+ &extendedParameters);
+ if( h!=INVALID_HANDLE_VALUE ) break;
+ if( isReadWrite ){
+ int rc2, isRO = 0;
+ sqlite3BeginBenignMalloc();
+ rc2 = winAccess(pVfs, zName, SQLITE_ACCESS_READ, &isRO);
+ sqlite3EndBenignMalloc();
+ if( rc2==SQLITE_OK && isRO ) break;
+ }
+ }while( winRetryIoerr(&cnt, &lastErrno) );
+#else
+ do{
+ h = osCreateFileW((LPCWSTR)zConverted,
+ dwDesiredAccess,
+ dwShareMode, NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL);
+ if( h!=INVALID_HANDLE_VALUE ) break;
+ if( isReadWrite ){
+ int rc2, isRO = 0;
+ sqlite3BeginBenignMalloc();
+ rc2 = winAccess(pVfs, zName, SQLITE_ACCESS_READ, &isRO);
+ sqlite3EndBenignMalloc();
+ if( rc2==SQLITE_OK && isRO ) break;
+ }
+ }while( winRetryIoerr(&cnt, &lastErrno) );
+#endif
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ do{
+ h = osCreateFileA((LPCSTR)zConverted,
+ dwDesiredAccess,
+ dwShareMode, NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL);
+ if( h!=INVALID_HANDLE_VALUE ) break;
+ if( isReadWrite ){
+ int rc2, isRO = 0;
+ sqlite3BeginBenignMalloc();
+ rc2 = winAccess(pVfs, zName, SQLITE_ACCESS_READ, &isRO);
+ sqlite3EndBenignMalloc();
+ if( rc2==SQLITE_OK && isRO ) break;
+ }
+ }while( winRetryIoerr(&cnt, &lastErrno) );
+ }
+#endif
+ winLogIoerr(cnt, __LINE__);
+
+ OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
+ dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
+
+ if( h==INVALID_HANDLE_VALUE ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTmpname);
+ if( isReadWrite && !isExclusive ){
+ return winOpen(pVfs, zName, id,
+ ((flags|SQLITE_OPEN_READONLY) &
+ ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
+ pOutFlags);
+ }else{
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
+ return SQLITE_CANTOPEN_BKPT;
+ }
+ }
+
+ if( pOutFlags ){
+ if( isReadWrite ){
+ *pOutFlags = SQLITE_OPEN_READWRITE;
+ }else{
+ *pOutFlags = SQLITE_OPEN_READONLY;
+ }
+ }
+
+ OSTRACE(("OPEN file=%p, name=%s, access=%lx, pOutFlags=%p, *pOutFlags=%d, "
+ "rc=%s\n", h, zUtf8Name, dwDesiredAccess, pOutFlags, pOutFlags ?
+ *pOutFlags : 0, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
+
+ pAppData = (winVfsAppData*)pVfs->pAppData;
+
+#if SQLITE_OS_WINCE
+ {
+ if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
+ && ((pAppData==NULL) || !pAppData->bNoLock)
+ && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
+ ){
+ osCloseHandle(h);
+ sqlite3_free(zConverted);
+ sqlite3_free(zTmpname);
+ OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc)));
+ return rc;
+ }
+ }
+ if( isTemp ){
+ pFile->zDeleteOnClose = zConverted;
+ }else
+#endif
+ {
+ sqlite3_free(zConverted);
+ }
+
+ sqlite3_free(zTmpname);
+ id->pMethods = pAppData ? pAppData->pMethod : &winIoMethod;
+ pFile->pVfs = pVfs;
+ pFile->h = h;
+ if( isReadonly ){
+ pFile->ctrlFlags |= WINFILE_RDONLY;
+ }
+ if( (flags & SQLITE_OPEN_MAIN_DB)
+ && sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE)
+ ){
+ pFile->ctrlFlags |= WINFILE_PSOW;
+ }
+ pFile->lastErrno = NO_ERROR;
+ pFile->zPath = zName;
+#if SQLITE_MAX_MMAP_SIZE>0
+ pFile->hMap = NULL;
+ pFile->pMapRegion = 0;
+ pFile->mmapSize = 0;
+ pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap;
+#endif
+
+ OpenCounter(+1);
+ return rc;
+}
+
+/*
+** Delete the named file.
+**
+** Note that Windows does not allow a file to be deleted if some other
+** process has it open. Sometimes a virus scanner or indexing program
+** will open a journal file shortly after it is created in order to do
+** whatever it does. While this other process is holding the
+** file open, we will be unable to delete it. To work around this
+** problem, we delay 100 milliseconds and try to delete again. Up
+** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
+** up and returning an error.
+*/
+static int winDelete(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to delete */
+ int syncDir /* Not used on win32 */
+){
+ int cnt = 0;
+ int rc;
+ DWORD attr;
+ DWORD lastErrno = 0;
+ void *zConverted;
+ UNUSED_PARAMETER(pVfs);
+ UNUSED_PARAMETER(syncDir);
+
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir));
+
+ zConverted = winConvertFromUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osIsNT() ){
+ do {
+#if SQLITE_OS_WINRT
+ WIN32_FILE_ATTRIBUTE_DATA sAttrData;
+ memset(&sAttrData, 0, sizeof(sAttrData));
+ if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
+ &sAttrData) ){
+ attr = sAttrData.dwFileAttributes;
+ }else{
+ lastErrno = osGetLastError();
+ if( lastErrno==ERROR_FILE_NOT_FOUND
+ || lastErrno==ERROR_PATH_NOT_FOUND ){
+ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ break;
+ }
+#else
+ attr = osGetFileAttributesW(zConverted);
+#endif
+ if ( attr==INVALID_FILE_ATTRIBUTES ){
+ lastErrno = osGetLastError();
+ if( lastErrno==ERROR_FILE_NOT_FOUND
+ || lastErrno==ERROR_PATH_NOT_FOUND ){
+ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ break;
+ }
+ if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
+ rc = SQLITE_ERROR; /* Files only. */
+ break;
+ }
+ if ( osDeleteFileW(zConverted) ){
+ rc = SQLITE_OK; /* Deleted OK. */
+ break;
+ }
+ if ( !winRetryIoerr(&cnt, &lastErrno) ){
+ rc = SQLITE_ERROR; /* No more retries. */
+ break;
+ }
+ } while(1);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ do {
+ attr = osGetFileAttributesA(zConverted);
+ if ( attr==INVALID_FILE_ATTRIBUTES ){
+ lastErrno = osGetLastError();
+ if( lastErrno==ERROR_FILE_NOT_FOUND
+ || lastErrno==ERROR_PATH_NOT_FOUND ){
+ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ break;
+ }
+ if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
+ rc = SQLITE_ERROR; /* Files only. */
+ break;
+ }
+ if ( osDeleteFileA(zConverted) ){
+ rc = SQLITE_OK; /* Deleted OK. */
+ break;
+ }
+ if ( !winRetryIoerr(&cnt, &lastErrno) ){
+ rc = SQLITE_ERROR; /* No more retries. */
+ break;
+ }
+ } while(1);
+ }
+#endif
+ if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
+ rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);
+ }else{
+ winLogIoerr(cnt, __LINE__);
+ }
+ sqlite3_free(zConverted);
+ OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** Check the existence and status of a file.
+*/
+static int winAccess(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to check */
+ int flags, /* Type of test to make on this file */
+ int *pResOut /* OUT: Result */
+){
+ DWORD attr;
+ int rc = 0;
+ DWORD lastErrno = 0;
+ void *zConverted;
+ UNUSED_PARAMETER(pVfs);
+
+ SimulateIOError( return SQLITE_IOERR_ACCESS; );
+ OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n",
+ zFilename, flags, pResOut));
+
+ zConverted = winConvertFromUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osIsNT() ){
+ int cnt = 0;
+ WIN32_FILE_ATTRIBUTE_DATA sAttrData;
+ memset(&sAttrData, 0, sizeof(sAttrData));
+ while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
+ GetFileExInfoStandard,
+ &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
+ if( rc ){
+ /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
+ ** as if it does not exist.
+ */
+ if( flags==SQLITE_ACCESS_EXISTS
+ && sAttrData.nFileSizeHigh==0
+ && sAttrData.nFileSizeLow==0 ){
+ attr = INVALID_FILE_ATTRIBUTES;
+ }else{
+ attr = sAttrData.dwFileAttributes;
+ }
+ }else{
+ winLogIoerr(cnt, __LINE__);
+ if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
+ sqlite3_free(zConverted);
+ return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
+ zFilename);
+ }else{
+ attr = INVALID_FILE_ATTRIBUTES;
+ }
+ }
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ attr = osGetFileAttributesA((char*)zConverted);
+ }
+#endif
+ sqlite3_free(zConverted);
+ switch( flags ){
+ case SQLITE_ACCESS_READ:
+ case SQLITE_ACCESS_EXISTS:
+ rc = attr!=INVALID_FILE_ATTRIBUTES;
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ rc = attr!=INVALID_FILE_ATTRIBUTES &&
+ (attr & FILE_ATTRIBUTE_READONLY)==0;
+ break;
+ default:
+ assert(!"Invalid flags argument");
+ }
+ *pResOut = rc;
+ OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
+ zFilename, pResOut, *pResOut));
+ return SQLITE_OK;
+}
+
+/*
+** Returns non-zero if the specified path name starts with the "long path"
+** prefix.
+*/
+static BOOL winIsLongPathPrefix(
+ const char *zPathname
+){
+ return ( zPathname[0]=='\\' && zPathname[1]=='\\'
+ && zPathname[2]=='?' && zPathname[3]=='\\' );
+}
+
+/*
+** Returns non-zero if the specified path name starts with a drive letter
+** followed by a colon character.
+*/
+static BOOL winIsDriveLetterAndColon(
+ const char *zPathname
+){
+ return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' );
+}
+
+/*
+** Returns non-zero if the specified path name should be used verbatim. If
+** non-zero is returned from this function, the calling function must simply
+** use the provided path name verbatim -OR- resolve it into a full path name
+** using the GetFullPathName Win32 API function (if available).
+*/
+static BOOL winIsVerbatimPathname(
+ const char *zPathname
+){
+ /*
+ ** If the path name starts with a forward slash or a backslash, it is either
+ ** a legal UNC name, a volume relative path, or an absolute path name in the
+ ** "Unix" format on Windows. There is no easy way to differentiate between
+ ** the final two cases; therefore, we return the safer return value of TRUE
+ ** so that callers of this function will simply use it verbatim.
+ */
+ if ( winIsDirSep(zPathname[0]) ){
+ return TRUE;
+ }
+
+ /*
+ ** If the path name starts with a letter and a colon it is either a volume
+ ** relative path or an absolute path. Callers of this function must not
+ ** attempt to treat it as a relative path name (i.e. they should simply use
+ ** it verbatim).
+ */
+ if ( winIsDriveLetterAndColon(zPathname) ){
+ return TRUE;
+ }
+
+ /*
+ ** If we get to this point, the path name should almost certainly be a purely
+ ** relative one (i.e. not a UNC name, not absolute, and not volume relative).
+ */
+ return FALSE;
+}
+
+/*
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
+** bytes in size.
+*/
+static int winFullPathnameNoMutex(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
+ DWORD nByte;
+ void *zConverted;
+ char *zOut;
+#endif
+
+ /* If this path name begins with "/X:" or "\\?\", where "X" is any
+ ** alphabetic character, discard the initial "/" from the pathname.
+ */
+ if( zRelative[0]=='/' && (winIsDriveLetterAndColon(zRelative+1)
+ || winIsLongPathPrefix(zRelative+1)) ){
+ zRelative++;
+ }
+
+#if defined(__CYGWIN__)
+ SimulateIOError( return SQLITE_ERROR );
+ UNUSED_PARAMETER(nFull);
+ assert( nFull>=pVfs->mxPathname );
+ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
+ /*
+ ** NOTE: We are dealing with a relative path name and the data
+ ** directory has been set. Therefore, use it as the basis
+ ** for converting the relative path name to an absolute
+ ** one by prepending the data directory and a slash.
+ */
+ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
+ if( !zOut ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( cygwin_conv_path(
+ (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) |
+ CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){
+ sqlite3_free(zOut);
+ return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
+ "winFullPathname1", zRelative);
+ }else{
+ char *zUtf8 = winConvertToUtf8Filename(zOut);
+ if( !zUtf8 ){
+ sqlite3_free(zOut);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
+ sqlite3_data_directory, winGetDirSep(), zUtf8);
+ sqlite3_free(zUtf8);
+ sqlite3_free(zOut);
+ }
+ }else{
+ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
+ if( !zOut ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( cygwin_conv_path(
+ (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A),
+ zRelative, zOut, pVfs->mxPathname+1)<0 ){
+ sqlite3_free(zOut);
+ return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
+ "winFullPathname2", zRelative);
+ }else{
+ char *zUtf8 = winConvertToUtf8Filename(zOut);
+ if( !zUtf8 ){
+ sqlite3_free(zOut);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8);
+ sqlite3_free(zUtf8);
+ sqlite3_free(zOut);
+ }
+ }
+ return SQLITE_OK;
+#endif
+
+#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
+ SimulateIOError( return SQLITE_ERROR );
+ /* WinCE has no concept of a relative pathname, or so I am told. */
+ /* WinRT has no way to convert a relative path to an absolute one. */
+ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
+ /*
+ ** NOTE: We are dealing with a relative path name and the data
+ ** directory has been set. Therefore, use it as the basis
+ ** for converting the relative path name to an absolute
+ ** one by prepending the data directory and a backslash.
+ */
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
+ sqlite3_data_directory, winGetDirSep(), zRelative);
+ }else{
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative);
+ }
+ return SQLITE_OK;
+#endif
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing. This function could fail if, for example, the
+ ** current working directory has been unlinked.
+ */
+ SimulateIOError( return SQLITE_ERROR );
+ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
+ /*
+ ** NOTE: We are dealing with a relative path name and the data
+ ** directory has been set. Therefore, use it as the basis
+ ** for converting the relative path name to an absolute
+ ** one by prepending the data directory and a backslash.
+ */
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
+ sqlite3_data_directory, winGetDirSep(), zRelative);
+ return SQLITE_OK;
+ }
+ zConverted = winConvertFromUtf8Filename(zRelative);
+ if( zConverted==0 ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osIsNT() ){
+ LPWSTR zTemp;
+ nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname1", zRelative);
+ }
+ nByte += 3;
+ zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ sqlite3_free(zConverted);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTemp);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname2", zRelative);
+ }
+ sqlite3_free(zConverted);
+ zOut = winUnicodeToUtf8(zTemp);
+ sqlite3_free(zTemp);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ char *zTemp;
+ nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname3", zRelative);
+ }
+ nByte += 3;
+ zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ sqlite3_free(zConverted);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTemp);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname4", zRelative);
+ }
+ sqlite3_free(zConverted);
+ zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI());
+ sqlite3_free(zTemp);
+ }
+#endif
+ if( zOut ){
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut);
+ sqlite3_free(zOut);
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+#endif
+}
+static int winFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+ int rc;
+ sqlite3_mutex *pMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR);
+ sqlite3_mutex_enter(pMutex);
+ rc = winFullPathnameNoMutex(pVfs, zRelative, nFull, zFull);
+ sqlite3_mutex_leave(pMutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
+ HANDLE h;
+#if defined(__CYGWIN__)
+ int nFull = pVfs->mxPathname+1;
+ char *zFull = sqlite3MallocZero( nFull );
+ void *zConverted = 0;
+ if( zFull==0 ){
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
+ return 0;
+ }
+ if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){
+ sqlite3_free(zFull);
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
+ return 0;
+ }
+ zConverted = winConvertFromUtf8Filename(zFull);
+ sqlite3_free(zFull);
+#else
+ void *zConverted = winConvertFromUtf8Filename(zFilename);
+ UNUSED_PARAMETER(pVfs);
+#endif
+ if( zConverted==0 ){
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
+ return 0;
+ }
+ if( osIsNT() ){
+#if SQLITE_OS_WINRT
+ h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
+#else
+ h = osLoadLibraryW((LPCWSTR)zConverted);
+#endif
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ h = osLoadLibraryA((char*)zConverted);
+ }
+#endif
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h));
+ sqlite3_free(zConverted);
+ return (void*)h;
+}
+static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+ UNUSED_PARAMETER(pVfs);
+ winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut);
+}
+static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
+ FARPROC proc;
+ UNUSED_PARAMETER(pVfs);
+ proc = osGetProcAddressA((HANDLE)pH, zSym);
+ OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n",
+ (void*)pH, zSym, (void*)proc));
+ return (void(*)(void))proc;
+}
+static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ UNUSED_PARAMETER(pVfs);
+ osFreeLibrary((HANDLE)pHandle);
+ OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle));
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define winDlOpen 0
+ #define winDlError 0
+ #define winDlSym 0
+ #define winDlClose 0
+#endif
+
+/* State information for the randomness gatherer. */
+typedef struct EntropyGatherer EntropyGatherer;
+struct EntropyGatherer {
+ unsigned char *a; /* Gather entropy into this buffer */
+ int na; /* Size of a[] in bytes */
+ int i; /* XOR next input into a[i] */
+ int nXor; /* Number of XOR operations done */
+};
+
+#if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
+/* Mix sz bytes of entropy into p. */
+static void xorMemory(EntropyGatherer *p, unsigned char *x, int sz){
+ int j, k;
+ for(j=0, k=p->i; j<sz; j++){
+ p->a[k++] ^= x[j];
+ if( k>=p->na ) k = 0;
+ }
+ p->i = k;
+ p->nXor += sz;
+}
+#endif /* !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) */
+
+/*
+** Write up to nBuf bytes of randomness into zBuf.
+*/
+static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+#if defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS)
+ UNUSED_PARAMETER(pVfs);
+ memset(zBuf, 0, nBuf);
+ return nBuf;
+#else
+ EntropyGatherer e;
+ UNUSED_PARAMETER(pVfs);
+ memset(zBuf, 0, nBuf);
+ e.a = (unsigned char*)zBuf;
+ e.na = nBuf;
+ e.nXor = 0;
+ e.i = 0;
+ {
+ SYSTEMTIME x;
+ osGetSystemTime(&x);
+ xorMemory(&e, (unsigned char*)&x, sizeof(SYSTEMTIME));
+ }
+ {
+ DWORD pid = osGetCurrentProcessId();
+ xorMemory(&e, (unsigned char*)&pid, sizeof(DWORD));
+ }
+#if SQLITE_OS_WINRT
+ {
+ ULONGLONG cnt = osGetTickCount64();
+ xorMemory(&e, (unsigned char*)&cnt, sizeof(ULONGLONG));
+ }
+#else
+ {
+ DWORD cnt = osGetTickCount();
+ xorMemory(&e, (unsigned char*)&cnt, sizeof(DWORD));
+ }
+#endif /* SQLITE_OS_WINRT */
+ {
+ LARGE_INTEGER i;
+ osQueryPerformanceCounter(&i);
+ xorMemory(&e, (unsigned char*)&i, sizeof(LARGE_INTEGER));
+ }
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
+ {
+ UUID id;
+ memset(&id, 0, sizeof(UUID));
+ osUuidCreate(&id);
+ xorMemory(&e, (unsigned char*)&id, sizeof(UUID));
+ memset(&id, 0, sizeof(UUID));
+ osUuidCreateSequential(&id);
+ xorMemory(&e, (unsigned char*)&id, sizeof(UUID));
+ }
+#endif /* !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID */
+ return e.nXor>nBuf ? nBuf : e.nXor;
+#endif /* defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) */
+}
+
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+static int winSleep(sqlite3_vfs *pVfs, int microsec){
+ sqlite3_win32_sleep((microsec+999)/1000);
+ UNUSED_PARAMETER(pVfs);
+ return ((microsec+999)/1000)*1000;
+}
+
+/*
+** The following variable, if set to a non-zero value, is interpreted as
+** the number of seconds since 1970 and is used to set the result of
+** sqlite3OsCurrentTime() during testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write into *piNow
+** the current time and date as a Julian Day number times 86_400_000. In
+** other words, write into *piNow the number of milliseconds since the Julian
+** epoch of noon in Greenwich on November 24, 4714 B.C according to the
+** proleptic Gregorian calendar.
+**
+** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
+** cannot be found.
+*/
+static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
+ /* FILETIME structure is a 64-bit value representing the number of
+ 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
+ */
+ FILETIME ft;
+ static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
+#ifdef SQLITE_TEST
+ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
+#endif
+ /* 2^32 - to avoid use of LL and warnings in gcc */
+ static const sqlite3_int64 max32BitValue =
+ (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 +
+ (sqlite3_int64)294967296;
+
+#if SQLITE_OS_WINCE
+ SYSTEMTIME time;
+ osGetSystemTime(&time);
+ /* if SystemTimeToFileTime() fails, it returns zero. */
+ if (!osSystemTimeToFileTime(&time,&ft)){
+ return SQLITE_ERROR;
+ }
+#else
+ osGetSystemTimeAsFileTime( &ft );
+#endif
+
+ *piNow = winFiletimeEpoch +
+ ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
+ (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000;
+
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
+ }
+#endif
+ UNUSED_PARAMETER(pVfs);
+ return SQLITE_OK;
+}
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
+ int rc;
+ sqlite3_int64 i;
+ rc = winCurrentTimeInt64(pVfs, &i);
+ if( !rc ){
+ *prNow = i/86400000.0;
+ }
+ return rc;
+}
+
+/*
+** The idea is that this function works like a combination of
+** GetLastError() and FormatMessage() on Windows (or errno and
+** strerror_r() on Unix). After an error is returned by an OS
+** function, SQLite calls this function with zBuf pointing to
+** a buffer of nBuf bytes. The OS layer should populate the
+** buffer with a nul-terminated UTF-8 encoded error message
+** describing the last IO error to have occurred within the calling
+** thread.
+**
+** If the error message is too large for the supplied buffer,
+** it should be truncated. The return value of xGetLastError
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated). If non-zero is returned,
+** then it is not necessary to include the nul-terminator character
+** in the output buffer.
+**
+** Not supplying an error message will have no adverse effect
+** on SQLite. It is fine to have an implementation that never
+** returns an error message:
+**
+** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+** assert(zBuf[0]=='\0');
+** return 0;
+** }
+**
+** However if an error message is supplied, it will be incorporated
+** by sqlite into the error message available to the user using
+** sqlite3_errmsg(), possibly making IO errors easier to debug.
+*/
+static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ DWORD e = osGetLastError();
+ UNUSED_PARAMETER(pVfs);
+ if( nBuf>0 ) winGetLastErrorMsg(e, nBuf, zBuf);
+ return e;
+}
+
+/*
+** Initialize and deinitialize the operating system interface.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ static sqlite3_vfs winVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32", /* zName */
+ &winAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ static sqlite3_vfs winLongPathVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32-longpath", /* zName */
+ &winAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#endif
+ static sqlite3_vfs winNolockVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32-none", /* zName */
+ &winNolockAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ static sqlite3_vfs winLongPathNolockVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32-longpath-none", /* zName */
+ &winNolockAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#endif
+
+ /* Double-check that the aSyscall[] array has been constructed
+ ** correctly. See ticket [bb3a86e890c8e96ab] */
+ assert( ArraySize(aSyscall)==80 );
+
+ /* get memory map allocation granularity */
+ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
+#if SQLITE_OS_WINRT
+ osGetNativeSystemInfo(&winSysInfo);
+#else
+ osGetSystemInfo(&winSysInfo);
+#endif
+ assert( winSysInfo.dwAllocationGranularity>0 );
+ assert( winSysInfo.dwPageSize>0 );
+
+ sqlite3_vfs_register(&winVfs, 1);
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ sqlite3_vfs_register(&winLongPathVfs, 0);
+#endif
+
+ sqlite3_vfs_register(&winNolockVfs, 0);
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ sqlite3_vfs_register(&winLongPathNolockVfs, 0);
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+ winBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+#endif
+
+ return SQLITE_OK;
+}
+
+SQLITE_API int sqlite3_os_end(void){
+#if SQLITE_OS_WINRT
+ if( sleepObj!=NULL ){
+ osCloseHandle(sleepObj);
+ sleepObj = NULL;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+ winBigLock = 0;
+#endif
+
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_WIN */
+
+/************** End of os_win.c **********************************************/
+/************** Begin file memdb.c *******************************************/
+/*
+** 2016-09-07
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file implements an in-memory VFS. A database is held as a contiguous
+** block of memory.
+**
+** This file also implements interface sqlite3_serialize() and
+** sqlite3_deserialize().
+*/
+/* #include "sqliteInt.h" */
+#ifndef SQLITE_OMIT_DESERIALIZE
+
+/*
+** Forward declaration of objects used by this utility
+*/
+typedef struct sqlite3_vfs MemVfs;
+typedef struct MemFile MemFile;
+typedef struct MemStore MemStore;
+
+/* Access to a lower-level VFS that (might) implement dynamic loading,
+** access to randomness, etc.
+*/
+#define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData))
+
+/* Storage for a memdb file.
+**
+** An memdb object can be shared or separate. Shared memdb objects can be
+** used by more than one database connection. Mutexes are used by shared
+** memdb objects to coordinate access. Separate memdb objects are only
+** connected to a single database connection and do not require additional
+** mutexes.
+**
+** Shared memdb objects have .zFName!=0 and .pMutex!=0. They are created
+** using "file:/name?vfs=memdb". The first character of the name must be
+** "/" or else the object will be a separate memdb object. All shared
+** memdb objects are stored in memdb_g.apMemStore[] in an arbitrary order.
+**
+** Separate memdb objects are created using a name that does not begin
+** with "/" or using sqlite3_deserialize().
+**
+** Access rules for shared MemStore objects:
+**
+** * .zFName is initialized when the object is created and afterwards
+** is unchanged until the object is destroyed. So it can be accessed
+** at any time as long as we know the object is not being destroyed,
+** which means while either the SQLITE_MUTEX_STATIC_VFS1 or
+** .pMutex is held or the object is not part of memdb_g.apMemStore[].
+**
+** * Can .pMutex can only be changed while holding the
+** SQLITE_MUTEX_STATIC_VFS1 mutex or while the object is not part
+** of memdb_g.apMemStore[].
+**
+** * Other fields can only be changed while holding the .pMutex mutex
+** or when the .nRef is less than zero and the object is not part of
+** memdb_g.apMemStore[].
+**
+** * The .aData pointer has the added requirement that it can can only
+** be changed (for resizing) when nMmap is zero.
+**
+*/
+struct MemStore {
+ sqlite3_int64 sz; /* Size of the file */
+ sqlite3_int64 szAlloc; /* Space allocated to aData */
+ sqlite3_int64 szMax; /* Maximum allowed size of the file */
+ unsigned char *aData; /* content of the file */
+ sqlite3_mutex *pMutex; /* Used by shared stores only */
+ int nMmap; /* Number of memory mapped pages */
+ unsigned mFlags; /* Flags */
+ int nRdLock; /* Number of readers */
+ int nWrLock; /* Number of writers. (Always 0 or 1) */
+ int nRef; /* Number of users of this MemStore */
+ char *zFName; /* The filename for shared stores */
+};
+
+/* An open file */
+struct MemFile {
+ sqlite3_file base; /* IO methods */
+ MemStore *pStore; /* The storage */
+ int eLock; /* Most recent lock against this file */
+};
+
+/*
+** File-scope variables for holding the memdb files that are accessible
+** to multiple database connections in separate threads.
+**
+** Must hold SQLITE_MUTEX_STATIC_VFS1 to access any part of this object.
+*/
+static struct MemFS {
+ int nMemStore; /* Number of shared MemStore objects */
+ MemStore **apMemStore; /* Array of all shared MemStore objects */
+} memdb_g;
+
+/*
+** Methods for MemFile
+*/
+static int memdbClose(sqlite3_file*);
+static int memdbRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+static int memdbWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst);
+static int memdbTruncate(sqlite3_file*, sqlite3_int64 size);
+static int memdbSync(sqlite3_file*, int flags);
+static int memdbFileSize(sqlite3_file*, sqlite3_int64 *pSize);
+static int memdbLock(sqlite3_file*, int);
+/* static int memdbCheckReservedLock(sqlite3_file*, int *pResOut);// not used */
+static int memdbFileControl(sqlite3_file*, int op, void *pArg);
+/* static int memdbSectorSize(sqlite3_file*); // not used */
+static int memdbDeviceCharacteristics(sqlite3_file*);
+static int memdbFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
+static int memdbUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p);
+
+/*
+** Methods for MemVfs
+*/
+static int memdbOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *);
+/* static int memdbDelete(sqlite3_vfs*, const char *zName, int syncDir); */
+static int memdbAccess(sqlite3_vfs*, const char *zName, int flags, int *);
+static int memdbFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut);
+static void *memdbDlOpen(sqlite3_vfs*, const char *zFilename);
+static void memdbDlError(sqlite3_vfs*, int nByte, char *zErrMsg);
+static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void);
+static void memdbDlClose(sqlite3_vfs*, void*);
+static int memdbRandomness(sqlite3_vfs*, int nByte, char *zOut);
+static int memdbSleep(sqlite3_vfs*, int microseconds);
+/* static int memdbCurrentTime(sqlite3_vfs*, double*); */
+static int memdbGetLastError(sqlite3_vfs*, int, char *);
+static int memdbCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*);
+
+static sqlite3_vfs memdb_vfs = {
+ 2, /* iVersion */
+ 0, /* szOsFile (set when registered) */
+ 1024, /* mxPathname */
+ 0, /* pNext */
+ "memdb", /* zName */
+ 0, /* pAppData (set when registered) */
+ memdbOpen, /* xOpen */
+ 0, /* memdbDelete, */ /* xDelete */
+ memdbAccess, /* xAccess */
+ memdbFullPathname, /* xFullPathname */
+ memdbDlOpen, /* xDlOpen */
+ memdbDlError, /* xDlError */
+ memdbDlSym, /* xDlSym */
+ memdbDlClose, /* xDlClose */
+ memdbRandomness, /* xRandomness */
+ memdbSleep, /* xSleep */
+ 0, /* memdbCurrentTime, */ /* xCurrentTime */
+ memdbGetLastError, /* xGetLastError */
+ memdbCurrentTimeInt64, /* xCurrentTimeInt64 */
+ 0, /* xSetSystemCall */
+ 0, /* xGetSystemCall */
+ 0, /* xNextSystemCall */
+};
+
+static const sqlite3_io_methods memdb_io_methods = {
+ 3, /* iVersion */
+ memdbClose, /* xClose */
+ memdbRead, /* xRead */
+ memdbWrite, /* xWrite */
+ memdbTruncate, /* xTruncate */
+ memdbSync, /* xSync */
+ memdbFileSize, /* xFileSize */
+ memdbLock, /* xLock */
+ memdbLock, /* xUnlock - same as xLock in this case */
+ 0, /* memdbCheckReservedLock, */ /* xCheckReservedLock */
+ memdbFileControl, /* xFileControl */
+ 0, /* memdbSectorSize,*/ /* xSectorSize */
+ memdbDeviceCharacteristics, /* xDeviceCharacteristics */
+ 0, /* xShmMap */
+ 0, /* xShmLock */
+ 0, /* xShmBarrier */
+ 0, /* xShmUnmap */
+ memdbFetch, /* xFetch */
+ memdbUnfetch /* xUnfetch */
+};
+
+/*
+** Enter/leave the mutex on a MemStore
+*/
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0
+static void memdbEnter(MemStore *p){
+ UNUSED_PARAMETER(p);
+}
+static void memdbLeave(MemStore *p){
+ UNUSED_PARAMETER(p);
+}
+#else
+static void memdbEnter(MemStore *p){
+ sqlite3_mutex_enter(p->pMutex);
+}
+static void memdbLeave(MemStore *p){
+ sqlite3_mutex_leave(p->pMutex);
+}
+#endif
+
+
+
+/*
+** Close an memdb-file.
+** Free the underlying MemStore object when its refcount drops to zero
+** or less.
+*/
+static int memdbClose(sqlite3_file *pFile){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ if( p->zFName ){
+ int i;
+#ifndef SQLITE_MUTEX_OMIT
+ sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+#endif
+ sqlite3_mutex_enter(pVfsMutex);
+ for(i=0; ALWAYS(i<memdb_g.nMemStore); i++){
+ if( memdb_g.apMemStore[i]==p ){
+ memdbEnter(p);
+ if( p->nRef==1 ){
+ memdb_g.apMemStore[i] = memdb_g.apMemStore[--memdb_g.nMemStore];
+ if( memdb_g.nMemStore==0 ){
+ sqlite3_free(memdb_g.apMemStore);
+ memdb_g.apMemStore = 0;
+ }
+ }
+ break;
+ }
+ }
+ sqlite3_mutex_leave(pVfsMutex);
+ }else{
+ memdbEnter(p);
+ }
+ p->nRef--;
+ if( p->nRef<=0 ){
+ if( p->mFlags & SQLITE_DESERIALIZE_FREEONCLOSE ){
+ sqlite3_free(p->aData);
+ }
+ memdbLeave(p);
+ sqlite3_mutex_free(p->pMutex);
+ sqlite3_free(p);
+ }else{
+ memdbLeave(p);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read data from an memdb-file.
+*/
+static int memdbRead(
+ sqlite3_file *pFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ if( iOfst+iAmt>p->sz ){
+ memset(zBuf, 0, iAmt);
+ if( iOfst<p->sz ) memcpy(zBuf, p->aData+iOfst, p->sz - iOfst);
+ memdbLeave(p);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ memcpy(zBuf, p->aData+iOfst, iAmt);
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Try to enlarge the memory allocation to hold at least sz bytes
+*/
+static int memdbEnlarge(MemStore *p, sqlite3_int64 newSz){
+ unsigned char *pNew;
+ if( (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)==0 || NEVER(p->nMmap>0) ){
+ return SQLITE_FULL;
+ }
+ if( newSz>p->szMax ){
+ return SQLITE_FULL;
+ }
+ newSz *= 2;
+ if( newSz>p->szMax ) newSz = p->szMax;
+ pNew = sqlite3Realloc(p->aData, newSz);
+ if( pNew==0 ) return SQLITE_IOERR_NOMEM;
+ p->aData = pNew;
+ p->szAlloc = newSz;
+ return SQLITE_OK;
+}
+
+/*
+** Write data to an memdb-file.
+*/
+static int memdbWrite(
+ sqlite3_file *pFile,
+ const void *z,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ if( NEVER(p->mFlags & SQLITE_DESERIALIZE_READONLY) ){
+ /* Can't happen: memdbLock() will return SQLITE_READONLY before
+ ** reaching this point */
+ memdbLeave(p);
+ return SQLITE_IOERR_WRITE;
+ }
+ if( iOfst+iAmt>p->sz ){
+ int rc;
+ if( iOfst+iAmt>p->szAlloc
+ && (rc = memdbEnlarge(p, iOfst+iAmt))!=SQLITE_OK
+ ){
+ memdbLeave(p);
+ return rc;
+ }
+ if( iOfst>p->sz ) memset(p->aData+p->sz, 0, iOfst-p->sz);
+ p->sz = iOfst+iAmt;
+ }
+ memcpy(p->aData+iOfst, z, iAmt);
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an memdb-file.
+**
+** In rollback mode (which is always the case for memdb, as it does not
+** support WAL mode) the truncate() method is only used to reduce
+** the size of a file, never to increase the size.
+*/
+static int memdbTruncate(sqlite3_file *pFile, sqlite_int64 size){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ int rc = SQLITE_OK;
+ memdbEnter(p);
+ if( size>p->sz ){
+ /* This can only happen with a corrupt wal mode db */
+ rc = SQLITE_CORRUPT;
+ }else{
+ p->sz = size;
+ }
+ memdbLeave(p);
+ return rc;
+}
+
+/*
+** Sync an memdb-file.
+*/
+static int memdbSync(sqlite3_file *pFile, int flags){
+ UNUSED_PARAMETER(pFile);
+ UNUSED_PARAMETER(flags);
+ return SQLITE_OK;
+}
+
+/*
+** Return the current file-size of an memdb-file.
+*/
+static int memdbFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ *pSize = p->sz;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Lock an memdb-file.
+*/
+static int memdbLock(sqlite3_file *pFile, int eLock){
+ MemFile *pThis = (MemFile*)pFile;
+ MemStore *p = pThis->pStore;
+ int rc = SQLITE_OK;
+ if( eLock==pThis->eLock ) return SQLITE_OK;
+ memdbEnter(p);
+ if( eLock>SQLITE_LOCK_SHARED ){
+ if( p->mFlags & SQLITE_DESERIALIZE_READONLY ){
+ rc = SQLITE_READONLY;
+ }else if( pThis->eLock<=SQLITE_LOCK_SHARED ){
+ if( p->nWrLock ){
+ rc = SQLITE_BUSY;
+ }else{
+ p->nWrLock = 1;
+ }
+ }
+ }else if( eLock==SQLITE_LOCK_SHARED ){
+ if( pThis->eLock > SQLITE_LOCK_SHARED ){
+ assert( p->nWrLock==1 );
+ p->nWrLock = 0;
+ }else if( p->nWrLock ){
+ rc = SQLITE_BUSY;
+ }else{
+ p->nRdLock++;
+ }
+ }else{
+ assert( eLock==SQLITE_LOCK_NONE );
+ if( pThis->eLock>SQLITE_LOCK_SHARED ){
+ assert( p->nWrLock==1 );
+ p->nWrLock = 0;
+ }
+ assert( p->nRdLock>0 );
+ p->nRdLock--;
+ }
+ if( rc==SQLITE_OK ) pThis->eLock = eLock;
+ memdbLeave(p);
+ return rc;
+}
+
+#if 0
+/*
+** This interface is only used for crash recovery, which does not
+** occur on an in-memory database.
+*/
+static int memdbCheckReservedLock(sqlite3_file *pFile, int *pResOut){
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+#endif
+
+
+/*
+** File control method. For custom operations on an memdb-file.
+*/
+static int memdbFileControl(sqlite3_file *pFile, int op, void *pArg){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ int rc = SQLITE_NOTFOUND;
+ memdbEnter(p);
+ if( op==SQLITE_FCNTL_VFSNAME ){
+ *(char**)pArg = sqlite3_mprintf("memdb(%p,%lld)", p->aData, p->sz);
+ rc = SQLITE_OK;
+ }
+ if( op==SQLITE_FCNTL_SIZE_LIMIT ){
+ sqlite3_int64 iLimit = *(sqlite3_int64*)pArg;
+ if( iLimit<p->sz ){
+ if( iLimit<0 ){
+ iLimit = p->szMax;
+ }else{
+ iLimit = p->sz;
+ }
+ }
+ p->szMax = iLimit;
+ *(sqlite3_int64*)pArg = iLimit;
+ rc = SQLITE_OK;
+ }
+ memdbLeave(p);
+ return rc;
+}
+
+#if 0 /* Not used because of SQLITE_IOCAP_POWERSAFE_OVERWRITE */
+/*
+** Return the sector-size in bytes for an memdb-file.
+*/
+static int memdbSectorSize(sqlite3_file *pFile){
+ return 1024;
+}
+#endif
+
+/*
+** Return the device characteristic flags supported by an memdb-file.
+*/
+static int memdbDeviceCharacteristics(sqlite3_file *pFile){
+ UNUSED_PARAMETER(pFile);
+ return SQLITE_IOCAP_ATOMIC |
+ SQLITE_IOCAP_POWERSAFE_OVERWRITE |
+ SQLITE_IOCAP_SAFE_APPEND |
+ SQLITE_IOCAP_SEQUENTIAL;
+}
+
+/* Fetch a page of a memory-mapped file */
+static int memdbFetch(
+ sqlite3_file *pFile,
+ sqlite3_int64 iOfst,
+ int iAmt,
+ void **pp
+){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ if( iOfst+iAmt>p->sz || (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)!=0 ){
+ *pp = 0;
+ }else{
+ p->nMmap++;
+ *pp = (void*)(p->aData + iOfst);
+ }
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/* Release a memory-mapped page */
+static int memdbUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ UNUSED_PARAMETER(iOfst);
+ UNUSED_PARAMETER(pPage);
+ memdbEnter(p);
+ p->nMmap--;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Open an mem file handle.
+*/
+static int memdbOpen(
+ sqlite3_vfs *pVfs,
+ const char *zName,
+ sqlite3_file *pFd,
+ int flags,
+ int *pOutFlags
+){
+ MemFile *pFile = (MemFile*)pFd;
+ MemStore *p = 0;
+ int szName;
+ UNUSED_PARAMETER(pVfs);
+
+ memset(pFile, 0, sizeof(*pFile));
+ szName = sqlite3Strlen30(zName);
+ if( szName>1 && zName[0]=='/' ){
+ int i;
+#ifndef SQLITE_MUTEX_OMIT
+ sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+#endif
+ sqlite3_mutex_enter(pVfsMutex);
+ for(i=0; i<memdb_g.nMemStore; i++){
+ if( strcmp(memdb_g.apMemStore[i]->zFName,zName)==0 ){
+ p = memdb_g.apMemStore[i];
+ break;
+ }
+ }
+ if( p==0 ){
+ MemStore **apNew;
+ p = sqlite3Malloc( sizeof(*p) + szName + 3 );
+ if( p==0 ){
+ sqlite3_mutex_leave(pVfsMutex);
+ return SQLITE_NOMEM;
+ }
+ apNew = sqlite3Realloc(memdb_g.apMemStore,
+ sizeof(apNew[0])*(memdb_g.nMemStore+1) );
+ if( apNew==0 ){
+ sqlite3_free(p);
+ sqlite3_mutex_leave(pVfsMutex);
+ return SQLITE_NOMEM;
+ }
+ apNew[memdb_g.nMemStore++] = p;
+ memdb_g.apMemStore = apNew;
+ memset(p, 0, sizeof(*p));
+ p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE|SQLITE_DESERIALIZE_FREEONCLOSE;
+ p->szMax = sqlite3GlobalConfig.mxMemdbSize;
+ p->zFName = (char*)&p[1];
+ memcpy(p->zFName, zName, szName+1);
+ p->pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( p->pMutex==0 ){
+ memdb_g.nMemStore--;
+ sqlite3_free(p);
+ sqlite3_mutex_leave(pVfsMutex);
+ return SQLITE_NOMEM;
+ }
+ p->nRef = 1;
+ memdbEnter(p);
+ }else{
+ memdbEnter(p);
+ p->nRef++;
+ }
+ sqlite3_mutex_leave(pVfsMutex);
+ }else{
+ p = sqlite3Malloc( sizeof(*p) );
+ if( p==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(p, 0, sizeof(*p));
+ p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE | SQLITE_DESERIALIZE_FREEONCLOSE;
+ p->szMax = sqlite3GlobalConfig.mxMemdbSize;
+ }
+ pFile->pStore = p;
+ if( pOutFlags!=0 ){
+ *pOutFlags = flags | SQLITE_OPEN_MEMORY;
+ }
+ pFd->pMethods = &memdb_io_methods;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+#if 0 /* Only used to delete rollback journals, super-journals, and WAL
+ ** files, none of which exist in memdb. So this routine is never used */
+/*
+** Delete the file located at zPath. If the dirSync argument is true,
+** ensure the file-system modifications are synced to disk before
+** returning.
+*/
+static int memdbDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ return SQLITE_IOERR_DELETE;
+}
+#endif
+
+/*
+** Test for access permissions. Return true if the requested permission
+** is available, or false otherwise.
+**
+** With memdb, no files ever exist on disk. So always return false.
+*/
+static int memdbAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ UNUSED_PARAMETER(pVfs);
+ UNUSED_PARAMETER(zPath);
+ UNUSED_PARAMETER(flags);
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Populate buffer zOut with the full canonical pathname corresponding
+** to the pathname in zPath. zOut is guaranteed to point to a buffer
+** of at least (INST_MAX_PATHNAME+1) bytes.
+*/
+static int memdbFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nOut,
+ char *zOut
+){
+ UNUSED_PARAMETER(pVfs);
+ sqlite3_snprintf(nOut, zOut, "%s", zPath);
+ return SQLITE_OK;
+}
+
+/*
+** Open the dynamic library located at zPath and return a handle.
+*/
+static void *memdbDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath);
+}
+
+/*
+** Populate the buffer zErrMsg (size nByte bytes) with a human readable
+** utf-8 string describing the most recent error encountered associated
+** with dynamic libraries.
+*/
+static void memdbDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
+ ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg);
+}
+
+/*
+** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
+*/
+static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){
+ return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym);
+}
+
+/*
+** Close the dynamic library handle pHandle.
+*/
+static void memdbDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle);
+}
+
+/*
+** Populate the buffer pointed to by zBufOut with nByte bytes of
+** random data.
+*/
+static int memdbRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut);
+}
+
+/*
+** Sleep for nMicro microseconds. Return the number of microseconds
+** actually slept.
+*/
+static int memdbSleep(sqlite3_vfs *pVfs, int nMicro){
+ return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro);
+}
+
+#if 0 /* Never used. Modern cores only call xCurrentTimeInt64() */
+/*
+** Return the current time as a Julian Day number in *pTimeOut.
+*/
+static int memdbCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut);
+}
+#endif
+
+static int memdbGetLastError(sqlite3_vfs *pVfs, int a, char *b){
+ return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b);
+}
+static int memdbCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){
+ return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p);
+}
+
+/*
+** Translate a database connection pointer and schema name into a
+** MemFile pointer.
+*/
+static MemFile *memdbFromDbSchema(sqlite3 *db, const char *zSchema){
+ MemFile *p = 0;
+ MemStore *pStore;
+ int rc = sqlite3_file_control(db, zSchema, SQLITE_FCNTL_FILE_POINTER, &p);
+ if( rc ) return 0;
+ if( p->base.pMethods!=&memdb_io_methods ) return 0;
+ pStore = p->pStore;
+ memdbEnter(pStore);
+ if( pStore->zFName!=0 ) p = 0;
+ memdbLeave(pStore);
+ return p;
+}
+
+/*
+** Return the serialization of a database
+*/
+SQLITE_API unsigned char *sqlite3_serialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which database within the connection */
+ sqlite3_int64 *piSize, /* Write size here, if not NULL */
+ unsigned int mFlags /* Maybe SQLITE_SERIALIZE_NOCOPY */
+){
+ MemFile *p;
+ int iDb;
+ Btree *pBt;
+ sqlite3_int64 sz;
+ int szPage = 0;
+ sqlite3_stmt *pStmt = 0;
+ unsigned char *pOut;
+ char *zSql;
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ if( zSchema==0 ) zSchema = db->aDb[0].zDbSName;
+ p = memdbFromDbSchema(db, zSchema);
+ iDb = sqlite3FindDbName(db, zSchema);
+ if( piSize ) *piSize = -1;
+ if( iDb<0 ) return 0;
+ if( p ){
+ MemStore *pStore = p->pStore;
+ assert( pStore->pMutex==0 );
+ if( piSize ) *piSize = pStore->sz;
+ if( mFlags & SQLITE_SERIALIZE_NOCOPY ){
+ pOut = pStore->aData;
+ }else{
+ pOut = sqlite3_malloc64( pStore->sz );
+ if( pOut ) memcpy(pOut, pStore->aData, pStore->sz);
+ }
+ return pOut;
+ }
+ pBt = db->aDb[iDb].pBt;
+ if( pBt==0 ) return 0;
+ szPage = sqlite3BtreeGetPageSize(pBt);
+ zSql = sqlite3_mprintf("PRAGMA \"%w\".page_count", zSchema);
+ rc = zSql ? sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) : SQLITE_NOMEM;
+ sqlite3_free(zSql);
+ if( rc ) return 0;
+ rc = sqlite3_step(pStmt);
+ if( rc!=SQLITE_ROW ){
+ pOut = 0;
+ }else{
+ sz = sqlite3_column_int64(pStmt, 0)*szPage;
+ if( piSize ) *piSize = sz;
+ if( mFlags & SQLITE_SERIALIZE_NOCOPY ){
+ pOut = 0;
+ }else{
+ pOut = sqlite3_malloc64( sz );
+ if( pOut ){
+ int nPage = sqlite3_column_int(pStmt, 0);
+ Pager *pPager = sqlite3BtreePager(pBt);
+ int pgno;
+ for(pgno=1; pgno<=nPage; pgno++){
+ DbPage *pPage = 0;
+ unsigned char *pTo = pOut + szPage*(sqlite3_int64)(pgno-1);
+ rc = sqlite3PagerGet(pPager, pgno, (DbPage**)&pPage, 0);
+ if( rc==SQLITE_OK ){
+ memcpy(pTo, sqlite3PagerGetData(pPage), szPage);
+ }else{
+ memset(pTo, 0, szPage);
+ }
+ sqlite3PagerUnref(pPage);
+ }
+ }
+ }
+ }
+ sqlite3_finalize(pStmt);
+ return pOut;
+}
+
+/* Convert zSchema to a MemDB and initialize its content.
+*/
+SQLITE_API int sqlite3_deserialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to reopen with the deserialization */
+ unsigned char *pData, /* The serialized database content */
+ sqlite3_int64 szDb, /* Number bytes in the deserialization */
+ sqlite3_int64 szBuf, /* Total size of buffer pData[] */
+ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */
+){
+ MemFile *p;
+ char *zSql;
+ sqlite3_stmt *pStmt = 0;
+ int rc;
+ int iDb;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( szDb<0 ) return SQLITE_MISUSE_BKPT;
+ if( szBuf<0 ) return SQLITE_MISUSE_BKPT;
+#endif
+
+ sqlite3_mutex_enter(db->mutex);
+ if( zSchema==0 ) zSchema = db->aDb[0].zDbSName;
+ iDb = sqlite3FindDbName(db, zSchema);
+ testcase( iDb==1 );
+ if( iDb<2 && iDb!=0 ){
+ rc = SQLITE_ERROR;
+ goto end_deserialize;
+ }
+ zSql = sqlite3_mprintf("ATTACH x AS %Q", zSchema);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ }
+ if( rc ) goto end_deserialize;
+ db->init.iDb = (u8)iDb;
+ db->init.reopenMemdb = 1;
+ rc = sqlite3_step(pStmt);
+ db->init.reopenMemdb = 0;
+ if( rc!=SQLITE_DONE ){
+ rc = SQLITE_ERROR;
+ goto end_deserialize;
+ }
+ p = memdbFromDbSchema(db, zSchema);
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ MemStore *pStore = p->pStore;
+ pStore->aData = pData;
+ pData = 0;
+ pStore->sz = szDb;
+ pStore->szAlloc = szBuf;
+ pStore->szMax = szBuf;
+ if( pStore->szMax<sqlite3GlobalConfig.mxMemdbSize ){
+ pStore->szMax = sqlite3GlobalConfig.mxMemdbSize;
+ }
+ pStore->mFlags = mFlags;
+ rc = SQLITE_OK;
+ }
+
+end_deserialize:
+ sqlite3_finalize(pStmt);
+ if( pData && (mFlags & SQLITE_DESERIALIZE_FREEONCLOSE)!=0 ){
+ sqlite3_free(pData);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This routine is called when the extension is loaded.
+** Register the new VFS.
+*/
+SQLITE_PRIVATE int sqlite3MemdbInit(void){
+ sqlite3_vfs *pLower = sqlite3_vfs_find(0);
+ unsigned int sz;
+ if( NEVER(pLower==0) ) return SQLITE_ERROR;
+ sz = pLower->szOsFile;
+ memdb_vfs.pAppData = pLower;
+ /* The following conditional can only be true when compiled for
+ ** Windows x86 and SQLITE_MAX_MMAP_SIZE=0. We always leave
+ ** it in, to be safe, but it is marked as NO_TEST since there
+ ** is no way to reach it under most builds. */
+ if( sz<sizeof(MemFile) ) sz = sizeof(MemFile); /*NO_TEST*/
+ memdb_vfs.szOsFile = sz;
+ return sqlite3_vfs_register(&memdb_vfs, 0);
+}
+#endif /* SQLITE_OMIT_DESERIALIZE */
+
+/************** End of memdb.c ***********************************************/
+/************** Begin file bitvec.c ******************************************/
+/*
+** 2008 February 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an object that represents a fixed-length
+** bitmap. Bits are numbered starting with 1.
+**
+** A bitmap is used to record which pages of a database file have been
+** journalled during a transaction, or which pages have the "dont-write"
+** property. Usually only a few pages are meet either condition.
+** So the bitmap is usually sparse and has low cardinality.
+** But sometimes (for example when during a DROP of a large table) most
+** or all of the pages in a database can get journalled. In those cases,
+** the bitmap becomes dense with high cardinality. The algorithm needs
+** to handle both cases well.
+**
+** The size of the bitmap is fixed when the object is created.
+**
+** All bits are clear when the bitmap is created. Individual bits
+** may be set or cleared one at a time.
+**
+** Test operations are about 100 times more common that set operations.
+** Clear operations are exceedingly rare. There are usually between
+** 5 and 500 set operations per Bitvec object, though the number of sets can
+** sometimes grow into tens of thousands or larger. The size of the
+** Bitvec object is the number of pages in the database file at the
+** start of a transaction, and is thus usually less than a few thousand,
+** but can be as large as 2 billion for a really big database.
+*/
+/* #include "sqliteInt.h" */
+
+/* Size of the Bitvec structure in bytes. */
+#define BITVEC_SZ 512
+
+/* Round the union size down to the nearest pointer boundary, since that's how
+** it will be aligned within the Bitvec struct. */
+#define BITVEC_USIZE \
+ (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
+
+/* Type of the array "element" for the bitmap representation.
+** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
+** Setting this to the "natural word" size of your CPU may improve
+** performance. */
+#define BITVEC_TELEM u8
+/* Size, in bits, of the bitmap element. */
+#define BITVEC_SZELEM 8
+/* Number of elements in a bitmap array. */
+#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
+/* Number of bits in the bitmap array. */
+#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
+
+/* Number of u32 values in hash table. */
+#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
+/* Maximum number of entries in hash table before
+** sub-dividing and re-hashing. */
+#define BITVEC_MXHASH (BITVEC_NINT/2)
+/* Hashing function for the aHash representation.
+** Empirical testing showed that the *37 multiplier
+** (an arbitrary prime)in the hash function provided
+** no fewer collisions than the no-op *1. */
+#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
+
+#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
+
+
+/*
+** A bitmap is an instance of the following structure.
+**
+** This bitmap records the existence of zero or more bits
+** with values between 1 and iSize, inclusive.
+**
+** There are three possible representations of the bitmap.
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
+** bitmap. The least significant bit is bit 1.
+**
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
+**
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
+** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
+** handles up to iDivisor separate values of i. apSub[0] holds
+** values between 1 and iDivisor. apSub[1] holds values between
+** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
+** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
+** to hold deal with values between 1 and iDivisor.
+*/
+struct Bitvec {
+ u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
+ u32 nSet; /* Number of bits that are set - only valid for aHash
+ ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
+ ** this would be 125. */
+ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
+ /* Should >=0 for apSub element. */
+ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
+ /* For a BITVEC_SZ of 512, this would be 34,359,739. */
+ union {
+ BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
+ u32 aHash[BITVEC_NINT]; /* Hash table representation */
+ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
+ } u;
+};
+
+/*
+** Create a new bitmap object able to handle bits between 0 and iSize,
+** inclusive. Return a pointer to the new object. Return NULL if
+** malloc fails.
+*/
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
+ Bitvec *p;
+ assert( sizeof(*p)==BITVEC_SZ );
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->iSize = iSize;
+ }
+ return p;
+}
+
+/*
+** Check to see if the i-th bit is set. Return true or false.
+** If p is NULL (if the bitmap has not been created) or if
+** i is out of range, then return false.
+*/
+SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
+ assert( p!=0 );
+ i--;
+ if( i>=p->iSize ) return 0;
+ while( p->iDivisor ){
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ p = p->u.apSub[bin];
+ if (!p) {
+ return 0;
+ }
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
+ } else{
+ u32 h = BITVEC_HASH(i++);
+ while( p->u.aHash[h] ){
+ if( p->u.aHash[h]==i ) return 1;
+ h = (h+1) % BITVEC_NINT;
+ }
+ return 0;
+ }
+}
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
+ return p!=0 && sqlite3BitvecTestNotNull(p,i);
+}
+
+/*
+** Set the i-th bit. Return 0 on success and an error code if
+** anything goes wrong.
+**
+** This routine might cause sub-bitmaps to be allocated. Failing
+** to get the memory needed to hold the sub-bitmap is the only
+** that can go wrong with an insert, assuming p and i are valid.
+**
+** The calling function must ensure that p is a valid Bitvec object
+** and that the value for "i" is within range of the Bitvec object.
+** Otherwise the behavior is undefined.
+*/
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
+ u32 h;
+ if( p==0 ) return SQLITE_OK;
+ assert( i>0 );
+ assert( i<=p->iSize );
+ i--;
+ while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ if( p->u.apSub[bin]==0 ){
+ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
+ if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT;
+ }
+ p = p->u.apSub[bin];
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
+ return SQLITE_OK;
+ }
+ h = BITVEC_HASH(i++);
+ /* if there wasn't a hash collision, and this doesn't */
+ /* completely fill the hash, then just add it without */
+ /* worring about sub-dividing and re-hashing. */
+ if( !p->u.aHash[h] ){
+ if (p->nSet<(BITVEC_NINT-1)) {
+ goto bitvec_set_end;
+ } else {
+ goto bitvec_set_rehash;
+ }
+ }
+ /* there was a collision, check to see if it's already */
+ /* in hash, if not, try to find a spot for it */
+ do {
+ if( p->u.aHash[h]==i ) return SQLITE_OK;
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ } while( p->u.aHash[h] );
+ /* we didn't find it in the hash. h points to the first */
+ /* available free spot. check to see if this is going to */
+ /* make our hash too "full". */
+bitvec_set_rehash:
+ if( p->nSet>=BITVEC_MXHASH ){
+ unsigned int j;
+ int rc;
+ u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
+ if( aiValues==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+ memset(p->u.apSub, 0, sizeof(p->u.apSub));
+ p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
+ rc = sqlite3BitvecSet(p, i);
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
+ }
+ sqlite3StackFree(0, aiValues);
+ return rc;
+ }
+ }
+bitvec_set_end:
+ p->nSet++;
+ p->u.aHash[h] = i;
+ return SQLITE_OK;
+}
+
+/*
+** Clear the i-th bit.
+**
+** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
+** that BitvecClear can use to rebuilt its hash table.
+*/
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
+ if( p==0 ) return;
+ assert( i>0 );
+ i--;
+ while( p->iDivisor ){
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ p = p->u.apSub[bin];
+ if (!p) {
+ return;
+ }
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
+ }else{
+ unsigned int j;
+ u32 *aiValues = pBuf;
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+ memset(p->u.aHash, 0, sizeof(p->u.aHash));
+ p->nSet = 0;
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] && aiValues[j]!=(i+1) ){
+ u32 h = BITVEC_HASH(aiValues[j]-1);
+ p->nSet++;
+ while( p->u.aHash[h] ){
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ }
+ p->u.aHash[h] = aiValues[j];
+ }
+ }
+ }
+}
+
+/*
+** Destroy a bitmap object. Reclaim all memory used.
+*/
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
+ if( p==0 ) return;
+ if( p->iDivisor ){
+ unsigned int i;
+ for(i=0; i<BITVEC_NPTR; i++){
+ sqlite3BitvecDestroy(p->u.apSub[i]);
+ }
+ }
+ sqlite3_free(p);
+}
+
+/*
+** Return the value of the iSize parameter specified when Bitvec *p
+** was created.
+*/
+SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){
+ return p->iSize;
+}
+
+#ifndef SQLITE_UNTESTABLE
+/*
+** Let V[] be an array of unsigned characters sufficient to hold
+** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
+** Then the following macros can be used to set, clear, or test
+** individual bits within V.
+*/
+#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
+#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
+#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
+
+/*
+** This routine runs an extensive test of the Bitvec code.
+**
+** The input is an array of integers that acts as a program
+** to test the Bitvec. The integers are opcodes followed
+** by 0, 1, or 3 operands, depending on the opcode. Another
+** opcode follows immediately after the last operand.
+**
+** There are 6 opcodes numbered from 0 through 5. 0 is the
+** "halt" opcode and causes the test to end.
+**
+** 0 Halt and return the number of errors
+** 1 N S X Set N bits beginning with S and incrementing by X
+** 2 N S X Clear N bits beginning with S and incrementing by X
+** 3 N Set N randomly chosen bits
+** 4 N Clear N randomly chosen bits
+** 5 N S X Set N bits from S increment X in array only, not in bitvec
+**
+** The opcodes 1 through 4 perform set and clear operations are performed
+** on both a Bitvec object and on a linear array of bits obtained from malloc.
+** Opcode 5 works on the linear array only, not on the Bitvec.
+** Opcode 5 is used to deliberately induce a fault in order to
+** confirm that error detection works.
+**
+** At the conclusion of the test the linear array is compared
+** against the Bitvec object. If there are any differences,
+** an error is returned. If they are the same, zero is returned.
+**
+** If a memory allocation error occurs, return -1.
+*/
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
+ Bitvec *pBitvec = 0;
+ unsigned char *pV = 0;
+ int rc = -1;
+ int i, nx, pc, op;
+ void *pTmpSpace;
+
+ /* Allocate the Bitvec to be tested and a linear array of
+ ** bits to act as the reference */
+ pBitvec = sqlite3BitvecCreate( sz );
+ pV = sqlite3MallocZero( (sz+7)/8 + 1 );
+ pTmpSpace = sqlite3_malloc64(BITVEC_SZ);
+ if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end;
+
+ /* NULL pBitvec tests */
+ sqlite3BitvecSet(0, 1);
+ sqlite3BitvecClear(0, 1, pTmpSpace);
+
+ /* Run the program */
+ pc = i = 0;
+ while( (op = aOp[pc])!=0 ){
+ switch( op ){
+ case 1:
+ case 2:
+ case 5: {
+ nx = 4;
+ i = aOp[pc+2] - 1;
+ aOp[pc+2] += aOp[pc+3];
+ break;
+ }
+ case 3:
+ case 4:
+ default: {
+ nx = 2;
+ sqlite3_randomness(sizeof(i), &i);
+ break;
+ }
+ }
+ if( (--aOp[pc+1]) > 0 ) nx = 0;
+ pc += nx;
+ i = (i & 0x7fffffff)%sz;
+ if( (op & 1)!=0 ){
+ SETBIT(pV, (i+1));
+ if( op!=5 ){
+ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
+ }
+ }else{
+ CLEARBIT(pV, (i+1));
+ sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
+ }
+ }
+
+ /* Test to make sure the linear array exactly matches the
+ ** Bitvec object. Start with the assumption that they do
+ ** match (rc==0). Change rc to non-zero if a discrepancy
+ ** is found.
+ */
+ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
+ + sqlite3BitvecTest(pBitvec, 0)
+ + (sqlite3BitvecSize(pBitvec) - sz);
+ for(i=1; i<=sz; i++){
+ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
+ rc = i;
+ break;
+ }
+ }
+
+ /* Free allocated structure */
+bitvec_end:
+ sqlite3_free(pTmpSpace);
+ sqlite3_free(pV);
+ sqlite3BitvecDestroy(pBitvec);
+ return rc;
+}
+#endif /* SQLITE_UNTESTABLE */
+
+/************** End of bitvec.c **********************************************/
+/************** Begin file pcache.c ******************************************/
+/*
+** 2008 August 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements that page cache.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** A complete page cache is an instance of this structure. Every
+** entry in the cache holds a single page of the database file. The
+** btree layer only operates on the cached copy of the database pages.
+**
+** A page cache entry is "clean" if it exactly matches what is currently
+** on disk. A page is "dirty" if it has been modified and needs to be
+** persisted to disk.
+**
+** pDirty, pDirtyTail, pSynced:
+** All dirty pages are linked into the doubly linked list using
+** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
+** such that p was added to the list more recently than p->pDirtyNext.
+** PCache.pDirty points to the first (newest) element in the list and
+** pDirtyTail to the last (oldest).
+**
+** The PCache.pSynced variable is used to optimize searching for a dirty
+** page to eject from the cache mid-transaction. It is better to eject
+** a page that does not require a journal sync than one that does.
+** Therefore, pSynced is maintained so that it *almost* always points
+** to either the oldest page in the pDirty/pDirtyTail list that has a
+** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
+** (so that the right page to eject can be found by following pDirtyPrev
+** pointers).
+*/
+struct PCache {
+ PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
+ PgHdr *pSynced; /* Last synced page in dirty page list */
+ int nRefSum; /* Sum of ref counts over all pages */
+ int szCache; /* Configured cache size */
+ int szSpill; /* Size before spilling occurs */
+ int szPage; /* Size of every page in this cache */
+ int szExtra; /* Size of extra space for each page */
+ u8 bPurgeable; /* True if pages are on backing store */
+ u8 eCreate; /* eCreate value for for xFetch() */
+ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
+ void *pStress; /* Argument to xStress */
+ sqlite3_pcache *pCache; /* Pluggable cache module */
+};
+
+/********************************** Test and Debug Logic **********************/
+/*
+** Debug tracing macros. Enable by by changing the "0" to "1" and
+** recompiling.
+**
+** When sqlite3PcacheTrace is 1, single line trace messages are issued.
+** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
+** is displayed for many operations, resulting in a lot of output.
+*/
+#if defined(SQLITE_DEBUG) && 0
+ int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
+ int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
+# define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
+ void pcacheDump(PCache *pCache){
+ int N;
+ int i, j;
+ sqlite3_pcache_page *pLower;
+ PgHdr *pPg;
+ unsigned char *a;
+
+ if( sqlite3PcacheTrace<2 ) return;
+ if( pCache->pCache==0 ) return;
+ N = sqlite3PcachePagecount(pCache);
+ if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
+ for(i=1; i<=N; i++){
+ pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
+ if( pLower==0 ) continue;
+ pPg = (PgHdr*)pLower->pExtra;
+ printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
+ a = (unsigned char *)pLower->pBuf;
+ for(j=0; j<12; j++) printf("%02x", a[j]);
+ printf("\n");
+ if( pPg->pPage==0 ){
+ sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
+ }
+ }
+ }
+ #else
+# define pcacheTrace(X)
+# define pcacheDump(X)
+#endif
+
+/*
+** Check invariants on a PgHdr entry. Return true if everything is OK.
+** Return false if any invariant is violated.
+**
+** This routine is for use inside of assert() statements only. For
+** example:
+**
+** assert( sqlite3PcachePageSanity(pPg) );
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr *pPg){
+ PCache *pCache;
+ assert( pPg!=0 );
+ assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */
+ pCache = pPg->pCache;
+ assert( pCache!=0 ); /* Every page has an associated PCache */
+ if( pPg->flags & PGHDR_CLEAN ){
+ assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
+ assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */
+ assert( pCache->pDirtyTail!=pPg );
+ }
+ /* WRITEABLE pages must also be DIRTY */
+ if( pPg->flags & PGHDR_WRITEABLE ){
+ assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */
+ }
+ /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
+ ** for example, when using the sqlite3PagerDontWrite() optimization:
+ ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
+ ** (2) Page X moved to freelist, WRITEABLE is cleared
+ ** (3) Page X reused, WRITEABLE is set again
+ ** If NEED_SYNC had been cleared in step 2, then it would not be reset
+ ** in step 3, and page might be written into the database without first
+ ** syncing the rollback journal, which might cause corruption on a power
+ ** loss.
+ **
+ ** Another example is when the database page size is smaller than the
+ ** disk sector size. When any page of a sector is journalled, all pages
+ ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
+ ** in case they are later modified, since all pages in the same sector
+ ** must be journalled and synced before any of those pages can be safely
+ ** written.
+ */
+ return 1;
+}
+#endif /* SQLITE_DEBUG */
+
+
+/********************************** Linked List Management ********************/
+
+/* Allowed values for second argument to pcacheManageDirtyList() */
+#define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
+#define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
+#define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
+
+/*
+** Manage pPage's participation on the dirty list. Bits of the addRemove
+** argument determines what operation to do. The 0x01 bit means first
+** remove pPage from the dirty list. The 0x02 means add pPage back to
+** the dirty list. Doing both moves pPage to the front of the dirty list.
+*/
+static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
+ PCache *p = pPage->pCache;
+
+ pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
+ addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
+ pPage->pgno));
+ if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
+ assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
+ assert( pPage->pDirtyPrev || pPage==p->pDirty );
+
+ /* Update the PCache1.pSynced variable if necessary. */
+ if( p->pSynced==pPage ){
+ p->pSynced = pPage->pDirtyPrev;
+ }
+
+ if( pPage->pDirtyNext ){
+ pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
+ }else{
+ assert( pPage==p->pDirtyTail );
+ p->pDirtyTail = pPage->pDirtyPrev;
+ }
+ if( pPage->pDirtyPrev ){
+ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
+ }else{
+ /* If there are now no dirty pages in the cache, set eCreate to 2.
+ ** This is an optimization that allows sqlite3PcacheFetch() to skip
+ ** searching for a dirty page to eject from the cache when it might
+ ** otherwise have to. */
+ assert( pPage==p->pDirty );
+ p->pDirty = pPage->pDirtyNext;
+ assert( p->bPurgeable || p->eCreate==2 );
+ if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ assert( p->bPurgeable==0 || p->eCreate==1 );
+ p->eCreate = 2;
+ }
+ }
+ }
+ if( addRemove & PCACHE_DIRTYLIST_ADD ){
+ pPage->pDirtyPrev = 0;
+ pPage->pDirtyNext = p->pDirty;
+ if( pPage->pDirtyNext ){
+ assert( pPage->pDirtyNext->pDirtyPrev==0 );
+ pPage->pDirtyNext->pDirtyPrev = pPage;
+ }else{
+ p->pDirtyTail = pPage;
+ if( p->bPurgeable ){
+ assert( p->eCreate==2 );
+ p->eCreate = 1;
+ }
+ }
+ p->pDirty = pPage;
+
+ /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
+ ** pSynced to point to it. Checking the NEED_SYNC flag is an
+ ** optimization, as if pSynced points to a page with the NEED_SYNC
+ ** flag set sqlite3PcacheFetchStress() searches through all newer
+ ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
+ if( !p->pSynced
+ && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
+ ){
+ p->pSynced = pPage;
+ }
+ }
+ pcacheDump(p);
+}
+
+/*
+** Wrapper around the pluggable caches xUnpin method. If the cache is
+** being used for an in-memory database, this function is a no-op.
+*/
+static void pcacheUnpin(PgHdr *p){
+ if( p->pCache->bPurgeable ){
+ pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
+ sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
+ pcacheDump(p->pCache);
+ }
+}
+
+/*
+** Compute the number of pages of cache requested. p->szCache is the
+** cache size requested by the "PRAGMA cache_size" statement.
+*/
+static int numberOfCachePages(PCache *p){
+ if( p->szCache>=0 ){
+ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
+ ** suggested cache size is set to N. */
+ return p->szCache;
+ }else{
+ i64 n;
+ /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
+ ** number of cache pages is adjusted to be a number of pages that would
+ ** use approximately abs(N*1024) bytes of memory based on the current
+ ** page size. */
+ n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
+ if( n>1000000000 ) n = 1000000000;
+ return (int)n;
+ }
+}
+
+/*************************************************** General Interfaces ******
+**
+** Initialize and shutdown the page cache subsystem. Neither of these
+** functions are threadsafe.
+*/
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void){
+ if( sqlite3GlobalConfig.pcache2.xInit==0 ){
+ /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
+ ** built-in default page cache is used instead of the application defined
+ ** page cache. */
+ sqlite3PCacheSetDefault();
+ assert( sqlite3GlobalConfig.pcache2.xInit!=0 );
+ }
+ return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
+}
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void){
+ if( sqlite3GlobalConfig.pcache2.xShutdown ){
+ /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
+ sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
+ }
+}
+
+/*
+** Return the size in bytes of a PCache object.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); }
+
+/*
+** Create a new PCache object. Storage space to hold the object
+** has already been allocated and is passed in as the p pointer.
+** The caller discovers how much space needs to be allocated by
+** calling sqlite3PcacheSize().
+**
+** szExtra is some extra space allocated for each page. The first
+** 8 bytes of the extra space will be zeroed as the page is allocated,
+** but remaining content will be uninitialized. Though it is opaque
+** to this module, the extra space really ends up being the MemPage
+** structure in the pager.
+*/
+SQLITE_PRIVATE int sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *p /* Preallocated space for the PCache */
+){
+ memset(p, 0, sizeof(PCache));
+ p->szPage = 1;
+ p->szExtra = szExtra;
+ assert( szExtra>=8 ); /* First 8 bytes will be zeroed */
+ p->bPurgeable = bPurgeable;
+ p->eCreate = 2;
+ p->xStress = xStress;
+ p->pStress = pStress;
+ p->szCache = 100;
+ p->szSpill = 1;
+ pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
+ return sqlite3PcacheSetPageSize(p, szPage);
+}
+
+/*
+** Change the page size for PCache object. The caller must ensure that there
+** are no outstanding page references when this function is called.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
+ assert( pCache->nRefSum==0 && pCache->pDirty==0 );
+ if( pCache->szPage ){
+ sqlite3_pcache *pNew;
+ pNew = sqlite3GlobalConfig.pcache2.xCreate(
+ szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
+ pCache->bPurgeable
+ );
+ if( pNew==0 ) return SQLITE_NOMEM_BKPT;
+ sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
+ if( pCache->pCache ){
+ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
+ }
+ pCache->pCache = pNew;
+ pCache->szPage = szPage;
+ pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Try to obtain a page from the cache.
+**
+** This routine returns a pointer to an sqlite3_pcache_page object if
+** such an object is already in cache, or if a new one is created.
+** This routine returns a NULL pointer if the object was not in cache
+** and could not be created.
+**
+** The createFlags should be 0 to check for existing pages and should
+** be 3 (not 1, but 3) to try to create a new page.
+**
+** If the createFlag is 0, then NULL is always returned if the page
+** is not already in the cache. If createFlag is 1, then a new page
+** is created only if that can be done without spilling dirty pages
+** and without exceeding the cache size limit.
+**
+** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
+** initialize the sqlite3_pcache_page object and convert it into a
+** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
+** routines are split this way for performance reasons. When separated
+** they can both (usually) operate without having to push values to
+** the stack on entry and pop them back off on exit, which saves a
+** lot of pushing and popping.
+*/
+SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number to obtain */
+ int createFlag /* If true, create page if it does not exist already */
+){
+ int eCreate;
+ sqlite3_pcache_page *pRes;
+
+ assert( pCache!=0 );
+ assert( pCache->pCache!=0 );
+ assert( createFlag==3 || createFlag==0 );
+ assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
+
+ /* eCreate defines what to do if the page does not exist.
+ ** 0 Do not allocate a new page. (createFlag==0)
+ ** 1 Allocate a new page if doing so is inexpensive.
+ ** (createFlag==1 AND bPurgeable AND pDirty)
+ ** 2 Allocate a new page even it doing so is difficult.
+ ** (createFlag==1 AND !(bPurgeable AND pDirty)
+ */
+ eCreate = createFlag & pCache->eCreate;
+ assert( eCreate==0 || eCreate==1 || eCreate==2 );
+ assert( createFlag==0 || pCache->eCreate==eCreate );
+ assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
+ pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
+ pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
+ createFlag?" create":"",pRes));
+ return pRes;
+}
+
+/*
+** If the sqlite3PcacheFetch() routine is unable to allocate a new
+** page because no clean pages are available for reuse and the cache
+** size limit has been reached, then this routine can be invoked to
+** try harder to allocate a page. This routine might invoke the stress
+** callback to spill dirty pages to the journal. It will then try to
+** allocate the new page and will only fail to allocate a new page on
+** an OOM error.
+**
+** This routine should be invoked only after sqlite3PcacheFetch() fails.
+*/
+SQLITE_PRIVATE int sqlite3PcacheFetchStress(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number to obtain */
+ sqlite3_pcache_page **ppPage /* Write result here */
+){
+ PgHdr *pPg;
+ if( pCache->eCreate==2 ) return 0;
+
+ if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
+ /* Find a dirty page to write-out and recycle. First try to find a
+ ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
+ ** cleared), but if that is not possible settle for any other
+ ** unreferenced dirty page.
+ **
+ ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
+ ** flag is currently referenced, then the following may leave pSynced
+ ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
+ ** cleared). This is Ok, as pSynced is just an optimization. */
+ for(pPg=pCache->pSynced;
+ pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
+ pPg=pPg->pDirtyPrev
+ );
+ pCache->pSynced = pPg;
+ if( !pPg ){
+ for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
+ }
+ if( pPg ){
+ int rc;
+#ifdef SQLITE_LOG_CACHE_SPILL
+ sqlite3_log(SQLITE_FULL,
+ "spill page %d making room for %d - cache used: %d/%d",
+ pPg->pgno, pgno,
+ sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
+ numberOfCachePages(pCache));
+#endif
+ pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
+ rc = pCache->xStress(pCache->pStress, pPg);
+ pcacheDump(pCache);
+ if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ }
+ *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
+ return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
+}
+
+/*
+** This is a helper routine for sqlite3PcacheFetchFinish()
+**
+** In the uncommon case where the page being fetched has not been
+** initialized, this routine is invoked to do the initialization.
+** This routine is broken out into a separate function since it
+** requires extra stack manipulation that can be avoided in the common
+** case.
+*/
+static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number obtained */
+ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
+){
+ PgHdr *pPgHdr;
+ assert( pPage!=0 );
+ pPgHdr = (PgHdr*)pPage->pExtra;
+ assert( pPgHdr->pPage==0 );
+ memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
+ pPgHdr->pPage = pPage;
+ pPgHdr->pData = pPage->pBuf;
+ pPgHdr->pExtra = (void *)&pPgHdr[1];
+ memset(pPgHdr->pExtra, 0, 8);
+ pPgHdr->pCache = pCache;
+ pPgHdr->pgno = pgno;
+ pPgHdr->flags = PGHDR_CLEAN;
+ return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
+}
+
+/*
+** This routine converts the sqlite3_pcache_page object returned by
+** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
+** must be called after sqlite3PcacheFetch() in order to get a usable
+** result.
+*/
+SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number obtained */
+ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
+){
+ PgHdr *pPgHdr;
+
+ assert( pPage!=0 );
+ pPgHdr = (PgHdr *)pPage->pExtra;
+
+ if( !pPgHdr->pPage ){
+ return pcacheFetchFinishWithInit(pCache, pgno, pPage);
+ }
+ pCache->nRefSum++;
+ pPgHdr->nRef++;
+ assert( sqlite3PcachePageSanity(pPgHdr) );
+ return pPgHdr;
+}
+
+/*
+** Decrement the reference count on a page. If the page is clean and the
+** reference count drops to 0, then it is made eligible for recycling.
+*/
+SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
+ assert( p->nRef>0 );
+ p->pCache->nRefSum--;
+ if( (--p->nRef)==0 ){
+ if( p->flags&PGHDR_CLEAN ){
+ pcacheUnpin(p);
+ }else{
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
+ }
+ }
+}
+
+/*
+** Increase the reference count of a supplied page by 1.
+*/
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){
+ assert(p->nRef>0);
+ assert( sqlite3PcachePageSanity(p) );
+ p->nRef++;
+ p->pCache->nRefSum++;
+}
+
+/*
+** Drop a page from the cache. There must be exactly one reference to the
+** page. This function deletes that reference, so after it returns the
+** page pointed to by p is invalid.
+*/
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){
+ assert( p->nRef==1 );
+ assert( sqlite3PcachePageSanity(p) );
+ if( p->flags&PGHDR_DIRTY ){
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
+ }
+ p->pCache->nRefSum--;
+ sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
+}
+
+/*
+** Make sure the page is marked as dirty. If it isn't dirty already,
+** make it so.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){
+ assert( p->nRef>0 );
+ assert( sqlite3PcachePageSanity(p) );
+ if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/
+ p->flags &= ~PGHDR_DONT_WRITE;
+ if( p->flags & PGHDR_CLEAN ){
+ p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
+ pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
+ assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
+ }
+ assert( sqlite3PcachePageSanity(p) );
+ }
+}
+
+/*
+** Make sure the page is marked as clean. If it isn't clean already,
+** make it so.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
+ assert( sqlite3PcachePageSanity(p) );
+ assert( (p->flags & PGHDR_DIRTY)!=0 );
+ assert( (p->flags & PGHDR_CLEAN)==0 );
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
+ p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
+ p->flags |= PGHDR_CLEAN;
+ pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
+ assert( sqlite3PcachePageSanity(p) );
+ if( p->nRef==0 ){
+ pcacheUnpin(p);
+ }
+}
+
+/*
+** Make every page in the cache clean.
+*/
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){
+ PgHdr *p;
+ pcacheTrace(("%p.CLEAN-ALL\n",pCache));
+ while( (p = pCache->pDirty)!=0 ){
+ sqlite3PcacheMakeClean(p);
+ }
+}
+
+/*
+** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache *pCache){
+ PgHdr *p;
+ pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
+ }
+ pCache->pSynced = pCache->pDirtyTail;
+}
+
+/*
+** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->flags &= ~PGHDR_NEED_SYNC;
+ }
+ pCache->pSynced = pCache->pDirtyTail;
+}
+
+/*
+** Change the page number of page p to newPgno.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
+ PCache *pCache = p->pCache;
+ sqlite3_pcache_page *pOther;
+ assert( p->nRef>0 );
+ assert( newPgno>0 );
+ assert( sqlite3PcachePageSanity(p) );
+ pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
+ pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0);
+ if( pOther ){
+ PgHdr *pXPage = (PgHdr*)pOther->pExtra;
+ assert( pXPage->nRef==0 );
+ pXPage->nRef++;
+ pCache->nRefSum++;
+ sqlite3PcacheDrop(pXPage);
+ }
+ sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
+ p->pgno = newPgno;
+ if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
+ assert( sqlite3PcachePageSanity(p) );
+ }
+}
+
+/*
+** Drop every cache entry whose page number is greater than "pgno". The
+** caller must ensure that there are no outstanding references to any pages
+** other than page 1 with a page number greater than pgno.
+**
+** If there is a reference to page 1 and the pgno parameter passed to this
+** function is 0, then the data area associated with page 1 is zeroed, but
+** the page object is not dropped.
+*/
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
+ if( pCache->pCache ){
+ PgHdr *p;
+ PgHdr *pNext;
+ pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
+ for(p=pCache->pDirty; p; p=pNext){
+ pNext = p->pDirtyNext;
+ /* This routine never gets call with a positive pgno except right
+ ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
+ ** it must be that pgno==0.
+ */
+ assert( p->pgno>0 );
+ if( p->pgno>pgno ){
+ assert( p->flags&PGHDR_DIRTY );
+ sqlite3PcacheMakeClean(p);
+ }
+ }
+ if( pgno==0 && pCache->nRefSum ){
+ sqlite3_pcache_page *pPage1;
+ pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
+ if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because
+ ** pCache->nRefSum>0 */
+ memset(pPage1->pBuf, 0, pCache->szPage);
+ pgno = 1;
+ }
+ }
+ sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
+ }
+}
+
+/*
+** Close a cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){
+ assert( pCache->pCache!=0 );
+ pcacheTrace(("%p.CLOSE\n",pCache));
+ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
+}
+
+/*
+** Discard the contents of the cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){
+ sqlite3PcacheTruncate(pCache, 0);
+}
+
+/*
+** Merge two lists of pages connected by pDirty and in pgno order.
+** Do not bother fixing the pDirtyPrev pointers.
+*/
+static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
+ PgHdr result, *pTail;
+ pTail = &result;
+ assert( pA!=0 && pB!=0 );
+ for(;;){
+ if( pA->pgno<pB->pgno ){
+ pTail->pDirty = pA;
+ pTail = pA;
+ pA = pA->pDirty;
+ if( pA==0 ){
+ pTail->pDirty = pB;
+ break;
+ }
+ }else{
+ pTail->pDirty = pB;
+ pTail = pB;
+ pB = pB->pDirty;
+ if( pB==0 ){
+ pTail->pDirty = pA;
+ break;
+ }
+ }
+ }
+ return result.pDirty;
+}
+
+/*
+** Sort the list of pages in accending order by pgno. Pages are
+** connected by pDirty pointers. The pDirtyPrev pointers are
+** corrupted by this sort.
+**
+** Since there cannot be more than 2^31 distinct pages in a database,
+** there cannot be more than 31 buckets required by the merge sorter.
+** One extra bucket is added to catch overflow in case something
+** ever changes to make the previous sentence incorrect.
+*/
+#define N_SORT_BUCKET 32
+static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
+ PgHdr *a[N_SORT_BUCKET], *p;
+ int i;
+ memset(a, 0, sizeof(a));
+ while( pIn ){
+ p = pIn;
+ pIn = p->pDirty;
+ p->pDirty = 0;
+ for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
+ if( a[i]==0 ){
+ a[i] = p;
+ break;
+ }else{
+ p = pcacheMergeDirtyList(a[i], p);
+ a[i] = 0;
+ }
+ }
+ if( NEVER(i==N_SORT_BUCKET-1) ){
+ /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
+ ** the input list. But that is impossible.
+ */
+ a[i] = pcacheMergeDirtyList(a[i], p);
+ }
+ }
+ p = a[0];
+ for(i=1; i<N_SORT_BUCKET; i++){
+ if( a[i]==0 ) continue;
+ p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
+ }
+ return p;
+}
+
+/*
+** Return a list of all dirty pages in the cache, sorted by page number.
+*/
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->pDirty = p->pDirtyNext;
+ }
+ return pcacheSortDirtyList(pCache->pDirty);
+}
+
+/*
+** Return the total number of references to all pages held by the cache.
+**
+** This is not the total number of pages referenced, but the sum of the
+** reference count for all pages.
+*/
+SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache *pCache){
+ return pCache->nRefSum;
+}
+
+/*
+** Return the number of references to the page supplied as an argument.
+*/
+SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr *p){
+ return p->nRef;
+}
+
+/*
+** Return the total number of pages in the cache.
+*/
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){
+ assert( pCache->pCache!=0 );
+ return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
+}
+
+#ifdef SQLITE_TEST
+/*
+** Get the suggested cache-size value.
+*/
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){
+ return numberOfCachePages(pCache);
+}
+#endif
+
+/*
+** Set the suggested cache-size value.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
+ assert( pCache->pCache!=0 );
+ pCache->szCache = mxPage;
+ sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
+ numberOfCachePages(pCache));
+}
+
+/*
+** Set the suggested cache-spill value. Make no changes if if the
+** argument is zero. Return the effective cache-spill size, which will
+** be the larger of the szSpill and szCache.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
+ int res;
+ assert( p->pCache!=0 );
+ if( mxPage ){
+ if( mxPage<0 ){
+ mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
+ }
+ p->szSpill = mxPage;
+ }
+ res = numberOfCachePages(p);
+ if( res<p->szSpill ) res = p->szSpill;
+ return res;
+}
+
+/*
+** Free up as much memory as possible from the page cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
+ assert( pCache->pCache!=0 );
+ sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
+}
+
+/*
+** Return the size of the header added by this middleware layer
+** in the page-cache hierarchy.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
+
+/*
+** Return the number of dirty pages currently in the cache, as a percentage
+** of the configured cache size.
+*/
+SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){
+ PgHdr *pDirty;
+ int nDirty = 0;
+ int nCache = numberOfCachePages(pCache);
+ for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
+ return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
+}
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+/*
+** Return true if there are one or more dirty pages in the cache. Else false.
+*/
+SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache){
+ return (pCache->pDirty!=0);
+}
+#endif
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/*
+** For all dirty pages currently in the cache, invoke the specified
+** callback. This is only used if the SQLITE_CHECK_PAGES macro is
+** defined.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
+ PgHdr *pDirty;
+ for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
+ xIter(pDirty);
+ }
+}
+#endif
+
+/************** End of pcache.c **********************************************/
+/************** Begin file pcache1.c *****************************************/
+/*
+** 2008 November 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements the default page cache implementation (the
+** sqlite3_pcache interface). It also contains part of the implementation
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
+** If the default page cache implementation is overridden, then neither of
+** these two features are available.
+**
+** A Page cache line looks like this:
+**
+** -------------------------------------------------------------
+** | database page content | PgHdr1 | MemPage | PgHdr |
+** -------------------------------------------------------------
+**
+** The database page content is up front (so that buffer overreads tend to
+** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
+** is the extension added by the btree.c module containing information such
+** as the database page number and how that database page is used. PgHdr
+** is added by the pcache.c layer and contains information used to keep track
+** of which pages are "dirty". PgHdr1 is an extension added by this
+** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
+** PgHdr1 contains information needed to look up a page by its page number.
+** The superclass sqlite3_pcache_page.pBuf points to the start of the
+** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
+**
+** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
+** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
+** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
+** size can vary according to architecture, compile-time options, and
+** SQLite library version number.
+**
+** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
+** using a separate memory allocation from the database page content. This
+** seeks to overcome the "clownshoe" problem (also called "internal
+** fragmentation" in academic literature) of allocating a few bytes more
+** than a power of two with the memory allocator rounding up to the next
+** power of two, and leaving the rounded-up space unused.
+**
+** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
+** with this module. Information is passed back and forth as PgHdr1 pointers.
+**
+** The pcache.c and pager.c modules deal pointers to PgHdr objects.
+** The btree.c module deals with pointers to MemPage objects.
+**
+** SOURCE OF PAGE CACHE MEMORY:
+**
+** Memory for a page might come from any of three sources:
+**
+** (1) The general-purpose memory allocator - sqlite3Malloc()
+** (2) Global page-cache memory provided using sqlite3_config() with
+** SQLITE_CONFIG_PAGECACHE.
+** (3) PCache-local bulk allocation.
+**
+** The third case is a chunk of heap memory (defaulting to 100 pages worth)
+** that is allocated when the page cache is created. The size of the local
+** bulk allocation can be adjusted using
+**
+** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
+**
+** If N is positive, then N pages worth of memory are allocated using a single
+** sqlite3Malloc() call and that memory is used for the first N pages allocated.
+** Or if N is negative, then -1024*N bytes of memory are allocated and used
+** for as many pages as can be accomodated.
+**
+** Only one of (2) or (3) can be used. Once the memory available to (2) or
+** (3) is exhausted, subsequent allocations fail over to the general-purpose
+** memory allocator (1).
+**
+** Earlier versions of SQLite used only methods (1) and (2). But experiments
+** show that method (3) with N==100 provides about a 5% performance boost for
+** common workloads.
+*/
+/* #include "sqliteInt.h" */
+
+typedef struct PCache1 PCache1;
+typedef struct PgHdr1 PgHdr1;
+typedef struct PgFreeslot PgFreeslot;
+typedef struct PGroup PGroup;
+
+/*
+** Each cache entry is represented by an instance of the following
+** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
+** PgHdr1.pCache->szPage bytes is allocated directly before this structure
+** in memory.
+**
+** Note: Variables isBulkLocal and isAnchor were once type "u8". That works,
+** but causes a 2-byte gap in the structure for most architectures (since
+** pointers must be either 4 or 8-byte aligned). As this structure is located
+** in memory directly after the associated page data, if the database is
+** corrupt, code at the b-tree layer may overread the page buffer and
+** read part of this structure before the corruption is detected. This
+** can cause a valgrind error if the unitialized gap is accessed. Using u16
+** ensures there is no such gap, and therefore no bytes of unitialized memory
+** in the structure.
+*/
+struct PgHdr1 {
+ sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
+ unsigned int iKey; /* Key value (page number) */
+ u16 isBulkLocal; /* This page from bulk local storage */
+ u16 isAnchor; /* This is the PGroup.lru element */
+ PgHdr1 *pNext; /* Next in hash table chain */
+ PCache1 *pCache; /* Cache that currently owns this page */
+ PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
+ /* NB: pLruPrev is only valid if pLruNext!=0 */
+};
+
+/*
+** A page is pinned if it is not on the LRU list. To be "pinned" means
+** that the page is in active use and must not be deallocated.
+*/
+#define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
+#define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
+
+/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
+** of one or more PCaches that are able to recycle each other's unpinned
+** pages when they are under memory pressure. A PGroup is an instance of
+** the following object.
+**
+** This page cache implementation works in one of two modes:
+**
+** (1) Every PCache is the sole member of its own PGroup. There is
+** one PGroup per PCache.
+**
+** (2) There is a single global PGroup that all PCaches are a member
+** of.
+**
+** Mode 1 uses more memory (since PCache instances are not able to rob
+** unused pages from other PCaches) but it also operates without a mutex,
+** and is therefore often faster. Mode 2 requires a mutex in order to be
+** threadsafe, but recycles pages more efficiently.
+**
+** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
+** PGroup which is the pcache1.grp global variable and its mutex is
+** SQLITE_MUTEX_STATIC_LRU.
+*/
+struct PGroup {
+ sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
+ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
+ unsigned int nMinPage; /* Sum of nMin for purgeable caches */
+ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
+ unsigned int nPurgeable; /* Number of purgeable pages allocated */
+ PgHdr1 lru; /* The beginning and end of the LRU list */
+};
+
+/* Each page cache is an instance of the following object. Every
+** open database file (including each in-memory database and each
+** temporary or transient database) has a single page cache which
+** is an instance of this object.
+**
+** Pointers to structures of this type are cast and returned as
+** opaque sqlite3_pcache* handles.
+*/
+struct PCache1 {
+ /* Cache configuration parameters. Page size (szPage) and the purgeable
+ ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
+ ** cache is created and are never changed thereafter. nMax may be
+ ** modified at any time by a call to the pcache1Cachesize() method.
+ ** The PGroup mutex must be held when accessing nMax.
+ */
+ PGroup *pGroup; /* PGroup this cache belongs to */
+ unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
+ int szPage; /* Size of database content section */
+ int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
+ int szAlloc; /* Total size of one pcache line */
+ int bPurgeable; /* True if cache is purgeable */
+ unsigned int nMin; /* Minimum number of pages reserved */
+ unsigned int nMax; /* Configured "cache_size" value */
+ unsigned int n90pct; /* nMax*9/10 */
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */
+ unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/
+
+ /* Hash table of all pages. The following variables may only be accessed
+ ** when the accessor is holding the PGroup mutex.
+ */
+ unsigned int nRecyclable; /* Number of pages in the LRU list */
+ unsigned int nPage; /* Total number of pages in apHash */
+ unsigned int nHash; /* Number of slots in apHash[] */
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */
+ PgHdr1 *pFree; /* List of unused pcache-local pages */
+ void *pBulk; /* Bulk memory used by pcache-local */
+};
+
+/*
+** Free slots in the allocator used to divide up the global page cache
+** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
+*/
+struct PgFreeslot {
+ PgFreeslot *pNext; /* Next free slot */
+};
+
+/*
+** Global data used by this cache.
+*/
+static SQLITE_WSD struct PCacheGlobal {
+ PGroup grp; /* The global PGroup for mode (2) */
+
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
+ ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
+ ** fixed at sqlite3_initialize() time and do not require mutex protection.
+ ** The nFreeSlot and pFree values do require mutex protection.
+ */
+ int isInit; /* True if initialized */
+ int separateCache; /* Use a new PGroup for each PCache */
+ int nInitPage; /* Initial bulk allocation size */
+ int szSlot; /* Size of each free slot */
+ int nSlot; /* The number of pcache slots */
+ int nReserve; /* Try to keep nFreeSlot above this */
+ void *pStart, *pEnd; /* Bounds of global page cache memory */
+ /* Above requires no mutex. Use mutex below for variable that follow. */
+ sqlite3_mutex *mutex; /* Mutex for accessing the following: */
+ PgFreeslot *pFree; /* Free page blocks */
+ int nFreeSlot; /* Number of unused pcache slots */
+ /* The following value requires a mutex to change. We skip the mutex on
+ ** reading because (1) most platforms read a 32-bit integer atomically and
+ ** (2) even if an incorrect value is read, no great harm is done since this
+ ** is really just an optimization. */
+ int bUnderPressure; /* True if low on PAGECACHE memory */
+} pcache1_g;
+
+/*
+** All code in this file should access the global structure above via the
+** alias "pcache1". This ensures that the WSD emulation is used when
+** compiling for systems that do not support real WSD.
+*/
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
+
+/*
+** Macros to enter and leave the PCache LRU mutex.
+*/
+#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
+# define pcache1EnterMutex(X) assert((X)->mutex==0)
+# define pcache1LeaveMutex(X) assert((X)->mutex==0)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
+#else
+# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
+# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
+#endif
+
+/******************************************************************************/
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
+
+
+/*
+** This function is called during initialization if a static buffer is
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large
+** enough to contain 'n' buffers of 'sz' bytes each.
+**
+** This routine is called from sqlite3_initialize() and so it is guaranteed
+** to be serialized already. There is no need for further mutexing.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
+ if( pcache1.isInit ){
+ PgFreeslot *p;
+ if( pBuf==0 ) sz = n = 0;
+ if( n==0 ) sz = 0;
+ sz = ROUNDDOWN8(sz);
+ pcache1.szSlot = sz;
+ pcache1.nSlot = pcache1.nFreeSlot = n;
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
+ pcache1.pStart = pBuf;
+ pcache1.pFree = 0;
+ pcache1.bUnderPressure = 0;
+ while( n-- ){
+ p = (PgFreeslot*)pBuf;
+ p->pNext = pcache1.pFree;
+ pcache1.pFree = p;
+ pBuf = (void*)&((char*)pBuf)[sz];
+ }
+ pcache1.pEnd = pBuf;
+ }
+}
+
+/*
+** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
+** true if pCache->pFree ends up containing one or more free pages.
+*/
+static int pcache1InitBulk(PCache1 *pCache){
+ i64 szBulk;
+ char *zBulk;
+ if( pcache1.nInitPage==0 ) return 0;
+ /* Do not bother with a bulk allocation if the cache size very small */
+ if( pCache->nMax<3 ) return 0;
+ sqlite3BeginBenignMalloc();
+ if( pcache1.nInitPage>0 ){
+ szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
+ }else{
+ szBulk = -1024 * (i64)pcache1.nInitPage;
+ }
+ if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
+ szBulk = pCache->szAlloc*(i64)pCache->nMax;
+ }
+ zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
+ sqlite3EndBenignMalloc();
+ if( zBulk ){
+ int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
+ do{
+ PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
+ pX->page.pBuf = zBulk;
+ pX->page.pExtra = &pX[1];
+ pX->isBulkLocal = 1;
+ pX->isAnchor = 0;
+ pX->pNext = pCache->pFree;
+ pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
+ pCache->pFree = pX;
+ zBulk += pCache->szAlloc;
+ }while( --nBulk );
+ }
+ return pCache->pFree!=0;
+}
+
+/*
+** Malloc function used within this file to allocate space from the buffer
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
+** such buffer exists or there is no space left in it, this function falls
+** back to sqlite3Malloc().
+**
+** Multiple threads can run this routine at the same time. Global variables
+** in pcache1 need to be protected via mutex.
+*/
+static void *pcache1Alloc(int nByte){
+ void *p = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ if( nByte<=pcache1.szSlot ){
+ sqlite3_mutex_enter(pcache1.mutex);
+ p = (PgHdr1 *)pcache1.pFree;
+ if( p ){
+ pcache1.pFree = pcache1.pFree->pNext;
+ pcache1.nFreeSlot--;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot>=0 );
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
+ }
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+ if( p==0 ){
+ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
+ ** it from sqlite3Malloc instead.
+ */
+ p = sqlite3Malloc(nByte);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ if( p ){
+ int sz = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ }
+ return p;
+}
+
+/*
+** Free an allocated buffer obtained from pcache1Alloc().
+*/
+static void pcache1Free(void *p){
+ if( p==0 ) return;
+ if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
+ PgFreeslot *pSlot;
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
+ pSlot = (PgFreeslot*)p;
+ pSlot->pNext = pcache1.pFree;
+ pcache1.pFree = pSlot;
+ pcache1.nFreeSlot++;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot<=pcache1.nSlot );
+ sqlite3_mutex_leave(pcache1.mutex);
+ }else{
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ {
+ int nFreed = 0;
+ nFreed = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3_free(p);
+ }
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** Return the size of a pcache allocation
+*/
+static int pcache1MemSize(void *p){
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){
+ return pcache1.szSlot;
+ }else{
+ int iSize;
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ iSize = sqlite3MallocSize(p);
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ return iSize;
+ }
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+/*
+** Allocate a new page object initially associated with cache pCache.
+*/
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
+ PgHdr1 *p = 0;
+ void *pPg;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
+ assert( pCache->pFree!=0 );
+ p = pCache->pFree;
+ pCache->pFree = p->pNext;
+ p->pNext = 0;
+ }else{
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ /* The group mutex must be released before pcache1Alloc() is called. This
+ ** is because it might call sqlite3_release_memory(), which assumes that
+ ** this mutex is not held. */
+ assert( pcache1.separateCache==0 );
+ assert( pCache->pGroup==&pcache1.grp );
+ pcache1LeaveMutex(pCache->pGroup);
+#endif
+ if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ pPg = pcache1Alloc(pCache->szPage);
+ p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
+ if( !pPg || !p ){
+ pcache1Free(pPg);
+ sqlite3_free(p);
+ pPg = 0;
+ }
+#else
+ pPg = pcache1Alloc(pCache->szAlloc);
+#endif
+ if( benignMalloc ){ sqlite3EndBenignMalloc(); }
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ pcache1EnterMutex(pCache->pGroup);
+#endif
+ if( pPg==0 ) return 0;
+#ifndef SQLITE_PCACHE_SEPARATE_HEADER
+ p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
+#endif
+ p->page.pBuf = pPg;
+ p->page.pExtra = &p[1];
+ p->isBulkLocal = 0;
+ p->isAnchor = 0;
+ p->pLruPrev = 0; /* Initializing this saves a valgrind error */
+ }
+ (*pCache->pnPurgeable)++;
+ return p;
+}
+
+/*
+** Free a page object allocated by pcache1AllocPage().
+*/
+static void pcache1FreePage(PgHdr1 *p){
+ PCache1 *pCache;
+ assert( p!=0 );
+ pCache = p->pCache;
+ assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
+ if( p->isBulkLocal ){
+ p->pNext = pCache->pFree;
+ pCache->pFree = p;
+ }else{
+ pcache1Free(p->page.pBuf);
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ sqlite3_free(p);
+#endif
+ }
+ (*pCache->pnPurgeable)--;
+}
+
+/*
+** Malloc function used by SQLite to obtain space from the buffer configured
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
+** exists, this function falls back to sqlite3Malloc().
+*/
+SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){
+ assert( sz<=65536+8 ); /* These allocations are never very large */
+ return pcache1Alloc(sz);
+}
+
+/*
+** Free an allocated buffer obtained from sqlite3PageMalloc().
+*/
+SQLITE_PRIVATE void sqlite3PageFree(void *p){
+ pcache1Free(p);
+}
+
+
+/*
+** Return true if it desirable to avoid allocating a new page cache
+** entry.
+**
+** If memory was allocated specifically to the page cache using
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
+** it is desirable to avoid allocating a new page cache entry because
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
+** for all page cache needs and we should not need to spill the
+** allocation onto the heap.
+**
+** Or, the heap is used for all page cache memory but the heap is
+** under memory pressure, then again it is desirable to avoid
+** allocating a new page cache entry in order to avoid stressing
+** the heap even further.
+*/
+static int pcache1UnderMemoryPressure(PCache1 *pCache){
+ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
+ return pcache1.bUnderPressure;
+ }else{
+ return sqlite3HeapNearlyFull();
+ }
+}
+
+/******************************************************************************/
+/******** General Implementation Functions ************************************/
+
+/*
+** This function is used to resize the hash table used by the cache passed
+** as the first argument.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1ResizeHash(PCache1 *p){
+ PgHdr1 **apNew;
+ unsigned int nNew;
+ unsigned int i;
+
+ assert( sqlite3_mutex_held(p->pGroup->mutex) );
+
+ nNew = p->nHash*2;
+ if( nNew<256 ){
+ nNew = 256;
+ }
+
+ pcache1LeaveMutex(p->pGroup);
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); }
+ apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
+ if( p->nHash ){ sqlite3EndBenignMalloc(); }
+ pcache1EnterMutex(p->pGroup);
+ if( apNew ){
+ for(i=0; i<p->nHash; i++){
+ PgHdr1 *pPage;
+ PgHdr1 *pNext = p->apHash[i];
+ while( (pPage = pNext)!=0 ){
+ unsigned int h = pPage->iKey % nNew;
+ pNext = pPage->pNext;
+ pPage->pNext = apNew[h];
+ apNew[h] = pPage;
+ }
+ }
+ sqlite3_free(p->apHash);
+ p->apHash = apNew;
+ p->nHash = nNew;
+ }
+}
+
+/*
+** This function is used internally to remove the page pPage from the
+** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
+** LRU list, then this function is a no-op.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
+ assert( pPage!=0 );
+ assert( PAGE_IS_UNPINNED(pPage) );
+ assert( pPage->pLruNext );
+ assert( pPage->pLruPrev );
+ assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
+ pPage->pLruPrev->pLruNext = pPage->pLruNext;
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev;
+ pPage->pLruNext = 0;
+ /* pPage->pLruPrev = 0;
+ ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
+ assert( pPage->isAnchor==0 );
+ assert( pPage->pCache->pGroup->lru.isAnchor==1 );
+ pPage->pCache->nRecyclable--;
+ return pPage;
+}
+
+
+/*
+** Remove the page supplied as an argument from the hash table
+** (PCache1.apHash structure) that it is currently stored in.
+** Also free the page if freePage is true.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
+ unsigned int h;
+ PCache1 *pCache = pPage->pCache;
+ PgHdr1 **pp;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ h = pPage->iKey % pCache->nHash;
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
+ *pp = (*pp)->pNext;
+
+ pCache->nPage--;
+ if( freeFlag ) pcache1FreePage(pPage);
+}
+
+/*
+** If there are currently more than nMaxPage pages allocated, try
+** to recycle pages to reduce the number allocated to nMaxPage.
+*/
+static void pcache1EnforceMaxPage(PCache1 *pCache){
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *p;
+ assert( sqlite3_mutex_held(pGroup->mutex) );
+ while( pGroup->nPurgeable>pGroup->nMaxPage
+ && (p=pGroup->lru.pLruPrev)->isAnchor==0
+ ){
+ assert( p->pCache->pGroup==pGroup );
+ assert( PAGE_IS_UNPINNED(p) );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ if( pCache->nPage==0 && pCache->pBulk ){
+ sqlite3_free(pCache->pBulk);
+ pCache->pBulk = pCache->pFree = 0;
+ }
+}
+
+/*
+** Discard all pages from cache pCache with a page number (key value)
+** greater than or equal to iLimit. Any pinned pages that meet this
+** criteria are unpinned before they are discarded.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1TruncateUnsafe(
+ PCache1 *pCache, /* The cache to truncate */
+ unsigned int iLimit /* Drop pages with this pgno or larger */
+){
+ TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
+ unsigned int h, iStop;
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ assert( pCache->iMaxKey >= iLimit );
+ assert( pCache->nHash > 0 );
+ if( pCache->iMaxKey - iLimit < pCache->nHash ){
+ /* If we are just shaving the last few pages off the end of the
+ ** cache, then there is no point in scanning the entire hash table.
+ ** Only scan those hash slots that might contain pages that need to
+ ** be removed. */
+ h = iLimit % pCache->nHash;
+ iStop = pCache->iMaxKey % pCache->nHash;
+ TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
+ }else{
+ /* This is the general case where many pages are being removed.
+ ** It is necessary to scan the entire hash table */
+ h = pCache->nHash/2;
+ iStop = h - 1;
+ }
+ for(;;){
+ PgHdr1 **pp;
+ PgHdr1 *pPage;
+ assert( h<pCache->nHash );
+ pp = &pCache->apHash[h];
+ while( (pPage = *pp)!=0 ){
+ if( pPage->iKey>=iLimit ){
+ pCache->nPage--;
+ *pp = pPage->pNext;
+ if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
+ pcache1FreePage(pPage);
+ }else{
+ pp = &pPage->pNext;
+ TESTONLY( if( nPage>=0 ) nPage++; )
+ }
+ }
+ if( h==iStop ) break;
+ h = (h+1) % pCache->nHash;
+ }
+ assert( nPage<0 || pCache->nPage==(unsigned)nPage );
+}
+
+/******************************************************************************/
+/******** sqlite3_pcache Methods **********************************************/
+
+/*
+** Implementation of the sqlite3_pcache.xInit method.
+*/
+static int pcache1Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit==0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+
+
+ /*
+ ** The pcache1.separateCache variable is true if each PCache has its own
+ ** private PGroup (mode-1). pcache1.separateCache is false if the single
+ ** PGroup in pcache1.grp is used for all page caches (mode-2).
+ **
+ ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
+ **
+ ** * Use a unified cache in single-threaded applications that have
+ ** configured a start-time buffer for use as page-cache memory using
+ ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
+ ** pBuf argument.
+ **
+ ** * Otherwise use separate caches (mode-1)
+ */
+#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
+ pcache1.separateCache = 0;
+#elif SQLITE_THREADSAFE
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0
+ || sqlite3GlobalConfig.bCoreMutex>0;
+#else
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
+#endif
+
+#if SQLITE_THREADSAFE
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
+ pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
+ }
+#endif
+ if( pcache1.separateCache
+ && sqlite3GlobalConfig.nPage!=0
+ && sqlite3GlobalConfig.pPage==0
+ ){
+ pcache1.nInitPage = sqlite3GlobalConfig.nPage;
+ }else{
+ pcache1.nInitPage = 0;
+ }
+ pcache1.grp.mxPinned = 10;
+ pcache1.isInit = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShutdown method.
+** Note that the static mutex allocated in xInit does
+** not need to be freed.
+*/
+static void pcache1Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit!=0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+}
+
+/* forward declaration */
+static void pcache1Destroy(sqlite3_pcache *p);
+
+/*
+** Implementation of the sqlite3_pcache.xCreate method.
+**
+** Allocate a new cache.
+*/
+static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
+ PCache1 *pCache; /* The newly created page cache */
+ PGroup *pGroup; /* The group the new page cache will belong to */
+ int sz; /* Bytes of memory required to allocate the new cache */
+
+ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
+ assert( szExtra < 300 );
+
+ sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
+ pCache = (PCache1 *)sqlite3MallocZero(sz);
+ if( pCache ){
+ if( pcache1.separateCache ){
+ pGroup = (PGroup*)&pCache[1];
+ pGroup->mxPinned = 10;
+ }else{
+ pGroup = &pcache1.grp;
+ }
+ pcache1EnterMutex(pGroup);
+ if( pGroup->lru.isAnchor==0 ){
+ pGroup->lru.isAnchor = 1;
+ pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
+ }
+ pCache->pGroup = pGroup;
+ pCache->szPage = szPage;
+ pCache->szExtra = szExtra;
+ pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
+ pCache->bPurgeable = (bPurgeable ? 1 : 0);
+ pcache1ResizeHash(pCache);
+ if( bPurgeable ){
+ pCache->nMin = 10;
+ pGroup->nMinPage += pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->pnPurgeable = &pGroup->nPurgeable;
+ }else{
+ pCache->pnPurgeable = &pCache->nPurgeableDummy;
+ }
+ pcache1LeaveMutex(pGroup);
+ if( pCache->nHash==0 ){
+ pcache1Destroy((sqlite3_pcache*)pCache);
+ pCache = 0;
+ }
+ }
+ return (sqlite3_pcache *)pCache;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xCachesize method.
+**
+** Configure the cache_size limit for a cache.
+*/
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
+ PCache1 *pCache = (PCache1 *)p;
+ u32 n;
+ assert( nMax>=0 );
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ pcache1EnterMutex(pGroup);
+ n = (u32)nMax;
+ if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
+ n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
+ }
+ pGroup->nMaxPage += (n - pCache->nMax);
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->nMax = n;
+ pCache->n90pct = pCache->nMax*9/10;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShrink method.
+**
+** Free up as much memory as possible.
+*/
+static void pcache1Shrink(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1*)p;
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ unsigned int savedMaxPage;
+ pcache1EnterMutex(pGroup);
+ savedMaxPage = pGroup->nMaxPage;
+ pGroup->nMaxPage = 0;
+ pcache1EnforceMaxPage(pCache);
+ pGroup->nMaxPage = savedMaxPage;
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xPagecount method.
+*/
+static int pcache1Pagecount(sqlite3_pcache *p){
+ int n;
+ PCache1 *pCache = (PCache1*)p;
+ pcache1EnterMutex(pCache->pGroup);
+ n = pCache->nPage;
+ pcache1LeaveMutex(pCache->pGroup);
+ return n;
+}
+
+
+/*
+** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
+** in the header of the pcache1Fetch() procedure.
+**
+** This steps are broken out into a separate procedure because they are
+** usually not needed, and by avoiding the stack initialization required
+** for these steps, the main pcache1Fetch() procedure can run faster.
+*/
+static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
+ PCache1 *pCache,
+ unsigned int iKey,
+ int createFlag
+){
+ unsigned int nPinned;
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *pPage = 0;
+
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
+ assert( pCache->nPage >= pCache->nRecyclable );
+ nPinned = pCache->nPage - pCache->nRecyclable;
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
+ assert( pCache->n90pct == pCache->nMax*9/10 );
+ if( createFlag==1 && (
+ nPinned>=pGroup->mxPinned
+ || nPinned>=pCache->n90pct
+ || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
+ )){
+ return 0;
+ }
+
+ if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
+ assert( pCache->nHash>0 && pCache->apHash );
+
+ /* Step 4. Try to recycle a page. */
+ if( pCache->bPurgeable
+ && !pGroup->lru.pLruPrev->isAnchor
+ && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
+ ){
+ PCache1 *pOther;
+ pPage = pGroup->lru.pLruPrev;
+ assert( PAGE_IS_UNPINNED(pPage) );
+ pcache1RemoveFromHash(pPage, 0);
+ pcache1PinPage(pPage);
+ pOther = pPage->pCache;
+ if( pOther->szAlloc != pCache->szAlloc ){
+ pcache1FreePage(pPage);
+ pPage = 0;
+ }else{
+ pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
+ }
+ }
+
+ /* Step 5. If a usable page buffer has still not been found,
+ ** attempt to allocate a new one.
+ */
+ if( !pPage ){
+ pPage = pcache1AllocPage(pCache, createFlag==1);
+ }
+
+ if( pPage ){
+ unsigned int h = iKey % pCache->nHash;
+ pCache->nPage++;
+ pPage->iKey = iKey;
+ pPage->pNext = pCache->apHash[h];
+ pPage->pCache = pCache;
+ pPage->pLruNext = 0;
+ /* pPage->pLruPrev = 0;
+ ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
+ *(void **)pPage->page.pExtra = 0;
+ pCache->apHash[h] = pPage;
+ if( iKey>pCache->iMaxKey ){
+ pCache->iMaxKey = iKey;
+ }
+ }
+ return pPage;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xFetch method.
+**
+** Fetch a page by key value.
+**
+** Whether or not a new page may be allocated by this function depends on
+** the value of the createFlag argument. 0 means do not allocate a new
+** page. 1 means allocate a new page if space is easily available. 2
+** means to try really hard to allocate a new page.
+**
+** For a non-purgeable cache (a cache used as the storage for an in-memory
+** database) there is really no difference between createFlag 1 and 2. So
+** the calling function (pcache.c) will never have a createFlag of 1 on
+** a non-purgeable cache.
+**
+** There are three different approaches to obtaining space for a page,
+** depending on the value of parameter createFlag (which may be 0, 1 or 2).
+**
+** 1. Regardless of the value of createFlag, the cache is searched for a
+** copy of the requested page. If one is found, it is returned.
+**
+** 2. If createFlag==0 and the page is not already in the cache, NULL is
+** returned.
+**
+** 3. If createFlag is 1, and the page is not already in the cache, then
+** return NULL (do not allocate a new page) if any of the following
+** conditions are true:
+**
+** (a) the number of pages pinned by the cache is greater than
+** PCache1.nMax, or
+**
+** (b) the number of pages pinned by the cache is greater than
+** the sum of nMax for all purgeable caches, less the sum of
+** nMin for all other purgeable caches, or
+**
+** 4. If none of the first three conditions apply and the cache is marked
+** as purgeable, and if one of the following is true:
+**
+** (a) The number of pages allocated for the cache is already
+** PCache1.nMax, or
+**
+** (b) The number of pages allocated for all purgeable caches is
+** already equal to or greater than the sum of nMax for all
+** purgeable caches,
+**
+** (c) The system is under memory pressure and wants to avoid
+** unnecessary pages cache entry allocations
+**
+** then attempt to recycle a page from the LRU list. If it is the right
+** size, return the recycled buffer. Otherwise, free the buffer and
+** proceed to step 5.
+**
+** 5. Otherwise, allocate and return a new page buffer.
+**
+** There are two versions of this routine. pcache1FetchWithMutex() is
+** the general case. pcache1FetchNoMutex() is a faster implementation for
+** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
+** invokes the appropriate routine.
+*/
+static PgHdr1 *pcache1FetchNoMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = 0;
+
+ /* Step 1: Search the hash table for an existing entry. */
+ pPage = pCache->apHash[iKey % pCache->nHash];
+ while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
+
+ /* Step 2: If the page was found in the hash table, then return it.
+ ** If the page was not in the hash table and createFlag is 0, abort.
+ ** Otherwise (page not in hash and createFlag!=0) continue with
+ ** subsequent steps to try to create the page. */
+ if( pPage ){
+ if( PAGE_IS_UNPINNED(pPage) ){
+ return pcache1PinPage(pPage);
+ }else{
+ return pPage;
+ }
+ }else if( createFlag ){
+ /* Steps 3, 4, and 5 implemented by this subroutine */
+ return pcache1FetchStage2(pCache, iKey, createFlag);
+ }else{
+ return 0;
+ }
+}
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+static PgHdr1 *pcache1FetchWithMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage;
+
+ pcache1EnterMutex(pCache->pGroup);
+ pPage = pcache1FetchNoMutex(p, iKey, createFlag);
+ assert( pPage==0 || pCache->iMaxKey>=iKey );
+ pcache1LeaveMutex(pCache->pGroup);
+ return pPage;
+}
+#endif
+static sqlite3_pcache_page *pcache1Fetch(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
+ PCache1 *pCache = (PCache1 *)p;
+#endif
+
+ assert( offsetof(PgHdr1,page)==0 );
+ assert( pCache->bPurgeable || createFlag!=1 );
+ assert( pCache->bPurgeable || pCache->nMin==0 );
+ assert( pCache->bPurgeable==0 || pCache->nMin==10 );
+ assert( pCache->nMin==0 || pCache->bPurgeable );
+ assert( pCache->nHash>0 );
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+ if( pCache->pGroup->mutex ){
+ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
+ }else
+#endif
+ {
+ return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
+ }
+}
+
+
+/*
+** Implementation of the sqlite3_pcache.xUnpin method.
+**
+** Mark a page as unpinned (eligible for asynchronous recycling).
+*/
+static void pcache1Unpin(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ int reuseUnlikely
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PGroup *pGroup = pCache->pGroup;
+
+ assert( pPage->pCache==pCache );
+ pcache1EnterMutex(pGroup);
+
+ /* It is an error to call this function if the page is already
+ ** part of the PGroup LRU list.
+ */
+ assert( pPage->pLruNext==0 );
+ assert( PAGE_IS_PINNED(pPage) );
+
+ if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
+ pcache1RemoveFromHash(pPage, 1);
+ }else{
+ /* Add the page to the PGroup LRU list. */
+ PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
+ pPage->pLruPrev = &pGroup->lru;
+ (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
+ *ppFirst = pPage;
+ pCache->nRecyclable++;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xRekey method.
+*/
+static void pcache1Rekey(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ unsigned int iOld,
+ unsigned int iNew
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PgHdr1 **pp;
+ unsigned int hOld, hNew;
+ assert( pPage->iKey==iOld );
+ assert( pPage->pCache==pCache );
+ assert( iOld!=iNew ); /* The page number really is changing */
+
+ pcache1EnterMutex(pCache->pGroup);
+
+ assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
+ hOld = iOld%pCache->nHash;
+ pp = &pCache->apHash[hOld];
+ while( (*pp)!=pPage ){
+ pp = &(*pp)->pNext;
+ }
+ *pp = pPage->pNext;
+
+ assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
+ hNew = iNew%pCache->nHash;
+ pPage->iKey = iNew;
+ pPage->pNext = pCache->apHash[hNew];
+ pCache->apHash[hNew] = pPage;
+ if( iNew>pCache->iMaxKey ){
+ pCache->iMaxKey = iNew;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xTruncate method.
+**
+** Discard all unpinned pages in the cache with a page number equal to
+** or greater than parameter iLimit. Any pinned pages with a page number
+** equal to or greater than iLimit are implicitly unpinned.
+*/
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
+ PCache1 *pCache = (PCache1 *)p;
+ pcache1EnterMutex(pCache->pGroup);
+ if( iLimit<=pCache->iMaxKey ){
+ pcache1TruncateUnsafe(pCache, iLimit);
+ pCache->iMaxKey = iLimit-1;
+ }
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xDestroy method.
+**
+** Destroy a cache allocated using pcache1Create().
+*/
+static void pcache1Destroy(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1 *)p;
+ PGroup *pGroup = pCache->pGroup;
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
+ pcache1EnterMutex(pGroup);
+ if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
+ assert( pGroup->nMaxPage >= pCache->nMax );
+ pGroup->nMaxPage -= pCache->nMax;
+ assert( pGroup->nMinPage >= pCache->nMin );
+ pGroup->nMinPage -= pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ sqlite3_free(pCache->pBulk);
+ sqlite3_free(pCache->apHash);
+ sqlite3_free(pCache);
+}
+
+/*
+** This function is called during initialization (sqlite3_initialize()) to
+** install the default pluggable cache module, assuming the user has not
+** already provided an alternative.
+*/
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){
+ static const sqlite3_pcache_methods2 defaultMethods = {
+ 1, /* iVersion */
+ 0, /* pArg */
+ pcache1Init, /* xInit */
+ pcache1Shutdown, /* xShutdown */
+ pcache1Create, /* xCreate */
+ pcache1Cachesize, /* xCachesize */
+ pcache1Pagecount, /* xPagecount */
+ pcache1Fetch, /* xFetch */
+ pcache1Unpin, /* xUnpin */
+ pcache1Rekey, /* xRekey */
+ pcache1Truncate, /* xTruncate */
+ pcache1Destroy, /* xDestroy */
+ pcache1Shrink /* xShrink */
+ };
+ sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
+}
+
+/*
+** Return the size of the header on each page of this PCACHE implementation.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
+
+/*
+** Return the global mutex used by this PCACHE implementation. The
+** sqlite3_status() routine needs access to this mutex.
+*/
+SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void){
+ return pcache1.mutex;
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** This function is called to free superfluous dynamically allocated memory
+** held by the pager system. Memory in use by any SQLite pager allocated
+** by the current thread may be sqlite3_free()ed.
+**
+** nReq is the number of bytes of memory required. Once this much has
+** been released, the function returns. The return value is the total number
+** of bytes of memory released.
+*/
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
+ int nFree = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ assert( sqlite3_mutex_notheld(pcache1.mutex) );
+ if( sqlite3GlobalConfig.pPage==0 ){
+ PgHdr1 *p;
+ pcache1EnterMutex(&pcache1.grp);
+ while( (nReq<0 || nFree<nReq)
+ && (p=pcache1.grp.lru.pLruPrev)!=0
+ && p->isAnchor==0
+ ){
+ nFree += pcache1MemSize(p->page.pBuf);
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ nFree += sqlite3MemSize(p);
+#endif
+ assert( PAGE_IS_UNPINNED(p) );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ pcache1LeaveMutex(&pcache1.grp);
+ }
+ return nFree;
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+#ifdef SQLITE_TEST
+/*
+** This function is used by test procedures to inspect the internal state
+** of the global cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheStats(
+ int *pnCurrent, /* OUT: Total number of pages cached */
+ int *pnMax, /* OUT: Global maximum cache size */
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */
+){
+ PgHdr1 *p;
+ int nRecyclable = 0;
+ for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
+ assert( PAGE_IS_UNPINNED(p) );
+ nRecyclable++;
+ }
+ *pnCurrent = pcache1.grp.nPurgeable;
+ *pnMax = (int)pcache1.grp.nMaxPage;
+ *pnMin = (int)pcache1.grp.nMinPage;
+ *pnRecyclable = nRecyclable;
+}
+#endif
+
+/************** End of pcache1.c *********************************************/
+/************** Begin file rowset.c ******************************************/
+/*
+** 2008 December 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements an object we call a "RowSet".
+**
+** The RowSet object is a collection of rowids. Rowids
+** are inserted into the RowSet in an arbitrary order. Inserts
+** can be intermixed with tests to see if a given rowid has been
+** previously inserted into the RowSet.
+**
+** After all inserts are finished, it is possible to extract the
+** elements of the RowSet in sorted order. Once this extraction
+** process has started, no new elements may be inserted.
+**
+** Hence, the primitive operations for a RowSet are:
+**
+** CREATE
+** INSERT
+** TEST
+** SMALLEST
+** DESTROY
+**
+** The CREATE and DESTROY primitives are the constructor and destructor,
+** obviously. The INSERT primitive adds a new element to the RowSet.
+** TEST checks to see if an element is already in the RowSet. SMALLEST
+** extracts the least value from the RowSet.
+**
+** The INSERT primitive might allocate additional memory. Memory is
+** allocated in chunks so most INSERTs do no allocation. There is an
+** upper bound on the size of allocated memory. No memory is freed
+** until DESTROY.
+**
+** The TEST primitive includes a "batch" number. The TEST primitive
+** will only see elements that were inserted before the last change
+** in the batch number. In other words, if an INSERT occurs between
+** two TESTs where the TESTs have the same batch nubmer, then the
+** value added by the INSERT will not be visible to the second TEST.
+** The initial batch number is zero, so if the very first TEST contains
+** a non-zero batch number, it will see all prior INSERTs.
+**
+** No INSERTs may occurs after a SMALLEST. An assertion will fail if
+** that is attempted.
+**
+** The cost of an INSERT is roughly constant. (Sometimes new memory
+** has to be allocated on an INSERT.) The cost of a TEST with a new
+** batch number is O(NlogN) where N is the number of elements in the RowSet.
+** The cost of a TEST using the same batch number is O(logN). The cost
+** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
+** primitives are constant time. The cost of DESTROY is O(N).
+**
+** TEST and SMALLEST may not be used by the same RowSet. This used to
+** be possible, but the feature was not used, so it was removed in order
+** to simplify the code.
+*/
+/* #include "sqliteInt.h" */
+
+
+/*
+** Target size for allocation chunks.
+*/
+#define ROWSET_ALLOCATION_SIZE 1024
+
+/*
+** The number of rowset entries per allocation chunk.
+*/
+#define ROWSET_ENTRY_PER_CHUNK \
+ ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
+
+/*
+** Each entry in a RowSet is an instance of the following object.
+**
+** This same object is reused to store a linked list of trees of RowSetEntry
+** objects. In that alternative use, pRight points to the next entry
+** in the list, pLeft points to the tree, and v is unused. The
+** RowSet.pForest value points to the head of this forest list.
+*/
+struct RowSetEntry {
+ i64 v; /* ROWID value for this entry */
+ struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
+ struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
+};
+
+/*
+** RowSetEntry objects are allocated in large chunks (instances of the
+** following structure) to reduce memory allocation overhead. The
+** chunks are kept on a linked list so that they can be deallocated
+** when the RowSet is destroyed.
+*/
+struct RowSetChunk {
+ struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
+ struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
+};
+
+/*
+** A RowSet in an instance of the following structure.
+**
+** A typedef of this structure if found in sqliteInt.h.
+*/
+struct RowSet {
+ struct RowSetChunk *pChunk; /* List of all chunk allocations */
+ sqlite3 *db; /* The database connection */
+ struct RowSetEntry *pEntry; /* List of entries using pRight */
+ struct RowSetEntry *pLast; /* Last entry on the pEntry list */
+ struct RowSetEntry *pFresh; /* Source of new entry objects */
+ struct RowSetEntry *pForest; /* List of binary trees of entries */
+ u16 nFresh; /* Number of objects on pFresh */
+ u16 rsFlags; /* Various flags */
+ int iBatch; /* Current insert batch */
+};
+
+/*
+** Allowed values for RowSet.rsFlags
+*/
+#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
+#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
+
+/*
+** Allocate a RowSet object. Return NULL if a memory allocation
+** error occurs.
+*/
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db){
+ RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p));
+ if( p ){
+ int N = sqlite3DbMallocSize(db, p);
+ p->pChunk = 0;
+ p->db = db;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pForest = 0;
+ p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
+ p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
+ p->rsFlags = ROWSET_SORTED;
+ p->iBatch = 0;
+ }
+ return p;
+}
+
+/*
+** Deallocate all chunks from a RowSet. This frees all memory that
+** the RowSet has allocated over its lifetime. This routine is
+** the destructor for the RowSet.
+*/
+SQLITE_PRIVATE void sqlite3RowSetClear(void *pArg){
+ RowSet *p = (RowSet*)pArg;
+ struct RowSetChunk *pChunk, *pNextChunk;
+ for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
+ pNextChunk = pChunk->pNextChunk;
+ sqlite3DbFree(p->db, pChunk);
+ }
+ p->pChunk = 0;
+ p->nFresh = 0;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pForest = 0;
+ p->rsFlags = ROWSET_SORTED;
+}
+
+/*
+** Deallocate all chunks from a RowSet. This frees all memory that
+** the RowSet has allocated over its lifetime. This routine is
+** the destructor for the RowSet.
+*/
+SQLITE_PRIVATE void sqlite3RowSetDelete(void *pArg){
+ sqlite3RowSetClear(pArg);
+ sqlite3DbFree(((RowSet*)pArg)->db, pArg);
+}
+
+/*
+** Allocate a new RowSetEntry object that is associated with the
+** given RowSet. Return a pointer to the new and completely uninitialized
+** object.
+**
+** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
+** routine returns NULL.
+*/
+static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
+ assert( p!=0 );
+ if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* We could allocate a fresh RowSetEntry each time one is needed, but it
+ ** is more efficient to pull a preallocated entry from the pool */
+ struct RowSetChunk *pNew;
+ pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
+ if( pNew==0 ){
+ return 0;
+ }
+ pNew->pNextChunk = p->pChunk;
+ p->pChunk = pNew;
+ p->pFresh = pNew->aEntry;
+ p->nFresh = ROWSET_ENTRY_PER_CHUNK;
+ }
+ p->nFresh--;
+ return p->pFresh++;
+}
+
+/*
+** Insert a new value into a RowSet.
+**
+** The mallocFailed flag of the database connection is set if a
+** memory allocation fails.
+*/
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
+ struct RowSetEntry *pEntry; /* The new entry */
+ struct RowSetEntry *pLast; /* The last prior entry */
+
+ /* This routine is never called after sqlite3RowSetNext() */
+ assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
+
+ pEntry = rowSetEntryAlloc(p);
+ if( pEntry==0 ) return;
+ pEntry->v = rowid;
+ pEntry->pRight = 0;
+ pLast = p->pLast;
+ if( pLast ){
+ if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/
+ /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
+ ** where possible */
+ p->rsFlags &= ~ROWSET_SORTED;
+ }
+ pLast->pRight = pEntry;
+ }else{
+ p->pEntry = pEntry;
+ }
+ p->pLast = pEntry;
+}
+
+/*
+** Merge two lists of RowSetEntry objects. Remove duplicates.
+**
+** The input lists are connected via pRight pointers and are
+** assumed to each already be in sorted order.
+*/
+static struct RowSetEntry *rowSetEntryMerge(
+ struct RowSetEntry *pA, /* First sorted list to be merged */
+ struct RowSetEntry *pB /* Second sorted list to be merged */
+){
+ struct RowSetEntry head;
+ struct RowSetEntry *pTail;
+
+ pTail = &head;
+ assert( pA!=0 && pB!=0 );
+ for(;;){
+ assert( pA->pRight==0 || pA->v<=pA->pRight->v );
+ assert( pB->pRight==0 || pB->v<=pB->pRight->v );
+ if( pA->v<=pB->v ){
+ if( pA->v<pB->v ) pTail = pTail->pRight = pA;
+ pA = pA->pRight;
+ if( pA==0 ){
+ pTail->pRight = pB;
+ break;
+ }
+ }else{
+ pTail = pTail->pRight = pB;
+ pB = pB->pRight;
+ if( pB==0 ){
+ pTail->pRight = pA;
+ break;
+ }
+ }
+ }
+ return head.pRight;
+}
+
+/*
+** Sort all elements on the list of RowSetEntry objects into order of
+** increasing v.
+*/
+static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
+ unsigned int i;
+ struct RowSetEntry *pNext, *aBucket[40];
+
+ memset(aBucket, 0, sizeof(aBucket));
+ while( pIn ){
+ pNext = pIn->pRight;
+ pIn->pRight = 0;
+ for(i=0; aBucket[i]; i++){
+ pIn = rowSetEntryMerge(aBucket[i], pIn);
+ aBucket[i] = 0;
+ }
+ aBucket[i] = pIn;
+ pIn = pNext;
+ }
+ pIn = aBucket[0];
+ for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
+ if( aBucket[i]==0 ) continue;
+ pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i];
+ }
+ return pIn;
+}
+
+
+/*
+** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
+** Convert this tree into a linked list connected by the pRight pointers
+** and return pointers to the first and last elements of the new list.
+*/
+static void rowSetTreeToList(
+ struct RowSetEntry *pIn, /* Root of the input tree */
+ struct RowSetEntry **ppFirst, /* Write head of the output list here */
+ struct RowSetEntry **ppLast /* Write tail of the output list here */
+){
+ assert( pIn!=0 );
+ if( pIn->pLeft ){
+ struct RowSetEntry *p;
+ rowSetTreeToList(pIn->pLeft, ppFirst, &p);
+ p->pRight = pIn;
+ }else{
+ *ppFirst = pIn;
+ }
+ if( pIn->pRight ){
+ rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
+ }else{
+ *ppLast = pIn;
+ }
+ assert( (*ppLast)->pRight==0 );
+}
+
+
+/*
+** Convert a sorted list of elements (connected by pRight) into a binary
+** tree with depth of iDepth. A depth of 1 means the tree contains a single
+** node taken from the head of *ppList. A depth of 2 means a tree with
+** three nodes. And so forth.
+**
+** Use as many entries from the input list as required and update the
+** *ppList to point to the unused elements of the list. If the input
+** list contains too few elements, then construct an incomplete tree
+** and leave *ppList set to NULL.
+**
+** Return a pointer to the root of the constructed binary tree.
+*/
+static struct RowSetEntry *rowSetNDeepTree(
+ struct RowSetEntry **ppList,
+ int iDepth
+){
+ struct RowSetEntry *p; /* Root of the new tree */
+ struct RowSetEntry *pLeft; /* Left subtree */
+ if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Prevent unnecessary deep recursion when we run out of entries */
+ return 0;
+ }
+ if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* This branch causes a *balanced* tree to be generated. A valid tree
+ ** is still generated without this branch, but the tree is wildly
+ ** unbalanced and inefficient. */
+ pLeft = rowSetNDeepTree(ppList, iDepth-1);
+ p = *ppList;
+ if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* It is safe to always return here, but the resulting tree
+ ** would be unbalanced */
+ return pLeft;
+ }
+ p->pLeft = pLeft;
+ *ppList = p->pRight;
+ p->pRight = rowSetNDeepTree(ppList, iDepth-1);
+ }else{
+ p = *ppList;
+ *ppList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ }
+ return p;
+}
+
+/*
+** Convert a sorted list of elements into a binary tree. Make the tree
+** as deep as it needs to be in order to contain the entire list.
+*/
+static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
+ int iDepth; /* Depth of the tree so far */
+ struct RowSetEntry *p; /* Current tree root */
+ struct RowSetEntry *pLeft; /* Left subtree */
+
+ assert( pList!=0 );
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ for(iDepth=1; pList; iDepth++){
+ pLeft = p;
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = pLeft;
+ p->pRight = rowSetNDeepTree(&pList, iDepth);
+ }
+ return p;
+}
+
+/*
+** Extract the smallest element from the RowSet.
+** Write the element into *pRowid. Return 1 on success. Return
+** 0 if the RowSet is already empty.
+**
+** After this routine has been called, the sqlite3RowSetInsert()
+** routine may not be called again.
+**
+** This routine may not be called after sqlite3RowSetTest() has
+** been used. Older versions of RowSet allowed that, but as the
+** capability was not used by the code generator, it was removed
+** for code economy.
+*/
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
+ assert( p!=0 );
+ assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */
+
+ /* Merge the forest into a single sorted list on first call */
+ if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ p->pEntry = rowSetEntrySort(p->pEntry);
+ }
+ p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT;
+ }
+
+ /* Return the next entry on the list */
+ if( p->pEntry ){
+ *pRowid = p->pEntry->v;
+ p->pEntry = p->pEntry->pRight;
+ if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Free memory immediately, rather than waiting on sqlite3_finalize() */
+ sqlite3RowSetClear(p);
+ }
+ return 1;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Check to see if element iRowid was inserted into the rowset as
+** part of any insert batch prior to iBatch. Return 1 or 0.
+**
+** If this is the first test of a new batch and if there exist entries
+** on pRowSet->pEntry, then sort those entries into the forest at
+** pRowSet->pForest so that they can be tested.
+*/
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
+ struct RowSetEntry *p, *pTree;
+
+ /* This routine is never called after sqlite3RowSetNext() */
+ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
+
+ /* Sort entries into the forest on the first test of a new batch.
+ ** To save unnecessary work, only do this when the batch number changes.
+ */
+ if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/
+ p = pRowSet->pEntry;
+ if( p ){
+ struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
+ if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* Only sort the current set of entries if they need it */
+ p = rowSetEntrySort(p);
+ }
+ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
+ ppPrevTree = &pTree->pRight;
+ if( pTree->pLeft==0 ){
+ pTree->pLeft = rowSetListToTree(p);
+ break;
+ }else{
+ struct RowSetEntry *pAux, *pTail;
+ rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
+ pTree->pLeft = 0;
+ p = rowSetEntryMerge(pAux, p);
+ }
+ }
+ if( pTree==0 ){
+ *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
+ if( pTree ){
+ pTree->v = 0;
+ pTree->pRight = 0;
+ pTree->pLeft = rowSetListToTree(p);
+ }
+ }
+ pRowSet->pEntry = 0;
+ pRowSet->pLast = 0;
+ pRowSet->rsFlags |= ROWSET_SORTED;
+ }
+ pRowSet->iBatch = iBatch;
+ }
+
+ /* Test to see if the iRowid value appears anywhere in the forest.
+ ** Return 1 if it does and 0 if not.
+ */
+ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
+ p = pTree->pLeft;
+ while( p ){
+ if( p->v<iRowid ){
+ p = p->pRight;
+ }else if( p->v>iRowid ){
+ p = p->pLeft;
+ }else{
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/************** End of rowset.c **********************************************/
+/************** Begin file pager.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of the page cache subsystem or "pager".
+**
+** The pager is used to access a database disk file. It implements
+** atomic commit and rollback through the use of a journal file that
+** is separate from the database file. The pager also implements file
+** locking to prevent two processes from writing the same database
+** file simultaneously, or one process from reading the database while
+** another is writing.
+*/
+#ifndef SQLITE_OMIT_DISKIO
+/* #include "sqliteInt.h" */
+/************** Include wal.h in the middle of pager.c ***********************/
+/************** Begin file wal.h *********************************************/
+/*
+** 2010 February 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface to the write-ahead logging
+** system. Refer to the comments below and the header comment attached to
+** the implementation of each function in log.c for further details.
+*/
+
+#ifndef SQLITE_WAL_H
+#define SQLITE_WAL_H
+
+/* #include "sqliteInt.h" */
+
+/* Macros for extracting appropriate sync flags for either transaction
+** commits (WAL_SYNC_FLAGS(X)) or for checkpoint ops (CKPT_SYNC_FLAGS(X)):
+*/
+#define WAL_SYNC_FLAGS(X) ((X)&0x03)
+#define CKPT_SYNC_FLAGS(X) (((X)>>2)&0x03)
+
+#ifdef SQLITE_OMIT_WAL
+# define sqlite3WalOpen(x,y,z) 0
+# define sqlite3WalLimit(x,y)
+# define sqlite3WalClose(v,w,x,y,z) 0
+# define sqlite3WalBeginReadTransaction(y,z) 0
+# define sqlite3WalEndReadTransaction(z)
+# define sqlite3WalDbsize(y) 0
+# define sqlite3WalBeginWriteTransaction(y) 0
+# define sqlite3WalEndWriteTransaction(x) 0
+# define sqlite3WalUndo(x,y,z) 0
+# define sqlite3WalSavepoint(y,z)
+# define sqlite3WalSavepointUndo(y,z) 0
+# define sqlite3WalFrames(u,v,w,x,y,z) 0
+# define sqlite3WalCheckpoint(q,r,s,t,u,v,w,x,y,z) 0
+# define sqlite3WalCallback(z) 0
+# define sqlite3WalExclusiveMode(y,z) 0
+# define sqlite3WalHeapMemory(z) 0
+# define sqlite3WalFramesize(z) 0
+# define sqlite3WalFindFrame(x,y,z) 0
+# define sqlite3WalFile(x) 0
+#else
+
+#define WAL_SAVEPOINT_NDATA 4
+
+/* Connection to a write-ahead log (WAL) file.
+** There is one object of this type for each pager.
+*/
+typedef struct Wal Wal;
+
+/* Open and close a connection to a write-ahead log. */
+SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**);
+SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, sqlite3*, int sync_flags, int, u8 *);
+
+/* Set the limiting size of a WAL file. */
+SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64);
+
+/* Used by readers to open (lock) and close (unlock) a snapshot. A
+** snapshot is like a read-transaction. It is the state of the database
+** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and
+** preserves the current state even if the other threads or processes
+** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the
+** transaction and releases the lock.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *);
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal);
+
+/* Read a page from the write-ahead log, if it is present. */
+SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *);
+SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *);
+
+/* If the WAL is not empty, return the size of the database. */
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal);
+
+/* Obtain or release the WRITER lock. */
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal);
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal);
+
+/* Undo any frames written (but not committed) to the log */
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx);
+
+/* Return an integer that records the current (uncommitted) write
+** position in the WAL */
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData);
+
+/* Move the write position of the WAL back to iFrame. Called in
+** response to a ROLLBACK TO command. */
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData);
+
+/* Write a frame or frames to the log. */
+SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int);
+
+/* Copy pages from the log to the database file */
+SQLITE_PRIVATE int sqlite3WalCheckpoint(
+ Wal *pWal, /* Write-ahead log connection */
+ sqlite3 *db, /* Check this handle's interrupt flag */
+ int eMode, /* One of PASSIVE, FULL and RESTART */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags to sync db file with (or 0) */
+ int nBuf, /* Size of buffer nBuf */
+ u8 *zBuf, /* Temporary buffer to use */
+ int *pnLog, /* OUT: Number of frames in WAL */
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */
+);
+
+/* Return the value to pass to a sqlite3_wal_hook callback, the
+** number of frames in the WAL at the point of the last commit since
+** sqlite3WalCallback() was called. If no commits have occurred since
+** the last call, then return 0.
+*/
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal);
+
+/* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released)
+** by the pager layer on the database file.
+*/
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);
+
+/* Return true if the argument is non-NULL and the WAL module is using
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
+** WAL module is using shared-memory, return false.
+*/
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot);
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal);
+SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal);
+#endif
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/* If the WAL file is not empty, return the number of bytes of content
+** stored in each frame (i.e. the db page-size when the WAL was created).
+*/
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal);
+#endif
+
+/* Return the sqlite3_file object for the WAL file */
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal);
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock);
+SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db);
+#endif
+
+#endif /* ifndef SQLITE_OMIT_WAL */
+#endif /* SQLITE_WAL_H */
+
+/************** End of wal.h *************************************************/
+/************** Continuing where we left off in pager.c **********************/
+
+
+/******************* NOTES ON THE DESIGN OF THE PAGER ************************
+**
+** This comment block describes invariants that hold when using a rollback
+** journal. These invariants do not apply for journal_mode=WAL,
+** journal_mode=MEMORY, or journal_mode=OFF.
+**
+** Within this comment block, a page is deemed to have been synced
+** automatically as soon as it is written when PRAGMA synchronous=OFF.
+** Otherwise, the page is not synced until the xSync method of the VFS
+** is called successfully on the file containing the page.
+**
+** Definition: A page of the database file is said to be "overwriteable" if
+** one or more of the following are true about the page:
+**
+** (a) The original content of the page as it was at the beginning of
+** the transaction has been written into the rollback journal and
+** synced.
+**
+** (b) The page was a freelist leaf page at the start of the transaction.
+**
+** (c) The page number is greater than the largest page that existed in
+** the database file at the start of the transaction.
+**
+** (1) A page of the database file is never overwritten unless one of the
+** following are true:
+**
+** (a) The page and all other pages on the same sector are overwriteable.
+**
+** (b) The atomic page write optimization is enabled, and the entire
+** transaction other than the update of the transaction sequence
+** number consists of a single page change.
+**
+** (2) The content of a page written into the rollback journal exactly matches
+** both the content in the database when the rollback journal was written
+** and the content in the database at the beginning of the current
+** transaction.
+**
+** (3) Writes to the database file are an integer multiple of the page size
+** in length and are aligned on a page boundary.
+**
+** (4) Reads from the database file are either aligned on a page boundary and
+** an integer multiple of the page size in length or are taken from the
+** first 100 bytes of the database file.
+**
+** (5) All writes to the database file are synced prior to the rollback journal
+** being deleted, truncated, or zeroed.
+**
+** (6) If a super-journal file is used, then all writes to the database file
+** are synced prior to the super-journal being deleted.
+**
+** Definition: Two databases (or the same database at two points it time)
+** are said to be "logically equivalent" if they give the same answer to
+** all queries. Note in particular the content of freelist leaf
+** pages can be changed arbitrarily without affecting the logical equivalence
+** of the database.
+**
+** (7) At any time, if any subset, including the empty set and the total set,
+** of the unsynced changes to a rollback journal are removed and the
+** journal is rolled back, the resulting database file will be logically
+** equivalent to the database file at the beginning of the transaction.
+**
+** (8) When a transaction is rolled back, the xTruncate method of the VFS
+** is called to restore the database file to the same size it was at
+** the beginning of the transaction. (In some VFSes, the xTruncate
+** method is a no-op, but that does not change the fact the SQLite will
+** invoke it.)
+**
+** (9) Whenever the database file is modified, at least one bit in the range
+** of bytes from 24 through 39 inclusive will be changed prior to releasing
+** the EXCLUSIVE lock, thus signaling other connections on the same
+** database to flush their caches.
+**
+** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
+** than one billion transactions.
+**
+** (11) A database file is well-formed at the beginning and at the conclusion
+** of every transaction.
+**
+** (12) An EXCLUSIVE lock is held on the database file when writing to
+** the database file.
+**
+** (13) A SHARED lock is held on the database file while reading any
+** content out of the database file.
+**
+******************************************************************************/
+
+/*
+** Macros for troubleshooting. Normally turned off
+*/
+#if 0
+int sqlite3PagerTrace=1; /* True to enable tracing */
+#define sqlite3DebugPrintf printf
+#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
+#else
+#define PAGERTRACE(X)
+#endif
+
+/*
+** The following two macros are used within the PAGERTRACE() macros above
+** to print out file-descriptors.
+**
+** PAGERID() takes a pointer to a Pager struct as its argument. The
+** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
+** struct as its argument.
+*/
+#define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd))
+#define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd))
+
+/*
+** The Pager.eState variable stores the current 'state' of a pager. A
+** pager may be in any one of the seven states shown in the following
+** state diagram.
+**
+** OPEN <------+------+
+** | | |
+** V | |
+** +---------> READER-------+ |
+** | | |
+** | V |
+** |<-------WRITER_LOCKED------> ERROR
+** | | ^
+** | V |
+** |<------WRITER_CACHEMOD-------->|
+** | | |
+** | V |
+** |<-------WRITER_DBMOD---------->|
+** | | |
+** | V |
+** +<------WRITER_FINISHED-------->+
+**
+**
+** List of state transitions and the C [function] that performs each:
+**
+** OPEN -> READER [sqlite3PagerSharedLock]
+** READER -> OPEN [pager_unlock]
+**
+** READER -> WRITER_LOCKED [sqlite3PagerBegin]
+** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal]
+** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal]
+** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne]
+** WRITER_*** -> READER [pager_end_transaction]
+**
+** WRITER_*** -> ERROR [pager_error]
+** ERROR -> OPEN [pager_unlock]
+**
+**
+** OPEN:
+**
+** The pager starts up in this state. Nothing is guaranteed in this
+** state - the file may or may not be locked and the database size is
+** unknown. The database may not be read or written.
+**
+** * No read or write transaction is active.
+** * Any lock, or no lock at all, may be held on the database file.
+** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
+**
+** READER:
+**
+** In this state all the requirements for reading the database in
+** rollback (non-WAL) mode are met. Unless the pager is (or recently
+** was) in exclusive-locking mode, a user-level read transaction is
+** open. The database size is known in this state.
+**
+** A connection running with locking_mode=normal enters this state when
+** it opens a read-transaction on the database and returns to state
+** OPEN after the read-transaction is completed. However a connection
+** running in locking_mode=exclusive (including temp databases) remains in
+** this state even after the read-transaction is closed. The only way
+** a locking_mode=exclusive connection can transition from READER to OPEN
+** is via the ERROR state (see below).
+**
+** * A read transaction may be active (but a write-transaction cannot).
+** * A SHARED or greater lock is held on the database file.
+** * The dbSize variable may be trusted (even if a user-level read
+** transaction is not active). The dbOrigSize and dbFileSize variables
+** may not be trusted at this point.
+** * If the database is a WAL database, then the WAL connection is open.
+** * Even if a read-transaction is not open, it is guaranteed that
+** there is no hot-journal in the file-system.
+**
+** WRITER_LOCKED:
+**
+** The pager moves to this state from READER when a write-transaction
+** is first opened on the database. In WRITER_LOCKED state, all locks
+** required to start a write-transaction are held, but no actual
+** modifications to the cache or database have taken place.
+**
+** In rollback mode, a RESERVED or (if the transaction was opened with
+** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
+** moving to this state, but the journal file is not written to or opened
+** to in this state. If the transaction is committed or rolled back while
+** in WRITER_LOCKED state, all that is required is to unlock the database
+** file.
+**
+** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
+** If the connection is running with locking_mode=exclusive, an attempt
+** is made to obtain an EXCLUSIVE lock on the database file.
+**
+** * A write transaction is active.
+** * If the connection is open in rollback-mode, a RESERVED or greater
+** lock is held on the database file.
+** * If the connection is open in WAL-mode, a WAL write transaction
+** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
+** called).
+** * The dbSize, dbOrigSize and dbFileSize variables are all valid.
+** * The contents of the pager cache have not been modified.
+** * The journal file may or may not be open.
+** * Nothing (not even the first header) has been written to the journal.
+**
+** WRITER_CACHEMOD:
+**
+** A pager moves from WRITER_LOCKED state to this state when a page is
+** first modified by the upper layer. In rollback mode the journal file
+** is opened (if it is not already open) and a header written to the
+** start of it. The database file on disk has not been modified.
+**
+** * A write transaction is active.
+** * A RESERVED or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** to it, but the header has not been synced to disk.
+** * The contents of the page cache have been modified.
+**
+** WRITER_DBMOD:
+**
+** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
+** when it modifies the contents of the database file. WAL connections
+** never enter this state (since they do not modify the database file,
+** just the log file).
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** and synced to disk.
+** * The contents of the page cache have been modified (and possibly
+** written to disk).
+**
+** WRITER_FINISHED:
+**
+** It is not possible for a WAL connection to enter this state.
+**
+** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
+** state after the entire transaction has been successfully written into the
+** database file. In this state the transaction may be committed simply
+** by finalizing the journal file. Once in WRITER_FINISHED state, it is
+** not possible to modify the database further. At this point, the upper
+** layer must either commit or rollback the transaction.
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * All writing and syncing of journal and database data has finished.
+** If no error occurred, all that remains is to finalize the journal to
+** commit the transaction. If an error did occur, the caller will need
+** to rollback the transaction.
+**
+** ERROR:
+**
+** The ERROR state is entered when an IO or disk-full error (including
+** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
+** difficult to be sure that the in-memory pager state (cache contents,
+** db size etc.) are consistent with the contents of the file-system.
+**
+** Temporary pager files may enter the ERROR state, but in-memory pagers
+** cannot.
+**
+** For example, if an IO error occurs while performing a rollback,
+** the contents of the page-cache may be left in an inconsistent state.
+** At this point it would be dangerous to change back to READER state
+** (as usually happens after a rollback). Any subsequent readers might
+** report database corruption (due to the inconsistent cache), and if
+** they upgrade to writers, they may inadvertently corrupt the database
+** file. To avoid this hazard, the pager switches into the ERROR state
+** instead of READER following such an error.
+**
+** Once it has entered the ERROR state, any attempt to use the pager
+** to read or write data returns an error. Eventually, once all
+** outstanding transactions have been abandoned, the pager is able to
+** transition back to OPEN state, discarding the contents of the
+** page-cache and any other in-memory state at the same time. Everything
+** is reloaded from disk (and, if necessary, hot-journal rollback peformed)
+** when a read-transaction is next opened on the pager (transitioning
+** the pager into READER state). At that point the system has recovered
+** from the error.
+**
+** Specifically, the pager jumps into the ERROR state if:
+**
+** 1. An error occurs while attempting a rollback. This happens in
+** function sqlite3PagerRollback().
+**
+** 2. An error occurs while attempting to finalize a journal file
+** following a commit in function sqlite3PagerCommitPhaseTwo().
+**
+** 3. An error occurs while attempting to write to the journal or
+** database file in function pagerStress() in order to free up
+** memory.
+**
+** In other cases, the error is returned to the b-tree layer. The b-tree
+** layer then attempts a rollback operation. If the error condition
+** persists, the pager enters the ERROR state via condition (1) above.
+**
+** Condition (3) is necessary because it can be triggered by a read-only
+** statement executed within a transaction. In this case, if the error
+** code were simply returned to the user, the b-tree layer would not
+** automatically attempt a rollback, as it assumes that an error in a
+** read-only statement cannot leave the pager in an internally inconsistent
+** state.
+**
+** * The Pager.errCode variable is set to something other than SQLITE_OK.
+** * There are one or more outstanding references to pages (after the
+** last reference is dropped the pager should move back to OPEN state).
+** * The pager is not an in-memory pager.
+**
+**
+** Notes:
+**
+** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
+** connection is open in WAL mode. A WAL connection is always in one
+** of the first four states.
+**
+** * Normally, a connection open in exclusive mode is never in PAGER_OPEN
+** state. There are two exceptions: immediately after exclusive-mode has
+** been turned on (and before any read or write transactions are
+** executed), and when the pager is leaving the "error state".
+**
+** * See also: assert_pager_state().
+*/
+#define PAGER_OPEN 0
+#define PAGER_READER 1
+#define PAGER_WRITER_LOCKED 2
+#define PAGER_WRITER_CACHEMOD 3
+#define PAGER_WRITER_DBMOD 4
+#define PAGER_WRITER_FINISHED 5
+#define PAGER_ERROR 6
+
+/*
+** The Pager.eLock variable is almost always set to one of the
+** following locking-states, according to the lock currently held on
+** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+** This variable is kept up to date as locks are taken and released by
+** the pagerLockDb() and pagerUnlockDb() wrappers.
+**
+** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
+** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
+** the operation was successful. In these circumstances pagerLockDb() and
+** pagerUnlockDb() take a conservative approach - eLock is always updated
+** when unlocking the file, and only updated when locking the file if the
+** VFS call is successful. This way, the Pager.eLock variable may be set
+** to a less exclusive (lower) value than the lock that is actually held
+** at the system level, but it is never set to a more exclusive value.
+**
+** This is usually safe. If an xUnlock fails or appears to fail, there may
+** be a few redundant xLock() calls or a lock may be held for longer than
+** required, but nothing really goes wrong.
+**
+** The exception is when the database file is unlocked as the pager moves
+** from ERROR to OPEN state. At this point there may be a hot-journal file
+** in the file-system that needs to be rolled back (as part of an OPEN->SHARED
+** transition, by the same pager or any other). If the call to xUnlock()
+** fails at this point and the pager is left holding an EXCLUSIVE lock, this
+** can confuse the call to xCheckReservedLock() call made later as part
+** of hot-journal detection.
+**
+** xCheckReservedLock() is defined as returning true "if there is a RESERVED
+** lock held by this process or any others". So xCheckReservedLock may
+** return true because the caller itself is holding an EXCLUSIVE lock (but
+** doesn't know it because of a previous error in xUnlock). If this happens
+** a hot-journal may be mistaken for a journal being created by an active
+** transaction in another process, causing SQLite to read from the database
+** without rolling it back.
+**
+** To work around this, if a call to xUnlock() fails when unlocking the
+** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
+** is only changed back to a real locking state after a successful call
+** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
+** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
+** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
+** lock on the database file before attempting to roll it back. See function
+** PagerSharedLock() for more detail.
+**
+** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
+** PAGER_OPEN state.
+*/
+#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1)
+
+/*
+** A macro used for invoking the codec if there is one
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+# define CODEC1(P,D,N,X,E) \
+ if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
+# define CODEC2(P,D,N,X,E,O) \
+ if( P->xCodec==0 ){ O=(char*)D; }else \
+ if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
+#else
+# define CODEC1(P,D,N,X,E) /* NO-OP */
+# define CODEC2(P,D,N,X,E,O) O=(char*)D
+#endif
+/* END SQLCIPHER */
+
+/*
+** The maximum allowed sector size. 64KiB. If the xSectorsize() method
+** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
+** This could conceivably cause corruption following a power failure on
+** such a system. This is currently an undocumented limit.
+*/
+#define MAX_SECTOR_SIZE 0x10000
+
+
+/*
+** An instance of the following structure is allocated for each active
+** savepoint and statement transaction in the system. All such structures
+** are stored in the Pager.aSavepoint[] array, which is allocated and
+** resized using sqlite3Realloc().
+**
+** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
+** set to 0. If a journal-header is written into the main journal while
+** the savepoint is active, then iHdrOffset is set to the byte offset
+** immediately following the last journal record written into the main
+** journal before the journal-header. This is required during savepoint
+** rollback (see pagerPlaybackSavepoint()).
+*/
+typedef struct PagerSavepoint PagerSavepoint;
+struct PagerSavepoint {
+ i64 iOffset; /* Starting offset in main journal */
+ i64 iHdrOffset; /* See above */
+ Bitvec *pInSavepoint; /* Set of pages in this savepoint */
+ Pgno nOrig; /* Original number of pages in file */
+ Pgno iSubRec; /* Index of first record in sub-journal */
+ int bTruncateOnRelease; /* If stmt journal may be truncated on RELEASE */
+#ifndef SQLITE_OMIT_WAL
+ u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */
+#endif
+};
+
+/*
+** Bits of the Pager.doNotSpill flag. See further description below.
+*/
+#define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */
+#define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */
+#define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */
+
+/*
+** An open page cache is an instance of struct Pager. A description of
+** some of the more important member variables follows:
+**
+** eState
+**
+** The current 'state' of the pager object. See the comment and state
+** diagram above for a description of the pager state.
+**
+** eLock
+**
+** For a real on-disk database, the current lock held on the database file -
+** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+**
+** For a temporary or in-memory database (neither of which require any
+** locks), this variable is always set to EXCLUSIVE_LOCK. Since such
+** databases always have Pager.exclusiveMode==1, this tricks the pager
+** logic into thinking that it already has all the locks it will ever
+** need (and no reason to release them).
+**
+** In some (obscure) circumstances, this variable may also be set to
+** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
+** details.
+**
+** changeCountDone
+**
+** This boolean variable is used to make sure that the change-counter
+** (the 4-byte header field at byte offset 24 of the database file) is
+** not updated more often than necessary.
+**
+** It is set to true when the change-counter field is updated, which
+** can only happen if an exclusive lock is held on the database file.
+** It is cleared (set to false) whenever an exclusive lock is
+** relinquished on the database file. Each time a transaction is committed,
+** The changeCountDone flag is inspected. If it is true, the work of
+** updating the change-counter is omitted for the current transaction.
+**
+** This mechanism means that when running in exclusive mode, a connection
+** need only update the change-counter once, for the first transaction
+** committed.
+**
+** setSuper
+**
+** When PagerCommitPhaseOne() is called to commit a transaction, it may
+** (or may not) specify a super-journal name to be written into the
+** journal file before it is synced to disk.
+**
+** Whether or not a journal file contains a super-journal pointer affects
+** the way in which the journal file is finalized after the transaction is
+** committed or rolled back when running in "journal_mode=PERSIST" mode.
+** If a journal file does not contain a super-journal pointer, it is
+** finalized by overwriting the first journal header with zeroes. If
+** it does contain a super-journal pointer the journal file is finalized
+** by truncating it to zero bytes, just as if the connection were
+** running in "journal_mode=truncate" mode.
+**
+** Journal files that contain super-journal pointers cannot be finalized
+** simply by overwriting the first journal-header with zeroes, as the
+** super-journal pointer could interfere with hot-journal rollback of any
+** subsequently interrupted transaction that reuses the journal file.
+**
+** The flag is cleared as soon as the journal file is finalized (either
+** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
+** journal file from being successfully finalized, the setSuper flag
+** is cleared anyway (and the pager will move to ERROR state).
+**
+** doNotSpill
+**
+** This variables control the behavior of cache-spills (calls made by
+** the pcache module to the pagerStress() routine to write cached data
+** to the file-system in order to free up memory).
+**
+** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set,
+** writing to the database from pagerStress() is disabled altogether.
+** The SPILLFLAG_ROLLBACK case is done in a very obscure case that
+** comes up during savepoint rollback that requires the pcache module
+** to allocate a new page to prevent the journal file from being written
+** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF
+** case is a user preference.
+**
+** If the SPILLFLAG_NOSYNC bit is set, writing to the database from
+** pagerStress() is permitted, but syncing the journal file is not.
+** This flag is set by sqlite3PagerWrite() when the file-system sector-size
+** is larger than the database page-size in order to prevent a journal sync
+** from happening in between the journalling of two pages on the same sector.
+**
+** subjInMemory
+**
+** This is a boolean variable. If true, then any required sub-journal
+** is opened as an in-memory journal file. If false, then in-memory
+** sub-journals are only used for in-memory pager files.
+**
+** This variable is updated by the upper layer each time a new
+** write-transaction is opened.
+**
+** dbSize, dbOrigSize, dbFileSize
+**
+** Variable dbSize is set to the number of pages in the database file.
+** It is valid in PAGER_READER and higher states (all states except for
+** OPEN and ERROR).
+**
+** dbSize is set based on the size of the database file, which may be
+** larger than the size of the database (the value stored at offset
+** 28 of the database header by the btree). If the size of the file
+** is not an integer multiple of the page-size, the value stored in
+** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
+** Except, any file that is greater than 0 bytes in size is considered
+** to have at least one page. (i.e. a 1KB file with 2K page-size leads
+** to dbSize==1).
+**
+** During a write-transaction, if pages with page-numbers greater than
+** dbSize are modified in the cache, dbSize is updated accordingly.
+** Similarly, if the database is truncated using PagerTruncateImage(),
+** dbSize is updated.
+**
+** Variables dbOrigSize and dbFileSize are valid in states
+** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
+** variable at the start of the transaction. It is used during rollback,
+** and to determine whether or not pages need to be journalled before
+** being modified.
+**
+** Throughout a write-transaction, dbFileSize contains the size of
+** the file on disk in pages. It is set to a copy of dbSize when the
+** write-transaction is first opened, and updated when VFS calls are made
+** to write or truncate the database file on disk.
+**
+** The only reason the dbFileSize variable is required is to suppress
+** unnecessary calls to xTruncate() after committing a transaction. If,
+** when a transaction is committed, the dbFileSize variable indicates
+** that the database file is larger than the database image (Pager.dbSize),
+** pager_truncate() is called. The pager_truncate() call uses xFilesize()
+** to measure the database file on disk, and then truncates it if required.
+** dbFileSize is not used when rolling back a transaction. In this case
+** pager_truncate() is called unconditionally (which means there may be
+** a call to xFilesize() that is not strictly required). In either case,
+** pager_truncate() may cause the file to become smaller or larger.
+**
+** dbHintSize
+**
+** The dbHintSize variable is used to limit the number of calls made to
+** the VFS xFileControl(FCNTL_SIZE_HINT) method.
+**
+** dbHintSize is set to a copy of the dbSize variable when a
+** write-transaction is opened (at the same time as dbFileSize and
+** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
+** dbHintSize is increased to the number of pages that correspond to the
+** size-hint passed to the method call. See pager_write_pagelist() for
+** details.
+**
+** errCode
+**
+** The Pager.errCode variable is only ever used in PAGER_ERROR state. It
+** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
+** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
+** sub-codes.
+**
+** syncFlags, walSyncFlags
+**
+** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03).
+** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode
+** and contains the flags used to sync the checkpoint operations in the
+** lower two bits, and sync flags used for transaction commits in the WAL
+** file in bits 0x04 and 0x08. In other words, to get the correct sync flags
+** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct
+** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note
+** that with synchronous=NORMAL in WAL mode, transaction commit is not synced
+** meaning that the 0x04 and 0x08 bits are both zero.
+*/
+struct Pager {
+ sqlite3_vfs *pVfs; /* OS functions to use for IO */
+ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
+ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
+ u8 useJournal; /* Use a rollback journal on this file */
+ u8 noSync; /* Do not sync the journal if true */
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
+ u8 extraSync; /* sync directory after journal delete */
+ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */
+ u8 walSyncFlags; /* See description above */
+ u8 tempFile; /* zFilename is a temporary or immutable file */
+ u8 noLock; /* Do not lock (except in WAL mode) */
+ u8 readOnly; /* True for a read-only database */
+ u8 memDb; /* True to inhibit all file I/O */
+ u8 memVfs; /* VFS-implemented memory database */
+
+ /**************************************************************************
+ ** The following block contains those class members that change during
+ ** routine operation. Class members not in this block are either fixed
+ ** when the pager is first created or else only change when there is a
+ ** significant mode change (such as changing the page_size, locking_mode,
+ ** or the journal_mode). From another view, these class members describe
+ ** the "state" of the pager, while other class members describe the
+ ** "configuration" of the pager.
+ */
+ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */
+ u8 eLock; /* Current lock held on database file */
+ u8 changeCountDone; /* Set after incrementing the change-counter */
+ u8 setSuper; /* Super-jrnl name is written into jrnl */
+ u8 doNotSpill; /* Do not spill the cache when non-zero */
+ u8 subjInMemory; /* True to use in-memory sub-journals */
+ u8 bUseFetch; /* True to use xFetch() */
+ u8 hasHeldSharedLock; /* True if a shared lock has ever been held */
+ Pgno dbSize; /* Number of pages in the database */
+ Pgno dbOrigSize; /* dbSize before the current transaction */
+ Pgno dbFileSize; /* Number of pages in the database file */
+ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */
+ int errCode; /* One of several kinds of errors */
+ int nRec; /* Pages journalled since last j-header written */
+ u32 cksumInit; /* Quasi-random value added to every checksum */
+ u32 nSubRec; /* Number of records written to sub-journal */
+ Bitvec *pInJournal; /* One bit for each page in the database file */
+ sqlite3_file *fd; /* File descriptor for database */
+ sqlite3_file *jfd; /* File descriptor for main journal */
+ sqlite3_file *sjfd; /* File descriptor for sub-journal */
+ i64 journalOff; /* Current write offset in the journal file */
+ i64 journalHdr; /* Byte offset to previous journal header */
+ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
+ PagerSavepoint *aSavepoint; /* Array of active savepoints */
+ int nSavepoint; /* Number of elements in aSavepoint[] */
+ u32 iDataVersion; /* Changes whenever database content changes */
+ char dbFileVers[16]; /* Changes whenever database file changes */
+
+ int nMmapOut; /* Number of mmap pages currently outstanding */
+ sqlite3_int64 szMmap; /* Desired maximum mmap size */
+ PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */
+ /*
+ ** End of the routinely-changing class members
+ ***************************************************************************/
+
+ u16 nExtra; /* Add this many bytes to each in-memory page */
+ i16 nReserve; /* Number of unused bytes at end of each page */
+ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
+ u32 sectorSize; /* Assumed sector size during rollback */
+ Pgno mxPgno; /* Maximum allowed size of the database */
+ Pgno lckPgno; /* Page number for the locking page */
+ i64 pageSize; /* Number of bytes in a page */
+ i64 journalSizeLimit; /* Size limit for persistent journal files */
+ char *zFilename; /* Name of the database file */
+ char *zJournal; /* Name of the journal file */
+ int (*xBusyHandler)(void*); /* Function to call when busy */
+ void *pBusyHandlerArg; /* Context argument for xBusyHandler */
+ int aStat[4]; /* Total cache hits, misses, writes, spills */
+#ifdef SQLITE_TEST
+ int nRead; /* Database pages read */
+#endif
+ void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
+ int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
+ void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
+ void (*xCodecFree)(void*); /* Destructor for the codec */
+ void *pCodec; /* First argument to xCodec... methods */
+#endif
+/* END SQLCIPHER */
+ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
+ PCache *pPCache; /* Pointer to page cache object */
+#ifndef SQLITE_OMIT_WAL
+ Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */
+ char *zWal; /* File name for write-ahead log */
+#endif
+};
+
+/*
+** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains
+** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS
+** or CACHE_WRITE to sqlite3_db_status().
+*/
+#define PAGER_STAT_HIT 0
+#define PAGER_STAT_MISS 1
+#define PAGER_STAT_WRITE 2
+#define PAGER_STAT_SPILL 3
+
+/*
+** The following global variables hold counters used for
+** testing purposes only. These variables do not exist in
+** a non-testing build. These variables are not thread-safe.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
+SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
+SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
+# define PAGER_INCR(v) v++
+#else
+# define PAGER_INCR(v)
+#endif
+
+
+
+/*
+** Journal files begin with the following magic string. The data
+** was obtained from /dev/random. It is used only as a sanity check.
+**
+** Since version 2.8.0, the journal format contains additional sanity
+** checking information. If the power fails while the journal is being
+** written, semi-random garbage data might appear in the journal
+** file after power is restored. If an attempt is then made
+** to roll the journal back, the database could be corrupted. The additional
+** sanity checking data is an attempt to discover the garbage in the
+** journal and ignore it.
+**
+** The sanity checking information for the new journal format consists
+** of a 32-bit checksum on each page of data. The checksum covers both
+** the page number and the pPager->pageSize bytes of data for the page.
+** This cksum is initialized to a 32-bit random value that appears in the
+** journal file right after the header. The random initializer is important,
+** because garbage data that appears at the end of a journal is likely
+** data that was once in other files that have now been deleted. If the
+** garbage data came from an obsolete journal file, the checksums might
+** be correct. But by initializing the checksum to random value which
+** is different for every journal, we minimize that risk.
+*/
+static const unsigned char aJournalMagic[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
+};
+
+/*
+** The size of the of each page record in the journal is given by
+** the following macro.
+*/
+#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
+
+/*
+** The journal header size for this pager. This is usually the same
+** size as a single disk sector. See also setSectorSize().
+*/
+#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
+
+/*
+** The macro MEMDB is true if we are dealing with an in-memory database.
+** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
+** the value of MEMDB will be a constant and the compiler will optimize
+** out code that would never execute.
+*/
+#ifdef SQLITE_OMIT_MEMORYDB
+# define MEMDB 0
+#else
+# define MEMDB pPager->memDb
+#endif
+
+/*
+** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch
+** interfaces to access the database using memory-mapped I/O.
+*/
+#if SQLITE_MAX_MMAP_SIZE>0
+# define USEFETCH(x) ((x)->bUseFetch)
+#else
+# define USEFETCH(x) 0
+#endif
+
+/*
+** The argument to this macro is a file descriptor (type sqlite3_file*).
+** Return 0 if it is not open, or non-zero (but not 1) if it is.
+**
+** This is so that expressions can be written as:
+**
+** if( isOpen(pPager->jfd) ){ ...
+**
+** instead of
+**
+** if( pPager->jfd->pMethods ){ ...
+*/
+#define isOpen(pFd) ((pFd)->pMethods!=0)
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+/*
+** Return true if page pgno can be read directly from the database file
+** by the b-tree layer. This is the case if:
+**
+** * the database file is open,
+** * there are no dirty pages in the cache, and
+** * the desired page is not currently in the wal file.
+*/
+SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){
+ if( pPager->fd->pMethods==0 ) return 0;
+ if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0;
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if( pPager->xCodec!=0 ) return 0;
+#endif
+/* END SQLCIPHER */
+#ifndef SQLITE_OMIT_WAL
+ if( pPager->pWal ){
+ u32 iRead = 0;
+ int rc;
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);
+ return (rc==SQLITE_OK && iRead==0);
+ }
+#endif
+ return 1;
+}
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+# define pagerUseWal(x) ((x)->pWal!=0)
+#else
+# define pagerUseWal(x) 0
+# define pagerRollbackWal(x) 0
+# define pagerWalFrames(v,w,x,y) 0
+# define pagerOpenWalIfPresent(z) SQLITE_OK
+# define pagerBeginReadTransaction(z) SQLITE_OK
+#endif
+
+#ifndef NDEBUG
+/*
+** Usage:
+**
+** assert( assert_pager_state(pPager) );
+**
+** This function runs many asserts to try to find inconsistencies in
+** the internal state of the Pager object.
+*/
+static int assert_pager_state(Pager *p){
+ Pager *pPager = p;
+
+ /* State must be valid. */
+ assert( p->eState==PAGER_OPEN
+ || p->eState==PAGER_READER
+ || p->eState==PAGER_WRITER_LOCKED
+ || p->eState==PAGER_WRITER_CACHEMOD
+ || p->eState==PAGER_WRITER_DBMOD
+ || p->eState==PAGER_WRITER_FINISHED
+ || p->eState==PAGER_ERROR
+ );
+
+ /* Regardless of the current state, a temp-file connection always behaves
+ ** as if it has an exclusive lock on the database file. It never updates
+ ** the change-counter field, so the changeCountDone flag is always set.
+ */
+ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
+ assert( p->tempFile==0 || pPager->changeCountDone );
+
+ /* If the useJournal flag is clear, the journal-mode must be "OFF".
+ ** And if the journal-mode is "OFF", the journal file must not be open.
+ */
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
+ assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
+
+ /* Check that MEMDB implies noSync. And an in-memory journal. Since
+ ** this means an in-memory pager performs no IO at all, it cannot encounter
+ ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
+ ** a journal file. (although the in-memory journal implementation may
+ ** return SQLITE_IOERR_NOMEM while the journal file is being written). It
+ ** is therefore not possible for an in-memory pager to enter the ERROR
+ ** state.
+ */
+ if( MEMDB ){
+ assert( !isOpen(p->fd) );
+ assert( p->noSync );
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_MEMORY
+ );
+ assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
+ assert( pagerUseWal(p)==0 );
+ }
+
+ /* If changeCountDone is set, a RESERVED lock or greater must be held
+ ** on the file.
+ */
+ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
+ assert( p->eLock!=PENDING_LOCK );
+
+ switch( p->eState ){
+ case PAGER_OPEN:
+ assert( !MEMDB );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
+ break;
+
+ case PAGER_READER:
+ assert( pPager->errCode==SQLITE_OK );
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( p->eLock>=SHARED_LOCK );
+ break;
+
+ case PAGER_WRITER_LOCKED:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ assert( p->eLock>=RESERVED_LOCK );
+ }
+ assert( pPager->dbSize==pPager->dbOrigSize );
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ assert( pPager->setSuper==0 );
+ break;
+
+ case PAGER_WRITER_CACHEMOD:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ /* It is possible that if journal_mode=wal here that neither the
+ ** journal file nor the WAL file are open. This happens during
+ ** a rollback transaction that switches from journal_mode=off
+ ** to journal_mode=wal.
+ */
+ assert( p->eLock>=RESERVED_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ }
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_DBMOD:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( p->eLock>=EXCLUSIVE_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
+ );
+ assert( pPager->dbOrigSize<=pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_FINISHED:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
+ );
+ break;
+
+ case PAGER_ERROR:
+ /* There must be at least one outstanding reference to the pager if
+ ** in ERROR state. Otherwise the pager should have already dropped
+ ** back to OPEN state.
+ */
+ assert( pPager->errCode!=SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile );
+ break;
+ }
+
+ return 1;
+}
+#endif /* ifndef NDEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+** Return a pointer to a human readable string in a static buffer
+** containing the state of the Pager object passed as an argument. This
+** is intended to be used within debuggers. For example, as an alternative
+** to "print *pPager" in gdb:
+**
+** (gdb) printf "%s", print_pager_state(pPager)
+**
+** This routine has external linkage in order to suppress compiler warnings
+** about an unused function. It is enclosed within SQLITE_DEBUG and so does
+** not appear in normal builds.
+*/
+char *print_pager_state(Pager *p){
+ static char zRet[1024];
+
+ sqlite3_snprintf(1024, zRet,
+ "Filename: %s\n"
+ "State: %s errCode=%d\n"
+ "Lock: %s\n"
+ "Locking mode: locking_mode=%s\n"
+ "Journal mode: journal_mode=%s\n"
+ "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
+ "Journal: journalOff=%lld journalHdr=%lld\n"
+ "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
+ , p->zFilename
+ , p->eState==PAGER_OPEN ? "OPEN" :
+ p->eState==PAGER_READER ? "READER" :
+ p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" :
+ p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
+ p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" :
+ p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
+ p->eState==PAGER_ERROR ? "ERROR" : "?error?"
+ , (int)p->errCode
+ , p->eLock==NO_LOCK ? "NO_LOCK" :
+ p->eLock==RESERVED_LOCK ? "RESERVED" :
+ p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" :
+ p->eLock==SHARED_LOCK ? "SHARED" :
+ p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?"
+ , p->exclusiveMode ? "exclusive" : "normal"
+ , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" :
+ p->journalMode==PAGER_JOURNALMODE_OFF ? "off" :
+ p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" :
+ p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" :
+ p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
+ p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?"
+ , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
+ , p->journalOff, p->journalHdr
+ , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
+ );
+
+ return zRet;
+}
+#endif
+
+/* Forward references to the various page getters */
+static int getPageNormal(Pager*,Pgno,DbPage**,int);
+static int getPageError(Pager*,Pgno,DbPage**,int);
+#if SQLITE_MAX_MMAP_SIZE>0
+static int getPageMMap(Pager*,Pgno,DbPage**,int);
+#endif
+
+/*
+** Set the Pager.xGet method for the appropriate routine used to fetch
+** content from the pager.
+*/
+static void setGetterMethod(Pager *pPager){
+ if( pPager->errCode ){
+ pPager->xGet = getPageError;
+#if SQLITE_MAX_MMAP_SIZE>0
+ }else if( USEFETCH(pPager)
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ && pPager->xCodec==0
+#endif
+/* END SQLCIPHER */
+ ){
+ pPager->xGet = getPageMMap;
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+ }else{
+ pPager->xGet = getPageNormal;
+ }
+}
+
+/*
+** Return true if it is necessary to write page *pPg into the sub-journal.
+** A page needs to be written into the sub-journal if there exists one
+** or more open savepoints for which:
+**
+** * The page-number is less than or equal to PagerSavepoint.nOrig, and
+** * The bit corresponding to the page-number is not set in
+** PagerSavepoint.pInSavepoint.
+*/
+static int subjRequiresPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ PagerSavepoint *p;
+ Pgno pgno = pPg->pgno;
+ int i;
+ for(i=0; i<pPager->nSavepoint; i++){
+ p = &pPager->aSavepoint[i];
+ if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){
+ for(i=i+1; i<pPager->nSavepoint; i++){
+ pPager->aSavepoint[i].bTruncateOnRelease = 0;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if the page is already in the journal file.
+*/
+static int pageInJournal(Pager *pPager, PgHdr *pPg){
+ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno);
+}
+#endif
+
+/*
+** Read a 32-bit integer from the given file descriptor. Store the integer
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an
+** error code is something goes wrong.
+**
+** All values are stored on disk as big-endian.
+*/
+static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
+ unsigned char ac[4];
+ int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
+ if( rc==SQLITE_OK ){
+ *pRes = sqlite3Get4byte(ac);
+ }
+ return rc;
+}
+
+/*
+** Write a 32-bit integer into a string buffer in big-endian byte order.
+*/
+#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
+
+
+/*
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
+** on success or an error code is something goes wrong.
+*/
+static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
+ char ac[4];
+ put32bits(ac, val);
+ return sqlite3OsWrite(fd, ac, 4, offset);
+}
+
+/*
+** Unlock the database file to level eLock, which must be either NO_LOCK
+** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
+** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it. See the comment above the #define of
+** UNKNOWN_LOCK for an explanation of this.
+*/
+static int pagerUnlockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( !pPager->exclusiveMode || pPager->eLock==eLock );
+ assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
+ assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
+ if( isOpen(pPager->fd) ){
+ assert( pPager->eLock>=eLock );
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock);
+ if( pPager->eLock!=UNKNOWN_LOCK ){
+ pPager->eLock = (u8)eLock;
+ }
+ IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
+ }
+ pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */
+ return rc;
+}
+
+/*
+** Lock the database file to level eLock, which must be either SHARED_LOCK,
+** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
+** Pager.eLock variable to the new locking state.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK.
+** See the comment above the #define of UNKNOWN_LOCK for an explanation
+** of this.
+*/
+static int pagerLockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
+ if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock);
+ if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
+ pPager->eLock = (u8)eLock;
+ IOTRACE(("LOCK %p %d\n", pPager, eLock))
+ }
+ }
+ return rc;
+}
+
+/*
+** This function determines whether or not the atomic-write or
+** atomic-batch-write optimizations can be used with this pager. The
+** atomic-write optimization can be used if:
+**
+** (a) the value returned by OsDeviceCharacteristics() indicates that
+** a database page may be written atomically, and
+** (b) the value returned by OsSectorSize() is less than or equal
+** to the page size.
+**
+** If it can be used, then the value returned is the size of the journal
+** file when it contains rollback data for exactly one page.
+**
+** The atomic-batch-write optimization can be used if OsDeviceCharacteristics()
+** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is
+** returned in this case.
+**
+** If neither optimization can be used, 0 is returned.
+*/
+static int jrnlBufferSize(Pager *pPager){
+ assert( !MEMDB );
+
+#if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
+ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+ int dc; /* Device characteristics */
+
+ assert( isOpen(pPager->fd) );
+ dc = sqlite3OsDeviceCharacteristics(pPager->fd);
+#else
+ UNUSED_PARAMETER(pPager);
+#endif
+
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){
+ return -1;
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int nSector = pPager->sectorSize;
+ int szPage = pPager->pageSize;
+
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
+ return 0;
+ }
+ }
+
+ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
+#endif
+
+ return 0;
+}
+
+/*
+** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
+** on the cache using a hash function. This is used for testing
+** and debugging only.
+*/
+#ifdef SQLITE_CHECK_PAGES
+/*
+** Return a 32-bit hash of the page data for pPage.
+*/
+static u32 pager_datahash(int nByte, unsigned char *pData){
+ u32 hash = 0;
+ int i;
+ for(i=0; i<nByte; i++){
+ hash = (hash*1039) + pData[i];
+ }
+ return hash;
+}
+static u32 pager_pagehash(PgHdr *pPage){
+ return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
+}
+static void pager_set_pagehash(PgHdr *pPage){
+ pPage->pageHash = pager_pagehash(pPage);
+}
+
+/*
+** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
+** is defined, and NDEBUG is not defined, an assert() statement checks
+** that the page is either dirty or still matches the calculated page-hash.
+*/
+#define CHECK_PAGE(x) checkPage(x)
+static void checkPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
+}
+
+#else
+#define pager_datahash(X,Y) 0
+#define pager_pagehash(X) 0
+#define pager_set_pagehash(X)
+#define CHECK_PAGE(x)
+#endif /* SQLITE_CHECK_PAGES */
+
+/*
+** When this is called the journal file for pager pPager must be open.
+** This function attempts to read a super-journal file name from the
+** end of the file and, if successful, copies it into memory supplied
+** by the caller. See comments above writeSuperJournal() for the format
+** used to store a super-journal file name at the end of a journal file.
+**
+** zSuper must point to a buffer of at least nSuper bytes allocated by
+** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
+** enough space to write the super-journal name). If the super-journal
+** name in the journal is longer than nSuper bytes (including a
+** nul-terminator), then this is handled as if no super-journal name
+** were present in the journal.
+**
+** If a super-journal file name is present at the end of the journal
+** file, then it is copied into the buffer pointed to by zSuper. A
+** nul-terminator byte is appended to the buffer following the
+** super-journal file name.
+**
+** If it is determined that no super-journal file name is present
+** zSuper[0] is set to 0 and SQLITE_OK returned.
+**
+** If an error occurs while reading from the journal file, an SQLite
+** error code is returned.
+*/
+static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){
+ int rc; /* Return code */
+ u32 len; /* Length in bytes of super-journal name */
+ i64 szJ; /* Total size in bytes of journal file pJrnl */
+ u32 cksum; /* MJ checksum value read from journal */
+ u32 u; /* Unsigned loop counter */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ zSuper[0] = '\0';
+
+ if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ))
+ || szJ<16
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
+ || len>=nSuper
+ || len>szJ-16
+ || len==0
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8))
+ || memcmp(aMagic, aJournalMagic, 8)
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len))
+ ){
+ return rc;
+ }
+
+ /* See if the checksum matches the super-journal name */
+ for(u=0; u<len; u++){
+ cksum -= zSuper[u];
+ }
+ if( cksum ){
+ /* If the checksum doesn't add up, then one or more of the disk sectors
+ ** containing the super-journal filename is corrupted. This means
+ ** definitely roll back, so just return SQLITE_OK and report a (nul)
+ ** super-journal filename.
+ */
+ len = 0;
+ }
+ zSuper[len] = '\0';
+ zSuper[len+1] = '\0';
+
+ return SQLITE_OK;
+}
+
+/*
+** Return the offset of the sector boundary at or immediately
+** following the value in pPager->journalOff, assuming a sector
+** size of pPager->sectorSize bytes.
+**
+** i.e for a sector size of 512:
+**
+** Pager.journalOff Return value
+** ---------------------------------------
+** 0 0
+** 512 512
+** 100 512
+** 2000 2048
+**
+*/
+static i64 journalHdrOffset(Pager *pPager){
+ i64 offset = 0;
+ i64 c = pPager->journalOff;
+ if( c ){
+ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
+ }
+ assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
+ assert( offset>=c );
+ assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
+ return offset;
+}
+
+/*
+** The journal file must be open when this function is called.
+**
+** This function is a no-op if the journal file has not been written to
+** within the current transaction (i.e. if Pager.journalOff==0).
+**
+** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
+** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
+** zero the 28-byte header at the start of the journal file. In either case,
+** if the pager is not in no-sync mode, sync the journal file immediately
+** after writing or truncating it.
+**
+** If Pager.journalSizeLimit is set to a positive, non-zero value, and
+** following the truncation or zeroing described above the size of the
+** journal file in bytes is larger than this value, then truncate the
+** journal file to Pager.journalSizeLimit bytes. The journal file does
+** not need to be synced following this operation.
+**
+** If an IO error occurs, abandon processing and return the IO error code.
+** Otherwise, return SQLITE_OK.
+*/
+static int zeroJournalHdr(Pager *pPager, int doTruncate){
+ int rc = SQLITE_OK; /* Return code */
+ assert( isOpen(pPager->jfd) );
+ assert( !sqlite3JournalIsInMemory(pPager->jfd) );
+ if( pPager->journalOff ){
+ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */
+
+ IOTRACE(("JZEROHDR %p\n", pPager))
+ if( doTruncate || iLimit==0 ){
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ }else{
+ static const char zeroHdr[28] = {0};
+ rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
+ }
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags);
+ }
+
+ /* At this point the transaction is committed but the write lock
+ ** is still held on the file. If there is a size limit configured for
+ ** the persistent journal and the journal file currently consumes more
+ ** space than that limit allows for, truncate it now. There is no need
+ ** to sync the file following this operation.
+ */
+ if( rc==SQLITE_OK && iLimit>0 ){
+ i64 sz;
+ rc = sqlite3OsFileSize(pPager->jfd, &sz);
+ if( rc==SQLITE_OK && sz>iLimit ){
+ rc = sqlite3OsTruncate(pPager->jfd, iLimit);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** The journal file must be open when this routine is called. A journal
+** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
+** current location.
+**
+** The format for the journal header is as follows:
+** - 8 bytes: Magic identifying journal format.
+** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
+** - 4 bytes: Random number used for page hash.
+** - 4 bytes: Initial database page count.
+** - 4 bytes: Sector size used by the process that wrote this journal.
+** - 4 bytes: Database page size.
+**
+** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
+*/
+static int writeJournalHdr(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */
+ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
+ u32 nWrite; /* Bytes of header sector written */
+ int ii; /* Loop counter */
+
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ if( nHeader>JOURNAL_HDR_SZ(pPager) ){
+ nHeader = JOURNAL_HDR_SZ(pPager);
+ }
+
+ /* If there are active savepoints and any of them were created
+ ** since the most recent journal header was written, update the
+ ** PagerSavepoint.iHdrOffset fields now.
+ */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ if( pPager->aSavepoint[ii].iHdrOffset==0 ){
+ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
+ }
+ }
+
+ pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);
+
+ /*
+ ** Write the nRec Field - the number of page records that follow this
+ ** journal header. Normally, zero is written to this value at this time.
+ ** After the records are added to the journal (and the journal synced,
+ ** if in full-sync mode), the zero is overwritten with the true number
+ ** of records (see syncJournal()).
+ **
+ ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
+ ** reading the journal this value tells SQLite to assume that the
+ ** rest of the journal file contains valid page records. This assumption
+ ** is dangerous, as if a failure occurred whilst writing to the journal
+ ** file it may contain some garbage data. There are two scenarios
+ ** where this risk can be ignored:
+ **
+ ** * When the pager is in no-sync mode. Corruption can follow a
+ ** power failure in this case anyway.
+ **
+ ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
+ ** that garbage data is never appended to the journal file.
+ */
+ assert( isOpen(pPager->fd) || pPager->noSync );
+ if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
+ ){
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
+ }else{
+ memset(zHeader, 0, sizeof(aJournalMagic)+4);
+ }
+
+ /* The random check-hash initializer */
+ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
+ put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
+ /* The initial database size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
+ /* The assumed sector size for this process */
+ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
+
+ /* The page size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
+
+ /* Initializing the tail of the buffer is not necessary. Everything
+ ** works find if the following memset() is omitted. But initializing
+ ** the memory prevents valgrind from complaining, so we are willing to
+ ** take the performance hit.
+ */
+ memset(&zHeader[sizeof(aJournalMagic)+20], 0,
+ nHeader-(sizeof(aJournalMagic)+20));
+
+ /* In theory, it is only necessary to write the 28 bytes that the
+ ** journal header consumes to the journal file here. Then increment the
+ ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next
+ ** record is written to the following sector (leaving a gap in the file
+ ** that will be implicitly filled in by the OS).
+ **
+ ** However it has been discovered that on some systems this pattern can
+ ** be significantly slower than contiguously writing data to the file,
+ ** even if that means explicitly writing data to the block of
+ ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
+ ** is done.
+ **
+ ** The loop is required here in case the sector-size is larger than the
+ ** database page size. Since the zHeader buffer is only Pager.pageSize
+ ** bytes in size, more than one call to sqlite3OsWrite() may be required
+ ** to populate the entire journal header sector.
+ */
+ for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
+ IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
+ rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
+ assert( pPager->journalHdr <= pPager->journalOff );
+ pPager->journalOff += nHeader;
+ }
+
+ return rc;
+}
+
+/*
+** The journal file must be open when this is called. A journal header file
+** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
+** file. The current location in the journal file is given by
+** pPager->journalOff. See comments above function writeJournalHdr() for
+** a description of the journal header format.
+**
+** If the header is read successfully, *pNRec is set to the number of
+** page records following this header and *pDbSize is set to the size of the
+** database before the transaction began, in pages. Also, pPager->cksumInit
+** is set to the value read from the journal header. SQLITE_OK is returned
+** in this case.
+**
+** If the journal header file appears to be corrupted, SQLITE_DONE is
+** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes
+** cannot be read from the journal file an error code is returned.
+*/
+static int readJournalHdr(
+ Pager *pPager, /* Pager object */
+ int isHot,
+ i64 journalSize, /* Size of the open journal file in bytes */
+ u32 *pNRec, /* OUT: Value read from the nRec field */
+ u32 *pDbSize /* OUT: Value of original database size field */
+){
+ int rc; /* Return code */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ i64 iHdrOff; /* Offset of journal header being read */
+
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ /* Advance Pager.journalOff to the start of the next sector. If the
+ ** journal file is too small for there to be a header stored at this
+ ** point, return SQLITE_DONE.
+ */
+ pPager->journalOff = journalHdrOffset(pPager);
+ if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
+ return SQLITE_DONE;
+ }
+ iHdrOff = pPager->journalOff;
+
+ /* Read in the first 8 bytes of the journal header. If they do not match
+ ** the magic string found at the start of each journal header, return
+ ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
+ ** proceed.
+ */
+ if( isHot || iHdrOff!=pPager->journalHdr ){
+ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
+ if( rc ){
+ return rc;
+ }
+ if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* Read the first three 32-bit fields of the journal header: The nRec
+ ** field, the checksum-initializer and the database size at the start
+ ** of the transaction. Return an error code if anything goes wrong.
+ */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
+ ){
+ return rc;
+ }
+
+ if( pPager->journalOff==0 ){
+ u32 iPageSize; /* Page-size field of journal header */
+ u32 iSectorSize; /* Sector-size field of journal header */
+
+ /* Read the page-size and sector-size journal header fields. */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
+ ){
+ return rc;
+ }
+
+ /* Versions of SQLite prior to 3.5.8 set the page-size field of the
+ ** journal header to zero. In this case, assume that the Pager.pageSize
+ ** variable is already set to the correct page size.
+ */
+ if( iPageSize==0 ){
+ iPageSize = pPager->pageSize;
+ }
+
+ /* Check that the values read from the page-size and sector-size fields
+ ** are within range. To be 'in range', both values need to be a power
+ ** of two greater than or equal to 512 or 32, and not greater than their
+ ** respective compile time maximum limits.
+ */
+ if( iPageSize<512 || iSectorSize<32
+ || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
+ || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0
+ ){
+ /* If the either the page-size or sector-size in the journal-header is
+ ** invalid, then the process that wrote the journal-header must have
+ ** crashed before the header was synced. In this case stop reading
+ ** the journal file here.
+ */
+ return SQLITE_DONE;
+ }
+
+ /* Update the page-size to match the value read from the journal.
+ ** Use a testcase() macro to make sure that malloc failure within
+ ** PagerSetPagesize() is tested.
+ */
+ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1);
+ testcase( rc!=SQLITE_OK );
+
+ /* Update the assumed sector-size to match the value used by
+ ** the process that created this journal. If this journal was
+ ** created by a process other than this one, then this routine
+ ** is being called from within pager_playback(). The local value
+ ** of Pager.sectorSize is restored at the end of that routine.
+ */
+ pPager->sectorSize = iSectorSize;
+ }
+
+ pPager->journalOff += JOURNAL_HDR_SZ(pPager);
+ return rc;
+}
+
+
+/*
+** Write the supplied super-journal name into the journal file for pager
+** pPager at the current location. The super-journal name must be the last
+** thing written to a journal file. If the pager is in full-sync mode, the
+** journal file descriptor is advanced to the next sector boundary before
+** anything is written. The format is:
+**
+** + 4 bytes: PAGER_SJ_PGNO.
+** + N bytes: super-journal filename in utf-8.
+** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator).
+** + 4 bytes: super-journal name checksum.
+** + 8 bytes: aJournalMagic[].
+**
+** The super-journal page checksum is the sum of the bytes in thesuper-journal
+** name, where each byte is interpreted as a signed 8-bit integer.
+**
+** If zSuper is a NULL pointer (occurs for a single database transaction),
+** this call is a no-op.
+*/
+static int writeSuperJournal(Pager *pPager, const char *zSuper){
+ int rc; /* Return code */
+ int nSuper; /* Length of string zSuper */
+ i64 iHdrOff; /* Offset of header in journal file */
+ i64 jrnlSize; /* Size of journal file on disk */
+ u32 cksum = 0; /* Checksum of string zSuper */
+
+ assert( pPager->setSuper==0 );
+ assert( !pagerUseWal(pPager) );
+
+ if( !zSuper
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || !isOpen(pPager->jfd)
+ ){
+ return SQLITE_OK;
+ }
+ pPager->setSuper = 1;
+ assert( pPager->journalHdr <= pPager->journalOff );
+
+ /* Calculate the length in bytes and the checksum of zSuper */
+ for(nSuper=0; zSuper[nSuper]; nSuper++){
+ cksum += zSuper[nSuper];
+ }
+
+ /* If in full-sync mode, advance to the next disk sector before writing
+ ** the super-journal name. This is in case the previous page written to
+ ** the journal has already been synced.
+ */
+ if( pPager->fullSync ){
+ pPager->journalOff = journalHdrOffset(pPager);
+ }
+ iHdrOff = pPager->journalOff;
+
+ /* Write the super-journal data to the end of the journal file. If
+ ** an error occurs, return the error code to the caller.
+ */
+ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_SJ_PGNO(pPager))))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum)))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8,
+ iHdrOff+4+nSuper+8)))
+ ){
+ return rc;
+ }
+ pPager->journalOff += (nSuper+20);
+
+ /* If the pager is in peristent-journal mode, then the physical
+ ** journal-file may extend past the end of the super-journal name
+ ** and 8 bytes of magic data just written to the file. This is
+ ** dangerous because the code to rollback a hot-journal file
+ ** will not be able to find the super-journal name to determine
+ ** whether or not the journal is hot.
+ **
+ ** Easiest thing to do in this scenario is to truncate the journal
+ ** file to the required size.
+ */
+ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))
+ && jrnlSize>pPager->journalOff
+ ){
+ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff);
+ }
+ return rc;
+}
+
+/*
+** Discard the entire contents of the in-memory page-cache.
+*/
+static void pager_reset(Pager *pPager){
+ pPager->iDataVersion++;
+ sqlite3BackupRestart(pPager->pBackup);
+ sqlite3PcacheClear(pPager->pPCache);
+}
+
+/*
+** Return the pPager->iDataVersion value
+*/
+SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){
+ return pPager->iDataVersion;
+}
+
+/*
+** Free all structures in the Pager.aSavepoint[] array and set both
+** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
+** if it is open and the pager is not in exclusive mode.
+*/
+static void releaseAllSavepoints(Pager *pPager){
+ int ii; /* Iterator for looping through Pager.aSavepoint */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){
+ sqlite3OsClose(pPager->sjfd);
+ }
+ sqlite3_free(pPager->aSavepoint);
+ pPager->aSavepoint = 0;
+ pPager->nSavepoint = 0;
+ pPager->nSubRec = 0;
+}
+
+/*
+** Set the bit number pgno in the PagerSavepoint.pInSavepoint
+** bitvecs of all open savepoints. Return SQLITE_OK if successful
+** or SQLITE_NOMEM if a malloc failure occurs.
+*/
+static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
+ int ii; /* Loop counter */
+ int rc = SQLITE_OK; /* Result code */
+
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ PagerSavepoint *p = &pPager->aSavepoint[ii];
+ if( pgno<=p->nOrig ){
+ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is a no-op if the pager is in exclusive mode and not
+** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
+** state.
+**
+** If the pager is not in exclusive-access mode, the database file is
+** completely unlocked. If the file is unlocked and the file-system does
+** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
+** closed (if it is open).
+**
+** If the pager is in ERROR state when this function is called, the
+** contents of the pager cache are discarded before switching back to
+** the OPEN state. Regardless of whether the pager is in exclusive-mode
+** or not, any journal file left in the file-system will be treated
+** as a hot-journal and rolled back the next time a read-transaction
+** is opened (by this or by any other connection).
+*/
+static void pager_unlock(Pager *pPager){
+
+ assert( pPager->eState==PAGER_READER
+ || pPager->eState==PAGER_OPEN
+ || pPager->eState==PAGER_ERROR
+ );
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ releaseAllSavepoints(pPager);
+
+ if( pagerUseWal(pPager) ){
+ assert( !isOpen(pPager->jfd) );
+ sqlite3WalEndReadTransaction(pPager->pWal);
+ pPager->eState = PAGER_OPEN;
+ }else if( !pPager->exclusiveMode ){
+ int rc; /* Error code returned by pagerUnlockDb() */
+ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0;
+
+ /* If the operating system support deletion of open files, then
+ ** close the journal file when dropping the database lock. Otherwise
+ ** another connection with journal_mode=delete might delete the file
+ ** out from under us.
+ */
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_OFF & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_WAL & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
+ if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN)
+ || 1!=(pPager->journalMode & 5)
+ ){
+ sqlite3OsClose(pPager->jfd);
+ }
+
+ /* If the pager is in the ERROR state and the call to unlock the database
+ ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
+ ** above the #define for UNKNOWN_LOCK for an explanation of why this
+ ** is necessary.
+ */
+ rc = pagerUnlockDb(pPager, NO_LOCK);
+ if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
+ pPager->eLock = UNKNOWN_LOCK;
+ }
+
+ /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
+ ** without clearing the error code. This is intentional - the error
+ ** code is cleared and the cache reset in the block below.
+ */
+ assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
+ pPager->eState = PAGER_OPEN;
+ }
+
+ /* If Pager.errCode is set, the contents of the pager cache cannot be
+ ** trusted. Now that there are no outstanding references to the pager,
+ ** it can safely move back to PAGER_OPEN state. This happens in both
+ ** normal and exclusive-locking mode.
+ */
+ assert( pPager->errCode==SQLITE_OK || !MEMDB );
+ if( pPager->errCode ){
+ if( pPager->tempFile==0 ){
+ pager_reset(pPager);
+ pPager->changeCountDone = 0;
+ pPager->eState = PAGER_OPEN;
+ }else{
+ pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER);
+ }
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
+ pPager->errCode = SQLITE_OK;
+ setGetterMethod(pPager);
+ }
+
+ pPager->journalOff = 0;
+ pPager->journalHdr = 0;
+ pPager->setSuper = 0;
+}
+
+/*
+** This function is called whenever an IOERR or FULL error that requires
+** the pager to transition into the ERROR state may ahve occurred.
+** The first argument is a pointer to the pager structure, the second
+** the error-code about to be returned by a pager API function. The
+** value returned is a copy of the second argument to this function.
+**
+** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
+** IOERR sub-codes, the pager enters the ERROR state and the error code
+** is stored in Pager.errCode. While the pager remains in the ERROR state,
+** all major API calls on the Pager will immediately return Pager.errCode.
+**
+** The ERROR state indicates that the contents of the pager-cache
+** cannot be trusted. This state can be cleared by completely discarding
+** the contents of the pager-cache. If a transaction was active when
+** the persistent error occurred, then the rollback journal may need
+** to be replayed to restore the contents of the database file (as if
+** it were a hot-journal).
+*/
+static int pager_error(Pager *pPager, int rc){
+ int rc2 = rc & 0xff;
+ assert( rc==SQLITE_OK || !MEMDB );
+ assert(
+ pPager->errCode==SQLITE_FULL ||
+ pPager->errCode==SQLITE_OK ||
+ (pPager->errCode & 0xff)==SQLITE_IOERR
+ );
+ if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
+ pPager->errCode = rc;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ }
+ return rc;
+}
+
+static int pager_truncate(Pager *pPager, Pgno nPage);
+
+/*
+** The write transaction open on pPager is being committed (bCommit==1)
+** or rolled back (bCommit==0).
+**
+** Return TRUE if and only if all dirty pages should be flushed to disk.
+**
+** Rules:
+**
+** * For non-TEMP databases, always sync to disk. This is necessary
+** for transactions to be durable.
+**
+** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing
+** file has been created already (via a spill on pagerStress()) and
+** when the number of dirty pages in memory exceeds 25% of the total
+** cache size.
+*/
+static int pagerFlushOnCommit(Pager *pPager, int bCommit){
+ if( pPager->tempFile==0 ) return 1;
+ if( !bCommit ) return 0;
+ if( !isOpen(pPager->fd) ) return 0;
+ return (sqlite3PCachePercentDirty(pPager->pPCache)>=25);
+}
+
+/*
+** This routine ends a transaction. A transaction is usually ended by
+** either a COMMIT or a ROLLBACK operation. This routine may be called
+** after rollback of a hot-journal, or if an error occurs while opening
+** the journal file or writing the very first journal-header of a
+** database transaction.
+**
+** This routine is never called in PAGER_ERROR state. If it is called
+** in PAGER_NONE or PAGER_SHARED state and the lock held is less
+** exclusive than a RESERVED lock, it is a no-op.
+**
+** Otherwise, any active savepoints are released.
+**
+** If the journal file is open, then it is "finalized". Once a journal
+** file has been finalized it is not possible to use it to roll back a
+** transaction. Nor will it be considered to be a hot-journal by this
+** or any other database connection. Exactly how a journal is finalized
+** depends on whether or not the pager is running in exclusive mode and
+** the current journal-mode (Pager.journalMode value), as follows:
+**
+** journalMode==MEMORY
+** Journal file descriptor is simply closed. This destroys an
+** in-memory journal.
+**
+** journalMode==TRUNCATE
+** Journal file is truncated to zero bytes in size.
+**
+** journalMode==PERSIST
+** The first 28 bytes of the journal file are zeroed. This invalidates
+** the first journal header in the file, and hence the entire journal
+** file. An invalid journal file cannot be rolled back.
+**
+** journalMode==DELETE
+** The journal file is closed and deleted using sqlite3OsDelete().
+**
+** If the pager is running in exclusive mode, this method of finalizing
+** the journal file is never used. Instead, if the journalMode is
+** DELETE and the pager is in exclusive mode, the method described under
+** journalMode==PERSIST is used instead.
+**
+** After the journal is finalized, the pager moves to PAGER_READER state.
+** If running in non-exclusive rollback mode, the lock on the file is
+** downgraded to a SHARED_LOCK.
+**
+** SQLITE_OK is returned if no error occurs. If an error occurs during
+** any of the IO operations to finalize the journal file or unlock the
+** database then the IO error code is returned to the user. If the
+** operation to finalize the journal file fails, then the code still
+** tries to unlock the database file if not in exclusive mode. If the
+** unlock operation fails as well, then the first error code related
+** to the first error encountered (the journal finalization one) is
+** returned.
+*/
+static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){
+ int rc = SQLITE_OK; /* Error code from journal finalization operation */
+ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */
+
+ /* Do nothing if the pager does not have an open write transaction
+ ** or at least a RESERVED lock. This function may be called when there
+ ** is no write-transaction active but a RESERVED or greater lock is
+ ** held under two circumstances:
+ **
+ ** 1. After a successful hot-journal rollback, it is called with
+ ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
+ **
+ ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE
+ ** lock switches back to locking_mode=normal and then executes a
+ ** read-transaction, this function is called with eState==PAGER_READER
+ ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
+ */
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState!=PAGER_ERROR );
+ if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
+ return SQLITE_OK;
+ }
+
+ releaseAllSavepoints(pPager);
+ assert( isOpen(pPager->jfd) || pPager->pInJournal==0
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
+ );
+ if( isOpen(pPager->jfd) ){
+ assert( !pagerUseWal(pPager) );
+
+ /* Finalize the journal file. */
+ if( sqlite3JournalIsInMemory(pPager->jfd) ){
+ /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */
+ sqlite3OsClose(pPager->jfd);
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
+ if( pPager->journalOff==0 ){
+ rc = SQLITE_OK;
+ }else{
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ if( rc==SQLITE_OK && pPager->fullSync ){
+ /* Make sure the new file size is written into the inode right away.
+ ** Otherwise the journal might resurrect following a power loss and
+ ** cause the last transaction to roll back. See
+ ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773
+ */
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
+ }
+ }
+ pPager->journalOff = 0;
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
+ ){
+ rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile);
+ pPager->journalOff = 0;
+ }else{
+ /* This branch may be executed with Pager.journalMode==MEMORY if
+ ** a hot-journal was just rolled back. In this case the journal
+ ** file should be closed and deleted. If this connection writes to
+ ** the database file, it will do so using an in-memory journal.
+ */
+ int bDelete = !pPager->tempFile;
+ assert( sqlite3JournalIsInMemory(pPager->jfd)==0 );
+ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ sqlite3OsClose(pPager->jfd);
+ if( bDelete ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync);
+ }
+ }
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
+ if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
+ PgHdr *p = sqlite3PagerLookup(pPager, 1);
+ if( p ){
+ p->pageHash = 0;
+ sqlite3PagerUnrefNotNull(p);
+ }
+ }
+#endif
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ pPager->nRec = 0;
+ if( rc==SQLITE_OK ){
+ if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ }else{
+ sqlite3PcacheClearWritable(pPager->pPCache);
+ }
+ sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
+ }
+
+ if( pagerUseWal(pPager) ){
+ /* Drop the WAL write-lock, if any. Also, if the connection was in
+ ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE
+ ** lock held on the database file.
+ */
+ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
+ assert( rc2==SQLITE_OK );
+ }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){
+ /* This branch is taken when committing a transaction in rollback-journal
+ ** mode if the database file on disk is larger than the database image.
+ ** At this point the journal has been finalized and the transaction
+ ** successfully committed, but the EXCLUSIVE lock is still held on the
+ ** file. So it is safe to truncate the database file to its minimum
+ ** required size. */
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ rc = pager_truncate(pPager, pPager->dbSize);
+ }
+
+ if( rc==SQLITE_OK && bCommit ){
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ }
+
+ if( !pPager->exclusiveMode
+ && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
+ ){
+ rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ pPager->eState = PAGER_READER;
+ pPager->setSuper = 0;
+
+ return (rc==SQLITE_OK?rc2:rc);
+}
+
+/*
+** Execute a rollback if a transaction is active and unlock the
+** database file.
+**
+** If the pager has already entered the ERROR state, do not attempt
+** the rollback at this time. Instead, pager_unlock() is called. The
+** call to pager_unlock() will discard all in-memory pages, unlock
+** the database file and move the pager back to OPEN state. If this
+** means that there is a hot-journal left in the file-system, the next
+** connection to obtain a shared lock on the pager (which may be this one)
+** will roll it back.
+**
+** If the pager has not already entered the ERROR state, but an IO or
+** malloc error occurs during a rollback, then this will itself cause
+** the pager to enter the ERROR state. Which will be cleared by the
+** call to pager_unlock(), as described above.
+*/
+static void pagerUnlockAndRollback(Pager *pPager){
+ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_LOCKED ){
+ sqlite3BeginBenignMalloc();
+ sqlite3PagerRollback(pPager);
+ sqlite3EndBenignMalloc();
+ }else if( !pPager->exclusiveMode ){
+ assert( pPager->eState==PAGER_READER );
+ pager_end_transaction(pPager, 0, 0);
+ }
+ }
+ pager_unlock(pPager);
+}
+
+/*
+** Parameter aData must point to a buffer of pPager->pageSize bytes
+** of data. Compute and return a checksum based ont the contents of the
+** page of data and the current value of pPager->cksumInit.
+**
+** This is not a real checksum. It is really just the sum of the
+** random initial value (pPager->cksumInit) and every 200th byte
+** of the page data, starting with byte offset (pPager->pageSize%200).
+** Each byte is interpreted as an 8-bit unsigned integer.
+**
+** Changing the formula used to compute this checksum results in an
+** incompatible journal file format.
+**
+** If journal corruption occurs due to a power failure, the most likely
+** scenario is that one end or the other of the record will be changed.
+** It is much less likely that the two ends of the journal record will be
+** correct and the middle be corrupt. Thus, this "checksum" scheme,
+** though fast and simple, catches the mostly likely kind of corruption.
+*/
+static u32 pager_cksum(Pager *pPager, const u8 *aData){
+ u32 cksum = pPager->cksumInit; /* Checksum value to return */
+ int i = pPager->pageSize-200; /* Loop counter */
+ while( i>0 ){
+ cksum += aData[i];
+ i -= 200;
+ }
+ return cksum;
+}
+
+/*
+** Report the current page size and number of reserved bytes back
+** to the codec.
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+static void pagerReportSize(Pager *pPager){
+ if( pPager->xCodecSizeChng ){
+ pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize,
+ (int)pPager->nReserve);
+ }
+}
+#else
+# define pagerReportSize(X) /* No-op if we do not support a codec */
+#endif
+/* END SQLCIPHER */
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+/*
+** Make sure the number of reserved bits is the same in the destination
+** pager as it is in the source. This comes up when a VACUUM changes the
+** number of reserved bits to the "optimal" amount.
+*/
+SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager *pDest, Pager *pSrc){
+ if( pDest->nReserve!=pSrc->nReserve ){
+ pDest->nReserve = pSrc->nReserve;
+ pagerReportSize(pDest);
+ }
+}
+#endif
+/* END SQLCIPHER */
+
+/*
+** Read a single page from either the journal file (if isMainJrnl==1) or
+** from the sub-journal (if isMainJrnl==0) and playback that page.
+** The page begins at offset *pOffset into the file. The *pOffset
+** value is increased to the start of the next page in the journal.
+**
+** The main rollback journal uses checksums - the statement journal does
+** not.
+**
+** If the page number of the page record read from the (sub-)journal file
+** is greater than the current value of Pager.dbSize, then playback is
+** skipped and SQLITE_OK is returned.
+**
+** If pDone is not NULL, then it is a record of pages that have already
+** been played back. If the page at *pOffset has already been played back
+** (if the corresponding pDone bit is set) then skip the playback.
+** Make sure the pDone bit corresponding to the *pOffset page is set
+** prior to returning.
+**
+** If the page record is successfully read from the (sub-)journal file
+** and played back, then SQLITE_OK is returned. If an IO error occurs
+** while reading the record from the (sub-)journal file or while writing
+** to the database file, then the IO error code is returned. If data
+** is successfully read from the (sub-)journal file but appears to be
+** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
+** two circumstances:
+**
+** * If the record page-number is illegal (0 or PAGER_SJ_PGNO), or
+** * If the record is being rolled back from the main journal file
+** and the checksum field does not match the record content.
+**
+** Neither of these two scenarios are possible during a savepoint rollback.
+**
+** If this is a savepoint rollback, then memory may have to be dynamically
+** allocated by this function. If this is the case and an allocation fails,
+** SQLITE_NOMEM is returned.
+*/
+static int pager_playback_one_page(
+ Pager *pPager, /* The pager being played back */
+ i64 *pOffset, /* Offset of record to playback */
+ Bitvec *pDone, /* Bitvec of pages already played back */
+ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */
+ int isSavepnt /* True for a savepoint rollback */
+){
+ int rc;
+ PgHdr *pPg; /* An existing page in the cache */
+ Pgno pgno; /* The page number of a page in journal */
+ u32 cksum; /* Checksum used for sanity checking */
+ char *aData; /* Temporary storage for the page */
+ sqlite3_file *jfd; /* The file descriptor for the journal file */
+ int isSynced; /* True if journal page is synced */
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ /* The jrnlEnc flag is true if Journal pages should be passed through
+ ** the codec. It is false for pure in-memory journals. */
+ const int jrnlEnc = (isMainJrnl || pPager->subjInMemory==0);
+#endif
+/* END SQLCIPHER */
+
+ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */
+ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */
+ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */
+ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */
+
+ aData = pPager->pTmpSpace;
+ assert( aData ); /* Temp storage must have already been allocated */
+ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );
+
+ /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction
+ ** or savepoint rollback done at the request of the caller) or this is
+ ** a hot-journal rollback. If it is a hot-journal rollback, the pager
+ ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
+ ** only reads from the main journal, not the sub-journal.
+ */
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD
+ || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
+ );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );
+
+ /* Read the page number and page data from the journal or sub-journal
+ ** file. Return an error code to the caller if an IO error occurs.
+ */
+ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
+ rc = read32bits(jfd, *pOffset, &pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4);
+ if( rc!=SQLITE_OK ) return rc;
+ *pOffset += pPager->pageSize + 4 + isMainJrnl*4;
+
+ /* Sanity checking on the page. This is more important that I originally
+ ** thought. If a power failure occurs while the journal is being written,
+ ** it could cause invalid data to be written into the journal. We need to
+ ** detect this invalid data (with high probability) and ignore it.
+ */
+ if( pgno==0 || pgno==PAGER_SJ_PGNO(pPager) ){
+ assert( !isSavepnt );
+ return SQLITE_DONE;
+ }
+ if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){
+ return SQLITE_OK;
+ }
+ if( isMainJrnl ){
+ rc = read32bits(jfd, (*pOffset)-4, &cksum);
+ if( rc ) return rc;
+ if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* If this page has already been played back before during the current
+ ** rollback, then don't bother to play it back again.
+ */
+ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* When playing back page 1, restore the nReserve setting
+ */
+ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){
+ pPager->nReserve = ((u8*)aData)[20];
+ pagerReportSize(pPager);
+ }
+
+ /* If the pager is in CACHEMOD state, then there must be a copy of this
+ ** page in the pager cache. In this case just update the pager cache,
+ ** not the database file. The page is left marked dirty in this case.
+ **
+ ** An exception to the above rule: If the database is in no-sync mode
+ ** and a page is moved during an incremental vacuum then the page may
+ ** not be in the pager cache. Later: if a malloc() or IO error occurs
+ ** during a Movepage() call, then the page may not be in the cache
+ ** either. So the condition described in the above paragraph is not
+ ** assert()able.
+ **
+ ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
+ ** pager cache if it exists and the main file. The page is then marked
+ ** not dirty. Since this code is only executed in PAGER_OPEN state for
+ ** a hot-journal rollback, it is guaranteed that the page-cache is empty
+ ** if the pager is in OPEN state.
+ **
+ ** Ticket #1171: The statement journal might contain page content that is
+ ** different from the page content at the start of the transaction.
+ ** This occurs when a page is changed prior to the start of a statement
+ ** then changed again within the statement. When rolling back such a
+ ** statement we must not write to the original database unless we know
+ ** for certain that original page contents are synced into the main rollback
+ ** journal. Otherwise, a power loss might leave modified data in the
+ ** database file without an entry in the rollback journal that can
+ ** restore the database to its original form. Two conditions must be
+ ** met before writing to the database files. (1) the database must be
+ ** locked. (2) we know that the original page content is fully synced
+ ** in the main journal either because the page is not in cache or else
+ ** the page is marked as needSync==0.
+ **
+ ** 2008-04-14: When attempting to vacuum a corrupt database file, it
+ ** is possible to fail a statement on a database that does not yet exist.
+ ** Do not attempt to write if database file has never been opened.
+ */
+ if( pagerUseWal(pPager) ){
+ pPg = 0;
+ }else{
+ pPg = sqlite3PagerLookup(pPager, pgno);
+ }
+ assert( pPg || !MEMDB );
+ assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile );
+ PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
+ PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
+ (isMainJrnl?"main-journal":"sub-journal")
+ ));
+ if( isMainJrnl ){
+ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr);
+ }else{
+ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
+ }
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ && isSynced
+ ){
+ i64 ofst = (pgno-1)*(i64)pPager->pageSize;
+ testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
+ assert( !pagerUseWal(pPager) );
+
+ /* Write the data read from the journal back into the database file.
+ ** This is usually safe even for an encrypted database - as the data
+ ** was encrypted before it was written to the journal file. The exception
+ ** is if the data was just read from an in-memory sub-journal. In that
+ ** case it must be encrypted here before it is copied into the database
+ ** file. */
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if( !jrnlEnc ){
+ CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData);
+ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);
+ CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT);
+ }else
+#endif
+/* END SQLCIPHER */
+ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);
+
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ if( pPager->pBackup ){
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if( jrnlEnc ){
+ CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT);
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
+ CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT,aData);
+ }else
+#endif
+/* END SQLCIPHER */
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
+ }
+ }else if( !isMainJrnl && pPg==0 ){
+ /* If this is a rollback of a savepoint and data was not written to
+ ** the database and the page is not in-memory, there is a potential
+ ** problem. When the page is next fetched by the b-tree layer, it
+ ** will be read from the database file, which may or may not be
+ ** current.
+ **
+ ** There are a couple of different ways this can happen. All are quite
+ ** obscure. When running in synchronous mode, this can only happen
+ ** if the page is on the free-list at the start of the transaction, then
+ ** populated, then moved using sqlite3PagerMovepage().
+ **
+ ** The solution is to add an in-memory page to the cache containing
+ ** the data just read from the sub-journal. Mark the page as dirty
+ ** and if the pager requires a journal-sync, then mark the page as
+ ** requiring a journal-sync before it is written.
+ */
+ assert( isSavepnt );
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
+ pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
+ rc = sqlite3PagerGet(pPager, pgno, &pPg, 1);
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
+ pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3PcacheMakeDirty(pPg);
+ }
+ if( pPg ){
+ /* No page should ever be explicitly rolled back that is in use, except
+ ** for page 1 which is held in use in order to keep the lock on the
+ ** database active. However such a page may be rolled back as a result
+ ** of an internal error resulting in an automatic call to
+ ** sqlite3PagerRollback().
+ */
+ void *pData;
+ pData = pPg->pData;
+ memcpy(pData, (u8*)aData, pPager->pageSize);
+ pPager->xReiniter(pPg);
+ /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But
+ ** that call was dangerous and had no detectable benefit since the cache
+ ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so
+ ** has been removed. */
+ pager_set_pagehash(pPg);
+
+ /* If this was page 1, then restore the value of Pager.dbFileVers.
+ ** Do this before any decoding. */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
+ }
+
+ /* Decode the page just read from disk */
+/* BEGIN SQLCIPHER */
+#if SQLITE_HAS_CODEC
+ if( jrnlEnc ){ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT); }
+#endif
+/* END SQLCIPHER */
+ sqlite3PcacheRelease(pPg);
+ }
+ return rc;
+}
+
+/*
+** Parameter zSuper is the name of a super-journal file. A single journal
+** file that referred to the super-journal file has just been rolled back.
+** This routine checks if it is possible to delete the super-journal file,
+** and does so if it is.
+**
+** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not
+** available for use within this function.
+**
+** When a super-journal file is created, it is populated with the names
+** of all of its child journals, one after another, formatted as utf-8
+** encoded text. The end of each child journal file is marked with a
+** nul-terminator byte (0x00). i.e. the entire contents of a super-journal
+** file for a transaction involving two databases might be:
+**
+** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
+**
+** A super-journal file may only be deleted once all of its child
+** journals have been rolled back.
+**
+** This function reads the contents of the super-journal file into
+** memory and loops through each of the child journal names. For
+** each child journal, it checks if:
+**
+** * if the child journal exists, and if so
+** * if the child journal contains a reference to super-journal
+** file zSuper
+**
+** If a child journal can be found that matches both of the criteria
+** above, this function returns without doing anything. Otherwise, if
+** no such child journal can be found, file zSuper is deleted from
+** the file-system using sqlite3OsDelete().
+**
+** If an IO error within this function, an error code is returned. This
+** function allocates memory by calling sqlite3Malloc(). If an allocation
+** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors
+** occur, SQLITE_OK is returned.
+**
+** TODO: This function allocates a single block of memory to load
+** the entire contents of the super-journal file. This could be
+** a couple of kilobytes or so - potentially larger than the page
+** size.
+*/
+static int pager_delsuper(Pager *pPager, const char *zSuper){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int rc; /* Return code */
+ sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */
+ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */
+ char *zSuperJournal = 0; /* Contents of super-journal file */
+ i64 nSuperJournal; /* Size of super-journal file */
+ char *zJournal; /* Pointer to one journal within MJ file */
+ char *zSuperPtr; /* Space to hold super-journal filename */
+ char *zFree = 0; /* Free this buffer */
+ int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */
+
+ /* Allocate space for both the pJournal and pSuper file descriptors.
+ ** If successful, open the super-journal file for reading.
+ */
+ pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2);
+ if( !pSuper ){
+ rc = SQLITE_NOMEM_BKPT;
+ pJournal = 0;
+ }else{
+ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0);
+ pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile);
+ }
+ if( rc!=SQLITE_OK ) goto delsuper_out;
+
+ /* Load the entire super-journal file into space obtained from
+ ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain
+ ** sufficient space (in zSuperPtr) to hold the names of super-journal
+ ** files extracted from regular rollback-journals.
+ */
+ rc = sqlite3OsFileSize(pSuper, &nSuperJournal);
+ if( rc!=SQLITE_OK ) goto delsuper_out;
+ nSuperPtr = pVfs->mxPathname+1;
+ zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2);
+ if( !zFree ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto delsuper_out;
+ }
+ zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0;
+ zSuperJournal = &zFree[4];
+ zSuperPtr = &zSuperJournal[nSuperJournal+2];
+ rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0);
+ if( rc!=SQLITE_OK ) goto delsuper_out;
+ zSuperJournal[nSuperJournal] = 0;
+ zSuperJournal[nSuperJournal+1] = 0;
+
+ zJournal = zSuperJournal;
+ while( (zJournal-zSuperJournal)<nSuperJournal ){
+ int exists;
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc!=SQLITE_OK ){
+ goto delsuper_out;
+ }
+ if( exists ){
+ /* One of the journals pointed to by the super-journal exists.
+ ** Open it and check if it points at the super-journal. If
+ ** so, return without deleting the super-journal file.
+ ** NB: zJournal is really a MAIN_JOURNAL. But call it a
+ ** SUPER_JOURNAL here so that the VFS will not send the zJournal
+ ** name into sqlite3_database_file_object().
+ */
+ int c;
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
+ if( rc!=SQLITE_OK ){
+ goto delsuper_out;
+ }
+
+ rc = readSuperJournal(pJournal, zSuperPtr, nSuperPtr);
+ sqlite3OsClose(pJournal);
+ if( rc!=SQLITE_OK ){
+ goto delsuper_out;
+ }
+
+ c = zSuperPtr[0]!=0 && strcmp(zSuperPtr, zSuper)==0;
+ if( c ){
+ /* We have a match. Do not delete the super-journal file. */
+ goto delsuper_out;
+ }
+ }
+ zJournal += (sqlite3Strlen30(zJournal)+1);
+ }
+
+ sqlite3OsClose(pSuper);
+ rc = sqlite3OsDelete(pVfs, zSuper, 0);
+
+delsuper_out:
+ sqlite3_free(zFree);
+ if( pSuper ){
+ sqlite3OsClose(pSuper);
+ assert( !isOpen(pJournal) );
+ sqlite3_free(pSuper);
+ }
+ return rc;
+}
+
+
+/*
+** This function is used to change the actual size of the database
+** file in the file-system. This only happens when committing a transaction,
+** or rolling back a transaction (including rolling back a hot-journal).
+**
+** If the main database file is not open, or the pager is not in either
+** DBMOD or OPEN state, this function is a no-op. Otherwise, the size
+** of the file is changed to nPage pages (nPage*pPager->pageSize bytes).
+** If the file on disk is currently larger than nPage pages, then use the VFS
+** xTruncate() method to truncate it.
+**
+** Or, it might be the case that the file on disk is smaller than
+** nPage pages. Some operating system implementations can get confused if
+** you try to truncate a file to some size that is larger than it
+** currently is, so detect this case and write a single zero byte to
+** the end of the new file instead.
+**
+** If successful, return SQLITE_OK. If an IO error occurs while modifying
+** the database file, return the error code to the caller.
+*/
+static int pager_truncate(Pager *pPager, Pgno nPage){
+ int rc = SQLITE_OK;
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState!=PAGER_READER );
+
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
+ i64 currentSize, newSize;
+ int szPage = pPager->pageSize;
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ /* TODO: Is it safe to use Pager.dbFileSize here? */
+ rc = sqlite3OsFileSize(pPager->fd, &currentSize);
+ newSize = szPage*(i64)nPage;
+ if( rc==SQLITE_OK && currentSize!=newSize ){
+ if( currentSize>newSize ){
+ rc = sqlite3OsTruncate(pPager->fd, newSize);
+ }else if( (currentSize+szPage)<=newSize ){
+ char *pTmp = pPager->pTmpSpace;
+ memset(pTmp, 0, szPage);
+ testcase( (newSize-szPage) == currentSize );
+ testcase( (newSize-szPage) > currentSize );
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &newSize);
+ rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage);
+ }
+ if( rc==SQLITE_OK ){
+ pPager->dbFileSize = nPage;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return a sanitized version of the sector-size of OS file pFile. The
+** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE.
+*/
+SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){
+ int iRet = sqlite3OsSectorSize(pFile);
+ if( iRet<32 ){
+ iRet = 512;
+ }else if( iRet>MAX_SECTOR_SIZE ){
+ assert( MAX_SECTOR_SIZE>=512 );
+ iRet = MAX_SECTOR_SIZE;
+ }
+ return iRet;
+}
+
+/*
+** Set the value of the Pager.sectorSize variable for the given
+** pager based on the value returned by the xSectorSize method
+** of the open database file. The sector size will be used
+** to determine the size and alignment of journal header and
+** super-journal pointers within created journal files.
+**
+** For temporary files the effective sector size is always 512 bytes.
+**
+** Otherwise, for non-temporary files, the effective sector size is
+** the value returned by the xSectorSize() method rounded up to 32 if
+** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it
+** is greater than MAX_SECTOR_SIZE.
+**
+** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set
+** the effective sector size to its minimum value (512). The purpose of
+** pPager->sectorSize is to define the "blast radius" of bytes that
+** might change if a crash occurs while writing to a single byte in
+** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero
+** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector
+** size. For backwards compatibility of the rollback journal file format,
+** we cannot reduce the effective sector size below 512.
+*/
+static void setSectorSize(Pager *pPager){
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ if( pPager->tempFile
+ || (sqlite3OsDeviceCharacteristics(pPager->fd) &
+ SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0
+ ){
+ /* Sector size doesn't matter for temporary files. Also, the file
+ ** may not have been opened yet, in which case the OsSectorSize()
+ ** call will segfault. */
+ pPager->sectorSize = 512;
+ }else{
+ pPager->sectorSize = sqlite3SectorSize(pPager->fd);
+ }
+}
+
+/*
+** Playback the journal and thus restore the database file to
+** the state it was in before we started making changes.
+**
+** The journal file format is as follows:
+**
+** (1) 8 byte prefix. A copy of aJournalMagic[].
+** (2) 4 byte big-endian integer which is the number of valid page records
+** in the journal. If this value is 0xffffffff, then compute the
+** number of page records from the journal size.
+** (3) 4 byte big-endian integer which is the initial value for the
+** sanity checksum.
+** (4) 4 byte integer which is the number of pages to truncate the
+** database to during a rollback.
+** (5) 4 byte big-endian integer which is the sector size. The header
+** is this many bytes in size.
+** (6) 4 byte big-endian integer which is the page size.
+** (7) zero padding out to the next sector size.
+** (8) Zero or more pages instances, each as follows:
+** + 4 byte page number.
+** + pPager->pageSize bytes of data.
+** + 4 byte checksum
+**
+** When we speak of the journal header, we mean the first 7 items above.
+** Each entry in the journal is an instance of the 8th item.
+**
+** Call the value from the second bullet "nRec". nRec is the number of
+** valid page entries in the journal. In most cases, you can compute the
+** value of nRec from the size of the journal file. But if a power
+** failure occurred while the journal was being written, it could be the
+** case that the size of the journal file had already been increased but
+** the extra entries had not yet made it safely to disk. In such a case,
+** the value of nRec computed from the file size would be too large. For
+** that reason, we always use the nRec value in the header.
+**
+** If the nRec value is 0xffffffff it means that nRec should be computed
+** from the file size. This value is used when the user selects the
+** no-sync option for the journal. A power failure could lead to corruption
+** in this case. But for things like temporary table (which will be
+** deleted when the power is restored) we don't care.
+**
+** If the file opened as the journal file is not a well-formed
+** journal file then all pages up to the first corrupted page are rolled
+** back (or no pages if the journal header is corrupted). The journal file
+** is then deleted and SQLITE_OK returned, just as if no corruption had
+** been encountered.
+**
+** If an I/O or malloc() error occurs, the journal-file is not deleted
+** and an error code is returned.
+**
+** The isHot parameter indicates that we are trying to rollback a journal
+** that might be a hot journal. Or, it could be that the journal is
+** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
+** If the journal really is hot, reset the pager cache prior rolling
+** back any content. If the journal is merely persistent, no reset is
+** needed.
+*/
+static int pager_playback(Pager *pPager, int isHot){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ i64 szJ; /* Size of the journal file in bytes */
+ u32 nRec; /* Number of Records in the journal */
+ u32 u; /* Unsigned loop counter */
+ Pgno mxPg = 0; /* Size of the original file in pages */
+ int rc; /* Result code of a subroutine */
+ int res = 1; /* Value returned by sqlite3OsAccess() */
+ char *zSuper = 0; /* Name of super-journal file if any */
+ int needPagerReset; /* True to reset page prior to first page rollback */
+ int nPlayback = 0; /* Total number of pages restored from journal */
+ u32 savedPageSize = pPager->pageSize;
+
+ /* Figure out how many records are in the journal. Abort early if
+ ** the journal is empty.
+ */
+ assert( isOpen(pPager->jfd) );
+ rc = sqlite3OsFileSize(pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+
+ /* Read the super-journal name from the journal, if it is present.
+ ** If a super-journal file name is specified, but the file is not
+ ** present on disk, then the journal is not hot and does not need to be
+ ** played back.
+ **
+ ** TODO: Technically the following is an error because it assumes that
+ ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
+ ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
+ ** mxPathname is 512, which is the same as the minimum allowable value
+ ** for pageSize.
+ */
+ zSuper = pPager->pTmpSpace;
+ rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1);
+ if( rc==SQLITE_OK && zSuper[0] ){
+ rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
+ }
+ zSuper = 0;
+ if( rc!=SQLITE_OK || !res ){
+ goto end_playback;
+ }
+ pPager->journalOff = 0;
+ needPagerReset = isHot;
+
+ /* This loop terminates either when a readJournalHdr() or
+ ** pager_playback_one_page() call returns SQLITE_DONE or an IO error
+ ** occurs.
+ */
+ while( 1 ){
+ /* Read the next journal header from the journal file. If there are
+ ** not enough bytes left in the journal file for a complete header, or
+ ** it is corrupted, then a process must have failed while writing it.
+ ** This indicates nothing more needs to be rolled back.
+ */
+ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+ goto end_playback;
+ }
+
+ /* If nRec is 0xffffffff, then this journal was created by a process
+ ** working in no-sync mode. This means that the rest of the journal
+ ** file consists of pages, there are no more journal headers. Compute
+ ** the value of nRec based on this assumption.
+ */
+ if( nRec==0xffffffff ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
+ nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
+ }
+
+ /* If nRec is 0 and this rollback is of a transaction created by this
+ ** process and if this is the final header in the journal, then it means
+ ** that this part of the journal was being filled but has not yet been
+ ** synced to disk. Compute the number of pages based on the remaining
+ ** size of the file.
+ **
+ ** The third term of the test was added to fix ticket #2565.
+ ** When rolling back a hot journal, nRec==0 always means that the next
+ ** chunk of the journal contains zero pages to be rolled back. But
+ ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
+ ** the journal, it means that the journal might contain additional
+ ** pages that need to be rolled back and that the number of pages
+ ** should be computed based on the journal file size.
+ */
+ if( nRec==0 && !isHot &&
+ pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
+ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
+ }
+
+ /* If this is the first header read from the journal, truncate the
+ ** database file back to its original size.
+ */
+ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
+ rc = pager_truncate(pPager, mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ pPager->dbSize = mxPg;
+ if( pPager->mxPgno<mxPg ){
+ pPager->mxPgno = mxPg;
+ }
+ }
+
+ /* Copy original pages out of the journal and back into the
+ ** database file and/or page cache.
+ */
+ for(u=0; u<nRec; u++){
+ if( needPagerReset ){
+ pager_reset(pPager);
+ needPagerReset = 0;
+ }
+ rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0);
+ if( rc==SQLITE_OK ){
+ nPlayback++;
+ }else{
+ if( rc==SQLITE_DONE ){
+ pPager->journalOff = szJ;
+ break;
+ }else if( rc==SQLITE_IOERR_SHORT_READ ){
+ /* If the journal has been truncated, simply stop reading and
+ ** processing the journal. This might happen if the journal was
+ ** not completely written and synced prior to a crash. In that
+ ** case, the database should have never been written in the
+ ** first place so it is OK to simply abandon the rollback. */
+ rc = SQLITE_OK;
+ goto end_playback;
+ }else{
+ /* If we are unable to rollback, quit and return the error
+ ** code. This will cause the pager to enter the error state
+ ** so that no further harm will be done. Perhaps the next
+ ** process to come along will be able to rollback the database.
+ */
+ goto end_playback;
+ }
+ }
+ }
+ }
+ /*NOTREACHED*/
+ assert( 0 );
+
+end_playback:
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1);
+ }
+ /* Following a rollback, the database file should be back in its original
+ ** state prior to the start of the transaction, so invoke the
+ ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
+ ** assertion that the transaction counter was modified.
+ */
+#ifdef SQLITE_DEBUG
+ sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0);
+#endif
+
+ /* If this playback is happening automatically as a result of an IO or
+ ** malloc error that occurred after the change-counter was updated but
+ ** before the transaction was committed, then the change-counter
+ ** modification may just have been reverted. If this happens in exclusive
+ ** mode, then subsequent transactions performed by the connection will not
+ ** update the change-counter at all. This may lead to cache inconsistency
+ ** problems for other processes at some point in the future. So, just
+ ** in case this has happened, clear the changeCountDone flag now.
+ */
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( rc==SQLITE_OK ){
+ /* Leave 4 bytes of space before the super-journal filename in memory.
+ ** This is because it may end up being passed to sqlite3OsOpen(), in
+ ** which case it requires 4 0x00 bytes in memory immediately before
+ ** the filename. */
+ zSuper = &pPager->pTmpSpace[4];
+ rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( rc==SQLITE_OK
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
+ rc = sqlite3PagerSync(pPager, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( rc==SQLITE_OK && zSuper[0] && res ){
+ /* If there was a super-journal and this routine will return success,
+ ** see if it is possible to delete the super-journal.
+ */
+ assert( zSuper==&pPager->pTmpSpace[4] );
+ memset(&zSuper[-4], 0, 4);
+ rc = pager_delsuper(pPager, zSuper);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( isHot && nPlayback ){
+ sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s",
+ nPlayback, pPager->zJournal);
+ }
+
+ /* The Pager.sectorSize variable may have been updated while rolling
+ ** back a journal created by a process with a different sector size
+ ** value. Reset it to the correct value for this process.
+ */
+ setSectorSize(pPager);
+ return rc;
+}
+
+
+/*
+** Read the content for page pPg out of the database file (or out of
+** the WAL if that is where the most recent copy if found) into
+** pPg->pData. A shared lock or greater must be held on the database
+** file before this function is called.
+**
+** If page 1 is read, then the value of Pager.dbFileVers[] is set to
+** the value read from the database file.
+**
+** If an IO error occurs, then the IO error is returned to the caller.
+** Otherwise, SQLITE_OK is returned.
+*/
+static int readDbPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
+ int rc = SQLITE_OK; /* Return code */
+
+#ifndef SQLITE_OMIT_WAL
+ u32 iFrame = 0; /* Frame of WAL containing pgno */
+
+ assert( pPager->eState>=PAGER_READER && !MEMDB );
+ assert( isOpen(pPager->fd) );
+
+ if( pagerUseWal(pPager) ){
+ rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame);
+ if( rc ) return rc;
+ }
+ if( iFrame ){
+ rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData);
+ }else
+#endif
+ {
+ i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+
+ if( pPg->pgno==1 ){
+ if( rc ){
+ /* If the read is unsuccessful, set the dbFileVers[] to something
+ ** that will never be a valid file version. dbFileVers[] is a copy
+ ** of bytes 24..39 of the database. Bytes 28..31 should always be
+ ** zero or the size of the database in page. Bytes 32..35 and 35..39
+ ** should be page numbers which are never 0xffffffff. So filling
+ ** pPager->dbFileVers[] with all 0xff bytes should suffice.
+ **
+ ** For an encrypted database, the situation is more complex: bytes
+ ** 24..39 of the database are white noise. But the probability of
+ ** white noise equaling 16 bytes of 0xff is vanishingly small so
+ ** we should still be ok.
+ */
+ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
+ }else{
+ u8 *dbFileVers = &((u8*)pPg->pData)[24];
+ memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
+ }
+ }
+ CODEC1(pPager, pPg->pData, pPg->pgno, 3, rc = SQLITE_NOMEM_BKPT);
+
+ PAGER_INCR(sqlite3_pager_readdb_count);
+ PAGER_INCR(pPager->nRead);
+ IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno));
+ PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)));
+
+ return rc;
+}
+
+/*
+** Update the value of the change-counter at offsets 24 and 92 in
+** the header and the sqlite version number at offset 96.
+**
+** This is an unconditional update. See also the pager_incr_changecounter()
+** routine which only updates the change-counter if the update is actually
+** needed, as determined by the pPager->changeCountDone state variable.
+*/
+static void pager_write_changecounter(PgHdr *pPg){
+ u32 change_counter;
+ if( NEVER(pPg==0) ) return;
+
+ /* Increment the value just read and write it back to byte 24. */
+ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1;
+ put32bits(((char*)pPg->pData)+24, change_counter);
+
+ /* Also store the SQLite version number in bytes 96..99 and in
+ ** bytes 92..95 store the change counter for which the version number
+ ** is valid. */
+ put32bits(((char*)pPg->pData)+92, change_counter);
+ put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER);
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** This function is invoked once for each page that has already been
+** written into the log file when a WAL transaction is rolled back.
+** Parameter iPg is the page number of said page. The pCtx argument
+** is actually a pointer to the Pager structure.
+**
+** If page iPg is present in the cache, and has no outstanding references,
+** it is discarded. Otherwise, if there are one or more outstanding
+** references, the page content is reloaded from the database. If the
+** attempt to reload content from the database is required and fails,
+** return an SQLite error code. Otherwise, SQLITE_OK.
+*/
+static int pagerUndoCallback(void *pCtx, Pgno iPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = (Pager *)pCtx;
+ PgHdr *pPg;
+
+ assert( pagerUseWal(pPager) );
+ pPg = sqlite3PagerLookup(pPager, iPg);
+ if( pPg ){
+ if( sqlite3PcachePageRefcount(pPg)==1 ){
+ sqlite3PcacheDrop(pPg);
+ }else{
+ rc = readDbPage(pPg);
+ if( rc==SQLITE_OK ){
+ pPager->xReiniter(pPg);
+ }
+ sqlite3PagerUnrefNotNull(pPg);
+ }
+ }
+
+ /* Normally, if a transaction is rolled back, any backup processes are
+ ** updated as data is copied out of the rollback journal and into the
+ ** database. This is not generally possible with a WAL database, as
+ ** rollback involves simply truncating the log file. Therefore, if one
+ ** or more frames have already been written to the log (and therefore
+ ** also copied into the backup databases) as part of this transaction,
+ ** the backups must be restarted.
+ */
+ sqlite3BackupRestart(pPager->pBackup);
+
+ return rc;
+}
+
+/*
+** This function is called to rollback a transaction on a WAL database.
+*/
+static int pagerRollbackWal(Pager *pPager){
+ int rc; /* Return Code */
+ PgHdr *pList; /* List of dirty pages to revert */
+
+ /* For all pages in the cache that are currently dirty or have already
+ ** been written (but not committed) to the log file, do one of the
+ ** following:
+ **
+ ** + Discard the cached page (if refcount==0), or
+ ** + Reload page content from the database (if refcount>0).
+ */
+ pPager->dbSize = pPager->dbOrigSize;
+ rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager);
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ while( pList && rc==SQLITE_OK ){
+ PgHdr *pNext = pList->pDirty;
+ rc = pagerUndoCallback((void *)pPager, pList->pgno);
+ pList = pNext;
+ }
+
+ return rc;
+}
+
+/*
+** This function is a wrapper around sqlite3WalFrames(). As well as logging
+** the contents of the list of pages headed by pList (connected by pDirty),
+** this function notifies any active backup processes that the pages have
+** changed.
+**
+** The list of pages passed into this routine is always sorted by page number.
+** Hence, if page 1 appears anywhere on the list, it will be the first page.
+*/
+static int pagerWalFrames(
+ Pager *pPager, /* Pager object */
+ PgHdr *pList, /* List of frames to log */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit /* True if this is a commit */
+){
+ int rc; /* Return code */
+ int nList; /* Number of pages in pList */
+ PgHdr *p; /* For looping over pages */
+
+ assert( pPager->pWal );
+ assert( pList );
+#ifdef SQLITE_DEBUG
+ /* Verify that the page list is in accending order */
+ for(p=pList; p && p->pDirty; p=p->pDirty){
+ assert( p->pgno < p->pDirty->pgno );
+ }
+#endif
+
+ assert( pList->pDirty==0 || isCommit );
+ if( isCommit ){
+ /* If a WAL transaction is being committed, there is no point in writing
+ ** any pages with page numbers greater than nTruncate into the WAL file.
+ ** They will never be read by any client. So remove them from the pDirty
+ ** list here. */
+ PgHdr **ppNext = &pList;
+ nList = 0;
+ for(p=pList; (*ppNext = p)!=0; p=p->pDirty){
+ if( p->pgno<=nTruncate ){
+ ppNext = &p->pDirty;
+ nList++;
+ }
+ }
+ assert( pList );
+ }else{
+ nList = 1;
+ }
+ pPager->aStat[PAGER_STAT_WRITE] += nList;
+
+ if( pList->pgno==1 ) pager_write_changecounter(pList);
+ rc = sqlite3WalFrames(pPager->pWal,
+ pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags
+ );
+ if( rc==SQLITE_OK && pPager->pBackup ){
+ for(p=pList; p; p=p->pDirty){
+ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData);
+ }
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ for(p=pList; p; p=p->pDirty){
+ pager_set_pagehash(p);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Begin a read transaction on the WAL.
+**
+** This routine used to be called "pagerOpenSnapshot()" because it essentially
+** makes a snapshot of the database at the current point in time and preserves
+** that snapshot for use by the reader in spite of concurrently changes by
+** other writers or checkpointers.
+*/
+static int pagerBeginReadTransaction(Pager *pPager){
+ int rc; /* Return code */
+ int changed = 0; /* True if cache must be reset */
+
+ assert( pagerUseWal(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
+
+ /* sqlite3WalEndReadTransaction() was not called for the previous
+ ** transaction in locking_mode=EXCLUSIVE. So call it now. If we
+ ** are in locking_mode=NORMAL and EndRead() was previously called,
+ ** the duplicate call is harmless.
+ */
+ sqlite3WalEndReadTransaction(pPager->pWal);
+
+ rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed);
+ if( rc!=SQLITE_OK || changed ){
+ pager_reset(pPager);
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
+ }
+
+ return rc;
+}
+#endif
+
+/*
+** This function is called as part of the transition from PAGER_OPEN
+** to PAGER_READER state to determine the size of the database file
+** in pages (assuming the page size currently stored in Pager.pageSize).
+**
+** If no error occurs, SQLITE_OK is returned and the size of the database
+** in pages is stored in *pnPage. Otherwise, an error code (perhaps
+** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
+*/
+static int pagerPagecount(Pager *pPager, Pgno *pnPage){
+ Pgno nPage; /* Value to return via *pnPage */
+
+ /* Query the WAL sub-system for the database size. The WalDbsize()
+ ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or
+ ** if the database size is not available. The database size is not
+ ** available from the WAL sub-system if the log file is empty or
+ ** contains no valid committed transactions.
+ */
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK );
+ assert( isOpen(pPager->fd) );
+ assert( pPager->tempFile==0 );
+ nPage = sqlite3WalDbsize(pPager->pWal);
+
+ /* If the number of pages in the database is not available from the
+ ** WAL sub-system, determine the page count based on the size of
+ ** the database file. If the size of the database file is not an
+ ** integer multiple of the page-size, round up the result.
+ */
+ if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){
+ i64 n = 0; /* Size of db file in bytes */
+ int rc = sqlite3OsFileSize(pPager->fd, &n);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize);
+ }
+
+ /* If the current number of pages in the file is greater than the
+ ** configured maximum pager number, increase the allowed limit so
+ ** that the file can be read.
+ */
+ if( nPage>pPager->mxPgno ){
+ pPager->mxPgno = (Pgno)nPage;
+ }
+
+ *pnPage = nPage;
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Check if the *-wal file that corresponds to the database opened by pPager
+** exists if the database is not empy, or verify that the *-wal file does
+** not exist (by deleting it) if the database file is empty.
+**
+** If the database is not empty and the *-wal file exists, open the pager
+** in WAL mode. If the database is empty or if no *-wal file exists and
+** if no error occurs, make sure Pager.journalMode is not set to
+** PAGER_JOURNALMODE_WAL.
+**
+** Return SQLITE_OK or an error code.
+**
+** The caller must hold a SHARED lock on the database file to call this
+** function. Because an EXCLUSIVE lock on the db file is required to delete
+** a WAL on a none-empty database, this ensures there is no race condition
+** between the xAccess() below and an xDelete() being executed by some
+** other connection.
+*/
+static int pagerOpenWalIfPresent(Pager *pPager){
+ int rc = SQLITE_OK;
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK );
+
+ if( !pPager->tempFile ){
+ int isWal; /* True if WAL file exists */
+ rc = sqlite3OsAccess(
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal
+ );
+ if( rc==SQLITE_OK ){
+ if( isWal ){
+ Pgno nPage; /* Size of the database file */
+
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc ) return rc;
+ if( nPage==0 ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0);
+ }else{
+ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 );
+ rc = sqlite3PagerOpenWal(pPager, 0);
+ }
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){
+ pPager->journalMode = PAGER_JOURNALMODE_DELETE;
+ }
+ }
+ }
+ return rc;
+}
+#endif
+
+/*
+** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
+** the entire super-journal file. The case pSavepoint==NULL occurs when
+** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction
+** savepoint.
+**
+** When pSavepoint is not NULL (meaning a non-transaction savepoint is
+** being rolled back), then the rollback consists of up to three stages,
+** performed in the order specified:
+**
+** * Pages are played back from the main journal starting at byte
+** offset PagerSavepoint.iOffset and continuing to
+** PagerSavepoint.iHdrOffset, or to the end of the main journal
+** file if PagerSavepoint.iHdrOffset is zero.
+**
+** * If PagerSavepoint.iHdrOffset is not zero, then pages are played
+** back starting from the journal header immediately following
+** PagerSavepoint.iHdrOffset to the end of the main journal file.
+**
+** * Pages are then played back from the sub-journal file, starting
+** with the PagerSavepoint.iSubRec and continuing to the end of
+** the journal file.
+**
+** Throughout the rollback process, each time a page is rolled back, the
+** corresponding bit is set in a bitvec structure (variable pDone in the
+** implementation below). This is used to ensure that a page is only
+** rolled back the first time it is encountered in either journal.
+**
+** If pSavepoint is NULL, then pages are only played back from the main
+** journal file. There is no need for a bitvec in this case.
+**
+** In either case, before playback commences the Pager.dbSize variable
+** is reset to the value that it held at the start of the savepoint
+** (or transaction). No page with a page-number greater than this value
+** is played back. If one is encountered it is simply skipped.
+*/
+static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
+ i64 szJ; /* Effective size of the main journal */
+ i64 iHdrOff; /* End of first segment of main-journal records */
+ int rc = SQLITE_OK; /* Return code */
+ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */
+
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+
+ /* Allocate a bitvec to use to store the set of pages rolled back */
+ if( pSavepoint ){
+ pDone = sqlite3BitvecCreate(pSavepoint->nOrig);
+ if( !pDone ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+
+ /* Set the database size back to the value it was before the savepoint
+ ** being reverted was opened.
+ */
+ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( !pSavepoint && pagerUseWal(pPager) ){
+ return pagerRollbackWal(pPager);
+ }
+
+ /* Use pPager->journalOff as the effective size of the main rollback
+ ** journal. The actual file might be larger than this in
+ ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything
+ ** past pPager->journalOff is off-limits to us.
+ */
+ szJ = pPager->journalOff;
+ assert( pagerUseWal(pPager)==0 || szJ==0 );
+
+ /* Begin by rolling back records from the main journal starting at
+ ** PagerSavepoint.iOffset and continuing to the next journal header.
+ ** There might be records in the main journal that have a page number
+ ** greater than the current database size (pPager->dbSize) but those
+ ** will be skipped automatically. Pages are added to pDone as they
+ ** are played back.
+ */
+ if( pSavepoint && !pagerUseWal(pPager) ){
+ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
+ pPager->journalOff = pSavepoint->iOffset;
+ while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }else{
+ pPager->journalOff = 0;
+ }
+
+ /* Continue rolling back records out of the main journal starting at
+ ** the first journal header seen and continuing until the effective end
+ ** of the main journal file. Continue to skip out-of-range pages and
+ ** continue adding pages rolled back to pDone.
+ */
+ while( rc==SQLITE_OK && pPager->journalOff<szJ ){
+ u32 ii; /* Loop counter */
+ u32 nJRec = 0; /* Number of Journal Records */
+ u32 dummy;
+ rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
+ assert( rc!=SQLITE_DONE );
+
+ /*
+ ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
+ ** test is related to ticket #2565. See the discussion in the
+ ** pager_playback() function for additional information.
+ */
+ if( nJRec==0
+ && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
+ ){
+ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
+ }
+ for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }
+ assert( rc!=SQLITE_OK || pPager->journalOff>=szJ );
+
+ /* Finally, rollback pages from the sub-journal. Page that were
+ ** previously rolled back out of the main journal (and are hence in pDone)
+ ** will be skipped. Out-of-range pages are also skipped.
+ */
+ if( pSavepoint ){
+ u32 ii; /* Loop counter */
+ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize);
+
+ if( pagerUseWal(pPager) ){
+ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData);
+ }
+ for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
+ assert( offset==(i64)ii*(4+pPager->pageSize) );
+ rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }
+
+ sqlite3BitvecDestroy(pDone);
+ if( rc==SQLITE_OK ){
+ pPager->journalOff = szJ;
+ }
+
+ return rc;
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed
+** before attempting to recycle clean and unused pages.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
+ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed
+** before attempting to spill pages to journal.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){
+ return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage);
+}
+
+/*
+** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
+*/
+static void pagerFixMaplimit(Pager *pPager){
+#if SQLITE_MAX_MMAP_SIZE>0
+ sqlite3_file *fd = pPager->fd;
+ if( isOpen(fd) && fd->pMethods->iVersion>=3 ){
+ sqlite3_int64 sz;
+ sz = pPager->szMmap;
+ pPager->bUseFetch = (sz>0);
+ setGetterMethod(pPager);
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz);
+ }
+#endif
+}
+
+/*
+** Change the maximum size of any memory mapping made of the database file.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){
+ pPager->szMmap = szMmap;
+ pagerFixMaplimit(pPager);
+}
+
+/*
+** Free as much memory as possible from the pager.
+*/
+SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){
+ sqlite3PcacheShrink(pPager->pPCache);
+}
+
+/*
+** Adjust settings of the pager to those specified in the pgFlags parameter.
+**
+** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness
+** of the database to damage due to OS crashes or power failures by
+** changing the number of syncs()s when writing the journals.
+** There are four levels:
+**
+** OFF sqlite3OsSync() is never called. This is the default
+** for temporary and transient files.
+**
+** NORMAL The journal is synced once before writes begin on the
+** database. This is normally adequate protection, but
+** it is theoretically possible, though very unlikely,
+** that an inopertune power failure could leave the journal
+** in a state which would cause damage to the database
+** when it is rolled back.
+**
+** FULL The journal is synced twice before writes begin on the
+** database (with some additional information - the nRec field
+** of the journal header - being written in between the two
+** syncs). If we assume that writing a
+** single disk sector is atomic, then this mode provides
+** assurance that the journal will not be corrupted to the
+** point of causing damage to the database during rollback.
+**
+** EXTRA This is like FULL except that is also syncs the directory
+** that contains the rollback journal after the rollback
+** journal is unlinked.
+**
+** The above is for a rollback-journal mode. For WAL mode, OFF continues
+** to mean that no syncs ever occur. NORMAL means that the WAL is synced
+** prior to the start of checkpoint and that the database file is synced
+** at the conclusion of the checkpoint if the entire content of the WAL
+** was written back into the database. But no sync operations occur for
+** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL
+** file is synced following each commit operation, in addition to the
+** syncs associated with NORMAL. There is no difference between FULL
+** and EXTRA for WAL mode.
+**
+** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The
+** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync
+** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an
+** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL
+** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the
+** synchronous=FULL versus synchronous=NORMAL setting determines when
+** the xSync primitive is called and is relevant to all platforms.
+**
+** Numeric values associated with these states are OFF==1, NORMAL=2,
+** and FULL=3.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+SQLITE_PRIVATE void sqlite3PagerSetFlags(
+ Pager *pPager, /* The pager to set safety level for */
+ unsigned pgFlags /* Various flags */
+){
+ unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
+ if( pPager->tempFile ){
+ pPager->noSync = 1;
+ pPager->fullSync = 0;
+ pPager->extraSync = 0;
+ }else{
+ pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0;
+ pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0;
+ pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0;
+ }
+ if( pPager->noSync ){
+ pPager->syncFlags = 0;
+ }else if( pgFlags & PAGER_FULLFSYNC ){
+ pPager->syncFlags = SQLITE_SYNC_FULL;
+ }else{
+ pPager->syncFlags = SQLITE_SYNC_NORMAL;
+ }
+ pPager->walSyncFlags = (pPager->syncFlags<<2);
+ if( pPager->fullSync ){
+ pPager->walSyncFlags |= pPager->syncFlags;
+ }
+ if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){
+ pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2);
+ }
+ if( pgFlags & PAGER_CACHESPILL ){
+ pPager->doNotSpill &= ~SPILLFLAG_OFF;
+ }else{
+ pPager->doNotSpill |= SPILLFLAG_OFF;
+ }
+}
+#endif
+
+/*
+** The following global variable is incremented whenever the library
+** attempts to open a temporary file. This information is used for
+** testing and analysis only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_opentemp_count = 0;
+#endif
+
+/*
+** Open a temporary file.
+**
+** Write the file descriptor into *pFile. Return SQLITE_OK on success
+** or some other error code if we fail. The OS will automatically
+** delete the temporary file when it is closed.
+**
+** The flags passed to the VFS layer xOpen() call are those specified
+** by parameter vfsFlags ORed with the following:
+**
+** SQLITE_OPEN_READWRITE
+** SQLITE_OPEN_CREATE
+** SQLITE_OPEN_EXCLUSIVE
+** SQLITE_OPEN_DELETEONCLOSE
+*/
+static int pagerOpentemp(
+ Pager *pPager, /* The pager object */
+ sqlite3_file *pFile, /* Write the file descriptor here */
+ int vfsFlags /* Flags passed through to the VFS */
+){
+ int rc; /* Return code */
+
+#ifdef SQLITE_TEST
+ sqlite3_opentemp_count++; /* Used for testing and analysis only */
+#endif
+
+ vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
+ assert( rc!=SQLITE_OK || isOpen(pFile) );
+ return rc;
+}
+
+/*
+** Set the busy handler function.
+**
+** The pager invokes the busy-handler if sqlite3OsLock() returns
+** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
+** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE
+** lock. It does *not* invoke the busy handler when upgrading from
+** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
+** (which occurs during hot-journal rollback). Summary:
+**
+** Transition | Invokes xBusyHandler
+** --------------------------------------------------------
+** NO_LOCK -> SHARED_LOCK | Yes
+** SHARED_LOCK -> RESERVED_LOCK | No
+** SHARED_LOCK -> EXCLUSIVE_LOCK | No
+** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes
+**
+** If the busy-handler callback returns non-zero, the lock is
+** retried. If it returns zero, then the SQLITE_BUSY error is
+** returned to the caller of the pager API function.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetBusyHandler(
+ Pager *pPager, /* Pager object */
+ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */
+ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */
+){
+ void **ap;
+ pPager->xBusyHandler = xBusyHandler;
+ pPager->pBusyHandlerArg = pBusyHandlerArg;
+ ap = (void **)&pPager->xBusyHandler;
+ assert( ((int(*)(void *))(ap[0]))==xBusyHandler );
+ assert( ap[1]==pBusyHandlerArg );
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap);
+}
+
+/*
+** Change the page size used by the Pager object. The new page size
+** is passed in *pPageSize.
+**
+** If the pager is in the error state when this function is called, it
+** is a no-op. The value returned is the error state error code (i.e.
+** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
+**
+** Otherwise, if all of the following are true:
+**
+** * the new page size (value of *pPageSize) is valid (a power
+** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
+**
+** * there are no outstanding page references, and
+**
+** * the database is either not an in-memory database or it is
+** an in-memory database that currently consists of zero pages.
+**
+** then the pager object page size is set to *pPageSize.
+**
+** If the page size is changed, then this function uses sqlite3PagerMalloc()
+** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt
+** fails, SQLITE_NOMEM is returned and the page size remains unchanged.
+** In all other cases, SQLITE_OK is returned.
+**
+** If the page size is not changed, either because one of the enumerated
+** conditions above is not true, the pager was in error state when this
+** function was called, or because the memory allocation attempt failed,
+** then *pPageSize is set to the old, retained page size before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
+ int rc = SQLITE_OK;
+
+ /* It is not possible to do a full assert_pager_state() here, as this
+ ** function may be called from within PagerOpen(), before the state
+ ** of the Pager object is internally consistent.
+ **
+ ** At one point this function returned an error if the pager was in
+ ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
+ ** there is at least one outstanding page reference, this function
+ ** is a no-op for that case anyhow.
+ */
+
+ u32 pageSize = *pPageSize;
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
+ if( (pPager->memDb==0 || pPager->dbSize==0)
+ && sqlite3PcacheRefCount(pPager->pPCache)==0
+ && pageSize && pageSize!=(u32)pPager->pageSize
+ ){
+ char *pNew = NULL; /* New temp space */
+ i64 nByte = 0;
+
+ if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
+ rc = sqlite3OsFileSize(pPager->fd, &nByte);
+ }
+ if( rc==SQLITE_OK ){
+ /* 8 bytes of zeroed overrun space is sufficient so that the b-tree
+ * cell header parser will never run off the end of the allocation */
+ pNew = (char *)sqlite3PageMalloc(pageSize+8);
+ if( !pNew ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ memset(pNew+pageSize, 0, 8);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pager_reset(pPager);
+ rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3PageFree(pPager->pTmpSpace);
+ pPager->pTmpSpace = pNew;
+ pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
+ pPager->pageSize = pageSize;
+ pPager->lckPgno = (Pgno)(PENDING_BYTE/pageSize) + 1;
+ }else{
+ sqlite3PageFree(pNew);
+ }
+ }
+
+ *pPageSize = pPager->pageSize;
+ if( rc==SQLITE_OK ){
+ if( nReserve<0 ) nReserve = pPager->nReserve;
+ assert( nReserve>=0 && nReserve<1000 );
+ pPager->nReserve = (i16)nReserve;
+ pagerReportSize(pPager);
+ pagerFixMaplimit(pPager);
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to the "temporary page" buffer held internally
+** by the pager. This is a buffer that is big enough to hold the
+** entire content of a database page. This buffer is used internally
+** during rollback and will be overwritten whenever a rollback
+** occurs. But other modules are free to use it too, as long as
+** no rollbacks are happening.
+*/
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
+ return pPager->pTmpSpace;
+}
+
+/*
+** Attempt to set the maximum database page count if mxPage is positive.
+** Make no changes if mxPage is zero or negative. And never reduce the
+** maximum page count below the current size of the database.
+**
+** Regardless of mxPage, return the current maximum page count.
+*/
+SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){
+ if( mxPage>0 ){
+ pPager->mxPgno = mxPage;
+ }
+ assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */
+ /* assert( pPager->mxPgno>=pPager->dbSize ); */
+ /* OP_MaxPgcnt ensures that the parameter passed to this function is not
+ ** less than the total number of valid pages in the database. But this
+ ** may be less than Pager.dbSize, and so the assert() above is not valid */
+ return pPager->mxPgno;
+}
+
+/*
+** The following set of routines are used to disable the simulated
+** I/O error mechanism. These routines are used to avoid simulated
+** errors in places where we do not care about errors.
+**
+** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
+** and generate no code.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_hit;
+static int saved_cnt;
+void disable_simulated_io_errors(void){
+ saved_cnt = sqlite3_io_error_pending;
+ sqlite3_io_error_pending = -1;
+}
+void enable_simulated_io_errors(void){
+ sqlite3_io_error_pending = saved_cnt;
+}
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+/*
+** Read the first N bytes from the beginning of the file into memory
+** that pDest points to.
+**
+** If the pager was opened on a transient file (zFilename==""), or
+** opened on a file less than N bytes in size, the output buffer is
+** zeroed and SQLITE_OK returned. The rationale for this is that this
+** function is used to read database headers, and a new transient or
+** zero sized database has a header than consists entirely of zeroes.
+**
+** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
+** the error code is returned to the caller and the contents of the
+** output buffer undefined.
+*/
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
+ int rc = SQLITE_OK;
+ memset(pDest, 0, N);
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ /* This routine is only called by btree immediately after creating
+ ** the Pager object. There has not been an opportunity to transition
+ ** to WAL mode yet.
+ */
+ assert( !pagerUseWal(pPager) );
+
+ if( isOpen(pPager->fd) ){
+ IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
+ rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/*
+** This function may only be called when a read-transaction is open on
+** the pager. It returns the total number of pages in the database.
+**
+** However, if the file is between 1 and <page-size> bytes in size, then
+** this is considered a 1 page file.
+*/
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){
+ assert( pPager->eState>=PAGER_READER );
+ assert( pPager->eState!=PAGER_WRITER_FINISHED );
+ *pnPage = (int)pPager->dbSize;
+}
+
+
+/*
+** Try to obtain a lock of type locktype on the database file. If
+** a similar or greater lock is already held, this function is a no-op
+** (returning SQLITE_OK immediately).
+**
+** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke
+** the busy callback if the lock is currently not available. Repeat
+** until the busy callback returns false or until the attempt to
+** obtain the lock succeeds.
+**
+** Return SQLITE_OK on success and an error code if we cannot obtain
+** the lock. If the lock is obtained successfully, set the Pager.state
+** variable to locktype before returning.
+*/
+static int pager_wait_on_lock(Pager *pPager, int locktype){
+ int rc; /* Return code */
+
+ /* Check that this is either a no-op (because the requested lock is
+ ** already held), or one of the transitions that the busy-handler
+ ** may be invoked during, according to the comment above
+ ** sqlite3PagerSetBusyhandler().
+ */
+ assert( (pPager->eLock>=locktype)
+ || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
+ || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
+ );
+
+ do {
+ rc = pagerLockDb(pPager, locktype);
+ }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
+ return rc;
+}
+
+/*
+** Function assertTruncateConstraint(pPager) checks that one of the
+** following is true for all dirty pages currently in the page-cache:
+**
+** a) The page number is less than or equal to the size of the
+** current database image, in pages, OR
+**
+** b) if the page content were written at this time, it would not
+** be necessary to write the current content out to the sub-journal.
+**
+** If the condition asserted by this function were not true, and the
+** dirty page were to be discarded from the cache via the pagerStress()
+** routine, pagerStress() would not write the current page content to
+** the database file. If a savepoint transaction were rolled back after
+** this happened, the correct behavior would be to restore the current
+** content of the page. However, since this content is not present in either
+** the database file or the portion of the rollback journal and
+** sub-journal rolled back the content could not be restored and the
+** database image would become corrupt. It is therefore fortunate that
+** this circumstance cannot arise.
+*/
+#if defined(SQLITE_DEBUG)
+static void assertTruncateConstraintCb(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( pPg->flags&PGHDR_DIRTY );
+ if( pPg->pgno>pPager->dbSize ){ /* if (a) is false */
+ Pgno pgno = pPg->pgno;
+ int i;
+ for(i=0; i<pPg->pPager->nSavepoint; i++){
+ PagerSavepoint *p = &pPager->aSavepoint[i];
+ assert( p->nOrig<pgno || sqlite3BitvecTestNotNull(p->pInSavepoint,pgno) );
+ }
+ }
+}
+static void assertTruncateConstraint(Pager *pPager){
+ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
+}
+#else
+# define assertTruncateConstraint(pPager)
+#endif
+
+/*
+** Truncate the in-memory database file image to nPage pages. This
+** function does not actually modify the database file on disk. It
+** just sets the internal state of the pager object so that the
+** truncation will be done when the current transaction is committed.
+**
+** This function is only called right before committing a transaction.
+** Once this function has been called, the transaction must either be
+** rolled back or committed. It is not safe to call this function and
+** then continue writing to the database.
+*/
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
+ assert( pPager->dbSize>=nPage || CORRUPT_DB );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ pPager->dbSize = nPage;
+
+ /* At one point the code here called assertTruncateConstraint() to
+ ** ensure that all pages being truncated away by this operation are,
+ ** if one or more savepoints are open, present in the savepoint
+ ** journal so that they can be restored if the savepoint is rolled
+ ** back. This is no longer necessary as this function is now only
+ ** called right before committing a transaction. So although the
+ ** Pager object may still have open savepoints (Pager.nSavepoint!=0),
+ ** they cannot be rolled back. So the assertTruncateConstraint() call
+ ** is no longer correct. */
+}
+
+
+/*
+** This function is called before attempting a hot-journal rollback. It
+** syncs the journal file to disk, then sets pPager->journalHdr to the
+** size of the journal file so that the pager_playback() routine knows
+** that the entire journal file has been synced.
+**
+** Syncing a hot-journal to disk before attempting to roll it back ensures
+** that if a power-failure occurs during the rollback, the process that
+** attempts rollback following system recovery sees the same journal
+** content as this process.
+**
+** If everything goes as planned, SQLITE_OK is returned. Otherwise,
+** an SQLite error code.
+*/
+static int pagerSyncHotJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr);
+ }
+ return rc;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** Obtain a reference to a memory mapped page object for page number pgno.
+** The new object will use the pointer pData, obtained from xFetch().
+** If successful, set *ppPage to point to the new page reference
+** and return SQLITE_OK. Otherwise, return an SQLite error code and set
+** *ppPage to zero.
+**
+** Page references obtained by calling this function should be released
+** by calling pagerReleaseMapPage().
+*/
+static int pagerAcquireMapPage(
+ Pager *pPager, /* Pager object */
+ Pgno pgno, /* Page number */
+ void *pData, /* xFetch()'d data for this page */
+ PgHdr **ppPage /* OUT: Acquired page object */
+){
+ PgHdr *p; /* Memory mapped page to return */
+
+ if( pPager->pMmapFreelist ){
+ *ppPage = p = pPager->pMmapFreelist;
+ pPager->pMmapFreelist = p->pDirty;
+ p->pDirty = 0;
+ assert( pPager->nExtra>=8 );
+ memset(p->pExtra, 0, 8);
+ }else{
+ *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra);
+ if( p==0 ){
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData);
+ return SQLITE_NOMEM_BKPT;
+ }
+ p->pExtra = (void *)&p[1];
+ p->flags = PGHDR_MMAP;
+ p->nRef = 1;
+ p->pPager = pPager;
+ }
+
+ assert( p->pExtra==(void *)&p[1] );
+ assert( p->pPage==0 );
+ assert( p->flags==PGHDR_MMAP );
+ assert( p->pPager==pPager );
+ assert( p->nRef==1 );
+
+ p->pgno = pgno;
+ p->pData = pData;
+ pPager->nMmapOut++;
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Release a reference to page pPg. pPg must have been returned by an
+** earlier call to pagerAcquireMapPage().
+*/
+static void pagerReleaseMapPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ pPager->nMmapOut--;
+ pPg->pDirty = pPager->pMmapFreelist;
+ pPager->pMmapFreelist = pPg;
+
+ assert( pPager->fd->pMethods->iVersion>=3 );
+ sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData);
+}
+
+/*
+** Free all PgHdr objects stored in the Pager.pMmapFreelist list.
+*/
+static void pagerFreeMapHdrs(Pager *pPager){
+ PgHdr *p;
+ PgHdr *pNext;
+ for(p=pPager->pMmapFreelist; p; p=pNext){
+ pNext = p->pDirty;
+ sqlite3_free(p);
+ }
+}
+
+/* Verify that the database file has not be deleted or renamed out from
+** under the pager. Return SQLITE_OK if the database is still where it ought
+** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error
+** code from sqlite3OsAccess()) if the database has gone missing.
+*/
+static int databaseIsUnmoved(Pager *pPager){
+ int bHasMoved = 0;
+ int rc;
+
+ if( pPager->tempFile ) return SQLITE_OK;
+ if( pPager->dbSize==0 ) return SQLITE_OK;
+ assert( pPager->zFilename && pPager->zFilename[0] );
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved);
+ if( rc==SQLITE_NOTFOUND ){
+ /* If the HAS_MOVED file-control is unimplemented, assume that the file
+ ** has not been moved. That is the historical behavior of SQLite: prior to
+ ** version 3.8.3, it never checked */
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_OK && bHasMoved ){
+ rc = SQLITE_READONLY_DBMOVED;
+ }
+ return rc;
+}
+
+
+/*
+** Shutdown the page cache. Free all memory and close all files.
+**
+** If a transaction was in progress when this routine is called, that
+** transaction is rolled back. All outstanding pages are invalidated
+** and their memory is freed. Any attempt to use a page associated
+** with this page cache after this function returns will likely
+** result in a coredump.
+**
+** This function always succeeds. If a transaction is active an attempt
+** is made to roll it back. If an error occurs during the rollback
+** a hot journal may be left in the filesystem but no error is returned
+** to the caller.
+*/
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3 *db){
+ u8 *pTmp = (u8*)pPager->pTmpSpace;
+ assert( db || pagerUseWal(pPager)==0 );
+ assert( assert_pager_state(pPager) );
+ disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
+ pagerFreeMapHdrs(pPager);
+ /* pPager->errCode = 0; */
+ pPager->exclusiveMode = 0;
+#ifndef SQLITE_OMIT_WAL
+ {
+ u8 *a = 0;
+ assert( db || pPager->pWal==0 );
+ if( db && 0==(db->flags & SQLITE_NoCkptOnClose)
+ && SQLITE_OK==databaseIsUnmoved(pPager)
+ ){
+ a = pTmp;
+ }
+ sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a);
+ pPager->pWal = 0;
+ }
+#endif
+ pager_reset(pPager);
+ if( MEMDB ){
+ pager_unlock(pPager);
+ }else{
+ /* If it is open, sync the journal file before calling UnlockAndRollback.
+ ** If this is not done, then an unsynced portion of the open journal
+ ** file may be played back into the database. If a power failure occurs
+ ** while this is happening, the database could become corrupt.
+ **
+ ** If an error occurs while trying to sync the journal, shift the pager
+ ** into the ERROR state. This causes UnlockAndRollback to unlock the
+ ** database and close the journal file without attempting to roll it
+ ** back or finalize it. The next database user will have to do hot-journal
+ ** rollback before accessing the database file.
+ */
+ if( isOpen(pPager->jfd) ){
+ pager_error(pPager, pagerSyncHotJournal(pPager));
+ }
+ pagerUnlockAndRollback(pPager);
+ }
+ sqlite3EndBenignMalloc();
+ enable_simulated_io_errors();
+ PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
+ IOTRACE(("CLOSE %p\n", pPager))
+ sqlite3OsClose(pPager->jfd);
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pTmp);
+ sqlite3PcacheClose(pPager->pPCache);
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
+#endif
+/* END SQLCIPHER */
+
+ assert( !pPager->aSavepoint && !pPager->pInJournal );
+ assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );
+
+ sqlite3_free(pPager);
+ return SQLITE_OK;
+}
+
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+/*
+** Return the page number for page pPg.
+*/
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){
+ return pPg->pgno;
+}
+#endif
+
+/*
+** Increment the reference count for page pPg.
+*/
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){
+ sqlite3PcacheRef(pPg);
+}
+
+/*
+** Sync the journal. In other words, make sure all the pages that have
+** been written to the journal have actually reached the surface of the
+** disk and can be restored in the event of a hot-journal rollback.
+**
+** If the Pager.noSync flag is set, then this function is a no-op.
+** Otherwise, the actions required depend on the journal-mode and the
+** device characteristics of the file-system, as follows:
+**
+** * If the journal file is an in-memory journal file, no action need
+** be taken.
+**
+** * Otherwise, if the device does not support the SAFE_APPEND property,
+** then the nRec field of the most recently written journal header
+** is updated to contain the number of journal records that have
+** been written following it. If the pager is operating in full-sync
+** mode, then the journal file is synced before this field is updated.
+**
+** * If the device does not support the SEQUENTIAL property, then
+** journal file is synced.
+**
+** Or, in pseudo-code:
+**
+** if( NOT <in-memory journal> ){
+** if( NOT SAFE_APPEND ){
+** if( <full-sync mode> ) xSync(<journal file>);
+** <update nRec field>
+** }
+** if( NOT SEQUENTIAL ) xSync(<journal file>);
+** }
+**
+** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
+** page currently held in memory before returning SQLITE_OK. If an IO
+** error is encountered, then the IO error code is returned to the caller.
+*/
+static int syncJournal(Pager *pPager, int newHdr){
+ int rc; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( !pagerUseWal(pPager) );
+
+ rc = sqlite3PagerExclusiveLock(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( !pPager->noSync ){
+ assert( !pPager->tempFile );
+ if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
+ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ assert( isOpen(pPager->jfd) );
+
+ if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* This block deals with an obscure problem. If the last connection
+ ** that wrote to this database was operating in persistent-journal
+ ** mode, then the journal file may at this point actually be larger
+ ** than Pager.journalOff bytes. If the next thing in the journal
+ ** file happens to be a journal-header (written as part of the
+ ** previous connection's transaction), and a crash or power-failure
+ ** occurs after nRec is updated but before this connection writes
+ ** anything else to the journal file (or commits/rolls back its
+ ** transaction), then SQLite may become confused when doing the
+ ** hot-journal rollback following recovery. It may roll back all
+ ** of this connections data, then proceed to rolling back the old,
+ ** out-of-date data that follows it. Database corruption.
+ **
+ ** To work around this, if the journal file does appear to contain
+ ** a valid header following Pager.journalOff, then write a 0x00
+ ** byte to the start of it to prevent it from being recognized.
+ **
+ ** Variable iNextHdrOffset is set to the offset at which this
+ ** problematic header will occur, if it exists. aMagic is used
+ ** as a temporary buffer to inspect the first couple of bytes of
+ ** the potential journal header.
+ */
+ i64 iNextHdrOffset;
+ u8 aMagic[8];
+ u8 zHeader[sizeof(aJournalMagic)+4];
+
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);
+
+ iNextHdrOffset = journalHdrOffset(pPager);
+ rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
+ if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
+ static const u8 zerobyte = 0;
+ rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
+ return rc;
+ }
+
+ /* Write the nRec value into the journal file header. If in
+ ** full-synchronous mode, sync the journal first. This ensures that
+ ** all data has really hit the disk before nRec is updated to mark
+ ** it as a candidate for rollback.
+ **
+ ** This is not required if the persistent media supports the
+ ** SAFE_APPEND property. Because in this case it is not possible
+ ** for garbage data to be appended to the file, the nRec field
+ ** is populated with 0xFFFFFFFF when the journal header is written
+ ** and never needs to be updated.
+ */
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
+ rc = sqlite3OsWrite(
+ pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags|
+ (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ pPager->journalHdr = pPager->journalOff;
+ if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ pPager->nRec = 0;
+ rc = writeJournalHdr(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }else{
+ pPager->journalHdr = pPager->journalOff;
+ }
+ }
+
+ /* Unless the pager is in noSync mode, the journal file was just
+ ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on
+ ** all pages.
+ */
+ sqlite3PcacheClearSyncFlags(pPager->pPCache);
+ pPager->eState = PAGER_WRITER_DBMOD;
+ assert( assert_pager_state(pPager) );
+ return SQLITE_OK;
+}
+
+/*
+** The argument is the first in a linked list of dirty pages connected
+** by the PgHdr.pDirty pointer. This function writes each one of the
+** in-memory pages in the list to the database file. The argument may
+** be NULL, representing an empty list. In this case this function is
+** a no-op.
+**
+** The pager must hold at least a RESERVED lock when this function
+** is called. Before writing anything to the database file, this lock
+** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
+** SQLITE_BUSY is returned and no data is written to the database file.
+**
+** If the pager is a temp-file pager and the actual file-system file
+** is not yet open, it is created and opened before any data is
+** written out.
+**
+** Once the lock has been upgraded and, if necessary, the file opened,
+** the pages are written out to the database file in list order. Writing
+** a page is skipped if it meets either of the following criteria:
+**
+** * The page number is greater than Pager.dbSize, or
+** * The PGHDR_DONT_WRITE flag is set on the page.
+**
+** If writing out a page causes the database file to grow, Pager.dbFileSize
+** is updated accordingly. If page 1 is written out, then the value cached
+** in Pager.dbFileVers[] is updated to match the new value stored in
+** the database file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
+** be obtained, SQLITE_BUSY is returned.
+*/
+static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This function is only called for rollback pagers in WRITER_DBMOD state. */
+ assert( !pagerUseWal(pPager) );
+ assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD );
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ assert( isOpen(pPager->fd) || pList->pDirty==0 );
+
+ /* If the file is a temp-file has not yet been opened, open it now. It
+ ** is not possible for rc to be other than SQLITE_OK if this branch
+ ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
+ */
+ if( !isOpen(pPager->fd) ){
+ assert( pPager->tempFile && rc==SQLITE_OK );
+ rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
+ }
+
+ /* Before the first write, give the VFS a hint of what the final
+ ** file size will be.
+ */
+ assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
+ if( rc==SQLITE_OK
+ && pPager->dbHintSize<pPager->dbSize
+ && (pList->pDirty || pList->pgno>pPager->dbHintSize)
+ ){
+ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize;
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
+ pPager->dbHintSize = pPager->dbSize;
+ }
+
+ while( rc==SQLITE_OK && pList ){
+ Pgno pgno = pList->pgno;
+
+ /* If there are dirty pages in the page cache with page numbers greater
+ ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to
+ ** make the file smaller (presumably by auto-vacuum code). Do not write
+ ** any such pages to the file.
+ **
+ ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
+ ** set (set by sqlite3PagerDontWrite()).
+ */
+ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
+ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */
+ char *pData; /* Data to write */
+
+ assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
+ if( pList->pgno==1 ) pager_write_changecounter(pList);
+
+ /* Encode the database */
+ CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM_BKPT, pData);
+
+ /* Write out the page data. */
+ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
+
+ /* If page 1 was just written, update Pager.dbFileVers to match
+ ** the value now stored in the database file. If writing this
+ ** page caused the database file to grow, update dbFileSize.
+ */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
+ }
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ pPager->aStat[PAGER_STAT_WRITE]++;
+
+ /* Update any backup objects copying the contents of this pager. */
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);
+
+ PAGERTRACE(("STORE %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_pagehash(pList)));
+ IOTRACE(("PGOUT %p %d\n", pPager, pgno));
+ PAGER_INCR(sqlite3_pager_writedb_count);
+ }else{
+ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
+ }
+ pager_set_pagehash(pList);
+ pList = pList->pDirty;
+ }
+
+ return rc;
+}
+
+/*
+** Ensure that the sub-journal file is open. If it is already open, this
+** function is a no-op.
+**
+** SQLITE_OK is returned if everything goes according to plan. An
+** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen()
+** fails.
+*/
+static int openSubJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( !isOpen(pPager->sjfd) ){
+ const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE
+ | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE
+ | SQLITE_OPEN_DELETEONCLOSE;
+ int nStmtSpill = sqlite3Config.nStmtSpill;
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
+ nStmtSpill = -1;
+ }
+ rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill);
+ }
+ return rc;
+}
+
+/*
+** Append a record of the current state of page pPg to the sub-journal.
+**
+** If successful, set the bit corresponding to pPg->pgno in the bitvecs
+** for all open savepoints before returning.
+**
+** This function returns SQLITE_OK if everything is successful, an IO
+** error code if the attempt to write to the sub-journal fails, or
+** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
+** bitvec.
+*/
+static int subjournalPage(PgHdr *pPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = pPg->pPager;
+ if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+
+ /* Open the sub-journal, if it has not already been opened */
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->jfd) || pagerUseWal(pPager) );
+ assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 );
+ assert( pagerUseWal(pPager)
+ || pageInJournal(pPager, pPg)
+ || pPg->pgno>pPager->dbOrigSize
+ );
+ rc = openSubJournal(pPager);
+
+ /* If the sub-journal was opened successfully (or was already open),
+ ** write the journal record into the file. */
+ if( rc==SQLITE_OK ){
+ void *pData = pPg->pData;
+ i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
+ char *pData2;
+
+/* BEGIN SQLCIPHER */
+#if SQLITE_HAS_CODEC
+ if( !pPager->subjInMemory ){
+ CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2);
+ }else
+#endif
+/* END SQLCIPHER */
+ pData2 = pData;
+ PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
+ rc = write32bits(pPager->sjfd, offset, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pPager->nSubRec++;
+ assert( pPager->nSavepoint>0 );
+ rc = addToSavepointBitvecs(pPager, pPg->pgno);
+ }
+ return rc;
+}
+static int subjournalPageIfRequired(PgHdr *pPg){
+ if( subjRequiresPage(pPg) ){
+ return subjournalPage(pPg);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+/*
+** This function is called by the pcache layer when it has reached some
+** soft memory limit. The first argument is a pointer to a Pager object
+** (cast as a void*). The pager is always 'purgeable' (not an in-memory
+** database). The second argument is a reference to a page that is
+** currently dirty but has no outstanding references. The page
+** is always associated with the Pager object passed as the first
+** argument.
+**
+** The job of this function is to make pPg clean by writing its contents
+** out to the database file, if possible. This may involve syncing the
+** journal file.
+**
+** If successful, sqlite3PcacheMakeClean() is called on the page and
+** SQLITE_OK returned. If an IO error occurs while trying to make the
+** page clean, the IO error code is returned. If the page cannot be
+** made clean for some other reason, but no error occurs, then SQLITE_OK
+** is returned by sqlite3PcacheMakeClean() is not called.
+*/
+static int pagerStress(void *p, PgHdr *pPg){
+ Pager *pPager = (Pager *)p;
+ int rc = SQLITE_OK;
+
+ assert( pPg->pPager==pPager );
+ assert( pPg->flags&PGHDR_DIRTY );
+
+ /* The doNotSpill NOSYNC bit is set during times when doing a sync of
+ ** journal (and adding a new header) is not allowed. This occurs
+ ** during calls to sqlite3PagerWrite() while trying to journal multiple
+ ** pages belonging to the same sector.
+ **
+ ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
+ ** regardless of whether or not a sync is required. This is set during
+ ** a rollback or by user request, respectively.
+ **
+ ** Spilling is also prohibited when in an error state since that could
+ ** lead to database corruption. In the current implementation it
+ ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3
+ ** while in the error state, hence it is impossible for this routine to
+ ** be called in the error state. Nevertheless, we include a NEVER()
+ ** test for the error state as a safeguard against future changes.
+ */
+ if( NEVER(pPager->errCode) ) return SQLITE_OK;
+ testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );
+ testcase( pPager->doNotSpill & SPILLFLAG_OFF );
+ testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC );
+ if( pPager->doNotSpill
+ && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0
+ || (pPg->flags & PGHDR_NEED_SYNC)!=0)
+ ){
+ return SQLITE_OK;
+ }
+
+ pPager->aStat[PAGER_STAT_SPILL]++;
+ pPg->pDirty = 0;
+ if( pagerUseWal(pPager) ){
+ /* Write a single frame for this page to the log. */
+ rc = subjournalPageIfRequired(pPg);
+ if( rc==SQLITE_OK ){
+ rc = pagerWalFrames(pPager, pPg, 0, 0);
+ }
+ }else{
+
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( pPager->tempFile==0 ){
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc!=SQLITE_OK ) return pager_error(pPager, rc);
+ }
+#endif
+
+ /* Sync the journal file if required. */
+ if( pPg->flags&PGHDR_NEED_SYNC
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ ){
+ rc = syncJournal(pPager, 1);
+ }
+
+ /* Write the contents of the page out to the database file. */
+ if( rc==SQLITE_OK ){
+ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
+ rc = pager_write_pagelist(pPager, pPg);
+ }
+ }
+
+ /* Mark the page as clean. */
+ if( rc==SQLITE_OK ){
+ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
+ sqlite3PcacheMakeClean(pPg);
+ }
+
+ return pager_error(pPager, rc);
+}
+
+/*
+** Flush all unreferenced dirty pages to disk.
+*/
+SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){
+ int rc = pPager->errCode;
+ if( !MEMDB ){
+ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ assert( assert_pager_state(pPager) );
+ while( rc==SQLITE_OK && pList ){
+ PgHdr *pNext = pList->pDirty;
+ if( pList->nRef==0 ){
+ rc = pagerStress((void*)pPager, pList);
+ }
+ pList = pNext;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Allocate and initialize a new Pager object and put a pointer to it
+** in *ppPager. The pager should eventually be freed by passing it
+** to sqlite3PagerClose().
+**
+** The zFilename argument is the path to the database file to open.
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. Temporary files are be deleted
+** automatically when they are closed. If zFilename is ":memory:" then
+** all information is held in cache. It is never written to disk.
+** This can be used to implement an in-memory database.
+**
+** The nExtra parameter specifies the number of bytes of space allocated
+** along with each page reference. This space is available to the user
+** via the sqlite3PagerGetExtra() API. When a new page is allocated, the
+** first 8 bytes of this space are zeroed but the remainder is uninitialized.
+** (The extra space is used by btree as the MemPage object.)
+**
+** The flags argument is used to specify properties that affect the
+** operation of the pager. It should be passed some bitwise combination
+** of the PAGER_* flags.
+**
+** The vfsFlags parameter is a bitmask to pass to the flags parameter
+** of the xOpen() method of the supplied VFS when opening files.
+**
+** If the pager object is allocated and the specified file opened
+** successfully, SQLITE_OK is returned and *ppPager set to point to
+** the new pager object. If an error occurs, *ppPager is set to NULL
+** and error code returned. This function may return SQLITE_NOMEM
+** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or
+** various SQLITE_IO_XXX errors.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs *pVfs, /* The virtual file system to use */
+ Pager **ppPager, /* OUT: Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int flags, /* flags controlling this file */
+ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */
+ void (*xReinit)(DbPage*) /* Function to reinitialize pages */
+){
+ u8 *pPtr;
+ Pager *pPager = 0; /* Pager object to allocate and return */
+ int rc = SQLITE_OK; /* Return code */
+ int tempFile = 0; /* True for temp files (incl. in-memory files) */
+ int memDb = 0; /* True if this is an in-memory file */
+#ifndef SQLITE_OMIT_DESERIALIZE
+ int memJM = 0; /* Memory journal mode */
+#else
+# define memJM 0
+#endif
+ int readOnly = 0; /* True if this is a read-only file */
+ int journalFileSize; /* Bytes to allocate for each journal fd */
+ char *zPathname = 0; /* Full path to database file */
+ int nPathname = 0; /* Number of bytes in zPathname */
+ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
+ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */
+ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
+ const char *zUri = 0; /* URI args to copy */
+ int nUriByte = 1; /* Number of bytes of URI args at *zUri */
+ int nUri = 0; /* Number of URI parameters */
+
+ /* Figure out how much space is required for each journal file-handle
+ ** (there are two of them, the main journal and the sub-journal). */
+ journalFileSize = ROUND8(sqlite3JournalSize(pVfs));
+
+ /* Set the output variable to NULL in case an error occurs. */
+ *ppPager = 0;
+
+#ifndef SQLITE_OMIT_MEMORYDB
+ if( flags & PAGER_MEMORY ){
+ memDb = 1;
+ if( zFilename && zFilename[0] ){
+ zPathname = sqlite3DbStrDup(0, zFilename);
+ if( zPathname==0 ) return SQLITE_NOMEM_BKPT;
+ nPathname = sqlite3Strlen30(zPathname);
+ zFilename = 0;
+ }
+ }
+#endif
+
+ /* Compute and store the full pathname in an allocated buffer pointed
+ ** to by zPathname, length nPathname. Or, if this is a temporary file,
+ ** leave both nPathname and zPathname set to 0.
+ */
+ if( zFilename && zFilename[0] ){
+ const char *z;
+ nPathname = pVfs->mxPathname+1;
+ zPathname = sqlite3DbMallocRaw(0, nPathname*2);
+ if( zPathname==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_OK_SYMLINK ){
+ if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){
+ rc = SQLITE_CANTOPEN_SYMLINK;
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ nPathname = sqlite3Strlen30(zPathname);
+ z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1];
+ while( *z ){
+ z += strlen(z)+1;
+ z += strlen(z)+1;
+ nUri++;
+ }
+ nUriByte = (int)(&z[1] - zUri);
+ assert( nUriByte>=1 );
+ if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
+ /* This branch is taken when the journal path required by
+ ** the database being opened will be more than pVfs->mxPathname
+ ** bytes in length. This means the database cannot be opened,
+ ** as it will not be possible to open the journal file or even
+ ** check for a hot-journal before reading.
+ */
+ rc = SQLITE_CANTOPEN_BKPT;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(0, zPathname);
+ return rc;
+ }
+ }
+
+ /* Allocate memory for the Pager structure, PCache object, the
+ ** three file descriptors, the database file name and the journal
+ ** file name. The layout in memory is as follows:
+ **
+ ** Pager object (sizeof(Pager) bytes)
+ ** PCache object (sqlite3PcacheSize() bytes)
+ ** Database file handle (pVfs->szOsFile bytes)
+ ** Sub-journal file handle (journalFileSize bytes)
+ ** Main journal file handle (journalFileSize bytes)
+ ** Ptr back to the Pager (sizeof(Pager*) bytes)
+ ** \0\0\0\0 database prefix (4 bytes)
+ ** Database file name (nPathname+1 bytes)
+ ** URI query parameters (nUriByte bytes)
+ ** Journal filename (nPathname+8+1 bytes)
+ ** WAL filename (nPathname+4+1 bytes)
+ ** \0\0\0 terminator (3 bytes)
+ **
+ ** Some 3rd-party software, over which we have no control, depends on
+ ** the specific order of the filenames and the \0 separators between them
+ ** so that it can (for example) find the database filename given the WAL
+ ** filename without using the sqlite3_filename_database() API. This is a
+ ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party
+ ** software is in widespread use, so we try to avoid changing the filename
+ ** order and formatting if possible. In particular, the details of the
+ ** filename format expected by 3rd-party software should be as follows:
+ **
+ ** - Main Database Path
+ ** - \0
+ ** - Multiple URI components consisting of:
+ ** - Key
+ ** - \0
+ ** - Value
+ ** - \0
+ ** - \0
+ ** - Journal Path
+ ** - \0
+ ** - WAL Path (zWALName)
+ ** - \0
+ **
+ ** The sqlite3_create_filename() interface and the databaseFilename() utility
+ ** that is used by sqlite3_filename_database() and kin also depend on the
+ ** specific formatting and order of the various filenames, so if the format
+ ** changes here, be sure to change it there as well.
+ */
+ pPtr = (u8 *)sqlite3MallocZero(
+ ROUND8(sizeof(*pPager)) + /* Pager structure */
+ ROUND8(pcacheSize) + /* PCache object */
+ ROUND8(pVfs->szOsFile) + /* The main db file */
+ journalFileSize * 2 + /* The two journal files */
+ sizeof(pPager) + /* Space to hold a pointer */
+ 4 + /* Database prefix */
+ nPathname + 1 + /* database filename */
+ nUriByte + /* query parameters */
+ nPathname + 8 + 1 + /* Journal filename */
+#ifndef SQLITE_OMIT_WAL
+ nPathname + 4 + 1 + /* WAL filename */
+#endif
+ 3 /* Terminator */
+ );
+ assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
+ if( !pPtr ){
+ sqlite3DbFree(0, zPathname);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager));
+ pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize);
+ pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile);
+ pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize;
+ pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize;
+ assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );
+ memcpy(pPtr, &pPager, sizeof(pPager)); pPtr += sizeof(pPager);
+
+ /* Fill in the Pager.zFilename and pPager.zQueryParam fields */
+ pPtr += 4; /* Skip zero prefix */
+ pPager->zFilename = (char*)pPtr;
+ if( nPathname>0 ){
+ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1;
+ if( zUri ){
+ memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte;
+ }else{
+ pPtr++;
+ }
+ }
+
+
+ /* Fill in Pager.zJournal */
+ if( nPathname>0 ){
+ pPager->zJournal = (char*)pPtr;
+ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname;
+ memcpy(pPtr, "-journal",8); pPtr += 8 + 1;
+#ifdef SQLITE_ENABLE_8_3_NAMES
+ sqlite3FileSuffix3(zFilename,pPager->zJournal);
+ pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1);
+#endif
+ }else{
+ pPager->zJournal = 0;
+ }
+
+#ifndef SQLITE_OMIT_WAL
+ /* Fill in Pager.zWal */
+ if( nPathname>0 ){
+ pPager->zWal = (char*)pPtr;
+ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname;
+ memcpy(pPtr, "-wal", 4); pPtr += 4 + 1;
+#ifdef SQLITE_ENABLE_8_3_NAMES
+ sqlite3FileSuffix3(zFilename, pPager->zWal);
+ pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1);
+#endif
+ }else{
+ pPager->zWal = 0;
+ }
+#endif
+ (void)pPtr; /* Suppress warning about unused pPtr value */
+
+ if( nPathname ) sqlite3DbFree(0, zPathname);
+ pPager->pVfs = pVfs;
+ pPager->vfsFlags = vfsFlags;
+
+ /* Open the pager file.
+ */
+ if( zFilename && zFilename[0] ){
+ int fout = 0; /* VFS flags returned by xOpen() */
+ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
+ assert( !memDb );
+#ifndef SQLITE_OMIT_DESERIALIZE
+ pPager->memVfs = memJM = (fout&SQLITE_OPEN_MEMORY)!=0;
+#endif
+ readOnly = (fout&SQLITE_OPEN_READONLY)!=0;
+
+ /* If the file was successfully opened for read/write access,
+ ** choose a default page size in case we have to create the
+ ** database file. The default page size is the maximum of:
+ **
+ ** + SQLITE_DEFAULT_PAGE_SIZE,
+ ** + The value returned by sqlite3OsSectorSize()
+ ** + The largest page size that can be written atomically.
+ */
+ if( rc==SQLITE_OK ){
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ if( !readOnly ){
+ setSectorSize(pPager);
+ assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
+ if( szPageDflt<pPager->sectorSize ){
+ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
+ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
+ }else{
+ szPageDflt = (u32)pPager->sectorSize;
+ }
+ }
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int ii;
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
+ for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
+ szPageDflt = ii;
+ }
+ }
+ }
+#endif
+ }
+ pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0);
+ if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0
+ || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){
+ vfsFlags |= SQLITE_OPEN_READONLY;
+ goto act_like_temp_file;
+ }
+ }
+ }else{
+ /* If a temporary file is requested, it is not opened immediately.
+ ** In this case we accept the default page size and delay actually
+ ** opening the file until the first call to OsWrite().
+ **
+ ** This branch is also run for an in-memory database. An in-memory
+ ** database is the same as a temp-file that is never written out to
+ ** disk and uses an in-memory rollback journal.
+ **
+ ** This branch also runs for files marked as immutable.
+ */
+act_like_temp_file:
+ tempFile = 1;
+ pPager->eState = PAGER_READER; /* Pretend we already have a lock */
+ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */
+ pPager->noLock = 1; /* Do no locking */
+ readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
+ }
+
+ /* The following call to PagerSetPagesize() serves to set the value of
+ ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
+ */
+ if( rc==SQLITE_OK ){
+ assert( pPager->memDb==0 );
+ rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
+ testcase( rc!=SQLITE_OK );
+ }
+
+ /* Initialize the PCache object. */
+ if( rc==SQLITE_OK ){
+ nExtra = ROUND8(nExtra);
+ assert( nExtra>=8 && nExtra<1000 );
+ rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
+ !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
+ }
+
+ /* If an error occurred above, free the Pager structure and close the file.
+ */
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pPager->pTmpSpace);
+ sqlite3_free(pPager);
+ return rc;
+ }
+
+ PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
+ IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
+
+ pPager->useJournal = (u8)useJournal;
+ /* pPager->stmtOpen = 0; */
+ /* pPager->stmtInUse = 0; */
+ /* pPager->nRef = 0; */
+ /* pPager->stmtSize = 0; */
+ /* pPager->stmtJSize = 0; */
+ /* pPager->nPage = 0; */
+ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
+ /* pPager->state = PAGER_UNLOCK; */
+ /* pPager->errMask = 0; */
+ pPager->tempFile = (u8)tempFile;
+ assert( tempFile==PAGER_LOCKINGMODE_NORMAL
+ || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
+ pPager->exclusiveMode = (u8)tempFile;
+ pPager->changeCountDone = pPager->tempFile;
+ pPager->memDb = (u8)memDb;
+ pPager->readOnly = (u8)readOnly;
+ assert( useJournal || pPager->tempFile );
+ pPager->noSync = pPager->tempFile;
+ if( pPager->noSync ){
+ assert( pPager->fullSync==0 );
+ assert( pPager->extraSync==0 );
+ assert( pPager->syncFlags==0 );
+ assert( pPager->walSyncFlags==0 );
+ }else{
+ pPager->fullSync = 1;
+ pPager->extraSync = 0;
+ pPager->syncFlags = SQLITE_SYNC_NORMAL;
+ pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2);
+ }
+ /* pPager->pFirst = 0; */
+ /* pPager->pFirstSynced = 0; */
+ /* pPager->pLast = 0; */
+ pPager->nExtra = (u16)nExtra;
+ pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
+ assert( isOpen(pPager->fd) || tempFile );
+ setSectorSize(pPager);
+ if( !useJournal ){
+ pPager->journalMode = PAGER_JOURNALMODE_OFF;
+ }else if( memDb || memJM ){
+ pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
+ }
+ /* pPager->xBusyHandler = 0; */
+ /* pPager->pBusyHandlerArg = 0; */
+ pPager->xReiniter = xReinit;
+ setGetterMethod(pPager);
+ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
+ /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */
+
+ *ppPager = pPager;
+ return SQLITE_OK;
+}
+
+/*
+** Return the sqlite3_file for the main database given the name
+** of the corresonding WAL or Journal name as passed into
+** xOpen.
+*/
+SQLITE_API sqlite3_file *sqlite3_database_file_object(const char *zName){
+ Pager *pPager;
+ while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){
+ zName--;
+ }
+ pPager = *(Pager**)(zName - 4 - sizeof(Pager*));
+ return pPager->fd;
+}
+
+
+/*
+** This function is called after transitioning from PAGER_UNLOCK to
+** PAGER_SHARED state. It tests if there is a hot journal present in
+** the file-system for the given pager. A hot journal is one that
+** needs to be played back. According to this function, a hot-journal
+** file exists if the following criteria are met:
+**
+** * The journal file exists in the file system, and
+** * No process holds a RESERVED or greater lock on the database file, and
+** * The database file itself is greater than 0 bytes in size, and
+** * The first byte of the journal file exists and is not 0x00.
+**
+** If the current size of the database file is 0 but a journal file
+** exists, that is probably an old journal left over from a prior
+** database with the same name. In this case the journal file is
+** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
+** is returned.
+**
+** This routine does not check if there is a super-journal filename
+** at the end of the file. If there is, and that super-journal file
+** does not exist, then the journal file is not really hot. In this
+** case this routine will return a false-positive. The pager_playback()
+** routine will discover that the journal file is not really hot and
+** will not roll it back.
+**
+** If a hot-journal file is found to exist, *pExists is set to 1 and
+** SQLITE_OK returned. If no hot-journal file is present, *pExists is
+** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
+** to determine whether or not a hot-journal file exists, the IO error
+** code is returned and the value of *pExists is undefined.
+*/
+static int hasHotJournal(Pager *pPager, int *pExists){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int rc = SQLITE_OK; /* Return code */
+ int exists = 1; /* True if a journal file is present */
+ int jrnlOpen = !!isOpen(pPager->jfd);
+
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->fd) );
+ assert( pPager->eState==PAGER_OPEN );
+
+ assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) &
+ SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+ ));
+
+ *pExists = 0;
+ if( !jrnlOpen ){
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ }
+ if( rc==SQLITE_OK && exists ){
+ int locked = 0; /* True if some process holds a RESERVED lock */
+
+ /* Race condition here: Another process might have been holding the
+ ** the RESERVED lock and have a journal open at the sqlite3OsAccess()
+ ** call above, but then delete the journal and drop the lock before
+ ** we get to the following sqlite3OsCheckReservedLock() call. If that
+ ** is the case, this routine might think there is a hot journal when
+ ** in fact there is none. This results in a false-positive which will
+ ** be dealt with by the playback routine. Ticket #3883.
+ */
+ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
+ if( rc==SQLITE_OK && !locked ){
+ Pgno nPage; /* Number of pages in database file */
+
+ assert( pPager->tempFile==0 );
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc==SQLITE_OK ){
+ /* If the database is zero pages in size, that means that either (1) the
+ ** journal is a remnant from a prior database with the same name where
+ ** the database file but not the journal was deleted, or (2) the initial
+ ** transaction that populates a new database is being rolled back.
+ ** In either case, the journal file can be deleted. However, take care
+ ** not to delete the journal file if it is already open due to
+ ** journal_mode=PERSIST.
+ */
+ if( nPage==0 && !jrnlOpen ){
+ sqlite3BeginBenignMalloc();
+ if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ sqlite3EndBenignMalloc();
+ }else{
+ /* The journal file exists and no other connection has a reserved
+ ** or greater lock on the database file. Now check that there is
+ ** at least one non-zero bytes at the start of the journal file.
+ ** If there is, then we consider this journal to be hot. If not,
+ ** it can be ignored.
+ */
+ if( !jrnlOpen ){
+ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
+ }
+ if( rc==SQLITE_OK ){
+ u8 first = 0;
+ rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ if( !jrnlOpen ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ *pExists = (first!=0);
+ }else if( rc==SQLITE_CANTOPEN ){
+ /* If we cannot open the rollback journal file in order to see if
+ ** it has a zero header, that might be due to an I/O error, or
+ ** it might be due to the race condition described above and in
+ ** ticket #3883. Either way, assume that the journal is hot.
+ ** This might be a false positive. But if it is, then the
+ ** automatic journal playback and recovery mechanism will deal
+ ** with it under an EXCLUSIVE lock where we do not need to
+ ** worry so much with race conditions.
+ */
+ *pExists = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to obtain a shared lock on the database file.
+** It is illegal to call sqlite3PagerGet() until after this function
+** has been successfully called. If a shared-lock is already held when
+** this function is called, it is a no-op.
+**
+** The following operations are also performed by this function.
+**
+** 1) If the pager is currently in PAGER_OPEN state (no lock held
+** on the database file), then an attempt is made to obtain a
+** SHARED lock on the database file. Immediately after obtaining
+** the SHARED lock, the file-system is checked for a hot-journal,
+** which is played back if present. Following any hot-journal
+** rollback, the contents of the cache are validated by checking
+** the 'change-counter' field of the database file header and
+** discarded if they are found to be invalid.
+**
+** 2) If the pager is running in exclusive-mode, and there are currently
+** no outstanding references to any pages, and is in the error state,
+** then an attempt is made to clear the error state by discarding
+** the contents of the page cache and rolling back any open journal
+** file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs while locking the database, checking for a hot-journal file or
+** rolling back a journal file, the IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This routine is only called from b-tree and only when there are no
+ ** outstanding pages. This implies that the pager state should either
+ ** be OPEN or READER. READER is only possible if the pager is or was in
+ ** exclusive access mode. */
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
+ assert( pPager->errCode==SQLITE_OK );
+
+ if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
+ int bHotJournal = 1; /* True if there exists a hot journal-file */
+
+ assert( !MEMDB );
+ assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK );
+
+ rc = pager_wait_on_lock(pPager, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
+ goto failed;
+ }
+
+ /* If a journal file exists, and there is no RESERVED lock on the
+ ** database file, then it either needs to be played back or deleted.
+ */
+ if( pPager->eLock<=SHARED_LOCK ){
+ rc = hasHotJournal(pPager, &bHotJournal);
+ }
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+ if( bHotJournal ){
+ if( pPager->readOnly ){
+ rc = SQLITE_READONLY_ROLLBACK;
+ goto failed;
+ }
+
+ /* Get an EXCLUSIVE lock on the database file. At this point it is
+ ** important that a RESERVED lock is not obtained on the way to the
+ ** EXCLUSIVE lock. If it were, another process might open the
+ ** database file, detect the RESERVED lock, and conclude that the
+ ** database is safe to read while this process is still rolling the
+ ** hot-journal back.
+ **
+ ** Because the intermediate RESERVED lock is not requested, any
+ ** other process attempting to access the database file will get to
+ ** this point in the code and fail to obtain its own EXCLUSIVE lock
+ ** on the database file.
+ **
+ ** Unless the pager is in locking_mode=exclusive mode, the lock is
+ ** downgraded to SHARED_LOCK before this function returns.
+ */
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+
+ /* If it is not already open and the file exists on disk, open the
+ ** journal for read/write access. Write access is required because
+ ** in exclusive-access mode the file descriptor will be kept open
+ ** and possibly used for a transaction later on. Also, write-access
+ ** is usually required to finalize the journal in journal_mode=persist
+ ** mode (and also for journal_mode=truncate on some systems).
+ **
+ ** If the journal does not exist, it usually means that some
+ ** other connection managed to get in and roll it back before
+ ** this connection obtained the exclusive lock above. Or, it
+ ** may mean that the pager was in the error-state when this
+ ** function was called and the journal file does not exist.
+ */
+ if( !isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int bExists; /* True if journal file exists */
+ rc = sqlite3OsAccess(
+ pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
+ if( rc==SQLITE_OK && bExists ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+ }
+
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock. Purge the cache before
+ ** playing back the hot-journal so that we don't end up with
+ ** an inconsistent cache. Sync the hot journal before playing
+ ** it back since the process that crashed and left the hot journal
+ ** probably did not sync it and we are required to always sync
+ ** the journal before playing it back.
+ */
+ if( isOpen(pPager->jfd) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerSyncHotJournal(pPager);
+ if( rc==SQLITE_OK ){
+ rc = pager_playback(pPager, !pPager->tempFile);
+ pPager->eState = PAGER_OPEN;
+ }
+ }else if( !pPager->exclusiveMode ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+
+ if( rc!=SQLITE_OK ){
+ /* This branch is taken if an error occurs while trying to open
+ ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
+ ** pager_unlock() routine will be called before returning to unlock
+ ** the file. If the unlock attempt fails, then Pager.eLock must be
+ ** set to UNKNOWN_LOCK (see the comment above the #define for
+ ** UNKNOWN_LOCK above for an explanation).
+ **
+ ** In order to get pager_unlock() to do this, set Pager.eState to
+ ** PAGER_ERROR now. This is not actually counted as a transition
+ ** to ERROR state in the state diagram at the top of this file,
+ ** since we know that the same call to pager_unlock() will very
+ ** shortly transition the pager object to the OPEN state. Calling
+ ** assert_pager_state() would fail now, as it should not be possible
+ ** to be in ERROR state when there are zero outstanding page
+ ** references.
+ */
+ pager_error(pPager, rc);
+ goto failed;
+ }
+
+ assert( pPager->eState==PAGER_OPEN );
+ assert( (pPager->eLock==SHARED_LOCK)
+ || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
+ );
+ }
+
+ if( !pPager->tempFile && pPager->hasHeldSharedLock ){
+ /* The shared-lock has just been acquired then check to
+ ** see if the database has been modified. If the database has changed,
+ ** flush the cache. The hasHeldSharedLock flag prevents this from
+ ** occurring on the very first access to a file, in order to save a
+ ** single unnecessary sqlite3OsRead() call at the start-up.
+ **
+ ** Database changes are detected by looking at 15 bytes beginning
+ ** at offset 24 into the file. The first 4 of these 16 bytes are
+ ** a 32-bit counter that is incremented with each change. The
+ ** other bytes change randomly with each file change when
+ ** a codec is in use.
+ **
+ ** There is a vanishingly small chance that a change will not be
+ ** detected. The chance of an undetected change is so small that
+ ** it can be neglected.
+ */
+ char dbFileVers[sizeof(pPager->dbFileVers)];
+
+ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
+ rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
+ if( rc!=SQLITE_OK ){
+ if( rc!=SQLITE_IOERR_SHORT_READ ){
+ goto failed;
+ }
+ memset(dbFileVers, 0, sizeof(dbFileVers));
+ }
+
+ if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
+ pager_reset(pPager);
+
+ /* Unmap the database file. It is possible that external processes
+ ** may have truncated the database file and then extended it back
+ ** to its original size while this process was not holding a lock.
+ ** In this case there may exist a Pager.pMap mapping that appears
+ ** to be the right size but is not actually valid. Avoid this
+ ** possibility by unmapping the db here. */
+ if( USEFETCH(pPager) ){
+ sqlite3OsUnfetch(pPager->fd, 0, 0);
+ }
+ }
+ }
+
+ /* If there is a WAL file in the file-system, open this database in WAL
+ ** mode. Otherwise, the following function call is a no-op.
+ */
+ rc = pagerOpenWalIfPresent(pPager);
+#ifndef SQLITE_OMIT_WAL
+ assert( pPager->pWal==0 || rc==SQLITE_OK );
+#endif
+ }
+
+ if( pagerUseWal(pPager) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerBeginReadTransaction(pPager);
+ }
+
+ if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
+ rc = pagerPagecount(pPager, &pPager->dbSize);
+ }
+
+ failed:
+ if( rc!=SQLITE_OK ){
+ assert( !MEMDB );
+ pager_unlock(pPager);
+ assert( pPager->eState==PAGER_OPEN );
+ }else{
+ pPager->eState = PAGER_READER;
+ pPager->hasHeldSharedLock = 1;
+ }
+ return rc;
+}
+
+/*
+** If the reference count has reached zero, rollback any active
+** transaction and unlock the pager.
+**
+** Except, in locking_mode=EXCLUSIVE when there is nothing to in
+** the rollback journal, the unlock is not performed and there is
+** nothing to rollback, so this routine is a no-op.
+*/
+static void pagerUnlockIfUnused(Pager *pPager){
+ if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){
+ assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */
+ pagerUnlockAndRollback(pPager);
+ }
+}
+
+/*
+** The page getter methods each try to acquire a reference to a
+** page with page number pgno. If the requested reference is
+** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
+**
+** There are different implementations of the getter method depending
+** on the current state of the pager.
+**
+** getPageNormal() -- The normal getter
+** getPageError() -- Used if the pager is in an error state
+** getPageMmap() -- Used if memory-mapped I/O is enabled
+**
+** If the requested page is already in the cache, it is returned.
+** Otherwise, a new page object is allocated and populated with data
+** read from the database file. In some cases, the pcache module may
+** choose not to allocate a new page object and may reuse an existing
+** object with no outstanding references.
+**
+** The extra data appended to a page is always initialized to zeros the
+** first time a page is loaded into memory. If the page requested is
+** already in the cache when this function is called, then the extra
+** data is left as it was when the page object was last used.
+**
+** If the database image is smaller than the requested page or if
+** the flags parameter contains the PAGER_GET_NOCONTENT bit and the
+** requested page is not already stored in the cache, then no
+** actual disk read occurs. In this case the memory image of the
+** page is initialized to all zeros.
+**
+** If PAGER_GET_NOCONTENT is true, it means that we do not care about
+** the contents of the page. This occurs in two scenarios:
+**
+** a) When reading a free-list leaf page from the database, and
+**
+** b) When a savepoint is being rolled back and we need to load
+** a new page into the cache to be filled with the data read
+** from the savepoint journal.
+**
+** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead
+** of being read from the database. Additionally, the bits corresponding
+** to pgno in Pager.pInJournal (bitvec of pages already written to the
+** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
+** savepoints are set. This means if the page is made writable at any
+** point in the future, using a call to sqlite3PagerWrite(), its contents
+** will not be journaled. This saves IO.
+**
+** The acquisition might fail for several reasons. In all cases,
+** an appropriate error code is returned and *ppPage is set to NULL.
+**
+** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
+** to find a page in the in-memory cache first. If the page is not already
+** in memory, this routine goes to disk to read it in whereas Lookup()
+** just returns 0. This routine acquires a read-lock the first time it
+** has to go to disk, and could also playback an old journal if necessary.
+** Since Lookup() never goes to disk, it never has to deal with locks
+** or journal files.
+*/
+static int getPageNormal(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ int rc = SQLITE_OK;
+ PgHdr *pPg;
+ u8 noContent; /* True if PAGER_GET_NOCONTENT is set */
+ sqlite3_pcache_page *pBase;
+
+ assert( pPager->errCode==SQLITE_OK );
+ assert( pPager->eState>=PAGER_READER );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->hasHeldSharedLock==1 );
+
+ if( pgno==0 ) return SQLITE_CORRUPT_BKPT;
+ pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3);
+ if( pBase==0 ){
+ pPg = 0;
+ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase);
+ if( rc!=SQLITE_OK ) goto pager_acquire_err;
+ if( pBase==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto pager_acquire_err;
+ }
+ }
+ pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase);
+ assert( pPg==(*ppPage) );
+ assert( pPg->pgno==pgno );
+ assert( pPg->pPager==pPager || pPg->pPager==0 );
+
+ noContent = (flags & PAGER_GET_NOCONTENT)!=0;
+ if( pPg->pPager && !noContent ){
+ /* In this case the pcache already contains an initialized copy of
+ ** the page. Return without further ado. */
+ assert( pgno!=PAGER_SJ_PGNO(pPager) );
+ pPager->aStat[PAGER_STAT_HIT]++;
+ return SQLITE_OK;
+
+ }else{
+ /* The pager cache has created a new page. Its content needs to
+ ** be initialized. But first some error checks:
+ **
+ ** (*) obsolete. Was: maximum page number is 2^31
+ ** (2) Never try to fetch the locking page
+ */
+ if( pgno==PAGER_SJ_PGNO(pPager) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto pager_acquire_err;
+ }
+
+ pPg->pPager = pPager;
+
+ assert( !isOpen(pPager->fd) || !MEMDB );
+ if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){
+ if( pgno>pPager->mxPgno ){
+ rc = SQLITE_FULL;
+ goto pager_acquire_err;
+ }
+ if( noContent ){
+ /* Failure to set the bits in the InJournal bit-vectors is benign.
+ ** It merely means that we might do some extra work to journal a
+ ** page that does not need to be journaled. Nevertheless, be sure
+ ** to test the case where a malloc error occurs while trying to set
+ ** a bit in a bit vector.
+ */
+ sqlite3BeginBenignMalloc();
+ if( pgno<=pPager->dbOrigSize ){
+ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ }
+ TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ sqlite3EndBenignMalloc();
+ }
+ memset(pPg->pData, 0, pPager->pageSize);
+ IOTRACE(("ZERO %p %d\n", pPager, pgno));
+ }else{
+ assert( pPg->pPager==pPager );
+ pPager->aStat[PAGER_STAT_MISS]++;
+ rc = readDbPage(pPg);
+ if( rc!=SQLITE_OK ){
+ goto pager_acquire_err;
+ }
+ }
+ pager_set_pagehash(pPg);
+ }
+ return SQLITE_OK;
+
+pager_acquire_err:
+ assert( rc!=SQLITE_OK );
+ if( pPg ){
+ sqlite3PcacheDrop(pPg);
+ }
+ pagerUnlockIfUnused(pPager);
+ *ppPage = 0;
+ return rc;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* The page getter for when memory-mapped I/O is enabled */
+static int getPageMMap(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ int rc = SQLITE_OK;
+ PgHdr *pPg = 0;
+ u32 iFrame = 0; /* Frame to read from WAL file */
+
+ /* It is acceptable to use a read-only (mmap) page for any page except
+ ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
+ ** flag was specified by the caller. And so long as the db is not a
+ ** temporary or in-memory database. */
+ const int bMmapOk = (pgno>1
+ && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY))
+ );
+
+ assert( USEFETCH(pPager) );
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ assert( pPager->xCodec==0 );
+#endif
+/* END SQLCIPHER */
+
+ /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here
+ ** allows the compiler optimizer to reuse the results of the "pgno>1"
+ ** test in the previous statement, and avoid testing pgno==0 in the
+ ** common case where pgno is large. */
+ if( pgno<=1 && pgno==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( pPager->eState>=PAGER_READER );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->hasHeldSharedLock==1 );
+ assert( pPager->errCode==SQLITE_OK );
+
+ if( bMmapOk && pagerUseWal(pPager) ){
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame);
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ if( bMmapOk && iFrame==0 ){
+ void *pData = 0;
+ rc = sqlite3OsFetch(pPager->fd,
+ (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData
+ );
+ if( rc==SQLITE_OK && pData ){
+ if( pPager->eState>PAGER_READER || pPager->tempFile ){
+ pPg = sqlite3PagerLookup(pPager, pgno);
+ }
+ if( pPg==0 ){
+ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg);
+ }else{
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData);
+ }
+ if( pPg ){
+ assert( rc==SQLITE_OK );
+ *ppPage = pPg;
+ return SQLITE_OK;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ return getPageNormal(pPager, pgno, ppPage, flags);
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/* The page getter method for when the pager is an error state */
+static int getPageError(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ UNUSED_PARAMETER(pgno);
+ UNUSED_PARAMETER(flags);
+ assert( pPager->errCode!=SQLITE_OK );
+ *ppPage = 0;
+ return pPager->errCode;
+}
+
+
+/* Dispatch all page fetch requests to the appropriate getter method.
+*/
+SQLITE_PRIVATE int sqlite3PagerGet(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ /* printf("PAGE %u\n", pgno); fflush(stdout); */
+ return pPager->xGet(pPager, pgno, ppPage, flags);
+}
+
+/*
+** Acquire a page if it is already in the in-memory cache. Do
+** not read the page from disk. Return a pointer to the page,
+** or 0 if the page is not in cache.
+**
+** See also sqlite3PagerGet(). The difference between this routine
+** and sqlite3PagerGet() is that _get() will go to the disk and read
+** in the page if the page is not already in cache. This routine
+** returns NULL if the page is not in cache or if a disk I/O error
+** has ever happened.
+*/
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
+ sqlite3_pcache_page *pPage;
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ assert( pPager->pPCache!=0 );
+ pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);
+ assert( pPage==0 || pPager->hasHeldSharedLock );
+ if( pPage==0 ) return 0;
+ return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
+}
+
+/*
+** Release a page reference.
+**
+** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be
+** used if we know that the page being released is not the last page.
+** The btree layer always holds page1 open until the end, so these first
+** to routines can be used to release any page other than BtShared.pPage1.
+**
+** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine
+** checks the total number of outstanding pages and if the number of
+** pages reaches zero it drops the database lock.
+*/
+SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){
+ TESTONLY( Pager *pPager = pPg->pPager; )
+ assert( pPg!=0 );
+ if( pPg->flags & PGHDR_MMAP ){
+ assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */
+ pagerReleaseMapPage(pPg);
+ }else{
+ sqlite3PcacheRelease(pPg);
+ }
+ /* Do not use this routine to release the last reference to page1 */
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 );
+}
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){
+ if( pPg ) sqlite3PagerUnrefNotNull(pPg);
+}
+SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage *pPg){
+ Pager *pPager;
+ assert( pPg!=0 );
+ assert( pPg->pgno==1 );
+ assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */
+ pPager = pPg->pPager;
+ sqlite3PcacheRelease(pPg);
+ pagerUnlockIfUnused(pPager);
+}
+
+/*
+** This function is called at the start of every write transaction.
+** There must already be a RESERVED or EXCLUSIVE lock on the database
+** file when this routine is called.
+**
+** Open the journal file for pager pPager and write a journal header
+** to the start of it. If there are active savepoints, open the sub-journal
+** as well. This function is only used when the journal file is being
+** opened to write a rollback log for a transaction. It is not used
+** when opening a hot journal file to roll it back.
+**
+** If the journal file is already open (as it may be in exclusive mode),
+** then this function just writes a journal header to the start of the
+** already open file.
+**
+** Whether or not the journal file is opened by this function, the
+** Pager.pInJournal bitvec structure is allocated.
+**
+** Return SQLITE_OK if everything is successful. Otherwise, return
+** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or
+** an IO error code if opening or writing the journal file fails.
+*/
+static int pager_open_journal(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->pInJournal==0 );
+
+ /* If already in the error state, this function is a no-op. But on
+ ** the other hand, this routine is never called if we are already in
+ ** an error state. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
+ if( pPager->pInJournal==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* Open the journal file if it is not already open. */
+ if( !isOpen(pPager->jfd) ){
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
+ sqlite3MemJournalOpen(pPager->jfd);
+ }else{
+ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
+ int nSpill;
+
+ if( pPager->tempFile ){
+ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
+ nSpill = sqlite3Config.nStmtSpill;
+ }else{
+ flags |= SQLITE_OPEN_MAIN_JOURNAL;
+ nSpill = jrnlBufferSize(pPager);
+ }
+
+ /* Verify that the database still has the same name as it did when
+ ** it was originally opened. */
+ rc = databaseIsUnmoved(pPager);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3JournalOpen (
+ pVfs, pPager->zJournal, pPager->jfd, flags, nSpill
+ );
+ }
+ }
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ }
+
+
+ /* Write the first journal header to the journal file and open
+ ** the sub-journal if necessary.
+ */
+ if( rc==SQLITE_OK ){
+ /* TODO: Check if all of these are really required. */
+ pPager->nRec = 0;
+ pPager->journalOff = 0;
+ pPager->setSuper = 0;
+ pPager->journalHdr = 0;
+ rc = writeJournalHdr(pPager);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ pPager->journalOff = 0;
+ }else{
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ pPager->eState = PAGER_WRITER_CACHEMOD;
+ }
+
+ return rc;
+}
+
+/*
+** Begin a write-transaction on the specified pager object. If a
+** write-transaction has already been opened, this function is a no-op.
+**
+** If the exFlag argument is false, then acquire at least a RESERVED
+** lock on the database file. If exFlag is true, then acquire at least
+** an EXCLUSIVE lock. If such a lock is already held, no locking
+** functions need be called.
+**
+** If the subjInMemory argument is non-zero, then any sub-journal opened
+** within this transaction will be opened as an in-memory file. This
+** has no effect if the sub-journal is already opened (as it may be when
+** running in exclusive mode) or if the transaction does not require a
+** sub-journal. If the subjInMemory argument is zero, then any required
+** sub-journal is implemented in-memory if pPager is an in-memory database,
+** or using a temporary file otherwise.
+*/
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
+ int rc = SQLITE_OK;
+
+ if( pPager->errCode ) return pPager->errCode;
+ assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
+ pPager->subjInMemory = (u8)subjInMemory;
+
+ if( pPager->eState==PAGER_READER ){
+ assert( pPager->pInJournal==0 );
+
+ if( pagerUseWal(pPager) ){
+ /* If the pager is configured to use locking_mode=exclusive, and an
+ ** exclusive lock on the database is not already held, obtain it now.
+ */
+ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ (void)sqlite3WalExclusiveMode(pPager->pWal, 1);
+ }
+
+ /* Grab the write lock on the log file. If successful, upgrade to
+ ** PAGER_RESERVED state. Otherwise, return an error code to the caller.
+ ** The busy-handler is not invoked if another connection already
+ ** holds the write-lock. If possible, the upper layer will call it.
+ */
+ rc = sqlite3WalBeginWriteTransaction(pPager->pWal);
+ }else{
+ /* Obtain a RESERVED lock on the database file. If the exFlag parameter
+ ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
+ ** busy-handler callback can be used when upgrading to the EXCLUSIVE
+ ** lock, but not when obtaining the RESERVED lock.
+ */
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ if( rc==SQLITE_OK && exFlag ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Change to WRITER_LOCKED state.
+ **
+ ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
+ ** when it has an open transaction, but never to DBMOD or FINISHED.
+ ** This is because in those states the code to roll back savepoint
+ ** transactions may copy data from the sub-journal into the database
+ ** file as well as into the page cache. Which would be incorrect in
+ ** WAL mode.
+ */
+ pPager->eState = PAGER_WRITER_LOCKED;
+ pPager->dbHintSize = pPager->dbSize;
+ pPager->dbFileSize = pPager->dbSize;
+ pPager->dbOrigSize = pPager->dbSize;
+ pPager->journalOff = 0;
+ }
+
+ assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
+ assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ }
+
+ PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
+ return rc;
+}
+
+/*
+** Write page pPg onto the end of the rollback journal.
+*/
+static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ int rc;
+ u32 cksum;
+ char *pData2;
+ i64 iOff = pPager->journalOff;
+
+ /* We should never write to the journal file the page that
+ ** contains the database locks. The following assert verifies
+ ** that we do not. */
+ assert( pPg->pgno!=PAGER_SJ_PGNO(pPager) );
+
+ assert( pPager->journalHdr<=pPager->journalOff );
+ CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2);
+ cksum = pager_cksum(pPager, (u8*)pData2);
+
+ /* Even if an IO or diskfull error occurs while journalling the
+ ** page in the block above, set the need-sync flag for the page.
+ ** Otherwise, when the transaction is rolled back, the logic in
+ ** playback_one_page() will think that the page needs to be restored
+ ** in the database file. And if an IO error occurs while doing so,
+ ** then corruption may follow.
+ */
+ pPg->flags |= PGHDR_NEED_SYNC;
+
+ rc = write32bits(pPager->jfd, iOff, pPg->pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
+ if( rc!=SQLITE_OK ) return rc;
+
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
+ pPager->journalOff, pPager->pageSize));
+ PAGER_INCR(sqlite3_pager_writej_count);
+ PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
+
+ pPager->journalOff += 8 + pPager->pageSize;
+ pPager->nRec++;
+ assert( pPager->pInJournal!=0 );
+ rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ rc |= addToSavepointBitvecs(pPager, pPg->pgno);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ return rc;
+}
+
+/*
+** Mark a single data page as writeable. The page is written into the
+** main journal or sub-journal as required. If the page is written into
+** one of the journals, the corresponding bit is set in the
+** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
+** of any open savepoints as appropriate.
+*/
+static int pager_write(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+
+ /* This routine is not called unless a write-transaction has already
+ ** been started. The journal file may or may not be open at this point.
+ ** It is never called in the ERROR state.
+ */
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->errCode==0 );
+ assert( pPager->readOnly==0 );
+ CHECK_PAGE(pPg);
+
+ /* The journal file needs to be opened. Higher level routines have already
+ ** obtained the necessary locks to begin the write-transaction, but the
+ ** rollback journal might not yet be open. Open it now if this is the case.
+ **
+ ** This is done before calling sqlite3PcacheMakeDirty() on the page.
+ ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
+ ** an error might occur and the pager would end up in WRITER_LOCKED state
+ ** with pages marked as dirty in the cache.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ assert( assert_pager_state(pPager) );
+
+ /* Mark the page that is about to be modified as dirty. */
+ sqlite3PcacheMakeDirty(pPg);
+
+ /* If a rollback journal is in use, them make sure the page that is about
+ ** to change is in the rollback journal, or if the page is a new page off
+ ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC.
+ */
+ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) );
+ if( pPager->pInJournal!=0
+ && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0
+ ){
+ assert( pagerUseWal(pPager)==0 );
+ if( pPg->pgno<=pPager->dbOrigSize ){
+ rc = pagerAddPageToRollbackJournal(pPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ if( pPager->eState!=PAGER_WRITER_DBMOD ){
+ pPg->flags |= PGHDR_NEED_SYNC;
+ }
+ PAGERTRACE(("APPEND %d page %d needSync=%d\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
+ }
+ }
+
+ /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list
+ ** and before writing the page into the rollback journal. Wait until now,
+ ** after the page has been successfully journalled, before setting the
+ ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified.
+ */
+ pPg->flags |= PGHDR_WRITEABLE;
+
+ /* If the statement journal is open and the page is not in it,
+ ** then write the page into the statement journal.
+ */
+ if( pPager->nSavepoint>0 ){
+ rc = subjournalPageIfRequired(pPg);
+ }
+
+ /* Update the database size and return. */
+ if( pPager->dbSize<pPg->pgno ){
+ pPager->dbSize = pPg->pgno;
+ }
+ return rc;
+}
+
+/*
+** This is a variant of sqlite3PagerWrite() that runs when the sector size
+** is larger than the page size. SQLite makes the (reasonable) assumption that
+** all bytes of a sector are written together by hardware. Hence, all bytes of
+** a sector need to be journalled in case of a power loss in the middle of
+** a write.
+**
+** Usually, the sector size is less than or equal to the page size, in which
+** case pages can be individually written. This routine only runs in the
+** exceptional case where the page size is smaller than the sector size.
+*/
+static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){
+ int rc = SQLITE_OK; /* Return code */
+ Pgno nPageCount; /* Total number of pages in database file */
+ Pgno pg1; /* First page of the sector pPg is located on. */
+ int nPage = 0; /* Number of pages starting at pg1 to journal */
+ int ii; /* Loop counter */
+ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */
+ Pager *pPager = pPg->pPager; /* The pager that owns pPg */
+ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
+
+ /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
+ ** a journal header to be written between the pages journaled by
+ ** this function.
+ */
+ assert( !MEMDB );
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );
+ pPager->doNotSpill |= SPILLFLAG_NOSYNC;
+
+ /* This trick assumes that both the page-size and sector-size are
+ ** an integer power of 2. It sets variable pg1 to the identifier
+ ** of the first page of the sector pPg is located on.
+ */
+ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
+
+ nPageCount = pPager->dbSize;
+ if( pPg->pgno>nPageCount ){
+ nPage = (pPg->pgno - pg1)+1;
+ }else if( (pg1+nPagePerSector-1)>nPageCount ){
+ nPage = nPageCount+1-pg1;
+ }else{
+ nPage = nPagePerSector;
+ }
+ assert(nPage>0);
+ assert(pg1<=pPg->pgno);
+ assert((pg1+nPage)>pPg->pgno);
+
+ for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
+ Pgno pg = pg1+ii;
+ PgHdr *pPage;
+ if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
+ if( pg!=PAGER_SJ_PGNO(pPager) ){
+ rc = sqlite3PagerGet(pPager, pg, &pPage, 0);
+ if( rc==SQLITE_OK ){
+ rc = pager_write(pPage);
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+ }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+
+ /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages
+ ** starting at pg1, then it needs to be set for all of them. Because
+ ** writing to any of these nPage pages may damage the others, the
+ ** journal file must contain sync()ed copies of all of them
+ ** before any of them can be written out to the database file.
+ */
+ if( rc==SQLITE_OK && needSync ){
+ assert( !MEMDB );
+ for(ii=0; ii<nPage; ii++){
+ PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii);
+ if( pPage ){
+ pPage->flags |= PGHDR_NEED_SYNC;
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+ }
+
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 );
+ pPager->doNotSpill &= ~SPILLFLAG_NOSYNC;
+ return rc;
+}
+
+/*
+** Mark a data page as writeable. This routine must be called before
+** making changes to a page. The caller must check the return value
+** of this function and be careful not to change any page data unless
+** this routine returns SQLITE_OK.
+**
+** The difference between this function and pager_write() is that this
+** function also deals with the special case where 2 or more pages
+** fit on a single disk sector. In this case all co-resident pages
+** must have been written to the journal file before returning.
+**
+** If an error occurs, SQLITE_NOMEM or an IO error code is returned
+** as appropriate. Otherwise, SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( (pPg->flags & PGHDR_MMAP)==0 );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){
+ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg);
+ return SQLITE_OK;
+ }else if( pPager->errCode ){
+ return pPager->errCode;
+ }else if( pPager->sectorSize > (u32)pPager->pageSize ){
+ assert( pPager->tempFile==0 );
+ return pagerWriteLargeSector(pPg);
+ }else{
+ return pager_write(pPg);
+ }
+}
+
+/*
+** Return TRUE if the page given in the argument was previously passed
+** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
+** to change the content of the page.
+*/
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
+ return pPg->flags & PGHDR_WRITEABLE;
+}
+#endif
+
+/*
+** A call to this routine tells the pager that it is not necessary to
+** write the information on page pPg back to the disk, even though
+** that page might be marked as dirty. This happens, for example, when
+** the page has been added as a leaf of the freelist and so its
+** content no longer matters.
+**
+** The overlying software layer calls this routine when all of the data
+** on the given page is unused. The pager marks the page as clean so
+** that it does not get written to disk.
+**
+** Tests show that this optimization can quadruple the speed of large
+** DELETE operations.
+**
+** This optimization cannot be used with a temp-file, as the page may
+** have been dirty at the start of the transaction. In that case, if
+** memory pressure forces page pPg out of the cache, the data does need
+** to be written out to disk so that it may be read back in if the
+** current transaction is rolled back.
+*/
+SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
+ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
+ IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
+ pPg->flags |= PGHDR_DONT_WRITE;
+ pPg->flags &= ~PGHDR_WRITEABLE;
+ testcase( pPg->flags & PGHDR_NEED_SYNC );
+ pager_set_pagehash(pPg);
+ }
+}
+
+/*
+** This routine is called to increment the value of the database file
+** change-counter, stored as a 4-byte big-endian integer starting at
+** byte offset 24 of the pager file. The secondary change counter at
+** 92 is also updated, as is the SQLite version number at offset 96.
+**
+** But this only happens if the pPager->changeCountDone flag is false.
+** To avoid excess churning of page 1, the update only happens once.
+** See also the pager_write_changecounter() routine that does an
+** unconditional update of the change counters.
+**
+** If the isDirectMode flag is zero, then this is done by calling
+** sqlite3PagerWrite() on page 1, then modifying the contents of the
+** page data. In this case the file will be updated when the current
+** transaction is committed.
+**
+** The isDirectMode flag may only be non-zero if the library was compiled
+** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
+** if isDirect is non-zero, then the database file is updated directly
+** by writing an updated version of page 1 using a call to the
+** sqlite3OsWrite() function.
+*/
+static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
+ int rc = SQLITE_OK;
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* Declare and initialize constant integer 'isDirect'. If the
+ ** atomic-write optimization is enabled in this build, then isDirect
+ ** is initialized to the value passed as the isDirectMode parameter
+ ** to this function. Otherwise, it is always set to zero.
+ **
+ ** The idea is that if the atomic-write optimization is not
+ ** enabled at compile time, the compiler can omit the tests of
+ ** 'isDirect' below, as well as the block enclosed in the
+ ** "if( isDirect )" condition.
+ */
+#ifndef SQLITE_ENABLE_ATOMIC_WRITE
+# define DIRECT_MODE 0
+ assert( isDirectMode==0 );
+ UNUSED_PARAMETER(isDirectMode);
+#else
+# define DIRECT_MODE isDirectMode
+#endif
+
+ if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){
+ PgHdr *pPgHdr; /* Reference to page 1 */
+
+ assert( !pPager->tempFile && isOpen(pPager->fd) );
+
+ /* Open page 1 of the file for writing. */
+ rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0);
+ assert( pPgHdr==0 || rc==SQLITE_OK );
+
+ /* If page one was fetched successfully, and this function is not
+ ** operating in direct-mode, make page 1 writable. When not in
+ ** direct mode, page 1 is always held in cache and hence the PagerGet()
+ ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
+ */
+ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
+ rc = sqlite3PagerWrite(pPgHdr);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Actually do the update of the change counter */
+ pager_write_changecounter(pPgHdr);
+
+ /* If running in direct mode, write the contents of page 1 to the file. */
+ if( DIRECT_MODE ){
+ const void *zBuf;
+ assert( pPager->dbFileSize>0 );
+ CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM_BKPT, zBuf);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
+ pPager->aStat[PAGER_STAT_WRITE]++;
+ }
+ if( rc==SQLITE_OK ){
+ /* Update the pager's copy of the change-counter. Otherwise, the
+ ** next time a read transaction is opened the cache will be
+ ** flushed (as the change-counter values will not match). */
+ const void *pCopy = (const void *)&((const char *)zBuf)[24];
+ memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers));
+ pPager->changeCountDone = 1;
+ }
+ }else{
+ pPager->changeCountDone = 1;
+ }
+ }
+
+ /* Release the page reference. */
+ sqlite3PagerUnref(pPgHdr);
+ }
+ return rc;
+}
+
+/*
+** Sync the database file to disk. This is a no-op for in-memory databases
+** or pages with the Pager.noSync flag set.
+**
+** If successful, or if called on a pager for which it is a no-op, this
+** function returns SQLITE_OK. Otherwise, an IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper){
+ int rc = SQLITE_OK;
+ void *pArg = (void*)zSuper;
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ assert( !MEMDB );
+ rc = sqlite3OsSync(pPager->fd, pPager->syncFlags);
+ }
+ return rc;
+}
+
+/*
+** This function may only be called while a write-transaction is active in
+** rollback. If the connection is in WAL mode, this call is a no-op.
+** Otherwise, if the connection does not already have an EXCLUSIVE lock on
+** the database file, an attempt is made to obtain one.
+**
+** If the EXCLUSIVE lock is already held or the attempt to obtain it is
+** successful, or the connection is in WAL mode, SQLITE_OK is returned.
+** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is
+** returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
+ int rc = pPager->errCode;
+ assert( assert_pager_state(pPager) );
+ if( rc==SQLITE_OK ){
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_WRITER_LOCKED
+ );
+ assert( assert_pager_state(pPager) );
+ if( 0==pagerUseWal(pPager) ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+ return rc;
+}
+
+/*
+** Sync the database file for the pager pPager. zSuper points to the name
+** of a super-journal file that should be written into the individual
+** journal file. zSuper may be NULL, which is interpreted as no
+** super-journal (a single database transaction).
+**
+** This routine ensures that:
+**
+** * The database file change-counter is updated,
+** * the journal is synced (unless the atomic-write optimization is used),
+** * all dirty pages are written to the database file,
+** * the database file is truncated (if required), and
+** * the database file synced.
+**
+** The only thing that remains to commit the transaction is to finalize
+** (delete, truncate or zero the first part of) the journal file (or
+** delete the super-journal file if specified).
+**
+** Note that if zSuper==NULL, this does not overwrite a previous value
+** passed to an sqlite3PagerCommitPhaseOne() call.
+**
+** If the final parameter - noSync - is true, then the database file itself
+** is not synced. The caller must call sqlite3PagerSync() directly to
+** sync the database file before calling CommitPhaseTwo() to delete the
+** journal file in this case.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
+ Pager *pPager, /* Pager object */
+ const char *zSuper, /* If not NULL, the super-journal name */
+ int noSync /* True to omit the xSync on the db file */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_ERROR
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* If a prior error occurred, report that error again. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ /* Provide the ability to easily simulate an I/O error during testing */
+ if( sqlite3FaultSim(400) ) return SQLITE_IOERR;
+
+ PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n",
+ pPager->zFilename, zSuper, pPager->dbSize));
+
+ /* If no database changes have been made, return early. */
+ if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;
+
+ assert( MEMDB==0 || pPager->tempFile );
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+ if( 0==pagerFlushOnCommit(pPager, 1) ){
+ /* If this is an in-memory db, or no pages have been written to, or this
+ ** function has already been called, it is mostly a no-op. However, any
+ ** backup in progress needs to be restarted. */
+ sqlite3BackupRestart(pPager->pBackup);
+ }else{
+ PgHdr *pList;
+ if( pagerUseWal(pPager) ){
+ PgHdr *pPageOne = 0;
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ if( pList==0 ){
+ /* Must have at least one page for the WAL commit flag.
+ ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
+ rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0);
+ pList = pPageOne;
+ pList->pDirty = 0;
+ }
+ assert( rc==SQLITE_OK );
+ if( ALWAYS(pList) ){
+ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
+ }
+ sqlite3PagerUnref(pPageOne);
+ if( rc==SQLITE_OK ){
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ }
+ }else{
+ /* The bBatch boolean is true if the batch-atomic-write commit method
+ ** should be used. No rollback journal is created if batch-atomic-write
+ ** is enabled.
+ */
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ sqlite3_file *fd = pPager->fd;
+ int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */
+ && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC)
+ && !pPager->noSync
+ && sqlite3JournalIsInMemory(pPager->jfd);
+#else
+# define bBatch 0
+#endif
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ /* The following block updates the change-counter. Exactly how it
+ ** does this depends on whether or not the atomic-update optimization
+ ** was enabled at compile time, and if this transaction meets the
+ ** runtime criteria to use the operation:
+ **
+ ** * The file-system supports the atomic-write property for
+ ** blocks of size page-size, and
+ ** * This commit is not part of a multi-file transaction, and
+ ** * Exactly one page has been modified and store in the journal file.
+ **
+ ** If the optimization was not enabled at compile time, then the
+ ** pager_incr_changecounter() function is called to update the change
+ ** counter in 'indirect-mode'. If the optimization is compiled in but
+ ** is not applicable to this transaction, call sqlite3JournalCreate()
+ ** to make sure the journal file has actually been created, then call
+ ** pager_incr_changecounter() to update the change-counter in indirect
+ ** mode.
+ **
+ ** Otherwise, if the optimization is both enabled and applicable,
+ ** then call pager_incr_changecounter() to update the change-counter
+ ** in 'direct' mode. In this case the journal file will never be
+ ** created for this transaction.
+ */
+ if( bBatch==0 ){
+ PgHdr *pPg;
+ assert( isOpen(pPager->jfd)
+ || pPager->journalMode==PAGER_JOURNALMODE_OFF
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ if( !zSuper && isOpen(pPager->jfd)
+ && pPager->journalOff==jrnlBufferSize(pPager)
+ && pPager->dbSize>=pPager->dbOrigSize
+ && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
+ ){
+ /* Update the db file change counter via the direct-write method. The
+ ** following call will modify the in-memory representation of page 1
+ ** to include the updated change counter and then write page 1
+ ** directly to the database file. Because of the atomic-write
+ ** property of the host file-system, this is safe.
+ */
+ rc = pager_incr_changecounter(pPager, 1);
+ }else{
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc==SQLITE_OK ){
+ rc = pager_incr_changecounter(pPager, 0);
+ }
+ }
+ }
+#else /* SQLITE_ENABLE_ATOMIC_WRITE */
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( zSuper ){
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ assert( bBatch==0 );
+ }
+#endif
+ rc = pager_incr_changecounter(pPager, 0);
+#endif /* !SQLITE_ENABLE_ATOMIC_WRITE */
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Write the super-journal name into the journal file. If a
+ ** super-journal file name has already been written to the journal file,
+ ** or if zSuper is NULL (no super-journal), then this call is a no-op.
+ */
+ rc = writeSuperJournal(pPager, zSuper);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Sync the journal file and write all dirty pages to the database.
+ ** If the atomic-update optimization is being used, this sync will not
+ ** create the journal file or perform any real IO.
+ **
+ ** Because the change-counter page was just modified, unless the
+ ** atomic-update optimization is used it is almost certain that the
+ ** journal requires a sync here. However, in locking_mode=exclusive
+ ** on a system under memory pressure it is just possible that this is
+ ** not the case. In this case it is likely enough that the redundant
+ ** xSync() call will be changed to a no-op by the OS anyhow.
+ */
+ rc = syncJournal(pPager, 0);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( bBatch ){
+ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0);
+ if( rc==SQLITE_OK ){
+ rc = pager_write_pagelist(pPager, pList);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0);
+ }
+ }
+
+ if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(pPager->jfd);
+ goto commit_phase_one_exit;
+ }
+ bBatch = 0;
+ }else{
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+#endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
+
+ if( bBatch==0 ){
+ rc = pager_write_pagelist(pPager, pList);
+ }
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_IOERR_BLOCKED );
+ goto commit_phase_one_exit;
+ }
+ sqlite3PcacheCleanAll(pPager->pPCache);
+
+ /* If the file on disk is smaller than the database image, use
+ ** pager_truncate to grow the file here. This can happen if the database
+ ** image was extended as part of the current transaction and then the
+ ** last page in the db image moved to the free-list. In this case the
+ ** last page is never written out to disk, leaving the database file
+ ** undersized. Fix this now if it is the case. */
+ if( pPager->dbSize>pPager->dbFileSize ){
+ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_SJ_PGNO(pPager));
+ assert( pPager->eState==PAGER_WRITER_DBMOD );
+ rc = pager_truncate(pPager, nNew);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ }
+
+ /* Finally, sync the database file. */
+ if( !noSync ){
+ rc = sqlite3PagerSync(pPager, zSuper);
+ }
+ IOTRACE(("DBSYNC %p\n", pPager))
+ }
+ }
+
+commit_phase_one_exit:
+ if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
+ pPager->eState = PAGER_WRITER_FINISHED;
+ }
+ return rc;
+}
+
+
+/*
+** When this function is called, the database file has been completely
+** updated to reflect the changes made by the current transaction and
+** synced to disk. The journal file still exists in the file-system
+** though, and if a failure occurs at this point it will eventually
+** be used as a hot-journal and the current transaction rolled back.
+**
+** This function finalizes the journal file, either by deleting,
+** truncating or partially zeroing it, so that it cannot be used
+** for hot-journal rollback. Once this is done the transaction is
+** irrevocably committed.
+**
+** If an error occurs, an IO error code is returned and the pager
+** moves into the error state. Otherwise, SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This routine should not be called if a prior error has occurred.
+ ** But if (due to a coding error elsewhere in the system) it does get
+ ** called, just return the same error code without doing anything. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+ pPager->iDataVersion++;
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_FINISHED
+ || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* An optimization. If the database was not actually modified during
+ ** this transaction, the pager is running in exclusive-mode and is
+ ** using persistent journals, then this function is a no-op.
+ **
+ ** The start of the journal file currently contains a single journal
+ ** header with the nRec field set to 0. If such a journal is used as
+ ** a hot-journal during hot-journal rollback, 0 changes will be made
+ ** to the database file. So there is no need to zero the journal
+ ** header. Since the pager is in exclusive mode, there is no need
+ ** to drop any locks either.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED
+ && pPager->exclusiveMode
+ && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
+ pPager->eState = PAGER_READER;
+ return SQLITE_OK;
+ }
+
+ PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
+ rc = pager_end_transaction(pPager, pPager->setSuper, 1);
+ return pager_error(pPager, rc);
+}
+
+/*
+** If a write transaction is open, then all changes made within the
+** transaction are reverted and the current write-transaction is closed.
+** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
+** state if an error occurs.
+**
+** If the pager is already in PAGER_ERROR state when this function is called,
+** it returns Pager.errCode immediately. No work is performed in this case.
+**
+** Otherwise, in rollback mode, this function performs two functions:
+**
+** 1) It rolls back the journal file, restoring all database file and
+** in-memory cache pages to the state they were in when the transaction
+** was opened, and
+**
+** 2) It finalizes the journal file, so that it is not used for hot
+** rollback at any point in the future.
+**
+** Finalization of the journal file (task 2) is only performed if the
+** rollback is successful.
+**
+** In WAL mode, all cache-entries containing data modified within the
+** current transaction are either expelled from the cache or reverted to
+** their pre-transaction state by re-reading data from the database or
+** WAL files. The WAL transaction is then closed.
+*/
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
+
+ /* PagerRollback() is a no-op if called in READER or OPEN state. If
+ ** the pager is already in the ERROR state, the rollback is not
+ ** attempted here. Instead, the error code is returned to the caller.
+ */
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
+ if( pPager->eState<=PAGER_READER ) return SQLITE_OK;
+
+ if( pagerUseWal(pPager) ){
+ int rc2;
+ rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
+ rc2 = pager_end_transaction(pPager, pPager->setSuper, 0);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
+ int eState = pPager->eState;
+ rc = pager_end_transaction(pPager, 0, 0);
+ if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
+ /* This can happen using journal_mode=off. Move the pager to the error
+ ** state to indicate that the contents of the cache may not be trusted.
+ ** Any active readers will get SQLITE_ABORT.
+ */
+ pPager->errCode = SQLITE_ABORT;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ return rc;
+ }
+ }else{
+ rc = pager_playback(pPager, 0);
+ }
+
+ assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
+ assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT
+ || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR
+ || rc==SQLITE_CANTOPEN
+ );
+
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager
+ ** cache. So call pager_error() on the way out to make any error persistent.
+ */
+ return pager_error(pPager, rc);
+}
+
+/*
+** Return TRUE if the database file is opened read-only. Return FALSE
+** if the database is (in theory) writable.
+*/
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){
+ return pPager->readOnly;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return the sum of the reference counts for all pages held by pPager.
+*/
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
+ return sqlite3PcacheRefCount(pPager->pPCache);
+}
+#endif
+
+/*
+** Return the approximate number of bytes of memory currently
+** used by the pager and its associated cache.
+*/
+SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){
+ int perPageSize = pPager->pageSize + pPager->nExtra
+ + (int)(sizeof(PgHdr) + 5*sizeof(void*));
+ return perPageSize*sqlite3PcachePagecount(pPager->pPCache)
+ + sqlite3MallocSize(pPager)
+ + pPager->pageSize;
+}
+
+/*
+** Return the number of references to the specified page.
+*/
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){
+ return sqlite3PcachePageRefcount(pPage);
+}
+
+#ifdef SQLITE_TEST
+/*
+** This routine is used for testing and analysis only.
+*/
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
+ static int a[11];
+ a[0] = sqlite3PcacheRefCount(pPager->pPCache);
+ a[1] = sqlite3PcachePagecount(pPager->pPCache);
+ a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
+ a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
+ a[4] = pPager->eState;
+ a[5] = pPager->errCode;
+ a[6] = pPager->aStat[PAGER_STAT_HIT];
+ a[7] = pPager->aStat[PAGER_STAT_MISS];
+ a[8] = 0; /* Used to be pPager->nOvfl */
+ a[9] = pPager->nRead;
+ a[10] = pPager->aStat[PAGER_STAT_WRITE];
+ return a;
+}
+#endif
+
+/*
+** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE,
+** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation
+** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because
+** it was added later.
+**
+** Before returning, *pnVal is incremented by the
+** current cache hit or miss count, according to the value of eStat. If the
+** reset parameter is non-zero, the cache hit or miss count is zeroed before
+** returning.
+*/
+SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){
+
+ assert( eStat==SQLITE_DBSTATUS_CACHE_HIT
+ || eStat==SQLITE_DBSTATUS_CACHE_MISS
+ || eStat==SQLITE_DBSTATUS_CACHE_WRITE
+ || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1
+ );
+
+ assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS );
+ assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE );
+ assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1
+ && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 );
+
+ eStat -= SQLITE_DBSTATUS_CACHE_HIT;
+ *pnVal += pPager->aStat[eStat];
+ if( reset ){
+ pPager->aStat[eStat] = 0;
+ }
+}
+
+/*
+** Return true if this is an in-memory or temp-file backed pager.
+*/
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
+ return pPager->tempFile || pPager->memVfs;
+}
+
+/*
+** Check that there are at least nSavepoint savepoints open. If there are
+** currently less than nSavepoints open, then open one or more savepoints
+** to make up the difference. If the number of savepoints is already
+** equal to nSavepoint, then this function is a no-op.
+**
+** If a memory allocation fails, SQLITE_NOMEM is returned. If an error
+** occurs while opening the sub-journal file, then an IO error code is
+** returned. Otherwise, SQLITE_OK.
+*/
+static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ int rc = SQLITE_OK; /* Return code */
+ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */
+ int ii; /* Iterator variable */
+ PagerSavepoint *aNew; /* New Pager.aSavepoint array */
+
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ assert( nSavepoint>nCurrent && pPager->useJournal );
+
+ /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
+ ** if the allocation fails. Otherwise, zero the new portion in case a
+ ** malloc failure occurs while populating it in the for(...) loop below.
+ */
+ aNew = (PagerSavepoint *)sqlite3Realloc(
+ pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
+ );
+ if( !aNew ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
+ pPager->aSavepoint = aNew;
+
+ /* Populate the PagerSavepoint structures just allocated. */
+ for(ii=nCurrent; ii<nSavepoint; ii++){
+ aNew[ii].nOrig = pPager->dbSize;
+ if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
+ aNew[ii].iOffset = pPager->journalOff;
+ }else{
+ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
+ }
+ aNew[ii].iSubRec = pPager->nSubRec;
+ aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
+ aNew[ii].bTruncateOnRelease = 1;
+ if( !aNew[ii].pInSavepoint ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( pagerUseWal(pPager) ){
+ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
+ }
+ pPager->nSavepoint = ii+1;
+ }
+ assert( pPager->nSavepoint==nSavepoint );
+ assertTruncateConstraint(pPager);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+
+ if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){
+ return pagerOpenSavepoint(pPager, nSavepoint);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+
+/*
+** This function is called to rollback or release (commit) a savepoint.
+** The savepoint to release or rollback need not be the most recently
+** created savepoint.
+**
+** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
+** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
+** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
+** that have occurred since the specified savepoint was created.
+**
+** The savepoint to rollback or release is identified by parameter
+** iSavepoint. A value of 0 means to operate on the outermost savepoint
+** (the first created). A value of (Pager.nSavepoint-1) means operate
+** on the most recently created savepoint. If iSavepoint is greater than
+** (Pager.nSavepoint-1), then this function is a no-op.
+**
+** If a negative value is passed to this function, then the current
+** transaction is rolled back. This is different to calling
+** sqlite3PagerRollback() because this function does not terminate
+** the transaction or unlock the database, it just restores the
+** contents of the database to its original state.
+**
+** In any case, all savepoints with an index greater than iSavepoint
+** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
+** then savepoint iSavepoint is also destroyed.
+**
+** This function may return SQLITE_NOMEM if a memory allocation fails,
+** or an IO error code if an IO error occurs while rolling back a
+** savepoint. If no errors occur, SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
+ int rc = pPager->errCode;
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+ if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK;
+#endif
+
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
+
+ if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
+ int ii; /* Iterator variable */
+ int nNew; /* Number of remaining savepoints after this op. */
+
+ /* Figure out how many savepoints will still be active after this
+ ** operation. Store this value in nNew. Then free resources associated
+ ** with any savepoints that are destroyed by this operation.
+ */
+ nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1);
+ for(ii=nNew; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ pPager->nSavepoint = nNew;
+
+ /* Truncate the sub-journal so that it only includes the parts
+ ** that are still in use. */
+ if( op==SAVEPOINT_RELEASE ){
+ PagerSavepoint *pRel = &pPager->aSavepoint[nNew];
+ if( pRel->bTruncateOnRelease && isOpen(pPager->sjfd) ){
+ /* Only truncate if it is an in-memory sub-journal. */
+ if( sqlite3JournalIsInMemory(pPager->sjfd) ){
+ i64 sz = (pPager->pageSize+4)*(i64)pRel->iSubRec;
+ rc = sqlite3OsTruncate(pPager->sjfd, sz);
+ assert( rc==SQLITE_OK );
+ }
+ pPager->nSubRec = pRel->iSubRec;
+ }
+ }
+ /* Else this is a rollback operation, playback the specified savepoint.
+ ** If this is a temp-file, it is possible that the journal file has
+ ** not yet been opened. In this case there have been no changes to
+ ** the database file, so the playback operation can be skipped.
+ */
+ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){
+ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
+ rc = pagerPlaybackSavepoint(pPager, pSavepoint);
+ assert(rc!=SQLITE_DONE);
+ }
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+ /* If the cache has been modified but the savepoint cannot be rolled
+ ** back journal_mode=off, put the pager in the error state. This way,
+ ** if the VFS used by this pager includes ZipVFS, the entire transaction
+ ** can be rolled back at the ZipVFS level. */
+ else if(
+ pPager->journalMode==PAGER_JOURNALMODE_OFF
+ && pPager->eState>=PAGER_WRITER_CACHEMOD
+ ){
+ pPager->errCode = SQLITE_ABORT;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ }
+#endif
+ }
+
+ return rc;
+}
+
+/*
+** Return the full pathname of the database file.
+**
+** Except, if the pager is in-memory only, then return an empty string if
+** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when
+** used to report the filename to the user, for compatibility with legacy
+** behavior. But when the Btree needs to know the filename for matching to
+** shared cache, it uses nullIfMemDb==0 so that in-memory databases can
+** participate in shared-cache.
+**
+** The return value to this routine is always safe to use with
+** sqlite3_uri_parameter() and sqlite3_filename_database() and friends.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){
+ static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+ return (nullIfMemDb && pPager->memDb) ? &zFake[4] : pPager->zFilename;
+}
+
+/*
+** Return the VFS structure for the pager.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
+ return pPager->pVfs;
+}
+
+/*
+** Return the file handle for the database file associated
+** with the pager. This might return NULL if the file has
+** not yet been opened.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
+ return pPager->fd;
+}
+
+/*
+** Return the file handle for the journal file (if it exists).
+** This will be either the rollback journal or the WAL file.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){
+#if SQLITE_OMIT_WAL
+ return pPager->jfd;
+#else
+ return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd;
+#endif
+}
+
+/*
+** Return the full pathname of the journal file.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
+ return pPager->zJournal;
+}
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+/*
+** Set or retrieve the codec for this pager
+*/
+void sqlcipherPagerSetCodec(
+ Pager *pPager,
+ void *(*xCodec)(void*,void*,Pgno,int),
+ void (*xCodecSizeChng)(void*,int,int),
+ void (*xCodecFree)(void*),
+ void *pCodec
+){
+ if( pPager->xCodecFree ){
+ pPager->xCodecFree(pPager->pCodec);
+ }else{
+ pager_reset(pPager);
+ }
+ pPager->xCodec = pPager->memDb ? 0 : xCodec;
+ pPager->xCodecSizeChng = xCodecSizeChng;
+ pPager->xCodecFree = xCodecFree;
+ pPager->pCodec = pCodec;
+ setGetterMethod(pPager);
+ pagerReportSize(pPager);
+}
+void *sqlcipherPagerGetCodec(Pager *pPager){
+ return pPager->pCodec;
+}
+
+/*
+** This function is called by the wal module when writing page content
+** into the log file.
+**
+** This function returns a pointer to a buffer containing the encrypted
+** page content. If a malloc fails, this function may return NULL.
+*/
+void *sqlcipherPagerCodec(PgHdr *pPg){
+ void *aData = 0;
+ CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData);
+ return aData;
+}
+#endif /* SQLITE_HAS_CODEC */
+/* END SQLCIPHER */
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Move the page pPg to location pgno in the file.
+**
+** There must be no references to the page previously located at
+** pgno (which we call pPgOld) though that page is allowed to be
+** in cache. If the page previously located at pgno is not already
+** in the rollback journal, it is not put there by by this routine.
+**
+** References to the page pPg remain valid. Updating any
+** meta-data associated with pPg (i.e. data stored in the nExtra bytes
+** allocated along with the page) is the responsibility of the caller.
+**
+** A transaction must be active when this routine is called. It used to be
+** required that a statement transaction was not active, but this restriction
+** has been removed (CREATE INDEX needs to move a page when a statement
+** transaction is active).
+**
+** If the fourth argument, isCommit, is non-zero, then this page is being
+** moved as part of a database reorganization just before the transaction
+** is being committed. In this case, it is guaranteed that the database page
+** pPg refers to will not be written to again within this transaction.
+**
+** This function may return SQLITE_NOMEM or an IO error code if an error
+** occurs. Otherwise, it returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
+ PgHdr *pPgOld; /* The page being overwritten. */
+ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */
+ int rc; /* Return code */
+ Pgno origPgno; /* The original page number */
+
+ assert( pPg->nRef>0 );
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* In order to be able to rollback, an in-memory database must journal
+ ** the page we are moving from.
+ */
+ assert( pPager->tempFile || !MEMDB );
+ if( pPager->tempFile ){
+ rc = sqlite3PagerWrite(pPg);
+ if( rc ) return rc;
+ }
+
+ /* If the page being moved is dirty and has not been saved by the latest
+ ** savepoint, then save the current contents of the page into the
+ ** sub-journal now. This is required to handle the following scenario:
+ **
+ ** BEGIN;
+ ** <journal page X, then modify it in memory>
+ ** SAVEPOINT one;
+ ** <Move page X to location Y>
+ ** ROLLBACK TO one;
+ **
+ ** If page X were not written to the sub-journal here, it would not
+ ** be possible to restore its contents when the "ROLLBACK TO one"
+ ** statement were is processed.
+ **
+ ** subjournalPage() may need to allocate space to store pPg->pgno into
+ ** one or more savepoint bitvecs. This is the reason this function
+ ** may return SQLITE_NOMEM.
+ */
+ if( (pPg->flags & PGHDR_DIRTY)!=0
+ && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg))
+ ){
+ return rc;
+ }
+
+ PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n",
+ PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
+ IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
+
+ /* If the journal needs to be sync()ed before page pPg->pgno can
+ ** be written to, store pPg->pgno in local variable needSyncPgno.
+ **
+ ** If the isCommit flag is set, there is no need to remember that
+ ** the journal needs to be sync()ed before database page pPg->pgno
+ ** can be written to. The caller has already promised not to write to it.
+ */
+ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
+ needSyncPgno = pPg->pgno;
+ assert( pPager->journalMode==PAGER_JOURNALMODE_OFF ||
+ pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize );
+ assert( pPg->flags&PGHDR_DIRTY );
+ }
+
+ /* If the cache contains a page with page-number pgno, remove it
+ ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for
+ ** page pgno before the 'move' operation, it needs to be retained
+ ** for the page moved there.
+ */
+ pPg->flags &= ~PGHDR_NEED_SYNC;
+ pPgOld = sqlite3PagerLookup(pPager, pgno);
+ assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB );
+ if( pPgOld ){
+ if( NEVER(pPgOld->nRef>1) ){
+ sqlite3PagerUnrefNotNull(pPgOld);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
+ if( pPager->tempFile ){
+ /* Do not discard pages from an in-memory database since we might
+ ** need to rollback later. Just move the page out of the way. */
+ sqlite3PcacheMove(pPgOld, pPager->dbSize+1);
+ }else{
+ sqlite3PcacheDrop(pPgOld);
+ }
+ }
+
+ origPgno = pPg->pgno;
+ sqlite3PcacheMove(pPg, pgno);
+ sqlite3PcacheMakeDirty(pPg);
+
+ /* For an in-memory database, make sure the original page continues
+ ** to exist, in case the transaction needs to roll back. Use pPgOld
+ ** as the original page since it has already been allocated.
+ */
+ if( pPager->tempFile && pPgOld ){
+ sqlite3PcacheMove(pPgOld, origPgno);
+ sqlite3PagerUnrefNotNull(pPgOld);
+ }
+
+ if( needSyncPgno ){
+ /* If needSyncPgno is non-zero, then the journal file needs to be
+ ** sync()ed before any data is written to database file page needSyncPgno.
+ ** Currently, no such page exists in the page-cache and the
+ ** "is journaled" bitvec flag has been set. This needs to be remedied by
+ ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
+ ** flag.
+ **
+ ** If the attempt to load the page into the page-cache fails, (due
+ ** to a malloc() or IO failure), clear the bit in the pInJournal[]
+ ** array. Otherwise, if the page is loaded and written again in
+ ** this transaction, it may be written to the database file before
+ ** it is synced into the journal file. This way, it may end up in
+ ** the journal file twice, but that is not a problem.
+ */
+ PgHdr *pPgHdr;
+ rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0);
+ if( rc!=SQLITE_OK ){
+ if( needSyncPgno<=pPager->dbOrigSize ){
+ assert( pPager->pTmpSpace!=0 );
+ sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
+ }
+ return rc;
+ }
+ pPgHdr->flags |= PGHDR_NEED_SYNC;
+ sqlite3PcacheMakeDirty(pPgHdr);
+ sqlite3PagerUnrefNotNull(pPgHdr);
+ }
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The page handle passed as the first argument refers to a dirty page
+** with a page number other than iNew. This function changes the page's
+** page number to iNew and sets the value of the PgHdr.flags field to
+** the value passed as the third parameter.
+*/
+SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){
+ assert( pPg->pgno!=iNew );
+ pPg->flags = flags;
+ sqlite3PcacheMove(pPg, iNew);
+}
+
+/*
+** Return a pointer to the data for the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
+ assert( pPg->nRef>0 || pPg->pPager->memDb );
+ return pPg->pData;
+}
+
+/*
+** Return a pointer to the Pager.nExtra bytes of "extra" space
+** allocated along with the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
+ return pPg->pExtra;
+}
+
+/*
+** Get/set the locking-mode for this pager. Parameter eMode must be one
+** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
+** the locking-mode is set to the value specified.
+**
+** The returned value is either PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
+** locking-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
+ assert( eMode==PAGER_LOCKINGMODE_QUERY
+ || eMode==PAGER_LOCKINGMODE_NORMAL
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_QUERY<0 );
+ assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
+ assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) );
+ if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){
+ pPager->exclusiveMode = (u8)eMode;
+ }
+ return (int)pPager->exclusiveMode;
+}
+
+/*
+** Set the journal-mode for this pager. Parameter eMode must be one of:
+**
+** PAGER_JOURNALMODE_DELETE
+** PAGER_JOURNALMODE_TRUNCATE
+** PAGER_JOURNALMODE_PERSIST
+** PAGER_JOURNALMODE_OFF
+** PAGER_JOURNALMODE_MEMORY
+** PAGER_JOURNALMODE_WAL
+**
+** The journalmode is set to the value specified if the change is allowed.
+** The change may be disallowed for the following reasons:
+**
+** * An in-memory database can only have its journal_mode set to _OFF
+** or _MEMORY.
+**
+** * Temporary databases cannot have _WAL journalmode.
+**
+** The returned indicate the current (possibly updated) journal-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
+ u8 eOld = pPager->journalMode; /* Prior journalmode */
+
+ /* The eMode parameter is always valid */
+ assert( eMode==PAGER_JOURNALMODE_DELETE /* 0 */
+ || eMode==PAGER_JOURNALMODE_PERSIST /* 1 */
+ || eMode==PAGER_JOURNALMODE_OFF /* 2 */
+ || eMode==PAGER_JOURNALMODE_TRUNCATE /* 3 */
+ || eMode==PAGER_JOURNALMODE_MEMORY /* 4 */
+ || eMode==PAGER_JOURNALMODE_WAL /* 5 */ );
+
+ /* This routine is only called from the OP_JournalMode opcode, and
+ ** the logic there will never allow a temporary file to be changed
+ ** to WAL mode.
+ */
+ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );
+
+ /* Do allow the journalmode of an in-memory database to be set to
+ ** anything other than MEMORY or OFF
+ */
+ if( MEMDB ){
+ assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF );
+ if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){
+ eMode = eOld;
+ }
+ }
+
+ if( eMode!=eOld ){
+
+ /* Change the journal mode. */
+ assert( pPager->eState!=PAGER_ERROR );
+ pPager->journalMode = (u8)eMode;
+
+ /* When transistioning from TRUNCATE or PERSIST to any other journal
+ ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
+ ** delete the journal file.
+ */
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
+ assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
+ assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
+ assert( (PAGER_JOURNALMODE_WAL & 5)==5 );
+
+ assert( isOpen(pPager->fd) || pPager->exclusiveMode );
+ if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){
+ /* In this case we would like to delete the journal file. If it is
+ ** not possible, then that is not a problem. Deleting the journal file
+ ** here is an optimization only.
+ **
+ ** Before deleting the journal file, obtain a RESERVED lock on the
+ ** database file. This ensures that the journal file is not deleted
+ ** while it is in use by some other client.
+ */
+ sqlite3OsClose(pPager->jfd);
+ if( pPager->eLock>=RESERVED_LOCK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }else{
+ int rc = SQLITE_OK;
+ int state = pPager->eState;
+ assert( state==PAGER_OPEN || state==PAGER_READER );
+ if( state==PAGER_OPEN ){
+ rc = sqlite3PagerSharedLock(pPager);
+ }
+ if( pPager->eState==PAGER_READER ){
+ assert( rc==SQLITE_OK );
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }
+ if( rc==SQLITE_OK && state==PAGER_READER ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }else if( state==PAGER_OPEN ){
+ pager_unlock(pPager);
+ }
+ assert( state==pPager->eState );
+ }
+ }else if( eMode==PAGER_JOURNALMODE_OFF ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+
+ /* Return the new journal mode */
+ return (int)pPager->journalMode;
+}
+
+/*
+** Return the current journal mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){
+ return (int)pPager->journalMode;
+}
+
+/*
+** Return TRUE if the pager is in a state where it is OK to change the
+** journalmode. Journalmode changes can only happen when the database
+** is unmodified.
+*/
+SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
+ if( isOpen(pPager->jfd) && pPager->journalOff>0 ) return 0;
+ return 1;
+}
+
+/*
+** Get/set the size-limit used for persistent journal files.
+**
+** Setting the size limit to -1 means no limit is enforced.
+** An attempt to set a limit smaller than -1 is a no-op.
+*/
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
+ if( iLimit>=-1 ){
+ pPager->journalSizeLimit = iLimit;
+ sqlite3WalLimit(pPager->pWal, iLimit);
+ }
+ return pPager->journalSizeLimit;
+}
+
+/*
+** Return a pointer to the pPager->pBackup variable. The backup module
+** in backup.c maintains the content of this variable. This module
+** uses it opaquely as an argument to sqlite3BackupRestart() and
+** sqlite3BackupUpdate() only.
+*/
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){
+ return &pPager->pBackup;
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Unless this is an in-memory or temporary database, clear the pager cache.
+*/
+SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){
+ assert( MEMDB==0 || pPager->tempFile );
+ if( pPager->tempFile==0 ) pager_reset(pPager);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** This function is called when the user invokes "PRAGMA wal_checkpoint",
+** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint()
+** or wal_blocking_checkpoint() API functions.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
+*/
+SQLITE_PRIVATE int sqlite3PagerCheckpoint(
+ Pager *pPager, /* Checkpoint on this pager */
+ sqlite3 *db, /* Db handle used to check for interrupts */
+ int eMode, /* Type of checkpoint */
+ int *pnLog, /* OUT: Final number of frames in log */
+ int *pnCkpt /* OUT: Final number of checkpointed frames */
+){
+ int rc = SQLITE_OK;
+ if( pPager->pWal==0 && pPager->journalMode==PAGER_JOURNALMODE_WAL ){
+ /* This only happens when a database file is zero bytes in size opened and
+ ** then "PRAGMA journal_mode=WAL" is run and then sqlite3_wal_checkpoint()
+ ** is invoked without any intervening transactions. We need to start
+ ** a transaction to initialize pWal. The PRAGMA table_list statement is
+ ** used for this since it starts transactions on every database file,
+ ** including all ATTACHed databases. This seems expensive for a single
+ ** sqlite3_wal_checkpoint() call, but it happens very rarely.
+ ** https://sqlite.org/forum/forumpost/fd0f19d229156939
+ */
+ sqlite3_exec(db, "PRAGMA table_list",0,0,0);
+ }
+ if( pPager->pWal ){
+ rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode,
+ (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler),
+ pPager->pBusyHandlerArg,
+ pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
+ pnLog, pnCkpt
+ );
+ }
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){
+ return sqlite3WalCallback(pPager->pWal);
+}
+
+/*
+** Return true if the underlying VFS for the given pager supports the
+** primitives necessary for write-ahead logging.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){
+ const sqlite3_io_methods *pMethods = pPager->fd->pMethods;
+ if( pPager->noLock ) return 0;
+ return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap);
+}
+
+/*
+** Attempt to take an exclusive lock on the database file. If a PENDING lock
+** is obtained instead, immediately release it.
+*/
+static int pagerExclusiveLock(Pager *pPager){
+ int rc; /* Return code */
+
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ /* If the attempt to grab the exclusive lock failed, release the
+ ** pending lock that may have been obtained instead. */
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+
+ return rc;
+}
+
+/*
+** Call sqlite3WalOpen() to open the WAL handle. If the pager is in
+** exclusive-locking mode when this function is called, take an EXCLUSIVE
+** lock on the database file and use heap-memory to store the wal-index
+** in. Otherwise, use the normal shared-memory.
+*/
+static int pagerOpenWal(Pager *pPager){
+ int rc = SQLITE_OK;
+
+ assert( pPager->pWal==0 && pPager->tempFile==0 );
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
+
+ /* If the pager is already in exclusive-mode, the WAL module will use
+ ** heap-memory for the wal-index instead of the VFS shared-memory
+ ** implementation. Take the exclusive lock now, before opening the WAL
+ ** file, to make sure this is safe.
+ */
+ if( pPager->exclusiveMode ){
+ rc = pagerExclusiveLock(pPager);
+ }
+
+ /* Open the connection to the log file. If this operation fails,
+ ** (e.g. due to malloc() failure), return an error code.
+ */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3WalOpen(pPager->pVfs,
+ pPager->fd, pPager->zWal, pPager->exclusiveMode,
+ pPager->journalSizeLimit, &pPager->pWal
+ );
+ }
+ pagerFixMaplimit(pPager);
+
+ return rc;
+}
+
+
+/*
+** The caller must be holding a SHARED lock on the database file to call
+** this function.
+**
+** If the pager passed as the first argument is open on a real database
+** file (not a temp file or an in-memory database), and the WAL file
+** is not already open, make an attempt to open it now. If successful,
+** return SQLITE_OK. If an error occurs or the VFS used by the pager does
+** not support the xShmXXX() methods, return an error code. *pbOpen is
+** not modified in either case.
+**
+** If the pager is open on a temp-file (or in-memory database), or if
+** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK
+** without doing anything.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpenWal(
+ Pager *pPager, /* Pager object */
+ int *pbOpen /* OUT: Set to true if call is a no-op */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pbOpen );
+ assert( pPager->eState==PAGER_READER || !pbOpen );
+ assert( pbOpen==0 || *pbOpen==0 );
+ assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) );
+
+ if( !pPager->tempFile && !pPager->pWal ){
+ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN;
+
+ /* Close any rollback journal previously open */
+ sqlite3OsClose(pPager->jfd);
+
+ rc = pagerOpenWal(pPager);
+ if( rc==SQLITE_OK ){
+ pPager->journalMode = PAGER_JOURNALMODE_WAL;
+ pPager->eState = PAGER_OPEN;
+ }
+ }else{
+ *pbOpen = 1;
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to close the connection to the log file prior
+** to switching from WAL to rollback mode.
+**
+** Before closing the log file, this function attempts to take an
+** EXCLUSIVE lock on the database file. If this cannot be obtained, an
+** error (SQLITE_BUSY) is returned and the log connection is not closed.
+** If successful, the EXCLUSIVE lock is not released before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){
+ int rc = SQLITE_OK;
+
+ assert( pPager->journalMode==PAGER_JOURNALMODE_WAL );
+
+ /* If the log file is not already open, but does exist in the file-system,
+ ** it may need to be checkpointed before the connection can switch to
+ ** rollback mode. Open it now so this can happen.
+ */
+ if( !pPager->pWal ){
+ int logexists = 0;
+ rc = pagerLockDb(pPager, SHARED_LOCK);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsAccess(
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists
+ );
+ }
+ if( rc==SQLITE_OK && logexists ){
+ rc = pagerOpenWal(pPager);
+ }
+ }
+
+ /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on
+ ** the database file, the log and log-summary files will be deleted.
+ */
+ if( rc==SQLITE_OK && pPager->pWal ){
+ rc = pagerExclusiveLock(pPager);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags,
+ pPager->pageSize, (u8*)pPager->pTmpSpace);
+ pPager->pWal = 0;
+ pagerFixMaplimit(pPager);
+ if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ }
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+/*
+** If pager pPager is a wal-mode database not in exclusive locking mode,
+** invoke the sqlite3WalWriteLock() function on the associated Wal object
+** with the same db and bLock parameters as were passed to this function.
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){
+ int rc = SQLITE_OK;
+ if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){
+ rc = sqlite3WalWriteLock(pPager->pWal, bLock);
+ }
+ return rc;
+}
+
+/*
+** Set the database handle used by the wal layer to determine if
+** blocking locks are required.
+*/
+SQLITE_PRIVATE void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){
+ if( pagerUseWal(pPager) ){
+ sqlite3WalDb(pPager->pWal, db);
+ }
+}
+#endif
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** If this is a WAL database, obtain a snapshot handle for the snapshot
+** currently open. Otherwise, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){
+ int rc = SQLITE_ERROR;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot);
+ }
+ return rc;
+}
+
+/*
+** If this is a WAL database, store a pointer to pSnapshot. Next time a
+** read transaction is opened, attempt to read from the snapshot it
+** identifies. If this is not a WAL database, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(
+ Pager *pPager,
+ sqlite3_snapshot *pSnapshot
+){
+ int rc = SQLITE_OK;
+ if( pPager->pWal ){
+ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this
+** is not a WAL database, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager){
+ int rc;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotRecover(pPager->pWal);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** The caller currently has a read transaction open on the database.
+** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise,
+** this function takes a SHARED lock on the CHECKPOINTER slot and then
+** checks if the snapshot passed as the second argument is still
+** available. If so, SQLITE_OK is returned.
+**
+** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
+** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
+** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
+** lock is released before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){
+ int rc;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Release a lock obtained by an earlier successful call to
+** sqlite3PagerSnapshotCheck().
+*/
+SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager){
+ assert( pPager->pWal );
+ sqlite3WalSnapshotUnlock(pPager->pWal);
+}
+
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+#endif /* !SQLITE_OMIT_WAL */
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/*
+** A read-lock must be held on the pager when this function is called. If
+** the pager is in WAL mode and the WAL file currently contains one or more
+** frames, return the size in bytes of the page images stored within the
+** WAL frames. Otherwise, if this is not a WAL database or the WAL file
+** is empty, return 0.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){
+ assert( pPager->eState>=PAGER_READER );
+ return sqlite3WalFramesize(pPager->pWal);
+}
+#endif
+
+#endif /* SQLITE_OMIT_DISKIO */
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+
+SQLITE_API int sqlite3pager_is_sj_pgno(Pager *pPager, Pgno pgno) {
+ return (PAGER_SJ_PGNO(pPager) == pgno) ? 1 : 0;
+}
+
+SQLITE_API void sqlite3pager_error(Pager *pPager, int error) {
+ pPager->errCode = error;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+}
+
+SQLITE_API void sqlite3pager_reset(Pager *pPager){
+ pager_reset(pPager);
+}
+
+#endif
+/* END SQLCIPHER */
+
+
+/************** End of pager.c ***********************************************/
+/************** Begin file wal.c *********************************************/
+/*
+** 2010 February 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of a write-ahead log (WAL) used in
+** "journal_mode=WAL" mode.
+**
+** WRITE-AHEAD LOG (WAL) FILE FORMAT
+**
+** A WAL file consists of a header followed by zero or more "frames".
+** Each frame records the revised content of a single page from the
+** database file. All changes to the database are recorded by writing
+** frames into the WAL. Transactions commit when a frame is written that
+** contains a commit marker. A single WAL can and usually does record
+** multiple transactions. Periodically, the content of the WAL is
+** transferred back into the database file in an operation called a
+** "checkpoint".
+**
+** A single WAL file can be used multiple times. In other words, the
+** WAL can fill up with frames and then be checkpointed and then new
+** frames can overwrite the old ones. A WAL always grows from beginning
+** toward the end. Checksums and counters attached to each frame are
+** used to determine which frames within the WAL are valid and which
+** are leftovers from prior checkpoints.
+**
+** The WAL header is 32 bytes in size and consists of the following eight
+** big-endian 32-bit unsigned integer values:
+**
+** 0: Magic number. 0x377f0682 or 0x377f0683
+** 4: File format version. Currently 3007000
+** 8: Database page size. Example: 1024
+** 12: Checkpoint sequence number
+** 16: Salt-1, random integer incremented with each checkpoint
+** 20: Salt-2, a different random integer changing with each ckpt
+** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
+** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
+**
+** Immediately following the wal-header are zero or more frames. Each
+** frame consists of a 24-byte frame-header followed by a <page-size> bytes
+** of page data. The frame-header is six big-endian 32-bit unsigned
+** integer values, as follows:
+**
+** 0: Page number.
+** 4: For commit records, the size of the database image in pages
+** after the commit. For all other records, zero.
+** 8: Salt-1 (copied from the header)
+** 12: Salt-2 (copied from the header)
+** 16: Checksum-1.
+** 20: Checksum-2.
+**
+** A frame is considered valid if and only if the following conditions are
+** true:
+**
+** (1) The salt-1 and salt-2 values in the frame-header match
+** salt values in the wal-header
+**
+** (2) The checksum values in the final 8 bytes of the frame-header
+** exactly match the checksum computed consecutively on the
+** WAL header and the first 8 bytes and the content of all frames
+** up to and including the current frame.
+**
+** The checksum is computed using 32-bit big-endian integers if the
+** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
+** is computed using little-endian if the magic number is 0x377f0682.
+** The checksum values are always stored in the frame header in a
+** big-endian format regardless of which byte order is used to compute
+** the checksum. The checksum is computed by interpreting the input as
+** an even number of unsigned 32-bit integers: x[0] through x[N]. The
+** algorithm used for the checksum is as follows:
+**
+** for i from 0 to n-1 step 2:
+** s0 += x[i] + s1;
+** s1 += x[i+1] + s0;
+** endfor
+**
+** Note that s0 and s1 are both weighted checksums using fibonacci weights
+** in reverse order (the largest fibonacci weight occurs on the first element
+** of the sequence being summed.) The s1 value spans all 32-bit
+** terms of the sequence whereas s0 omits the final term.
+**
+** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
+** WAL is transferred into the database, then the database is VFS.xSync-ed.
+** The VFS.xSync operations serve as write barriers - all writes launched
+** before the xSync must complete before any write that launches after the
+** xSync begins.
+**
+** After each checkpoint, the salt-1 value is incremented and the salt-2
+** value is randomized. This prevents old and new frames in the WAL from
+** being considered valid at the same time and being checkpointing together
+** following a crash.
+**
+** READER ALGORITHM
+**
+** To read a page from the database (call it page number P), a reader
+** first checks the WAL to see if it contains page P. If so, then the
+** last valid instance of page P that is a followed by a commit frame
+** or is a commit frame itself becomes the value read. If the WAL
+** contains no copies of page P that are valid and which are a commit
+** frame or are followed by a commit frame, then page P is read from
+** the database file.
+**
+** To start a read transaction, the reader records the index of the last
+** valid frame in the WAL. The reader uses this recorded "mxFrame" value
+** for all subsequent read operations. New transactions can be appended
+** to the WAL, but as long as the reader uses its original mxFrame value
+** and ignores the newly appended content, it will see a consistent snapshot
+** of the database from a single point in time. This technique allows
+** multiple concurrent readers to view different versions of the database
+** content simultaneously.
+**
+** The reader algorithm in the previous paragraphs works correctly, but
+** because frames for page P can appear anywhere within the WAL, the
+** reader has to scan the entire WAL looking for page P frames. If the
+** WAL is large (multiple megabytes is typical) that scan can be slow,
+** and read performance suffers. To overcome this problem, a separate
+** data structure called the wal-index is maintained to expedite the
+** search for frames of a particular page.
+**
+** WAL-INDEX FORMAT
+**
+** Conceptually, the wal-index is shared memory, though VFS implementations
+** might choose to implement the wal-index using a mmapped file. Because
+** the wal-index is shared memory, SQLite does not support journal_mode=WAL
+** on a network filesystem. All users of the database must be able to
+** share memory.
+**
+** In the default unix and windows implementation, the wal-index is a mmapped
+** file whose name is the database name with a "-shm" suffix added. For that
+** reason, the wal-index is sometimes called the "shm" file.
+**
+** The wal-index is transient. After a crash, the wal-index can (and should
+** be) reconstructed from the original WAL file. In fact, the VFS is required
+** to either truncate or zero the header of the wal-index when the last
+** connection to it closes. Because the wal-index is transient, it can
+** use an architecture-specific format; it does not have to be cross-platform.
+** Hence, unlike the database and WAL file formats which store all values
+** as big endian, the wal-index can store multi-byte values in the native
+** byte order of the host computer.
+**
+** The purpose of the wal-index is to answer this question quickly: Given
+** a page number P and a maximum frame index M, return the index of the
+** last frame in the wal before frame M for page P in the WAL, or return
+** NULL if there are no frames for page P in the WAL prior to M.
+**
+** The wal-index consists of a header region, followed by an one or
+** more index blocks.
+**
+** The wal-index header contains the total number of frames within the WAL
+** in the mxFrame field.
+**
+** Each index block except for the first contains information on
+** HASHTABLE_NPAGE frames. The first index block contains information on
+** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
+** HASHTABLE_NPAGE are selected so that together the wal-index header and
+** first index block are the same size as all other index blocks in the
+** wal-index. The values are:
+**
+** HASHTABLE_NPAGE 4096
+** HASHTABLE_NPAGE_ONE 4062
+**
+** Each index block contains two sections, a page-mapping that contains the
+** database page number associated with each wal frame, and a hash-table
+** that allows readers to query an index block for a specific page number.
+** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
+** for the first index block) 32-bit page numbers. The first entry in the
+** first index-block contains the database page number corresponding to the
+** first frame in the WAL file. The first entry in the second index block
+** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
+** the log, and so on.
+**
+** The last index block in a wal-index usually contains less than the full
+** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
+** depending on the contents of the WAL file. This does not change the
+** allocated size of the page-mapping array - the page-mapping array merely
+** contains unused entries.
+**
+** Even without using the hash table, the last frame for page P
+** can be found by scanning the page-mapping sections of each index block
+** starting with the last index block and moving toward the first, and
+** within each index block, starting at the end and moving toward the
+** beginning. The first entry that equals P corresponds to the frame
+** holding the content for that page.
+**
+** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
+** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
+** hash table for each page number in the mapping section, so the hash
+** table is never more than half full. The expected number of collisions
+** prior to finding a match is 1. Each entry of the hash table is an
+** 1-based index of an entry in the mapping section of the same
+** index block. Let K be the 1-based index of the largest entry in
+** the mapping section. (For index blocks other than the last, K will
+** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
+** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
+** contain a value of 0.
+**
+** To look for page P in the hash table, first compute a hash iKey on
+** P as follows:
+**
+** iKey = (P * 383) % HASHTABLE_NSLOT
+**
+** Then start scanning entries of the hash table, starting with iKey
+** (wrapping around to the beginning when the end of the hash table is
+** reached) until an unused hash slot is found. Let the first unused slot
+** be at index iUnused. (iUnused might be less than iKey if there was
+** wrap-around.) Because the hash table is never more than half full,
+** the search is guaranteed to eventually hit an unused entry. Let
+** iMax be the value between iKey and iUnused, closest to iUnused,
+** where aHash[iMax]==P. If there is no iMax entry (if there exists
+** no hash slot such that aHash[i]==p) then page P is not in the
+** current index block. Otherwise the iMax-th mapping entry of the
+** current index block corresponds to the last entry that references
+** page P.
+**
+** A hash search begins with the last index block and moves toward the
+** first index block, looking for entries corresponding to page P. On
+** average, only two or three slots in each index block need to be
+** examined in order to either find the last entry for page P, or to
+** establish that no such entry exists in the block. Each index block
+** holds over 4000 entries. So two or three index blocks are sufficient
+** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
+** comparisons (on average) suffice to either locate a frame in the
+** WAL or to establish that the frame does not exist in the WAL. This
+** is much faster than scanning the entire 10MB WAL.
+**
+** Note that entries are added in order of increasing K. Hence, one
+** reader might be using some value K0 and a second reader that started
+** at a later time (after additional transactions were added to the WAL
+** and to the wal-index) might be using a different value K1, where K1>K0.
+** Both readers can use the same hash table and mapping section to get
+** the correct result. There may be entries in the hash table with
+** K>K0 but to the first reader, those entries will appear to be unused
+** slots in the hash table and so the first reader will get an answer as
+** if no values greater than K0 had ever been inserted into the hash table
+** in the first place - which is what reader one wants. Meanwhile, the
+** second reader using K1 will see additional values that were inserted
+** later, which is exactly what reader two wants.
+**
+** When a rollback occurs, the value of K is decreased. Hash table entries
+** that correspond to frames greater than the new K value are removed
+** from the hash table at this point.
+*/
+#ifndef SQLITE_OMIT_WAL
+
+/* #include "wal.h" */
+
+/*
+** Trace output macros
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+SQLITE_PRIVATE int sqlite3WalTrace = 0;
+# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
+#else
+# define WALTRACE(X)
+#endif
+
+/*
+** The maximum (and only) versions of the wal and wal-index formats
+** that may be interpreted by this version of SQLite.
+**
+** If a client begins recovering a WAL file and finds that (a) the checksum
+** values in the wal-header are correct and (b) the version field is not
+** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
+**
+** Similarly, if a client successfully reads a wal-index header (i.e. the
+** checksum test is successful) and finds that the version field is not
+** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
+** returns SQLITE_CANTOPEN.
+*/
+#define WAL_MAX_VERSION 3007000
+#define WALINDEX_MAX_VERSION 3007000
+
+/*
+** Index numbers for various locking bytes. WAL_NREADER is the number
+** of available reader locks and should be at least 3. The default
+** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
+**
+** Technically, the various VFSes are free to implement these locks however
+** they see fit. However, compatibility is encouraged so that VFSes can
+** interoperate. The standard implemention used on both unix and windows
+** is for the index number to indicate a byte offset into the
+** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
+** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
+** should be 120) is the location in the shm file for the first locking
+** byte.
+*/
+#define WAL_WRITE_LOCK 0
+#define WAL_ALL_BUT_WRITE 1
+#define WAL_CKPT_LOCK 1
+#define WAL_RECOVER_LOCK 2
+#define WAL_READ_LOCK(I) (3+(I))
+#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
+
+
+/* Object declarations */
+typedef struct WalIndexHdr WalIndexHdr;
+typedef struct WalIterator WalIterator;
+typedef struct WalCkptInfo WalCkptInfo;
+
+
+/*
+** The following object holds a copy of the wal-index header content.
+**
+** The actual header in the wal-index consists of two copies of this
+** object followed by one instance of the WalCkptInfo object.
+** For all versions of SQLite through 3.10.0 and probably beyond,
+** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
+** the total header size is 136 bytes.
+**
+** The szPage value can be any power of 2 between 512 and 32768, inclusive.
+** Or it can be 1 to represent a 65536-byte page. The latter case was
+** added in 3.7.1 when support for 64K pages was added.
+*/
+struct WalIndexHdr {
+ u32 iVersion; /* Wal-index version */
+ u32 unused; /* Unused (padding) field */
+ u32 iChange; /* Counter incremented each transaction */
+ u8 isInit; /* 1 when initialized */
+ u8 bigEndCksum; /* True if checksums in WAL are big-endian */
+ u16 szPage; /* Database page size in bytes. 1==64K */
+ u32 mxFrame; /* Index of last valid frame in the WAL */
+ u32 nPage; /* Size of database in pages */
+ u32 aFrameCksum[2]; /* Checksum of last frame in log */
+ u32 aSalt[2]; /* Two salt values copied from WAL header */
+ u32 aCksum[2]; /* Checksum over all prior fields */
+};
+
+/*
+** A copy of the following object occurs in the wal-index immediately
+** following the second copy of the WalIndexHdr. This object stores
+** information used by checkpoint.
+**
+** nBackfill is the number of frames in the WAL that have been written
+** back into the database. (We call the act of moving content from WAL to
+** database "backfilling".) The nBackfill number is never greater than
+** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
+** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
+** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
+** mxFrame back to zero when the WAL is reset.
+**
+** nBackfillAttempted is the largest value of nBackfill that a checkpoint
+** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
+** the nBackfillAttempted is set before any backfilling is done and the
+** nBackfill is only set after all backfilling completes. So if a checkpoint
+** crashes, nBackfillAttempted might be larger than nBackfill. The
+** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
+**
+** The aLock[] field is a set of bytes used for locking. These bytes should
+** never be read or written.
+**
+** There is one entry in aReadMark[] for each reader lock. If a reader
+** holds read-lock K, then the value in aReadMark[K] is no greater than
+** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
+** for any aReadMark[] means that entry is unused. aReadMark[0] is
+** a special case; its value is never used and it exists as a place-holder
+** to avoid having to offset aReadMark[] indexs by one. Readers holding
+** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
+** directly from the database.
+**
+** The value of aReadMark[K] may only be changed by a thread that
+** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
+** aReadMark[K] cannot changed while there is a reader is using that mark
+** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
+**
+** The checkpointer may only transfer frames from WAL to database where
+** the frame numbers are less than or equal to every aReadMark[] that is
+** in use (that is, every aReadMark[j] for which there is a corresponding
+** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
+** largest value and will increase an unused aReadMark[] to mxFrame if there
+** is not already an aReadMark[] equal to mxFrame. The exception to the
+** previous sentence is when nBackfill equals mxFrame (meaning that everything
+** in the WAL has been backfilled into the database) then new readers
+** will choose aReadMark[0] which has value 0 and hence such reader will
+** get all their all content directly from the database file and ignore
+** the WAL.
+**
+** Writers normally append new frames to the end of the WAL. However,
+** if nBackfill equals mxFrame (meaning that all WAL content has been
+** written back into the database) and if no readers are using the WAL
+** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
+** the writer will first "reset" the WAL back to the beginning and start
+** writing new content beginning at frame 1.
+**
+** We assume that 32-bit loads are atomic and so no locks are needed in
+** order to read from any aReadMark[] entries.
+*/
+struct WalCkptInfo {
+ u32 nBackfill; /* Number of WAL frames backfilled into DB */
+ u32 aReadMark[WAL_NREADER]; /* Reader marks */
+ u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
+ u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
+ u32 notUsed0; /* Available for future enhancements */
+};
+#define READMARK_NOT_USED 0xffffffff
+
+/*
+** This is a schematic view of the complete 136-byte header of the
+** wal-index file (also known as the -shm file):
+**
+** +-----------------------------+
+** 0: | iVersion | \
+** +-----------------------------+ |
+** 4: | (unused padding) | |
+** +-----------------------------+ |
+** 8: | iChange | |
+** +-------+-------+-------------+ |
+** 12: | bInit | bBig | szPage | |
+** +-------+-------+-------------+ |
+** 16: | mxFrame | | First copy of the
+** +-----------------------------+ | WalIndexHdr object
+** 20: | nPage | |
+** +-----------------------------+ |
+** 24: | aFrameCksum | |
+** | | |
+** +-----------------------------+ |
+** 32: | aSalt | |
+** | | |
+** +-----------------------------+ |
+** 40: | aCksum | |
+** | | /
+** +-----------------------------+
+** 48: | iVersion | \
+** +-----------------------------+ |
+** 52: | (unused padding) | |
+** +-----------------------------+ |
+** 56: | iChange | |
+** +-------+-------+-------------+ |
+** 60: | bInit | bBig | szPage | |
+** +-------+-------+-------------+ | Second copy of the
+** 64: | mxFrame | | WalIndexHdr
+** +-----------------------------+ |
+** 68: | nPage | |
+** +-----------------------------+ |
+** 72: | aFrameCksum | |
+** | | |
+** +-----------------------------+ |
+** 80: | aSalt | |
+** | | |
+** +-----------------------------+ |
+** 88: | aCksum | |
+** | | /
+** +-----------------------------+
+** 96: | nBackfill |
+** +-----------------------------+
+** 100: | 5 read marks |
+** | |
+** | |
+** | |
+** | |
+** +-------+-------+------+------+
+** 120: | Write | Ckpt | Rcvr | Rd0 | \
+** +-------+-------+------+------+ ) 8 lock bytes
+** | Read1 | Read2 | Rd3 | Rd4 | /
+** +-------+-------+------+------+
+** 128: | nBackfillAttempted |
+** +-----------------------------+
+** 132: | (unused padding) |
+** +-----------------------------+
+*/
+
+/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
+** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
+** only support mandatory file-locks, we do not read or write data
+** from the region of the file on which locks are applied.
+*/
+#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
+#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
+
+/* Size of header before each frame in wal */
+#define WAL_FRAME_HDRSIZE 24
+
+/* Size of write ahead log header, including checksum. */
+#define WAL_HDRSIZE 32
+
+/* WAL magic value. Either this value, or the same value with the least
+** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
+** big-endian format in the first 4 bytes of a WAL file.
+**
+** If the LSB is set, then the checksums for each frame within the WAL
+** file are calculated by treating all data as an array of 32-bit
+** big-endian words. Otherwise, they are calculated by interpreting
+** all data as 32-bit little-endian words.
+*/
+#define WAL_MAGIC 0x377f0682
+
+/*
+** Return the offset of frame iFrame in the write-ahead log file,
+** assuming a database page size of szPage bytes. The offset returned
+** is to the start of the write-ahead log frame-header.
+*/
+#define walFrameOffset(iFrame, szPage) ( \
+ WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
+)
+
+/*
+** An open write-ahead log file is represented by an instance of the
+** following object.
+*/
+struct Wal {
+ sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
+ sqlite3_file *pDbFd; /* File handle for the database file */
+ sqlite3_file *pWalFd; /* File handle for WAL file */
+ u32 iCallback; /* Value to pass to log callback (or 0) */
+ i64 mxWalSize; /* Truncate WAL to this size upon reset */
+ int nWiData; /* Size of array apWiData */
+ int szFirstBlock; /* Size of first block written to WAL file */
+ volatile u32 **apWiData; /* Pointer to wal-index content in memory */
+ u32 szPage; /* Database page size */
+ i16 readLock; /* Which read lock is being held. -1 for none */
+ u8 syncFlags; /* Flags to use to sync header writes */
+ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
+ u8 writeLock; /* True if in a write transaction */
+ u8 ckptLock; /* True if holding a checkpoint lock */
+ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
+ u8 truncateOnCommit; /* True to truncate WAL file on commit */
+ u8 syncHeader; /* Fsync the WAL header if true */
+ u8 padToSectorBoundary; /* Pad transactions out to the next sector */
+ u8 bShmUnreliable; /* SHM content is read-only and unreliable */
+ WalIndexHdr hdr; /* Wal-index header for current transaction */
+ u32 minFrame; /* Ignore wal frames before this one */
+ u32 iReCksum; /* On commit, recalculate checksums from here */
+ const char *zWalName; /* Name of WAL file */
+ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
+#ifdef SQLITE_DEBUG
+ u8 lockError; /* True if a locking error has occurred */
+#endif
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
+#endif
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ sqlite3 *db;
+#endif
+};
+
+/*
+** Candidate values for Wal.exclusiveMode.
+*/
+#define WAL_NORMAL_MODE 0
+#define WAL_EXCLUSIVE_MODE 1
+#define WAL_HEAPMEMORY_MODE 2
+
+/*
+** Possible values for WAL.readOnly
+*/
+#define WAL_RDWR 0 /* Normal read/write connection */
+#define WAL_RDONLY 1 /* The WAL file is readonly */
+#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
+
+/*
+** Each page of the wal-index mapping contains a hash-table made up of
+** an array of HASHTABLE_NSLOT elements of the following type.
+*/
+typedef u16 ht_slot;
+
+/*
+** This structure is used to implement an iterator that loops through
+** all frames in the WAL in database page order. Where two or more frames
+** correspond to the same database page, the iterator visits only the
+** frame most recently written to the WAL (in other words, the frame with
+** the largest index).
+**
+** The internals of this structure are only accessed by:
+**
+** walIteratorInit() - Create a new iterator,
+** walIteratorNext() - Step an iterator,
+** walIteratorFree() - Free an iterator.
+**
+** This functionality is used by the checkpoint code (see walCheckpoint()).
+*/
+struct WalIterator {
+ u32 iPrior; /* Last result returned from the iterator */
+ int nSegment; /* Number of entries in aSegment[] */
+ struct WalSegment {
+ int iNext; /* Next slot in aIndex[] not yet returned */
+ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
+ u32 *aPgno; /* Array of page numbers. */
+ int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
+ int iZero; /* Frame number associated with aPgno[0] */
+ } aSegment[1]; /* One for every 32KB page in the wal-index */
+};
+
+/*
+** Define the parameters of the hash tables in the wal-index file. There
+** is a hash-table following every HASHTABLE_NPAGE page numbers in the
+** wal-index.
+**
+** Changing any of these constants will alter the wal-index format and
+** create incompatibilities.
+*/
+#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
+#define HASHTABLE_HASH_1 383 /* Should be prime */
+#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
+
+/*
+** The block of page numbers associated with the first hash-table in a
+** wal-index is smaller than usual. This is so that there is a complete
+** hash-table on each aligned 32KB page of the wal-index.
+*/
+#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
+
+/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
+#define WALINDEX_PGSZ ( \
+ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
+)
+
+/*
+** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
+** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
+** numbered from zero.
+**
+** If the wal-index is currently smaller the iPage pages then the size
+** of the wal-index might be increased, but only if it is safe to do
+** so. It is safe to enlarge the wal-index if pWal->writeLock is true
+** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
+**
+** Three possible result scenarios:
+**
+** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page
+** (2) rc>=SQLITE_ERROR and *ppPage==NULL
+** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0
+**
+** Scenario (3) can only occur when pWal->writeLock is false and iPage==0
+*/
+static SQLITE_NOINLINE int walIndexPageRealloc(
+ Wal *pWal, /* The WAL context */
+ int iPage, /* The page we seek */
+ volatile u32 **ppPage /* Write the page pointer here */
+){
+ int rc = SQLITE_OK;
+
+ /* Enlarge the pWal->apWiData[] array if required */
+ if( pWal->nWiData<=iPage ){
+ sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
+ volatile u32 **apNew;
+ apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
+ if( !apNew ){
+ *ppPage = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset((void*)&apNew[pWal->nWiData], 0,
+ sizeof(u32*)*(iPage+1-pWal->nWiData));
+ pWal->apWiData = apNew;
+ pWal->nWiData = iPage+1;
+ }
+
+ /* Request a pointer to the required page from the VFS */
+ assert( pWal->apWiData[iPage]==0 );
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
+ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
+ if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
+ pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
+ );
+ assert( pWal->apWiData[iPage]!=0
+ || rc!=SQLITE_OK
+ || (pWal->writeLock==0 && iPage==0) );
+ testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
+ if( rc==SQLITE_OK ){
+ if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
+ }else if( (rc&0xff)==SQLITE_READONLY ){
+ pWal->readOnly |= WAL_SHM_RDONLY;
+ if( rc==SQLITE_READONLY ){
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ *ppPage = pWal->apWiData[iPage];
+ assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
+ return rc;
+}
+static int walIndexPage(
+ Wal *pWal, /* The WAL context */
+ int iPage, /* The page we seek */
+ volatile u32 **ppPage /* Write the page pointer here */
+){
+ if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
+ return walIndexPageRealloc(pWal, iPage, ppPage);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return a pointer to the WalCkptInfo structure in the wal-index.
+*/
+static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+ return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
+}
+
+/*
+** Return a pointer to the WalIndexHdr structure in the wal-index.
+*/
+static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+ return (volatile WalIndexHdr*)pWal->apWiData[0];
+}
+
+/*
+** The argument to this macro must be of type u32. On a little-endian
+** architecture, it returns the u32 value that results from interpreting
+** the 4 bytes as a big-endian value. On a big-endian architecture, it
+** returns the value that would be produced by interpreting the 4 bytes
+** of the input value as a little-endian integer.
+*/
+#define BYTESWAP32(x) ( \
+ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
+ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
+)
+
+/*
+** Generate or extend an 8 byte checksum based on the data in
+** array aByte[] and the initial values of aIn[0] and aIn[1] (or
+** initial values of 0 and 0 if aIn==NULL).
+**
+** The checksum is written back into aOut[] before returning.
+**
+** nByte must be a positive multiple of 8.
+*/
+static void walChecksumBytes(
+ int nativeCksum, /* True for native byte-order, false for non-native */
+ u8 *a, /* Content to be checksummed */
+ int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
+ const u32 *aIn, /* Initial checksum value input */
+ u32 *aOut /* OUT: Final checksum value output */
+){
+ u32 s1, s2;
+ u32 *aData = (u32 *)a;
+ u32 *aEnd = (u32 *)&a[nByte];
+
+ if( aIn ){
+ s1 = aIn[0];
+ s2 = aIn[1];
+ }else{
+ s1 = s2 = 0;
+ }
+
+ assert( nByte>=8 );
+ assert( (nByte&0x00000007)==0 );
+ assert( nByte<=65536 );
+
+ if( nativeCksum ){
+ do {
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ }while( aData<aEnd );
+ }else{
+ do {
+ s1 += BYTESWAP32(aData[0]) + s2;
+ s2 += BYTESWAP32(aData[1]) + s1;
+ aData += 2;
+ }while( aData<aEnd );
+ }
+
+ aOut[0] = s1;
+ aOut[1] = s2;
+}
+
+/*
+** If there is the possibility of concurrent access to the SHM file
+** from multiple threads and/or processes, then do a memory barrier.
+*/
+static void walShmBarrier(Wal *pWal){
+ if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
+ sqlite3OsShmBarrier(pWal->pDbFd);
+ }
+}
+
+/*
+** Add the SQLITE_NO_TSAN as part of the return-type of a function
+** definition as a hint that the function contains constructs that
+** might give false-positive TSAN warnings.
+**
+** See tag-20200519-1.
+*/
+#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
+# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
+#else
+# define SQLITE_NO_TSAN
+#endif
+
+/*
+** Write the header information in pWal->hdr into the wal-index.
+**
+** The checksum on pWal->hdr is updated before it is written.
+*/
+static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
+ volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
+ const int nCksum = offsetof(WalIndexHdr, aCksum);
+
+ assert( pWal->writeLock );
+ pWal->hdr.isInit = 1;
+ pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
+ walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
+ /* Possible TSAN false-positive. See tag-20200519-1 */
+ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
+ walShmBarrier(pWal);
+ memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
+}
+
+/*
+** This function encodes a single frame header and writes it to a buffer
+** supplied by the caller. A frame-header is made up of a series of
+** 4-byte big-endian integers, as follows:
+**
+** 0: Page number.
+** 4: For commit records, the size of the database image in pages
+** after the commit. For all other records, zero.
+** 8: Salt-1 (copied from the wal-header)
+** 12: Salt-2 (copied from the wal-header)
+** 16: Checksum-1.
+** 20: Checksum-2.
+*/
+static void walEncodeFrame(
+ Wal *pWal, /* The write-ahead log */
+ u32 iPage, /* Database page number for frame */
+ u32 nTruncate, /* New db size (or 0 for non-commit frames) */
+ u8 *aData, /* Pointer to page data */
+ u8 *aFrame /* OUT: Write encoded frame here */
+){
+ int nativeCksum; /* True for native byte-order checksums */
+ u32 *aCksum = pWal->hdr.aFrameCksum;
+ assert( WAL_FRAME_HDRSIZE==24 );
+ sqlite3Put4byte(&aFrame[0], iPage);
+ sqlite3Put4byte(&aFrame[4], nTruncate);
+ if( pWal->iReCksum==0 ){
+ memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
+
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
+
+ sqlite3Put4byte(&aFrame[16], aCksum[0]);
+ sqlite3Put4byte(&aFrame[20], aCksum[1]);
+ }else{
+ memset(&aFrame[8], 0, 16);
+ }
+}
+
+/*
+** Check to see if the frame with header in aFrame[] and content
+** in aData[] is valid. If it is a valid frame, fill *piPage and
+** *pnTruncate and return true. Return if the frame is not valid.
+*/
+static int walDecodeFrame(
+ Wal *pWal, /* The write-ahead log */
+ u32 *piPage, /* OUT: Database page number for frame */
+ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
+ u8 *aData, /* Pointer to page data (for checksum) */
+ u8 *aFrame /* Frame data */
+){
+ int nativeCksum; /* True for native byte-order checksums */
+ u32 *aCksum = pWal->hdr.aFrameCksum;
+ u32 pgno; /* Page number of the frame */
+ assert( WAL_FRAME_HDRSIZE==24 );
+
+ /* A frame is only valid if the salt values in the frame-header
+ ** match the salt values in the wal-header.
+ */
+ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
+ return 0;
+ }
+
+ /* A frame is only valid if the page number is creater than zero.
+ */
+ pgno = sqlite3Get4byte(&aFrame[0]);
+ if( pgno==0 ){
+ return 0;
+ }
+
+ /* A frame is only valid if a checksum of the WAL header,
+ ** all prior frams, the first 16 bytes of this frame-header,
+ ** and the frame-data matches the checksum in the last 8
+ ** bytes of this frame-header.
+ */
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
+ if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
+ || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
+ ){
+ /* Checksum failed. */
+ return 0;
+ }
+
+ /* If we reach this point, the frame is valid. Return the page number
+ ** and the new database size.
+ */
+ *piPage = pgno;
+ *pnTruncate = sqlite3Get4byte(&aFrame[4]);
+ return 1;
+}
+
+
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Names of locks. This routine is used to provide debugging output and is not
+** a part of an ordinary build.
+*/
+static const char *walLockName(int lockIdx){
+ if( lockIdx==WAL_WRITE_LOCK ){
+ return "WRITE-LOCK";
+ }else if( lockIdx==WAL_CKPT_LOCK ){
+ return "CKPT-LOCK";
+ }else if( lockIdx==WAL_RECOVER_LOCK ){
+ return "RECOVER-LOCK";
+ }else{
+ static char zName[15];
+ sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
+ lockIdx-WAL_READ_LOCK(0));
+ return zName;
+ }
+}
+#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
+
+
+/*
+** Set or release locks on the WAL. Locks are either shared or exclusive.
+** A lock cannot be moved directly between shared and exclusive - it must go
+** through the unlocked state first.
+**
+** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
+*/
+static int walLockShared(Wal *pWal, int lockIdx){
+ int rc;
+ if( pWal->exclusiveMode ) return SQLITE_OK;
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
+ SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
+ WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
+ walLockName(lockIdx), rc ? "failed" : "ok"));
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
+ return rc;
+}
+static void walUnlockShared(Wal *pWal, int lockIdx){
+ if( pWal->exclusiveMode ) return;
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
+ WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
+}
+static int walLockExclusive(Wal *pWal, int lockIdx, int n){
+ int rc;
+ if( pWal->exclusiveMode ) return SQLITE_OK;
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
+ SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
+ WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
+ walLockName(lockIdx), n, rc ? "failed" : "ok"));
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
+ return rc;
+}
+static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
+ if( pWal->exclusiveMode ) return;
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
+ WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
+ walLockName(lockIdx), n));
+}
+
+/*
+** Compute a hash on a page number. The resulting hash value must land
+** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
+** the hash to the next value in the event of a collision.
+*/
+static int walHash(u32 iPage){
+ assert( iPage>0 );
+ assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
+ return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
+}
+static int walNextHash(int iPriorHash){
+ return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
+}
+
+/*
+** An instance of the WalHashLoc object is used to describe the location
+** of a page hash table in the wal-index. This becomes the return value
+** from walHashGet().
+*/
+typedef struct WalHashLoc WalHashLoc;
+struct WalHashLoc {
+ volatile ht_slot *aHash; /* Start of the wal-index hash table */
+ volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
+ u32 iZero; /* One less than the frame number of first indexed*/
+};
+
+/*
+** Return pointers to the hash table and page number array stored on
+** page iHash of the wal-index. The wal-index is broken into 32KB pages
+** numbered starting from 0.
+**
+** Set output variable pLoc->aHash to point to the start of the hash table
+** in the wal-index file. Set pLoc->iZero to one less than the frame
+** number of the first frame indexed by this hash table. If a
+** slot in the hash table is set to N, it refers to frame number
+** (pLoc->iZero+N) in the log.
+**
+** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the
+** first frame indexed by the hash table, frame (pLoc->iZero).
+*/
+static int walHashGet(
+ Wal *pWal, /* WAL handle */
+ int iHash, /* Find the iHash'th table */
+ WalHashLoc *pLoc /* OUT: Hash table location */
+){
+ int rc; /* Return code */
+
+ rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
+ assert( rc==SQLITE_OK || iHash>0 );
+
+ if( pLoc->aPgno ){
+ pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
+ if( iHash==0 ){
+ pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
+ pLoc->iZero = 0;
+ }else{
+ pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
+ }
+ }else if( NEVER(rc==SQLITE_OK) ){
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Return the number of the wal-index page that contains the hash-table
+** and page-number array that contain entries corresponding to WAL frame
+** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
+** are numbered starting from 0.
+*/
+static int walFramePage(u32 iFrame){
+ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
+ assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
+ && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
+ && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
+ && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
+ && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
+ );
+ assert( iHash>=0 );
+ return iHash;
+}
+
+/*
+** Return the page number associated with frame iFrame in this WAL.
+*/
+static u32 walFramePgno(Wal *pWal, u32 iFrame){
+ int iHash = walFramePage(iFrame);
+ if( iHash==0 ){
+ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
+ }
+ return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
+}
+
+/*
+** Remove entries from the hash table that point to WAL slots greater
+** than pWal->hdr.mxFrame.
+**
+** This function is called whenever pWal->hdr.mxFrame is decreased due
+** to a rollback or savepoint.
+**
+** At most only the hash table containing pWal->hdr.mxFrame needs to be
+** updated. Any later hash tables will be automatically cleared when
+** pWal->hdr.mxFrame advances to the point where those hash tables are
+** actually needed.
+*/
+static void walCleanupHash(Wal *pWal){
+ WalHashLoc sLoc; /* Hash table location */
+ int iLimit = 0; /* Zero values greater than this */
+ int nByte; /* Number of bytes to zero in aPgno[] */
+ int i; /* Used to iterate through aHash[] */
+
+ assert( pWal->writeLock );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
+
+ if( pWal->hdr.mxFrame==0 ) return;
+
+ /* Obtain pointers to the hash-table and page-number array containing
+ ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
+ ** that the page said hash-table and array reside on is already mapped.(1)
+ */
+ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
+ assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
+ i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
+ if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
+
+ /* Zero all hash-table entries that correspond to frame numbers greater
+ ** than pWal->hdr.mxFrame.
+ */
+ iLimit = pWal->hdr.mxFrame - sLoc.iZero;
+ assert( iLimit>0 );
+ for(i=0; i<HASHTABLE_NSLOT; i++){
+ if( sLoc.aHash[i]>iLimit ){
+ sLoc.aHash[i] = 0;
+ }
+ }
+
+ /* Zero the entries in the aPgno array that correspond to frames with
+ ** frame numbers greater than pWal->hdr.mxFrame.
+ */
+ nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]);
+ assert( nByte>=0 );
+ memset((void *)&sLoc.aPgno[iLimit], 0, nByte);
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* Verify that the every entry in the mapping region is still reachable
+ ** via the hash table even after the cleanup.
+ */
+ if( iLimit ){
+ int j; /* Loop counter */
+ int iKey; /* Hash key */
+ for(j=0; j<iLimit; j++){
+ for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
+ if( sLoc.aHash[iKey]==j+1 ) break;
+ }
+ assert( sLoc.aHash[iKey]==j+1 );
+ }
+ }
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
+}
+
+
+/*
+** Set an entry in the wal-index that will map database page number
+** pPage into WAL frame iFrame.
+*/
+static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
+ int rc; /* Return code */
+ WalHashLoc sLoc; /* Wal-index hash table location */
+
+ rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
+
+ /* Assuming the wal-index file was successfully mapped, populate the
+ ** page number array and hash table entry.
+ */
+ if( rc==SQLITE_OK ){
+ int iKey; /* Hash table key */
+ int idx; /* Value to write to hash-table slot */
+ int nCollide; /* Number of hash collisions */
+
+ idx = iFrame - sLoc.iZero;
+ assert( idx <= HASHTABLE_NSLOT/2 + 1 );
+
+ /* If this is the first entry to be added to this hash-table, zero the
+ ** entire hash table and aPgno[] array before proceeding.
+ */
+ if( idx==1 ){
+ int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno);
+ assert( nByte>=0 );
+ memset((void*)sLoc.aPgno, 0, nByte);
+ }
+
+ /* If the entry in aPgno[] is already set, then the previous writer
+ ** must have exited unexpectedly in the middle of a transaction (after
+ ** writing one or more dirty pages to the WAL to free up memory).
+ ** Remove the remnants of that writers uncommitted transaction from
+ ** the hash-table before writing any new entries.
+ */
+ if( sLoc.aPgno[idx-1] ){
+ walCleanupHash(pWal);
+ assert( !sLoc.aPgno[idx-1] );
+ }
+
+ /* Write the aPgno[] array entry and the hash-table slot. */
+ nCollide = idx;
+ for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
+ if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
+ }
+ sLoc.aPgno[idx-1] = iPage;
+ AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* Verify that the number of entries in the hash table exactly equals
+ ** the number of entries in the mapping region.
+ */
+ {
+ int i; /* Loop counter */
+ int nEntry = 0; /* Number of entries in the hash table */
+ for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
+ assert( nEntry==idx );
+ }
+
+ /* Verify that the every entry in the mapping region is reachable
+ ** via the hash table. This turns out to be a really, really expensive
+ ** thing to check, so only do this occasionally - not on every
+ ** iteration.
+ */
+ if( (idx&0x3ff)==0 ){
+ int i; /* Loop counter */
+ for(i=0; i<idx; i++){
+ for(iKey=walHash(sLoc.aPgno[i]);
+ sLoc.aHash[iKey];
+ iKey=walNextHash(iKey)){
+ if( sLoc.aHash[iKey]==i+1 ) break;
+ }
+ assert( sLoc.aHash[iKey]==i+1 );
+ }
+ }
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
+ }
+
+ return rc;
+}
+
+
+/*
+** Recover the wal-index by reading the write-ahead log file.
+**
+** This routine first tries to establish an exclusive lock on the
+** wal-index to prevent other threads/processes from doing anything
+** with the WAL or wal-index while recovery is running. The
+** WAL_RECOVER_LOCK is also held so that other threads will know
+** that this thread is running recovery. If unable to establish
+** the necessary locks, this routine returns SQLITE_BUSY.
+*/
+static int walIndexRecover(Wal *pWal){
+ int rc; /* Return Code */
+ i64 nSize; /* Size of log file */
+ u32 aFrameCksum[2] = {0, 0};
+ int iLock; /* Lock offset to lock for checkpoint */
+
+ /* Obtain an exclusive lock on all byte in the locking range not already
+ ** locked by the caller. The caller is guaranteed to have locked the
+ ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
+ ** If successful, the same bytes that are locked here are unlocked before
+ ** this function returns.
+ */
+ assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
+ assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
+ assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
+ assert( pWal->writeLock );
+ iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
+ rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
+ if( rc ){
+ return rc;
+ }
+
+ WALTRACE(("WAL%p: recovery begin...\n", pWal));
+
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
+
+ rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
+ if( rc!=SQLITE_OK ){
+ goto recovery_error;
+ }
+
+ if( nSize>WAL_HDRSIZE ){
+ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
+ u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
+ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
+ int szFrame; /* Number of bytes in buffer aFrame[] */
+ u8 *aData; /* Pointer to data part of aFrame buffer */
+ int szPage; /* Page size according to the log */
+ u32 magic; /* Magic value read from WAL header */
+ u32 version; /* Magic value read from WAL header */
+ int isValid; /* True if this frame is valid */
+ u32 iPg; /* Current 32KB wal-index page */
+ u32 iLastFrame; /* Last frame in wal, based on nSize alone */
+
+ /* Read in the WAL header. */
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
+ if( rc!=SQLITE_OK ){
+ goto recovery_error;
+ }
+
+ /* If the database page size is not a power of two, or is greater than
+ ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
+ ** data. Similarly, if the 'magic' value is invalid, ignore the whole
+ ** WAL file.
+ */
+ magic = sqlite3Get4byte(&aBuf[0]);
+ szPage = sqlite3Get4byte(&aBuf[8]);
+ if( (magic&0xFFFFFFFE)!=WAL_MAGIC
+ || szPage&(szPage-1)
+ || szPage>SQLITE_MAX_PAGE_SIZE
+ || szPage<512
+ ){
+ goto finished;
+ }
+ pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
+ pWal->szPage = szPage;
+ pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
+ memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
+
+ /* Verify that the WAL header checksum is correct */
+ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
+ aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
+ );
+ if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
+ || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
+ ){
+ goto finished;
+ }
+
+ /* Verify that the version number on the WAL format is one that
+ ** are able to understand */
+ version = sqlite3Get4byte(&aBuf[4]);
+ if( version!=WAL_MAX_VERSION ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ goto finished;
+ }
+
+ /* Malloc a buffer to read frames into. */
+ szFrame = szPage + WAL_FRAME_HDRSIZE;
+ aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
+ if( !aFrame ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto recovery_error;
+ }
+ aData = &aFrame[WAL_FRAME_HDRSIZE];
+ aPrivate = (u32*)&aData[szPage];
+
+ /* Read all frames from the log file. */
+ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
+ for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
+ u32 *aShare;
+ u32 iFrame; /* Index of last frame read */
+ u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
+ u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
+ u32 nHdr, nHdr32;
+ rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
+ assert( aShare!=0 || rc!=SQLITE_OK );
+ if( aShare==0 ) break;
+ pWal->apWiData[iPg] = aPrivate;
+
+ for(iFrame=iFirst; iFrame<=iLast; iFrame++){
+ i64 iOffset = walFrameOffset(iFrame, szPage);
+ u32 pgno; /* Database page number for frame */
+ u32 nTruncate; /* dbsize field from frame header */
+
+ /* Read and decode the next log frame. */
+ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
+ if( !isValid ) break;
+ rc = walIndexAppend(pWal, iFrame, pgno);
+ if( NEVER(rc!=SQLITE_OK) ) break;
+
+ /* If nTruncate is non-zero, this is a commit record. */
+ if( nTruncate ){
+ pWal->hdr.mxFrame = iFrame;
+ pWal->hdr.nPage = nTruncate;
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
+ aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
+ }
+ }
+ pWal->apWiData[iPg] = aShare;
+ nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
+ nHdr32 = nHdr / sizeof(u32);
+#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
+ /* Memcpy() should work fine here, on all reasonable implementations.
+ ** Technically, memcpy() might change the destination to some
+ ** intermediate value before setting to the final value, and that might
+ ** cause a concurrent reader to malfunction. Memcpy() is allowed to
+ ** do that, according to the spec, but no memcpy() implementation that
+ ** we know of actually does that, which is why we say that memcpy()
+ ** is safe for this. Memcpy() is certainly a lot faster.
+ */
+ memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
+#else
+ /* In the event that some platform is found for which memcpy()
+ ** changes the destination to some intermediate value before
+ ** setting the final value, this alternative copy routine is
+ ** provided.
+ */
+ {
+ int i;
+ for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
+ if( aShare[i]!=aPrivate[i] ){
+ /* Atomic memory operations are not required here because if
+ ** the value needs to be changed, that means it is not being
+ ** accessed concurrently. */
+ aShare[i] = aPrivate[i];
+ }
+ }
+ }
+#endif
+ if( iFrame<=iLast ) break;
+ }
+
+ sqlite3_free(aFrame);
+ }
+
+finished:
+ if( rc==SQLITE_OK ){
+ volatile WalCkptInfo *pInfo;
+ int i;
+ pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
+ pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
+ walIndexWriteHdr(pWal);
+
+ /* Reset the checkpoint-header. This is safe because this thread is
+ ** currently holding locks that exclude all other writers and
+ ** checkpointers. Then set the values of read-mark slots 1 through N.
+ */
+ pInfo = walCkptInfo(pWal);
+ pInfo->nBackfill = 0;
+ pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
+ pInfo->aReadMark[0] = 0;
+ for(i=1; i<WAL_NREADER; i++){
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ if( i==1 && pWal->hdr.mxFrame ){
+ pInfo->aReadMark[i] = pWal->hdr.mxFrame;
+ }else{
+ pInfo->aReadMark[i] = READMARK_NOT_USED;
+ }
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ }else if( rc!=SQLITE_BUSY ){
+ goto recovery_error;
+ }
+ }
+
+ /* If more than one frame was recovered from the log file, report an
+ ** event via sqlite3_log(). This is to help with identifying performance
+ ** problems caused by applications routinely shutting down without
+ ** checkpointing the log file.
+ */
+ if( pWal->hdr.nPage ){
+ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
+ "recovered %d frames from WAL file %s",
+ pWal->hdr.mxFrame, pWal->zWalName
+ );
+ }
+ }
+
+recovery_error:
+ WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
+ walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
+ return rc;
+}
+
+/*
+** Close an open wal-index.
+*/
+static void walIndexClose(Wal *pWal, int isDelete){
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
+ int i;
+ for(i=0; i<pWal->nWiData; i++){
+ sqlite3_free((void *)pWal->apWiData[i]);
+ pWal->apWiData[i] = 0;
+ }
+ }
+ if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
+ sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
+ }
+}
+
+/*
+** Open a connection to the WAL file zWalName. The database file must
+** already be opened on connection pDbFd. The buffer that zWalName points
+** to must remain valid for the lifetime of the returned Wal* handle.
+**
+** A SHARED lock should be held on the database file when this function
+** is called. The purpose of this SHARED lock is to prevent any other
+** client from unlinking the WAL or wal-index file. If another process
+** were to do this just after this client opened one of these files, the
+** system would be badly broken.
+**
+** If the log file is successfully opened, SQLITE_OK is returned and
+** *ppWal is set to point to a new WAL handle. If an error occurs,
+** an SQLite error code is returned and *ppWal is left unmodified.
+*/
+SQLITE_PRIVATE int sqlite3WalOpen(
+ sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
+ sqlite3_file *pDbFd, /* The open database file */
+ const char *zWalName, /* Name of the WAL file */
+ int bNoShm, /* True to run in heap-memory mode */
+ i64 mxWalSize, /* Truncate WAL to this size on reset */
+ Wal **ppWal /* OUT: Allocated Wal handle */
+){
+ int rc; /* Return Code */
+ Wal *pRet; /* Object to allocate and return */
+ int flags; /* Flags passed to OsOpen() */
+
+ assert( zWalName && zWalName[0] );
+ assert( pDbFd );
+
+ /* Verify the values of various constants. Any changes to the values
+ ** of these constants would result in an incompatible on-disk format
+ ** for the -shm file. Any change that causes one of these asserts to
+ ** fail is a backward compatibility problem, even if the change otherwise
+ ** works.
+ **
+ ** This table also serves as a helpful cross-reference when trying to
+ ** interpret hex dumps of the -shm file.
+ */
+ assert( 48 == sizeof(WalIndexHdr) );
+ assert( 40 == sizeof(WalCkptInfo) );
+ assert( 120 == WALINDEX_LOCK_OFFSET );
+ assert( 136 == WALINDEX_HDR_SIZE );
+ assert( 4096 == HASHTABLE_NPAGE );
+ assert( 4062 == HASHTABLE_NPAGE_ONE );
+ assert( 8192 == HASHTABLE_NSLOT );
+ assert( 383 == HASHTABLE_HASH_1 );
+ assert( 32768 == WALINDEX_PGSZ );
+ assert( 8 == SQLITE_SHM_NLOCK );
+ assert( 5 == WAL_NREADER );
+ assert( 24 == WAL_FRAME_HDRSIZE );
+ assert( 32 == WAL_HDRSIZE );
+ assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK );
+ assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK );
+ assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
+ assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
+ assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
+ assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
+ assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
+ assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
+
+ /* In the amalgamation, the os_unix.c and os_win.c source files come before
+ ** this source file. Verify that the #defines of the locking byte offsets
+ ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
+ ** For that matter, if the lock offset ever changes from its initial design
+ ** value of 120, we need to know that so there is an assert() to check it.
+ */
+#ifdef WIN_SHM_BASE
+ assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
+#endif
+#ifdef UNIX_SHM_BASE
+ assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
+#endif
+
+
+ /* Allocate an instance of struct Wal to return. */
+ *ppWal = 0;
+ pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
+ if( !pRet ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ pRet->pVfs = pVfs;
+ pRet->pWalFd = (sqlite3_file *)&pRet[1];
+ pRet->pDbFd = pDbFd;
+ pRet->readLock = -1;
+ pRet->mxWalSize = mxWalSize;
+ pRet->zWalName = zWalName;
+ pRet->syncHeader = 1;
+ pRet->padToSectorBoundary = 1;
+ pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
+
+ /* Open file handle on the write-ahead log file. */
+ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
+ rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
+ if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
+ pRet->readOnly = WAL_RDONLY;
+ }
+
+ if( rc!=SQLITE_OK ){
+ walIndexClose(pRet, 0);
+ sqlite3OsClose(pRet->pWalFd);
+ sqlite3_free(pRet);
+ }else{
+ int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
+ if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
+ if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
+ pRet->padToSectorBoundary = 0;
+ }
+ *ppWal = pRet;
+ WALTRACE(("WAL%d: opened\n", pRet));
+ }
+ return rc;
+}
+
+/*
+** Change the size to which the WAL file is trucated on each reset.
+*/
+SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){
+ if( pWal ) pWal->mxWalSize = iLimit;
+}
+
+/*
+** Find the smallest page number out of all pages held in the WAL that
+** has not been returned by any prior invocation of this method on the
+** same WalIterator object. Write into *piFrame the frame index where
+** that page was last written into the WAL. Write into *piPage the page
+** number.
+**
+** Return 0 on success. If there are no pages in the WAL with a page
+** number larger than *piPage, then return 1.
+*/
+static int walIteratorNext(
+ WalIterator *p, /* Iterator */
+ u32 *piPage, /* OUT: The page number of the next page */
+ u32 *piFrame /* OUT: Wal frame index of next page */
+){
+ u32 iMin; /* Result pgno must be greater than iMin */
+ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
+ int i; /* For looping through segments */
+
+ iMin = p->iPrior;
+ assert( iMin<0xffffffff );
+ for(i=p->nSegment-1; i>=0; i--){
+ struct WalSegment *pSegment = &p->aSegment[i];
+ while( pSegment->iNext<pSegment->nEntry ){
+ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
+ if( iPg>iMin ){
+ if( iPg<iRet ){
+ iRet = iPg;
+ *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
+ }
+ break;
+ }
+ pSegment->iNext++;
+ }
+ }
+
+ *piPage = p->iPrior = iRet;
+ return (iRet==0xFFFFFFFF);
+}
+
+/*
+** This function merges two sorted lists into a single sorted list.
+**
+** aLeft[] and aRight[] are arrays of indices. The sort key is
+** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
+** is guaranteed for all J<K:
+**
+** aContent[aLeft[J]] < aContent[aLeft[K]]
+** aContent[aRight[J]] < aContent[aRight[K]]
+**
+** This routine overwrites aRight[] with a new (probably longer) sequence
+** of indices such that the aRight[] contains every index that appears in
+** either aLeft[] or the old aRight[] and such that the second condition
+** above is still met.
+**
+** The aContent[aLeft[X]] values will be unique for all X. And the
+** aContent[aRight[X]] values will be unique too. But there might be
+** one or more combinations of X and Y such that
+**
+** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
+**
+** When that happens, omit the aLeft[X] and use the aRight[Y] index.
+*/
+static void walMerge(
+ const u32 *aContent, /* Pages in wal - keys for the sort */
+ ht_slot *aLeft, /* IN: Left hand input list */
+ int nLeft, /* IN: Elements in array *paLeft */
+ ht_slot **paRight, /* IN/OUT: Right hand input list */
+ int *pnRight, /* IN/OUT: Elements in *paRight */
+ ht_slot *aTmp /* Temporary buffer */
+){
+ int iLeft = 0; /* Current index in aLeft */
+ int iRight = 0; /* Current index in aRight */
+ int iOut = 0; /* Current index in output buffer */
+ int nRight = *pnRight;
+ ht_slot *aRight = *paRight;
+
+ assert( nLeft>0 && nRight>0 );
+ while( iRight<nRight || iLeft<nLeft ){
+ ht_slot logpage;
+ Pgno dbpage;
+
+ if( (iLeft<nLeft)
+ && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
+ ){
+ logpage = aLeft[iLeft++];
+ }else{
+ logpage = aRight[iRight++];
+ }
+ dbpage = aContent[logpage];
+
+ aTmp[iOut++] = logpage;
+ if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
+
+ assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
+ assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
+ }
+
+ *paRight = aLeft;
+ *pnRight = iOut;
+ memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
+}
+
+/*
+** Sort the elements in list aList using aContent[] as the sort key.
+** Remove elements with duplicate keys, preferring to keep the
+** larger aList[] values.
+**
+** The aList[] entries are indices into aContent[]. The values in
+** aList[] are to be sorted so that for all J<K:
+**
+** aContent[aList[J]] < aContent[aList[K]]
+**
+** For any X and Y such that
+**
+** aContent[aList[X]] == aContent[aList[Y]]
+**
+** Keep the larger of the two values aList[X] and aList[Y] and discard
+** the smaller.
+*/
+static void walMergesort(
+ const u32 *aContent, /* Pages in wal */
+ ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
+ ht_slot *aList, /* IN/OUT: List to sort */
+ int *pnList /* IN/OUT: Number of elements in aList[] */
+){
+ struct Sublist {
+ int nList; /* Number of elements in aList */
+ ht_slot *aList; /* Pointer to sub-list content */
+ };
+
+ const int nList = *pnList; /* Size of input list */
+ int nMerge = 0; /* Number of elements in list aMerge */
+ ht_slot *aMerge = 0; /* List to be merged */
+ int iList; /* Index into input list */
+ u32 iSub = 0; /* Index into aSub array */
+ struct Sublist aSub[13]; /* Array of sub-lists */
+
+ memset(aSub, 0, sizeof(aSub));
+ assert( nList<=HASHTABLE_NPAGE && nList>0 );
+ assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
+
+ for(iList=0; iList<nList; iList++){
+ nMerge = 1;
+ aMerge = &aList[iList];
+ for(iSub=0; iList & (1<<iSub); iSub++){
+ struct Sublist *p;
+ assert( iSub<ArraySize(aSub) );
+ p = &aSub[iSub];
+ assert( p->aList && p->nList<=(1<<iSub) );
+ assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
+ }
+ aSub[iSub].aList = aMerge;
+ aSub[iSub].nList = nMerge;
+ }
+
+ for(iSub++; iSub<ArraySize(aSub); iSub++){
+ if( nList & (1<<iSub) ){
+ struct Sublist *p;
+ assert( iSub<ArraySize(aSub) );
+ p = &aSub[iSub];
+ assert( p->nList<=(1<<iSub) );
+ assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
+ }
+ }
+ assert( aMerge==aList );
+ *pnList = nMerge;
+
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=1; i<*pnList; i++){
+ assert( aContent[aList[i]] > aContent[aList[i-1]] );
+ }
+ }
+#endif
+}
+
+/*
+** Free an iterator allocated by walIteratorInit().
+*/
+static void walIteratorFree(WalIterator *p){
+ sqlite3_free(p);
+}
+
+/*
+** Construct a WalInterator object that can be used to loop over all
+** pages in the WAL following frame nBackfill in ascending order. Frames
+** nBackfill or earlier may be included - excluding them is an optimization
+** only. The caller must hold the checkpoint lock.
+**
+** On success, make *pp point to the newly allocated WalInterator object
+** return SQLITE_OK. Otherwise, return an error code. If this routine
+** returns an error, the value of *pp is undefined.
+**
+** The calling routine should invoke walIteratorFree() to destroy the
+** WalIterator object when it has finished with it.
+*/
+static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
+ WalIterator *p; /* Return value */
+ int nSegment; /* Number of segments to merge */
+ u32 iLast; /* Last frame in log */
+ sqlite3_int64 nByte; /* Number of bytes to allocate */
+ int i; /* Iterator variable */
+ ht_slot *aTmp; /* Temp space used by merge-sort */
+ int rc = SQLITE_OK; /* Return Code */
+
+ /* This routine only runs while holding the checkpoint lock. And
+ ** it only runs if there is actually content in the log (mxFrame>0).
+ */
+ assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
+ iLast = pWal->hdr.mxFrame;
+
+ /* Allocate space for the WalIterator object. */
+ nSegment = walFramePage(iLast) + 1;
+ nByte = sizeof(WalIterator)
+ + (nSegment-1)*sizeof(struct WalSegment)
+ + iLast*sizeof(ht_slot);
+ p = (WalIterator *)sqlite3_malloc64(nByte);
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(p, 0, nByte);
+ p->nSegment = nSegment;
+
+ /* Allocate temporary space used by the merge-sort routine. This block
+ ** of memory will be freed before this function returns.
+ */
+ aTmp = (ht_slot *)sqlite3_malloc64(
+ sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
+ );
+ if( !aTmp ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+
+ for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
+ WalHashLoc sLoc;
+
+ rc = walHashGet(pWal, i, &sLoc);
+ if( rc==SQLITE_OK ){
+ int j; /* Counter variable */
+ int nEntry; /* Number of entries in this segment */
+ ht_slot *aIndex; /* Sorted index for this segment */
+
+ if( (i+1)==nSegment ){
+ nEntry = (int)(iLast - sLoc.iZero);
+ }else{
+ nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
+ }
+ aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
+ sLoc.iZero++;
+
+ for(j=0; j<nEntry; j++){
+ aIndex[j] = (ht_slot)j;
+ }
+ walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
+ p->aSegment[i].iZero = sLoc.iZero;
+ p->aSegment[i].nEntry = nEntry;
+ p->aSegment[i].aIndex = aIndex;
+ p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
+ }
+ }
+ sqlite3_free(aTmp);
+
+ if( rc!=SQLITE_OK ){
+ walIteratorFree(p);
+ p = 0;
+ }
+ *pp = p;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+/*
+** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
+** they are supported by the VFS, and (b) the database handle is configured
+** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
+** or 0 otherwise.
+*/
+static int walEnableBlocking(Wal *pWal){
+ int res = 0;
+ if( pWal->db ){
+ int tmout = pWal->db->busyTimeout;
+ if( tmout ){
+ int rc;
+ rc = sqlite3OsFileControl(
+ pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
+ );
+ res = (rc==SQLITE_OK);
+ }
+ }
+ return res;
+}
+
+/*
+** Disable blocking locks.
+*/
+static void walDisableBlocking(Wal *pWal){
+ int tmout = 0;
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
+}
+
+/*
+** If parameter bLock is true, attempt to enable blocking locks, take
+** the WRITER lock, and then disable blocking locks. If blocking locks
+** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
+** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
+** an error if blocking locks can not be enabled.
+**
+** If the bLock parameter is false and the WRITER lock is held, release it.
+*/
+SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock){
+ int rc = SQLITE_OK;
+ assert( pWal->readLock<0 || bLock==0 );
+ if( bLock ){
+ assert( pWal->db );
+ if( walEnableBlocking(pWal) ){
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ pWal->writeLock = 1;
+ }
+ walDisableBlocking(pWal);
+ }
+ }else if( pWal->writeLock ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ }
+ return rc;
+}
+
+/*
+** Set the database handle used to determine if blocking locks are required.
+*/
+SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db){
+ pWal->db = db;
+}
+
+/*
+** Take an exclusive WRITE lock. Blocking if so configured.
+*/
+static int walLockWriter(Wal *pWal){
+ int rc;
+ walEnableBlocking(pWal);
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ walDisableBlocking(pWal);
+ return rc;
+}
+#else
+# define walEnableBlocking(x) 0
+# define walDisableBlocking(x)
+# define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
+# define sqlite3WalDb(pWal, db)
+#endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
+
+
+/*
+** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
+** n. If the attempt fails and parameter xBusy is not NULL, then it is a
+** busy-handler function. Invoke it and retry the lock until either the
+** lock is successfully obtained or the busy-handler returns 0.
+*/
+static int walBusyLock(
+ Wal *pWal, /* WAL connection */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int lockIdx, /* Offset of first byte to lock */
+ int n /* Number of bytes to lock */
+){
+ int rc;
+ do {
+ rc = walLockExclusive(pWal, lockIdx, n);
+ }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ if( rc==SQLITE_BUSY_TIMEOUT ){
+ walDisableBlocking(pWal);
+ rc = SQLITE_BUSY;
+ }
+#endif
+ return rc;
+}
+
+/*
+** The cache of the wal-index header must be valid to call this function.
+** Return the page-size in bytes used by the database.
+*/
+static int walPagesize(Wal *pWal){
+ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+}
+
+/*
+** The following is guaranteed when this function is called:
+**
+** a) the WRITER lock is held,
+** b) the entire log file has been checkpointed, and
+** c) any existing readers are reading exclusively from the database
+** file - there are no readers that may attempt to read a frame from
+** the log file.
+**
+** This function updates the shared-memory structures so that the next
+** client to write to the database (which may be this one) does so by
+** writing frames into the start of the log file.
+**
+** The value of parameter salt1 is used as the aSalt[1] value in the
+** new wal-index header. It should be passed a pseudo-random value (i.e.
+** one obtained from sqlite3_randomness()).
+*/
+static void walRestartHdr(Wal *pWal, u32 salt1){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ int i; /* Loop counter */
+ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
+ pWal->nCkpt++;
+ pWal->hdr.mxFrame = 0;
+ sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
+ memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
+ walIndexWriteHdr(pWal);
+ AtomicStore(&pInfo->nBackfill, 0);
+ pInfo->nBackfillAttempted = 0;
+ pInfo->aReadMark[1] = 0;
+ for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
+ assert( pInfo->aReadMark[0]==0 );
+}
+
+/*
+** Copy as much content as we can from the WAL back into the database file
+** in response to an sqlite3_wal_checkpoint() request or the equivalent.
+**
+** The amount of information copies from WAL to database might be limited
+** by active readers. This routine will never overwrite a database page
+** that a concurrent reader might be using.
+**
+** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
+** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
+** checkpoints are always run by a background thread or background
+** process, foreground threads will never block on a lengthy fsync call.
+**
+** Fsync is called on the WAL before writing content out of the WAL and
+** into the database. This ensures that if the new content is persistent
+** in the WAL and can be recovered following a power-loss or hard reset.
+**
+** Fsync is also called on the database file if (and only if) the entire
+** WAL content is copied into the database file. This second fsync makes
+** it safe to delete the WAL since the new content will persist in the
+** database file.
+**
+** This routine uses and updates the nBackfill field of the wal-index header.
+** This is the only routine that will increase the value of nBackfill.
+** (A WAL reset or recovery will revert nBackfill to zero, but not increase
+** its value.)
+**
+** The caller must be holding sufficient locks to ensure that no other
+** checkpoint is running (in any other thread or process) at the same
+** time.
+*/
+static int walCheckpoint(
+ Wal *pWal, /* Wal connection */
+ sqlite3 *db, /* Check for interrupts on this handle */
+ int eMode, /* One of PASSIVE, FULL or RESTART */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags for OsSync() (or 0) */
+ u8 *zBuf /* Temporary buffer to use */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int szPage; /* Database page-size */
+ WalIterator *pIter = 0; /* Wal iterator context */
+ u32 iDbpage = 0; /* Next database page to write */
+ u32 iFrame = 0; /* Wal frame containing data for iDbpage */
+ u32 mxSafeFrame; /* Max frame that can be backfilled */
+ u32 mxPage; /* Max database page to write */
+ int i; /* Loop counter */
+ volatile WalCkptInfo *pInfo; /* The checkpoint status information */
+
+ szPage = walPagesize(pWal);
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ pInfo = walCkptInfo(pWal);
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){
+
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
+
+ /* Compute in mxSafeFrame the index of the last frame of the WAL that is
+ ** safe to write into the database. Frames beyond mxSafeFrame might
+ ** overwrite database pages that are in use by active readers and thus
+ ** cannot be backfilled from the WAL.
+ */
+ mxSafeFrame = pWal->hdr.mxFrame;
+ mxPage = pWal->hdr.nPage;
+ for(i=1; i<WAL_NREADER; i++){
+ u32 y = AtomicLoad(pInfo->aReadMark+i);
+ if( mxSafeFrame>y ){
+ assert( y<=pWal->hdr.mxFrame );
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
+ AtomicStore(pInfo->aReadMark+i, iMark);
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ }else if( rc==SQLITE_BUSY ){
+ mxSafeFrame = y;
+ xBusy = 0;
+ }else{
+ goto walcheckpoint_out;
+ }
+ }
+ }
+
+ /* Allocate the iterator */
+ if( pInfo->nBackfill<mxSafeFrame ){
+ rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
+ assert( rc==SQLITE_OK || pIter==0 );
+ }
+
+ if( pIter
+ && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
+ ){
+ u32 nBackfill = pInfo->nBackfill;
+
+ pInfo->nBackfillAttempted = mxSafeFrame;
+
+ /* Sync the WAL to disk */
+ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
+
+ /* If the database may grow as a result of this checkpoint, hint
+ ** about the eventual size of the db file to the VFS layer.
+ */
+ if( rc==SQLITE_OK ){
+ i64 nReq = ((i64)mxPage * szPage);
+ i64 nSize; /* Current size of database file */
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
+ rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
+ if( rc==SQLITE_OK && nSize<nReq ){
+ if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
+ /* If the size of the final database is larger than the current
+ ** database plus the amount of data in the wal file, plus the
+ ** maximum size of the pending-byte page (65536 bytes), then
+ ** must be corruption somewhere. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
+ }
+ }
+
+ }
+
+ /* Iterate through the contents of the WAL, copying data to the db file */
+ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
+ i64 iOffset;
+ assert( walFramePgno(pWal, iFrame)==iDbpage );
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
+ break;
+ }
+ if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
+ continue;
+ }
+ iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
+ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ iOffset = (iDbpage-1)*(i64)szPage;
+ testcase( IS_BIG_INT(iOffset) );
+ rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ }
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
+
+ /* If work was actually accomplished... */
+ if( rc==SQLITE_OK ){
+ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
+ i64 szDb = pWal->hdr.nPage*(i64)szPage;
+ testcase( IS_BIG_INT(szDb) );
+ rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
+ }
+ }
+ if( rc==SQLITE_OK ){
+ AtomicStore(&pInfo->nBackfill, mxSafeFrame);
+ }
+ }
+
+ /* Release the reader lock held while backfilling */
+ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
+ }
+
+ if( rc==SQLITE_BUSY ){
+ /* Reset the return code so as not to report a checkpoint failure
+ ** just because there are active readers. */
+ rc = SQLITE_OK;
+ }
+ }
+
+ /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
+ ** entire wal file has been copied into the database file, then block
+ ** until all readers have finished using the wal file. This ensures that
+ ** the next process to write to the database restarts the wal file.
+ */
+ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
+ assert( pWal->writeLock );
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){
+ rc = SQLITE_BUSY;
+ }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
+ u32 salt1;
+ sqlite3_randomness(4, &salt1);
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame );
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
+ if( rc==SQLITE_OK ){
+ if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
+ /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
+ ** SQLITE_CHECKPOINT_RESTART with the addition that it also
+ ** truncates the log file to zero bytes just prior to a
+ ** successful return.
+ **
+ ** In theory, it might be safe to do this without updating the
+ ** wal-index header in shared memory, as all subsequent reader or
+ ** writer clients should see that the entire log file has been
+ ** checkpointed and behave accordingly. This seems unsafe though,
+ ** as it would leave the system in a state where the contents of
+ ** the wal-index header do not match the contents of the
+ ** file-system. To avoid this, update the wal-index header to
+ ** indicate that the log file contains zero valid frames. */
+ walRestartHdr(pWal, salt1);
+ rc = sqlite3OsTruncate(pWal->pWalFd, 0);
+ }
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }
+ }
+ }
+
+ walcheckpoint_out:
+ walIteratorFree(pIter);
+ return rc;
+}
+
+/*
+** If the WAL file is currently larger than nMax bytes in size, truncate
+** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
+*/
+static void walLimitSize(Wal *pWal, i64 nMax){
+ i64 sz;
+ int rx;
+ sqlite3BeginBenignMalloc();
+ rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
+ if( rx==SQLITE_OK && (sz > nMax ) ){
+ rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
+ }
+ sqlite3EndBenignMalloc();
+ if( rx ){
+ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
+ }
+}
+
+/*
+** Close a connection to a log file.
+*/
+SQLITE_PRIVATE int sqlite3WalClose(
+ Wal *pWal, /* Wal to close */
+ sqlite3 *db, /* For interrupt flag */
+ int sync_flags, /* Flags to pass to OsSync() (or 0) */
+ int nBuf,
+ u8 *zBuf /* Buffer of at least nBuf bytes */
+){
+ int rc = SQLITE_OK;
+ if( pWal ){
+ int isDelete = 0; /* True to unlink wal and wal-index files */
+
+ /* If an EXCLUSIVE lock can be obtained on the database file (using the
+ ** ordinary, rollback-mode locking methods, this guarantees that the
+ ** connection associated with this log file is the only connection to
+ ** the database. In this case checkpoint the database and unlink both
+ ** the wal and wal-index files.
+ **
+ ** The EXCLUSIVE lock is not released before returning.
+ */
+ if( zBuf!=0
+ && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
+ ){
+ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ }
+ rc = sqlite3WalCheckpoint(pWal, db,
+ SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
+ );
+ if( rc==SQLITE_OK ){
+ int bPersist = -1;
+ sqlite3OsFileControlHint(
+ pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
+ );
+ if( bPersist!=1 ){
+ /* Try to delete the WAL file if the checkpoint completed and
+ ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
+ ** mode (!bPersist) */
+ isDelete = 1;
+ }else if( pWal->mxWalSize>=0 ){
+ /* Try to truncate the WAL file to zero bytes if the checkpoint
+ ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
+ ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
+ ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
+ ** to zero bytes as truncating to the journal_size_limit might
+ ** leave a corrupt WAL file on disk. */
+ walLimitSize(pWal, 0);
+ }
+ }
+ }
+
+ walIndexClose(pWal, isDelete);
+ sqlite3OsClose(pWal->pWalFd);
+ if( isDelete ){
+ sqlite3BeginBenignMalloc();
+ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
+ sqlite3EndBenignMalloc();
+ }
+ WALTRACE(("WAL%p: closed\n", pWal));
+ sqlite3_free((void *)pWal->apWiData);
+ sqlite3_free(pWal);
+ }
+ return rc;
+}
+
+/*
+** Try to read the wal-index header. Return 0 on success and 1 if
+** there is a problem.
+**
+** The wal-index is in shared memory. Another thread or process might
+** be writing the header at the same time this procedure is trying to
+** read it, which might result in inconsistency. A dirty read is detected
+** by verifying that both copies of the header are the same and also by
+** a checksum on the header.
+**
+** If and only if the read is consistent and the header is different from
+** pWal->hdr, then pWal->hdr is updated to the content of the new header
+** and *pChanged is set to 1.
+**
+** If the checksum cannot be verified return non-zero. If the header
+** is read successfully and the checksum verified, return zero.
+*/
+static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
+ u32 aCksum[2]; /* Checksum on the header content */
+ WalIndexHdr h1, h2; /* Two copies of the header content */
+ WalIndexHdr volatile *aHdr; /* Header in shared memory */
+
+ /* The first page of the wal-index must be mapped at this point. */
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+
+ /* Read the header. This might happen concurrently with a write to the
+ ** same area of shared memory on a different CPU in a SMP,
+ ** meaning it is possible that an inconsistent snapshot is read
+ ** from the file. If this happens, return non-zero.
+ **
+ ** tag-20200519-1:
+ ** There are two copies of the header at the beginning of the wal-index.
+ ** When reading, read [0] first then [1]. Writes are in the reverse order.
+ ** Memory barriers are used to prevent the compiler or the hardware from
+ ** reordering the reads and writes. TSAN and similar tools can sometimes
+ ** give false-positive warnings about these accesses because the tools do not
+ ** account for the double-read and the memory barrier. The use of mutexes
+ ** here would be problematic as the memory being accessed is potentially
+ ** shared among multiple processes and not all mutex implementions work
+ ** reliably in that environment.
+ */
+ aHdr = walIndexHdr(pWal);
+ memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
+ walShmBarrier(pWal);
+ memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
+
+ if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
+ return 1; /* Dirty read */
+ }
+ if( h1.isInit==0 ){
+ return 1; /* Malformed header - probably all zeros */
+ }
+ walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
+ if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
+ return 1; /* Checksum does not match */
+ }
+
+ if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
+ *pChanged = 1;
+ memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
+ pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+ testcase( pWal->szPage<=32768 );
+ testcase( pWal->szPage>=65536 );
+ }
+
+ /* The header was successfully read. Return zero. */
+ return 0;
+}
+
+/*
+** This is the value that walTryBeginRead returns when it needs to
+** be retried.
+*/
+#define WAL_RETRY (-1)
+
+/*
+** Read the wal-index header from the wal-index and into pWal->hdr.
+** If the wal-header appears to be corrupt, try to reconstruct the
+** wal-index from the WAL before returning.
+**
+** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
+** changed by this operation. If pWal->hdr is unchanged, set *pChanged
+** to 0.
+**
+** If the wal-index header is successfully read, return SQLITE_OK.
+** Otherwise an SQLite error code.
+*/
+static int walIndexReadHdr(Wal *pWal, int *pChanged){
+ int rc; /* Return code */
+ int badHdr; /* True if a header read failed */
+ volatile u32 *page0; /* Chunk of wal-index containing header */
+
+ /* Ensure that page 0 of the wal-index (the page that contains the
+ ** wal-index header) is mapped. Return early if an error occurs here.
+ */
+ assert( pChanged );
+ rc = walIndexPage(pWal, 0, &page0);
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
+ if( rc==SQLITE_READONLY_CANTINIT ){
+ /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
+ ** was openable but is not writable, and this thread is unable to
+ ** confirm that another write-capable connection has the shared-memory
+ ** open, and hence the content of the shared-memory is unreliable,
+ ** since the shared-memory might be inconsistent with the WAL file
+ ** and there is no writer on hand to fix it. */
+ assert( page0==0 );
+ assert( pWal->writeLock==0 );
+ assert( pWal->readOnly & WAL_SHM_RDONLY );
+ pWal->bShmUnreliable = 1;
+ pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
+ *pChanged = 1;
+ }else{
+ return rc; /* Any other non-OK return is just an error */
+ }
+ }else{
+ /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
+ ** is zero, which prevents the SHM from growing */
+ testcase( page0!=0 );
+ }
+ assert( page0!=0 || pWal->writeLock==0 );
+
+ /* If the first page of the wal-index has been mapped, try to read the
+ ** wal-index header immediately, without holding any lock. This usually
+ ** works, but may fail if the wal-index header is corrupt or currently
+ ** being modified by another thread or process.
+ */
+ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
+
+ /* If the first attempt failed, it might have been due to a race
+ ** with a writer. So get a WRITE lock and try again.
+ */
+ if( badHdr ){
+ if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
+ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
+ walUnlockShared(pWal, WAL_WRITE_LOCK);
+ rc = SQLITE_READONLY_RECOVERY;
+ }
+ }else{
+ int bWriteLock = pWal->writeLock;
+ if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
+ pWal->writeLock = 1;
+ if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
+ badHdr = walIndexTryHdr(pWal, pChanged);
+ if( badHdr ){
+ /* If the wal-index header is still malformed even while holding
+ ** a WRITE lock, it can only mean that the header is corrupted and
+ ** needs to be reconstructed. So run recovery to do exactly that.
+ */
+ rc = walIndexRecover(pWal);
+ *pChanged = 1;
+ }
+ }
+ if( bWriteLock==0 ){
+ pWal->writeLock = 0;
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ }
+ }
+ }
+ }
+
+ /* If the header is read successfully, check the version number to make
+ ** sure the wal-index was not constructed with some future format that
+ ** this version of SQLite cannot understand.
+ */
+ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ }
+ if( pWal->bShmUnreliable ){
+ if( rc!=SQLITE_OK ){
+ walIndexClose(pWal, 0);
+ pWal->bShmUnreliable = 0;
+ assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
+ /* walIndexRecover() might have returned SHORT_READ if a concurrent
+ ** writer truncated the WAL out from under it. If that happens, it
+ ** indicates that a writer has fixed the SHM file for us, so retry */
+ if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
+ }
+ pWal->exclusiveMode = WAL_NORMAL_MODE;
+ }
+
+ return rc;
+}
+
+/*
+** Open a transaction in a connection where the shared-memory is read-only
+** and where we cannot verify that there is a separate write-capable connection
+** on hand to keep the shared-memory up-to-date with the WAL file.
+**
+** This can happen, for example, when the shared-memory is implemented by
+** memory-mapping a *-shm file, where a prior writer has shut down and
+** left the *-shm file on disk, and now the present connection is trying
+** to use that database but lacks write permission on the *-shm file.
+** Other scenarios are also possible, depending on the VFS implementation.
+**
+** Precondition:
+**
+** The *-wal file has been read and an appropriate wal-index has been
+** constructed in pWal->apWiData[] using heap memory instead of shared
+** memory.
+**
+** If this function returns SQLITE_OK, then the read transaction has
+** been successfully opened. In this case output variable (*pChanged)
+** is set to true before returning if the caller should discard the
+** contents of the page cache before proceeding. Or, if it returns
+** WAL_RETRY, then the heap memory wal-index has been discarded and
+** the caller should retry opening the read transaction from the
+** beginning (including attempting to map the *-shm file).
+**
+** If an error occurs, an SQLite error code is returned.
+*/
+static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
+ i64 szWal; /* Size of wal file on disk in bytes */
+ i64 iOffset; /* Current offset when reading wal file */
+ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
+ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
+ int szFrame; /* Number of bytes in buffer aFrame[] */
+ u8 *aData; /* Pointer to data part of aFrame buffer */
+ volatile void *pDummy; /* Dummy argument for xShmMap */
+ int rc; /* Return code */
+ u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
+
+ assert( pWal->bShmUnreliable );
+ assert( pWal->readOnly & WAL_SHM_RDONLY );
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+
+ /* Take WAL_READ_LOCK(0). This has the effect of preventing any
+ ** writers from running a checkpoint, but does not stop them
+ ** from running recovery. */
+ rc = walLockShared(pWal, WAL_READ_LOCK(0));
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
+ goto begin_unreliable_shm_out;
+ }
+ pWal->readLock = 0;
+
+ /* Check to see if a separate writer has attached to the shared-memory area,
+ ** thus making the shared-memory "reliable" again. Do this by invoking
+ ** the xShmMap() routine of the VFS and looking to see if the return
+ ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
+ **
+ ** If the shared-memory is now "reliable" return WAL_RETRY, which will
+ ** cause the heap-memory WAL-index to be discarded and the actual
+ ** shared memory to be used in its place.
+ **
+ ** This step is important because, even though this connection is holding
+ ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
+ ** have already checkpointed the WAL file and, while the current
+ ** is active, wrap the WAL and start overwriting frames that this
+ ** process wants to use.
+ **
+ ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
+ ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
+ ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
+ ** even if some external agent does a "chmod" to make the shared-memory
+ ** writable by us, until sqlite3OsShmUnmap() has been called.
+ ** This is a requirement on the VFS implementation.
+ */
+ rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
+ assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
+ if( rc!=SQLITE_READONLY_CANTINIT ){
+ rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
+ goto begin_unreliable_shm_out;
+ }
+
+ /* We reach this point only if the real shared-memory is still unreliable.
+ ** Assume the in-memory WAL-index substitute is correct and load it
+ ** into pWal->hdr.
+ */
+ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
+
+ /* Make sure some writer hasn't come in and changed the WAL file out
+ ** from under us, then disconnected, while we were not looking.
+ */
+ rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
+ if( rc!=SQLITE_OK ){
+ goto begin_unreliable_shm_out;
+ }
+ if( szWal<WAL_HDRSIZE ){
+ /* If the wal file is too small to contain a wal-header and the
+ ** wal-index header has mxFrame==0, then it must be safe to proceed
+ ** reading the database file only. However, the page cache cannot
+ ** be trusted, as a read/write connection may have connected, written
+ ** the db, run a checkpoint, truncated the wal file and disconnected
+ ** since this client's last read transaction. */
+ *pChanged = 1;
+ rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
+ goto begin_unreliable_shm_out;
+ }
+
+ /* Check the salt keys at the start of the wal file still match. */
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
+ if( rc!=SQLITE_OK ){
+ goto begin_unreliable_shm_out;
+ }
+ if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
+ /* Some writer has wrapped the WAL file while we were not looking.
+ ** Return WAL_RETRY which will cause the in-memory WAL-index to be
+ ** rebuilt. */
+ rc = WAL_RETRY;
+ goto begin_unreliable_shm_out;
+ }
+
+ /* Allocate a buffer to read frames into */
+ assert( (pWal->szPage & (pWal->szPage-1))==0 );
+ assert( pWal->szPage>=512 && pWal->szPage<=65536 );
+ szFrame = pWal->szPage + WAL_FRAME_HDRSIZE;
+ aFrame = (u8 *)sqlite3_malloc64(szFrame);
+ if( aFrame==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto begin_unreliable_shm_out;
+ }
+ aData = &aFrame[WAL_FRAME_HDRSIZE];
+
+ /* Check to see if a complete transaction has been appended to the
+ ** wal file since the heap-memory wal-index was created. If so, the
+ ** heap-memory wal-index is discarded and WAL_RETRY returned to
+ ** the caller. */
+ aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
+ aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
+ for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage);
+ iOffset+szFrame<=szWal;
+ iOffset+=szFrame
+ ){
+ u32 pgno; /* Database page number for frame */
+ u32 nTruncate; /* dbsize field from frame header */
+
+ /* Read and decode the next log frame. */
+ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
+
+ /* If nTruncate is non-zero, then a complete transaction has been
+ ** appended to this wal file. Set rc to WAL_RETRY and break out of
+ ** the loop. */
+ if( nTruncate ){
+ rc = WAL_RETRY;
+ break;
+ }
+ }
+ pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
+ pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
+
+ begin_unreliable_shm_out:
+ sqlite3_free(aFrame);
+ if( rc!=SQLITE_OK ){
+ int i;
+ for(i=0; i<pWal->nWiData; i++){
+ sqlite3_free((void*)pWal->apWiData[i]);
+ pWal->apWiData[i] = 0;
+ }
+ pWal->bShmUnreliable = 0;
+ sqlite3WalEndReadTransaction(pWal);
+ *pChanged = 1;
+ }
+ return rc;
+}
+
+/*
+** Attempt to start a read transaction. This might fail due to a race or
+** other transient condition. When that happens, it returns WAL_RETRY to
+** indicate to the caller that it is safe to retry immediately.
+**
+** On success return SQLITE_OK. On a permanent failure (such an
+** I/O error or an SQLITE_BUSY because another process is running
+** recovery) return a positive error code.
+**
+** The useWal parameter is true to force the use of the WAL and disable
+** the case where the WAL is bypassed because it has been completely
+** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
+** to make a copy of the wal-index header into pWal->hdr. If the
+** wal-index header has changed, *pChanged is set to 1 (as an indication
+** to the caller that the local page cache is obsolete and needs to be
+** flushed.) When useWal==1, the wal-index header is assumed to already
+** be loaded and the pChanged parameter is unused.
+**
+** The caller must set the cnt parameter to the number of prior calls to
+** this routine during the current read attempt that returned WAL_RETRY.
+** This routine will start taking more aggressive measures to clear the
+** race conditions after multiple WAL_RETRY returns, and after an excessive
+** number of errors will ultimately return SQLITE_PROTOCOL. The
+** SQLITE_PROTOCOL return indicates that some other process has gone rogue
+** and is not honoring the locking protocol. There is a vanishingly small
+** chance that SQLITE_PROTOCOL could be returned because of a run of really
+** bad luck when there is lots of contention for the wal-index, but that
+** possibility is so small that it can be safely neglected, we believe.
+**
+** On success, this routine obtains a read lock on
+** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
+** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
+** that means the Wal does not hold any read lock. The reader must not
+** access any database page that is modified by a WAL frame up to and
+** including frame number aReadMark[pWal->readLock]. The reader will
+** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
+** Or if pWal->readLock==0, then the reader will ignore the WAL
+** completely and get all content directly from the database file.
+** If the useWal parameter is 1 then the WAL will never be ignored and
+** this routine will always set pWal->readLock>0 on success.
+** When the read transaction is completed, the caller must release the
+** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
+**
+** This routine uses the nBackfill and aReadMark[] fields of the header
+** to select a particular WAL_READ_LOCK() that strives to let the
+** checkpoint process do as much work as possible. This routine might
+** update values of the aReadMark[] array in the header, but if it does
+** so it takes care to hold an exclusive lock on the corresponding
+** WAL_READ_LOCK() while changing values.
+*/
+static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
+ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
+ u32 mxReadMark; /* Largest aReadMark[] value */
+ int mxI; /* Index of largest aReadMark[] value */
+ int i; /* Loop counter */
+ int rc = SQLITE_OK; /* Return code */
+ u32 mxFrame; /* Wal frame to lock to */
+
+ assert( pWal->readLock<0 ); /* Not currently locked */
+
+ /* useWal may only be set for read/write connections */
+ assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
+
+ /* Take steps to avoid spinning forever if there is a protocol error.
+ **
+ ** Circumstances that cause a RETRY should only last for the briefest
+ ** instances of time. No I/O or other system calls are done while the
+ ** locks are held, so the locks should not be held for very long. But
+ ** if we are unlucky, another process that is holding a lock might get
+ ** paged out or take a page-fault that is time-consuming to resolve,
+ ** during the few nanoseconds that it is holding the lock. In that case,
+ ** it might take longer than normal for the lock to free.
+ **
+ ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
+ ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
+ ** is more of a scheduler yield than an actual delay. But on the 10th
+ ** an subsequent retries, the delays start becoming longer and longer,
+ ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
+ ** The total delay time before giving up is less than 10 seconds.
+ */
+ if( cnt>5 ){
+ int nDelay = 1; /* Pause time in microseconds */
+ if( cnt>100 ){
+ VVA_ONLY( pWal->lockError = 1; )
+ return SQLITE_PROTOCOL;
+ }
+ if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
+ sqlite3OsSleep(pWal->pVfs, nDelay);
+ }
+
+ if( !useWal ){
+ assert( rc==SQLITE_OK );
+ if( pWal->bShmUnreliable==0 ){
+ rc = walIndexReadHdr(pWal, pChanged);
+ }
+ if( rc==SQLITE_BUSY ){
+ /* If there is not a recovery running in another thread or process
+ ** then convert BUSY errors to WAL_RETRY. If recovery is known to
+ ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
+ ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
+ ** would be technically correct. But the race is benign since with
+ ** WAL_RETRY this routine will be called again and will probably be
+ ** right on the second iteration.
+ */
+ if( pWal->apWiData[0]==0 ){
+ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
+ ** We assume this is a transient condition, so return WAL_RETRY. The
+ ** xShmMap() implementation used by the default unix and win32 VFS
+ ** modules may return SQLITE_BUSY due to a race condition in the
+ ** code that determines whether or not the shared-memory region
+ ** must be zeroed before the requested page is returned.
+ */
+ rc = WAL_RETRY;
+ }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
+ walUnlockShared(pWal, WAL_RECOVER_LOCK);
+ rc = WAL_RETRY;
+ }else if( rc==SQLITE_BUSY ){
+ rc = SQLITE_BUSY_RECOVERY;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ else if( pWal->bShmUnreliable ){
+ return walBeginShmUnreliable(pWal, pChanged);
+ }
+ }
+
+ assert( pWal->nWiData>0 );
+ assert( pWal->apWiData[0]!=0 );
+ pInfo = walCkptInfo(pWal);
+ if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
+#endif
+ ){
+ /* The WAL has been completely backfilled (or it is empty).
+ ** and can be safely ignored.
+ */
+ rc = walLockShared(pWal, WAL_READ_LOCK(0));
+ walShmBarrier(pWal);
+ if( rc==SQLITE_OK ){
+ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
+ /* It is not safe to allow the reader to continue here if frames
+ ** may have been appended to the log before READ_LOCK(0) was obtained.
+ ** When holding READ_LOCK(0), the reader ignores the entire log file,
+ ** which implies that the database file contains a trustworthy
+ ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
+ ** happening, this is usually correct.
+ **
+ ** However, if frames have been appended to the log (or if the log
+ ** is wrapped and written for that matter) before the READ_LOCK(0)
+ ** is obtained, that is not necessarily true. A checkpointer may
+ ** have started to backfill the appended frames but crashed before
+ ** it finished. Leaving a corrupt image in the database file.
+ */
+ walUnlockShared(pWal, WAL_READ_LOCK(0));
+ return WAL_RETRY;
+ }
+ pWal->readLock = 0;
+ return SQLITE_OK;
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+
+ /* If we get this far, it means that the reader will want to use
+ ** the WAL to get at content from recent commits. The job now is
+ ** to select one of the aReadMark[] entries that is closest to
+ ** but not exceeding pWal->hdr.mxFrame and lock that entry.
+ */
+ mxReadMark = 0;
+ mxI = 0;
+ mxFrame = pWal->hdr.mxFrame;
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
+ mxFrame = pWal->pSnapshot->mxFrame;
+ }
+#endif
+ for(i=1; i<WAL_NREADER; i++){
+ u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
+ if( mxReadMark<=thisMark && thisMark<=mxFrame ){
+ assert( thisMark!=READMARK_NOT_USED );
+ mxReadMark = thisMark;
+ mxI = i;
+ }
+ }
+ if( (pWal->readOnly & WAL_SHM_RDONLY)==0
+ && (mxReadMark<mxFrame || mxI==0)
+ ){
+ for(i=1; i<WAL_NREADER; i++){
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ AtomicStore(pInfo->aReadMark+i,mxFrame);
+ mxReadMark = mxFrame;
+ mxI = i;
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ break;
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ }
+ if( mxI==0 ){
+ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
+ return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
+ }
+
+ rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
+ if( rc ){
+ return rc==SQLITE_BUSY ? WAL_RETRY : rc;
+ }
+ /* Now that the read-lock has been obtained, check that neither the
+ ** value in the aReadMark[] array or the contents of the wal-index
+ ** header have changed.
+ **
+ ** It is necessary to check that the wal-index header did not change
+ ** between the time it was read and when the shared-lock was obtained
+ ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
+ ** that the log file may have been wrapped by a writer, or that frames
+ ** that occur later in the log than pWal->hdr.mxFrame may have been
+ ** copied into the database by a checkpointer. If either of these things
+ ** happened, then reading the database with the current value of
+ ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
+ ** instead.
+ **
+ ** Before checking that the live wal-index header has not changed
+ ** since it was read, set Wal.minFrame to the first frame in the wal
+ ** file that has not yet been checkpointed. This client will not need
+ ** to read any frames earlier than minFrame from the wal file - they
+ ** can be safely read directly from the database file.
+ **
+ ** Because a ShmBarrier() call is made between taking the copy of
+ ** nBackfill and checking that the wal-header in shared-memory still
+ ** matches the one cached in pWal->hdr, it is guaranteed that the
+ ** checkpointer that set nBackfill was not working with a wal-index
+ ** header newer than that cached in pWal->hdr. If it were, that could
+ ** cause a problem. The checkpointer could omit to checkpoint
+ ** a version of page X that lies before pWal->minFrame (call that version
+ ** A) on the basis that there is a newer version (version B) of the same
+ ** page later in the wal file. But if version B happens to like past
+ ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
+ ** that it can read version A from the database file. However, since
+ ** we can guarantee that the checkpointer that set nBackfill could not
+ ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
+ */
+ pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
+ walShmBarrier(pWal);
+ if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
+ || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
+ ){
+ walUnlockShared(pWal, WAL_READ_LOCK(mxI));
+ return WAL_RETRY;
+ }else{
+ assert( mxReadMark<=pWal->hdr.mxFrame );
+ pWal->readLock = (i16)mxI;
+ }
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
+** variable so that older snapshots can be accessed. To do this, loop
+** through all wal frames from nBackfillAttempted to (nBackfill+1),
+** comparing their content to the corresponding page with the database
+** file, if any. Set nBackfillAttempted to the frame number of the
+** first frame for which the wal file content matches the db file.
+**
+** This is only really safe if the file-system is such that any page
+** writes made by earlier checkpointers were atomic operations, which
+** is not always true. It is also possible that nBackfillAttempted
+** may be left set to a value larger than expected, if a wal frame
+** contains content that duplicate of an earlier version of the same
+** page.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code if an
+** error occurs. It is not an error if nBackfillAttempted cannot be
+** decreased at all.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){
+ int rc;
+
+ assert( pWal->readLock>=0 );
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ int szPage = (int)pWal->szPage;
+ i64 szDb; /* Size of db file in bytes */
+
+ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
+ if( rc==SQLITE_OK ){
+ void *pBuf1 = sqlite3_malloc(szPage);
+ void *pBuf2 = sqlite3_malloc(szPage);
+ if( pBuf1==0 || pBuf2==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ u32 i = pInfo->nBackfillAttempted;
+ for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
+ WalHashLoc sLoc; /* Hash table location */
+ u32 pgno; /* Page number in db file */
+ i64 iDbOff; /* Offset of db file entry */
+ i64 iWalOff; /* Offset of wal file entry */
+
+ rc = walHashGet(pWal, walFramePage(i), &sLoc);
+ if( rc!=SQLITE_OK ) break;
+ assert( i - sLoc.iZero - 1 >=0 );
+ pgno = sLoc.aPgno[i-sLoc.iZero-1];
+ iDbOff = (i64)(pgno-1) * szPage;
+
+ if( iDbOff+szPage<=szDb ){
+ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
+ rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
+ }
+
+ if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
+ break;
+ }
+ }
+
+ pInfo->nBackfillAttempted = i-1;
+ }
+ }
+
+ sqlite3_free(pBuf1);
+ sqlite3_free(pBuf2);
+ }
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ }
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+/*
+** Begin a read transaction on the database.
+**
+** This routine used to be called sqlite3OpenSnapshot() and with good reason:
+** it takes a snapshot of the state of the WAL and wal-index for the current
+** instant in time. The current thread will continue to use this snapshot.
+** Other threads might append new content to the WAL and wal-index but
+** that extra content is ignored by the current thread.
+**
+** If the database contents have changes since the previous read
+** transaction, then *pChanged is set to 1 before returning. The
+** Pager layer will use this to know that its cache is stale and
+** needs to be flushed.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
+ int rc; /* Return code */
+ int cnt = 0; /* Number of TryBeginRead attempts */
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ int bChanged = 0;
+ WalIndexHdr *pSnapshot = pWal->pSnapshot;
+#endif
+
+ assert( pWal->ckptLock==0 );
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( pSnapshot ){
+ if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
+ bChanged = 1;
+ }
+
+ /* It is possible that there is a checkpointer thread running
+ ** concurrent with this code. If this is the case, it may be that the
+ ** checkpointer has already determined that it will checkpoint
+ ** snapshot X, where X is later in the wal file than pSnapshot, but
+ ** has not yet set the pInfo->nBackfillAttempted variable to indicate
+ ** its intent. To avoid the race condition this leads to, ensure that
+ ** there is no checkpointer process by taking a shared CKPT lock
+ ** before checking pInfo->nBackfillAttempted. */
+ (void)walEnableBlocking(pWal);
+ rc = walLockShared(pWal, WAL_CKPT_LOCK);
+ walDisableBlocking(pWal);
+
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pWal->ckptLock = 1;
+ }
+#endif
+
+ do{
+ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
+ }while( rc==WAL_RETRY );
+ testcase( (rc&0xff)==SQLITE_BUSY );
+ testcase( (rc&0xff)==SQLITE_IOERR );
+ testcase( rc==SQLITE_PROTOCOL );
+ testcase( rc==SQLITE_OK );
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( rc==SQLITE_OK ){
+ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
+ /* At this point the client has a lock on an aReadMark[] slot holding
+ ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
+ ** is populated with the wal-index header corresponding to the head
+ ** of the wal file. Verify that pSnapshot is still valid before
+ ** continuing. Reasons why pSnapshot might no longer be valid:
+ **
+ ** (1) The WAL file has been reset since the snapshot was taken.
+ ** In this case, the salt will have changed.
+ **
+ ** (2) A checkpoint as been attempted that wrote frames past
+ ** pSnapshot->mxFrame into the database file. Note that the
+ ** checkpoint need not have completed for this to cause problems.
+ */
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+
+ assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
+ assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
+
+ /* Check that the wal file has not been wrapped. Assuming that it has
+ ** not, also check that no checkpointer has attempted to checkpoint any
+ ** frames beyond pSnapshot->mxFrame. If either of these conditions are
+ ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
+ ** with *pSnapshot and set *pChanged as appropriate for opening the
+ ** snapshot. */
+ if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
+ && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
+ ){
+ assert( pWal->readLock>0 );
+ memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
+ *pChanged = bChanged;
+ }else{
+ rc = SQLITE_ERROR_SNAPSHOT;
+ }
+
+ /* A client using a non-current snapshot may not ignore any frames
+ ** from the start of the wal file. This is because, for a system
+ ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
+ ** have omitted to checkpoint a frame earlier than minFrame in
+ ** the file because there exists a frame after iSnapshot that
+ ** is the same database page. */
+ pWal->minFrame = 1;
+
+ if( rc!=SQLITE_OK ){
+ sqlite3WalEndReadTransaction(pWal);
+ }
+ }
+ }
+
+ /* Release the shared CKPT lock obtained above. */
+ if( pWal->ckptLock ){
+ assert( pSnapshot );
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+ pWal->ckptLock = 0;
+ }
+#endif
+ return rc;
+}
+
+/*
+** Finish with a read transaction. All this does is release the
+** read-lock.
+*/
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){
+ sqlite3WalEndWriteTransaction(pWal);
+ if( pWal->readLock>=0 ){
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
+ pWal->readLock = -1;
+ }
+}
+
+/*
+** Search the wal file for page pgno. If found, set *piRead to the frame that
+** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
+** to zero.
+**
+** Return SQLITE_OK if successful, or an error code if an error occurs. If an
+** error does occur, the final value of *piRead is undefined.
+*/
+SQLITE_PRIVATE int sqlite3WalFindFrame(
+ Wal *pWal, /* WAL handle */
+ Pgno pgno, /* Database page number to read data for */
+ u32 *piRead /* OUT: Frame number (or zero) */
+){
+ u32 iRead = 0; /* If !=0, WAL frame to return data from */
+ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
+ int iHash; /* Used to loop through N hash tables */
+ int iMinHash;
+
+ /* This routine is only be called from within a read transaction. */
+ assert( pWal->readLock>=0 || pWal->lockError );
+
+ /* If the "last page" field of the wal-index header snapshot is 0, then
+ ** no data will be read from the wal under any circumstances. Return early
+ ** in this case as an optimization. Likewise, if pWal->readLock==0,
+ ** then the WAL is ignored by the reader so return early, as if the
+ ** WAL were empty.
+ */
+ if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
+ *piRead = 0;
+ return SQLITE_OK;
+ }
+
+ /* Search the hash table or tables for an entry matching page number
+ ** pgno. Each iteration of the following for() loop searches one
+ ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
+ **
+ ** This code might run concurrently to the code in walIndexAppend()
+ ** that adds entries to the wal-index (and possibly to this hash
+ ** table). This means the value just read from the hash
+ ** slot (aHash[iKey]) may have been added before or after the
+ ** current read transaction was opened. Values added after the
+ ** read transaction was opened may have been written incorrectly -
+ ** i.e. these slots may contain garbage data. However, we assume
+ ** that any slots written before the current read transaction was
+ ** opened remain unmodified.
+ **
+ ** For the reasons above, the if(...) condition featured in the inner
+ ** loop of the following block is more stringent that would be required
+ ** if we had exclusive access to the hash-table:
+ **
+ ** (aPgno[iFrame]==pgno):
+ ** This condition filters out normal hash-table collisions.
+ **
+ ** (iFrame<=iLast):
+ ** This condition filters out entries that were added to the hash
+ ** table after the current read-transaction had started.
+ */
+ iMinHash = walFramePage(pWal->minFrame);
+ for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
+ WalHashLoc sLoc; /* Hash table location */
+ int iKey; /* Hash slot index */
+ int nCollide; /* Number of hash collisions remaining */
+ int rc; /* Error code */
+ u32 iH;
+
+ rc = walHashGet(pWal, iHash, &sLoc);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nCollide = HASHTABLE_NSLOT;
+ iKey = walHash(pgno);
+ while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
+ u32 iFrame = iH + sLoc.iZero;
+ if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){
+ assert( iFrame>iRead || CORRUPT_DB );
+ iRead = iFrame;
+ }
+ if( (nCollide--)==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ iKey = walNextHash(iKey);
+ }
+ if( iRead ) break;
+ }
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* If expensive assert() statements are available, do a linear search
+ ** of the wal-index file content. Make sure the results agree with the
+ ** result obtained using the hash indexes above. */
+ {
+ u32 iRead2 = 0;
+ u32 iTest;
+ assert( pWal->bShmUnreliable || pWal->minFrame>0 );
+ for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
+ if( walFramePgno(pWal, iTest)==pgno ){
+ iRead2 = iTest;
+ break;
+ }
+ }
+ assert( iRead==iRead2 );
+ }
+#endif
+
+ *piRead = iRead;
+ return SQLITE_OK;
+}
+
+/*
+** Read the contents of frame iRead from the wal file into buffer pOut
+** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
+** error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3WalReadFrame(
+ Wal *pWal, /* WAL handle */
+ u32 iRead, /* Frame to read */
+ int nOut, /* Size of buffer pOut in bytes */
+ u8 *pOut /* Buffer to write page data to */
+){
+ int sz;
+ i64 iOffset;
+ sz = pWal->hdr.szPage;
+ sz = (sz&0xfe00) + ((sz&0x0001)<<16);
+ testcase( sz<=32768 );
+ testcase( sz>=65536 );
+ iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
+ return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
+}
+
+/*
+** Return the size of the database in pages (or zero, if unknown).
+*/
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){
+ if( pWal && ALWAYS(pWal->readLock>=0) ){
+ return pWal->hdr.nPage;
+ }
+ return 0;
+}
+
+
+/*
+** This function starts a write transaction on the WAL.
+**
+** A read transaction must have already been started by a prior call
+** to sqlite3WalBeginReadTransaction().
+**
+** If another thread or process has written into the database since
+** the read transaction was started, then it is not possible for this
+** thread to write as doing so would cause a fork. So this routine
+** returns SQLITE_BUSY in that case and no write transaction is started.
+**
+** There can only be a single writer active at a time.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
+ int rc;
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ /* If the write-lock is already held, then it was obtained before the
+ ** read-transaction was even opened, making this call a no-op.
+ ** Return early. */
+ if( pWal->writeLock ){
+ assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
+ return SQLITE_OK;
+ }
+#endif
+
+ /* Cannot start a write transaction without first holding a read
+ ** transaction. */
+ assert( pWal->readLock>=0 );
+ assert( pWal->writeLock==0 && pWal->iReCksum==0 );
+
+ if( pWal->readOnly ){
+ return SQLITE_READONLY;
+ }
+
+ /* Only one writer allowed at a time. Get the write lock. Return
+ ** SQLITE_BUSY if unable.
+ */
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ if( rc ){
+ return rc;
+ }
+ pWal->writeLock = 1;
+
+ /* If another connection has written to the database file since the
+ ** time the read transaction on this connection was started, then
+ ** the write is disallowed.
+ */
+ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ rc = SQLITE_BUSY_SNAPSHOT;
+ }
+
+ return rc;
+}
+
+/*
+** End a write transaction. The commit has already been done. This
+** routine merely releases the lock.
+*/
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
+ if( pWal->writeLock ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ pWal->iReCksum = 0;
+ pWal->truncateOnCommit = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** If any data has been written (but not committed) to the log file, this
+** function moves the write-pointer back to the start of the transaction.
+**
+** Additionally, the callback function is invoked for each frame written
+** to the WAL since the start of the transaction. If the callback returns
+** other than SQLITE_OK, it is not invoked again and the error code is
+** returned to the caller.
+**
+** Otherwise, if the callback function does not return an error, this
+** function returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
+ int rc = SQLITE_OK;
+ if( ALWAYS(pWal->writeLock) ){
+ Pgno iMax = pWal->hdr.mxFrame;
+ Pgno iFrame;
+
+ /* Restore the clients cache of the wal-index header to the state it
+ ** was in before the client began writing to the database.
+ */
+ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
+
+ for(iFrame=pWal->hdr.mxFrame+1;
+ ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
+ iFrame++
+ ){
+ /* This call cannot fail. Unless the page for which the page number
+ ** is passed as the second argument is (a) in the cache and
+ ** (b) has an outstanding reference, then xUndo is either a no-op
+ ** (if (a) is false) or simply expels the page from the cache (if (b)
+ ** is false).
+ **
+ ** If the upper layer is doing a rollback, it is guaranteed that there
+ ** are no outstanding references to any page other than page 1. And
+ ** page 1 is never written to the log until the transaction is
+ ** committed. As a result, the call to xUndo may not fail.
+ */
+ assert( walFramePgno(pWal, iFrame)!=1 );
+ rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
+ }
+ if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
+ }
+ return rc;
+}
+
+/*
+** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
+** values. This function populates the array with values required to
+** "rollback" the write position of the WAL handle back to the current
+** point in the event of a savepoint rollback (via WalSavepointUndo()).
+*/
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
+ assert( pWal->writeLock );
+ aWalData[0] = pWal->hdr.mxFrame;
+ aWalData[1] = pWal->hdr.aFrameCksum[0];
+ aWalData[2] = pWal->hdr.aFrameCksum[1];
+ aWalData[3] = pWal->nCkpt;
+}
+
+/*
+** Move the write position of the WAL back to the point identified by
+** the values in the aWalData[] array. aWalData must point to an array
+** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
+** by a call to WalSavepoint().
+*/
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
+ int rc = SQLITE_OK;
+
+ assert( pWal->writeLock );
+ assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
+
+ if( aWalData[3]!=pWal->nCkpt ){
+ /* This savepoint was opened immediately after the write-transaction
+ ** was started. Right after that, the writer decided to wrap around
+ ** to the start of the log. Update the savepoint values to match.
+ */
+ aWalData[0] = 0;
+ aWalData[3] = pWal->nCkpt;
+ }
+
+ if( aWalData[0]<pWal->hdr.mxFrame ){
+ pWal->hdr.mxFrame = aWalData[0];
+ pWal->hdr.aFrameCksum[0] = aWalData[1];
+ pWal->hdr.aFrameCksum[1] = aWalData[2];
+ walCleanupHash(pWal);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called just before writing a set of frames to the log
+** file (see sqlite3WalFrames()). It checks to see if, instead of appending
+** to the current log file, it is possible to overwrite the start of the
+** existing log file with the new frames (i.e. "reset" the log). If so,
+** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
+** unchanged.
+**
+** SQLITE_OK is returned if no error is encountered (regardless of whether
+** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
+** if an error occurs.
+*/
+static int walRestartLog(Wal *pWal){
+ int rc = SQLITE_OK;
+ int cnt;
+
+ if( pWal->readLock==0 ){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame );
+ if( pInfo->nBackfill>0 ){
+ u32 salt1;
+ sqlite3_randomness(4, &salt1);
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ if( rc==SQLITE_OK ){
+ /* If all readers are using WAL_READ_LOCK(0) (in other words if no
+ ** readers are currently using the WAL), then the transactions
+ ** frames will overwrite the start of the existing log. Update the
+ ** wal-index header to reflect this.
+ **
+ ** In theory it would be Ok to update the cache of the header only
+ ** at this point. But updating the actual wal-index header is also
+ ** safe and means there is no special case for sqlite3WalUndo()
+ ** to handle if this transaction is rolled back. */
+ walRestartHdr(pWal, salt1);
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ walUnlockShared(pWal, WAL_READ_LOCK(0));
+ pWal->readLock = -1;
+ cnt = 0;
+ do{
+ int notUsed;
+ rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
+ }while( rc==WAL_RETRY );
+ assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
+ testcase( (rc&0xff)==SQLITE_IOERR );
+ testcase( rc==SQLITE_PROTOCOL );
+ testcase( rc==SQLITE_OK );
+ }
+ return rc;
+}
+
+/*
+** Information about the current state of the WAL file and where
+** the next fsync should occur - passed from sqlite3WalFrames() into
+** walWriteToLog().
+*/
+typedef struct WalWriter {
+ Wal *pWal; /* The complete WAL information */
+ sqlite3_file *pFd; /* The WAL file to which we write */
+ sqlite3_int64 iSyncPoint; /* Fsync at this offset */
+ int syncFlags; /* Flags for the fsync */
+ int szPage; /* Size of one page */
+} WalWriter;
+
+/*
+** Write iAmt bytes of content into the WAL file beginning at iOffset.
+** Do a sync when crossing the p->iSyncPoint boundary.
+**
+** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
+** first write the part before iSyncPoint, then sync, then write the
+** rest.
+*/
+static int walWriteToLog(
+ WalWriter *p, /* WAL to write to */
+ void *pContent, /* Content to be written */
+ int iAmt, /* Number of bytes to write */
+ sqlite3_int64 iOffset /* Start writing at this offset */
+){
+ int rc;
+ if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
+ int iFirstAmt = (int)(p->iSyncPoint - iOffset);
+ rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
+ if( rc ) return rc;
+ iOffset += iFirstAmt;
+ iAmt -= iFirstAmt;
+ pContent = (void*)(iFirstAmt + (char*)pContent);
+ assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
+ rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
+ if( iAmt==0 || rc ) return rc;
+ }
+ rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
+ return rc;
+}
+
+/*
+** Write out a single frame of the WAL
+*/
+static int walWriteOneFrame(
+ WalWriter *p, /* Where to write the frame */
+ PgHdr *pPage, /* The page of the frame to be written */
+ int nTruncate, /* The commit flag. Usually 0. >0 for commit */
+ sqlite3_int64 iOffset /* Byte offset at which to write */
+){
+ int rc; /* Result code from subfunctions */
+ void *pData; /* Data actually written */
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
+#if defined(SQLITE_HAS_CODEC)
+ if( (pData = sqlcipherPagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
+#else
+ pData = pPage->pData;
+#endif
+ walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
+ rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
+ if( rc ) return rc;
+ /* Write the page data */
+ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
+ return rc;
+}
+
+/*
+** This function is called as part of committing a transaction within which
+** one or more frames have been overwritten. It updates the checksums for
+** all frames written to the wal file by the current transaction starting
+** with the earliest to have been overwritten.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int walRewriteChecksums(Wal *pWal, u32 iLast){
+ const int szPage = pWal->szPage;/* Database page size */
+ int rc = SQLITE_OK; /* Return code */
+ u8 *aBuf; /* Buffer to load data from wal file into */
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
+ u32 iRead; /* Next frame to read from wal file */
+ i64 iCksumOff;
+
+ aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
+ if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
+
+ /* Find the checksum values to use as input for the recalculating the
+ ** first checksum. If the first frame is frame 1 (implying that the current
+ ** transaction restarted the wal file), these values must be read from the
+ ** wal-file header. Otherwise, read them from the frame header of the
+ ** previous frame. */
+ assert( pWal->iReCksum>0 );
+ if( pWal->iReCksum==1 ){
+ iCksumOff = 24;
+ }else{
+ iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
+ }
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
+ pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
+ pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
+
+ iRead = pWal->iReCksum;
+ pWal->iReCksum = 0;
+ for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
+ i64 iOff = walFrameOffset(iRead, szPage);
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
+ if( rc==SQLITE_OK ){
+ u32 iPgno, nDbSize;
+ iPgno = sqlite3Get4byte(aBuf);
+ nDbSize = sqlite3Get4byte(&aBuf[4]);
+
+ walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
+ rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
+ }
+ }
+
+ sqlite3_free(aBuf);
+ return rc;
+}
+
+/*
+** Write a set of frames to the log. The caller must hold the write-lock
+** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
+*/
+SQLITE_PRIVATE int sqlite3WalFrames(
+ Wal *pWal, /* Wal handle to write to */
+ int szPage, /* Database page-size in bytes */
+ PgHdr *pList, /* List of dirty pages to write */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit, /* True if this is a commit */
+ int sync_flags /* Flags to pass to OsSync() (or 0) */
+){
+ int rc; /* Used to catch return codes */
+ u32 iFrame; /* Next frame address */
+ PgHdr *p; /* Iterator to run through pList with. */
+ PgHdr *pLast = 0; /* Last frame in list */
+ int nExtra = 0; /* Number of extra copies of last page */
+ int szFrame; /* The size of a single frame */
+ i64 iOffset; /* Next byte to write in WAL file */
+ WalWriter w; /* The writer */
+ u32 iFirst = 0; /* First frame that may be overwritten */
+ WalIndexHdr *pLive; /* Pointer to shared header */
+
+ assert( pList );
+ assert( pWal->writeLock );
+
+ /* If this frame set completes a transaction, then nTruncate>0. If
+ ** nTruncate==0 then this frame set does not complete the transaction. */
+ assert( (isCommit!=0)==(nTruncate!=0) );
+
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+ { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
+ WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
+ pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
+ }
+#endif
+
+ pLive = (WalIndexHdr*)walIndexHdr(pWal);
+ if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
+ iFirst = pLive->mxFrame+1;
+ }
+
+ /* See if it is possible to write these frames into the start of the
+ ** log file, instead of appending to it at pWal->hdr.mxFrame.
+ */
+ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
+ return rc;
+ }
+
+ /* If this is the first frame written into the log, write the WAL
+ ** header to the start of the WAL file. See comments at the top of
+ ** this source file for a description of the WAL header format.
+ */
+ iFrame = pWal->hdr.mxFrame;
+ if( iFrame==0 ){
+ u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
+ u32 aCksum[2]; /* Checksum for wal-header */
+
+ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
+ sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
+ sqlite3Put4byte(&aWalHdr[8], szPage);
+ sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
+ if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
+ memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
+ walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
+ sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
+ sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
+
+ pWal->szPage = szPage;
+ pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
+ pWal->hdr.aFrameCksum[0] = aCksum[0];
+ pWal->hdr.aFrameCksum[1] = aCksum[1];
+ pWal->truncateOnCommit = 1;
+
+ rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
+ WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
+ ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
+ ** an out-of-order write following a WAL restart could result in
+ ** database corruption. See the ticket:
+ **
+ ** https://sqlite.org/src/info/ff5be73dee
+ */
+ if( pWal->syncHeader ){
+ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
+ if( rc ) return rc;
+ }
+ }
+ assert( (int)pWal->szPage==szPage );
+
+ /* Setup information needed to write frames into the WAL */
+ w.pWal = pWal;
+ w.pFd = pWal->pWalFd;
+ w.iSyncPoint = 0;
+ w.syncFlags = sync_flags;
+ w.szPage = szPage;
+ iOffset = walFrameOffset(iFrame+1, szPage);
+ szFrame = szPage + WAL_FRAME_HDRSIZE;
+
+ /* Write all frames into the log file exactly once */
+ for(p=pList; p; p=p->pDirty){
+ int nDbSize; /* 0 normally. Positive == commit flag */
+
+ /* Check if this page has already been written into the wal file by
+ ** the current transaction. If so, overwrite the existing frame and
+ ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
+ ** checksums must be recomputed when the transaction is committed. */
+ if( iFirst && (p->pDirty || isCommit==0) ){
+ u32 iWrite = 0;
+ VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
+ assert( rc==SQLITE_OK || iWrite==0 );
+ if( iWrite>=iFirst ){
+ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
+ void *pData;
+ if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
+ pWal->iReCksum = iWrite;
+ }
+#if defined(SQLITE_HAS_CODEC)
+ if( (pData = sqlcipherPagerCodec(p))==0 ) return SQLITE_NOMEM;
+#else
+ pData = p->pData;
+#endif
+ rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
+ if( rc ) return rc;
+ p->flags &= ~PGHDR_WAL_APPEND;
+ continue;
+ }
+ }
+
+ iFrame++;
+ assert( iOffset==walFrameOffset(iFrame, szPage) );
+ nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
+ rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
+ if( rc ) return rc;
+ pLast = p;
+ iOffset += szFrame;
+ p->flags |= PGHDR_WAL_APPEND;
+ }
+
+ /* Recalculate checksums within the wal file if required. */
+ if( isCommit && pWal->iReCksum ){
+ rc = walRewriteChecksums(pWal, iFrame);
+ if( rc ) return rc;
+ }
+
+ /* If this is the end of a transaction, then we might need to pad
+ ** the transaction and/or sync the WAL file.
+ **
+ ** Padding and syncing only occur if this set of frames complete a
+ ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
+ ** or synchronous==OFF, then no padding or syncing are needed.
+ **
+ ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
+ ** needed and only the sync is done. If padding is needed, then the
+ ** final frame is repeated (with its commit mark) until the next sector
+ ** boundary is crossed. Only the part of the WAL prior to the last
+ ** sector boundary is synced; the part of the last frame that extends
+ ** past the sector boundary is written after the sync.
+ */
+ if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
+ int bSync = 1;
+ if( pWal->padToSectorBoundary ){
+ int sectorSize = sqlite3SectorSize(pWal->pWalFd);
+ w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
+ bSync = (w.iSyncPoint==iOffset);
+ testcase( bSync );
+ while( iOffset<w.iSyncPoint ){
+ rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
+ if( rc ) return rc;
+ iOffset += szFrame;
+ nExtra++;
+ assert( pLast!=0 );
+ }
+ }
+ if( bSync ){
+ assert( rc==SQLITE_OK );
+ rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
+ }
+ }
+
+ /* If this frame set completes the first transaction in the WAL and
+ ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
+ ** journal size limit, if possible.
+ */
+ if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
+ i64 sz = pWal->mxWalSize;
+ if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
+ sz = walFrameOffset(iFrame+nExtra+1, szPage);
+ }
+ walLimitSize(pWal, sz);
+ pWal->truncateOnCommit = 0;
+ }
+
+ /* Append data to the wal-index. It is not necessary to lock the
+ ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
+ ** guarantees that there are no other writers, and no data that may
+ ** be in use by existing readers is being overwritten.
+ */
+ iFrame = pWal->hdr.mxFrame;
+ for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
+ if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
+ iFrame++;
+ rc = walIndexAppend(pWal, iFrame, p->pgno);
+ }
+ assert( pLast!=0 || nExtra==0 );
+ while( rc==SQLITE_OK && nExtra>0 ){
+ iFrame++;
+ nExtra--;
+ rc = walIndexAppend(pWal, iFrame, pLast->pgno);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Update the private copy of the header. */
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ pWal->hdr.mxFrame = iFrame;
+ if( isCommit ){
+ pWal->hdr.iChange++;
+ pWal->hdr.nPage = nTruncate;
+ }
+ /* If this is a commit, update the wal-index header too. */
+ if( isCommit ){
+ walIndexWriteHdr(pWal);
+ pWal->iCallback = iFrame;
+ }
+ }
+
+ WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
+ return rc;
+}
+
+/*
+** This routine is called to implement sqlite3_wal_checkpoint() and
+** related interfaces.
+**
+** Obtain a CHECKPOINT lock and then backfill as much information as
+** we can from WAL into the database.
+**
+** If parameter xBusy is not NULL, it is a pointer to a busy-handler
+** callback. In this case this function runs a blocking checkpoint.
+*/
+SQLITE_PRIVATE int sqlite3WalCheckpoint(
+ Wal *pWal, /* Wal connection */
+ sqlite3 *db, /* Check this handle's interrupt flag */
+ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags to sync db file with (or 0) */
+ int nBuf, /* Size of temporary buffer */
+ u8 *zBuf, /* Temporary buffer to use */
+ int *pnLog, /* OUT: Number of frames in WAL */
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */
+){
+ int rc; /* Return code */
+ int isChanged = 0; /* True if a new wal-index header is loaded */
+ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
+ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
+
+ assert( pWal->ckptLock==0 );
+ assert( pWal->writeLock==0 );
+
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
+
+ if( pWal->readOnly ) return SQLITE_READONLY;
+ WALTRACE(("WAL%p: checkpoint begins\n", pWal));
+
+ /* Enable blocking locks, if possible. If blocking locks are successfully
+ ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
+ sqlite3WalDb(pWal, db);
+ (void)walEnableBlocking(pWal);
+
+ /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
+ ** "checkpoint" lock on the database file.
+ ** EVIDENCE-OF: R-10421-19736 If any other process is running a
+ ** checkpoint operation at the same time, the lock cannot be obtained and
+ ** SQLITE_BUSY is returned.
+ ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
+ ** it will not be invoked in this case.
+ */
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ testcase( rc==SQLITE_BUSY );
+ testcase( rc!=SQLITE_OK && xBusy2!=0 );
+ if( rc==SQLITE_OK ){
+ pWal->ckptLock = 1;
+
+ /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
+ ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
+ ** file.
+ **
+ ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
+ ** immediately, and a busy-handler is configured, it is invoked and the
+ ** writer lock retried until either the busy-handler returns 0 or the
+ ** lock is successfully obtained.
+ */
+ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
+ rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ pWal->writeLock = 1;
+ }else if( rc==SQLITE_BUSY ){
+ eMode2 = SQLITE_CHECKPOINT_PASSIVE;
+ xBusy2 = 0;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+
+ /* Read the wal-index header. */
+ if( rc==SQLITE_OK ){
+ walDisableBlocking(pWal);
+ rc = walIndexReadHdr(pWal, &isChanged);
+ (void)walEnableBlocking(pWal);
+ if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
+ sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
+ }
+ }
+
+ /* Copy data from the log to the database file. */
+ if( rc==SQLITE_OK ){
+
+ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
+ }
+
+ /* If no error occurred, set the output variables. */
+ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
+ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
+ if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
+ }
+ }
+
+ if( isChanged ){
+ /* If a new wal-index header was loaded before the checkpoint was
+ ** performed, then the pager-cache associated with pWal is now
+ ** out of date. So zero the cached wal-index header to ensure that
+ ** next time the pager opens a snapshot on this database it knows that
+ ** the cache needs to be reset.
+ */
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
+ }
+
+ walDisableBlocking(pWal);
+ sqlite3WalDb(pWal, 0);
+
+ /* Release the locks. */
+ sqlite3WalEndWriteTransaction(pWal);
+ if( pWal->ckptLock ){
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ pWal->ckptLock = 0;
+ }
+ WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
+#endif
+ return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
+}
+
+/* Return the value to pass to a sqlite3_wal_hook callback, the
+** number of frames in the WAL at the point of the last commit since
+** sqlite3WalCallback() was called. If no commits have occurred since
+** the last call, then return 0.
+*/
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){
+ u32 ret = 0;
+ if( pWal ){
+ ret = pWal->iCallback;
+ pWal->iCallback = 0;
+ }
+ return (int)ret;
+}
+
+/*
+** This function is called to change the WAL subsystem into or out
+** of locking_mode=EXCLUSIVE.
+**
+** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
+** into locking_mode=NORMAL. This means that we must acquire a lock
+** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
+** or if the acquisition of the lock fails, then return 0. If the
+** transition out of exclusive-mode is successful, return 1. This
+** operation must occur while the pager is still holding the exclusive
+** lock on the main database file.
+**
+** If op is one, then change from locking_mode=NORMAL into
+** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
+** be released. Return 1 if the transition is made and 0 if the
+** WAL is already in exclusive-locking mode - meaning that this
+** routine is a no-op. The pager must already hold the exclusive lock
+** on the main database file before invoking this operation.
+**
+** If op is negative, then do a dry-run of the op==1 case but do
+** not actually change anything. The pager uses this to see if it
+** should acquire the database exclusive lock prior to invoking
+** the op==1 case.
+*/
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){
+ int rc;
+ assert( pWal->writeLock==0 );
+ assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
+
+ /* pWal->readLock is usually set, but might be -1 if there was a
+ ** prior error while attempting to acquire are read-lock. This cannot
+ ** happen if the connection is actually in exclusive mode (as no xShmLock
+ ** locks are taken in this case). Nor should the pager attempt to
+ ** upgrade to exclusive-mode following such an error.
+ */
+ assert( pWal->readLock>=0 || pWal->lockError );
+ assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
+
+ if( op==0 ){
+ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
+ pWal->exclusiveMode = WAL_NORMAL_MODE;
+ if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ }
+ rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
+ }else{
+ /* Already in locking_mode=NORMAL */
+ rc = 0;
+ }
+ }else if( op>0 ){
+ assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
+ assert( pWal->readLock>=0 );
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ rc = 1;
+ }else{
+ rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
+ }
+ return rc;
+}
+
+/*
+** Return true if the argument is non-NULL and the WAL module is using
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
+** WAL module is using shared-memory, return false.
+*/
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
+ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/* Create a snapshot object. The content of a snapshot is opaque to
+** every other subsystem, so the WAL module can put whatever it needs
+** in the object.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
+ int rc = SQLITE_OK;
+ WalIndexHdr *pRet;
+ static const u32 aZero[4] = { 0, 0, 0, 0 };
+
+ assert( pWal->readLock>=0 && pWal->writeLock==0 );
+
+ if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
+ *ppSnapshot = 0;
+ return SQLITE_ERROR;
+ }
+ pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
+ if( pRet==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
+ *ppSnapshot = (sqlite3_snapshot*)pRet;
+ }
+
+ return rc;
+}
+
+/* Try to open on pSnapshot when the next read-transaction starts
+*/
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(
+ Wal *pWal,
+ sqlite3_snapshot *pSnapshot
+){
+ pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
+}
+
+/*
+** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
+** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
+*/
+SQLITE_API int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
+ WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
+ WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
+
+ /* aSalt[0] is a copy of the value stored in the wal file header. It
+ ** is incremented each time the wal file is restarted. */
+ if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
+ if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
+ if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
+ if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
+ return 0;
+}
+
+/*
+** The caller currently has a read transaction open on the database.
+** This function takes a SHARED lock on the CHECKPOINTER slot and then
+** checks if the snapshot passed as the second argument is still
+** available. If so, SQLITE_OK is returned.
+**
+** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
+** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
+** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
+** lock is released before returning.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
+ int rc;
+ rc = walLockShared(pWal, WAL_CKPT_LOCK);
+ if( rc==SQLITE_OK ){
+ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
+ if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
+ || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
+ ){
+ rc = SQLITE_ERROR_SNAPSHOT;
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a lock obtained by an earlier successful call to
+** sqlite3WalSnapshotCheck().
+*/
+SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal){
+ assert( pWal );
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+}
+
+
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/*
+** If the argument is not NULL, it points to a Wal object that holds a
+** read-lock. This function returns the database page-size if it is known,
+** or zero if it is not (or if pWal is NULL).
+*/
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){
+ assert( pWal==0 || pWal->readLock>=0 );
+ return (pWal ? pWal->szPage : 0);
+}
+#endif
+
+/* Return the sqlite3_file object for the WAL file
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal){
+ return pWal->pWalFd;
+}
+
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+/************** End of wal.c *************************************************/
+/************** Begin file btmutex.c *****************************************/
+/*
+** 2007 August 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to implement mutexes on Btree objects.
+** This code really belongs in btree.c. But btree.c is getting too
+** big and we want to break it down some. This packaged seemed like
+** a good breakout.
+*/
+/************** Include btreeInt.h in the middle of btmutex.c ****************/
+/************** Begin file btreeInt.h ****************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N) and its subpages have values greater than Key(N-1). And
+** so forth.
+**
+** Finding a particular key requires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". A
+** fixed amount of payload can be carried directly on the database
+** page. If the payload is larger than the preset amount then surplus
+** bytes are stored on overflow pages. The payload for an entry
+** and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N) pointer and other
+** information such as the size of key and data.
+**
+** FORMAT DETAILS
+**
+** The file is divided into pages. The first page is called page 1,
+** the second is page 2, and so forth. A page number of zero indicates
+** "no such page". The page size can be any power of 2 between 512 and 65536.
+** Each page can be either a btree page, a freelist page, an overflow
+** page, or a pointer-map page.
+**
+** The first page is always a btree page. The first 100 bytes of the first
+** page contain a special header (the "file header") that describes the file.
+** The format of the file header is as follows:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 16 Header string: "SQLite format 3\000"
+** 16 2 Page size in bytes. (1 means 65536)
+** 18 1 File format write version
+** 19 1 File format read version
+** 20 1 Bytes of unused space at the end of each page
+** 21 1 Max embedded payload fraction (must be 64)
+** 22 1 Min embedded payload fraction (must be 32)
+** 23 1 Min leaf payload fraction (must be 32)
+** 24 4 File change counter
+** 28 4 Reserved for future use
+** 32 4 First freelist page
+** 36 4 Number of freelist pages in the file
+** 40 60 15 4-byte meta values passed to higher layers
+**
+** 40 4 Schema cookie
+** 44 4 File format of schema layer
+** 48 4 Size of page cache
+** 52 4 Largest root-page (auto/incr_vacuum)
+** 56 4 1=UTF-8 2=UTF16le 3=UTF16be
+** 60 4 User version
+** 64 4 Incremental vacuum mode
+** 68 4 Application-ID
+** 72 20 unused
+** 92 4 The version-valid-for number
+** 96 4 SQLITE_VERSION_NUMBER
+**
+** All of the integer values are big-endian (most significant byte first).
+**
+** The file change counter is incremented when the database is changed
+** This counter allows other processes to know when the file has changed
+** and thus when they need to flush their cache.
+**
+** The max embedded payload fraction is the amount of the total usable
+** space in a page that can be consumed by a single cell for standard
+** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
+** is to limit the maximum cell size so that at least 4 cells will fit
+** on one page. Thus the default max embedded payload fraction is 64.
+**
+** If the payload for a cell is larger than the max payload, then extra
+** payload is spilled to overflow pages. Once an overflow page is allocated,
+** as many bytes as possible are moved into the overflow pages without letting
+** the cell size drop below the min embedded payload fraction.
+**
+** The min leaf payload fraction is like the min embedded payload fraction
+** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
+** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
+** not specified in the header.
+**
+** Each btree pages is divided into three sections: The header, the
+** cell pointer array, and the cell content area. Page 1 also has a 100-byte
+** file header that occurs before the page header.
+**
+** |----------------|
+** | file header | 100 bytes. Page 1 only.
+** |----------------|
+** | page header | 8 bytes for leaves. 12 bytes for interior nodes
+** |----------------|
+** | cell pointer | | 2 bytes per cell. Sorted order.
+** | array | | Grows downward
+** | | v
+** |----------------|
+** | unallocated |
+** | space |
+** |----------------| ^ Grows upwards
+** | cell content | | Arbitrary order interspersed with freeblocks.
+** | area | | and free space fragments.
+** |----------------|
+**
+** The page headers looks like this:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
+** 1 2 byte offset to the first freeblock
+** 3 2 number of cells on this page
+** 5 2 first byte of the cell content area
+** 7 1 number of fragmented free bytes
+** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
+**
+** The flags define the format of this btree page. The leaf flag means that
+** this page has no children. The zerodata flag means that this page carries
+** only keys and no data. The intkey flag means that the key is an integer
+** which is stored in the key size entry of the cell header rather than in
+** the payload area.
+**
+** The cell pointer array begins on the first byte after the page header.
+** The cell pointer array contains zero or more 2-byte numbers which are
+** offsets from the beginning of the page to the cell content in the cell
+** content area. The cell pointers occur in sorted order. The system strives
+** to keep free space after the last cell pointer so that new cells can
+** be easily added without having to defragment the page.
+**
+** Cell content is stored at the very end of the page and grows toward the
+** beginning of the page.
+**
+** Unused space within the cell content area is collected into a linked list of
+** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
+** to the first freeblock is given in the header. Freeblocks occur in
+** increasing order. Because a freeblock must be at least 4 bytes in size,
+** any group of 3 or fewer unused bytes in the cell content area cannot
+** exist on the freeblock chain. A group of 3 or fewer free bytes is called
+** a fragment. The total number of bytes in all fragments is recorded.
+** in the page header at offset 7.
+**
+** SIZE DESCRIPTION
+** 2 Byte offset of the next freeblock
+** 2 Bytes in this freeblock
+**
+** Cells are of variable length. Cells are stored in the cell content area at
+** the end of the page. Pointers to the cells are in the cell pointer array
+** that immediately follows the page header. Cells is not necessarily
+** contiguous or in order, but cell pointers are contiguous and in order.
+**
+** Cell content makes use of variable length integers. A variable
+** length integer is 1 to 9 bytes where the lower 7 bits of each
+** byte are used. The integer consists of all bytes that have bit 8 set and
+** the first byte with bit 8 clear. The most significant byte of the integer
+** appears first. A variable-length integer may not be more than 9 bytes long.
+** As a special case, all 8 bytes of the 9th byte are used as data. This
+** allows a 64-bit integer to be encoded in 9 bytes.
+**
+** 0x00 becomes 0x00000000
+** 0x7f becomes 0x0000007f
+** 0x81 0x00 becomes 0x00000080
+** 0x82 0x00 becomes 0x00000100
+** 0x80 0x7f becomes 0x0000007f
+** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
+** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
+**
+** Variable length integers are used for rowids and to hold the number of
+** bytes of key and data in a btree cell.
+**
+** The content of a cell looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of the left child. Omitted if leaf flag is set.
+** var Number of bytes of data. Omitted if the zerodata flag is set.
+** var Number of bytes of key. Or the key itself if intkey flag is set.
+** * Payload
+** 4 First page of the overflow chain. Omitted if no overflow
+**
+** Overflow pages form a linked list. Each page except the last is completely
+** filled with data (pagesize - 4 bytes). The last page can have as little
+** as 1 byte of data.
+**
+** SIZE DESCRIPTION
+** 4 Page number of next overflow page
+** * Data
+**
+** Freelist pages come in two subtypes: trunk pages and leaf pages. The
+** file header points to the first in a linked list of trunk page. Each trunk
+** page points to multiple leaf pages. The content of a leaf page is
+** unspecified. A trunk page looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of next trunk page
+** 4 Number of leaf pointers on this page
+** * zero or more pages numbers of leaves
+*/
+/* #include "sqliteInt.h" */
+
+
+/* The following value is the maximum cell size assuming a maximum page
+** size give above.
+*/
+#define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8))
+
+/* The maximum number of cells on a single page of the database. This
+** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
+** plus 2 bytes for the index to the cell in the page header). Such
+** small cells will be rare, but they are possible.
+*/
+#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
+
+/* Forward declarations */
+typedef struct MemPage MemPage;
+typedef struct BtLock BtLock;
+typedef struct CellInfo CellInfo;
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+**
+** You can change this value at compile-time by specifying a
+** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
+** header must be exactly 16 bytes including the zero-terminator so
+** the string itself should be 15 characters long. If you change
+** the header, then your custom library will not be able to read
+** databases generated by the standard tools and the standard tools
+** will not be able to read databases created by your custom library.
+*/
+#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
+# define SQLITE_FILE_HEADER "SQLite format 3"
+#endif
+
+/*
+** Page type flags. An ORed combination of these flags appear as the
+** first byte of on-disk image of every BTree page.
+*/
+#define PTF_INTKEY 0x01
+#define PTF_ZERODATA 0x02
+#define PTF_LEAFDATA 0x04
+#define PTF_LEAF 0x08
+
+/*
+** An instance of this object stores information about each a single database
+** page that has been loaded into memory. The information in this object
+** is derived from the raw on-disk page content.
+**
+** As each database page is loaded into memory, the pager allocats an
+** instance of this object and zeros the first 8 bytes. (This is the
+** "extra" information associated with each page of the pager.)
+**
+** Access to all fields of this structure is controlled by the mutex
+** stored in MemPage.pBt->mutex.
+*/
+struct MemPage {
+ u8 isInit; /* True if previously initialized. MUST BE FIRST! */
+ u8 intKey; /* True if table b-trees. False for index b-trees */
+ u8 intKeyLeaf; /* True if the leaf of an intKey table */
+ Pgno pgno; /* Page number for this page */
+ /* Only the first 8 bytes (above) are zeroed by pager.c when a new page
+ ** is allocated. All fields that follow must be initialized before use */
+ u8 leaf; /* True if a leaf page */
+ u8 hdrOffset; /* 100 for page 1. 0 otherwise */
+ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
+ u8 max1bytePayload; /* min(maxLocal,127) */
+ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
+ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
+ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
+ u16 cellOffset; /* Index in aData of first cell pointer */
+ int nFree; /* Number of free bytes on the page. -1 for unknown */
+ u16 nCell; /* Number of cells on this page, local and ovfl */
+ u16 maskPage; /* Mask for page offset */
+ u16 aiOvfl[4]; /* Insert the i-th overflow cell before the aiOvfl-th
+ ** non-overflow cell */
+ u8 *apOvfl[4]; /* Pointers to the body of overflow cells */
+ BtShared *pBt; /* Pointer to BtShared that this page is part of */
+ u8 *aData; /* Pointer to disk image of the page data */
+ u8 *aDataEnd; /* One byte past the end of the entire page - not just
+ ** the usable space, the entire page. Used to prevent
+ ** corruption-induced buffer overflow. */
+ u8 *aCellIdx; /* The cell index area */
+ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */
+ DbPage *pDbPage; /* Pager page handle */
+ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */
+ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */
+};
+
+/*
+** A linked list of the following structures is stored at BtShared.pLock.
+** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
+** is opened on the table with root page BtShared.iTable. Locks are removed
+** from this list when a transaction is committed or rolled back, or when
+** a btree handle is closed.
+*/
+struct BtLock {
+ Btree *pBtree; /* Btree handle holding this lock */
+ Pgno iTable; /* Root page of table */
+ u8 eLock; /* READ_LOCK or WRITE_LOCK */
+ BtLock *pNext; /* Next in BtShared.pLock list */
+};
+
+/* Candidate values for BtLock.eLock */
+#define READ_LOCK 1
+#define WRITE_LOCK 2
+
+/* A Btree handle
+**
+** A database connection contains a pointer to an instance of
+** this object for every database file that it has open. This structure
+** is opaque to the database connection. The database connection cannot
+** see the internals of this structure and only deals with pointers to
+** this structure.
+**
+** For some database files, the same underlying database cache might be
+** shared between multiple connections. In that case, each connection
+** has it own instance of this object. But each instance of this object
+** points to the same BtShared object. The database cache and the
+** schema associated with the database file are all contained within
+** the BtShared object.
+**
+** All fields in this structure are accessed under sqlite3.mutex.
+** The pBt pointer itself may not be changed while there exists cursors
+** in the referenced BtShared that point back to this Btree since those
+** cursors have to go through this Btree to find their BtShared and
+** they often do so without holding sqlite3.mutex.
+*/
+struct Btree {
+ sqlite3 *db; /* The database connection holding this btree */
+ BtShared *pBt; /* Sharable content of this btree */
+ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
+ u8 sharable; /* True if we can share pBt with another db */
+ u8 locked; /* True if db currently has pBt locked */
+ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */
+ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
+ int nBackup; /* Number of backup operations reading this btree */
+ u32 iBDataVersion; /* Combines with pBt->pPager->iDataVersion */
+ Btree *pNext; /* List of other sharable Btrees from the same db */
+ Btree *pPrev; /* Back pointer of the same list */
+#ifdef SQLITE_DEBUG
+ u64 nSeek; /* Calls to sqlite3BtreeMovetoUnpacked() */
+#endif
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ BtLock lock; /* Object used to lock page 1 */
+#endif
+};
+
+/*
+** Btree.inTrans may take one of the following values.
+**
+** If the shared-data extension is enabled, there may be multiple users
+** of the Btree structure. At most one of these may open a write transaction,
+** but any number may have active read transactions.
+**
+** These values must match SQLITE_TXN_NONE, SQLITE_TXN_READ, and
+** SQLITE_TXN_WRITE
+*/
+#define TRANS_NONE 0
+#define TRANS_READ 1
+#define TRANS_WRITE 2
+
+#if TRANS_NONE!=SQLITE_TXN_NONE
+# error wrong numeric code for no-transaction
+#endif
+#if TRANS_READ!=SQLITE_TXN_READ
+# error wrong numeric code for read-transaction
+#endif
+#if TRANS_WRITE!=SQLITE_TXN_WRITE
+# error wrong numeric code for write-transaction
+#endif
+
+
+/*
+** An instance of this object represents a single database file.
+**
+** A single database file can be in use at the same time by two
+** or more database connections. When two or more connections are
+** sharing the same database file, each connection has it own
+** private Btree object for the file and each of those Btrees points
+** to this one BtShared object. BtShared.nRef is the number of
+** connections currently sharing this database file.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** mutex, except for nRef and pNext which are accessed under the
+** global SQLITE_MUTEX_STATIC_MAIN mutex. The pPager field
+** may not be modified once it is initially set as long as nRef>0.
+** The pSchema field may be set once under BtShared.mutex and
+** thereafter is unchanged as long as nRef>0.
+**
+** isPending:
+**
+** If a BtShared client fails to obtain a write-lock on a database
+** table (because there exists one or more read-locks on the table),
+** the shared-cache enters 'pending-lock' state and isPending is
+** set to true.
+**
+** The shared-cache leaves the 'pending lock' state when either of
+** the following occur:
+**
+** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
+** 2) The number of locks held by other connections drops to zero.
+**
+** while in the 'pending-lock' state, no connection may start a new
+** transaction.
+**
+** This feature is included to help prevent writer-starvation.
+*/
+struct BtShared {
+ Pager *pPager; /* The page cache */
+ sqlite3 *db; /* Database connection currently using this Btree */
+ BtCursor *pCursor; /* A list of all open cursors */
+ MemPage *pPage1; /* First page of the database */
+ u8 openFlags; /* Flags to sqlite3BtreeOpen() */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ u8 autoVacuum; /* True if auto-vacuum is enabled */
+ u8 incrVacuum; /* True if incr-vacuum is enabled */
+ u8 bDoTruncate; /* True to truncate db on commit */
+#endif
+ u8 inTransaction; /* Transaction state */
+ u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */
+ u8 nReserveWanted; /* Desired number of extra bytes per page */
+ u16 btsFlags; /* Boolean parameters. See BTS_* macros below */
+ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
+ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
+ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
+ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
+ u32 pageSize; /* Total number of bytes on a page */
+ u32 usableSize; /* Number of usable bytes on each page */
+ int nTransaction; /* Number of open transactions (read + write) */
+ u32 nPage; /* Number of pages in the database */
+ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
+ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
+ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
+ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nRef; /* Number of references to this structure */
+ BtShared *pNext; /* Next on a list of sharable BtShared structs */
+ BtLock *pLock; /* List of locks held on this shared-btree struct */
+ Btree *pWriter; /* Btree with currently open write transaction */
+#endif
+ u8 *pTmpSpace; /* Temp space sufficient to hold a single cell */
+ int nPreformatSize; /* Size of last cell written by TransferRow() */
+};
+
+/*
+** Allowed values for BtShared.btsFlags
+*/
+#define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */
+#define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */
+#define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */
+#define BTS_OVERWRITE 0x0008 /* Overwrite deleted content with zeros */
+#define BTS_FAST_SECURE 0x000c /* Combination of the previous two */
+#define BTS_INITIALLY_EMPTY 0x0010 /* Database was empty at trans start */
+#define BTS_NO_WAL 0x0020 /* Do not open write-ahead-log files */
+#define BTS_EXCLUSIVE 0x0040 /* pWriter has an exclusive lock */
+#define BTS_PENDING 0x0080 /* Waiting for read-locks to clear */
+
+/*
+** An instance of the following structure is used to hold information
+** about a cell. The parseCellPtr() function fills in this structure
+** based on information extract from the raw disk page.
+*/
+struct CellInfo {
+ i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */
+ u8 *pPayload; /* Pointer to the start of payload */
+ u32 nPayload; /* Bytes of payload */
+ u16 nLocal; /* Amount of payload held locally, not on overflow */
+ u16 nSize; /* Size of the cell content on the main b-tree page */
+};
+
+/*
+** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
+** this will be declared corrupt. This value is calculated based on a
+** maximum database size of 2^31 pages a minimum fanout of 2 for a
+** root-node and 3 for all other internal nodes.
+**
+** If a tree that appears to be taller than this is encountered, it is
+** assumed that the database is corrupt.
+*/
+#define BTCURSOR_MAX_DEPTH 20
+
+/*
+** A cursor is a pointer to a particular entry within a particular
+** b-tree within a database file.
+**
+** The entry is identified by its MemPage and the index in
+** MemPage.aCell[] of the entry.
+**
+** A single database file can be shared by two more database connections,
+** but cursors cannot be shared. Each cursor is associated with a
+** particular database connection identified BtCursor.pBtree.db.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** found at self->pBt->mutex.
+**
+** skipNext meaning:
+** The meaning of skipNext depends on the value of eState:
+**
+** eState Meaning of skipNext
+** VALID skipNext is meaningless and is ignored
+** INVALID skipNext is meaningless and is ignored
+** SKIPNEXT sqlite3BtreeNext() is a no-op if skipNext>0 and
+** sqlite3BtreePrevious() is no-op if skipNext<0.
+** REQUIRESEEK restoreCursorPosition() restores the cursor to
+** eState=SKIPNEXT if skipNext!=0
+** FAULT skipNext holds the cursor fault error code.
+*/
+struct BtCursor {
+ u8 eState; /* One of the CURSOR_XXX constants (see below) */
+ u8 curFlags; /* zero or more BTCF_* flags defined below */
+ u8 curPagerFlags; /* Flags to send to sqlite3PagerGet() */
+ u8 hints; /* As configured by CursorSetHints() */
+ int skipNext; /* Prev() is noop if negative. Next() is noop if positive.
+ ** Error code if eState==CURSOR_FAULT */
+ Btree *pBtree; /* The Btree to which this cursor belongs */
+ Pgno *aOverflow; /* Cache of overflow page locations */
+ void *pKey; /* Saved key that was cursor last known position */
+ /* All fields above are zeroed when the cursor is allocated. See
+ ** sqlite3BtreeCursorZero(). Fields that follow must be manually
+ ** initialized. */
+#define BTCURSOR_FIRST_UNINIT pBt /* Name of first uninitialized field */
+ BtShared *pBt; /* The BtShared this cursor points to */
+ BtCursor *pNext; /* Forms a linked list of all cursors */
+ CellInfo info; /* A parse of the cell we are pointing at */
+ i64 nKey; /* Size of pKey, or last integer key */
+ Pgno pgnoRoot; /* The root page of this tree */
+ i8 iPage; /* Index of current page in apPage */
+ u8 curIntKey; /* Value of apPage[0]->intKey */
+ u16 ix; /* Current index for apPage[iPage] */
+ u16 aiIdx[BTCURSOR_MAX_DEPTH-1]; /* Current index in apPage[i] */
+ struct KeyInfo *pKeyInfo; /* Arg passed to comparison function */
+ MemPage *pPage; /* Current page */
+ MemPage *apPage[BTCURSOR_MAX_DEPTH-1]; /* Stack of parents of current page */
+};
+
+/*
+** Legal values for BtCursor.curFlags
+*/
+#define BTCF_WriteFlag 0x01 /* True if a write cursor */
+#define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */
+#define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */
+#define BTCF_AtLast 0x08 /* Cursor is pointing ot the last entry */
+#define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */
+#define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */
+#define BTCF_Pinned 0x40 /* Cursor is busy and cannot be moved */
+
+/*
+** Potential values for BtCursor.eState.
+**
+** CURSOR_INVALID:
+** Cursor does not point to a valid entry. This can happen (for example)
+** because the table is empty or because BtreeCursorFirst() has not been
+** called.
+**
+** CURSOR_VALID:
+** Cursor points to a valid entry. getPayload() etc. may be called.
+**
+** CURSOR_SKIPNEXT:
+** Cursor is valid except that the Cursor.skipNext field is non-zero
+** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
+** operation should be a no-op.
+**
+** CURSOR_REQUIRESEEK:
+** The table that this cursor was opened on still exists, but has been
+** modified since the cursor was last used. The cursor position is saved
+** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
+** this state, restoreCursorPosition() can be called to attempt to
+** seek the cursor to the saved position.
+**
+** CURSOR_FAULT:
+** An unrecoverable error (an I/O error or a malloc failure) has occurred
+** on a different connection that shares the BtShared cache with this
+** cursor. The error has left the cache in an inconsistent state.
+** Do nothing else with this cursor. Any attempt to use the cursor
+** should return the error code stored in BtCursor.skipNext
+*/
+#define CURSOR_VALID 0
+#define CURSOR_INVALID 1
+#define CURSOR_SKIPNEXT 2
+#define CURSOR_REQUIRESEEK 3
+#define CURSOR_FAULT 4
+
+/*
+** The database page the PENDING_BYTE occupies. This page is never used.
+*/
+#define PENDING_BYTE_PAGE(pBt) ((Pgno)((PENDING_BYTE/((pBt)->pageSize))+1))
+
+/*
+** These macros define the location of the pointer-map entry for a
+** database page. The first argument to each is the number of usable
+** bytes on each page of the database (often 1024). The second is the
+** page number to look up in the pointer map.
+**
+** PTRMAP_PAGENO returns the database page number of the pointer-map
+** page that stores the required pointer. PTRMAP_PTROFFSET returns
+** the offset of the requested map entry.
+**
+** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
+** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
+** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
+** this test.
+*/
+#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
+#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
+#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
+
+/*
+** The pointer map is a lookup table that identifies the parent page for
+** each child page in the database file. The parent page is the page that
+** contains a pointer to the child. Every page in the database contains
+** 0 or 1 parent pages. (In this context 'database page' refers
+** to any page that is not part of the pointer map itself.) Each pointer map
+** entry consists of a single byte 'type' and a 4 byte parent page number.
+** The PTRMAP_XXX identifiers below are the valid types.
+**
+** The purpose of the pointer map is to facility moving pages from one
+** position in the file to another as part of autovacuum. When a page
+** is moved, the pointer in its parent must be updated to point to the
+** new location. The pointer map is used to locate the parent page quickly.
+**
+** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
+** used in this case.
+**
+** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
+** is not used in this case.
+**
+** PTRMAP_OVERFLOW1: The database page is the first page in a list of
+** overflow pages. The page number identifies the page that
+** contains the cell with a pointer to this overflow page.
+**
+** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
+** overflow pages. The page-number identifies the previous
+** page in the overflow page list.
+**
+** PTRMAP_BTREE: The database page is a non-root btree page. The page number
+** identifies the parent page in the btree.
+*/
+#define PTRMAP_ROOTPAGE 1
+#define PTRMAP_FREEPAGE 2
+#define PTRMAP_OVERFLOW1 3
+#define PTRMAP_OVERFLOW2 4
+#define PTRMAP_BTREE 5
+
+/* A bunch of assert() statements to check the transaction state variables
+** of handle p (type Btree*) are internally consistent.
+*/
+#define btreeIntegrity(p) \
+ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
+ assert( p->pBt->inTransaction>=p->inTrans );
+
+
+/*
+** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
+** if the database supports auto-vacuum or not. Because it is used
+** within an expression that is an argument to another macro
+** (sqliteMallocRaw), it is not possible to use conditional compilation.
+** So, this macro is defined instead.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define ISAUTOVACUUM (pBt->autoVacuum)
+#else
+#define ISAUTOVACUUM 0
+#endif
+
+
+/*
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
+**
+** The aRef[] array is allocated so that there is 1 bit for each page in
+** the database. As the integrity-check proceeds, for each page used in
+** the database the corresponding bit is set. This allows integrity-check to
+** detect pages that are used twice and orphaned pages (both of which
+** indicate corruption).
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ BtShared *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ u8 *aPgRef; /* 1 bit per page in the db (see above) */
+ Pgno nPage; /* Number of pages in the database */
+ int mxErr; /* Stop accumulating errors when this reaches zero */
+ int nErr; /* Number of messages written to zErrMsg so far */
+ int bOomFault; /* A memory allocation error has occurred */
+ const char *zPfx; /* Error message prefix */
+ Pgno v1; /* Value for first %u substitution in zPfx */
+ int v2; /* Value for second %d substitution in zPfx */
+ StrAccum errMsg; /* Accumulate the error message text here */
+ u32 *heap; /* Min-heap used for analyzing cell coverage */
+ sqlite3 *db; /* Database connection running the check */
+};
+
+/*
+** Routines to read or write a two- and four-byte big-endian integer values.
+*/
+#define get2byte(x) ((x)[0]<<8 | (x)[1])
+#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
+#define get4byte sqlite3Get4byte
+#define put4byte sqlite3Put4byte
+
+/*
+** get2byteAligned(), unlike get2byte(), requires that its argument point to a
+** two-byte aligned address. get2bytea() is only used for accessing the
+** cell addresses in a btree header.
+*/
+#if SQLITE_BYTEORDER==4321
+# define get2byteAligned(x) (*(u16*)(x))
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000
+# define get2byteAligned(x) __builtin_bswap16(*(u16*)(x))
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+# define get2byteAligned(x) _byteswap_ushort(*(u16*)(x))
+#else
+# define get2byteAligned(x) ((x)[0]<<8 | (x)[1])
+#endif
+
+/************** End of btreeInt.h ********************************************/
+/************** Continuing where we left off in btmutex.c ********************/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+#if SQLITE_THREADSAFE
+
+/*
+** Obtain the BtShared mutex associated with B-Tree handle p. Also,
+** set BtShared.db to the database handle associated with p and the
+** p->locked boolean to true.
+*/
+static void lockBtreeMutex(Btree *p){
+ assert( p->locked==0 );
+ assert( sqlite3_mutex_notheld(p->pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->pBt->db = p->db;
+ p->locked = 1;
+}
+
+/*
+** Release the BtShared mutex associated with B-Tree handle p and
+** clear the p->locked boolean.
+*/
+static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){
+ BtShared *pBt = p->pBt;
+ assert( p->locked==1 );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ assert( p->db==pBt->db );
+
+ sqlite3_mutex_leave(pBt->mutex);
+ p->locked = 0;
+}
+
+/* Forward reference */
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p);
+
+/*
+** Enter a mutex on the given BTree object.
+**
+** If the object is not sharable, then no mutex is ever required
+** and this routine is a no-op. The underlying mutex is non-recursive.
+** But we keep a reference count in Btree.wantToLock so the behavior
+** of this interface is recursive.
+**
+** To avoid deadlocks, multiple Btrees are locked in the same order
+** by all database connections. The p->pNext is a list of other
+** Btrees belonging to the same database connection as the p Btree
+** which need to be locked after p. If we cannot get a lock on
+** p, then first unlock all of the others on p->pNext, then wait
+** for the lock to become available on p, then relock all of the
+** subsequent Btrees that desire a lock.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ /* Some basic sanity checking on the Btree. The list of Btrees
+ ** connected by pNext and pPrev should be in sorted order by
+ ** Btree.pBt value. All elements of the list should belong to
+ ** the same connection. Only shared Btrees are on the list. */
+ assert( p->pNext==0 || p->pNext->pBt>p->pBt );
+ assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
+ assert( p->pNext==0 || p->pNext->db==p->db );
+ assert( p->pPrev==0 || p->pPrev->db==p->db );
+ assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
+
+ /* Check for locking consistency */
+ assert( !p->locked || p->wantToLock>0 );
+ assert( p->sharable || p->wantToLock==0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ /* Unless the database is sharable and unlocked, then BtShared.db
+ ** should already be set correctly. */
+ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
+
+ if( !p->sharable ) return;
+ p->wantToLock++;
+ if( p->locked ) return;
+ btreeLockCarefully(p);
+}
+
+/* This is a helper function for sqlite3BtreeLock(). By moving
+** complex, but seldom used logic, out of sqlite3BtreeLock() and
+** into this routine, we avoid unnecessary stack pointer changes
+** and thus help the sqlite3BtreeLock() routine to run much faster
+** in the common case.
+*/
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
+ Btree *pLater;
+
+ /* In most cases, we should be able to acquire the lock we
+ ** want without having to go through the ascending lock
+ ** procedure that follows. Just be sure not to block.
+ */
+ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
+ p->pBt->db = p->db;
+ p->locked = 1;
+ return;
+ }
+
+ /* To avoid deadlock, first release all locks with a larger
+ ** BtShared address. Then acquire our lock. Then reacquire
+ ** the other BtShared locks that we used to hold in ascending
+ ** order.
+ */
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ assert( pLater->sharable );
+ assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
+ assert( !pLater->locked || pLater->wantToLock>0 );
+ if( pLater->locked ){
+ unlockBtreeMutex(pLater);
+ }
+ }
+ lockBtreeMutex(p);
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->wantToLock ){
+ lockBtreeMutex(pLater);
+ }
+ }
+}
+
+
+/*
+** Exit the recursive mutex on a Btree.
+*/
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ if( p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ unlockBtreeMutex(p);
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the BtShared mutex is held on the btree, or if the
+** B-Tree is not marked as sharable.
+**
+** This routine is used only from within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
+ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
+ assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
+
+ return (p->sharable==0 || p->locked);
+}
+#endif
+
+
+/*
+** Enter the mutex on every Btree associated with a database
+** connection. This is needed (for example) prior to parsing
+** a statement since we will be comparing table and column names
+** against all schemas and we do not want those schemas being
+** reset out from under us.
+**
+** There is a corresponding leave-all procedures.
+**
+** Enter the mutexes in accending order by BtShared pointer address
+** to avoid the possibility of deadlock when two threads with
+** two or more btrees in common both try to lock all their btrees
+** at the same instant.
+*/
+static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){
+ int i;
+ int skipOk = 1;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p && p->sharable ){
+ sqlite3BtreeEnter(p);
+ skipOk = 0;
+ }
+ }
+ db->noSharedCache = skipOk;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ if( db->noSharedCache==0 ) btreeEnterAll(db);
+}
+static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
+ int i;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p ) sqlite3BtreeLeave(p);
+ }
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
+ if( db->noSharedCache==0 ) btreeLeaveAll(db);
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the current thread holds the database connection
+** mutex and all required BtShared mutexes.
+**
+** This routine is used inside assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
+ int i;
+ if( !sqlite3_mutex_held(db->mutex) ){
+ return 0;
+ }
+ for(i=0; i<db->nDb; i++){
+ Btree *p;
+ p = db->aDb[i].pBt;
+ if( p && p->sharable &&
+ (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
+ return 0;
+ }
+ }
+ return 1;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Return true if the correct mutexes are held for accessing the
+** db->aDb[iDb].pSchema structure. The mutexes required for schema
+** access are:
+**
+** (1) The mutex on db
+** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
+**
+** If pSchema is not NULL, then iDb is computed from pSchema and
+** db using sqlite3SchemaToIndex().
+*/
+SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
+ Btree *p;
+ assert( db!=0 );
+ if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+ if( !sqlite3_mutex_held(db->mutex) ) return 0;
+ if( iDb==1 ) return 1;
+ p = db->aDb[iDb].pBt;
+ assert( p!=0 );
+ return p->sharable==0 || p->locked==1;
+}
+#endif /* NDEBUG */
+
+#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
+/*
+** The following are special cases for mutex enter routines for use
+** in single threaded applications that use shared cache. Except for
+** these two routines, all mutex operations are no-ops in that case and
+** are null #defines in btree.h.
+**
+** If shared cache is disabled, then all btree mutex routines, including
+** the ones below, are no-ops and are null #defines in btree.h.
+*/
+
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ p->pBt->db = p->db;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p ){
+ p->pBt->db = p->db;
+ }
+ }
+}
+#endif /* if SQLITE_THREADSAFE */
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Enter a mutex on a Btree given a cursor owned by that Btree.
+**
+** These entry points are used by incremental I/O only. Enter() is required
+** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not
+** the build is threadsafe. Leave() is only required by threadsafe builds.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
+ sqlite3BtreeEnter(pCur->pBtree);
+}
+# if SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
+ sqlite3BtreeLeave(pCur->pBtree);
+}
+# endif
+#endif /* ifndef SQLITE_OMIT_INCRBLOB */
+
+#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
+
+/************** End of btmutex.c *********************************************/
+/************** Begin file btree.c *******************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an external (disk-based) database using BTrees.
+** See the header comment on "btreeInt.h" for additional information.
+** Including a description of file format and an overview of operation.
+*/
+/* #include "btreeInt.h" */
+
+/*
+** The header string that appears at the beginning of every
+** SQLite database.
+*/
+static const char zMagicHeader[] = SQLITE_FILE_HEADER;
+
+/*
+** Set this global variable to 1 to enable tracing using the TRACE
+** macro.
+*/
+#if 0
+int sqlite3BtreeTrace=1; /* True to enable tracing */
+# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
+#else
+# define TRACE(X)
+#endif
+
+/*
+** Extract a 2-byte big-endian integer from an array of unsigned bytes.
+** But if the value is zero, make it 65536.
+**
+** This routine is used to extract the "offset to cell content area" value
+** from the header of a btree page. If the page size is 65536 and the page
+** is empty, the offset should be 65536, but the 2-byte value stores zero.
+** This routine makes the necessary adjustment to 65536.
+*/
+#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
+
+/*
+** Values passed as the 5th argument to allocateBtreePage()
+*/
+#define BTALLOC_ANY 0 /* Allocate any page */
+#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
+#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
+
+/*
+** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
+** defined, or 0 if it is. For example:
+**
+** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define IfNotOmitAV(expr) (expr)
+#else
+#define IfNotOmitAV(expr) 0
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** A list of BtShared objects that are eligible for participation
+** in shared cache. This variable has file scope during normal builds,
+** but the test harness needs to access it so we make it global for
+** test builds.
+**
+** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
+*/
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
+#else
+static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
+#endif
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Enable or disable the shared pager and schema features.
+**
+** This routine has no effect on existing database connections.
+** The shared cache setting effects only future calls to
+** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int enable){
+ sqlite3GlobalConfig.sharedCacheEnabled = enable;
+ return SQLITE_OK;
+}
+#endif
+
+
+
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ /*
+ ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
+ ** and clearAllSharedCacheTableLocks()
+ ** manipulate entries in the BtShared.pLock linked list used to store
+ ** shared-cache table level locks. If the library is compiled with the
+ ** shared-cache feature disabled, then there is only ever one user
+ ** of each BtShared structure and so this locking is not necessary.
+ ** So define the lock related functions as no-ops.
+ */
+ #define querySharedCacheTableLock(a,b,c) SQLITE_OK
+ #define setSharedCacheTableLock(a,b,c) SQLITE_OK
+ #define clearAllSharedCacheTableLocks(a)
+ #define downgradeAllSharedCacheTableLocks(a)
+ #define hasSharedCacheTableLock(a,b,c,d) 1
+ #define hasReadConflicts(a, b) 0
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return and reset the seek counter for a Btree object.
+*/
+SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
+ u64 n = pBt->nSeek;
+ pBt->nSeek = 0;
+ return n;
+}
+#endif
+
+/*
+** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
+** (MemPage*) as an argument. The (MemPage*) must not be NULL.
+**
+** If SQLITE_DEBUG is not defined, then this macro is equivalent to
+** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
+** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
+** with the page number and filename associated with the (MemPage*).
+*/
+#ifdef SQLITE_DEBUG
+int corruptPageError(int lineno, MemPage *p){
+ char *zMsg;
+ sqlite3BeginBenignMalloc();
+ zMsg = sqlite3_mprintf("database corruption page %d of %s",
+ (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
+ );
+ sqlite3EndBenignMalloc();
+ if( zMsg ){
+ sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
+ }
+ sqlite3_free(zMsg);
+ return SQLITE_CORRUPT_BKPT;
+}
+# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
+#else
+# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+
+#ifdef SQLITE_DEBUG
+/*
+**** This function is only used as part of an assert() statement. ***
+**
+** Check to see if pBtree holds the required locks to read or write to the
+** table with root page iRoot. Return 1 if it does and 0 if not.
+**
+** For example, when writing to a table with root-page iRoot via
+** Btree connection pBtree:
+**
+** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
+**
+** When writing to an index that resides in a sharable database, the
+** caller should have first obtained a lock specifying the root page of
+** the corresponding table. This makes things a bit more complicated,
+** as this module treats each table as a separate structure. To determine
+** the table corresponding to the index being written, this
+** function has to search through the database schema.
+**
+** Instead of a lock on the table/index rooted at page iRoot, the caller may
+** hold a write-lock on the schema table (root page 1). This is also
+** acceptable.
+*/
+static int hasSharedCacheTableLock(
+ Btree *pBtree, /* Handle that must hold lock */
+ Pgno iRoot, /* Root page of b-tree */
+ int isIndex, /* True if iRoot is the root of an index b-tree */
+ int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
+){
+ Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
+ Pgno iTab = 0;
+ BtLock *pLock;
+
+ /* If this database is not shareable, or if the client is reading
+ ** and has the read-uncommitted flag set, then no lock is required.
+ ** Return true immediately.
+ */
+ if( (pBtree->sharable==0)
+ || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
+ ){
+ return 1;
+ }
+
+ /* If the client is reading or writing an index and the schema is
+ ** not loaded, then it is too difficult to actually check to see if
+ ** the correct locks are held. So do not bother - just return true.
+ ** This case does not come up very often anyhow.
+ */
+ if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
+ return 1;
+ }
+
+ /* Figure out the root-page that the lock should be held on. For table
+ ** b-trees, this is just the root page of the b-tree being read or
+ ** written. For index b-trees, it is the root page of the associated
+ ** table. */
+ if( isIndex ){
+ HashElem *p;
+ int bSeen = 0;
+ for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
+ Index *pIdx = (Index *)sqliteHashData(p);
+ if( pIdx->tnum==iRoot ){
+ if( bSeen ){
+ /* Two or more indexes share the same root page. There must
+ ** be imposter tables. So just return true. The assert is not
+ ** useful in that case. */
+ return 1;
+ }
+ iTab = pIdx->pTable->tnum;
+ bSeen = 1;
+ }
+ }
+ }else{
+ iTab = iRoot;
+ }
+
+ /* Search for the required lock. Either a write-lock on root-page iTab, a
+ ** write-lock on the schema table, or (if the client is reading) a
+ ** read-lock on iTab will suffice. Return 1 if any of these are found. */
+ for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
+ if( pLock->pBtree==pBtree
+ && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
+ && pLock->eLock>=eLockType
+ ){
+ return 1;
+ }
+ }
+
+ /* Failed to find the required lock. */
+ return 0;
+}
+#endif /* SQLITE_DEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+**** This function may be used as part of assert() statements only. ****
+**
+** Return true if it would be illegal for pBtree to write into the
+** table or index rooted at iRoot because other shared connections are
+** simultaneously reading that same table or index.
+**
+** It is illegal for pBtree to write if some other Btree object that
+** shares the same BtShared object is currently reading or writing
+** the iRoot table. Except, if the other Btree object has the
+** read-uncommitted flag set, then it is OK for the other object to
+** have a read cursor.
+**
+** For example, before writing to any part of the table or index
+** rooted at page iRoot, one should call:
+**
+** assert( !hasReadConflicts(pBtree, iRoot) );
+*/
+static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
+ BtCursor *p;
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( p->pgnoRoot==iRoot
+ && p->pBtree!=pBtree
+ && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif /* #ifdef SQLITE_DEBUG */
+
+/*
+** Query to see if Btree handle p may obtain a lock of type eLock
+** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
+** SQLITE_OK if the lock may be obtained (by calling
+** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
+*/
+static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
+ BtShared *pBt = p->pBt;
+ BtLock *pIter;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
+ assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
+
+ /* If requesting a write-lock, then the Btree must have an open write
+ ** transaction on this file. And, obviously, for this to be so there
+ ** must be an open write transaction on the file itself.
+ */
+ assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
+ assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
+
+ /* This routine is a no-op if the shared-cache is not enabled */
+ if( !p->sharable ){
+ return SQLITE_OK;
+ }
+
+ /* If some other connection is holding an exclusive lock, the
+ ** requested lock may not be obtained.
+ */
+ if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
+ sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
+ return SQLITE_LOCKED_SHAREDCACHE;
+ }
+
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ /* The condition (pIter->eLock!=eLock) in the following if(...)
+ ** statement is a simplification of:
+ **
+ ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
+ **
+ ** since we know that if eLock==WRITE_LOCK, then no other connection
+ ** may hold a WRITE_LOCK on any table in this file (since there can
+ ** only be a single writer).
+ */
+ assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
+ assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
+ if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
+ sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
+ if( eLock==WRITE_LOCK ){
+ assert( p==pBt->pWriter );
+ pBt->btsFlags |= BTS_PENDING;
+ }
+ return SQLITE_LOCKED_SHAREDCACHE;
+ }
+ }
+ return SQLITE_OK;
+}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Add a lock on the table with root-page iTable to the shared-btree used
+** by Btree handle p. Parameter eLock must be either READ_LOCK or
+** WRITE_LOCK.
+**
+** This function assumes the following:
+**
+** (a) The specified Btree object p is connected to a sharable
+** database (one with the BtShared.sharable flag set), and
+**
+** (b) No other Btree objects hold a lock that conflicts
+** with the requested lock (i.e. querySharedCacheTableLock() has
+** already been called and returned SQLITE_OK).
+**
+** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
+** is returned if a malloc attempt fails.
+*/
+static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
+ BtShared *pBt = p->pBt;
+ BtLock *pLock = 0;
+ BtLock *pIter;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
+
+ /* A connection with the read-uncommitted flag set will never try to
+ ** obtain a read-lock using this function. The only read-lock obtained
+ ** by a connection in read-uncommitted mode is on the sqlite_schema
+ ** table, and that lock is obtained in BtreeBeginTrans(). */
+ assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
+
+ /* This function should only be called on a sharable b-tree after it
+ ** has been determined that no other b-tree holds a conflicting lock. */
+ assert( p->sharable );
+ assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
+
+ /* First search the list for an existing lock on this table. */
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->iTable==iTable && pIter->pBtree==p ){
+ pLock = pIter;
+ break;
+ }
+ }
+
+ /* If the above search did not find a BtLock struct associating Btree p
+ ** with table iTable, allocate one and link it into the list.
+ */
+ if( !pLock ){
+ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
+ if( !pLock ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pLock->iTable = iTable;
+ pLock->pBtree = p;
+ pLock->pNext = pBt->pLock;
+ pBt->pLock = pLock;
+ }
+
+ /* Set the BtLock.eLock variable to the maximum of the current lock
+ ** and the requested lock. This means if a write-lock was already held
+ ** and a read-lock requested, we don't incorrectly downgrade the lock.
+ */
+ assert( WRITE_LOCK>READ_LOCK );
+ if( eLock>pLock->eLock ){
+ pLock->eLock = eLock;
+ }
+
+ return SQLITE_OK;
+}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Release all the table locks (locks obtained via calls to
+** the setSharedCacheTableLock() procedure) held by Btree object p.
+**
+** This function assumes that Btree p has an open read or write
+** transaction. If it does not, then the BTS_PENDING flag
+** may be incorrectly cleared.
+*/
+static void clearAllSharedCacheTableLocks(Btree *p){
+ BtShared *pBt = p->pBt;
+ BtLock **ppIter = &pBt->pLock;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->sharable || 0==*ppIter );
+ assert( p->inTrans>0 );
+
+ while( *ppIter ){
+ BtLock *pLock = *ppIter;
+ assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
+ assert( pLock->pBtree->inTrans>=pLock->eLock );
+ if( pLock->pBtree==p ){
+ *ppIter = pLock->pNext;
+ assert( pLock->iTable!=1 || pLock==&p->lock );
+ if( pLock->iTable!=1 ){
+ sqlite3_free(pLock);
+ }
+ }else{
+ ppIter = &pLock->pNext;
+ }
+ }
+
+ assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
+ if( pBt->pWriter==p ){
+ pBt->pWriter = 0;
+ pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
+ }else if( pBt->nTransaction==2 ){
+ /* This function is called when Btree p is concluding its
+ ** transaction. If there currently exists a writer, and p is not
+ ** that writer, then the number of locks held by connections other
+ ** than the writer must be about to drop to zero. In this case
+ ** set the BTS_PENDING flag to 0.
+ **
+ ** If there is not currently a writer, then BTS_PENDING must
+ ** be zero already. So this next line is harmless in that case.
+ */
+ pBt->btsFlags &= ~BTS_PENDING;
+ }
+}
+
+/*
+** This function changes all write-locks held by Btree p into read-locks.
+*/
+static void downgradeAllSharedCacheTableLocks(Btree *p){
+ BtShared *pBt = p->pBt;
+ if( pBt->pWriter==p ){
+ BtLock *pLock;
+ pBt->pWriter = 0;
+ pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
+ for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
+ assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
+ pLock->eLock = READ_LOCK;
+ }
+ }
+}
+
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+static void releasePage(MemPage *pPage); /* Forward reference */
+static void releasePageOne(MemPage *pPage); /* Forward reference */
+static void releasePageNotNull(MemPage *pPage); /* Forward reference */
+
+/*
+***** This routine is used inside of assert() only ****
+**
+** Verify that the cursor holds the mutex on its BtShared
+*/
+#ifdef SQLITE_DEBUG
+static int cursorHoldsMutex(BtCursor *p){
+ return sqlite3_mutex_held(p->pBt->mutex);
+}
+
+/* Verify that the cursor and the BtShared agree about what is the current
+** database connetion. This is important in shared-cache mode. If the database
+** connection pointers get out-of-sync, it is possible for routines like
+** btreeInitPage() to reference an stale connection pointer that references a
+** a connection that has already closed. This routine is used inside assert()
+** statements only and for the purpose of double-checking that the btree code
+** does keep the database connection pointers up-to-date.
+*/
+static int cursorOwnsBtShared(BtCursor *p){
+ assert( cursorHoldsMutex(p) );
+ return (p->pBtree->db==p->pBt->db);
+}
+#endif
+
+/*
+** Invalidate the overflow cache of the cursor passed as the first argument.
+** on the shared btree structure pBt.
+*/
+#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
+
+/*
+** Invalidate the overflow page-list cache for all cursors opened
+** on the shared btree structure pBt.
+*/
+static void invalidateAllOverflowCache(BtShared *pBt){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ invalidateOverflowCache(p);
+ }
+}
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** This function is called before modifying the contents of a table
+** to invalidate any incrblob cursors that are open on the
+** row or one of the rows being modified.
+**
+** If argument isClearTable is true, then the entire contents of the
+** table is about to be deleted. In this case invalidate all incrblob
+** cursors open on any row within the table with root-page pgnoRoot.
+**
+** Otherwise, if argument isClearTable is false, then the row with
+** rowid iRow is being replaced or deleted. In this case invalidate
+** only those incrblob cursors open on that specific row.
+*/
+static void invalidateIncrblobCursors(
+ Btree *pBtree, /* The database file to check */
+ Pgno pgnoRoot, /* The table that might be changing */
+ i64 iRow, /* The rowid that might be changing */
+ int isClearTable /* True if all rows are being deleted */
+){
+ BtCursor *p;
+ assert( pBtree->hasIncrblobCur );
+ assert( sqlite3BtreeHoldsMutex(pBtree) );
+ pBtree->hasIncrblobCur = 0;
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( (p->curFlags & BTCF_Incrblob)!=0 ){
+ pBtree->hasIncrblobCur = 1;
+ if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
+ p->eState = CURSOR_INVALID;
+ }
+ }
+ }
+}
+
+#else
+ /* Stub function when INCRBLOB is omitted */
+ #define invalidateIncrblobCursors(w,x,y,z)
+#endif /* SQLITE_OMIT_INCRBLOB */
+
+/*
+** Set bit pgno of the BtShared.pHasContent bitvec. This is called
+** when a page that previously contained data becomes a free-list leaf
+** page.
+**
+** The BtShared.pHasContent bitvec exists to work around an obscure
+** bug caused by the interaction of two useful IO optimizations surrounding
+** free-list leaf pages:
+**
+** 1) When all data is deleted from a page and the page becomes
+** a free-list leaf page, the page is not written to the database
+** (as free-list leaf pages contain no meaningful data). Sometimes
+** such a page is not even journalled (as it will not be modified,
+** why bother journalling it?).
+**
+** 2) When a free-list leaf page is reused, its content is not read
+** from the database or written to the journal file (why should it
+** be, if it is not at all meaningful?).
+**
+** By themselves, these optimizations work fine and provide a handy
+** performance boost to bulk delete or insert operations. However, if
+** a page is moved to the free-list and then reused within the same
+** transaction, a problem comes up. If the page is not journalled when
+** it is moved to the free-list and it is also not journalled when it
+** is extracted from the free-list and reused, then the original data
+** may be lost. In the event of a rollback, it may not be possible
+** to restore the database to its original configuration.
+**
+** The solution is the BtShared.pHasContent bitvec. Whenever a page is
+** moved to become a free-list leaf page, the corresponding bit is
+** set in the bitvec. Whenever a leaf page is extracted from the free-list,
+** optimization 2 above is omitted if the corresponding bit is already
+** set in BtShared.pHasContent. The contents of the bitvec are cleared
+** at the end of every transaction.
+*/
+static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
+ int rc = SQLITE_OK;
+ if( !pBt->pHasContent ){
+ assert( pgno<=pBt->nPage );
+ pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
+ if( !pBt->pHasContent ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
+ rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
+ }
+ return rc;
+}
+
+/*
+** Query the BtShared.pHasContent vector.
+**
+** This function is called when a free-list leaf page is removed from the
+** free-list for reuse. It returns false if it is safe to retrieve the
+** page from the pager layer with the 'no-content' flag set. True otherwise.
+*/
+static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
+ Bitvec *p = pBt->pHasContent;
+ return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
+}
+
+/*
+** Clear (destroy) the BtShared.pHasContent bitvec. This should be
+** invoked at the conclusion of each write-transaction.
+*/
+static void btreeClearHasContent(BtShared *pBt){
+ sqlite3BitvecDestroy(pBt->pHasContent);
+ pBt->pHasContent = 0;
+}
+
+/*
+** Release all of the apPage[] pages for a cursor.
+*/
+static void btreeReleaseAllCursorPages(BtCursor *pCur){
+ int i;
+ if( pCur->iPage>=0 ){
+ for(i=0; i<pCur->iPage; i++){
+ releasePageNotNull(pCur->apPage[i]);
+ }
+ releasePageNotNull(pCur->pPage);
+ pCur->iPage = -1;
+ }
+}
+
+/*
+** The cursor passed as the only argument must point to a valid entry
+** when this function is called (i.e. have eState==CURSOR_VALID). This
+** function saves the current cursor key in variables pCur->nKey and
+** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
+** code otherwise.
+**
+** If the cursor is open on an intkey table, then the integer key
+** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
+** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
+** set to point to a malloced buffer pCur->nKey bytes in size containing
+** the key.
+*/
+static int saveCursorKey(BtCursor *pCur){
+ int rc = SQLITE_OK;
+ assert( CURSOR_VALID==pCur->eState );
+ assert( 0==pCur->pKey );
+ assert( cursorHoldsMutex(pCur) );
+
+ if( pCur->curIntKey ){
+ /* Only the rowid is required for a table btree */
+ pCur->nKey = sqlite3BtreeIntegerKey(pCur);
+ }else{
+ /* For an index btree, save the complete key content. It is possible
+ ** that the current key is corrupt. In that case, it is possible that
+ ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
+ ** up to the size of 1 varint plus 1 8-byte value when the cursor
+ ** position is restored. Hence the 17 bytes of padding allocated
+ ** below. */
+ void *pKey;
+ pCur->nKey = sqlite3BtreePayloadSize(pCur);
+ pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
+ if( pKey ){
+ rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
+ if( rc==SQLITE_OK ){
+ memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
+ pCur->pKey = pKey;
+ }else{
+ sqlite3_free(pKey);
+ }
+ }else{
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ assert( !pCur->curIntKey || !pCur->pKey );
+ return rc;
+}
+
+/*
+** Save the current cursor position in the variables BtCursor.nKey
+** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
+**
+** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
+** prior to calling this routine.
+*/
+static int saveCursorPosition(BtCursor *pCur){
+ int rc;
+
+ assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
+ assert( 0==pCur->pKey );
+ assert( cursorHoldsMutex(pCur) );
+
+ if( pCur->curFlags & BTCF_Pinned ){
+ return SQLITE_CONSTRAINT_PINNED;
+ }
+ if( pCur->eState==CURSOR_SKIPNEXT ){
+ pCur->eState = CURSOR_VALID;
+ }else{
+ pCur->skipNext = 0;
+ }
+
+ rc = saveCursorKey(pCur);
+ if( rc==SQLITE_OK ){
+ btreeReleaseAllCursorPages(pCur);
+ pCur->eState = CURSOR_REQUIRESEEK;
+ }
+
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
+ return rc;
+}
+
+/* Forward reference */
+static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
+
+/*
+** Save the positions of all cursors (except pExcept) that are open on
+** the table with root-page iRoot. "Saving the cursor position" means that
+** the location in the btree is remembered in such a way that it can be
+** moved back to the same spot after the btree has been modified. This
+** routine is called just before cursor pExcept is used to modify the
+** table, for example in BtreeDelete() or BtreeInsert().
+**
+** If there are two or more cursors on the same btree, then all such
+** cursors should have their BTCF_Multiple flag set. The btreeCursor()
+** routine enforces that rule. This routine only needs to be called in
+** the uncommon case when pExpect has the BTCF_Multiple flag set.
+**
+** If pExpect!=NULL and if no other cursors are found on the same root-page,
+** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
+** pointless call to this routine.
+**
+** Implementation note: This routine merely checks to see if any cursors
+** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
+** event that cursors are in need to being saved.
+*/
+static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pExcept==0 || pExcept->pBt==pBt );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
+ }
+ if( p ) return saveCursorsOnList(p, iRoot, pExcept);
+ if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
+ return SQLITE_OK;
+}
+
+/* This helper routine to saveAllCursors does the actual work of saving
+** the cursors if and when a cursor is found that actually requires saving.
+** The common case is that no cursors need to be saved, so this routine is
+** broken out from its caller to avoid unnecessary stack pointer movement.
+*/
+static int SQLITE_NOINLINE saveCursorsOnList(
+ BtCursor *p, /* The first cursor that needs saving */
+ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
+ BtCursor *pExcept /* Do not save this cursor */
+){
+ do{
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
+ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
+ int rc = saveCursorPosition(p);
+ if( SQLITE_OK!=rc ){
+ return rc;
+ }
+ }else{
+ testcase( p->iPage>=0 );
+ btreeReleaseAllCursorPages(p);
+ }
+ }
+ p = p->pNext;
+ }while( p );
+ return SQLITE_OK;
+}
+
+/*
+** Clear the current cursor position.
+*/
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ sqlite3_free(pCur->pKey);
+ pCur->pKey = 0;
+ pCur->eState = CURSOR_INVALID;
+}
+
+/*
+** In this version of BtreeMoveto, pKey is a packed index record
+** such as is generated by the OP_MakeRecord opcode. Unpack the
+** record and then call sqlite3BtreeIndexMoveto() to do the work.
+*/
+static int btreeMoveto(
+ BtCursor *pCur, /* Cursor open on the btree to be searched */
+ const void *pKey, /* Packed key if the btree is an index */
+ i64 nKey, /* Integer key for tables. Size of pKey for indices */
+ int bias, /* Bias search to the high end */
+ int *pRes /* Write search results here */
+){
+ int rc; /* Status code */
+ UnpackedRecord *pIdxKey; /* Unpacked index key */
+
+ if( pKey ){
+ KeyInfo *pKeyInfo = pCur->pKeyInfo;
+ assert( nKey==(i64)(int)nKey );
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
+ if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
+ sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
+ if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
+ }
+ sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
+ }else{
+ pIdxKey = 0;
+ rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
+ }
+ return rc;
+}
+
+/*
+** Restore the cursor to the position it was in (or as close to as possible)
+** when saveCursorPosition() was called. Note that this call deletes the
+** saved position info stored by saveCursorPosition(), so there can be
+** at most one effective restoreCursorPosition() call after each
+** saveCursorPosition().
+*/
+static int btreeRestoreCursorPosition(BtCursor *pCur){
+ int rc;
+ int skipNext = 0;
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState>=CURSOR_REQUIRESEEK );
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skipNext;
+ }
+ pCur->eState = CURSOR_INVALID;
+ if( sqlite3FaultSim(410) ){
+ rc = SQLITE_IOERR;
+ }else{
+ rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_free(pCur->pKey);
+ pCur->pKey = 0;
+ assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
+ if( skipNext ) pCur->skipNext = skipNext;
+ if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
+ pCur->eState = CURSOR_SKIPNEXT;
+ }
+ }
+ return rc;
+}
+
+#define restoreCursorPosition(p) \
+ (p->eState>=CURSOR_REQUIRESEEK ? \
+ btreeRestoreCursorPosition(p) : \
+ SQLITE_OK)
+
+/*
+** Determine whether or not a cursor has moved from the position where
+** it was last placed, or has been invalidated for any other reason.
+** Cursors can move when the row they are pointing at is deleted out
+** from under them, for example. Cursor might also move if a btree
+** is rebalanced.
+**
+** Calling this routine with a NULL cursor pointer returns false.
+**
+** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
+** back to where it ought to be if this routine returns true.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
+ assert( EIGHT_BYTE_ALIGNMENT(pCur)
+ || pCur==sqlite3BtreeFakeValidCursor() );
+ assert( offsetof(BtCursor, eState)==0 );
+ assert( sizeof(pCur->eState)==1 );
+ return CURSOR_VALID != *(u8*)pCur;
+}
+
+/*
+** Return a pointer to a fake BtCursor object that will always answer
+** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
+** cursor returned must not be used with any other Btree interface.
+*/
+SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void){
+ static u8 fakeCursor = CURSOR_VALID;
+ assert( offsetof(BtCursor, eState)==0 );
+ return (BtCursor*)&fakeCursor;
+}
+
+/*
+** This routine restores a cursor back to its original position after it
+** has been moved by some outside activity (such as a btree rebalance or
+** a row having been deleted out from under the cursor).
+**
+** On success, the *pDifferentRow parameter is false if the cursor is left
+** pointing at exactly the same row. *pDifferntRow is the row the cursor
+** was pointing to has been deleted, forcing the cursor to point to some
+** nearby row.
+**
+** This routine should only be called for a cursor that just returned
+** TRUE from sqlite3BtreeCursorHasMoved().
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
+ int rc;
+
+ assert( pCur!=0 );
+ assert( pCur->eState!=CURSOR_VALID );
+ rc = restoreCursorPosition(pCur);
+ if( rc ){
+ *pDifferentRow = 1;
+ return rc;
+ }
+ if( pCur->eState!=CURSOR_VALID ){
+ *pDifferentRow = 1;
+ }else{
+ *pDifferentRow = 0;
+ }
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/*
+** Provide hints to the cursor. The particular hint given (and the type
+** and number of the varargs parameters) is determined by the eHintType
+** parameter. See the definitions of the BTREE_HINT_* macros for details.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
+ /* Used only by system that substitute their own storage engine */
+}
+#endif
+
+/*
+** Provide flag hints to the cursor.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
+ assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
+ pCur->hints = x;
+}
+
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Given a page number of a regular database page, return the page
+** number for the pointer-map page that contains the entry for the
+** input page number.
+**
+** Return 0 (not a valid page) for pgno==1 since there is
+** no pointer map associated with page 1. The integrity_check logic
+** requires that ptrmapPageno(*,1)!=1.
+*/
+static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
+ int nPagesPerMapPage;
+ Pgno iPtrMap, ret;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno<2 ) return 0;
+ nPagesPerMapPage = (pBt->usableSize/5)+1;
+ iPtrMap = (pgno-2)/nPagesPerMapPage;
+ ret = (iPtrMap*nPagesPerMapPage) + 2;
+ if( ret==PENDING_BYTE_PAGE(pBt) ){
+ ret++;
+ }
+ return ret;
+}
+
+/*
+** Write an entry into the pointer map.
+**
+** This routine updates the pointer map entry for page number 'key'
+** so that it maps to type 'eType' and parent page number 'pgno'.
+**
+** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
+** a no-op. If an error occurs, the appropriate error code is written
+** into *pRC.
+*/
+static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
+ DbPage *pDbPage; /* The pointer map page */
+ u8 *pPtrmap; /* The pointer map data */
+ Pgno iPtrmap; /* The pointer map page number */
+ int offset; /* Offset in pointer map page */
+ int rc; /* Return code from subfunctions */
+
+ if( *pRC ) return;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ /* The super-journal page number must never be used as a pointer map page */
+ assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
+
+ assert( pBt->autoVacuum );
+ if( key==0 ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ iPtrmap = PTRMAP_PAGENO(pBt, key);
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
+ if( rc!=SQLITE_OK ){
+ *pRC = rc;
+ return;
+ }
+ if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
+ /* The first byte of the extra data is the MemPage.isInit byte.
+ ** If that byte is set, it means this page is also being used
+ ** as a btree page. */
+ *pRC = SQLITE_CORRUPT_BKPT;
+ goto ptrmap_exit;
+ }
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
+ if( offset<0 ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ goto ptrmap_exit;
+ }
+ assert( offset <= (int)pBt->usableSize-5 );
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
+
+ if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
+ TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
+ *pRC= rc = sqlite3PagerWrite(pDbPage);
+ if( rc==SQLITE_OK ){
+ pPtrmap[offset] = eType;
+ put4byte(&pPtrmap[offset+1], parent);
+ }
+ }
+
+ptrmap_exit:
+ sqlite3PagerUnref(pDbPage);
+}
+
+/*
+** Read an entry from the pointer map.
+**
+** This routine retrieves the pointer map entry for page 'key', writing
+** the type and parent page number to *pEType and *pPgno respectively.
+** An error code is returned if something goes wrong, otherwise SQLITE_OK.
+*/
+static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
+ DbPage *pDbPage; /* The pointer map page */
+ int iPtrmap; /* Pointer map page index */
+ u8 *pPtrmap; /* Pointer map page data */
+ int offset; /* Offset of entry in pointer map */
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ iPtrmap = PTRMAP_PAGENO(pBt, key);
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
+ if( rc!=0 ){
+ return rc;
+ }
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
+
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
+ if( offset<0 ){
+ sqlite3PagerUnref(pDbPage);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( offset <= (int)pBt->usableSize-5 );
+ assert( pEType!=0 );
+ *pEType = pPtrmap[offset];
+ if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
+
+ sqlite3PagerUnref(pDbPage);
+ if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
+ return SQLITE_OK;
+}
+
+#else /* if defined SQLITE_OMIT_AUTOVACUUM */
+ #define ptrmapPut(w,x,y,z,rc)
+ #define ptrmapGet(w,x,y,z) SQLITE_OK
+ #define ptrmapPutOvflPtr(x, y, z, rc)
+#endif
+
+/*
+** Given a btree page and a cell index (0 means the first cell on
+** the page, 1 means the second cell, and so forth) return a pointer
+** to the cell content.
+**
+** findCellPastPtr() does the same except it skips past the initial
+** 4-byte child pointer found on interior pages, if there is one.
+**
+** This routine works only for pages that do not contain overflow cells.
+*/
+#define findCell(P,I) \
+ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
+#define findCellPastPtr(P,I) \
+ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
+
+
+/*
+** This is common tail processing for btreeParseCellPtr() and
+** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
+** on a single B-tree page. Make necessary adjustments to the CellInfo
+** structure.
+*/
+static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ /* If the payload will not fit completely on the local page, we have
+ ** to decide how much to store locally and how much to spill onto
+ ** overflow pages. The strategy is to minimize the amount of unused
+ ** space on overflow pages while keeping the amount of local storage
+ ** in between minLocal and maxLocal.
+ **
+ ** Warning: changing the way overflow payload is distributed in any
+ ** way will result in an incompatible file format.
+ */
+ int minLocal; /* Minimum amount of payload held locally */
+ int maxLocal; /* Maximum amount of payload held locally */
+ int surplus; /* Overflow payload available for local storage */
+
+ minLocal = pPage->minLocal;
+ maxLocal = pPage->maxLocal;
+ surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
+ testcase( surplus==maxLocal );
+ testcase( surplus==maxLocal+1 );
+ if( surplus <= maxLocal ){
+ pInfo->nLocal = (u16)surplus;
+ }else{
+ pInfo->nLocal = (u16)minLocal;
+ }
+ pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
+}
+
+/*
+** Given a record with nPayload bytes of payload stored within btree
+** page pPage, return the number of bytes of payload stored locally.
+*/
+static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
+ int maxLocal; /* Maximum amount of payload held locally */
+ maxLocal = pPage->maxLocal;
+ if( nPayload<=maxLocal ){
+ return nPayload;
+ }else{
+ int minLocal; /* Minimum amount of payload held locally */
+ int surplus; /* Overflow payload available for local storage */
+ minLocal = pPage->minLocal;
+ surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
+ return ( surplus <= maxLocal ) ? surplus : minLocal;
+ }
+}
+
+/*
+** The following routines are implementations of the MemPage.xParseCell()
+** method.
+**
+** Parse a cell content block and fill in the CellInfo structure.
+**
+** btreeParseCellPtr() => table btree leaf nodes
+** btreeParseCellNoPayload() => table btree internal nodes
+** btreeParseCellPtrIndex() => index btree nodes
+**
+** There is also a wrapper function btreeParseCell() that works for
+** all MemPage types and that references the cell by index rather than
+** by pointer.
+*/
+static void btreeParseCellPtrNoPayload(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->leaf==0 );
+ assert( pPage->childPtrSize==4 );
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER(pPage);
+#endif
+ pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
+ pInfo->nPayload = 0;
+ pInfo->nLocal = 0;
+ pInfo->pPayload = 0;
+ return;
+}
+static void btreeParseCellPtr(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ u8 *pIter; /* For scanning through pCell */
+ u32 nPayload; /* Number of bytes of cell payload */
+ u64 iKey; /* Extracted Key value */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->leaf==0 || pPage->leaf==1 );
+ assert( pPage->intKeyLeaf );
+ assert( pPage->childPtrSize==0 );
+ pIter = pCell;
+
+ /* The next block of code is equivalent to:
+ **
+ ** pIter += getVarint32(pIter, nPayload);
+ **
+ ** The code is inlined to avoid a function call.
+ */
+ nPayload = *pIter;
+ if( nPayload>=0x80 ){
+ u8 *pEnd = &pIter[8];
+ nPayload &= 0x7f;
+ do{
+ nPayload = (nPayload<<7) | (*++pIter & 0x7f);
+ }while( (*pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+
+ /* The next block of code is equivalent to:
+ **
+ ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
+ **
+ ** The code is inlined and the loop is unrolled for performance.
+ ** This routine is a high-runner.
+ */
+ iKey = *pIter;
+ if( iKey>=0x80 ){
+ u8 x;
+ iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
+ if( x>=0x80 ){
+ iKey = (iKey<<8) | (*++pIter);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ pIter++;
+
+ pInfo->nKey = *(i64*)&iKey;
+ pInfo->nPayload = nPayload;
+ pInfo->pPayload = pIter;
+ testcase( nPayload==pPage->maxLocal );
+ testcase( nPayload==(u32)pPage->maxLocal+1 );
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the (easy) common case where the entire payload fits
+ ** on the local page. No overflow is required.
+ */
+ pInfo->nSize = nPayload + (u16)(pIter - pCell);
+ if( pInfo->nSize<4 ) pInfo->nSize = 4;
+ pInfo->nLocal = (u16)nPayload;
+ }else{
+ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
+ }
+}
+static void btreeParseCellPtrIndex(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ u8 *pIter; /* For scanning through pCell */
+ u32 nPayload; /* Number of bytes of cell payload */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->leaf==0 || pPage->leaf==1 );
+ assert( pPage->intKeyLeaf==0 );
+ pIter = pCell + pPage->childPtrSize;
+ nPayload = *pIter;
+ if( nPayload>=0x80 ){
+ u8 *pEnd = &pIter[8];
+ nPayload &= 0x7f;
+ do{
+ nPayload = (nPayload<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ pInfo->nKey = nPayload;
+ pInfo->nPayload = nPayload;
+ pInfo->pPayload = pIter;
+ testcase( nPayload==pPage->maxLocal );
+ testcase( nPayload==(u32)pPage->maxLocal+1 );
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the (easy) common case where the entire payload fits
+ ** on the local page. No overflow is required.
+ */
+ pInfo->nSize = nPayload + (u16)(pIter - pCell);
+ if( pInfo->nSize<4 ) pInfo->nSize = 4;
+ pInfo->nLocal = (u16)nPayload;
+ }else{
+ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
+ }
+}
+static void btreeParseCell(
+ MemPage *pPage, /* Page containing the cell */
+ int iCell, /* The cell index. First cell is 0 */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
+}
+
+/*
+** The following routines are implementations of the MemPage.xCellSize
+** method.
+**
+** Compute the total number of bytes that a Cell needs in the cell
+** data area of the btree-page. The return number includes the cell
+** data header and the local payload, but not any overflow page or
+** the space used by the cell pointer.
+**
+** cellSizePtrNoPayload() => table internal nodes
+** cellSizePtrTableLeaf() => table leaf nodes
+** cellSizePtr() => all index nodes & table leaf nodes
+*/
+static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+ u32 nSize; /* Size value to return */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#endif
+
+ nSize = *pIter;
+ if( nSize>=0x80 ){
+ pEnd = &pIter[8];
+ nSize &= 0x7f;
+ do{
+ nSize = (nSize<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize<=pPage->maxLocal ){
+ nSize += (u32)(pIter - pCell);
+ if( nSize<4 ) nSize = 4;
+ }else{
+ int minLocal = pPage->minLocal;
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ nSize = minLocal;
+ }
+ nSize += 4 + (u16)(pIter - pCell);
+ }
+ assert( nSize==debuginfo.nSize || CORRUPT_DB );
+ return (u16)nSize;
+}
+static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#else
+ UNUSED_PARAMETER(pPage);
+#endif
+
+ assert( pPage->childPtrSize==4 );
+ pEnd = pIter + 9;
+ while( (*pIter++)&0x80 && pIter<pEnd );
+ assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
+ return (u16)(pIter - pCell);
+}
+static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+ u32 nSize; /* Size value to return */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#endif
+
+ nSize = *pIter;
+ if( nSize>=0x80 ){
+ pEnd = &pIter[8];
+ nSize &= 0x7f;
+ do{
+ nSize = (nSize<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ /* pIter now points at the 64-bit integer key value, a variable length
+ ** integer. The following block moves pIter to point at the first byte
+ ** past the end of the key value. */
+ if( (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80 ){ pIter++; }
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize<=pPage->maxLocal ){
+ nSize += (u32)(pIter - pCell);
+ if( nSize<4 ) nSize = 4;
+ }else{
+ int minLocal = pPage->minLocal;
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ nSize = minLocal;
+ }
+ nSize += 4 + (u16)(pIter - pCell);
+ }
+ assert( nSize==debuginfo.nSize || CORRUPT_DB );
+ return (u16)nSize;
+}
+
+
+#ifdef SQLITE_DEBUG
+/* This variation on cellSizePtr() is used inside of assert() statements
+** only. */
+static u16 cellSize(MemPage *pPage, int iCell){
+ return pPage->xCellSize(pPage, findCell(pPage, iCell));
+}
+#endif
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** The cell pCell is currently part of page pSrc but will ultimately be part
+** of pPage. (pSrc and pPage are often the same.) If pCell contains a
+** pointer to an overflow page, insert an entry into the pointer-map for
+** the overflow page that will be valid after pCell has been moved to pPage.
+*/
+static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
+ CellInfo info;
+ if( *pRC ) return;
+ assert( pCell!=0 );
+ pPage->xParseCell(pPage, pCell, &info);
+ if( info.nLocal<info.nPayload ){
+ Pgno ovfl;
+ if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
+ testcase( pSrc!=pPage );
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ ovfl = get4byte(&pCell[info.nSize-4]);
+ ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
+ }
+}
+#endif
+
+
+/*
+** Defragment the page given. This routine reorganizes cells within the
+** page so that there are no free-blocks on the free-block list.
+**
+** Parameter nMaxFrag is the maximum amount of fragmented space that may be
+** present in the page after this routine returns.
+**
+** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
+** b-tree page so that there are no freeblocks or fragment bytes, all
+** unused bytes are contained in the unallocated space region, and all
+** cells are packed tightly at the end of the page.
+*/
+static int defragmentPage(MemPage *pPage, int nMaxFrag){
+ int i; /* Loop counter */
+ int pc; /* Address of the i-th cell */
+ int hdr; /* Offset to the page header */
+ int size; /* Size of a cell */
+ int usableSize; /* Number of usable bytes on a page */
+ int cellOffset; /* Offset to the cell pointer array */
+ int cbrk; /* Offset to the cell content area */
+ int nCell; /* Number of cells on the page */
+ unsigned char *data; /* The page data */
+ unsigned char *temp; /* Temp area for cell content */
+ unsigned char *src; /* Source of content */
+ int iCellFirst; /* First allowable cell index */
+ int iCellLast; /* Last possible cell index */
+ int iCellStart; /* First cell offset in input */
+
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
+ assert( pPage->nOverflow==0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ temp = 0;
+ src = data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ cellOffset = pPage->cellOffset;
+ nCell = pPage->nCell;
+ assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
+ iCellFirst = cellOffset + 2*nCell;
+ usableSize = pPage->pBt->usableSize;
+
+ /* This block handles pages with two or fewer free blocks and nMaxFrag
+ ** or fewer fragmented bytes. In this case it is faster to move the
+ ** two (or one) blocks of cells using memmove() and add the required
+ ** offsets to each pointer in the cell-pointer array than it is to
+ ** reconstruct the entire page. */
+ if( (int)data[hdr+7]<=nMaxFrag ){
+ int iFree = get2byte(&data[hdr+1]);
+ if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
+ if( iFree ){
+ int iFree2 = get2byte(&data[iFree]);
+ if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
+ if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
+ u8 *pEnd = &data[cellOffset + nCell*2];
+ u8 *pAddr;
+ int sz2 = 0;
+ int sz = get2byte(&data[iFree+2]);
+ int top = get2byte(&data[hdr+5]);
+ if( top>=iFree ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( iFree2 ){
+ if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
+ sz2 = get2byte(&data[iFree2+2]);
+ if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
+ memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
+ sz += sz2;
+ }else if( iFree+sz>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+
+ cbrk = top+sz;
+ assert( cbrk+(iFree-top) <= usableSize );
+ memmove(&data[cbrk], &data[top], iFree-top);
+ for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
+ pc = get2byte(pAddr);
+ if( pc<iFree ){ put2byte(pAddr, pc+sz); }
+ else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
+ }
+ goto defragment_out;
+ }
+ }
+ }
+
+ cbrk = usableSize;
+ iCellLast = usableSize - 4;
+ iCellStart = get2byte(&data[hdr+5]);
+ for(i=0; i<nCell; i++){
+ u8 *pAddr; /* The i-th cell pointer */
+ pAddr = &data[cellOffset + i*2];
+ pc = get2byte(pAddr);
+ testcase( pc==iCellFirst );
+ testcase( pc==iCellLast );
+ /* These conditions have already been verified in btreeInitPage()
+ ** if PRAGMA cell_size_check=ON.
+ */
+ if( pc<iCellStart || pc>iCellLast ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( pc>=iCellStart && pc<=iCellLast );
+ size = pPage->xCellSize(pPage, &src[pc]);
+ cbrk -= size;
+ if( cbrk<iCellStart || pc+size>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( cbrk+size<=usableSize && cbrk>=iCellStart );
+ testcase( cbrk+size==usableSize );
+ testcase( pc+size==usableSize );
+ put2byte(pAddr, cbrk);
+ if( temp==0 ){
+ if( cbrk==pc ) continue;
+ temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
+ memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
+ src = temp;
+ }
+ memcpy(&data[cbrk], &src[pc], size);
+ }
+ data[hdr+7] = 0;
+
+ defragment_out:
+ assert( pPage->nFree>=0 );
+ if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( cbrk>=iCellFirst );
+ put2byte(&data[hdr+5], cbrk);
+ data[hdr+1] = 0;
+ data[hdr+2] = 0;
+ memset(&data[iCellFirst], 0, cbrk-iCellFirst);
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ return SQLITE_OK;
+}
+
+/*
+** Search the free-list on page pPg for space to store a cell nByte bytes in
+** size. If one can be found, return a pointer to the space and remove it
+** from the free-list.
+**
+** If no suitable space can be found on the free-list, return NULL.
+**
+** This function may detect corruption within pPg. If corruption is
+** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
+**
+** Slots on the free list that are between 1 and 3 bytes larger than nByte
+** will be ignored if adding the extra space to the fragmentation count
+** causes the fragmentation count to exceed 60.
+*/
+static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
+ const int hdr = pPg->hdrOffset; /* Offset to page header */
+ u8 * const aData = pPg->aData; /* Page data */
+ int iAddr = hdr + 1; /* Address of ptr to pc */
+ u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
+ int pc = get2byte(pTmp); /* Address of a free slot */
+ int x; /* Excess size of the slot */
+ int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
+ int size; /* Size of the free slot */
+
+ assert( pc>0 );
+ while( pc<=maxPC ){
+ /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
+ ** freeblock form a big-endian integer which is the size of the freeblock
+ ** in bytes, including the 4-byte header. */
+ pTmp = &aData[pc+2];
+ size = get2byte(pTmp);
+ if( (x = size - nByte)>=0 ){
+ testcase( x==4 );
+ testcase( x==3 );
+ if( x<4 ){
+ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
+ ** number of bytes in fragments may not exceed 60. */
+ if( aData[hdr+7]>57 ) return 0;
+
+ /* Remove the slot from the free-list. Update the number of
+ ** fragmented bytes within the page. */
+ memcpy(&aData[iAddr], &aData[pc], 2);
+ aData[hdr+7] += (u8)x;
+ testcase( pc+x>maxPC );
+ return &aData[pc];
+ }else if( x+pc > maxPC ){
+ /* This slot extends off the end of the usable part of the page */
+ *pRc = SQLITE_CORRUPT_PAGE(pPg);
+ return 0;
+ }else{
+ /* The slot remains on the free-list. Reduce its size to account
+ ** for the portion used by the new allocation. */
+ put2byte(&aData[pc+2], x);
+ }
+ return &aData[pc + x];
+ }
+ iAddr = pc;
+ pTmp = &aData[pc];
+ pc = get2byte(pTmp);
+ if( pc<=iAddr+size ){
+ if( pc ){
+ /* The next slot in the chain is not past the end of the current slot */
+ *pRc = SQLITE_CORRUPT_PAGE(pPg);
+ }
+ return 0;
+ }
+ }
+ if( pc>maxPC+nByte-4 ){
+ /* The free slot chain extends off the end of the page */
+ *pRc = SQLITE_CORRUPT_PAGE(pPg);
+ }
+ return 0;
+}
+
+/*
+** Allocate nByte bytes of space from within the B-Tree page passed
+** as the first argument. Write into *pIdx the index into pPage->aData[]
+** of the first byte of allocated space. Return either SQLITE_OK or
+** an error code (usually SQLITE_CORRUPT).
+**
+** The caller guarantees that there is sufficient space to make the
+** allocation. This routine might need to defragment in order to bring
+** all the space together, however. This routine will avoid using
+** the first two bytes past the cell pointer area since presumably this
+** allocation is being made in order to insert a new cell, so we will
+** also end up needing a new cell pointer.
+*/
+static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
+ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
+ u8 * const data = pPage->aData; /* Local cache of pPage->aData */
+ int top; /* First byte of cell content area */
+ int rc = SQLITE_OK; /* Integer return code */
+ u8 *pTmp; /* Temp ptr into data[] */
+ int gap; /* First byte of gap between cell pointers and cell content */
+
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( pPage->pBt );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( nByte>=0 ); /* Minimum cell size is 4 */
+ assert( pPage->nFree>=nByte );
+ assert( pPage->nOverflow==0 );
+ assert( nByte < (int)(pPage->pBt->usableSize-8) );
+
+ assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
+ gap = pPage->cellOffset + 2*pPage->nCell;
+ assert( gap<=65536 );
+ /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
+ ** and the reserved space is zero (the usual value for reserved space)
+ ** then the cell content offset of an empty page wants to be 65536.
+ ** However, that integer is too large to be stored in a 2-byte unsigned
+ ** integer, so a value of 0 is used in its place. */
+ pTmp = &data[hdr+5];
+ top = get2byte(pTmp);
+ assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
+ if( gap>top ){
+ if( top==0 && pPage->pBt->usableSize==65536 ){
+ top = 65536;
+ }else{
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+
+ /* If there is enough space between gap and top for one more cell pointer,
+ ** and if the freelist is not empty, then search the
+ ** freelist looking for a slot big enough to satisfy the request.
+ */
+ testcase( gap+2==top );
+ testcase( gap+1==top );
+ testcase( gap==top );
+ if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
+ u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
+ if( pSpace ){
+ int g2;
+ assert( pSpace+nByte<=data+pPage->pBt->usableSize );
+ *pIdx = g2 = (int)(pSpace-data);
+ if( g2<=gap ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }else{
+ return SQLITE_OK;
+ }
+ }else if( rc ){
+ return rc;
+ }
+ }
+
+ /* The request could not be fulfilled using a freelist slot. Check
+ ** to see if defragmentation is necessary.
+ */
+ testcase( gap+2+nByte==top );
+ if( gap+2+nByte>top ){
+ assert( pPage->nCell>0 || CORRUPT_DB );
+ assert( pPage->nFree>=0 );
+ rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
+ if( rc ) return rc;
+ top = get2byteNotZero(&data[hdr+5]);
+ assert( gap+2+nByte<=top );
+ }
+
+
+ /* Allocate memory from the gap in between the cell pointer array
+ ** and the cell content area. The btreeComputeFreeSpace() call has already
+ ** validated the freelist. Given that the freelist is valid, there
+ ** is no way that the allocation can extend off the end of the page.
+ ** The assert() below verifies the previous sentence.
+ */
+ top -= nByte;
+ put2byte(&data[hdr+5], top);
+ assert( top+nByte <= (int)pPage->pBt->usableSize );
+ *pIdx = top;
+ return SQLITE_OK;
+}
+
+/*
+** Return a section of the pPage->aData to the freelist.
+** The first byte of the new free block is pPage->aData[iStart]
+** and the size of the block is iSize bytes.
+**
+** Adjacent freeblocks are coalesced.
+**
+** Even though the freeblock list was checked by btreeComputeFreeSpace(),
+** that routine will not detect overlap between cells or freeblocks. Nor
+** does it detect cells or freeblocks that encrouch into the reserved bytes
+** at the end of the page. So do additional corruption checks inside this
+** routine and return SQLITE_CORRUPT if any problems are found.
+*/
+static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
+ u16 iPtr; /* Address of ptr to next freeblock */
+ u16 iFreeBlk; /* Address of the next freeblock */
+ u8 hdr; /* Page header size. 0 or 100 */
+ u8 nFrag = 0; /* Reduction in fragmentation */
+ u16 iOrigSize = iSize; /* Original value of iSize */
+ u16 x; /* Offset to cell content area */
+ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
+ unsigned char *data = pPage->aData; /* Page content */
+ u8 *pTmp; /* Temporary ptr into data[] */
+
+ assert( pPage->pBt!=0 );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
+ assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( iSize>=4 ); /* Minimum cell size is 4 */
+ assert( iStart<=pPage->pBt->usableSize-4 );
+
+ /* The list of freeblocks must be in ascending order. Find the
+ ** spot on the list where iStart should be inserted.
+ */
+ hdr = pPage->hdrOffset;
+ iPtr = hdr + 1;
+ if( data[iPtr+1]==0 && data[iPtr]==0 ){
+ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
+ }else{
+ while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
+ if( iFreeBlk<iPtr+4 ){
+ if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ iPtr = iFreeBlk;
+ }
+ if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
+
+ /* At this point:
+ ** iFreeBlk: First freeblock after iStart, or zero if none
+ ** iPtr: The address of a pointer to iFreeBlk
+ **
+ ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
+ */
+ if( iFreeBlk && iEnd+3>=iFreeBlk ){
+ nFrag = iFreeBlk - iEnd;
+ if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
+ iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
+ if( iEnd > pPage->pBt->usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ iSize = iEnd - iStart;
+ iFreeBlk = get2byte(&data[iFreeBlk]);
+ }
+
+ /* If iPtr is another freeblock (that is, if iPtr is not the freelist
+ ** pointer in the page header) then check to see if iStart should be
+ ** coalesced onto the end of iPtr.
+ */
+ if( iPtr>hdr+1 ){
+ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
+ if( iPtrEnd+3>=iStart ){
+ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
+ nFrag += iStart - iPtrEnd;
+ iSize = iEnd - iPtr;
+ iStart = iPtr;
+ }
+ }
+ if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
+ data[hdr+7] -= nFrag;
+ }
+ pTmp = &data[hdr+5];
+ x = get2byte(pTmp);
+ if( iStart<=x ){
+ /* The new freeblock is at the beginning of the cell content area,
+ ** so just extend the cell content area rather than create another
+ ** freelist entry */
+ if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
+ if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
+ put2byte(&data[hdr+1], iFreeBlk);
+ put2byte(&data[hdr+5], iEnd);
+ }else{
+ /* Insert the new freeblock into the freelist */
+ put2byte(&data[iPtr], iStart);
+ }
+ if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
+ /* Overwrite deleted information with zeros when the secure_delete
+ ** option is enabled */
+ memset(&data[iStart], 0, iSize);
+ }
+ put2byte(&data[iStart], iFreeBlk);
+ put2byte(&data[iStart+2], iSize);
+ pPage->nFree += iOrigSize;
+ return SQLITE_OK;
+}
+
+/*
+** Decode the flags byte (the first byte of the header) for a page
+** and initialize fields of the MemPage structure accordingly.
+**
+** Only the following combinations are supported. Anything different
+** indicates a corrupt database files:
+**
+** PTF_ZERODATA
+** PTF_ZERODATA | PTF_LEAF
+** PTF_LEAFDATA | PTF_INTKEY
+** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
+*/
+static int decodeFlags(MemPage *pPage, int flagByte){
+ BtShared *pBt; /* A copy of pPage->pBt */
+
+ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
+ flagByte &= ~PTF_LEAF;
+ pPage->childPtrSize = 4-4*pPage->leaf;
+ pBt = pPage->pBt;
+ if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
+ /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
+ ** interior table b-tree page. */
+ assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
+ /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
+ ** leaf table b-tree page. */
+ assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
+ pPage->intKey = 1;
+ if( pPage->leaf ){
+ pPage->intKeyLeaf = 1;
+ pPage->xCellSize = cellSizePtrTableLeaf;
+ pPage->xParseCell = btreeParseCellPtr;
+ }else{
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtrNoPayload;
+ pPage->xParseCell = btreeParseCellPtrNoPayload;
+ }
+ pPage->maxLocal = pBt->maxLeaf;
+ pPage->minLocal = pBt->minLeaf;
+ }else if( flagByte==PTF_ZERODATA ){
+ /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
+ ** interior index b-tree page. */
+ assert( (PTF_ZERODATA)==2 );
+ /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
+ ** leaf index b-tree page. */
+ assert( (PTF_ZERODATA|PTF_LEAF)==10 );
+ pPage->intKey = 0;
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtr;
+ pPage->xParseCell = btreeParseCellPtrIndex;
+ pPage->maxLocal = pBt->maxLocal;
+ pPage->minLocal = pBt->minLocal;
+ }else{
+ /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
+ ** an error. */
+ pPage->intKey = 0;
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtr;
+ pPage->xParseCell = btreeParseCellPtrIndex;
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ pPage->max1bytePayload = pBt->max1bytePayload;
+ return SQLITE_OK;
+}
+
+/*
+** Compute the amount of freespace on the page. In other words, fill
+** in the pPage->nFree field.
+*/
+static int btreeComputeFreeSpace(MemPage *pPage){
+ int pc; /* Address of a freeblock within pPage->aData[] */
+ u8 hdr; /* Offset to beginning of page header */
+ u8 *data; /* Equal to pPage->aData */
+ int usableSize; /* Amount of usable space on each page */
+ int nFree; /* Number of unused bytes on the page */
+ int top; /* First byte of the cell content area */
+ int iCellFirst; /* First allowable cell or freeblock offset */
+ int iCellLast; /* Last possible cell or freeblock offset */
+
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->db!=0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+ assert( pPage->isInit==1 );
+ assert( pPage->nFree<0 );
+
+ usableSize = pPage->pBt->usableSize;
+ hdr = pPage->hdrOffset;
+ data = pPage->aData;
+ /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
+ ** the start of the cell content area. A zero value for this integer is
+ ** interpreted as 65536. */
+ top = get2byteNotZero(&data[hdr+5]);
+ iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
+ iCellLast = usableSize - 4;
+
+ /* Compute the total free space on the page
+ ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
+ ** start of the first freeblock on the page, or is zero if there are no
+ ** freeblocks. */
+ pc = get2byte(&data[hdr+1]);
+ nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
+ if( pc>0 ){
+ u32 next, size;
+ if( pc<top ){
+ /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
+ ** always be at least one cell before the first freeblock.
+ */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ while( 1 ){
+ if( pc>iCellLast ){
+ /* Freeblock off the end of the page */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ next = get2byte(&data[pc]);
+ size = get2byte(&data[pc+2]);
+ nFree = nFree + size;
+ if( next<=pc+size+3 ) break;
+ pc = next;
+ }
+ if( next>0 ){
+ /* Freeblock not in ascending order */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( pc+size>(unsigned int)usableSize ){
+ /* Last freeblock extends past page end */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+
+ /* At this point, nFree contains the sum of the offset to the start
+ ** of the cell-content area plus the number of free bytes within
+ ** the cell-content area. If this is greater than the usable-size
+ ** of the page, then the page must be corrupted. This check also
+ ** serves to verify that the offset to the start of the cell-content
+ ** area, according to the page header, lies within the page.
+ */
+ if( nFree>usableSize || nFree<iCellFirst ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ pPage->nFree = (u16)(nFree - iCellFirst);
+ return SQLITE_OK;
+}
+
+/*
+** Do additional sanity check after btreeInitPage() if
+** PRAGMA cell_size_check=ON
+*/
+static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
+ int iCellFirst; /* First allowable cell or freeblock offset */
+ int iCellLast; /* Last possible cell or freeblock offset */
+ int i; /* Index into the cell pointer array */
+ int sz; /* Size of a cell */
+ int pc; /* Address of a freeblock within pPage->aData[] */
+ u8 *data; /* Equal to pPage->aData */
+ int usableSize; /* Maximum usable space on the page */
+ int cellOffset; /* Start of cell content area */
+
+ iCellFirst = pPage->cellOffset + 2*pPage->nCell;
+ usableSize = pPage->pBt->usableSize;
+ iCellLast = usableSize - 4;
+ data = pPage->aData;
+ cellOffset = pPage->cellOffset;
+ if( !pPage->leaf ) iCellLast--;
+ for(i=0; i<pPage->nCell; i++){
+ pc = get2byteAligned(&data[cellOffset+i*2]);
+ testcase( pc==iCellFirst );
+ testcase( pc==iCellLast );
+ if( pc<iCellFirst || pc>iCellLast ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ sz = pPage->xCellSize(pPage, &data[pc]);
+ testcase( pc+sz==usableSize );
+ if( pc+sz>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Initialize the auxiliary information for a disk block.
+**
+** Return SQLITE_OK on success. If we see that the page does
+** not contain a well-formed database page, then return
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
+** guarantee that the page is well-formed. It only shows that
+** we failed to detect any corruption.
+*/
+static int btreeInitPage(MemPage *pPage){
+ u8 *data; /* Equal to pPage->aData */
+ BtShared *pBt; /* The main btree structure */
+
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->db!=0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+ assert( pPage->isInit==0 );
+
+ pBt = pPage->pBt;
+ data = pPage->aData + pPage->hdrOffset;
+ /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
+ ** the b-tree page type. */
+ if( decodeFlags(pPage, data[0]) ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
+ pPage->maskPage = (u16)(pBt->pageSize - 1);
+ pPage->nOverflow = 0;
+ pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
+ pPage->aCellIdx = data + pPage->childPtrSize + 8;
+ pPage->aDataEnd = pPage->aData + pBt->pageSize;
+ pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
+ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
+ ** number of cells on the page. */
+ pPage->nCell = get2byte(&data[3]);
+ if( pPage->nCell>MX_CELL(pBt) ){
+ /* To many cells for a single page. The page must be corrupt */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ testcase( pPage->nCell==MX_CELL(pBt) );
+ /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
+ ** possible for a root page of a table that contains no rows) then the
+ ** offset to the cell content area will equal the page size minus the
+ ** bytes of reserved space. */
+ assert( pPage->nCell>0
+ || get2byteNotZero(&data[5])==(int)pBt->usableSize
+ || CORRUPT_DB );
+ pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
+ pPage->isInit = 1;
+ if( pBt->db->flags & SQLITE_CellSizeCk ){
+ return btreeCellSizeCheck(pPage);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Set up a raw page so that it looks like a database page holding
+** no entries.
+*/
+static void zeroPage(MemPage *pPage, int flags){
+ unsigned char *data = pPage->aData;
+ BtShared *pBt = pPage->pBt;
+ u8 hdr = pPage->hdrOffset;
+ u16 first;
+
+ assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage) == data );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pBt->btsFlags & BTS_FAST_SECURE ){
+ memset(&data[hdr], 0, pBt->usableSize - hdr);
+ }
+ data[hdr] = (char)flags;
+ first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
+ memset(&data[hdr+1], 0, 4);
+ data[hdr+7] = 0;
+ put2byte(&data[hdr+5], pBt->usableSize);
+ pPage->nFree = (u16)(pBt->usableSize - first);
+ decodeFlags(pPage, flags);
+ pPage->cellOffset = first;
+ pPage->aDataEnd = &data[pBt->pageSize];
+ pPage->aCellIdx = &data[first];
+ pPage->aDataOfst = &data[pPage->childPtrSize];
+ pPage->nOverflow = 0;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
+ pPage->maskPage = (u16)(pBt->pageSize - 1);
+ pPage->nCell = 0;
+ pPage->isInit = 1;
+}
+
+
+/*
+** Convert a DbPage obtained from the pager into a MemPage used by
+** the btree layer.
+*/
+static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
+ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
+ if( pgno!=pPage->pgno ){
+ pPage->aData = sqlite3PagerGetData(pDbPage);
+ pPage->pDbPage = pDbPage;
+ pPage->pBt = pBt;
+ pPage->pgno = pgno;
+ pPage->hdrOffset = pgno==1 ? 100 : 0;
+ }
+ assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
+ return pPage;
+}
+
+/*
+** Get a page from the pager. Initialize the MemPage.pBt and
+** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
+**
+** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
+** about the content of the page at this time. So do not go to the disk
+** to fetch the content. Just fill in the content with zeros for now.
+** If in the future we call sqlite3PagerWrite() on this page, that
+** means we have started to be concerned about content and the disk
+** read should occur at that point.
+*/
+static int btreeGetPage(
+ BtShared *pBt, /* The btree */
+ Pgno pgno, /* Number of the page to fetch */
+ MemPage **ppPage, /* Return the page in this parameter */
+ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
+){
+ int rc;
+ DbPage *pDbPage;
+
+ assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
+ if( rc ) return rc;
+ *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
+ return SQLITE_OK;
+}
+
+/*
+** Retrieve a page from the pager cache. If the requested page is not
+** already in the pager cache return NULL. Initialize the MemPage.pBt and
+** MemPage.aData elements if needed.
+*/
+static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
+ DbPage *pDbPage;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
+ if( pDbPage ){
+ return btreePageFromDbPage(pDbPage, pgno, pBt);
+ }
+ return 0;
+}
+
+/*
+** Return the size of the database file in pages. If there is any kind of
+** error, return ((unsigned int)-1).
+*/
+static Pgno btreePagecount(BtShared *pBt){
+ return pBt->nPage;
+}
+SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree *p){
+ assert( sqlite3BtreeHoldsMutex(p) );
+ return btreePagecount(p->pBt);
+}
+
+/*
+** Get a page from the pager and initialize it.
+**
+** If pCur!=0 then the page is being fetched as part of a moveToChild()
+** call. Do additional sanity checking on the page in this case.
+** And if the fetch fails, this routine must decrement pCur->iPage.
+**
+** The page is fetched as read-write unless pCur is not NULL and is
+** a read-only cursor.
+**
+** If an error occurs, then *ppPage is undefined. It
+** may remain unchanged, or it may be set to an invalid value.
+*/
+static int getAndInitPage(
+ BtShared *pBt, /* The database file */
+ Pgno pgno, /* Number of the page to get */
+ MemPage **ppPage, /* Write the page pointer here */
+ BtCursor *pCur, /* Cursor to receive the page, or NULL */
+ int bReadOnly /* True for a read-only page */
+){
+ int rc;
+ DbPage *pDbPage;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pCur==0 || ppPage==&pCur->pPage );
+ assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
+ assert( pCur==0 || pCur->iPage>0 );
+
+ if( pgno>btreePagecount(pBt) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto getAndInitPage_error1;
+ }
+ rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
+ if( rc ){
+ goto getAndInitPage_error1;
+ }
+ *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
+ if( (*ppPage)->isInit==0 ){
+ btreePageFromDbPage(pDbPage, pgno, pBt);
+ rc = btreeInitPage(*ppPage);
+ if( rc!=SQLITE_OK ){
+ goto getAndInitPage_error2;
+ }
+ }
+ assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
+ assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
+
+ /* If obtaining a child page for a cursor, we must verify that the page is
+ ** compatible with the root page. */
+ if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
+ rc = SQLITE_CORRUPT_PGNO(pgno);
+ goto getAndInitPage_error2;
+ }
+ return SQLITE_OK;
+
+getAndInitPage_error2:
+ releasePage(*ppPage);
+getAndInitPage_error1:
+ if( pCur ){
+ pCur->iPage--;
+ pCur->pPage = pCur->apPage[pCur->iPage];
+ }
+ testcase( pgno==0 );
+ assert( pgno!=0 || rc==SQLITE_CORRUPT
+ || rc==SQLITE_IOERR_NOMEM
+ || rc==SQLITE_NOMEM );
+ return rc;
+}
+
+/*
+** Release a MemPage. This should be called once for each prior
+** call to btreeGetPage.
+**
+** Page1 is a special case and must be released using releasePageOne().
+*/
+static void releasePageNotNull(MemPage *pPage){
+ assert( pPage->aData );
+ assert( pPage->pBt );
+ assert( pPage->pDbPage!=0 );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ sqlite3PagerUnrefNotNull(pPage->pDbPage);
+}
+static void releasePage(MemPage *pPage){
+ if( pPage ) releasePageNotNull(pPage);
+}
+static void releasePageOne(MemPage *pPage){
+ assert( pPage!=0 );
+ assert( pPage->aData );
+ assert( pPage->pBt );
+ assert( pPage->pDbPage!=0 );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ sqlite3PagerUnrefPageOne(pPage->pDbPage);
+}
+
+/*
+** Get an unused page.
+**
+** This works just like btreeGetPage() with the addition:
+**
+** * If the page is already in use for some other purpose, immediately
+** release it and return an SQLITE_CURRUPT error.
+** * Make sure the isInit flag is clear
+*/
+static int btreeGetUnusedPage(
+ BtShared *pBt, /* The btree */
+ Pgno pgno, /* Number of the page to fetch */
+ MemPage **ppPage, /* Return the page in this parameter */
+ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
+){
+ int rc = btreeGetPage(pBt, pgno, ppPage, flags);
+ if( rc==SQLITE_OK ){
+ if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ return SQLITE_CORRUPT_BKPT;
+ }
+ (*ppPage)->isInit = 0;
+ }else{
+ *ppPage = 0;
+ }
+ return rc;
+}
+
+
+/*
+** During a rollback, when the pager reloads information into the cache
+** so that the cache is restored to its original state at the start of
+** the transaction, for each page restored this routine is called.
+**
+** This routine needs to reset the extra data section at the end of the
+** page to agree with the restored data.
+*/
+static void pageReinit(DbPage *pData){
+ MemPage *pPage;
+ pPage = (MemPage *)sqlite3PagerGetExtra(pData);
+ assert( sqlite3PagerPageRefcount(pData)>0 );
+ if( pPage->isInit ){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pPage->isInit = 0;
+ if( sqlite3PagerPageRefcount(pData)>1 ){
+ /* pPage might not be a btree page; it might be an overflow page
+ ** or ptrmap page or a free page. In those cases, the following
+ ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
+ ** But no harm is done by this. And it is very important that
+ ** btreeInitPage() be called on every btree page so we make
+ ** the call for every page that comes in for re-initing. */
+ btreeInitPage(pPage);
+ }
+ }
+}
+
+/*
+** Invoke the busy handler for a btree.
+*/
+static int btreeInvokeBusyHandler(void *pArg){
+ BtShared *pBt = (BtShared*)pArg;
+ assert( pBt->db );
+ assert( sqlite3_mutex_held(pBt->db->mutex) );
+ return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
+}
+
+/*
+** Open a database file.
+**
+** zFilename is the name of the database file. If zFilename is NULL
+** then an ephemeral database is created. The ephemeral database might
+** be exclusively in memory, or it might use a disk-based memory cache.
+** Either way, the ephemeral database will be automatically deleted
+** when sqlite3BtreeClose() is called.
+**
+** If zFilename is ":memory:" then an in-memory database is created
+** that is automatically destroyed when it is closed.
+**
+** The "flags" parameter is a bitmask that might contain bits like
+** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
+**
+** If the database is already opened in the same database connection
+** and we are in shared cache mode, then the open will fail with an
+** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
+** objects in the same database connection since doing so will lead
+** to problems with locking.
+*/
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
+ const char *zFilename, /* Name of the file containing the BTree database */
+ sqlite3 *db, /* Associated database handle */
+ Btree **ppBtree, /* Pointer to new Btree object written here */
+ int flags, /* Options */
+ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
+){
+ BtShared *pBt = 0; /* Shared part of btree structure */
+ Btree *p; /* Handle to return */
+ sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
+ int rc = SQLITE_OK; /* Result code from this function */
+ u8 nReserve; /* Byte of unused space on each page */
+ unsigned char zDbHeader[100]; /* Database header content */
+
+ /* True if opening an ephemeral, temporary database */
+ const int isTempDb = zFilename==0 || zFilename[0]==0;
+
+ /* Set the variable isMemdb to true for an in-memory database, or
+ ** false for a file-based database.
+ */
+#ifdef SQLITE_OMIT_MEMORYDB
+ const int isMemdb = 0;
+#else
+ const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
+ || (isTempDb && sqlite3TempInMemory(db))
+ || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
+#endif
+
+ assert( db!=0 );
+ assert( pVfs!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
+
+ /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
+ assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
+
+ /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
+ assert( (flags & BTREE_SINGLE)==0 || isTempDb );
+
+ if( isMemdb ){
+ flags |= BTREE_MEMORY;
+ }
+ if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
+ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
+ }
+ p = sqlite3MallocZero(sizeof(Btree));
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ p->inTrans = TRANS_NONE;
+ p->db = db;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ p->lock.pBtree = p;
+ p->lock.iTable = 1;
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /*
+ ** If this Btree is a candidate for shared cache, try to find an
+ ** existing BtShared object that we can share with
+ */
+ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
+ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
+ int nFilename = sqlite3Strlen30(zFilename)+1;
+ int nFullPathname = pVfs->mxPathname+1;
+ char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
+ MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
+
+ p->sharable = 1;
+ if( !zFullPathname ){
+ sqlite3_free(p);
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( isMemdb ){
+ memcpy(zFullPathname, zFilename, nFilename);
+ }else{
+ rc = sqlite3OsFullPathname(pVfs, zFilename,
+ nFullPathname, zFullPathname);
+ if( rc ){
+ if( rc==SQLITE_OK_SYMLINK ){
+ rc = SQLITE_OK;
+ }else{
+ sqlite3_free(zFullPathname);
+ sqlite3_free(p);
+ return rc;
+ }
+ }
+ }
+#if SQLITE_THREADSAFE
+ mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
+ sqlite3_mutex_enter(mutexOpen);
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+ sqlite3_mutex_enter(mutexShared);
+#endif
+ for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
+ assert( pBt->nRef>0 );
+ if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
+ && sqlite3PagerVfs(pBt->pPager)==pVfs ){
+ int iDb;
+ for(iDb=db->nDb-1; iDb>=0; iDb--){
+ Btree *pExisting = db->aDb[iDb].pBt;
+ if( pExisting && pExisting->pBt==pBt ){
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_mutex_leave(mutexOpen);
+ sqlite3_free(zFullPathname);
+ sqlite3_free(p);
+ return SQLITE_CONSTRAINT;
+ }
+ }
+ p->pBt = pBt;
+ pBt->nRef++;
+ break;
+ }
+ }
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_free(zFullPathname);
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ /* In debug mode, we mark all persistent databases as sharable
+ ** even when they are not. This exercises the locking code and
+ ** gives more opportunity for asserts(sqlite3_mutex_held())
+ ** statements to find locking problems.
+ */
+ p->sharable = 1;
+ }
+#endif
+ }
+#endif
+ if( pBt==0 ){
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(i64)==8 );
+ assert( sizeof(u64)==8 );
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+
+ pBt = sqlite3MallocZero( sizeof(*pBt) );
+ if( pBt==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto btree_open_out;
+ }
+ rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
+ sizeof(MemPage), flags, vfsFlags, pageReinit);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
+ rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
+ }
+ if( rc!=SQLITE_OK ){
+ goto btree_open_out;
+ }
+ pBt->openFlags = (u8)flags;
+ pBt->db = db;
+ sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
+ p->pBt = pBt;
+
+ pBt->pCursor = 0;
+ pBt->pPage1 = 0;
+ if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
+#if defined(SQLITE_SECURE_DELETE)
+ pBt->btsFlags |= BTS_SECURE_DELETE;
+#elif defined(SQLITE_FAST_SECURE_DELETE)
+ pBt->btsFlags |= BTS_OVERWRITE;
+#endif
+ /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
+ ** determined by the 2-byte integer located at an offset of 16 bytes from
+ ** the beginning of the database file. */
+ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
+ if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
+ || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
+ pBt->pageSize = 0;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the magic name ":memory:" will create an in-memory database, then
+ ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
+ ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
+ ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
+ ** regular file-name. In this case the auto-vacuum applies as per normal.
+ */
+ if( zFilename && !isMemdb ){
+ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
+ pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
+ }
+#endif
+ nReserve = 0;
+ }else{
+ /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
+ ** determined by the one-byte unsigned integer found at an offset of 20
+ ** into the database file header. */
+ nReserve = zDbHeader[20];
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
+#endif
+ }
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
+ if( rc ) goto btree_open_out;
+ pBt->usableSize = pBt->pageSize - nReserve;
+ assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* Add the new BtShared object to the linked list sharable BtShareds.
+ */
+ pBt->nRef = 1;
+ if( p->sharable ){
+ MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
+ MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
+ if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
+ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
+ if( pBt->mutex==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto btree_open_out;
+ }
+ }
+ sqlite3_mutex_enter(mutexShared);
+ pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
+ sqlite3_mutex_leave(mutexShared);
+ }
+#endif
+ }
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* If the new Btree uses a sharable pBtShared, then link the new
+ ** Btree into the list of all sharable Btrees for the same connection.
+ ** The list is kept in ascending order by pBt address.
+ */
+ if( p->sharable ){
+ int i;
+ Btree *pSib;
+ for(i=0; i<db->nDb; i++){
+ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
+ while( pSib->pPrev ){ pSib = pSib->pPrev; }
+ if( (uptr)p->pBt<(uptr)pSib->pBt ){
+ p->pNext = pSib;
+ p->pPrev = 0;
+ pSib->pPrev = p;
+ }else{
+ while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
+ pSib = pSib->pNext;
+ }
+ p->pNext = pSib->pNext;
+ p->pPrev = pSib;
+ if( p->pNext ){
+ p->pNext->pPrev = p;
+ }
+ pSib->pNext = p;
+ }
+ break;
+ }
+ }
+ }
+#endif
+ *ppBtree = p;
+
+btree_open_out:
+ if( rc!=SQLITE_OK ){
+ if( pBt && pBt->pPager ){
+ sqlite3PagerClose(pBt->pPager, 0);
+ }
+ sqlite3_free(pBt);
+ sqlite3_free(p);
+ *ppBtree = 0;
+ }else{
+ sqlite3_file *pFile;
+
+ /* If the B-Tree was successfully opened, set the pager-cache size to the
+ ** default value. Except, when opening on an existing shared pager-cache,
+ ** do not change the pager-cache size.
+ */
+ if( sqlite3BtreeSchema(p, 0, 0)==0 ){
+ sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
+ }
+
+ pFile = sqlite3PagerFile(pBt->pPager);
+ if( pFile->pMethods ){
+ sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
+ }
+ }
+ if( mutexOpen ){
+ assert( sqlite3_mutex_held(mutexOpen) );
+ sqlite3_mutex_leave(mutexOpen);
+ }
+ assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
+ return rc;
+}
+
+/*
+** Decrement the BtShared.nRef counter. When it reaches zero,
+** remove the BtShared structure from the sharing list. Return
+** true if the BtShared.nRef counter reaches zero and return
+** false if it is still positive.
+*/
+static int removeFromSharingList(BtShared *pBt){
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
+ BtShared *pList;
+ int removed = 0;
+
+ assert( sqlite3_mutex_notheld(pBt->mutex) );
+ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(pMainMtx);
+ pBt->nRef--;
+ if( pBt->nRef<=0 ){
+ if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
+ }else{
+ pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
+ while( ALWAYS(pList) && pList->pNext!=pBt ){
+ pList=pList->pNext;
+ }
+ if( ALWAYS(pList) ){
+ pList->pNext = pBt->pNext;
+ }
+ }
+ if( SQLITE_THREADSAFE ){
+ sqlite3_mutex_free(pBt->mutex);
+ }
+ removed = 1;
+ }
+ sqlite3_mutex_leave(pMainMtx);
+ return removed;
+#else
+ return 1;
+#endif
+}
+
+/*
+** Make sure pBt->pTmpSpace points to an allocation of
+** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
+** pointer.
+*/
+static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
+ assert( pBt!=0 );
+ assert( pBt->pTmpSpace==0 );
+ /* This routine is called only by btreeCursor() when allocating the
+ ** first write cursor for the BtShared object */
+ assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
+ pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
+ if( pBt->pTmpSpace==0 ){
+ BtCursor *pCur = pBt->pCursor;
+ pBt->pCursor = pCur->pNext; /* Unlink the cursor */
+ memset(pCur, 0, sizeof(*pCur));
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* One of the uses of pBt->pTmpSpace is to format cells before
+ ** inserting them into a leaf page (function fillInCell()). If
+ ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
+ ** by the various routines that manipulate binary cells. Which
+ ** can mean that fillInCell() only initializes the first 2 or 3
+ ** bytes of pTmpSpace, but that the first 4 bytes are copied from
+ ** it into a database page. This is not actually a problem, but it
+ ** does cause a valgrind error when the 1 or 2 bytes of unitialized
+ ** data is passed to system call write(). So to avoid this error,
+ ** zero the first 4 bytes of temp space here.
+ **
+ ** Also: Provide four bytes of initialized space before the
+ ** beginning of pTmpSpace as an area available to prepend the
+ ** left-child pointer to the beginning of a cell.
+ */
+ memset(pBt->pTmpSpace, 0, 8);
+ pBt->pTmpSpace += 4;
+ return SQLITE_OK;
+}
+
+/*
+** Free the pBt->pTmpSpace allocation
+*/
+static void freeTempSpace(BtShared *pBt){
+ if( pBt->pTmpSpace ){
+ pBt->pTmpSpace -= 4;
+ sqlite3PageFree(pBt->pTmpSpace);
+ pBt->pTmpSpace = 0;
+ }
+}
+
+/*
+** Close an open database and invalidate all cursors.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
+ BtShared *pBt = p->pBt;
+
+ /* Close all cursors opened via this handle. */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+
+ /* Verify that no other cursors have this Btree open */
+#ifdef SQLITE_DEBUG
+ {
+ BtCursor *pCur = pBt->pCursor;
+ while( pCur ){
+ BtCursor *pTmp = pCur;
+ pCur = pCur->pNext;
+ assert( pTmp->pBtree!=p );
+
+ }
+ }
+#endif
+
+ /* Rollback any active transaction and free the handle structure.
+ ** The call to sqlite3BtreeRollback() drops any table-locks held by
+ ** this handle.
+ */
+ sqlite3BtreeRollback(p, SQLITE_OK, 0);
+ sqlite3BtreeLeave(p);
+
+ /* If there are still other outstanding references to the shared-btree
+ ** structure, return now. The remainder of this procedure cleans
+ ** up the shared-btree.
+ */
+ assert( p->wantToLock==0 && p->locked==0 );
+ if( !p->sharable || removeFromSharingList(pBt) ){
+ /* The pBt is no longer on the sharing list, so we can access
+ ** it without having to hold the mutex.
+ **
+ ** Clean out and delete the BtShared object.
+ */
+ assert( !pBt->pCursor );
+ sqlite3PagerClose(pBt->pPager, p->db);
+ if( pBt->xFreeSchema && pBt->pSchema ){
+ pBt->xFreeSchema(pBt->pSchema);
+ }
+ sqlite3DbFree(0, pBt->pSchema);
+ freeTempSpace(pBt);
+ sqlite3_free(pBt);
+ }
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ assert( p->wantToLock==0 );
+ assert( p->locked==0 );
+ if( p->pPrev ) p->pPrev->pNext = p->pNext;
+ if( p->pNext ) p->pNext->pPrev = p->pPrev;
+#endif
+
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Change the "soft" limit on the number of pages in the cache.
+** Unused and unmodified pages will be recycled when the number of
+** pages in the cache exceeds this soft limit. But the size of the
+** cache is allowed to grow larger than this limit if it contains
+** dirty pages or pages still in active use.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetCachesize(pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Change the "spill" limit on the number of pages in the cache.
+** If the number of pages exceeds this limit during a write transaction,
+** the pager might attempt to "spill" pages to the journal early in
+** order to free up memory.
+**
+** The value returned is the current spill size. If zero is passed
+** as an argument, no changes are made to the spill size setting, so
+** using mxPage of 0 is a way to query the current spill size.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
+ BtShared *pBt = p->pBt;
+ int res;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return res;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** Change the limit on the amount of the database file that may be
+** memory mapped.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/*
+** Change the way data is synced to disk in order to increase or decrease
+** how well the database resists damage due to OS crashes and power
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
+** there is a high probability of damage) Level 2 is the default. There
+** is a very low but non-zero probability of damage. Level 3 reduces the
+** probability of damage to near zero but with a write performance reduction.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(
+ Btree *p, /* The btree to set the safety level on */
+ unsigned pgFlags /* Various PAGER_* flags */
+){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetFlags(pBt->pPager, pgFlags);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Change the default pages size and the number of reserved bytes per page.
+** Or, if the page size has already been fixed, return SQLITE_READONLY
+** without changing anything.
+**
+** The page size must be a power of 2 between 512 and 65536. If the page
+** size supplied does not meet this constraint then the page size is not
+** changed.
+**
+** Page sizes are constrained to be a power of two so that the region
+** of the database file used for locking (beginning at PENDING_BYTE,
+** the first byte past the 1GB boundary, 0x40000000) needs to occur
+** at the beginning of a page.
+**
+** If parameter nReserve is less than zero, then the number of reserved
+** bytes per page is left unchanged.
+**
+** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
+** and autovacuum mode can no longer be changed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
+ int rc = SQLITE_OK;
+ int x;
+ BtShared *pBt = p->pBt;
+ assert( nReserve>=0 && nReserve<=255 );
+ sqlite3BtreeEnter(p);
+ pBt->nReserveWanted = nReserve;
+ x = pBt->pageSize - pBt->usableSize;
+ if( nReserve<x ) nReserve = x;
+ if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
+ sqlite3BtreeLeave(p);
+ return SQLITE_READONLY;
+ }
+ assert( nReserve>=0 && nReserve<=255 );
+ if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
+ ((pageSize-1)&pageSize)==0 ){
+ assert( (pageSize & 7)==0 );
+ assert( !pBt->pCursor );
+ if( nReserve>32 && pageSize==512 ) pageSize = 1024;
+ pBt->pageSize = (u32)pageSize;
+ freeTempSpace(pBt);
+ }
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
+ pBt->usableSize = pBt->pageSize - (u16)nReserve;
+ if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Return the currently defined page size
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
+ return p->pBt->pageSize;
+}
+
+/*
+** This function is similar to sqlite3BtreeGetReserve(), except that it
+** may only be called if it is guaranteed that the b-tree mutex is already
+** held.
+**
+** This is useful in one special case in the backup API code where it is
+** known that the shared b-tree mutex is held, but the mutex on the
+** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
+** were to be called, it might collide with some other operation on the
+** database handle that owns *p, causing undefined behavior.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){
+ int n;
+ assert( sqlite3_mutex_held(p->pBt->mutex) );
+ n = p->pBt->pageSize - p->pBt->usableSize;
+ return n;
+}
+
+/*
+** Return the number of bytes of space at the end of every page that
+** are intentually left unused. This is the "reserved" space that is
+** sometimes used by extensions.
+**
+** The value returned is the larger of the current reserve size and
+** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
+** The amount of reserve can only grow - never shrink.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree *p){
+ int n1, n2;
+ sqlite3BtreeEnter(p);
+ n1 = (int)p->pBt->nReserveWanted;
+ n2 = sqlite3BtreeGetReserveNoMutex(p);
+ sqlite3BtreeLeave(p);
+ return n1>n2 ? n1 : n2;
+}
+
+
+/*
+** Set the maximum page count for a database if mxPage is positive.
+** No changes are made if mxPage is 0 or negative.
+** Regardless of the value of mxPage, return the maximum page count.
+*/
+SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
+ Pgno n;
+ sqlite3BtreeEnter(p);
+ n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return n;
+}
+
+/*
+** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
+**
+** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
+** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
+** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
+** newFlag==(-1) No changes
+**
+** This routine acts as a query if newFlag is less than zero
+**
+** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
+** freelist leaf pages are not written back to the database. Thus in-page
+** deleted content is cleared, but freelist deleted content is not.
+**
+** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
+** that freelist leaf pages are written back into the database, increasing
+** the amount of disk I/O.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
+ int b;
+ if( p==0 ) return 0;
+ sqlite3BtreeEnter(p);
+ assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
+ assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
+ if( newFlag>=0 ){
+ p->pBt->btsFlags &= ~BTS_FAST_SECURE;
+ p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
+ }
+ b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
+ sqlite3BtreeLeave(p);
+ return b;
+}
+
+/*
+** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
+** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
+** is disabled. The default value for the auto-vacuum property is
+** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ return SQLITE_READONLY;
+#else
+ BtShared *pBt = p->pBt;
+ int rc = SQLITE_OK;
+ u8 av = (u8)autoVacuum;
+
+ sqlite3BtreeEnter(p);
+ if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
+ rc = SQLITE_READONLY;
+ }else{
+ pBt->autoVacuum = av ?1:0;
+ pBt->incrVacuum = av==2 ?1:0;
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+#endif
+}
+
+/*
+** Return the value of the 'auto-vacuum' property. If auto-vacuum is
+** enabled 1 is returned. Otherwise 0.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ return BTREE_AUTOVACUUM_NONE;
+#else
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = (
+ (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
+ (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
+ BTREE_AUTOVACUUM_INCR
+ );
+ sqlite3BtreeLeave(p);
+ return rc;
+#endif
+}
+
+/*
+** If the user has not set the safety-level for this database connection
+** using "PRAGMA synchronous", and if the safety-level is not already
+** set to the value passed to this function as the second parameter,
+** set it so.
+*/
+#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
+ && !defined(SQLITE_OMIT_WAL)
+static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
+ sqlite3 *db;
+ Db *pDb;
+ if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
+ while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
+ if( pDb->bSyncSet==0
+ && pDb->safety_level!=safety_level
+ && pDb!=&db->aDb[1]
+ ){
+ pDb->safety_level = safety_level;
+ sqlite3PagerSetFlags(pBt->pPager,
+ pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
+ }
+ }
+}
+#else
+# define setDefaultSyncFlag(pBt,safety_level)
+#endif
+
+/* Forward declaration */
+static int newDatabase(BtShared*);
+
+
+/*
+** Get a reference to pPage1 of the database file. This will
+** also acquire a readlock on that file.
+**
+** SQLITE_OK is returned on success. If the file is not a
+** well-formed database file, then SQLITE_CORRUPT is returned.
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
+** is returned if we run out of memory.
+*/
+static int lockBtree(BtShared *pBt){
+ int rc; /* Result code from subfunctions */
+ MemPage *pPage1; /* Page 1 of the database file */
+ u32 nPage; /* Number of pages in the database */
+ u32 nPageFile = 0; /* Number of pages in the database file */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pBt->pPage1==0 );
+ rc = sqlite3PagerSharedLock(pBt->pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = btreeGetPage(pBt, 1, &pPage1, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Do some checking to help insure the file we opened really is
+ ** a valid database file.
+ */
+ nPage = get4byte(28+(u8*)pPage1->aData);
+ sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
+ if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
+ nPage = nPageFile;
+ }
+ if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
+ nPage = 0;
+ }
+ if( nPage>0 ){
+ u32 pageSize;
+ u32 usableSize;
+ u8 *page1 = pPage1->aData;
+ rc = SQLITE_NOTADB;
+ /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
+ ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
+ ** 61 74 20 33 00. */
+ if( memcmp(page1, zMagicHeader, 16)!=0 ){
+ goto page1_init_failed;
+ }
+
+#ifdef SQLITE_OMIT_WAL
+ if( page1[18]>1 ){
+ pBt->btsFlags |= BTS_READ_ONLY;
+ }
+ if( page1[19]>1 ){
+ goto page1_init_failed;
+ }
+#else
+ if( page1[18]>2 ){
+ pBt->btsFlags |= BTS_READ_ONLY;
+ }
+ if( page1[19]>2 ){
+ goto page1_init_failed;
+ }
+
+ /* If the read version is set to 2, this database should be accessed
+ ** in WAL mode. If the log is not already open, open it now. Then
+ ** return SQLITE_OK and return without populating BtShared.pPage1.
+ ** The caller detects this and calls this function again. This is
+ ** required as the version of page 1 currently in the page1 buffer
+ ** may not be the latest version - there may be a newer one in the log
+ ** file.
+ */
+ if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
+ int isOpen = 0;
+ rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
+ if( rc!=SQLITE_OK ){
+ goto page1_init_failed;
+ }else{
+ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
+ if( isOpen==0 ){
+ releasePageOne(pPage1);
+ return SQLITE_OK;
+ }
+ }
+ rc = SQLITE_NOTADB;
+ }else{
+ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
+ }
+#endif
+
+ /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
+ ** fractions and the leaf payload fraction values must be 64, 32, and 32.
+ **
+ ** The original design allowed these amounts to vary, but as of
+ ** version 3.6.0, we require them to be fixed.
+ */
+ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
+ goto page1_init_failed;
+ }
+ /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
+ ** determined by the 2-byte integer located at an offset of 16 bytes from
+ ** the beginning of the database file. */
+ pageSize = (page1[16]<<8) | (page1[17]<<16);
+ /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
+ ** between 512 and 65536 inclusive. */
+ if( ((pageSize-1)&pageSize)!=0
+ || pageSize>SQLITE_MAX_PAGE_SIZE
+ || pageSize<=256
+ ){
+ goto page1_init_failed;
+ }
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+ assert( (pageSize & 7)==0 );
+ /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
+ ** integer at offset 20 is the number of bytes of space at the end of
+ ** each page to reserve for extensions.
+ **
+ ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
+ ** determined by the one-byte unsigned integer found at an offset of 20
+ ** into the database file header. */
+ usableSize = pageSize - page1[20];
+ if( (u32)pageSize!=pBt->pageSize ){
+ /* After reading the first page of the database assuming a page size
+ ** of BtShared.pageSize, we have discovered that the page-size is
+ ** actually pageSize. Unlock the database, leave pBt->pPage1 at
+ ** zero and return SQLITE_OK. The caller will call this function
+ ** again with the correct page-size.
+ */
+ releasePageOne(pPage1);
+ pBt->usableSize = usableSize;
+ pBt->pageSize = pageSize;
+ freeTempSpace(pBt);
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
+ pageSize-usableSize);
+ return rc;
+ }
+ if( nPage>nPageFile ){
+ if( sqlite3WritableSchema(pBt->db)==0 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto page1_init_failed;
+ }else{
+ nPage = nPageFile;
+ }
+ }
+ /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
+ ** be less than 480. In other words, if the page size is 512, then the
+ ** reserved space size cannot exceed 32. */
+ if( usableSize<480 ){
+ goto page1_init_failed;
+ }
+ pBt->pageSize = pageSize;
+ pBt->usableSize = usableSize;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
+#endif
+ }
+
+ /* maxLocal is the maximum amount of payload to store locally for
+ ** a cell. Make sure it is small enough so that at least minFanout
+ ** cells can will fit on one page. We assume a 10-byte page header.
+ ** Besides the payload, the cell must store:
+ ** 2-byte pointer to the cell
+ ** 4-byte child pointer
+ ** 9-byte nKey value
+ ** 4-byte nData value
+ ** 4-byte overflow page pointer
+ ** So a cell consists of a 2-byte pointer, a header which is as much as
+ ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
+ ** page pointer.
+ */
+ pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
+ pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
+ pBt->maxLeaf = (u16)(pBt->usableSize - 35);
+ pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
+ if( pBt->maxLocal>127 ){
+ pBt->max1bytePayload = 127;
+ }else{
+ pBt->max1bytePayload = (u8)pBt->maxLocal;
+ }
+ assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
+ pBt->pPage1 = pPage1;
+ pBt->nPage = nPage;
+ return SQLITE_OK;
+
+page1_init_failed:
+ releasePageOne(pPage1);
+ pBt->pPage1 = 0;
+ return rc;
+}
+
+#ifndef NDEBUG
+/*
+** Return the number of cursors open on pBt. This is for use
+** in assert() expressions, so it is only compiled if NDEBUG is not
+** defined.
+**
+** Only write cursors are counted if wrOnly is true. If wrOnly is
+** false then all cursors are counted.
+**
+** For the purposes of this routine, a cursor is any cursor that
+** is capable of reading or writing to the database. Cursors that
+** have been tripped into the CURSOR_FAULT state are not counted.
+*/
+static int countValidCursors(BtShared *pBt, int wrOnly){
+ BtCursor *pCur;
+ int r = 0;
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
+ && pCur->eState!=CURSOR_FAULT ) r++;
+ }
+ return r;
+}
+#endif
+
+/*
+** If there are no outstanding cursors and we are not in the middle
+** of a transaction but there is a read lock on the database, then
+** this routine unrefs the first page of the database file which
+** has the effect of releasing the read lock.
+**
+** If there is a transaction in progress, this routine is a no-op.
+*/
+static void unlockBtreeIfUnused(BtShared *pBt){
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
+ if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
+ MemPage *pPage1 = pBt->pPage1;
+ assert( pPage1->aData );
+ assert( sqlite3PagerRefcount(pBt->pPager)==1 );
+ pBt->pPage1 = 0;
+ releasePageOne(pPage1);
+ }
+}
+
+/*
+** If pBt points to an empty file then convert that empty file
+** into a new empty database by initializing the first page of
+** the database.
+*/
+static int newDatabase(BtShared *pBt){
+ MemPage *pP1;
+ unsigned char *data;
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pBt->nPage>0 ){
+ return SQLITE_OK;
+ }
+ pP1 = pBt->pPage1;
+ assert( pP1!=0 );
+ data = pP1->aData;
+ rc = sqlite3PagerWrite(pP1->pDbPage);
+ if( rc ) return rc;
+ memcpy(data, zMagicHeader, sizeof(zMagicHeader));
+ assert( sizeof(zMagicHeader)==16 );
+ data[16] = (u8)((pBt->pageSize>>8)&0xff);
+ data[17] = (u8)((pBt->pageSize>>16)&0xff);
+ data[18] = 1;
+ data[19] = 1;
+ assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
+ data[20] = (u8)(pBt->pageSize - pBt->usableSize);
+ data[21] = 64;
+ data[22] = 32;
+ data[23] = 32;
+ memset(&data[24], 0, 100-24);
+ zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
+ assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
+ put4byte(&data[36 + 4*4], pBt->autoVacuum);
+ put4byte(&data[36 + 7*4], pBt->incrVacuum);
+#endif
+ pBt->nPage = 1;
+ data[31] = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Initialize the first page of the database file (creating a database
+** consisting of a single page and no schema objects). Return SQLITE_OK
+** if successful, or an SQLite error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){
+ int rc;
+ sqlite3BtreeEnter(p);
+ p->pBt->nPage = 0;
+ rc = newDatabase(p->pBt);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Attempt to start a new transaction. A write-transaction
+** is started if the second argument is nonzero, otherwise a read-
+** transaction. If the second argument is 2 or more and exclusive
+** transaction is started, meaning that no other process is allowed
+** to access the database. A preexisting transaction may not be
+** upgraded to exclusive by calling this routine a second time - the
+** exclusivity flag only works for a new transaction.
+**
+** A write-transaction must be started before attempting any
+** changes to the database. None of the following routines
+** will work unless a transaction is started first:
+**
+** sqlite3BtreeCreateTable()
+** sqlite3BtreeCreateIndex()
+** sqlite3BtreeClearTable()
+** sqlite3BtreeDropTable()
+** sqlite3BtreeInsert()
+** sqlite3BtreeDelete()
+** sqlite3BtreeUpdateMeta()
+**
+** If an initial attempt to acquire the lock fails because of lock contention
+** and the database was previously unlocked, then invoke the busy handler
+** if there is one. But if there was previously a read-lock, do not
+** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
+** returned when there is already a read-lock in order to avoid a deadlock.
+**
+** Suppose there are two processes A and B. A has a read lock and B has
+** a reserved lock. B tries to promote to exclusive but is blocked because
+** of A's read lock. A tries to promote to reserved but is blocked by B.
+** One or the other of the two processes must give way or there can be
+** no progress. By returning SQLITE_BUSY and not invoking the busy callback
+** when A already has a read lock, we encourage A to give up and let B
+** proceed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
+ BtShared *pBt = p->pBt;
+ Pager *pPager = pBt->pPager;
+ int rc = SQLITE_OK;
+
+ sqlite3BtreeEnter(p);
+ btreeIntegrity(p);
+
+ /* If the btree is already in a write-transaction, or it
+ ** is already in a read-transaction and a read-transaction
+ ** is requested, this is a no-op.
+ */
+ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
+ goto trans_begun;
+ }
+ assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
+
+ if( (p->db->flags & SQLITE_ResetDatabase)
+ && sqlite3PagerIsreadonly(pPager)==0
+ ){
+ pBt->btsFlags &= ~BTS_READ_ONLY;
+ }
+
+ /* Write transactions are not possible on a read-only database */
+ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
+ rc = SQLITE_READONLY;
+ goto trans_begun;
+ }
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ {
+ sqlite3 *pBlock = 0;
+ /* If another database handle has already opened a write transaction
+ ** on this shared-btree structure and a second write transaction is
+ ** requested, return SQLITE_LOCKED.
+ */
+ if( (wrflag && pBt->inTransaction==TRANS_WRITE)
+ || (pBt->btsFlags & BTS_PENDING)!=0
+ ){
+ pBlock = pBt->pWriter->db;
+ }else if( wrflag>1 ){
+ BtLock *pIter;
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->pBtree!=p ){
+ pBlock = pIter->pBtree->db;
+ break;
+ }
+ }
+ }
+ if( pBlock ){
+ sqlite3ConnectionBlocked(p->db, pBlock);
+ rc = SQLITE_LOCKED_SHAREDCACHE;
+ goto trans_begun;
+ }
+ }
+#endif
+
+ /* Any read-only or read-write transaction implies a read-lock on
+ ** page 1. So if some other shared-cache client already has a write-lock
+ ** on page 1, the transaction cannot be opened. */
+ rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
+ if( SQLITE_OK!=rc ) goto trans_begun;
+
+ pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
+ if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
+ do {
+ sqlite3PagerWalDb(pPager, p->db);
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ /* If transitioning from no transaction directly to a write transaction,
+ ** block for the WRITER lock first if possible. */
+ if( pBt->pPage1==0 && wrflag ){
+ assert( pBt->inTransaction==TRANS_NONE );
+ rc = sqlite3PagerWalWriteLock(pPager, 1);
+ if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
+ }
+#endif
+
+ /* Call lockBtree() until either pBt->pPage1 is populated or
+ ** lockBtree() returns something other than SQLITE_OK. lockBtree()
+ ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
+ ** reading page 1 it discovers that the page-size of the database
+ ** file is not pBt->pageSize. In this case lockBtree() will update
+ ** pBt->pageSize to the page-size of the file on disk.
+ */
+ while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
+
+ if( rc==SQLITE_OK && wrflag ){
+ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
+ rc = SQLITE_READONLY;
+ }else{
+ rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
+ /* if there was no transaction opened when this function was
+ ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
+ ** code to SQLITE_BUSY. */
+ rc = SQLITE_BUSY;
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ (void)sqlite3PagerWalWriteLock(pPager, 0);
+ unlockBtreeIfUnused(pBt);
+ }
+ }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
+ btreeInvokeBusyHandler(pBt) );
+ sqlite3PagerWalDb(pPager, 0);
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
+#endif
+
+ if( rc==SQLITE_OK ){
+ if( p->inTrans==TRANS_NONE ){
+ pBt->nTransaction++;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( p->sharable ){
+ assert( p->lock.pBtree==p && p->lock.iTable==1 );
+ p->lock.eLock = READ_LOCK;
+ p->lock.pNext = pBt->pLock;
+ pBt->pLock = &p->lock;
+ }
+#endif
+ }
+ p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
+ if( p->inTrans>pBt->inTransaction ){
+ pBt->inTransaction = p->inTrans;
+ }
+ if( wrflag ){
+ MemPage *pPage1 = pBt->pPage1;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ assert( !pBt->pWriter );
+ pBt->pWriter = p;
+ pBt->btsFlags &= ~BTS_EXCLUSIVE;
+ if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
+#endif
+
+ /* If the db-size header field is incorrect (as it may be if an old
+ ** client has been writing the database file), update it now. Doing
+ ** this sooner rather than later means the database size can safely
+ ** re-read the database size from page 1 if a savepoint or transaction
+ ** rollback occurs within the transaction.
+ */
+ if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pPage1->aData[28], pBt->nPage);
+ }
+ }
+ }
+ }
+
+trans_begun:
+ if( rc==SQLITE_OK ){
+ if( pSchemaVersion ){
+ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
+ }
+ if( wrflag ){
+ /* This call makes sure that the pager has the correct number of
+ ** open savepoints. If the second parameter is greater than 0 and
+ ** the sub-journal is not already open, then it will be opened here.
+ */
+ rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
+ }
+ }
+
+ btreeIntegrity(p);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+
+/*
+** Set the pointer-map entries for all children of page pPage. Also, if
+** pPage contains cells that point to overflow pages, set the pointer
+** map entries for the overflow pages as well.
+*/
+static int setChildPtrmaps(MemPage *pPage){
+ int i; /* Counter variable */
+ int nCell; /* Number of cells in page pPage */
+ int rc; /* Return code */
+ BtShared *pBt = pPage->pBt;
+ Pgno pgno = pPage->pgno;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
+ if( rc!=SQLITE_OK ) return rc;
+ nCell = pPage->nCell;
+
+ for(i=0; i<nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+
+ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
+
+ if( !pPage->leaf ){
+ Pgno childPgno = get4byte(pCell);
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
+ }
+ }
+
+ if( !pPage->leaf ){
+ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
+ }
+
+ return rc;
+}
+
+/*
+** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
+** that it points to iTo. Parameter eType describes the type of pointer to
+** be modified, as follows:
+**
+** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
+** page of pPage.
+**
+** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
+** page pointed to by one of the cells on pPage.
+**
+** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
+** overflow page in the list.
+*/
+static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ if( eType==PTRMAP_OVERFLOW2 ){
+ /* The pointer is always the first 4 bytes of the page in this case. */
+ if( get4byte(pPage->aData)!=iFrom ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ put4byte(pPage->aData, iTo);
+ }else{
+ int i;
+ int nCell;
+ int rc;
+
+ rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
+ if( rc ) return rc;
+ nCell = pPage->nCell;
+
+ for(i=0; i<nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+ if( eType==PTRMAP_OVERFLOW1 ){
+ CellInfo info;
+ pPage->xParseCell(pPage, pCell, &info);
+ if( info.nLocal<info.nPayload ){
+ if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( iFrom==get4byte(pCell+info.nSize-4) ){
+ put4byte(pCell+info.nSize-4, iTo);
+ break;
+ }
+ }
+ }else{
+ if( get4byte(pCell)==iFrom ){
+ put4byte(pCell, iTo);
+ break;
+ }
+ }
+ }
+
+ if( i==nCell ){
+ if( eType!=PTRMAP_BTREE ||
+ get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
+ }
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Move the open database page pDbPage to location iFreePage in the
+** database. The pDbPage reference remains valid.
+**
+** The isCommit flag indicates that there is no need to remember that
+** the journal needs to be sync()ed before database page pDbPage->pgno
+** can be written to. The caller has already promised not to write to that
+** page.
+*/
+static int relocatePage(
+ BtShared *pBt, /* Btree */
+ MemPage *pDbPage, /* Open page to move */
+ u8 eType, /* Pointer map 'type' entry for pDbPage */
+ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
+ Pgno iFreePage, /* The location to move pDbPage to */
+ int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
+){
+ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
+ Pgno iDbPage = pDbPage->pgno;
+ Pager *pPager = pBt->pPager;
+ int rc;
+
+ assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
+ eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pDbPage->pBt==pBt );
+ if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
+
+ /* Move page iDbPage from its current location to page number iFreePage */
+ TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
+ iDbPage, iFreePage, iPtrPage, eType));
+ rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pDbPage->pgno = iFreePage;
+
+ /* If pDbPage was a btree-page, then it may have child pages and/or cells
+ ** that point to overflow pages. The pointer map entries for all these
+ ** pages need to be changed.
+ **
+ ** If pDbPage is an overflow page, then the first 4 bytes may store a
+ ** pointer to a subsequent overflow page. If this is the case, then
+ ** the pointer map needs to be updated for the subsequent overflow page.
+ */
+ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
+ rc = setChildPtrmaps(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ Pgno nextOvfl = get4byte(pDbPage->aData);
+ if( nextOvfl!=0 ){
+ ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+
+ /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
+ ** that it points at iFreePage. Also fix the pointer map entry for
+ ** iPtrPage.
+ */
+ if( eType!=PTRMAP_ROOTPAGE ){
+ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pPtrPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pPtrPage);
+ return rc;
+ }
+ rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
+ releasePage(pPtrPage);
+ if( rc==SQLITE_OK ){
+ ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
+ }
+ }
+ return rc;
+}
+
+/* Forward declaration required by incrVacuumStep(). */
+static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
+
+/*
+** Perform a single step of an incremental-vacuum. If successful, return
+** SQLITE_OK. If there is no work to do (and therefore no point in
+** calling this function again), return SQLITE_DONE. Or, if an error
+** occurs, return some other error code.
+**
+** More specifically, this function attempts to re-organize the database so
+** that the last page of the file currently in use is no longer in use.
+**
+** Parameter nFin is the number of pages that this database would contain
+** were this function called until it returns SQLITE_DONE.
+**
+** If the bCommit parameter is non-zero, this function assumes that the
+** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
+** or an error. bCommit is passed true for an auto-vacuum-on-commit
+** operation, or false for an incremental vacuum.
+*/
+static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
+ Pgno nFreeList; /* Number of pages still on the free-list */
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( iLastPg>nFin );
+
+ if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
+ u8 eType;
+ Pgno iPtrPage;
+
+ nFreeList = get4byte(&pBt->pPage1->aData[36]);
+ if( nFreeList==0 ){
+ return SQLITE_DONE;
+ }
+
+ rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( eType==PTRMAP_ROOTPAGE ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ if( eType==PTRMAP_FREEPAGE ){
+ if( bCommit==0 ){
+ /* Remove the page from the files free-list. This is not required
+ ** if bCommit is non-zero. In that case, the free-list will be
+ ** truncated to zero after this function returns, so it doesn't
+ ** matter if it still contains some garbage entries.
+ */
+ Pgno iFreePg;
+ MemPage *pFreePg;
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( iFreePg==iLastPg );
+ releasePage(pFreePg);
+ }
+ } else {
+ Pgno iFreePg; /* Index of free page to move pLastPg to */
+ MemPage *pLastPg;
+ u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
+ Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
+
+ rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* If bCommit is zero, this loop runs exactly once and page pLastPg
+ ** is swapped with the first free page pulled off the free list.
+ **
+ ** On the other hand, if bCommit is greater than zero, then keep
+ ** looping until a free-page located within the first nFin pages
+ ** of the file is found.
+ */
+ if( bCommit==0 ){
+ eMode = BTALLOC_LE;
+ iNear = nFin;
+ }
+ do {
+ MemPage *pFreePg;
+ Pgno dbSize = btreePagecount(pBt);
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
+ if( rc!=SQLITE_OK ){
+ releasePage(pLastPg);
+ return rc;
+ }
+ releasePage(pFreePg);
+ if( iFreePg>dbSize ){
+ releasePage(pLastPg);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }while( bCommit && iFreePg>nFin );
+ assert( iFreePg<iLastPg );
+
+ rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
+ releasePage(pLastPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+
+ if( bCommit==0 ){
+ do {
+ iLastPg--;
+ }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
+ pBt->bDoTruncate = 1;
+ pBt->nPage = iLastPg;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The database opened by the first argument is an auto-vacuum database
+** nOrig pages in size containing nFree free pages. Return the expected
+** size of the database in pages following an auto-vacuum operation.
+*/
+static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
+ int nEntry; /* Number of entries on one ptrmap page */
+ Pgno nPtrmap; /* Number of PtrMap pages to be freed */
+ Pgno nFin; /* Return value */
+
+ nEntry = pBt->usableSize/5;
+ nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
+ nFin = nOrig - nFree - nPtrmap;
+ if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+ while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+
+ return nFin;
+}
+
+/*
+** A write-transaction must be opened before calling this function.
+** It performs a single unit of work towards an incremental vacuum.
+**
+** If the incremental vacuum is finished after this function has run,
+** SQLITE_DONE is returned. If it is not finished, but no error occurred,
+** SQLITE_OK is returned. Otherwise an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
+ if( !pBt->autoVacuum ){
+ rc = SQLITE_DONE;
+ }else{
+ Pgno nOrig = btreePagecount(pBt);
+ Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
+ Pgno nFin = finalDbSize(pBt, nOrig, nFree);
+
+ if( nOrig<nFin || nFree>=nOrig ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else if( nFree>0 ){
+ rc = saveAllCursors(pBt, 0, 0);
+ if( rc==SQLITE_OK ){
+ invalidateAllOverflowCache(pBt);
+ rc = incrVacuumStep(pBt, nFin, nOrig, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ put4byte(&pBt->pPage1->aData[28], pBt->nPage);
+ }
+ }else{
+ rc = SQLITE_DONE;
+ }
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** This routine is called prior to sqlite3PagerCommit when a transaction
+** is committed for an auto-vacuum database.
+*/
+static int autoVacuumCommit(Btree *p){
+ int rc = SQLITE_OK;
+ Pager *pPager;
+ BtShared *pBt;
+ sqlite3 *db;
+ VVA_ONLY( int nRef );
+
+ assert( p!=0 );
+ pBt = p->pBt;
+ pPager = pBt->pPager;
+ VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ invalidateAllOverflowCache(pBt);
+ assert(pBt->autoVacuum);
+ if( !pBt->incrVacuum ){
+ Pgno nFin; /* Number of pages in database after autovacuuming */
+ Pgno nFree; /* Number of pages on the freelist initially */
+ Pgno nVac; /* Number of pages to vacuum */
+ Pgno iFree; /* The next page to be freed */
+ Pgno nOrig; /* Database size before freeing */
+
+ nOrig = btreePagecount(pBt);
+ if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
+ /* It is not possible to create a database for which the final page
+ ** is either a pointer-map page or the pending-byte page. If one
+ ** is encountered, this indicates corruption.
+ */
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ nFree = get4byte(&pBt->pPage1->aData[36]);
+ db = p->db;
+ if( db->xAutovacPages ){
+ int iDb;
+ for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
+ if( db->aDb[iDb].pBt==p ) break;
+ }
+ nVac = db->xAutovacPages(
+ db->pAutovacPagesArg,
+ db->aDb[iDb].zDbSName,
+ nOrig,
+ nFree,
+ pBt->pageSize
+ );
+ if( nVac>nFree ){
+ nVac = nFree;
+ }
+ if( nVac==0 ){
+ return SQLITE_OK;
+ }
+ }else{
+ nVac = nFree;
+ }
+ nFin = finalDbSize(pBt, nOrig, nVac);
+ if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
+ if( nFin<nOrig ){
+ rc = saveAllCursors(pBt, 0, 0);
+ }
+ for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
+ rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
+ }
+ if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( nVac==nFree ){
+ put4byte(&pBt->pPage1->aData[32], 0);
+ put4byte(&pBt->pPage1->aData[36], 0);
+ }
+ put4byte(&pBt->pPage1->aData[28], nFin);
+ pBt->bDoTruncate = 1;
+ pBt->nPage = nFin;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3PagerRollback(pPager);
+ }
+ }
+
+ assert( nRef>=sqlite3PagerRefcount(pPager) );
+ return rc;
+}
+
+#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
+# define setChildPtrmaps(x) SQLITE_OK
+#endif
+
+/*
+** This routine does the first phase of a two-phase commit. This routine
+** causes a rollback journal to be created (if it does not already exist)
+** and populated with enough information so that if a power loss occurs
+** the database can be restored to its original state by playing back
+** the journal. Then the contents of the journal are flushed out to
+** the disk. After the journal is safely on oxide, the changes to the
+** database are written into the database file and flushed to oxide.
+** At the end of this call, the rollback journal still exists on the
+** disk and we are still holding all locks, so the transaction has not
+** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
+** commit process.
+**
+** This call is a no-op if no write-transaction is currently active on pBt.
+**
+** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
+** the name of a super-journal file that should be written into the
+** individual journal file, or is NULL, indicating no super-journal file
+** (single database transaction).
+**
+** When this is called, the super-journal should already have been
+** created, populated with this journal pointer and synced to disk.
+**
+** Once this is routine has returned, the only thing required to commit
+** the write-transaction for this database file is to delete the journal.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
+ int rc = SQLITE_OK;
+ if( p->inTrans==TRANS_WRITE ){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ rc = autoVacuumCommit(p);
+ if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ }
+ if( pBt->bDoTruncate ){
+ sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
+ }
+#endif
+ rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+
+/*
+** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
+** at the conclusion of a transaction.
+*/
+static void btreeEndTransaction(Btree *p){
+ BtShared *pBt = p->pBt;
+ sqlite3 *db = p->db;
+ assert( sqlite3BtreeHoldsMutex(p) );
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->bDoTruncate = 0;
+#endif
+ if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
+ /* If there are other active statements that belong to this database
+ ** handle, downgrade to a read-only transaction. The other statements
+ ** may still be reading from the database. */
+ downgradeAllSharedCacheTableLocks(p);
+ p->inTrans = TRANS_READ;
+ }else{
+ /* If the handle had any kind of transaction open, decrement the
+ ** transaction count of the shared btree. If the transaction count
+ ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
+ ** call below will unlock the pager. */
+ if( p->inTrans!=TRANS_NONE ){
+ clearAllSharedCacheTableLocks(p);
+ pBt->nTransaction--;
+ if( 0==pBt->nTransaction ){
+ pBt->inTransaction = TRANS_NONE;
+ }
+ }
+
+ /* Set the current transaction state to TRANS_NONE and unlock the
+ ** pager if this call closed the only read or write transaction. */
+ p->inTrans = TRANS_NONE;
+ unlockBtreeIfUnused(pBt);
+ }
+
+ btreeIntegrity(p);
+}
+
+/*
+** Commit the transaction currently in progress.
+**
+** This routine implements the second phase of a 2-phase commit. The
+** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
+** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
+** routine did all the work of writing information out to disk and flushing the
+** contents so that they are written onto the disk platter. All this
+** routine has to do is delete or truncate or zero the header in the
+** the rollback journal (which causes the transaction to commit) and
+** drop locks.
+**
+** Normally, if an error occurs while the pager layer is attempting to
+** finalize the underlying journal file, this function returns an error and
+** the upper layer will attempt a rollback. However, if the second argument
+** is non-zero then this b-tree transaction is part of a multi-file
+** transaction. In this case, the transaction has already been committed
+** (by deleting a super-journal file) and the caller will ignore this
+** functions return code. So, even if an error occurs in the pager layer,
+** reset the b-tree objects internal state to indicate that the write
+** transaction has been closed. This is quite safe, as the pager will have
+** transitioned to the error state.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
+
+ if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
+ sqlite3BtreeEnter(p);
+ btreeIntegrity(p);
+
+ /* If the handle has a write-transaction open, commit the shared-btrees
+ ** transaction and set the shared state to TRANS_READ.
+ */
+ if( p->inTrans==TRANS_WRITE ){
+ int rc;
+ BtShared *pBt = p->pBt;
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( pBt->nTransaction>0 );
+ rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
+ if( rc!=SQLITE_OK && bCleanup==0 ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
+ pBt->inTransaction = TRANS_READ;
+ btreeClearHasContent(pBt);
+ }
+
+ btreeEndTransaction(p);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Do both phases of a commit.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = sqlite3BtreeCommitPhaseOne(p, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeCommitPhaseTwo(p, 0);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** This routine sets the state to CURSOR_FAULT and the error
+** code to errCode for every cursor on any BtShared that pBtree
+** references. Or if the writeOnly flag is set to 1, then only
+** trip write cursors and leave read cursors unchanged.
+**
+** Every cursor is a candidate to be tripped, including cursors
+** that belong to other database connections that happen to be
+** sharing the cache with pBtree.
+**
+** This routine gets called when a rollback occurs. If the writeOnly
+** flag is true, then only write-cursors need be tripped - read-only
+** cursors save their current positions so that they may continue
+** following the rollback. Or, if writeOnly is false, all cursors are
+** tripped. In general, writeOnly is false if the transaction being
+** rolled back modified the database schema. In this case b-tree root
+** pages may be moved or deleted from the database altogether, making
+** it unsafe for read cursors to continue.
+**
+** If the writeOnly flag is true and an error is encountered while
+** saving the current position of a read-only cursor, all cursors,
+** including all read-cursors are tripped.
+**
+** SQLITE_OK is returned if successful, or if an error occurs while
+** saving a cursor position, an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
+ BtCursor *p;
+ int rc = SQLITE_OK;
+
+ assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
+ if( pBtree ){
+ sqlite3BtreeEnter(pBtree);
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
+ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
+ rc = saveCursorPosition(p);
+ if( rc!=SQLITE_OK ){
+ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
+ break;
+ }
+ }
+ }else{
+ sqlite3BtreeClearCursor(p);
+ p->eState = CURSOR_FAULT;
+ p->skipNext = errCode;
+ }
+ btreeReleaseAllCursorPages(p);
+ }
+ sqlite3BtreeLeave(pBtree);
+ }
+ return rc;
+}
+
+/*
+** Set the pBt->nPage field correctly, according to the current
+** state of the database. Assume pBt->pPage1 is valid.
+*/
+static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
+ int nPage = get4byte(&pPage1->aData[28]);
+ testcase( nPage==0 );
+ if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
+ testcase( pBt->nPage!=(u32)nPage );
+ pBt->nPage = nPage;
+}
+
+/*
+** Rollback the transaction in progress.
+**
+** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
+** Only write cursors are tripped if writeOnly is true but all cursors are
+** tripped if writeOnly is false. Any attempt to use
+** a tripped cursor will result in an error.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
+ int rc;
+ BtShared *pBt = p->pBt;
+ MemPage *pPage1;
+
+ assert( writeOnly==1 || writeOnly==0 );
+ assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
+ sqlite3BtreeEnter(p);
+ if( tripCode==SQLITE_OK ){
+ rc = tripCode = saveAllCursors(pBt, 0, 0);
+ if( rc ) writeOnly = 0;
+ }else{
+ rc = SQLITE_OK;
+ }
+ if( tripCode ){
+ int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
+ assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
+ if( rc2!=SQLITE_OK ) rc = rc2;
+ }
+ btreeIntegrity(p);
+
+ if( p->inTrans==TRANS_WRITE ){
+ int rc2;
+
+ assert( TRANS_WRITE==pBt->inTransaction );
+ rc2 = sqlite3PagerRollback(pBt->pPager);
+ if( rc2!=SQLITE_OK ){
+ rc = rc2;
+ }
+
+ /* The rollback may have destroyed the pPage1->aData value. So
+ ** call btreeGetPage() on page 1 again to make
+ ** sure pPage1->aData is set correctly. */
+ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
+ btreeSetNPage(pBt, pPage1);
+ releasePageOne(pPage1);
+ }
+ assert( countValidCursors(pBt, 1)==0 );
+ pBt->inTransaction = TRANS_READ;
+ btreeClearHasContent(pBt);
+ }
+
+ btreeEndTransaction(p);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Start a statement subtransaction. The subtransaction can be rolled
+** back independently of the main transaction. You must start a transaction
+** before starting a subtransaction. The subtransaction is ended automatically
+** if the main transaction commits or rolls back.
+**
+** Statement subtransactions are used around individual SQL statements
+** that are contained within a BEGIN...COMMIT block. If a constraint
+** error occurs within the statement, the effect of that one statement
+** can be rolled back without having to rollback the entire transaction.
+**
+** A statement sub-transaction is implemented as an anonymous savepoint. The
+** value passed as the second parameter is the total number of savepoints,
+** including the new anonymous savepoint, open on the B-Tree. i.e. if there
+** are no active savepoints and no other statement-transactions open,
+** iStatement is 1. This anonymous savepoint can be released or rolled back
+** using the sqlite3BtreeSavepoint() function.
+*/
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
+ assert( iStatement>0 );
+ assert( iStatement>p->db->nSavepoint );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ /* At the pager level, a statement transaction is a savepoint with
+ ** an index greater than all savepoints created explicitly using
+ ** SQL statements. It is illegal to open, release or rollback any
+ ** such savepoints while the statement transaction savepoint is active.
+ */
+ rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
+** or SAVEPOINT_RELEASE. This function either releases or rolls back the
+** savepoint identified by parameter iSavepoint, depending on the value
+** of op.
+**
+** Normally, iSavepoint is greater than or equal to zero. However, if op is
+** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
+** contents of the entire transaction are rolled back. This is different
+** from a normal transaction rollback, as no locks are released and the
+** transaction remains open.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
+ int rc = SQLITE_OK;
+ if( p && p->inTrans==TRANS_WRITE ){
+ BtShared *pBt = p->pBt;
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
+ sqlite3BtreeEnter(p);
+ if( op==SAVEPOINT_ROLLBACK ){
+ rc = saveAllCursors(pBt, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
+ pBt->nPage = 0;
+ }
+ rc = newDatabase(pBt);
+ btreeSetNPage(pBt, pBt->pPage1);
+
+ /* pBt->nPage might be zero if the database was corrupt when
+ ** the transaction was started. Otherwise, it must be at least 1. */
+ assert( CORRUPT_DB || pBt->nPage>0 );
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+
+/*
+** Create a new cursor for the BTree whose root is on the page
+** iTable. If a read-only cursor is requested, it is assumed that
+** the caller already has at least a read-only transaction open
+** on the database already. If a write-cursor is requested, then
+** the caller is assumed to have an open write transaction.
+**
+** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
+** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
+** can be used for reading or for writing if other conditions for writing
+** are also met. These are the conditions that must be met in order
+** for writing to be allowed:
+**
+** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
+**
+** 2: Other database connections that share the same pager cache
+** but which are not in the READ_UNCOMMITTED state may not have
+** cursors open with wrFlag==0 on the same table. Otherwise
+** the changes made by this write cursor would be visible to
+** the read cursors in the other database connection.
+**
+** 3: The database must be writable (not on read-only media)
+**
+** 4: There must be an active transaction.
+**
+** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
+** is set. If FORDELETE is set, that is a hint to the implementation that
+** this cursor will only be used to seek to and delete entries of an index
+** as part of a larger DELETE statement. The FORDELETE hint is not used by
+** this implementation. But in a hypothetical alternative storage engine
+** in which index entries are automatically deleted when corresponding table
+** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
+** operations on this cursor can be no-ops and all READ operations can
+** return a null row (2-bytes: 0x01 0x00).
+**
+** No checking is done to make sure that page iTable really is the
+** root page of a b-tree. If it is not, then the cursor acquired
+** will not work correctly.
+**
+** It is assumed that the sqlite3BtreeCursorZero() has been called
+** on pCur to initialize the memory space prior to invoking this routine.
+*/
+static int btreeCursor(
+ Btree *p, /* The btree */
+ Pgno iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */
+ BtCursor *pCur /* Space for new cursor */
+){
+ BtShared *pBt = p->pBt; /* Shared b-tree handle */
+ BtCursor *pX; /* Looping over other all cursors */
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( wrFlag==0
+ || wrFlag==BTREE_WRCSR
+ || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
+ );
+
+ /* The following assert statements verify that if this is a sharable
+ ** b-tree database, the connection is holding the required table locks,
+ ** and that no other connection has any open cursor that conflicts with
+ ** this lock. The iTable<1 term disables the check for corrupt schemas. */
+ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
+ || iTable<1 );
+ assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
+
+ /* Assert that the caller has opened the required transaction. */
+ assert( p->inTrans>TRANS_NONE );
+ assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
+ assert( pBt->pPage1 && pBt->pPage1->aData );
+ assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
+
+ if( iTable<=1 ){
+ if( iTable<1 ){
+ return SQLITE_CORRUPT_BKPT;
+ }else if( btreePagecount(pBt)==0 ){
+ assert( wrFlag==0 );
+ iTable = 0;
+ }
+ }
+
+ /* Now that no other errors can occur, finish filling in the BtCursor
+ ** variables and link the cursor into the BtShared list. */
+ pCur->pgnoRoot = iTable;
+ pCur->iPage = -1;
+ pCur->pKeyInfo = pKeyInfo;
+ pCur->pBtree = p;
+ pCur->pBt = pBt;
+ pCur->curFlags = 0;
+ /* If there are two or more cursors on the same btree, then all such
+ ** cursors *must* have the BTCF_Multiple flag set. */
+ for(pX=pBt->pCursor; pX; pX=pX->pNext){
+ if( pX->pgnoRoot==iTable ){
+ pX->curFlags |= BTCF_Multiple;
+ pCur->curFlags = BTCF_Multiple;
+ }
+ }
+ pCur->eState = CURSOR_INVALID;
+ pCur->pNext = pBt->pCursor;
+ pBt->pCursor = pCur;
+ if( wrFlag ){
+ pCur->curFlags |= BTCF_WriteFlag;
+ pCur->curPagerFlags = 0;
+ if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
+ }else{
+ pCur->curPagerFlags = PAGER_GET_READONLY;
+ }
+ return SQLITE_OK;
+}
+static int btreeCursorWithLock(
+ Btree *p, /* The btree */
+ Pgno iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */
+ BtCursor *pCur /* Space for new cursor */
+){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree *p, /* The btree */
+ Pgno iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
+ BtCursor *pCur /* Write new cursor here */
+){
+ if( p->sharable ){
+ return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
+ }else{
+ return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
+ }
+}
+
+/*
+** Return the size of a BtCursor object in bytes.
+**
+** This interfaces is needed so that users of cursors can preallocate
+** sufficient storage to hold a cursor. The BtCursor object is opaque
+** to users so they cannot do the sizeof() themselves - they must call
+** this routine.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){
+ return ROUND8(sizeof(BtCursor));
+}
+
+/*
+** Initialize memory that will be converted into a BtCursor object.
+**
+** The simple approach here would be to memset() the entire object
+** to zero. But it turns out that the apPage[] and aiIdx[] arrays
+** do not need to be zeroed and they are large, so we can save a lot
+** of run-time by skipping the initialization of those elements.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){
+ memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
+}
+
+/*
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
+ Btree *pBtree = pCur->pBtree;
+ if( pBtree ){
+ BtShared *pBt = pCur->pBt;
+ sqlite3BtreeEnter(pBtree);
+ assert( pBt->pCursor!=0 );
+ if( pBt->pCursor==pCur ){
+ pBt->pCursor = pCur->pNext;
+ }else{
+ BtCursor *pPrev = pBt->pCursor;
+ do{
+ if( pPrev->pNext==pCur ){
+ pPrev->pNext = pCur->pNext;
+ break;
+ }
+ pPrev = pPrev->pNext;
+ }while( ALWAYS(pPrev) );
+ }
+ btreeReleaseAllCursorPages(pCur);
+ unlockBtreeIfUnused(pBt);
+ sqlite3_free(pCur->aOverflow);
+ sqlite3_free(pCur->pKey);
+ if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
+ /* Since the BtShared is not sharable, there is no need to
+ ** worry about the missing sqlite3BtreeLeave() call here. */
+ assert( pBtree->sharable==0 );
+ sqlite3BtreeClose(pBtree);
+ }else{
+ sqlite3BtreeLeave(pBtree);
+ }
+ pCur->pBtree = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Make sure the BtCursor* given in the argument has a valid
+** BtCursor.info structure. If it is not already valid, call
+** btreeParseCell() to fill it in.
+**
+** BtCursor.info is a cache of the information in the current cell.
+** Using this cache reduces the number of calls to btreeParseCell().
+*/
+#ifndef NDEBUG
+ static int cellInfoEqual(CellInfo *a, CellInfo *b){
+ if( a->nKey!=b->nKey ) return 0;
+ if( a->pPayload!=b->pPayload ) return 0;
+ if( a->nPayload!=b->nPayload ) return 0;
+ if( a->nLocal!=b->nLocal ) return 0;
+ if( a->nSize!=b->nSize ) return 0;
+ return 1;
+ }
+ static void assertCellInfo(BtCursor *pCur){
+ CellInfo info;
+ memset(&info, 0, sizeof(info));
+ btreeParseCell(pCur->pPage, pCur->ix, &info);
+ assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
+ }
+#else
+ #define assertCellInfo(x)
+#endif
+static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
+ if( pCur->info.nSize==0 ){
+ pCur->curFlags |= BTCF_ValidNKey;
+ btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
+ }else{
+ assertCellInfo(pCur);
+ }
+}
+
+#ifndef NDEBUG /* The next routine used only within assert() statements */
+/*
+** Return true if the given BtCursor is valid. A valid cursor is one
+** that is currently pointing to a row in a (non-empty) table.
+** This is a verification routine is used only within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){
+ return pCur && pCur->eState==CURSOR_VALID;
+}
+#endif /* NDEBUG */
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
+ assert( pCur!=0 );
+ return pCur->eState==CURSOR_VALID;
+}
+
+/*
+** Return the value of the integer key or "rowid" for a table btree.
+** This routine is only valid for a cursor that is pointing into a
+** ordinary table btree. If the cursor points to an index btree or
+** is invalid, the result of this routine is undefined.
+*/
+SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->curIntKey );
+ getCellInfo(pCur);
+ return pCur->info.nKey;
+}
+
+/*
+** Pin or unpin a cursor.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor *pCur){
+ assert( (pCur->curFlags & BTCF_Pinned)==0 );
+ pCur->curFlags |= BTCF_Pinned;
+}
+SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor *pCur){
+ assert( (pCur->curFlags & BTCF_Pinned)!=0 );
+ pCur->curFlags &= ~BTCF_Pinned;
+}
+
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+/*
+** Return the offset into the database file for the start of the
+** payload to which the cursor is pointing.
+*/
+SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ getCellInfo(pCur);
+ return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
+ (i64)(pCur->info.pPayload - pCur->pPage->aData);
+}
+#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
+
+/*
+** Return the number of bytes of payload for the entry that pCur is
+** currently pointing to. For table btrees, this will be the amount
+** of data. For index btrees, this will be the size of the key.
+**
+** The caller must guarantee that the cursor is pointing to a non-NULL
+** valid entry. In other words, the calling procedure must guarantee
+** that the cursor has Cursor.eState==CURSOR_VALID.
+*/
+SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ getCellInfo(pCur);
+ return pCur->info.nPayload;
+}
+
+/*
+** Return an upper bound on the size of any record for the table
+** that the cursor is pointing into.
+**
+** This is an optimization. Everything will still work if this
+** routine always returns 2147483647 (which is the largest record
+** that SQLite can handle) or more. But returning a smaller value might
+** prevent large memory allocations when trying to interpret a
+** corrupt datrabase.
+**
+** The current implementation merely returns the size of the underlying
+** database file.
+*/
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
+}
+
+/*
+** Given the page number of an overflow page in the database (parameter
+** ovfl), this function finds the page number of the next page in the
+** linked list of overflow pages. If possible, it uses the auto-vacuum
+** pointer-map data instead of reading the content of page ovfl to do so.
+**
+** If an error occurs an SQLite error code is returned. Otherwise:
+**
+** The page number of the next overflow page in the linked list is
+** written to *pPgnoNext. If page ovfl is the last page in its linked
+** list, *pPgnoNext is set to zero.
+**
+** If ppPage is not NULL, and a reference to the MemPage object corresponding
+** to page number pOvfl was obtained, then *ppPage is set to point to that
+** reference. It is the responsibility of the caller to call releasePage()
+** on *ppPage to free the reference. In no reference was obtained (because
+** the pointer-map was used to obtain the value for *pPgnoNext), then
+** *ppPage is set to zero.
+*/
+static int getOverflowPage(
+ BtShared *pBt, /* The database file */
+ Pgno ovfl, /* Current overflow page number */
+ MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
+ Pgno *pPgnoNext /* OUT: Next overflow page number */
+){
+ Pgno next = 0;
+ MemPage *pPage = 0;
+ int rc = SQLITE_OK;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert(pPgnoNext);
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* Try to find the next page in the overflow list using the
+ ** autovacuum pointer-map pages. Guess that the next page in
+ ** the overflow list is page number (ovfl+1). If that guess turns
+ ** out to be wrong, fall back to loading the data of page
+ ** number ovfl to determine the next page number.
+ */
+ if( pBt->autoVacuum ){
+ Pgno pgno;
+ Pgno iGuess = ovfl+1;
+ u8 eType;
+
+ while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
+ iGuess++;
+ }
+
+ if( iGuess<=btreePagecount(pBt) ){
+ rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
+ if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
+ next = iGuess;
+ rc = SQLITE_DONE;
+ }
+ }
+ }
+#endif
+
+ assert( next==0 || rc==SQLITE_DONE );
+ if( rc==SQLITE_OK ){
+ rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
+ assert( rc==SQLITE_OK || pPage==0 );
+ if( rc==SQLITE_OK ){
+ next = get4byte(pPage->aData);
+ }
+ }
+
+ *pPgnoNext = next;
+ if( ppPage ){
+ *ppPage = pPage;
+ }else{
+ releasePage(pPage);
+ }
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc);
+}
+
+/*
+** Copy data from a buffer to a page, or from a page to a buffer.
+**
+** pPayload is a pointer to data stored on database page pDbPage.
+** If argument eOp is false, then nByte bytes of data are copied
+** from pPayload to the buffer pointed at by pBuf. If eOp is true,
+** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
+** of data are copied from the buffer pBuf to pPayload.
+**
+** SQLITE_OK is returned on success, otherwise an error code.
+*/
+static int copyPayload(
+ void *pPayload, /* Pointer to page data */
+ void *pBuf, /* Pointer to buffer */
+ int nByte, /* Number of bytes to copy */
+ int eOp, /* 0 -> copy from page, 1 -> copy to page */
+ DbPage *pDbPage /* Page containing pPayload */
+){
+ if( eOp ){
+ /* Copy data from buffer to page (a write operation) */
+ int rc = sqlite3PagerWrite(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ memcpy(pPayload, pBuf, nByte);
+ }else{
+ /* Copy data from page to buffer (a read operation) */
+ memcpy(pBuf, pPayload, nByte);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is used to read or overwrite payload information
+** for the entry that the pCur cursor is pointing to. The eOp
+** argument is interpreted as follows:
+**
+** 0: The operation is a read. Populate the overflow cache.
+** 1: The operation is a write. Populate the overflow cache.
+**
+** A total of "amt" bytes are read or written beginning at "offset".
+** Data is read to or from the buffer pBuf.
+**
+** The content being read or written might appear on the main page
+** or be scattered out on multiple overflow pages.
+**
+** If the current cursor entry uses one or more overflow pages
+** this function may allocate space for and lazily populate
+** the overflow page-list cache array (BtCursor.aOverflow).
+** Subsequent calls use this cache to make seeking to the supplied offset
+** more efficient.
+**
+** Once an overflow page-list cache has been allocated, it must be
+** invalidated if some other cursor writes to the same table, or if
+** the cursor is moved to a different row. Additionally, in auto-vacuum
+** mode, the following events may invalidate an overflow page-list cache.
+**
+** * An incremental vacuum,
+** * A commit in auto_vacuum="full" mode,
+** * Creating a table (may require moving an overflow page).
+*/
+static int accessPayload(
+ BtCursor *pCur, /* Cursor pointing to entry to read from */
+ u32 offset, /* Begin reading this far into payload */
+ u32 amt, /* Read this many bytes */
+ unsigned char *pBuf, /* Write the bytes into this buffer */
+ int eOp /* zero to read. non-zero to write. */
+){
+ unsigned char *aPayload;
+ int rc = SQLITE_OK;
+ int iIdx = 0;
+ MemPage *pPage = pCur->pPage; /* Btree page of current entry */
+ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+ unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
+#endif
+
+ assert( pPage );
+ assert( eOp==0 || eOp==1 );
+ assert( pCur->eState==CURSOR_VALID );
+ if( pCur->ix>=pPage->nCell ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( cursorHoldsMutex(pCur) );
+
+ getCellInfo(pCur);
+ aPayload = pCur->info.pPayload;
+ assert( offset+amt <= pCur->info.nPayload );
+
+ assert( aPayload > pPage->aData );
+ if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
+ /* Trying to read or write past the end of the data is an error. The
+ ** conditional above is really:
+ ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
+ ** but is recast into its current form to avoid integer overflow problems
+ */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+
+ /* Check if data must be read/written to/from the btree page itself. */
+ if( offset<pCur->info.nLocal ){
+ int a = amt;
+ if( a+offset>pCur->info.nLocal ){
+ a = pCur->info.nLocal - offset;
+ }
+ rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
+ offset = 0;
+ pBuf += a;
+ amt -= a;
+ }else{
+ offset -= pCur->info.nLocal;
+ }
+
+
+ if( rc==SQLITE_OK && amt>0 ){
+ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
+ Pgno nextPage;
+
+ nextPage = get4byte(&aPayload[pCur->info.nLocal]);
+
+ /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
+ **
+ ** The aOverflow[] array is sized at one entry for each overflow page
+ ** in the overflow chain. The page number of the first overflow page is
+ ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
+ ** means "not yet known" (the cache is lazily populated).
+ */
+ if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
+ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
+ if( pCur->aOverflow==0
+ || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
+ ){
+ Pgno *aNew = (Pgno*)sqlite3Realloc(
+ pCur->aOverflow, nOvfl*2*sizeof(Pgno)
+ );
+ if( aNew==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ pCur->aOverflow = aNew;
+ }
+ }
+ memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
+ pCur->curFlags |= BTCF_ValidOvfl;
+ }else{
+ /* If the overflow page-list cache has been allocated and the
+ ** entry for the first required overflow page is valid, skip
+ ** directly to it.
+ */
+ if( pCur->aOverflow[offset/ovflSize] ){
+ iIdx = (offset/ovflSize);
+ nextPage = pCur->aOverflow[iIdx];
+ offset = (offset%ovflSize);
+ }
+ }
+
+ assert( rc==SQLITE_OK && amt>0 );
+ while( nextPage ){
+ /* If required, populate the overflow page-list cache. */
+ if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
+ assert( pCur->aOverflow[iIdx]==0
+ || pCur->aOverflow[iIdx]==nextPage
+ || CORRUPT_DB );
+ pCur->aOverflow[iIdx] = nextPage;
+
+ if( offset>=ovflSize ){
+ /* The only reason to read this page is to obtain the page
+ ** number for the next page in the overflow chain. The page
+ ** data is not required. So first try to lookup the overflow
+ ** page-list cache, if any, then fall back to the getOverflowPage()
+ ** function.
+ */
+ assert( pCur->curFlags & BTCF_ValidOvfl );
+ assert( pCur->pBtree->db==pBt->db );
+ if( pCur->aOverflow[iIdx+1] ){
+ nextPage = pCur->aOverflow[iIdx+1];
+ }else{
+ rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
+ }
+ offset -= ovflSize;
+ }else{
+ /* Need to read this page properly. It contains some of the
+ ** range of data that is being read (eOp==0) or written (eOp!=0).
+ */
+ int a = amt;
+ if( a + offset > ovflSize ){
+ a = ovflSize - offset;
+ }
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+ /* If all the following are true:
+ **
+ ** 1) this is a read operation, and
+ ** 2) data is required from the start of this overflow page, and
+ ** 3) there are no dirty pages in the page-cache
+ ** 4) the database is file-backed, and
+ ** 5) the page is not in the WAL file
+ ** 6) at least 4 bytes have already been read into the output buffer
+ **
+ ** then data can be read directly from the database file into the
+ ** output buffer, bypassing the page-cache altogether. This speeds
+ ** up loading large records that span many overflow pages.
+ */
+ if( eOp==0 /* (1) */
+ && offset==0 /* (2) */
+ && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
+ && &pBuf[-4]>=pBufStart /* (6) */
+ ){
+ sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
+ u8 aSave[4];
+ u8 *aWrite = &pBuf[-4];
+ assert( aWrite>=pBufStart ); /* due to (6) */
+ memcpy(aSave, aWrite, 4);
+ rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
+ if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
+ nextPage = get4byte(aWrite);
+ memcpy(aWrite, aSave, 4);
+ }else
+#endif
+
+ {
+ DbPage *pDbPage;
+ rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
+ (eOp==0 ? PAGER_GET_READONLY : 0)
+ );
+ if( rc==SQLITE_OK ){
+ aPayload = sqlite3PagerGetData(pDbPage);
+ nextPage = get4byte(aPayload);
+ rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
+ sqlite3PagerUnref(pDbPage);
+ offset = 0;
+ }
+ }
+ amt -= a;
+ if( amt==0 ) return rc;
+ pBuf += a;
+ }
+ if( rc ) break;
+ iIdx++;
+ }
+ }
+
+ if( rc==SQLITE_OK && amt>0 ){
+ /* Overflow chain ends prematurely */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ return rc;
+}
+
+/*
+** Read part of the payload for the row at which that cursor pCur is currently
+** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
+** begins at "offset".
+**
+** pCur can be pointing to either a table or an index b-tree.
+** If pointing to a table btree, then the content section is read. If
+** pCur is pointing to an index b-tree then the key section is read.
+**
+** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
+** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
+** cursor might be invalid or might need to be restored before being read.
+**
+** Return SQLITE_OK on success or an error code if anything goes
+** wrong. An error is returned if "offset+amt" is larger than
+** the available payload.
+*/
+SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage>=0 && pCur->pPage );
+ return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
+}
+
+/*
+** This variant of sqlite3BtreePayload() works even if the cursor has not
+** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
+** interface.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+static SQLITE_NOINLINE int accessPayloadChecked(
+ BtCursor *pCur,
+ u32 offset,
+ u32 amt,
+ void *pBuf
+){
+ int rc;
+ if ( pCur->eState==CURSOR_INVALID ){
+ return SQLITE_ABORT;
+ }
+ assert( cursorOwnsBtShared(pCur) );
+ rc = btreeRestoreCursorPosition(pCur);
+ return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
+}
+SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ if( pCur->eState==CURSOR_VALID ){
+ assert( cursorOwnsBtShared(pCur) );
+ return accessPayload(pCur, offset, amt, pBuf, 0);
+ }else{
+ return accessPayloadChecked(pCur, offset, amt, pBuf);
+ }
+}
+#endif /* SQLITE_OMIT_INCRBLOB */
+
+/*
+** Return a pointer to payload information from the entry that the
+** pCur cursor is pointing to. The pointer is to the beginning of
+** the key if index btrees (pPage->intKey==0) and is the data for
+** table btrees (pPage->intKey==1). The number of bytes of available
+** key/data is written into *pAmt. If *pAmt==0, then the value
+** returned will not be a valid pointer.
+**
+** This routine is an optimization. It is common for the entire key
+** and data to fit on the local page and for there to be no overflow
+** pages. When that is so, this routine can be used to access the
+** key and data without making a copy. If the key and/or data spills
+** onto overflow pages, then accessPayload() must be used to reassemble
+** the key/data and copy it into a preallocated buffer.
+**
+** The pointer returned by this routine looks directly into the cached
+** page of the database. The data might change or move the next time
+** any btree routine is called.
+*/
+static const void *fetchPayload(
+ BtCursor *pCur, /* Cursor pointing to entry to read from */
+ u32 *pAmt /* Write the number of available bytes here */
+){
+ int amt;
+ assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
+ assert( pCur->eState==CURSOR_VALID );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
+ assert( pCur->info.nSize>0 );
+ assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
+ assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
+ amt = pCur->info.nLocal;
+ if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
+ /* There is too little space on the page for the expected amount
+ ** of local content. Database must be corrupt. */
+ assert( CORRUPT_DB );
+ amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
+ }
+ *pAmt = (u32)amt;
+ return (void*)pCur->info.pPayload;
+}
+
+
+/*
+** For the entry that cursor pCur is point to, return as
+** many bytes of the key or data as are available on the local
+** b-tree page. Write the number of available bytes into *pAmt.
+**
+** The pointer returned is ephemeral. The key/data may move
+** or be destroyed on the next call to any Btree routine,
+** including calls from other threads against the same cache.
+** Hence, a mutex on the BtShared should be held prior to calling
+** this routine.
+**
+** These routines is used to get quick access to key and data
+** in the common case where no overflow pages are used.
+*/
+SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
+ return fetchPayload(pCur, pAmt);
+}
+
+
+/*
+** Move the cursor down to a new child page. The newPgno argument is the
+** page number of the child page to move to.
+**
+** This function returns SQLITE_CORRUPT if the page-header flags field of
+** the new child page does not match the flags field of the parent (i.e.
+** if an intkey page appears to be the parent of a non-intkey page, or
+** vice-versa).
+*/
+static int moveToChild(BtCursor *pCur, u32 newPgno){
+ BtShared *pBt = pCur->pBt;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
+ assert( pCur->iPage>=0 );
+ if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ pCur->aiIdx[pCur->iPage] = pCur->ix;
+ pCur->apPage[pCur->iPage] = pCur->pPage;
+ pCur->ix = 0;
+ pCur->iPage++;
+ return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Page pParent is an internal (non-leaf) tree page. This function
+** asserts that page number iChild is the left-child if the iIdx'th
+** cell in page pParent. Or, if iIdx is equal to the total number of
+** cells in pParent, that page number iChild is the right-child of
+** the page.
+*/
+static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
+ if( CORRUPT_DB ) return; /* The conditions tested below might not be true
+ ** in a corrupt database */
+ assert( iIdx<=pParent->nCell );
+ if( iIdx==pParent->nCell ){
+ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
+ }else{
+ assert( get4byte(findCell(pParent, iIdx))==iChild );
+ }
+}
+#else
+# define assertParentIndex(x,y,z)
+#endif
+
+/*
+** Move the cursor up to the parent page.
+**
+** pCur->idx is set to the cell index that contains the pointer
+** to the page we are coming from. If we are coming from the
+** right-most child page then pCur->idx is set to one more than
+** the largest cell index.
+*/
+static void moveToParent(BtCursor *pCur){
+ MemPage *pLeaf;
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage>0 );
+ assert( pCur->pPage );
+ assertParentIndex(
+ pCur->apPage[pCur->iPage-1],
+ pCur->aiIdx[pCur->iPage-1],
+ pCur->pPage->pgno
+ );
+ testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ pCur->ix = pCur->aiIdx[pCur->iPage-1];
+ pLeaf = pCur->pPage;
+ pCur->pPage = pCur->apPage[--pCur->iPage];
+ releasePageNotNull(pLeaf);
+}
+
+/*
+** Move the cursor to point to the root page of its b-tree structure.
+**
+** If the table has a virtual root page, then the cursor is moved to point
+** to the virtual root page instead of the actual root page. A table has a
+** virtual root page when the actual root page contains no cells and a
+** single child page. This can only happen with the table rooted at page 1.
+**
+** If the b-tree structure is empty, the cursor state is set to
+** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
+** the cursor is set to point to the first cell located on the root
+** (or virtual root) page and the cursor state is set to CURSOR_VALID.
+**
+** If this function returns successfully, it may be assumed that the
+** page-header flags indicate that the [virtual] root-page is the expected
+** kind of b-tree page (i.e. if when opening the cursor the caller did not
+** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
+** indicating a table b-tree, or if the caller did specify a KeyInfo
+** structure the flags byte is set to 0x02 or 0x0A, indicating an index
+** b-tree).
+*/
+static int moveToRoot(BtCursor *pCur){
+ MemPage *pRoot;
+ int rc = SQLITE_OK;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
+ assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
+ assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
+
+ if( pCur->iPage>=0 ){
+ if( pCur->iPage ){
+ releasePageNotNull(pCur->pPage);
+ while( --pCur->iPage ){
+ releasePageNotNull(pCur->apPage[pCur->iPage]);
+ }
+ pRoot = pCur->pPage = pCur->apPage[0];
+ goto skip_init;
+ }
+ }else if( pCur->pgnoRoot==0 ){
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_EMPTY;
+ }else{
+ assert( pCur->iPage==(-1) );
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ if( pCur->eState==CURSOR_FAULT ){
+ assert( pCur->skipNext!=SQLITE_OK );
+ return pCur->skipNext;
+ }
+ sqlite3BtreeClearCursor(pCur);
+ }
+ rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
+ 0, pCur->curPagerFlags);
+ if( rc!=SQLITE_OK ){
+ pCur->eState = CURSOR_INVALID;
+ return rc;
+ }
+ pCur->iPage = 0;
+ pCur->curIntKey = pCur->pPage->intKey;
+ }
+ pRoot = pCur->pPage;
+ assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
+
+ /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
+ ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
+ ** NULL, the caller expects a table b-tree. If this is not the case,
+ ** return an SQLITE_CORRUPT error.
+ **
+ ** Earlier versions of SQLite assumed that this test could not fail
+ ** if the root page was already loaded when this function was called (i.e.
+ ** if pCur->iPage>=0). But this is not so if the database is corrupted
+ ** in such a way that page pRoot is linked into a second b-tree table
+ ** (or the freelist). */
+ assert( pRoot->intKey==1 || pRoot->intKey==0 );
+ if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
+ return SQLITE_CORRUPT_PAGE(pCur->pPage);
+ }
+
+skip_init:
+ pCur->ix = 0;
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
+
+ if( pRoot->nCell>0 ){
+ pCur->eState = CURSOR_VALID;
+ }else if( !pRoot->leaf ){
+ Pgno subpage;
+ if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
+ subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
+ pCur->eState = CURSOR_VALID;
+ rc = moveToChild(pCur, subpage);
+ }else{
+ pCur->eState = CURSOR_INVALID;
+ rc = SQLITE_EMPTY;
+ }
+ return rc;
+}
+
+/*
+** Move the cursor down to the left-most leaf entry beneath the
+** entry to which it is currently pointing.
+**
+** The left-most leaf is the one with the smallest key - the first
+** in ascending order.
+*/
+static int moveToLeftmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc = SQLITE_OK;
+ MemPage *pPage;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
+ assert( pCur->ix<pPage->nCell );
+ pgno = get4byte(findCell(pPage, pCur->ix));
+ rc = moveToChild(pCur, pgno);
+ }
+ return rc;
+}
+
+/*
+** Move the cursor down to the right-most leaf entry beneath the
+** page to which it is currently pointing. Notice the difference
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
+** finds the right-most entry beneath the *page*.
+**
+** The right-most entry is the one with the largest key - the last
+** key in ascending order.
+*/
+static int moveToRightmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc = SQLITE_OK;
+ MemPage *pPage = 0;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ while( !(pPage = pCur->pPage)->leaf ){
+ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ pCur->ix = pPage->nCell;
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ pCur->ix = pPage->nCell-1;
+ assert( pCur->info.nSize==0 );
+ assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
+ return SQLITE_OK;
+}
+
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
+ int rc;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->pPage->nCell>0 );
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ }else if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = 1;
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
+ int rc;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+
+ /* If the cursor already points to the last entry, this is a no-op. */
+ if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
+#ifdef SQLITE_DEBUG
+ /* This block serves to assert() that the cursor really does point
+ ** to the last entry in the b-tree. */
+ int ii;
+ for(ii=0; ii<pCur->iPage; ii++){
+ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
+ }
+ assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
+ testcase( pCur->ix!=pCur->pPage->nCell-1 );
+ /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
+ assert( pCur->pPage->leaf );
+#endif
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->eState==CURSOR_VALID );
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ if( rc==SQLITE_OK ){
+ pCur->curFlags |= BTCF_AtLast;
+ }else{
+ pCur->curFlags &= ~BTCF_AtLast;
+ }
+ }else if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = 1;
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+
+/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
+** table near the key intKey. Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** An integer is written into *pRes which is the result of
+** comparing the key with the entry to which the cursor is
+** pointing. The meaning of the integer written into
+** *pRes is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than intKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches intKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than intKey.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTableMoveto(
+ BtCursor *pCur, /* The cursor to be moved */
+ i64 intKey, /* The table key */
+ int biasRight, /* If true, bias the search to the high end */
+ int *pRes /* Write search results here */
+){
+ int rc;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( pRes );
+ assert( pCur->pKeyInfo==0 );
+ assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
+
+ /* If the cursor is already positioned at the point we are trying
+ ** to move to, then just return without doing any work */
+ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
+ if( pCur->info.nKey==intKey ){
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( pCur->info.nKey<intKey ){
+ if( (pCur->curFlags & BTCF_AtLast)!=0 ){
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ /* If the requested key is one more than the previous key, then
+ ** try to get there using sqlite3BtreeNext() rather than a full
+ ** binary search. This is an optimization only. The correct answer
+ ** is still obtained without this case, only a little more slowely */
+ if( pCur->info.nKey+1==intKey ){
+ *pRes = 0;
+ rc = sqlite3BtreeNext(pCur, 0);
+ if( rc==SQLITE_OK ){
+ getCellInfo(pCur);
+ if( pCur->info.nKey==intKey ){
+ return SQLITE_OK;
+ }
+ }else if( rc!=SQLITE_DONE ){
+ return rc;
+ }
+ }
+ }
+ }
+
+#ifdef SQLITE_DEBUG
+ pCur->pBtree->nSeek++; /* Performance measurement during testing */
+#endif
+
+ rc = moveToRoot(pCur);
+ if( rc ){
+ if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+ assert( pCur->pPage );
+ assert( pCur->pPage->isInit );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->pPage->nCell > 0 );
+ assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
+ assert( pCur->curIntKey );
+
+ for(;;){
+ int lwr, upr, idx, c;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ u8 *pCell; /* Pointer to current cell in pPage */
+
+ /* pPage->nCell must be greater than zero. If this is the root-page
+ ** the cursor would have been INVALID above and this for(;;) loop
+ ** not run. If this is not the root-page, then the moveToChild() routine
+ ** would have already detected db corruption. Similarly, pPage must
+ ** be the right kind (index or table) of b-tree page. Otherwise
+ ** a moveToChild() or moveToRoot() call would have detected corruption. */
+ assert( pPage->nCell>0 );
+ assert( pPage->intKey );
+ lwr = 0;
+ upr = pPage->nCell-1;
+ assert( biasRight==0 || biasRight==1 );
+ idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
+ for(;;){
+ i64 nCellKey;
+ pCell = findCellPastPtr(pPage, idx);
+ if( pPage->intKeyLeaf ){
+ while( 0x80 <= *(pCell++) ){
+ if( pCell>=pPage->aDataEnd ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+ }
+ getVarint(pCell, (u64*)&nCellKey);
+ if( nCellKey<intKey ){
+ lwr = idx+1;
+ if( lwr>upr ){ c = -1; break; }
+ }else if( nCellKey>intKey ){
+ upr = idx-1;
+ if( lwr>upr ){ c = +1; break; }
+ }else{
+ assert( nCellKey==intKey );
+ pCur->ix = (u16)idx;
+ if( !pPage->leaf ){
+ lwr = idx;
+ goto moveto_table_next_layer;
+ }else{
+ pCur->curFlags |= BTCF_ValidNKey;
+ pCur->info.nKey = nCellKey;
+ pCur->info.nSize = 0;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ }
+ assert( lwr+upr>=0 );
+ idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
+ }
+ assert( lwr==upr+1 || !pPage->leaf );
+ assert( pPage->isInit );
+ if( pPage->leaf ){
+ assert( pCur->ix<pCur->pPage->nCell );
+ pCur->ix = (u16)idx;
+ *pRes = c;
+ rc = SQLITE_OK;
+ goto moveto_table_finish;
+ }
+moveto_table_next_layer:
+ if( lwr>=pPage->nCell ){
+ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ }else{
+ chldPg = get4byte(findCell(pPage, lwr));
+ }
+ pCur->ix = (u16)lwr;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) break;
+ }
+moveto_table_finish:
+ pCur->info.nSize = 0;
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
+ return rc;
+}
+
+/*
+** Compare the "idx"-th cell on the page the cursor pCur is currently
+** pointing to to pIdxKey using xRecordCompare. Return negative or
+** zero if the cell is less than or equal pIdxKey. Return positive
+** if unknown.
+**
+** Return value negative: Cell at pCur[idx] less than pIdxKey
+**
+** Return value is zero: Cell at pCur[idx] equals pIdxKey
+**
+** Return value positive: Nothing is known about the relationship
+** of the cell at pCur[idx] and pIdxKey.
+**
+** This routine is part of an optimization. It is always safe to return
+** a positive value as that will cause the optimization to be skipped.
+*/
+static int indexCellCompare(
+ BtCursor *pCur,
+ int idx,
+ UnpackedRecord *pIdxKey,
+ RecordCompare xRecordCompare
+){
+ MemPage *pPage = pCur->pPage;
+ int c;
+ int nCell; /* Size of the pCell cell in bytes */
+ u8 *pCell = findCellPastPtr(pPage, idx);
+
+ nCell = pCell[0];
+ if( nCell<=pPage->max1bytePayload ){
+ /* This branch runs if the record-size field of the cell is a
+ ** single byte varint and the record fits entirely on the main
+ ** b-tree page. */
+ testcase( pCell+nCell+1==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
+ }else if( !(pCell[1] & 0x80)
+ && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
+ ){
+ /* The record-size field is a 2 byte varint and the record
+ ** fits entirely on the main b-tree page. */
+ testcase( pCell+nCell+2==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
+ }else{
+ /* If the record extends into overflow pages, do not attempt
+ ** the optimization. */
+ c = 99;
+ }
+ return c;
+}
+
+/*
+** Return true (non-zero) if pCur is current pointing to the last
+** page of a table.
+*/
+static int cursorOnLastPage(BtCursor *pCur){
+ int i;
+ assert( pCur->eState==CURSOR_VALID );
+ for(i=0; i<pCur->iPage; i++){
+ MemPage *pPage = pCur->apPage[i];
+ if( pCur->aiIdx[i]<pPage->nCell ) return 0;
+ }
+ return 1;
+}
+
+/* Move the cursor so that it points to an entry in an index table
+** near the key pIdxKey. Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** An integer is written into *pRes which is the result of
+** comparing the key with the entry to which the cursor is
+** pointing. The meaning of the integer written into
+** *pRes is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pIdxKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pIdxKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pIdxKey.
+**
+** The pIdxKey->eqSeen field is set to 1 if there
+** exists an entry in the table that exactly matches pIdxKey.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIndexMoveto(
+ BtCursor *pCur, /* The cursor to be moved */
+ UnpackedRecord *pIdxKey, /* Unpacked index key */
+ int *pRes /* Write search results here */
+){
+ int rc;
+ RecordCompare xRecordCompare;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( pRes );
+ assert( pCur->pKeyInfo!=0 );
+
+#ifdef SQLITE_DEBUG
+ pCur->pBtree->nSeek++; /* Performance measurement during testing */
+#endif
+
+ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
+ pIdxKey->errCode = 0;
+ assert( pIdxKey->default_rc==1
+ || pIdxKey->default_rc==0
+ || pIdxKey->default_rc==-1
+ );
+
+
+ /* Check to see if we can skip a lot of work. Two cases:
+ **
+ ** (1) If the cursor is already pointing to the very last cell
+ ** in the table and the pIdxKey search key is greater than or
+ ** equal to that last cell, then no movement is required.
+ **
+ ** (2) If the cursor is on the last page of the table and the first
+ ** cell on that last page is less than or equal to the pIdxKey
+ ** search key, then we can start the search on the current page
+ ** without needing to go back to root.
+ */
+ if( pCur->eState==CURSOR_VALID
+ && pCur->pPage->leaf
+ && cursorOnLastPage(pCur)
+ ){
+ int c;
+ if( pCur->ix==pCur->pPage->nCell-1
+ && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
+ && pIdxKey->errCode==SQLITE_OK
+ ){
+ *pRes = c;
+ return SQLITE_OK; /* Cursor already pointing at the correct spot */
+ }
+ if( pCur->iPage>0
+ && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
+ && pIdxKey->errCode==SQLITE_OK
+ ){
+ pCur->curFlags &= ~BTCF_ValidOvfl;
+ if( !pCur->pPage->isInit ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ goto bypass_moveto_root; /* Start search on the current page */
+ }
+ pIdxKey->errCode = SQLITE_OK;
+ }
+
+ rc = moveToRoot(pCur);
+ if( rc ){
+ if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+
+bypass_moveto_root:
+ assert( pCur->pPage );
+ assert( pCur->pPage->isInit );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->pPage->nCell > 0 );
+ assert( pCur->curIntKey==0 );
+ assert( pIdxKey!=0 );
+ for(;;){
+ int lwr, upr, idx, c;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ u8 *pCell; /* Pointer to current cell in pPage */
+
+ /* pPage->nCell must be greater than zero. If this is the root-page
+ ** the cursor would have been INVALID above and this for(;;) loop
+ ** not run. If this is not the root-page, then the moveToChild() routine
+ ** would have already detected db corruption. Similarly, pPage must
+ ** be the right kind (index or table) of b-tree page. Otherwise
+ ** a moveToChild() or moveToRoot() call would have detected corruption. */
+ assert( pPage->nCell>0 );
+ assert( pPage->intKey==0 );
+ lwr = 0;
+ upr = pPage->nCell-1;
+ idx = upr>>1; /* idx = (lwr+upr)/2; */
+ for(;;){
+ int nCell; /* Size of the pCell cell in bytes */
+ pCell = findCellPastPtr(pPage, idx);
+
+ /* The maximum supported page-size is 65536 bytes. This means that
+ ** the maximum number of record bytes stored on an index B-Tree
+ ** page is less than 16384 bytes and may be stored as a 2-byte
+ ** varint. This information is used to attempt to avoid parsing
+ ** the entire cell by checking for the cases where the record is
+ ** stored entirely within the b-tree page by inspecting the first
+ ** 2 bytes of the cell.
+ */
+ nCell = pCell[0];
+ if( nCell<=pPage->max1bytePayload ){
+ /* This branch runs if the record-size field of the cell is a
+ ** single byte varint and the record fits entirely on the main
+ ** b-tree page. */
+ testcase( pCell+nCell+1==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
+ }else if( !(pCell[1] & 0x80)
+ && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
+ ){
+ /* The record-size field is a 2 byte varint and the record
+ ** fits entirely on the main b-tree page. */
+ testcase( pCell+nCell+2==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
+ }else{
+ /* The record flows over onto one or more overflow pages. In
+ ** this case the whole cell needs to be parsed, a buffer allocated
+ ** and accessPayload() used to retrieve the record into the
+ ** buffer before VdbeRecordCompare() can be called.
+ **
+ ** If the record is corrupt, the xRecordCompare routine may read
+ ** up to two varints past the end of the buffer. An extra 18
+ ** bytes of padding is allocated at the end of the buffer in
+ ** case this happens. */
+ void *pCellKey;
+ u8 * const pCellBody = pCell - pPage->childPtrSize;
+ const int nOverrun = 18; /* Size of the overrun padding */
+ pPage->xParseCell(pPage, pCellBody, &pCur->info);
+ nCell = (int)pCur->info.nKey;
+ testcase( nCell<0 ); /* True if key size is 2^32 or more */
+ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
+ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
+ testcase( nCell==2 ); /* Minimum legal index key size */
+ if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
+ rc = SQLITE_CORRUPT_PAGE(pPage);
+ goto moveto_index_finish;
+ }
+ pCellKey = sqlite3Malloc( nCell+nOverrun );
+ if( pCellKey==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto moveto_index_finish;
+ }
+ pCur->ix = (u16)idx;
+ rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
+ memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
+ pCur->curFlags &= ~BTCF_ValidOvfl;
+ if( rc ){
+ sqlite3_free(pCellKey);
+ goto moveto_index_finish;
+ }
+ c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
+ sqlite3_free(pCellKey);
+ }
+ assert(
+ (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
+ && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
+ );
+ if( c<0 ){
+ lwr = idx+1;
+ }else if( c>0 ){
+ upr = idx-1;
+ }else{
+ assert( c==0 );
+ *pRes = 0;
+ rc = SQLITE_OK;
+ pCur->ix = (u16)idx;
+ if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
+ goto moveto_index_finish;
+ }
+ if( lwr>upr ) break;
+ assert( lwr+upr>=0 );
+ idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
+ }
+ assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
+ assert( pPage->isInit );
+ if( pPage->leaf ){
+ assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
+ pCur->ix = (u16)idx;
+ *pRes = c;
+ rc = SQLITE_OK;
+ goto moveto_index_finish;
+ }
+ if( lwr>=pPage->nCell ){
+ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ }else{
+ chldPg = get4byte(findCell(pPage, lwr));
+ }
+ pCur->ix = (u16)lwr;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) break;
+ }
+moveto_index_finish:
+ pCur->info.nSize = 0;
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
+ return rc;
+}
+
+
+/*
+** Return TRUE if the cursor is not pointing at an entry of the table.
+**
+** TRUE will be returned after a call to sqlite3BtreeNext() moves
+** past the last entry in the table or sqlite3BtreePrev() moves past
+** the first entry. TRUE is also returned if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
+ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
+ ** have been deleted? This API will need to change to return an error code
+ ** as well as the boolean result value.
+ */
+ return (CURSOR_VALID!=pCur->eState);
+}
+
+/*
+** Return an estimate for the number of rows in the table that pCur is
+** pointing to. Return a negative number if no estimate is currently
+** available.
+*/
+SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
+ i64 n;
+ u8 i;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+
+ /* Currently this interface is only called by the OP_IfSmaller
+ ** opcode, and it that case the cursor will always be valid and
+ ** will always point to a leaf node. */
+ if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
+ if( NEVER(pCur->pPage->leaf==0) ) return -1;
+
+ n = pCur->pPage->nCell;
+ for(i=0; i<pCur->iPage; i++){
+ n *= pCur->apPage[i]->nCell;
+ }
+ return n;
+}
+
+/*
+** Advance the cursor to the next entry in the database.
+** Return value:
+**
+** SQLITE_OK success
+** SQLITE_DONE cursor is already pointing at the last element
+** otherwise some kind of error occurred
+**
+** The main entry point is sqlite3BtreeNext(). That routine is optimized
+** for the common case of merely incrementing the cell counter BtCursor.aiIdx
+** to the next cell on the current page. The (slower) btreeNext() helper
+** routine is called when it is necessary to move to a different page or
+** to restore the cursor.
+**
+** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
+** cursor corresponds to an SQL index and this routine could have been
+** skipped if the SQL index had been a unique index. The F argument
+** is a hint to the implement. SQLite btree implementation does not use
+** this hint, but COMDB2 does.
+*/
+static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
+ int rc;
+ int idx;
+ MemPage *pPage;
+
+ assert( cursorOwnsBtShared(pCur) );
+ if( pCur->eState!=CURSOR_VALID ){
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
+ rc = restoreCursorPosition(pCur);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( CURSOR_INVALID==pCur->eState ){
+ return SQLITE_DONE;
+ }
+ if( pCur->eState==CURSOR_SKIPNEXT ){
+ pCur->eState = CURSOR_VALID;
+ if( pCur->skipNext>0 ) return SQLITE_OK;
+ }
+ }
+
+ pPage = pCur->pPage;
+ idx = ++pCur->ix;
+ if( !pPage->isInit || sqlite3FaultSim(412) ){
+ /* The only known way for this to happen is for there to be a
+ ** recursive SQL function that does a DELETE operation as part of a
+ ** SELECT which deletes content out from under an active cursor
+ ** in a corrupt database file where the table being DELETE-ed from
+ ** has pages in common with the table being queried. See TH3
+ ** module cov1/btree78.test testcase 220 (2018-06-08) for an
+ ** example. */
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ if( idx>=pPage->nCell ){
+ if( !pPage->leaf ){
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
+ if( rc ) return rc;
+ return moveToLeftmost(pCur);
+ }
+ do{
+ if( pCur->iPage==0 ){
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_DONE;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }while( pCur->ix>=pPage->nCell );
+ if( pPage->intKey ){
+ return sqlite3BtreeNext(pCur, 0);
+ }else{
+ return SQLITE_OK;
+ }
+ }
+ if( pPage->leaf ){
+ return SQLITE_OK;
+ }else{
+ return moveToLeftmost(pCur);
+ }
+}
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int flags){
+ MemPage *pPage;
+ UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
+ assert( cursorOwnsBtShared(pCur) );
+ assert( flags==0 || flags==1 );
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
+ pPage = pCur->pPage;
+ if( (++pCur->ix)>=pPage->nCell ){
+ pCur->ix--;
+ return btreeNext(pCur);
+ }
+ if( pPage->leaf ){
+ return SQLITE_OK;
+ }else{
+ return moveToLeftmost(pCur);
+ }
+}
+
+/*
+** Step the cursor to the back to the previous entry in the database.
+** Return values:
+**
+** SQLITE_OK success
+** SQLITE_DONE the cursor is already on the first element of the table
+** otherwise some kind of error occurred
+**
+** The main entry point is sqlite3BtreePrevious(). That routine is optimized
+** for the common case of merely decrementing the cell counter BtCursor.aiIdx
+** to the previous cell on the current page. The (slower) btreePrevious()
+** helper routine is called when it is necessary to move to a different page
+** or to restore the cursor.
+**
+** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
+** the cursor corresponds to an SQL index and this routine could have been
+** skipped if the SQL index had been a unique index. The F argument is a
+** hint to the implement. The native SQLite btree implementation does not
+** use this hint, but COMDB2 does.
+*/
+static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
+ int rc;
+ MemPage *pPage;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
+ assert( pCur->info.nSize==0 );
+ if( pCur->eState!=CURSOR_VALID ){
+ rc = restoreCursorPosition(pCur);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( CURSOR_INVALID==pCur->eState ){
+ return SQLITE_DONE;
+ }
+ if( CURSOR_SKIPNEXT==pCur->eState ){
+ pCur->eState = CURSOR_VALID;
+ if( pCur->skipNext<0 ) return SQLITE_OK;
+ }
+ }
+
+ pPage = pCur->pPage;
+ assert( pPage->isInit );
+ if( !pPage->leaf ){
+ int idx = pCur->ix;
+ rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
+ if( rc ) return rc;
+ rc = moveToRightmost(pCur);
+ }else{
+ while( pCur->ix==0 ){
+ if( pCur->iPage==0 ){
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_DONE;
+ }
+ moveToParent(pCur);
+ }
+ assert( pCur->info.nSize==0 );
+ assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
+
+ pCur->ix--;
+ pPage = pCur->pPage;
+ if( pPage->intKey && !pPage->leaf ){
+ rc = sqlite3BtreePrevious(pCur, 0);
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int flags){
+ assert( cursorOwnsBtShared(pCur) );
+ assert( flags==0 || flags==1 );
+ UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
+ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
+ pCur->info.nSize = 0;
+ if( pCur->eState!=CURSOR_VALID
+ || pCur->ix==0
+ || pCur->pPage->leaf==0
+ ){
+ return btreePrevious(pCur);
+ }
+ pCur->ix--;
+ return SQLITE_OK;
+}
+
+/*
+** Allocate a new page from the database file.
+**
+** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
+** has already been called on the new page.) The new page has also
+** been referenced and the calling routine is responsible for calling
+** sqlite3PagerUnref() on the new page when it is done.
+**
+** SQLITE_OK is returned on success. Any other return value indicates
+** an error. *ppPage is set to NULL in the event of an error.
+**
+** If the "nearby" parameter is not 0, then an effort is made to
+** locate a page close to the page number "nearby". This can be used in an
+** attempt to keep related pages close to each other in the database file,
+** which in turn can make database access faster.
+**
+** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
+** anywhere on the free-list, then it is guaranteed to be returned. If
+** eMode is BTALLOC_LT then the page returned will be less than or equal
+** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
+** are no restrictions on which page is returned.
+*/
+static int allocateBtreePage(
+ BtShared *pBt, /* The btree */
+ MemPage **ppPage, /* Store pointer to the allocated page here */
+ Pgno *pPgno, /* Store the page number here */
+ Pgno nearby, /* Search for a page near this one */
+ u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
+){
+ MemPage *pPage1;
+ int rc;
+ u32 n; /* Number of pages on the freelist */
+ u32 k; /* Number of leaves on the trunk of the freelist */
+ MemPage *pTrunk = 0;
+ MemPage *pPrevTrunk = 0;
+ Pgno mxPage; /* Total size of the database file */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
+ pPage1 = pBt->pPage1;
+ mxPage = btreePagecount(pBt);
+ /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
+ ** stores stores the total number of pages on the freelist. */
+ n = get4byte(&pPage1->aData[36]);
+ testcase( n==mxPage-1 );
+ if( n>=mxPage ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( n>0 ){
+ /* There are pages on the freelist. Reuse one of those pages. */
+ Pgno iTrunk;
+ u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
+ u32 nSearch = 0; /* Count of the number of search attempts */
+
+ /* If eMode==BTALLOC_EXACT and a query of the pointer-map
+ ** shows that the page 'nearby' is somewhere on the free-list, then
+ ** the entire-list will be searched for that page.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( eMode==BTALLOC_EXACT ){
+ if( nearby<=mxPage ){
+ u8 eType;
+ assert( nearby>0 );
+ assert( pBt->autoVacuum );
+ rc = ptrmapGet(pBt, nearby, &eType, 0);
+ if( rc ) return rc;
+ if( eType==PTRMAP_FREEPAGE ){
+ searchList = 1;
+ }
+ }
+ }else if( eMode==BTALLOC_LE ){
+ searchList = 1;
+ }
+#endif
+
+ /* Decrement the free-list count by 1. Set iTrunk to the index of the
+ ** first free-list trunk page. iPrevTrunk is initially 1.
+ */
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc ) return rc;
+ put4byte(&pPage1->aData[36], n-1);
+
+ /* The code within this loop is run only once if the 'searchList' variable
+ ** is not true. Otherwise, it runs once for each trunk-page on the
+ ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
+ ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
+ */
+ do {
+ pPrevTrunk = pTrunk;
+ if( pPrevTrunk ){
+ /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
+ ** is the page number of the next freelist trunk page in the list or
+ ** zero if this is the last freelist trunk page. */
+ iTrunk = get4byte(&pPrevTrunk->aData[0]);
+ }else{
+ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
+ ** stores the page number of the first page of the freelist, or zero if
+ ** the freelist is empty. */
+ iTrunk = get4byte(&pPage1->aData[32]);
+ }
+ testcase( iTrunk==mxPage );
+ if( iTrunk>mxPage || nSearch++ > n ){
+ rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
+ }else{
+ rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
+ }
+ if( rc ){
+ pTrunk = 0;
+ goto end_allocate_page;
+ }
+ assert( pTrunk!=0 );
+ assert( pTrunk->aData!=0 );
+ /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
+ ** is the number of leaf page pointers to follow. */
+ k = get4byte(&pTrunk->aData[4]);
+ if( k==0 && !searchList ){
+ /* The trunk has no leaves and the list is not being searched.
+ ** So extract the trunk page itself and use it as the newly
+ ** allocated page */
+ assert( pPrevTrunk==0 );
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ *pPgno = iTrunk;
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
+ *ppPage = pTrunk;
+ pTrunk = 0;
+ TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
+ }else if( k>(u32)(pBt->usableSize/4 - 2) ){
+ /* Value of k is out of range. Database corruption */
+ rc = SQLITE_CORRUPT_PGNO(iTrunk);
+ goto end_allocate_page;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ }else if( searchList
+ && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
+ ){
+ /* The list is being searched and this trunk page is the page
+ ** to allocate, regardless of whether it has leaves.
+ */
+ *pPgno = iTrunk;
+ *ppPage = pTrunk;
+ searchList = 0;
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ if( k==0 ){
+ if( !pPrevTrunk ){
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
+ }else{
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
+ if( rc!=SQLITE_OK ){
+ goto end_allocate_page;
+ }
+ memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
+ }
+ }else{
+ /* The trunk page is required by the caller but it contains
+ ** pointers to free-list leaves. The first leaf becomes a trunk
+ ** page in this case.
+ */
+ MemPage *pNewTrunk;
+ Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
+ if( iNewTrunk>mxPage ){
+ rc = SQLITE_CORRUPT_PGNO(iTrunk);
+ goto end_allocate_page;
+ }
+ testcase( iNewTrunk==mxPage );
+ rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
+ if( rc!=SQLITE_OK ){
+ goto end_allocate_page;
+ }
+ rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pNewTrunk);
+ goto end_allocate_page;
+ }
+ memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
+ put4byte(&pNewTrunk->aData[4], k-1);
+ memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
+ releasePage(pNewTrunk);
+ if( !pPrevTrunk ){
+ assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
+ put4byte(&pPage1->aData[32], iNewTrunk);
+ }else{
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ put4byte(&pPrevTrunk->aData[0], iNewTrunk);
+ }
+ }
+ pTrunk = 0;
+ TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
+#endif
+ }else if( k>0 ){
+ /* Extract a leaf from the trunk */
+ u32 closest;
+ Pgno iPage;
+ unsigned char *aData = pTrunk->aData;
+ if( nearby>0 ){
+ u32 i;
+ closest = 0;
+ if( eMode==BTALLOC_LE ){
+ for(i=0; i<k; i++){
+ iPage = get4byte(&aData[8+i*4]);
+ if( iPage<=nearby ){
+ closest = i;
+ break;
+ }
+ }
+ }else{
+ int dist;
+ dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
+ for(i=1; i<k; i++){
+ int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
+ if( d2<dist ){
+ closest = i;
+ dist = d2;
+ }
+ }
+ }
+ }else{
+ closest = 0;
+ }
+
+ iPage = get4byte(&aData[8+closest*4]);
+ testcase( iPage==mxPage );
+ if( iPage>mxPage || iPage<2 ){
+ rc = SQLITE_CORRUPT_PGNO(iTrunk);
+ goto end_allocate_page;
+ }
+ testcase( iPage==mxPage );
+ if( !searchList
+ || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
+ ){
+ int noContent;
+ *pPgno = iPage;
+ TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
+ ": %d more free pages\n",
+ *pPgno, closest+1, k, pTrunk->pgno, n-1));
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ) goto end_allocate_page;
+ if( closest<k-1 ){
+ memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
+ }
+ put4byte(&aData[4], k-1);
+ noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
+ rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ }
+ }
+ searchList = 0;
+ }
+ }
+ releasePage(pPrevTrunk);
+ pPrevTrunk = 0;
+ }while( searchList );
+ }else{
+ /* There are no pages on the freelist, so append a new page to the
+ ** database image.
+ **
+ ** Normally, new pages allocated by this block can be requested from the
+ ** pager layer with the 'no-content' flag set. This prevents the pager
+ ** from trying to read the pages content from disk. However, if the
+ ** current transaction has already run one or more incremental-vacuum
+ ** steps, then the page we are about to allocate may contain content
+ ** that is required in the event of a rollback. In this case, do
+ ** not set the no-content flag. This causes the pager to load and journal
+ ** the current page content before overwriting it.
+ **
+ ** Note that the pager will not actually attempt to load or journal
+ ** content for any page that really does lie past the end of the database
+ ** file on disk. So the effects of disabling the no-content optimization
+ ** here are confined to those pages that lie between the end of the
+ ** database image and the end of the database file.
+ */
+ int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
+
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc ) return rc;
+ pBt->nPage++;
+ if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
+ /* If *pPgno refers to a pointer-map page, allocate two new pages
+ ** at the end of the file instead of one. The first allocated page
+ ** becomes a new pointer-map page, the second is used by the caller.
+ */
+ MemPage *pPg = 0;
+ TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
+ assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
+ rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pPg->pDbPage);
+ releasePage(pPg);
+ }
+ if( rc ) return rc;
+ pBt->nPage++;
+ if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
+ }
+#endif
+ put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
+ *pPgno = pBt->nPage;
+
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
+ rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
+ if( rc ) return rc;
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ }
+ TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
+ }
+
+ assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
+
+end_allocate_page:
+ releasePage(pTrunk);
+ releasePage(pPrevTrunk);
+ assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
+ assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
+ return rc;
+}
+
+/*
+** This function is used to add page iPage to the database file free-list.
+** It is assumed that the page is not already a part of the free-list.
+**
+** The value passed as the second argument to this function is optional.
+** If the caller happens to have a pointer to the MemPage object
+** corresponding to page iPage handy, it may pass it as the second value.
+** Otherwise, it may pass NULL.
+**
+** If a pointer to a MemPage object is passed as the second argument,
+** its reference count is not altered by this function.
+*/
+static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
+ MemPage *pTrunk = 0; /* Free-list trunk page */
+ Pgno iTrunk = 0; /* Page number of free-list trunk page */
+ MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
+ MemPage *pPage; /* Page being freed. May be NULL. */
+ int rc; /* Return Code */
+ u32 nFree; /* Initial number of pages on free-list */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( CORRUPT_DB || iPage>1 );
+ assert( !pMemPage || pMemPage->pgno==iPage );
+
+ if( iPage<2 || iPage>pBt->nPage ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( pMemPage ){
+ pPage = pMemPage;
+ sqlite3PagerRef(pPage->pDbPage);
+ }else{
+ pPage = btreePageLookup(pBt, iPage);
+ }
+
+ /* Increment the free page count on pPage1 */
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc ) goto freepage_out;
+ nFree = get4byte(&pPage1->aData[36]);
+ put4byte(&pPage1->aData[36], nFree+1);
+
+ if( pBt->btsFlags & BTS_SECURE_DELETE ){
+ /* If the secure_delete option is enabled, then
+ ** always fully overwrite deleted information with zeros.
+ */
+ if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
+ || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
+ ){
+ goto freepage_out;
+ }
+ memset(pPage->aData, 0, pPage->pBt->pageSize);
+ }
+
+ /* If the database supports auto-vacuum, write an entry in the pointer-map
+ ** to indicate that the page is free.
+ */
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
+ if( rc ) goto freepage_out;
+ }
+
+ /* Now manipulate the actual database free-list structure. There are two
+ ** possibilities. If the free-list is currently empty, or if the first
+ ** trunk page in the free-list is full, then this page will become a
+ ** new free-list trunk page. Otherwise, it will become a leaf of the
+ ** first trunk page in the current free-list. This block tests if it
+ ** is possible to add the page as a new free-list leaf.
+ */
+ if( nFree!=0 ){
+ u32 nLeaf; /* Initial number of leaf cells on trunk page */
+
+ iTrunk = get4byte(&pPage1->aData[32]);
+ if( iTrunk>btreePagecount(pBt) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto freepage_out;
+ }
+ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
+ if( rc!=SQLITE_OK ){
+ goto freepage_out;
+ }
+
+ nLeaf = get4byte(&pTrunk->aData[4]);
+ assert( pBt->usableSize>32 );
+ if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto freepage_out;
+ }
+ if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
+ /* In this case there is room on the trunk page to insert the page
+ ** being freed as a new leaf.
+ **
+ ** Note that the trunk page is not really full until it contains
+ ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
+ ** coded. But due to a coding error in versions of SQLite prior to
+ ** 3.6.0, databases with freelist trunk pages holding more than
+ ** usableSize/4 - 8 entries will be reported as corrupt. In order
+ ** to maintain backwards compatibility with older versions of SQLite,
+ ** we will continue to restrict the number of entries to usableSize/4 - 8
+ ** for now. At some point in the future (once everyone has upgraded
+ ** to 3.6.0 or later) we should consider fixing the conditional above
+ ** to read "usableSize/4-2" instead of "usableSize/4-8".
+ **
+ ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
+ ** avoid using the last six entries in the freelist trunk page array in
+ ** order that database files created by newer versions of SQLite can be
+ ** read by older versions of SQLite.
+ */
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pTrunk->aData[4], nLeaf+1);
+ put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
+ if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
+ sqlite3PagerDontWrite(pPage->pDbPage);
+ }
+ rc = btreeSetHasContent(pBt, iPage);
+ }
+ TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
+ goto freepage_out;
+ }
+ }
+
+ /* If control flows to this point, then it was not possible to add the
+ ** the page being freed as a leaf page of the first trunk in the free-list.
+ ** Possibly because the free-list is empty, or possibly because the
+ ** first trunk in the free-list is full. Either way, the page being freed
+ ** will become the new first trunk page in the free-list.
+ */
+ if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
+ goto freepage_out;
+ }
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ goto freepage_out;
+ }
+ put4byte(pPage->aData, iTrunk);
+ put4byte(&pPage->aData[4], 0);
+ put4byte(&pPage1->aData[32], iPage);
+ TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
+
+freepage_out:
+ if( pPage ){
+ pPage->isInit = 0;
+ }
+ releasePage(pPage);
+ releasePage(pTrunk);
+ return rc;
+}
+static void freePage(MemPage *pPage, int *pRC){
+ if( (*pRC)==SQLITE_OK ){
+ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
+ }
+}
+
+/*
+** Free the overflow pages associated with the given Cell.
+*/
+static SQLITE_NOINLINE int clearCellOverflow(
+ MemPage *pPage, /* The page that contains the Cell */
+ unsigned char *pCell, /* First byte of the Cell */
+ CellInfo *pInfo /* Size information about the cell */
+){
+ BtShared *pBt;
+ Pgno ovflPgno;
+ int rc;
+ int nOvfl;
+ u32 ovflPageSize;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pInfo->nLocal!=pInfo->nPayload );
+ testcase( pCell + pInfo->nSize == pPage->aDataEnd );
+ testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
+ if( pCell + pInfo->nSize > pPage->aDataEnd ){
+ /* Cell extends past end of page */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ ovflPgno = get4byte(pCell + pInfo->nSize - 4);
+ pBt = pPage->pBt;
+ assert( pBt->usableSize > 4 );
+ ovflPageSize = pBt->usableSize - 4;
+ nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
+ assert( nOvfl>0 ||
+ (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
+ );
+ while( nOvfl-- ){
+ Pgno iNext = 0;
+ MemPage *pOvfl = 0;
+ if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
+ /* 0 is not a legal page number and page 1 cannot be an
+ ** overflow page. Therefore if ovflPgno<2 or past the end of the
+ ** file the database must be corrupt. */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( nOvfl ){
+ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
+ if( rc ) return rc;
+ }
+
+ if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
+ && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
+ ){
+ /* There is no reason any cursor should have an outstanding reference
+ ** to an overflow page belonging to a cell that is being deleted/updated.
+ ** So if there exists more than one reference to this page, then it
+ ** must not really be an overflow page and the database must be corrupt.
+ ** It is helpful to detect this before calling freePage2(), as
+ ** freePage2() may zero the page contents if secure-delete mode is
+ ** enabled. If this 'overflow' page happens to be a page that the
+ ** caller is iterating through or using in some other way, this
+ ** can be problematic.
+ */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = freePage2(pBt, pOvfl, ovflPgno);
+ }
+
+ if( pOvfl ){
+ sqlite3PagerUnref(pOvfl->pDbPage);
+ }
+ if( rc ) return rc;
+ ovflPgno = iNext;
+ }
+ return SQLITE_OK;
+}
+
+/* Call xParseCell to compute the size of a cell. If the cell contains
+** overflow, then invoke cellClearOverflow to clear out that overflow.
+** STore the result code (SQLITE_OK or some error code) in rc.
+**
+** Implemented as macro to force inlining for performance.
+*/
+#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
+ pPage->xParseCell(pPage, pCell, &sInfo); \
+ if( sInfo.nLocal!=sInfo.nPayload ){ \
+ rc = clearCellOverflow(pPage, pCell, &sInfo); \
+ }else{ \
+ rc = SQLITE_OK; \
+ }
+
+
+/*
+** Create the byte sequence used to represent a cell on page pPage
+** and write that byte sequence into pCell[]. Overflow pages are
+** allocated and filled in as necessary. The calling procedure
+** is responsible for making sure sufficient space has been allocated
+** for pCell[].
+**
+** Note that pCell does not necessary need to point to the pPage->aData
+** area. pCell might point to some temporary storage. The cell will
+** be constructed in this temporary area then copied into pPage->aData
+** later.
+*/
+static int fillInCell(
+ MemPage *pPage, /* The page that contains the cell */
+ unsigned char *pCell, /* Complete text of the cell */
+ const BtreePayload *pX, /* Payload with which to construct the cell */
+ int *pnSize /* Write cell size here */
+){
+ int nPayload;
+ const u8 *pSrc;
+ int nSrc, n, rc, mn;
+ int spaceLeft;
+ MemPage *pToRelease;
+ unsigned char *pPrior;
+ unsigned char *pPayload;
+ BtShared *pBt;
+ Pgno pgnoOvfl;
+ int nHeader;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ /* pPage is not necessarily writeable since pCell might be auxiliary
+ ** buffer space that is separate from the pPage buffer area */
+ assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ /* Fill in the header. */
+ nHeader = pPage->childPtrSize;
+ if( pPage->intKey ){
+ nPayload = pX->nData + pX->nZero;
+ pSrc = pX->pData;
+ nSrc = pX->nData;
+ assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
+ nHeader += putVarint32(&pCell[nHeader], nPayload);
+ nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
+ }else{
+ assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
+ nSrc = nPayload = (int)pX->nKey;
+ pSrc = pX->pKey;
+ nHeader += putVarint32(&pCell[nHeader], nPayload);
+ }
+
+ /* Fill in the payload */
+ pPayload = &pCell[nHeader];
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the common case where everything fits on the btree page
+ ** and no overflow pages are required. */
+ n = nHeader + nPayload;
+ testcase( n==3 );
+ testcase( n==4 );
+ if( n<4 ) n = 4;
+ *pnSize = n;
+ assert( nSrc<=nPayload );
+ testcase( nSrc<nPayload );
+ memcpy(pPayload, pSrc, nSrc);
+ memset(pPayload+nSrc, 0, nPayload-nSrc);
+ return SQLITE_OK;
+ }
+
+ /* If we reach this point, it means that some of the content will need
+ ** to spill onto overflow pages.
+ */
+ mn = pPage->minLocal;
+ n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
+ testcase( n==pPage->maxLocal );
+ testcase( n==pPage->maxLocal+1 );
+ if( n > pPage->maxLocal ) n = mn;
+ spaceLeft = n;
+ *pnSize = n + nHeader + 4;
+ pPrior = &pCell[nHeader+n];
+ pToRelease = 0;
+ pgnoOvfl = 0;
+ pBt = pPage->pBt;
+
+ /* At this point variables should be set as follows:
+ **
+ ** nPayload Total payload size in bytes
+ ** pPayload Begin writing payload here
+ ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
+ ** that means content must spill into overflow pages.
+ ** *pnSize Size of the local cell (not counting overflow pages)
+ ** pPrior Where to write the pgno of the first overflow page
+ **
+ ** Use a call to btreeParseCellPtr() to verify that the values above
+ ** were computed correctly.
+ */
+#ifdef SQLITE_DEBUG
+ {
+ CellInfo info;
+ pPage->xParseCell(pPage, pCell, &info);
+ assert( nHeader==(int)(info.pPayload - pCell) );
+ assert( info.nKey==pX->nKey );
+ assert( *pnSize == info.nSize );
+ assert( spaceLeft == info.nLocal );
+ }
+#endif
+
+ /* Write the payload into the local Cell and any extra into overflow pages */
+ while( 1 ){
+ n = nPayload;
+ if( n>spaceLeft ) n = spaceLeft;
+
+ /* If pToRelease is not zero than pPayload points into the data area
+ ** of pToRelease. Make sure pToRelease is still writeable. */
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
+
+ /* If pPayload is part of the data area of pPage, then make sure pPage
+ ** is still writeable */
+ assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ if( nSrc>=n ){
+ memcpy(pPayload, pSrc, n);
+ }else if( nSrc>0 ){
+ n = nSrc;
+ memcpy(pPayload, pSrc, n);
+ }else{
+ memset(pPayload, 0, n);
+ }
+ nPayload -= n;
+ if( nPayload<=0 ) break;
+ pPayload += n;
+ pSrc += n;
+ nSrc -= n;
+ spaceLeft -= n;
+ if( spaceLeft==0 ){
+ MemPage *pOvfl = 0;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
+ if( pBt->autoVacuum ){
+ do{
+ pgnoOvfl++;
+ } while(
+ PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
+ );
+ }
+#endif
+ rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the database supports auto-vacuum, and the second or subsequent
+ ** overflow page is being allocated, add an entry to the pointer-map
+ ** for that page now.
+ **
+ ** If this is the first overflow page, then write a partial entry
+ ** to the pointer-map. If we write nothing to this pointer-map slot,
+ ** then the optimistic overflow chain processing in clearCell()
+ ** may misinterpret the uninitialized values and delete the
+ ** wrong pages from the database.
+ */
+ if( pBt->autoVacuum && rc==SQLITE_OK ){
+ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
+ ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
+ if( rc ){
+ releasePage(pOvfl);
+ }
+ }
+#endif
+ if( rc ){
+ releasePage(pToRelease);
+ return rc;
+ }
+
+ /* If pToRelease is not zero than pPrior points into the data area
+ ** of pToRelease. Make sure pToRelease is still writeable. */
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
+
+ /* If pPrior is part of the data area of pPage, then make sure pPage
+ ** is still writeable */
+ assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ put4byte(pPrior, pgnoOvfl);
+ releasePage(pToRelease);
+ pToRelease = pOvfl;
+ pPrior = pOvfl->aData;
+ put4byte(pPrior, 0);
+ pPayload = &pOvfl->aData[4];
+ spaceLeft = pBt->usableSize - 4;
+ }
+ }
+ releasePage(pToRelease);
+ return SQLITE_OK;
+}
+
+/*
+** Remove the i-th cell from pPage. This routine effects pPage only.
+** The cell content is not freed or deallocated. It is assumed that
+** the cell content has been copied someplace else. This routine just
+** removes the reference to the cell from pPage.
+**
+** "sz" must be the number of bytes in the cell.
+*/
+static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
+ u32 pc; /* Offset to cell content of cell being deleted */
+ u8 *data; /* pPage->aData */
+ u8 *ptr; /* Used to move bytes around within data[] */
+ int rc; /* The return code */
+ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
+
+ if( *pRC ) return;
+ assert( idx>=0 );
+ assert( idx<pPage->nCell );
+ assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->nFree>=0 );
+ data = pPage->aData;
+ ptr = &pPage->aCellIdx[2*idx];
+ assert( pPage->pBt->usableSize > (u32)(ptr-data) );
+ pc = get2byte(ptr);
+ hdr = pPage->hdrOffset;
+#if 0 /* Not required. Omit for efficiency */
+ if( pc<hdr+pPage->nCell*2 ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+#endif
+ testcase( pc==(u32)get2byte(&data[hdr+5]) );
+ testcase( pc+sz==pPage->pBt->usableSize );
+ if( pc+sz > pPage->pBt->usableSize ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ rc = freeSpace(pPage, pc, sz);
+ if( rc ){
+ *pRC = rc;
+ return;
+ }
+ pPage->nCell--;
+ if( pPage->nCell==0 ){
+ memset(&data[hdr+1], 0, 4);
+ data[hdr+7] = 0;
+ put2byte(&data[hdr+5], pPage->pBt->usableSize);
+ pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
+ - pPage->childPtrSize - 8;
+ }else{
+ memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
+ put2byte(&data[hdr+3], pPage->nCell);
+ pPage->nFree += 2;
+ }
+}
+
+/*
+** Insert a new cell on pPage at cell index "i". pCell points to the
+** content of the cell.
+**
+** If the cell content will fit on the page, then put it there. If it
+** will not fit, then make a copy of the cell content into pTemp if
+** pTemp is not null. Regardless of pTemp, allocate a new entry
+** in pPage->apOvfl[] and make it point to the cell content (either
+** in pTemp or the original pCell) and also record its index.
+** Allocating a new entry in pPage->aCell[] implies that
+** pPage->nOverflow is incremented.
+**
+** *pRC must be SQLITE_OK when this routine is called.
+*/
+static void insertCell(
+ MemPage *pPage, /* Page into which we are copying */
+ int i, /* New cell becomes the i-th cell of the page */
+ u8 *pCell, /* Content of the new cell */
+ int sz, /* Bytes of content in pCell */
+ u8 *pTemp, /* Temp storage space for pCell, if needed */
+ Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
+ int *pRC /* Read and write return code from here */
+){
+ int idx = 0; /* Where to write new cell content in data[] */
+ int j; /* Loop counter */
+ u8 *data; /* The content of the whole page */
+ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
+
+ assert( *pRC==SQLITE_OK );
+ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
+ assert( MX_CELL(pPage->pBt)<=10921 );
+ assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
+ assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
+ assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
+ assert( pPage->nFree>=0 );
+ if( pPage->nOverflow || sz+2>pPage->nFree ){
+ if( pTemp ){
+ memcpy(pTemp, pCell, sz);
+ pCell = pTemp;
+ }
+ if( iChild ){
+ put4byte(pCell, iChild);
+ }
+ j = pPage->nOverflow++;
+ /* Comparison against ArraySize-1 since we hold back one extra slot
+ ** as a contingency. In other words, never need more than 3 overflow
+ ** slots but 4 are allocated, just to be safe. */
+ assert( j < ArraySize(pPage->apOvfl)-1 );
+ pPage->apOvfl[j] = pCell;
+ pPage->aiOvfl[j] = (u16)i;
+
+ /* When multiple overflows occur, they are always sequential and in
+ ** sorted order. This invariants arise because multiple overflows can
+ ** only occur when inserting divider cells into the parent page during
+ ** balancing, and the dividers are adjacent and sorted.
+ */
+ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
+ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
+ }else{
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ *pRC = rc;
+ return;
+ }
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ data = pPage->aData;
+ assert( &data[pPage->cellOffset]==pPage->aCellIdx );
+ rc = allocateSpace(pPage, sz, &idx);
+ if( rc ){ *pRC = rc; return; }
+ /* The allocateSpace() routine guarantees the following properties
+ ** if it returns successfully */
+ assert( idx >= 0 );
+ assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
+ assert( idx+sz <= (int)pPage->pBt->usableSize );
+ pPage->nFree -= (u16)(2 + sz);
+ if( iChild ){
+ /* In a corrupt database where an entry in the cell index section of
+ ** a btree page has a value of 3 or less, the pCell value might point
+ ** as many as 4 bytes in front of the start of the aData buffer for
+ ** the source page. Make sure this does not cause problems by not
+ ** reading the first 4 bytes */
+ memcpy(&data[idx+4], pCell+4, sz-4);
+ put4byte(&data[idx], iChild);
+ }else{
+ memcpy(&data[idx], pCell, sz);
+ }
+ pIns = pPage->aCellIdx + i*2;
+ memmove(pIns+2, pIns, 2*(pPage->nCell - i));
+ put2byte(pIns, idx);
+ pPage->nCell++;
+ /* increment the cell count */
+ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
+ assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pPage->pBt->autoVacuum ){
+ /* The cell may contain a pointer to an overflow page. If so, write
+ ** the entry for the overflow page into the pointer map.
+ */
+ ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
+ }
+#endif
+ }
+}
+
+/*
+** The following parameters determine how many adjacent pages get involved
+** in a balancing operation. NN is the number of neighbors on either side
+** of the page that participate in the balancing operation. NB is the
+** total number of pages that participate, including the target page and
+** NN neighbors on either side.
+**
+** The minimum value of NN is 1 (of course). Increasing NN above 1
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
+** in exchange for a larger degradation in INSERT and UPDATE performance.
+** The value of NN appears to give the best results overall.
+**
+** (Later:) The description above makes it seem as if these values are
+** tunable - as if you could change them and recompile and it would all work.
+** But that is unlikely. NB has been 3 since the inception of SQLite and
+** we have never tested any other value.
+*/
+#define NN 1 /* Number of neighbors on either side of pPage */
+#define NB 3 /* (NN*2+1): Total pages involved in the balance */
+
+/*
+** A CellArray object contains a cache of pointers and sizes for a
+** consecutive sequence of cells that might be held on multiple pages.
+**
+** The cells in this array are the divider cell or cells from the pParent
+** page plus up to three child pages. There are a total of nCell cells.
+**
+** pRef is a pointer to one of the pages that contributes cells. This is
+** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
+** which should be common to all pages that contribute cells to this array.
+**
+** apCell[] and szCell[] hold, respectively, pointers to the start of each
+** cell and the size of each cell. Some of the apCell[] pointers might refer
+** to overflow cells. In other words, some apCel[] pointers might not point
+** to content area of the pages.
+**
+** A szCell[] of zero means the size of that cell has not yet been computed.
+**
+** The cells come from as many as four different pages:
+**
+** -----------
+** | Parent |
+** -----------
+** / | \
+** / | \
+** --------- --------- ---------
+** |Child-1| |Child-2| |Child-3|
+** --------- --------- ---------
+**
+** The order of cells is in the array is for an index btree is:
+**
+** 1. All cells from Child-1 in order
+** 2. The first divider cell from Parent
+** 3. All cells from Child-2 in order
+** 4. The second divider cell from Parent
+** 5. All cells from Child-3 in order
+**
+** For a table-btree (with rowids) the items 2 and 4 are empty because
+** content exists only in leaves and there are no divider cells.
+**
+** For an index btree, the apEnd[] array holds pointer to the end of page
+** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
+** respectively. The ixNx[] array holds the number of cells contained in
+** each of these 5 stages, and all stages to the left. Hence:
+**
+** ixNx[0] = Number of cells in Child-1.
+** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
+** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
+** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
+** ixNx[4] = Total number of cells.
+**
+** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
+** are used and they point to the leaf pages only, and the ixNx value are:
+**
+** ixNx[0] = Number of cells in Child-1.
+** ixNx[1] = Number of cells in Child-1 and Child-2.
+** ixNx[2] = Total number of cells.
+**
+** Sometimes when deleting, a child page can have zero cells. In those
+** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
+** entries, shift down. The end result is that each ixNx[] entry should
+** be larger than the previous
+*/
+typedef struct CellArray CellArray;
+struct CellArray {
+ int nCell; /* Number of cells in apCell[] */
+ MemPage *pRef; /* Reference page */
+ u8 **apCell; /* All cells begin balanced */
+ u16 *szCell; /* Local size of all cells in apCell[] */
+ u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
+ int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
+};
+
+/*
+** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
+** computed.
+*/
+static void populateCellCache(CellArray *p, int idx, int N){
+ assert( idx>=0 && idx+N<=p->nCell );
+ while( N>0 ){
+ assert( p->apCell[idx]!=0 );
+ if( p->szCell[idx]==0 ){
+ p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
+ }else{
+ assert( CORRUPT_DB ||
+ p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
+ }
+ idx++;
+ N--;
+ }
+}
+
+/*
+** Return the size of the Nth element of the cell array
+*/
+static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
+ assert( N>=0 && N<p->nCell );
+ assert( p->szCell[N]==0 );
+ p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
+ return p->szCell[N];
+}
+static u16 cachedCellSize(CellArray *p, int N){
+ assert( N>=0 && N<p->nCell );
+ if( p->szCell[N] ) return p->szCell[N];
+ return computeCellSize(p, N);
+}
+
+/*
+** Array apCell[] contains pointers to nCell b-tree page cells. The
+** szCell[] array contains the size in bytes of each cell. This function
+** replaces the current contents of page pPg with the contents of the cell
+** array.
+**
+** Some of the cells in apCell[] may currently be stored in pPg. This
+** function works around problems caused by this by making a copy of any
+** such cells before overwriting the page data.
+**
+** The MemPage.nFree field is invalidated by this function. It is the
+** responsibility of the caller to set it correctly.
+*/
+static int rebuildPage(
+ CellArray *pCArray, /* Content to be added to page pPg */
+ int iFirst, /* First cell in pCArray to use */
+ int nCell, /* Final number of cells on page */
+ MemPage *pPg /* The page to be reconstructed */
+){
+ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
+ u8 * const aData = pPg->aData; /* Pointer to data for pPg */
+ const int usableSize = pPg->pBt->usableSize;
+ u8 * const pEnd = &aData[usableSize];
+ int i = iFirst; /* Which cell to copy from pCArray*/
+ u32 j; /* Start of cell content area */
+ int iEnd = i+nCell; /* Loop terminator */
+ u8 *pCellptr = pPg->aCellIdx;
+ u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
+ u8 *pData;
+ int k; /* Current slot in pCArray->apEnd[] */
+ u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
+
+ assert( i<iEnd );
+ j = get2byte(&aData[hdr+5]);
+ if( j>(u32)usableSize ){ j = 0; }
+ memcpy(&pTmp[j], &aData[j], usableSize - j);
+
+ for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
+ pSrcEnd = pCArray->apEnd[k];
+
+ pData = pEnd;
+ while( 1/*exit by break*/ ){
+ u8 *pCell = pCArray->apCell[i];
+ u16 sz = pCArray->szCell[i];
+ assert( sz>0 );
+ if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
+ if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
+ pCell = &pTmp[pCell - aData];
+ }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
+ && (uptr)(pCell)<(uptr)pSrcEnd
+ ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ pData -= sz;
+ put2byte(pCellptr, (pData - aData));
+ pCellptr += 2;
+ if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
+ memmove(pData, pCell, sz);
+ assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
+ i++;
+ if( i>=iEnd ) break;
+ if( pCArray->ixNx[k]<=i ){
+ k++;
+ pSrcEnd = pCArray->apEnd[k];
+ }
+ }
+
+ /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
+ pPg->nCell = nCell;
+ pPg->nOverflow = 0;
+
+ put2byte(&aData[hdr+1], 0);
+ put2byte(&aData[hdr+3], pPg->nCell);
+ put2byte(&aData[hdr+5], pData - aData);
+ aData[hdr+7] = 0x00;
+ return SQLITE_OK;
+}
+
+/*
+** The pCArray objects contains pointers to b-tree cells and the cell sizes.
+** This function attempts to add the cells stored in the array to page pPg.
+** If it cannot (because the page needs to be defragmented before the cells
+** will fit), non-zero is returned. Otherwise, if the cells are added
+** successfully, zero is returned.
+**
+** Argument pCellptr points to the first entry in the cell-pointer array
+** (part of page pPg) to populate. After cell apCell[0] is written to the
+** page body, a 16-bit offset is written to pCellptr. And so on, for each
+** cell in the array. It is the responsibility of the caller to ensure
+** that it is safe to overwrite this part of the cell-pointer array.
+**
+** When this function is called, *ppData points to the start of the
+** content area on page pPg. If the size of the content area is extended,
+** *ppData is updated to point to the new start of the content area
+** before returning.
+**
+** Finally, argument pBegin points to the byte immediately following the
+** end of the space required by this page for the cell-pointer area (for
+** all cells - not just those inserted by the current call). If the content
+** area must be extended to before this point in order to accomodate all
+** cells in apCell[], then the cells do not fit and non-zero is returned.
+*/
+static int pageInsertArray(
+ MemPage *pPg, /* Page to add cells to */
+ u8 *pBegin, /* End of cell-pointer array */
+ u8 **ppData, /* IN/OUT: Page content-area pointer */
+ u8 *pCellptr, /* Pointer to cell-pointer area */
+ int iFirst, /* Index of first cell to add */
+ int nCell, /* Number of cells to add to pPg */
+ CellArray *pCArray /* Array of cells */
+){
+ int i = iFirst; /* Loop counter - cell index to insert */
+ u8 *aData = pPg->aData; /* Complete page */
+ u8 *pData = *ppData; /* Content area. A subset of aData[] */
+ int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
+ int k; /* Current slot in pCArray->apEnd[] */
+ u8 *pEnd; /* Maximum extent of cell data */
+ assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
+ if( iEnd<=iFirst ) return 0;
+ for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
+ pEnd = pCArray->apEnd[k];
+ while( 1 /*Exit by break*/ ){
+ int sz, rc;
+ u8 *pSlot;
+ assert( pCArray->szCell[i]!=0 );
+ sz = pCArray->szCell[i];
+ if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
+ if( (pData - pBegin)<sz ) return 1;
+ pData -= sz;
+ pSlot = pData;
+ }
+ /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
+ ** database. But they might for a corrupt database. Hence use memmove()
+ ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
+ assert( (pSlot+sz)<=pCArray->apCell[i]
+ || pSlot>=(pCArray->apCell[i]+sz)
+ || CORRUPT_DB );
+ if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
+ && (uptr)(pCArray->apCell[i])<(uptr)pEnd
+ ){
+ assert( CORRUPT_DB );
+ (void)SQLITE_CORRUPT_BKPT;
+ return 1;
+ }
+ memmove(pSlot, pCArray->apCell[i], sz);
+ put2byte(pCellptr, (pSlot - aData));
+ pCellptr += 2;
+ i++;
+ if( i>=iEnd ) break;
+ if( pCArray->ixNx[k]<=i ){
+ k++;
+ pEnd = pCArray->apEnd[k];
+ }
+ }
+ *ppData = pData;
+ return 0;
+}
+
+/*
+** The pCArray object contains pointers to b-tree cells and their sizes.
+**
+** This function adds the space associated with each cell in the array
+** that is currently stored within the body of pPg to the pPg free-list.
+** The cell-pointers and other fields of the page are not updated.
+**
+** This function returns the total number of cells added to the free-list.
+*/
+static int pageFreeArray(
+ MemPage *pPg, /* Page to edit */
+ int iFirst, /* First cell to delete */
+ int nCell, /* Cells to delete */
+ CellArray *pCArray /* Array of cells */
+){
+ u8 * const aData = pPg->aData;
+ u8 * const pEnd = &aData[pPg->pBt->usableSize];
+ u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
+ int nRet = 0;
+ int i;
+ int iEnd = iFirst + nCell;
+ u8 *pFree = 0;
+ int szFree = 0;
+
+ for(i=iFirst; i<iEnd; i++){
+ u8 *pCell = pCArray->apCell[i];
+ if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
+ int sz;
+ /* No need to use cachedCellSize() here. The sizes of all cells that
+ ** are to be freed have already been computing while deciding which
+ ** cells need freeing */
+ sz = pCArray->szCell[i]; assert( sz>0 );
+ if( pFree!=(pCell + sz) ){
+ if( pFree ){
+ assert( pFree>aData && (pFree - aData)<65536 );
+ freeSpace(pPg, (u16)(pFree - aData), szFree);
+ }
+ pFree = pCell;
+ szFree = sz;
+ if( pFree+sz>pEnd ){
+ return 0;
+ }
+ }else{
+ pFree = pCell;
+ szFree += sz;
+ }
+ nRet++;
+ }
+ }
+ if( pFree ){
+ assert( pFree>aData && (pFree - aData)<65536 );
+ freeSpace(pPg, (u16)(pFree - aData), szFree);
+ }
+ return nRet;
+}
+
+/*
+** pCArray contains pointers to and sizes of all cells in the page being
+** balanced. The current page, pPg, has pPg->nCell cells starting with
+** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
+** starting at apCell[iNew].
+**
+** This routine makes the necessary adjustments to pPg so that it contains
+** the correct cells after being balanced.
+**
+** The pPg->nFree field is invalid when this function returns. It is the
+** responsibility of the caller to set it correctly.
+*/
+static int editPage(
+ MemPage *pPg, /* Edit this page */
+ int iOld, /* Index of first cell currently on page */
+ int iNew, /* Index of new first cell on page */
+ int nNew, /* Final number of cells on page */
+ CellArray *pCArray /* Array of cells and sizes */
+){
+ u8 * const aData = pPg->aData;
+ const int hdr = pPg->hdrOffset;
+ u8 *pBegin = &pPg->aCellIdx[nNew * 2];
+ int nCell = pPg->nCell; /* Cells stored on pPg */
+ u8 *pData;
+ u8 *pCellptr;
+ int i;
+ int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
+ int iNewEnd = iNew + nNew;
+
+#ifdef SQLITE_DEBUG
+ u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
+ memcpy(pTmp, aData, pPg->pBt->usableSize);
+#endif
+
+ /* Remove cells from the start and end of the page */
+ assert( nCell>=0 );
+ if( iOld<iNew ){
+ int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
+ if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
+ memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
+ nCell -= nShift;
+ }
+ if( iNewEnd < iOldEnd ){
+ int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
+ assert( nCell>=nTail );
+ nCell -= nTail;
+ }
+
+ pData = &aData[get2byteNotZero(&aData[hdr+5])];
+ if( pData<pBegin ) goto editpage_fail;
+ if( pData>pPg->aDataEnd ) goto editpage_fail;
+
+ /* Add cells to the start of the page */
+ if( iNew<iOld ){
+ int nAdd = MIN(nNew,iOld-iNew);
+ assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
+ assert( nAdd>=0 );
+ pCellptr = pPg->aCellIdx;
+ memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
+ if( pageInsertArray(
+ pPg, pBegin, &pData, pCellptr,
+ iNew, nAdd, pCArray
+ ) ) goto editpage_fail;
+ nCell += nAdd;
+ }
+
+ /* Add any overflow cells */
+ for(i=0; i<pPg->nOverflow; i++){
+ int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
+ if( iCell>=0 && iCell<nNew ){
+ pCellptr = &pPg->aCellIdx[iCell * 2];
+ if( nCell>iCell ){
+ memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
+ }
+ nCell++;
+ cachedCellSize(pCArray, iCell+iNew);
+ if( pageInsertArray(
+ pPg, pBegin, &pData, pCellptr,
+ iCell+iNew, 1, pCArray
+ ) ) goto editpage_fail;
+ }
+ }
+
+ /* Append cells to the end of the page */
+ assert( nCell>=0 );
+ pCellptr = &pPg->aCellIdx[nCell*2];
+ if( pageInsertArray(
+ pPg, pBegin, &pData, pCellptr,
+ iNew+nCell, nNew-nCell, pCArray
+ ) ) goto editpage_fail;
+
+ pPg->nCell = nNew;
+ pPg->nOverflow = 0;
+
+ put2byte(&aData[hdr+3], pPg->nCell);
+ put2byte(&aData[hdr+5], pData - aData);
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<nNew && !CORRUPT_DB; i++){
+ u8 *pCell = pCArray->apCell[i+iNew];
+ int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
+ if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
+ pCell = &pTmp[pCell - aData];
+ }
+ assert( 0==memcmp(pCell, &aData[iOff],
+ pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
+ }
+#endif
+
+ return SQLITE_OK;
+ editpage_fail:
+ /* Unable to edit this page. Rebuild it from scratch instead. */
+ populateCellCache(pCArray, iNew, nNew);
+ return rebuildPage(pCArray, iNew, nNew, pPg);
+}
+
+
+#ifndef SQLITE_OMIT_QUICKBALANCE
+/*
+** This version of balance() handles the common special case where
+** a new entry is being inserted on the extreme right-end of the
+** tree, in other words, when the new entry will become the largest
+** entry in the tree.
+**
+** Instead of trying to balance the 3 right-most leaf pages, just add
+** a new page to the right-hand side and put the one new entry in
+** that page. This leaves the right side of the tree somewhat
+** unbalanced. But odds are that we will be inserting new entries
+** at the end soon afterwards so the nearly empty page will quickly
+** fill up. On average.
+**
+** pPage is the leaf page which is the right-most page in the tree.
+** pParent is its parent. pPage must have a single overflow entry
+** which is also the right-most entry on the page.
+**
+** The pSpace buffer is used to store a temporary copy of the divider
+** cell that will be inserted into pParent. Such a cell consists of a 4
+** byte page number followed by a variable length integer. In other
+** words, at most 13 bytes. Hence the pSpace buffer must be at
+** least 13 bytes in size.
+*/
+static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
+ BtShared *const pBt = pPage->pBt; /* B-Tree Database */
+ MemPage *pNew; /* Newly allocated page */
+ int rc; /* Return Code */
+ Pgno pgnoNew; /* Page number of pNew */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ assert( pPage->nOverflow==1 );
+
+ if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
+ assert( pPage->nFree>=0 );
+ assert( pParent->nFree>=0 );
+
+ /* Allocate a new page. This page will become the right-sibling of
+ ** pPage. Make the parent page writable, so that the new divider cell
+ ** may be inserted. If both these operations are successful, proceed.
+ */
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
+
+ if( rc==SQLITE_OK ){
+
+ u8 *pOut = &pSpace[4];
+ u8 *pCell = pPage->apOvfl[0];
+ u16 szCell = pPage->xCellSize(pPage, pCell);
+ u8 *pStop;
+ CellArray b;
+
+ assert( sqlite3PagerIswriteable(pNew->pDbPage) );
+ assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
+ zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
+ b.nCell = 1;
+ b.pRef = pPage;
+ b.apCell = &pCell;
+ b.szCell = &szCell;
+ b.apEnd[0] = pPage->aDataEnd;
+ b.ixNx[0] = 2;
+ rc = rebuildPage(&b, 0, 1, pNew);
+ if( NEVER(rc) ){
+ releasePage(pNew);
+ return rc;
+ }
+ pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
+
+ /* If this is an auto-vacuum database, update the pointer map
+ ** with entries for the new page, and any pointer from the
+ ** cell on the page to an overflow page. If either of these
+ ** operations fails, the return code is set, but the contents
+ ** of the parent page are still manipulated by thh code below.
+ ** That is Ok, at this point the parent page is guaranteed to
+ ** be marked as dirty. Returning an error code will cause a
+ ** rollback, undoing any changes made to the parent page.
+ */
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
+ if( szCell>pNew->minLocal ){
+ ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
+ }
+ }
+
+ /* Create a divider cell to insert into pParent. The divider cell
+ ** consists of a 4-byte page number (the page number of pPage) and
+ ** a variable length key value (which must be the same value as the
+ ** largest key on pPage).
+ **
+ ** To find the largest key value on pPage, first find the right-most
+ ** cell on pPage. The first two fields of this cell are the
+ ** record-length (a variable length integer at most 32-bits in size)
+ ** and the key value (a variable length integer, may have any value).
+ ** The first of the while(...) loops below skips over the record-length
+ ** field. The second while(...) loop copies the key value from the
+ ** cell on pPage into the pSpace buffer.
+ */
+ pCell = findCell(pPage, pPage->nCell-1);
+ pStop = &pCell[9];
+ while( (*(pCell++)&0x80) && pCell<pStop );
+ pStop = &pCell[9];
+ while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
+
+ /* Insert the new divider cell into pParent. */
+ if( rc==SQLITE_OK ){
+ insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
+ 0, pPage->pgno, &rc);
+ }
+
+ /* Set the right-child pointer of pParent to point to the new page. */
+ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
+
+ /* Release the reference to the new page. */
+ releasePage(pNew);
+ }
+
+ return rc;
+}
+#endif /* SQLITE_OMIT_QUICKBALANCE */
+
+#if 0
+/*
+** This function does not contribute anything to the operation of SQLite.
+** it is sometimes activated temporarily while debugging code responsible
+** for setting pointer-map entries.
+*/
+static int ptrmapCheckPages(MemPage **apPage, int nPage){
+ int i, j;
+ for(i=0; i<nPage; i++){
+ Pgno n;
+ u8 e;
+ MemPage *pPage = apPage[i];
+ BtShared *pBt = pPage->pBt;
+ assert( pPage->isInit );
+
+ for(j=0; j<pPage->nCell; j++){
+ CellInfo info;
+ u8 *z;
+
+ z = findCell(pPage, j);
+ pPage->xParseCell(pPage, z, &info);
+ if( info.nLocal<info.nPayload ){
+ Pgno ovfl = get4byte(&z[info.nSize-4]);
+ ptrmapGet(pBt, ovfl, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
+ }
+ if( !pPage->leaf ){
+ Pgno child = get4byte(z);
+ ptrmapGet(pBt, child, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_BTREE );
+ }
+ }
+ if( !pPage->leaf ){
+ Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ ptrmapGet(pBt, child, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_BTREE );
+ }
+ }
+ return 1;
+}
+#endif
+
+/*
+** This function is used to copy the contents of the b-tree node stored
+** on page pFrom to page pTo. If page pFrom was not a leaf page, then
+** the pointer-map entries for each child page are updated so that the
+** parent page stored in the pointer map is page pTo. If pFrom contained
+** any cells with overflow page pointers, then the corresponding pointer
+** map entries are also updated so that the parent page is page pTo.
+**
+** If pFrom is currently carrying any overflow cells (entries in the
+** MemPage.apOvfl[] array), they are not copied to pTo.
+**
+** Before returning, page pTo is reinitialized using btreeInitPage().
+**
+** The performance of this function is not critical. It is only used by
+** the balance_shallower() and balance_deeper() procedures, neither of
+** which are called often under normal circumstances.
+*/
+static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
+ if( (*pRC)==SQLITE_OK ){
+ BtShared * const pBt = pFrom->pBt;
+ u8 * const aFrom = pFrom->aData;
+ u8 * const aTo = pTo->aData;
+ int const iFromHdr = pFrom->hdrOffset;
+ int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
+ int rc;
+ int iData;
+
+
+ assert( pFrom->isInit );
+ assert( pFrom->nFree>=iToHdr );
+ assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
+
+ /* Copy the b-tree node content from page pFrom to page pTo. */
+ iData = get2byte(&aFrom[iFromHdr+5]);
+ memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
+ memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
+
+ /* Reinitialize page pTo so that the contents of the MemPage structure
+ ** match the new data. The initialization of pTo can actually fail under
+ ** fairly obscure circumstances, even though it is a copy of initialized
+ ** page pFrom.
+ */
+ pTo->isInit = 0;
+ rc = btreeInitPage(pTo);
+ if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
+ if( rc!=SQLITE_OK ){
+ *pRC = rc;
+ return;
+ }
+
+ /* If this is an auto-vacuum database, update the pointer-map entries
+ ** for any b-tree or overflow pages that pTo now contains the pointers to.
+ */
+ if( ISAUTOVACUUM ){
+ *pRC = setChildPtrmaps(pTo);
+ }
+ }
+}
+
+/*
+** This routine redistributes cells on the iParentIdx'th child of pParent
+** (hereafter "the page") and up to 2 siblings so that all pages have about the
+** same amount of free space. Usually a single sibling on either side of the
+** page are used in the balancing, though both siblings might come from one
+** side if the page is the first or last child of its parent. If the page
+** has fewer than 2 siblings (something which can only happen if the page
+** is a root page or a child of a root page) then all available siblings
+** participate in the balancing.
+**
+** The number of siblings of the page might be increased or decreased by
+** one or two in an effort to keep pages nearly full but not over full.
+**
+** Note that when this routine is called, some of the cells on the page
+** might not actually be stored in MemPage.aData[]. This can happen
+** if the page is overfull. This routine ensures that all cells allocated
+** to the page and its siblings fit into MemPage.aData[] before returning.
+**
+** In the course of balancing the page and its siblings, cells may be
+** inserted into or removed from the parent page (pParent). Doing so
+** may cause the parent page to become overfull or underfull. If this
+** happens, it is the responsibility of the caller to invoke the correct
+** balancing routine to fix this problem (see the balance() routine).
+**
+** If this routine fails for any reason, it might leave the database
+** in a corrupted state. So if this routine fails, the database should
+** be rolled back.
+**
+** The third argument to this function, aOvflSpace, is a pointer to a
+** buffer big enough to hold one page. If while inserting cells into the parent
+** page (pParent) the parent page becomes overfull, this buffer is
+** used to store the parent's overflow cells. Because this function inserts
+** a maximum of four divider cells into the parent page, and the maximum
+** size of a cell stored within an internal node is always less than 1/4
+** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
+** enough for all overflow cells.
+**
+** If aOvflSpace is set to a null pointer, this function returns
+** SQLITE_NOMEM.
+*/
+static int balance_nonroot(
+ MemPage *pParent, /* Parent page of siblings being balanced */
+ int iParentIdx, /* Index of "the page" in pParent */
+ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
+ int isRoot, /* True if pParent is a root-page */
+ int bBulk /* True if this call is part of a bulk load */
+){
+ BtShared *pBt; /* The whole database */
+ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
+ int nNew = 0; /* Number of pages in apNew[] */
+ int nOld; /* Number of pages in apOld[] */
+ int i, j, k; /* Loop counters */
+ int nxDiv; /* Next divider slot in pParent->aCell[] */
+ int rc = SQLITE_OK; /* The return code */
+ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
+ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
+ int usableSpace; /* Bytes in pPage beyond the header */
+ int pageFlags; /* Value of pPage->aData[0] */
+ int iSpace1 = 0; /* First unused byte of aSpace1[] */
+ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
+ int szScratch; /* Size of scratch memory requested */
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
+ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
+ u8 *pRight; /* Location in parent of right-sibling pointer */
+ u8 *apDiv[NB-1]; /* Divider cells in pParent */
+ int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
+ int cntOld[NB+2]; /* Old index in b.apCell[] */
+ int szNew[NB+2]; /* Combined size of cells placed on i-th page */
+ u8 *aSpace1; /* Space for copies of dividers cells */
+ Pgno pgno; /* Temp var to store a page number in */
+ u8 abDone[NB+2]; /* True after i'th new page is populated */
+ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
+ CellArray b; /* Parsed information on cells being balanced */
+
+ memset(abDone, 0, sizeof(abDone));
+ memset(&b, 0, sizeof(b));
+ pBt = pParent->pBt;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+
+ /* At this point pParent may have at most one overflow cell. And if
+ ** this overflow cell is present, it must be the cell with
+ ** index iParentIdx. This scenario comes about when this function
+ ** is called (indirectly) from sqlite3BtreeDelete().
+ */
+ assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
+ assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
+
+ if( !aOvflSpace ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( pParent->nFree>=0 );
+
+ /* Find the sibling pages to balance. Also locate the cells in pParent
+ ** that divide the siblings. An attempt is made to find NN siblings on
+ ** either side of pPage. More siblings are taken from one side, however,
+ ** if there are fewer than NN siblings on the other side. If pParent
+ ** has NB or fewer children then all children of pParent are taken.
+ **
+ ** This loop also drops the divider cells from the parent page. This
+ ** way, the remainder of the function does not have to deal with any
+ ** overflow cells in the parent page, since if any existed they will
+ ** have already been removed.
+ */
+ i = pParent->nOverflow + pParent->nCell;
+ if( i<2 ){
+ nxDiv = 0;
+ }else{
+ assert( bBulk==0 || bBulk==1 );
+ if( iParentIdx==0 ){
+ nxDiv = 0;
+ }else if( iParentIdx==i ){
+ nxDiv = i-2+bBulk;
+ }else{
+ nxDiv = iParentIdx-1;
+ }
+ i = 2-bBulk;
+ }
+ nOld = i+1;
+ if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
+ pRight = &pParent->aData[pParent->hdrOffset+8];
+ }else{
+ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
+ }
+ pgno = get4byte(pRight);
+ while( 1 ){
+ if( rc==SQLITE_OK ){
+ rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
+ }
+ if( rc ){
+ memset(apOld, 0, (i+1)*sizeof(MemPage*));
+ goto balance_cleanup;
+ }
+ if( apOld[i]->nFree<0 ){
+ rc = btreeComputeFreeSpace(apOld[i]);
+ if( rc ){
+ memset(apOld, 0, (i)*sizeof(MemPage*));
+ goto balance_cleanup;
+ }
+ }
+ nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
+ if( (i--)==0 ) break;
+
+ if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
+ apDiv[i] = pParent->apOvfl[0];
+ pgno = get4byte(apDiv[i]);
+ szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
+ pParent->nOverflow = 0;
+ }else{
+ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
+ pgno = get4byte(apDiv[i]);
+ szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
+
+ /* Drop the cell from the parent page. apDiv[i] still points to
+ ** the cell within the parent, even though it has been dropped.
+ ** This is safe because dropping a cell only overwrites the first
+ ** four bytes of it, and this function does not need the first
+ ** four bytes of the divider cell. So the pointer is safe to use
+ ** later on.
+ **
+ ** But not if we are in secure-delete mode. In secure-delete mode,
+ ** the dropCell() routine will overwrite the entire cell with zeroes.
+ ** In this case, temporarily copy the cell into the aOvflSpace[]
+ ** buffer. It will be copied out again as soon as the aSpace[] buffer
+ ** is allocated. */
+ if( pBt->btsFlags & BTS_FAST_SECURE ){
+ int iOff;
+
+ /* If the following if() condition is not true, the db is corrupted.
+ ** The call to dropCell() below will detect this. */
+ iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
+ if( (iOff+szNew[i])<=(int)pBt->usableSize ){
+ memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
+ apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
+ }
+ }
+ dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
+ }
+ }
+
+ /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
+ ** alignment */
+ nMaxCells = (nMaxCells + 3)&~3;
+
+ /*
+ ** Allocate space for memory structures
+ */
+ szScratch =
+ nMaxCells*sizeof(u8*) /* b.apCell */
+ + nMaxCells*sizeof(u16) /* b.szCell */
+ + pBt->pageSize; /* aSpace1 */
+
+ assert( szScratch<=7*(int)pBt->pageSize );
+ b.apCell = sqlite3StackAllocRaw(0, szScratch );
+ if( b.apCell==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto balance_cleanup;
+ }
+ b.szCell = (u16*)&b.apCell[nMaxCells];
+ aSpace1 = (u8*)&b.szCell[nMaxCells];
+ assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
+
+ /*
+ ** Load pointers to all cells on sibling pages and the divider cells
+ ** into the local b.apCell[] array. Make copies of the divider cells
+ ** into space obtained from aSpace1[]. The divider cells have already
+ ** been removed from pParent.
+ **
+ ** If the siblings are on leaf pages, then the child pointers of the
+ ** divider cells are stripped from the cells before they are copied
+ ** into aSpace1[]. In this way, all cells in b.apCell[] are without
+ ** child pointers. If siblings are not leaves, then all cell in
+ ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
+ ** are alike.
+ **
+ ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
+ ** leafData: 1 if pPage holds key+data and pParent holds only keys.
+ */
+ b.pRef = apOld[0];
+ leafCorrection = b.pRef->leaf*4;
+ leafData = b.pRef->intKeyLeaf;
+ for(i=0; i<nOld; i++){
+ MemPage *pOld = apOld[i];
+ int limit = pOld->nCell;
+ u8 *aData = pOld->aData;
+ u16 maskPage = pOld->maskPage;
+ u8 *piCell = aData + pOld->cellOffset;
+ u8 *piEnd;
+ VVA_ONLY( int nCellAtStart = b.nCell; )
+
+ /* Verify that all sibling pages are of the same "type" (table-leaf,
+ ** table-interior, index-leaf, or index-interior).
+ */
+ if( pOld->aData[0]!=apOld[0]->aData[0] ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+
+ /* Load b.apCell[] with pointers to all cells in pOld. If pOld
+ ** contains overflow cells, include them in the b.apCell[] array
+ ** in the correct spot.
+ **
+ ** Note that when there are multiple overflow cells, it is always the
+ ** case that they are sequential and adjacent. This invariant arises
+ ** because multiple overflows can only occurs when inserting divider
+ ** cells into a parent on a prior balance, and divider cells are always
+ ** adjacent and are inserted in order. There is an assert() tagged
+ ** with "NOTE 1" in the overflow cell insertion loop to prove this
+ ** invariant.
+ **
+ ** This must be done in advance. Once the balance starts, the cell
+ ** offset section of the btree page will be overwritten and we will no
+ ** long be able to find the cells if a pointer to each cell is not saved
+ ** first.
+ */
+ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
+ if( pOld->nOverflow>0 ){
+ if( NEVER(limit<pOld->aiOvfl[0]) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ limit = pOld->aiOvfl[0];
+ for(j=0; j<limit; j++){
+ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
+ piCell += 2;
+ b.nCell++;
+ }
+ for(k=0; k<pOld->nOverflow; k++){
+ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
+ b.apCell[b.nCell] = pOld->apOvfl[k];
+ b.nCell++;
+ }
+ }
+ piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
+ while( piCell<piEnd ){
+ assert( b.nCell<nMaxCells );
+ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
+ piCell += 2;
+ b.nCell++;
+ }
+ assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
+
+ cntOld[i] = b.nCell;
+ if( i<nOld-1 && !leafData){
+ u16 sz = (u16)szNew[i];
+ u8 *pTemp;
+ assert( b.nCell<nMaxCells );
+ b.szCell[b.nCell] = sz;
+ pTemp = &aSpace1[iSpace1];
+ iSpace1 += sz;
+ assert( sz<=pBt->maxLocal+23 );
+ assert( iSpace1 <= (int)pBt->pageSize );
+ memcpy(pTemp, apDiv[i], sz);
+ b.apCell[b.nCell] = pTemp+leafCorrection;
+ assert( leafCorrection==0 || leafCorrection==4 );
+ b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
+ if( !pOld->leaf ){
+ assert( leafCorrection==0 );
+ assert( pOld->hdrOffset==0 || CORRUPT_DB );
+ /* The right pointer of the child page pOld becomes the left
+ ** pointer of the divider cell */
+ memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
+ }else{
+ assert( leafCorrection==4 );
+ while( b.szCell[b.nCell]<4 ){
+ /* Do not allow any cells smaller than 4 bytes. If a smaller cell
+ ** does exist, pad it with 0x00 bytes. */
+ assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
+ assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
+ aSpace1[iSpace1++] = 0x00;
+ b.szCell[b.nCell]++;
+ }
+ }
+ b.nCell++;
+ }
+ }
+
+ /*
+ ** Figure out the number of pages needed to hold all b.nCell cells.
+ ** Store this number in "k". Also compute szNew[] which is the total
+ ** size of all cells on the i-th page and cntNew[] which is the index
+ ** in b.apCell[] of the cell that divides page i from page i+1.
+ ** cntNew[k] should equal b.nCell.
+ **
+ ** Values computed by this block:
+ **
+ ** k: The total number of sibling pages
+ ** szNew[i]: Spaced used on the i-th sibling page.
+ ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
+ ** the right of the i-th sibling page.
+ ** usableSpace: Number of bytes of space available on each sibling.
+ **
+ */
+ usableSpace = pBt->usableSize - 12 + leafCorrection;
+ for(i=k=0; i<nOld; i++, k++){
+ MemPage *p = apOld[i];
+ b.apEnd[k] = p->aDataEnd;
+ b.ixNx[k] = cntOld[i];
+ if( k && b.ixNx[k]==b.ixNx[k-1] ){
+ k--; /* Omit b.ixNx[] entry for child pages with no cells */
+ }
+ if( !leafData ){
+ k++;
+ b.apEnd[k] = pParent->aDataEnd;
+ b.ixNx[k] = cntOld[i]+1;
+ }
+ assert( p->nFree>=0 );
+ szNew[i] = usableSpace - p->nFree;
+ for(j=0; j<p->nOverflow; j++){
+ szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
+ }
+ cntNew[i] = cntOld[i];
+ }
+ k = nOld;
+ for(i=0; i<k; i++){
+ int sz;
+ while( szNew[i]>usableSpace ){
+ if( i+1>=k ){
+ k = i+2;
+ if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
+ szNew[k-1] = 0;
+ cntNew[k-1] = b.nCell;
+ }
+ sz = 2 + cachedCellSize(&b, cntNew[i]-1);
+ szNew[i] -= sz;
+ if( !leafData ){
+ if( cntNew[i]<b.nCell ){
+ sz = 2 + cachedCellSize(&b, cntNew[i]);
+ }else{
+ sz = 0;
+ }
+ }
+ szNew[i+1] += sz;
+ cntNew[i]--;
+ }
+ while( cntNew[i]<b.nCell ){
+ sz = 2 + cachedCellSize(&b, cntNew[i]);
+ if( szNew[i]+sz>usableSpace ) break;
+ szNew[i] += sz;
+ cntNew[i]++;
+ if( !leafData ){
+ if( cntNew[i]<b.nCell ){
+ sz = 2 + cachedCellSize(&b, cntNew[i]);
+ }else{
+ sz = 0;
+ }
+ }
+ szNew[i+1] -= sz;
+ }
+ if( cntNew[i]>=b.nCell ){
+ k = i+1;
+ }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ }
+
+ /*
+ ** The packing computed by the previous block is biased toward the siblings
+ ** on the left side (siblings with smaller keys). The left siblings are
+ ** always nearly full, while the right-most sibling might be nearly empty.
+ ** The next block of code attempts to adjust the packing of siblings to
+ ** get a better balance.
+ **
+ ** This adjustment is more than an optimization. The packing above might
+ ** be so out of balance as to be illegal. For example, the right-most
+ ** sibling might be completely empty. This adjustment is not optional.
+ */
+ for(i=k-1; i>0; i--){
+ int szRight = szNew[i]; /* Size of sibling on the right */
+ int szLeft = szNew[i-1]; /* Size of sibling on the left */
+ int r; /* Index of right-most cell in left sibling */
+ int d; /* Index of first cell to the left of right sibling */
+
+ r = cntNew[i-1] - 1;
+ d = r + 1 - leafData;
+ (void)cachedCellSize(&b, d);
+ do{
+ assert( d<nMaxCells );
+ assert( r<nMaxCells );
+ (void)cachedCellSize(&b, r);
+ if( szRight!=0
+ && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
+ break;
+ }
+ szRight += b.szCell[d] + 2;
+ szLeft -= b.szCell[r] + 2;
+ cntNew[i-1] = r;
+ r--;
+ d--;
+ }while( r>=0 );
+ szNew[i] = szRight;
+ szNew[i-1] = szLeft;
+ if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ }
+
+ /* Sanity check: For a non-corrupt database file one of the follwing
+ ** must be true:
+ ** (1) We found one or more cells (cntNew[0])>0), or
+ ** (2) pPage is a virtual root page. A virtual root page is when
+ ** the real root page is page 1 and we are the only child of
+ ** that page.
+ */
+ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
+ TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
+ apOld[0]->pgno, apOld[0]->nCell,
+ nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
+ nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
+ ));
+
+ /*
+ ** Allocate k new pages. Reuse old pages where possible.
+ */
+ pageFlags = apOld[0]->aData[0];
+ for(i=0; i<k; i++){
+ MemPage *pNew;
+ if( i<nOld ){
+ pNew = apNew[i] = apOld[i];
+ apOld[i] = 0;
+ rc = sqlite3PagerWrite(pNew->pDbPage);
+ nNew++;
+ if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
+ && rc==SQLITE_OK
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ if( rc ) goto balance_cleanup;
+ }else{
+ assert( i>0 );
+ rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
+ if( rc ) goto balance_cleanup;
+ zeroPage(pNew, pageFlags);
+ apNew[i] = pNew;
+ nNew++;
+ cntOld[i] = b.nCell;
+
+ /* Set the pointer-map entry for the new sibling page. */
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
+ }
+ }
+
+ /*
+ ** Reassign page numbers so that the new pages are in ascending order.
+ ** This helps to keep entries in the disk file in order so that a scan
+ ** of the table is closer to a linear scan through the file. That in turn
+ ** helps the operating system to deliver pages from the disk more rapidly.
+ **
+ ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
+ ** (5), that is not a performance concern.
+ **
+ ** When NB==3, this one optimization makes the database about 25% faster
+ ** for large insertions and deletions.
+ */
+ for(i=0; i<nNew; i++){
+ aPgno[i] = apNew[i]->pgno;
+ assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );
+ assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );
+ }
+ for(i=0; i<nNew-1; i++){
+ int iB = i;
+ for(j=i+1; j<nNew; j++){
+ if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
+ }
+
+ /* If apNew[i] has a page number that is bigger than any of the
+ ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
+ ** entry that has the smallest page number (which we know to be
+ ** entry apNew[iB]).
+ */
+ if( iB!=i ){
+ Pgno pgnoA = apNew[i]->pgno;
+ Pgno pgnoB = apNew[iB]->pgno;
+ Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
+ u16 fgA = apNew[i]->pDbPage->flags;
+ u16 fgB = apNew[iB]->pDbPage->flags;
+ sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
+ sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);
+ sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
+ apNew[i]->pgno = pgnoB;
+ apNew[iB]->pgno = pgnoA;
+ }
+ }
+
+ TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
+ "%d(%d nc=%d) %d(%d nc=%d)\n",
+ apNew[0]->pgno, szNew[0], cntNew[0],
+ nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
+ nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
+ nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
+ nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
+ nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
+ nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
+ nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
+ nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
+ ));
+
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ assert( nNew>=1 && nNew<=ArraySize(apNew) );
+ assert( apNew[nNew-1]!=0 );
+ put4byte(pRight, apNew[nNew-1]->pgno);
+
+ /* If the sibling pages are not leaves, ensure that the right-child pointer
+ ** of the right-most new sibling page is set to the value that was
+ ** originally in the same field of the right-most old sibling page. */
+ if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
+ MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
+ memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
+ }
+
+ /* Make any required updates to pointer map entries associated with
+ ** cells stored on sibling pages following the balance operation. Pointer
+ ** map entries associated with divider cells are set by the insertCell()
+ ** routine. The associated pointer map entries are:
+ **
+ ** a) if the cell contains a reference to an overflow chain, the
+ ** entry associated with the first page in the overflow chain, and
+ **
+ ** b) if the sibling pages are not leaves, the child page associated
+ ** with the cell.
+ **
+ ** If the sibling pages are not leaves, then the pointer map entry
+ ** associated with the right-child of each sibling may also need to be
+ ** updated. This happens below, after the sibling pages have been
+ ** populated, not here.
+ */
+ if( ISAUTOVACUUM ){
+ MemPage *pOld;
+ MemPage *pNew = pOld = apNew[0];
+ int cntOldNext = pNew->nCell + pNew->nOverflow;
+ int iNew = 0;
+ int iOld = 0;
+
+ for(i=0; i<b.nCell; i++){
+ u8 *pCell = b.apCell[i];
+ while( i==cntOldNext ){
+ iOld++;
+ assert( iOld<nNew || iOld<nOld );
+ assert( iOld>=0 && iOld<NB );
+ pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
+ cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
+ }
+ if( i==cntNew[iNew] ){
+ pNew = apNew[++iNew];
+ if( !leafData ) continue;
+ }
+
+ /* Cell pCell is destined for new sibling page pNew. Originally, it
+ ** was either part of sibling page iOld (possibly an overflow cell),
+ ** or else the divider cell to the left of sibling page iOld. So,
+ ** if sibling page iOld had the same page number as pNew, and if
+ ** pCell really was a part of sibling page iOld (not a divider or
+ ** overflow cell), we can skip updating the pointer map entries. */
+ if( iOld>=nNew
+ || pNew->pgno!=aPgno[iOld]
+ || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
+ ){
+ if( !leafCorrection ){
+ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
+ }
+ if( cachedCellSize(&b,i)>pNew->minLocal ){
+ ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
+ }
+ if( rc ) goto balance_cleanup;
+ }
+ }
+ }
+
+ /* Insert new divider cells into pParent. */
+ for(i=0; i<nNew-1; i++){
+ u8 *pCell;
+ u8 *pTemp;
+ int sz;
+ u8 *pSrcEnd;
+ MemPage *pNew = apNew[i];
+ j = cntNew[i];
+
+ assert( j<nMaxCells );
+ assert( b.apCell[j]!=0 );
+ pCell = b.apCell[j];
+ sz = b.szCell[j] + leafCorrection;
+ pTemp = &aOvflSpace[iOvflSpace];
+ if( !pNew->leaf ){
+ memcpy(&pNew->aData[8], pCell, 4);
+ }else if( leafData ){
+ /* If the tree is a leaf-data tree, and the siblings are leaves,
+ ** then there is no divider cell in b.apCell[]. Instead, the divider
+ ** cell consists of the integer key for the right-most cell of
+ ** the sibling-page assembled above only.
+ */
+ CellInfo info;
+ j--;
+ pNew->xParseCell(pNew, b.apCell[j], &info);
+ pCell = pTemp;
+ sz = 4 + putVarint(&pCell[4], info.nKey);
+ pTemp = 0;
+ }else{
+ pCell -= 4;
+ /* Obscure case for non-leaf-data trees: If the cell at pCell was
+ ** previously stored on a leaf node, and its reported size was 4
+ ** bytes, then it may actually be smaller than this
+ ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
+ ** any cell). But it is important to pass the correct size to
+ ** insertCell(), so reparse the cell now.
+ **
+ ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
+ ** and WITHOUT ROWID tables with exactly one column which is the
+ ** primary key.
+ */
+ if( b.szCell[j]==4 ){
+ assert(leafCorrection==4);
+ sz = pParent->xCellSize(pParent, pCell);
+ }
+ }
+ iOvflSpace += sz;
+ assert( sz<=pBt->maxLocal+23 );
+ assert( iOvflSpace <= (int)pBt->pageSize );
+ for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){}
+ pSrcEnd = b.apEnd[k];
+ if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
+ if( rc!=SQLITE_OK ) goto balance_cleanup;
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ }
+
+ /* Now update the actual sibling pages. The order in which they are updated
+ ** is important, as this code needs to avoid disrupting any page from which
+ ** cells may still to be read. In practice, this means:
+ **
+ ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
+ ** then it is not safe to update page apNew[iPg] until after
+ ** the left-hand sibling apNew[iPg-1] has been updated.
+ **
+ ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
+ ** then it is not safe to update page apNew[iPg] until after
+ ** the right-hand sibling apNew[iPg+1] has been updated.
+ **
+ ** If neither of the above apply, the page is safe to update.
+ **
+ ** The iPg value in the following loop starts at nNew-1 goes down
+ ** to 0, then back up to nNew-1 again, thus making two passes over
+ ** the pages. On the initial downward pass, only condition (1) above
+ ** needs to be tested because (2) will always be true from the previous
+ ** step. On the upward pass, both conditions are always true, so the
+ ** upwards pass simply processes pages that were missed on the downward
+ ** pass.
+ */
+ for(i=1-nNew; i<nNew; i++){
+ int iPg = i<0 ? -i : i;
+ assert( iPg>=0 && iPg<nNew );
+ if( abDone[iPg] ) continue; /* Skip pages already processed */
+ if( i>=0 /* On the upwards pass, or... */
+ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
+ ){
+ int iNew;
+ int iOld;
+ int nNewCell;
+
+ /* Verify condition (1): If cells are moving left, update iPg
+ ** only after iPg-1 has already been updated. */
+ assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
+
+ /* Verify condition (2): If cells are moving right, update iPg
+ ** only after iPg+1 has already been updated. */
+ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
+
+ if( iPg==0 ){
+ iNew = iOld = 0;
+ nNewCell = cntNew[0];
+ }else{
+ iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
+ iNew = cntNew[iPg-1] + !leafData;
+ nNewCell = cntNew[iPg] - iNew;
+ }
+
+ rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
+ if( rc ) goto balance_cleanup;
+ abDone[iPg]++;
+ apNew[iPg]->nFree = usableSpace-szNew[iPg];
+ assert( apNew[iPg]->nOverflow==0 );
+ assert( apNew[iPg]->nCell==nNewCell );
+ }
+ }
+
+ /* All pages have been processed exactly once */
+ assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
+
+ assert( nOld>0 );
+ assert( nNew>0 );
+
+ if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
+ /* The root page of the b-tree now contains no cells. The only sibling
+ ** page is the right-child of the parent. Copy the contents of the
+ ** child page into the parent, decreasing the overall height of the
+ ** b-tree structure by one. This is described as the "balance-shallower"
+ ** sub-algorithm in some documentation.
+ **
+ ** If this is an auto-vacuum database, the call to copyNodeContent()
+ ** sets all pointer-map entries corresponding to database image pages
+ ** for which the pointer is stored within the content being copied.
+ **
+ ** It is critical that the child page be defragmented before being
+ ** copied into the parent, because if the parent is page 1 then it will
+ ** by smaller than the child due to the database header, and so all the
+ ** free space needs to be up front.
+ */
+ assert( nNew==1 || CORRUPT_DB );
+ rc = defragmentPage(apNew[0], -1);
+ testcase( rc!=SQLITE_OK );
+ assert( apNew[0]->nFree ==
+ (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
+ - apNew[0]->nCell*2)
+ || rc!=SQLITE_OK
+ );
+ copyNodeContent(apNew[0], pParent, &rc);
+ freePage(apNew[0], &rc);
+ }else if( ISAUTOVACUUM && !leafCorrection ){
+ /* Fix the pointer map entries associated with the right-child of each
+ ** sibling page. All other pointer map entries have already been taken
+ ** care of. */
+ for(i=0; i<nNew; i++){
+ u32 key = get4byte(&apNew[i]->aData[8]);
+ ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
+ }
+ }
+
+ assert( pParent->isInit );
+ TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
+ nOld, nNew, b.nCell));
+
+ /* Free any old pages that were not reused as new pages.
+ */
+ for(i=nNew; i<nOld; i++){
+ freePage(apOld[i], &rc);
+ }
+
+#if 0
+ if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
+ /* The ptrmapCheckPages() contains assert() statements that verify that
+ ** all pointer map pages are set correctly. This is helpful while
+ ** debugging. This is usually disabled because a corrupt database may
+ ** cause an assert() statement to fail. */
+ ptrmapCheckPages(apNew, nNew);
+ ptrmapCheckPages(&pParent, 1);
+ }
+#endif
+
+ /*
+ ** Cleanup before returning.
+ */
+balance_cleanup:
+ sqlite3StackFree(0, b.apCell);
+ for(i=0; i<nOld; i++){
+ releasePage(apOld[i]);
+ }
+ for(i=0; i<nNew; i++){
+ releasePage(apNew[i]);
+ }
+
+ return rc;
+}
+
+
+/*
+** This function is called when the root page of a b-tree structure is
+** overfull (has one or more overflow pages).
+**
+** A new child page is allocated and the contents of the current root
+** page, including overflow cells, are copied into the child. The root
+** page is then overwritten to make it an empty page with the right-child
+** pointer pointing to the new page.
+**
+** Before returning, all pointer-map entries corresponding to pages
+** that the new child-page now contains pointers to are updated. The
+** entry corresponding to the new right-child pointer of the root
+** page is also updated.
+**
+** If successful, *ppChild is set to contain a reference to the child
+** page and SQLITE_OK is returned. In this case the caller is required
+** to call releasePage() on *ppChild exactly once. If an error occurs,
+** an error code is returned and *ppChild is set to 0.
+*/
+static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
+ int rc; /* Return value from subprocedures */
+ MemPage *pChild = 0; /* Pointer to a new child page */
+ Pgno pgnoChild = 0; /* Page number of the new child page */
+ BtShared *pBt = pRoot->pBt; /* The BTree */
+
+ assert( pRoot->nOverflow>0 );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ /* Make pRoot, the root page of the b-tree, writable. Allocate a new
+ ** page that will become the new right-child of pPage. Copy the contents
+ ** of the node stored on pRoot into the new child page.
+ */
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
+ copyNodeContent(pRoot, pChild, &rc);
+ if( ISAUTOVACUUM ){
+ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
+ }
+ }
+ if( rc ){
+ *ppChild = 0;
+ releasePage(pChild);
+ return rc;
+ }
+ assert( sqlite3PagerIswriteable(pChild->pDbPage) );
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
+ assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
+
+ TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
+
+ /* Copy the overflow cells from pRoot to pChild */
+ memcpy(pChild->aiOvfl, pRoot->aiOvfl,
+ pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
+ memcpy(pChild->apOvfl, pRoot->apOvfl,
+ pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
+ pChild->nOverflow = pRoot->nOverflow;
+
+ /* Zero the contents of pRoot. Then install pChild as the right-child. */
+ zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
+ put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
+
+ *ppChild = pChild;
+ return SQLITE_OK;
+}
+
+/*
+** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
+** on the same B-tree as pCur.
+**
+** This can occur if a database is corrupt with two or more SQL tables
+** pointing to the same b-tree. If an insert occurs on one SQL table
+** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
+** table linked to the same b-tree. If the secondary insert causes a
+** rebalance, that can change content out from under the cursor on the
+** first SQL table, violating invariants on the first insert.
+*/
+static int anotherValidCursor(BtCursor *pCur){
+ BtCursor *pOther;
+ for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
+ if( pOther!=pCur
+ && pOther->eState==CURSOR_VALID
+ && pOther->pPage==pCur->pPage
+ ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The page that pCur currently points to has just been modified in
+** some way. This function figures out if this modification means the
+** tree needs to be balanced, and if so calls the appropriate balancing
+** routine. Balancing routines are:
+**
+** balance_quick()
+** balance_deeper()
+** balance_nonroot()
+*/
+static int balance(BtCursor *pCur){
+ int rc = SQLITE_OK;
+ u8 aBalanceQuickSpace[13];
+ u8 *pFree = 0;
+
+ VVA_ONLY( int balance_quick_called = 0 );
+ VVA_ONLY( int balance_deeper_called = 0 );
+
+ do {
+ int iPage;
+ MemPage *pPage = pCur->pPage;
+
+ if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
+ if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
+ /* No rebalance required as long as:
+ ** (1) There are no overflow cells
+ ** (2) The amount of free space on the page is less than 2/3rds of
+ ** the total usable space on the page. */
+ break;
+ }else if( (iPage = pCur->iPage)==0 ){
+ if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
+ /* The root page of the b-tree is overfull. In this case call the
+ ** balance_deeper() function to create a new child for the root-page
+ ** and copy the current contents of the root-page to it. The
+ ** next iteration of the do-loop will balance the child page.
+ */
+ assert( balance_deeper_called==0 );
+ VVA_ONLY( balance_deeper_called++ );
+ rc = balance_deeper(pPage, &pCur->apPage[1]);
+ if( rc==SQLITE_OK ){
+ pCur->iPage = 1;
+ pCur->ix = 0;
+ pCur->aiIdx[0] = 0;
+ pCur->apPage[0] = pPage;
+ pCur->pPage = pCur->apPage[1];
+ assert( pCur->pPage->nOverflow );
+ }
+ }else{
+ break;
+ }
+ }else{
+ MemPage * const pParent = pCur->apPage[iPage-1];
+ int const iIdx = pCur->aiIdx[iPage-1];
+
+ rc = sqlite3PagerWrite(pParent->pDbPage);
+ if( rc==SQLITE_OK && pParent->nFree<0 ){
+ rc = btreeComputeFreeSpace(pParent);
+ }
+ if( rc==SQLITE_OK ){
+#ifndef SQLITE_OMIT_QUICKBALANCE
+ if( pPage->intKeyLeaf
+ && pPage->nOverflow==1
+ && pPage->aiOvfl[0]==pPage->nCell
+ && pParent->pgno!=1
+ && pParent->nCell==iIdx
+ ){
+ /* Call balance_quick() to create a new sibling of pPage on which
+ ** to store the overflow cell. balance_quick() inserts a new cell
+ ** into pParent, which may cause pParent overflow. If this
+ ** happens, the next iteration of the do-loop will balance pParent
+ ** use either balance_nonroot() or balance_deeper(). Until this
+ ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
+ ** buffer.
+ **
+ ** The purpose of the following assert() is to check that only a
+ ** single call to balance_quick() is made for each call to this
+ ** function. If this were not verified, a subtle bug involving reuse
+ ** of the aBalanceQuickSpace[] might sneak in.
+ */
+ assert( balance_quick_called==0 );
+ VVA_ONLY( balance_quick_called++ );
+ rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
+ }else
+#endif
+ {
+ /* In this case, call balance_nonroot() to redistribute cells
+ ** between pPage and up to 2 of its sibling pages. This involves
+ ** modifying the contents of pParent, which may cause pParent to
+ ** become overfull or underfull. The next iteration of the do-loop
+ ** will balance the parent page to correct this.
+ **
+ ** If the parent page becomes overfull, the overflow cell or cells
+ ** are stored in the pSpace buffer allocated immediately below.
+ ** A subsequent iteration of the do-loop will deal with this by
+ ** calling balance_nonroot() (balance_deeper() may be called first,
+ ** but it doesn't deal with overflow cells - just moves them to a
+ ** different page). Once this subsequent call to balance_nonroot()
+ ** has completed, it is safe to release the pSpace buffer used by
+ ** the previous call, as the overflow cell data will have been
+ ** copied either into the body of a database page or into the new
+ ** pSpace buffer passed to the latter call to balance_nonroot().
+ */
+ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
+ rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
+ pCur->hints&BTREE_BULKLOAD);
+ if( pFree ){
+ /* If pFree is not NULL, it points to the pSpace buffer used
+ ** by a previous call to balance_nonroot(). Its contents are
+ ** now stored either on real database pages or within the
+ ** new pSpace buffer, so it may be safely freed here. */
+ sqlite3PageFree(pFree);
+ }
+
+ /* The pSpace buffer will be freed after the next call to
+ ** balance_nonroot(), or just before this function returns, whichever
+ ** comes first. */
+ pFree = pSpace;
+ }
+ }
+
+ pPage->nOverflow = 0;
+
+ /* The next iteration of the do-loop balances the parent page. */
+ releasePage(pPage);
+ pCur->iPage--;
+ assert( pCur->iPage>=0 );
+ pCur->pPage = pCur->apPage[pCur->iPage];
+ }
+ }while( rc==SQLITE_OK );
+
+ if( pFree ){
+ sqlite3PageFree(pFree);
+ }
+ return rc;
+}
+
+/* Overwrite content from pX into pDest. Only do the write if the
+** content is different from what is already there.
+*/
+static int btreeOverwriteContent(
+ MemPage *pPage, /* MemPage on which writing will occur */
+ u8 *pDest, /* Pointer to the place to start writing */
+ const BtreePayload *pX, /* Source of data to write */
+ int iOffset, /* Offset of first byte to write */
+ int iAmt /* Number of bytes to be written */
+){
+ int nData = pX->nData - iOffset;
+ if( nData<=0 ){
+ /* Overwritting with zeros */
+ int i;
+ for(i=0; i<iAmt && pDest[i]==0; i++){}
+ if( i<iAmt ){
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ memset(pDest + i, 0, iAmt - i);
+ }
+ }else{
+ if( nData<iAmt ){
+ /* Mixed read data and zeros at the end. Make a recursive call
+ ** to write the zeros then fall through to write the real data */
+ int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
+ iAmt-nData);
+ if( rc ) return rc;
+ iAmt = nData;
+ }
+ if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ /* In a corrupt database, it is possible for the source and destination
+ ** buffers to overlap. This is harmless since the database is already
+ ** corrupt but it does cause valgrind and ASAN warnings. So use
+ ** memmove(). */
+ memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Overwrite the cell that cursor pCur is pointing to with fresh content
+** contained in pX.
+*/
+static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
+ int iOffset; /* Next byte of pX->pData to write */
+ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
+ int rc; /* Return code */
+ MemPage *pPage = pCur->pPage; /* Page being written */
+ BtShared *pBt; /* Btree */
+ Pgno ovflPgno; /* Next overflow page to write */
+ u32 ovflPageSize; /* Size to write on overflow page */
+
+ if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
+ || pCur->info.pPayload < pPage->aData + pPage->cellOffset
+ ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ /* Overwrite the local portion first */
+ rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
+ 0, pCur->info.nLocal);
+ if( rc ) return rc;
+ if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
+
+ /* Now overwrite the overflow pages */
+ iOffset = pCur->info.nLocal;
+ assert( nTotal>=0 );
+ assert( iOffset>=0 );
+ ovflPgno = get4byte(pCur->info.pPayload + iOffset);
+ pBt = pPage->pBt;
+ ovflPageSize = pBt->usableSize - 4;
+ do{
+ rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
+ if( rc ) return rc;
+ if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ if( iOffset+ovflPageSize<(u32)nTotal ){
+ ovflPgno = get4byte(pPage->aData);
+ }else{
+ ovflPageSize = nTotal - iOffset;
+ }
+ rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
+ iOffset, ovflPageSize);
+ }
+ sqlite3PagerUnref(pPage->pDbPage);
+ if( rc ) return rc;
+ iOffset += ovflPageSize;
+ }while( iOffset<nTotal );
+ return SQLITE_OK;
+}
+
+
+/*
+** Insert a new record into the BTree. The content of the new record
+** is described by the pX object. The pCur cursor is used only to
+** define what table the record should be inserted into, and is left
+** pointing at a random location.
+**
+** For a table btree (used for rowid tables), only the pX.nKey value of
+** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
+** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
+** hold the content of the row.
+**
+** For an index btree (used for indexes and WITHOUT ROWID tables), the
+** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
+** pX.pData,nData,nZero fields must be zero.
+**
+** If the seekResult parameter is non-zero, then a successful call to
+** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
+** been performed. In other words, if seekResult!=0 then the cursor
+** is currently pointing to a cell that will be adjacent to the cell
+** to be inserted. If seekResult<0 then pCur points to a cell that is
+** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
+** that is larger than (pKey,nKey).
+**
+** If seekResult==0, that means pCur is pointing at some unknown location.
+** In that case, this routine must seek the cursor to the correct insertion
+** point for (pKey,nKey) before doing the insertion. For index btrees,
+** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
+** key values and pX->aMem can be used instead of pX->pKey to avoid having
+** to decode the key.
+*/
+SQLITE_PRIVATE int sqlite3BtreeInsert(
+ BtCursor *pCur, /* Insert data into the table of this cursor */
+ const BtreePayload *pX, /* Content of the row to be inserted */
+ int flags, /* True if this is likely an append */
+ int seekResult /* Result of prior IndexMoveto() call */
+){
+ int rc;
+ int loc = seekResult; /* -1: before desired location +1: after */
+ int szNew = 0;
+ int idx;
+ MemPage *pPage;
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+ unsigned char *oldCell;
+ unsigned char *newCell = 0;
+
+ assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
+ assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
+
+ /* Save the positions of any other cursors open on this table.
+ **
+ ** In some cases, the call to btreeMoveto() below is a no-op. For
+ ** example, when inserting data into a table with auto-generated integer
+ ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
+ ** integer key to use. It then calls this function to actually insert the
+ ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
+ ** that the cursor is already where it needs to be and returns without
+ ** doing any work. To avoid thwarting these optimizations, it is important
+ ** not to clear the cursor here.
+ */
+ if( pCur->curFlags & BTCF_Multiple ){
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
+ if( rc ) return rc;
+ if( loc && pCur->iPage<0 ){
+ /* This can only happen if the schema is corrupt such that there is more
+ ** than one table or index with the same root page as used by the cursor.
+ ** Which can only happen if the SQLITE_NoSchemaError flag was set when
+ ** the schema was loaded. This cannot be asserted though, as a user might
+ ** set the flag, load the schema, and then unset the flag. */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+
+ /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
+ ** points to a valid cell.
+ */
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ testcase( pCur->eState==CURSOR_REQUIRESEEK );
+ testcase( pCur->eState==CURSOR_FAULT );
+ rc = moveToRoot(pCur);
+ if( rc && rc!=SQLITE_EMPTY ) return rc;
+ }
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( (pCur->curFlags & BTCF_WriteFlag)!=0
+ && pBt->inTransaction==TRANS_WRITE
+ && (pBt->btsFlags & BTS_READ_ONLY)==0 );
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
+
+ /* Assert that the caller has been consistent. If this cursor was opened
+ ** expecting an index b-tree, then the caller should be inserting blob
+ ** keys with no associated data. If the cursor was opened expecting an
+ ** intkey table, the caller should be inserting integer keys with a
+ ** blob of associated data. */
+ assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
+
+ if( pCur->pKeyInfo==0 ){
+ assert( pX->pKey==0 );
+ /* If this is an insert into a table b-tree, invalidate any incrblob
+ ** cursors open on the row being replaced */
+ if( p->hasIncrblobCur ){
+ invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
+ }
+
+ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
+ ** to a row with the same key as the new entry being inserted.
+ */
+#ifdef SQLITE_DEBUG
+ if( flags & BTREE_SAVEPOSITION ){
+ assert( pCur->curFlags & BTCF_ValidNKey );
+ assert( pX->nKey==pCur->info.nKey );
+ assert( loc==0 );
+ }
+#endif
+
+ /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
+ ** that the cursor is not pointing to a row to be overwritten.
+ ** So do a complete check.
+ */
+ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
+ /* The cursor is pointing to the entry that is to be
+ ** overwritten */
+ assert( pX->nData>=0 && pX->nZero>=0 );
+ if( pCur->info.nSize!=0
+ && pCur->info.nPayload==(u32)pX->nData+pX->nZero
+ ){
+ /* New entry is the same size as the old. Do an overwrite */
+ return btreeOverwriteCell(pCur, pX);
+ }
+ assert( loc==0 );
+ }else if( loc==0 ){
+ /* The cursor is *not* pointing to the cell to be overwritten, nor
+ ** to an adjacent cell. Move the cursor so that it is pointing either
+ ** to the cell to be overwritten or an adjacent cell.
+ */
+ rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
+ (flags & BTREE_APPEND)!=0, &loc);
+ if( rc ) return rc;
+ }
+ }else{
+ /* This is an index or a WITHOUT ROWID table */
+
+ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
+ ** to a row with the same key as the new entry being inserted.
+ */
+ assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
+
+ /* If the cursor is not already pointing either to the cell to be
+ ** overwritten, or if a new cell is being inserted, if the cursor is
+ ** not pointing to an immediately adjacent cell, then move the cursor
+ ** so that it does.
+ */
+ if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
+ if( pX->nMem ){
+ UnpackedRecord r;
+ r.pKeyInfo = pCur->pKeyInfo;
+ r.aMem = pX->aMem;
+ r.nField = pX->nMem;
+ r.default_rc = 0;
+ r.eqSeen = 0;
+ rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
+ }else{
+ rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
+ (flags & BTREE_APPEND)!=0, &loc);
+ }
+ if( rc ) return rc;
+ }
+
+ /* If the cursor is currently pointing to an entry to be overwritten
+ ** and the new content is the same as as the old, then use the
+ ** overwrite optimization.
+ */
+ if( loc==0 ){
+ getCellInfo(pCur);
+ if( pCur->info.nKey==pX->nKey ){
+ BtreePayload x2;
+ x2.pData = pX->pKey;
+ x2.nData = pX->nKey;
+ x2.nZero = 0;
+ return btreeOverwriteCell(pCur, &x2);
+ }
+ }
+ }
+ assert( pCur->eState==CURSOR_VALID
+ || (pCur->eState==CURSOR_INVALID && loc) );
+
+ pPage = pCur->pPage;
+ assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
+ assert( pPage->leaf || !pPage->intKey );
+ if( pPage->nFree<0 ){
+ if( NEVER(pCur->eState>CURSOR_INVALID) ){
+ /* ^^^^^--- due to the moveToRoot() call above */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = btreeComputeFreeSpace(pPage);
+ }
+ if( rc ) return rc;
+ }
+
+ TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
+ pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
+ loc==0 ? "overwrite" : "new entry"));
+ assert( pPage->isInit || CORRUPT_DB );
+ newCell = pBt->pTmpSpace;
+ assert( newCell!=0 );
+ if( flags & BTREE_PREFORMAT ){
+ rc = SQLITE_OK;
+ szNew = pBt->nPreformatSize;
+ if( szNew<4 ) szNew = 4;
+ if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
+ CellInfo info;
+ pPage->xParseCell(pPage, newCell, &info);
+ if( info.nPayload!=info.nLocal ){
+ Pgno ovfl = get4byte(&newCell[szNew-4]);
+ ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
+ }
+ }
+ }else{
+ rc = fillInCell(pPage, newCell, pX, &szNew);
+ }
+ if( rc ) goto end_insert;
+ assert( szNew==pPage->xCellSize(pPage, newCell) );
+ assert( szNew <= MX_CELL_SIZE(pBt) );
+ idx = pCur->ix;
+ if( loc==0 ){
+ CellInfo info;
+ assert( idx>=0 );
+ if( idx>=pPage->nCell ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ){
+ goto end_insert;
+ }
+ oldCell = findCell(pPage, idx);
+ if( !pPage->leaf ){
+ memcpy(newCell, oldCell, 4);
+ }
+ BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
+ testcase( pCur->curFlags & BTCF_ValidOvfl );
+ invalidateOverflowCache(pCur);
+ if( info.nSize==szNew && info.nLocal==info.nPayload
+ && (!ISAUTOVACUUM || szNew<pPage->minLocal)
+ ){
+ /* Overwrite the old cell with the new if they are the same size.
+ ** We could also try to do this if the old cell is smaller, then add
+ ** the leftover space to the free list. But experiments show that
+ ** doing that is no faster then skipping this optimization and just
+ ** calling dropCell() and insertCell().
+ **
+ ** This optimization cannot be used on an autovacuum database if the
+ ** new entry uses overflow pages, as the insertCell() call below is
+ ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
+ assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
+ if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( oldCell+szNew > pPage->aDataEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ memcpy(oldCell, newCell, szNew);
+ return SQLITE_OK;
+ }
+ dropCell(pPage, idx, info.nSize, &rc);
+ if( rc ) goto end_insert;
+ }else if( loc<0 && pPage->nCell>0 ){
+ assert( pPage->leaf );
+ idx = ++pCur->ix;
+ pCur->curFlags &= ~BTCF_ValidNKey;
+ }else{
+ assert( pPage->leaf );
+ }
+ insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
+ assert( pPage->nOverflow==0 || rc==SQLITE_OK );
+ assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
+
+ /* If no error has occurred and pPage has an overflow cell, call balance()
+ ** to redistribute the cells within the tree. Since balance() may move
+ ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
+ ** variables.
+ **
+ ** Previous versions of SQLite called moveToRoot() to move the cursor
+ ** back to the root page as balance() used to invalidate the contents
+ ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
+ ** set the cursor state to "invalid". This makes common insert operations
+ ** slightly faster.
+ **
+ ** There is a subtle but important optimization here too. When inserting
+ ** multiple records into an intkey b-tree using a single cursor (as can
+ ** happen while processing an "INSERT INTO ... SELECT" statement), it
+ ** is advantageous to leave the cursor pointing to the last entry in
+ ** the b-tree if possible. If the cursor is left pointing to the last
+ ** entry in the table, and the next row inserted has an integer key
+ ** larger than the largest existing key, it is possible to insert the
+ ** row without seeking the cursor. This can be a big performance boost.
+ */
+ pCur->info.nSize = 0;
+ if( pPage->nOverflow ){
+ assert( rc==SQLITE_OK );
+ pCur->curFlags &= ~(BTCF_ValidNKey);
+ rc = balance(pCur);
+
+ /* Must make sure nOverflow is reset to zero even if the balance()
+ ** fails. Internal data structure corruption will result otherwise.
+ ** Also, set the cursor state to invalid. This stops saveCursorPosition()
+ ** from trying to save the current position of the cursor. */
+ pCur->pPage->nOverflow = 0;
+ pCur->eState = CURSOR_INVALID;
+ if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
+ btreeReleaseAllCursorPages(pCur);
+ if( pCur->pKeyInfo ){
+ assert( pCur->pKey==0 );
+ pCur->pKey = sqlite3Malloc( pX->nKey );
+ if( pCur->pKey==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pCur->pKey, pX->pKey, pX->nKey);
+ }
+ }
+ pCur->eState = CURSOR_REQUIRESEEK;
+ pCur->nKey = pX->nKey;
+ }
+ }
+ assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
+
+end_insert:
+ return rc;
+}
+
+/*
+** This function is used as part of copying the current row from cursor
+** pSrc into cursor pDest. If the cursors are open on intkey tables, then
+** parameter iKey is used as the rowid value when the record is copied
+** into pDest. Otherwise, the record is copied verbatim.
+**
+** This function does not actually write the new value to cursor pDest.
+** Instead, it creates and populates any required overflow pages and
+** writes the data for the new cell into the BtShared.pTmpSpace buffer
+** for the destination database. The size of the cell, in bytes, is left
+** in BtShared.nPreformatSize. The caller completes the insertion by
+** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
+ int rc = SQLITE_OK;
+ BtShared *pBt = pDest->pBt;
+ u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
+ const u8 *aIn; /* Pointer to next input buffer */
+ u32 nIn; /* Size of input buffer aIn[] */
+ u32 nRem; /* Bytes of data still to copy */
+
+ getCellInfo(pSrc);
+ if( pSrc->info.nPayload<0x80 ){
+ *(aOut++) = pSrc->info.nPayload;
+ }else{
+ aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
+ }
+ if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
+ nIn = pSrc->info.nLocal;
+ aIn = pSrc->info.pPayload;
+ if( aIn+nIn>pSrc->pPage->aDataEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ nRem = pSrc->info.nPayload;
+ if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
+ memcpy(aOut, aIn, nIn);
+ pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
+ }else{
+ Pager *pSrcPager = pSrc->pBt->pPager;
+ u8 *pPgnoOut = 0;
+ Pgno ovflIn = 0;
+ DbPage *pPageIn = 0;
+ MemPage *pPageOut = 0;
+ u32 nOut; /* Size of output buffer aOut[] */
+
+ nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
+ pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
+ if( nOut<pSrc->info.nPayload ){
+ pPgnoOut = &aOut[nOut];
+ pBt->nPreformatSize += 4;
+ }
+
+ if( nRem>nIn ){
+ if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
+ }
+
+ do {
+ nRem -= nOut;
+ do{
+ assert( nOut>0 );
+ if( nIn>0 ){
+ int nCopy = MIN(nOut, nIn);
+ memcpy(aOut, aIn, nCopy);
+ nOut -= nCopy;
+ nIn -= nCopy;
+ aOut += nCopy;
+ aIn += nCopy;
+ }
+ if( nOut>0 ){
+ sqlite3PagerUnref(pPageIn);
+ pPageIn = 0;
+ rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
+ if( rc==SQLITE_OK ){
+ aIn = (const u8*)sqlite3PagerGetData(pPageIn);
+ ovflIn = get4byte(aIn);
+ aIn += 4;
+ nIn = pSrc->pBt->usableSize - 4;
+ }
+ }
+ }while( rc==SQLITE_OK && nOut>0 );
+
+ if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
+ Pgno pgnoNew;
+ MemPage *pNew = 0;
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
+ put4byte(pPgnoOut, pgnoNew);
+ if( ISAUTOVACUUM && pPageOut ){
+ ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
+ }
+ releasePage(pPageOut);
+ pPageOut = pNew;
+ if( pPageOut ){
+ pPgnoOut = pPageOut->aData;
+ put4byte(pPgnoOut, 0);
+ aOut = &pPgnoOut[4];
+ nOut = MIN(pBt->usableSize - 4, nRem);
+ }
+ }
+ }while( nRem>0 && rc==SQLITE_OK );
+
+ releasePage(pPageOut);
+ sqlite3PagerUnref(pPageIn);
+ }
+
+ return rc;
+}
+
+/*
+** Delete the entry that the cursor is pointing to.
+**
+** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
+** the cursor is left pointing at an arbitrary location after the delete.
+** But if that bit is set, then the cursor is left in a state such that
+** the next call to BtreeNext() or BtreePrev() moves it to the same row
+** as it would have been on if the call to BtreeDelete() had been omitted.
+**
+** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
+** associated with a single table entry and its indexes. Only one of those
+** deletes is considered the "primary" delete. The primary delete occurs
+** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
+** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
+** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
+** but which might be used by alternative storage engines.
+*/
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+ int rc; /* Return code */
+ MemPage *pPage; /* Page to delete cell from */
+ unsigned char *pCell; /* Pointer to cell to delete */
+ int iCellIdx; /* Index of cell to delete */
+ int iCellDepth; /* Depth of node containing pCell */
+ CellInfo info; /* Size of the cell being deleted */
+ u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
+ assert( pCur->curFlags & BTCF_WriteFlag );
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
+ assert( !hasReadConflicts(p, pCur->pgnoRoot) );
+ assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
+ if( pCur->eState!=CURSOR_VALID ){
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ rc = btreeRestoreCursorPosition(pCur);
+ assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
+ if( rc || pCur->eState!=CURSOR_VALID ) return rc;
+ }else{
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+ assert( pCur->eState==CURSOR_VALID );
+
+ iCellDepth = pCur->iPage;
+ iCellIdx = pCur->ix;
+ pPage = pCur->pPage;
+ if( pPage->nCell<=iCellIdx ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pCell = findCell(pPage, iCellIdx);
+ if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
+ ** be preserved following this delete operation. If the current delete
+ ** will cause a b-tree rebalance, then this is done by saving the cursor
+ ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
+ ** returning.
+ **
+ ** If the current delete will not cause a rebalance, then the cursor
+ ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
+ ** before or after the deleted entry.
+ **
+ ** The bPreserve value records which path is required:
+ **
+ ** bPreserve==0 Not necessary to save the cursor position
+ ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
+ ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
+ */
+ bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
+ if( bPreserve ){
+ if( !pPage->leaf
+ || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
+ (int)(pBt->usableSize*2/3)
+ || pPage->nCell==1 /* See dbfuzz001.test for a test case */
+ ){
+ /* A b-tree rebalance will be required after deleting this entry.
+ ** Save the cursor key. */
+ rc = saveCursorKey(pCur);
+ if( rc ) return rc;
+ }else{
+ bPreserve = 2;
+ }
+ }
+
+ /* If the page containing the entry to delete is not a leaf page, move
+ ** the cursor to the largest entry in the tree that is smaller than
+ ** the entry being deleted. This cell will replace the cell being deleted
+ ** from the internal node. The 'previous' entry is used for this instead
+ ** of the 'next' entry, as the previous entry is always a part of the
+ ** sub-tree headed by the child page of the cell being deleted. This makes
+ ** balancing the tree following the delete operation easier. */
+ if( !pPage->leaf ){
+ rc = sqlite3BtreePrevious(pCur, 0);
+ assert( rc!=SQLITE_DONE );
+ if( rc ) return rc;
+ }
+
+ /* Save the positions of any other cursors open on this table before
+ ** making any modifications. */
+ if( pCur->curFlags & BTCF_Multiple ){
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
+ if( rc ) return rc;
+ }
+
+ /* If this is a delete operation to remove a row from a table b-tree,
+ ** invalidate any incrblob cursors open on the row being deleted. */
+ if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
+ invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
+ }
+
+ /* Make the page containing the entry to be deleted writable. Then free any
+ ** overflow pages associated with the entry and finally remove the cell
+ ** itself from within the page. */
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ BTREE_CLEAR_CELL(rc, pPage, pCell, info);
+ dropCell(pPage, iCellIdx, info.nSize, &rc);
+ if( rc ) return rc;
+
+ /* If the cell deleted was not located on a leaf page, then the cursor
+ ** is currently pointing to the largest entry in the sub-tree headed
+ ** by the child-page of the cell that was just deleted from an internal
+ ** node. The cell from the leaf node needs to be moved to the internal
+ ** node to replace the deleted cell. */
+ if( !pPage->leaf ){
+ MemPage *pLeaf = pCur->pPage;
+ int nCell;
+ Pgno n;
+ unsigned char *pTmp;
+
+ if( pLeaf->nFree<0 ){
+ rc = btreeComputeFreeSpace(pLeaf);
+ if( rc ) return rc;
+ }
+ if( iCellDepth<pCur->iPage-1 ){
+ n = pCur->apPage[iCellDepth+1]->pgno;
+ }else{
+ n = pCur->pPage->pgno;
+ }
+ pCell = findCell(pLeaf, pLeaf->nCell-1);
+ if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
+ nCell = pLeaf->xCellSize(pLeaf, pCell);
+ assert( MX_CELL_SIZE(pBt) >= nCell );
+ pTmp = pBt->pTmpSpace;
+ assert( pTmp!=0 );
+ rc = sqlite3PagerWrite(pLeaf->pDbPage);
+ if( rc==SQLITE_OK ){
+ insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
+ }
+ dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
+ if( rc ) return rc;
+ }
+
+ /* Balance the tree. If the entry deleted was located on a leaf page,
+ ** then the cursor still points to that page. In this case the first
+ ** call to balance() repairs the tree, and the if(...) condition is
+ ** never true.
+ **
+ ** Otherwise, if the entry deleted was on an internal node page, then
+ ** pCur is pointing to the leaf page from which a cell was removed to
+ ** replace the cell deleted from the internal node. This is slightly
+ ** tricky as the leaf node may be underfull, and the internal node may
+ ** be either under or overfull. In this case run the balancing algorithm
+ ** on the leaf node first. If the balance proceeds far enough up the
+ ** tree that we can be sure that any problem in the internal node has
+ ** been corrected, so be it. Otherwise, after balancing the leaf node,
+ ** walk the cursor up the tree to the internal node and balance it as
+ ** well. */
+ assert( pCur->pPage->nOverflow==0 );
+ assert( pCur->pPage->nFree>=0 );
+ if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
+ /* Optimization: If the free space is less than 2/3rds of the page,
+ ** then balance() will always be a no-op. No need to invoke it. */
+ rc = SQLITE_OK;
+ }else{
+ rc = balance(pCur);
+ }
+ if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
+ releasePageNotNull(pCur->pPage);
+ pCur->iPage--;
+ while( pCur->iPage>iCellDepth ){
+ releasePage(pCur->apPage[pCur->iPage--]);
+ }
+ pCur->pPage = pCur->apPage[pCur->iPage];
+ rc = balance(pCur);
+ }
+
+ if( rc==SQLITE_OK ){
+ if( bPreserve>1 ){
+ assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
+ assert( pPage==pCur->pPage || CORRUPT_DB );
+ assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
+ pCur->eState = CURSOR_SKIPNEXT;
+ if( iCellIdx>=pPage->nCell ){
+ pCur->skipNext = -1;
+ pCur->ix = pPage->nCell-1;
+ }else{
+ pCur->skipNext = 1;
+ }
+ }else{
+ rc = moveToRoot(pCur);
+ if( bPreserve ){
+ btreeReleaseAllCursorPages(pCur);
+ pCur->eState = CURSOR_REQUIRESEEK;
+ }
+ if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/*
+** Create a new BTree table. Write into *piTable the page
+** number for the root page of the new table.
+**
+** The type of type is determined by the flags parameter. Only the
+** following values of flags are currently in use. Other values for
+** flags might not work:
+**
+** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
+** BTREE_ZERODATA Used for SQL indices
+*/
+static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
+ BtShared *pBt = p->pBt;
+ MemPage *pRoot;
+ Pgno pgnoRoot;
+ int rc;
+ int ptfFlags; /* Page-type flage for the root page of new table */
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
+
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
+ if( rc ){
+ return rc;
+ }
+#else
+ if( pBt->autoVacuum ){
+ Pgno pgnoMove; /* Move a page here to make room for the root-page */
+ MemPage *pPageMove; /* The page to move to. */
+
+ /* Creating a new table may probably require moving an existing database
+ ** to make room for the new tables root page. In case this page turns
+ ** out to be an overflow page, delete all overflow page-map caches
+ ** held by open cursors.
+ */
+ invalidateAllOverflowCache(pBt);
+
+ /* Read the value of meta[3] from the database to determine where the
+ ** root page of the new table should go. meta[3] is the largest root-page
+ ** created so far, so the new root-page is (meta[3]+1).
+ */
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
+ if( pgnoRoot>btreePagecount(pBt) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pgnoRoot++;
+
+ /* The new root-page may not be allocated on a pointer-map page, or the
+ ** PENDING_BYTE page.
+ */
+ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
+ pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
+ pgnoRoot++;
+ }
+ assert( pgnoRoot>=3 );
+
+ /* Allocate a page. The page that currently resides at pgnoRoot will
+ ** be moved to the allocated page (unless the allocated page happens
+ ** to reside at pgnoRoot).
+ */
+ rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ if( pgnoMove!=pgnoRoot ){
+ /* pgnoRoot is the page that will be used for the root-page of
+ ** the new table (assuming an error did not occur). But we were
+ ** allocated pgnoMove. If required (i.e. if it was not allocated
+ ** by extending the file), the current page at position pgnoMove
+ ** is already journaled.
+ */
+ u8 eType = 0;
+ Pgno iPtrPage = 0;
+
+ /* Save the positions of any open cursors. This is required in
+ ** case they are holding a reference to an xFetch reference
+ ** corresponding to page pgnoRoot. */
+ rc = saveAllCursors(pBt, 0, 0);
+ releasePage(pPageMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Move the page currently at pgnoRoot to pgnoMove. */
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
+ if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ if( rc!=SQLITE_OK ){
+ releasePage(pRoot);
+ return rc;
+ }
+ assert( eType!=PTRMAP_ROOTPAGE );
+ assert( eType!=PTRMAP_FREEPAGE );
+ rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
+ releasePage(pRoot);
+
+ /* Obtain the page at pgnoRoot */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pRoot);
+ return rc;
+ }
+ }else{
+ pRoot = pPageMove;
+ }
+
+ /* Update the pointer-map and meta-data with the new root-page number. */
+ ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
+ if( rc ){
+ releasePage(pRoot);
+ return rc;
+ }
+
+ /* When the new root page was allocated, page 1 was made writable in
+ ** order either to increase the database filesize, or to decrement the
+ ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
+ */
+ assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
+ rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
+ if( NEVER(rc) ){
+ releasePage(pRoot);
+ return rc;
+ }
+
+ }else{
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
+ if( rc ) return rc;
+ }
+#endif
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
+ if( createTabFlags & BTREE_INTKEY ){
+ ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
+ }else{
+ ptfFlags = PTF_ZERODATA | PTF_LEAF;
+ }
+ zeroPage(pRoot, ptfFlags);
+ sqlite3PagerUnref(pRoot->pDbPage);
+ assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
+ *piTable = pgnoRoot;
+ return SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeCreateTable(p, piTable, flags);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Erase the given database page and all its children. Return
+** the page to the freelist.
+*/
+static int clearDatabasePage(
+ BtShared *pBt, /* The BTree that contains the table */
+ Pgno pgno, /* Page number to clear */
+ int freePageFlag, /* Deallocate page if true */
+ i64 *pnChange /* Add number of Cells freed to this counter */
+){
+ MemPage *pPage;
+ int rc;
+ unsigned char *pCell;
+ int i;
+ int hdr;
+ CellInfo info;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno>btreePagecount(pBt) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
+ if( rc ) return rc;
+ if( (pBt->openFlags & BTREE_SINGLE)==0
+ && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto cleardatabasepage_out;
+ }
+ hdr = pPage->hdrOffset;
+ for(i=0; i<pPage->nCell; i++){
+ pCell = findCell(pPage, i);
+ if( !pPage->leaf ){
+ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ BTREE_CLEAR_CELL(rc, pPage, pCell, info);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ if( !pPage->leaf ){
+ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
+ if( rc ) goto cleardatabasepage_out;
+ if( pPage->intKey ) pnChange = 0;
+ }
+ if( pnChange ){
+ testcase( !pPage->intKey );
+ *pnChange += pPage->nCell;
+ }
+ if( freePageFlag ){
+ freePage(pPage, &rc);
+ }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
+ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
+ }
+
+cleardatabasepage_out:
+ releasePage(pPage);
+ return rc;
+}
+
+/*
+** Delete all information from a single table in the database. iTable is
+** the page number of the root of the table. After this routine returns,
+** the root page is empty, but still exists.
+**
+** This routine will fail with SQLITE_LOCKED if there are any open
+** read cursors on the table. Open write cursors are moved to the
+** root of the table.
+**
+** If pnChange is not NULL, then the integer value pointed to by pnChange
+** is incremented by the number of entries in the table.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+
+ rc = saveAllCursors(pBt, (Pgno)iTable, 0);
+
+ if( SQLITE_OK==rc ){
+ /* Invalidate all incrblob cursors open on table iTable (assuming iTable
+ ** is the root of a table b-tree - if it is not, the following call is
+ ** a no-op). */
+ if( p->hasIncrblobCur ){
+ invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
+ }
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Delete all information from the single table that pCur is open on.
+**
+** This routine only work for pCur on an ephemeral table.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
+ return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
+}
+
+/*
+** Erase all information in a table and add the root of the table to
+** the freelist. Except, the root of the principle table (the one on
+** page 1) is never added to the freelist.
+**
+** This routine will fail with SQLITE_LOCKED if there are any open
+** cursors on the table.
+**
+** If AUTOVACUUM is enabled and the page at iTable is not the last
+** root page in the database file, then the last root page
+** in the database file is moved into the slot formerly occupied by
+** iTable and that last slot formerly occupied by the last root page
+** is added to the freelist instead of iTable. In this say, all
+** root pages are kept at the beginning of the database file, which
+** is necessary for AUTOVACUUM to work right. *piMoved is set to the
+** page number that used to be the last root page in the file before
+** the move. If no page gets moved, *piMoved is set to 0.
+** The last root page is recorded in meta[3] and the value of
+** meta[3] is updated by this procedure.
+*/
+static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
+ int rc;
+ MemPage *pPage = 0;
+ BtShared *pBt = p->pBt;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->inTrans==TRANS_WRITE );
+ assert( iTable>=2 );
+ if( iTable>btreePagecount(pBt) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ rc = sqlite3BtreeClearTable(p, iTable, 0);
+ if( rc ) return rc;
+ rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
+ if( NEVER(rc) ){
+ releasePage(pPage);
+ return rc;
+ }
+
+ *piMoved = 0;
+
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ freePage(pPage, &rc);
+ releasePage(pPage);
+#else
+ if( pBt->autoVacuum ){
+ Pgno maxRootPgno;
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
+
+ if( iTable==maxRootPgno ){
+ /* If the table being dropped is the table with the largest root-page
+ ** number in the database, put the root page on the free list.
+ */
+ freePage(pPage, &rc);
+ releasePage(pPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ /* The table being dropped does not have the largest root-page
+ ** number in the database. So move the page that does into the
+ ** gap left by the deleted root-page.
+ */
+ MemPage *pMove;
+ releasePage(pPage);
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
+ releasePage(pMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pMove = 0;
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ freePage(pMove, &rc);
+ releasePage(pMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ *piMoved = maxRootPgno;
+ }
+
+ /* Set the new 'max-root-page' value in the database header. This
+ ** is the old value less one, less one more if that happens to
+ ** be a root-page number, less one again if that is the
+ ** PENDING_BYTE_PAGE.
+ */
+ maxRootPgno--;
+ while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
+ || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
+ maxRootPgno--;
+ }
+ assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
+
+ rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
+ }else{
+ freePage(pPage, &rc);
+ releasePage(pPage);
+ }
+#endif
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeDropTable(p, iTable, piMoved);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+/*
+** This function may only be called if the b-tree connection already
+** has a read or write transaction open on the database.
+**
+** Read the meta-information out of a database file. Meta[0]
+** is the number of free pages currently in the database. Meta[1]
+** through meta[15] are available for use by higher layers. Meta[0]
+** is read-only, the others are read/write.
+**
+** The schema layer numbers meta values differently. At the schema
+** layer (and the SetCookie and ReadCookie opcodes) the number of
+** free pages is not visible. So Cookie[0] is the same as Meta[1].
+**
+** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
+** of reading the value out of the header, it instead loads the "DataVersion"
+** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
+** database file. It is a number computed by the pager. But its access
+** pattern is the same as header meta values, and so it is convenient to
+** read it from this routine.
+*/
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans>TRANS_NONE );
+ assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
+ assert( pBt->pPage1 );
+ assert( idx>=0 && idx<=15 );
+
+ if( idx==BTREE_DATA_VERSION ){
+ *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
+ }else{
+ *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
+ }
+
+ /* If auto-vacuum is disabled in this build and this is an auto-vacuum
+ ** database, mark the database as read-only. */
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
+ pBt->btsFlags |= BTS_READ_ONLY;
+ }
+#endif
+
+ sqlite3BtreeLeave(p);
+}
+
+/*
+** Write meta-information back into the database. Meta[0] is
+** read-only and may not be written.
+*/
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
+ BtShared *pBt = p->pBt;
+ unsigned char *pP1;
+ int rc;
+ assert( idx>=1 && idx<=15 );
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+ assert( pBt->pPage1!=0 );
+ pP1 = pBt->pPage1->aData;
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pP1[36 + idx*4], iMeta);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( idx==BTREE_INCR_VACUUM ){
+ assert( pBt->autoVacuum || iMeta==0 );
+ assert( iMeta==0 || iMeta==1 );
+ pBt->incrVacuum = (u8)iMeta;
+ }
+#endif
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** The first argument, pCur, is a cursor opened on some b-tree. Count the
+** number of entries in the b-tree and write the result to *pnEntry.
+**
+** SQLITE_OK is returned if the operation is successfully executed.
+** Otherwise, if an error is encountered (i.e. an IO error or database
+** corruption) an SQLite error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
+ i64 nEntry = 0; /* Value to return in *pnEntry */
+ int rc; /* Return code */
+
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_EMPTY ){
+ *pnEntry = 0;
+ return SQLITE_OK;
+ }
+
+ /* Unless an error occurs, the following loop runs one iteration for each
+ ** page in the B-Tree structure (not including overflow pages).
+ */
+ while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
+ int iIdx; /* Index of child node in parent */
+ MemPage *pPage; /* Current page of the b-tree */
+
+ /* If this is a leaf page or the tree is not an int-key tree, then
+ ** this page contains countable entries. Increment the entry counter
+ ** accordingly.
+ */
+ pPage = pCur->pPage;
+ if( pPage->leaf || !pPage->intKey ){
+ nEntry += pPage->nCell;
+ }
+
+ /* pPage is a leaf node. This loop navigates the cursor so that it
+ ** points to the first interior cell that it points to the parent of
+ ** the next page in the tree that has not yet been visited. The
+ ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
+ ** of the page, or to the number of cells in the page if the next page
+ ** to visit is the right-child of its parent.
+ **
+ ** If all pages in the tree have been visited, return SQLITE_OK to the
+ ** caller.
+ */
+ if( pPage->leaf ){
+ do {
+ if( pCur->iPage==0 ){
+ /* All pages of the b-tree have been visited. Return successfully. */
+ *pnEntry = nEntry;
+ return moveToRoot(pCur);
+ }
+ moveToParent(pCur);
+ }while ( pCur->ix>=pCur->pPage->nCell );
+
+ pCur->ix++;
+ pPage = pCur->pPage;
+ }
+
+ /* Descend to the child node of the cell that the cursor currently
+ ** points at. This is the right-child if (iIdx==pPage->nCell).
+ */
+ iIdx = pCur->ix;
+ if( iIdx==pPage->nCell ){
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
+ }else{
+ rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
+ }
+ }
+
+ /* An error has occurred. Return an error code. */
+ return rc;
+}
+
+/*
+** Return the pager associated with a BTree. This routine is used for
+** testing and debugging only.
+*/
+SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
+ return p->pBt->pPager;
+}
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Append a message to the error message string.
+*/
+static void checkAppendMsg(
+ IntegrityCk *pCheck,
+ const char *zFormat,
+ ...
+){
+ va_list ap;
+ if( !pCheck->mxErr ) return;
+ pCheck->mxErr--;
+ pCheck->nErr++;
+ va_start(ap, zFormat);
+ if( pCheck->errMsg.nChar ){
+ sqlite3_str_append(&pCheck->errMsg, "\n", 1);
+ }
+ if( pCheck->zPfx ){
+ sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
+ }
+ sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
+ va_end(ap);
+ if( pCheck->errMsg.accError==SQLITE_NOMEM ){
+ pCheck->bOomFault = 1;
+ }
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+
+/*
+** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
+** corresponds to page iPg is already set.
+*/
+static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
+ assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
+ return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
+}
+
+/*
+** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
+*/
+static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
+ assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
+ pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
+}
+
+
+/*
+** Add 1 to the reference count for page iPage. If this is the second
+** reference to the page, add an error message to pCheck->zErrMsg.
+** Return 1 if there are 2 or more references to the page and 0 if
+** if this is the first reference to the page.
+**
+** Also check that the page number is in bounds.
+*/
+static int checkRef(IntegrityCk *pCheck, Pgno iPage){
+ if( iPage>pCheck->nPage || iPage==0 ){
+ checkAppendMsg(pCheck, "invalid page number %d", iPage);
+ return 1;
+ }
+ if( getPageReferenced(pCheck, iPage) ){
+ checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
+ return 1;
+ }
+ if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
+ setPageReferenced(pCheck, iPage);
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Check that the entry in the pointer-map for page iChild maps to
+** page iParent, pointer type ptrType. If not, append an error message
+** to pCheck.
+*/
+static void checkPtrmap(
+ IntegrityCk *pCheck, /* Integrity check context */
+ Pgno iChild, /* Child page number */
+ u8 eType, /* Expected pointer map type */
+ Pgno iParent /* Expected pointer map parent page number */
+){
+ int rc;
+ u8 ePtrmapType;
+ Pgno iPtrmapParent;
+
+ rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
+ checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
+ return;
+ }
+
+ if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
+ checkAppendMsg(pCheck,
+ "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
+ iChild, eType, iParent, ePtrmapType, iPtrmapParent);
+ }
+}
+#endif
+
+/*
+** Check the integrity of the freelist or of an overflow page list.
+** Verify that the number of pages on the list is N.
+*/
+static void checkList(
+ IntegrityCk *pCheck, /* Integrity checking context */
+ int isFreeList, /* True for a freelist. False for overflow page list */
+ Pgno iPage, /* Page number for first page in the list */
+ u32 N /* Expected number of pages in the list */
+){
+ int i;
+ u32 expected = N;
+ int nErrAtStart = pCheck->nErr;
+ while( iPage!=0 && pCheck->mxErr ){
+ DbPage *pOvflPage;
+ unsigned char *pOvflData;
+ if( checkRef(pCheck, iPage) ) break;
+ N--;
+ if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
+ checkAppendMsg(pCheck, "failed to get page %d", iPage);
+ break;
+ }
+ pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
+ if( isFreeList ){
+ u32 n = (u32)get4byte(&pOvflData[4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pCheck->pBt->autoVacuum ){
+ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
+ }
+#endif
+ if( n>pCheck->pBt->usableSize/4-2 ){
+ checkAppendMsg(pCheck,
+ "freelist leaf count too big on page %d", iPage);
+ N--;
+ }else{
+ for(i=0; i<(int)n; i++){
+ Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pCheck->pBt->autoVacuum ){
+ checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
+ }
+#endif
+ checkRef(pCheck, iFreePage);
+ }
+ N -= n;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ else{
+ /* If this database supports auto-vacuum and iPage is not the last
+ ** page in this overflow list, check that the pointer-map entry for
+ ** the following page matches iPage.
+ */
+ if( pCheck->pBt->autoVacuum && N>0 ){
+ i = get4byte(pOvflData);
+ checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
+ }
+ }
+#endif
+ iPage = get4byte(pOvflData);
+ sqlite3PagerUnref(pOvflPage);
+ }
+ if( N && nErrAtStart==pCheck->nErr ){
+ checkAppendMsg(pCheck,
+ "%s is %d but should be %d",
+ isFreeList ? "size" : "overflow list length",
+ expected-N, expected);
+ }
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/*
+** An implementation of a min-heap.
+**
+** aHeap[0] is the number of elements on the heap. aHeap[1] is the
+** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
+** and aHeap[N*2+1].
+**
+** The heap property is this: Every node is less than or equal to both
+** of its daughter nodes. A consequence of the heap property is that the
+** root node aHeap[1] is always the minimum value currently in the heap.
+**
+** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
+** the heap, preserving the heap property. The btreeHeapPull() routine
+** removes the root element from the heap (the minimum value in the heap)
+** and then moves other nodes around as necessary to preserve the heap
+** property.
+**
+** This heap is used for cell overlap and coverage testing. Each u32
+** entry represents the span of a cell or freeblock on a btree page.
+** The upper 16 bits are the index of the first byte of a range and the
+** lower 16 bits are the index of the last byte of that range.
+*/
+static void btreeHeapInsert(u32 *aHeap, u32 x){
+ u32 j, i = ++aHeap[0];
+ aHeap[i] = x;
+ while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
+ x = aHeap[j];
+ aHeap[j] = aHeap[i];
+ aHeap[i] = x;
+ i = j;
+ }
+}
+static int btreeHeapPull(u32 *aHeap, u32 *pOut){
+ u32 j, i, x;
+ if( (x = aHeap[0])==0 ) return 0;
+ *pOut = aHeap[1];
+ aHeap[1] = aHeap[x];
+ aHeap[x] = 0xffffffff;
+ aHeap[0]--;
+ i = 1;
+ while( (j = i*2)<=aHeap[0] ){
+ if( aHeap[j]>aHeap[j+1] ) j++;
+ if( aHeap[i]<aHeap[j] ) break;
+ x = aHeap[i];
+ aHeap[i] = aHeap[j];
+ aHeap[j] = x;
+ i = j;
+ }
+ return 1;
+}
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Do various sanity checks on a single page of a tree. Return
+** the tree depth. Root pages return 0. Parents of root pages
+** return 1, and so forth.
+**
+** These checks are done:
+**
+** 1. Make sure that cells and freeblocks do not overlap
+** but combine to completely cover the page.
+** 2. Make sure integer cell keys are in order.
+** 3. Check the integrity of overflow pages.
+** 4. Recursively call checkTreePage on all children.
+** 5. Verify that the depth of all children is the same.
+*/
+static int checkTreePage(
+ IntegrityCk *pCheck, /* Context for the sanity check */
+ Pgno iPage, /* Page number of the page to check */
+ i64 *piMinKey, /* Write minimum integer primary key here */
+ i64 maxKey /* Error if integer primary key greater than this */
+){
+ MemPage *pPage = 0; /* The page being analyzed */
+ int i; /* Loop counter */
+ int rc; /* Result code from subroutine call */
+ int depth = -1, d2; /* Depth of a subtree */
+ int pgno; /* Page number */
+ int nFrag; /* Number of fragmented bytes on the page */
+ int hdr; /* Offset to the page header */
+ int cellStart; /* Offset to the start of the cell pointer array */
+ int nCell; /* Number of cells */
+ int doCoverageCheck = 1; /* True if cell coverage checking should be done */
+ int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
+ ** False if IPK must be strictly less than maxKey */
+ u8 *data; /* Page content */
+ u8 *pCell; /* Cell content */
+ u8 *pCellIdx; /* Next element of the cell pointer array */
+ BtShared *pBt; /* The BtShared object that owns pPage */
+ u32 pc; /* Address of a cell */
+ u32 usableSize; /* Usable size of the page */
+ u32 contentOffset; /* Offset to the start of the cell content area */
+ u32 *heap = 0; /* Min-heap used for checking cell coverage */
+ u32 x, prev = 0; /* Next and previous entry on the min-heap */
+ const char *saved_zPfx = pCheck->zPfx;
+ int saved_v1 = pCheck->v1;
+ int saved_v2 = pCheck->v2;
+ u8 savedIsInit = 0;
+
+ /* Check that the page exists
+ */
+ pBt = pCheck->pBt;
+ usableSize = pBt->usableSize;
+ if( iPage==0 ) return 0;
+ if( checkRef(pCheck, iPage) ) return 0;
+ pCheck->zPfx = "Page %u: ";
+ pCheck->v1 = iPage;
+ if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
+ checkAppendMsg(pCheck,
+ "unable to get the page. error code=%d", rc);
+ goto end_of_check;
+ }
+
+ /* Clear MemPage.isInit to make sure the corruption detection code in
+ ** btreeInitPage() is executed. */
+ savedIsInit = pPage->isInit;
+ pPage->isInit = 0;
+ if( (rc = btreeInitPage(pPage))!=0 ){
+ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
+ checkAppendMsg(pCheck,
+ "btreeInitPage() returns error code %d", rc);
+ goto end_of_check;
+ }
+ if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
+ assert( rc==SQLITE_CORRUPT );
+ checkAppendMsg(pCheck, "free space corruption", rc);
+ goto end_of_check;
+ }
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+
+ /* Set up for cell analysis */
+ pCheck->zPfx = "On tree page %u cell %d: ";
+ contentOffset = get2byteNotZero(&data[hdr+5]);
+ assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
+
+ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
+ ** number of cells on the page. */
+ nCell = get2byte(&data[hdr+3]);
+ assert( pPage->nCell==nCell );
+
+ /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
+ ** immediately follows the b-tree page header. */
+ cellStart = hdr + 12 - 4*pPage->leaf;
+ assert( pPage->aCellIdx==&data[cellStart] );
+ pCellIdx = &data[cellStart + 2*(nCell-1)];
+
+ if( !pPage->leaf ){
+ /* Analyze the right-child page of internal pages */
+ pgno = get4byte(&data[hdr+8]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ pCheck->zPfx = "On page %u at right child: ";
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
+ }
+#endif
+ depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
+ keyCanBeEqual = 0;
+ }else{
+ /* For leaf pages, the coverage check will occur in the same loop
+ ** as the other cell checks, so initialize the heap. */
+ heap = pCheck->heap;
+ heap[0] = 0;
+ }
+
+ /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
+ ** integer offsets to the cell contents. */
+ for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
+ CellInfo info;
+
+ /* Check cell size */
+ pCheck->v2 = i;
+ assert( pCellIdx==&data[cellStart + i*2] );
+ pc = get2byteAligned(pCellIdx);
+ pCellIdx -= 2;
+ if( pc<contentOffset || pc>usableSize-4 ){
+ checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
+ pc, contentOffset, usableSize-4);
+ doCoverageCheck = 0;
+ continue;
+ }
+ pCell = &data[pc];
+ pPage->xParseCell(pPage, pCell, &info);
+ if( pc+info.nSize>usableSize ){
+ checkAppendMsg(pCheck, "Extends off end of page");
+ doCoverageCheck = 0;
+ continue;
+ }
+
+ /* Check for integer primary key out of range */
+ if( pPage->intKey ){
+ if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
+ checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
+ }
+ maxKey = info.nKey;
+ keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
+ }
+
+ /* Check the content overflow list */
+ if( info.nPayload>info.nLocal ){
+ u32 nPage; /* Number of pages on the overflow chain */
+ Pgno pgnoOvfl; /* First page of the overflow chain */
+ assert( pc + info.nSize - 4 <= usableSize );
+ nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
+ pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
+ }
+#endif
+ checkList(pCheck, 0, pgnoOvfl, nPage);
+ }
+
+ if( !pPage->leaf ){
+ /* Check sanity of left child page for internal pages */
+ pgno = get4byte(pCell);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
+ }
+#endif
+ d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
+ keyCanBeEqual = 0;
+ if( d2!=depth ){
+ checkAppendMsg(pCheck, "Child page depth differs");
+ depth = d2;
+ }
+ }else{
+ /* Populate the coverage-checking heap for leaf pages */
+ btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
+ }
+ }
+ *piMinKey = maxKey;
+
+ /* Check for complete coverage of the page
+ */
+ pCheck->zPfx = 0;
+ if( doCoverageCheck && pCheck->mxErr>0 ){
+ /* For leaf pages, the min-heap has already been initialized and the
+ ** cells have already been inserted. But for internal pages, that has
+ ** not yet been done, so do it now */
+ if( !pPage->leaf ){
+ heap = pCheck->heap;
+ heap[0] = 0;
+ for(i=nCell-1; i>=0; i--){
+ u32 size;
+ pc = get2byteAligned(&data[cellStart+i*2]);
+ size = pPage->xCellSize(pPage, &data[pc]);
+ btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
+ }
+ }
+ /* Add the freeblocks to the min-heap
+ **
+ ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
+ ** is the offset of the first freeblock, or zero if there are no
+ ** freeblocks on the page.
+ */
+ i = get2byte(&data[hdr+1]);
+ while( i>0 ){
+ int size, j;
+ assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
+ size = get2byte(&data[i+2]);
+ assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
+ btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
+ /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
+ ** big-endian integer which is the offset in the b-tree page of the next
+ ** freeblock in the chain, or zero if the freeblock is the last on the
+ ** chain. */
+ j = get2byte(&data[i]);
+ /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
+ ** increasing offset. */
+ assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
+ assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
+ i = j;
+ }
+ /* Analyze the min-heap looking for overlap between cells and/or
+ ** freeblocks, and counting the number of untracked bytes in nFrag.
+ **
+ ** Each min-heap entry is of the form: (start_address<<16)|end_address.
+ ** There is an implied first entry the covers the page header, the cell
+ ** pointer index, and the gap between the cell pointer index and the start
+ ** of cell content.
+ **
+ ** The loop below pulls entries from the min-heap in order and compares
+ ** the start_address against the previous end_address. If there is an
+ ** overlap, that means bytes are used multiple times. If there is a gap,
+ ** that gap is added to the fragmentation count.
+ */
+ nFrag = 0;
+ prev = contentOffset - 1; /* Implied first min-heap entry */
+ while( btreeHeapPull(heap,&x) ){
+ if( (prev&0xffff)>=(x>>16) ){
+ checkAppendMsg(pCheck,
+ "Multiple uses for byte %u of page %u", x>>16, iPage);
+ break;
+ }else{
+ nFrag += (x>>16) - (prev&0xffff) - 1;
+ prev = x;
+ }
+ }
+ nFrag += usableSize - (prev&0xffff) - 1;
+ /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
+ ** is stored in the fifth field of the b-tree page header.
+ ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
+ ** number of fragmented free bytes within the cell content area.
+ */
+ if( heap[0]==0 && nFrag!=data[hdr+7] ){
+ checkAppendMsg(pCheck,
+ "Fragmentation of %d bytes reported as %d on page %u",
+ nFrag, data[hdr+7], iPage);
+ }
+ }
+
+end_of_check:
+ if( !doCoverageCheck ) pPage->isInit = savedIsInit;
+ releasePage(pPage);
+ pCheck->zPfx = saved_zPfx;
+ pCheck->v1 = saved_v1;
+ pCheck->v2 = saved_v2;
+ return depth+1;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** This routine does a complete check of the given BTree file. aRoot[] is
+** an array of pages numbers were each page number is the root page of
+** a table. nRoot is the number of entries in aRoot.
+**
+** A read-only or read-write transaction must be opened before calling
+** this function.
+**
+** Write the number of error seen in *pnErr. Except for some memory
+** allocation errors, an error message held in memory obtained from
+** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
+** returned. If a memory allocation error occurs, NULL is returned.
+**
+** If the first entry in aRoot[] is 0, that indicates that the list of
+** root pages is incomplete. This is a "partial integrity-check". This
+** happens when performing an integrity check on a single table. The
+** zero is skipped, of course. But in addition, the freelist checks
+** and the checks to make sure every page is referenced are also skipped,
+** since obviously it is not possible to know which pages are covered by
+** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
+** checks are still performed.
+*/
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
+ sqlite3 *db, /* Database connection that is running the check */
+ Btree *p, /* The btree to be checked */
+ Pgno *aRoot, /* An array of root pages numbers for individual trees */
+ int nRoot, /* Number of entries in aRoot[] */
+ int mxErr, /* Stop reporting errors after this many */
+ int *pnErr /* Write number of errors seen to this variable */
+){
+ Pgno i;
+ IntegrityCk sCheck;
+ BtShared *pBt = p->pBt;
+ u64 savedDbFlags = pBt->db->flags;
+ char zErr[100];
+ int bPartial = 0; /* True if not checking all btrees */
+ int bCkFreelist = 1; /* True to scan the freelist */
+ VVA_ONLY( int nRef );
+ assert( nRoot>0 );
+
+ /* aRoot[0]==0 means this is a partial check */
+ if( aRoot[0]==0 ){
+ assert( nRoot>1 );
+ bPartial = 1;
+ if( aRoot[1]!=1 ) bCkFreelist = 0;
+ }
+
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
+ VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
+ assert( nRef>=0 );
+ sCheck.db = db;
+ sCheck.pBt = pBt;
+ sCheck.pPager = pBt->pPager;
+ sCheck.nPage = btreePagecount(sCheck.pBt);
+ sCheck.mxErr = mxErr;
+ sCheck.nErr = 0;
+ sCheck.bOomFault = 0;
+ sCheck.zPfx = 0;
+ sCheck.v1 = 0;
+ sCheck.v2 = 0;
+ sCheck.aPgRef = 0;
+ sCheck.heap = 0;
+ sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
+ sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
+ if( sCheck.nPage==0 ){
+ goto integrity_ck_cleanup;
+ }
+
+ sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
+ if( !sCheck.aPgRef ){
+ sCheck.bOomFault = 1;
+ goto integrity_ck_cleanup;
+ }
+ sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
+ if( sCheck.heap==0 ){
+ sCheck.bOomFault = 1;
+ goto integrity_ck_cleanup;
+ }
+
+ i = PENDING_BYTE_PAGE(pBt);
+ if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
+
+ /* Check the integrity of the freelist
+ */
+ if( bCkFreelist ){
+ sCheck.zPfx = "Main freelist: ";
+ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
+ get4byte(&pBt->pPage1->aData[36]));
+ sCheck.zPfx = 0;
+ }
+
+ /* Check all the tables.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( !bPartial ){
+ if( pBt->autoVacuum ){
+ Pgno mx = 0;
+ Pgno mxInHdr;
+ for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
+ mxInHdr = get4byte(&pBt->pPage1->aData[52]);
+ if( mx!=mxInHdr ){
+ checkAppendMsg(&sCheck,
+ "max rootpage (%d) disagrees with header (%d)",
+ mx, mxInHdr
+ );
+ }
+ }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
+ checkAppendMsg(&sCheck,
+ "incremental_vacuum enabled with a max rootpage of zero"
+ );
+ }
+ }
+#endif
+ testcase( pBt->db->flags & SQLITE_CellSizeCk );
+ pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
+ for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
+ i64 notUsed;
+ if( aRoot[i]==0 ) continue;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
+ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
+ }
+#endif
+ checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
+ }
+ pBt->db->flags = savedDbFlags;
+
+ /* Make sure every page in the file is referenced
+ */
+ if( !bPartial ){
+ for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ if( getPageReferenced(&sCheck, i)==0 ){
+ checkAppendMsg(&sCheck, "Page %d is never used", i);
+ }
+#else
+ /* If the database supports auto-vacuum, make sure no tables contain
+ ** references to pointer-map pages.
+ */
+ if( getPageReferenced(&sCheck, i)==0 &&
+ (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
+ checkAppendMsg(&sCheck, "Page %d is never used", i);
+ }
+ if( getPageReferenced(&sCheck, i)!=0 &&
+ (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
+ checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
+ }
+#endif
+ }
+ }
+
+ /* Clean up and report errors.
+ */
+integrity_ck_cleanup:
+ sqlite3PageFree(sCheck.heap);
+ sqlite3_free(sCheck.aPgRef);
+ if( sCheck.bOomFault ){
+ sqlite3_str_reset(&sCheck.errMsg);
+ sCheck.nErr++;
+ }
+ *pnErr = sCheck.nErr;
+ if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
+ /* Make sure this analysis did not leave any unref() pages. */
+ assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
+ sqlite3BtreeLeave(p);
+ return sqlite3StrAccumFinish(&sCheck.errMsg);
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/*
+** Return the full pathname of the underlying database file. Return
+** an empty string if the database is in-memory or a TEMP database.
+**
+** The pager filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerFilename(p->pBt->pPager, 1);
+}
+
+/*
+** Return the pathname of the journal file for this database. The return
+** value of this routine is the same regardless of whether the journal file
+** has been created or not.
+**
+** The pager journal filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerJournalname(p->pBt->pPager);
+}
+
+/*
+** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
+** to describe the current transaction state of Btree p.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree *p){
+ assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
+ return p ? p->inTrans : 0;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Run a checkpoint on the Btree passed as the first argument.
+**
+** Return SQLITE_LOCKED if this or any other connection has an open
+** transaction on the shared-cache the argument Btree is connected to.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
+ int rc = SQLITE_OK;
+ if( p ){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( pBt->inTransaction!=TRANS_NONE ){
+ rc = SQLITE_LOCKED;
+ }else{
+ rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+#endif
+
+/*
+** Return true if there is currently a backup running on Btree p.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){
+ assert( p );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ return p->nBackup!=0;
+}
+
+/*
+** This function returns a pointer to a blob of memory associated with
+** a single shared-btree. The memory is used by client code for its own
+** purposes (for example, to store a high-level schema associated with
+** the shared-btree). The btree layer manages reference counting issues.
+**
+** The first time this is called on a shared-btree, nBytes bytes of memory
+** are allocated, zeroed, and returned to the caller. For each subsequent
+** call the nBytes parameter is ignored and a pointer to the same blob
+** of memory returned.
+**
+** If the nBytes parameter is 0 and the blob of memory has not yet been
+** allocated, a null pointer is returned. If the blob has already been
+** allocated, it is returned as normal.
+**
+** Just before the shared-btree is closed, the function passed as the
+** xFree argument when the memory allocation was made is invoked on the
+** blob of allocated memory. The xFree function should not call sqlite3_free()
+** on the memory, the btree layer does that.
+*/
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( !pBt->pSchema && nBytes ){
+ pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
+ pBt->xFreeSchema = xFree;
+ }
+ sqlite3BtreeLeave(p);
+ return pBt->pSchema;
+}
+
+/*
+** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
+** btree as the argument handle holds an exclusive lock on the
+** sqlite_schema table. Otherwise SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
+ int rc;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
+ assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Obtain a lock on the table whose root page is iTab. The
+** lock is a write lock if isWritelock is true or a read lock
+** if it is false.
+*/
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
+ int rc = SQLITE_OK;
+ assert( p->inTrans!=TRANS_NONE );
+ if( p->sharable ){
+ u8 lockType = READ_LOCK + isWriteLock;
+ assert( READ_LOCK+1==WRITE_LOCK );
+ assert( isWriteLock==0 || isWriteLock==1 );
+
+ sqlite3BtreeEnter(p);
+ rc = querySharedCacheTableLock(p, iTab, lockType);
+ if( rc==SQLITE_OK ){
+ rc = setSharedCacheTableLock(p, iTab, lockType);
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+#endif
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Argument pCsr must be a cursor opened for writing on an
+** INTKEY table currently pointing at a valid table entry.
+** This function modifies the data stored as part of that entry.
+**
+** Only the data content may only be modified, it is not possible to
+** change the length of the data stored. If this function is called with
+** parameters that attempt to write past the end of the existing data,
+** no modifications are made and SQLITE_CORRUPT is returned.
+*/
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
+ int rc;
+ assert( cursorOwnsBtShared(pCsr) );
+ assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
+ assert( pCsr->curFlags & BTCF_Incrblob );
+
+ rc = restoreCursorPosition(pCsr);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pCsr->eState!=CURSOR_REQUIRESEEK );
+ if( pCsr->eState!=CURSOR_VALID ){
+ return SQLITE_ABORT;
+ }
+
+ /* Save the positions of all other cursors open on this table. This is
+ ** required in case any of them are holding references to an xFetch
+ ** version of the b-tree page modified by the accessPayload call below.
+ **
+ ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
+ ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
+ ** saveAllCursors can only return SQLITE_OK.
+ */
+ VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
+ assert( rc==SQLITE_OK );
+
+ /* Check some assumptions:
+ ** (a) the cursor is open for writing,
+ ** (b) there is a read/write transaction open,
+ ** (c) the connection holds a write-lock on the table (if required),
+ ** (d) there are no conflicting read-locks, and
+ ** (e) the cursor points at a valid row of an intKey table.
+ */
+ if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
+ return SQLITE_READONLY;
+ }
+ assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
+ && pCsr->pBt->inTransaction==TRANS_WRITE );
+ assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
+ assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
+ assert( pCsr->pPage->intKey );
+
+ return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
+}
+
+/*
+** Mark this cursor as an incremental blob cursor.
+*/
+SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
+ pCur->curFlags |= BTCF_Incrblob;
+ pCur->pBtree->hasIncrblobCur = 1;
+}
+#endif
+
+/*
+** Set both the "read version" (single byte at byte offset 18) and
+** "write version" (single byte at byte offset 19) fields in the database
+** header to iVersion.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
+ BtShared *pBt = pBtree->pBt;
+ int rc; /* Return code */
+
+ assert( iVersion==1 || iVersion==2 );
+
+ /* If setting the version fields to 1, do not automatically open the
+ ** WAL connection, even if the version fields are currently set to 2.
+ */
+ pBt->btsFlags &= ~BTS_NO_WAL;
+ if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
+
+ rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
+ if( rc==SQLITE_OK ){
+ u8 *aData = pBt->pPage1->aData;
+ if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
+ rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ aData[18] = (u8)iVersion;
+ aData[19] = (u8)iVersion;
+ }
+ }
+ }
+ }
+
+ pBt->btsFlags &= ~BTS_NO_WAL;
+ return rc;
+}
+
+/*
+** Return true if the cursor has a hint specified. This routine is
+** only used from within assert() statements
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
+ return (pCsr->hints & mask)!=0;
+}
+
+/*
+** Return true if the given Btree is read-only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
+ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
+}
+
+/*
+** Return the size of the header added to each page by this module.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE)
+/*
+** Return true if the Btree passed as the only argument is sharable.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){
+ return p->sharable;
+}
+
+/*
+** Return the number of connections to the BtShared object accessed by
+** the Btree handle passed as the only argument. For private caches
+** this is always 1. For shared caches it may be 1 or greater.
+*/
+SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree *p){
+ testcase( p->sharable );
+ return p->pBt->nRef;
+}
+#endif
+
+/************** End of btree.c ***********************************************/
+/************** Begin file backup.c ******************************************/
+/*
+** 2009 January 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation of the sqlite3_backup_XXX()
+** API functions and the related features.
+*/
+/* #include "sqliteInt.h" */
+/* #include "btreeInt.h" */
+
+/*
+** Structure allocated for each backup operation.
+*/
+struct sqlite3_backup {
+ sqlite3* pDestDb; /* Destination database handle */
+ Btree *pDest; /* Destination b-tree file */
+ u32 iDestSchema; /* Original schema cookie in destination */
+ int bDestLocked; /* True once a write-transaction is open on pDest */
+
+ Pgno iNext; /* Page number of the next source page to copy */
+ sqlite3* pSrcDb; /* Source database handle */
+ Btree *pSrc; /* Source b-tree file */
+
+ int rc; /* Backup process error code */
+
+ /* These two variables are set by every call to backup_step(). They are
+ ** read by calls to backup_remaining() and backup_pagecount().
+ */
+ Pgno nRemaining; /* Number of pages left to copy */
+ Pgno nPagecount; /* Total number of pages to copy */
+
+ int isAttached; /* True once backup has been registered with pager */
+ sqlite3_backup *pNext; /* Next backup associated with source pager */
+};
+
+/*
+** THREAD SAFETY NOTES:
+**
+** Once it has been created using backup_init(), a single sqlite3_backup
+** structure may be accessed via two groups of thread-safe entry points:
+**
+** * Via the sqlite3_backup_XXX() API function backup_step() and
+** backup_finish(). Both these functions obtain the source database
+** handle mutex and the mutex associated with the source BtShared
+** structure, in that order.
+**
+** * Via the BackupUpdate() and BackupRestart() functions, which are
+** invoked by the pager layer to report various state changes in
+** the page cache associated with the source database. The mutex
+** associated with the source database BtShared structure will always
+** be held when either of these functions are invoked.
+**
+** The other sqlite3_backup_XXX() API functions, backup_remaining() and
+** backup_pagecount() are not thread-safe functions. If they are called
+** while some other thread is calling backup_step() or backup_finish(),
+** the values returned may be invalid. There is no way for a call to
+** BackupUpdate() or BackupRestart() to interfere with backup_remaining()
+** or backup_pagecount().
+**
+** Depending on the SQLite configuration, the database handles and/or
+** the Btree objects may have their own mutexes that require locking.
+** Non-sharable Btrees (in-memory databases for example), do not have
+** associated mutexes.
+*/
+
+/*
+** Return a pointer corresponding to database zDb (i.e. "main", "temp")
+** in connection handle pDb. If such a database cannot be found, return
+** a NULL pointer and write an error message to pErrorDb.
+**
+** If the "temp" database is requested, it may need to be opened by this
+** function. If an error occurs while doing so, return 0 and write an
+** error message to pErrorDb.
+*/
+static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){
+ int i = sqlite3FindDbName(pDb, zDb);
+
+ if( i==1 ){
+ Parse sParse;
+ int rc = 0;
+ sqlite3ParseObjectInit(&sParse,pDb);
+ if( sqlite3OpenTempDatabase(&sParse) ){
+ sqlite3ErrorWithMsg(pErrorDb, sParse.rc, "%s", sParse.zErrMsg);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3DbFree(pErrorDb, sParse.zErrMsg);
+ sqlite3ParseObjectReset(&sParse);
+ if( rc ){
+ return 0;
+ }
+ }
+
+ if( i<0 ){
+ sqlite3ErrorWithMsg(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
+ return 0;
+ }
+
+ return pDb->aDb[i].pBt;
+}
+
+/*
+** Attempt to set the page size of the destination to match the page size
+** of the source.
+*/
+static int setDestPgsz(sqlite3_backup *p){
+ int rc;
+ rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),0,0);
+ return rc;
+}
+
+/*
+** Check that there is no open read-transaction on the b-tree passed as the
+** second argument. If there is not, return SQLITE_OK. Otherwise, if there
+** is an open read-transaction, return SQLITE_ERROR and leave an error
+** message in database handle db.
+*/
+static int checkReadTransaction(sqlite3 *db, Btree *p){
+ if( sqlite3BtreeTxnState(p)!=SQLITE_TXN_NONE ){
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use");
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create an sqlite3_backup process to copy the contents of zSrcDb from
+** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
+** a pointer to the new sqlite3_backup object.
+**
+** If an error occurs, NULL is returned and an error code and error message
+** stored in database handle pDestDb.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3* pDestDb, /* Database to write to */
+ const char *zDestDb, /* Name of database within pDestDb */
+ sqlite3* pSrcDb, /* Database connection to read from */
+ const char *zSrcDb /* Name of database within pSrcDb */
+){
+ sqlite3_backup *p; /* Value to return */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ {
+ extern int sqlcipher_find_db_index(sqlite3*, const char*);
+ extern void sqlcipherCodecGetKey(sqlite3*, int, void**, int*);
+ int srcNKey, destNKey;
+ void *zKey;
+
+ sqlcipherCodecGetKey(pSrcDb, sqlcipher_find_db_index(pSrcDb, zSrcDb), &zKey, &srcNKey);
+ sqlcipherCodecGetKey(pDestDb, sqlcipher_find_db_index(pDestDb, zDestDb), &zKey, &destNKey);
+ zKey = NULL;
+
+ /* either both databases must be plaintext, or both must be encrypted */
+ if((srcNKey == 0 && destNKey > 0) || (srcNKey > 0 && destNKey == 0)) {
+ sqlite3ErrorWithMsg(pDestDb, SQLITE_ERROR, "backup is not supported with encrypted databases");
+ return NULL;
+ }
+ }
+#endif
+/* END SQLCIPHER */
+
+ /* Lock the source database handle. The destination database
+ ** handle is not locked in this routine, but it is locked in
+ ** sqlite3_backup_step(). The user is required to ensure that no
+ ** other thread accesses the destination handle for the duration
+ ** of the backup operation. Any attempt to use the destination
+ ** database connection while a backup is in progress may cause
+ ** a malfunction or a deadlock.
+ */
+ sqlite3_mutex_enter(pSrcDb->mutex);
+ sqlite3_mutex_enter(pDestDb->mutex);
+
+ if( pSrcDb==pDestDb ){
+ sqlite3ErrorWithMsg(
+ pDestDb, SQLITE_ERROR, "source and destination must be distinct"
+ );
+ p = 0;
+ }else {
+ /* Allocate space for a new sqlite3_backup object...
+ ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
+ ** call to sqlite3_backup_init() and is destroyed by a call to
+ ** sqlite3_backup_finish(). */
+ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup));
+ if( !p ){
+ sqlite3Error(pDestDb, SQLITE_NOMEM_BKPT);
+ }
+ }
+
+ /* If the allocation succeeded, populate the new object. */
+ if( p ){
+ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
+ p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
+ p->pDestDb = pDestDb;
+ p->pSrcDb = pSrcDb;
+ p->iNext = 1;
+ p->isAttached = 0;
+
+ if( 0==p->pSrc || 0==p->pDest
+ || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK
+ ){
+ /* One (or both) of the named databases did not exist or an OOM
+ ** error was hit. Or there is a transaction open on the destination
+ ** database. The error has already been written into the pDestDb
+ ** handle. All that is left to do here is free the sqlite3_backup
+ ** structure. */
+ sqlite3_free(p);
+ p = 0;
+ }
+ }
+ if( p ){
+ p->pSrc->nBackup++;
+ }
+
+ sqlite3_mutex_leave(pDestDb->mutex);
+ sqlite3_mutex_leave(pSrcDb->mutex);
+ return p;
+}
+
+/*
+** Argument rc is an SQLite error code. Return true if this error is
+** considered fatal if encountered during a backup operation. All errors
+** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
+*/
+static int isFatalError(int rc){
+ return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED));
+}
+
+/*
+** Parameter zSrcData points to a buffer containing the data for
+** page iSrcPg from the source database. Copy this data into the
+** destination database.
+*/
+static int backupOnePage(
+ sqlite3_backup *p, /* Backup handle */
+ Pgno iSrcPg, /* Source database page to backup */
+ const u8 *zSrcData, /* Source database page data */
+ int bUpdate /* True for an update, false otherwise */
+){
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest);
+ const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
+ int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
+ const int nCopy = MIN(nSrcPgsz, nDestPgsz);
+ const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ extern void *sqlcipherPagerGetCodec(Pager*);
+ /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is
+ ** guaranteed that the shared-mutex is held by this thread, handle
+ ** p->pSrc may not actually be the owner. */
+ int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc);
+ int nDestReserve = sqlite3BtreeGetRequestedReserve(p->pDest);
+#endif
+/* END SQLCIPHER */
+ int rc = SQLITE_OK;
+ i64 iOff;
+
+ assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 );
+ assert( p->bDestLocked );
+ assert( !isFatalError(p->rc) );
+ assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
+ assert( zSrcData );
+
+ /* Catch the case where the destination is an in-memory database and the
+ ** page sizes of the source and destination differ.
+ */
+ if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){
+ rc = SQLITE_READONLY;
+ }
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ /* Backup is not possible if the page size of the destination is changing
+ ** and a codec is in use.
+ */
+ if( nSrcPgsz!=nDestPgsz && sqlcipherPagerGetCodec(pDestPager)!=0 ){
+ rc = SQLITE_READONLY;
+ }
+
+ /* Backup is not possible if the number of bytes of reserve space differ
+ ** between source and destination. If there is a difference, try to
+ ** fix the destination to agree with the source. If that is not possible,
+ ** then the backup cannot proceed.
+ */
+ if( nSrcReserve!=nDestReserve ){
+ u32 newPgsz = nSrcPgsz;
+ rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve);
+ if( rc==SQLITE_OK && newPgsz!=(u32)nSrcPgsz ) rc = SQLITE_READONLY;
+ }
+#endif
+/* END SQLCIPHER */
+
+ /* This loop runs once for each destination page spanned by the source
+ ** page. For each iteration, variable iOff is set to the byte offset
+ ** of the destination page.
+ */
+ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
+ DbPage *pDestPg = 0;
+ Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
+ if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
+ if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg, 0))
+ && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
+ ){
+ const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
+ u8 *zDestData = sqlite3PagerGetData(pDestPg);
+ u8 *zOut = &zDestData[iOff%nDestPgsz];
+
+ /* Copy the data from the source page into the destination page.
+ ** Then clear the Btree layer MemPage.isInit flag. Both this module
+ ** and the pager code use this trick (clearing the first byte
+ ** of the page 'extra' space to invalidate the Btree layers
+ ** cached parse of the page). MemPage.isInit is marked
+ ** "MUST BE FIRST" for this purpose.
+ */
+ memcpy(zOut, zIn, nCopy);
+ ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
+ if( iOff==0 && bUpdate==0 ){
+ sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc));
+ }
+ }
+ sqlite3PagerUnref(pDestPg);
+ }
+
+ return rc;
+}
+
+/*
+** If pFile is currently larger than iSize bytes, then truncate it to
+** exactly iSize bytes. If pFile is not larger than iSize bytes, then
+** this function is a no-op.
+**
+** Return SQLITE_OK if everything is successful, or an SQLite error
+** code if an error occurs.
+*/
+static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){
+ i64 iCurrent;
+ int rc = sqlite3OsFileSize(pFile, &iCurrent);
+ if( rc==SQLITE_OK && iCurrent>iSize ){
+ rc = sqlite3OsTruncate(pFile, iSize);
+ }
+ return rc;
+}
+
+/*
+** Register this backup object with the associated source pager for
+** callbacks when pages are changed or the cache invalidated.
+*/
+static void attachBackupObject(sqlite3_backup *p){
+ sqlite3_backup **pp;
+ assert( sqlite3BtreeHoldsMutex(p->pSrc) );
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
+ p->pNext = *pp;
+ *pp = p;
+ p->isAttached = 1;
+}
+
+/*
+** Copy nPage pages from the source b-tree to the destination.
+*/
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
+ int rc;
+ int destMode; /* Destination journal mode */
+ int pgszSrc = 0; /* Source page size */
+ int pgszDest = 0; /* Destination page size */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(p->pSrcDb->mutex);
+ sqlite3BtreeEnter(p->pSrc);
+ if( p->pDestDb ){
+ sqlite3_mutex_enter(p->pDestDb->mutex);
+ }
+
+ rc = p->rc;
+ if( !isFatalError(rc) ){
+ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */
+ int ii; /* Iterator variable */
+ int nSrcPage = -1; /* Size of source db in pages */
+ int bCloseTrans = 0; /* True if src db requires unlocking */
+
+ /* If the source pager is currently in a write-transaction, return
+ ** SQLITE_BUSY immediately.
+ */
+ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
+ rc = SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ }
+
+ /* If there is no open read-transaction on the source database, open
+ ** one now. If a transaction is opened here, then it will be closed
+ ** before this function exits.
+ */
+ if( rc==SQLITE_OK && SQLITE_TXN_NONE==sqlite3BtreeTxnState(p->pSrc) ){
+ rc = sqlite3BtreeBeginTrans(p->pSrc, 0, 0);
+ bCloseTrans = 1;
+ }
+
+ /* If the destination database has not yet been locked (i.e. if this
+ ** is the first call to backup_step() for the current backup operation),
+ ** try to set its page size to the same as the source database. This
+ ** is especially important on ZipVFS systems, as in that case it is
+ ** not possible to create a database file that uses one page size by
+ ** writing to it with another. */
+ if( p->bDestLocked==0 && rc==SQLITE_OK && setDestPgsz(p)==SQLITE_NOMEM ){
+ rc = SQLITE_NOMEM;
+ }
+
+ /* Lock the destination database, if it is not locked already. */
+ if( SQLITE_OK==rc && p->bDestLocked==0
+ && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2,
+ (int*)&p->iDestSchema))
+ ){
+ p->bDestLocked = 1;
+ }
+
+ /* Do not allow backup if the destination database is in WAL mode
+ ** and the page sizes are different between source and destination */
+ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc);
+ pgszDest = sqlite3BtreeGetPageSize(p->pDest);
+ destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest));
+ if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){
+ rc = SQLITE_READONLY;
+ }
+
+ /* Now that there is a read-lock on the source database, query the
+ ** source pager for the number of pages in the database.
+ */
+ nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
+ assert( nSrcPage>=0 );
+ for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
+ const Pgno iSrcPg = p->iNext; /* Source page number */
+ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
+ DbPage *pSrcPg; /* Source page object */
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY);
+ if( rc==SQLITE_OK ){
+ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
+ sqlite3PagerUnref(pSrcPg);
+ }
+ }
+ p->iNext++;
+ }
+ if( rc==SQLITE_OK ){
+ p->nPagecount = nSrcPage;
+ p->nRemaining = nSrcPage+1-p->iNext;
+ if( p->iNext>(Pgno)nSrcPage ){
+ rc = SQLITE_DONE;
+ }else if( !p->isAttached ){
+ attachBackupObject(p);
+ }
+ }
+
+ /* Update the schema version field in the destination database. This
+ ** is to make sure that the schema-version really does change in
+ ** the case where the source and destination databases have the
+ ** same schema version.
+ */
+ if( rc==SQLITE_DONE ){
+ if( nSrcPage==0 ){
+ rc = sqlite3BtreeNewDb(p->pDest);
+ nSrcPage = 1;
+ }
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){
+ rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1);
+ }
+ if( rc==SQLITE_OK ){
+ if( p->pDestDb ){
+ sqlite3ResetAllSchemasOfConnection(p->pDestDb);
+ }
+ if( destMode==PAGER_JOURNALMODE_WAL ){
+ rc = sqlite3BtreeSetVersion(p->pDest, 2);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ int nDestTruncate;
+ /* Set nDestTruncate to the final number of pages in the destination
+ ** database. The complication here is that the destination page
+ ** size may be different to the source page size.
+ **
+ ** If the source page size is smaller than the destination page size,
+ ** round up. In this case the call to sqlite3OsTruncate() below will
+ ** fix the size of the file. However it is important to call
+ ** sqlite3PagerTruncateImage() here so that any pages in the
+ ** destination file that lie beyond the nDestTruncate page mark are
+ ** journalled by PagerCommitPhaseOne() before they are destroyed
+ ** by the file truncation.
+ */
+ assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) );
+ assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) );
+ if( pgszSrc<pgszDest ){
+ int ratio = pgszDest/pgszSrc;
+ nDestTruncate = (nSrcPage+ratio-1)/ratio;
+ if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
+ nDestTruncate--;
+ }
+ }else{
+ nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
+ }
+ assert( nDestTruncate>0 );
+
+ if( pgszSrc<pgszDest ){
+ /* If the source page-size is smaller than the destination page-size,
+ ** two extra things may need to happen:
+ **
+ ** * The destination may need to be truncated, and
+ **
+ ** * Data stored on the pages immediately following the
+ ** pending-byte page in the source database may need to be
+ ** copied into the destination database.
+ */
+ const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
+ sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
+ Pgno iPg;
+ int nDstPage;
+ i64 iOff;
+ i64 iEnd;
+
+ assert( pFile );
+ assert( nDestTruncate==0
+ || (i64)nDestTruncate*(i64)pgszDest >= iSize || (
+ nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
+ && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
+ ));
+
+ /* This block ensures that all data required to recreate the original
+ ** database has been stored in the journal for pDestPager and the
+ ** journal synced to disk. So at this point we may safely modify
+ ** the database file in any way, knowing that if a power failure
+ ** occurs, the original database will be reconstructed from the
+ ** journal file. */
+ sqlite3PagerPagecount(pDestPager, &nDstPage);
+ for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){
+ if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){
+ DbPage *pPg;
+ rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pPg);
+ sqlite3PagerUnref(pPg);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
+ }
+
+ /* Write the extra pages and truncate the database file as required */
+ iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
+ for(
+ iOff=PENDING_BYTE+pgszSrc;
+ rc==SQLITE_OK && iOff<iEnd;
+ iOff+=pgszSrc
+ ){
+ PgHdr *pSrcPg = 0;
+ const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg, 0);
+ if( rc==SQLITE_OK ){
+ u8 *zData = sqlite3PagerGetData(pSrcPg);
+ rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff);
+ }
+ sqlite3PagerUnref(pSrcPg);
+ }
+ if( rc==SQLITE_OK ){
+ rc = backupTruncateFile(pFile, iSize);
+ }
+
+ /* Sync the database file to disk. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSync(pDestPager, 0);
+ }
+ }else{
+ sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
+ }
+
+ /* Finish committing the transaction to the destination database. */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0))
+ ){
+ rc = SQLITE_DONE;
+ }
+ }
+ }
+
+ /* If bCloseTrans is true, then this function opened a read transaction
+ ** on the source database. Close the read transaction here. There is
+ ** no need to check the return values of the btree methods here, as
+ ** "committing" a read-only transaction cannot fail.
+ */
+ if( bCloseTrans ){
+ TESTONLY( int rc2 );
+ TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0);
+ TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0);
+ assert( rc2==SQLITE_OK );
+ }
+
+ if( rc==SQLITE_IOERR_NOMEM ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ p->rc = rc;
+ }
+ if( p->pDestDb ){
+ sqlite3_mutex_leave(p->pDestDb->mutex);
+ }
+ sqlite3BtreeLeave(p->pSrc);
+ sqlite3_mutex_leave(p->pSrcDb->mutex);
+ return rc;
+}
+
+/*
+** Release all resources associated with an sqlite3_backup* handle.
+*/
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
+ sqlite3_backup **pp; /* Ptr to head of pagers backup list */
+ sqlite3 *pSrcDb; /* Source database connection */
+ int rc; /* Value to return */
+
+ /* Enter the mutexes */
+ if( p==0 ) return SQLITE_OK;
+ pSrcDb = p->pSrcDb;
+ sqlite3_mutex_enter(pSrcDb->mutex);
+ sqlite3BtreeEnter(p->pSrc);
+ if( p->pDestDb ){
+ sqlite3_mutex_enter(p->pDestDb->mutex);
+ }
+
+ /* Detach this backup from the source pager. */
+ if( p->pDestDb ){
+ p->pSrc->nBackup--;
+ }
+ if( p->isAttached ){
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
+ assert( pp!=0 );
+ while( *pp!=p ){
+ pp = &(*pp)->pNext;
+ assert( pp!=0 );
+ }
+ *pp = p->pNext;
+ }
+
+ /* If a transaction is still open on the Btree, roll it back. */
+ sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0);
+
+ /* Set the error code of the destination database handle. */
+ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
+ if( p->pDestDb ){
+ sqlite3Error(p->pDestDb, rc);
+
+ /* Exit the mutexes and free the backup context structure. */
+ sqlite3LeaveMutexAndCloseZombie(p->pDestDb);
+ }
+ sqlite3BtreeLeave(p->pSrc);
+ if( p->pDestDb ){
+ /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
+ ** call to sqlite3_backup_init() and is destroyed by a call to
+ ** sqlite3_backup_finish(). */
+ sqlite3_free(p);
+ }
+ sqlite3LeaveMutexAndCloseZombie(pSrcDb);
+ return rc;
+}
+
+/*
+** Return the number of pages still to be backed up as of the most recent
+** call to sqlite3_backup_step().
+*/
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return p->nRemaining;
+}
+
+/*
+** Return the total number of pages in the source database as of the most
+** recent call to sqlite3_backup_step().
+*/
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return p->nPagecount;
+}
+
+/*
+** This function is called after the contents of page iPage of the
+** source database have been modified. If page iPage has already been
+** copied into the destination database, then the data written to the
+** destination is now invalidated. The destination copy of iPage needs
+** to be updated with the new data before the backup operation is
+** complete.
+**
+** It is assumed that the mutex associated with the BtShared object
+** corresponding to the source database is held when this function is
+** called.
+*/
+static SQLITE_NOINLINE void backupUpdate(
+ sqlite3_backup *p,
+ Pgno iPage,
+ const u8 *aData
+){
+ assert( p!=0 );
+ do{
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
+ if( !isFatalError(p->rc) && iPage<p->iNext ){
+ /* The backup process p has already copied page iPage. But now it
+ ** has been modified by a transaction on the source pager. Copy
+ ** the new data into the backup.
+ */
+ int rc;
+ assert( p->pDestDb );
+ sqlite3_mutex_enter(p->pDestDb->mutex);
+ rc = backupOnePage(p, iPage, aData, 1);
+ sqlite3_mutex_leave(p->pDestDb->mutex);
+ assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
+ if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ }
+ }
+ }while( (p = p->pNext)!=0 );
+}
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){
+ if( pBackup ) backupUpdate(pBackup, iPage, aData);
+}
+
+/*
+** Restart the backup process. This is called when the pager layer
+** detects that the database has been modified by an external database
+** connection. In this case there is no way of knowing which of the
+** pages that have been copied into the destination database are still
+** valid and which are not, so the entire process needs to be restarted.
+**
+** It is assumed that the mutex associated with the BtShared object
+** corresponding to the source database is held when this function is
+** called.
+*/
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){
+ sqlite3_backup *p; /* Iterator variable */
+ for(p=pBackup; p; p=p->pNext){
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
+ p->iNext = 1;
+ }
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Copy the complete content of pBtFrom into pBtTo. A transaction
+** must be active for both files.
+**
+** The size of file pTo may be reduced by this operation. If anything
+** goes wrong, the transaction on pTo is rolled back. If successful, the
+** transaction is committed before returning.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
+ int rc;
+ sqlite3_file *pFd; /* File descriptor for database pTo */
+ sqlite3_backup b;
+ sqlite3BtreeEnter(pTo);
+ sqlite3BtreeEnter(pFrom);
+
+ assert( sqlite3BtreeTxnState(pTo)==SQLITE_TXN_WRITE );
+ pFd = sqlite3PagerFile(sqlite3BtreePager(pTo));
+ if( pFd->pMethods ){
+ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom);
+ rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc ) goto copy_finished;
+ }
+
+ /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set
+ ** to 0. This is used by the implementations of sqlite3_backup_step()
+ ** and sqlite3_backup_finish() to detect that they are being called
+ ** from this function, not directly by the user.
+ */
+ memset(&b, 0, sizeof(b));
+ b.pSrcDb = pFrom->db;
+ b.pSrc = pFrom;
+ b.pDest = pTo;
+ b.iNext = 1;
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ sqlite3PagerAlignReserve(sqlite3BtreePager(pTo), sqlite3BtreePager(pFrom));
+#endif
+/* END SQLCIPHER */
+
+ /* 0x7FFFFFFF is the hard limit for the number of pages in a database
+ ** file. By passing this as the number of pages to copy to
+ ** sqlite3_backup_step(), we can guarantee that the copy finishes
+ ** within a single call (unless an error occurs). The assert() statement
+ ** checks this assumption - (p->rc) should be set to either SQLITE_DONE
+ ** or an error code. */
+ sqlite3_backup_step(&b, 0x7FFFFFFF);
+ assert( b.rc!=SQLITE_OK );
+
+ rc = sqlite3_backup_finish(&b);
+ if( rc==SQLITE_OK ){
+ pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED;
+ }else{
+ sqlite3PagerClearCache(sqlite3BtreePager(b.pDest));
+ }
+
+ assert( sqlite3BtreeTxnState(pTo)!=SQLITE_TXN_WRITE );
+copy_finished:
+ sqlite3BtreeLeave(pFrom);
+ sqlite3BtreeLeave(pTo);
+ return rc;
+}
+#endif /* SQLITE_OMIT_VACUUM */
+
+/************** End of backup.c **********************************************/
+/************** Begin file vdbemem.c *****************************************/
+/*
+** 2004 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to manipulate "Mem" structure. A "Mem"
+** stores a single value in the VDBE. Mem is an opaque structure visible
+** only within the VDBE. Interface routines refer to a Mem using the
+** name sqlite_value
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/* True if X is a power of two. 0 is considered a power of two here.
+** In other words, return true if X has at most one bit set.
+*/
+#define ISPOWEROF2(X) (((X)&((X)-1))==0)
+
+#ifdef SQLITE_DEBUG
+/*
+** Check invariants on a Mem object.
+**
+** This routine is intended for use inside of assert() statements, like
+** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
+*/
+SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){
+ /* If MEM_Dyn is set then Mem.xDel!=0.
+ ** Mem.xDel might not be initialized if MEM_Dyn is clear.
+ */
+ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
+
+ /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
+ ** ensure that if Mem.szMalloc>0 then it is safe to do
+ ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
+ ** That saves a few cycles in inner loops. */
+ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
+
+ /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
+ assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
+
+ if( p->flags & MEM_Null ){
+ /* Cannot be both MEM_Null and some other type */
+ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
+
+ /* If MEM_Null is set, then either the value is a pure NULL (the usual
+ ** case) or it is a pointer set using sqlite3_bind_pointer() or
+ ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
+ ** set.
+ */
+ if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
+ /* This is a pointer type. There may be a flag to indicate what to
+ ** do with the pointer. */
+ assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
+
+ /* No other bits set */
+ assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
+ |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
+ }else{
+ /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
+ ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
+ }
+ }else{
+ /* The MEM_Cleared bit is only allowed on NULLs */
+ assert( (p->flags & MEM_Cleared)==0 );
+ }
+
+ /* The szMalloc field holds the correct memory allocation size */
+ assert( p->szMalloc==0
+ || (p->flags==MEM_Undefined
+ && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
+ || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
+
+ /* If p holds a string or blob, the Mem.z must point to exactly
+ ** one of the following:
+ **
+ ** (1) Memory in Mem.zMalloc and managed by the Mem object
+ ** (2) Memory to be freed using Mem.xDel
+ ** (3) An ephemeral string or blob
+ ** (4) A static string or blob
+ */
+ if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
+ assert(
+ ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
+ ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
+ );
+ }
+ return 1;
+}
+#endif
+
+/*
+** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
+** into a buffer.
+*/
+static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
+ StrAccum acc;
+ assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
+ assert( sz>22 );
+ if( p->flags & MEM_Int ){
+#if GCC_VERSION>=7000000
+ /* Work-around for GCC bug
+ ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
+ i64 x;
+ assert( (p->flags&MEM_Int)*2==sizeof(x) );
+ memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
+ sqlite3Int64ToText(x, zBuf);
+#else
+ sqlite3Int64ToText(p->u.i, zBuf);
+#endif
+ }else{
+ sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
+ sqlite3_str_appendf(&acc, "%!.15g",
+ (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
+ assert( acc.zText==zBuf && acc.mxAlloc<=0 );
+ zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
+ }
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Validity checks on pMem. pMem holds a string.
+**
+** (1) Check that string value of pMem agrees with its integer or real value.
+** (2) Check that the string is correctly zero terminated
+**
+** A single int or real value always converts to the same strings. But
+** many different strings can be converted into the same int or real.
+** If a table contains a numeric value and an index is based on the
+** corresponding string value, then it is important that the string be
+** derived from the numeric value, not the other way around, to ensure
+** that the index and table are consistent. See ticket
+** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
+** an example.
+**
+** This routine looks at pMem to verify that if it has both a numeric
+** representation and a string representation then the string rep has
+** been derived from the numeric and not the other way around. It returns
+** true if everything is ok and false if there is a problem.
+**
+** This routine is for use inside of assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemValidStrRep(Mem *p){
+ char zBuf[100];
+ char *z;
+ int i, j, incr;
+ if( (p->flags & MEM_Str)==0 ) return 1;
+ if( p->flags & MEM_Term ){
+ /* Insure that the string is properly zero-terminated. Pay particular
+ ** attention to the case where p->n is odd */
+ if( p->szMalloc>0 && p->z==p->zMalloc ){
+ assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
+ assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
+ }
+ assert( p->z[p->n]==0 );
+ assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
+ assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
+ }
+ if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
+ vdbeMemRenderNum(sizeof(zBuf), zBuf, p);
+ z = p->z;
+ i = j = 0;
+ incr = 1;
+ if( p->enc!=SQLITE_UTF8 ){
+ incr = 2;
+ if( p->enc==SQLITE_UTF16BE ) z++;
+ }
+ while( zBuf[j] ){
+ if( zBuf[j++]!=z[i] ) return 0;
+ i += incr;
+ }
+ return 1;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** If pMem is an object with a valid string representation, this routine
+** ensures the internal encoding for the string representation is
+** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
+**
+** If pMem is not a string object, or the encoding of the string
+** representation is already stored using the requested encoding, then this
+** routine is a no-op.
+**
+** SQLITE_OK is returned if the conversion is successful (or not required).
+** SQLITE_NOMEM may be returned if a malloc() fails during conversion
+** between formats.
+*/
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
+#ifndef SQLITE_OMIT_UTF16
+ int rc;
+#endif
+ assert( pMem!=0 );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
+ || desiredEnc==SQLITE_UTF16BE );
+ if( !(pMem->flags&MEM_Str) ){
+ pMem->enc = desiredEnc;
+ return SQLITE_OK;
+ }
+ if( pMem->enc==desiredEnc ){
+ return SQLITE_OK;
+ }
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+#ifdef SQLITE_OMIT_UTF16
+ return SQLITE_ERROR;
+#else
+
+ /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
+ ** then the encoding of the value may not have changed.
+ */
+ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
+ assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
+ assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
+ assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
+ return rc;
+#endif
+}
+
+/*
+** Make sure pMem->z points to a writable allocation of at least n bytes.
+**
+** If the bPreserve argument is true, then copy of the content of
+** pMem->z into the new allocation. pMem must be either a string or
+** blob if bPreserve is true. If bPreserve is false, any prior content
+** in pMem->z is discarded.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
+ assert( sqlite3VdbeCheckMemInvariants(pMem) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ testcase( pMem->db==0 );
+
+ /* If the bPreserve flag is set to true, then the memory cell must already
+ ** contain a valid string or blob value. */
+ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
+ testcase( bPreserve && pMem->z==0 );
+
+ assert( pMem->szMalloc==0
+ || (pMem->flags==MEM_Undefined
+ && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
+ || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
+ if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
+ if( pMem->db ){
+ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
+ }else{
+ pMem->zMalloc = sqlite3Realloc(pMem->z, n);
+ if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
+ pMem->z = pMem->zMalloc;
+ }
+ bPreserve = 0;
+ }else{
+ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
+ }
+ if( pMem->zMalloc==0 ){
+ sqlite3VdbeMemSetNull(pMem);
+ pMem->z = 0;
+ pMem->szMalloc = 0;
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
+ }
+
+ if( bPreserve && pMem->z ){
+ assert( pMem->z!=pMem->zMalloc );
+ memcpy(pMem->zMalloc, pMem->z, pMem->n);
+ }
+ if( (pMem->flags&MEM_Dyn)!=0 ){
+ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
+ pMem->xDel((void *)(pMem->z));
+ }
+
+ pMem->z = pMem->zMalloc;
+ pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
+ return SQLITE_OK;
+}
+
+/*
+** Change the pMem->zMalloc allocation to be at least szNew bytes.
+** If pMem->zMalloc already meets or exceeds the requested size, this
+** routine is a no-op.
+**
+** Any prior string or blob content in the pMem object may be discarded.
+** The pMem->xDel destructor is called, if it exists. Though MEM_Str
+** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
+** and MEM_Null values are preserved.
+**
+** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
+** if unable to complete the resizing.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
+ assert( CORRUPT_DB || szNew>0 );
+ assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
+ if( pMem->szMalloc<szNew ){
+ return sqlite3VdbeMemGrow(pMem, szNew, 0);
+ }
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ pMem->z = pMem->zMalloc;
+ pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
+ return SQLITE_OK;
+}
+
+/*
+** It is already known that pMem contains an unterminated string.
+** Add the zero terminator.
+**
+** Three bytes of zero are added. In this way, there is guaranteed
+** to be a double-zero byte at an even byte boundary in order to
+** terminate a UTF16 string, even if the initial size of the buffer
+** is an odd number of bytes.
+*/
+static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
+ if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pMem->z[pMem->n] = 0;
+ pMem->z[pMem->n+1] = 0;
+ pMem->z[pMem->n+2] = 0;
+ pMem->flags |= MEM_Term;
+ return SQLITE_OK;
+}
+
+/*
+** Change pMem so that its MEM_Str or MEM_Blob value is stored in
+** MEM.zMalloc, where it can be safely written.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
+ if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
+ if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
+ int rc = vdbeMemAddTerminator(pMem);
+ if( rc ) return rc;
+ }
+ }
+ pMem->flags &= ~MEM_Ephem;
+#ifdef SQLITE_DEBUG
+ pMem->pScopyFrom = 0;
+#endif
+
+ return SQLITE_OK;
+}
+
+/*
+** If the given Mem* has a zero-filled tail, turn it into an ordinary
+** blob stored in dynamically allocated space.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
+ int nByte;
+ assert( pMem!=0 );
+ assert( pMem->flags & MEM_Zero );
+ assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
+ testcase( sqlite3_value_nochange(pMem) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+
+ /* Set nByte to the number of bytes required to store the expanded blob. */
+ nByte = pMem->n + pMem->u.nZero;
+ if( nByte<=0 ){
+ if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
+ nByte = 1;
+ }
+ if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( pMem->z!=0 );
+ assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
+
+ memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
+ pMem->n += pMem->u.nZero;
+ pMem->flags &= ~(MEM_Zero|MEM_Term);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Make sure the given Mem is \u0000 terminated.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
+ testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
+ if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
+ return SQLITE_OK; /* Nothing to do */
+ }else{
+ return vdbeMemAddTerminator(pMem);
+ }
+}
+
+/*
+** Add MEM_Str to the set of representations for the given Mem. This
+** routine is only called if pMem is a number of some kind, not a NULL
+** or a BLOB.
+**
+** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
+** if bForce is true but are retained if bForce is false.
+**
+** A MEM_Null value will never be passed to this function. This function is
+** used for converting values to text for returning to the user (i.e. via
+** sqlite3_value_text()), or for ensuring that values to be used as btree
+** keys are strings. In the former case a NULL pointer is returned the
+** user and the latter is an internal programming error.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
+ const int nByte = 32;
+
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !(pMem->flags&MEM_Zero) );
+ assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
+ assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+
+ if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
+ pMem->enc = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ vdbeMemRenderNum(nByte, pMem->z, pMem);
+ assert( pMem->z!=0 );
+ pMem->n = sqlite3Strlen30NN(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ pMem->flags |= MEM_Str|MEM_Term;
+ if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
+ sqlite3VdbeChangeEncoding(pMem, enc);
+ return SQLITE_OK;
+}
+
+/*
+** Memory cell pMem contains the context of an aggregate function.
+** This routine calls the finalize method for that function. The
+** result of the aggregate is stored back into pMem.
+**
+** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
+** otherwise.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
+ sqlite3_context ctx;
+ Mem t;
+ assert( pFunc!=0 );
+ assert( pMem!=0 );
+ assert( pMem->db!=0 );
+ assert( pFunc->xFinalize!=0 );
+ assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
+ assert( sqlite3_mutex_held(pMem->db->mutex) );
+ memset(&ctx, 0, sizeof(ctx));
+ memset(&t, 0, sizeof(t));
+ t.flags = MEM_Null;
+ t.db = pMem->db;
+ ctx.pOut = &t;
+ ctx.pMem = pMem;
+ ctx.pFunc = pFunc;
+ ctx.enc = ENC(t.db);
+ pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ memcpy(pMem, &t, sizeof(t));
+ return ctx.isError;
+}
+
+/*
+** Memory cell pAccum contains the context of an aggregate function.
+** This routine calls the xValue method for that function and stores
+** the results in memory cell pMem.
+**
+** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
+** otherwise.
+*/
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
+ sqlite3_context ctx;
+ assert( pFunc!=0 );
+ assert( pFunc->xValue!=0 );
+ assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
+ assert( pAccum->db!=0 );
+ assert( sqlite3_mutex_held(pAccum->db->mutex) );
+ memset(&ctx, 0, sizeof(ctx));
+ sqlite3VdbeMemSetNull(pOut);
+ ctx.pOut = pOut;
+ ctx.pMem = pAccum;
+ ctx.pFunc = pFunc;
+ ctx.enc = ENC(pAccum->db);
+ pFunc->xValue(&ctx);
+ return ctx.isError;
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** If the memory cell contains a value that must be freed by
+** invoking the external callback in Mem.xDel, then this routine
+** will free that value. It also sets Mem.flags to MEM_Null.
+**
+** This is a helper routine for sqlite3VdbeMemSetNull() and
+** for sqlite3VdbeMemRelease(). Use those other routines as the
+** entry point for releasing Mem resources.
+*/
+static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
+ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
+ assert( VdbeMemDynamic(p) );
+ if( p->flags&MEM_Agg ){
+ sqlite3VdbeMemFinalize(p, p->u.pDef);
+ assert( (p->flags & MEM_Agg)==0 );
+ testcase( p->flags & MEM_Dyn );
+ }
+ if( p->flags&MEM_Dyn ){
+ assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
+ p->xDel((void *)p->z);
+ }
+ p->flags = MEM_Null;
+}
+
+/*
+** Release memory held by the Mem p, both external memory cleared
+** by p->xDel and memory in p->zMalloc.
+**
+** This is a helper routine invoked by sqlite3VdbeMemRelease() in
+** the unusual case where there really is memory in p that needs
+** to be freed.
+*/
+static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
+ if( VdbeMemDynamic(p) ){
+ vdbeMemClearExternAndSetNull(p);
+ }
+ if( p->szMalloc ){
+ sqlite3DbFreeNN(p->db, p->zMalloc);
+ p->szMalloc = 0;
+ }
+ p->z = 0;
+}
+
+/*
+** Release any memory resources held by the Mem. Both the memory that is
+** free by Mem.xDel and the Mem.zMalloc allocation are freed.
+**
+** Use this routine prior to clean up prior to abandoning a Mem, or to
+** reset a Mem back to its minimum memory utilization.
+**
+** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
+** prior to inserting new content into the Mem.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
+ assert( sqlite3VdbeCheckMemInvariants(p) );
+ if( VdbeMemDynamic(p) || p->szMalloc ){
+ vdbeMemClear(p);
+ }
+}
+
+/* Like sqlite3VdbeMemRelease() but faster for cases where we
+** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem *p){
+ assert( !VdbeMemDynamic(p) );
+ if( p->szMalloc ) vdbeMemClear(p);
+}
+
+/*
+** Convert a 64-bit IEEE double into a 64-bit signed integer.
+** If the double is out of range of a 64-bit signed integer then
+** return the closest available 64-bit signed integer.
+*/
+static SQLITE_NOINLINE i64 doubleToInt64(double r){
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ /* When floating-point is omitted, double and int64 are the same thing */
+ return r;
+#else
+ /*
+ ** Many compilers we encounter do not define constants for the
+ ** minimum and maximum 64-bit integers, or they define them
+ ** inconsistently. And many do not understand the "LL" notation.
+ ** So we define our own static constants here using nothing
+ ** larger than a 32-bit integer constant.
+ */
+ static const i64 maxInt = LARGEST_INT64;
+ static const i64 minInt = SMALLEST_INT64;
+
+ if( r<=(double)minInt ){
+ return minInt;
+ }else if( r>=(double)maxInt ){
+ return maxInt;
+ }else{
+ return (i64)r;
+ }
+#endif
+}
+
+/*
+** Return some kind of integer value which is the best we can do
+** at representing the value that *pMem describes as an integer.
+** If pMem is an integer, then the value is exact. If pMem is
+** a floating-point then the value returned is the integer part.
+** If pMem is a string or blob, then we make an attempt to convert
+** it into an integer and return that. If pMem represents an
+** an SQL-NULL value, return 0.
+**
+** If pMem represents a string value, its encoding might be changed.
+*/
+static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
+ i64 value = 0;
+ sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
+ return value;
+}
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem *pMem){
+ int flags;
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ flags = pMem->flags;
+ if( flags & (MEM_Int|MEM_IntReal) ){
+ testcase( flags & MEM_IntReal );
+ return pMem->u.i;
+ }else if( flags & MEM_Real ){
+ return doubleToInt64(pMem->u.r);
+ }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
+ return memIntValue(pMem);
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Return the best representation of pMem that we can get into a
+** double. If pMem is already a double or an integer, return its
+** value. If it is a string or blob, try to convert it to a double.
+** If it is a NULL, return 0.0.
+*/
+static SQLITE_NOINLINE double memRealValue(Mem *pMem){
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ double val = (double)0;
+ sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
+ return val;
+}
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ if( pMem->flags & MEM_Real ){
+ return pMem->u.r;
+ }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pMem->flags & MEM_IntReal );
+ return (double)pMem->u.i;
+ }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
+ return memRealValue(pMem);
+ }else{
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ return (double)0;
+ }
+}
+
+/*
+** Return 1 if pMem represents true, and return 0 if pMem represents false.
+** Return the value ifNull if pMem is NULL.
+*/
+SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
+ testcase( pMem->flags & MEM_IntReal );
+ if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
+ if( pMem->flags & MEM_Null ) return ifNull;
+ return sqlite3VdbeRealValue(pMem)!=0.0;
+}
+
+/*
+** The MEM structure is already a MEM_Real. Try to also make it a
+** MEM_Int if we can.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
+ i64 ix;
+ assert( pMem!=0 );
+ assert( pMem->flags & MEM_Real );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ ix = doubleToInt64(pMem->u.r);
+
+ /* Only mark the value as an integer if
+ **
+ ** (1) the round-trip conversion real->int->real is a no-op, and
+ ** (2) The integer is neither the largest nor the smallest
+ ** possible integer (ticket #3922)
+ **
+ ** The second and third terms in the following conditional enforces
+ ** the second condition under the assumption that addition overflow causes
+ ** values to wrap around.
+ */
+ if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
+ pMem->u.i = ix;
+ MemSetTypeFlag(pMem, MEM_Int);
+ }
+}
+
+/*
+** Convert pMem to type integer. Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ pMem->u.i = sqlite3VdbeIntValue(pMem);
+ MemSetTypeFlag(pMem, MEM_Int);
+ return SQLITE_OK;
+}
+
+/*
+** Convert pMem so that it is of type MEM_Real.
+** Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ pMem->u.r = sqlite3VdbeRealValue(pMem);
+ MemSetTypeFlag(pMem, MEM_Real);
+ return SQLITE_OK;
+}
+
+/* Compare a floating point value to an integer. Return true if the two
+** values are the same within the precision of the floating point value.
+**
+** This function assumes that i was obtained by assignment from r1.
+**
+** For some versions of GCC on 32-bit machines, if you do the more obvious
+** comparison of "r1==(double)i" you sometimes get an answer of false even
+** though the r1 and (double)i values are bit-for-bit the same.
+*/
+SQLITE_PRIVATE int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
+ double r2 = (double)i;
+ return r1==0.0
+ || (memcmp(&r1, &r2, sizeof(r1))==0
+ && i >= -2251799813685248LL && i < 2251799813685248LL);
+}
+
+/*
+** Convert pMem so that it has type MEM_Real or MEM_Int.
+** Invalidate any prior representations.
+**
+** Every effort is made to force the conversion, even if the input
+** is a string that does not look completely like a number. Convert
+** as much of the string as we can and ignore the rest.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
+ assert( pMem!=0 );
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_Real );
+ testcase( pMem->flags & MEM_IntReal );
+ testcase( pMem->flags & MEM_Null );
+ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
+ int rc;
+ sqlite3_int64 ix;
+ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
+ if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
+ || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r))
+ ){
+ pMem->u.i = ix;
+ MemSetTypeFlag(pMem, MEM_Int);
+ }else{
+ MemSetTypeFlag(pMem, MEM_Real);
+ }
+ }
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
+ pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
+ return SQLITE_OK;
+}
+
+/*
+** Cast the datatype of the value in pMem according to the affinity
+** "aff". Casting is different from applying affinity in that a cast
+** is forced. In other words, the value is converted into the desired
+** affinity even if that results in loss of data. This routine is
+** used (for example) to implement the SQL "cast()" operator.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
+ if( pMem->flags & MEM_Null ) return SQLITE_OK;
+ switch( aff ){
+ case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
+ if( (pMem->flags & MEM_Blob)==0 ){
+ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
+ assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
+ if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
+ }else{
+ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
+ }
+ break;
+ }
+ case SQLITE_AFF_NUMERIC: {
+ sqlite3VdbeMemNumerify(pMem);
+ break;
+ }
+ case SQLITE_AFF_INTEGER: {
+ sqlite3VdbeMemIntegerify(pMem);
+ break;
+ }
+ case SQLITE_AFF_REAL: {
+ sqlite3VdbeMemRealify(pMem);
+ break;
+ }
+ default: {
+ assert( aff==SQLITE_AFF_TEXT );
+ assert( MEM_Str==(MEM_Blob>>3) );
+ pMem->flags |= (pMem->flags&MEM_Blob)>>3;
+ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
+ assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
+ pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
+ return sqlite3VdbeChangeEncoding(pMem, encoding);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Initialize bulk memory to be a consistent Mem object.
+**
+** The minimum amount of initialization feasible is performed.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
+ assert( (flags & ~MEM_TypeMask)==0 );
+ pMem->flags = flags;
+ pMem->db = db;
+ pMem->szMalloc = 0;
+}
+
+
+/*
+** Delete any previous value and set the value stored in *pMem to NULL.
+**
+** This routine calls the Mem.xDel destructor to dispose of values that
+** require the destructor. But it preserves the Mem.zMalloc memory allocation.
+** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
+** routine to invoke the destructor and deallocates Mem.zMalloc.
+**
+** Use this routine to reset the Mem prior to insert a new value.
+**
+** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
+ if( VdbeMemDynamic(pMem) ){
+ vdbeMemClearExternAndSetNull(pMem);
+ }else{
+ pMem->flags = MEM_Null;
+ }
+}
+SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){
+ sqlite3VdbeMemSetNull((Mem*)p);
+}
+
+/*
+** Delete any previous value and set the value to be a BLOB of length
+** n containing all zeros.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags = MEM_Blob|MEM_Zero;
+ pMem->n = 0;
+ if( n<0 ) n = 0;
+ pMem->u.nZero = n;
+ pMem->enc = SQLITE_UTF8;
+ pMem->z = 0;
+}
+#else
+SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
+ int nByte = n>0?n:1;
+ if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( pMem->z!=0 );
+ assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
+ memset(pMem->z, 0, nByte);
+ pMem->n = n>0?n:0;
+ pMem->flags = MEM_Blob;
+ pMem->enc = SQLITE_UTF8;
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The pMem is known to contain content that needs to be destroyed prior
+** to a value change. So invoke the destructor, then set the value to
+** a 64-bit integer.
+*/
+static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
+ sqlite3VdbeMemSetNull(pMem);
+ pMem->u.i = val;
+ pMem->flags = MEM_Int;
+}
+
+/*
+** Delete any previous value and set the value stored in *pMem to val,
+** manifest type INTEGER.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
+ if( VdbeMemDynamic(pMem) ){
+ vdbeReleaseAndSetInt64(pMem, val);
+ }else{
+ pMem->u.i = val;
+ pMem->flags = MEM_Int;
+ }
+}
+
+/* A no-op destructor */
+SQLITE_PRIVATE void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
+
+/*
+** Set the value stored in *pMem should already be a NULL.
+** Also store a pointer to go with it.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetPointer(
+ Mem *pMem,
+ void *pPtr,
+ const char *zPType,
+ void (*xDestructor)(void*)
+){
+ assert( pMem->flags==MEM_Null );
+ vdbeMemClear(pMem);
+ pMem->u.zPType = zPType ? zPType : "";
+ pMem->z = pPtr;
+ pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
+ pMem->eSubtype = 'p';
+ pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** Delete any previous value and set the value stored in *pMem to val,
+** manifest type REAL.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
+ sqlite3VdbeMemSetNull(pMem);
+ if( !sqlite3IsNaN(val) ){
+ pMem->u.r = val;
+ pMem->flags = MEM_Real;
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if the Mem holds a RowSet object. This routine is intended
+** for use inside of assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem *pMem){
+ return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
+ && pMem->xDel==sqlite3RowSetDelete;
+}
+#endif
+
+/*
+** Delete any previous value and set the value of pMem to be an
+** empty boolean index.
+**
+** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
+** error occurs.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem *pMem){
+ sqlite3 *db = pMem->db;
+ RowSet *p;
+ assert( db!=0 );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ sqlite3VdbeMemRelease(pMem);
+ p = sqlite3RowSetInit(db);
+ if( p==0 ) return SQLITE_NOMEM;
+ pMem->z = (char*)p;
+ pMem->flags = MEM_Blob|MEM_Dyn;
+ pMem->xDel = sqlite3RowSetDelete;
+ return SQLITE_OK;
+}
+
+/*
+** Return true if the Mem object contains a TEXT or BLOB that is
+** too large - whose size exceeds SQLITE_MAX_LENGTH.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
+ assert( p->db!=0 );
+ if( p->flags & (MEM_Str|MEM_Blob) ){
+ int n = p->n;
+ if( p->flags & MEM_Zero ){
+ n += p->u.nZero;
+ }
+ return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This routine prepares a memory cell for modification by breaking
+** its link to a shallow copy and by marking any current shallow
+** copies of this cell as invalid.
+**
+** This is used for testing and debugging only - to help ensure that shallow
+** copies (created by OP_SCopy) are not misused.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
+ int i;
+ Mem *pX;
+ for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
+ if( pX->pScopyFrom==pMem ){
+ u16 mFlags;
+ if( pVdbe->db->flags & SQLITE_VdbeTrace ){
+ sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
+ (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
+ }
+ /* If pX is marked as a shallow copy of pMem, then try to verify that
+ ** no significant changes have been made to pX since the OP_SCopy.
+ ** A significant change would indicated a missed call to this
+ ** function for pX. Minor changes, such as adding or removing a
+ ** dual type, are allowed, as long as the underlying value is the
+ ** same. */
+ mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
+ assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
+
+ /* pMem is the register that is changing. But also mark pX as
+ ** undefined so that we can quickly detect the shallow-copy error */
+ pX->flags = MEM_Undefined;
+ pX->pScopyFrom = 0;
+ }
+ }
+ pMem->pScopyFrom = 0;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Make an shallow copy of pFrom into pTo. Prior contents of
+** pTo are freed. The pFrom->z field is not duplicated. If
+** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
+** and flags gets srcType (either MEM_Ephem or MEM_Static).
+*/
+static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
+ vdbeMemClearExternAndSetNull(pTo);
+ assert( !VdbeMemDynamic(pTo) );
+ sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
+}
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
+ assert( !sqlite3VdbeMemIsRowSet(pFrom) );
+ assert( pTo->db==pFrom->db );
+ if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ if( (pFrom->flags&MEM_Static)==0 ){
+ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
+ assert( srcType==MEM_Ephem || srcType==MEM_Static );
+ pTo->flags |= srcType;
+ }
+}
+
+/*
+** Make a full copy of pFrom into pTo. Prior contents of pTo are
+** freed before the copy is made.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
+ int rc = SQLITE_OK;
+
+ assert( !sqlite3VdbeMemIsRowSet(pFrom) );
+ if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ pTo->flags &= ~MEM_Dyn;
+ if( pTo->flags&(MEM_Str|MEM_Blob) ){
+ if( 0==(pFrom->flags&MEM_Static) ){
+ pTo->flags |= MEM_Ephem;
+ rc = sqlite3VdbeMemMakeWriteable(pTo);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Transfer the contents of pFrom to pTo. Any existing value in pTo is
+** freed. If pFrom contains ephemeral data, a copy is made.
+**
+** pFrom contains an SQL NULL when this routine returns.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
+ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
+ assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
+ assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
+
+ sqlite3VdbeMemRelease(pTo);
+ memcpy(pTo, pFrom, sizeof(Mem));
+ pFrom->flags = MEM_Null;
+ pFrom->szMalloc = 0;
+}
+
+/*
+** Change the value of a Mem to be a string or a BLOB.
+**
+** The memory management strategy depends on the value of the xDel
+** parameter. If the value passed is SQLITE_TRANSIENT, then the
+** string is copied into a (possibly existing) buffer managed by the
+** Mem structure. Otherwise, any existing buffer is freed and the
+** pointer copied.
+**
+** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
+** size limit) then no memory allocation occurs. If the string can be
+** stored without allocating memory, then it is. If a memory allocation
+** is required to store the string, then value of pMem is unchanged. In
+** either case, SQLITE_TOOBIG is returned.
+**
+** The "enc" parameter is the text encoding for the string, or zero
+** to store a blob.
+**
+** If n is negative, then the string consists of all bytes up to but
+** excluding the first zero character. The n parameter must be
+** non-negative for blobs.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
+ Mem *pMem, /* Memory cell to set to string value */
+ const char *z, /* String pointer */
+ i64 n, /* Bytes in string, or negative */
+ u8 enc, /* Encoding of z. 0 for BLOBs */
+ void (*xDel)(void*) /* Destructor function */
+){
+ i64 nByte = n; /* New value for pMem->n */
+ int iLimit; /* Maximum allowed string or blob size */
+ u16 flags; /* New value for pMem->flags */
+
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( enc!=0 || n>=0 );
+
+ /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
+ if( !z ){
+ sqlite3VdbeMemSetNull(pMem);
+ return SQLITE_OK;
+ }
+
+ if( pMem->db ){
+ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }else{
+ iLimit = SQLITE_MAX_LENGTH;
+ }
+ if( nByte<0 ){
+ assert( enc!=0 );
+ if( enc==SQLITE_UTF8 ){
+ nByte = strlen(z);
+ }else{
+ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
+ }
+ flags= MEM_Str|MEM_Term;
+ }else if( enc==0 ){
+ flags = MEM_Blob;
+ enc = SQLITE_UTF8;
+ }else{
+ flags = MEM_Str;
+ }
+ if( nByte>iLimit ){
+ if( xDel && xDel!=SQLITE_TRANSIENT ){
+ if( xDel==SQLITE_DYNAMIC ){
+ sqlite3DbFree(pMem->db, (void*)z);
+ }else{
+ xDel((void*)z);
+ }
+ }
+ sqlite3VdbeMemSetNull(pMem);
+ return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
+ }
+
+ /* The following block sets the new values of Mem.z and Mem.xDel. It
+ ** also sets a flag in local variable "flags" to indicate the memory
+ ** management (one of MEM_Dyn or MEM_Static).
+ */
+ if( xDel==SQLITE_TRANSIENT ){
+ i64 nAlloc = nByte;
+ if( flags&MEM_Term ){
+ nAlloc += (enc==SQLITE_UTF8?1:2);
+ }
+ testcase( nAlloc==0 );
+ testcase( nAlloc==31 );
+ testcase( nAlloc==32 );
+ if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(pMem->z, z, nAlloc);
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ pMem->z = (char *)z;
+ if( xDel==SQLITE_DYNAMIC ){
+ pMem->zMalloc = pMem->z;
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
+ }else{
+ pMem->xDel = xDel;
+ flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
+ }
+ }
+
+ pMem->n = (int)(nByte & 0x7fffffff);
+ pMem->flags = flags;
+ pMem->enc = enc;
+
+#ifndef SQLITE_OMIT_UTF16
+ if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+#endif
+
+
+ return SQLITE_OK;
+}
+
+/*
+** Move data out of a btree key or data field and into a Mem structure.
+** The data is payload from the entry that pCur is currently pointing
+** to. offset and amt determine what portion of the data or key to retrieve.
+** The result is written into the pMem element.
+**
+** The pMem object must have been initialized. This routine will use
+** pMem->zMalloc to hold the content from the btree, if possible. New
+** pMem->zMalloc space will be allocated if necessary. The calling routine
+** is responsible for making sure that the pMem object is eventually
+** destroyed.
+**
+** If this routine fails for any reason (malloc returns NULL or unable
+** to read from the disk) then the pMem is left in an inconsistent state.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
+ BtCursor *pCur, /* Cursor pointing at record to retrieve. */
+ u32 offset, /* Offset from the start of data to return bytes from. */
+ u32 amt, /* Number of bytes to return. */
+ Mem *pMem /* OUT: Return data in this Mem structure. */
+){
+ int rc;
+ pMem->flags = MEM_Null;
+ if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
+ rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
+ if( rc==SQLITE_OK ){
+ pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
+ pMem->flags = MEM_Blob;
+ pMem->n = (int)amt;
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset(
+ BtCursor *pCur, /* Cursor pointing at record to retrieve. */
+ u32 amt, /* Number of bytes to return. */
+ Mem *pMem /* OUT: Return data in this Mem structure. */
+){
+ u32 available = 0; /* Number of bytes available on the local btree page */
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ assert( !VdbeMemDynamic(pMem) );
+
+ /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
+ ** that both the BtShared and database handle mutexes are held. */
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
+ assert( pMem->z!=0 );
+
+ if( amt<=available ){
+ pMem->flags = MEM_Blob|MEM_Ephem;
+ pMem->n = (int)amt;
+ }else{
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
+ }
+
+ return rc;
+}
+
+/*
+** The pVal argument is known to be a value other than NULL.
+** Convert it into a string with encoding enc and return a pointer
+** to a zero-terminated version of that string.
+*/
+static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
+ assert( pVal!=0 );
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
+ assert( !sqlite3VdbeMemIsRowSet(pVal) );
+ assert( (pVal->flags & (MEM_Null))==0 );
+ if( pVal->flags & (MEM_Blob|MEM_Str) ){
+ if( ExpandBlob(pVal) ) return 0;
+ pVal->flags |= MEM_Str;
+ if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
+ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
+ }
+ if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
+ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
+ if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
+ return 0;
+ }
+ }
+ sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
+ }else{
+ sqlite3VdbeMemStringify(pVal, enc, 0);
+ assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
+ }
+ assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
+ || pVal->db->mallocFailed );
+ if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
+ assert( sqlite3VdbeMemValidStrRep(pVal) );
+ return pVal->z;
+ }else{
+ return 0;
+ }
+}
+
+/* This function is only available internally, it is not part of the
+** external API. It works in a similar way to sqlite3_value_text(),
+** except the data returned is in the encoding specified by the second
+** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
+** SQLITE_UTF8.
+**
+** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
+** If that is the case, then the result must be aligned on an even byte
+** boundary.
+*/
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
+ if( !pVal ) return 0;
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
+ assert( !sqlite3VdbeMemIsRowSet(pVal) );
+ if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
+ assert( sqlite3VdbeMemValidStrRep(pVal) );
+ return pVal->z;
+ }
+ if( pVal->flags&MEM_Null ){
+ return 0;
+ }
+ return valueToText(pVal, enc);
+}
+
+/*
+** Create a new sqlite3_value object.
+*/
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
+ Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
+ if( p ){
+ p->flags = MEM_Null;
+ p->db = db;
+ }
+ return p;
+}
+
+/*
+** Context object passed by sqlite3Stat4ProbeSetValue() through to
+** valueNew(). See comments above valueNew() for details.
+*/
+struct ValueNewStat4Ctx {
+ Parse *pParse;
+ Index *pIdx;
+ UnpackedRecord **ppRec;
+ int iVal;
+};
+
+/*
+** Allocate and return a pointer to a new sqlite3_value object. If
+** the second argument to this function is NULL, the object is allocated
+** by calling sqlite3ValueNew().
+**
+** Otherwise, if the second argument is non-zero, then this function is
+** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
+** already been allocated, allocate the UnpackedRecord structure that
+** that function will return to its caller here. Then return a pointer to
+** an sqlite3_value within the UnpackedRecord.a[] array.
+*/
+static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
+#ifdef SQLITE_ENABLE_STAT4
+ if( p ){
+ UnpackedRecord *pRec = p->ppRec[0];
+
+ if( pRec==0 ){
+ Index *pIdx = p->pIdx; /* Index being probed */
+ int nByte; /* Bytes of space to allocate */
+ int i; /* Counter variable */
+ int nCol = pIdx->nColumn; /* Number of index columns including rowid */
+
+ nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
+ pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
+ if( pRec ){
+ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
+ if( pRec->pKeyInfo ){
+ assert( pRec->pKeyInfo->nAllField==nCol );
+ assert( pRec->pKeyInfo->enc==ENC(db) );
+ pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
+ for(i=0; i<nCol; i++){
+ pRec->aMem[i].flags = MEM_Null;
+ pRec->aMem[i].db = db;
+ }
+ }else{
+ sqlite3DbFreeNN(db, pRec);
+ pRec = 0;
+ }
+ }
+ if( pRec==0 ) return 0;
+ p->ppRec[0] = pRec;
+ }
+
+ pRec->nField = p->iVal+1;
+ return &pRec->aMem[p->iVal];
+ }
+#else
+ UNUSED_PARAMETER(p);
+#endif /* defined(SQLITE_ENABLE_STAT4) */
+ return sqlite3ValueNew(db);
+}
+
+/*
+** The expression object indicated by the second argument is guaranteed
+** to be a scalar SQL function. If
+**
+** * all function arguments are SQL literals,
+** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
+** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
+**
+** then this routine attempts to invoke the SQL function. Assuming no
+** error occurs, output parameter (*ppVal) is set to point to a value
+** object containing the result before returning SQLITE_OK.
+**
+** Affinity aff is applied to the result of the function before returning.
+** If the result is a text value, the sqlite3_value object uses encoding
+** enc.
+**
+** If the conditions above are not met, this function returns SQLITE_OK
+** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
+** NULL and an SQLite error code returned.
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static int valueFromFunction(
+ sqlite3 *db, /* The database connection */
+ const Expr *p, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 aff, /* Affinity to use */
+ sqlite3_value **ppVal, /* Write the new value here */
+ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
+){
+ sqlite3_context ctx; /* Context object for function invocation */
+ sqlite3_value **apVal = 0; /* Function arguments */
+ int nVal = 0; /* Size of apVal[] array */
+ FuncDef *pFunc = 0; /* Function definition */
+ sqlite3_value *pVal = 0; /* New value */
+ int rc = SQLITE_OK; /* Return code */
+ ExprList *pList = 0; /* Function arguments */
+ int i; /* Iterator variable */
+
+ assert( pCtx!=0 );
+ assert( (p->flags & EP_TokenOnly)==0 );
+ assert( ExprUseXList(p) );
+ pList = p->x.pList;
+ if( pList ) nVal = pList->nExpr;
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
+ assert( pFunc );
+ if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
+ || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
+ ){
+ return SQLITE_OK;
+ }
+
+ if( pList ){
+ apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
+ if( apVal==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto value_from_function_out;
+ }
+ for(i=0; i<nVal; i++){
+ rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
+ if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
+ }
+ }
+
+ pVal = valueNew(db, pCtx);
+ if( pVal==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto value_from_function_out;
+ }
+
+ testcase( pCtx->pParse->rc==SQLITE_ERROR );
+ testcase( pCtx->pParse->rc==SQLITE_OK );
+ memset(&ctx, 0, sizeof(ctx));
+ ctx.pOut = pVal;
+ ctx.pFunc = pFunc;
+ ctx.enc = ENC(db);
+ pFunc->xSFunc(&ctx, nVal, apVal);
+ if( ctx.isError ){
+ rc = ctx.isError;
+ sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
+ }else{
+ sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
+ assert( rc==SQLITE_OK );
+ rc = sqlite3VdbeChangeEncoding(pVal, enc);
+ if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
+ rc = SQLITE_TOOBIG;
+ pCtx->pParse->nErr++;
+ }
+ }
+ pCtx->pParse->rc = rc;
+
+ value_from_function_out:
+ if( rc!=SQLITE_OK ){
+ pVal = 0;
+ }
+ if( apVal ){
+ for(i=0; i<nVal; i++){
+ sqlite3ValueFree(apVal[i]);
+ }
+ sqlite3DbFreeNN(db, apVal);
+ }
+
+ *ppVal = pVal;
+ return rc;
+}
+#else
+# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
+#endif /* defined(SQLITE_ENABLE_STAT4) */
+
+/*
+** Extract a value from the supplied expression in the manner described
+** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
+** using valueNew().
+**
+** If pCtx is NULL and an error occurs after the sqlite3_value object
+** has been allocated, it is freed before returning. Or, if pCtx is not
+** NULL, it is assumed that the caller will free any allocated object
+** in all cases.
+*/
+static int valueFromExpr(
+ sqlite3 *db, /* The database connection */
+ const Expr *pExpr, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal, /* Write the new value here */
+ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
+){
+ int op;
+ char *zVal = 0;
+ sqlite3_value *pVal = 0;
+ int negInt = 1;
+ const char *zNeg = "";
+ int rc = SQLITE_OK;
+
+ assert( pExpr!=0 );
+ while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
+ if( op==TK_REGISTER ) op = pExpr->op2;
+
+ /* Compressed expressions only appear when parsing the DEFAULT clause
+ ** on a table column definition, and hence only when pCtx==0. This
+ ** check ensures that an EP_TokenOnly expression is never passed down
+ ** into valueFromFunction(). */
+ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
+
+ if( op==TK_CAST ){
+ u8 aff;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ aff = sqlite3AffinityType(pExpr->u.zToken,0);
+ rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
+ testcase( rc!=SQLITE_OK );
+ if( *ppVal ){
+ sqlite3VdbeMemCast(*ppVal, aff, enc);
+ sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
+ }
+ return rc;
+ }
+
+ /* Handle negative integers in a single step. This is needed in the
+ ** case when the value is -9223372036854775808.
+ */
+ if( op==TK_UMINUS
+ && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
+ pExpr = pExpr->pLeft;
+ op = pExpr->op;
+ negInt = -1;
+ zNeg = "-";
+ }
+
+ if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
+ pVal = valueNew(db, pCtx);
+ if( pVal==0 ) goto no_mem;
+ if( ExprHasProperty(pExpr, EP_IntValue) ){
+ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
+ }else{
+ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
+ if( zVal==0 ) goto no_mem;
+ sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
+ }
+ if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
+ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
+ }else{
+ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
+ }
+ assert( (pVal->flags & MEM_IntReal)==0 );
+ if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
+ testcase( pVal->flags & MEM_Int );
+ testcase( pVal->flags & MEM_Real );
+ pVal->flags &= ~MEM_Str;
+ }
+ if( enc!=SQLITE_UTF8 ){
+ rc = sqlite3VdbeChangeEncoding(pVal, enc);
+ }
+ }else if( op==TK_UMINUS ) {
+ /* This branch happens for multiple negative signs. Ex: -(-5) */
+ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
+ && pVal!=0
+ ){
+ sqlite3VdbeMemNumerify(pVal);
+ if( pVal->flags & MEM_Real ){
+ pVal->u.r = -pVal->u.r;
+ }else if( pVal->u.i==SMALLEST_INT64 ){
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ pVal->u.r = -(double)SMALLEST_INT64;
+#else
+ pVal->u.r = LARGEST_INT64;
+#endif
+ MemSetTypeFlag(pVal, MEM_Real);
+ }else{
+ pVal->u.i = -pVal->u.i;
+ }
+ sqlite3ValueApplyAffinity(pVal, affinity, enc);
+ }
+ }else if( op==TK_NULL ){
+ pVal = valueNew(db, pCtx);
+ if( pVal==0 ) goto no_mem;
+ sqlite3VdbeMemSetNull(pVal);
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ else if( op==TK_BLOB ){
+ int nVal;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
+ assert( pExpr->u.zToken[1]=='\'' );
+ pVal = valueNew(db, pCtx);
+ if( !pVal ) goto no_mem;
+ zVal = &pExpr->u.zToken[2];
+ nVal = sqlite3Strlen30(zVal)-1;
+ assert( zVal[nVal]=='\'' );
+ sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
+ 0, SQLITE_DYNAMIC);
+ }
+#endif
+#ifdef SQLITE_ENABLE_STAT4
+ else if( op==TK_FUNCTION && pCtx!=0 ){
+ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
+ }
+#endif
+ else if( op==TK_TRUEFALSE ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pVal = valueNew(db, pCtx);
+ if( pVal ){
+ pVal->flags = MEM_Int;
+ pVal->u.i = pExpr->u.zToken[4]==0;
+ }
+ }
+
+ *ppVal = pVal;
+ return rc;
+
+no_mem:
+#ifdef SQLITE_ENABLE_STAT4
+ if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
+#endif
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, zVal);
+ assert( *ppVal==0 );
+#ifdef SQLITE_ENABLE_STAT4
+ if( pCtx==0 ) sqlite3ValueFree(pVal);
+#else
+ assert( pCtx==0 ); sqlite3ValueFree(pVal);
+#endif
+ return SQLITE_NOMEM_BKPT;
+}
+
+/*
+** Create a new sqlite3_value object, containing the value of pExpr.
+**
+** This only works for very simple expressions that consist of one constant
+** token (i.e. "5", "5.1", "'a string'"). If the expression can
+** be converted directly into a value, then the value is allocated and
+** a pointer written to *ppVal. The caller is responsible for deallocating
+** the value by passing it to sqlite3ValueFree() later on. If the expression
+** cannot be converted to a value, then *ppVal is set to NULL.
+*/
+SQLITE_PRIVATE int sqlite3ValueFromExpr(
+ sqlite3 *db, /* The database connection */
+ const Expr *pExpr, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal /* Write the new value here */
+){
+ return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Attempt to extract a value from pExpr and use it to construct *ppVal.
+**
+** If pAlloc is not NULL, then an UnpackedRecord object is created for
+** pAlloc if one does not exist and the new value is added to the
+** UnpackedRecord object.
+**
+** A value is extracted in the following cases:
+**
+** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
+**
+** * The expression is a bound variable, and this is a reprepare, or
+**
+** * The expression is a literal value.
+**
+** On success, *ppVal is made to point to the extracted value. The caller
+** is responsible for ensuring that the value is eventually freed.
+*/
+static int stat4ValueFromExpr(
+ Parse *pParse, /* Parse context */
+ Expr *pExpr, /* The expression to extract a value from */
+ u8 affinity, /* Affinity to use */
+ struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
+ sqlite3_value **ppVal /* OUT: New value object (or NULL) */
+){
+ int rc = SQLITE_OK;
+ sqlite3_value *pVal = 0;
+ sqlite3 *db = pParse->db;
+
+ /* Skip over any TK_COLLATE nodes */
+ pExpr = sqlite3ExprSkipCollate(pExpr);
+
+ assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
+ if( !pExpr ){
+ pVal = valueNew(db, pAlloc);
+ if( pVal ){
+ sqlite3VdbeMemSetNull((Mem*)pVal);
+ }
+ }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
+ Vdbe *v;
+ int iBindVar = pExpr->iColumn;
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
+ if( (v = pParse->pReprepare)!=0 ){
+ pVal = valueNew(db, pAlloc);
+ if( pVal ){
+ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
+ sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
+ pVal->db = pParse->db;
+ }
+ }
+ }else{
+ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
+ }
+
+ assert( pVal==0 || pVal->db==db );
+ *ppVal = pVal;
+ return rc;
+}
+
+/*
+** This function is used to allocate and populate UnpackedRecord
+** structures intended to be compared against sample index keys stored
+** in the sqlite_stat4 table.
+**
+** A single call to this function populates zero or more fields of the
+** record starting with field iVal (fields are numbered from left to
+** right starting with 0). A single field is populated if:
+**
+** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
+**
+** * The expression is a bound variable, and this is a reprepare, or
+**
+** * The sqlite3ValueFromExpr() function is able to extract a value
+** from the expression (i.e. the expression is a literal value).
+**
+** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
+** vector components that match either of the two latter criteria listed
+** above.
+**
+** Before any value is appended to the record, the affinity of the
+** corresponding column within index pIdx is applied to it. Before
+** this function returns, output parameter *pnExtract is set to the
+** number of values appended to the record.
+**
+** When this function is called, *ppRec must either point to an object
+** allocated by an earlier call to this function, or must be NULL. If it
+** is NULL and a value can be successfully extracted, a new UnpackedRecord
+** is allocated (and *ppRec set to point to it) before returning.
+**
+** Unless an error is encountered, SQLITE_OK is returned. It is not an
+** error if a value cannot be extracted from pExpr. If an error does
+** occur, an SQLite error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue(
+ Parse *pParse, /* Parse context */
+ Index *pIdx, /* Index being probed */
+ UnpackedRecord **ppRec, /* IN/OUT: Probe record */
+ Expr *pExpr, /* The expression to extract a value from */
+ int nElem, /* Maximum number of values to append */
+ int iVal, /* Array element to populate */
+ int *pnExtract /* OUT: Values appended to the record */
+){
+ int rc = SQLITE_OK;
+ int nExtract = 0;
+
+ if( pExpr==0 || pExpr->op!=TK_SELECT ){
+ int i;
+ struct ValueNewStat4Ctx alloc;
+
+ alloc.pParse = pParse;
+ alloc.pIdx = pIdx;
+ alloc.ppRec = ppRec;
+
+ for(i=0; i<nElem; i++){
+ sqlite3_value *pVal = 0;
+ Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
+ u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
+ alloc.iVal = iVal+i;
+ rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
+ if( !pVal ) break;
+ nExtract++;
+ }
+ }
+
+ *pnExtract = nExtract;
+ return rc;
+}
+
+/*
+** Attempt to extract a value from expression pExpr using the methods
+** as described for sqlite3Stat4ProbeSetValue() above.
+**
+** If successful, set *ppVal to point to a new value object and return
+** SQLITE_OK. If no value can be extracted, but no other error occurs
+** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
+** does occur, return an SQLite error code. The final value of *ppVal
+** is undefined in this case.
+*/
+SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr(
+ Parse *pParse, /* Parse context */
+ Expr *pExpr, /* The expression to extract a value from */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal /* OUT: New value object (or NULL) */
+){
+ return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
+}
+
+/*
+** Extract the iCol-th column from the nRec-byte record in pRec. Write
+** the column value into *ppVal. If *ppVal is initially NULL then a new
+** sqlite3_value object is allocated.
+**
+** If *ppVal is initially NULL then the caller is responsible for
+** ensuring that the value written into *ppVal is eventually freed.
+*/
+SQLITE_PRIVATE int sqlite3Stat4Column(
+ sqlite3 *db, /* Database handle */
+ const void *pRec, /* Pointer to buffer containing record */
+ int nRec, /* Size of buffer pRec in bytes */
+ int iCol, /* Column to extract */
+ sqlite3_value **ppVal /* OUT: Extracted value */
+){
+ u32 t = 0; /* a column type code */
+ int nHdr; /* Size of the header in the record */
+ int iHdr; /* Next unread header byte */
+ int iField; /* Next unread data byte */
+ int szField = 0; /* Size of the current data field */
+ int i; /* Column index */
+ u8 *a = (u8*)pRec; /* Typecast byte array */
+ Mem *pMem = *ppVal; /* Write result into this Mem object */
+
+ assert( iCol>0 );
+ iHdr = getVarint32(a, nHdr);
+ if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
+ iField = nHdr;
+ for(i=0; i<=iCol; i++){
+ iHdr += getVarint32(&a[iHdr], t);
+ testcase( iHdr==nHdr );
+ testcase( iHdr==nHdr+1 );
+ if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
+ szField = sqlite3VdbeSerialTypeLen(t);
+ iField += szField;
+ }
+ testcase( iField==nRec );
+ testcase( iField==nRec+1 );
+ if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
+ if( pMem==0 ){
+ pMem = *ppVal = sqlite3ValueNew(db);
+ if( pMem==0 ) return SQLITE_NOMEM_BKPT;
+ }
+ sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
+ pMem->enc = ENC(db);
+ return SQLITE_OK;
+}
+
+/*
+** Unless it is NULL, the argument must be an UnpackedRecord object returned
+** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
+** the object.
+*/
+SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
+ if( pRec ){
+ int i;
+ int nCol = pRec->pKeyInfo->nAllField;
+ Mem *aMem = pRec->aMem;
+ sqlite3 *db = aMem[0].db;
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeMemRelease(&aMem[i]);
+ }
+ sqlite3KeyInfoUnref(pRec->pKeyInfo);
+ sqlite3DbFreeNN(db, pRec);
+ }
+}
+#endif /* ifdef SQLITE_ENABLE_STAT4 */
+
+/*
+** Change the string value of an sqlite3_value object
+*/
+SQLITE_PRIVATE void sqlite3ValueSetStr(
+ sqlite3_value *v, /* Value to be set */
+ int n, /* Length of string z */
+ const void *z, /* Text of the new string */
+ u8 enc, /* Encoding to use */
+ void (*xDel)(void*) /* Destructor for the string */
+){
+ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
+}
+
+/*
+** Free an sqlite3_value object
+*/
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
+ if( !v ) return;
+ sqlite3VdbeMemRelease((Mem *)v);
+ sqlite3DbFreeNN(((Mem*)v)->db, v);
+}
+
+/*
+** The sqlite3ValueBytes() routine returns the number of bytes in the
+** sqlite3_value object assuming that it uses the encoding "enc".
+** The valueBytes() routine is a helper function.
+*/
+static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
+ return valueToText(pVal, enc)!=0 ? pVal->n : 0;
+}
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
+ Mem *p = (Mem*)pVal;
+ assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
+ if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
+ return p->n;
+ }
+ if( (p->flags & MEM_Blob)!=0 ){
+ if( p->flags & MEM_Zero ){
+ return p->n + p->u.nZero;
+ }else{
+ return p->n;
+ }
+ }
+ if( p->flags & MEM_Null ) return 0;
+ return valueBytes(pVal, enc);
+}
+
+/************** End of vdbemem.c *********************************************/
+/************** Begin file vdbeaux.c *****************************************/
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/* Forward references */
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
+static void vdbeFreeOpArray(sqlite3 *, Op *, int);
+
+/*
+** Create a new virtual database engine.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ Vdbe *p;
+ p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ p->pParse = pParse;
+ pParse->pVdbe = p;
+ assert( pParse->aLabel==0 );
+ assert( pParse->nLabel==0 );
+ assert( p->nOpAlloc==0 );
+ assert( pParse->szOpAlloc==0 );
+ sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
+ return p;
+}
+
+/*
+** Return the Parse object that owns a Vdbe object.
+*/
+SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe *p){
+ return p->pParse;
+}
+
+/*
+** Change the error string stored in Vdbe.zErrMsg
+*/
+SQLITE_PRIVATE void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ sqlite3DbFree(p->db, p->zErrMsg);
+ va_start(ap, zFormat);
+ p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** Remember the SQL string for a prepared statement.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
+ if( p==0 ) return;
+ p->prepFlags = prepFlags;
+ if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
+ p->expmask = 0;
+ }
+ assert( p->zSql==0 );
+ p->zSql = sqlite3DbStrNDup(p->db, z, n);
+}
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** Add a new element to the Vdbe->pDblStr list.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
+ if( p ){
+ int n = sqlite3Strlen30(z);
+ DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
+ sizeof(*pStr)+n+1-sizeof(pStr->z));
+ if( pStr ){
+ pStr->pNextStr = p->pDblStr;
+ p->pDblStr = pStr;
+ memcpy(pStr->z, z, n+1);
+ }
+ }
+}
+#endif
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** zId of length nId is a double-quoted identifier. Check to see if
+** that identifier is really used as a string literal.
+*/
+SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString(
+ Vdbe *pVdbe, /* The prepared statement */
+ const char *zId /* The double-quoted identifier, already dequoted */
+){
+ DblquoteStr *pStr;
+ assert( zId!=0 );
+ if( pVdbe->pDblStr==0 ) return 0;
+ for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
+ if( strcmp(zId, pStr->z)==0 ) return 1;
+ }
+ return 0;
+}
+#endif
+
+/*
+** Swap all content between two VDBE structures.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
+ Vdbe tmp, *pTmp;
+ char *zTmp;
+ assert( pA->db==pB->db );
+ tmp = *pA;
+ *pA = *pB;
+ *pB = tmp;
+ pTmp = pA->pNext;
+ pA->pNext = pB->pNext;
+ pB->pNext = pTmp;
+ pTmp = pA->pPrev;
+ pA->pPrev = pB->pPrev;
+ pB->pPrev = pTmp;
+ zTmp = pA->zSql;
+ pA->zSql = pB->zSql;
+ pB->zSql = zTmp;
+#ifdef SQLITE_ENABLE_NORMALIZE
+ zTmp = pA->zNormSql;
+ pA->zNormSql = pB->zNormSql;
+ pB->zNormSql = zTmp;
+#endif
+ pB->expmask = pA->expmask;
+ pB->prepFlags = pA->prepFlags;
+ memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
+ pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
+}
+
+/*
+** Resize the Vdbe.aOp array so that it is at least nOp elements larger
+** than its current size. nOp is guaranteed to be less than or equal
+** to 1024/sizeof(Op).
+**
+** If an out-of-memory error occurs while resizing the array, return
+** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
+** unchanged (this is so that any opcodes already allocated can be
+** correctly deallocated along with the rest of the Vdbe).
+*/
+static int growOpArray(Vdbe *v, int nOp){
+ VdbeOp *pNew;
+ Parse *p = v->pParse;
+
+ /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
+ ** more frequent reallocs and hence provide more opportunities for
+ ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
+ ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
+ ** by the minimum* amount required until the size reaches 512. Normal
+ ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
+ ** size of the op array or add 1KB of space, whichever is smaller. */
+#ifdef SQLITE_TEST_REALLOC_STRESS
+ sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
+ : (sqlite3_int64)v->nOpAlloc+nOp);
+#else
+ sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
+ : (sqlite3_int64)(1024/sizeof(Op)));
+ UNUSED_PARAMETER(nOp);
+#endif
+
+ /* Ensure that the size of a VDBE does not grow too large */
+ if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
+ sqlite3OomFault(p->db);
+ return SQLITE_NOMEM;
+ }
+
+ assert( nOp<=(int)(1024/sizeof(Op)) );
+ assert( nNew>=(v->nOpAlloc+nOp) );
+ pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
+ if( pNew ){
+ p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
+ v->nOpAlloc = p->szOpAlloc/sizeof(Op);
+ v->aOp = pNew;
+ }
+ return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
+}
+
+#ifdef SQLITE_DEBUG
+/* This routine is just a convenient place to set a breakpoint that will
+** fire after each opcode is inserted and displayed using
+** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
+** pOp are available to make the breakpoint conditional.
+**
+** Other useful labels for breakpoints include:
+** test_trace_breakpoint(pc,pOp)
+** sqlite3CorruptError(lineno)
+** sqlite3MisuseError(lineno)
+** sqlite3CantopenError(lineno)
+*/
+static void test_addop_breakpoint(int pc, Op *pOp){
+ static int n = 0;
+ n++;
+}
+#endif
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2, p3 Operands
+**
+** Use the sqlite3VdbeResolveLabel() function to fix an address and
+** the sqlite3VdbeChangeP4() function to change the value of the P4
+** operand.
+*/
+static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
+ assert( p->nOpAlloc<=p->nOp );
+ if( growOpArray(p, 1) ) return 1;
+ assert( p->nOpAlloc>p->nOp );
+ return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( op>=0 && op<0xff );
+ if( p->nOpAlloc<=i ){
+ return growOp3(p, op, p1, p2, p3);
+ }
+ assert( p->aOp!=0 );
+ p->nOp++;
+ pOp = &p->aOp[i];
+ assert( pOp!=0 );
+ pOp->opcode = (u8)op;
+ pOp->p5 = 0;
+ pOp->p1 = p1;
+ pOp->p2 = p2;
+ pOp->p3 = p3;
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ pOp->zComment = 0;
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+ test_addop_breakpoint(i, &p->aOp[i]);
+ }
+#endif
+#ifdef VDBE_PROFILE
+ pOp->cycles = 0;
+ pOp->cnt = 0;
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ pOp->iSrcLine = 0;
+#endif
+ return i;
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
+}
+
+/* Generate code for an unconditional jump to instruction iDest
+*/
+SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe *p, int iDest){
+ return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
+}
+
+/* Generate code to cause the string zStr to be loaded into
+** register iDest
+*/
+SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
+ return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
+}
+
+/*
+** Generate code that initializes multiple registers to string or integer
+** constants. The registers begin with iDest and increase consecutively.
+** One register is initialized for each characgter in zTypes[]. For each
+** "s" character in zTypes[], the register is a string if the argument is
+** not NULL, or OP_Null if the value is a null pointer. For each "i" character
+** in zTypes[], the register is initialized to an integer.
+**
+** If the input string does not end with "X" then an OP_ResultRow instruction
+** is generated for the values inserted.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
+ va_list ap;
+ int i;
+ char c;
+ va_start(ap, zTypes);
+ for(i=0; (c = zTypes[i])!=0; i++){
+ if( c=='s' ){
+ const char *z = va_arg(ap, const char*);
+ sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
+ }else if( c=='i' ){
+ sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
+ }else{
+ goto skip_op_resultrow;
+ }
+ }
+ sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
+skip_op_resultrow:
+ va_end(ap);
+}
+
+/*
+** Add an opcode that includes the p4 value as a pointer.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const char *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type);
+ return addr;
+}
+
+/*
+** Add an OP_Function or OP_PureFunc opcode.
+**
+** The eCallCtx argument is information (typically taken from Expr.op2)
+** that describes the calling context of the function. 0 means a general
+** function call. NC_IsCheck means called by a check constraint,
+** NC_IdxExpr means called as part of an index expression. NC_PartIdx
+** means in the WHERE clause of a partial index. NC_GenCol means called
+** while computing a generated column value. 0 is the usual case.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall(
+ Parse *pParse, /* Parsing context */
+ int p1, /* Constant argument mask */
+ int p2, /* First argument register */
+ int p3, /* Register into which results are written */
+ int nArg, /* Number of argument */
+ const FuncDef *pFunc, /* The function to be invoked */
+ int eCallCtx /* Calling context */
+){
+ Vdbe *v = pParse->pVdbe;
+ int nByte;
+ int addr;
+ sqlite3_context *pCtx;
+ assert( v );
+ nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
+ pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
+ if( pCtx==0 ){
+ assert( pParse->db->mallocFailed );
+ freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
+ return 0;
+ }
+ pCtx->pOut = 0;
+ pCtx->pFunc = (FuncDef*)pFunc;
+ pCtx->pVdbe = 0;
+ pCtx->isError = 0;
+ pCtx->argc = nArg;
+ pCtx->iOp = sqlite3VdbeCurrentAddr(v);
+ addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
+ p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
+ sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
+ sqlite3MayAbort(pParse);
+ return addr;
+}
+
+/*
+** Add an opcode that includes the p4 value with a P4_INT64 or
+** P4_REAL type.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const u8 *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
+ if( p4copy ) memcpy(p4copy, zP4, 8);
+ return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Return the address of the current EXPLAIN QUERY PLAN baseline.
+** 0 means "none".
+*/
+SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse *pParse){
+ VdbeOp *pOp;
+ if( pParse->addrExplain==0 ) return 0;
+ pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
+ return pOp->p2;
+}
+
+/*
+** Set a debugger breakpoint on the following routine in order to
+** monitor the EXPLAIN QUERY PLAN code generation.
+*/
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
+ (void)z1;
+ (void)z2;
+}
+#endif
+
+/*
+** Add a new OP_Explain opcode.
+**
+** If the bPush flag is true, then make this opcode the parent for
+** subsequent Explains until sqlite3VdbeExplainPop() is called.
+*/
+SQLITE_PRIVATE void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
+#ifndef SQLITE_DEBUG
+ /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
+ ** But omit them (for performance) during production builds */
+ if( pParse->explain==2 )
+#endif
+ {
+ char *zMsg;
+ Vdbe *v;
+ va_list ap;
+ int iThis;
+ va_start(ap, zFmt);
+ zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
+ va_end(ap);
+ v = pParse->pVdbe;
+ iThis = v->nOp;
+ sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
+ zMsg, P4_DYNAMIC);
+ sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
+ if( bPush){
+ pParse->addrExplain = iThis;
+ }
+ }
+}
+
+/*
+** Pop the EXPLAIN QUERY PLAN stack one level.
+*/
+SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse *pParse){
+ sqlite3ExplainBreakpoint("POP", 0);
+ pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+/*
+** Add an OP_ParseSchema opcode. This routine is broken out from
+** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
+** as having been used.
+**
+** The zWhere string must have been obtained from sqlite3_malloc().
+** This routine will take ownership of the allocated memory.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
+ int j;
+ sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
+ sqlite3VdbeChangeP5(p, p5);
+ for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
+ sqlite3MayAbort(p->pParse);
+}
+
+/*
+** Add an opcode that includes the p4 value as an integer.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ int p4 /* The P4 operand as an integer */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ if( p->db->mallocFailed==0 ){
+ VdbeOp *pOp = &p->aOp[addr];
+ pOp->p4type = P4_INT32;
+ pOp->p4.i = p4;
+ }
+ return addr;
+}
+
+/* Insert the end of a co-routine
+*/
+SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
+
+ /* Clear the temporary register cache, thereby ensuring that each
+ ** co-routine has its own independent set of registers, because co-routines
+ ** might expect their registers to be preserved across an OP_Yield, and
+ ** that could cause problems if two or more co-routines are using the same
+ ** temporary register.
+ */
+ v->pParse->nTempReg = 0;
+ v->pParse->nRangeReg = 0;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+** (Later:) This is only true for opcodes that have the OPFLG_JUMP
+** property.
+**
+** Variable usage notes:
+**
+** Parse.aLabel[x] Stores the address that the x-th label resolves
+** into. For testing (SQLITE_DEBUG), unresolved
+** labels stores -1, but that is not required.
+** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
+** Parse.nLabel The *negative* of the number of labels that have
+** been issued. The negative is stored because
+** that gives a performance improvement over storing
+** the equivalent positive value.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse *pParse){
+ return --pParse->nLabel;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqlite3VdbeMakeLabel().
+*/
+static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
+ int nNewSize = 10 - p->nLabel;
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
+ nNewSize*sizeof(p->aLabel[0]));
+ if( p->aLabel==0 ){
+ p->nLabelAlloc = 0;
+ }else{
+#ifdef SQLITE_DEBUG
+ int i;
+ for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
+#endif
+ p->nLabelAlloc = nNewSize;
+ p->aLabel[j] = v->nOp;
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){
+ Parse *p = v->pParse;
+ int j = ADDR(x);
+ assert( v->eVdbeState==VDBE_INIT_STATE );
+ assert( j<-p->nLabel );
+ assert( j>=0 );
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
+ }
+#endif
+ if( p->nLabelAlloc + p->nLabel < 0 ){
+ resizeResolveLabel(p,v,j);
+ }else{
+ assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
+ p->aLabel[j] = v->nOp;
+ }
+}
+
+/*
+** Mark the VDBE as one that can only be run one time.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){
+ sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
+}
+
+/*
+** Mark the VDBE as one that can be run multiple times.
+*/
+SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe *p){
+ int i;
+ for(i=1; ALWAYS(i<p->nOp); i++){
+ if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
+ p->aOp[1].opcode = OP_Noop;
+ break;
+ }
+ }
+}
+
+#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
+
+/*
+** The following type and function are used to iterate through all opcodes
+** in a Vdbe main program and each of the sub-programs (triggers) it may
+** invoke directly or indirectly. It should be used as follows:
+**
+** Op *pOp;
+** VdbeOpIter sIter;
+**
+** memset(&sIter, 0, sizeof(sIter));
+** sIter.v = v; // v is of type Vdbe*
+** while( (pOp = opIterNext(&sIter)) ){
+** // Do something with pOp
+** }
+** sqlite3DbFree(v->db, sIter.apSub);
+**
+*/
+typedef struct VdbeOpIter VdbeOpIter;
+struct VdbeOpIter {
+ Vdbe *v; /* Vdbe to iterate through the opcodes of */
+ SubProgram **apSub; /* Array of subprograms */
+ int nSub; /* Number of entries in apSub */
+ int iAddr; /* Address of next instruction to return */
+ int iSub; /* 0 = main program, 1 = first sub-program etc. */
+};
+static Op *opIterNext(VdbeOpIter *p){
+ Vdbe *v = p->v;
+ Op *pRet = 0;
+ Op *aOp;
+ int nOp;
+
+ if( p->iSub<=p->nSub ){
+
+ if( p->iSub==0 ){
+ aOp = v->aOp;
+ nOp = v->nOp;
+ }else{
+ aOp = p->apSub[p->iSub-1]->aOp;
+ nOp = p->apSub[p->iSub-1]->nOp;
+ }
+ assert( p->iAddr<nOp );
+
+ pRet = &aOp[p->iAddr];
+ p->iAddr++;
+ if( p->iAddr==nOp ){
+ p->iSub++;
+ p->iAddr = 0;
+ }
+
+ if( pRet->p4type==P4_SUBPROGRAM ){
+ int nByte = (p->nSub+1)*sizeof(SubProgram*);
+ int j;
+ for(j=0; j<p->nSub; j++){
+ if( p->apSub[j]==pRet->p4.pProgram ) break;
+ }
+ if( j==p->nSub ){
+ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
+ if( !p->apSub ){
+ pRet = 0;
+ }else{
+ p->apSub[p->nSub++] = pRet->p4.pProgram;
+ }
+ }
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Check if the program stored in the VM associated with pParse may
+** throw an ABORT exception (causing the statement, but not entire transaction
+** to be rolled back). This condition is true if the main program or any
+** sub-programs contains any of the following:
+**
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_Destroy
+** * OP_VUpdate
+** * OP_VCreate
+** * OP_VRename
+** * OP_FkCounter with P2==0 (immediate foreign key constraint)
+** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
+** (for CREATE TABLE AS SELECT ...)
+**
+** Then check that the value of Parse.mayAbort is true if an
+** ABORT may be thrown, or false otherwise. Return true if it does
+** match, or false otherwise. This function is intended to be used as
+** part of an assert statement in the compiler. Similar to:
+**
+** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
+*/
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
+ int hasAbort = 0;
+ int hasFkCounter = 0;
+ int hasCreateTable = 0;
+ int hasCreateIndex = 0;
+ int hasInitCoroutine = 0;
+ Op *pOp;
+ VdbeOpIter sIter;
+
+ if( v==0 ) return 0;
+ memset(&sIter, 0, sizeof(sIter));
+ sIter.v = v;
+
+ while( (pOp = opIterNext(&sIter))!=0 ){
+ int opcode = pOp->opcode;
+ if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
+ || opcode==OP_VDestroy
+ || opcode==OP_VCreate
+ || opcode==OP_ParseSchema
+ || opcode==OP_Function || opcode==OP_PureFunc
+ || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
+ && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
+ ){
+ hasAbort = 1;
+ break;
+ }
+ if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
+ if( mayAbort ){
+ /* hasCreateIndex may also be set for some DELETE statements that use
+ ** OP_Clear. So this routine may end up returning true in the case
+ ** where a "DELETE FROM tbl" has a statement-journal but does not
+ ** require one. This is not so bad - it is an inefficiency, not a bug. */
+ if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
+ if( opcode==OP_Clear ) hasCreateIndex = 1;
+ }
+ if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
+ hasFkCounter = 1;
+ }
+#endif
+ }
+ sqlite3DbFree(v->db, sIter.apSub);
+
+ /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
+ ** If malloc failed, then the while() loop above may not have iterated
+ ** through all opcodes and hasAbort may be set incorrectly. Return
+ ** true for this case to prevent the assert() in the callers frame
+ ** from failing. */
+ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
+ || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
+ );
+}
+#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
+
+#ifdef SQLITE_DEBUG
+/*
+** Increment the nWrite counter in the VDBE if the cursor is not an
+** ephemeral cursor, or if the cursor argument is NULL.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
+ if( pC==0
+ || (pC->eCurType!=CURTYPE_SORTER
+ && pC->eCurType!=CURTYPE_PSEUDO
+ && !pC->isEphemeral)
+ ){
+ p->nWrite++;
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Assert if an Abort at this point in time might result in a corrupt
+** database.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe *p){
+ assert( p->nWrite==0 || p->usesStmtJournal );
+}
+#endif
+
+/*
+** This routine is called after all opcodes have been inserted. It loops
+** through all the opcodes and fixes up some details.
+**
+** (1) For each jump instruction with a negative P2 value (a label)
+** resolve the P2 value to an actual address.
+**
+** (2) Compute the maximum number of arguments used by any SQL function
+** and store that value in *pMaxFuncArgs.
+**
+** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
+** indicate what the prepared statement actually does.
+**
+** (4) (discontinued)
+**
+** (5) Reclaim the memory allocated for storing labels.
+**
+** This routine will only function correctly if the mkopcodeh.tcl generator
+** script numbers the opcodes correctly. Changes to this routine must be
+** coordinated with changes to mkopcodeh.tcl.
+*/
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
+ int nMaxArgs = *pMaxFuncArgs;
+ Op *pOp;
+ Parse *pParse = p->pParse;
+ int *aLabel = pParse->aLabel;
+ p->readOnly = 1;
+ p->bIsReader = 0;
+ pOp = &p->aOp[p->nOp-1];
+ while(1){
+
+ /* Only JUMP opcodes and the short list of special opcodes in the switch
+ ** below need to be considered. The mkopcodeh.tcl generator script groups
+ ** all these opcodes together near the front of the opcode list. Skip
+ ** any opcode that does not need processing by virtual of the fact that
+ ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
+ */
+ if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
+ /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
+ ** cases from this switch! */
+ switch( pOp->opcode ){
+ case OP_Transaction: {
+ if( pOp->p2!=0 ) p->readOnly = 0;
+ /* no break */ deliberate_fall_through
+ }
+ case OP_AutoCommit:
+ case OP_Savepoint: {
+ p->bIsReader = 1;
+ break;
+ }
+#ifndef SQLITE_OMIT_WAL
+ case OP_Checkpoint:
+#endif
+ case OP_Vacuum:
+ case OP_JournalMode: {
+ p->readOnly = 0;
+ p->bIsReader = 1;
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case OP_VUpdate: {
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
+ break;
+ }
+ case OP_VFilter: {
+ int n;
+ assert( (pOp - p->aOp) >= 3 );
+ assert( pOp[-1].opcode==OP_Integer );
+ n = pOp[-1].p1;
+ if( n>nMaxArgs ) nMaxArgs = n;
+ /* Fall through into the default case */
+ /* no break */ deliberate_fall_through
+ }
+#endif
+ default: {
+ if( pOp->p2<0 ){
+ /* The mkopcodeh.tcl script has so arranged things that the only
+ ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
+ ** have non-negative values for P2. */
+ assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
+ assert( ADDR(pOp->p2)<-pParse->nLabel );
+ pOp->p2 = aLabel[ADDR(pOp->p2)];
+ }
+ break;
+ }
+ }
+ /* The mkopcodeh.tcl script has so arranged things that the only
+ ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
+ ** have non-negative values for P2. */
+ assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
+ }
+ if( pOp==p->aOp ) break;
+ pOp--;
+ }
+ if( aLabel ){
+ sqlite3DbFreeNN(p->db, pParse->aLabel);
+ pParse->aLabel = 0;
+ }
+ pParse->nLabel = 0;
+ *pMaxFuncArgs = nMaxArgs;
+ assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Check to see if a subroutine contains a jump to a location outside of
+** the subroutine. If a jump outside the subroutine is detected, add code
+** that will cause the program to halt with an error message.
+**
+** The subroutine consists of opcodes between iFirst and iLast. Jumps to
+** locations within the subroutine are acceptable. iRetReg is a register
+** that contains the return address. Jumps to outside the range of iFirst
+** through iLast are also acceptable as long as the jump destination is
+** an OP_Return to iReturnAddr.
+**
+** A jump to an unresolved label means that the jump destination will be
+** beyond the current address. That is normally a jump to an early
+** termination and is consider acceptable.
+**
+** This routine only runs during debug builds. The purpose is (of course)
+** to detect invalid escapes out of a subroutine. The OP_Halt opcode
+** is generated rather than an assert() or other error, so that ".eqp full"
+** will still work to show the original bytecode, to aid in debugging.
+*/
+SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn(
+ Vdbe *v, /* The byte-code program under construction */
+ int iFirst, /* First opcode of the subroutine */
+ int iLast, /* Last opcode of the subroutine */
+ int iRetReg /* Subroutine return address register */
+){
+ VdbeOp *pOp;
+ Parse *pParse;
+ int i;
+ sqlite3_str *pErr = 0;
+ assert( v!=0 );
+ pParse = v->pParse;
+ assert( pParse!=0 );
+ if( pParse->nErr ) return;
+ assert( iLast>=iFirst );
+ assert( iLast<v->nOp );
+ pOp = &v->aOp[iFirst];
+ for(i=iFirst; i<=iLast; i++, pOp++){
+ if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
+ int iDest = pOp->p2; /* Jump destination */
+ if( iDest==0 ) continue;
+ if( pOp->opcode==OP_Gosub ) continue;
+ if( iDest<0 ){
+ int j = ADDR(iDest);
+ assert( j>=0 );
+ if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
+ continue;
+ }
+ iDest = pParse->aLabel[j];
+ }
+ if( iDest<iFirst || iDest>iLast ){
+ int j = iDest;
+ for(; j<v->nOp; j++){
+ VdbeOp *pX = &v->aOp[j];
+ if( pX->opcode==OP_Return ){
+ if( pX->p1==iRetReg ) break;
+ continue;
+ }
+ if( pX->opcode==OP_Noop ) continue;
+ if( pX->opcode==OP_Explain ) continue;
+ if( pErr==0 ){
+ pErr = sqlite3_str_new(0);
+ }else{
+ sqlite3_str_appendchar(pErr, 1, '\n');
+ }
+ sqlite3_str_appendf(pErr,
+ "Opcode at %d jumps to %d which is outside the "
+ "subroutine at %d..%d",
+ i, iDest, iFirst, iLast);
+ break;
+ }
+ }
+ }
+ }
+ if( pErr ){
+ char *zErr = sqlite3_str_finish(pErr);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
+ sqlite3_free(zErr);
+ sqlite3MayAbort(pParse);
+ }
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ return p->nOp;
+}
+
+/*
+** Verify that at least N opcode slots are available in p without
+** having to malloc for more space (except when compiled using
+** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
+** to verify that certain calls to sqlite3VdbeAddOpList() can never
+** fail due to a OOM fault and hence that the return value from
+** sqlite3VdbeAddOpList() will always be non-NULL.
+*/
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
+ assert( p->nOp + N <= p->nOpAlloc );
+}
+#endif
+
+/*
+** Verify that the VM passed as the only argument does not contain
+** an OP_ResultRow opcode. Fail an assert() if it does. This is used
+** by code in pragma.c to ensure that the implementation of certain
+** pragmas comports with the flags specified in the mkpragmatab.tcl
+** script.
+*/
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
+ int i;
+ for(i=0; i<p->nOp; i++){
+ assert( p->aOp[i].opcode!=OP_ResultRow );
+ }
+}
+#endif
+
+/*
+** Generate code (a single OP_Abortable opcode) that will
+** verify that the VDBE program can safely call Abort in the current
+** context.
+*/
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
+ if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
+}
+#endif
+
+/*
+** This function returns a pointer to the array of opcodes associated with
+** the Vdbe passed as the first argument. It is the callers responsibility
+** to arrange for the returned array to be eventually freed using the
+** vdbeFreeOpArray() function.
+**
+** Before returning, *pnOp is set to the number of entries in the returned
+** array. Also, *pnMaxArg is set to the larger of its current value and
+** the number of entries in the Vdbe.apArg[] array required to execute the
+** returned program.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
+ VdbeOp *aOp = p->aOp;
+ assert( aOp && !p->db->mallocFailed );
+
+ /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
+ assert( DbMaskAllZero(p->btreeMask) );
+
+ resolveP2Values(p, pnMaxArg);
+ *pnOp = p->nOp;
+ p->aOp = 0;
+ return aOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return a
+** pointer to the first operation inserted.
+**
+** Non-zero P2 arguments to jump instructions are automatically adjusted
+** so that the jump target is relative to the first operation inserted.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(
+ Vdbe *p, /* Add opcodes to the prepared statement */
+ int nOp, /* Number of opcodes to add */
+ VdbeOpList const *aOp, /* The opcodes to be added */
+ int iLineno /* Source-file line number of first opcode */
+){
+ int i;
+ VdbeOp *pOut, *pFirst;
+ assert( nOp>0 );
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
+ return 0;
+ }
+ pFirst = pOut = &p->aOp[p->nOp];
+ for(i=0; i<nOp; i++, aOp++, pOut++){
+ pOut->opcode = aOp->opcode;
+ pOut->p1 = aOp->p1;
+ pOut->p2 = aOp->p2;
+ assert( aOp->p2>=0 );
+ if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
+ pOut->p2 += p->nOp;
+ }
+ pOut->p3 = aOp->p3;
+ pOut->p4type = P4_NOTUSED;
+ pOut->p4.p = 0;
+ pOut->p5 = 0;
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ pOut->zComment = 0;
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ pOut->iSrcLine = iLineno+i;
+#else
+ (void)iLineno;
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ return pFirst;
+}
+
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+/*
+** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
+*/
+SQLITE_PRIVATE void sqlite3VdbeScanStatus(
+ Vdbe *p, /* VM to add scanstatus() to */
+ int addrExplain, /* Address of OP_Explain (or 0) */
+ int addrLoop, /* Address of loop counter */
+ int addrVisit, /* Address of rows visited counter */
+ LogEst nEst, /* Estimated number of output rows */
+ const char *zName /* Name of table or index being scanned */
+){
+ sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
+ ScanStatus *aNew;
+ aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
+ if( aNew ){
+ ScanStatus *pNew = &aNew[p->nScan++];
+ pNew->addrExplain = addrExplain;
+ pNew->addrLoop = addrLoop;
+ pNew->addrVisit = addrVisit;
+ pNew->nEst = nEst;
+ pNew->zName = sqlite3DbStrDup(p->db, zName);
+ p->aScan = aNew;
+ }
+}
+#endif
+
+
+/*
+** Change the value of the opcode, or P1, P2, P3, or P5 operands
+** for a specific instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
+ sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
+ sqlite3VdbeGetOp(p,addr)->p1 = val;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
+ sqlite3VdbeGetOp(p,addr)->p2 = val;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
+ sqlite3VdbeGetOp(p,addr)->p3 = val;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
+ assert( p->nOp>0 || p->db->mallocFailed );
+ if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
+}
+
+/*
+** Change the P2 operand of instruction addr so that it points to
+** the address of the next instruction to be coded.
+*/
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
+ sqlite3VdbeChangeP2(p, addr, p->nOp);
+}
+
+/*
+** Change the P2 operand of the jump instruction at addr so that
+** the jump lands on the next opcode. Or if the jump instruction was
+** the previous opcode (and is thus a no-op) then simply back up
+** the next instruction counter by one slot so that the jump is
+** overwritten by the next inserted opcode.
+**
+** This routine is an optimization of sqlite3VdbeJumpHere() that
+** strives to omit useless byte-code like this:
+**
+** 7 Once 0 8 0
+** 8 ...
+*/
+SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
+ if( addr==p->nOp-1 ){
+ assert( p->aOp[addr].opcode==OP_Once
+ || p->aOp[addr].opcode==OP_If
+ || p->aOp[addr].opcode==OP_FkIfZero );
+ assert( p->aOp[addr].p4type==0 );
+#ifdef SQLITE_VDBE_COVERAGE
+ sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
+#endif
+ p->nOp--;
+ }else{
+ sqlite3VdbeChangeP2(p, addr, p->nOp);
+ }
+}
+
+
+/*
+** If the input FuncDef structure is ephemeral, then free it. If
+** the FuncDef is not ephermal, then do nothing.
+*/
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
+ if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
+ sqlite3DbFreeNN(db, pDef);
+ }
+}
+
+/*
+** Delete a P4 value if necessary.
+*/
+static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
+ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
+ sqlite3DbFreeNN(db, p);
+}
+static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
+ freeEphemeralFunction(db, p->pFunc);
+ sqlite3DbFreeNN(db, p);
+}
+static void freeP4(sqlite3 *db, int p4type, void *p4){
+ assert( db );
+ switch( p4type ){
+ case P4_FUNCCTX: {
+ freeP4FuncCtx(db, (sqlite3_context*)p4);
+ break;
+ }
+ case P4_REAL:
+ case P4_INT64:
+ case P4_DYNAMIC:
+ case P4_INTARRAY: {
+ sqlite3DbFree(db, p4);
+ break;
+ }
+ case P4_KEYINFO: {
+ if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
+ break;
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ case P4_EXPR: {
+ sqlite3ExprDelete(db, (Expr*)p4);
+ break;
+ }
+#endif
+ case P4_FUNCDEF: {
+ freeEphemeralFunction(db, (FuncDef*)p4);
+ break;
+ }
+ case P4_MEM: {
+ if( db->pnBytesFreed==0 ){
+ sqlite3ValueFree((sqlite3_value*)p4);
+ }else{
+ freeP4Mem(db, (Mem*)p4);
+ }
+ break;
+ }
+ case P4_VTAB : {
+ if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
+ break;
+ }
+ }
+}
+
+/*
+** Free the space allocated for aOp and any p4 values allocated for the
+** opcodes contained within. If aOp is not NULL it is assumed to contain
+** nOp entries.
+*/
+static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
+ assert( nOp>=0 );
+ if( aOp ){
+ Op *pOp = &aOp[nOp-1];
+ while(1){ /* Exit via break */
+ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ sqlite3DbFree(db, pOp->zComment);
+#endif
+ if( pOp==aOp ) break;
+ pOp--;
+ }
+ sqlite3DbFreeNN(db, aOp);
+ }
+}
+
+/*
+** Link the SubProgram object passed as the second argument into the linked
+** list at Vdbe.pSubProgram. This list is used to delete all sub-program
+** objects when the VM is no longer required.
+*/
+SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
+ p->pNext = pVdbe->pProgram;
+ pVdbe->pProgram = p;
+}
+
+/*
+** Return true if the given Vdbe has any SubPrograms.
+*/
+SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
+ return pVdbe->pProgram!=0;
+}
+
+/*
+** Change the opcode at addr into OP_Noop
+*/
+SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
+ VdbeOp *pOp;
+ if( p->db->mallocFailed ) return 0;
+ assert( addr>=0 && addr<p->nOp );
+ pOp = &p->aOp[addr];
+ freeP4(p->db, pOp->p4type, pOp->p4.p);
+ pOp->p4type = P4_NOTUSED;
+ pOp->p4.z = 0;
+ pOp->opcode = OP_Noop;
+ return 1;
+}
+
+/*
+** If the last opcode is "op" and it is not a jump destination,
+** then remove it. Return true if and only if an opcode was removed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
+ if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
+ return sqlite3VdbeChangeToNoop(p, p->nOp-1);
+ }else{
+ return 0;
+ }
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Generate an OP_ReleaseReg opcode to indicate that a range of
+** registers, except any identified by mask, are no longer in use.
+*/
+SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters(
+ Parse *pParse, /* Parsing context */
+ int iFirst, /* Index of first register to be released */
+ int N, /* Number of registers to release */
+ u32 mask, /* Mask of registers to NOT release */
+ int bUndefine /* If true, mark registers as undefined */
+){
+ if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
+ assert( pParse->pVdbe );
+ assert( iFirst>=1 );
+ assert( iFirst+N-1<=pParse->nMem );
+ if( N<=31 && mask!=0 ){
+ while( N>0 && (mask&1)!=0 ){
+ mask >>= 1;
+ iFirst++;
+ N--;
+ }
+ while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
+ mask &= ~MASKBIT32(N-1);
+ N--;
+ }
+ }
+ if( N>0 ){
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
+ if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
+ }
+}
+#endif /* SQLITE_DEBUG */
+
+
+/*
+** Change the value of the P4 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqlite3_malloc().
+** A value of n==0 means copy bytes of zP4 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP4.
+**
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
+** to a string or structure that is guaranteed to exist for the lifetime of
+** the Vdbe. In these cases we can just copy the pointer.
+**
+** If addr<0 then change P4 on the most recently inserted instruction.
+*/
+static void SQLITE_NOINLINE vdbeChangeP4Full(
+ Vdbe *p,
+ Op *pOp,
+ const char *zP4,
+ int n
+){
+ if( pOp->p4type ){
+ freeP4(p->db, pOp->p4type, pOp->p4.p);
+ pOp->p4type = 0;
+ pOp->p4.p = 0;
+ }
+ if( n<0 ){
+ sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
+ }else{
+ if( n==0 ) n = sqlite3Strlen30(zP4);
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
+ pOp->p4type = P4_DYNAMIC;
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
+ Op *pOp;
+ sqlite3 *db;
+ assert( p!=0 );
+ db = p->db;
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( p->aOp!=0 || db->mallocFailed );
+ if( db->mallocFailed ){
+ if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
+ return;
+ }
+ assert( p->nOp>0 );
+ assert( addr<p->nOp );
+ if( addr<0 ){
+ addr = p->nOp - 1;
+ }
+ pOp = &p->aOp[addr];
+ if( n>=0 || pOp->p4type ){
+ vdbeChangeP4Full(p, pOp, zP4, n);
+ return;
+ }
+ if( n==P4_INT32 ){
+ /* Note: this cast is safe, because the origin data point was an int
+ ** that was cast to a (const char *). */
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
+ pOp->p4type = P4_INT32;
+ }else if( zP4!=0 ){
+ assert( n<0 );
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = (signed char)n;
+ if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
+ }
+}
+
+/*
+** Change the P4 operand of the most recently coded instruction
+** to the value defined by the arguments. This is a high-speed
+** version of sqlite3VdbeChangeP4().
+**
+** The P4 operand must not have been previously defined. And the new
+** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
+** those cases.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
+ VdbeOp *pOp;
+ assert( n!=P4_INT32 && n!=P4_VTAB );
+ assert( n<=0 );
+ if( p->db->mallocFailed ){
+ freeP4(p->db, n, pP4);
+ }else{
+ assert( pP4!=0 );
+ assert( p->nOp>0 );
+ pOp = &p->aOp[p->nOp-1];
+ assert( pOp->p4type==P4_NOTUSED );
+ pOp->p4type = n;
+ pOp->p4.p = pP4;
+ }
+}
+
+/*
+** Set the P4 on the most recently added opcode to the KeyInfo for the
+** index given.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
+ Vdbe *v = pParse->pVdbe;
+ KeyInfo *pKeyInfo;
+ assert( v!=0 );
+ assert( pIdx!=0 );
+ pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
+ if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/*
+** Change the comment on the most recently coded instruction. Or
+** insert a No-op and add the comment to that new instruction. This
+** makes the code easier to read during debugging. None of this happens
+** in a production build.
+*/
+static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
+ if( p->nOp ){
+ assert( p->aOp );
+ sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
+ p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ if( p ){
+ va_start(ap, zFormat);
+ vdbeVComment(p, zFormat, ap);
+ va_end(ap);
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ if( p ){
+ sqlite3VdbeAddOp0(p, OP_Noop);
+ va_start(ap, zFormat);
+ vdbeVComment(p, zFormat, ap);
+ va_end(ap);
+ }
+}
+#endif /* NDEBUG */
+
+#ifdef SQLITE_VDBE_COVERAGE
+/*
+** Set the value if the iSrcLine field for the previously coded instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
+ sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
+}
+#endif /* SQLITE_VDBE_COVERAGE */
+
+/*
+** Return the opcode for a given address. If the address is -1, then
+** return the most recently inserted opcode.
+**
+** If a memory allocation error has occurred prior to the calling of this
+** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
+** is readable but not writable, though it is cast to a writable value.
+** The return of a dummy opcode allows the call to continue functioning
+** after an OOM fault without having to check to see if the return from
+** this routine is a valid pointer. But because the dummy.opcode is 0,
+** dummy will never be written to. This is verified by code inspection and
+** by running with Valgrind.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+ /* C89 specifies that the constant "dummy" will be initialized to all
+ ** zeros, which is correct. MSVC generates a warning, nevertheless. */
+ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ if( addr<0 ){
+ addr = p->nOp - 1;
+ }
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
+ if( p->db->mallocFailed ){
+ return (VdbeOp*)&dummy;
+ }else{
+ return &p->aOp[addr];
+ }
+}
+
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
+/*
+** Return an integer value for one of the parameters to the opcode pOp
+** determined by character c.
+*/
+static int translateP(char c, const Op *pOp){
+ if( c=='1' ) return pOp->p1;
+ if( c=='2' ) return pOp->p2;
+ if( c=='3' ) return pOp->p3;
+ if( c=='4' ) return pOp->p4.i;
+ return pOp->p5;
+}
+
+/*
+** Compute a string for the "comment" field of a VDBE opcode listing.
+**
+** The Synopsis: field in comments in the vdbe.c source file gets converted
+** to an extra string that is appended to the sqlite3OpcodeName(). In the
+** absence of other comments, this synopsis becomes the comment on the opcode.
+** Some translation occurs:
+**
+** "PX" -> "r[X]"
+** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
+** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
+** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
+*/
+SQLITE_PRIVATE char *sqlite3VdbeDisplayComment(
+ sqlite3 *db, /* Optional - Oom error reporting only */
+ const Op *pOp, /* The opcode to be commented */
+ const char *zP4 /* Previously obtained value for P4 */
+){
+ const char *zOpName;
+ const char *zSynopsis;
+ int nOpName;
+ int ii;
+ char zAlt[50];
+ StrAccum x;
+
+ sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
+ zOpName = sqlite3OpcodeName(pOp->opcode);
+ nOpName = sqlite3Strlen30(zOpName);
+ if( zOpName[nOpName+1] ){
+ int seenCom = 0;
+ char c;
+ zSynopsis = zOpName + nOpName + 1;
+ if( strncmp(zSynopsis,"IF ",3)==0 ){
+ sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
+ zSynopsis = zAlt;
+ }
+ for(ii=0; (c = zSynopsis[ii])!=0; ii++){
+ if( c=='P' ){
+ c = zSynopsis[++ii];
+ if( c=='4' ){
+ sqlite3_str_appendall(&x, zP4);
+ }else if( c=='X' ){
+ if( pOp->zComment && pOp->zComment[0] ){
+ sqlite3_str_appendall(&x, pOp->zComment);
+ seenCom = 1;
+ break;
+ }
+ }else{
+ int v1 = translateP(c, pOp);
+ int v2;
+ if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
+ ii += 3;
+ v2 = translateP(zSynopsis[ii], pOp);
+ if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
+ ii += 2;
+ v2++;
+ }
+ if( v2<2 ){
+ sqlite3_str_appendf(&x, "%d", v1);
+ }else{
+ sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
+ }
+ }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
+ sqlite3_context *pCtx = pOp->p4.pCtx;
+ if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
+ sqlite3_str_appendf(&x, "%d", v1);
+ }else if( pCtx->argc>1 ){
+ sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
+ }else if( x.accError==0 ){
+ assert( x.nChar>2 );
+ x.nChar -= 2;
+ ii++;
+ }
+ ii += 3;
+ }else{
+ sqlite3_str_appendf(&x, "%d", v1);
+ if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
+ ii += 4;
+ }
+ }
+ }
+ }else{
+ sqlite3_str_appendchar(&x, 1, c);
+ }
+ }
+ if( !seenCom && pOp->zComment ){
+ sqlite3_str_appendf(&x, "; %s", pOp->zComment);
+ }
+ }else if( pOp->zComment ){
+ sqlite3_str_appendall(&x, pOp->zComment);
+ }
+ if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
+ sqlite3OomFault(db);
+ }
+ return sqlite3StrAccumFinish(&x);
+}
+#endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
+
+#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
+/*
+** Translate the P4.pExpr value for an OP_CursorHint opcode into text
+** that can be displayed in the P4 column of EXPLAIN output.
+*/
+static void displayP4Expr(StrAccum *p, Expr *pExpr){
+ const char *zOp = 0;
+ switch( pExpr->op ){
+ case TK_STRING:
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
+ break;
+ case TK_INTEGER:
+ sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
+ break;
+ case TK_NULL:
+ sqlite3_str_appendf(p, "NULL");
+ break;
+ case TK_REGISTER: {
+ sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
+ break;
+ }
+ case TK_COLUMN: {
+ if( pExpr->iColumn<0 ){
+ sqlite3_str_appendf(p, "rowid");
+ }else{
+ sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
+ }
+ break;
+ }
+ case TK_LT: zOp = "LT"; break;
+ case TK_LE: zOp = "LE"; break;
+ case TK_GT: zOp = "GT"; break;
+ case TK_GE: zOp = "GE"; break;
+ case TK_NE: zOp = "NE"; break;
+ case TK_EQ: zOp = "EQ"; break;
+ case TK_IS: zOp = "IS"; break;
+ case TK_ISNOT: zOp = "ISNOT"; break;
+ case TK_AND: zOp = "AND"; break;
+ case TK_OR: zOp = "OR"; break;
+ case TK_PLUS: zOp = "ADD"; break;
+ case TK_STAR: zOp = "MUL"; break;
+ case TK_MINUS: zOp = "SUB"; break;
+ case TK_REM: zOp = "REM"; break;
+ case TK_BITAND: zOp = "BITAND"; break;
+ case TK_BITOR: zOp = "BITOR"; break;
+ case TK_SLASH: zOp = "DIV"; break;
+ case TK_LSHIFT: zOp = "LSHIFT"; break;
+ case TK_RSHIFT: zOp = "RSHIFT"; break;
+ case TK_CONCAT: zOp = "CONCAT"; break;
+ case TK_UMINUS: zOp = "MINUS"; break;
+ case TK_UPLUS: zOp = "PLUS"; break;
+ case TK_BITNOT: zOp = "BITNOT"; break;
+ case TK_NOT: zOp = "NOT"; break;
+ case TK_ISNULL: zOp = "ISNULL"; break;
+ case TK_NOTNULL: zOp = "NOTNULL"; break;
+
+ default:
+ sqlite3_str_appendf(p, "%s", "expr");
+ break;
+ }
+
+ if( zOp ){
+ sqlite3_str_appendf(p, "%s(", zOp);
+ displayP4Expr(p, pExpr->pLeft);
+ if( pExpr->pRight ){
+ sqlite3_str_append(p, ",", 1);
+ displayP4Expr(p, pExpr->pRight);
+ }
+ sqlite3_str_append(p, ")", 1);
+ }
+}
+#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
+
+
+#if VDBE_DISPLAY_P4
+/*
+** Compute a string that describes the P4 parameter for an opcode.
+** Use zTemp for any required temporary buffer space.
+*/
+SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
+ char *zP4 = 0;
+ StrAccum x;
+
+ sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
+ switch( pOp->p4type ){
+ case P4_KEYINFO: {
+ int j;
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pKeyInfo->aSortFlags!=0 );
+ sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
+ for(j=0; j<pKeyInfo->nKeyField; j++){
+ CollSeq *pColl = pKeyInfo->aColl[j];
+ const char *zColl = pColl ? pColl->zName : "";
+ if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
+ sqlite3_str_appendf(&x, ",%s%s%s",
+ (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
+ (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
+ zColl);
+ }
+ sqlite3_str_append(&x, ")", 1);
+ break;
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ case P4_EXPR: {
+ displayP4Expr(&x, pOp->p4.pExpr);
+ break;
+ }
+#endif
+ case P4_COLLSEQ: {
+ static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
+ CollSeq *pColl = pOp->p4.pColl;
+ assert( pColl->enc<4 );
+ sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
+ encnames[pColl->enc]);
+ break;
+ }
+ case P4_FUNCDEF: {
+ FuncDef *pDef = pOp->p4.pFunc;
+ sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
+ break;
+ }
+ case P4_FUNCCTX: {
+ FuncDef *pDef = pOp->p4.pCtx->pFunc;
+ sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
+ break;
+ }
+ case P4_INT64: {
+ sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
+ break;
+ }
+ case P4_INT32: {
+ sqlite3_str_appendf(&x, "%d", pOp->p4.i);
+ break;
+ }
+ case P4_REAL: {
+ sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
+ break;
+ }
+ case P4_MEM: {
+ Mem *pMem = pOp->p4.pMem;
+ if( pMem->flags & MEM_Str ){
+ zP4 = pMem->z;
+ }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
+ sqlite3_str_appendf(&x, "%lld", pMem->u.i);
+ }else if( pMem->flags & MEM_Real ){
+ sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
+ }else if( pMem->flags & MEM_Null ){
+ zP4 = "NULL";
+ }else{
+ assert( pMem->flags & MEM_Blob );
+ zP4 = "(blob)";
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case P4_VTAB: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
+ sqlite3_str_appendf(&x, "vtab:%p", pVtab);
+ break;
+ }
+#endif
+ case P4_INTARRAY: {
+ u32 i;
+ u32 *ai = pOp->p4.ai;
+ u32 n = ai[0]; /* The first element of an INTARRAY is always the
+ ** count of the number of elements to follow */
+ for(i=1; i<=n; i++){
+ sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
+ }
+ sqlite3_str_append(&x, "]", 1);
+ break;
+ }
+ case P4_SUBPROGRAM: {
+ zP4 = "program";
+ break;
+ }
+ case P4_TABLE: {
+ zP4 = pOp->p4.pTab->zName;
+ break;
+ }
+ default: {
+ zP4 = pOp->p4.z;
+ }
+ }
+ if( zP4 ) sqlite3_str_appendall(&x, zP4);
+ if( (x.accError & SQLITE_NOMEM)!=0 ){
+ sqlite3OomFault(db);
+ }
+ return sqlite3StrAccumFinish(&x);
+}
+#endif /* VDBE_DISPLAY_P4 */
+
+/*
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
+**
+** The prepared statements need to know in advance the complete set of
+** attached databases that will be use. A mask of these databases
+** is maintained in p->btreeMask. The p->lockMask value is the subset of
+** p->btreeMask of databases that will require a lock.
+*/
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
+ assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
+ assert( i<(int)sizeof(p->btreeMask)*8 );
+ DbMaskSet(p->btreeMask, i);
+ if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
+ DbMaskSet(p->lockMask, i);
+ }
+}
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE)
+/*
+** If SQLite is compiled to support shared-cache mode and to be threadsafe,
+** this routine obtains the mutex associated with each BtShared structure
+** that may be accessed by the VM passed as an argument. In doing so it also
+** sets the BtShared.db member of each of the BtShared structures, ensuring
+** that the correct busy-handler callback is invoked if required.
+**
+** If SQLite is not threadsafe but does support shared-cache mode, then
+** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
+** of all of BtShared structures accessible via the database handle
+** associated with the VM.
+**
+** If SQLite is not threadsafe and does not support shared-cache mode, this
+** function is a no-op.
+**
+** The p->btreeMask field is a bitmask of all btrees that the prepared
+** statement p will ever use. Let N be the number of bits in p->btreeMask
+** corresponding to btrees that use shared cache. Then the runtime of
+** this routine is N*N. But as N is rarely more than 1, this should not
+** be a problem.
+*/
+SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){
+ int i;
+ sqlite3 *db;
+ Db *aDb;
+ int nDb;
+ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
+ db = p->db;
+ aDb = db->aDb;
+ nDb = db->nDb;
+ for(i=0; i<nDb; i++){
+ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
+ sqlite3BtreeEnter(aDb[i].pBt);
+ }
+ }
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
+/*
+** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
+*/
+static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
+ int i;
+ sqlite3 *db;
+ Db *aDb;
+ int nDb;
+ db = p->db;
+ aDb = db->aDb;
+ nDb = db->nDb;
+ for(i=0; i<nDb; i++){
+ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
+ sqlite3BtreeLeave(aDb[i].pBt);
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){
+ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
+ vdbeLeave(p);
+}
+#endif
+
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
+ char *zP4;
+ char *zCom;
+ sqlite3 dummyDb;
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
+ if( pOut==0 ) pOut = stdout;
+ sqlite3BeginBenignMalloc();
+ dummyDb.mallocFailed = 1;
+ zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
+#else
+ zCom = 0;
+#endif
+ /* NB: The sqlite3OpcodeName() function is implemented by code created
+ ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
+ ** information from the vdbe.c source text */
+ fprintf(pOut, zFormat1, pc,
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
+ zP4 ? zP4 : "", pOp->p5,
+ zCom ? zCom : ""
+ );
+ fflush(pOut);
+ sqlite3_free(zP4);
+ sqlite3_free(zCom);
+ sqlite3EndBenignMalloc();
+}
+#endif
+
+/*
+** Initialize an array of N Mem element.
+**
+** This is a high-runner, so only those fields that really do need to
+** be initialized are set. The Mem structure is organized so that
+** the fields that get initialized are nearby and hopefully on the same
+** cache line.
+**
+** Mem.flags = flags
+** Mem.db = db
+** Mem.szMalloc = 0
+**
+** All other fields of Mem can safely remain uninitialized for now. They
+** will be initialized before use.
+*/
+static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
+ if( N>0 ){
+ do{
+ p->flags = flags;
+ p->db = db;
+ p->szMalloc = 0;
+#ifdef SQLITE_DEBUG
+ p->pScopyFrom = 0;
+#endif
+ p++;
+ }while( (--N)>0 );
+ }
+}
+
+/*
+** Release auxiliary memory held in an array of N Mem elements.
+**
+** After this routine returns, all Mem elements in the array will still
+** be valid. Those Mem elements that were not holding auxiliary resources
+** will be unchanged. Mem elements which had something freed will be
+** set to MEM_Undefined.
+*/
+static void releaseMemArray(Mem *p, int N){
+ if( p && N ){
+ Mem *pEnd = &p[N];
+ sqlite3 *db = p->db;
+ if( db->pnBytesFreed ){
+ do{
+ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
+ }while( (++p)<pEnd );
+ return;
+ }
+ do{
+ assert( (&p[1])==pEnd || p[0].db==p[1].db );
+ assert( sqlite3VdbeCheckMemInvariants(p) );
+
+ /* This block is really an inlined version of sqlite3VdbeMemRelease()
+ ** that takes advantage of the fact that the memory cell value is
+ ** being set to NULL after releasing any dynamic resources.
+ **
+ ** The justification for duplicating code is that according to
+ ** callgrind, this causes a certain test case to hit the CPU 4.7
+ ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
+ ** sqlite3MemRelease() were called from here. With -O2, this jumps
+ ** to 6.6 percent. The test case is inserting 1000 rows into a table
+ ** with no indexes using a single prepared INSERT statement, bind()
+ ** and reset(). Inserts are grouped into a transaction.
+ */
+ testcase( p->flags & MEM_Agg );
+ testcase( p->flags & MEM_Dyn );
+ if( p->flags&(MEM_Agg|MEM_Dyn) ){
+ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
+ sqlite3VdbeMemRelease(p);
+ p->flags = MEM_Undefined;
+ }else if( p->szMalloc ){
+ sqlite3DbFreeNN(db, p->zMalloc);
+ p->szMalloc = 0;
+ p->flags = MEM_Undefined;
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ p->flags = MEM_Undefined;
+ }
+#endif
+ }while( (++p)<pEnd );
+ }
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
+** and false if something is wrong.
+**
+** This routine is intended for use inside of assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
+ if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
+ return 1;
+}
+#endif
+
+
+/*
+** This is a destructor on a Mem object (which is really an sqlite3_value)
+** that deletes the Frame object that is attached to it as a blob.
+**
+** This routine does not delete the Frame right away. It merely adds the
+** frame to a list of frames to be deleted when the Vdbe halts.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void *pArg){
+ VdbeFrame *pFrame = (VdbeFrame*)pArg;
+ assert( sqlite3VdbeFrameIsValid(pFrame) );
+ pFrame->pParent = pFrame->v->pDelFrame;
+ pFrame->v->pDelFrame = pFrame;
+}
+
+#if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
+/*
+** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
+** QUERY PLAN output.
+**
+** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
+** more opcodes to be displayed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeNextOpcode(
+ Vdbe *p, /* The statement being explained */
+ Mem *pSub, /* Storage for keeping track of subprogram nesting */
+ int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
+ int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
+ int *piAddr, /* OUT: Write index into (*paOp)[] here */
+ Op **paOp /* OUT: Write the opcode array here */
+){
+ int nRow; /* Stop when row count reaches this */
+ int nSub = 0; /* Number of sub-vdbes seen so far */
+ SubProgram **apSub = 0; /* Array of sub-vdbes */
+ int i; /* Next instruction address */
+ int rc = SQLITE_OK; /* Result code */
+ Op *aOp = 0; /* Opcode array */
+ int iPc; /* Rowid. Copy of value in *piPc */
+
+ /* When the number of output rows reaches nRow, that means the
+ ** listing has finished and sqlite3_step() should return SQLITE_DONE.
+ ** nRow is the sum of the number of rows in the main program, plus
+ ** the sum of the number of rows in all trigger subprograms encountered
+ ** so far. The nRow value will increase as new trigger subprograms are
+ ** encountered, but p->pc will eventually catch up to nRow.
+ */
+ nRow = p->nOp;
+ if( pSub!=0 ){
+ if( pSub->flags&MEM_Blob ){
+ /* pSub is initiallly NULL. It is initialized to a BLOB by
+ ** the P4_SUBPROGRAM processing logic below */
+ nSub = pSub->n/sizeof(Vdbe*);
+ apSub = (SubProgram **)pSub->z;
+ }
+ for(i=0; i<nSub; i++){
+ nRow += apSub[i]->nOp;
+ }
+ }
+ iPc = *piPc;
+ while(1){ /* Loop exits via break */
+ i = iPc++;
+ if( i>=nRow ){
+ p->rc = SQLITE_OK;
+ rc = SQLITE_DONE;
+ break;
+ }
+ if( i<p->nOp ){
+ /* The rowid is small enough that we are still in the
+ ** main program. */
+ aOp = p->aOp;
+ }else{
+ /* We are currently listing subprograms. Figure out which one and
+ ** pick up the appropriate opcode. */
+ int j;
+ i -= p->nOp;
+ assert( apSub!=0 );
+ assert( nSub>0 );
+ for(j=0; i>=apSub[j]->nOp; j++){
+ i -= apSub[j]->nOp;
+ assert( i<apSub[j]->nOp || j+1<nSub );
+ }
+ aOp = apSub[j]->aOp;
+ }
+
+ /* When an OP_Program opcode is encounter (the only opcode that has
+ ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
+ ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
+ ** has not already been seen.
+ */
+ if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
+ int nByte = (nSub+1)*sizeof(SubProgram*);
+ int j;
+ for(j=0; j<nSub; j++){
+ if( apSub[j]==aOp[i].p4.pProgram ) break;
+ }
+ if( j==nSub ){
+ p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
+ if( p->rc!=SQLITE_OK ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+ apSub = (SubProgram **)pSub->z;
+ apSub[nSub++] = aOp[i].p4.pProgram;
+ MemSetTypeFlag(pSub, MEM_Blob);
+ pSub->n = nSub*sizeof(SubProgram*);
+ nRow += aOp[i].p4.pProgram->nOp;
+ }
+ }
+ if( eMode==0 ) break;
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+ if( eMode==2 ){
+ Op *pOp = aOp + i;
+ if( pOp->opcode==OP_OpenRead ) break;
+ if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
+ if( pOp->opcode==OP_ReopenIdx ) break;
+ }else
+#endif
+ {
+ assert( eMode==1 );
+ if( aOp[i].opcode==OP_Explain ) break;
+ if( aOp[i].opcode==OP_Init && iPc>1 ) break;
+ }
+ }
+ *piPc = iPc;
+ *piAddr = i;
+ *paOp = aOp;
+ return rc;
+}
+#endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
+
+
+/*
+** Delete a VdbeFrame object and its contents. VdbeFrame objects are
+** allocated by the OP_Program opcode in sqlite3VdbeExec().
+*/
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){
+ int i;
+ Mem *aMem = VdbeFrameMem(p);
+ VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
+ assert( sqlite3VdbeFrameIsValid(p) );
+ for(i=0; i<p->nChildCsr; i++){
+ if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
+ }
+ releaseMemArray(aMem, p->nChildMem);
+ sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
+ sqlite3DbFree(p->v->db, p);
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqlite3VdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+**
+** When p->explain==1, each instruction is listed. When
+** p->explain==2, only OP_Explain instructions are listed and these
+** are shown in a different format. p->explain==2 is used to implement
+** EXPLAIN QUERY PLAN.
+** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
+** are also shown, so that the boundaries between the main program and
+** each trigger are clear.
+**
+** When p->explain==1, first the main program is listed, then each of
+** the trigger subprograms are listed one by one.
+*/
+SQLITE_PRIVATE int sqlite3VdbeList(
+ Vdbe *p /* The VDBE */
+){
+ Mem *pSub = 0; /* Memory cell hold array of subprogs */
+ sqlite3 *db = p->db; /* The database connection */
+ int i; /* Loop counter */
+ int rc = SQLITE_OK; /* Return code */
+ Mem *pMem = &p->aMem[1]; /* First Mem of result set */
+ int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
+ Op *aOp; /* Array of opcodes */
+ Op *pOp; /* Current opcode */
+
+ assert( p->explain );
+ assert( p->eVdbeState==VDBE_RUN_STATE );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
+
+ /* Even though this opcode does not use dynamic strings for
+ ** the result, result columns may become dynamic if the user calls
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
+ */
+ releaseMemArray(pMem, 8);
+ p->pResultSet = 0;
+
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ sqlite3OomFault(db);
+ return SQLITE_ERROR;
+ }
+
+ if( bListSubprogs ){
+ /* The first 8 memory cells are used for the result set. So we will
+ ** commandeer the 9th cell to use as storage for an array of pointers
+ ** to trigger subprograms. The VDBE is guaranteed to have at least 9
+ ** cells. */
+ assert( p->nMem>9 );
+ pSub = &p->aMem[9];
+ }else{
+ pSub = 0;
+ }
+
+ /* Figure out which opcode is next to display */
+ rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
+
+ if( rc==SQLITE_OK ){
+ pOp = aOp + i;
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ p->rc = SQLITE_INTERRUPT;
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
+ }else{
+ char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
+ if( p->explain==2 ){
+ sqlite3VdbeMemSetInt64(pMem, pOp->p1);
+ sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
+ sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
+ sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
+ p->nResColumn = 4;
+ }else{
+ sqlite3VdbeMemSetInt64(pMem+0, i);
+ sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
+ -1, SQLITE_UTF8, SQLITE_STATIC);
+ sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
+ sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
+ sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
+ /* pMem+5 for p4 is done last */
+ sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ {
+ char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
+ sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
+ }
+#else
+ sqlite3VdbeMemSetNull(pMem+7);
+#endif
+ sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
+ p->nResColumn = 8;
+ }
+ p->pResultSet = pMem;
+ if( db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ rc = SQLITE_ERROR;
+ }else{
+ p->rc = SQLITE_OK;
+ rc = SQLITE_ROW;
+ }
+ }
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the SQL that was used to generate a VDBE program.
+*/
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
+ const char *z = 0;
+ if( p->zSql ){
+ z = p->zSql;
+ }else if( p->nOp>=1 ){
+ const VdbeOp *pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
+ z = pOp->p4.z;
+ while( sqlite3Isspace(*z) ) z++;
+ }
+ }
+ if( z ) printf("SQL: [%s]\n", z);
+}
+#endif
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** Print an IOTRACE message showing SQL content.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( sqlite3IoTrace==0 ) return;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
+ int i, j;
+ char z[1000];
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
+ for(i=0; sqlite3Isspace(z[i]); i++){}
+ for(j=0; z[i]; i++){
+ if( sqlite3Isspace(z[i]) ){
+ if( z[i-1]!=' ' ){
+ z[j++] = ' ';
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+ z[j] = 0;
+ sqlite3IoTrace("SQL %s\n", z);
+ }
+}
+#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
+
+/* An instance of this object describes bulk memory available for use
+** by subcomponents of a prepared statement. Space is allocated out
+** of a ReusableSpace object by the allocSpace() routine below.
+*/
+struct ReusableSpace {
+ u8 *pSpace; /* Available memory */
+ sqlite3_int64 nFree; /* Bytes of available memory */
+ sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
+};
+
+/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
+** from the ReusableSpace object. Return a pointer to the allocated
+** memory on success. If insufficient memory is available in the
+** ReusableSpace object, increase the ReusableSpace.nNeeded
+** value by the amount needed and return NULL.
+**
+** If pBuf is not initially NULL, that means that the memory has already
+** been allocated by a prior call to this routine, so just return a copy
+** of pBuf and leave ReusableSpace unchanged.
+**
+** This allocator is employed to repurpose unused slots at the end of the
+** opcode array of prepared state for other memory needs of the prepared
+** statement.
+*/
+static void *allocSpace(
+ struct ReusableSpace *p, /* Bulk memory available for allocation */
+ void *pBuf, /* Pointer to a prior allocation */
+ sqlite3_int64 nByte /* Bytes of memory needed. */
+){
+ assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
+ if( pBuf==0 ){
+ nByte = ROUND8P(nByte);
+ if( nByte <= p->nFree ){
+ p->nFree -= nByte;
+ pBuf = &p->pSpace[p->nFree];
+ }else{
+ p->nNeeded += nByte;
+ }
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
+ return pBuf;
+}
+
+/*
+** Rewind the VDBE back to the beginning in preparation for
+** running it.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe *p){
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+ int i;
+#endif
+ assert( p!=0 );
+ assert( p->eVdbeState==VDBE_INIT_STATE
+ || p->eVdbeState==VDBE_READY_STATE
+ || p->eVdbeState==VDBE_HALT_STATE );
+
+ /* There should be at least one opcode.
+ */
+ assert( p->nOp>0 );
+
+ p->eVdbeState = VDBE_READY_STATE;
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<p->nMem; i++){
+ assert( p->aMem[i].db==p->db );
+ }
+#endif
+ p->pc = -1;
+ p->rc = SQLITE_OK;
+ p->errorAction = OE_Abort;
+ p->nChange = 0;
+ p->cacheCtr = 1;
+ p->minWriteFileFormat = 255;
+ p->iStatement = 0;
+ p->nFkConstraint = 0;
+#ifdef VDBE_PROFILE
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+#endif
+}
+
+/*
+** Prepare a virtual machine for execution for the first time after
+** creating the virtual machine. This involves things such
+** as allocating registers and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqlite3VdbeExec().
+**
+** This function may be called exactly once on each virtual machine.
+** After this routine is called the VM has been "packaged" and is ready
+** to run. After this routine is called, further calls to
+** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
+** the Vdbe from the Parse object that helped generate it so that the
+** the Vdbe becomes an independent entity and the Parse object can be
+** destroyed.
+**
+** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
+** to its initial state after it has been run.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ Parse *pParse /* Parsing context */
+){
+ sqlite3 *db; /* The database connection */
+ int nVar; /* Number of parameters */
+ int nMem; /* Number of VM memory registers */
+ int nCursor; /* Number of cursors required */
+ int nArg; /* Number of arguments in subprograms */
+ int n; /* Loop counter */
+ struct ReusableSpace x; /* Reusable bulk memory */
+
+ assert( p!=0 );
+ assert( p->nOp>0 );
+ assert( pParse!=0 );
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( pParse==p->pParse );
+ p->pVList = pParse->pVList;
+ pParse->pVList = 0;
+ db = p->db;
+ assert( db->mallocFailed==0 );
+ nVar = pParse->nVar;
+ nMem = pParse->nMem;
+ nCursor = pParse->nTab;
+ nArg = pParse->nMaxArg;
+
+ /* Each cursor uses a memory cell. The first cursor (cursor 0) can
+ ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
+ ** space at the end of aMem[] for cursors 1 and greater.
+ ** See also: allocateCursor().
+ */
+ nMem += nCursor;
+ if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
+
+ /* Figure out how much reusable memory is available at the end of the
+ ** opcode array. This extra memory will be reallocated for other elements
+ ** of the prepared statement.
+ */
+ n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
+ x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
+ assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
+ x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
+ assert( x.nFree>=0 );
+ assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
+
+ resolveP2Values(p, &nArg);
+ p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
+ if( pParse->explain ){
+ static const char * const azColName[] = {
+ "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
+ "id", "parent", "notused", "detail"
+ };
+ int iFirst, mx, i;
+ if( nMem<10 ) nMem = 10;
+ p->explain = pParse->explain;
+ if( pParse->explain==2 ){
+ sqlite3VdbeSetNumCols(p, 4);
+ iFirst = 8;
+ mx = 12;
+ }else{
+ sqlite3VdbeSetNumCols(p, 8);
+ iFirst = 0;
+ mx = 8;
+ }
+ for(i=iFirst; i<mx; i++){
+ sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
+ azColName[i], SQLITE_STATIC);
+ }
+ }
+ p->expired = 0;
+
+ /* Memory for registers, parameters, cursor, etc, is allocated in one or two
+ ** passes. On the first pass, we try to reuse unused memory at the
+ ** end of the opcode array. If we are unable to satisfy all memory
+ ** requirements by reusing the opcode array tail, then the second
+ ** pass will fill in the remainder using a fresh memory allocation.
+ **
+ ** This two-pass approach that reuses as much memory as possible from
+ ** the leftover memory at the end of the opcode array. This can significantly
+ ** reduce the amount of memory held by a prepared statement.
+ */
+ x.nNeeded = 0;
+ p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
+ p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
+ p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
+ p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
+#endif
+ if( x.nNeeded ){
+ x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
+ x.nFree = x.nNeeded;
+ if( !db->mallocFailed ){
+ p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
+ p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
+ p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
+ p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
+#endif
+ }
+ }
+
+ if( db->mallocFailed ){
+ p->nVar = 0;
+ p->nCursor = 0;
+ p->nMem = 0;
+ }else{
+ p->nCursor = nCursor;
+ p->nVar = (ynVar)nVar;
+ initMemArray(p->aVar, nVar, db, MEM_Null);
+ p->nMem = nMem;
+ initMemArray(p->aMem, nMem, db, MEM_Undefined);
+ memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ memset(p->anExec, 0, p->nOp*sizeof(i64));
+#endif
+ }
+ sqlite3VdbeRewind(p);
+}
+
+/*
+** Close a VDBE cursor and release all the resources that cursor
+** happens to hold.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
+ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
+}
+SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
+ switch( pCx->eCurType ){
+ case CURTYPE_SORTER: {
+ sqlite3VdbeSorterClose(p->db, pCx);
+ break;
+ }
+ case CURTYPE_BTREE: {
+ assert( pCx->uc.pCursor!=0 );
+ sqlite3BtreeCloseCursor(pCx->uc.pCursor);
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case CURTYPE_VTAB: {
+ sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
+ const sqlite3_module *pModule = pVCur->pVtab->pModule;
+ assert( pVCur->pVtab->nRef>0 );
+ pVCur->pVtab->nRef--;
+ pModule->xClose(pVCur);
+ break;
+ }
+#endif
+ }
+}
+
+/*
+** Close all cursors in the current frame.
+*/
+static void closeCursorsInFrame(Vdbe *p){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ VdbeCursor *pC = p->apCsr[i];
+ if( pC ){
+ sqlite3VdbeFreeCursorNN(p, pC);
+ p->apCsr[i] = 0;
+ }
+ }
+}
+
+/*
+** Copy the values stored in the VdbeFrame structure to its Vdbe. This
+** is used, for example, when a trigger sub-program is halted to restore
+** control to the main program.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
+ Vdbe *v = pFrame->v;
+ closeCursorsInFrame(v);
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ v->anExec = pFrame->anExec;
+#endif
+ v->aOp = pFrame->aOp;
+ v->nOp = pFrame->nOp;
+ v->aMem = pFrame->aMem;
+ v->nMem = pFrame->nMem;
+ v->apCsr = pFrame->apCsr;
+ v->nCursor = pFrame->nCursor;
+ v->db->lastRowid = pFrame->lastRowid;
+ v->nChange = pFrame->nChange;
+ v->db->nChange = pFrame->nDbChange;
+ sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
+ v->pAuxData = pFrame->pAuxData;
+ pFrame->pAuxData = 0;
+ return pFrame->pc;
+}
+
+/*
+** Close all cursors.
+**
+** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
+** cell array. This is necessary as the memory cell array may contain
+** pointers to VdbeFrame objects, which may in turn contain pointers to
+** open cursors.
+*/
+static void closeAllCursors(Vdbe *p){
+ if( p->pFrame ){
+ VdbeFrame *pFrame;
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ sqlite3VdbeFrameRestore(pFrame);
+ p->pFrame = 0;
+ p->nFrame = 0;
+ }
+ assert( p->nFrame==0 );
+ closeCursorsInFrame(p);
+ releaseMemArray(p->aMem, p->nMem);
+ while( p->pDelFrame ){
+ VdbeFrame *pDel = p->pDelFrame;
+ p->pDelFrame = pDel->pParent;
+ sqlite3VdbeFrameDelete(pDel);
+ }
+
+ /* Delete any auxdata allocations made by the VM */
+ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
+ assert( p->pAuxData==0 );
+}
+
+/*
+** Set the number of result columns that will be returned by this SQL
+** statement. This is now set at compile time, rather than during
+** execution of the vdbe program so that sqlite3_column_count() can
+** be called on an SQL statement before sqlite3_step().
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
+ int n;
+ sqlite3 *db = p->db;
+
+ if( p->nResColumn ){
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ sqlite3DbFree(db, p->aColName);
+ }
+ n = nResColumn*COLNAME_N;
+ p->nResColumn = (u16)nResColumn;
+ p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
+ if( p->aColName==0 ) return;
+ initMemArray(p->aColName, n, db, MEM_Null);
+}
+
+/*
+** Set the name of the idx'th column to be returned by the SQL statement.
+** zName must be a pointer to a nul terminated string.
+**
+** This call must be made after a call to sqlite3VdbeSetNumCols().
+**
+** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
+** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
+** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSetColName(
+ Vdbe *p, /* Vdbe being configured */
+ int idx, /* Index of column zName applies to */
+ int var, /* One of the COLNAME_* constants */
+ const char *zName, /* Pointer to buffer containing name */
+ void (*xDel)(void*) /* Memory management strategy for zName */
+){
+ int rc;
+ Mem *pColName;
+ assert( idx<p->nResColumn );
+ assert( var<COLNAME_N );
+ if( p->db->mallocFailed ){
+ assert( !zName || xDel!=SQLITE_DYNAMIC );
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( p->aColName!=0 );
+ pColName = &(p->aColName[idx+var*p->nResColumn]);
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
+ assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
+ return rc;
+}
+
+/*
+** A read or write transaction may or may not be active on database handle
+** db. If a transaction is active, commit it. If there is a
+** write-transaction spanning more than one database file, this routine
+** takes care of the super-journal trickery.
+*/
+static int vdbeCommit(sqlite3 *db, Vdbe *p){
+ int i;
+ int nTrans = 0; /* Number of databases with an active write-transaction
+ ** that are candidates for a two-phase commit using a
+ ** super-journal */
+ int rc = SQLITE_OK;
+ int needXcommit = 0;
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ /* With this option, sqlite3VtabSync() is defined to be simply
+ ** SQLITE_OK so p is not used.
+ */
+ UNUSED_PARAMETER(p);
+#endif
+
+ /* Before doing anything else, call the xSync() callback for any
+ ** virtual module tables written in this transaction. This has to
+ ** be done before determining whether a super-journal file is
+ ** required, as an xSync() callback may add an attached database
+ ** to the transaction.
+ */
+ rc = sqlite3VtabSync(db, p);
+
+ /* This loop determines (a) if the commit hook should be invoked and
+ ** (b) how many database files have open write transactions, not
+ ** including the temp database. (b) is important because if more than
+ ** one database file has an open write transaction, a super-journal
+ ** file is required for an atomic commit.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
+ /* Whether or not a database might need a super-journal depends upon
+ ** its journal mode (among other things). This matrix determines which
+ ** journal modes use a super-journal and which do not */
+ static const u8 aMJNeeded[] = {
+ /* DELETE */ 1,
+ /* PERSIST */ 1,
+ /* OFF */ 0,
+ /* TRUNCATE */ 1,
+ /* MEMORY */ 0,
+ /* WAL */ 0
+ };
+ Pager *pPager; /* Pager associated with pBt */
+ needXcommit = 1;
+ sqlite3BtreeEnter(pBt);
+ pPager = sqlite3BtreePager(pBt);
+ if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
+ && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
+ && sqlite3PagerIsMemdb(pPager)==0
+ ){
+ assert( i!=1 );
+ nTrans++;
+ }
+ rc = sqlite3PagerExclusiveLock(pPager);
+ sqlite3BtreeLeave(pBt);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* If there are any write-transactions at all, invoke the commit hook */
+ if( needXcommit && db->xCommitCallback ){
+ rc = db->xCommitCallback(db->pCommitArg);
+ if( rc ){
+ return SQLITE_CONSTRAINT_COMMITHOOK;
+ }
+ }
+
+ /* The simple case - no more than one database file (not counting the
+ ** TEMP database) has a transaction active. There is no need for the
+ ** super-journal.
+ **
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length
+ ** string, it means the main database is :memory: or a temp file. In
+ ** that case we do not support atomic multi-file commits, so use the
+ ** simple case then too.
+ */
+ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
+ || nTrans<=1
+ ){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
+ }
+ }
+
+ /* Do the commit only if all databases successfully complete phase 1.
+ ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
+ ** IO error while deleting or truncating a journal file. It is unlikely,
+ ** but could happen. In this case abandon processing and return the error.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3VtabCommit(db);
+ }
+ }
+
+ /* The complex case - There is a multi-file write-transaction active.
+ ** This requires a super-journal file to ensure the transaction is
+ ** committed atomically.
+ */
+#ifndef SQLITE_OMIT_DISKIO
+ else{
+ sqlite3_vfs *pVfs = db->pVfs;
+ char *zSuper = 0; /* File-name for the super-journal */
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
+ sqlite3_file *pSuperJrnl = 0;
+ i64 offset = 0;
+ int res;
+ int retryCount = 0;
+ int nMainFile;
+
+ /* Select a super-journal file name */
+ nMainFile = sqlite3Strlen30(zMainFile);
+ zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
+ if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
+ zSuper += 4;
+ do {
+ u32 iRandom;
+ if( retryCount ){
+ if( retryCount>100 ){
+ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
+ sqlite3OsDelete(pVfs, zSuper, 0);
+ break;
+ }else if( retryCount==1 ){
+ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
+ }
+ }
+ retryCount++;
+ sqlite3_randomness(sizeof(iRandom), &iRandom);
+ sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
+ (iRandom>>8)&0xffffff, iRandom&0xff);
+ /* The antipenultimate character of the super-journal name must
+ ** be "9" to avoid name collisions when using 8+3 filenames. */
+ assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
+ sqlite3FileSuffix3(zMainFile, zSuper);
+ rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
+ }while( rc==SQLITE_OK && res );
+ if( rc==SQLITE_OK ){
+ /* Open the super-journal. */
+ rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
+ );
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+
+ /* Write the name of each database file in the transaction into the new
+ ** super-journal file. If an error occurs at this point close
+ ** and delete the super-journal file. All the individual journal files
+ ** still have 'null' as the super-journal pointer, so they will roll
+ ** back independently if a failure occurs.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
+ char const *zFile = sqlite3BtreeGetJournalname(pBt);
+ if( zFile==0 ){
+ continue; /* Ignore TEMP and :memory: databases */
+ }
+ assert( zFile[0]!=0 );
+ rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
+ offset += sqlite3Strlen30(zFile)+1;
+ if( rc!=SQLITE_OK ){
+ sqlite3OsCloseFree(pSuperJrnl);
+ sqlite3OsDelete(pVfs, zSuper, 0);
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+ }
+ }
+
+ /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
+ ** flag is set this is not required.
+ */
+ if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
+ && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
+ ){
+ sqlite3OsCloseFree(pSuperJrnl);
+ sqlite3OsDelete(pVfs, zSuper, 0);
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+
+ /* Sync all the db files involved in the transaction. The same call
+ ** sets the super-journal pointer in each individual journal. If
+ ** an error occurs here, do not delete the super-journal file.
+ **
+ ** If the error occurs during the first call to
+ ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
+ ** super-journal file will be orphaned. But we cannot delete it,
+ ** in case the super-journal file name was written into the journal
+ ** file before the failure occurred.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
+ }
+ }
+ sqlite3OsCloseFree(pSuperJrnl);
+ assert( rc!=SQLITE_BUSY );
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+
+ /* Delete the super-journal file. This commits the transaction. After
+ ** doing this the directory is synced again before any individual
+ ** transaction files are deleted.
+ */
+ rc = sqlite3OsDelete(pVfs, zSuper, 1);
+ sqlite3DbFree(db, zSuper-4);
+ zSuper = 0;
+ if( rc ){
+ return rc;
+ }
+
+ /* All files and directories have already been synced, so the following
+ ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
+ ** deleting or truncating journals. If something goes wrong while
+ ** this is happening we don't really care. The integrity of the
+ ** transaction is already guaranteed, but some stray 'cold' journals
+ ** may be lying around. Returning an error code won't help matters.
+ */
+ disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ sqlite3BtreeCommitPhaseTwo(pBt, 1);
+ }
+ }
+ sqlite3EndBenignMalloc();
+ enable_simulated_io_errors();
+
+ sqlite3VtabCommit(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** This routine checks that the sqlite3.nVdbeActive count variable
+** matches the number of vdbe's in the list sqlite3.pVdbe that are
+** currently active. An assertion fails if the two counts do not match.
+** This is an internal self-check only - it is not an essential processing
+** step.
+**
+** This is a no-op if NDEBUG is defined.
+*/
+#ifndef NDEBUG
+static void checkActiveVdbeCnt(sqlite3 *db){
+ Vdbe *p;
+ int cnt = 0;
+ int nWrite = 0;
+ int nRead = 0;
+ p = db->pVdbe;
+ while( p ){
+ if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
+ cnt++;
+ if( p->readOnly==0 ) nWrite++;
+ if( p->bIsReader ) nRead++;
+ }
+ p = p->pNext;
+ }
+ assert( cnt==db->nVdbeActive );
+ assert( nWrite==db->nVdbeWrite );
+ assert( nRead==db->nVdbeRead );
+}
+#else
+#define checkActiveVdbeCnt(x)
+#endif
+
+/*
+** If the Vdbe passed as the first argument opened a statement-transaction,
+** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
+** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
+** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
+** statement transaction is committed.
+**
+** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
+** Otherwise SQLITE_OK.
+*/
+static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
+ sqlite3 *const db = p->db;
+ int rc = SQLITE_OK;
+ int i;
+ const int iSavepoint = p->iStatement-1;
+
+ assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
+ assert( db->nStatement>0 );
+ assert( p->iStatement==(db->nStatement+db->nSavepoint) );
+
+ for(i=0; i<db->nDb; i++){
+ int rc2 = SQLITE_OK;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
+ }
+ if( rc2==SQLITE_OK ){
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ db->nStatement--;
+ p->iStatement = 0;
+
+ if( rc==SQLITE_OK ){
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
+ }
+ }
+
+ /* If the statement transaction is being rolled back, also restore the
+ ** database handles deferred constraint counter to the value it had when
+ ** the statement transaction was opened. */
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ db->nDeferredCons = p->nStmtDefCons;
+ db->nDeferredImmCons = p->nStmtDefImmCons;
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
+ if( p->db->nStatement && p->iStatement ){
+ return vdbeCloseStatement(p, eOp);
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** This function is called when a transaction opened by the database
+** handle associated with the VM passed as an argument is about to be
+** committed. If there are outstanding deferred foreign key constraint
+** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
+**
+** If there are outstanding FK violations and this function returns
+** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
+** and write an error message to it. Then return SQLITE_ERROR.
+*/
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
+ sqlite3 *db = p->db;
+ if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
+ || (!deferred && p->nFkConstraint>0)
+ ){
+ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
+ p->errorAction = OE_Abort;
+ sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
+ if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
+ return SQLITE_CONSTRAINT_FOREIGNKEY;
+ }
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** This routine is called the when a VDBE tries to halt. If the VDBE
+** has made changes and is in autocommit mode, then commit those
+** changes. If a rollback is needed, then do the rollback.
+**
+** This routine is the only way to move the sqlite3eOpenState of a VM from
+** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
+** call this on a VM that is in the SQLITE_STATE_HALT state.
+**
+** Return an error code. If the commit could not complete because of
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
+** means the close did not happen and needs to be repeated.
+*/
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
+ int rc; /* Used to store transient return codes */
+ sqlite3 *db = p->db;
+
+ /* This function contains the logic that determines if a statement or
+ ** transaction will be committed or rolled back as a result of the
+ ** execution of this virtual machine.
+ **
+ ** If any of the following errors occur:
+ **
+ ** SQLITE_NOMEM
+ ** SQLITE_IOERR
+ ** SQLITE_FULL
+ ** SQLITE_INTERRUPT
+ **
+ ** Then the internal cache might have been left in an inconsistent
+ ** state. We need to rollback the statement transaction, if there is
+ ** one, or the complete transaction if there is no statement transaction.
+ */
+
+ assert( p->eVdbeState==VDBE_RUN_STATE );
+ if( db->mallocFailed ){
+ p->rc = SQLITE_NOMEM_BKPT;
+ }
+ closeAllCursors(p);
+ checkActiveVdbeCnt(db);
+
+ /* No commit or rollback needed if the program never started or if the
+ ** SQL statement does not read or write a database file. */
+ if( p->bIsReader ){
+ int mrc; /* Primary error code from p->rc */
+ int eStatementOp = 0;
+ int isSpecialError; /* Set to true if a 'special' error */
+
+ /* Lock all btrees used by the statement */
+ sqlite3VdbeEnter(p);
+
+ /* Check for one of the special errors */
+ if( p->rc ){
+ mrc = p->rc & 0xff;
+ isSpecialError = mrc==SQLITE_NOMEM
+ || mrc==SQLITE_IOERR
+ || mrc==SQLITE_INTERRUPT
+ || mrc==SQLITE_FULL;
+ }else{
+ mrc = isSpecialError = 0;
+ }
+ if( isSpecialError ){
+ /* If the query was read-only and the error code is SQLITE_INTERRUPT,
+ ** no rollback is necessary. Otherwise, at least a savepoint
+ ** transaction must be rolled back to restore the database to a
+ ** consistent state.
+ **
+ ** Even if the statement is read-only, it is important to perform
+ ** a statement or transaction rollback operation. If the error
+ ** occurred while writing to the journal, sub-journal or database
+ ** file as part of an effort to free up cache space (see function
+ ** pagerStress() in pager.c), the rollback is required to restore
+ ** the pager to a consistent state.
+ */
+ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
+ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
+ eStatementOp = SAVEPOINT_ROLLBACK;
+ }else{
+ /* We are forced to roll back the active transaction. Before doing
+ ** so, abort any other statements this handle currently has active.
+ */
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ sqlite3CloseSavepoints(db);
+ db->autoCommit = 1;
+ p->nChange = 0;
+ }
+ }
+ }
+
+ /* Check for immediate foreign key violations. */
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
+ sqlite3VdbeCheckFk(p, 0);
+ }
+
+ /* If the auto-commit flag is set and this is the only active writer
+ ** VM, then we do either a commit or rollback of the current transaction.
+ **
+ ** Note: This block also runs if one of the special errors handled
+ ** above has occurred.
+ */
+ if( !sqlite3VtabInSync(db)
+ && db->autoCommit
+ && db->nVdbeWrite==(p->readOnly==0)
+ ){
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
+ rc = sqlite3VdbeCheckFk(p, 1);
+ if( rc!=SQLITE_OK ){
+ if( NEVER(p->readOnly) ){
+ sqlite3VdbeLeave(p);
+ return SQLITE_ERROR;
+ }
+ rc = SQLITE_CONSTRAINT_FOREIGNKEY;
+ }else if( db->flags & SQLITE_CorruptRdOnly ){
+ rc = SQLITE_CORRUPT;
+ db->flags &= ~SQLITE_CorruptRdOnly;
+ }else{
+ /* The auto-commit flag is true, the vdbe program was successful
+ ** or hit an 'OR FAIL' constraint and there are no deferred foreign
+ ** key constraints to hold up the transaction. This means a commit
+ ** is required. */
+ rc = vdbeCommit(db, p);
+ }
+ if( rc==SQLITE_BUSY && p->readOnly ){
+ sqlite3VdbeLeave(p);
+ return SQLITE_BUSY;
+ }else if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ sqlite3RollbackAll(db, SQLITE_OK);
+ p->nChange = 0;
+ }else{
+ db->nDeferredCons = 0;
+ db->nDeferredImmCons = 0;
+ db->flags &= ~(u64)SQLITE_DeferFKs;
+ sqlite3CommitInternalChanges(db);
+ }
+ }else{
+ sqlite3RollbackAll(db, SQLITE_OK);
+ p->nChange = 0;
+ }
+ db->nStatement = 0;
+ }else if( eStatementOp==0 ){
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
+ eStatementOp = SAVEPOINT_RELEASE;
+ }else if( p->errorAction==OE_Abort ){
+ eStatementOp = SAVEPOINT_ROLLBACK;
+ }else{
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ sqlite3CloseSavepoints(db);
+ db->autoCommit = 1;
+ p->nChange = 0;
+ }
+ }
+
+ /* If eStatementOp is non-zero, then a statement transaction needs to
+ ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
+ ** do so. If this operation returns an error, and the current statement
+ ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
+ ** current statement error code.
+ */
+ if( eStatementOp ){
+ rc = sqlite3VdbeCloseStatement(p, eStatementOp);
+ if( rc ){
+ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
+ p->rc = rc;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ sqlite3CloseSavepoints(db);
+ db->autoCommit = 1;
+ p->nChange = 0;
+ }
+ }
+
+ /* If this was an INSERT, UPDATE or DELETE and no statement transaction
+ ** has been rolled back, update the database connection change-counter.
+ */
+ if( p->changeCntOn ){
+ if( eStatementOp!=SAVEPOINT_ROLLBACK ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }else{
+ sqlite3VdbeSetChanges(db, 0);
+ }
+ p->nChange = 0;
+ }
+
+ /* Release the locks */
+ sqlite3VdbeLeave(p);
+ }
+
+ /* We have successfully halted and closed the VM. Record this fact. */
+ db->nVdbeActive--;
+ if( !p->readOnly ) db->nVdbeWrite--;
+ if( p->bIsReader ) db->nVdbeRead--;
+ assert( db->nVdbeActive>=db->nVdbeRead );
+ assert( db->nVdbeRead>=db->nVdbeWrite );
+ assert( db->nVdbeWrite>=0 );
+ p->eVdbeState = VDBE_HALT_STATE;
+ checkActiveVdbeCnt(db);
+ if( db->mallocFailed ){
+ p->rc = SQLITE_NOMEM_BKPT;
+ }
+
+ /* If the auto-commit flag is set to true, then any locks that were held
+ ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
+ ** to invoke any required unlock-notify callbacks.
+ */
+ if( db->autoCommit ){
+ sqlite3ConnectionUnlocked(db);
+ }
+
+ assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
+ return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
+}
+
+
+/*
+** Each VDBE holds the result of the most recent sqlite3_step() call
+** in p->rc. This routine sets that result back to SQLITE_OK.
+*/
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
+ p->rc = SQLITE_OK;
+}
+
+/*
+** Copy the error code and error message belonging to the VDBE passed
+** as the first argument to its database handle (so that they will be
+** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
+**
+** This function does not clear the VDBE error code or message, just
+** copies them to the database handle.
+*/
+SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){
+ sqlite3 *db = p->db;
+ int rc = p->rc;
+ if( p->zErrMsg ){
+ db->bBenignMalloc++;
+ sqlite3BeginBenignMalloc();
+ if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
+ sqlite3EndBenignMalloc();
+ db->bBenignMalloc--;
+ }else if( db->pErr ){
+ sqlite3ValueSetNull(db->pErr);
+ }
+ db->errCode = rc;
+ db->errByteOffset = -1;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SQLLOG
+/*
+** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
+** invoke it.
+*/
+static void vdbeInvokeSqllog(Vdbe *v){
+ if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
+ char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
+ assert( v->db->init.busy==0 );
+ if( zExpanded ){
+ sqlite3GlobalConfig.xSqllog(
+ sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
+ );
+ sqlite3DbFree(v->db, zExpanded);
+ }
+ }
+}
+#else
+# define vdbeInvokeSqllog(x)
+#endif
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+**
+** To look at it another way, this routine resets the state of the
+** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
+** VDBE_READY_STATE.
+*/
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+ int i;
+#endif
+
+ sqlite3 *db;
+ db = p->db;
+
+ /* If the VM did not run to completion or if it encountered an
+ ** error, then it might not have been halted properly. So halt
+ ** it now.
+ */
+ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
+
+ /* If the VDBE has been run even partially, then transfer the error code
+ ** and error message from the VDBE into the main database structure. But
+ ** if the VDBE has just been set to run but has not actually executed any
+ ** instructions yet, leave the main database error information unchanged.
+ */
+ if( p->pc>=0 ){
+ vdbeInvokeSqllog(p);
+ if( db->pErr || p->zErrMsg ){
+ sqlite3VdbeTransferError(p);
+ }else{
+ db->errCode = p->rc;
+ }
+ }
+
+ /* Reset register contents and reclaim error message memory.
+ */
+#ifdef SQLITE_DEBUG
+ /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
+ ** Vdbe.aMem[] arrays have already been cleaned up. */
+ if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
+ if( p->aMem ){
+ for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
+ }
+#endif
+ if( p->zErrMsg ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }
+ p->pResultSet = 0;
+#ifdef SQLITE_DEBUG
+ p->nWrite = 0;
+#endif
+
+ /* Save profiling information from this VDBE run.
+ */
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ if( p->zSql ){
+ char c, pc = 0;
+ fprintf(out, "-- ");
+ for(i=0; (c = p->zSql[i])!=0; i++){
+ if( pc=='\n' ) fprintf(out, "-- ");
+ putc(c, out);
+ pc = c;
+ }
+ if( pc!='\n' ) fprintf(out, "\n");
+ }
+ for(i=0; i<p->nOp; i++){
+ char zHdr[100];
+ sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ fprintf(out, "%s", zHdr);
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ return p->rc & db->errMask;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
+ int rc = SQLITE_OK;
+ assert( VDBE_RUN_STATE>VDBE_READY_STATE );
+ assert( VDBE_HALT_STATE>VDBE_READY_STATE );
+ assert( VDBE_INIT_STATE<VDBE_READY_STATE );
+ if( p->eVdbeState>=VDBE_READY_STATE ){
+ rc = sqlite3VdbeReset(p);
+ assert( (rc & p->db->errMask)==rc );
+ }
+ sqlite3VdbeDelete(p);
+ return rc;
+}
+
+/*
+** If parameter iOp is less than zero, then invoke the destructor for
+** all auxiliary data pointers currently cached by the VM passed as
+** the first argument.
+**
+** Or, if iOp is greater than or equal to zero, then the destructor is
+** only invoked for those auxiliary data pointers created by the user
+** function invoked by the OP_Function opcode at instruction iOp of
+** VM pVdbe, and only then if:
+**
+** * the associated function parameter is the 32nd or later (counting
+** from left to right), or
+**
+** * the corresponding bit in argument mask is clear (where the first
+** function parameter corresponds to bit 0 etc.).
+*/
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
+ while( *pp ){
+ AuxData *pAux = *pp;
+ if( (iOp<0)
+ || (pAux->iAuxOp==iOp
+ && pAux->iAuxArg>=0
+ && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
+ ){
+ testcase( pAux->iAuxArg==31 );
+ if( pAux->xDeleteAux ){
+ pAux->xDeleteAux(pAux->pAux);
+ }
+ *pp = pAux->pNextAux;
+ sqlite3DbFree(db, pAux);
+ }else{
+ pp= &pAux->pNextAux;
+ }
+ }
+}
+
+/*
+** Free all memory associated with the Vdbe passed as the second argument,
+** except for object itself, which is preserved.
+**
+** The difference between this function and sqlite3VdbeDelete() is that
+** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
+** the database connection and frees the object itself.
+*/
+static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
+ SubProgram *pSub, *pNext;
+ assert( p->db==0 || p->db==db );
+ if( p->aColName ){
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ sqlite3DbFreeNN(db, p->aColName);
+ }
+ for(pSub=p->pProgram; pSub; pSub=pNext){
+ pNext = pSub->pNext;
+ vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
+ sqlite3DbFree(db, pSub);
+ }
+ if( p->eVdbeState!=VDBE_INIT_STATE ){
+ releaseMemArray(p->aVar, p->nVar);
+ if( p->pVList ) sqlite3DbFreeNN(db, p->pVList);
+ if( p->pFree ) sqlite3DbFreeNN(db, p->pFree);
+ }
+ vdbeFreeOpArray(db, p->aOp, p->nOp);
+ sqlite3DbFree(db, p->zSql);
+#ifdef SQLITE_ENABLE_NORMALIZE
+ sqlite3DbFree(db, p->zNormSql);
+ {
+ DblquoteStr *pThis, *pNext;
+ for(pThis=p->pDblStr; pThis; pThis=pNext){
+ pNext = pThis->pNextStr;
+ sqlite3DbFree(db, pThis);
+ }
+ }
+#endif
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ {
+ int i;
+ for(i=0; i<p->nScan; i++){
+ sqlite3DbFree(db, p->aScan[i].zName);
+ }
+ sqlite3DbFree(db, p->aScan);
+ }
+#endif
+}
+
+/*
+** Delete an entire VDBE.
+*/
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
+ sqlite3 *db;
+
+ assert( p!=0 );
+ db = p->db;
+ assert( sqlite3_mutex_held(db->mutex) );
+ sqlite3VdbeClearObject(db, p);
+ if( db->pnBytesFreed==0 ){
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( db->pVdbe==p );
+ db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ }
+ sqlite3DbFreeNN(db, p);
+}
+
+/*
+** The cursor "p" has a pending seek operation that has not yet been
+** carried out. Seek the cursor now. If an error occurs, return
+** the appropriate error code.
+*/
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
+ int res, rc;
+#ifdef SQLITE_TEST
+ extern int sqlite3_search_count;
+#endif
+ assert( p->deferredMoveto );
+ assert( p->isTable );
+ assert( p->eCurType==CURTYPE_BTREE );
+ rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
+ if( rc ) return rc;
+ if( res!=0 ) return SQLITE_CORRUPT_BKPT;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ p->deferredMoveto = 0;
+ p->cacheStatus = CACHE_STALE;
+ return SQLITE_OK;
+}
+
+/*
+** Something has moved cursor "p" out of place. Maybe the row it was
+** pointed to was deleted out from under it. Or maybe the btree was
+** rebalanced. Whatever the cause, try to restore "p" to the place it
+** is supposed to be pointing. If the row was deleted out from under the
+** cursor, set the cursor to point to a NULL row.
+*/
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
+ int isDifferentRow, rc;
+ assert( p->eCurType==CURTYPE_BTREE );
+ assert( p->uc.pCursor!=0 );
+ assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
+ rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
+ p->cacheStatus = CACHE_STALE;
+ if( isDifferentRow ) p->nullRow = 1;
+ return rc;
+}
+
+/*
+** Check to ensure that the cursor is valid. Restore the cursor
+** if need be. Return any I/O error from the restore operation.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor *p){
+ assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
+ if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
+ return sqlite3VdbeHandleMovedCursor(p);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The following functions:
+**
+** sqlite3VdbeSerialType()
+** sqlite3VdbeSerialTypeLen()
+** sqlite3VdbeSerialLen()
+** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
+** sqlite3VdbeSerialGet()
+**
+** encapsulate the code that serializes values for storage in SQLite
+** data and index records. Each serialized value consists of a
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
+** integer, stored as a varint.
+**
+** In an SQLite index record, the serial type is stored directly before
+** the blob of data that it corresponds to. In a table record, all serial
+** types are stored at the start of the record, and the blobs of data at
+** the end. Hence these functions allow the caller to handle the
+** serial-type and data blob separately.
+**
+** The following table describes the various storage classes for data:
+**
+** serial type bytes of data type
+** -------------- --------------- ---------------
+** 0 0 NULL
+** 1 1 signed integer
+** 2 2 signed integer
+** 3 3 signed integer
+** 4 4 signed integer
+** 5 6 signed integer
+** 6 8 signed integer
+** 7 8 IEEE float
+** 8 0 Integer constant 0
+** 9 0 Integer constant 1
+** 10,11 reserved for expansion
+** N>=12 and even (N-12)/2 BLOB
+** N>=13 and odd (N-13)/2 text
+**
+** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
+** of SQLite will not understand those serial types.
+*/
+
+#if 0 /* Inlined into the OP_MakeRecord opcode */
+/*
+** Return the serial-type for the value stored in pMem.
+**
+** This routine might convert a large MEM_IntReal value into MEM_Real.
+**
+** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
+** opcode in the byte-code engine. But by moving this routine in-line, we
+** can omit some redundant tests and make that opcode a lot faster. So
+** this routine is now only used by the STAT3 logic and STAT3 support has
+** ended. The code is kept here for historical reference only.
+*/
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
+ int flags = pMem->flags;
+ u32 n;
+
+ assert( pLen!=0 );
+ if( flags&MEM_Null ){
+ *pLen = 0;
+ return 0;
+ }
+ if( flags&(MEM_Int|MEM_IntReal) ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
+ i64 i = pMem->u.i;
+ u64 u;
+ testcase( flags & MEM_Int );
+ testcase( flags & MEM_IntReal );
+ if( i<0 ){
+ u = ~i;
+ }else{
+ u = i;
+ }
+ if( u<=127 ){
+ if( (i&1)==i && file_format>=4 ){
+ *pLen = 0;
+ return 8+(u32)u;
+ }else{
+ *pLen = 1;
+ return 1;
+ }
+ }
+ if( u<=32767 ){ *pLen = 2; return 2; }
+ if( u<=8388607 ){ *pLen = 3; return 3; }
+ if( u<=2147483647 ){ *pLen = 4; return 4; }
+ if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
+ *pLen = 8;
+ if( flags&MEM_IntReal ){
+ /* If the value is IntReal and is going to take up 8 bytes to store
+ ** as an integer, then we might as well make it an 8-byte floating
+ ** point value */
+ pMem->u.r = (double)pMem->u.i;
+ pMem->flags &= ~MEM_IntReal;
+ pMem->flags |= MEM_Real;
+ return 7;
+ }
+ return 6;
+ }
+ if( flags&MEM_Real ){
+ *pLen = 8;
+ return 7;
+ }
+ assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
+ assert( pMem->n>=0 );
+ n = (u32)pMem->n;
+ if( flags & MEM_Zero ){
+ n += pMem->u.nZero;
+ }
+ *pLen = n;
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0));
+}
+#endif /* inlined into OP_MakeRecord */
+
+/*
+** The sizes for serial types less than 128
+*/
+SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[128] = {
+ /* 0 1 2 3 4 5 6 7 8 9 */
+/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
+/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
+/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
+/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
+/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
+/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
+/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
+/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
+/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
+/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
+/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
+/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
+/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
+};
+
+/*
+** Return the length of the data corresponding to the supplied serial-type.
+*/
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
+ if( serial_type>=128 ){
+ return (serial_type-12)/2;
+ }else{
+ assert( serial_type<12
+ || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
+ return sqlite3SmallTypeSizes[serial_type];
+ }
+}
+SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
+ assert( serial_type<128 );
+ return sqlite3SmallTypeSizes[serial_type];
+}
+
+/*
+** If we are on an architecture with mixed-endian floating
+** points (ex: ARM7) then swap the lower 4 bytes with the
+** upper 4 bytes. Return the result.
+**
+** For most architectures, this is a no-op.
+**
+** (later): It is reported to me that the mixed-endian problem
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
+** that early versions of GCC stored the two words of a 64-bit
+** float in the wrong order. And that error has been propagated
+** ever since. The blame is not necessarily with GCC, though.
+** GCC might have just copying the problem from a prior compiler.
+** I am also told that newer versions of GCC that follow a different
+** ABI get the byte order right.
+**
+** Developers using SQLite on an ARM7 should compile and run their
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
+** enabled, some asserts below will ensure that the byte order of
+** floating point values is correct.
+**
+** (2007-08-30) Frank van Vugt has studied this problem closely
+** and has send his findings to the SQLite developers. Frank
+** writes that some Linux kernels offer floating point hardware
+** emulation that uses only 32-bit mantissas instead of a full
+** 48-bits as required by the IEEE standard. (This is the
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point
+** byte swapping becomes very complicated. To avoid problems,
+** the necessary byte swapping is carried out using a 64-bit integer
+** rather than a 64-bit float. Frank assures us that the code here
+** works for him. We, the developers, have no way to independently
+** verify this, but Frank seems to know what he is talking about
+** so we trust him.
+*/
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in){
+ union {
+ u64 r;
+ u32 i[2];
+ } u;
+ u32 t;
+
+ u.r = in;
+ t = u.i[0];
+ u.i[0] = u.i[1];
+ u.i[1] = t;
+ return u.r;
+}
+#endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
+
+
+/* Input "x" is a sequence of unsigned characters that represent a
+** big-endian integer. Return the equivalent native integer
+*/
+#define ONE_BYTE_INT(x) ((i8)(x)[0])
+#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
+#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
+#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
+#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
+
+/*
+** Deserialize the data blob pointed to by buf as serial type serial_type
+** and store the result in pMem.
+**
+** This function is implemented as two separate routines for performance.
+** The few cases that require local variables are broken out into a separate
+** routine so that in most cases the overhead of moving the stack pointer
+** is avoided.
+*/
+static void serialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ u64 x = FOUR_BYTE_UINT(buf);
+ u32 y = FOUR_BYTE_UINT(buf+4);
+ x = (x<<32) + y;
+ if( serial_type==6 ){
+ /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
+ ** twos-complement integer. */
+ pMem->u.i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ }else{
+ /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
+ ** floating point number. */
+#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
+ /* Verify that integers and floating point values use the same
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
+ ** defined that 64-bit floating point values really are mixed
+ ** endian.
+ */
+ static const u64 t1 = ((u64)0x3ff00000)<<32;
+ static const double r1 = 1.0;
+ u64 t2 = t1;
+ swapMixedEndianFloat(t2);
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
+#endif
+ assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
+ swapMixedEndianFloat(x);
+ memcpy(&pMem->u.r, &x, sizeof(x));
+ pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeSerialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ switch( serial_type ){
+ case 10: { /* Internal use only: NULL with virtual table
+ ** UPDATE no-change flag set */
+ pMem->flags = MEM_Null|MEM_Zero;
+ pMem->n = 0;
+ pMem->u.nZero = 0;
+ return;
+ }
+ case 11: /* Reserved for future use */
+ case 0: { /* Null */
+ /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
+ pMem->flags = MEM_Null;
+ return;
+ }
+ case 1: {
+ /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
+ ** integer. */
+ pMem->u.i = ONE_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 2: { /* 2-byte signed integer */
+ /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
+ ** twos-complement integer. */
+ pMem->u.i = TWO_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 3: { /* 3-byte signed integer */
+ /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
+ ** twos-complement integer. */
+ pMem->u.i = THREE_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 4: { /* 4-byte signed integer */
+ /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
+ ** twos-complement integer. */
+ pMem->u.i = FOUR_BYTE_INT(buf);
+#ifdef __HP_cc
+ /* Work around a sign-extension bug in the HP compiler for HP/UX */
+ if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
+#endif
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 5: { /* 6-byte signed integer */
+ /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
+ ** twos-complement integer. */
+ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 6: /* 8-byte signed integer */
+ case 7: { /* IEEE floating point */
+ /* These use local variables, so do them in a separate routine
+ ** to avoid having to move the frame pointer in the common case */
+ serialGet(buf,serial_type,pMem);
+ return;
+ }
+ case 8: /* Integer 0 */
+ case 9: { /* Integer 1 */
+ /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
+ /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
+ pMem->u.i = serial_type-8;
+ pMem->flags = MEM_Int;
+ return;
+ }
+ default: {
+ /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
+ ** length.
+ ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
+ ** (N-13)/2 bytes in length. */
+ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
+ pMem->z = (char *)buf;
+ pMem->n = (serial_type-12)/2;
+ pMem->flags = aFlag[serial_type&1];
+ return;
+ }
+ }
+ return;
+}
+/*
+** This routine is used to allocate sufficient space for an UnpackedRecord
+** structure large enough to be used with sqlite3VdbeRecordUnpack() if
+** the first argument is a pointer to KeyInfo structure pKeyInfo.
+**
+** The space is either allocated using sqlite3DbMallocRaw() or from within
+** the unaligned buffer passed via the second and third arguments (presumably
+** stack space). If the former, then *ppFree is set to a pointer that should
+** be eventually freed by the caller using sqlite3DbFree(). Or, if the
+** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
+** before returning.
+**
+** If an OOM error occurs, NULL is returned.
+*/
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
+ KeyInfo *pKeyInfo /* Description of the record */
+){
+ UnpackedRecord *p; /* Unpacked record to return */
+ int nByte; /* Number of bytes required for *p */
+ nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
+ p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
+ if( !p ) return 0;
+ p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
+ assert( pKeyInfo->aSortFlags!=0 );
+ p->pKeyInfo = pKeyInfo;
+ p->nField = pKeyInfo->nKeyField + 1;
+ return p;
+}
+
+/*
+** Given the nKey-byte encoding of a record in pKey[], populate the
+** UnpackedRecord structure indicated by the fourth argument with the
+** contents of the decoded record.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(
+ KeyInfo *pKeyInfo, /* Information about the record format */
+ int nKey, /* Size of the binary record */
+ const void *pKey, /* The binary record */
+ UnpackedRecord *p /* Populate this structure before returning. */
+){
+ const unsigned char *aKey = (const unsigned char *)pKey;
+ u32 d;
+ u32 idx; /* Offset in aKey[] to read from */
+ u16 u; /* Unsigned loop counter */
+ u32 szHdr;
+ Mem *pMem = p->aMem;
+
+ p->default_rc = 0;
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ idx = getVarint32(aKey, szHdr);
+ d = szHdr;
+ u = 0;
+ while( idx<szHdr && d<=(u32)nKey ){
+ u32 serial_type;
+
+ idx += getVarint32(&aKey[idx], serial_type);
+ pMem->enc = pKeyInfo->enc;
+ pMem->db = pKeyInfo->db;
+ /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
+ pMem->szMalloc = 0;
+ pMem->z = 0;
+ sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
+ d += sqlite3VdbeSerialTypeLen(serial_type);
+ pMem++;
+ if( (++u)>=p->nField ) break;
+ }
+ if( d>(u32)nKey && u ){
+ assert( CORRUPT_DB );
+ /* In a corrupt record entry, the last pMem might have been set up using
+ ** uninitialized memory. Overwrite its value with NULL, to prevent
+ ** warnings from MSAN. */
+ sqlite3VdbeMemSetNull(pMem-1);
+ }
+ assert( u<=pKeyInfo->nKeyField + 1 );
+ p->nField = u;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This function compares two index or table record keys in the same way
+** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
+** this function deserializes and compares values using the
+** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
+** in assert() statements to ensure that the optimized code in
+** sqlite3VdbeRecordCompare() returns results with these two primitives.
+**
+** Return true if the result of comparison is equivalent to desiredResult.
+** Return false if there is a disagreement.
+*/
+static int vdbeRecordCompareDebug(
+ int nKey1, const void *pKey1, /* Left key */
+ const UnpackedRecord *pPKey2, /* Right key */
+ int desiredResult /* Correct answer */
+){
+ u32 d1; /* Offset into aKey[] of next data element */
+ u32 idx1; /* Offset into aKey[] of next header element */
+ u32 szHdr1; /* Number of bytes in header */
+ int i = 0;
+ int rc = 0;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ KeyInfo *pKeyInfo;
+ Mem mem1;
+
+ pKeyInfo = pPKey2->pKeyInfo;
+ if( pKeyInfo->db==0 ) return 1;
+ mem1.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
+ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
+
+ /* Compilers may complain that mem1.u.i is potentially uninitialized.
+ ** We could initialize it, as shown here, to silence those complaints.
+ ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
+ ** the unnecessary initialization has a measurable negative performance
+ ** impact, since this routine is a very high runner. And so, we choose
+ ** to ignore the compiler warnings and leave this variable uninitialized.
+ */
+ /* mem1.u.i = 0; // not needed, here to silence compiler warning */
+
+ idx1 = getVarint32(aKey1, szHdr1);
+ if( szHdr1>98307 ) return SQLITE_CORRUPT;
+ d1 = szHdr1;
+ assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
+ assert( pKeyInfo->aSortFlags!=0 );
+ assert( pKeyInfo->nKeyField>0 );
+ assert( idx1<=szHdr1 || CORRUPT_DB );
+ do{
+ u32 serial_type1;
+
+ /* Read the serial types for the next element in each key. */
+ idx1 += getVarint32( aKey1+idx1, serial_type1 );
+
+ /* Verify that there is enough key space remaining to avoid
+ ** a buffer overread. The "d1+serial_type1+2" subexpression will
+ ** always be greater than or equal to the amount of required key space.
+ ** Use that approximation to avoid the more expensive call to
+ ** sqlite3VdbeSerialTypeLen() in the common case.
+ */
+ if( d1+(u64)serial_type1+2>(u64)nKey1
+ && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
+ ){
+ break;
+ }
+
+ /* Extract the values to be compared.
+ */
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
+ d1 += sqlite3VdbeSerialTypeLen(serial_type1);
+
+ /* Do the comparison
+ */
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
+ pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
+ if( rc!=0 ){
+ assert( mem1.szMalloc==0 ); /* See comment below */
+ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
+ && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
+ ){
+ rc = -rc;
+ }
+ if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
+ rc = -rc; /* Invert the result for DESC sort order. */
+ }
+ goto debugCompareEnd;
+ }
+ i++;
+ }while( idx1<szHdr1 && i<pPKey2->nField );
+
+ /* No memory allocation is ever used on mem1. Prove this using
+ ** the following assert(). If the assert() fails, it indicates a
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
+ */
+ assert( mem1.szMalloc==0 );
+
+ /* rc==0 here means that one of the keys ran out of fields and
+ ** all the fields up to that point were equal. Return the default_rc
+ ** value. */
+ rc = pPKey2->default_rc;
+
+debugCompareEnd:
+ if( desiredResult==0 && rc==0 ) return 1;
+ if( desiredResult<0 && rc<0 ) return 1;
+ if( desiredResult>0 && rc>0 ) return 1;
+ if( CORRUPT_DB ) return 1;
+ if( pKeyInfo->db->mallocFailed ) return 1;
+ return 0;
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Count the number of fields (a.k.a. columns) in the record given by
+** pKey,nKey. The verify that this count is less than or equal to the
+** limit given by pKeyInfo->nAllField.
+**
+** If this constraint is not satisfied, it means that the high-speed
+** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
+** not work correctly. If this assert() ever fires, it probably means
+** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
+** incorrectly.
+*/
+static void vdbeAssertFieldCountWithinLimits(
+ int nKey, const void *pKey, /* The record to verify */
+ const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
+){
+ int nField = 0;
+ u32 szHdr;
+ u32 idx;
+ u32 notUsed;
+ const unsigned char *aKey = (const unsigned char*)pKey;
+
+ if( CORRUPT_DB ) return;
+ idx = getVarint32(aKey, szHdr);
+ assert( nKey>=0 );
+ assert( szHdr<=(u32)nKey );
+ while( idx<szHdr ){
+ idx += getVarint32(aKey+idx, notUsed);
+ nField++;
+ }
+ assert( nField <= pKeyInfo->nAllField );
+}
+#else
+# define vdbeAssertFieldCountWithinLimits(A,B,C)
+#endif
+
+/*
+** Both *pMem1 and *pMem2 contain string values. Compare the two values
+** using the collation sequence pColl. As usual, return a negative , zero
+** or positive value if *pMem1 is less than, equal to or greater than
+** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
+*/
+static int vdbeCompareMemString(
+ const Mem *pMem1,
+ const Mem *pMem2,
+ const CollSeq *pColl,
+ u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
+){
+ if( pMem1->enc==pColl->enc ){
+ /* The strings are already in the correct encoding. Call the
+ ** comparison function directly */
+ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
+ }else{
+ int rc;
+ const void *v1, *v2;
+ Mem c1;
+ Mem c2;
+ sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
+ sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
+ sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
+ sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
+ v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
+ v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
+ if( (v1==0 || v2==0) ){
+ if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
+ rc = 0;
+ }else{
+ rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
+ }
+ sqlite3VdbeMemReleaseMalloc(&c1);
+ sqlite3VdbeMemReleaseMalloc(&c2);
+ return rc;
+ }
+}
+
+/*
+** The input pBlob is guaranteed to be a Blob that is not marked
+** with MEM_Zero. Return true if it could be a zero-blob.
+*/
+static int isAllZero(const char *z, int n){
+ int i;
+ for(i=0; i<n; i++){
+ if( z[i] ) return 0;
+ }
+ return 1;
+}
+
+/*
+** Compare two blobs. Return negative, zero, or positive if the first
+** is less than, equal to, or greater than the second, respectively.
+** If one blob is a prefix of the other, then the shorter is the lessor.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
+ int c;
+ int n1 = pB1->n;
+ int n2 = pB2->n;
+
+ /* It is possible to have a Blob value that has some non-zero content
+ ** followed by zero content. But that only comes up for Blobs formed
+ ** by the OP_MakeRecord opcode, and such Blobs never get passed into
+ ** sqlite3MemCompare(). */
+ assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
+ assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
+
+ if( (pB1->flags|pB2->flags) & MEM_Zero ){
+ if( pB1->flags & pB2->flags & MEM_Zero ){
+ return pB1->u.nZero - pB2->u.nZero;
+ }else if( pB1->flags & MEM_Zero ){
+ if( !isAllZero(pB2->z, pB2->n) ) return -1;
+ return pB1->u.nZero - n2;
+ }else{
+ if( !isAllZero(pB1->z, pB1->n) ) return +1;
+ return n1 - pB2->u.nZero;
+ }
+ }
+ c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
+ if( c ) return c;
+ return n1 - n2;
+}
+
+/*
+** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
+** number. Return negative, zero, or positive if the first (i64) is less than,
+** equal to, or greater than the second (double).
+*/
+SQLITE_PRIVATE int sqlite3IntFloatCompare(i64 i, double r){
+ if( sizeof(LONGDOUBLE_TYPE)>8 ){
+ LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
+ testcase( x<r );
+ testcase( x>r );
+ testcase( x==r );
+ if( x<r ) return -1;
+ if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */
+ return 0; /*NO_TEST*/ /* work around bugs in gcov */
+ }else{
+ i64 y;
+ double s;
+ if( r<-9223372036854775808.0 ) return +1;
+ if( r>=9223372036854775808.0 ) return -1;
+ y = (i64)r;
+ if( i<y ) return -1;
+ if( i>y ) return +1;
+ s = (double)i;
+ if( s<r ) return -1;
+ if( s>r ) return +1;
+ return 0;
+ }
+}
+
+/*
+** Compare the values contained by the two memory cells, returning
+** negative, zero or positive if pMem1 is less than, equal to, or greater
+** than pMem2. Sorting order is NULL's first, followed by numbers (integers
+** and reals) sorted numerically, followed by text ordered by the collating
+** sequence pColl and finally blob's ordered by memcmp().
+**
+** Two NULL values are considered equal by this function.
+*/
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
+ int f1, f2;
+ int combined_flags;
+
+ f1 = pMem1->flags;
+ f2 = pMem2->flags;
+ combined_flags = f1|f2;
+ assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
+
+ /* If one value is NULL, it is less than the other. If both values
+ ** are NULL, return 0.
+ */
+ if( combined_flags&MEM_Null ){
+ return (f2&MEM_Null) - (f1&MEM_Null);
+ }
+
+ /* At least one of the two values is a number
+ */
+ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
+ testcase( combined_flags & MEM_Int );
+ testcase( combined_flags & MEM_Real );
+ testcase( combined_flags & MEM_IntReal );
+ if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
+ testcase( f1 & f2 & MEM_Int );
+ testcase( f1 & f2 & MEM_IntReal );
+ if( pMem1->u.i < pMem2->u.i ) return -1;
+ if( pMem1->u.i > pMem2->u.i ) return +1;
+ return 0;
+ }
+ if( (f1 & f2 & MEM_Real)!=0 ){
+ if( pMem1->u.r < pMem2->u.r ) return -1;
+ if( pMem1->u.r > pMem2->u.r ) return +1;
+ return 0;
+ }
+ if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
+ testcase( f1 & MEM_Int );
+ testcase( f1 & MEM_IntReal );
+ if( (f2&MEM_Real)!=0 ){
+ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
+ }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
+ if( pMem1->u.i < pMem2->u.i ) return -1;
+ if( pMem1->u.i > pMem2->u.i ) return +1;
+ return 0;
+ }else{
+ return -1;
+ }
+ }
+ if( (f1&MEM_Real)!=0 ){
+ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
+ testcase( f2 & MEM_Int );
+ testcase( f2 & MEM_IntReal );
+ return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
+ }else{
+ return -1;
+ }
+ }
+ return +1;
+ }
+
+ /* If one value is a string and the other is a blob, the string is less.
+ ** If both are strings, compare using the collating functions.
+ */
+ if( combined_flags&MEM_Str ){
+ if( (f1 & MEM_Str)==0 ){
+ return 1;
+ }
+ if( (f2 & MEM_Str)==0 ){
+ return -1;
+ }
+
+ assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
+ assert( pMem1->enc==SQLITE_UTF8 ||
+ pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
+
+ /* The collation sequence must be defined at this point, even if
+ ** the user deletes the collation sequence after the vdbe program is
+ ** compiled (this was not always the case).
+ */
+ assert( !pColl || pColl->xCmp );
+
+ if( pColl ){
+ return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
+ }
+ /* If a NULL pointer was passed as the collate function, fall through
+ ** to the blob case and use memcmp(). */
+ }
+
+ /* Both values must be blobs. Compare using memcmp(). */
+ return sqlite3BlobCompare(pMem1, pMem2);
+}
+
+
+/*
+** The first argument passed to this function is a serial-type that
+** corresponds to an integer - all values between 1 and 9 inclusive
+** except 7. The second points to a buffer containing an integer value
+** serialized according to serial_type. This function deserializes
+** and returns the value.
+*/
+static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
+ u32 y;
+ assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
+ switch( serial_type ){
+ case 0:
+ case 1:
+ testcase( aKey[0]&0x80 );
+ return ONE_BYTE_INT(aKey);
+ case 2:
+ testcase( aKey[0]&0x80 );
+ return TWO_BYTE_INT(aKey);
+ case 3:
+ testcase( aKey[0]&0x80 );
+ return THREE_BYTE_INT(aKey);
+ case 4: {
+ testcase( aKey[0]&0x80 );
+ y = FOUR_BYTE_UINT(aKey);
+ return (i64)*(int*)&y;
+ }
+ case 5: {
+ testcase( aKey[0]&0x80 );
+ return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
+ }
+ case 6: {
+ u64 x = FOUR_BYTE_UINT(aKey);
+ testcase( aKey[0]&0x80 );
+ x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
+ return (i64)*(i64*)&x;
+ }
+ }
+
+ return (serial_type - 8);
+}
+
+/*
+** This function compares the two table rows or index records
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
+** or positive integer if key1 is less than, equal to or
+** greater than key2. The {nKey1, pKey1} key must be a blob
+** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
+** key must be a parsed key such as obtained from
+** sqlite3VdbeParseRecord.
+**
+** If argument bSkip is non-zero, it is assumed that the caller has already
+** determined that the first fields of the keys are equal.
+**
+** Key1 and Key2 do not have to contain the same number of fields. If all
+** fields that appear in both keys are equal, then pPKey2->default_rc is
+** returned.
+**
+** If database corruption is discovered, set pPKey2->errCode to
+** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
+** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
+** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
+*/
+SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2, /* Right key */
+ int bSkip /* If true, skip the first field */
+){
+ u32 d1; /* Offset into aKey[] of next data element */
+ int i; /* Index of next field to compare */
+ u32 szHdr1; /* Size of record header in bytes */
+ u32 idx1; /* Offset of first type in header */
+ int rc = 0; /* Return value */
+ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
+ KeyInfo *pKeyInfo;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ Mem mem1;
+
+ /* If bSkip is true, then the caller has already determined that the first
+ ** two elements in the keys are equal. Fix the various stack variables so
+ ** that this routine begins comparing at the second field. */
+ if( bSkip ){
+ u32 s1 = aKey1[1];
+ if( s1<0x80 ){
+ idx1 = 2;
+ }else{
+ idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
+ }
+ szHdr1 = aKey1[0];
+ d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
+ i = 1;
+ pRhs++;
+ }else{
+ if( (szHdr1 = aKey1[0])<0x80 ){
+ idx1 = 1;
+ }else{
+ idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
+ }
+ d1 = szHdr1;
+ i = 0;
+ }
+ if( d1>(unsigned)nKey1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }
+
+ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
+ assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
+ || CORRUPT_DB );
+ assert( pPKey2->pKeyInfo->aSortFlags!=0 );
+ assert( pPKey2->pKeyInfo->nKeyField>0 );
+ assert( idx1<=szHdr1 || CORRUPT_DB );
+ do{
+ u32 serial_type;
+
+ /* RHS is an integer */
+ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pRhs->flags & MEM_Int );
+ testcase( pRhs->flags & MEM_IntReal );
+ serial_type = aKey1[idx1];
+ testcase( serial_type==12 );
+ if( serial_type>=10 ){
+ rc = +1;
+ }else if( serial_type==0 ){
+ rc = -1;
+ }else if( serial_type==7 ){
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
+ rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
+ }else{
+ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
+ i64 rhs = pRhs->u.i;
+ if( lhs<rhs ){
+ rc = -1;
+ }else if( lhs>rhs ){
+ rc = +1;
+ }
+ }
+ }
+
+ /* RHS is real */
+ else if( pRhs->flags & MEM_Real ){
+ serial_type = aKey1[idx1];
+ if( serial_type>=10 ){
+ /* Serial types 12 or greater are strings and blobs (greater than
+ ** numbers). Types 10 and 11 are currently "reserved for future
+ ** use", so it doesn't really matter what the results of comparing
+ ** them to numberic values are. */
+ rc = +1;
+ }else if( serial_type==0 ){
+ rc = -1;
+ }else{
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
+ if( serial_type==7 ){
+ if( mem1.u.r<pRhs->u.r ){
+ rc = -1;
+ }else if( mem1.u.r>pRhs->u.r ){
+ rc = +1;
+ }
+ }else{
+ rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
+ }
+ }
+ }
+
+ /* RHS is a string */
+ else if( pRhs->flags & MEM_Str ){
+ getVarint32NR(&aKey1[idx1], serial_type);
+ testcase( serial_type==12 );
+ if( serial_type<12 ){
+ rc = -1;
+ }else if( !(serial_type & 0x01) ){
+ rc = +1;
+ }else{
+ mem1.n = (serial_type - 12) / 2;
+ testcase( (d1+mem1.n)==(unsigned)nKey1 );
+ testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
+ if( (d1+mem1.n) > (unsigned)nKey1
+ || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
+ ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }else if( pKeyInfo->aColl[i] ){
+ mem1.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ mem1.flags = MEM_Str;
+ mem1.z = (char*)&aKey1[d1];
+ rc = vdbeCompareMemString(
+ &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
+ );
+ }else{
+ int nCmp = MIN(mem1.n, pRhs->n);
+ rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
+ if( rc==0 ) rc = mem1.n - pRhs->n;
+ }
+ }
+ }
+
+ /* RHS is a blob */
+ else if( pRhs->flags & MEM_Blob ){
+ assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
+ getVarint32NR(&aKey1[idx1], serial_type);
+ testcase( serial_type==12 );
+ if( serial_type<12 || (serial_type & 0x01) ){
+ rc = -1;
+ }else{
+ int nStr = (serial_type - 12) / 2;
+ testcase( (d1+nStr)==(unsigned)nKey1 );
+ testcase( (d1+nStr+1)==(unsigned)nKey1 );
+ if( (d1+nStr) > (unsigned)nKey1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }else if( pRhs->flags & MEM_Zero ){
+ if( !isAllZero((const char*)&aKey1[d1],nStr) ){
+ rc = 1;
+ }else{
+ rc = nStr - pRhs->u.nZero;
+ }
+ }else{
+ int nCmp = MIN(nStr, pRhs->n);
+ rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
+ if( rc==0 ) rc = nStr - pRhs->n;
+ }
+ }
+ }
+
+ /* RHS is null */
+ else{
+ serial_type = aKey1[idx1];
+ rc = (serial_type!=0);
+ }
+
+ if( rc!=0 ){
+ int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
+ if( sortFlags ){
+ if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
+ || ((sortFlags & KEYINFO_ORDER_DESC)
+ !=(serial_type==0 || (pRhs->flags&MEM_Null)))
+ ){
+ rc = -rc;
+ }
+ }
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
+ assert( mem1.szMalloc==0 ); /* See comment below */
+ return rc;
+ }
+
+ i++;
+ if( i==pPKey2->nField ) break;
+ pRhs++;
+ d1 += sqlite3VdbeSerialTypeLen(serial_type);
+ idx1 += sqlite3VarintLen(serial_type);
+ }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
+
+ /* No memory allocation is ever used on mem1. Prove this using
+ ** the following assert(). If the assert() fails, it indicates a
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
+ assert( mem1.szMalloc==0 );
+
+ /* rc==0 here means that one or both of the keys ran out of fields and
+ ** all the fields up to that point were equal. Return the default_rc
+ ** value. */
+ assert( CORRUPT_DB
+ || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
+ || pPKey2->pKeyInfo->db->mallocFailed
+ );
+ pPKey2->eqSeen = 1;
+ return pPKey2->default_rc;
+}
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
+}
+
+
+/*
+** This function is an optimized version of sqlite3VdbeRecordCompare()
+** that (a) the first field of pPKey2 is an integer, and (b) the
+** size-of-header varint at the start of (pKey1/nKey1) fits in a single
+** byte (i.e. is less than 128).
+**
+** To avoid concerns about buffer overreads, this routine is only used
+** on schemas where the maximum valid header size is 63 bytes or less.
+*/
+static int vdbeRecordCompareInt(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
+ int serial_type = ((const u8*)pKey1)[1];
+ int res;
+ u32 y;
+ u64 x;
+ i64 v;
+ i64 lhs;
+
+ vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
+ assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
+ switch( serial_type ){
+ case 1: { /* 1-byte signed integer */
+ lhs = ONE_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 2: { /* 2-byte signed integer */
+ lhs = TWO_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 3: { /* 3-byte signed integer */
+ lhs = THREE_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 4: { /* 4-byte signed integer */
+ y = FOUR_BYTE_UINT(aKey);
+ lhs = (i64)*(int*)&y;
+ testcase( lhs<0 );
+ break;
+ }
+ case 5: { /* 6-byte signed integer */
+ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 6: { /* 8-byte signed integer */
+ x = FOUR_BYTE_UINT(aKey);
+ x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
+ lhs = *(i64*)&x;
+ testcase( lhs<0 );
+ break;
+ }
+ case 8:
+ lhs = 0;
+ break;
+ case 9:
+ lhs = 1;
+ break;
+
+ /* This case could be removed without changing the results of running
+ ** this code. Including it causes gcc to generate a faster switch
+ ** statement (since the range of switch targets now starts at zero and
+ ** is contiguous) but does not cause any duplicate code to be generated
+ ** (as gcc is clever enough to combine the two like cases). Other
+ ** compilers might be similar. */
+ case 0: case 7:
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
+
+ default:
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
+ }
+
+ assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
+ v = pPKey2->u.i;
+ if( v>lhs ){
+ res = pPKey2->r1;
+ }else if( v<lhs ){
+ res = pPKey2->r2;
+ }else if( pPKey2->nField>1 ){
+ /* The first fields of the two keys are equal. Compare the trailing
+ ** fields. */
+ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
+ }else{
+ /* The first fields of the two keys are equal and there are no trailing
+ ** fields. Return pPKey2->default_rc in this case. */
+ res = pPKey2->default_rc;
+ pPKey2->eqSeen = 1;
+ }
+
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
+ return res;
+}
+
+/*
+** This function is an optimized version of sqlite3VdbeRecordCompare()
+** that (a) the first field of pPKey2 is a string, that (b) the first field
+** uses the collation sequence BINARY and (c) that the size-of-header varint
+** at the start of (pKey1/nKey1) fits in a single byte.
+*/
+static int vdbeRecordCompareString(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ const u8 *aKey1 = (const u8*)pKey1;
+ int serial_type;
+ int res;
+
+ assert( pPKey2->aMem[0].flags & MEM_Str );
+ assert( pPKey2->aMem[0].n == pPKey2->n );
+ assert( pPKey2->aMem[0].z == pPKey2->u.z );
+ vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
+ serial_type = (signed char)(aKey1[1]);
+
+vrcs_restart:
+ if( serial_type<12 ){
+ if( serial_type<0 ){
+ sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
+ if( serial_type>=12 ) goto vrcs_restart;
+ assert( CORRUPT_DB );
+ }
+ res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
+ }else if( !(serial_type & 0x01) ){
+ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
+ }else{
+ int nCmp;
+ int nStr;
+ int szHdr = aKey1[0];
+
+ nStr = (serial_type-12) / 2;
+ if( (szHdr + nStr) > nKey1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }
+ nCmp = MIN( pPKey2->n, nStr );
+ res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
+
+ if( res>0 ){
+ res = pPKey2->r2;
+ }else if( res<0 ){
+ res = pPKey2->r1;
+ }else{
+ res = nStr - pPKey2->n;
+ if( res==0 ){
+ if( pPKey2->nField>1 ){
+ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
+ }else{
+ res = pPKey2->default_rc;
+ pPKey2->eqSeen = 1;
+ }
+ }else if( res>0 ){
+ res = pPKey2->r2;
+ }else{
+ res = pPKey2->r1;
+ }
+ }
+ }
+
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
+ || CORRUPT_DB
+ || pPKey2->pKeyInfo->db->mallocFailed
+ );
+ return res;
+}
+
+/*
+** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
+** suitable for comparing serialized records to the unpacked record passed
+** as the only argument.
+*/
+SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
+ /* varintRecordCompareInt() and varintRecordCompareString() both assume
+ ** that the size-of-header varint that occurs at the start of each record
+ ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
+ ** also assumes that it is safe to overread a buffer by at least the
+ ** maximum possible legal header size plus 8 bytes. Because there is
+ ** guaranteed to be at least 74 (but not 136) bytes of padding following each
+ ** buffer passed to varintRecordCompareInt() this makes it convenient to
+ ** limit the size of the header to 64 bytes in cases where the first field
+ ** is an integer.
+ **
+ ** The easiest way to enforce this limit is to consider only records with
+ ** 13 fields or less. If the first field is an integer, the maximum legal
+ ** header size is (12*5 + 1 + 1) bytes. */
+ if( p->pKeyInfo->nAllField<=13 ){
+ int flags = p->aMem[0].flags;
+ if( p->pKeyInfo->aSortFlags[0] ){
+ if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
+ return sqlite3VdbeRecordCompare;
+ }
+ p->r1 = 1;
+ p->r2 = -1;
+ }else{
+ p->r1 = -1;
+ p->r2 = 1;
+ }
+ if( (flags & MEM_Int) ){
+ p->u.i = p->aMem[0].u.i;
+ return vdbeRecordCompareInt;
+ }
+ testcase( flags & MEM_Real );
+ testcase( flags & MEM_Null );
+ testcase( flags & MEM_Blob );
+ if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
+ && p->pKeyInfo->aColl[0]==0
+ ){
+ assert( flags & MEM_Str );
+ p->u.z = p->aMem[0].z;
+ p->n = p->aMem[0].n;
+ return vdbeRecordCompareString;
+ }
+ }
+
+ return sqlite3VdbeRecordCompare;
+}
+
+/*
+** pCur points at an index entry created using the OP_MakeRecord opcode.
+** Read the rowid (the last field in the record) and store it in *rowid.
+** Return SQLITE_OK if everything works, or an error code otherwise.
+**
+** pCur might be pointing to text obtained from a corrupt database file.
+** So the content cannot be trusted. Do appropriate checks on the content.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
+ i64 nCellKey = 0;
+ int rc;
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+ u32 lenRowid; /* Size of the rowid */
+ Mem m, v;
+
+ /* Get the size of the index entry. Only indices entries of less
+ ** than 2GiB are support - anything large must be database corruption.
+ ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
+ ** this code can safely assume that nCellKey is 32-bits
+ */
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
+
+ /* Read in the complete content of the index entry */
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ){
+ return rc;
+ }
+
+ /* The index entry must begin with a header size */
+ getVarint32NR((u8*)m.z, szHdr);
+ testcase( szHdr==3 );
+ testcase( szHdr==(u32)m.n );
+ testcase( szHdr>0x7fffffff );
+ assert( m.n>=0 );
+ if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
+ goto idx_rowid_corruption;
+ }
+
+ /* The last field of the index should be an integer - the ROWID.
+ ** Verify that the last entry really is an integer. */
+ getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
+ testcase( typeRowid==1 );
+ testcase( typeRowid==2 );
+ testcase( typeRowid==3 );
+ testcase( typeRowid==4 );
+ testcase( typeRowid==5 );
+ testcase( typeRowid==6 );
+ testcase( typeRowid==8 );
+ testcase( typeRowid==9 );
+ if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
+ goto idx_rowid_corruption;
+ }
+ lenRowid = sqlite3SmallTypeSizes[typeRowid];
+ testcase( (u32)m.n==szHdr+lenRowid );
+ if( unlikely((u32)m.n<szHdr+lenRowid) ){
+ goto idx_rowid_corruption;
+ }
+
+ /* Fetch the integer off the end of the index record */
+ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
+ *rowid = v.u.i;
+ sqlite3VdbeMemReleaseMalloc(&m);
+ return SQLITE_OK;
+
+ /* Jump here if database corruption is detected after m has been
+ ** allocated. Free the m object and return SQLITE_CORRUPT. */
+idx_rowid_corruption:
+ testcase( m.szMalloc!=0 );
+ sqlite3VdbeMemReleaseMalloc(&m);
+ return SQLITE_CORRUPT_BKPT;
+}
+
+/*
+** Compare the key of the index entry that cursor pC is pointing to against
+** the key string in pUnpacked. Write into *pRes a number
+** that is negative, zero, or positive if pC is less than, equal to,
+** or greater than pUnpacked. Return SQLITE_OK on success.
+**
+** pUnpacked is either created without a rowid or is truncated so that it
+** omits the rowid at the end. The rowid at the end of the index entry
+** is ignored as well. Hence, this routine only compares the prefixes
+** of the keys prior to the final rowid, not the entire key.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
+ sqlite3 *db, /* Database connection */
+ VdbeCursor *pC, /* The cursor to compare against */
+ UnpackedRecord *pUnpacked, /* Unpacked version of key */
+ int *res /* Write the comparison result here */
+){
+ i64 nCellKey = 0;
+ int rc;
+ BtCursor *pCur;
+ Mem m;
+
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCur = pC->uc.pCursor;
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ /* nCellKey will always be between 0 and 0xffffffff because of the way
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){
+ *res = 0;
+ return SQLITE_CORRUPT_BKPT;
+ }
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ){
+ return rc;
+ }
+ *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
+ sqlite3VdbeMemReleaseMalloc(&m);
+ return SQLITE_OK;
+}
+
+/*
+** This routine sets the value to be returned by subsequent calls to
+** sqlite3_changes() on the database handle 'db'.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
+ assert( sqlite3_mutex_held(db->mutex) );
+ db->nChange = nChange;
+ db->nTotalChange += nChange;
+}
+
+/*
+** Set a flag in the vdbe to update the change counter when it is finalised
+** or reset.
+*/
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
+ v->changeCntOn = 1;
+}
+
+/*
+** Mark every prepared statement associated with a database connection
+** as expired.
+**
+** An expired statement means that recompilation of the statement is
+** recommend. Statements expire when things happen that make their
+** programs obsolete. Removing user-defined functions or collating
+** sequences, or changing an authorization function are the types of
+** things that make prepared statements obsolete.
+**
+** If iCode is 1, then expiration is advisory. The statement should
+** be reprepared before being restarted, but if it is already running
+** it is allowed to run to completion.
+**
+** Internally, this function just sets the Vdbe.expired flag on all
+** prepared statements. The flag is set to 1 for an immediate expiration
+** and set to 2 for an advisory expiration.
+*/
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
+ Vdbe *p;
+ for(p = db->pVdbe; p; p=p->pNext){
+ p->expired = iCode+1;
+ }
+}
+
+/*
+** Return the database associated with the Vdbe.
+*/
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
+ return v->db;
+}
+
+/*
+** Return the SQLITE_PREPARE flags for a Vdbe.
+*/
+SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe *v){
+ return v->prepFlags;
+}
+
+/*
+** Return a pointer to an sqlite3_value structure containing the value bound
+** parameter iVar of VM v. Except, if the value is an SQL NULL, return
+** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
+** constants) to the value before returning it.
+**
+** The returned value must be freed by the caller using sqlite3ValueFree().
+*/
+SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
+ assert( iVar>0 );
+ if( v ){
+ Mem *pMem = &v->aVar[iVar-1];
+ assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
+ if( 0==(pMem->flags & MEM_Null) ){
+ sqlite3_value *pRet = sqlite3ValueNew(v->db);
+ if( pRet ){
+ sqlite3VdbeMemCopy((Mem *)pRet, pMem);
+ sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
+ }
+ return pRet;
+ }
+ }
+ return 0;
+}
+
+/*
+** Configure SQL variable iVar so that binding a new value to it signals
+** to sqlite3_reoptimize() that re-preparing the statement may result
+** in a better query plan.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
+ assert( iVar>0 );
+ assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
+ if( iVar>=32 ){
+ v->expmask |= 0x80000000;
+ }else{
+ v->expmask |= ((u32)1 << (iVar-1));
+ }
+}
+
+/*
+** Cause a function to throw an error if it was call from OP_PureFunc
+** rather than OP_Function.
+**
+** OP_PureFunc means that the function must be deterministic, and should
+** throw an error if it is given inputs that would make it non-deterministic.
+** This routine is invoked by date/time functions that use non-deterministic
+** features such as 'now'.
+*/
+SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context *pCtx){
+ const VdbeOp *pOp;
+#ifdef SQLITE_ENABLE_STAT4
+ if( pCtx->pVdbe==0 ) return 1;
+#endif
+ pOp = pCtx->pVdbe->aOp + pCtx->iOp;
+ if( pOp->opcode==OP_PureFunc ){
+ const char *zContext;
+ char *zMsg;
+ if( pOp->p5 & NC_IsCheck ){
+ zContext = "a CHECK constraint";
+ }else if( pOp->p5 & NC_GenCol ){
+ zContext = "a generated column";
+ }else{
+ zContext = "an index";
+ }
+ zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
+ pCtx->pFunc->zName, zContext);
+ sqlite3_result_error(pCtx, zMsg, -1);
+ sqlite3_free(zMsg);
+ return 0;
+ }
+ return 1;
+}
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
+** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
+** in memory obtained from sqlite3DbMalloc).
+*/
+SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
+ if( pVtab->zErrMsg ){
+ sqlite3 *db = p->db;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+ }
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+
+/*
+** If the second argument is not NULL, release any allocations associated
+** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
+** structure itself, using sqlite3DbFree().
+**
+** This function is used to free UnpackedRecord structures allocated by
+** the vdbeUnpackRecord() function found in vdbeapi.c.
+*/
+static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
+ if( p ){
+ int i;
+ for(i=0; i<nField; i++){
+ Mem *pMem = &p->aMem[i];
+ if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
+ }
+ sqlite3DbFreeNN(db, p);
+ }
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
+** then cursor passed as the second argument should point to the row about
+** to be update or deleted. If the application calls sqlite3_preupdate_old(),
+** the required value will be read from the row the cursor points to.
+*/
+SQLITE_PRIVATE void sqlite3VdbePreUpdateHook(
+ Vdbe *v, /* Vdbe pre-update hook is invoked by */
+ VdbeCursor *pCsr, /* Cursor to grab old.* values from */
+ int op, /* SQLITE_INSERT, UPDATE or DELETE */
+ const char *zDb, /* Database name */
+ Table *pTab, /* Modified table */
+ i64 iKey1, /* Initial key value */
+ int iReg, /* Register for new.* record */
+ int iBlobWrite
+){
+ sqlite3 *db = v->db;
+ i64 iKey2;
+ PreUpdate preupdate;
+ const char *zTbl = pTab->zName;
+ static const u8 fakeSortOrder = 0;
+
+ assert( db->pPreUpdate==0 );
+ memset(&preupdate, 0, sizeof(PreUpdate));
+ if( HasRowid(pTab)==0 ){
+ iKey1 = iKey2 = 0;
+ preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
+ }else{
+ if( op==SQLITE_UPDATE ){
+ iKey2 = v->aMem[iReg].u.i;
+ }else{
+ iKey2 = iKey1;
+ }
+ }
+
+ assert( pCsr!=0 );
+ assert( pCsr->eCurType==CURTYPE_BTREE );
+ assert( pCsr->nField==pTab->nCol
+ || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
+ );
+
+ preupdate.v = v;
+ preupdate.pCsr = pCsr;
+ preupdate.op = op;
+ preupdate.iNewReg = iReg;
+ preupdate.keyinfo.db = db;
+ preupdate.keyinfo.enc = ENC(db);
+ preupdate.keyinfo.nKeyField = pTab->nCol;
+ preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
+ preupdate.iKey1 = iKey1;
+ preupdate.iKey2 = iKey2;
+ preupdate.pTab = pTab;
+ preupdate.iBlobWrite = iBlobWrite;
+
+ db->pPreUpdate = &preupdate;
+ db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
+ db->pPreUpdate = 0;
+ sqlite3DbFree(db, preupdate.aRecord);
+ vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
+ vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
+ if( preupdate.aNew ){
+ int i;
+ for(i=0; i<pCsr->nField; i++){
+ sqlite3VdbeMemRelease(&preupdate.aNew[i]);
+ }
+ sqlite3DbFreeNN(db, preupdate.aNew);
+ }
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+/************** End of vdbeaux.c *********************************************/
+/************** Begin file vdbeapi.c *****************************************/
+/*
+** 2004 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to implement APIs that are part of the
+** VDBE.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Return TRUE (non-zero) of the statement supplied as an argument needs
+** to be recompiled. A statement needs to be recompiled whenever the
+** execution environment changes in a way that would alter the program
+** that sqlite3_prepare() generates. For example, if new functions or
+** collating sequences are registered or if an authorizer function is
+** added or changed.
+*/
+SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ return p==0 || p->expired;
+}
+#endif
+
+/*
+** Check on a Vdbe to make sure it has not been finalized. Log
+** an error and return true if it has been finalized (or is otherwise
+** invalid). Return false if it is ok.
+*/
+static int vdbeSafety(Vdbe *p){
+ if( p->db==0 ){
+ sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
+ return 1;
+ }else{
+ return 0;
+ }
+}
+static int vdbeSafetyNotNull(Vdbe *p){
+ if( p==0 ){
+ sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
+ return 1;
+ }else{
+ return vdbeSafety(p);
+ }
+}
+
+#ifndef SQLITE_OMIT_TRACE
+/*
+** Invoke the profile callback. This routine is only called if we already
+** know that the profile callback is defined and needs to be invoked.
+*/
+static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
+ sqlite3_int64 iNow;
+ sqlite3_int64 iElapse;
+ assert( p->startTime>0 );
+ assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
+ assert( db->init.busy==0 );
+ assert( p->zSql!=0 );
+ sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
+ iElapse = (iNow - p->startTime)*1000000;
+#ifndef SQLITE_OMIT_DEPRECATED
+ if( db->xProfile ){
+ db->xProfile(db->pProfileArg, p->zSql, iElapse);
+ }
+#endif
+ if( db->mTrace & SQLITE_TRACE_PROFILE ){
+ db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
+ }
+ p->startTime = 0;
+}
+/*
+** The checkProfileCallback(DB,P) macro checks to see if a profile callback
+** is needed, and it invokes the callback if it is needed.
+*/
+# define checkProfileCallback(DB,P) \
+ if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
+#else
+# define checkProfileCallback(DB,P) /*no-op*/
+#endif
+
+/*
+** The following routine destroys a virtual machine that is created by
+** the sqlite3_compile() routine. The integer returned is an SQLITE_
+** success/failure code that describes the result of executing the virtual
+** machine.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
+ ** pointer is a harmless no-op. */
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+ if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
+ sqlite3_mutex_enter(db->mutex);
+ checkProfileCallback(db, v);
+ rc = sqlite3VdbeFinalize(v);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3LeaveMutexAndCloseZombie(db);
+ }
+ return rc;
+}
+
+/*
+** Terminate the current execution of an SQL statement and reset it
+** back to its starting state so that it can be reused. A success code from
+** the prior execution is returned.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+ sqlite3_mutex_enter(db->mutex);
+ checkProfileCallback(db, v);
+ rc = sqlite3VdbeReset(v);
+ sqlite3VdbeRewind(v);
+ assert( (rc & (db->errMask))==rc );
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ }
+ return rc;
+}
+
+/*
+** Set all the parameters in the compiled SQL statement to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
+ int i;
+ int rc = SQLITE_OK;
+ Vdbe *p = (Vdbe*)pStmt;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<p->nVar; i++){
+ sqlite3VdbeMemRelease(&p->aVar[i]);
+ p->aVar[i].flags = MEM_Null;
+ }
+ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
+ if( p->expmask ){
+ p->expired = 1;
+ }
+ sqlite3_mutex_leave(mutex);
+ return rc;
+}
+
+
+/**************************** sqlite3_value_ *******************************
+** The following routines extract information from a Mem or sqlite3_value
+** structure.
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
+ Mem *p = (Mem*)pVal;
+ if( p->flags & (MEM_Blob|MEM_Str) ){
+ if( ExpandBlob(p)!=SQLITE_OK ){
+ assert( p->flags==MEM_Null && p->z==0 );
+ return 0;
+ }
+ p->flags |= MEM_Blob;
+ return p->n ? p->z : 0;
+ }else{
+ return sqlite3_value_text(pVal);
+ }
+}
+SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
+ return sqlite3ValueBytes(pVal, SQLITE_UTF8);
+}
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
+ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
+}
+SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
+ return sqlite3VdbeRealValue((Mem*)pVal);
+}
+SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
+ return (int)sqlite3VdbeIntValue((Mem*)pVal);
+}
+SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
+ return sqlite3VdbeIntValue((Mem*)pVal);
+}
+SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
+ Mem *pMem = (Mem*)pVal;
+ return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
+}
+SQLITE_API void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
+ Mem *p = (Mem*)pVal;
+ if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
+ (MEM_Null|MEM_Term|MEM_Subtype)
+ && zPType!=0
+ && p->eSubtype=='p'
+ && strcmp(p->u.zPType, zPType)==0
+ ){
+ return (void*)p->z;
+ }else{
+ return 0;
+ }
+}
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
+ return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
+}
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16BE);
+}
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16LE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+/* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
+** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
+** point number string BLOB NULL
+*/
+SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
+ static const u8 aType[] = {
+ SQLITE_BLOB, /* 0x00 (not possible) */
+ SQLITE_NULL, /* 0x01 NULL */
+ SQLITE_TEXT, /* 0x02 TEXT */
+ SQLITE_NULL, /* 0x03 (not possible) */
+ SQLITE_INTEGER, /* 0x04 INTEGER */
+ SQLITE_NULL, /* 0x05 (not possible) */
+ SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
+ SQLITE_NULL, /* 0x07 (not possible) */
+ SQLITE_FLOAT, /* 0x08 FLOAT */
+ SQLITE_NULL, /* 0x09 (not possible) */
+ SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
+ SQLITE_NULL, /* 0x0b (not possible) */
+ SQLITE_INTEGER, /* 0x0c (not possible) */
+ SQLITE_NULL, /* 0x0d (not possible) */
+ SQLITE_INTEGER, /* 0x0e (not possible) */
+ SQLITE_NULL, /* 0x0f (not possible) */
+ SQLITE_BLOB, /* 0x10 BLOB */
+ SQLITE_NULL, /* 0x11 (not possible) */
+ SQLITE_TEXT, /* 0x12 (not possible) */
+ SQLITE_NULL, /* 0x13 (not possible) */
+ SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
+ SQLITE_NULL, /* 0x15 (not possible) */
+ SQLITE_INTEGER, /* 0x16 (not possible) */
+ SQLITE_NULL, /* 0x17 (not possible) */
+ SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
+ SQLITE_NULL, /* 0x19 (not possible) */
+ SQLITE_FLOAT, /* 0x1a (not possible) */
+ SQLITE_NULL, /* 0x1b (not possible) */
+ SQLITE_INTEGER, /* 0x1c (not possible) */
+ SQLITE_NULL, /* 0x1d (not possible) */
+ SQLITE_INTEGER, /* 0x1e (not possible) */
+ SQLITE_NULL, /* 0x1f (not possible) */
+ SQLITE_FLOAT, /* 0x20 INTREAL */
+ SQLITE_NULL, /* 0x21 (not possible) */
+ SQLITE_TEXT, /* 0x22 INTREAL + TEXT */
+ SQLITE_NULL, /* 0x23 (not possible) */
+ SQLITE_FLOAT, /* 0x24 (not possible) */
+ SQLITE_NULL, /* 0x25 (not possible) */
+ SQLITE_FLOAT, /* 0x26 (not possible) */
+ SQLITE_NULL, /* 0x27 (not possible) */
+ SQLITE_FLOAT, /* 0x28 (not possible) */
+ SQLITE_NULL, /* 0x29 (not possible) */
+ SQLITE_FLOAT, /* 0x2a (not possible) */
+ SQLITE_NULL, /* 0x2b (not possible) */
+ SQLITE_FLOAT, /* 0x2c (not possible) */
+ SQLITE_NULL, /* 0x2d (not possible) */
+ SQLITE_FLOAT, /* 0x2e (not possible) */
+ SQLITE_NULL, /* 0x2f (not possible) */
+ SQLITE_BLOB, /* 0x30 (not possible) */
+ SQLITE_NULL, /* 0x31 (not possible) */
+ SQLITE_TEXT, /* 0x32 (not possible) */
+ SQLITE_NULL, /* 0x33 (not possible) */
+ SQLITE_FLOAT, /* 0x34 (not possible) */
+ SQLITE_NULL, /* 0x35 (not possible) */
+ SQLITE_FLOAT, /* 0x36 (not possible) */
+ SQLITE_NULL, /* 0x37 (not possible) */
+ SQLITE_FLOAT, /* 0x38 (not possible) */
+ SQLITE_NULL, /* 0x39 (not possible) */
+ SQLITE_FLOAT, /* 0x3a (not possible) */
+ SQLITE_NULL, /* 0x3b (not possible) */
+ SQLITE_FLOAT, /* 0x3c (not possible) */
+ SQLITE_NULL, /* 0x3d (not possible) */
+ SQLITE_FLOAT, /* 0x3e (not possible) */
+ SQLITE_NULL, /* 0x3f (not possible) */
+ };
+#ifdef SQLITE_DEBUG
+ {
+ int eType = SQLITE_BLOB;
+ if( pVal->flags & MEM_Null ){
+ eType = SQLITE_NULL;
+ }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
+ eType = SQLITE_FLOAT;
+ }else if( pVal->flags & MEM_Int ){
+ eType = SQLITE_INTEGER;
+ }else if( pVal->flags & MEM_Str ){
+ eType = SQLITE_TEXT;
+ }
+ assert( eType == aType[pVal->flags&MEM_AffMask] );
+ }
+#endif
+ return aType[pVal->flags&MEM_AffMask];
+}
+
+/* Return true if a parameter to xUpdate represents an unchanged column */
+SQLITE_API int sqlite3_value_nochange(sqlite3_value *pVal){
+ return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
+}
+
+/* Return true if a parameter value originated from an sqlite3_bind() */
+SQLITE_API int sqlite3_value_frombind(sqlite3_value *pVal){
+ return (pVal->flags&MEM_FromBind)!=0;
+}
+
+/* Make a copy of an sqlite3_value object
+*/
+SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
+ sqlite3_value *pNew;
+ if( pOrig==0 ) return 0;
+ pNew = sqlite3_malloc( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ memset(pNew, 0, sizeof(*pNew));
+ memcpy(pNew, pOrig, MEMCELLSIZE);
+ pNew->flags &= ~MEM_Dyn;
+ pNew->db = 0;
+ if( pNew->flags&(MEM_Str|MEM_Blob) ){
+ pNew->flags &= ~(MEM_Static|MEM_Dyn);
+ pNew->flags |= MEM_Ephem;
+ if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
+ sqlite3ValueFree(pNew);
+ pNew = 0;
+ }
+ }else if( pNew->flags & MEM_Null ){
+ /* Do not duplicate pointer values */
+ pNew->flags &= ~(MEM_Term|MEM_Subtype);
+ }
+ return pNew;
+}
+
+/* Destroy an sqlite3_value object previously obtained from
+** sqlite3_value_dup().
+*/
+SQLITE_API void sqlite3_value_free(sqlite3_value *pOld){
+ sqlite3ValueFree(pOld);
+}
+
+
+/**************************** sqlite3_result_ *******************************
+** The following routines are used by user-defined functions to specify
+** the function result.
+**
+** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
+** result as a string or blob. Appropriate errors are set if the string/blob
+** is too big or if an OOM occurs.
+**
+** The invokeValueDestructor(P,X) routine invokes destructor function X()
+** on value P is not going to be used and need to be destroyed.
+*/
+static void setResultStrOrError(
+ sqlite3_context *pCtx, /* Function context */
+ const char *z, /* String pointer */
+ int n, /* Bytes in string, or negative */
+ u8 enc, /* Encoding of z. 0 for BLOBs */
+ void (*xDel)(void*) /* Destructor function */
+){
+ Mem *pOut = pCtx->pOut;
+ int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
+ if( rc ){
+ if( rc==SQLITE_TOOBIG ){
+ sqlite3_result_error_toobig(pCtx);
+ }else{
+ /* The only errors possible from sqlite3VdbeMemSetStr are
+ ** SQLITE_TOOBIG and SQLITE_NOMEM */
+ assert( rc==SQLITE_NOMEM );
+ sqlite3_result_error_nomem(pCtx);
+ }
+ return;
+ }
+ sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ sqlite3_result_error_toobig(pCtx);
+ }
+}
+static int invokeValueDestructor(
+ const void *p, /* Value to destroy */
+ void (*xDel)(void*), /* The destructor */
+ sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( xDel==0 ){
+ /* noop */
+ }else if( xDel==SQLITE_TRANSIENT ){
+ /* noop */
+ }else{
+ xDel((void*)p);
+ }
+ sqlite3_result_error_toobig(pCtx);
+ return SQLITE_TOOBIG;
+}
+SQLITE_API void sqlite3_result_blob(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( n>=0 );
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, 0, xDel);
+}
+SQLITE_API void sqlite3_result_blob64(
+ sqlite3_context *pCtx,
+ const void *z,
+ sqlite3_uint64 n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( n>0x7fffffff ){
+ (void)invokeValueDestructor(z, xDel, pCtx);
+ }else{
+ setResultStrOrError(pCtx, z, (int)n, 0, xDel);
+ }
+}
+SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
+}
+SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
+ sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
+ sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
+}
+#endif
+SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
+}
+SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
+}
+SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetNull(pCtx->pOut);
+}
+SQLITE_API void sqlite3_result_pointer(
+ sqlite3_context *pCtx,
+ void *pPtr,
+ const char *zPType,
+ void (*xDestructor)(void*)
+){
+ Mem *pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pOut->db->mutex) );
+ sqlite3VdbeMemRelease(pOut);
+ pOut->flags = MEM_Null;
+ sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
+}
+SQLITE_API void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
+ Mem *pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pOut->db->mutex) );
+ pOut->eSubtype = eSubtype & 0xff;
+ pOut->flags |= MEM_Subtype;
+}
+SQLITE_API void sqlite3_result_text(
+ sqlite3_context *pCtx,
+ const char *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
+}
+SQLITE_API void sqlite3_result_text64(
+ sqlite3_context *pCtx,
+ const char *z,
+ sqlite3_uint64 n,
+ void (*xDel)(void *),
+ unsigned char enc
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
+ if( n>0x7fffffff ){
+ (void)invokeValueDestructor(z, xDel, pCtx);
+ }else{
+ setResultStrOrError(pCtx, z, (int)n, enc, xDel);
+ }
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API void sqlite3_result_text16(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
+}
+SQLITE_API void sqlite3_result_text16be(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
+}
+SQLITE_API void sqlite3_result_text16le(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
+ Mem *pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemCopy(pOut, pValue);
+ sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ sqlite3_result_error_toobig(pCtx);
+ }
+}
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
+ sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
+}
+SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
+ Mem *pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pOut->db->mutex) );
+ if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(pCtx);
+ return SQLITE_TOOBIG;
+ }
+#ifndef SQLITE_OMIT_INCRBLOB
+ sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
+ return SQLITE_OK;
+#else
+ return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
+#endif
+}
+SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
+ pCtx->isError = errCode ? errCode : -1;
+#ifdef SQLITE_DEBUG
+ if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
+#endif
+ if( pCtx->pOut->flags & MEM_Null ){
+ setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
+ SQLITE_STATIC);
+ }
+}
+
+/* Force an SQLITE_TOOBIG error. */
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ pCtx->isError = SQLITE_TOOBIG;
+ sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
+ SQLITE_UTF8, SQLITE_STATIC);
+}
+
+/* An SQLITE_NOMEM error. */
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetNull(pCtx->pOut);
+ pCtx->isError = SQLITE_NOMEM_BKPT;
+ sqlite3OomFault(pCtx->pOut->db);
+}
+
+#ifndef SQLITE_UNTESTABLE
+/* Force the INT64 value currently stored as the result to be
+** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
+** test-control.
+*/
+SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ if( pCtx->pOut->flags & MEM_Int ){
+ pCtx->pOut->flags &= ~MEM_Int;
+ pCtx->pOut->flags |= MEM_IntReal;
+ }
+}
+#endif
+
+
+/*
+** This function is called after a transaction has been committed. It
+** invokes callbacks registered with sqlite3_wal_hook() as required.
+*/
+static int doWalCallbacks(sqlite3 *db){
+ int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_WAL
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ int nEntry;
+ sqlite3BtreeEnter(pBt);
+ nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
+ sqlite3BtreeLeave(pBt);
+ if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
+ rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
+ }
+ }
+ }
+#endif
+ return rc;
+}
+
+
+/*
+** Execute the statement pStmt, either until a row of data is ready, the
+** statement is completely executed or an error occurs.
+**
+** This routine implements the bulk of the logic behind the sqlite_step()
+** API. The only thing omitted is the automatic recompile if a
+** schema change has occurred. That detail is handled by the
+** outer sqlite3_step() wrapper procedure.
+*/
+static int sqlite3Step(Vdbe *p){
+ sqlite3 *db;
+ int rc;
+
+ assert(p);
+ db = p->db;
+ if( p->eVdbeState!=VDBE_RUN_STATE ){
+ restart_step:
+ if( p->eVdbeState==VDBE_READY_STATE ){
+ if( p->expired ){
+ p->rc = SQLITE_SCHEMA;
+ rc = SQLITE_ERROR;
+ if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
+ /* If this statement was prepared using saved SQL and an
+ ** error has occurred, then return the error code in p->rc to the
+ ** caller. Set the error code in the database handle to the same
+ ** value.
+ */
+ rc = sqlite3VdbeTransferError(p);
+ }
+ goto end_of_step;
+ }
+
+ /* If there are no other statements currently running, then
+ ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
+ ** from interrupting a statement that has not yet started.
+ */
+ if( db->nVdbeActive==0 ){
+ AtomicStore(&db->u1.isInterrupted, 0);
+ }
+
+ assert( db->nVdbeWrite>0 || db->autoCommit==0
+ || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
+ );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
+ && !db->init.busy && p->zSql ){
+ sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
+ }else{
+ assert( p->startTime==0 );
+ }
+#endif
+
+ db->nVdbeActive++;
+ if( p->readOnly==0 ) db->nVdbeWrite++;
+ if( p->bIsReader ) db->nVdbeRead++;
+ p->pc = 0;
+ p->eVdbeState = VDBE_RUN_STATE;
+ }else
+
+ if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){
+ /* We used to require that sqlite3_reset() be called before retrying
+ ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
+ ** with version 3.7.0, we changed this so that sqlite3_reset() would
+ ** be called automatically instead of throwing the SQLITE_MISUSE error.
+ ** This "automatic-reset" change is not technically an incompatibility,
+ ** since any application that receives an SQLITE_MISUSE is broken by
+ ** definition.
+ **
+ ** Nevertheless, some published applications that were originally written
+ ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
+ ** returns, and those were broken by the automatic-reset change. As a
+ ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
+ ** legacy behavior of returning SQLITE_MISUSE for cases where the
+ ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
+ ** or SQLITE_BUSY error.
+ */
+#ifdef SQLITE_OMIT_AUTORESET
+ if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
+ sqlite3_reset((sqlite3_stmt*)p);
+ }else{
+ return SQLITE_MISUSE_BKPT;
+ }
+#else
+ sqlite3_reset((sqlite3_stmt*)p);
+#endif
+ assert( p->eVdbeState==VDBE_READY_STATE );
+ goto restart_step;
+ }
+ }
+
+#ifdef SQLITE_DEBUG
+ p->rcApp = SQLITE_OK;
+#endif
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( p->explain ){
+ rc = sqlite3VdbeList(p);
+ }else
+#endif /* SQLITE_OMIT_EXPLAIN */
+ {
+ db->nVdbeExec++;
+ rc = sqlite3VdbeExec(p);
+ db->nVdbeExec--;
+ }
+
+ if( rc==SQLITE_ROW ){
+ assert( p->rc==SQLITE_OK );
+ assert( db->mallocFailed==0 );
+ db->errCode = SQLITE_ROW;
+ return SQLITE_ROW;
+ }else{
+#ifndef SQLITE_OMIT_TRACE
+ /* If the statement completed successfully, invoke the profile callback */
+ checkProfileCallback(db, p);
+#endif
+
+ if( rc==SQLITE_DONE && db->autoCommit ){
+ assert( p->rc==SQLITE_OK );
+ p->rc = doWalCallbacks(db);
+ if( p->rc!=SQLITE_OK ){
+ rc = SQLITE_ERROR;
+ }
+ }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
+ /* If this statement was prepared using saved SQL and an
+ ** error has occurred, then return the error code in p->rc to the
+ ** caller. Set the error code in the database handle to the same value.
+ */
+ rc = sqlite3VdbeTransferError(p);
+ }
+ }
+
+ db->errCode = rc;
+ if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
+ p->rc = SQLITE_NOMEM_BKPT;
+ if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
+ }
+end_of_step:
+ /* There are only a limited number of result codes allowed from the
+ ** statements prepared using the legacy sqlite3_prepare() interface */
+ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
+ || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
+ || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
+ );
+ return (rc&db->errMask);
+}
+
+/*
+** This is the top-level implementation of sqlite3_step(). Call
+** sqlite3Step() to do most of the work. If a schema error occurs,
+** call sqlite3Reprepare() and try again.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
+ int rc = SQLITE_OK; /* Result from sqlite3Step() */
+ Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
+ int cnt = 0; /* Counter to prevent infinite loop of reprepares */
+ sqlite3 *db; /* The database connection */
+
+ if( vdbeSafetyNotNull(v) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ db = v->db;
+ sqlite3_mutex_enter(db->mutex);
+ while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
+ && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
+ int savedPc = v->pc;
+ rc = sqlite3Reprepare(v);
+ if( rc!=SQLITE_OK ){
+ /* This case occurs after failing to recompile an sql statement.
+ ** The error message from the SQL compiler has already been loaded
+ ** into the database handle. This block copies the error message
+ ** from the database handle into the statement and sets the statement
+ ** program counter to 0 to ensure that when the statement is
+ ** finalized or reset the parser error message is available via
+ ** sqlite3_errmsg() and sqlite3_errcode().
+ */
+ const char *zErr = (const char *)sqlite3_value_text(db->pErr);
+ sqlite3DbFree(db, v->zErrMsg);
+ if( !db->mallocFailed ){
+ v->zErrMsg = sqlite3DbStrDup(db, zErr);
+ v->rc = rc = sqlite3ApiExit(db, rc);
+ } else {
+ v->zErrMsg = 0;
+ v->rc = rc = SQLITE_NOMEM_BKPT;
+ }
+ break;
+ }
+ sqlite3_reset(pStmt);
+ if( savedPc>=0 ){
+ /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
+ ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
+ ** already been done once on a prior invocation that failed due to
+ ** SQLITE_SCHEMA. tag-20220401a */
+ v->minWriteFileFormat = 254;
+ }
+ assert( v->expired==0 );
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
+ assert( p && p->pFunc );
+ return p->pFunc->pUserData;
+}
+
+/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+**
+** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
+** returns a copy of the pointer to the database connection (the 1st
+** parameter) of the sqlite3_create_function() and
+** sqlite3_create_function16() routines that originally registered the
+** application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
+ assert( p && p->pOut );
+ return p->pOut->db;
+}
+
+/*
+** If this routine is invoked from within an xColumn method of a virtual
+** table, then it returns true if and only if the the call is during an
+** UPDATE operation and the value of the column will not be modified
+** by the UPDATE.
+**
+** If this routine is called from any context other than within the
+** xColumn method of a virtual table, then the return value is meaningless
+** and arbitrary.
+**
+** Virtual table implements might use this routine to optimize their
+** performance by substituting a NULL result, or some other light-weight
+** value, as a signal to the xUpdate routine that the column is unchanged.
+*/
+SQLITE_API int sqlite3_vtab_nochange(sqlite3_context *p){
+ assert( p );
+ return sqlite3_value_nochange(p->pOut);
+}
+
+/*
+** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
+** sqlite3_vtab_in_next() (if bNext!=0).
+*/
+static int valueFromValueList(
+ sqlite3_value *pVal, /* Pointer to the ValueList object */
+ sqlite3_value **ppOut, /* Store the next value from the list here */
+ int bNext /* 1 for _next(). 0 for _first() */
+){
+ int rc;
+ ValueList *pRhs;
+
+ *ppOut = 0;
+ if( pVal==0 ) return SQLITE_MISUSE;
+ pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
+ if( pRhs==0 ) return SQLITE_MISUSE;
+ if( bNext ){
+ rc = sqlite3BtreeNext(pRhs->pCsr, 0);
+ }else{
+ int dummy = 0;
+ rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
+ assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
+ if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
+ }
+ if( rc==SQLITE_OK ){
+ u32 sz; /* Size of current row in bytes */
+ Mem sMem; /* Raw content of current row */
+ memset(&sMem, 0, sizeof(sMem));
+ sz = sqlite3BtreePayloadSize(pRhs->pCsr);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
+ if( rc==SQLITE_OK ){
+ u8 *zBuf = (u8*)sMem.z;
+ u32 iSerial;
+ sqlite3_value *pOut = pRhs->pOut;
+ int iOff = 1 + getVarint32(&zBuf[1], iSerial);
+ sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
+ pOut->enc = ENC(pOut->db);
+ if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
+ rc = SQLITE_NOMEM;
+ }else{
+ *ppOut = pOut;
+ }
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ }
+ return rc;
+}
+
+/*
+** Set the iterator value pVal to point to the first value in the set.
+** Set (*ppOut) to point to this value before returning.
+*/
+SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
+ return valueFromValueList(pVal, ppOut, 0);
+}
+
+/*
+** Set the iterator value pVal to point to the next value in the set.
+** Set (*ppOut) to point to this value before returning.
+*/
+SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
+ return valueFromValueList(pVal, ppOut, 1);
+}
+
+/*
+** Return the current time for a statement. If the current time
+** is requested more than once within the same run of a single prepared
+** statement, the exact same time is returned for each invocation regardless
+** of the amount of time that elapses between invocations. In other words,
+** the time returned is always the time of the first call.
+*/
+SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
+ int rc;
+#ifndef SQLITE_ENABLE_STAT4
+ sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
+ assert( p->pVdbe!=0 );
+#else
+ sqlite3_int64 iTime = 0;
+ sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
+#endif
+ if( *piTime==0 ){
+ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
+ if( rc ) *piTime = 0;
+ }
+ return *piTime;
+}
+
+/*
+** Create a new aggregate context for p and return a pointer to
+** its pMem->z element.
+*/
+static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
+ Mem *pMem = p->pMem;
+ assert( (pMem->flags & MEM_Agg)==0 );
+ if( nByte<=0 ){
+ sqlite3VdbeMemSetNull(pMem);
+ pMem->z = 0;
+ }else{
+ sqlite3VdbeMemClearAndResize(pMem, nByte);
+ pMem->flags = MEM_Agg;
+ pMem->u.pDef = p->pFunc;
+ if( pMem->z ){
+ memset(pMem->z, 0, nByte);
+ }
+ }
+ return (void*)pMem->z;
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
+ assert( p && p->pFunc && p->pFunc->xFinalize );
+ assert( sqlite3_mutex_held(p->pOut->db->mutex) );
+ testcase( nByte<0 );
+ if( (p->pMem->flags & MEM_Agg)==0 ){
+ return createAggContext(p, nByte);
+ }else{
+ return (void*)p->pMem->z;
+ }
+}
+
+/*
+** Return the auxiliary data pointer, if any, for the iArg'th argument to
+** the user-function defined by pCtx.
+**
+** The left-most argument is 0.
+**
+** Undocumented behavior: If iArg is negative then access a cache of
+** auxiliary data pointers that is available to all functions within a
+** single prepared statement. The iArg values must match.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
+ AuxData *pAuxData;
+
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+#if SQLITE_ENABLE_STAT4
+ if( pCtx->pVdbe==0 ) return 0;
+#else
+ assert( pCtx->pVdbe!=0 );
+#endif
+ for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
+ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
+ return pAuxData->pAux;
+ }
+ }
+ return 0;
+}
+
+/*
+** Set the auxiliary data pointer and delete function, for the iArg'th
+** argument to the user-function defined by pCtx. Any previous value is
+** deleted by calling the delete function specified when it was set.
+**
+** The left-most argument is 0.
+**
+** Undocumented behavior: If iArg is negative then make the data available
+** to all functions within the current prepared statement using iArg as an
+** access code.
+*/
+SQLITE_API void sqlite3_set_auxdata(
+ sqlite3_context *pCtx,
+ int iArg,
+ void *pAux,
+ void (*xDelete)(void*)
+){
+ AuxData *pAuxData;
+ Vdbe *pVdbe = pCtx->pVdbe;
+
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+#ifdef SQLITE_ENABLE_STAT4
+ if( pVdbe==0 ) goto failed;
+#else
+ assert( pVdbe!=0 );
+#endif
+
+ for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
+ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
+ break;
+ }
+ }
+ if( pAuxData==0 ){
+ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
+ if( !pAuxData ) goto failed;
+ pAuxData->iAuxOp = pCtx->iOp;
+ pAuxData->iAuxArg = iArg;
+ pAuxData->pNextAux = pVdbe->pAuxData;
+ pVdbe->pAuxData = pAuxData;
+ if( pCtx->isError==0 ) pCtx->isError = -1;
+ }else if( pAuxData->xDeleteAux ){
+ pAuxData->xDeleteAux(pAuxData->pAux);
+ }
+
+ pAuxData->pAux = pAux;
+ pAuxData->xDeleteAux = xDelete;
+ return;
+
+failed:
+ if( xDelete ){
+ xDelete(pAux);
+ }
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Return the number of times the Step function of an aggregate has been
+** called.
+**
+** This function is deprecated. Do not use it for new code. It is
+** provide only to avoid breaking legacy code. New aggregate function
+** implementations should keep their own counts within their aggregate
+** context.
+*/
+SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
+ assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
+ return p->pMem->n;
+}
+#endif
+
+/*
+** Return the number of columns in the result set for the statement pStmt.
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
+ Vdbe *pVm = (Vdbe *)pStmt;
+ return pVm ? pVm->nResColumn : 0;
+}
+
+/*
+** Return the number of values available from the current row of the
+** currently executing statement pStmt.
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
+ Vdbe *pVm = (Vdbe *)pStmt;
+ if( pVm==0 || pVm->pResultSet==0 ) return 0;
+ return pVm->nResColumn;
+}
+
+/*
+** Return a pointer to static memory containing an SQL NULL value.
+*/
+static const Mem *columnNullValue(void){
+ /* Even though the Mem structure contains an element
+ ** of type i64, on certain architectures (x86) with certain compiler
+ ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
+ ** instead of an 8-byte one. This all works fine, except that when
+ ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
+ ** that a Mem structure is located on an 8-byte boundary. To prevent
+ ** these assert()s from failing, when building with SQLITE_DEBUG defined
+ ** using gcc, we force nullMem to be 8-byte aligned using the magical
+ ** __attribute__((aligned(8))) macro. */
+ static const Mem nullMem
+#if defined(SQLITE_DEBUG) && defined(__GNUC__)
+ __attribute__((aligned(8)))
+#endif
+ = {
+ /* .u = */ {0},
+ /* .z = */ (char*)0,
+ /* .n = */ (int)0,
+ /* .flags = */ (u16)MEM_Null,
+ /* .enc = */ (u8)0,
+ /* .eSubtype = */ (u8)0,
+ /* .db = */ (sqlite3*)0,
+ /* .szMalloc = */ (int)0,
+ /* .uTemp = */ (u32)0,
+ /* .zMalloc = */ (char*)0,
+ /* .xDel = */ (void(*)(void*))0,
+#ifdef SQLITE_DEBUG
+ /* .pScopyFrom = */ (Mem*)0,
+ /* .mScopyFlags= */ 0,
+#endif
+ };
+ return &nullMem;
+}
+
+/*
+** Check to see if column iCol of the given statement is valid. If
+** it is, return a pointer to the Mem for the value of that column.
+** If iCol is not valid, return a pointer to a Mem which has a value
+** of NULL.
+*/
+static Mem *columnMem(sqlite3_stmt *pStmt, int i){
+ Vdbe *pVm;
+ Mem *pOut;
+
+ pVm = (Vdbe *)pStmt;
+ if( pVm==0 ) return (Mem*)columnNullValue();
+ assert( pVm->db );
+ sqlite3_mutex_enter(pVm->db->mutex);
+ if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
+ pOut = &pVm->pResultSet[i];
+ }else{
+ sqlite3Error(pVm->db, SQLITE_RANGE);
+ pOut = (Mem*)columnNullValue();
+ }
+ return pOut;
+}
+
+/*
+** This function is called after invoking an sqlite3_value_XXX function on a
+** column value (i.e. a value returned by evaluating an SQL expression in the
+** select list of a SELECT statement) that may cause a malloc() failure. If
+** malloc() has failed, the threads mallocFailed flag is cleared and the result
+** code of statement pStmt set to SQLITE_NOMEM.
+**
+** Specifically, this is called from within:
+**
+** sqlite3_column_int()
+** sqlite3_column_int64()
+** sqlite3_column_text()
+** sqlite3_column_text16()
+** sqlite3_column_real()
+** sqlite3_column_bytes()
+** sqlite3_column_bytes16()
+** sqiite3_column_blob()
+*/
+static void columnMallocFailure(sqlite3_stmt *pStmt)
+{
+ /* If malloc() failed during an encoding conversion within an
+ ** sqlite3_column_XXX API, then set the return code of the statement to
+ ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
+ ** and _finalize() will return NOMEM.
+ */
+ Vdbe *p = (Vdbe *)pStmt;
+ if( p ){
+ assert( p->db!=0 );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ p->rc = sqlite3ApiExit(p->db, p->rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+}
+
+/**************************** sqlite3_column_ *******************************
+** The following routines are used to access elements of the current row
+** in the result set.
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
+ const void *val;
+ val = sqlite3_value_blob( columnMem(pStmt,i) );
+ /* Even though there is no encoding conversion, value_blob() might
+ ** need to call malloc() to expand the result of a zeroblob()
+ ** expression.
+ */
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_bytes( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
+ double val = sqlite3_value_double( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_int( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
+ sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
+ const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
+ Mem *pOut = columnMem(pStmt, i);
+ if( pOut->flags&MEM_Static ){
+ pOut->flags &= ~MEM_Static;
+ pOut->flags |= MEM_Ephem;
+ }
+ columnMallocFailure(pStmt);
+ return (sqlite3_value *)pOut;
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
+ const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
+ int iType = sqlite3_value_type( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return iType;
+}
+
+/*
+** Convert the N-th element of pStmt->pColName[] into a string using
+** xFunc() then return that string. If N is out of range, return 0.
+**
+** There are up to 5 names for each column. useType determines which
+** name is returned. Here are the names:
+**
+** 0 The column name as it should be displayed for output
+** 1 The datatype name for the column
+** 2 The name of the database that the column derives from
+** 3 The name of the table that the column derives from
+** 4 The name of the table column that the result column derives from
+**
+** If the result is not a simple column reference (if it is an expression
+** or a constant) then useTypes 2, 3, and 4 return NULL.
+*/
+static const void *columnName(
+ sqlite3_stmt *pStmt, /* The statement */
+ int N, /* Which column to get the name for */
+ int useUtf16, /* True to return the name as UTF16 */
+ int useType /* What type of name */
+){
+ const void *ret;
+ Vdbe *p;
+ int n;
+ sqlite3 *db;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pStmt==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ ret = 0;
+ p = (Vdbe *)pStmt;
+ db = p->db;
+ assert( db!=0 );
+ n = sqlite3_column_count(pStmt);
+ if( N<n && N>=0 ){
+ N += useType*n;
+ sqlite3_mutex_enter(db->mutex);
+ assert( db->mallocFailed==0 );
+#ifndef SQLITE_OMIT_UTF16
+ if( useUtf16 ){
+ ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
+ }else
+#endif
+ {
+ ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
+ }
+ /* A malloc may have failed inside of the _text() call. If this
+ ** is the case, clear the mallocFailed flag and return NULL.
+ */
+ if( db->mallocFailed ){
+ sqlite3OomClear(db);
+ ret = 0;
+ }
+ sqlite3_mutex_leave(db->mutex);
+ }
+ return ret;
+}
+
+/*
+** Return the name of the Nth column of the result set returned by SQL
+** statement pStmt.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_NAME);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_NAME);
+}
+#endif
+
+/*
+** Constraint: If you have ENABLE_COLUMN_METADATA then you must
+** not define OMIT_DECLTYPE.
+*/
+#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
+# error "Must not define both SQLITE_OMIT_DECLTYPE \
+ and SQLITE_ENABLE_COLUMN_METADATA"
+#endif
+
+#ifndef SQLITE_OMIT_DECLTYPE
+/*
+** Return the column declaration type (if applicable) of the 'i'th column
+** of the result set of SQL statement pStmt.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_DECLTYPE */
+
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+/*
+** Return the name of the database from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unambiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_DATABASE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_DATABASE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the name of the table from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unambiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_TABLE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_TABLE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the name of the table column from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unambiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_COLUMN);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_COLUMN);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_ENABLE_COLUMN_METADATA */
+
+
+/******************************* sqlite3_bind_ ***************************
+**
+** Routines used to attach values to wildcards in a compiled SQL statement.
+*/
+/*
+** Unbind the value bound to variable i in virtual machine p. This is the
+** the same as binding a NULL value to the column. If the "i" parameter is
+** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
+**
+** A successful evaluation of this routine acquires the mutex on p.
+** the mutex is released if any kind of error occurs.
+**
+** The error code stored in database p->db is overwritten with the return
+** value in any case.
+*/
+static int vdbeUnbind(Vdbe *p, int i){
+ Mem *pVar;
+ if( vdbeSafetyNotNull(p) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ sqlite3_mutex_enter(p->db->mutex);
+ if( p->eVdbeState!=VDBE_READY_STATE ){
+ sqlite3Error(p->db, SQLITE_MISUSE);
+ sqlite3_mutex_leave(p->db->mutex);
+ sqlite3_log(SQLITE_MISUSE,
+ "bind on a busy prepared statement: [%s]", p->zSql);
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( i<1 || i>p->nVar ){
+ sqlite3Error(p->db, SQLITE_RANGE);
+ sqlite3_mutex_leave(p->db->mutex);
+ return SQLITE_RANGE;
+ }
+ i--;
+ pVar = &p->aVar[i];
+ sqlite3VdbeMemRelease(pVar);
+ pVar->flags = MEM_Null;
+ p->db->errCode = SQLITE_OK;
+
+ /* If the bit corresponding to this variable in Vdbe.expmask is set, then
+ ** binding a new value to this variable invalidates the current query plan.
+ **
+ ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
+ ** parameter in the WHERE clause might influence the choice of query plan
+ ** for a statement, then the statement will be automatically recompiled,
+ ** as if there had been a schema change, on the first sqlite3_step() call
+ ** following any change to the bindings of that parameter.
+ */
+ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
+ if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
+ p->expired = 1;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Bind a text or BLOB value.
+*/
+static int bindText(
+ sqlite3_stmt *pStmt, /* The statement to bind against */
+ int i, /* Index of the parameter to bind */
+ const void *zData, /* Pointer to the data to be bound */
+ i64 nData, /* Number of bytes of data to be bound */
+ void (*xDel)(void*), /* Destructor for the data */
+ u8 encoding /* Encoding for the data */
+){
+ Vdbe *p = (Vdbe *)pStmt;
+ Mem *pVar;
+ int rc;
+
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ if( zData!=0 ){
+ pVar = &p->aVar[i-1];
+ rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
+ if( rc==SQLITE_OK && encoding!=0 ){
+ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
+ }
+ if( rc ){
+ sqlite3Error(p->db, rc);
+ rc = sqlite3ApiExit(p->db, rc);
+ }
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
+ xDel((void*)zData);
+ }
+ return rc;
+}
+
+
+/*
+** Bind a blob value to an SQL statement variable.
+*/
+SQLITE_API int sqlite3_bind_blob(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( nData<0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ return bindText(pStmt, i, zData, nData, xDel, 0);
+}
+SQLITE_API int sqlite3_bind_blob64(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ sqlite3_uint64 nData,
+ void (*xDel)(void*)
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+ return bindText(pStmt, i, zData, nData, xDel, 0);
+}
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
+ return sqlite3_bind_int64(p, i, (i64)iValue);
+}
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
+ int rc;
+ Vdbe *p = (Vdbe*)pStmt;
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_pointer(
+ sqlite3_stmt *pStmt,
+ int i,
+ void *pPtr,
+ const char *zPTtype,
+ void (*xDestructor)(void*)
+){
+ int rc;
+ Vdbe *p = (Vdbe*)pStmt;
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
+ sqlite3_mutex_leave(p->db->mutex);
+ }else if( xDestructor ){
+ xDestructor(pPtr);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_text(
+ sqlite3_stmt *pStmt,
+ int i,
+ const char *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
+}
+SQLITE_API int sqlite3_bind_text64(
+ sqlite3_stmt *pStmt,
+ int i,
+ const char *zData,
+ sqlite3_uint64 nData,
+ void (*xDel)(void*),
+ unsigned char enc
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
+ return bindText(pStmt, i, zData, nData, xDel, enc);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API int sqlite3_bind_text16(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
+ int rc;
+ switch( sqlite3_value_type((sqlite3_value*)pValue) ){
+ case SQLITE_INTEGER: {
+ rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ assert( pValue->flags & (MEM_Real|MEM_IntReal) );
+ rc = sqlite3_bind_double(pStmt, i,
+ (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
+ );
+ break;
+ }
+ case SQLITE_BLOB: {
+ if( pValue->flags & MEM_Zero ){
+ rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
+ }else{
+ rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
+ pValue->enc);
+ break;
+ }
+ default: {
+ rc = sqlite3_bind_null(pStmt, i);
+ break;
+ }
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+#ifndef SQLITE_OMIT_INCRBLOB
+ sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
+#else
+ rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
+#endif
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ rc = SQLITE_TOOBIG;
+ }else{
+ assert( (n & 0x7FFFFFFF)==n );
+ rc = sqlite3_bind_zeroblob(pStmt, i, n);
+ }
+ rc = sqlite3ApiExit(p->db, rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+
+/*
+** Return the number of wildcards that can be potentially bound to.
+** This routine is added to support DBD::SQLite.
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ return p ? p->nVar : 0;
+}
+
+/*
+** Return the name of a wildcard parameter. Return NULL if the index
+** is out of range or if the wildcard is unnamed.
+**
+** The result is always UTF-8.
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
+ Vdbe *p = (Vdbe*)pStmt;
+ if( p==0 ) return 0;
+ return sqlite3VListNumToName(p->pVList, i);
+}
+
+/*
+** Given a wildcard parameter name, return the index of the variable
+** with that name. If there is no variable with the given name,
+** return 0.
+*/
+SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
+ if( p==0 || zName==0 ) return 0;
+ return sqlite3VListNameToNum(p->pVList, zName, nName);
+}
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
+ return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
+}
+
+/*
+** Transfer all bindings from the first statement over to the second.
+*/
+SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+ Vdbe *pFrom = (Vdbe*)pFromStmt;
+ Vdbe *pTo = (Vdbe*)pToStmt;
+ int i;
+ assert( pTo->db==pFrom->db );
+ assert( pTo->nVar==pFrom->nVar );
+ sqlite3_mutex_enter(pTo->db->mutex);
+ for(i=0; i<pFrom->nVar; i++){
+ sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
+ }
+ sqlite3_mutex_leave(pTo->db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. Internal/core SQLite code
+** should call sqlite3TransferBindings.
+**
+** It is misuse to call this routine with statements from different
+** database connections. But as this is a deprecated interface, we
+** will not bother to check for that condition.
+**
+** If the two statements contain a different number of bindings, then
+** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
+** SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+ Vdbe *pFrom = (Vdbe*)pFromStmt;
+ Vdbe *pTo = (Vdbe*)pToStmt;
+ if( pFrom->nVar!=pTo->nVar ){
+ return SQLITE_ERROR;
+ }
+ assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
+ if( pTo->expmask ){
+ pTo->expired = 1;
+ }
+ assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
+ if( pFrom->expmask ){
+ pFrom->expired = 1;
+ }
+ return sqlite3TransferBindings(pFromStmt, pToStmt);
+}
+#endif
+
+/*
+** Return the sqlite3* database handle to which the prepared statement given
+** in the argument belongs. This is the same database handle that was
+** the first argument to the sqlite3_prepare() that was used to create
+** the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->db : 0;
+}
+
+/*
+** Return true if the prepared statement is guaranteed to not modify the
+** database.
+*/
+SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
+}
+
+/*
+** Return 1 if the statement is an EXPLAIN and return 2 if the
+** statement is an EXPLAIN QUERY PLAN
+*/
+SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->explain : 0;
+}
+
+/*
+** Return true if the prepared statement is in need of being reset.
+*/
+SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
+ Vdbe *v = (Vdbe*)pStmt;
+ return v!=0 && v->eVdbeState==VDBE_RUN_STATE;
+}
+
+/*
+** Return a pointer to the next prepared statement after pStmt associated
+** with database connection pDb. If pStmt is NULL, return the first
+** prepared statement for the database connection. Return NULL if there
+** are no more.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
+ sqlite3_stmt *pNext;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(pDb) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(pDb->mutex);
+ if( pStmt==0 ){
+ pNext = (sqlite3_stmt*)pDb->pVdbe;
+ }else{
+ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
+ }
+ sqlite3_mutex_leave(pDb->mutex);
+ return pNext;
+}
+
+/*
+** Return the value of a status counter for a prepared statement
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
+ Vdbe *pVdbe = (Vdbe*)pStmt;
+ u32 v;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !pStmt
+ || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
+ ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ if( op==SQLITE_STMTSTATUS_MEMUSED ){
+ sqlite3 *db = pVdbe->db;
+ sqlite3_mutex_enter(db->mutex);
+ v = 0;
+ db->pnBytesFreed = (int*)&v;
+ sqlite3VdbeDelete(pVdbe);
+ db->pnBytesFreed = 0;
+ sqlite3_mutex_leave(db->mutex);
+ }else{
+ v = pVdbe->aCounter[op];
+ if( resetFlag ) pVdbe->aCounter[op] = 0;
+ }
+ return (int)v;
+}
+
+/*
+** Return the SQL associated with a prepared statement
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe *)pStmt;
+ return p ? p->zSql : 0;
+}
+
+/*
+** Return the SQL associated with a prepared statement with
+** bound parameters expanded. Space to hold the returned string is
+** obtained from sqlite3_malloc(). The caller is responsible for
+** freeing the returned string by passing it to sqlite3_free().
+**
+** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
+** expanded bound parameters.
+*/
+SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
+#ifdef SQLITE_OMIT_TRACE
+ return 0;
+#else
+ char *z = 0;
+ const char *zSql = sqlite3_sql(pStmt);
+ if( zSql ){
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ z = sqlite3VdbeExpandSql(p, zSql);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return z;
+#endif
+}
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** Return the normalized SQL associated with a prepared statement.
+*/
+SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe *)pStmt;
+ if( p==0 ) return 0;
+ if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
+ sqlite3_mutex_enter(p->db->mutex);
+ p->zNormSql = sqlite3Normalize(p, p->zSql);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return p->zNormSql;
+}
+#endif /* SQLITE_ENABLE_NORMALIZE */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** Allocate and populate an UnpackedRecord structure based on the serialized
+** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
+** if successful, or a NULL pointer if an OOM error is encountered.
+*/
+static UnpackedRecord *vdbeUnpackRecord(
+ KeyInfo *pKeyInfo,
+ int nKey,
+ const void *pKey
+){
+ UnpackedRecord *pRet; /* Return value */
+
+ pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
+ if( pRet ){
+ memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
+ sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
+ }
+ return pRet;
+}
+
+/*
+** This function is called from within a pre-update callback to retrieve
+** a field of the row currently being updated or deleted.
+*/
+SQLITE_API int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
+ PreUpdate *p = db->pPreUpdate;
+ Mem *pMem;
+ int rc = SQLITE_OK;
+
+ /* Test that this call is being made from within an SQLITE_DELETE or
+ ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
+ if( !p || p->op==SQLITE_INSERT ){
+ rc = SQLITE_MISUSE_BKPT;
+ goto preupdate_old_out;
+ }
+ if( p->pPk ){
+ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
+ }
+ if( iIdx>=p->pCsr->nField || iIdx<0 ){
+ rc = SQLITE_RANGE;
+ goto preupdate_old_out;
+ }
+
+ /* If the old.* record has not yet been loaded into memory, do so now. */
+ if( p->pUnpacked==0 ){
+ u32 nRec;
+ u8 *aRec;
+
+ assert( p->pCsr->eCurType==CURTYPE_BTREE );
+ nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
+ aRec = sqlite3DbMallocRaw(db, nRec);
+ if( !aRec ) goto preupdate_old_out;
+ rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
+ if( rc==SQLITE_OK ){
+ p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
+ if( !p->pUnpacked ) rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, aRec);
+ goto preupdate_old_out;
+ }
+ p->aRecord = aRec;
+ }
+
+ pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
+ if( iIdx==p->pTab->iPKey ){
+ sqlite3VdbeMemSetInt64(pMem, p->iKey1);
+ }else if( iIdx>=p->pUnpacked->nField ){
+ *ppValue = (sqlite3_value *)columnNullValue();
+ }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
+ if( pMem->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_IntReal );
+ sqlite3VdbeMemRealify(pMem);
+ }
+ }
+
+ preupdate_old_out:
+ sqlite3Error(db, rc);
+ return sqlite3ApiExit(db, rc);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is called from within a pre-update callback to retrieve
+** the number of columns in the row being updated, deleted or inserted.
+*/
+SQLITE_API int sqlite3_preupdate_count(sqlite3 *db){
+ PreUpdate *p = db->pPreUpdate;
+ return (p ? p->keyinfo.nKeyField : 0);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is designed to be called from within a pre-update callback
+** only. It returns zero if the change that caused the callback was made
+** immediately by a user SQL statement. Or, if the change was made by a
+** trigger program, it returns the number of trigger programs currently
+** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
+** top-level trigger etc.).
+**
+** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
+** or SET DEFAULT action is considered a trigger.
+*/
+SQLITE_API int sqlite3_preupdate_depth(sqlite3 *db){
+ PreUpdate *p = db->pPreUpdate;
+ return (p ? p->v->nFrame : 0);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is designed to be called from within a pre-update callback
+** only.
+*/
+SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *db){
+ PreUpdate *p = db->pPreUpdate;
+ return (p ? p->iBlobWrite : -1);
+}
+#endif
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is called from within a pre-update callback to retrieve
+** a field of the row currently being updated or inserted.
+*/
+SQLITE_API int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
+ PreUpdate *p = db->pPreUpdate;
+ int rc = SQLITE_OK;
+ Mem *pMem;
+
+ if( !p || p->op==SQLITE_DELETE ){
+ rc = SQLITE_MISUSE_BKPT;
+ goto preupdate_new_out;
+ }
+ if( p->pPk && p->op!=SQLITE_UPDATE ){
+ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
+ }
+ if( iIdx>=p->pCsr->nField || iIdx<0 ){
+ rc = SQLITE_RANGE;
+ goto preupdate_new_out;
+ }
+
+ if( p->op==SQLITE_INSERT ){
+ /* For an INSERT, memory cell p->iNewReg contains the serialized record
+ ** that is being inserted. Deserialize it. */
+ UnpackedRecord *pUnpack = p->pNewUnpacked;
+ if( !pUnpack ){
+ Mem *pData = &p->v->aMem[p->iNewReg];
+ rc = ExpandBlob(pData);
+ if( rc!=SQLITE_OK ) goto preupdate_new_out;
+ pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
+ if( !pUnpack ){
+ rc = SQLITE_NOMEM;
+ goto preupdate_new_out;
+ }
+ p->pNewUnpacked = pUnpack;
+ }
+ pMem = &pUnpack->aMem[iIdx];
+ if( iIdx==p->pTab->iPKey ){
+ sqlite3VdbeMemSetInt64(pMem, p->iKey2);
+ }else if( iIdx>=pUnpack->nField ){
+ pMem = (sqlite3_value *)columnNullValue();
+ }
+ }else{
+ /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
+ ** value. Make a copy of the cell contents and return a pointer to it.
+ ** It is not safe to return a pointer to the memory cell itself as the
+ ** caller may modify the value text encoding.
+ */
+ assert( p->op==SQLITE_UPDATE );
+ if( !p->aNew ){
+ p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
+ if( !p->aNew ){
+ rc = SQLITE_NOMEM;
+ goto preupdate_new_out;
+ }
+ }
+ assert( iIdx>=0 && iIdx<p->pCsr->nField );
+ pMem = &p->aNew[iIdx];
+ if( pMem->flags==0 ){
+ if( iIdx==p->pTab->iPKey ){
+ sqlite3VdbeMemSetInt64(pMem, p->iKey2);
+ }else{
+ rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
+ if( rc!=SQLITE_OK ) goto preupdate_new_out;
+ }
+ }
+ }
+ *ppValue = pMem;
+
+ preupdate_new_out:
+ sqlite3Error(db, rc);
+ return sqlite3ApiExit(db, rc);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+/*
+** Return status data for a single loop within query pStmt.
+*/
+SQLITE_API int sqlite3_stmt_scanstatus(
+ sqlite3_stmt *pStmt, /* Prepared statement being queried */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Which metric to return */
+ void *pOut /* OUT: Write the answer here */
+){
+ Vdbe *p = (Vdbe*)pStmt;
+ ScanStatus *pScan;
+ if( idx<0 || idx>=p->nScan ) return 1;
+ pScan = &p->aScan[idx];
+ switch( iScanStatusOp ){
+ case SQLITE_SCANSTAT_NLOOP: {
+ *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
+ break;
+ }
+ case SQLITE_SCANSTAT_NVISIT: {
+ *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
+ break;
+ }
+ case SQLITE_SCANSTAT_EST: {
+ double r = 1.0;
+ LogEst x = pScan->nEst;
+ while( x<100 ){
+ x += 10;
+ r *= 0.5;
+ }
+ *(double*)pOut = r*sqlite3LogEstToInt(x);
+ break;
+ }
+ case SQLITE_SCANSTAT_NAME: {
+ *(const char**)pOut = pScan->zName;
+ break;
+ }
+ case SQLITE_SCANSTAT_EXPLAIN: {
+ if( pScan->addrExplain ){
+ *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
+ }else{
+ *(const char**)pOut = 0;
+ }
+ break;
+ }
+ case SQLITE_SCANSTAT_SELECTID: {
+ if( pScan->addrExplain ){
+ *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
+ }else{
+ *(int*)pOut = -1;
+ }
+ break;
+ }
+ default: {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
+*/
+SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ memset(p->anExec, 0, p->nOp * sizeof(i64));
+}
+#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
+
+/************** End of vdbeapi.c *********************************************/
+/************** Begin file vdbetrace.c ***************************************/
+/*
+** 2009 November 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to insert the values of host parameters
+** (aka "wildcards") into the SQL text output by sqlite3_trace().
+**
+** The Vdbe parse-tree explainer is also found here.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#ifndef SQLITE_OMIT_TRACE
+
+/*
+** zSql is a zero-terminated string of UTF-8 SQL text. Return the number of
+** bytes in this text up to but excluding the first character in
+** a host parameter. If the text contains no host parameters, return
+** the total number of bytes in the text.
+*/
+static int findNextHostParameter(const char *zSql, int *pnToken){
+ int tokenType;
+ int nTotal = 0;
+ int n;
+
+ *pnToken = 0;
+ while( zSql[0] ){
+ n = sqlite3GetToken((u8*)zSql, &tokenType);
+ assert( n>0 && tokenType!=TK_ILLEGAL );
+ if( tokenType==TK_VARIABLE ){
+ *pnToken = n;
+ break;
+ }
+ nTotal += n;
+ zSql += n;
+ }
+ return nTotal;
+}
+
+/*
+** This function returns a pointer to a nul-terminated string in memory
+** obtained from sqlite3DbMalloc(). If sqlite3.nVdbeExec is 1, then the
+** string contains a copy of zRawSql but with host parameters expanded to
+** their current bindings. Or, if sqlite3.nVdbeExec is greater than 1,
+** then the returned string holds a copy of zRawSql with "-- " prepended
+** to each line of text.
+**
+** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then
+** then long strings and blobs are truncated to that many bytes. This
+** can be used to prevent unreasonably large trace strings when dealing
+** with large (multi-megabyte) strings and blobs.
+**
+** The calling function is responsible for making sure the memory returned
+** is eventually freed.
+**
+** ALGORITHM: Scan the input string looking for host parameters in any of
+** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within
+** string literals, quoted identifier names, and comments. For text forms,
+** the host parameter index is found by scanning the prepared
+** statement for the corresponding OP_Variable opcode. Once the host
+** parameter index is known, locate the value in p->aVar[]. Then render
+** the value as a literal in place of the host parameter name.
+*/
+SQLITE_PRIVATE char *sqlite3VdbeExpandSql(
+ Vdbe *p, /* The prepared statement being evaluated */
+ const char *zRawSql /* Raw text of the SQL statement */
+){
+ sqlite3 *db; /* The database connection */
+ int idx = 0; /* Index of a host parameter */
+ int nextIndex = 1; /* Index of next ? host parameter */
+ int n; /* Length of a token prefix */
+ int nToken; /* Length of the parameter token */
+ int i; /* Loop counter */
+ Mem *pVar; /* Value of a host parameter */
+ StrAccum out; /* Accumulate the output here */
+#ifndef SQLITE_OMIT_UTF16
+ Mem utf8; /* Used to convert UTF16 into UTF8 for display */
+#endif
+
+ db = p->db;
+ sqlite3StrAccumInit(&out, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ if( db->nVdbeExec>1 ){
+ while( *zRawSql ){
+ const char *zStart = zRawSql;
+ while( *(zRawSql++)!='\n' && *zRawSql );
+ sqlite3_str_append(&out, "-- ", 3);
+ assert( (zRawSql - zStart) > 0 );
+ sqlite3_str_append(&out, zStart, (int)(zRawSql-zStart));
+ }
+ }else if( p->nVar==0 ){
+ sqlite3_str_append(&out, zRawSql, sqlite3Strlen30(zRawSql));
+ }else{
+ while( zRawSql[0] ){
+ n = findNextHostParameter(zRawSql, &nToken);
+ assert( n>0 );
+ sqlite3_str_append(&out, zRawSql, n);
+ zRawSql += n;
+ assert( zRawSql[0] || nToken==0 );
+ if( nToken==0 ) break;
+ if( zRawSql[0]=='?' ){
+ if( nToken>1 ){
+ assert( sqlite3Isdigit(zRawSql[1]) );
+ sqlite3GetInt32(&zRawSql[1], &idx);
+ }else{
+ idx = nextIndex;
+ }
+ }else{
+ assert( zRawSql[0]==':' || zRawSql[0]=='$' ||
+ zRawSql[0]=='@' || zRawSql[0]=='#' );
+ testcase( zRawSql[0]==':' );
+ testcase( zRawSql[0]=='$' );
+ testcase( zRawSql[0]=='@' );
+ testcase( zRawSql[0]=='#' );
+ idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken);
+ assert( idx>0 );
+ }
+ zRawSql += nToken;
+ nextIndex = MAX(idx + 1, nextIndex);
+ assert( idx>0 && idx<=p->nVar );
+ pVar = &p->aVar[idx-1];
+ if( pVar->flags & MEM_Null ){
+ sqlite3_str_append(&out, "NULL", 4);
+ }else if( pVar->flags & (MEM_Int|MEM_IntReal) ){
+ sqlite3_str_appendf(&out, "%lld", pVar->u.i);
+ }else if( pVar->flags & MEM_Real ){
+ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r);
+ }else if( pVar->flags & MEM_Str ){
+ int nOut; /* Number of bytes of the string text to include in output */
+#ifndef SQLITE_OMIT_UTF16
+ u8 enc = ENC(db);
+ if( enc!=SQLITE_UTF8 ){
+ memset(&utf8, 0, sizeof(utf8));
+ utf8.db = db;
+ sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
+ if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){
+ out.accError = SQLITE_NOMEM;
+ out.nAlloc = 0;
+ }
+ pVar = &utf8;
+ }
+#endif
+ nOut = pVar->n;
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
+ nOut = SQLITE_TRACE_SIZE_LIMIT;
+ while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
+ }
+#endif
+ sqlite3_str_appendf(&out, "'%.*q'", nOut, pVar->z);
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut<pVar->n ){
+ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut);
+ }
+#endif
+#ifndef SQLITE_OMIT_UTF16
+ if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
+#endif
+ }else if( pVar->flags & MEM_Zero ){
+ sqlite3_str_appendf(&out, "zeroblob(%d)", pVar->u.nZero);
+ }else{
+ int nOut; /* Number of bytes of the blob to include in output */
+ assert( pVar->flags & MEM_Blob );
+ sqlite3_str_append(&out, "x'", 2);
+ nOut = pVar->n;
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
+#endif
+ for(i=0; i<nOut; i++){
+ sqlite3_str_appendf(&out, "%02x", pVar->z[i]&0xff);
+ }
+ sqlite3_str_append(&out, "'", 1);
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut<pVar->n ){
+ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut);
+ }
+#endif
+ }
+ }
+ }
+ if( out.accError ) sqlite3_str_reset(&out);
+ return sqlite3StrAccumFinish(&out);
+}
+
+#endif /* #ifndef SQLITE_OMIT_TRACE */
+
+/************** End of vdbetrace.c *******************************************/
+/************** Begin file vdbe.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements the function that runs the
+** bytecode of a prepared statement.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/*
+** Invoke this macro on memory cells just prior to changing the
+** value of the cell. This macro verifies that shallow copies are
+** not misused. A shallow copy of a string or blob just copies a
+** pointer to the string or blob, not the content. If the original
+** is changed while the copy is still in use, the string or blob might
+** be changed out from under the copy. This macro verifies that nothing
+** like that ever happens.
+*/
+#ifdef SQLITE_DEBUG
+# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
+#else
+# define memAboutToChange(P,M)
+#endif
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_search_count = 0;
+#endif
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
+** field of the sqlite3 structure is set in order to simulate an interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_interrupt_count = 0;
+#endif
+
+/*
+** The next global variable is incremented each type the OP_Sort opcode
+** is executed. The test procedures use this information to make sure that
+** sorting is occurring or not occurring at appropriate times. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_sort_count = 0;
+#endif
+
+/*
+** The next global variable records the size of the largest MEM_Blob
+** or MEM_Str that has been used by a VDBE opcode. The test procedures
+** use this information to make sure that the zero-blob functionality
+** is working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_max_blobsize = 0;
+static void updateMaxBlobsize(Mem *p){
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
+ sqlite3_max_blobsize = p->n;
+ }
+}
+#endif
+
+/*
+** This macro evaluates to true if either the update hook or the preupdate
+** hook are enabled for database connect DB.
+*/
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
+#else
+# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
+#endif
+
+/*
+** The next global variable is incremented each time the OP_Found opcode
+** is executed. This is used to test whether or not the foreign key
+** operation implemented using OP_FkIsZero is working. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_found_count = 0;
+#endif
+
+/*
+** Test a register to see if it exceeds the current maximum blob size.
+** If it does, record the new maximum blob size.
+*/
+#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
+#else
+# define UPDATE_MAX_BLOBSIZE(P)
+#endif
+
+#ifdef SQLITE_DEBUG
+/* This routine provides a convenient place to set a breakpoint during
+** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
+** each opcode is printed. Variables "pc" (program counter) and pOp are
+** available to add conditionals to the breakpoint. GDB example:
+**
+** break test_trace_breakpoint if pc=22
+**
+** Other useful labels for breakpoints include:
+** test_addop_breakpoint(pc,pOp)
+** sqlite3CorruptError(lineno)
+** sqlite3MisuseError(lineno)
+** sqlite3CantopenError(lineno)
+*/
+static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
+ static int n = 0;
+ n++;
+}
+#endif
+
+/*
+** Invoke the VDBE coverage callback, if that callback is defined. This
+** feature is used for test suite validation only and does not appear an
+** production builds.
+**
+** M is the type of branch. I is the direction taken for this instance of
+** the branch.
+**
+** M: 2 - two-way branch (I=0: fall-thru 1: jump )
+** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
+** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
+**
+** In other words, if M is 2, then I is either 0 (for fall-through) or
+** 1 (for when the branch is taken). If M is 3, the I is 0 for an
+** ordinary fall-through, I is 1 if the branch was taken, and I is 2
+** if the result of comparison is NULL. For M=3, I=2 the jump may or
+** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
+** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
+** depending on if the operands are less than, equal, or greater than.
+**
+** iSrcLine is the source code line (from the __LINE__ macro) that
+** generated the VDBE instruction combined with flag bits. The source
+** code line number is in the lower 24 bits of iSrcLine and the upper
+** 8 bytes are flags. The lower three bits of the flags indicate
+** values for I that should never occur. For example, if the branch is
+** always taken, the flags should be 0x05 since the fall-through and
+** alternate branch are never taken. If a branch is never taken then
+** flags should be 0x06 since only the fall-through approach is allowed.
+**
+** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
+** interested in equal or not-equal. In other words, I==0 and I==2
+** should be treated as equivalent
+**
+** Since only a line number is retained, not the filename, this macro
+** only works for amalgamation builds. But that is ok, since these macros
+** should be no-ops except for special builds used to measure test coverage.
+*/
+#if !defined(SQLITE_VDBE_COVERAGE)
+# define VdbeBranchTaken(I,M)
+#else
+# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
+ static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
+ u8 mNever;
+ assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
+ assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
+ assert( I<M ); /* I can only be 2 if M is 3 or 4 */
+ /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
+ I = 1<<I;
+ /* The upper 8 bits of iSrcLine are flags. The lower three bits of
+ ** the flags indicate directions that the branch can never go. If
+ ** a branch really does go in one of those directions, assert right
+ ** away. */
+ mNever = iSrcLine >> 24;
+ assert( (I & mNever)==0 );
+ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
+ /* Invoke the branch coverage callback with three arguments:
+ ** iSrcLine - the line number of the VdbeCoverage() macro, with
+ ** flags removed.
+ ** I - Mask of bits 0x07 indicating which cases are are
+ ** fulfilled by this instance of the jump. 0x01 means
+ ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
+ ** impossible cases (ex: if the comparison is never NULL)
+ ** are filled in automatically so that the coverage
+ ** measurement logic does not flag those impossible cases
+ ** as missed coverage.
+ ** M - Type of jump. Same as M argument above
+ */
+ I |= mNever;
+ if( M==2 ) I |= 0x04;
+ if( M==4 ){
+ I |= 0x08;
+ if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
+ }
+ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
+ iSrcLine&0xffffff, I, M);
+ }
+#endif
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the register
+** does not control the string, it might be deleted without the register
+** knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the register itself controls. In other words, it
+** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 \
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
+
+/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
+#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
+
+/*
+** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
+** if we run out of memory.
+*/
+static VdbeCursor *allocateCursor(
+ Vdbe *p, /* The virtual machine */
+ int iCur, /* Index of the new VdbeCursor */
+ int nField, /* Number of fields in the table or index */
+ u8 eCurType /* Type of the new cursor */
+){
+ /* Find the memory cell that will be used to store the blob of memory
+ ** required for this VdbeCursor structure. It is convenient to use a
+ ** vdbe memory cell to manage the memory allocation required for a
+ ** VdbeCursor structure for the following reasons:
+ **
+ ** * Sometimes cursor numbers are used for a couple of different
+ ** purposes in a vdbe program. The different uses might require
+ ** different sized allocations. Memory cells provide growable
+ ** allocations.
+ **
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
+ ** be freed lazily via the sqlite3_release_memory() API. This
+ ** minimizes the number of malloc calls made by the system.
+ **
+ ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
+ ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
+ ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
+ */
+ Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
+
+ int nByte;
+ VdbeCursor *pCx = 0;
+ nByte =
+ ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
+ (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
+
+ assert( iCur>=0 && iCur<p->nCursor );
+ if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
+ sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
+ p->apCsr[iCur] = 0;
+ }
+
+ /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
+ ** the pMem used to hold space for the cursor has enough storage available
+ ** in pMem->zMalloc. But for the special case of the aMem[] entries used
+ ** to hold cursors, it is faster to in-line the logic. */
+ assert( pMem->flags==MEM_Undefined );
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
+ if( pMem->szMalloc<nByte ){
+ if( pMem->szMalloc>0 ){
+ sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ }
+ pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
+ if( pMem->zMalloc==0 ){
+ pMem->szMalloc = 0;
+ return 0;
+ }
+ pMem->szMalloc = nByte;
+ }
+
+ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
+ memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
+ pCx->eCurType = eCurType;
+ pCx->nField = nField;
+ pCx->aOffset = &pCx->aType[nField];
+ if( eCurType==CURTYPE_BTREE ){
+ pCx->uc.pCursor = (BtCursor*)
+ &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
+ sqlite3BtreeCursorZero(pCx->uc.pCursor);
+ }
+ return pCx;
+}
+
+/*
+** The string in pRec is known to look like an integer and to have a
+** floating point value of rValue. Return true and set *piValue to the
+** integer value if the string is in range to be an integer. Otherwise,
+** return false.
+*/
+static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
+ i64 iValue = (double)rValue;
+ if( sqlite3RealSameAsInt(rValue,iValue) ){
+ *piValue = iValue;
+ return 1;
+ }
+ return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
+}
+
+/*
+** Try to convert a value into a numeric representation if we can
+** do so without loss of information. In other words, if the string
+** looks like a number, convert it into a number. If it does not
+** look like a number, leave it alone.
+**
+** If the bTryForInt flag is true, then extra effort is made to give
+** an integer representation. Strings that look like floating point
+** values but which have no fractional component (example: '48.00')
+** will have a MEM_Int representation when bTryForInt is true.
+**
+** If bTryForInt is false, then if the input string contains a decimal
+** point or exponential notation, the result is only MEM_Real, even
+** if there is an exact integer representation of the quantity.
+*/
+static void applyNumericAffinity(Mem *pRec, int bTryForInt){
+ double rValue;
+ u8 enc = pRec->enc;
+ int rc;
+ assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
+ rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
+ if( rc<=0 ) return;
+ if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
+ pRec->flags |= MEM_Int;
+ }else{
+ pRec->u.r = rValue;
+ pRec->flags |= MEM_Real;
+ if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
+ }
+ /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
+ ** string representation after computing a numeric equivalent, because the
+ ** string representation might not be the canonical representation for the
+ ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
+ pRec->flags &= ~MEM_Str;
+}
+
+/*
+** Processing is determine by the affinity parameter:
+**
+** SQLITE_AFF_INTEGER:
+** SQLITE_AFF_REAL:
+** SQLITE_AFF_NUMERIC:
+** Try to convert pRec to an integer representation or a
+** floating-point representation if an integer representation
+** is not possible. Note that the integer representation is
+** always preferred, even if the affinity is REAL, because
+** an integer representation is more space efficient on disk.
+**
+** SQLITE_AFF_TEXT:
+** Convert pRec to a text representation.
+**
+** SQLITE_AFF_BLOB:
+** SQLITE_AFF_NONE:
+** No-op. pRec is unchanged.
+*/
+static void applyAffinity(
+ Mem *pRec, /* The value to apply affinity to */
+ char affinity, /* The affinity to be applied */
+ u8 enc /* Use this text encoding */
+){
+ if( affinity>=SQLITE_AFF_NUMERIC ){
+ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
+ || affinity==SQLITE_AFF_NUMERIC );
+ if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (pRec->flags & MEM_Real)==0 ){
+ if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
+ }else{
+ sqlite3VdbeIntegerAffinity(pRec);
+ }
+ }
+ }else if( affinity==SQLITE_AFF_TEXT ){
+ /* Only attempt the conversion to TEXT if there is an integer or real
+ ** representation (blob and NULL do not get converted) but no string
+ ** representation. It would be harmless to repeat the conversion if
+ ** there is already a string rep, but it is pointless to waste those
+ ** CPU cycles. */
+ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
+ testcase( pRec->flags & MEM_Int );
+ testcase( pRec->flags & MEM_Real );
+ testcase( pRec->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pRec, enc, 1);
+ }
+ }
+ pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
+ }
+}
+
+/*
+** Try to convert the type of a function argument or a result column
+** into a numeric representation. Use either INTEGER or REAL whichever
+** is appropriate. But only do the conversion if it is possible without
+** loss of information and return the revised type of the argument.
+*/
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
+ int eType = sqlite3_value_type(pVal);
+ if( eType==SQLITE_TEXT ){
+ Mem *pMem = (Mem*)pVal;
+ applyNumericAffinity(pMem, 0);
+ eType = sqlite3_value_type(pVal);
+ }
+ return eType;
+}
+
+/*
+** Exported version of applyAffinity(). This one works on sqlite3_value*,
+** not the internal Mem* type.
+*/
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
+ sqlite3_value *pVal,
+ u8 affinity,
+ u8 enc
+){
+ applyAffinity((Mem *)pVal, affinity, enc);
+}
+
+/*
+** pMem currently only holds a string type (or maybe a BLOB that we can
+** interpret as a string if we want to). Compute its corresponding
+** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
+** accordingly.
+*/
+static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
+ int rc;
+ sqlite3_int64 ix;
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
+ assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
+ if( ExpandBlob(pMem) ){
+ pMem->u.i = 0;
+ return MEM_Int;
+ }
+ rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
+ if( rc<=0 ){
+ if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
+ pMem->u.i = ix;
+ return MEM_Int;
+ }else{
+ return MEM_Real;
+ }
+ }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
+ pMem->u.i = ix;
+ return MEM_Int;
+ }
+ return MEM_Real;
+}
+
+/*
+** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
+** none.
+**
+** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
+** But it does set pMem->u.r and pMem->u.i appropriately.
+*/
+static u16 numericType(Mem *pMem){
+ if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_Real );
+ testcase( pMem->flags & MEM_IntReal );
+ return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
+ }
+ if( pMem->flags & (MEM_Str|MEM_Blob) ){
+ testcase( pMem->flags & MEM_Str );
+ testcase( pMem->flags & MEM_Blob );
+ return computeNumericType(pMem);
+ }
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Write a nice string representation of the contents of cell pMem
+** into buffer zBuf, length nBuf.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
+ int f = pMem->flags;
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
+ if( f&MEM_Blob ){
+ int i;
+ char c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+ sqlite3_str_appendf(pStr, "%cx[", c);
+ for(i=0; i<25 && i<pMem->n; i++){
+ sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
+ }
+ sqlite3_str_appendf(pStr, "|");
+ for(i=0; i<25 && i<pMem->n; i++){
+ char z = pMem->z[i];
+ sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
+ }
+ sqlite3_str_appendf(pStr,"]");
+ if( f & MEM_Zero ){
+ sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
+ }
+ }else if( f & MEM_Str ){
+ int j;
+ u8 c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+ sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
+ for(j=0; j<25 && j<pMem->n; j++){
+ c = pMem->z[j];
+ sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
+ }
+ sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the value of a register for tracing purposes:
+*/
+static void memTracePrint(Mem *p){
+ if( p->flags & MEM_Undefined ){
+ printf(" undefined");
+ }else if( p->flags & MEM_Null ){
+ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ printf(" si:%lld", p->u.i);
+ }else if( (p->flags & (MEM_IntReal))!=0 ){
+ printf(" ir:%lld", p->u.i);
+ }else if( p->flags & MEM_Int ){
+ printf(" i:%lld", p->u.i);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( p->flags & MEM_Real ){
+ printf(" r:%.17g", p->u.r);
+#endif
+ }else if( sqlite3VdbeMemIsRowSet(p) ){
+ printf(" (rowset)");
+ }else{
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(p, &acc);
+ printf(" %s", sqlite3StrAccumFinish(&acc));
+ }
+ if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
+}
+static void registerTrace(int iReg, Mem *p){
+ printf("R[%d] = ", iReg);
+ memTracePrint(p);
+ if( p->pScopyFrom ){
+ printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
+ }
+ printf("\n");
+ sqlite3VdbeCheckMemInvariants(p);
+}
+/**/ void sqlite3PrintMem(Mem *pMem){
+ memTracePrint(pMem);
+ printf("\n");
+ fflush(stdout);
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Show the values of all registers in the virtual machine. Used for
+** interactive debugging.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRegisterDump(Vdbe *v){
+ int i;
+ for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
+}
+#endif /* SQLITE_DEBUG */
+
+
+#ifdef SQLITE_DEBUG
+# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
+#else
+# define REGISTER_TRACE(R,M)
+#endif
+
+
+#ifdef VDBE_PROFILE
+
+/*
+** hwtime.h contains inline assembler code for implementing
+** high-performance timing routines.
+*/
+/* #include "hwtime.h" */
+
+#endif
+
+#ifndef NDEBUG
+/*
+** This function is only called from within an assert() expression. It
+** checks that the sqlite3.nTransaction variable is correctly set to
+** the number of non-transaction savepoints currently in the
+** linked list starting at sqlite3.pSavepoint.
+**
+** Usage:
+**
+** assert( checkSavepointCount(db) );
+*/
+static int checkSavepointCount(sqlite3 *db){
+ int n = 0;
+ Savepoint *p;
+ for(p=db->pSavepoint; p; p=p->pNext) n++;
+ assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
+ return 1;
+}
+#endif
+
+/*
+** Return the register of pOp->p2 after first preparing it to be
+** overwritten with an integer value.
+*/
+static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
+ sqlite3VdbeMemSetNull(pOut);
+ pOut->flags = MEM_Int;
+ return pOut;
+}
+static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
+ Mem *pOut;
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ pOut = &p->aMem[pOp->p2];
+ memAboutToChange(p, pOut);
+ if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
+ return out2PrereleaseWithClear(pOut);
+ }else{
+ pOut->flags = MEM_Int;
+ return pOut;
+ }
+}
+
+/*
+** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
+** with pOp->p3. Return the hash.
+*/
+static u64 filterHash(const Mem *aMem, const Op *pOp){
+ int i, mx;
+ u64 h = 0;
+
+ assert( pOp->p4type==P4_INT32 );
+ for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
+ const Mem *p = &aMem[i];
+ if( p->flags & (MEM_Int|MEM_IntReal) ){
+ h += p->u.i;
+ }else if( p->flags & MEM_Real ){
+ h += sqlite3VdbeIntValue(p);
+ }else if( p->flags & (MEM_Str|MEM_Blob) ){
+ h += p->n;
+ if( p->flags & MEM_Zero ) h += p->u.nZero;
+ }
+ }
+ return h;
+}
+
+/*
+** Return the symbolic name for the data type of a pMem
+*/
+static const char *vdbeMemTypeName(Mem *pMem){
+ static const char *azTypes[] = {
+ /* SQLITE_INTEGER */ "INT",
+ /* SQLITE_FLOAT */ "REAL",
+ /* SQLITE_TEXT */ "TEXT",
+ /* SQLITE_BLOB */ "BLOB",
+ /* SQLITE_NULL */ "NULL"
+ };
+ return azTypes[sqlite3_value_type(pMem)-1];
+}
+
+/*
+** Execute as much of a VDBE program as we can.
+** This is the core of sqlite3_step().
+*/
+SQLITE_PRIVATE int sqlite3VdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ Op *aOp = p->aOp; /* Copy of p->aOp */
+ Op *pOp = aOp; /* Current operation */
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+ Op *pOrigOp; /* Value of pOp at the top of the loop */
+#endif
+#ifdef SQLITE_DEBUG
+ int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
+#endif
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite3 *db = p->db; /* The database */
+ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
+ u8 encoding = ENC(db); /* The database encoding */
+ int iCompare = 0; /* Result of last comparison */
+ u64 nVmStep = 0; /* Number of virtual machine steps */
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
+#endif
+ Mem *aMem = p->aMem; /* Copy of p->aMem */
+ Mem *pIn1 = 0; /* 1st input operand */
+ Mem *pIn2 = 0; /* 2nd input operand */
+ Mem *pIn3 = 0; /* 3rd input operand */
+ Mem *pOut = 0; /* Output operand */
+#ifdef VDBE_PROFILE
+ u64 start; /* CPU clock count at start of opcode */
+#endif
+ /*** INSERT STACK UNION HERE ***/
+
+ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
+ sqlite3VdbeEnter(p);
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ if( db->xProgress ){
+ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
+ assert( 0 < db->nProgressOps );
+ nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
+ }else{
+ nProgressLimit = LARGEST_UINT64;
+ }
+#endif
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ goto no_mem;
+ }
+ assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
+ testcase( p->rc!=SQLITE_OK );
+ p->rc = SQLITE_OK;
+ assert( p->bIsReader || p->readOnly!=0 );
+ p->iCurrentTime = 0;
+ assert( p->explain==0 );
+ p->pResultSet = 0;
+ db->busyHandler.nBusy = 0;
+ if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
+ sqlite3VdbeIOTraceSql(p);
+#ifdef SQLITE_DEBUG
+ sqlite3BeginBenignMalloc();
+ if( p->pc==0
+ && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
+ ){
+ int i;
+ int once = 1;
+ sqlite3VdbePrintSql(p);
+ if( p->db->flags & SQLITE_VdbeListing ){
+ printf("VDBE Program Listing:\n");
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &aOp[i]);
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeEQP ){
+ for(i=0; i<p->nOp; i++){
+ if( aOp[i].opcode==OP_Explain ){
+ if( once ) printf("VDBE Query Plan:\n");
+ printf("%s\n", aOp[i].p4.z);
+ once = 0;
+ }
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
+ }
+ sqlite3EndBenignMalloc();
+#endif
+ for(pOp=&aOp[p->pc]; 1; pOp++){
+ /* Errors are detected by individual opcodes, with an immediate
+ ** jumps to abort_due_to_error. */
+ assert( rc==SQLITE_OK );
+
+ assert( pOp>=aOp && pOp<&aOp[p->nOp]);
+#ifdef VDBE_PROFILE
+ start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
+#endif
+ nVmStep++;
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
+#endif
+
+ /* Only allow tracing if SQLITE_DEBUG is defined.
+ */
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
+ test_trace_breakpoint((int)(pOp - aOp),pOp,p);
+ }
+#endif
+
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite3_interrupt_count>0 ){
+ sqlite3_interrupt_count--;
+ if( sqlite3_interrupt_count==0 ){
+ sqlite3_interrupt(db);
+ }
+ }
+#endif
+
+ /* Sanity checking on other operands */
+#ifdef SQLITE_DEBUG
+ {
+ u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
+ if( (opProperty & OPFLG_IN1)!=0 ){
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p1]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
+ REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
+ }
+ if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p2]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
+ REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
+ }
+ if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p3]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
+ REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
+ }
+ if( (opProperty & OPFLG_OUT2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ memAboutToChange(p, &aMem[pOp->p2]);
+ }
+ if( (opProperty & OPFLG_OUT3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ }
+ }
+#endif
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+ pOrigOp = pOp;
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode. If the
+** case statement is followed by a comment of the form "/# same as ... #/"
+** that comment is used to determine the particular value of the opcode.
+**
+** Other keywords in the comment that follows each case are used to
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
+** Keywords include: in1, in2, in3, out2, out3. See
+** the mkopcodeh.awk script for additional information.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 * * *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+**
+** The P1 parameter is not actually used by this opcode. However, it
+** is sometimes set to 1 instead of 0 as a hint to the command-line shell
+** that this Goto is the bottom of a loop and that the lines from P2 down
+** to the current line should be indented for EXPLAIN output.
+*/
+case OP_Goto: { /* jump */
+
+#ifdef SQLITE_DEBUG
+ /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
+ ** means we should really jump back to the preceeding OP_ReleaseReg
+ ** instruction. */
+ if( pOp->p5 ){
+ assert( pOp->p2 < (int)(pOp - aOp) );
+ assert( pOp->p2 > 1 );
+ pOp = &aOp[pOp->p2 - 2];
+ assert( pOp[1].opcode==OP_ReleaseReg );
+ goto check_for_interrupt;
+ }
+#endif
+
+jump_to_p2_and_check_for_interrupt:
+ pOp = &aOp[pOp->p2 - 1];
+
+ /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
+ ** OP_VNext, or OP_SorterNext) all jump here upon
+ ** completion. Check to see if sqlite3_interrupt() has been called
+ ** or if the progress callback needs to be invoked.
+ **
+ ** This code uses unstructured "goto" statements and does not look clean.
+ ** But that is not due to sloppy coding habits. The code is written this
+ ** way for performance, to avoid having to run the interrupt and progress
+ ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
+ ** faster according to "valgrind --tool=cachegrind" */
+check_for_interrupt:
+ if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
+ assert( db->nProgressOps!=0 );
+ nProgressLimit += db->nProgressOps;
+ if( db->xProgress(db->pProgressArg) ){
+ nProgressLimit = LARGEST_UINT64;
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+ }
+ }
+#endif
+
+ break;
+}
+
+/* Opcode: Gosub P1 P2 * * *
+**
+** Write the current address onto register P1
+** and then jump to address P2.
+*/
+case OP_Gosub: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( VdbeMemDynamic(pIn1)==0 );
+ memAboutToChange(p, pIn1);
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = (int)(pOp-aOp);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ goto jump_to_p2_and_check_for_interrupt;
+}
+
+/* Opcode: Return P1 P2 P3 * *
+**
+** Jump to the address stored in register P1. If P1 is a return address
+** register, then this accomplishes a return from a subroutine.
+**
+** If P3 is 1, then the jump is only taken if register P1 holds an integer
+** values, otherwise execution falls through to the next opcode, and the
+** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
+** integer or else an assert() is raised. P3 should be set to 1 when
+** this opcode is used in combination with OP_BeginSubrtn, and set to 0
+** otherwise.
+**
+** The value in register P1 is unchanged by this opcode.
+**
+** P2 is not used by the byte-code engine. However, if P2 is positive
+** and also less than the current address, then the "EXPLAIN" output
+** formatter in the CLI will indent all opcodes from the P2 opcode up
+** to be not including the current Return. P2 should be the first opcode
+** in the subroutine from which this opcode is returning. Thus the P2
+** value is a byte-code indentation hint. See tag-20220407a in
+** wherecode.c and shell.c.
+*/
+case OP_Return: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Int ){
+ if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
+ pOp = &aOp[pIn1->u.i];
+ }else if( ALWAYS(pOp->p3) ){
+ VdbeBranchTaken(0, 2);
+ }
+ break;
+}
+
+/* Opcode: InitCoroutine P1 P2 P3 * *
+**
+** Set up register P1 so that it will Yield to the coroutine
+** located at address P3.
+**
+** If P2!=0 then the coroutine implementation immediately follows
+** this opcode. So jump over the coroutine implementation to
+** address P2.
+**
+** See also: EndCoroutine
+*/
+case OP_InitCoroutine: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( pOp->p2>=0 && pOp->p2<p->nOp );
+ assert( pOp->p3>=0 && pOp->p3<p->nOp );
+ pOut = &aMem[pOp->p1];
+ assert( !VdbeMemDynamic(pOut) );
+ pOut->u.i = pOp->p3 - 1;
+ pOut->flags = MEM_Int;
+ if( pOp->p2==0 ) break;
+
+ /* Most jump operations do a goto to this spot in order to update
+ ** the pOp pointer. */
+jump_to_p2:
+ assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
+ assert( pOp->p2<p->nOp ); /* Jumps must be in range */
+ pOp = &aOp[pOp->p2 - 1];
+ break;
+}
+
+/* Opcode: EndCoroutine P1 * * * *
+**
+** The instruction at the address in register P1 is a Yield.
+** Jump to the P2 parameter of that Yield.
+** After the jump, register P1 becomes undefined.
+**
+** See also: InitCoroutine
+*/
+case OP_EndCoroutine: { /* in1 */
+ VdbeOp *pCaller;
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags==MEM_Int );
+ assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
+ pCaller = &aOp[pIn1->u.i];
+ assert( pCaller->opcode==OP_Yield );
+ assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
+ pOp = &aOp[pCaller->p2 - 1];
+ pIn1->flags = MEM_Undefined;
+ break;
+}
+
+/* Opcode: Yield P1 P2 * * *
+**
+** Swap the program counter with the value in register P1. This
+** has the effect of yielding to a coroutine.
+**
+** If the coroutine that is launched by this instruction ends with
+** Yield or Return then continue to the next instruction. But if
+** the coroutine launched by this instruction ends with
+** EndCoroutine, then jump to P2 rather than continuing with the
+** next instruction.
+**
+** See also: InitCoroutine
+*/
+case OP_Yield: { /* in1, jump */
+ int pcDest;
+ pIn1 = &aMem[pOp->p1];
+ assert( VdbeMemDynamic(pIn1)==0 );
+ pIn1->flags = MEM_Int;
+ pcDest = (int)pIn1->u.i;
+ pIn1->u.i = (int)(pOp - aOp);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pOp = &aOp[pcDest];
+ break;
+}
+
+/* Opcode: HaltIfNull P1 P2 P3 P4 P5
+** Synopsis: if r[P3]=null halt
+**
+** Check the value in register P3. If it is NULL then Halt using
+** parameter P1, P2, and P4 as if this were a Halt instruction. If the
+** value in register P3 is not NULL, then this routine is a no-op.
+** The P5 parameter should be 1.
+*/
+case OP_HaltIfNull: { /* in3 */
+ pIn3 = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
+#endif
+ if( (pIn3->flags & MEM_Null)==0 ) break;
+ /* Fall through into OP_Halt */
+ /* no break */ deliberate_fall_through
+}
+
+/* Opcode: Halt P1 P2 * P4 P5
+**
+** Exit immediately. All open cursors, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
+** For errors, it can be some other value. If P1!=0 then P2 will determine
+** whether or not to rollback the current transaction. Do not rollback
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
+** then back out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** If P4 is not null then it is an error message string.
+**
+** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
+**
+** 0: (no change)
+** 1: NOT NULL contraint failed: P4
+** 2: UNIQUE constraint failed: P4
+** 3: CHECK constraint failed: P4
+** 4: FOREIGN KEY constraint failed: P4
+**
+** If P5 is not zero and P4 is NULL, then everything after the ":" is
+** omitted.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ VdbeFrame *pFrame;
+ int pcx;
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
+#endif
+ if( p->pFrame && pOp->p1==SQLITE_OK ){
+ /* Halt the sub-program. Return control to the parent frame. */
+ pFrame = p->pFrame;
+ p->pFrame = pFrame->pParent;
+ p->nFrame--;
+ sqlite3VdbeSetChanges(db, p->nChange);
+ pcx = sqlite3VdbeFrameRestore(pFrame);
+ if( pOp->p2==OE_Ignore ){
+ /* Instruction pcx is the OP_Program that invoked the sub-program
+ ** currently being halted. If the p2 instruction of this OP_Halt
+ ** instruction is set to OE_Ignore, then the sub-program is throwing
+ ** an IGNORE exception. In this case jump to the address specified
+ ** as the p2 of the calling OP_Program. */
+ pcx = p->aOp[pcx].p2-1;
+ }
+ aOp = p->aOp;
+ aMem = p->aMem;
+ pOp = &aOp[pcx];
+ break;
+ }
+ p->rc = pOp->p1;
+ p->errorAction = (u8)pOp->p2;
+ assert( pOp->p5<=4 );
+ if( p->rc ){
+ if( pOp->p5 ){
+ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
+ "FOREIGN KEY" };
+ testcase( pOp->p5==1 );
+ testcase( pOp->p5==2 );
+ testcase( pOp->p5==3 );
+ testcase( pOp->p5==4 );
+ sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
+ if( pOp->p4.z ){
+ p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
+ }
+ }else{
+ sqlite3VdbeError(p, "%s", pOp->p4.z);
+ }
+ pcx = (int)(pOp - aOp);
+ sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
+ }
+ rc = sqlite3VdbeHalt(p);
+ assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
+ if( rc==SQLITE_BUSY ){
+ p->rc = SQLITE_BUSY;
+ }else{
+ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
+ assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
+ }
+ goto vdbe_return;
+}
+
+/* Opcode: Integer P1 P2 * * *
+** Synopsis: r[P2]=P1
+**
+** The 32-bit integer value P1 is written into register P2.
+*/
+case OP_Integer: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = pOp->p1;
+ break;
+}
+
+/* Opcode: Int64 * P2 * P4 *
+** Synopsis: r[P2]=P4
+**
+** P4 is a pointer to a 64-bit integer value.
+** Write that value into register P2.
+*/
+case OP_Int64: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p4.pI64!=0 );
+ pOut->u.i = *pOp->p4.pI64;
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: Real * P2 * P4 *
+** Synopsis: r[P2]=P4
+**
+** P4 is a pointer to a 64-bit floating point value.
+** Write that value into register P2.
+*/
+case OP_Real: { /* same as TK_FLOAT, out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Real;
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) );
+ pOut->u.r = *pOp->p4.pReal;
+ break;
+}
+#endif
+
+/* Opcode: String8 * P2 * P4 *
+** Synopsis: r[P2]='P4'
+**
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed
+** into a String opcode before it is executed for the first time. During
+** this transformation, the length of string P4 is computed and stored
+** as the P1 parameter.
+*/
+case OP_String8: { /* same as TK_STRING, out2 */
+ assert( pOp->p4.z!=0 );
+ pOut = out2Prerelease(p, pOp);
+ pOp->p1 = sqlite3Strlen30(pOp->p4.z);
+
+#ifndef SQLITE_OMIT_UTF16
+ if( encoding!=SQLITE_UTF8 ){
+ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
+ assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
+ if( rc ) goto too_big;
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
+ assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
+ assert( VdbeMemDynamic(pOut)==0 );
+ pOut->szMalloc = 0;
+ pOut->flags |= MEM_Static;
+ if( pOp->p4type==P4_DYNAMIC ){
+ sqlite3DbFree(db, pOp->p4.z);
+ }
+ pOp->p4type = P4_DYNAMIC;
+ pOp->p4.z = pOut->z;
+ pOp->p1 = pOut->n;
+ }
+#endif
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ pOp->opcode = OP_String;
+ assert( rc==SQLITE_OK );
+ /* Fall through to the next case, OP_String */
+ /* no break */ deliberate_fall_through
+}
+
+/* Opcode: String P1 P2 P3 P4 P5
+** Synopsis: r[P2]='P4' (len=P1)
+**
+** The string value P4 of length P1 (bytes) is stored in register P2.
+**
+** If P3 is not zero and the content of register P3 is equal to P5, then
+** the datatype of the register P2 is converted to BLOB. The content is
+** the same sequence of bytes, it is merely interpreted as a BLOB instead
+** of a string, as if it had been CAST. In other words:
+**
+** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
+*/
+case OP_String: { /* out2 */
+ assert( pOp->p4.z!=0 );
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = pOp->p4.z;
+ pOut->n = pOp->p1;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( pOp->p3>0 ){
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pIn3 = &aMem[pOp->p3];
+ assert( pIn3->flags & MEM_Int );
+ if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
+ }
+#endif
+ break;
+}
+
+/* Opcode: BeginSubrtn * P2 * * *
+** Synopsis: r[P2]=NULL
+**
+** Mark the beginning of a subroutine that can be entered in-line
+** or that can be called using OP_Gosub. The subroutine should
+** be terminated by an OP_Return instruction that has a P1 operand that
+** is the same as the P2 operand to this opcode and that has P3 set to 1.
+** If the subroutine is entered in-line, then the OP_Return will simply
+** fall through. But if the subroutine is entered using OP_Gosub, then
+** the OP_Return will jump back to the first instruction after the OP_Gosub.
+**
+** This routine works by loading a NULL into the P2 register. When the
+** return address register contains a NULL, the OP_Return instruction is
+** a no-op that simply falls through to the next instruction (assuming that
+** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
+** entered in-line, then the OP_Return will cause in-line execution to
+** continue. But if the subroutine is entered via OP_Gosub, then the
+** OP_Return will cause a return to the address following the OP_Gosub.
+**
+** This opcode is identical to OP_Null. It has a different name
+** only to make the byte code easier to read and verify.
+*/
+/* Opcode: Null P1 P2 P3 * *
+** Synopsis: r[P2..P3]=NULL
+**
+** Write a NULL into registers P2. If P3 greater than P2, then also write
+** NULL into register P3 and every register in between P2 and P3. If P3
+** is less than P2 (typically P3 is zero) then only register P2 is
+** set to NULL.
+**
+** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
+** NULL values will not compare equal even if SQLITE_NULLEQ is set on
+** OP_Ne or OP_Eq.
+*/
+case OP_BeginSubrtn:
+case OP_Null: { /* out2 */
+ int cnt;
+ u16 nullFlag;
+ pOut = out2Prerelease(p, pOp);
+ cnt = pOp->p3-pOp->p2;
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
+ pOut->n = 0;
+#ifdef SQLITE_DEBUG
+ pOut->uTemp = 0;
+#endif
+ while( cnt>0 ){
+ pOut++;
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemSetNull(pOut);
+ pOut->flags = nullFlag;
+ pOut->n = 0;
+ cnt--;
+ }
+ break;
+}
+
+/* Opcode: SoftNull P1 * * * *
+** Synopsis: r[P1]=NULL
+**
+** Set register P1 to have the value NULL as seen by the OP_MakeRecord
+** instruction, but do not free any string or blob memory associated with
+** the register, so that if the value was a string or blob that was
+** previously copied using OP_SCopy, the copies will continue to be valid.
+*/
+case OP_SoftNull: {
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pOut = &aMem[pOp->p1];
+ pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
+ break;
+}
+
+/* Opcode: Blob P1 P2 * P4 *
+** Synopsis: r[P2]=P4 (len=P1)
+**
+** P4 points to a blob of data P1 bytes long. Store this
+** blob in register P2. If P4 is a NULL pointer, then construct
+** a zero-filled blob that is P1 bytes long in P2.
+*/
+case OP_Blob: { /* out2 */
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH );
+ pOut = out2Prerelease(p, pOp);
+ if( pOp->p4.z==0 ){
+ sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
+ if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
+ }else{
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
+ }
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Variable P1 P2 * P4 *
+** Synopsis: r[P2]=parameter(P1,P4)
+**
+** Transfer the values of bound parameter P1 into register P2
+**
+** If the parameter is named, then its name appears in P4.
+** The P4 value is used by sqlite3_bind_parameter_name().
+*/
+case OP_Variable: { /* out2 */
+ Mem *pVar; /* Value being transferred */
+
+ assert( pOp->p1>0 && pOp->p1<=p->nVar );
+ assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
+ pVar = &p->aVar[pOp->p1 - 1];
+ if( sqlite3VdbeMemTooBig(pVar) ){
+ goto too_big;
+ }
+ pOut = &aMem[pOp->p2];
+ if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
+ memcpy(pOut, pVar, MEMCELLSIZE);
+ pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
+ pOut->flags |= MEM_Static|MEM_FromBind;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Move P1 P2 P3 * *
+** Synopsis: r[P2@P3]=r[P1@P3]
+**
+** Move the P3 values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
+** left holding a NULL. It is an error for register ranges
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
+** for P3 to be less than 1.
+*/
+case OP_Move: {
+ int n; /* Number of registers left to copy */
+ int p1; /* Register to copy from */
+ int p2; /* Register to copy to */
+
+ n = pOp->p3;
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+ assert( n>0 && p1>0 && p2>0 );
+ assert( p1+n<=p2 || p2+n<=p1 );
+
+ pIn1 = &aMem[p1];
+ pOut = &aMem[p2];
+ do{
+ assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
+ assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
+ assert( memIsValid(pIn1) );
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemMove(pOut, pIn1);
+#ifdef SQLITE_DEBUG
+ pIn1->pScopyFrom = 0;
+ { int i;
+ for(i=1; i<p->nMem; i++){
+ if( aMem[i].pScopyFrom==pIn1 ){
+ aMem[i].pScopyFrom = pOut;
+ }
+ }
+ }
+#endif
+ Deephemeralize(pOut);
+ REGISTER_TRACE(p2++, pOut);
+ pIn1++;
+ pOut++;
+ }while( --n );
+ break;
+}
+
+/* Opcode: Copy P1 P2 P3 * P5
+** Synopsis: r[P2@P3+1]=r[P1@P3+1]
+**
+** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
+**
+** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
+** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
+** be merged. The 0x0001 bit is used by the query planner and does not
+** come into play during query execution.
+**
+** This instruction makes a deep copy of the value. A duplicate
+** is made of any string or blob constant. See also OP_SCopy.
+*/
+case OP_Copy: {
+ int n;
+
+ n = pOp->p3;
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ while( 1 ){
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ Deephemeralize(pOut);
+ if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
+ pOut->flags &= ~MEM_Subtype;
+ }
+#ifdef SQLITE_DEBUG
+ pOut->pScopyFrom = 0;
+#endif
+ REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
+ if( (n--)==0 ) break;
+ pOut++;
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: SCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
+**
+** Make a shallow copy of register P1 into register P2.
+**
+** This instruction makes a shallow copy of the value. If the value
+** is a string or blob, then the copy is only a pointer to the
+** original and hence if the original changes so will the copy.
+** Worse, if the original is deallocated, the copy becomes invalid.
+** Thus the program must guarantee that the original will not change
+** during the lifetime of the copy. Use OP_Copy to make a complete
+** copy.
+*/
+case OP_SCopy: { /* out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+#ifdef SQLITE_DEBUG
+ pOut->pScopyFrom = pIn1;
+ pOut->mScopyFlags = pIn1->flags;
+#endif
+ break;
+}
+
+/* Opcode: IntCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
+**
+** Transfer the integer value held in register P1 into register P2.
+**
+** This is an optimized version of SCopy that works only for integer
+** values.
+*/
+case OP_IntCopy: { /* out2 */
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Int)!=0 );
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
+ break;
+}
+
+/* Opcode: FkCheck * * * * *
+**
+** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
+** foreign key constraint violations. If there are no foreign key
+** constraint violations, this is a no-op.
+**
+** FK constraint violations are also checked when the prepared statement
+** exits. This opcode is used to raise foreign key constraint errors prior
+** to returning results such as a row change count or the result of a
+** RETURNING clause.
+*/
+case OP_FkCheck: {
+ if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: ResultRow P1 P2 * * *
+** Synopsis: output=r[P1@P2]
+**
+** The registers P1 through P1+P2-1 contain a single row of
+** results. This opcode causes the sqlite3_step() call to terminate
+** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
+** structure to provide access to the r(P1)..r(P1+P2-1) values as
+** the result row.
+*/
+case OP_ResultRow: {
+ assert( p->nResColumn==pOp->p2 );
+ assert( pOp->p1>0 || CORRUPT_DB );
+ assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
+
+ p->cacheCtr = (p->cacheCtr + 2)|1;
+ p->pResultSet = &aMem[pOp->p1];
+#ifdef SQLITE_DEBUG
+ {
+ Mem *pMem = p->pResultSet;
+ int i;
+ for(i=0; i<pOp->p2; i++){
+ assert( memIsValid(&pMem[i]) );
+ REGISTER_TRACE(pOp->p1+i, &pMem[i]);
+ /* The registers in the result will not be used again when the
+ ** prepared statement restarts. This is because sqlite3_column()
+ ** APIs might have caused type conversions of made other changes to
+ ** the register values. Therefore, we can go ahead and break any
+ ** OP_SCopy dependencies. */
+ pMem[i].pScopyFrom = 0;
+ }
+ }
+#endif
+ if( db->mallocFailed ) goto no_mem;
+ if( db->mTrace & SQLITE_TRACE_ROW ){
+ db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
+ }
+ p->pc = (int)(pOp - aOp) + 1;
+ rc = SQLITE_ROW;
+ goto vdbe_return;
+}
+
+/* Opcode: Concat P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]+r[P1]
+**
+** Add the text in register P1 onto the end of the text in
+** register P2 and store the result in register P3.
+** If either the P1 or P2 text are NULL then store NULL in P3.
+**
+** P3 = P2 || P1
+**
+** It is illegal for P1 and P3 to be the same register. Sometimes,
+** if P3 is the same register as P2, the implementation is able
+** to avoid a memcpy().
+*/
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
+ i64 nByte; /* Total size of the output string or blob */
+ u16 flags1; /* Initial flags for P1 */
+ u16 flags2; /* Initial flags for P2 */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ testcase( pOut==pIn2 );
+ assert( pIn1!=pOut );
+ flags1 = pIn1->flags;
+ testcase( flags1 & MEM_Null );
+ testcase( pIn2->flags & MEM_Null );
+ if( (flags1 | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
+ if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
+ flags1 = pIn1->flags & ~MEM_Str;
+ }else if( (flags1 & MEM_Zero)!=0 ){
+ if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
+ flags1 = pIn1->flags & ~MEM_Str;
+ }
+ flags2 = pIn2->flags;
+ if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
+ if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
+ flags2 = pIn2->flags & ~MEM_Str;
+ }else if( (flags2 & MEM_Zero)!=0 ){
+ if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
+ flags2 = pIn2->flags & ~MEM_Str;
+ }
+ nByte = pIn1->n + pIn2->n;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
+ goto no_mem;
+ }
+ MemSetTypeFlag(pOut, MEM_Str);
+ if( pOut!=pIn2 ){
+ memcpy(pOut->z, pIn2->z, pIn2->n);
+ assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
+ pIn2->flags = flags2;
+ }
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
+ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
+ pIn1->flags = flags1;
+ if( encoding>SQLITE_UTF8 ) nByte &= ~1;
+ pOut->z[nByte]=0;
+ pOut->z[nByte+1] = 0;
+ pOut->flags |= MEM_Term;
+ pOut->n = (int)nByte;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Add P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]+r[P2]
+**
+** Add the value in register P1 to the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Multiply P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]*r[P2]
+**
+**
+** Multiply the value in register P1 by the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Subtract P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]-r[P1]
+**
+** Subtract the value in register P1 from the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Divide P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]/r[P1]
+**
+** Divide the value in register P1 by the value in register P2
+** and store the result in register P3 (P3=P2/P1). If the value in
+** register P1 is zero, then the result is NULL. If either input is
+** NULL, the result is NULL.
+*/
+/* Opcode: Remainder P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]%r[P1]
+**
+** Compute the remainder after integer register P2 is divided by
+** register P1 and store the result in register P3.
+** If the value in register P1 is zero the result is NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
+ u16 flags; /* Combined MEM_* flags from both inputs */
+ u16 type1; /* Numeric type of left operand */
+ u16 type2; /* Numeric type of right operand */
+ i64 iA; /* Integer value of left operand */
+ i64 iB; /* Integer value of right operand */
+ double rA; /* Real value of left operand */
+ double rB; /* Real value of right operand */
+
+ pIn1 = &aMem[pOp->p1];
+ type1 = numericType(pIn1);
+ pIn2 = &aMem[pOp->p2];
+ type2 = numericType(pIn2);
+ pOut = &aMem[pOp->p3];
+ flags = pIn1->flags | pIn2->flags;
+ if( (type1 & type2 & MEM_Int)!=0 ){
+ iA = pIn1->u.i;
+ iB = pIn2->u.i;
+ switch( pOp->opcode ){
+ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Divide: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
+ iB /= iA;
+ break;
+ }
+ default: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ iB %= iA;
+ break;
+ }
+ }
+ pOut->u.i = iB;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }else if( (flags & MEM_Null)!=0 ){
+ goto arithmetic_result_is_null;
+ }else{
+fp_math:
+ rA = sqlite3VdbeRealValue(pIn1);
+ rB = sqlite3VdbeRealValue(pIn2);
+ switch( pOp->opcode ){
+ case OP_Add: rB += rA; break;
+ case OP_Subtract: rB -= rA; break;
+ case OP_Multiply: rB *= rA; break;
+ case OP_Divide: {
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ if( rA==(double)0 ) goto arithmetic_result_is_null;
+ rB /= rA;
+ break;
+ }
+ default: {
+ iA = sqlite3VdbeIntValue(pIn1);
+ iB = sqlite3VdbeIntValue(pIn2);
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ rB = (double)(iB % iA);
+ break;
+ }
+ }
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ pOut->u.i = rB;
+ MemSetTypeFlag(pOut, MEM_Int);
+#else
+ if( sqlite3IsNaN(rB) ){
+ goto arithmetic_result_is_null;
+ }
+ pOut->u.r = rB;
+ MemSetTypeFlag(pOut, MEM_Real);
+#endif
+ }
+ break;
+
+arithmetic_result_is_null:
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+}
+
+/* Opcode: CollSeq P1 * * P4
+**
+** P4 is a pointer to a CollSeq object. If the next call to a user function
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
+** be returned. This is used by the built-in min(), max() and nullif()
+** functions.
+**
+** If P1 is not zero, then it is a register that a subsequent min() or
+** max() aggregate will set to 1 if the current row is not the minimum or
+** maximum. The P1 register is initialized to 0 by this instruction.
+**
+** The interface used by the implementation of the aforementioned functions
+** to retrieve the collation sequence set by this opcode is not available
+** publicly. Only built-in functions have access to this feature.
+*/
+case OP_CollSeq: {
+ assert( pOp->p4type==P4_COLLSEQ );
+ if( pOp->p1 ){
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
+ }
+ break;
+}
+
+/* Opcode: BitAnd P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]&r[P2]
+**
+** Take the bit-wise AND of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: BitOr P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]|r[P2]
+**
+** Take the bit-wise OR of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]<<r[P1]
+**
+** Shift the integer value in register P2 to the left by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]>>r[P1]
+**
+** Shift the integer value in register P2 to the right by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
+ i64 iA;
+ u64 uA;
+ i64 iB;
+ u8 op;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ iA = sqlite3VdbeIntValue(pIn2);
+ iB = sqlite3VdbeIntValue(pIn1);
+ op = pOp->opcode;
+ if( op==OP_BitAnd ){
+ iA &= iB;
+ }else if( op==OP_BitOr ){
+ iA |= iB;
+ }else if( iB!=0 ){
+ assert( op==OP_ShiftRight || op==OP_ShiftLeft );
+
+ /* If shifting by a negative amount, shift in the other direction */
+ if( iB<0 ){
+ assert( OP_ShiftRight==OP_ShiftLeft+1 );
+ op = 2*OP_ShiftLeft + 1 - op;
+ iB = iB>(-64) ? -iB : 64;
+ }
+
+ if( iB>=64 ){
+ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
+ }else{
+ memcpy(&uA, &iA, sizeof(uA));
+ if( op==OP_ShiftLeft ){
+ uA <<= iB;
+ }else{
+ uA >>= iB;
+ /* Sign-extend on a right shift of a negative number */
+ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
+ }
+ memcpy(&iA, &uA, sizeof(iA));
+ }
+ }
+ pOut->u.i = iA;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: AddImm P1 P2 * * *
+** Synopsis: r[P1]=r[P1]+P2
+**
+** Add the constant P2 to the value in register P1.
+** The result is always an integer.
+**
+** To force any register to be an integer, just add 0.
+*/
+case OP_AddImm: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i += pOp->p2;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 * * *
+**
+** Force the value in register P1 to be an integer. If the value
+** in P1 is not an integer and cannot be converted into an integer
+** without data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+*/
+case OP_MustBeInt: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_Int)==0 ){
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & MEM_Int)==0 ){
+ VdbeBranchTaken(1, 2);
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ goto jump_to_p2;
+ }
+ }
+ }
+ VdbeBranchTaken(0, 2);
+ MemSetTypeFlag(pIn1, MEM_Int);
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: RealAffinity P1 * * * *
+**
+** If register P1 holds an integer convert it to a real value.
+**
+** This opcode is used when extracting information from a column that
+** has REAL affinity. Such column values may still be stored as
+** integers, for space efficiency, but after extraction we want them
+** to have only a real value.
+*/
+case OP_RealAffinity: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pIn1->flags & MEM_Int );
+ testcase( pIn1->flags & MEM_IntReal );
+ sqlite3VdbeMemRealify(pIn1);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ }
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_CAST
+/* Opcode: Cast P1 P2 * * *
+** Synopsis: affinity(r[P1])
+**
+** Force the value in register P1 to be the type defined by P2.
+**
+** <ul>
+** <li> P2=='A' &rarr; BLOB
+** <li> P2=='B' &rarr; TEXT
+** <li> P2=='C' &rarr; NUMERIC
+** <li> P2=='D' &rarr; INTEGER
+** <li> P2=='E' &rarr; REAL
+** </ul>
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_Cast: { /* in1 */
+ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
+ testcase( pOp->p2==SQLITE_AFF_TEXT );
+ testcase( pOp->p2==SQLITE_AFF_BLOB );
+ testcase( pOp->p2==SQLITE_AFF_NUMERIC );
+ testcase( pOp->p2==SQLITE_AFF_INTEGER );
+ testcase( pOp->p2==SQLITE_AFF_REAL );
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ rc = ExpandBlob(pIn1);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
+ if( rc ) goto abort_due_to_error;
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ break;
+}
+#endif /* SQLITE_OMIT_CAST */
+
+/* Opcode: Eq P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]==r[P1]
+**
+** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
+** jump to address P2.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
+** true or false and is never NULL. If both operands are NULL then the result
+** of comparison is true. If either operand is NULL then the result is false.
+** If neither operand is NULL the result is the same as it would be if
+** the SQLITE_NULLEQ flag were omitted from P5.
+**
+** This opcode saves the result of comparison for use by the new
+** OP_Jump opcode.
+*/
+/* Opcode: Ne P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]!=r[P1]
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the operands in registers P1 and P3 are not equal. See the Eq opcode for
+** additional information.
+*/
+/* Opcode: Lt P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]<r[P1]
+**
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
+** jump to address P2.
+**
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
+** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
+** bit is clear then fall through if either operand is NULL.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** This opcode saves the result of comparison for use by the new
+** OP_Jump opcode.
+*/
+/* Opcode: Le P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]<=r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is less than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Gt P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]>r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Ge P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]>=r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */
+case OP_Le: /* same as TK_LE, jump, in1, in3 */
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
+ int res, res2; /* Result of the comparison of pIn1 against pIn3 */
+ char affinity; /* Affinity to use for comparison */
+ u16 flags1; /* Copy of initial value of pIn1->flags */
+ u16 flags3; /* Copy of initial value of pIn3->flags */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ flags1 = pIn1->flags;
+ flags3 = pIn3->flags;
+ if( (flags1 & flags3 & MEM_Int)!=0 ){
+ assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
+ /* Common case of comparison of two integers */
+ if( pIn3->u.i > pIn1->u.i ){
+ if( sqlite3aGTb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = +1;
+ }else if( pIn3->u.i < pIn1->u.i ){
+ if( sqlite3aLTb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = -1;
+ }else{
+ if( sqlite3aEQb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = 0;
+ }
+ VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ break;
+ }
+ if( (flags1 | flags3)&MEM_Null ){
+ /* One or both operands are NULL */
+ if( pOp->p5 & SQLITE_NULLEQ ){
+ /* If SQLITE_NULLEQ is set (which will only happen if the operator is
+ ** OP_Eq or OP_Ne) then take the jump or not depending on whether
+ ** or not both operands are null.
+ */
+ assert( (flags1 & MEM_Cleared)==0 );
+ assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
+ testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
+ if( (flags1&flags3&MEM_Null)!=0
+ && (flags3&MEM_Cleared)==0
+ ){
+ res = 0; /* Operands are equal */
+ }else{
+ res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
+ }
+ }else{
+ /* SQLITE_NULLEQ is clear and at least one operand is NULL,
+ ** then the result is always NULL.
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
+ */
+ VdbeBranchTaken(2,3);
+ if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ goto jump_to_p2;
+ }
+ iCompare = 1; /* Operands are not equal */
+ break;
+ }
+ }else{
+ /* Neither operand is NULL and we couldn't do the special high-speed
+ ** integer comparison case. So do a general-case comparison. */
+ affinity = pOp->p5 & SQLITE_AFF_MASK;
+ if( affinity>=SQLITE_AFF_NUMERIC ){
+ if( (flags1 | flags3)&MEM_Str ){
+ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn1,0);
+ testcase( flags3==pIn3->flags );
+ flags3 = pIn3->flags;
+ }
+ if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn3,0);
+ }
+ }
+ }else if( affinity==SQLITE_AFF_TEXT ){
+ if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
+ testcase( pIn1->flags & MEM_Int );
+ testcase( pIn1->flags & MEM_Real );
+ testcase( pIn1->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pIn1, encoding, 1);
+ testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
+ flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
+ if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
+ }
+ if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
+ testcase( pIn3->flags & MEM_Int );
+ testcase( pIn3->flags & MEM_Real );
+ testcase( pIn3->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pIn3, encoding, 1);
+ testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
+ flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
+ }
+ }
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
+ res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
+ }
+
+ /* At this point, res is negative, zero, or positive if reg[P1] is
+ ** less than, equal to, or greater than reg[P3], respectively. Compute
+ ** the answer to this operator in res2, depending on what the comparison
+ ** operator actually is. The next block of code depends on the fact
+ ** that the 6 comparison operators are consecutive integers in this
+ ** order: NE, EQ, GT, LE, LT, GE */
+ assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
+ assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
+ if( res<0 ){
+ res2 = sqlite3aLTb[pOp->opcode];
+ }else if( res==0 ){
+ res2 = sqlite3aEQb[pOp->opcode];
+ }else{
+ res2 = sqlite3aGTb[pOp->opcode];
+ }
+ iCompare = res;
+
+ /* Undo any changes made by applyAffinity() to the input registers. */
+ assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
+ pIn3->flags = flags3;
+ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
+ pIn1->flags = flags1;
+
+ VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ if( res2 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: ElseEq * P2 * * *
+**
+** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
+** can be zero or more OP_ReleaseReg opcodes intervening, but no other
+** opcodes are allowed to occur between this instruction and the previous
+** OP_Lt or OP_Gt.
+**
+** If result of an OP_Eq comparison on the same two operands as the
+** prior OP_Lt or OP_Gt would have been true, then jump to P2.
+** If the result of an OP_Eq comparison on the two previous
+** operands would have been false or NULL, then fall through.
+*/
+case OP_ElseEq: { /* same as TK_ESCAPE, jump */
+
+#ifdef SQLITE_DEBUG
+ /* Verify the preconditions of this opcode - that it follows an OP_Lt or
+ ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
+ int iAddr;
+ for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
+ if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
+ assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
+ break;
+ }
+#endif /* SQLITE_DEBUG */
+ VdbeBranchTaken(iCompare==0, 2);
+ if( iCompare==0 ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: Permutation * * * P4 *
+**
+** Set the permutation used by the OP_Compare operator in the next
+** instruction. The permutation is stored in the P4 operand.
+**
+** The permutation is only valid for the next opcode which must be
+** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
+**
+** The first integer in the P4 integer array is the length of the array
+** and does not become part of the permutation.
+*/
+case OP_Permutation: {
+ assert( pOp->p4type==P4_INTARRAY );
+ assert( pOp->p4.ai );
+ assert( pOp[1].opcode==OP_Compare );
+ assert( pOp[1].p5 & OPFLAG_PERMUTE );
+ break;
+}
+
+/* Opcode: Compare P1 P2 P3 P4 P5
+** Synopsis: r[P1@P3] <-> r[P2@P3]
+**
+** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
+** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** the comparison for use by the next OP_Jump instruct.
+**
+** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
+** determined by the most recent OP_Permutation operator. If the
+** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
+** order.
+**
+** P4 is a KeyInfo structure that defines collating sequences and sort
+** orders for the comparison. The permutation applies to registers
+** only. The KeyInfo elements are used sequentially.
+**
+** The comparison is a sort comparison, so NULLs compare equal,
+** NULLs are less than numbers, numbers are less than strings,
+** and strings are less than blobs.
+**
+** This opcode must be immediately followed by an OP_Jump opcode.
+*/
+case OP_Compare: {
+ int n;
+ int i;
+ int p1;
+ int p2;
+ const KeyInfo *pKeyInfo;
+ u32 idx;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+ u32 *aPermute; /* The permutation */
+
+ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
+ aPermute = 0;
+ }else{
+ assert( pOp>aOp );
+ assert( pOp[-1].opcode==OP_Permutation );
+ assert( pOp[-1].p4type==P4_INTARRAY );
+ aPermute = pOp[-1].p4.ai + 1;
+ assert( aPermute!=0 );
+ }
+ n = pOp->p3;
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( n>0 );
+ assert( pKeyInfo!=0 );
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+#ifdef SQLITE_DEBUG
+ if( aPermute ){
+ int k, mx = 0;
+ for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
+ assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
+ assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
+ }else{
+ assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
+ assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
+ }
+#endif /* SQLITE_DEBUG */
+ for(i=0; i<n; i++){
+ idx = aPermute ? aPermute[i] : (u32)i;
+ assert( memIsValid(&aMem[p1+idx]) );
+ assert( memIsValid(&aMem[p2+idx]) );
+ REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
+ REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
+ assert( i<pKeyInfo->nKeyField );
+ pColl = pKeyInfo->aColl[i];
+ bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
+ iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
+ if( iCompare ){
+ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
+ && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
+ ){
+ iCompare = -iCompare;
+ }
+ if( bRev ) iCompare = -iCompare;
+ break;
+ }
+ }
+ assert( pOp[1].opcode==OP_Jump );
+ break;
+}
+
+/* Opcode: Jump P1 P2 P3 * *
+**
+** Jump to the instruction at address P1, P2, or P3 depending on whether
+** in the most recent OP_Compare instruction the P1 vector was less than
+** equal to, or greater than the P2 vector, respectively.
+**
+** This opcode must immediately follow an OP_Compare opcode.
+*/
+case OP_Jump: { /* jump */
+ assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
+ if( iCompare<0 ){
+ VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
+ }else if( iCompare==0 ){
+ VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
+ }else{
+ VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
+ }
+ break;
+}
+
+/* Opcode: And P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] && r[P2])
+**
+** Take the logical AND of the values in registers P1 and P2 and
+** write the result into register P3.
+**
+** If either P1 or P2 is 0 (false) then the result is 0 even if
+** the other input is NULL. A NULL and true or two NULLs give
+** a NULL output.
+*/
+/* Opcode: Or P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] || r[P2])
+**
+** Take the logical OR of the values in register P1 and P2 and
+** store the answer in register P3.
+**
+** If either P1 or P2 is nonzero (true) then the result is 1 (true)
+** even if the other input is NULL. A NULL and false or two NULLs
+** give a NULL output.
+*/
+case OP_And: /* same as TK_AND, in1, in2, out3 */
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+
+ v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
+ v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ pOut = &aMem[pOp->p3];
+ if( v1==2 ){
+ MemSetTypeFlag(pOut, MEM_Null);
+ }else{
+ pOut->u.i = v1;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: IsTrue P1 P2 P3 P4 *
+** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
+**
+** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
+** IS NOT FALSE operators.
+**
+** Interpret the value in register P1 as a boolean value. Store that
+** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
+** NULL, then the P3 is stored in register P2. Invert the answer if P4
+** is 1.
+**
+** The logic is summarized like this:
+**
+** <ul>
+** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
+** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
+** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
+** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
+** </ul>
+*/
+case OP_IsTrue: { /* in1, out2 */
+ assert( pOp->p4type==P4_INT32 );
+ assert( pOp->p4.i==0 || pOp->p4.i==1 );
+ assert( pOp->p3==0 || pOp->p3==1 );
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
+ sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
+ break;
+}
+
+/* Opcode: Not P1 P2 * * *
+** Synopsis: r[P2]= !r[P1]
+**
+** Interpret the value in register P1 as a boolean value. Store the
+** boolean complement in register P2. If the value in register P1 is
+** NULL, then a NULL is stored in P2.
+*/
+case OP_Not: { /* same as TK_NOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
+ }else{
+ sqlite3VdbeMemSetNull(pOut);
+ }
+ break;
+}
+
+/* Opcode: BitNot P1 P2 * * *
+** Synopsis: r[P2]= ~r[P1]
+**
+** Interpret the content of register P1 as an integer. Store the
+** ones-complement of the P1 value into register P2. If P1 holds
+** a NULL then store a NULL in P2.
+*/
+case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetNull(pOut);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ pOut->flags = MEM_Int;
+ pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
+ }
+ break;
+}
+
+/* Opcode: Once P1 P2 * * *
+**
+** Fall through to the next instruction the first time this opcode is
+** encountered on each invocation of the byte-code program. Jump to P2
+** on the second and all subsequent encounters during the same invocation.
+**
+** Top-level programs determine first invocation by comparing the P1
+** operand against the P1 operand on the OP_Init opcode at the beginning
+** of the program. If the P1 values differ, then fall through and make
+** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
+** the same then take the jump.
+**
+** For subprograms, there is a bitmask in the VdbeFrame that determines
+** whether or not the jump should be taken. The bitmask is necessary
+** because the self-altering code trick does not work for recursive
+** triggers.
+*/
+case OP_Once: { /* jump */
+ u32 iAddr; /* Address of this instruction */
+ assert( p->aOp[0].opcode==OP_Init );
+ if( p->pFrame ){
+ iAddr = (int)(pOp - p->aOp);
+ if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
+ VdbeBranchTaken(1, 2);
+ goto jump_to_p2;
+ }
+ p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
+ }else{
+ if( p->aOp[0].p1==pOp->p1 ){
+ VdbeBranchTaken(1, 2);
+ goto jump_to_p2;
+ }
+ }
+ VdbeBranchTaken(0, 2);
+ pOp->p1 = p->aOp[0].p1;
+ break;
+}
+
+/* Opcode: If P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is true. The value
+** is considered true if it is numeric and non-zero. If the value
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
+*/
+case OP_If: { /* jump, in1 */
+ int c;
+ c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
+ VdbeBranchTaken(c!=0, 2);
+ if( c ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: IfNot P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is False. The value
+** is considered false if it has a numeric value of zero. If the value
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
+*/
+case OP_IfNot: { /* jump, in1 */
+ int c;
+ c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
+ VdbeBranchTaken(c!=0, 2);
+ if( c ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 * * *
+** Synopsis: if r[P1]==NULL goto P2
+**
+** Jump to P2 if the value in register P1 is NULL.
+*/
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
+ if( (pIn1->flags & MEM_Null)!=0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IsNullOrType P1 P2 P3 * *
+** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
+**
+** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
+** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
+** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
+*/
+case OP_IsNullOrType: { /* jump, in1 */
+ int doTheJump;
+ pIn1 = &aMem[pOp->p1];
+ doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3;
+ VdbeBranchTaken( doTheJump, 2);
+ if( doTheJump ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: ZeroOrNull P1 P2 P3 * *
+** Synopsis: r[P2] = 0 OR NULL
+**
+** If all both registers P1 and P3 are NOT NULL, then store a zero in
+** register P2. If either registers P1 or P3 are NULL then put
+** a NULL in register P2.
+*/
+case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
+ if( (aMem[pOp->p1].flags & MEM_Null)!=0
+ || (aMem[pOp->p3].flags & MEM_Null)!=0
+ ){
+ sqlite3VdbeMemSetNull(aMem + pOp->p2);
+ }else{
+ sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
+ }
+ break;
+}
+
+/* Opcode: NotNull P1 P2 * * *
+** Synopsis: if r[P1]!=NULL goto P2
+**
+** Jump to P2 if the value in register P1 is not NULL.
+*/
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IfNullRow P1 P2 P3 * *
+** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
+**
+** Check the cursor P1 to see if it is currently pointing at a NULL row.
+** If it is, then set register P3 to NULL and jump immediately to P2.
+** If P1 is not on a NULL row, then fall through without making any
+** changes.
+*/
+case OP_IfNullRow: { /* jump */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ if( p->apCsr[pOp->p1]->nullRow ){
+ sqlite3VdbeMemSetNull(aMem + pOp->p3);
+ goto jump_to_p2;
+ }
+ break;
+}
+
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+/* Opcode: Offset P1 P2 P3 * *
+** Synopsis: r[P3] = sqlite_offset(P1)
+**
+** Store in register r[P3] the byte offset into the database file that is the
+** start of the payload for the record at which that cursor P1 is currently
+** pointing.
+**
+** P2 is the column number for the argument to the sqlite_offset() function.
+** This opcode does not use P2 itself, but the P2 value is used by the
+** code generator. The P1, P2, and P3 operands to this opcode are the
+** same as for OP_Column.
+**
+** This opcode is only available if SQLite is compiled with the
+** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
+*/
+case OP_Offset: { /* out3 */
+ VdbeCursor *pC; /* The VDBE cursor */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ pOut = &p->aMem[pOp->p3];
+ if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ if( pC->deferredMoveto ){
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }
+ if( sqlite3BtreeEof(pC->uc.pCursor) ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
+ }
+ }
+ break;
+}
+#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
+
+/* Opcode: Column P1 P2 P3 P4 P5
+** Synopsis: r[P3]=PX cursor P1 column P2
+**
+** Interpret the data that cursor P1 points to as a structure built using
+** the MakeRecord instruction. (See the MakeRecord opcode for additional
+** information about the format of the data.) Extract the P2-th column
+** from this record. If there are less that (P2+1)
+** values in the record, extract a NULL.
+**
+** The value extracted is stored in register P3.
+**
+** If the record contains fewer than P2 fields, then extract a NULL. Or,
+** if the P4 argument is a P4_MEM use the value of the P4 argument as
+** the result.
+**
+** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
+** the result is guaranteed to only be used as the argument of a length()
+** or typeof() function, respectively. The loading of large blobs can be
+** skipped for length() and all content loading can be skipped for typeof().
+*/
+case OP_Column: {
+ u32 p2; /* column number to retrieve */
+ VdbeCursor *pC; /* The VDBE cursor */
+ BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ int len; /* The length of the serialized data for the column */
+ int i; /* Loop counter */
+ Mem *pDest; /* Where to write the extracted value */
+ Mem sMem; /* For storing the record being decoded */
+ const u8 *zData; /* Part of the record being decoded */
+ const u8 *zHdr; /* Next unparsed byte of the header */
+ const u8 *zEndHdr; /* Pointer to first byte after the header */
+ u64 offset64; /* 64-bit offset */
+ u32 t; /* A type code from the record header */
+ Mem *pReg; /* PseudoTable input register */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pC = p->apCsr[pOp->p1];
+ p2 = (u32)pOp->p2;
+
+op_column_restart:
+ assert( pC!=0 );
+ assert( p2<(u32)pC->nField
+ || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
+ aOffset = pC->aOffset;
+ assert( aOffset==pC->aType+pC->nField );
+ assert( pC->eCurType!=CURTYPE_VTAB );
+ assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
+ assert( pC->eCurType!=CURTYPE_SORTER );
+
+ if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
+ if( pC->nullRow ){
+ if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
+ /* For the special case of as pseudo-cursor, the seekResult field
+ ** identifies the register that holds the record */
+ pReg = &aMem[pC->seekResult];
+ assert( pReg->flags & MEM_Blob );
+ assert( memIsValid(pReg) );
+ pC->payloadSize = pC->szRow = pReg->n;
+ pC->aRow = (u8*)pReg->z;
+ }else{
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ sqlite3VdbeMemSetNull(pDest);
+ goto op_column_out;
+ }
+ }else{
+ pCrsr = pC->uc.pCursor;
+ if( pC->deferredMoveto ){
+ u32 iMap;
+ assert( !pC->isEphemeral );
+ if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
+ pC = pC->pAltCursor;
+ p2 = iMap - 1;
+ goto op_column_restart;
+ }
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
+ rc = sqlite3VdbeHandleMovedCursor(pC);
+ if( rc ) goto abort_due_to_error;
+ goto op_column_restart;
+ }
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pCrsr );
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
+ pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
+ assert( pC->szRow<=pC->payloadSize );
+ assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
+ }
+ pC->cacheStatus = p->cacheCtr;
+ if( (aOffset[0] = pC->aRow[0])<0x80 ){
+ pC->iHdrOffset = 1;
+ }else{
+ pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
+ }
+ pC->nHdrParsed = 0;
+
+ if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
+ /* pC->aRow does not have to hold the entire row, but it does at least
+ ** need to cover the header of the record. If pC->aRow does not contain
+ ** the complete header, then set it to zero, forcing the header to be
+ ** dynamically allocated. */
+ pC->aRow = 0;
+ pC->szRow = 0;
+
+ /* Make sure a corrupt database has not given us an oversize header.
+ ** Do this now to avoid an oversize memory allocation.
+ **
+ ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
+ ** types use so much data space that there can only be 4096 and 32 of
+ ** them, respectively. So the maximum header length results from a
+ ** 3-byte type for each of the maximum of 32768 columns plus three
+ ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
+ */
+ if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
+ goto op_column_corrupt;
+ }
+ }else{
+ /* This is an optimization. By skipping over the first few tests
+ ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
+ ** measurable performance gain.
+ **
+ ** This branch is taken even if aOffset[0]==0. Such a record is never
+ ** generated by SQLite, and could be considered corruption, but we
+ ** accept it for historical reasons. When aOffset[0]==0, the code this
+ ** branch jumps to reads past the end of the record, but never more
+ ** than a few bytes. Even if the record occurs at the end of the page
+ ** content area, the "page header" comes after the page content and so
+ ** this overread is harmless. Similar overreads can occur for a corrupt
+ ** database file.
+ */
+ zData = pC->aRow;
+ assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
+ testcase( aOffset[0]==0 );
+ goto op_column_read_header;
+ }
+ }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
+ rc = sqlite3VdbeHandleMovedCursor(pC);
+ if( rc ) goto abort_due_to_error;
+ goto op_column_restart;
+ }
+
+ /* Make sure at least the first p2+1 entries of the header have been
+ ** parsed and valid information is in aOffset[] and pC->aType[].
+ */
+ if( pC->nHdrParsed<=p2 ){
+ /* If there is more header available for parsing in the record, try
+ ** to extract additional fields up through the p2+1-th field
+ */
+ if( pC->iHdrOffset<aOffset[0] ){
+ /* Make sure zData points to enough of the record to cover the header. */
+ if( pC->aRow==0 ){
+ memset(&sMem, 0, sizeof(sMem));
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ zData = (u8*)sMem.z;
+ }else{
+ zData = pC->aRow;
+ }
+
+ /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
+ op_column_read_header:
+ i = pC->nHdrParsed;
+ offset64 = aOffset[i];
+ zHdr = zData + pC->iHdrOffset;
+ zEndHdr = zData + aOffset[0];
+ testcase( zHdr>=zEndHdr );
+ do{
+ if( (pC->aType[i] = t = zHdr[0])<0x80 ){
+ zHdr++;
+ offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
+ }else{
+ zHdr += sqlite3GetVarint32(zHdr, &t);
+ pC->aType[i] = t;
+ offset64 += sqlite3VdbeSerialTypeLen(t);
+ }
+ aOffset[++i] = (u32)(offset64 & 0xffffffff);
+ }while( (u32)i<=p2 && zHdr<zEndHdr );
+
+ /* The record is corrupt if any of the following are true:
+ ** (1) the bytes of the header extend past the declared header size
+ ** (2) the entire header was used but not all data was used
+ ** (3) the end of the data extends beyond the end of the record.
+ */
+ if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
+ || (offset64 > pC->payloadSize)
+ ){
+ if( aOffset[0]==0 ){
+ i = 0;
+ zHdr = zEndHdr;
+ }else{
+ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
+ goto op_column_corrupt;
+ }
+ }
+
+ pC->nHdrParsed = i;
+ pC->iHdrOffset = (u32)(zHdr - zData);
+ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
+ }else{
+ t = 0;
+ }
+
+ /* If after trying to extract new entries from the header, nHdrParsed is
+ ** still not up to p2, that means that the record has fewer than p2
+ ** columns. So the result will be either the default value or a NULL.
+ */
+ if( pC->nHdrParsed<=p2 ){
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
+ }else{
+ sqlite3VdbeMemSetNull(pDest);
+ }
+ goto op_column_out;
+ }
+ }else{
+ t = pC->aType[p2];
+ }
+
+ /* Extract the content for the p2+1-th column. Control can only
+ ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
+ ** all valid.
+ */
+ assert( p2<pC->nHdrParsed );
+ assert( rc==SQLITE_OK );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ assert( sqlite3VdbeCheckMemInvariants(pDest) );
+ if( VdbeMemDynamic(pDest) ){
+ sqlite3VdbeMemSetNull(pDest);
+ }
+ assert( t==pC->aType[p2] );
+ if( pC->szRow>=aOffset[p2+1] ){
+ /* This is the common case where the desired content fits on the original
+ ** page - where the content is not on an overflow page */
+ zData = pC->aRow + aOffset[p2];
+ if( t<12 ){
+ sqlite3VdbeSerialGet(zData, t, pDest);
+ }else{
+ /* If the column value is a string, we need a persistent value, not
+ ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
+ ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
+ */
+ static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
+ pDest->n = len = (t-12)/2;
+ pDest->enc = encoding;
+ if( pDest->szMalloc < len+2 ){
+ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
+ pDest->flags = MEM_Null;
+ if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
+ }else{
+ pDest->z = pDest->zMalloc;
+ }
+ memcpy(pDest->z, zData, len);
+ pDest->z[len] = 0;
+ pDest->z[len+1] = 0;
+ pDest->flags = aFlag[t&1];
+ }
+ }else{
+ pDest->enc = encoding;
+ /* This branch happens only when content is on overflow pages */
+ if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
+ && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
+ || (len = sqlite3VdbeSerialTypeLen(t))==0
+ ){
+ /* Content is irrelevant for
+ ** 1. the typeof() function,
+ ** 2. the length(X) function if X is a blob, and
+ ** 3. if the content length is zero.
+ ** So we might as well use bogus content rather than reading
+ ** content from disk.
+ **
+ ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
+ ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
+ ** read more. Use the global constant sqlite3CtypeMap[] as the array,
+ ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
+ ** and it begins with a bunch of zeros.
+ */
+ sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
+ }else{
+ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
+ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
+ pDest->flags &= ~MEM_Ephem;
+ }
+ }
+
+op_column_out:
+ UPDATE_MAX_BLOBSIZE(pDest);
+ REGISTER_TRACE(pOp->p3, pDest);
+ break;
+
+op_column_corrupt:
+ if( aOp[0].p3>0 ){
+ pOp = &aOp[aOp[0].p3-1];
+ break;
+ }else{
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+}
+
+/* Opcode: TypeCheck P1 P2 P3 P4 *
+** Synopsis: typecheck(r[P1@P2])
+**
+** Apply affinities to the range of P2 registers beginning with P1.
+** Take the affinities from the Table object in P4. If any value
+** cannot be coerced into the correct type, then raise an error.
+**
+** This opcode is similar to OP_Affinity except that this opcode
+** forces the register type to the Table column type. This is used
+** to implement "strict affinity".
+**
+** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
+** is zero. When P3 is non-zero, no type checking occurs for
+** static generated columns. Virtual columns are computed at query time
+** and so they are never checked.
+**
+** Preconditions:
+**
+** <ul>
+** <li> P2 should be the number of non-virtual columns in the
+** table of P4.
+** <li> Table P4 should be a STRICT table.
+** </ul>
+**
+** If any precondition is false, an assertion fault occurs.
+*/
+case OP_TypeCheck: {
+ Table *pTab;
+ Column *aCol;
+ int i;
+
+ assert( pOp->p4type==P4_TABLE );
+ pTab = pOp->p4.pTab;
+ assert( pTab->tabFlags & TF_Strict );
+ assert( pTab->nNVCol==pOp->p2 );
+ aCol = pTab->aCol;
+ pIn1 = &aMem[pOp->p1];
+ for(i=0; i<pTab->nCol; i++){
+ if( aCol[i].colFlags & COLFLAG_GENERATED ){
+ if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
+ if( pOp->p3 ){ pIn1++; continue; }
+ }
+ assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
+ applyAffinity(pIn1, aCol[i].affinity, encoding);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ switch( aCol[i].eCType ){
+ case COLTYPE_BLOB: {
+ if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_INTEGER:
+ case COLTYPE_INT: {
+ if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_TEXT: {
+ if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_REAL: {
+ testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
+ testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
+ if( pIn1->flags & MEM_Int ){
+ /* When applying REAL affinity, if the result is still an MEM_Int
+ ** that will fit in 6 bytes, then change the type to MEM_IntReal
+ ** so that we keep the high-resolution integer value but know that
+ ** the type really wants to be REAL. */
+ testcase( pIn1->u.i==140737488355328LL );
+ testcase( pIn1->u.i==140737488355327LL );
+ testcase( pIn1->u.i==-140737488355328LL );
+ testcase( pIn1->u.i==-140737488355329LL );
+ if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
+ pIn1->flags |= MEM_IntReal;
+ pIn1->flags &= ~MEM_Int;
+ }else{
+ pIn1->u.r = (double)pIn1->u.i;
+ pIn1->flags |= MEM_Real;
+ pIn1->flags &= ~MEM_Int;
+ }
+ }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
+ goto vdbe_type_error;
+ }
+ break;
+ }
+ default: {
+ /* COLTYPE_ANY. Accept anything. */
+ break;
+ }
+ }
+ }
+ REGISTER_TRACE((int)(pIn1-aMem), pIn1);
+ pIn1++;
+ }
+ assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
+ break;
+
+vdbe_type_error:
+ sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
+ vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
+ pTab->zName, aCol[i].zCnName);
+ rc = SQLITE_CONSTRAINT_DATATYPE;
+ goto abort_due_to_error;
+}
+
+/* Opcode: Affinity P1 P2 * P4 *
+** Synopsis: affinity(r[P1@P2])
+**
+** Apply affinities to a range of P2 registers starting with P1.
+**
+** P4 is a string that is P2 characters long. The N-th character of the
+** string indicates the column affinity that should be used for the N-th
+** memory cell in the range.
+*/
+case OP_Affinity: {
+ const char *zAffinity; /* The affinity to be applied */
+
+ zAffinity = pOp->p4.z;
+ assert( zAffinity!=0 );
+ assert( pOp->p2>0 );
+ assert( zAffinity[pOp->p2]==0 );
+ pIn1 = &aMem[pOp->p1];
+ while( 1 /*exit-by-break*/ ){
+ assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
+ assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
+ applyAffinity(pIn1, zAffinity[0], encoding);
+ if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
+ /* When applying REAL affinity, if the result is still an MEM_Int
+ ** that will fit in 6 bytes, then change the type to MEM_IntReal
+ ** so that we keep the high-resolution integer value but know that
+ ** the type really wants to be REAL. */
+ testcase( pIn1->u.i==140737488355328LL );
+ testcase( pIn1->u.i==140737488355327LL );
+ testcase( pIn1->u.i==-140737488355328LL );
+ testcase( pIn1->u.i==-140737488355329LL );
+ if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
+ pIn1->flags |= MEM_IntReal;
+ pIn1->flags &= ~MEM_Int;
+ }else{
+ pIn1->u.r = (double)pIn1->u.i;
+ pIn1->flags |= MEM_Real;
+ pIn1->flags &= ~MEM_Int;
+ }
+ }
+ REGISTER_TRACE((int)(pIn1-aMem), pIn1);
+ zAffinity++;
+ if( zAffinity[0]==0 ) break;
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 P3 P4 *
+** Synopsis: r[P3]=mkrec(r[P1@P2])
+**
+** Convert P2 registers beginning with P1 into the [record format]
+** use as a data record in a database table or as a key
+** in an index. The OP_Column opcode can decode the record later.
+**
+** P4 may be a string that is P2 characters long. The N-th character of the
+** string indicates the column affinity that should be used for the N-th
+** field of the index key.
+**
+** The mapping from character to affinity is given by the SQLITE_AFF_
+** macros defined in sqliteInt.h.
+**
+** If P4 is NULL then all index fields have the affinity BLOB.
+**
+** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
+** compile-time option is enabled:
+**
+** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
+** of the right-most table that can be null-trimmed.
+**
+** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
+** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
+** accept no-change records with serial_type 10. This value is
+** only used inside an assert() and does not affect the end result.
+*/
+case OP_MakeRecord: {
+ Mem *pRec; /* The new record */
+ u64 nData; /* Number of bytes of data space */
+ int nHdr; /* Number of bytes of header space */
+ i64 nByte; /* Data space required for this record */
+ i64 nZero; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ u32 len; /* Length of a field */
+ u8 *zHdr; /* Where to write next byte of the header */
+ u8 *zPayload; /* Where to write next byte of the payload */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** ------------------------------------------------------------------------
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** ------------------------------------------------------------------------
+ **
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1
+ ** and so forth.
+ **
+ ** Each type field is a varint representing the serial type of the
+ ** corresponding data element (see sqlite3VdbeSerialType()). The
+ ** hdr-size field is also a varint which is the offset from the beginning
+ ** of the record to data0.
+ */
+ nData = 0; /* Number of bytes of data space */
+ nHdr = 0; /* Number of bytes of header space */
+ nZero = 0; /* Number of zero bytes at the end of the record */
+ nField = pOp->p1;
+ zAffinity = pOp->p4.z;
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
+ pData0 = &aMem[nField];
+ nField = pOp->p2;
+ pLast = &pData0[nField-1];
+
+ /* Identify the output register */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
+
+ /* Apply the requested affinity to all inputs
+ */
+ assert( pData0<=pLast );
+ if( zAffinity ){
+ pRec = pData0;
+ do{
+ applyAffinity(pRec, zAffinity[0], encoding);
+ if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
+ pRec->flags |= MEM_IntReal;
+ pRec->flags &= ~(MEM_Int);
+ }
+ REGISTER_TRACE((int)(pRec-aMem), pRec);
+ zAffinity++;
+ pRec++;
+ assert( zAffinity[0]==0 || pRec<=pLast );
+ }while( zAffinity[0] );
+ }
+
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ /* NULLs can be safely trimmed from the end of the record, as long as
+ ** as the schema format is 2 or more and none of the omitted columns
+ ** have a non-NULL default value. Also, the record must be left with
+ ** at least one field. If P5>0 then it will be one more than the
+ ** index of the right-most column with a non-NULL default value */
+ if( pOp->p5 ){
+ while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
+ pLast--;
+ nField--;
+ }
+ }
+#endif
+
+ /* Loop through the elements that will make up the record to figure
+ ** out how much space is required for the new record. After this loop,
+ ** the Mem.uTemp field of each term should hold the serial-type that will
+ ** be used for that term in the generated record:
+ **
+ ** Mem.uTemp value type
+ ** --------------- ---------------
+ ** 0 NULL
+ ** 1 1-byte signed integer
+ ** 2 2-byte signed integer
+ ** 3 3-byte signed integer
+ ** 4 4-byte signed integer
+ ** 5 6-byte signed integer
+ ** 6 8-byte signed integer
+ ** 7 IEEE float
+ ** 8 Integer constant 0
+ ** 9 Integer constant 1
+ ** 10,11 reserved for expansion
+ ** N>=12 and even BLOB
+ ** N>=13 and odd text
+ **
+ ** The following additional values are computed:
+ ** nHdr Number of bytes needed for the record header
+ ** nData Number of bytes of data space needed for the record
+ ** nZero Zero bytes at the end of the record
+ */
+ pRec = pLast;
+ do{
+ assert( memIsValid(pRec) );
+ if( pRec->flags & MEM_Null ){
+ if( pRec->flags & MEM_Zero ){
+ /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
+ ** table methods that never invoke sqlite3_result_xxxxx() while
+ ** computing an unchanging column value in an UPDATE statement.
+ ** Give such values a special internal-use-only serial-type of 10
+ ** so that they can be passed through to xUpdate and have
+ ** a true sqlite3_value_nochange(). */
+#ifndef SQLITE_ENABLE_NULL_TRIM
+ assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
+#endif
+ pRec->uTemp = 10;
+ }else{
+ pRec->uTemp = 0;
+ }
+ nHdr++;
+ }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+ i64 i = pRec->u.i;
+ u64 uu;
+ testcase( pRec->flags & MEM_Int );
+ testcase( pRec->flags & MEM_IntReal );
+ if( i<0 ){
+ uu = ~i;
+ }else{
+ uu = i;
+ }
+ nHdr++;
+ testcase( uu==127 ); testcase( uu==128 );
+ testcase( uu==32767 ); testcase( uu==32768 );
+ testcase( uu==8388607 ); testcase( uu==8388608 );
+ testcase( uu==2147483647 ); testcase( uu==2147483648LL );
+ testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
+ if( uu<=127 ){
+ if( (i&1)==i && p->minWriteFileFormat>=4 ){
+ pRec->uTemp = 8+(u32)uu;
+ }else{
+ nData++;
+ pRec->uTemp = 1;
+ }
+ }else if( uu<=32767 ){
+ nData += 2;
+ pRec->uTemp = 2;
+ }else if( uu<=8388607 ){
+ nData += 3;
+ pRec->uTemp = 3;
+ }else if( uu<=2147483647 ){
+ nData += 4;
+ pRec->uTemp = 4;
+ }else if( uu<=140737488355327LL ){
+ nData += 6;
+ pRec->uTemp = 5;
+ }else{
+ nData += 8;
+ if( pRec->flags & MEM_IntReal ){
+ /* If the value is IntReal and is going to take up 8 bytes to store
+ ** as an integer, then we might as well make it an 8-byte floating
+ ** point value */
+ pRec->u.r = (double)pRec->u.i;
+ pRec->flags &= ~MEM_IntReal;
+ pRec->flags |= MEM_Real;
+ pRec->uTemp = 7;
+ }else{
+ pRec->uTemp = 6;
+ }
+ }
+ }else if( pRec->flags & MEM_Real ){
+ nHdr++;
+ nData += 8;
+ pRec->uTemp = 7;
+ }else{
+ assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
+ assert( pRec->n>=0 );
+ len = (u32)pRec->n;
+ serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
+ if( pRec->flags & MEM_Zero ){
+ serial_type += pRec->u.nZero*2;
+ if( nData ){
+ if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
+ len += pRec->u.nZero;
+ }else{
+ nZero += pRec->u.nZero;
+ }
+ }
+ nData += len;
+ nHdr += sqlite3VarintLen(serial_type);
+ pRec->uTemp = serial_type;
+ }
+ if( pRec==pData0 ) break;
+ pRec--;
+ }while(1);
+
+ /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
+ ** which determines the total number of bytes in the header. The varint
+ ** value is the size of the header in bytes including the size varint
+ ** itself. */
+ testcase( nHdr==126 );
+ testcase( nHdr==127 );
+ if( nHdr<=126 ){
+ /* The common case */
+ nHdr += 1;
+ }else{
+ /* Rare case of a really large header */
+ nVarint = sqlite3VarintLen(nHdr);
+ nHdr += nVarint;
+ if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
+ }
+ nByte = nHdr+nData;
+
+ /* Make sure the output register has a buffer large enough to store
+ ** the new record. The output register (pOp->p3) is not allowed to
+ ** be one of the input registers (because the following call to
+ ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
+ */
+ if( nByte+nZero<=pOut->szMalloc ){
+ /* The output register is already large enough to hold the record.
+ ** No error checks or buffer enlargement is required */
+ pOut->z = pOut->zMalloc;
+ }else{
+ /* Need to make sure that the output is not too big and then enlarge
+ ** the output register to hold the full result */
+ if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
+ goto no_mem;
+ }
+ }
+ pOut->n = (int)nByte;
+ pOut->flags = MEM_Blob;
+ if( nZero ){
+ pOut->u.nZero = nZero;
+ pOut->flags |= MEM_Zero;
+ }
+ UPDATE_MAX_BLOBSIZE(pOut);
+ zHdr = (u8 *)pOut->z;
+ zPayload = zHdr + nHdr;
+
+ /* Write the record */
+ if( nHdr<0x80 ){
+ *(zHdr++) = nHdr;
+ }else{
+ zHdr += sqlite3PutVarint(zHdr,nHdr);
+ }
+ assert( pData0<=pLast );
+ pRec = pData0;
+ while( 1 /*exit-by-break*/ ){
+ serial_type = pRec->uTemp;
+ /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
+ ** additional varints, one per column.
+ ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
+ ** immediately follow the header. */
+ if( serial_type<=7 ){
+ *(zHdr++) = serial_type;
+ if( serial_type==0 ){
+ /* NULL value. No change in zPayload */
+ }else{
+ u64 v;
+ u32 i;
+ if( serial_type==7 ){
+ assert( sizeof(v)==sizeof(pRec->u.r) );
+ memcpy(&v, &pRec->u.r, sizeof(v));
+ swapMixedEndianFloat(v);
+ }else{
+ v = pRec->u.i;
+ }
+ len = i = sqlite3SmallTypeSizes[serial_type];
+ assert( i>0 );
+ while( 1 /*exit-by-break*/ ){
+ zPayload[--i] = (u8)(v&0xFF);
+ if( i==0 ) break;
+ v >>= 8;
+ }
+ zPayload += len;
+ }
+ }else if( serial_type<0x80 ){
+ *(zHdr++) = serial_type;
+ if( serial_type>=14 && pRec->n>0 ){
+ assert( pRec->z!=0 );
+ memcpy(zPayload, pRec->z, pRec->n);
+ zPayload += pRec->n;
+ }
+ }else{
+ zHdr += sqlite3PutVarint(zHdr, serial_type);
+ if( pRec->n ){
+ assert( pRec->z!=0 );
+ memcpy(zPayload, pRec->z, pRec->n);
+ zPayload += pRec->n;
+ }
+ }
+ if( pRec==pLast ) break;
+ pRec++;
+ }
+ assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
+ assert( nByte==(int)(zPayload - (u8*)pOut->z) );
+
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ REGISTER_TRACE(pOp->p3, pOut);
+ break;
+}
+
+/* Opcode: Count P1 P2 P3 * *
+** Synopsis: r[P2]=count()
+**
+** Store the number of entries (an integer value) in the table or index
+** opened by cursor P1 in register P2.
+**
+** If P3==0, then an exact count is obtained, which involves visiting
+** every btree page of the table. But if P3 is non-zero, an estimate
+** is returned based on the current cursor position.
+*/
+case OP_Count: { /* out2 */
+ i64 nEntry;
+ BtCursor *pCrsr;
+
+ assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
+ pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
+ assert( pCrsr );
+ if( pOp->p3 ){
+ nEntry = sqlite3BtreeRowCountEst(pCrsr);
+ }else{
+ nEntry = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
+ if( rc ) goto abort_due_to_error;
+ }
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = nEntry;
+ goto check_for_interrupt;
+}
+
+/* Opcode: Savepoint P1 * * P4 *
+**
+** Open, release or rollback the savepoint named by parameter P4, depending
+** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
+** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
+** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
+*/
+case OP_Savepoint: {
+ int p1; /* Value of P1 operand */
+ char *zName; /* Name of savepoint */
+ int nName;
+ Savepoint *pNew;
+ Savepoint *pSavepoint;
+ Savepoint *pTmp;
+ int iSavepoint;
+ int ii;
+
+ p1 = pOp->p1;
+ zName = pOp->p4.z;
+
+ /* Assert that the p1 parameter is valid. Also that if there is no open
+ ** transaction, then there cannot be any savepoints.
+ */
+ assert( db->pSavepoint==0 || db->autoCommit==0 );
+ assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
+ assert( db->pSavepoint || db->isTransactionSavepoint==0 );
+ assert( checkSavepointCount(db) );
+ assert( p->bIsReader );
+
+ if( p1==SAVEPOINT_BEGIN ){
+ if( db->nVdbeWrite>0 ){
+ /* A new savepoint cannot be created if there are active write
+ ** statements (i.e. open read/write incremental blob handles).
+ */
+ sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+ nName = sqlite3Strlen30(zName);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* This call is Ok even if this savepoint is actually a transaction
+ ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
+ ** If this is a transaction savepoint being opened, it is guaranteed
+ ** that the db->aVTrans[] array is empty. */
+ assert( db->autoCommit==0 || db->nVTrans==0 );
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
+ db->nStatement+db->nSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+#endif
+
+ /* Create a new savepoint structure. */
+ pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
+ if( pNew ){
+ pNew->zName = (char *)&pNew[1];
+ memcpy(pNew->zName, zName, nName+1);
+
+ /* If there is no open transaction, then mark this as a special
+ ** "transaction savepoint". */
+ if( db->autoCommit ){
+ db->autoCommit = 0;
+ db->isTransactionSavepoint = 1;
+ }else{
+ db->nSavepoint++;
+ }
+
+ /* Link the new savepoint into the database handle's list. */
+ pNew->pNext = db->pSavepoint;
+ db->pSavepoint = pNew;
+ pNew->nDeferredCons = db->nDeferredCons;
+ pNew->nDeferredImmCons = db->nDeferredImmCons;
+ }
+ }
+ }else{
+ assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
+ iSavepoint = 0;
+
+ /* Find the named savepoint. If there is no such savepoint, then an
+ ** an error is returned to the user. */
+ for(
+ pSavepoint = db->pSavepoint;
+ pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
+ pSavepoint = pSavepoint->pNext
+ ){
+ iSavepoint++;
+ }
+ if( !pSavepoint ){
+ sqlite3VdbeError(p, "no such savepoint: %s", zName);
+ rc = SQLITE_ERROR;
+ }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
+ /* It is not possible to release (commit) a savepoint if there are
+ ** active write statements.
+ */
+ sqlite3VdbeError(p, "cannot release savepoint - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+
+ /* Determine whether or not this is a transaction savepoint. If so,
+ ** and this is a RELEASE command, then the current transaction
+ ** is committed.
+ */
+ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
+ if( isTransaction && p1==SAVEPOINT_RELEASE ){
+ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }
+ db->autoCommit = 1;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ db->autoCommit = 0;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ rc = p->rc;
+ if( rc ){
+ db->autoCommit = 0;
+ }else{
+ db->isTransactionSavepoint = 0;
+ }
+ }else{
+ int isSchemaChange;
+ iSavepoint = db->nSavepoint - iSavepoint - 1;
+ if( p1==SAVEPOINT_ROLLBACK ){
+ isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
+ SQLITE_ABORT_ROLLBACK,
+ isSchemaChange==0);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }else{
+ assert( p1==SAVEPOINT_RELEASE );
+ isSchemaChange = 0;
+ }
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }
+ if( isSchemaChange ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ sqlite3ResetAllSchemasOfConnection(db);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+
+ /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
+ ** savepoints nested inside of the savepoint being operated on. */
+ while( db->pSavepoint!=pSavepoint ){
+ pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ db->nSavepoint--;
+ }
+
+ /* If it is a RELEASE, then destroy the savepoint being operated on
+ ** too. If it is a ROLLBACK TO, then set the number of deferred
+ ** constraint violations present in the database to the value stored
+ ** when the savepoint was created. */
+ if( p1==SAVEPOINT_RELEASE ){
+ assert( pSavepoint==db->pSavepoint );
+ db->pSavepoint = pSavepoint->pNext;
+ sqlite3DbFree(db, pSavepoint);
+ if( !isTransaction ){
+ db->nSavepoint--;
+ }
+ }else{
+ assert( p1==SAVEPOINT_ROLLBACK );
+ db->nDeferredCons = pSavepoint->nDeferredCons;
+ db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
+ }
+
+ if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
+ rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ if( p->eVdbeState==VDBE_HALT_STATE ){
+ rc = SQLITE_DONE;
+ goto vdbe_return;
+ }
+ break;
+}
+
+/* Opcode: AutoCommit P1 P2 * * *
+**
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
+** back any currently active btree transactions. If there are any active
+** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
+** there are active writing VMs or active VMs that use shared cache.
+**
+** This instruction causes the VM to halt.
+*/
+case OP_AutoCommit: {
+ int desiredAutoCommit;
+ int iRollback;
+
+ desiredAutoCommit = pOp->p1;
+ iRollback = pOp->p2;
+ assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
+ assert( desiredAutoCommit==1 || iRollback==0 );
+ assert( db->nVdbeActive>0 ); /* At least this one VM is active */
+ assert( p->bIsReader );
+
+ if( desiredAutoCommit!=db->autoCommit ){
+ if( iRollback ){
+ assert( desiredAutoCommit==1 );
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ db->autoCommit = 1;
+ }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
+ /* If this instruction implements a COMMIT and other VMs are writing
+ ** return an error indicating that the other VMs must complete first.
+ */
+ sqlite3VdbeError(p, "cannot commit transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ goto abort_due_to_error;
+ }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }else{
+ db->autoCommit = (u8)desiredAutoCommit;
+ }
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ db->autoCommit = (u8)(1-desiredAutoCommit);
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ sqlite3CloseSavepoints(db);
+ if( p->rc==SQLITE_OK ){
+ rc = SQLITE_DONE;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ goto vdbe_return;
+ }else{
+ sqlite3VdbeError(p,
+ (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
+ (iRollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"));
+
+ rc = SQLITE_ERROR;
+ goto abort_due_to_error;
+ }
+ /*NOTREACHED*/ assert(0);
+}
+
+/* Opcode: Transaction P1 P2 P3 P4 P5
+**
+** Begin a transaction on database P1 if a transaction is not already
+** active.
+** If P2 is non-zero, then a write-transaction is started, or if a
+** read-transaction is already active, it is upgraded to a write-transaction.
+** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
+** then an exclusive transaction is started.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables. Indices of 2 or more are used for
+** attached databases.
+**
+** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
+** true (this flag is set if the Vdbe may modify more than one row and may
+** throw an ABORT exception), a statement transaction may also be opened.
+** More specifically, a statement transaction is opened iff the database
+** connection is currently not in autocommit mode, or if there are other
+** active statements. A statement transaction allows the changes made by this
+** VDBE to be rolled back after an error without having to roll back the
+** entire transaction. If no error is encountered, the statement transaction
+** will automatically commit when the VDBE halts.
+**
+** If P5!=0 then this opcode also checks the schema cookie against P3
+** and the schema generation counter against P4.
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema. If the schema
+** cookie in P3 differs from the schema cookie in the database header or
+** if the schema generation counter in P4 differs from the current
+** generation counter, then an SQLITE_SCHEMA error is raised and execution
+** halts. The sqlite3_step() wrapper function might then reprepare the
+** statement and rerun it from the beginning.
+*/
+case OP_Transaction: {
+ Btree *pBt;
+ Db *pDb;
+ int iMeta = 0;
+
+ assert( p->bIsReader );
+ assert( p->readOnly==0 || pOp->p2==0 );
+ assert( pOp->p2>=0 && pOp->p2<=2 );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( rc==SQLITE_OK );
+ if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
+ if( db->flags & SQLITE_QueryOnly ){
+ /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
+ rc = SQLITE_READONLY;
+ }else{
+ /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
+ ** transaction */
+ rc = SQLITE_CORRUPT;
+ }
+ goto abort_due_to_error;
+ }
+ pDb = &db->aDb[pOp->p1];
+ pBt = pDb->pBt;
+
+ if( pBt ){
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
+ testcase( rc==SQLITE_BUSY_SNAPSHOT );
+ testcase( rc==SQLITE_BUSY_RECOVERY );
+ if( rc!=SQLITE_OK ){
+ if( (rc&0xff)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ p->rc = rc;
+ goto vdbe_return;
+ }
+ goto abort_due_to_error;
+ }
+
+ if( p->usesStmtJournal
+ && pOp->p2
+ && (db->autoCommit==0 || db->nVdbeRead>1)
+ ){
+ assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
+ if( p->iStatement==0 ){
+ assert( db->nStatement>=0 && db->nSavepoint>=0 );
+ db->nStatement++;
+ p->iStatement = db->nSavepoint + db->nStatement;
+ }
+
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
+ }
+
+ /* Store the current value of the database handles deferred constraint
+ ** counter. If the statement transaction needs to be rolled back,
+ ** the value of this counter needs to be restored too. */
+ p->nStmtDefCons = db->nDeferredCons;
+ p->nStmtDefImmCons = db->nDeferredImmCons;
+ }
+ }
+ assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
+ if( rc==SQLITE_OK
+ && pOp->p5
+ && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
+ ){
+ /*
+ ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
+ ** version is checked to ensure that the schema has not changed since the
+ ** SQL statement was prepared.
+ */
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
+ ** stored with the in-memory representation of the schema, do
+ ** not reload the schema from the database file.
+ **
+ ** If virtual-tables are in use, this is not just an optimization.
+ ** Often, v-tables store their data in other SQLite tables, which
+ ** are queried from within xNext() and other v-table methods using
+ ** prepared queries. If such a query is out-of-date, we do not want to
+ ** discard the database schema, as the user code implementing the
+ ** v-table would have to be ready for the sqlite3_vtab structure itself
+ ** to be invalidated whenever sqlite3_step() is called from within
+ ** a v-table method.
+ */
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ sqlite3ResetOneSchema(db, pOp->p1);
+ }
+ p->expired = 1;
+ rc = SQLITE_SCHEMA;
+
+ /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
+ ** from being modified in sqlite3VdbeHalt(). If this statement is
+ ** reprepared, changeCntOn will be set again. */
+ p->changeCntOn = 0;
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 P3 * *
+**
+** Read cookie number P3 from database P1 and write it into register P2.
+** P3==1 is the schema version. P3==2 is the database format.
+** P3==3 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: { /* out2 */
+ int iMeta;
+ int iDb;
+ int iCookie;
+
+ assert( p->bIsReader );
+ iDb = pOp->p1;
+ iCookie = pOp->p3;
+ assert( pOp->p3<SQLITE_N_BTREE_META );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+
+ sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = iMeta;
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 P3 * P5
+**
+** Write the integer value P3 into cookie number P2 of database P1.
+** P2==1 is the schema version. P2==2 is the database format.
+** P2==3 is the recommended pager cache
+** size, and so forth. P1==0 is the main database file and P1==1 is the
+** database file used to store temporary tables.
+**
+** A transaction must be started before executing this opcode.
+**
+** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
+** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
+** has P5 set to 1, so that the internal schema version will be different
+** from the database schema version, resulting in a schema reset.
+*/
+case OP_SetCookie: {
+ Db *pDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
+ /* See note about index shifting on OP_ReadCookie */
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
+ if( pOp->p2==BTREE_SCHEMA_VERSION ){
+ /* When the schema cookie changes, record the new cookie internally */
+ *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ sqlite3FkClearTriggerCache(db, pOp->p1);
+ }else if( pOp->p2==BTREE_FILE_FORMAT ){
+ /* Record changes in the file format */
+ pDb->pSchema->file_format = pOp->p3;
+ }
+ if( pOp->p1==1 ){
+ /* Invalidate all prepared statements whenever the TEMP database
+ ** schema is changed. Ticket #1644 */
+ sqlite3ExpirePreparedStatements(db, 0);
+ p->expired = 0;
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by P3.
+** P3==0 means the main database, P3==1 means the database used for
+** temporary tables, and P3>1 means used the corresponding attached
+** database. Give the new cursor an identifier of P1. The P1
+** values need not be contiguous but all P1 values should be small integers.
+** It is an error for P1 to be negative.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** </ul>
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** object, then table being opened must be an [index b-tree] where the
+** KeyInfo object defines the content and collating
+** sequence of that index b-tree. Otherwise, if P4 is an integer
+** value, then the table being opened must be a [table b-tree] with a
+** number of columns no less than the value of P4.
+**
+** See also: OpenWrite, ReopenIdx
+*/
+/* Opcode: ReopenIdx P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** The ReopenIdx opcode works like OP_OpenRead except that it first
+** checks to see if the cursor on P1 is already open on the same
+** b-tree and if it is this opcode becomes a no-op. In other words,
+** if the cursor is already open, do not reopen it.
+**
+** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
+** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
+** be the same as every other ReopenIdx or OpenRead for the same cursor
+** number.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** </ul>
+**
+** See also: OP_OpenRead, OP_OpenWrite
+*/
+/* Opcode: OpenWrite P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2 (or whose root page is held in register P2 if the
+** OPFLAG_P2ISREG bit is set in P5 - see below).
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** object, then table being opened must be an [index b-tree] where the
+** KeyInfo object defines the content and collating
+** sequence of that index b-tree. Otherwise, if P4 is an integer
+** value, then the table being opened must be a [table b-tree] with a
+** number of columns no less than the value of P4.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
+** and subsequently delete entries in an index btree. This is a
+** hint to the storage engine that the storage engine is allowed to
+** ignore. The hint is not used by the official SQLite b*tree storage
+** engine, but is used by COMDB2.
+** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
+** as the root page, not the value of P2 itself.
+** </ul>
+**
+** This instruction works like OpenRead except that it opens the cursor
+** in read/write mode.
+**
+** See also: OP_OpenRead, OP_ReopenIdx
+*/
+case OP_ReopenIdx: {
+ int nField;
+ KeyInfo *pKeyInfo;
+ u32 p2;
+ int iDb;
+ int wrFlag;
+ Btree *pX;
+ VdbeCursor *pCur;
+ Db *pDb;
+
+ assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
+ assert( pOp->p4type==P4_KEYINFO );
+ pCur = p->apCsr[pOp->p1];
+ if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
+ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
+ assert( pCur->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeClearCursor(pCur->uc.pCursor);
+ goto open_cursor_set_hints;
+ }
+ /* If the cursor is not currently open or is open on a different
+ ** index, then fall through into OP_OpenRead to force a reopen */
+case OP_OpenRead:
+case OP_OpenWrite:
+
+ assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
+ assert( p->bIsReader );
+ assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
+ || p->readOnly==0 );
+
+ if( p->expired==1 ){
+ rc = SQLITE_ABORT_ROLLBACK;
+ goto abort_due_to_error;
+ }
+
+ nField = 0;
+ pKeyInfo = 0;
+ p2 = (u32)pOp->p2;
+ iDb = pOp->p3;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ pDb = &db->aDb[iDb];
+ pX = pDb->pBt;
+ assert( pX!=0 );
+ if( pOp->opcode==OP_OpenWrite ){
+ assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
+ wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( pDb->pSchema->file_format < p->minWriteFileFormat ){
+ p->minWriteFileFormat = pDb->pSchema->file_format;
+ }
+ }else{
+ wrFlag = 0;
+ }
+ if( pOp->p5 & OPFLAG_P2ISREG ){
+ assert( p2>0 );
+ assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
+ assert( pOp->opcode==OP_OpenWrite );
+ pIn2 = &aMem[p2];
+ assert( memIsValid(pIn2) );
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ sqlite3VdbeMemIntegerify(pIn2);
+ p2 = (int)pIn2->u.i;
+ /* The p2 value always comes from a prior OP_CreateBtree opcode and
+ ** that opcode will always set the p2 value to 2 or more or else fail.
+ ** If there were a failure, the prepared statement would have halted
+ ** before reaching this instruction. */
+ assert( p2>=2 );
+ }
+ if( pOp->p4type==P4_KEYINFO ){
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pKeyInfo->enc==ENC(db) );
+ assert( pKeyInfo->db==db );
+ nField = pKeyInfo->nAllField;
+ }else if( pOp->p4type==P4_INT32 ){
+ nField = pOp->p4.i;
+ }
+ assert( pOp->p1>=0 );
+ assert( nField>=0 );
+ testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
+ pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
+ if( pCur==0 ) goto no_mem;
+ pCur->iDb = iDb;
+ pCur->nullRow = 1;
+ pCur->isOrdered = 1;
+ pCur->pgnoRoot = p2;
+#ifdef SQLITE_DEBUG
+ pCur->wrFlag = wrFlag;
+#endif
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
+ pCur->pKeyInfo = pKeyInfo;
+ /* Set the VdbeCursor.isTable variable. Previous versions of
+ ** SQLite used to check if the root-page flags were sane at this point
+ ** and report database corruption if they were not, but this check has
+ ** since moved into the btree layer. */
+ pCur->isTable = pOp->p4type!=P4_KEYINFO;
+
+open_cursor_set_hints:
+ assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
+ assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
+ testcase( pOp->p5 & OPFLAG_BULKCSR );
+ testcase( pOp->p2 & OPFLAG_SEEKEQ );
+ sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
+ (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: OpenDup P1 P2 * * *
+**
+** Open a new cursor P1 that points to the same ephemeral table as
+** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
+** opcode. Only ephemeral cursors may be duplicated.
+**
+** Duplicate ephemeral cursors are used for self-joins of materialized views.
+*/
+case OP_OpenDup: {
+ VdbeCursor *pOrig; /* The original cursor to be duplicated */
+ VdbeCursor *pCx; /* The new cursor */
+
+ pOrig = p->apCsr[pOp->p2];
+ assert( pOrig );
+ assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
+
+ pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->isEphemeral = 1;
+ pCx->pKeyInfo = pOrig->pKeyInfo;
+ pCx->isTable = pOrig->isTable;
+ pCx->pgnoRoot = pOrig->pgnoRoot;
+ pCx->isOrdered = pOrig->isOrdered;
+ pCx->ub.pBtx = pOrig->ub.pBtx;
+ pCx->noReuse = 1;
+ pOrig->noReuse = 1;
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
+ pCx->pKeyInfo, pCx->uc.pCursor);
+ /* The sqlite3BtreeCursor() routine can only fail for the first cursor
+ ** opened for a database. Since there is already an open cursor when this
+ ** opcode is run, the sqlite3BtreeCursor() cannot fail */
+ assert( rc==SQLITE_OK );
+ break;
+}
+
+
+/* Opcode: OpenEphemeral P1 P2 P3 P4 P5
+** Synopsis: nColumn=P2
+**
+** Open a new cursor P1 to a transient table.
+** The cursor is always opened read/write even if
+** the main database is read-only. The ephemeral
+** table is deleted automatically when the cursor is closed.
+**
+** If the cursor P1 is already opened on an ephemeral table, the table
+** is cleared (all content is erased).
+**
+** P2 is the number of columns in the ephemeral table.
+** The cursor points to a BTree table if P4==0 and to a BTree index
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
+** that defines the format of keys in the index.
+**
+** The P5 parameter can be a mask of the BTREE_* flags defined
+** in btree.h. These flags control aspects of the operation of
+** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
+** added automatically.
+**
+** If P3 is positive, then reg[P3] is modified slightly so that it
+** can be used as zero-length data for OP_Insert. This is an optimization
+** that avoids an extra OP_Blob opcode to initialize that register.
+*/
+/* Opcode: OpenAutoindex P1 P2 * P4 *
+** Synopsis: nColumn=P2
+**
+** This opcode works the same as OP_OpenEphemeral. It has a
+** different name to distinguish its use. Tables created using
+** by this opcode will be used for automatically created transient
+** indices in joins.
+*/
+case OP_OpenAutoindex:
+case OP_OpenEphemeral: {
+ VdbeCursor *pCx;
+ KeyInfo *pKeyInfo;
+
+ static const int vfsFlags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TRANSIENT_DB;
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
+ if( pOp->p3>0 ){
+ /* Make register reg[P3] into a value that can be used as the data
+ ** form sqlite3BtreeInsert() where the length of the data is zero. */
+ assert( pOp->p2==0 ); /* Only used when number of columns is zero */
+ assert( pOp->opcode==OP_OpenEphemeral );
+ assert( aMem[pOp->p3].flags & MEM_Null );
+ aMem[pOp->p3].n = 0;
+ aMem[pOp->p3].z = "";
+ }
+ pCx = p->apCsr[pOp->p1];
+ if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
+ /* If the ephermeral table is already open and has no duplicates from
+ ** OP_OpenDup, then erase all existing content so that the table is
+ ** empty again, rather than creating a new table. */
+ assert( pCx->isEphemeral );
+ pCx->seqCount = 0;
+ pCx->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
+ }else{
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
+ if( pCx==0 ) goto no_mem;
+ pCx->isEphemeral = 1;
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
+ BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
+ vfsFlags);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
+ if( rc==SQLITE_OK ){
+ /* If a transient index is required, create it by calling
+ ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
+ ** opening it. If a transient table is required, just use the
+ ** automatically created table with root-page 1 (an BLOB_INTKEY table).
+ */
+ if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
+ assert( pOp->p4type==P4_KEYINFO );
+ rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
+ BTREE_BLOBKEY | pOp->p5);
+ if( rc==SQLITE_OK ){
+ assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
+ assert( pKeyInfo->db==db );
+ assert( pKeyInfo->enc==ENC(db) );
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
+ pKeyInfo, pCx->uc.pCursor);
+ }
+ pCx->isTable = 0;
+ }else{
+ pCx->pgnoRoot = SCHEMA_ROOT;
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
+ 0, pCx->uc.pCursor);
+ pCx->isTable = 1;
+ }
+ }
+ pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
+ if( rc ){
+ sqlite3BtreeClose(pCx->ub.pBtx);
+ }
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ pCx->nullRow = 1;
+ break;
+}
+
+/* Opcode: SorterOpen P1 P2 P3 P4 *
+**
+** This opcode works like OP_OpenEphemeral except that it opens
+** a transient index that is specifically designed to sort large
+** tables using an external merge-sort algorithm.
+**
+** If argument P3 is non-zero, then it indicates that the sorter may
+** assume that a stable sort considering the first P3 fields of each
+** key is sufficient to produce the required results.
+*/
+case OP_SorterOpen: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
+ if( pCx==0 ) goto no_mem;
+ pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pCx->pKeyInfo->db==db );
+ assert( pCx->pKeyInfo->enc==ENC(db) );
+ rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: SequenceTest P1 P2 * * *
+** Synopsis: if( cursor[P1].ctr++ ) pc = P2
+**
+** P1 is a sorter cursor. If the sequence counter is currently zero, jump
+** to P2. Regardless of whether or not the jump is taken, increment the
+** the sequence value.
+*/
+case OP_SequenceTest: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ if( (pC->seqCount++)==0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: OpenPseudo P1 P2 P3 * *
+** Synopsis: P3 columns in r[P2]
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. The content of that one row is the content of memory
+** register P2. In other words, cursor P1 becomes an alias for the
+** MEM_Blob content contained in register P2.
+**
+** A pseudo-table created by this opcode is used to hold a single
+** row output from the sorter so that the row can be decomposed into
+** individual columns using the OP_Column opcode. The OP_Column opcode
+** is the only cursor opcode that works with a pseudo-table.
+**
+** P3 is the number of fields in the records that will be stored by
+** the pseudo-table.
+*/
+case OP_OpenPseudo: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ assert( pOp->p3>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->seekResult = pOp->p2;
+ pCx->isTable = 1;
+ /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
+ ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
+ ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
+ ** which is a performance optimization */
+ pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
+ assert( pOp->p5==0 );
+ break;
+}
+
+/* Opcode: Close P1 * * * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
+ p->apCsr[pOp->p1] = 0;
+ break;
+}
+
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+/* Opcode: ColumnsUsed P1 * * P4 *
+**
+** This opcode (which only exists if SQLite was compiled with
+** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
+** table or index for cursor P1 are used. P4 is a 64-bit integer
+** (P4_INT64) in which the first 63 bits are one for each of the
+** first 63 columns of the table or index that are actually used
+** by the cursor. The high-order bit is set if any column after
+** the 64th is used.
+*/
+case OP_ColumnsUsed: {
+ VdbeCursor *pC;
+ pC = p->apCsr[pOp->p1];
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pC->maskUsed = *(u64*)pOp->p4.pI64;
+ break;
+}
+#endif
+
+/* Opcode: SeekGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as the key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than or equal to the key value. If there are no records
+** greater than or equal to the key and P2 is not zero, then jump to P2.
+**
+** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
+** opcode will either land on a record that exactly matches the key, or
+** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
+** this opcode must be followed by an IdxLE opcode with the same arguments.
+** The IdxGT opcode will be skipped if this opcode succeeds, but the
+** IdxGT opcode will be used on subsequent loop iterations. The
+** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
+** is an equality search.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
+*/
+/* Opcode: SeekGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than the key value. If there are no records greater than
+** the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than the key value. If there are no records less than
+** the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than or equal to the key value. If there are no records
+** less than or equal to the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
+** opcode will either land on a record that exactly matches the key, or
+** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
+** this opcode must be followed by an IdxLE opcode with the same arguments.
+** The IdxGE opcode will be skipped if this opcode succeeds, but the
+** IdxGE opcode will be used on subsequent loop iterations. The
+** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
+** is an equality search.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
+*/
+case OP_SeekLT: /* jump, in3, group */
+case OP_SeekLE: /* jump, in3, group */
+case OP_SeekGE: /* jump, in3, group */
+case OP_SeekGT: { /* jump, in3, group */
+ int res; /* Comparison result */
+ int oc; /* Opcode */
+ VdbeCursor *pC; /* The cursor to seek */
+ UnpackedRecord r; /* The key to seek for */
+ int nField; /* Number of columns or fields in the key */
+ i64 iKey; /* The rowid we are to seek to */
+ int eqOnly; /* Only interested in == results */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p2!=0 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( OP_SeekLE == OP_SeekLT+1 );
+ assert( OP_SeekGE == OP_SeekLT+2 );
+ assert( OP_SeekGT == OP_SeekLT+3 );
+ assert( pC->isOrdered );
+ assert( pC->uc.pCursor!=0 );
+ oc = pOp->opcode;
+ eqOnly = 0;
+ pC->nullRow = 0;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pC->isTable ){
+ u16 flags3, newType;
+ /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
+ assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
+ || CORRUPT_DB );
+
+ /* The input value in P3 might be of any type: integer, real, string,
+ ** blob, or NULL. But it needs to be an integer before we can do
+ ** the seek, so convert it. */
+ pIn3 = &aMem[pOp->p3];
+ flags3 = pIn3->flags;
+ if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn3, 0);
+ }
+ iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
+ newType = pIn3->flags; /* Record the type after applying numeric affinity */
+ pIn3->flags = flags3; /* But convert the type back to its original */
+
+ /* If the P3 value could not be converted into an integer without
+ ** loss of information, then special processing is required... */
+ if( (newType & (MEM_Int|MEM_IntReal))==0 ){
+ int c;
+ if( (newType & MEM_Real)==0 ){
+ if( (newType & MEM_Null) || oc>=OP_SeekGE ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }else{
+ rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ goto seek_not_found;
+ }
+ }
+ c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
+
+ /* If the approximation iKey is larger than the actual real search
+ ** term, substitute >= for > and < for <=. e.g. if the search term
+ ** is 4.9 and the integer approximation 5:
+ **
+ ** (x > 4.9) -> (x >= 5)
+ ** (x <= 4.9) -> (x < 5)
+ */
+ if( c>0 ){
+ assert( OP_SeekGE==(OP_SeekGT-1) );
+ assert( OP_SeekLT==(OP_SeekLE-1) );
+ assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
+ }
+
+ /* If the approximation iKey is smaller than the actual real search
+ ** term, substitute <= for < and > for >=. */
+ else if( c<0 ){
+ assert( OP_SeekLE==(OP_SeekLT+1) );
+ assert( OP_SeekGT==(OP_SeekGE+1) );
+ assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
+ }
+ }
+ rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
+ pC->movetoTarget = iKey; /* Used by OP_Delete */
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }else{
+ /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
+ ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
+ ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
+ ** with the same key.
+ */
+ if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
+ eqOnly = 1;
+ assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
+ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
+ assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
+ assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
+ assert( pOp[1].p1==pOp[0].p1 );
+ assert( pOp[1].p2==pOp[0].p2 );
+ assert( pOp[1].p3==pOp[0].p3 );
+ assert( pOp[1].p4.i==pOp[0].p4.i );
+ }
+
+ nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( nField>0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)nField;
+
+ /* The next line of code computes as follows, only faster:
+ ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
+ ** r.default_rc = -1;
+ ** }else{
+ ** r.default_rc = +1;
+ ** }
+ */
+ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
+ assert( oc!=OP_SeekGT || r.default_rc==-1 );
+ assert( oc!=OP_SeekLE || r.default_rc==-1 );
+ assert( oc!=OP_SeekGE || r.default_rc==+1 );
+ assert( oc!=OP_SeekLT || r.default_rc==+1 );
+
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
+#endif
+ r.eqSeen = 0;
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( eqOnly && r.eqSeen==0 ){
+ assert( res!=0 );
+ goto seek_not_found;
+ }
+ }
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
+ if( res<0 || (res==0 && oc==OP_SeekGT) ){
+ res = 0;
+ rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ res = 1;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }else{
+ res = 0;
+ }
+ }else{
+ assert( oc==OP_SeekLT || oc==OP_SeekLE );
+ if( res>0 || (res==0 && oc==OP_SeekLT) ){
+ res = 0;
+ rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ res = 1;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->uc.pCursor);
+ }
+ }
+seek_not_found:
+ assert( pOp->p2>0 );
+ VdbeBranchTaken(res!=0,2);
+ if( res ){
+ goto jump_to_p2;
+ }else if( eqOnly ){
+ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
+ pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
+ }
+ break;
+}
+
+
+/* Opcode: SeekScan P1 P2 * * *
+** Synopsis: Scan-ahead up to P1 rows
+**
+** This opcode is a prefix opcode to OP_SeekGE. In other words, this
+** opcode must be immediately followed by OP_SeekGE. This constraint is
+** checked by assert() statements.
+**
+** This opcode uses the P1 through P4 operands of the subsequent
+** OP_SeekGE. In the text that follows, the operands of the subsequent
+** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
+** the P1 and P2 operands of this opcode are also used, and are called
+** This.P1 and This.P2.
+**
+** This opcode helps to optimize IN operators on a multi-column index
+** where the IN operator is on the later terms of the index by avoiding
+** unnecessary seeks on the btree, substituting steps to the next row
+** of the b-tree instead. A correct answer is obtained if this opcode
+** is omitted or is a no-op.
+**
+** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
+** is the desired entry that we want the cursor SeekGE.P1 to be pointing
+** to. Call this SeekGE.P4/P5 row the "target".
+**
+** If the SeekGE.P1 cursor is not currently pointing to a valid row,
+** then this opcode is a no-op and control passes through into the OP_SeekGE.
+**
+** If the SeekGE.P1 cursor is pointing to a valid row, then that row
+** might be the target row, or it might be near and slightly before the
+** target row. This opcode attempts to position the cursor on the target
+** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
+** between 0 and This.P1 times.
+**
+** There are three possible outcomes from this opcode:<ol>
+**
+** <li> If after This.P1 steps, the cursor is still pointing to a place that
+** is earlier in the btree than the target row, then fall through
+** into the subsquence OP_SeekGE opcode.
+**
+** <li> If the cursor is successfully moved to the target row by 0 or more
+** sqlite3BtreeNext() calls, then jump to This.P2, which will land just
+** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
+**
+** <li> If the cursor ends up past the target row (indicating the the target
+** row does not exist in the btree) then jump to SeekOP.P2.
+** </ol>
+*/
+case OP_SeekScan: {
+ VdbeCursor *pC;
+ int res;
+ int nStep;
+ UnpackedRecord r;
+
+ assert( pOp[1].opcode==OP_SeekGE );
+
+ /* pOp->p2 points to the first instruction past the OP_IdxGT that
+ ** follows the OP_SeekGE. */
+ assert( pOp->p2>=(int)(pOp-aOp)+2 );
+ assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE );
+ testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
+ assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
+ assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
+ assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
+
+ assert( pOp->p1>0 );
+ pC = p->apCsr[pOp[1].p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( !pC->isTable );
+ if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... cursor not valid - fall through\n");
+ }
+#endif
+ break;
+ }
+ nStep = pOp->p1;
+ assert( nStep>=1 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp[1].p4.i;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp[1].p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
+ }
+ }
+#endif
+ res = 0; /* Not needed. Only used to silence a warning. */
+ while(1){
+ rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res>0 ){
+ seekscan_search_fail:
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... %d steps and then skip\n", pOp->p1 - nStep);
+ }
+#endif
+ VdbeBranchTaken(1,3);
+ pOp++;
+ goto jump_to_p2;
+ }
+ if( res==0 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... %d steps and then success\n", pOp->p1 - nStep);
+ }
+#endif
+ VdbeBranchTaken(2,3);
+ goto jump_to_p2;
+ break;
+ }
+ if( nStep<=0 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... fall through after %d steps\n", pOp->p1);
+ }
+#endif
+ VdbeBranchTaken(0,3);
+ break;
+ }
+ nStep--;
+ rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
+ if( rc ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ goto seekscan_search_fail;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }
+
+ break;
+}
+
+
+/* Opcode: SeekHit P1 P2 P3 * *
+** Synopsis: set P2<=seekHit<=P3
+**
+** Increase or decrease the seekHit value for cursor P1, if necessary,
+** so that it is no less than P2 and no greater than P3.
+**
+** The seekHit integer represents the maximum of terms in an index for which
+** there is known to be at least one match. If the seekHit value is smaller
+** than the total number of equality terms in an index lookup, then the
+** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
+** early, thus saving work. This is part of the IN-early-out optimization.
+**
+** P1 must be a valid b-tree cursor.
+*/
+case OP_SeekHit: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pOp->p3>=pOp->p2 );
+ if( pC->seekHit<pOp->p2 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
+ }
+#endif
+ pC->seekHit = pOp->p2;
+ }else if( pC->seekHit>pOp->p3 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
+ }
+#endif
+ pC->seekHit = pOp->p3;
+ }
+ break;
+}
+
+/* Opcode: IfNotOpen P1 P2 * * *
+** Synopsis: if( !csr[P1] ) goto P2
+**
+** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
+*/
+case OP_IfNotOpen: { /* jump */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
+ if( !p->apCsr[pOp->p1] ){
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ break;
+}
+
+/* Opcode: Found P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is a prefix of any entry in P1 then a jump is made to P2 and
+** P1 is left pointing at the matching entry.
+**
+** This operation leaves the cursor in a state where it can be
+** advanced in the forward direction. The Next instruction will work,
+** but not the Prev instruction.
+**
+** See also: NotFound, NoConflict, NotExists. SeekGe
+*/
+/* Opcode: NotFound P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is not the prefix of any entry in P1 then a jump is made to P2. If P1
+** does contain an entry whose prefix matches the P3/P4 record then control
+** falls through to the next instruction and P1 is left pointing at the
+** matching entry.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: Found, NotExists, NoConflict, IfNoHope
+*/
+/* Opcode: IfNoHope P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** Register P3 is the first of P4 registers that form an unpacked
+** record. Cursor P1 is an index btree. P2 is a jump destination.
+** In other words, the operands to this opcode are the same as the
+** operands to OP_NotFound and OP_IdxGT.
+**
+** This opcode is an optimization attempt only. If this opcode always
+** falls through, the correct answer is still obtained, but extra works
+** is performed.
+**
+** A value of N in the seekHit flag of cursor P1 means that there exists
+** a key P3:N that will match some record in the index. We want to know
+** if it is possible for a record P3:P4 to match some record in the
+** index. If it is not possible, we can skips some work. So if seekHit
+** is less than P4, attempt to find out if a match is possible by running
+** OP_NotFound.
+**
+** This opcode is used in IN clause processing for a multi-column key.
+** If an IN clause is attached to an element of the key other than the
+** left-most element, and if there are no matches on the most recent
+** seek over the whole key, then it might be that one of the key element
+** to the left is prohibiting a match, and hence there is "no hope" of
+** any match regardless of how many IN clause elements are checked.
+** In such a case, we abandon the IN clause search early, using this
+** opcode. The opcode name comes from the fact that the
+** jump is taken if there is "no hope" of achieving a match.
+**
+** See also: NotFound, SeekHit
+*/
+/* Opcode: NoConflict P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** contains any NULL value, jump immediately to P2. If all terms of the
+** record are not-NULL then a check is done to determine if any row in the
+** P1 index btree has a matching key prefix. If there are no matches, jump
+** immediately to P2. If there is a match, fall through and leave the P1
+** cursor pointing to the matching row.
+**
+** This opcode is similar to OP_NotFound with the exceptions that the
+** branch is always taken if any part of the search key input is NULL.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: NotFound, Found, NotExists
+*/
+case OP_IfNoHope: { /* jump, in3 */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit is %d\n", pC->seekHit);
+ }
+#endif
+ if( pC->seekHit>=pOp->p4.i ) break;
+ /* Fall through into OP_NotFound */
+ /* no break */ deliberate_fall_through
+}
+case OP_NoConflict: /* jump, in3 */
+case OP_NotFound: /* jump, in3 */
+case OP_Found: { /* jump, in3 */
+ int alreadyExists;
+ int ii;
+ VdbeCursor *pC;
+ UnpackedRecord *pIdxKey;
+ UnpackedRecord r;
+
+#ifdef SQLITE_TEST
+ if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
+#endif
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_INT32 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ r.aMem = &aMem[pOp->p3];
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->isTable==0 );
+ r.nField = (u16)pOp->p4.i;
+ if( r.nField>0 ){
+ /* Key values in an array of registers */
+ r.pKeyInfo = pC->pKeyInfo;
+ r.default_rc = 0;
+#ifdef SQLITE_DEBUG
+ for(ii=0; ii<r.nField; ii++){
+ assert( memIsValid(&r.aMem[ii]) );
+ assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
+ if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
+ }
+#endif
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
+ }else{
+ /* Composite key generated by OP_MakeRecord */
+ assert( r.aMem->flags & MEM_Blob );
+ assert( pOp->opcode!=OP_NoConflict );
+ rc = ExpandBlob(r.aMem);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ if( rc ) goto no_mem;
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
+ if( pIdxKey==0 ) goto no_mem;
+ sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
+ pIdxKey->default_rc = 0;
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
+ sqlite3DbFreeNN(db, pIdxKey);
+ }
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ alreadyExists = (pC->seekResult==0);
+ pC->nullRow = 1-alreadyExists;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pOp->opcode==OP_Found ){
+ VdbeBranchTaken(alreadyExists!=0,2);
+ if( alreadyExists ) goto jump_to_p2;
+ }else{
+ if( !alreadyExists ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }
+ if( pOp->opcode==OP_NoConflict ){
+ /* For the OP_NoConflict opcode, take the jump if any of the
+ ** input fields are NULL, since any key with a NULL will not
+ ** conflict */
+ for(ii=0; ii<r.nField; ii++){
+ if( r.aMem[ii].flags & MEM_Null ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }
+ }
+ }
+ VdbeBranchTaken(0,2);
+ if( pOp->opcode==OP_IfNoHope ){
+ pC->seekHit = pOp->p4.i;
+ }
+ }
+ break;
+}
+
+/* Opcode: SeekRowid P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
+**
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). If register P3 does not contain an integer or if P1 does not
+** contain a record with rowid P3 then jump immediately to P2.
+** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
+** a record with rowid P3 then
+** leave the cursor pointing at that record and fall through to the next
+** instruction.
+**
+** The OP_NotExists opcode performs the same operation, but with OP_NotExists
+** the P3 register must be guaranteed to contain an integer value. With this
+** opcode, register P3 might not contain an integer.
+**
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
+**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict, SeekRowid
+*/
+/* Opcode: NotExists P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
+**
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). P3 is an integer rowid. If P1 does not contain a record with
+** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
+** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
+** leave the cursor pointing at that record and fall through to the next
+** instruction.
+**
+** The OP_SeekRowid opcode performs the same operation but also allows the
+** P3 register to contain a non-integer value, in which case the jump is
+** always taken. This opcode requires that P3 always contain an integer.
+**
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
+**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict, SeekRowid
+*/
+case OP_SeekRowid: { /* jump, in3 */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ u64 iKey;
+
+ pIn3 = &aMem[pOp->p3];
+ testcase( pIn3->flags & MEM_Int );
+ testcase( pIn3->flags & MEM_IntReal );
+ testcase( pIn3->flags & MEM_Real );
+ testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
+ if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
+ /* If pIn3->u.i does not contain an integer, compute iKey as the
+ ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
+ ** into an integer without loss of information. Take care to avoid
+ ** changing the datatype of pIn3, however, as it is used by other
+ ** parts of the prepared statement. */
+ Mem x = pIn3[0];
+ applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
+ if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
+ iKey = x.u.i;
+ goto notExistsWithKey;
+ }
+ /* Fall through into OP_NotExists */
+ /* no break */ deliberate_fall_through
+case OP_NotExists: /* jump, in3 */
+ pIn3 = &aMem[pOp->p3];
+ assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ iKey = pIn3->u.i;
+notExistsWithKey:
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
+#endif
+ assert( pC->isTable );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr!=0 );
+ res = 0;
+ rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
+ assert( rc==SQLITE_OK || res==0 );
+ pC->movetoTarget = iKey; /* Used by OP_Delete */
+ pC->nullRow = 0;
+ pC->cacheStatus = CACHE_STALE;
+ pC->deferredMoveto = 0;
+ VdbeBranchTaken(res!=0,2);
+ pC->seekResult = res;
+ if( res!=0 ){
+ assert( rc==SQLITE_OK );
+ if( pOp->p2==0 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ goto jump_to_p2;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: Sequence P1 P2 * * *
+** Synopsis: r[P2]=cursor[P1].ctr++
+**
+** Find the next available sequence number for cursor P1.
+** Write the sequence number into register P2.
+** The sequence number on the cursor is incremented after this
+** instruction.
+*/
+case OP_Sequence: { /* out2 */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
+ break;
+}
+
+
+/* Opcode: NewRowid P1 P2 P3 * *
+** Synopsis: r[P2]=rowid
+**
+** Get a new integer record number (a.k.a "rowid") used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is written
+** written to register P2.
+**
+** If P3>0 then P3 is a register in the root frame of this VDBE that holds
+** the largest previously generated record number. No new record numbers are
+** allowed to be less than this value. When this value reaches its maximum,
+** an SQLITE_FULL error is generated. The P3 register is updated with the '
+** generated record number. This P3 mechanism is used to help implement the
+** AUTOINCREMENT feature.
+*/
+case OP_NewRowid: { /* out2 */
+ i64 v; /* The new rowid */
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */
+ int res; /* Result of an sqlite3BtreeLast() */
+ int cnt; /* Counter to limit the number of searches */
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
+ VdbeFrame *pFrame; /* Root frame of VDBE */
+#endif
+
+ v = 0;
+ res = 0;
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isTable );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ {
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 100 times.
+ */
+ assert( pC->isTable );
+
+#ifdef SQLITE_32BIT_ROWID
+# define MAX_ROWID 0x7fffffff
+#else
+ /* Some compilers complain about constants of the form 0x7fffffffffffffff.
+ ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
+ ** to provide the constant while making all compilers happy.
+ */
+# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
+#endif
+
+ if( !pC->useRandomRowid ){
+ rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res ){
+ v = 1; /* IMP: R-61914-48074 */
+ }else{
+ assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
+ v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ if( v>=MAX_ROWID ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++; /* IMP: R-29538-34987 */
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( pOp->p3 ){
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3>0 );
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=pFrame->nMem );
+ pMem = &pFrame->aMem[pOp->p3];
+ }else{
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pMem = &aMem[pOp->p3];
+ memAboutToChange(p, pMem);
+ }
+ assert( memIsValid(pMem) );
+
+ REGISTER_TRACE(pOp->p3, pMem);
+ sqlite3VdbeMemIntegerify(pMem);
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ rc = SQLITE_FULL; /* IMP: R-17817-00630 */
+ goto abort_due_to_error;
+ }
+ if( v<pMem->u.i+1 ){
+ v = pMem->u.i + 1;
+ }
+ pMem->u.i = v;
+ }
+#endif
+ if( pC->useRandomRowid ){
+ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
+ ** largest possible integer (9223372036854775807) then the database
+ ** engine starts picking positive candidate ROWIDs at random until
+ ** it finds one that is not previously used. */
+ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
+ ** an AUTOINCREMENT table. */
+ cnt = 0;
+ do{
+ sqlite3_randomness(sizeof(v), &v);
+ v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
+ }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
+ 0, &res))==SQLITE_OK)
+ && (res==0)
+ && (++cnt<100));
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ rc = SQLITE_FULL; /* IMP: R-38219-53002 */
+ goto abort_due_to_error;
+ }
+ assert( v>0 ); /* EV: R-40812-03570 */
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: Insert P1 P2 P3 P4 P5
+** Synopsis: intkey=r[P3] data=r[P2]
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value MEM_Blob stored in register
+** number P2. The key is stored in register P3. The key must
+** be a MEM_Int.
+**
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
+** then rowid is stored for subsequent return by the
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
+** run faster by avoiding an unnecessary seek on cursor P1. However,
+** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
+** seeks on the cursor or if the most recent seek used a key equal to P3.
+**
+** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
+** UPDATE operation. Otherwise (if the flag is clear) then this opcode
+** is part of an INSERT operation. The difference is only important to
+** the update hook.
+**
+** Parameter P4 may point to a Table structure, or may be NULL. If it is
+** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
+** following a successful insert.
+**
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
+** allocated, then ownership of P2 is transferred to the pseudo-cursor
+** and register P2 becomes ephemeral. If the cursor is changed, the
+** value of register P2 will then change. Make sure this does not
+** cause any problems.)
+**
+** This instruction only works on tables. The equivalent instruction
+** for indices is OP_IdxInsert.
+*/
+case OP_Insert: {
+ Mem *pData; /* MEM cell holding data for the record to be inserted */
+ Mem *pKey; /* MEM cell holding key for the record */
+ VdbeCursor *pC; /* Cursor to table into which insert is written */
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
+ const char *zDb; /* database name - used by the update hook */
+ Table *pTab; /* Table structure - used by update and pre-update hooks */
+ BtreePayload x; /* Payload to be inserted */
+
+ pData = &aMem[pOp->p2];
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( memIsValid(pData) );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->uc.pCursor!=0 );
+ assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
+ assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
+ REGISTER_TRACE(pOp->p2, pData);
+ sqlite3VdbeIncrWriteCounter(p, pC);
+
+ pKey = &aMem[pOp->p3];
+ assert( pKey->flags & MEM_Int );
+ assert( memIsValid(pKey) );
+ REGISTER_TRACE(pOp->p3, pKey);
+ x.nKey = pKey->u.i;
+
+ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
+ assert( pC->iDb>=0 );
+ zDb = db->aDb[pC->iDb].zDbSName;
+ pTab = pOp->p4.pTab;
+ assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
+ }else{
+ pTab = 0;
+ zDb = 0;
+ }
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ /* Invoke the pre-update hook, if any */
+ if( pTab ){
+ if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
+ sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
+ }
+ if( db->xUpdateCallback==0 || pTab->aCol==0 ){
+ /* Prevent post-update hook from running in cases when it should not */
+ pTab = 0;
+ }
+ }
+ if( pOp->p5 & OPFLAG_ISNOOP ) break;
+#endif
+
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
+ assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
+ x.pData = pData->z;
+ x.nData = pData->n;
+ seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
+ if( pData->flags & MEM_Zero ){
+ x.nZero = pData->u.nZero;
+ }else{
+ x.nZero = 0;
+ }
+ x.pKey = 0;
+ rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
+ (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
+ seekResult
+ );
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc ) goto abort_due_to_error;
+ if( pTab ){
+ assert( db->xUpdateCallback!=0 );
+ assert( pTab->aCol!=0 );
+ db->xUpdateCallback(db->pUpdateArg,
+ (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
+ zDb, pTab->zName, x.nKey);
+ }
+ break;
+}
+
+/* Opcode: RowCell P1 P2 P3 * *
+**
+** P1 and P2 are both open cursors. Both must be opened on the same type
+** of table - intkey or index. This opcode is used as part of copying
+** the current row from P2 into P1. If the cursors are opened on intkey
+** tables, register P3 contains the rowid to use with the new record in
+** P1. If they are opened on index tables, P3 is not used.
+**
+** This opcode must be followed by either an Insert or InsertIdx opcode
+** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
+*/
+case OP_RowCell: {
+ VdbeCursor *pDest; /* Cursor to write to */
+ VdbeCursor *pSrc; /* Cursor to read from */
+ i64 iKey; /* Rowid value to insert with */
+ assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
+ assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
+ assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
+ assert( pOp[1].p5 & OPFLAG_PREFORMAT );
+ pDest = p->apCsr[pOp->p1];
+ pSrc = p->apCsr[pOp->p2];
+ iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
+ rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ break;
+};
+
+/* Opcode: Delete P1 P2 P3 P4 P5
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
+** the cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. As a result, in this case
+** it is ok to delete a record from within a Next loop. If
+** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
+** left in an undefined state.
+**
+** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
+** delete one of several associated with deleting a table row and all its
+** associated index entries. Exactly one of those deletes is the "primary"
+** delete. The others are all on OPFLAG_FORDELETE cursors or else are
+** marked with the AUXDELETE flag.
+**
+** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
+** change count is incremented (otherwise not).
+**
+** P1 must not be pseudo-table. It has to be a real table with
+** multiple rows.
+**
+** If P4 is not NULL then it points to a Table object. In this case either
+** the update or pre-update hook, or both, may be invoked. The P1 cursor must
+** have been positioned using OP_NotFound prior to invoking this opcode in
+** this case. Specifically, if one is configured, the pre-update hook is
+** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
+** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
+**
+** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
+** of the memory cell that contains the value that the rowid of the row will
+** be set to by the update.
+*/
+case OP_Delete: {
+ VdbeCursor *pC;
+ const char *zDb;
+ Table *pTab;
+ int opflags;
+
+ opflags = pOp->p2;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->deferredMoveto==0 );
+ sqlite3VdbeIncrWriteCounter(p, pC);
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p4type==P4_TABLE
+ && HasRowid(pOp->p4.pTab)
+ && pOp->p5==0
+ && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
+ ){
+ /* If p5 is zero, the seek operation that positioned the cursor prior to
+ ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
+ ** the row that is being deleted */
+ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ assert( CORRUPT_DB || pC->movetoTarget==iKey );
+ }
+#endif
+
+ /* If the update-hook or pre-update-hook will be invoked, set zDb to
+ ** the name of the db to pass as to it. Also set local pTab to a copy
+ ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
+ ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
+ ** VdbeCursor.movetoTarget to the current rowid. */
+ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
+ assert( pC->iDb>=0 );
+ assert( pOp->p4.pTab!=0 );
+ zDb = db->aDb[pC->iDb].zDbSName;
+ pTab = pOp->p4.pTab;
+ if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
+ pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ }
+ }else{
+ zDb = 0;
+ pTab = 0;
+ }
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ /* Invoke the pre-update-hook if required. */
+ assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
+ if( db->xPreUpdateCallback && pTab ){
+ assert( !(opflags & OPFLAG_ISUPDATE)
+ || HasRowid(pTab)==0
+ || (aMem[pOp->p3].flags & MEM_Int)
+ );
+ sqlite3VdbePreUpdateHook(p, pC,
+ (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
+ zDb, pTab, pC->movetoTarget,
+ pOp->p3, -1
+ );
+ }
+ if( opflags & OPFLAG_ISNOOP ) break;
+#endif
+
+ /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
+ assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
+ assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
+ assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
+
+#ifdef SQLITE_DEBUG
+ if( p->pFrame==0 ){
+ if( pC->isEphemeral==0
+ && (pOp->p5 & OPFLAG_AUXDELETE)==0
+ && (pC->wrFlag & OPFLAG_FORDELETE)==0
+ ){
+ nExtraDelete++;
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ){
+ nExtraDelete--;
+ }
+ }
+#endif
+
+ rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
+ pC->cacheStatus = CACHE_STALE;
+ pC->seekResult = 0;
+ if( rc ) goto abort_due_to_error;
+
+ /* Invoke the update-hook if required. */
+ if( opflags & OPFLAG_NCHANGE ){
+ p->nChange++;
+ if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
+ pC->movetoTarget);
+ assert( pC->iDb>=0 );
+ }
+ }
+
+ break;
+}
+/* Opcode: ResetCount * * * * *
+**
+** The value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes()).
+** Then the VMs internal change counter resets to 0.
+** This is used by trigger programs.
+*/
+case OP_ResetCount: {
+ sqlite3VdbeSetChanges(db, p->nChange);
+ p->nChange = 0;
+ break;
+}
+
+/* Opcode: SorterCompare P1 P2 P3 P4
+** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
+**
+** P1 is a sorter cursor. This instruction compares a prefix of the
+** record blob in register P3 against a prefix of the entry that
+** the sorter cursor currently points to. Only the first P4 fields
+** of r[P3] and the sorter record are compared.
+**
+** If either P3 or the sorter contains a NULL in one of their significant
+** fields (not counting the P4 fields at the end which are ignored) then
+** the comparison is assumed to be equal.
+**
+** Fall through to next instruction if the two records compare equal to
+** each other. Jump to P2 if they are different.
+*/
+case OP_SorterCompare: {
+ VdbeCursor *pC;
+ int res;
+ int nKeyCol;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ assert( pOp->p4type==P4_INT32 );
+ pIn3 = &aMem[pOp->p3];
+ nKeyCol = pOp->p4.i;
+ res = 0;
+ rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
+ VdbeBranchTaken(res!=0,2);
+ if( rc ) goto abort_due_to_error;
+ if( res ) goto jump_to_p2;
+ break;
+};
+
+/* Opcode: SorterData P1 P2 P3 * *
+** Synopsis: r[P2]=data
+**
+** Write into register P2 the current sorter data for sorter cursor P1.
+** Then clear the column header cache on cursor P3.
+**
+** This opcode is normally use to move a record out of the sorter and into
+** a register that is the source for a pseudo-table cursor created using
+** OpenPseudo. That pseudo-table cursor is the one that is identified by
+** parameter P3. Clearing the P3 column cache as part of this opcode saves
+** us from having to issue a separate NullRow instruction to clear that cache.
+*/
+case OP_SorterData: {
+ VdbeCursor *pC;
+
+ pOut = &aMem[pOp->p2];
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ rc = sqlite3VdbeSorterRowkey(pC, pOut);
+ assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ if( rc ) goto abort_due_to_error;
+ p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
+ break;
+}
+
+/* Opcode: RowData P1 P2 P3 * *
+** Synopsis: r[P2]=data
+**
+** Write into register P2 the complete row content for the row at
+** which cursor P1 is currently pointing.
+** There is no interpretation of the data.
+** It is just copied onto the P2 register exactly as
+** it is found in the database file.
+**
+** If cursor P1 is an index, then the content is the key of the row.
+** If cursor P2 is a table, then the content extracted is the data.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+**
+** If P3!=0 then this opcode is allowed to make an ephemeral pointer
+** into the database page. That means that the content of the output
+** register will be invalidated as soon as the cursor moves - including
+** moves caused by other cursors that "save" the current cursors
+** position in order that they can write to the same table. If P3==0
+** then a copy of the data is made into memory. P3!=0 is faster, but
+** P3==0 is safer.
+**
+** If P3!=0 then the content of the P2 register is unsuitable for use
+** in OP_Result and any OP_Result will invalidate the P2 register content.
+** The P2 register content is invalidated by opcodes like OP_Function or
+** by any use of another cursor pointing to the same table.
+*/
+case OP_RowData: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ u32 n;
+
+ pOut = out2Prerelease(p, pOp);
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( isSorter(pC)==0 );
+ assert( pC->nullRow==0 );
+ assert( pC->uc.pCursor!=0 );
+ pCrsr = pC->uc.pCursor;
+
+ /* The OP_RowData opcodes always follow OP_NotExists or
+ ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
+ ** that might invalidate the cursor.
+ ** If this where not the case, on of the following assert()s
+ ** would fail. Should this ever change (because of changes in the code
+ ** generator) then the fix would be to insert a call to
+ ** sqlite3VdbeCursorMoveto().
+ */
+ assert( pC->deferredMoveto==0 );
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+
+ n = sqlite3BtreePayloadSize(pCrsr);
+ if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ testcase( n==0 );
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
+ if( rc ) goto abort_due_to_error;
+ if( !pOp->p3 ) Deephemeralize(pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: Rowid P1 P2 * * *
+** Synopsis: r[P2]=PX rowid of P1
+**
+** Store in register P2 an integer which is the key of the table entry that
+** P1 is currently point to.
+**
+** P1 can be either an ordinary table or a virtual table. There used to
+** be a separate OP_VRowid opcode for use with virtual tables, but this
+** one opcode now works for both table types.
+*/
+case OP_Rowid: { /* out2 */
+ VdbeCursor *pC;
+ i64 v;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }else if( pC->deferredMoveto ){
+ v = pC->movetoTarget;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( pC->eCurType==CURTYPE_VTAB ){
+ assert( pC->uc.pVCur!=0 );
+ pVtab = pC->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xRowid );
+ rc = pModule->xRowid(pC->uc.pVCur, &v);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ rc = sqlite3VdbeCursorRestore(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }
+ v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: NullRow P1 * * * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always
+** write a NULL.
+**
+** If cursor P1 is not previously opened, open it now to a special
+** pseudo-cursor that always returns NULL for every column.
+*/
+case OP_NullRow: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC==0 ){
+ /* If the cursor is not already open, create a special kind of
+ ** pseudo-cursor that always gives null rows. */
+ pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
+ if( pC==0 ) goto no_mem;
+ pC->seekResult = 0;
+ pC->isTable = 1;
+ pC->noReuse = 1;
+ pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
+ }
+ pC->nullRow = 1;
+ pC->cacheStatus = CACHE_STALE;
+ if( pC->eCurType==CURTYPE_BTREE ){
+ assert( pC->uc.pCursor!=0 );
+ sqlite3BtreeClearCursor(pC->uc.pCursor);
+ }
+#ifdef SQLITE_DEBUG
+ if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
+#endif
+ break;
+}
+
+/* Opcode: SeekEnd P1 * * * *
+**
+** Position cursor P1 at the end of the btree for the purpose of
+** appending a new entry onto the btree.
+**
+** It is assumed that the cursor is used only for appending and so
+** if the cursor is valid, then the cursor must already be pointing
+** at the end of the btree and so no changes are made to
+** the cursor.
+*/
+/* Opcode: Last P1 P2 * * *
+**
+** The next use of the Rowid or Column or Prev instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+*/
+case OP_SeekEnd:
+case OP_Last: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ res = 0;
+ assert( pCrsr!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ if( pOp->opcode==OP_SeekEnd ){
+ assert( pOp->p2==0 );
+ pC->seekResult = -1;
+ if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
+ break;
+ }
+ }
+ rc = sqlite3BtreeLast(pCrsr, &res);
+ pC->nullRow = (u8)res;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( rc ) goto abort_due_to_error;
+ if( pOp->p2>0 ){
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IfSmaller P1 P2 P3 * *
+**
+** Estimate the number of rows in the table P1. Jump to P2 if that
+** estimate is less than approximately 2**(0.1*P3).
+*/
+case OP_IfSmaller: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ i64 sz;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ sz = sqlite3BtreeRowCountEst(pCrsr);
+ if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
+ }
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: SorterSort P1 P2 * * *
+**
+** After all records have been inserted into the Sorter object
+** identified by P1, invoke this opcode to actually do the sorting.
+** Jump to P2 if there are no records to be sorted.
+**
+** This opcode is an alias for OP_Sort and OP_Rewind that is used
+** for Sorter objects.
+*/
+/* Opcode: Sort P1 P2 * * *
+**
+** This opcode does exactly the same thing as OP_Rewind except that
+** it increments an undocumented global variable used for testing.
+**
+** Sorting is accomplished by writing records into a sorting index,
+** then rewinding that index and playing it back from beginning to
+** end. We use the OP_Sort opcode instead of OP_Rewind to do the
+** rewinding so that the global variable will be incremented and
+** regression tests can determine whether or not the optimizer is
+** correctly optimizing out sorts.
+*/
+case OP_SorterSort: /* jump */
+case OP_Sort: { /* jump */
+#ifdef SQLITE_TEST
+ sqlite3_sort_count++;
+ sqlite3_search_count--;
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_SORT]++;
+ /* Fall through into OP_Rewind */
+ /* no break */ deliberate_fall_through
+}
+/* Opcode: Rewind P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty, jump immediately to P2.
+** If the table or index is not empty, fall through to the following
+** instruction.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+*/
+case OP_Rewind: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
+ res = 1;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Rewind;
+#endif
+ if( isSorter(pC) ){
+ rc = sqlite3VdbeSorterRewind(pC, &res);
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ if( rc ) goto abort_due_to_error;
+ pC->nullRow = (u8)res;
+ assert( pOp->p2>0 && pOp->p2<p->nOp );
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: Next P1 P2 P3 * P5
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** The Next opcode is only valid following an SeekGT, SeekGE, or
+** OP_Rewind opcode used to position the cursor. Next is not allowed
+** to follow SeekLT, SeekLE, or OP_Last.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
+** been opened prior to this opcode or the program will segfault.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 P3 * P5
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+**
+**
+** The Prev opcode is only valid following an SeekLT, SeekLE, or
+** OP_Last opcode used to position the cursor. Prev is not allowed
+** to follow SeekGT, SeekGE, or OP_Rewind.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
+** not open then the behavior is undefined.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+*/
+/* Opcode: SorterNext P1 P2 * * P5
+**
+** This opcode works just like OP_Next except that P1 must be a
+** sorter object for which the OP_SorterSort opcode has been
+** invoked. This opcode advances the cursor to the next sorted
+** record, or jumps to P2 if there are no more sorted records.
+*/
+case OP_SorterNext: { /* jump */
+ VdbeCursor *pC;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ rc = sqlite3VdbeSorterNext(db, pC);
+ goto next_tail;
+
+case OP_Prev: /* jump */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5<ArraySize(p->aCounter) );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
+ || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
+ || pC->seekOp==OP_NullRow);
+ rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
+ goto next_tail;
+
+case OP_Next: /* jump */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5<ArraySize(p->aCounter) );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
+ || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
+ || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
+ || pC->seekOp==OP_IfNoHope);
+ rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
+
+next_tail:
+ pC->cacheStatus = CACHE_STALE;
+ VdbeBranchTaken(rc==SQLITE_OK,2);
+ if( rc==SQLITE_OK ){
+ pC->nullRow = 0;
+ p->aCounter[pOp->p5]++;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ if( rc!=SQLITE_DONE ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ pC->nullRow = 1;
+ goto check_for_interrupt;
+}
+
+/* Opcode: IdxInsert P1 P2 P3 P4 P5
+** Synopsis: key=r[P2]
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the index P1. Data for the entry is nil.
+**
+** If P4 is not zero, then it is the number of values in the unpacked
+** key of reg(P2). In that case, P3 is the index of the first register
+** for the unpacked key. The availability of the unpacked key can sometimes
+** be an optimization.
+**
+** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
+** that this insert is likely to be an append.
+**
+** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
+** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
+** then the change counter is unchanged.
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
+** run faster by avoiding an unnecessary seek on cursor P1. However,
+** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
+** seeks on the cursor or if the most recent seek used a key equivalent
+** to P2.
+**
+** This instruction only works for indices. The equivalent instruction
+** for tables is OP_Insert.
+*/
+case OP_IdxInsert: { /* in2 */
+ VdbeCursor *pC;
+ BtreePayload x;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ assert( pC!=0 );
+ assert( !isSorter(pC) );
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc ) goto abort_due_to_error;
+ x.nKey = pIn2->n;
+ x.pKey = pIn2->z;
+ x.aMem = aMem + pOp->p3;
+ x.nMem = (u16)pOp->p4.i;
+ rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
+ (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
+ );
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ if( rc) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: SorterInsert P1 P2 * * *
+** Synopsis: key=r[P2]
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the sorter P1. Data for the entry is nil.
+*/
+case OP_SorterInsert: { /* in2 */
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ assert( pC!=0 );
+ assert( isSorter(pC) );
+ pIn2 = &aMem[pOp->p2];
+ assert( pIn2->flags & MEM_Blob );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3VdbeSorterWrite(pC, pIn2);
+ if( rc) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: IdxDelete P1 P2 P3 * P5
+** Synopsis: key=r[P2@P3]
+**
+** The content of P3 registers starting at register P2 form
+** an unpacked index key. This opcode removes that entry from the
+** index opened by cursor P1.
+**
+** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
+** if no matching index entry is found. This happens when running
+** an UPDATE or DELETE statement and the index entry to be updated
+** or deleted is not found. For some uses of IdxDelete
+** (example: the EXCEPT operator) it does not matter that no matching
+** entry is found. For those cases, P5 is zero. Also, do not raise
+** this (self-correcting and non-critical) error if in writable_schema mode.
+*/
+case OP_IdxDelete: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p3>0 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr!=0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p3;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp->p2];
+ rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
+ if( rc ) goto abort_due_to_error;
+ }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
+ rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
+ goto abort_due_to_error;
+ }
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ pC->seekResult = 0;
+ break;
+}
+
+/* Opcode: DeferredSeek P1 * P3 P4 *
+** Synopsis: Move P3 to P1.rowid if needed
+**
+** P1 is an open index cursor and P3 is a cursor on the corresponding
+** table. This opcode does a deferred seek of the P3 table cursor
+** to the row that corresponds to the current row of P1.
+**
+** This is a deferred seek. Nothing actually happens until
+** the cursor is used to read a record. That way, if no reads
+** occur, no unnecessary I/O happens.
+**
+** P4 may be an array of integers (type P4_INTARRAY) containing
+** one entry for each column in the P3 table. If array entry a(i)
+** is non-zero, then reading column a(i)-1 from cursor P3 is
+** equivalent to performing the deferred seek and then reading column i
+** from P1. This information is stored in P3 and used to redirect
+** reads against P3 over to P1, thus possibly avoiding the need to
+** seek and read cursor P3.
+*/
+/* Opcode: IdxRowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
+**
+** Write into register P2 an integer which is the last entry in the record at
+** the end of the index key pointed to by cursor P1. This integer should be
+** the rowid of the table entry to which this index entry points.
+**
+** See also: Rowid, MakeRecord.
+*/
+case OP_DeferredSeek:
+case OP_IdxRowid: { /* out2 */
+ VdbeCursor *pC; /* The P1 index cursor */
+ VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
+ i64 rowid; /* Rowid that P1 current points to */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->isTable==0 || IsNullCursor(pC) );
+ assert( pC->deferredMoveto==0 );
+ assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
+
+ /* The IdxRowid and Seek opcodes are combined because of the commonality
+ ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
+ rc = sqlite3VdbeCursorRestore(pC);
+
+ /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
+ ** out from under the cursor. That will never happens for an IdxRowid
+ ** or Seek opcode */
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
+
+ if( !pC->nullRow ){
+ rowid = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( pOp->opcode==OP_DeferredSeek ){
+ assert( pOp->p3>=0 && pOp->p3<p->nCursor );
+ pTabCur = p->apCsr[pOp->p3];
+ assert( pTabCur!=0 );
+ assert( pTabCur->eCurType==CURTYPE_BTREE );
+ assert( pTabCur->uc.pCursor!=0 );
+ assert( pTabCur->isTable );
+ pTabCur->nullRow = 0;
+ pTabCur->movetoTarget = rowid;
+ pTabCur->deferredMoveto = 1;
+ pTabCur->cacheStatus = CACHE_STALE;
+ assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
+ assert( !pTabCur->isEphemeral );
+ pTabCur->ub.aAltMap = pOp->p4.ai;
+ assert( !pC->isEphemeral );
+ pTabCur->pAltCursor = pC;
+ }else{
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = rowid;
+ }
+ }else{
+ assert( pOp->opcode==OP_IdxRowid );
+ sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
+ }
+ break;
+}
+
+/* Opcode: FinishSeek P1 * * * *
+**
+** If cursor P1 was previously moved via OP_DeferredSeek, complete that
+** seek operation now, without further delay. If the cursor seek has
+** already occurred, this instruction is a no-op.
+*/
+case OP_FinishSeek: {
+ VdbeCursor *pC; /* The P1 index cursor */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC->deferredMoveto ){
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: IdxGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
+**
+** If the P1 index entry is greater than or equal to the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
+**
+** If the P1 index entry is greater than the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
+**
+** If the P1 index entry is less than the key value then jump to P2.
+** Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
+**
+** If the P1 index entry is less than or equal to the key value then jump
+** to P2. Otherwise fall through to the next instruction.
+*/
+case OP_IdxLE: /* jump */
+case OP_IdxGT: /* jump */
+case OP_IdxLT: /* jump */
+case OP_IdxGE: { /* jump */
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isOrdered );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0);
+ assert( pC->deferredMoveto==0 );
+ assert( pOp->p4type==P4_INT32 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ if( pOp->opcode<OP_IdxLT ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
+ r.default_rc = -1;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
+ r.default_rc = 0;
+ }
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
+ }
+ }
+#endif
+
+ /* Inlined version of sqlite3VdbeIdxKeyCompare() */
+ {
+ i64 nCellKey = 0;
+ BtCursor *pCur;
+ Mem m;
+
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCur = pC->uc.pCursor;
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ /* nCellKey will always be between 0 and 0xffffffff because of the way
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ) goto abort_due_to_error;
+ res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
+ sqlite3VdbeMemReleaseMalloc(&m);
+ }
+ /* End of inlined sqlite3VdbeIdxKeyCompare() */
+
+ assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
+ if( (pOp->opcode&1)==(OP_IdxLT&1) ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
+ res = -res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
+ res++;
+ }
+ VdbeBranchTaken(res>0,2);
+ assert( rc==SQLITE_OK );
+ if( res>0 ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 P3 * *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P3==0. If
+** P3==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If AUTOVACUUM is enabled then it is possible that another root page
+** might be moved into the newly deleted root page in order to keep all
+** root pages contiguous at the beginning of the database. The former
+** value of the root page that moved - its value before the move occurred -
+** is stored in register P2. If no page movement was required (because the
+** table being dropped was already the last one in the database) then a
+** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
+** is stored in register P2.
+**
+** This opcode throws an error if there are any active reader VMs when
+** it is invoked. This is done to avoid the difficulty associated with
+** updating existing cursors when a root page is moved in an AUTOVACUUM
+** database. This error is thrown even if the database is not an AUTOVACUUM
+** db in order to avoid introducing an incompatibility between autovacuum
+** and non-autovacuum modes.
+**
+** See also: Clear
+*/
+case OP_Destroy: { /* out2 */
+ int iMoved;
+ int iDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ assert( p->readOnly==0 );
+ assert( pOp->p1>1 );
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Null;
+ if( db->nVdbeRead > db->nVDestroy+1 ){
+ rc = SQLITE_LOCKED;
+ p->errorAction = OE_Abort;
+ goto abort_due_to_error;
+ }else{
+ iDb = pOp->p3;
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ iMoved = 0; /* Not needed. Only to silence a warning. */
+ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
+ pOut->flags = MEM_Int;
+ pOut->u.i = iMoved;
+ if( rc ) goto abort_due_to_error;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( iMoved!=0 ){
+ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
+ /* All OP_Destroy operations occur on the same btree */
+ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
+ resetSchemaOnFault = iDb+1;
+ }
+#endif
+ }
+ break;
+}
+
+/* Opcode: Clear P1 P2 P3
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If the P3 value is non-zero, then the row change count is incremented
+** by the number of rows in the table being cleared. If P3 is greater
+** than zero, then the value stored in register P3 is also incremented
+** by the number of rows in the table being cleared.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ i64 nChange;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ nChange = 0;
+ assert( p->readOnly==0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p2) );
+ rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
+ if( pOp->p3 ){
+ p->nChange += nChange;
+ if( pOp->p3>0 ){
+ assert( memIsValid(&aMem[pOp->p3]) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ aMem[pOp->p3].u.i += nChange;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ResetSorter P1 * * * *
+**
+** Delete all contents from the ephemeral table or sorter
+** that is open on cursor P1.
+**
+** This opcode only works for cursors used for sorting and
+** opened with OP_OpenEphemeral or OP_SorterOpen.
+*/
+case OP_ResetSorter: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( isSorter(pC) ){
+ sqlite3VdbeSorterReset(db, pC->uc.pSorter);
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->isEphemeral );
+ rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: CreateBtree P1 P2 P3 * *
+** Synopsis: r[P2]=root iDb=P1 flags=P3
+**
+** Allocate a new b-tree in the main database file if P1==0 or in the
+** TEMP database file if P1==1 or in an attached database if
+** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
+** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
+** The root page number of the new b-tree is stored in register P2.
+*/
+case OP_CreateBtree: { /* out2 */
+ Pgno pgno;
+ Db *pDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ pOut = out2Prerelease(p, pOp);
+ pgno = 0;
+ assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
+ if( rc ) goto abort_due_to_error;
+ pOut->u.i = pgno;
+ break;
+}
+
+/* Opcode: SqlExec * * * P4 *
+**
+** Run the SQL statement or statements specified in the P4 string.
+*/
+case OP_SqlExec: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ db->nSqlExec++;
+ rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
+ db->nSqlExec--;
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ParseSchema P1 * * P4 *
+**
+** Read and parse all entries from the schema table of database P1
+** that match the WHERE clause P4. If P4 is a NULL pointer, then the
+** entire schema for P1 is reparsed.
+**
+** This opcode invokes the parser to create a new virtual machine,
+** then runs the new virtual machine. It is thus a re-entrant opcode.
+*/
+case OP_ParseSchema: {
+ int iDb;
+ const char *zSchema;
+ char *zSql;
+ InitData initData;
+
+ /* Any prepared statement that invokes this opcode will hold mutexes
+ ** on every btree. This is a prerequisite for invoking
+ ** sqlite3InitCallback().
+ */
+#ifdef SQLITE_DEBUG
+ for(iDb=0; iDb<db->nDb; iDb++){
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+ }
+#endif
+
+ iDb = pOp->p1;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
+ || db->mallocFailed
+ || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( pOp->p4.z==0 ){
+ sqlite3SchemaClear(db->aDb[iDb].pSchema);
+ db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
+ rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ p->expired = 0;
+ }else
+#endif
+ {
+ zSchema = LEGACY_SCHEMA_TABLE;
+ initData.db = db;
+ initData.iDb = iDb;
+ initData.pzErrMsg = &p->zErrMsg;
+ initData.mInitFlags = 0;
+ initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
+ zSql = sqlite3MPrintf(db,
+ "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
+ db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ initData.rc = SQLITE_OK;
+ initData.nInitRow = 0;
+ assert( !db->mallocFailed );
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ if( rc==SQLITE_OK && initData.nInitRow==0 ){
+ /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
+ ** at least one SQL statement. Any less than that indicates that
+ ** the sqlite_schema table is corrupt. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ sqlite3DbFreeNN(db, zSql);
+ db->init.busy = 0;
+ }
+ }
+ if( rc ){
+ sqlite3ResetAllSchemasOfConnection(db);
+ if( rc==SQLITE_NOMEM ){
+ goto no_mem;
+ }
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+#if !defined(SQLITE_OMIT_ANALYZE)
+/* Opcode: LoadAnalysis P1 * * * *
+**
+** Read the sqlite_stat1 table for database P1 and load the content
+** of that table into the internal index hash table. This will cause
+** the analysis to be used when preparing all subsequent queries.
+*/
+case OP_LoadAnalysis: {
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = sqlite3AnalysisLoad(db, pOp->p1);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* !defined(SQLITE_OMIT_ANALYZE) */
+
+/* Opcode: DropTable P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the table named P4 in database P1. This is called after a table
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTable: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropIndex P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the index named P4 in database P1. This is called after an index
+** is dropped from disk (using the Destroy opcode)
+** in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropIndex: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropTrigger P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the trigger named P4 in database P1. This is called after a trigger
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTrigger: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/* Opcode: IntegrityCk P1 P2 P3 P4 P5
+**
+** Do an analysis of the currently open database. Store in
+** register P1 the text of an error message describing any problems.
+** If no problems are found, store a NULL in register P1.
+**
+** The register P3 contains one less than the maximum number of allowed errors.
+** At most reg(P3) errors will be reported.
+** In other words, the analysis stops as soon as reg(P1) errors are
+** seen. Reg(P1) is updated with the number of errors remaining.
+**
+** The root page numbers of all tables in the database are integers
+** stored in P4_INTARRAY argument.
+**
+** If P5 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used to implement the integrity_check pragma.
+*/
+case OP_IntegrityCk: {
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+
+ assert( p->bIsReader );
+ nRoot = pOp->p2;
+ aRoot = pOp->p4.ai;
+ assert( nRoot>0 );
+ assert( aRoot[0]==(Pgno)nRoot );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pnErr = &aMem[pOp->p3];
+ assert( (pnErr->flags & MEM_Int)!=0 );
+ assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
+ pIn1 = &aMem[pOp->p1];
+ assert( pOp->p5<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p5) );
+ z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
+ (int)pnErr->u.i+1, &nErr);
+ sqlite3VdbeMemSetNull(pIn1);
+ if( nErr==0 ){
+ assert( z==0 );
+ }else if( z==0 ){
+ goto no_mem;
+ }else{
+ pnErr->u.i -= nErr-1;
+ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ sqlite3VdbeChangeEncoding(pIn1, encoding);
+ goto check_for_interrupt;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/* Opcode: RowSetAdd P1 P2 * * *
+** Synopsis: rowset(P1)=r[P2]
+**
+** Insert the integer value held by register P2 into a RowSet object
+** held in register P1.
+**
+** An assertion fails if P2 is not an integer.
+*/
+case OP_RowSetAdd: { /* in1, in2 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
+ }
+ assert( sqlite3VdbeMemIsRowSet(pIn1) );
+ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
+ break;
+}
+
+/* Opcode: RowSetRead P1 P2 P3 * *
+** Synopsis: r[P3]=rowset(P1)
+**
+** Extract the smallest value from the RowSet object in P1
+** and put that value into register P3.
+** Or, if RowSet object P1 is initially empty, leave P3
+** unchanged and jump to instruction P2.
+*/
+case OP_RowSetRead: { /* jump, in1, out3 */
+ i64 val;
+
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
+ if( (pIn1->flags & MEM_Blob)==0
+ || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
+ ){
+ /* The boolean index is empty */
+ sqlite3VdbeMemSetNull(pIn1);
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2_and_check_for_interrupt;
+ }else{
+ /* A value was pulled from the index */
+ VdbeBranchTaken(0,2);
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
+ }
+ goto check_for_interrupt;
+}
+
+/* Opcode: RowSetTest P1 P2 P3 P4
+** Synopsis: if r[P3] in rowset(P1) goto P2
+**
+** Register P3 is assumed to hold a 64-bit integer value. If register P1
+** contains a RowSet object and that RowSet object contains
+** the value held in P3, jump to register P2. Otherwise, insert the
+** integer in P3 into the RowSet and continue on to the
+** next opcode.
+**
+** The RowSet object is optimized for the case where sets of integers
+** are inserted in distinct phases, which each set contains no duplicates.
+** Each set is identified by a unique P4 value. The first set
+** must have P4==0, the final set must have P4==-1, and for all other sets
+** must have P4>0.
+**
+** This allows optimizations: (a) when P4==0 there is no need to test
+** the RowSet object for P3, as it is guaranteed not to contain it,
+** (b) when P4==-1 there is no need to insert the value, as it will
+** never be tested for, and (c) when a value that is part of set X is
+** inserted, there is no need to search to see if the same value was
+** previously inserted as part of set X (only if it was previously
+** inserted as part of some other set).
+*/
+case OP_RowSetTest: { /* jump, in1, in3 */
+ int iSet;
+ int exists;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ iSet = pOp->p4.i;
+ assert( pIn3->flags&MEM_Int );
+
+ /* If there is anything other than a rowset object in memory cell P1,
+ ** delete it now and initialize P1 with an empty rowset
+ */
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
+ }
+ assert( sqlite3VdbeMemIsRowSet(pIn1) );
+ assert( pOp->p4type==P4_INT32 );
+ assert( iSet==-1 || iSet>=0 );
+ if( iSet ){
+ exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
+ VdbeBranchTaken(exists!=0,2);
+ if( exists ) goto jump_to_p2;
+ }
+ if( iSet>=0 ){
+ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
+ }
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_TRIGGER
+
+/* Opcode: Program P1 P2 P3 P4 P5
+**
+** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
+**
+** P1 contains the address of the memory cell that contains the first memory
+** cell in an array of values used as arguments to the sub-program. P2
+** contains the address to jump to if the sub-program throws an IGNORE
+** exception using the RAISE() function. Register P3 contains the address
+** of a memory cell in this (the parent) VM that is used to allocate the
+** memory required by the sub-vdbe at runtime.
+**
+** P4 is a pointer to the VM containing the trigger program.
+**
+** If P5 is non-zero, then recursive program invocation is enabled.
+*/
+case OP_Program: { /* jump */
+ int nMem; /* Number of memory registers for sub-program */
+ int nByte; /* Bytes of runtime space required for sub-program */
+ Mem *pRt; /* Register to allocate runtime space */
+ Mem *pMem; /* Used to iterate through memory cells */
+ Mem *pEnd; /* Last memory cell in new array */
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */
+ SubProgram *pProgram; /* Sub-program to execute */
+ void *t; /* Token identifying trigger */
+
+ pProgram = pOp->p4.pProgram;
+ pRt = &aMem[pOp->p3];
+ assert( pProgram->nOp>0 );
+
+ /* If the p5 flag is clear, then recursive invocation of triggers is
+ ** disabled for backwards compatibility (p5 is set if this sub-program
+ ** is really a trigger, not a foreign key action, and the flag set
+ ** and cleared by the "PRAGMA recursive_triggers" command is clear).
+ **
+ ** It is recursive invocation of triggers, at the SQL level, that is
+ ** disabled. In some cases a single trigger may generate more than one
+ ** SubProgram (if the trigger may be executed with more than one different
+ ** ON CONFLICT algorithm). SubProgram structures associated with a
+ ** single trigger all have the same value for the SubProgram.token
+ ** variable. */
+ if( pOp->p5 ){
+ t = pProgram->token;
+ for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
+ if( pFrame ) break;
+ }
+
+ if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p, "too many levels of trigger recursion");
+ goto abort_due_to_error;
+ }
+
+ /* Register pRt is used to store the memory required to save the state
+ ** of the current program, and the memory required at runtime to execute
+ ** the trigger program. If this trigger has been fired before, then pRt
+ ** is already allocated. Otherwise, it must be initialized. */
+ if( (pRt->flags&MEM_Blob)==0 ){
+ /* SubProgram.nMem is set to the number of memory cells used by the
+ ** program stored in SubProgram.aOp. As well as these, one memory
+ ** cell is required for each cursor used by the program. Set local
+ ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
+ */
+ nMem = pProgram->nMem + pProgram->nCsr;
+ assert( nMem>0 );
+ if( pProgram->nCsr==0 ) nMem++;
+ nByte = ROUND8(sizeof(VdbeFrame))
+ + nMem * sizeof(Mem)
+ + pProgram->nCsr * sizeof(VdbeCursor*)
+ + (pProgram->nOp + 7)/8;
+ pFrame = sqlite3DbMallocZero(db, nByte);
+ if( !pFrame ){
+ goto no_mem;
+ }
+ sqlite3VdbeMemRelease(pRt);
+ pRt->flags = MEM_Blob|MEM_Dyn;
+ pRt->z = (char*)pFrame;
+ pRt->n = nByte;
+ pRt->xDel = sqlite3VdbeFrameMemDel;
+
+ pFrame->v = p;
+ pFrame->nChildMem = nMem;
+ pFrame->nChildCsr = pProgram->nCsr;
+ pFrame->pc = (int)(pOp - aOp);
+ pFrame->aMem = p->aMem;
+ pFrame->nMem = p->nMem;
+ pFrame->apCsr = p->apCsr;
+ pFrame->nCursor = p->nCursor;
+ pFrame->aOp = p->aOp;
+ pFrame->nOp = p->nOp;
+ pFrame->token = pProgram->token;
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ pFrame->anExec = p->anExec;
+#endif
+#ifdef SQLITE_DEBUG
+ pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
+#endif
+
+ pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
+ for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
+ pMem->flags = MEM_Undefined;
+ pMem->db = db;
+ }
+ }else{
+ pFrame = (VdbeFrame*)pRt->z;
+ assert( pRt->xDel==sqlite3VdbeFrameMemDel );
+ assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
+ || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
+ assert( pProgram->nCsr==pFrame->nChildCsr );
+ assert( (int)(pOp - aOp)==pFrame->pc );
+ }
+
+ p->nFrame++;
+ pFrame->pParent = p->pFrame;
+ pFrame->lastRowid = db->lastRowid;
+ pFrame->nChange = p->nChange;
+ pFrame->nDbChange = p->db->nChange;
+ assert( pFrame->pAuxData==0 );
+ pFrame->pAuxData = p->pAuxData;
+ p->pAuxData = 0;
+ p->nChange = 0;
+ p->pFrame = pFrame;
+ p->aMem = aMem = VdbeFrameMem(pFrame);
+ p->nMem = pFrame->nChildMem;
+ p->nCursor = (u16)pFrame->nChildCsr;
+ p->apCsr = (VdbeCursor **)&aMem[p->nMem];
+ pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
+ memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
+ p->aOp = aOp = pProgram->aOp;
+ p->nOp = pProgram->nOp;
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ p->anExec = 0;
+#endif
+#ifdef SQLITE_DEBUG
+ /* Verify that second and subsequent executions of the same trigger do not
+ ** try to reuse register values from the first use. */
+ {
+ int i;
+ for(i=0; i<p->nMem; i++){
+ aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
+ MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
+ }
+ }
+#endif
+ pOp = &aOp[-1];
+ goto check_for_interrupt;
+}
+
+/* Opcode: Param P1 P2 * * *
+**
+** This opcode is only ever present in sub-programs called via the
+** OP_Program instruction. Copy a value currently stored in a memory
+** cell of the calling (parent) frame to cell P2 in the current frames
+** address space. This is used by trigger programs to access the new.*
+** and old.* values.
+**
+** The address of the cell in the parent frame is determined by adding
+** the value of the P1 argument to the value of the P1 argument to the
+** calling OP_Program instruction.
+*/
+case OP_Param: { /* out2 */
+ VdbeFrame *pFrame;
+ Mem *pIn;
+ pOut = out2Prerelease(p, pOp);
+ pFrame = p->pFrame;
+ pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
+ sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
+ break;
+}
+
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+/* Opcode: FkCounter P1 P2 * * *
+** Synopsis: fkctr[P1]+=P2
+**
+** Increment a "constraint counter" by P2 (P2 may be negative or positive).
+** If P1 is non-zero, the database constraint counter is incremented
+** (deferred foreign key constraints). Otherwise, if P1 is zero, the
+** statement counter is incremented (immediate foreign key constraints).
+*/
+case OP_FkCounter: {
+ if( db->flags & SQLITE_DeferFKs ){
+ db->nDeferredImmCons += pOp->p2;
+ }else if( pOp->p1 ){
+ db->nDeferredCons += pOp->p2;
+ }else{
+ p->nFkConstraint += pOp->p2;
+ }
+ break;
+}
+
+/* Opcode: FkIfZero P1 P2 * * *
+** Synopsis: if fkctr[P1]==0 goto P2
+**
+** This opcode tests if a foreign key constraint-counter is currently zero.
+** If so, jump to instruction P2. Otherwise, fall through to the next
+** instruction.
+**
+** If P1 is non-zero, then the jump is taken if the database constraint-counter
+** is zero (the one that counts deferred constraint violations). If P1 is
+** zero, the jump is taken if the statement constraint-counter is zero
+** (immediate foreign key constraint violations).
+*/
+case OP_FkIfZero: { /* jump */
+ if( pOp->p1 ){
+ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
+ if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
+ }else{
+ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
+ if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
+ }
+ break;
+}
+#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/* Opcode: MemMax P1 P2 * * *
+** Synopsis: r[P1]=max(r[P1],r[P2])
+**
+** P1 is a register in the root frame of this VM (the root frame is
+** different from the current frame if this instruction is being executed
+** within a sub-program). Set the value of register P1 to the maximum of
+** its current value and the value in register P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemMax: { /* in2 */
+ VdbeFrame *pFrame;
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ pIn1 = &pFrame->aMem[pOp->p1];
+ }else{
+ pIn1 = &aMem[pOp->p1];
+ }
+ assert( memIsValid(pIn1) );
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn2 = &aMem[pOp->p2];
+ sqlite3VdbeMemIntegerify(pIn2);
+ if( pIn1->u.i<pIn2->u.i){
+ pIn1->u.i = pIn2->u.i;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+/* Opcode: IfPos P1 P2 P3 * *
+** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
+**
+** Register P1 must contain an integer.
+** If the value of register P1 is 1 or greater, subtract P3 from the
+** value in P1 and jump to P2.
+**
+** If the initial value of register P1 is less than 1, then the
+** value is unchanged and control passes through to the next instruction.
+*/
+case OP_IfPos: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken( pIn1->u.i>0, 2);
+ if( pIn1->u.i>0 ){
+ pIn1->u.i -= pOp->p3;
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: OffsetLimit P1 P2 P3 * *
+** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
+**
+** This opcode performs a commonly used computation associated with
+** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
+** holds the offset counter. The opcode computes the combined value
+** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
+** value computed is the total number of rows that will need to be
+** visited in order to complete the query.
+**
+** If r[P3] is zero or negative, that means there is no OFFSET
+** and r[P2] is set to be the value of the LIMIT, r[P1].
+**
+** if r[P1] is zero or negative, that means there is no LIMIT
+** and r[P2] is set to -1.
+**
+** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
+*/
+case OP_OffsetLimit: { /* in1, out2, in3 */
+ i64 x;
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ pOut = out2Prerelease(p, pOp);
+ assert( pIn1->flags & MEM_Int );
+ assert( pIn3->flags & MEM_Int );
+ x = pIn1->u.i;
+ if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
+ /* If the LIMIT is less than or equal to zero, loop forever. This
+ ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
+ ** also loop forever. This is undocumented. In fact, one could argue
+ ** that the loop should terminate. But assuming 1 billion iterations
+ ** per second (far exceeding the capabilities of any current hardware)
+ ** it would take nearly 300 years to actually reach the limit. So
+ ** looping forever is a reasonable approximation. */
+ pOut->u.i = -1;
+ }else{
+ pOut->u.i = x;
+ }
+ break;
+}
+
+/* Opcode: IfNotZero P1 P2 * * *
+** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
+**
+** Register P1 must contain an integer. If the content of register P1 is
+** initially greater than zero, then decrement the value in register P1.
+** If it is non-zero (negative or positive) and then also jump to P2.
+** If register P1 is initially zero, leave it unchanged and fall through.
+*/
+case OP_IfNotZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken(pIn1->u.i<0, 2);
+ if( pIn1->u.i ){
+ if( pIn1->u.i>0 ) pIn1->u.i--;
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: DecrJumpZero P1 P2 * * *
+** Synopsis: if (--r[P1])==0 goto P2
+**
+** Register P1 must hold an integer. Decrement the value in P1
+** and jump to P2 if the new value is exactly zero.
+*/
+case OP_DecrJumpZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
+ VdbeBranchTaken(pIn1->u.i==0, 2);
+ if( pIn1->u.i==0 ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: AggStep * P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
+**
+** Execute the xStep function for an aggregate.
+** The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+/* Opcode: AggInverse * P2 P3 P4 P5
+** Synopsis: accum=r[P3] inverse(r[P2@P5])
+**
+** Execute the xInverse function for an aggregate.
+** The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+/* Opcode: AggStep1 P1 P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
+**
+** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
+** aggregate. The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+**
+** This opcode is initially coded as OP_AggStep0. On first evaluation,
+** the FuncDef stored in P4 is converted into an sqlite3_context and
+** the opcode is changed. In this way, the initialization of the
+** sqlite3_context only happens once, instead of on each call to the
+** step function.
+*/
+case OP_AggInverse:
+case OP_AggStep: {
+ int n;
+ sqlite3_context *pCtx;
+
+ assert( pOp->p4type==P4_FUNCDEF );
+ n = pOp->p5;
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
+ pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
+ (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
+ if( pCtx==0 ) goto no_mem;
+ pCtx->pMem = 0;
+ pCtx->pOut = (Mem*)&(pCtx->argv[n]);
+ sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
+ pCtx->pFunc = pOp->p4.pFunc;
+ pCtx->iOp = (int)(pOp - aOp);
+ pCtx->pVdbe = p;
+ pCtx->skipFlag = 0;
+ pCtx->isError = 0;
+ pCtx->enc = encoding;
+ pCtx->argc = n;
+ pOp->p4type = P4_FUNCCTX;
+ pOp->p4.pCtx = pCtx;
+
+ /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
+ assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
+
+ pOp->opcode = OP_AggStep1;
+ /* Fall through into OP_AggStep */
+ /* no break */ deliberate_fall_through
+}
+case OP_AggStep1: {
+ int i;
+ sqlite3_context *pCtx;
+ Mem *pMem;
+
+ assert( pOp->p4type==P4_FUNCCTX );
+ pCtx = pOp->p4.pCtx;
+ pMem = &aMem[pOp->p3];
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p1 ){
+ /* This is an OP_AggInverse call. Verify that xStep has always
+ ** been called at least once prior to any xInverse call. */
+ assert( pMem->uTemp==0x1122e0e3 );
+ }else{
+ /* This is an OP_AggStep call. Mark it as such. */
+ pMem->uTemp = 0x1122e0e3;
+ }
+#endif
+
+ /* If this function is inside of a trigger, the register array in aMem[]
+ ** might change from one evaluation to the next. The next block of code
+ ** checks to see if the register array has changed, and if so it
+ ** reinitializes the relavant parts of the sqlite3_context object */
+ if( pCtx->pMem != pMem ){
+ pCtx->pMem = pMem;
+ for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
+ }
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<pCtx->argc; i++){
+ assert( memIsValid(pCtx->argv[i]) );
+ REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
+ }
+#endif
+
+ pMem->n++;
+ assert( pCtx->pOut->flags==MEM_Null );
+ assert( pCtx->isError==0 );
+ assert( pCtx->skipFlag==0 );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pOp->p1 ){
+ (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
+ }else
+#endif
+ (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
+
+ if( pCtx->isError ){
+ if( pCtx->isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
+ rc = pCtx->isError;
+ }
+ if( pCtx->skipFlag ){
+ assert( pOp[-1].opcode==OP_CollSeq );
+ i = pOp[-1].p1;
+ if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
+ pCtx->skipFlag = 0;
+ }
+ sqlite3VdbeMemRelease(pCtx->pOut);
+ pCtx->pOut->flags = MEM_Null;
+ pCtx->isError = 0;
+ if( rc ) goto abort_due_to_error;
+ }
+ assert( pCtx->pOut->flags==MEM_Null );
+ assert( pCtx->skipFlag==0 );
+ break;
+}
+
+/* Opcode: AggFinal P1 P2 * P4 *
+** Synopsis: accum=r[P1] N=P2
+**
+** P1 is the memory location that is the accumulator for an aggregate
+** or window function. Execute the finalizer function
+** for an aggregate and store the result in P1.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the case where
+** the step function was not previously called.
+*/
+/* Opcode: AggValue * P2 P3 P4 *
+** Synopsis: r[P3]=value N=P2
+**
+** Invoke the xValue() function and store the result in register P3.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the case where
+** the step function was not previously called.
+*/
+case OP_AggValue:
+case OP_AggFinal: {
+ Mem *pMem;
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
+ pMem = &aMem[pOp->p1];
+ assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pOp->p3 ){
+ memAboutToChange(p, &aMem[pOp->p3]);
+ rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
+ pMem = &aMem[pOp->p3];
+ }else
+#endif
+ {
+ rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
+ }
+
+ if( rc ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
+ goto abort_due_to_error;
+ }
+ sqlite3VdbeChangeEncoding(pMem, encoding);
+ UPDATE_MAX_BLOBSIZE(pMem);
+ break;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/* Opcode: Checkpoint P1 P2 P3 * *
+**
+** Checkpoint database P1. This is a no-op if P1 is not currently in
+** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
+** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
+** SQLITE_BUSY or not, respectively. Write the number of pages in the
+** WAL after the checkpoint into mem[P3+1] and the number of pages
+** in the WAL that have been checkpointed after the checkpoint
+** completes into mem[P3+2]. However on an error, mem[P3+1] and
+** mem[P3+2] are initialized to -1.
+*/
+case OP_Checkpoint: {
+ int i; /* Loop counter */
+ int aRes[3]; /* Results */
+ Mem *pMem; /* Write results here */
+
+ assert( p->readOnly==0 );
+ aRes[0] = 0;
+ aRes[1] = aRes[2] = -1;
+ assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
+ || pOp->p2==SQLITE_CHECKPOINT_FULL
+ || pOp->p2==SQLITE_CHECKPOINT_RESTART
+ || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
+ );
+ rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
+ if( rc ){
+ if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ aRes[0] = 1;
+ }
+ for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
+ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
+ }
+ break;
+};
+#endif
+
+#ifndef SQLITE_OMIT_PRAGMA
+/* Opcode: JournalMode P1 P2 P3 * *
+**
+** Change the journal mode of database P1 to P3. P3 must be one of the
+** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
+** modes (delete, truncate, persist, off and memory), this is a simple
+** operation. No IO is required.
+**
+** If changing into or out of WAL mode the procedure is more complicated.
+**
+** Write a string containing the final journal-mode to register P2.
+*/
+case OP_JournalMode: { /* out2 */
+ Btree *pBt; /* Btree to change journal mode of */
+ Pager *pPager; /* Pager associated with pBt */
+ int eNew; /* New journal mode */
+ int eOld; /* The old journal mode */
+#ifndef SQLITE_OMIT_WAL
+ const char *zFilename; /* Name of database file for pPager */
+#endif
+
+ pOut = out2Prerelease(p, pOp);
+ eNew = pOp->p3;
+ assert( eNew==PAGER_JOURNALMODE_DELETE
+ || eNew==PAGER_JOURNALMODE_TRUNCATE
+ || eNew==PAGER_JOURNALMODE_PERSIST
+ || eNew==PAGER_JOURNALMODE_OFF
+ || eNew==PAGER_JOURNALMODE_MEMORY
+ || eNew==PAGER_JOURNALMODE_WAL
+ || eNew==PAGER_JOURNALMODE_QUERY
+ );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( p->readOnly==0 );
+
+ pBt = db->aDb[pOp->p1].pBt;
+ pPager = sqlite3BtreePager(pBt);
+ eOld = sqlite3PagerGetJournalMode(pPager);
+ if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
+ assert( sqlite3BtreeHoldsMutex(pBt) );
+ if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
+
+#ifndef SQLITE_OMIT_WAL
+ zFilename = sqlite3PagerFilename(pPager, 1);
+
+ /* Do not allow a transition to journal_mode=WAL for a database
+ ** in temporary storage or if the VFS does not support shared memory
+ */
+ if( eNew==PAGER_JOURNALMODE_WAL
+ && (sqlite3Strlen30(zFilename)==0 /* Temp file */
+ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
+ ){
+ eNew = eOld;
+ }
+
+ if( (eNew!=eOld)
+ && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
+ ){
+ if( !db->autoCommit || db->nVdbeRead>1 ){
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p,
+ "cannot change %s wal mode from within a transaction",
+ (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
+ );
+ goto abort_due_to_error;
+ }else{
+
+ if( eOld==PAGER_JOURNALMODE_WAL ){
+ /* If leaving WAL mode, close the log file. If successful, the call
+ ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
+ ** file. An EXCLUSIVE lock may still be held on the database file
+ ** after a successful return.
+ */
+ rc = sqlite3PagerCloseWal(pPager, db);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerSetJournalMode(pPager, eNew);
+ }
+ }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
+ /* Cannot transition directly from MEMORY to WAL. Use mode OFF
+ ** as an intermediate */
+ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
+ }
+
+ /* Open a transaction on the database file. Regardless of the journal
+ ** mode, this transaction always uses a rollback journal.
+ */
+ assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
+ }
+ }
+ }
+#endif /* ifndef SQLITE_OMIT_WAL */
+
+ if( rc ) eNew = eOld;
+ eNew = sqlite3PagerSetJournalMode(pPager, eNew);
+
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = (char *)sqlite3JournalModename(eNew);
+ pOut->n = sqlite3Strlen30(pOut->z);
+ pOut->enc = SQLITE_UTF8;
+ sqlite3VdbeChangeEncoding(pOut, encoding);
+ if( rc ) goto abort_due_to_error;
+ break;
+};
+#endif /* SQLITE_OMIT_PRAGMA */
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+/* Opcode: Vacuum P1 P2 * * *
+**
+** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
+** for an attached database. The "temp" database may not be vacuumed.
+**
+** If P2 is not zero, then it is a register holding a string which is
+** the file into which the result of vacuum should be written. When
+** P2 is zero, the vacuum overwrites the original database.
+*/
+case OP_Vacuum: {
+ assert( p->readOnly==0 );
+ rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
+ pOp->p2 ? &aMem[pOp->p2] : 0);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+/* Opcode: IncrVacuum P1 P2 * * *
+**
+** Perform a single step of the incremental vacuum procedure on
+** the P1 database. If the vacuum has finished, jump to instruction
+** P2. Otherwise, fall through to the next instruction.
+*/
+case OP_IncrVacuum: { /* jump */
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pBt = db->aDb[pOp->p1].pBt;
+ rc = sqlite3BtreeIncrVacuum(pBt);
+ VdbeBranchTaken(rc==SQLITE_DONE,2);
+ if( rc ){
+ if( rc!=SQLITE_DONE ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ goto jump_to_p2;
+ }
+ break;
+}
+#endif
+
+/* Opcode: Expire P1 P2 * * *
+**
+** Cause precompiled statements to expire. When an expired statement
+** is executed using sqlite3_step() it will either automatically
+** reprepare itself (if it was originally created using sqlite3_prepare_v2())
+** or it will fail with SQLITE_SCHEMA.
+**
+** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
+** then only the currently executing statement is expired.
+**
+** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
+** then running SQL statements are allowed to continue to run to completion.
+** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
+** that might help the statement run faster but which does not affect the
+** correctness of operation.
+*/
+case OP_Expire: {
+ assert( pOp->p2==0 || pOp->p2==1 );
+ if( !pOp->p1 ){
+ sqlite3ExpirePreparedStatements(db, pOp->p2);
+ }else{
+ p->expired = pOp->p2+1;
+ }
+ break;
+}
+
+/* Opcode: CursorLock P1 * * * *
+**
+** Lock the btree to which cursor P1 is pointing so that the btree cannot be
+** written by an other cursor.
+*/
+case OP_CursorLock: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorPin(pC->uc.pCursor);
+ break;
+}
+
+/* Opcode: CursorUnlock P1 * * * *
+**
+** Unlock the btree to which cursor P1 is pointing so that it can be
+** written by other cursors.
+*/
+case OP_CursorUnlock: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorUnpin(pC->uc.pCursor);
+ break;
+}
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/* Opcode: TableLock P1 P2 P3 P4 *
+** Synopsis: iDb=P1 root=P2 write=P3
+**
+** Obtain a lock on a particular table. This instruction is only used when
+** the shared-cache feature is enabled.
+**
+** P1 is the index of the database in sqlite3.aDb[] of the database
+** on which the lock is acquired. A readlock is obtained if P3==0 or
+** a write lock if P3==1.
+**
+** P2 contains the root-page of the table to lock.
+**
+** P4 contains a pointer to the name of the table being locked. This is only
+** used to generate an error message if the lock cannot be obtained.
+*/
+case OP_TableLock: {
+ u8 isWriteLock = (u8)pOp->p3;
+ if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
+ int p1 = pOp->p1;
+ assert( p1>=0 && p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, p1) );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
+ if( rc ){
+ if( (rc&0xFF)==SQLITE_LOCKED ){
+ const char *z = pOp->p4.z;
+ sqlite3VdbeError(p, "database table is locked: %s", z);
+ }
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VBegin * * * P4 *
+**
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
+** xBegin method for that table.
+**
+** Also, whether or not P4 is set, check that this is not being called from
+** within a callback to a virtual table xSync() method. If it is, the error
+** code will be set to SQLITE_LOCKED.
+*/
+case OP_VBegin: {
+ VTable *pVTab;
+ pVTab = pOp->p4.pVtab;
+ rc = sqlite3VtabBegin(db, pVTab);
+ if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCreate P1 P2 * * *
+**
+** P2 is a register that holds the name of a virtual table in database
+** P1. Call the xCreate method for that table.
+*/
+case OP_VCreate: {
+ Mem sMem; /* For storing the record being decoded */
+ const char *zTab; /* Name of the virtual table */
+
+ memset(&sMem, 0, sizeof(sMem));
+ sMem.db = db;
+ /* Because P2 is always a static string, it is impossible for the
+ ** sqlite3VdbeMemCopy() to fail */
+ assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
+ assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
+ rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
+ assert( rc==SQLITE_OK );
+ zTab = (const char*)sqlite3_value_text(&sMem);
+ assert( zTab || db->mallocFailed );
+ if( zTab ){
+ rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VDestroy P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xDestroy method
+** of that table.
+*/
+case OP_VDestroy: {
+ db->nVDestroy++;
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
+ db->nVDestroy--;
+ assert( p->errorAction==OE_Abort && p->usesStmtJournal );
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VOpen P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P1 is a cursor number. This opcode opens a cursor to the virtual
+** table and stores that cursor in P1.
+*/
+case OP_VOpen: {
+ VdbeCursor *pCur;
+ sqlite3_vtab_cursor *pVCur;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ assert( p->bIsReader );
+ pCur = 0;
+ pVCur = 0;
+ pVtab = pOp->p4.pVtab->pVtab;
+ if( pVtab==0 || NEVER(pVtab->pModule==0) ){
+ rc = SQLITE_LOCKED;
+ goto abort_due_to_error;
+ }
+ pModule = pVtab->pModule;
+ rc = pModule->xOpen(pVtab, &pVCur);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+
+ /* Initialize sqlite3_vtab_cursor base class */
+ pVCur->pVtab = pVtab;
+
+ /* Initialize vdbe cursor object */
+ pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
+ if( pCur ){
+ pCur->uc.pVCur = pVCur;
+ pVtab->nRef++;
+ }else{
+ assert( db->mallocFailed );
+ pModule->xClose(pVCur);
+ goto no_mem;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VInitIn P1 P2 P3 * *
+** Synopsis: r[P2]=ValueList(P1,P3)
+**
+** Set register P2 to be a pointer to a ValueList object for cursor P1
+** with cache register P3 and output register P3+1. This ValueList object
+** can be used as the first argument to sqlite3_vtab_in_first() and
+** sqlite3_vtab_in_next() to extract all of the values stored in the P1
+** cursor. Register P3 is used to hold the values returned by
+** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
+*/
+case OP_VInitIn: { /* out2 */
+ VdbeCursor *pC; /* The cursor containing the RHS values */
+ ValueList *pRhs; /* New ValueList object to put in reg[P2] */
+
+ pC = p->apCsr[pOp->p1];
+ pRhs = sqlite3_malloc64( sizeof(*pRhs) );
+ if( pRhs==0 ) goto no_mem;
+ pRhs->pCsr = pC->uc.pCursor;
+ pRhs->pOut = &aMem[pOp->p3];
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Null;
+ sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VFilter P1 P2 P3 P4 *
+** Synopsis: iplan=r[P3] zplan='P4'
+**
+** P1 is a cursor opened using VOpen. P2 is an address to jump to if
+** the filtered result set is empty.
+**
+** P4 is either NULL or a string that was generated by the xBestIndex
+** method of the module. The interpretation of the P4 string is left
+** to the module implementation.
+**
+** This opcode invokes the xFilter method on the virtual table specified
+** by P1. The integer query plan parameter to xFilter is stored in register
+** P3. Register P3+1 stores the argc parameter to be passed to the
+** xFilter method. Registers P3+2..P3+1+argc are the argc
+** additional parameters which are passed to
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
+**
+** A jump is made to P2 if the result set after filtering would be empty.
+*/
+case OP_VFilter: { /* jump */
+ int nArg;
+ int iQuery;
+ const sqlite3_module *pModule;
+ Mem *pQuery;
+ Mem *pArgc;
+ sqlite3_vtab_cursor *pVCur;
+ sqlite3_vtab *pVtab;
+ VdbeCursor *pCur;
+ int res;
+ int i;
+ Mem **apArg;
+
+ pQuery = &aMem[pOp->p3];
+ pArgc = &pQuery[1];
+ pCur = p->apCsr[pOp->p1];
+ assert( memIsValid(pQuery) );
+ REGISTER_TRACE(pOp->p3, pQuery);
+ assert( pCur!=0 );
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ pVCur = pCur->uc.pVCur;
+ pVtab = pVCur->pVtab;
+ pModule = pVtab->pModule;
+
+ /* Grab the index number and argc parameters */
+ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
+ nArg = (int)pArgc->u.i;
+ iQuery = (int)pQuery->u.i;
+
+ /* Invoke the xFilter method */
+ apArg = p->apArg;
+ for(i = 0; i<nArg; i++){
+ apArg[i] = &pArgc[i+1];
+ }
+ rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+ res = pModule->xEof(pVCur);
+ pCur->nullRow = 0;
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VColumn P1 P2 P3 * P5
+** Synopsis: r[P3]=vcolumn(P2)
+**
+** Store in register P3 the value of the P2-th column of
+** the current row of the virtual-table of cursor P1.
+**
+** If the VColumn opcode is being used to fetch the value of
+** an unchanging column during an UPDATE operation, then the P5
+** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
+** function to return true inside the xColumn method of the virtual
+** table implementation. The P5 column might also contain other
+** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
+** unused by OP_VColumn.
+*/
+case OP_VColumn: {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+
+ VdbeCursor *pCur = p->apCsr[pOp->p1];
+ assert( pCur!=0 );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pCur->nullRow ){
+ sqlite3VdbeMemSetNull(pDest);
+ break;
+ }
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ pVtab = pCur->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xColumn );
+ memset(&sContext, 0, sizeof(sContext));
+ sContext.pOut = pDest;
+ sContext.enc = encoding;
+ assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
+ if( pOp->p5 & OPFLAG_NOCHNG ){
+ sqlite3VdbeMemSetNull(pDest);
+ pDest->flags = MEM_Null|MEM_Zero;
+ pDest->u.nZero = 0;
+ }else{
+ MemSetTypeFlag(pDest, MEM_Null);
+ }
+ rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( sContext.isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
+ rc = sContext.isError;
+ }
+ sqlite3VdbeChangeEncoding(pDest, encoding);
+ REGISTER_TRACE(pOp->p3, pDest);
+ UPDATE_MAX_BLOBSIZE(pDest);
+
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VNext P1 P2 * * *
+**
+** Advance virtual table P1 to the next row in its result set and
+** jump to instruction P2. Or, if the virtual table has reached
+** the end of its result set, then fall through to the next instruction.
+*/
+case OP_VNext: { /* jump */
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int res;
+ VdbeCursor *pCur;
+
+ pCur = p->apCsr[pOp->p1];
+ assert( pCur!=0 );
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ if( pCur->nullRow ){
+ break;
+ }
+ pVtab = pCur->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xNext );
+
+ /* Invoke the xNext() method of the module. There is no way for the
+ ** underlying implementation to return an error if one occurs during
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that
+ ** data is available) and the error code returned when xColumn or
+ ** some other method is next invoked on the save virtual table cursor.
+ */
+ rc = pModule->xNext(pCur->uc.pVCur);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+ res = pModule->xEof(pCur->uc.pVCur);
+ VdbeBranchTaken(!res,2);
+ if( !res ){
+ /* If there is data, jump to P2 */
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ goto check_for_interrupt;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VRename P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xRename method. The value
+** in register P1 is passed as the zName argument to the xRename method.
+*/
+case OP_VRename: {
+ sqlite3_vtab *pVtab;
+ Mem *pName;
+ int isLegacy;
+
+ isLegacy = (db->flags & SQLITE_LegacyAlter);
+ db->flags |= SQLITE_LegacyAlter;
+ pVtab = pOp->p4.pVtab->pVtab;
+ pName = &aMem[pOp->p1];
+ assert( pVtab->pModule->xRename );
+ assert( memIsValid(pName) );
+ assert( p->readOnly==0 );
+ REGISTER_TRACE(pOp->p1, pName);
+ assert( pName->flags & MEM_Str );
+ testcase( pName->enc==SQLITE_UTF8 );
+ testcase( pName->enc==SQLITE_UTF16BE );
+ testcase( pName->enc==SQLITE_UTF16LE );
+ rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
+ if( rc ) goto abort_due_to_error;
+ rc = pVtab->pModule->xRename(pVtab, pName->z);
+ if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
+ sqlite3VtabImportErrmsg(p, pVtab);
+ p->expired = 0;
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VUpdate P1 P2 P3 P4 P5
+** Synopsis: data=r[P3@P2]
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xUpdate method. P2 values
+** are contiguous memory cells starting at P3 to pass to the xUpdate
+** invocation. The value in register (P3+P2-1) corresponds to the
+** p2th element of the argv array passed to xUpdate.
+**
+** The xUpdate method will do a DELETE or an INSERT or both.
+** The argv[0] element (which corresponds to memory cell P3)
+** is the rowid of a row to delete. If argv[0] is NULL then no
+** deletion occurs. The argv[1] element is the rowid of the new
+** row. This can be NULL to have the virtual table select the new
+** rowid for itself. The subsequent elements in the array are
+** the values of columns in the new row.
+**
+** If P2==1 then no insert is performed. argv[0] is the rowid of
+** a row to delete.
+**
+** P1 is a boolean flag. If it is set to true and the xUpdate call
+** is successful, then the value returned by sqlite3_last_insert_rowid()
+** is set to the value of the rowid for the row just inserted.
+**
+** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
+** apply in the case of a constraint failure on an insert or update.
+*/
+case OP_VUpdate: {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int nArg;
+ int i;
+ sqlite_int64 rowid = 0;
+ Mem **apArg;
+ Mem *pX;
+
+ assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
+ || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
+ );
+ assert( p->readOnly==0 );
+ if( db->mallocFailed ) goto no_mem;
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ pVtab = pOp->p4.pVtab->pVtab;
+ if( pVtab==0 || NEVER(pVtab->pModule==0) ){
+ rc = SQLITE_LOCKED;
+ goto abort_due_to_error;
+ }
+ pModule = pVtab->pModule;
+ nArg = pOp->p2;
+ assert( pOp->p4type==P4_VTAB );
+ if( ALWAYS(pModule->xUpdate) ){
+ u8 vtabOnConflict = db->vtabOnConflict;
+ apArg = p->apArg;
+ pX = &aMem[pOp->p3];
+ for(i=0; i<nArg; i++){
+ assert( memIsValid(pX) );
+ memAboutToChange(p, pX);
+ apArg[i] = pX;
+ pX++;
+ }
+ db->vtabOnConflict = pOp->p5;
+ rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
+ db->vtabOnConflict = vtabOnConflict;
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc==SQLITE_OK && pOp->p1 ){
+ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
+ db->lastRowid = rowid;
+ }
+ if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
+ if( pOp->p5==OE_Ignore ){
+ rc = SQLITE_OK;
+ }else{
+ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
+ }
+ }else{
+ p->nChange++;
+ }
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: Pagecount P1 P2 * * *
+**
+** Write the current number of pages in database P1 to memory cell P2.
+*/
+case OP_Pagecount: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
+ break;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: MaxPgcnt P1 P2 P3 * *
+**
+** Try to set the maximum page count for database P1 to the value in P3.
+** Do not let the maximum page count fall below the current page count and
+** do not change the maximum page count value if P3==0.
+**
+** Store the maximum page count after the change in register P2.
+*/
+case OP_MaxPgcnt: { /* out2 */
+ unsigned int newMax;
+ Btree *pBt;
+
+ pOut = out2Prerelease(p, pOp);
+ pBt = db->aDb[pOp->p1].pBt;
+ newMax = 0;
+ if( pOp->p3 ){
+ newMax = sqlite3BtreeLastPage(pBt);
+ if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
+ }
+ pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
+ break;
+}
+#endif
+
+/* Opcode: Function P1 P2 P3 P4 *
+** Synopsis: r[P3]=func(r[P2@NP])
+**
+** Invoke a user function (P4 is a pointer to an sqlite3_context object that
+** contains a pointer to the function to be run) with arguments taken
+** from register P2 and successors. The number of arguments is in
+** the sqlite3_context object that P4 points to.
+** The result of the function is stored
+** in register P3. Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** See also: AggStep, AggFinal, PureFunc
+*/
+/* Opcode: PureFunc P1 P2 P3 P4 *
+** Synopsis: r[P3]=func(r[P2@NP])
+**
+** Invoke a user function (P4 is a pointer to an sqlite3_context object that
+** contains a pointer to the function to be run) with arguments taken
+** from register P2 and successors. The number of arguments is in
+** the sqlite3_context object that P4 points to.
+** The result of the function is stored
+** in register P3. Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** This opcode works exactly like OP_Function. The only difference is in
+** its name. This opcode is used in places where the function must be
+** purely non-deterministic. Some built-in date/time functions can be
+** either determinitic of non-deterministic, depending on their arguments.
+** When those function are used in a non-deterministic way, they will check
+** to see if they were called using OP_PureFunc instead of OP_Function, and
+** if they were, they throw an error.
+**
+** See also: AggStep, AggFinal, Function
+*/
+case OP_PureFunc: /* group */
+case OP_Function: { /* group */
+ int i;
+ sqlite3_context *pCtx;
+
+ assert( pOp->p4type==P4_FUNCCTX );
+ pCtx = pOp->p4.pCtx;
+
+ /* If this function is inside of a trigger, the register array in aMem[]
+ ** might change from one evaluation to the next. The next block of code
+ ** checks to see if the register array has changed, and if so it
+ ** reinitializes the relavant parts of the sqlite3_context object */
+ pOut = &aMem[pOp->p3];
+ if( pCtx->pOut != pOut ){
+ pCtx->pVdbe = p;
+ pCtx->pOut = pOut;
+ pCtx->enc = encoding;
+ for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
+ }
+ assert( pCtx->pVdbe==p );
+
+ memAboutToChange(p, pOut);
+#ifdef SQLITE_DEBUG
+ for(i=0; i<pCtx->argc; i++){
+ assert( memIsValid(pCtx->argv[i]) );
+ REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
+ }
+#endif
+ MemSetTypeFlag(pOut, MEM_Null);
+ assert( pCtx->isError==0 );
+ (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
+
+ /* If the function returned an error, throw an exception */
+ if( pCtx->isError ){
+ if( pCtx->isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
+ rc = pCtx->isError;
+ }
+ sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
+ pCtx->isError = 0;
+ if( rc ) goto abort_due_to_error;
+ }
+
+ assert( (pOut->flags&MEM_Str)==0
+ || pOut->enc==encoding
+ || db->mallocFailed );
+ assert( !sqlite3VdbeMemTooBig(pOut) );
+
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: ClrSubtype P1 * * * *
+** Synopsis: r[P1].subtype = 0
+**
+** Clear the subtype from register P1.
+*/
+case OP_ClrSubtype: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ pIn1->flags &= ~MEM_Subtype;
+ break;
+}
+
+/* Opcode: FilterAdd P1 * P3 P4 *
+** Synopsis: filter(P1) += key(P3@P4)
+**
+** Compute a hash on the P4 registers starting with r[P3] and
+** add that hash to the bloom filter contained in r[P1].
+*/
+case OP_FilterAdd: {
+ u64 h;
+
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags & MEM_Blob );
+ assert( pIn1->n>0 );
+ h = filterHash(aMem, pOp);
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ int ii;
+ for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
+ registerTrace(ii, &aMem[ii]);
+ }
+ printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
+ }
+#endif
+ h %= pIn1->n;
+ pIn1->z[h/8] |= 1<<(h&7);
+ break;
+}
+
+/* Opcode: Filter P1 P2 P3 P4 *
+** Synopsis: if key(P3@P4) not in filter(P1) goto P2
+**
+** Compute a hash on the key contained in the P4 registers starting
+** with r[P3]. Check to see if that hash is found in the
+** bloom filter hosted by register P1. If it is not present then
+** maybe jump to P2. Otherwise fall through.
+**
+** False negatives are harmless. It is always safe to fall through,
+** even if the value is in the bloom filter. A false negative causes
+** more CPU cycles to be used, but it should still yield the correct
+** answer. However, an incorrect answer may well arise from a
+** false positive - if the jump is taken when it should fall through.
+*/
+case OP_Filter: { /* jump */
+ u64 h;
+
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Blob)!=0 );
+ assert( pIn1->n >= 1 );
+ h = filterHash(aMem, pOp);
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ int ii;
+ for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
+ registerTrace(ii, &aMem[ii]);
+ }
+ printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
+ }
+#endif
+ h %= pIn1->n;
+ if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
+ VdbeBranchTaken(1, 2);
+ p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
+ goto jump_to_p2;
+ }else{
+ p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
+ VdbeBranchTaken(0, 2);
+ }
+ break;
+}
+
+/* Opcode: Trace P1 P2 * P4 *
+**
+** Write P4 on the statement trace output if statement tracing is
+** enabled.
+**
+** Operand P1 must be 0x7fffffff and P2 must positive.
+*/
+/* Opcode: Init P1 P2 P3 P4 *
+** Synopsis: Start at P2
+**
+** Programs contain a single instance of this opcode as the very first
+** opcode.
+**
+** If tracing is enabled (by the sqlite3_trace()) interface, then
+** the UTF-8 string contained in P4 is emitted on the trace callback.
+** Or if P4 is blank, use the string returned by sqlite3_sql().
+**
+** If P2 is not zero, jump to instruction P2.
+**
+** Increment the value of P1 so that OP_Once opcodes will jump the
+** first time they are evaluated for this run.
+**
+** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
+** error is encountered.
+*/
+case OP_Trace:
+case OP_Init: { /* jump */
+ int i;
+#ifndef SQLITE_OMIT_TRACE
+ char *zTrace;
+#endif
+
+ /* If the P4 argument is not NULL, then it must be an SQL comment string.
+ ** The "--" string is broken up to prevent false-positives with srcck1.c.
+ **
+ ** This assert() provides evidence for:
+ ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
+ ** would have been returned by the legacy sqlite3_trace() interface by
+ ** using the X argument when X begins with "--" and invoking
+ ** sqlite3_expanded_sql(P) otherwise.
+ */
+ assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
+
+ /* OP_Init is always instruction 0 */
+ assert( pOp==p->aOp || pOp->opcode==OP_Trace );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
+ && p->minWriteFileFormat!=254 /* tag-20220401a */
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+#ifndef SQLITE_OMIT_DEPRECATED
+ if( db->mTrace & SQLITE_TRACE_LEGACY ){
+ char *z = sqlite3VdbeExpandSql(p, zTrace);
+ db->trace.xLegacy(db->pTraceArg, z);
+ sqlite3_free(z);
+ }else
+#endif
+ if( db->nVdbeExec>1 ){
+ char *z = sqlite3MPrintf(db, "-- %s", zTrace);
+ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
+ sqlite3DbFree(db, z);
+ }else{
+ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
+ }
+ }
+#ifdef SQLITE_USE_FCNTL_TRACE
+ zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
+ if( zTrace ){
+ int j;
+ for(j=0; j<db->nDb; j++){
+ if( DbMaskTest(p->btreeMask, j)==0 ) continue;
+ sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
+ }
+ }
+#endif /* SQLITE_USE_FCNTL_TRACE */
+#ifdef SQLITE_DEBUG
+ if( (db->flags & SQLITE_SqlTrace)!=0
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* SQLITE_OMIT_TRACE */
+ assert( pOp->p2>0 );
+ if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
+ if( pOp->opcode==OP_Trace ) break;
+ for(i=1; i<p->nOp; i++){
+ if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
+ }
+ pOp->p1 = 0;
+ }
+ pOp->p1++;
+ p->aCounter[SQLITE_STMTSTATUS_RUN]++;
+ goto jump_to_p2;
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/* Opcode: CursorHint P1 * * P4 *
+**
+** Provide a hint to cursor P1 that it only needs to return rows that
+** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
+** to values currently held in registers. TK_COLUMN terms in the P4
+** expression refer to columns in the b-tree to which cursor P1 is pointing.
+*/
+case OP_CursorHint: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_EXPR );
+ pC = p->apCsr[pOp->p1];
+ if( pC ){
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
+ pOp->p4.pExpr, aMem);
+ }
+ break;
+}
+#endif /* SQLITE_ENABLE_CURSOR_HINTS */
+
+#ifdef SQLITE_DEBUG
+/* Opcode: Abortable * * * * *
+**
+** Verify that an Abort can happen. Assert if an Abort at this point
+** might cause database corruption. This opcode only appears in debugging
+** builds.
+**
+** An Abort is safe if either there have been no writes, or if there is
+** an active statement journal.
+*/
+case OP_Abortable: {
+ sqlite3VdbeAssertAbortable(p);
+ break;
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/* Opcode: ReleaseReg P1 P2 P3 * P5
+** Synopsis: release r[P1@P2] mask P3
+**
+** Release registers from service. Any content that was in the
+** the registers is unreliable after this opcode completes.
+**
+** The registers released will be the P2 registers starting at P1,
+** except if bit ii of P3 set, then do not release register P1+ii.
+** In other words, P3 is a mask of registers to preserve.
+**
+** Releasing a register clears the Mem.pScopyFrom pointer. That means
+** that if the content of the released register was set using OP_SCopy,
+** a change to the value of the source register for the OP_SCopy will no longer
+** generate an assertion fault in sqlite3VdbeMemAboutToChange().
+**
+** If P5 is set, then all released registers have their type set
+** to MEM_Undefined so that any subsequent attempt to read the released
+** register (before it is reinitialized) will generate an assertion fault.
+**
+** P5 ought to be set on every call to this opcode.
+** However, there are places in the code generator will release registers
+** before their are used, under the (valid) assumption that the registers
+** will not be reallocated for some other purpose before they are used and
+** hence are safe to release.
+**
+** This opcode is only available in testing and debugging builds. It is
+** not generated for release builds. The purpose of this opcode is to help
+** validate the generated bytecode. This opcode does not actually contribute
+** to computing an answer.
+*/
+case OP_ReleaseReg: {
+ Mem *pMem;
+ int i;
+ u32 constMask;
+ assert( pOp->p1>0 );
+ assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
+ pMem = &aMem[pOp->p1];
+ constMask = pOp->p3;
+ for(i=0; i<pOp->p2; i++, pMem++){
+ if( i>=32 || (constMask & MASKBIT32(i))==0 ){
+ pMem->pScopyFrom = 0;
+ if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
+ }
+ }
+ break;
+}
+#endif
+
+/* Opcode: Noop * * * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+/*
+** The magic Explain opcode are only inserted when explain==2 (which
+** is to say when the EXPLAIN QUERY PLAN syntax is used.)
+** This opcode records information from the optimizer. It is the
+** the same as a no-op. This opcodesnever appears in a real VM program.
+*/
+default: { /* This is really OP_Noop, OP_Explain */
+ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
+
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
+ if( endTime>start ) pOrigOp->cycles += endTime - start;
+ pOrigOp->cnt++;
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
+
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
+ if( rc!=0 ) printf("rc=%d\n",rc);
+ if( opProperty & (OPFLG_OUT2) ){
+ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
+ }
+ if( opProperty & OPFLG_OUT3 ){
+ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
+ }
+ if( opProperty==0xff ){
+ /* Never happens. This code exists to avoid a harmless linkage
+ ** warning aboud sqlite3VdbeRegisterDump() being defined but not
+ ** used. */
+ sqlite3VdbeRegisterDump(p);
+ }
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* NDEBUG */
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished with
+ ** an error of some kind.
+ */
+abort_due_to_error:
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else if( rc==SQLITE_IOERR_CORRUPTFS ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ assert( rc );
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ const char *zTrace = p->zSql;
+ if( zTrace==0 ){
+ if( aOp[0].opcode==OP_Trace ){
+ zTrace = aOp[0].p4.z;
+ }
+ if( zTrace==0 ) zTrace = "???";
+ }
+ printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
+ }
+#endif
+ if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
+ sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
+ }
+ p->rc = rc;
+ sqlite3SystemError(db, rc);
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(rc, "statement aborts at %d: [%s] %s",
+ (int)(pOp - aOp), p->zSql, p->zErrMsg);
+ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
+ if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
+ if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
+ db->flags |= SQLITE_CorruptRdOnly;
+ }
+ rc = SQLITE_ERROR;
+ if( resetSchemaOnFault>0 ){
+ sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
+ }
+
+ /* This is the only way out of this procedure. We have to
+ ** release the mutexes on btrees that were acquired at the
+ ** top. */
+vdbe_return:
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
+ nProgressLimit += db->nProgressOps;
+ if( db->xProgress(db->pProgressArg) ){
+ nProgressLimit = LARGEST_UINT64;
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+ }
+ }
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
+ sqlite3VdbeLeave(p);
+ assert( rc!=SQLITE_OK || nExtraDelete==0
+ || sqlite3_strlike("DELETE%",p->zSql,0)!=0
+ );
+ return rc;
+
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
+ ** is encountered.
+ */
+too_big:
+ sqlite3VdbeError(p, "string or blob too big");
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+
+ /* Jump to here if a malloc() fails.
+ */
+no_mem:
+ sqlite3OomFault(db);
+ sqlite3VdbeError(p, "out of memory");
+ rc = SQLITE_NOMEM_BKPT;
+ goto abort_due_to_error;
+
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( AtomicLoad(&db->u1.isInterrupted) );
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+}
+
+
+/************** End of vdbe.c ************************************************/
+/************** Begin file vdbeblob.c ****************************************/
+/*
+** 2007 May 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to implement incremental BLOB I/O.
+*/
+
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#ifndef SQLITE_OMIT_INCRBLOB
+
+/*
+** Valid sqlite3_blob* handles point to Incrblob structures.
+*/
+typedef struct Incrblob Incrblob;
+struct Incrblob {
+ int nByte; /* Size of open blob, in bytes */
+ int iOffset; /* Byte offset of blob in cursor data */
+ u16 iCol; /* Table column this handle is open on */
+ BtCursor *pCsr; /* Cursor pointing at blob row */
+ sqlite3_stmt *pStmt; /* Statement holding cursor open */
+ sqlite3 *db; /* The associated database */
+ char *zDb; /* Database name */
+ Table *pTab; /* Table object */
+};
+
+
+/*
+** This function is used by both blob_open() and blob_reopen(). It seeks
+** the b-tree cursor associated with blob handle p to point to row iRow.
+** If successful, SQLITE_OK is returned and subsequent calls to
+** sqlite3_blob_read() or sqlite3_blob_write() access the specified row.
+**
+** If an error occurs, or if the specified row does not exist or does not
+** contain a value of type TEXT or BLOB in the column nominated when the
+** blob handle was opened, then an error code is returned and *pzErr may
+** be set to point to a buffer containing an error message. It is the
+** responsibility of the caller to free the error message buffer using
+** sqlite3DbFree().
+**
+** If an error does occur, then the b-tree cursor is closed. All subsequent
+** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will
+** immediately return SQLITE_ABORT.
+*/
+static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
+ int rc; /* Error code */
+ char *zErr = 0; /* Error message */
+ Vdbe *v = (Vdbe *)p->pStmt;
+
+ /* Set the value of register r[1] in the SQL statement to integer iRow.
+ ** This is done directly as a performance optimization
+ */
+ v->aMem[1].flags = MEM_Int;
+ v->aMem[1].u.i = iRow;
+
+ /* If the statement has been run before (and is paused at the OP_ResultRow)
+ ** then back it up to the point where it does the OP_NotExists. This could
+ ** have been down with an extra OP_Goto, but simply setting the program
+ ** counter is faster. */
+ if( v->pc>4 ){
+ v->pc = 4;
+ assert( v->aOp[v->pc].opcode==OP_NotExists );
+ rc = sqlite3VdbeExec(v);
+ }else{
+ rc = sqlite3_step(p->pStmt);
+ }
+ if( rc==SQLITE_ROW ){
+ VdbeCursor *pC = v->apCsr[0];
+ u32 type;
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ type = pC->nHdrParsed>p->iCol ? pC->aType[p->iCol] : 0;
+ testcase( pC->nHdrParsed==p->iCol );
+ testcase( pC->nHdrParsed==p->iCol+1 );
+ if( type<12 ){
+ zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
+ type==0?"null": type==7?"real": "integer"
+ );
+ rc = SQLITE_ERROR;
+ sqlite3_finalize(p->pStmt);
+ p->pStmt = 0;
+ }else{
+ p->iOffset = pC->aType[p->iCol + pC->nField];
+ p->nByte = sqlite3VdbeSerialTypeLen(type);
+ p->pCsr = pC->uc.pCursor;
+ sqlite3BtreeIncrblobCursor(p->pCsr);
+ }
+ }
+
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ }else if( p->pStmt ){
+ rc = sqlite3_finalize(p->pStmt);
+ p->pStmt = 0;
+ if( rc==SQLITE_OK ){
+ zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow);
+ rc = SQLITE_ERROR;
+ }else{
+ zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db));
+ }
+ }
+
+ assert( rc!=SQLITE_OK || zErr==0 );
+ assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE );
+
+ *pzErr = zErr;
+ return rc;
+}
+
+/*
+** Open a blob handle.
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3* db, /* The database connection */
+ const char *zDb, /* The attached database containing the blob */
+ const char *zTable, /* The table containing the blob */
+ const char *zColumn, /* The column containing the blob */
+ sqlite_int64 iRow, /* The row containing the glob */
+ int wrFlag, /* True -> read/write access, false -> read-only */
+ sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
+){
+ int nAttempt = 0;
+ int iCol; /* Index of zColumn in row-record */
+ int rc = SQLITE_OK;
+ char *zErr = 0;
+ Table *pTab;
+ Incrblob *pBlob = 0;
+ Parse sParse;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppBlob==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ *ppBlob = 0;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zTable==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ wrFlag = !!wrFlag; /* wrFlag = (wrFlag ? 1 : 0); */
+
+ sqlite3_mutex_enter(db->mutex);
+
+ pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
+ while(1){
+ sqlite3ParseObjectInit(&sParse,db);
+ if( !pBlob ) goto blob_open_out;
+ sqlite3DbFree(db, zErr);
+ zErr = 0;
+
+ sqlite3BtreeEnterAll(db);
+ pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
+ if( pTab && IsVirtual(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
+ }
+ if( pTab && !HasRowid(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open table without rowid: %s", zTable);
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab && IsView(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
+ }
+#endif
+ if( !pTab ){
+ if( sParse.zErrMsg ){
+ sqlite3DbFree(db, zErr);
+ zErr = sParse.zErrMsg;
+ sParse.zErrMsg = 0;
+ }
+ rc = SQLITE_ERROR;
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+ pBlob->pTab = pTab;
+ pBlob->zDb = db->aDb[sqlite3SchemaToIndex(db, pTab->pSchema)].zDbSName;
+
+ /* Now search pTab for the exact column. */
+ for(iCol=0; iCol<pTab->nCol; iCol++) {
+ if( sqlite3StrICmp(pTab->aCol[iCol].zCnName, zColumn)==0 ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn);
+ rc = SQLITE_ERROR;
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+
+ /* If the value is being opened for writing, check that the
+ ** column is not indexed, and that it is not part of a foreign key.
+ */
+ if( wrFlag ){
+ const char *zFault = 0;
+ Index *pIdx;
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( db->flags&SQLITE_ForeignKeys ){
+ /* Check that the column is not part of an FK child key definition. It
+ ** is not necessary to check if it is part of a parent key, as parent
+ ** key columns must be indexed. The check below will pick up this
+ ** case. */
+ FKey *pFKey;
+ assert( IsOrdinaryTable(pTab) );
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ int j;
+ for(j=0; j<pFKey->nCol; j++){
+ if( pFKey->aCol[j].iFrom==iCol ){
+ zFault = "foreign key";
+ }
+ }
+ }
+ }
+#endif
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int j;
+ for(j=0; j<pIdx->nKeyCol; j++){
+ /* FIXME: Be smarter about indexes that use expressions */
+ if( pIdx->aiColumn[j]==iCol || pIdx->aiColumn[j]==XN_EXPR ){
+ zFault = "indexed";
+ }
+ }
+ }
+ if( zFault ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault);
+ rc = SQLITE_ERROR;
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+ }
+
+ pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(&sParse);
+ assert( pBlob->pStmt || db->mallocFailed );
+ if( pBlob->pStmt ){
+
+ /* This VDBE program seeks a btree cursor to the identified
+ ** db/table/row entry. The reason for using a vdbe program instead
+ ** of writing code to use the b-tree layer directly is that the
+ ** vdbe program will take advantage of the various transaction,
+ ** locking and error handling infrastructure built into the vdbe.
+ **
+ ** After seeking the cursor, the vdbe executes an OP_ResultRow.
+ ** Code external to the Vdbe then "borrows" the b-tree cursor and
+ ** uses it to implement the blob_read(), blob_write() and
+ ** blob_bytes() functions.
+ **
+ ** The sqlite3_blob_close() function finalizes the vdbe program,
+ ** which closes the b-tree cursor and (possibly) commits the
+ ** transaction.
+ */
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList openBlob[] = {
+ {OP_TableLock, 0, 0, 0}, /* 0: Acquire a read or write lock */
+ {OP_OpenRead, 0, 0, 0}, /* 1: Open a cursor */
+ /* blobSeekToRow() will initialize r[1] to the desired rowid */
+ {OP_NotExists, 0, 5, 1}, /* 2: Seek the cursor to rowid=r[1] */
+ {OP_Column, 0, 0, 1}, /* 3 */
+ {OP_ResultRow, 1, 0, 0}, /* 4 */
+ {OP_Halt, 0, 0, 0}, /* 5 */
+ };
+ Vdbe *v = (Vdbe *)pBlob->pStmt;
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ VdbeOp *aOp;
+
+ sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, wrFlag,
+ pTab->pSchema->schema_cookie,
+ pTab->pSchema->iGeneration);
+ sqlite3VdbeChangeP5(v, 1);
+ assert( sqlite3VdbeCurrentAddr(v)==2 || db->mallocFailed );
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);
+
+ /* Make sure a mutex is held on the table to be accessed */
+ sqlite3VdbeUsesBtree(v, iDb);
+
+ if( db->mallocFailed==0 ){
+ assert( aOp!=0 );
+ /* Configure the OP_TableLock instruction */
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ aOp[0].opcode = OP_Noop;
+#else
+ aOp[0].p1 = iDb;
+ aOp[0].p2 = pTab->tnum;
+ aOp[0].p3 = wrFlag;
+ sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT);
+ }
+ if( db->mallocFailed==0 ){
+#endif
+
+ /* Remove either the OP_OpenWrite or OpenRead. Set the P2
+ ** parameter of the other to pTab->tnum. */
+ if( wrFlag ) aOp[1].opcode = OP_OpenWrite;
+ aOp[1].p2 = pTab->tnum;
+ aOp[1].p3 = iDb;
+
+ /* Configure the number of columns. Configure the cursor to
+ ** think that the table has one more column than it really
+ ** does. An OP_Column to retrieve this imaginary column will
+ ** always return an SQL NULL. This is useful because it means
+ ** we can invoke OP_Column to fill in the vdbe cursors type
+ ** and offset cache without causing any IO.
+ */
+ aOp[1].p4type = P4_INT32;
+ aOp[1].p4.i = pTab->nCol+1;
+ aOp[3].p2 = pTab->nCol;
+
+ sParse.nVar = 0;
+ sParse.nMem = 1;
+ sParse.nTab = 1;
+ sqlite3VdbeMakeReady(v, &sParse);
+ }
+ }
+
+ pBlob->iCol = iCol;
+ pBlob->db = db;
+ sqlite3BtreeLeaveAll(db);
+ if( db->mallocFailed ){
+ goto blob_open_out;
+ }
+ rc = blobSeekToRow(pBlob, iRow, &zErr);
+ if( (++nAttempt)>=SQLITE_MAX_SCHEMA_RETRY || rc!=SQLITE_SCHEMA ) break;
+ sqlite3ParseObjectReset(&sParse);
+ }
+
+blob_open_out:
+ if( rc==SQLITE_OK && db->mallocFailed==0 ){
+ *ppBlob = (sqlite3_blob *)pBlob;
+ }else{
+ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt);
+ sqlite3DbFree(db, pBlob);
+ }
+ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : 0), zErr);
+ sqlite3DbFree(db, zErr);
+ sqlite3ParseObjectReset(&sParse);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Close a blob handle that was previously created using
+** sqlite3_blob_open().
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ int rc;
+ sqlite3 *db;
+
+ if( p ){
+ sqlite3_stmt *pStmt = p->pStmt;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3DbFree(db, p);
+ sqlite3_mutex_leave(db->mutex);
+ rc = sqlite3_finalize(pStmt);
+ }else{
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+
+/*
+** Perform a read or write operation on a blob
+*/
+static int blobReadWrite(
+ sqlite3_blob *pBlob,
+ void *z,
+ int n,
+ int iOffset,
+ int (*xCall)(BtCursor*, u32, u32, void*)
+){
+ int rc;
+ Incrblob *p = (Incrblob *)pBlob;
+ Vdbe *v;
+ sqlite3 *db;
+
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+ v = (Vdbe*)p->pStmt;
+
+ if( n<0 || iOffset<0 || ((sqlite3_int64)iOffset+n)>p->nByte ){
+ /* Request is out of range. Return a transient error. */
+ rc = SQLITE_ERROR;
+ }else if( v==0 ){
+ /* If there is no statement handle, then the blob-handle has
+ ** already been invalidated. Return SQLITE_ABORT in this case.
+ */
+ rc = SQLITE_ABORT;
+ }else{
+ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
+ ** returned, clean-up the statement handle.
+ */
+ assert( db == v->db );
+ sqlite3BtreeEnterCursor(p->pCsr);
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( xCall==sqlite3BtreePutData && db->xPreUpdateCallback ){
+ /* If a pre-update hook is registered and this is a write cursor,
+ ** invoke it here.
+ **
+ ** TODO: The preupdate-hook is passed SQLITE_DELETE, even though this
+ ** operation should really be an SQLITE_UPDATE. This is probably
+ ** incorrect, but is convenient because at this point the new.* values
+ ** are not easily obtainable. And for the sessions module, an
+ ** SQLITE_UPDATE where the PK columns do not change is handled in the
+ ** same way as an SQLITE_DELETE (the SQLITE_DELETE code is actually
+ ** slightly more efficient). Since you cannot write to a PK column
+ ** using the incremental-blob API, this works. For the sessions module
+ ** anyhow.
+ */
+ sqlite3_int64 iKey;
+ iKey = sqlite3BtreeIntegerKey(p->pCsr);
+ assert( v->apCsr[0]!=0 );
+ assert( v->apCsr[0]->eCurType==CURTYPE_BTREE );
+ sqlite3VdbePreUpdateHook(
+ v, v->apCsr[0], SQLITE_DELETE, p->zDb, p->pTab, iKey, -1, p->iCol
+ );
+ }
+#endif
+
+ rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
+ sqlite3BtreeLeaveCursor(p->pCsr);
+ if( rc==SQLITE_ABORT ){
+ sqlite3VdbeFinalize(v);
+ p->pStmt = 0;
+ }else{
+ v->rc = rc;
+ }
+ }
+ sqlite3Error(db, rc);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Read data from a blob handle.
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreePayloadChecked);
+}
+
+/*
+** Write data to a blob handle.
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
+}
+
+/*
+** Query a blob handle for the size of the data.
+**
+** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
+** so no mutex is required for access.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ return (p && p->pStmt) ? p->nByte : 0;
+}
+
+/*
+** Move an existing blob handle to point to a different row of the same
+** database table.
+**
+** If an error occurs, or if the specified row does not exist or does not
+** contain a blob or text value, then an error code is returned and the
+** database handle error code and message set. If this happens, then all
+** subsequent calls to sqlite3_blob_xxx() functions (except blob_close())
+** immediately return SQLITE_ABORT.
+*/
+SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
+ int rc;
+ Incrblob *p = (Incrblob *)pBlob;
+ sqlite3 *db;
+
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+
+ if( p->pStmt==0 ){
+ /* If there is no statement handle, then the blob-handle has
+ ** already been invalidated. Return SQLITE_ABORT in this case.
+ */
+ rc = SQLITE_ABORT;
+ }else{
+ char *zErr;
+ ((Vdbe*)p->pStmt)->rc = SQLITE_OK;
+ rc = blobSeekToRow(p, iRow, &zErr);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : 0), zErr);
+ sqlite3DbFree(db, zErr);
+ }
+ assert( rc!=SQLITE_SCHEMA );
+ }
+
+ rc = sqlite3ApiExit(db, rc);
+ assert( rc==SQLITE_OK || p->pStmt==0 );
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
+
+/************** End of vdbeblob.c ********************************************/
+/************** Begin file vdbesort.c ****************************************/
+/*
+** 2011-07-09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for the VdbeSorter object, used in concert with
+** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements
+** or by SELECT statements with ORDER BY clauses that cannot be satisfied
+** using indexes and without LIMIT clauses.
+**
+** The VdbeSorter object implements a multi-threaded external merge sort
+** algorithm that is efficient even if the number of elements being sorted
+** exceeds the available memory.
+**
+** Here is the (internal, non-API) interface between this module and the
+** rest of the SQLite system:
+**
+** sqlite3VdbeSorterInit() Create a new VdbeSorter object.
+**
+** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter
+** object. The row is a binary blob in the
+** OP_MakeRecord format that contains both
+** the ORDER BY key columns and result columns
+** in the case of a SELECT w/ ORDER BY, or
+** the complete record for an index entry
+** in the case of a CREATE INDEX.
+**
+** sqlite3VdbeSorterRewind() Sort all content previously added.
+** Position the read cursor on the
+** first sorted element.
+**
+** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted
+** element.
+**
+** sqlite3VdbeSorterRowkey() Return the complete binary blob for the
+** row currently under the read cursor.
+**
+** sqlite3VdbeSorterCompare() Compare the binary blob for the row
+** currently under the read cursor against
+** another binary blob X and report if
+** X is strictly less than the read cursor.
+** Used to enforce uniqueness in a
+** CREATE UNIQUE INDEX statement.
+**
+** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim
+** all resources.
+**
+** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This
+** is like Close() followed by Init() only
+** much faster.
+**
+** The interfaces above must be called in a particular order. Write() can
+** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and
+** Compare() can only occur in between Rewind() and Close()/Reset(). i.e.
+**
+** Init()
+** for each record: Write()
+** Rewind()
+** Rowkey()/Compare()
+** Next()
+** Close()
+**
+** Algorithm:
+**
+** Records passed to the sorter via calls to Write() are initially held
+** unsorted in main memory. Assuming the amount of memory used never exceeds
+** a threshold, when Rewind() is called the set of records is sorted using
+** an in-memory merge sort. In this case, no temporary files are required
+** and subsequent calls to Rowkey(), Next() and Compare() read records
+** directly from main memory.
+**
+** If the amount of space used to store records in main memory exceeds the
+** threshold, then the set of records currently in memory are sorted and
+** written to a temporary file in "Packed Memory Array" (PMA) format.
+** A PMA created at this point is known as a "level-0 PMA". Higher levels
+** of PMAs may be created by merging existing PMAs together - for example
+** merging two or more level-0 PMAs together creates a level-1 PMA.
+**
+** The threshold for the amount of main memory to use before flushing
+** records to a PMA is roughly the same as the limit configured for the
+** page-cache of the main database. Specifically, the threshold is set to
+** the value returned by "PRAGMA main.page_size" multipled by
+** that returned by "PRAGMA main.cache_size", in bytes.
+**
+** If the sorter is running in single-threaded mode, then all PMAs generated
+** are appended to a single temporary file. Or, if the sorter is running in
+** multi-threaded mode then up to (N+1) temporary files may be opened, where
+** N is the configured number of worker threads. In this case, instead of
+** sorting the records and writing the PMA to a temporary file itself, the
+** calling thread usually launches a worker thread to do so. Except, if
+** there are already N worker threads running, the main thread does the work
+** itself.
+**
+** The sorter is running in multi-threaded mode if (a) the library was built
+** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
+** than zero, and (b) worker threads have been enabled at runtime by calling
+** "PRAGMA threads=N" with some value of N greater than 0.
+**
+** When Rewind() is called, any data remaining in memory is flushed to a
+** final PMA. So at this point the data is stored in some number of sorted
+** PMAs within temporary files on disk.
+**
+** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
+** sorter is running in single-threaded mode, then these PMAs are merged
+** incrementally as keys are retreived from the sorter by the VDBE. The
+** MergeEngine object, described in further detail below, performs this
+** merge.
+**
+** Or, if running in multi-threaded mode, then a background thread is
+** launched to merge the existing PMAs. Once the background thread has
+** merged T bytes of data into a single sorted PMA, the main thread
+** begins reading keys from that PMA while the background thread proceeds
+** with merging the next T bytes of data. And so on.
+**
+** Parameter T is set to half the value of the memory threshold used
+** by Write() above to determine when to create a new PMA.
+**
+** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when
+** Rewind() is called, then a hierarchy of incremental-merges is used.
+** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on
+** disk are merged together. Then T bytes of data from the second set, and
+** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT
+** PMAs at a time. This done is to improve locality.
+**
+** If running in multi-threaded mode and there are more than
+** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more
+** than one background thread may be created. Specifically, there may be
+** one background thread for each temporary file on disk, and one background
+** thread to merge the output of each of the others to a single PMA for
+** the main thread to read from.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/*
+** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various
+** messages to stderr that may be helpful in understanding the performance
+** characteristics of the sorter in multi-threaded mode.
+*/
+#if 0
+# define SQLITE_DEBUG_SORTER_THREADS 1
+#endif
+
+/*
+** Hard-coded maximum amount of data to accumulate in memory before flushing
+** to a level 0 PMA. The purpose of this limit is to prevent various integer
+** overflows. 512MiB.
+*/
+#define SQLITE_MAX_PMASZ (1<<29)
+
+/*
+** Private objects used by the sorter
+*/
+typedef struct MergeEngine MergeEngine; /* Merge PMAs together */
+typedef struct PmaReader PmaReader; /* Incrementally read one PMA */
+typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */
+typedef struct SorterRecord SorterRecord; /* A record being sorted */
+typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */
+typedef struct SorterFile SorterFile; /* Temporary file object wrapper */
+typedef struct SorterList SorterList; /* In-memory list of records */
+typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */
+
+/*
+** A container for a temp file handle and the current amount of data
+** stored in the file.
+*/
+struct SorterFile {
+ sqlite3_file *pFd; /* File handle */
+ i64 iEof; /* Bytes of data stored in pFd */
+};
+
+/*
+** An in-memory list of objects to be sorted.
+**
+** If aMemory==0 then each object is allocated separately and the objects
+** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects
+** are stored in the aMemory[] bulk memory, one right after the other, and
+** are connected using SorterRecord.u.iNext.
+*/
+struct SorterList {
+ SorterRecord *pList; /* Linked list of records */
+ u8 *aMemory; /* If non-NULL, bulk memory to hold pList */
+ int szPMA; /* Size of pList as PMA in bytes */
+};
+
+/*
+** The MergeEngine object is used to combine two or more smaller PMAs into
+** one big PMA using a merge operation. Separate PMAs all need to be
+** combined into one big PMA in order to be able to step through the sorted
+** records in order.
+**
+** The aReadr[] array contains a PmaReader object for each of the PMAs being
+** merged. An aReadr[] object either points to a valid key or else is at EOF.
+** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.)
+** For the purposes of the paragraphs below, we assume that the array is
+** actually N elements in size, where N is the smallest power of 2 greater
+** to or equal to the number of PMAs being merged. The extra aReadr[] elements
+** are treated as if they are empty (always at EOF).
+**
+** The aTree[] array is also N elements in size. The value of N is stored in
+** the MergeEngine.nTree variable.
+**
+** The final (N/2) elements of aTree[] contain the results of comparing
+** pairs of PMA keys together. Element i contains the result of
+** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the
+** aTree element is set to the index of it.
+**
+** For the purposes of this comparison, EOF is considered greater than any
+** other key value. If the keys are equal (only possible with two EOF
+** values), it doesn't matter which index is stored.
+**
+** The (N/4) elements of aTree[] that precede the final (N/2) described
+** above contains the index of the smallest of each block of 4 PmaReaders
+** And so on. So that aTree[1] contains the index of the PmaReader that
+** currently points to the smallest key value. aTree[0] is unused.
+**
+** Example:
+**
+** aReadr[0] -> Banana
+** aReadr[1] -> Feijoa
+** aReadr[2] -> Elderberry
+** aReadr[3] -> Currant
+** aReadr[4] -> Grapefruit
+** aReadr[5] -> Apple
+** aReadr[6] -> Durian
+** aReadr[7] -> EOF
+**
+** aTree[] = { X, 5 0, 5 0, 3, 5, 6 }
+**
+** The current element is "Apple" (the value of the key indicated by
+** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will
+** be advanced to the next key in its segment. Say the next key is
+** "Eggplant":
+**
+** aReadr[5] -> Eggplant
+**
+** The contents of aTree[] are updated first by comparing the new PmaReader
+** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader
+** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
+** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader
+** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
+** so the value written into element 1 of the array is 0. As follows:
+**
+** aTree[] = { X, 0 0, 6 0, 3, 5, 6 }
+**
+** In other words, each time we advance to the next sorter element, log2(N)
+** key comparison operations are required, where N is the number of segments
+** being merged (rounded up to the next power of 2).
+*/
+struct MergeEngine {
+ int nTree; /* Used size of aTree/aReadr (power of 2) */
+ SortSubtask *pTask; /* Used by this thread only */
+ int *aTree; /* Current state of incremental merge */
+ PmaReader *aReadr; /* Array of PmaReaders to merge data from */
+};
+
+/*
+** This object represents a single thread of control in a sort operation.
+** Exactly VdbeSorter.nTask instances of this object are allocated
+** as part of each VdbeSorter object. Instances are never allocated any
+** other way. VdbeSorter.nTask is set to the number of worker threads allowed
+** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for
+** single-threaded operation, there is exactly one instance of this object
+** and for multi-threaded operation there are two or more instances.
+**
+** Essentially, this structure contains all those fields of the VdbeSorter
+** structure for which each thread requires a separate instance. For example,
+** each thread requries its own UnpackedRecord object to unpack records in
+** as part of comparison operations.
+**
+** Before a background thread is launched, variable bDone is set to 0. Then,
+** right before it exits, the thread itself sets bDone to 1. This is used for
+** two purposes:
+**
+** 1. When flushing the contents of memory to a level-0 PMA on disk, to
+** attempt to select a SortSubtask for which there is not already an
+** active background thread (since doing so causes the main thread
+** to block until it finishes).
+**
+** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call
+** to sqlite3ThreadJoin() is likely to block. Cases that are likely to
+** block provoke debugging output.
+**
+** In both cases, the effects of the main thread seeing (bDone==0) even
+** after the thread has finished are not dire. So we don't worry about
+** memory barriers and such here.
+*/
+typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int);
+struct SortSubtask {
+ SQLiteThread *pThread; /* Background thread, if any */
+ int bDone; /* Set if thread is finished but not joined */
+ VdbeSorter *pSorter; /* Sorter that owns this sub-task */
+ UnpackedRecord *pUnpacked; /* Space to unpack a record */
+ SorterList list; /* List for thread to write to a PMA */
+ int nPMA; /* Number of PMAs currently in file */
+ SorterCompare xCompare; /* Compare function to use */
+ SorterFile file; /* Temp file for level-0 PMAs */
+ SorterFile file2; /* Space for other PMAs */
+};
+
+
+/*
+** Main sorter structure. A single instance of this is allocated for each
+** sorter cursor created by the VDBE.
+**
+** mxKeysize:
+** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(),
+** this variable is updated so as to be set to the size on disk of the
+** largest record in the sorter.
+*/
+struct VdbeSorter {
+ int mnPmaSize; /* Minimum PMA size, in bytes */
+ int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */
+ int mxKeysize; /* Largest serialized key seen so far */
+ int pgsz; /* Main database page size */
+ PmaReader *pReader; /* Readr data from here after Rewind() */
+ MergeEngine *pMerger; /* Or here, if bUseThreads==0 */
+ sqlite3 *db; /* Database connection */
+ KeyInfo *pKeyInfo; /* How to compare records */
+ UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */
+ SorterList list; /* List of in-memory records */
+ int iMemory; /* Offset of free space in list.aMemory */
+ int nMemory; /* Size of list.aMemory allocation in bytes */
+ u8 bUsePMA; /* True if one or more PMAs created */
+ u8 bUseThreads; /* True to use background threads */
+ u8 iPrev; /* Previous thread used to flush PMA */
+ u8 nTask; /* Size of aTask[] array */
+ u8 typeMask;
+ SortSubtask aTask[1]; /* One or more subtasks */
+};
+
+#define SORTER_TYPE_INTEGER 0x01
+#define SORTER_TYPE_TEXT 0x02
+
+/*
+** An instance of the following object is used to read records out of a
+** PMA, in sorted order. The next key to be read is cached in nKey/aKey.
+** aKey might point into aMap or into aBuffer. If neither of those locations
+** contain a contiguous representation of the key, then aAlloc is allocated
+** and the key is copied into aAlloc and aKey is made to poitn to aAlloc.
+**
+** pFd==0 at EOF.
+*/
+struct PmaReader {
+ i64 iReadOff; /* Current read offset */
+ i64 iEof; /* 1 byte past EOF for this PmaReader */
+ int nAlloc; /* Bytes of space at aAlloc */
+ int nKey; /* Number of bytes in key */
+ sqlite3_file *pFd; /* File handle we are reading from */
+ u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */
+ u8 *aKey; /* Pointer to current key */
+ u8 *aBuffer; /* Current read buffer */
+ int nBuffer; /* Size of read buffer in bytes */
+ u8 *aMap; /* Pointer to mapping of entire file */
+ IncrMerger *pIncr; /* Incremental merger */
+};
+
+/*
+** Normally, a PmaReader object iterates through an existing PMA stored
+** within a temp file. However, if the PmaReader.pIncr variable points to
+** an object of the following type, it may be used to iterate/merge through
+** multiple PMAs simultaneously.
+**
+** There are two types of IncrMerger object - single (bUseThread==0) and
+** multi-threaded (bUseThread==1).
+**
+** A multi-threaded IncrMerger object uses two temporary files - aFile[0]
+** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in
+** size. When the IncrMerger is initialized, it reads enough data from
+** pMerger to populate aFile[0]. It then sets variables within the
+** corresponding PmaReader object to read from that file and kicks off
+** a background thread to populate aFile[1] with the next mxSz bytes of
+** sorted record data from pMerger.
+**
+** When the PmaReader reaches the end of aFile[0], it blocks until the
+** background thread has finished populating aFile[1]. It then exchanges
+** the contents of the aFile[0] and aFile[1] variables within this structure,
+** sets the PmaReader fields to read from the new aFile[0] and kicks off
+** another background thread to populate the new aFile[1]. And so on, until
+** the contents of pMerger are exhausted.
+**
+** A single-threaded IncrMerger does not open any temporary files of its
+** own. Instead, it has exclusive access to mxSz bytes of space beginning
+** at offset iStartOff of file pTask->file2. And instead of using a
+** background thread to prepare data for the PmaReader, with a single
+** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with
+** keys from pMerger by the calling thread whenever the PmaReader runs out
+** of data.
+*/
+struct IncrMerger {
+ SortSubtask *pTask; /* Task that owns this merger */
+ MergeEngine *pMerger; /* Merge engine thread reads data from */
+ i64 iStartOff; /* Offset to start writing file at */
+ int mxSz; /* Maximum bytes of data to store */
+ int bEof; /* Set to true when merge is finished */
+ int bUseThread; /* True to use a bg thread for this object */
+ SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */
+};
+
+/*
+** An instance of this object is used for writing a PMA.
+**
+** The PMA is written one record at a time. Each record is of an arbitrary
+** size. But I/O is more efficient if it occurs in page-sized blocks where
+** each block is aligned on a page boundary. This object caches writes to
+** the PMA so that aligned, page-size blocks are written.
+*/
+struct PmaWriter {
+ int eFWErr; /* Non-zero if in an error state */
+ u8 *aBuffer; /* Pointer to write buffer */
+ int nBuffer; /* Size of write buffer in bytes */
+ int iBufStart; /* First byte of buffer to write */
+ int iBufEnd; /* Last byte of buffer to write */
+ i64 iWriteOff; /* Offset of start of buffer in file */
+ sqlite3_file *pFd; /* File handle to write to */
+};
+
+/*
+** This object is the header on a single record while that record is being
+** held in memory and prior to being written out as part of a PMA.
+**
+** How the linked list is connected depends on how memory is being managed
+** by this module. If using a separate allocation for each in-memory record
+** (VdbeSorter.list.aMemory==0), then the list is always connected using the
+** SorterRecord.u.pNext pointers.
+**
+** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0),
+** then while records are being accumulated the list is linked using the
+** SorterRecord.u.iNext offset. This is because the aMemory[] array may
+** be sqlite3Realloc()ed while records are being accumulated. Once the VM
+** has finished passing records to the sorter, or when the in-memory buffer
+** is full, the list is sorted. As part of the sorting process, it is
+** converted to use the SorterRecord.u.pNext pointers. See function
+** vdbeSorterSort() for details.
+*/
+struct SorterRecord {
+ int nVal; /* Size of the record in bytes */
+ union {
+ SorterRecord *pNext; /* Pointer to next record in list */
+ int iNext; /* Offset within aMemory of next record */
+ } u;
+ /* The data for the record immediately follows this header */
+};
+
+/* Return a pointer to the buffer containing the record data for SorterRecord
+** object p. Should be used as if:
+**
+** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
+*/
+#define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))
+
+
+/* Maximum number of PMAs that a single MergeEngine can merge */
+#define SORTER_MAX_MERGE_COUNT 16
+
+static int vdbeIncrSwap(IncrMerger*);
+static void vdbeIncrFree(IncrMerger *);
+
+/*
+** Free all memory belonging to the PmaReader object passed as the
+** argument. All structure fields are set to zero before returning.
+*/
+static void vdbePmaReaderClear(PmaReader *pReadr){
+ sqlite3_free(pReadr->aAlloc);
+ sqlite3_free(pReadr->aBuffer);
+ if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
+ vdbeIncrFree(pReadr->pIncr);
+ memset(pReadr, 0, sizeof(PmaReader));
+}
+
+/*
+** Read the next nByte bytes of data from the PMA p.
+** If successful, set *ppOut to point to a buffer containing the data
+** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
+** error code.
+**
+** The buffer returned in *ppOut is only valid until the
+** next call to this function.
+*/
+static int vdbePmaReadBlob(
+ PmaReader *p, /* PmaReader from which to take the blob */
+ int nByte, /* Bytes of data to read */
+ u8 **ppOut /* OUT: Pointer to buffer containing data */
+){
+ int iBuf; /* Offset within buffer to read from */
+ int nAvail; /* Bytes of data available in buffer */
+
+ if( p->aMap ){
+ *ppOut = &p->aMap[p->iReadOff];
+ p->iReadOff += nByte;
+ return SQLITE_OK;
+ }
+
+ assert( p->aBuffer );
+
+ /* If there is no more data to be read from the buffer, read the next
+ ** p->nBuffer bytes of data from the file into it. Or, if there are less
+ ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */
+ iBuf = p->iReadOff % p->nBuffer;
+ if( iBuf==0 ){
+ int nRead; /* Bytes to read from disk */
+ int rc; /* sqlite3OsRead() return code */
+
+ /* Determine how many bytes of data to read. */
+ if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
+ nRead = p->nBuffer;
+ }else{
+ nRead = (int)(p->iEof - p->iReadOff);
+ }
+ assert( nRead>0 );
+
+ /* Readr data from the file. Return early if an error occurs. */
+ rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff);
+ assert( rc!=SQLITE_IOERR_SHORT_READ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ nAvail = p->nBuffer - iBuf;
+
+ if( nByte<=nAvail ){
+ /* The requested data is available in the in-memory buffer. In this
+ ** case there is no need to make a copy of the data, just return a
+ ** pointer into the buffer to the caller. */
+ *ppOut = &p->aBuffer[iBuf];
+ p->iReadOff += nByte;
+ }else{
+ /* The requested data is not all available in the in-memory buffer.
+ ** In this case, allocate space at p->aAlloc[] to copy the requested
+ ** range into. Then return a copy of pointer p->aAlloc to the caller. */
+ int nRem; /* Bytes remaining to copy */
+
+ /* Extend the p->aAlloc[] allocation if required. */
+ if( p->nAlloc<nByte ){
+ u8 *aNew;
+ sqlite3_int64 nNew = MAX(128, 2*(sqlite3_int64)p->nAlloc);
+ while( nByte>nNew ) nNew = nNew*2;
+ aNew = sqlite3Realloc(p->aAlloc, nNew);
+ if( !aNew ) return SQLITE_NOMEM_BKPT;
+ p->nAlloc = nNew;
+ p->aAlloc = aNew;
+ }
+
+ /* Copy as much data as is available in the buffer into the start of
+ ** p->aAlloc[]. */
+ memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
+ p->iReadOff += nAvail;
+ nRem = nByte - nAvail;
+
+ /* The following loop copies up to p->nBuffer bytes per iteration into
+ ** the p->aAlloc[] buffer. */
+ while( nRem>0 ){
+ int rc; /* vdbePmaReadBlob() return code */
+ int nCopy; /* Number of bytes to copy */
+ u8 *aNext; /* Pointer to buffer to copy data from */
+
+ nCopy = nRem;
+ if( nRem>p->nBuffer ) nCopy = p->nBuffer;
+ rc = vdbePmaReadBlob(p, nCopy, &aNext);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( aNext!=p->aAlloc );
+ memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
+ nRem -= nCopy;
+ }
+
+ *ppOut = p->aAlloc;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Read a varint from the stream of data accessed by p. Set *pnOut to
+** the value read.
+*/
+static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){
+ int iBuf;
+
+ if( p->aMap ){
+ p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut);
+ }else{
+ iBuf = p->iReadOff % p->nBuffer;
+ if( iBuf && (p->nBuffer-iBuf)>=9 ){
+ p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
+ }else{
+ u8 aVarint[16], *a;
+ int i = 0, rc;
+ do{
+ rc = vdbePmaReadBlob(p, 1, &a);
+ if( rc ) return rc;
+ aVarint[(i++)&0xf] = a[0];
+ }while( (a[0]&0x80)!=0 );
+ sqlite3GetVarint(aVarint, pnOut);
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Attempt to memory map file pFile. If successful, set *pp to point to the
+** new mapping and return SQLITE_OK. If the mapping is not attempted
+** (because the file is too large or the VFS layer is configured not to use
+** mmap), return SQLITE_OK and set *pp to NULL.
+**
+** Or, if an error occurs, return an SQLite error code. The final value of
+** *pp is undefined in this case.
+*/
+static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
+ int rc = SQLITE_OK;
+ if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){
+ sqlite3_file *pFd = pFile->pFd;
+ if( pFd->pMethods->iVersion>=3 ){
+ rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp);
+ testcase( rc!=SQLITE_OK );
+ }
+ }
+ return rc;
+}
+
+/*
+** Attach PmaReader pReadr to file pFile (if it is not already attached to
+** that file) and seek it to offset iOff within the file. Return SQLITE_OK
+** if successful, or an SQLite error code if an error occurs.
+*/
+static int vdbePmaReaderSeek(
+ SortSubtask *pTask, /* Task context */
+ PmaReader *pReadr, /* Reader whose cursor is to be moved */
+ SorterFile *pFile, /* Sorter file to read from */
+ i64 iOff /* Offset in pFile */
+){
+ int rc = SQLITE_OK;
+
+ assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 );
+
+ if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ;
+ if( pReadr->aMap ){
+ sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
+ pReadr->aMap = 0;
+ }
+ pReadr->iReadOff = iOff;
+ pReadr->iEof = pFile->iEof;
+ pReadr->pFd = pFile->pFd;
+
+ rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap);
+ if( rc==SQLITE_OK && pReadr->aMap==0 ){
+ int pgsz = pTask->pSorter->pgsz;
+ int iBuf = pReadr->iReadOff % pgsz;
+ if( pReadr->aBuffer==0 ){
+ pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz);
+ if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT;
+ pReadr->nBuffer = pgsz;
+ }
+ if( rc==SQLITE_OK && iBuf ){
+ int nRead = pgsz - iBuf;
+ if( (pReadr->iReadOff + nRead) > pReadr->iEof ){
+ nRead = (int)(pReadr->iEof - pReadr->iReadOff);
+ }
+ rc = sqlite3OsRead(
+ pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff
+ );
+ testcase( rc!=SQLITE_OK );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if
+** no error occurs, or an SQLite error code if one does.
+*/
+static int vdbePmaReaderNext(PmaReader *pReadr){
+ int rc = SQLITE_OK; /* Return Code */
+ u64 nRec = 0; /* Size of record in bytes */
+
+
+ if( pReadr->iReadOff>=pReadr->iEof ){
+ IncrMerger *pIncr = pReadr->pIncr;
+ int bEof = 1;
+ if( pIncr ){
+ rc = vdbeIncrSwap(pIncr);
+ if( rc==SQLITE_OK && pIncr->bEof==0 ){
+ rc = vdbePmaReaderSeek(
+ pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff
+ );
+ bEof = 0;
+ }
+ }
+
+ if( bEof ){
+ /* This is an EOF condition */
+ vdbePmaReaderClear(pReadr);
+ testcase( rc!=SQLITE_OK );
+ return rc;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = vdbePmaReadVarint(pReadr, &nRec);
+ }
+ if( rc==SQLITE_OK ){
+ pReadr->nKey = (int)nRec;
+ rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey);
+ testcase( rc!=SQLITE_OK );
+ }
+
+ return rc;
+}
+
+/*
+** Initialize PmaReader pReadr to scan through the PMA stored in file pFile
+** starting at offset iStart and ending at offset iEof-1. This function
+** leaves the PmaReader pointing to the first key in the PMA (or EOF if the
+** PMA is empty).
+**
+** If the pnByte parameter is NULL, then it is assumed that the file
+** contains a single PMA, and that that PMA omits the initial length varint.
+*/
+static int vdbePmaReaderInit(
+ SortSubtask *pTask, /* Task context */
+ SorterFile *pFile, /* Sorter file to read from */
+ i64 iStart, /* Start offset in pFile */
+ PmaReader *pReadr, /* PmaReader to populate */
+ i64 *pnByte /* IN/OUT: Increment this value by PMA size */
+){
+ int rc;
+
+ assert( pFile->iEof>iStart );
+ assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
+ assert( pReadr->aBuffer==0 );
+ assert( pReadr->aMap==0 );
+
+ rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
+ if( rc==SQLITE_OK ){
+ u64 nByte = 0; /* Size of PMA in bytes */
+ rc = vdbePmaReadVarint(pReadr, &nByte);
+ pReadr->iEof = pReadr->iReadOff + nByte;
+ *pnByte += nByte;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = vdbePmaReaderNext(pReadr);
+ }
+ return rc;
+}
+
+/*
+** A version of vdbeSorterCompare() that assumes that it has already been
+** determined that the first field of key1 is equal to the first field of
+** key2.
+*/
+static int vdbeSorterCompareTail(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ UnpackedRecord *r2 = pTask->pUnpacked;
+ if( *pbKey2Cached==0 ){
+ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
+ *pbKey2Cached = 1;
+ }
+ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1);
+}
+
+/*
+** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
+** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences
+** used by the comparison. Return the result of the comparison.
+**
+** If IN/OUT parameter *pbKey2Cached is true when this function is called,
+** it is assumed that (pTask->pUnpacked) contains the unpacked version
+** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked
+** version of key2 and *pbKey2Cached set to true before returning.
+**
+** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set
+** to SQLITE_NOMEM.
+*/
+static int vdbeSorterCompare(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ UnpackedRecord *r2 = pTask->pUnpacked;
+ if( !*pbKey2Cached ){
+ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
+ *pbKey2Cached = 1;
+ }
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
+}
+
+/*
+** A specially optimized version of vdbeSorterCompare() that assumes that
+** the first field of each key is a TEXT value and that the collation
+** sequence to compare them with is BINARY.
+*/
+static int vdbeSorterCompareText(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ const u8 * const p1 = (const u8 * const)pKey1;
+ const u8 * const p2 = (const u8 * const)pKey2;
+ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */
+ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */
+
+ int n1;
+ int n2;
+ int res;
+
+ getVarint32NR(&p1[1], n1);
+ getVarint32NR(&p2[1], n2);
+ res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2);
+ if( res==0 ){
+ res = n1 - n2;
+ }
+
+ if( res==0 ){
+ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){
+ res = vdbeSorterCompareTail(
+ pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
+ );
+ }
+ }else{
+ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) );
+ if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){
+ res = res * -1;
+ }
+ }
+
+ return res;
+}
+
+/*
+** A specially optimized version of vdbeSorterCompare() that assumes that
+** the first field of each key is an INTEGER value.
+*/
+static int vdbeSorterCompareInt(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ const u8 * const p1 = (const u8 * const)pKey1;
+ const u8 * const p2 = (const u8 * const)pKey2;
+ const int s1 = p1[1]; /* Left hand serial type */
+ const int s2 = p2[1]; /* Right hand serial type */
+ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */
+ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */
+ int res; /* Return value */
+
+ assert( (s1>0 && s1<7) || s1==8 || s1==9 );
+ assert( (s2>0 && s2<7) || s2==8 || s2==9 );
+
+ if( s1==s2 ){
+ /* The two values have the same sign. Compare using memcmp(). */
+ static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 };
+ const u8 n = aLen[s1];
+ int i;
+ res = 0;
+ for(i=0; i<n; i++){
+ if( (res = v1[i] - v2[i])!=0 ){
+ if( ((v1[0] ^ v2[0]) & 0x80)!=0 ){
+ res = v1[0] & 0x80 ? -1 : +1;
+ }
+ break;
+ }
+ }
+ }else if( s1>7 && s2>7 ){
+ res = s1 - s2;
+ }else{
+ if( s2>7 ){
+ res = +1;
+ }else if( s1>7 ){
+ res = -1;
+ }else{
+ res = s1 - s2;
+ }
+ assert( res!=0 );
+
+ if( res>0 ){
+ if( *v1 & 0x80 ) res = -1;
+ }else{
+ if( *v2 & 0x80 ) res = +1;
+ }
+ }
+
+ if( res==0 ){
+ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){
+ res = vdbeSorterCompareTail(
+ pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
+ );
+ }
+ }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){
+ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) );
+ res = res * -1;
+ }
+
+ return res;
+}
+
+/*
+** Initialize the temporary index cursor just opened as a sorter cursor.
+**
+** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField)
+** to determine the number of fields that should be compared from the
+** records being sorted. However, if the value passed as argument nField
+** is non-zero and the sorter is able to guarantee a stable sort, nField
+** is used instead. This is used when sorting records for a CREATE INDEX
+** statement. In this case, keys are always delivered to the sorter in
+** order of the primary key, which happens to be make up the final part
+** of the records being sorted. So if the sort is stable, there is never
+** any reason to compare PK fields and they can be ignored for a small
+** performance boost.
+**
+** The sorter can guarantee a stable sort when running in single-threaded
+** mode, but not in multi-threaded mode.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterInit(
+ sqlite3 *db, /* Database connection (for malloc()) */
+ int nField, /* Number of key fields in each record */
+ VdbeCursor *pCsr /* Cursor that holds the new sorter */
+){
+ int pgsz; /* Page size of main database */
+ int i; /* Used to iterate through aTask[] */
+ VdbeSorter *pSorter; /* The new sorter */
+ KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */
+ int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */
+ int sz; /* Size of pSorter in bytes */
+ int rc = SQLITE_OK;
+#if SQLITE_MAX_WORKER_THREADS==0
+# define nWorker 0
+#else
+ int nWorker;
+#endif
+
+ /* Initialize the upper limit on the number of worker threads */
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){
+ nWorker = 0;
+ }else{
+ nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS];
+ }
+#endif
+
+ /* Do not allow the total number of threads (main thread + all workers)
+ ** to exceed the maximum merge count */
+#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
+ if( nWorker>=SORTER_MAX_MERGE_COUNT ){
+ nWorker = SORTER_MAX_MERGE_COUNT-1;
+ }
+#endif
+
+ assert( pCsr->pKeyInfo );
+ assert( !pCsr->isEphemeral );
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*);
+ sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);
+
+ pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
+ pCsr->uc.pSorter = pSorter;
+ if( pSorter==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ Btree *pBt = db->aDb[0].pBt;
+ pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
+ memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
+ pKeyInfo->db = 0;
+ if( nField && nWorker==0 ){
+ pKeyInfo->nKeyField = nField;
+ }
+ sqlite3BtreeEnter(pBt);
+ pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt);
+ sqlite3BtreeLeave(pBt);
+ pSorter->nTask = nWorker + 1;
+ pSorter->iPrev = (u8)(nWorker - 1);
+ pSorter->bUseThreads = (pSorter->nTask>1);
+ pSorter->db = db;
+ for(i=0; i<pSorter->nTask; i++){
+ SortSubtask *pTask = &pSorter->aTask[i];
+ pTask->pSorter = pSorter;
+ }
+
+ if( !sqlite3TempInMemory(db) ){
+ i64 mxCache; /* Cache size in bytes*/
+ u32 szPma = sqlite3GlobalConfig.szPma;
+ pSorter->mnPmaSize = szPma * pgsz;
+
+ mxCache = db->aDb[0].pSchema->cache_size;
+ if( mxCache<0 ){
+ /* A negative cache-size value C indicates that the cache is abs(C)
+ ** KiB in size. */
+ mxCache = mxCache * -1024;
+ }else{
+ mxCache = mxCache * pgsz;
+ }
+ mxCache = MIN(mxCache, SQLITE_MAX_PMASZ);
+ pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache);
+
+ /* Avoid large memory allocations if the application has requested
+ ** SQLITE_CONFIG_SMALL_MALLOC. */
+ if( sqlite3GlobalConfig.bSmallMalloc==0 ){
+ assert( pSorter->iMemory==0 );
+ pSorter->nMemory = pgsz;
+ pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
+ if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+
+ if( pKeyInfo->nAllField<13
+ && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl)
+ && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0
+ ){
+ pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT;
+ }
+ }
+
+ return rc;
+}
+#undef nWorker /* Defined at the top of this function */
+
+/*
+** Free the list of sorted records starting at pRecord.
+*/
+static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
+ SorterRecord *p;
+ SorterRecord *pNext;
+ for(p=pRecord; p; p=pNext){
+ pNext = p->u.pNext;
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Free all resources owned by the object indicated by argument pTask. All
+** fields of *pTask are zeroed before returning.
+*/
+static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){
+ sqlite3DbFree(db, pTask->pUnpacked);
+#if SQLITE_MAX_WORKER_THREADS>0
+ /* pTask->list.aMemory can only be non-zero if it was handed memory
+ ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */
+ if( pTask->list.aMemory ){
+ sqlite3_free(pTask->list.aMemory);
+ }else
+#endif
+ {
+ assert( pTask->list.aMemory==0 );
+ vdbeSorterRecordFree(0, pTask->list.pList);
+ }
+ if( pTask->file.pFd ){
+ sqlite3OsCloseFree(pTask->file.pFd);
+ }
+ if( pTask->file2.pFd ){
+ sqlite3OsCloseFree(pTask->file2.pFd);
+ }
+ memset(pTask, 0, sizeof(SortSubtask));
+}
+
+#ifdef SQLITE_DEBUG_SORTER_THREADS
+static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){
+ i64 t;
+ int iTask = (pTask - pTask->pSorter->aTask);
+ sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
+ fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent);
+}
+static void vdbeSorterRewindDebug(const char *zEvent){
+ i64 t = 0;
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
+ if( ALWAYS(pVfs) ) sqlite3OsCurrentTimeInt64(pVfs, &t);
+ fprintf(stderr, "%lld:X %s\n", t, zEvent);
+}
+static void vdbeSorterPopulateDebug(
+ SortSubtask *pTask,
+ const char *zEvent
+){
+ i64 t;
+ int iTask = (pTask - pTask->pSorter->aTask);
+ sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
+ fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent);
+}
+static void vdbeSorterBlockDebug(
+ SortSubtask *pTask,
+ int bBlocked,
+ const char *zEvent
+){
+ if( bBlocked ){
+ i64 t;
+ sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
+ fprintf(stderr, "%lld:main %s\n", t, zEvent);
+ }
+}
+#else
+# define vdbeSorterWorkDebug(x,y)
+# define vdbeSorterRewindDebug(y)
+# define vdbeSorterPopulateDebug(x,y)
+# define vdbeSorterBlockDebug(x,y,z)
+#endif
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** Join thread pTask->thread.
+*/
+static int vdbeSorterJoinThread(SortSubtask *pTask){
+ int rc = SQLITE_OK;
+ if( pTask->pThread ){
+#ifdef SQLITE_DEBUG_SORTER_THREADS
+ int bDone = pTask->bDone;
+#endif
+ void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR);
+ vdbeSorterBlockDebug(pTask, !bDone, "enter");
+ (void)sqlite3ThreadJoin(pTask->pThread, &pRet);
+ vdbeSorterBlockDebug(pTask, !bDone, "exit");
+ rc = SQLITE_PTR_TO_INT(pRet);
+ assert( pTask->bDone==1 );
+ pTask->bDone = 0;
+ pTask->pThread = 0;
+ }
+ return rc;
+}
+
+/*
+** Launch a background thread to run xTask(pIn).
+*/
+static int vdbeSorterCreateThread(
+ SortSubtask *pTask, /* Thread will use this task object */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ assert( pTask->pThread==0 && pTask->bDone==0 );
+ return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn);
+}
+
+/*
+** Join all outstanding threads launched by SorterWrite() to create
+** level-0 PMAs.
+*/
+static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){
+ int rc = rcin;
+ int i;
+
+ /* This function is always called by the main user thread.
+ **
+ ** If this function is being called after SorterRewind() has been called,
+ ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread
+ ** is currently attempt to join one of the other threads. To avoid a race
+ ** condition where this thread also attempts to join the same object, join
+ ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */
+ for(i=pSorter->nTask-1; i>=0; i--){
+ SortSubtask *pTask = &pSorter->aTask[i];
+ int rc2 = vdbeSorterJoinThread(pTask);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+ return rc;
+}
+#else
+# define vdbeSorterJoinAll(x,rcin) (rcin)
+# define vdbeSorterJoinThread(pTask) SQLITE_OK
+#endif
+
+/*
+** Allocate a new MergeEngine object capable of handling up to
+** nReader PmaReader inputs.
+**
+** nReader is automatically rounded up to the next power of two.
+** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up.
+*/
+static MergeEngine *vdbeMergeEngineNew(int nReader){
+ int N = 2; /* Smallest power of two >= nReader */
+ int nByte; /* Total bytes of space to allocate */
+ MergeEngine *pNew; /* Pointer to allocated object to return */
+
+ assert( nReader<=SORTER_MAX_MERGE_COUNT );
+
+ while( N<nReader ) N += N;
+ nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader));
+
+ pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte);
+ if( pNew ){
+ pNew->nTree = N;
+ pNew->pTask = 0;
+ pNew->aReadr = (PmaReader*)&pNew[1];
+ pNew->aTree = (int*)&pNew->aReadr[N];
+ }
+ return pNew;
+}
+
+/*
+** Free the MergeEngine object passed as the only argument.
+*/
+static void vdbeMergeEngineFree(MergeEngine *pMerger){
+ int i;
+ if( pMerger ){
+ for(i=0; i<pMerger->nTree; i++){
+ vdbePmaReaderClear(&pMerger->aReadr[i]);
+ }
+ }
+ sqlite3_free(pMerger);
+}
+
+/*
+** Free all resources associated with the IncrMerger object indicated by
+** the first argument.
+*/
+static void vdbeIncrFree(IncrMerger *pIncr){
+ if( pIncr ){
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pIncr->bUseThread ){
+ vdbeSorterJoinThread(pIncr->pTask);
+ if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd);
+ if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd);
+ }
+#endif
+ vdbeMergeEngineFree(pIncr->pMerger);
+ sqlite3_free(pIncr);
+ }
+}
+
+/*
+** Reset a sorting cursor back to its original empty state.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
+ int i;
+ (void)vdbeSorterJoinAll(pSorter, SQLITE_OK);
+ assert( pSorter->bUseThreads || pSorter->pReader==0 );
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pSorter->pReader ){
+ vdbePmaReaderClear(pSorter->pReader);
+ sqlite3DbFree(db, pSorter->pReader);
+ pSorter->pReader = 0;
+ }
+#endif
+ vdbeMergeEngineFree(pSorter->pMerger);
+ pSorter->pMerger = 0;
+ for(i=0; i<pSorter->nTask; i++){
+ SortSubtask *pTask = &pSorter->aTask[i];
+ vdbeSortSubtaskCleanup(db, pTask);
+ pTask->pSorter = pSorter;
+ }
+ if( pSorter->list.aMemory==0 ){
+ vdbeSorterRecordFree(0, pSorter->list.pList);
+ }
+ pSorter->list.pList = 0;
+ pSorter->list.szPMA = 0;
+ pSorter->bUsePMA = 0;
+ pSorter->iMemory = 0;
+ pSorter->mxKeysize = 0;
+ sqlite3DbFree(db, pSorter->pUnpacked);
+ pSorter->pUnpacked = 0;
+}
+
+/*
+** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
+ VdbeSorter *pSorter;
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ if( pSorter ){
+ sqlite3VdbeSorterReset(db, pSorter);
+ sqlite3_free(pSorter->list.aMemory);
+ sqlite3DbFree(db, pSorter);
+ pCsr->uc.pSorter = 0;
+ }
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** The first argument is a file-handle open on a temporary file. The file
+** is guaranteed to be nByte bytes or smaller in size. This function
+** attempts to extend the file to nByte bytes in size and to ensure that
+** the VFS has memory mapped it.
+**
+** Whether or not the file does end up memory mapped of course depends on
+** the specific VFS implementation.
+*/
+static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
+ if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
+ void *p = 0;
+ int chunksize = 4*1024;
+ sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize);
+ sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte);
+ sqlite3OsFetch(pFd, 0, (int)nByte, &p);
+ if( p ) sqlite3OsUnfetch(pFd, 0, p);
+ }
+}
+#else
+# define vdbeSorterExtendFile(x,y,z)
+#endif
+
+/*
+** Allocate space for a file-handle and open a temporary file. If successful,
+** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK.
+** Otherwise, set *ppFd to 0 and return an SQLite error code.
+*/
+static int vdbeSorterOpenTempFile(
+ sqlite3 *db, /* Database handle doing sort */
+ i64 nExtend, /* Attempt to extend file to this size */
+ sqlite3_file **ppFd
+){
+ int rc;
+ if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS;
+ rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
+ SQLITE_OPEN_TEMP_JOURNAL |
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc
+ );
+ if( rc==SQLITE_OK ){
+ i64 max = SQLITE_MAX_MMAP_SIZE;
+ sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max);
+ if( nExtend>0 ){
+ vdbeSorterExtendFile(db, *ppFd, nExtend);
+ }
+ }
+ return rc;
+}
+
+/*
+** If it has not already been allocated, allocate the UnpackedRecord
+** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or
+** if no allocation was required), or SQLITE_NOMEM otherwise.
+*/
+static int vdbeSortAllocUnpacked(SortSubtask *pTask){
+ if( pTask->pUnpacked==0 ){
+ pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo);
+ if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT;
+ pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField;
+ pTask->pUnpacked->errCode = 0;
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Merge the two sorted lists p1 and p2 into a single list.
+*/
+static SorterRecord *vdbeSorterMerge(
+ SortSubtask *pTask, /* Calling thread context */
+ SorterRecord *p1, /* First list to merge */
+ SorterRecord *p2 /* Second list to merge */
+){
+ SorterRecord *pFinal = 0;
+ SorterRecord **pp = &pFinal;
+ int bCached = 0;
+
+ assert( p1!=0 && p2!=0 );
+ for(;;){
+ int res;
+ res = pTask->xCompare(
+ pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal
+ );
+
+ if( res<=0 ){
+ *pp = p1;
+ pp = &p1->u.pNext;
+ p1 = p1->u.pNext;
+ if( p1==0 ){
+ *pp = p2;
+ break;
+ }
+ }else{
+ *pp = p2;
+ pp = &p2->u.pNext;
+ p2 = p2->u.pNext;
+ bCached = 0;
+ if( p2==0 ){
+ *pp = p1;
+ break;
+ }
+ }
+ }
+ return pFinal;
+}
+
+/*
+** Return the SorterCompare function to compare values collected by the
+** sorter object passed as the only argument.
+*/
+static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){
+ if( p->typeMask==SORTER_TYPE_INTEGER ){
+ return vdbeSorterCompareInt;
+ }else if( p->typeMask==SORTER_TYPE_TEXT ){
+ return vdbeSorterCompareText;
+ }
+ return vdbeSorterCompare;
+}
+
+/*
+** Sort the linked list of records headed at pTask->pList. Return
+** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if
+** an error occurs.
+*/
+static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){
+ int i;
+ SorterRecord *p;
+ int rc;
+ SorterRecord *aSlot[64];
+
+ rc = vdbeSortAllocUnpacked(pTask);
+ if( rc!=SQLITE_OK ) return rc;
+
+ p = pList->pList;
+ pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter);
+ memset(aSlot, 0, sizeof(aSlot));
+
+ while( p ){
+ SorterRecord *pNext;
+ if( pList->aMemory ){
+ if( (u8*)p==pList->aMemory ){
+ pNext = 0;
+ }else{
+ assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) );
+ pNext = (SorterRecord*)&pList->aMemory[p->u.iNext];
+ }
+ }else{
+ pNext = p->u.pNext;
+ }
+
+ p->u.pNext = 0;
+ for(i=0; aSlot[i]; i++){
+ p = vdbeSorterMerge(pTask, p, aSlot[i]);
+ aSlot[i] = 0;
+ }
+ aSlot[i] = p;
+ p = pNext;
+ }
+
+ p = 0;
+ for(i=0; i<ArraySize(aSlot); i++){
+ if( aSlot[i]==0 ) continue;
+ p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i];
+ }
+ pList->pList = p;
+
+ assert( pTask->pUnpacked->errCode==SQLITE_OK
+ || pTask->pUnpacked->errCode==SQLITE_NOMEM
+ );
+ return pTask->pUnpacked->errCode;
+}
+
+/*
+** Initialize a PMA-writer object.
+*/
+static void vdbePmaWriterInit(
+ sqlite3_file *pFd, /* File handle to write to */
+ PmaWriter *p, /* Object to populate */
+ int nBuf, /* Buffer size */
+ i64 iStart /* Offset of pFd to begin writing at */
+){
+ memset(p, 0, sizeof(PmaWriter));
+ p->aBuffer = (u8*)sqlite3Malloc(nBuf);
+ if( !p->aBuffer ){
+ p->eFWErr = SQLITE_NOMEM_BKPT;
+ }else{
+ p->iBufEnd = p->iBufStart = (iStart % nBuf);
+ p->iWriteOff = iStart - p->iBufStart;
+ p->nBuffer = nBuf;
+ p->pFd = pFd;
+ }
+}
+
+/*
+** Write nData bytes of data to the PMA. Return SQLITE_OK
+** if successful, or an SQLite error code if an error occurs.
+*/
+static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){
+ int nRem = nData;
+ while( nRem>0 && p->eFWErr==0 ){
+ int nCopy = nRem;
+ if( nCopy>(p->nBuffer - p->iBufEnd) ){
+ nCopy = p->nBuffer - p->iBufEnd;
+ }
+
+ memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
+ p->iBufEnd += nCopy;
+ if( p->iBufEnd==p->nBuffer ){
+ p->eFWErr = sqlite3OsWrite(p->pFd,
+ &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
+ p->iWriteOff + p->iBufStart
+ );
+ p->iBufStart = p->iBufEnd = 0;
+ p->iWriteOff += p->nBuffer;
+ }
+ assert( p->iBufEnd<p->nBuffer );
+
+ nRem -= nCopy;
+ }
+}
+
+/*
+** Flush any buffered data to disk and clean up the PMA-writer object.
+** The results of using the PMA-writer after this call are undefined.
+** Return SQLITE_OK if flushing the buffered data succeeds or is not
+** required. Otherwise, return an SQLite error code.
+**
+** Before returning, set *piEof to the offset immediately following the
+** last byte written to the file.
+*/
+static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){
+ int rc;
+ if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
+ p->eFWErr = sqlite3OsWrite(p->pFd,
+ &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
+ p->iWriteOff + p->iBufStart
+ );
+ }
+ *piEof = (p->iWriteOff + p->iBufEnd);
+ sqlite3_free(p->aBuffer);
+ rc = p->eFWErr;
+ memset(p, 0, sizeof(PmaWriter));
+ return rc;
+}
+
+/*
+** Write value iVal encoded as a varint to the PMA. Return
+** SQLITE_OK if successful, or an SQLite error code if an error occurs.
+*/
+static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){
+ int nByte;
+ u8 aByte[10];
+ nByte = sqlite3PutVarint(aByte, iVal);
+ vdbePmaWriteBlob(p, aByte, nByte);
+}
+
+/*
+** Write the current contents of in-memory linked-list pList to a level-0
+** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if
+** successful, or an SQLite error code otherwise.
+**
+** The format of a PMA is:
+**
+** * A varint. This varint contains the total number of bytes of content
+** in the PMA (not including the varint itself).
+**
+** * One or more records packed end-to-end in order of ascending keys.
+** Each record consists of a varint followed by a blob of data (the
+** key). The varint is the number of bytes in the blob of data.
+*/
+static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){
+ sqlite3 *db = pTask->pSorter->db;
+ int rc = SQLITE_OK; /* Return code */
+ PmaWriter writer; /* Object used to write to the file */
+
+#ifdef SQLITE_DEBUG
+ /* Set iSz to the expected size of file pTask->file after writing the PMA.
+ ** This is used by an assert() statement at the end of this function. */
+ i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof;
+#endif
+
+ vdbeSorterWorkDebug(pTask, "enter");
+ memset(&writer, 0, sizeof(PmaWriter));
+ assert( pList->szPMA>0 );
+
+ /* If the first temporary PMA file has not been opened, open it now. */
+ if( pTask->file.pFd==0 ){
+ rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd);
+ assert( rc!=SQLITE_OK || pTask->file.pFd );
+ assert( pTask->file.iEof==0 );
+ assert( pTask->nPMA==0 );
+ }
+
+ /* Try to get the file to memory map */
+ if( rc==SQLITE_OK ){
+ vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9);
+ }
+
+ /* Sort the list */
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterSort(pTask, pList);
+ }
+
+ if( rc==SQLITE_OK ){
+ SorterRecord *p;
+ SorterRecord *pNext = 0;
+
+ vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz,
+ pTask->file.iEof);
+ pTask->nPMA++;
+ vdbePmaWriteVarint(&writer, pList->szPMA);
+ for(p=pList->pList; p; p=pNext){
+ pNext = p->u.pNext;
+ vdbePmaWriteVarint(&writer, p->nVal);
+ vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal);
+ if( pList->aMemory==0 ) sqlite3_free(p);
+ }
+ pList->pList = p;
+ rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof);
+ }
+
+ vdbeSorterWorkDebug(pTask, "exit");
+ assert( rc!=SQLITE_OK || pList->pList==0 );
+ assert( rc!=SQLITE_OK || pTask->file.iEof==iSz );
+ return rc;
+}
+
+/*
+** Advance the MergeEngine to its next entry.
+** Set *pbEof to true there is no next entry because
+** the MergeEngine has reached the end of all its inputs.
+**
+** Return SQLITE_OK if successful or an error code if an error occurs.
+*/
+static int vdbeMergeEngineStep(
+ MergeEngine *pMerger, /* The merge engine to advance to the next row */
+ int *pbEof /* Set TRUE at EOF. Set false for more content */
+){
+ int rc;
+ int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */
+ SortSubtask *pTask = pMerger->pTask;
+
+ /* Advance the current PmaReader */
+ rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]);
+
+ /* Update contents of aTree[] */
+ if( rc==SQLITE_OK ){
+ int i; /* Index of aTree[] to recalculate */
+ PmaReader *pReadr1; /* First PmaReader to compare */
+ PmaReader *pReadr2; /* Second PmaReader to compare */
+ int bCached = 0;
+
+ /* Find the first two PmaReaders to compare. The one that was just
+ ** advanced (iPrev) and the one next to it in the array. */
+ pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)];
+ pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)];
+
+ for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){
+ /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */
+ int iRes;
+ if( pReadr1->pFd==0 ){
+ iRes = +1;
+ }else if( pReadr2->pFd==0 ){
+ iRes = -1;
+ }else{
+ iRes = pTask->xCompare(pTask, &bCached,
+ pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey
+ );
+ }
+
+ /* If pReadr1 contained the smaller value, set aTree[i] to its index.
+ ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this
+ ** case there is no cache of pReadr2 in pTask->pUnpacked, so set
+ ** pKey2 to point to the record belonging to pReadr2.
+ **
+ ** Alternatively, if pReadr2 contains the smaller of the two values,
+ ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare()
+ ** was actually called above, then pTask->pUnpacked now contains
+ ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent
+ ** vdbeSorterCompare() from decoding pReadr2 again.
+ **
+ ** If the two values were equal, then the value from the oldest
+ ** PMA should be considered smaller. The VdbeSorter.aReadr[] array
+ ** is sorted from oldest to newest, so pReadr1 contains older values
+ ** than pReadr2 iff (pReadr1<pReadr2). */
+ if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){
+ pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr);
+ pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
+ bCached = 0;
+ }else{
+ if( pReadr1->pFd ) bCached = 0;
+ pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr);
+ pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
+ }
+ }
+ *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0);
+ }
+
+ return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc);
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** The main routine for background threads that write level-0 PMAs.
+*/
+static void *vdbeSorterFlushThread(void *pCtx){
+ SortSubtask *pTask = (SortSubtask*)pCtx;
+ int rc; /* Return code */
+ assert( pTask->bDone==0 );
+ rc = vdbeSorterListToPMA(pTask, &pTask->list);
+ pTask->bDone = 1;
+ return SQLITE_INT_TO_PTR(rc);
+}
+#endif /* SQLITE_MAX_WORKER_THREADS>0 */
+
+/*
+** Flush the current contents of VdbeSorter.list to a new PMA, possibly
+** using a background thread.
+*/
+static int vdbeSorterFlushPMA(VdbeSorter *pSorter){
+#if SQLITE_MAX_WORKER_THREADS==0
+ pSorter->bUsePMA = 1;
+ return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list);
+#else
+ int rc = SQLITE_OK;
+ int i;
+ SortSubtask *pTask = 0; /* Thread context used to create new PMA */
+ int nWorker = (pSorter->nTask-1);
+
+ /* Set the flag to indicate that at least one PMA has been written.
+ ** Or will be, anyhow. */
+ pSorter->bUsePMA = 1;
+
+ /* Select a sub-task to sort and flush the current list of in-memory
+ ** records to disk. If the sorter is running in multi-threaded mode,
+ ** round-robin between the first (pSorter->nTask-1) tasks. Except, if
+ ** the background thread from a sub-tasks previous turn is still running,
+ ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy,
+ ** fall back to using the final sub-task. The first (pSorter->nTask-1)
+ ** sub-tasks are prefered as they use background threads - the final
+ ** sub-task uses the main thread. */
+ for(i=0; i<nWorker; i++){
+ int iTest = (pSorter->iPrev + i + 1) % nWorker;
+ pTask = &pSorter->aTask[iTest];
+ if( pTask->bDone ){
+ rc = vdbeSorterJoinThread(pTask);
+ }
+ if( rc!=SQLITE_OK || pTask->pThread==0 ) break;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( i==nWorker ){
+ /* Use the foreground thread for this operation */
+ rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list);
+ }else{
+ /* Launch a background thread for this operation */
+ u8 *aMem;
+ void *pCtx;
+
+ assert( pTask!=0 );
+ assert( pTask->pThread==0 && pTask->bDone==0 );
+ assert( pTask->list.pList==0 );
+ assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 );
+
+ aMem = pTask->list.aMemory;
+ pCtx = (void*)pTask;
+ pSorter->iPrev = (u8)(pTask - pSorter->aTask);
+ pTask->list = pSorter->list;
+ pSorter->list.pList = 0;
+ pSorter->list.szPMA = 0;
+ if( aMem ){
+ pSorter->list.aMemory = aMem;
+ pSorter->nMemory = sqlite3MallocSize(aMem);
+ }else if( pSorter->list.aMemory ){
+ pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory);
+ if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT;
+ }
+
+ rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx);
+ }
+ }
+
+ return rc;
+#endif /* SQLITE_MAX_WORKER_THREADS!=0 */
+}
+
+/*
+** Add a record to the sorter.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
+ const VdbeCursor *pCsr, /* Sorter cursor */
+ Mem *pVal /* Memory cell containing record */
+){
+ VdbeSorter *pSorter;
+ int rc = SQLITE_OK; /* Return Code */
+ SorterRecord *pNew; /* New list element */
+ int bFlush; /* True to flush contents of memory to PMA */
+ int nReq; /* Bytes of memory required */
+ int nPMA; /* Bytes of PMA space required */
+ int t; /* serial type of first record field */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ getVarint32NR((const u8*)&pVal->z[1], t);
+ if( t>0 && t<10 && t!=7 ){
+ pSorter->typeMask &= SORTER_TYPE_INTEGER;
+ }else if( t>10 && (t & 0x01) ){
+ pSorter->typeMask &= SORTER_TYPE_TEXT;
+ }else{
+ pSorter->typeMask = 0;
+ }
+
+ assert( pSorter );
+
+ /* Figure out whether or not the current contents of memory should be
+ ** flushed to a PMA before continuing. If so, do so.
+ **
+ ** If using the single large allocation mode (pSorter->aMemory!=0), then
+ ** flush the contents of memory to a new PMA if (a) at least one value is
+ ** already in memory and (b) the new value will not fit in memory.
+ **
+ ** Or, if using separate allocations for each record, flush the contents
+ ** of memory to a PMA if either of the following are true:
+ **
+ ** * The total memory allocated for the in-memory list is greater
+ ** than (page-size * cache-size), or
+ **
+ ** * The total memory allocated for the in-memory list is greater
+ ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
+ */
+ nReq = pVal->n + sizeof(SorterRecord);
+ nPMA = pVal->n + sqlite3VarintLen(pVal->n);
+ if( pSorter->mxPmaSize ){
+ if( pSorter->list.aMemory ){
+ bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize;
+ }else{
+ bFlush = (
+ (pSorter->list.szPMA > pSorter->mxPmaSize)
+ || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull())
+ );
+ }
+ if( bFlush ){
+ rc = vdbeSorterFlushPMA(pSorter);
+ pSorter->list.szPMA = 0;
+ pSorter->iMemory = 0;
+ assert( rc!=SQLITE_OK || pSorter->list.pList==0 );
+ }
+ }
+
+ pSorter->list.szPMA += nPMA;
+ if( nPMA>pSorter->mxKeysize ){
+ pSorter->mxKeysize = nPMA;
+ }
+
+ if( pSorter->list.aMemory ){
+ int nMin = pSorter->iMemory + nReq;
+
+ if( nMin>pSorter->nMemory ){
+ u8 *aNew;
+ sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory;
+ int iListOff = -1;
+ if( pSorter->list.pList ){
+ iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory;
+ }
+ while( nNew < nMin ) nNew = nNew*2;
+ if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
+ if( nNew < nMin ) nNew = nMin;
+ aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
+ if( !aNew ) return SQLITE_NOMEM_BKPT;
+ if( iListOff>=0 ){
+ pSorter->list.pList = (SorterRecord*)&aNew[iListOff];
+ }
+ pSorter->list.aMemory = aNew;
+ pSorter->nMemory = nNew;
+ }
+
+ pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
+ pSorter->iMemory += ROUND8(nReq);
+ if( pSorter->list.pList ){
+ pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);
+ }
+ }else{
+ pNew = (SorterRecord *)sqlite3Malloc(nReq);
+ if( pNew==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pNew->u.pNext = pSorter->list.pList;
+ }
+
+ memcpy(SRVAL(pNew), pVal->z, pVal->n);
+ pNew->nVal = pVal->n;
+ pSorter->list.pList = pNew;
+
+ return rc;
+}
+
+/*
+** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format
+** of the data stored in aFile[1] is the same as that used by regular PMAs,
+** except that the number-of-bytes varint is omitted from the start.
+*/
+static int vdbeIncrPopulate(IncrMerger *pIncr){
+ int rc = SQLITE_OK;
+ int rc2;
+ i64 iStart = pIncr->iStartOff;
+ SorterFile *pOut = &pIncr->aFile[1];
+ SortSubtask *pTask = pIncr->pTask;
+ MergeEngine *pMerger = pIncr->pMerger;
+ PmaWriter writer;
+ assert( pIncr->bEof==0 );
+
+ vdbeSorterPopulateDebug(pTask, "enter");
+
+ vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart);
+ while( rc==SQLITE_OK ){
+ int dummy;
+ PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ];
+ int nKey = pReader->nKey;
+ i64 iEof = writer.iWriteOff + writer.iBufEnd;
+
+ /* Check if the output file is full or if the input has been exhausted.
+ ** In either case exit the loop. */
+ if( pReader->pFd==0 ) break;
+ if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break;
+
+ /* Write the next key to the output. */
+ vdbePmaWriteVarint(&writer, nKey);
+ vdbePmaWriteBlob(&writer, pReader->aKey, nKey);
+ assert( pIncr->pMerger->pTask==pTask );
+ rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy);
+ }
+
+ rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof);
+ if( rc==SQLITE_OK ) rc = rc2;
+ vdbeSorterPopulateDebug(pTask, "exit");
+ return rc;
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** The main routine for background threads that populate aFile[1] of
+** multi-threaded IncrMerger objects.
+*/
+static void *vdbeIncrPopulateThread(void *pCtx){
+ IncrMerger *pIncr = (IncrMerger*)pCtx;
+ void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) );
+ pIncr->pTask->bDone = 1;
+ return pRet;
+}
+
+/*
+** Launch a background thread to populate aFile[1] of pIncr.
+*/
+static int vdbeIncrBgPopulate(IncrMerger *pIncr){
+ void *p = (void*)pIncr;
+ assert( pIncr->bUseThread );
+ return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p);
+}
+#endif
+
+/*
+** This function is called when the PmaReader corresponding to pIncr has
+** finished reading the contents of aFile[0]. Its purpose is to "refill"
+** aFile[0] such that the PmaReader should start rereading it from the
+** beginning.
+**
+** For single-threaded objects, this is accomplished by literally reading
+** keys from pIncr->pMerger and repopulating aFile[0].
+**
+** For multi-threaded objects, all that is required is to wait until the
+** background thread is finished (if it is not already) and then swap
+** aFile[0] and aFile[1] in place. If the contents of pMerger have not
+** been exhausted, this function also launches a new background thread
+** to populate the new aFile[1].
+**
+** SQLITE_OK is returned on success, or an SQLite error code otherwise.
+*/
+static int vdbeIncrSwap(IncrMerger *pIncr){
+ int rc = SQLITE_OK;
+
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pIncr->bUseThread ){
+ rc = vdbeSorterJoinThread(pIncr->pTask);
+
+ if( rc==SQLITE_OK ){
+ SorterFile f0 = pIncr->aFile[0];
+ pIncr->aFile[0] = pIncr->aFile[1];
+ pIncr->aFile[1] = f0;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
+ pIncr->bEof = 1;
+ }else{
+ rc = vdbeIncrBgPopulate(pIncr);
+ }
+ }
+ }else
+#endif
+ {
+ rc = vdbeIncrPopulate(pIncr);
+ pIncr->aFile[0] = pIncr->aFile[1];
+ if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
+ pIncr->bEof = 1;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Allocate and return a new IncrMerger object to read data from pMerger.
+**
+** If an OOM condition is encountered, return NULL. In this case free the
+** pMerger argument before returning.
+*/
+static int vdbeIncrMergerNew(
+ SortSubtask *pTask, /* The thread that will be using the new IncrMerger */
+ MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */
+ IncrMerger **ppOut /* Write the new IncrMerger here */
+){
+ int rc = SQLITE_OK;
+ IncrMerger *pIncr = *ppOut = (IncrMerger*)
+ (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr)));
+ if( pIncr ){
+ pIncr->pMerger = pMerger;
+ pIncr->pTask = pTask;
+ pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2);
+ pTask->file2.iEof += pIncr->mxSz;
+ }else{
+ vdbeMergeEngineFree(pMerger);
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ assert( *ppOut!=0 || rc!=SQLITE_OK );
+ return rc;
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** Set the "use-threads" flag on object pIncr.
+*/
+static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){
+ pIncr->bUseThread = 1;
+ pIncr->pTask->file2.iEof -= pIncr->mxSz;
+}
+#endif /* SQLITE_MAX_WORKER_THREADS>0 */
+
+
+
+/*
+** Recompute pMerger->aTree[iOut] by comparing the next keys on the
+** two PmaReaders that feed that entry. Neither of the PmaReaders
+** are advanced. This routine merely does the comparison.
+*/
+static void vdbeMergeEngineCompare(
+ MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */
+ int iOut /* Store the result in pMerger->aTree[iOut] */
+){
+ int i1;
+ int i2;
+ int iRes;
+ PmaReader *p1;
+ PmaReader *p2;
+
+ assert( iOut<pMerger->nTree && iOut>0 );
+
+ if( iOut>=(pMerger->nTree/2) ){
+ i1 = (iOut - pMerger->nTree/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pMerger->aTree[iOut*2];
+ i2 = pMerger->aTree[iOut*2+1];
+ }
+
+ p1 = &pMerger->aReadr[i1];
+ p2 = &pMerger->aReadr[i2];
+
+ if( p1->pFd==0 ){
+ iRes = i2;
+ }else if( p2->pFd==0 ){
+ iRes = i1;
+ }else{
+ SortSubtask *pTask = pMerger->pTask;
+ int bCached = 0;
+ int res;
+ assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */
+ res = pTask->xCompare(
+ pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey
+ );
+ if( res<=0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pMerger->aTree[iOut] = iRes;
+}
+
+/*
+** Allowed values for the eMode parameter to vdbeMergeEngineInit()
+** and vdbePmaReaderIncrMergeInit().
+**
+** Only INCRINIT_NORMAL is valid in single-threaded builds (when
+** SQLITE_MAX_WORKER_THREADS==0). The other values are only used
+** when there exists one or more separate worker threads.
+*/
+#define INCRINIT_NORMAL 0
+#define INCRINIT_TASK 1
+#define INCRINIT_ROOT 2
+
+/*
+** Forward reference required as the vdbeIncrMergeInit() and
+** vdbePmaReaderIncrInit() routines are called mutually recursively when
+** building a merge tree.
+*/
+static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode);
+
+/*
+** Initialize the MergeEngine object passed as the second argument. Once this
+** function returns, the first key of merged data may be read from the
+** MergeEngine object in the usual fashion.
+**
+** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge
+** objects attached to the PmaReader objects that the merger reads from have
+** already been populated, but that they have not yet populated aFile[0] and
+** set the PmaReader objects up to read from it. In this case all that is
+** required is to call vdbePmaReaderNext() on each PmaReader to point it at
+** its first key.
+**
+** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use
+** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data
+** to pMerger.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int vdbeMergeEngineInit(
+ SortSubtask *pTask, /* Thread that will run pMerger */
+ MergeEngine *pMerger, /* MergeEngine to initialize */
+ int eMode /* One of the INCRINIT_XXX constants */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* For looping over PmaReader objects */
+ int nTree; /* Number of subtrees to merge */
+
+ /* Failure to allocate the merge would have been detected prior to
+ ** invoking this routine */
+ assert( pMerger!=0 );
+
+ /* eMode is always INCRINIT_NORMAL in single-threaded mode */
+ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
+
+ /* Verify that the MergeEngine is assigned to a single thread */
+ assert( pMerger->pTask==0 );
+ pMerger->pTask = pTask;
+
+ nTree = pMerger->nTree;
+ for(i=0; i<nTree; i++){
+ if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){
+ /* PmaReaders should be normally initialized in order, as if they are
+ ** reading from the same temp file this makes for more linear file IO.
+ ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is
+ ** in use it will block the vdbePmaReaderNext() call while it uses
+ ** the main thread to fill its buffer. So calling PmaReaderNext()
+ ** on this PmaReader before any of the multi-threaded PmaReaders takes
+ ** better advantage of multi-processor hardware. */
+ rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]);
+ }else{
+ rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ for(i=pMerger->nTree-1; i>0; i--){
+ vdbeMergeEngineCompare(pMerger, i);
+ }
+ return pTask->pUnpacked->errCode;
+}
+
+/*
+** The PmaReader passed as the first argument is guaranteed to be an
+** incremental-reader (pReadr->pIncr!=0). This function serves to open
+** and/or initialize the temp file related fields of the IncrMerge
+** object at (pReadr->pIncr).
+**
+** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders
+** in the sub-tree headed by pReadr are also initialized. Data is then
+** loaded into the buffers belonging to pReadr and it is set to point to
+** the first key in its range.
+**
+** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed
+** to be a multi-threaded PmaReader and this function is being called in a
+** background thread. In this case all PmaReaders in the sub-tree are
+** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to
+** pReadr is populated. However, pReadr itself is not set up to point
+** to its first key. A call to vdbePmaReaderNext() is still required to do
+** that.
+**
+** The reason this function does not call vdbePmaReaderNext() immediately
+** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has
+** to block on thread (pTask->thread) before accessing aFile[1]. But, since
+** this entire function is being run by thread (pTask->thread), that will
+** lead to the current background thread attempting to join itself.
+**
+** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed
+** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all
+** child-trees have already been initialized using IncrInit(INCRINIT_TASK).
+** In this case vdbePmaReaderNext() is called on all child PmaReaders and
+** the current PmaReader set to point to the first key in its range.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){
+ int rc = SQLITE_OK;
+ IncrMerger *pIncr = pReadr->pIncr;
+ SortSubtask *pTask = pIncr->pTask;
+ sqlite3 *db = pTask->pSorter->db;
+
+ /* eMode is always INCRINIT_NORMAL in single-threaded mode */
+ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
+
+ rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode);
+
+ /* Set up the required files for pIncr. A multi-theaded IncrMerge object
+ ** requires two temp files to itself, whereas a single-threaded object
+ ** only requires a region of pTask->file2. */
+ if( rc==SQLITE_OK ){
+ int mxSz = pIncr->mxSz;
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pIncr->bUseThread ){
+ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd);
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd);
+ }
+ }else
+#endif
+ /*if( !pIncr->bUseThread )*/{
+ if( pTask->file2.pFd==0 ){
+ assert( pTask->file2.iEof>0 );
+ rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd);
+ pTask->file2.iEof = 0;
+ }
+ if( rc==SQLITE_OK ){
+ pIncr->aFile[1].pFd = pTask->file2.pFd;
+ pIncr->iStartOff = pTask->file2.iEof;
+ pTask->file2.iEof += mxSz;
+ }
+ }
+ }
+
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( rc==SQLITE_OK && pIncr->bUseThread ){
+ /* Use the current thread to populate aFile[1], even though this
+ ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object,
+ ** then this function is already running in background thread
+ ** pIncr->pTask->thread.
+ **
+ ** If this is the INCRINIT_ROOT object, then it is running in the
+ ** main VDBE thread. But that is Ok, as that thread cannot return
+ ** control to the VDBE or proceed with anything useful until the
+ ** first results are ready from this merger object anyway.
+ */
+ assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK );
+ rc = vdbeIncrPopulate(pIncr);
+ }
+#endif
+
+ if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){
+ rc = vdbePmaReaderNext(pReadr);
+ }
+
+ return rc;
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** The main routine for vdbePmaReaderIncrMergeInit() operations run in
+** background threads.
+*/
+static void *vdbePmaReaderBgIncrInit(void *pCtx){
+ PmaReader *pReader = (PmaReader*)pCtx;
+ void *pRet = SQLITE_INT_TO_PTR(
+ vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK)
+ );
+ pReader->pIncr->pTask->bDone = 1;
+ return pRet;
+}
+#endif
+
+/*
+** If the PmaReader passed as the first argument is not an incremental-reader
+** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes
+** the vdbePmaReaderIncrMergeInit() function with the parameters passed to
+** this routine to initialize the incremental merge.
+**
+** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1),
+** then a background thread is launched to call vdbePmaReaderIncrMergeInit().
+** Or, if the IncrMerger is single threaded, the same function is called
+** using the current thread.
+*/
+static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){
+ IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */
+ int rc = SQLITE_OK; /* Return code */
+ if( pIncr ){
+#if SQLITE_MAX_WORKER_THREADS>0
+ assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK );
+ if( pIncr->bUseThread ){
+ void *pCtx = (void*)pReadr;
+ rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx);
+ }else
+#endif
+ {
+ rc = vdbePmaReaderIncrMergeInit(pReadr, eMode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Allocate a new MergeEngine object to merge the contents of nPMA level-0
+** PMAs from pTask->file. If no error occurs, set *ppOut to point to
+** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut
+** to NULL and return an SQLite error code.
+**
+** When this function is called, *piOffset is set to the offset of the
+** first PMA to read from pTask->file. Assuming no error occurs, it is
+** set to the offset immediately following the last byte of the last
+** PMA before returning. If an error does occur, then the final value of
+** *piOffset is undefined.
+*/
+static int vdbeMergeEngineLevel0(
+ SortSubtask *pTask, /* Sorter task to read from */
+ int nPMA, /* Number of PMAs to read */
+ i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */
+ MergeEngine **ppOut /* OUT: New merge-engine */
+){
+ MergeEngine *pNew; /* Merge engine to return */
+ i64 iOff = *piOffset;
+ int i;
+ int rc = SQLITE_OK;
+
+ *ppOut = pNew = vdbeMergeEngineNew(nPMA);
+ if( pNew==0 ) rc = SQLITE_NOMEM_BKPT;
+
+ for(i=0; i<nPMA && rc==SQLITE_OK; i++){
+ i64 nDummy = 0;
+ PmaReader *pReadr = &pNew->aReadr[i];
+ rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy);
+ iOff = pReadr->iEof;
+ }
+
+ if( rc!=SQLITE_OK ){
+ vdbeMergeEngineFree(pNew);
+ *ppOut = 0;
+ }
+ *piOffset = iOff;
+ return rc;
+}
+
+/*
+** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of
+** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes.
+**
+** i.e.
+**
+** nPMA<=16 -> TreeDepth() == 0
+** nPMA<=256 -> TreeDepth() == 1
+** nPMA<=65536 -> TreeDepth() == 2
+*/
+static int vdbeSorterTreeDepth(int nPMA){
+ int nDepth = 0;
+ i64 nDiv = SORTER_MAX_MERGE_COUNT;
+ while( nDiv < (i64)nPMA ){
+ nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
+ nDepth++;
+ }
+ return nDepth;
+}
+
+/*
+** pRoot is the root of an incremental merge-tree with depth nDepth (according
+** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the
+** tree, counting from zero. This function adds pLeaf to the tree.
+**
+** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error
+** code is returned and pLeaf is freed.
+*/
+static int vdbeSorterAddToTree(
+ SortSubtask *pTask, /* Task context */
+ int nDepth, /* Depth of tree according to TreeDepth() */
+ int iSeq, /* Sequence number of leaf within tree */
+ MergeEngine *pRoot, /* Root of tree */
+ MergeEngine *pLeaf /* Leaf to add to tree */
+){
+ int rc = SQLITE_OK;
+ int nDiv = 1;
+ int i;
+ MergeEngine *p = pRoot;
+ IncrMerger *pIncr;
+
+ rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr);
+
+ for(i=1; i<nDepth; i++){
+ nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
+ }
+
+ for(i=1; i<nDepth && rc==SQLITE_OK; i++){
+ int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT;
+ PmaReader *pReadr = &p->aReadr[iIter];
+
+ if( pReadr->pIncr==0 ){
+ MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ p = pReadr->pIncr->pMerger;
+ nDiv = nDiv / SORTER_MAX_MERGE_COUNT;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr;
+ }else{
+ vdbeIncrFree(pIncr);
+ }
+ return rc;
+}
+
+/*
+** This function is called as part of a SorterRewind() operation on a sorter
+** that has already written two or more level-0 PMAs to one or more temp
+** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that
+** can be used to incrementally merge all PMAs on disk.
+**
+** If successful, SQLITE_OK is returned and *ppOut set to point to the
+** MergeEngine object at the root of the tree before returning. Or, if an
+** error occurs, an SQLite error code is returned and the final value
+** of *ppOut is undefined.
+*/
+static int vdbeSorterMergeTreeBuild(
+ VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */
+ MergeEngine **ppOut /* Write the MergeEngine here */
+){
+ MergeEngine *pMain = 0;
+ int rc = SQLITE_OK;
+ int iTask;
+
+#if SQLITE_MAX_WORKER_THREADS>0
+ /* If the sorter uses more than one task, then create the top-level
+ ** MergeEngine here. This MergeEngine will read data from exactly
+ ** one PmaReader per sub-task. */
+ assert( pSorter->bUseThreads || pSorter->nTask==1 );
+ if( pSorter->nTask>1 ){
+ pMain = vdbeMergeEngineNew(pSorter->nTask);
+ if( pMain==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+#endif
+
+ for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
+ SortSubtask *pTask = &pSorter->aTask[iTask];
+ assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 );
+ if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){
+ MergeEngine *pRoot = 0; /* Root node of tree for this task */
+ int nDepth = vdbeSorterTreeDepth(pTask->nPMA);
+ i64 iReadOff = 0;
+
+ if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){
+ rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot);
+ }else{
+ int i;
+ int iSeq = 0;
+ pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
+ if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT;
+ for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){
+ MergeEngine *pMerger = 0; /* New level-0 PMA merger */
+ int nReader; /* Number of level-0 PMAs to merge */
+
+ nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT);
+ rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger);
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pMain!=0 ){
+ rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr);
+ }else
+#endif
+ {
+ assert( pMain==0 );
+ pMain = pRoot;
+ }
+ }else{
+ vdbeMergeEngineFree(pRoot);
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ vdbeMergeEngineFree(pMain);
+ pMain = 0;
+ }
+ *ppOut = pMain;
+ return rc;
+}
+
+/*
+** This function is called as part of an sqlite3VdbeSorterRewind() operation
+** on a sorter that has written two or more PMAs to temporary files. It sets
+** up either VdbeSorter.pMerger (for single threaded sorters) or pReader
+** (for multi-threaded sorters) so that it can be used to iterate through
+** all records stored in the sorter.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int vdbeSorterSetupMerge(VdbeSorter *pSorter){
+ int rc; /* Return code */
+ SortSubtask *pTask0 = &pSorter->aTask[0];
+ MergeEngine *pMain = 0;
+#if SQLITE_MAX_WORKER_THREADS
+ sqlite3 *db = pTask0->pSorter->db;
+ int i;
+ SorterCompare xCompare = vdbeSorterGetCompare(pSorter);
+ for(i=0; i<pSorter->nTask; i++){
+ pSorter->aTask[i].xCompare = xCompare;
+ }
+#endif
+
+ rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
+ if( rc==SQLITE_OK ){
+#if SQLITE_MAX_WORKER_THREADS
+ assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
+ if( pSorter->bUseThreads ){
+ int iTask;
+ PmaReader *pReadr = 0;
+ SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
+ rc = vdbeSortAllocUnpacked(pLast);
+ if( rc==SQLITE_OK ){
+ pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
+ pSorter->pReader = pReadr;
+ if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ if( rc==SQLITE_OK ){
+ rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr);
+ if( rc==SQLITE_OK ){
+ vdbeIncrMergerSetThreads(pReadr->pIncr);
+ for(iTask=0; iTask<(pSorter->nTask-1); iTask++){
+ IncrMerger *pIncr;
+ if( (pIncr = pMain->aReadr[iTask].pIncr) ){
+ vdbeIncrMergerSetThreads(pIncr);
+ assert( pIncr->pTask!=pLast );
+ }
+ }
+ for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
+ /* Check that:
+ **
+ ** a) The incremental merge object is configured to use the
+ ** right task, and
+ ** b) If it is using task (nTask-1), it is configured to run
+ ** in single-threaded mode. This is important, as the
+ ** root merge (INCRINIT_ROOT) will be using the same task
+ ** object.
+ */
+ PmaReader *p = &pMain->aReadr[iTask];
+ assert( p->pIncr==0 || (
+ (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */
+ && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */
+ ));
+ rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK);
+ }
+ }
+ pMain = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT);
+ }
+ }else
+#endif
+ {
+ rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL);
+ pSorter->pMerger = pMain;
+ pMain = 0;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ vdbeMergeEngineFree(pMain);
+ }
+ return rc;
+}
+
+
+/*
+** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
+** this function is called to prepare for iterating through the records
+** in sorted order.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
+ VdbeSorter *pSorter;
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ assert( pSorter );
+
+ /* If no data has been written to disk, then do not do so now. Instead,
+ ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
+ ** from the in-memory list. */
+ if( pSorter->bUsePMA==0 ){
+ if( pSorter->list.pList ){
+ *pbEof = 0;
+ rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list);
+ }else{
+ *pbEof = 1;
+ }
+ return rc;
+ }
+
+ /* Write the current in-memory list to a PMA. When the VdbeSorterWrite()
+ ** function flushes the contents of memory to disk, it immediately always
+ ** creates a new list consisting of a single key immediately afterwards.
+ ** So the list is never empty at this point. */
+ assert( pSorter->list.pList );
+ rc = vdbeSorterFlushPMA(pSorter);
+
+ /* Join all threads */
+ rc = vdbeSorterJoinAll(pSorter, rc);
+
+ vdbeSorterRewindDebug("rewind");
+
+ /* Assuming no errors have occurred, set up a merger structure to
+ ** incrementally read and merge all remaining PMAs. */
+ assert( pSorter->pReader==0 );
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterSetupMerge(pSorter);
+ *pbEof = 0;
+ }
+
+ vdbeSorterRewindDebug("rewinddone");
+ return rc;
+}
+
+/*
+** Advance to the next element in the sorter. Return value:
+**
+** SQLITE_OK success
+** SQLITE_DONE end of data
+** otherwise some kind of error.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){
+ VdbeSorter *pSorter;
+ int rc; /* Return code */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
+ if( pSorter->bUsePMA ){
+ assert( pSorter->pReader==0 || pSorter->pMerger==0 );
+ assert( pSorter->bUseThreads==0 || pSorter->pReader );
+ assert( pSorter->bUseThreads==1 || pSorter->pMerger );
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pSorter->bUseThreads ){
+ rc = vdbePmaReaderNext(pSorter->pReader);
+ if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE;
+ }else
+#endif
+ /*if( !pSorter->bUseThreads )*/ {
+ int res = 0;
+ assert( pSorter->pMerger!=0 );
+ assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) );
+ rc = vdbeMergeEngineStep(pSorter->pMerger, &res);
+ if( rc==SQLITE_OK && res ) rc = SQLITE_DONE;
+ }
+ }else{
+ SorterRecord *pFree = pSorter->list.pList;
+ pSorter->list.pList = pFree->u.pNext;
+ pFree->u.pNext = 0;
+ if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree);
+ rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE;
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to a buffer owned by the sorter that contains the
+** current key.
+*/
+static void *vdbeSorterRowkey(
+ const VdbeSorter *pSorter, /* Sorter object */
+ int *pnKey /* OUT: Size of current key in bytes */
+){
+ void *pKey;
+ if( pSorter->bUsePMA ){
+ PmaReader *pReader;
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pSorter->bUseThreads ){
+ pReader = pSorter->pReader;
+ }else
+#endif
+ /*if( !pSorter->bUseThreads )*/{
+ pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]];
+ }
+ *pnKey = pReader->nKey;
+ pKey = pReader->aKey;
+ }else{
+ *pnKey = pSorter->list.pList->nVal;
+ pKey = SRVAL(pSorter->list.pList);
+ }
+ return pKey;
+}
+
+/*
+** Copy the current sorter key into the memory cell pOut.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
+ VdbeSorter *pSorter;
+ void *pKey; int nKey; /* Sorter key to copy into pOut */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ pKey = vdbeSorterRowkey(pSorter, &nKey);
+ if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pOut->n = nKey;
+ MemSetTypeFlag(pOut, MEM_Blob);
+ memcpy(pOut->z, pKey, nKey);
+
+ return SQLITE_OK;
+}
+
+/*
+** Compare the key in memory cell pVal with the key that the sorter cursor
+** passed as the first argument currently points to. For the purposes of
+** the comparison, ignore the rowid field at the end of each record.
+**
+** If the sorter cursor key contains any NULL values, consider it to be
+** less than pVal. Even if pVal also contains NULL values.
+**
+** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
+** Otherwise, set *pRes to a negative, zero or positive value if the
+** key in pVal is smaller than, equal to or larger than the current sorter
+** key.
+**
+** This routine forms the core of the OP_SorterCompare opcode, which in
+** turn is used to verify uniqueness when constructing a UNIQUE INDEX.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
+ const VdbeCursor *pCsr, /* Sorter cursor */
+ Mem *pVal, /* Value to compare to current sorter key */
+ int nKeyCol, /* Compare this many columns */
+ int *pRes /* OUT: Result of comparison */
+){
+ VdbeSorter *pSorter;
+ UnpackedRecord *r2;
+ KeyInfo *pKeyInfo;
+ int i;
+ void *pKey; int nKey; /* Sorter key to compare pVal with */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ r2 = pSorter->pUnpacked;
+ pKeyInfo = pCsr->pKeyInfo;
+ if( r2==0 ){
+ r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
+ if( r2==0 ) return SQLITE_NOMEM_BKPT;
+ r2->nField = nKeyCol;
+ }
+ assert( r2->nField==nKeyCol );
+
+ pKey = vdbeSorterRowkey(pSorter, &nKey);
+ sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2);
+ for(i=0; i<nKeyCol; i++){
+ if( r2->aMem[i].flags & MEM_Null ){
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ }
+
+ *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
+ return SQLITE_OK;
+}
+
+/************** End of vdbesort.c ********************************************/
+/************** Begin file vdbevtab.c ****************************************/
+/*
+** 2020-03-23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements virtual-tables for examining the bytecode content
+** of a prepared statement.
+*/
+/* #include "sqliteInt.h" */
+#if defined(SQLITE_ENABLE_BYTECODE_VTAB) && !defined(SQLITE_OMIT_VIRTUALTABLE)
+/* #include "vdbeInt.h" */
+
+/* An instance of the bytecode() table-valued function.
+*/
+typedef struct bytecodevtab bytecodevtab;
+struct bytecodevtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ sqlite3 *db; /* Database connection */
+ int bTablesUsed; /* 2 for tables_used(). 0 for bytecode(). */
+};
+
+/* A cursor for scanning through the bytecode
+*/
+typedef struct bytecodevtab_cursor bytecodevtab_cursor;
+struct bytecodevtab_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ sqlite3_stmt *pStmt; /* The statement whose bytecode is displayed */
+ int iRowid; /* The rowid of the output table */
+ int iAddr; /* Address */
+ int needFinalize; /* Cursors owns pStmt and must finalize it */
+ int showSubprograms; /* Provide a listing of subprograms */
+ Op *aOp; /* Operand array */
+ char *zP4; /* Rendered P4 value */
+ const char *zType; /* tables_used.type */
+ const char *zSchema; /* tables_used.schema */
+ const char *zName; /* tables_used.name */
+ Mem sub; /* Subprograms */
+};
+
+/*
+** Create a new bytecode() table-valued function.
+*/
+static int bytecodevtabConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ bytecodevtab *pNew;
+ int rc;
+ int isTabUsed = pAux!=0;
+ const char *azSchema[2] = {
+ /* bytecode() schema */
+ "CREATE TABLE x("
+ "addr INT,"
+ "opcode TEXT,"
+ "p1 INT,"
+ "p2 INT,"
+ "p3 INT,"
+ "p4 TEXT,"
+ "p5 INT,"
+ "comment TEXT,"
+ "subprog TEXT,"
+ "stmt HIDDEN"
+ ");",
+
+ /* Tables_used() schema */
+ "CREATE TABLE x("
+ "type TEXT,"
+ "schema TEXT,"
+ "name TEXT,"
+ "wr INT,"
+ "subprog TEXT,"
+ "stmt HIDDEN"
+ ");"
+ };
+
+ rc = sqlite3_declare_vtab(db, azSchema[isTabUsed]);
+ if( rc==SQLITE_OK ){
+ pNew = sqlite3_malloc( sizeof(*pNew) );
+ *ppVtab = (sqlite3_vtab*)pNew;
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->db = db;
+ pNew->bTablesUsed = isTabUsed*2;
+ }
+ return rc;
+}
+
+/*
+** This method is the destructor for bytecodevtab objects.
+*/
+static int bytecodevtabDisconnect(sqlite3_vtab *pVtab){
+ bytecodevtab *p = (bytecodevtab*)pVtab;
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Constructor for a new bytecodevtab_cursor object.
+*/
+static int bytecodevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ bytecodevtab *pVTab = (bytecodevtab*)p;
+ bytecodevtab_cursor *pCur;
+ pCur = sqlite3_malloc( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ sqlite3VdbeMemInit(&pCur->sub, pVTab->db, 1);
+ *ppCursor = &pCur->base;
+ return SQLITE_OK;
+}
+
+/*
+** Clear all internal content from a bytecodevtab cursor.
+*/
+static void bytecodevtabCursorClear(bytecodevtab_cursor *pCur){
+ sqlite3_free(pCur->zP4);
+ pCur->zP4 = 0;
+ sqlite3VdbeMemRelease(&pCur->sub);
+ sqlite3VdbeMemSetNull(&pCur->sub);
+ if( pCur->needFinalize ){
+ sqlite3_finalize(pCur->pStmt);
+ }
+ pCur->pStmt = 0;
+ pCur->needFinalize = 0;
+ pCur->zType = 0;
+ pCur->zSchema = 0;
+ pCur->zName = 0;
+}
+
+/*
+** Destructor for a bytecodevtab_cursor.
+*/
+static int bytecodevtabClose(sqlite3_vtab_cursor *cur){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ bytecodevtabCursorClear(pCur);
+ sqlite3_free(pCur);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance a bytecodevtab_cursor to its next row of output.
+*/
+static int bytecodevtabNext(sqlite3_vtab_cursor *cur){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ bytecodevtab *pTab = (bytecodevtab*)cur->pVtab;
+ int rc;
+ if( pCur->zP4 ){
+ sqlite3_free(pCur->zP4);
+ pCur->zP4 = 0;
+ }
+ if( pCur->zName ){
+ pCur->zName = 0;
+ pCur->zType = 0;
+ pCur->zSchema = 0;
+ }
+ rc = sqlite3VdbeNextOpcode(
+ (Vdbe*)pCur->pStmt,
+ pCur->showSubprograms ? &pCur->sub : 0,
+ pTab->bTablesUsed,
+ &pCur->iRowid,
+ &pCur->iAddr,
+ &pCur->aOp);
+ if( rc!=SQLITE_OK ){
+ sqlite3VdbeMemSetNull(&pCur->sub);
+ pCur->aOp = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the cursor has been moved off of the last
+** row of output.
+*/
+static int bytecodevtabEof(sqlite3_vtab_cursor *cur){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ return pCur->aOp==0;
+}
+
+/*
+** Return values of columns for the row at which the bytecodevtab_cursor
+** is currently pointing.
+*/
+static int bytecodevtabColumn(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ bytecodevtab *pVTab = (bytecodevtab*)cur->pVtab;
+ Op *pOp = pCur->aOp + pCur->iAddr;
+ if( pVTab->bTablesUsed ){
+ if( i==4 ){
+ i = 8;
+ }else{
+ if( i<=2 && pCur->zType==0 ){
+ Schema *pSchema;
+ HashElem *k;
+ int iDb = pOp->p3;
+ Pgno iRoot = (Pgno)pOp->p2;
+ sqlite3 *db = pVTab->db;
+ pSchema = db->aDb[iDb].pSchema;
+ pCur->zSchema = db->aDb[iDb].zDbSName;
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pTab = (Table*)sqliteHashData(k);
+ if( !IsVirtual(pTab) && pTab->tnum==iRoot ){
+ pCur->zName = pTab->zName;
+ pCur->zType = "table";
+ break;
+ }
+ }
+ if( pCur->zName==0 ){
+ for(k=sqliteHashFirst(&pSchema->idxHash); k; k=sqliteHashNext(k)){
+ Index *pIdx = (Index*)sqliteHashData(k);
+ if( pIdx->tnum==iRoot ){
+ pCur->zName = pIdx->zName;
+ pCur->zType = "index";
+ }
+ }
+ }
+ }
+ i += 10;
+ }
+ }
+ switch( i ){
+ case 0: /* addr */
+ sqlite3_result_int(ctx, pCur->iAddr);
+ break;
+ case 1: /* opcode */
+ sqlite3_result_text(ctx, (char*)sqlite3OpcodeName(pOp->opcode),
+ -1, SQLITE_STATIC);
+ break;
+ case 2: /* p1 */
+ sqlite3_result_int(ctx, pOp->p1);
+ break;
+ case 3: /* p2 */
+ sqlite3_result_int(ctx, pOp->p2);
+ break;
+ case 4: /* p3 */
+ sqlite3_result_int(ctx, pOp->p3);
+ break;
+ case 5: /* p4 */
+ case 7: /* comment */
+ if( pCur->zP4==0 ){
+ pCur->zP4 = sqlite3VdbeDisplayP4(pVTab->db, pOp);
+ }
+ if( i==5 ){
+ sqlite3_result_text(ctx, pCur->zP4, -1, SQLITE_STATIC);
+ }else{
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ char *zCom = sqlite3VdbeDisplayComment(pVTab->db, pOp, pCur->zP4);
+ sqlite3_result_text(ctx, zCom, -1, sqlite3_free);
+#endif
+ }
+ break;
+ case 6: /* p5 */
+ sqlite3_result_int(ctx, pOp->p5);
+ break;
+ case 8: { /* subprog */
+ Op *aOp = pCur->aOp;
+ assert( aOp[0].opcode==OP_Init );
+ assert( aOp[0].p4.z==0 || strncmp(aOp[0].p4.z,"-" "- ",3)==0 );
+ if( pCur->iRowid==pCur->iAddr+1 ){
+ break; /* Result is NULL for the main program */
+ }else if( aOp[0].p4.z!=0 ){
+ sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC);
+ }else{
+ sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC);
+ }
+ break;
+ }
+ case 10: /* tables_used.type */
+ sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC);
+ break;
+ case 11: /* tables_used.schema */
+ sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC);
+ break;
+ case 12: /* tables_used.name */
+ sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC);
+ break;
+ case 13: /* tables_used.wr */
+ sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite);
+ break;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the rowid for the current row. In this implementation, the
+** rowid is the same as the output value.
+*/
+static int bytecodevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ *pRowid = pCur->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Initialize a cursor.
+**
+** idxNum==0 means show all subprograms
+** idxNum==1 means show only the main bytecode and omit subprograms.
+*/
+static int bytecodevtabFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor *)pVtabCursor;
+ bytecodevtab *pVTab = (bytecodevtab *)pVtabCursor->pVtab;
+ int rc = SQLITE_OK;
+
+ bytecodevtabCursorClear(pCur);
+ pCur->iRowid = 0;
+ pCur->iAddr = 0;
+ pCur->showSubprograms = idxNum==0;
+ assert( argc==1 );
+ if( sqlite3_value_type(argv[0])==SQLITE_TEXT ){
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pVTab->db, zSql, -1, &pCur->pStmt, 0);
+ pCur->needFinalize = 1;
+ }
+ }else{
+ pCur->pStmt = (sqlite3_stmt*)sqlite3_value_pointer(argv[0],"stmt-pointer");
+ }
+ if( pCur->pStmt==0 ){
+ pVTab->base.zErrMsg = sqlite3_mprintf(
+ "argument to %s() is not a valid SQL statement",
+ pVTab->bTablesUsed ? "tables_used" : "bytecode"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ bytecodevtabNext(pVtabCursor);
+ }
+ return rc;
+}
+
+/*
+** We must have a single stmt=? constraint that will be passed through
+** into the xFilter method. If there is no valid stmt=? constraint,
+** then return an SQLITE_CONSTRAINT error.
+*/
+static int bytecodevtabBestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ int i;
+ int rc = SQLITE_CONSTRAINT;
+ struct sqlite3_index_constraint *p;
+ bytecodevtab *pVTab = (bytecodevtab*)tab;
+ int iBaseCol = pVTab->bTablesUsed ? 4 : 8;
+ pIdxInfo->estimatedCost = (double)100;
+ pIdxInfo->estimatedRows = 100;
+ pIdxInfo->idxNum = 0;
+ for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){
+ if( p->usable==0 ) continue;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){
+ rc = SQLITE_OK;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ }
+ if( p->op==SQLITE_INDEX_CONSTRAINT_ISNULL && p->iColumn==iBaseCol ){
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->idxNum = 1;
+ }
+ }
+ return rc;
+}
+
+/*
+** This following structure defines all the methods for the
+** virtual table.
+*/
+static sqlite3_module bytecodevtabModule = {
+ /* iVersion */ 0,
+ /* xCreate */ 0,
+ /* xConnect */ bytecodevtabConnect,
+ /* xBestIndex */ bytecodevtabBestIndex,
+ /* xDisconnect */ bytecodevtabDisconnect,
+ /* xDestroy */ 0,
+ /* xOpen */ bytecodevtabOpen,
+ /* xClose */ bytecodevtabClose,
+ /* xFilter */ bytecodevtabFilter,
+ /* xNext */ bytecodevtabNext,
+ /* xEof */ bytecodevtabEof,
+ /* xColumn */ bytecodevtabColumn,
+ /* xRowid */ bytecodevtabRowid,
+ /* xUpdate */ 0,
+ /* xBegin */ 0,
+ /* xSync */ 0,
+ /* xCommit */ 0,
+ /* xRollback */ 0,
+ /* xFindMethod */ 0,
+ /* xRename */ 0,
+ /* xSavepoint */ 0,
+ /* xRelease */ 0,
+ /* xRollbackTo */ 0,
+ /* xShadowName */ 0
+};
+
+
+SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){
+ int rc;
+ rc = sqlite3_create_module(db, "bytecode", &bytecodevtabModule, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_module(db, "tables_used", &bytecodevtabModule, &db);
+ }
+ return rc;
+}
+#elif defined(SQLITE_ENABLE_BYTECODE_VTAB)
+SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){ return SQLITE_OK; }
+#endif /* SQLITE_ENABLE_BYTECODE_VTAB */
+
+/************** End of vdbevtab.c ********************************************/
+/************** Begin file memjournal.c **************************************/
+/*
+** 2008 October 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to implement an in-memory rollback journal.
+** The in-memory rollback journal is used to journal transactions for
+** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
+**
+** Update: The in-memory journal is also used to temporarily cache
+** smaller journals that are not critical for power-loss recovery.
+** For example, statement journals that are not too big will be held
+** entirely in memory, thus reducing the number of file I/O calls, and
+** more importantly, reducing temporary file creation events. If these
+** journals become too large for memory, they are spilled to disk. But
+** in the common case, they are usually small and no file I/O needs to
+** occur.
+*/
+/* #include "sqliteInt.h" */
+
+/* Forward references to internal structures */
+typedef struct MemJournal MemJournal;
+typedef struct FilePoint FilePoint;
+typedef struct FileChunk FileChunk;
+
+/*
+** The rollback journal is composed of a linked list of these structures.
+**
+** The zChunk array is always at least 8 bytes in size - usually much more.
+** Its actual size is stored in the MemJournal.nChunkSize variable.
+*/
+struct FileChunk {
+ FileChunk *pNext; /* Next chunk in the journal */
+ u8 zChunk[8]; /* Content of this chunk */
+};
+
+/*
+** By default, allocate this many bytes of memory for each FileChunk object.
+*/
+#define MEMJOURNAL_DFLT_FILECHUNKSIZE 1024
+
+/*
+** For chunk size nChunkSize, return the number of bytes that should
+** be allocated for each FileChunk structure.
+*/
+#define fileChunkSize(nChunkSize) (sizeof(FileChunk) + ((nChunkSize)-8))
+
+/*
+** An instance of this object serves as a cursor into the rollback journal.
+** The cursor can be either for reading or writing.
+*/
+struct FilePoint {
+ sqlite3_int64 iOffset; /* Offset from the beginning of the file */
+ FileChunk *pChunk; /* Specific chunk into which cursor points */
+};
+
+/*
+** This structure is a subclass of sqlite3_file. Each open memory-journal
+** is an instance of this class.
+*/
+struct MemJournal {
+ const sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */
+ int nChunkSize; /* In-memory chunk-size */
+
+ int nSpill; /* Bytes of data before flushing */
+ FileChunk *pFirst; /* Head of in-memory chunk-list */
+ FilePoint endpoint; /* Pointer to the end of the file */
+ FilePoint readpoint; /* Pointer to the end of the last xRead() */
+
+ int flags; /* xOpen flags */
+ sqlite3_vfs *pVfs; /* The "real" underlying VFS */
+ const char *zJournal; /* Name of the journal file */
+};
+
+/*
+** Read data from the in-memory journal file. This is the implementation
+** of the sqlite3_vfs.xRead method.
+*/
+static int memjrnlRead(
+ sqlite3_file *pJfd, /* The journal file from which to read */
+ void *zBuf, /* Put the results here */
+ int iAmt, /* Number of bytes to read */
+ sqlite_int64 iOfst /* Begin reading at this offset */
+){
+ MemJournal *p = (MemJournal *)pJfd;
+ u8 *zOut = zBuf;
+ int nRead = iAmt;
+ int iChunkOffset;
+ FileChunk *pChunk;
+
+ if( (iAmt+iOfst)>p->endpoint.iOffset ){
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ assert( p->readpoint.iOffset==0 || p->readpoint.pChunk!=0 );
+ if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
+ sqlite3_int64 iOff = 0;
+ for(pChunk=p->pFirst;
+ ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst;
+ pChunk=pChunk->pNext
+ ){
+ iOff += p->nChunkSize;
+ }
+ }else{
+ pChunk = p->readpoint.pChunk;
+ assert( pChunk!=0 );
+ }
+
+ iChunkOffset = (int)(iOfst%p->nChunkSize);
+ do {
+ int iSpace = p->nChunkSize - iChunkOffset;
+ int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset));
+ memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy);
+ zOut += nCopy;
+ nRead -= iSpace;
+ iChunkOffset = 0;
+ } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
+ p->readpoint.iOffset = pChunk ? iOfst+iAmt : 0;
+ p->readpoint.pChunk = pChunk;
+
+ return SQLITE_OK;
+}
+
+/*
+** Free the list of FileChunk structures headed at MemJournal.pFirst.
+*/
+static void memjrnlFreeChunks(FileChunk *pFirst){
+ FileChunk *pIter;
+ FileChunk *pNext;
+ for(pIter=pFirst; pIter; pIter=pNext){
+ pNext = pIter->pNext;
+ sqlite3_free(pIter);
+ }
+}
+
+/*
+** Flush the contents of memory to a real file on disk.
+*/
+static int memjrnlCreateFile(MemJournal *p){
+ int rc;
+ sqlite3_file *pReal = (sqlite3_file*)p;
+ MemJournal copy = *p;
+
+ memset(p, 0, sizeof(MemJournal));
+ rc = sqlite3OsOpen(copy.pVfs, copy.zJournal, pReal, copy.flags, 0);
+ if( rc==SQLITE_OK ){
+ int nChunk = copy.nChunkSize;
+ i64 iOff = 0;
+ FileChunk *pIter;
+ for(pIter=copy.pFirst; pIter; pIter=pIter->pNext){
+ if( iOff + nChunk > copy.endpoint.iOffset ){
+ nChunk = copy.endpoint.iOffset - iOff;
+ }
+ rc = sqlite3OsWrite(pReal, (u8*)pIter->zChunk, nChunk, iOff);
+ if( rc ) break;
+ iOff += nChunk;
+ }
+ if( rc==SQLITE_OK ){
+ /* No error has occurred. Free the in-memory buffers. */
+ memjrnlFreeChunks(copy.pFirst);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ /* If an error occurred while creating or writing to the file, restore
+ ** the original before returning. This way, SQLite uses the in-memory
+ ** journal data to roll back changes made to the internal page-cache
+ ** before this function was called. */
+ sqlite3OsClose(pReal);
+ *p = copy;
+ }
+ return rc;
+}
+
+
+/* Forward reference */
+static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size);
+
+/*
+** Write data to the file.
+*/
+static int memjrnlWrite(
+ sqlite3_file *pJfd, /* The journal file into which to write */
+ const void *zBuf, /* Take data to be written from here */
+ int iAmt, /* Number of bytes to write */
+ sqlite_int64 iOfst /* Begin writing at this offset into the file */
+){
+ MemJournal *p = (MemJournal *)pJfd;
+ int nWrite = iAmt;
+ u8 *zWrite = (u8 *)zBuf;
+
+ /* If the file should be created now, create it and write the new data
+ ** into the file on disk. */
+ if( p->nSpill>0 && (iAmt+iOfst)>p->nSpill ){
+ int rc = memjrnlCreateFile(p);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pJfd, zBuf, iAmt, iOfst);
+ }
+ return rc;
+ }
+
+ /* If the contents of this write should be stored in memory */
+ else{
+ /* An in-memory journal file should only ever be appended to. Random
+ ** access writes are not required. The only exception to this is when
+ ** the in-memory journal is being used by a connection using the
+ ** atomic-write optimization. In this case the first 28 bytes of the
+ ** journal file may be written as part of committing the transaction. */
+ assert( iOfst<=p->endpoint.iOffset );
+ if( iOfst>0 && iOfst!=p->endpoint.iOffset ){
+ memjrnlTruncate(pJfd, iOfst);
+ }
+ if( iOfst==0 && p->pFirst ){
+ assert( p->nChunkSize>iAmt );
+ memcpy((u8*)p->pFirst->zChunk, zBuf, iAmt);
+ }else{
+ while( nWrite>0 ){
+ FileChunk *pChunk = p->endpoint.pChunk;
+ int iChunkOffset = (int)(p->endpoint.iOffset%p->nChunkSize);
+ int iSpace = MIN(nWrite, p->nChunkSize - iChunkOffset);
+
+ assert( pChunk!=0 || iChunkOffset==0 );
+ if( iChunkOffset==0 ){
+ /* New chunk is required to extend the file. */
+ FileChunk *pNew = sqlite3_malloc(fileChunkSize(p->nChunkSize));
+ if( !pNew ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ pNew->pNext = 0;
+ if( pChunk ){
+ assert( p->pFirst );
+ pChunk->pNext = pNew;
+ }else{
+ assert( !p->pFirst );
+ p->pFirst = pNew;
+ }
+ pChunk = p->endpoint.pChunk = pNew;
+ }
+
+ assert( pChunk!=0 );
+ memcpy((u8*)pChunk->zChunk + iChunkOffset, zWrite, iSpace);
+ zWrite += iSpace;
+ nWrite -= iSpace;
+ p->endpoint.iOffset += iSpace;
+ }
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Truncate the in-memory file.
+*/
+static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
+ MemJournal *p = (MemJournal *)pJfd;
+ assert( p->endpoint.pChunk==0 || p->endpoint.pChunk->pNext==0 );
+ if( size<p->endpoint.iOffset ){
+ FileChunk *pIter = 0;
+ if( size==0 ){
+ memjrnlFreeChunks(p->pFirst);
+ p->pFirst = 0;
+ }else{
+ i64 iOff = p->nChunkSize;
+ for(pIter=p->pFirst; ALWAYS(pIter) && iOff<size; pIter=pIter->pNext){
+ iOff += p->nChunkSize;
+ }
+ if( ALWAYS(pIter) ){
+ memjrnlFreeChunks(pIter->pNext);
+ pIter->pNext = 0;
+ }
+ }
+
+ p->endpoint.pChunk = pIter;
+ p->endpoint.iOffset = size;
+ p->readpoint.pChunk = 0;
+ p->readpoint.iOffset = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Close the file.
+*/
+static int memjrnlClose(sqlite3_file *pJfd){
+ MemJournal *p = (MemJournal *)pJfd;
+ memjrnlFreeChunks(p->pFirst);
+ return SQLITE_OK;
+}
+
+/*
+** Sync the file.
+**
+** If the real file has been created, call its xSync method. Otherwise,
+** syncing an in-memory journal is a no-op.
+*/
+static int memjrnlSync(sqlite3_file *pJfd, int flags){
+ UNUSED_PARAMETER2(pJfd, flags);
+ return SQLITE_OK;
+}
+
+/*
+** Query the size of the file in bytes.
+*/
+static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
+ MemJournal *p = (MemJournal *)pJfd;
+ *pSize = (sqlite_int64) p->endpoint.iOffset;
+ return SQLITE_OK;
+}
+
+/*
+** Table of methods for MemJournal sqlite3_file object.
+*/
+static const struct sqlite3_io_methods MemJournalMethods = {
+ 1, /* iVersion */
+ memjrnlClose, /* xClose */
+ memjrnlRead, /* xRead */
+ memjrnlWrite, /* xWrite */
+ memjrnlTruncate, /* xTruncate */
+ memjrnlSync, /* xSync */
+ memjrnlFileSize, /* xFileSize */
+ 0, /* xLock */
+ 0, /* xUnlock */
+ 0, /* xCheckReservedLock */
+ 0, /* xFileControl */
+ 0, /* xSectorSize */
+ 0, /* xDeviceCharacteristics */
+ 0, /* xShmMap */
+ 0, /* xShmLock */
+ 0, /* xShmBarrier */
+ 0, /* xShmUnmap */
+ 0, /* xFetch */
+ 0 /* xUnfetch */
+};
+
+/*
+** Open a journal file.
+**
+** The behaviour of the journal file depends on the value of parameter
+** nSpill. If nSpill is 0, then the journal file is always create and
+** accessed using the underlying VFS. If nSpill is less than zero, then
+** all content is always stored in main-memory. Finally, if nSpill is a
+** positive value, then the journal file is initially created in-memory
+** but may be flushed to disk later on. In this case the journal file is
+** flushed to disk either when it grows larger than nSpill bytes in size,
+** or when sqlite3JournalCreate() is called.
+*/
+SQLITE_PRIVATE int sqlite3JournalOpen(
+ sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
+ const char *zName, /* Name of the journal file */
+ sqlite3_file *pJfd, /* Preallocated, blank file handle */
+ int flags, /* Opening flags */
+ int nSpill /* Bytes buffered before opening the file */
+){
+ MemJournal *p = (MemJournal*)pJfd;
+
+ /* Zero the file-handle object. If nSpill was passed zero, initialize
+ ** it using the sqlite3OsOpen() function of the underlying VFS. In this
+ ** case none of the code in this module is executed as a result of calls
+ ** made on the journal file-handle. */
+ memset(p, 0, sizeof(MemJournal));
+ if( nSpill==0 ){
+ return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
+ }
+
+ if( nSpill>0 ){
+ p->nChunkSize = nSpill;
+ }else{
+ p->nChunkSize = 8 + MEMJOURNAL_DFLT_FILECHUNKSIZE - sizeof(FileChunk);
+ assert( MEMJOURNAL_DFLT_FILECHUNKSIZE==fileChunkSize(p->nChunkSize) );
+ }
+
+ pJfd->pMethods = (const sqlite3_io_methods*)&MemJournalMethods;
+ p->nSpill = nSpill;
+ p->flags = flags;
+ p->zJournal = zName;
+ p->pVfs = pVfs;
+ return SQLITE_OK;
+}
+
+/*
+** Open an in-memory journal file.
+*/
+SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){
+ sqlite3JournalOpen(0, 0, pJfd, 0, -1);
+}
+
+#if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
+ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+/*
+** If the argument p points to a MemJournal structure that is not an
+** in-memory-only journal file (i.e. is one that was opened with a +ve
+** nSpill parameter or as SQLITE_OPEN_MAIN_JOURNAL), and the underlying
+** file has not yet been created, create it now.
+*/
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *pJfd){
+ int rc = SQLITE_OK;
+ MemJournal *p = (MemJournal*)pJfd;
+ if( pJfd->pMethods==&MemJournalMethods && (
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ p->nSpill>0
+#else
+ /* While this appears to not be possible without ATOMIC_WRITE, the
+ ** paths are complex, so it seems prudent to leave the test in as
+ ** a NEVER(), in case our analysis is subtly flawed. */
+ NEVER(p->nSpill>0)
+#endif
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ || (p->flags & SQLITE_OPEN_MAIN_JOURNAL)
+#endif
+ )){
+ rc = memjrnlCreateFile(p);
+ }
+ return rc;
+}
+#endif
+
+/*
+** The file-handle passed as the only argument is open on a journal file.
+** Return true if this "journal file" is currently stored in heap memory,
+** or false otherwise.
+*/
+SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p){
+ return p->pMethods==&MemJournalMethods;
+}
+
+/*
+** Return the number of bytes required to store a JournalFile that uses vfs
+** pVfs to create the underlying on-disk files.
+*/
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
+ return MAX(pVfs->szOsFile, (int)sizeof(MemJournal));
+}
+
+/************** End of memjournal.c ******************************************/
+/************** Begin file crypto.c ******************************************/
+/*
+** SQLCipher
+** http://sqlcipher.net
+**
+** Copyright (c) 2008 - 2013, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+
+/* #include <assert.h> */
+/************** Include sqlcipher.h in the middle of crypto.c ****************/
+/************** Begin file sqlcipher.h ***************************************/
+/*
+** SQLCipher
+** sqlcipher.h developed by Stephen Lombardo (Zetetic LLC)
+** sjlombardo at zetetic dot net
+** http://zetetic.net
+**
+** Copyright (c) 2008, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+#ifndef SQLCIPHER_H
+#define SQLCIPHER_H
+
+/* #include "sqlite3.h" */
+
+#define SQLCIPHER_HMAC_SHA1 0
+#define SQLCIPHER_HMAC_SHA1_LABEL "HMAC_SHA1"
+#define SQLCIPHER_HMAC_SHA256 1
+#define SQLCIPHER_HMAC_SHA256_LABEL "HMAC_SHA256"
+#define SQLCIPHER_HMAC_SHA512 2
+#define SQLCIPHER_HMAC_SHA512_LABEL "HMAC_SHA512"
+
+
+#define SQLCIPHER_PBKDF2_HMAC_SHA1 0
+#define SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL "PBKDF2_HMAC_SHA1"
+#define SQLCIPHER_PBKDF2_HMAC_SHA256 1
+#define SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL "PBKDF2_HMAC_SHA256"
+#define SQLCIPHER_PBKDF2_HMAC_SHA512 2
+#define SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL "PBKDF2_HMAC_SHA512"
+
+
+typedef struct {
+ int (*activate)(void *ctx);
+ int (*deactivate)(void *ctx);
+ const char* (*get_provider_name)(void *ctx);
+ int (*add_random)(void *ctx, void *buffer, int length);
+ int (*random)(void *ctx, void *buffer, int length);
+ int (*hmac)(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out);
+ int (*kdf)(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key);
+ int (*cipher)(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out);
+ const char* (*get_cipher)(void *ctx);
+ int (*get_key_sz)(void *ctx);
+ int (*get_iv_sz)(void *ctx);
+ int (*get_block_sz)(void *ctx);
+ int (*get_hmac_sz)(void *ctx, int algorithm);
+ int (*ctx_init)(void **ctx);
+ int (*ctx_free)(void **ctx);
+ int (*fips_status)(void *ctx);
+ const char* (*get_provider_version)(void *ctx);
+} sqlcipher_provider;
+
+/* utility functions */
+void* sqlcipher_malloc(sqlite_uint64);
+void sqlcipher_mlock(void *, sqlite_uint64);
+void sqlcipher_munlock(void *, sqlite_uint64);
+void* sqlcipher_memset(void *, unsigned char, sqlite_uint64);
+int sqlcipher_ismemset(const void *, unsigned char, sqlite_uint64);
+int sqlcipher_memcmp(const void *, const void *, int);
+void sqlcipher_free(void *, sqlite_uint64);
+char* sqlcipher_version();
+
+/* provider interfaces */
+int sqlcipher_register_provider(sqlcipher_provider *);
+sqlcipher_provider* sqlcipher_get_provider(void);
+
+#define SQLCIPHER_MUTEX_PROVIDER 0
+#define SQLCIPHER_MUTEX_PROVIDER_ACTIVATE 1
+#define SQLCIPHER_MUTEX_PROVIDER_RAND 2
+#define SQLCIPHER_MUTEX_RESERVED1 3
+#define SQLCIPHER_MUTEX_RESERVED2 4
+#define SQLCIPHER_MUTEX_RESERVED3 5
+#define SQLCIPHER_MUTEX_COUNT 6
+
+sqlite3_mutex* sqlcipher_mutex(int);
+
+#endif
+#endif
+/* END SQLCIPHER */
+
+
+/************** End of sqlcipher.h *******************************************/
+/************** Continuing where we left off in crypto.c *********************/
+/************** Include crypto.h in the middle of crypto.c *******************/
+/************** Begin file crypto.h ******************************************/
+/*
+** SQLCipher
+** crypto.h developed by Stephen Lombardo (Zetetic LLC)
+** sjlombardo at zetetic dot net
+** http://zetetic.net
+**
+** Copyright (c) 2008, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+#ifndef CRYPTO_H
+#define CRYPTO_H
+
+/* #include "sqliteInt.h" */
+/* #include "btreeInt.h" */
+/* #include "pager.h" */
+/* #include "vdbeInt.h" */
+
+#ifdef __ANDROID__
+#include <android/log.h>
+#endif
+
+/* #include <time.h> */
+
+#if defined(_WIN32) || defined(SQLITE_OS_WINRT)
+/* #include <windows.h> ** amalgamator: dontcache ** */
+#else
+/* #include <sys/time.h> ** amalgamator: dontcache ** */
+#endif
+
+#ifndef OMIT_MEMLOCK
+#if defined(__unix__) || defined(__APPLE__) || defined(_AIX)
+/* #include <errno.h> ** amalgamator: dontcache ** */
+/* #include <unistd.h> ** amalgamator: dontcache ** */
+#include <sys/resource.h> /* amalgamator: dontcache */
+/* #include <sys/mman.h> ** amalgamator: dontcache ** */
+#endif
+#endif
+
+/* #include "sqlcipher.h" */
+
+/* extensions defined in pager.c */
+void *sqlcipherPagerGetCodec(Pager*);
+void sqlcipherPagerSetCodec(Pager*, void *(*)(void*,void*,Pgno,int), void (*)(void*,int,int), void (*)(void*), void *);
+SQLITE_API int sqlite3pager_is_sj_pgno(Pager*, Pgno);
+SQLITE_API void sqlite3pager_error(Pager*, int);
+SQLITE_API void sqlite3pager_reset(Pager *pPager);
+/* end extensions defined in pager.c */
+
+#if !defined (SQLCIPHER_CRYPTO_CC) \
+ && !defined (SQLCIPHER_CRYPTO_LIBTOMCRYPT) \
+ && !defined (SQLCIPHER_CRYPTO_NSS) \
+ && !defined (SQLCIPHER_CRYPTO_OPENSSL)
+#define SQLCIPHER_CRYPTO_OPENSSL
+#endif
+
+#define FILE_HEADER_SZ 16
+
+#define CIPHER_XSTR(s) CIPHER_STR(s)
+#define CIPHER_STR(s) #s
+
+#ifndef CIPHER_VERSION_NUMBER
+#define CIPHER_VERSION_NUMBER 4.5.3
+#endif
+
+#ifndef CIPHER_VERSION_BUILD
+#define CIPHER_VERSION_BUILD community
+#endif
+
+#define CIPHER_DECRYPT 0
+#define CIPHER_ENCRYPT 1
+
+#define CIPHER_READ_CTX 0
+#define CIPHER_WRITE_CTX 1
+#define CIPHER_READWRITE_CTX 2
+
+#ifndef PBKDF2_ITER
+#define PBKDF2_ITER 256000
+#endif
+
+/* possible flags for cipher_ctx->flags */
+#define CIPHER_FLAG_HMAC 0x01
+#define CIPHER_FLAG_LE_PGNO 0x02
+#define CIPHER_FLAG_BE_PGNO 0x04
+
+#ifndef DEFAULT_CIPHER_FLAGS
+#define DEFAULT_CIPHER_FLAGS CIPHER_FLAG_HMAC | CIPHER_FLAG_LE_PGNO
+#endif
+
+
+/* by default, sqlcipher will use a reduced number of iterations to generate
+ the HMAC key / or transform a raw cipher key
+ */
+#ifndef FAST_PBKDF2_ITER
+#define FAST_PBKDF2_ITER 2
+#endif
+
+/* this if a fixed random array that will be xor'd with the database salt to ensure that the
+ salt passed to the HMAC key derivation function is not the same as that used to derive
+ the encryption key. This can be overridden at compile time but it will make the resulting
+ binary incompatible with the default builds when using HMAC. A future version of SQLcipher
+ will likely allow this to be defined at runtime via pragma */
+#ifndef HMAC_SALT_MASK
+#define HMAC_SALT_MASK 0x3a
+#endif
+
+#ifndef CIPHER_MAX_IV_SZ
+#define CIPHER_MAX_IV_SZ 16
+#endif
+
+#ifndef CIPHER_MAX_KEY_SZ
+#define CIPHER_MAX_KEY_SZ 64
+#endif
+
+
+/*
+** Simple shared routines for converting hex char strings to binary data
+ */
+static int cipher_hex2int(char c) {
+ return (c>='0' && c<='9') ? (c)-'0' :
+ (c>='A' && c<='F') ? (c)-'A'+10 :
+ (c>='a' && c<='f') ? (c)-'a'+10 : 0;
+}
+
+static void cipher_hex2bin(const unsigned char *hex, int sz, unsigned char *out){
+ int i;
+ for(i = 0; i < sz; i += 2){
+ out[i/2] = (cipher_hex2int(hex[i])<<4) | cipher_hex2int(hex[i+1]);
+ }
+}
+
+static void cipher_bin2hex(const unsigned char* in, int sz, char *out) {
+ int i;
+ for(i=0; i < sz; i++) {
+ sqlite3_snprintf(3, out + (i*2), "%02x ", in[i]);
+ }
+}
+
+static int cipher_isHex(const unsigned char *hex, int sz){
+ int i;
+ for(i = 0; i < sz; i++) {
+ unsigned char c = hex[i];
+ if ((c < '0' || c > '9') &&
+ (c < 'A' || c > 'F') &&
+ (c < 'a' || c > 'f')) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* possible flags for simulating specific test conditions */
+#ifdef SQLCIPHER_TEST
+#define TEST_FAIL_ENCRYPT 0x01
+#define TEST_FAIL_DECRYPT 0x02
+#define TEST_FAIL_MIGRATE 0x04
+unsigned int sqlcipher_get_test_flags(void);
+void sqlcipher_set_test_flags(unsigned int);
+int sqlcipher_get_test_rand(void);
+void sqlcipher_set_test_rand(int);
+int sqlcipher_get_test_fail(void);
+#endif
+
+/* extensions defined in crypto_impl.c */
+/* the default implementation of SQLCipher uses a cipher_ctx
+ to keep track of read / write state separately. The following
+ struct and associated functions are defined here */
+typedef struct {
+ int derive_key;
+ int pass_sz;
+ unsigned char *key;
+ unsigned char *hmac_key;
+ unsigned char *pass;
+ char *keyspec;
+} cipher_ctx;
+
+
+typedef struct {
+ int store_pass;
+ int kdf_iter;
+ int fast_kdf_iter;
+ int kdf_salt_sz;
+ int key_sz;
+ int iv_sz;
+ int block_sz;
+ int page_sz;
+ int keyspec_sz;
+ int reserve_sz;
+ int hmac_sz;
+ int plaintext_header_sz;
+ int hmac_algorithm;
+ int kdf_algorithm;
+ unsigned int skip_read_hmac;
+ unsigned int need_kdf_salt;
+ unsigned int flags;
+ unsigned char *kdf_salt;
+ unsigned char *hmac_kdf_salt;
+ unsigned char *buffer;
+ Btree *pBt;
+ cipher_ctx *read_ctx;
+ cipher_ctx *write_ctx;
+ sqlcipher_provider *provider;
+ void *provider_ctx;
+} codec_ctx ;
+
+/* crypto.c functions */
+int sqlcipher_codec_pragma(sqlite3*, int, Parse*, const char *, const char*);
+int sqlcipherCodecAttach(sqlite3*, int, const void *, int);
+void sqlcipherCodecGetKey(sqlite3*, int, void**, int*);
+void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **);
+
+/* crypto_impl.c functions */
+
+void sqlcipher_init_memmethods(void);
+
+/* activation and initialization */
+void sqlcipher_activate(void);
+void sqlcipher_deactivate(void);
+
+int sqlcipher_codec_ctx_init(codec_ctx **, Db *, Pager *, const void *, int);
+void sqlcipher_codec_ctx_free(codec_ctx **);
+int sqlcipher_codec_key_derive(codec_ctx *);
+int sqlcipher_codec_key_copy(codec_ctx *, int);
+
+/* page cipher implementation */
+int sqlcipher_page_cipher(codec_ctx *, int, Pgno, int, int, unsigned char *, unsigned char *);
+
+/* context setters & getters */
+void sqlcipher_codec_ctx_set_error(codec_ctx *, int);
+
+void sqlcipher_codec_get_pass(codec_ctx *, void **, int *);
+int sqlcipher_codec_ctx_set_pass(codec_ctx *, const void *, int, int);
+void sqlcipher_codec_get_keyspec(codec_ctx *, void **zKey, int *nKey);
+
+int sqlcipher_codec_ctx_set_pagesize(codec_ctx *, int);
+int sqlcipher_codec_ctx_get_pagesize(codec_ctx *);
+int sqlcipher_codec_ctx_get_reservesize(codec_ctx *);
+
+void sqlcipher_set_default_pagesize(int page_size);
+int sqlcipher_get_default_pagesize(void);
+
+void sqlcipher_set_default_kdf_iter(int iter);
+int sqlcipher_get_default_kdf_iter(void);
+int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *, int);
+int sqlcipher_codec_ctx_get_kdf_iter(codec_ctx *ctx);
+
+int sqlcipher_codec_ctx_set_kdf_salt(codec_ctx *ctx, unsigned char *salt, int sz);
+int sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx, void **salt);
+
+int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *, int);
+int sqlcipher_codec_ctx_get_fast_kdf_iter(codec_ctx *);
+
+const char* sqlcipher_codec_ctx_get_cipher(codec_ctx *ctx);
+
+void* sqlcipher_codec_ctx_get_data(codec_ctx *);
+
+void sqlcipher_set_default_use_hmac(int use);
+int sqlcipher_get_default_use_hmac(void);
+
+void sqlcipher_set_hmac_salt_mask(unsigned char mask);
+unsigned char sqlcipher_get_hmac_salt_mask(void);
+
+int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use);
+int sqlcipher_codec_ctx_get_use_hmac(codec_ctx *ctx);
+
+int sqlcipher_codec_ctx_set_flag(codec_ctx *ctx, unsigned int flag);
+int sqlcipher_codec_ctx_unset_flag(codec_ctx *ctx, unsigned int flag);
+int sqlcipher_codec_ctx_get_flag(codec_ctx *ctx, unsigned int flag);
+
+const char* sqlcipher_codec_get_cipher_provider(codec_ctx *ctx);
+int sqlcipher_codec_ctx_migrate(codec_ctx *ctx);
+int sqlcipher_codec_add_random(codec_ctx *ctx, const char *data, int random_sz);
+int sqlcipher_cipher_profile(sqlite3 *db, const char *destination);
+int sqlcipher_codec_get_store_pass(codec_ctx *ctx);
+void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey);
+void sqlcipher_codec_set_store_pass(codec_ctx *ctx, int value);
+int sqlcipher_codec_fips_status(codec_ctx *ctx);
+const char* sqlcipher_codec_get_provider_version(codec_ctx *ctx);
+
+int sqlcipher_set_default_plaintext_header_size(int size);
+int sqlcipher_get_default_plaintext_header_size(void);
+int sqlcipher_codec_ctx_set_plaintext_header_size(codec_ctx *ctx, int size);
+int sqlcipher_codec_ctx_get_plaintext_header_size(codec_ctx *ctx);
+
+int sqlcipher_set_default_hmac_algorithm(int algorithm);
+int sqlcipher_get_default_hmac_algorithm(void);
+int sqlcipher_codec_ctx_set_hmac_algorithm(codec_ctx *ctx, int algorithm);
+int sqlcipher_codec_ctx_get_hmac_algorithm(codec_ctx *ctx);
+
+int sqlcipher_set_default_kdf_algorithm(int algorithm);
+int sqlcipher_get_default_kdf_algorithm(void);
+int sqlcipher_codec_ctx_set_kdf_algorithm(codec_ctx *ctx, int algorithm);
+int sqlcipher_codec_ctx_get_kdf_algorithm(codec_ctx *ctx);
+
+void sqlcipher_set_mem_security(int);
+int sqlcipher_get_mem_security(void);
+
+int sqlcipher_find_db_index(sqlite3 *db, const char *zDb);
+
+int sqlcipher_codec_ctx_integrity_check(codec_ctx *, Parse *, char *);
+
+int sqlcipher_set_log(const char *destination);
+void sqlcipher_set_log_level(unsigned int level);
+void sqlcipher_log(unsigned int tag, const char *message, ...);
+
+#define SQLCIPHER_LOG_NONE 0x00
+#define SQLCIPHER_LOG_ERROR 0x01
+#define SQLCIPHER_LOG_WARN 0x02
+#define SQLCIPHER_LOG_INFO 0x04
+#define SQLCIPHER_LOG_DEBUG 0x08
+#define SQLCIPHER_LOG_TRACE 0x10
+#define SQLCIPHER_LOG_ALL 0xffffffff
+
+void sqlcipher_vdbe_return_string(Parse*, const char*, const char*, int);
+
+#ifdef CODEC_DEBUG_PAGEDATA
+#define CODEC_HEXDUMP(DESC,BUFFER,LEN) \
+ { \
+ int __pctr; \
+ printf(DESC); \
+ for(__pctr=0; __pctr < LEN; __pctr++) { \
+ if(__pctr % 16 == 0) printf("\n%05x: ",__pctr); \
+ printf("%02x ",((unsigned char*) BUFFER)[__pctr]); \
+ } \
+ printf("\n"); \
+ fflush(stdout); \
+ }
+#else
+#define CODEC_HEXDUMP(DESC,BUFFER,LEN)
+#endif
+
+#endif
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto.h **********************************************/
+/************** Continuing where we left off in crypto.c *********************/
+
+#ifdef SQLCIPHER_EXT
+#include "sqlcipher_ext.h"
+#endif
+
+void sqlcipher_vdbe_return_string(Parse *pParse, const char *zLabel, const char *value, int value_type){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, value, value_type);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+}
+
+static int codec_set_btree_to_codec_pagesize(sqlite3 *db, Db *pDb, codec_ctx *ctx) {
+ int rc, page_sz, reserve_sz;
+
+ page_sz = sqlcipher_codec_ctx_get_pagesize(ctx);
+ reserve_sz = sqlcipher_codec_ctx_get_reservesize(ctx);
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_set_btree_to_codec_pagesize: sqlite3BtreeSetPageSize() size=%d reserve=%d", page_sz, reserve_sz);
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: entering database mutex %p", db->mutex);
+ sqlite3_mutex_enter(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: entered database mutex %p", db->mutex);
+ db->nextPagesize = page_sz;
+
+ /* before forcing the page size we need to unset the BTS_PAGESIZE_FIXED flag, else
+ sqliteBtreeSetPageSize will block the change */
+ pDb->pBt->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED;
+ rc = sqlite3BtreeSetPageSize(pDb->pBt, page_sz, reserve_sz, 0);
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_set_btree_to_codec_pagesize: sqlite3BtreeSetPageSize returned %d", rc);
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: leaving database mutex %p", db->mutex);
+ sqlite3_mutex_leave(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "codec_set_btree_to_codec_pagesize: left database mutex %p", db->mutex);
+
+ return rc;
+}
+
+static int codec_set_pass_key(sqlite3* db, int nDb, const void *zKey, int nKey, int for_ctx) {
+ struct Db *pDb = &db->aDb[nDb];
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_set_pass_key: db=%p nDb=%d for_ctx=%d", db, nDb, for_ctx);
+ if(pDb->pBt) {
+ codec_ctx *ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager);
+
+ if(ctx) {
+ return sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, for_ctx);
+ } else {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "codec_set_pass_key: error ocurred fetching codec from pager on db %d", nDb);
+ return SQLITE_ERROR;
+ }
+ }
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "codec_set_pass_key: no btree present on db %d", nDb);
+ return SQLITE_ERROR;
+}
+
+int sqlcipher_codec_pragma(sqlite3* db, int iDb, Parse *pParse, const char *zLeft, const char *zRight) {
+ struct Db *pDb = &db->aDb[iDb];
+ codec_ctx *ctx = NULL;
+ int rc;
+
+ if(pDb->pBt) {
+ ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager);
+ }
+
+ if(sqlite3_stricmp(zLeft, "key") !=0 && sqlite3_stricmp(zLeft, "rekey") != 0) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_pragma: db=%p iDb=%d pParse=%p zLeft=%s zRight=%s ctx=%p", db, iDb, pParse, zLeft, zRight, ctx);
+ }
+
+#ifdef SQLCIPHER_EXT
+ if(sqlcipher_ext_pragma(db, iDb, pParse, zLeft, zRight)) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_pragma: PRAGMA handled by sqlcipher_ext_pragma");
+ } else
+#endif
+#ifdef SQLCIPHER_TEST
+ if( sqlite3_stricmp(zLeft,"cipher_test_on")==0 ){
+ if( zRight ) {
+ unsigned int flags = sqlcipher_get_test_flags();
+ if(sqlite3_stricmp(zRight, "fail_encrypt")==0) {
+ flags |= TEST_FAIL_ENCRYPT;
+ } else
+ if(sqlite3_stricmp(zRight, "fail_decrypt")==0) {
+ flags |= TEST_FAIL_DECRYPT;
+ } else
+ if(sqlite3_stricmp(zRight, "fail_migrate")==0) {
+ flags |= TEST_FAIL_MIGRATE;
+ }
+ sqlcipher_set_test_flags(flags);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft,"cipher_test_off")==0 ){
+ if( zRight ) {
+ unsigned int flags = sqlcipher_get_test_flags();
+ if(sqlite3_stricmp(zRight, "fail_encrypt")==0) {
+ flags &= ~TEST_FAIL_ENCRYPT;
+ } else
+ if(sqlite3_stricmp(zRight, "fail_decrypt")==0) {
+ flags &= ~TEST_FAIL_DECRYPT;
+ } else
+ if(sqlite3_stricmp(zRight, "fail_migrate")==0) {
+ flags &= ~TEST_FAIL_MIGRATE;
+ }
+ sqlcipher_set_test_flags(flags);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft,"cipher_test")==0 ){
+ char *flags = sqlite3_mprintf("%u", sqlcipher_get_test_flags());
+ sqlcipher_vdbe_return_string(pParse, "cipher_test", flags, P4_DYNAMIC);
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_test_rand")==0 ){
+ if( zRight ) {
+ int rand = atoi(zRight);
+ sqlcipher_set_test_rand(rand);
+ } else {
+ char *rand = sqlite3_mprintf("%d", sqlcipher_get_test_rand());
+ sqlcipher_vdbe_return_string(pParse, "cipher_test_rand", rand, P4_DYNAMIC);
+ }
+ } else
+#endif
+ if( sqlite3_stricmp(zLeft, "cipher_fips_status")== 0 && !zRight ){
+ if(ctx) {
+ char *fips_mode_status = sqlite3_mprintf("%d", sqlcipher_codec_fips_status(ctx));
+ sqlcipher_vdbe_return_string(pParse, "cipher_fips_status", fips_mode_status, P4_DYNAMIC);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_store_pass")==0 && zRight ) {
+ if(ctx) {
+ char *deprecation = "PRAGMA cipher_store_pass is deprecated, please remove from use";
+ sqlcipher_codec_set_store_pass(ctx, sqlite3GetBoolean(zRight, 1));
+ sqlcipher_vdbe_return_string(pParse, "cipher_store_pass", deprecation, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, deprecation);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_store_pass")==0 && !zRight ) {
+ if(ctx){
+ char *store_pass_value = sqlite3_mprintf("%d", sqlcipher_codec_get_store_pass(ctx));
+ sqlcipher_vdbe_return_string(pParse, "cipher_store_pass", store_pass_value, P4_DYNAMIC);
+ }
+ }
+ if( sqlite3_stricmp(zLeft, "cipher_profile")== 0 && zRight ){
+ char *profile_status = sqlite3_mprintf("%d", sqlcipher_cipher_profile(db, zRight));
+ sqlcipher_vdbe_return_string(pParse, "cipher_profile", profile_status, P4_DYNAMIC);
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_add_random")==0 && zRight ){
+ if(ctx) {
+ char *add_random_status = sqlite3_mprintf("%d", sqlcipher_codec_add_random(ctx, zRight, sqlite3Strlen30(zRight)));
+ sqlcipher_vdbe_return_string(pParse, "cipher_add_random", add_random_status, P4_DYNAMIC);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_migrate")==0 && !zRight ){
+ if(ctx){
+ int status = sqlcipher_codec_ctx_migrate(ctx);
+ char *migrate_status = sqlite3_mprintf("%d", status);
+ sqlcipher_vdbe_return_string(pParse, "cipher_migrate", migrate_status, P4_DYNAMIC);
+ if(status != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_pragma: error occurred during cipher_migrate: %d", status);
+ sqlcipher_codec_ctx_set_error(ctx, status);
+ }
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_provider")==0 && !zRight ){
+ if(ctx) { sqlcipher_vdbe_return_string(pParse, "cipher_provider",
+ sqlcipher_codec_get_cipher_provider(ctx), P4_TRANSIENT);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_provider_version")==0 && !zRight){
+ if(ctx) { sqlcipher_vdbe_return_string(pParse, "cipher_provider_version",
+ sqlcipher_codec_get_provider_version(ctx), P4_TRANSIENT);
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_version")==0 && !zRight ){
+ sqlcipher_vdbe_return_string(pParse, "cipher_version", sqlcipher_version(), P4_DYNAMIC);
+ }else
+ if( sqlite3_stricmp(zLeft, "cipher")==0 ){
+ if(ctx) {
+ if( zRight ) {
+ const char* message = "PRAGMA cipher is no longer supported.";
+ sqlcipher_vdbe_return_string(pParse, "cipher", message, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, message);
+ }else {
+ sqlcipher_vdbe_return_string(pParse, "cipher", sqlcipher_codec_ctx_get_cipher(ctx), P4_TRANSIENT);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft, "rekey_cipher")==0 && zRight ){
+ const char* message = "PRAGMA rekey_cipher is no longer supported.";
+ sqlcipher_vdbe_return_string(pParse, "rekey_cipher", message, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, message);
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_kdf_iter")==0 ){
+ if( zRight ) {
+ sqlcipher_set_default_kdf_iter(atoi(zRight)); /* change default KDF iterations */
+ } else {
+ char *kdf_iter = sqlite3_mprintf("%d", sqlcipher_get_default_kdf_iter());
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_iter", kdf_iter, P4_DYNAMIC);
+ }
+ }else
+ if( sqlite3_stricmp(zLeft, "kdf_iter")==0 ){
+ if(ctx) {
+ if( zRight ) {
+ sqlcipher_codec_ctx_set_kdf_iter(ctx, atoi(zRight)); /* change of RW PBKDF2 iteration */
+ } else {
+ char *kdf_iter = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_kdf_iter(ctx));
+ sqlcipher_vdbe_return_string(pParse, "kdf_iter", kdf_iter, P4_DYNAMIC);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft, "fast_kdf_iter")==0){
+ if(ctx) {
+ if( zRight ) {
+ char *deprecation = "PRAGMA fast_kdf_iter is deprecated, please remove from use";
+ sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, atoi(zRight)); /* change of RW PBKDF2 iteration */
+ sqlcipher_vdbe_return_string(pParse, "fast_kdf_iter", deprecation, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, deprecation);
+ } else {
+ char *fast_kdf_iter = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_fast_kdf_iter(ctx));
+ sqlcipher_vdbe_return_string(pParse, "fast_kdf_iter", fast_kdf_iter, P4_DYNAMIC);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft, "rekey_kdf_iter")==0 && zRight ){
+ const char* message = "PRAGMA rekey_kdf_iter is no longer supported.";
+ sqlcipher_vdbe_return_string(pParse, "rekey_kdf_iter", message, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, message);
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_page_size")==0 ){
+ if(ctx) {
+ if( zRight ) {
+ int size = atoi(zRight);
+ rc = sqlcipher_codec_ctx_set_pagesize(ctx, size);
+ if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc);
+ rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx);
+ if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc);
+ } else {
+ char * page_size = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_pagesize(ctx));
+ sqlcipher_vdbe_return_string(pParse, "cipher_page_size", page_size, P4_DYNAMIC);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_page_size")==0 ){
+ if( zRight ) {
+ sqlcipher_set_default_pagesize(atoi(zRight));
+ } else {
+ char *default_page_size = sqlite3_mprintf("%d", sqlcipher_get_default_pagesize());
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_page_size", default_page_size, P4_DYNAMIC);
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_use_hmac")==0 ){
+ if( zRight ) {
+ sqlcipher_set_default_use_hmac(sqlite3GetBoolean(zRight,1));
+ } else {
+ char *default_use_hmac = sqlite3_mprintf("%d", sqlcipher_get_default_use_hmac());
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_use_hmac", default_use_hmac, P4_DYNAMIC);
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_use_hmac")==0 ){
+ if(ctx) {
+ if( zRight ) {
+ rc = sqlcipher_codec_ctx_set_use_hmac(ctx, sqlite3GetBoolean(zRight,1));
+ if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc);
+ /* since the use of hmac has changed, the page size may also change */
+ rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx);
+ if(rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, rc);
+ } else {
+ char *hmac_flag = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_use_hmac(ctx));
+ sqlcipher_vdbe_return_string(pParse, "cipher_use_hmac", hmac_flag, P4_DYNAMIC);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_hmac_pgno")==0 ){
+ if(ctx) {
+ if(zRight) {
+ char *deprecation = "PRAGMA cipher_hmac_pgno is deprecated, please remove from use";
+ /* clear both pgno endian flags */
+ if(sqlite3_stricmp(zRight, "le") == 0) {
+ sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_BE_PGNO);
+ sqlcipher_codec_ctx_set_flag(ctx, CIPHER_FLAG_LE_PGNO);
+ } else if(sqlite3_stricmp(zRight, "be") == 0) {
+ sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_LE_PGNO);
+ sqlcipher_codec_ctx_set_flag(ctx, CIPHER_FLAG_BE_PGNO);
+ } else if(sqlite3_stricmp(zRight, "native") == 0) {
+ sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_LE_PGNO);
+ sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_BE_PGNO);
+ }
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", deprecation, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, deprecation);
+
+ } else {
+ if(sqlcipher_codec_ctx_get_flag(ctx, CIPHER_FLAG_LE_PGNO)) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", "le", P4_TRANSIENT);
+ } else if(sqlcipher_codec_ctx_get_flag(ctx, CIPHER_FLAG_BE_PGNO)) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", "be", P4_TRANSIENT);
+ } else {
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_pgno", "native", P4_TRANSIENT);
+ }
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_hmac_salt_mask")==0 ){
+ if(ctx) {
+ if(zRight) {
+ char *deprecation = "PRAGMA cipher_hmac_salt_mask is deprecated, please remove from use";
+ if (sqlite3StrNICmp(zRight ,"x'", 2) == 0 && sqlite3Strlen30(zRight) == 5) {
+ unsigned char mask = 0;
+ const unsigned char *hex = (const unsigned char *)zRight+2;
+ cipher_hex2bin(hex,2,&mask);
+ sqlcipher_set_hmac_salt_mask(mask);
+ }
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_salt_mask", deprecation, P4_TRANSIENT);
+ sqlite3_log(SQLITE_WARNING, deprecation);
+ } else {
+ char *hmac_salt_mask = sqlite3_mprintf("%02x", sqlcipher_get_hmac_salt_mask());
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_salt_mask", hmac_salt_mask, P4_DYNAMIC);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_plaintext_header_size")==0 ){
+ if(ctx) {
+ if( zRight ) {
+ int size = atoi(zRight);
+ /* deliberately ignore result code, if size is invalid it will be set to -1
+ and trip the error later in the codec */
+ sqlcipher_codec_ctx_set_plaintext_header_size(ctx, size);
+ } else {
+ char *size = sqlite3_mprintf("%d", sqlcipher_codec_ctx_get_plaintext_header_size(ctx));
+ sqlcipher_vdbe_return_string(pParse, "cipher_plaintext_header_size", size, P4_DYNAMIC);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_plaintext_header_size")==0 ){
+ if( zRight ) {
+ sqlcipher_set_default_plaintext_header_size(atoi(zRight));
+ } else {
+ char *size = sqlite3_mprintf("%d", sqlcipher_get_default_plaintext_header_size());
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_plaintext_header_size", size, P4_DYNAMIC);
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_salt")==0 ){
+ if(ctx) {
+ if(zRight) {
+ if (sqlite3StrNICmp(zRight ,"x'", 2) == 0 && sqlite3Strlen30(zRight) == (FILE_HEADER_SZ*2)+3) {
+ unsigned char *salt = (unsigned char*) sqlite3_malloc(FILE_HEADER_SZ);
+ const unsigned char *hex = (const unsigned char *)zRight+2;
+ cipher_hex2bin(hex,FILE_HEADER_SZ*2,salt);
+ sqlcipher_codec_ctx_set_kdf_salt(ctx, salt, FILE_HEADER_SZ);
+ sqlite3_free(salt);
+ }
+ } else {
+ void *salt;
+ char *hexsalt = (char*) sqlite3_malloc((FILE_HEADER_SZ*2)+1);
+ if((rc = sqlcipher_codec_ctx_get_kdf_salt(ctx, &salt)) == SQLITE_OK) {
+ cipher_bin2hex(salt, FILE_HEADER_SZ, hexsalt);
+ sqlcipher_vdbe_return_string(pParse, "cipher_salt", hexsalt, P4_DYNAMIC);
+ } else {
+ sqlite3_free(hexsalt);
+ sqlcipher_codec_ctx_set_error(ctx, rc);
+ }
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_hmac_algorithm")==0 ){
+ if(ctx) {
+ if(zRight) {
+ rc = SQLITE_ERROR;
+ if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA1_LABEL) == 0) {
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA256_LABEL) == 0) {
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA256);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA512_LABEL) == 0) {
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA512);
+ }
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ } else {
+ int algorithm = sqlcipher_codec_ctx_get_hmac_algorithm(ctx);
+ if(algorithm == SQLCIPHER_HMAC_SHA1) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_algorithm", SQLCIPHER_HMAC_SHA1_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA256) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_algorithm", SQLCIPHER_HMAC_SHA256_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA512) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_hmac_algorithm", SQLCIPHER_HMAC_SHA512_LABEL, P4_TRANSIENT);
+ }
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_hmac_algorithm")==0 ){
+ if(zRight) {
+ rc = SQLITE_ERROR;
+ if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA1_LABEL) == 0) {
+ rc = sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA256_LABEL) == 0) {
+ rc = sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA256);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_HMAC_SHA512_LABEL) == 0) {
+ rc = sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA512);
+ }
+ } else {
+ int algorithm = sqlcipher_get_default_hmac_algorithm();
+ if(algorithm == SQLCIPHER_HMAC_SHA1) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_hmac_algorithm", SQLCIPHER_HMAC_SHA1_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA256) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_hmac_algorithm", SQLCIPHER_HMAC_SHA256_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA512) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_hmac_algorithm", SQLCIPHER_HMAC_SHA512_LABEL, P4_TRANSIENT);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_kdf_algorithm")==0 ){
+ if(ctx) {
+ if(zRight) {
+ rc = SQLITE_ERROR;
+ if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL) == 0) {
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL) == 0) {
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA256);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL) == 0) {
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA512);
+ }
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ } else {
+ int algorithm = sqlcipher_codec_ctx_get_kdf_algorithm(ctx);
+ if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL, P4_TRANSIENT);
+ }
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_kdf_algorithm")==0 ){
+ if(zRight) {
+ rc = SQLITE_ERROR;
+ if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL) == 0) {
+ rc = sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL) == 0) {
+ rc = sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA256);
+ } else if(sqlite3_stricmp(zRight, SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL) == 0) {
+ rc = sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA512);
+ }
+ } else {
+ int algorithm = sqlcipher_get_default_kdf_algorithm();
+ if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL, P4_TRANSIENT);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) {
+ sqlcipher_vdbe_return_string(pParse, "cipher_default_kdf_algorithm", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL, P4_TRANSIENT);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_compatibility")==0 ){
+ if(ctx) {
+ if(zRight) {
+ int version = atoi(zRight);
+
+ switch(version) {
+ case 1:
+ rc = sqlcipher_codec_ctx_set_pagesize(ctx, 1024);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 4000);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 0);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ break;
+
+ case 2:
+ rc = sqlcipher_codec_ctx_set_pagesize(ctx, 1024);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 4000);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ break;
+
+ case 3:
+ rc = sqlcipher_codec_ctx_set_pagesize(ctx, 1024);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 64000);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ break;
+
+ default:
+ rc = sqlcipher_codec_ctx_set_pagesize(ctx, 4096);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, SQLCIPHER_HMAC_SHA512);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, SQLCIPHER_PBKDF2_HMAC_SHA512);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, 256000);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ rc = sqlcipher_codec_ctx_set_use_hmac(ctx, 1);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ break;
+ }
+
+ rc = codec_set_btree_to_codec_pagesize(db, pDb, ctx);
+ if (rc != SQLITE_OK) sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_compatibility")==0 ){
+ if(zRight) {
+ int version = atoi(zRight);
+ switch(version) {
+ case 1:
+ sqlcipher_set_default_pagesize(1024);
+ sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1);
+ sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1);
+ sqlcipher_set_default_kdf_iter(4000);
+ sqlcipher_set_default_use_hmac(0);
+ break;
+
+ case 2:
+ sqlcipher_set_default_pagesize(1024);
+ sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1);
+ sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1);
+ sqlcipher_set_default_kdf_iter(4000);
+ sqlcipher_set_default_use_hmac(1);
+ break;
+
+ case 3:
+ sqlcipher_set_default_pagesize(1024);
+ sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA1);
+ sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA1);
+ sqlcipher_set_default_kdf_iter(64000);
+ sqlcipher_set_default_use_hmac(1);
+ break;
+
+ default:
+ sqlcipher_set_default_pagesize(4096);
+ sqlcipher_set_default_hmac_algorithm(SQLCIPHER_HMAC_SHA512);
+ sqlcipher_set_default_kdf_algorithm(SQLCIPHER_PBKDF2_HMAC_SHA512);
+ sqlcipher_set_default_kdf_iter(256000);
+ sqlcipher_set_default_use_hmac(1);
+ break;
+ }
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_memory_security")==0 ){
+ if( zRight ) {
+ sqlcipher_set_mem_security(sqlite3GetBoolean(zRight,1));
+ } else {
+ char *on = sqlite3_mprintf("%d", sqlcipher_get_mem_security());
+ sqlcipher_vdbe_return_string(pParse, "cipher_memory_security", on, P4_DYNAMIC);
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_settings")==0 ){
+ if(ctx) {
+ int algorithm;
+ char *pragma;
+
+ pragma = sqlite3_mprintf("PRAGMA kdf_iter = %d;", sqlcipher_codec_ctx_get_kdf_iter(ctx));
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_page_size = %d;", sqlcipher_codec_ctx_get_pagesize(ctx));
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_use_hmac = %d;", sqlcipher_codec_ctx_get_use_hmac(ctx));
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_plaintext_header_size = %d;", sqlcipher_codec_ctx_get_plaintext_header_size(ctx));
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ algorithm = sqlcipher_codec_ctx_get_hmac_algorithm(ctx);
+ pragma = NULL;
+ if(algorithm == SQLCIPHER_HMAC_SHA1) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA1_LABEL);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA256) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA256_LABEL);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA512) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA512_LABEL);
+ }
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ algorithm = sqlcipher_codec_ctx_get_kdf_algorithm(ctx);
+ pragma = NULL;
+ if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL);
+ }
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ }
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_default_settings")==0 ){
+ int algorithm;
+ char *pragma;
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_iter = %d;", sqlcipher_get_default_kdf_iter());
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_page_size = %d;", sqlcipher_get_default_pagesize());
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_use_hmac = %d;", sqlcipher_get_default_use_hmac());
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_plaintext_header_size = %d;", sqlcipher_get_default_plaintext_header_size());
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ algorithm = sqlcipher_get_default_hmac_algorithm();
+ pragma = NULL;
+ if(algorithm == SQLCIPHER_HMAC_SHA1) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA1_LABEL);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA256) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA256_LABEL);
+ } else if(algorithm == SQLCIPHER_HMAC_SHA512) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_hmac_algorithm = %s;", SQLCIPHER_HMAC_SHA512_LABEL);
+ }
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+
+ algorithm = sqlcipher_get_default_kdf_algorithm();
+ pragma = NULL;
+ if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA1) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA1_LABEL);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA256) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA256_LABEL);
+ } else if(algorithm == SQLCIPHER_PBKDF2_HMAC_SHA512) {
+ pragma = sqlite3_mprintf("PRAGMA cipher_default_kdf_algorithm = %s;", SQLCIPHER_PBKDF2_HMAC_SHA512_LABEL);
+ }
+ sqlcipher_vdbe_return_string(pParse, "pragma", pragma, P4_DYNAMIC);
+ }else
+ if( sqlite3_stricmp(zLeft,"cipher_integrity_check")==0 ){
+ if(ctx) {
+ sqlcipher_codec_ctx_integrity_check(ctx, pParse, "cipher_integrity_check");
+ }
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_log_level")==0 && zRight){
+ unsigned int level = SQLCIPHER_LOG_NONE;
+ if(sqlite3_stricmp(zRight, "ERROR")==0) level = SQLCIPHER_LOG_ERROR;
+ else if(sqlite3_stricmp(zRight, "WARN" )==0) level = SQLCIPHER_LOG_WARN;
+ else if(sqlite3_stricmp(zRight, "INFO" )==0) level = SQLCIPHER_LOG_INFO;
+ else if(sqlite3_stricmp(zRight, "DEBUG")==0) level = SQLCIPHER_LOG_DEBUG;
+ else if(sqlite3_stricmp(zRight, "TRACE")==0) level = SQLCIPHER_LOG_TRACE;
+ sqlcipher_set_log_level(level);
+ sqlcipher_vdbe_return_string(pParse, "cipher_log_level", sqlite3_mprintf("%u", level), P4_DYNAMIC);
+ } else
+ if( sqlite3_stricmp(zLeft, "cipher_log")== 0 && zRight ){
+ char *status = sqlite3_mprintf("%d", sqlcipher_set_log(zRight));
+ sqlcipher_vdbe_return_string(pParse, "cipher_log", status, P4_DYNAMIC);
+ }else {
+ return 0;
+ }
+ return 1;
+}
+
+/* these constants are used internally within SQLite's pager.c to differentiate between
+ operations on the main database or journal pages. This is important in the context
+ of a rekey operations, where the journal must be written using the original key
+ material (to allow a transactional rollback), while the new database pages are being
+ written with the new key material*/
+#define CODEC_READ_OP 3
+#define CODEC_WRITE_OP 6
+#define CODEC_JOURNAL_OP 7
+
+/*
+ * sqlite3Codec can be called in multiple modes.
+ * encrypt mode - expected to return a pointer to the
+ * encrypted data without altering pData.
+ * decrypt mode - expected to return a pointer to pData, with
+ * the data decrypted in the input buffer
+ */
+static void* sqlite3Codec(void *iCtx, void *data, Pgno pgno, int mode) {
+ codec_ctx *ctx = (codec_ctx *) iCtx;
+ int offset = 0, rc = 0;
+ int page_sz = sqlcipher_codec_ctx_get_pagesize(ctx);
+ unsigned char *pData = (unsigned char *) data;
+ void *buffer = sqlcipher_codec_ctx_get_data(ctx);
+ int plaintext_header_sz = sqlcipher_codec_ctx_get_plaintext_header_size(ctx);
+ int cctx = CIPHER_READ_CTX;
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3Codec: pgno=%d, mode=%d, page_sz=%d", pgno, mode, page_sz);
+
+#ifdef SQLCIPHER_EXT
+ if(sqlcipher_license_check(ctx) != SQLITE_OK) return NULL;
+#endif
+
+ /* call to derive keys if not present yet */
+ if((rc = sqlcipher_codec_key_derive(ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error occurred during key derivation: %d", rc);
+ sqlcipher_codec_ctx_set_error(ctx, rc);
+ return NULL;
+ }
+
+ /* if the plaintext_header_size is negative that means an invalid size was set via
+ PRAGMA. We can't set the error state on the pager at that point because the pager
+ may not be open yet. However, this is a fatal error state, so abort the codec */
+ if(plaintext_header_sz < 0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error invalid plaintext_header_sz: %d", plaintext_header_sz);
+ sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR);
+ return NULL;
+ }
+
+ if(pgno == 1) /* adjust starting pointers in data page for header offset on first page*/
+ offset = plaintext_header_sz ? plaintext_header_sz : FILE_HEADER_SZ;
+
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3Codec: switch mode=%d offset=%d", mode, offset);
+ switch(mode) {
+ case CODEC_READ_OP: /* decrypt */
+ if(pgno == 1) /* copy initial part of file header or SQLite magic to buffer */
+ memcpy(buffer, plaintext_header_sz ? pData : (void *) SQLITE_FILE_HEADER, offset);
+
+ rc = sqlcipher_page_cipher(ctx, cctx, pgno, CIPHER_DECRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset);
+#ifdef SQLCIPHER_TEST
+ if((sqlcipher_get_test_flags() & TEST_FAIL_DECRYPT) > 0 && sqlcipher_get_test_fail()) {
+ rc = SQLITE_ERROR;
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "simulating decryption failure for pgno=%d, mode=%d, page_sz=%d\n", pgno, mode, page_sz);
+ }
+#endif
+ if(rc != SQLITE_OK) {
+ /* failure to decrypt a page is considered a permanent error and will render the pager unusable
+ in order to prevent inconsistent data being loaded into page cache */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error decrypting page %d data: %d", pgno, rc);
+ sqlcipher_memset((unsigned char*) buffer+offset, 0, page_sz-offset);
+ sqlcipher_codec_ctx_set_error(ctx, rc);
+ }
+ memcpy(pData, buffer, page_sz); /* copy buffer data back to pData and return */
+ return pData;
+ break;
+
+ case CODEC_WRITE_OP: /* encrypt database page, operate on write context and fall through to case 7, so the write context is used*/
+ cctx = CIPHER_WRITE_CTX;
+
+ case CODEC_JOURNAL_OP: /* encrypt journal page, operate on read context use to get the original page data from the database */
+ if(pgno == 1) { /* copy initial part of file header or salt to buffer */
+ void *kdf_salt = NULL;
+ /* retrieve the kdf salt */
+ if((rc = sqlcipher_codec_ctx_get_kdf_salt(ctx, &kdf_salt)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error retrieving salt: %d", rc);
+ sqlcipher_codec_ctx_set_error(ctx, rc);
+ return NULL;
+ }
+ memcpy(buffer, plaintext_header_sz ? pData : kdf_salt, offset);
+ }
+ rc = sqlcipher_page_cipher(ctx, cctx, pgno, CIPHER_ENCRYPT, page_sz - offset, pData + offset, (unsigned char*)buffer + offset);
+#ifdef SQLCIPHER_TEST
+ if((sqlcipher_get_test_flags() & TEST_FAIL_ENCRYPT) > 0 && sqlcipher_get_test_fail()) {
+ rc = SQLITE_ERROR;
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "simulating encryption failure for pgno=%d, mode=%d, page_sz=%d\n", pgno, mode, page_sz);
+ }
+#endif
+ if(rc != SQLITE_OK) {
+ /* failure to encrypt a page is considered a permanent error and will render the pager unusable
+ in order to prevent corrupted pages from being written to the main databased when using WAL */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error encrypting page %d data: %d", pgno, rc);
+ sqlcipher_memset((unsigned char*)buffer+offset, 0, page_sz-offset);
+ sqlcipher_codec_ctx_set_error(ctx, rc);
+ return NULL;
+ }
+ return buffer; /* return persistent buffer data, pData remains intact */
+ break;
+
+ default:
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3Codec: error unsupported codec mode %d", mode);
+ sqlcipher_codec_ctx_set_error(ctx, SQLITE_ERROR); /* unsupported mode, set error */
+ return pData;
+ break;
+ }
+}
+
+static void sqlite3FreeCodecArg(void *pCodecArg) {
+ codec_ctx *ctx = (codec_ctx *) pCodecArg;
+ if(pCodecArg == NULL) return;
+ sqlcipher_codec_ctx_free(&ctx); /* wipe and free allocated memory for the context */
+ sqlcipher_deactivate(); /* cleanup related structures, OpenSSL etc, when codec is detatched */
+}
+
+int sqlcipherCodecAttach(sqlite3* db, int nDb, const void *zKey, int nKey) {
+ struct Db *pDb = &db->aDb[nDb];
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: db=%p, nDb=%d", db, nDb);
+
+ if(nKey && zKey && pDb->pBt) {
+ int rc;
+ Pager *pPager = pDb->pBt->pBt->pPager;
+ sqlite3_file *fd;
+ codec_ctx *ctx;
+
+ /* check if the sqlite3_file is open, and if not force handle to NULL */
+ if((fd = sqlite3PagerFile(pPager))->pMethods == 0) fd = NULL;
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlcipher_activate()");
+ sqlcipher_activate(); /* perform internal initialization for sqlcipher */
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: entering database mutex %p", db->mutex);
+ sqlite3_mutex_enter(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: entered database mutex %p", db->mutex);
+
+#ifdef SQLCIPHER_EXT
+ if((rc = sqlite3_set_authorizer(db, sqlcipher_license_authorizer, db)) != SQLITE_OK) {
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+ }
+#endif
+
+ /* point the internal codec argument against the contet to be prepared */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlcipher_codec_ctx_init()");
+ rc = sqlcipher_codec_ctx_init(&ctx, pDb, pDb->pBt->pBt->pPager, zKey, nKey);
+
+ if(rc != SQLITE_OK) {
+ /* initialization failed, do not attach potentially corrupted context */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipherCodecAttach: context initialization failed forcing error state with rc=%d", rc);
+ /* force an error at the pager level, such that even the upstream caller ignores the return code
+ the pager will be in an error state and will process no further operations */
+ sqlite3pager_error(pPager, rc);
+ pDb->pBt->pBt->db->errCode = rc;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: leaving database mutex %p (early return on rc=%d)", db->mutex, rc);
+ sqlite3_mutex_leave(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: left database mutex %p (early return on rc=%d)", db->mutex, rc);
+ return rc;
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlcipherPagerSetCodec()");
+ sqlcipherPagerSetCodec(sqlite3BtreePager(pDb->pBt), sqlite3Codec, NULL, sqlite3FreeCodecArg, (void *) ctx);
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling codec_set_btree_to_codec_pagesize()");
+ codec_set_btree_to_codec_pagesize(db, pDb, ctx);
+
+ /* force secure delete. This has the benefit of wiping internal data when deleted
+ and also ensures that all pages are written to disk (i.e. not skipped by
+ sqlite3PagerDontWrite optimizations) */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlite3BtreeSecureDelete()");
+ sqlite3BtreeSecureDelete(pDb->pBt, 1);
+
+ /* if fd is null, then this is an in-memory database and
+ we dont' want to overwrite the AutoVacuum settings
+ if not null, then set to the default */
+ if(fd != NULL) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecAttach: calling sqlite3BtreeSetAutoVacuum()");
+ sqlite3BtreeSetAutoVacuum(pDb->pBt, SQLITE_DEFAULT_AUTOVACUUM);
+ }
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: leaving database mutex %p", db->mutex);
+ sqlite3_mutex_leave(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipherCodecAttach: left database mutex %p", db->mutex);
+ }
+ return SQLITE_OK;
+}
+
+int sqlcipher_find_db_index(sqlite3 *db, const char *zDb) {
+ int db_index;
+ if(zDb == NULL){
+ return 0;
+ }
+ for(db_index = 0; db_index < db->nDb; db_index++) {
+ struct Db *pDb = &db->aDb[db_index];
+ if(strcmp(pDb->zDbSName, zDb) == 0) {
+ return db_index;
+ }
+ }
+ return 0;
+}
+
+SQLITE_API void sqlite3_activate_see(const char* in) {
+ /* do nothing, security enhancements are always active */
+}
+
+SQLITE_API int sqlite3_key(sqlite3 *db, const void *pKey, int nKey) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_key: db=%p", db);
+ return sqlite3_key_v2(db, "main", pKey, nKey);
+}
+
+SQLITE_API int sqlite3_key_v2(sqlite3 *db, const char *zDb, const void *pKey, int nKey) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_key_v2: db=%p zDb=%s", db, zDb);
+ /* attach key if db and pKey are not null and nKey is > 0 */
+ if(db && pKey && nKey) {
+ int db_index = sqlcipher_find_db_index(db, zDb);
+ return sqlcipherCodecAttach(db, db_index, pKey, nKey);
+ }
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_key_v2: no key provided");
+ return SQLITE_ERROR;
+}
+
+SQLITE_API int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey: db=%p", db);
+ return sqlite3_rekey_v2(db, "main", pKey, nKey);
+}
+
+/* sqlite3_rekey_v2
+** Given a database, this will reencrypt the database using a new key.
+** There is only one possible modes of operation - to encrypt a database
+** that is already encrpyted. If the database is not already encrypted
+** this should do nothing
+** The proposed logic for this function follows:
+** 1. Determine if the database is already encryptped
+** 2. If there is NOT already a key present do nothing
+** 3. If there is a key present, re-encrypt the database with the new key
+*/
+SQLITE_API int sqlite3_rekey_v2(sqlite3 *db, const char *zDb, const void *pKey, int nKey) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: db=%p zDb=%s", db, zDb);
+ if(db && pKey && nKey) {
+ int db_index = sqlcipher_find_db_index(db, zDb);
+ struct Db *pDb = &db->aDb[db_index];
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: database zDb=%p db_index:%d", zDb, db_index);
+ if(pDb->pBt) {
+ codec_ctx *ctx;
+ int rc, page_count;
+ Pgno pgno;
+ PgHdr *page;
+ Pager *pPager = pDb->pBt->pBt->pPager;
+
+ ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager);
+
+ if(ctx == NULL) {
+ /* there was no codec attached to this database, so this should do nothing! */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: no codec attached to db, exiting");
+ return SQLITE_OK;
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: entering database mutex %p", db->mutex);
+ sqlite3_mutex_enter(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: entered database mutex %p", db->mutex);
+
+ codec_set_pass_key(db, db_index, pKey, nKey, CIPHER_WRITE_CTX);
+
+ /* do stuff here to rewrite the database
+ ** 1. Create a transaction on the database
+ ** 2. Iterate through each page, reading it and then writing it.
+ ** 3. If that goes ok then commit and put ctx->rekey into ctx->key
+ ** note: don't deallocate rekey since it may be used in a subsequent iteration
+ */
+ rc = sqlite3BtreeBeginTrans(pDb->pBt, 1, 0); /* begin write transaction */
+ sqlite3PagerPagecount(pPager, &page_count);
+ for(pgno = 1; rc == SQLITE_OK && pgno <= (unsigned int)page_count; pgno++) { /* pgno's start at 1 see pager.c:pagerAcquire */
+ if(!sqlite3pager_is_sj_pgno(pPager, pgno)) { /* skip this page (see pager.c:pagerAcquire for reasoning) */
+ rc = sqlite3PagerGet(pPager, pgno, &page, 0);
+ if(rc == SQLITE_OK) { /* write page see pager_incr_changecounter for example */
+ rc = sqlite3PagerWrite(page);
+ if(rc == SQLITE_OK) {
+ sqlite3PagerUnref(page);
+ } else {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: error %d occurred writing page %d", rc, pgno);
+ }
+ } else {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: error %d occurred getting page %d", rc, pgno);
+ }
+ }
+ }
+
+ /* if commit was successful commit and copy the rekey data to current key, else rollback to release locks */
+ if(rc == SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: committing");
+ rc = sqlite3BtreeCommit(pDb->pBt);
+ sqlcipher_codec_key_copy(ctx, CIPHER_WRITE_CTX);
+ } else {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlite3_rekey_v2: rollback");
+ sqlite3BtreeRollback(pDb->pBt, SQLITE_ABORT_ROLLBACK, 0);
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: leaving database mutex %p", db->mutex);
+ sqlite3_mutex_leave(db->mutex);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlite3_rekey_v2: left database mutex %p", db->mutex);
+ }
+ return SQLITE_OK;
+ }
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlite3_rekey_v2: no key provided");
+ return SQLITE_ERROR;
+}
+
+void sqlcipherCodecGetKey(sqlite3* db, int nDb, void **zKey, int *nKey) {
+ struct Db *pDb = &db->aDb[nDb];
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipherCodecGetKey:db=%p, nDb=%d", db, nDb);
+ if( pDb->pBt ) {
+ codec_ctx *ctx = (codec_ctx*) sqlcipherPagerGetCodec(pDb->pBt->pBt->pPager);
+
+ if(ctx) {
+ /* pass back the keyspec from the codec, unless PRAGMA cipher_store_pass
+ is set or keyspec has not yet been derived, in which case pass
+ back the password key material */
+ sqlcipher_codec_get_keyspec(ctx, zKey, nKey);
+ if(sqlcipher_codec_get_store_pass(ctx) == 1 || *zKey == NULL) {
+ sqlcipher_codec_get_pass(ctx, zKey, nKey);
+ }
+ } else {
+ *zKey = NULL;
+ *nKey = 0;
+ }
+ }
+}
+
+/*
+ * Implementation of an "export" function that allows a caller
+ * to duplicate the main database to an attached database. This is intended
+ * as a conveneince for users who need to:
+ *
+ * 1. migrate from an non-encrypted database to an encrypted database
+ * 2. move from an encrypted database to a non-encrypted database
+ * 3. convert beween the various flavors of encrypted databases.
+ *
+ * This implementation is based heavily on the procedure and code used
+ * in vacuum.c, but is exposed as a function that allows export to any
+ * named attached database.
+ */
+
+/*
+** Finalize a prepared statement. If there was an error, store the
+** text of the error message in *pzErrMsg. Return the result code.
+**
+** Based on vacuumFinalize from vacuum.c
+*/
+static int sqlcipher_finalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){
+ int rc;
+ rc = sqlite3VdbeFinalize((Vdbe*)pStmt);
+ if( rc ){
+ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
+ }
+ return rc;
+}
+
+/*
+** Execute zSql on database db. Return an error code.
+**
+** Based on execSql from vacuum.c
+*/
+static int sqlcipher_execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
+ sqlite3_stmt *pStmt;
+ VVA_ONLY( int rc; )
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
+ if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
+ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
+ return sqlite3_errcode(db);
+ }
+ VVA_ONLY( rc = ) sqlite3_step(pStmt);
+ assert( rc!=SQLITE_ROW );
+ return sqlcipher_finalize(db, pStmt, pzErrMsg);
+}
+
+/*
+** Execute zSql on database db. The statement returns exactly
+** one column. Execute this as SQL on the same database.
+**
+** Based on execExecSql from vacuum.c
+*/
+static int sqlcipher_execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
+ sqlite3_stmt *pStmt;
+ int rc;
+
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ rc = sqlcipher_execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0));
+ if( rc!=SQLITE_OK ){
+ sqlcipher_finalize(db, pStmt, pzErrMsg);
+ return rc;
+ }
+ }
+
+ return sqlcipher_finalize(db, pStmt, pzErrMsg);
+}
+
+/*
+ * copy database and schema from the main database to an attached database
+ *
+ * Based on sqlite3RunVacuum from vacuum.c
+*/
+void sqlcipher_exportFunc(sqlite3_context *context, int argc, sqlite3_value **argv) {
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char* targetDb, *sourceDb;
+ int targetDb_idx = 0;
+ u64 saved_flags = db->flags; /* Saved value of the db->flags */
+ u32 saved_mDbFlags = db->mDbFlags; /* Saved value of the db->mDbFlags */
+ int saved_nChange = db->nChange; /* Saved value of db->nChange */
+ int saved_nTotalChange = db->nTotalChange; /* Saved value of db->nTotalChange */
+ u8 saved_mTrace = db->mTrace; /* Saved value of db->mTrace */
+ int rc = SQLITE_OK; /* Return code from service routines */
+ char *zSql = NULL; /* SQL statements */
+ char *pzErrMsg = NULL;
+
+ if(argc != 1 && argc != 2) {
+ rc = SQLITE_ERROR;
+ pzErrMsg = sqlite3_mprintf("invalid number of arguments (%d) passed to sqlcipher_export", argc);
+ goto end_of_export;
+ }
+
+ if(sqlite3_value_type(argv[0]) == SQLITE_NULL) {
+ rc = SQLITE_ERROR;
+ pzErrMsg = sqlite3_mprintf("target database can't be NULL");
+ goto end_of_export;
+ }
+
+ targetDb = (const char*) sqlite3_value_text(argv[0]);
+ sourceDb = "main";
+
+ if(argc == 2) {
+ if(sqlite3_value_type(argv[1]) == SQLITE_NULL) {
+ rc = SQLITE_ERROR;
+ pzErrMsg = sqlite3_mprintf("target database can't be NULL");
+ goto end_of_export;
+ }
+ sourceDb = (char *) sqlite3_value_text(argv[1]);
+ }
+
+
+ /* if the name of the target is not main, but the index returned is zero
+ there is a mismatch and we should not proceed */
+ targetDb_idx = sqlcipher_find_db_index(db, targetDb);
+ if(targetDb_idx == 0 && targetDb != NULL && sqlite3_stricmp("main", targetDb) != 0) {
+ rc = SQLITE_ERROR;
+ pzErrMsg = sqlite3_mprintf("unknown database %s", targetDb);
+ goto end_of_export;
+ }
+ db->init.iDb = targetDb_idx;
+
+ db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
+ db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum;
+ db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_Defensive | SQLITE_CountRows);
+ db->mTrace = 0;
+
+ /* Query the schema of the main database. Create a mirror schema
+ ** in the temporary database.
+ */
+ zSql = sqlite3_mprintf(
+ "SELECT sql "
+ " FROM %s.sqlite_schema WHERE type='table' AND name!='sqlite_sequence'"
+ " AND rootpage>0"
+ , sourceDb);
+ rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_export;
+ sqlite3_free(zSql);
+
+ zSql = sqlite3_mprintf(
+ "SELECT sql "
+ " FROM %s.sqlite_schema WHERE sql LIKE 'CREATE INDEX %%' "
+ , sourceDb);
+ rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_export;
+ sqlite3_free(zSql);
+
+ zSql = sqlite3_mprintf(
+ "SELECT sql "
+ " FROM %s.sqlite_schema WHERE sql LIKE 'CREATE UNIQUE INDEX %%'"
+ , sourceDb);
+ rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_export;
+ sqlite3_free(zSql);
+
+ /* Loop through the tables in the main database. For each, do
+ ** an "INSERT INTO rekey_db.xxx SELECT * FROM main.xxx;" to copy
+ ** the contents to the temporary database.
+ */
+ zSql = sqlite3_mprintf(
+ "SELECT 'INSERT INTO %s.' || quote(name) "
+ "|| ' SELECT * FROM %s.' || quote(name) || ';'"
+ "FROM %s.sqlite_schema "
+ "WHERE type = 'table' AND name!='sqlite_sequence' "
+ " AND rootpage>0"
+ , targetDb, sourceDb, sourceDb);
+ rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_export;
+ sqlite3_free(zSql);
+
+ /* Copy over the contents of the sequence table
+ */
+ zSql = sqlite3_mprintf(
+ "SELECT 'INSERT INTO %s.' || quote(name) "
+ "|| ' SELECT * FROM %s.' || quote(name) || ';' "
+ "FROM %s.sqlite_schema WHERE name=='sqlite_sequence';"
+ , targetDb, sourceDb, targetDb);
+ rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execExecSql(db, &pzErrMsg, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_export;
+ sqlite3_free(zSql);
+
+ /* Copy the triggers, views, and virtual tables from the main database
+ ** over to the temporary database. None of these objects has any
+ ** associated storage, so all we have to do is copy their entries
+ ** from the SQLITE_MASTER table.
+ */
+ zSql = sqlite3_mprintf(
+ "INSERT INTO %s.sqlite_schema "
+ " SELECT type, name, tbl_name, rootpage, sql"
+ " FROM %s.sqlite_schema"
+ " WHERE type='view' OR type='trigger'"
+ " OR (type='table' AND rootpage=0)"
+ , targetDb, sourceDb);
+ rc = (zSql == NULL) ? SQLITE_NOMEM : sqlcipher_execSql(db, &pzErrMsg, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_export;
+ sqlite3_free(zSql);
+
+ zSql = NULL;
+end_of_export:
+ db->init.iDb = 0;
+ db->flags = saved_flags;
+ db->mDbFlags = saved_mDbFlags;
+ db->nChange = saved_nChange;
+ db->nTotalChange = saved_nTotalChange;
+ db->mTrace = saved_mTrace;
+
+ if(zSql) sqlite3_free(zSql);
+
+ if(rc) {
+ if(pzErrMsg != NULL) {
+ sqlite3_result_error(context, pzErrMsg, -1);
+ sqlite3DbFree(db, pzErrMsg);
+ } else {
+ sqlite3_result_error(context, sqlite3ErrStr(rc), -1);
+ }
+ }
+}
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto.c **********************************************/
+/************** Begin file crypto_impl.c *************************************/
+/*
+** SQLCipher
+** http://sqlcipher.net
+**
+** Copyright (c) 2008 - 2013, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+
+/* #include "sqlcipher.h" */
+/* #include "crypto.h" */
+
+#ifdef SQLCIPHER_TEST
+static volatile unsigned int cipher_test_flags = 0;
+unsigned int sqlcipher_get_test_flags() {
+ return cipher_test_flags;
+}
+void sqlcipher_set_test_flags(unsigned int flags) {
+ cipher_test_flags = flags;
+}
+
+static volatile int cipher_test_rand = 0;
+int sqlcipher_get_test_rand() {
+ return cipher_test_rand;
+}
+void sqlcipher_set_test_rand(int rand) {
+ cipher_test_rand = rand;
+}
+int sqlcipher_get_test_fail() {
+ int x;
+
+ /* if cipher_test_rand is not set to a non-zero value always fail (return true) */
+ if (cipher_test_rand == 0) return 1;
+
+ sqlite3_randomness(sizeof(x), &x);
+ return ((x % cipher_test_rand) == 0);
+}
+#endif
+
+/* Generate code to return a string value */
+
+static volatile unsigned int default_flags = DEFAULT_CIPHER_FLAGS;
+static volatile unsigned char hmac_salt_mask = HMAC_SALT_MASK;
+static volatile int default_kdf_iter = PBKDF2_ITER;
+static volatile int default_page_size = 4096;
+static volatile int default_plaintext_header_sz = 0;
+static volatile int default_hmac_algorithm = SQLCIPHER_HMAC_SHA512;
+static volatile int default_kdf_algorithm = SQLCIPHER_PBKDF2_HMAC_SHA512;
+static volatile int sqlcipher_mem_security_on = 0;
+static volatile int sqlcipher_mem_executed = 0;
+static volatile int sqlcipher_mem_initialized = 0;
+static volatile unsigned int sqlcipher_activate_count = 0;
+static volatile sqlite3_mem_methods default_mem_methods;
+static sqlcipher_provider *default_provider = NULL;
+
+static sqlite3_mutex* sqlcipher_static_mutex[SQLCIPHER_MUTEX_COUNT];
+static FILE* sqlcipher_log_file = NULL;
+static volatile int sqlcipher_log_logcat = 0;
+static volatile unsigned int sqlcipher_log_level = SQLCIPHER_LOG_NONE;
+
+sqlite3_mutex* sqlcipher_mutex(int mutex) {
+ if(mutex < 0 || mutex >= SQLCIPHER_MUTEX_COUNT) return NULL;
+ return sqlcipher_static_mutex[mutex];
+}
+
+static int sqlcipher_mem_init(void *pAppData) {
+ return default_mem_methods.xInit(pAppData);
+}
+static void sqlcipher_mem_shutdown(void *pAppData) {
+ default_mem_methods.xShutdown(pAppData);
+}
+static void *sqlcipher_mem_malloc(int n) {
+ void *ptr = default_mem_methods.xMalloc(n);
+ if(!sqlcipher_mem_executed) sqlcipher_mem_executed = 1;
+ if(sqlcipher_mem_security_on) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_malloc: calling sqlcipher_mlock(%p,%d)", ptr, n);
+ sqlcipher_mlock(ptr, n);
+ }
+ return ptr;
+}
+static int sqlcipher_mem_size(void *p) {
+ return default_mem_methods.xSize(p);
+}
+static void sqlcipher_mem_free(void *p) {
+ int sz;
+ if(!sqlcipher_mem_executed) sqlcipher_mem_executed = 1;
+ if(sqlcipher_mem_security_on) {
+ sz = sqlcipher_mem_size(p);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_free: calling sqlcipher_memset(%p,0,%d) and sqlcipher_munlock(%p, %d)", p, sz, p, sz);
+ sqlcipher_memset(p, 0, sz);
+ sqlcipher_munlock(p, sz);
+ }
+ default_mem_methods.xFree(p);
+}
+static void *sqlcipher_mem_realloc(void *p, int n) {
+ void *new = NULL;
+ int orig_sz = 0;
+ if(sqlcipher_mem_security_on) {
+ orig_sz = sqlcipher_mem_size(p);
+ if (n==0) {
+ sqlcipher_mem_free(p);
+ return NULL;
+ } else if (!p) {
+ return sqlcipher_mem_malloc(n);
+ } else if(n <= orig_sz) {
+ return p;
+ } else {
+ new = sqlcipher_mem_malloc(n);
+ if(new) {
+ memcpy(new, p, orig_sz);
+ sqlcipher_mem_free(p);
+ }
+ return new;
+ }
+ } else {
+ return default_mem_methods.xRealloc(p, n);
+ }
+}
+
+static int sqlcipher_mem_roundup(int n) {
+ return default_mem_methods.xRoundup(n);
+}
+
+static sqlite3_mem_methods sqlcipher_mem_methods = {
+ sqlcipher_mem_malloc,
+ sqlcipher_mem_free,
+ sqlcipher_mem_realloc,
+ sqlcipher_mem_size,
+ sqlcipher_mem_roundup,
+ sqlcipher_mem_init,
+ sqlcipher_mem_shutdown,
+ 0
+};
+
+void sqlcipher_init_memmethods() {
+ if(sqlcipher_mem_initialized) return;
+ if(sqlite3_config(SQLITE_CONFIG_GETMALLOC, &default_mem_methods) != SQLITE_OK ||
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &sqlcipher_mem_methods) != SQLITE_OK) {
+ sqlcipher_mem_security_on = sqlcipher_mem_executed = sqlcipher_mem_initialized = 0;
+ } else {
+ sqlcipher_mem_initialized = 1;
+ }
+}
+
+int sqlcipher_register_provider(sqlcipher_provider *p) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: entering SQLCIPHER_MUTEX_PROVIDER");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: entered SQLCIPHER_MUTEX_PROVIDER");
+
+ if(default_provider != NULL && default_provider != p) {
+ /* only free the current registerd provider if it has been initialized
+ and it isn't a pointer to the same provider passed to the function
+ (i.e. protect against a caller calling register twice for the same provider) */
+ sqlcipher_free(default_provider, sizeof(sqlcipher_provider));
+ }
+ default_provider = p;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: leaving SQLCIPHER_MUTEX_PROVIDER");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_register_provider: left SQLCIPHER_MUTEX_PROVIDER");
+
+ return SQLITE_OK;
+}
+
+/* return a pointer to the currently registered provider. This will
+ allow an application to fetch the current registered provider and
+ make minor changes to it */
+sqlcipher_provider* sqlcipher_get_provider() {
+ return default_provider;
+}
+
+void sqlcipher_activate() {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: entering static master mutex");
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: entered static master mutex");
+
+ /* allocate new mutexes */
+ if(sqlcipher_activate_count == 0) {
+ int i;
+ for(i = 0; i < SQLCIPHER_MUTEX_COUNT; i++) {
+ sqlcipher_static_mutex[i] = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ }
+ }
+
+ /* check to see if there is a provider registered at this point
+ if there no provider registered at this point, register the
+ default provider */
+ if(sqlcipher_get_provider() == NULL) {
+ sqlcipher_provider *p = sqlcipher_malloc(sizeof(sqlcipher_provider));
+#if defined (SQLCIPHER_CRYPTO_CC)
+ extern int sqlcipher_cc_setup(sqlcipher_provider *p);
+ sqlcipher_cc_setup(p);
+#elif defined (SQLCIPHER_CRYPTO_LIBTOMCRYPT)
+ extern int sqlcipher_ltc_setup(sqlcipher_provider *p);
+ sqlcipher_ltc_setup(p);
+#elif defined (SQLCIPHER_CRYPTO_NSS)
+ extern int sqlcipher_nss_setup(sqlcipher_provider *p);
+ sqlcipher_nss_setup(p);
+#elif defined (SQLCIPHER_CRYPTO_OPENSSL)
+ extern int sqlcipher_openssl_setup(sqlcipher_provider *p);
+ sqlcipher_openssl_setup(p);
+#else
+#error "NO DEFAULT SQLCIPHER CRYPTO PROVIDER DEFINED"
+#endif
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_activate: calling sqlcipher_register_provider(%p)", p);
+#ifdef SQLCIPHER_EXT
+ sqlcipher_ext_provider_setup(p);
+#endif
+ sqlcipher_register_provider(p);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_activate: called sqlcipher_register_provider(%p)",p);
+ }
+
+ sqlcipher_activate_count++; /* increment activation count */
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: leaving static master mutex");
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_activate: left static master mutex");
+}
+
+void sqlcipher_deactivate() {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entering static master mutex");
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entered static master mutex");
+
+ sqlcipher_activate_count--;
+ /* if no connections are using sqlcipher, cleanup globals */
+ if(sqlcipher_activate_count < 1) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entering SQLCIPHER_MUTEX_PROVIDER");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: entered SQLCIPHER_MUTEX_PROVIDER");
+
+ if(default_provider != NULL) {
+ sqlcipher_free(default_provider, sizeof(sqlcipher_provider));
+ default_provider = NULL;
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: leaving SQLCIPHER_MUTEX_PROVIDER");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: left SQLCIPHER_MUTEX_PROVIDER");
+
+#ifdef SQLCIPHER_EXT
+ sqlcipher_ext_provider_destroy();
+#endif
+
+ /* last connection closed, free mutexes */
+ if(sqlcipher_activate_count == 0) {
+ int i;
+ for(i = 0; i < SQLCIPHER_MUTEX_COUNT; i++) {
+ sqlite3_mutex_free(sqlcipher_static_mutex[i]);
+ }
+ }
+ sqlcipher_activate_count = 0; /* reset activation count */
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: leaving static master mutex");
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_deactivate: left static master mutex");
+}
+
+/* constant time memset using volitile to avoid having the memset
+ optimized out by the compiler.
+ Note: As suggested by Joachim Schipper (joachim.schipper@fox-it.com)
+*/
+void* sqlcipher_memset(void *v, unsigned char value, sqlite_uint64 len) {
+ sqlite_uint64 i = 0;
+ volatile unsigned char *a = v;
+
+ if (v == NULL) return v;
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_memset: setting %p[0-%llu]=%d)", a, len, value);
+ for(i = 0; i < len; i++) {
+ a[i] = value;
+ }
+
+ return v;
+}
+
+/* constant time memory check tests every position of a memory segement
+ matches a single value (i.e. the memory is all zeros)
+ returns 0 if match, 1 of no match */
+int sqlcipher_ismemset(const void *v, unsigned char value, sqlite_uint64 len) {
+ const unsigned char *a = v;
+ sqlite_uint64 i = 0, result = 0;
+
+ for(i = 0; i < len; i++) {
+ result |= a[i] ^ value;
+ }
+
+ return (result != 0);
+}
+
+/* constant time memory comparison routine.
+ returns 0 if match, 1 if no match */
+int sqlcipher_memcmp(const void *v0, const void *v1, int len) {
+ const unsigned char *a0 = v0, *a1 = v1;
+ int i = 0, result = 0;
+
+ for(i = 0; i < len; i++) {
+ result |= a0[i] ^ a1[i];
+ }
+
+ return (result != 0);
+}
+
+void sqlcipher_mlock(void *ptr, sqlite_uint64 sz) {
+#ifndef OMIT_MEMLOCK
+#if defined(__unix__) || defined(__APPLE__)
+ int rc;
+ unsigned long pagesize = sysconf(_SC_PAGESIZE);
+ unsigned long offset = (unsigned long) ptr % pagesize;
+
+ if(ptr == NULL || sz == 0) return;
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_lock: calling mlock(%p,%lu); _SC_PAGESIZE=%lu", ptr - offset, sz + offset, pagesize);
+ rc = mlock(ptr - offset, sz + offset);
+ if(rc!=0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_lock: mlock(%p,%lu) returned %d errno=%d", ptr - offset, sz + offset, rc, errno);
+ }
+#elif defined(_WIN32)
+#if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP))
+ int rc;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_lock: calling VirtualLock(%p,%d)", ptr, sz);
+ rc = VirtualLock(ptr, sz);
+ if(rc==0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_lock: VirtualLock(%p,%d) returned %d LastError=%d", ptr, sz, rc, GetLastError());
+ }
+#endif
+#endif
+#endif
+}
+
+void sqlcipher_munlock(void *ptr, sqlite_uint64 sz) {
+#ifndef OMIT_MEMLOCK
+#if defined(__unix__) || defined(__APPLE__)
+ int rc;
+ unsigned long pagesize = sysconf(_SC_PAGESIZE);
+ unsigned long offset = (unsigned long) ptr % pagesize;
+
+ if(ptr == NULL || sz == 0) return;
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_unlock: calling munlock(%p,%lu)", ptr - offset, sz + offset);
+ rc = munlock(ptr - offset, sz + offset);
+ if(rc!=0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_unlock: munlock(%p,%lu) returned %d errno=%d", ptr - offset, sz + offset, rc, errno);
+ }
+#elif defined(_WIN32)
+#if !(defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP || WINAPI_FAMILY == WINAPI_FAMILY_APP))
+ int rc;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_mem_lock: calling VirtualUnlock(%p,%d)", ptr, sz);
+ rc = VirtualUnlock(ptr, sz);
+ if(!rc) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_mem_unlock: VirtualUnlock(%p,%d) returned %d LastError=%d", ptr, sz, rc, GetLastError());
+ }
+#endif
+#endif
+#endif
+}
+
+/**
+ * Free and wipe memory. Uses SQLites internal sqlite3_free so that memory
+ * can be countend and memory leak detection works in the test suite.
+ * If ptr is not null memory will be freed.
+ * If sz is greater than zero, the memory will be overwritten with zero before it is freed
+ * If sz is > 0, and not compiled with OMIT_MEMLOCK, system will attempt to unlock the
+ * memory segment so it can be paged
+ */
+void sqlcipher_free(void *ptr, sqlite_uint64 sz) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_free: calling sqlcipher_memset(%p,0,%llu)", ptr, sz);
+ sqlcipher_memset(ptr, 0, sz);
+ sqlcipher_munlock(ptr, sz);
+ sqlite3_free(ptr);
+}
+
+/**
+ * allocate memory. Uses sqlite's internall malloc wrapper so memory can be
+ * reference counted and leak detection works. Unless compiled with OMIT_MEMLOCK
+ * attempts to lock the memory pages so sensitive information won't be swapped
+ */
+void* sqlcipher_malloc(sqlite_uint64 sz) {
+ void *ptr;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_malloc: calling sqlite3Malloc(%llu)", sz);
+ ptr = sqlite3Malloc(sz);
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_malloc: calling sqlcipher_memset(%p,0,%llu)", ptr, sz);
+ sqlcipher_memset(ptr, 0, sz);
+ sqlcipher_mlock(ptr, sz);
+ return ptr;
+}
+
+char* sqlcipher_version() {
+#ifdef CIPHER_VERSION_QUALIFIER
+ char *version = sqlite3_mprintf("%s %s %s", CIPHER_XSTR(CIPHER_VERSION_NUMBER), CIPHER_XSTR(CIPHER_VERSION_QUALIFIER), CIPHER_XSTR(CIPHER_VERSION_BUILD));
+#else
+ char *version = sqlite3_mprintf("%s %s", CIPHER_XSTR(CIPHER_VERSION_NUMBER), CIPHER_XSTR(CIPHER_VERSION_BUILD));
+#endif
+ return version;
+}
+
+/**
+ * Initialize new cipher_ctx struct. This function will allocate memory
+ * for the cipher context and for the key
+ *
+ * returns SQLITE_OK if initialization was successful
+ * returns SQLITE_NOMEM if an error occured allocating memory
+ */
+static int sqlcipher_cipher_ctx_init(codec_ctx *ctx, cipher_ctx **iCtx) {
+ cipher_ctx *c_ctx;
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_init: allocating context");
+ *iCtx = (cipher_ctx *) sqlcipher_malloc(sizeof(cipher_ctx));
+ c_ctx = *iCtx;
+ if(c_ctx == NULL) return SQLITE_NOMEM;
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_init: allocating key");
+ c_ctx->key = (unsigned char *) sqlcipher_malloc(ctx->key_sz);
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_init: allocating hmac_key");
+ c_ctx->hmac_key = (unsigned char *) sqlcipher_malloc(ctx->key_sz);
+
+ if(c_ctx->key == NULL) return SQLITE_NOMEM;
+ if(c_ctx->hmac_key == NULL) return SQLITE_NOMEM;
+
+ return SQLITE_OK;
+}
+
+/**
+ * Free and wipe memory associated with a cipher_ctx
+ */
+static void sqlcipher_cipher_ctx_free(codec_ctx* ctx, cipher_ctx **iCtx) {
+ cipher_ctx *c_ctx = *iCtx;
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_free: iCtx=%p", iCtx);
+ sqlcipher_free(c_ctx->key, ctx->key_sz);
+ sqlcipher_free(c_ctx->hmac_key, ctx->key_sz);
+ sqlcipher_free(c_ctx->pass, c_ctx->pass_sz);
+ sqlcipher_free(c_ctx->keyspec, ctx->keyspec_sz);
+ sqlcipher_free(c_ctx, sizeof(cipher_ctx));
+}
+
+static int sqlcipher_codec_ctx_reserve_setup(codec_ctx *ctx) {
+ int base_reserve = ctx->iv_sz; /* base reserve size will be IV only */
+ int reserve = base_reserve;
+
+ ctx->hmac_sz = ctx->provider->get_hmac_sz(ctx->provider_ctx, ctx->hmac_algorithm);
+
+ if(sqlcipher_codec_ctx_get_use_hmac(ctx))
+ reserve += ctx->hmac_sz; /* if reserve will include hmac, update that size */
+
+ /* calculate the amount of reserve needed in even increments of the cipher block size */
+ reserve = ((reserve % ctx->block_sz) == 0) ? reserve :
+ ((reserve / ctx->block_sz) + 1) * ctx->block_sz;
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_reserve_setup: base_reserve=%d block_sz=%d md_size=%d reserve=%d",
+ base_reserve, ctx->block_sz, ctx->hmac_sz, reserve);
+
+ ctx->reserve_sz = reserve;
+
+ return SQLITE_OK;
+}
+
+/**
+ * Compare one cipher_ctx to another.
+ *
+ * returns 0 if all the parameters (except the derived key data) are the same
+ * returns 1 otherwise
+ */
+static int sqlcipher_cipher_ctx_cmp(cipher_ctx *c1, cipher_ctx *c2) {
+ int are_equal = (
+ c1->pass_sz == c2->pass_sz
+ && (
+ c1->pass == c2->pass
+ || !sqlcipher_memcmp((const unsigned char*)c1->pass,
+ (const unsigned char*)c2->pass,
+ c1->pass_sz)
+ ));
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_cmp: c1=%p c2=%p sqlcipher_memcmp(c1->pass, c2_pass)=%d are_equal=%d",
+ c1, c2,
+ (c1->pass == NULL || c2->pass == NULL) ?
+ -1 :
+ sqlcipher_memcmp(
+ (const unsigned char*)c1->pass,
+ (const unsigned char*)c2->pass,
+ c1->pass_sz
+ ),
+ are_equal
+ );
+
+ return !are_equal; /* return 0 if they are the same, 1 otherwise */
+}
+
+/**
+ * Copy one cipher_ctx to another. For instance, assuming that read_ctx is a
+ * fully initialized context, you could copy it to write_ctx and all yet data
+ * and pass information across
+ *
+ * returns SQLITE_OK if initialization was successful
+ * returns SQLITE_NOMEM if an error occured allocating memory
+ */
+static int sqlcipher_cipher_ctx_copy(codec_ctx *ctx, cipher_ctx *target, cipher_ctx *source) {
+ void *key = target->key;
+ void *hmac_key = target->hmac_key;
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_copy: target=%p, source=%p", target, source);
+ sqlcipher_free(target->pass, target->pass_sz);
+ sqlcipher_free(target->keyspec, ctx->keyspec_sz);
+ memcpy(target, source, sizeof(cipher_ctx));
+
+ target->key = key; /* restore pointer to previously allocated key data */
+ memcpy(target->key, source->key, ctx->key_sz);
+
+ target->hmac_key = hmac_key; /* restore pointer to previously allocated hmac key data */
+ memcpy(target->hmac_key, source->hmac_key, ctx->key_sz);
+
+ if(source->pass && source->pass_sz) {
+ target->pass = sqlcipher_malloc(source->pass_sz);
+ if(target->pass == NULL) return SQLITE_NOMEM;
+ memcpy(target->pass, source->pass, source->pass_sz);
+ }
+ if(source->keyspec) {
+ target->keyspec = sqlcipher_malloc(ctx->keyspec_sz);
+ if(target->keyspec == NULL) return SQLITE_NOMEM;
+ memcpy(target->keyspec, source->keyspec, ctx->keyspec_sz);
+ }
+ return SQLITE_OK;
+}
+
+/**
+ * Set the keyspec for the cipher_ctx
+ *
+ * returns SQLITE_OK if assignment was successfull
+ * returns SQLITE_NOMEM if an error occured allocating memory
+ */
+static int sqlcipher_cipher_ctx_set_keyspec(codec_ctx *ctx, cipher_ctx *c_ctx, const unsigned char *key) {
+ /* free, zero existing pointers and size */
+ sqlcipher_free(c_ctx->keyspec, ctx->keyspec_sz);
+ c_ctx->keyspec = NULL;
+
+ c_ctx->keyspec = sqlcipher_malloc(ctx->keyspec_sz);
+ if(c_ctx->keyspec == NULL) return SQLITE_NOMEM;
+
+ c_ctx->keyspec[0] = 'x';
+ c_ctx->keyspec[1] = '\'';
+ cipher_bin2hex(key, ctx->key_sz, c_ctx->keyspec + 2);
+ cipher_bin2hex(ctx->kdf_salt, ctx->kdf_salt_sz, c_ctx->keyspec + (ctx->key_sz * 2) + 2);
+ c_ctx->keyspec[ctx->keyspec_sz - 1] = '\'';
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_get_store_pass(codec_ctx *ctx) {
+ return ctx->store_pass;
+}
+
+void sqlcipher_codec_set_store_pass(codec_ctx *ctx, int value) {
+ ctx->store_pass = value;
+}
+
+void sqlcipher_codec_get_pass(codec_ctx *ctx, void **zKey, int *nKey) {
+ *zKey = ctx->read_ctx->pass;
+ *nKey = ctx->read_ctx->pass_sz;
+}
+
+static void sqlcipher_set_derive_key(codec_ctx *ctx, int derive) {
+ if(ctx->read_ctx != NULL) ctx->read_ctx->derive_key = 1;
+ if(ctx->write_ctx != NULL) ctx->write_ctx->derive_key = 1;
+}
+
+/**
+ * Set the passphrase for the cipher_ctx
+ *
+ * returns SQLITE_OK if assignment was successfull
+ * returns SQLITE_NOMEM if an error occured allocating memory
+ */
+static int sqlcipher_cipher_ctx_set_pass(cipher_ctx *ctx, const void *zKey, int nKey) {
+ /* free, zero existing pointers and size */
+ sqlcipher_free(ctx->pass, ctx->pass_sz);
+ ctx->pass = NULL;
+ ctx->pass_sz = 0;
+
+ if(zKey && nKey) { /* if new password is provided, copy it */
+ ctx->pass_sz = nKey;
+ ctx->pass = sqlcipher_malloc(nKey);
+ if(ctx->pass == NULL) return SQLITE_NOMEM;
+ memcpy(ctx->pass, zKey, nKey);
+ }
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_set_pass(codec_ctx *ctx, const void *zKey, int nKey, int for_ctx) {
+ cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
+ int rc;
+
+ if((rc = sqlcipher_cipher_ctx_set_pass(c_ctx, zKey, nKey)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_pass: error %d from sqlcipher_cipher_ctx_set_pass", rc);
+ return rc;
+ }
+
+ c_ctx->derive_key = 1;
+
+ if(for_ctx == 2) {
+ if((rc = sqlcipher_cipher_ctx_copy(ctx, for_ctx ? ctx->read_ctx : ctx->write_ctx, c_ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_pass: error %d from sqlcipher_cipher_ctx_copy", rc);
+ return rc;
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+const char* sqlcipher_codec_ctx_get_cipher(codec_ctx *ctx) {
+ return ctx->provider->get_cipher(ctx->provider_ctx);
+}
+
+/* set the global default KDF iteration */
+void sqlcipher_set_default_kdf_iter(int iter) {
+ default_kdf_iter = iter;
+}
+
+int sqlcipher_get_default_kdf_iter() {
+ return default_kdf_iter;
+}
+
+int sqlcipher_codec_ctx_set_kdf_iter(codec_ctx *ctx, int kdf_iter) {
+ ctx->kdf_iter = kdf_iter;
+ sqlcipher_set_derive_key(ctx, 1);
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_get_kdf_iter(codec_ctx *ctx) {
+ return ctx->kdf_iter;
+}
+
+int sqlcipher_codec_ctx_set_fast_kdf_iter(codec_ctx *ctx, int fast_kdf_iter) {
+ ctx->fast_kdf_iter = fast_kdf_iter;
+ sqlcipher_set_derive_key(ctx, 1);
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_get_fast_kdf_iter(codec_ctx *ctx) {
+ return ctx->fast_kdf_iter;
+}
+
+/* set the global default flag for HMAC */
+void sqlcipher_set_default_use_hmac(int use) {
+ if(use) default_flags |= CIPHER_FLAG_HMAC;
+ else default_flags &= ~CIPHER_FLAG_HMAC;
+}
+
+int sqlcipher_get_default_use_hmac() {
+ return (default_flags & CIPHER_FLAG_HMAC) != 0;
+}
+
+void sqlcipher_set_hmac_salt_mask(unsigned char mask) {
+ hmac_salt_mask = mask;
+}
+
+unsigned char sqlcipher_get_hmac_salt_mask() {
+ return hmac_salt_mask;
+}
+
+/* set the codec flag for whether this individual database should be using hmac */
+int sqlcipher_codec_ctx_set_use_hmac(codec_ctx *ctx, int use) {
+ if(use) {
+ sqlcipher_codec_ctx_set_flag(ctx, CIPHER_FLAG_HMAC);
+ } else {
+ sqlcipher_codec_ctx_unset_flag(ctx, CIPHER_FLAG_HMAC);
+ }
+
+ return sqlcipher_codec_ctx_reserve_setup(ctx);
+}
+
+int sqlcipher_codec_ctx_get_use_hmac(codec_ctx *ctx) {
+ return (ctx->flags & CIPHER_FLAG_HMAC) != 0;
+}
+
+/* the length of plaintext header size must be:
+ * 1. greater than or equal to zero
+ * 2. a multiple of the cipher block size
+ * 3. less than the usable size of the first database page
+ */
+int sqlcipher_set_default_plaintext_header_size(int size) {
+ default_plaintext_header_sz = size;
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_set_plaintext_header_size(codec_ctx *ctx, int size) {
+ if(size >= 0 && (size % ctx->block_sz) == 0 && size < (ctx->page_sz - ctx->reserve_sz)) {
+ ctx->plaintext_header_sz = size;
+ return SQLITE_OK;
+ }
+ ctx->plaintext_header_sz = -1;
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_plaintext_header_size: attempt to set invalid plantext_header_size %d", size);
+ return SQLITE_ERROR;
+}
+
+int sqlcipher_get_default_plaintext_header_size() {
+ return default_plaintext_header_sz;
+}
+
+int sqlcipher_codec_ctx_get_plaintext_header_size(codec_ctx *ctx) {
+ return ctx->plaintext_header_sz;
+}
+
+/* manipulate HMAC algorithm */
+int sqlcipher_set_default_hmac_algorithm(int algorithm) {
+ default_hmac_algorithm = algorithm;
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_set_hmac_algorithm(codec_ctx *ctx, int algorithm) {
+ ctx->hmac_algorithm = algorithm;
+ return sqlcipher_codec_ctx_reserve_setup(ctx);
+}
+
+int sqlcipher_get_default_hmac_algorithm() {
+ return default_hmac_algorithm;
+}
+
+int sqlcipher_codec_ctx_get_hmac_algorithm(codec_ctx *ctx) {
+ return ctx->hmac_algorithm;
+}
+
+/* manipulate KDF algorithm */
+int sqlcipher_set_default_kdf_algorithm(int algorithm) {
+ default_kdf_algorithm = algorithm;
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_set_kdf_algorithm(codec_ctx *ctx, int algorithm) {
+ ctx->kdf_algorithm = algorithm;
+ return SQLITE_OK;
+}
+
+int sqlcipher_get_default_kdf_algorithm() {
+ return default_kdf_algorithm;
+}
+
+int sqlcipher_codec_ctx_get_kdf_algorithm(codec_ctx *ctx) {
+ return ctx->kdf_algorithm;
+}
+
+int sqlcipher_codec_ctx_set_flag(codec_ctx *ctx, unsigned int flag) {
+ ctx->flags |= flag;
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_unset_flag(codec_ctx *ctx, unsigned int flag) {
+ ctx->flags &= ~flag;
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_get_flag(codec_ctx *ctx, unsigned int flag) {
+ return (ctx->flags & flag) != 0;
+}
+
+void sqlcipher_codec_ctx_set_error(codec_ctx *ctx, int error) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_error: ctx=%p, error=%d", ctx, error);
+ sqlite3pager_error(ctx->pBt->pBt->pPager, error);
+ ctx->pBt->pBt->db->errCode = error;
+}
+
+int sqlcipher_codec_ctx_get_reservesize(codec_ctx *ctx) {
+ return ctx->reserve_sz;
+}
+
+void* sqlcipher_codec_ctx_get_data(codec_ctx *ctx) {
+ return ctx->buffer;
+}
+
+static int sqlcipher_codec_ctx_init_kdf_salt(codec_ctx *ctx) {
+ sqlite3_file *fd = sqlite3PagerFile(ctx->pBt->pBt->pPager);
+
+ if(!ctx->need_kdf_salt) {
+ return SQLITE_OK; /* don't reload salt when not needed */
+ }
+
+ /* read salt from header, if present, otherwise generate a new random salt */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init_kdf_salt: obtaining salt");
+ if(fd == NULL || fd->pMethods == 0 || sqlite3OsRead(fd, ctx->kdf_salt, ctx->kdf_salt_sz, 0) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init_kdf_salt: unable to read salt from file header, generating random");
+ if(ctx->provider->random(ctx->provider_ctx, ctx->kdf_salt, ctx->kdf_salt_sz) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init_kdf_salt: error retrieving random bytes from provider");
+ return SQLITE_ERROR;
+ }
+ }
+ ctx->need_kdf_salt = 0;
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_set_kdf_salt(codec_ctx *ctx, unsigned char *salt, int size) {
+ if(size >= ctx->kdf_salt_sz) {
+ memcpy(ctx->kdf_salt, salt, ctx->kdf_salt_sz);
+ ctx->need_kdf_salt = 0;
+ return SQLITE_OK;
+ }
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_set_kdf_salt: attempt to set salt of incorrect size %d", size);
+ return SQLITE_ERROR;
+}
+
+int sqlcipher_codec_ctx_get_kdf_salt(codec_ctx *ctx, void** salt) {
+ int rc = SQLITE_OK;
+ if(ctx->need_kdf_salt) {
+ if((rc = sqlcipher_codec_ctx_init_kdf_salt(ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_get_kdf_salt: error %d from sqlcipher_codec_ctx_init_kdf_salt", rc);
+ }
+ }
+ *salt = ctx->kdf_salt;
+
+ return rc;
+}
+
+void sqlcipher_codec_get_keyspec(codec_ctx *ctx, void **zKey, int *nKey) {
+ *zKey = ctx->read_ctx->keyspec;
+ *nKey = ctx->keyspec_sz;
+}
+
+int sqlcipher_codec_ctx_set_pagesize(codec_ctx *ctx, int size) {
+ if(!((size != 0) && ((size & (size - 1)) == 0)) || size < 512 || size > 65536) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_page_size not a power of 2 and between 512 and 65536 inclusive");
+ return SQLITE_ERROR;
+ }
+ /* attempt to free the existing page buffer */
+ sqlcipher_free(ctx->buffer,ctx->page_sz);
+ ctx->page_sz = size;
+
+ /* pre-allocate a page buffer of PageSize bytes. This will
+ be used as a persistent buffer for encryption and decryption
+ operations to avoid overhead of multiple memory allocations*/
+ ctx->buffer = sqlcipher_malloc(size);
+ if(ctx->buffer == NULL) return SQLITE_NOMEM;
+
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_get_pagesize(codec_ctx *ctx) {
+ return ctx->page_sz;
+}
+
+void sqlcipher_set_default_pagesize(int page_size) {
+ default_page_size = page_size;
+}
+
+int sqlcipher_get_default_pagesize() {
+ return default_page_size;
+}
+
+void sqlcipher_set_mem_security(int on) {
+ /* memory security can only be enabled, not disabled */
+ if(on) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_set_mem_security: on");
+ sqlcipher_mem_security_on = on;
+ }
+}
+
+int sqlcipher_get_mem_security() {
+ /* only report that memory security is enabled if pragma cipher_memory_security is ON and
+ SQLCipher's allocator/deallocator was run at least one timecurrently used */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_get_mem_security: sqlcipher_mem_security_on = %d, sqlcipher_mem_executed = %d", sqlcipher_mem_security_on, sqlcipher_mem_executed);
+ return sqlcipher_mem_security_on && sqlcipher_mem_executed;
+}
+
+
+int sqlcipher_codec_ctx_init(codec_ctx **iCtx, Db *pDb, Pager *pPager, const void *zKey, int nKey) {
+ int rc;
+ codec_ctx *ctx;
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating context");
+
+ *iCtx = sqlcipher_malloc(sizeof(codec_ctx));
+ ctx = *iCtx;
+
+ if(ctx == NULL) return SQLITE_NOMEM;
+
+ ctx->pBt = pDb->pBt; /* assign pointer to database btree structure */
+
+ /* allocate space for salt data. Then read the first 16 bytes
+ directly off the database file. This is the salt for the
+ key derivation function. If we get a short read allocate
+ a new random salt value */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating kdf_salt");
+ ctx->kdf_salt_sz = FILE_HEADER_SZ;
+ ctx->kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz);
+ if(ctx->kdf_salt == NULL) return SQLITE_NOMEM;
+
+ /* allocate space for separate hmac salt data. We want the
+ HMAC derivation salt to be different than the encryption
+ key derivation salt */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating hmac_kdf_salt");
+ ctx->hmac_kdf_salt = sqlcipher_malloc(ctx->kdf_salt_sz);
+ if(ctx->hmac_kdf_salt == NULL) return SQLITE_NOMEM;
+
+ /* setup default flags */
+ ctx->flags = default_flags;
+
+ /* defer attempt to read KDF salt until first use */
+ ctx->need_kdf_salt = 1;
+
+ /* setup the crypto provider */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_ctx_init: allocating provider");
+ ctx->provider = (sqlcipher_provider *) sqlcipher_malloc(sizeof(sqlcipher_provider));
+ if(ctx->provider == NULL) return SQLITE_NOMEM;
+
+ /* make a copy of the provider to be used for the duration of the context */
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: entering SQLCIPHER_MUTEX_PROVIDER");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: entered SQLCIPHER_MUTEX_PROVIDER");
+
+ memcpy(ctx->provider, default_provider, sizeof(sqlcipher_provider));
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: leaving SQLCIPHER_MUTEX_PROVIDER");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_codec_ctx_init: left SQLCIPHER_MUTEX_PROVIDER");
+
+ if((rc = ctx->provider->ctx_init(&ctx->provider_ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d returned from ctx_init", rc);
+ return rc;
+ }
+
+ ctx->key_sz = ctx->provider->get_key_sz(ctx->provider_ctx);
+ ctx->iv_sz = ctx->provider->get_iv_sz(ctx->provider_ctx);
+ ctx->block_sz = ctx->provider->get_block_sz(ctx->provider_ctx);
+
+ /* establic the size for a hex-formated key specification, containing the
+ raw encryption key and the salt used to generate it format. will be x'hexkey...hexsalt'
+ so oversize by 3 bytes */
+ ctx->keyspec_sz = ((ctx->key_sz + ctx->kdf_salt_sz) * 2) + 3;
+
+ /*
+ Always overwrite page size and set to the default because the first page of the database
+ in encrypted and thus sqlite can't effectively determine the pagesize. this causes an issue in
+ cases where bytes 16 & 17 of the page header are a power of 2 as reported by John Lehman
+ */
+ if((rc = sqlcipher_codec_ctx_set_pagesize(ctx, default_page_size)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d returned from sqlcipher_codec_ctx_set_pagesize with %d", rc, default_page_size);
+ return rc;
+ }
+
+ /* establish settings for the KDF iterations and fast (HMAC) KDF iterations */
+ if((rc = sqlcipher_codec_ctx_set_kdf_iter(ctx, default_kdf_iter)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting default_kdf_iter %d", rc, default_kdf_iter);
+ return rc;
+ }
+
+ if((rc = sqlcipher_codec_ctx_set_fast_kdf_iter(ctx, FAST_PBKDF2_ITER)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting fast_kdf_iter to %d", rc, FAST_PBKDF2_ITER);
+ return rc;
+ }
+
+ /* set the default HMAC and KDF algorithms which will determine the reserve size */
+ if((rc = sqlcipher_codec_ctx_set_hmac_algorithm(ctx, default_hmac_algorithm)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting sqlcipher_codec_ctx_set_hmac_algorithm with %d", rc, default_hmac_algorithm);
+ return rc;
+ }
+
+ /* Note that use_hmac is a special case that requires recalculation of page size
+ so we call set_use_hmac to perform setup */
+ if((rc = sqlcipher_codec_ctx_set_use_hmac(ctx, default_flags & CIPHER_FLAG_HMAC)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting use_hmac %d", rc, default_flags & CIPHER_FLAG_HMAC);
+ return rc;
+ }
+
+ if((rc = sqlcipher_codec_ctx_set_kdf_algorithm(ctx, default_kdf_algorithm)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting sqlcipher_codec_ctx_set_kdf_algorithm with %d", rc, default_kdf_algorithm);
+ return rc;
+ }
+
+ /* setup the default plaintext header size */
+ if((rc = sqlcipher_codec_ctx_set_plaintext_header_size(ctx, default_plaintext_header_sz)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting sqlcipher_codec_ctx_set_plaintext_header_size with %d", rc, default_plaintext_header_sz);
+ return rc;
+ }
+
+ /* initialize the read and write sub-contexts. this must happen after key_sz is established */
+ if((rc = sqlcipher_cipher_ctx_init(ctx, &ctx->read_ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d initializing read_ctx", rc);
+ return rc;
+ }
+
+ if((rc = sqlcipher_cipher_ctx_init(ctx, &ctx->write_ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d initializing write_ctx", rc);
+ return rc;
+ }
+
+ /* set the key material on one of the sub cipher contexts and sync them up */
+ if((rc = sqlcipher_codec_ctx_set_pass(ctx, zKey, nKey, 0)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d setting pass key", rc);
+ return rc;
+ }
+
+ if((rc = sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_ctx_init: error %d copying write_ctx to read_ctx", rc);
+ return rc;
+ }
+
+ return SQLITE_OK;
+}
+
+/**
+ * Free and wipe memory associated with a cipher_ctx, including the allocated
+ * read_ctx and write_ctx.
+ */
+void sqlcipher_codec_ctx_free(codec_ctx **iCtx) {
+ codec_ctx *ctx = *iCtx;
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "codec_ctx_free: iCtx=%p", iCtx);
+ sqlcipher_free(ctx->kdf_salt, ctx->kdf_salt_sz);
+ sqlcipher_free(ctx->hmac_kdf_salt, ctx->kdf_salt_sz);
+ sqlcipher_free(ctx->buffer, ctx->page_sz);
+
+ ctx->provider->ctx_free(&ctx->provider_ctx);
+ sqlcipher_free(ctx->provider, sizeof(sqlcipher_provider));
+
+ sqlcipher_cipher_ctx_free(ctx, &ctx->read_ctx);
+ sqlcipher_cipher_ctx_free(ctx, &ctx->write_ctx);
+ sqlcipher_free(ctx, sizeof(codec_ctx));
+}
+
+/** convert a 32bit unsigned integer to little endian byte ordering */
+static void sqlcipher_put4byte_le(unsigned char *p, u32 v) {
+ p[0] = (u8)v;
+ p[1] = (u8)(v>>8);
+ p[2] = (u8)(v>>16);
+ p[3] = (u8)(v>>24);
+}
+
+static int sqlcipher_page_hmac(codec_ctx *ctx, cipher_ctx *c_ctx, Pgno pgno, unsigned char *in, int in_sz, unsigned char *out) {
+ unsigned char pgno_raw[sizeof(pgno)];
+ /* we may convert page number to consistent representation before calculating MAC for
+ compatibility across big-endian and little-endian platforms.
+
+ Note: The public release of sqlcipher 2.0.0 to 2.0.6 had a bug where the bytes of pgno
+ were used directly in the MAC. SQLCipher convert's to little endian by default to preserve
+ backwards compatibility on the most popular platforms, but can optionally be configured
+ to use either big endian or native byte ordering via pragma. */
+
+ if(ctx->flags & CIPHER_FLAG_LE_PGNO) { /* compute hmac using little endian pgno*/
+ sqlcipher_put4byte_le(pgno_raw, pgno);
+ } else if(ctx->flags & CIPHER_FLAG_BE_PGNO) { /* compute hmac using big endian pgno */
+ sqlite3Put4byte(pgno_raw, pgno); /* sqlite3Put4byte converts 32bit uint to big endian */
+ } else { /* use native byte ordering */
+ memcpy(pgno_raw, &pgno, sizeof(pgno));
+ }
+
+ /* include the encrypted page data, initialization vector, and page number in HMAC. This will
+ prevent both tampering with the ciphertext, manipulation of the IV, or resequencing otherwise
+ valid pages out of order in a database */
+ return ctx->provider->hmac(
+ ctx->provider_ctx, ctx->hmac_algorithm, c_ctx->hmac_key,
+ ctx->key_sz, in,
+ in_sz, (unsigned char*) &pgno_raw,
+ sizeof(pgno), out);
+}
+
+/*
+ * ctx - codec context
+ * pgno - page number in database
+ * size - size in bytes of input and output buffers
+ * mode - 1 to encrypt, 0 to decrypt
+ * in - pointer to input bytes
+ * out - pouter to output bytes
+ */
+int sqlcipher_page_cipher(codec_ctx *ctx, int for_ctx, Pgno pgno, int mode, int page_sz, unsigned char *in, unsigned char *out) {
+ cipher_ctx *c_ctx = for_ctx ? ctx->write_ctx : ctx->read_ctx;
+ unsigned char *iv_in, *iv_out, *hmac_in, *hmac_out, *out_start;
+ int size;
+
+ /* calculate some required positions into various buffers */
+ size = page_sz - ctx->reserve_sz; /* adjust size to useable size and memset reserve at end of page */
+ iv_out = out + size;
+ iv_in = in + size;
+
+ /* hmac will be written immediately after the initialization vector. the remainder of the page reserve will contain
+ random bytes. note, these pointers are only valid when using hmac */
+ hmac_in = in + size + ctx->iv_sz;
+ hmac_out = out + size + ctx->iv_sz;
+ out_start = out; /* note the original position of the output buffer pointer, as out will be rewritten during encryption */
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_page_cipher: pgno=%d, mode=%d, size=%d", pgno, mode, size);
+ CODEC_HEXDUMP("sqlcipher_page_cipher: input page data", in, page_sz);
+
+ /* the key size should never be zero. If it is, error out. */
+ if(ctx->key_sz == 0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: error possible context corruption, key_sz is zero for pgno=%d", pgno);
+ goto error;
+ }
+
+ if(mode == CIPHER_ENCRYPT) {
+ /* start at front of the reserve block, write random data to the end */
+ if(ctx->provider->random(ctx->provider_ctx, iv_out, ctx->reserve_sz) != SQLITE_OK) goto error;
+ } else { /* CIPHER_DECRYPT */
+ memcpy(iv_out, iv_in, ctx->iv_sz); /* copy the iv from the input to output buffer */
+ }
+
+ if((ctx->flags & CIPHER_FLAG_HMAC) && (mode == CIPHER_DECRYPT) && !ctx->skip_read_hmac) {
+ if(sqlcipher_page_hmac(ctx, c_ctx, pgno, in, size + ctx->iv_sz, hmac_out) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: hmac operation on decrypt failed for pgno=%d", pgno);
+ goto error;
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_page_cipher: comparing hmac on in=%p out=%p hmac_sz=%d", hmac_in, hmac_out, ctx->hmac_sz);
+ if(sqlcipher_memcmp(hmac_in, hmac_out, ctx->hmac_sz) != 0) { /* the hmac check failed */
+ if(sqlite3BtreeGetAutoVacuum(ctx->pBt) != BTREE_AUTOVACUUM_NONE && sqlcipher_ismemset(in, 0, page_sz) == 0) {
+ /* first check if the entire contents of the page is zeros. If so, this page
+ resulted from a short read (i.e. sqlite attempted to pull a page after the end of the file. these
+ short read failures must be ignored for autovaccum mode to work so wipe the output buffer
+ and return SQLITE_OK to skip the decryption step. */
+ sqlcipher_log(SQLCIPHER_LOG_WARN, "sqlcipher_page_cipher: zeroed page (short read) for pgno %d, encryption but returning SQLITE_OK", pgno);
+ sqlcipher_memset(out, 0, page_sz);
+ return SQLITE_OK;
+ } else {
+ /* if the page memory is not all zeros, it means the there was data and a hmac on the page.
+ since the check failed, the page was either tampered with or corrupted. wipe the output buffer,
+ and return SQLITE_ERROR to the caller */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: hmac check failed for pgno=%d returning SQLITE_ERROR", pgno);
+ goto error;
+ }
+ }
+ }
+
+ if(ctx->provider->cipher(ctx->provider_ctx, mode, c_ctx->key, ctx->key_sz, iv_out, in, size, out) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: cipher operation mode=%d failed for pgno=%d returning SQLITE_ERROR", mode, pgno);
+ goto error;
+ };
+
+ if((ctx->flags & CIPHER_FLAG_HMAC) && (mode == CIPHER_ENCRYPT)) {
+ if(sqlcipher_page_hmac(ctx, c_ctx, pgno, out_start, size + ctx->iv_sz, hmac_out) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_page_cipher: hmac operation on encrypt failed for pgno=%d", pgno);
+ goto error;
+ };
+ }
+
+ CODEC_HEXDUMP("sqlcipher_page_cipher: output page data", out_start, page_sz);
+
+ return SQLITE_OK;
+error:
+ sqlcipher_memset(out, 0, page_sz);
+ return SQLITE_ERROR;
+}
+
+/**
+ * Derive an encryption key for a cipher contex key based on the raw password.
+ *
+ * If the raw key data is formated as x'hex' and there are exactly enough hex chars to fill
+ * the key (i.e 64 hex chars for a 256 bit key) then the key data will be used directly.
+
+ * Else, if the raw key data is formated as x'hex' and there are exactly enough hex chars to fill
+ * the key and the salt (i.e 92 hex chars for a 256 bit key and 16 byte salt) then it will be unpacked
+ * as the key followed by the salt.
+ *
+ * Otherwise, a key data will be derived using PBKDF2
+ *
+ * returns SQLITE_OK if initialization was successful
+ * returns SQLITE_ERROR if the key could't be derived (for instance if pass is NULL or pass_sz is 0)
+ */
+static int sqlcipher_cipher_ctx_key_derive(codec_ctx *ctx, cipher_ctx *c_ctx) {
+ int rc;
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_cipher_ctx_key_derive: ctx->kdf_salt_sz=%d ctx->kdf_iter=%d ctx->fast_kdf_iter=%d ctx->key_sz=%d",
+ ctx->kdf_salt_sz, ctx->kdf_iter, ctx->fast_kdf_iter, ctx->key_sz);
+
+ if(c_ctx->pass && c_ctx->pass_sz) { /* if key material is present on the context for derivation */
+
+ /* if necessary, initialize the salt from the header or random source */
+ if(ctx->need_kdf_salt) {
+ if((rc = sqlcipher_codec_ctx_init_kdf_salt(ctx)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_cipher_ctx_key_derive: error %d from sqlcipher_codec_ctx_init_kdf_salt", rc);
+ return rc;
+ }
+ }
+
+ if (c_ctx->pass_sz == ((ctx->key_sz * 2) + 3) && sqlite3StrNICmp((const char *)c_ctx->pass ,"x'", 2) == 0 && cipher_isHex(c_ctx->pass + 2, ctx->key_sz * 2)) {
+ int n = c_ctx->pass_sz - 3; /* adjust for leading x' and tailing ' */
+ const unsigned char *z = c_ctx->pass + 2; /* adjust lead offset of x' */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: using raw key from hex");
+ cipher_hex2bin(z, n, c_ctx->key);
+ } else if (c_ctx->pass_sz == (((ctx->key_sz + ctx->kdf_salt_sz) * 2) + 3) && sqlite3StrNICmp((const char *)c_ctx->pass ,"x'", 2) == 0 && cipher_isHex(c_ctx->pass + 2, (ctx->key_sz + ctx->kdf_salt_sz) * 2)) {
+ const unsigned char *z = c_ctx->pass + 2; /* adjust lead offset of x' */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: using raw key from hex");
+ cipher_hex2bin(z, (ctx->key_sz * 2), c_ctx->key);
+ cipher_hex2bin(z + (ctx->key_sz * 2), (ctx->kdf_salt_sz * 2), ctx->kdf_salt);
+ } else {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: deriving key using full PBKDF2 with %d iterations", ctx->kdf_iter);
+ if(ctx->provider->kdf(ctx->provider_ctx, ctx->kdf_algorithm, c_ctx->pass, c_ctx->pass_sz,
+ ctx->kdf_salt, ctx->kdf_salt_sz, ctx->kdf_iter,
+ ctx->key_sz, c_ctx->key) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_ctx_key_derive: error occurred from provider kdf generating encryption key");
+ return SQLITE_ERROR;
+ }
+ }
+
+ /* set the context "keyspec" containing the hex-formatted key and salt to be used when attaching databases */
+ if((rc = sqlcipher_cipher_ctx_set_keyspec(ctx, c_ctx, c_ctx->key)) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_cipher_ctx_key_derive: error %d from sqlcipher_cipher_ctx_set_keyspec", rc);
+ return rc;
+ }
+
+ /* if this context is setup to use hmac checks, generate a seperate and different
+ key for HMAC. In this case, we use the output of the previous KDF as the input to
+ this KDF run. This ensures a distinct but predictable HMAC key. */
+ if(ctx->flags & CIPHER_FLAG_HMAC) {
+ int i;
+
+ /* start by copying the kdf key into the hmac salt slot
+ then XOR it with the fixed hmac salt defined at compile time
+ this ensures that the salt passed in to derive the hmac key, while
+ easy to derive and publically known, is not the same as the salt used
+ to generate the encryption key */
+ memcpy(ctx->hmac_kdf_salt, ctx->kdf_salt, ctx->kdf_salt_sz);
+ for(i = 0; i < ctx->kdf_salt_sz; i++) {
+ ctx->hmac_kdf_salt[i] ^= hmac_salt_mask;
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "cipher_ctx_key_derive: deriving hmac key from encryption key using PBKDF2 with %d iterations",
+ ctx->fast_kdf_iter);
+
+
+ if(ctx->provider->kdf(ctx->provider_ctx, ctx->kdf_algorithm, c_ctx->key, ctx->key_sz,
+ ctx->hmac_kdf_salt, ctx->kdf_salt_sz, ctx->fast_kdf_iter,
+ ctx->key_sz, c_ctx->hmac_key) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_ctx_key_derive: error occurred from provider kdf generating HMAC key");
+ return SQLITE_ERROR;
+ }
+ }
+
+ c_ctx->derive_key = 0;
+ return SQLITE_OK;
+ }
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cipher_ctx_key_derive: key material is not present on the context for key derivation");
+ return SQLITE_ERROR;
+}
+
+int sqlcipher_codec_key_derive(codec_ctx *ctx) {
+ /* derive key on first use if necessary */
+ if(ctx->read_ctx->derive_key) {
+ if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->read_ctx) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_key_derive: error occurred deriving read_ctx key");
+ return SQLITE_ERROR;
+ }
+ }
+
+ if(ctx->write_ctx->derive_key) {
+ if(sqlcipher_cipher_ctx_cmp(ctx->write_ctx, ctx->read_ctx) == 0) {
+ /* the relevant parameters are the same, just copy read key */
+ if(sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_key_derive: error occurred copying read_ctx to write_ctx");
+ return SQLITE_ERROR;
+ }
+ } else {
+ if(sqlcipher_cipher_ctx_key_derive(ctx, ctx->write_ctx) != SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_key_derive: error occurred deriving write_ctx key");
+ return SQLITE_ERROR;
+ }
+ }
+ }
+
+ /* TODO: wipe and free passphrase after key derivation */
+ if(ctx->store_pass != 1) {
+ sqlcipher_cipher_ctx_set_pass(ctx->read_ctx, NULL, 0);
+ sqlcipher_cipher_ctx_set_pass(ctx->write_ctx, NULL, 0);
+ }
+
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_key_copy(codec_ctx *ctx, int source) {
+ if(source == CIPHER_READ_CTX) {
+ return sqlcipher_cipher_ctx_copy(ctx, ctx->write_ctx, ctx->read_ctx);
+ } else {
+ return sqlcipher_cipher_ctx_copy(ctx, ctx->read_ctx, ctx->write_ctx);
+ }
+}
+
+const char* sqlcipher_codec_get_cipher_provider(codec_ctx *ctx) {
+ return ctx->provider->get_provider_name(ctx->provider_ctx);
+}
+
+
+static int sqlcipher_check_connection(const char *filename, char *key, int key_sz, char *sql, int *user_version, char** journal_mode) {
+ int rc;
+ sqlite3 *db = NULL;
+ sqlite3_stmt *statement = NULL;
+ char *query_journal_mode = "PRAGMA journal_mode;";
+ char *query_user_version = "PRAGMA user_version;";
+
+ rc = sqlite3_open(filename, &db);
+ if(rc != SQLITE_OK) goto cleanup;
+
+ rc = sqlite3_key(db, key, key_sz);
+ if(rc != SQLITE_OK) goto cleanup;
+
+ rc = sqlite3_exec(db, sql, NULL, NULL, NULL);
+ if(rc != SQLITE_OK) goto cleanup;
+
+ /* start by querying the user version.
+ this will fail if the key is incorrect */
+ rc = sqlite3_prepare(db, query_user_version, -1, &statement, NULL);
+ if(rc != SQLITE_OK) goto cleanup;
+
+ rc = sqlite3_step(statement);
+ if(rc == SQLITE_ROW) {
+ *user_version = sqlite3_column_int(statement, 0);
+ } else {
+ goto cleanup;
+ }
+ sqlite3_finalize(statement);
+
+ rc = sqlite3_prepare(db, query_journal_mode, -1, &statement, NULL);
+ if(rc != SQLITE_OK) goto cleanup;
+
+ rc = sqlite3_step(statement);
+ if(rc == SQLITE_ROW) {
+ *journal_mode = sqlite3_mprintf("%s", sqlite3_column_text(statement, 0));
+ } else {
+ goto cleanup;
+ }
+ rc = SQLITE_OK;
+ /* cleanup will finalize open statement */
+
+cleanup:
+ if(statement) sqlite3_finalize(statement);
+ if(db) sqlite3_close(db);
+ return rc;
+}
+
+int sqlcipher_codec_ctx_integrity_check(codec_ctx *ctx, Parse *pParse, char *column) {
+ Pgno page = 1;
+ int rc = 0;
+ char *result;
+ unsigned char *hmac_out = NULL;
+ sqlite3_file *fd = sqlite3PagerFile(ctx->pBt->pBt->pPager);
+ i64 file_sz;
+
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, column, SQLITE_STATIC);
+
+ if(fd == NULL || fd->pMethods == 0) {
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, "database file is undefined", P4_TRANSIENT);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ goto cleanup;
+ }
+
+ if(!(ctx->flags & CIPHER_FLAG_HMAC)) {
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, "HMAC is not enabled, unable to integrity check", P4_TRANSIENT);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ goto cleanup;
+ }
+
+ if((rc = sqlcipher_codec_key_derive(ctx)) != SQLITE_OK) {
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, "unable to derive keys", P4_TRANSIENT);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ goto cleanup;
+ }
+
+ sqlite3OsFileSize(fd, &file_sz);
+ hmac_out = sqlcipher_malloc(ctx->hmac_sz);
+
+ for(page = 1; page <= file_sz / ctx->page_sz; page++) {
+ i64 offset = (page - 1) * ctx->page_sz;
+ int payload_sz = ctx->page_sz - ctx->reserve_sz + ctx->iv_sz;
+ int read_sz = ctx->page_sz;
+
+ /* skip integrity check on PAGER_SJ_PGNO since it will have no valid content */
+ if(sqlite3pager_is_sj_pgno(ctx->pBt->pBt->pPager, page)) continue;
+
+ if(page==1) {
+ int page1_offset = ctx->plaintext_header_sz ? ctx->plaintext_header_sz : FILE_HEADER_SZ;
+ read_sz = read_sz - page1_offset;
+ payload_sz = payload_sz - page1_offset;
+ offset += page1_offset;
+ }
+
+ sqlcipher_memset(ctx->buffer, 0, ctx->page_sz);
+ sqlcipher_memset(hmac_out, 0, ctx->hmac_sz);
+ if(sqlite3OsRead(fd, ctx->buffer, read_sz, offset) != SQLITE_OK) {
+ result = sqlite3_mprintf("error reading %d bytes from file page %d at offset %d", read_sz, page, offset);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ } else if(sqlcipher_page_hmac(ctx, ctx->read_ctx, page, ctx->buffer, payload_sz, hmac_out) != SQLITE_OK) {
+ result = sqlite3_mprintf("HMAC operation failed for page %d", page);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ } else if(sqlcipher_memcmp(ctx->buffer + payload_sz, hmac_out, ctx->hmac_sz) != 0) {
+ result = sqlite3_mprintf("HMAC verification failed for page %d", page);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+ }
+
+ if(file_sz % ctx->page_sz != 0) {
+ result = sqlite3_mprintf("page %d has an invalid size of %lld bytes", page, file_sz - ((file_sz / ctx->page_sz) * ctx->page_sz));
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, result, P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+
+cleanup:
+ if(hmac_out != NULL) sqlcipher_free(hmac_out, ctx->hmac_sz);
+ return SQLITE_OK;
+}
+
+int sqlcipher_codec_ctx_migrate(codec_ctx *ctx) {
+ int i, pass_sz, keyspec_sz, nRes, user_version, rc, oflags;
+ Db *pDb = 0;
+ sqlite3 *db = ctx->pBt->db;
+ const char *db_filename = sqlite3_db_filename(db, "main");
+ char *set_user_version = NULL, *pass = NULL, *attach_command = NULL, *migrated_db_filename = NULL, *keyspec = NULL, *temp = NULL, *journal_mode = NULL, *set_journal_mode = NULL, *pragma_compat = NULL;
+ Btree *pDest = NULL, *pSrc = NULL;
+ sqlite3_file *srcfile, *destfile;
+#if defined(_WIN32) || defined(SQLITE_OS_WINRT)
+ LPWSTR w_db_filename = NULL, w_migrated_db_filename = NULL;
+ int w_db_filename_sz = 0, w_migrated_db_filename_sz = 0;
+#endif
+ pass_sz = keyspec_sz = rc = user_version = 0;
+
+ if(!db_filename || sqlite3Strlen30(db_filename) < 1)
+ goto cleanup; /* exit immediately if this is an in memory database */
+
+ /* pull the provided password / key material off the current codec context */
+ pass_sz = ctx->read_ctx->pass_sz;
+ pass = sqlcipher_malloc(pass_sz+1);
+ memset(pass, 0, pass_sz+1);
+ memcpy(pass, ctx->read_ctx->pass, pass_sz);
+
+ /* Version 4 - current, no upgrade required, so exit immediately */
+ rc = sqlcipher_check_connection(db_filename, pass, pass_sz, "", &user_version, &journal_mode);
+ if(rc == SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "No upgrade required - exiting");
+ goto cleanup;
+ }
+
+ for(i = 3; i > 0; i--) {
+ pragma_compat = sqlite3_mprintf("PRAGMA cipher_compatibility = %d;", i);
+ rc = sqlcipher_check_connection(db_filename, pass, pass_sz, pragma_compat, &user_version, &journal_mode);
+ if(rc == SQLITE_OK) {
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "Version %d format found", i);
+ goto migrate;
+ }
+ if(pragma_compat) sqlcipher_free(pragma_compat, sqlite3Strlen30(pragma_compat));
+ pragma_compat = NULL;
+ }
+
+ /* if we exit the loop normally we failed to determine the version, this is an error */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "Upgrade format not determined");
+ goto handle_error;
+
+migrate:
+
+ temp = sqlite3_mprintf("%s-migrated", db_filename);
+ /* overallocate migrated_db_filename, because sqlite3OsOpen will read past the null terminator
+ * to determine whether the filename was URI formatted */
+ migrated_db_filename = sqlcipher_malloc(sqlite3Strlen30(temp)+2);
+ memcpy(migrated_db_filename, temp, sqlite3Strlen30(temp));
+ sqlcipher_free(temp, sqlite3Strlen30(temp));
+
+ attach_command = sqlite3_mprintf("ATTACH DATABASE '%s' as migrate;", migrated_db_filename, pass);
+ set_user_version = sqlite3_mprintf("PRAGMA migrate.user_version = %d;", user_version);
+
+ rc = sqlite3_exec(db, pragma_compat, NULL, NULL, NULL);
+ if(rc != SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "set compatibility mode failed, error code %d", rc);
+ goto handle_error;
+ }
+
+ /* force journal mode to DELETE, we will set it back later if different */
+ rc = sqlite3_exec(db, "PRAGMA journal_mode = delete;", NULL, NULL, NULL);
+ if(rc != SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "force journal mode DELETE failed, error code %d", rc);
+ goto handle_error;
+ }
+
+ rc = sqlite3_exec(db, attach_command, NULL, NULL, NULL);
+ if(rc != SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "attach failed, error code %d", rc);
+ goto handle_error;
+ }
+
+ rc = sqlite3_key_v2(db, "migrate", pass, pass_sz);
+ if(rc != SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "keying attached database failed, error code %d", rc);
+ goto handle_error;
+ }
+
+ rc = sqlite3_exec(db, "SELECT sqlcipher_export('migrate');", NULL, NULL, NULL);
+ if(rc != SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_export failed, error code %d", rc);
+ goto handle_error;
+ }
+
+#ifdef SQLCIPHER_TEST
+ if((sqlcipher_get_test_flags() & TEST_FAIL_MIGRATE) > 0) {
+ rc = SQLITE_ERROR;
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "simulated migrate failure, error code %d", rc);
+ goto handle_error;
+ }
+#endif
+
+ rc = sqlite3_exec(db, set_user_version, NULL, NULL, NULL);
+ if(rc != SQLITE_OK){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "set user version failed, error code %d", rc);
+ goto handle_error;
+ }
+
+ if( !db->autoCommit ){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cannot migrate from within a transaction");
+ goto handle_error;
+ }
+ if( db->nVdbeActive>1 ){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "cannot migrate - SQL statements in progress");
+ goto handle_error;
+ }
+
+ pDest = db->aDb[0].pBt;
+ pDb = &(db->aDb[db->nDb-1]);
+ pSrc = pDb->pBt;
+
+ nRes = sqlite3BtreeGetRequestedReserve(pSrc);
+ /* unset the BTS_PAGESIZE_FIXED flag to avoid SQLITE_READONLY */
+ pDest->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED;
+ rc = sqlite3BtreeSetPageSize(pDest, default_page_size, nRes, 0);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "set btree page size to %d res %d rc %d", default_page_size, nRes, rc);
+ if( rc!=SQLITE_OK ) goto handle_error;
+
+ sqlcipherCodecGetKey(db, db->nDb - 1, (void**)&keyspec, &keyspec_sz);
+ sqlcipherCodecAttach(db, 0, keyspec, keyspec_sz);
+
+ srcfile = sqlite3PagerFile(pSrc->pBt->pPager);
+ destfile = sqlite3PagerFile(pDest->pBt->pPager);
+
+ sqlite3OsClose(srcfile);
+ sqlite3OsClose(destfile);
+
+#if defined(_WIN32) || defined(SQLITE_OS_WINRT)
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "performing windows MoveFileExA");
+
+ w_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) db_filename, -1, NULL, 0);
+ w_db_filename = sqlcipher_malloc(w_db_filename_sz * sizeof(wchar_t));
+ w_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) db_filename, -1, (const LPWSTR) w_db_filename, w_db_filename_sz);
+
+ w_migrated_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) migrated_db_filename, -1, NULL, 0);
+ w_migrated_db_filename = sqlcipher_malloc(w_migrated_db_filename_sz * sizeof(wchar_t));
+ w_migrated_db_filename_sz = MultiByteToWideChar(CP_UTF8, 0, (LPCCH) migrated_db_filename, -1, (const LPWSTR) w_migrated_db_filename, w_migrated_db_filename_sz);
+
+ if(!MoveFileExW(w_migrated_db_filename, w_db_filename, MOVEFILE_REPLACE_EXISTING)) {
+ rc = SQLITE_ERROR;
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "error occurred while renaming %d", rc);
+ goto handle_error;
+ }
+#else
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "performing POSIX rename");
+ if ((rc = rename(migrated_db_filename, db_filename)) != 0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "error occurred while renaming %d", rc);
+ goto handle_error;
+ }
+#endif
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "renamed migration database %s to main database %s: %d", migrated_db_filename, db_filename, rc);
+
+ rc = sqlite3OsOpen(db->pVfs, migrated_db_filename, srcfile, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_DB, &oflags);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reopened migration database: %d", rc);
+ if( rc!=SQLITE_OK ) goto handle_error;
+
+ rc = sqlite3OsOpen(db->pVfs, db_filename, destfile, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_DB, &oflags);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reopened main database: %d", rc);
+ if( rc!=SQLITE_OK ) goto handle_error;
+
+ sqlite3pager_reset(pDest->pBt->pPager);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reset pager");
+
+ rc = sqlite3_exec(db, "DETACH DATABASE migrate;", NULL, NULL, NULL);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "DETACH DATABASE called %d", rc);
+ if(rc != SQLITE_OK) goto cleanup;
+
+ sqlite3ResetAllSchemasOfConnection(db);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "reset all schemas");
+
+ set_journal_mode = sqlite3_mprintf("PRAGMA journal_mode = %s;", journal_mode);
+ rc = sqlite3_exec(db, set_journal_mode, NULL, NULL, NULL);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "%s: %d", set_journal_mode, rc);
+ if( rc!=SQLITE_OK ) goto handle_error;
+
+ goto cleanup;
+
+handle_error:
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "An error occurred attempting to migrate the database - last error %d", rc);
+
+cleanup:
+ if(migrated_db_filename) {
+ int del_rc = sqlite3OsDelete(db->pVfs, migrated_db_filename, 0);
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "deleted migration database: %d", del_rc);
+ }
+
+ if(pass) sqlcipher_free(pass, pass_sz);
+ if(attach_command) sqlcipher_free(attach_command, sqlite3Strlen30(attach_command));
+ if(migrated_db_filename) sqlcipher_free(migrated_db_filename, sqlite3Strlen30(migrated_db_filename));
+ if(set_user_version) sqlcipher_free(set_user_version, sqlite3Strlen30(set_user_version));
+ if(set_journal_mode) sqlcipher_free(set_journal_mode, sqlite3Strlen30(set_journal_mode));
+ if(journal_mode) sqlcipher_free(journal_mode, sqlite3Strlen30(journal_mode));
+ if(pragma_compat) sqlcipher_free(pragma_compat, sqlite3Strlen30(pragma_compat));
+#if defined(_WIN32) || defined(SQLITE_OS_WINRT)
+ if(w_db_filename) sqlcipher_free(w_db_filename, w_db_filename_sz);
+ if(w_migrated_db_filename) sqlcipher_free(w_migrated_db_filename, w_migrated_db_filename_sz);
+#endif
+ return rc;
+}
+
+int sqlcipher_codec_add_random(codec_ctx *ctx, const char *zRight, int random_sz){
+ const char *suffix = &zRight[random_sz-1];
+ int n = random_sz - 3; /* adjust for leading x' and tailing ' */
+ if (n > 0 &&
+ sqlite3StrNICmp((const char *)zRight ,"x'", 2) == 0 &&
+ sqlite3StrNICmp(suffix, "'", 1) == 0 &&
+ n % 2 == 0) {
+ int rc = 0;
+ int buffer_sz = n / 2;
+ unsigned char *random;
+ const unsigned char *z = (const unsigned char *)zRight + 2; /* adjust lead offset of x' */
+ sqlcipher_log(SQLCIPHER_LOG_DEBUG, "sqlcipher_codec_add_random: using raw random blob from hex");
+ random = sqlcipher_malloc(buffer_sz);
+ memset(random, 0, buffer_sz);
+ cipher_hex2bin(z, n, random);
+ rc = ctx->provider->add_random(ctx->provider_ctx, random, buffer_sz);
+ sqlcipher_free(random, buffer_sz);
+ return rc;
+ }
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_codec_add_random: attemt to add random with invalid format");
+ return SQLITE_ERROR;
+}
+
+#if !defined(SQLITE_OMIT_TRACE)
+static int sqlcipher_profile_callback(unsigned int trace, void *file, void *stmt, void *run_time){
+ FILE *f = (FILE*) file;
+ char *fmt = "Elapsed time:%.3f ms - %s\n";
+ double elapsed = (*((sqlite3_uint64*)run_time))/1000000.0;
+#ifdef __ANDROID__
+ if(f == NULL) {
+ __android_log_print(ANDROID_LOG_DEBUG, "sqlcipher", fmt, elapsed, sqlite3_sql((sqlite3_stmt*)stmt));
+ }
+#endif
+ if(f) fprintf(f, fmt, elapsed, sqlite3_sql((sqlite3_stmt*)stmt));
+ return SQLITE_OK;
+}
+#endif
+
+int sqlcipher_cipher_profile(sqlite3 *db, const char *destination){
+#if defined(SQLITE_OMIT_TRACE)
+ return SQLITE_ERROR;
+#else
+ FILE *f = NULL;
+ if(sqlite3_stricmp(destination, "off") == 0){
+ sqlite3_trace_v2(db, 0, NULL, NULL); /* disable tracing */
+ } else {
+ if(sqlite3_stricmp(destination, "stdout") == 0){
+ f = stdout;
+ }else if(sqlite3_stricmp(destination, "stderr") == 0){
+ f = stderr;
+ }else if(sqlite3_stricmp(destination, "logcat") == 0){
+ f = NULL; /* file pointer will be NULL indicating logcat on android */
+ }else{
+#if !defined(SQLCIPHER_PROFILE_USE_FOPEN) && (defined(_WIN32) && (__STDC_VERSION__ > 199901L) || defined(SQLITE_OS_WINRT))
+ if(fopen_s(&f, destination, "a") != 0) return SQLITE_ERROR;
+#else
+ if((f = fopen(destination, "a")) == 0) return SQLITE_ERROR;
+#endif
+ }
+ sqlite3_trace_v2(db, SQLITE_TRACE_PROFILE, sqlcipher_profile_callback, f);
+ }
+ return SQLITE_OK;
+#endif
+}
+
+int sqlcipher_codec_fips_status(codec_ctx *ctx) {
+ return ctx->provider->fips_status(ctx->provider_ctx);
+}
+
+const char* sqlcipher_codec_get_provider_version(codec_ctx *ctx) {
+ return ctx->provider->get_provider_version(ctx->provider_ctx);
+}
+
+#ifndef SQLCIPHER_OMIT_LOG
+/* constants from https://github.com/Alexpux/mingw-w64/blob/master/mingw-w64-crt/misc/gettimeofday.c */
+#define FILETIME_1970 116444736000000000ull /* seconds between 1/1/1601 and 1/1/1970 */
+#define HECTONANOSEC_PER_SEC 10000000ull
+void sqlcipher_log(unsigned int level, const char *message, ...) {
+ va_list params;
+ va_start(params, message);
+
+#ifdef CODEC_DEBUG
+#ifdef __ANDROID__
+ __android_log_vprint(ANDROID_LOG_DEBUG, "sqlcipher", message, params);
+#else
+ vfprintf(stderr, message, params);
+ fprintf(stderr, "\n");
+#endif
+#endif
+
+ if(level > sqlcipher_log_level || (sqlcipher_log_logcat == 0 && sqlcipher_log_file == NULL)) {
+ /* no log target or tag not in included filters */
+ goto end;
+ }
+ if(sqlcipher_log_file != NULL){
+ char buffer[24];
+ struct tm tt;
+ int ms;
+ time_t sec;
+#ifdef _WIN32
+ SYSTEMTIME st;
+ FILETIME ft;
+ GetSystemTime(&st);
+ SystemTimeToFileTime(&st, &ft);
+ sec = (time_t) ((*((sqlite_int64*)&ft) - FILETIME_1970) / HECTONANOSEC_PER_SEC);
+ ms = st.wMilliseconds;
+ localtime_s(&tt, &sec);
+#else
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ sec = tv.tv_sec;
+ ms = tv.tv_usec/1000.0;
+ localtime_r(&sec, &tt);
+#endif
+ if(strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", &tt)) {
+ fprintf((FILE*)sqlcipher_log_file, "%s.%03d: ", buffer, ms);
+ vfprintf((FILE*)sqlcipher_log_file, message, params);
+ fprintf((FILE*)sqlcipher_log_file, "\n");
+ }
+ }
+#ifdef __ANDROID__
+ if(sqlcipher_log_logcat) {
+ __android_log_vprint(ANDROID_LOG_DEBUG, "sqlcipher", message, params);
+ }
+#endif
+end:
+ va_end(params);
+}
+#endif
+
+void sqlcipher_set_log_level(unsigned int level) {
+ sqlcipher_log_level = level;
+}
+
+int sqlcipher_set_log(const char *destination){
+#ifdef SQLCIPHER_OMIT_LOG
+ return SQLITE_ERROR;
+#else
+ /* close open trace file if it is not stdout or stderr, then
+ reset trace settings */
+ if(sqlcipher_log_file != NULL && sqlcipher_log_file != stdout && sqlcipher_log_file != stderr) {
+ fclose((FILE*)sqlcipher_log_file);
+ }
+ sqlcipher_log_file = NULL;
+ sqlcipher_log_logcat = 0;
+
+ if(sqlite3_stricmp(destination, "logcat") == 0){
+ sqlcipher_log_logcat = 1;
+ } else if(sqlite3_stricmp(destination, "stdout") == 0){
+ sqlcipher_log_file = stdout;
+ }else if(sqlite3_stricmp(destination, "stderr") == 0){
+ sqlcipher_log_file = stderr;
+ }else if(sqlite3_stricmp(destination, "off") != 0){
+#if !defined(SQLCIPHER_PROFILE_USE_FOPEN) && (defined(_WIN32) && (__STDC_VERSION__ > 199901L) || defined(SQLITE_OS_WINRT))
+ if(fopen_s(&sqlcipher_log_file, destination, "a") != 0) return SQLITE_ERROR;
+#else
+ if((sqlcipher_log_file = fopen(destination, "a")) == 0) return SQLITE_ERROR;
+#endif
+ }
+ sqlcipher_log(SQLCIPHER_LOG_INFO, "sqlcipher_set_log: set log to %s", destination);
+ return SQLITE_OK;
+#endif
+}
+
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto_impl.c *****************************************/
+/************** Begin file crypto_libtomcrypt.c ******************************/
+/*
+** SQLCipher
+** http://sqlcipher.net
+**
+** Copyright (c) 2008 - 2013, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+#ifdef SQLCIPHER_CRYPTO_LIBTOMCRYPT
+/* #include "sqliteInt.h" */
+/* #include "sqlcipher.h" */
+#include <tomcrypt.h>
+
+#define FORTUNA_MAX_SZ 32
+static prng_state prng;
+static volatile unsigned int ltc_init = 0;
+static volatile unsigned int ltc_ref_count = 0;
+
+#define LTC_CIPHER "rijndael"
+
+static int sqlcipher_ltc_add_random(void *ctx, void *buffer, int length) {
+ int rc = 0;
+ int data_to_read = length;
+ int block_sz = data_to_read < FORTUNA_MAX_SZ ? data_to_read : FORTUNA_MAX_SZ;
+ const unsigned char * data = (const unsigned char *)buffer;
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND");
+
+ while(data_to_read > 0){
+ rc = fortuna_add_entropy(data, block_sz, &prng);
+ rc = rc != CRYPT_OK ? SQLITE_ERROR : SQLITE_OK;
+ if(rc != SQLITE_OK){
+ break;
+ }
+ data_to_read -= block_sz;
+ data += block_sz;
+ block_sz = data_to_read < FORTUNA_MAX_SZ ? data_to_read : FORTUNA_MAX_SZ;
+ }
+ fortuna_ready(&prng);
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_add_random: left SQLCIPHER_MUTEX_PROVIDER_RAND");
+
+ return rc;
+}
+
+static int sqlcipher_ltc_activate(void *ctx) {
+ unsigned char random_buffer[FORTUNA_MAX_SZ];
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+ sqlcipher_memset(random_buffer, 0, FORTUNA_MAX_SZ);
+ if(ltc_init == 0) {
+ if(register_prng(&fortuna_desc) < 0) return SQLITE_ERROR;
+ if(register_cipher(&rijndael_desc) < 0) return SQLITE_ERROR;
+ if(register_hash(&sha512_desc) < 0) return SQLITE_ERROR;
+ if(register_hash(&sha256_desc) < 0) return SQLITE_ERROR;
+ if(register_hash(&sha1_desc) < 0) return SQLITE_ERROR;
+ if(fortuna_start(&prng) != CRYPT_OK) {
+ return SQLITE_ERROR;
+ }
+
+ ltc_init = 1;
+ }
+ ltc_ref_count++;
+
+#ifndef SQLCIPHER_TEST
+ sqlite3_randomness(FORTUNA_MAX_SZ, random_buffer);
+#endif
+
+ if(sqlcipher_ltc_add_random(ctx, random_buffer, FORTUNA_MAX_SZ) != SQLITE_OK) {
+ return SQLITE_ERROR;
+ }
+ sqlcipher_memset(random_buffer, 0, FORTUNA_MAX_SZ);
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+ return SQLITE_OK;
+}
+
+static int sqlcipher_ltc_deactivate(void *ctx) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+ ltc_ref_count--;
+ if(ltc_ref_count == 0){
+ fortuna_done(&prng);
+ sqlcipher_memset((void *)&prng, 0, sizeof(prng));
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_deactivate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+ return SQLITE_OK;
+}
+
+static const char* sqlcipher_ltc_get_provider_name(void *ctx) {
+ return "libtomcrypt";
+}
+
+static const char* sqlcipher_ltc_get_provider_version(void *ctx) {
+ return SCRYPT;
+}
+
+static int sqlcipher_ltc_random(void *ctx, void *buffer, int length) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND");
+
+ fortuna_read(buffer, length, &prng);
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_ltc_random: left SQLCIPHER_MUTEX_PROVIDER_RAND");
+
+ return SQLITE_OK;
+}
+
+static int sqlcipher_ltc_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) {
+ int rc, hash_idx;
+ hmac_state hmac;
+ unsigned long outlen;
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ hash_idx = find_hash("sha1");
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ hash_idx = find_hash("sha256");
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ hash_idx = find_hash("sha512");
+ break;
+ default:
+ return SQLITE_ERROR;
+ }
+
+ if(hash_idx < 0) return SQLITE_ERROR;
+ outlen = hash_descriptor[hash_idx].hashsize;
+
+ if(in == NULL) return SQLITE_ERROR;
+ if((rc = hmac_init(&hmac, hash_idx, hmac_key, key_sz)) != CRYPT_OK) return SQLITE_ERROR;
+ if((rc = hmac_process(&hmac, in, in_sz)) != CRYPT_OK) return SQLITE_ERROR;
+ if(in2 != NULL && (rc = hmac_process(&hmac, in2, in2_sz)) != CRYPT_OK) return SQLITE_ERROR;
+ if((rc = hmac_done(&hmac, out, &outlen)) != CRYPT_OK) return SQLITE_ERROR;
+ return SQLITE_OK;
+}
+
+static int sqlcipher_ltc_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) {
+ int rc, hash_idx;
+ unsigned long outlen = key_sz;
+
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ hash_idx = find_hash("sha1");
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ hash_idx = find_hash("sha256");
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ hash_idx = find_hash("sha512");
+ break;
+ default:
+ return SQLITE_ERROR;
+ }
+ if(hash_idx < 0) return SQLITE_ERROR;
+
+ if((rc = pkcs_5_alg2(pass, pass_sz, salt, salt_sz,
+ workfactor, hash_idx, key, &outlen)) != CRYPT_OK) {
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+}
+
+static const char* sqlcipher_ltc_get_cipher(void *ctx) {
+ return "aes-256-cbc";
+}
+
+static int sqlcipher_ltc_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) {
+ int rc, cipher_idx;
+ symmetric_CBC cbc;
+
+ if((cipher_idx = find_cipher(LTC_CIPHER)) == -1) return SQLITE_ERROR;
+ if((rc = cbc_start(cipher_idx, iv, key, key_sz, 0, &cbc)) != CRYPT_OK) return SQLITE_ERROR;
+ rc = mode == 1 ? cbc_encrypt(in, out, in_sz, &cbc) : cbc_decrypt(in, out, in_sz, &cbc);
+ if(rc != CRYPT_OK) return SQLITE_ERROR;
+ cbc_done(&cbc);
+ return SQLITE_OK;
+}
+
+static int sqlcipher_ltc_get_key_sz(void *ctx) {
+ int cipher_idx = find_cipher(LTC_CIPHER);
+ return cipher_descriptor[cipher_idx].max_key_length;
+}
+
+static int sqlcipher_ltc_get_iv_sz(void *ctx) {
+ int cipher_idx = find_cipher(LTC_CIPHER);
+ return cipher_descriptor[cipher_idx].block_length;
+}
+
+static int sqlcipher_ltc_get_block_sz(void *ctx) {
+ int cipher_idx = find_cipher(LTC_CIPHER);
+ return cipher_descriptor[cipher_idx].block_length;
+}
+
+static int sqlcipher_ltc_get_hmac_sz(void *ctx, int algorithm) {
+ int hash_idx;
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ hash_idx = find_hash("sha1");
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ hash_idx = find_hash("sha256");
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ hash_idx = find_hash("sha512");
+ break;
+ default:
+ return 0;
+ }
+
+ if(hash_idx < 0) return 0;
+
+ return hash_descriptor[hash_idx].hashsize;
+}
+
+static int sqlcipher_ltc_ctx_init(void **ctx) {
+ sqlcipher_ltc_activate(NULL);
+ return SQLITE_OK;
+}
+
+static int sqlcipher_ltc_ctx_free(void **ctx) {
+ sqlcipher_ltc_deactivate(&ctx);
+ return SQLITE_OK;
+}
+
+static int sqlcipher_ltc_fips_status(void *ctx) {
+ return 0;
+}
+
+int sqlcipher_ltc_setup(sqlcipher_provider *p) {
+ p->activate = sqlcipher_ltc_activate;
+ p->deactivate = sqlcipher_ltc_deactivate;
+ p->get_provider_name = sqlcipher_ltc_get_provider_name;
+ p->random = sqlcipher_ltc_random;
+ p->hmac = sqlcipher_ltc_hmac;
+ p->kdf = sqlcipher_ltc_kdf;
+ p->cipher = sqlcipher_ltc_cipher;
+ p->get_cipher = sqlcipher_ltc_get_cipher;
+ p->get_key_sz = sqlcipher_ltc_get_key_sz;
+ p->get_iv_sz = sqlcipher_ltc_get_iv_sz;
+ p->get_block_sz = sqlcipher_ltc_get_block_sz;
+ p->get_hmac_sz = sqlcipher_ltc_get_hmac_sz;
+ p->ctx_init = sqlcipher_ltc_ctx_init;
+ p->ctx_free = sqlcipher_ltc_ctx_free;
+ p->add_random = sqlcipher_ltc_add_random;
+ p->fips_status = sqlcipher_ltc_fips_status;
+ p->get_provider_version = sqlcipher_ltc_get_provider_version;
+ return SQLITE_OK;
+}
+
+#endif
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto_libtomcrypt.c **********************************/
+/************** Begin file crypto_nss.c **************************************/
+/*
+** SQLCipher
+** http://sqlcipher.net
+**
+** Copyright (c) 2008 - 2013, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+#ifdef SQLCIPHER_CRYPTO_NSS
+/* #include "crypto.h" */
+/* #include "sqlcipher.h" */
+#include <nss/blapit.h>
+#include <nss/nss.h>
+#include <nss/pk11pub.h>
+
+static NSSInitContext* nss_init_context = NULL;
+static unsigned int nss_init_count = 0;
+
+int sqlcipher_nss_setup(sqlcipher_provider *p);
+
+static int sqlcipher_nss_activate(void *ctx) {
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ if (nss_init_context == NULL) {
+ nss_init_context = NSS_InitContext("", "", "", "", NULL,
+ NSS_INIT_READONLY | NSS_INIT_NOCERTDB | NSS_INIT_NOMODDB |
+ NSS_INIT_FORCEOPEN | NSS_INIT_OPTIMIZESPACE | NSS_INIT_NOROOTINIT);
+ }
+ nss_init_count++;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ return SQLITE_OK;
+}
+
+static int sqlcipher_nss_deactivate(void *ctx) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+ nss_init_count--;
+ if (nss_init_count == 0 && nss_init_context != NULL) {
+ NSS_ShutdownContext(nss_init_context);
+ nss_init_context = NULL;
+ }
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_nss_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ return SQLITE_OK;
+}
+
+static int sqlcipher_nss_add_random(void *ctx, void *buffer, int length) {
+ return SQLITE_OK;
+}
+
+/* generate a defined number of random bytes */
+static int sqlcipher_nss_random (void *ctx, void *buffer, int length) {
+ // PK11_GenerateRandom should be thread-safe.
+ return (PK11_GenerateRandom((unsigned char *)buffer, length) == SECSuccess) ? SQLITE_OK : SQLITE_ERROR;
+}
+
+static const char* sqlcipher_nss_get_provider_name(void *ctx) {
+ return "nss";
+}
+
+static const char* sqlcipher_nss_get_provider_version(void *ctx) {
+ return NSS_GetVersion();
+}
+
+static const char* sqlcipher_nss_get_cipher(void *ctx) {
+ return "aes-256-cbc";
+}
+
+static int sqlcipher_nss_get_key_sz(void *ctx) {
+ return AES_256_KEY_LENGTH;
+}
+
+static int sqlcipher_nss_get_iv_sz(void *ctx) {
+ return AES_BLOCK_SIZE;
+}
+
+static int sqlcipher_nss_get_block_sz(void *ctx) {
+ return AES_BLOCK_SIZE;
+}
+
+static int sqlcipher_nss_get_hmac_sz(void *ctx, int algorithm) {
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ return SHA1_LENGTH;
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ return SHA256_LENGTH;
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ return SHA512_LENGTH;
+ break;
+ default:
+ return 0;
+ }
+}
+
+static int sqlcipher_nss_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) {
+ int rc = SQLITE_OK;
+ unsigned int length;
+ unsigned int outLen;
+ PK11Context* context = NULL;
+ PK11SlotInfo * slot = NULL;
+ PK11SymKey* symKey = NULL;
+ if(in == NULL) goto error;
+ CK_MECHANISM_TYPE mech;
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ mech = CKM_SHA_1_HMAC;
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ mech = CKM_SHA256_HMAC;
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ mech = CKM_SHA512_HMAC;
+ break;
+ default:
+ goto error;
+ }
+ length = sqlcipher_nss_get_hmac_sz(ctx, algorithm);
+ slot = PK11_GetInternalSlot();
+ if (slot == NULL) goto error;
+ SECItem keyItem;
+ keyItem.data = hmac_key;
+ keyItem.len = key_sz;
+ symKey = PK11_ImportSymKey(slot, mech, PK11_OriginUnwrap,
+ CKA_SIGN, &keyItem, NULL);
+ if (symKey == NULL) goto error;
+ SECItem noParams;
+ noParams.data = 0;
+ noParams.len = 0;
+ context = PK11_CreateContextBySymKey(mech, CKA_SIGN, symKey, &noParams);
+ if (context == NULL) goto error;
+ if (PK11_DigestBegin(context) != SECSuccess) goto error;
+ if (PK11_DigestOp(context, in, in_sz) != SECSuccess) goto error;
+ if (in2 != NULL) {
+ if (PK11_DigestOp(context, in2, in2_sz) != SECSuccess) goto error;
+ }
+ if (PK11_DigestFinal(context, out, &outLen, length) != SECSuccess) goto error;
+
+ goto cleanup;
+ error:
+ rc = SQLITE_ERROR;
+ cleanup:
+ if (context) PK11_DestroyContext(context, PR_TRUE);
+ if (symKey) PK11_FreeSymKey(symKey);
+ if (slot) PK11_FreeSlot(slot);
+ return rc;
+}
+
+static int sqlcipher_nss_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) {
+ int rc = SQLITE_OK;
+ PK11SlotInfo * slot = NULL;
+ SECAlgorithmID * algid = NULL;
+ PK11SymKey* symKey = NULL;
+ SECOidTag oidtag;
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ oidtag = SEC_OID_HMAC_SHA1;
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ oidtag = SEC_OID_HMAC_SHA256;
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ oidtag = SEC_OID_HMAC_SHA512;
+ break;
+ default:
+ goto error;
+ }
+ SECItem secSalt;
+ secSalt.data = salt;
+ secSalt.len = salt_sz;
+ // Always pass SEC_OID_HMAC_SHA1 (i.e. PBMAC1) as this parameter
+ // is unused for key generation. It is currently only used
+ // for PBKDF2 authentication or key (un)wrapping when specifying an
+ // encryption algorithm (PBES2).
+ algid = PK11_CreatePBEV2AlgorithmID(SEC_OID_PKCS5_PBKDF2, SEC_OID_HMAC_SHA1,
+ oidtag, key_sz, workfactor, &secSalt);
+ if (algid == NULL) goto error;
+ slot = PK11_GetInternalSlot();
+ if (slot == NULL) goto error;
+ SECItem pwItem;
+ pwItem.data = (unsigned char *) pass; // PK11_PBEKeyGen doesn't modify the key.
+ pwItem.len = pass_sz;
+ symKey = PK11_PBEKeyGen(slot, algid, &pwItem, PR_FALSE, NULL);
+ if (symKey == NULL) goto error;
+ if (PK11_ExtractKeyValue(symKey) != SECSuccess) goto error;
+ // No need to free keyData as it is a buffer managed by symKey.
+ SECItem* keyData = PK11_GetKeyData(symKey);
+ if (keyData == NULL) goto error;
+ memcpy(key, keyData->data, key_sz);
+
+ goto cleanup;
+ error:
+ rc = SQLITE_ERROR;
+ cleanup:
+ if (slot) PK11_FreeSlot(slot);
+ if (algid) SECOID_DestroyAlgorithmID(algid, PR_TRUE);
+ if (symKey) PK11_FreeSymKey(symKey);
+ return rc;
+}
+
+static int sqlcipher_nss_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) {
+ int rc = SQLITE_OK;
+ PK11SlotInfo * slot = NULL;
+ PK11SymKey* symKey = NULL;
+ unsigned int outLen;
+ SECItem params;
+ params.data = iv;
+ params.len = sqlcipher_nss_get_iv_sz(ctx);
+ slot = PK11_GetInternalSlot();
+ if (slot == NULL) goto error;
+ SECItem keyItem;
+ keyItem.data = key;
+ keyItem.len = key_sz;
+ symKey = PK11_ImportSymKey(slot, CKM_AES_CBC, PK11_OriginUnwrap,
+ CKA_ENCRYPT, &keyItem, NULL);
+ if (symKey == NULL) goto error;
+ SECStatus rv;
+ if (mode == CIPHER_ENCRYPT) {
+ rv = PK11_Encrypt(symKey, CKM_AES_CBC, &params, out, &outLen,
+ in_sz + 16, in, in_sz);
+ } else {
+ rv = PK11_Decrypt(symKey, CKM_AES_CBC, &params, out, &outLen,
+ in_sz + 16, in, in_sz);
+ }
+ if (rv != SECSuccess) goto error;
+
+ goto cleanup;
+ error:
+ rc = SQLITE_ERROR;
+ cleanup:
+ if (slot) PK11_FreeSlot(slot);
+ if (symKey) PK11_FreeSymKey(symKey);
+ return rc;
+}
+
+static int sqlcipher_nss_ctx_init(void **ctx) {
+ sqlcipher_nss_activate(NULL);
+ return SQLITE_OK;
+}
+
+static int sqlcipher_nss_ctx_free(void **ctx) {
+ sqlcipher_nss_deactivate(NULL);
+ return SQLITE_OK;
+}
+
+static int sqlcipher_nss_fips_status(void *ctx) {
+ return 0;
+}
+
+int sqlcipher_nss_setup(sqlcipher_provider *p) {
+ p->activate = sqlcipher_nss_activate;
+ p->deactivate = sqlcipher_nss_deactivate;
+ p->random = sqlcipher_nss_random;
+ p->get_provider_name = sqlcipher_nss_get_provider_name;
+ p->hmac = sqlcipher_nss_hmac;
+ p->kdf = sqlcipher_nss_kdf;
+ p->cipher = sqlcipher_nss_cipher;
+ p->get_cipher = sqlcipher_nss_get_cipher;
+ p->get_key_sz = sqlcipher_nss_get_key_sz;
+ p->get_iv_sz = sqlcipher_nss_get_iv_sz;
+ p->get_block_sz = sqlcipher_nss_get_block_sz;
+ p->get_hmac_sz = sqlcipher_nss_get_hmac_sz;
+ p->ctx_init = sqlcipher_nss_ctx_init;
+ p->ctx_free = sqlcipher_nss_ctx_free;
+ p->add_random = sqlcipher_nss_add_random;
+ p->fips_status = sqlcipher_nss_fips_status;
+ p->get_provider_version = sqlcipher_nss_get_provider_version;
+ return SQLITE_OK;
+}
+
+#endif
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto_nss.c ******************************************/
+/************** Begin file crypto_openssl.c **********************************/
+/*
+** SQLCipher
+** http://sqlcipher.net
+**
+** Copyright (c) 2008 - 2013, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+#ifdef SQLCIPHER_CRYPTO_OPENSSL
+/* #include "sqliteInt.h" */
+/* #include "crypto.h" */
+/* #include "sqlcipher.h" */
+#include <openssl/crypto.h>
+#include <openssl/rand.h>
+#include <openssl/evp.h>
+#include <openssl/objects.h>
+#include <openssl/hmac.h>
+#include <openssl/err.h>
+
+static unsigned int openssl_init_count = 0;
+
+static void sqlcipher_openssl_log_errors() {
+ unsigned long err = 0;
+ while((err = ERR_get_error()) != 0) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_log_errors: ERR_get_error() returned %lx: %s", err, ERR_error_string(err, NULL));
+ }
+}
+
+#if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x10100000L) || (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x20700000L)
+static HMAC_CTX *HMAC_CTX_new(void)
+{
+ HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
+ if (ctx != NULL) {
+ HMAC_CTX_init(ctx);
+ }
+ return ctx;
+}
+
+/* Per 1.1.0 (https://wiki.openssl.org/index.php/1.1_API_Changes)
+ HMAC_CTX_free should call HMAC_CTX_cleanup, then EVP_MD_CTX_Cleanup.
+ HMAC_CTX_cleanup internally calls EVP_MD_CTX_cleanup so these
+ calls are not needed. */
+static void HMAC_CTX_free(HMAC_CTX *ctx)
+{
+ if (ctx != NULL) {
+ HMAC_CTX_cleanup(ctx);
+ OPENSSL_free(ctx);
+ }
+}
+#endif
+
+static int sqlcipher_openssl_add_random(void *ctx, void *buffer, int length) {
+#ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND");
+#endif
+ RAND_add(buffer, length, 0);
+#ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_add_random: left SQLCIPHER_MUTEX_PROVIDER_RAND");
+#endif
+ return SQLITE_OK;
+}
+
+#define OPENSSL_CIPHER EVP_aes_256_cbc()
+
+/* activate and initialize sqlcipher. Most importantly, this will automatically
+ intialize OpenSSL's EVP system if it hasn't already be externally. Note that
+ this function may be called multiple times as new codecs are intiialized.
+ Thus it performs some basic counting to ensure that only the last and final
+ sqlcipher_openssl_deactivate() will free the EVP structures.
+*/
+static int sqlcipher_openssl_activate(void *ctx) {
+ /* initialize openssl and increment the internal init counter
+ but only if it hasn't been initalized outside of SQLCipher by this program
+ e.g. on startup */
+ int rc = 0;
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+#if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x10100000L)
+ ERR_load_crypto_strings();
+#endif
+
+#ifdef SQLCIPHER_FIPS
+ if(!FIPS_mode()){
+ if(!(rc = FIPS_mode_set(1))){
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_activate: FIPS_mode_set() returned %d", rc);
+ sqlcipher_openssl_log_errors();
+ }
+ }
+#endif
+
+ openssl_init_count++;
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_activate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ return SQLITE_OK;
+}
+
+/* deactivate SQLCipher, most imporantly decremeting the activation count and
+ freeing the EVP structures on the final deactivation to ensure that
+ OpenSSL memory is cleaned up */
+static int sqlcipher_openssl_deactivate(void *ctx) {
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: entering SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: entered SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+
+ openssl_init_count--;
+
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: leaving SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_ACTIVATE));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_deactivate: left SQLCIPHER_MUTEX_PROVIDER_ACTIVATE");
+ return SQLITE_OK;
+}
+
+static const char* sqlcipher_openssl_get_provider_name(void *ctx) {
+ return "openssl";
+}
+
+static const char* sqlcipher_openssl_get_provider_version(void *ctx) {
+ return OPENSSL_VERSION_TEXT;
+}
+
+/* generate a defined number of random bytes */
+static int sqlcipher_openssl_random (void *ctx, void *buffer, int length) {
+ int rc = 0;
+ /* concurrent calls to RAND_bytes can cause a crash under some openssl versions when a
+ naive application doesn't use CRYPTO_set_locking_callback and
+ CRYPTO_THREADID_set_callback to ensure openssl thread safety.
+ This is simple workaround to prevent this common crash
+ but a more proper solution is that applications setup platform-appropriate
+ thread saftey in openssl externally */
+#ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: entering SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_enter(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: entered SQLCIPHER_MUTEX_PROVIDER_RAND");
+#endif
+ rc = RAND_bytes((unsigned char *)buffer, length);
+#ifndef SQLCIPHER_OPENSSL_NO_MUTEX_RAND
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: leaving SQLCIPHER_MUTEX_PROVIDER_RAND");
+ sqlite3_mutex_leave(sqlcipher_mutex(SQLCIPHER_MUTEX_PROVIDER_RAND));
+ sqlcipher_log(SQLCIPHER_LOG_TRACE, "sqlcipher_openssl_random: left SQLCIPHER_MUTEX_PROVIDER_RAND");
+#endif
+ if(!rc) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_random: RAND_bytes() returned %d", rc);
+ sqlcipher_openssl_log_errors();
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+}
+
+static int sqlcipher_openssl_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) {
+ int rc = 0;
+
+#if (defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER < 0x30000000L)
+ unsigned int outlen;
+ HMAC_CTX* hctx = NULL;
+
+ if(in == NULL) goto error;
+
+ hctx = HMAC_CTX_new();
+ if(hctx == NULL) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_CTX_new() failed");
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ if(!(rc = HMAC_Init_ex(hctx, hmac_key, key_sz, EVP_sha1(), NULL))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Init_ex() with key size %d and EVP_sha1() returned %d", key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ if(!(rc = HMAC_Init_ex(hctx, hmac_key, key_sz, EVP_sha256(), NULL))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Init_ex() with key size %d and EVP_sha256() returned %d", key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ if(!(rc = HMAC_Init_ex(hctx, hmac_key, key_sz, EVP_sha512(), NULL))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Init_ex() with key size %d and EVP_sha512() returned %d", key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ default:
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: invalid algorithm %d", algorithm);
+ goto error;
+ }
+
+ if(!(rc = HMAC_Update(hctx, in, in_sz))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Update() on 1st input buffer of %d bytes using algorithm %d returned %d", in_sz, algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(in2 != NULL) {
+ if(!(rc = HMAC_Update(hctx, in2, in2_sz))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Update() on 2nd input buffer of %d bytes using algorithm %d returned %d", in2_sz, algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ }
+
+ if(!(rc = HMAC_Final(hctx, out, &outlen))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: HMAC_Final() using algorithm %d returned %d", algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ rc = SQLITE_OK;
+ goto cleanup;
+
+error:
+ rc = SQLITE_ERROR;
+
+cleanup:
+ if(hctx) HMAC_CTX_free(hctx);
+
+#else
+ size_t outlen;
+ EVP_MAC *mac = NULL;
+ EVP_MAC_CTX *hctx = NULL;
+ OSSL_PARAM sha1[] = { { "digest", OSSL_PARAM_UTF8_STRING, "sha1", 4, 0 }, OSSL_PARAM_END };
+ OSSL_PARAM sha256[] = { { "digest", OSSL_PARAM_UTF8_STRING, "sha256", 6, 0 }, OSSL_PARAM_END };
+ OSSL_PARAM sha512[] = { { "digest", OSSL_PARAM_UTF8_STRING, "sha512", 6, 0 }, OSSL_PARAM_END };
+
+ if(in == NULL) goto error;
+
+ mac = EVP_MAC_fetch(NULL, "HMAC", NULL);
+ if(mac == NULL) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_fetch for HMAC failed");
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ hctx = EVP_MAC_CTX_new(mac);
+ if(hctx == NULL) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_CTX_new() failed");
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ if(!(rc = EVP_MAC_init(hctx, hmac_key, key_sz, sha1))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_init() with key size %d and sha1 returned %d", key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ if(!(rc = EVP_MAC_init(hctx, hmac_key, key_sz, sha256))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_init() with key size %d and sha256 returned %d", key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ if(!(rc = EVP_MAC_init(hctx, hmac_key, key_sz, sha512))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_init() with key size %d and sha512 returned %d", key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ default:
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: invalid algorithm %d", algorithm);
+ goto error;
+ }
+
+ if(!(rc = EVP_MAC_update(hctx, in, in_sz))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_update() on 1st input buffer of %d bytes using algorithm %d returned %d", in_sz, algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(in2 != NULL) {
+ if(!(rc = EVP_MAC_update(hctx, in2, in2_sz))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: EVP_MAC_update() on 2nd input buffer of %d bytes using algorithm %d returned %d", in_sz, algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ }
+
+ if(!(rc = EVP_MAC_final(hctx, NULL, &outlen, 0))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: 1st EVP_MAC_final() for output length calculation using algorithm %d returned %d", algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(!(rc = EVP_MAC_final(hctx, out, &outlen, outlen))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_hmac: 2nd EVP_MAC_final() using algorithm %d returned %d", algorithm, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ rc = SQLITE_OK;
+ goto cleanup;
+
+error:
+ rc = SQLITE_ERROR;
+
+cleanup:
+ if(hctx) EVP_MAC_CTX_free(hctx);
+ if(mac) EVP_MAC_free(mac);
+
+#endif
+
+ return rc;
+}
+
+static int sqlcipher_openssl_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) {
+ int rc = 0;
+
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ if(!(rc = PKCS5_PBKDF2_HMAC((const char *)pass, pass_sz, salt, salt_sz, workfactor, EVP_sha1(), key_sz, key))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_kdf: PKCS5_PBKDF2_HMAC() for EVP_sha1() workfactor %d and key size %d returned %d", workfactor, key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ if(!(rc = PKCS5_PBKDF2_HMAC((const char *)pass, pass_sz, salt, salt_sz, workfactor, EVP_sha256(), key_sz, key))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_kdf: PKCS5_PBKDF2_HMAC() for EVP_sha256() workfactor %d and key size %d returned %d", workfactor, key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ if(!(rc = PKCS5_PBKDF2_HMAC((const char *)pass, pass_sz, salt, salt_sz, workfactor, EVP_sha512(), key_sz, key))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_kdf: PKCS5_PBKDF2_HMAC() for EVP_sha512() workfactor %d and key size %d returned %d", workfactor, key_sz, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+ break;
+ default:
+ return SQLITE_ERROR;
+ }
+
+ rc = SQLITE_OK;
+ goto cleanup;
+error:
+ rc = SQLITE_ERROR;
+cleanup:
+ return rc;
+}
+
+static int sqlcipher_openssl_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) {
+ int tmp_csz, csz, rc = 0;
+ EVP_CIPHER_CTX* ectx = EVP_CIPHER_CTX_new();
+ if(ectx == NULL) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CIPHER_CTX_new failed");
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(!(rc = EVP_CipherInit_ex(ectx, OPENSSL_CIPHER, NULL, NULL, NULL, mode))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherInit_ex for mode %d returned %d", mode, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(!(rc = EVP_CIPHER_CTX_set_padding(ectx, 0))) { /* no padding */
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CIPHER_CTX_set_padding 0 returned %d", rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(!(rc = EVP_CipherInit_ex(ectx, NULL, NULL, key, iv, mode))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherInit_ex for mode %d returned %d", mode, rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ if(!(rc = EVP_CipherUpdate(ectx, out, &tmp_csz, in, in_sz))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherUpdate returned %d", rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ csz = tmp_csz;
+ out += tmp_csz;
+ if(!(rc = EVP_CipherFinal_ex(ectx, out, &tmp_csz))) {
+ sqlcipher_log(SQLCIPHER_LOG_ERROR, "sqlcipher_openssl_cipher: EVP_CipherFinal_ex returned %d", rc);
+ sqlcipher_openssl_log_errors();
+ goto error;
+ }
+
+ csz += tmp_csz;
+ assert(in_sz == csz);
+
+ rc = SQLITE_OK;
+ goto cleanup;
+error:
+ rc = SQLITE_ERROR;
+cleanup:
+ if(ectx) EVP_CIPHER_CTX_free(ectx);
+ return rc;
+}
+
+static const char* sqlcipher_openssl_get_cipher(void *ctx) {
+ return OBJ_nid2sn(EVP_CIPHER_nid(OPENSSL_CIPHER));
+}
+
+static int sqlcipher_openssl_get_key_sz(void *ctx) {
+ return EVP_CIPHER_key_length(OPENSSL_CIPHER);
+}
+
+static int sqlcipher_openssl_get_iv_sz(void *ctx) {
+ return EVP_CIPHER_iv_length(OPENSSL_CIPHER);
+}
+
+static int sqlcipher_openssl_get_block_sz(void *ctx) {
+ return EVP_CIPHER_block_size(OPENSSL_CIPHER);
+}
+
+static int sqlcipher_openssl_get_hmac_sz(void *ctx, int algorithm) {
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ return EVP_MD_size(EVP_sha1());
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ return EVP_MD_size(EVP_sha256());
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ return EVP_MD_size(EVP_sha512());
+ break;
+ default:
+ return 0;
+ }
+}
+
+static int sqlcipher_openssl_ctx_init(void **ctx) {
+ return sqlcipher_openssl_activate(*ctx);
+}
+
+static int sqlcipher_openssl_ctx_free(void **ctx) {
+ return sqlcipher_openssl_deactivate(NULL);
+}
+
+static int sqlcipher_openssl_fips_status(void *ctx) {
+#ifdef SQLCIPHER_FIPS
+ return FIPS_mode();
+#else
+ return 0;
+#endif
+}
+
+int sqlcipher_openssl_setup(sqlcipher_provider *p) {
+ p->activate = sqlcipher_openssl_activate;
+ p->deactivate = sqlcipher_openssl_deactivate;
+ p->get_provider_name = sqlcipher_openssl_get_provider_name;
+ p->random = sqlcipher_openssl_random;
+ p->hmac = sqlcipher_openssl_hmac;
+ p->kdf = sqlcipher_openssl_kdf;
+ p->cipher = sqlcipher_openssl_cipher;
+ p->get_cipher = sqlcipher_openssl_get_cipher;
+ p->get_key_sz = sqlcipher_openssl_get_key_sz;
+ p->get_iv_sz = sqlcipher_openssl_get_iv_sz;
+ p->get_block_sz = sqlcipher_openssl_get_block_sz;
+ p->get_hmac_sz = sqlcipher_openssl_get_hmac_sz;
+ p->ctx_init = sqlcipher_openssl_ctx_init;
+ p->ctx_free = sqlcipher_openssl_ctx_free;
+ p->add_random = sqlcipher_openssl_add_random;
+ p->fips_status = sqlcipher_openssl_fips_status;
+ p->get_provider_version = sqlcipher_openssl_get_provider_version;
+ return SQLITE_OK;
+}
+
+#endif
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto_openssl.c **************************************/
+/************** Begin file crypto_cc.c ***************************************/
+/*
+** SQLCipher
+** http://sqlcipher.net
+**
+** Copyright (c) 2008 - 2013, ZETETIC LLC
+** All rights reserved.
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions are met:
+** * Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+** * Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in the
+** documentation and/or other materials provided with the distribution.
+** * Neither the name of the ZETETIC LLC nor the
+** names of its contributors may be used to endorse or promote products
+** derived from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
+** EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+** DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
+** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**
+*/
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+#ifdef SQLCIPHER_CRYPTO_CC
+/* #include "crypto.h" */
+/* #include "sqlcipher.h" */
+#include <CommonCrypto/CommonCrypto.h>
+#include <Security/SecRandom.h>
+#include <CoreFoundation/CoreFoundation.h>
+
+int sqlcipher_cc_setup(sqlcipher_provider *p);
+
+static int sqlcipher_cc_add_random(void *ctx, void *buffer, int length) {
+ return SQLITE_OK;
+}
+
+/* generate a defined number of random bytes */
+static int sqlcipher_cc_random (void *ctx, void *buffer, int length) {
+ return (SecRandomCopyBytes(kSecRandomDefault, length, (uint8_t *)buffer) == kCCSuccess) ? SQLITE_OK : SQLITE_ERROR;
+}
+
+static const char* sqlcipher_cc_get_provider_name(void *ctx) {
+ return "commoncrypto";
+}
+
+static const char* sqlcipher_cc_get_provider_version(void *ctx) {
+#if TARGET_OS_MAC
+ CFTypeRef version;
+ CFBundleRef bundle = CFBundleGetBundleWithIdentifier(CFSTR("com.apple.security"));
+ if(bundle == NULL) {
+ return "unknown";
+ }
+ version = CFBundleGetValueForInfoDictionaryKey(bundle, CFSTR("CFBundleShortVersionString"));
+ return CFStringGetCStringPtr(version, kCFStringEncodingUTF8);
+#else
+ return "unknown";
+#endif
+}
+
+static int sqlcipher_cc_hmac(void *ctx, int algorithm, unsigned char *hmac_key, int key_sz, unsigned char *in, int in_sz, unsigned char *in2, int in2_sz, unsigned char *out) {
+ CCHmacContext hmac_context;
+ if(in == NULL) return SQLITE_ERROR;
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ CCHmacInit(&hmac_context, kCCHmacAlgSHA1, hmac_key, key_sz);
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ CCHmacInit(&hmac_context, kCCHmacAlgSHA256, hmac_key, key_sz);
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ CCHmacInit(&hmac_context, kCCHmacAlgSHA512, hmac_key, key_sz);
+ break;
+ default:
+ return SQLITE_ERROR;
+ }
+ CCHmacUpdate(&hmac_context, in, in_sz);
+ if(in2 != NULL) CCHmacUpdate(&hmac_context, in2, in2_sz);
+ CCHmacFinal(&hmac_context, out);
+ return SQLITE_OK;
+}
+
+static int sqlcipher_cc_kdf(void *ctx, int algorithm, const unsigned char *pass, int pass_sz, unsigned char* salt, int salt_sz, int workfactor, int key_sz, unsigned char *key) {
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ if(CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pass, pass_sz, salt, salt_sz, kCCPRFHmacAlgSHA1, workfactor, key, key_sz) != kCCSuccess) return SQLITE_ERROR;
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ if(CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pass, pass_sz, salt, salt_sz, kCCPRFHmacAlgSHA256, workfactor, key, key_sz) != kCCSuccess) return SQLITE_ERROR;
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ if(CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pass, pass_sz, salt, salt_sz, kCCPRFHmacAlgSHA512, workfactor, key, key_sz) != kCCSuccess) return SQLITE_ERROR;
+ break;
+ default:
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+}
+
+static int sqlcipher_cc_cipher(void *ctx, int mode, unsigned char *key, int key_sz, unsigned char *iv, unsigned char *in, int in_sz, unsigned char *out) {
+ CCCryptorRef cryptor;
+ size_t tmp_csz, csz;
+ CCOperation op = mode == CIPHER_ENCRYPT ? kCCEncrypt : kCCDecrypt;
+
+ if(CCCryptorCreate(op, kCCAlgorithmAES128, 0, key, kCCKeySizeAES256, iv, &cryptor) != kCCSuccess) return SQLITE_ERROR;
+ if(CCCryptorUpdate(cryptor, in, in_sz, out, in_sz, &tmp_csz) != kCCSuccess) return SQLITE_ERROR;
+ csz = tmp_csz;
+ out += tmp_csz;
+ if(CCCryptorFinal(cryptor, out, in_sz - csz, &tmp_csz) != kCCSuccess) return SQLITE_ERROR;
+ csz += tmp_csz;
+ if(CCCryptorRelease(cryptor) != kCCSuccess) return SQLITE_ERROR;
+ assert(in_sz == csz);
+
+ return SQLITE_OK;
+}
+
+static const char* sqlcipher_cc_get_cipher(void *ctx) {
+ return "aes-256-cbc";
+}
+
+static int sqlcipher_cc_get_key_sz(void *ctx) {
+ return kCCKeySizeAES256;
+}
+
+static int sqlcipher_cc_get_iv_sz(void *ctx) {
+ return kCCBlockSizeAES128;
+}
+
+static int sqlcipher_cc_get_block_sz(void *ctx) {
+ return kCCBlockSizeAES128;
+}
+
+static int sqlcipher_cc_get_hmac_sz(void *ctx, int algorithm) {
+ switch(algorithm) {
+ case SQLCIPHER_HMAC_SHA1:
+ return CC_SHA1_DIGEST_LENGTH;
+ break;
+ case SQLCIPHER_HMAC_SHA256:
+ return CC_SHA256_DIGEST_LENGTH;
+ break;
+ case SQLCIPHER_HMAC_SHA512:
+ return CC_SHA512_DIGEST_LENGTH;
+ break;
+ default:
+ return 0;
+ }
+}
+
+static int sqlcipher_cc_ctx_init(void **ctx) {
+ return SQLITE_OK;
+}
+
+static int sqlcipher_cc_ctx_free(void **ctx) {
+ return SQLITE_OK;
+}
+
+static int sqlcipher_cc_fips_status(void *ctx) {
+ return 0;
+}
+
+int sqlcipher_cc_setup(sqlcipher_provider *p) {
+ p->random = sqlcipher_cc_random;
+ p->get_provider_name = sqlcipher_cc_get_provider_name;
+ p->hmac = sqlcipher_cc_hmac;
+ p->kdf = sqlcipher_cc_kdf;
+ p->cipher = sqlcipher_cc_cipher;
+ p->get_cipher = sqlcipher_cc_get_cipher;
+ p->get_key_sz = sqlcipher_cc_get_key_sz;
+ p->get_iv_sz = sqlcipher_cc_get_iv_sz;
+ p->get_block_sz = sqlcipher_cc_get_block_sz;
+ p->get_hmac_sz = sqlcipher_cc_get_hmac_sz;
+ p->ctx_init = sqlcipher_cc_ctx_init;
+ p->ctx_free = sqlcipher_cc_ctx_free;
+ p->add_random = sqlcipher_cc_add_random;
+ p->fips_status = sqlcipher_cc_fips_status;
+ p->get_provider_version = sqlcipher_cc_get_provider_version;
+ return SQLITE_OK;
+}
+
+#endif
+#endif
+/* END SQLCIPHER */
+
+/************** End of crypto_cc.c *******************************************/
+/************** Begin file walker.c ******************************************/
+/*
+** 2008 August 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for walking the parser tree for
+** an SQL statement.
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+/* #include <string.h> */
+
+
+#if !defined(SQLITE_OMIT_WINDOWFUNC)
+/*
+** Walk all expressions linked into the list of Window objects passed
+** as the second argument.
+*/
+static int walkWindowList(Walker *pWalker, Window *pList, int bOneOnly){
+ Window *pWin;
+ for(pWin=pList; pWin; pWin=pWin->pNextWin){
+ int rc;
+ rc = sqlite3WalkExprList(pWalker, pWin->pOrderBy);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExprList(pWalker, pWin->pPartition);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExpr(pWalker, pWin->pFilter);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExpr(pWalker, pWin->pStart);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExpr(pWalker, pWin->pEnd);
+ if( rc ) return WRC_Abort;
+ if( bOneOnly ) break;
+ }
+ return WRC_Continue;
+}
+#endif
+
+/*
+** Walk an expression tree. Invoke the callback once for each node
+** of the expression, while descending. (In other words, the callback
+** is invoked before visiting children.)
+**
+** The return value from the callback should be one of the WRC_*
+** constants to specify how to proceed with the walk.
+**
+** WRC_Continue Continue descending down the tree.
+**
+** WRC_Prune Do not descend into child nodes, but allow
+** the walk to continue with sibling nodes.
+**
+** WRC_Abort Do no more callbacks. Unwind the stack and
+** return from the top-level walk call.
+**
+** The return value from this routine is WRC_Abort to abandon the tree walk
+** and WRC_Continue to continue.
+*/
+static SQLITE_NOINLINE int walkExpr(Walker *pWalker, Expr *pExpr){
+ int rc;
+ testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
+ testcase( ExprHasProperty(pExpr, EP_Reduced) );
+ while(1){
+ rc = pWalker->xExprCallback(pWalker, pExpr);
+ if( rc ) return rc & WRC_Abort;
+ if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){
+ assert( pExpr->x.pList==0 || pExpr->pRight==0 );
+ if( pExpr->pLeft && walkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
+ if( pExpr->pRight ){
+ assert( !ExprHasProperty(pExpr, EP_WinFunc) );
+ pExpr = pExpr->pRight;
+ continue;
+ }else if( ExprUseXSelect(pExpr) ){
+ assert( !ExprHasProperty(pExpr, EP_WinFunc) );
+ if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
+ }else{
+ if( pExpr->x.pList ){
+ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ if( walkWindowList(pWalker, pExpr->y.pWin, 1) ) return WRC_Abort;
+ }
+#endif
+ }
+ }
+ break;
+ }
+ return WRC_Continue;
+}
+SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
+ return pExpr ? walkExpr(pWalker,pExpr) : WRC_Continue;
+}
+
+/*
+** Call sqlite3WalkExpr() for every expression in list p or until
+** an abort request is seen.
+*/
+SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
+ int i;
+ struct ExprList_item *pItem;
+ if( p ){
+ for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
+ if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** This is a no-op callback for Walker->xSelectCallback2. If this
+** callback is set, then the Select->pWinDefn list is traversed.
+*/
+SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker *pWalker, Select *p){
+ UNUSED_PARAMETER(pWalker);
+ UNUSED_PARAMETER(p);
+ /* No-op */
+}
+
+/*
+** Walk all expressions associated with SELECT statement p. Do
+** not invoke the SELECT callback on p, but do (of course) invoke
+** any expr callbacks and SELECT callbacks that come from subqueries.
+** Return WRC_Abort or WRC_Continue.
+*/
+SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
+ if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
+ if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
+ if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
+#if !defined(SQLITE_OMIT_WINDOWFUNC)
+ if( p->pWinDefn ){
+ Parse *pParse;
+ if( pWalker->xSelectCallback2==sqlite3WalkWinDefnDummyCallback
+ || ((pParse = pWalker->pParse)!=0 && IN_RENAME_OBJECT)
+#ifndef SQLITE_OMIT_CTE
+ || pWalker->xSelectCallback2==sqlite3SelectPopWith
+#endif
+ ){
+ /* The following may return WRC_Abort if there are unresolvable
+ ** symbols (e.g. a table that does not exist) in a window definition. */
+ int rc = walkWindowList(pWalker, p->pWinDefn, 0);
+ return rc;
+ }
+ }
+#endif
+ return WRC_Continue;
+}
+
+/*
+** Walk the parse trees associated with all subqueries in the
+** FROM clause of SELECT statement p. Do not invoke the select
+** callback on p, but do invoke it on each FROM clause subquery
+** and on any subqueries further down in the tree. Return
+** WRC_Abort or WRC_Continue;
+*/
+SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
+ SrcList *pSrc;
+ int i;
+ SrcItem *pItem;
+
+ pSrc = p->pSrc;
+ if( ALWAYS(pSrc) ){
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ if( pItem->pSelect && sqlite3WalkSelect(pWalker, pItem->pSelect) ){
+ return WRC_Abort;
+ }
+ if( pItem->fg.isTabFunc
+ && sqlite3WalkExprList(pWalker, pItem->u1.pFuncArg)
+ ){
+ return WRC_Abort;
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Call sqlite3WalkExpr() for every expression in Select statement p.
+** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
+** on the compound select chain, p->pPrior.
+**
+** If it is not NULL, the xSelectCallback() callback is invoked before
+** the walk of the expressions and FROM clause. The xSelectCallback2()
+** method is invoked following the walk of the expressions and FROM clause,
+** but only if both xSelectCallback and xSelectCallback2 are both non-NULL
+** and if the expressions and FROM clause both return WRC_Continue;
+**
+** Return WRC_Continue under normal conditions. Return WRC_Abort if
+** there is an abort request.
+**
+** If the Walker does not have an xSelectCallback() then this routine
+** is a no-op returning WRC_Continue.
+*/
+SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
+ int rc;
+ if( p==0 ) return WRC_Continue;
+ if( pWalker->xSelectCallback==0 ) return WRC_Continue;
+ do{
+ rc = pWalker->xSelectCallback(pWalker, p);
+ if( rc ) return rc & WRC_Abort;
+ if( sqlite3WalkSelectExpr(pWalker, p)
+ || sqlite3WalkSelectFrom(pWalker, p)
+ ){
+ return WRC_Abort;
+ }
+ if( pWalker->xSelectCallback2 ){
+ pWalker->xSelectCallback2(pWalker, p);
+ }
+ p = p->pPrior;
+ }while( p!=0 );
+ return WRC_Continue;
+}
+
+/* Increase the walkerDepth when entering a subquery, and
+** descrease when leaving the subquery.
+*/
+SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker *pWalker, Select *pSelect){
+ UNUSED_PARAMETER(pSelect);
+ pWalker->walkerDepth++;
+ return WRC_Continue;
+}
+SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker *pWalker, Select *pSelect){
+ UNUSED_PARAMETER(pSelect);
+ pWalker->walkerDepth--;
+}
+
+
+/*
+** No-op routine for the parse-tree walker.
+**
+** When this routine is the Walker.xExprCallback then expression trees
+** are walked without any actions being taken at each node. Presumably,
+** when this routine is used for Walker.xExprCallback then
+** Walker.xSelectCallback is set to do something useful for every
+** subquery in the parser tree.
+*/
+SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return WRC_Continue;
+}
+
+/*
+** No-op routine for the parse-tree walker for SELECT statements.
+** subquery in the parser tree.
+*/
+SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return WRC_Continue;
+}
+
+/************** End of walker.c **********************************************/
+/************** Begin file resolve.c *****************************************/
+/*
+** 2008 August 18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains routines used for walking the parser tree and
+** resolve all identifiers by associating them with a particular
+** table and column.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Magic table number to mean the EXCLUDED table in an UPSERT statement.
+*/
+#define EXCLUDED_TABLE_NUMBER 2
+
+/*
+** Walk the expression tree pExpr and increase the aggregate function
+** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node.
+** This needs to occur when copying a TK_AGG_FUNCTION node from an
+** outer query into an inner subquery.
+**
+** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..)
+** is a helper function - a callback for the tree walker.
+**
+** See also the sqlite3WindowExtraAggFuncDepth() routine in window.c
+*/
+static int incrAggDepth(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n;
+ return WRC_Continue;
+}
+static void incrAggFunctionDepth(Expr *pExpr, int N){
+ if( N>0 ){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = incrAggDepth;
+ w.u.n = N;
+ sqlite3WalkExpr(&w, pExpr);
+ }
+}
+
+/*
+** Turn the pExpr expression into an alias for the iCol-th column of the
+** result set in pEList.
+**
+** If the reference is followed by a COLLATE operator, then make sure
+** the COLLATE operator is preserved. For example:
+**
+** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
+**
+** Should be transformed into:
+**
+** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase;
+**
+** The nSubquery parameter specifies how many levels of subquery the
+** alias is removed from the original expression. The usual value is
+** zero but it might be more if the alias is contained within a subquery
+** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION
+** structures must be increased by the nSubquery amount.
+*/
+static void resolveAlias(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* A result set */
+ int iCol, /* A column in the result set. 0..pEList->nExpr-1 */
+ Expr *pExpr, /* Transform this into an alias to the result set */
+ int nSubquery /* Number of subqueries that the label is moving */
+){
+ Expr *pOrig; /* The iCol-th column of the result set */
+ Expr *pDup; /* Copy of pOrig */
+ sqlite3 *db; /* The database connection */
+
+ assert( iCol>=0 && iCol<pEList->nExpr );
+ pOrig = pEList->a[iCol].pExpr;
+ assert( pOrig!=0 );
+ db = pParse->db;
+ pDup = sqlite3ExprDup(db, pOrig, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ pDup = 0;
+ }else{
+ Expr temp;
+ incrAggFunctionDepth(pDup, nSubquery);
+ if( pExpr->op==TK_COLLATE ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
+ }
+ memcpy(&temp, pDup, sizeof(Expr));
+ memcpy(pDup, pExpr, sizeof(Expr));
+ memcpy(pExpr, &temp, sizeof(Expr));
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ if( ALWAYS(pExpr->y.pWin!=0) ){
+ pExpr->y.pWin->pOwner = pExpr;
+ }
+ }
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprDelete,
+ pDup);
+ }
+}
+
+/*
+** Subqueries stores the original database, table and column names for their
+** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN".
+** Check to see if the zSpan given to this routine matches the zDb, zTab,
+** and zCol. If any of zDb, zTab, and zCol are NULL then those fields will
+** match anything.
+*/
+SQLITE_PRIVATE int sqlite3MatchEName(
+ const struct ExprList_item *pItem,
+ const char *zCol,
+ const char *zTab,
+ const char *zDb
+){
+ int n;
+ const char *zSpan;
+ if( pItem->fg.eEName!=ENAME_TAB ) return 0;
+ zSpan = pItem->zEName;
+ for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
+ if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){
+ return 0;
+ }
+ zSpan += n+1;
+ for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
+ if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){
+ return 0;
+ }
+ zSpan += n+1;
+ if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Return TRUE if the double-quoted string mis-feature should be supported.
+*/
+static int areDoubleQuotedStringsEnabled(sqlite3 *db, NameContext *pTopNC){
+ if( db->init.busy ) return 1; /* Always support for legacy schemas */
+ if( pTopNC->ncFlags & NC_IsDDL ){
+ /* Currently parsing a DDL statement */
+ if( sqlite3WritableSchema(db) && (db->flags & SQLITE_DqsDML)!=0 ){
+ return 1;
+ }
+ return (db->flags & SQLITE_DqsDDL)!=0;
+ }else{
+ /* Currently parsing a DML statement */
+ return (db->flags & SQLITE_DqsDML)!=0;
+ }
+}
+
+/*
+** The argument is guaranteed to be a non-NULL Expr node of type TK_COLUMN.
+** return the appropriate colUsed mask.
+*/
+SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr *pExpr){
+ int n;
+ Table *pExTab;
+
+ n = pExpr->iColumn;
+ assert( ExprUseYTab(pExpr) );
+ pExTab = pExpr->y.pTab;
+ assert( pExTab!=0 );
+ if( (pExTab->tabFlags & TF_HasGenerated)!=0
+ && (pExTab->aCol[n].colFlags & COLFLAG_GENERATED)!=0
+ ){
+ testcase( pExTab->nCol==BMS-1 );
+ testcase( pExTab->nCol==BMS );
+ return pExTab->nCol>=BMS ? ALLBITS : MASKBIT(pExTab->nCol)-1;
+ }else{
+ testcase( n==BMS-1 );
+ testcase( n==BMS );
+ if( n>=BMS ) n = BMS-1;
+ return ((Bitmask)1)<<n;
+ }
+}
+
+/*
+** Create a new expression term for the column specified by pMatch and
+** iColumn. Append this new expression term to the FULL JOIN Match set
+** in *ppList. Create a new *ppList if this is the first term in the
+** set.
+*/
+static void extendFJMatch(
+ Parse *pParse, /* Parsing context */
+ ExprList **ppList, /* ExprList to extend */
+ SrcItem *pMatch, /* Source table containing the column */
+ i16 iColumn /* The column number */
+){
+ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
+ if( pNew ){
+ pNew->iTable = pMatch->iCursor;
+ pNew->iColumn = iColumn;
+ pNew->y.pTab = pMatch->pTab;
+ assert( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 );
+ ExprSetProperty(pNew, EP_CanBeNull);
+ *ppList = sqlite3ExprListAppend(pParse, *ppList, pNew);
+ }
+}
+
+/*
+** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
+** that name in the set of source tables in pSrcList and make the pExpr
+** expression node refer back to that source column. The following changes
+** are made to pExpr:
+**
+** pExpr->iDb Set the index in db->aDb[] of the database X
+** (even if X is implied).
+** pExpr->iTable Set to the cursor number for the table obtained
+** from pSrcList.
+** pExpr->y.pTab Points to the Table structure of X.Y (even if
+** X and/or Y are implied.)
+** pExpr->iColumn Set to the column number within the table.
+** pExpr->op Set to TK_COLUMN.
+** pExpr->pLeft Any expression this points to is deleted
+** pExpr->pRight Any expression this points to is deleted.
+**
+** The zDb variable is the name of the database (the "X"). This value may be
+** NULL meaning that name is of the form Y.Z or Z. Any available database
+** can be used. The zTable variable is the name of the table (the "Y"). This
+** value can be NULL if zDb is also NULL. If zTable is NULL it
+** means that the form of the name is Z and that columns from any table
+** can be used.
+**
+** If the name cannot be resolved unambiguously, leave an error message
+** in pParse and return WRC_Abort. Return WRC_Prune on success.
+*/
+static int lookupName(
+ Parse *pParse, /* The parsing context */
+ const char *zDb, /* Name of the database containing table, or NULL */
+ const char *zTab, /* Name of table containing column, or NULL */
+ const char *zCol, /* Name of the column. */
+ NameContext *pNC, /* The name context used to resolve the name */
+ Expr *pExpr /* Make this EXPR node point to the selected column */
+){
+ int i, j; /* Loop counters */
+ int cnt = 0; /* Number of matching column names */
+ int cntTab = 0; /* Number of matching table names */
+ int nSubquery = 0; /* How many levels of subquery */
+ sqlite3 *db = pParse->db; /* The database connection */
+ SrcItem *pItem; /* Use for looping over pSrcList items */
+ SrcItem *pMatch = 0; /* The matching pSrcList item */
+ NameContext *pTopNC = pNC; /* First namecontext in the list */
+ Schema *pSchema = 0; /* Schema of the expression */
+ int eNewExprOp = TK_COLUMN; /* New value for pExpr->op on success */
+ Table *pTab = 0; /* Table holding the row */
+ Column *pCol; /* A column of pTab */
+ ExprList *pFJMatch = 0; /* Matches for FULL JOIN .. USING */
+
+ assert( pNC ); /* the name context cannot be NULL. */
+ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */
+ assert( zDb==0 || zTab!=0 );
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+
+ /* Initialize the node to no-match */
+ pExpr->iTable = -1;
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+
+ /* Translate the schema name in zDb into a pointer to the corresponding
+ ** schema. If not found, pSchema will remain NULL and nothing will match
+ ** resulting in an appropriate error message toward the end of this routine
+ */
+ if( zDb ){
+ testcase( pNC->ncFlags & NC_PartIdx );
+ testcase( pNC->ncFlags & NC_IsCheck );
+ if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
+ /* Silently ignore database qualifiers inside CHECK constraints and
+ ** partial indices. Do not raise errors because that might break
+ ** legacy and because it does not hurt anything to just ignore the
+ ** database name. */
+ zDb = 0;
+ }else{
+ for(i=0; i<db->nDb; i++){
+ assert( db->aDb[i].zDbSName );
+ if( sqlite3StrICmp(db->aDb[i].zDbSName,zDb)==0 ){
+ pSchema = db->aDb[i].pSchema;
+ break;
+ }
+ }
+ if( i==db->nDb && sqlite3StrICmp("main", zDb)==0 ){
+ /* This branch is taken when the main database has been renamed
+ ** using SQLITE_DBCONFIG_MAINDBNAME. */
+ pSchema = db->aDb[0].pSchema;
+ zDb = db->aDb[0].zDbSName;
+ }
+ }
+ }
+
+ /* Start at the inner-most context and move outward until a match is found */
+ assert( pNC && cnt==0 );
+ do{
+ ExprList *pEList;
+ SrcList *pSrcList = pNC->pSrcList;
+
+ if( pSrcList ){
+ for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
+ u8 hCol;
+ pTab = pItem->pTab;
+ assert( pTab!=0 && pTab->zName!=0 );
+ assert( pTab->nCol>0 || pParse->nErr );
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ if( pItem->fg.isNestedFrom ){
+ /* In this case, pItem is a subquery that has been formed from a
+ ** parenthesized subset of the FROM clause terms. Example:
+ ** .... FROM t1 LEFT JOIN (t2 RIGHT JOIN t3 USING(x)) USING(y) ...
+ ** \_________________________/
+ ** This pItem -------------^
+ */
+ int hit = 0;
+ assert( pItem->pSelect!=0 );
+ pEList = pItem->pSelect->pEList;
+ assert( pEList!=0 );
+ assert( pEList->nExpr==pTab->nCol );
+ for(j=0; j<pEList->nExpr; j++){
+ if( !sqlite3MatchEName(&pEList->a[j], zCol, zTab, zDb) ){
+ continue;
+ }
+ if( cnt>0 ){
+ if( pItem->fg.isUsing==0
+ || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0
+ ){
+ /* Two or more tables have the same column name which is
+ ** not joined by USING. This is an error. Signal as much
+ ** by clearing pFJMatch and letting cnt go above 1. */
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else
+ if( (pItem->fg.jointype & JT_RIGHT)==0 ){
+ /* An INNER or LEFT JOIN. Use the left-most table */
+ continue;
+ }else
+ if( (pItem->fg.jointype & JT_LEFT)==0 ){
+ /* A RIGHT JOIN. Use the right-most table */
+ cnt = 0;
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else{
+ /* For a FULL JOIN, we must construct a coalesce() func */
+ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn);
+ }
+ }
+ cnt++;
+ cntTab = 2;
+ pMatch = pItem;
+ pExpr->iColumn = j;
+ pEList->a[j].fg.bUsed = 1;
+ hit = 1;
+ if( pEList->a[j].fg.bUsingTerm ) break;
+ }
+ if( hit || zTab==0 ) continue;
+ }
+ assert( zDb==0 || zTab!=0 );
+ if( zTab ){
+ const char *zTabName;
+ if( zDb ){
+ if( pTab->pSchema!=pSchema ) continue;
+ if( pSchema==0 && strcmp(zDb,"*")!=0 ) continue;
+ }
+ zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
+ assert( zTabName!=0 );
+ if( sqlite3StrICmp(zTabName, zTab)!=0 ){
+ continue;
+ }
+ assert( ExprUseYTab(pExpr) );
+ if( IN_RENAME_OBJECT && pItem->zAlias ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->y.pTab);
+ }
+ }
+ hCol = sqlite3StrIHash(zCol);
+ for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
+ if( pCol->hName==hCol
+ && sqlite3StrICmp(pCol->zCnName, zCol)==0
+ ){
+ if( cnt>0 ){
+ if( pItem->fg.isUsing==0
+ || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0
+ ){
+ /* Two or more tables have the same column name which is
+ ** not joined by USING. This is an error. Signal as much
+ ** by clearing pFJMatch and letting cnt go above 1. */
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else
+ if( (pItem->fg.jointype & JT_RIGHT)==0 ){
+ /* An INNER or LEFT JOIN. Use the left-most table */
+ continue;
+ }else
+ if( (pItem->fg.jointype & JT_LEFT)==0 ){
+ /* A RIGHT JOIN. Use the right-most table */
+ cnt = 0;
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else{
+ /* For a FULL JOIN, we must construct a coalesce() func */
+ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn);
+ }
+ }
+ cnt++;
+ pMatch = pItem;
+ /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
+ pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
+ if( pItem->fg.isNestedFrom ){
+ sqlite3SrcItemColumnUsed(pItem, j);
+ }
+ break;
+ }
+ }
+ if( 0==cnt && VisibleRowid(pTab) ){
+ cntTab++;
+ pMatch = pItem;
+ }
+ }
+ if( pMatch ){
+ pExpr->iTable = pMatch->iCursor;
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pMatch->pTab;
+ if( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 ){
+ ExprSetProperty(pExpr, EP_CanBeNull);
+ }
+ pSchema = pExpr->y.pTab->pSchema;
+ }
+ } /* if( pSrcList ) */
+
+#if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT)
+ /* If we have not already resolved the name, then maybe
+ ** it is a new.* or old.* trigger argument reference. Or
+ ** maybe it is an excluded.* from an upsert. Or maybe it is
+ ** a reference in the RETURNING clause to a table being modified.
+ */
+ if( cnt==0 && zDb==0 ){
+ pTab = 0;
+#ifndef SQLITE_OMIT_TRIGGER
+ if( pParse->pTriggerTab!=0 ){
+ int op = pParse->eTriggerOp;
+ assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
+ if( pParse->bReturning ){
+ if( (pNC->ncFlags & NC_UBaseReg)!=0
+ && (zTab==0 || sqlite3StrICmp(zTab,pParse->pTriggerTab->zName)==0)
+ ){
+ pExpr->iTable = op!=TK_DELETE;
+ pTab = pParse->pTriggerTab;
+ }
+ }else if( op!=TK_DELETE && zTab && sqlite3StrICmp("new",zTab) == 0 ){
+ pExpr->iTable = 1;
+ pTab = pParse->pTriggerTab;
+ }else if( op!=TK_INSERT && zTab && sqlite3StrICmp("old",zTab)==0 ){
+ pExpr->iTable = 0;
+ pTab = pParse->pTriggerTab;
+ }
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+#ifndef SQLITE_OMIT_UPSERT
+ if( (pNC->ncFlags & NC_UUpsert)!=0 && zTab!=0 ){
+ Upsert *pUpsert = pNC->uNC.pUpsert;
+ if( pUpsert && sqlite3StrICmp("excluded",zTab)==0 ){
+ pTab = pUpsert->pUpsertSrc->a[0].pTab;
+ pExpr->iTable = EXCLUDED_TABLE_NUMBER;
+ }
+ }
+#endif /* SQLITE_OMIT_UPSERT */
+
+ if( pTab ){
+ int iCol;
+ u8 hCol = sqlite3StrIHash(zCol);
+ pSchema = pTab->pSchema;
+ cntTab++;
+ for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
+ if( pCol->hName==hCol
+ && sqlite3StrICmp(pCol->zCnName, zCol)==0
+ ){
+ if( iCol==pTab->iPKey ){
+ iCol = -1;
+ }
+ break;
+ }
+ }
+ if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){
+ /* IMP: R-51414-32910 */
+ iCol = -1;
+ }
+ if( iCol<pTab->nCol ){
+ cnt++;
+ pMatch = 0;
+#ifndef SQLITE_OMIT_UPSERT
+ if( pExpr->iTable==EXCLUDED_TABLE_NUMBER ){
+ testcase( iCol==(-1) );
+ assert( ExprUseYTab(pExpr) );
+ if( IN_RENAME_OBJECT ){
+ pExpr->iColumn = iCol;
+ pExpr->y.pTab = pTab;
+ eNewExprOp = TK_COLUMN;
+ }else{
+ pExpr->iTable = pNC->uNC.pUpsert->regData +
+ sqlite3TableColumnToStorage(pTab, iCol);
+ eNewExprOp = TK_REGISTER;
+ }
+ }else
+#endif /* SQLITE_OMIT_UPSERT */
+ {
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pTab;
+ if( pParse->bReturning ){
+ eNewExprOp = TK_REGISTER;
+ pExpr->op2 = TK_COLUMN;
+ pExpr->iTable = pNC->uNC.iBaseReg + (pTab->nCol+1)*pExpr->iTable +
+ sqlite3TableColumnToStorage(pTab, iCol) + 1;
+ }else{
+ pExpr->iColumn = (i16)iCol;
+ eNewExprOp = TK_TRIGGER;
+#ifndef SQLITE_OMIT_TRIGGER
+ if( iCol<0 ){
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ }else if( pExpr->iTable==0 ){
+ testcase( iCol==31 );
+ testcase( iCol==32 );
+ pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
+ }else{
+ testcase( iCol==31 );
+ testcase( iCol==32 );
+ pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ }
+ }
+ }
+ }
+ }
+#endif /* !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) */
+
+ /*
+ ** Perhaps the name is a reference to the ROWID
+ */
+ if( cnt==0
+ && cntTab==1
+ && pMatch
+ && (pNC->ncFlags & (NC_IdxExpr|NC_GenCol))==0
+ && sqlite3IsRowid(zCol)
+ && ALWAYS(VisibleRowid(pMatch->pTab))
+ ){
+ cnt = 1;
+ pExpr->iColumn = -1;
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ }
+
+ /*
+ ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
+ ** might refer to an result-set alias. This happens, for example, when
+ ** we are resolving names in the WHERE clause of the following command:
+ **
+ ** SELECT a+b AS x FROM table WHERE x<10;
+ **
+ ** In cases like this, replace pExpr with a copy of the expression that
+ ** forms the result set entry ("a+b" in the example) and return immediately.
+ ** Note that the expression in the result set should have already been
+ ** resolved by the time the WHERE clause is resolved.
+ **
+ ** The ability to use an output result-set column in the WHERE, GROUP BY,
+ ** or HAVING clauses, or as part of a larger expression in the ORDER BY
+ ** clause is not standard SQL. This is a (goofy) SQLite extension, that
+ ** is supported for backwards compatibility only. Hence, we issue a warning
+ ** on sqlite3_log() whenever the capability is used.
+ */
+ if( cnt==0
+ && (pNC->ncFlags & NC_UEList)!=0
+ && zTab==0
+ ){
+ pEList = pNC->uNC.pEList;
+ assert( pEList!=0 );
+ for(j=0; j<pEList->nExpr; j++){
+ char *zAs = pEList->a[j].zEName;
+ if( pEList->a[j].fg.eEName==ENAME_NAME
+ && sqlite3_stricmp(zAs, zCol)==0
+ ){
+ Expr *pOrig;
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ assert( ExprUseXList(pExpr)==0 || pExpr->x.pList==0 );
+ assert( ExprUseXSelect(pExpr)==0 || pExpr->x.pSelect==0 );
+ pOrig = pEList->a[j].pExpr;
+ if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
+ return WRC_Abort;
+ }
+ if( ExprHasProperty(pOrig, EP_Win)
+ && ((pNC->ncFlags&NC_AllowWin)==0 || pNC!=pTopNC )
+ ){
+ sqlite3ErrorMsg(pParse, "misuse of aliased window function %s",zAs);
+ return WRC_Abort;
+ }
+ if( sqlite3ExprVectorSize(pOrig)!=1 ){
+ sqlite3ErrorMsg(pParse, "row value misused");
+ return WRC_Abort;
+ }
+ resolveAlias(pParse, pEList, j, pExpr, nSubquery);
+ cnt = 1;
+ pMatch = 0;
+ assert( zTab==0 && zDb==0 );
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pExpr);
+ }
+ goto lookupname_end;
+ }
+ }
+ }
+
+ /* Advance to the next name context. The loop will exit when either
+ ** we have a match (cnt>0) or when we run out of name contexts.
+ */
+ if( cnt ) break;
+ pNC = pNC->pNext;
+ nSubquery++;
+ }while( pNC );
+
+
+ /*
+ ** If X and Y are NULL (in other words if only the column name Z is
+ ** supplied) and the value of Z is enclosed in double-quotes, then
+ ** Z is a string literal if it doesn't match any column names. In that
+ ** case, we need to return right away and not make any changes to
+ ** pExpr.
+ **
+ ** Because no reference was made to outer contexts, the pNC->nRef
+ ** fields are not changed in any context.
+ */
+ if( cnt==0 && zTab==0 ){
+ assert( pExpr->op==TK_ID );
+ if( ExprHasProperty(pExpr,EP_DblQuoted)
+ && areDoubleQuotedStringsEnabled(db, pTopNC)
+ ){
+ /* If a double-quoted identifier does not match any known column name,
+ ** then treat it as a string.
+ **
+ ** This hack was added in the early days of SQLite in a misguided attempt
+ ** to be compatible with MySQL 3.x, which used double-quotes for strings.
+ ** I now sorely regret putting in this hack. The effect of this hack is
+ ** that misspelled identifier names are silently converted into strings
+ ** rather than causing an error, to the frustration of countless
+ ** programmers. To all those frustrated programmers, my apologies.
+ **
+ ** Someday, I hope to get rid of this hack. Unfortunately there is
+ ** a huge amount of legacy SQL that uses it. So for now, we just
+ ** issue a warning.
+ */
+ sqlite3_log(SQLITE_WARNING,
+ "double-quoted string literal: \"%w\"", zCol);
+#ifdef SQLITE_ENABLE_NORMALIZE
+ sqlite3VdbeAddDblquoteStr(db, pParse->pVdbe, zCol);
+#endif
+ pExpr->op = TK_STRING;
+ memset(&pExpr->y, 0, sizeof(pExpr->y));
+ return WRC_Prune;
+ }
+ if( sqlite3ExprIdToTrueFalse(pExpr) ){
+ return WRC_Prune;
+ }
+ }
+
+ /*
+ ** cnt==0 means there was not match.
+ ** cnt>1 means there were two or more matches.
+ **
+ ** cnt==0 is always an error. cnt>1 is often an error, but might
+ ** be multiple matches for a NATURAL LEFT JOIN or a LEFT JOIN USING.
+ */
+ assert( pFJMatch==0 || cnt>0 );
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) );
+ if( cnt!=1 ){
+ const char *zErr;
+ if( pFJMatch ){
+ if( pFJMatch->nExpr==cnt-1 ){
+ if( ExprHasProperty(pExpr,EP_Leaf) ){
+ ExprClearProperty(pExpr,EP_Leaf);
+ }else{
+ sqlite3ExprDelete(db, pExpr->pLeft);
+ pExpr->pLeft = 0;
+ sqlite3ExprDelete(db, pExpr->pRight);
+ pExpr->pRight = 0;
+ }
+ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn);
+ pExpr->op = TK_FUNCTION;
+ pExpr->u.zToken = "coalesce";
+ pExpr->x.pList = pFJMatch;
+ cnt = 1;
+ goto lookupname_end;
+ }else{
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }
+ }
+ zErr = cnt==0 ? "no such column" : "ambiguous column name";
+ if( zDb ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
+ }else if( zTab ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
+ }else{
+ sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
+ }
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ pParse->checkSchema = 1;
+ pTopNC->nNcErr++;
+ }
+ assert( pFJMatch==0 );
+
+ /* Remove all substructure from pExpr */
+ if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){
+ sqlite3ExprDelete(db, pExpr->pLeft);
+ pExpr->pLeft = 0;
+ sqlite3ExprDelete(db, pExpr->pRight);
+ pExpr->pRight = 0;
+ ExprSetProperty(pExpr, EP_Leaf);
+ }
+
+ /* If a column from a table in pSrcList is referenced, then record
+ ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
+ ** bit 0 to be set. Column 1 sets bit 1. And so forth. Bit 63 is
+ ** set if the 63rd or any subsequent column is used.
+ **
+ ** The colUsed mask is an optimization used to help determine if an
+ ** index is a covering index. The correct answer is still obtained
+ ** if the mask contains extra set bits. However, it is important to
+ ** avoid setting bits beyond the maximum column number of the table.
+ ** (See ticket [b92e5e8ec2cdbaa1]).
+ **
+ ** If a generated column is referenced, set bits for every column
+ ** of the table.
+ */
+ if( pExpr->iColumn>=0 && pMatch!=0 ){
+ pMatch->colUsed |= sqlite3ExprColUsed(pExpr);
+ }
+
+ pExpr->op = eNewExprOp;
+lookupname_end:
+ if( cnt==1 ){
+ assert( pNC!=0 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( pParse->db->xAuth
+ && (pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER)
+ ){
+ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
+ }
+#endif
+ /* Increment the nRef value on all name contexts from TopNC up to
+ ** the point where the name matched. */
+ for(;;){
+ assert( pTopNC!=0 );
+ pTopNC->nRef++;
+ if( pTopNC==pNC ) break;
+ pTopNC = pTopNC->pNext;
+ }
+ return WRC_Prune;
+ } else {
+ return WRC_Abort;
+ }
+}
+
+/*
+** Allocate and return a pointer to an expression to load the column iCol
+** from datasource iSrc in SrcList pSrc.
+*/
+SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){
+ Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0);
+ if( p ){
+ SrcItem *pItem = &pSrc->a[iSrc];
+ Table *pTab;
+ assert( ExprUseYTab(p) );
+ pTab = p->y.pTab = pItem->pTab;
+ p->iTable = pItem->iCursor;
+ if( p->y.pTab->iPKey==iCol ){
+ p->iColumn = -1;
+ }else{
+ p->iColumn = (ynVar)iCol;
+ if( (pTab->tabFlags & TF_HasGenerated)!=0
+ && (pTab->aCol[iCol].colFlags & COLFLAG_GENERATED)!=0
+ ){
+ testcase( pTab->nCol==63 );
+ testcase( pTab->nCol==64 );
+ pItem->colUsed = pTab->nCol>=64 ? ALLBITS : MASKBIT(pTab->nCol)-1;
+ }else{
+ testcase( iCol==BMS );
+ testcase( iCol==BMS-1 );
+ pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
+ }
+ }
+ }
+ return p;
+}
+
+/*
+** Report an error that an expression is not valid for some set of
+** pNC->ncFlags values determined by validMask.
+**
+** static void notValid(
+** Parse *pParse, // Leave error message here
+** NameContext *pNC, // The name context
+** const char *zMsg, // Type of error
+** int validMask, // Set of contexts for which prohibited
+** Expr *pExpr // Invalidate this expression on error
+** ){...}
+**
+** As an optimization, since the conditional is almost always false
+** (because errors are rare), the conditional is moved outside of the
+** function call using a macro.
+*/
+static void notValidImpl(
+ Parse *pParse, /* Leave error message here */
+ NameContext *pNC, /* The name context */
+ const char *zMsg, /* Type of error */
+ Expr *pExpr, /* Invalidate this expression on error */
+ Expr *pError /* Associate error with this expression */
+){
+ const char *zIn = "partial index WHERE clauses";
+ if( pNC->ncFlags & NC_IdxExpr ) zIn = "index expressions";
+#ifndef SQLITE_OMIT_CHECK
+ else if( pNC->ncFlags & NC_IsCheck ) zIn = "CHECK constraints";
+#endif
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ else if( pNC->ncFlags & NC_GenCol ) zIn = "generated columns";
+#endif
+ sqlite3ErrorMsg(pParse, "%s prohibited in %s", zMsg, zIn);
+ if( pExpr ) pExpr->op = TK_NULL;
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pError);
+}
+#define sqlite3ResolveNotValid(P,N,M,X,E,R) \
+ assert( ((X)&~(NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol))==0 ); \
+ if( ((N)->ncFlags & (X))!=0 ) notValidImpl(P,N,M,E,R);
+
+/*
+** Expression p should encode a floating point value between 1.0 and 0.0.
+** Return 1024 times this value. Or return -1 if p is not a floating point
+** value between 1.0 and 0.0.
+*/
+static int exprProbability(Expr *p){
+ double r = -1.0;
+ if( p->op!=TK_FLOAT ) return -1;
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8);
+ assert( r>=0.0 );
+ if( r>1.0 ) return -1;
+ return (int)(r*134217728.0);
+}
+
+/*
+** This routine is callback for sqlite3WalkExpr().
+**
+** Resolve symbolic names into TK_COLUMN operators for the current
+** node in the expression tree. Return 0 to continue the search down
+** the tree or 2 to abort the tree walk.
+**
+** This routine also does error checking and name resolution for
+** function names. The operator for aggregate functions is changed
+** to TK_AGG_FUNCTION.
+*/
+static int resolveExprStep(Walker *pWalker, Expr *pExpr){
+ NameContext *pNC;
+ Parse *pParse;
+
+ pNC = pWalker->u.pNC;
+ assert( pNC!=0 );
+ pParse = pNC->pParse;
+ assert( pParse==pWalker->pParse );
+
+#ifndef NDEBUG
+ if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
+ SrcList *pSrcList = pNC->pSrcList;
+ int i;
+ for(i=0; i<pNC->pSrcList->nSrc; i++){
+ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
+ }
+ }
+#endif
+ switch( pExpr->op ){
+
+ /* The special operator TK_ROW means use the rowid for the first
+ ** column in the FROM clause. This is used by the LIMIT and ORDER BY
+ ** clause processing on UPDATE and DELETE statements, and by
+ ** UPDATE ... FROM statement processing.
+ */
+ case TK_ROW: {
+ SrcList *pSrcList = pNC->pSrcList;
+ SrcItem *pItem;
+ assert( pSrcList && pSrcList->nSrc>=1 );
+ pItem = pSrcList->a;
+ pExpr->op = TK_COLUMN;
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pItem->pTab;
+ pExpr->iTable = pItem->iCursor;
+ pExpr->iColumn--;
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ break;
+ }
+
+ /* An optimization: Attempt to convert
+ **
+ ** "expr IS NOT NULL" --> "TRUE"
+ ** "expr IS NULL" --> "FALSE"
+ **
+ ** if we can prove that "expr" is never NULL. Call this the
+ ** "NOT NULL strength reduction optimization".
+ **
+ ** If this optimization occurs, also restore the NameContext ref-counts
+ ** to the state they where in before the "column" LHS expression was
+ ** resolved. This prevents "column" from being counted as having been
+ ** referenced, which might prevent a SELECT from being erroneously
+ ** marked as correlated.
+ */
+ case TK_NOTNULL:
+ case TK_ISNULL: {
+ int anRef[8];
+ NameContext *p;
+ int i;
+ for(i=0, p=pNC; p && i<ArraySize(anRef); p=p->pNext, i++){
+ anRef[i] = p->nRef;
+ }
+ sqlite3WalkExpr(pWalker, pExpr->pLeft);
+ if( 0==sqlite3ExprCanBeNull(pExpr->pLeft) && !IN_RENAME_OBJECT ){
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( pExpr->op==TK_NOTNULL ){
+ pExpr->u.zToken = "true";
+ ExprSetProperty(pExpr, EP_IsTrue);
+ }else{
+ pExpr->u.zToken = "false";
+ ExprSetProperty(pExpr, EP_IsFalse);
+ }
+ pExpr->op = TK_TRUEFALSE;
+ for(i=0, p=pNC; p && i<ArraySize(anRef); p=p->pNext, i++){
+ p->nRef = anRef[i];
+ }
+ sqlite3ExprDelete(pParse->db, pExpr->pLeft);
+ pExpr->pLeft = 0;
+ }
+ return WRC_Prune;
+ }
+
+ /* A column name: ID
+ ** Or table name and column name: ID.ID
+ ** Or a database, table and column: ID.ID.ID
+ **
+ ** The TK_ID and TK_OUT cases are combined so that there will only
+ ** be one call to lookupName(). Then the compiler will in-line
+ ** lookupName() for a size reduction and performance increase.
+ */
+ case TK_ID:
+ case TK_DOT: {
+ const char *zColumn;
+ const char *zTable;
+ const char *zDb;
+ Expr *pRight;
+
+ if( pExpr->op==TK_ID ){
+ zDb = 0;
+ zTable = 0;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ zColumn = pExpr->u.zToken;
+ }else{
+ Expr *pLeft = pExpr->pLeft;
+ testcase( pNC->ncFlags & NC_IdxExpr );
+ testcase( pNC->ncFlags & NC_GenCol );
+ sqlite3ResolveNotValid(pParse, pNC, "the \".\" operator",
+ NC_IdxExpr|NC_GenCol, 0, pExpr);
+ pRight = pExpr->pRight;
+ if( pRight->op==TK_ID ){
+ zDb = 0;
+ }else{
+ assert( pRight->op==TK_DOT );
+ assert( !ExprHasProperty(pRight, EP_IntValue) );
+ zDb = pLeft->u.zToken;
+ pLeft = pRight->pLeft;
+ pRight = pRight->pRight;
+ }
+ assert( ExprUseUToken(pLeft) && ExprUseUToken(pRight) );
+ zTable = pLeft->u.zToken;
+ zColumn = pRight->u.zToken;
+ assert( ExprUseYTab(pExpr) );
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight);
+ sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft);
+ }
+ }
+ return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
+ }
+
+ /* Resolve function names
+ */
+ case TK_FUNCTION: {
+ ExprList *pList = pExpr->x.pList; /* The argument list */
+ int n = pList ? pList->nExpr : 0; /* Number of arguments */
+ int no_such_func = 0; /* True if no such function exists */
+ int wrong_num_args = 0; /* True if wrong number of arguments */
+ int is_agg = 0; /* True if is an aggregate function */
+ const char *zId; /* The function name. */
+ FuncDef *pDef; /* Information about the function */
+ u8 enc = ENC(pParse->db); /* The database encoding */
+ int savedAllowFlags = (pNC->ncFlags & (NC_AllowAgg | NC_AllowWin));
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin = (IsWindowFunc(pExpr) ? pExpr->y.pWin : 0);
+#endif
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) );
+ zId = pExpr->u.zToken;
+ pDef = sqlite3FindFunction(pParse->db, zId, n, enc, 0);
+ if( pDef==0 ){
+ pDef = sqlite3FindFunction(pParse->db, zId, -2, enc, 0);
+ if( pDef==0 ){
+ no_such_func = 1;
+ }else{
+ wrong_num_args = 1;
+ }
+ }else{
+ is_agg = pDef->xFinalize!=0;
+ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
+ ExprSetProperty(pExpr, EP_Unlikely);
+ if( n==2 ){
+ pExpr->iTable = exprProbability(pList->a[1].pExpr);
+ if( pExpr->iTable<0 ){
+ sqlite3ErrorMsg(pParse,
+ "second argument to %#T() must be a "
+ "constant between 0.0 and 1.0", pExpr);
+ pNC->nNcErr++;
+ }
+ }else{
+ /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is
+ ** equivalent to likelihood(X, 0.0625).
+ ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is
+ ** short-hand for likelihood(X,0.0625).
+ ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand
+ ** for likelihood(X,0.9375).
+ ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent
+ ** to likelihood(X,0.9375). */
+ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */
+ pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0,pDef->zName,0);
+ if( auth!=SQLITE_OK ){
+ if( auth==SQLITE_DENY ){
+ sqlite3ErrorMsg(pParse, "not authorized to use function: %#T",
+ pExpr);
+ pNC->nNcErr++;
+ }
+ pExpr->op = TK_NULL;
+ return WRC_Prune;
+ }
+ }
+#endif
+ if( pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG) ){
+ /* For the purposes of the EP_ConstFunc flag, date and time
+ ** functions and other functions that change slowly are considered
+ ** constant because they are constant for the duration of one query.
+ ** This allows them to be factored out of inner loops. */
+ ExprSetProperty(pExpr,EP_ConstFunc);
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){
+ /* Clearly non-deterministic functions like random(), but also
+ ** date/time functions that use 'now', and other functions like
+ ** sqlite_version() that might change over time cannot be used
+ ** in an index or generated column. Curiously, they can be used
+ ** in a CHECK constraint. SQLServer, MySQL, and PostgreSQL all
+ ** all this. */
+ sqlite3ResolveNotValid(pParse, pNC, "non-deterministic functions",
+ NC_IdxExpr|NC_PartIdx|NC_GenCol, 0, pExpr);
+ }else{
+ assert( (NC_SelfRef & 0xff)==NC_SelfRef ); /* Must fit in 8 bits */
+ pExpr->op2 = pNC->ncFlags & NC_SelfRef;
+ if( pNC->ncFlags & NC_FromDDL ) ExprSetProperty(pExpr, EP_FromDDL);
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_INTERNAL)!=0
+ && pParse->nested==0
+ && (pParse->db->mDbFlags & DBFLAG_InternalFunc)==0
+ ){
+ /* Internal-use-only functions are disallowed unless the
+ ** SQL is being compiled using sqlite3NestedParse() or
+ ** the SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test-control has be
+ ** used to activate internal functions for testing purposes */
+ no_such_func = 1;
+ pDef = 0;
+ }else
+ if( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0
+ && !IN_RENAME_OBJECT
+ ){
+ sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
+ }
+ }
+
+ if( 0==IN_RENAME_OBJECT ){
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX)
+ || (pDef->xValue==0 && pDef->xInverse==0)
+ || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize)
+ );
+ if( pDef && pDef->xValue==0 && pWin ){
+ sqlite3ErrorMsg(pParse,
+ "%#T() may not be used as a window function", pExpr
+ );
+ pNC->nNcErr++;
+ }else if(
+ (is_agg && (pNC->ncFlags & NC_AllowAgg)==0)
+ || (is_agg && (pDef->funcFlags&SQLITE_FUNC_WINDOW) && !pWin)
+ || (is_agg && pWin && (pNC->ncFlags & NC_AllowWin)==0)
+ ){
+ const char *zType;
+ if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pWin ){
+ zType = "window";
+ }else{
+ zType = "aggregate";
+ }
+ sqlite3ErrorMsg(pParse, "misuse of %s function %#T()",zType,pExpr);
+ pNC->nNcErr++;
+ is_agg = 0;
+ }
+#else
+ if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) ){
+ sqlite3ErrorMsg(pParse,"misuse of aggregate function %#T()",pExpr);
+ pNC->nNcErr++;
+ is_agg = 0;
+ }
+#endif
+ else if( no_such_func && pParse->db->init.busy==0
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ && pParse->explain==0
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "no such function: %#T", pExpr);
+ pNC->nNcErr++;
+ }else if( wrong_num_args ){
+ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %#T()",
+ pExpr);
+ pNC->nNcErr++;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else if( is_agg==0 && ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3ErrorMsg(pParse,
+ "FILTER may not be used with non-aggregate %#T()",
+ pExpr
+ );
+ pNC->nNcErr++;
+ }
+#endif
+ if( is_agg ){
+ /* Window functions may not be arguments of aggregate functions.
+ ** Or arguments of other window functions. But aggregate functions
+ ** may be arguments for window functions. */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNC->ncFlags &= ~(NC_AllowWin | (!pWin ? NC_AllowAgg : 0));
+#else
+ pNC->ncFlags &= ~NC_AllowAgg;
+#endif
+ }
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ is_agg = 1;
+ }
+#endif
+ sqlite3WalkExprList(pWalker, pList);
+ if( is_agg ){
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ Select *pSel = pNC->pWinSelect;
+ assert( pWin==0 || (ExprUseYWin(pExpr) && pWin==pExpr->y.pWin) );
+ if( IN_RENAME_OBJECT==0 ){
+ sqlite3WindowUpdate(pParse, pSel ? pSel->pWinDefn : 0, pWin, pDef);
+ if( pParse->db->mallocFailed ) break;
+ }
+ sqlite3WalkExprList(pWalker, pWin->pPartition);
+ sqlite3WalkExprList(pWalker, pWin->pOrderBy);
+ sqlite3WalkExpr(pWalker, pWin->pFilter);
+ sqlite3WindowLink(pSel, pWin);
+ pNC->ncFlags |= NC_HasWin;
+ }else
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ {
+ NameContext *pNC2; /* For looping up thru outer contexts */
+ pExpr->op = TK_AGG_FUNCTION;
+ pExpr->op2 = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3WalkExpr(pWalker, pExpr->y.pWin->pFilter);
+ }
+#endif
+ pNC2 = pNC;
+ while( pNC2
+ && sqlite3ReferencesSrcList(pParse, pExpr, pNC2->pSrcList)==0
+ ){
+ pExpr->op2++;
+ pNC2 = pNC2->pNext;
+ }
+ assert( pDef!=0 || IN_RENAME_OBJECT );
+ if( pNC2 && pDef ){
+ assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg );
+ assert( SQLITE_FUNC_ANYORDER==NC_OrderAgg );
+ testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 );
+ testcase( (pDef->funcFlags & SQLITE_FUNC_ANYORDER)!=0 );
+ pNC2->ncFlags |= NC_HasAgg
+ | ((pDef->funcFlags^SQLITE_FUNC_ANYORDER)
+ & (SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER));
+ }
+ }
+ pNC->ncFlags |= savedAllowFlags;
+ }
+ /* FIX ME: Compute pExpr->affinity based on the expected return
+ ** type of the function
+ */
+ return WRC_Prune;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT:
+ case TK_EXISTS: testcase( pExpr->op==TK_EXISTS );
+#endif
+ case TK_IN: {
+ testcase( pExpr->op==TK_IN );
+ if( ExprUseXSelect(pExpr) ){
+ int nRef = pNC->nRef;
+ testcase( pNC->ncFlags & NC_IsCheck );
+ testcase( pNC->ncFlags & NC_PartIdx );
+ testcase( pNC->ncFlags & NC_IdxExpr );
+ testcase( pNC->ncFlags & NC_GenCol );
+ if( pNC->ncFlags & NC_SelfRef ){
+ notValidImpl(pParse, pNC, "subqueries", pExpr, pExpr);
+ }else{
+ sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
+ }
+ assert( pNC->nRef>=nRef );
+ if( nRef!=pNC->nRef ){
+ ExprSetProperty(pExpr, EP_VarSelect);
+ pNC->ncFlags |= NC_VarSelect;
+ }
+ }
+ break;
+ }
+ case TK_VARIABLE: {
+ testcase( pNC->ncFlags & NC_IsCheck );
+ testcase( pNC->ncFlags & NC_PartIdx );
+ testcase( pNC->ncFlags & NC_IdxExpr );
+ testcase( pNC->ncFlags & NC_GenCol );
+ sqlite3ResolveNotValid(pParse, pNC, "parameters",
+ NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol, pExpr, pExpr);
+ break;
+ }
+ case TK_IS:
+ case TK_ISNOT: {
+ Expr *pRight = sqlite3ExprSkipCollateAndLikely(pExpr->pRight);
+ assert( !ExprHasProperty(pExpr, EP_Reduced) );
+ /* Handle special cases of "x IS TRUE", "x IS FALSE", "x IS NOT TRUE",
+ ** and "x IS NOT FALSE". */
+ if( ALWAYS(pRight) && (pRight->op==TK_ID || pRight->op==TK_TRUEFALSE) ){
+ int rc = resolveExprStep(pWalker, pRight);
+ if( rc==WRC_Abort ) return WRC_Abort;
+ if( pRight->op==TK_TRUEFALSE ){
+ pExpr->op2 = pExpr->op;
+ pExpr->op = TK_TRUTH;
+ return WRC_Continue;
+ }
+ }
+ /* no break */ deliberate_fall_through
+ }
+ case TK_BETWEEN:
+ case TK_EQ:
+ case TK_NE:
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE: {
+ int nLeft, nRight;
+ if( pParse->db->mallocFailed ) break;
+ assert( pExpr->pLeft!=0 );
+ nLeft = sqlite3ExprVectorSize(pExpr->pLeft);
+ if( pExpr->op==TK_BETWEEN ){
+ assert( ExprUseXList(pExpr) );
+ nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[0].pExpr);
+ if( nRight==nLeft ){
+ nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[1].pExpr);
+ }
+ }else{
+ assert( pExpr->pRight!=0 );
+ nRight = sqlite3ExprVectorSize(pExpr->pRight);
+ }
+ if( nLeft!=nRight ){
+ testcase( pExpr->op==TK_EQ );
+ testcase( pExpr->op==TK_NE );
+ testcase( pExpr->op==TK_LT );
+ testcase( pExpr->op==TK_LE );
+ testcase( pExpr->op==TK_GT );
+ testcase( pExpr->op==TK_GE );
+ testcase( pExpr->op==TK_IS );
+ testcase( pExpr->op==TK_ISNOT );
+ testcase( pExpr->op==TK_BETWEEN );
+ sqlite3ErrorMsg(pParse, "row value misused");
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ }
+ break;
+ }
+ }
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ return pParse->nErr ? WRC_Abort : WRC_Continue;
+}
+
+/*
+** pEList is a list of expressions which are really the result set of the
+** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause.
+** This routine checks to see if pE is a simple identifier which corresponds
+** to the AS-name of one of the terms of the expression list. If it is,
+** this routine return an integer between 1 and N where N is the number of
+** elements in pEList, corresponding to the matching entry. If there is
+** no match, or if pE is not a simple identifier, then this routine
+** return 0.
+**
+** pEList has been resolved. pE has not.
+*/
+static int resolveAsName(
+ Parse *pParse, /* Parsing context for error messages */
+ ExprList *pEList, /* List of expressions to scan */
+ Expr *pE /* Expression we are trying to match */
+){
+ int i; /* Loop counter */
+
+ UNUSED_PARAMETER(pParse);
+
+ if( pE->op==TK_ID ){
+ const char *zCol;
+ assert( !ExprHasProperty(pE, EP_IntValue) );
+ zCol = pE->u.zToken;
+ for(i=0; i<pEList->nExpr; i++){
+ if( pEList->a[i].fg.eEName==ENAME_NAME
+ && sqlite3_stricmp(pEList->a[i].zEName, zCol)==0
+ ){
+ return i+1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** pE is a pointer to an expression which is a single term in the
+** ORDER BY of a compound SELECT. The expression has not been
+** name resolved.
+**
+** At the point this routine is called, we already know that the
+** ORDER BY term is not an integer index into the result set. That
+** case is handled by the calling routine.
+**
+** Attempt to match pE against result set columns in the left-most
+** SELECT statement. Return the index i of the matching column,
+** as an indication to the caller that it should sort by the i-th column.
+** The left-most column is 1. In other words, the value returned is the
+** same integer value that would be used in the SQL statement to indicate
+** the column.
+**
+** If there is no match, return 0. Return -1 if an error occurs.
+*/
+static int resolveOrderByTermToExprList(
+ Parse *pParse, /* Parsing context for error messages */
+ Select *pSelect, /* The SELECT statement with the ORDER BY clause */
+ Expr *pE /* The specific ORDER BY term */
+){
+ int i; /* Loop counter */
+ ExprList *pEList; /* The columns of the result set */
+ NameContext nc; /* Name context for resolving pE */
+ sqlite3 *db; /* Database connection */
+ int rc; /* Return code from subprocedures */
+ u8 savedSuppErr; /* Saved value of db->suppressErr */
+
+ assert( sqlite3ExprIsInteger(pE, &i)==0 );
+ pEList = pSelect->pEList;
+
+ /* Resolve all names in the ORDER BY term expression
+ */
+ memset(&nc, 0, sizeof(nc));
+ nc.pParse = pParse;
+ nc.pSrcList = pSelect->pSrc;
+ nc.uNC.pEList = pEList;
+ nc.ncFlags = NC_AllowAgg|NC_UEList|NC_NoSelect;
+ nc.nNcErr = 0;
+ db = pParse->db;
+ savedSuppErr = db->suppressErr;
+ db->suppressErr = 1;
+ rc = sqlite3ResolveExprNames(&nc, pE);
+ db->suppressErr = savedSuppErr;
+ if( rc ) return 0;
+
+ /* Try to match the ORDER BY expression against an expression
+ ** in the result set. Return an 1-based index of the matching
+ ** result-set entry.
+ */
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqlite3ExprCompare(0, pEList->a[i].pExpr, pE, -1)<2 ){
+ return i+1;
+ }
+ }
+
+ /* If no match, return 0. */
+ return 0;
+}
+
+/*
+** Generate an ORDER BY or GROUP BY term out-of-range error.
+*/
+static void resolveOutOfRangeError(
+ Parse *pParse, /* The error context into which to write the error */
+ const char *zType, /* "ORDER" or "GROUP" */
+ int i, /* The index (1-based) of the term out of range */
+ int mx, /* Largest permissible value of i */
+ Expr *pError /* Associate the error with the expression */
+){
+ sqlite3ErrorMsg(pParse,
+ "%r %s BY term out of range - should be "
+ "between 1 and %d", i, zType, mx);
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pError);
+}
+
+/*
+** Analyze the ORDER BY clause in a compound SELECT statement. Modify
+** each term of the ORDER BY clause is a constant integer between 1
+** and N where N is the number of columns in the compound SELECT.
+**
+** ORDER BY terms that are already an integer between 1 and N are
+** unmodified. ORDER BY terms that are integers outside the range of
+** 1 through N generate an error. ORDER BY terms that are expressions
+** are matched against result set expressions of compound SELECT
+** beginning with the left-most SELECT and working toward the right.
+** At the first match, the ORDER BY expression is transformed into
+** the integer column number.
+**
+** Return the number of errors seen.
+*/
+static int resolveCompoundOrderBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect /* The SELECT statement containing the ORDER BY */
+){
+ int i;
+ ExprList *pOrderBy;
+ ExprList *pEList;
+ sqlite3 *db;
+ int moreToDo = 1;
+
+ pOrderBy = pSelect->pOrderBy;
+ if( pOrderBy==0 ) return 0;
+ db = pParse->db;
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
+ return 1;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].fg.done = 0;
+ }
+ pSelect->pNext = 0;
+ while( pSelect->pPrior ){
+ pSelect->pPrior->pNext = pSelect;
+ pSelect = pSelect->pPrior;
+ }
+ while( pSelect && moreToDo ){
+ struct ExprList_item *pItem;
+ moreToDo = 0;
+ pEList = pSelect->pEList;
+ assert( pEList!=0 );
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ int iCol = -1;
+ Expr *pE, *pDup;
+ if( pItem->fg.done ) continue;
+ pE = sqlite3ExprSkipCollateAndLikely(pItem->pExpr);
+ if( NEVER(pE==0) ) continue;
+ if( sqlite3ExprIsInteger(pE, &iCol) ){
+ if( iCol<=0 || iCol>pEList->nExpr ){
+ resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr, pE);
+ return 1;
+ }
+ }else{
+ iCol = resolveAsName(pParse, pEList, pE);
+ if( iCol==0 ){
+ /* Now test if expression pE matches one of the values returned
+ ** by pSelect. In the usual case this is done by duplicating the
+ ** expression, resolving any symbols in it, and then comparing
+ ** it against each expression returned by the SELECT statement.
+ ** Once the comparisons are finished, the duplicate expression
+ ** is deleted.
+ **
+ ** If this is running as part of an ALTER TABLE operation and
+ ** the symbols resolve successfully, also resolve the symbols in the
+ ** actual expression. This allows the code in alter.c to modify
+ ** column references within the ORDER BY expression as required. */
+ pDup = sqlite3ExprDup(db, pE, 0);
+ if( !db->mallocFailed ){
+ assert(pDup);
+ iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup);
+ if( IN_RENAME_OBJECT && iCol>0 ){
+ resolveOrderByTermToExprList(pParse, pSelect, pE);
+ }
+ }
+ sqlite3ExprDelete(db, pDup);
+ }
+ }
+ if( iCol>0 ){
+ /* Convert the ORDER BY term into an integer column number iCol,
+ ** taking care to preserve the COLLATE clause if it exists. */
+ if( !IN_RENAME_OBJECT ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return 1;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = iCol;
+ if( pItem->pExpr==pE ){
+ pItem->pExpr = pNew;
+ }else{
+ Expr *pParent = pItem->pExpr;
+ assert( pParent->op==TK_COLLATE );
+ while( pParent->pLeft->op==TK_COLLATE ) pParent = pParent->pLeft;
+ assert( pParent->pLeft==pE );
+ pParent->pLeft = pNew;
+ }
+ sqlite3ExprDelete(db, pE);
+ pItem->u.x.iOrderByCol = (u16)iCol;
+ }
+ pItem->fg.done = 1;
+ }else{
+ moreToDo = 1;
+ }
+ }
+ pSelect = pSelect->pNext;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ if( pOrderBy->a[i].fg.done==0 ){
+ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
+ "column in the result set", i+1);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
+** the SELECT statement pSelect. If any term is reference to a
+** result set expression (as determined by the ExprList.a.u.x.iOrderByCol
+** field) then convert that term into a copy of the corresponding result set
+** column.
+**
+** If any errors are detected, add an error message to pParse and
+** return non-zero. Return zero if no errors are seen.
+*/
+SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect, /* The SELECT statement containing the clause */
+ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
+ const char *zType /* "ORDER" or "GROUP" */
+){
+ int i;
+ sqlite3 *db = pParse->db;
+ ExprList *pEList;
+ struct ExprList_item *pItem;
+
+ if( pOrderBy==0 || pParse->db->mallocFailed || IN_RENAME_OBJECT ) return 0;
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
+ return 1;
+ }
+ pEList = pSelect->pEList;
+ assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ if( pItem->u.x.iOrderByCol ){
+ if( pItem->u.x.iOrderByCol>pEList->nExpr ){
+ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr, 0);
+ return 1;
+ }
+ resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr,0);
+ }
+ }
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Walker callback for windowRemoveExprFromSelect().
+*/
+static int resolveRemoveWindowsCb(Walker *pWalker, Expr *pExpr){
+ UNUSED_PARAMETER(pWalker);
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ Window *pWin = pExpr->y.pWin;
+ sqlite3WindowUnlinkFromSelect(pWin);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Remove any Window objects owned by the expression pExpr from the
+** Select.pWin list of Select object pSelect.
+*/
+static void windowRemoveExprFromSelect(Select *pSelect, Expr *pExpr){
+ if( pSelect->pWin ){
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.xExprCallback = resolveRemoveWindowsCb;
+ sWalker.u.pSelect = pSelect;
+ sqlite3WalkExpr(&sWalker, pExpr);
+ }
+}
+#else
+# define windowRemoveExprFromSelect(a, b)
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
+** The Name context of the SELECT statement is pNC. zType is either
+** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
+**
+** This routine resolves each term of the clause into an expression.
+** If the order-by term is an integer I between 1 and N (where N is the
+** number of columns in the result set of the SELECT) then the expression
+** in the resolution is a copy of the I-th result-set expression. If
+** the order-by term is an identifier that corresponds to the AS-name of
+** a result-set expression, then the term resolves to a copy of the
+** result-set expression. Otherwise, the expression is resolved in
+** the usual way - using sqlite3ResolveExprNames().
+**
+** This routine returns the number of errors. If errors occur, then
+** an appropriate error message might be left in pParse. (OOM errors
+** excepted.)
+*/
+static int resolveOrderGroupBy(
+ NameContext *pNC, /* The name context of the SELECT statement */
+ Select *pSelect, /* The SELECT statement holding pOrderBy */
+ ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */
+ const char *zType /* Either "ORDER" or "GROUP", as appropriate */
+){
+ int i, j; /* Loop counters */
+ int iCol; /* Column number */
+ struct ExprList_item *pItem; /* A term of the ORDER BY clause */
+ Parse *pParse; /* Parsing context */
+ int nResult; /* Number of terms in the result set */
+
+ assert( pOrderBy!=0 );
+ nResult = pSelect->pEList->nExpr;
+ pParse = pNC->pParse;
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ Expr *pE = pItem->pExpr;
+ Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pE);
+ if( NEVER(pE2==0) ) continue;
+ if( zType[0]!='G' ){
+ iCol = resolveAsName(pParse, pSelect->pEList, pE2);
+ if( iCol>0 ){
+ /* If an AS-name match is found, mark this ORDER BY column as being
+ ** a copy of the iCol-th result-set column. The subsequent call to
+ ** sqlite3ResolveOrderGroupBy() will convert the expression to a
+ ** copy of the iCol-th result-set expression. */
+ pItem->u.x.iOrderByCol = (u16)iCol;
+ continue;
+ }
+ }
+ if( sqlite3ExprIsInteger(pE2, &iCol) ){
+ /* The ORDER BY term is an integer constant. Again, set the column
+ ** number so that sqlite3ResolveOrderGroupBy() will convert the
+ ** order-by term to a copy of the result-set expression */
+ if( iCol<1 || iCol>0xffff ){
+ resolveOutOfRangeError(pParse, zType, i+1, nResult, pE2);
+ return 1;
+ }
+ pItem->u.x.iOrderByCol = (u16)iCol;
+ continue;
+ }
+
+ /* Otherwise, treat the ORDER BY term as an ordinary expression */
+ pItem->u.x.iOrderByCol = 0;
+ if( sqlite3ResolveExprNames(pNC, pE) ){
+ return 1;
+ }
+ for(j=0; j<pSelect->pEList->nExpr; j++){
+ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){
+ /* Since this expresion is being changed into a reference
+ ** to an identical expression in the result set, remove all Window
+ ** objects belonging to the expression from the Select.pWin list. */
+ windowRemoveExprFromSelect(pSelect, pE);
+ pItem->u.x.iOrderByCol = j+1;
+ }
+ }
+ }
+ return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
+}
+
+/*
+** Resolve names in the SELECT statement p and all of its descendants.
+*/
+static int resolveSelectStep(Walker *pWalker, Select *p){
+ NameContext *pOuterNC; /* Context that contains this SELECT */
+ NameContext sNC; /* Name context of this SELECT */
+ int isCompound; /* True if p is a compound select */
+ int nCompound; /* Number of compound terms processed so far */
+ Parse *pParse; /* Parsing context */
+ int i; /* Loop counter */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Select *pLeftmost; /* Left-most of SELECT of a compound */
+ sqlite3 *db; /* Database connection */
+
+
+ assert( p!=0 );
+ if( p->selFlags & SF_Resolved ){
+ return WRC_Prune;
+ }
+ pOuterNC = pWalker->u.pNC;
+ pParse = pWalker->pParse;
+ db = pParse->db;
+
+ /* Normally sqlite3SelectExpand() will be called first and will have
+ ** already expanded this SELECT. However, if this is a subquery within
+ ** an expression, sqlite3ResolveExprNames() will be called without a
+ ** prior call to sqlite3SelectExpand(). When that happens, let
+ ** sqlite3SelectPrep() do all of the processing for this SELECT.
+ ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
+ ** this routine in the correct order.
+ */
+ if( (p->selFlags & SF_Expanded)==0 ){
+ sqlite3SelectPrep(pParse, p, pOuterNC);
+ return pParse->nErr ? WRC_Abort : WRC_Prune;
+ }
+
+ isCompound = p->pPrior!=0;
+ nCompound = 0;
+ pLeftmost = p;
+ while( p ){
+ assert( (p->selFlags & SF_Expanded)!=0 );
+ assert( (p->selFlags & SF_Resolved)==0 );
+ assert( db->suppressErr==0 ); /* SF_Resolved not set if errors suppressed */
+ p->selFlags |= SF_Resolved;
+
+
+ /* Resolve the expressions in the LIMIT and OFFSET clauses. These
+ ** are not allowed to refer to any names, so pass an empty NameContext.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pWinSelect = p;
+ if( sqlite3ResolveExprNames(&sNC, p->pLimit) ){
+ return WRC_Abort;
+ }
+
+ /* If the SF_Converted flags is set, then this Select object was
+ ** was created by the convertCompoundSelectToSubquery() function.
+ ** In this case the ORDER BY clause (p->pOrderBy) should be resolved
+ ** as if it were part of the sub-query, not the parent. This block
+ ** moves the pOrderBy down to the sub-query. It will be moved back
+ ** after the names have been resolved. */
+ if( p->selFlags & SF_Converted ){
+ Select *pSub = p->pSrc->a[0].pSelect;
+ assert( p->pSrc->nSrc==1 && p->pOrderBy );
+ assert( pSub->pPrior && pSub->pOrderBy==0 );
+ pSub->pOrderBy = p->pOrderBy;
+ p->pOrderBy = 0;
+ }
+
+ /* Recursively resolve names in all subqueries in the FROM clause
+ */
+ for(i=0; i<p->pSrc->nSrc; i++){
+ SrcItem *pItem = &p->pSrc->a[i];
+ if( pItem->pSelect && (pItem->pSelect->selFlags & SF_Resolved)==0 ){
+ int nRef = pOuterNC ? pOuterNC->nRef : 0;
+ const char *zSavedContext = pParse->zAuthContext;
+
+ if( pItem->zName ) pParse->zAuthContext = pItem->zName;
+ sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
+ pParse->zAuthContext = zSavedContext;
+ if( pParse->nErr ) return WRC_Abort;
+ assert( db->mallocFailed==0 );
+
+ /* If the number of references to the outer context changed when
+ ** expressions in the sub-select were resolved, the sub-select
+ ** is correlated. It is not required to check the refcount on any
+ ** but the innermost outer context object, as lookupName() increments
+ ** the refcount on all contexts between the current one and the
+ ** context containing the column when it resolves a name. */
+ if( pOuterNC ){
+ assert( pItem->fg.isCorrelated==0 && pOuterNC->nRef>=nRef );
+ pItem->fg.isCorrelated = (pOuterNC->nRef>nRef);
+ }
+ }
+ }
+
+ /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
+ ** resolve the result-set expression list.
+ */
+ sNC.ncFlags = NC_AllowAgg|NC_AllowWin;
+ sNC.pSrcList = p->pSrc;
+ sNC.pNext = pOuterNC;
+
+ /* Resolve names in the result set. */
+ if( sqlite3ResolveExprListNames(&sNC, p->pEList) ) return WRC_Abort;
+ sNC.ncFlags &= ~NC_AllowWin;
+
+ /* If there are no aggregate functions in the result-set, and no GROUP BY
+ ** expression, do not allow aggregates in any of the other expressions.
+ */
+ assert( (p->selFlags & SF_Aggregate)==0 );
+ pGroupBy = p->pGroupBy;
+ if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){
+ assert( NC_MinMaxAgg==SF_MinMaxAgg );
+ assert( NC_OrderAgg==SF_OrderByReqd );
+ p->selFlags |= SF_Aggregate | (sNC.ncFlags&(NC_MinMaxAgg|NC_OrderAgg));
+ }else{
+ sNC.ncFlags &= ~NC_AllowAgg;
+ }
+
+ /* Add the output column list to the name-context before parsing the
+ ** other expressions in the SELECT statement. This is so that
+ ** expressions in the WHERE clause (etc.) can refer to expressions by
+ ** aliases in the result set.
+ **
+ ** Minor point: If this is the case, then the expression will be
+ ** re-evaluated for each reference to it.
+ */
+ assert( (sNC.ncFlags & (NC_UAggInfo|NC_UUpsert|NC_UBaseReg))==0 );
+ sNC.uNC.pEList = p->pEList;
+ sNC.ncFlags |= NC_UEList;
+ if( p->pHaving ){
+ if( (p->selFlags & SF_Aggregate)==0 ){
+ sqlite3ErrorMsg(pParse, "HAVING clause on a non-aggregate query");
+ return WRC_Abort;
+ }
+ if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
+ }
+ if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;
+
+ /* Resolve names in table-valued-function arguments */
+ for(i=0; i<p->pSrc->nSrc; i++){
+ SrcItem *pItem = &p->pSrc->a[i];
+ if( pItem->fg.isTabFunc
+ && sqlite3ResolveExprListNames(&sNC, pItem->u1.pFuncArg)
+ ){
+ return WRC_Abort;
+ }
+ }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( IN_RENAME_OBJECT ){
+ Window *pWin;
+ for(pWin=p->pWinDefn; pWin; pWin=pWin->pNextWin){
+ if( sqlite3ResolveExprListNames(&sNC, pWin->pOrderBy)
+ || sqlite3ResolveExprListNames(&sNC, pWin->pPartition)
+ ){
+ return WRC_Abort;
+ }
+ }
+ }
+#endif
+
+ /* The ORDER BY and GROUP BY clauses may not refer to terms in
+ ** outer queries
+ */
+ sNC.pNext = 0;
+ sNC.ncFlags |= NC_AllowAgg|NC_AllowWin;
+
+ /* If this is a converted compound query, move the ORDER BY clause from
+ ** the sub-query back to the parent query. At this point each term
+ ** within the ORDER BY clause has been transformed to an integer value.
+ ** These integers will be replaced by copies of the corresponding result
+ ** set expressions by the call to resolveOrderGroupBy() below. */
+ if( p->selFlags & SF_Converted ){
+ Select *pSub = p->pSrc->a[0].pSelect;
+ p->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }
+
+ /* Process the ORDER BY clause for singleton SELECT statements.
+ ** The ORDER BY clause for compounds SELECT statements is handled
+ ** below, after all of the result-sets for all of the elements of
+ ** the compound have been resolved.
+ **
+ ** If there is an ORDER BY clause on a term of a compound-select other
+ ** than the right-most term, then that is a syntax error. But the error
+ ** is not detected until much later, and so we need to go ahead and
+ ** resolve those symbols on the incorrect ORDER BY for consistency.
+ */
+ if( p->pOrderBy!=0
+ && isCompound<=nCompound /* Defer right-most ORDER BY of a compound */
+ && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER")
+ ){
+ return WRC_Abort;
+ }
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+ sNC.ncFlags &= ~NC_AllowWin;
+
+ /* Resolve the GROUP BY clause. At the same time, make sure
+ ** the GROUP BY clause does not contain aggregate functions.
+ */
+ if( pGroupBy ){
+ struct ExprList_item *pItem;
+
+ if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
+ return WRC_Abort;
+ }
+ for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
+ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
+ "the GROUP BY clause");
+ return WRC_Abort;
+ }
+ }
+ }
+
+ /* If this is part of a compound SELECT, check that it has the right
+ ** number of expressions in the select list. */
+ if( p->pNext && p->pEList->nExpr!=p->pNext->pEList->nExpr ){
+ sqlite3SelectWrongNumTermsError(pParse, p->pNext);
+ return WRC_Abort;
+ }
+
+ /* Advance to the next term of the compound
+ */
+ p = p->pPrior;
+ nCompound++;
+ }
+
+ /* Resolve the ORDER BY on a compound SELECT after all terms of
+ ** the compound have been resolved.
+ */
+ if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
+ return WRC_Abort;
+ }
+
+ return WRC_Prune;
+}
+
+/*
+** This routine walks an expression tree and resolves references to
+** table columns and result-set columns. At the same time, do error
+** checking on function usage and set a flag if any aggregate functions
+** are seen.
+**
+** To resolve table columns references we look for nodes (or subtrees) of the
+** form X.Y.Z or Y.Z or just Z where
+**
+** X: The name of a database. Ex: "main" or "temp" or
+** the symbolic name assigned to an ATTACH-ed database.
+**
+** Y: The name of a table in a FROM clause. Or in a trigger
+** one of the special names "old" or "new".
+**
+** Z: The name of a column in table Y.
+**
+** The node at the root of the subtree is modified as follows:
+**
+** Expr.op Changed to TK_COLUMN
+** Expr.pTab Points to the Table object for X.Y
+** Expr.iColumn The column index in X.Y. -1 for the rowid.
+** Expr.iTable The VDBE cursor number for X.Y
+**
+**
+** To resolve result-set references, look for expression nodes of the
+** form Z (with no X and Y prefix) where the Z matches the right-hand
+** size of an AS clause in the result-set of a SELECT. The Z expression
+** is replaced by a copy of the left-hand side of the result-set expression.
+** Table-name and function resolution occurs on the substituted expression
+** tree. For example, in:
+**
+** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
+**
+** The "x" term of the order by is replaced by "a+b" to render:
+**
+** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
+**
+** Function calls are checked to make sure that the function is
+** defined and that the correct number of arguments are specified.
+** If the function is an aggregate function, then the NC_HasAgg flag is
+** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
+** If an expression contains aggregate functions then the EP_Agg
+** property on the expression is set.
+**
+** An error message is left in pParse if anything is amiss. The number
+** if errors is returned.
+*/
+SQLITE_PRIVATE int sqlite3ResolveExprNames(
+ NameContext *pNC, /* Namespace to resolve expressions in. */
+ Expr *pExpr /* The expression to be analyzed. */
+){
+ int savedHasAgg;
+ Walker w;
+
+ if( pExpr==0 ) return SQLITE_OK;
+ savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ w.pParse = pNC->pParse;
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = (pNC->ncFlags & NC_NoSelect) ? 0 : resolveSelectStep;
+ w.xSelectCallback2 = 0;
+ w.u.pNC = pNC;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight += pExpr->nHeight;
+ if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){
+ return SQLITE_ERROR;
+ }
+#endif
+ sqlite3WalkExpr(&w, pExpr);
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight -= pExpr->nHeight;
+#endif
+ assert( EP_Agg==NC_HasAgg );
+ assert( EP_Win==NC_HasWin );
+ testcase( pNC->ncFlags & NC_HasAgg );
+ testcase( pNC->ncFlags & NC_HasWin );
+ ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) );
+ pNC->ncFlags |= savedHasAgg;
+ return pNC->nNcErr>0 || w.pParse->nErr>0;
+}
+
+/*
+** Resolve all names for all expression in an expression list. This is
+** just like sqlite3ResolveExprNames() except that it works for an expression
+** list rather than a single expression.
+*/
+SQLITE_PRIVATE int sqlite3ResolveExprListNames(
+ NameContext *pNC, /* Namespace to resolve expressions in. */
+ ExprList *pList /* The expression list to be analyzed. */
+){
+ int i;
+ int savedHasAgg = 0;
+ Walker w;
+ if( pList==0 ) return WRC_Continue;
+ w.pParse = pNC->pParse;
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = resolveSelectStep;
+ w.xSelectCallback2 = 0;
+ w.u.pNC = pNC;
+ savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ if( pExpr==0 ) continue;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight += pExpr->nHeight;
+ if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){
+ return WRC_Abort;
+ }
+#endif
+ sqlite3WalkExpr(&w, pExpr);
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight -= pExpr->nHeight;
+#endif
+ assert( EP_Agg==NC_HasAgg );
+ assert( EP_Win==NC_HasWin );
+ testcase( pNC->ncFlags & NC_HasAgg );
+ testcase( pNC->ncFlags & NC_HasWin );
+ if( pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg) ){
+ ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) );
+ savedHasAgg |= pNC->ncFlags &
+ (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ }
+ if( w.pParse->nErr>0 ) return WRC_Abort;
+ }
+ pNC->ncFlags |= savedHasAgg;
+ return WRC_Continue;
+}
+
+/*
+** Resolve all names in all expressions of a SELECT and in all
+** decendents of the SELECT, including compounds off of p->pPrior,
+** subqueries in expressions, and subqueries used as FROM clause
+** terms.
+**
+** See sqlite3ResolveExprNames() for a description of the kinds of
+** transformations that occur.
+**
+** All SELECT statements should have been expanded using
+** sqlite3SelectExpand() prior to invoking this routine.
+*/
+SQLITE_PRIVATE void sqlite3ResolveSelectNames(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for parent SELECT statement */
+){
+ Walker w;
+
+ assert( p!=0 );
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = resolveSelectStep;
+ w.xSelectCallback2 = 0;
+ w.pParse = pParse;
+ w.u.pNC = pOuterNC;
+ sqlite3WalkSelect(&w, p);
+}
+
+/*
+** Resolve names in expressions that can only reference a single table
+** or which cannot reference any tables at all. Examples:
+**
+** "type" flag
+** ------------
+** (1) CHECK constraints NC_IsCheck
+** (2) WHERE clauses on partial indices NC_PartIdx
+** (3) Expressions in indexes on expressions NC_IdxExpr
+** (4) Expression arguments to VACUUM INTO. 0
+** (5) GENERATED ALWAYS as expressions NC_GenCol
+**
+** In all cases except (4), the Expr.iTable value for Expr.op==TK_COLUMN
+** nodes of the expression is set to -1 and the Expr.iColumn value is
+** set to the column number. In case (4), TK_COLUMN nodes cause an error.
+**
+** Any errors cause an error message to be set in pParse.
+*/
+SQLITE_PRIVATE int sqlite3ResolveSelfReference(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* The table being referenced, or NULL */
+ int type, /* NC_IsCheck, NC_PartIdx, NC_IdxExpr, NC_GenCol, or 0 */
+ Expr *pExpr, /* Expression to resolve. May be NULL. */
+ ExprList *pList /* Expression list to resolve. May be NULL. */
+){
+ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
+ NameContext sNC; /* Name context for pParse->pNewTable */
+ int rc;
+
+ assert( type==0 || pTab!=0 );
+ assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr
+ || type==NC_GenCol || pTab==0 );
+ memset(&sNC, 0, sizeof(sNC));
+ memset(&sSrc, 0, sizeof(sSrc));
+ if( pTab ){
+ sSrc.nSrc = 1;
+ sSrc.a[0].zName = pTab->zName;
+ sSrc.a[0].pTab = pTab;
+ sSrc.a[0].iCursor = -1;
+ if( pTab->pSchema!=pParse->db->aDb[1].pSchema ){
+ /* Cause EP_FromDDL to be set on TK_FUNCTION nodes of non-TEMP
+ ** schema elements */
+ type |= NC_FromDDL;
+ }
+ }
+ sNC.pParse = pParse;
+ sNC.pSrcList = &sSrc;
+ sNC.ncFlags = type | NC_IsDDL;
+ if( (rc = sqlite3ResolveExprNames(&sNC, pExpr))!=SQLITE_OK ) return rc;
+ if( pList ) rc = sqlite3ResolveExprListNames(&sNC, pList);
+ return rc;
+}
+
+/************** End of resolve.c *********************************************/
+/************** Begin file expr.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for analyzing expressions and
+** for generating VDBE code that evaluates expressions in SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/* Forward declarations */
+static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
+static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
+
+/*
+** Return the affinity character for a single column of a table.
+*/
+SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
+ if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
+ return pTab->aCol[iCol].affinity;
+}
+
+/*
+** Return the 'affinity' of the expression pExpr if any.
+**
+** If pExpr is a column, a reference to a column via an 'AS' alias,
+** or a sub-select with a column as the return value, then the
+** affinity of that column is returned. Otherwise, 0x00 is returned,
+** indicating no affinity for the expression.
+**
+** i.e. the WHERE clause expressions in the following statements all
+** have an affinity:
+**
+** CREATE TABLE t1(a);
+** SELECT * FROM t1 WHERE a;
+** SELECT a AS b FROM t1 WHERE b;
+** SELECT * FROM t1 WHERE (select a from t1);
+*/
+SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr){
+ int op;
+ while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
+ assert( pExpr->op==TK_COLLATE
+ || pExpr->op==TK_IF_NULL_ROW
+ || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
+ pExpr = pExpr->pLeft;
+ assert( pExpr!=0 );
+ }
+ op = pExpr->op;
+ if( op==TK_REGISTER ) op = pExpr->op2;
+ if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
+ assert( ExprUseYTab(pExpr) );
+ if( pExpr->y.pTab ){
+ return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
+ }
+ }
+ if( op==TK_SELECT ){
+ assert( ExprUseXSelect(pExpr) );
+ assert( pExpr->x.pSelect!=0 );
+ assert( pExpr->x.pSelect->pEList!=0 );
+ assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
+ return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
+ }
+#ifndef SQLITE_OMIT_CAST
+ if( op==TK_CAST ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ return sqlite3AffinityType(pExpr->u.zToken, 0);
+ }
+#endif
+ if( op==TK_SELECT_COLUMN ){
+ assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
+ assert( pExpr->iColumn < pExpr->iTable );
+ assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
+ return sqlite3ExprAffinity(
+ pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
+ );
+ }
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(pExpr) );
+ return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
+ }
+ return pExpr->affExpr;
+}
+
+/*
+** Set the collating sequence for expression pExpr to be the collating
+** sequence named by pToken. Return a pointer to a new Expr node that
+** implements the COLLATE operator.
+**
+** If a memory allocation error occurs, that fact is recorded in pParse->db
+** and the pExpr parameter is returned unchanged.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(
+ const Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* Add the "COLLATE" clause to this expression */
+ const Token *pCollName, /* Name of collating sequence */
+ int dequote /* True to dequote pCollName */
+){
+ if( pCollName->n>0 ){
+ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
+ if( pNew ){
+ pNew->pLeft = pExpr;
+ pNew->flags |= EP_Collate|EP_Skip;
+ pExpr = pNew;
+ }
+ }
+ return pExpr;
+}
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(
+ const Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* Add the "COLLATE" clause to this expression */
+ const char *zC /* The collating sequence name */
+){
+ Token s;
+ assert( zC!=0 );
+ sqlite3TokenInit(&s, (char*)zC);
+ return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
+}
+
+/*
+** Skip over any TK_COLLATE operators.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){
+ while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
+ assert( pExpr->op==TK_COLLATE );
+ pExpr = pExpr->pLeft;
+ }
+ return pExpr;
+}
+
+/*
+** Skip over any TK_COLLATE operators and/or any unlikely()
+** or likelihood() or likely() functions at the root of an
+** expression.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
+ while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
+ if( ExprHasProperty(pExpr, EP_Unlikely) ){
+ assert( ExprUseXList(pExpr) );
+ assert( pExpr->x.pList->nExpr>0 );
+ assert( pExpr->op==TK_FUNCTION );
+ pExpr = pExpr->x.pList->a[0].pExpr;
+ }else{
+ assert( pExpr->op==TK_COLLATE );
+ pExpr = pExpr->pLeft;
+ }
+ }
+ return pExpr;
+}
+
+/*
+** Return the collation sequence for the expression pExpr. If
+** there is no defined collating sequence, return NULL.
+**
+** See also: sqlite3ExprNNCollSeq()
+**
+** The sqlite3ExprNNCollSeq() works the same exact that it returns the
+** default collation if pExpr has no defined collation.
+**
+** The collating sequence might be determined by a COLLATE operator
+** or by the presence of a column with a defined collating sequence.
+** COLLATE operators take first precedence. Left operands take
+** precedence over right operands.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
+ sqlite3 *db = pParse->db;
+ CollSeq *pColl = 0;
+ const Expr *p = pExpr;
+ while( p ){
+ int op = p->op;
+ if( op==TK_REGISTER ) op = p->op2;
+ if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
+ assert( ExprUseYTab(p) );
+ if( p->y.pTab!=0 ){
+ /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
+ ** a TK_COLUMN but was previously evaluated and cached in a register */
+ int j = p->iColumn;
+ if( j>=0 ){
+ const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
+ }
+ break;
+ }
+ }
+ if( op==TK_CAST || op==TK_UPLUS ){
+ p = p->pLeft;
+ continue;
+ }
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(p) );
+ p = p->x.pList->a[0].pExpr;
+ continue;
+ }
+ if( op==TK_COLLATE ){
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
+ break;
+ }
+ if( p->flags & EP_Collate ){
+ if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
+ p = p->pLeft;
+ }else{
+ Expr *pNext = p->pRight;
+ /* The Expr.x union is never used at the same time as Expr.pRight */
+ assert( ExprUseXList(p) );
+ assert( p->x.pList==0 || p->pRight==0 );
+ if( p->x.pList!=0 && !db->mallocFailed ){
+ int i;
+ for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
+ if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
+ pNext = p->x.pList->a[i].pExpr;
+ break;
+ }
+ }
+ }
+ p = pNext;
+ }
+ }else{
+ break;
+ }
+ }
+ if( sqlite3CheckCollSeq(pParse, pColl) ){
+ pColl = 0;
+ }
+ return pColl;
+}
+
+/*
+** Return the collation sequence for the expression pExpr. If
+** there is no defined collating sequence, return a pointer to the
+** defautl collation sequence.
+**
+** See also: sqlite3ExprCollSeq()
+**
+** The sqlite3ExprCollSeq() routine works the same except that it
+** returns NULL if there is no defined collation.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
+ CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
+ if( p==0 ) p = pParse->db->pDfltColl;
+ assert( p!=0 );
+ return p;
+}
+
+/*
+** Return TRUE if the two expressions have equivalent collating sequences.
+*/
+SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
+ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
+ CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
+ return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
+}
+
+/*
+** pExpr is an operand of a comparison operator. aff2 is the
+** type affinity of the other operand. This routine returns the
+** type affinity that should be used for the comparison operator.
+*/
+SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
+ char aff1 = sqlite3ExprAffinity(pExpr);
+ if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
+ /* Both sides of the comparison are columns. If one has numeric
+ ** affinity, use that. Otherwise use no affinity.
+ */
+ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
+ return SQLITE_AFF_NUMERIC;
+ }else{
+ return SQLITE_AFF_BLOB;
+ }
+ }else{
+ /* One side is a column, the other is not. Use the columns affinity. */
+ assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
+ return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
+ }
+}
+
+/*
+** pExpr is a comparison operator. Return the type affinity that should
+** be applied to both operands prior to doing the comparison.
+*/
+static char comparisonAffinity(const Expr *pExpr){
+ char aff;
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
+ pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
+ pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
+ assert( pExpr->pLeft );
+ aff = sqlite3ExprAffinity(pExpr->pLeft);
+ if( pExpr->pRight ){
+ aff = sqlite3CompareAffinity(pExpr->pRight, aff);
+ }else if( ExprUseXSelect(pExpr) ){
+ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
+ }else if( aff==0 ){
+ aff = SQLITE_AFF_BLOB;
+ }
+ return aff;
+}
+
+/*
+** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
+** idx_affinity is the affinity of an indexed column. Return true
+** if the index with affinity idx_affinity may be used to implement
+** the comparison in pExpr.
+*/
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
+ char aff = comparisonAffinity(pExpr);
+ if( aff<SQLITE_AFF_TEXT ){
+ return 1;
+ }
+ if( aff==SQLITE_AFF_TEXT ){
+ return idx_affinity==SQLITE_AFF_TEXT;
+ }
+ return sqlite3IsNumericAffinity(idx_affinity);
+}
+
+/*
+** Return the P5 value that should be used for a binary comparison
+** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
+*/
+static u8 binaryCompareP5(
+ const Expr *pExpr1, /* Left operand */
+ const Expr *pExpr2, /* Right operand */
+ int jumpIfNull /* Extra flags added to P5 */
+){
+ u8 aff = (char)sqlite3ExprAffinity(pExpr2);
+ aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
+ return aff;
+}
+
+/*
+** Return a pointer to the collation sequence that should be used by
+** a binary comparison operator comparing pLeft and pRight.
+**
+** If the left hand expression has a collating sequence type, then it is
+** used. Otherwise the collation sequence for the right hand expression
+** is used, or the default (BINARY) if neither expression has a collating
+** type.
+**
+** Argument pRight (but not pLeft) may be a null pointer. In this case,
+** it is not considered.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
+ Parse *pParse,
+ const Expr *pLeft,
+ const Expr *pRight
+){
+ CollSeq *pColl;
+ assert( pLeft );
+ if( pLeft->flags & EP_Collate ){
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
+ pColl = sqlite3ExprCollSeq(pParse, pRight);
+ }else{
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ if( !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pRight);
+ }
+ }
+ return pColl;
+}
+
+/* Expresssion p is a comparison operator. Return a collation sequence
+** appropriate for the comparison operator.
+**
+** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
+** However, if the OP_Commuted flag is set, then the order of the operands
+** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
+** correct collating sequence is found.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
+ if( ExprHasProperty(p, EP_Commuted) ){
+ return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
+ }else{
+ return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
+ }
+}
+
+/*
+** Generate code for a comparison operator.
+*/
+static int codeCompare(
+ Parse *pParse, /* The parsing (and code generating) context */
+ Expr *pLeft, /* The left operand */
+ Expr *pRight, /* The right operand */
+ int opcode, /* The comparison opcode */
+ int in1, int in2, /* Register holding operands */
+ int dest, /* Jump here if true. */
+ int jumpIfNull, /* If true, jump if either operand is NULL */
+ int isCommuted /* The comparison has been commuted */
+){
+ int p5;
+ int addr;
+ CollSeq *p4;
+
+ if( pParse->nErr ) return 0;
+ if( isCommuted ){
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
+ }else{
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
+ }
+ p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
+ addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
+ (void*)p4, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
+ return addr;
+}
+
+/*
+** Return true if expression pExpr is a vector, or false otherwise.
+**
+** A vector is defined as any expression that results in two or more
+** columns of result. Every TK_VECTOR node is an vector because the
+** parser will not generate a TK_VECTOR with fewer than two entries.
+** But a TK_SELECT might be either a vector or a scalar. It is only
+** considered a vector if it has two or more result columns.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr){
+ return sqlite3ExprVectorSize(pExpr)>1;
+}
+
+/*
+** If the expression passed as the only argument is of type TK_VECTOR
+** return the number of expressions in the vector. Or, if the expression
+** is a sub-select, return the number of columns in the sub-select. For
+** any other type of expression, return 1.
+*/
+SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr){
+ u8 op = pExpr->op;
+ if( op==TK_REGISTER ) op = pExpr->op2;
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(pExpr) );
+ return pExpr->x.pList->nExpr;
+ }else if( op==TK_SELECT ){
+ assert( ExprUseXSelect(pExpr) );
+ return pExpr->x.pSelect->pEList->nExpr;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Return a pointer to a subexpression of pVector that is the i-th
+** column of the vector (numbered starting with 0). The caller must
+** ensure that i is within range.
+**
+** If pVector is really a scalar (and "scalar" here includes subqueries
+** that return a single column!) then return pVector unmodified.
+**
+** pVector retains ownership of the returned subexpression.
+**
+** If the vector is a (SELECT ...) then the expression returned is
+** just the expression for the i-th term of the result set, and may
+** not be ready for evaluation because the table cursor has not yet
+** been positioned.
+*/
+SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
+ assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
+ if( sqlite3ExprIsVector(pVector) ){
+ assert( pVector->op2==0 || pVector->op==TK_REGISTER );
+ if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
+ assert( ExprUseXSelect(pVector) );
+ return pVector->x.pSelect->pEList->a[i].pExpr;
+ }else{
+ assert( ExprUseXList(pVector) );
+ return pVector->x.pList->a[i].pExpr;
+ }
+ }
+ return pVector;
+}
+
+/*
+** Compute and return a new Expr object which when passed to
+** sqlite3ExprCode() will generate all necessary code to compute
+** the iField-th column of the vector expression pVector.
+**
+** It is ok for pVector to be a scalar (as long as iField==0).
+** In that case, this routine works like sqlite3ExprDup().
+**
+** The caller owns the returned Expr object and is responsible for
+** ensuring that the returned value eventually gets freed.
+**
+** The caller retains ownership of pVector. If pVector is a TK_SELECT,
+** then the returned object will reference pVector and so pVector must remain
+** valid for the life of the returned object. If pVector is a TK_VECTOR
+** or a scalar expression, then it can be deleted as soon as this routine
+** returns.
+**
+** A trick to cause a TK_SELECT pVector to be deleted together with
+** the returned Expr object is to attach the pVector to the pRight field
+** of the returned TK_SELECT_COLUMN Expr object.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(
+ Parse *pParse, /* Parsing context */
+ Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
+ int iField, /* Which column of the vector to return */
+ int nField /* Total number of columns in the vector */
+){
+ Expr *pRet;
+ if( pVector->op==TK_SELECT ){
+ assert( ExprUseXSelect(pVector) );
+ /* The TK_SELECT_COLUMN Expr node:
+ **
+ ** pLeft: pVector containing TK_SELECT. Not deleted.
+ ** pRight: not used. But recursively deleted.
+ ** iColumn: Index of a column in pVector
+ ** iTable: 0 or the number of columns on the LHS of an assignment
+ ** pLeft->iTable: First in an array of register holding result, or 0
+ ** if the result is not yet computed.
+ **
+ ** sqlite3ExprDelete() specifically skips the recursive delete of
+ ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
+ ** can be attached to pRight to cause this node to take ownership of
+ ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
+ ** with the same pLeft pointer to the pVector, but only one of them
+ ** will own the pVector.
+ */
+ pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
+ if( pRet ){
+ pRet->iTable = nField;
+ pRet->iColumn = iField;
+ pRet->pLeft = pVector;
+ }
+ }else{
+ if( pVector->op==TK_VECTOR ){
+ Expr **ppVector;
+ assert( ExprUseXList(pVector) );
+ ppVector = &pVector->x.pList->a[iField].pExpr;
+ pVector = *ppVector;
+ if( IN_RENAME_OBJECT ){
+ /* This must be a vector UPDATE inside a trigger */
+ *ppVector = 0;
+ return pVector;
+ }
+ }
+ pRet = sqlite3ExprDup(pParse->db, pVector, 0);
+ }
+ return pRet;
+}
+
+/*
+** If expression pExpr is of type TK_SELECT, generate code to evaluate
+** it. Return the register in which the result is stored (or, if the
+** sub-select returns more than one column, the first in an array
+** of registers in which the result is stored).
+**
+** If pExpr is not a TK_SELECT expression, return 0.
+*/
+static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
+ int reg = 0;
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( pExpr->op==TK_SELECT ){
+ reg = sqlite3CodeSubselect(pParse, pExpr);
+ }
+#endif
+ return reg;
+}
+
+/*
+** Argument pVector points to a vector expression - either a TK_VECTOR
+** or TK_SELECT that returns more than one column. This function returns
+** the register number of a register that contains the value of
+** element iField of the vector.
+**
+** If pVector is a TK_SELECT expression, then code for it must have
+** already been generated using the exprCodeSubselect() routine. In this
+** case parameter regSelect should be the first in an array of registers
+** containing the results of the sub-select.
+**
+** If pVector is of type TK_VECTOR, then code for the requested field
+** is generated. In this case (*pRegFree) may be set to the number of
+** a temporary register to be freed by the caller before returning.
+**
+** Before returning, output parameter (*ppExpr) is set to point to the
+** Expr object corresponding to element iElem of the vector.
+*/
+static int exprVectorRegister(
+ Parse *pParse, /* Parse context */
+ Expr *pVector, /* Vector to extract element from */
+ int iField, /* Field to extract from pVector */
+ int regSelect, /* First in array of registers */
+ Expr **ppExpr, /* OUT: Expression element */
+ int *pRegFree /* OUT: Temp register to free */
+){
+ u8 op = pVector->op;
+ assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
+ if( op==TK_REGISTER ){
+ *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
+ return pVector->iTable+iField;
+ }
+ if( op==TK_SELECT ){
+ assert( ExprUseXSelect(pVector) );
+ *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
+ return regSelect+iField;
+ }
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(pVector) );
+ *ppExpr = pVector->x.pList->a[iField].pExpr;
+ return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
+ }
+ return 0;
+}
+
+/*
+** Expression pExpr is a comparison between two vector values. Compute
+** the result of the comparison (1, 0, or NULL) and write that
+** result into register dest.
+**
+** The caller must satisfy the following preconditions:
+**
+** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
+** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
+** otherwise: op==pExpr->op and p5==0
+*/
+static void codeVectorCompare(
+ Parse *pParse, /* Code generator context */
+ Expr *pExpr, /* The comparison operation */
+ int dest, /* Write results into this register */
+ u8 op, /* Comparison operator */
+ u8 p5 /* SQLITE_NULLEQ or zero */
+){
+ Vdbe *v = pParse->pVdbe;
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ int nLeft = sqlite3ExprVectorSize(pLeft);
+ int i;
+ int regLeft = 0;
+ int regRight = 0;
+ u8 opx = op;
+ int addrCmp = 0;
+ int addrDone = sqlite3VdbeMakeLabel(pParse);
+ int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
+
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ if( pParse->nErr ) return;
+ if( nLeft!=sqlite3ExprVectorSize(pRight) ){
+ sqlite3ErrorMsg(pParse, "row value misused");
+ return;
+ }
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
+ || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
+ || pExpr->op==TK_LT || pExpr->op==TK_GT
+ || pExpr->op==TK_LE || pExpr->op==TK_GE
+ );
+ assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
+ || (pExpr->op==TK_ISNOT && op==TK_NE) );
+ assert( p5==0 || pExpr->op!=op );
+ assert( p5==SQLITE_NULLEQ || pExpr->op==op );
+
+ if( op==TK_LE ) opx = TK_LT;
+ if( op==TK_GE ) opx = TK_GT;
+ if( op==TK_NE ) opx = TK_EQ;
+
+ regLeft = exprCodeSubselect(pParse, pLeft);
+ regRight = exprCodeSubselect(pParse, pRight);
+
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
+ for(i=0; 1 /*Loop exits by "break"*/; i++){
+ int regFree1 = 0, regFree2 = 0;
+ Expr *pL = 0, *pR = 0;
+ int r1, r2;
+ assert( i>=0 && i<nLeft );
+ if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
+ r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
+ r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
+ addrCmp = sqlite3VdbeCurrentAddr(v);
+ codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
+ testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
+ testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
+ addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
+ testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
+ testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
+ }
+ if( p5==SQLITE_NULLEQ ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
+ }
+ if( i==nLeft-1 ){
+ break;
+ }
+ if( opx==TK_EQ ){
+ sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
+ }else{
+ assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
+ if( i==nLeft-2 ) opx = op;
+ }
+ }
+ sqlite3VdbeJumpHere(v, addrCmp);
+ sqlite3VdbeResolveLabel(v, addrDone);
+ if( op==TK_NE ){
+ sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
+ }
+}
+
+#if SQLITE_MAX_EXPR_DEPTH>0
+/*
+** Check that argument nHeight is less than or equal to the maximum
+** expression depth allowed. If it is not, leave an error message in
+** pParse.
+*/
+SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
+ int rc = SQLITE_OK;
+ int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
+ if( nHeight>mxHeight ){
+ sqlite3ErrorMsg(pParse,
+ "Expression tree is too large (maximum depth %d)", mxHeight
+ );
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/* The following three functions, heightOfExpr(), heightOfExprList()
+** and heightOfSelect(), are used to determine the maximum height
+** of any expression tree referenced by the structure passed as the
+** first argument.
+**
+** If this maximum height is greater than the current value pointed
+** to by pnHeight, the second parameter, then set *pnHeight to that
+** value.
+*/
+static void heightOfExpr(const Expr *p, int *pnHeight){
+ if( p ){
+ if( p->nHeight>*pnHeight ){
+ *pnHeight = p->nHeight;
+ }
+ }
+}
+static void heightOfExprList(const ExprList *p, int *pnHeight){
+ if( p ){
+ int i;
+ for(i=0; i<p->nExpr; i++){
+ heightOfExpr(p->a[i].pExpr, pnHeight);
+ }
+ }
+}
+static void heightOfSelect(const Select *pSelect, int *pnHeight){
+ const Select *p;
+ for(p=pSelect; p; p=p->pPrior){
+ heightOfExpr(p->pWhere, pnHeight);
+ heightOfExpr(p->pHaving, pnHeight);
+ heightOfExpr(p->pLimit, pnHeight);
+ heightOfExprList(p->pEList, pnHeight);
+ heightOfExprList(p->pGroupBy, pnHeight);
+ heightOfExprList(p->pOrderBy, pnHeight);
+ }
+}
+
+/*
+** Set the Expr.nHeight variable in the structure passed as an
+** argument. An expression with no children, Expr.pList or
+** Expr.pSelect member has a height of 1. Any other expression
+** has a height equal to the maximum height of any other
+** referenced Expr plus one.
+**
+** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
+** if appropriate.
+*/
+static void exprSetHeight(Expr *p){
+ int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
+ if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight;
+ if( ExprUseXSelect(p) ){
+ heightOfSelect(p->x.pSelect, &nHeight);
+ }else if( p->x.pList ){
+ heightOfExprList(p->x.pList, &nHeight);
+ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
+ }
+ p->nHeight = nHeight + 1;
+}
+
+/*
+** Set the Expr.nHeight variable using the exprSetHeight() function. If
+** the height is greater than the maximum allowed expression depth,
+** leave an error in pParse.
+**
+** Also propagate all EP_Propagate flags from the Expr.x.pList into
+** Expr.flags.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
+ if( pParse->nErr ) return;
+ exprSetHeight(p);
+ sqlite3ExprCheckHeight(pParse, p->nHeight);
+}
+
+/*
+** Return the maximum height of any expression tree referenced
+** by the select statement passed as an argument.
+*/
+SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *p){
+ int nHeight = 0;
+ heightOfSelect(p, &nHeight);
+ return nHeight;
+}
+#else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
+/*
+** Propagate all EP_Propagate flags from the Expr.x.pList into
+** Expr.flags.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
+ if( pParse->nErr ) return;
+ if( p && ExprUseXList(p) && p->x.pList ){
+ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
+ }
+}
+#define exprSetHeight(y)
+#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
+
+/*
+** This routine is the core allocator for Expr nodes.
+**
+** Construct a new expression node and return a pointer to it. Memory
+** for this node and for the pToken argument is a single allocation
+** obtained from sqlite3DbMalloc(). The calling function
+** is responsible for making sure the node eventually gets freed.
+**
+** If dequote is true, then the token (if it exists) is dequoted.
+** If dequote is false, no dequoting is performed. The deQuote
+** parameter is ignored if pToken is NULL or if the token does not
+** appear to be quoted. If the quotes were of the form "..." (double-quotes)
+** then the EP_DblQuoted flag is set on the expression node.
+**
+** Special case: If op==TK_INTEGER and pToken points to a string that
+** can be translated into a 32-bit integer, then the token is not
+** stored in u.zToken. Instead, the integer values is written
+** into u.iValue and the EP_IntValue flag is set. No extra storage
+** is allocated to hold the integer text and the dequote flag is ignored.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAlloc(
+ sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
+ int op, /* Expression opcode */
+ const Token *pToken, /* Token argument. Might be NULL */
+ int dequote /* True to dequote */
+){
+ Expr *pNew;
+ int nExtra = 0;
+ int iValue = 0;
+
+ assert( db!=0 );
+ if( pToken ){
+ if( op!=TK_INTEGER || pToken->z==0
+ || sqlite3GetInt32(pToken->z, &iValue)==0 ){
+ nExtra = pToken->n+1;
+ assert( iValue>=0 );
+ }
+ }
+ pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
+ if( pNew ){
+ memset(pNew, 0, sizeof(Expr));
+ pNew->op = (u8)op;
+ pNew->iAgg = -1;
+ if( pToken ){
+ if( nExtra==0 ){
+ pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
+ pNew->u.iValue = iValue;
+ }else{
+ pNew->u.zToken = (char*)&pNew[1];
+ assert( pToken->z!=0 || pToken->n==0 );
+ if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
+ pNew->u.zToken[pToken->n] = 0;
+ if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
+ sqlite3DequoteExpr(pNew);
+ }
+ }
+ }
+#if SQLITE_MAX_EXPR_DEPTH>0
+ pNew->nHeight = 1;
+#endif
+ }
+ return pNew;
+}
+
+/*
+** Allocate a new expression node from a zero-terminated token that has
+** already been dequoted.
+*/
+SQLITE_PRIVATE Expr *sqlite3Expr(
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
+ int op, /* Expression opcode */
+ const char *zToken /* Token argument. Might be NULL */
+){
+ Token x;
+ x.z = zToken;
+ x.n = sqlite3Strlen30(zToken);
+ return sqlite3ExprAlloc(db, op, &x, 0);
+}
+
+/*
+** Attach subtrees pLeft and pRight to the Expr node pRoot.
+**
+** If pRoot==NULL that means that a memory allocation error has occurred.
+** In that case, delete the subtrees pLeft and pRight.
+*/
+SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(
+ sqlite3 *db,
+ Expr *pRoot,
+ Expr *pLeft,
+ Expr *pRight
+){
+ if( pRoot==0 ){
+ assert( db->mallocFailed );
+ sqlite3ExprDelete(db, pLeft);
+ sqlite3ExprDelete(db, pRight);
+ }else{
+ if( pRight ){
+ pRoot->pRight = pRight;
+ pRoot->flags |= EP_Propagate & pRight->flags;
+ }
+ if( pLeft ){
+ pRoot->pLeft = pLeft;
+ pRoot->flags |= EP_Propagate & pLeft->flags;
+ }
+ exprSetHeight(pRoot);
+ }
+}
+
+/*
+** Allocate an Expr node which joins as many as two subtrees.
+**
+** One or both of the subtrees can be NULL. Return a pointer to the new
+** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
+** free the subtrees and return NULL.
+*/
+SQLITE_PRIVATE Expr *sqlite3PExpr(
+ Parse *pParse, /* Parsing context */
+ int op, /* Expression opcode */
+ Expr *pLeft, /* Left operand */
+ Expr *pRight /* Right operand */
+){
+ Expr *p;
+ p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
+ if( p ){
+ memset(p, 0, sizeof(Expr));
+ p->op = op & 0xff;
+ p->iAgg = -1;
+ sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
+ sqlite3ExprCheckHeight(pParse, p->nHeight);
+ }else{
+ sqlite3ExprDelete(pParse->db, pLeft);
+ sqlite3ExprDelete(pParse->db, pRight);
+ }
+ return p;
+}
+
+/*
+** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
+** do a memory allocation failure) then delete the pSelect object.
+*/
+SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
+ if( pExpr ){
+ pExpr->x.pSelect = pSelect;
+ ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
+ sqlite3ExprSetHeightAndFlags(pParse, pExpr);
+ }else{
+ assert( pParse->db->mallocFailed );
+ sqlite3SelectDelete(pParse->db, pSelect);
+ }
+}
+
+/*
+** Expression list pEList is a list of vector values. This function
+** converts the contents of pEList to a VALUES(...) Select statement
+** returning 1 row for each element of the list. For example, the
+** expression list:
+**
+** ( (1,2), (3,4) (5,6) )
+**
+** is translated to the equivalent of:
+**
+** VALUES(1,2), (3,4), (5,6)
+**
+** Each of the vector values in pEList must contain exactly nElem terms.
+** If a list element that is not a vector or does not contain nElem terms,
+** an error message is left in pParse.
+**
+** This is used as part of processing IN(...) expressions with a list
+** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
+*/
+SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
+ int ii;
+ Select *pRet = 0;
+ assert( nElem>1 );
+ for(ii=0; ii<pEList->nExpr; ii++){
+ Select *pSel;
+ Expr *pExpr = pEList->a[ii].pExpr;
+ int nExprElem;
+ if( pExpr->op==TK_VECTOR ){
+ assert( ExprUseXList(pExpr) );
+ nExprElem = pExpr->x.pList->nExpr;
+ }else{
+ nExprElem = 1;
+ }
+ if( nExprElem!=nElem ){
+ sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
+ nExprElem, nExprElem>1?"s":"", nElem
+ );
+ break;
+ }
+ assert( ExprUseXList(pExpr) );
+ pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
+ pExpr->x.pList = 0;
+ if( pSel ){
+ if( pRet ){
+ pSel->op = TK_ALL;
+ pSel->pPrior = pRet;
+ }
+ pRet = pSel;
+ }
+ }
+
+ if( pRet && pRet->pPrior ){
+ pRet->selFlags |= SF_MultiValue;
+ }
+ sqlite3ExprListDelete(pParse->db, pEList);
+ return pRet;
+}
+
+/*
+** Join two expressions using an AND operator. If either expression is
+** NULL, then just return the other expression.
+**
+** If one side or the other of the AND is known to be false, then instead
+** of returning an AND expression, just return a constant expression with
+** a value of false.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
+ sqlite3 *db = pParse->db;
+ if( pLeft==0 ){
+ return pRight;
+ }else if( pRight==0 ){
+ return pLeft;
+ }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
+ && !IN_RENAME_OBJECT
+ ){
+ sqlite3ExprDeferredDelete(pParse, pLeft);
+ sqlite3ExprDeferredDelete(pParse, pRight);
+ return sqlite3Expr(db, TK_INTEGER, "0");
+ }else{
+ return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
+ }
+}
+
+/*
+** Construct a new expression node for a function with multiple
+** arguments.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* Argument list */
+ const Token *pToken, /* Name of the function */
+ int eDistinct /* SF_Distinct or SF_ALL or 0 */
+){
+ Expr *pNew;
+ sqlite3 *db = pParse->db;
+ assert( pToken );
+ pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
+ return 0;
+ }
+ assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
+ pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
+ if( pList
+ && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
+ && !pParse->nested
+ ){
+ sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
+ }
+ pNew->x.pList = pList;
+ ExprSetProperty(pNew, EP_HasFunc);
+ assert( ExprUseXList(pNew) );
+ sqlite3ExprSetHeightAndFlags(pParse, pNew);
+ if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
+ return pNew;
+}
+
+/*
+** Check to see if a function is usable according to current access
+** rules:
+**
+** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
+**
+** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
+** top-level SQL
+**
+** If the function is not usable, create an error.
+*/
+SQLITE_PRIVATE void sqlite3ExprFunctionUsable(
+ Parse *pParse, /* Parsing and code generating context */
+ const Expr *pExpr, /* The function invocation */
+ const FuncDef *pDef /* The function being invoked */
+){
+ assert( !IN_RENAME_OBJECT );
+ assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
+ if( ExprHasProperty(pExpr, EP_FromDDL) ){
+ if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
+ || (pParse->db->flags & SQLITE_TrustedSchema)==0
+ ){
+ /* Functions prohibited in triggers and views if:
+ ** (1) tagged with SQLITE_DIRECTONLY
+ ** (2) not tagged with SQLITE_INNOCUOUS (which means it
+ ** is tagged with SQLITE_FUNC_UNSAFE) and
+ ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
+ ** that the schema is possibly tainted).
+ */
+ sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
+ }
+ }
+}
+
+/*
+** Assign a variable number to an expression that encodes a wildcard
+** in the original SQL statement.
+**
+** Wildcards consisting of a single "?" are assigned the next sequential
+** variable number.
+**
+** Wildcards of the form "?nnn" are assigned the number "nnn". We make
+** sure "nnn" is not too big to avoid a denial of service attack when
+** the SQL statement comes from an external source.
+**
+** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
+** as the previous instance of the same wildcard. Or if this is the first
+** instance of the wildcard, the next sequential variable number is
+** assigned.
+*/
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
+ sqlite3 *db = pParse->db;
+ const char *z;
+ ynVar x;
+
+ if( pExpr==0 ) return;
+ assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
+ z = pExpr->u.zToken;
+ assert( z!=0 );
+ assert( z[0]!=0 );
+ assert( n==(u32)sqlite3Strlen30(z) );
+ if( z[1]==0 ){
+ /* Wildcard of the form "?". Assign the next variable number */
+ assert( z[0]=='?' );
+ x = (ynVar)(++pParse->nVar);
+ }else{
+ int doAdd = 0;
+ if( z[0]=='?' ){
+ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
+ ** use it as the variable number */
+ i64 i;
+ int bOk;
+ if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
+ i = z[1]-'0'; /* The common case of ?N for a single digit N */
+ bOk = 1;
+ }else{
+ bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
+ }
+ testcase( i==0 );
+ testcase( i==1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
+ if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
+ db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ return;
+ }
+ x = (ynVar)i;
+ if( x>pParse->nVar ){
+ pParse->nVar = (int)x;
+ doAdd = 1;
+ }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
+ doAdd = 1;
+ }
+ }else{
+ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
+ ** number as the prior appearance of the same name, or if the name
+ ** has never appeared before, reuse the same variable number
+ */
+ x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
+ if( x==0 ){
+ x = (ynVar)(++pParse->nVar);
+ doAdd = 1;
+ }
+ }
+ if( doAdd ){
+ pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
+ }
+ }
+ pExpr->iColumn = x;
+ if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "too many SQL variables");
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ }
+}
+
+/*
+** Recursively delete an expression tree.
+*/
+static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
+ assert( p!=0 );
+ assert( !ExprUseUValue(p) || p->u.iValue>=0 );
+ assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
+ assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
+ assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
+#ifdef SQLITE_DEBUG
+ if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
+ assert( p->pLeft==0 );
+ assert( p->pRight==0 );
+ assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
+ assert( !ExprUseXList(p) || p->x.pList==0 );
+ }
+#endif
+ if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
+ /* The Expr.x union is never used at the same time as Expr.pRight */
+ assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
+ if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
+ if( p->pRight ){
+ assert( !ExprHasProperty(p, EP_WinFunc) );
+ sqlite3ExprDeleteNN(db, p->pRight);
+ }else if( ExprUseXSelect(p) ){
+ assert( !ExprHasProperty(p, EP_WinFunc) );
+ sqlite3SelectDelete(db, p->x.pSelect);
+ }else{
+ sqlite3ExprListDelete(db, p->x.pList);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(p, EP_WinFunc) ){
+ sqlite3WindowDelete(db, p->y.pWin);
+ }
+#endif
+ }
+ }
+ if( ExprHasProperty(p, EP_MemToken) ){
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ sqlite3DbFree(db, p->u.zToken);
+ }
+ if( !ExprHasProperty(p, EP_Static) ){
+ sqlite3DbFreeNN(db, p);
+ }
+}
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
+ if( p ) sqlite3ExprDeleteNN(db, p);
+}
+
+/*
+** Clear both elements of an OnOrUsing object
+*/
+SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
+ if( p==0 ){
+ /* Nothing to clear */
+ }else if( p->pOn ){
+ sqlite3ExprDeleteNN(db, p->pOn);
+ }else if( p->pUsing ){
+ sqlite3IdListDelete(db, p->pUsing);
+ }
+}
+
+/*
+** Arrange to cause pExpr to be deleted when the pParse is deleted.
+** This is similar to sqlite3ExprDelete() except that the delete is
+** deferred untilthe pParse is deleted.
+**
+** The pExpr might be deleted immediately on an OOM error.
+**
+** The deferred delete is (currently) implemented by adding the
+** pExpr to the pParse->pConstExpr list with a register number of 0.
+*/
+SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
+ pParse->pConstExpr =
+ sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
+}
+
+/* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
+** expression.
+*/
+SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
+ if( p ){
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameExprUnmap(pParse, p);
+ }
+ sqlite3ExprDeleteNN(pParse->db, p);
+ }
+}
+
+/*
+** Return the number of bytes allocated for the expression structure
+** passed as the first argument. This is always one of EXPR_FULLSIZE,
+** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
+*/
+static int exprStructSize(const Expr *p){
+ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
+ if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
+ return EXPR_FULLSIZE;
+}
+
+/*
+** The dupedExpr*Size() routines each return the number of bytes required
+** to store a copy of an expression or expression tree. They differ in
+** how much of the tree is measured.
+**
+** dupedExprStructSize() Size of only the Expr structure
+** dupedExprNodeSize() Size of Expr + space for token
+** dupedExprSize() Expr + token + subtree components
+**
+***************************************************************************
+**
+** The dupedExprStructSize() function returns two values OR-ed together:
+** (1) the space required for a copy of the Expr structure only and
+** (2) the EP_xxx flags that indicate what the structure size should be.
+** The return values is always one of:
+**
+** EXPR_FULLSIZE
+** EXPR_REDUCEDSIZE | EP_Reduced
+** EXPR_TOKENONLYSIZE | EP_TokenOnly
+**
+** The size of the structure can be found by masking the return value
+** of this routine with 0xfff. The flags can be found by masking the
+** return value with EP_Reduced|EP_TokenOnly.
+**
+** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
+** (unreduced) Expr objects as they or originally constructed by the parser.
+** During expression analysis, extra information is computed and moved into
+** later parts of the Expr object and that extra information might get chopped
+** off if the expression is reduced. Note also that it does not work to
+** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
+** to reduce a pristine expression tree from the parser. The implementation
+** of dupedExprStructSize() contain multiple assert() statements that attempt
+** to enforce this constraint.
+*/
+static int dupedExprStructSize(const Expr *p, int flags){
+ int nSize;
+ assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
+ assert( EXPR_FULLSIZE<=0xfff );
+ assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
+ if( 0==flags || p->op==TK_SELECT_COLUMN
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ || ExprHasProperty(p, EP_WinFunc)
+#endif
+ ){
+ nSize = EXPR_FULLSIZE;
+ }else{
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
+ assert( !ExprHasProperty(p, EP_OuterON) );
+ assert( !ExprHasProperty(p, EP_MemToken) );
+ assert( !ExprHasVVAProperty(p, EP_NoReduce) );
+ if( p->pLeft || p->x.pList ){
+ nSize = EXPR_REDUCEDSIZE | EP_Reduced;
+ }else{
+ assert( p->pRight==0 );
+ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
+ }
+ }
+ return nSize;
+}
+
+/*
+** This function returns the space in bytes required to store the copy
+** of the Expr structure and a copy of the Expr.u.zToken string (if that
+** string is defined.)
+*/
+static int dupedExprNodeSize(const Expr *p, int flags){
+ int nByte = dupedExprStructSize(p, flags) & 0xfff;
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nByte += sqlite3Strlen30NN(p->u.zToken)+1;
+ }
+ return ROUND8(nByte);
+}
+
+/*
+** Return the number of bytes required to create a duplicate of the
+** expression passed as the first argument. The second argument is a
+** mask containing EXPRDUP_XXX flags.
+**
+** The value returned includes space to create a copy of the Expr struct
+** itself and the buffer referred to by Expr.u.zToken, if any.
+**
+** If the EXPRDUP_REDUCE flag is set, then the return value includes
+** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
+** and Expr.pRight variables (but not for any structures pointed to or
+** descended from the Expr.x.pList or Expr.x.pSelect variables).
+*/
+static int dupedExprSize(const Expr *p, int flags){
+ int nByte = 0;
+ if( p ){
+ nByte = dupedExprNodeSize(p, flags);
+ if( flags&EXPRDUP_REDUCE ){
+ nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
+ }
+ }
+ return nByte;
+}
+
+/*
+** This function is similar to sqlite3ExprDup(), except that if pzBuffer
+** is not NULL then *pzBuffer is assumed to point to a buffer large enough
+** to store the copy of expression p, the copies of p->u.zToken
+** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
+** if any. Before returning, *pzBuffer is set to the first byte past the
+** portion of the buffer copied into by this function.
+*/
+static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
+ Expr *pNew; /* Value to return */
+ u8 *zAlloc; /* Memory space from which to build Expr object */
+ u32 staticFlag; /* EP_Static if space not obtained from malloc */
+
+ assert( db!=0 );
+ assert( p );
+ assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
+ assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
+
+ /* Figure out where to write the new Expr structure. */
+ if( pzBuffer ){
+ zAlloc = *pzBuffer;
+ staticFlag = EP_Static;
+ assert( zAlloc!=0 );
+ }else{
+ zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
+ staticFlag = 0;
+ }
+ pNew = (Expr *)zAlloc;
+
+ if( pNew ){
+ /* Set nNewSize to the size allocated for the structure pointed to
+ ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
+ ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
+ ** by the copy of the p->u.zToken string (if any).
+ */
+ const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
+ const int nNewSize = nStructSize & 0xfff;
+ int nToken;
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nToken = sqlite3Strlen30(p->u.zToken) + 1;
+ }else{
+ nToken = 0;
+ }
+ if( dupFlags ){
+ assert( ExprHasProperty(p, EP_Reduced)==0 );
+ memcpy(zAlloc, p, nNewSize);
+ }else{
+ u32 nSize = (u32)exprStructSize(p);
+ memcpy(zAlloc, p, nSize);
+ if( nSize<EXPR_FULLSIZE ){
+ memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
+ }
+ }
+
+ /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
+ pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
+ pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
+ pNew->flags |= staticFlag;
+ ExprClearVVAProperties(pNew);
+ if( dupFlags ){
+ ExprSetVVAProperty(pNew, EP_Immutable);
+ }
+
+ /* Copy the p->u.zToken string, if any. */
+ if( nToken ){
+ char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
+ memcpy(zToken, p->u.zToken, nToken);
+ }
+
+ if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
+ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
+ if( ExprUseXSelect(p) ){
+ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
+ }else{
+ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
+ }
+ }
+
+ /* Fill in pNew->pLeft and pNew->pRight. */
+ if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
+ zAlloc += dupedExprNodeSize(p, dupFlags);
+ if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
+ pNew->pLeft = p->pLeft ?
+ exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
+ pNew->pRight = p->pRight ?
+ exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(p, EP_WinFunc) ){
+ pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
+ assert( ExprHasProperty(pNew, EP_WinFunc) );
+ }
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ if( pzBuffer ){
+ *pzBuffer = zAlloc;
+ }
+ }else{
+ if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
+ if( pNew->op==TK_SELECT_COLUMN ){
+ pNew->pLeft = p->pLeft;
+ assert( p->pRight==0 || p->pRight==p->pLeft
+ || ExprHasProperty(p->pLeft, EP_Subquery) );
+ }else{
+ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
+ }
+ pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
+ }
+ }
+ }
+ return pNew;
+}
+
+/*
+** Create and return a deep copy of the object passed as the second
+** argument. If an OOM condition is encountered, NULL is returned
+** and the db->mallocFailed flag set.
+*/
+#ifndef SQLITE_OMIT_CTE
+SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p){
+ With *pRet = 0;
+ if( p ){
+ sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
+ pRet = sqlite3DbMallocZero(db, nByte);
+ if( pRet ){
+ int i;
+ pRet->nCte = p->nCte;
+ for(i=0; i<p->nCte; i++){
+ pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
+ pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
+ pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
+ pRet->a[i].eM10d = p->a[i].eM10d;
+ }
+ }
+ }
+ return pRet;
+}
+#else
+# define sqlite3WithDup(x,y) 0
+#endif
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** The gatherSelectWindows() procedure and its helper routine
+** gatherSelectWindowsCallback() are used to scan all the expressions
+** an a newly duplicated SELECT statement and gather all of the Window
+** objects found there, assembling them onto the linked list at Select->pWin.
+*/
+static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
+ Select *pSelect = pWalker->u.pSelect;
+ Window *pWin = pExpr->y.pWin;
+ assert( pWin );
+ assert( IsWindowFunc(pExpr) );
+ assert( pWin->ppThis==0 );
+ sqlite3WindowLink(pSelect, pWin);
+ }
+ return WRC_Continue;
+}
+static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
+ return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
+}
+static void gatherSelectWindows(Select *p){
+ Walker w;
+ w.xExprCallback = gatherSelectWindowsCallback;
+ w.xSelectCallback = gatherSelectWindowsSelectCallback;
+ w.xSelectCallback2 = 0;
+ w.pParse = 0;
+ w.u.pSelect = p;
+ sqlite3WalkSelect(&w, p);
+}
+#endif
+
+
+/*
+** The following group of routines make deep copies of expressions,
+** expression lists, ID lists, and select statements. The copies can
+** be deleted (by being passed to their respective ...Delete() routines)
+** without effecting the originals.
+**
+** The expression list, ID, and source lists return by sqlite3ExprListDup(),
+** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
+** by subsequent calls to sqlite*ListAppend() routines.
+**
+** Any tables that the SrcList might point to are not duplicated.
+**
+** The flags parameter contains a combination of the EXPRDUP_XXX flags.
+** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
+** truncated version of the usual Expr structure that will be stored as
+** part of the in-memory representation of the database schema.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
+ assert( flags==0 || flags==EXPRDUP_REDUCE );
+ return p ? exprDup(db, p, flags, 0) : 0;
+}
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
+ ExprList *pNew;
+ struct ExprList_item *pItem;
+ const struct ExprList_item *pOldItem;
+ int i;
+ Expr *pPriorSelectColOld = 0;
+ Expr *pPriorSelectColNew = 0;
+ assert( db!=0 );
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
+ if( pNew==0 ) return 0;
+ pNew->nExpr = p->nExpr;
+ pNew->nAlloc = p->nAlloc;
+ pItem = pNew->a;
+ pOldItem = p->a;
+ for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
+ Expr *pOldExpr = pOldItem->pExpr;
+ Expr *pNewExpr;
+ pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
+ if( pOldExpr
+ && pOldExpr->op==TK_SELECT_COLUMN
+ && (pNewExpr = pItem->pExpr)!=0
+ ){
+ if( pNewExpr->pRight ){
+ pPriorSelectColOld = pOldExpr->pRight;
+ pPriorSelectColNew = pNewExpr->pRight;
+ pNewExpr->pLeft = pNewExpr->pRight;
+ }else{
+ if( pOldExpr->pLeft!=pPriorSelectColOld ){
+ pPriorSelectColOld = pOldExpr->pLeft;
+ pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
+ pNewExpr->pRight = pPriorSelectColNew;
+ }
+ pNewExpr->pLeft = pPriorSelectColNew;
+ }
+ }
+ pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
+ pItem->fg = pOldItem->fg;
+ pItem->fg.done = 0;
+ pItem->u = pOldItem->u;
+ }
+ return pNew;
+}
+
+/*
+** If cursors, triggers, views and subqueries are all omitted from
+** the build, then none of the following routines, except for
+** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
+** called with a NULL argument.
+*/
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
+ || !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
+ SrcList *pNew;
+ int i;
+ int nByte;
+ assert( db!=0 );
+ if( p==0 ) return 0;
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
+ pNew = sqlite3DbMallocRawNN(db, nByte );
+ if( pNew==0 ) return 0;
+ pNew->nSrc = pNew->nAlloc = p->nSrc;
+ for(i=0; i<p->nSrc; i++){
+ SrcItem *pNewItem = &pNew->a[i];
+ const SrcItem *pOldItem = &p->a[i];
+ Table *pTab;
+ pNewItem->pSchema = pOldItem->pSchema;
+ pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
+ pNewItem->fg = pOldItem->fg;
+ pNewItem->iCursor = pOldItem->iCursor;
+ pNewItem->addrFillSub = pOldItem->addrFillSub;
+ pNewItem->regReturn = pOldItem->regReturn;
+ if( pNewItem->fg.isIndexedBy ){
+ pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
+ }
+ pNewItem->u2 = pOldItem->u2;
+ if( pNewItem->fg.isCte ){
+ pNewItem->u2.pCteUse->nUse++;
+ }
+ if( pNewItem->fg.isTabFunc ){
+ pNewItem->u1.pFuncArg =
+ sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
+ }
+ pTab = pNewItem->pTab = pOldItem->pTab;
+ if( pTab ){
+ pTab->nTabRef++;
+ }
+ pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
+ if( pOldItem->fg.isUsing ){
+ assert( pNewItem->fg.isUsing );
+ pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
+ }else{
+ pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
+ }
+ pNewItem->colUsed = pOldItem->colUsed;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
+ IdList *pNew;
+ int i;
+ assert( db!=0 );
+ if( p==0 ) return 0;
+ assert( p->eU4!=EU4_EXPR );
+ pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
+ if( pNew==0 ) return 0;
+ pNew->nId = p->nId;
+ pNew->eU4 = p->eU4;
+ for(i=0; i<p->nId; i++){
+ struct IdList_item *pNewItem = &pNew->a[i];
+ const struct IdList_item *pOldItem = &p->a[i];
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->u4 = pOldItem->u4;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
+ Select *pRet = 0;
+ Select *pNext = 0;
+ Select **pp = &pRet;
+ const Select *p;
+
+ assert( db!=0 );
+ for(p=pDup; p; p=p->pPrior){
+ Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
+ if( pNew==0 ) break;
+ pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
+ pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
+ pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
+ pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
+ pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
+ pNew->op = p->op;
+ pNew->pNext = pNext;
+ pNew->pPrior = 0;
+ pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
+ pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->nSelectRow = p->nSelectRow;
+ pNew->pWith = sqlite3WithDup(db, p->pWith);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNew->pWin = 0;
+ pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
+ if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
+#endif
+ pNew->selId = p->selId;
+ if( db->mallocFailed ){
+ /* Any prior OOM might have left the Select object incomplete.
+ ** Delete the whole thing rather than allow an incomplete Select
+ ** to be used by the code generator. */
+ pNew->pNext = 0;
+ sqlite3SelectDelete(db, pNew);
+ break;
+ }
+ *pp = pNew;
+ pp = &pNew->pPrior;
+ pNext = pNew;
+ }
+
+ return pRet;
+}
+#else
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
+ assert( p==0 );
+ return 0;
+}
+#endif
+
+
+/*
+** Add a new element to the end of an expression list. If pList is
+** initially NULL, then create a new expression list.
+**
+** The pList argument must be either NULL or a pointer to an ExprList
+** obtained from a prior call to sqlite3ExprListAppend(). This routine
+** may not be used with an ExprList obtained from sqlite3ExprListDup().
+** Reason: This routine assumes that the number of slots in pList->a[]
+** is a power of two. That is true for sqlite3ExprListAppend() returns
+** but is not necessarily true from the return value of sqlite3ExprListDup().
+**
+** If a memory allocation error occurs, the entire list is freed and
+** NULL is returned. If non-NULL is returned, then it is guaranteed
+** that the new entry was successfully appended.
+*/
+static const struct ExprList_item zeroItem = {0};
+SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
+ sqlite3 *db, /* Database handle. Used for memory allocation */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ struct ExprList_item *pItem;
+ ExprList *pList;
+
+ pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
+ if( pList==0 ){
+ sqlite3ExprDelete(db, pExpr);
+ return 0;
+ }
+ pList->nAlloc = 4;
+ pList->nExpr = 1;
+ pItem = &pList->a[0];
+ *pItem = zeroItem;
+ pItem->pExpr = pExpr;
+ return pList;
+}
+SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
+ sqlite3 *db, /* Database handle. Used for memory allocation */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ struct ExprList_item *pItem;
+ ExprList *pNew;
+ pList->nAlloc *= 2;
+ pNew = sqlite3DbRealloc(db, pList,
+ sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pList);
+ sqlite3ExprDelete(db, pExpr);
+ return 0;
+ }else{
+ pList = pNew;
+ }
+ pItem = &pList->a[pList->nExpr++];
+ *pItem = zeroItem;
+ pItem->pExpr = pExpr;
+ return pList;
+}
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ struct ExprList_item *pItem;
+ if( pList==0 ){
+ return sqlite3ExprListAppendNew(pParse->db,pExpr);
+ }
+ if( pList->nAlloc<pList->nExpr+1 ){
+ return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
+ }
+ pItem = &pList->a[pList->nExpr++];
+ *pItem = zeroItem;
+ pItem->pExpr = pExpr;
+ return pList;
+}
+
+/*
+** pColumns and pExpr form a vector assignment which is part of the SET
+** clause of an UPDATE statement. Like this:
+**
+** (a,b,c) = (expr1,expr2,expr3)
+** Or: (a,b,c) = (SELECT x,y,z FROM ....)
+**
+** For each term of the vector assignment, append new entries to the
+** expression list pList. In the case of a subquery on the RHS, append
+** TK_SELECT_COLUMN expressions.
+*/
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ IdList *pColumns, /* List of names of LHS of the assignment */
+ Expr *pExpr /* Vector expression to be appended. Might be NULL */
+){
+ sqlite3 *db = pParse->db;
+ int n;
+ int i;
+ int iFirst = pList ? pList->nExpr : 0;
+ /* pColumns can only be NULL due to an OOM but an OOM will cause an
+ ** exit prior to this routine being invoked */
+ if( NEVER(pColumns==0) ) goto vector_append_error;
+ if( pExpr==0 ) goto vector_append_error;
+
+ /* If the RHS is a vector, then we can immediately check to see that
+ ** the size of the RHS and LHS match. But if the RHS is a SELECT,
+ ** wildcards ("*") in the result set of the SELECT must be expanded before
+ ** we can do the size check, so defer the size check until code generation.
+ */
+ if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
+ sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
+ pColumns->nId, n);
+ goto vector_append_error;
+ }
+
+ for(i=0; i<pColumns->nId; i++){
+ Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
+ assert( pSubExpr!=0 || db->mallocFailed );
+ if( pSubExpr==0 ) continue;
+ pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
+ if( pList ){
+ assert( pList->nExpr==iFirst+i+1 );
+ pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
+ pColumns->a[i].zName = 0;
+ }
+ }
+
+ if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
+ Expr *pFirst = pList->a[iFirst].pExpr;
+ assert( pFirst!=0 );
+ assert( pFirst->op==TK_SELECT_COLUMN );
+
+ /* Store the SELECT statement in pRight so it will be deleted when
+ ** sqlite3ExprListDelete() is called */
+ pFirst->pRight = pExpr;
+ pExpr = 0;
+
+ /* Remember the size of the LHS in iTable so that we can check that
+ ** the RHS and LHS sizes match during code generation. */
+ pFirst->iTable = pColumns->nId;
+ }
+
+vector_append_error:
+ sqlite3ExprUnmapAndDelete(pParse, pExpr);
+ sqlite3IdListDelete(db, pColumns);
+ return pList;
+}
+
+/*
+** Set the sort order for the last element on the given ExprList.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
+ struct ExprList_item *pItem;
+ if( p==0 ) return;
+ assert( p->nExpr>0 );
+
+ assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
+ assert( iSortOrder==SQLITE_SO_UNDEFINED
+ || iSortOrder==SQLITE_SO_ASC
+ || iSortOrder==SQLITE_SO_DESC
+ );
+ assert( eNulls==SQLITE_SO_UNDEFINED
+ || eNulls==SQLITE_SO_ASC
+ || eNulls==SQLITE_SO_DESC
+ );
+
+ pItem = &p->a[p->nExpr-1];
+ assert( pItem->fg.bNulls==0 );
+ if( iSortOrder==SQLITE_SO_UNDEFINED ){
+ iSortOrder = SQLITE_SO_ASC;
+ }
+ pItem->fg.sortFlags = (u8)iSortOrder;
+
+ if( eNulls!=SQLITE_SO_UNDEFINED ){
+ pItem->fg.bNulls = 1;
+ if( iSortOrder!=eNulls ){
+ pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
+ }
+ }
+}
+
+/*
+** Set the ExprList.a[].zEName element of the most recently added item
+** on the expression list.
+**
+** pList might be NULL following an OOM error. But pName should never be
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
+** is set.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetName(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to add the span. */
+ const Token *pName, /* Name to be added */
+ int dequote /* True to cause the name to be dequoted */
+){
+ assert( pList!=0 || pParse->db->mallocFailed!=0 );
+ assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
+ if( pList ){
+ struct ExprList_item *pItem;
+ assert( pList->nExpr>0 );
+ pItem = &pList->a[pList->nExpr-1];
+ assert( pItem->zEName==0 );
+ assert( pItem->fg.eEName==ENAME_NAME );
+ pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
+ if( dequote ){
+ /* If dequote==0, then pName->z does not point to part of a DDL
+ ** statement handled by the parser. And so no token need be added
+ ** to the token-map. */
+ sqlite3Dequote(pItem->zEName);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
+ }
+ }
+ }
+}
+
+/*
+** Set the ExprList.a[].zSpan element of the most recently added item
+** on the expression list.
+**
+** pList might be NULL following an OOM error. But pSpan should never be
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
+** is set.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetSpan(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to add the span. */
+ const char *zStart, /* Start of the span */
+ const char *zEnd /* End of the span */
+){
+ sqlite3 *db = pParse->db;
+ assert( pList!=0 || db->mallocFailed!=0 );
+ if( pList ){
+ struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
+ assert( pList->nExpr>0 );
+ if( pItem->zEName==0 ){
+ pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
+ pItem->fg.eEName = ENAME_SPAN;
+ }
+ }
+}
+
+/*
+** If the expression list pEList contains more than iLimit elements,
+** leave an error message in pParse.
+*/
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(
+ Parse *pParse,
+ ExprList *pEList,
+ const char *zObject
+){
+ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
+ testcase( pEList && pEList->nExpr==mx );
+ testcase( pEList && pEList->nExpr==mx+1 );
+ if( pEList && pEList->nExpr>mx ){
+ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
+ }
+}
+
+/*
+** Delete an entire expression list.
+*/
+static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
+ int i = pList->nExpr;
+ struct ExprList_item *pItem = pList->a;
+ assert( pList->nExpr>0 );
+ do{
+ sqlite3ExprDelete(db, pItem->pExpr);
+ sqlite3DbFree(db, pItem->zEName);
+ pItem++;
+ }while( --i>0 );
+ sqlite3DbFreeNN(db, pList);
+}
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
+ if( pList ) exprListDeleteNN(db, pList);
+}
+
+/*
+** Return the bitwise-OR of all Expr.flags fields in the given
+** ExprList.
+*/
+SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList *pList){
+ int i;
+ u32 m = 0;
+ assert( pList!=0 );
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ assert( pExpr!=0 );
+ m |= pExpr->flags;
+ }
+ return m;
+}
+
+/*
+** This is a SELECT-node callback for the expression walker that
+** always "fails". By "fail" in this case, we mean set
+** pWalker->eCode to zero and abort.
+**
+** This callback is used by multiple expression walkers.
+*/
+SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ pWalker->eCode = 0;
+ return WRC_Abort;
+}
+
+/*
+** Check the input string to see if it is "true" or "false" (in any case).
+**
+** If the string is.... Return
+** "true" EP_IsTrue
+** "false" EP_IsFalse
+** anything else 0
+*/
+SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char *zIn){
+ if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue;
+ if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
+ return 0;
+}
+
+
+/*
+** If the input expression is an ID with the name "true" or "false"
+** then convert it into an TK_TRUEFALSE term. Return non-zero if
+** the conversion happened, and zero if the expression is unaltered.
+*/
+SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr *pExpr){
+ u32 v;
+ assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
+ if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
+ && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
+ ){
+ pExpr->op = TK_TRUEFALSE;
+ ExprSetProperty(pExpr, v);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
+** and 0 if it is FALSE.
+*/
+SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr *pExpr){
+ pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
+ assert( pExpr->op==TK_TRUEFALSE );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
+ || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
+ return pExpr->u.zToken[4]==0;
+}
+
+/*
+** If pExpr is an AND or OR expression, try to simplify it by eliminating
+** terms that are always true or false. Return the simplified expression.
+** Or return the original expression if no simplification is possible.
+**
+** Examples:
+**
+** (x<10) AND true => (x<10)
+** (x<10) AND false => false
+** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
+** (x<10) AND (y=22 OR true) => (x<10)
+** (y=22) OR true => true
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
+ assert( pExpr!=0 );
+ if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
+ Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
+ Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
+ if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
+ pExpr = pExpr->op==TK_AND ? pRight : pLeft;
+ }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
+ pExpr = pExpr->op==TK_AND ? pLeft : pRight;
+ }
+ }
+ return pExpr;
+}
+
+
+/*
+** These routines are Walker callbacks used to check expressions to
+** see if they are "constant" for some definition of constant. The
+** Walker.eCode value determines the type of "constant" we are looking
+** for.
+**
+** These callback routines are used to implement the following:
+**
+** sqlite3ExprIsConstant() pWalker->eCode==1
+** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
+** sqlite3ExprIsTableConstant() pWalker->eCode==3
+** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
+**
+** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
+** is found to not be a constant.
+**
+** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
+** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
+** when parsing an existing schema out of the sqlite_schema table and 4
+** when processing a new CREATE TABLE statement. A bound parameter raises
+** an error for new statements, but is silently converted
+** to NULL for existing schemas. This allows sqlite_schema tables that
+** contain a bound parameter because they were generated by older versions
+** of SQLite to be parsed by newer versions of SQLite without raising a
+** malformed schema error.
+*/
+static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
+
+ /* If pWalker->eCode is 2 then any term of the expression that comes from
+ ** the ON or USING clauses of an outer join disqualifies the expression
+ ** from being considered constant. */
+ if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+
+ switch( pExpr->op ){
+ /* Consider functions to be constant if all their arguments are constant
+ ** and either pWalker->eCode==4 or 5 or the function has the
+ ** SQLITE_FUNC_CONST flag. */
+ case TK_FUNCTION:
+ if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
+ && !ExprHasProperty(pExpr, EP_WinFunc)
+ ){
+ if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
+ return WRC_Continue;
+ }else{
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ case TK_ID:
+ /* Convert "true" or "false" in a DEFAULT clause into the
+ ** appropriate TK_TRUEFALSE operator */
+ if( sqlite3ExprIdToTrueFalse(pExpr) ){
+ return WRC_Prune;
+ }
+ /* no break */ deliberate_fall_through
+ case TK_COLUMN:
+ case TK_AGG_FUNCTION:
+ case TK_AGG_COLUMN:
+ testcase( pExpr->op==TK_ID );
+ testcase( pExpr->op==TK_COLUMN );
+ testcase( pExpr->op==TK_AGG_FUNCTION );
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
+ return WRC_Continue;
+ }
+ if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
+ return WRC_Continue;
+ }
+ /* no break */ deliberate_fall_through
+ case TK_IF_NULL_ROW:
+ case TK_REGISTER:
+ case TK_DOT:
+ testcase( pExpr->op==TK_REGISTER );
+ testcase( pExpr->op==TK_IF_NULL_ROW );
+ testcase( pExpr->op==TK_DOT );
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ case TK_VARIABLE:
+ if( pWalker->eCode==5 ){
+ /* Silently convert bound parameters that appear inside of CREATE
+ ** statements into a NULL when parsing the CREATE statement text out
+ ** of the sqlite_schema table */
+ pExpr->op = TK_NULL;
+ }else if( pWalker->eCode==4 ){
+ /* A bound parameter in a CREATE statement that originates from
+ ** sqlite3_prepare() causes an error */
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ /* no break */ deliberate_fall_through
+ default:
+ testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
+ testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
+ return WRC_Continue;
+ }
+}
+static int exprIsConst(Expr *p, int initFlag, int iCur){
+ Walker w;
+ w.eCode = initFlag;
+ w.xExprCallback = exprNodeIsConstant;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+#ifdef SQLITE_DEBUG
+ w.xSelectCallback2 = sqlite3SelectWalkAssert2;
+#endif
+ w.u.iCur = iCur;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+/*
+** Walk an expression tree. Return non-zero if the expression is constant
+** and 0 if it involves variables or function calls.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
+ return exprIsConst(p, 1, 0);
+}
+
+/*
+** Walk an expression tree. Return non-zero if
+**
+** (1) the expression is constant, and
+** (2) the expression does originate in the ON or USING clause
+** of a LEFT JOIN, and
+** (3) the expression does not contain any EP_FixedCol TK_COLUMN
+** operands created by the constant propagation optimization.
+**
+** When this routine returns true, it indicates that the expression
+** can be added to the pParse->pConstExpr list and evaluated once when
+** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
+ return exprIsConst(p, 2, 0);
+}
+
+/*
+** Walk an expression tree. Return non-zero if the expression is constant
+** for any single row of the table with cursor iCur. In other words, the
+** expression must not refer to any non-deterministic function nor any
+** table other than iCur.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){
+ return exprIsConst(p, 3, iCur);
+}
+
+/*
+** Check pExpr to see if it is an invariant constraint on data source pSrc.
+** This is an optimization. False negatives will perhaps cause slower
+** queries, but false positives will yield incorrect answers. So when in
+** doubt, return 0.
+**
+** To be an invariant constraint, the following must be true:
+**
+** (1) pExpr cannot refer to any table other than pSrc->iCursor.
+**
+** (2) pExpr cannot use subqueries or non-deterministic functions.
+**
+** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
+** (Is there some way to relax this constraint?)
+**
+** (4) If pSrc is the right operand of a LEFT JOIN, then...
+** (4a) pExpr must come from an ON clause..
+ (4b) and specifically the ON clause associated with the LEFT JOIN.
+**
+** (5) If pSrc is not the right operand of a LEFT JOIN or the left
+** operand of a RIGHT JOIN, then pExpr must be from the WHERE
+** clause, not an ON clause.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
+ if( pSrc->fg.jointype & JT_LTORJ ){
+ return 0; /* rule (3) */
+ }
+ if( pSrc->fg.jointype & JT_LEFT ){
+ if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */
+ if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */
+ }else{
+ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */
+ }
+ return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
+}
+
+
+/*
+** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
+*/
+static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
+ ExprList *pGroupBy = pWalker->u.pGroupBy;
+ int i;
+
+ /* Check if pExpr is identical to any GROUP BY term. If so, consider
+ ** it constant. */
+ for(i=0; i<pGroupBy->nExpr; i++){
+ Expr *p = pGroupBy->a[i].pExpr;
+ if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
+ CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
+ if( sqlite3IsBinary(pColl) ){
+ return WRC_Prune;
+ }
+ }
+ }
+
+ /* Check if pExpr is a sub-select. If so, consider it variable. */
+ if( ExprUseXSelect(pExpr) ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+
+ return exprNodeIsConstant(pWalker, pExpr);
+}
+
+/*
+** Walk the expression tree passed as the first argument. Return non-zero
+** if the expression consists entirely of constants or copies of terms
+** in pGroupBy that sort with the BINARY collation sequence.
+**
+** This routine is used to determine if a term of the HAVING clause can
+** be promoted into the WHERE clause. In order for such a promotion to work,
+** the value of the HAVING clause term must be the same for all members of
+** a "group". The requirement that the GROUP BY term must be BINARY
+** assumes that no other collating sequence will have a finer-grained
+** grouping than binary. In other words (A=B COLLATE binary) implies
+** A=B in every other collating sequence. The requirement that the
+** GROUP BY be BINARY is stricter than necessary. It would also work
+** to promote HAVING clauses that use the same alternative collating
+** sequence as the GROUP BY term, but that is much harder to check,
+** alternative collating sequences are uncommon, and this is only an
+** optimization, so we take the easy way out and simply require the
+** GROUP BY to use the BINARY collating sequence.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
+ Walker w;
+ w.eCode = 1;
+ w.xExprCallback = exprNodeIsConstantOrGroupBy;
+ w.xSelectCallback = 0;
+ w.u.pGroupBy = pGroupBy;
+ w.pParse = pParse;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+/*
+** Walk an expression tree for the DEFAULT field of a column definition
+** in a CREATE TABLE statement. Return non-zero if the expression is
+** acceptable for use as a DEFAULT. That is to say, return non-zero if
+** the expression is constant or a function call with constant arguments.
+** Return and 0 if there are any variables.
+**
+** isInit is true when parsing from sqlite_schema. isInit is false when
+** processing a new CREATE TABLE statement. When isInit is true, parameters
+** (such as ? or $abc) in the expression are converted into NULL. When
+** isInit is false, parameters raise an error. Parameters should not be
+** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
+** allowed it, so we need to support it when reading sqlite_schema for
+** backwards compatibility.
+**
+** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
+ assert( isInit==0 || isInit==1 );
+ return exprIsConst(p, 4+isInit, 0);
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/*
+** Walk an expression tree. Return 1 if the expression contains a
+** subquery of some kind. Return 0 if there are no subqueries.
+*/
+SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr *p){
+ Walker w;
+ w.eCode = 1;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+#ifdef SQLITE_DEBUG
+ w.xSelectCallback2 = sqlite3SelectWalkAssert2;
+#endif
+ sqlite3WalkExpr(&w, p);
+ return w.eCode==0;
+}
+#endif
+
+/*
+** If the expression p codes a constant integer that is small enough
+** to fit in a 32-bit integer, return 1 and put the value of the integer
+** in *pValue. If the expression is not an integer or if it is too big
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr *p, int *pValue){
+ int rc = 0;
+ if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */
+
+ /* If an expression is an integer literal that fits in a signed 32-bit
+ ** integer, then the EP_IntValue flag will have already been set */
+ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
+ || sqlite3GetInt32(p->u.zToken, &rc)==0 );
+
+ if( p->flags & EP_IntValue ){
+ *pValue = p->u.iValue;
+ return 1;
+ }
+ switch( p->op ){
+ case TK_UPLUS: {
+ rc = sqlite3ExprIsInteger(p->pLeft, pValue);
+ break;
+ }
+ case TK_UMINUS: {
+ int v = 0;
+ if( sqlite3ExprIsInteger(p->pLeft, &v) ){
+ assert( ((unsigned int)v)!=0x80000000 );
+ *pValue = -v;
+ rc = 1;
+ }
+ break;
+ }
+ default: break;
+ }
+ return rc;
+}
+
+/*
+** Return FALSE if there is no chance that the expression can be NULL.
+**
+** If the expression might be NULL or if the expression is too complex
+** to tell return TRUE.
+**
+** This routine is used as an optimization, to skip OP_IsNull opcodes
+** when we know that a value cannot be NULL. Hence, a false positive
+** (returning TRUE when in fact the expression can never be NULL) might
+** be a small performance hit but is otherwise harmless. On the other
+** hand, a false negative (returning FALSE when the result could be NULL)
+** will likely result in an incorrect answer. So when in doubt, return
+** TRUE.
+*/
+SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){
+ u8 op;
+ assert( p!=0 );
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
+ p = p->pLeft;
+ assert( p!=0 );
+ }
+ op = p->op;
+ if( op==TK_REGISTER ) op = p->op2;
+ switch( op ){
+ case TK_INTEGER:
+ case TK_STRING:
+ case TK_FLOAT:
+ case TK_BLOB:
+ return 0;
+ case TK_COLUMN:
+ assert( ExprUseYTab(p) );
+ return ExprHasProperty(p, EP_CanBeNull) ||
+ p->y.pTab==0 || /* Reference to column of index on expression */
+ (p->iColumn>=0
+ && p->y.pTab->aCol!=0 /* Possible due to prior error */
+ && p->y.pTab->aCol[p->iColumn].notNull==0);
+ default:
+ return 1;
+ }
+}
+
+/*
+** Return TRUE if the given expression is a constant which would be
+** unchanged by OP_Affinity with the affinity given in the second
+** argument.
+**
+** This routine is used to determine if the OP_Affinity operation
+** can be omitted. When in doubt return FALSE. A false negative
+** is harmless. A false positive, however, can result in the wrong
+** answer.
+*/
+SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
+ u8 op;
+ int unaryMinus = 0;
+ if( aff==SQLITE_AFF_BLOB ) return 1;
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
+ if( p->op==TK_UMINUS ) unaryMinus = 1;
+ p = p->pLeft;
+ }
+ op = p->op;
+ if( op==TK_REGISTER ) op = p->op2;
+ switch( op ){
+ case TK_INTEGER: {
+ return aff>=SQLITE_AFF_NUMERIC;
+ }
+ case TK_FLOAT: {
+ return aff>=SQLITE_AFF_NUMERIC;
+ }
+ case TK_STRING: {
+ return !unaryMinus && aff==SQLITE_AFF_TEXT;
+ }
+ case TK_BLOB: {
+ return !unaryMinus;
+ }
+ case TK_COLUMN: {
+ assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
+ return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
+ }
+ default: {
+ return 0;
+ }
+ }
+}
+
+/*
+** Return TRUE if the given string is a row-id column name.
+*/
+SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
+ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
+ if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
+ if( sqlite3StrICmp(z, "OID")==0 ) return 1;
+ return 0;
+}
+
+/*
+** pX is the RHS of an IN operator. If pX is a SELECT statement
+** that can be simplified to a direct table access, then return
+** a pointer to the SELECT statement. If pX is not a SELECT statement,
+** or if the SELECT statement needs to be manifested into a transient
+** table, then return NULL.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+static Select *isCandidateForInOpt(const Expr *pX){
+ Select *p;
+ SrcList *pSrc;
+ ExprList *pEList;
+ Table *pTab;
+ int i;
+ if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */
+ if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
+ p = pX->x.pSelect;
+ if( p->pPrior ) return 0; /* Not a compound SELECT */
+ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ return 0; /* No DISTINCT keyword and no aggregate functions */
+ }
+ assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
+ if( p->pLimit ) return 0; /* Has no LIMIT clause */
+ if( p->pWhere ) return 0; /* Has no WHERE clause */
+ pSrc = p->pSrc;
+ assert( pSrc!=0 );
+ if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
+ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
+ pTab = pSrc->a[0].pTab;
+ assert( pTab!=0 );
+ assert( !IsView(pTab) ); /* FROM clause is not a view */
+ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
+ pEList = p->pEList;
+ assert( pEList!=0 );
+ /* All SELECT results must be columns. */
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *pRes = pEList->a[i].pExpr;
+ if( pRes->op!=TK_COLUMN ) return 0;
+ assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
+ }
+ return p;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate code that checks the left-most column of index table iCur to see if
+** it contains any NULL entries. Cause the register at regHasNull to be set
+** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
+** to be set to NULL if iCur contains one or more NULL values.
+*/
+static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
+ int addr1;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
+ addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
+ sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
+ VdbeComment((v, "first_entry_in(%d)", iCur));
+ sqlite3VdbeJumpHere(v, addr1);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** The argument is an IN operator with a list (not a subquery) on the
+** right-hand side. Return TRUE if that list is constant.
+*/
+static int sqlite3InRhsIsConstant(Expr *pIn){
+ Expr *pLHS;
+ int res;
+ assert( !ExprHasProperty(pIn, EP_xIsSelect) );
+ pLHS = pIn->pLeft;
+ pIn->pLeft = 0;
+ res = sqlite3ExprIsConstant(pIn);
+ pIn->pLeft = pLHS;
+ return res;
+}
+#endif
+
+/*
+** This function is used by the implementation of the IN (...) operator.
+** The pX parameter is the expression on the RHS of the IN operator, which
+** might be either a list of expressions or a subquery.
+**
+** The job of this routine is to find or create a b-tree object that can
+** be used either to test for membership in the RHS set or to iterate through
+** all members of the RHS set, skipping duplicates.
+**
+** A cursor is opened on the b-tree object that is the RHS of the IN operator
+** and the *piTab parameter is set to the index of that cursor.
+**
+** The returned value of this function indicates the b-tree type, as follows:
+**
+** IN_INDEX_ROWID - The cursor was opened on a database table.
+** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
+** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
+** IN_INDEX_EPH - The cursor was opened on a specially created and
+** populated epheremal table.
+** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
+** implemented as a sequence of comparisons.
+**
+** An existing b-tree might be used if the RHS expression pX is a simple
+** subquery such as:
+**
+** SELECT <column1>, <column2>... FROM <table>
+**
+** If the RHS of the IN operator is a list or a more complex subquery, then
+** an ephemeral table might need to be generated from the RHS and then
+** pX->iTable made to point to the ephemeral table instead of an
+** existing table. In this case, the creation and initialization of the
+** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
+** will be set on pX and the pX->y.sub fields will be set to show where
+** the subroutine is coded.
+**
+** The inFlags parameter must contain, at a minimum, one of the bits
+** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
+** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
+** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
+** be used to loop over all values of the RHS of the IN operator.
+**
+** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
+** through the set members) then the b-tree must not contain duplicates.
+** An epheremal table will be created unless the selected columns are guaranteed
+** to be unique - either because it is an INTEGER PRIMARY KEY or due to
+** a UNIQUE constraint or index.
+**
+** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
+** for fast set membership tests) then an epheremal table must
+** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
+** index can be found with the specified <columns> as its left-most.
+**
+** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
+** if the RHS of the IN operator is a list (not a subquery) then this
+** routine might decide that creating an ephemeral b-tree for membership
+** testing is too expensive and return IN_INDEX_NOOP. In that case, the
+** calling routine should implement the IN operator using a sequence
+** of Eq or Ne comparison operations.
+**
+** When the b-tree is being used for membership tests, the calling function
+** might need to know whether or not the RHS side of the IN operator
+** contains a NULL. If prRhsHasNull is not a NULL pointer and
+** if there is any chance that the (...) might contain a NULL value at
+** runtime, then a register is allocated and the register number written
+** to *prRhsHasNull. If there is no chance that the (...) contains a
+** NULL value, then *prRhsHasNull is left unchanged.
+**
+** If a register is allocated and its location stored in *prRhsHasNull, then
+** the value in that register will be NULL if the b-tree contains one or more
+** NULL values, and it will be some non-NULL value if the b-tree contains no
+** NULL values.
+**
+** If the aiMap parameter is not NULL, it must point to an array containing
+** one element for each column returned by the SELECT statement on the RHS
+** of the IN(...) operator. The i'th entry of the array is populated with the
+** offset of the index column that matches the i'th column returned by the
+** SELECT. For example, if the expression and selected index are:
+**
+** (?,?,?) IN (SELECT a, b, c FROM t1)
+** CREATE INDEX i1 ON t1(b, c, a);
+**
+** then aiMap[] is populated with {2, 0, 1}.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3FindInIndex(
+ Parse *pParse, /* Parsing context */
+ Expr *pX, /* The IN expression */
+ u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
+ int *prRhsHasNull, /* Register holding NULL status. See notes */
+ int *aiMap, /* Mapping from Index fields to RHS fields */
+ int *piTab /* OUT: index to use */
+){
+ Select *p; /* SELECT to the right of IN operator */
+ int eType = 0; /* Type of RHS table. IN_INDEX_* */
+ int iTab; /* Cursor of the RHS table */
+ int mustBeUnique; /* True if RHS must be unique */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
+
+ assert( pX->op==TK_IN );
+ mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
+ iTab = pParse->nTab++;
+
+ /* If the RHS of this IN(...) operator is a SELECT, and if it matters
+ ** whether or not the SELECT result contains NULL values, check whether
+ ** or not NULL is actually possible (it may not be, for example, due
+ ** to NOT NULL constraints in the schema). If no NULL values are possible,
+ ** set prRhsHasNull to 0 before continuing. */
+ if( prRhsHasNull && ExprUseXSelect(pX) ){
+ int i;
+ ExprList *pEList = pX->x.pSelect->pEList;
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
+ }
+ if( i==pEList->nExpr ){
+ prRhsHasNull = 0;
+ }
+ }
+
+ /* Check to see if an existing table or index can be used to
+ ** satisfy the query. This is preferable to generating a new
+ ** ephemeral table. */
+ if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
+ sqlite3 *db = pParse->db; /* Database connection */
+ Table *pTab; /* Table <table>. */
+ int iDb; /* Database idx for pTab */
+ ExprList *pEList = p->pEList;
+ int nExpr = pEList->nExpr;
+
+ assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
+ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
+ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
+ pTab = p->pSrc->a[0].pTab;
+
+ /* Code an OP_Transaction and OP_TableLock for <table>. */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 && iDb<SQLITE_MAX_DB );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ assert(v); /* sqlite3GetVdbe() has always been previously called */
+ if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
+ /* The "x IN (SELECT rowid FROM table)" case */
+ int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
+ VdbeCoverage(v);
+
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ eType = IN_INDEX_ROWID;
+ ExplainQueryPlan((pParse, 0,
+ "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
+ sqlite3VdbeJumpHere(v, iAddr);
+ }else{
+ Index *pIdx; /* Iterator variable */
+ int affinity_ok = 1;
+ int i;
+
+ /* Check that the affinity that will be used to perform each
+ ** comparison is the same as the affinity of each column in table
+ ** on the RHS of the IN operator. If it not, it is not possible to
+ ** use any index of the RHS table. */
+ for(i=0; i<nExpr && affinity_ok; i++){
+ Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
+ int iCol = pEList->a[i].pExpr->iColumn;
+ char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
+ char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
+ testcase( cmpaff==SQLITE_AFF_BLOB );
+ testcase( cmpaff==SQLITE_AFF_TEXT );
+ switch( cmpaff ){
+ case SQLITE_AFF_BLOB:
+ break;
+ case SQLITE_AFF_TEXT:
+ /* sqlite3CompareAffinity() only returns TEXT if one side or the
+ ** other has no affinity and the other side is TEXT. Hence,
+ ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
+ ** and for the term on the LHS of the IN to have no affinity. */
+ assert( idxaff==SQLITE_AFF_TEXT );
+ break;
+ default:
+ affinity_ok = sqlite3IsNumericAffinity(idxaff);
+ }
+ }
+
+ if( affinity_ok ){
+ /* Search for an existing index that will work for this IN operator */
+ for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
+ Bitmask colUsed; /* Columns of the index used */
+ Bitmask mCol; /* Mask for the current column */
+ if( pIdx->nColumn<nExpr ) continue;
+ if( pIdx->pPartIdxWhere!=0 ) continue;
+ /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
+ ** BITMASK(nExpr) without overflowing */
+ testcase( pIdx->nColumn==BMS-2 );
+ testcase( pIdx->nColumn==BMS-1 );
+ if( pIdx->nColumn>=BMS-1 ) continue;
+ if( mustBeUnique ){
+ if( pIdx->nKeyCol>nExpr
+ ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
+ ){
+ continue; /* This index is not unique over the IN RHS columns */
+ }
+ }
+
+ colUsed = 0; /* Columns of index used so far */
+ for(i=0; i<nExpr; i++){
+ Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
+ Expr *pRhs = pEList->a[i].pExpr;
+ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
+ int j;
+
+ assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
+ for(j=0; j<nExpr; j++){
+ if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
+ assert( pIdx->azColl[j] );
+ if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
+ continue;
+ }
+ break;
+ }
+ if( j==nExpr ) break;
+ mCol = MASKBIT(j);
+ if( mCol & colUsed ) break; /* Each column used only once */
+ colUsed |= mCol;
+ if( aiMap ) aiMap[i] = j;
+ }
+
+ assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
+ if( colUsed==(MASKBIT(nExpr)-1) ){
+ /* If we reach this point, that means the index pIdx is usable */
+ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ ExplainQueryPlan((pParse, 0,
+ "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "%s", pIdx->zName));
+ assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
+ eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
+
+ if( prRhsHasNull ){
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ i64 mask = (1<<nExpr)-1;
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
+ iTab, 0, 0, (u8*)&mask, P4_INT64);
+#endif
+ *prRhsHasNull = ++pParse->nMem;
+ if( nExpr==1 ){
+ sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
+ }
+ }
+ sqlite3VdbeJumpHere(v, iAddr);
+ }
+ } /* End loop over indexes */
+ } /* End if( affinity_ok ) */
+ } /* End if not an rowid index */
+ } /* End attempt to optimize using an index */
+
+ /* If no preexisting index is available for the IN clause
+ ** and IN_INDEX_NOOP is an allowed reply
+ ** and the RHS of the IN operator is a list, not a subquery
+ ** and the RHS is not constant or has two or fewer terms,
+ ** then it is not worth creating an ephemeral table to evaluate
+ ** the IN operator so return IN_INDEX_NOOP.
+ */
+ if( eType==0
+ && (inFlags & IN_INDEX_NOOP_OK)
+ && ExprUseXList(pX)
+ && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
+ ){
+ pParse->nTab--; /* Back out the allocation of the unused cursor */
+ iTab = -1; /* Cursor is not allocated */
+ eType = IN_INDEX_NOOP;
+ }
+
+ if( eType==0 ){
+ /* Could not find an existing table or index to use as the RHS b-tree.
+ ** We will have to generate an ephemeral table to do the job.
+ */
+ u32 savedNQueryLoop = pParse->nQueryLoop;
+ int rMayHaveNull = 0;
+ eType = IN_INDEX_EPH;
+ if( inFlags & IN_INDEX_LOOP ){
+ pParse->nQueryLoop = 0;
+ }else if( prRhsHasNull ){
+ *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
+ }
+ assert( pX->op==TK_IN );
+ sqlite3CodeRhsOfIN(pParse, pX, iTab);
+ if( rMayHaveNull ){
+ sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
+ }
+ pParse->nQueryLoop = savedNQueryLoop;
+ }
+
+ if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
+ int i, n;
+ n = sqlite3ExprVectorSize(pX->pLeft);
+ for(i=0; i<n; i++) aiMap[i] = i;
+ }
+ *piTab = iTab;
+ return eType;
+}
+#endif
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Argument pExpr is an (?, ?...) IN(...) expression. This
+** function allocates and returns a nul-terminated string containing
+** the affinities to be used for each column of the comparison.
+**
+** It is the responsibility of the caller to ensure that the returned
+** string is eventually freed using sqlite3DbFree().
+*/
+static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
+ Expr *pLeft = pExpr->pLeft;
+ int nVal = sqlite3ExprVectorSize(pLeft);
+ Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
+ char *zRet;
+
+ assert( pExpr->op==TK_IN );
+ zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
+ if( zRet ){
+ int i;
+ for(i=0; i<nVal; i++){
+ Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
+ char a = sqlite3ExprAffinity(pA);
+ if( pSelect ){
+ zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
+ }else{
+ zRet[i] = a;
+ }
+ }
+ zRet[nVal] = '\0';
+ }
+ return zRet;
+}
+#endif
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Load the Parse object passed as the first argument with an error
+** message of the form:
+**
+** "sub-select returns N columns - expected M"
+*/
+SQLITE_PRIVATE void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
+ if( pParse->nErr==0 ){
+ const char *zFmt = "sub-select returns %d columns - expected %d";
+ sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
+ }
+}
+#endif
+
+/*
+** Expression pExpr is a vector that has been used in a context where
+** it is not permitted. If pExpr is a sub-select vector, this routine
+** loads the Parse object with a message of the form:
+**
+** "sub-select returns N columns - expected 1"
+**
+** Or, if it is a regular scalar vector:
+**
+** "row value misused"
+*/
+SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( ExprUseXSelect(pExpr) ){
+ sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
+ }else
+#endif
+ {
+ sqlite3ErrorMsg(pParse, "row value misused");
+ }
+}
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate code that will construct an ephemeral table containing all terms
+** in the RHS of an IN operator. The IN operator can be in either of two
+** forms:
+**
+** x IN (4,5,11) -- IN operator with list on right-hand side
+** x IN (SELECT a FROM b) -- IN operator with subquery on the right
+**
+** The pExpr parameter is the IN operator. The cursor number for the
+** constructed ephermeral table is returned. The first time the ephemeral
+** table is computed, the cursor number is also stored in pExpr->iTable,
+** however the cursor number returned might not be the same, as it might
+** have been duplicated using OP_OpenDup.
+**
+** If the LHS expression ("x" in the examples) is a column value, or
+** the SELECT statement returns a column value, then the affinity of that
+** column is used to build the index keys. If both 'x' and the
+** SELECT... statement are columns, then numeric affinity is used
+** if either column has NUMERIC or INTEGER affinity. If neither
+** 'x' nor the SELECT... statement are columns, then numeric affinity
+** is used.
+*/
+SQLITE_PRIVATE void sqlite3CodeRhsOfIN(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The IN operator */
+ int iTab /* Use this cursor number */
+){
+ int addrOnce = 0; /* Address of the OP_Once instruction at top */
+ int addr; /* Address of OP_OpenEphemeral instruction */
+ Expr *pLeft; /* the LHS of the IN operator */
+ KeyInfo *pKeyInfo = 0; /* Key information */
+ int nVal; /* Size of vector pLeft */
+ Vdbe *v; /* The prepared statement under construction */
+
+ v = pParse->pVdbe;
+ assert( v!=0 );
+
+ /* The evaluation of the IN must be repeated every time it
+ ** is encountered if any of the following is true:
+ **
+ ** * The right-hand side is a correlated subquery
+ ** * The right-hand side is an expression list containing variables
+ ** * We are inside a trigger
+ **
+ ** If all of the above are false, then we can compute the RHS just once
+ ** and reuse it many names.
+ */
+ if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
+ /* Reuse of the RHS is allowed */
+ /* If this routine has already been coded, but the previous code
+ ** might not have been invoked yet, so invoke it now as a subroutine.
+ */
+ if( ExprHasProperty(pExpr, EP_Subrtn) ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ if( ExprUseXSelect(pExpr) ){
+ ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
+ pExpr->x.pSelect->selId));
+ }
+ assert( ExprUseYSub(pExpr) );
+ sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr);
+ assert( iTab!=pExpr->iTable );
+ sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
+ sqlite3VdbeJumpHere(v, addrOnce);
+ return;
+ }
+
+ /* Begin coding the subroutine */
+ assert( !ExprUseYWin(pExpr) );
+ ExprSetProperty(pExpr, EP_Subrtn);
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ pExpr->y.sub.regReturn = ++pParse->nMem;
+ pExpr->y.sub.iAddr =
+ sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
+
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+
+ /* Check to see if this is a vector IN operator */
+ pLeft = pExpr->pLeft;
+ nVal = sqlite3ExprVectorSize(pLeft);
+
+ /* Construct the ephemeral table that will contain the content of
+ ** RHS of the IN operator.
+ */
+ pExpr->iTable = iTab;
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ if( ExprUseXSelect(pExpr) ){
+ VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
+ }else{
+ VdbeComment((v, "RHS of IN operator"));
+ }
+#endif
+ pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
+
+ if( ExprUseXSelect(pExpr) ){
+ /* Case 1: expr IN (SELECT ...)
+ **
+ ** Generate code to write the results of the select into the temporary
+ ** table allocated and opened above.
+ */
+ Select *pSelect = pExpr->x.pSelect;
+ ExprList *pEList = pSelect->pEList;
+
+ ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
+ addrOnce?"":"CORRELATED ", pSelect->selId
+ ));
+ /* If the LHS and RHS of the IN operator do not match, that
+ ** error will have been caught long before we reach this point. */
+ if( ALWAYS(pEList->nExpr==nVal) ){
+ Select *pCopy;
+ SelectDest dest;
+ int i;
+ int rc;
+ sqlite3SelectDestInit(&dest, SRT_Set, iTab);
+ dest.zAffSdst = exprINAffinity(pParse, pExpr);
+ pSelect->iLimit = 0;
+ testcase( pSelect->selFlags & SF_Distinct );
+ testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
+ pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
+ rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
+ sqlite3SelectDelete(pParse->db, pCopy);
+ sqlite3DbFree(pParse->db, dest.zAffSdst);
+ if( rc ){
+ sqlite3KeyInfoUnref(pKeyInfo);
+ return;
+ }
+ assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
+ assert( pEList!=0 );
+ assert( pEList->nExpr>0 );
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
+ for(i=0; i<nVal; i++){
+ Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
+ pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
+ pParse, p, pEList->a[i].pExpr
+ );
+ }
+ }
+ }else if( ALWAYS(pExpr->x.pList!=0) ){
+ /* Case 2: expr IN (exprlist)
+ **
+ ** For each expression, build an index key from the evaluation and
+ ** store it in the temporary table. If <expr> is a column, then use
+ ** that columns affinity when building index keys. If <expr> is not
+ ** a column, use numeric affinity.
+ */
+ char affinity; /* Affinity of the LHS of the IN */
+ int i;
+ ExprList *pList = pExpr->x.pList;
+ struct ExprList_item *pItem;
+ int r1, r2;
+ affinity = sqlite3ExprAffinity(pLeft);
+ if( affinity<=SQLITE_AFF_NONE ){
+ affinity = SQLITE_AFF_BLOB;
+ }else if( affinity==SQLITE_AFF_REAL ){
+ affinity = SQLITE_AFF_NUMERIC;
+ }
+ if( pKeyInfo ){
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
+ pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
+ }
+
+ /* Loop through each expression in <exprlist>. */
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempReg(pParse);
+ for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
+ Expr *pE2 = pItem->pExpr;
+
+ /* If the expression is not constant then we will need to
+ ** disable the test that was generated above that makes sure
+ ** this code only executes once. Because for a non-constant
+ ** expression we need to rerun this code each time.
+ */
+ if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
+ sqlite3VdbeChangeToNoop(v, addrOnce-1);
+ sqlite3VdbeChangeToNoop(v, addrOnce);
+ ExprClearProperty(pExpr, EP_Subrtn);
+ addrOnce = 0;
+ }
+
+ /* Evaluate the expression and insert it into the temp table */
+ sqlite3ExprCode(pParse, pE2, r1);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
+ }
+ if( addrOnce ){
+ sqlite3VdbeJumpHere(v, addrOnce);
+ /* Subroutine return */
+ assert( ExprUseYSub(pExpr) );
+ assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
+ || pParse->nErr );
+ sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr, 1);
+ VdbeCoverage(v);
+ sqlite3ClearTempRegCache(pParse);
+ }
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+/*
+** Generate code for scalar subqueries used as a subquery expression
+** or EXISTS operator:
+**
+** (SELECT a FROM b) -- subquery
+** EXISTS (SELECT a FROM b) -- EXISTS subquery
+**
+** The pExpr parameter is the SELECT or EXISTS operator to be coded.
+**
+** Return the register that holds the result. For a multi-column SELECT,
+** the result is stored in a contiguous array of registers and the
+** return value is the register of the left-most result column.
+** Return 0 if an error occurs.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
+ int addrOnce = 0; /* Address of OP_Once at top of subroutine */
+ int rReg = 0; /* Register storing resulting */
+ Select *pSel; /* SELECT statement to encode */
+ SelectDest dest; /* How to deal with SELECT result */
+ int nReg; /* Registers to allocate */
+ Expr *pLimit; /* New limit expression */
+
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ if( pParse->nErr ) return 0;
+ testcase( pExpr->op==TK_EXISTS );
+ testcase( pExpr->op==TK_SELECT );
+ assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
+ assert( ExprUseXSelect(pExpr) );
+ pSel = pExpr->x.pSelect;
+
+ /* If this routine has already been coded, then invoke it as a
+ ** subroutine. */
+ if( ExprHasProperty(pExpr, EP_Subrtn) ){
+ ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
+ assert( ExprUseYSub(pExpr) );
+ sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr);
+ return pExpr->iTable;
+ }
+
+ /* Begin coding the subroutine */
+ assert( !ExprUseYWin(pExpr) );
+ assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
+ ExprSetProperty(pExpr, EP_Subrtn);
+ pExpr->y.sub.regReturn = ++pParse->nMem;
+ pExpr->y.sub.iAddr =
+ sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
+
+ /* The evaluation of the EXISTS/SELECT must be repeated every time it
+ ** is encountered if any of the following is true:
+ **
+ ** * The right-hand side is a correlated subquery
+ ** * The right-hand side is an expression list containing variables
+ ** * We are inside a trigger
+ **
+ ** If all of the above are false, then we can run this code just once
+ ** save the results, and reuse the same result on subsequent invocations.
+ */
+ if( !ExprHasProperty(pExpr, EP_VarSelect) ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+
+ /* For a SELECT, generate code to put the values for all columns of
+ ** the first row into an array of registers and return the index of
+ ** the first register.
+ **
+ ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
+ ** into a register and return that register number.
+ **
+ ** In both cases, the query is augmented with "LIMIT 1". Any
+ ** preexisting limit is discarded in place of the new LIMIT 1.
+ */
+ ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
+ addrOnce?"":"CORRELATED ", pSel->selId));
+ nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
+ sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
+ pParse->nMem += nReg;
+ if( pExpr->op==TK_SELECT ){
+ dest.eDest = SRT_Mem;
+ dest.iSdst = dest.iSDParm;
+ dest.nSdst = nReg;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
+ VdbeComment((v, "Init subquery result"));
+ }else{
+ dest.eDest = SRT_Exists;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
+ VdbeComment((v, "Init EXISTS result"));
+ }
+ if( pSel->pLimit ){
+ /* The subquery already has a limit. If the pre-existing limit is X
+ ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
+ sqlite3 *db = pParse->db;
+ pLimit = sqlite3Expr(db, TK_INTEGER, "0");
+ if( pLimit ){
+ pLimit->affExpr = SQLITE_AFF_NUMERIC;
+ pLimit = sqlite3PExpr(pParse, TK_NE,
+ sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
+ }
+ sqlite3ExprDelete(db, pSel->pLimit->pLeft);
+ pSel->pLimit->pLeft = pLimit;
+ }else{
+ /* If there is no pre-existing limit add a limit of 1 */
+ pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
+ pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
+ }
+ pSel->iLimit = 0;
+ if( sqlite3Select(pParse, pSel, &dest) ){
+ pExpr->op2 = pExpr->op;
+ pExpr->op = TK_ERROR;
+ return 0;
+ }
+ pExpr->iTable = rReg = dest.iSDParm;
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+ if( addrOnce ){
+ sqlite3VdbeJumpHere(v, addrOnce);
+ }
+
+ /* Subroutine return */
+ assert( ExprUseYSub(pExpr) );
+ assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
+ || pParse->nErr );
+ sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr, 1);
+ VdbeCoverage(v);
+ sqlite3ClearTempRegCache(pParse);
+ return rReg;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Expr pIn is an IN(...) expression. This function checks that the
+** sub-select on the RHS of the IN() operator has the same number of
+** columns as the vector on the LHS. Or, if the RHS of the IN() is not
+** a sub-query, that the LHS is a vector of size 1.
+*/
+SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
+ int nVector = sqlite3ExprVectorSize(pIn->pLeft);
+ if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
+ if( nVector!=pIn->x.pSelect->pEList->nExpr ){
+ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
+ return 1;
+ }
+ }else if( nVector!=1 ){
+ sqlite3VectorErrorMsg(pParse, pIn->pLeft);
+ return 1;
+ }
+ return 0;
+}
+#endif
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate code for an IN expression.
+**
+** x IN (SELECT ...)
+** x IN (value, value, ...)
+**
+** The left-hand side (LHS) is a scalar or vector expression. The
+** right-hand side (RHS) is an array of zero or more scalar values, or a
+** subquery. If the RHS is a subquery, the number of result columns must
+** match the number of columns in the vector on the LHS. If the RHS is
+** a list of values, the LHS must be a scalar.
+**
+** The IN operator is true if the LHS value is contained within the RHS.
+** The result is false if the LHS is definitely not in the RHS. The
+** result is NULL if the presence of the LHS in the RHS cannot be
+** determined due to NULLs.
+**
+** This routine generates code that jumps to destIfFalse if the LHS is not
+** contained within the RHS. If due to NULLs we cannot determine if the LHS
+** is contained in the RHS then jump to destIfNull. If the LHS is contained
+** within the RHS then fall through.
+**
+** See the separate in-operator.md documentation file in the canonical
+** SQLite source tree for additional information.
+*/
+static void sqlite3ExprCodeIN(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* The IN expression */
+ int destIfFalse, /* Jump here if LHS is not contained in the RHS */
+ int destIfNull /* Jump here if the results are unknown due to NULLs */
+){
+ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
+ int eType; /* Type of the RHS */
+ int rLhs; /* Register(s) holding the LHS values */
+ int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
+ Vdbe *v; /* Statement under construction */
+ int *aiMap = 0; /* Map from vector field to index column */
+ char *zAff = 0; /* Affinity string for comparisons */
+ int nVector; /* Size of vectors for this IN operator */
+ int iDummy; /* Dummy parameter to exprCodeVector() */
+ Expr *pLeft; /* The LHS of the IN operator */
+ int i; /* loop counter */
+ int destStep2; /* Where to jump when NULLs seen in step 2 */
+ int destStep6 = 0; /* Start of code for Step 6 */
+ int addrTruthOp; /* Address of opcode that determines the IN is true */
+ int destNotNull; /* Jump here if a comparison is not true in step 6 */
+ int addrTop; /* Top of the step-6 loop */
+ int iTab = 0; /* Index to use */
+ u8 okConstFactor = pParse->okConstFactor;
+
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ pLeft = pExpr->pLeft;
+ if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
+ zAff = exprINAffinity(pParse, pExpr);
+ nVector = sqlite3ExprVectorSize(pExpr->pLeft);
+ aiMap = (int*)sqlite3DbMallocZero(
+ pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
+ );
+ if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
+
+ /* Attempt to compute the RHS. After this step, if anything other than
+ ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
+ ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
+ ** the RHS has not yet been coded. */
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* OOM detected prior to this routine */
+ VdbeNoopComment((v, "begin IN expr"));
+ eType = sqlite3FindInIndex(pParse, pExpr,
+ IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
+ destIfFalse==destIfNull ? 0 : &rRhsHasNull,
+ aiMap, &iTab);
+
+ assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
+ || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
+ );
+#ifdef SQLITE_DEBUG
+ /* Confirm that aiMap[] contains nVector integer values between 0 and
+ ** nVector-1. */
+ for(i=0; i<nVector; i++){
+ int j, cnt;
+ for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
+ assert( cnt==1 );
+ }
+#endif
+
+ /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
+ ** vector, then it is stored in an array of nVector registers starting
+ ** at r1.
+ **
+ ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
+ ** so that the fields are in the same order as an existing index. The
+ ** aiMap[] array contains a mapping from the original LHS field order to
+ ** the field order that matches the RHS index.
+ **
+ ** Avoid factoring the LHS of the IN(...) expression out of the loop,
+ ** even if it is constant, as OP_Affinity may be used on the register
+ ** by code generated below. */
+ assert( pParse->okConstFactor==okConstFactor );
+ pParse->okConstFactor = 0;
+ rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
+ pParse->okConstFactor = okConstFactor;
+ for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
+ if( i==nVector ){
+ /* LHS fields are not reordered */
+ rLhs = rLhsOrig;
+ }else{
+ /* Need to reorder the LHS fields according to aiMap */
+ rLhs = sqlite3GetTempRange(pParse, nVector);
+ for(i=0; i<nVector; i++){
+ sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
+ }
+ }
+
+ /* If sqlite3FindInIndex() did not find or create an index that is
+ ** suitable for evaluating the IN operator, then evaluate using a
+ ** sequence of comparisons.
+ **
+ ** This is step (1) in the in-operator.md optimized algorithm.
+ */
+ if( eType==IN_INDEX_NOOP ){
+ ExprList *pList;
+ CollSeq *pColl;
+ int labelOk = sqlite3VdbeMakeLabel(pParse);
+ int r2, regToFree;
+ int regCkNull = 0;
+ int ii;
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
+ if( destIfNull!=destIfFalse ){
+ regCkNull = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
+ }
+ for(ii=0; ii<pList->nExpr; ii++){
+ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
+ if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
+ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
+ }
+ sqlite3ReleaseTempReg(pParse, regToFree);
+ if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
+ int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
+ sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
+ (void*)pColl, P4_COLLSEQ);
+ VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
+ VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
+ VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
+ VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
+ sqlite3VdbeChangeP5(v, zAff[0]);
+ }else{
+ int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
+ assert( destIfNull==destIfFalse );
+ sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
+ (void*)pColl, P4_COLLSEQ);
+ VdbeCoverageIf(v, op==OP_Ne);
+ VdbeCoverageIf(v, op==OP_IsNull);
+ sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
+ }
+ }
+ if( regCkNull ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, destIfFalse);
+ }
+ sqlite3VdbeResolveLabel(v, labelOk);
+ sqlite3ReleaseTempReg(pParse, regCkNull);
+ goto sqlite3ExprCodeIN_finished;
+ }
+
+ /* Step 2: Check to see if the LHS contains any NULL columns. If the
+ ** LHS does contain NULLs then the result must be either FALSE or NULL.
+ ** We will then skip the binary search of the RHS.
+ */
+ if( destIfNull==destIfFalse ){
+ destStep2 = destIfFalse;
+ }else{
+ destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
+ }
+ for(i=0; i<nVector; i++){
+ Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
+ if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
+ if( sqlite3ExprCanBeNull(p) ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
+ VdbeCoverage(v);
+ }
+ }
+
+ /* Step 3. The LHS is now known to be non-NULL. Do the binary search
+ ** of the RHS using the LHS as a probe. If found, the result is
+ ** true.
+ */
+ if( eType==IN_INDEX_ROWID ){
+ /* In this case, the RHS is the ROWID of table b-tree and so we also
+ ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
+ ** into a single opcode. */
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
+ VdbeCoverage(v);
+ addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
+ }else{
+ sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
+ if( destIfFalse==destIfNull ){
+ /* Combine Step 3 and Step 5 into a single opcode */
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
+ rLhs, nVector); VdbeCoverage(v);
+ goto sqlite3ExprCodeIN_finished;
+ }
+ /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
+ addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
+ rLhs, nVector); VdbeCoverage(v);
+ }
+
+ /* Step 4. If the RHS is known to be non-NULL and we did not find
+ ** an match on the search above, then the result must be FALSE.
+ */
+ if( rRhsHasNull && nVector==1 ){
+ sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
+ VdbeCoverage(v);
+ }
+
+ /* Step 5. If we do not care about the difference between NULL and
+ ** FALSE, then just return false.
+ */
+ if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
+
+ /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
+ ** If any comparison is NULL, then the result is NULL. If all
+ ** comparisons are FALSE then the final result is FALSE.
+ **
+ ** For a scalar LHS, it is sufficient to check just the first row
+ ** of the RHS.
+ */
+ if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
+ VdbeCoverage(v);
+ if( nVector>1 ){
+ destNotNull = sqlite3VdbeMakeLabel(pParse);
+ }else{
+ /* For nVector==1, combine steps 6 and 7 by immediately returning
+ ** FALSE if the first comparison is not NULL */
+ destNotNull = destIfFalse;
+ }
+ for(i=0; i<nVector; i++){
+ Expr *p;
+ CollSeq *pColl;
+ int r3 = sqlite3GetTempReg(pParse);
+ p = sqlite3VectorFieldSubexpr(pLeft, i);
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
+ sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
+ (void*)pColl, P4_COLLSEQ);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, r3);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
+ if( nVector>1 ){
+ sqlite3VdbeResolveLabel(v, destNotNull);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
+ VdbeCoverage(v);
+
+ /* Step 7: If we reach this point, we know that the result must
+ ** be false. */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
+ }
+
+ /* Jumps here in order to return true. */
+ sqlite3VdbeJumpHere(v, addrTruthOp);
+
+sqlite3ExprCodeIN_finished:
+ if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
+ VdbeComment((v, "end IN expr"));
+sqlite3ExprCodeIN_oom_error:
+ sqlite3DbFree(pParse->db, aiMap);
+ sqlite3DbFree(pParse->db, zAff);
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** Generate an instruction that will put the floating point
+** value described by z[0..n-1] into register iMem.
+**
+** The z[] string will probably not be zero-terminated. But the
+** z[n] character is guaranteed to be something that does not look
+** like the continuation of the number.
+*/
+static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
+ if( ALWAYS(z!=0) ){
+ double value;
+ sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
+ assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
+ if( negateFlag ) value = -value;
+ sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
+ }
+}
+#endif
+
+
+/*
+** Generate an instruction that will put the integer describe by
+** text z[0..n-1] into register iMem.
+**
+** Expr.u.zToken is always UTF8 and zero-terminated.
+*/
+static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
+ Vdbe *v = pParse->pVdbe;
+ if( pExpr->flags & EP_IntValue ){
+ int i = pExpr->u.iValue;
+ assert( i>=0 );
+ if( negFlag ) i = -i;
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
+ }else{
+ int c;
+ i64 value;
+ const char *z = pExpr->u.zToken;
+ assert( z!=0 );
+ c = sqlite3DecOrHexToI64(z, &value);
+ if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
+#else
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( sqlite3_strnicmp(z,"0x",2)==0 ){
+ sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
+ negFlag?"-":"",pExpr);
+ }else
+#endif
+ {
+ codeReal(v, z, negFlag, iMem);
+ }
+#endif
+ }else{
+ if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
+ sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
+ }
+ }
+}
+
+
+/* Generate code that will load into register regOut a value that is
+** appropriate for the iIdxCol-th column of index pIdx.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(
+ Parse *pParse, /* The parsing context */
+ Index *pIdx, /* The index whose column is to be loaded */
+ int iTabCur, /* Cursor pointing to a table row */
+ int iIdxCol, /* The column of the index to be loaded */
+ int regOut /* Store the index column value in this register */
+){
+ i16 iTabCol = pIdx->aiColumn[iIdxCol];
+ if( iTabCol==XN_EXPR ){
+ assert( pIdx->aColExpr );
+ assert( pIdx->aColExpr->nExpr>iIdxCol );
+ pParse->iSelfTab = iTabCur + 1;
+ sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
+ pParse->iSelfTab = 0;
+ }else{
+ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
+ iTabCol, regOut);
+ }
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/*
+** Generate code that will compute the value of generated column pCol
+** and store the result in register regOut
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table containing the generated column */
+ Column *pCol, /* The generated column */
+ int regOut /* Put the result in this register */
+){
+ int iAddr;
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( pParse->iSelfTab!=0 );
+ if( pParse->iSelfTab>0 ){
+ iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
+ }else{
+ iAddr = 0;
+ }
+ sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
+ if( pCol->affinity>=SQLITE_AFF_TEXT ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
+ }
+ if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
+}
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+
+/*
+** Generate code to extract the value of the iCol-th column of a table.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(
+ Vdbe *v, /* Parsing context */
+ Table *pTab, /* The table containing the value */
+ int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
+ int iCol, /* Index of the column to extract */
+ int regOut /* Extract the value into this register */
+){
+ Column *pCol;
+ assert( v!=0 );
+ if( pTab==0 ){
+ sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
+ return;
+ }
+ if( iCol<0 || iCol==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
+ VdbeComment((v, "%s.rowid", pTab->zName));
+ }else{
+ int op;
+ int x;
+ if( IsVirtual(pTab) ){
+ op = OP_VColumn;
+ x = iCol;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
+ Parse *pParse = sqlite3VdbeParser(v);
+ if( pCol->colFlags & COLFLAG_BUSY ){
+ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
+ pCol->zCnName);
+ }else{
+ int savedSelfTab = pParse->iSelfTab;
+ pCol->colFlags |= COLFLAG_BUSY;
+ pParse->iSelfTab = iTabCur+1;
+ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
+ pParse->iSelfTab = savedSelfTab;
+ pCol->colFlags &= ~COLFLAG_BUSY;
+ }
+ return;
+#endif
+ }else if( !HasRowid(pTab) ){
+ testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
+ x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
+ op = OP_Column;
+ }else{
+ x = sqlite3TableColumnToStorage(pTab,iCol);
+ testcase( x!=iCol );
+ op = OP_Column;
+ }
+ sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
+ sqlite3ColumnDefault(v, pTab, iCol, regOut);
+ }
+}
+
+/*
+** Generate code that will extract the iColumn-th column from
+** table pTab and store the column value in register iReg.
+**
+** There must be an open cursor to pTab in iTable when this routine
+** is called. If iColumn<0 then code is generated that extracts the rowid.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Description of the table we are reading from */
+ int iColumn, /* Index of the table column */
+ int iTable, /* The cursor pointing to the table */
+ int iReg, /* Store results here */
+ u8 p5 /* P5 value for OP_Column + FLAGS */
+){
+ assert( pParse->pVdbe!=0 );
+ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
+ if( p5 ){
+ VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
+ if( pOp->opcode==OP_Column ) pOp->p5 = p5;
+ }
+ return iReg;
+}
+
+/*
+** Generate code to move content from registers iFrom...iFrom+nReg-1
+** over to iTo..iTo+nReg-1.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
+}
+
+/*
+** Convert a scalar expression node to a TK_REGISTER referencing
+** register iReg. The caller must ensure that iReg already contains
+** the correct value for the expression.
+*/
+static void exprToRegister(Expr *pExpr, int iReg){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
+ if( NEVER(p==0) ) return;
+ p->op2 = p->op;
+ p->op = TK_REGISTER;
+ p->iTable = iReg;
+ ExprClearProperty(p, EP_Skip);
+}
+
+/*
+** Evaluate an expression (either a vector or a scalar expression) and store
+** the result in continguous temporary registers. Return the index of
+** the first register used to store the result.
+**
+** If the returned result register is a temporary scalar, then also write
+** that register number into *piFreeable. If the returned result register
+** is not a temporary or if the expression is a vector set *piFreeable
+** to 0.
+*/
+static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
+ int iResult;
+ int nResult = sqlite3ExprVectorSize(p);
+ if( nResult==1 ){
+ iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
+ }else{
+ *piFreeable = 0;
+ if( p->op==TK_SELECT ){
+#if SQLITE_OMIT_SUBQUERY
+ iResult = 0;
+#else
+ iResult = sqlite3CodeSubselect(pParse, p);
+#endif
+ }else{
+ int i;
+ iResult = pParse->nMem+1;
+ pParse->nMem += nResult;
+ assert( ExprUseXList(p) );
+ for(i=0; i<nResult; i++){
+ sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
+ }
+ }
+ }
+ return iResult;
+}
+
+/*
+** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
+** so that a subsequent copy will not be merged into this one.
+*/
+static void setDoNotMergeFlagOnCopy(Vdbe *v){
+ if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
+ sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */
+ }
+}
+
+/*
+** Generate code to implement special SQL functions that are implemented
+** in-line rather than by using the usual callbacks.
+*/
+static int exprCodeInlineFunction(
+ Parse *pParse, /* Parsing context */
+ ExprList *pFarg, /* List of function arguments */
+ int iFuncId, /* Function ID. One of the INTFUNC_... values */
+ int target /* Store function result in this register */
+){
+ int nFarg;
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( pFarg!=0 );
+ nFarg = pFarg->nExpr;
+ assert( nFarg>0 ); /* All in-line functions have at least one argument */
+ switch( iFuncId ){
+ case INLINEFUNC_coalesce: {
+ /* Attempt a direct implementation of the built-in COALESCE() and
+ ** IFNULL() functions. This avoids unnecessary evaluation of
+ ** arguments past the first non-NULL argument.
+ */
+ int endCoalesce = sqlite3VdbeMakeLabel(pParse);
+ int i;
+ assert( nFarg>=2 );
+ sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
+ for(i=1; i<nFarg; i++){
+ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
+ VdbeCoverage(v);
+ sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
+ }
+ setDoNotMergeFlagOnCopy(v);
+ sqlite3VdbeResolveLabel(v, endCoalesce);
+ break;
+ }
+ case INLINEFUNC_iif: {
+ Expr caseExpr;
+ memset(&caseExpr, 0, sizeof(caseExpr));
+ caseExpr.op = TK_CASE;
+ caseExpr.x.pList = pFarg;
+ return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
+ }
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ case INLINEFUNC_sqlite_offset: {
+ Expr *pArg = pFarg->a[0].pExpr;
+ if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
+ sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ break;
+ }
+#endif
+ default: {
+ /* The UNLIKELY() function is a no-op. The result is the value
+ ** of the first argument.
+ */
+ assert( nFarg==1 || nFarg==2 );
+ target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
+ break;
+ }
+
+ /***********************************************************************
+ ** Test-only SQL functions that are only usable if enabled
+ ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
+ */
+#if !defined(SQLITE_UNTESTABLE)
+ case INLINEFUNC_expr_compare: {
+ /* Compare two expressions using sqlite3ExprCompare() */
+ assert( nFarg==2 );
+ sqlite3VdbeAddOp2(v, OP_Integer,
+ sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
+ target);
+ break;
+ }
+
+ case INLINEFUNC_expr_implies_expr: {
+ /* Compare two expressions using sqlite3ExprImpliesExpr() */
+ assert( nFarg==2 );
+ sqlite3VdbeAddOp2(v, OP_Integer,
+ sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
+ target);
+ break;
+ }
+
+ case INLINEFUNC_implies_nonnull_row: {
+ /* REsult of sqlite3ExprImpliesNonNullRow() */
+ Expr *pA1;
+ assert( nFarg==2 );
+ pA1 = pFarg->a[1].pExpr;
+ if( pA1->op==TK_COLUMN ){
+ sqlite3VdbeAddOp2(v, OP_Integer,
+ sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
+ target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ break;
+ }
+
+ case INLINEFUNC_affinity: {
+ /* The AFFINITY() function evaluates to a string that describes
+ ** the type affinity of the argument. This is used for testing of
+ ** the SQLite type logic.
+ */
+ const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
+ char aff;
+ assert( nFarg==1 );
+ aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
+ sqlite3VdbeLoadString(v, target,
+ (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
+ break;
+ }
+#endif /* !defined(SQLITE_UNTESTABLE) */
+ }
+ return target;
+}
+
+
+/*
+** Generate code into the current Vdbe to evaluate the given
+** expression. Attempt to store the results in register "target".
+** Return the register where results are stored.
+**
+** With this routine, there is no guarantee that results will
+** be stored in target. The result might be stored in some other
+** register if it is convenient to do so. The calling function
+** must check the return code and move the results to the desired
+** register.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
+ Vdbe *v = pParse->pVdbe; /* The VM under construction */
+ int op; /* The opcode being coded */
+ int inReg = target; /* Results stored in register inReg */
+ int regFree1 = 0; /* If non-zero free this temporary register */
+ int regFree2 = 0; /* If non-zero free this temporary register */
+ int r1, r2; /* Various register numbers */
+ Expr tempX; /* Temporary expression node */
+ int p5 = 0;
+
+ assert( target>0 && target<=pParse->nMem );
+ assert( v!=0 );
+
+expr_code_doover:
+ if( pExpr==0 ){
+ op = TK_NULL;
+ }else{
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ op = pExpr->op;
+ }
+ switch( op ){
+ case TK_AGG_COLUMN: {
+ AggInfo *pAggInfo = pExpr->pAggInfo;
+ struct AggInfo_col *pCol;
+ assert( pAggInfo!=0 );
+ assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
+ pCol = &pAggInfo->aCol[pExpr->iAgg];
+ if( !pAggInfo->directMode ){
+ assert( pCol->iMem>0 );
+ return pCol->iMem;
+ }else if( pAggInfo->useSortingIdx ){
+ Table *pTab = pCol->pTab;
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
+ pCol->iSorterColumn, target);
+ if( pCol->iColumn<0 ){
+ VdbeComment((v,"%s.rowid",pTab->zName));
+ }else{
+ VdbeComment((v,"%s.%s",
+ pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
+ if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ }
+ }
+ return target;
+ }
+ /* Otherwise, fall thru into the TK_COLUMN case */
+ /* no break */ deliberate_fall_through
+ }
+ case TK_COLUMN: {
+ int iTab = pExpr->iTable;
+ int iReg;
+ if( ExprHasProperty(pExpr, EP_FixedCol) ){
+ /* This COLUMN expression is really a constant due to WHERE clause
+ ** constraints, and that constant is coded by the pExpr->pLeft
+ ** expresssion. However, make sure the constant has the correct
+ ** datatype by applying the Affinity of the table column to the
+ ** constant.
+ */
+ int aff;
+ iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
+ assert( ExprUseYTab(pExpr) );
+ if( pExpr->y.pTab ){
+ aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
+ }else{
+ aff = pExpr->affExpr;
+ }
+ if( aff>SQLITE_AFF_BLOB ){
+ static const char zAff[] = "B\000C\000D\000E";
+ assert( SQLITE_AFF_BLOB=='A' );
+ assert( SQLITE_AFF_TEXT=='B' );
+ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
+ &zAff[(aff-'B')*2], P4_STATIC);
+ }
+ return iReg;
+ }
+ if( iTab<0 ){
+ if( pParse->iSelfTab<0 ){
+ /* Other columns in the same row for CHECK constraints or
+ ** generated columns or for inserting into partial index.
+ ** The row is unpacked into registers beginning at
+ ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
+ ** immediately prior to the first column.
+ */
+ Column *pCol;
+ Table *pTab;
+ int iSrc;
+ int iCol = pExpr->iColumn;
+ assert( ExprUseYTab(pExpr) );
+ pTab = pExpr->y.pTab;
+ assert( pTab!=0 );
+ assert( iCol>=XN_ROWID );
+ assert( iCol<pTab->nCol );
+ if( iCol<0 ){
+ return -1-pParse->iSelfTab;
+ }
+ pCol = pTab->aCol + iCol;
+ testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
+ iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pCol->colFlags & COLFLAG_GENERATED ){
+ if( pCol->colFlags & COLFLAG_BUSY ){
+ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
+ pCol->zCnName);
+ return 0;
+ }
+ pCol->colFlags |= COLFLAG_BUSY;
+ if( pCol->colFlags & COLFLAG_NOTAVAIL ){
+ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
+ }
+ pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
+ return iSrc;
+ }else
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+ if( pCol->affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ return target;
+ }else{
+ return iSrc;
+ }
+ }else{
+ /* Coding an expression that is part of an index where column names
+ ** in the index refer to the table to which the index belongs */
+ iTab = pParse->iSelfTab - 1;
+ }
+ }
+ assert( ExprUseYTab(pExpr) );
+ iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
+ pExpr->iColumn, iTab, target,
+ pExpr->op2);
+ if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
+ }
+ return iReg;
+ }
+ case TK_INTEGER: {
+ codeInteger(pParse, pExpr, 0, target);
+ return target;
+ }
+ case TK_TRUEFALSE: {
+ sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
+ return target;
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ case TK_FLOAT: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ codeReal(v, pExpr->u.zToken, 0, target);
+ return target;
+ }
+#endif
+ case TK_STRING: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
+ return target;
+ }
+ default: {
+ /* Make NULL the default case so that if a bug causes an illegal
+ ** Expr node to be passed into this function, it will be handled
+ ** sanely and not crash. But keep the assert() to bring the problem
+ ** to the attention of the developers. */
+ assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ return target;
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB: {
+ int n;
+ const char *z;
+ char *zBlob;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
+ assert( pExpr->u.zToken[1]=='\'' );
+ z = &pExpr->u.zToken[2];
+ n = sqlite3Strlen30(z) - 1;
+ assert( z[n]=='\'' );
+ zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
+ sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
+ return target;
+ }
+#endif
+ case TK_VARIABLE: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken!=0 );
+ assert( pExpr->u.zToken[0]!=0 );
+ sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
+ if( pExpr->u.zToken[1]!=0 ){
+ const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
+ assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
+ pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
+ sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
+ }
+ return target;
+ }
+ case TK_REGISTER: {
+ return pExpr->iTable;
+ }
+#ifndef SQLITE_OMIT_CAST
+ case TK_CAST: {
+ /* Expressions of the form: CAST(pLeft AS token) */
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ if( inReg!=target ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
+ inReg = target;
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3VdbeAddOp2(v, OP_Cast, target,
+ sqlite3AffinityType(pExpr->u.zToken, 0));
+ return inReg;
+ }
+#endif /* SQLITE_OMIT_CAST */
+ case TK_IS:
+ case TK_ISNOT:
+ op = (op==TK_IS) ? TK_EQ : TK_NE;
+ p5 = SQLITE_NULLEQ;
+ /* fall-through */
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ Expr *pLeft = pExpr->pLeft;
+ if( sqlite3ExprIsVector(pLeft) ){
+ codeVectorCompare(pParse, pExpr, target, op, p5);
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
+ codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
+ sqlite3VdbeCurrentAddr(v)+2, p5,
+ ExprHasProperty(pExpr,EP_Commuted));
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
+ if( p5==SQLITE_NULLEQ ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
+ }
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ }
+ break;
+ }
+ case TK_AND:
+ case TK_OR:
+ case TK_PLUS:
+ case TK_STAR:
+ case TK_MINUS:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_SLASH:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_CONCAT: {
+ assert( TK_AND==OP_And ); testcase( op==TK_AND );
+ assert( TK_OR==OP_Or ); testcase( op==TK_OR );
+ assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
+ assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
+ assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
+ assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
+ assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
+ assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
+ assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
+ assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
+ assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ sqlite3VdbeAddOp3(v, op, r2, r1, target);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_UMINUS: {
+ Expr *pLeft = pExpr->pLeft;
+ assert( pLeft );
+ if( pLeft->op==TK_INTEGER ){
+ codeInteger(pParse, pLeft, 1, target);
+ return target;
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( pLeft->op==TK_FLOAT ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ codeReal(v, pLeft->u.zToken, 1, target);
+ return target;
+#endif
+ }else{
+ tempX.op = TK_INTEGER;
+ tempX.flags = EP_IntValue|EP_TokenOnly;
+ tempX.u.iValue = 0;
+ ExprClearVVAProperties(&tempX);
+ r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
+ sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
+ testcase( regFree2==0 );
+ }
+ break;
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
+ assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ sqlite3VdbeAddOp2(v, op, r1, inReg);
+ break;
+ }
+ case TK_TRUTH: {
+ int isTrue; /* IS TRUE or IS NOT TRUE */
+ int bNormal; /* IS TRUE or IS FALSE */
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ isTrue = sqlite3ExprTruthValue(pExpr->pRight);
+ bNormal = pExpr->op2==TK_IS;
+ testcase( isTrue && bNormal);
+ testcase( !isTrue && bNormal);
+ sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ int addr;
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ addr = sqlite3VdbeAddOp1(v, op, r1);
+ VdbeCoverageIf(v, op==TK_ISNULL);
+ VdbeCoverageIf(v, op==TK_NOTNULL);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
+ sqlite3VdbeJumpHere(v, addr);
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ AggInfo *pInfo = pExpr->pAggInfo;
+ if( pInfo==0
+ || NEVER(pExpr->iAgg<0)
+ || NEVER(pExpr->iAgg>=pInfo->nFunc)
+ ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
+ }else{
+ return pInfo->aFunc[pExpr->iAgg].iMem;
+ }
+ break;
+ }
+ case TK_FUNCTION: {
+ ExprList *pFarg; /* List of function arguments */
+ int nFarg; /* Number of function arguments */
+ FuncDef *pDef; /* The function definition object */
+ const char *zId; /* The function name */
+ u32 constMask = 0; /* Mask of function arguments that are constant */
+ int i; /* Loop counter */
+ sqlite3 *db = pParse->db; /* The database connection */
+ u8 enc = ENC(db); /* The text encoding used by this database */
+ CollSeq *pColl = 0; /* A collating sequence */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ return pExpr->y.pWin->regResult;
+ }
+#endif
+
+ if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
+ /* SQL functions can be expensive. So try to avoid running them
+ ** multiple times if we know they always give the same result */
+ return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
+ }
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
+ assert( ExprUseXList(pExpr) );
+ pFarg = pExpr->x.pList;
+ nFarg = pFarg ? pFarg->nExpr : 0;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ zId = pExpr->u.zToken;
+ pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ if( pDef==0 && pParse->explain ){
+ pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
+ }
+#endif
+ if( pDef==0 || pDef->xFinalize!=0 ){
+ sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
+ break;
+ }
+ if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
+ assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
+ assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
+ return exprCodeInlineFunction(pParse, pFarg,
+ SQLITE_PTR_TO_INT(pDef->pUserData), target);
+ }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
+ sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
+ }
+
+ for(i=0; i<nFarg; i++){
+ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
+ testcase( i==31 );
+ constMask |= MASKBIT32(i);
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
+ }
+ }
+ if( pFarg ){
+ if( constMask ){
+ r1 = pParse->nMem+1;
+ pParse->nMem += nFarg;
+ }else{
+ r1 = sqlite3GetTempRange(pParse, nFarg);
+ }
+
+ /* For length() and typeof() functions with a column argument,
+ ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
+ ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
+ ** loading.
+ */
+ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
+ u8 exprOp;
+ assert( nFarg==1 );
+ assert( pFarg->a[0].pExpr!=0 );
+ exprOp = pFarg->a[0].pExpr->op;
+ if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
+ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
+ assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
+ testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
+ pFarg->a[0].pExpr->op2 =
+ pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
+ }
+ }
+
+ sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
+ SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
+ }else{
+ r1 = 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Possibly overload the function if the first argument is
+ ** a virtual table column.
+ **
+ ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
+ ** second argument, not the first, as the argument to test to
+ ** see if it is a column in a virtual table. This is done because
+ ** the left operand of infix functions (the operand we want to
+ ** control overloading) ends up as the second argument to the
+ ** function. The expression "A glob B" is equivalent to
+ ** "glob(B,A). We want to use the A in "A glob B" to test
+ ** for function overloading. But we use the B term in "glob(B,A)".
+ */
+ if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
+ }else if( nFarg>0 ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
+ }
+#endif
+ if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ if( !pColl ) pColl = db->pDfltColl;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
+ pDef, pExpr->op2);
+ if( nFarg ){
+ if( constMask==0 ){
+ sqlite3ReleaseTempRange(pParse, r1, nFarg);
+ }else{
+ sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
+ }
+ }
+ return target;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_EXISTS:
+ case TK_SELECT: {
+ int nCol;
+ testcase( op==TK_EXISTS );
+ testcase( op==TK_SELECT );
+ if( pParse->db->mallocFailed ){
+ return 0;
+ }else if( op==TK_SELECT
+ && ALWAYS( ExprUseXSelect(pExpr) )
+ && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
+ ){
+ sqlite3SubselectError(pParse, nCol, 1);
+ }else{
+ return sqlite3CodeSubselect(pParse, pExpr);
+ }
+ break;
+ }
+ case TK_SELECT_COLUMN: {
+ int n;
+ Expr *pLeft = pExpr->pLeft;
+ if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
+ pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
+ pLeft->op2 = pParse->withinRJSubrtn;
+ }
+ assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
+ n = sqlite3ExprVectorSize(pLeft);
+ if( pExpr->iTable!=n ){
+ sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
+ pExpr->iTable, n);
+ }
+ return pLeft->iTable + pExpr->iColumn;
+ }
+ case TK_IN: {
+ int destIfFalse = sqlite3VdbeMakeLabel(pParse);
+ int destIfNull = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ sqlite3VdbeResolveLabel(v, destIfFalse);
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
+ sqlite3VdbeResolveLabel(v, destIfNull);
+ return target;
+ }
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+
+ /*
+ ** x BETWEEN y AND z
+ **
+ ** This is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** X is stored in pExpr->pLeft.
+ ** Y is stored in pExpr->pList->a[0].pExpr.
+ ** Z is stored in pExpr->pList->a[1].pExpr.
+ */
+ case TK_BETWEEN: {
+ exprCodeBetween(pParse, pExpr, target, 0, 0);
+ return target;
+ }
+ case TK_COLLATE: {
+ if( !ExprHasProperty(pExpr, EP_Collate)
+ && ALWAYS(pExpr->pLeft)
+ && pExpr->pLeft->op==TK_FUNCTION
+ ){
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ if( inReg!=target ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
+ inReg = target;
+ }
+ sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
+ return inReg;
+ }else{
+ pExpr = pExpr->pLeft;
+ goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
+ }
+ }
+ case TK_SPAN:
+ case TK_UPLUS: {
+ pExpr = pExpr->pLeft;
+ goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
+ }
+
+ case TK_TRIGGER: {
+ /* If the opcode is TK_TRIGGER, then the expression is a reference
+ ** to a column in the new.* or old.* pseudo-tables available to
+ ** trigger programs. In this case Expr.iTable is set to 1 for the
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
+ ** is set to the column of the pseudo-table to read, or to -1 to
+ ** read the rowid field.
+ **
+ ** The expression is implemented using an OP_Param opcode. The p1
+ ** parameter is set to 0 for an old.rowid reference, or to (i+1)
+ ** to reference another column of the old.* pseudo-table, where
+ ** i is the index of the column. For a new.rowid reference, p1 is
+ ** set to (n+1), where n is the number of columns in each pseudo-table.
+ ** For a reference to any other column in the new.* pseudo-table, p1
+ ** is set to (n+2+i), where n and i are as defined previously. For
+ ** example, if the table on which triggers are being fired is
+ ** declared as:
+ **
+ ** CREATE TABLE t1(a, b);
+ **
+ ** Then p1 is interpreted as follows:
+ **
+ ** p1==0 -> old.rowid p1==3 -> new.rowid
+ ** p1==1 -> old.a p1==4 -> new.a
+ ** p1==2 -> old.b p1==5 -> new.b
+ */
+ Table *pTab;
+ int iCol;
+ int p1;
+
+ assert( ExprUseYTab(pExpr) );
+ pTab = pExpr->y.pTab;
+ iCol = pExpr->iColumn;
+ p1 = pExpr->iTable * (pTab->nCol+1) + 1
+ + sqlite3TableColumnToStorage(pTab, iCol);
+
+ assert( pExpr->iTable==0 || pExpr->iTable==1 );
+ assert( iCol>=-1 && iCol<pTab->nCol );
+ assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
+ assert( p1>=0 && p1<(pTab->nCol*2+2) );
+
+ sqlite3VdbeAddOp2(v, OP_Param, p1, target);
+ VdbeComment((v, "r[%d]=%s.%s", target,
+ (pExpr->iTable ? "new" : "old"),
+ (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
+ ));
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ /* If the column has REAL affinity, it may currently be stored as an
+ ** integer. Use OP_RealAffinity to make sure it is really real.
+ **
+ ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
+ ** floating point when extracting it from the record. */
+ if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ }
+#endif
+ break;
+ }
+
+ case TK_VECTOR: {
+ sqlite3ErrorMsg(pParse, "row value misused");
+ break;
+ }
+
+ /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
+ ** that derive from the right-hand table of a LEFT JOIN. The
+ ** Expr.iTable value is the table number for the right-hand table.
+ ** The expression is only evaluated if that table is not currently
+ ** on a LEFT JOIN NULL row.
+ */
+ case TK_IF_NULL_ROW: {
+ int addrINR;
+ u8 okConstFactor = pParse->okConstFactor;
+ addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
+ /* Temporarily disable factoring of constant expressions, since
+ ** even though expressions may appear to be constant, they are not
+ ** really constant because they originate from the right-hand side
+ ** of a LEFT JOIN. */
+ pParse->okConstFactor = 0;
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ pParse->okConstFactor = okConstFactor;
+ sqlite3VdbeJumpHere(v, addrINR);
+ sqlite3VdbeChangeP3(v, addrINR, inReg);
+ break;
+ }
+
+ /*
+ ** Form A:
+ ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form B:
+ ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form A is can be transformed into the equivalent form B as follows:
+ ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
+ ** WHEN x=eN THEN rN ELSE y END
+ **
+ ** X (if it exists) is in pExpr->pLeft.
+ ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
+ ** odd. The Y is also optional. If the number of elements in x.pList
+ ** is even, then Y is omitted and the "otherwise" result is NULL.
+ ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
+ **
+ ** The result of the expression is the Ri for the first matching Ei,
+ ** or if there is no matching Ei, the ELSE term Y, or if there is
+ ** no ELSE term, NULL.
+ */
+ case TK_CASE: {
+ int endLabel; /* GOTO label for end of CASE stmt */
+ int nextCase; /* GOTO label for next WHEN clause */
+ int nExpr; /* 2x number of WHEN terms */
+ int i; /* Loop counter */
+ ExprList *pEList; /* List of WHEN terms */
+ struct ExprList_item *aListelem; /* Array of WHEN terms */
+ Expr opCompare; /* The X==Ei expression */
+ Expr *pX; /* The X expression */
+ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
+ Expr *pDel = 0;
+ sqlite3 *db = pParse->db;
+
+ assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
+ assert(pExpr->x.pList->nExpr > 0);
+ pEList = pExpr->x.pList;
+ aListelem = pEList->a;
+ nExpr = pEList->nExpr;
+ endLabel = sqlite3VdbeMakeLabel(pParse);
+ if( (pX = pExpr->pLeft)!=0 ){
+ pDel = sqlite3ExprDup(db, pX, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDel);
+ break;
+ }
+ testcase( pX->op==TK_COLUMN );
+ exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
+ testcase( regFree1==0 );
+ memset(&opCompare, 0, sizeof(opCompare));
+ opCompare.op = TK_EQ;
+ opCompare.pLeft = pDel;
+ pTest = &opCompare;
+ /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
+ ** The value in regFree1 might get SCopy-ed into the file result.
+ ** So make sure that the regFree1 register is not reused for other
+ ** purposes and possibly overwritten. */
+ regFree1 = 0;
+ }
+ for(i=0; i<nExpr-1; i=i+2){
+ if( pX ){
+ assert( pTest!=0 );
+ opCompare.pRight = aListelem[i].pExpr;
+ }else{
+ pTest = aListelem[i].pExpr;
+ }
+ nextCase = sqlite3VdbeMakeLabel(pParse);
+ testcase( pTest->op==TK_COLUMN );
+ sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
+ testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
+ sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
+ sqlite3VdbeGoto(v, endLabel);
+ sqlite3VdbeResolveLabel(v, nextCase);
+ }
+ if( (nExpr&1)!=0 ){
+ sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ sqlite3ExprDelete(db, pDel);
+ setDoNotMergeFlagOnCopy(v);
+ sqlite3VdbeResolveLabel(v, endLabel);
+ break;
+ }
+#ifndef SQLITE_OMIT_TRIGGER
+ case TK_RAISE: {
+ assert( pExpr->affExpr==OE_Rollback
+ || pExpr->affExpr==OE_Abort
+ || pExpr->affExpr==OE_Fail
+ || pExpr->affExpr==OE_Ignore
+ );
+ if( !pParse->pTriggerTab && !pParse->nested ){
+ sqlite3ErrorMsg(pParse,
+ "RAISE() may only be used within a trigger-program");
+ return 0;
+ }
+ if( pExpr->affExpr==OE_Abort ){
+ sqlite3MayAbort(pParse);
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( pExpr->affExpr==OE_Ignore ){
+ sqlite3VdbeAddOp4(
+ v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
+ VdbeCoverage(v);
+ }else{
+ sqlite3HaltConstraint(pParse,
+ pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
+ pExpr->affExpr, pExpr->u.zToken, 0, 0);
+ }
+
+ break;
+ }
+#endif
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ return inReg;
+}
+
+/*
+** Generate code that will evaluate expression pExpr just one time
+** per prepared statement execution.
+**
+** If the expression uses functions (that might throw an exception) then
+** guard them with an OP_Once opcode to ensure that the code is only executed
+** once. If no functions are involved, then factor the code out and put it at
+** the end of the prepared statement in the initialization section.
+**
+** If regDest>=0 then the result is always stored in that register and the
+** result is not reusable. If regDest<0 then this routine is free to
+** store the value whereever it wants. The register where the expression
+** is stored is returned. When regDest<0, two identical expressions might
+** code to the same register, if they do not contain function calls and hence
+** are factored out into the initialization section at the end of the
+** prepared statement.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The expression to code when the VDBE initializes */
+ int regDest /* Store the value in this register */
+){
+ ExprList *p;
+ assert( ConstFactorOk(pParse) );
+ p = pParse->pConstExpr;
+ if( regDest<0 && p ){
+ struct ExprList_item *pItem;
+ int i;
+ for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
+ if( pItem->fg.reusable
+ && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
+ ){
+ return pItem->u.iConstExprReg;
+ }
+ }
+ }
+ pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
+ if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
+ Vdbe *v = pParse->pVdbe;
+ int addr;
+ assert( v );
+ addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ pParse->okConstFactor = 0;
+ if( !pParse->db->mallocFailed ){
+ if( regDest<0 ) regDest = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pExpr, regDest);
+ }
+ pParse->okConstFactor = 1;
+ sqlite3ExprDelete(pParse->db, pExpr);
+ sqlite3VdbeJumpHere(v, addr);
+ }else{
+ p = sqlite3ExprListAppend(pParse, p, pExpr);
+ if( p ){
+ struct ExprList_item *pItem = &p->a[p->nExpr-1];
+ pItem->fg.reusable = regDest<0;
+ if( regDest<0 ) regDest = ++pParse->nMem;
+ pItem->u.iConstExprReg = regDest;
+ }
+ pParse->pConstExpr = p;
+ }
+ return regDest;
+}
+
+/*
+** Generate code to evaluate an expression and store the results
+** into a register. Return the register number where the results
+** are stored.
+**
+** If the register is a temporary register that can be deallocated,
+** then write its number into *pReg. If the result register is not
+** a temporary, then set *pReg to zero.
+**
+** If pExpr is a constant, then this routine might generate this
+** code to fill the register in the initialization section of the
+** VDBE program, in order to factor it out of the evaluation loop.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
+ int r2;
+ pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
+ if( ConstFactorOk(pParse)
+ && ALWAYS(pExpr!=0)
+ && pExpr->op!=TK_REGISTER
+ && sqlite3ExprIsConstantNotJoin(pExpr)
+ ){
+ *pReg = 0;
+ r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
+ if( r2==r1 ){
+ *pReg = r1;
+ }else{
+ sqlite3ReleaseTempReg(pParse, r1);
+ *pReg = 0;
+ }
+ }
+ return r2;
+}
+
+/*
+** Generate code that will evaluate expression pExpr and store the
+** results in register target. The results are guaranteed to appear
+** in register target.
+*/
+SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
+ int inReg;
+
+ assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ assert( target>0 && target<=pParse->nMem );
+ assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
+ if( pParse->pVdbe==0 ) return;
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
+ if( inReg!=target ){
+ u8 op;
+ if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
+ op = OP_Copy;
+ }else{
+ op = OP_SCopy;
+ }
+ sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
+ }
+}
+
+/*
+** Make a transient copy of expression pExpr and then code it using
+** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
+** except that the input expression is guaranteed to be unchanged.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
+ sqlite3 *db = pParse->db;
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
+ sqlite3ExprDelete(db, pExpr);
+}
+
+/*
+** Generate code that will evaluate expression pExpr and store the
+** results in register target. The results are guaranteed to appear
+** in register target. If the expression is constant, then this routine
+** might choose to code the expression at initialization time.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
+ if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
+ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
+ }else{
+ sqlite3ExprCodeCopy(pParse, pExpr, target);
+ }
+}
+
+/*
+** Generate code that pushes the value of every element of the given
+** expression list into a sequence of registers beginning at target.
+**
+** Return the number of elements evaluated. The number returned will
+** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
+** is defined.
+**
+** The SQLITE_ECEL_DUP flag prevents the arguments from being
+** filled using OP_SCopy. OP_Copy must be used instead.
+**
+** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
+** factored out into initialization code.
+**
+** The SQLITE_ECEL_REF flag means that expressions in the list with
+** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
+** in registers at srcReg, and so the value can be copied from there.
+** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
+** are simply omitted rather than being copied from srcReg.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* The expression list to be coded */
+ int target, /* Where to write results */
+ int srcReg, /* Source registers if SQLITE_ECEL_REF */
+ u8 flags /* SQLITE_ECEL_* flags */
+){
+ struct ExprList_item *pItem;
+ int i, j, n;
+ u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
+ Vdbe *v = pParse->pVdbe;
+ assert( pList!=0 );
+ assert( target>0 );
+ assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
+ n = pList->nExpr;
+ if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){
+ Expr *pExpr = pItem->pExpr;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pItem->fg.bSorterRef ){
+ i--;
+ n--;
+ }else
+#endif
+ if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
+ if( flags & SQLITE_ECEL_OMITREF ){
+ i--;
+ n--;
+ }else{
+ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
+ }
+ }else if( (flags & SQLITE_ECEL_FACTOR)!=0
+ && sqlite3ExprIsConstantNotJoin(pExpr)
+ ){
+ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
+ }else{
+ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
+ if( inReg!=target+i ){
+ VdbeOp *pOp;
+ if( copyOp==OP_Copy
+ && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
+ && pOp->p1+pOp->p3+1==inReg
+ && pOp->p2+pOp->p3+1==target+i
+ && pOp->p5==0 /* The do-not-merge flag must be clear */
+ ){
+ pOp->p3++;
+ }else{
+ sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
+ }
+ }
+ }
+ }
+ return n;
+}
+
+/*
+** Generate code for a BETWEEN operator.
+**
+** x BETWEEN y AND z
+**
+** The above is equivalent to
+**
+** x>=y AND x<=z
+**
+** Code it as such, taking care to do the common subexpression
+** elimination of x.
+**
+** The xJumpIf parameter determines details:
+**
+** NULL: Store the boolean result in reg[dest]
+** sqlite3ExprIfTrue: Jump to dest if true
+** sqlite3ExprIfFalse: Jump to dest if false
+**
+** The jumpIfNull parameter is ignored if xJumpIf is NULL.
+*/
+static void exprCodeBetween(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* The BETWEEN expression */
+ int dest, /* Jump destination or storage location */
+ void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
+ int jumpIfNull /* Take the jump if the BETWEEN is NULL */
+){
+ Expr exprAnd; /* The AND operator in x>=y AND x<=z */
+ Expr compLeft; /* The x>=y term */
+ Expr compRight; /* The x<=z term */
+ int regFree1 = 0; /* Temporary use register */
+ Expr *pDel = 0;
+ sqlite3 *db = pParse->db;
+
+ memset(&compLeft, 0, sizeof(Expr));
+ memset(&compRight, 0, sizeof(Expr));
+ memset(&exprAnd, 0, sizeof(Expr));
+
+ assert( ExprUseXList(pExpr) );
+ pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
+ if( db->mallocFailed==0 ){
+ exprAnd.op = TK_AND;
+ exprAnd.pLeft = &compLeft;
+ exprAnd.pRight = &compRight;
+ compLeft.op = TK_GE;
+ compLeft.pLeft = pDel;
+ compLeft.pRight = pExpr->x.pList->a[0].pExpr;
+ compRight.op = TK_LE;
+ compRight.pLeft = pDel;
+ compRight.pRight = pExpr->x.pList->a[1].pExpr;
+ exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
+ if( xJump ){
+ xJump(pParse, &exprAnd, dest, jumpIfNull);
+ }else{
+ /* Mark the expression is being from the ON or USING clause of a join
+ ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
+ ** it into the Parse.pConstExpr list. We should use a new bit for this,
+ ** for clarity, but we are out of bits in the Expr.flags field so we
+ ** have to reuse the EP_OuterON bit. Bummer. */
+ pDel->flags |= EP_OuterON;
+ sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ }
+ sqlite3ExprDelete(db, pDel);
+
+ /* Ensure adequate test coverage */
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
+ testcase( xJump==0 );
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is true but execution
+** continues straight thru if the expression is false.
+**
+** If the expression evaluates to NULL (neither true nor false), then
+** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
+**
+** This code depends on the fact that certain token values (ex: TK_EQ)
+** are the same as opcode values (ex: OP_Eq) that implement the corresponding
+** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
+** the make process cause these values to align. Assert()s in the code
+** below verify that the numbers are aligned correctly.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
+ if( NEVER(pExpr==0) ) return; /* No way this can happen */
+ assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
+ op = pExpr->op;
+ switch( op ){
+ case TK_AND:
+ case TK_OR: {
+ Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
+ if( pAlt!=pExpr ){
+ sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
+ }else if( op==TK_AND ){
+ int d2 = sqlite3VdbeMakeLabel(pParse);
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
+ jumpIfNull^SQLITE_JUMPIFNULL);
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqlite3VdbeResolveLabel(v, d2);
+ }else{
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ }
+ break;
+ }
+ case TK_NOT: {
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_TRUTH: {
+ int isNot; /* IS NOT TRUE or IS NOT FALSE */
+ int isTrue; /* IS TRUE or IS NOT TRUE */
+ testcase( jumpIfNull==0 );
+ isNot = pExpr->op2==TK_ISNOT;
+ isTrue = sqlite3ExprTruthValue(pExpr->pRight);
+ testcase( isTrue && isNot );
+ testcase( !isTrue && isNot );
+ if( isTrue ^ isNot ){
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
+ isNot ? SQLITE_JUMPIFNULL : 0);
+ }else{
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
+ isNot ? SQLITE_JUMPIFNULL : 0);
+ }
+ break;
+ }
+ case TK_IS:
+ case TK_ISNOT:
+ testcase( op==TK_IS );
+ testcase( op==TK_ISNOT );
+ op = (op==TK_IS) ? TK_EQ : TK_NE;
+ jumpIfNull = SQLITE_NULLEQ;
+ /* no break */ deliberate_fall_through
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
+ testcase( jumpIfNull==0 );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ VdbeCoverageIf(v, op==TK_ISNULL);
+ VdbeCoverageIf(v, op==TK_NOTNULL);
+ testcase( regFree1==0 );
+ break;
+ }
+ case TK_BETWEEN: {
+ testcase( jumpIfNull==0 );
+ exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_IN: {
+ int destIfFalse = sqlite3VdbeMakeLabel(pParse);
+ int destIfNull = jumpIfNull ? dest : destIfFalse;
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
+ sqlite3VdbeGoto(v, dest);
+ sqlite3VdbeResolveLabel(v, destIfFalse);
+ break;
+ }
+#endif
+ default: {
+ default_expr:
+ if( ExprAlwaysTrue(pExpr) ){
+ sqlite3VdbeGoto(v, dest);
+ }else if( ExprAlwaysFalse(pExpr) ){
+ /* No-op */
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
+ VdbeCoverage(v);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
+ }
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is false but execution
+** continues straight thru if the expression is true.
+**
+** If the expression evaluates to NULL (neither true nor false) then
+** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
+** is 0.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
+ if( pExpr==0 ) return;
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+
+ /* The value of pExpr->op and op are related as follows:
+ **
+ ** pExpr->op op
+ ** --------- ----------
+ ** TK_ISNULL OP_NotNull
+ ** TK_NOTNULL OP_IsNull
+ ** TK_NE OP_Eq
+ ** TK_EQ OP_Ne
+ ** TK_GT OP_Le
+ ** TK_LE OP_Gt
+ ** TK_GE OP_Lt
+ ** TK_LT OP_Ge
+ **
+ ** For other values of pExpr->op, op is undefined and unused.
+ ** The value of TK_ and OP_ constants are arranged such that we
+ ** can compute the mapping above using the following expression.
+ ** Assert()s verify that the computation is correct.
+ */
+ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
+
+ /* Verify correct alignment of TK_ and OP_ constants
+ */
+ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
+ assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
+ assert( pExpr->op!=TK_NE || op==OP_Eq );
+ assert( pExpr->op!=TK_EQ || op==OP_Ne );
+ assert( pExpr->op!=TK_LT || op==OP_Ge );
+ assert( pExpr->op!=TK_LE || op==OP_Gt );
+ assert( pExpr->op!=TK_GT || op==OP_Le );
+ assert( pExpr->op!=TK_GE || op==OP_Lt );
+
+ switch( pExpr->op ){
+ case TK_AND:
+ case TK_OR: {
+ Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
+ if( pAlt!=pExpr ){
+ sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
+ }else if( pExpr->op==TK_AND ){
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ }else{
+ int d2 = sqlite3VdbeMakeLabel(pParse);
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
+ jumpIfNull^SQLITE_JUMPIFNULL);
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqlite3VdbeResolveLabel(v, d2);
+ }
+ break;
+ }
+ case TK_NOT: {
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_TRUTH: {
+ int isNot; /* IS NOT TRUE or IS NOT FALSE */
+ int isTrue; /* IS TRUE or IS NOT TRUE */
+ testcase( jumpIfNull==0 );
+ isNot = pExpr->op2==TK_ISNOT;
+ isTrue = sqlite3ExprTruthValue(pExpr->pRight);
+ testcase( isTrue && isNot );
+ testcase( !isTrue && isNot );
+ if( isTrue ^ isNot ){
+ /* IS TRUE and IS NOT FALSE */
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
+ isNot ? 0 : SQLITE_JUMPIFNULL);
+
+ }else{
+ /* IS FALSE and IS NOT TRUE */
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
+ isNot ? 0 : SQLITE_JUMPIFNULL);
+ }
+ break;
+ }
+ case TK_IS:
+ case TK_ISNOT:
+ testcase( pExpr->op==TK_IS );
+ testcase( pExpr->op==TK_ISNOT );
+ op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
+ jumpIfNull = SQLITE_NULLEQ;
+ /* no break */ deliberate_fall_through
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
+ testcase( jumpIfNull==0 );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
+ testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
+ testcase( regFree1==0 );
+ break;
+ }
+ case TK_BETWEEN: {
+ testcase( jumpIfNull==0 );
+ exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_IN: {
+ if( jumpIfNull ){
+ sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
+ }else{
+ int destIfNull = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
+ sqlite3VdbeResolveLabel(v, destIfNull);
+ }
+ break;
+ }
+#endif
+ default: {
+ default_expr:
+ if( ExprAlwaysFalse(pExpr) ){
+ sqlite3VdbeGoto(v, dest);
+ }else if( ExprAlwaysTrue(pExpr) ){
+ /* no-op */
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
+ VdbeCoverage(v);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
+ }
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+}
+
+/*
+** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
+** code generation, and that copy is deleted after code generation. This
+** ensures that the original pExpr is unchanged.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
+ sqlite3 *db = pParse->db;
+ Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
+ if( db->mallocFailed==0 ){
+ sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
+ }
+ sqlite3ExprDelete(db, pCopy);
+}
+
+/*
+** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
+** type of expression.
+**
+** If pExpr is a simple SQL value - an integer, real, string, blob
+** or NULL value - then the VDBE currently being prepared is configured
+** to re-prepare each time a new value is bound to variable pVar.
+**
+** Additionally, if pExpr is a simple SQL value and the value is the
+** same as that currently bound to variable pVar, non-zero is returned.
+** Otherwise, if the values are not the same or if pExpr is not a simple
+** SQL value, zero is returned.
+*/
+static int exprCompareVariable(
+ const Parse *pParse,
+ const Expr *pVar,
+ const Expr *pExpr
+){
+ int res = 0;
+ int iVar;
+ sqlite3_value *pL, *pR = 0;
+
+ sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
+ if( pR ){
+ iVar = pVar->iColumn;
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
+ pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
+ if( pL ){
+ if( sqlite3_value_type(pL)==SQLITE_TEXT ){
+ sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
+ }
+ res = 0==sqlite3MemCompare(pL, pR, 0);
+ }
+ sqlite3ValueFree(pR);
+ sqlite3ValueFree(pL);
+ }
+
+ return res;
+}
+
+/*
+** Do a deep comparison of two expression trees. Return 0 if the two
+** expressions are completely identical. Return 1 if they differ only
+** by a COLLATE operator at the top level. Return 2 if there are differences
+** other than the top-level COLLATE operator.
+**
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
+**
+** The pA side might be using TK_REGISTER. If that is the case and pB is
+** not using TK_REGISTER but is otherwise equivalent, then still return 0.
+**
+** Sometimes this routine will return 2 even if the two expressions
+** really are equivalent. If we cannot prove that the expressions are
+** identical, we return 2 just to be safe. So if this routine
+** returns 2, then you do not really know for certain if the two
+** expressions are the same. But if you get a 0 or 1 return, then you
+** can be sure the expressions are the same. In the places where
+** this routine is used, it does not hurt to get an extra 2 - that
+** just might result in some slightly slower code. But returning
+** an incorrect 0 or 1 could lead to a malfunction.
+**
+** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
+** pParse->pReprepare can be matched against literals in pB. The
+** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
+** If pParse is NULL (the normal case) then any TK_VARIABLE term in
+** Argument pParse should normally be NULL. If it is not NULL and pA or
+** pB causes a return value of 2.
+*/
+SQLITE_PRIVATE int sqlite3ExprCompare(
+ const Parse *pParse,
+ const Expr *pA,
+ const Expr *pB,
+ int iTab
+){
+ u32 combinedFlags;
+ if( pA==0 || pB==0 ){
+ return pB==pA ? 0 : 2;
+ }
+ if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
+ return 0;
+ }
+ combinedFlags = pA->flags | pB->flags;
+ if( combinedFlags & EP_IntValue ){
+ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
+ return 0;
+ }
+ return 2;
+ }
+ if( pA->op!=pB->op || pA->op==TK_RAISE ){
+ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
+ return 1;
+ }
+ if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
+ return 1;
+ }
+ return 2;
+ }
+ assert( !ExprHasProperty(pA, EP_IntValue) );
+ assert( !ExprHasProperty(pB, EP_IntValue) );
+ if( pA->u.zToken ){
+ if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
+ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( pA->op==pB->op );
+ if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
+ return 2;
+ }
+ if( ExprHasProperty(pA,EP_WinFunc) ){
+ if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
+ return 2;
+ }
+ }
+#endif
+ }else if( pA->op==TK_NULL ){
+ return 0;
+ }else if( pA->op==TK_COLLATE ){
+ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
+ }else
+ if( pB->u.zToken!=0
+ && pA->op!=TK_COLUMN
+ && pA->op!=TK_AGG_COLUMN
+ && strcmp(pA->u.zToken,pB->u.zToken)!=0
+ ){
+ return 2;
+ }
+ }
+ if( (pA->flags & (EP_Distinct|EP_Commuted))
+ != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
+ if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
+ if( combinedFlags & EP_xIsSelect ) return 2;
+ if( (combinedFlags & EP_FixedCol)==0
+ && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
+ if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
+ if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
+ if( pA->op!=TK_STRING
+ && pA->op!=TK_TRUEFALSE
+ && ALWAYS((combinedFlags & EP_Reduced)==0)
+ ){
+ if( pA->iColumn!=pB->iColumn ) return 2;
+ if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
+ if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
+ return 2;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Compare two ExprList objects. Return 0 if they are identical, 1
+** if they are certainly different, or 2 if it is not possible to
+** determine if they are identical or not.
+**
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
+**
+** This routine might return non-zero for equivalent ExprLists. The
+** only consequence will be disabled optimizations. But this routine
+** must never return 0 if the two ExprList objects are different, or
+** a malfunction will result.
+**
+** Two NULL pointers are considered to be the same. But a NULL pointer
+** always differs from a non-NULL pointer.
+*/
+SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
+ int i;
+ if( pA==0 && pB==0 ) return 0;
+ if( pA==0 || pB==0 ) return 1;
+ if( pA->nExpr!=pB->nExpr ) return 1;
+ for(i=0; i<pA->nExpr; i++){
+ int res;
+ Expr *pExprA = pA->a[i].pExpr;
+ Expr *pExprB = pB->a[i].pExpr;
+ if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
+ if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
+ }
+ return 0;
+}
+
+/*
+** Like sqlite3ExprCompare() except COLLATE operators at the top-level
+** are ignored.
+*/
+SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
+ return sqlite3ExprCompare(0,
+ sqlite3ExprSkipCollateAndLikely(pA),
+ sqlite3ExprSkipCollateAndLikely(pB),
+ iTab);
+}
+
+/*
+** Return non-zero if Expr p can only be true if pNN is not NULL.
+**
+** Or if seenNot is true, return non-zero if Expr p can only be
+** non-NULL if pNN is not NULL
+*/
+static int exprImpliesNotNull(
+ const Parse *pParse,/* Parsing context */
+ const Expr *p, /* The expression to be checked */
+ const Expr *pNN, /* The expression that is NOT NULL */
+ int iTab, /* Table being evaluated */
+ int seenNot /* Return true only if p can be any non-NULL value */
+){
+ assert( p );
+ assert( pNN );
+ if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
+ return pNN->op!=TK_NULL;
+ }
+ switch( p->op ){
+ case TK_IN: {
+ if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
+ assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ case TK_BETWEEN: {
+ ExprList *pList;
+ assert( ExprUseXList(p) );
+ pList = p->x.pList;
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ if( seenNot ) return 0;
+ if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
+ || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
+ ){
+ return 1;
+ }
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ case TK_EQ:
+ case TK_NE:
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_PLUS:
+ case TK_MINUS:
+ case TK_BITOR:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_CONCAT:
+ seenNot = 1;
+ /* no break */ deliberate_fall_through
+ case TK_STAR:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_SLASH: {
+ if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
+ /* no break */ deliberate_fall_through
+ }
+ case TK_SPAN:
+ case TK_COLLATE:
+ case TK_UPLUS:
+ case TK_UMINUS: {
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
+ }
+ case TK_TRUTH: {
+ if( seenNot ) return 0;
+ if( p->op2!=TK_IS ) return 0;
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ }
+ return 0;
+}
+
+/*
+** Return true if we can prove the pE2 will always be true if pE1 is
+** true. Return false if we cannot complete the proof or if pE2 might
+** be false. Examples:
+**
+** pE1: x==5 pE2: x==5 Result: true
+** pE1: x>0 pE2: x==5 Result: false
+** pE1: x=21 pE2: x=21 OR y=43 Result: true
+** pE1: x!=123 pE2: x IS NOT NULL Result: true
+** pE1: x!=?1 pE2: x IS NOT NULL Result: true
+** pE1: x IS NULL pE2: x IS NOT NULL Result: false
+** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
+**
+** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
+** Expr.iTable<0 then assume a table number given by iTab.
+**
+** If pParse is not NULL, then the values of bound variables in pE1 are
+** compared against literal values in pE2 and pParse->pVdbe->expmask is
+** modified to record which bound variables are referenced. If pParse
+** is NULL, then false will be returned if pE1 contains any bound variables.
+**
+** When in doubt, return false. Returning true might give a performance
+** improvement. Returning false might cause a performance reduction, but
+** it will always give the correct answer and is hence always safe.
+*/
+SQLITE_PRIVATE int sqlite3ExprImpliesExpr(
+ const Parse *pParse,
+ const Expr *pE1,
+ const Expr *pE2,
+ int iTab
+){
+ if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
+ return 1;
+ }
+ if( pE2->op==TK_OR
+ && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
+ || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
+ ){
+ return 1;
+ }
+ if( pE2->op==TK_NOTNULL
+ && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
+ ){
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
+** If the expression node requires that the table at pWalker->iCur
+** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
+**
+** This routine controls an optimization. False positives (setting
+** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
+** (never setting pWalker->eCode) is a harmless missed optimization.
+*/
+static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_AGG_FUNCTION );
+ if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
+ switch( pExpr->op ){
+ case TK_ISNOT:
+ case TK_ISNULL:
+ case TK_NOTNULL:
+ case TK_IS:
+ case TK_OR:
+ case TK_VECTOR:
+ case TK_CASE:
+ case TK_IN:
+ case TK_FUNCTION:
+ case TK_TRUTH:
+ testcase( pExpr->op==TK_ISNOT );
+ testcase( pExpr->op==TK_ISNULL );
+ testcase( pExpr->op==TK_NOTNULL );
+ testcase( pExpr->op==TK_IS );
+ testcase( pExpr->op==TK_OR );
+ testcase( pExpr->op==TK_VECTOR );
+ testcase( pExpr->op==TK_CASE );
+ testcase( pExpr->op==TK_IN );
+ testcase( pExpr->op==TK_FUNCTION );
+ testcase( pExpr->op==TK_TRUTH );
+ return WRC_Prune;
+ case TK_COLUMN:
+ if( pWalker->u.iCur==pExpr->iTable ){
+ pWalker->eCode = 1;
+ return WRC_Abort;
+ }
+ return WRC_Prune;
+
+ case TK_AND:
+ if( pWalker->eCode==0 ){
+ sqlite3WalkExpr(pWalker, pExpr->pLeft);
+ if( pWalker->eCode ){
+ pWalker->eCode = 0;
+ sqlite3WalkExpr(pWalker, pExpr->pRight);
+ }
+ }
+ return WRC_Prune;
+
+ case TK_BETWEEN:
+ if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
+ assert( pWalker->eCode );
+ return WRC_Abort;
+ }
+ return WRC_Prune;
+
+ /* Virtual tables are allowed to use constraints like x=NULL. So
+ ** a term of the form x=y does not prove that y is not null if x
+ ** is the column of a virtual table */
+ case TK_EQ:
+ case TK_NE:
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE: {
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ testcase( pExpr->op==TK_EQ );
+ testcase( pExpr->op==TK_NE );
+ testcase( pExpr->op==TK_LT );
+ testcase( pExpr->op==TK_LE );
+ testcase( pExpr->op==TK_GT );
+ testcase( pExpr->op==TK_GE );
+ /* The y.pTab=0 assignment in wherecode.c always happens after the
+ ** impliesNotNullRow() test */
+ assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
+ assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
+ if( (pLeft->op==TK_COLUMN
+ && pLeft->y.pTab!=0
+ && IsVirtual(pLeft->y.pTab))
+ || (pRight->op==TK_COLUMN
+ && pRight->y.pTab!=0
+ && IsVirtual(pRight->y.pTab))
+ ){
+ return WRC_Prune;
+ }
+ /* no break */ deliberate_fall_through
+ }
+ default:
+ return WRC_Continue;
+ }
+}
+
+/*
+** Return true (non-zero) if expression p can only be true if at least
+** one column of table iTab is non-null. In other words, return true
+** if expression p will always be NULL or false if every column of iTab
+** is NULL.
+**
+** False negatives are acceptable. In other words, it is ok to return
+** zero even if expression p will never be true of every column of iTab
+** is NULL. A false negative is merely a missed optimization opportunity.
+**
+** False positives are not allowed, however. A false positive may result
+** in an incorrect answer.
+**
+** Terms of p that are marked with EP_OuterON (and hence that come from
+** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
+**
+** This routine is used to check if a LEFT JOIN can be converted into
+** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
+** clause requires that some column of the right table of the LEFT JOIN
+** be non-NULL, then the LEFT JOIN can be safely converted into an
+** ordinary join.
+*/
+SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
+ Walker w;
+ p = sqlite3ExprSkipCollateAndLikely(p);
+ if( p==0 ) return 0;
+ if( p->op==TK_NOTNULL ){
+ p = p->pLeft;
+ }else{
+ while( p->op==TK_AND ){
+ if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
+ p = p->pRight;
+ }
+ }
+ w.xExprCallback = impliesNotNullRow;
+ w.xSelectCallback = 0;
+ w.xSelectCallback2 = 0;
+ w.eCode = 0;
+ w.u.iCur = iTab;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+/*
+** An instance of the following structure is used by the tree walker
+** to determine if an expression can be evaluated by reference to the
+** index only, without having to do a search for the corresponding
+** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
+** is the cursor for the table.
+*/
+struct IdxCover {
+ Index *pIdx; /* The index to be tested for coverage */
+ int iCur; /* Cursor number for the table corresponding to the index */
+};
+
+/*
+** Check to see if there are references to columns in table
+** pWalker->u.pIdxCover->iCur can be satisfied using the index
+** pWalker->u.pIdxCover->pIdx.
+*/
+static int exprIdxCover(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pWalker->u.pIdxCover->iCur
+ && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
+ ){
+ pWalker->eCode = 1;
+ return WRC_Abort;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Determine if an index pIdx on table with cursor iCur contains will
+** the expression pExpr. Return true if the index does cover the
+** expression and false if the pExpr expression references table columns
+** that are not found in the index pIdx.
+**
+** An index covering an expression means that the expression can be
+** evaluated using only the index and without having to lookup the
+** corresponding table entry.
+*/
+SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(
+ Expr *pExpr, /* The index to be tested */
+ int iCur, /* The cursor number for the corresponding table */
+ Index *pIdx /* The index that might be used for coverage */
+){
+ Walker w;
+ struct IdxCover xcov;
+ memset(&w, 0, sizeof(w));
+ xcov.iCur = iCur;
+ xcov.pIdx = pIdx;
+ w.xExprCallback = exprIdxCover;
+ w.u.pIdxCover = &xcov;
+ sqlite3WalkExpr(&w, pExpr);
+ return !w.eCode;
+}
+
+
+/* Structure used to pass information throught the Walker in order to
+** implement sqlite3ReferencesSrcList().
+*/
+struct RefSrcList {
+ sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */
+ SrcList *pRef; /* Looking for references to these tables */
+ i64 nExclude; /* Number of tables to exclude from the search */
+ int *aiExclude; /* Cursor IDs for tables to exclude from the search */
+};
+
+/*
+** Walker SELECT callbacks for sqlite3ReferencesSrcList().
+**
+** When entering a new subquery on the pExpr argument, add all FROM clause
+** entries for that subquery to the exclude list.
+**
+** When leaving the subquery, remove those entries from the exclude list.
+*/
+static int selectRefEnter(Walker *pWalker, Select *pSelect){
+ struct RefSrcList *p = pWalker->u.pRefSrcList;
+ SrcList *pSrc = pSelect->pSrc;
+ i64 i, j;
+ int *piNew;
+ if( pSrc->nSrc==0 ) return WRC_Continue;
+ j = p->nExclude;
+ p->nExclude += pSrc->nSrc;
+ piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
+ if( piNew==0 ){
+ p->nExclude = 0;
+ return WRC_Abort;
+ }else{
+ p->aiExclude = piNew;
+ }
+ for(i=0; i<pSrc->nSrc; i++, j++){
+ p->aiExclude[j] = pSrc->a[i].iCursor;
+ }
+ return WRC_Continue;
+}
+static void selectRefLeave(Walker *pWalker, Select *pSelect){
+ struct RefSrcList *p = pWalker->u.pRefSrcList;
+ SrcList *pSrc = pSelect->pSrc;
+ if( p->nExclude ){
+ assert( p->nExclude>=pSrc->nSrc );
+ p->nExclude -= pSrc->nSrc;
+ }
+}
+
+/* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
+**
+** Set the 0x01 bit of pWalker->eCode if there is a reference to any
+** of the tables shown in RefSrcList.pRef.
+**
+** Set the 0x02 bit of pWalker->eCode if there is a reference to a
+** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
+*/
+static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN
+ || pExpr->op==TK_AGG_COLUMN
+ ){
+ int i;
+ struct RefSrcList *p = pWalker->u.pRefSrcList;
+ SrcList *pSrc = p->pRef;
+ int nSrc = pSrc ? pSrc->nSrc : 0;
+ for(i=0; i<nSrc; i++){
+ if( pExpr->iTable==pSrc->a[i].iCursor ){
+ pWalker->eCode |= 1;
+ return WRC_Continue;
+ }
+ }
+ for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
+ if( i>=p->nExclude ){
+ pWalker->eCode |= 2;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Check to see if pExpr references any tables in pSrcList.
+** Possible return values:
+**
+** 1 pExpr does references a table in pSrcList.
+**
+** 0 pExpr references some table that is not defined in either
+** pSrcList or in subqueries of pExpr itself.
+**
+** -1 pExpr only references no tables at all, or it only
+** references tables defined in subqueries of pExpr itself.
+**
+** As currently used, pExpr is always an aggregate function call. That
+** fact is exploited for efficiency.
+*/
+SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
+ Walker w;
+ struct RefSrcList x;
+ memset(&w, 0, sizeof(w));
+ memset(&x, 0, sizeof(x));
+ w.xExprCallback = exprRefToSrcList;
+ w.xSelectCallback = selectRefEnter;
+ w.xSelectCallback2 = selectRefLeave;
+ w.u.pRefSrcList = &x;
+ x.db = pParse->db;
+ x.pRef = pSrcList;
+ assert( pExpr->op==TK_AGG_FUNCTION );
+ assert( ExprUseXList(pExpr) );
+ sqlite3WalkExprList(&w, pExpr->x.pList);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
+ }
+#endif
+ sqlite3DbFree(pParse->db, x.aiExclude);
+ if( w.eCode & 0x01 ){
+ return 1;
+ }else if( w.eCode ){
+ return 0;
+ }else{
+ return -1;
+ }
+}
+
+/*
+** This is a Walker expression node callback.
+**
+** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
+** object that is referenced does not refer directly to the Expr. If
+** it does, make a copy. This is done because the pExpr argument is
+** subject to change.
+**
+** The copy is stored on pParse->pConstExpr with a register number of 0.
+** This will cause the expression to be deleted automatically when the
+** Parse object is destroyed, but the zero register number means that it
+** will not generate any code in the preamble.
+*/
+static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
+ if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
+ && pExpr->pAggInfo!=0
+ ){
+ AggInfo *pAggInfo = pExpr->pAggInfo;
+ int iAgg = pExpr->iAgg;
+ Parse *pParse = pWalker->pParse;
+ sqlite3 *db = pParse->db;
+ assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
+ if( pExpr->op==TK_AGG_COLUMN ){
+ assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
+ if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ if( pExpr ){
+ pAggInfo->aCol[iAgg].pCExpr = pExpr;
+ sqlite3ExprDeferredDelete(pParse, pExpr);
+ }
+ }
+ }else{
+ assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
+ if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ if( pExpr ){
+ pAggInfo->aFunc[iAgg].pFExpr = pExpr;
+ sqlite3ExprDeferredDelete(pParse, pExpr);
+ }
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Initialize a Walker object so that will persist AggInfo entries referenced
+** by the tree that is walked.
+*/
+SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
+ memset(pWalker, 0, sizeof(*pWalker));
+ pWalker->pParse = pParse;
+ pWalker->xExprCallback = agginfoPersistExprCb;
+ pWalker->xSelectCallback = sqlite3SelectWalkNoop;
+}
+
+/*
+** Add a new element to the pAggInfo->aCol[] array. Return the index of
+** the new element. Return a negative number if malloc fails.
+*/
+static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
+ int i;
+ pInfo->aCol = sqlite3ArrayAllocate(
+ db,
+ pInfo->aCol,
+ sizeof(pInfo->aCol[0]),
+ &pInfo->nColumn,
+ &i
+ );
+ return i;
+}
+
+/*
+** Add a new element to the pAggInfo->aFunc[] array. Return the index of
+** the new element. Return a negative number if malloc fails.
+*/
+static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
+ int i;
+ pInfo->aFunc = sqlite3ArrayAllocate(
+ db,
+ pInfo->aFunc,
+ sizeof(pInfo->aFunc[0]),
+ &pInfo->nFunc,
+ &i
+ );
+ return i;
+}
+
+/*
+** This is the xExprCallback for a tree walker. It is used to
+** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
+** for additional information.
+*/
+static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
+ int i;
+ NameContext *pNC = pWalker->u.pNC;
+ Parse *pParse = pNC->pParse;
+ SrcList *pSrcList = pNC->pSrcList;
+ AggInfo *pAggInfo = pNC->uNC.pAggInfo;
+
+ assert( pNC->ncFlags & NC_UAggInfo );
+ switch( pExpr->op ){
+ case TK_AGG_COLUMN:
+ case TK_COLUMN: {
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_COLUMN );
+ /* Check to see if the column is in one of the tables in the FROM
+ ** clause of the aggregate query */
+ if( ALWAYS(pSrcList!=0) ){
+ SrcItem *pItem = pSrcList->a;
+ for(i=0; i<pSrcList->nSrc; i++, pItem++){
+ struct AggInfo_col *pCol;
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ if( pExpr->iTable==pItem->iCursor ){
+ /* If we reach this point, it means that pExpr refers to a table
+ ** that is in the FROM clause of the aggregate query.
+ **
+ ** Make an entry for the column in pAggInfo->aCol[] if there
+ ** is not an entry there already.
+ */
+ int k;
+ pCol = pAggInfo->aCol;
+ for(k=0; k<pAggInfo->nColumn; k++, pCol++){
+ if( pCol->iTable==pExpr->iTable &&
+ pCol->iColumn==pExpr->iColumn ){
+ break;
+ }
+ }
+ if( (k>=pAggInfo->nColumn)
+ && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
+ ){
+ pCol = &pAggInfo->aCol[k];
+ assert( ExprUseYTab(pExpr) );
+ pCol->pTab = pExpr->y.pTab;
+ pCol->iTable = pExpr->iTable;
+ pCol->iColumn = pExpr->iColumn;
+ pCol->iMem = ++pParse->nMem;
+ pCol->iSorterColumn = -1;
+ pCol->pCExpr = pExpr;
+ if( pAggInfo->pGroupBy ){
+ int j, n;
+ ExprList *pGB = pAggInfo->pGroupBy;
+ struct ExprList_item *pTerm = pGB->a;
+ n = pGB->nExpr;
+ for(j=0; j<n; j++, pTerm++){
+ Expr *pE = pTerm->pExpr;
+ if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
+ pE->iColumn==pExpr->iColumn ){
+ pCol->iSorterColumn = j;
+ break;
+ }
+ }
+ }
+ if( pCol->iSorterColumn<0 ){
+ pCol->iSorterColumn = pAggInfo->nSortingColumn++;
+ }
+ }
+ /* There is now an entry for pExpr in pAggInfo->aCol[] (either
+ ** because it was there before or because we just created it).
+ ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
+ ** pAggInfo->aCol[] entry.
+ */
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+ pExpr->pAggInfo = pAggInfo;
+ pExpr->op = TK_AGG_COLUMN;
+ pExpr->iAgg = (i16)k;
+ break;
+ } /* endif pExpr->iTable==pItem->iCursor */
+ } /* end loop over pSrcList */
+ }
+ return WRC_Prune;
+ }
+ case TK_AGG_FUNCTION: {
+ if( (pNC->ncFlags & NC_InAggFunc)==0
+ && pWalker->walkerDepth==pExpr->op2
+ ){
+ /* Check to see if pExpr is a duplicate of another aggregate
+ ** function that is already in the pAggInfo structure
+ */
+ struct AggInfo_func *pItem = pAggInfo->aFunc;
+ for(i=0; i<pAggInfo->nFunc; i++, pItem++){
+ if( pItem->pFExpr==pExpr ) break;
+ if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
+ break;
+ }
+ }
+ if( i>=pAggInfo->nFunc ){
+ /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
+ */
+ u8 enc = ENC(pParse->db);
+ i = addAggInfoFunc(pParse->db, pAggInfo);
+ if( i>=0 ){
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ pItem = &pAggInfo->aFunc[i];
+ pItem->pFExpr = pExpr;
+ pItem->iMem = ++pParse->nMem;
+ assert( ExprUseUToken(pExpr) );
+ pItem->pFunc = sqlite3FindFunction(pParse->db,
+ pExpr->u.zToken,
+ pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
+ if( pExpr->flags & EP_Distinct ){
+ pItem->iDistinct = pParse->nTab++;
+ }else{
+ pItem->iDistinct = -1;
+ }
+ }
+ }
+ /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
+ */
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+ pExpr->iAgg = (i16)i;
+ pExpr->pAggInfo = pAggInfo;
+ return WRC_Prune;
+ }else{
+ return WRC_Continue;
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Analyze the pExpr expression looking for aggregate functions and
+** for variables that need to be added to AggInfo object that pNC->pAggInfo
+** points to. Additional entries are made on the AggInfo object as
+** necessary.
+**
+** This routine should only be called after the expression has been
+** analyzed by sqlite3ResolveExprNames().
+*/
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
+ Walker w;
+ w.xExprCallback = analyzeAggregate;
+ w.xSelectCallback = sqlite3WalkerDepthIncrease;
+ w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
+ w.walkerDepth = 0;
+ w.u.pNC = pNC;
+ w.pParse = 0;
+ assert( pNC->pSrcList!=0 );
+ sqlite3WalkExpr(&w, pExpr);
+}
+
+/*
+** Call sqlite3ExprAnalyzeAggregates() for every expression in an
+** expression list. Return the number of errors.
+**
+** If an error is found, the analysis is cut short.
+*/
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
+ struct ExprList_item *pItem;
+ int i;
+ if( pList ){
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
+ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
+ }
+ }
+}
+
+/*
+** Allocate a single new register for use to hold some intermediate result.
+*/
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
+ if( pParse->nTempReg==0 ){
+ return ++pParse->nMem;
+ }
+ return pParse->aTempReg[--pParse->nTempReg];
+}
+
+/*
+** Deallocate a register, making available for reuse for some other
+** purpose.
+*/
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
+ if( iReg ){
+ sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
+ if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
+ pParse->aTempReg[pParse->nTempReg++] = iReg;
+ }
+ }
+}
+
+/*
+** Allocate or deallocate a block of nReg consecutive registers.
+*/
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
+ int i, n;
+ if( nReg==1 ) return sqlite3GetTempReg(pParse);
+ i = pParse->iRangeReg;
+ n = pParse->nRangeReg;
+ if( nReg<=n ){
+ pParse->iRangeReg += nReg;
+ pParse->nRangeReg -= nReg;
+ }else{
+ i = pParse->nMem+1;
+ pParse->nMem += nReg;
+ }
+ return i;
+}
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
+ if( nReg==1 ){
+ sqlite3ReleaseTempReg(pParse, iReg);
+ return;
+ }
+ sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
+ if( nReg>pParse->nRangeReg ){
+ pParse->nRangeReg = nReg;
+ pParse->iRangeReg = iReg;
+ }
+}
+
+/*
+** Mark all temporary registers as being unavailable for reuse.
+**
+** Always invoke this procedure after coding a subroutine or co-routine
+** that might be invoked from other parts of the code, to ensure that
+** the sub/co-routine does not use registers in common with the code that
+** invokes the sub/co-routine.
+*/
+SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){
+ pParse->nTempReg = 0;
+ pParse->nRangeReg = 0;
+}
+
+/*
+** Validate that no temporary register falls within the range of
+** iFirst..iLast, inclusive. This routine is only call from within assert()
+** statements.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
+ int i;
+ if( pParse->nRangeReg>0
+ && pParse->iRangeReg+pParse->nRangeReg > iFirst
+ && pParse->iRangeReg <= iLast
+ ){
+ return 0;
+ }
+ for(i=0; i<pParse->nTempReg; i++){
+ if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
+ return 0;
+ }
+ }
+ return 1;
+}
+#endif /* SQLITE_DEBUG */
+
+/************** End of expr.c ************************************************/
+/************** Begin file alter.c *******************************************/
+/*
+** 2005 February 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that used to generate VDBE code
+** that implements the ALTER TABLE command.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** The code in this file only exists if we are not omitting the
+** ALTER TABLE logic from the build.
+*/
+#ifndef SQLITE_OMIT_ALTERTABLE
+
+/*
+** Parameter zName is the name of a table that is about to be altered
+** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
+** If the table is a system table, this function leaves an error message
+** in pParse->zErr (system tables may not be altered) and returns non-zero.
+**
+** Or, if zName is not a system table, zero is returned.
+*/
+static int isAlterableTable(Parse *pParse, Table *pTab){
+ if( 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7)
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ || (pTab->tabFlags & TF_Eponymous)!=0
+ || ( (pTab->tabFlags & TF_Shadow)!=0
+ && sqlite3ReadOnlyShadowTables(pParse->db)
+ )
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Generate code to verify that the schemas of database zDb and, if
+** bTemp is not true, database "temp", can still be parsed. This is
+** called at the end of the generation of an ALTER TABLE ... RENAME ...
+** statement to ensure that the operation has not rendered any schema
+** objects unusable.
+*/
+static void renameTestSchema(
+ Parse *pParse, /* Parse context */
+ const char *zDb, /* Name of db to verify schema of */
+ int bTemp, /* True if this is the temp db */
+ const char *zWhen, /* "when" part of error message */
+ int bNoDQS /* Do not allow DQS in the schema */
+){
+ pParse->colNamesSet = 1;
+ sqlite3NestedParse(pParse,
+ "SELECT 1 "
+ "FROM \"%w\"." LEGACY_SCHEMA_TABLE " "
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'"
+ " AND sqlite_rename_test(%Q, sql, type, name, %d, %Q, %d)=NULL ",
+ zDb,
+ zDb, bTemp, zWhen, bNoDQS
+ );
+
+ if( bTemp==0 ){
+ sqlite3NestedParse(pParse,
+ "SELECT 1 "
+ "FROM temp." LEGACY_SCHEMA_TABLE " "
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'"
+ " AND sqlite_rename_test(%Q, sql, type, name, 1, %Q, %d)=NULL ",
+ zDb, zWhen, bNoDQS
+ );
+ }
+}
+
+/*
+** Generate VM code to replace any double-quoted strings (but not double-quoted
+** identifiers) within the "sql" column of the sqlite_schema table in
+** database zDb with their single-quoted equivalents. If argument bTemp is
+** not true, similarly update all SQL statements in the sqlite_schema table
+** of the temp db.
+*/
+static void renameFixQuotes(Parse *pParse, const char *zDb, int bTemp){
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE
+ " SET sql = sqlite_rename_quotefix(%Q, sql)"
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'" , zDb, zDb
+ );
+ if( bTemp==0 ){
+ sqlite3NestedParse(pParse,
+ "UPDATE temp." LEGACY_SCHEMA_TABLE
+ " SET sql = sqlite_rename_quotefix('temp', sql)"
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'"
+ );
+ }
+}
+
+/*
+** Generate code to reload the schema for database iDb. And, if iDb!=1, for
+** the temp database as well.
+*/
+static void renameReloadSchema(Parse *pParse, int iDb, u16 p5){
+ Vdbe *v = pParse->pVdbe;
+ if( v ){
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0, p5);
+ if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0, p5);
+ }
+}
+
+/*
+** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
+** command.
+*/
+SQLITE_PRIVATE void sqlite3AlterRenameTable(
+ Parse *pParse, /* Parser context. */
+ SrcList *pSrc, /* The table to rename. */
+ Token *pName /* The new table name. */
+){
+ int iDb; /* Database that contains the table */
+ char *zDb; /* Name of database iDb */
+ Table *pTab; /* Table being renamed */
+ char *zName = 0; /* NULL-terminated version of pName */
+ sqlite3 *db = pParse->db; /* Database connection */
+ int nTabName; /* Number of UTF-8 characters in zTabName */
+ const char *zTabName; /* Original name of the table */
+ Vdbe *v;
+ VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */
+
+ if( NEVER(db->mallocFailed) ) goto exit_rename_table;
+ assert( pSrc->nSrc==1 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_rename_table;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+
+ /* Get a NULL terminated version of the new table name. */
+ zName = sqlite3NameFromToken(db, pName);
+ if( !zName ) goto exit_rename_table;
+
+ /* Check that a table or index named 'zName' does not already exist
+ ** in database iDb. If so, this is an error.
+ */
+ if( sqlite3FindTable(db, zName, zDb)
+ || sqlite3FindIndex(db, zName, zDb)
+ || sqlite3IsShadowTableOf(db, pTab, zName)
+ ){
+ sqlite3ErrorMsg(pParse,
+ "there is already another table or index with this name: %s", zName);
+ goto exit_rename_table;
+ }
+
+ /* Make sure it is not a system table being altered, or a reserved name
+ ** that the table is being renamed to.
+ */
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){
+ goto exit_rename_table;
+ }
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse,zName,"table",zName) ){
+ goto exit_rename_table;
+ }
+
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
+ goto exit_rename_table;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ goto exit_rename_table;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_rename_table;
+ }
+ if( IsVirtual(pTab) ){
+ pVTab = sqlite3GetVTable(db, pTab);
+ if( pVTab->pVtab->pModule->xRename==0 ){
+ pVTab = 0;
+ }
+ }
+#endif
+
+ /* Begin a transaction for database iDb. Then modify the schema cookie
+ ** (since the ALTER TABLE modifies the schema). Call sqlite3MayAbort(),
+ ** as the scalar functions (e.g. sqlite_rename_table()) invoked by the
+ ** nested SQL may raise an exception. */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ goto exit_rename_table;
+ }
+ sqlite3MayAbort(pParse);
+
+ /* figure out how many UTF-8 characters are in zName */
+ zTabName = pTab->zName;
+ nTabName = sqlite3Utf8CharLen(zTabName, -1);
+
+ /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in
+ ** the schema to use the new table name. */
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, %d) "
+ "WHERE (type!='index' OR tbl_name=%Q COLLATE nocase)"
+ "AND name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ , zDb, zDb, zTabName, zName, (iDb==1), zTabName
+ );
+
+ /* Update the tbl_name and name columns of the sqlite_schema table
+ ** as required. */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET "
+ "tbl_name = %Q, "
+ "name = CASE "
+ "WHEN type='table' THEN %Q "
+ "WHEN name LIKE 'sqliteX_autoindex%%' ESCAPE 'X' "
+ " AND type='index' THEN "
+ "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
+ "ELSE name END "
+ "WHERE tbl_name=%Q COLLATE nocase AND "
+ "(type='table' OR type='index' OR type='trigger');",
+ zDb,
+ zName, zName, zName,
+ nTabName, zTabName
+ );
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* If the sqlite_sequence table exists in this database, then update
+ ** it with the new table name.
+ */
+ if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
+ zDb, zName, pTab->zName);
+ }
+#endif
+
+ /* If the table being renamed is not itself part of the temp database,
+ ** edit view and trigger definitions within the temp database
+ ** as required. */
+ if( iDb!=1 ){
+ sqlite3NestedParse(pParse,
+ "UPDATE sqlite_temp_schema SET "
+ "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, 1), "
+ "tbl_name = "
+ "CASE WHEN tbl_name=%Q COLLATE nocase AND "
+ " sqlite_rename_test(%Q, sql, type, name, 1, 'after rename', 0) "
+ "THEN %Q ELSE tbl_name END "
+ "WHERE type IN ('view', 'trigger')"
+ , zDb, zTabName, zName, zTabName, zDb, zName);
+ }
+
+ /* If this is a virtual table, invoke the xRename() function if
+ ** one is defined. The xRename() callback will modify the names
+ ** of any resources used by the v-table implementation (including other
+ ** SQLite tables) that are identified by the name of the virtual table.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pVTab ){
+ int i = ++pParse->nMem;
+ sqlite3VdbeLoadString(v, i, zName);
+ sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
+ }
+#endif
+
+ renameReloadSchema(pParse, iDb, INITFLAG_AlterRename);
+ renameTestSchema(pParse, zDb, iDb==1, "after rename", 0);
+
+exit_rename_table:
+ sqlite3SrcListDelete(db, pSrc);
+ sqlite3DbFree(db, zName);
+}
+
+/*
+** Write code that will raise an error if the table described by
+** zDb and zTab is not empty.
+*/
+static void sqlite3ErrorIfNotEmpty(
+ Parse *pParse, /* Parsing context */
+ const char *zDb, /* Schema holding the table */
+ const char *zTab, /* Table to check for empty */
+ const char *zErr /* Error message text */
+){
+ sqlite3NestedParse(pParse,
+ "SELECT raise(ABORT,%Q) FROM \"%w\".\"%w\"",
+ zErr, zDb, zTab
+ );
+}
+
+/*
+** This function is called after an "ALTER TABLE ... ADD" statement
+** has been parsed. Argument pColDef contains the text of the new
+** column definition.
+**
+** The Table structure pParse->pNewTable was extended to include
+** the new column during parsing.
+*/
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
+ Table *pNew; /* Copy of pParse->pNewTable */
+ Table *pTab; /* Table being altered */
+ int iDb; /* Database number */
+ const char *zDb; /* Database name */
+ const char *zTab; /* Table name */
+ char *zCol; /* Null-terminated column definition */
+ Column *pCol; /* The new column */
+ Expr *pDflt; /* Default value for the new column */
+ sqlite3 *db; /* The database connection; */
+ Vdbe *v; /* The prepared statement under construction */
+ int r1; /* Temporary registers */
+
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ) return;
+ assert( db->mallocFailed==0 );
+ pNew = pParse->pNewTable;
+ assert( pNew );
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+ zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */
+ pCol = &pNew->aCol[pNew->nCol-1];
+ pDflt = sqlite3ColumnExpr(pNew, pCol);
+ pTab = sqlite3FindTable(db, zTab, zDb);
+ assert( pTab );
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ return;
+ }
+#endif
+
+
+ /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
+ ** If there is a NOT NULL constraint, then the default value for the
+ ** column must not be NULL.
+ */
+ if( pCol->colFlags & COLFLAG_PRIMKEY ){
+ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
+ return;
+ }
+ if( pNew->pIndex ){
+ sqlite3ErrorMsg(pParse,
+ "Cannot add a UNIQUE column");
+ return;
+ }
+ if( (pCol->colFlags & COLFLAG_GENERATED)==0 ){
+ /* If the default value for the new column was specified with a
+ ** literal NULL, then set pDflt to 0. This simplifies checking
+ ** for an SQL NULL default below.
+ */
+ assert( pDflt==0 || pDflt->op==TK_SPAN );
+ if( pDflt && pDflt->pLeft->op==TK_NULL ){
+ pDflt = 0;
+ }
+ assert( IsOrdinaryTable(pNew) );
+ if( (db->flags&SQLITE_ForeignKeys) && pNew->u.tab.pFKey && pDflt ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab,
+ "Cannot add a REFERENCES column with non-NULL default value");
+ }
+ if( pCol->notNull && !pDflt ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab,
+ "Cannot add a NOT NULL column with default value NULL");
+ }
+
+
+ /* Ensure the default expression is something that sqlite3ValueFromExpr()
+ ** can handle (i.e. not CURRENT_TIME etc.)
+ */
+ if( pDflt ){
+ sqlite3_value *pVal = 0;
+ int rc;
+ rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ if( rc!=SQLITE_OK ){
+ assert( db->mallocFailed == 1 );
+ return;
+ }
+ if( !pVal ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab,
+ "Cannot add a column with non-constant default");
+ }
+ sqlite3ValueFree(pVal);
+ }
+ }else if( pCol->colFlags & COLFLAG_STORED ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "cannot add a STORED column");
+ }
+
+
+ /* Modify the CREATE TABLE statement. */
+ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
+ if( zCol ){
+ char *zEnd = &zCol[pColDef->n-1];
+ while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){
+ *zEnd-- = '\0';
+ }
+ /* substr() operations on characters, but addColOffset is in bytes. So we
+ ** have to use printf() to translate between these units: */
+ assert( IsOrdinaryTable(pTab) );
+ assert( IsOrdinaryTable(pNew) );
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = printf('%%.%ds, ',sql) || %Q"
+ " || substr(sql,1+length(printf('%%.%ds',sql))) "
+ "WHERE type = 'table' AND name = %Q",
+ zDb, pNew->u.tab.addColOffset, zCol, pNew->u.tab.addColOffset,
+ zTab
+ );
+ sqlite3DbFree(db, zCol);
+ }
+
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ /* Make sure the schema version is at least 3. But do not upgrade
+ ** from less than 3 to 4, as that will corrupt any preexisting DESC
+ ** index.
+ */
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
+ sqlite3VdbeUsesBtree(v, iDb);
+ sqlite3VdbeAddOp2(v, OP_AddImm, r1, -2);
+ sqlite3VdbeAddOp2(v, OP_IfPos, r1, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, 3);
+ sqlite3ReleaseTempReg(pParse, r1);
+
+ /* Reload the table definition */
+ renameReloadSchema(pParse, iDb, INITFLAG_AlterAdd);
+
+ /* Verify that constraints are still satisfied */
+ if( pNew->pCheck!=0
+ || (pCol->notNull && (pCol->colFlags & COLFLAG_GENERATED)!=0)
+ ){
+ sqlite3NestedParse(pParse,
+ "SELECT CASE WHEN quick_check GLOB 'CHECK*'"
+ " THEN raise(ABORT,'CHECK constraint failed')"
+ " ELSE raise(ABORT,'NOT NULL constraint failed')"
+ " END"
+ " FROM pragma_quick_check(%Q,%Q)"
+ " WHERE quick_check GLOB 'CHECK*' OR quick_check GLOB 'NULL*'",
+ zTab, zDb
+ );
+ }
+ }
+}
+
+/*
+** This function is called by the parser after the table-name in
+** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
+** pSrc is the full-name of the table being altered.
+**
+** This routine makes a (partial) copy of the Table structure
+** for the table being altered and sets Parse.pNewTable to point
+** to it. Routines called by the parser as the column definition
+** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
+** the copy. The copy of the Table structure is deleted by tokenize.c
+** after parsing is finished.
+**
+** Routine sqlite3AlterFinishAddColumn() will be called to complete
+** coding the "ALTER TABLE ... ADD" statement.
+*/
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
+ Table *pNew;
+ Table *pTab;
+ int iDb;
+ int i;
+ int nAlloc;
+ sqlite3 *db = pParse->db;
+
+ /* Look up the table being altered. */
+ assert( pParse->pNewTable==0 );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ if( db->mallocFailed ) goto exit_begin_add_column;
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_begin_add_column;
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
+ goto exit_begin_add_column;
+ }
+#endif
+
+ /* Make sure this is not an attempt to ALTER a view. */
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
+ goto exit_begin_add_column;
+ }
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){
+ goto exit_begin_add_column;
+ }
+
+ sqlite3MayAbort(pParse);
+ assert( IsOrdinaryTable(pTab) );
+ assert( pTab->u.tab.addColOffset>0 );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+
+ /* Put a copy of the Table struct in Parse.pNewTable for the
+ ** sqlite3AddColumn() function and friends to modify. But modify
+ ** the name by adding an "sqlite_altertab_" prefix. By adding this
+ ** prefix, we insure that the name will not collide with an existing
+ ** table because user table are not allowed to have the "sqlite_"
+ ** prefix on their name.
+ */
+ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
+ if( !pNew ) goto exit_begin_add_column;
+ pParse->pNewTable = pNew;
+ pNew->nTabRef = 1;
+ pNew->nCol = pTab->nCol;
+ assert( pNew->nCol>0 );
+ nAlloc = (((pNew->nCol-1)/8)*8)+8;
+ assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
+ pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
+ pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
+ if( !pNew->aCol || !pNew->zName ){
+ assert( db->mallocFailed );
+ goto exit_begin_add_column;
+ }
+ memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
+ for(i=0; i<pNew->nCol; i++){
+ Column *pCol = &pNew->aCol[i];
+ pCol->zCnName = sqlite3DbStrDup(db, pCol->zCnName);
+ pCol->hName = sqlite3StrIHash(pCol->zCnName);
+ }
+ assert( IsOrdinaryTable(pNew) );
+ pNew->u.tab.pDfltList = sqlite3ExprListDup(db, pTab->u.tab.pDfltList, 0);
+ pNew->pSchema = db->aDb[iDb].pSchema;
+ pNew->u.tab.addColOffset = pTab->u.tab.addColOffset;
+ pNew->nTabRef = 1;
+
+exit_begin_add_column:
+ sqlite3SrcListDelete(db, pSrc);
+ return;
+}
+
+/*
+** Parameter pTab is the subject of an ALTER TABLE ... RENAME COLUMN
+** command. This function checks if the table is a view or virtual
+** table (columns of views or virtual tables may not be renamed). If so,
+** it loads an error message into pParse and returns non-zero.
+**
+** Or, if pTab is not a view or virtual table, zero is returned.
+*/
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+static int isRealTable(Parse *pParse, Table *pTab, int bDrop){
+ const char *zType = 0;
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab) ){
+ zType = "view";
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ zType = "virtual table";
+ }
+#endif
+ if( zType ){
+ sqlite3ErrorMsg(pParse, "cannot %s %s \"%s\"",
+ (bDrop ? "drop column from" : "rename columns of"),
+ zType, pTab->zName
+ );
+ return 1;
+ }
+ return 0;
+}
+#else /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
+# define isRealTable(x,y,z) (0)
+#endif
+
+/*
+** Handles the following parser reduction:
+**
+** cmd ::= ALTER TABLE pSrc RENAME COLUMN pOld TO pNew
+*/
+SQLITE_PRIVATE void sqlite3AlterRenameColumn(
+ Parse *pParse, /* Parsing context */
+ SrcList *pSrc, /* Table being altered. pSrc->nSrc==1 */
+ Token *pOld, /* Name of column being changed */
+ Token *pNew /* New column name */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ Table *pTab; /* Table being updated */
+ int iCol; /* Index of column being renamed */
+ char *zOld = 0; /* Old column name */
+ char *zNew = 0; /* New column name */
+ const char *zDb; /* Name of schema containing the table */
+ int iSchema; /* Index of the schema */
+ int bQuote; /* True to quote the new name */
+
+ /* Locate the table to be altered */
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_rename_column;
+
+ /* Cannot alter a system table */
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_rename_column;
+ if( SQLITE_OK!=isRealTable(pParse, pTab, 0) ) goto exit_rename_column;
+
+ /* Which schema holds the table to be altered */
+ iSchema = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iSchema>=0 );
+ zDb = db->aDb[iSchema].zDbSName;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ goto exit_rename_column;
+ }
+#endif
+
+ /* Make sure the old name really is a column name in the table to be
+ ** altered. Set iCol to be the index of the column being renamed */
+ zOld = sqlite3NameFromToken(db, pOld);
+ if( !zOld ) goto exit_rename_column;
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( 0==sqlite3StrICmp(pTab->aCol[iCol].zCnName, zOld) ) break;
+ }
+ if( iCol==pTab->nCol ){
+ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pOld);
+ goto exit_rename_column;
+ }
+
+ /* Ensure the schema contains no double-quoted strings */
+ renameTestSchema(pParse, zDb, iSchema==1, "", 0);
+ renameFixQuotes(pParse, zDb, iSchema==1);
+
+ /* Do the rename operation using a recursive UPDATE statement that
+ ** uses the sqlite_rename_column() SQL function to compute the new
+ ** CREATE statement text for the sqlite_schema table.
+ */
+ sqlite3MayAbort(pParse);
+ zNew = sqlite3NameFromToken(db, pNew);
+ if( !zNew ) goto exit_rename_column;
+ assert( pNew->n>0 );
+ bQuote = sqlite3Isquote(pNew->z[0]);
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, %d) "
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X' "
+ " AND (type != 'index' OR tbl_name = %Q)",
+ zDb,
+ zDb, pTab->zName, iCol, zNew, bQuote, iSchema==1,
+ pTab->zName
+ );
+
+ sqlite3NestedParse(pParse,
+ "UPDATE temp." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, 1) "
+ "WHERE type IN ('trigger', 'view')",
+ zDb, pTab->zName, iCol, zNew, bQuote
+ );
+
+ /* Drop and reload the database schema. */
+ renameReloadSchema(pParse, iSchema, INITFLAG_AlterRename);
+ renameTestSchema(pParse, zDb, iSchema==1, "after rename", 1);
+
+ exit_rename_column:
+ sqlite3SrcListDelete(db, pSrc);
+ sqlite3DbFree(db, zOld);
+ sqlite3DbFree(db, zNew);
+ return;
+}
+
+/*
+** Each RenameToken object maps an element of the parse tree into
+** the token that generated that element. The parse tree element
+** might be one of:
+**
+** * A pointer to an Expr that represents an ID
+** * The name of a table column in Column.zName
+**
+** A list of RenameToken objects can be constructed during parsing.
+** Each new object is created by sqlite3RenameTokenMap().
+** As the parse tree is transformed, the sqlite3RenameTokenRemap()
+** routine is used to keep the mapping current.
+**
+** After the parse finishes, renameTokenFind() routine can be used
+** to look up the actual token value that created some element in
+** the parse tree.
+*/
+struct RenameToken {
+ const void *p; /* Parse tree element created by token t */
+ Token t; /* The token that created parse tree element p */
+ RenameToken *pNext; /* Next is a list of all RenameToken objects */
+};
+
+/*
+** The context of an ALTER TABLE RENAME COLUMN operation that gets passed
+** down into the Walker.
+*/
+typedef struct RenameCtx RenameCtx;
+struct RenameCtx {
+ RenameToken *pList; /* List of tokens to overwrite */
+ int nList; /* Number of tokens in pList */
+ int iCol; /* Index of column being renamed */
+ Table *pTab; /* Table being ALTERed */
+ const char *zOld; /* Old column name */
+};
+
+#ifdef SQLITE_DEBUG
+/*
+** This function is only for debugging. It performs two tasks:
+**
+** 1. Checks that pointer pPtr does not already appear in the
+** rename-token list.
+**
+** 2. Dereferences each pointer in the rename-token list.
+**
+** The second is most effective when debugging under valgrind or
+** address-sanitizer or similar. If any of these pointers no longer
+** point to valid objects, an exception is raised by the memory-checking
+** tool.
+**
+** The point of this is to prevent comparisons of invalid pointer values.
+** Even though this always seems to work, it is undefined according to the
+** C standard. Example of undefined comparison:
+**
+** sqlite3_free(x);
+** if( x==y ) ...
+**
+** Technically, as x no longer points into a valid object or to the byte
+** following a valid object, it may not be used in comparison operations.
+*/
+static void renameTokenCheckAll(Parse *pParse, const void *pPtr){
+ assert( pParse==pParse->db->pParse );
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ if( pParse->nErr==0 ){
+ const RenameToken *p;
+ u8 i = 0;
+ for(p=pParse->pRename; p; p=p->pNext){
+ if( p->p ){
+ assert( p->p!=pPtr );
+ i += *(u8*)(p->p);
+ }
+ }
+ }
+}
+#else
+# define renameTokenCheckAll(x,y)
+#endif
+
+/*
+** Remember that the parser tree element pPtr was created using
+** the token pToken.
+**
+** In other words, construct a new RenameToken object and add it
+** to the list of RenameToken objects currently being built up
+** in pParse->pRename.
+**
+** The pPtr argument is returned so that this routine can be used
+** with tail recursion in tokenExpr() routine, for a small performance
+** improvement.
+*/
+SQLITE_PRIVATE const void *sqlite3RenameTokenMap(
+ Parse *pParse,
+ const void *pPtr,
+ const Token *pToken
+){
+ RenameToken *pNew;
+ assert( pPtr || pParse->db->mallocFailed );
+ renameTokenCheckAll(pParse, pPtr);
+ if( ALWAYS(pParse->eParseMode!=PARSE_MODE_UNMAP) ){
+ pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken));
+ if( pNew ){
+ pNew->p = pPtr;
+ pNew->t = *pToken;
+ pNew->pNext = pParse->pRename;
+ pParse->pRename = pNew;
+ }
+ }
+
+ return pPtr;
+}
+
+/*
+** It is assumed that there is already a RenameToken object associated
+** with parse tree element pFrom. This function remaps the associated token
+** to parse tree element pTo.
+*/
+SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse *pParse, const void *pTo, const void *pFrom){
+ RenameToken *p;
+ renameTokenCheckAll(pParse, pTo);
+ for(p=pParse->pRename; p; p=p->pNext){
+ if( p->p==pFrom ){
+ p->p = pTo;
+ break;
+ }
+ }
+}
+
+/*
+** Walker callback used by sqlite3RenameExprUnmap().
+*/
+static int renameUnmapExprCb(Walker *pWalker, Expr *pExpr){
+ Parse *pParse = pWalker->pParse;
+ sqlite3RenameTokenRemap(pParse, 0, (const void*)pExpr);
+ if( ExprUseYTab(pExpr) ){
+ sqlite3RenameTokenRemap(pParse, 0, (const void*)&pExpr->y.pTab);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Iterate through the Select objects that are part of WITH clauses attached
+** to select statement pSelect.
+*/
+static void renameWalkWith(Walker *pWalker, Select *pSelect){
+ With *pWith = pSelect->pWith;
+ if( pWith ){
+ Parse *pParse = pWalker->pParse;
+ int i;
+ With *pCopy = 0;
+ assert( pWith->nCte>0 );
+ if( (pWith->a[0].pSelect->selFlags & SF_Expanded)==0 ){
+ /* Push a copy of the With object onto the with-stack. We use a copy
+ ** here as the original will be expanded and resolved (flags SF_Expanded
+ ** and SF_Resolved) below. And the parser code that uses the with-stack
+ ** fails if the Select objects on it have already been expanded and
+ ** resolved. */
+ pCopy = sqlite3WithDup(pParse->db, pWith);
+ pCopy = sqlite3WithPush(pParse, pCopy, 1);
+ }
+ for(i=0; i<pWith->nCte; i++){
+ Select *p = pWith->a[i].pSelect;
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ if( pCopy ) sqlite3SelectPrep(sNC.pParse, p, &sNC);
+ if( sNC.pParse->db->mallocFailed ) return;
+ sqlite3WalkSelect(pWalker, p);
+ sqlite3RenameExprlistUnmap(pParse, pWith->a[i].pCols);
+ }
+ if( pCopy && pParse->pWith==pCopy ){
+ pParse->pWith = pCopy->pOuter;
+ }
+ }
+}
+
+/*
+** Unmap all tokens in the IdList object passed as the second argument.
+*/
+static void unmapColumnIdlistNames(
+ Parse *pParse,
+ const IdList *pIdList
+){
+ int ii;
+ assert( pIdList!=0 );
+ for(ii=0; ii<pIdList->nId; ii++){
+ sqlite3RenameTokenRemap(pParse, 0, (const void*)pIdList->a[ii].zName);
+ }
+}
+
+/*
+** Walker callback used by sqlite3RenameExprUnmap().
+*/
+static int renameUnmapSelectCb(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i;
+ if( pParse->nErr ) return WRC_Abort;
+ testcase( p->selFlags & SF_View );
+ testcase( p->selFlags & SF_CopyCte );
+ if( p->selFlags & (SF_View|SF_CopyCte) ){
+ return WRC_Prune;
+ }
+ if( ALWAYS(p->pEList) ){
+ ExprList *pList = p->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].zEName && pList->a[i].fg.eEName==ENAME_NAME ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pList->a[i].zEName);
+ }
+ }
+ }
+ if( ALWAYS(p->pSrc) ){ /* Every Select as a SrcList, even if it is empty */
+ SrcList *pSrc = p->pSrc;
+ for(i=0; i<pSrc->nSrc; i++){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pSrc->a[i].zName);
+ if( pSrc->a[i].fg.isUsing==0 ){
+ sqlite3WalkExpr(pWalker, pSrc->a[i].u3.pOn);
+ }else{
+ unmapColumnIdlistNames(pParse, pSrc->a[i].u3.pUsing);
+ }
+ }
+ }
+
+ renameWalkWith(pWalker, p);
+ return WRC_Continue;
+}
+
+/*
+** Remove all nodes that are part of expression pExpr from the rename list.
+*/
+SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse *pParse, Expr *pExpr){
+ u8 eMode = pParse->eParseMode;
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = renameUnmapExprCb;
+ sWalker.xSelectCallback = renameUnmapSelectCb;
+ pParse->eParseMode = PARSE_MODE_UNMAP;
+ sqlite3WalkExpr(&sWalker, pExpr);
+ pParse->eParseMode = eMode;
+}
+
+/*
+** Remove all nodes that are part of expression-list pEList from the
+** rename list.
+*/
+SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse *pParse, ExprList *pEList){
+ if( pEList ){
+ int i;
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = renameUnmapExprCb;
+ sqlite3WalkExprList(&sWalker, pEList);
+ for(i=0; i<pEList->nExpr; i++){
+ if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME) ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pEList->a[i].zEName);
+ }
+ }
+ }
+}
+
+/*
+** Free the list of RenameToken objects given in the second argument
+*/
+static void renameTokenFree(sqlite3 *db, RenameToken *pToken){
+ RenameToken *pNext;
+ RenameToken *p;
+ for(p=pToken; p; p=pNext){
+ pNext = p->pNext;
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Search the Parse object passed as the first argument for a RenameToken
+** object associated with parse tree element pPtr. If found, return a pointer
+** to it. Otherwise, return NULL.
+**
+** If the second argument passed to this function is not NULL and a matching
+** RenameToken object is found, remove it from the Parse object and add it to
+** the list maintained by the RenameCtx object.
+*/
+static RenameToken *renameTokenFind(
+ Parse *pParse,
+ struct RenameCtx *pCtx,
+ const void *pPtr
+){
+ RenameToken **pp;
+ if( NEVER(pPtr==0) ){
+ return 0;
+ }
+ for(pp=&pParse->pRename; (*pp); pp=&(*pp)->pNext){
+ if( (*pp)->p==pPtr ){
+ RenameToken *pToken = *pp;
+ if( pCtx ){
+ *pp = pToken->pNext;
+ pToken->pNext = pCtx->pList;
+ pCtx->pList = pToken;
+ pCtx->nList++;
+ }
+ return pToken;
+ }
+ }
+ return 0;
+}
+
+/*
+** This is a Walker select callback. It does nothing. It is only required
+** because without a dummy callback, sqlite3WalkExpr() and similar do not
+** descend into sub-select statements.
+*/
+static int renameColumnSelectCb(Walker *pWalker, Select *p){
+ if( p->selFlags & (SF_View|SF_CopyCte) ){
+ testcase( p->selFlags & SF_View );
+ testcase( p->selFlags & SF_CopyCte );
+ return WRC_Prune;
+ }
+ renameWalkWith(pWalker, p);
+ return WRC_Continue;
+}
+
+/*
+** This is a Walker expression callback.
+**
+** For every TK_COLUMN node in the expression tree, search to see
+** if the column being references is the column being renamed by an
+** ALTER TABLE statement. If it is, then attach its associated
+** RenameToken object to the list of RenameToken objects being
+** constructed in RenameCtx object at pWalker->u.pRename.
+*/
+static int renameColumnExprCb(Walker *pWalker, Expr *pExpr){
+ RenameCtx *p = pWalker->u.pRename;
+ if( pExpr->op==TK_TRIGGER
+ && pExpr->iColumn==p->iCol
+ && pWalker->pParse->pTriggerTab==p->pTab
+ ){
+ renameTokenFind(pWalker->pParse, p, (void*)pExpr);
+ }else if( pExpr->op==TK_COLUMN
+ && pExpr->iColumn==p->iCol
+ && ALWAYS(ExprUseYTab(pExpr))
+ && p->pTab==pExpr->y.pTab
+ ){
+ renameTokenFind(pWalker->pParse, p, (void*)pExpr);
+ }
+ return WRC_Continue;
+}
+
+/*
+** The RenameCtx contains a list of tokens that reference a column that
+** is being renamed by an ALTER TABLE statement. Return the "last"
+** RenameToken in the RenameCtx and remove that RenameToken from the
+** RenameContext. "Last" means the last RenameToken encountered when
+** the input SQL is parsed from left to right. Repeated calls to this routine
+** return all column name tokens in the order that they are encountered
+** in the SQL statement.
+*/
+static RenameToken *renameColumnTokenNext(RenameCtx *pCtx){
+ RenameToken *pBest = pCtx->pList;
+ RenameToken *pToken;
+ RenameToken **pp;
+
+ for(pToken=pBest->pNext; pToken; pToken=pToken->pNext){
+ if( pToken->t.z>pBest->t.z ) pBest = pToken;
+ }
+ for(pp=&pCtx->pList; *pp!=pBest; pp=&(*pp)->pNext);
+ *pp = pBest->pNext;
+
+ return pBest;
+}
+
+/*
+** An error occured while parsing or otherwise processing a database
+** object (either pParse->pNewTable, pNewIndex or pNewTrigger) as part of an
+** ALTER TABLE RENAME COLUMN program. The error message emitted by the
+** sub-routine is currently stored in pParse->zErrMsg. This function
+** adds context to the error message and then stores it in pCtx.
+*/
+static void renameColumnParseError(
+ sqlite3_context *pCtx,
+ const char *zWhen,
+ sqlite3_value *pType,
+ sqlite3_value *pObject,
+ Parse *pParse
+){
+ const char *zT = (const char*)sqlite3_value_text(pType);
+ const char *zN = (const char*)sqlite3_value_text(pObject);
+ char *zErr;
+
+ zErr = sqlite3MPrintf(pParse->db, "error in %s %s%s%s: %s",
+ zT, zN, (zWhen[0] ? " " : ""), zWhen,
+ pParse->zErrMsg
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3DbFree(pParse->db, zErr);
+}
+
+/*
+** For each name in the the expression-list pEList (i.e. each
+** pEList->a[i].zName) that matches the string in zOld, extract the
+** corresponding rename-token from Parse object pParse and add it
+** to the RenameCtx pCtx.
+*/
+static void renameColumnElistNames(
+ Parse *pParse,
+ RenameCtx *pCtx,
+ const ExprList *pEList,
+ const char *zOld
+){
+ if( pEList ){
+ int i;
+ for(i=0; i<pEList->nExpr; i++){
+ const char *zName = pEList->a[i].zEName;
+ if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME)
+ && ALWAYS(zName!=0)
+ && 0==sqlite3_stricmp(zName, zOld)
+ ){
+ renameTokenFind(pParse, pCtx, (const void*)zName);
+ }
+ }
+ }
+}
+
+/*
+** For each name in the the id-list pIdList (i.e. each pIdList->a[i].zName)
+** that matches the string in zOld, extract the corresponding rename-token
+** from Parse object pParse and add it to the RenameCtx pCtx.
+*/
+static void renameColumnIdlistNames(
+ Parse *pParse,
+ RenameCtx *pCtx,
+ const IdList *pIdList,
+ const char *zOld
+){
+ if( pIdList ){
+ int i;
+ for(i=0; i<pIdList->nId; i++){
+ const char *zName = pIdList->a[i].zName;
+ if( 0==sqlite3_stricmp(zName, zOld) ){
+ renameTokenFind(pParse, pCtx, (const void*)zName);
+ }
+ }
+ }
+}
+
+
+/*
+** Parse the SQL statement zSql using Parse object (*p). The Parse object
+** is initialized by this function before it is used.
+*/
+static int renameParseSql(
+ Parse *p, /* Memory to use for Parse object */
+ const char *zDb, /* Name of schema SQL belongs to */
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL to parse */
+ int bTemp /* True if SQL is from temp schema */
+){
+ int rc;
+
+ sqlite3ParseObjectInit(p, db);
+ if( zSql==0 ){
+ return SQLITE_NOMEM;
+ }
+ if( sqlite3StrNICmp(zSql,"CREATE ",7)!=0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ db->init.iDb = bTemp ? 1 : sqlite3FindDbName(db, zDb);
+ p->eParseMode = PARSE_MODE_RENAME;
+ p->db = db;
+ p->nQueryLoop = 1;
+ rc = sqlite3RunParser(p, zSql);
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+ if( rc==SQLITE_OK
+ && NEVER(p->pNewTable==0 && p->pNewIndex==0 && p->pNewTrigger==0)
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+
+#ifdef SQLITE_DEBUG
+ /* Ensure that all mappings in the Parse.pRename list really do map to
+ ** a part of the input string. */
+ if( rc==SQLITE_OK ){
+ int nSql = sqlite3Strlen30(zSql);
+ RenameToken *pToken;
+ for(pToken=p->pRename; pToken; pToken=pToken->pNext){
+ assert( pToken->t.z>=zSql && &pToken->t.z[pToken->t.n]<=&zSql[nSql] );
+ }
+ }
+#endif
+
+ db->init.iDb = 0;
+ return rc;
+}
+
+/*
+** This function edits SQL statement zSql, replacing each token identified
+** by the linked list pRename with the text of zNew. If argument bQuote is
+** true, then zNew is always quoted first. If no error occurs, the result
+** is loaded into context object pCtx as the result.
+**
+** Or, if an error occurs (i.e. an OOM condition), an error is left in
+** pCtx and an SQLite error code returned.
+*/
+static int renameEditSql(
+ sqlite3_context *pCtx, /* Return result here */
+ RenameCtx *pRename, /* Rename context */
+ const char *zSql, /* SQL statement to edit */
+ const char *zNew, /* New token text */
+ int bQuote /* True to always quote token */
+){
+ i64 nNew = sqlite3Strlen30(zNew);
+ i64 nSql = sqlite3Strlen30(zSql);
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ int rc = SQLITE_OK;
+ char *zQuot = 0;
+ char *zOut;
+ i64 nQuot = 0;
+ char *zBuf1 = 0;
+ char *zBuf2 = 0;
+
+ if( zNew ){
+ /* Set zQuot to point to a buffer containing a quoted copy of the
+ ** identifier zNew. If the corresponding identifier in the original
+ ** ALTER TABLE statement was quoted (bQuote==1), then set zNew to
+ ** point to zQuot so that all substitutions are made using the
+ ** quoted version of the new column name. */
+ zQuot = sqlite3MPrintf(db, "\"%w\" ", zNew);
+ if( zQuot==0 ){
+ return SQLITE_NOMEM;
+ }else{
+ nQuot = sqlite3Strlen30(zQuot)-1;
+ }
+
+ assert( nQuot>=nNew );
+ zOut = sqlite3DbMallocZero(db, nSql + pRename->nList*nQuot + 1);
+ }else{
+ zOut = (char*)sqlite3DbMallocZero(db, (nSql*2+1) * 3);
+ if( zOut ){
+ zBuf1 = &zOut[nSql*2+1];
+ zBuf2 = &zOut[nSql*4+2];
+ }
+ }
+
+ /* At this point pRename->pList contains a list of RenameToken objects
+ ** corresponding to all tokens in the input SQL that must be replaced
+ ** with the new column name, or with single-quoted versions of themselves.
+ ** All that remains is to construct and return the edited SQL string. */
+ if( zOut ){
+ int nOut = nSql;
+ memcpy(zOut, zSql, nSql);
+ while( pRename->pList ){
+ int iOff; /* Offset of token to replace in zOut */
+ u32 nReplace;
+ const char *zReplace;
+ RenameToken *pBest = renameColumnTokenNext(pRename);
+
+ if( zNew ){
+ if( bQuote==0 && sqlite3IsIdChar(*pBest->t.z) ){
+ nReplace = nNew;
+ zReplace = zNew;
+ }else{
+ nReplace = nQuot;
+ zReplace = zQuot;
+ if( pBest->t.z[pBest->t.n]=='"' ) nReplace++;
+ }
+ }else{
+ /* Dequote the double-quoted token. Then requote it again, this time
+ ** using single quotes. If the character immediately following the
+ ** original token within the input SQL was a single quote ('), then
+ ** add another space after the new, single-quoted version of the
+ ** token. This is so that (SELECT "string"'alias') maps to
+ ** (SELECT 'string' 'alias'), and not (SELECT 'string''alias'). */
+ memcpy(zBuf1, pBest->t.z, pBest->t.n);
+ zBuf1[pBest->t.n] = 0;
+ sqlite3Dequote(zBuf1);
+ sqlite3_snprintf(nSql*2, zBuf2, "%Q%s", zBuf1,
+ pBest->t.z[pBest->t.n]=='\'' ? " " : ""
+ );
+ zReplace = zBuf2;
+ nReplace = sqlite3Strlen30(zReplace);
+ }
+
+ iOff = pBest->t.z - zSql;
+ if( pBest->t.n!=nReplace ){
+ memmove(&zOut[iOff + nReplace], &zOut[iOff + pBest->t.n],
+ nOut - (iOff + pBest->t.n)
+ );
+ nOut += nReplace - pBest->t.n;
+ zOut[nOut] = '\0';
+ }
+ memcpy(&zOut[iOff], zReplace, nReplace);
+ sqlite3DbFree(db, pBest);
+ }
+
+ sqlite3_result_text(pCtx, zOut, -1, SQLITE_TRANSIENT);
+ sqlite3DbFree(db, zOut);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ sqlite3_free(zQuot);
+ return rc;
+}
+
+/*
+** Resolve all symbols in the trigger at pParse->pNewTrigger, assuming
+** it was read from the schema of database zDb. Return SQLITE_OK if
+** successful. Otherwise, return an SQLite error code and leave an error
+** message in the Parse object.
+*/
+static int renameResolveTrigger(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ Trigger *pNew = pParse->pNewTrigger;
+ TriggerStep *pStep;
+ NameContext sNC;
+ int rc = SQLITE_OK;
+
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ assert( pNew->pTabSchema );
+ pParse->pTriggerTab = sqlite3FindTable(db, pNew->table,
+ db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName
+ );
+ pParse->eTriggerOp = pNew->op;
+ /* ALWAYS() because if the table of the trigger does not exist, the
+ ** error would have been hit before this point */
+ if( ALWAYS(pParse->pTriggerTab) ){
+ rc = sqlite3ViewGetColumnNames(pParse, pParse->pTriggerTab);
+ }
+
+ /* Resolve symbols in WHEN clause */
+ if( rc==SQLITE_OK && pNew->pWhen ){
+ rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen);
+ }
+
+ for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){
+ if( pStep->pSelect ){
+ sqlite3SelectPrep(pParse, pStep->pSelect, &sNC);
+ if( pParse->nErr ) rc = pParse->rc;
+ }
+ if( rc==SQLITE_OK && pStep->zTarget ){
+ SrcList *pSrc = sqlite3TriggerStepSrc(pParse, pStep);
+ if( pSrc ){
+ Select *pSel = sqlite3SelectNew(
+ pParse, pStep->pExprList, pSrc, 0, 0, 0, 0, 0, 0
+ );
+ if( pSel==0 ){
+ pStep->pExprList = 0;
+ pSrc = 0;
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3SelectPrep(pParse, pSel, 0);
+ rc = pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
+ assert( pStep->pExprList==0 || pStep->pExprList==pSel->pEList );
+ assert( pSrc==pSel->pSrc );
+ if( pStep->pExprList ) pSel->pEList = 0;
+ pSel->pSrc = 0;
+ sqlite3SelectDelete(db, pSel);
+ }
+ if( pStep->pFrom ){
+ int i;
+ for(i=0; i<pStep->pFrom->nSrc && rc==SQLITE_OK; i++){
+ SrcItem *p = &pStep->pFrom->a[i];
+ if( p->pSelect ){
+ sqlite3SelectPrep(pParse, p->pSelect, 0);
+ }
+ }
+ }
+
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM;
+ }
+ sNC.pSrcList = pSrc;
+ if( rc==SQLITE_OK && pStep->pWhere ){
+ rc = sqlite3ResolveExprNames(&sNC, pStep->pWhere);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3ResolveExprListNames(&sNC, pStep->pExprList);
+ }
+ assert( !pStep->pUpsert || (!pStep->pWhere && !pStep->pExprList) );
+ if( pStep->pUpsert && rc==SQLITE_OK ){
+ Upsert *pUpsert = pStep->pUpsert;
+ pUpsert->pUpsertSrc = pSrc;
+ sNC.uNC.pUpsert = pUpsert;
+ sNC.ncFlags = NC_UUpsert;
+ rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
+ if( rc==SQLITE_OK ){
+ ExprList *pUpsertSet = pUpsert->pUpsertSet;
+ rc = sqlite3ResolveExprListNames(&sNC, pUpsertSet);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertWhere);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
+ }
+ sNC.ncFlags = 0;
+ }
+ sNC.pSrcList = 0;
+ sqlite3SrcListDelete(db, pSrc);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Invoke sqlite3WalkExpr() or sqlite3WalkSelect() on all Select or Expr
+** objects that are part of the trigger passed as the second argument.
+*/
+static void renameWalkTrigger(Walker *pWalker, Trigger *pTrigger){
+ TriggerStep *pStep;
+
+ /* Find tokens to edit in WHEN clause */
+ sqlite3WalkExpr(pWalker, pTrigger->pWhen);
+
+ /* Find tokens to edit in trigger steps */
+ for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){
+ sqlite3WalkSelect(pWalker, pStep->pSelect);
+ sqlite3WalkExpr(pWalker, pStep->pWhere);
+ sqlite3WalkExprList(pWalker, pStep->pExprList);
+ if( pStep->pUpsert ){
+ Upsert *pUpsert = pStep->pUpsert;
+ sqlite3WalkExprList(pWalker, pUpsert->pUpsertTarget);
+ sqlite3WalkExprList(pWalker, pUpsert->pUpsertSet);
+ sqlite3WalkExpr(pWalker, pUpsert->pUpsertWhere);
+ sqlite3WalkExpr(pWalker, pUpsert->pUpsertTargetWhere);
+ }
+ if( pStep->pFrom ){
+ int i;
+ for(i=0; i<pStep->pFrom->nSrc; i++){
+ sqlite3WalkSelect(pWalker, pStep->pFrom->a[i].pSelect);
+ }
+ }
+ }
+}
+
+/*
+** Free the contents of Parse object (*pParse). Do not free the memory
+** occupied by the Parse object itself.
+*/
+static void renameParseCleanup(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ Index *pIdx;
+ if( pParse->pVdbe ){
+ sqlite3VdbeFinalize(pParse->pVdbe);
+ }
+ sqlite3DeleteTable(db, pParse->pNewTable);
+ while( (pIdx = pParse->pNewIndex)!=0 ){
+ pParse->pNewIndex = pIdx->pNext;
+ sqlite3FreeIndex(db, pIdx);
+ }
+ sqlite3DeleteTrigger(db, pParse->pNewTrigger);
+ sqlite3DbFree(db, pParse->zErrMsg);
+ renameTokenFree(db, pParse->pRename);
+ sqlite3ParseObjectReset(pParse);
+}
+
+/*
+** SQL function:
+**
+** sqlite_rename_column(SQL,TYPE,OBJ,DB,TABLE,COL,NEWNAME,QUOTE,TEMP)
+**
+** 0. zSql: SQL statement to rewrite
+** 1. type: Type of object ("table", "view" etc.)
+** 2. object: Name of object
+** 3. Database: Database name (e.g. "main")
+** 4. Table: Table name
+** 5. iCol: Index of column to rename
+** 6. zNew: New column name
+** 7. bQuote: Non-zero if the new column name should be quoted.
+** 8. bTemp: True if zSql comes from temp schema
+**
+** Do a column rename operation on the CREATE statement given in zSql.
+** The iCol-th column (left-most is 0) of table zTable is renamed from zCol
+** into zNew. The name should be quoted if bQuote is true.
+**
+** This function is used internally by the ALTER TABLE RENAME COLUMN command.
+** It is only accessible to SQL created using sqlite3NestedParse(). It is
+** not reachable from ordinary SQL passed into sqlite3_prepare() unless the
+** SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test setting is enabled.
+*/
+static void renameColumnFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ RenameCtx sCtx;
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]);
+ const char *zDb = (const char*)sqlite3_value_text(argv[3]);
+ const char *zTable = (const char*)sqlite3_value_text(argv[4]);
+ int iCol = sqlite3_value_int(argv[5]);
+ const char *zNew = (const char*)sqlite3_value_text(argv[6]);
+ int bQuote = sqlite3_value_int(argv[7]);
+ int bTemp = sqlite3_value_int(argv[8]);
+ const char *zOld;
+ int rc;
+ Parse sParse;
+ Walker sWalker;
+ Index *pIdx;
+ int i;
+ Table *pTab;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+#endif
+
+ UNUSED_PARAMETER(NotUsed);
+ if( zSql==0 ) return;
+ if( zTable==0 ) return;
+ if( zNew==0 ) return;
+ if( iCol<0 ) return;
+ sqlite3BtreeEnterAll(db);
+ pTab = sqlite3FindTable(db, zTable, zDb);
+ if( pTab==0 || iCol>=pTab->nCol ){
+ sqlite3BtreeLeaveAll(db);
+ return;
+ }
+ zOld = pTab->aCol[iCol].zCnName;
+ memset(&sCtx, 0, sizeof(sCtx));
+ sCtx.iCol = ((iCol==pTab->iPKey) ? -1 : iCol);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = 0;
+#endif
+ rc = renameParseSql(&sParse, zDb, db, zSql, bTemp);
+
+ /* Find tokens that need to be replaced. */
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = &sParse;
+ sWalker.xExprCallback = renameColumnExprCb;
+ sWalker.xSelectCallback = renameColumnSelectCb;
+ sWalker.u.pRename = &sCtx;
+
+ sCtx.pTab = pTab;
+ if( rc!=SQLITE_OK ) goto renameColumnFunc_done;
+ if( sParse.pNewTable ){
+ if( IsView(sParse.pNewTable) ){
+ Select *pSelect = sParse.pNewTable->u.view.pSelect;
+ pSelect->selFlags &= ~SF_View;
+ sParse.rc = SQLITE_OK;
+ sqlite3SelectPrep(&sParse, pSelect, 0);
+ rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc);
+ if( rc==SQLITE_OK ){
+ sqlite3WalkSelect(&sWalker, pSelect);
+ }
+ if( rc!=SQLITE_OK ) goto renameColumnFunc_done;
+ }else if( IsOrdinaryTable(sParse.pNewTable) ){
+ /* A regular table */
+ int bFKOnly = sqlite3_stricmp(zTable, sParse.pNewTable->zName);
+ FKey *pFKey;
+ sCtx.pTab = sParse.pNewTable;
+ if( bFKOnly==0 ){
+ if( iCol<sParse.pNewTable->nCol ){
+ renameTokenFind(
+ &sParse, &sCtx, (void*)sParse.pNewTable->aCol[iCol].zCnName
+ );
+ }
+ if( sCtx.iCol<0 ){
+ renameTokenFind(&sParse, &sCtx, (void*)&sParse.pNewTable->iPKey);
+ }
+ sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck);
+ for(pIdx=sParse.pNewTable->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3WalkExprList(&sWalker, pIdx->aColExpr);
+ }
+ for(pIdx=sParse.pNewIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3WalkExprList(&sWalker, pIdx->aColExpr);
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ for(i=0; i<sParse.pNewTable->nCol; i++){
+ Expr *pExpr = sqlite3ColumnExpr(sParse.pNewTable,
+ &sParse.pNewTable->aCol[i]);
+ sqlite3WalkExpr(&sWalker, pExpr);
+ }
+#endif
+ }
+
+ assert( IsOrdinaryTable(sParse.pNewTable) );
+ for(pFKey=sParse.pNewTable->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ for(i=0; i<pFKey->nCol; i++){
+ if( bFKOnly==0 && pFKey->aCol[i].iFrom==iCol ){
+ renameTokenFind(&sParse, &sCtx, (void*)&pFKey->aCol[i]);
+ }
+ if( 0==sqlite3_stricmp(pFKey->zTo, zTable)
+ && 0==sqlite3_stricmp(pFKey->aCol[i].zCol, zOld)
+ ){
+ renameTokenFind(&sParse, &sCtx, (void*)pFKey->aCol[i].zCol);
+ }
+ }
+ }
+ }
+ }else if( sParse.pNewIndex ){
+ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr);
+ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
+ }else{
+ /* A trigger */
+ TriggerStep *pStep;
+ rc = renameResolveTrigger(&sParse);
+ if( rc!=SQLITE_OK ) goto renameColumnFunc_done;
+
+ for(pStep=sParse.pNewTrigger->step_list; pStep; pStep=pStep->pNext){
+ if( pStep->zTarget ){
+ Table *pTarget = sqlite3LocateTable(&sParse, 0, pStep->zTarget, zDb);
+ if( pTarget==pTab ){
+ if( pStep->pUpsert ){
+ ExprList *pUpsertSet = pStep->pUpsert->pUpsertSet;
+ renameColumnElistNames(&sParse, &sCtx, pUpsertSet, zOld);
+ }
+ renameColumnIdlistNames(&sParse, &sCtx, pStep->pIdList, zOld);
+ renameColumnElistNames(&sParse, &sCtx, pStep->pExprList, zOld);
+ }
+ }
+ }
+
+
+ /* Find tokens to edit in UPDATE OF clause */
+ if( sParse.pTriggerTab==pTab ){
+ renameColumnIdlistNames(&sParse, &sCtx,sParse.pNewTrigger->pColumns,zOld);
+ }
+
+ /* Find tokens to edit in various expressions and selects */
+ renameWalkTrigger(&sWalker, sParse.pNewTrigger);
+ }
+
+ assert( rc==SQLITE_OK );
+ rc = renameEditSql(context, &sCtx, zSql, zNew, bQuote);
+
+renameColumnFunc_done:
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){
+ sqlite3_result_value(context, argv[0]);
+ }else if( sParse.zErrMsg ){
+ renameColumnParseError(context, "", argv[1], argv[2], &sParse);
+ }else{
+ sqlite3_result_error_code(context, rc);
+ }
+ }
+
+ renameParseCleanup(&sParse);
+ renameTokenFree(db, sCtx.pList);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ sqlite3BtreeLeaveAll(db);
+}
+
+/*
+** Walker expression callback used by "RENAME TABLE".
+*/
+static int renameTableExprCb(Walker *pWalker, Expr *pExpr){
+ RenameCtx *p = pWalker->u.pRename;
+ if( pExpr->op==TK_COLUMN
+ && ALWAYS(ExprUseYTab(pExpr))
+ && p->pTab==pExpr->y.pTab
+ ){
+ renameTokenFind(pWalker->pParse, p, (void*)&pExpr->y.pTab);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Walker select callback used by "RENAME TABLE".
+*/
+static int renameTableSelectCb(Walker *pWalker, Select *pSelect){
+ int i;
+ RenameCtx *p = pWalker->u.pRename;
+ SrcList *pSrc = pSelect->pSrc;
+ if( pSelect->selFlags & (SF_View|SF_CopyCte) ){
+ testcase( pSelect->selFlags & SF_View );
+ testcase( pSelect->selFlags & SF_CopyCte );
+ return WRC_Prune;
+ }
+ if( NEVER(pSrc==0) ){
+ assert( pWalker->pParse->db->mallocFailed );
+ return WRC_Abort;
+ }
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *pItem = &pSrc->a[i];
+ if( pItem->pTab==p->pTab ){
+ renameTokenFind(pWalker->pParse, p, pItem->zName);
+ }
+ }
+ renameWalkWith(pWalker, pSelect);
+
+ return WRC_Continue;
+}
+
+
+/*
+** This C function implements an SQL user function that is used by SQL code
+** generated by the ALTER TABLE ... RENAME command to modify the definition
+** of any foreign key constraints that use the table being renamed as the
+** parent table. It is passed three arguments:
+**
+** 0: The database containing the table being renamed.
+** 1. type: Type of object ("table", "view" etc.)
+** 2. object: Name of object
+** 3: The complete text of the schema statement being modified,
+** 4: The old name of the table being renamed, and
+** 5: The new name of the table being renamed.
+** 6: True if the schema statement comes from the temp db.
+**
+** It returns the new schema statement. For example:
+**
+** sqlite_rename_table('main', 'CREATE TABLE t1(a REFERENCES t2)','t2','t3',0)
+** -> 'CREATE TABLE t1(a REFERENCES t3)'
+*/
+static void renameTableFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char *zDb = (const char*)sqlite3_value_text(argv[0]);
+ const char *zInput = (const char*)sqlite3_value_text(argv[3]);
+ const char *zOld = (const char*)sqlite3_value_text(argv[4]);
+ const char *zNew = (const char*)sqlite3_value_text(argv[5]);
+ int bTemp = sqlite3_value_int(argv[6]);
+ UNUSED_PARAMETER(NotUsed);
+
+ if( zInput && zOld && zNew ){
+ Parse sParse;
+ int rc;
+ int bQuote = 1;
+ RenameCtx sCtx;
+ Walker sWalker;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ sqlite3BtreeEnterAll(db);
+
+ memset(&sCtx, 0, sizeof(RenameCtx));
+ sCtx.pTab = sqlite3FindTable(db, zOld, zDb);
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = &sParse;
+ sWalker.xExprCallback = renameTableExprCb;
+ sWalker.xSelectCallback = renameTableSelectCb;
+ sWalker.u.pRename = &sCtx;
+
+ rc = renameParseSql(&sParse, zDb, db, zInput, bTemp);
+
+ if( rc==SQLITE_OK ){
+ int isLegacy = (db->flags & SQLITE_LegacyAlter);
+ if( sParse.pNewTable ){
+ Table *pTab = sParse.pNewTable;
+
+ if( IsView(pTab) ){
+ if( isLegacy==0 ){
+ Select *pSelect = pTab->u.view.pSelect;
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = &sParse;
+
+ assert( pSelect->selFlags & SF_View );
+ pSelect->selFlags &= ~SF_View;
+ sqlite3SelectPrep(&sParse, pTab->u.view.pSelect, &sNC);
+ if( sParse.nErr ){
+ rc = sParse.rc;
+ }else{
+ sqlite3WalkSelect(&sWalker, pTab->u.view.pSelect);
+ }
+ }
+ }else{
+ /* Modify any FK definitions to point to the new table. */
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( (isLegacy==0 || (db->flags & SQLITE_ForeignKeys))
+ && !IsVirtual(pTab)
+ ){
+ FKey *pFKey;
+ assert( IsOrdinaryTable(pTab) );
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){
+ renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo);
+ }
+ }
+ }
+#endif
+
+ /* If this is the table being altered, fix any table refs in CHECK
+ ** expressions. Also update the name that appears right after the
+ ** "CREATE [VIRTUAL] TABLE" bit. */
+ if( sqlite3_stricmp(zOld, pTab->zName)==0 ){
+ sCtx.pTab = pTab;
+ if( isLegacy==0 ){
+ sqlite3WalkExprList(&sWalker, pTab->pCheck);
+ }
+ renameTokenFind(&sParse, &sCtx, pTab->zName);
+ }
+ }
+ }
+
+ else if( sParse.pNewIndex ){
+ renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName);
+ if( isLegacy==0 ){
+ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
+ }
+ }
+
+#ifndef SQLITE_OMIT_TRIGGER
+ else{
+ Trigger *pTrigger = sParse.pNewTrigger;
+ TriggerStep *pStep;
+ if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld)
+ && sCtx.pTab->pSchema==pTrigger->pTabSchema
+ ){
+ renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table);
+ }
+
+ if( isLegacy==0 ){
+ rc = renameResolveTrigger(&sParse);
+ if( rc==SQLITE_OK ){
+ renameWalkTrigger(&sWalker, pTrigger);
+ for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){
+ if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){
+ renameTokenFind(&sParse, &sCtx, pStep->zTarget);
+ }
+ if( pStep->pFrom ){
+ int i;
+ for(i=0; i<pStep->pFrom->nSrc; i++){
+ SrcItem *pItem = &pStep->pFrom->a[i];
+ if( 0==sqlite3_stricmp(pItem->zName, zOld) ){
+ renameTokenFind(&sParse, &sCtx, pItem->zName);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+#endif
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = renameEditSql(context, &sCtx, zInput, zNew, bQuote);
+ }
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){
+ sqlite3_result_value(context, argv[3]);
+ }else if( sParse.zErrMsg ){
+ renameColumnParseError(context, "", argv[1], argv[2], &sParse);
+ }else{
+ sqlite3_result_error_code(context, rc);
+ }
+ }
+
+ renameParseCleanup(&sParse);
+ renameTokenFree(db, sCtx.pList);
+ sqlite3BtreeLeaveAll(db);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ }
+
+ return;
+}
+
+static int renameQuotefixExprCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_STRING && (pExpr->flags & EP_DblQuoted) ){
+ renameTokenFind(pWalker->pParse, pWalker->u.pRename, (const void*)pExpr);
+ }
+ return WRC_Continue;
+}
+
+/* SQL function: sqlite_rename_quotefix(DB,SQL)
+**
+** Rewrite the DDL statement "SQL" so that any string literals that use
+** double-quotes use single quotes instead.
+**
+** Two arguments must be passed:
+**
+** 0: Database name ("main", "temp" etc.).
+** 1: SQL statement to edit.
+**
+** The returned value is the modified SQL statement. For example, given
+** the database schema:
+**
+** CREATE TABLE t1(a, b, c);
+**
+** SELECT sqlite_rename_quotefix('main',
+** 'CREATE VIEW v1 AS SELECT "a", "string" FROM t1'
+** );
+**
+** returns the string:
+**
+** CREATE VIEW v1 AS SELECT "a", 'string' FROM t1
+**
+** If there is a error in the input SQL, then raise an error, except
+** if PRAGMA writable_schema=ON, then just return the input string
+** unmodified following an error.
+*/
+static void renameQuotefixFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char const *zDb = (const char*)sqlite3_value_text(argv[0]);
+ char const *zInput = (const char*)sqlite3_value_text(argv[1]);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ sqlite3BtreeEnterAll(db);
+
+ UNUSED_PARAMETER(NotUsed);
+ if( zDb && zInput ){
+ int rc;
+ Parse sParse;
+ rc = renameParseSql(&sParse, zDb, db, zInput, 0);
+
+ if( rc==SQLITE_OK ){
+ RenameCtx sCtx;
+ Walker sWalker;
+
+ /* Walker to find tokens that need to be replaced. */
+ memset(&sCtx, 0, sizeof(RenameCtx));
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = &sParse;
+ sWalker.xExprCallback = renameQuotefixExprCb;
+ sWalker.xSelectCallback = renameColumnSelectCb;
+ sWalker.u.pRename = &sCtx;
+
+ if( sParse.pNewTable ){
+ if( IsView(sParse.pNewTable) ){
+ Select *pSelect = sParse.pNewTable->u.view.pSelect;
+ pSelect->selFlags &= ~SF_View;
+ sParse.rc = SQLITE_OK;
+ sqlite3SelectPrep(&sParse, pSelect, 0);
+ rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc);
+ if( rc==SQLITE_OK ){
+ sqlite3WalkSelect(&sWalker, pSelect);
+ }
+ }else{
+ int i;
+ sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ for(i=0; i<sParse.pNewTable->nCol; i++){
+ sqlite3WalkExpr(&sWalker,
+ sqlite3ColumnExpr(sParse.pNewTable,
+ &sParse.pNewTable->aCol[i]));
+ }
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+ }
+ }else if( sParse.pNewIndex ){
+ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr);
+ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
+ }else{
+#ifndef SQLITE_OMIT_TRIGGER
+ rc = renameResolveTrigger(&sParse);
+ if( rc==SQLITE_OK ){
+ renameWalkTrigger(&sWalker, sParse.pNewTrigger);
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = renameEditSql(context, &sCtx, zInput, 0, 0);
+ }
+ renameTokenFree(db, sCtx.pList);
+ }
+ if( rc!=SQLITE_OK ){
+ if( sqlite3WritableSchema(db) && rc==SQLITE_ERROR ){
+ sqlite3_result_value(context, argv[1]);
+ }else{
+ sqlite3_result_error_code(context, rc);
+ }
+ }
+ renameParseCleanup(&sParse);
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+
+ sqlite3BtreeLeaveAll(db);
+}
+
+/* Function: sqlite_rename_test(DB,SQL,TYPE,NAME,ISTEMP,WHEN,DQS)
+**
+** An SQL user function that checks that there are no parse or symbol
+** resolution problems in a CREATE TRIGGER|TABLE|VIEW|INDEX statement.
+** After an ALTER TABLE .. RENAME operation is performed and the schema
+** reloaded, this function is called on each SQL statement in the schema
+** to ensure that it is still usable.
+**
+** 0: Database name ("main", "temp" etc.).
+** 1: SQL statement.
+** 2: Object type ("view", "table", "trigger" or "index").
+** 3: Object name.
+** 4: True if object is from temp schema.
+** 5: "when" part of error message.
+** 6: True to disable the DQS quirk when parsing SQL.
+**
+** The return value is computed as follows:
+**
+** A. If an error is seen and not in PRAGMA writable_schema=ON mode,
+** then raise the error.
+** B. Else if a trigger is created and the the table that the trigger is
+** attached to is in database zDb, then return 1.
+** C. Otherwise return NULL.
+*/
+static void renameTableTest(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char const *zDb = (const char*)sqlite3_value_text(argv[0]);
+ char const *zInput = (const char*)sqlite3_value_text(argv[1]);
+ int bTemp = sqlite3_value_int(argv[4]);
+ int isLegacy = (db->flags & SQLITE_LegacyAlter);
+ char const *zWhen = (const char*)sqlite3_value_text(argv[5]);
+ int bNoDQS = sqlite3_value_int(argv[6]);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ UNUSED_PARAMETER(NotUsed);
+
+ if( zDb && zInput ){
+ int rc;
+ Parse sParse;
+ int flags = db->flags;
+ if( bNoDQS ) db->flags &= ~(SQLITE_DqsDML|SQLITE_DqsDDL);
+ rc = renameParseSql(&sParse, zDb, db, zInput, bTemp);
+ db->flags |= (flags & (SQLITE_DqsDML|SQLITE_DqsDDL));
+ if( rc==SQLITE_OK ){
+ if( isLegacy==0 && sParse.pNewTable && IsView(sParse.pNewTable) ){
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = &sParse;
+ sqlite3SelectPrep(&sParse, sParse.pNewTable->u.view.pSelect, &sNC);
+ if( sParse.nErr ) rc = sParse.rc;
+ }
+
+ else if( sParse.pNewTrigger ){
+ if( isLegacy==0 ){
+ rc = renameResolveTrigger(&sParse);
+ }
+ if( rc==SQLITE_OK ){
+ int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema);
+ int i2 = sqlite3FindDbName(db, zDb);
+ if( i1==i2 ){
+ /* Handle output case B */
+ sqlite3_result_int(context, 1);
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK && zWhen && !sqlite3WritableSchema(db) ){
+ /* Output case A */
+ renameColumnParseError(context, zWhen, argv[2], argv[3],&sParse);
+ }
+ renameParseCleanup(&sParse);
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+}
+
+/*
+** The implementation of internal UDF sqlite_drop_column().
+**
+** Arguments:
+**
+** argv[0]: An integer - the index of the schema containing the table
+** argv[1]: CREATE TABLE statement to modify.
+** argv[2]: An integer - the index of the column to remove.
+**
+** The value returned is a string containing the CREATE TABLE statement
+** with column argv[2] removed.
+*/
+static void dropColumnFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int iSchema = sqlite3_value_int(argv[0]);
+ const char *zSql = (const char*)sqlite3_value_text(argv[1]);
+ int iCol = sqlite3_value_int(argv[2]);
+ const char *zDb = db->aDb[iSchema].zDbSName;
+ int rc;
+ Parse sParse;
+ RenameToken *pCol;
+ Table *pTab;
+ const char *zEnd;
+ char *zNew = 0;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ UNUSED_PARAMETER(NotUsed);
+ rc = renameParseSql(&sParse, zDb, db, zSql, iSchema==1);
+ if( rc!=SQLITE_OK ) goto drop_column_done;
+ pTab = sParse.pNewTable;
+ if( pTab==0 || pTab->nCol==1 || iCol>=pTab->nCol ){
+ /* This can happen if the sqlite_schema table is corrupt */
+ rc = SQLITE_CORRUPT_BKPT;
+ goto drop_column_done;
+ }
+
+ pCol = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol].zCnName);
+ if( iCol<pTab->nCol-1 ){
+ RenameToken *pEnd;
+ pEnd = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol+1].zCnName);
+ zEnd = (const char*)pEnd->t.z;
+ }else{
+ assert( IsOrdinaryTable(pTab) );
+ zEnd = (const char*)&zSql[pTab->u.tab.addColOffset];
+ while( ALWAYS(pCol->t.z[0]!=0) && pCol->t.z[0]!=',' ) pCol->t.z--;
+ }
+
+ zNew = sqlite3MPrintf(db, "%.*s%s", pCol->t.z-zSql, zSql, zEnd);
+ sqlite3_result_text(context, zNew, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zNew);
+
+drop_column_done:
+ renameParseCleanup(&sParse);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(context, rc);
+ }
+}
+
+/*
+** This function is called by the parser upon parsing an
+**
+** ALTER TABLE pSrc DROP COLUMN pName
+**
+** statement. Argument pSrc contains the possibly qualified name of the
+** table being edited, and token pName the name of the column to drop.
+*/
+SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse *pParse, SrcList *pSrc, const Token *pName){
+ sqlite3 *db = pParse->db; /* Database handle */
+ Table *pTab; /* Table to modify */
+ int iDb; /* Index of db containing pTab in aDb[] */
+ const char *zDb; /* Database containing pTab ("main" etc.) */
+ char *zCol = 0; /* Name of column to drop */
+ int iCol; /* Index of column zCol in pTab->aCol[] */
+
+ /* Look up the table being altered. */
+ assert( pParse->pNewTable==0 );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ if( NEVER(db->mallocFailed) ) goto exit_drop_column;
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_drop_column;
+
+ /* Make sure this is not an attempt to ALTER a view, virtual table or
+ ** system table. */
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_drop_column;
+ if( SQLITE_OK!=isRealTable(pParse, pTab, 1) ) goto exit_drop_column;
+
+ /* Find the index of the column being dropped. */
+ zCol = sqlite3NameFromToken(db, pName);
+ if( zCol==0 ){
+ assert( db->mallocFailed );
+ goto exit_drop_column;
+ }
+ iCol = sqlite3ColumnIndex(pTab, zCol);
+ if( iCol<0 ){
+ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pName);
+ goto exit_drop_column;
+ }
+
+ /* Do not allow the user to drop a PRIMARY KEY column or a column
+ ** constrained by a UNIQUE constraint. */
+ if( pTab->aCol[iCol].colFlags & (COLFLAG_PRIMKEY|COLFLAG_UNIQUE) ){
+ sqlite3ErrorMsg(pParse, "cannot drop %s column: \"%s\"",
+ (pTab->aCol[iCol].colFlags&COLFLAG_PRIMKEY) ? "PRIMARY KEY" : "UNIQUE",
+ zCol
+ );
+ goto exit_drop_column;
+ }
+
+ /* Do not allow the number of columns to go to zero */
+ if( pTab->nCol<=1 ){
+ sqlite3ErrorMsg(pParse, "cannot drop column \"%s\": no other columns exist",zCol);
+ goto exit_drop_column;
+ }
+
+ /* Edit the sqlite_schema table */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 );
+ zDb = db->aDb[iDb].zDbSName;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, zCol) ){
+ goto exit_drop_column;
+ }
+#endif
+ renameTestSchema(pParse, zDb, iDb==1, "", 0);
+ renameFixQuotes(pParse, zDb, iDb==1);
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_drop_column(%d, sql, %d) "
+ "WHERE (type=='table' AND tbl_name=%Q COLLATE nocase)"
+ , zDb, iDb, iCol, pTab->zName
+ );
+
+ /* Drop and reload the database schema. */
+ renameReloadSchema(pParse, iDb, INITFLAG_AlterDrop);
+ renameTestSchema(pParse, zDb, iDb==1, "after drop column", 1);
+
+ /* Edit rows of table on disk */
+ if( pParse->nErr==0 && (pTab->aCol[iCol].colFlags & COLFLAG_VIRTUAL)==0 ){
+ int i;
+ int addr;
+ int reg;
+ int regRec;
+ Index *pPk = 0;
+ int nField = 0; /* Number of non-virtual columns after drop */
+ int iCur;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ iCur = pParse->nTab++;
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
+ addr = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ reg = ++pParse->nMem;
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, reg);
+ pParse->nMem += pTab->nCol;
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ pParse->nMem += pPk->nColumn;
+ for(i=0; i<pPk->nKeyCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, reg+i+1);
+ }
+ nField = pPk->nKeyCol;
+ }
+ regRec = ++pParse->nMem;
+ for(i=0; i<pTab->nCol; i++){
+ if( i!=iCol && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
+ int regOut;
+ if( pPk ){
+ int iPos = sqlite3TableColumnToIndex(pPk, i);
+ int iColPos = sqlite3TableColumnToIndex(pPk, iCol);
+ if( iPos<pPk->nKeyCol ) continue;
+ regOut = reg+1+iPos-(iPos>iColPos);
+ }else{
+ regOut = reg+1+nField;
+ }
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regOut);
+ }else{
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOut);
+ }
+ nField++;
+ }
+ }
+ if( nField==0 ){
+ /* dbsqlfuzz 5f09e7bcc78b4954d06bf9f2400d7715f48d1fef */
+ pParse->nMem++;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, reg+1);
+ nField = 1;
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, reg+1, nField, regRec);
+ if( pPk ){
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iCur, regRec, reg+1, pPk->nKeyCol);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Insert, iCur, regRec, reg);
+ }
+ sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
+
+ sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+
+exit_drop_column:
+ sqlite3DbFree(db, zCol);
+ sqlite3SrcListDelete(db, pSrc);
+}
+
+/*
+** Register built-in functions used to help implement ALTER TABLE
+*/
+SQLITE_PRIVATE void sqlite3AlterFunctions(void){
+ static FuncDef aAlterTableFuncs[] = {
+ INTERNAL_FUNCTION(sqlite_rename_column, 9, renameColumnFunc),
+ INTERNAL_FUNCTION(sqlite_rename_table, 7, renameTableFunc),
+ INTERNAL_FUNCTION(sqlite_rename_test, 7, renameTableTest),
+ INTERNAL_FUNCTION(sqlite_drop_column, 3, dropColumnFunc),
+ INTERNAL_FUNCTION(sqlite_rename_quotefix,2, renameQuotefixFunc),
+ };
+ sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs));
+}
+#endif /* SQLITE_ALTER_TABLE */
+
+/************** End of alter.c ***********************************************/
+/************** Begin file analyze.c *****************************************/
+/*
+** 2005-07-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code associated with the ANALYZE command.
+**
+** The ANALYZE command gather statistics about the content of tables
+** and indices. These statistics are made available to the query planner
+** to help it make better decisions about how to perform queries.
+**
+** The following system tables are or have been supported:
+**
+** CREATE TABLE sqlite_stat1(tbl, idx, stat);
+** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
+** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
+** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
+**
+** Additional tables might be added in future releases of SQLite.
+** The sqlite_stat2 table is not created or used unless the SQLite version
+** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
+** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
+** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
+** created and used by SQLite versions 3.7.9 through 3.29.0 when
+** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
+** is a superset of sqlite_stat2 and is also now deprecated. The
+** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
+** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
+** versions 3.8.1 and later. STAT4 is the only variant that is still
+** supported.
+**
+** For most applications, sqlite_stat1 provides all the statistics required
+** for the query planner to make good choices.
+**
+** Format of sqlite_stat1:
+**
+** There is normally one row per index, with the index identified by the
+** name in the idx column. The tbl column is the name of the table to
+** which the index belongs. In each such row, the stat column will be
+** a string consisting of a list of integers. The first integer in this
+** list is the number of rows in the index. (This is the same as the
+** number of rows in the table, except for partial indices.) The second
+** integer is the average number of rows in the index that have the same
+** value in the first column of the index. The third integer is the average
+** number of rows in the index that have the same value for the first two
+** columns. The N-th integer (for N>1) is the average number of rows in
+** the index which have the same value for the first N-1 columns. For
+** a K-column index, there will be K+1 integers in the stat column. If
+** the index is unique, then the last integer will be 1.
+**
+** The list of integers in the stat column can optionally be followed
+** by the keyword "unordered". The "unordered" keyword, if it is present,
+** must be separated from the last integer by a single space. If the
+** "unordered" keyword is present, then the query planner assumes that
+** the index is unordered and will not use the index for a range query.
+**
+** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
+** column contains a single integer which is the (estimated) number of
+** rows in the table identified by sqlite_stat1.tbl.
+**
+** Format of sqlite_stat2:
+**
+** The sqlite_stat2 is only created and is only used if SQLite is compiled
+** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
+** 3.6.18 and 3.7.8. The "stat2" table contains additional information
+** about the distribution of keys within an index. The index is identified by
+** the "idx" column and the "tbl" column is the name of the table to which
+** the index belongs. There are usually 10 rows in the sqlite_stat2
+** table for each index.
+**
+** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
+** inclusive are samples of the left-most key value in the index taken at
+** evenly spaced points along the index. Let the number of samples be S
+** (10 in the standard build) and let C be the number of rows in the index.
+** Then the sampled rows are given by:
+**
+** rownumber = (i*C*2 + C)/(S*2)
+**
+** For i between 0 and S-1. Conceptually, the index space is divided into
+** S uniform buckets and the samples are the middle row from each bucket.
+**
+** The format for sqlite_stat2 is recorded here for legacy reference. This
+** version of SQLite does not support sqlite_stat2. It neither reads nor
+** writes the sqlite_stat2 table. This version of SQLite only supports
+** sqlite_stat3.
+**
+** Format for sqlite_stat3:
+**
+** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
+** sqlite_stat4 format will be described first. Further information
+** about sqlite_stat3 follows the sqlite_stat4 description.
+**
+** Format for sqlite_stat4:
+**
+** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
+** to aid the query planner in choosing good indices based on the values
+** that indexed columns are compared against in the WHERE clauses of
+** queries.
+**
+** The sqlite_stat4 table contains multiple entries for each index.
+** The idx column names the index and the tbl column is the table of the
+** index. If the idx and tbl columns are the same, then the sample is
+** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
+** binary encoding of a key from the index. The nEq column is a
+** list of integers. The first integer is the approximate number
+** of entries in the index whose left-most column exactly matches
+** the left-most column of the sample. The second integer in nEq
+** is the approximate number of entries in the index where the
+** first two columns match the first two columns of the sample.
+** And so forth. nLt is another list of integers that show the approximate
+** number of entries that are strictly less than the sample. The first
+** integer in nLt contains the number of entries in the index where the
+** left-most column is less than the left-most column of the sample.
+** The K-th integer in the nLt entry is the number of index entries
+** where the first K columns are less than the first K columns of the
+** sample. The nDLt column is like nLt except that it contains the
+** number of distinct entries in the index that are less than the
+** sample.
+**
+** There can be an arbitrary number of sqlite_stat4 entries per index.
+** The ANALYZE command will typically generate sqlite_stat4 tables
+** that contain between 10 and 40 samples which are distributed across
+** the key space, though not uniformly, and which include samples with
+** large nEq values.
+**
+** Format for sqlite_stat3 redux:
+**
+** The sqlite_stat3 table is like sqlite_stat4 except that it only
+** looks at the left-most column of the index. The sqlite_stat3.sample
+** column contains the actual value of the left-most column instead
+** of a blob encoding of the complete index key as is found in
+** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
+** all contain just a single integer which is the same as the first
+** integer in the equivalent columns in sqlite_stat4.
+*/
+#ifndef SQLITE_OMIT_ANALYZE
+/* #include "sqliteInt.h" */
+
+#if defined(SQLITE_ENABLE_STAT4)
+# define IsStat4 1
+#else
+# define IsStat4 0
+# undef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 1
+#endif
+
+/*
+** This routine generates code that opens the sqlite_statN tables.
+** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
+** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
+** appropriate compile-time options are provided.
+**
+** If the sqlite_statN tables do not previously exist, it is created.
+**
+** Argument zWhere may be a pointer to a buffer containing a table name,
+** or it may be a NULL pointer. If it is not NULL, then all entries in
+** the sqlite_statN tables associated with the named table are deleted.
+** If zWhere==0, then code is generated to delete all stat table entries.
+*/
+static void openStatTable(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* The database we are looking in */
+ int iStatCur, /* Open the sqlite_stat1 table on this cursor */
+ const char *zWhere, /* Delete entries for this table or index */
+ const char *zWhereType /* Either "tbl" or "idx" */
+){
+ static const struct {
+ const char *zName;
+ const char *zCols;
+ } aTable[] = {
+ { "sqlite_stat1", "tbl,idx,stat" },
+#if defined(SQLITE_ENABLE_STAT4)
+ { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
+#else
+ { "sqlite_stat4", 0 },
+#endif
+ { "sqlite_stat3", 0 },
+ };
+ int i;
+ sqlite3 *db = pParse->db;
+ Db *pDb;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ u32 aRoot[ArraySize(aTable)];
+ u8 aCreateTbl[ArraySize(aTable)];
+#ifdef SQLITE_ENABLE_STAT4
+ const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
+#else
+ const int nToOpen = 1;
+#endif
+
+ if( v==0 ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3VdbeDb(v)==db );
+ pDb = &db->aDb[iDb];
+
+ /* Create new statistic tables if they do not exist, or clear them
+ ** if they do already exist.
+ */
+ for(i=0; i<ArraySize(aTable); i++){
+ const char *zTab = aTable[i].zName;
+ Table *pStat;
+ aCreateTbl[i] = 0;
+ if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
+ if( i<nToOpen ){
+ /* The sqlite_statN table does not exist. Create it. Note that a
+ ** side-effect of the CREATE TABLE statement is to leave the rootpage
+ ** of the new table in register pParse->regRoot. This is important
+ ** because the OpenWrite opcode below will be needing it. */
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
+ );
+ aRoot[i] = (u32)pParse->regRoot;
+ aCreateTbl[i] = OPFLAG_P2ISREG;
+ }
+ }else{
+ /* The table already exists. If zWhere is not NULL, delete all entries
+ ** associated with the table zWhere. If zWhere is NULL, delete the
+ ** entire contents of the table. */
+ aRoot[i] = pStat->tnum;
+ sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
+ if( zWhere ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE %s=%Q",
+ pDb->zDbSName, zTab, zWhereType, zWhere
+ );
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ }else if( db->xPreUpdateCallback ){
+ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
+#endif
+ }else{
+ /* The sqlite_stat[134] table already exists. Delete all rows. */
+ sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
+ }
+ }
+ }
+
+ /* Open the sqlite_stat[134] tables for writing. */
+ for(i=0; i<nToOpen; i++){
+ assert( i<ArraySize(aTable) );
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
+ sqlite3VdbeChangeP5(v, aCreateTbl[i]);
+ VdbeComment((v, aTable[i].zName));
+ }
+}
+
+/*
+** Recommended number of samples for sqlite_stat4
+*/
+#ifndef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 24
+#endif
+
+/*
+** Three SQL functions - stat_init(), stat_push(), and stat_get() -
+** share an instance of the following structure to hold their state
+** information.
+*/
+typedef struct StatAccum StatAccum;
+typedef struct StatSample StatSample;
+struct StatSample {
+ tRowcnt *anEq; /* sqlite_stat4.nEq */
+ tRowcnt *anDLt; /* sqlite_stat4.nDLt */
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt *anLt; /* sqlite_stat4.nLt */
+ union {
+ i64 iRowid; /* Rowid in main table of the key */
+ u8 *aRowid; /* Key for WITHOUT ROWID tables */
+ } u;
+ u32 nRowid; /* Sizeof aRowid[] */
+ u8 isPSample; /* True if a periodic sample */
+ int iCol; /* If !isPSample, the reason for inclusion */
+ u32 iHash; /* Tiebreaker hash */
+#endif
+};
+struct StatAccum {
+ sqlite3 *db; /* Database connection, for malloc() */
+ tRowcnt nEst; /* Estimated number of rows */
+ tRowcnt nRow; /* Number of rows visited so far */
+ int nLimit; /* Analysis row-scan limit */
+ int nCol; /* Number of columns in index + pk/rowid */
+ int nKeyCol; /* Number of index columns w/o the pk/rowid */
+ u8 nSkipAhead; /* Number of times of skip-ahead */
+ StatSample current; /* Current row as a StatSample */
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt nPSample; /* How often to do a periodic sample */
+ int mxSample; /* Maximum number of samples to accumulate */
+ u32 iPrn; /* Pseudo-random number used for sampling */
+ StatSample *aBest; /* Array of nCol best samples */
+ int iMin; /* Index in a[] of entry with minimum score */
+ int nSample; /* Current number of samples */
+ int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */
+ int iGet; /* Index of current sample accessed by stat_get() */
+ StatSample *a; /* Array of mxSample StatSample objects */
+#endif
+};
+
+/* Reclaim memory used by a StatSample
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleClear(sqlite3 *db, StatSample *p){
+ assert( db!=0 );
+ if( p->nRowid ){
+ sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the BLOB value of a ROWID
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->u.aRowid = sqlite3DbMallocRawNN(db, n);
+ if( p->u.aRowid ){
+ p->nRowid = n;
+ memcpy(p->u.aRowid, pData, n);
+ }else{
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the INTEGER value of a ROWID.
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ p->u.iRowid = iRowid;
+}
+#endif
+
+
+/*
+** Copy the contents of object (*pFrom) into (*pTo).
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
+ pTo->isPSample = pFrom->isPSample;
+ pTo->iCol = pFrom->iCol;
+ pTo->iHash = pFrom->iHash;
+ memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
+ if( pFrom->nRowid ){
+ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
+ }else{
+ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
+ }
+}
+#endif
+
+/*
+** Reclaim all memory of a StatAccum structure.
+*/
+static void statAccumDestructor(void *pOld){
+ StatAccum *p = (StatAccum*)pOld;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ){
+ int i;
+ for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
+ for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
+ sampleClear(p->db, &p->current);
+ }
+#endif
+ sqlite3DbFree(p->db, p);
+}
+
+/*
+** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
+** are:
+** N: The number of columns in the index including the rowid/pk (note 1)
+** K: The number of columns in the index excluding the rowid/pk.
+** C: Estimated number of rows in the index
+** L: A limit on the number of rows to scan, or 0 for no-limit
+**
+** Note 1: In the special case of the covering index that implements a
+** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
+** total number of columns in the table.
+**
+** For indexes on ordinary rowid tables, N==K+1. But for indexes on
+** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
+** PRIMARY KEY of the table. The covering index that implements the
+** original WITHOUT ROWID table as N==K as a special case.
+**
+** This routine allocates the StatAccum object in heap memory. The return
+** value is a pointer to the StatAccum object. The datatype of the
+** return value is BLOB, but it is really just a pointer to the StatAccum
+** object.
+*/
+static void statInit(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ StatAccum *p;
+ int nCol; /* Number of columns in index being sampled */
+ int nKeyCol; /* Number of key columns */
+ int nColUp; /* nCol rounded up for alignment */
+ int n; /* Bytes of space to allocate */
+ sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */
+#ifdef SQLITE_ENABLE_STAT4
+ /* Maximum number of samples. 0 if STAT4 data is not collected */
+ int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
+#endif
+
+ /* Decode the three function arguments */
+ UNUSED_PARAMETER(argc);
+ nCol = sqlite3_value_int(argv[0]);
+ assert( nCol>0 );
+ nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
+ nKeyCol = sqlite3_value_int(argv[1]);
+ assert( nKeyCol<=nCol );
+ assert( nKeyCol>0 );
+
+ /* Allocate the space required for the StatAccum object */
+ n = sizeof(*p)
+ + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */
+ + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */
+#ifdef SQLITE_ENABLE_STAT4
+ if( mxSample ){
+ n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */
+ + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */
+ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
+ }
+#endif
+ p = sqlite3DbMallocZero(db, n);
+ if( p==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+
+ p->db = db;
+ p->nEst = sqlite3_value_int64(argv[2]);
+ p->nRow = 0;
+ p->nLimit = sqlite3_value_int64(argv[3]);
+ p->nCol = nCol;
+ p->nKeyCol = nKeyCol;
+ p->nSkipAhead = 0;
+ p->current.anDLt = (tRowcnt*)&p[1];
+ p->current.anEq = &p->current.anDLt[nColUp];
+
+#ifdef SQLITE_ENABLE_STAT4
+ p->mxSample = p->nLimit==0 ? mxSample : 0;
+ if( mxSample ){
+ u8 *pSpace; /* Allocated space not yet assigned */
+ int i; /* Used to iterate through p->aSample[] */
+
+ p->iGet = -1;
+ p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
+ p->current.anLt = &p->current.anEq[nColUp];
+ p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
+
+ /* Set up the StatAccum.a[] and aBest[] arrays */
+ p->a = (struct StatSample*)&p->current.anLt[nColUp];
+ p->aBest = &p->a[mxSample];
+ pSpace = (u8*)(&p->a[mxSample+nCol]);
+ for(i=0; i<(mxSample+nCol); i++){
+ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ }
+ assert( (pSpace - (u8*)p)==n );
+
+ for(i=0; i<nCol; i++){
+ p->aBest[i].iCol = i;
+ }
+ }
+#endif
+
+ /* Return a pointer to the allocated object to the caller. Note that
+ ** only the pointer (the 2nd parameter) matters. The size of the object
+ ** (given by the 3rd parameter) is never used and can be any positive
+ ** value. */
+ sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
+}
+static const FuncDef statInitFuncdef = {
+ 4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statInit, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_init", /* zName */
+ {0}
+};
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** pNew and pOld are both candidate non-periodic samples selected for
+** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
+** considering only any trailing columns and the sample hash value, this
+** function returns true if sample pNew is to be preferred over pOld.
+** In other words, if we assume that the cardinalities of the selected
+** column for pNew and pOld are equal, is pNew to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
+*/
+static int sampleIsBetterPost(
+ StatAccum *pAccum,
+ StatSample *pNew,
+ StatSample *pOld
+){
+ int nCol = pAccum->nCol;
+ int i;
+ assert( pNew->iCol==pOld->iCol );
+ for(i=pNew->iCol+1; i<nCol; i++){
+ if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
+ if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
+ }
+ if( pNew->iHash>pOld->iHash ) return 1;
+ return 0;
+}
+#endif
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Return true if pNew is to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
+*/
+static int sampleIsBetter(
+ StatAccum *pAccum,
+ StatSample *pNew,
+ StatSample *pOld
+){
+ tRowcnt nEqNew = pNew->anEq[pNew->iCol];
+ tRowcnt nEqOld = pOld->anEq[pOld->iCol];
+
+ assert( pOld->isPSample==0 && pNew->isPSample==0 );
+ assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
+
+ if( (nEqNew>nEqOld) ) return 1;
+ if( nEqNew==nEqOld ){
+ if( pNew->iCol<pOld->iCol ) return 1;
+ return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
+ }
+ return 0;
+}
+
+/*
+** Copy the contents of sample *pNew into the p->a[] array. If necessary,
+** remove the least desirable sample from p->a[] to make room.
+*/
+static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
+ StatSample *pSample = 0;
+ int i;
+
+ assert( IsStat4 || nEqZero==0 );
+
+ /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
+ ** values in the anEq[] array of any sample in StatAccum.a[]. In
+ ** other words, if nMaxEqZero is n, then it is guaranteed that there
+ ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
+ if( nEqZero>p->nMaxEqZero ){
+ p->nMaxEqZero = nEqZero;
+ }
+ if( pNew->isPSample==0 ){
+ StatSample *pUpgrade = 0;
+ assert( pNew->anEq[pNew->iCol]>0 );
+
+ /* This sample is being added because the prefix that ends in column
+ ** iCol occurs many times in the table. However, if we have already
+ ** added a sample that shares this prefix, there is no need to add
+ ** this one. Instead, upgrade the priority of the highest priority
+ ** existing sample that shares this prefix. */
+ for(i=p->nSample-1; i>=0; i--){
+ StatSample *pOld = &p->a[i];
+ if( pOld->anEq[pNew->iCol]==0 ){
+ if( pOld->isPSample ) return;
+ assert( pOld->iCol>pNew->iCol );
+ assert( sampleIsBetter(p, pNew, pOld) );
+ if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
+ pUpgrade = pOld;
+ }
+ }
+ }
+ if( pUpgrade ){
+ pUpgrade->iCol = pNew->iCol;
+ pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
+ goto find_new_min;
+ }
+ }
+
+ /* If necessary, remove sample iMin to make room for the new sample. */
+ if( p->nSample>=p->mxSample ){
+ StatSample *pMin = &p->a[p->iMin];
+ tRowcnt *anEq = pMin->anEq;
+ tRowcnt *anLt = pMin->anLt;
+ tRowcnt *anDLt = pMin->anDLt;
+ sampleClear(p->db, pMin);
+ memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
+ pSample = &p->a[p->nSample-1];
+ pSample->nRowid = 0;
+ pSample->anEq = anEq;
+ pSample->anDLt = anDLt;
+ pSample->anLt = anLt;
+ p->nSample = p->mxSample-1;
+ }
+
+ /* The "rows less-than" for the rowid column must be greater than that
+ ** for the last sample in the p->a[] array. Otherwise, the samples would
+ ** be out of order. */
+ assert( p->nSample==0
+ || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
+
+ /* Insert the new sample */
+ pSample = &p->a[p->nSample];
+ sampleCopy(p, pSample, pNew);
+ p->nSample++;
+
+ /* Zero the first nEqZero entries in the anEq[] array. */
+ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
+
+find_new_min:
+ if( p->nSample>=p->mxSample ){
+ int iMin = -1;
+ for(i=0; i<p->mxSample; i++){
+ if( p->a[i].isPSample ) continue;
+ if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
+ iMin = i;
+ }
+ }
+ assert( iMin>=0 );
+ p->iMin = iMin;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Field iChng of the index being scanned has changed. So at this point
+** p->current contains a sample that reflects the previous row of the
+** index. The value of anEq[iChng] and subsequent anEq[] elements are
+** correct at this point.
+*/
+static void samplePushPrevious(StatAccum *p, int iChng){
+ int i;
+
+ /* Check if any samples from the aBest[] array should be pushed
+ ** into IndexSample.a[] at this point. */
+ for(i=(p->nCol-2); i>=iChng; i--){
+ StatSample *pBest = &p->aBest[i];
+ pBest->anEq[i] = p->current.anEq[i];
+ if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
+ sampleInsert(p, pBest, i);
+ }
+ }
+
+ /* Check that no sample contains an anEq[] entry with an index of
+ ** p->nMaxEqZero or greater set to zero. */
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
+ }
+
+ /* Update the anEq[] fields of any samples already collected. */
+ if( iChng<p->nMaxEqZero ){
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=iChng; j<p->nCol; j++){
+ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
+ }
+ }
+ p->nMaxEqZero = iChng;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** Implementation of the stat_push SQL function: stat_push(P,C,R)
+** Arguments:
+**
+** P Pointer to the StatAccum object created by stat_init()
+** C Index of left-most column to differ from previous row
+** R Rowid for the current row. Might be a key record for
+** WITHOUT ROWID tables.
+**
+** The purpose of this routine is to collect statistical data and/or
+** samples from the index being analyzed into the StatAccum object.
+** The stat_get() SQL function will be used afterwards to
+** retrieve the information gathered.
+**
+** This SQL function usually returns NULL, but might return an integer
+** if it wants the byte-code to do special processing.
+**
+** The R parameter is only used for STAT4
+*/
+static void statPush(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+
+ /* The three function arguments */
+ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
+ int iChng = sqlite3_value_int(argv[1]);
+
+ UNUSED_PARAMETER( argc );
+ UNUSED_PARAMETER( context );
+ assert( p->nCol>0 );
+ assert( iChng<p->nCol );
+
+ if( p->nRow==0 ){
+ /* This is the first call to this function. Do initialization. */
+ for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
+ }else{
+ /* Second and subsequent calls get processed here */
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ) samplePushPrevious(p, iChng);
+#endif
+
+ /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
+ ** to the current row of the index. */
+ for(i=0; i<iChng; i++){
+ p->current.anEq[i]++;
+ }
+ for(i=iChng; i<p->nCol; i++){
+ p->current.anDLt[i]++;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
+#endif
+ p->current.anEq[i] = 1;
+ }
+ }
+
+ p->nRow++;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ){
+ tRowcnt nLt;
+ if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
+ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
+ }else{
+ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
+ sqlite3_value_blob(argv[2]));
+ }
+ p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
+
+ nLt = p->current.anLt[p->nCol-1];
+ /* Check if this is to be a periodic sample. If so, add it. */
+ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
+ p->current.isPSample = 1;
+ p->current.iCol = 0;
+ sampleInsert(p, &p->current, p->nCol-1);
+ p->current.isPSample = 0;
+ }
+
+ /* Update the aBest[] array. */
+ for(i=0; i<(p->nCol-1); i++){
+ p->current.iCol = i;
+ if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
+ sampleCopy(p, &p->aBest[i], &p->current);
+ }
+ }
+ }else
+#endif
+ if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
+ p->nSkipAhead++;
+ sqlite3_result_int(context, p->current.anDLt[0]>0);
+ }
+}
+
+static const FuncDef statPushFuncdef = {
+ 2+IsStat4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statPush, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_push", /* zName */
+ {0}
+};
+
+#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
+#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
+#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
+#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
+#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
+
+/*
+** Implementation of the stat_get(P,J) SQL function. This routine is
+** used to query statistical information that has been gathered into
+** the StatAccum object by prior calls to stat_push(). The P parameter
+** has type BLOB but it is really just a pointer to the StatAccum object.
+** The content to returned is determined by the parameter J
+** which is one of the STAT_GET_xxxx values defined above.
+**
+** The stat_get(P,J) function is not available to generic SQL. It is
+** inserted as part of a manually constructed bytecode program. (See
+** the callStatGet() routine below.) It is guaranteed that the P
+** parameter will always be a pointer to a StatAccum object, never a
+** NULL.
+**
+** If STAT4 is not enabled, then J is always
+** STAT_GET_STAT1 and is hence omitted and this routine becomes
+** a one-parameter function, stat_get(P), that always returns the
+** stat1 table entry information.
+*/
+static void statGet(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
+#ifdef SQLITE_ENABLE_STAT4
+ /* STAT4 has a parameter on this routine. */
+ int eCall = sqlite3_value_int(argv[1]);
+ assert( argc==2 );
+ assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
+ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
+ || eCall==STAT_GET_NDLT
+ );
+ assert( eCall==STAT_GET_STAT1 || p->mxSample );
+ if( eCall==STAT_GET_STAT1 )
+#else
+ assert( argc==1 );
+#endif
+ {
+ /* Return the value to store in the "stat" column of the sqlite_stat1
+ ** table for this index.
+ **
+ ** The value is a string composed of a list of integers describing
+ ** the index. The first integer in the list is the total number of
+ ** entries in the index. There is one additional integer in the list
+ ** for each indexed column. This additional integer is an estimate of
+ ** the number of rows matched by a equality query on the index using
+ ** a key with the corresponding number of fields. In other words,
+ ** if the index is on columns (a,b) and the sqlite_stat1 value is
+ ** "100 10 2", then SQLite estimates that:
+ **
+ ** * the index contains 100 rows,
+ ** * "WHERE a=?" matches 10 rows, and
+ ** * "WHERE a=? AND b=?" matches 2 rows.
+ **
+ ** If D is the count of distinct values and K is the total number of
+ ** rows, then each estimate is usually computed as:
+ **
+ ** I = (K+D-1)/D
+ **
+ ** In other words, I is K/D rounded up to the next whole integer.
+ ** However, if I is between 1.0 and 1.1 (in other words if I is
+ ** close to 1.0 but just a little larger) then do not round up but
+ ** instead keep the I value at 1.0.
+ */
+ sqlite3_str sStat; /* Text of the constructed "stat" line */
+ int i; /* Loop counter */
+
+ sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
+ sqlite3_str_appendf(&sStat, "%llu",
+ p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
+ for(i=0; i<p->nKeyCol; i++){
+ u64 nDistinct = p->current.anDLt[i] + 1;
+ u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
+ if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
+ sqlite3_str_appendf(&sStat, " %llu", iVal);
+ assert( p->current.anEq[i] );
+ }
+ sqlite3ResultStrAccum(context, &sStat);
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ else if( eCall==STAT_GET_ROWID ){
+ if( p->iGet<0 ){
+ samplePushPrevious(p, 0);
+ p->iGet = 0;
+ }
+ if( p->iGet<p->nSample ){
+ StatSample *pS = p->a + p->iGet;
+ if( pS->nRowid==0 ){
+ sqlite3_result_int64(context, pS->u.iRowid);
+ }else{
+ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
+ SQLITE_TRANSIENT);
+ }
+ }
+ }else{
+ tRowcnt *aCnt = 0;
+ sqlite3_str sStat;
+ int i;
+
+ assert( p->iGet<p->nSample );
+ switch( eCall ){
+ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
+ case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
+ default: {
+ aCnt = p->a[p->iGet].anDLt;
+ p->iGet++;
+ break;
+ }
+ }
+ sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
+ for(i=0; i<p->nCol; i++){
+ sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
+ }
+ if( sStat.nChar ) sStat.nChar--;
+ sqlite3ResultStrAccum(context, &sStat);
+ }
+#endif /* SQLITE_ENABLE_STAT4 */
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( argc );
+#endif
+}
+static const FuncDef statGetFuncdef = {
+ 1+IsStat4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statGet, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_get", /* zName */
+ {0}
+};
+
+static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
+#elif SQLITE_DEBUG
+ assert( iParam==STAT_GET_STAT1 );
+#else
+ UNUSED_PARAMETER( iParam );
+#endif
+ assert( regOut!=regStat && regOut!=regStat+1 );
+ sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
+ &statGetFuncdef, 0);
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/* Add a comment to the most recent VDBE opcode that is the name
+** of the k-th column of the pIdx index.
+*/
+static void analyzeVdbeCommentIndexWithColumnName(
+ Vdbe *v, /* Prepared statement under construction */
+ Index *pIdx, /* Index whose column is being loaded */
+ int k /* Which column index */
+){
+ int i; /* Index of column in the table */
+ assert( k>=0 && k<pIdx->nColumn );
+ i = pIdx->aiColumn[k];
+ if( NEVER(i==XN_ROWID) ){
+ VdbeComment((v,"%s.rowid",pIdx->zName));
+ }else if( i==XN_EXPR ){
+ VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
+ }else{
+ VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
+ }
+}
+#else
+# define analyzeVdbeCommentIndexWithColumnName(a,b,c)
+#endif /* SQLITE_DEBUG */
+
+/*
+** Generate code to do an analysis of all indices associated with
+** a single table.
+*/
+static void analyzeOneTable(
+ Parse *pParse, /* Parser context */
+ Table *pTab, /* Table whose indices are to be analyzed */
+ Index *pOnlyIdx, /* If not NULL, only analyze this one index */
+ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
+ int iMem, /* Available memory locations begin here */
+ int iTab /* Next available cursor */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ Index *pIdx; /* An index to being analyzed */
+ int iIdxCur; /* Cursor open on index being analyzed */
+ int iTabCur; /* Table cursor */
+ Vdbe *v; /* The virtual machine being built up */
+ int i; /* Loop counter */
+ int jZeroRows = -1; /* Jump from here if number of rows is zero */
+ int iDb; /* Index of database containing pTab */
+ u8 needTableCnt = 1; /* True to count the table */
+ int regNewRowid = iMem++; /* Rowid for the inserted record */
+ int regStat = iMem++; /* Register to hold StatAccum object */
+ int regChng = iMem++; /* Index of changed index field */
+ int regRowid = iMem++; /* Rowid argument passed to stat_push() */
+ int regTemp = iMem++; /* Temporary use register */
+ int regTemp2 = iMem++; /* Second temporary use register */
+ int regTabname = iMem++; /* Register containing table name */
+ int regIdxname = iMem++; /* Register containing index name */
+ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
+ int regPrev = iMem; /* MUST BE LAST (see below) */
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ Table *pStat1 = 0;
+#endif
+
+ pParse->nMem = MAX(pParse->nMem, iMem);
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 || NEVER(pTab==0) ){
+ return;
+ }
+ if( !IsOrdinaryTable(pTab) ){
+ /* Do not gather statistics on views or virtual tables */
+ return;
+ }
+ if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
+ /* Do not gather statistics on system tables */
+ return;
+ }
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 );
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
+ db->aDb[iDb].zDbSName ) ){
+ return;
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( db->xPreUpdateCallback ){
+ pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
+ if( pStat1==0 ) return;
+ pStat1->zName = (char*)&pStat1[1];
+ memcpy(pStat1->zName, "sqlite_stat1", 13);
+ pStat1->nCol = 3;
+ pStat1->iPKey = -1;
+ sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC);
+ }
+#endif
+
+ /* Establish a read-lock on the table at the shared-cache level.
+ ** Open a read-only cursor on the table. Also allocate a cursor number
+ ** to use for scanning indexes (iIdxCur). No index cursor is opened at
+ ** this time though. */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ iTabCur = iTab++;
+ iIdxCur = iTab++;
+ pParse->nTab = MAX(pParse->nTab, iTab);
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, regTabname, pTab->zName);
+
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int nCol; /* Number of columns in pIdx. "N" */
+ int addrRewind; /* Address of "OP_Rewind iIdxCur" */
+ int addrNextRow; /* Address of "next_row:" */
+ const char *zIdxName; /* Name of the index */
+ int nColTest; /* Number of columns to test for changes */
+
+ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
+ if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
+ nCol = pIdx->nKeyCol;
+ zIdxName = pTab->zName;
+ nColTest = nCol - 1;
+ }else{
+ nCol = pIdx->nColumn;
+ zIdxName = pIdx->zName;
+ nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
+ }
+
+ /* Populate the register containing the index name. */
+ sqlite3VdbeLoadString(v, regIdxname, zIdxName);
+ VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
+
+ /*
+ ** Pseudo-code for loop that calls stat_push():
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto chng_addr_0;
+ **
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto chng_addr_N
+ **
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ **
+ ** endDistinctTest:
+ ** regRowid = idx(rowid)
+ ** stat_push(P, regChng, regRowid)
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ **
+ ** end_of_scan:
+ */
+
+ /* Make sure there are enough memory cells allocated to accommodate
+ ** the regPrev array and a trailing rowid (the rowid slot is required
+ ** when building a record to insert into the sample column of
+ ** the sqlite_stat4 table. */
+ pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
+
+ /* Open a read-only cursor on the index being analyzed. */
+ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "%s", pIdx->zName));
+
+ /* Invoke the stat_init() function. The arguments are:
+ **
+ ** (1) the number of columns in the index including the rowid
+ ** (or for a WITHOUT ROWID table, the number of PK columns),
+ ** (2) the number of columns in the key without the rowid/pk
+ ** (3) estimated number of rows in the index,
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
+ assert( regRowid==regStat+2 );
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) ){
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ }else
+#endif
+ {
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
+ }
+ assert( regTemp2==regStat+4 );
+ sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
+ sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
+ &statInitFuncdef, 0);
+
+ /* Implementation of the following:
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto next_push_0;
+ **
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+
+ if( nColTest>0 ){
+ int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
+ int *aGotoChng; /* Array of jump instruction addresses */
+ aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
+ if( aGotoChng==0 ) continue;
+
+ /*
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto endDistinctTest
+ */
+ sqlite3VdbeAddOp0(v, OP_Goto);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+ if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
+ /* For a single-column UNIQUE index, once we have found a non-NULL
+ ** row, we know that all the rest will be distinct, so skip
+ ** subsequent distinctness tests. */
+ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
+ VdbeCoverage(v);
+ }
+ for(i=0; i<nColTest; i++){
+ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
+ aGotoChng[i] =
+ sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
+ sqlite3VdbeGoto(v, endDistinctTest);
+
+
+ /*
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ */
+ sqlite3VdbeJumpHere(v, addrNextRow-1);
+ for(i=0; i<nColTest; i++){
+ sqlite3VdbeJumpHere(v, aGotoChng[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
+ }
+ sqlite3VdbeResolveLabel(v, endDistinctTest);
+ sqlite3DbFree(db, aGotoChng);
+ }
+
+ /*
+ ** chng_addr_N:
+ ** regRowid = idx(rowid) // STAT4 only
+ ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ */
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) ){
+ assert( regRowid==(regStat+2) );
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
+ int j, k, regKey;
+ regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ for(j=0; j<pPk->nKeyCol; j++){
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
+ assert( k>=0 && k<pIdx->nColumn );
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
+ sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
+ }
+ }
+#endif
+ assert( regChng==(regStat+1) );
+ {
+ sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
+ &statPushFuncdef, 0);
+ if( db->nAnalysisLimit ){
+ int j1, j2, j3;
+ j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
+ j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
+ j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeJumpHere(v, j3);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
+ }
+ }
+
+ /* Add the entry to the stat1 table. */
+ callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
+#endif
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+
+ /* Add the entries to the stat4 table. */
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
+ int regEq = regStat1;
+ int regLt = regStat1+1;
+ int regDLt = regStat1+2;
+ int regSample = regStat1+3;
+ int regCol = regStat1+4;
+ int regSampleRowid = regCol + nCol;
+ int addrNext;
+ int addrIsNull;
+ u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
+
+ pParse->nMem = MAX(pParse->nMem, regCol+nCol);
+
+ addrNext = sqlite3VdbeCurrentAddr(v);
+ callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
+ addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
+ VdbeCoverage(v);
+ callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
+ callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
+ callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
+ sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
+ VdbeCoverage(v);
+ for(i=0; i<nCol; i++){
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
+ sqlite3VdbeJumpHere(v, addrIsNull);
+ }
+#endif /* SQLITE_ENABLE_STAT4 */
+
+ /* End of analysis */
+ sqlite3VdbeJumpHere(v, addrRewind);
+ }
+
+
+ /* Create a single sqlite_stat1 entry containing NULL as the index
+ ** name and the row count as the content.
+ */
+ if( pOnlyIdx==0 && needTableCnt ){
+ VdbeComment((v, "%s", pTab->zName));
+ sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
+ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
+#endif
+ sqlite3VdbeJumpHere(v, jZeroRows);
+ }
+}
+
+
+/*
+** Generate code that will cause the most recent index analysis to
+** be loaded into internal hash tables where is can be used.
+*/
+static void loadAnalysis(Parse *pParse, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
+ }
+}
+
+/*
+** Generate code that will do an analysis of an entire database
+*/
+static void analyzeDatabase(Parse *pParse, int iDb){
+ sqlite3 *db = pParse->db;
+ Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
+ HashElem *k;
+ int iStatCur;
+ int iMem;
+ int iTab;
+
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab;
+ pParse->nTab += 3;
+ openStatTable(pParse, iDb, iStatCur, 0, 0);
+ iMem = pParse->nMem+1;
+ iTab = pParse->nTab;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pTab = (Table*)sqliteHashData(k);
+ analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
+ }
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code that will do an analysis of a single table in
+** a database. If pOnlyIdx is not NULL then it is a single index
+** in pTab that should be analyzed.
+*/
+static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
+ int iDb;
+ int iStatCur;
+
+ assert( pTab!=0 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab;
+ pParse->nTab += 3;
+ if( pOnlyIdx ){
+ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
+ }else{
+ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
+ }
+ analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code for the ANALYZE command. The parser calls this routine
+** when it recognizes an ANALYZE command.
+**
+** ANALYZE -- 1
+** ANALYZE <database> -- 2
+** ANALYZE ?<database>.?<tablename> -- 3
+**
+** Form 1 causes all indices in all attached databases to be analyzed.
+** Form 2 analyzes all indices the single database named.
+** Form 3 analyzes all indices associated with the named table.
+*/
+SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
+ sqlite3 *db = pParse->db;
+ int iDb;
+ int i;
+ char *z, *zDb;
+ Table *pTab;
+ Index *pIdx;
+ Token *pTableName;
+ Vdbe *v;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ assert( pName2!=0 || pName1==0 );
+ if( pName1==0 ){
+ /* Form 1: Analyze everything */
+ for(i=0; i<db->nDb; i++){
+ if( i==1 ) continue; /* Do not analyze the TEMP database */
+ analyzeDatabase(pParse, i);
+ }
+ }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
+ /* Analyze the schema named as the argument */
+ analyzeDatabase(pParse, iDb);
+ }else{
+ /* Form 3: Analyze the table or index named as an argument */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
+ if( iDb>=0 ){
+ zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
+ z = sqlite3NameFromToken(db, pTableName);
+ if( z ){
+ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
+ analyzeTable(pParse, pIdx->pTable, pIdx);
+ }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
+ analyzeTable(pParse, pTab, 0);
+ }
+ sqlite3DbFree(db, z);
+ }
+ }
+ }
+ if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ }
+}
+
+/*
+** Used to pass information from the analyzer reader through to the
+** callback routine.
+*/
+typedef struct analysisInfo analysisInfo;
+struct analysisInfo {
+ sqlite3 *db;
+ const char *zDatabase;
+};
+
+/*
+** The first argument points to a nul-terminated string containing a
+** list of space separated integers. Read the first nOut of these into
+** the array aOut[].
+*/
+static void decodeIntArray(
+ char *zIntArray, /* String containing int array to decode */
+ int nOut, /* Number of slots in aOut[] */
+ tRowcnt *aOut, /* Store integers here */
+ LogEst *aLog, /* Or, if aOut==0, here */
+ Index *pIndex /* Handle extra flags for this index, if not NULL */
+){
+ char *z = zIntArray;
+ int c;
+ int i;
+ tRowcnt v;
+
+#ifdef SQLITE_ENABLE_STAT4
+ if( z==0 ) z = "";
+#else
+ assert( z!=0 );
+#endif
+ for(i=0; *z && i<nOut; i++){
+ v = 0;
+ while( (c=z[0])>='0' && c<='9' ){
+ v = v*10 + c - '0';
+ z++;
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ if( aOut ) aOut[i] = v;
+ if( aLog ) aLog[i] = sqlite3LogEst(v);
+#else
+ assert( aOut==0 );
+ UNUSED_PARAMETER(aOut);
+ assert( aLog!=0 );
+ aLog[i] = sqlite3LogEst(v);
+#endif
+ if( *z==' ' ) z++;
+ }
+#ifndef SQLITE_ENABLE_STAT4
+ assert( pIndex!=0 ); {
+#else
+ if( pIndex ){
+#endif
+ pIndex->bUnordered = 0;
+ pIndex->noSkipScan = 0;
+ while( z[0] ){
+ if( sqlite3_strglob("unordered*", z)==0 ){
+ pIndex->bUnordered = 1;
+ }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
+ int sz = sqlite3Atoi(z+3);
+ if( sz<2 ) sz = 2;
+ pIndex->szIdxRow = sqlite3LogEst(sz);
+ }else if( sqlite3_strglob("noskipscan*", z)==0 ){
+ pIndex->noSkipScan = 1;
+ }
+#ifdef SQLITE_ENABLE_COSTMULT
+ else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
+ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
+ }
+#endif
+ while( z[0]!=0 && z[0]!=' ' ) z++;
+ while( z[0]==' ' ) z++;
+ }
+ }
+}
+
+/*
+** This callback is invoked once for each index when reading the
+** sqlite_stat1 table.
+**
+** argv[0] = name of the table
+** argv[1] = name of the index (might be NULL)
+** argv[2] = results of analysis - on integer for each column
+**
+** Entries for which argv[1]==NULL simply record the number of rows in
+** the table.
+*/
+static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
+ analysisInfo *pInfo = (analysisInfo*)pData;
+ Index *pIndex;
+ Table *pTable;
+ const char *z;
+
+ assert( argc==3 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+
+ if( argv==0 || argv[0]==0 || argv[2]==0 ){
+ return 0;
+ }
+ pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
+ if( pTable==0 ){
+ return 0;
+ }
+ if( argv[1]==0 ){
+ pIndex = 0;
+ }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
+ pIndex = sqlite3PrimaryKeyIndex(pTable);
+ }else{
+ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
+ }
+ z = argv[2];
+
+ if( pIndex ){
+ tRowcnt *aiRowEst = 0;
+ int nCol = pIndex->nKeyCol+1;
+#ifdef SQLITE_ENABLE_STAT4
+ /* Index.aiRowEst may already be set here if there are duplicate
+ ** sqlite_stat1 entries for this index. In that case just clobber
+ ** the old data with the new instead of allocating a new array. */
+ if( pIndex->aiRowEst==0 ){
+ pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
+ if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
+ }
+ aiRowEst = pIndex->aiRowEst;
+#endif
+ pIndex->bUnordered = 0;
+ decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
+ pIndex->hasStat1 = 1;
+ if( pIndex->pPartIdxWhere==0 ){
+ pTable->nRowLogEst = pIndex->aiRowLogEst[0];
+ pTable->tabFlags |= TF_HasStat1;
+ }
+ }else{
+ Index fakeIdx;
+ fakeIdx.szIdxRow = pTable->szTabRow;
+#ifdef SQLITE_ENABLE_COSTMULT
+ fakeIdx.pTable = pTable;
+#endif
+ decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
+ pTable->szTabRow = fakeIdx.szIdxRow;
+ pTable->tabFlags |= TF_HasStat1;
+ }
+
+ return 0;
+}
+
+/*
+** If the Index.aSample variable is not NULL, delete the aSample[] array
+** and its contents.
+*/
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
+#ifdef SQLITE_ENABLE_STAT4
+ if( pIdx->aSample ){
+ int j;
+ for(j=0; j<pIdx->nSample; j++){
+ IndexSample *p = &pIdx->aSample[j];
+ sqlite3DbFree(db, p->p);
+ }
+ sqlite3DbFree(db, pIdx->aSample);
+ }
+ if( db && db->pnBytesFreed==0 ){
+ pIdx->nSample = 0;
+ pIdx->aSample = 0;
+ }
+#else
+ UNUSED_PARAMETER(db);
+ UNUSED_PARAMETER(pIdx);
+#endif /* SQLITE_ENABLE_STAT4 */
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Populate the pIdx->aAvgEq[] array based on the samples currently
+** stored in pIdx->aSample[].
+*/
+static void initAvgEq(Index *pIdx){
+ if( pIdx ){
+ IndexSample *aSample = pIdx->aSample;
+ IndexSample *pFinal = &aSample[pIdx->nSample-1];
+ int iCol;
+ int nCol = 1;
+ if( pIdx->nSampleCol>1 ){
+ /* If this is stat4 data, then calculate aAvgEq[] values for all
+ ** sample columns except the last. The last is always set to 1, as
+ ** once the trailing PK fields are considered all index keys are
+ ** unique. */
+ nCol = pIdx->nSampleCol-1;
+ pIdx->aAvgEq[nCol] = 1;
+ }
+ for(iCol=0; iCol<nCol; iCol++){
+ int nSample = pIdx->nSample;
+ int i; /* Used to iterate through samples */
+ tRowcnt sumEq = 0; /* Sum of the nEq values */
+ tRowcnt avgEq = 0;
+ tRowcnt nRow; /* Number of rows in index */
+ i64 nSum100 = 0; /* Number of terms contributing to sumEq */
+ i64 nDist100; /* Number of distinct values in index */
+
+ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
+ nRow = pFinal->anLt[iCol];
+ nDist100 = (i64)100 * pFinal->anDLt[iCol];
+ nSample--;
+ }else{
+ nRow = pIdx->aiRowEst[0];
+ nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
+ }
+ pIdx->nRowEst0 = nRow;
+
+ /* Set nSum to the number of distinct (iCol+1) field prefixes that
+ ** occur in the stat4 table for this index. Set sumEq to the sum of
+ ** the nEq values for column iCol for the same set (adding the value
+ ** only once where there exist duplicate prefixes). */
+ for(i=0; i<nSample; i++){
+ if( i==(pIdx->nSample-1)
+ || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
+ ){
+ sumEq += aSample[i].anEq[iCol];
+ nSum100 += 100;
+ }
+ }
+
+ if( nDist100>nSum100 && sumEq<nRow ){
+ avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
+ }
+ if( avgEq==0 ) avgEq = 1;
+ pIdx->aAvgEq[iCol] = avgEq;
+ }
+ }
+}
+
+/*
+** Look up an index by name. Or, if the name of a WITHOUT ROWID table
+** is supplied instead, find the PRIMARY KEY index for that table.
+*/
+static Index *findIndexOrPrimaryKey(
+ sqlite3 *db,
+ const char *zName,
+ const char *zDb
+){
+ Index *pIdx = sqlite3FindIndex(db, zName, zDb);
+ if( pIdx==0 ){
+ Table *pTab = sqlite3FindTable(db, zName, zDb);
+ if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
+ }
+ return pIdx;
+}
+
+/*
+** Load the content from either the sqlite_stat4
+** into the relevant Index.aSample[] arrays.
+**
+** Arguments zSql1 and zSql2 must point to SQL statements that return
+** data equivalent to the following:
+**
+** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
+** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
+**
+** where %Q is replaced with the database name before the SQL is executed.
+*/
+static int loadStatTbl(
+ sqlite3 *db, /* Database handle */
+ const char *zSql1, /* SQL statement 1 (see above) */
+ const char *zSql2, /* SQL statement 2 (see above) */
+ const char *zDb /* Database name (e.g. "main") */
+){
+ int rc; /* Result codes from subroutines */
+ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
+ char *zSql; /* Text of the SQL statement */
+ Index *pPrevIdx = 0; /* Previous index in the loop */
+ IndexSample *pSample; /* A slot in pIdx->aSample[] */
+
+ assert( db->lookaside.bDisable );
+ zSql = sqlite3MPrintf(db, zSql1, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ int nIdxCol = 1; /* Number of columns in stat4 records */
+
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nSample; /* Number of samples */
+ int nByte; /* Bytes of space required */
+ int i; /* Bytes of space required */
+ tRowcnt *pSpace;
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ nSample = sqlite3_column_int(pStmt, 1);
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ assert( pIdx==0 || pIdx->nSample==0 );
+ if( pIdx==0 ) continue;
+ assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
+ nIdxCol = pIdx->nKeyCol;
+ }else{
+ nIdxCol = pIdx->nColumn;
+ }
+ pIdx->nSampleCol = nIdxCol;
+ nByte = sizeof(IndexSample) * nSample;
+ nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
+ nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
+
+ pIdx->aSample = sqlite3DbMallocZero(db, nByte);
+ if( pIdx->aSample==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pSpace = (tRowcnt*)&pIdx->aSample[nSample];
+ pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
+ pIdx->pTable->tabFlags |= TF_HasStat4;
+ for(i=0; i<nSample; i++){
+ pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
+ }
+ assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc ) return rc;
+
+ zSql = sqlite3MPrintf(db, zSql2, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nCol = 1; /* Number of columns in index */
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ if( pIdx==0 ) continue;
+ /* This next condition is true if data has already been loaded from
+ ** the sqlite_stat4 table. */
+ nCol = pIdx->nSampleCol;
+ if( pIdx!=pPrevIdx ){
+ initAvgEq(pPrevIdx);
+ pPrevIdx = pIdx;
+ }
+ pSample = &pIdx->aSample[pIdx->nSample];
+ decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
+
+ /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
+ ** This is in case the sample record is corrupted. In that case, the
+ ** sqlite3VdbeRecordCompare() may read up to two varints past the
+ ** end of the allocated buffer before it realizes it is dealing with
+ ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
+ ** a buffer overread. */
+ pSample->n = sqlite3_column_bytes(pStmt, 4);
+ pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
+ if( pSample->p==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( pSample->n ){
+ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
+ }
+ pIdx->nSample++;
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
+ return rc;
+}
+
+/*
+** Load content from the sqlite_stat4 table into
+** the Index.aSample[] arrays of all indices.
+*/
+static int loadStat4(sqlite3 *db, const char *zDb){
+ int rc = SQLITE_OK; /* Result codes from subroutines */
+ const Table *pStat4;
+
+ assert( db->lookaside.bDisable );
+ if( (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
+ && IsOrdinaryTable(pStat4)
+ ){
+ rc = loadStatTbl(db,
+ "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
+ "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
+ zDb
+ );
+ }
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
+** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
+** arrays. The contents of sqlite_stat4 are used to populate the
+** Index.aSample[] arrays.
+**
+** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
+** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
+** during compilation and the sqlite_stat4 table is present, no data is
+** read from it.
+**
+** If SQLITE_ENABLE_STAT4 was defined during compilation and the
+** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
+** returned. However, in this case, data is read from the sqlite_stat1
+** table (if it is present) before returning.
+**
+** If an OOM error occurs, this function always sets db->mallocFailed.
+** This means if the caller does not care about other errors, the return
+** code may be ignored.
+*/
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
+ analysisInfo sInfo;
+ HashElem *i;
+ char *zSql;
+ int rc = SQLITE_OK;
+ Schema *pSchema = db->aDb[iDb].pSchema;
+ const Table *pStat1;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+
+ /* Clear any prior statistics */
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ pTab->tabFlags &= ~TF_HasStat1;
+ }
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ pIdx->hasStat1 = 0;
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3DeleteIndexSamples(db, pIdx);
+ pIdx->aSample = 0;
+#endif
+ }
+
+ /* Load new statistics out of the sqlite_stat1 table */
+ sInfo.db = db;
+ sInfo.zDatabase = db->aDb[iDb].zDbSName;
+ if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
+ && IsOrdinaryTable(pStat1)
+ ){
+ zSql = sqlite3MPrintf(db,
+ "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
+ sqlite3DbFree(db, zSql);
+ }
+ }
+
+ /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
+ }
+
+ /* Load the statistics from the sqlite_stat4 table. */
+#ifdef SQLITE_ENABLE_STAT4
+ if( rc==SQLITE_OK ){
+ DisableLookaside;
+ rc = loadStat4(db, sInfo.zDatabase);
+ EnableLookaside;
+ }
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ sqlite3_free(pIdx->aiRowEst);
+ pIdx->aiRowEst = 0;
+ }
+#endif
+
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ return rc;
+}
+
+
+#endif /* SQLITE_OMIT_ANALYZE */
+
+/************** End of analyze.c *********************************************/
+/************** Begin file attach.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the ATTACH and DETACH commands.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_ATTACH
+/*
+** Resolve an expression that was part of an ATTACH or DETACH statement. This
+** is slightly different from resolving a normal SQL expression, because simple
+** identifiers are treated as strings, not possible column names or aliases.
+**
+** i.e. if the parser sees:
+**
+** ATTACH DATABASE abc AS def
+**
+** it treats the two expressions as literal strings 'abc' and 'def' instead of
+** looking for columns of the same name.
+**
+** This only applies to the root node of pExpr, so the statement:
+**
+** ATTACH DATABASE abc||def AS 'db2'
+**
+** will fail because neither abc or def can be resolved.
+*/
+static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
+{
+ int rc = SQLITE_OK;
+ if( pExpr ){
+ if( pExpr->op!=TK_ID ){
+ rc = sqlite3ResolveExprNames(pName, pExpr);
+ }else{
+ pExpr->op = TK_STRING;
+ }
+ }
+ return rc;
+}
+
+/*
+** Return true if zName points to a name that may be used to refer to
+** database iDb attached to handle db.
+*/
+SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName){
+ return (
+ sqlite3StrICmp(db->aDb[iDb].zDbSName, zName)==0
+ || (iDb==0 && sqlite3StrICmp("main", zName)==0)
+ );
+}
+
+/*
+** An SQL user-function registered to do the work of an ATTACH statement. The
+** three arguments to the function come directly from an attach statement:
+**
+** ATTACH DATABASE x AS y KEY z
+**
+** SELECT sqlite_attach(x, y, z)
+**
+** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
+** third argument.
+**
+** If the db->init.reopenMemdb flags is set, then instead of attaching a
+** new database, close the database on db->init.iDb and reopen it as an
+** empty MemDB.
+*/
+static void attachFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ int i;
+ int rc = 0;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char *zName;
+ const char *zFile;
+ char *zPath = 0;
+ char *zErr = 0;
+ unsigned int flags;
+ Db *aNew; /* New array of Db pointers */
+ Db *pNew; /* Db object for the newly attached database */
+ char *zErrDyn = 0;
+ sqlite3_vfs *pVfs;
+
+ UNUSED_PARAMETER(NotUsed);
+ zFile = (const char *)sqlite3_value_text(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[1]);
+ if( zFile==0 ) zFile = "";
+ if( zName==0 ) zName = "";
+
+#ifndef SQLITE_OMIT_DESERIALIZE
+# define REOPEN_AS_MEMDB(db) (db->init.reopenMemdb)
+#else
+# define REOPEN_AS_MEMDB(db) (0)
+#endif
+
+ if( REOPEN_AS_MEMDB(db) ){
+ /* This is not a real ATTACH. Instead, this routine is being called
+ ** from sqlite3_deserialize() to close database db->init.iDb and
+ ** reopen it as a MemDB */
+ pVfs = sqlite3_vfs_find("memdb");
+ if( pVfs==0 ) return;
+ pNew = &db->aDb[db->init.iDb];
+ if( pNew->pBt ) sqlite3BtreeClose(pNew->pBt);
+ pNew->pBt = 0;
+ pNew->pSchema = 0;
+ rc = sqlite3BtreeOpen(pVfs, "x\0", db, &pNew->pBt, 0, SQLITE_OPEN_MAIN_DB);
+ }else{
+ /* This is a real ATTACH
+ **
+ ** Check for the following errors:
+ **
+ ** * Too many attached databases,
+ ** * Transaction currently open
+ ** * Specified database name already being used.
+ */
+ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
+ zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d",
+ db->aLimit[SQLITE_LIMIT_ATTACHED]
+ );
+ goto attach_error;
+ }
+ for(i=0; i<db->nDb; i++){
+ assert( zName );
+ if( sqlite3DbIsNamed(db, i, zName) ){
+ zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName);
+ goto attach_error;
+ }
+ }
+
+ /* Allocate the new entry in the db->aDb[] array and initialize the schema
+ ** hash tables.
+ */
+ if( db->aDb==db->aDbStatic ){
+ aNew = sqlite3DbMallocRawNN(db, sizeof(db->aDb[0])*3 );
+ if( aNew==0 ) return;
+ memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
+ }else{
+ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
+ if( aNew==0 ) return;
+ }
+ db->aDb = aNew;
+ pNew = &db->aDb[db->nDb];
+ memset(pNew, 0, sizeof(*pNew));
+
+ /* Open the database file. If the btree is successfully opened, use
+ ** it to obtain the database schema. At this point the schema may
+ ** or may not be initialized.
+ */
+ flags = db->openFlags;
+ rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ assert( pVfs );
+ flags |= SQLITE_OPEN_MAIN_DB;
+ rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags);
+ db->nDb++;
+ pNew->zDbSName = sqlite3DbStrDup(db, zName);
+ }
+ db->noSharedCache = 0;
+ if( rc==SQLITE_CONSTRAINT ){
+ rc = SQLITE_ERROR;
+ zErrDyn = sqlite3MPrintf(db, "database is already attached");
+ }else if( rc==SQLITE_OK ){
+ Pager *pPager;
+ pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt);
+ if( !pNew->pSchema ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else if( pNew->pSchema->file_format && pNew->pSchema->enc!=ENC(db) ){
+ zErrDyn = sqlite3MPrintf(db,
+ "attached databases must use the same text encoding as main database");
+ rc = SQLITE_ERROR;
+ }
+ sqlite3BtreeEnter(pNew->pBt);
+ pPager = sqlite3BtreePager(pNew->pBt);
+ sqlite3PagerLockingMode(pPager, db->dfltLockMode);
+ sqlite3BtreeSecureDelete(pNew->pBt,
+ sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ sqlite3BtreeSetPagerFlags(pNew->pBt,
+ PAGER_SYNCHRONOUS_FULL | (db->flags & PAGER_FLAGS_MASK));
+#endif
+ sqlite3BtreeLeave(pNew->pBt);
+ }
+ pNew->safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1;
+ if( rc==SQLITE_OK && pNew->zDbSName==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if( rc==SQLITE_OK ){
+ extern int sqlcipherCodecAttach(sqlite3*, int, const void*, int);
+ extern void sqlcipherCodecGetKey(sqlite3*, int, void**, int*);
+ int nKey;
+ char *zKey;
+ int t = sqlite3_value_type(argv[2]);
+ switch( t ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
+ rc = SQLITE_ERROR;
+ break;
+
+ case SQLITE_TEXT:
+ case SQLITE_BLOB:
+ nKey = sqlite3_value_bytes(argv[2]);
+ zKey = (char *)sqlite3_value_blob(argv[2]);
+ rc = sqlcipherCodecAttach(db, db->nDb-1, zKey, nKey);
+ break;
+
+ case SQLITE_NULL:
+ /* No key specified. Use the key from URI filename, or if none,
+ ** use the key from the main database. */
+ if( sqlite3CodecQueryParameters(db, zName, zPath)==0 ){
+ sqlcipherCodecGetKey(db, 0, (void**)&zKey, &nKey);
+ if( nKey || sqlite3BtreeGetRequestedReserve(db->aDb[0].pBt)>0 ){
+ rc = sqlcipherCodecAttach(db, db->nDb-1, zKey, nKey);
+ }
+ }
+ break;
+ }
+ }
+#endif
+/* END SQLCIPHER */
+ sqlite3_free_filename( zPath );
+
+ /* If the file was opened successfully, read the schema for the new database.
+ ** If this fails, or if opening the file failed, then close the file and
+ ** remove the entry from the db->aDb[] array. i.e. put everything back the
+ ** way we found it.
+ */
+ if( rc==SQLITE_OK ){
+ sqlite3BtreeEnterAll(db);
+ db->init.iDb = 0;
+ db->mDbFlags &= ~(DBFLAG_SchemaKnownOk);
+ if( !REOPEN_AS_MEMDB(db) ){
+ rc = sqlite3Init(db, &zErrDyn);
+ }
+ sqlite3BtreeLeaveAll(db);
+ assert( zErrDyn==0 || rc!=SQLITE_OK );
+ }
+#ifdef SQLITE_USER_AUTHENTICATION
+ if( rc==SQLITE_OK && !REOPEN_AS_MEMDB(db) ){
+ u8 newAuth = 0;
+ rc = sqlite3UserAuthCheckLogin(db, zName, &newAuth);
+ if( newAuth<db->auth.authLevel ){
+ rc = SQLITE_AUTH_USER;
+ }
+ }
+#endif
+ if( rc ){
+ if( !REOPEN_AS_MEMDB(db) ){
+ int iDb = db->nDb - 1;
+ assert( iDb>=2 );
+ if( db->aDb[iDb].pBt ){
+ sqlite3BtreeClose(db->aDb[iDb].pBt);
+ db->aDb[iDb].pBt = 0;
+ db->aDb[iDb].pSchema = 0;
+ }
+ sqlite3ResetAllSchemasOfConnection(db);
+ db->nDb = iDb;
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, zErrDyn);
+ zErrDyn = sqlite3MPrintf(db, "out of memory");
+ }else if( zErrDyn==0 ){
+ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
+ }
+ }
+ goto attach_error;
+ }
+
+ return;
+
+attach_error:
+ /* Return an error if we get here */
+ if( zErrDyn ){
+ sqlite3_result_error(context, zErrDyn, -1);
+ sqlite3DbFree(db, zErrDyn);
+ }
+ if( rc ) sqlite3_result_error_code(context, rc);
+}
+
+/*
+** An SQL user-function registered to do the work of an DETACH statement. The
+** three arguments to the function come directly from a detach statement:
+**
+** DETACH DATABASE x
+**
+** SELECT sqlite_detach(x)
+*/
+static void detachFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ const char *zName = (const char *)sqlite3_value_text(argv[0]);
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int i;
+ Db *pDb = 0;
+ HashElem *pEntry;
+ char zErr[128];
+
+ UNUSED_PARAMETER(NotUsed);
+
+ if( zName==0 ) zName = "";
+ for(i=0; i<db->nDb; i++){
+ pDb = &db->aDb[i];
+ if( pDb->pBt==0 ) continue;
+ if( sqlite3DbIsNamed(db, i, zName) ) break;
+ }
+
+ if( i>=db->nDb ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
+ goto detach_error;
+ }
+ if( i<2 ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
+ goto detach_error;
+ }
+ if( sqlite3BtreeTxnState(pDb->pBt)!=SQLITE_TXN_NONE
+ || sqlite3BtreeIsInBackup(pDb->pBt)
+ ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
+ goto detach_error;
+ }
+
+ /* If any TEMP triggers reference the schema being detached, move those
+ ** triggers to reference the TEMP schema itself. */
+ assert( db->aDb[1].pSchema );
+ pEntry = sqliteHashFirst(&db->aDb[1].pSchema->trigHash);
+ while( pEntry ){
+ Trigger *pTrig = (Trigger*)sqliteHashData(pEntry);
+ if( pTrig->pTabSchema==pDb->pSchema ){
+ pTrig->pTabSchema = pTrig->pSchema;
+ }
+ pEntry = sqliteHashNext(pEntry);
+ }
+
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ pDb->pSchema = 0;
+ sqlite3CollapseDatabaseArray(db);
+ return;
+
+detach_error:
+ sqlite3_result_error(context, zErr, -1);
+}
+
+/*
+** This procedure generates VDBE code for a single invocation of either the
+** sqlite_detach() or sqlite_attach() SQL user functions.
+*/
+static void codeAttach(
+ Parse *pParse, /* The parser context */
+ int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
+ FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */
+ Expr *pAuthArg, /* Expression to pass to authorization callback */
+ Expr *pFilename, /* Name of database file */
+ Expr *pDbname, /* Name of the database to use internally */
+ Expr *pKey /* Database key for encryption extension */
+){
+ int rc;
+ NameContext sName;
+ Vdbe *v;
+ sqlite3* db = pParse->db;
+ int regArgs;
+
+ if( pParse->nErr ) goto attach_end;
+ memset(&sName, 0, sizeof(NameContext));
+ sName.pParse = pParse;
+
+ if(
+ SQLITE_OK!=resolveAttachExpr(&sName, pFilename) ||
+ SQLITE_OK!=resolveAttachExpr(&sName, pDbname) ||
+ SQLITE_OK!=resolveAttachExpr(&sName, pKey)
+ ){
+ goto attach_end;
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( ALWAYS(pAuthArg) ){
+ char *zAuthArg;
+ if( pAuthArg->op==TK_STRING ){
+ assert( !ExprHasProperty(pAuthArg, EP_IntValue) );
+ zAuthArg = pAuthArg->u.zToken;
+ }else{
+ zAuthArg = 0;
+ }
+ rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
+ if(rc!=SQLITE_OK ){
+ goto attach_end;
+ }
+ }
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+
+ v = sqlite3GetVdbe(pParse);
+ regArgs = sqlite3GetTempRange(pParse, 4);
+ sqlite3ExprCode(pParse, pFilename, regArgs);
+ sqlite3ExprCode(pParse, pDbname, regArgs+1);
+ sqlite3ExprCode(pParse, pKey, regArgs+2);
+
+ assert( v || db->mallocFailed );
+ if( v ){
+ sqlite3VdbeAddFunctionCall(pParse, 0, regArgs+3-pFunc->nArg, regArgs+3,
+ pFunc->nArg, pFunc, 0);
+ /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
+ ** statement only). For DETACH, set it to false (expire all existing
+ ** statements).
+ */
+ sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
+ }
+
+attach_end:
+ sqlite3ExprDelete(db, pFilename);
+ sqlite3ExprDelete(db, pDbname);
+ sqlite3ExprDelete(db, pKey);
+}
+
+/*
+** Called by the parser to compile a DETACH statement.
+**
+** DETACH pDbname
+*/
+SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
+ static const FuncDef detach_func = {
+ 1, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ detachFunc, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "sqlite_detach", /* zName */
+ {0}
+ };
+ codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
+}
+
+/*
+** Called by the parser to compile an ATTACH statement.
+**
+** ATTACH p AS pDbname KEY pKey
+*/
+SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
+ static const FuncDef attach_func = {
+ 3, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ attachFunc, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "sqlite_attach", /* zName */
+ {0}
+ };
+ codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
+}
+#endif /* SQLITE_OMIT_ATTACH */
+
+/*
+** Expression callback used by sqlite3FixAAAA() routines.
+*/
+static int fixExprCb(Walker *p, Expr *pExpr){
+ DbFixer *pFix = p->u.pFix;
+ if( !pFix->bTemp ) ExprSetProperty(pExpr, EP_FromDDL);
+ if( pExpr->op==TK_VARIABLE ){
+ if( pFix->pParse->db->init.busy ){
+ pExpr->op = TK_NULL;
+ }else{
+ sqlite3ErrorMsg(pFix->pParse, "%s cannot use variables", pFix->zType);
+ return WRC_Abort;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Select callback used by sqlite3FixAAAA() routines.
+*/
+static int fixSelectCb(Walker *p, Select *pSelect){
+ DbFixer *pFix = p->u.pFix;
+ int i;
+ SrcItem *pItem;
+ sqlite3 *db = pFix->pParse->db;
+ int iDb = sqlite3FindDbName(db, pFix->zDb);
+ SrcList *pList = pSelect->pSrc;
+
+ if( NEVER(pList==0) ) return WRC_Continue;
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pFix->bTemp==0 ){
+ if( pItem->zDatabase ){
+ if( iDb!=sqlite3FindDbName(db, pItem->zDatabase) ){
+ sqlite3ErrorMsg(pFix->pParse,
+ "%s %T cannot reference objects in database %s",
+ pFix->zType, pFix->pName, pItem->zDatabase);
+ return WRC_Abort;
+ }
+ sqlite3DbFree(db, pItem->zDatabase);
+ pItem->zDatabase = 0;
+ pItem->fg.notCte = 1;
+ }
+ pItem->pSchema = pFix->pSchema;
+ pItem->fg.fromDDL = 1;
+ }
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
+ if( pList->a[i].fg.isUsing==0
+ && sqlite3WalkExpr(&pFix->w, pList->a[i].u3.pOn)
+ ){
+ return WRC_Abort;
+ }
+#endif
+ }
+ if( pSelect->pWith ){
+ for(i=0; i<pSelect->pWith->nCte; i++){
+ if( sqlite3WalkSelect(p, pSelect->pWith->a[i].pSelect) ){
+ return WRC_Abort;
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Initialize a DbFixer structure. This routine must be called prior
+** to passing the structure to one of the sqliteFixAAAA() routines below.
+*/
+SQLITE_PRIVATE void sqlite3FixInit(
+ DbFixer *pFix, /* The fixer to be initialized */
+ Parse *pParse, /* Error messages will be written here */
+ int iDb, /* This is the database that must be used */
+ const char *zType, /* "view", "trigger", or "index" */
+ const Token *pName /* Name of the view, trigger, or index */
+){
+ sqlite3 *db = pParse->db;
+ assert( db->nDb>iDb );
+ pFix->pParse = pParse;
+ pFix->zDb = db->aDb[iDb].zDbSName;
+ pFix->pSchema = db->aDb[iDb].pSchema;
+ pFix->zType = zType;
+ pFix->pName = pName;
+ pFix->bTemp = (iDb==1);
+ pFix->w.pParse = pParse;
+ pFix->w.xExprCallback = fixExprCb;
+ pFix->w.xSelectCallback = fixSelectCb;
+ pFix->w.xSelectCallback2 = sqlite3WalkWinDefnDummyCallback;
+ pFix->w.walkerDepth = 0;
+ pFix->w.eCode = 0;
+ pFix->w.u.pFix = pFix;
+}
+
+/*
+** The following set of routines walk through the parse tree and assign
+** a specific database to all table references where the database name
+** was left unspecified in the original SQL statement. The pFix structure
+** must have been initialized by a prior call to sqlite3FixInit().
+**
+** These routines are used to make sure that an index, trigger, or
+** view in one database does not refer to objects in a different database.
+** (Exception: indices, triggers, and views in the TEMP database are
+** allowed to refer to anything.) If a reference is explicitly made
+** to an object in a different database, an error message is added to
+** pParse->zErrMsg and these routines return non-zero. If everything
+** checks out, these routines return 0.
+*/
+SQLITE_PRIVATE int sqlite3FixSrcList(
+ DbFixer *pFix, /* Context of the fixation */
+ SrcList *pList /* The Source list to check and modify */
+){
+ int res = 0;
+ if( pList ){
+ Select s;
+ memset(&s, 0, sizeof(s));
+ s.pSrc = pList;
+ res = sqlite3WalkSelect(&pFix->w, &s);
+ }
+ return res;
+}
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE int sqlite3FixSelect(
+ DbFixer *pFix, /* Context of the fixation */
+ Select *pSelect /* The SELECT statement to be fixed to one database */
+){
+ return sqlite3WalkSelect(&pFix->w, pSelect);
+}
+SQLITE_PRIVATE int sqlite3FixExpr(
+ DbFixer *pFix, /* Context of the fixation */
+ Expr *pExpr /* The expression to be fixed to one database */
+){
+ return sqlite3WalkExpr(&pFix->w, pExpr);
+}
+#endif
+
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE int sqlite3FixTriggerStep(
+ DbFixer *pFix, /* Context of the fixation */
+ TriggerStep *pStep /* The trigger step be fixed to one database */
+){
+ while( pStep ){
+ if( sqlite3WalkSelect(&pFix->w, pStep->pSelect)
+ || sqlite3WalkExpr(&pFix->w, pStep->pWhere)
+ || sqlite3WalkExprList(&pFix->w, pStep->pExprList)
+ || sqlite3FixSrcList(pFix, pStep->pFrom)
+ ){
+ return 1;
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ {
+ Upsert *pUp;
+ for(pUp=pStep->pUpsert; pUp; pUp=pUp->pNextUpsert){
+ if( sqlite3WalkExprList(&pFix->w, pUp->pUpsertTarget)
+ || sqlite3WalkExpr(&pFix->w, pUp->pUpsertTargetWhere)
+ || sqlite3WalkExprList(&pFix->w, pUp->pUpsertSet)
+ || sqlite3WalkExpr(&pFix->w, pUp->pUpsertWhere)
+ ){
+ return 1;
+ }
+ }
+ }
+#endif
+ pStep = pStep->pNext;
+ }
+
+ return 0;
+}
+#endif
+
+/************** End of attach.c **********************************************/
+/************** Begin file auth.c ********************************************/
+/*
+** 2003 January 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the sqlite3_set_authorizer()
+** API. This facility is an optional feature of the library. Embedded
+** systems that do not need this facility may omit it by recompiling
+** the library with -DSQLITE_OMIT_AUTHORIZATION=1
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** All of the code in this file may be omitted by defining a single
+** macro.
+*/
+#ifndef SQLITE_OMIT_AUTHORIZATION
+
+/*
+** Set or clear the access authorization function.
+**
+** The access authorization function is be called during the compilation
+** phase to verify that the user has read and/or write access permission on
+** various fields of the database. The first argument to the auth function
+** is a copy of the 3rd argument to this routine. The second argument
+** to the auth function is one of these constants:
+**
+** SQLITE_CREATE_INDEX
+** SQLITE_CREATE_TABLE
+** SQLITE_CREATE_TEMP_INDEX
+** SQLITE_CREATE_TEMP_TABLE
+** SQLITE_CREATE_TEMP_TRIGGER
+** SQLITE_CREATE_TEMP_VIEW
+** SQLITE_CREATE_TRIGGER
+** SQLITE_CREATE_VIEW
+** SQLITE_DELETE
+** SQLITE_DROP_INDEX
+** SQLITE_DROP_TABLE
+** SQLITE_DROP_TEMP_INDEX
+** SQLITE_DROP_TEMP_TABLE
+** SQLITE_DROP_TEMP_TRIGGER
+** SQLITE_DROP_TEMP_VIEW
+** SQLITE_DROP_TRIGGER
+** SQLITE_DROP_VIEW
+** SQLITE_INSERT
+** SQLITE_PRAGMA
+** SQLITE_READ
+** SQLITE_SELECT
+** SQLITE_TRANSACTION
+** SQLITE_UPDATE
+**
+** The third and fourth arguments to the auth function are the name of
+** the table and the column that are being accessed. The auth function
+** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
+** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
+** means that the SQL statement will never-run - the sqlite3_exec() call
+** will return with an error. SQLITE_IGNORE means that the SQL statement
+** should run but attempts to read the specified column will return NULL
+** and attempts to write the column will be ignored.
+**
+** Setting the auth function to NULL disables this hook. The default
+** setting of the auth function is NULL.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3 *db,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pArg
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->xAuth = (sqlite3_xauth)xAuth;
+ db->pAuthArg = pArg;
+ if( db->xAuth ) sqlite3ExpirePreparedStatements(db, 1);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into pParse->zErrMsg that explains that the
+** user-supplied authorization function returned an illegal value.
+*/
+static void sqliteAuthBadReturnCode(Parse *pParse){
+ sqlite3ErrorMsg(pParse, "authorizer malfunction");
+ pParse->rc = SQLITE_ERROR;
+}
+
+/*
+** Invoke the authorization callback for permission to read column zCol from
+** table zTab in database zDb. This function assumes that an authorization
+** callback has been registered (i.e. that sqlite3.xAuth is not NULL).
+**
+** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed
+** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE
+** is treated as SQLITE_DENY. In this case an error is left in pParse.
+*/
+SQLITE_PRIVATE int sqlite3AuthReadCol(
+ Parse *pParse, /* The parser context */
+ const char *zTab, /* Table name */
+ const char *zCol, /* Column name */
+ int iDb /* Index of containing database. */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ char *zDb = db->aDb[iDb].zDbSName; /* Schema name of attached database */
+ int rc; /* Auth callback return code */
+
+ if( db->init.busy ) return SQLITE_OK;
+ rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext
+#ifdef SQLITE_USER_AUTHENTICATION
+ ,db->auth.zAuthUser
+#endif
+ );
+ if( rc==SQLITE_DENY ){
+ char *z = sqlite3_mprintf("%s.%s", zTab, zCol);
+ if( db->nDb>2 || iDb!=0 ) z = sqlite3_mprintf("%s.%z", zDb, z);
+ sqlite3ErrorMsg(pParse, "access to %z is prohibited", z);
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){
+ sqliteAuthBadReturnCode(pParse);
+ }
+ return rc;
+}
+
+/*
+** The pExpr should be a TK_COLUMN expression. The table referred to
+** is in pTabList or else it is the NEW or OLD table of a trigger.
+** Check to see if it is OK to read this particular column.
+**
+** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
+** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
+** then generate an error.
+*/
+SQLITE_PRIVATE void sqlite3AuthRead(
+ Parse *pParse, /* The parser context */
+ Expr *pExpr, /* The expression to check authorization on */
+ Schema *pSchema, /* The schema of the expression */
+ SrcList *pTabList /* All table that pExpr might refer to */
+){
+ Table *pTab = 0; /* The table being read */
+ const char *zCol; /* Name of the column of the table */
+ int iSrc; /* Index in pTabList->a[] of table being read */
+ int iDb; /* The index of the database the expression refers to */
+ int iCol; /* Index of column in table */
+
+ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
+ assert( !IN_RENAME_OBJECT );
+ assert( pParse->db->xAuth!=0 );
+ iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
+ if( iDb<0 ){
+ /* An attempt to read a column out of a subquery or other
+ ** temporary table. */
+ return;
+ }
+
+ if( pExpr->op==TK_TRIGGER ){
+ pTab = pParse->pTriggerTab;
+ }else{
+ assert( pTabList );
+ for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){
+ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
+ pTab = pTabList->a[iSrc].pTab;
+ break;
+ }
+ }
+ }
+ iCol = pExpr->iColumn;
+ if( pTab==0 ) return;
+
+ if( iCol>=0 ){
+ assert( iCol<pTab->nCol );
+ zCol = pTab->aCol[iCol].zCnName;
+ }else if( pTab->iPKey>=0 ){
+ assert( pTab->iPKey<pTab->nCol );
+ zCol = pTab->aCol[pTab->iPKey].zCnName;
+ }else{
+ zCol = "ROWID";
+ }
+ assert( iDb>=0 && iDb<pParse->db->nDb );
+ if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){
+ pExpr->op = TK_NULL;
+ }
+}
+
+/*
+** Do an authorization check using the code and arguments given. Return
+** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
+** is returned, then the error count and error message in pParse are
+** modified appropriately.
+*/
+SQLITE_PRIVATE int sqlite3AuthCheck(
+ Parse *pParse,
+ int code,
+ const char *zArg1,
+ const char *zArg2,
+ const char *zArg3
+){
+ sqlite3 *db = pParse->db;
+ int rc;
+
+ /* Don't do any authorization checks if the database is initialising
+ ** or if the parser is being invoked from within sqlite3_declare_vtab.
+ */
+ assert( !IN_RENAME_OBJECT || db->xAuth==0 );
+ if( db->xAuth==0 || db->init.busy || IN_SPECIAL_PARSE ){
+ return SQLITE_OK;
+ }
+
+ /* EVIDENCE-OF: R-43249-19882 The third through sixth parameters to the
+ ** callback are either NULL pointers or zero-terminated strings that
+ ** contain additional details about the action to be authorized.
+ **
+ ** The following testcase() macros show that any of the 3rd through 6th
+ ** parameters can be either NULL or a string. */
+ testcase( zArg1==0 );
+ testcase( zArg2==0 );
+ testcase( zArg3==0 );
+ testcase( pParse->zAuthContext==0 );
+
+ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext
+#ifdef SQLITE_USER_AUTHENTICATION
+ ,db->auth.zAuthUser
+#endif
+ );
+ if( rc==SQLITE_DENY ){
+ sqlite3ErrorMsg(pParse, "not authorized");
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
+ rc = SQLITE_DENY;
+ sqliteAuthBadReturnCode(pParse);
+ }
+ return rc;
+}
+
+/*
+** Push an authorization context. After this routine is called, the
+** zArg3 argument to authorization callbacks will be zContext until
+** popped. Or if pParse==0, this routine is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3AuthContextPush(
+ Parse *pParse,
+ AuthContext *pContext,
+ const char *zContext
+){
+ assert( pParse );
+ pContext->pParse = pParse;
+ pContext->zAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = zContext;
+}
+
+/*
+** Pop an authorization context that was previously pushed
+** by sqlite3AuthContextPush
+*/
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
+ if( pContext->pParse ){
+ pContext->pParse->zAuthContext = pContext->zAuthContext;
+ pContext->pParse = 0;
+ }
+}
+
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+/************** End of auth.c ************************************************/
+/************** Begin file build.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the SQLite parser
+** when syntax rules are reduced. The routines in this file handle the
+** following kinds of SQL syntax:
+**
+** CREATE TABLE
+** DROP TABLE
+** CREATE INDEX
+** DROP INDEX
+** creating ID lists
+** BEGIN TRANSACTION
+** COMMIT
+** ROLLBACK
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** The TableLock structure is only used by the sqlite3TableLock() and
+** codeTableLocks() functions.
+*/
+struct TableLock {
+ int iDb; /* The database containing the table to be locked */
+ Pgno iTab; /* The root page of the table to be locked */
+ u8 isWriteLock; /* True for write lock. False for a read lock */
+ const char *zLockName; /* Name of the table */
+};
+
+/*
+** Record the fact that we want to lock a table at run-time.
+**
+** The table to be locked has root page iTab and is found in database iDb.
+** A read or a write lock can be taken depending on isWritelock.
+**
+** This routine just records the fact that the lock is desired. The
+** code to make the lock occur is generated by a later call to
+** codeTableLocks() which occurs during sqlite3FinishCoding().
+*/
+static SQLITE_NOINLINE void lockTable(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database containing the table to lock */
+ Pgno iTab, /* Root page number of the table to be locked */
+ u8 isWriteLock, /* True for a write lock */
+ const char *zName /* Name of the table to be locked */
+){
+ Parse *pToplevel;
+ int i;
+ int nBytes;
+ TableLock *p;
+ assert( iDb>=0 );
+
+ pToplevel = sqlite3ParseToplevel(pParse);
+ for(i=0; i<pToplevel->nTableLock; i++){
+ p = &pToplevel->aTableLock[i];
+ if( p->iDb==iDb && p->iTab==iTab ){
+ p->isWriteLock = (p->isWriteLock || isWriteLock);
+ return;
+ }
+ }
+
+ nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
+ pToplevel->aTableLock =
+ sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
+ if( pToplevel->aTableLock ){
+ p = &pToplevel->aTableLock[pToplevel->nTableLock++];
+ p->iDb = iDb;
+ p->iTab = iTab;
+ p->isWriteLock = isWriteLock;
+ p->zLockName = zName;
+ }else{
+ pToplevel->nTableLock = 0;
+ sqlite3OomFault(pToplevel->db);
+ }
+}
+SQLITE_PRIVATE void sqlite3TableLock(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database containing the table to lock */
+ Pgno iTab, /* Root page number of the table to be locked */
+ u8 isWriteLock, /* True for a write lock */
+ const char *zName /* Name of the table to be locked */
+){
+ if( iDb==1 ) return;
+ if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
+ lockTable(pParse, iDb, iTab, isWriteLock, zName);
+}
+
+/*
+** Code an OP_TableLock instruction for each table locked by the
+** statement (configured by calls to sqlite3TableLock()).
+*/
+static void codeTableLocks(Parse *pParse){
+ int i;
+ Vdbe *pVdbe = pParse->pVdbe;
+ assert( pVdbe!=0 );
+
+ for(i=0; i<pParse->nTableLock; i++){
+ TableLock *p = &pParse->aTableLock[i];
+ int p1 = p->iDb;
+ sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
+ p->zLockName, P4_STATIC);
+ }
+}
+#else
+ #define codeTableLocks(x)
+#endif
+
+/*
+** Return TRUE if the given yDbMask object is empty - if it contains no
+** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
+** macros when SQLITE_MAX_ATTACHED is greater than 30.
+*/
+#if SQLITE_MAX_ATTACHED>30
+SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask m){
+ int i;
+ for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
+ return 1;
+}
+#endif
+
+/*
+** This routine is called after a single SQL statement has been
+** parsed and a VDBE program to execute that statement has been
+** prepared. This routine puts the finishing touches on the
+** VDBE program and resets the pParse structure for the next
+** parse.
+**
+** Note that if an error occurred, it might be the case that
+** no VDBE code was generated.
+*/
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
+ sqlite3 *db;
+ Vdbe *v;
+
+ assert( pParse->pToplevel==0 );
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nested ) return;
+ if( pParse->nErr ){
+ if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
+ return;
+ }
+ assert( db->mallocFailed==0 );
+
+ /* Begin by generating some termination code at the end of the
+ ** vdbe program
+ */
+ v = pParse->pVdbe;
+ if( v==0 ){
+ if( db->init.busy ){
+ pParse->rc = SQLITE_DONE;
+ return;
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) pParse->rc = SQLITE_ERROR;
+ }
+ assert( !pParse->isMultiWrite
+ || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
+ if( v ){
+ if( pParse->bReturning ){
+ Returning *pReturning = pParse->u1.pReturning;
+ int addrRewind;
+ int i;
+ int reg;
+
+ if( pReturning->nRetCol ){
+ sqlite3VdbeAddOp0(v, OP_FkCheck);
+ addrRewind =
+ sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
+ VdbeCoverage(v);
+ reg = pReturning->iRetReg;
+ for(i=0; i<pReturning->nRetCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
+ sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrRewind);
+ }
+ }
+ sqlite3VdbeAddOp0(v, OP_Halt);
+
+#if SQLITE_USER_AUTHENTICATION
+ if( pParse->nTableLock>0 && db->init.busy==0 ){
+ sqlite3UserAuthInit(db);
+ if( db->auth.authLevel<UAUTH_User ){
+ sqlite3ErrorMsg(pParse, "user not authenticated");
+ pParse->rc = SQLITE_AUTH_USER;
+ return;
+ }
+ }
+#endif
+
+ /* The cookie mask contains one bit for each database file open.
+ ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
+ ** set for each database that is used. Generate code to start a
+ ** transaction on each used database and to verify the schema cookie
+ ** on each used database.
+ */
+ if( db->mallocFailed==0
+ && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
+ ){
+ int iDb, i;
+ assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
+ sqlite3VdbeJumpHere(v, 0);
+ assert( db->nDb>0 );
+ iDb = 0;
+ do{
+ Schema *pSchema;
+ if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
+ sqlite3VdbeUsesBtree(v, iDb);
+ pSchema = db->aDb[iDb].pSchema;
+ sqlite3VdbeAddOp4Int(v,
+ OP_Transaction, /* Opcode */
+ iDb, /* P1 */
+ DbMaskTest(pParse->writeMask,iDb), /* P2 */
+ pSchema->schema_cookie, /* P3 */
+ pSchema->iGeneration /* P4 */
+ );
+ if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
+ VdbeComment((v,
+ "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
+ }while( ++iDb<db->nDb );
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ for(i=0; i<pParse->nVtabLock; i++){
+ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
+ sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
+ }
+ pParse->nVtabLock = 0;
+#endif
+
+ /* Once all the cookies have been verified and transactions opened,
+ ** obtain the required table-locks. This is a no-op unless the
+ ** shared-cache feature is enabled.
+ */
+ codeTableLocks(pParse);
+
+ /* Initialize any AUTOINCREMENT data structures required.
+ */
+ sqlite3AutoincrementBegin(pParse);
+
+ /* Code constant expressions that where factored out of inner loops.
+ **
+ ** The pConstExpr list might also contain expressions that we simply
+ ** want to keep around until the Parse object is deleted. Such
+ ** expressions have iConstExprReg==0. Do not generate code for
+ ** those expressions, of course.
+ */
+ if( pParse->pConstExpr ){
+ ExprList *pEL = pParse->pConstExpr;
+ pParse->okConstFactor = 0;
+ for(i=0; i<pEL->nExpr; i++){
+ int iReg = pEL->a[i].u.iConstExprReg;
+ if( iReg>0 ){
+ sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
+ }
+ }
+ }
+
+ if( pParse->bReturning ){
+ Returning *pRet = pParse->u1.pReturning;
+ if( pRet->nRetCol ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
+ }
+ }
+
+ /* Finally, jump back to the beginning of the executable code. */
+ sqlite3VdbeGoto(v, 1);
+ }
+ }
+
+ /* Get the VDBE program ready for execution
+ */
+ assert( v!=0 || pParse->nErr );
+ assert( db->mallocFailed==0 || pParse->nErr );
+ if( pParse->nErr==0 ){
+ /* A minimum of one cursor is required if autoincrement is used
+ * See ticket [a696379c1f08866] */
+ assert( pParse->pAinc==0 || pParse->nTab>0 );
+ sqlite3VdbeMakeReady(v, pParse);
+ pParse->rc = SQLITE_DONE;
+ }else{
+ pParse->rc = SQLITE_ERROR;
+ }
+}
+
+/*
+** Run the parser and code generator recursively in order to generate
+** code for the SQL statement given onto the end of the pParse context
+** currently under construction. Notes:
+**
+** * The final OP_Halt is not appended and other initialization
+** and finalization steps are omitted because those are handling by the
+** outermost parser.
+**
+** * Built-in SQL functions always take precedence over application-defined
+** SQL functions. In other words, it is not possible to override a
+** built-in function.
+*/
+SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
+ va_list ap;
+ char *zSql;
+ sqlite3 *db = pParse->db;
+ u32 savedDbFlags = db->mDbFlags;
+ char saveBuf[PARSE_TAIL_SZ];
+
+ if( pParse->nErr ) return;
+ assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
+ va_start(ap, zFormat);
+ zSql = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ if( zSql==0 ){
+ /* This can result either from an OOM or because the formatted string
+ ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
+ ** an error */
+ if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
+ pParse->nErr++;
+ return;
+ }
+ pParse->nested++;
+ memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
+ memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
+ db->mDbFlags |= DBFLAG_PreferBuiltin;
+ sqlite3RunParser(pParse, zSql);
+ db->mDbFlags = savedDbFlags;
+ sqlite3DbFree(db, zSql);
+ memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
+ pParse->nested--;
+}
+
+#if SQLITE_USER_AUTHENTICATION
+/*
+** Return TRUE if zTable is the name of the system table that stores the
+** list of users and their access credentials.
+*/
+SQLITE_PRIVATE int sqlite3UserAuthTable(const char *zTable){
+ return sqlite3_stricmp(zTable, "sqlite_user")==0;
+}
+#endif
+
+/*
+** Locate the in-memory structure that describes a particular database
+** table given the name of that table and (optionally) the name of the
+** database containing the table. Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the table and the
+** first matching table is returned. (No checking for duplicate table
+** names is done.) The search order is TEMP first, then MAIN, then any
+** auxiliary databases added using the ATTACH command.
+**
+** See also sqlite3LocateTable().
+*/
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
+ Table *p = 0;
+ int i;
+
+ /* All mutexes are required for schema access. Make sure we hold them. */
+ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
+#if SQLITE_USER_AUTHENTICATION
+ /* Only the admin user is allowed to know that the sqlite_user table
+ ** exists */
+ if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
+ return 0;
+ }
+#endif
+ if( zDatabase ){
+ for(i=0; i<db->nDb; i++){
+ if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
+ }
+ if( i>=db->nDb ){
+ /* No match against the official names. But always match "main"
+ ** to schema 0 as a legacy fallback. */
+ if( sqlite3StrICmp(zDatabase,"main")==0 ){
+ i = 0;
+ }else{
+ return 0;
+ }
+ }
+ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
+ if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
+ if( i==1 ){
+ if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
+ || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
+ || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
+ ){
+ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
+ LEGACY_TEMP_SCHEMA_TABLE);
+ }
+ }else{
+ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
+ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
+ LEGACY_SCHEMA_TABLE);
+ }
+ }
+ }
+ }else{
+ /* Match against TEMP first */
+ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
+ if( p ) return p;
+ /* The main database is second */
+ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
+ if( p ) return p;
+ /* Attached databases are in order of attachment */
+ for(i=2; i<db->nDb; i++){
+ assert( sqlite3SchemaMutexHeld(db, i, 0) );
+ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
+ if( p ) break;
+ }
+ if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
+ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
+ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
+ }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
+ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
+ LEGACY_TEMP_SCHEMA_TABLE);
+ }
+ }
+ }
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes a particular database
+** table given the name of that table and (optionally) the name of the
+** database containing the table. Return NULL if not found. Also leave an
+** error message in pParse->zErrMsg.
+**
+** The difference between this routine and sqlite3FindTable() is that this
+** routine leaves an error message in pParse->zErrMsg where
+** sqlite3FindTable() does not.
+*/
+SQLITE_PRIVATE Table *sqlite3LocateTable(
+ Parse *pParse, /* context in which to report errors */
+ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
+ const char *zName, /* Name of the table we are looking for */
+ const char *zDbase /* Name of the database. Might be NULL */
+){
+ Table *p;
+ sqlite3 *db = pParse->db;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
+ && SQLITE_OK!=sqlite3ReadSchema(pParse)
+ ){
+ return 0;
+ }
+
+ p = sqlite3FindTable(db, zName, zDbase);
+ if( p==0 ){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* If zName is the not the name of a table in the schema created using
+ ** CREATE, then check to see if it is the name of an virtual table that
+ ** can be an eponymous virtual table. */
+ if( pParse->disableVtab==0 && db->init.busy==0 ){
+ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
+ if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
+ pMod = sqlite3PragmaVtabRegister(db, zName);
+ }
+ if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
+ testcase( pMod->pEpoTab==0 );
+ return pMod->pEpoTab;
+ }
+ }
+#endif
+ if( flags & LOCATE_NOERR ) return 0;
+ pParse->checkSchema = 1;
+ }else if( IsVirtual(p) && pParse->disableVtab ){
+ p = 0;
+ }
+
+ if( p==0 ){
+ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
+ if( zDbase ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
+ }else{
+ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
+ }
+ }else{
+ assert( HasRowid(p) || p->iPKey<0 );
+ }
+
+ return p;
+}
+
+/*
+** Locate the table identified by *p.
+**
+** This is a wrapper around sqlite3LocateTable(). The difference between
+** sqlite3LocateTable() and this function is that this function restricts
+** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
+** non-NULL if it is part of a view or trigger program definition. See
+** sqlite3FixSrcList() for details.
+*/
+SQLITE_PRIVATE Table *sqlite3LocateTableItem(
+ Parse *pParse,
+ u32 flags,
+ SrcItem *p
+){
+ const char *zDb;
+ assert( p->pSchema==0 || p->zDatabase==0 );
+ if( p->pSchema ){
+ int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
+ zDb = pParse->db->aDb[iDb].zDbSName;
+ }else{
+ zDb = p->zDatabase;
+ }
+ return sqlite3LocateTable(pParse, flags, p->zName, zDb);
+}
+
+/*
+** Return the preferred table name for system tables. Translate legacy
+** names into the new preferred names, as appropriate.
+*/
+SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char *zName){
+ if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
+ if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
+ return PREFERRED_SCHEMA_TABLE;
+ }
+ if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
+ return PREFERRED_TEMP_SCHEMA_TABLE;
+ }
+ }
+ return zName;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular index given the name of that index
+** and the name of the database that contains the index.
+** Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the
+** table and the first matching index is returned. (No checking
+** for duplicate index names is done.) The search order is
+** TEMP first, then MAIN, then any auxiliary databases added
+** using the ATTACH command.
+*/
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
+ Index *p = 0;
+ int i;
+ /* All mutexes are required for schema access. Make sure we hold them. */
+ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ Schema *pSchema = db->aDb[j].pSchema;
+ assert( pSchema );
+ if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
+ assert( sqlite3SchemaMutexHeld(db, j, 0) );
+ p = sqlite3HashFind(&pSchema->idxHash, zName);
+ if( p ) break;
+ }
+ return p;
+}
+
+/*
+** Reclaim the memory used by an index
+*/
+SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3 *db, Index *p){
+#ifndef SQLITE_OMIT_ANALYZE
+ sqlite3DeleteIndexSamples(db, p);
+#endif
+ sqlite3ExprDelete(db, p->pPartIdxWhere);
+ sqlite3ExprListDelete(db, p->aColExpr);
+ sqlite3DbFree(db, p->zColAff);
+ if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3_free(p->aiRowEst);
+#endif
+ sqlite3DbFree(db, p);
+}
+
+/*
+** For the index called zIdxName which is found in the database iDb,
+** unlike that index from its Table then remove the index from
+** the index hash table and free all memory structures associated
+** with the index.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
+ Index *pIndex;
+ Hash *pHash;
+
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pHash = &db->aDb[iDb].pSchema->idxHash;
+ pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
+ if( ALWAYS(pIndex) ){
+ if( pIndex->pTable->pIndex==pIndex ){
+ pIndex->pTable->pIndex = pIndex->pNext;
+ }else{
+ Index *p;
+ /* Justification of ALWAYS(); The index must be on the list of
+ ** indices. */
+ p = pIndex->pTable->pIndex;
+ while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
+ if( ALWAYS(p && p->pNext==pIndex) ){
+ p->pNext = pIndex->pNext;
+ }
+ }
+ sqlite3FreeIndex(db, pIndex);
+ }
+ db->mDbFlags |= DBFLAG_SchemaChange;
+}
+
+/*
+** Look through the list of open database files in db->aDb[] and if
+** any have been closed, remove them from the list. Reallocate the
+** db->aDb[] structure to a smaller size, if possible.
+**
+** Entry 0 (the "main" database) and entry 1 (the "temp" database)
+** are never candidates for being collapsed.
+*/
+SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3 *db){
+ int i, j;
+ for(i=j=2; i<db->nDb; i++){
+ struct Db *pDb = &db->aDb[i];
+ if( pDb->pBt==0 ){
+ sqlite3DbFree(db, pDb->zDbSName);
+ pDb->zDbSName = 0;
+ continue;
+ }
+ if( j<i ){
+ db->aDb[j] = db->aDb[i];
+ }
+ j++;
+ }
+ db->nDb = j;
+ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
+ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
+ sqlite3DbFree(db, db->aDb);
+ db->aDb = db->aDbStatic;
+ }
+}
+
+/*
+** Reset the schema for the database at index iDb. Also reset the
+** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
+** Deferred resets may be run by calling with iDb<0.
+*/
+SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
+ int i;
+ assert( iDb<db->nDb );
+
+ if( iDb>=0 ){
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ DbSetProperty(db, iDb, DB_ResetWanted);
+ DbSetProperty(db, 1, DB_ResetWanted);
+ db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
+ }
+
+ if( db->nSchemaLock==0 ){
+ for(i=0; i<db->nDb; i++){
+ if( DbHasProperty(db, i, DB_ResetWanted) ){
+ sqlite3SchemaClear(db->aDb[i].pSchema);
+ }
+ }
+ }
+}
+
+/*
+** Erase all schema information from all attached databases (including
+** "main" and "temp") for a single database connection.
+*/
+SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
+ int i;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Db *pDb = &db->aDb[i];
+ if( pDb->pSchema ){
+ if( db->nSchemaLock==0 ){
+ sqlite3SchemaClear(pDb->pSchema);
+ }else{
+ DbSetProperty(db, i, DB_ResetWanted);
+ }
+ }
+ }
+ db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
+ sqlite3VtabUnlockList(db);
+ sqlite3BtreeLeaveAll(db);
+ if( db->nSchemaLock==0 ){
+ sqlite3CollapseDatabaseArray(db);
+ }
+}
+
+/*
+** This routine is called when a commit occurs.
+*/
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
+ db->mDbFlags &= ~DBFLAG_SchemaChange;
+}
+
+/*
+** Set the expression associated with a column. This is usually
+** the DEFAULT value, but might also be the expression that computes
+** the value for a generated column.
+*/
+SQLITE_PRIVATE void sqlite3ColumnSetExpr(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* The table containing the column */
+ Column *pCol, /* The column to receive the new DEFAULT expression */
+ Expr *pExpr /* The new default expression */
+){
+ ExprList *pList;
+ assert( IsOrdinaryTable(pTab) );
+ pList = pTab->u.tab.pDfltList;
+ if( pCol->iDflt==0
+ || NEVER(pList==0)
+ || NEVER(pList->nExpr<pCol->iDflt)
+ ){
+ pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
+ pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
+ }else{
+ sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
+ pList->a[pCol->iDflt-1].pExpr = pExpr;
+ }
+}
+
+/*
+** Return the expression associated with a column. The expression might be
+** the DEFAULT clause or the AS clause of a generated column.
+** Return NULL if the column has no associated expression.
+*/
+SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
+ if( pCol->iDflt==0 ) return 0;
+ if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
+ if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
+ if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
+ return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
+}
+
+/*
+** Set the collating sequence name for a column.
+*/
+SQLITE_PRIVATE void sqlite3ColumnSetColl(
+ sqlite3 *db,
+ Column *pCol,
+ const char *zColl
+){
+ i64 nColl;
+ i64 n;
+ char *zNew;
+ assert( zColl!=0 );
+ n = sqlite3Strlen30(pCol->zCnName) + 1;
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ n += sqlite3Strlen30(pCol->zCnName+n) + 1;
+ }
+ nColl = sqlite3Strlen30(zColl) + 1;
+ zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
+ if( zNew ){
+ pCol->zCnName = zNew;
+ memcpy(pCol->zCnName + n, zColl, nColl);
+ pCol->colFlags |= COLFLAG_HASCOLL;
+ }
+}
+
+/*
+** Return the collating squence name for a column
+*/
+SQLITE_PRIVATE const char *sqlite3ColumnColl(Column *pCol){
+ const char *z;
+ if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
+ z = pCol->zCnName;
+ while( *z ){ z++; }
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ do{ z++; }while( *z );
+ }
+ return z+1;
+}
+
+/*
+** Delete memory allocated for the column names of a table or view (the
+** Table.aCol[] array).
+*/
+SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
+ int i;
+ Column *pCol;
+ assert( pTable!=0 );
+ if( (pCol = pTable->aCol)!=0 ){
+ for(i=0; i<pTable->nCol; i++, pCol++){
+ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
+ sqlite3DbFree(db, pCol->zCnName);
+ }
+ sqlite3DbFree(db, pTable->aCol);
+ if( IsOrdinaryTable(pTable) ){
+ sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
+ }
+ if( db==0 || db->pnBytesFreed==0 ){
+ pTable->aCol = 0;
+ pTable->nCol = 0;
+ if( IsOrdinaryTable(pTable) ){
+ pTable->u.tab.pDfltList = 0;
+ }
+ }
+ }
+}
+
+/*
+** Remove the memory data structures associated with the given
+** Table. No changes are made to disk by this routine.
+**
+** This routine just deletes the data structure. It does not unlink
+** the table data structure from the hash table. But it does destroy
+** memory structures of the indices and foreign keys associated with
+** the table.
+**
+** The db parameter is optional. It is needed if the Table object
+** contains lookaside memory. (Table objects in the schema do not use
+** lookaside memory, but some ephemeral Table objects do.) Or the
+** db parameter can be used with db->pnBytesFreed to measure the memory
+** used by the Table object.
+*/
+static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
+ Index *pIndex, *pNext;
+
+#ifdef SQLITE_DEBUG
+ /* Record the number of outstanding lookaside allocations in schema Tables
+ ** prior to doing any free() operations. Since schema Tables do not use
+ ** lookaside, this number should not change.
+ **
+ ** If malloc has already failed, it may be that it failed while allocating
+ ** a Table object that was going to be marked ephemeral. So do not check
+ ** that no lookaside memory is used in this case either. */
+ int nLookaside = 0;
+ if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
+ nLookaside = sqlite3LookasideUsed(db, 0);
+ }
+#endif
+
+ /* Delete all indices associated with this table. */
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
+ pNext = pIndex->pNext;
+ assert( pIndex->pSchema==pTable->pSchema
+ || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
+ if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
+ char *zName = pIndex->zName;
+ TESTONLY ( Index *pOld = ) sqlite3HashInsert(
+ &pIndex->pSchema->idxHash, zName, 0
+ );
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
+ assert( pOld==pIndex || pOld==0 );
+ }
+ sqlite3FreeIndex(db, pIndex);
+ }
+
+ if( IsOrdinaryTable(pTable) ){
+ sqlite3FkDelete(db, pTable);
+ }
+#ifndef SQLITE_OMIT_VIRTUAL_TABLE
+ else if( IsVirtual(pTable) ){
+ sqlite3VtabClear(db, pTable);
+ }
+#endif
+ else{
+ assert( IsView(pTable) );
+ sqlite3SelectDelete(db, pTable->u.view.pSelect);
+ }
+
+ /* Delete the Table structure itself.
+ */
+ sqlite3DeleteColumnNames(db, pTable);
+ sqlite3DbFree(db, pTable->zName);
+ sqlite3DbFree(db, pTable->zColAff);
+ sqlite3ExprListDelete(db, pTable->pCheck);
+ sqlite3DbFree(db, pTable);
+
+ /* Verify that no lookaside memory was used by schema tables */
+ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
+}
+SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
+ /* Do not delete the table until the reference count reaches zero. */
+ if( !pTable ) return;
+ if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
+ deleteTable(db, pTable);
+}
+
+
+/*
+** Unlink the given table from the hash tables and the delete the
+** table structure with all its indices and foreign keys.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
+ Table *p;
+ Db *pDb;
+
+ assert( db!=0 );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( zTabName );
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
+ pDb = &db->aDb[iDb];
+ p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
+ sqlite3DeleteTable(db, p);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+}
+
+/*
+** Given a token, return a string that consists of the text of that
+** token. Space to hold the returned string
+** is obtained from sqliteMalloc() and must be freed by the calling
+** function.
+**
+** Any quotation marks (ex: "name", 'name', [name], or `name`) that
+** surround the body of the token are removed.
+**
+** Tokens are often just pointers into the original SQL text and so
+** are not \000 terminated and are not persistent. The returned string
+** is \000 terminated and is persistent.
+*/
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
+ char *zName;
+ if( pName ){
+ zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
+ sqlite3Dequote(zName);
+ }else{
+ zName = 0;
+ }
+ return zName;
+}
+
+/*
+** Open the sqlite_schema table stored in database number iDb for
+** writing. The table is opened using cursor 0.
+*/
+SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *p, int iDb){
+ Vdbe *v = sqlite3GetVdbe(p);
+ sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
+ if( p->nTab==0 ){
+ p->nTab = 1;
+ }
+}
+
+/*
+** Parameter zName points to a nul-terminated buffer containing the name
+** of a database ("main", "temp" or the name of an attached db). This
+** function returns the index of the named database in db->aDb[], or
+** -1 if the named db cannot be found.
+*/
+SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){
+ int i = -1; /* Database number */
+ if( zName ){
+ Db *pDb;
+ for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
+ if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
+ /* "main" is always an acceptable alias for the primary database
+ ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
+ if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
+ }
+ }
+ return i;
+}
+
+/*
+** The token *pName contains the name of a database (either "main" or
+** "temp" or the name of an attached db). This routine returns the
+** index of the named database in db->aDb[], or -1 if the named db
+** does not exist.
+*/
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
+ int i; /* Database number */
+ char *zName; /* Name we are searching for */
+ zName = sqlite3NameFromToken(db, pName);
+ i = sqlite3FindDbName(db, zName);
+ sqlite3DbFree(db, zName);
+ return i;
+}
+
+/* The table or view or trigger name is passed to this routine via tokens
+** pName1 and pName2. If the table name was fully qualified, for example:
+**
+** CREATE TABLE xxx.yyy (...);
+**
+** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
+** the table name is not fully qualified, i.e.:
+**
+** CREATE TABLE yyy(...);
+**
+** Then pName1 is set to "yyy" and pName2 is "".
+**
+** This routine sets the *ppUnqual pointer to point at the token (pName1 or
+** pName2) that stores the unqualified table name. The index of the
+** database "xxx" is returned.
+*/
+SQLITE_PRIVATE int sqlite3TwoPartName(
+ Parse *pParse, /* Parsing and code generating context */
+ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
+ Token *pName2, /* The "yyy" in the name "xxx.yyy" */
+ Token **pUnqual /* Write the unqualified object name here */
+){
+ int iDb; /* Database holding the object */
+ sqlite3 *db = pParse->db;
+
+ assert( pName2!=0 );
+ if( pName2->n>0 ){
+ if( db->init.busy ) {
+ sqlite3ErrorMsg(pParse, "corrupt database");
+ return -1;
+ }
+ *pUnqual = pName2;
+ iDb = sqlite3FindDb(db, pName1);
+ if( iDb<0 ){
+ sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
+ return -1;
+ }
+ }else{
+ assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
+ || (db->mDbFlags & DBFLAG_Vacuum)!=0);
+ iDb = db->init.iDb;
+ *pUnqual = pName1;
+ }
+ return iDb;
+}
+
+/*
+** True if PRAGMA writable_schema is ON
+*/
+SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3 *db){
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
+ SQLITE_WriteSchema );
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
+ SQLITE_Defensive );
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
+ (SQLITE_WriteSchema|SQLITE_Defensive) );
+ return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
+}
+
+/*
+** This routine is used to check if the UTF-8 string zName is a legal
+** unqualified name for a new schema object (table, index, view or
+** trigger). All names are legal except those that begin with the string
+** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
+** is reserved for internal use.
+**
+** When parsing the sqlite_schema table, this routine also checks to
+** make sure the "type", "name", and "tbl_name" columns are consistent
+** with the SQL.
+*/
+SQLITE_PRIVATE int sqlite3CheckObjectName(
+ Parse *pParse, /* Parsing context */
+ const char *zName, /* Name of the object to check */
+ const char *zType, /* Type of this object */
+ const char *zTblName /* Parent table name for triggers and indexes */
+){
+ sqlite3 *db = pParse->db;
+ if( sqlite3WritableSchema(db)
+ || db->init.imposterTable
+ || !sqlite3Config.bExtraSchemaChecks
+ ){
+ /* Skip these error checks for writable_schema=ON */
+ return SQLITE_OK;
+ }
+ if( db->init.busy ){
+ if( sqlite3_stricmp(zType, db->init.azInit[0])
+ || sqlite3_stricmp(zName, db->init.azInit[1])
+ || sqlite3_stricmp(zTblName, db->init.azInit[2])
+ ){
+ sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
+ return SQLITE_ERROR;
+ }
+ }else{
+ if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
+ || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
+ ){
+ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
+ zName);
+ return SQLITE_ERROR;
+ }
+
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the PRIMARY KEY index of a table
+*/
+SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table *pTab){
+ Index *p;
+ for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
+ return p;
+}
+
+/*
+** Convert an table column number into a index column number. That is,
+** for the column iCol in the table (as defined by the CREATE TABLE statement)
+** find the (first) offset of that column in index pIdx. Or return -1
+** if column iCol is not used in index pIdx.
+*/
+SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
+ int i;
+ for(i=0; i<pIdx->nColumn; i++){
+ if( iCol==pIdx->aiColumn[i] ) return i;
+ }
+ return -1;
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/* Convert a storage column number into a table column number.
+**
+** The storage column number (0,1,2,....) is the index of the value
+** as it appears in the record on disk. The true column number
+** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
+**
+** The storage column number is less than the table column number if
+** and only there are VIRTUAL columns to the left.
+**
+** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
+*/
+SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
+ if( pTab->tabFlags & TF_HasVirtual ){
+ int i;
+ for(i=0; i<=iCol; i++){
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
+ }
+ }
+ return iCol;
+}
+#endif
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/* Convert a table column number into a storage column number.
+**
+** The storage column number (0,1,2,....) is the index of the value
+** as it appears in the record on disk. Or, if the input column is
+** the N-th virtual column (zero-based) then the storage number is
+** the number of non-virtual columns in the table plus N.
+**
+** The true column number is the index (0,1,2,...) of the column in
+** the CREATE TABLE statement.
+**
+** If the input column is a VIRTUAL column, then it should not appear
+** in storage. But the value sometimes is cached in registers that
+** follow the range of registers used to construct storage. This
+** avoids computing the same VIRTUAL column multiple times, and provides
+** values for use by OP_Param opcodes in triggers. Hence, if the
+** input column is a VIRTUAL table, put it after all the other columns.
+**
+** In the following, N means "normal column", S means STORED, and
+** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
+**
+** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
+** -- 0 1 2 3 4 5 6 7 8
+**
+** Then the mapping from this function is as follows:
+**
+** INPUTS: 0 1 2 3 4 5 6 7 8
+** OUTPUTS: 0 1 6 2 3 7 4 5 8
+**
+** So, in other words, this routine shifts all the virtual columns to
+** the end.
+**
+** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
+** this routine is a no-op macro. If the pTab does not have any virtual
+** columns, then this routine is no-op that always return iCol. If iCol
+** is negative (indicating the ROWID column) then this routine return iCol.
+*/
+SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
+ int i;
+ i16 n;
+ assert( iCol<pTab->nCol );
+ if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
+ for(i=0, n=0; i<iCol; i++){
+ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
+ }
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
+ /* iCol is a virtual column itself */
+ return pTab->nNVCol + i - n;
+ }else{
+ /* iCol is a normal or stored column */
+ return n;
+ }
+}
+#endif
+
+/*
+** Insert a single OP_JournalMode query opcode in order to force the
+** prepared statement to return false for sqlite3_stmt_readonly(). This
+** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
+** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
+** will return false for sqlite3_stmt_readonly() even if that statement
+** is a read-only no-op.
+*/
+static void sqlite3ForceNotReadOnly(Parse *pParse){
+ int iReg = ++pParse->nMem;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
+ sqlite3VdbeUsesBtree(v, 0);
+ }
+}
+
+/*
+** Begin constructing a new table representation in memory. This is
+** the first of several action routines that get called in response
+** to a CREATE TABLE statement. In particular, this routine is called
+** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
+** flag is true if the table should be stored in the auxiliary database
+** file instead of in the main database file. This is normally the case
+** when the "TEMP" or "TEMPORARY" keyword occurs in between
+** CREATE and TABLE.
+**
+** The new table record is initialized and put in pParse->pNewTable.
+** As more of the CREATE TABLE statement is parsed, additional action
+** routines will be called to add more information to this record.
+** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
+** is called to complete the construction of the new table record.
+*/
+SQLITE_PRIVATE void sqlite3StartTable(
+ Parse *pParse, /* Parser context */
+ Token *pName1, /* First part of the name of the table or view */
+ Token *pName2, /* Second part of the name of the table or view */
+ int isTemp, /* True if this is a TEMP table */
+ int isView, /* True if this is a VIEW */
+ int isVirtual, /* True if this is a VIRTUAL table */
+ int noErr /* Do nothing if table already exists */
+){
+ Table *pTable;
+ char *zName = 0; /* The name of the new table */
+ sqlite3 *db = pParse->db;
+ Vdbe *v;
+ int iDb; /* Database number to create the table in */
+ Token *pName; /* Unqualified name of the table to create */
+
+ if( db->init.busy && db->init.newTnum==1 ){
+ /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
+ iDb = db->init.iDb;
+ zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
+ pName = pName1;
+ }else{
+ /* The common case */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ) return;
+ if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
+ /* If creating a temp table, the name may not be qualified. Unless
+ ** the database name is "temp" anyway. */
+ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
+ return;
+ }
+ if( !OMIT_TEMPDB && isTemp ) iDb = 1;
+ zName = sqlite3NameFromToken(db, pName);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, (void*)zName, pName);
+ }
+ }
+ pParse->sNameToken = *pName;
+ if( zName==0 ) return;
+ if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
+ goto begin_table_error;
+ }
+ if( db->init.iDb==1 ) isTemp = 1;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ assert( isTemp==0 || isTemp==1 );
+ assert( isView==0 || isView==1 );
+ {
+ static const u8 aCode[] = {
+ SQLITE_CREATE_TABLE,
+ SQLITE_CREATE_TEMP_TABLE,
+ SQLITE_CREATE_VIEW,
+ SQLITE_CREATE_TEMP_VIEW
+ };
+ char *zDb = db->aDb[iDb].zDbSName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
+ goto begin_table_error;
+ }
+ if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
+ zName, 0, zDb) ){
+ goto begin_table_error;
+ }
+ }
+#endif
+
+ /* Make sure the new table name does not collide with an existing
+ ** index or table name in the same database. Issue an error message if
+ ** it does. The exception is if the statement being parsed was passed
+ ** to an sqlite3_declare_vtab() call. In that case only the column names
+ ** and types will be used, so there is no need to test for namespace
+ ** collisions.
+ */
+ if( !IN_SPECIAL_PARSE ){
+ char *zDb = db->aDb[iDb].zDbSName;
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto begin_table_error;
+ }
+ pTable = sqlite3FindTable(db, zName, zDb);
+ if( pTable ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "%s %T already exists",
+ (IsView(pTable)? "view" : "table"), pName);
+ }else{
+ assert( !db->init.busy || CORRUPT_DB );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ goto begin_table_error;
+ }
+ if( sqlite3FindIndex(db, zName, zDb)!=0 ){
+ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
+ goto begin_table_error;
+ }
+ }
+
+ pTable = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTable==0 ){
+ assert( db->mallocFailed );
+ pParse->rc = SQLITE_NOMEM_BKPT;
+ pParse->nErr++;
+ goto begin_table_error;
+ }
+ pTable->zName = zName;
+ pTable->iPKey = -1;
+ pTable->pSchema = db->aDb[iDb].pSchema;
+ pTable->nTabRef = 1;
+#ifdef SQLITE_DEFAULT_ROWEST
+ pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
+#else
+ pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+#endif
+ assert( pParse->pNewTable==0 );
+ pParse->pNewTable = pTable;
+
+ /* Begin generating the code that will insert the table record into
+ ** the schema table. Note in particular that we must go ahead
+ ** and allocate the record number for the table entry now. Before any
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
+ ** indices to be created and the table record must come before the
+ ** indices. Hence, the record number for the table must be allocated
+ ** now.
+ */
+ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
+ int addr1;
+ int fileFormat;
+ int reg1, reg2, reg3;
+ /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
+ static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( isVirtual ){
+ sqlite3VdbeAddOp0(v, OP_VBegin);
+ }
+#endif
+
+ /* If the file format and encoding in the database have not been set,
+ ** set them now.
+ */
+ reg1 = pParse->regRowid = ++pParse->nMem;
+ reg2 = pParse->regRoot = ++pParse->nMem;
+ reg3 = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
+ sqlite3VdbeUsesBtree(v, iDb);
+ addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
+ fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
+ 1 : SQLITE_MAX_FILE_FORMAT;
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
+ sqlite3VdbeJumpHere(v, addr1);
+
+ /* This just creates a place-holder record in the sqlite_schema table.
+ ** The record created does not contain anything yet. It will be replaced
+ ** by the real entry in code generated at sqlite3EndTable().
+ **
+ ** The rowid for the new entry is left in register pParse->regRowid.
+ ** The root page number of the new table is left in reg pParse->regRoot.
+ ** The rowid and root page number values are needed by the code that
+ ** sqlite3EndTable will generate.
+ */
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+ if( isView || isVirtual ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
+ }else
+#endif
+ {
+ assert( !pParse->bReturning );
+ pParse->u1.addrCrTab =
+ sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
+ }
+ sqlite3OpenSchemaTable(pParse, iDb);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
+ sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeAddOp0(v, OP_Close);
+ }
+
+ /* Normal (non-error) return. */
+ return;
+
+ /* If an error occurs, we jump here */
+begin_table_error:
+ pParse->checkSchema = 1;
+ sqlite3DbFree(db, zName);
+ return;
+}
+
+/* Set properties of a table column based on the (magical)
+** name of the column.
+*/
+#if SQLITE_ENABLE_HIDDEN_COLUMNS
+SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
+ if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
+ pCol->colFlags |= COLFLAG_HIDDEN;
+ if( pTab ) pTab->tabFlags |= TF_HasHidden;
+ }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
+ pTab->tabFlags |= TF_OOOHidden;
+ }
+}
+#endif
+
+/*
+** Name of the special TEMP trigger used to implement RETURNING. The
+** name begins with "sqlite_" so that it is guaranteed not to collide
+** with any application-generated triggers.
+*/
+#define RETURNING_TRIGGER_NAME "sqlite_returning"
+
+/*
+** Clean up the data structures associated with the RETURNING clause.
+*/
+static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
+ Hash *pHash;
+ pHash = &(db->aDb[1].pSchema->trigHash);
+ sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
+ sqlite3ExprListDelete(db, pRet->pReturnEL);
+ sqlite3DbFree(db, pRet);
+}
+
+/*
+** Add the RETURNING clause to the parse currently underway.
+**
+** This routine creates a special TEMP trigger that will fire for each row
+** of the DML statement. That TEMP trigger contains a single SELECT
+** statement with a result set that is the argument of the RETURNING clause.
+** The trigger has the Trigger.bReturning flag and an opcode of
+** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
+** knows to handle it specially. The TEMP trigger is automatically
+** removed at the end of the parse.
+**
+** When this routine is called, we do not yet know if the RETURNING clause
+** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
+** RETURNING trigger instead. It will then be converted into the appropriate
+** type on the first call to sqlite3TriggersExist().
+*/
+SQLITE_PRIVATE void sqlite3AddReturning(Parse *pParse, ExprList *pList){
+ Returning *pRet;
+ Hash *pHash;
+ sqlite3 *db = pParse->db;
+ if( pParse->pNewTrigger ){
+ sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
+ }else{
+ assert( pParse->bReturning==0 );
+ }
+ pParse->bReturning = 1;
+ pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
+ if( pRet==0 ){
+ sqlite3ExprListDelete(db, pList);
+ return;
+ }
+ pParse->u1.pReturning = pRet;
+ pRet->pParse = pParse;
+ pRet->pReturnEL = pList;
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
+ testcase( pParse->earlyCleanup );
+ if( db->mallocFailed ) return;
+ pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
+ pRet->retTrig.op = TK_RETURNING;
+ pRet->retTrig.tr_tm = TRIGGER_AFTER;
+ pRet->retTrig.bReturning = 1;
+ pRet->retTrig.pSchema = db->aDb[1].pSchema;
+ pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
+ pRet->retTrig.step_list = &pRet->retTStep;
+ pRet->retTStep.op = TK_RETURNING;
+ pRet->retTStep.pTrig = &pRet->retTrig;
+ pRet->retTStep.pExprList = pList;
+ pHash = &(db->aDb[1].pSchema->trigHash);
+ assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
+ if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
+ ==&pRet->retTrig ){
+ sqlite3OomFault(db);
+ }
+}
+
+/*
+** Add a new column to the table currently being constructed.
+**
+** The parser calls this routine once for each column declaration
+** in a CREATE TABLE statement. sqlite3StartTable() gets called
+** first to get things going. Then this routine is called for each
+** column.
+*/
+SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
+ Table *p;
+ int i;
+ char *z;
+ char *zType;
+ Column *pCol;
+ sqlite3 *db = pParse->db;
+ u8 hName;
+ Column *aNew;
+ u8 eType = COLTYPE_CUSTOM;
+ u8 szEst = 1;
+ char affinity = SQLITE_AFF_BLOB;
+
+ if( (p = pParse->pNewTable)==0 ) return;
+ if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
+ return;
+ }
+ if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
+
+ /* Because keywords GENERATE ALWAYS can be converted into indentifiers
+ ** by the parser, we can sometimes end up with a typename that ends
+ ** with "generated always". Check for this case and omit the surplus
+ ** text. */
+ if( sType.n>=16
+ && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
+ ){
+ sType.n -= 6;
+ while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
+ if( sType.n>=9
+ && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
+ ){
+ sType.n -= 9;
+ while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
+ }
+ }
+
+ /* Check for standard typenames. For standard typenames we will
+ ** set the Column.eType field rather than storing the typename after
+ ** the column name, in order to save space. */
+ if( sType.n>=3 ){
+ sqlite3DequoteToken(&sType);
+ for(i=0; i<SQLITE_N_STDTYPE; i++){
+ if( sType.n==sqlite3StdTypeLen[i]
+ && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
+ ){
+ sType.n = 0;
+ eType = i+1;
+ affinity = sqlite3StdTypeAffinity[i];
+ if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
+ break;
+ }
+ }
+ }
+
+ z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
+ if( z==0 ) return;
+ if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
+ memcpy(z, sName.z, sName.n);
+ z[sName.n] = 0;
+ sqlite3Dequote(z);
+ hName = sqlite3StrIHash(z);
+ for(i=0; i<p->nCol; i++){
+ if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
+ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
+ sqlite3DbFree(db, z);
+ return;
+ }
+ }
+ aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
+ if( aNew==0 ){
+ sqlite3DbFree(db, z);
+ return;
+ }
+ p->aCol = aNew;
+ pCol = &p->aCol[p->nCol];
+ memset(pCol, 0, sizeof(p->aCol[0]));
+ pCol->zCnName = z;
+ pCol->hName = hName;
+ sqlite3ColumnPropertiesFromName(p, pCol);
+
+ if( sType.n==0 ){
+ /* If there is no type specified, columns have the default affinity
+ ** 'BLOB' with a default size of 4 bytes. */
+ pCol->affinity = affinity;
+ pCol->eCType = eType;
+ pCol->szEst = szEst;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( affinity==SQLITE_AFF_BLOB ){
+ if( 4>=sqlite3GlobalConfig.szSorterRef ){
+ pCol->colFlags |= COLFLAG_SORTERREF;
+ }
+ }
+#endif
+ }else{
+ zType = z + sqlite3Strlen30(z) + 1;
+ memcpy(zType, sType.z, sType.n);
+ zType[sType.n] = 0;
+ sqlite3Dequote(zType);
+ pCol->affinity = sqlite3AffinityType(zType, pCol);
+ pCol->colFlags |= COLFLAG_HASTYPE;
+ }
+ p->nCol++;
+ p->nNVCol++;
+ pParse->constraintName.n = 0;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
+** been seen on a column. This routine sets the notNull flag on
+** the column currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
+ Table *p;
+ Column *pCol;
+ p = pParse->pNewTable;
+ if( p==0 || NEVER(p->nCol<1) ) return;
+ pCol = &p->aCol[p->nCol-1];
+ pCol->notNull = (u8)onError;
+ p->tabFlags |= TF_HasNotNull;
+
+ /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
+ ** on this column. */
+ if( pCol->colFlags & COLFLAG_UNIQUE ){
+ Index *pIdx;
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
+ if( pIdx->aiColumn[0]==p->nCol-1 ){
+ pIdx->uniqNotNull = 1;
+ }
+ }
+ }
+}
+
+/*
+** Scan the column type name zType (length nType) and return the
+** associated affinity type.
+**
+** This routine does a case-independent search of zType for the
+** substrings in the following table. If one of the substrings is
+** found, the corresponding affinity is returned. If zType contains
+** more than one of the substrings, entries toward the top of
+** the table take priority. For example, if zType is 'BLOBINT',
+** SQLITE_AFF_INTEGER is returned.
+**
+** Substring | Affinity
+** --------------------------------
+** 'INT' | SQLITE_AFF_INTEGER
+** 'CHAR' | SQLITE_AFF_TEXT
+** 'CLOB' | SQLITE_AFF_TEXT
+** 'TEXT' | SQLITE_AFF_TEXT
+** 'BLOB' | SQLITE_AFF_BLOB
+** 'REAL' | SQLITE_AFF_REAL
+** 'FLOA' | SQLITE_AFF_REAL
+** 'DOUB' | SQLITE_AFF_REAL
+**
+** If none of the substrings in the above table are found,
+** SQLITE_AFF_NUMERIC is returned.
+*/
+SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn, Column *pCol){
+ u32 h = 0;
+ char aff = SQLITE_AFF_NUMERIC;
+ const char *zChar = 0;
+
+ assert( zIn!=0 );
+ while( zIn[0] ){
+ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
+ zIn++;
+ if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
+ aff = SQLITE_AFF_TEXT;
+ zChar = zIn;
+ }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
+ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
+ aff = SQLITE_AFF_BLOB;
+ if( zIn[0]=='(' ) zChar = zIn;
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+ }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+ }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+#endif
+ }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
+ aff = SQLITE_AFF_INTEGER;
+ break;
+ }
+ }
+
+ /* If pCol is not NULL, store an estimate of the field size. The
+ ** estimate is scaled so that the size of an integer is 1. */
+ if( pCol ){
+ int v = 0; /* default size is approx 4 bytes */
+ if( aff<SQLITE_AFF_NUMERIC ){
+ if( zChar ){
+ while( zChar[0] ){
+ if( sqlite3Isdigit(zChar[0]) ){
+ /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
+ sqlite3GetInt32(zChar, &v);
+ break;
+ }
+ zChar++;
+ }
+ }else{
+ v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
+ }
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( v>=sqlite3GlobalConfig.szSorterRef ){
+ pCol->colFlags |= COLFLAG_SORTERREF;
+ }
+#endif
+ v = v/4 + 1;
+ if( v>255 ) v = 255;
+ pCol->szEst = v;
+ }
+ return aff;
+}
+
+/*
+** The expression is the default value for the most recently added column
+** of the table currently under construction.
+**
+** Default value expressions must be constant. Raise an exception if this
+** is not the case.
+**
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3AddDefaultValue(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The parsed expression of the default value */
+ const char *zStart, /* Start of the default value text */
+ const char *zEnd /* First character past end of defaut value text */
+){
+ Table *p;
+ Column *pCol;
+ sqlite3 *db = pParse->db;
+ p = pParse->pNewTable;
+ if( p!=0 ){
+ int isInit = db->init.busy && db->init.iDb!=1;
+ pCol = &(p->aCol[p->nCol-1]);
+ if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
+ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
+ pCol->zCnName);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ }else if( pCol->colFlags & COLFLAG_GENERATED ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
+#endif
+ }else{
+ /* A copy of pExpr is used instead of the original, as pExpr contains
+ ** tokens that point to volatile memory.
+ */
+ Expr x, *pDfltExpr;
+ memset(&x, 0, sizeof(x));
+ x.op = TK_SPAN;
+ x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
+ x.pLeft = pExpr;
+ x.flags = EP_Skip;
+ pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
+ sqlite3DbFree(db, x.u.zToken);
+ sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
+ }
+ }
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameExprUnmap(pParse, pExpr);
+ }
+ sqlite3ExprDelete(db, pExpr);
+}
+
+/*
+** Backwards Compatibility Hack:
+**
+** Historical versions of SQLite accepted strings as column names in
+** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
+**
+** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
+** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
+**
+** This is goofy. But to preserve backwards compatibility we continue to
+** accept it. This routine does the necessary conversion. It converts
+** the expression given in its argument from a TK_STRING into a TK_ID
+** if the expression is just a TK_STRING with an optional COLLATE clause.
+** If the expression is anything other than TK_STRING, the expression is
+** unchanged.
+*/
+static void sqlite3StringToId(Expr *p){
+ if( p->op==TK_STRING ){
+ p->op = TK_ID;
+ }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
+ p->pLeft->op = TK_ID;
+ }
+}
+
+/*
+** Tag the given column as being part of the PRIMARY KEY
+*/
+static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
+ pCol->colFlags |= COLFLAG_PRIMKEY;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pCol->colFlags & COLFLAG_GENERATED ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ sqlite3ErrorMsg(pParse,
+ "generated columns cannot be part of the PRIMARY KEY");
+ }
+#endif
+}
+
+/*
+** Designate the PRIMARY KEY for the table. pList is a list of names
+** of columns that form the primary key. If pList is NULL, then the
+** most recently added column of the table is the primary key.
+**
+** A table can have at most one primary key. If the table already has
+** a primary key (and this is the second primary key) then create an
+** error.
+**
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
+** then we will try to use that column as the rowid. Set the Table.iPKey
+** field of the table under construction to be the index of the
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
+** no INTEGER PRIMARY KEY.
+**
+** If the key is not an INTEGER PRIMARY KEY, then create a unique
+** index for the key. No index is created for INTEGER PRIMARY KEYs.
+*/
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List of field names to be indexed */
+ int onError, /* What to do with a uniqueness conflict */
+ int autoInc, /* True if the AUTOINCREMENT keyword is present */
+ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
+){
+ Table *pTab = pParse->pNewTable;
+ Column *pCol = 0;
+ int iCol = -1, i;
+ int nTerm;
+ if( pTab==0 ) goto primary_key_exit;
+ if( pTab->tabFlags & TF_HasPrimaryKey ){
+ sqlite3ErrorMsg(pParse,
+ "table \"%s\" has more than one primary key", pTab->zName);
+ goto primary_key_exit;
+ }
+ pTab->tabFlags |= TF_HasPrimaryKey;
+ if( pList==0 ){
+ iCol = pTab->nCol - 1;
+ pCol = &pTab->aCol[iCol];
+ makeColumnPartOfPrimaryKey(pParse, pCol);
+ nTerm = 1;
+ }else{
+ nTerm = pList->nExpr;
+ for(i=0; i<nTerm; i++){
+ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
+ assert( pCExpr!=0 );
+ sqlite3StringToId(pCExpr);
+ if( pCExpr->op==TK_ID ){
+ const char *zCName;
+ assert( !ExprHasProperty(pCExpr, EP_IntValue) );
+ zCName = pCExpr->u.zToken;
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
+ pCol = &pTab->aCol[iCol];
+ makeColumnPartOfPrimaryKey(pParse, pCol);
+ break;
+ }
+ }
+ }
+ }
+ }
+ if( nTerm==1
+ && pCol
+ && pCol->eCType==COLTYPE_INTEGER
+ && sortOrder!=SQLITE_SO_DESC
+ ){
+ if( IN_RENAME_OBJECT && pList ){
+ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
+ sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
+ }
+ pTab->iPKey = iCol;
+ pTab->keyConf = (u8)onError;
+ assert( autoInc==0 || autoInc==1 );
+ pTab->tabFlags |= autoInc*TF_Autoincrement;
+ if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
+ (void)sqlite3HasExplicitNulls(pParse, pList);
+ }else if( autoInc ){
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
+ "INTEGER PRIMARY KEY");
+#endif
+ }else{
+ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
+ 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
+ pList = 0;
+ }
+
+primary_key_exit:
+ sqlite3ExprListDelete(pParse->db, pList);
+ return;
+}
+
+/*
+** Add a new CHECK constraint to the table currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(
+ Parse *pParse, /* Parsing context */
+ Expr *pCheckExpr, /* The check expression */
+ const char *zStart, /* Opening "(" */
+ const char *zEnd /* Closing ")" */
+){
+#ifndef SQLITE_OMIT_CHECK
+ Table *pTab = pParse->pNewTable;
+ sqlite3 *db = pParse->db;
+ if( pTab && !IN_DECLARE_VTAB
+ && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
+ ){
+ pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
+ if( pParse->constraintName.n ){
+ sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
+ }else{
+ Token t;
+ for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
+ while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
+ t.z = zStart;
+ t.n = (int)(zEnd - t.z);
+ sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
+ }
+ }else
+#endif
+ {
+ sqlite3ExprDelete(pParse->db, pCheckExpr);
+ }
+}
+
+/*
+** Set the collation function of the most recently parsed table column
+** to the CollSeq given.
+*/
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
+ Table *p;
+ int i;
+ char *zColl; /* Dequoted name of collation sequence */
+ sqlite3 *db;
+
+ if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
+ i = p->nCol-1;
+ db = pParse->db;
+ zColl = sqlite3NameFromToken(db, pToken);
+ if( !zColl ) return;
+
+ if( sqlite3LocateCollSeq(pParse, zColl) ){
+ Index *pIdx;
+ sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
+
+ /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
+ ** then an index may have been created on this column before the
+ ** collation type was added. Correct this if it is the case.
+ */
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nKeyCol==1 );
+ if( pIdx->aiColumn[0]==i ){
+ pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
+ }
+ }
+ }
+ sqlite3DbFree(db, zColl);
+}
+
+/* Change the most recently parsed column to be a GENERATED ALWAYS AS
+** column.
+*/
+SQLITE_PRIVATE void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ u8 eType = COLFLAG_VIRTUAL;
+ Table *pTab = pParse->pNewTable;
+ Column *pCol;
+ if( pTab==0 ){
+ /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
+ goto generated_done;
+ }
+ pCol = &(pTab->aCol[pTab->nCol-1]);
+ if( IN_DECLARE_VTAB ){
+ sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
+ goto generated_done;
+ }
+ if( pCol->iDflt>0 ) goto generated_error;
+ if( pType ){
+ if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
+ /* no-op */
+ }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
+ eType = COLFLAG_STORED;
+ }else{
+ goto generated_error;
+ }
+ }
+ if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
+ pCol->colFlags |= eType;
+ assert( TF_HasVirtual==COLFLAG_VIRTUAL );
+ assert( TF_HasStored==COLFLAG_STORED );
+ pTab->tabFlags |= eType;
+ if( pCol->colFlags & COLFLAG_PRIMKEY ){
+ makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
+ }
+ sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
+ pExpr = 0;
+ goto generated_done;
+
+generated_error:
+ sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
+ pCol->zCnName);
+generated_done:
+ sqlite3ExprDelete(pParse->db, pExpr);
+#else
+ /* Throw and error for the GENERATED ALWAYS AS clause if the
+ ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
+ sqlite3ErrorMsg(pParse, "generated columns not supported");
+ sqlite3ExprDelete(pParse->db, pExpr);
+#endif
+}
+
+/*
+** Generate code that will increment the schema cookie.
+**
+** The schema cookie is used to determine when the schema for the
+** database changes. After each schema change, the cookie value
+** changes. When a process first reads the schema it records the
+** cookie. Thereafter, whenever it goes to access the database,
+** it checks the cookie to make sure the schema has not changed
+** since it was last read.
+**
+** This plan is not completely bullet-proof. It is possible for
+** the schema to change multiple times and for the cookie to be
+** set back to prior value. But schema changes are infrequent
+** and the probability of hitting the same cookie value is only
+** 1 chance in 2^32. So we're safe enough.
+**
+** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
+** the schema-version whenever the schema changes.
+*/
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
+ (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
+}
+
+/*
+** Measure the number of characters needed to output the given
+** identifier. The number returned includes any quotes used
+** but does not include the null terminator.
+**
+** The estimate is conservative. It might be larger that what is
+** really needed.
+*/
+static int identLength(const char *z){
+ int n;
+ for(n=0; *z; n++, z++){
+ if( *z=='"' ){ n++; }
+ }
+ return n + 2;
+}
+
+/*
+** The first parameter is a pointer to an output buffer. The second
+** parameter is a pointer to an integer that contains the offset at
+** which to write into the output buffer. This function copies the
+** nul-terminated string pointed to by the third parameter, zSignedIdent,
+** to the specified offset in the buffer and updates *pIdx to refer
+** to the first byte after the last byte written before returning.
+**
+** If the string zSignedIdent consists entirely of alpha-numeric
+** characters, does not begin with a digit and is not an SQL keyword,
+** then it is copied to the output buffer exactly as it is. Otherwise,
+** it is quoted using double-quotes.
+*/
+static void identPut(char *z, int *pIdx, char *zSignedIdent){
+ unsigned char *zIdent = (unsigned char*)zSignedIdent;
+ int i, j, needQuote;
+ i = *pIdx;
+
+ for(j=0; zIdent[j]; j++){
+ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ }
+ needQuote = sqlite3Isdigit(zIdent[0])
+ || sqlite3KeywordCode(zIdent, j)!=TK_ID
+ || zIdent[j]!=0
+ || j==0;
+
+ if( needQuote ) z[i++] = '"';
+ for(j=0; zIdent[j]; j++){
+ z[i++] = zIdent[j];
+ if( zIdent[j]=='"' ) z[i++] = '"';
+ }
+ if( needQuote ) z[i++] = '"';
+ z[i] = 0;
+ *pIdx = i;
+}
+
+/*
+** Generate a CREATE TABLE statement appropriate for the given
+** table. Memory to hold the text of the statement is obtained
+** from sqliteMalloc() and must be freed by the calling function.
+*/
+static char *createTableStmt(sqlite3 *db, Table *p){
+ int i, k, n;
+ char *zStmt;
+ char *zSep, *zSep2, *zEnd;
+ Column *pCol;
+ n = 0;
+ for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
+ n += identLength(pCol->zCnName) + 5;
+ }
+ n += identLength(p->zName);
+ if( n<50 ){
+ zSep = "";
+ zSep2 = ",";
+ zEnd = ")";
+ }else{
+ zSep = "\n ";
+ zSep2 = ",\n ";
+ zEnd = "\n)";
+ }
+ n += 35 + 6*p->nCol;
+ zStmt = sqlite3DbMallocRaw(0, n);
+ if( zStmt==0 ){
+ sqlite3OomFault(db);
+ return 0;
+ }
+ sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
+ k = sqlite3Strlen30(zStmt);
+ identPut(zStmt, &k, p->zName);
+ zStmt[k++] = '(';
+ for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
+ static const char * const azType[] = {
+ /* SQLITE_AFF_BLOB */ "",
+ /* SQLITE_AFF_TEXT */ " TEXT",
+ /* SQLITE_AFF_NUMERIC */ " NUM",
+ /* SQLITE_AFF_INTEGER */ " INT",
+ /* SQLITE_AFF_REAL */ " REAL"
+ };
+ int len;
+ const char *zType;
+
+ sqlite3_snprintf(n-k, &zStmt[k], zSep);
+ k += sqlite3Strlen30(&zStmt[k]);
+ zSep = zSep2;
+ identPut(zStmt, &k, pCol->zCnName);
+ assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
+ assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
+ testcase( pCol->affinity==SQLITE_AFF_BLOB );
+ testcase( pCol->affinity==SQLITE_AFF_TEXT );
+ testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
+ testcase( pCol->affinity==SQLITE_AFF_INTEGER );
+ testcase( pCol->affinity==SQLITE_AFF_REAL );
+
+ zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
+ len = sqlite3Strlen30(zType);
+ assert( pCol->affinity==SQLITE_AFF_BLOB
+ || pCol->affinity==sqlite3AffinityType(zType, 0) );
+ memcpy(&zStmt[k], zType, len);
+ k += len;
+ assert( k<=n );
+ }
+ sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
+ return zStmt;
+}
+
+/*
+** Resize an Index object to hold N columns total. Return SQLITE_OK
+** on success and SQLITE_NOMEM on an OOM error.
+*/
+static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
+ char *zExtra;
+ int nByte;
+ if( pIdx->nColumn>=N ) return SQLITE_OK;
+ assert( pIdx->isResized==0 );
+ nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
+ zExtra = sqlite3DbMallocZero(db, nByte);
+ if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
+ memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
+ pIdx->azColl = (const char**)zExtra;
+ zExtra += sizeof(char*)*N;
+ memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
+ pIdx->aiRowLogEst = (LogEst*)zExtra;
+ zExtra += sizeof(LogEst)*N;
+ memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
+ pIdx->aiColumn = (i16*)zExtra;
+ zExtra += sizeof(i16)*N;
+ memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
+ pIdx->aSortOrder = (u8*)zExtra;
+ pIdx->nColumn = N;
+ pIdx->isResized = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Estimate the total row width for a table.
+*/
+static void estimateTableWidth(Table *pTab){
+ unsigned wTable = 0;
+ const Column *pTabCol;
+ int i;
+ for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
+ wTable += pTabCol->szEst;
+ }
+ if( pTab->iPKey<0 ) wTable++;
+ pTab->szTabRow = sqlite3LogEst(wTable*4);
+}
+
+/*
+** Estimate the average size of a row for an index.
+*/
+static void estimateIndexWidth(Index *pIdx){
+ unsigned wIndex = 0;
+ int i;
+ const Column *aCol = pIdx->pTable->aCol;
+ for(i=0; i<pIdx->nColumn; i++){
+ i16 x = pIdx->aiColumn[i];
+ assert( x<pIdx->pTable->nCol );
+ wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
+ }
+ pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
+}
+
+/* Return true if column number x is any of the first nCol entries of aiCol[].
+** This is used to determine if the column number x appears in any of the
+** first nCol entries of an index.
+*/
+static int hasColumn(const i16 *aiCol, int nCol, int x){
+ while( nCol-- > 0 ){
+ if( x==*(aiCol++) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Return true if any of the first nKey entries of index pIdx exactly
+** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
+** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
+** or may not be the same index as pPk.
+**
+** The first nKey entries of pIdx are guaranteed to be ordinary columns,
+** not a rowid or expression.
+**
+** This routine differs from hasColumn() in that both the column and the
+** collating sequence must match for this routine, but for hasColumn() only
+** the column name must match.
+*/
+static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
+ int i, j;
+ assert( nKey<=pIdx->nColumn );
+ assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
+ assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
+ assert( pPk->pTable->tabFlags & TF_WithoutRowid );
+ assert( pPk->pTable==pIdx->pTable );
+ testcase( pPk==pIdx );
+ j = pPk->aiColumn[iCol];
+ assert( j!=XN_ROWID && j!=XN_EXPR );
+ for(i=0; i<nKey; i++){
+ assert( pIdx->aiColumn[i]>=0 || j>=0 );
+ if( pIdx->aiColumn[i]==j
+ && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Recompute the colNotIdxed field of the Index.
+**
+** colNotIdxed is a bitmask that has a 0 bit representing each indexed
+** columns that are within the first 63 columns of the table. The
+** high-order bit of colNotIdxed is always 1. All unindexed columns
+** of the table have a 1.
+**
+** 2019-10-24: For the purpose of this computation, virtual columns are
+** not considered to be covered by the index, even if they are in the
+** index, because we do not trust the logic in whereIndexExprTrans() to be
+** able to find all instances of a reference to the indexed table column
+** and convert them into references to the index. Hence we always want
+** the actual table at hand in order to recompute the virtual column, if
+** necessary.
+**
+** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
+** to determine if the index is covering index.
+*/
+static void recomputeColumnsNotIndexed(Index *pIdx){
+ Bitmask m = 0;
+ int j;
+ Table *pTab = pIdx->pTable;
+ for(j=pIdx->nColumn-1; j>=0; j--){
+ int x = pIdx->aiColumn[j];
+ if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
+ testcase( x==BMS-1 );
+ testcase( x==BMS-2 );
+ if( x<BMS-1 ) m |= MASKBIT(x);
+ }
+ }
+ pIdx->colNotIdxed = ~m;
+ assert( (pIdx->colNotIdxed>>63)==1 );
+}
+
+/*
+** This routine runs at the end of parsing a CREATE TABLE statement that
+** has a WITHOUT ROWID clause. The job of this routine is to convert both
+** internal schema data structures and the generated VDBE code so that they
+** are appropriate for a WITHOUT ROWID table instead of a rowid table.
+** Changes include:
+**
+** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
+** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
+** into BTREE_BLOBKEY.
+** (3) Bypass the creation of the sqlite_schema table entry
+** for the PRIMARY KEY as the primary key index is now
+** identified by the sqlite_schema table entry of the table itself.
+** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
+** schema to the rootpage from the main table.
+** (5) Add all table columns to the PRIMARY KEY Index object
+** so that the PRIMARY KEY is a covering index. The surplus
+** columns are part of KeyInfo.nAllField and are not used for
+** sorting or lookup or uniqueness checks.
+** (6) Replace the rowid tail on all automatically generated UNIQUE
+** indices with the PRIMARY KEY columns.
+**
+** For virtual tables, only (1) is performed.
+*/
+static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
+ Index *pIdx;
+ Index *pPk;
+ int nPk;
+ int nExtra;
+ int i, j;
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+
+ /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
+ */
+ if( !db->init.imposterTable ){
+ for(i=0; i<pTab->nCol; i++){
+ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
+ && (pTab->aCol[i].notNull==OE_None)
+ ){
+ pTab->aCol[i].notNull = OE_Abort;
+ }
+ }
+ pTab->tabFlags |= TF_HasNotNull;
+ }
+
+ /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
+ ** into BTREE_BLOBKEY.
+ */
+ assert( !pParse->bReturning );
+ if( pParse->u1.addrCrTab ){
+ assert( v );
+ sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
+ }
+
+ /* Locate the PRIMARY KEY index. Or, if this table was originally
+ ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
+ */
+ if( pTab->iPKey>=0 ){
+ ExprList *pList;
+ Token ipkToken;
+ sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
+ pList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
+ if( pList==0 ){
+ pTab->tabFlags &= ~TF_WithoutRowid;
+ return;
+ }
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
+ }
+ pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
+ assert( pParse->pNewTable==pTab );
+ pTab->iPKey = -1;
+ sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
+ SQLITE_IDXTYPE_PRIMARYKEY);
+ if( pParse->nErr ){
+ pTab->tabFlags &= ~TF_WithoutRowid;
+ return;
+ }
+ assert( db->mallocFailed==0 );
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk->nKeyCol==1 );
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+
+ /*
+ ** Remove all redundant columns from the PRIMARY KEY. For example, change
+ ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
+ ** code assumes the PRIMARY KEY contains no repeated columns.
+ */
+ for(i=j=1; i<pPk->nKeyCol; i++){
+ if( isDupColumn(pPk, j, pPk, i) ){
+ pPk->nColumn--;
+ }else{
+ testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
+ pPk->azColl[j] = pPk->azColl[i];
+ pPk->aSortOrder[j] = pPk->aSortOrder[i];
+ pPk->aiColumn[j++] = pPk->aiColumn[i];
+ }
+ }
+ pPk->nKeyCol = j;
+ }
+ assert( pPk!=0 );
+ pPk->isCovering = 1;
+ if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
+ nPk = pPk->nColumn = pPk->nKeyCol;
+
+ /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
+ ** table entry. This is only required if currently generating VDBE
+ ** code for a CREATE TABLE (not when parsing one as part of reading
+ ** a database schema). */
+ if( v && pPk->tnum>0 ){
+ assert( db->init.busy==0 );
+ sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
+ }
+
+ /* The root page of the PRIMARY KEY is the table root page */
+ pPk->tnum = pTab->tnum;
+
+ /* Update the in-memory representation of all UNIQUE indices by converting
+ ** the final rowid column into one or more columns of the PRIMARY KEY.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int n;
+ if( IsPrimaryKeyIndex(pIdx) ) continue;
+ for(i=n=0; i<nPk; i++){
+ if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
+ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
+ n++;
+ }
+ }
+ if( n==0 ){
+ /* This index is a superset of the primary key */
+ pIdx->nColumn = pIdx->nKeyCol;
+ continue;
+ }
+ if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
+ for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
+ if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
+ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
+ pIdx->aiColumn[j] = pPk->aiColumn[i];
+ pIdx->azColl[j] = pPk->azColl[i];
+ if( pPk->aSortOrder[i] ){
+ /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
+ pIdx->bAscKeyBug = 1;
+ }
+ j++;
+ }
+ }
+ assert( pIdx->nColumn>=pIdx->nKeyCol+n );
+ assert( pIdx->nColumn>=j );
+ }
+
+ /* Add all table columns to the PRIMARY KEY index
+ */
+ nExtra = 0;
+ for(i=0; i<pTab->nCol; i++){
+ if( !hasColumn(pPk->aiColumn, nPk, i)
+ && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
+ }
+ if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
+ for(i=0, j=nPk; i<pTab->nCol; i++){
+ if( !hasColumn(pPk->aiColumn, j, i)
+ && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
+ ){
+ assert( j<pPk->nColumn );
+ pPk->aiColumn[j] = i;
+ pPk->azColl[j] = sqlite3StrBINARY;
+ j++;
+ }
+ }
+ assert( pPk->nColumn==j );
+ assert( pTab->nNVCol<=j );
+ recomputeColumnsNotIndexed(pPk);
+}
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Return true if pTab is a virtual table and zName is a shadow table name
+** for that virtual table.
+*/
+SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
+ int nName; /* Length of zName */
+ Module *pMod; /* Module for the virtual table */
+
+ if( !IsVirtual(pTab) ) return 0;
+ nName = sqlite3Strlen30(pTab->zName);
+ if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
+ if( zName[nName]!='_' ) return 0;
+ pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
+ if( pMod==0 ) return 0;
+ if( pMod->pModule->iVersion<3 ) return 0;
+ if( pMod->pModule->xShadowName==0 ) return 0;
+ return pMod->pModule->xShadowName(zName+nName+1);
+}
+#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Table pTab is a virtual table. If it the virtual table implementation
+** exists and has an xShadowName method, then loop over all other ordinary
+** tables within the same schema looking for shadow tables of pTab, and mark
+** any shadow tables seen using the TF_Shadow flag.
+*/
+SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
+ int nName; /* Length of pTab->zName */
+ Module *pMod; /* Module for the virtual table */
+ HashElem *k; /* For looping through the symbol table */
+
+ assert( IsVirtual(pTab) );
+ pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
+ if( pMod==0 ) return;
+ if( NEVER(pMod->pModule==0) ) return;
+ if( pMod->pModule->iVersion<3 ) return;
+ if( pMod->pModule->xShadowName==0 ) return;
+ assert( pTab->zName!=0 );
+ nName = sqlite3Strlen30(pTab->zName);
+ for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pOther = sqliteHashData(k);
+ assert( pOther->zName!=0 );
+ if( !IsOrdinaryTable(pOther) ) continue;
+ if( pOther->tabFlags & TF_Shadow ) continue;
+ if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
+ && pOther->zName[nName]=='_'
+ && pMod->pModule->xShadowName(pOther->zName+nName+1)
+ ){
+ pOther->tabFlags |= TF_Shadow;
+ }
+ }
+}
+#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Return true if zName is a shadow table name in the current database
+** connection.
+**
+** zName is temporarily modified while this routine is running, but is
+** restored to its original value prior to this routine returning.
+*/
+SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
+ char *zTail; /* Pointer to the last "_" in zName */
+ Table *pTab; /* Table that zName is a shadow of */
+ zTail = strrchr(zName, '_');
+ if( zTail==0 ) return 0;
+ *zTail = 0;
+ pTab = sqlite3FindTable(db, zName, 0);
+ *zTail = '_';
+ if( pTab==0 ) return 0;
+ if( !IsVirtual(pTab) ) return 0;
+ return sqlite3IsShadowTableOf(db, pTab, zName);
+}
+#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
+
+
+#ifdef SQLITE_DEBUG
+/*
+** Mark all nodes of an expression as EP_Immutable, indicating that
+** they should not be changed. Expressions attached to a table or
+** index definition are tagged this way to help ensure that we do
+** not pass them into code generator routines by mistake.
+*/
+static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
+ ExprSetVVAProperty(pExpr, EP_Immutable);
+ return WRC_Continue;
+}
+static void markExprListImmutable(ExprList *pList){
+ if( pList ){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = markImmutableExprStep;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = 0;
+ sqlite3WalkExprList(&w, pList);
+ }
+}
+#else
+#define markExprListImmutable(X) /* no-op */
+#endif /* SQLITE_DEBUG */
+
+
+/*
+** This routine is called to report the final ")" that terminates
+** a CREATE TABLE statement.
+**
+** The table structure that other action routines have been building
+** is added to the internal hash tables, assuming no errors have
+** occurred.
+**
+** An entry for the table is made in the schema table on disk, unless
+** this is a temporary table or db->init.busy==1. When db->init.busy==1
+** it means we are reading the sqlite_schema table because we just
+** connected to the database or because the sqlite_schema table has
+** recently changed, so the entry for this table already exists in
+** the sqlite_schema table. We do not want to create it again.
+**
+** If the pSelect argument is not NULL, it means that this routine
+** was called to create a table generated from a
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of
+** the new table will match the result set of the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3EndTable(
+ Parse *pParse, /* Parse context */
+ Token *pCons, /* The ',' token after the last column defn. */
+ Token *pEnd, /* The ')' before options in the CREATE TABLE */
+ u32 tabOpts, /* Extra table options. Usually 0. */
+ Select *pSelect /* Select from a "CREATE ... AS SELECT" */
+){
+ Table *p; /* The new table */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb; /* Database in which the table lives */
+ Index *pIdx; /* An implied index of the table */
+
+ if( pEnd==0 && pSelect==0 ){
+ return;
+ }
+ p = pParse->pNewTable;
+ if( p==0 ) return;
+
+ if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
+ p->tabFlags |= TF_Shadow;
+ }
+
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
+ ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
+ ** So do not write to the disk again. Extract the root page number
+ ** for the table from the db->init.newTnum field. (The page number
+ ** should have been put there by the sqliteOpenCb routine.)
+ **
+ ** If the root page number is 1, that means this is the sqlite_schema
+ ** table itself. So mark it read-only.
+ */
+ if( db->init.busy ){
+ if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
+ sqlite3ErrorMsg(pParse, "");
+ return;
+ }
+ p->tnum = db->init.newTnum;
+ if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
+ }
+
+ /* Special processing for tables that include the STRICT keyword:
+ **
+ ** * Do not allow custom column datatypes. Every column must have
+ ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
+ **
+ ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
+ ** then all columns of the PRIMARY KEY must have a NOT NULL
+ ** constraint.
+ */
+ if( tabOpts & TF_Strict ){
+ int ii;
+ p->tabFlags |= TF_Strict;
+ for(ii=0; ii<p->nCol; ii++){
+ Column *pCol = &p->aCol[ii];
+ if( pCol->eCType==COLTYPE_CUSTOM ){
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ sqlite3ErrorMsg(pParse,
+ "unknown datatype for %s.%s: \"%s\"",
+ p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
+ );
+ }else{
+ sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
+ p->zName, pCol->zCnName);
+ }
+ return;
+ }else if( pCol->eCType==COLTYPE_ANY ){
+ pCol->affinity = SQLITE_AFF_BLOB;
+ }
+ if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
+ && p->iPKey!=ii
+ && pCol->notNull == OE_None
+ ){
+ pCol->notNull = OE_Abort;
+ p->tabFlags |= TF_HasNotNull;
+ }
+ }
+ }
+
+ assert( (p->tabFlags & TF_HasPrimaryKey)==0
+ || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
+ assert( (p->tabFlags & TF_HasPrimaryKey)!=0
+ || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
+
+ /* Special processing for WITHOUT ROWID Tables */
+ if( tabOpts & TF_WithoutRowid ){
+ if( (p->tabFlags & TF_Autoincrement) ){
+ sqlite3ErrorMsg(pParse,
+ "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
+ return;
+ }
+ if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
+ sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
+ return;
+ }
+ p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
+ convertToWithoutRowidTable(pParse, p);
+ }
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
+
+#ifndef SQLITE_OMIT_CHECK
+ /* Resolve names in all CHECK constraint expressions.
+ */
+ if( p->pCheck ){
+ sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
+ if( pParse->nErr ){
+ /* If errors are seen, delete the CHECK constraints now, else they might
+ ** actually be used if PRAGMA writable_schema=ON is set. */
+ sqlite3ExprListDelete(db, p->pCheck);
+ p->pCheck = 0;
+ }else{
+ markExprListImmutable(p->pCheck);
+ }
+ }
+#endif /* !defined(SQLITE_OMIT_CHECK) */
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( p->tabFlags & TF_HasGenerated ){
+ int ii, nNG = 0;
+ testcase( p->tabFlags & TF_HasVirtual );
+ testcase( p->tabFlags & TF_HasStored );
+ for(ii=0; ii<p->nCol; ii++){
+ u32 colFlags = p->aCol[ii].colFlags;
+ if( (colFlags & COLFLAG_GENERATED)!=0 ){
+ Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
+ testcase( colFlags & COLFLAG_VIRTUAL );
+ testcase( colFlags & COLFLAG_STORED );
+ if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
+ /* If there are errors in resolving the expression, change the
+ ** expression to a NULL. This prevents code generators that operate
+ ** on the expression from inserting extra parts into the expression
+ ** tree that have been allocated from lookaside memory, which is
+ ** illegal in a schema and will lead to errors or heap corruption
+ ** when the database connection closes. */
+ sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
+ sqlite3ExprAlloc(db, TK_NULL, 0, 0));
+ }
+ }else{
+ nNG++;
+ }
+ }
+ if( nNG==0 ){
+ sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
+ return;
+ }
+ }
+#endif
+
+ /* Estimate the average row size for the table and for all implied indices */
+ estimateTableWidth(p);
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ estimateIndexWidth(pIdx);
+ }
+
+ /* If not initializing, then create a record for the new table
+ ** in the schema table of the database.
+ **
+ ** If this is a TEMPORARY table, write the entry into the auxiliary
+ ** file instead of into the main database file.
+ */
+ if( !db->init.busy ){
+ int n;
+ Vdbe *v;
+ char *zType; /* "view" or "table" */
+ char *zType2; /* "VIEW" or "TABLE" */
+ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
+
+ v = sqlite3GetVdbe(pParse);
+ if( NEVER(v==0) ) return;
+
+ sqlite3VdbeAddOp1(v, OP_Close, 0);
+
+ /*
+ ** Initialize zType for the new view or table.
+ */
+ if( IsOrdinaryTable(p) ){
+ /* A regular table */
+ zType = "table";
+ zType2 = "TABLE";
+#ifndef SQLITE_OMIT_VIEW
+ }else{
+ /* A view */
+ zType = "view";
+ zType2 = "VIEW";
+#endif
+ }
+
+ /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
+ ** statement to populate the new table. The root-page number for the
+ ** new table is in register pParse->regRoot.
+ **
+ ** Once the SELECT has been coded by sqlite3Select(), it is in a
+ ** suitable state to query for the column names and types to be used
+ ** by the new table.
+ **
+ ** A shared-cache write-lock is not required to write to the new table,
+ ** as a schema-lock must have already been obtained to create it. Since
+ ** a schema-lock excludes all other database users, the write-lock would
+ ** be redundant.
+ */
+ if( pSelect ){
+ SelectDest dest; /* Where the SELECT should store results */
+ int regYield; /* Register holding co-routine entry-point */
+ int addrTop; /* Top of the co-routine */
+ int regRec; /* A record to be insert into the new table */
+ int regRowid; /* Rowid of the next row to insert */
+ int addrInsLoop; /* Top of the loop for inserting rows */
+ Table *pSelTab; /* A table that describes the SELECT results */
+
+ if( IN_SPECIAL_PARSE ){
+ pParse->rc = SQLITE_ERROR;
+ pParse->nErr++;
+ return;
+ }
+ regYield = ++pParse->nMem;
+ regRec = ++pParse->nMem;
+ regRowid = ++pParse->nMem;
+ assert(pParse->nTab==1);
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
+ sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
+ pParse->nTab = 2;
+ addrTop = sqlite3VdbeCurrentAddr(v) + 1;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
+ if( pParse->nErr ) return;
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
+ if( pSelTab==0 ) return;
+ assert( p->aCol==0 );
+ p->nCol = p->nNVCol = pSelTab->nCol;
+ p->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqlite3DeleteTable(db, pSelTab);
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
+ sqlite3Select(pParse, pSelect, &dest);
+ if( pParse->nErr ) return;
+ sqlite3VdbeEndCoroutine(v, regYield);
+ sqlite3VdbeJumpHere(v, addrTop - 1);
+ addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
+ sqlite3TableAffinity(v, p, 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
+ sqlite3VdbeGoto(v, addrInsLoop);
+ sqlite3VdbeJumpHere(v, addrInsLoop);
+ sqlite3VdbeAddOp1(v, OP_Close, 1);
+ }
+
+ /* Compute the complete text of the CREATE statement */
+ if( pSelect ){
+ zStmt = createTableStmt(db, p);
+ }else{
+ Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
+ n = (int)(pEnd2->z - pParse->sNameToken.z);
+ if( pEnd2->z[0]!=';' ) n += pEnd2->n;
+ zStmt = sqlite3MPrintf(db,
+ "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
+ );
+ }
+
+ /* A slot for the record has already been allocated in the
+ ** schema table. We just need to update that slot with all
+ ** the information we've collected.
+ */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE
+ " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
+ " WHERE rowid=#%d",
+ db->aDb[iDb].zDbSName,
+ zType,
+ p->zName,
+ p->zName,
+ pParse->regRoot,
+ zStmt,
+ pParse->regRowid
+ );
+ sqlite3DbFree(db, zStmt);
+ sqlite3ChangeCookie(pParse, iDb);
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* Check to see if we need to create an sqlite_sequence table for
+ ** keeping track of autoincrement keys.
+ */
+ if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
+ Db *pDb = &db->aDb[iDb];
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( pDb->pSchema->pSeqTab==0 ){
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.sqlite_sequence(name,seq)",
+ pDb->zDbSName
+ );
+ }
+ }
+#endif
+
+ /* Reparse everything to update our internal data structures */
+ sqlite3VdbeAddParseSchemaOp(v, iDb,
+ sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
+ }
+
+ /* Add the table to the in-memory representation of the database.
+ */
+ if( db->init.busy ){
+ Table *pOld;
+ Schema *pSchema = p->pSchema;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ assert( HasRowid(p) || p->iPKey<0 );
+ pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
+ if( pOld ){
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
+ sqlite3OomFault(db);
+ return;
+ }
+ pParse->pNewTable = 0;
+ db->mDbFlags |= DBFLAG_SchemaChange;
+
+ /* If this is the magic sqlite_sequence table used by autoincrement,
+ ** then record a pointer to this table in the main database structure
+ ** so that INSERT can find the table easily. */
+ assert( !pParse->nested );
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( strcmp(p->zName, "sqlite_sequence")==0 ){
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ p->pSchema->pSeqTab = p;
+ }
+#endif
+ }
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( !pSelect && IsOrdinaryTable(p) ){
+ assert( pCons && pEnd );
+ if( pCons->z==0 ){
+ pCons = pEnd;
+ }
+ p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
+ }
+#endif
+}
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** The parser calls this routine in order to create a new VIEW
+*/
+SQLITE_PRIVATE void sqlite3CreateView(
+ Parse *pParse, /* The parsing context */
+ Token *pBegin, /* The CREATE token that begins the statement */
+ Token *pName1, /* The token that holds the name of the view */
+ Token *pName2, /* The token that holds the name of the view */
+ ExprList *pCNames, /* Optional list of view column names */
+ Select *pSelect, /* A SELECT statement that will become the new view */
+ int isTemp, /* TRUE for a TEMPORARY view */
+ int noErr /* Suppress error messages if VIEW already exists */
+){
+ Table *p;
+ int n;
+ const char *z;
+ Token sEnd;
+ DbFixer sFix;
+ Token *pName = 0;
+ int iDb;
+ sqlite3 *db = pParse->db;
+
+ if( pParse->nVar>0 ){
+ sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
+ goto create_view_fail;
+ }
+ sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
+ p = pParse->pNewTable;
+ if( p==0 || pParse->nErr ) goto create_view_fail;
+
+ /* Legacy versions of SQLite allowed the use of the magic "rowid" column
+ ** on a view, even though views do not have rowids. The following flag
+ ** setting fixes this problem. But the fix can be disabled by compiling
+ ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
+ ** depend upon the old buggy behavior. */
+#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
+ p->tabFlags |= TF_NoVisibleRowid;
+#endif
+
+ sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
+ sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
+ if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
+
+ /* Make a copy of the entire SELECT statement that defines the view.
+ ** This will force all the Expr.token.z values to be dynamically
+ ** allocated rather than point to the input string - which means that
+ ** they will persist after the current sqlite3_exec() call returns.
+ */
+ pSelect->selFlags |= SF_View;
+ if( IN_RENAME_OBJECT ){
+ p->u.view.pSelect = pSelect;
+ pSelect = 0;
+ }else{
+ p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ }
+ p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
+ p->eTabType = TABTYP_VIEW;
+ if( db->mallocFailed ) goto create_view_fail;
+
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
+ ** the end.
+ */
+ sEnd = pParse->sLastToken;
+ assert( sEnd.z[0]!=0 || sEnd.n==0 );
+ if( sEnd.z[0]!=';' ){
+ sEnd.z += sEnd.n;
+ }
+ sEnd.n = 0;
+ n = (int)(sEnd.z - pBegin->z);
+ assert( n>0 );
+ z = pBegin->z;
+ while( sqlite3Isspace(z[n-1]) ){ n--; }
+ sEnd.z = &z[n-1];
+ sEnd.n = 1;
+
+ /* Use sqlite3EndTable() to add the view to the schema table */
+ sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
+
+create_view_fail:
+ sqlite3SelectDelete(db, pSelect);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameExprlistUnmap(pParse, pCNames);
+ }
+ sqlite3ExprListDelete(db, pCNames);
+ return;
+}
+#endif /* SQLITE_OMIT_VIEW */
+
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+/*
+** The Table structure pTable is really a VIEW. Fill in the names of
+** the columns of the view in the pTable structure. Return the number
+** of errors. If an error is seen leave an error message in pParse->zErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
+ Table *pSelTab; /* A fake table from which we get the result set */
+ Select *pSel; /* Copy of the SELECT that implements the view */
+ int nErr = 0; /* Number of errors encountered */
+ sqlite3 *db = pParse->db; /* Database connection for malloc errors */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int rc;
+#endif
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth; /* Saved xAuth pointer */
+#endif
+
+ assert( pTable );
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTable) ){
+ db->nSchemaLock++;
+ rc = sqlite3VtabCallConnect(pParse, pTable);
+ db->nSchemaLock--;
+ return rc;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_VIEW
+ /* A positive nCol means the columns names for this view are
+ ** already known.
+ */
+ if( pTable->nCol>0 ) return 0;
+
+ /* A negative nCol is a special marker meaning that we are currently
+ ** trying to compute the column names. If we enter this routine with
+ ** a negative nCol, it means two or more views form a loop, like this:
+ **
+ ** CREATE VIEW one AS SELECT * FROM two;
+ ** CREATE VIEW two AS SELECT * FROM one;
+ **
+ ** Actually, the error above is now caught prior to reaching this point.
+ ** But the following test is still important as it does come up
+ ** in the following:
+ **
+ ** CREATE TABLE main.ex1(a);
+ ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
+ ** SELECT * FROM temp.ex1;
+ */
+ if( pTable->nCol<0 ){
+ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
+ return 1;
+ }
+ assert( pTable->nCol>=0 );
+
+ /* If we get this far, it means we need to compute the table names.
+ ** Note that the call to sqlite3ResultSetOfSelect() will expand any
+ ** "*" elements in the results set of the view and will assign cursors
+ ** to the elements of the FROM clause. But we do not want these changes
+ ** to be permanent. So the computation is done on a copy of the SELECT
+ ** statement that defines the view.
+ */
+ assert( IsView(pTable) );
+ pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
+ if( pSel ){
+ u8 eParseMode = pParse->eParseMode;
+ int nTab = pParse->nTab;
+ int nSelect = pParse->nSelect;
+ pParse->eParseMode = PARSE_MODE_NORMAL;
+ sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
+ pTable->nCol = -1;
+ DisableLookaside;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
+ db->xAuth = xAuth;
+#else
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
+#endif
+ pParse->nTab = nTab;
+ pParse->nSelect = nSelect;
+ if( pSelTab==0 ){
+ pTable->nCol = 0;
+ nErr++;
+ }else if( pTable->pCheck ){
+ /* CREATE VIEW name(arglist) AS ...
+ ** The names of the columns in the table are taken from
+ ** arglist which is stored in pTable->pCheck. The pCheck field
+ ** normally holds CHECK constraints on an ordinary table, but for
+ ** a VIEW it holds the list of column names.
+ */
+ sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
+ &pTable->nCol, &pTable->aCol);
+ if( pParse->nErr==0
+ && pTable->nCol==pSel->pEList->nExpr
+ ){
+ assert( db->mallocFailed==0 );
+ sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
+ SQLITE_AFF_NONE);
+ }
+ }else{
+ /* CREATE VIEW name AS... without an argument list. Construct
+ ** the column names from the SELECT statement that defines the view.
+ */
+ assert( pTable->aCol==0 );
+ pTable->nCol = pSelTab->nCol;
+ pTable->aCol = pSelTab->aCol;
+ pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
+ }
+ pTable->nNVCol = pTable->nCol;
+ sqlite3DeleteTable(db, pSelTab);
+ sqlite3SelectDelete(db, pSel);
+ EnableLookaside;
+ pParse->eParseMode = eParseMode;
+ } else {
+ nErr++;
+ }
+ pTable->pSchema->schemaFlags |= DB_UnresetViews;
+ if( db->mallocFailed ){
+ sqlite3DeleteColumnNames(db, pTable);
+ }
+#endif /* SQLITE_OMIT_VIEW */
+ return nErr;
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** Clear the column names from every VIEW in database idx.
+*/
+static void sqliteViewResetAll(sqlite3 *db, int idx){
+ HashElem *i;
+ assert( sqlite3SchemaMutexHeld(db, idx, 0) );
+ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
+ for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ if( IsView(pTab) ){
+ sqlite3DeleteColumnNames(db, pTab);
+ }
+ }
+ DbClearProperty(db, idx, DB_UnresetViews);
+}
+#else
+# define sqliteViewResetAll(A,B)
+#endif /* SQLITE_OMIT_VIEW */
+
+/*
+** This function is called by the VDBE to adjust the internal schema
+** used by SQLite when the btree layer moves a table root page. The
+** root-page of a table or index in database iDb has changed from iFrom
+** to iTo.
+**
+** Ticket #1728: The symbol table might still contain information
+** on tables and/or indices that are the process of being deleted.
+** If you are unlucky, one of those deleted indices or tables might
+** have the same rootpage number as the real table or index that is
+** being moved. So we cannot stop searching after the first match
+** because the first match might be for one of the deleted indices
+** or tables and not the table/index that is actually being moved.
+** We must continue looping until all tables and indices with
+** rootpage==iFrom have been converted to have a rootpage of iTo
+** in order to be certain that we got the right one.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
+ HashElem *pElem;
+ Hash *pHash;
+ Db *pDb;
+
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pDb = &db->aDb[iDb];
+ pHash = &pDb->pSchema->tblHash;
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ if( pTab->tnum==iFrom ){
+ pTab->tnum = iTo;
+ }
+ }
+ pHash = &pDb->pSchema->idxHash;
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
+ Index *pIdx = sqliteHashData(pElem);
+ if( pIdx->tnum==iFrom ){
+ pIdx->tnum = iTo;
+ }
+ }
+}
+#endif
+
+/*
+** Write code to erase the table with root-page iTable from database iDb.
+** Also write code to modify the sqlite_schema table and internal schema
+** if a root-page of another table is moved by the btree-layer whilst
+** erasing iTable (this can happen with an auto-vacuum database).
+*/
+static void destroyRootPage(Parse *pParse, int iTable, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int r1 = sqlite3GetTempReg(pParse);
+ if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
+ sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
+ sqlite3MayAbort(pParse);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* OP_Destroy stores an in integer r1. If this integer
+ ** is non-zero, then it is the root page number of a table moved to
+ ** location iTable. The following code modifies the sqlite_schema table to
+ ** reflect this.
+ **
+ ** The "#NNN" in the SQL is a special constant that means whatever value
+ ** is in register NNN. See grammar rules associated with the TK_REGISTER
+ ** token for additional information.
+ */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE
+ " SET rootpage=%d WHERE #%d AND rootpage=#%d",
+ pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
+#endif
+ sqlite3ReleaseTempReg(pParse, r1);
+}
+
+/*
+** Write VDBE code to erase table pTab and all associated indices on disk.
+** Code to update the sqlite_schema tables and internal schema definitions
+** in case a root-page belonging to another table is moved by the btree layer
+** is also added (this can happen with an auto-vacuum database).
+*/
+static void destroyTable(Parse *pParse, Table *pTab){
+ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
+ ** is not defined), then it is important to call OP_Destroy on the
+ ** table and index root-pages in order, starting with the numerically
+ ** largest root-page number. This guarantees that none of the root-pages
+ ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
+ ** following were coded:
+ **
+ ** OP_Destroy 4 0
+ ** ...
+ ** OP_Destroy 5 0
+ **
+ ** and root page 5 happened to be the largest root-page number in the
+ ** database, then root page 5 would be moved to page 4 by the
+ ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
+ ** a free-list page.
+ */
+ Pgno iTab = pTab->tnum;
+ Pgno iDestroyed = 0;
+
+ while( 1 ){
+ Index *pIdx;
+ Pgno iLargest = 0;
+
+ if( iDestroyed==0 || iTab<iDestroyed ){
+ iLargest = iTab;
+ }
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ Pgno iIdx = pIdx->tnum;
+ assert( pIdx->pSchema==pTab->pSchema );
+ if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
+ iLargest = iIdx;
+ }
+ }
+ if( iLargest==0 ){
+ return;
+ }else{
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ assert( iDb>=0 && iDb<pParse->db->nDb );
+ destroyRootPage(pParse, iLargest, iDb);
+ iDestroyed = iLargest;
+ }
+ }
+}
+
+/*
+** Remove entries from the sqlite_statN tables (for N in (1,2,3))
+** after a DROP INDEX or DROP TABLE command.
+*/
+static void sqlite3ClearStatTables(
+ Parse *pParse, /* The parsing context */
+ int iDb, /* The database number */
+ const char *zType, /* "idx" or "tbl" */
+ const char *zName /* Name of index or table */
+){
+ int i;
+ const char *zDbName = pParse->db->aDb[iDb].zDbSName;
+ for(i=1; i<=4; i++){
+ char zTab[24];
+ sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
+ if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE %s=%Q",
+ zDbName, zTab, zType, zName
+ );
+ }
+ }
+}
+
+/*
+** Generate code to drop a table.
+*/
+SQLITE_PRIVATE void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ Trigger *pTrigger;
+ Db *pDb = &db->aDb[iDb];
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp0(v, OP_VBegin);
+ }
+#endif
+
+ /* Drop all triggers associated with the table being dropped. Code
+ ** is generated to remove entries from sqlite_schema and/or
+ ** sqlite_temp_schema if required.
+ */
+ pTrigger = sqlite3TriggerList(pParse, pTab);
+ while( pTrigger ){
+ assert( pTrigger->pSchema==pTab->pSchema ||
+ pTrigger->pSchema==db->aDb[1].pSchema );
+ sqlite3DropTriggerPtr(pParse, pTrigger);
+ pTrigger = pTrigger->pNext;
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* Remove any entries of the sqlite_sequence table associated with
+ ** the table being dropped. This is done before the table is dropped
+ ** at the btree level, in case the sqlite_sequence table needs to
+ ** move as a result of the drop (can happen in auto-vacuum mode).
+ */
+ if( pTab->tabFlags & TF_Autoincrement ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
+ pDb->zDbSName, pTab->zName
+ );
+ }
+#endif
+
+ /* Drop all entries in the schema table that refer to the
+ ** table. The program name loops through the schema table and deletes
+ ** every row that refers to a table of the same name as the one being
+ ** dropped. Triggers are handled separately because a trigger can be
+ ** created in the temp database that refers to a table in another
+ ** database.
+ */
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
+ " WHERE tbl_name=%Q and type!='trigger'",
+ pDb->zDbSName, pTab->zName);
+ if( !isView && !IsVirtual(pTab) ){
+ destroyTable(pParse, pTab);
+ }
+
+ /* Remove the table entry from SQLite's internal schema and modify
+ ** the schema cookie.
+ */
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
+ sqlite3MayAbort(pParse);
+ }
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqliteViewResetAll(db, iDb);
+}
+
+/*
+** Return TRUE if shadow tables should be read-only in the current
+** context.
+*/
+SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (db->flags & SQLITE_Defensive)!=0
+ && db->pVtabCtx==0
+ && db->nVdbeExec==0
+ && !sqlite3VtabInSync(db)
+ ){
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+/*
+** Return true if it is not allowed to drop the given table
+*/
+static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
+ if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
+ if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
+ return 1;
+ }
+ if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
+ return 1;
+ }
+ if( pTab->tabFlags & TF_Eponymous ){
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** This routine is called to do the work of a DROP TABLE statement.
+** pName is the name of the table to be dropped.
+*/
+SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
+ Table *pTab;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( db->mallocFailed ){
+ goto exit_drop_table;
+ }
+ assert( pParse->nErr==0 );
+ assert( pName->nSrc==1 );
+ if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
+ if( noErr ) db->suppressErr++;
+ assert( isView==0 || isView==LOCATE_VIEW );
+ pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
+ if( noErr ) db->suppressErr--;
+
+ if( pTab==0 ){
+ if( noErr ){
+ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ goto exit_drop_table;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+
+ /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
+ ** it is initialized.
+ */
+ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_drop_table;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ const char *zDb = db->aDb[iDb].zDbSName;
+ const char *zArg2 = 0;
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
+ goto exit_drop_table;
+ }
+ if( isView ){
+ if( !OMIT_TEMPDB && iDb==1 ){
+ code = SQLITE_DROP_TEMP_VIEW;
+ }else{
+ code = SQLITE_DROP_VIEW;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( IsVirtual(pTab) ){
+ code = SQLITE_DROP_VTABLE;
+ zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
+#endif
+ }else{
+ if( !OMIT_TEMPDB && iDb==1 ){
+ code = SQLITE_DROP_TEMP_TABLE;
+ }else{
+ code = SQLITE_DROP_TABLE;
+ }
+ }
+ if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
+ goto exit_drop_table;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
+ goto exit_drop_table;
+ }
+ }
+#endif
+ if( tableMayNotBeDropped(db, pTab) ){
+ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
+ goto exit_drop_table;
+ }
+
+#ifndef SQLITE_OMIT_VIEW
+ /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
+ ** on a table.
+ */
+ if( isView && !IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
+ goto exit_drop_table;
+ }
+ if( !isView && IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
+ goto exit_drop_table;
+ }
+#endif
+
+ /* Generate code to remove the table from the schema table
+ ** on disk.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+ if( !isView ){
+ sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
+ sqlite3FkDropTable(pParse, pName, pTab);
+ }
+ sqlite3CodeDropTable(pParse, pTab, iDb, isView);
+ }
+
+exit_drop_table:
+ sqlite3SrcListDelete(db, pName);
+}
+
+/*
+** This routine is called to create a new foreign key on the table
+** currently under construction. pFromCol determines which columns
+** in the current table point to the foreign key. If pFromCol==0 then
+** connect the key to the last column inserted. pTo is the name of
+** the table referred to (a.k.a the "parent" table). pToCol is a list
+** of tables in the parent pTo table. flags contains all
+** information about the conflict resolution algorithms specified
+** in the ON DELETE, ON UPDATE and ON INSERT clauses.
+**
+** An FKey structure is created and added to the table currently
+** under construction in the pParse->pNewTable field.
+**
+** The foreign key is set for IMMEDIATE processing. A subsequent call
+** to sqlite3DeferForeignKey() might change this to DEFERRED.
+*/
+SQLITE_PRIVATE void sqlite3CreateForeignKey(
+ Parse *pParse, /* Parsing context */
+ ExprList *pFromCol, /* Columns in this table that point to other table */
+ Token *pTo, /* Name of the other table */
+ ExprList *pToCol, /* Columns in the other table */
+ int flags /* Conflict resolution algorithms. */
+){
+ sqlite3 *db = pParse->db;
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ FKey *pFKey = 0;
+ FKey *pNextTo;
+ Table *p = pParse->pNewTable;
+ i64 nByte;
+ int i;
+ int nCol;
+ char *z;
+
+ assert( pTo!=0 );
+ if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
+ if( pFromCol==0 ){
+ int iCol = p->nCol-1;
+ if( NEVER(iCol<0) ) goto fk_end;
+ if( pToCol && pToCol->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "foreign key on %s"
+ " should reference only one column of table %T",
+ p->aCol[iCol].zCnName, pTo);
+ goto fk_end;
+ }
+ nCol = 1;
+ }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
+ sqlite3ErrorMsg(pParse,
+ "number of columns in foreign key does not match the number of "
+ "columns in the referenced table");
+ goto fk_end;
+ }else{
+ nCol = pFromCol->nExpr;
+ }
+ nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
+ if( pToCol ){
+ for(i=0; i<pToCol->nExpr; i++){
+ nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
+ }
+ }
+ pFKey = sqlite3DbMallocZero(db, nByte );
+ if( pFKey==0 ){
+ goto fk_end;
+ }
+ pFKey->pFrom = p;
+ assert( IsOrdinaryTable(p) );
+ pFKey->pNextFrom = p->u.tab.pFKey;
+ z = (char*)&pFKey->aCol[nCol];
+ pFKey->zTo = z;
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, (void*)z, pTo);
+ }
+ memcpy(z, pTo->z, pTo->n);
+ z[pTo->n] = 0;
+ sqlite3Dequote(z);
+ z += pTo->n+1;
+ pFKey->nCol = nCol;
+ if( pFromCol==0 ){
+ pFKey->aCol[0].iFrom = p->nCol-1;
+ }else{
+ for(i=0; i<nCol; i++){
+ int j;
+ for(j=0; j<p->nCol; j++){
+ if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
+ pFKey->aCol[i].iFrom = j;
+ break;
+ }
+ }
+ if( j>=p->nCol ){
+ sqlite3ErrorMsg(pParse,
+ "unknown column \"%s\" in foreign key definition",
+ pFromCol->a[i].zEName);
+ goto fk_end;
+ }
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
+ }
+ }
+ }
+ if( pToCol ){
+ for(i=0; i<nCol; i++){
+ int n = sqlite3Strlen30(pToCol->a[i].zEName);
+ pFKey->aCol[i].zCol = z;
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
+ }
+ memcpy(z, pToCol->a[i].zEName, n);
+ z[n] = 0;
+ z += n+1;
+ }
+ }
+ pFKey->isDeferred = 0;
+ pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
+ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
+
+ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
+ pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
+ pFKey->zTo, (void *)pFKey
+ );
+ if( pNextTo==pFKey ){
+ sqlite3OomFault(db);
+ goto fk_end;
+ }
+ if( pNextTo ){
+ assert( pNextTo->pPrevTo==0 );
+ pFKey->pNextTo = pNextTo;
+ pNextTo->pPrevTo = pFKey;
+ }
+
+ /* Link the foreign key to the table as the last step.
+ */
+ assert( IsOrdinaryTable(p) );
+ p->u.tab.pFKey = pFKey;
+ pFKey = 0;
+
+fk_end:
+ sqlite3DbFree(db, pFKey);
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+ sqlite3ExprListDelete(db, pFromCol);
+ sqlite3ExprListDelete(db, pToCol);
+}
+
+/*
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
+** clause is seen as part of a foreign key definition. The isDeferred
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
+** The behavior of the most recently created foreign key is adjusted
+** accordingly.
+*/
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ Table *pTab;
+ FKey *pFKey;
+ if( (pTab = pParse->pNewTable)==0 ) return;
+ if( NEVER(!IsOrdinaryTable(pTab)) ) return;
+ if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
+ assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
+ pFKey->isDeferred = (u8)isDeferred;
+#endif
+}
+
+/*
+** Generate code that will erase and refill index *pIdx. This is
+** used to initialize a newly created index or to recompute the
+** content of an index in response to a REINDEX command.
+**
+** if memRootPage is not negative, it means that the index is newly
+** created. The register specified by memRootPage contains the
+** root page number of the index. If memRootPage is negative, then
+** the index already exists and must be cleared before being refilled and
+** the root page number of the index is taken from pIndex->tnum.
+*/
+static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
+ Table *pTab = pIndex->pTable; /* The table that is indexed */
+ int iTab = pParse->nTab++; /* Btree cursor used for pTab */
+ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
+ int iSorter; /* Cursor opened by OpenSorter (if in use) */
+ int addr1; /* Address of top of loop */
+ int addr2; /* Address to jump to for next iteration */
+ Pgno tnum; /* Root page of index */
+ int iPartIdxLabel; /* Jump to this label to skip a row */
+ Vdbe *v; /* Generate code into this virtual machine */
+ KeyInfo *pKey; /* KeyInfo for index */
+ int regRecord; /* Register holding assembled index record */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
+ db->aDb[iDb].zDbSName ) ){
+ return;
+ }
+#endif
+
+ /* Require a write-lock on the table to perform this operation */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+ if( memRootPage>=0 ){
+ tnum = (Pgno)memRootPage;
+ }else{
+ tnum = pIndex->tnum;
+ }
+ pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
+ assert( pKey!=0 || pParse->nErr );
+
+ /* Open the sorter cursor if we are to use one. */
+ iSorter = pParse->nTab++;
+ sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
+ sqlite3KeyInfoRef(pKey), P4_KEYINFO);
+
+ /* Open the table. Loop through all rows of the table, inserting index
+ ** records into the sorter. */
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3MultiWrite(pParse);
+
+ sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
+ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
+ (char *)pKey, P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
+
+ addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
+ if( IsUniqueIndex(pIndex) ){
+ int j2 = sqlite3VdbeGoto(v, 1);
+ addr2 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeVerifyAbortable(v, OE_Abort);
+ sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
+ pIndex->nKeyCol); VdbeCoverage(v);
+ sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
+ sqlite3VdbeJumpHere(v, j2);
+ }else{
+ /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
+ ** abort. The exception is if one of the indexed expressions contains a
+ ** user function that throws an exception when it is evaluated. But the
+ ** overhead of adding a statement journal to a CREATE INDEX statement is
+ ** very small (since most of the pages written do not contain content that
+ ** needs to be restored if the statement aborts), so we call
+ ** sqlite3MayAbort() for all CREATE INDEX statements. */
+ sqlite3MayAbort(pParse);
+ addr2 = sqlite3VdbeCurrentAddr(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
+ if( !pIndex->bAscKeyBug ){
+ /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
+ ** faster by avoiding unnecessary seeks. But the optimization does
+ ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
+ ** with DESC primary keys, since those indexes have there keys in
+ ** a different order from the main table.
+ ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
+ */
+ sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+
+ sqlite3VdbeAddOp1(v, OP_Close, iTab);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdx);
+ sqlite3VdbeAddOp1(v, OP_Close, iSorter);
+}
+
+/*
+** Allocate heap space to hold an Index object with nCol columns.
+**
+** Increase the allocation size to provide an extra nExtra bytes
+** of 8-byte aligned space after the Index object and return a
+** pointer to this extra space in *ppExtra.
+*/
+SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(
+ sqlite3 *db, /* Database connection */
+ i16 nCol, /* Total number of columns in the index */
+ int nExtra, /* Number of bytes of extra space to alloc */
+ char **ppExtra /* Pointer to the "extra" space */
+){
+ Index *p; /* Allocated index object */
+ int nByte; /* Bytes of space for Index object + arrays */
+
+ nByte = ROUND8(sizeof(Index)) + /* Index structure */
+ ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
+ ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
+ sizeof(i16)*nCol + /* Index.aiColumn */
+ sizeof(u8)*nCol); /* Index.aSortOrder */
+ p = sqlite3DbMallocZero(db, nByte + nExtra);
+ if( p ){
+ char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
+ p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
+ p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
+ p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
+ p->aSortOrder = (u8*)pExtra;
+ p->nColumn = nCol;
+ p->nKeyCol = nCol - 1;
+ *ppExtra = ((char*)p) + nByte;
+ }
+ return p;
+}
+
+/*
+** If expression list pList contains an expression that was parsed with
+** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
+** pParse and return non-zero. Otherwise, return zero.
+*/
+SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
+ if( pList ){
+ int i;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].fg.bNulls ){
+ u8 sf = pList->a[i].fg.sortFlags;
+ sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
+ (sf==0 || sf==3) ? "FIRST" : "LAST"
+ );
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Create a new index for an SQL table. pName1.pName2 is the name of the index
+** and pTblList is the name of the table that is to be indexed. Both will
+** be NULL for a primary key or an index that is created to satisfy a
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
+** as the table to be indexed. pParse->pNewTable is a table that is
+** currently being constructed by a CREATE TABLE statement.
+**
+** pList is a list of columns to be indexed. pList will be NULL if this
+** is a primary key or unique-constraint on the most recent column added
+** to the table currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3CreateIndex(
+ Parse *pParse, /* All information about this parse */
+ Token *pName1, /* First part of index name. May be NULL */
+ Token *pName2, /* Second part of index name. May be NULL */
+ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
+ ExprList *pList, /* A list of columns to be indexed */
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ Token *pStart, /* The CREATE token that begins this statement */
+ Expr *pPIWhere, /* WHERE clause for partial indices */
+ int sortOrder, /* Sort order of primary key when pList==NULL */
+ int ifNotExist, /* Omit error if index already exists */
+ u8 idxType /* The index type */
+){
+ Table *pTab = 0; /* Table to be indexed */
+ Index *pIndex = 0; /* The index to be created */
+ char *zName = 0; /* Name of the index */
+ int nName; /* Number of characters in zName */
+ int i, j;
+ DbFixer sFix; /* For assigning database names to pTable */
+ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
+ sqlite3 *db = pParse->db;
+ Db *pDb; /* The specific table containing the indexed database */
+ int iDb; /* Index of the database that is being written */
+ Token *pName = 0; /* Unqualified name of the index to create */
+ struct ExprList_item *pListItem; /* For looping over pList */
+ int nExtra = 0; /* Space allocated for zExtra[] */
+ int nExtraCol; /* Number of extra columns needed */
+ char *zExtra = 0; /* Extra space after the Index object */
+ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
+
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto exit_create_index;
+ }
+ assert( db->mallocFailed==0 );
+ if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
+ goto exit_create_index;
+ }
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto exit_create_index;
+ }
+ if( sqlite3HasExplicitNulls(pParse, pList) ){
+ goto exit_create_index;
+ }
+
+ /*
+ ** Find the table that is to be indexed. Return early if not found.
+ */
+ if( pTblName!=0 ){
+
+ /* Use the two-part index name to determine the database
+ ** to search for the table. 'Fix' the table name to this db
+ ** before looking up the table.
+ */
+ assert( pName1 && pName2 );
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ) goto exit_create_index;
+ assert( pName && pName->z );
+
+#ifndef SQLITE_OMIT_TEMPDB
+ /* If the index name was unqualified, check if the table
+ ** is a temp table. If so, set the database to 1. Do not do this
+ ** if initialising a database schema.
+ */
+ if( !db->init.busy ){
+ pTab = sqlite3SrcListLookup(pParse, pTblName);
+ if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
+ }
+#endif
+
+ sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
+ if( sqlite3FixSrcList(&sFix, pTblName) ){
+ /* Because the parser constructs pTblName from a single identifier,
+ ** sqlite3FixSrcList can never fail. */
+ assert(0);
+ }
+ pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
+ assert( db->mallocFailed==0 || pTab==0 );
+ if( pTab==0 ) goto exit_create_index;
+ if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
+ sqlite3ErrorMsg(pParse,
+ "cannot create a TEMP index on non-TEMP table \"%s\"",
+ pTab->zName);
+ goto exit_create_index;
+ }
+ if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
+ }else{
+ assert( pName==0 );
+ assert( pStart==0 );
+ pTab = pParse->pNewTable;
+ if( !pTab ) goto exit_create_index;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ }
+ pDb = &db->aDb[iDb];
+
+ assert( pTab!=0 );
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
+ && db->init.busy==0
+ && pTblName!=0
+#if SQLITE_USER_AUTHENTICATION
+ && sqlite3UserAuthTable(pTab->zName)==0
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
+ goto exit_create_index;
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "views may not be indexed");
+ goto exit_create_index;
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
+ goto exit_create_index;
+ }
+#endif
+
+ /*
+ ** Find the name of the index. Make sure there is not already another
+ ** index or table with the same name.
+ **
+ ** Exception: If we are reading the names of permanent indices from the
+ ** sqlite_schema table (because some other process changed the schema) and
+ ** one of the index names collides with the name of a temporary table or
+ ** index, then we will continue to process this index.
+ **
+ ** If pName==0 it means that we are
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our
+ ** own name.
+ */
+ if( pName ){
+ zName = sqlite3NameFromToken(db, pName);
+ if( zName==0 ) goto exit_create_index;
+ assert( pName->z!=0 );
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
+ goto exit_create_index;
+ }
+ if( !IN_RENAME_OBJECT ){
+ if( !db->init.busy ){
+ if( sqlite3FindTable(db, zName, 0)!=0 ){
+ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
+ goto exit_create_index;
+ }
+ }
+ if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
+ if( !ifNotExist ){
+ sqlite3ErrorMsg(pParse, "index %s already exists", zName);
+ }else{
+ assert( !db->init.busy );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ goto exit_create_index;
+ }
+ }
+ }else{
+ int n;
+ Index *pLoop;
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
+ zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
+ if( zName==0 ){
+ goto exit_create_index;
+ }
+
+ /* Automatic index names generated from within sqlite3_declare_vtab()
+ ** must have names that are distinct from normal automatic index names.
+ ** The following statement converts "sqlite3_autoindex..." into
+ ** "sqlite3_butoindex..." in order to make the names distinct.
+ ** The "vtab_err.test" test demonstrates the need of this statement. */
+ if( IN_SPECIAL_PARSE ) zName[7]++;
+ }
+
+ /* Check for authorization to create an index.
+ */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( !IN_RENAME_OBJECT ){
+ const char *zDb = pDb->zDbSName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
+ goto exit_create_index;
+ }
+ i = SQLITE_CREATE_INDEX;
+ if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
+ if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
+ goto exit_create_index;
+ }
+ }
+#endif
+
+ /* If pList==0, it means this routine was called to make a primary
+ ** key out of the last column added to the table under construction.
+ ** So create a fake list to simulate this.
+ */
+ if( pList==0 ){
+ Token prevCol;
+ Column *pCol = &pTab->aCol[pTab->nCol-1];
+ pCol->colFlags |= COLFLAG_UNIQUE;
+ sqlite3TokenInit(&prevCol, pCol->zCnName);
+ pList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
+ if( pList==0 ) goto exit_create_index;
+ assert( pList->nExpr==1 );
+ sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
+ }else{
+ sqlite3ExprListCheckLength(pParse, pList, "index");
+ if( pParse->nErr ) goto exit_create_index;
+ }
+
+ /* Figure out how many bytes of space are required to store explicitly
+ ** specified collation sequence names.
+ */
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ assert( pExpr!=0 );
+ if( pExpr->op==TK_COLLATE ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
+ }
+ }
+
+ /*
+ ** Allocate the index structure.
+ */
+ nName = sqlite3Strlen30(zName);
+ nExtraCol = pPk ? pPk->nKeyCol : 1;
+ assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
+ pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
+ nName + nExtra + 1, &zExtra);
+ if( db->mallocFailed ){
+ goto exit_create_index;
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
+ assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
+ pIndex->zName = zExtra;
+ zExtra += nName + 1;
+ memcpy(pIndex->zName, zName, nName+1);
+ pIndex->pTable = pTab;
+ pIndex->onError = (u8)onError;
+ pIndex->uniqNotNull = onError!=OE_None;
+ pIndex->idxType = idxType;
+ pIndex->pSchema = db->aDb[iDb].pSchema;
+ pIndex->nKeyCol = pList->nExpr;
+ if( pPIWhere ){
+ sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
+ pIndex->pPartIdxWhere = pPIWhere;
+ pPIWhere = 0;
+ }
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+
+ /* Check to see if we should honor DESC requests on index columns
+ */
+ if( pDb->pSchema->file_format>=4 ){
+ sortOrderMask = -1; /* Honor DESC */
+ }else{
+ sortOrderMask = 0; /* Ignore DESC */
+ }
+
+ /* Analyze the list of expressions that form the terms of the index and
+ ** report any errors. In the common case where the expression is exactly
+ ** a table column, store that column in aiColumn[]. For general expressions,
+ ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
+ **
+ ** TODO: Issue a warning if two or more columns of the index are identical.
+ ** TODO: Issue a warning if the table primary key is used as part of the
+ ** index key.
+ */
+ pListItem = pList->a;
+ if( IN_RENAME_OBJECT ){
+ pIndex->aColExpr = pList;
+ pList = 0;
+ }
+ for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
+ Expr *pCExpr; /* The i-th index expression */
+ int requestedSortOrder; /* ASC or DESC on the i-th expression */
+ const char *zColl; /* Collation sequence name */
+
+ sqlite3StringToId(pListItem->pExpr);
+ sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
+ if( pParse->nErr ) goto exit_create_index;
+ pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
+ if( pCExpr->op!=TK_COLUMN ){
+ if( pTab==pParse->pNewTable ){
+ sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
+ "UNIQUE constraints");
+ goto exit_create_index;
+ }
+ if( pIndex->aColExpr==0 ){
+ pIndex->aColExpr = pList;
+ pList = 0;
+ }
+ j = XN_EXPR;
+ pIndex->aiColumn[i] = XN_EXPR;
+ pIndex->uniqNotNull = 0;
+ }else{
+ j = pCExpr->iColumn;
+ assert( j<=0x7fff );
+ if( j<0 ){
+ j = pTab->iPKey;
+ }else{
+ if( pTab->aCol[j].notNull==0 ){
+ pIndex->uniqNotNull = 0;
+ }
+ if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
+ pIndex->bHasVCol = 1;
+ }
+ }
+ pIndex->aiColumn[i] = (i16)j;
+ }
+ zColl = 0;
+ if( pListItem->pExpr->op==TK_COLLATE ){
+ int nColl;
+ assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
+ zColl = pListItem->pExpr->u.zToken;
+ nColl = sqlite3Strlen30(zColl) + 1;
+ assert( nExtra>=nColl );
+ memcpy(zExtra, zColl, nColl);
+ zColl = zExtra;
+ zExtra += nColl;
+ nExtra -= nColl;
+ }else if( j>=0 ){
+ zColl = sqlite3ColumnColl(&pTab->aCol[j]);
+ }
+ if( !zColl ) zColl = sqlite3StrBINARY;
+ if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
+ goto exit_create_index;
+ }
+ pIndex->azColl[i] = zColl;
+ requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
+ pIndex->aSortOrder[i] = (u8)requestedSortOrder;
+ }
+
+ /* Append the table key to the end of the index. For WITHOUT ROWID
+ ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
+ ** normal tables (when pPk==0) this will be the rowid.
+ */
+ if( pPk ){
+ for(j=0; j<pPk->nKeyCol; j++){
+ int x = pPk->aiColumn[j];
+ assert( x>=0 );
+ if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
+ pIndex->nColumn--;
+ }else{
+ testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
+ pIndex->aiColumn[i] = x;
+ pIndex->azColl[i] = pPk->azColl[j];
+ pIndex->aSortOrder[i] = pPk->aSortOrder[j];
+ i++;
+ }
+ }
+ assert( i==pIndex->nColumn );
+ }else{
+ pIndex->aiColumn[i] = XN_ROWID;
+ pIndex->azColl[i] = sqlite3StrBINARY;
+ }
+ sqlite3DefaultRowEst(pIndex);
+ if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
+
+ /* If this index contains every column of its table, then mark
+ ** it as a covering index */
+ assert( HasRowid(pTab)
+ || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
+ recomputeColumnsNotIndexed(pIndex);
+ if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
+ pIndex->isCovering = 1;
+ for(j=0; j<pTab->nCol; j++){
+ if( j==pTab->iPKey ) continue;
+ if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
+ pIndex->isCovering = 0;
+ break;
+ }
+ }
+
+ if( pTab==pParse->pNewTable ){
+ /* This routine has been called to create an automatic index as a
+ ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
+ ** a PRIMARY KEY or UNIQUE clause following the column definitions.
+ ** i.e. one of:
+ **
+ ** CREATE TABLE t(x PRIMARY KEY, y);
+ ** CREATE TABLE t(x, y, UNIQUE(x, y));
+ **
+ ** Either way, check to see if the table already has such an index. If
+ ** so, don't bother creating this one. This only applies to
+ ** automatically created indices. Users can do as they wish with
+ ** explicit indices.
+ **
+ ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
+ ** (and thus suppressing the second one) even if they have different
+ ** sort orders.
+ **
+ ** If there are different collating sequences or if the columns of
+ ** the constraint occur in different orders, then the constraints are
+ ** considered distinct and both result in separate indices.
+ */
+ Index *pIdx;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int k;
+ assert( IsUniqueIndex(pIdx) );
+ assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
+ assert( IsUniqueIndex(pIndex) );
+
+ if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
+ for(k=0; k<pIdx->nKeyCol; k++){
+ const char *z1;
+ const char *z2;
+ assert( pIdx->aiColumn[k]>=0 );
+ if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
+ z1 = pIdx->azColl[k];
+ z2 = pIndex->azColl[k];
+ if( sqlite3StrICmp(z1, z2) ) break;
+ }
+ if( k==pIdx->nKeyCol ){
+ if( pIdx->onError!=pIndex->onError ){
+ /* This constraint creates the same index as a previous
+ ** constraint specified somewhere in the CREATE TABLE statement.
+ ** However the ON CONFLICT clauses are different. If both this
+ ** constraint and the previous equivalent constraint have explicit
+ ** ON CONFLICT clauses this is an error. Otherwise, use the
+ ** explicitly specified behavior for the index.
+ */
+ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
+ sqlite3ErrorMsg(pParse,
+ "conflicting ON CONFLICT clauses specified", 0);
+ }
+ if( pIdx->onError==OE_Default ){
+ pIdx->onError = pIndex->onError;
+ }
+ }
+ if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
+ if( IN_RENAME_OBJECT ){
+ pIndex->pNext = pParse->pNewIndex;
+ pParse->pNewIndex = pIndex;
+ pIndex = 0;
+ }
+ goto exit_create_index;
+ }
+ }
+ }
+
+ if( !IN_RENAME_OBJECT ){
+
+ /* Link the new Index structure to its table and to the other
+ ** in-memory database structures.
+ */
+ assert( pParse->nErr==0 );
+ if( db->init.busy ){
+ Index *p;
+ assert( !IN_SPECIAL_PARSE );
+ assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
+ if( pTblName!=0 ){
+ pIndex->tnum = db->init.newTnum;
+ if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
+ sqlite3ErrorMsg(pParse, "invalid rootpage");
+ pParse->rc = SQLITE_CORRUPT_BKPT;
+ goto exit_create_index;
+ }
+ }
+ p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
+ pIndex->zName, pIndex);
+ if( p ){
+ assert( p==pIndex ); /* Malloc must have failed */
+ sqlite3OomFault(db);
+ goto exit_create_index;
+ }
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+
+ /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
+ ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
+ ** emit code to allocate the index rootpage on disk and make an entry for
+ ** the index in the sqlite_schema table and populate the index with
+ ** content. But, do not do this if we are simply reading the sqlite_schema
+ ** table to parse the schema, or if this index is the PRIMARY KEY index
+ ** of a WITHOUT ROWID table.
+ **
+ ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
+ ** or UNIQUE index in a CREATE TABLE statement. Since the table
+ ** has just been created, it contains no data and the index initialization
+ ** step can be skipped.
+ */
+ else if( HasRowid(pTab) || pTblName!=0 ){
+ Vdbe *v;
+ char *zStmt;
+ int iMem = ++pParse->nMem;
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto exit_create_index;
+
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+ /* Create the rootpage for the index using CreateIndex. But before
+ ** doing so, code a Noop instruction and store its address in
+ ** Index.tnum. This is required in case this index is actually a
+ ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
+ ** that case the convertToWithoutRowidTable() routine will replace
+ ** the Noop with a Goto to jump over the VDBE code generated below. */
+ pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
+ sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
+
+ /* Gather the complete text of the CREATE INDEX statement into
+ ** the zStmt variable
+ */
+ assert( pName!=0 || pStart==0 );
+ if( pStart ){
+ int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
+ if( pName->z[n-1]==';' ) n--;
+ /* A named index with an explicit CREATE INDEX statement */
+ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
+ onError==OE_None ? "" : " UNIQUE", n, pName->z);
+ }else{
+ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
+ /* zStmt = sqlite3MPrintf(""); */
+ zStmt = 0;
+ }
+
+ /* Add an entry in sqlite_schema for this index
+ */
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
+ db->aDb[iDb].zDbSName,
+ pIndex->zName,
+ pTab->zName,
+ iMem,
+ zStmt
+ );
+ sqlite3DbFree(db, zStmt);
+
+ /* Fill the index with data and reparse the schema. Code an OP_Expire
+ ** to invalidate all pre-compiled statements.
+ */
+ if( pTblName ){
+ sqlite3RefillIndex(pParse, pIndex, iMem);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddParseSchemaOp(v, iDb,
+ sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
+ sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
+ }
+
+ sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
+ }
+ }
+ if( db->init.busy || pTblName==0 ){
+ pIndex->pNext = pTab->pIndex;
+ pTab->pIndex = pIndex;
+ pIndex = 0;
+ }
+ else if( IN_RENAME_OBJECT ){
+ assert( pParse->pNewIndex==0 );
+ pParse->pNewIndex = pIndex;
+ pIndex = 0;
+ }
+
+ /* Clean up before exiting */
+exit_create_index:
+ if( pIndex ) sqlite3FreeIndex(db, pIndex);
+ if( pTab ){
+ /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
+ ** The list was already ordered when this routine was entered, so at this
+ ** point at most a single index (the newly added index) will be out of
+ ** order. So we have to reorder at most one index. */
+ Index **ppFrom;
+ Index *pThis;
+ for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
+ Index *pNext;
+ if( pThis->onError!=OE_Replace ) continue;
+ while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
+ *ppFrom = pNext;
+ pThis->pNext = pNext->pNext;
+ pNext->pNext = pThis;
+ ppFrom = &pNext->pNext;
+ }
+ break;
+ }
+#ifdef SQLITE_DEBUG
+ /* Verify that all REPLACE indexes really are now at the end
+ ** of the index list. In other words, no other index type ever
+ ** comes after a REPLACE index on the list. */
+ for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
+ assert( pThis->onError!=OE_Replace
+ || pThis->pNext==0
+ || pThis->pNext->onError==OE_Replace );
+ }
+#endif
+ }
+ sqlite3ExprDelete(db, pPIWhere);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SrcListDelete(db, pTblName);
+ sqlite3DbFree(db, zName);
+}
+
+/*
+** Fill the Index.aiRowEst[] array with default information - information
+** to be used when we have not run the ANALYZE command.
+**
+** aiRowEst[0] is supposed to contain the number of elements in the index.
+** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
+** number of rows in the table that match any particular value of the
+** first column of the index. aiRowEst[2] is an estimate of the number
+** of rows that match any particular combination of the first 2 columns
+** of the index. And so forth. It must always be the case that
+*
+** aiRowEst[N]<=aiRowEst[N-1]
+** aiRowEst[N]>=1
+**
+** Apart from that, we have little to go on besides intuition as to
+** how aiRowEst[] should be initialized. The numbers generated here
+** are based on typical values found in actual indices.
+*/
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
+ /* 10, 9, 8, 7, 6 */
+ static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
+ LogEst *a = pIdx->aiRowLogEst;
+ LogEst x;
+ int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
+ int i;
+
+ /* Indexes with default row estimates should not have stat1 data */
+ assert( !pIdx->hasStat1 );
+
+ /* Set the first entry (number of rows in the index) to the estimated
+ ** number of rows in the table, or half the number of rows in the table
+ ** for a partial index.
+ **
+ ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
+ ** table but other parts we are having to guess at, then do not let the
+ ** estimated number of rows in the table be less than 1000 (LogEst 99).
+ ** Failure to do this can cause the indexes for which we do not have
+ ** stat1 data to be ignored by the query planner.
+ */
+ x = pIdx->pTable->nRowLogEst;
+ assert( 99==sqlite3LogEst(1000) );
+ if( x<99 ){
+ pIdx->pTable->nRowLogEst = x = 99;
+ }
+ if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); }
+ a[0] = x;
+
+ /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
+ ** 6 and each subsequent value (if any) is 5. */
+ memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
+ for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
+ a[i] = 23; assert( 23==sqlite3LogEst(5) );
+ }
+
+ assert( 0==sqlite3LogEst(1) );
+ if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
+}
+
+/*
+** This routine will drop an existing named index. This routine
+** implements the DROP INDEX statement.
+*/
+SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
+ Index *pIndex;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( db->mallocFailed ){
+ goto exit_drop_index;
+ }
+ assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */
+ assert( pName->nSrc==1 );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto exit_drop_index;
+ }
+ pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
+ if( pIndex==0 ){
+ if( !ifExists ){
+ sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
+ }else{
+ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ pParse->checkSchema = 1;
+ goto exit_drop_index;
+ }
+ if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
+ sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
+ "or PRIMARY KEY constraint cannot be dropped", 0);
+ goto exit_drop_index;
+ }
+ iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_INDEX;
+ Table *pTab = pIndex->pTable;
+ const char *zDb = db->aDb[iDb].zDbSName;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ goto exit_drop_index;
+ }
+ if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
+ if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
+ goto exit_drop_index;
+ }
+ }
+#endif
+
+ /* Generate code to remove the index and from the schema table */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
+ db->aDb[iDb].zDbSName, pIndex->zName
+ );
+ sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
+ sqlite3ChangeCookie(pParse, iDb);
+ destroyRootPage(pParse, pIndex->tnum, iDb);
+ sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
+ }
+
+exit_drop_index:
+ sqlite3SrcListDelete(db, pName);
+}
+
+/*
+** pArray is a pointer to an array of objects. Each object in the
+** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
+** to extend the array so that there is space for a new object at the end.
+**
+** When this function is called, *pnEntry contains the current size of
+** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
+** in total).
+**
+** If the realloc() is successful (i.e. if no OOM condition occurs), the
+** space allocated for the new object is zeroed, *pnEntry updated to
+** reflect the new size of the array and a pointer to the new allocation
+** returned. *pIdx is set to the index of the new array entry in this case.
+**
+** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
+** unchanged and a copy of pArray returned.
+*/
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(
+ sqlite3 *db, /* Connection to notify of malloc failures */
+ void *pArray, /* Array of objects. Might be reallocated */
+ int szEntry, /* Size of each object in the array */
+ int *pnEntry, /* Number of objects currently in use */
+ int *pIdx /* Write the index of a new slot here */
+){
+ char *z;
+ sqlite3_int64 n = *pIdx = *pnEntry;
+ if( (n & (n-1))==0 ){
+ sqlite3_int64 sz = (n==0) ? 1 : 2*n;
+ void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
+ if( pNew==0 ){
+ *pIdx = -1;
+ return pArray;
+ }
+ pArray = pNew;
+ }
+ z = (char*)pArray;
+ memset(&z[n * szEntry], 0, szEntry);
+ ++*pnEntry;
+ return pArray;
+}
+
+/*
+** Append a new element to the given IdList. Create a new IdList if
+** need be.
+**
+** A new IdList is returned, or NULL if malloc() fails.
+*/
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
+ sqlite3 *db = pParse->db;
+ int i;
+ if( pList==0 ){
+ pList = sqlite3DbMallocZero(db, sizeof(IdList) );
+ if( pList==0 ) return 0;
+ }else{
+ IdList *pNew;
+ pNew = sqlite3DbRealloc(db, pList,
+ sizeof(IdList) + pList->nId*sizeof(pList->a));
+ if( pNew==0 ){
+ sqlite3IdListDelete(db, pList);
+ return 0;
+ }
+ pList = pNew;
+ }
+ i = pList->nId++;
+ pList->a[i].zName = sqlite3NameFromToken(db, pToken);
+ if( IN_RENAME_OBJECT && pList->a[i].zName ){
+ sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
+ }
+ return pList;
+}
+
+/*
+** Delete an IdList.
+*/
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
+ int i;
+ if( pList==0 ) return;
+ assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
+ for(i=0; i<pList->nId; i++){
+ sqlite3DbFree(db, pList->a[i].zName);
+ }
+ sqlite3DbFreeNN(db, pList);
+}
+
+/*
+** Return the index in pList of the identifier named zId. Return -1
+** if not found.
+*/
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
+ int i;
+ assert( pList!=0 );
+ for(i=0; i<pList->nId; i++){
+ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Maximum size of a SrcList object.
+** The SrcList object is used to represent the FROM clause of a
+** SELECT statement, and the query planner cannot deal with more
+** than 64 tables in a join. So any value larger than 64 here
+** is sufficient for most uses. Smaller values, like say 10, are
+** appropriate for small and memory-limited applications.
+*/
+#ifndef SQLITE_MAX_SRCLIST
+# define SQLITE_MAX_SRCLIST 200
+#endif
+
+/*
+** Expand the space allocated for the given SrcList object by
+** creating nExtra new slots beginning at iStart. iStart is zero based.
+** New slots are zeroed.
+**
+** For example, suppose a SrcList initially contains two entries: A,B.
+** To append 3 new entries onto the end, do this:
+**
+** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
+**
+** After the call above it would contain: A, B, nil, nil, nil.
+** If the iStart argument had been 1 instead of 2, then the result
+** would have been: A, nil, nil, nil, B. To prepend the new slots,
+** the iStart value would be 0. The result then would
+** be: nil, nil, nil, A, B.
+**
+** If a memory allocation fails or the SrcList becomes too large, leave
+** the original SrcList unchanged, return NULL, and leave an error message
+** in pParse.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(
+ Parse *pParse, /* Parsing context into which errors are reported */
+ SrcList *pSrc, /* The SrcList to be enlarged */
+ int nExtra, /* Number of new slots to add to pSrc->a[] */
+ int iStart /* Index in pSrc->a[] of first new slot */
+){
+ int i;
+
+ /* Sanity checking on calling parameters */
+ assert( iStart>=0 );
+ assert( nExtra>=1 );
+ assert( pSrc!=0 );
+ assert( iStart<=pSrc->nSrc );
+
+ /* Allocate additional space if needed */
+ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
+ SrcList *pNew;
+ sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
+ sqlite3 *db = pParse->db;
+
+ if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
+ sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
+ SQLITE_MAX_SRCLIST);
+ return 0;
+ }
+ if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
+ pNew = sqlite3DbRealloc(db, pSrc,
+ sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
+ if( pNew==0 ){
+ assert( db->mallocFailed );
+ return 0;
+ }
+ pSrc = pNew;
+ pSrc->nAlloc = nAlloc;
+ }
+
+ /* Move existing slots that come after the newly inserted slots
+ ** out of the way */
+ for(i=pSrc->nSrc-1; i>=iStart; i--){
+ pSrc->a[i+nExtra] = pSrc->a[i];
+ }
+ pSrc->nSrc += nExtra;
+
+ /* Zero the newly allocated slots */
+ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
+ for(i=iStart; i<iStart+nExtra; i++){
+ pSrc->a[i].iCursor = -1;
+ }
+
+ /* Return a pointer to the enlarged SrcList */
+ return pSrc;
+}
+
+
+/*
+** Append a new table name to the given SrcList. Create a new SrcList if
+** need be. A new entry is created in the SrcList even if pTable is NULL.
+**
+** A SrcList is returned, or NULL if there is an OOM error or if the
+** SrcList grows to large. The returned
+** SrcList might be the same as the SrcList that was input or it might be
+** a new one. If an OOM error does occurs, then the prior value of pList
+** that is input to this routine is automatically freed.
+**
+** If pDatabase is not null, it means that the table has an optional
+** database name prefix. Like this: "database.table". The pDatabase
+** points to the table name and the pTable points to the database name.
+** The SrcList.a[].zName field is filled with the table name which might
+** come from pTable (if pDatabase is NULL) or from pDatabase.
+** SrcList.a[].zDatabase is filled with the database name from pTable,
+** or with NULL if no database is specified.
+**
+** In other words, if call like this:
+**
+** sqlite3SrcListAppend(D,A,B,0);
+**
+** Then B is a table name and the database name is unspecified. If called
+** like this:
+**
+** sqlite3SrcListAppend(D,A,B,C);
+**
+** Then C is the table name and B is the database name. If C is defined
+** then so is B. In other words, we never have a case where:
+**
+** sqlite3SrcListAppend(D,A,0,C);
+**
+** Both pTable and pDatabase are assumed to be quoted. They are dequoted
+** before being added to the SrcList.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
+ Parse *pParse, /* Parsing context, in which errors are reported */
+ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
+ Token *pTable, /* Table to append */
+ Token *pDatabase /* Database of the table */
+){
+ SrcItem *pItem;
+ sqlite3 *db;
+ assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
+ assert( pParse!=0 );
+ assert( pParse->db!=0 );
+ db = pParse->db;
+ if( pList==0 ){
+ pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
+ if( pList==0 ) return 0;
+ pList->nAlloc = 1;
+ pList->nSrc = 1;
+ memset(&pList->a[0], 0, sizeof(pList->a[0]));
+ pList->a[0].iCursor = -1;
+ }else{
+ SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
+ if( pNew==0 ){
+ sqlite3SrcListDelete(db, pList);
+ return 0;
+ }else{
+ pList = pNew;
+ }
+ }
+ pItem = &pList->a[pList->nSrc-1];
+ if( pDatabase && pDatabase->z==0 ){
+ pDatabase = 0;
+ }
+ if( pDatabase ){
+ pItem->zName = sqlite3NameFromToken(db, pDatabase);
+ pItem->zDatabase = sqlite3NameFromToken(db, pTable);
+ }else{
+ pItem->zName = sqlite3NameFromToken(db, pTable);
+ pItem->zDatabase = 0;
+ }
+ return pList;
+}
+
+/*
+** Assign VdbeCursor index numbers to all tables in a SrcList
+*/
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
+ int i;
+ SrcItem *pItem;
+ assert( pList || pParse->db->mallocFailed );
+ if( ALWAYS(pList) ){
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pItem->iCursor>=0 ) continue;
+ pItem->iCursor = pParse->nTab++;
+ if( pItem->pSelect ){
+ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
+ }
+ }
+ }
+}
+
+/*
+** Delete an entire SrcList including all its substructure.
+*/
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
+ int i;
+ SrcItem *pItem;
+ if( pList==0 ) return;
+ for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
+ if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
+ sqlite3DbFree(db, pItem->zName);
+ if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
+ if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
+ if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
+ sqlite3DeleteTable(db, pItem->pTab);
+ if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
+ if( pItem->fg.isUsing ){
+ sqlite3IdListDelete(db, pItem->u3.pUsing);
+ }else if( pItem->u3.pOn ){
+ sqlite3ExprDelete(db, pItem->u3.pOn);
+ }
+ }
+ sqlite3DbFreeNN(db, pList);
+}
+
+/*
+** This routine is called by the parser to add a new term to the
+** end of a growing FROM clause. The "p" parameter is the part of
+** the FROM clause that has already been constructed. "p" is NULL
+** if this is the first term of the FROM clause. pTable and pDatabase
+** are the name of the table and database named in the FROM clause term.
+** pDatabase is NULL if the database name qualifier is missing - the
+** usual case. If the term has an alias, then pAlias points to the
+** alias token. If the term is a subquery, then pSubquery is the
+** SELECT statement that the subquery encodes. The pTable and
+** pDatabase parameters are NULL for subqueries. The pOn and pUsing
+** parameters are the content of the ON and USING clauses.
+**
+** Return a new SrcList which encodes is the FROM with the new
+** term added.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
+ Parse *pParse, /* Parsing context */
+ SrcList *p, /* The left part of the FROM clause already seen */
+ Token *pTable, /* Name of the table to add to the FROM clause */
+ Token *pDatabase, /* Name of the database containing pTable */
+ Token *pAlias, /* The right-hand side of the AS subexpression */
+ Select *pSubquery, /* A subquery used in place of a table name */
+ OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */
+){
+ SrcItem *pItem;
+ sqlite3 *db = pParse->db;
+ if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
+ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
+ (pOnUsing->pOn ? "ON" : "USING")
+ );
+ goto append_from_error;
+ }
+ p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
+ if( p==0 ){
+ goto append_from_error;
+ }
+ assert( p->nSrc>0 );
+ pItem = &p->a[p->nSrc-1];
+ assert( (pTable==0)==(pDatabase==0) );
+ assert( pItem->zName==0 || pDatabase!=0 );
+ if( IN_RENAME_OBJECT && pItem->zName ){
+ Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
+ sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
+ }
+ assert( pAlias!=0 );
+ if( pAlias->n ){
+ pItem->zAlias = sqlite3NameFromToken(db, pAlias);
+ }
+ if( pSubquery ){
+ pItem->pSelect = pSubquery;
+ if( pSubquery->selFlags & SF_NestedFrom ){
+ pItem->fg.isNestedFrom = 1;
+ }
+ }
+ assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
+ assert( pItem->fg.isUsing==0 );
+ if( pOnUsing==0 ){
+ pItem->u3.pOn = 0;
+ }else if( pOnUsing->pUsing ){
+ pItem->fg.isUsing = 1;
+ pItem->u3.pUsing = pOnUsing->pUsing;
+ }else{
+ pItem->u3.pOn = pOnUsing->pOn;
+ }
+ return p;
+
+append_from_error:
+ assert( p==0 );
+ sqlite3ClearOnOrUsing(db, pOnUsing);
+ sqlite3SelectDelete(db, pSubquery);
+ return 0;
+}
+
+/*
+** Add an INDEXED BY or NOT INDEXED clause to the most recently added
+** element of the source-list passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
+ assert( pIndexedBy!=0 );
+ if( p && pIndexedBy->n>0 ){
+ SrcItem *pItem;
+ assert( p->nSrc>0 );
+ pItem = &p->a[p->nSrc-1];
+ assert( pItem->fg.notIndexed==0 );
+ assert( pItem->fg.isIndexedBy==0 );
+ assert( pItem->fg.isTabFunc==0 );
+ if( pIndexedBy->n==1 && !pIndexedBy->z ){
+ /* A "NOT INDEXED" clause was supplied. See parse.y
+ ** construct "indexed_opt" for details. */
+ pItem->fg.notIndexed = 1;
+ }else{
+ pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
+ pItem->fg.isIndexedBy = 1;
+ assert( pItem->fg.isCte==0 ); /* No collision on union u2 */
+ }
+ }
+}
+
+/*
+** Append the contents of SrcList p2 to SrcList p1 and return the resulting
+** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
+** are deleted by this function.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
+ assert( p1 && p1->nSrc==1 );
+ if( p2 ){
+ SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
+ if( pNew==0 ){
+ sqlite3SrcListDelete(pParse->db, p2);
+ }else{
+ p1 = pNew;
+ memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
+ sqlite3DbFree(pParse->db, p2);
+ p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
+ }
+ }
+ return p1;
+}
+
+/*
+** Add the list of function arguments to the SrcList entry for a
+** table-valued-function.
+*/
+SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
+ if( p ){
+ SrcItem *pItem = &p->a[p->nSrc-1];
+ assert( pItem->fg.notIndexed==0 );
+ assert( pItem->fg.isIndexedBy==0 );
+ assert( pItem->fg.isTabFunc==0 );
+ pItem->u1.pFuncArg = pList;
+ pItem->fg.isTabFunc = 1;
+ }else{
+ sqlite3ExprListDelete(pParse->db, pList);
+ }
+}
+
+/*
+** When building up a FROM clause in the parser, the join operator
+** is initially attached to the left operand. But the code generator
+** expects the join operator to be on the right operand. This routine
+** Shifts all join operators from left to right for an entire FROM
+** clause.
+**
+** Example: Suppose the join is like this:
+**
+** A natural cross join B
+**
+** The operator is "natural cross join". The A and B operands are stored
+** in p->a[0] and p->a[1], respectively. The parser initially stores the
+** operator with A. This routine shifts that operator over to B.
+**
+** Additional changes:
+**
+** * All tables to the left of the right-most RIGHT JOIN are tagged with
+** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
+** code generator can easily tell that the table is part of
+** the left operand of at least one RIGHT JOIN.
+*/
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
+ (void)pParse;
+ if( p && p->nSrc>1 ){
+ int i = p->nSrc-1;
+ u8 allFlags = 0;
+ do{
+ allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
+ }while( (--i)>0 );
+ p->a[0].fg.jointype = 0;
+
+ /* All terms to the left of a RIGHT JOIN should be tagged with the
+ ** JT_LTORJ flags */
+ if( allFlags & JT_RIGHT ){
+ for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
+ i--;
+ assert( i>=0 );
+ do{
+ p->a[i].fg.jointype |= JT_LTORJ;
+ }while( (--i)>=0 );
+ }
+ }
+}
+
+/*
+** Generate VDBE code for a BEGIN statement.
+*/
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
+ sqlite3 *db;
+ Vdbe *v;
+ int i;
+
+ assert( pParse!=0 );
+ db = pParse->db;
+ assert( db!=0 );
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
+ return;
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( !v ) return;
+ if( type!=TK_DEFERRED ){
+ for(i=0; i<db->nDb; i++){
+ int eTxnType;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt && sqlite3BtreeIsReadonly(pBt) ){
+ eTxnType = 0; /* Read txn */
+ }else if( type==TK_EXCLUSIVE ){
+ eTxnType = 2; /* Exclusive txn */
+ }else{
+ eTxnType = 1; /* Write txn */
+ }
+ sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
+ sqlite3VdbeUsesBtree(v, i);
+ }
+ }
+ sqlite3VdbeAddOp0(v, OP_AutoCommit);
+}
+
+/*
+** Generate VDBE code for a COMMIT or ROLLBACK statement.
+** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
+** code is generated for a COMMIT.
+*/
+SQLITE_PRIVATE void sqlite3EndTransaction(Parse *pParse, int eType){
+ Vdbe *v;
+ int isRollback;
+
+ assert( pParse!=0 );
+ assert( pParse->db!=0 );
+ assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
+ isRollback = eType==TK_ROLLBACK;
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
+ isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
+ return;
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
+ }
+}
+
+/*
+** This function is called by the parser when it parses a command to create,
+** release or rollback an SQL savepoint.
+*/
+SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
+ char *zName = sqlite3NameFromToken(pParse->db, pName);
+ if( zName ){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
+ assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
+#endif
+ if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
+ sqlite3DbFree(pParse->db, zName);
+ return;
+ }
+ sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
+ }
+}
+
+/*
+** Make sure the TEMP database is open and available for use. Return
+** the number of errors. Leave any error messages in the pParse structure.
+*/
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ if( db->aDb[1].pBt==0 && !pParse->explain ){
+ int rc;
+ Btree *pBt;
+ static const int flags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TEMP_DB;
+
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "unable to open a temporary database "
+ "file for storing temporary tables");
+ pParse->rc = rc;
+ return 1;
+ }
+ db->aDb[1].pBt = pBt;
+ assert( db->aDb[1].pSchema );
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
+ sqlite3OomFault(db);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Record the fact that the schema cookie will need to be verified
+** for database iDb. The code to actually verify the schema cookie
+** will occur at the end of the top-level VDBE and will be generated
+** later, by sqlite3FinishCoding().
+*/
+static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
+ assert( iDb>=0 && iDb<pToplevel->db->nDb );
+ assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
+ assert( iDb<SQLITE_MAX_DB );
+ assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
+ if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
+ DbMaskSet(pToplevel->cookieMask, iDb);
+ if( !OMIT_TEMPDB && iDb==1 ){
+ sqlite3OpenTempDatabase(pToplevel);
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
+ sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
+}
+
+
+/*
+** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
+** attached database. Otherwise, invoke it for the database named zDb only.
+*/
+SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
+ sqlite3 *db = pParse->db;
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Db *pDb = &db->aDb[i];
+ if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
+ sqlite3CodeVerifySchema(pParse, i);
+ }
+ }
+}
+
+/*
+** Generate VDBE code that prepares for doing an operation that
+** might change the database.
+**
+** This routine starts a new transaction if we are not already within
+** a transaction. If we are already within a transaction, then a checkpoint
+** is set if the setStatement parameter is true. A checkpoint should
+** be set for operations that might fail (due to a constraint) part of
+** the way through and which will need to undo some writes without having to
+** rollback the whole transaction. For operations where all constraints
+** can be checked before any changes are made to the database, it is never
+** necessary to undo a write and the checkpoint should not be set.
+*/
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
+ DbMaskSet(pToplevel->writeMask, iDb);
+ pToplevel->isMultiWrite |= setStatement;
+}
+
+/*
+** Indicate that the statement currently under construction might write
+** more than one entry (example: deleting one row then inserting another,
+** inserting multiple rows in a table, or inserting a row and index entries.)
+** If an abort occurs after some of these writes have completed, then it will
+** be necessary to undo the completed writes.
+*/
+SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pToplevel->isMultiWrite = 1;
+}
+
+/*
+** The code generator calls this routine if is discovers that it is
+** possible to abort a statement prior to completion. In order to
+** perform this abort without corrupting the database, we need to make
+** sure that the statement is protected by a statement transaction.
+**
+** Technically, we only need to set the mayAbort flag if the
+** isMultiWrite flag was previously set. There is a time dependency
+** such that the abort must occur after the multiwrite. This makes
+** some statements involving the REPLACE conflict resolution algorithm
+** go a little faster. But taking advantage of this time dependency
+** makes it more difficult to prove that the code is correct (in
+** particular, it prevents us from writing an effective
+** implementation of sqlite3AssertMayAbort()) and so we have chosen
+** to take the safe route and skip the optimization.
+*/
+SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pToplevel->mayAbort = 1;
+}
+
+/*
+** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
+** error. The onError parameter determines which (if any) of the statement
+** and/or current transaction is rolled back.
+*/
+SQLITE_PRIVATE void sqlite3HaltConstraint(
+ Parse *pParse, /* Parsing context */
+ int errCode, /* extended error code */
+ int onError, /* Constraint type */
+ char *p4, /* Error message */
+ i8 p4type, /* P4_STATIC or P4_TRANSIENT */
+ u8 p5Errmsg /* P5_ErrMsg type */
+){
+ Vdbe *v;
+ assert( pParse->pVdbe!=0 );
+ v = sqlite3GetVdbe(pParse);
+ assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
+ if( onError==OE_Abort ){
+ sqlite3MayAbort(pParse);
+ }
+ sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
+ sqlite3VdbeChangeP5(v, p5Errmsg);
+}
+
+/*
+** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
+*/
+SQLITE_PRIVATE void sqlite3UniqueConstraint(
+ Parse *pParse, /* Parsing context */
+ int onError, /* Constraint type */
+ Index *pIdx /* The index that triggers the constraint */
+){
+ char *zErr;
+ int j;
+ StrAccum errMsg;
+ Table *pTab = pIdx->pTable;
+
+ sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
+ pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
+ if( pIdx->aColExpr ){
+ sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
+ }else{
+ for(j=0; j<pIdx->nKeyCol; j++){
+ char *zCol;
+ assert( pIdx->aiColumn[j]>=0 );
+ zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
+ if( j ) sqlite3_str_append(&errMsg, ", ", 2);
+ sqlite3_str_appendall(&errMsg, pTab->zName);
+ sqlite3_str_append(&errMsg, ".", 1);
+ sqlite3_str_appendall(&errMsg, zCol);
+ }
+ }
+ zErr = sqlite3StrAccumFinish(&errMsg);
+ sqlite3HaltConstraint(pParse,
+ IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
+ : SQLITE_CONSTRAINT_UNIQUE,
+ onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
+}
+
+
+/*
+** Code an OP_Halt due to non-unique rowid.
+*/
+SQLITE_PRIVATE void sqlite3RowidConstraint(
+ Parse *pParse, /* Parsing context */
+ int onError, /* Conflict resolution algorithm */
+ Table *pTab /* The table with the non-unique rowid */
+){
+ char *zMsg;
+ int rc;
+ if( pTab->iPKey>=0 ){
+ zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
+ pTab->aCol[pTab->iPKey].zCnName);
+ rc = SQLITE_CONSTRAINT_PRIMARYKEY;
+ }else{
+ zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
+ rc = SQLITE_CONSTRAINT_ROWID;
+ }
+ sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
+ P5_ConstraintUnique);
+}
+
+/*
+** Check to see if pIndex uses the collating sequence pColl. Return
+** true if it does and false if it does not.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static int collationMatch(const char *zColl, Index *pIndex){
+ int i;
+ assert( zColl!=0 );
+ for(i=0; i<pIndex->nColumn; i++){
+ const char *z = pIndex->azColl[i];
+ assert( z!=0 || pIndex->aiColumn[i]<0 );
+ if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif
+
+/*
+** Recompute all indices of pTab that use the collating sequence pColl.
+** If pColl==0 then recompute all indices of pTab.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
+ if( !IsVirtual(pTab) ){
+ Index *pIndex; /* An index associated with pTab */
+
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( zColl==0 || collationMatch(zColl, pIndex) ){
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3RefillIndex(pParse, pIndex, -1);
+ }
+ }
+ }
+}
+#endif
+
+/*
+** Recompute all indices of all tables in all databases where the
+** indices use the collating sequence pColl. If pColl==0 then recompute
+** all indices everywhere.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static void reindexDatabases(Parse *pParse, char const *zColl){
+ Db *pDb; /* A single database */
+ int iDb; /* The database index number */
+ sqlite3 *db = pParse->db; /* The database connection */
+ HashElem *k; /* For looping over tables in pDb */
+ Table *pTab; /* A table in the database */
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
+ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
+ assert( pDb!=0 );
+ for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
+ pTab = (Table*)sqliteHashData(k);
+ reindexTable(pParse, pTab, zColl);
+ }
+ }
+}
+#endif
+
+/*
+** Generate code for the REINDEX command.
+**
+** REINDEX -- 1
+** REINDEX <collation> -- 2
+** REINDEX ?<database>.?<tablename> -- 3
+** REINDEX ?<database>.?<indexname> -- 4
+**
+** Form 1 causes all indices in all attached databases to be rebuilt.
+** Form 2 rebuilds all indices in all databases that use the named
+** collating function. Forms 3 and 4 rebuild the named index or all
+** indices associated with the named table.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
+ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
+ char *z; /* Name of a table or index */
+ const char *zDb; /* Name of the database */
+ Table *pTab; /* A table in the database */
+ Index *pIndex; /* An index associated with pTab */
+ int iDb; /* The database index number */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Token *pObjName; /* Name of the table or index to be reindexed */
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ if( pName1==0 ){
+ reindexDatabases(pParse, 0);
+ return;
+ }else if( NEVER(pName2==0) || pName2->z==0 ){
+ char *zColl;
+ assert( pName1->z );
+ zColl = sqlite3NameFromToken(pParse->db, pName1);
+ if( !zColl ) return;
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
+ if( pColl ){
+ reindexDatabases(pParse, zColl);
+ sqlite3DbFree(db, zColl);
+ return;
+ }
+ sqlite3DbFree(db, zColl);
+ }
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
+ if( iDb<0 ) return;
+ z = sqlite3NameFromToken(db, pObjName);
+ if( z==0 ) return;
+ zDb = db->aDb[iDb].zDbSName;
+ pTab = sqlite3FindTable(db, z, zDb);
+ if( pTab ){
+ reindexTable(pParse, pTab, 0);
+ sqlite3DbFree(db, z);
+ return;
+ }
+ pIndex = sqlite3FindIndex(db, z, zDb);
+ sqlite3DbFree(db, z);
+ if( pIndex ){
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3RefillIndex(pParse, pIndex, -1);
+ return;
+ }
+ sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
+}
+#endif
+
+/*
+** Return a KeyInfo structure that is appropriate for the given Index.
+**
+** The caller should invoke sqlite3KeyInfoUnref() on the returned object
+** when it has finished using it.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
+ int i;
+ int nCol = pIdx->nColumn;
+ int nKey = pIdx->nKeyCol;
+ KeyInfo *pKey;
+ if( pParse->nErr ) return 0;
+ if( pIdx->uniqNotNull ){
+ pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
+ }else{
+ pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
+ }
+ if( pKey ){
+ assert( sqlite3KeyInfoIsWriteable(pKey) );
+ for(i=0; i<nCol; i++){
+ const char *zColl = pIdx->azColl[i];
+ pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
+ sqlite3LocateCollSeq(pParse, zColl);
+ pKey->aSortFlags[i] = pIdx->aSortOrder[i];
+ assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
+ }
+ if( pParse->nErr ){
+ assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
+ if( pIdx->bNoQuery==0 ){
+ /* Deactivate the index because it contains an unknown collating
+ ** sequence. The only way to reactive the index is to reload the
+ ** schema. Adding the missing collating sequence later does not
+ ** reactive the index. The application had the chance to register
+ ** the missing index using the collation-needed callback. For
+ ** simplicity, SQLite will not give the application a second chance.
+ */
+ pIdx->bNoQuery = 1;
+ pParse->rc = SQLITE_ERROR_RETRY;
+ }
+ sqlite3KeyInfoUnref(pKey);
+ pKey = 0;
+ }
+ }
+ return pKey;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** Create a new CTE object
+*/
+SQLITE_PRIVATE Cte *sqlite3CteNew(
+ Parse *pParse, /* Parsing context */
+ Token *pName, /* Name of the common-table */
+ ExprList *pArglist, /* Optional column name list for the table */
+ Select *pQuery, /* Query used to initialize the table */
+ u8 eM10d /* The MATERIALIZED flag */
+){
+ Cte *pNew;
+ sqlite3 *db = pParse->db;
+
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
+ assert( pNew!=0 || db->mallocFailed );
+
+ if( db->mallocFailed ){
+ sqlite3ExprListDelete(db, pArglist);
+ sqlite3SelectDelete(db, pQuery);
+ }else{
+ pNew->pSelect = pQuery;
+ pNew->pCols = pArglist;
+ pNew->zName = sqlite3NameFromToken(pParse->db, pName);
+ pNew->eM10d = eM10d;
+ }
+ return pNew;
+}
+
+/*
+** Clear information from a Cte object, but do not deallocate storage
+** for the object itself.
+*/
+static void cteClear(sqlite3 *db, Cte *pCte){
+ assert( pCte!=0 );
+ sqlite3ExprListDelete(db, pCte->pCols);
+ sqlite3SelectDelete(db, pCte->pSelect);
+ sqlite3DbFree(db, pCte->zName);
+}
+
+/*
+** Free the contents of the CTE object passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
+ assert( pCte!=0 );
+ cteClear(db, pCte);
+ sqlite3DbFree(db, pCte);
+}
+
+/*
+** This routine is invoked once per CTE by the parser while parsing a
+** WITH clause. The CTE described by teh third argument is added to
+** the WITH clause of the second argument. If the second argument is
+** NULL, then a new WITH argument is created.
+*/
+SQLITE_PRIVATE With *sqlite3WithAdd(
+ Parse *pParse, /* Parsing context */
+ With *pWith, /* Existing WITH clause, or NULL */
+ Cte *pCte /* CTE to add to the WITH clause */
+){
+ sqlite3 *db = pParse->db;
+ With *pNew;
+ char *zName;
+
+ if( pCte==0 ){
+ return pWith;
+ }
+
+ /* Check that the CTE name is unique within this WITH clause. If
+ ** not, store an error in the Parse structure. */
+ zName = pCte->zName;
+ if( zName && pWith ){
+ int i;
+ for(i=0; i<pWith->nCte; i++){
+ if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
+ sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
+ }
+ }
+ }
+
+ if( pWith ){
+ sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
+ pNew = sqlite3DbRealloc(db, pWith, nByte);
+ }else{
+ pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
+ }
+ assert( (pNew!=0 && zName!=0) || db->mallocFailed );
+
+ if( db->mallocFailed ){
+ sqlite3CteDelete(db, pCte);
+ pNew = pWith;
+ }else{
+ pNew->a[pNew->nCte++] = *pCte;
+ sqlite3DbFree(db, pCte);
+ }
+
+ return pNew;
+}
+
+/*
+** Free the contents of the With object passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3WithDelete(sqlite3 *db, With *pWith){
+ if( pWith ){
+ int i;
+ for(i=0; i<pWith->nCte; i++){
+ cteClear(db, &pWith->a[i]);
+ }
+ sqlite3DbFree(db, pWith);
+ }
+}
+#endif /* !defined(SQLITE_OMIT_CTE) */
+
+/************** End of build.c ***********************************************/
+/************** Begin file callback.c ****************************************/
+/*
+** 2005 May 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains functions used to access the internal hash tables
+** of user defined functions and collation sequences.
+*/
+
+/* #include "sqliteInt.h" */
+
+/*
+** Invoke the 'collation needed' callback to request a collation sequence
+** in the encoding enc of name zName, length nName.
+*/
+static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
+ assert( !db->xCollNeeded || !db->xCollNeeded16 );
+ if( db->xCollNeeded ){
+ char *zExternal = sqlite3DbStrDup(db, zName);
+ if( !zExternal ) return;
+ db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
+ sqlite3DbFree(db, zExternal);
+ }
+#ifndef SQLITE_OMIT_UTF16
+ if( db->xCollNeeded16 ){
+ char const *zExternal;
+ sqlite3_value *pTmp = sqlite3ValueNew(db);
+ sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
+ zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
+ if( zExternal ){
+ db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
+ }
+ sqlite3ValueFree(pTmp);
+ }
+#endif
+}
+
+/*
+** This routine is called if the collation factory fails to deliver a
+** collation function in the best encoding but there may be other versions
+** of this collation function (for other text encodings) available. Use one
+** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
+** possible.
+*/
+static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
+ CollSeq *pColl2;
+ char *z = pColl->zName;
+ int i;
+ static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
+ for(i=0; i<3; i++){
+ pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0);
+ if( pColl2->xCmp!=0 ){
+ memcpy(pColl, pColl2, sizeof(CollSeq));
+ pColl->xDel = 0; /* Do not copy the destructor */
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_ERROR;
+}
+
+/*
+** This routine is called on a collation sequence before it is used to
+** check that it is defined. An undefined collation sequence exists when
+** a database is loaded that contains references to collation sequences
+** that have not been defined by sqlite3_create_collation() etc.
+**
+** If required, this routine calls the 'collation needed' callback to
+** request a definition of the collating sequence. If this doesn't work,
+** an equivalent collating sequence that uses a text encoding different
+** from the main database is substituted, if one is available.
+*/
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
+ if( pColl && pColl->xCmp==0 ){
+ const char *zName = pColl->zName;
+ sqlite3 *db = pParse->db;
+ CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName);
+ if( !p ){
+ return SQLITE_ERROR;
+ }
+ assert( p==pColl );
+ }
+ return SQLITE_OK;
+}
+
+
+
+/*
+** Locate and return an entry from the db.aCollSeq hash table. If the entry
+** specified by zName and nName is not found and parameter 'create' is
+** true, then create a new entry. Otherwise return NULL.
+**
+** Each pointer stored in the sqlite3.aCollSeq hash table contains an
+** array of three CollSeq structures. The first is the collation sequence
+** preferred for UTF-8, the second UTF-16le, and the third UTF-16be.
+**
+** Stored immediately after the three collation sequences is a copy of
+** the collation sequence name. A pointer to this string is stored in
+** each collation sequence structure.
+*/
+static CollSeq *findCollSeqEntry(
+ sqlite3 *db, /* Database connection */
+ const char *zName, /* Name of the collating sequence */
+ int create /* Create a new entry if true */
+){
+ CollSeq *pColl;
+ pColl = sqlite3HashFind(&db->aCollSeq, zName);
+
+ if( 0==pColl && create ){
+ int nName = sqlite3Strlen30(zName) + 1;
+ pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName);
+ if( pColl ){
+ CollSeq *pDel = 0;
+ pColl[0].zName = (char*)&pColl[3];
+ pColl[0].enc = SQLITE_UTF8;
+ pColl[1].zName = (char*)&pColl[3];
+ pColl[1].enc = SQLITE_UTF16LE;
+ pColl[2].zName = (char*)&pColl[3];
+ pColl[2].enc = SQLITE_UTF16BE;
+ memcpy(pColl[0].zName, zName, nName);
+ pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl);
+
+ /* If a malloc() failure occurred in sqlite3HashInsert(), it will
+ ** return the pColl pointer to be deleted (because it wasn't added
+ ** to the hash table).
+ */
+ assert( pDel==0 || pDel==pColl );
+ if( pDel!=0 ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, pDel);
+ pColl = 0;
+ }
+ }
+ }
+ return pColl;
+}
+
+/*
+** Parameter zName points to a UTF-8 encoded string nName bytes long.
+** Return the CollSeq* pointer for the collation sequence named zName
+** for the encoding 'enc' from the database 'db'.
+**
+** If the entry specified is not found and 'create' is true, then create a
+** new entry. Otherwise return NULL.
+**
+** A separate function sqlite3LocateCollSeq() is a wrapper around
+** this routine. sqlite3LocateCollSeq() invokes the collation factory
+** if necessary and generates an error message if the collating sequence
+** cannot be found.
+**
+** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq()
+*/
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
+ sqlite3 *db, /* Database connection to search */
+ u8 enc, /* Desired text encoding */
+ const char *zName, /* Name of the collating sequence. Might be NULL */
+ int create /* True to create CollSeq if doesn't already exist */
+){
+ CollSeq *pColl;
+ assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
+ if( zName ){
+ pColl = findCollSeqEntry(db, zName, create);
+ if( pColl ) pColl += enc-1;
+ }else{
+ pColl = db->pDfltColl;
+ }
+ return pColl;
+}
+
+/*
+** Change the text encoding for a database connection. This means that
+** the pDfltColl must change as well.
+*/
+SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ db->enc = enc;
+ /* EVIDENCE-OF: R-08308-17224 The default collating function for all
+ ** strings is BINARY.
+ */
+ db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0);
+}
+
+/*
+** This function is responsible for invoking the collation factory callback
+** or substituting a collation sequence of a different encoding when the
+** requested collation sequence is not available in the desired encoding.
+**
+** If it is not NULL, then pColl must point to the database native encoding
+** collation sequence with name zName, length nName.
+**
+** The return value is either the collation sequence to be used in database
+** db for collation type name zName, length nName, or NULL, if no collation
+** sequence can be found. If no collation is found, leave an error message.
+**
+** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
+*/
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
+ Parse *pParse, /* Parsing context */
+ u8 enc, /* The desired encoding for the collating sequence */
+ CollSeq *pColl, /* Collating sequence with native encoding, or NULL */
+ const char *zName /* Collating sequence name */
+){
+ CollSeq *p;
+ sqlite3 *db = pParse->db;
+
+ p = pColl;
+ if( !p ){
+ p = sqlite3FindCollSeq(db, enc, zName, 0);
+ }
+ if( !p || !p->xCmp ){
+ /* No collation sequence of this type for this encoding is registered.
+ ** Call the collation factory to see if it can supply us with one.
+ */
+ callCollNeeded(db, enc, zName);
+ p = sqlite3FindCollSeq(db, enc, zName, 0);
+ }
+ if( p && !p->xCmp && synthCollSeq(db, p) ){
+ p = 0;
+ }
+ assert( !p || p->xCmp );
+ if( p==0 ){
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
+ pParse->rc = SQLITE_ERROR_MISSING_COLLSEQ;
+ }
+ return p;
+}
+
+/*
+** This function returns the collation sequence for database native text
+** encoding identified by the string zName.
+**
+** If the requested collation sequence is not available, or not available
+** in the database native encoding, the collation factory is invoked to
+** request it. If the collation factory does not supply such a sequence,
+** and the sequence is available in another text encoding, then that is
+** returned instead.
+**
+** If no versions of the requested collations sequence are available, or
+** another error occurs, NULL is returned and an error message written into
+** pParse.
+**
+** This routine is a wrapper around sqlite3FindCollSeq(). This routine
+** invokes the collation factory if the named collation cannot be found
+** and generates an error message.
+**
+** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
+*/
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
+ sqlite3 *db = pParse->db;
+ u8 enc = ENC(db);
+ u8 initbusy = db->init.busy;
+ CollSeq *pColl;
+
+ pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
+ if( !initbusy && (!pColl || !pColl->xCmp) ){
+ pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
+ }
+
+ return pColl;
+}
+
+/* During the search for the best function definition, this procedure
+** is called to test how well the function passed as the first argument
+** matches the request for a function with nArg arguments in a system
+** that uses encoding enc. The value returned indicates how well the
+** request is matched. A higher value indicates a better match.
+**
+** If nArg is -1 that means to only return a match (non-zero) if p->nArg
+** is also -1. In other words, we are searching for a function that
+** takes a variable number of arguments.
+**
+** If nArg is -2 that means that we are searching for any function
+** regardless of the number of arguments it uses, so return a positive
+** match score for any
+**
+** The returned value is always between 0 and 6, as follows:
+**
+** 0: Not a match.
+** 1: UTF8/16 conversion required and function takes any number of arguments.
+** 2: UTF16 byte order change required and function takes any number of args.
+** 3: encoding matches and function takes any number of arguments
+** 4: UTF8/16 conversion required - argument count matches exactly
+** 5: UTF16 byte order conversion required - argument count matches exactly
+** 6: Perfect match: encoding and argument count match exactly.
+**
+** If nArg==(-2) then any function with a non-null xSFunc is
+** a perfect match and any function with xSFunc NULL is
+** a non-match.
+*/
+#define FUNC_PERFECT_MATCH 6 /* The score for a perfect match */
+static int matchQuality(
+ FuncDef *p, /* The function we are evaluating for match quality */
+ int nArg, /* Desired number of arguments. (-1)==any */
+ u8 enc /* Desired text encoding */
+){
+ int match;
+ assert( p->nArg>=-1 );
+
+ /* Wrong number of arguments means "no match" */
+ if( p->nArg!=nArg ){
+ if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH;
+ if( p->nArg>=0 ) return 0;
+ }
+
+ /* Give a better score to a function with a specific number of arguments
+ ** than to function that accepts any number of arguments. */
+ if( p->nArg==nArg ){
+ match = 4;
+ }else{
+ match = 1;
+ }
+
+ /* Bonus points if the text encoding matches */
+ if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){
+ match += 2; /* Exact encoding match */
+ }else if( (enc & p->funcFlags & 2)!=0 ){
+ match += 1; /* Both are UTF16, but with different byte orders */
+ }
+
+ return match;
+}
+
+/*
+** Search a FuncDefHash for a function with the given name. Return
+** a pointer to the matching FuncDef if found, or 0 if there is no match.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch(
+ int h, /* Hash of the name */
+ const char *zFunc /* Name of function */
+){
+ FuncDef *p;
+ for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ if( sqlite3StrICmp(p->zName, zFunc)==0 ){
+ return p;
+ }
+ }
+ return 0;
+}
+
+/*
+** Insert a new FuncDef into a FuncDefHash hash table.
+*/
+SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(
+ FuncDef *aDef, /* List of global functions to be inserted */
+ int nDef /* Length of the apDef[] list */
+){
+ int i;
+ for(i=0; i<nDef; i++){
+ FuncDef *pOther;
+ const char *zName = aDef[i].zName;
+ int nName = sqlite3Strlen30(zName);
+ int h = SQLITE_FUNC_HASH(zName[0], nName);
+ assert( aDef[i].funcFlags & SQLITE_FUNC_BUILTIN );
+ pOther = sqlite3FunctionSearch(h, zName);
+ if( pOther ){
+ assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
+ aDef[i].pNext = pOther->pNext;
+ pOther->pNext = &aDef[i];
+ }else{
+ aDef[i].pNext = 0;
+ aDef[i].u.pHash = sqlite3BuiltinFunctions.a[h];
+ sqlite3BuiltinFunctions.a[h] = &aDef[i];
+ }
+ }
+}
+
+
+
+/*
+** Locate a user function given a name, a number of arguments and a flag
+** indicating whether the function prefers UTF-16 over UTF-8. Return a
+** pointer to the FuncDef structure that defines that function, or return
+** NULL if the function does not exist.
+**
+** If the createFlag argument is true, then a new (blank) FuncDef
+** structure is created and liked into the "db" structure if a
+** no matching function previously existed.
+**
+** If nArg is -2, then the first valid function found is returned. A
+** function is valid if xSFunc is non-zero. The nArg==(-2)
+** case is used to see if zName is a valid function name for some number
+** of arguments. If nArg is -2, then createFlag must be 0.
+**
+** If createFlag is false, then a function with the required name and
+** number of arguments may be returned even if the eTextRep flag does not
+** match that requested.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
+ sqlite3 *db, /* An open database */
+ const char *zName, /* Name of the function. zero-terminated */
+ int nArg, /* Number of arguments. -1 means any number */
+ u8 enc, /* Preferred text encoding */
+ u8 createFlag /* Create new entry if true and does not otherwise exist */
+){
+ FuncDef *p; /* Iterator variable */
+ FuncDef *pBest = 0; /* Best match found so far */
+ int bestScore = 0; /* Score of best match */
+ int h; /* Hash value */
+ int nName; /* Length of the name */
+
+ assert( nArg>=(-2) );
+ assert( nArg>=(-1) || createFlag==0 );
+ nName = sqlite3Strlen30(zName);
+
+ /* First search for a match amongst the application-defined functions.
+ */
+ p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName);
+ while( p ){
+ int score = matchQuality(p, nArg, enc);
+ if( score>bestScore ){
+ pBest = p;
+ bestScore = score;
+ }
+ p = p->pNext;
+ }
+
+ /* If no match is found, search the built-in functions.
+ **
+ ** If the DBFLAG_PreferBuiltin flag is set, then search the built-in
+ ** functions even if a prior app-defined function was found. And give
+ ** priority to built-in functions.
+ **
+ ** Except, if createFlag is true, that means that we are trying to
+ ** install a new function. Whatever FuncDef structure is returned it will
+ ** have fields overwritten with new information appropriate for the
+ ** new function. But the FuncDefs for built-in functions are read-only.
+ ** So we must not search for built-ins when creating a new function.
+ */
+ if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){
+ bestScore = 0;
+ h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName);
+ p = sqlite3FunctionSearch(h, zName);
+ while( p ){
+ int score = matchQuality(p, nArg, enc);
+ if( score>bestScore ){
+ pBest = p;
+ bestScore = score;
+ }
+ p = p->pNext;
+ }
+ }
+
+ /* If the createFlag parameter is true and the search did not reveal an
+ ** exact match for the name, number of arguments and encoding, then add a
+ ** new entry to the hash table and return it.
+ */
+ if( createFlag && bestScore<FUNC_PERFECT_MATCH &&
+ (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
+ FuncDef *pOther;
+ u8 *z;
+ pBest->zName = (const char*)&pBest[1];
+ pBest->nArg = (u16)nArg;
+ pBest->funcFlags = enc;
+ memcpy((char*)&pBest[1], zName, nName+1);
+ for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z];
+ pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest);
+ if( pOther==pBest ){
+ sqlite3DbFree(db, pBest);
+ sqlite3OomFault(db);
+ return 0;
+ }else{
+ pBest->pNext = pOther;
+ }
+ }
+
+ if( pBest && (pBest->xSFunc || createFlag) ){
+ return pBest;
+ }
+ return 0;
+}
+
+/*
+** Free all resources held by the schema structure. The void* argument points
+** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
+** pointer itself, it just cleans up subsidiary resources (i.e. the contents
+** of the schema hash tables).
+**
+** The Schema.cache_size variable is not cleared.
+*/
+SQLITE_PRIVATE void sqlite3SchemaClear(void *p){
+ Hash temp1;
+ Hash temp2;
+ HashElem *pElem;
+ Schema *pSchema = (Schema *)p;
+
+ temp1 = pSchema->tblHash;
+ temp2 = pSchema->trigHash;
+ sqlite3HashInit(&pSchema->trigHash);
+ sqlite3HashClear(&pSchema->idxHash);
+ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
+ sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
+ }
+ sqlite3HashClear(&temp2);
+ sqlite3HashInit(&pSchema->tblHash);
+ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ sqlite3DeleteTable(0, pTab);
+ }
+ sqlite3HashClear(&temp1);
+ sqlite3HashClear(&pSchema->fkeyHash);
+ pSchema->pSeqTab = 0;
+ if( pSchema->schemaFlags & DB_SchemaLoaded ){
+ pSchema->iGeneration++;
+ }
+ pSchema->schemaFlags &= ~(DB_SchemaLoaded|DB_ResetWanted);
+}
+
+/*
+** Find and return the schema associated with a BTree. Create
+** a new one if necessary.
+*/
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
+ Schema * p;
+ if( pBt ){
+ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
+ }else{
+ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
+ }
+ if( !p ){
+ sqlite3OomFault(db);
+ }else if ( 0==p->file_format ){
+ sqlite3HashInit(&p->tblHash);
+ sqlite3HashInit(&p->idxHash);
+ sqlite3HashInit(&p->trigHash);
+ sqlite3HashInit(&p->fkeyHash);
+ p->enc = SQLITE_UTF8;
+ }
+ return p;
+}
+
+/************** End of callback.c ********************************************/
+/************** Begin file delete.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** in order to generate code for DELETE FROM statements.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** While a SrcList can in general represent multiple tables and subqueries
+** (as in the FROM clause of a SELECT statement) in this case it contains
+** the name of a single table, as one might find in an INSERT, DELETE,
+** or UPDATE statement. Look up that table in the symbol table and
+** return a pointer. Set an error message and return NULL if the table
+** name is not found or if any other error occurs.
+**
+** The following fields are initialized appropriate in pSrc:
+**
+** pSrc->a[0].pTab Pointer to the Table object
+** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one
+**
+*/
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
+ SrcItem *pItem = pSrc->a;
+ Table *pTab;
+ assert( pItem && pSrc->nSrc>=1 );
+ pTab = sqlite3LocateTableItem(pParse, 0, pItem);
+ sqlite3DeleteTable(pParse->db, pItem->pTab);
+ pItem->pTab = pTab;
+ if( pTab ){
+ pTab->nTabRef++;
+ if( pItem->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pItem) ){
+ pTab = 0;
+ }
+ }
+ return pTab;
+}
+
+/* Generate byte-code that will report the number of rows modified
+** by a DELETE, INSERT, or UPDATE statement.
+*/
+SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe *v, int regCounter, const char *zColName){
+ sqlite3VdbeAddOp0(v, OP_FkCheck);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regCounter, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zColName, SQLITE_STATIC);
+}
+
+/* Return true if table pTab is read-only.
+**
+** A table is read-only if any of the following are true:
+**
+** 1) It is a virtual table and no implementation of the xUpdate method
+** has been provided
+**
+** 2) It is a system table (i.e. sqlite_schema), this call is not
+** part of a nested parse and writable_schema pragma has not
+** been specified
+**
+** 3) The table is a shadow table, the database connection is in
+** defensive mode, and the current sqlite3_prepare()
+** is for a top-level SQL statement.
+*/
+static int tabIsReadOnly(Parse *pParse, Table *pTab){
+ sqlite3 *db;
+ if( IsVirtual(pTab) ){
+ return sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0;
+ }
+ if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0;
+ db = pParse->db;
+ if( (pTab->tabFlags & TF_Readonly)!=0 ){
+ return sqlite3WritableSchema(db)==0 && pParse->nested==0;
+ }
+ assert( pTab->tabFlags & TF_Shadow );
+ return sqlite3ReadOnlyShadowTables(db);
+}
+
+/*
+** Check to make sure the given table is writable. If it is not
+** writable, generate an error message and return 1. If it is
+** writable return 0;
+*/
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
+ if( tabIsReadOnly(pParse, pTab) ){
+ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
+ return 1;
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( !viewOk && IsView(pTab) ){
+ sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+/*
+** Evaluate a view and store its result in an ephemeral table. The
+** pWhere argument is an optional WHERE clause that restricts the
+** set of rows in the view that are to be added to the ephemeral table.
+*/
+SQLITE_PRIVATE void sqlite3MaterializeView(
+ Parse *pParse, /* Parsing context */
+ Table *pView, /* View definition */
+ Expr *pWhere, /* Optional WHERE clause to be added */
+ ExprList *pOrderBy, /* Optional ORDER BY clause */
+ Expr *pLimit, /* Optional LIMIT clause */
+ int iCur /* Cursor number for ephemeral table */
+){
+ SelectDest dest;
+ Select *pSel;
+ SrcList *pFrom;
+ sqlite3 *db = pParse->db;
+ int iDb = sqlite3SchemaToIndex(db, pView->pSchema);
+ pWhere = sqlite3ExprDup(db, pWhere, 0);
+ pFrom = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ if( pFrom ){
+ assert( pFrom->nSrc==1 );
+ pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
+ pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName);
+ assert( pFrom->a[0].fg.isUsing==0 );
+ assert( pFrom->a[0].u3.pOn==0 );
+ }
+ pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, pOrderBy,
+ SF_IncludeHidden, pLimit);
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
+ sqlite3Select(pParse, pSel, &dest);
+ sqlite3SelectDelete(db, pSel);
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
+
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Generate an expression tree to implement the WHERE, ORDER BY,
+** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
+**
+** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
+** \__________________________/
+** pLimitWhere (pInClause)
+*/
+SQLITE_PRIVATE Expr *sqlite3LimitWhere(
+ Parse *pParse, /* The parser context */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ ExprList *pOrderBy, /* The ORDER BY clause. May be null */
+ Expr *pLimit, /* The LIMIT clause. May be null */
+ char *zStmtType /* Either DELETE or UPDATE. For err msgs. */
+){
+ sqlite3 *db = pParse->db;
+ Expr *pLhs = NULL; /* LHS of IN(SELECT...) operator */
+ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */
+ ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */
+ SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */
+ Select *pSelect = NULL; /* Complete SELECT tree */
+ Table *pTab;
+
+ /* Check that there isn't an ORDER BY without a LIMIT clause.
+ */
+ if( pOrderBy && pLimit==0 ) {
+ sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
+ sqlite3ExprDelete(pParse->db, pWhere);
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ return 0;
+ }
+
+ /* We only need to generate a select expression if there
+ ** is a limit/offset term to enforce.
+ */
+ if( pLimit == 0 ) {
+ return pWhere;
+ }
+
+ /* Generate a select expression tree to enforce the limit/offset
+ ** term for the DELETE or UPDATE statement. For example:
+ ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
+ ** becomes:
+ ** DELETE FROM table_a WHERE rowid IN (
+ ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
+ ** );
+ */
+
+ pTab = pSrc->a[0].pTab;
+ if( HasRowid(pTab) ){
+ pLhs = sqlite3PExpr(pParse, TK_ROW, 0, 0);
+ pEList = sqlite3ExprListAppend(
+ pParse, 0, sqlite3PExpr(pParse, TK_ROW, 0, 0)
+ );
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ if( pPk->nKeyCol==1 ){
+ const char *zName = pTab->aCol[pPk->aiColumn[0]].zCnName;
+ pLhs = sqlite3Expr(db, TK_ID, zName);
+ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, zName));
+ }else{
+ int i;
+ for(i=0; i<pPk->nKeyCol; i++){
+ Expr *p = sqlite3Expr(db, TK_ID, pTab->aCol[pPk->aiColumn[i]].zCnName);
+ pEList = sqlite3ExprListAppend(pParse, pEList, p);
+ }
+ pLhs = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
+ if( pLhs ){
+ pLhs->x.pList = sqlite3ExprListDup(db, pEList, 0);
+ }
+ }
+ }
+
+ /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
+ ** and the SELECT subtree. */
+ pSrc->a[0].pTab = 0;
+ pSelectSrc = sqlite3SrcListDup(db, pSrc, 0);
+ pSrc->a[0].pTab = pTab;
+ if( pSrc->a[0].fg.isIndexedBy ){
+ assert( pSrc->a[0].fg.isCte==0 );
+ pSrc->a[0].u2.pIBIndex = 0;
+ pSrc->a[0].fg.isIndexedBy = 0;
+ sqlite3DbFree(db, pSrc->a[0].u1.zIndexedBy);
+ }else if( pSrc->a[0].fg.isCte ){
+ pSrc->a[0].u2.pCteUse->nUse++;
+ }
+
+ /* generate the SELECT expression tree. */
+ pSelect = sqlite3SelectNew(pParse, pEList, pSelectSrc, pWhere, 0 ,0,
+ pOrderBy,0,pLimit
+ );
+
+ /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
+ pInClause = sqlite3PExpr(pParse, TK_IN, pLhs, 0);
+ sqlite3PExprAddSelect(pParse, pInClause, pSelect);
+ return pInClause;
+}
+#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */
+ /* && !defined(SQLITE_OMIT_SUBQUERY) */
+
+/*
+** Generate code for a DELETE FROM statement.
+**
+** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
+** \________/ \________________/
+** pTabList pWhere
+*/
+SQLITE_PRIVATE void sqlite3DeleteFrom(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table from which we should delete things */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ ExprList *pOrderBy, /* ORDER BY clause. May be null */
+ Expr *pLimit /* LIMIT clause. May be null */
+){
+ Vdbe *v; /* The virtual database engine */
+ Table *pTab; /* The table from which records will be deleted */
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Index *pIdx; /* For looping over indices of the table */
+ int iTabCur; /* Cursor number for the table */
+ int iDataCur = 0; /* VDBE cursor for the canonical data source */
+ int iIdxCur = 0; /* Cursor number of the first index */
+ int nIdx; /* Number of indices */
+ sqlite3 *db; /* Main database structure */
+ AuthContext sContext; /* Authorization context */
+ NameContext sNC; /* Name context to resolve expressions in */
+ int iDb; /* Database number */
+ int memCnt = 0; /* Memory cell used for change counting */
+ int rcauth; /* Value returned by authorization callback */
+ int eOnePass; /* ONEPASS_OFF or _SINGLE or _MULTI */
+ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */
+ u8 *aToOpen = 0; /* Open cursor iTabCur+j if aToOpen[j] is true */
+ Index *pPk; /* The PRIMARY KEY index on the table */
+ int iPk = 0; /* First of nPk registers holding PRIMARY KEY value */
+ i16 nPk = 1; /* Number of columns in the PRIMARY KEY */
+ int iKey; /* Memory cell holding key of row to be deleted */
+ i16 nKey; /* Number of memory cells in the row key */
+ int iEphCur = 0; /* Ephemeral table holding all primary key values */
+ int iRowSet = 0; /* Register for rowset of rows to delete */
+ int addrBypass = 0; /* Address of jump over the delete logic */
+ int addrLoop = 0; /* Top of the delete loop */
+ int addrEphOpen = 0; /* Instruction to open the Ephemeral table */
+ int bComplex; /* True if there are triggers or FKs or
+ ** subqueries in the WHERE clause */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True if attempting to delete from a view */
+ Trigger *pTrigger; /* List of table triggers, if required */
+#endif
+
+ memset(&sContext, 0, sizeof(sContext));
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto delete_from_cleanup;
+ }
+ assert( db->mallocFailed==0 );
+ assert( pTabList->nSrc==1 );
+
+ /* Locate the table which we want to delete. This table has to be
+ ** put in an SrcList structure because some of the subroutines we
+ ** will be calling are designed to work with multiple tables and expect
+ ** an SrcList* parameter instead of just a Table* parameter.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto delete_from_cleanup;
+
+ /* Figure out if we have any triggers and if the table being
+ ** deleted from is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
+ isView = IsView(pTab);
+#else
+# define pTrigger 0
+# define isView 0
+#endif
+ bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0);
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Delete() at %s:%d", __FILE__, __LINE__);
+ sqlite3TreeViewDelete(pParse->pWith, pTabList, pWhere,
+ pOrderBy, pLimit, pTrigger);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( !isView ){
+ pWhere = sqlite3LimitWhere(
+ pParse, pTabList, pWhere, pOrderBy, pLimit, "DELETE"
+ );
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ /* If pTab is really a view, make sure it has been initialized.
+ */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto delete_from_cleanup;
+ }
+
+ if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
+ goto delete_from_cleanup;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0,
+ db->aDb[iDb].zDbSName);
+ assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
+ if( rcauth==SQLITE_DENY ){
+ goto delete_from_cleanup;
+ }
+ assert(!isView || pTrigger);
+
+ /* Assign cursor numbers to the table and all its indices.
+ */
+ assert( pTabList->nSrc==1 );
+ iTabCur = pTabList->a[0].iCursor = pParse->nTab++;
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
+ pParse->nTab++;
+ }
+
+ /* Start the view context
+ */
+ if( isView ){
+ sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* Begin generating code.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ goto delete_from_cleanup;
+ }
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, bComplex, iDb);
+
+ /* If we are trying to delete from a view, realize that view into
+ ** an ephemeral table.
+ */
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+ if( isView ){
+ sqlite3MaterializeView(pParse, pTab,
+ pWhere, pOrderBy, pLimit, iTabCur
+ );
+ iDataCur = iIdxCur = iTabCur;
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ /* Resolve the column names in the WHERE clause.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ if( sqlite3ResolveExprNames(&sNC, pWhere) ){
+ goto delete_from_cleanup;
+ }
+
+ /* Initialize the counter of the number of rows deleted, if
+ ** we are counting rows.
+ */
+ if( (db->flags & SQLITE_CountRows)!=0
+ && !pParse->nested
+ && !pParse->pTriggerTab
+ && !pParse->bReturning
+ ){
+ memCnt = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
+ }
+
+#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
+ /* Special case: A DELETE without a WHERE clause deletes everything.
+ ** It is easier just to erase the whole table. Prior to version 3.6.5,
+ ** this optimization caused the row change count (the value returned by
+ ** API function sqlite3_count_changes) to be set incorrectly.
+ **
+ ** The "rcauth==SQLITE_OK" terms is the
+ ** IMPLEMENTATION-OF: R-17228-37124 If the action code is SQLITE_DELETE and
+ ** the callback returns SQLITE_IGNORE then the DELETE operation proceeds but
+ ** the truncate optimization is disabled and all rows are deleted
+ ** individually.
+ */
+ if( rcauth==SQLITE_OK
+ && pWhere==0
+ && !bComplex
+ && !IsVirtual(pTab)
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ && db->xPreUpdateCallback==0
+#endif
+ ){
+ assert( !isView );
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt ? memCnt : -1,
+ pTab->zName, P4_STATIC);
+ }
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->pSchema==pTab->pSchema );
+ sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
+ sqlite3VdbeChangeP3(v, -1, memCnt ? memCnt : -1);
+ }
+ }
+ }else
+#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
+ {
+ u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK;
+ if( sNC.ncFlags & NC_VarSelect ) bComplex = 1;
+ wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW);
+ if( HasRowid(pTab) ){
+ /* For a rowid table, initialize the RowSet to an empty set */
+ pPk = 0;
+ nPk = 1;
+ iRowSet = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
+ }else{
+ /* For a WITHOUT ROWID table, create an ephemeral table used to
+ ** hold all primary keys for rows to be deleted. */
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ nPk = pPk->nKeyCol;
+ iPk = pParse->nMem+1;
+ pParse->nMem += nPk;
+ iEphCur = pParse->nTab++;
+ addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+
+ /* Construct a query to find the rowid or primary key for every row
+ ** to be deleted, based on the WHERE clause. Set variable eOnePass
+ ** to indicate the strategy used to implement this delete:
+ **
+ ** ONEPASS_OFF: Two-pass approach - use a FIFO for rowids/PK values.
+ ** ONEPASS_SINGLE: One-pass approach - at most one row deleted.
+ ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted.
+ */
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,0,wcf,iTabCur+1);
+ if( pWInfo==0 ) goto delete_from_cleanup;
+ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
+ assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI );
+ assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF );
+ if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse);
+ if( sqlite3WhereUsesDeferredSeek(pWInfo) ){
+ sqlite3VdbeAddOp1(v, OP_FinishSeek, iTabCur);
+ }
+
+ /* Keep track of the number of rows to be deleted */
+ if( memCnt ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
+ }
+
+ /* Extract the rowid or primary key for the current row */
+ if( pPk ){
+ for(i=0; i<nPk; i++){
+ assert( pPk->aiColumn[i]>=0 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
+ pPk->aiColumn[i], iPk+i);
+ }
+ iKey = iPk;
+ }else{
+ iKey = ++pParse->nMem;
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, -1, iKey);
+ }
+
+ if( eOnePass!=ONEPASS_OFF ){
+ /* For ONEPASS, no need to store the rowid/primary-key. There is only
+ ** one, so just keep it in its register(s) and fall through to the
+ ** delete code. */
+ nKey = nPk; /* OP_Found will use an unpacked key */
+ aToOpen = sqlite3DbMallocRawNN(db, nIdx+2);
+ if( aToOpen==0 ){
+ sqlite3WhereEnd(pWInfo);
+ goto delete_from_cleanup;
+ }
+ memset(aToOpen, 1, nIdx+1);
+ aToOpen[nIdx+1] = 0;
+ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
+ if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0;
+ if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
+ addrBypass = sqlite3VdbeMakeLabel(pParse);
+ }else{
+ if( pPk ){
+ /* Add the PK key for this row to the temporary table */
+ iKey = ++pParse->nMem;
+ nKey = 0; /* Zero tells OP_Found to use a composite key */
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
+ sqlite3IndexAffinityStr(pParse->db, pPk), nPk);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEphCur, iKey, iPk, nPk);
+ }else{
+ /* Add the rowid of the row to be deleted to the RowSet */
+ nKey = 1; /* OP_DeferredSeek always uses a single rowid */
+ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
+ }
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ /* Unless this is a view, open cursors for the table we are
+ ** deleting from and all its indices. If this is a view, then the
+ ** only effect this statement has is to fire the INSTEAD OF
+ ** triggers.
+ */
+ if( !isView ){
+ int iAddrOnce = 0;
+ if( eOnePass==ONEPASS_MULTI ){
+ iAddrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ testcase( IsVirtual(pTab) );
+ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, OPFLAG_FORDELETE,
+ iTabCur, aToOpen, &iDataCur, &iIdxCur);
+ assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
+ assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
+ if( eOnePass==ONEPASS_MULTI ){
+ sqlite3VdbeJumpHereOrPopInst(v, iAddrOnce);
+ }
+ }
+
+ /* Set up a loop over the rowids/primary-keys that were found in the
+ ** where-clause loop above.
+ */
+ if( eOnePass!=ONEPASS_OFF ){
+ assert( nKey==nPk ); /* OP_Found will use an unpacked key */
+ if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){
+ assert( pPk!=0 || IsView(pTab) );
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
+ VdbeCoverage(v);
+ }
+ }else if( pPk ){
+ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iEphCur, 0, iKey);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iEphCur, iKey);
+ }
+ assert( nKey==0 ); /* OP_Found will use a composite key */
+ }else{
+ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey);
+ VdbeCoverage(v);
+ assert( nKey==1 );
+ }
+
+ /* Delete the row */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
+ sqlite3MayAbort(pParse);
+ if( eOnePass==ONEPASS_SINGLE ){
+ sqlite3VdbeAddOp1(v, OP_Close, iTabCur);
+ if( sqlite3IsToplevel(pParse) ){
+ pParse->isMultiWrite = 0;
+ }
+ }
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
+ sqlite3VdbeChangeP5(v, OE_Abort);
+ }else
+#endif
+ {
+ int count = (pParse->nested==0); /* True to count changes */
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
+ iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]);
+ }
+
+ /* End of the loop over all rowids/primary-keys. */
+ if( eOnePass!=ONEPASS_OFF ){
+ sqlite3VdbeResolveLabel(v, addrBypass);
+ sqlite3WhereEnd(pWInfo);
+ }else if( pPk ){
+ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrLoop);
+ }else{
+ sqlite3VdbeGoto(v, addrLoop);
+ sqlite3VdbeJumpHere(v, addrLoop);
+ }
+ } /* End non-truncate path */
+
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /* Return the number of rows that were deleted. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( memCnt ){
+ sqlite3CodeChangeCount(v, memCnt, "rows deleted");
+ }
+
+delete_from_cleanup:
+ sqlite3AuthContextPop(&sContext);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprDelete(db, pWhere);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
+ sqlite3ExprListDelete(db, pOrderBy);
+ sqlite3ExprDelete(db, pLimit);
+#endif
+ sqlite3DbFree(db, aToOpen);
+ return;
+}
+/* Make sure "isView" and other macros defined above are undefined. Otherwise
+** they may interfere with compilation of other functions in this file
+** (or in another file, if this file becomes part of the amalgamation). */
+#ifdef isView
+ #undef isView
+#endif
+#ifdef pTrigger
+ #undef pTrigger
+#endif
+
+/*
+** This routine generates VDBE code that causes a single row of a
+** single table to be deleted. Both the original table entry and
+** all indices are removed.
+**
+** Preconditions:
+**
+** 1. iDataCur is an open cursor on the btree that is the canonical data
+** store for the table. (This will be either the table itself,
+** in the case of a rowid table, or the PRIMARY KEY index in the case
+** of a WITHOUT ROWID table.)
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number iIdxCur+i for the i-th index.
+**
+** 3. The primary key for the row to be deleted must be stored in a
+** sequence of nPk memory cells starting at iPk. If nPk==0 that means
+** that a search record formed from OP_MakeRecord is contained in the
+** single memory location iPk.
+**
+** eMode:
+** Parameter eMode may be passed either ONEPASS_OFF (0), ONEPASS_SINGLE, or
+** ONEPASS_MULTI. If eMode is not ONEPASS_OFF, then the cursor
+** iDataCur already points to the row to delete. If eMode is ONEPASS_OFF
+** then this function must seek iDataCur to the entry identified by iPk
+** and nPk before reading from it.
+**
+** If eMode is ONEPASS_MULTI, then this call is being made as part
+** of a ONEPASS delete that affects multiple rows. In this case, if
+** iIdxNoSeek is a valid cursor number (>=0) and is not the same as
+** iDataCur, then its position should be preserved following the delete
+** operation. Or, if iIdxNoSeek is not a valid cursor number, the
+** position of iDataCur should be preserved instead.
+**
+** iIdxNoSeek:
+** If iIdxNoSeek is a valid cursor number (>=0) not equal to iDataCur,
+** then it identifies an index cursor (from within array of cursors
+** starting at iIdxCur) that already points to the index entry to be deleted.
+** Except, this optimization is disabled if there are BEFORE triggers since
+** the trigger body might have moved the cursor.
+*/
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table containing the row to be deleted */
+ Trigger *pTrigger, /* List of triggers to (potentially) fire */
+ int iDataCur, /* Cursor from which column data is extracted */
+ int iIdxCur, /* First index cursor */
+ int iPk, /* First memory cell containing the PRIMARY KEY */
+ i16 nPk, /* Number of PRIMARY KEY memory cells */
+ u8 count, /* If non-zero, increment the row change counter */
+ u8 onconf, /* Default ON CONFLICT policy for triggers */
+ u8 eMode, /* ONEPASS_OFF, _SINGLE, or _MULTI. See above */
+ int iIdxNoSeek /* Cursor number of cursor that does not need seeking */
+){
+ Vdbe *v = pParse->pVdbe; /* Vdbe */
+ int iOld = 0; /* First register in OLD.* array */
+ int iLabel; /* Label resolved to end of generated code */
+ u8 opSeek; /* Seek opcode */
+
+ /* Vdbe is guaranteed to have been allocated by this stage. */
+ assert( v );
+ VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)",
+ iDataCur, iIdxCur, iPk, (int)nPk));
+
+ /* Seek cursor iCur to the row to delete. If this row no longer exists
+ ** (this can happen if a trigger program has already deleted it), do
+ ** not attempt to delete it or fire any DELETE triggers. */
+ iLabel = sqlite3VdbeMakeLabel(pParse);
+ opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
+ if( eMode==ONEPASS_OFF ){
+ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
+ VdbeCoverageIf(v, opSeek==OP_NotExists);
+ VdbeCoverageIf(v, opSeek==OP_NotFound);
+ }
+
+ /* If there are any triggers to fire, allocate a range of registers to
+ ** use for the old.* references in the triggers. */
+ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){
+ u32 mask; /* Mask of OLD.* columns in use */
+ int iCol; /* Iterator used while populating OLD.* */
+ int addrStart; /* Start of BEFORE trigger programs */
+
+ /* TODO: Could use temporary registers here. Also could attempt to
+ ** avoid copying the contents of the rowid register. */
+ mask = sqlite3TriggerColmask(
+ pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf
+ );
+ mask |= sqlite3FkOldmask(pParse, pTab);
+ iOld = pParse->nMem+1;
+ pParse->nMem += (1 + pTab->nCol);
+
+ /* Populate the OLD.* pseudo-table register array. These values will be
+ ** used by any BEFORE and AFTER triggers that exist. */
+ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld);
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ testcase( mask!=0xffffffff && iCol==31 );
+ testcase( mask!=0xffffffff && iCol==32 );
+ if( mask==0xffffffff || (iCol<=31 && (mask & MASKBIT32(iCol))!=0) ){
+ int kk = sqlite3TableColumnToStorage(pTab, iCol);
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+kk+1);
+ }
+ }
+
+ /* Invoke BEFORE DELETE trigger programs. */
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ sqlite3CodeRowTrigger(pParse, pTrigger,
+ TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel
+ );
+
+ /* If any BEFORE triggers were coded, then seek the cursor to the
+ ** row to be deleted again. It may be that the BEFORE triggers moved
+ ** the cursor or already deleted the row that the cursor was
+ ** pointing to.
+ **
+ ** Also disable the iIdxNoSeek optimization since the BEFORE trigger
+ ** may have moved that cursor.
+ */
+ if( addrStart<sqlite3VdbeCurrentAddr(v) ){
+ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
+ VdbeCoverageIf(v, opSeek==OP_NotExists);
+ VdbeCoverageIf(v, opSeek==OP_NotFound);
+ testcase( iIdxNoSeek>=0 );
+ iIdxNoSeek = -1;
+ }
+
+ /* Do FK processing. This call checks that any FK constraints that
+ ** refer to this table (i.e. constraints attached to other tables)
+ ** are not violated by deleting this row. */
+ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
+ }
+
+ /* Delete the index and table entries. Skip this step if pTab is really
+ ** a view (in which case the only effect of the DELETE statement is to
+ ** fire the INSTEAD OF triggers).
+ **
+ ** If variable 'count' is non-zero, then this OP_Delete instruction should
+ ** invoke the update-hook. The pre-update-hook, on the other hand should
+ ** be invoked unless table pTab is a system table. The difference is that
+ ** the update-hook is not invoked for rows removed by REPLACE, but the
+ ** pre-update-hook is.
+ */
+ if( !IsView(pTab) ){
+ u8 p5 = 0;
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
+ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
+ if( pParse->nested==0 || 0==sqlite3_stricmp(pTab->zName, "sqlite_stat1") ){
+ sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE);
+ }
+ if( eMode!=ONEPASS_OFF ){
+ sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE);
+ }
+ if( iIdxNoSeek>=0 && iIdxNoSeek!=iDataCur ){
+ sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
+ }
+ if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION;
+ sqlite3VdbeChangeP5(v, p5);
+ }
+
+ /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
+ ** handle rows (possibly in other tables) that refer via a foreign key
+ ** to the row just deleted. */
+ sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);
+
+ /* Invoke AFTER DELETE trigger programs. */
+ sqlite3CodeRowTrigger(pParse, pTrigger,
+ TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel
+ );
+
+ /* Jump here if the row had already been deleted before any BEFORE
+ ** trigger programs were invoked. Or if a trigger program throws a
+ ** RAISE(IGNORE) exception. */
+ sqlite3VdbeResolveLabel(v, iLabel);
+ VdbeModuleComment((v, "END: GenRowDel()"));
+}
+
+/*
+** This routine generates VDBE code that causes the deletion of all
+** index entries associated with a single row of a single table, pTab
+**
+** Preconditions:
+**
+** 1. A read/write cursor "iDataCur" must be open on the canonical storage
+** btree for the table pTab. (This will be either the table itself
+** for rowid tables or to the primary key index for WITHOUT ROWID
+** tables.)
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number iIdxCur+i for the i-th index. (The pTab->pIndex
+** index is the 0-th index.)
+**
+** 3. The "iDataCur" cursor must be already be positioned on the row
+** that is to be deleted.
+*/
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Table containing the row to be deleted */
+ int iDataCur, /* Cursor of table holding data. */
+ int iIdxCur, /* First index cursor */
+ int *aRegIdx, /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
+ int iIdxNoSeek /* Do not delete from this cursor */
+){
+ int i; /* Index loop counter */
+ int r1 = -1; /* Register holding an index key */
+ int iPartIdxLabel; /* Jump destination for skipping partial index entries */
+ Index *pIdx; /* Current index */
+ Index *pPrior = 0; /* Prior index */
+ Vdbe *v; /* The prepared statement under construction */
+ Index *pPk; /* PRIMARY KEY index, or NULL for rowid tables */
+
+ v = pParse->pVdbe;
+ pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
+ for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ assert( iIdxCur+i!=iDataCur || pPk==pIdx );
+ if( aRegIdx!=0 && aRegIdx[i]==0 ) continue;
+ if( pIdx==pPk ) continue;
+ if( iIdxCur+i==iIdxNoSeek ) continue;
+ VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName));
+ r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1,
+ &iPartIdxLabel, pPrior, r1);
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1,
+ pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn);
+ sqlite3VdbeChangeP5(v, 1); /* Cause IdxDelete to error if no entry found */
+ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
+ pPrior = pIdx;
+ }
+}
+
+/*
+** Generate code that will assemble an index key and stores it in register
+** regOut. The key with be for index pIdx which is an index on pTab.
+** iCur is the index of a cursor open on the pTab table and pointing to
+** the entry that needs indexing. If pTab is a WITHOUT ROWID table, then
+** iCur must be the cursor of the PRIMARY KEY index.
+**
+** Return a register number which is the first in a block of
+** registers that holds the elements of the index key. The
+** block of registers has already been deallocated by the time
+** this routine returns.
+**
+** If *piPartIdxLabel is not NULL, fill it in with a label and jump
+** to that label if pIdx is a partial index that should be skipped.
+** The label should be resolved using sqlite3ResolvePartIdxLabel().
+** A partial index should be skipped if its WHERE clause evaluates
+** to false or null. If pIdx is not a partial index, *piPartIdxLabel
+** will be set to zero which is an empty label that is ignored by
+** sqlite3ResolvePartIdxLabel().
+**
+** The pPrior and regPrior parameters are used to implement a cache to
+** avoid unnecessary register loads. If pPrior is not NULL, then it is
+** a pointer to a different index for which an index key has just been
+** computed into register regPrior. If the current pIdx index is generating
+** its key into the same sequence of registers and if pPrior and pIdx share
+** a column in common, then the register corresponding to that column already
+** holds the correct value and the loading of that register is skipped.
+** This optimization is helpful when doing a DELETE or an INTEGRITY_CHECK
+** on a table with multiple indices, and especially with the ROWID or
+** PRIMARY KEY columns of the index.
+*/
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(
+ Parse *pParse, /* Parsing context */
+ Index *pIdx, /* The index for which to generate a key */
+ int iDataCur, /* Cursor number from which to take column data */
+ int regOut, /* Put the new key into this register if not 0 */
+ int prefixOnly, /* Compute only a unique prefix of the key */
+ int *piPartIdxLabel, /* OUT: Jump to this label to skip partial index */
+ Index *pPrior, /* Previously generated index key */
+ int regPrior /* Register holding previous generated key */
+){
+ Vdbe *v = pParse->pVdbe;
+ int j;
+ int regBase;
+ int nCol;
+
+ if( piPartIdxLabel ){
+ if( pIdx->pPartIdxWhere ){
+ *piPartIdxLabel = sqlite3VdbeMakeLabel(pParse);
+ pParse->iSelfTab = iDataCur + 1;
+ sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel,
+ SQLITE_JUMPIFNULL);
+ pParse->iSelfTab = 0;
+ pPrior = 0; /* Ticket a9efb42811fa41ee 2019-11-02;
+ ** pPartIdxWhere may have corrupted regPrior registers */
+ }else{
+ *piPartIdxLabel = 0;
+ }
+ }
+ nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn;
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0;
+ for(j=0; j<nCol; j++){
+ if( pPrior
+ && pPrior->aiColumn[j]==pIdx->aiColumn[j]
+ && pPrior->aiColumn[j]!=XN_EXPR
+ ){
+ /* This column was already computed by the previous index */
+ continue;
+ }
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iDataCur, j, regBase+j);
+ if( pIdx->aiColumn[j]>=0 ){
+ /* If the column affinity is REAL but the number is an integer, then it
+ ** might be stored in the table as an integer (using a compact
+ ** representation) then converted to REAL by an OP_RealAffinity opcode.
+ ** But we are getting ready to store this value back into an index, where
+ ** it should be converted by to INTEGER again. So omit the
+ ** OP_RealAffinity opcode if it is present */
+ sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity);
+ }
+ }
+ if( regOut ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut);
+ }
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ return regBase;
+}
+
+/*
+** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label
+** because it was a partial index, then this routine should be called to
+** resolve that label.
+*/
+SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse *pParse, int iLabel){
+ if( iLabel ){
+ sqlite3VdbeResolveLabel(pParse->pVdbe, iLabel);
+ }
+}
+
+/************** End of delete.c **********************************************/
+/************** Begin file func.c ********************************************/
+/*
+** 2002 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C-language implementations for many of the SQL
+** functions of SQLite. (Some function, and in particular the date and
+** time functions, are implemented separately.)
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+/* #include <assert.h> */
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* #include <math.h> */
+#endif
+/* #include "vdbeInt.h" */
+
+/*
+** Return the collating function associated with a function.
+*/
+static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
+ VdbeOp *pOp;
+ assert( context->pVdbe!=0 );
+ pOp = &context->pVdbe->aOp[context->iOp-1];
+ assert( pOp->opcode==OP_CollSeq );
+ assert( pOp->p4type==P4_COLLSEQ );
+ return pOp->p4.pColl;
+}
+
+/*
+** Indicate that the accumulator load should be skipped on this
+** iteration of the aggregate loop.
+*/
+static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
+ assert( context->isError<=0 );
+ context->isError = -1;
+ context->skipFlag = 1;
+}
+
+/*
+** Implementation of the non-aggregate min() and max() functions
+*/
+static void minmaxFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ int mask; /* 0 for min() or 0xffffffff for max() */
+ int iBest;
+ CollSeq *pColl;
+
+ assert( argc>1 );
+ mask = sqlite3_user_data(context)==0 ? 0 : -1;
+ pColl = sqlite3GetFuncCollSeq(context);
+ assert( pColl );
+ assert( mask==-1 || mask==0 );
+ iBest = 0;
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ for(i=1; i<argc; i++){
+ if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
+ if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
+ testcase( mask==0 );
+ iBest = i;
+ }
+ }
+ sqlite3_result_value(context, argv[iBest]);
+}
+
+/*
+** Return the type of the argument.
+*/
+static void typeofFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ static const char *azType[] = { "integer", "real", "text", "blob", "null" };
+ int i = sqlite3_value_type(argv[0]) - 1;
+ UNUSED_PARAMETER(NotUsed);
+ assert( i>=0 && i<ArraySize(azType) );
+ assert( SQLITE_INTEGER==1 );
+ assert( SQLITE_FLOAT==2 );
+ assert( SQLITE_TEXT==3 );
+ assert( SQLITE_BLOB==4 );
+ assert( SQLITE_NULL==5 );
+ /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
+ ** the datatype code for the initial datatype of the sqlite3_value object
+ ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
+ ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
+ sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
+}
+
+/* subtype(X)
+**
+** Return the subtype of X
+*/
+static void subtypeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
+}
+
+/*
+** Implementation of the length() function
+*/
+static void lengthFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_BLOB:
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ const unsigned char *z0;
+ unsigned char c;
+ if( z==0 ) return;
+ z0 = z;
+ while( (c = *z)!=0 ){
+ z++;
+ if( c>=0xc0 ){
+ while( (*z & 0xc0)==0x80 ){ z++; z0++; }
+ }
+ }
+ sqlite3_result_int(context, (int)(z-z0));
+ break;
+ }
+ default: {
+ sqlite3_result_null(context);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the abs() function.
+**
+** IMP: R-23979-26855 The abs(X) function returns the absolute value of
+** the numeric argument X.
+*/
+static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ i64 iVal = sqlite3_value_int64(argv[0]);
+ if( iVal<0 ){
+ if( iVal==SMALLEST_INT64 ){
+ /* IMP: R-31676-45509 If X is the integer -9223372036854775808
+ ** then abs(X) throws an integer overflow error since there is no
+ ** equivalent positive 64-bit two complement value. */
+ sqlite3_result_error(context, "integer overflow", -1);
+ return;
+ }
+ iVal = -iVal;
+ }
+ sqlite3_result_int64(context, iVal);
+ break;
+ }
+ case SQLITE_NULL: {
+ /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
+ sqlite3_result_null(context);
+ break;
+ }
+ default: {
+ /* Because sqlite3_value_double() returns 0.0 if the argument is not
+ ** something that can be converted into a number, we have:
+ ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
+ ** that cannot be converted to a numeric value.
+ */
+ double rVal = sqlite3_value_double(argv[0]);
+ if( rVal<0 ) rVal = -rVal;
+ sqlite3_result_double(context, rVal);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the instr() function.
+**
+** instr(haystack,needle) finds the first occurrence of needle
+** in haystack and returns the number of previous characters plus 1,
+** or 0 if needle does not occur within haystack.
+**
+** If both haystack and needle are BLOBs, then the result is one more than
+** the number of bytes in haystack prior to the first occurrence of needle,
+** or 0 if needle never occurs in haystack.
+*/
+static void instrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zHaystack;
+ const unsigned char *zNeedle;
+ int nHaystack;
+ int nNeedle;
+ int typeHaystack, typeNeedle;
+ int N = 1;
+ int isText;
+ unsigned char firstChar;
+ sqlite3_value *pC1 = 0;
+ sqlite3_value *pC2 = 0;
+
+ UNUSED_PARAMETER(argc);
+ typeHaystack = sqlite3_value_type(argv[0]);
+ typeNeedle = sqlite3_value_type(argv[1]);
+ if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
+ nHaystack = sqlite3_value_bytes(argv[0]);
+ nNeedle = sqlite3_value_bytes(argv[1]);
+ if( nNeedle>0 ){
+ if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
+ zHaystack = sqlite3_value_blob(argv[0]);
+ zNeedle = sqlite3_value_blob(argv[1]);
+ isText = 0;
+ }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
+ zHaystack = sqlite3_value_text(argv[0]);
+ zNeedle = sqlite3_value_text(argv[1]);
+ isText = 1;
+ }else{
+ pC1 = sqlite3_value_dup(argv[0]);
+ zHaystack = sqlite3_value_text(pC1);
+ if( zHaystack==0 ) goto endInstrOOM;
+ nHaystack = sqlite3_value_bytes(pC1);
+ pC2 = sqlite3_value_dup(argv[1]);
+ zNeedle = sqlite3_value_text(pC2);
+ if( zNeedle==0 ) goto endInstrOOM;
+ nNeedle = sqlite3_value_bytes(pC2);
+ isText = 1;
+ }
+ if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
+ firstChar = zNeedle[0];
+ while( nNeedle<=nHaystack
+ && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
+ ){
+ N++;
+ do{
+ nHaystack--;
+ zHaystack++;
+ }while( isText && (zHaystack[0]&0xc0)==0x80 );
+ }
+ if( nNeedle>nHaystack ) N = 0;
+ }
+ sqlite3_result_int(context, N);
+endInstr:
+ sqlite3_value_free(pC1);
+ sqlite3_value_free(pC2);
+ return;
+endInstrOOM:
+ sqlite3_result_error_nomem(context);
+ goto endInstr;
+}
+
+/*
+** Implementation of the printf() (a.k.a. format()) SQL function.
+*/
+static void printfFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ PrintfArguments x;
+ StrAccum str;
+ const char *zFormat;
+ int n;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
+ x.nArg = argc-1;
+ x.nUsed = 0;
+ x.apArg = argv+1;
+ sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ str.printfFlags = SQLITE_PRINTF_SQLFUNC;
+ sqlite3_str_appendf(&str, zFormat, &x);
+ n = str.nChar;
+ sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
+ SQLITE_DYNAMIC);
+ }
+}
+
+/*
+** Implementation of the substr() function.
+**
+** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
+** p1 is 1-indexed. So substr(x,1,1) returns the first character
+** of x. If x is text, then we actually count UTF-8 characters.
+** If x is a blob, then we count bytes.
+**
+** If p1 is negative, then we begin abs(p1) from the end of x[].
+**
+** If p2 is negative, return the p2 characters preceding p1.
+*/
+static void substrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z;
+ const unsigned char *z2;
+ int len;
+ int p0type;
+ i64 p1, p2;
+ int negP2 = 0;
+
+ assert( argc==3 || argc==2 );
+ if( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
+ ){
+ return;
+ }
+ p0type = sqlite3_value_type(argv[0]);
+ p1 = sqlite3_value_int(argv[1]);
+ if( p0type==SQLITE_BLOB ){
+ len = sqlite3_value_bytes(argv[0]);
+ z = sqlite3_value_blob(argv[0]);
+ if( z==0 ) return;
+ assert( len==sqlite3_value_bytes(argv[0]) );
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( z==0 ) return;
+ len = 0;
+ if( p1<0 ){
+ for(z2=z; *z2; len++){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ }
+ }
+#ifdef SQLITE_SUBSTR_COMPATIBILITY
+ /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
+ ** as substr(X,1,N) - it returns the first N characters of X. This
+ ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
+ ** from 2009-02-02 for compatibility of applications that exploited the
+ ** old buggy behavior. */
+ if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
+#endif
+ if( argc==3 ){
+ p2 = sqlite3_value_int(argv[2]);
+ if( p2<0 ){
+ p2 = -p2;
+ negP2 = 1;
+ }
+ }else{
+ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ if( p1<0 ){
+ p1 += len;
+ if( p1<0 ){
+ p2 += p1;
+ if( p2<0 ) p2 = 0;
+ p1 = 0;
+ }
+ }else if( p1>0 ){
+ p1--;
+ }else if( p2>0 ){
+ p2--;
+ }
+ if( negP2 ){
+ p1 -= p2;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
+ }
+ assert( p1>=0 && p2>=0 );
+ if( p0type!=SQLITE_BLOB ){
+ while( *z && p1 ){
+ SQLITE_SKIP_UTF8(z);
+ p1--;
+ }
+ for(z2=z; *z2 && p2; p2--){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
+ SQLITE_UTF8);
+ }else{
+ if( p1+p2>len ){
+ p2 = len-p1;
+ if( p2<0 ) p2 = 0;
+ }
+ sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** Implementation of the round() function
+*/
+#ifndef SQLITE_OMIT_FLOATING_POINT
+static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ int n = 0;
+ double r;
+ char *zBuf;
+ assert( argc==1 || argc==2 );
+ if( argc==2 ){
+ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
+ n = sqlite3_value_int(argv[1]);
+ if( n>30 ) n = 30;
+ if( n<0 ) n = 0;
+ }
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ r = sqlite3_value_double(argv[0]);
+ /* If Y==0 and X will fit in a 64-bit int,
+ ** handle the rounding directly,
+ ** otherwise use printf.
+ */
+ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
+ /* The value has no fractional part so there is nothing to round */
+ }else if( n==0 ){
+ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
+ }else{
+ zBuf = sqlite3_mprintf("%.*f",n,r);
+ if( zBuf==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
+ sqlite3_free(zBuf);
+ }
+ sqlite3_result_double(context, r);
+}
+#endif
+
+/*
+** Allocate nByte bytes of space using sqlite3Malloc(). If the
+** allocation fails, call sqlite3_result_error_nomem() to notify
+** the database handle that malloc() has failed and return NULL.
+** If nByte is larger than the maximum string or blob length, then
+** raise an SQLITE_TOOBIG exception and return NULL.
+*/
+static void *contextMalloc(sqlite3_context *context, i64 nByte){
+ char *z;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( nByte>0 );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ z = 0;
+ }else{
+ z = sqlite3Malloc(nByte);
+ if( !z ){
+ sqlite3_result_error_nomem(context);
+ }
+ }
+ return z;
+}
+
+/*
+** Implementation of the upper() and lower() SQL functions.
+*/
+static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ for(i=0; i<n; i++){
+ z1[i] = (char)sqlite3Toupper(z2[i]);
+ }
+ sqlite3_result_text(context, z1, n, sqlite3_free);
+ }
+ }
+}
+static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ for(i=0; i<n; i++){
+ z1[i] = sqlite3Tolower(z2[i]);
+ }
+ sqlite3_result_text(context, z1, n, sqlite3_free);
+ }
+ }
+}
+
+/*
+** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
+** as VDBE code so that unused argument values do not have to be computed.
+** However, we still need some kind of function implementation for this
+** routines in the function table. The noopFunc macro provides this.
+** noopFunc will never be called so it doesn't matter what the implementation
+** is. We might as well use the "version()" function as a substitute.
+*/
+#define noopFunc versionFunc /* Substitute function - never called */
+
+/*
+** Implementation of random(). Return a random integer.
+*/
+static void randomFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite_int64 r;
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_randomness(sizeof(r), &r);
+ if( r<0 ){
+ /* We need to prevent a random number of 0x8000000000000000
+ ** (or -9223372036854775808) since when you do abs() of that
+ ** number of you get the same value back again. To do this
+ ** in a way that is testable, mask the sign bit off of negative
+ ** values, resulting in a positive value. Then take the
+ ** 2s complement of that positive value. The end result can
+ ** therefore be no less than -9223372036854775807.
+ */
+ r = -(r & LARGEST_INT64);
+ }
+ sqlite3_result_int64(context, r);
+}
+
+/*
+** Implementation of randomblob(N). Return a random blob
+** that is N bytes long.
+*/
+static void randomBlob(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_int64 n;
+ unsigned char *p;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ if( n<1 ){
+ n = 1;
+ }
+ p = contextMalloc(context, n);
+ if( p ){
+ sqlite3_randomness(n, p);
+ sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
+ }
+}
+
+/*
+** Implementation of the last_insert_rowid() SQL function. The return
+** value is the same as the sqlite3_last_insert_rowid() API function.
+*/
+static void last_insert_rowid(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
+ ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
+ ** function. */
+ sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
+}
+
+/*
+** Implementation of the changes() SQL function.
+**
+** IMP: R-32760-32347 The changes() SQL function is a wrapper
+** around the sqlite3_changes64() C/C++ function and hence follows the
+** same rules for counting changes.
+*/
+static void changes(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_result_int64(context, sqlite3_changes64(db));
+}
+
+/*
+** Implementation of the total_changes() SQL function. The return value is
+** the same as the sqlite3_total_changes64() API function.
+*/
+static void total_changes(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-11217-42568 This function is a wrapper around the
+ ** sqlite3_total_changes64() C/C++ interface. */
+ sqlite3_result_int64(context, sqlite3_total_changes64(db));
+}
+
+/*
+** A structure defining how to do GLOB-style comparisons.
+*/
+struct compareInfo {
+ u8 matchAll; /* "*" or "%" */
+ u8 matchOne; /* "?" or "_" */
+ u8 matchSet; /* "[" or 0 */
+ u8 noCase; /* true to ignore case differences */
+};
+
+/*
+** For LIKE and GLOB matching on EBCDIC machines, assume that every
+** character is exactly one byte in size. Also, provde the Utf8Read()
+** macro for fast reading of the next character in the common case where
+** the next character is ASCII.
+*/
+#if defined(SQLITE_EBCDIC)
+# define sqlite3Utf8Read(A) (*((*A)++))
+# define Utf8Read(A) (*(A++))
+#else
+# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
+#endif
+
+static const struct compareInfo globInfo = { '*', '?', '[', 0 };
+/* The correct SQL-92 behavior is for the LIKE operator to ignore
+** case. Thus 'a' LIKE 'A' would be true. */
+static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
+/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
+** is case sensitive causing 'a' LIKE 'A' to be false */
+static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
+
+/*
+** Possible error returns from patternMatch()
+*/
+#define SQLITE_MATCH 0
+#define SQLITE_NOMATCH 1
+#define SQLITE_NOWILDCARDMATCH 2
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a GLOB or LIKE expression. Return values:
+**
+** SQLITE_MATCH: Match
+** SQLITE_NOMATCH: No match
+** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
+**
+** Globbing rules:
+**
+** '*' Matches any sequence of zero or more characters.
+**
+** '?' Matches exactly one character.
+**
+** [...] Matches one character from the enclosed list of
+** characters.
+**
+** [^...] Matches one character not in the enclosed list.
+**
+** With the [...] and [^...] matching, a ']' character can be included
+** in the list by making it the first character after '[' or '^'. A
+** range of characters can be specified using '-'. Example:
+** "[a-z]" matches any single lower-case letter. To match a '-', make
+** it the last character in the list.
+**
+** Like matching rules:
+**
+** '%' Matches any sequence of zero or more characters
+**
+*** '_' Matches any one character
+**
+** Ec Where E is the "esc" character and c is any other
+** character, including '%', '_', and esc, match exactly c.
+**
+** The comments within this routine usually assume glob matching.
+**
+** This routine is usually quick, but can be N**2 in the worst case.
+*/
+static int patternCompare(
+ const u8 *zPattern, /* The glob pattern */
+ const u8 *zString, /* The string to compare against the glob */
+ const struct compareInfo *pInfo, /* Information about how to do the compare */
+ u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
+){
+ u32 c, c2; /* Next pattern and input string chars */
+ u32 matchOne = pInfo->matchOne; /* "?" or "_" */
+ u32 matchAll = pInfo->matchAll; /* "*" or "%" */
+ u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
+ const u8 *zEscaped = 0; /* One past the last escaped input char */
+
+ while( (c = Utf8Read(zPattern))!=0 ){
+ if( c==matchAll ){ /* Match "*" */
+ /* Skip over multiple "*" characters in the pattern. If there
+ ** are also "?" characters, skip those as well, but consume a
+ ** single character of the input string for each "?" skipped */
+ while( (c=Utf8Read(zPattern)) == matchAll
+ || (c == matchOne && matchOne!=0) ){
+ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ }
+ if( c==0 ){
+ return SQLITE_MATCH; /* "*" at the end of the pattern matches */
+ }else if( c==matchOther ){
+ if( pInfo->matchSet==0 ){
+ c = sqlite3Utf8Read(&zPattern);
+ if( c==0 ) return SQLITE_NOWILDCARDMATCH;
+ }else{
+ /* "[...]" immediately follows the "*". We have to do a slow
+ ** recursive search in this case, but it is an unusual case. */
+ assert( matchOther<0x80 ); /* '[' is a single-byte character */
+ while( *zString ){
+ int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ SQLITE_SKIP_UTF8(zString);
+ }
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ }
+
+ /* At this point variable c contains the first character of the
+ ** pattern string past the "*". Search in the input string for the
+ ** first matching character and recursively continue the match from
+ ** that point.
+ **
+ ** For a case-insensitive search, set variable cx to be the same as
+ ** c but in the other case and search the input string for either
+ ** c or cx.
+ */
+ if( c<=0x80 ){
+ char zStop[3];
+ int bMatch;
+ if( noCase ){
+ zStop[0] = sqlite3Toupper(c);
+ zStop[1] = sqlite3Tolower(c);
+ zStop[2] = 0;
+ }else{
+ zStop[0] = c;
+ zStop[1] = 0;
+ }
+ while(1){
+ zString += strcspn((const char*)zString, zStop);
+ if( zString[0]==0 ) break;
+ zString++;
+ bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ }
+ }else{
+ int bMatch;
+ while( (c2 = Utf8Read(zString))!=0 ){
+ if( c2!=c ) continue;
+ bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ }
+ }
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ if( c==matchOther ){
+ if( pInfo->matchSet==0 ){
+ c = sqlite3Utf8Read(&zPattern);
+ if( c==0 ) return SQLITE_NOMATCH;
+ zEscaped = zPattern;
+ }else{
+ u32 prior_c = 0;
+ int seen = 0;
+ int invert = 0;
+ c = sqlite3Utf8Read(&zString);
+ if( c==0 ) return SQLITE_NOMATCH;
+ c2 = sqlite3Utf8Read(&zPattern);
+ if( c2=='^' ){
+ invert = 1;
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ if( c2==']' ){
+ if( c==']' ) seen = 1;
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ while( c2 && c2!=']' ){
+ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
+ c2 = sqlite3Utf8Read(&zPattern);
+ if( c>=prior_c && c<=c2 ) seen = 1;
+ prior_c = 0;
+ }else{
+ if( c==c2 ){
+ seen = 1;
+ }
+ prior_c = c2;
+ }
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ){
+ return SQLITE_NOMATCH;
+ }
+ continue;
+ }
+ }
+ c2 = Utf8Read(zString);
+ if( c==c2 ) continue;
+ if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
+ continue;
+ }
+ if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
+ return SQLITE_NOMATCH;
+ }
+ return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
+}
+
+/*
+** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
+** non-zero if there is no match.
+*/
+SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){
+ return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
+}
+
+/*
+** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
+** a miss - like strcmp().
+*/
+SQLITE_API int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
+ return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
+}
+
+/*
+** Count the number of times that the LIKE operator (or GLOB which is
+** just a variation of LIKE) gets called. This is used for testing
+** only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_like_count = 0;
+#endif
+
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B,A).
+**
+** This same function (with a different compareInfo structure) computes
+** the GLOB operator.
+*/
+static void likeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA, *zB;
+ u32 escape;
+ int nPat;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ struct compareInfo *pInfo = sqlite3_user_data(context);
+ struct compareInfo backupInfo;
+
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( sqlite3_value_type(argv[0])==SQLITE_BLOB
+ || sqlite3_value_type(argv[1])==SQLITE_BLOB
+ ){
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+ sqlite3_result_int(context, 0);
+ return;
+ }
+#endif
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ nPat = sqlite3_value_bytes(argv[0]);
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
+ if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ const unsigned char *zEsc = sqlite3_value_text(argv[2]);
+ if( zEsc==0 ) return;
+ if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ escape = sqlite3Utf8Read(&zEsc);
+ if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
+ memcpy(&backupInfo, pInfo, sizeof(backupInfo));
+ pInfo = &backupInfo;
+ if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
+ if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
+ }
+ }else{
+ escape = pInfo->matchSet;
+ }
+ zB = sqlite3_value_text(argv[0]);
+ zA = sqlite3_value_text(argv[1]);
+ if( zA && zB ){
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+ sqlite3_result_int(context,
+ patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
+ }
+}
+
+/*
+** Implementation of the NULLIF(x,y) function. The result is the first
+** argument if the arguments are different. The result is NULL if the
+** arguments are equal to each other.
+*/
+static void nullifFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ UNUSED_PARAMETER(NotUsed);
+ if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
+ sqlite3_result_value(context, argv[0]);
+ }
+}
+
+/*
+** Implementation of the sqlite_version() function. The result is the version
+** of the SQLite library that is running.
+*/
+static void versionFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-48699-48617 This function is an SQL wrapper around the
+ ** sqlite3_libversion() C-interface. */
+ sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
+}
+
+/*
+** Implementation of the sqlite_source_id() function. The result is a string
+** that identifies the particular version of the source code used to build
+** SQLite.
+*/
+static void sourceidFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-24470-31136 This function is an SQL wrapper around the
+ ** sqlite3_sourceid() C interface. */
+ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
+}
+
+/*
+** Implementation of the sqlite_log() function. This is a wrapper around
+** sqlite3_log(). The return value is NULL. The function exists purely for
+** its side-effects.
+*/
+static void errlogFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(context);
+ sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
+}
+
+/*
+** Implementation of the sqlite_compileoption_used() function.
+** The result is an integer that identifies if the compiler option
+** was used to build SQLite.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+static void compileoptionusedFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zOptName;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
+ ** function is a wrapper around the sqlite3_compileoption_used() C/C++
+ ** function.
+ */
+ if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
+ sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
+ }
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/*
+** Implementation of the sqlite_compileoption_get() function.
+** The result is a string that identifies the compiler options
+** used to build SQLite.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+static void compileoptiongetFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int n;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
+ ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
+ */
+ n = sqlite3_value_int(argv[0]);
+ sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/* Array for converting from half-bytes (nybbles) into ASCII hex
+** digits. */
+static const char hexdigits[] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
+};
+
+/*
+** Append to pStr text that is the SQL literal representation of the
+** value contained in pValue.
+*/
+SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){
+ /* As currently implemented, the string must be initially empty.
+ ** we might relax this requirement in the future, but that will
+ ** require enhancements to the implementation. */
+ assert( pStr!=0 && pStr->nChar==0 );
+
+ switch( sqlite3_value_type(pValue) ){
+ case SQLITE_FLOAT: {
+ double r1, r2;
+ const char *zVal;
+ r1 = sqlite3_value_double(pValue);
+ sqlite3_str_appendf(pStr, "%!.15g", r1);
+ zVal = sqlite3_str_value(pStr);
+ if( zVal ){
+ sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
+ if( r1!=r2 ){
+ sqlite3_str_reset(pStr);
+ sqlite3_str_appendf(pStr, "%!.20e", r1);
+ }
+ }
+ break;
+ }
+ case SQLITE_INTEGER: {
+ sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
+ break;
+ }
+ case SQLITE_BLOB: {
+ char const *zBlob = sqlite3_value_blob(pValue);
+ int nBlob = sqlite3_value_bytes(pValue);
+ assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
+ sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
+ if( pStr->accError==0 ){
+ char *zText = pStr->zText;
+ int i;
+ for(i=0; i<nBlob; i++){
+ zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
+ zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
+ }
+ zText[(nBlob*2)+2] = '\'';
+ zText[(nBlob*2)+3] = '\0';
+ zText[0] = 'X';
+ zText[1] = '\'';
+ pStr->nChar = nBlob*2 + 3;
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *zArg = sqlite3_value_text(pValue);
+ sqlite3_str_appendf(pStr, "%Q", zArg);
+ break;
+ }
+ default: {
+ assert( sqlite3_value_type(pValue)==SQLITE_NULL );
+ sqlite3_str_append(pStr, "NULL", 4);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the QUOTE() function.
+**
+** The quote(X) function returns the text of an SQL literal which is the
+** value of its argument suitable for inclusion into an SQL statement.
+** Strings are surrounded by single-quotes with escapes on interior quotes
+** as needed. BLOBs are encoded as hexadecimal literals. Strings with
+** embedded NUL characters cannot be represented as string literals in SQL
+** and hence the returned string literal is truncated prior to the first NUL.
+*/
+static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ sqlite3_str str;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ sqlite3QuoteValue(&str,argv[0]);
+ sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
+ SQLITE_DYNAMIC);
+ if( str.accError!=SQLITE_OK ){
+ sqlite3_result_null(context);
+ sqlite3_result_error_code(context, str.accError);
+ }
+}
+
+/*
+** The unicode() function. Return the integer unicode code-point value
+** for the first character of the input string.
+*/
+static void unicodeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ (void)argc;
+ if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
+}
+
+/*
+** The char() function takes zero or more arguments, each of which is
+** an integer. It constructs a string where each character of the string
+** is the unicode character for the corresponding integer argument.
+*/
+static void charFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned char *z, *zOut;
+ int i;
+ zOut = z = sqlite3_malloc64( argc*4+1 );
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ for(i=0; i<argc; i++){
+ sqlite3_int64 x;
+ unsigned c;
+ x = sqlite3_value_int64(argv[i]);
+ if( x<0 || x>0x10ffff ) x = 0xfffd;
+ c = (unsigned)(x & 0x1fffff);
+ if( c<0x00080 ){
+ *zOut++ = (u8)(c&0xFF);
+ }else if( c<0x00800 ){
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ }else if( c<0x10000 ){
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ }else{
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ } \
+ }
+ sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
+}
+
+/*
+** The hex() function. Interpret the argument as a blob. Return
+** a hexadecimal rendering as text.
+*/
+static void hexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i, n;
+ const unsigned char *pBlob;
+ char *zHex, *z;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ pBlob = sqlite3_value_blob(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
+ if( zHex ){
+ for(i=0; i<n; i++, pBlob++){
+ unsigned char c = *pBlob;
+ *(z++) = hexdigits[(c>>4)&0xf];
+ *(z++) = hexdigits[c&0xf];
+ }
+ *z = 0;
+ sqlite3_result_text(context, zHex, n*2, sqlite3_free);
+ }
+}
+
+/*
+** The zeroblob(N) function returns a zero-filled blob of size N bytes.
+*/
+static void zeroblobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ i64 n;
+ int rc;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ if( n<0 ) n = 0;
+ rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
+ if( rc ){
+ sqlite3_result_error_code(context, rc);
+ }
+}
+
+/*
+** The replace() function. Three arguments are all strings: call
+** them A, B, and C. The result is also a string which is derived
+** from A by replacing every occurrence of B with C. The match
+** must be exact. Collating sequences are not used.
+*/
+static void replaceFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zStr; /* The input string A */
+ const unsigned char *zPattern; /* The pattern string B */
+ const unsigned char *zRep; /* The replacement string C */
+ unsigned char *zOut; /* The output */
+ int nStr; /* Size of zStr */
+ int nPattern; /* Size of zPattern */
+ int nRep; /* Size of zRep */
+ i64 nOut; /* Maximum size of zOut */
+ int loopLimit; /* Last zStr[] that might match zPattern[] */
+ int i, j; /* Loop counters */
+ unsigned cntExpand; /* Number zOut expansions */
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ assert( argc==3 );
+ UNUSED_PARAMETER(argc);
+ zStr = sqlite3_value_text(argv[0]);
+ if( zStr==0 ) return;
+ nStr = sqlite3_value_bytes(argv[0]);
+ assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
+ zPattern = sqlite3_value_text(argv[1]);
+ if( zPattern==0 ){
+ assert( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || sqlite3_context_db_handle(context)->mallocFailed );
+ return;
+ }
+ if( zPattern[0]==0 ){
+ assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
+ sqlite3_result_value(context, argv[0]);
+ return;
+ }
+ nPattern = sqlite3_value_bytes(argv[1]);
+ assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
+ zRep = sqlite3_value_text(argv[2]);
+ if( zRep==0 ) return;
+ nRep = sqlite3_value_bytes(argv[2]);
+ assert( zRep==sqlite3_value_text(argv[2]) );
+ nOut = nStr + 1;
+ assert( nOut<SQLITE_MAX_LENGTH );
+ zOut = contextMalloc(context, (i64)nOut);
+ if( zOut==0 ){
+ return;
+ }
+ loopLimit = nStr - nPattern;
+ cntExpand = 0;
+ for(i=j=0; i<=loopLimit; i++){
+ if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
+ zOut[j++] = zStr[i];
+ }else{
+ if( nRep>nPattern ){
+ nOut += nRep - nPattern;
+ testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ sqlite3_free(zOut);
+ return;
+ }
+ cntExpand++;
+ if( (cntExpand&(cntExpand-1))==0 ){
+ /* Grow the size of the output buffer only on substitutions
+ ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
+ u8 *zOld;
+ zOld = zOut;
+ zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(context);
+ sqlite3_free(zOld);
+ return;
+ }
+ }
+ }
+ memcpy(&zOut[j], zRep, nRep);
+ j += nRep;
+ i += nPattern-1;
+ }
+ }
+ assert( j+nStr-i+1<=nOut );
+ memcpy(&zOut[j], &zStr[i], nStr-i);
+ j += nStr - i;
+ assert( j<=nOut );
+ zOut[j] = 0;
+ sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
+}
+
+/*
+** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
+** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
+*/
+static void trimFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zIn; /* Input string */
+ const unsigned char *zCharSet; /* Set of characters to trim */
+ unsigned int nIn; /* Number of bytes in input */
+ int flags; /* 1: trimleft 2: trimright 3: trim */
+ int i; /* Loop counter */
+ unsigned int *aLen = 0; /* Length of each character in zCharSet */
+ unsigned char **azChar = 0; /* Individual characters in zCharSet */
+ int nChar; /* Number of characters in zCharSet */
+
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
+ return;
+ }
+ zIn = sqlite3_value_text(argv[0]);
+ if( zIn==0 ) return;
+ nIn = (unsigned)sqlite3_value_bytes(argv[0]);
+ assert( zIn==sqlite3_value_text(argv[0]) );
+ if( argc==1 ){
+ static const unsigned lenOne[] = { 1 };
+ static unsigned char * const azOne[] = { (u8*)" " };
+ nChar = 1;
+ aLen = (unsigned*)lenOne;
+ azChar = (unsigned char **)azOne;
+ zCharSet = 0;
+ }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
+ return;
+ }else{
+ const unsigned char *z;
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ SQLITE_SKIP_UTF8(z);
+ }
+ if( nChar>0 ){
+ azChar = contextMalloc(context,
+ ((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
+ if( azChar==0 ){
+ return;
+ }
+ aLen = (unsigned*)&azChar[nChar];
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ azChar[nChar] = (unsigned char *)z;
+ SQLITE_SKIP_UTF8(z);
+ aLen[nChar] = (unsigned)(z - azChar[nChar]);
+ }
+ }
+ }
+ if( nChar>0 ){
+ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
+ if( flags & 1 ){
+ while( nIn>0 ){
+ unsigned int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ zIn += len;
+ nIn -= len;
+ }
+ }
+ if( flags & 2 ){
+ while( nIn>0 ){
+ unsigned int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ nIn -= len;
+ }
+ }
+ if( zCharSet ){
+ sqlite3_free(azChar);
+ }
+ }
+ sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
+}
+
+
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+/*
+** The "unknown" function is automatically substituted in place of
+** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
+** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used.
+** When the "sqlite3" command-line shell is built using this functionality,
+** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
+** involving application-defined functions to be examined in a generic
+** sqlite3 shell.
+*/
+static void unknownFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ /* no-op */
+}
+#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
+
+
+/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
+** is only available if the SQLITE_SOUNDEX compile-time option is used
+** when SQLite is built.
+*/
+#ifdef SQLITE_SOUNDEX
+/*
+** Compute the soundex encoding of a word.
+**
+** IMP: R-59782-00072 The soundex(X) function returns a string that is the
+** soundex encoding of the string X.
+*/
+static void soundexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ char zResult[8];
+ const u8 *zIn;
+ int i, j;
+ static const unsigned char iCode[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ };
+ assert( argc==1 );
+ zIn = (u8*)sqlite3_value_text(argv[0]);
+ if( zIn==0 ) zIn = (u8*)"";
+ for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
+ if( zIn[i] ){
+ u8 prevcode = iCode[zIn[i]&0x7f];
+ zResult[0] = sqlite3Toupper(zIn[i]);
+ for(j=1; j<4 && zIn[i]; i++){
+ int code = iCode[zIn[i]&0x7f];
+ if( code>0 ){
+ if( code!=prevcode ){
+ prevcode = code;
+ zResult[j++] = code + '0';
+ }
+ }else{
+ prevcode = 0;
+ }
+ }
+ while( j<4 ){
+ zResult[j++] = '0';
+ }
+ zResult[j] = 0;
+ sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
+ }else{
+ /* IMP: R-64894-50321 The string "?000" is returned if the argument
+ ** is NULL or contains no ASCII alphabetic characters. */
+ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
+ }
+}
+#endif /* SQLITE_SOUNDEX */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** A function that loads a shared-library extension then returns NULL.
+*/
+static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
+ const char *zFile = (const char *)sqlite3_value_text(argv[0]);
+ const char *zProc;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char *zErrMsg = 0;
+
+ /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
+ ** flag is set. See the sqlite3_enable_load_extension() API.
+ */
+ if( (db->flags & SQLITE_LoadExtFunc)==0 ){
+ sqlite3_result_error(context, "not authorized", -1);
+ return;
+ }
+
+ if( argc==2 ){
+ zProc = (const char *)sqlite3_value_text(argv[1]);
+ }else{
+ zProc = 0;
+ }
+ if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
+ sqlite3_result_error(context, zErrMsg, -1);
+ sqlite3_free(zErrMsg);
+ }
+}
+#endif
+
+
+/*
+** An instance of the following structure holds the context of a
+** sum() or avg() aggregate computation.
+*/
+typedef struct SumCtx SumCtx;
+struct SumCtx {
+ double rSum; /* Floating point sum */
+ i64 iSum; /* Integer sum */
+ i64 cnt; /* Number of elements summed */
+ u8 overflow; /* True if integer overflow seen */
+ u8 approx; /* True if non-integer value was input to the sum */
+};
+
+/*
+** Routines used to compute the sum, average, and total.
+**
+** The SUM() function follows the (broken) SQL standard which means
+** that it returns NULL if it sums over no inputs. TOTAL returns
+** 0.0 in that case. In addition, TOTAL always returns a float where
+** SUM might return an integer if it never encounters a floating point
+** value. TOTAL never fails, but SUM might through an exception if
+** it overflows an integer.
+*/
+static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ if( p && type!=SQLITE_NULL ){
+ p->cnt++;
+ if( type==SQLITE_INTEGER ){
+ i64 v = sqlite3_value_int64(argv[0]);
+ p->rSum += v;
+ if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
+ p->approx = p->overflow = 1;
+ }
+ }else{
+ p->rSum += sqlite3_value_double(argv[0]);
+ p->approx = 1;
+ }
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ /* p is always non-NULL because sumStep() will have been called first
+ ** to initialize it */
+ if( ALWAYS(p) && type!=SQLITE_NULL ){
+ assert( p->cnt>0 );
+ p->cnt--;
+ assert( type==SQLITE_INTEGER || p->approx );
+ if( type==SQLITE_INTEGER && p->approx==0 ){
+ i64 v = sqlite3_value_int64(argv[0]);
+ p->rSum -= v;
+ p->iSum -= v;
+ }else{
+ p->rSum -= sqlite3_value_double(argv[0]);
+ }
+ }
+}
+#else
+# define sumInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void sumFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ if( p->overflow ){
+ sqlite3_result_error(context,"integer overflow",-1);
+ }else if( p->approx ){
+ sqlite3_result_double(context, p->rSum);
+ }else{
+ sqlite3_result_int64(context, p->iSum);
+ }
+ }
+}
+static void avgFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ sqlite3_result_double(context, p->rSum/(double)p->cnt);
+ }
+}
+static void totalFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ sqlite3_result_double(context, p ? p->rSum : (double)0);
+}
+
+/*
+** The following structure keeps track of state information for the
+** count() aggregate function.
+*/
+typedef struct CountCtx CountCtx;
+struct CountCtx {
+ i64 n;
+#ifdef SQLITE_DEBUG
+ int bInverse; /* True if xInverse() ever called */
+#endif
+};
+
+/*
+** Routines to implement the count() aggregate function.
+*/
+static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
+ p->n++;
+ }
+
+#ifndef SQLITE_OMIT_DEPRECATED
+ /* The sqlite3_aggregate_count() function is deprecated. But just to make
+ ** sure it still operates correctly, verify that its count agrees with our
+ ** internal count when using count(*) and when the total count can be
+ ** expressed as a 32-bit integer. */
+ assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
+ || p->n==sqlite3_aggregate_count(context) );
+#endif
+}
+static void countFinalize(sqlite3_context *context){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ sqlite3_result_int64(context, p ? p->n : 0);
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(ctx, sizeof(*p));
+ /* p is always non-NULL since countStep() will have been called first */
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
+ p->n--;
+#ifdef SQLITE_DEBUG
+ p->bInverse = 1;
+#endif
+ }
+}
+#else
+# define countInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Routines to implement min() and max() aggregate functions.
+*/
+static void minmaxStep(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ Mem *pArg = (Mem *)argv[0];
+ Mem *pBest;
+ UNUSED_PARAMETER(NotUsed);
+
+ pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
+ if( !pBest ) return;
+
+ if( sqlite3_value_type(pArg)==SQLITE_NULL ){
+ if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
+ }else if( pBest->flags ){
+ int max;
+ int cmp;
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ /* This step function is used for both the min() and max() aggregates,
+ ** the only difference between the two being that the sense of the
+ ** comparison is inverted. For the max() aggregate, the
+ ** sqlite3_user_data() function returns (void *)-1. For min() it
+ ** returns (void *)db, where db is the sqlite3* database pointer.
+ ** Therefore the next statement sets variable 'max' to 1 for the max()
+ ** aggregate, or 0 for min().
+ */
+ max = sqlite3_user_data(context)!=0;
+ cmp = sqlite3MemCompare(pBest, pArg, pColl);
+ if( (max && cmp<0) || (!max && cmp>0) ){
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }else{
+ sqlite3SkipAccumulatorLoad(context);
+ }
+ }else{
+ pBest->db = sqlite3_context_db_handle(context);
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }
+}
+static void minMaxValueFinalize(sqlite3_context *context, int bValue){
+ sqlite3_value *pRes;
+ pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
+ if( pRes ){
+ if( pRes->flags ){
+ sqlite3_result_value(context, pRes);
+ }
+ if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void minMaxValue(sqlite3_context *context){
+ minMaxValueFinalize(context, 1);
+}
+#else
+# define minMaxValue 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void minMaxFinalize(sqlite3_context *context){
+ minMaxValueFinalize(context, 0);
+}
+
+/*
+** group_concat(EXPR, ?SEPARATOR?)
+**
+** The SEPARATOR goes before the EXPR string. This is tragic. The
+** groupConcatInverse() implementation would have been easier if the
+** SEPARATOR were appended after EXPR. And the order is undocumented,
+** so we could change it, in theory. But the old behavior has been
+** around for so long that we dare not, for fear of breaking something.
+*/
+typedef struct {
+ StrAccum str; /* The accumulated concatenation */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ int nAccum; /* Number of strings presently concatenated */
+ int nFirstSepLength; /* Used to detect separator length change */
+ /* If pnSepLengths!=0, refs an array of inter-string separator lengths,
+ ** stored as actually incorporated into presently accumulated result.
+ ** (Hence, its slots in use number nAccum-1 between method calls.)
+ ** If pnSepLengths==0, nFirstSepLength is the length used throughout.
+ */
+ int *pnSepLengths;
+#endif
+} GroupConcatCtx;
+
+static void groupConcatStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zVal;
+ GroupConcatCtx *pGCC;
+ const char *zSep;
+ int nVal, nSep;
+ assert( argc==1 || argc==2 );
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
+ if( pGCC ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int firstTerm = pGCC->str.mxAlloc==0;
+ pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
+ if( argc==1 ){
+ if( !firstTerm ){
+ sqlite3_str_appendchar(&pGCC->str, 1, ',');
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ pGCC->nFirstSepLength = 1;
+ }
+#endif
+ }else if( !firstTerm ){
+ zSep = (char*)sqlite3_value_text(argv[1]);
+ nSep = sqlite3_value_bytes(argv[1]);
+ if( zSep ){
+ sqlite3_str_append(&pGCC->str, zSep, nSep);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ nSep = 0;
+ }
+ if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
+ int *pnsl = pGCC->pnSepLengths;
+ if( pnsl == 0 ){
+ /* First separator length variation seen, start tracking them. */
+ pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
+ if( pnsl!=0 ){
+ int i = 0, nA = pGCC->nAccum-1;
+ while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
+ }
+ }else{
+ pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
+ }
+ if( pnsl!=0 ){
+ if( ALWAYS(pGCC->nAccum>0) ){
+ pnsl[pGCC->nAccum-1] = nSep;
+ }
+ pGCC->pnSepLengths = pnsl;
+ }else{
+ sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
+ }
+ }
+#endif
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
+ }
+ pGCC->nAccum += 1;
+#endif
+ zVal = (char*)sqlite3_value_text(argv[0]);
+ nVal = sqlite3_value_bytes(argv[0]);
+ if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
+ }
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void groupConcatInverse(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GroupConcatCtx *pGCC;
+ assert( argc==1 || argc==2 );
+ (void)argc; /* Suppress unused parameter warning */
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
+ /* pGCC is always non-NULL since groupConcatStep() will have always
+ ** run frist to initialize it */
+ if( ALWAYS(pGCC) ){
+ int nVS;
+ /* Must call sqlite3_value_text() to convert the argument into text prior
+ ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
+ (void)sqlite3_value_text(argv[0]);
+ nVS = sqlite3_value_bytes(argv[0]);
+ pGCC->nAccum -= 1;
+ if( pGCC->pnSepLengths!=0 ){
+ assert(pGCC->nAccum >= 0);
+ if( pGCC->nAccum>0 ){
+ nVS += *pGCC->pnSepLengths;
+ memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
+ (pGCC->nAccum-1)*sizeof(int));
+ }
+ }else{
+ /* If removing single accumulated string, harmlessly over-do. */
+ nVS += pGCC->nFirstSepLength;
+ }
+ if( nVS>=(int)pGCC->str.nChar ){
+ pGCC->str.nChar = 0;
+ }else{
+ pGCC->str.nChar -= nVS;
+ memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
+ }
+ if( pGCC->str.nChar==0 ){
+ pGCC->str.mxAlloc = 0;
+ sqlite3_free(pGCC->pnSepLengths);
+ pGCC->pnSepLengths = 0;
+ }
+ }
+}
+#else
+# define groupConcatInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void groupConcatFinalize(sqlite3_context *context){
+ GroupConcatCtx *pGCC
+ = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
+ if( pGCC ){
+ sqlite3ResultStrAccum(context, &pGCC->str);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ sqlite3_free(pGCC->pnSepLengths);
+#endif
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void groupConcatValue(sqlite3_context *context){
+ GroupConcatCtx *pGCC
+ = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
+ if( pGCC ){
+ StrAccum *pAccum = &pGCC->str;
+ if( pAccum->accError==SQLITE_TOOBIG ){
+ sqlite3_result_error_toobig(context);
+ }else if( pAccum->accError==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ const char *zText = sqlite3_str_value(pAccum);
+ sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
+ }
+ }
+}
+#else
+# define groupConcatValue 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** This routine does per-connection function registration. Most
+** of the built-in functions above are part of the global function set.
+** This routine only deals with those that are not global.
+*/
+SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
+ int rc = sqlite3_overload_function(db, "MATCH", 2);
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ {
+ extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **);
+ sqlite3CreateFunc(db, "sqlcipher_export", -1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0, 0, 0);
+ }
+#ifdef SQLCIPHER_EXT
+#include "sqlcipher_funcs_init.h"
+#endif
+#endif
+/* END SQLCIPHER */
+}
+
+/*
+** Re-register the built-in LIKE functions. The caseSensitive
+** parameter determines whether or not the LIKE operator is case
+** sensitive.
+*/
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
+ struct compareInfo *pInfo;
+ int flags;
+ if( caseSensitive ){
+ pInfo = (struct compareInfo*)&likeInfoAlt;
+ flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
+ }else{
+ pInfo = (struct compareInfo*)&likeInfoNorm;
+ flags = SQLITE_FUNC_LIKE;
+ }
+ sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
+ sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
+ sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags;
+ sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags;
+}
+
+/*
+** pExpr points to an expression which implements a function. If
+** it is appropriate to apply the LIKE optimization to that function
+** then set aWc[0] through aWc[2] to the wildcard characters and the
+** escape character and then return TRUE. If the function is not a
+** LIKE-style function then return FALSE.
+**
+** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
+** operator if c is a string literal that is exactly one byte in length.
+** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
+** no ESCAPE clause.
+**
+** *pIsNocase is set to true if uppercase and lowercase are equivalent for
+** the function (default for LIKE). If the function makes the distinction
+** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
+** false.
+*/
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
+ FuncDef *pDef;
+ int nExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->op==TK_FUNCTION );
+ assert( ExprUseXList(pExpr) );
+ if( !pExpr->x.pList ){
+ return 0;
+ }
+ nExpr = pExpr->x.pList->nExpr;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ if( pDef==0 ) return 0;
+#endif
+ if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
+ return 0;
+ }
+
+ /* The memcpy() statement assumes that the wildcard characters are
+ ** the first three statements in the compareInfo structure. The
+ ** asserts() that follow verify that assumption
+ */
+ memcpy(aWc, pDef->pUserData, 3);
+ assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
+ assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
+ assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
+
+ if( nExpr<3 ){
+ aWc[3] = 0;
+ }else{
+ Expr *pEscape = pExpr->x.pList->a[2].pExpr;
+ char *zEscape;
+ if( pEscape->op!=TK_STRING ) return 0;
+ assert( !ExprHasProperty(pEscape, EP_IntValue) );
+ zEscape = pEscape->u.zToken;
+ if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
+ if( zEscape[0]==aWc[0] ) return 0;
+ if( zEscape[0]==aWc[1] ) return 0;
+ aWc[3] = zEscape[0];
+ }
+
+ *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
+ return 1;
+}
+
+/* Mathematical Constants */
+#ifndef M_PI
+# define M_PI 3.141592653589793238462643383279502884
+#endif
+#ifndef M_LN10
+# define M_LN10 2.302585092994045684017991454684364208
+#endif
+#ifndef M_LN2
+# define M_LN2 0.693147180559945309417232121458176568
+#endif
+
+
+/* Extra math functions that require linking with -lm
+*/
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+/*
+** Implementation SQL functions:
+**
+** ceil(X)
+** ceiling(X)
+** floor(X)
+**
+** The sqlite3_user_data() pointer is a pointer to the libm implementation
+** of the underlying C function.
+*/
+static void ceilingFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
+ break;
+ }
+ case SQLITE_FLOAT: {
+ double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
+ sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+}
+
+/*
+** On some systems, ceil() and floor() are intrinsic function. You are
+** unable to take a pointer to these functions. Hence, we here wrap them
+** in our own actual functions.
+*/
+static double xCeil(double x){ return ceil(x); }
+static double xFloor(double x){ return floor(x); }
+
+/*
+** Implementation of SQL functions:
+**
+** ln(X) - natural logarithm
+** log(X) - log X base 10
+** log10(X) - log X base 10
+** log(B,X) - log X base B
+*/
+static void logFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ double x, b, ans;
+ assert( argc==1 || argc==2 );
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ x = sqlite3_value_double(argv[0]);
+ if( x<=0.0 ) return;
+ break;
+ default:
+ return;
+ }
+ if( argc==2 ){
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ b = log(x);
+ if( b<=0.0 ) return;
+ x = sqlite3_value_double(argv[1]);
+ if( x<=0.0 ) return;
+ break;
+ default:
+ return;
+ }
+ ans = log(x)/b;
+ }else{
+ ans = log(x);
+ switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
+ case 1:
+ /* Convert from natural logarithm to log base 10 */
+ ans /= M_LN10;
+ break;
+ case 2:
+ /* Convert from natural logarithm to log base 2 */
+ ans /= M_LN2;
+ break;
+ default:
+ break;
+ }
+ }
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Functions to converts degrees to radians and radians to degrees.
+*/
+static double degToRad(double x){ return x*(M_PI/180.0); }
+static double radToDeg(double x){ return x*(180.0/M_PI); }
+
+/*
+** Implementation of 1-argument SQL math functions:
+**
+** exp(X) - Compute e to the X-th power
+*/
+static void math1Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0;
+ double v0, ans;
+ double (*x)(double);
+ assert( argc==1 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ v0 = sqlite3_value_double(argv[0]);
+ x = (double(*)(double))sqlite3_user_data(context);
+ ans = x(v0);
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Implementation of 2-argument SQL math functions:
+**
+** power(X,Y) - Compute X to the Y-th power
+*/
+static void math2Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0, type1;
+ double v0, v1, ans;
+ double (*x)(double,double);
+ assert( argc==2 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ type1 = sqlite3_value_numeric_type(argv[1]);
+ if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
+ v0 = sqlite3_value_double(argv[0]);
+ v1 = sqlite3_value_double(argv[1]);
+ x = (double(*)(double,double))sqlite3_user_data(context);
+ ans = x(v0, v1);
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Implementation of 0-argument pi() function.
+*/
+static void piFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==0 );
+ sqlite3_result_double(context, M_PI);
+}
+
+#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
+
+/*
+** Implementation of sign(X) function.
+*/
+static void signFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0;
+ double x;
+ UNUSED_PARAMETER(argc);
+ assert( argc==1 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ x = sqlite3_value_double(argv[0]);
+ sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
+}
+
+/*
+** All of the FuncDef structures in the aBuiltinFunc[] array above
+** to the global function hash table. This occurs at start-time (as
+** a consequence of calling sqlite3_initialize()).
+**
+** After this routine runs
+*/
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void){
+ /*
+ ** The following array holds FuncDef structures for all of the functions
+ ** defined in this file.
+ **
+ ** The array cannot be constant since changes are made to the
+ ** FuncDef.pHash elements at start-time. The elements of this array
+ ** are read-only after initialization is complete.
+ **
+ ** For peak efficiency, put the most frequently used function last.
+ */
+ static FuncDef aBuiltinFunc[] = {
+/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
+#if !defined(SQLITE_UNTESTABLE)
+ TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
+ TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
+ TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
+ TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
+#endif /* !defined(SQLITE_UNTESTABLE) */
+/***** Regular functions *****/
+#ifdef SQLITE_SOUNDEX
+ FUNCTION(soundex, 1, 0, 0, soundexFunc ),
+#endif
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+ SFUNCTION(load_extension, 1, 0, 0, loadExt ),
+ SFUNCTION(load_extension, 2, 0, 0, loadExt ),
+#endif
+#if SQLITE_USER_AUTHENTICATION
+ FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
+#endif
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
+ DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+ INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+ INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+ INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
+#endif
+ FUNCTION(ltrim, 1, 1, 0, trimFunc ),
+ FUNCTION(ltrim, 2, 1, 0, trimFunc ),
+ FUNCTION(rtrim, 1, 2, 0, trimFunc ),
+ FUNCTION(rtrim, 2, 2, 0, trimFunc ),
+ FUNCTION(trim, 1, 3, 0, trimFunc ),
+ FUNCTION(trim, 2, 3, 0, trimFunc ),
+ FUNCTION(min, -1, 0, 1, minmaxFunc ),
+ FUNCTION(min, 0, 0, 1, 0 ),
+ WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
+ SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
+ FUNCTION(max, -1, 1, 1, minmaxFunc ),
+ FUNCTION(max, 0, 1, 1, 0 ),
+ WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
+ SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
+ FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
+ FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF),
+ FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
+ FUNCTION(instr, 2, 0, 0, instrFunc ),
+ FUNCTION(printf, -1, 0, 0, printfFunc ),
+ FUNCTION(format, -1, 0, 0, printfFunc ),
+ FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
+ FUNCTION(char, -1, 0, 0, charFunc ),
+ FUNCTION(abs, 1, 0, 0, absFunc ),
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ FUNCTION(round, 1, 0, 0, roundFunc ),
+ FUNCTION(round, 2, 0, 0, roundFunc ),
+#endif
+ FUNCTION(upper, 1, 0, 0, upperFunc ),
+ FUNCTION(lower, 1, 0, 0, lowerFunc ),
+ FUNCTION(hex, 1, 0, 0, hexFunc ),
+ INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
+ VFUNCTION(random, 0, 0, 0, randomFunc ),
+ VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
+ FUNCTION(nullif, 2, 0, 1, nullifFunc ),
+ DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
+ DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
+ FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
+ FUNCTION(quote, 1, 0, 0, quoteFunc ),
+ VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
+ VFUNCTION(changes, 0, 0, 0, changes ),
+ VFUNCTION(total_changes, 0, 0, 0, total_changes ),
+ FUNCTION(replace, 3, 0, 0, replaceFunc ),
+ FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
+ FUNCTION(substr, 2, 0, 0, substrFunc ),
+ FUNCTION(substr, 3, 0, 0, substrFunc ),
+ FUNCTION(substring, 2, 0, 0, substrFunc ),
+ FUNCTION(substring, 3, 0, 0, substrFunc ),
+ WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
+ WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
+ WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
+ WAGGREGATE(count, 0,0,0, countStep,
+ countFinalize, countFinalize, countInverse,
+ SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
+ WAGGREGATE(count, 1,0,0, countStep,
+ countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
+ WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+ WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+
+ LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+#ifdef SQLITE_CASE_SENSITIVE_LIKE
+ LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+ LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+#else
+ LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
+ LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
+#endif
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ FUNCTION(unknown, -1, 0, 0, unknownFunc ),
+#endif
+ FUNCTION(coalesce, 1, 0, 0, 0 ),
+ FUNCTION(coalesce, 0, 0, 0, 0 ),
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+ MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
+ MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
+ MFUNCTION(floor, 1, xFloor, ceilingFunc ),
+#if SQLITE_HAVE_C99_MATH_FUNCS
+ MFUNCTION(trunc, 1, trunc, ceilingFunc ),
+#endif
+ FUNCTION(ln, 1, 0, 0, logFunc ),
+ FUNCTION(log, 1, 1, 0, logFunc ),
+ FUNCTION(log10, 1, 1, 0, logFunc ),
+ FUNCTION(log2, 1, 2, 0, logFunc ),
+ FUNCTION(log, 2, 0, 0, logFunc ),
+ MFUNCTION(exp, 1, exp, math1Func ),
+ MFUNCTION(pow, 2, pow, math2Func ),
+ MFUNCTION(power, 2, pow, math2Func ),
+ MFUNCTION(mod, 2, fmod, math2Func ),
+ MFUNCTION(acos, 1, acos, math1Func ),
+ MFUNCTION(asin, 1, asin, math1Func ),
+ MFUNCTION(atan, 1, atan, math1Func ),
+ MFUNCTION(atan2, 2, atan2, math2Func ),
+ MFUNCTION(cos, 1, cos, math1Func ),
+ MFUNCTION(sin, 1, sin, math1Func ),
+ MFUNCTION(tan, 1, tan, math1Func ),
+ MFUNCTION(cosh, 1, cosh, math1Func ),
+ MFUNCTION(sinh, 1, sinh, math1Func ),
+ MFUNCTION(tanh, 1, tanh, math1Func ),
+#if SQLITE_HAVE_C99_MATH_FUNCS
+ MFUNCTION(acosh, 1, acosh, math1Func ),
+ MFUNCTION(asinh, 1, asinh, math1Func ),
+ MFUNCTION(atanh, 1, atanh, math1Func ),
+#endif
+ MFUNCTION(sqrt, 1, sqrt, math1Func ),
+ MFUNCTION(radians, 1, degToRad, math1Func ),
+ MFUNCTION(degrees, 1, radToDeg, math1Func ),
+ FUNCTION(pi, 0, 0, 0, piFunc ),
+#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
+ FUNCTION(sign, 1, 0, 0, signFunc ),
+ INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
+ INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
+ };
+#ifndef SQLITE_OMIT_ALTERTABLE
+ sqlite3AlterFunctions();
+#endif
+ sqlite3WindowFunctions();
+ sqlite3RegisterDateTimeFunctions();
+ sqlite3RegisterJsonFunctions();
+ sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
+
+#if 0 /* Enable to print out how the built-in functions are hashed */
+ {
+ int i;
+ FuncDef *p;
+ for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
+ printf("FUNC-HASH %02d:", i);
+ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
+ int n = sqlite3Strlen30(p->zName);
+ int h = p->zName[0] + n;
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ printf(" %s(%d)", p->zName, h);
+ }
+ printf("\n");
+ }
+ }
+#endif
+}
+
+/************** End of func.c ************************************************/
+/************** Begin file fkey.c ********************************************/
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used by the compiler to add foreign key
+** support to compiled SQL statements.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+#ifndef SQLITE_OMIT_TRIGGER
+
+/*
+** Deferred and Immediate FKs
+** --------------------------
+**
+** Foreign keys in SQLite come in two flavours: deferred and immediate.
+** If an immediate foreign key constraint is violated,
+** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
+** statement transaction rolled back. If a
+** deferred foreign key constraint is violated, no action is taken
+** immediately. However if the application attempts to commit the
+** transaction before fixing the constraint violation, the attempt fails.
+**
+** Deferred constraints are implemented using a simple counter associated
+** with the database handle. The counter is set to zero each time a
+** database transaction is opened. Each time a statement is executed
+** that causes a foreign key violation, the counter is incremented. Each
+** time a statement is executed that removes an existing violation from
+** the database, the counter is decremented. When the transaction is
+** committed, the commit fails if the current value of the counter is
+** greater than zero. This scheme has two big drawbacks:
+**
+** * When a commit fails due to a deferred foreign key constraint,
+** there is no way to tell which foreign constraint is not satisfied,
+** or which row it is not satisfied for.
+**
+** * If the database contains foreign key violations when the
+** transaction is opened, this may cause the mechanism to malfunction.
+**
+** Despite these problems, this approach is adopted as it seems simpler
+** than the alternatives.
+**
+** INSERT operations:
+**
+** I.1) For each FK for which the table is the child table, search
+** the parent table for a match. If none is found increment the
+** constraint counter.
+**
+** I.2) For each FK for which the table is the parent table,
+** search the child table for rows that correspond to the new
+** row in the parent table. Decrement the counter for each row
+** found (as the constraint is now satisfied).
+**
+** DELETE operations:
+**
+** D.1) For each FK for which the table is the child table,
+** search the parent table for a row that corresponds to the
+** deleted row in the child table. If such a row is not found,
+** decrement the counter.
+**
+** D.2) For each FK for which the table is the parent table, search
+** the child table for rows that correspond to the deleted row
+** in the parent table. For each found increment the counter.
+**
+** UPDATE operations:
+**
+** An UPDATE command requires that all 4 steps above are taken, but only
+** for FK constraints for which the affected columns are actually
+** modified (values must be compared at runtime).
+**
+** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
+** This simplifies the implementation a bit.
+**
+** For the purposes of immediate FK constraints, the OR REPLACE conflict
+** resolution is considered to delete rows before the new row is inserted.
+** If a delete caused by OR REPLACE violates an FK constraint, an exception
+** is thrown, even if the FK constraint would be satisfied after the new
+** row is inserted.
+**
+** Immediate constraints are usually handled similarly. The only difference
+** is that the counter used is stored as part of each individual statement
+** object (struct Vdbe). If, after the statement has run, its immediate
+** constraint counter is greater than zero,
+** it returns SQLITE_CONSTRAINT_FOREIGNKEY
+** and the statement transaction is rolled back. An exception is an INSERT
+** statement that inserts a single row only (no triggers). In this case,
+** instead of using a counter, an exception is thrown immediately if the
+** INSERT violates a foreign key constraint. This is necessary as such
+** an INSERT does not open a statement transaction.
+**
+** TODO: How should dropping a table be handled? How should renaming a
+** table be handled?
+**
+**
+** Query API Notes
+** ---------------
+**
+** Before coding an UPDATE or DELETE row operation, the code-generator
+** for those two operations needs to know whether or not the operation
+** requires any FK processing and, if so, which columns of the original
+** row are required by the FK processing VDBE code (i.e. if FKs were
+** implemented using triggers, which of the old.* columns would be
+** accessed). No information is required by the code-generator before
+** coding an INSERT operation. The functions used by the UPDATE/DELETE
+** generation code to query for this information are:
+**
+** sqlite3FkRequired() - Test to see if FK processing is required.
+** sqlite3FkOldmask() - Query for the set of required old.* columns.
+**
+**
+** Externally accessible module functions
+** --------------------------------------
+**
+** sqlite3FkCheck() - Check for foreign key violations.
+** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
+** sqlite3FkDelete() - Delete an FKey structure.
+*/
+
+/*
+** VDBE Calling Convention
+** -----------------------
+**
+** Example:
+**
+** For the following INSERT statement:
+**
+** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
+** INSERT INTO t1 VALUES(1, 2, 3.1);
+**
+** Register (x): 2 (type integer)
+** Register (x+1): 1 (type integer)
+** Register (x+2): NULL (type NULL)
+** Register (x+3): 3.1 (type real)
+*/
+
+/*
+** A foreign key constraint requires that the key columns in the parent
+** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
+** Given that pParent is the parent table for foreign key constraint pFKey,
+** search the schema for a unique index on the parent key columns.
+**
+** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
+** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
+** is set to point to the unique index.
+**
+** If the parent key consists of a single column (the foreign key constraint
+** is not a composite foreign key), output variable *paiCol is set to NULL.
+** Otherwise, it is set to point to an allocated array of size N, where
+** N is the number of columns in the parent key. The first element of the
+** array is the index of the child table column that is mapped by the FK
+** constraint to the parent table column stored in the left-most column
+** of index *ppIdx. The second element of the array is the index of the
+** child table column that corresponds to the second left-most column of
+** *ppIdx, and so on.
+**
+** If the required index cannot be found, either because:
+**
+** 1) The named parent key columns do not exist, or
+**
+** 2) The named parent key columns do exist, but are not subject to a
+** UNIQUE or PRIMARY KEY constraint, or
+**
+** 3) No parent key columns were provided explicitly as part of the
+** foreign key definition, and the parent table does not have a
+** PRIMARY KEY, or
+**
+** 4) No parent key columns were provided explicitly as part of the
+** foreign key definition, and the PRIMARY KEY of the parent table
+** consists of a different number of columns to the child key in
+** the child table.
+**
+** then non-zero is returned, and a "foreign key mismatch" error loaded
+** into pParse. If an OOM error occurs, non-zero is returned and the
+** pParse->db->mallocFailed flag is set.
+*/
+SQLITE_PRIVATE int sqlite3FkLocateIndex(
+ Parse *pParse, /* Parse context to store any error in */
+ Table *pParent, /* Parent table of FK constraint pFKey */
+ FKey *pFKey, /* Foreign key to find index for */
+ Index **ppIdx, /* OUT: Unique index on parent table */
+ int **paiCol /* OUT: Map of index columns in pFKey */
+){
+ Index *pIdx = 0; /* Value to return via *ppIdx */
+ int *aiCol = 0; /* Value to return via *paiCol */
+ int nCol = pFKey->nCol; /* Number of columns in parent key */
+ char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
+
+ /* The caller is responsible for zeroing output parameters. */
+ assert( ppIdx && *ppIdx==0 );
+ assert( !paiCol || *paiCol==0 );
+ assert( pParse );
+
+ /* If this is a non-composite (single column) foreign key, check if it
+ ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
+ ** and *paiCol set to zero and return early.
+ **
+ ** Otherwise, for a composite foreign key (more than one column), allocate
+ ** space for the aiCol array (returned via output parameter *paiCol).
+ ** Non-composite foreign keys do not require the aiCol array.
+ */
+ if( nCol==1 ){
+ /* The FK maps to the IPK if any of the following are true:
+ **
+ ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
+ ** mapped to the primary key of table pParent, or
+ ** 2) The FK is explicitly mapped to a column declared as INTEGER
+ ** PRIMARY KEY.
+ */
+ if( pParent->iPKey>=0 ){
+ if( !zKey ) return 0;
+ if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){
+ return 0;
+ }
+ }
+ }else if( paiCol ){
+ assert( nCol>1 );
+ aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
+ if( !aiCol ) return 1;
+ *paiCol = aiCol;
+ }
+
+ for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
+ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
+ ** of columns. If each indexed column corresponds to a foreign key
+ ** column of pFKey, then this index is a winner. */
+
+ if( zKey==0 ){
+ /* If zKey is NULL, then this foreign key is implicitly mapped to
+ ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
+ ** identified by the test. */
+ if( IsPrimaryKeyIndex(pIdx) ){
+ if( aiCol ){
+ int i;
+ for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
+ }
+ break;
+ }
+ }else{
+ /* If zKey is non-NULL, then this foreign key was declared to
+ ** map to an explicit list of columns in table pParent. Check if this
+ ** index matches those columns. Also, check that the index uses
+ ** the default collation sequences for each column. */
+ int i, j;
+ for(i=0; i<nCol; i++){
+ i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
+ const char *zDfltColl; /* Def. collation for column */
+ char *zIdxCol; /* Name of indexed column */
+
+ if( iCol<0 ) break; /* No foreign keys against expression indexes */
+
+ /* If the index uses a collation sequence that is different from
+ ** the default collation sequence for the column, this index is
+ ** unusable. Bail out early in this case. */
+ zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]);
+ if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
+ if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
+
+ zIdxCol = pParent->aCol[iCol].zCnName;
+ for(j=0; j<nCol; j++){
+ if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
+ if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
+ break;
+ }
+ }
+ if( j==nCol ) break;
+ }
+ if( i==nCol ) break; /* pIdx is usable */
+ }
+ }
+ }
+
+ if( !pIdx ){
+ if( !pParse->disableTriggers ){
+ sqlite3ErrorMsg(pParse,
+ "foreign key mismatch - \"%w\" referencing \"%w\"",
+ pFKey->pFrom->zName, pFKey->zTo);
+ }
+ sqlite3DbFree(pParse->db, aiCol);
+ return 1;
+ }
+
+ *ppIdx = pIdx;
+ return 0;
+}
+
+/*
+** This function is called when a row is inserted into or deleted from the
+** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
+** on the child table of pFKey, this function is invoked twice for each row
+** affected - once to "delete" the old row, and then again to "insert" the
+** new row.
+**
+** Each time it is called, this function generates VDBE code to locate the
+** row in the parent table that corresponds to the row being inserted into
+** or deleted from the child table. If the parent row can be found, no
+** special action is taken. Otherwise, if the parent row can *not* be
+** found in the parent table:
+**
+** Operation | FK type | Action taken
+** --------------------------------------------------------------------------
+** INSERT immediate Increment the "immediate constraint counter".
+**
+** DELETE immediate Decrement the "immediate constraint counter".
+**
+** INSERT deferred Increment the "deferred constraint counter".
+**
+** DELETE deferred Decrement the "deferred constraint counter".
+**
+** These operations are identified in the comment at the top of this file
+** (fkey.c) as "I.1" and "D.1".
+*/
+static void fkLookupParent(
+ Parse *pParse, /* Parse context */
+ int iDb, /* Index of database housing pTab */
+ Table *pTab, /* Parent table of FK pFKey */
+ Index *pIdx, /* Unique index on parent key columns in pTab */
+ FKey *pFKey, /* Foreign key constraint */
+ int *aiCol, /* Map from parent key columns to child table columns */
+ int regData, /* Address of array containing child table row */
+ int nIncr, /* Increment constraint counter by this */
+ int isIgnore /* If true, pretend pTab contains all NULL values */
+){
+ int i; /* Iterator variable */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
+ int iCur = pParse->nTab - 1; /* Cursor number to use */
+ int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */
+
+ sqlite3VdbeVerifyAbortable(v,
+ (!pFKey->isDeferred
+ && !(pParse->db->flags & SQLITE_DeferFKs)
+ && !pParse->pToplevel
+ && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
+
+ /* If nIncr is less than zero, then check at runtime if there are any
+ ** outstanding constraints to resolve. If there are not, there is no need
+ ** to check if deleting this row resolves any outstanding violations.
+ **
+ ** Check if any of the key columns in the child table row are NULL. If
+ ** any are, then the constraint is considered satisfied. No need to
+ ** search for a matching row in the parent table. */
+ if( nIncr<0 ){
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
+ VdbeCoverage(v);
+ }
+ for(i=0; i<pFKey->nCol; i++){
+ int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1;
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
+ }
+
+ if( isIgnore==0 ){
+ if( pIdx==0 ){
+ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
+ ** column of the parent table (table pTab). */
+ int iMustBeInt; /* Address of MustBeInt instruction */
+ int regTemp = sqlite3GetTempReg(pParse);
+
+ /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
+ ** apply the affinity of the parent key). If this fails, then there
+ ** is no matching parent key. Before using MustBeInt, make a copy of
+ ** the value. Otherwise, the value inserted into the child key column
+ ** will have INTEGER affinity applied to it, which may not be correct. */
+ sqlite3VdbeAddOp2(v, OP_SCopy,
+ sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp);
+ iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
+ VdbeCoverage(v);
+
+ /* If the parent table is the same as the child table, and we are about
+ ** to increment the constraint-counter (i.e. this is an INSERT operation),
+ ** then check if the row being inserted matches itself. If so, do not
+ ** increment the constraint-counter. */
+ if( pTab==pFKey->pFrom && nIncr==1 ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ }
+
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, iOk);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ sqlite3VdbeJumpHere(v, iMustBeInt);
+ sqlite3ReleaseTempReg(pParse, regTemp);
+ }else{
+ int nCol = pFKey->nCol;
+ int regTemp = sqlite3GetTempRange(pParse, nCol);
+
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeAddOp2(v, OP_Copy,
+ sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData,
+ regTemp+i);
+ }
+
+ /* If the parent table is the same as the child table, and we are about
+ ** to increment the constraint-counter (i.e. this is an INSERT operation),
+ ** then check if the row being inserted matches itself. If so, do not
+ ** increment the constraint-counter.
+ **
+ ** If any of the parent-key values are NULL, then the row cannot match
+ ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
+ ** of the parent-key values are NULL (at this point it is known that
+ ** none of the child key values are).
+ */
+ if( pTab==pFKey->pFrom && nIncr==1 ){
+ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
+ for(i=0; i<nCol; i++){
+ int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i])
+ +1+regData;
+ int iParent = 1+regData;
+ iParent += sqlite3TableColumnToStorage(pIdx->pTable,
+ pIdx->aiColumn[i]);
+ assert( pIdx->aiColumn[i]>=0 );
+ assert( aiCol[i]!=pTab->iPKey );
+ if( pIdx->aiColumn[i]==pTab->iPKey ){
+ /* The parent key is a composite key that includes the IPK column */
+ iParent = regData;
+ }
+ sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ }
+ sqlite3VdbeGoto(v, iOk);
+ }
+
+ sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0,
+ sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempRange(pParse, regTemp, nCol);
+ }
+ }
+
+ if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
+ && !pParse->pToplevel
+ && !pParse->isMultiWrite
+ ){
+ /* Special case: If this is an INSERT statement that will insert exactly
+ ** one row into the table, raise a constraint immediately instead of
+ ** incrementing a counter. This is necessary as the VM code is being
+ ** generated for will not open a statement transaction. */
+ assert( nIncr==1 );
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
+ OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
+ }else{
+ if( nIncr>0 && pFKey->isDeferred==0 ){
+ sqlite3MayAbort(pParse);
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
+ }
+
+ sqlite3VdbeResolveLabel(v, iOk);
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
+}
+
+
+/*
+** Return an Expr object that refers to a memory register corresponding
+** to column iCol of table pTab.
+**
+** regBase is the first of an array of register that contains the data
+** for pTab. regBase itself holds the rowid. regBase+1 holds the first
+** column. regBase+2 holds the second column, and so forth.
+*/
+static Expr *exprTableRegister(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* The table whose content is at r[regBase]... */
+ int regBase, /* Contents of table pTab */
+ i16 iCol /* Which column of pTab is desired */
+){
+ Expr *pExpr;
+ Column *pCol;
+ const char *zColl;
+ sqlite3 *db = pParse->db;
+
+ pExpr = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pExpr ){
+ if( iCol>=0 && iCol!=pTab->iPKey ){
+ pCol = &pTab->aCol[iCol];
+ pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1;
+ pExpr->affExpr = pCol->affinity;
+ zColl = sqlite3ColumnColl(pCol);
+ if( zColl==0 ) zColl = db->pDfltColl->zName;
+ pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
+ }else{
+ pExpr->iTable = regBase;
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ }
+ }
+ return pExpr;
+}
+
+/*
+** Return an Expr object that refers to column iCol of table pTab which
+** has cursor iCur.
+*/
+static Expr *exprTableColumn(
+ sqlite3 *db, /* The database connection */
+ Table *pTab, /* The table whose column is desired */
+ int iCursor, /* The open cursor on the table */
+ i16 iCol /* The column that is wanted */
+){
+ Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
+ if( pExpr ){
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pTab;
+ pExpr->iTable = iCursor;
+ pExpr->iColumn = iCol;
+ }
+ return pExpr;
+}
+
+/*
+** This function is called to generate code executed when a row is deleted
+** from the parent table of foreign key constraint pFKey and, if pFKey is
+** deferred, when a row is inserted into the same table. When generating
+** code for an SQL UPDATE operation, this function may be called twice -
+** once to "delete" the old row and once to "insert" the new row.
+**
+** Parameter nIncr is passed -1 when inserting a row (as this may decrease
+** the number of FK violations in the db) or +1 when deleting one (as this
+** may increase the number of FK constraint problems).
+**
+** The code generated by this function scans through the rows in the child
+** table that correspond to the parent table row being deleted or inserted.
+** For each child row found, one of the following actions is taken:
+**
+** Operation | FK type | Action taken
+** --------------------------------------------------------------------------
+** DELETE immediate Increment the "immediate constraint counter".
+**
+** INSERT immediate Decrement the "immediate constraint counter".
+**
+** DELETE deferred Increment the "deferred constraint counter".
+**
+** INSERT deferred Decrement the "deferred constraint counter".
+**
+** These operations are identified in the comment at the top of this file
+** (fkey.c) as "I.2" and "D.2".
+*/
+static void fkScanChildren(
+ Parse *pParse, /* Parse context */
+ SrcList *pSrc, /* The child table to be scanned */
+ Table *pTab, /* The parent table */
+ Index *pIdx, /* Index on parent covering the foreign key */
+ FKey *pFKey, /* The foreign key linking pSrc to pTab */
+ int *aiCol, /* Map from pIdx cols to child table cols */
+ int regData, /* Parent row data starts here */
+ int nIncr /* Amount to increment deferred counter by */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ int i; /* Iterator variable */
+ Expr *pWhere = 0; /* WHERE clause to scan with */
+ NameContext sNameContext; /* Context used to resolve WHERE clause */
+ WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
+ int iFkIfZero = 0; /* Address of OP_FkIfZero */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ assert( pIdx==0 || pIdx->pTable==pTab );
+ assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
+ assert( pIdx!=0 || pFKey->nCol==1 );
+ assert( pIdx!=0 || HasRowid(pTab) );
+
+ if( nIncr<0 ){
+ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
+ VdbeCoverage(v);
+ }
+
+ /* Create an Expr object representing an SQL expression like:
+ **
+ ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
+ **
+ ** The collation sequence used for the comparison should be that of
+ ** the parent key columns. The affinity of the parent key column should
+ ** be applied to each child key value before the comparison takes place.
+ */
+ for(i=0; i<pFKey->nCol; i++){
+ Expr *pLeft; /* Value from parent table row */
+ Expr *pRight; /* Column ref to child table */
+ Expr *pEq; /* Expression (pLeft = pRight) */
+ i16 iCol; /* Index of column in child table */
+ const char *zCol; /* Name of column in child table */
+
+ iCol = pIdx ? pIdx->aiColumn[i] : -1;
+ pLeft = exprTableRegister(pParse, pTab, regData, iCol);
+ iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
+ assert( iCol>=0 );
+ zCol = pFKey->pFrom->aCol[iCol].zCnName;
+ pRight = sqlite3Expr(db, TK_ID, zCol);
+ pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
+ pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
+ }
+
+ /* If the child table is the same as the parent table, then add terms
+ ** to the WHERE clause that prevent this entry from being scanned.
+ ** The added WHERE clause terms are like this:
+ **
+ ** $current_rowid!=rowid
+ ** NOT( $current_a==a AND $current_b==b AND ... )
+ **
+ ** The first form is used for rowid tables. The second form is used
+ ** for WITHOUT ROWID tables. In the second form, the *parent* key is
+ ** (a,b,...). Either the parent or primary key could be used to
+ ** uniquely identify the current row, but the parent key is more convenient
+ ** as the required values have already been loaded into registers
+ ** by the caller.
+ */
+ if( pTab==pFKey->pFrom && nIncr>0 ){
+ Expr *pNe; /* Expression (pLeft != pRight) */
+ Expr *pLeft; /* Value from parent table row */
+ Expr *pRight; /* Column ref to child table */
+ if( HasRowid(pTab) ){
+ pLeft = exprTableRegister(pParse, pTab, regData, -1);
+ pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
+ pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
+ }else{
+ Expr *pEq, *pAll = 0;
+ assert( pIdx!=0 );
+ for(i=0; i<pIdx->nKeyCol; i++){
+ i16 iCol = pIdx->aiColumn[i];
+ assert( iCol>=0 );
+ pLeft = exprTableRegister(pParse, pTab, regData, iCol);
+ pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName);
+ pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
+ pAll = sqlite3ExprAnd(pParse, pAll, pEq);
+ }
+ pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
+ }
+ pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
+ }
+
+ /* Resolve the references in the WHERE clause. */
+ memset(&sNameContext, 0, sizeof(NameContext));
+ sNameContext.pSrcList = pSrc;
+ sNameContext.pParse = pParse;
+ sqlite3ResolveExprNames(&sNameContext, pWhere);
+
+ /* Create VDBE to loop through the entries in pSrc that match the WHERE
+ ** clause. For each row found, increment either the deferred or immediate
+ ** foreign key constraint counter. */
+ if( pParse->nErr==0 ){
+ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
+ if( pWInfo ){
+ sqlite3WhereEnd(pWInfo);
+ }
+ }
+
+ /* Clean up the WHERE clause constructed above. */
+ sqlite3ExprDelete(db, pWhere);
+ if( iFkIfZero ){
+ sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero);
+ }
+}
+
+/*
+** This function returns a linked list of FKey objects (connected by
+** FKey.pNextTo) holding all children of table pTab. For example,
+** given the following schema:
+**
+** CREATE TABLE t1(a PRIMARY KEY);
+** CREATE TABLE t2(b REFERENCES t1(a);
+**
+** Calling this function with table "t1" as an argument returns a pointer
+** to the FKey structure representing the foreign key constraint on table
+** "t2". Calling this function with "t2" as the argument would return a
+** NULL pointer (as there are no FK constraints for which t2 is the parent
+** table).
+*/
+SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){
+ return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
+}
+
+/*
+** The second argument is a Trigger structure allocated by the
+** fkActionTrigger() routine. This function deletes the Trigger structure
+** and all of its sub-components.
+**
+** The Trigger structure or any of its sub-components may be allocated from
+** the lookaside buffer belonging to database handle dbMem.
+*/
+static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
+ if( p ){
+ TriggerStep *pStep = p->step_list;
+ sqlite3ExprDelete(dbMem, pStep->pWhere);
+ sqlite3ExprListDelete(dbMem, pStep->pExprList);
+ sqlite3SelectDelete(dbMem, pStep->pSelect);
+ sqlite3ExprDelete(dbMem, p->pWhen);
+ sqlite3DbFree(dbMem, p);
+ }
+}
+
+/*
+** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys
+** in a particular database. This needs to happen when the schema
+** changes.
+*/
+SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){
+ HashElem *k;
+ Hash *pHash = &db->aDb[iDb].pSchema->tblHash;
+ for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){
+ Table *pTab = sqliteHashData(k);
+ FKey *pFKey;
+ if( !IsOrdinaryTable(pTab) ) continue;
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0;
+ fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0;
+ }
+ }
+}
+
+/*
+** This function is called to generate code that runs when table pTab is
+** being dropped from the database. The SrcList passed as the second argument
+** to this function contains a single entry guaranteed to resolve to
+** table pTab.
+**
+** Normally, no code is required. However, if either
+**
+** (a) The table is the parent table of a FK constraint, or
+** (b) The table is the child table of a deferred FK constraint and it is
+** determined at runtime that there are outstanding deferred FK
+** constraint violations in the database,
+**
+** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
+** the table from the database. Triggers are disabled while running this
+** DELETE, but foreign key actions are not.
+*/
+SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
+ sqlite3 *db = pParse->db;
+ if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){
+ int iSkip = 0;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ assert( v ); /* VDBE has already been allocated */
+ assert( IsOrdinaryTable(pTab) );
+ if( sqlite3FkReferences(pTab)==0 ){
+ /* Search for a deferred foreign key constraint for which this table
+ ** is the child table. If one cannot be found, return without
+ ** generating any VDBE code. If one can be found, then jump over
+ ** the entire DELETE if there are no outstanding deferred constraints
+ ** when this statement is run. */
+ FKey *p;
+ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
+ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
+ }
+ if( !p ) return;
+ iSkip = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
+ }
+
+ pParse->disableTriggers = 1;
+ sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
+ pParse->disableTriggers = 0;
+
+ /* If the DELETE has generated immediate foreign key constraint
+ ** violations, halt the VDBE and return an error at this point, before
+ ** any modifications to the schema are made. This is because statement
+ ** transactions are not able to rollback schema changes.
+ **
+ ** If the SQLITE_DeferFKs flag is set, then this is not required, as
+ ** the statement transaction will not be rolled back even if FK
+ ** constraints are violated.
+ */
+ if( (db->flags & SQLITE_DeferFKs)==0 ){
+ sqlite3VdbeVerifyAbortable(v, OE_Abort);
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
+ OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
+ }
+
+ if( iSkip ){
+ sqlite3VdbeResolveLabel(v, iSkip);
+ }
+ }
+}
+
+
+/*
+** The second argument points to an FKey object representing a foreign key
+** for which pTab is the child table. An UPDATE statement against pTab
+** is currently being processed. For each column of the table that is
+** actually updated, the corresponding element in the aChange[] array
+** is zero or greater (if a column is unmodified the corresponding element
+** is set to -1). If the rowid column is modified by the UPDATE statement
+** the bChngRowid argument is non-zero.
+**
+** This function returns true if any of the columns that are part of the
+** child key for FK constraint *p are modified.
+*/
+static int fkChildIsModified(
+ Table *pTab, /* Table being updated */
+ FKey *p, /* Foreign key for which pTab is the child */
+ int *aChange, /* Array indicating modified columns */
+ int bChngRowid /* True if rowid is modified by this update */
+){
+ int i;
+ for(i=0; i<p->nCol; i++){
+ int iChildKey = p->aCol[i].iFrom;
+ if( aChange[iChildKey]>=0 ) return 1;
+ if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
+ }
+ return 0;
+}
+
+/*
+** The second argument points to an FKey object representing a foreign key
+** for which pTab is the parent table. An UPDATE statement against pTab
+** is currently being processed. For each column of the table that is
+** actually updated, the corresponding element in the aChange[] array
+** is zero or greater (if a column is unmodified the corresponding element
+** is set to -1). If the rowid column is modified by the UPDATE statement
+** the bChngRowid argument is non-zero.
+**
+** This function returns true if any of the columns that are part of the
+** parent key for FK constraint *p are modified.
+*/
+static int fkParentIsModified(
+ Table *pTab,
+ FKey *p,
+ int *aChange,
+ int bChngRowid
+){
+ int i;
+ for(i=0; i<p->nCol; i++){
+ char *zKey = p->aCol[i].zCol;
+ int iKey;
+ for(iKey=0; iKey<pTab->nCol; iKey++){
+ if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
+ Column *pCol = &pTab->aCol[iKey];
+ if( zKey ){
+ if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1;
+ }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Return true if the parser passed as the first argument is being
+** used to code a trigger that is really a "SET NULL" action belonging
+** to trigger pFKey.
+*/
+static int isSetNullAction(Parse *pParse, FKey *pFKey){
+ Parse *pTop = sqlite3ParseToplevel(pParse);
+ if( pTop->pTriggerPrg ){
+ Trigger *p = pTop->pTriggerPrg->pTrigger;
+ if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
+ || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** This function is called when inserting, deleting or updating a row of
+** table pTab to generate VDBE code to perform foreign key constraint
+** processing for the operation.
+**
+** For a DELETE operation, parameter regOld is passed the index of the
+** first register in an array of (pTab->nCol+1) registers containing the
+** rowid of the row being deleted, followed by each of the column values
+** of the row being deleted, from left to right. Parameter regNew is passed
+** zero in this case.
+**
+** For an INSERT operation, regOld is passed zero and regNew is passed the
+** first register of an array of (pTab->nCol+1) registers containing the new
+** row data.
+**
+** For an UPDATE operation, this function is called twice. Once before
+** the original record is deleted from the table using the calling convention
+** described for DELETE. Then again after the original record is deleted
+** but before the new record is inserted using the INSERT convention.
+*/
+SQLITE_PRIVATE void sqlite3FkCheck(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Row is being deleted from this table */
+ int regOld, /* Previous row data is stored here */
+ int regNew, /* New row data is stored here */
+ int *aChange, /* Array indicating UPDATEd columns (or 0) */
+ int bChngRowid /* True if rowid is UPDATEd */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ FKey *pFKey; /* Used to iterate through FKs */
+ int iDb; /* Index of database containing pTab */
+ const char *zDb; /* Name of database containing pTab */
+ int isIgnoreErrors = pParse->disableTriggers;
+
+ /* Exactly one of regOld and regNew should be non-zero. */
+ assert( (regOld==0)!=(regNew==0) );
+
+ /* If foreign-keys are disabled, this function is a no-op. */
+ if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
+ if( !IsOrdinaryTable(pTab) ) return;
+
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+
+ /* Loop through all the foreign key constraints for which pTab is the
+ ** child table (the table that the foreign key definition is part of). */
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ Table *pTo; /* Parent table of foreign key pFKey */
+ Index *pIdx = 0; /* Index on key columns in pTo */
+ int *aiFree = 0;
+ int *aiCol;
+ int iCol;
+ int i;
+ int bIgnore = 0;
+
+ if( aChange
+ && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
+ && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
+ ){
+ continue;
+ }
+
+ /* Find the parent table of this foreign key. Also find a unique index
+ ** on the parent key columns in the parent table. If either of these
+ ** schema items cannot be located, set an error in pParse and return
+ ** early. */
+ if( pParse->disableTriggers ){
+ pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
+ }else{
+ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
+ }
+ if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
+ assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
+ if( !isIgnoreErrors || db->mallocFailed ) return;
+ if( pTo==0 ){
+ /* If isIgnoreErrors is true, then a table is being dropped. In this
+ ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
+ ** before actually dropping it in order to check FK constraints.
+ ** If the parent table of an FK constraint on the current table is
+ ** missing, behave as if it is empty. i.e. decrement the relevant
+ ** FK counter for each row of the current table with non-NULL keys.
+ */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
+ for(i=0; i<pFKey->nCol; i++){
+ int iFromCol, iReg;
+ iFromCol = pFKey->aCol[i].iFrom;
+ iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1;
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
+ }
+ continue;
+ }
+ assert( pFKey->nCol==1 || (aiFree && pIdx) );
+
+ if( aiFree ){
+ aiCol = aiFree;
+ }else{
+ iCol = pFKey->aCol[0].iFrom;
+ aiCol = &iCol;
+ }
+ for(i=0; i<pFKey->nCol; i++){
+ if( aiCol[i]==pTab->iPKey ){
+ aiCol[i] = -1;
+ }
+ assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Request permission to read the parent key columns. If the
+ ** authorization callback returns SQLITE_IGNORE, behave as if any
+ ** values read from the parent table are NULL. */
+ if( db->xAuth ){
+ int rcauth;
+ char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName;
+ rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
+ bIgnore = (rcauth==SQLITE_IGNORE);
+ }
+#endif
+ }
+
+ /* Take a shared-cache advisory read-lock on the parent table. Allocate
+ ** a cursor to use to search the unique index on the parent key columns
+ ** in the parent table. */
+ sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
+ pParse->nTab++;
+
+ if( regOld!=0 ){
+ /* A row is being removed from the child table. Search for the parent.
+ ** If the parent does not exist, removing the child row resolves an
+ ** outstanding foreign key constraint violation. */
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
+ }
+ if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
+ /* A row is being added to the child table. If a parent row cannot
+ ** be found, adding the child row has violated the FK constraint.
+ **
+ ** If this operation is being performed as part of a trigger program
+ ** that is actually a "SET NULL" action belonging to this very
+ ** foreign key, then omit this scan altogether. As all child key
+ ** values are guaranteed to be NULL, it is not possible for adding
+ ** this row to cause an FK violation. */
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
+ }
+
+ sqlite3DbFree(db, aiFree);
+ }
+
+ /* Loop through all the foreign key constraints that refer to this table.
+ ** (the "child" constraints) */
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
+ Index *pIdx = 0; /* Foreign key index for pFKey */
+ SrcList *pSrc;
+ int *aiCol = 0;
+
+ if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
+ continue;
+ }
+
+ if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
+ && !pParse->pToplevel && !pParse->isMultiWrite
+ ){
+ assert( regOld==0 && regNew!=0 );
+ /* Inserting a single row into a parent table cannot cause (or fix)
+ ** an immediate foreign key violation. So do nothing in this case. */
+ continue;
+ }
+
+ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
+ if( !isIgnoreErrors || db->mallocFailed ) return;
+ continue;
+ }
+ assert( aiCol || pFKey->nCol==1 );
+
+ /* Create a SrcList structure containing the child table. We need the
+ ** child table as a SrcList for sqlite3WhereBegin() */
+ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ if( pSrc ){
+ SrcItem *pItem = pSrc->a;
+ pItem->pTab = pFKey->pFrom;
+ pItem->zName = pFKey->pFrom->zName;
+ pItem->pTab->nTabRef++;
+ pItem->iCursor = pParse->nTab++;
+
+ if( regNew!=0 ){
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
+ }
+ if( regOld!=0 ){
+ int eAction = pFKey->aAction[aChange!=0];
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
+ /* If this is a deferred FK constraint, or a CASCADE or SET NULL
+ ** action applies, then any foreign key violations caused by
+ ** removing the parent key will be rectified by the action trigger.
+ ** So do not set the "may-abort" flag in this case.
+ **
+ ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
+ ** may-abort flag will eventually be set on this statement anyway
+ ** (when this function is called as part of processing the UPDATE
+ ** within the action trigger).
+ **
+ ** Note 2: At first glance it may seem like SQLite could simply omit
+ ** all OP_FkCounter related scans when either CASCADE or SET NULL
+ ** applies. The trouble starts if the CASCADE or SET NULL action
+ ** trigger causes other triggers or action rules attached to the
+ ** child table to fire. In these cases the fk constraint counters
+ ** might be set incorrectly if any OP_FkCounter related scans are
+ ** omitted. */
+ if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
+ sqlite3MayAbort(pParse);
+ }
+ }
+ pItem->zName = 0;
+ sqlite3SrcListDelete(db, pSrc);
+ }
+ sqlite3DbFree(db, aiCol);
+ }
+}
+
+#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
+
+/*
+** This function is called before generating code to update or delete a
+** row contained in table pTab.
+*/
+SQLITE_PRIVATE u32 sqlite3FkOldmask(
+ Parse *pParse, /* Parse context */
+ Table *pTab /* Table being modified */
+){
+ u32 mask = 0;
+ if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
+ FKey *p;
+ int i;
+ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
+ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
+ }
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
+ Index *pIdx = 0;
+ sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
+ if( pIdx ){
+ for(i=0; i<pIdx->nKeyCol; i++){
+ assert( pIdx->aiColumn[i]>=0 );
+ mask |= COLUMN_MASK(pIdx->aiColumn[i]);
+ }
+ }
+ }
+ }
+ return mask;
+}
+
+
+/*
+** This function is called before generating code to update or delete a
+** row contained in table pTab. If the operation is a DELETE, then
+** parameter aChange is passed a NULL value. For an UPDATE, aChange points
+** to an array of size N, where N is the number of columns in table pTab.
+** If the i'th column is not modified by the UPDATE, then the corresponding
+** entry in the aChange[] array is set to -1. If the column is modified,
+** the value is 0 or greater. Parameter chngRowid is set to true if the
+** UPDATE statement modifies the rowid fields of the table.
+**
+** If any foreign key processing will be required, this function returns
+** non-zero. If there is no foreign key related processing, this function
+** returns zero.
+**
+** For an UPDATE, this function returns 2 if:
+**
+** * There are any FKs for which pTab is the child and the parent table
+** and any FK processing at all is required (even of a different FK), or
+**
+** * the UPDATE modifies one or more parent keys for which the action is
+** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
+**
+** Or, assuming some other foreign key processing is required, 1.
+*/
+SQLITE_PRIVATE int sqlite3FkRequired(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being modified */
+ int *aChange, /* Non-NULL for UPDATE operations */
+ int chngRowid /* True for UPDATE that affects rowid */
+){
+ int eRet = 1; /* Value to return if bHaveFK is true */
+ int bHaveFK = 0; /* If FK processing is required */
+ if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
+ if( !aChange ){
+ /* A DELETE operation. Foreign key processing is required if the
+ ** table in question is either the child or parent table for any
+ ** foreign key constraint. */
+ bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey);
+ }else{
+ /* This is an UPDATE. Foreign key processing is only required if the
+ ** operation modifies one or more child or parent key columns. */
+ FKey *p;
+
+ /* Check if any child key columns are being modified. */
+ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
+ if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
+ if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2;
+ bHaveFK = 1;
+ }
+ }
+
+ /* Check if any parent key columns are being modified. */
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
+ if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
+ if( p->aAction[1]!=OE_None ) return 2;
+ bHaveFK = 1;
+ }
+ }
+ }
+ }
+ return bHaveFK ? eRet : 0;
+}
+
+/*
+** This function is called when an UPDATE or DELETE operation is being
+** compiled on table pTab, which is the parent table of foreign-key pFKey.
+** If the current operation is an UPDATE, then the pChanges parameter is
+** passed a pointer to the list of columns being modified. If it is a
+** DELETE, pChanges is passed a NULL pointer.
+**
+** It returns a pointer to a Trigger structure containing a trigger
+** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
+** If the action is "NO ACTION" then a NULL pointer is returned (these actions
+** require no special handling by the triggers sub-system, code for them is
+** created by fkScanChildren()).
+**
+** For example, if pFKey is the foreign key and pTab is table "p" in
+** the following schema:
+**
+** CREATE TABLE p(pk PRIMARY KEY);
+** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
+**
+** then the returned trigger structure is equivalent to:
+**
+** CREATE TRIGGER ... DELETE ON p BEGIN
+** DELETE FROM c WHERE ck = old.pk;
+** END;
+**
+** The returned pointer is cached as part of the foreign key object. It
+** is eventually freed along with the rest of the foreign key object by
+** sqlite3FkDelete().
+*/
+static Trigger *fkActionTrigger(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated or deleted from */
+ FKey *pFKey, /* Foreign key to get action for */
+ ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ int action; /* One of OE_None, OE_Cascade etc. */
+ Trigger *pTrigger; /* Trigger definition to return */
+ int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
+
+ action = pFKey->aAction[iAction];
+ if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
+ return 0;
+ }
+ pTrigger = pFKey->apTrigger[iAction];
+
+ if( action!=OE_None && !pTrigger ){
+ char const *zFrom; /* Name of child table */
+ int nFrom; /* Length in bytes of zFrom */
+ Index *pIdx = 0; /* Parent key index for this FK */
+ int *aiCol = 0; /* child table cols -> parent key cols */
+ TriggerStep *pStep = 0; /* First (only) step of trigger program */
+ Expr *pWhere = 0; /* WHERE clause of trigger step */
+ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
+ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
+ int i; /* Iterator variable */
+ Expr *pWhen = 0; /* WHEN clause for the trigger */
+
+ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
+ assert( aiCol || pFKey->nCol==1 );
+
+ for(i=0; i<pFKey->nCol; i++){
+ Token tOld = { "old", 3 }; /* Literal "old" token */
+ Token tNew = { "new", 3 }; /* Literal "new" token */
+ Token tFromCol; /* Name of column in child table */
+ Token tToCol; /* Name of column in parent table */
+ int iFromCol; /* Idx of column in child table */
+ Expr *pEq; /* tFromCol = OLD.tToCol */
+
+ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
+ assert( iFromCol>=0 );
+ assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
+ assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
+ sqlite3TokenInit(&tToCol,
+ pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName);
+ sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName);
+
+ /* Create the expression "OLD.zToCol = zFromCol". It is important
+ ** that the "OLD.zToCol" term is on the LHS of the = operator, so
+ ** that the affinity and collation sequence associated with the
+ ** parent table are used for the comparison. */
+ pEq = sqlite3PExpr(pParse, TK_EQ,
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
+ sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
+ );
+ pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
+
+ /* For ON UPDATE, construct the next term of the WHEN clause.
+ ** The final WHEN clause will be like this:
+ **
+ ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
+ */
+ if( pChanges ){
+ pEq = sqlite3PExpr(pParse, TK_IS,
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
+ );
+ pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
+ }
+
+ if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
+ Expr *pNew;
+ if( action==OE_Cascade ){
+ pNew = sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
+ }else if( action==OE_SetDflt ){
+ Column *pCol = pFKey->pFrom->aCol + iFromCol;
+ Expr *pDflt;
+ if( pCol->colFlags & COLFLAG_GENERATED ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ pDflt = 0;
+ }else{
+ pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol);
+ }
+ if( pDflt ){
+ pNew = sqlite3ExprDup(db, pDflt, 0);
+ }else{
+ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
+ }
+ }else{
+ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
+ }
+ pList = sqlite3ExprListAppend(pParse, pList, pNew);
+ sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
+ }
+ }
+ sqlite3DbFree(db, aiCol);
+
+ zFrom = pFKey->pFrom->zName;
+ nFrom = sqlite3Strlen30(zFrom);
+
+ if( action==OE_Restrict ){
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ Token tFrom;
+ Token tDb;
+ Expr *pRaise;
+
+ tFrom.z = zFrom;
+ tFrom.n = nFrom;
+ tDb.z = db->aDb[iDb].zDbSName;
+ tDb.n = sqlite3Strlen30(tDb.z);
+
+ pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
+ if( pRaise ){
+ pRaise->affExpr = OE_Abort;
+ }
+ pSelect = sqlite3SelectNew(pParse,
+ sqlite3ExprListAppend(pParse, 0, pRaise),
+ sqlite3SrcListAppend(pParse, 0, &tDb, &tFrom),
+ pWhere,
+ 0, 0, 0, 0, 0
+ );
+ pWhere = 0;
+ }
+
+ /* Disable lookaside memory allocation */
+ DisableLookaside;
+
+ pTrigger = (Trigger *)sqlite3DbMallocZero(db,
+ sizeof(Trigger) + /* struct Trigger */
+ sizeof(TriggerStep) + /* Single step in trigger program */
+ nFrom + 1 /* Space for pStep->zTarget */
+ );
+ if( pTrigger ){
+ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
+ pStep->zTarget = (char *)&pStep[1];
+ memcpy((char *)pStep->zTarget, zFrom, nFrom);
+
+ pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
+ pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ if( pWhen ){
+ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
+ }
+ }
+
+ /* Re-enable the lookaside buffer, if it was disabled earlier. */
+ EnableLookaside;
+
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3ExprDelete(db, pWhen);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SelectDelete(db, pSelect);
+ if( db->mallocFailed==1 ){
+ fkTriggerDelete(db, pTrigger);
+ return 0;
+ }
+ assert( pStep!=0 );
+ assert( pTrigger!=0 );
+
+ switch( action ){
+ case OE_Restrict:
+ pStep->op = TK_SELECT;
+ break;
+ case OE_Cascade:
+ if( !pChanges ){
+ pStep->op = TK_DELETE;
+ break;
+ }
+ /* no break */ deliberate_fall_through
+ default:
+ pStep->op = TK_UPDATE;
+ }
+ pStep->pTrig = pTrigger;
+ pTrigger->pSchema = pTab->pSchema;
+ pTrigger->pTabSchema = pTab->pSchema;
+ pFKey->apTrigger[iAction] = pTrigger;
+ pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
+ }
+
+ return pTrigger;
+}
+
+/*
+** This function is called when deleting or updating a row to implement
+** any required CASCADE, SET NULL or SET DEFAULT actions.
+*/
+SQLITE_PRIVATE void sqlite3FkActions(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated or deleted from */
+ ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
+ int regOld, /* Address of array containing old row */
+ int *aChange, /* Array indicating UPDATEd columns (or 0) */
+ int bChngRowid /* True if rowid is UPDATEd */
+){
+ /* If foreign-key support is enabled, iterate through all FKs that
+ ** refer to table pTab. If there is an action associated with the FK
+ ** for this operation (either update or delete), invoke the associated
+ ** trigger sub-program. */
+ if( pParse->db->flags&SQLITE_ForeignKeys ){
+ FKey *pFKey; /* Iterator variable */
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
+ if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
+ Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
+ if( pAct ){
+ sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
+ }
+ }
+ }
+ }
+}
+
+#endif /* ifndef SQLITE_OMIT_TRIGGER */
+
+/*
+** Free all memory associated with foreign key definitions attached to
+** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
+** hash table.
+*/
+SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){
+ FKey *pFKey; /* Iterator variable */
+ FKey *pNext; /* Copy of pFKey->pNextFrom */
+
+ assert( IsOrdinaryTable(pTab) );
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
+
+ /* Remove the FK from the fkeyHash hash table. */
+ if( !db || db->pnBytesFreed==0 ){
+ if( pFKey->pPrevTo ){
+ pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
+ }else{
+ void *p = (void *)pFKey->pNextTo;
+ const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
+ sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
+ }
+ if( pFKey->pNextTo ){
+ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
+ }
+ }
+
+ /* EV: R-30323-21917 Each foreign key constraint in SQLite is
+ ** classified as either immediate or deferred.
+ */
+ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
+
+ /* Delete any triggers created to implement actions for this FK. */
+#ifndef SQLITE_OMIT_TRIGGER
+ fkTriggerDelete(db, pFKey->apTrigger[0]);
+ fkTriggerDelete(db, pFKey->apTrigger[1]);
+#endif
+
+ pNext = pFKey->pNextFrom;
+ sqlite3DbFree(db, pFKey);
+ }
+}
+#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
+
+/************** End of fkey.c ************************************************/
+/************** Begin file insert.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle INSERT statements in SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Generate code that will
+**
+** (1) acquire a lock for table pTab then
+** (2) open pTab as cursor iCur.
+**
+** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
+** for that table that is actually opened.
+*/
+SQLITE_PRIVATE void sqlite3OpenTable(
+ Parse *pParse, /* Generate code into this VDBE */
+ int iCur, /* The cursor number of the table */
+ int iDb, /* The database index in sqlite3.aDb[] */
+ Table *pTab, /* The table to be opened */
+ int opcode /* OP_OpenRead or OP_OpenWrite */
+){
+ Vdbe *v;
+ assert( !IsVirtual(pTab) );
+ assert( pParse->pVdbe!=0 );
+ v = pParse->pVdbe;
+ assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
+ sqlite3TableLock(pParse, iDb, pTab->tnum,
+ (opcode==OP_OpenWrite)?1:0, pTab->zName);
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
+ VdbeComment((v, "%s", pTab->zName));
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
+ sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ VdbeComment((v, "%s", pTab->zName));
+ }
+}
+
+/*
+** Return a pointer to the column affinity string associated with index
+** pIdx. A column affinity string has one character for each column in
+** the table, according to the affinity of the column:
+**
+** Character Column affinity
+** ------------------------------
+** 'A' BLOB
+** 'B' TEXT
+** 'C' NUMERIC
+** 'D' INTEGER
+** 'F' REAL
+**
+** An extra 'D' is appended to the end of the string to cover the
+** rowid that appears as the last column in every index.
+**
+** Memory for the buffer containing the column index affinity string
+** is managed along with the rest of the Index structure. It will be
+** released when sqlite3DeleteIndex() is called.
+*/
+SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
+ if( !pIdx->zColAff ){
+ /* The first time a column affinity string for a particular index is
+ ** required, it is allocated and populated here. It is then stored as
+ ** a member of the Index structure for subsequent use.
+ **
+ ** The column affinity string will eventually be deleted by
+ ** sqliteDeleteIndex() when the Index structure itself is cleaned
+ ** up.
+ */
+ int n;
+ Table *pTab = pIdx->pTable;
+ pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
+ if( !pIdx->zColAff ){
+ sqlite3OomFault(db);
+ return 0;
+ }
+ for(n=0; n<pIdx->nColumn; n++){
+ i16 x = pIdx->aiColumn[n];
+ char aff;
+ if( x>=0 ){
+ aff = pTab->aCol[x].affinity;
+ }else if( x==XN_ROWID ){
+ aff = SQLITE_AFF_INTEGER;
+ }else{
+ assert( x==XN_EXPR );
+ assert( pIdx->aColExpr!=0 );
+ aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
+ }
+ if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
+ if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
+ pIdx->zColAff[n] = aff;
+ }
+ pIdx->zColAff[n] = 0;
+ }
+
+ return pIdx->zColAff;
+}
+
+/*
+** Make changes to the evolving bytecode to do affinity transformations
+** of values that are about to be gathered into a row for table pTab.
+**
+** For ordinary (legacy, non-strict) tables:
+** -----------------------------------------
+**
+** Compute the affinity string for table pTab, if it has not already been
+** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
+**
+** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
+** which were then optimized out) then this routine becomes a no-op.
+**
+** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
+** affinities for register iReg and following. Or if iReg==0,
+** then just set the P4 operand of the previous opcode (which should be
+** an OP_MakeRecord) to the affinity string.
+**
+** A column affinity string has one character per column:
+**
+** Character Column affinity
+** --------- ---------------
+** 'A' BLOB
+** 'B' TEXT
+** 'C' NUMERIC
+** 'D' INTEGER
+** 'E' REAL
+**
+** For STRICT tables:
+** ------------------
+**
+** Generate an appropropriate OP_TypeCheck opcode that will verify the
+** datatypes against the column definitions in pTab. If iReg==0, that
+** means an OP_MakeRecord opcode has already been generated and should be
+** the last opcode generated. The new OP_TypeCheck needs to be inserted
+** before the OP_MakeRecord. The new OP_TypeCheck should use the same
+** register set as the OP_MakeRecord. If iReg>0 then register iReg is
+** the first of a series of registers that will form the new record.
+** Apply the type checking to that array of registers.
+*/
+SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
+ int i, j;
+ char *zColAff;
+ if( pTab->tabFlags & TF_Strict ){
+ if( iReg==0 ){
+ /* Move the previous opcode (which should be OP_MakeRecord) forward
+ ** by one slot and insert a new OP_TypeCheck where the current
+ ** OP_MakeRecord is found */
+ VdbeOp *pPrev;
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ pPrev = sqlite3VdbeGetOp(v, -1);
+ assert( pPrev!=0 );
+ assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
+ pPrev->opcode = OP_TypeCheck;
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
+ }else{
+ /* Insert an isolated OP_Typecheck */
+ sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ }
+ return;
+ }
+ zColAff = pTab->zColAff;
+ if( zColAff==0 ){
+ sqlite3 *db = sqlite3VdbeDb(v);
+ zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
+ if( !zColAff ){
+ sqlite3OomFault(db);
+ return;
+ }
+
+ for(i=j=0; i<pTab->nCol; i++){
+ assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 );
+ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
+ zColAff[j++] = pTab->aCol[i].affinity;
+ }
+ }
+ do{
+ zColAff[j--] = 0;
+ }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
+ pTab->zColAff = zColAff;
+ }
+ assert( zColAff!=0 );
+ i = sqlite3Strlen30NN(zColAff);
+ if( i ){
+ if( iReg ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
+ }else{
+ assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
+ || sqlite3VdbeDb(v)->mallocFailed );
+ sqlite3VdbeChangeP4(v, -1, zColAff, i);
+ }
+ }
+}
+
+/*
+** Return non-zero if the table pTab in database iDb or any of its indices
+** have been opened at any point in the VDBE program. This is used to see if
+** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
+** run without using a temporary table for the results of the SELECT.
+*/
+static int readsTable(Parse *p, int iDb, Table *pTab){
+ Vdbe *v = sqlite3GetVdbe(p);
+ int i;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
+#endif
+
+ for(i=1; i<iEnd; i++){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
+ assert( pOp!=0 );
+ if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
+ Index *pIndex;
+ Pgno tnum = pOp->p2;
+ if( tnum==pTab->tnum ){
+ return 1;
+ }
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( tnum==pIndex->tnum ){
+ return 1;
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
+ assert( pOp->p4.pVtab!=0 );
+ assert( pOp->p4type==P4_VTAB );
+ return 1;
+ }
+#endif
+ }
+ return 0;
+}
+
+/* This walker callback will compute the union of colFlags flags for all
+** referenced columns in a CHECK constraint or generated column expression.
+*/
+static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
+ assert( pExpr->iColumn < pWalker->u.pTab->nCol );
+ pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
+ }
+ return WRC_Continue;
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/*
+** All regular columns for table pTab have been puts into registers
+** starting with iRegStore. The registers that correspond to STORED
+** or VIRTUAL columns have not yet been initialized. This routine goes
+** back and computes the values for those columns based on the previously
+** computed normal columns.
+*/
+SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns(
+ Parse *pParse, /* Parsing context */
+ int iRegStore, /* Register holding the first column */
+ Table *pTab /* The table */
+){
+ int i;
+ Walker w;
+ Column *pRedo;
+ int eProgress;
+ VdbeOp *pOp;
+
+ assert( pTab->tabFlags & TF_HasGenerated );
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+
+ /* Before computing generated columns, first go through and make sure
+ ** that appropriate affinity has been applied to the regular columns
+ */
+ sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
+ if( (pTab->tabFlags & TF_HasStored)!=0 ){
+ pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
+ if( pOp->opcode==OP_Affinity ){
+ /* Change the OP_Affinity argument to '@' (NONE) for all stored
+ ** columns. '@' is the no-op affinity and those columns have not
+ ** yet been computed. */
+ int ii, jj;
+ char *zP4 = pOp->p4.z;
+ assert( zP4!=0 );
+ assert( pOp->p4type==P4_DYNAMIC );
+ for(ii=jj=0; zP4[jj]; ii++){
+ if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
+ continue;
+ }
+ if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
+ zP4[jj] = SQLITE_AFF_NONE;
+ }
+ jj++;
+ }
+ }else if( pOp->opcode==OP_TypeCheck ){
+ /* If an OP_TypeCheck was generated because the table is STRICT,
+ ** then set the P3 operand to indicate that generated columns should
+ ** not be checked */
+ pOp->p3 = 1;
+ }
+ }
+
+ /* Because there can be multiple generated columns that refer to one another,
+ ** this is a two-pass algorithm. On the first pass, mark all generated
+ ** columns as "not available".
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
+ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
+ testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
+ pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
+ }
+ }
+
+ w.u.pTab = pTab;
+ w.xExprCallback = exprColumnFlagUnion;
+ w.xSelectCallback = 0;
+ w.xSelectCallback2 = 0;
+
+ /* On the second pass, compute the value of each NOT-AVAILABLE column.
+ ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
+ ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
+ ** they are needed.
+ */
+ pParse->iSelfTab = -iRegStore;
+ do{
+ eProgress = 0;
+ pRedo = 0;
+ for(i=0; i<pTab->nCol; i++){
+ Column *pCol = pTab->aCol + i;
+ if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
+ int x;
+ pCol->colFlags |= COLFLAG_BUSY;
+ w.eCode = 0;
+ sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
+ pCol->colFlags &= ~COLFLAG_BUSY;
+ if( w.eCode & COLFLAG_NOTAVAIL ){
+ pRedo = pCol;
+ continue;
+ }
+ eProgress = 1;
+ assert( pCol->colFlags & COLFLAG_GENERATED );
+ x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
+ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
+ pCol->colFlags &= ~COLFLAG_NOTAVAIL;
+ }
+ }
+ }while( pRedo && eProgress );
+ if( pRedo ){
+ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
+ }
+ pParse->iSelfTab = 0;
+}
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/*
+** Locate or create an AutoincInfo structure associated with table pTab
+** which is in database iDb. Return the register number for the register
+** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
+** table. (Also return zero when doing a VACUUM since we do not want to
+** update the AUTOINCREMENT counters during a VACUUM.)
+**
+** There is at most one AutoincInfo structure per table even if the
+** same table is autoincremented multiple times due to inserts within
+** triggers. A new AutoincInfo structure is created if this is the
+** first use of table pTab. On 2nd and subsequent uses, the original
+** AutoincInfo structure is used.
+**
+** Four consecutive registers are allocated:
+**
+** (1) The name of the pTab table.
+** (2) The maximum ROWID of pTab.
+** (3) The rowid in sqlite_sequence of pTab
+** (4) The original value of the max ROWID in pTab, or NULL if none
+**
+** The 2nd register is the one that is returned. That is all the
+** insert routine needs to know about.
+*/
+static int autoIncBegin(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database holding pTab */
+ Table *pTab /* The table we are writing to */
+){
+ int memId = 0; /* Register holding maximum rowid */
+ assert( pParse->db->aDb[iDb].pSchema!=0 );
+ if( (pTab->tabFlags & TF_Autoincrement)!=0
+ && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
+ ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ AutoincInfo *pInfo;
+ Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
+
+ /* Verify that the sqlite_sequence table exists and is an ordinary
+ ** rowid table with exactly two columns.
+ ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
+ if( pSeqTab==0
+ || !HasRowid(pSeqTab)
+ || NEVER(IsVirtual(pSeqTab))
+ || pSeqTab->nCol!=2
+ ){
+ pParse->nErr++;
+ pParse->rc = SQLITE_CORRUPT_SEQUENCE;
+ return 0;
+ }
+
+ pInfo = pToplevel->pAinc;
+ while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
+ if( pInfo==0 ){
+ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
+ sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
+ testcase( pParse->earlyCleanup );
+ if( pParse->db->mallocFailed ) return 0;
+ pInfo->pNext = pToplevel->pAinc;
+ pToplevel->pAinc = pInfo;
+ pInfo->pTab = pTab;
+ pInfo->iDb = iDb;
+ pToplevel->nMem++; /* Register to hold name of table */
+ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
+ pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
+ }
+ memId = pInfo->regCtr;
+ }
+ return memId;
+}
+
+/*
+** This routine generates code that will initialize all of the
+** register used by the autoincrement tracker.
+*/
+SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
+ AutoincInfo *p; /* Information about an AUTOINCREMENT */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Db *pDb; /* Database only autoinc table */
+ int memId; /* Register holding max rowid */
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */
+
+ /* This routine is never called during trigger-generation. It is
+ ** only called from the top-level */
+ assert( pParse->pTriggerTab==0 );
+ assert( sqlite3IsToplevel(pParse) );
+
+ assert( v ); /* We failed long ago if this is not so */
+ for(p = pParse->pAinc; p; p = p->pNext){
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList autoInc[] = {
+ /* 0 */ {OP_Null, 0, 0, 0},
+ /* 1 */ {OP_Rewind, 0, 10, 0},
+ /* 2 */ {OP_Column, 0, 0, 0},
+ /* 3 */ {OP_Ne, 0, 9, 0},
+ /* 4 */ {OP_Rowid, 0, 0, 0},
+ /* 5 */ {OP_Column, 0, 1, 0},
+ /* 6 */ {OP_AddImm, 0, 0, 0},
+ /* 7 */ {OP_Copy, 0, 0, 0},
+ /* 8 */ {OP_Goto, 0, 11, 0},
+ /* 9 */ {OP_Next, 0, 2, 0},
+ /* 10 */ {OP_Integer, 0, 0, 0},
+ /* 11 */ {OP_Close, 0, 0, 0}
+ };
+ VdbeOp *aOp;
+ pDb = &db->aDb[p->iDb];
+ memId = p->regCtr;
+ assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
+ if( aOp==0 ) break;
+ aOp[0].p2 = memId;
+ aOp[0].p3 = memId+2;
+ aOp[2].p3 = memId;
+ aOp[3].p1 = memId-1;
+ aOp[3].p3 = memId;
+ aOp[3].p5 = SQLITE_JUMPIFNULL;
+ aOp[4].p2 = memId+1;
+ aOp[5].p3 = memId;
+ aOp[6].p1 = memId;
+ aOp[7].p2 = memId+2;
+ aOp[7].p1 = memId;
+ aOp[10].p2 = memId;
+ if( pParse->nTab==0 ) pParse->nTab = 1;
+ }
+}
+
+/*
+** Update the maximum rowid for an autoincrement calculation.
+**
+** This routine should be called when the regRowid register holds a
+** new rowid that is about to be inserted. If that new rowid is
+** larger than the maximum rowid in the memId memory cell, then the
+** memory cell is updated.
+*/
+static void autoIncStep(Parse *pParse, int memId, int regRowid){
+ if( memId>0 ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
+ }
+}
+
+/*
+** This routine generates the code needed to write autoincrement
+** maximum rowid values back into the sqlite_sequence register.
+** Every statement that might do an INSERT into an autoincrement
+** table (either directly or through triggers) needs to call this
+** routine just before the "exit" code.
+*/
+static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
+ AutoincInfo *p;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+
+ assert( v );
+ for(p = pParse->pAinc; p; p = p->pNext){
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList autoIncEnd[] = {
+ /* 0 */ {OP_NotNull, 0, 2, 0},
+ /* 1 */ {OP_NewRowid, 0, 0, 0},
+ /* 2 */ {OP_MakeRecord, 0, 2, 0},
+ /* 3 */ {OP_Insert, 0, 0, 0},
+ /* 4 */ {OP_Close, 0, 0, 0}
+ };
+ VdbeOp *aOp;
+ Db *pDb = &db->aDb[p->iDb];
+ int iRec;
+ int memId = p->regCtr;
+
+ iRec = sqlite3GetTempReg(pParse);
+ assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
+ sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
+ VdbeCoverage(v);
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
+ if( aOp==0 ) break;
+ aOp[0].p1 = memId+1;
+ aOp[1].p2 = memId+1;
+ aOp[2].p1 = memId-1;
+ aOp[2].p3 = iRec;
+ aOp[3].p2 = iRec;
+ aOp[3].p3 = memId+1;
+ aOp[3].p5 = OPFLAG_APPEND;
+ sqlite3ReleaseTempReg(pParse, iRec);
+ }
+}
+SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
+ if( pParse->pAinc ) autoIncrementEnd(pParse);
+}
+#else
+/*
+** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
+** above are all no-ops
+*/
+# define autoIncBegin(A,B,C) (0)
+# define autoIncStep(A,B,C)
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+
+/* Forward declaration */
+static int xferOptimization(
+ Parse *pParse, /* Parser context */
+ Table *pDest, /* The table we are inserting into */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ int onError, /* How to handle constraint errors */
+ int iDbDest /* The database of pDest */
+);
+
+/*
+** This routine is called to handle SQL of the following forms:
+**
+** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
+** insert into TABLE (IDLIST) select
+** insert into TABLE (IDLIST) default values
+**
+** The IDLIST following the table name is always optional. If omitted,
+** then a list of all (non-hidden) columns for the table is substituted.
+** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
+** is omitted.
+**
+** For the pSelect parameter holds the values to be inserted for the
+** first two forms shown above. A VALUES clause is really just short-hand
+** for a SELECT statement that omits the FROM clause and everything else
+** that follows. If the pSelect parameter is NULL, that means that the
+** DEFAULT VALUES form of the INSERT statement is intended.
+**
+** The code generated follows one of four templates. For a simple
+** insert with data coming from a single-row VALUES clause, the code executes
+** once straight down through. Pseudo-code follows (we call this
+** the "1st template"):
+**
+** open write cursor to <table> and its indices
+** put VALUES clause expressions into registers
+** write the resulting record into <table>
+** cleanup
+**
+** The three remaining templates assume the statement is of the form
+**
+** INSERT INTO <table> SELECT ...
+**
+** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
+** in other words if the SELECT pulls all columns from a single table
+** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
+** if <table2> and <table1> are distinct tables but have identical
+** schemas, including all the same indices, then a special optimization
+** is invoked that copies raw records from <table2> over to <table1>.
+** See the xferOptimization() function for the implementation of this
+** template. This is the 2nd template.
+**
+** open a write cursor to <table>
+** open read cursor on <table2>
+** transfer all records in <table2> over to <table>
+** close cursors
+** foreach index on <table>
+** open a write cursor on the <table> index
+** open a read cursor on the corresponding <table2> index
+** transfer all records from the read to the write cursors
+** close cursors
+** end foreach
+**
+** The 3rd template is for when the second template does not apply
+** and the SELECT clause does not read from <table> at any time.
+** The generated code follows this template:
+**
+** X <- A
+** goto B
+** A: setup for the SELECT
+** loop over the rows in the SELECT
+** load values into registers R..R+n
+** yield X
+** end loop
+** cleanup after the SELECT
+** end-coroutine X
+** B: open write cursor to <table> and its indices
+** C: yield X, at EOF goto D
+** insert the select result into <table> from R..R+n
+** goto C
+** D: cleanup
+**
+** The 4th template is used if the insert statement takes its
+** values from a SELECT but the data is being inserted into a table
+** that is also read as part of the SELECT. In the third form,
+** we have to use an intermediate table to store the results of
+** the select. The template is like this:
+**
+** X <- A
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** load value into register R..R+n
+** yield X
+** end loop
+** cleanup after the SELECT
+** end co-routine R
+** B: open temp table
+** L: yield X, at EOF goto M
+** insert row from R..R+n into temp table
+** goto L
+** M: open write cursor to <table> and its indices
+** rewind temp table
+** C: loop over rows of intermediate table
+** transfer values form intermediate table into <table>
+** end loop
+** D: cleanup
+*/
+SQLITE_PRIVATE void sqlite3Insert(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* Name of table into which we are inserting */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */
+ int onError, /* How to handle constraint errors */
+ Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */
+){
+ sqlite3 *db; /* The main database structure */
+ Table *pTab; /* The table to insert into. aka TABLE */
+ int i, j; /* Loop counters */
+ Vdbe *v; /* Generate code into this virtual machine */
+ Index *pIdx; /* For looping over indices of the table */
+ int nColumn; /* Number of columns in the data */
+ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
+ int iDataCur = 0; /* VDBE cursor that is the main data repository */
+ int iIdxCur = 0; /* First index cursor */
+ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
+ int endOfLoop; /* Label for the end of the insertion loop */
+ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
+ int addrInsTop = 0; /* Jump to label "D" */
+ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
+ SelectDest dest; /* Destination for SELECT on rhs of INSERT */
+ int iDb; /* Index of database holding TABLE */
+ u8 useTempTable = 0; /* Store SELECT results in intermediate table */
+ u8 appendFlag = 0; /* True if the insert is likely to be an append */
+ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
+ u8 bIdListInOrder; /* True if IDLIST is in table order */
+ ExprList *pList = 0; /* List of VALUES() to be inserted */
+ int iRegStore; /* Register in which to store next column */
+
+ /* Register allocations */
+ int regFromSelect = 0;/* Base register for data coming from SELECT */
+ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
+ int regRowCount = 0; /* Memory cell used for the row counter */
+ int regIns; /* Block of regs holding rowid+data being inserted */
+ int regRowid; /* registers holding insert rowid */
+ int regData; /* register holding first column to insert */
+ int *aRegIdx = 0; /* One register allocated to each index */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True if attempting to insert into a view */
+ Trigger *pTrigger; /* List of triggers on pTab, if required */
+ int tmask; /* Mask of trigger times */
+#endif
+
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto insert_cleanup;
+ }
+ assert( db->mallocFailed==0 );
+ dest.iSDParm = 0; /* Suppress a harmless compiler warning */
+
+ /* If the Select object is really just a simple VALUES() list with a
+ ** single row (the common case) then keep that one row of values
+ ** and discard the other (unused) parts of the pSelect object
+ */
+ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
+ pList = pSelect->pEList;
+ pSelect->pEList = 0;
+ sqlite3SelectDelete(db, pSelect);
+ pSelect = 0;
+ }
+
+ /* Locate the table into which we will be inserting new information.
+ */
+ assert( pTabList->nSrc==1 );
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ){
+ goto insert_cleanup;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
+ db->aDb[iDb].zDbSName) ){
+ goto insert_cleanup;
+ }
+ withoutRowid = !HasRowid(pTab);
+
+ /* Figure out if we have any triggers and if the table being
+ ** inserted into is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
+ isView = IsView(pTab);
+#else
+# define pTrigger 0
+# define tmask 0
+# define isView 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+ assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__);
+ sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList,
+ onError, pUpsert, pTrigger);
+ }
+#endif
+
+ /* If pTab is really a view, make sure it has been initialized.
+ ** ViewGetColumnNames() is a no-op if pTab is not a view.
+ */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto insert_cleanup;
+ }
+
+ /* Cannot insert into a read-only table.
+ */
+ if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
+ goto insert_cleanup;
+ }
+
+ /* Allocate a VDBE
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto insert_cleanup;
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
+
+#ifndef SQLITE_OMIT_XFER_OPT
+ /* If the statement is of the form
+ **
+ ** INSERT INTO <table1> SELECT * FROM <table2>;
+ **
+ ** Then special optimizations can be applied that make the transfer
+ ** very fast and which reduce fragmentation of indices.
+ **
+ ** This is the 2nd template.
+ */
+ if( pColumn==0
+ && pSelect!=0
+ && pTrigger==0
+ && xferOptimization(pParse, pTab, pSelect, onError, iDb)
+ ){
+ assert( !pTrigger );
+ assert( pList==0 );
+ goto insert_end;
+ }
+#endif /* SQLITE_OMIT_XFER_OPT */
+
+ /* If this is an AUTOINCREMENT table, look up the sequence number in the
+ ** sqlite_sequence table and store it in memory cell regAutoinc.
+ */
+ regAutoinc = autoIncBegin(pParse, iDb, pTab);
+
+ /* Allocate a block registers to hold the rowid and the values
+ ** for all columns of the new row.
+ */
+ regRowid = regIns = pParse->nMem+1;
+ pParse->nMem += pTab->nCol + 1;
+ if( IsVirtual(pTab) ){
+ regRowid++;
+ pParse->nMem++;
+ }
+ regData = regRowid+1;
+
+ /* If the INSERT statement included an IDLIST term, then make sure
+ ** all elements of the IDLIST really are columns of the table and
+ ** remember the column indices.
+ **
+ ** If the table has an INTEGER PRIMARY KEY column and that column
+ ** is named in the IDLIST, then record in the ipkColumn variable
+ ** the index into IDLIST of the primary key column. ipkColumn is
+ ** the index of the primary key as it appears in IDLIST, not as
+ ** is appears in the original table. (The index of the INTEGER
+ ** PRIMARY KEY in the original table is pTab->iPKey.) After this
+ ** loop, if ipkColumn==(-1), that means that integer primary key
+ ** is unspecified, and hence the table is either WITHOUT ROWID or
+ ** it will automatically generated an integer primary key.
+ **
+ ** bIdListInOrder is true if the columns in IDLIST are in storage
+ ** order. This enables an optimization that avoids shuffling the
+ ** columns into storage order. False negatives are harmless,
+ ** but false positives will cause database corruption.
+ */
+ bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
+ if( pColumn ){
+ assert( pColumn->eU4!=EU4_EXPR );
+ pColumn->eU4 = EU4_IDX;
+ for(i=0; i<pColumn->nId; i++){
+ pColumn->a[i].u4.idx = -1;
+ }
+ for(i=0; i<pColumn->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
+ pColumn->a[i].u4.idx = j;
+ if( i!=j ) bIdListInOrder = 0;
+ if( j==pTab->iPKey ){
+ ipkColumn = i; assert( !withoutRowid );
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
+ sqlite3ErrorMsg(pParse,
+ "cannot INSERT into generated column \"%s\"",
+ pTab->aCol[j].zCnName);
+ goto insert_cleanup;
+ }
+#endif
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
+ ipkColumn = i;
+ bIdListInOrder = 0;
+ }else{
+ sqlite3ErrorMsg(pParse, "table %S has no column named %s",
+ pTabList->a, pColumn->a[i].zName);
+ pParse->checkSchema = 1;
+ goto insert_cleanup;
+ }
+ }
+ }
+ }
+
+ /* Figure out how many columns of data are supplied. If the data
+ ** is coming from a SELECT statement, then generate a co-routine that
+ ** produces a single row of the SELECT on each invocation. The
+ ** co-routine is the common header to the 3rd and 4th templates.
+ */
+ if( pSelect ){
+ /* Data is coming from a SELECT or from a multi-row VALUES clause.
+ ** Generate a co-routine to run the SELECT. */
+ int regYield; /* Register holding co-routine entry-point */
+ int addrTop; /* Top of the co-routine */
+ int rc; /* Result code */
+
+ regYield = ++pParse->nMem;
+ addrTop = sqlite3VdbeCurrentAddr(v) + 1;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
+ dest.iSdst = bIdListInOrder ? regData : 0;
+ dest.nSdst = pTab->nCol;
+ rc = sqlite3Select(pParse, pSelect, &dest);
+ regFromSelect = dest.iSdst;
+ assert( db->pParse==pParse );
+ if( rc || pParse->nErr ) goto insert_cleanup;
+ assert( db->mallocFailed==0 );
+ sqlite3VdbeEndCoroutine(v, regYield);
+ sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
+ assert( pSelect->pEList );
+ nColumn = pSelect->pEList->nExpr;
+
+ /* Set useTempTable to TRUE if the result of the SELECT statement
+ ** should be written into a temporary table (template 4). Set to
+ ** FALSE if each output row of the SELECT can be written directly into
+ ** the destination table (template 3).
+ **
+ ** A temp table must be used if the table being updated is also one
+ ** of the tables being read by the SELECT statement. Also use a
+ ** temp table in the case of row triggers.
+ */
+ if( pTrigger || readsTable(pParse, iDb, pTab) ){
+ useTempTable = 1;
+ }
+
+ if( useTempTable ){
+ /* Invoke the coroutine to extract information from the SELECT
+ ** and add it to a transient table srcTab. The code generated
+ ** here is from the 4th template:
+ **
+ ** B: open temp table
+ ** L: yield X, goto M at EOF
+ ** insert row from R..R+n into temp table
+ ** goto L
+ ** M: ...
+ */
+ int regRec; /* Register to hold packed record */
+ int regTempRowid; /* Register to hold temp table ROWID */
+ int addrL; /* Label "L" */
+
+ srcTab = pParse->nTab++;
+ regRec = sqlite3GetTempReg(pParse);
+ regTempRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
+ addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
+ sqlite3VdbeGoto(v, addrL);
+ sqlite3VdbeJumpHere(v, addrL);
+ sqlite3ReleaseTempReg(pParse, regRec);
+ sqlite3ReleaseTempReg(pParse, regTempRowid);
+ }
+ }else{
+ /* This is the case if the data for the INSERT is coming from a
+ ** single-row VALUES clause
+ */
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ srcTab = -1;
+ assert( useTempTable==0 );
+ if( pList ){
+ nColumn = pList->nExpr;
+ if( sqlite3ResolveExprListNames(&sNC, pList) ){
+ goto insert_cleanup;
+ }
+ }else{
+ nColumn = 0;
+ }
+ }
+
+ /* If there is no IDLIST term but the table has an integer primary
+ ** key, the set the ipkColumn variable to the integer primary key
+ ** column index in the original table definition.
+ */
+ if( pColumn==0 && nColumn>0 ){
+ ipkColumn = pTab->iPKey;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ for(i=ipkColumn-1; i>=0; i--){
+ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
+ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
+ testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
+ ipkColumn--;
+ }
+ }
+ }
+#endif
+
+ /* Make sure the number of columns in the source data matches the number
+ ** of columns to be inserted into the table.
+ */
+ assert( TF_HasHidden==COLFLAG_HIDDEN );
+ assert( TF_HasGenerated==COLFLAG_GENERATED );
+ assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
+ if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
+ }
+ }
+ if( nColumn!=(pTab->nCol-nHidden) ){
+ sqlite3ErrorMsg(pParse,
+ "table %S has %d columns but %d values were supplied",
+ pTabList->a, pTab->nCol-nHidden, nColumn);
+ goto insert_cleanup;
+ }
+ }
+ if( pColumn!=0 && nColumn!=pColumn->nId ){
+ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
+ goto insert_cleanup;
+ }
+
+ /* Initialize the count of rows to be inserted
+ */
+ if( (db->flags & SQLITE_CountRows)!=0
+ && !pParse->nested
+ && !pParse->pTriggerTab
+ && !pParse->bReturning
+ ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
+ }
+
+ /* If this is not a view, open the table and and all indices */
+ if( !isView ){
+ int nIdx;
+ nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
+ &iDataCur, &iIdxCur);
+ aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
+ if( aRegIdx==0 ){
+ goto insert_cleanup;
+ }
+ for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
+ assert( pIdx );
+ aRegIdx[i] = ++pParse->nMem;
+ pParse->nMem += pIdx->nColumn;
+ }
+ aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ if( pUpsert ){
+ Upsert *pNx;
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
+ pTab->zName);
+ goto insert_cleanup;
+ }
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
+ goto insert_cleanup;
+ }
+ if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
+ goto insert_cleanup;
+ }
+ pTabList->a[0].iCursor = iDataCur;
+ pNx = pUpsert;
+ do{
+ pNx->pUpsertSrc = pTabList;
+ pNx->regData = regData;
+ pNx->iDataCur = iDataCur;
+ pNx->iIdxCur = iIdxCur;
+ if( pNx->pUpsertTarget ){
+ if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
+ goto insert_cleanup;
+ }
+ }
+ pNx = pNx->pNextUpsert;
+ }while( pNx!=0 );
+ }
+#endif
+
+
+ /* This is the top of the main insertion loop */
+ if( useTempTable ){
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 4):
+ **
+ ** rewind temp table, if empty goto D
+ ** C: loop over rows of intermediate table
+ ** transfer values form intermediate table into <table>
+ ** end loop
+ ** D: ...
+ */
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
+ addrCont = sqlite3VdbeCurrentAddr(v);
+ }else if( pSelect ){
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 3):
+ **
+ ** C: yield X, at EOF goto D
+ ** insert the select result into <table> from R..R+n
+ ** goto C
+ ** D: ...
+ */
+ sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
+ addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
+ VdbeCoverage(v);
+ if( ipkColumn>=0 ){
+ /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
+ ** SELECT, go ahead and copy the value into the rowid slot now, so that
+ ** the value does not get overwritten by a NULL at tag-20191021-002. */
+ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
+ }
+ }
+
+ /* Compute data for ordinary columns of the new entry. Values
+ ** are written in storage order into registers starting with regData.
+ ** Only ordinary columns are computed in this loop. The rowid
+ ** (if there is one) is computed later and generated columns are
+ ** computed after the rowid since they might depend on the value
+ ** of the rowid.
+ */
+ nHidden = 0;
+ iRegStore = regData; assert( regData==regRowid+1 );
+ for(i=0; i<pTab->nCol; i++, iRegStore++){
+ int k;
+ u32 colFlags;
+ assert( i>=nHidden );
+ if( i==pTab->iPKey ){
+ /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
+ ** using the rowid. So put a NULL in the IPK slot of the record to avoid
+ ** using excess space. The file format definition requires this extra
+ ** NULL - we cannot optimize further by skipping the column completely */
+ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
+ continue;
+ }
+ if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
+ nHidden++;
+ if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
+ /* Virtual columns do not participate in OP_MakeRecord. So back up
+ ** iRegStore by one slot to compensate for the iRegStore++ in the
+ ** outer for() loop */
+ iRegStore--;
+ continue;
+ }else if( (colFlags & COLFLAG_STORED)!=0 ){
+ /* Stored columns are computed later. But if there are BEFORE
+ ** triggers, the slots used for stored columns will be OP_Copy-ed
+ ** to a second block of registers, so the register needs to be
+ ** initialized to NULL to avoid an uninitialized register read */
+ if( tmask & TRIGGER_BEFORE ){
+ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
+ }
+ continue;
+ }else if( pColumn==0 ){
+ /* Hidden columns that are not explicitly named in the INSERT
+ ** get there default value */
+ sqlite3ExprCodeFactorable(pParse,
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ iRegStore);
+ continue;
+ }
+ }
+ if( pColumn ){
+ assert( pColumn->eU4==EU4_IDX );
+ for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){}
+ if( j>=pColumn->nId ){
+ /* A column not named in the insert column list gets its
+ ** default value */
+ sqlite3ExprCodeFactorable(pParse,
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ iRegStore);
+ continue;
+ }
+ k = j;
+ }else if( nColumn==0 ){
+ /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
+ sqlite3ExprCodeFactorable(pParse,
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ iRegStore);
+ continue;
+ }else{
+ k = i - nHidden;
+ }
+
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
+ }else if( pSelect ){
+ if( regFromSelect!=regData ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
+ }
+ }else{
+ sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
+ }
+ }
+
+
+ /* Run the BEFORE and INSTEAD OF triggers, if there are any
+ */
+ endOfLoop = sqlite3VdbeMakeLabel(pParse);
+ if( tmask & TRIGGER_BEFORE ){
+ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
+
+ /* build the NEW.* reference row. Note that if there is an INTEGER
+ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
+ ** translated into a unique ID for the row. But on a BEFORE trigger,
+ ** we do not know what the unique ID will be (because the insert has
+ ** not happened yet) so we substitute a rowid of -1
+ */
+ if( ipkColumn<0 ){
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
+ }else{
+ int addr1;
+ assert( !withoutRowid );
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
+ }else{
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
+ }
+ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
+ }
+
+ /* Copy the new data already generated. */
+ assert( pTab->nNVCol>0 );
+ sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Compute the new value for generated columns after all other
+ ** columns have already been computed. This must be done after
+ ** computing the ROWID in case one of the generated columns
+ ** refers to the ROWID. */
+ if( pTab->tabFlags & TF_HasGenerated ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
+ }
+#endif
+
+ /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
+ ** do not attempt any conversions before assembling the record.
+ ** If this is a real table, attempt conversions as required by the
+ ** table column affinities.
+ */
+ if( !isView ){
+ sqlite3TableAffinity(v, pTab, regCols+1);
+ }
+
+ /* Fire BEFORE or INSTEAD OF triggers */
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
+ pTab, regCols-pTab->nCol-1, onError, endOfLoop);
+
+ sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
+ }
+
+ if( !isView ){
+ if( IsVirtual(pTab) ){
+ /* The row that the VUpdate opcode will delete: none */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
+ }
+ if( ipkColumn>=0 ){
+ /* Compute the new rowid */
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
+ }else if( pSelect ){
+ /* Rowid already initialized at tag-20191021-001 */
+ }else{
+ Expr *pIpk = pList->a[ipkColumn].pExpr;
+ if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
+ appendFlag = 1;
+ }else{
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
+ }
+ }
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
+ ** to generate a unique primary key value.
+ */
+ if( !appendFlag ){
+ int addr1;
+ if( !IsVirtual(pTab) ){
+ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
+ sqlite3VdbeJumpHere(v, addr1);
+ }else{
+ addr1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
+ }
+ }else if( IsVirtual(pTab) || withoutRowid ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
+ appendFlag = 1;
+ }
+ autoIncStep(pParse, regAutoinc, regRowid);
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Compute the new value for generated columns after all other
+ ** columns have already been computed. This must be done after
+ ** computing the ROWID in case one of the generated columns
+ ** is derived from the INTEGER PRIMARY KEY. */
+ if( pTab->tabFlags & TF_HasGenerated ){
+ sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
+ }
+#endif
+
+ /* Generate code to check constraints and generate index keys and
+ ** do the insertion.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
+ sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
+ sqlite3MayAbort(pParse);
+ }else
+#endif
+ {
+ int isReplace = 0;/* Set to true if constraints may cause a replace */
+ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
+ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
+ regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
+ );
+ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
+
+ /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
+ ** constraints or (b) there are no triggers and this table is not a
+ ** parent table in a foreign key constraint. It is safe to set the
+ ** flag in the second case as if any REPLACE constraint is hit, an
+ ** OP_Delete or OP_IdxDelete instruction will be executed on each
+ ** cursor that is disturbed. And these instructions both clear the
+ ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
+ ** functionality. */
+ bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
+ sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
+ regIns, aRegIdx, 0, appendFlag, bUseSeek
+ );
+ }
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ }else if( pParse->bReturning ){
+ /* If there is a RETURNING clause, populate the rowid register with
+ ** constant value -1, in case one or more of the returned expressions
+ ** refer to the "rowid" of the view. */
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
+#endif
+ }
+
+ /* Update the count of rows that are inserted
+ */
+ if( regRowCount ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
+ }
+
+ if( pTrigger ){
+ /* Code AFTER triggers */
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
+ pTab, regData-2-pTab->nCol, onError, endOfLoop);
+ }
+
+ /* The bottom of the main insertion loop, if the data source
+ ** is a SELECT statement.
+ */
+ sqlite3VdbeResolveLabel(v, endOfLoop);
+ if( useTempTable ){
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrInsTop);
+ sqlite3VdbeAddOp1(v, OP_Close, srcTab);
+ }else if( pSelect ){
+ sqlite3VdbeGoto(v, addrCont);
+#ifdef SQLITE_DEBUG
+ /* If we are jumping back to an OP_Yield that is preceded by an
+ ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
+ ** OP_ReleaseReg will be included in the loop. */
+ if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
+ assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
+ sqlite3VdbeChangeP5(v, 1);
+ }
+#endif
+ sqlite3VdbeJumpHere(v, addrInsTop);
+ }
+
+#ifndef SQLITE_OMIT_XFER_OPT
+insert_end:
+#endif /* SQLITE_OMIT_XFER_OPT */
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /*
+ ** Return the number of rows inserted. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( regRowCount ){
+ sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
+ }
+
+insert_cleanup:
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3UpsertDelete(db, pUpsert);
+ sqlite3SelectDelete(db, pSelect);
+ sqlite3IdListDelete(db, pColumn);
+ sqlite3DbFree(db, aRegIdx);
+}
+
+/* Make sure "isView" and other macros defined above are undefined. Otherwise
+** they may interfere with compilation of other functions in this file
+** (or in another file, if this file becomes part of the amalgamation). */
+#ifdef isView
+ #undef isView
+#endif
+#ifdef pTrigger
+ #undef pTrigger
+#endif
+#ifdef tmask
+ #undef tmask
+#endif
+
+/*
+** Meanings of bits in of pWalker->eCode for
+** sqlite3ExprReferencesUpdatedColumn()
+*/
+#define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
+#define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
+
+/* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
+* Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
+** expression node references any of the
+** columns that are being modifed by an UPDATE statement.
+*/
+static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN ){
+ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
+ if( pExpr->iColumn>=0 ){
+ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
+ pWalker->eCode |= CKCNSTRNT_COLUMN;
+ }
+ }else{
+ pWalker->eCode |= CKCNSTRNT_ROWID;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
+** only columns that are modified by the UPDATE are those for which
+** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
+**
+** Return true if CHECK constraint pExpr uses any of the
+** changing columns (or the rowid if it is changing). In other words,
+** return true if this CHECK constraint must be validated for
+** the new row in the UPDATE statement.
+**
+** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
+** The operation of this routine is the same - return true if an only if
+** the expression uses one or more of columns identified by the second and
+** third arguments.
+*/
+SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(
+ Expr *pExpr, /* The expression to be checked */
+ int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */
+ int chngRowid /* True if UPDATE changes the rowid */
+){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.eCode = 0;
+ w.xExprCallback = checkConstraintExprNode;
+ w.u.aiCol = aiChng;
+ sqlite3WalkExpr(&w, pExpr);
+ if( !chngRowid ){
+ testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
+ w.eCode &= ~CKCNSTRNT_ROWID;
+ }
+ testcase( w.eCode==0 );
+ testcase( w.eCode==CKCNSTRNT_COLUMN );
+ testcase( w.eCode==CKCNSTRNT_ROWID );
+ testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
+ return w.eCode!=0;
+}
+
+/*
+** The sqlite3GenerateConstraintChecks() routine usually wants to visit
+** the indexes of a table in the order provided in the Table->pIndex list.
+** However, sometimes (rarely - when there is an upsert) it wants to visit
+** the indexes in a different order. The following data structures accomplish
+** this.
+**
+** The IndexIterator object is used to walk through all of the indexes
+** of a table in either Index.pNext order, or in some other order established
+** by an array of IndexListTerm objects.
+*/
+typedef struct IndexListTerm IndexListTerm;
+typedef struct IndexIterator IndexIterator;
+struct IndexIterator {
+ int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
+ int i; /* Index of the current item from the list */
+ union {
+ struct { /* Use this object for eType==0: A Index.pNext list */
+ Index *pIdx; /* The current Index */
+ } lx;
+ struct { /* Use this object for eType==1; Array of IndexListTerm */
+ int nIdx; /* Size of the array */
+ IndexListTerm *aIdx; /* Array of IndexListTerms */
+ } ax;
+ } u;
+};
+
+/* When IndexIterator.eType==1, then each index is an array of instances
+** of the following object
+*/
+struct IndexListTerm {
+ Index *p; /* The index */
+ int ix; /* Which entry in the original Table.pIndex list is this index*/
+};
+
+/* Return the first index on the list */
+static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
+ assert( pIter->i==0 );
+ if( pIter->eType ){
+ *pIx = pIter->u.ax.aIdx[0].ix;
+ return pIter->u.ax.aIdx[0].p;
+ }else{
+ *pIx = 0;
+ return pIter->u.lx.pIdx;
+ }
+}
+
+/* Return the next index from the list. Return NULL when out of indexes */
+static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
+ if( pIter->eType ){
+ int i = ++pIter->i;
+ if( i>=pIter->u.ax.nIdx ){
+ *pIx = i;
+ return 0;
+ }
+ *pIx = pIter->u.ax.aIdx[i].ix;
+ return pIter->u.ax.aIdx[i].p;
+ }else{
+ ++(*pIx);
+ pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
+ return pIter->u.lx.pIdx;
+ }
+}
+
+/*
+** Generate code to do constraint checks prior to an INSERT or an UPDATE
+** on table pTab.
+**
+** The regNewData parameter is the first register in a range that contains
+** the data to be inserted or the data after the update. There will be
+** pTab->nCol+1 registers in this range. The first register (the one
+** that regNewData points to) will contain the new rowid, or NULL in the
+** case of a WITHOUT ROWID table. The second register in the range will
+** contain the content of the first table column. The third register will
+** contain the content of the second table column. And so forth.
+**
+** The regOldData parameter is similar to regNewData except that it contains
+** the data prior to an UPDATE rather than afterwards. regOldData is zero
+** for an INSERT. This routine can distinguish between UPDATE and INSERT by
+** checking regOldData for zero.
+**
+** For an UPDATE, the pkChng boolean is true if the true primary key (the
+** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
+** might be modified by the UPDATE. If pkChng is false, then the key of
+** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
+**
+** For an INSERT, the pkChng boolean indicates whether or not the rowid
+** was explicitly specified as part of the INSERT statement. If pkChng
+** is zero, it means that the either rowid is computed automatically or
+** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
+** pkChng will only be true if the INSERT statement provides an integer
+** value for either the rowid column or its INTEGER PRIMARY KEY alias.
+**
+** The code generated by this routine will store new index entries into
+** registers identified by aRegIdx[]. No index entry is created for
+** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
+** the same as the order of indices on the linked list of indices
+** at pTab->pIndex.
+**
+** (2019-05-07) The generated code also creates a new record for the
+** main table, if pTab is a rowid table, and stores that record in the
+** register identified by aRegIdx[nIdx] - in other words in the first
+** entry of aRegIdx[] past the last index. It is important that the
+** record be generated during constraint checks to avoid affinity changes
+** to the register content that occur after constraint checks but before
+** the new record is inserted.
+**
+** The caller must have already opened writeable cursors on the main
+** table and all applicable indices (that is to say, all indices for which
+** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
+** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
+** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
+** for the first index in the pTab->pIndex list. Cursors for other indices
+** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
+**
+** This routine also generates code to check constraints. NOT NULL,
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
+** then the appropriate action is performed. There are five possible
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
+**
+** Constraint type Action What Happens
+** --------------- ---------- ----------------------------------------
+** any ROLLBACK The current transaction is rolled back and
+** sqlite3_step() returns immediately with a
+** return code of SQLITE_CONSTRAINT.
+**
+** any ABORT Back out changes from the current command
+** only (do not do a complete rollback) then
+** cause sqlite3_step() to return immediately
+** with SQLITE_CONSTRAINT.
+**
+** any FAIL Sqlite3_step() returns immediately with a
+** return code of SQLITE_CONSTRAINT. The
+** transaction is not rolled back and any
+** changes to prior rows are retained.
+**
+** any IGNORE The attempt in insert or update the current
+** row is skipped, without throwing an error.
+** Processing continues with the next row.
+** (There is an immediate jump to ignoreDest.)
+**
+** NOT NULL REPLACE The NULL value is replace by the default
+** value for that column. If the default value
+** is NULL, the action is the same as ABORT.
+**
+** UNIQUE REPLACE The other row that conflicts with the row
+** being inserted is removed.
+**
+** CHECK REPLACE Illegal. The results in an exception.
+**
+** Which action to take is determined by the overrideError parameter.
+** Or if overrideError==OE_Default, then the pParse->onError parameter
+** is used. Or if pParse->onError==OE_Default then the onError value
+** for the constraint is used.
+*/
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* The table being inserted or updated */
+ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
+ int iDataCur, /* Canonical data cursor (main table or PK index) */
+ int iIdxCur, /* First index cursor */
+ int regNewData, /* First register in a range holding values to insert */
+ int regOldData, /* Previous content. 0 for INSERTs */
+ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
+ u8 overrideError, /* Override onError to this if not OE_Default */
+ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
+ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
+ int *aiChng, /* column i is unchanged if aiChng[i]<0 */
+ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */
+){
+ Vdbe *v; /* VDBE under constrution */
+ Index *pIdx; /* Pointer to one of the indices */
+ Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
+ sqlite3 *db; /* Database connection */
+ int i; /* loop counter */
+ int ix; /* Index loop counter */
+ int nCol; /* Number of columns */
+ int onError; /* Conflict resolution strategy */
+ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
+ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
+ Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */
+ u8 isUpdate; /* True if this is an UPDATE operation */
+ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
+ int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
+ int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */
+ int ipkTop = 0; /* Top of the IPK uniqueness check */
+ int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */
+ /* Variables associated with retesting uniqueness constraints after
+ ** replace triggers fire have run */
+ int regTrigCnt; /* Register used to count replace trigger invocations */
+ int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */
+ int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
+ Trigger *pTrigger; /* List of DELETE triggers on the table pTab */
+ int nReplaceTrig = 0; /* Number of replace triggers coded */
+ IndexIterator sIdxIter; /* Index iterator */
+
+ isUpdate = regOldData!=0;
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( !IsView(pTab) ); /* This table is not a VIEW */
+ nCol = pTab->nCol;
+
+ /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
+ ** normal rowid tables. nPkField is the number of key fields in the
+ ** pPk index or 1 for a rowid table. In other words, nPkField is the
+ ** number of fields in the true primary key of the table. */
+ if( HasRowid(pTab) ){
+ pPk = 0;
+ nPkField = 1;
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ nPkField = pPk->nKeyCol;
+ }
+
+ /* Record that this module has started */
+ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
+ iDataCur, iIdxCur, regNewData, regOldData, pkChng));
+
+ /* Test all NOT NULL constraints.
+ */
+ if( pTab->tabFlags & TF_HasNotNull ){
+ int b2ndPass = 0; /* True if currently running 2nd pass */
+ int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */
+ int nGenerated = 0; /* Number of generated columns with NOT NULL */
+ while(1){ /* Make 2 passes over columns. Exit loop via "break" */
+ for(i=0; i<nCol; i++){
+ int iReg; /* Register holding column value */
+ Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */
+ int isGenerated; /* non-zero if column is generated */
+ onError = pCol->notNull;
+ if( onError==OE_None ) continue; /* No NOT NULL on this column */
+ if( i==pTab->iPKey ){
+ continue; /* ROWID is never NULL */
+ }
+ isGenerated = pCol->colFlags & COLFLAG_GENERATED;
+ if( isGenerated && !b2ndPass ){
+ nGenerated++;
+ continue; /* Generated columns processed on 2nd pass */
+ }
+ if( aiChng && aiChng[i]<0 && !isGenerated ){
+ /* Do not check NOT NULL on columns that do not change */
+ continue;
+ }
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( onError==OE_Replace ){
+ if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */
+ || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */
+ ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ testcase( pCol->colFlags & COLFLAG_GENERATED );
+ onError = OE_Abort;
+ }else{
+ assert( !isGenerated );
+ }
+ }else if( b2ndPass && !isGenerated ){
+ continue;
+ }
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
+ || onError==OE_Ignore || onError==OE_Replace );
+ testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
+ iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
+ switch( onError ){
+ case OE_Replace: {
+ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
+ VdbeCoverage(v);
+ assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
+ nSeenReplace++;
+ sqlite3ExprCodeCopy(pParse,
+ sqlite3ColumnExpr(pTab, pCol), iReg);
+ sqlite3VdbeJumpHere(v, addr1);
+ break;
+ }
+ case OE_Abort:
+ sqlite3MayAbort(pParse);
+ /* no break */ deliberate_fall_through
+ case OE_Rollback:
+ case OE_Fail: {
+ char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
+ pCol->zCnName);
+ sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
+ onError, iReg);
+ sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
+ sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
+ VdbeCoverage(v);
+ break;
+ }
+ default: {
+ assert( onError==OE_Ignore );
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
+ VdbeCoverage(v);
+ break;
+ }
+ } /* end switch(onError) */
+ } /* end loop i over columns */
+ if( nGenerated==0 && nSeenReplace==0 ){
+ /* If there are no generated columns with NOT NULL constraints
+ ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
+ ** pass is sufficient */
+ break;
+ }
+ if( b2ndPass ) break; /* Never need more than 2 passes */
+ b2ndPass = 1;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
+ /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
+ ** first pass, recomputed values for all generated columns, as
+ ** those values might depend on columns affected by the REPLACE.
+ */
+ sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
+ }
+#endif
+ } /* end of 2-pass loop */
+ } /* end if( has-not-null-constraints ) */
+
+ /* Test all CHECK constraints
+ */
+#ifndef SQLITE_OMIT_CHECK
+ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
+ ExprList *pCheck = pTab->pCheck;
+ pParse->iSelfTab = -(regNewData+1);
+ onError = overrideError!=OE_Default ? overrideError : OE_Abort;
+ for(i=0; i<pCheck->nExpr; i++){
+ int allOk;
+ Expr *pCopy;
+ Expr *pExpr = pCheck->a[i].pExpr;
+ if( aiChng
+ && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
+ ){
+ /* The check constraints do not reference any of the columns being
+ ** updated so there is no point it verifying the check constraint */
+ continue;
+ }
+ if( bAffinityDone==0 ){
+ sqlite3TableAffinity(v, pTab, regNewData+1);
+ bAffinityDone = 1;
+ }
+ allOk = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeVerifyAbortable(v, onError);
+ pCopy = sqlite3ExprDup(db, pExpr, 0);
+ if( !db->mallocFailed ){
+ sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
+ }
+ sqlite3ExprDelete(db, pCopy);
+ if( onError==OE_Ignore ){
+ sqlite3VdbeGoto(v, ignoreDest);
+ }else{
+ char *zName = pCheck->a[i].zEName;
+ assert( zName!=0 || pParse->db->mallocFailed );
+ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
+ onError, zName, P4_TRANSIENT,
+ P5_ConstraintCheck);
+ }
+ sqlite3VdbeResolveLabel(v, allOk);
+ }
+ pParse->iSelfTab = 0;
+ }
+#endif /* !defined(SQLITE_OMIT_CHECK) */
+
+ /* UNIQUE and PRIMARY KEY constraints should be handled in the following
+ ** order:
+ **
+ ** (1) OE_Update
+ ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
+ ** (3) OE_Replace
+ **
+ ** OE_Fail and OE_Ignore must happen before any changes are made.
+ ** OE_Update guarantees that only a single row will change, so it
+ ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
+ ** could happen in any order, but they are grouped up front for
+ ** convenience.
+ **
+ ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
+ ** The order of constraints used to have OE_Update as (2) and OE_Abort
+ ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
+ ** constraint before any others, so it had to be moved.
+ **
+ ** Constraint checking code is generated in this order:
+ ** (A) The rowid constraint
+ ** (B) Unique index constraints that do not have OE_Replace as their
+ ** default conflict resolution strategy
+ ** (C) Unique index that do use OE_Replace by default.
+ **
+ ** The ordering of (2) and (3) is accomplished by making sure the linked
+ ** list of indexes attached to a table puts all OE_Replace indexes last
+ ** in the list. See sqlite3CreateIndex() for where that happens.
+ */
+ sIdxIter.eType = 0;
+ sIdxIter.i = 0;
+ sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */
+ sIdxIter.u.lx.pIdx = pTab->pIndex;
+ if( pUpsert ){
+ if( pUpsert->pUpsertTarget==0 ){
+ /* There is just on ON CONFLICT clause and it has no constraint-target */
+ assert( pUpsert->pNextUpsert==0 );
+ if( pUpsert->isDoUpdate==0 ){
+ /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
+ ** Make all unique constraint resolution be OE_Ignore */
+ overrideError = OE_Ignore;
+ pUpsert = 0;
+ }else{
+ /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
+ overrideError = OE_Update;
+ }
+ }else if( pTab->pIndex!=0 ){
+ /* Otherwise, we'll need to run the IndexListTerm array version of the
+ ** iterator to ensure that all of the ON CONFLICT conditions are
+ ** checked first and in order. */
+ int nIdx, jj;
+ u64 nByte;
+ Upsert *pTerm;
+ u8 *bUsed;
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
+ assert( aRegIdx[nIdx]>0 );
+ }
+ sIdxIter.eType = 1;
+ sIdxIter.u.ax.nIdx = nIdx;
+ nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
+ sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
+ if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
+ bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
+ pUpsert->pToFree = sIdxIter.u.ax.aIdx;
+ for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
+ if( pTerm->pUpsertTarget==0 ) break;
+ if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */
+ jj = 0;
+ pIdx = pTab->pIndex;
+ while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
+ pIdx = pIdx->pNext;
+ jj++;
+ }
+ if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
+ bUsed[jj] = 1;
+ sIdxIter.u.ax.aIdx[i].p = pIdx;
+ sIdxIter.u.ax.aIdx[i].ix = jj;
+ i++;
+ }
+ for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
+ if( bUsed[jj] ) continue;
+ sIdxIter.u.ax.aIdx[i].p = pIdx;
+ sIdxIter.u.ax.aIdx[i].ix = jj;
+ i++;
+ }
+ assert( i==nIdx );
+ }
+ }
+
+ /* Determine if it is possible that triggers (either explicitly coded
+ ** triggers or FK resolution actions) might run as a result of deletes
+ ** that happen when OE_Replace conflict resolution occurs. (Call these
+ ** "replace triggers".) If any replace triggers run, we will need to
+ ** recheck all of the uniqueness constraints after they have all run.
+ ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
+ **
+ ** If replace triggers are a possibility, then
+ **
+ ** (1) Allocate register regTrigCnt and initialize it to zero.
+ ** That register will count the number of replace triggers that
+ ** fire. Constraint recheck only occurs if the number is positive.
+ ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
+ ** (3) Initialize addrRecheck and lblRecheckOk
+ **
+ ** The uniqueness rechecking code will create a series of tests to run
+ ** in a second pass. The addrRecheck and lblRecheckOk variables are
+ ** used to link together these tests which are separated from each other
+ ** in the generate bytecode.
+ */
+ if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
+ /* There are not DELETE triggers nor FK constraints. No constraint
+ ** rechecks are needed. */
+ pTrigger = 0;
+ regTrigCnt = 0;
+ }else{
+ if( db->flags&SQLITE_RecTriggers ){
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
+ regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
+ }else{
+ pTrigger = 0;
+ regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
+ }
+ if( regTrigCnt ){
+ /* Replace triggers might exist. Allocate the counter and
+ ** initialize it to zero. */
+ regTrigCnt = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
+ VdbeComment((v, "trigger count"));
+ lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
+ addrRecheck = lblRecheckOk;
+ }
+ }
+
+ /* If rowid is changing, make sure the new rowid does not previously
+ ** exist in the table.
+ */
+ if( pkChng && pPk==0 ){
+ int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
+
+ /* Figure out what action to take in case of a rowid collision */
+ onError = pTab->keyConf;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+
+ /* figure out whether or not upsert applies in this case */
+ if( pUpsert ){
+ pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
+ if( pUpsertClause!=0 ){
+ if( pUpsertClause->isDoUpdate==0 ){
+ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
+ }else{
+ onError = OE_Update; /* DO UPDATE */
+ }
+ }
+ if( pUpsertClause!=pUpsert ){
+ /* The first ON CONFLICT clause has a conflict target other than
+ ** the IPK. We have to jump ahead to that first ON CONFLICT clause
+ ** and then come back here and deal with the IPK afterwards */
+ upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
+ }
+ }
+
+ /* If the response to a rowid conflict is REPLACE but the response
+ ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
+ ** to defer the running of the rowid conflict checking until after
+ ** the UNIQUE constraints have run.
+ */
+ if( onError==OE_Replace /* IPK rule is REPLACE */
+ && onError!=overrideError /* Rules for other constraints are different */
+ && pTab->pIndex /* There exist other constraints */
+ && !upsertIpkDelay /* IPK check already deferred by UPSERT */
+ ){
+ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
+ VdbeComment((v, "defer IPK REPLACE until last"));
+ }
+
+ if( isUpdate ){
+ /* pkChng!=0 does not mean that the rowid has changed, only that
+ ** it might have changed. Skip the conflict logic below if the rowid
+ ** is unchanged. */
+ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverage(v);
+ }
+
+ /* Check to see if the new rowid already exists in the table. Skip
+ ** the following conflict logic if it does not. */
+ VdbeNoopComment((v, "uniqueness check for ROWID"));
+ sqlite3VdbeVerifyAbortable(v, onError);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
+ VdbeCoverage(v);
+
+ switch( onError ){
+ default: {
+ onError = OE_Abort;
+ /* no break */ deliberate_fall_through
+ }
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ testcase( onError==OE_Rollback );
+ testcase( onError==OE_Abort );
+ testcase( onError==OE_Fail );
+ sqlite3RowidConstraint(pParse, onError, pTab);
+ break;
+ }
+ case OE_Replace: {
+ /* If there are DELETE triggers on this table and the
+ ** recursive-triggers flag is set, call GenerateRowDelete() to
+ ** remove the conflicting row from the table. This will fire
+ ** the triggers and remove both the table and index b-tree entries.
+ **
+ ** Otherwise, if there are no triggers or the recursive-triggers
+ ** flag is not set, but the table has one or more indexes, call
+ ** GenerateRowIndexDelete(). This removes the index b-tree entries
+ ** only. The table b-tree entry will be replaced by the new entry
+ ** when it is inserted.
+ **
+ ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
+ ** also invoke MultiWrite() to indicate that this VDBE may require
+ ** statement rollback (if the statement is aborted after the delete
+ ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
+ ** but being more selective here allows statements like:
+ **
+ ** REPLACE INTO t(rowid) VALUES($newrowid)
+ **
+ ** to run without a statement journal if there are no indexes on the
+ ** table.
+ */
+ if( regTrigCnt ){
+ sqlite3MultiWrite(pParse);
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
+ regNewData, 1, 0, OE_Replace, 1, -1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
+ nReplaceTrig++;
+ }else{
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ assert( HasRowid(pTab) );
+ /* This OP_Delete opcode fires the pre-update-hook only. It does
+ ** not modify the b-tree. It is more efficient to let the coming
+ ** OP_Insert replace the existing entry than it is to delete the
+ ** existing entry and then insert a new one. */
+ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+ if( pTab->pIndex ){
+ sqlite3MultiWrite(pParse);
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
+ }
+ }
+ seenReplace = 1;
+ break;
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ case OE_Update: {
+ sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
+ /* no break */ deliberate_fall_through
+ }
+#endif
+ case OE_Ignore: {
+ testcase( onError==OE_Ignore );
+ sqlite3VdbeGoto(v, ignoreDest);
+ break;
+ }
+ }
+ sqlite3VdbeResolveLabel(v, addrRowidOk);
+ if( pUpsert && pUpsertClause!=pUpsert ){
+ upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
+ }else if( ipkTop ){
+ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, ipkTop-1);
+ }
+ }
+
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE
+ ** index and making sure that duplicate entries do not already exist.
+ ** Compute the revised record entries for indices as we go.
+ **
+ ** This loop also handles the case of the PRIMARY KEY index for a
+ ** WITHOUT ROWID table.
+ */
+ for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
+ pIdx;
+ pIdx = indexIteratorNext(&sIdxIter, &ix)
+ ){
+ int regIdx; /* Range of registers hold conent for pIdx */
+ int regR; /* Range of registers holding conflicting PK */
+ int iThisCur; /* Cursor for this UNIQUE index */
+ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
+ int addrConflictCk; /* First opcode in the conflict check logic */
+
+ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
+ if( pUpsert ){
+ pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
+ if( upsertIpkDelay && pUpsertClause==pUpsert ){
+ sqlite3VdbeJumpHere(v, upsertIpkDelay);
+ }
+ }
+ addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
+ if( bAffinityDone==0 ){
+ sqlite3TableAffinity(v, pTab, regNewData+1);
+ bAffinityDone = 1;
+ }
+ VdbeNoopComment((v, "prep index %s", pIdx->zName));
+ iThisCur = iIdxCur+ix;
+
+
+ /* Skip partial indices for which the WHERE clause is not true */
+ if( pIdx->pPartIdxWhere ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
+ pParse->iSelfTab = -(regNewData+1);
+ sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
+ SQLITE_JUMPIFNULL);
+ pParse->iSelfTab = 0;
+ }
+
+ /* Create a record for this index entry as it should appear after
+ ** the insert or update. Store that record in the aRegIdx[ix] register
+ */
+ regIdx = aRegIdx[ix]+1;
+ for(i=0; i<pIdx->nColumn; i++){
+ int iField = pIdx->aiColumn[i];
+ int x;
+ if( iField==XN_EXPR ){
+ pParse->iSelfTab = -(regNewData+1);
+ sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
+ pParse->iSelfTab = 0;
+ VdbeComment((v, "%s column %d", pIdx->zName, i));
+ }else if( iField==XN_ROWID || iField==pTab->iPKey ){
+ x = regNewData;
+ sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
+ VdbeComment((v, "rowid"));
+ }else{
+ testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
+ x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
+ sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
+ VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
+ }
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
+ VdbeComment((v, "for %s", pIdx->zName));
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
+ sqlite3SetMakeRecordP5(v, pIdx->pTable);
+ }
+#endif
+ sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
+
+ /* In an UPDATE operation, if this index is the PRIMARY KEY index
+ ** of a WITHOUT ROWID table and there has been no change the
+ ** primary key, then no collision is possible. The collision detection
+ ** logic below can all be skipped. */
+ if( isUpdate && pPk==pIdx && pkChng==0 ){
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ continue;
+ }
+
+ /* Find out what action to take in case there is a uniqueness conflict */
+ onError = pIdx->onError;
+ if( onError==OE_None ){
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ continue; /* pIdx is not a UNIQUE index */
+ }
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+
+ /* Figure out if the upsert clause applies to this index */
+ if( pUpsertClause ){
+ if( pUpsertClause->isDoUpdate==0 ){
+ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
+ }else{
+ onError = OE_Update; /* DO UPDATE */
+ }
+ }
+
+ /* Collision detection may be omitted if all of the following are true:
+ ** (1) The conflict resolution algorithm is REPLACE
+ ** (2) The table is a WITHOUT ROWID table
+ ** (3) There are no secondary indexes on the table
+ ** (4) No delete triggers need to be fired if there is a conflict
+ ** (5) No FK constraint counters need to be updated if a conflict occurs.
+ **
+ ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
+ ** must be explicitly deleted in order to ensure any pre-update hook
+ ** is invoked. */
+ assert( IsOrdinaryTable(pTab) );
+#ifndef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
+ && pPk==pIdx /* Condition 2 */
+ && onError==OE_Replace /* Condition 1 */
+ && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
+ 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
+ && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
+ (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
+ ){
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ continue;
+ }
+#endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
+
+ /* Check to see if the new index entry will be unique */
+ sqlite3VdbeVerifyAbortable(v, onError);
+ addrConflictCk =
+ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
+ regIdx, pIdx->nKeyCol); VdbeCoverage(v);
+
+ /* Generate code to handle collisions */
+ regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
+ if( isUpdate || onError==OE_Replace ){
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
+ /* Conflict only if the rowid of the existing index entry
+ ** is different from old-rowid */
+ if( isUpdate ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverage(v);
+ }
+ }else{
+ int x;
+ /* Extract the PRIMARY KEY from the end of the index entry and
+ ** store it in registers regR..regR+nPk-1 */
+ if( pIdx!=pPk ){
+ for(i=0; i<pPk->nKeyCol; i++){
+ assert( pPk->aiColumn[i]>=0 );
+ x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
+ VdbeComment((v, "%s.%s", pTab->zName,
+ pTab->aCol[pPk->aiColumn[i]].zCnName));
+ }
+ }
+ if( isUpdate ){
+ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
+ ** table, only conflict if the new PRIMARY KEY values are actually
+ ** different from the old. See TH3 withoutrowid04.test.
+ **
+ ** For a UNIQUE index, only conflict if the PRIMARY KEY values
+ ** of the matched index row are different from the original PRIMARY
+ ** KEY values of this row before the update. */
+ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
+ int op = OP_Ne;
+ int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
+
+ for(i=0; i<pPk->nKeyCol; i++){
+ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
+ x = pPk->aiColumn[i];
+ assert( x>=0 );
+ if( i==(pPk->nKeyCol-1) ){
+ addrJump = addrUniqueOk;
+ op = OP_Eq;
+ }
+ x = sqlite3TableColumnToStorage(pTab, x);
+ sqlite3VdbeAddOp4(v, op,
+ regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
+ );
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverageIf(v, op==OP_Eq);
+ VdbeCoverageIf(v, op==OP_Ne);
+ }
+ }
+ }
+ }
+
+ /* Generate code that executes if the new index entry is not unique */
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
+ || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ testcase( onError==OE_Rollback );
+ testcase( onError==OE_Abort );
+ testcase( onError==OE_Fail );
+ sqlite3UniqueConstraint(pParse, onError, pIdx);
+ break;
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ case OE_Update: {
+ sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
+ /* no break */ deliberate_fall_through
+ }
+#endif
+ case OE_Ignore: {
+ testcase( onError==OE_Ignore );
+ sqlite3VdbeGoto(v, ignoreDest);
+ break;
+ }
+ default: {
+ int nConflictCk; /* Number of opcodes in conflict check logic */
+
+ assert( onError==OE_Replace );
+ nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
+ assert( nConflictCk>0 || db->mallocFailed );
+ testcase( nConflictCk<=0 );
+ testcase( nConflictCk>1 );
+ if( regTrigCnt ){
+ sqlite3MultiWrite(pParse);
+ nReplaceTrig++;
+ }
+ if( pTrigger && isUpdate ){
+ sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
+ }
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
+ regR, nPkField, 0, OE_Replace,
+ (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
+ if( pTrigger && isUpdate ){
+ sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
+ }
+ if( regTrigCnt ){
+ int addrBypass; /* Jump destination to bypass recheck logic */
+
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
+ addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */
+ VdbeComment((v, "bypass recheck"));
+
+ /* Here we insert code that will be invoked after all constraint
+ ** checks have run, if and only if one or more replace triggers
+ ** fired. */
+ sqlite3VdbeResolveLabel(v, lblRecheckOk);
+ lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
+ if( pIdx->pPartIdxWhere ){
+ /* Bypass the recheck if this partial index is not defined
+ ** for the current row */
+ sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
+ VdbeCoverage(v);
+ }
+ /* Copy the constraint check code from above, except change
+ ** the constraint-ok jump destination to be the address of
+ ** the next retest block */
+ while( nConflictCk>0 ){
+ VdbeOp x; /* Conflict check opcode to copy */
+ /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
+ ** Hence, make a complete copy of the opcode, rather than using
+ ** a pointer to the opcode. */
+ x = *sqlite3VdbeGetOp(v, addrConflictCk);
+ if( x.opcode!=OP_IdxRowid ){
+ int p2; /* New P2 value for copied conflict check opcode */
+ const char *zP4;
+ if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
+ p2 = lblRecheckOk;
+ }else{
+ p2 = x.p2;
+ }
+ zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
+ sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
+ sqlite3VdbeChangeP5(v, x.p5);
+ VdbeCoverageIf(v, p2!=x.p2);
+ }
+ nConflictCk--;
+ addrConflictCk++;
+ }
+ /* If the retest fails, issue an abort */
+ sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
+
+ sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
+ }
+ seenReplace = 1;
+ break;
+ }
+ }
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
+ if( pUpsertClause
+ && upsertIpkReturn
+ && sqlite3UpsertNextIsIPK(pUpsertClause)
+ ){
+ sqlite3VdbeGoto(v, upsertIpkDelay+1);
+ sqlite3VdbeJumpHere(v, upsertIpkReturn);
+ upsertIpkReturn = 0;
+ }
+ }
+
+ /* If the IPK constraint is a REPLACE, run it last */
+ if( ipkTop ){
+ sqlite3VdbeGoto(v, ipkTop);
+ VdbeComment((v, "Do IPK REPLACE"));
+ assert( ipkBottom>0 );
+ sqlite3VdbeJumpHere(v, ipkBottom);
+ }
+
+ /* Recheck all uniqueness constraints after replace triggers have run */
+ testcase( regTrigCnt!=0 && nReplaceTrig==0 );
+ assert( regTrigCnt!=0 || nReplaceTrig==0 );
+ if( nReplaceTrig ){
+ sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
+ if( !pPk ){
+ if( isUpdate ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
+ VdbeCoverage(v);
+ sqlite3RowidConstraint(pParse, OE_Abort, pTab);
+ }else{
+ sqlite3VdbeGoto(v, addrRecheck);
+ }
+ sqlite3VdbeResolveLabel(v, lblRecheckOk);
+ }
+
+ /* Generate the table record */
+ if( HasRowid(pTab) ){
+ int regRec = aRegIdx[ix];
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
+ sqlite3SetMakeRecordP5(v, pTab);
+ if( !bAffinityDone ){
+ sqlite3TableAffinity(v, pTab, 0);
+ }
+ }
+
+ *pbMayReplace = seenReplace;
+ VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
+}
+
+#ifdef SQLITE_ENABLE_NULL_TRIM
+/*
+** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
+** to be the number of columns in table pTab that must not be NULL-trimmed.
+**
+** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
+*/
+SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
+ u16 i;
+
+ /* Records with omitted columns are only allowed for schema format
+ ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
+ if( pTab->pSchema->file_format<2 ) return;
+
+ for(i=pTab->nCol-1; i>0; i--){
+ if( pTab->aCol[i].iDflt!=0 ) break;
+ if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
+ }
+ sqlite3VdbeChangeP5(v, i+1);
+}
+#endif
+
+/*
+** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
+** number is iCur, and register regData contains the new record for the
+** PK index. This function adds code to invoke the pre-update hook,
+** if one is registered.
+*/
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+static void codeWithoutRowidPreupdate(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated */
+ int iCur, /* Cursor number for table */
+ int regData /* Data containing new record */
+){
+ Vdbe *v = pParse->pVdbe;
+ int r = sqlite3GetTempReg(pParse);
+ assert( !HasRowid(pTab) );
+ assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
+ sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
+ sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
+ sqlite3ReleaseTempReg(pParse, r);
+}
+#else
+# define codeWithoutRowidPreupdate(a,b,c,d)
+#endif
+
+/*
+** This routine generates code to finish the INSERT or UPDATE operation
+** that was started by a prior call to sqlite3GenerateConstraintChecks.
+** A consecutive range of registers starting at regNewData contains the
+** rowid and the content to be inserted.
+**
+** The arguments to this routine should be the same as the first six
+** arguments to sqlite3GenerateConstraintChecks.
+*/
+SQLITE_PRIVATE void sqlite3CompleteInsertion(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int iDataCur, /* Cursor of the canonical data source */
+ int iIdxCur, /* First index cursor */
+ int regNewData, /* Range of content */
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */
+ int update_flags, /* True for UPDATE, False for INSERT */
+ int appendBias, /* True if this is likely to be an append */
+ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
+){
+ Vdbe *v; /* Prepared statements under construction */
+ Index *pIdx; /* An index being inserted or updated */
+ u8 pik_flags; /* flag values passed to the btree insert */
+ int i; /* Loop counter */
+
+ assert( update_flags==0
+ || update_flags==OPFLAG_ISUPDATE
+ || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
+ );
+
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( !IsView(pTab) ); /* This table is not a VIEW */
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ /* All REPLACE indexes are at the end of the list */
+ assert( pIdx->onError!=OE_Replace
+ || pIdx->pNext==0
+ || pIdx->pNext->onError==OE_Replace );
+ if( aRegIdx[i]==0 ) continue;
+ if( pIdx->pPartIdxWhere ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ }
+ pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
+ pik_flags |= OPFLAG_NCHANGE;
+ pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
+ if( update_flags==0 ){
+ codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
+ }
+ }
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
+ aRegIdx[i]+1,
+ pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
+ sqlite3VdbeChangeP5(v, pik_flags);
+ }
+ if( !HasRowid(pTab) ) return;
+ if( pParse->nested ){
+ pik_flags = 0;
+ }else{
+ pik_flags = OPFLAG_NCHANGE;
+ pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
+ }
+ if( appendBias ){
+ pik_flags |= OPFLAG_APPEND;
+ }
+ if( useSeekResult ){
+ pik_flags |= OPFLAG_USESEEKRESULT;
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
+ if( !pParse->nested ){
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ }
+ sqlite3VdbeChangeP5(v, pik_flags);
+}
+
+/*
+** Allocate cursors for the pTab table and all its indices and generate
+** code to open and initialized those cursors.
+**
+** The cursor for the object that contains the complete data (normally
+** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
+** ROWID table) is returned in *piDataCur. The first index cursor is
+** returned in *piIdxCur. The number of indices is returned.
+**
+** Use iBase as the first cursor (either the *piDataCur for rowid tables
+** or the first index for WITHOUT ROWID tables) if it is non-negative.
+** If iBase is negative, then allocate the next available cursor.
+**
+** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
+** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
+** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
+** pTab->pIndex list.
+**
+** If pTab is a virtual table, then this routine is a no-op and the
+** *piDataCur and *piIdxCur values are left uninitialized.
+*/
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table to be opened */
+ int op, /* OP_OpenRead or OP_OpenWrite */
+ u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
+ int iBase, /* Use this for the table cursor, if there is one */
+ u8 *aToOpen, /* If not NULL: boolean for each table and index */
+ int *piDataCur, /* Write the database source cursor number here */
+ int *piIdxCur /* Write the first index cursor number here */
+){
+ int i;
+ int iDb;
+ int iDataCur;
+ Index *pIdx;
+ Vdbe *v;
+
+ assert( op==OP_OpenRead || op==OP_OpenWrite );
+ assert( op==OP_OpenWrite || p5==0 );
+ if( IsVirtual(pTab) ){
+ /* This routine is a no-op for virtual tables. Leave the output
+ ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
+ ** for improved error detection. */
+ *piDataCur = *piIdxCur = -999;
+ return 0;
+ }
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ if( iBase<0 ) iBase = pParse->nTab;
+ iDataCur = iBase++;
+ if( piDataCur ) *piDataCur = iDataCur;
+ if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
+ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
+ }else{
+ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
+ }
+ if( piIdxCur ) *piIdxCur = iBase;
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ int iIdxCur = iBase++;
+ assert( pIdx->pSchema==pTab->pSchema );
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
+ if( piDataCur ) *piDataCur = iIdxCur;
+ p5 = 0;
+ }
+ if( aToOpen==0 || aToOpen[i+1] ){
+ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ sqlite3VdbeChangeP5(v, p5);
+ VdbeComment((v, "%s", pIdx->zName));
+ }
+ }
+ if( iBase>pParse->nTab ) pParse->nTab = iBase;
+ return i;
+}
+
+
+#ifdef SQLITE_TEST
+/*
+** The following global variable is incremented whenever the
+** transfer optimization is used. This is used for testing
+** purposes only - to make sure the transfer optimization really
+** is happening when it is supposed to.
+*/
+SQLITE_API int sqlite3_xferopt_count;
+#endif /* SQLITE_TEST */
+
+
+#ifndef SQLITE_OMIT_XFER_OPT
+/*
+** Check to see if index pSrc is compatible as a source of data
+** for index pDest in an insert transfer optimization. The rules
+** for a compatible index:
+**
+** * The index is over the same set of columns
+** * The same DESC and ASC markings occurs on all columns
+** * The same onError processing (OE_Abort, OE_Ignore, etc)
+** * The same collating sequence on each column
+** * The index has the exact same WHERE clause
+*/
+static int xferCompatibleIndex(Index *pDest, Index *pSrc){
+ int i;
+ assert( pDest && pSrc );
+ assert( pDest->pTable!=pSrc->pTable );
+ if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
+ return 0; /* Different number of columns */
+ }
+ if( pDest->onError!=pSrc->onError ){
+ return 0; /* Different conflict resolution strategies */
+ }
+ for(i=0; i<pSrc->nKeyCol; i++){
+ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
+ return 0; /* Different columns indexed */
+ }
+ if( pSrc->aiColumn[i]==XN_EXPR ){
+ assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
+ if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
+ pDest->aColExpr->a[i].pExpr, -1)!=0 ){
+ return 0; /* Different expressions in the index */
+ }
+ }
+ if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
+ return 0; /* Different sort orders */
+ }
+ if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
+ return 0; /* Different collating sequences */
+ }
+ }
+ if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
+ return 0; /* Different WHERE clauses */
+ }
+
+ /* If no test above fails then the indices must be compatible */
+ return 1;
+}
+
+/*
+** Attempt the transfer optimization on INSERTs of the form
+**
+** INSERT INTO tab1 SELECT * FROM tab2;
+**
+** The xfer optimization transfers raw records from tab2 over to tab1.
+** Columns are not decoded and reassembled, which greatly improves
+** performance. Raw index records are transferred in the same way.
+**
+** The xfer optimization is only attempted if tab1 and tab2 are compatible.
+** There are lots of rules for determining compatibility - see comments
+** embedded in the code for details.
+**
+** This routine returns TRUE if the optimization is guaranteed to be used.
+** Sometimes the xfer optimization will only work if the destination table
+** is empty - a factor that can only be determined at run-time. In that
+** case, this routine generates code for the xfer optimization but also
+** does a test to see if the destination table is empty and jumps over the
+** xfer optimization code if the test fails. In that case, this routine
+** returns FALSE so that the caller will know to go ahead and generate
+** an unoptimized transfer. This routine also returns FALSE if there
+** is no chance that the xfer optimization can be applied.
+**
+** This optimization is particularly useful at making VACUUM run faster.
+*/
+static int xferOptimization(
+ Parse *pParse, /* Parser context */
+ Table *pDest, /* The table we are inserting into */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ int onError, /* How to handle constraint errors */
+ int iDbDest /* The database of pDest */
+){
+ sqlite3 *db = pParse->db;
+ ExprList *pEList; /* The result set of the SELECT */
+ Table *pSrc; /* The table in the FROM clause of SELECT */
+ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
+ SrcItem *pItem; /* An element of pSelect->pSrc */
+ int i; /* Loop counter */
+ int iDbSrc; /* The database of pSrc */
+ int iSrc, iDest; /* Cursors from source and destination */
+ int addr1, addr2; /* Loop addresses */
+ int emptyDestTest = 0; /* Address of test for empty pDest */
+ int emptySrcTest = 0; /* Address of test for empty pSrc */
+ Vdbe *v; /* The VDBE we are building */
+ int regAutoinc; /* Memory register used by AUTOINC */
+ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
+ int regData, regRowid; /* Registers holding data and rowid */
+
+ assert( pSelect!=0 );
+ if( pParse->pWith || pSelect->pWith ){
+ /* Do not attempt to process this query if there are an WITH clauses
+ ** attached to it. Proceeding may generate a false "no such table: xxx"
+ ** error if pSelect reads from a CTE named "xxx". */
+ return 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pDest) ){
+ return 0; /* tab1 must not be a virtual table */
+ }
+#endif
+ if( onError==OE_Default ){
+ if( pDest->iPKey>=0 ) onError = pDest->keyConf;
+ if( onError==OE_Default ) onError = OE_Abort;
+ }
+ assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
+ if( pSelect->pSrc->nSrc!=1 ){
+ return 0; /* FROM clause must have exactly one term */
+ }
+ if( pSelect->pSrc->a[0].pSelect ){
+ return 0; /* FROM clause cannot contain a subquery */
+ }
+ if( pSelect->pWhere ){
+ return 0; /* SELECT may not have a WHERE clause */
+ }
+ if( pSelect->pOrderBy ){
+ return 0; /* SELECT may not have an ORDER BY clause */
+ }
+ /* Do not need to test for a HAVING clause. If HAVING is present but
+ ** there is no ORDER BY, we will get an error. */
+ if( pSelect->pGroupBy ){
+ return 0; /* SELECT may not have a GROUP BY clause */
+ }
+ if( pSelect->pLimit ){
+ return 0; /* SELECT may not have a LIMIT clause */
+ }
+ if( pSelect->pPrior ){
+ return 0; /* SELECT may not be a compound query */
+ }
+ if( pSelect->selFlags & SF_Distinct ){
+ return 0; /* SELECT may not be DISTINCT */
+ }
+ pEList = pSelect->pEList;
+ assert( pEList!=0 );
+ if( pEList->nExpr!=1 ){
+ return 0; /* The result set must have exactly one column */
+ }
+ assert( pEList->a[0].pExpr );
+ if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
+ return 0; /* The result set must be the special operator "*" */
+ }
+
+ /* At this point we have established that the statement is of the
+ ** correct syntactic form to participate in this optimization. Now
+ ** we have to check the semantics.
+ */
+ pItem = pSelect->pSrc->a;
+ pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
+ if( pSrc==0 ){
+ return 0; /* FROM clause does not contain a real table */
+ }
+ if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
+ testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
+ return 0; /* tab1 and tab2 may not be the same table */
+ }
+ if( HasRowid(pDest)!=HasRowid(pSrc) ){
+ return 0; /* source and destination must both be WITHOUT ROWID or not */
+ }
+ if( !IsOrdinaryTable(pSrc) ){
+ return 0; /* tab2 may not be a view or virtual table */
+ }
+ if( pDest->nCol!=pSrc->nCol ){
+ return 0; /* Number of columns must be the same in tab1 and tab2 */
+ }
+ if( pDest->iPKey!=pSrc->iPKey ){
+ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
+ }
+ if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
+ return 0; /* Cannot feed from a non-strict into a strict table */
+ }
+ for(i=0; i<pDest->nCol; i++){
+ Column *pDestCol = &pDest->aCol[i];
+ Column *pSrcCol = &pSrc->aCol[i];
+#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0
+ && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
+ ){
+ return 0; /* Neither table may have __hidden__ columns */
+ }
+#endif
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Even if tables t1 and t2 have identical schemas, if they contain
+ ** generated columns, then this statement is semantically incorrect:
+ **
+ ** INSERT INTO t2 SELECT * FROM t1;
+ **
+ ** The reason is that generated column values are returned by the
+ ** the SELECT statement on the right but the INSERT statement on the
+ ** left wants them to be omitted.
+ **
+ ** Nevertheless, this is a useful notational shorthand to tell SQLite
+ ** to do a bulk transfer all of the content from t1 over to t2.
+ **
+ ** We could, in theory, disable this (except for internal use by the
+ ** VACUUM command where it is actually needed). But why do that? It
+ ** seems harmless enough, and provides a useful service.
+ */
+ if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
+ (pSrcCol->colFlags & COLFLAG_GENERATED) ){
+ return 0; /* Both columns have the same generated-column type */
+ }
+ /* But the transfer is only allowed if both the source and destination
+ ** tables have the exact same expressions for generated columns.
+ ** This requirement could be relaxed for VIRTUAL columns, I suppose.
+ */
+ if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
+ if( sqlite3ExprCompare(0,
+ sqlite3ColumnExpr(pSrc, pSrcCol),
+ sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
+ testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pDestCol->colFlags & COLFLAG_STORED );
+ return 0; /* Different generator expressions */
+ }
+ }
+#endif
+ if( pDestCol->affinity!=pSrcCol->affinity ){
+ return 0; /* Affinity must be the same on all columns */
+ }
+ if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
+ sqlite3ColumnColl(pSrcCol))!=0 ){
+ return 0; /* Collating sequence must be the same on all columns */
+ }
+ if( pDestCol->notNull && !pSrcCol->notNull ){
+ return 0; /* tab2 must be NOT NULL if tab1 is */
+ }
+ /* Default values for second and subsequent columns need to match. */
+ if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
+ Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
+ Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
+ assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
+ assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
+ assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
+ assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
+ if( (pDestExpr==0)!=(pSrcExpr==0)
+ || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
+ pSrcExpr->u.zToken)!=0)
+ ){
+ return 0; /* Default values must be the same for all columns */
+ }
+ }
+ }
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
+ if( IsUniqueIndex(pDestIdx) ){
+ destHasUniqueIdx = 1;
+ }
+ for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
+ }
+ if( pSrcIdx==0 ){
+ return 0; /* pDestIdx has no corresponding index in pSrc */
+ }
+ if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
+ && sqlite3FaultSim(411)==SQLITE_OK ){
+ /* The sqlite3FaultSim() call allows this corruption test to be
+ ** bypassed during testing, in order to exercise other corruption tests
+ ** further downstream. */
+ return 0; /* Corrupt schema - two indexes on the same btree */
+ }
+ }
+#ifndef SQLITE_OMIT_CHECK
+ if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
+ return 0; /* Tables have different CHECK constraints. Ticket #2252 */
+ }
+#endif
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ /* Disallow the transfer optimization if the destination table constains
+ ** any foreign key constraints. This is more restrictive than necessary.
+ ** But the main beneficiary of the transfer optimization is the VACUUM
+ ** command, and the VACUUM command disables foreign key constraints. So
+ ** the extra complication to make this rule less restrictive is probably
+ ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
+ */
+ assert( IsOrdinaryTable(pDest) );
+ if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
+ return 0;
+ }
+#endif
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ return 0; /* xfer opt does not play well with PRAGMA count_changes */
+ }
+
+ /* If we get this far, it means that the xfer optimization is at
+ ** least a possibility, though it might only work if the destination
+ ** table (tab1) is initially empty.
+ */
+#ifdef SQLITE_TEST
+ sqlite3_xferopt_count++;
+#endif
+ iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
+ v = sqlite3GetVdbe(pParse);
+ sqlite3CodeVerifySchema(pParse, iDbSrc);
+ iSrc = pParse->nTab++;
+ iDest = pParse->nTab++;
+ regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
+ regData = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
+ regRowid = sqlite3GetTempReg(pParse);
+ sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
+ assert( HasRowid(pDest) || destHasUniqueIdx );
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
+ (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
+ || destHasUniqueIdx /* (2) */
+ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
+ )){
+ /* In some circumstances, we are able to run the xfer optimization
+ ** only if the destination table is initially empty. Unless the
+ ** DBFLAG_Vacuum flag is set, this block generates code to make
+ ** that determination. If DBFLAG_Vacuum is set, then the destination
+ ** table is always empty.
+ **
+ ** Conditions under which the destination must be empty:
+ **
+ ** (1) There is no INTEGER PRIMARY KEY but there are indices.
+ ** (If the destination is not initially empty, the rowid fields
+ ** of index entries might need to change.)
+ **
+ ** (2) The destination has a unique index. (The xfer optimization
+ ** is unable to test uniqueness.)
+ **
+ ** (3) onError is something other than OE_Abort and OE_Rollback.
+ */
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
+ emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, addr1);
+ }
+ if( HasRowid(pSrc) ){
+ u8 insFlags;
+ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
+ emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
+ if( pDest->iPKey>=0 ){
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
+ sqlite3VdbeVerifyAbortable(v, onError);
+ addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
+ VdbeCoverage(v);
+ sqlite3RowidConstraint(pParse, onError, pDest);
+ sqlite3VdbeJumpHere(v, addr2);
+ }
+ autoIncStep(pParse, regAutoinc, regRowid);
+ }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
+ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
+ }else{
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ assert( (pDest->tabFlags & TF_Autoincrement)==0 );
+ }
+
+ if( db->mDbFlags & DBFLAG_Vacuum ){
+ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
+ insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
+ }else{
+ insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
+ }
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
+ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
+ insFlags &= ~OPFLAG_PREFORMAT;
+ }else
+#endif
+ {
+ sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
+ sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
+ }
+ sqlite3VdbeChangeP5(v, insFlags);
+
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ }else{
+ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
+ sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
+ }
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
+ u8 idxInsFlags = 0;
+ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
+ }
+ assert( pSrcIdx );
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
+ sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
+ VdbeComment((v, "%s", pSrcIdx->zName));
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
+ sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
+ VdbeComment((v, "%s", pDestIdx->zName));
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
+ if( db->mDbFlags & DBFLAG_Vacuum ){
+ /* This INSERT command is part of a VACUUM operation, which guarantees
+ ** that the destination table is empty. If all indexed columns use
+ ** collation sequence BINARY, then it can also be assumed that the
+ ** index will be populated by inserting keys in strictly sorted
+ ** order. In this case, instead of seeking within the b-tree as part
+ ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
+ ** OP_IdxInsert to seek to the point within the b-tree where each key
+ ** should be inserted. This is faster.
+ **
+ ** If any of the indexed columns use a collation sequence other than
+ ** BINARY, this optimization is disabled. This is because the user
+ ** might change the definition of a collation sequence and then run
+ ** a VACUUM command. In that case keys may not be written in strictly
+ ** sorted order. */
+ for(i=0; i<pSrcIdx->nColumn; i++){
+ const char *zColl = pSrcIdx->azColl[i];
+ if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
+ }
+ if( i==pSrcIdx->nColumn ){
+ idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
+ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
+ sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
+ }
+ }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
+ idxInsFlags |= OPFLAG_NCHANGE;
+ }
+ if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
+ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0
+ && !HasRowid(pDest)
+ && IsPrimaryKeyIndex(pDestIdx)
+ ){
+ codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
+ sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ }
+ if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regData);
+ if( emptyDestTest ){
+ sqlite3AutoincrementEnd(pParse);
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
+ sqlite3VdbeJumpHere(v, emptyDestTest);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ return 0;
+ }else{
+ return 1;
+ }
+}
+#endif /* SQLITE_OMIT_XFER_OPT */
+
+/************** End of insert.c **********************************************/
+/************** Begin file legacy.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+*/
+
+/* #include "sqliteInt.h" */
+
+/*
+** Execute SQL code. Return one of the SQLITE_ success/failure
+** codes. Also write an error message into memory obtained from
+** malloc() and make *pzErrMsg point to that message.
+**
+** If the SQL is a query, then for each row in the query result
+** the xCallback() function is called. pArg becomes the first
+** argument to xCallback(). If xCallback=NULL then no callback
+** is invoked, even for queries.
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3 *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ sqlite3_callback xCallback, /* Invoke this callback routine */
+ void *pArg, /* First argument to xCallback() */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *zLeftover; /* Tail of unprocessed SQL */
+ sqlite3_stmt *pStmt = 0; /* The current SQL statement */
+ char **azCols = 0; /* Names of result columns */
+ int callbackIsInit; /* True if callback data is initialized */
+
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+ if( zSql==0 ) zSql = "";
+
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3Error(db, SQLITE_OK);
+ while( rc==SQLITE_OK && zSql[0] ){
+ int nCol = 0;
+ char **azVals = 0;
+
+ pStmt = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ if( rc!=SQLITE_OK ){
+ continue;
+ }
+ if( !pStmt ){
+ /* this happens for a comment or white-space */
+ zSql = zLeftover;
+ continue;
+ }
+ callbackIsInit = 0;
+
+ while( 1 ){
+ int i;
+ rc = sqlite3_step(pStmt);
+
+ /* Invoke the callback function if required */
+ if( xCallback && (SQLITE_ROW==rc ||
+ (SQLITE_DONE==rc && !callbackIsInit
+ && db->flags&SQLITE_NullCallback)) ){
+ if( !callbackIsInit ){
+ nCol = sqlite3_column_count(pStmt);
+ azCols = sqlite3DbMallocRaw(db, (2*nCol+1)*sizeof(const char*));
+ if( azCols==0 ){
+ goto exec_out;
+ }
+ for(i=0; i<nCol; i++){
+ azCols[i] = (char *)sqlite3_column_name(pStmt, i);
+ /* sqlite3VdbeSetColName() installs column names as UTF8
+ ** strings so there is no way for sqlite3_column_name() to fail. */
+ assert( azCols[i]!=0 );
+ }
+ callbackIsInit = 1;
+ }
+ if( rc==SQLITE_ROW ){
+ azVals = &azCols[nCol];
+ for(i=0; i<nCol; i++){
+ azVals[i] = (char *)sqlite3_column_text(pStmt, i);
+ if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
+ sqlite3OomFault(db);
+ goto exec_out;
+ }
+ }
+ azVals[i] = 0;
+ }
+ if( xCallback(pArg, nCol, azVals, azCols) ){
+ /* EVIDENCE-OF: R-38229-40159 If the callback function to
+ ** sqlite3_exec() returns non-zero, then sqlite3_exec() will
+ ** return SQLITE_ABORT. */
+ rc = SQLITE_ABORT;
+ sqlite3VdbeFinalize((Vdbe *)pStmt);
+ pStmt = 0;
+ sqlite3Error(db, SQLITE_ABORT);
+ goto exec_out;
+ }
+ }
+
+ if( rc!=SQLITE_ROW ){
+ rc = sqlite3VdbeFinalize((Vdbe *)pStmt);
+ pStmt = 0;
+ zSql = zLeftover;
+ while( sqlite3Isspace(zSql[0]) ) zSql++;
+ break;
+ }
+ }
+
+ sqlite3DbFree(db, azCols);
+ azCols = 0;
+ }
+
+exec_out:
+ if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
+ sqlite3DbFree(db, azCols);
+
+ rc = sqlite3ApiExit(db, rc);
+ if( rc!=SQLITE_OK && pzErrMsg ){
+ *pzErrMsg = sqlite3DbStrDup(0, sqlite3_errmsg(db));
+ if( *pzErrMsg==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ sqlite3Error(db, SQLITE_NOMEM);
+ }
+ }else if( pzErrMsg ){
+ *pzErrMsg = 0;
+ }
+
+ assert( (rc&db->errMask)==rc );
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/************** End of legacy.c **********************************************/
+/************** Begin file loadext.c *****************************************/
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to dynamically load extensions into
+** the SQLite library.
+*/
+
+#ifndef SQLITE_CORE
+ #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
+#endif
+/************** Include sqlite3ext.h in the middle of loadext.c **************/
+/************** Begin file sqlite3ext.h **************************************/
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the SQLite interface for use by
+** shared libraries that want to be imported as extensions into
+** an SQLite instance. Shared libraries that intend to be loaded
+** as extensions by SQLite should #include this file instead of
+** sqlite3.h.
+*/
+#ifndef SQLITE3EXT_H
+#define SQLITE3EXT_H
+/* #include "sqlite3.h" */
+
+/*
+** The following structure holds pointers to all of the SQLite API
+** routines.
+**
+** WARNING: In order to maintain backwards compatibility, add new
+** interfaces to the end of this structure only. If you insert new
+** interfaces in the middle of this structure, then older different
+** versions of SQLite will not be able to load each other's shared
+** libraries!
+*/
+struct sqlite3_api_routines {
+ void * (*aggregate_context)(sqlite3_context*,int nBytes);
+ int (*aggregate_count)(sqlite3_context*);
+ int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
+ int (*bind_double)(sqlite3_stmt*,int,double);
+ int (*bind_int)(sqlite3_stmt*,int,int);
+ int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
+ int (*bind_null)(sqlite3_stmt*,int);
+ int (*bind_parameter_count)(sqlite3_stmt*);
+ int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
+ const char * (*bind_parameter_name)(sqlite3_stmt*,int);
+ int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
+ int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
+ int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
+ int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
+ int (*busy_timeout)(sqlite3*,int ms);
+ int (*changes)(sqlite3*);
+ int (*close)(sqlite3*);
+ int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const char*));
+ int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const void*));
+ const void * (*column_blob)(sqlite3_stmt*,int iCol);
+ int (*column_bytes)(sqlite3_stmt*,int iCol);
+ int (*column_bytes16)(sqlite3_stmt*,int iCol);
+ int (*column_count)(sqlite3_stmt*pStmt);
+ const char * (*column_database_name)(sqlite3_stmt*,int);
+ const void * (*column_database_name16)(sqlite3_stmt*,int);
+ const char * (*column_decltype)(sqlite3_stmt*,int i);
+ const void * (*column_decltype16)(sqlite3_stmt*,int);
+ double (*column_double)(sqlite3_stmt*,int iCol);
+ int (*column_int)(sqlite3_stmt*,int iCol);
+ sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
+ const char * (*column_name)(sqlite3_stmt*,int);
+ const void * (*column_name16)(sqlite3_stmt*,int);
+ const char * (*column_origin_name)(sqlite3_stmt*,int);
+ const void * (*column_origin_name16)(sqlite3_stmt*,int);
+ const char * (*column_table_name)(sqlite3_stmt*,int);
+ const void * (*column_table_name16)(sqlite3_stmt*,int);
+ const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
+ const void * (*column_text16)(sqlite3_stmt*,int iCol);
+ int (*column_type)(sqlite3_stmt*,int iCol);
+ sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
+ void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
+ int (*complete)(const char*sql);
+ int (*complete16)(const void*sql);
+ int (*create_collation)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const void*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_function)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_function16)(sqlite3*,const void*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
+ int (*data_count)(sqlite3_stmt*pStmt);
+ sqlite3 * (*db_handle)(sqlite3_stmt*);
+ int (*declare_vtab)(sqlite3*,const char*);
+ int (*enable_shared_cache)(int);
+ int (*errcode)(sqlite3*db);
+ const char * (*errmsg)(sqlite3*);
+ const void * (*errmsg16)(sqlite3*);
+ int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
+ int (*expired)(sqlite3_stmt*);
+ int (*finalize)(sqlite3_stmt*pStmt);
+ void (*free)(void*);
+ void (*free_table)(char**result);
+ int (*get_autocommit)(sqlite3*);
+ void * (*get_auxdata)(sqlite3_context*,int);
+ int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
+ int (*global_recover)(void);
+ void (*interruptx)(sqlite3*);
+ sqlite_int64 (*last_insert_rowid)(sqlite3*);
+ const char * (*libversion)(void);
+ int (*libversion_number)(void);
+ void *(*malloc)(int);
+ char * (*mprintf)(const char*,...);
+ int (*open)(const char*,sqlite3**);
+ int (*open16)(const void*,sqlite3**);
+ int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
+ void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
+ void *(*realloc)(void*,int);
+ int (*reset)(sqlite3_stmt*pStmt);
+ void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_double)(sqlite3_context*,double);
+ void (*result_error)(sqlite3_context*,const char*,int);
+ void (*result_error16)(sqlite3_context*,const void*,int);
+ void (*result_int)(sqlite3_context*,int);
+ void (*result_int64)(sqlite3_context*,sqlite_int64);
+ void (*result_null)(sqlite3_context*);
+ void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
+ void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_value)(sqlite3_context*,sqlite3_value*);
+ void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
+ int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,
+ const char*,const char*),void*);
+ void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
+ char * (*xsnprintf)(int,char*,const char*,...);
+ int (*step)(sqlite3_stmt*);
+ int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,
+ char const**,char const**,int*,int*,int*);
+ void (*thread_cleanup)(void);
+ int (*total_changes)(sqlite3*);
+ void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
+ int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
+ void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,
+ sqlite_int64),void*);
+ void * (*user_data)(sqlite3_context*);
+ const void * (*value_blob)(sqlite3_value*);
+ int (*value_bytes)(sqlite3_value*);
+ int (*value_bytes16)(sqlite3_value*);
+ double (*value_double)(sqlite3_value*);
+ int (*value_int)(sqlite3_value*);
+ sqlite_int64 (*value_int64)(sqlite3_value*);
+ int (*value_numeric_type)(sqlite3_value*);
+ const unsigned char * (*value_text)(sqlite3_value*);
+ const void * (*value_text16)(sqlite3_value*);
+ const void * (*value_text16be)(sqlite3_value*);
+ const void * (*value_text16le)(sqlite3_value*);
+ int (*value_type)(sqlite3_value*);
+ char *(*vmprintf)(const char*,va_list);
+ /* Added ??? */
+ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
+ /* Added by 3.3.13 */
+ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ int (*clear_bindings)(sqlite3_stmt*);
+ /* Added by 3.4.1 */
+ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,
+ void (*xDestroy)(void *));
+ /* Added by 3.5.0 */
+ int (*bind_zeroblob)(sqlite3_stmt*,int,int);
+ int (*blob_bytes)(sqlite3_blob*);
+ int (*blob_close)(sqlite3_blob*);
+ int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,
+ int,sqlite3_blob**);
+ int (*blob_read)(sqlite3_blob*,void*,int,int);
+ int (*blob_write)(sqlite3_blob*,const void*,int,int);
+ int (*create_collation_v2)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*),
+ void(*)(void*));
+ int (*file_control)(sqlite3*,const char*,int,void*);
+ sqlite3_int64 (*memory_highwater)(int);
+ sqlite3_int64 (*memory_used)(void);
+ sqlite3_mutex *(*mutex_alloc)(int);
+ void (*mutex_enter)(sqlite3_mutex*);
+ void (*mutex_free)(sqlite3_mutex*);
+ void (*mutex_leave)(sqlite3_mutex*);
+ int (*mutex_try)(sqlite3_mutex*);
+ int (*open_v2)(const char*,sqlite3**,int,const char*);
+ int (*release_memory)(int);
+ void (*result_error_nomem)(sqlite3_context*);
+ void (*result_error_toobig)(sqlite3_context*);
+ int (*sleep)(int);
+ void (*soft_heap_limit)(int);
+ sqlite3_vfs *(*vfs_find)(const char*);
+ int (*vfs_register)(sqlite3_vfs*,int);
+ int (*vfs_unregister)(sqlite3_vfs*);
+ int (*xthreadsafe)(void);
+ void (*result_zeroblob)(sqlite3_context*,int);
+ void (*result_error_code)(sqlite3_context*,int);
+ int (*test_control)(int, ...);
+ void (*randomness)(int,void*);
+ sqlite3 *(*context_db_handle)(sqlite3_context*);
+ int (*extended_result_codes)(sqlite3*,int);
+ int (*limit)(sqlite3*,int,int);
+ sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
+ const char *(*sql)(sqlite3_stmt*);
+ int (*status)(int,int*,int*,int);
+ int (*backup_finish)(sqlite3_backup*);
+ sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*);
+ int (*backup_pagecount)(sqlite3_backup*);
+ int (*backup_remaining)(sqlite3_backup*);
+ int (*backup_step)(sqlite3_backup*,int);
+ const char *(*compileoption_get)(int);
+ int (*compileoption_used)(const char*);
+ int (*create_function_v2)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*));
+ int (*db_config)(sqlite3*,int,...);
+ sqlite3_mutex *(*db_mutex)(sqlite3*);
+ int (*db_status)(sqlite3*,int,int*,int*,int);
+ int (*extended_errcode)(sqlite3*);
+ void (*log)(int,const char*,...);
+ sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64);
+ const char *(*sourceid)(void);
+ int (*stmt_status)(sqlite3_stmt*,int,int);
+ int (*strnicmp)(const char*,const char*,int);
+ int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
+ int (*wal_autocheckpoint)(sqlite3*,int);
+ int (*wal_checkpoint)(sqlite3*,const char*);
+ void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
+ int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
+ int (*vtab_config)(sqlite3*,int op,...);
+ int (*vtab_on_conflict)(sqlite3*);
+ /* Version 3.7.16 and later */
+ int (*close_v2)(sqlite3*);
+ const char *(*db_filename)(sqlite3*,const char*);
+ int (*db_readonly)(sqlite3*,const char*);
+ int (*db_release_memory)(sqlite3*);
+ const char *(*errstr)(int);
+ int (*stmt_busy)(sqlite3_stmt*);
+ int (*stmt_readonly)(sqlite3_stmt*);
+ int (*stricmp)(const char*,const char*);
+ int (*uri_boolean)(const char*,const char*,int);
+ sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
+ const char *(*uri_parameter)(const char*,const char*);
+ char *(*xvsnprintf)(int,char*,const char*,va_list);
+ int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
+ /* Version 3.8.7 and later */
+ int (*auto_extension)(void(*)(void));
+ int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64,
+ void(*)(void*));
+ int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64,
+ void(*)(void*),unsigned char);
+ int (*cancel_auto_extension)(void(*)(void));
+ int (*load_extension)(sqlite3*,const char*,const char*,char**);
+ void *(*malloc64)(sqlite3_uint64);
+ sqlite3_uint64 (*msize)(void*);
+ void *(*realloc64)(void*,sqlite3_uint64);
+ void (*reset_auto_extension)(void);
+ void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
+ void(*)(void*));
+ void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char);
+ int (*strglob)(const char*,const char*);
+ /* Version 3.8.11 and later */
+ sqlite3_value *(*value_dup)(const sqlite3_value*);
+ void (*value_free)(sqlite3_value*);
+ int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
+ int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
+ /* Version 3.9.0 and later */
+ unsigned int (*value_subtype)(sqlite3_value*);
+ void (*result_subtype)(sqlite3_context*,unsigned int);
+ /* Version 3.10.0 and later */
+ int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int);
+ int (*strlike)(const char*,const char*,unsigned int);
+ int (*db_cacheflush)(sqlite3*);
+ /* Version 3.12.0 and later */
+ int (*system_errno)(sqlite3*);
+ /* Version 3.14.0 and later */
+ int (*trace_v2)(sqlite3*,unsigned,int(*)(unsigned,void*,void*,void*),void*);
+ char *(*expanded_sql)(sqlite3_stmt*);
+ /* Version 3.18.0 and later */
+ void (*set_last_insert_rowid)(sqlite3*,sqlite3_int64);
+ /* Version 3.20.0 and later */
+ int (*prepare_v3)(sqlite3*,const char*,int,unsigned int,
+ sqlite3_stmt**,const char**);
+ int (*prepare16_v3)(sqlite3*,const void*,int,unsigned int,
+ sqlite3_stmt**,const void**);
+ int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*));
+ void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*));
+ void *(*value_pointer)(sqlite3_value*,const char*);
+ int (*vtab_nochange)(sqlite3_context*);
+ int (*value_nochange)(sqlite3_value*);
+ const char *(*vtab_collation)(sqlite3_index_info*,int);
+ /* Version 3.24.0 and later */
+ int (*keyword_count)(void);
+ int (*keyword_name)(int,const char**,int*);
+ int (*keyword_check)(const char*,int);
+ sqlite3_str *(*str_new)(sqlite3*);
+ char *(*str_finish)(sqlite3_str*);
+ void (*str_appendf)(sqlite3_str*, const char *zFormat, ...);
+ void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list);
+ void (*str_append)(sqlite3_str*, const char *zIn, int N);
+ void (*str_appendall)(sqlite3_str*, const char *zIn);
+ void (*str_appendchar)(sqlite3_str*, int N, char C);
+ void (*str_reset)(sqlite3_str*);
+ int (*str_errcode)(sqlite3_str*);
+ int (*str_length)(sqlite3_str*);
+ char *(*str_value)(sqlite3_str*);
+ /* Version 3.25.0 and later */
+ int (*create_window_function)(sqlite3*,const char*,int,int,void*,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInv)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*));
+ /* Version 3.26.0 and later */
+ const char *(*normalized_sql)(sqlite3_stmt*);
+ /* Version 3.28.0 and later */
+ int (*stmt_isexplain)(sqlite3_stmt*);
+ int (*value_frombind)(sqlite3_value*);
+ /* Version 3.30.0 and later */
+ int (*drop_modules)(sqlite3*,const char**);
+ /* Version 3.31.0 and later */
+ sqlite3_int64 (*hard_heap_limit64)(sqlite3_int64);
+ const char *(*uri_key)(const char*,int);
+ const char *(*filename_database)(const char*);
+ const char *(*filename_journal)(const char*);
+ const char *(*filename_wal)(const char*);
+ /* Version 3.32.0 and later */
+ char *(*create_filename)(const char*,const char*,const char*,
+ int,const char**);
+ void (*free_filename)(char*);
+ sqlite3_file *(*database_file_object)(const char*);
+ /* Version 3.34.0 and later */
+ int (*txn_state)(sqlite3*,const char*);
+ /* Version 3.36.1 and later */
+ sqlite3_int64 (*changes64)(sqlite3*);
+ sqlite3_int64 (*total_changes64)(sqlite3*);
+ /* Version 3.37.0 and later */
+ int (*autovacuum_pages)(sqlite3*,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*, void(*)(void*));
+ /* Version 3.38.0 and later */
+ int (*error_offset)(sqlite3*);
+ int (*vtab_rhs_value)(sqlite3_index_info*,int,sqlite3_value**);
+ int (*vtab_distinct)(sqlite3_index_info*);
+ int (*vtab_in)(sqlite3_index_info*,int,int);
+ int (*vtab_in_first)(sqlite3_value*,sqlite3_value**);
+ int (*vtab_in_next)(sqlite3_value*,sqlite3_value**);
+ /* Version 3.39.0 and later */
+ int (*deserialize)(sqlite3*,const char*,unsigned char*,
+ sqlite3_int64,sqlite3_int64,unsigned);
+ unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*,
+ unsigned int);
+ const char *(*db_name)(sqlite3*,int);
+};
+
+/*
+** This is the function signature used for all extension entry points. It
+** is also defined in the file "loadext.c".
+*/
+typedef int (*sqlite3_loadext_entry)(
+ sqlite3 *db, /* Handle to the database. */
+ char **pzErrMsg, /* Used to set error string on failure. */
+ const sqlite3_api_routines *pThunk /* Extension API function pointers. */
+);
+
+/*
+** The following macros redefine the API routines so that they are
+** redirected through the global sqlite3_api structure.
+**
+** This header file is also used by the loadext.c source file
+** (part of the main SQLite library - not an extension) so that
+** it can get access to the sqlite3_api_routines structure
+** definition. But the main library does not want to redefine
+** the API. So the redefinition macros are only valid if the
+** SQLITE_CORE macros is undefined.
+*/
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+#define sqlite3_aggregate_context sqlite3_api->aggregate_context
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_aggregate_count sqlite3_api->aggregate_count
+#endif
+#define sqlite3_bind_blob sqlite3_api->bind_blob
+#define sqlite3_bind_double sqlite3_api->bind_double
+#define sqlite3_bind_int sqlite3_api->bind_int
+#define sqlite3_bind_int64 sqlite3_api->bind_int64
+#define sqlite3_bind_null sqlite3_api->bind_null
+#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
+#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
+#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
+#define sqlite3_bind_text sqlite3_api->bind_text
+#define sqlite3_bind_text16 sqlite3_api->bind_text16
+#define sqlite3_bind_value sqlite3_api->bind_value
+#define sqlite3_busy_handler sqlite3_api->busy_handler
+#define sqlite3_busy_timeout sqlite3_api->busy_timeout
+#define sqlite3_changes sqlite3_api->changes
+#define sqlite3_close sqlite3_api->close
+#define sqlite3_collation_needed sqlite3_api->collation_needed
+#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
+#define sqlite3_column_blob sqlite3_api->column_blob
+#define sqlite3_column_bytes sqlite3_api->column_bytes
+#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
+#define sqlite3_column_count sqlite3_api->column_count
+#define sqlite3_column_database_name sqlite3_api->column_database_name
+#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
+#define sqlite3_column_decltype sqlite3_api->column_decltype
+#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
+#define sqlite3_column_double sqlite3_api->column_double
+#define sqlite3_column_int sqlite3_api->column_int
+#define sqlite3_column_int64 sqlite3_api->column_int64
+#define sqlite3_column_name sqlite3_api->column_name
+#define sqlite3_column_name16 sqlite3_api->column_name16
+#define sqlite3_column_origin_name sqlite3_api->column_origin_name
+#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
+#define sqlite3_column_table_name sqlite3_api->column_table_name
+#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
+#define sqlite3_column_text sqlite3_api->column_text
+#define sqlite3_column_text16 sqlite3_api->column_text16
+#define sqlite3_column_type sqlite3_api->column_type
+#define sqlite3_column_value sqlite3_api->column_value
+#define sqlite3_commit_hook sqlite3_api->commit_hook
+#define sqlite3_complete sqlite3_api->complete
+#define sqlite3_complete16 sqlite3_api->complete16
+#define sqlite3_create_collation sqlite3_api->create_collation
+#define sqlite3_create_collation16 sqlite3_api->create_collation16
+#define sqlite3_create_function sqlite3_api->create_function
+#define sqlite3_create_function16 sqlite3_api->create_function16
+#define sqlite3_create_module sqlite3_api->create_module
+#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
+#define sqlite3_data_count sqlite3_api->data_count
+#define sqlite3_db_handle sqlite3_api->db_handle
+#define sqlite3_declare_vtab sqlite3_api->declare_vtab
+#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
+#define sqlite3_errcode sqlite3_api->errcode
+#define sqlite3_errmsg sqlite3_api->errmsg
+#define sqlite3_errmsg16 sqlite3_api->errmsg16
+#define sqlite3_exec sqlite3_api->exec
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_expired sqlite3_api->expired
+#endif
+#define sqlite3_finalize sqlite3_api->finalize
+#define sqlite3_free sqlite3_api->free
+#define sqlite3_free_table sqlite3_api->free_table
+#define sqlite3_get_autocommit sqlite3_api->get_autocommit
+#define sqlite3_get_auxdata sqlite3_api->get_auxdata
+#define sqlite3_get_table sqlite3_api->get_table
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_global_recover sqlite3_api->global_recover
+#endif
+#define sqlite3_interrupt sqlite3_api->interruptx
+#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
+#define sqlite3_libversion sqlite3_api->libversion
+#define sqlite3_libversion_number sqlite3_api->libversion_number
+#define sqlite3_malloc sqlite3_api->malloc
+#define sqlite3_mprintf sqlite3_api->mprintf
+#define sqlite3_open sqlite3_api->open
+#define sqlite3_open16 sqlite3_api->open16
+#define sqlite3_prepare sqlite3_api->prepare
+#define sqlite3_prepare16 sqlite3_api->prepare16
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_profile sqlite3_api->profile
+#define sqlite3_progress_handler sqlite3_api->progress_handler
+#define sqlite3_realloc sqlite3_api->realloc
+#define sqlite3_reset sqlite3_api->reset
+#define sqlite3_result_blob sqlite3_api->result_blob
+#define sqlite3_result_double sqlite3_api->result_double
+#define sqlite3_result_error sqlite3_api->result_error
+#define sqlite3_result_error16 sqlite3_api->result_error16
+#define sqlite3_result_int sqlite3_api->result_int
+#define sqlite3_result_int64 sqlite3_api->result_int64
+#define sqlite3_result_null sqlite3_api->result_null
+#define sqlite3_result_text sqlite3_api->result_text
+#define sqlite3_result_text16 sqlite3_api->result_text16
+#define sqlite3_result_text16be sqlite3_api->result_text16be
+#define sqlite3_result_text16le sqlite3_api->result_text16le
+#define sqlite3_result_value sqlite3_api->result_value
+#define sqlite3_rollback_hook sqlite3_api->rollback_hook
+#define sqlite3_set_authorizer sqlite3_api->set_authorizer
+#define sqlite3_set_auxdata sqlite3_api->set_auxdata
+#define sqlite3_snprintf sqlite3_api->xsnprintf
+#define sqlite3_step sqlite3_api->step
+#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
+#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
+#define sqlite3_total_changes sqlite3_api->total_changes
+#define sqlite3_trace sqlite3_api->trace
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
+#endif
+#define sqlite3_update_hook sqlite3_api->update_hook
+#define sqlite3_user_data sqlite3_api->user_data
+#define sqlite3_value_blob sqlite3_api->value_blob
+#define sqlite3_value_bytes sqlite3_api->value_bytes
+#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
+#define sqlite3_value_double sqlite3_api->value_double
+#define sqlite3_value_int sqlite3_api->value_int
+#define sqlite3_value_int64 sqlite3_api->value_int64
+#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
+#define sqlite3_value_text sqlite3_api->value_text
+#define sqlite3_value_text16 sqlite3_api->value_text16
+#define sqlite3_value_text16be sqlite3_api->value_text16be
+#define sqlite3_value_text16le sqlite3_api->value_text16le
+#define sqlite3_value_type sqlite3_api->value_type
+#define sqlite3_vmprintf sqlite3_api->vmprintf
+#define sqlite3_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_overload_function sqlite3_api->overload_function
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_clear_bindings sqlite3_api->clear_bindings
+#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
+#define sqlite3_blob_bytes sqlite3_api->blob_bytes
+#define sqlite3_blob_close sqlite3_api->blob_close
+#define sqlite3_blob_open sqlite3_api->blob_open
+#define sqlite3_blob_read sqlite3_api->blob_read
+#define sqlite3_blob_write sqlite3_api->blob_write
+#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
+#define sqlite3_file_control sqlite3_api->file_control
+#define sqlite3_memory_highwater sqlite3_api->memory_highwater
+#define sqlite3_memory_used sqlite3_api->memory_used
+#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
+#define sqlite3_mutex_enter sqlite3_api->mutex_enter
+#define sqlite3_mutex_free sqlite3_api->mutex_free
+#define sqlite3_mutex_leave sqlite3_api->mutex_leave
+#define sqlite3_mutex_try sqlite3_api->mutex_try
+#define sqlite3_open_v2 sqlite3_api->open_v2
+#define sqlite3_release_memory sqlite3_api->release_memory
+#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
+#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
+#define sqlite3_sleep sqlite3_api->sleep
+#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
+#define sqlite3_vfs_find sqlite3_api->vfs_find
+#define sqlite3_vfs_register sqlite3_api->vfs_register
+#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
+#define sqlite3_threadsafe sqlite3_api->xthreadsafe
+#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
+#define sqlite3_result_error_code sqlite3_api->result_error_code
+#define sqlite3_test_control sqlite3_api->test_control
+#define sqlite3_randomness sqlite3_api->randomness
+#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
+#define sqlite3_limit sqlite3_api->limit
+#define sqlite3_next_stmt sqlite3_api->next_stmt
+#define sqlite3_sql sqlite3_api->sql
+#define sqlite3_status sqlite3_api->status
+#define sqlite3_backup_finish sqlite3_api->backup_finish
+#define sqlite3_backup_init sqlite3_api->backup_init
+#define sqlite3_backup_pagecount sqlite3_api->backup_pagecount
+#define sqlite3_backup_remaining sqlite3_api->backup_remaining
+#define sqlite3_backup_step sqlite3_api->backup_step
+#define sqlite3_compileoption_get sqlite3_api->compileoption_get
+#define sqlite3_compileoption_used sqlite3_api->compileoption_used
+#define sqlite3_create_function_v2 sqlite3_api->create_function_v2
+#define sqlite3_db_config sqlite3_api->db_config
+#define sqlite3_db_mutex sqlite3_api->db_mutex
+#define sqlite3_db_status sqlite3_api->db_status
+#define sqlite3_extended_errcode sqlite3_api->extended_errcode
+#define sqlite3_log sqlite3_api->log
+#define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64
+#define sqlite3_sourceid sqlite3_api->sourceid
+#define sqlite3_stmt_status sqlite3_api->stmt_status
+#define sqlite3_strnicmp sqlite3_api->strnicmp
+#define sqlite3_unlock_notify sqlite3_api->unlock_notify
+#define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint
+#define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint
+#define sqlite3_wal_hook sqlite3_api->wal_hook
+#define sqlite3_blob_reopen sqlite3_api->blob_reopen
+#define sqlite3_vtab_config sqlite3_api->vtab_config
+#define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict
+/* Version 3.7.16 and later */
+#define sqlite3_close_v2 sqlite3_api->close_v2
+#define sqlite3_db_filename sqlite3_api->db_filename
+#define sqlite3_db_readonly sqlite3_api->db_readonly
+#define sqlite3_db_release_memory sqlite3_api->db_release_memory
+#define sqlite3_errstr sqlite3_api->errstr
+#define sqlite3_stmt_busy sqlite3_api->stmt_busy
+#define sqlite3_stmt_readonly sqlite3_api->stmt_readonly
+#define sqlite3_stricmp sqlite3_api->stricmp
+#define sqlite3_uri_boolean sqlite3_api->uri_boolean
+#define sqlite3_uri_int64 sqlite3_api->uri_int64
+#define sqlite3_uri_parameter sqlite3_api->uri_parameter
+#define sqlite3_uri_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2
+/* Version 3.8.7 and later */
+#define sqlite3_auto_extension sqlite3_api->auto_extension
+#define sqlite3_bind_blob64 sqlite3_api->bind_blob64
+#define sqlite3_bind_text64 sqlite3_api->bind_text64
+#define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension
+#define sqlite3_load_extension sqlite3_api->load_extension
+#define sqlite3_malloc64 sqlite3_api->malloc64
+#define sqlite3_msize sqlite3_api->msize
+#define sqlite3_realloc64 sqlite3_api->realloc64
+#define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension
+#define sqlite3_result_blob64 sqlite3_api->result_blob64
+#define sqlite3_result_text64 sqlite3_api->result_text64
+#define sqlite3_strglob sqlite3_api->strglob
+/* Version 3.8.11 and later */
+#define sqlite3_value_dup sqlite3_api->value_dup
+#define sqlite3_value_free sqlite3_api->value_free
+#define sqlite3_result_zeroblob64 sqlite3_api->result_zeroblob64
+#define sqlite3_bind_zeroblob64 sqlite3_api->bind_zeroblob64
+/* Version 3.9.0 and later */
+#define sqlite3_value_subtype sqlite3_api->value_subtype
+#define sqlite3_result_subtype sqlite3_api->result_subtype
+/* Version 3.10.0 and later */
+#define sqlite3_status64 sqlite3_api->status64
+#define sqlite3_strlike sqlite3_api->strlike
+#define sqlite3_db_cacheflush sqlite3_api->db_cacheflush
+/* Version 3.12.0 and later */
+#define sqlite3_system_errno sqlite3_api->system_errno
+/* Version 3.14.0 and later */
+#define sqlite3_trace_v2 sqlite3_api->trace_v2
+#define sqlite3_expanded_sql sqlite3_api->expanded_sql
+/* Version 3.18.0 and later */
+#define sqlite3_set_last_insert_rowid sqlite3_api->set_last_insert_rowid
+/* Version 3.20.0 and later */
+#define sqlite3_prepare_v3 sqlite3_api->prepare_v3
+#define sqlite3_prepare16_v3 sqlite3_api->prepare16_v3
+#define sqlite3_bind_pointer sqlite3_api->bind_pointer
+#define sqlite3_result_pointer sqlite3_api->result_pointer
+#define sqlite3_value_pointer sqlite3_api->value_pointer
+/* Version 3.22.0 and later */
+#define sqlite3_vtab_nochange sqlite3_api->vtab_nochange
+#define sqlite3_value_nochange sqlite3_api->value_nochange
+#define sqlite3_vtab_collation sqlite3_api->vtab_collation
+/* Version 3.24.0 and later */
+#define sqlite3_keyword_count sqlite3_api->keyword_count
+#define sqlite3_keyword_name sqlite3_api->keyword_name
+#define sqlite3_keyword_check sqlite3_api->keyword_check
+#define sqlite3_str_new sqlite3_api->str_new
+#define sqlite3_str_finish sqlite3_api->str_finish
+#define sqlite3_str_appendf sqlite3_api->str_appendf
+#define sqlite3_str_vappendf sqlite3_api->str_vappendf
+#define sqlite3_str_append sqlite3_api->str_append
+#define sqlite3_str_appendall sqlite3_api->str_appendall
+#define sqlite3_str_appendchar sqlite3_api->str_appendchar
+#define sqlite3_str_reset sqlite3_api->str_reset
+#define sqlite3_str_errcode sqlite3_api->str_errcode
+#define sqlite3_str_length sqlite3_api->str_length
+#define sqlite3_str_value sqlite3_api->str_value
+/* Version 3.25.0 and later */
+#define sqlite3_create_window_function sqlite3_api->create_window_function
+/* Version 3.26.0 and later */
+#define sqlite3_normalized_sql sqlite3_api->normalized_sql
+/* Version 3.28.0 and later */
+#define sqlite3_stmt_isexplain sqlite3_api->stmt_isexplain
+#define sqlite3_value_frombind sqlite3_api->value_frombind
+/* Version 3.30.0 and later */
+#define sqlite3_drop_modules sqlite3_api->drop_modules
+/* Version 3.31.0 and later */
+#define sqlite3_hard_heap_limit64 sqlite3_api->hard_heap_limit64
+#define sqlite3_uri_key sqlite3_api->uri_key
+#define sqlite3_filename_database sqlite3_api->filename_database
+#define sqlite3_filename_journal sqlite3_api->filename_journal
+#define sqlite3_filename_wal sqlite3_api->filename_wal
+/* Version 3.32.0 and later */
+#define sqlite3_create_filename sqlite3_api->create_filename
+#define sqlite3_free_filename sqlite3_api->free_filename
+#define sqlite3_database_file_object sqlite3_api->database_file_object
+/* Version 3.34.0 and later */
+#define sqlite3_txn_state sqlite3_api->txn_state
+/* Version 3.36.1 and later */
+#define sqlite3_changes64 sqlite3_api->changes64
+#define sqlite3_total_changes64 sqlite3_api->total_changes64
+/* Version 3.37.0 and later */
+#define sqlite3_autovacuum_pages sqlite3_api->autovacuum_pages
+/* Version 3.38.0 and later */
+#define sqlite3_error_offset sqlite3_api->error_offset
+#define sqlite3_vtab_rhs_value sqlite3_api->vtab_rhs_value
+#define sqlite3_vtab_distinct sqlite3_api->vtab_distinct
+#define sqlite3_vtab_in sqlite3_api->vtab_in
+#define sqlite3_vtab_in_first sqlite3_api->vtab_in_first
+#define sqlite3_vtab_in_next sqlite3_api->vtab_in_next
+/* Version 3.39.0 and later */
+#ifndef SQLITE_OMIT_DESERIALIZE
+#define sqlite3_deserialize sqlite3_api->deserialize
+#define sqlite3_serialize sqlite3_api->serialize
+#endif
+#define sqlite3_db_name sqlite3_api->db_name
+#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */
+
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ /* This case when the file really is being compiled as a loadable
+ ** extension */
+# define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0;
+# define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v;
+# define SQLITE_EXTENSION_INIT3 \
+ extern const sqlite3_api_routines *sqlite3_api;
+#else
+ /* This case when the file is being statically linked into the
+ ** application */
+# define SQLITE_EXTENSION_INIT1 /*no-op*/
+# define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */
+# define SQLITE_EXTENSION_INIT3 /*no-op*/
+#endif
+
+#endif /* SQLITE3EXT_H */
+
+/************** End of sqlite3ext.h ******************************************/
+/************** Continuing where we left off in loadext.c ********************/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Some API routines are omitted when various features are
+** excluded from a build of SQLite. Substitute a NULL pointer
+** for any missing APIs.
+*/
+#ifndef SQLITE_ENABLE_COLUMN_METADATA
+# define sqlite3_column_database_name 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name 0
+# define sqlite3_column_origin_name16 0
+#endif
+
+#ifdef SQLITE_OMIT_AUTHORIZATION
+# define sqlite3_set_authorizer 0
+#endif
+
+#ifdef SQLITE_OMIT_UTF16
+# define sqlite3_bind_text16 0
+# define sqlite3_collation_needed16 0
+# define sqlite3_column_decltype16 0
+# define sqlite3_column_name16 0
+# define sqlite3_column_text16 0
+# define sqlite3_complete16 0
+# define sqlite3_create_collation16 0
+# define sqlite3_create_function16 0
+# define sqlite3_errmsg16 0
+# define sqlite3_open16 0
+# define sqlite3_prepare16 0
+# define sqlite3_prepare16_v2 0
+# define sqlite3_prepare16_v3 0
+# define sqlite3_result_error16 0
+# define sqlite3_result_text16 0
+# define sqlite3_result_text16be 0
+# define sqlite3_result_text16le 0
+# define sqlite3_value_text16 0
+# define sqlite3_value_text16be 0
+# define sqlite3_value_text16le 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name16 0
+#endif
+
+#ifdef SQLITE_OMIT_COMPLETE
+# define sqlite3_complete 0
+# define sqlite3_complete16 0
+#endif
+
+#ifdef SQLITE_OMIT_DECLTYPE
+# define sqlite3_column_decltype16 0
+# define sqlite3_column_decltype 0
+#endif
+
+#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
+# define sqlite3_progress_handler 0
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3_create_module 0
+# define sqlite3_create_module_v2 0
+# define sqlite3_declare_vtab 0
+# define sqlite3_vtab_config 0
+# define sqlite3_vtab_on_conflict 0
+# define sqlite3_vtab_collation 0
+#endif
+
+#ifdef SQLITE_OMIT_SHARED_CACHE
+# define sqlite3_enable_shared_cache 0
+#endif
+
+#if defined(SQLITE_OMIT_TRACE) || defined(SQLITE_OMIT_DEPRECATED)
+# define sqlite3_profile 0
+# define sqlite3_trace 0
+#endif
+
+#ifdef SQLITE_OMIT_GET_TABLE
+# define sqlite3_free_table 0
+# define sqlite3_get_table 0
+#endif
+
+#ifdef SQLITE_OMIT_INCRBLOB
+#define sqlite3_bind_zeroblob 0
+#define sqlite3_blob_bytes 0
+#define sqlite3_blob_close 0
+#define sqlite3_blob_open 0
+#define sqlite3_blob_read 0
+#define sqlite3_blob_write 0
+#define sqlite3_blob_reopen 0
+#endif
+
+#if defined(SQLITE_OMIT_TRACE)
+# define sqlite3_trace_v2 0
+#endif
+
+/*
+** The following structure contains pointers to all SQLite API routines.
+** A pointer to this structure is passed into extensions when they are
+** loaded so that the extension can make calls back into the SQLite
+** library.
+**
+** When adding new APIs, add them to the bottom of this structure
+** in order to preserve backwards compatibility.
+**
+** Extensions that use newer APIs should first call the
+** sqlite3_libversion_number() to make sure that the API they
+** intend to use is supported by the library. Extensions should
+** also check to make sure that the pointer to the function is
+** not NULL before calling it.
+*/
+static const sqlite3_api_routines sqlite3Apis = {
+ sqlite3_aggregate_context,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_aggregate_count,
+#else
+ 0,
+#endif
+ sqlite3_bind_blob,
+ sqlite3_bind_double,
+ sqlite3_bind_int,
+ sqlite3_bind_int64,
+ sqlite3_bind_null,
+ sqlite3_bind_parameter_count,
+ sqlite3_bind_parameter_index,
+ sqlite3_bind_parameter_name,
+ sqlite3_bind_text,
+ sqlite3_bind_text16,
+ sqlite3_bind_value,
+ sqlite3_busy_handler,
+ sqlite3_busy_timeout,
+ sqlite3_changes,
+ sqlite3_close,
+ sqlite3_collation_needed,
+ sqlite3_collation_needed16,
+ sqlite3_column_blob,
+ sqlite3_column_bytes,
+ sqlite3_column_bytes16,
+ sqlite3_column_count,
+ sqlite3_column_database_name,
+ sqlite3_column_database_name16,
+ sqlite3_column_decltype,
+ sqlite3_column_decltype16,
+ sqlite3_column_double,
+ sqlite3_column_int,
+ sqlite3_column_int64,
+ sqlite3_column_name,
+ sqlite3_column_name16,
+ sqlite3_column_origin_name,
+ sqlite3_column_origin_name16,
+ sqlite3_column_table_name,
+ sqlite3_column_table_name16,
+ sqlite3_column_text,
+ sqlite3_column_text16,
+ sqlite3_column_type,
+ sqlite3_column_value,
+ sqlite3_commit_hook,
+ sqlite3_complete,
+ sqlite3_complete16,
+ sqlite3_create_collation,
+ sqlite3_create_collation16,
+ sqlite3_create_function,
+ sqlite3_create_function16,
+ sqlite3_create_module,
+ sqlite3_data_count,
+ sqlite3_db_handle,
+ sqlite3_declare_vtab,
+ sqlite3_enable_shared_cache,
+ sqlite3_errcode,
+ sqlite3_errmsg,
+ sqlite3_errmsg16,
+ sqlite3_exec,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_expired,
+#else
+ 0,
+#endif
+ sqlite3_finalize,
+ sqlite3_free,
+ sqlite3_free_table,
+ sqlite3_get_autocommit,
+ sqlite3_get_auxdata,
+ sqlite3_get_table,
+ 0, /* Was sqlite3_global_recover(), but that function is deprecated */
+ sqlite3_interrupt,
+ sqlite3_last_insert_rowid,
+ sqlite3_libversion,
+ sqlite3_libversion_number,
+ sqlite3_malloc,
+ sqlite3_mprintf,
+ sqlite3_open,
+ sqlite3_open16,
+ sqlite3_prepare,
+ sqlite3_prepare16,
+ sqlite3_profile,
+ sqlite3_progress_handler,
+ sqlite3_realloc,
+ sqlite3_reset,
+ sqlite3_result_blob,
+ sqlite3_result_double,
+ sqlite3_result_error,
+ sqlite3_result_error16,
+ sqlite3_result_int,
+ sqlite3_result_int64,
+ sqlite3_result_null,
+ sqlite3_result_text,
+ sqlite3_result_text16,
+ sqlite3_result_text16be,
+ sqlite3_result_text16le,
+ sqlite3_result_value,
+ sqlite3_rollback_hook,
+ sqlite3_set_authorizer,
+ sqlite3_set_auxdata,
+ sqlite3_snprintf,
+ sqlite3_step,
+ sqlite3_table_column_metadata,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_thread_cleanup,
+#else
+ 0,
+#endif
+ sqlite3_total_changes,
+ sqlite3_trace,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_transfer_bindings,
+#else
+ 0,
+#endif
+ sqlite3_update_hook,
+ sqlite3_user_data,
+ sqlite3_value_blob,
+ sqlite3_value_bytes,
+ sqlite3_value_bytes16,
+ sqlite3_value_double,
+ sqlite3_value_int,
+ sqlite3_value_int64,
+ sqlite3_value_numeric_type,
+ sqlite3_value_text,
+ sqlite3_value_text16,
+ sqlite3_value_text16be,
+ sqlite3_value_text16le,
+ sqlite3_value_type,
+ sqlite3_vmprintf,
+ /*
+ ** The original API set ends here. All extensions can call any
+ ** of the APIs above provided that the pointer is not NULL. But
+ ** before calling APIs that follow, extension should check the
+ ** sqlite3_libversion_number() to make sure they are dealing with
+ ** a library that is new enough to support that API.
+ *************************************************************************
+ */
+ sqlite3_overload_function,
+
+ /*
+ ** Added after 3.3.13
+ */
+ sqlite3_prepare_v2,
+ sqlite3_prepare16_v2,
+ sqlite3_clear_bindings,
+
+ /*
+ ** Added for 3.4.1
+ */
+ sqlite3_create_module_v2,
+
+ /*
+ ** Added for 3.5.0
+ */
+ sqlite3_bind_zeroblob,
+ sqlite3_blob_bytes,
+ sqlite3_blob_close,
+ sqlite3_blob_open,
+ sqlite3_blob_read,
+ sqlite3_blob_write,
+ sqlite3_create_collation_v2,
+ sqlite3_file_control,
+ sqlite3_memory_highwater,
+ sqlite3_memory_used,
+#ifdef SQLITE_MUTEX_OMIT
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#else
+ sqlite3_mutex_alloc,
+ sqlite3_mutex_enter,
+ sqlite3_mutex_free,
+ sqlite3_mutex_leave,
+ sqlite3_mutex_try,
+#endif
+ sqlite3_open_v2,
+ sqlite3_release_memory,
+ sqlite3_result_error_nomem,
+ sqlite3_result_error_toobig,
+ sqlite3_sleep,
+ sqlite3_soft_heap_limit,
+ sqlite3_vfs_find,
+ sqlite3_vfs_register,
+ sqlite3_vfs_unregister,
+
+ /*
+ ** Added for 3.5.8
+ */
+ sqlite3_threadsafe,
+ sqlite3_result_zeroblob,
+ sqlite3_result_error_code,
+ sqlite3_test_control,
+ sqlite3_randomness,
+ sqlite3_context_db_handle,
+
+ /*
+ ** Added for 3.6.0
+ */
+ sqlite3_extended_result_codes,
+ sqlite3_limit,
+ sqlite3_next_stmt,
+ sqlite3_sql,
+ sqlite3_status,
+
+ /*
+ ** Added for 3.7.4
+ */
+ sqlite3_backup_finish,
+ sqlite3_backup_init,
+ sqlite3_backup_pagecount,
+ sqlite3_backup_remaining,
+ sqlite3_backup_step,
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ sqlite3_compileoption_get,
+ sqlite3_compileoption_used,
+#else
+ 0,
+ 0,
+#endif
+ sqlite3_create_function_v2,
+ sqlite3_db_config,
+ sqlite3_db_mutex,
+ sqlite3_db_status,
+ sqlite3_extended_errcode,
+ sqlite3_log,
+ sqlite3_soft_heap_limit64,
+ sqlite3_sourceid,
+ sqlite3_stmt_status,
+ sqlite3_strnicmp,
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ sqlite3_unlock_notify,
+#else
+ 0,
+#endif
+#ifndef SQLITE_OMIT_WAL
+ sqlite3_wal_autocheckpoint,
+ sqlite3_wal_checkpoint,
+ sqlite3_wal_hook,
+#else
+ 0,
+ 0,
+ 0,
+#endif
+ sqlite3_blob_reopen,
+ sqlite3_vtab_config,
+ sqlite3_vtab_on_conflict,
+ sqlite3_close_v2,
+ sqlite3_db_filename,
+ sqlite3_db_readonly,
+ sqlite3_db_release_memory,
+ sqlite3_errstr,
+ sqlite3_stmt_busy,
+ sqlite3_stmt_readonly,
+ sqlite3_stricmp,
+ sqlite3_uri_boolean,
+ sqlite3_uri_int64,
+ sqlite3_uri_parameter,
+ sqlite3_vsnprintf,
+ sqlite3_wal_checkpoint_v2,
+ /* Version 3.8.7 and later */
+ sqlite3_auto_extension,
+ sqlite3_bind_blob64,
+ sqlite3_bind_text64,
+ sqlite3_cancel_auto_extension,
+ sqlite3_load_extension,
+ sqlite3_malloc64,
+ sqlite3_msize,
+ sqlite3_realloc64,
+ sqlite3_reset_auto_extension,
+ sqlite3_result_blob64,
+ sqlite3_result_text64,
+ sqlite3_strglob,
+ /* Version 3.8.11 and later */
+ (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup,
+ sqlite3_value_free,
+ sqlite3_result_zeroblob64,
+ sqlite3_bind_zeroblob64,
+ /* Version 3.9.0 and later */
+ sqlite3_value_subtype,
+ sqlite3_result_subtype,
+ /* Version 3.10.0 and later */
+ sqlite3_status64,
+ sqlite3_strlike,
+ sqlite3_db_cacheflush,
+ /* Version 3.12.0 and later */
+ sqlite3_system_errno,
+ /* Version 3.14.0 and later */
+ sqlite3_trace_v2,
+ sqlite3_expanded_sql,
+ /* Version 3.18.0 and later */
+ sqlite3_set_last_insert_rowid,
+ /* Version 3.20.0 and later */
+ sqlite3_prepare_v3,
+ sqlite3_prepare16_v3,
+ sqlite3_bind_pointer,
+ sqlite3_result_pointer,
+ sqlite3_value_pointer,
+ /* Version 3.22.0 and later */
+ sqlite3_vtab_nochange,
+ sqlite3_value_nochange,
+ sqlite3_vtab_collation,
+ /* Version 3.24.0 and later */
+ sqlite3_keyword_count,
+ sqlite3_keyword_name,
+ sqlite3_keyword_check,
+ sqlite3_str_new,
+ sqlite3_str_finish,
+ sqlite3_str_appendf,
+ sqlite3_str_vappendf,
+ sqlite3_str_append,
+ sqlite3_str_appendall,
+ sqlite3_str_appendchar,
+ sqlite3_str_reset,
+ sqlite3_str_errcode,
+ sqlite3_str_length,
+ sqlite3_str_value,
+ /* Version 3.25.0 and later */
+ sqlite3_create_window_function,
+ /* Version 3.26.0 and later */
+#ifdef SQLITE_ENABLE_NORMALIZE
+ sqlite3_normalized_sql,
+#else
+ 0,
+#endif
+ /* Version 3.28.0 and later */
+ sqlite3_stmt_isexplain,
+ sqlite3_value_frombind,
+ /* Version 3.30.0 and later */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_drop_modules,
+#else
+ 0,
+#endif
+ /* Version 3.31.0 and later */
+ sqlite3_hard_heap_limit64,
+ sqlite3_uri_key,
+ sqlite3_filename_database,
+ sqlite3_filename_journal,
+ sqlite3_filename_wal,
+ /* Version 3.32.0 and later */
+ sqlite3_create_filename,
+ sqlite3_free_filename,
+ sqlite3_database_file_object,
+ /* Version 3.34.0 and later */
+ sqlite3_txn_state,
+ /* Version 3.36.1 and later */
+ sqlite3_changes64,
+ sqlite3_total_changes64,
+ /* Version 3.37.0 and later */
+ sqlite3_autovacuum_pages,
+ /* Version 3.38.0 and later */
+ sqlite3_error_offset,
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_vtab_rhs_value,
+ sqlite3_vtab_distinct,
+ sqlite3_vtab_in,
+ sqlite3_vtab_in_first,
+ sqlite3_vtab_in_next,
+#else
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#endif
+ /* Version 3.39.0 and later */
+#ifndef SQLITE_OMIT_DESERIALIZE
+ sqlite3_deserialize,
+ sqlite3_serialize,
+#else
+ 0,
+ 0,
+#endif
+ sqlite3_db_name
+};
+
+/* True if x is the directory separator character
+*/
+#if SQLITE_OS_WIN
+# define DirSep(X) ((X)=='/'||(X)=='\\')
+#else
+# define DirSep(X) ((X)=='/')
+#endif
+
+/*
+** Attempt to load an SQLite extension library contained in the file
+** zFile. The entry point is zProc. zProc may be 0 in which case a
+** default entry point name (sqlite3_extension_init) is used. Use
+** of the default name is recommended.
+**
+** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
+**
+** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
+** error message text. The calling function should free this memory
+** by calling sqlite3DbFree(db, ).
+*/
+static int sqlite3LoadExtension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ sqlite3_vfs *pVfs = db->pVfs;
+ void *handle;
+ sqlite3_loadext_entry xInit;
+ char *zErrmsg = 0;
+ const char *zEntry;
+ char *zAltEntry = 0;
+ void **aHandle;
+ u64 nMsg = strlen(zFile);
+ int ii;
+ int rc;
+
+ /* Shared library endings to try if zFile cannot be loaded as written */
+ static const char *azEndings[] = {
+#if SQLITE_OS_WIN
+ "dll"
+#elif defined(__APPLE__)
+ "dylib"
+#else
+ "so"
+#endif
+ };
+
+
+ if( pzErrMsg ) *pzErrMsg = 0;
+
+ /* Ticket #1863. To avoid a creating security problems for older
+ ** applications that relink against newer versions of SQLite, the
+ ** ability to run load_extension is turned off by default. One
+ ** must call either sqlite3_enable_load_extension(db) or
+ ** sqlite3_db_config(db, SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, 1, 0)
+ ** to turn on extension loading.
+ */
+ if( (db->flags & SQLITE_LoadExtension)==0 ){
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("not authorized");
+ }
+ return SQLITE_ERROR;
+ }
+
+ zEntry = zProc ? zProc : "sqlite3_extension_init";
+
+ /* tag-20210611-1. Some dlopen() implementations will segfault if given
+ ** an oversize filename. Most filesystems have a pathname limit of 4K,
+ ** so limit the extension filename length to about twice that.
+ ** https://sqlite.org/forum/forumpost/08a0d6d9bf */
+ if( nMsg>SQLITE_MAX_PATHLEN ) goto extension_not_found;
+
+ handle = sqlite3OsDlOpen(pVfs, zFile);
+#if SQLITE_OS_UNIX || SQLITE_OS_WIN
+ for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
+ char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);
+ if( zAltFile==0 ) return SQLITE_NOMEM_BKPT;
+ handle = sqlite3OsDlOpen(pVfs, zAltFile);
+ sqlite3_free(zAltFile);
+ }
+#endif
+ if( handle==0 ) goto extension_not_found;
+ xInit = (sqlite3_loadext_entry)sqlite3OsDlSym(pVfs, handle, zEntry);
+
+ /* If no entry point was specified and the default legacy
+ ** entry point name "sqlite3_extension_init" was not found, then
+ ** construct an entry point name "sqlite3_X_init" where the X is
+ ** replaced by the lowercase value of every ASCII alphabetic
+ ** character in the filename after the last "/" upto the first ".",
+ ** and eliding the first three characters if they are "lib".
+ ** Examples:
+ **
+ ** /usr/local/lib/libExample5.4.3.so ==> sqlite3_example_init
+ ** C:/lib/mathfuncs.dll ==> sqlite3_mathfuncs_init
+ */
+ if( xInit==0 && zProc==0 ){
+ int iFile, iEntry, c;
+ int ncFile = sqlite3Strlen30(zFile);
+ zAltEntry = sqlite3_malloc64(ncFile+30);
+ if( zAltEntry==0 ){
+ sqlite3OsDlClose(pVfs, handle);
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(zAltEntry, "sqlite3_", 8);
+ for(iFile=ncFile-1; iFile>=0 && !DirSep(zFile[iFile]); iFile--){}
+ iFile++;
+ if( sqlite3_strnicmp(zFile+iFile, "lib", 3)==0 ) iFile += 3;
+ for(iEntry=8; (c = zFile[iFile])!=0 && c!='.'; iFile++){
+ if( sqlite3Isalpha(c) ){
+ zAltEntry[iEntry++] = (char)sqlite3UpperToLower[(unsigned)c];
+ }
+ }
+ memcpy(zAltEntry+iEntry, "_init", 6);
+ zEntry = zAltEntry;
+ xInit = (sqlite3_loadext_entry)sqlite3OsDlSym(pVfs, handle, zEntry);
+ }
+ if( xInit==0 ){
+ if( pzErrMsg ){
+ nMsg += strlen(zEntry) + 300;
+ *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
+ if( zErrmsg ){
+ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */
+ sqlite3_snprintf((int)nMsg, zErrmsg,
+ "no entry point [%s] in shared library [%s]", zEntry, zFile);
+ sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
+ }
+ }
+ sqlite3OsDlClose(pVfs, handle);
+ sqlite3_free(zAltEntry);
+ return SQLITE_ERROR;
+ }
+ sqlite3_free(zAltEntry);
+ rc = xInit(db, &zErrmsg, &sqlite3Apis);
+ if( rc ){
+ if( rc==SQLITE_OK_LOAD_PERMANENTLY ) return SQLITE_OK;
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
+ }
+ sqlite3_free(zErrmsg);
+ sqlite3OsDlClose(pVfs, handle);
+ return SQLITE_ERROR;
+ }
+
+ /* Append the new shared library handle to the db->aExtension array. */
+ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
+ if( aHandle==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( db->nExtension>0 ){
+ memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
+ }
+ sqlite3DbFree(db, db->aExtension);
+ db->aExtension = aHandle;
+
+ db->aExtension[db->nExtension++] = handle;
+ return SQLITE_OK;
+
+extension_not_found:
+ if( pzErrMsg ){
+ nMsg += 300;
+ *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
+ if( zErrmsg ){
+ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */
+ sqlite3_snprintf((int)nMsg, zErrmsg,
+ "unable to open shared library [%.*s]", SQLITE_MAX_PATHLEN, zFile);
+ sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
+ }
+ }
+ return SQLITE_ERROR;
+}
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Call this routine when the database connection is closing in order
+** to clean up loaded extensions
+*/
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
+ int i;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nExtension; i++){
+ sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
+ }
+ sqlite3DbFree(db, db->aExtension);
+}
+
+/*
+** Enable or disable extension loading. Extension loading is disabled by
+** default so as not to open security holes in older applications.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
+ sqlite3_mutex_enter(db->mutex);
+ if( onoff ){
+ db->flags |= SQLITE_LoadExtension|SQLITE_LoadExtFunc;
+ }else{
+ db->flags &= ~(u64)(SQLITE_LoadExtension|SQLITE_LoadExtFunc);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#endif /* !defined(SQLITE_OMIT_LOAD_EXTENSION) */
+
+/*
+** The following object holds the list of automatically loaded
+** extensions.
+**
+** This list is shared across threads. The SQLITE_MUTEX_STATIC_MAIN
+** mutex must be held while accessing this list.
+*/
+typedef struct sqlite3AutoExtList sqlite3AutoExtList;
+static SQLITE_WSD struct sqlite3AutoExtList {
+ u32 nExt; /* Number of entries in aExt[] */
+ void (**aExt)(void); /* Pointers to the extension init functions */
+} sqlite3Autoext = { 0, 0 };
+
+/* The "wsdAutoext" macro will resolve to the autoextension
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Autoext" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdAutoextInit \
+ sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
+# define wsdAutoext x[0]
+#else
+# define wsdAutoextInit
+# define wsdAutoext sqlite3Autoext
+#endif
+
+
+/*
+** Register a statically linked extension that is automatically
+** loaded by every new database connection.
+*/
+SQLITE_API int sqlite3_auto_extension(
+ void (*xInit)(void)
+){
+ int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ){
+ return rc;
+ }else
+#endif
+ {
+ u32 i;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<wsdAutoext.nExt; i++){
+ if( wsdAutoext.aExt[i]==xInit ) break;
+ }
+ if( i==wsdAutoext.nExt ){
+ u64 nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
+ void (**aNew)(void);
+ aNew = sqlite3_realloc64(wsdAutoext.aExt, nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ wsdAutoext.aExt = aNew;
+ wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
+ wsdAutoext.nExt++;
+ }
+ }
+ sqlite3_mutex_leave(mutex);
+ assert( (rc&0xff)==rc );
+ return rc;
+ }
+}
+
+/*
+** Cancel a prior call to sqlite3_auto_extension. Remove xInit from the
+** set of routines that is invoked for each new database connection, if it
+** is currently on the list. If xInit is not on the list, then this
+** routine is a no-op.
+**
+** Return 1 if xInit was found on the list and removed. Return 0 if xInit
+** was not on the list.
+*/
+SQLITE_API int sqlite3_cancel_auto_extension(
+ void (*xInit)(void)
+){
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ int i;
+ int n = 0;
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ for(i=(int)wsdAutoext.nExt-1; i>=0; i--){
+ if( wsdAutoext.aExt[i]==xInit ){
+ wsdAutoext.nExt--;
+ wsdAutoext.aExt[i] = wsdAutoext.aExt[wsdAutoext.nExt];
+ n++;
+ break;
+ }
+ }
+ sqlite3_mutex_leave(mutex);
+ return n;
+}
+
+/*
+** Reset the automatic extension loading mechanism.
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize()==SQLITE_OK )
+#endif
+ {
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ sqlite3_free(wsdAutoext.aExt);
+ wsdAutoext.aExt = 0;
+ wsdAutoext.nExt = 0;
+ sqlite3_mutex_leave(mutex);
+ }
+}
+
+/*
+** Load all automatic extensions.
+**
+** If anything goes wrong, set an error in the database connection.
+*/
+SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){
+ u32 i;
+ int go = 1;
+ int rc;
+ sqlite3_loadext_entry xInit;
+
+ wsdAutoextInit;
+ if( wsdAutoext.nExt==0 ){
+ /* Common case: early out without every having to acquire a mutex */
+ return;
+ }
+ for(i=0; go; i++){
+ char *zErrmsg;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+#ifdef SQLITE_OMIT_LOAD_EXTENSION
+ const sqlite3_api_routines *pThunk = 0;
+#else
+ const sqlite3_api_routines *pThunk = &sqlite3Apis;
+#endif
+ sqlite3_mutex_enter(mutex);
+ if( i>=wsdAutoext.nExt ){
+ xInit = 0;
+ go = 0;
+ }else{
+ xInit = (sqlite3_loadext_entry)wsdAutoext.aExt[i];
+ }
+ sqlite3_mutex_leave(mutex);
+ zErrmsg = 0;
+ if( xInit && (rc = xInit(db, &zErrmsg, pThunk))!=0 ){
+ sqlite3ErrorWithMsg(db, rc,
+ "automatic extension loading failed: %s", zErrmsg);
+ go = 0;
+ }
+ sqlite3_free(zErrmsg);
+ }
+}
+
+/************** End of loadext.c *********************************************/
+/************** Begin file pragma.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the PRAGMA command.
+*/
+/* #include "sqliteInt.h" */
+
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
+# if defined(__APPLE__)
+# define SQLITE_ENABLE_LOCKING_STYLE 1
+# else
+# define SQLITE_ENABLE_LOCKING_STYLE 0
+# endif
+#endif
+
+/***************************************************************************
+** The "pragma.h" include file is an automatically generated file that
+** that includes the PragType_XXXX macro definitions and the aPragmaName[]
+** object. This ensures that the aPragmaName[] table is arranged in
+** lexicographical order to facility a binary search of the pragma name.
+** Do not edit pragma.h directly. Edit and rerun the script in at
+** ../tool/mkpragmatab.tcl. */
+/************** Include pragma.h in the middle of pragma.c *******************/
+/************** Begin file pragma.h ******************************************/
+/* DO NOT EDIT!
+** This file is automatically generated by the script at
+** ../tool/mkpragmatab.tcl. To update the set of pragmas, edit
+** that script and rerun it.
+*/
+
+/* The various pragma types */
+#define PragTyp_KEY 255
+#define PragTyp_ACTIVATE_EXTENSIONS 0
+#define PragTyp_ANALYSIS_LIMIT 1
+#define PragTyp_HEADER_VALUE 2
+#define PragTyp_AUTO_VACUUM 3
+#define PragTyp_FLAG 4
+#define PragTyp_BUSY_TIMEOUT 5
+#define PragTyp_CACHE_SIZE 6
+#define PragTyp_CACHE_SPILL 7
+#define PragTyp_CASE_SENSITIVE_LIKE 8
+#define PragTyp_COLLATION_LIST 9
+#define PragTyp_COMPILE_OPTIONS 10
+#define PragTyp_DATA_STORE_DIRECTORY 11
+#define PragTyp_DATABASE_LIST 12
+#define PragTyp_DEFAULT_CACHE_SIZE 13
+#define PragTyp_ENCODING 14
+#define PragTyp_FOREIGN_KEY_CHECK 15
+#define PragTyp_FOREIGN_KEY_LIST 16
+#define PragTyp_FUNCTION_LIST 17
+#define PragTyp_HARD_HEAP_LIMIT 18
+#define PragTyp_INCREMENTAL_VACUUM 19
+#define PragTyp_INDEX_INFO 20
+#define PragTyp_INDEX_LIST 21
+#define PragTyp_INTEGRITY_CHECK 22
+#define PragTyp_JOURNAL_MODE 23
+#define PragTyp_JOURNAL_SIZE_LIMIT 24
+#define PragTyp_LOCK_PROXY_FILE 25
+#define PragTyp_LOCKING_MODE 26
+#define PragTyp_PAGE_COUNT 27
+#define PragTyp_MMAP_SIZE 28
+#define PragTyp_MODULE_LIST 29
+#define PragTyp_OPTIMIZE 30
+#define PragTyp_PAGE_SIZE 31
+#define PragTyp_PRAGMA_LIST 32
+#define PragTyp_SECURE_DELETE 33
+#define PragTyp_SHRINK_MEMORY 34
+#define PragTyp_SOFT_HEAP_LIMIT 35
+#define PragTyp_SYNCHRONOUS 36
+#define PragTyp_TABLE_INFO 37
+#define PragTyp_TABLE_LIST 38
+#define PragTyp_TEMP_STORE 39
+#define PragTyp_TEMP_STORE_DIRECTORY 40
+#define PragTyp_THREADS 41
+#define PragTyp_WAL_AUTOCHECKPOINT 42
+#define PragTyp_WAL_CHECKPOINT 43
+#define PragTyp_LOCK_STATUS 44
+#define PragTyp_STATS 45
+
+/* Property flags associated with various pragma. */
+#define PragFlg_NeedSchema 0x01 /* Force schema load before running */
+#define PragFlg_NoColumns 0x02 /* OP_ResultRow called with zero columns */
+#define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */
+#define PragFlg_ReadOnly 0x08 /* Read-only HEADER_VALUE */
+#define PragFlg_Result0 0x10 /* Acts as query when no argument */
+#define PragFlg_Result1 0x20 /* Acts as query when has one argument */
+#define PragFlg_SchemaOpt 0x40 /* Schema restricts name search if present */
+#define PragFlg_SchemaReq 0x80 /* Schema required - "main" is default */
+
+/* Names of columns for pragmas that return multi-column result
+** or that return single-column results where the name of the
+** result column is different from the name of the pragma
+*/
+static const char *const pragCName[] = {
+ /* 0 */ "id", /* Used by: foreign_key_list */
+ /* 1 */ "seq",
+ /* 2 */ "table",
+ /* 3 */ "from",
+ /* 4 */ "to",
+ /* 5 */ "on_update",
+ /* 6 */ "on_delete",
+ /* 7 */ "match",
+ /* 8 */ "cid", /* Used by: table_xinfo */
+ /* 9 */ "name",
+ /* 10 */ "type",
+ /* 11 */ "notnull",
+ /* 12 */ "dflt_value",
+ /* 13 */ "pk",
+ /* 14 */ "hidden",
+ /* table_info reuses 8 */
+ /* 15 */ "schema", /* Used by: table_list */
+ /* 16 */ "name",
+ /* 17 */ "type",
+ /* 18 */ "ncol",
+ /* 19 */ "wr",
+ /* 20 */ "strict",
+ /* 21 */ "seqno", /* Used by: index_xinfo */
+ /* 22 */ "cid",
+ /* 23 */ "name",
+ /* 24 */ "desc",
+ /* 25 */ "coll",
+ /* 26 */ "key",
+ /* 27 */ "name", /* Used by: function_list */
+ /* 28 */ "builtin",
+ /* 29 */ "type",
+ /* 30 */ "enc",
+ /* 31 */ "narg",
+ /* 32 */ "flags",
+ /* 33 */ "tbl", /* Used by: stats */
+ /* 34 */ "idx",
+ /* 35 */ "wdth",
+ /* 36 */ "hght",
+ /* 37 */ "flgs",
+ /* 38 */ "seq", /* Used by: index_list */
+ /* 39 */ "name",
+ /* 40 */ "unique",
+ /* 41 */ "origin",
+ /* 42 */ "partial",
+ /* 43 */ "table", /* Used by: foreign_key_check */
+ /* 44 */ "rowid",
+ /* 45 */ "parent",
+ /* 46 */ "fkid",
+ /* index_info reuses 21 */
+ /* 47 */ "seq", /* Used by: database_list */
+ /* 48 */ "name",
+ /* 49 */ "file",
+ /* 50 */ "busy", /* Used by: wal_checkpoint */
+ /* 51 */ "log",
+ /* 52 */ "checkpointed",
+ /* collation_list reuses 38 */
+ /* 53 */ "database", /* Used by: lock_status */
+ /* 54 */ "status",
+ /* 55 */ "cache_size", /* Used by: default_cache_size */
+ /* module_list pragma_list reuses 9 */
+ /* 56 */ "timeout", /* Used by: busy_timeout */
+};
+
+/* Definitions of all built-in pragmas */
+typedef struct PragmaName {
+ const char *const zName; /* Name of pragma */
+ u8 ePragTyp; /* PragTyp_XXX value */
+ u8 mPragFlg; /* Zero or more PragFlg_XXX values */
+ u8 iPragCName; /* Start of column names in pragCName[] */
+ u8 nPragCName; /* Num of col names. 0 means use pragma name */
+ u64 iArg; /* Extra argument */
+} PragmaName;
+static const PragmaName aPragmaName[] = {
+#if defined(SQLITE_ENABLE_CEROD)
+ {/* zName: */ "activate_extensions",
+ /* ePragTyp: */ PragTyp_ACTIVATE_EXTENSIONS,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+ {/* zName: */ "analysis_limit",
+ /* ePragTyp: */ PragTyp_ANALYSIS_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "application_id",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_APPLICATION_ID },
+#endif
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+ {/* zName: */ "auto_vacuum",
+ /* ePragTyp: */ PragTyp_AUTO_VACUUM,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_AUTOMATIC_INDEX)
+ {/* zName: */ "automatic_index",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_AutoIndex },
+#endif
+#endif
+ {/* zName: */ "busy_timeout",
+ /* ePragTyp: */ PragTyp_BUSY_TIMEOUT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 56, 1,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "cache_size",
+ /* ePragTyp: */ PragTyp_CACHE_SIZE,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "cache_spill",
+ /* ePragTyp: */ PragTyp_CACHE_SPILL,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA)
+ {/* zName: */ "case_sensitive_like",
+ /* ePragTyp: */ PragTyp_CASE_SENSITIVE_LIKE,
+ /* ePragFlg: */ PragFlg_NoColumns,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+ {/* zName: */ "cell_size_check",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_CellSizeCk },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "checkpoint_fullfsync",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_CkptFullFSync },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "collation_list",
+ /* ePragTyp: */ PragTyp_COLLATION_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 38, 2,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS)
+ {/* zName: */ "compile_options",
+ /* ePragTyp: */ PragTyp_COMPILE_OPTIONS,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "count_changes",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_CountRows },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN
+ {/* zName: */ "data_store_directory",
+ /* ePragTyp: */ PragTyp_DATA_STORE_DIRECTORY,
+ /* ePragFlg: */ PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "data_version",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_DATA_VERSION },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "database_list",
+ /* ePragTyp: */ PragTyp_DATABASE_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 47, 3,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
+ {/* zName: */ "default_cache_size",
+ /* ePragTyp: */ PragTyp_DEFAULT_CACHE_SIZE,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 55, 1,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+ {/* zName: */ "defer_foreign_keys",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_DeferFKs },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "empty_result_callbacks",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_NullCallback },
+#endif
+#if !defined(SQLITE_OMIT_UTF16)
+ {/* zName: */ "encoding",
+ /* ePragTyp: */ PragTyp_ENCODING,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+ {/* zName: */ "foreign_key_check",
+ /* ePragTyp: */ PragTyp_FOREIGN_KEY_CHECK,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 43, 4,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FOREIGN_KEY)
+ {/* zName: */ "foreign_key_list",
+ /* ePragTyp: */ PragTyp_FOREIGN_KEY_LIST,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 0, 8,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+ {/* zName: */ "foreign_keys",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ForeignKeys },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "freelist_count",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_FREE_PAGE_COUNT },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "full_column_names",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_FullColNames },
+ {/* zName: */ "fullfsync",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_FullFSync },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+#if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
+ {/* zName: */ "function_list",
+ /* ePragTyp: */ PragTyp_FUNCTION_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 27, 6,
+ /* iArg: */ 0 },
+#endif
+#endif
+ {/* zName: */ "hard_heap_limit",
+ /* ePragTyp: */ PragTyp_HARD_HEAP_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC)
+ {/* zName: */ "hexkey",
+ /* ePragTyp: */ PragTyp_KEY,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 2 },
+ {/* zName: */ "hexrekey",
+ /* ePragTyp: */ PragTyp_KEY,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 3 },
+#endif
+/* END SQLCIPHER */
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_CHECK)
+ {/* zName: */ "ignore_check_constraints",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_IgnoreChecks },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+ {/* zName: */ "incremental_vacuum",
+ /* ePragTyp: */ PragTyp_INCREMENTAL_VACUUM,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_NoColumns,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "index_info",
+ /* ePragTyp: */ PragTyp_INDEX_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 21, 3,
+ /* iArg: */ 0 },
+ {/* zName: */ "index_list",
+ /* ePragTyp: */ PragTyp_INDEX_LIST,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 38, 5,
+ /* iArg: */ 0 },
+ {/* zName: */ "index_xinfo",
+ /* ePragTyp: */ PragTyp_INDEX_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 21, 6,
+ /* iArg: */ 1 },
+#endif
+#if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
+ {/* zName: */ "integrity_check",
+ /* ePragTyp: */ PragTyp_INTEGRITY_CHECK,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "journal_mode",
+ /* ePragTyp: */ PragTyp_JOURNAL_MODE,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "journal_size_limit",
+ /* ePragTyp: */ PragTyp_JOURNAL_SIZE_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC)
+ {/* zName: */ "key",
+ /* ePragTyp: */ PragTyp_KEY,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+/* END SQLCIPHER */
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "legacy_alter_table",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_LegacyAlter },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE
+ {/* zName: */ "lock_proxy_file",
+ /* ePragTyp: */ PragTyp_LOCK_PROXY_FILE,
+ /* ePragFlg: */ PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ {/* zName: */ "lock_status",
+ /* ePragTyp: */ PragTyp_LOCK_STATUS,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 53, 2,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "locking_mode",
+ /* ePragTyp: */ PragTyp_LOCKING_MODE,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "max_page_count",
+ /* ePragTyp: */ PragTyp_PAGE_COUNT,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "mmap_size",
+ /* ePragTyp: */ PragTyp_MMAP_SIZE,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+#if !defined(SQLITE_OMIT_VIRTUALTABLE)
+#if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
+ {/* zName: */ "module_list",
+ /* ePragTyp: */ PragTyp_MODULE_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 9, 1,
+ /* iArg: */ 0 },
+#endif
+#endif
+#endif
+ {/* zName: */ "optimize",
+ /* ePragTyp: */ PragTyp_OPTIMIZE,
+ /* ePragFlg: */ PragFlg_Result1|PragFlg_NeedSchema,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "page_count",
+ /* ePragTyp: */ PragTyp_PAGE_COUNT,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "page_size",
+ /* ePragTyp: */ PragTyp_PAGE_SIZE,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if defined(SQLITE_DEBUG)
+ {/* zName: */ "parser_trace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ParserTrace },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
+ {/* zName: */ "pragma_list",
+ /* ePragTyp: */ PragTyp_PRAGMA_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 9, 1,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "query_only",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_QueryOnly },
+#endif
+#if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
+ {/* zName: */ "quick_check",
+ /* ePragTyp: */ PragTyp_INTEGRITY_CHECK,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "read_uncommitted",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ReadUncommit },
+ {/* zName: */ "recursive_triggers",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_RecTriggers },
+#endif
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC)
+ {/* zName: */ "rekey",
+ /* ePragTyp: */ PragTyp_KEY,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 1 },
+#endif
+/* END SQLCIPHER */
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "reverse_unordered_selects",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ReverseOrder },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "schema_version",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_SCHEMA_VERSION },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "secure_delete",
+ /* ePragTyp: */ PragTyp_SECURE_DELETE,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "short_column_names",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ShortColNames },
+#endif
+ {/* zName: */ "shrink_memory",
+ /* ePragTyp: */ PragTyp_SHRINK_MEMORY,
+ /* ePragFlg: */ PragFlg_NoColumns,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "soft_heap_limit",
+ /* ePragTyp: */ PragTyp_SOFT_HEAP_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if defined(SQLITE_DEBUG)
+ {/* zName: */ "sql_trace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_SqlTrace },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG)
+ {/* zName: */ "stats",
+ /* ePragTyp: */ PragTyp_STATS,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 33, 5,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "synchronous",
+ /* ePragTyp: */ PragTyp_SYNCHRONOUS,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "table_info",
+ /* ePragTyp: */ PragTyp_TABLE_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 8, 6,
+ /* iArg: */ 0 },
+ {/* zName: */ "table_list",
+ /* ePragTyp: */ PragTyp_TABLE_LIST,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1,
+ /* ColNames: */ 15, 6,
+ /* iArg: */ 0 },
+ {/* zName: */ "table_xinfo",
+ /* ePragTyp: */ PragTyp_TABLE_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 8, 7,
+ /* iArg: */ 1 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "temp_store",
+ /* ePragTyp: */ PragTyp_TEMP_STORE,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "temp_store_directory",
+ /* ePragTyp: */ PragTyp_TEMP_STORE_DIRECTORY,
+ /* ePragFlg: */ PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC)
+ {/* zName: */ "textkey",
+ /* ePragTyp: */ PragTyp_KEY,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 4 },
+ {/* zName: */ "textrekey",
+ /* ePragTyp: */ PragTyp_KEY,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 5 },
+#endif
+/* END SQLCIPHER */
+ {/* zName: */ "threads",
+ /* ePragTyp: */ PragTyp_THREADS,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "trusted_schema",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_TrustedSchema },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "user_version",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_USER_VERSION },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if defined(SQLITE_DEBUG)
+ {/* zName: */ "vdbe_addoptrace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeAddopTrace },
+ {/* zName: */ "vdbe_debug",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_SqlTrace|SQLITE_VdbeListing|SQLITE_VdbeTrace },
+ {/* zName: */ "vdbe_eqp",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeEQP },
+ {/* zName: */ "vdbe_listing",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeListing },
+ {/* zName: */ "vdbe_trace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeTrace },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_WAL)
+ {/* zName: */ "wal_autocheckpoint",
+ /* ePragTyp: */ PragTyp_WAL_AUTOCHECKPOINT,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "wal_checkpoint",
+ /* ePragTyp: */ PragTyp_WAL_CHECKPOINT,
+ /* ePragFlg: */ PragFlg_NeedSchema,
+ /* ColNames: */ 50, 3,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "writable_schema",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_WriteSchema|SQLITE_NoSchemaError },
+#endif
+};
+/* Number of pragmas: 68 on by default, 78 total. */
+
+/************** End of pragma.h **********************************************/
+/************** Continuing where we left off in pragma.c *********************/
+
+/*
+** Interpret the given string as a safety level. Return 0 for OFF,
+** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
+** unrecognized string argument. The FULL and EXTRA option is disallowed
+** if the omitFull parameter it 1.
+**
+** Note that the values returned are one less that the values that
+** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
+** to support legacy SQL code. The safety level used to be boolean
+** and older scripts may have used numbers 0 for OFF and 1 for ON.
+*/
+static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
+ /* 123456789 123456789 123 */
+ static const char zText[] = "onoffalseyestruextrafull";
+ static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
+ static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
+ static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
+ /* on no off false yes true extra full */
+ int i, n;
+ if( sqlite3Isdigit(*z) ){
+ return (u8)sqlite3Atoi(z);
+ }
+ n = sqlite3Strlen30(z);
+ for(i=0; i<ArraySize(iLength); i++){
+ if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
+ && (!omitFull || iValue[i]<=1)
+ ){
+ return iValue[i];
+ }
+ }
+ return dflt;
+}
+
+/*
+** Interpret the given string as a boolean value.
+*/
+SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z, u8 dflt){
+ return getSafetyLevel(z,1,dflt)!=0;
+}
+
+/* The sqlite3GetBoolean() function is used by other modules but the
+** remainder of this file is specific to PRAGMA processing. So omit
+** the rest of the file if PRAGMAs are omitted from the build.
+*/
+#if !defined(SQLITE_OMIT_PRAGMA)
+
+/*
+** Interpret the given string as a locking mode value.
+*/
+static int getLockingMode(const char *z){
+ if( z ){
+ if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
+ if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
+ }
+ return PAGER_LOCKINGMODE_QUERY;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Interpret the given string as an auto-vacuum mode value.
+**
+** The following strings, "none", "full" and "incremental" are
+** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
+*/
+static int getAutoVacuum(const char *z){
+ int i;
+ if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
+ if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
+ if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
+ i = sqlite3Atoi(z);
+ return (u8)((i>=0&&i<=2)?i:0);
+}
+#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** Interpret the given string as a temp db location. Return 1 for file
+** backed temporary databases, 2 for the Red-Black tree in memory database
+** and 0 to use the compile-time default.
+*/
+static int getTempStore(const char *z){
+ if( z[0]>='0' && z[0]<='2' ){
+ return z[0] - '0';
+ }else if( sqlite3StrICmp(z, "file")==0 ){
+ return 1;
+ }else if( sqlite3StrICmp(z, "memory")==0 ){
+ return 2;
+ }else{
+ return 0;
+ }
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** Invalidate temp storage, either when the temp storage is changed
+** from default, or when 'file' and the temp_store_directory has changed
+*/
+static int invalidateTempStorage(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ if( db->aDb[1].pBt!=0 ){
+ if( !db->autoCommit
+ || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE
+ ){
+ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
+ "from within a transaction");
+ return SQLITE_ERROR;
+ }
+ sqlite3BtreeClose(db->aDb[1].pBt);
+ db->aDb[1].pBt = 0;
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ return SQLITE_OK;
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** If the TEMP database is open, close it and mark the database schema
+** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
+** or DEFAULT_TEMP_STORE pragmas.
+*/
+static int changeTempStorage(Parse *pParse, const char *zStorageType){
+ int ts = getTempStore(zStorageType);
+ sqlite3 *db = pParse->db;
+ if( db->temp_store==ts ) return SQLITE_OK;
+ if( invalidateTempStorage( pParse ) != SQLITE_OK ){
+ return SQLITE_ERROR;
+ }
+ db->temp_store = (u8)ts;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+/*
+** Set result column names for a pragma.
+*/
+static void setPragmaResultColumnNames(
+ Vdbe *v, /* The query under construction */
+ const PragmaName *pPragma /* The pragma */
+){
+ u8 n = pPragma->nPragCName;
+ sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
+ if( n==0 ){
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
+ }else{
+ int i, j;
+ for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
+ }
+ }
+}
+
+/*
+** Generate code to return a single integer value.
+*/
+static void returnSingleInt(Vdbe *v, i64 value){
+ sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+}
+
+/*
+** Generate code to return a single text value.
+*/
+static void returnSingleText(
+ Vdbe *v, /* Prepared statement under construction */
+ const char *zValue /* Value to be returned */
+){
+ if( zValue ){
+ sqlite3VdbeLoadString(v, 1, (const char*)zValue);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+}
+
+
+/*
+** Set the safety_level and pager flags for pager iDb. Or if iDb<0
+** set these values for all pagers.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+static void setAllPagerFlags(sqlite3 *db){
+ if( db->autoCommit ){
+ Db *pDb = db->aDb;
+ int n = db->nDb;
+ assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
+ assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
+ assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
+ assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
+ == PAGER_FLAGS_MASK );
+ assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
+ while( (n--) > 0 ){
+ if( pDb->pBt ){
+ sqlite3BtreeSetPagerFlags(pDb->pBt,
+ pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
+ }
+ pDb++;
+ }
+ }
+}
+#else
+# define setAllPagerFlags(X) /* no-op */
+#endif
+
+
+/*
+** Return a human-readable name for a constraint resolution action.
+*/
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+static const char *actionName(u8 action){
+ const char *zName;
+ switch( action ){
+ case OE_SetNull: zName = "SET NULL"; break;
+ case OE_SetDflt: zName = "SET DEFAULT"; break;
+ case OE_Cascade: zName = "CASCADE"; break;
+ case OE_Restrict: zName = "RESTRICT"; break;
+ default: zName = "NO ACTION";
+ assert( action==OE_None ); break;
+ }
+ return zName;
+}
+#endif
+
+
+/*
+** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
+** defined in pager.h. This function returns the associated lowercase
+** journal-mode name.
+*/
+SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){
+ static char * const azModeName[] = {
+ "delete", "persist", "off", "truncate", "memory"
+#ifndef SQLITE_OMIT_WAL
+ , "wal"
+#endif
+ };
+ assert( PAGER_JOURNALMODE_DELETE==0 );
+ assert( PAGER_JOURNALMODE_PERSIST==1 );
+ assert( PAGER_JOURNALMODE_OFF==2 );
+ assert( PAGER_JOURNALMODE_TRUNCATE==3 );
+ assert( PAGER_JOURNALMODE_MEMORY==4 );
+ assert( PAGER_JOURNALMODE_WAL==5 );
+ assert( eMode>=0 && eMode<=ArraySize(azModeName) );
+
+ if( eMode==ArraySize(azModeName) ) return 0;
+ return azModeName[eMode];
+}
+
+/*
+** Locate a pragma in the aPragmaName[] array.
+*/
+static const PragmaName *pragmaLocate(const char *zName){
+ int upr, lwr, mid = 0, rc;
+ lwr = 0;
+ upr = ArraySize(aPragmaName)-1;
+ while( lwr<=upr ){
+ mid = (lwr+upr)/2;
+ rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
+ if( rc==0 ) break;
+ if( rc<0 ){
+ upr = mid - 1;
+ }else{
+ lwr = mid + 1;
+ }
+ }
+ return lwr>upr ? 0 : &aPragmaName[mid];
+}
+
+/*
+** Create zero or more entries in the output for the SQL functions
+** defined by FuncDef p.
+*/
+static void pragmaFunclistLine(
+ Vdbe *v, /* The prepared statement being created */
+ FuncDef *p, /* A particular function definition */
+ int isBuiltin, /* True if this is a built-in function */
+ int showInternFuncs /* True if showing internal functions */
+){
+ u32 mask =
+ SQLITE_DETERMINISTIC |
+ SQLITE_DIRECTONLY |
+ SQLITE_SUBTYPE |
+ SQLITE_INNOCUOUS |
+ SQLITE_FUNC_INTERNAL
+ ;
+ if( showInternFuncs ) mask = 0xffffffff;
+ for(; p; p=p->pNext){
+ const char *zType;
+ static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
+
+ assert( SQLITE_FUNC_ENCMASK==0x3 );
+ assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
+ assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
+ assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
+
+ if( p->xSFunc==0 ) continue;
+ if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
+ && showInternFuncs==0
+ ){
+ continue;
+ }
+ if( p->xValue!=0 ){
+ zType = "w";
+ }else if( p->xFinalize!=0 ){
+ zType = "a";
+ }else{
+ zType = "s";
+ }
+ sqlite3VdbeMultiLoad(v, 1, "sissii",
+ p->zName, isBuiltin,
+ zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
+ p->nArg,
+ (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
+ );
+ }
+}
+
+
+/*
+** Helper subroutine for PRAGMA integrity_check:
+**
+** Generate code to output a single-column result row with a value of the
+** string held in register 3. Decrement the result count in register 1
+** and halt if the maximum number of result rows have been issued.
+*/
+static int integrityCheckResultRow(Vdbe *v){
+ int addr;
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
+ addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp0(v, OP_Halt);
+ return addr;
+}
+
+/*
+** Process a pragma statement.
+**
+** Pragmas are of this form:
+**
+** PRAGMA [schema.]id [= value]
+**
+** The identifier might also be a string. The value is a string, and
+** identifier, or a number. If minusFlag is true, then the value is
+** a number that was preceded by a minus sign.
+**
+** If the left side is "database.id" then pId1 is the database name
+** and pId2 is the id. If the left side is just "id" then pId1 is the
+** id and pId2 is any empty string.
+*/
+SQLITE_PRIVATE void sqlite3Pragma(
+ Parse *pParse,
+ Token *pId1, /* First part of [schema.]id field */
+ Token *pId2, /* Second part of [schema.]id field, or NULL */
+ Token *pValue, /* Token for <value>, or NULL */
+ int minusFlag /* True if a '-' sign preceded <value> */
+){
+ char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
+ char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
+ const char *zDb = 0; /* The database name */
+ Token *pId; /* Pointer to <id> token */
+ char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
+ int iDb; /* Database index for <database> */
+ int rc; /* return value form SQLITE_FCNTL_PRAGMA */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Db *pDb; /* The specific database being pragmaed */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
+ const PragmaName *pPragma; /* The pragma */
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ extern int sqlcipher_codec_pragma(sqlite3*, int, Parse *, const char *, const char *);
+#endif
+/* END SQLCIPHER */
+
+ if( v==0 ) return;
+ sqlite3VdbeRunOnlyOnce(v);
+ pParse->nMem = 2;
+
+ /* Interpret the [schema.] part of the pragma statement. iDb is the
+ ** index of the database this pragma is being applied to in db.aDb[]. */
+ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
+ if( iDb<0 ) return;
+ pDb = &db->aDb[iDb];
+
+ /* If the temp database has been explicitly named as part of the
+ ** pragma, make sure it is open.
+ */
+ if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
+ return;
+ }
+
+ zLeft = sqlite3NameFromToken(db, pId);
+ if( !zLeft ) return;
+ if( minusFlag ){
+ zRight = sqlite3MPrintf(db, "-%T", pValue);
+ }else{
+ zRight = sqlite3NameFromToken(db, pValue);
+ }
+
+ assert( pId2 );
+ zDb = pId2->n>0 ? pDb->zDbSName : 0;
+ if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
+ goto pragma_out;
+ }
+
+ /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
+ ** connection. If it returns SQLITE_OK, then assume that the VFS
+ ** handled the pragma and generate a no-op prepared statement.
+ **
+ ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
+ ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
+ ** object corresponding to the database file to which the pragma
+ ** statement refers.
+ **
+ ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
+ ** file control is an array of pointers to strings (char**) in which the
+ ** second element of the array is the name of the pragma and the third
+ ** element is the argument to the pragma or NULL if the pragma has no
+ ** argument.
+ */
+ aFcntl[0] = 0;
+ aFcntl[1] = zLeft;
+ aFcntl[2] = zRight;
+ aFcntl[3] = 0;
+ db->busyHandler.nBusy = 0;
+ rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
+ returnSingleText(v, aFcntl[0]);
+ sqlite3_free(aFcntl[0]);
+ goto pragma_out;
+ }
+ if( rc!=SQLITE_NOTFOUND ){
+ if( aFcntl[0] ){
+ sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
+ sqlite3_free(aFcntl[0]);
+ }
+ pParse->nErr++;
+ pParse->rc = rc;
+
+ goto pragma_out;
+ }
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if(sqlcipher_codec_pragma(db, iDb, pParse, zLeft, zRight)) {
+ /* sqlcipher_codec_pragma executes internal */
+ goto pragma_out;
+ }
+#endif
+/* END SQLCIPHER */
+
+ /* Locate the pragma in the lookup table */
+ pPragma = pragmaLocate(zLeft);
+ if( pPragma==0 ){
+ /* IMP: R-43042-22504 No error messages are generated if an
+ ** unknown pragma is issued. */
+ goto pragma_out;
+ }
+
+ /* Make sure the database schema is loaded if the pragma requires that */
+ if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ }
+
+ /* Register the result column names for pragmas that return results */
+ if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
+ && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
+ ){
+ setPragmaResultColumnNames(v, pPragma);
+ }
+
+ /* Jump to the appropriate pragma handler */
+ switch( pPragma->ePragTyp ){
+
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
+ /*
+ ** PRAGMA [schema.]default_cache_size
+ ** PRAGMA [schema.]default_cache_size=N
+ **
+ ** The first form reports the current persistent setting for the
+ ** page cache size. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets both the current
+ ** page cache size value and the persistent page cache size value
+ ** stored in the database file.
+ **
+ ** Older versions of SQLite would set the default cache size to a
+ ** negative number to indicate synchronous=OFF. These days, synchronous
+ ** is always on by default regardless of the sign of the default cache
+ ** size. But continue to take the absolute value of the default cache
+ ** size of historical compatibility.
+ */
+ case PragTyp_DEFAULT_CACHE_SIZE: {
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList getCacheSize[] = {
+ { OP_Transaction, 0, 0, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
+ { OP_IfPos, 1, 8, 0},
+ { OP_Integer, 0, 2, 0},
+ { OP_Subtract, 1, 2, 1},
+ { OP_IfPos, 1, 8, 0},
+ { OP_Integer, 0, 1, 0}, /* 6 */
+ { OP_Noop, 0, 0, 0},
+ { OP_ResultRow, 1, 1, 0},
+ };
+ VdbeOp *aOp;
+ sqlite3VdbeUsesBtree(v, iDb);
+ if( !zRight ){
+ pParse->nMem += 2;
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
+ }else{
+ int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+ break;
+ }
+#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
+
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ /*
+ ** PRAGMA [schema.]page_size
+ ** PRAGMA [schema.]page_size=N
+ **
+ ** The first form reports the current setting for the
+ ** database page size in bytes. The second form sets the
+ ** database page size value. The value can only be set if
+ ** the database has not yet been created.
+ */
+ case PragTyp_PAGE_SIZE: {
+ Btree *pBt = pDb->pBt;
+ assert( pBt!=0 );
+ if( !zRight ){
+ int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
+ returnSingleInt(v, size);
+ }else{
+ /* Malloc may fail when setting the page-size, as there is an internal
+ ** buffer that the pager module resizes using sqlite3_realloc().
+ */
+ db->nextPagesize = sqlite3Atoi(zRight);
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
+ sqlite3OomFault(db);
+ }
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]secure_delete
+ ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
+ **
+ ** The first form reports the current setting for the
+ ** secure_delete flag. The second form changes the secure_delete
+ ** flag setting and reports the new value.
+ */
+ case PragTyp_SECURE_DELETE: {
+ Btree *pBt = pDb->pBt;
+ int b = -1;
+ assert( pBt!=0 );
+ if( zRight ){
+ if( sqlite3_stricmp(zRight, "fast")==0 ){
+ b = 2;
+ }else{
+ b = sqlite3GetBoolean(zRight, 0);
+ }
+ }
+ if( pId2->n==0 && b>=0 ){
+ int ii;
+ for(ii=0; ii<db->nDb; ii++){
+ sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
+ }
+ }
+ b = sqlite3BtreeSecureDelete(pBt, b);
+ returnSingleInt(v, b);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]max_page_count
+ ** PRAGMA [schema.]max_page_count=N
+ **
+ ** The first form reports the current setting for the
+ ** maximum number of pages in the database file. The
+ ** second form attempts to change this setting. Both
+ ** forms return the current setting.
+ **
+ ** The absolute value of N is used. This is undocumented and might
+ ** change. The only purpose is to provide an easy way to test
+ ** the sqlite3AbsInt32() function.
+ **
+ ** PRAGMA [schema.]page_count
+ **
+ ** Return the number of pages in the specified database.
+ */
+ case PragTyp_PAGE_COUNT: {
+ int iReg;
+ i64 x = 0;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ iReg = ++pParse->nMem;
+ if( sqlite3Tolower(zLeft[0])=='p' ){
+ sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
+ }else{
+ if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
+ if( x<0 ) x = 0;
+ else if( x>0xfffffffe ) x = 0xfffffffe;
+ }else{
+ x = 0;
+ }
+ sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]locking_mode
+ ** PRAGMA [schema.]locking_mode = (normal|exclusive)
+ */
+ case PragTyp_LOCKING_MODE: {
+ const char *zRet = "normal";
+ int eMode = getLockingMode(zRight);
+
+ if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
+ /* Simple "PRAGMA locking_mode;" statement. This is a query for
+ ** the current default locking mode (which may be different to
+ ** the locking-mode of the main database).
+ */
+ eMode = db->dfltLockMode;
+ }else{
+ Pager *pPager;
+ if( pId2->n==0 ){
+ /* This indicates that no database name was specified as part
+ ** of the PRAGMA command. In this case the locking-mode must be
+ ** set on all attached databases, as well as the main db file.
+ **
+ ** Also, the sqlite3.dfltLockMode variable is set so that
+ ** any subsequently attached databases also use the specified
+ ** locking mode.
+ */
+ int ii;
+ assert(pDb==&db->aDb[0]);
+ for(ii=2; ii<db->nDb; ii++){
+ pPager = sqlite3BtreePager(db->aDb[ii].pBt);
+ sqlite3PagerLockingMode(pPager, eMode);
+ }
+ db->dfltLockMode = (u8)eMode;
+ }
+ pPager = sqlite3BtreePager(pDb->pBt);
+ eMode = sqlite3PagerLockingMode(pPager, eMode);
+ }
+
+ assert( eMode==PAGER_LOCKINGMODE_NORMAL
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
+ if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
+ zRet = "exclusive";
+ }
+ returnSingleText(v, zRet);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]journal_mode
+ ** PRAGMA [schema.]journal_mode =
+ ** (delete|persist|off|truncate|memory|wal|off)
+ */
+ case PragTyp_JOURNAL_MODE: {
+ int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
+ int ii; /* Loop counter */
+
+ if( zRight==0 ){
+ /* If there is no "=MODE" part of the pragma, do a query for the
+ ** current mode */
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }else{
+ const char *zMode;
+ int n = sqlite3Strlen30(zRight);
+ for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
+ if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
+ }
+ if( !zMode ){
+ /* If the "=MODE" part does not match any known journal mode,
+ ** then do a query */
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }
+ if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
+ /* Do not allow journal-mode "OFF" in defensive since the database
+ ** can become corrupted using ordinary SQL when the journal is off */
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }
+ }
+ if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
+ /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
+ iDb = 0;
+ pId2->n = 1;
+ }
+ for(ii=db->nDb-1; ii>=0; ii--){
+ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
+ sqlite3VdbeUsesBtree(v, ii);
+ sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]journal_size_limit
+ ** PRAGMA [schema.]journal_size_limit=N
+ **
+ ** Get or set the size limit on rollback journal files.
+ */
+ case PragTyp_JOURNAL_SIZE_LIMIT: {
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ i64 iLimit = -2;
+ if( zRight ){
+ sqlite3DecOrHexToI64(zRight, &iLimit);
+ if( iLimit<-1 ) iLimit = -1;
+ }
+ iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
+ returnSingleInt(v, iLimit);
+ break;
+ }
+
+#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
+
+ /*
+ ** PRAGMA [schema.]auto_vacuum
+ ** PRAGMA [schema.]auto_vacuum=N
+ **
+ ** Get or set the value of the database 'auto-vacuum' parameter.
+ ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ case PragTyp_AUTO_VACUUM: {
+ Btree *pBt = pDb->pBt;
+ assert( pBt!=0 );
+ if( !zRight ){
+ returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
+ }else{
+ int eAuto = getAutoVacuum(zRight);
+ assert( eAuto>=0 && eAuto<=2 );
+ db->nextAutovac = (u8)eAuto;
+ /* Call SetAutoVacuum() to set initialize the internal auto and
+ ** incr-vacuum flags. This is required in case this connection
+ ** creates the database file. It is important that it is created
+ ** as an auto-vacuum capable db.
+ */
+ rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
+ if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
+ /* When setting the auto_vacuum mode to either "full" or
+ ** "incremental", write the value of meta[6] in the database
+ ** file. Before writing to meta[6], check that meta[3] indicates
+ ** that this really is an auto-vacuum capable database.
+ */
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList setMeta6[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
+ { OP_If, 1, 0, 0}, /* 2 */
+ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
+ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
+ };
+ VdbeOp *aOp;
+ int iAddr = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[2].p2 = iAddr+4;
+ aOp[4].p1 = iDb;
+ aOp[4].p3 = eAuto - 1;
+ sqlite3VdbeUsesBtree(v, iDb);
+ }
+ }
+ break;
+ }
+#endif
+
+ /*
+ ** PRAGMA [schema.]incremental_vacuum(N)
+ **
+ ** Do N steps of incremental vacuuming on a database.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ case PragTyp_INCREMENTAL_VACUUM: {
+ int iLimit = 0, addr;
+ if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
+ iLimit = 0x7fffffff;
+ }
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
+ addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
+ sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
+ sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr);
+ break;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ /*
+ ** PRAGMA [schema.]cache_size
+ ** PRAGMA [schema.]cache_size=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache size. The second form sets the local
+ ** page cache size value. If N is positive then that is the
+ ** number of pages in the cache. If N is negative, then the
+ ** number of pages is adjusted so that the cache uses -N kibibytes
+ ** of memory.
+ */
+ case PragTyp_CACHE_SIZE: {
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( !zRight ){
+ returnSingleInt(v, pDb->pSchema->cache_size);
+ }else{
+ int size = sqlite3Atoi(zRight);
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]cache_spill
+ ** PRAGMA cache_spill=BOOLEAN
+ ** PRAGMA [schema.]cache_spill=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache spill size. The second form turns cache spill on
+ ** or off. When turnning cache spill on, the size is set to the
+ ** current cache_size. The third form sets a spill size that
+ ** may be different form the cache size.
+ ** If N is positive then that is the
+ ** number of pages in the cache. If N is negative, then the
+ ** number of pages is adjusted so that the cache uses -N kibibytes
+ ** of memory.
+ **
+ ** If the number of cache_spill pages is less then the number of
+ ** cache_size pages, no spilling occurs until the page count exceeds
+ ** the number of cache_size pages.
+ **
+ ** The cache_spill=BOOLEAN setting applies to all attached schemas,
+ ** not just the schema specified.
+ */
+ case PragTyp_CACHE_SPILL: {
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( !zRight ){
+ returnSingleInt(v,
+ (db->flags & SQLITE_CacheSpill)==0 ? 0 :
+ sqlite3BtreeSetSpillSize(pDb->pBt,0));
+ }else{
+ int size = 1;
+ if( sqlite3GetInt32(zRight, &size) ){
+ sqlite3BtreeSetSpillSize(pDb->pBt, size);
+ }
+ if( sqlite3GetBoolean(zRight, size!=0) ){
+ db->flags |= SQLITE_CacheSpill;
+ }else{
+ db->flags &= ~(u64)SQLITE_CacheSpill;
+ }
+ setAllPagerFlags(db);
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]mmap_size(N)
+ **
+ ** Used to set mapping size limit. The mapping size limit is
+ ** used to limit the aggregate size of all memory mapped regions of the
+ ** database file. If this parameter is set to zero, then memory mapping
+ ** is not used at all. If N is negative, then the default memory map
+ ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
+ ** The parameter N is measured in bytes.
+ **
+ ** This value is advisory. The underlying VFS is free to memory map
+ ** as little or as much as it wants. Except, if N is set to 0 then the
+ ** upper layers will never invoke the xFetch interfaces to the VFS.
+ */
+ case PragTyp_MMAP_SIZE: {
+ sqlite3_int64 sz;
+#if SQLITE_MAX_MMAP_SIZE>0
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( zRight ){
+ int ii;
+ sqlite3DecOrHexToI64(zRight, &sz);
+ if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
+ if( pId2->n==0 ) db->szMmap = sz;
+ for(ii=db->nDb-1; ii>=0; ii--){
+ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
+ sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
+ }
+ }
+ }
+ sz = -1;
+ rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
+#else
+ sz = 0;
+ rc = SQLITE_OK;
+#endif
+ if( rc==SQLITE_OK ){
+ returnSingleInt(v, sz);
+ }else if( rc!=SQLITE_NOTFOUND ){
+ pParse->nErr++;
+ pParse->rc = rc;
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA temp_store
+ ** PRAGMA temp_store = "default"|"memory"|"file"
+ **
+ ** Return or set the local value of the temp_store flag. Changing
+ ** the local value does not make changes to the disk file and the default
+ ** value will be restored the next time the database is opened.
+ **
+ ** Note that it is possible for the library compile-time options to
+ ** override this setting
+ */
+ case PragTyp_TEMP_STORE: {
+ if( !zRight ){
+ returnSingleInt(v, db->temp_store);
+ }else{
+ changeTempStorage(pParse, zRight);
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA temp_store_directory
+ ** PRAGMA temp_store_directory = ""|"directory_name"
+ **
+ ** Return or set the local value of the temp_store_directory flag. Changing
+ ** the value sets a specific directory to be used for temporary files.
+ ** Setting to a null string reverts to the default temporary directory search.
+ ** If temporary directory is changed, then invalidateTempStorage.
+ **
+ */
+ case PragTyp_TEMP_STORE_DIRECTORY: {
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( !zRight ){
+ returnSingleText(v, sqlite3_temp_directory);
+ }else{
+#ifndef SQLITE_OMIT_WSD
+ if( zRight[0] ){
+ int res;
+ rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
+ if( rc!=SQLITE_OK || res==0 ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ goto pragma_out;
+ }
+ }
+ if( SQLITE_TEMP_STORE==0
+ || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
+ || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
+ ){
+ invalidateTempStorage(pParse);
+ }
+ sqlite3_free(sqlite3_temp_directory);
+ if( zRight[0] ){
+ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
+ }else{
+ sqlite3_temp_directory = 0;
+ }
+#endif /* SQLITE_OMIT_WSD */
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ break;
+ }
+
+#if SQLITE_OS_WIN
+ /*
+ ** PRAGMA data_store_directory
+ ** PRAGMA data_store_directory = ""|"directory_name"
+ **
+ ** Return or set the local value of the data_store_directory flag. Changing
+ ** the value sets a specific directory to be used for database files that
+ ** were specified with a relative pathname. Setting to a null string reverts
+ ** to the default database directory, which for database files specified with
+ ** a relative path will probably be based on the current directory for the
+ ** process. Database file specified with an absolute path are not impacted
+ ** by this setting, regardless of its value.
+ **
+ */
+ case PragTyp_DATA_STORE_DIRECTORY: {
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( !zRight ){
+ returnSingleText(v, sqlite3_data_directory);
+ }else{
+#ifndef SQLITE_OMIT_WSD
+ if( zRight[0] ){
+ int res;
+ rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
+ if( rc!=SQLITE_OK || res==0 ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ goto pragma_out;
+ }
+ }
+ sqlite3_free(sqlite3_data_directory);
+ if( zRight[0] ){
+ sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
+ }else{
+ sqlite3_data_directory = 0;
+ }
+#endif /* SQLITE_OMIT_WSD */
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ break;
+ }
+#endif
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+ /*
+ ** PRAGMA [schema.]lock_proxy_file
+ ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
+ **
+ ** Return or set the value of the lock_proxy_file flag. Changing
+ ** the value sets a specific file to be used for database access locks.
+ **
+ */
+ case PragTyp_LOCK_PROXY_FILE: {
+ if( !zRight ){
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ char *proxy_file_path = NULL;
+ sqlite3_file *pFile = sqlite3PagerFile(pPager);
+ sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
+ &proxy_file_path);
+ returnSingleText(v, proxy_file_path);
+ }else{
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ sqlite3_file *pFile = sqlite3PagerFile(pPager);
+ int res;
+ if( zRight[0] ){
+ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
+ zRight);
+ } else {
+ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
+ NULL);
+ }
+ if( res!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
+ goto pragma_out;
+ }
+ }
+ break;
+ }
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+ /*
+ ** PRAGMA [schema.]synchronous
+ ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
+ **
+ ** Return or set the local value of the synchronous flag. Changing
+ ** the local value does not make changes to the disk file and the
+ ** default value will be restored the next time the database is
+ ** opened.
+ */
+ case PragTyp_SYNCHRONOUS: {
+ if( !zRight ){
+ returnSingleInt(v, pDb->safety_level-1);
+ }else{
+ if( !db->autoCommit ){
+ sqlite3ErrorMsg(pParse,
+ "Safety level may not be changed inside a transaction");
+ }else if( iDb!=1 ){
+ int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
+ if( iLevel==0 ) iLevel = 1;
+ pDb->safety_level = iLevel;
+ pDb->bSyncSet = 1;
+ setAllPagerFlags(db);
+ }
+ }
+ break;
+ }
+#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_FLAG_PRAGMAS
+ case PragTyp_FLAG: {
+ if( zRight==0 ){
+ setPragmaResultColumnNames(v, pPragma);
+ returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
+ }else{
+ u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
+ if( db->autoCommit==0 ){
+ /* Foreign key support may not be enabled or disabled while not
+ ** in auto-commit mode. */
+ mask &= ~(SQLITE_ForeignKeys);
+ }
+#if SQLITE_USER_AUTHENTICATION
+ if( db->auth.authLevel==UAUTH_User ){
+ /* Do not allow non-admin users to modify the schema arbitrarily */
+ mask &= ~(SQLITE_WriteSchema);
+ }
+#endif
+
+ if( sqlite3GetBoolean(zRight, 0) ){
+ db->flags |= mask;
+ }else{
+ db->flags &= ~mask;
+ if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
+ if( (mask & SQLITE_WriteSchema)!=0
+ && sqlite3_stricmp(zRight, "reset")==0
+ ){
+ /* IMP: R-60817-01178 If the argument is "RESET" then schema
+ ** writing is disabled (as with "PRAGMA writable_schema=OFF") and,
+ ** in addition, the schema is reloaded. */
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ }
+
+ /* Many of the flag-pragmas modify the code generated by the SQL
+ ** compiler (eg. count_changes). So add an opcode to expire all
+ ** compiled SQL statements after modifying a pragma value.
+ */
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ setAllPagerFlags(db);
+ }
+ break;
+ }
+#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
+
+#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
+ /*
+ ** PRAGMA table_info(<table>)
+ **
+ ** Return a single row for each column of the named table. The columns of
+ ** the returned data set are:
+ **
+ ** cid: Column id (numbered from left to right, starting at 0)
+ ** name: Column name
+ ** type: Column declaration type.
+ ** notnull: True if 'NOT NULL' is part of column declaration
+ ** dflt_value: The default value for the column, if any.
+ ** pk: Non-zero for PK fields.
+ */
+ case PragTyp_TABLE_INFO: if( zRight ){
+ Table *pTab;
+ sqlite3CodeVerifyNamedSchema(pParse, zDb);
+ pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
+ if( pTab ){
+ int i, k;
+ int nHidden = 0;
+ Column *pCol;
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ pParse->nMem = 7;
+ sqlite3ViewGetColumnNames(pParse, pTab);
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
+ int isHidden = 0;
+ const Expr *pColExpr;
+ if( pCol->colFlags & COLFLAG_NOINSERT ){
+ if( pPragma->iArg==0 ){
+ nHidden++;
+ continue;
+ }
+ if( pCol->colFlags & COLFLAG_VIRTUAL ){
+ isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
+ }else if( pCol->colFlags & COLFLAG_STORED ){
+ isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
+ }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
+ isHidden = 1; /* HIDDEN */
+ }
+ }
+ if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
+ k = 0;
+ }else if( pPk==0 ){
+ k = 1;
+ }else{
+ for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
+ }
+ pColExpr = sqlite3ColumnExpr(pTab,pCol);
+ assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 );
+ assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue)
+ || isHidden>=2 );
+ sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
+ i-nHidden,
+ pCol->zCnName,
+ sqlite3ColumnType(pCol,""),
+ pCol->notNull ? 1 : 0,
+ (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken,
+ k,
+ isHidden);
+ }
+ }
+ }
+ break;
+
+ /*
+ ** PRAGMA table_list
+ **
+ ** Return a single row for each table, virtual table, or view in the
+ ** entire schema.
+ **
+ ** schema: Name of attached database hold this table
+ ** name: Name of the table itself
+ ** type: "table", "view", "virtual", "shadow"
+ ** ncol: Number of columns
+ ** wr: True for a WITHOUT ROWID table
+ ** strict: True for a STRICT table
+ */
+ case PragTyp_TABLE_LIST: {
+ int ii;
+ pParse->nMem = 6;
+ sqlite3CodeVerifyNamedSchema(pParse, zDb);
+ for(ii=0; ii<db->nDb; ii++){
+ HashElem *k;
+ Hash *pHash;
+ int initNCol;
+ if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue;
+
+ /* Ensure that the Table.nCol field is initialized for all views
+ ** and virtual tables. Each time we initialize a Table.nCol value
+ ** for a table, that can potentially disrupt the hash table, so restart
+ ** the initialization scan.
+ */
+ pHash = &db->aDb[ii].pSchema->tblHash;
+ initNCol = sqliteHashCount(pHash);
+ while( initNCol-- ){
+ for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){
+ Table *pTab;
+ if( k==0 ){ initNCol = 0; break; }
+ pTab = sqliteHashData(k);
+ if( pTab->nCol==0 ){
+ char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName);
+ if( zSql ){
+ sqlite3_stmt *pDummy = 0;
+ (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0);
+ (void)sqlite3_finalize(pDummy);
+ sqlite3DbFree(db, zSql);
+ }
+ if( db->mallocFailed ){
+ sqlite3ErrorMsg(db->pParse, "out of memory");
+ db->pParse->rc = SQLITE_NOMEM_BKPT;
+ }
+ pHash = &db->aDb[ii].pSchema->tblHash;
+ break;
+ }
+ }
+ }
+
+ for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){
+ Table *pTab = sqliteHashData(k);
+ const char *zType;
+ if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue;
+ if( IsView(pTab) ){
+ zType = "view";
+ }else if( IsVirtual(pTab) ){
+ zType = "virtual";
+ }else if( pTab->tabFlags & TF_Shadow ){
+ zType = "shadow";
+ }else{
+ zType = "table";
+ }
+ sqlite3VdbeMultiLoad(v, 1, "sssiii",
+ db->aDb[ii].zDbSName,
+ sqlite3PreferredTableName(pTab->zName),
+ zType,
+ pTab->nCol,
+ (pTab->tabFlags & TF_WithoutRowid)!=0,
+ (pTab->tabFlags & TF_Strict)!=0
+ );
+ }
+ }
+ }
+ break;
+
+#ifdef SQLITE_DEBUG
+ case PragTyp_STATS: {
+ Index *pIdx;
+ HashElem *i;
+ pParse->nMem = 5;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ sqlite3VdbeMultiLoad(v, 1, "ssiii",
+ sqlite3PreferredTableName(pTab->zName),
+ 0,
+ pTab->szTabRow,
+ pTab->nRowLogEst,
+ pTab->tabFlags);
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3VdbeMultiLoad(v, 2, "siiiX",
+ pIdx->zName,
+ pIdx->szIdxRow,
+ pIdx->aiRowLogEst[0],
+ pIdx->hasStat1);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
+ }
+ }
+ }
+ break;
+#endif
+
+ case PragTyp_INDEX_INFO: if( zRight ){
+ Index *pIdx;
+ Table *pTab;
+ pIdx = sqlite3FindIndex(db, zRight, zDb);
+ if( pIdx==0 ){
+ /* If there is no index named zRight, check to see if there is a
+ ** WITHOUT ROWID table named zRight, and if there is, show the
+ ** structure of the PRIMARY KEY index for that table. */
+ pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
+ if( pTab && !HasRowid(pTab) ){
+ pIdx = sqlite3PrimaryKeyIndex(pTab);
+ }
+ }
+ if( pIdx ){
+ int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
+ int i;
+ int mx;
+ if( pPragma->iArg ){
+ /* PRAGMA index_xinfo (newer version with more rows and columns) */
+ mx = pIdx->nColumn;
+ pParse->nMem = 6;
+ }else{
+ /* PRAGMA index_info (legacy version) */
+ mx = pIdx->nKeyCol;
+ pParse->nMem = 3;
+ }
+ pTab = pIdx->pTable;
+ sqlite3CodeVerifySchema(pParse, iIdxDb);
+ assert( pParse->nMem<=pPragma->nPragCName );
+ for(i=0; i<mx; i++){
+ i16 cnum = pIdx->aiColumn[i];
+ sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
+ cnum<0 ? 0 : pTab->aCol[cnum].zCnName);
+ if( pPragma->iArg ){
+ sqlite3VdbeMultiLoad(v, 4, "isiX",
+ pIdx->aSortOrder[i],
+ pIdx->azColl[i],
+ i<pIdx->nKeyCol);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
+ }
+ }
+ }
+ break;
+
+ case PragTyp_INDEX_LIST: if( zRight ){
+ Index *pIdx;
+ Table *pTab;
+ int i;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab ){
+ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pParse->nMem = 5;
+ sqlite3CodeVerifySchema(pParse, iTabDb);
+ for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
+ const char *azOrigin[] = { "c", "u", "pk" };
+ sqlite3VdbeMultiLoad(v, 1, "isisi",
+ i,
+ pIdx->zName,
+ IsUniqueIndex(pIdx),
+ azOrigin[pIdx->idxType],
+ pIdx->pPartIdxWhere!=0);
+ }
+ }
+ }
+ break;
+
+ case PragTyp_DATABASE_LIST: {
+ int i;
+ pParse->nMem = 3;
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt==0 ) continue;
+ assert( db->aDb[i].zDbSName!=0 );
+ sqlite3VdbeMultiLoad(v, 1, "iss",
+ i,
+ db->aDb[i].zDbSName,
+ sqlite3BtreeGetFilename(db->aDb[i].pBt));
+ }
+ }
+ break;
+
+ case PragTyp_COLLATION_LIST: {
+ int i = 0;
+ HashElem *p;
+ pParse->nMem = 2;
+ for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
+ CollSeq *pColl = (CollSeq *)sqliteHashData(p);
+ sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
+ }
+ }
+ break;
+
+#ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
+ case PragTyp_FUNCTION_LIST: {
+ int i;
+ HashElem *j;
+ FuncDef *p;
+ int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
+ pParse->nMem = 6;
+ for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
+ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ pragmaFunclistLine(v, p, 1, showInternFunc);
+ }
+ }
+ for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
+ p = (FuncDef*)sqliteHashData(j);
+ assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
+ pragmaFunclistLine(v, p, 0, showInternFunc);
+ }
+ }
+ break;
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case PragTyp_MODULE_LIST: {
+ HashElem *j;
+ pParse->nMem = 1;
+ for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
+ Module *pMod = (Module*)sqliteHashData(j);
+ sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ case PragTyp_PRAGMA_LIST: {
+ int i;
+ for(i=0; i<ArraySize(aPragmaName); i++){
+ sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
+ }
+ }
+ break;
+#endif /* SQLITE_INTROSPECTION_PRAGMAS */
+
+#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
+ FKey *pFK;
+ Table *pTab;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab && IsOrdinaryTable(pTab) ){
+ pFK = pTab->u.tab.pFKey;
+ if( pFK ){
+ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ int i = 0;
+ pParse->nMem = 8;
+ sqlite3CodeVerifySchema(pParse, iTabDb);
+ while(pFK){
+ int j;
+ for(j=0; j<pFK->nCol; j++){
+ sqlite3VdbeMultiLoad(v, 1, "iissssss",
+ i,
+ j,
+ pFK->zTo,
+ pTab->aCol[pFK->aCol[j].iFrom].zCnName,
+ pFK->aCol[j].zCol,
+ actionName(pFK->aAction[1]), /* ON UPDATE */
+ actionName(pFK->aAction[0]), /* ON DELETE */
+ "NONE");
+ }
+ ++i;
+ pFK = pFK->pNextFrom;
+ }
+ }
+ }
+ }
+ break;
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+#ifndef SQLITE_OMIT_TRIGGER
+ case PragTyp_FOREIGN_KEY_CHECK: {
+ FKey *pFK; /* A foreign key constraint */
+ Table *pTab; /* Child table contain "REFERENCES" keyword */
+ Table *pParent; /* Parent table that child points to */
+ Index *pIdx; /* Index in the parent table */
+ int i; /* Loop counter: Foreign key number for pTab */
+ int j; /* Loop counter: Field of the foreign key */
+ HashElem *k; /* Loop counter: Next table in schema */
+ int x; /* result variable */
+ int regResult; /* 3 registers to hold a result row */
+ int regRow; /* Registers to hold a row from pTab */
+ int addrTop; /* Top of a loop checking foreign keys */
+ int addrOk; /* Jump here if the key is OK */
+ int *aiCols; /* child to parent column mapping */
+
+ regResult = pParse->nMem+1;
+ pParse->nMem += 4;
+ regRow = ++pParse->nMem;
+ k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
+ while( k ){
+ if( zRight ){
+ pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
+ k = 0;
+ }else{
+ pTab = (Table*)sqliteHashData(k);
+ k = sqliteHashNext(k);
+ }
+ if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
+ sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, regResult, pTab->zName);
+ assert( IsOrdinaryTable(pTab) );
+ for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
+ pParent = sqlite3FindTable(db, pFK->zTo, zDb);
+ if( pParent==0 ) continue;
+ pIdx = 0;
+ sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
+ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
+ if( x==0 ){
+ if( pIdx==0 ){
+ sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ }
+ }else{
+ k = 0;
+ break;
+ }
+ }
+ assert( pParse->nErr>0 || pFK==0 );
+ if( pFK ) break;
+ if( pParse->nTab<i ) pParse->nTab = i;
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
+ assert( IsOrdinaryTable(pTab) );
+ for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
+ pParent = sqlite3FindTable(db, pFK->zTo, zDb);
+ pIdx = 0;
+ aiCols = 0;
+ if( pParent ){
+ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
+ assert( x==0 || db->mallocFailed );
+ }
+ addrOk = sqlite3VdbeMakeLabel(pParse);
+
+ /* Generate code to read the child key values into registers
+ ** regRow..regRow+n. If any of the child key values are NULL, this
+ ** row cannot cause an FK violation. Jump directly to addrOk in
+ ** this case. */
+ if( regRow+pFK->nCol>pParse->nMem ) pParse->nMem = regRow+pFK->nCol;
+ for(j=0; j<pFK->nCol; j++){
+ int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
+ }
+
+ /* Generate code to query the parent index for a matching parent
+ ** key. If a match is found, jump to addrOk. */
+ if( pIdx ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0,
+ sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
+ sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol);
+ VdbeCoverage(v);
+ }else if( pParent ){
+ int jmp = sqlite3VdbeCurrentAddr(v)+2;
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrOk);
+ assert( pFK->nCol==1 || db->mallocFailed );
+ }
+
+ /* Generate code to report an FK violation to the caller. */
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
+ }
+ sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
+ sqlite3VdbeResolveLabel(v, addrOk);
+ sqlite3DbFree(db, aiCols);
+ }
+ sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrTop);
+ }
+ }
+ break;
+#endif /* !defined(SQLITE_OMIT_TRIGGER) */
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+
+#ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
+ /* Reinstall the LIKE and GLOB functions. The variant of LIKE
+ ** used will be case sensitive or not depending on the RHS.
+ */
+ case PragTyp_CASE_SENSITIVE_LIKE: {
+ if( zRight ){
+ sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
+
+#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
+# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
+#endif
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+ /* PRAGMA integrity_check
+ ** PRAGMA integrity_check(N)
+ ** PRAGMA quick_check
+ ** PRAGMA quick_check(N)
+ **
+ ** Verify the integrity of the database.
+ **
+ ** The "quick_check" is reduced version of
+ ** integrity_check designed to detect most database corruption
+ ** without the overhead of cross-checking indexes. Quick_check
+ ** is linear time wherease integrity_check is O(NlogN).
+ **
+ ** The maximum nubmer of errors is 100 by default. A different default
+ ** can be specified using a numeric parameter N.
+ **
+ ** Or, the parameter N can be the name of a table. In that case, only
+ ** the one table named is verified. The freelist is only verified if
+ ** the named table is "sqlite_schema" (or one of its aliases).
+ **
+ ** All schemas are checked by default. To check just a single
+ ** schema, use the form:
+ **
+ ** PRAGMA schema.integrity_check;
+ */
+ case PragTyp_INTEGRITY_CHECK: {
+ int i, j, addr, mxErr;
+ Table *pObjTab = 0; /* Check only this one table, if not NULL */
+
+ int isQuick = (sqlite3Tolower(zLeft[0])=='q');
+
+ /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
+ ** then iDb is set to the index of the database identified by <db>.
+ ** In this case, the integrity of database iDb only is verified by
+ ** the VDBE created below.
+ **
+ ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
+ ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
+ ** to -1 here, to indicate that the VDBE should verify the integrity
+ ** of all attached databases. */
+ assert( iDb>=0 );
+ assert( iDb==0 || pId2->z );
+ if( pId2->z==0 ) iDb = -1;
+
+ /* Initialize the VDBE program */
+ pParse->nMem = 6;
+
+ /* Set the maximum error count */
+ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
+ if( zRight ){
+ if( sqlite3GetInt32(zRight, &mxErr) ){
+ if( mxErr<=0 ){
+ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
+ }
+ }else{
+ pObjTab = sqlite3LocateTable(pParse, 0, zRight,
+ iDb>=0 ? db->aDb[iDb].zDbSName : 0);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
+
+ /* Do an integrity check on each database file */
+ for(i=0; i<db->nDb; i++){
+ HashElem *x; /* For looping over tables in the schema */
+ Hash *pTbls; /* Set of all tables in the schema */
+ int *aRoot; /* Array of root page numbers of all btrees */
+ int cnt = 0; /* Number of entries in aRoot[] */
+ int mxIdx = 0; /* Maximum number of indexes for any table */
+
+ if( OMIT_TEMPDB && i==1 ) continue;
+ if( iDb>=0 && i!=iDb ) continue;
+
+ sqlite3CodeVerifySchema(pParse, i);
+
+ /* Do an integrity check of the B-Tree
+ **
+ ** Begin by finding the root pages numbers
+ ** for all tables and indices in the database.
+ */
+ assert( sqlite3SchemaMutexHeld(db, i, 0) );
+ pTbls = &db->aDb[i].pSchema->tblHash;
+ for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x); /* Current table */
+ Index *pIdx; /* An index on pTab */
+ int nIdx; /* Number of indexes on pTab */
+ if( pObjTab && pObjTab!=pTab ) continue;
+ if( HasRowid(pTab) ) cnt++;
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
+ if( nIdx>mxIdx ) mxIdx = nIdx;
+ }
+ if( cnt==0 ) continue;
+ if( pObjTab ) cnt++;
+ aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
+ if( aRoot==0 ) break;
+ cnt = 0;
+ if( pObjTab ) aRoot[++cnt] = 0;
+ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx;
+ if( pObjTab && pObjTab!=pTab ) continue;
+ if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ aRoot[++cnt] = pIdx->tnum;
+ }
+ }
+ aRoot[0] = cnt;
+
+ /* Make sure sufficient number of registers have been allocated */
+ pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
+ sqlite3ClearTempRegCache(pParse);
+
+ /* Do the b-tree integrity checks */
+ sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
+ sqlite3VdbeChangeP5(v, (u8)i);
+ addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
+ sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
+ P4_DYNAMIC);
+ sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, addr);
+
+ /* Make sure all the indices are constructed correctly.
+ */
+ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx, *pPk;
+ Index *pPrior = 0;
+ int loopTop;
+ int iDataCur, iIdxCur;
+ int r1 = -1;
+ int bStrict;
+
+ if( !IsOrdinaryTable(pTab) ) continue;
+ if( pObjTab && pObjTab!=pTab ) continue;
+ pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
+ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
+ 1, 0, &iDataCur, &iIdxCur);
+ /* reg[7] counts the number of entries in the table.
+ ** reg[8+i] counts the number of entries in the i-th index
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
+ }
+ assert( pParse->nMem>=8+j );
+ assert( sqlite3NoTempsInRange(pParse,1,7+j) );
+ sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
+ loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
+ if( !isQuick ){
+ /* Sanity check on record header decoding */
+ sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3);
+ sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
+ VdbeComment((v, "(right-most column)"));
+ }
+ /* Verify that all NOT NULL columns really are NOT NULL. At the
+ ** same time verify the type of the content of STRICT tables */
+ bStrict = (pTab->tabFlags & TF_Strict)!=0;
+ for(j=0; j<pTab->nCol; j++){
+ char *zErr;
+ Column *pCol = pTab->aCol + j;
+ int doError, jmp2;
+ if( j==pTab->iPKey ) continue;
+ if( pCol->notNull==0 && !bStrict ) continue;
+ doError = bStrict ? sqlite3VdbeMakeLabel(pParse) : 0;
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
+ if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){
+ sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
+ }
+ if( pCol->notNull ){
+ jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
+ zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
+ pCol->zCnName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ if( bStrict && pCol->eCType!=COLTYPE_ANY ){
+ sqlite3VdbeGoto(v, doError);
+ }else{
+ integrityCheckResultRow(v);
+ }
+ sqlite3VdbeJumpHere(v, jmp2);
+ }
+ if( (pTab->tabFlags & TF_Strict)!=0
+ && pCol->eCType!=COLTYPE_ANY
+ ){
+ jmp2 = sqlite3VdbeAddOp3(v, OP_IsNullOrType, 3, 0,
+ sqlite3StdTypeMap[pCol->eCType-1]);
+ VdbeCoverage(v);
+ zErr = sqlite3MPrintf(db, "non-%s value in %s.%s",
+ sqlite3StdType[pCol->eCType-1],
+ pTab->zName, pTab->aCol[j].zCnName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ sqlite3VdbeResolveLabel(v, doError);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, jmp2);
+ }
+ }
+ /* Verify CHECK constraints */
+ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
+ ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
+ if( db->mallocFailed==0 ){
+ int addrCkFault = sqlite3VdbeMakeLabel(pParse);
+ int addrCkOk = sqlite3VdbeMakeLabel(pParse);
+ char *zErr;
+ int k;
+ pParse->iSelfTab = iDataCur + 1;
+ for(k=pCheck->nExpr-1; k>0; k--){
+ sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
+ }
+ sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
+ SQLITE_JUMPIFNULL);
+ sqlite3VdbeResolveLabel(v, addrCkFault);
+ pParse->iSelfTab = 0;
+ zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
+ pTab->zName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ integrityCheckResultRow(v);
+ sqlite3VdbeResolveLabel(v, addrCkOk);
+ }
+ sqlite3ExprListDelete(db, pCheck);
+ }
+ if( !isQuick ){ /* Omit the remaining tests for quick_check */
+ /* Validate index entries for the current row */
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ int jmp2, jmp3, jmp4, jmp5;
+ int ckUniq = sqlite3VdbeMakeLabel(pParse);
+ if( pPk==pIdx ) continue;
+ r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
+ pPrior, r1);
+ pPrior = pIdx;
+ sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
+ /* Verify that an index entry exists for the current table row */
+ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
+ pIdx->nColumn); VdbeCoverage(v);
+ sqlite3VdbeLoadString(v, 3, "row ");
+ sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
+ sqlite3VdbeLoadString(v, 4, " missing from index ");
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
+ jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
+ jmp4 = integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, jmp2);
+ /* For UNIQUE indexes, verify that only one entry exists with the
+ ** current key. The entry is unique if (1) any column is NULL
+ ** or (2) the next entry has a different key */
+ if( IsUniqueIndex(pIdx) ){
+ int uniqOk = sqlite3VdbeMakeLabel(pParse);
+ int jmp6;
+ int kk;
+ for(kk=0; kk<pIdx->nKeyCol; kk++){
+ int iCol = pIdx->aiColumn[kk];
+ assert( iCol!=XN_ROWID && iCol<pTab->nCol );
+ if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
+ VdbeCoverage(v);
+ }
+ jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, uniqOk);
+ sqlite3VdbeJumpHere(v, jmp6);
+ sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
+ pIdx->nKeyCol); VdbeCoverage(v);
+ sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
+ sqlite3VdbeGoto(v, jmp5);
+ sqlite3VdbeResolveLabel(v, uniqOk);
+ }
+ sqlite3VdbeJumpHere(v, jmp4);
+ sqlite3ResolvePartIdxLabel(pParse, jmp3);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, loopTop-1);
+ if( !isQuick ){
+ sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ if( pPk==pIdx ) continue;
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
+ addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ sqlite3VdbeLoadString(v, 4, pIdx->zName);
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ }
+ }
+ }
+ {
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList endCode[] = {
+ { OP_AddImm, 1, 0, 0}, /* 0 */
+ { OP_IfNotZero, 1, 4, 0}, /* 1 */
+ { OP_String8, 0, 3, 0}, /* 2 */
+ { OP_ResultRow, 3, 1, 0}, /* 3 */
+ { OP_Halt, 0, 0, 0}, /* 4 */
+ { OP_String8, 0, 3, 0}, /* 5 */
+ { OP_Goto, 0, 3, 0}, /* 6 */
+ };
+ VdbeOp *aOp;
+
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
+ if( aOp ){
+ aOp[0].p2 = 1-mxErr;
+ aOp[2].p4type = P4_STATIC;
+ aOp[2].p4.z = "ok";
+ aOp[5].p4type = P4_STATIC;
+ aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
+ }
+ sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_UTF16
+ /*
+ ** PRAGMA encoding
+ ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
+ **
+ ** In its first form, this pragma returns the encoding of the main
+ ** database. If the database is not initialized, it is initialized now.
+ **
+ ** The second form of this pragma is a no-op if the main database file
+ ** has not already been initialized. In this case it sets the default
+ ** encoding that will be used for the main database file if a new file
+ ** is created. If an existing main database file is opened, then the
+ ** default text encoding for the existing database is used.
+ **
+ ** In all cases new databases created using the ATTACH command are
+ ** created to use the same default text encoding as the main database. If
+ ** the main database has not been initialized and/or created when ATTACH
+ ** is executed, this is done before the ATTACH operation.
+ **
+ ** In the second form this pragma sets the text encoding to be used in
+ ** new database files created using this database handle. It is only
+ ** useful if invoked immediately after the main database i
+ */
+ case PragTyp_ENCODING: {
+ static const struct EncName {
+ char *zName;
+ u8 enc;
+ } encnames[] = {
+ { "UTF8", SQLITE_UTF8 },
+ { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
+ { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
+ { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
+ { "UTF16le", SQLITE_UTF16LE },
+ { "UTF16be", SQLITE_UTF16BE },
+ { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
+ { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
+ { 0, 0 }
+ };
+ const struct EncName *pEnc;
+ if( !zRight ){ /* "PRAGMA encoding" */
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
+ assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
+ assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
+ returnSingleText(v, encnames[ENC(pParse->db)].zName);
+ }else{ /* "PRAGMA encoding = XXX" */
+ /* Only change the value of sqlite.enc if the database handle is not
+ ** initialized. If the main database exists, the new sqlite.enc value
+ ** will be overwritten when the schema is next loaded. If it does not
+ ** already exists, it will be created to use the new encoding value.
+ */
+ if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
+ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
+ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
+ u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
+ SCHEMA_ENC(db) = enc;
+ sqlite3SetTextEncoding(db, enc);
+ break;
+ }
+ }
+ if( !pEnc->zName ){
+ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
+ }
+ }
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
+ /*
+ ** PRAGMA [schema.]schema_version
+ ** PRAGMA [schema.]schema_version = <integer>
+ **
+ ** PRAGMA [schema.]user_version
+ ** PRAGMA [schema.]user_version = <integer>
+ **
+ ** PRAGMA [schema.]freelist_count
+ **
+ ** PRAGMA [schema.]data_version
+ **
+ ** PRAGMA [schema.]application_id
+ ** PRAGMA [schema.]application_id = <integer>
+ **
+ ** The pragma's schema_version and user_version are used to set or get
+ ** the value of the schema-version and user-version, respectively. Both
+ ** the schema-version and the user-version are 32-bit signed integers
+ ** stored in the database header.
+ **
+ ** The schema-cookie is usually only manipulated internally by SQLite. It
+ ** is incremented by SQLite whenever the database schema is modified (by
+ ** creating or dropping a table or index). The schema version is used by
+ ** SQLite each time a query is executed to ensure that the internal cache
+ ** of the schema used when compiling the SQL query matches the schema of
+ ** the database against which the compiled query is actually executed.
+ ** Subverting this mechanism by using "PRAGMA schema_version" to modify
+ ** the schema-version is potentially dangerous and may lead to program
+ ** crashes or database corruption. Use with caution!
+ **
+ ** The user-version is not used internally by SQLite. It may be used by
+ ** applications for any purpose.
+ */
+ case PragTyp_HEADER_VALUE: {
+ int iCookie = pPragma->iArg; /* Which cookie to read or write */
+ sqlite3VdbeUsesBtree(v, iDb);
+ if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
+ /* Write the specified cookie value */
+ static const VdbeOpList setCookie[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_SetCookie, 0, 0, 0}, /* 1 */
+ };
+ VdbeOp *aOp;
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[1].p2 = iCookie;
+ aOp[1].p3 = sqlite3Atoi(zRight);
+ aOp[1].p5 = 1;
+ }else{
+ /* Read the specified cookie value */
+ static const VdbeOpList readCookie[] = {
+ { OP_Transaction, 0, 0, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, 0}, /* 1 */
+ { OP_ResultRow, 1, 1, 0}
+ };
+ VdbeOp *aOp;
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[1].p3 = iCookie;
+ sqlite3VdbeReusable(v);
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ /*
+ ** PRAGMA compile_options
+ **
+ ** Return the names of all compile-time options used in this build,
+ ** one option per row.
+ */
+ case PragTyp_COMPILE_OPTIONS: {
+ int i = 0;
+ const char *zOpt;
+ pParse->nMem = 1;
+ while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
+ sqlite3VdbeLoadString(v, 1, zOpt);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+ sqlite3VdbeReusable(v);
+ }
+ break;
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+#ifndef SQLITE_OMIT_WAL
+ /*
+ ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
+ **
+ ** Checkpoint the database.
+ */
+ case PragTyp_WAL_CHECKPOINT: {
+ int iBt = (pId2->z?iDb:SQLITE_MAX_DB);
+ int eMode = SQLITE_CHECKPOINT_PASSIVE;
+ if( zRight ){
+ if( sqlite3StrICmp(zRight, "full")==0 ){
+ eMode = SQLITE_CHECKPOINT_FULL;
+ }else if( sqlite3StrICmp(zRight, "restart")==0 ){
+ eMode = SQLITE_CHECKPOINT_RESTART;
+ }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
+ eMode = SQLITE_CHECKPOINT_TRUNCATE;
+ }
+ }
+ pParse->nMem = 3;
+ sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
+ }
+ break;
+
+ /*
+ ** PRAGMA wal_autocheckpoint
+ ** PRAGMA wal_autocheckpoint = N
+ **
+ ** Configure a database connection to automatically checkpoint a database
+ ** after accumulating N frames in the log. Or query for the current value
+ ** of N.
+ */
+ case PragTyp_WAL_AUTOCHECKPOINT: {
+ if( zRight ){
+ sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
+ }
+ returnSingleInt(v,
+ db->xWalCallback==sqlite3WalDefaultHook ?
+ SQLITE_PTR_TO_INT(db->pWalArg) : 0);
+ }
+ break;
+#endif
+
+ /*
+ ** PRAGMA shrink_memory
+ **
+ ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
+ ** connection on which it is invoked to free up as much memory as it
+ ** can, by calling sqlite3_db_release_memory().
+ */
+ case PragTyp_SHRINK_MEMORY: {
+ sqlite3_db_release_memory(db);
+ break;
+ }
+
+ /*
+ ** PRAGMA optimize
+ ** PRAGMA optimize(MASK)
+ ** PRAGMA schema.optimize
+ ** PRAGMA schema.optimize(MASK)
+ **
+ ** Attempt to optimize the database. All schemas are optimized in the first
+ ** two forms, and only the specified schema is optimized in the latter two.
+ **
+ ** The details of optimizations performed by this pragma are expected
+ ** to change and improve over time. Applications should anticipate that
+ ** this pragma will perform new optimizations in future releases.
+ **
+ ** The optional argument is a bitmask of optimizations to perform:
+ **
+ ** 0x0001 Debugging mode. Do not actually perform any optimizations
+ ** but instead return one line of text for each optimization
+ ** that would have been done. Off by default.
+ **
+ ** 0x0002 Run ANALYZE on tables that might benefit. On by default.
+ ** See below for additional information.
+ **
+ ** 0x0004 (Not yet implemented) Record usage and performance
+ ** information from the current session in the
+ ** database file so that it will be available to "optimize"
+ ** pragmas run by future database connections.
+ **
+ ** 0x0008 (Not yet implemented) Create indexes that might have
+ ** been helpful to recent queries
+ **
+ ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
+ ** of the optimizations listed above except Debug Mode, including new
+ ** optimizations that have not yet been invented. If new optimizations are
+ ** ever added that should be off by default, those off-by-default
+ ** optimizations will have bitmasks of 0x10000 or larger.
+ **
+ ** DETERMINATION OF WHEN TO RUN ANALYZE
+ **
+ ** In the current implementation, a table is analyzed if only if all of
+ ** the following are true:
+ **
+ ** (1) MASK bit 0x02 is set.
+ **
+ ** (2) The query planner used sqlite_stat1-style statistics for one or
+ ** more indexes of the table at some point during the lifetime of
+ ** the current connection.
+ **
+ ** (3) One or more indexes of the table are currently unanalyzed OR
+ ** the number of rows in the table has increased by 25 times or more
+ ** since the last time ANALYZE was run.
+ **
+ ** The rules for when tables are analyzed are likely to change in
+ ** future releases.
+ */
+ case PragTyp_OPTIMIZE: {
+ int iDbLast; /* Loop termination point for the schema loop */
+ int iTabCur; /* Cursor for a table whose size needs checking */
+ HashElem *k; /* Loop over tables of a schema */
+ Schema *pSchema; /* The current schema */
+ Table *pTab; /* A table in the schema */
+ Index *pIdx; /* An index of the table */
+ LogEst szThreshold; /* Size threshold above which reanalysis is needd */
+ char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
+ u32 opMask; /* Mask of operations to perform */
+
+ if( zRight ){
+ opMask = (u32)sqlite3Atoi(zRight);
+ if( (opMask & 0x02)==0 ) break;
+ }else{
+ opMask = 0xfffe;
+ }
+ iTabCur = pParse->nTab++;
+ for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
+ if( iDb==1 ) continue;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ pSchema = db->aDb[iDb].pSchema;
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ pTab = (Table*)sqliteHashData(k);
+
+ /* If table pTab has not been used in a way that would benefit from
+ ** having analysis statistics during the current session, then skip it.
+ ** This also has the effect of skipping virtual tables and views */
+ if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
+
+ /* Reanalyze if the table is 25 times larger than the last analysis */
+ szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( !pIdx->hasStat1 ){
+ szThreshold = 0; /* Always analyze if any index lacks statistics */
+ break;
+ }
+ }
+ if( szThreshold ){
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
+ sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
+ VdbeCoverage(v);
+ }
+ zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
+ db->aDb[iDb].zDbSName, pTab->zName);
+ if( opMask & 0x01 ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
+ }else{
+ sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
+ }
+ }
+ }
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ break;
+ }
+
+ /*
+ ** PRAGMA busy_timeout
+ ** PRAGMA busy_timeout = N
+ **
+ ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
+ ** if one is set. If no busy handler or a different busy handler is set
+ ** then 0 is returned. Setting the busy_timeout to 0 or negative
+ ** disables the timeout.
+ */
+ /*case PragTyp_BUSY_TIMEOUT*/ default: {
+ assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
+ if( zRight ){
+ sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
+ }
+ returnSingleInt(v, db->busyTimeout);
+ break;
+ }
+
+ /*
+ ** PRAGMA soft_heap_limit
+ ** PRAGMA soft_heap_limit = N
+ **
+ ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
+ ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
+ ** specified and is a non-negative integer.
+ ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
+ ** returns the same integer that would be returned by the
+ ** sqlite3_soft_heap_limit64(-1) C-language function.
+ */
+ case PragTyp_SOFT_HEAP_LIMIT: {
+ sqlite3_int64 N;
+ if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
+ sqlite3_soft_heap_limit64(N);
+ }
+ returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
+ break;
+ }
+
+ /*
+ ** PRAGMA hard_heap_limit
+ ** PRAGMA hard_heap_limit = N
+ **
+ ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
+ ** limit. The hard heap limit can be activated or lowered by this
+ ** pragma, but not raised or deactivated. Only the
+ ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
+ ** the hard heap limit. This allows an application to set a heap limit
+ ** constraint that cannot be relaxed by an untrusted SQL script.
+ */
+ case PragTyp_HARD_HEAP_LIMIT: {
+ sqlite3_int64 N;
+ if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
+ sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
+ if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
+ }
+ returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
+ break;
+ }
+
+ /*
+ ** PRAGMA threads
+ ** PRAGMA threads = N
+ **
+ ** Configure the maximum number of worker threads. Return the new
+ ** maximum, which might be less than requested.
+ */
+ case PragTyp_THREADS: {
+ sqlite3_int64 N;
+ if( zRight
+ && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
+ && N>=0
+ ){
+ sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
+ }
+ returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
+ break;
+ }
+
+ /*
+ ** PRAGMA analysis_limit
+ ** PRAGMA analysis_limit = N
+ **
+ ** Configure the maximum number of rows that ANALYZE will examine
+ ** in each index that it looks at. Return the new limit.
+ */
+ case PragTyp_ANALYSIS_LIMIT: {
+ sqlite3_int64 N;
+ if( zRight
+ && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */
+ && N>=0
+ ){
+ db->nAnalysisLimit = (int)(N&0x7fffffff);
+ }
+ returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */
+ break;
+ }
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /*
+ ** Report the current state of file logs for all databases
+ */
+ case PragTyp_LOCK_STATUS: {
+ static const char *const azLockName[] = {
+ "unlocked", "shared", "reserved", "pending", "exclusive"
+ };
+ int i;
+ pParse->nMem = 2;
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt;
+ const char *zState = "unknown";
+ int j;
+ if( db->aDb[i].zDbSName==0 ) continue;
+ pBt = db->aDb[i].pBt;
+ if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
+ zState = "closed";
+ }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
+ SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
+ zState = azLockName[j];
+ }
+ sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
+ }
+ break;
+ }
+#endif
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ /* Pragma iArg
+ ** ---------- ------
+ ** key 0
+ ** rekey 1
+ ** hexkey 2
+ ** hexrekey 3
+ ** textkey 4
+ ** textrekey 5
+ */
+ case PragTyp_KEY: {
+ if( zRight ){
+ char zBuf[40];
+ const char *zKey = zRight;
+ int n;
+ if( pPragma->iArg==2 || pPragma->iArg==3 ){
+ u8 iByte;
+ int i;
+ for(i=0, iByte=0; i<sizeof(zBuf)*2 && sqlite3Isxdigit(zRight[i]); i++){
+ iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
+ if( (i&1)!=0 ) zBuf[i/2] = iByte;
+ }
+ zKey = zBuf;
+ n = i/2;
+ }else{
+ n = pPragma->iArg<4 ? sqlite3Strlen30(zRight) : -1;
+ }
+ if( (pPragma->iArg & 1)==0 ){
+ rc = sqlite3_key_v2(db, zDb, zKey, n);
+ }else{
+ rc = sqlite3_rekey_v2(db, zDb, zKey, n);
+ }
+ if( rc==SQLITE_OK && n!=0 ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "ok", SQLITE_STATIC);
+ returnSingleText(v, "ok");
+ }
+ }
+ break;
+ }
+#endif
+/* END SQLCIPHER */
+#if defined(SQLITE_ENABLE_CEROD)
+ case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
+ if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
+ sqlite3_activate_cerod(&zRight[6]);
+ }
+ }
+ break;
+#endif
+
+ } /* End of the PRAGMA switch */
+
+ /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
+ ** purpose is to execute assert() statements to verify that if the
+ ** PragFlg_NoColumns1 flag is set and the caller specified an argument
+ ** to the PRAGMA, the implementation has not added any OP_ResultRow
+ ** instructions to the VM. */
+ if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
+ sqlite3VdbeVerifyNoResultRow(v);
+ }
+
+pragma_out:
+ sqlite3DbFree(db, zLeft);
+ sqlite3DbFree(db, zRight);
+}
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*****************************************************************************
+** Implementation of an eponymous virtual table that runs a pragma.
+**
+*/
+typedef struct PragmaVtab PragmaVtab;
+typedef struct PragmaVtabCursor PragmaVtabCursor;
+struct PragmaVtab {
+ sqlite3_vtab base; /* Base class. Must be first */
+ sqlite3 *db; /* The database connection to which it belongs */
+ const PragmaName *pName; /* Name of the pragma */
+ u8 nHidden; /* Number of hidden columns */
+ u8 iHidden; /* Index of the first hidden column */
+};
+struct PragmaVtabCursor {
+ sqlite3_vtab_cursor base; /* Base class. Must be first */
+ sqlite3_stmt *pPragma; /* The pragma statement to run */
+ sqlite_int64 iRowid; /* Current rowid */
+ char *azArg[2]; /* Value of the argument and schema */
+};
+
+/*
+** Pragma virtual table module xConnect method.
+*/
+static int pragmaVtabConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ const PragmaName *pPragma = (const PragmaName*)pAux;
+ PragmaVtab *pTab = 0;
+ int rc;
+ int i, j;
+ char cSep = '(';
+ StrAccum acc;
+ char zBuf[200];
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3_str_appendall(&acc, "CREATE TABLE x");
+ for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
+ sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
+ cSep = ',';
+ }
+ if( i==0 ){
+ sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
+ i++;
+ }
+ j = 0;
+ if( pPragma->mPragFlg & PragFlg_Result1 ){
+ sqlite3_str_appendall(&acc, ",arg HIDDEN");
+ j++;
+ }
+ if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
+ sqlite3_str_appendall(&acc, ",schema HIDDEN");
+ j++;
+ }
+ sqlite3_str_append(&acc, ")", 1);
+ sqlite3StrAccumFinish(&acc);
+ assert( strlen(zBuf) < sizeof(zBuf)-1 );
+ rc = sqlite3_declare_vtab(db, zBuf);
+ if( rc==SQLITE_OK ){
+ pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
+ if( pTab==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pTab, 0, sizeof(PragmaVtab));
+ pTab->pName = pPragma;
+ pTab->db = db;
+ pTab->iHidden = i;
+ pTab->nHidden = j;
+ }
+ }else{
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+
+ *ppVtab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** Pragma virtual table module xDisconnect method.
+*/
+static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
+ PragmaVtab *pTab = (PragmaVtab*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/* Figure out the best index to use to search a pragma virtual table.
+**
+** There are not really any index choices. But we want to encourage the
+** query planner to give == constraints on as many hidden parameters as
+** possible, and especially on the first hidden parameter. So return a
+** high cost if hidden parameters are unconstrained.
+*/
+static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ PragmaVtab *pTab = (PragmaVtab*)tab;
+ const struct sqlite3_index_constraint *pConstraint;
+ int i, j;
+ int seen[2];
+
+ pIdxInfo->estimatedCost = (double)1;
+ if( pTab->nHidden==0 ){ return SQLITE_OK; }
+ pConstraint = pIdxInfo->aConstraint;
+ seen[0] = 0;
+ seen[1] = 0;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ if( pConstraint->usable==0 ) continue;
+ if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
+ if( pConstraint->iColumn < pTab->iHidden ) continue;
+ j = pConstraint->iColumn - pTab->iHidden;
+ assert( j < 2 );
+ seen[j] = i+1;
+ }
+ if( seen[0]==0 ){
+ pIdxInfo->estimatedCost = (double)2147483647;
+ pIdxInfo->estimatedRows = 2147483647;
+ return SQLITE_OK;
+ }
+ j = seen[0]-1;
+ pIdxInfo->aConstraintUsage[j].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[j].omit = 1;
+ if( seen[1]==0 ) return SQLITE_OK;
+ pIdxInfo->estimatedCost = (double)20;
+ pIdxInfo->estimatedRows = 20;
+ j = seen[1]-1;
+ pIdxInfo->aConstraintUsage[j].argvIndex = 2;
+ pIdxInfo->aConstraintUsage[j].omit = 1;
+ return SQLITE_OK;
+}
+
+/* Create a new cursor for the pragma virtual table */
+static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
+ PragmaVtabCursor *pCsr;
+ pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
+ if( pCsr==0 ) return SQLITE_NOMEM;
+ memset(pCsr, 0, sizeof(PragmaVtabCursor));
+ pCsr->base.pVtab = pVtab;
+ *ppCursor = &pCsr->base;
+ return SQLITE_OK;
+}
+
+/* Clear all content from pragma virtual table cursor. */
+static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
+ int i;
+ sqlite3_finalize(pCsr->pPragma);
+ pCsr->pPragma = 0;
+ for(i=0; i<ArraySize(pCsr->azArg); i++){
+ sqlite3_free(pCsr->azArg[i]);
+ pCsr->azArg[i] = 0;
+ }
+}
+
+/* Close a pragma virtual table cursor */
+static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
+ pragmaVtabCursorClear(pCsr);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/* Advance the pragma virtual table cursor to the next row */
+static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ /* Increment the xRowid value */
+ pCsr->iRowid++;
+ assert( pCsr->pPragma );
+ if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
+ rc = sqlite3_finalize(pCsr->pPragma);
+ pCsr->pPragma = 0;
+ pragmaVtabCursorClear(pCsr);
+ }
+ return rc;
+}
+
+/*
+** Pragma virtual table module xFilter method.
+*/
+static int pragmaVtabFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
+ int rc;
+ int i, j;
+ StrAccum acc;
+ char *zSql;
+
+ UNUSED_PARAMETER(idxNum);
+ UNUSED_PARAMETER(idxStr);
+ pragmaVtabCursorClear(pCsr);
+ j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
+ for(i=0; i<argc; i++, j++){
+ const char *zText = (const char*)sqlite3_value_text(argv[i]);
+ assert( j<ArraySize(pCsr->azArg) );
+ assert( pCsr->azArg[j]==0 );
+ if( zText ){
+ pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
+ if( pCsr->azArg[j]==0 ){
+ return SQLITE_NOMEM;
+ }
+ }
+ }
+ sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
+ sqlite3_str_appendall(&acc, "PRAGMA ");
+ if( pCsr->azArg[1] ){
+ sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
+ }
+ sqlite3_str_appendall(&acc, pTab->pName->zName);
+ if( pCsr->azArg[0] ){
+ sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
+ }
+ zSql = sqlite3StrAccumFinish(&acc);
+ if( zSql==0 ) return SQLITE_NOMEM;
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK ){
+ pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
+ return rc;
+ }
+ return pragmaVtabNext(pVtabCursor);
+}
+
+/*
+** Pragma virtual table module xEof method.
+*/
+static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ return (pCsr->pPragma==0);
+}
+
+/* The xColumn method simply returns the corresponding column from
+** the PRAGMA.
+*/
+static int pragmaVtabColumn(
+ sqlite3_vtab_cursor *pVtabCursor,
+ sqlite3_context *ctx,
+ int i
+){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
+ if( i<pTab->iHidden ){
+ sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
+ }else{
+ sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Pragma virtual table module xRowid method.
+*/
+static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ *p = pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/* The pragma virtual table object */
+static const sqlite3_module pragmaVtabModule = {
+ 0, /* iVersion */
+ 0, /* xCreate - create a table */
+ pragmaVtabConnect, /* xConnect - connect to an existing table */
+ pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
+ pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
+ 0, /* xDestroy - Drop a table */
+ pragmaVtabOpen, /* xOpen - open a cursor */
+ pragmaVtabClose, /* xClose - close a cursor */
+ pragmaVtabFilter, /* xFilter - configure scan constraints */
+ pragmaVtabNext, /* xNext - advance a cursor */
+ pragmaVtabEof, /* xEof */
+ pragmaVtabColumn, /* xColumn - read data */
+ pragmaVtabRowid, /* xRowid - read data */
+ 0, /* xUpdate - write data */
+ 0, /* xBegin - begin transaction */
+ 0, /* xSync - sync transaction */
+ 0, /* xCommit - commit transaction */
+ 0, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ 0, /* xRename - rename the table */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+};
+
+/*
+** Check to see if zTabName is really the name of a pragma. If it is,
+** then register an eponymous virtual table for that pragma and return
+** a pointer to the Module object for the new virtual table.
+*/
+SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
+ const PragmaName *pName;
+ assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
+ pName = pragmaLocate(zName+7);
+ if( pName==0 ) return 0;
+ if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
+ assert( sqlite3HashFind(&db->aModule, zName)==0 );
+ return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
+}
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#endif /* SQLITE_OMIT_PRAGMA */
+
+/************** End of pragma.c **********************************************/
+/************** Begin file prepare.c *****************************************/
+/*
+** 2005 May 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation of the sqlite3_prepare()
+** interface, and routines that contribute to loading the database schema
+** from disk.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Fill the InitData structure with an error message that indicates
+** that the database is corrupt.
+*/
+static void corruptSchema(
+ InitData *pData, /* Initialization context */
+ char **azObj, /* Type and name of object being parsed */
+ const char *zExtra /* Error information */
+){
+ sqlite3 *db = pData->db;
+ if( db->mallocFailed ){
+ pData->rc = SQLITE_NOMEM_BKPT;
+ }else if( pData->pzErrMsg[0]!=0 ){
+ /* A error message has already been generated. Do not overwrite it */
+ }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){
+ static const char *azAlterType[] = {
+ "rename",
+ "drop column",
+ "add column"
+ };
+ *pData->pzErrMsg = sqlite3MPrintf(db,
+ "error in %s %s after %s: %s", azObj[0], azObj[1],
+ azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1],
+ zExtra
+ );
+ pData->rc = SQLITE_ERROR;
+ }else if( db->flags & SQLITE_WriteSchema ){
+ pData->rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ char *z;
+ const char *zObj = azObj[1] ? azObj[1] : "?";
+ z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj);
+ if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra);
+ *pData->pzErrMsg = z;
+ pData->rc = SQLITE_CORRUPT_BKPT;
+ }
+}
+
+/*
+** Check to see if any sibling index (another index on the same table)
+** of pIndex has the same root page number, and if it does, return true.
+** This would indicate a corrupt schema.
+*/
+SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index *pIndex){
+ Index *p;
+ for(p=pIndex->pTable->pIndex; p; p=p->pNext){
+ if( p->tnum==pIndex->tnum && p!=pIndex ) return 1;
+ }
+ return 0;
+}
+
+/* forward declaration */
+static int sqlite3Prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ Vdbe *pReprepare, /* VM being reprepared */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+);
+
+
+/*
+** This is the callback routine for the code that initializes the
+** database. See sqlite3Init() below for additional information.
+** This routine is also called from the OP_ParseSchema opcode of the VDBE.
+**
+** Each callback contains the following information:
+**
+** argv[0] = type of object: "table", "index", "trigger", or "view".
+** argv[1] = name of thing being created
+** argv[2] = associated table if an index or trigger
+** argv[3] = root page number for table or index. 0 for trigger or view.
+** argv[4] = SQL text for the CREATE statement.
+**
+*/
+SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
+ InitData *pData = (InitData*)pInit;
+ sqlite3 *db = pData->db;
+ int iDb = pData->iDb;
+
+ assert( argc==5 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+ assert( sqlite3_mutex_held(db->mutex) );
+ db->mDbFlags |= DBFLAG_EncodingFixed;
+ if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
+ pData->nInitRow++;
+ if( db->mallocFailed ){
+ corruptSchema(pData, argv, 0);
+ return 1;
+ }
+
+ assert( iDb>=0 && iDb<db->nDb );
+ if( argv[3]==0 ){
+ corruptSchema(pData, argv, 0);
+ }else if( argv[4]
+ && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]]
+ && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){
+ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
+ ** But because db->init.busy is set to 1, no VDBE code is generated
+ ** or executed. All the parser does is build the internal data
+ ** structures that describe the table, index, or view.
+ **
+ ** No other valid SQL statement, other than the variable CREATE statements,
+ ** can begin with the letters "C" and "R". Thus, it is not possible run
+ ** any other kind of statement while parsing the schema, even a corrupt
+ ** schema.
+ */
+ int rc;
+ u8 saved_iDb = db->init.iDb;
+ sqlite3_stmt *pStmt;
+ TESTONLY(int rcp); /* Return code from sqlite3_prepare() */
+
+ assert( db->init.busy );
+ db->init.iDb = iDb;
+ if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0
+ || (db->init.newTnum>pData->mxPage && pData->mxPage>0)
+ ){
+ if( sqlite3Config.bExtraSchemaChecks ){
+ corruptSchema(pData, argv, "invalid rootpage");
+ }
+ }
+ db->init.orphanTrigger = 0;
+ db->init.azInit = (const char**)argv;
+ pStmt = 0;
+ TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0);
+ rc = db->errCode;
+ assert( (rc&0xFF)==(rcp&0xFF) );
+ db->init.iDb = saved_iDb;
+ /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */
+ if( SQLITE_OK!=rc ){
+ if( db->init.orphanTrigger ){
+ assert( iDb==1 );
+ }else{
+ if( rc > pData->rc ) pData->rc = rc;
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
+ corruptSchema(pData, argv, sqlite3_errmsg(db));
+ }
+ }
+ }
+ db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
+ sqlite3_finalize(pStmt);
+ }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){
+ corruptSchema(pData, argv, 0);
+ }else{
+ /* If the SQL column is blank it means this is an index that
+ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
+ ** constraint for a CREATE TABLE. The index should have already
+ ** been created when we processed the CREATE TABLE. All we have
+ ** to do here is record the root page number for that index.
+ */
+ Index *pIndex;
+ pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName);
+ if( pIndex==0 ){
+ corruptSchema(pData, argv, "orphan index");
+ }else
+ if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0
+ || pIndex->tnum<2
+ || pIndex->tnum>pData->mxPage
+ || sqlite3IndexHasDuplicateRootPage(pIndex)
+ ){
+ if( sqlite3Config.bExtraSchemaChecks ){
+ corruptSchema(pData, argv, "invalid rootpage");
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Attempt to read the database schema and initialize internal
+** data structures for a single database file. The index of the
+** database file is given by iDb. iDb==0 is used for the main
+** database. iDb==1 should never be used. iDb>=2 is used for
+** auxiliary databases. Return one of the SQLITE_ error codes to
+** indicate success or failure.
+*/
+SQLITE_PRIVATE int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){
+ int rc;
+ int i;
+#ifndef SQLITE_OMIT_DEPRECATED
+ int size;
+#endif
+ Db *pDb;
+ char const *azArg[6];
+ int meta[5];
+ InitData initData;
+ const char *zSchemaTabName;
+ int openedTransaction = 0;
+ int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed);
+
+ assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+
+ db->init.busy = 1;
+
+ /* Construct the in-memory representation schema tables (sqlite_schema or
+ ** sqlite_temp_schema) by invoking the parser directly. The appropriate
+ ** table name will be inserted automatically by the parser so we can just
+ ** use the abbreviation "x" here. The parser will also automatically tag
+ ** the schema table as read-only. */
+ azArg[0] = "table";
+ azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb);
+ azArg[2] = azArg[1];
+ azArg[3] = "1";
+ azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text,"
+ "rootpage int,sql text)";
+ azArg[5] = 0;
+ initData.db = db;
+ initData.iDb = iDb;
+ initData.rc = SQLITE_OK;
+ initData.pzErrMsg = pzErrMsg;
+ initData.mInitFlags = mFlags;
+ initData.nInitRow = 0;
+ initData.mxPage = 0;
+ sqlite3InitCallback(&initData, 5, (char **)azArg, 0);
+ db->mDbFlags &= mask;
+ if( initData.rc ){
+ rc = initData.rc;
+ goto error_out;
+ }
+
+ /* Create a cursor to hold the database open
+ */
+ pDb = &db->aDb[iDb];
+ if( pDb->pBt==0 ){
+ assert( iDb==1 );
+ DbSetProperty(db, 1, DB_SchemaLoaded);
+ rc = SQLITE_OK;
+ goto error_out;
+ }
+
+ /* If there is not already a read-only (or read-write) transaction opened
+ ** on the b-tree database, open one now. If a transaction is opened, it
+ ** will be closed before this function returns. */
+ sqlite3BtreeEnter(pDb->pBt);
+ if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){
+ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0);
+ if( rc!=SQLITE_OK ){
+ sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc));
+ goto initone_error_out;
+ }
+ openedTransaction = 1;
+ }
+
+ /* Get the database meta information.
+ **
+ ** Meta values are as follows:
+ ** meta[0] Schema cookie. Changes with each schema change.
+ ** meta[1] File format of schema layer.
+ ** meta[2] Size of the page cache.
+ ** meta[3] Largest rootpage (auto/incr_vacuum mode)
+ ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
+ ** meta[5] User version
+ ** meta[6] Incremental vacuum mode
+ ** meta[7] unused
+ ** meta[8] unused
+ ** meta[9] unused
+ **
+ ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
+ ** the possible values of meta[4].
+ */
+ for(i=0; i<ArraySize(meta); i++){
+ sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
+ }
+ if( (db->flags & SQLITE_ResetDatabase)!=0 ){
+ memset(meta, 0, sizeof(meta));
+ }
+ pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
+
+ /* If opening a non-empty database, check the text encoding. For the
+ ** main database, set sqlite3.enc to the encoding of the main database.
+ ** For an attached db, it is an error if the encoding is not the same
+ ** as sqlite3.enc.
+ */
+ if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */
+ if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
+ u8 encoding;
+#ifndef SQLITE_OMIT_UTF16
+ /* If opening the main database, set ENC(db). */
+ encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
+ if( encoding==0 ) encoding = SQLITE_UTF8;
+#else
+ encoding = SQLITE_UTF8;
+#endif
+ sqlite3SetTextEncoding(db, encoding);
+ }else{
+ /* If opening an attached database, the encoding much match ENC(db) */
+ if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){
+ sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
+ " text encoding as main database");
+ rc = SQLITE_ERROR;
+ goto initone_error_out;
+ }
+ }
+ }
+ pDb->pSchema->enc = ENC(db);
+
+ if( pDb->pSchema->cache_size==0 ){
+#ifndef SQLITE_OMIT_DEPRECATED
+ size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
+ if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
+ pDb->pSchema->cache_size = size;
+#else
+ pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE;
+#endif
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+
+ /*
+ ** file_format==1 Version 3.0.0.
+ ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
+ ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
+ ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
+ */
+ pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
+ if( pDb->pSchema->file_format==0 ){
+ pDb->pSchema->file_format = 1;
+ }
+ if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
+ sqlite3SetString(pzErrMsg, db, "unsupported file format");
+ rc = SQLITE_ERROR;
+ goto initone_error_out;
+ }
+
+ /* Ticket #2804: When we open a database in the newer file format,
+ ** clear the legacy_file_format pragma flag so that a VACUUM will
+ ** not downgrade the database and thus invalidate any descending
+ ** indices that the user might have created.
+ */
+ if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
+ db->flags &= ~(u64)SQLITE_LegacyFileFmt;
+ }
+
+ /* Read the schema information out of the schema tables
+ */
+ assert( db->init.busy );
+ initData.mxPage = sqlite3BtreeLastPage(pDb->pBt);
+ {
+ char *zSql;
+ zSql = sqlite3MPrintf(db,
+ "SELECT*FROM\"%w\".%s ORDER BY rowid",
+ db->aDb[iDb].zDbSName, zSchemaTabName);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ sqlite3_xauth xAuth;
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+ }
+#endif
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ sqlite3DbFree(db, zSql);
+#ifndef SQLITE_OMIT_ANALYZE
+ if( rc==SQLITE_OK ){
+ sqlite3AnalysisLoad(db, iDb);
+ }
+#endif
+ }
+ assert( pDb == &(db->aDb[iDb]) );
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM_BKPT;
+ sqlite3ResetAllSchemasOfConnection(db);
+ pDb = &db->aDb[iDb];
+ }else
+ if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){
+ /* Hack: If the SQLITE_NoSchemaError flag is set, then consider
+ ** the schema loaded, even if errors (other than OOM) occurred. In
+ ** this situation the current sqlite3_prepare() operation will fail,
+ ** but the following one will attempt to compile the supplied statement
+ ** against whatever subset of the schema was loaded before the error
+ ** occurred.
+ **
+ ** The primary purpose of this is to allow access to the sqlite_schema
+ ** table even when its contents have been corrupted.
+ */
+ DbSetProperty(db, iDb, DB_SchemaLoaded);
+ rc = SQLITE_OK;
+ }
+
+ /* Jump here for an error that occurs after successfully allocating
+ ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
+ ** before that point, jump to error_out.
+ */
+initone_error_out:
+ if( openedTransaction ){
+ sqlite3BtreeCommit(pDb->pBt);
+ }
+ sqlite3BtreeLeave(pDb->pBt);
+
+error_out:
+ if( rc ){
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ sqlite3ResetOneSchema(db, iDb);
+ }
+ db->init.busy = 0;
+ return rc;
+}
+
+/*
+** Initialize all database files - the main database file, the file
+** used to store temporary tables, and any additional database files
+** created using ATTACH statements. Return a success code. If an
+** error occurs, write an error message into *pzErrMsg.
+**
+** After a database is initialized, the DB_SchemaLoaded bit is set
+** bit is set in the flags field of the Db structure.
+*/
+SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
+ int i, rc;
+ int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange);
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) );
+ assert( db->init.busy==0 );
+ ENC(db) = SCHEMA_ENC(db);
+ assert( db->nDb>0 );
+ /* Do the main schema first */
+ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){
+ rc = sqlite3InitOne(db, 0, pzErrMsg, 0);
+ if( rc ) return rc;
+ }
+ /* All other schemas after the main schema. The "temp" schema must be last */
+ for(i=db->nDb-1; i>0; i--){
+ assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) );
+ if( !DbHasProperty(db, i, DB_SchemaLoaded) ){
+ rc = sqlite3InitOne(db, i, pzErrMsg, 0);
+ if( rc ) return rc;
+ }
+ }
+ if( commit_internal ){
+ sqlite3CommitInternalChanges(db);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This routine is a no-op if the database schema is already initialized.
+** Otherwise, the schema is loaded. An error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
+ int rc = SQLITE_OK;
+ sqlite3 *db = pParse->db;
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( !db->init.busy ){
+ rc = sqlite3Init(db, &pParse->zErrMsg);
+ if( rc!=SQLITE_OK ){
+ pParse->rc = rc;
+ pParse->nErr++;
+ }else if( db->noSharedCache ){
+ db->mDbFlags |= DBFLAG_SchemaKnownOk;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Check schema cookies in all databases. If any cookie is out
+** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies
+** make no changes to pParse->rc.
+*/
+static void schemaIsValid(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ int iDb;
+ int rc;
+ int cookie;
+
+ assert( pParse->checkSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(iDb=0; iDb<db->nDb; iDb++){
+ int openedTransaction = 0; /* True if a transaction is opened */
+ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */
+ if( pBt==0 ) continue;
+
+ /* If there is not already a read-only (or read-write) transaction opened
+ ** on the b-tree database, open one now. If a transaction is opened, it
+ ** will be closed immediately after reading the meta-value. */
+ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomFault(db);
+ pParse->rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ) return;
+ openedTransaction = 1;
+ }
+
+ /* Read the schema cookie from the database. If it does not match the
+ ** value stored as part of the in-memory schema representation,
+ ** set Parse.rc to SQLITE_SCHEMA. */
+ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
+ sqlite3ResetOneSchema(db, iDb);
+ pParse->rc = SQLITE_SCHEMA;
+ }
+
+ /* Close the transaction, if one was opened. */
+ if( openedTransaction ){
+ sqlite3BtreeCommit(pBt);
+ }
+ }
+}
+
+/*
+** Convert a schema pointer into the iDb index that indicates
+** which database file in db->aDb[] the schema refers to.
+**
+** If the same database is attached more than once, the first
+** attached database is returned.
+*/
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
+ int i = -32768;
+
+ /* If pSchema is NULL, then return -32768. This happens when code in
+ ** expr.c is trying to resolve a reference to a transient table (i.e. one
+ ** created by a sub-select). In this case the return value of this
+ ** function should never be used.
+ **
+ ** We return -32768 instead of the more usual -1 simply because using
+ ** -32768 as the incorrect index into db->aDb[] is much
+ ** more likely to cause a segfault than -1 (of course there are assert()
+ ** statements too, but it never hurts to play the odds) and
+ ** -32768 will still fit into a 16-bit signed integer.
+ */
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( pSchema ){
+ for(i=0; 1; i++){
+ assert( i<db->nDb );
+ if( db->aDb[i].pSchema==pSchema ){
+ break;
+ }
+ }
+ assert( i>=0 && i<db->nDb );
+ }
+ return i;
+}
+
+/*
+** Free all memory allocations in the pParse object
+*/
+SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ assert( db!=0 );
+ assert( db->pParse==pParse );
+ assert( pParse->nested==0 );
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ sqlite3DbFree(db, pParse->aTableLock);
+#endif
+ while( pParse->pCleanup ){
+ ParseCleanup *pCleanup = pParse->pCleanup;
+ pParse->pCleanup = pCleanup->pNext;
+ pCleanup->xCleanup(db, pCleanup->pPtr);
+ sqlite3DbFreeNN(db, pCleanup);
+ }
+ sqlite3DbFree(db, pParse->aLabel);
+ if( pParse->pConstExpr ){
+ sqlite3ExprListDelete(db, pParse->pConstExpr);
+ }
+ assert( db->lookaside.bDisable >= pParse->disableLookaside );
+ db->lookaside.bDisable -= pParse->disableLookaside;
+ db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue;
+ assert( pParse->db->pParse==pParse );
+ db->pParse = pParse->pOuterParse;
+ pParse->db = 0;
+ pParse->disableLookaside = 0;
+}
+
+/*
+** Add a new cleanup operation to a Parser. The cleanup should happen when
+** the parser object is destroyed. But, beware: the cleanup might happen
+** immediately.
+**
+** Use this mechanism for uncommon cleanups. There is a higher setup
+** cost for this mechansim (an extra malloc), so it should not be used
+** for common cleanups that happen on most calls. But for less
+** common cleanups, we save a single NULL-pointer comparison in
+** sqlite3ParseObjectReset(), which reduces the total CPU cycle count.
+**
+** If a memory allocation error occurs, then the cleanup happens immediately.
+** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the
+** pParse->earlyCleanup flag is set in that case. Calling code show verify
+** that test cases exist for which this happens, to guard against possible
+** use-after-free errors following an OOM. The preferred way to do this is
+** to immediately follow the call to this routine with:
+**
+** testcase( pParse->earlyCleanup );
+**
+** This routine returns a copy of its pPtr input (the third parameter)
+** except if an early cleanup occurs, in which case it returns NULL. So
+** another way to check for early cleanup is to check the return value.
+** Or, stop using the pPtr parameter with this call and use only its
+** return value thereafter. Something like this:
+**
+** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj);
+*/
+SQLITE_PRIVATE void *sqlite3ParserAddCleanup(
+ Parse *pParse, /* Destroy when this Parser finishes */
+ void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */
+ void *pPtr /* Pointer to object to be cleaned up */
+){
+ ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup));
+ if( pCleanup ){
+ pCleanup->pNext = pParse->pCleanup;
+ pParse->pCleanup = pCleanup;
+ pCleanup->pPtr = pPtr;
+ pCleanup->xCleanup = xCleanup;
+ }else{
+ xCleanup(pParse->db, pPtr);
+ pPtr = 0;
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+ pParse->earlyCleanup = 1;
+#endif
+ }
+ return pPtr;
+}
+
+/*
+** Turn bulk memory into a valid Parse object and link that Parse object
+** into database connection db.
+**
+** Call sqlite3ParseObjectReset() to undo this operation.
+**
+** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which
+** is generated by Lemon.
+*/
+SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){
+ memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ);
+ memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
+ assert( db->pParse!=pParse );
+ pParse->pOuterParse = db->pParse;
+ db->pParse = pParse;
+ pParse->db = db;
+ if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory");
+}
+
+/*
+** Maximum number of times that we will try again to prepare a statement
+** that returns SQLITE_ERROR_RETRY.
+*/
+#ifndef SQLITE_MAX_PREPARE_RETRY
+# define SQLITE_MAX_PREPARE_RETRY 25
+#endif
+
+/*
+** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
+*/
+static int sqlite3Prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ Vdbe *pReprepare, /* VM being reprepared */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc = SQLITE_OK; /* Result code */
+ int i; /* Loop counter */
+ Parse sParse; /* Parsing context */
+
+ /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */
+ memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ);
+ memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ);
+ sParse.pOuterParse = db->pParse;
+ db->pParse = &sParse;
+ sParse.db = db;
+ sParse.pReprepare = pReprepare;
+ assert( ppStmt && *ppStmt==0 );
+ if( db->mallocFailed ) sqlite3ErrorMsg(&sParse, "out of memory");
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ /* For a long-term use prepared statement avoid the use of
+ ** lookaside memory.
+ */
+ if( prepFlags & SQLITE_PREPARE_PERSISTENT ){
+ sParse.disableLookaside++;
+ DisableLookaside;
+ }
+ sParse.disableVtab = (prepFlags & SQLITE_PREPARE_NO_VTAB)!=0;
+
+ /* Check to verify that it is possible to get a read lock on all
+ ** database schemas. The inability to get a read lock indicates that
+ ** some other database connection is holding a write-lock, which in
+ ** turn means that the other connection has made uncommitted changes
+ ** to the schema.
+ **
+ ** Were we to proceed and prepare the statement against the uncommitted
+ ** schema changes and if those schema changes are subsequently rolled
+ ** back and different changes are made in their place, then when this
+ ** prepared statement goes to run the schema cookie would fail to detect
+ ** the schema change. Disaster would follow.
+ **
+ ** This thread is currently holding mutexes on all Btrees (because
+ ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
+ ** is not possible for another thread to start a new schema change
+ ** while this routine is running. Hence, we do not need to hold
+ ** locks on the schema, we just need to make sure nobody else is
+ ** holding them.
+ **
+ ** Note that setting READ_UNCOMMITTED overrides most lock detection,
+ ** but it does *not* override schema lock detection, so this all still
+ ** works even if READ_UNCOMMITTED is set.
+ */
+ if( !db->noSharedCache ){
+ for(i=0; i<db->nDb; i++) {
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ assert( sqlite3BtreeHoldsMutex(pBt) );
+ rc = sqlite3BtreeSchemaLocked(pBt);
+ if( rc ){
+ const char *zDb = db->aDb[i].zDbSName;
+ sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb);
+ testcase( db->flags & SQLITE_ReadUncommit );
+ goto end_prepare;
+ }
+ }
+ }
+ }
+
+ sqlite3VtabUnlockList(db);
+
+ if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
+ char *zSqlCopy;
+ int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+ testcase( nBytes==mxLen );
+ testcase( nBytes==mxLen+1 );
+ if( nBytes>mxLen ){
+ sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long");
+ rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
+ goto end_prepare;
+ }
+ zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
+ if( zSqlCopy ){
+ sqlite3RunParser(&sParse, zSqlCopy);
+ sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
+ sqlite3DbFree(db, zSqlCopy);
+ }else{
+ sParse.zTail = &zSql[nBytes];
+ }
+ }else{
+ sqlite3RunParser(&sParse, zSql);
+ }
+ assert( 0==sParse.nQueryLoop );
+
+ if( pzTail ){
+ *pzTail = sParse.zTail;
+ }
+
+ if( db->init.busy==0 ){
+ sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags);
+ }
+ if( db->mallocFailed ){
+ sParse.rc = SQLITE_NOMEM_BKPT;
+ sParse.checkSchema = 0;
+ }
+ if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){
+ if( sParse.checkSchema && db->init.busy==0 ){
+ schemaIsValid(&sParse);
+ }
+ if( sParse.pVdbe ){
+ sqlite3VdbeFinalize(sParse.pVdbe);
+ }
+ assert( 0==(*ppStmt) );
+ rc = sParse.rc;
+ if( sParse.zErrMsg ){
+ sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg);
+ sqlite3DbFree(db, sParse.zErrMsg);
+ }else{
+ sqlite3Error(db, rc);
+ }
+ }else{
+ assert( sParse.zErrMsg==0 );
+ *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
+ rc = SQLITE_OK;
+ sqlite3ErrorClear(db);
+ }
+
+
+ /* Delete any TriggerPrg structures allocated while parsing this statement. */
+ while( sParse.pTriggerPrg ){
+ TriggerPrg *pT = sParse.pTriggerPrg;
+ sParse.pTriggerPrg = pT->pNext;
+ sqlite3DbFree(db, pT);
+ }
+
+end_prepare:
+
+ sqlite3ParseObjectReset(&sParse);
+ return rc;
+}
+static int sqlite3LockAndPrepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ Vdbe *pOld, /* VM being reprepared */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ int cnt = 0;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppStmt = 0;
+ if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ do{
+ /* Make multiple attempts to compile the SQL, until it either succeeds
+ ** or encounters a permanent error. A schema problem after one schema
+ ** reset is considered a permanent error. */
+ rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail);
+ assert( rc==SQLITE_OK || *ppStmt==0 );
+ if( rc==SQLITE_OK || db->mallocFailed ) break;
+ }while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY)
+ || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) );
+ sqlite3BtreeLeaveAll(db);
+ rc = sqlite3ApiExit(db, rc);
+ assert( (rc&db->errMask)==rc );
+ db->busyHandler.nBusy = 0;
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** Rerun the compilation of a statement after a schema change.
+**
+** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
+** if the statement cannot be recompiled because another connection has
+** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error
+** occurs, return SQLITE_SCHEMA.
+*/
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
+ int rc;
+ sqlite3_stmt *pNew;
+ const char *zSql;
+ sqlite3 *db;
+ u8 prepFlags;
+
+ assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
+ zSql = sqlite3_sql((sqlite3_stmt *)p);
+ assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
+ db = sqlite3VdbeDb(p);
+ assert( sqlite3_mutex_held(db->mutex) );
+ prepFlags = sqlite3VdbePrepareFlags(p);
+ rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0);
+ if( rc ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ assert( pNew==0 );
+ return rc;
+ }else{
+ assert( pNew!=0 );
+ }
+ sqlite3VdbeSwap((Vdbe*)pNew, p);
+ sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
+ sqlite3VdbeResetStepResult((Vdbe*)pNew);
+ sqlite3VdbeFinalize((Vdbe*)pNew);
+ return SQLITE_OK;
+}
+
+
+/*
+** Two versions of the official API. Legacy and new use. In the legacy
+** version, the original SQL text is not saved in the prepared statement
+** and so if a schema change occurs, SQLITE_SCHEMA is returned by
+** sqlite3_step(). In the new version, the original SQL text is retained
+** and the statement is automatically recompiled if an schema change
+** occurs.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works
+ ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags
+ ** parameter.
+ **
+ ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0,
+ ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
+ return rc;
+}
+SQLITE_API int sqlite3_prepare_v3(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from
+ ** sqlite3_prepare_v2() only in having the extra prepFlags parameter,
+ ** which is a bit array consisting of zero or more of the
+ ** SQLITE_PREPARE_* flags.
+ **
+ ** Proof by comparison to the implementation of sqlite3_prepare_v2()
+ ** directly above. */
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,
+ SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
+ 0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
+ return rc;
+}
+
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
+*/
+static int sqlite3Prepare16(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ /* This function currently works by first transforming the UTF-16
+ ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
+ ** tricky bit is figuring out the pointer to return in *pzTail.
+ */
+ char *zSql8;
+ const char *zTail8 = 0;
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppStmt = 0;
+ if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( nBytes>=0 ){
+ int sz;
+ const char *z = (const char*)zSql;
+ for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
+ nBytes = sz;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
+ if( zSql8 ){
+ rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8);
+ }
+
+ if( zTail8 && pzTail ){
+ /* If sqlite3_prepare returns a tail pointer, we calculate the
+ ** equivalent pointer into the UTF-16 string by counting the unicode
+ ** characters between zSql8 and zTail8, and then returning a pointer
+ ** the same number of characters into the UTF-16 string.
+ */
+ int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
+ *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
+ }
+ sqlite3DbFree(db, zSql8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Two versions of the official API. Legacy and new use. In the legacy
+** version, the original SQL text is not saved in the prepared statement
+** and so if a schema change occurs, SQLITE_SCHEMA is returned by
+** sqlite3_step(). In the new version, the original SQL text is retained
+** and the statement is automatically recompiled if an schema change
+** occurs.
+*/
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare16_v3(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,
+ SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
+ ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_UTF16 */
+
+/************** End of prepare.c *********************************************/
+/************** Begin file select.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** An instance of the following object is used to record information about
+** how to process the DISTINCT keyword, to simplify passing that information
+** into the selectInnerLoop() routine.
+*/
+typedef struct DistinctCtx DistinctCtx;
+struct DistinctCtx {
+ u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
+ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
+ int tabTnct; /* Ephemeral table used for DISTINCT processing */
+ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
+};
+
+/*
+** An instance of the following object is used to record information about
+** the ORDER BY (or GROUP BY) clause of query is being coded.
+**
+** The aDefer[] array is used by the sorter-references optimization. For
+** example, assuming there is no index that can be used for the ORDER BY,
+** for the query:
+**
+** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
+**
+** it may be more efficient to add just the "a" values to the sorter, and
+** retrieve the associated "bigblob" values directly from table t1 as the
+** 10 smallest "a" values are extracted from the sorter.
+**
+** When the sorter-reference optimization is used, there is one entry in the
+** aDefer[] array for each database table that may be read as values are
+** extracted from the sorter.
+*/
+typedef struct SortCtx SortCtx;
+struct SortCtx {
+ ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
+ int nOBSat; /* Number of ORDER BY terms satisfied by indices */
+ int iECursor; /* Cursor number for the sorter */
+ int regReturn; /* Register holding block-output return address */
+ int labelBkOut; /* Start label for the block-output subroutine */
+ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
+ int labelDone; /* Jump here when done, ex: LIMIT reached */
+ int labelOBLopt; /* Jump here when sorter is full */
+ u8 sortFlags; /* Zero or more SORTFLAG_* bits */
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ u8 nDefer; /* Number of valid entries in aDefer[] */
+ struct DeferredCsr {
+ Table *pTab; /* Table definition */
+ int iCsr; /* Cursor number for table */
+ int nKey; /* Number of PK columns for table pTab (>=1) */
+ } aDefer[4];
+#endif
+ struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
+};
+#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
+
+/*
+** Delete all the content of a Select structure. Deallocate the structure
+** itself depending on the value of bFree
+**
+** If bFree==1, call sqlite3DbFree() on the p object.
+** If bFree==0, Leave the first Select object unfreed
+*/
+static void clearSelect(sqlite3 *db, Select *p, int bFree){
+ while( p ){
+ Select *pPrior = p->pPrior;
+ sqlite3ExprListDelete(db, p->pEList);
+ sqlite3SrcListDelete(db, p->pSrc);
+ sqlite3ExprDelete(db, p->pWhere);
+ sqlite3ExprListDelete(db, p->pGroupBy);
+ sqlite3ExprDelete(db, p->pHaving);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3ExprDelete(db, p->pLimit);
+ if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
+ sqlite3WindowListDelete(db, p->pWinDefn);
+ }
+ while( p->pWin ){
+ assert( p->pWin->ppThis==&p->pWin );
+ sqlite3WindowUnlinkFromSelect(p->pWin);
+ }
+#endif
+ if( bFree ) sqlite3DbFreeNN(db, p);
+ p = pPrior;
+ bFree = 1;
+ }
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+ pDest->eDest = (u8)eDest;
+ pDest->iSDParm = iParm;
+ pDest->iSDParm2 = 0;
+ pDest->zAffSdst = 0;
+ pDest->iSdst = 0;
+ pDest->nSdst = 0;
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+SQLITE_PRIVATE Select *sqlite3SelectNew(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ u32 selFlags, /* Flag parameters, such as SF_Distinct */
+ Expr *pLimit /* LIMIT value. NULL means not used */
+){
+ Select *pNew, *pAllocated;
+ Select standin;
+ pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
+ if( pNew==0 ){
+ assert( pParse->db->mallocFailed );
+ pNew = &standin;
+ }
+ if( pEList==0 ){
+ pEList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3Expr(pParse->db,TK_ASTERISK,0));
+ }
+ pNew->pEList = pEList;
+ pNew->op = TK_SELECT;
+ pNew->selFlags = selFlags;
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
+ pNew->selId = ++pParse->nSelect;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->nSelectRow = 0;
+ if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->pPrior = 0;
+ pNew->pNext = 0;
+ pNew->pLimit = pLimit;
+ pNew->pWith = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNew->pWin = 0;
+ pNew->pWinDefn = 0;
+#endif
+ if( pParse->db->mallocFailed ) {
+ clearSelect(pParse->db, pNew, pNew!=&standin);
+ pAllocated = 0;
+ }else{
+ assert( pNew->pSrc!=0 || pParse->nErr>0 );
+ }
+ return pAllocated;
+}
+
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
+ if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
+}
+
+/*
+** Return a pointer to the right-most SELECT statement in a compound.
+*/
+static Select *findRightmost(Select *p){
+ while( p->pNext ) p = p->pNext;
+ return p;
+}
+
+/*
+** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_CROSS
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+**
+** These are the valid join types:
+**
+**
+** pA pB pC Return Value
+** ------- ----- ----- ------------
+** CROSS - - JT_CROSS
+** INNER - - JT_INNER
+** LEFT - - JT_LEFT|JT_OUTER
+** LEFT OUTER - JT_LEFT|JT_OUTER
+** RIGHT - - JT_RIGHT|JT_OUTER
+** RIGHT OUTER - JT_RIGHT|JT_OUTER
+** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
+** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
+** NATURAL INNER - JT_NATURAL|JT_INNER
+** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
+** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
+** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
+** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
+** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
+** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
+**
+** To preserve historical compatibly, SQLite also accepts a variety
+** of other non-standard and in many cases non-sensical join types.
+** This routine makes as much sense at it can from the nonsense join
+** type and returns a result. Examples of accepted nonsense join types
+** include but are not limited to:
+**
+** INNER CROSS JOIN -> same as JOIN
+** NATURAL CROSS JOIN -> same as NATURAL JOIN
+** OUTER LEFT JOIN -> same as LEFT JOIN
+** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
+** LEFT RIGHT JOIN -> same as FULL JOIN
+** RIGHT OUTER FULL JOIN -> same as FULL JOIN
+** CROSS CROSS CROSS JOIN -> same as JOIN
+**
+** The only restrictions on the join type name are:
+**
+** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
+** or "FULL".
+**
+** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
+** or "FULL".
+**
+** * If "OUTER" is present then there must also be one of
+** "LEFT", "RIGHT", or "FULL"
+*/
+SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ /* 0123456789 123456789 123456789 123 */
+ static const char zKeyText[] = "naturaleftouterightfullinnercross";
+ static const struct {
+ u8 i; /* Beginning of keyword text in zKeyText[] */
+ u8 nChar; /* Length of the keyword in characters */
+ u8 code; /* Join type mask */
+ } aKeyword[] = {
+ /* (0) natural */ { 0, 7, JT_NATURAL },
+ /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
+ /* (2) outer */ { 10, 5, JT_OUTER },
+ /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
+ /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ /* (5) inner */ { 23, 5, JT_INNER },
+ /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<ArraySize(aKeyword); j++){
+ if( p->n==aKeyword[j].nChar
+ && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
+ jointype |= aKeyword[j].code;
+ break;
+ }
+ }
+ testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
+ if( j>=ArraySize(aKeyword) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0 ||
+ (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
+ ){
+ const char *zSp1 = " ";
+ const char *zSp2 = " ";
+ if( pB==0 ){ zSp1++; }
+ if( pC==0 ){ zSp2++; }
+ sqlite3ErrorMsg(pParse, "unknown join type: "
+ "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol){
+ int i;
+ u8 h = sqlite3StrIHash(zCol);
+ Column *pCol;
+ for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
+ if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Mark a subquery result column as having been used.
+*/
+SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
+ assert( pItem!=0 );
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ if( pItem->fg.isNestedFrom ){
+ ExprList *pResults;
+ assert( pItem->pSelect!=0 );
+ pResults = pItem->pSelect->pEList;
+ assert( pResults!=0 );
+ assert( iCol>=0 && iCol<pResults->nExpr );
+ pResults->a[iCol].fg.bUsed = 1;
+ }
+}
+
+/*
+** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
+** table that has a column named zCol. The search is left-to-right.
+** The first match found is returned.
+**
+** When found, set *piTab and *piCol to the table index and column index
+** of the matching column and return TRUE.
+**
+** If not found, return FALSE.
+*/
+static int tableAndColumnIndex(
+ SrcList *pSrc, /* Array of tables to search */
+ int iStart, /* First member of pSrc->a[] to check */
+ int iEnd, /* Last member of pSrc->a[] to check */
+ const char *zCol, /* Name of the column we are looking for */
+ int *piTab, /* Write index of pSrc->a[] here */
+ int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
+ int bIgnoreHidden /* Ignore hidden columns */
+){
+ int i; /* For looping over tables in pSrc */
+ int iCol; /* Index of column matching zCol */
+
+ assert( iEnd<pSrc->nSrc );
+ assert( iStart>=0 );
+ assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
+
+ for(i=iStart; i<=iEnd; i++){
+ iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
+ if( iCol>=0
+ && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
+ ){
+ if( piTab ){
+ sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
+ *piTab = i;
+ *piCol = iCol;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Set the EP_OuterON property on all terms of the given expression.
+** And set the Expr.w.iJoin to iTable for every term in the
+** expression.
+**
+** The EP_OuterON property is used on terms of an expression to tell
+** the OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.w.iJoin tells the WHERE clause processing that the
+** expression depends on table w.iJoin even if that table is not
+** explicitly mentioned in the expression. That information is needed
+** for cases like this:
+**
+** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join. In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5. If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
+ assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
+ while( p ){
+ ExprSetProperty(p, joinFlag);
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(p, EP_NoReduce);
+ p->w.iJoin = iTable;
+ if( p->op==TK_FUNCTION ){
+ assert( ExprUseXList(p) );
+ if( p->x.pList ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
+ }
+ }
+ }
+ sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
+ p = p->pRight;
+ }
+}
+
+/* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
+** is simplified into an ordinary JOIN, and when an ON expression is
+** "pushed down" into the WHERE clause of a subquery.
+**
+** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
+** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
+** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
+**
+** If nullable is true, that means that Expr p might evaluate to NULL even
+** if it is a reference to a NOT NULL column. This can happen, for example,
+** if the table that p references is on the left side of a RIGHT JOIN.
+** If nullable is true, then take care to not remove the EP_CanBeNull bit.
+** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
+*/
+static void unsetJoinExpr(Expr *p, int iTable, int nullable){
+ while( p ){
+ if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
+ ExprClearProperty(p, EP_OuterON|EP_InnerON);
+ if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
+ }
+ if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
+ ExprClearProperty(p, EP_CanBeNull);
+ }
+ if( p->op==TK_FUNCTION ){
+ assert( ExprUseXList(p) );
+ if( p->x.pList ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
+ }
+ }
+ }
+ unsetJoinExpr(p->pLeft, iTable, nullable);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+**
+** * A NATURAL join is converted into a USING join. After that, we
+** do not need to be concerned with NATURAL joins and we only have
+** think about USING joins.
+**
+** * ON and USING clauses result in extra terms being added to the
+** WHERE clause to enforce the specified constraints. The extra
+** WHERE clause terms will be tagged with EP_OuterON or
+** EP_InnerON so that we know that they originated in ON/USING.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc. The right-most
+** table is the last entry. The join operator is held in the entry to
+** the right. Thus entry 1 contains the join operator for the join between
+** entries 0 and 1. Any ON or USING clauses associated with the join are
+** also attached to the right entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqlite3ProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc; /* All tables in the FROM clause */
+ int i, j; /* Loop counters */
+ SrcItem *pLeft; /* Left table being joined */
+ SrcItem *pRight; /* Right table being joined */
+
+ pSrc = p->pSrc;
+ pLeft = &pSrc->a[0];
+ pRight = &pLeft[1];
+ for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+ Table *pRightTab = pRight->pTab;
+ u32 joinType;
+
+ if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
+ joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
+
+ /* If this is a NATURAL join, synthesize an approprate USING clause
+ ** to specify which columns should be joined.
+ */
+ if( pRight->fg.jointype & JT_NATURAL ){
+ IdList *pUsing = 0;
+ if( pRight->fg.isUsing || pRight->u3.pOn ){
+ sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ return 1;
+ }
+ for(j=0; j<pRightTab->nCol; j++){
+ char *zName; /* Name of column in the right table */
+
+ if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
+ zName = pRightTab->aCol[j].zCnName;
+ if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
+ pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
+ if( pUsing ){
+ assert( pUsing->nId>0 );
+ assert( pUsing->a[pUsing->nId-1].zName==0 );
+ pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
+ }
+ }
+ }
+ if( pUsing ){
+ pRight->fg.isUsing = 1;
+ pRight->fg.isSynthUsing = 1;
+ pRight->u3.pUsing = pUsing;
+ }
+ if( pParse->nErr ) return 1;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pRight->fg.isUsing ){
+ IdList *pList = pRight->u3.pUsing;
+ sqlite3 *db = pParse->db;
+ assert( pList!=0 );
+ for(j=0; j<pList->nId; j++){
+ char *zName; /* Name of the term in the USING clause */
+ int iLeft; /* Table on the left with matching column name */
+ int iLeftCol; /* Column number of matching column on the left */
+ int iRightCol; /* Column number of matching column on the right */
+ Expr *pE1; /* Reference to the column on the LEFT of the join */
+ Expr *pE2; /* Reference to the column on the RIGHT of the join */
+ Expr *pEq; /* Equality constraint. pE1 == pE2 */
+
+ zName = pList->a[j].zName;
+ iRightCol = sqlite3ColumnIndex(pRightTab, zName);
+ if( iRightCol<0
+ || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
+ pRight->fg.isSynthUsing)==0
+ ){
+ sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+ "not present in both tables", zName);
+ return 1;
+ }
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
+ sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
+ if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ /* This branch runs if the query contains one or more RIGHT or FULL
+ ** JOINs. If only a single table on the left side of this join
+ ** contains the zName column, then this branch is a no-op.
+ ** But if there are two or more tables on the left side
+ ** of the join, construct a coalesce() function that gathers all
+ ** such tables. Raise an error if more than one of those references
+ ** to zName is not also within a prior USING clause.
+ **
+ ** We really ought to raise an error if there are two or more
+ ** non-USING references to zName on the left of an INNER or LEFT
+ ** JOIN. But older versions of SQLite do not do that, so we avoid
+ ** adding a new error so as to not break legacy applications.
+ */
+ ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
+ static const Token tkCoalesce = { "coalesce", 8 };
+ while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
+ pRight->fg.isSynthUsing)!=0 ){
+ if( pSrc->a[iLeft].fg.isUsing==0
+ || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
+ ){
+ sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
+ zName);
+ break;
+ }
+ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
+ sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
+ }
+ if( pFuncArgs ){
+ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
+ pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
+ }
+ }
+ pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
+ sqlite3SrcItemColumnUsed(pRight, iRightCol);
+ pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
+ assert( pE2!=0 || pEq==0 );
+ if( pEq ){
+ ExprSetProperty(pEq, joinType);
+ assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(pEq, EP_NoReduce);
+ pEq->w.iJoin = pE2->iTable;
+ }
+ p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
+ }
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** an AND operator.
+ */
+ else if( pRight->u3.pOn ){
+ sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
+ p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
+ pRight->u3.pOn = 0;
+ pRight->fg.isOn = 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** An instance of this object holds information (beyond pParse and pSelect)
+** needed to load the next result row that is to be added to the sorter.
+*/
+typedef struct RowLoadInfo RowLoadInfo;
+struct RowLoadInfo {
+ int regResult; /* Store results in array of registers here */
+ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ ExprList *pExtra; /* Extra columns needed by sorter refs */
+ int regExtraResult; /* Where to load the extra columns */
+#endif
+};
+
+/*
+** This routine does the work of loading query data into an array of
+** registers so that it can be added to the sorter.
+*/
+static void innerLoopLoadRow(
+ Parse *pParse, /* Statement under construction */
+ Select *pSelect, /* The query being coded */
+ RowLoadInfo *pInfo /* Info needed to complete the row load */
+){
+ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
+ 0, pInfo->ecelFlags);
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pInfo->pExtra ){
+ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
+ sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
+ }
+#endif
+}
+
+/*
+** Code the OP_MakeRecord instruction that generates the entry to be
+** added into the sorter.
+**
+** Return the register in which the result is stored.
+*/
+static int makeSorterRecord(
+ Parse *pParse,
+ SortCtx *pSort,
+ Select *pSelect,
+ int regBase,
+ int nBase
+){
+ int nOBSat = pSort->nOBSat;
+ Vdbe *v = pParse->pVdbe;
+ int regOut = ++pParse->nMem;
+ if( pSort->pDeferredRowLoad ){
+ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
+ return regOut;
+}
+
+/*
+** Generate code that will push the record in registers regData
+** through regData+nData-1 onto the sorter.
+*/
+static void pushOntoSorter(
+ Parse *pParse, /* Parser context */
+ SortCtx *pSort, /* Information about the ORDER BY clause */
+ Select *pSelect, /* The whole SELECT statement */
+ int regData, /* First register holding data to be sorted */
+ int regOrigData, /* First register holding data before packing */
+ int nData, /* Number of elements in the regData data array */
+ int nPrefixReg /* No. of reg prior to regData available for use */
+){
+ Vdbe *v = pParse->pVdbe; /* Stmt under construction */
+ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
+ int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
+ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
+ int regBase; /* Regs for sorter record */
+ int regRecord = 0; /* Assembled sorter record */
+ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
+ int op; /* Opcode to add sorter record to sorter */
+ int iLimit; /* LIMIT counter */
+ int iSkip = 0; /* End of the sorter insert loop */
+
+ assert( bSeq==0 || bSeq==1 );
+
+ /* Three cases:
+ ** (1) The data to be sorted has already been packed into a Record
+ ** by a prior OP_MakeRecord. In this case nData==1 and regData
+ ** will be completely unrelated to regOrigData.
+ ** (2) All output columns are included in the sort record. In that
+ ** case regData==regOrigData.
+ ** (3) Some output columns are omitted from the sort record due to
+ ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
+ ** SQLITE_ECEL_OMITREF optimization, or due to the
+ ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
+ ** regOrigData is 0 to prevent this routine from trying to copy
+ ** values that might not yet exist.
+ */
+ assert( nData==1 || regData==regOrigData || regOrigData==0 );
+
+ if( nPrefixReg ){
+ assert( nPrefixReg==nExpr+bSeq );
+ regBase = regData - nPrefixReg;
+ }else{
+ regBase = pParse->nMem + 1;
+ pParse->nMem += nBase;
+ }
+ assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
+ iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
+ pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
+ SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
+ if( bSeq ){
+ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
+ }
+ if( nPrefixReg==0 && nData>0 ){
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
+ }
+ if( nOBSat>0 ){
+ int regPrevKey; /* The first nOBSat columns of the previous row */
+ int addrFirst; /* Address of the OP_IfNot opcode */
+ int addrJmp; /* Address of the OP_Jump opcode */
+ VdbeOp *pOp; /* Opcode that opens the sorter */
+ int nKey; /* Number of sorting key columns, including OP_Sequence */
+ KeyInfo *pKI; /* Original KeyInfo on the sorter table */
+
+ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
+ regPrevKey = pParse->nMem+1;
+ pParse->nMem += pSort->nOBSat;
+ nKey = nExpr - pSort->nOBSat + bSeq;
+ if( bSeq ){
+ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
+ }else{
+ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
+ }
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
+ pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
+ if( pParse->db->mallocFailed ) return;
+ pOp->p2 = nKey + nData;
+ pKI = pOp->p4.pKeyInfo;
+ memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
+ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
+ testcase( pKI->nAllField > pKI->nKeyField+2 );
+ pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
+ pKI->nAllField-pKI->nKeyField-1);
+ pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
+ addrJmp = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
+ pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
+ pSort->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
+ if( iLimit ){
+ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeJumpHere(v, addrFirst);
+ sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
+ sqlite3VdbeJumpHere(v, addrJmp);
+ }
+ if( iLimit ){
+ /* At this point the values for the new sorter entry are stored
+ ** in an array of registers. They need to be composed into a record
+ ** and inserted into the sorter if either (a) there are currently
+ ** less than LIMIT+OFFSET items or (b) the new record is smaller than
+ ** the largest record currently in the sorter. If (b) is true and there
+ ** are already LIMIT+OFFSET items in the sorter, delete the largest
+ ** entry before inserting the new one. This way there are never more
+ ** than LIMIT+OFFSET items in the sorter.
+ **
+ ** If the new record does not need to be inserted into the sorter,
+ ** jump to the next iteration of the loop. If the pSort->labelOBLopt
+ ** value is not zero, then it is a label of where to jump. Otherwise,
+ ** just bypass the row insert logic. See the header comment on the
+ ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
+ */
+ int iCsr = pSort->iECursor;
+ sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
+ iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
+ iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
+ }
+ if( regRecord==0 ){
+ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
+ }
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ op = OP_SorterInsert;
+ }else{
+ op = OP_IdxInsert;
+ }
+ sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
+ regBase+nOBSat, nBase-nOBSat);
+ if( iSkip ){
+ sqlite3VdbeChangeP2(v, iSkip,
+ pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
+ }
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+ Vdbe *v, /* Generate code into this VM */
+ int iOffset, /* Register holding the offset counter */
+ int iContinue /* Jump here to skip the current record */
+){
+ if( iOffset>0 ){
+ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
+ VdbeComment((v, "OFFSET"));
+ }
+}
+
+/*
+** Add code that will check to make sure the array of registers starting at
+** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
+** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
+** are available. Which is used depends on the value of parameter eTnctType,
+** as follows:
+**
+** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
+** Build an ephemeral table that contains all entries seen before and
+** skip entries which have been seen before.
+**
+** Parameter iTab is the cursor number of an ephemeral table that must
+** be opened before the VM code generated by this routine is executed.
+** The ephemeral cursor table is queried for a record identical to the
+** record formed by the current array of registers. If one is found,
+** jump to VM address addrRepeat. Otherwise, insert a new record into
+** the ephemeral cursor and proceed.
+**
+** The returned value in this case is a copy of parameter iTab.
+**
+** WHERE_DISTINCT_ORDERED:
+** In this case rows are being delivered sorted order. The ephermal
+** table is not required. Instead, the current set of values
+** is compared against previous row. If they match, the new row
+** is not distinct and control jumps to VM address addrRepeat. Otherwise,
+** the VM program proceeds with processing the new row.
+**
+** The returned value in this case is the register number of the first
+** in an array of registers used to store the previous result row so that
+** it can be compared to the next. The caller must ensure that this
+** register is initialized to NULL. (The fixDistinctOpenEph() routine
+** will take care of this initialization.)
+**
+** WHERE_DISTINCT_UNIQUE:
+** In this case it has already been determined that the rows are distinct.
+** No special action is required. The return value is zero.
+**
+** Parameter pEList is the list of expressions used to generated the
+** contents of each row. It is used by this routine to determine (a)
+** how many elements there are in the array of registers and (b) the
+** collation sequences that should be used for the comparisons if
+** eTnctType is WHERE_DISTINCT_ORDERED.
+*/
+static int codeDistinct(
+ Parse *pParse, /* Parsing and code generating context */
+ int eTnctType, /* WHERE_DISTINCT_* value */
+ int iTab, /* A sorting index used to test for distinctness */
+ int addrRepeat, /* Jump to here if not distinct */
+ ExprList *pEList, /* Expression for each element */
+ int regElem /* First element */
+){
+ int iRet = 0;
+ int nResultCol = pEList->nExpr;
+ Vdbe *v = pParse->pVdbe;
+
+ switch( eTnctType ){
+ case WHERE_DISTINCT_ORDERED: {
+ int i;
+ int iJump; /* Jump destination */
+ int regPrev; /* Previous row content */
+
+ /* Allocate space for the previous row */
+ iRet = regPrev = pParse->nMem+1;
+ pParse->nMem += nResultCol;
+
+ iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
+ for(i=0; i<nResultCol; i++){
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
+ if( i<nResultCol-1 ){
+ sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
+ VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ }
+ assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
+ sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
+ break;
+ }
+
+ case WHERE_DISTINCT_UNIQUE: {
+ /* nothing to do */
+ break;
+ }
+
+ default: {
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3ReleaseTempReg(pParse, r1);
+ iRet = iTab;
+ break;
+ }
+ }
+
+ return iRet;
+}
+
+/*
+** This routine runs after codeDistinct(). It makes necessary
+** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
+** routine made use of. This processing must be done separately since
+** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
+** laid down.
+**
+** WHERE_DISTINCT_NOOP:
+** WHERE_DISTINCT_UNORDERED:
+**
+** No adjustments necessary. This function is a no-op.
+**
+** WHERE_DISTINCT_UNIQUE:
+**
+** The ephemeral table is not needed. So change the
+** OP_OpenEphemeral opcode into an OP_Noop.
+**
+** WHERE_DISTINCT_ORDERED:
+**
+** The ephemeral table is not needed. But we do need register
+** iVal to be initialized to NULL. So change the OP_OpenEphemeral
+** into an OP_Null on the iVal register.
+*/
+static void fixDistinctOpenEph(
+ Parse *pParse, /* Parsing and code generating context */
+ int eTnctType, /* WHERE_DISTINCT_* value */
+ int iVal, /* Value returned by codeDistinct() */
+ int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
+){
+ if( pParse->nErr==0
+ && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
+ ){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
+ if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
+ sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
+ }
+ if( eTnctType==WHERE_DISTINCT_ORDERED ){
+ /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
+ ** bit on the first register of the previous value. This will cause the
+ ** OP_Ne added in codeDistinct() to always fail on the first iteration of
+ ** the loop even if the first row is all NULLs. */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
+ pOp->opcode = OP_Null;
+ pOp->p1 = 1;
+ pOp->p2 = iVal;
+ }
+ }
+}
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+/*
+** This function is called as part of inner-loop generation for a SELECT
+** statement with an ORDER BY that is not optimized by an index. It
+** determines the expressions, if any, that the sorter-reference
+** optimization should be used for. The sorter-reference optimization
+** is used for SELECT queries like:
+**
+** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
+**
+** If the optimization is used for expression "bigblob", then instead of
+** storing values read from that column in the sorter records, the PK of
+** the row from table t1 is stored instead. Then, as records are extracted from
+** the sorter to return to the user, the required value of bigblob is
+** retrieved directly from table t1. If the values are very large, this
+** can be more efficient than storing them directly in the sorter records.
+**
+** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
+** for which the sorter-reference optimization should be enabled.
+** Additionally, the pSort->aDefer[] array is populated with entries
+** for all cursors required to evaluate all selected expressions. Finally.
+** output variable (*ppExtra) is set to an expression list containing
+** expressions for all extra PK values that should be stored in the
+** sorter records.
+*/
+static void selectExprDefer(
+ Parse *pParse, /* Leave any error here */
+ SortCtx *pSort, /* Sorter context */
+ ExprList *pEList, /* Expressions destined for sorter */
+ ExprList **ppExtra /* Expressions to append to sorter record */
+){
+ int i;
+ int nDefer = 0;
+ ExprList *pExtra = 0;
+ for(i=0; i<pEList->nExpr; i++){
+ struct ExprList_item *pItem = &pEList->a[i];
+ if( pItem->u.x.iOrderByCol==0 ){
+ Expr *pExpr = pItem->pExpr;
+ Table *pTab;
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iColumn>=0
+ && ALWAYS( ExprUseYTab(pExpr) )
+ && (pTab = pExpr->y.pTab)!=0
+ && IsOrdinaryTable(pTab)
+ && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
+ ){
+ int j;
+ for(j=0; j<nDefer; j++){
+ if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
+ }
+ if( j==nDefer ){
+ if( nDefer==ArraySize(pSort->aDefer) ){
+ continue;
+ }else{
+ int nKey = 1;
+ int k;
+ Index *pPk = 0;
+ if( !HasRowid(pTab) ){
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ nKey = pPk->nKeyCol;
+ }
+ for(k=0; k<nKey; k++){
+ Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
+ if( pNew ){
+ pNew->iTable = pExpr->iTable;
+ assert( ExprUseYTab(pNew) );
+ pNew->y.pTab = pExpr->y.pTab;
+ pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
+ pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
+ }
+ }
+ pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
+ pSort->aDefer[nDefer].iCsr = pExpr->iTable;
+ pSort->aDefer[nDefer].nKey = nKey;
+ nDefer++;
+ }
+ }
+ pItem->fg.bSorterRef = 1;
+ }
+ }
+ }
+ pSort->nDefer = (u8)nDefer;
+ *ppExtra = pExtra;
+}
+#endif
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab is negative, then the p->pEList expressions
+** are evaluated in order to get the data for this row. If srcTab is
+** zero or more, then data is pulled from srcTab and p->pEList is used only
+** to get the number of columns and the collation sequence for each column.
+*/
+static void selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ int srcTab, /* Pull data from this table if non-negative */
+ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
+ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
+ SelectDest *pDest, /* How to dispose of the results */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak /* Jump here to break out of the inner loop */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int hasDistinct; /* True if the DISTINCT keyword is present */
+ int eDest = pDest->eDest; /* How to dispose of results */
+ int iParm = pDest->iSDParm; /* First argument to disposal method */
+ int nResultCol; /* Number of result columns */
+ int nPrefixReg = 0; /* Number of extra registers before regResult */
+ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
+
+ /* Usually, regResult is the first cell in an array of memory cells
+ ** containing the current result row. In this case regOrig is set to the
+ ** same value. However, if the results are being sent to the sorter, the
+ ** values for any expressions that are also part of the sort-key are omitted
+ ** from this array. In this case regOrig is set to zero. */
+ int regResult; /* Start of memory holding current results */
+ int regOrig; /* Start of memory holding full result (or 0) */
+
+ assert( v );
+ assert( p->pEList!=0 );
+ hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
+ if( pSort && pSort->pOrderBy==0 ) pSort = 0;
+ if( pSort==0 && !hasDistinct ){
+ assert( iContinue!=0 );
+ codeOffset(v, p->iOffset, iContinue);
+ }
+
+ /* Pull the requested columns.
+ */
+ nResultCol = p->pEList->nExpr;
+
+ if( pDest->iSdst==0 ){
+ if( pSort ){
+ nPrefixReg = pSort->pOrderBy->nExpr;
+ if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
+ pParse->nMem += nPrefixReg;
+ }
+ pDest->iSdst = pParse->nMem+1;
+ pParse->nMem += nResultCol;
+ }else if( pDest->iSdst+nResultCol > pParse->nMem ){
+ /* This is an error condition that can result, for example, when a SELECT
+ ** on the right-hand side of an INSERT contains more result columns than
+ ** there are columns in the table on the left. The error will be caught
+ ** and reported later. But we need to make sure enough memory is allocated
+ ** to avoid other spurious errors in the meantime. */
+ pParse->nMem += nResultCol;
+ }
+ pDest->nSdst = nResultCol;
+ regOrig = regResult = pDest->iSdst;
+ if( srcTab>=0 ){
+ for(i=0; i<nResultCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
+ VdbeComment((v, "%s", p->pEList->a[i].zEName));
+ }
+ }else if( eDest!=SRT_Exists ){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ ExprList *pExtra = 0;
+#endif
+ /* If the destination is an EXISTS(...) expression, the actual
+ ** values returned by the SELECT are not required.
+ */
+ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
+ ExprList *pEList;
+ if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
+ ecelFlags = SQLITE_ECEL_DUP;
+ }else{
+ ecelFlags = 0;
+ }
+ if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
+ /* For each expression in p->pEList that is a copy of an expression in
+ ** the ORDER BY clause (pSort->pOrderBy), set the associated
+ ** iOrderByCol value to one more than the index of the ORDER BY
+ ** expression within the sort-key that pushOntoSorter() will generate.
+ ** This allows the p->pEList field to be omitted from the sorted record,
+ ** saving space and CPU cycles. */
+ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
+
+ for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
+ int j;
+ if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
+ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
+ }
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ selectExprDefer(pParse, pSort, p->pEList, &pExtra);
+ if( pExtra && pParse->db->mallocFailed==0 ){
+ /* If there are any extra PK columns to add to the sorter records,
+ ** allocate extra memory cells and adjust the OpenEphemeral
+ ** instruction to account for the larger records. This is only
+ ** required if there are one or more WITHOUT ROWID tables with
+ ** composite primary keys in the SortCtx.aDefer[] array. */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
+ pOp->p2 += (pExtra->nExpr - pSort->nDefer);
+ pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
+ pParse->nMem += pExtra->nExpr;
+ }
+#endif
+
+ /* Adjust nResultCol to account for columns that are omitted
+ ** from the sorter by the optimizations in this branch */
+ pEList = p->pEList;
+ for(i=0; i<pEList->nExpr; i++){
+ if( pEList->a[i].u.x.iOrderByCol>0
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ || pEList->a[i].fg.bSorterRef
+#endif
+ ){
+ nResultCol--;
+ regOrig = 0;
+ }
+ }
+
+ testcase( regOrig );
+ testcase( eDest==SRT_Set );
+ testcase( eDest==SRT_Mem );
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ assert( eDest==SRT_Set || eDest==SRT_Mem
+ || eDest==SRT_Coroutine || eDest==SRT_Output
+ || eDest==SRT_Upfrom );
+ }
+ sRowLoadInfo.regResult = regResult;
+ sRowLoadInfo.ecelFlags = ecelFlags;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ sRowLoadInfo.pExtra = pExtra;
+ sRowLoadInfo.regExtraResult = regResult + nResultCol;
+ if( pExtra ) nResultCol += pExtra->nExpr;
+#endif
+ if( p->iLimit
+ && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
+ && nPrefixReg>0
+ ){
+ assert( pSort!=0 );
+ assert( hasDistinct==0 );
+ pSort->pDeferredRowLoad = &sRowLoadInfo;
+ regOrig = 0;
+ }else{
+ innerLoopLoadRow(pParse, p, &sRowLoadInfo);
+ }
+ }
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( hasDistinct ){
+ int eType = pDistinct->eTnctType;
+ int iTab = pDistinct->tabTnct;
+ assert( nResultCol==p->pEList->nExpr );
+ iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
+ fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
+ if( pSort==0 ){
+ codeOffset(v, p->iOffset, iContinue);
+ }
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ case SRT_Union: {
+ int r1;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
+ break;
+ }
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Fifo:
+ case SRT_DistFifo:
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ testcase( eDest==SRT_Fifo );
+ testcase( eDest==SRT_DistFifo );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
+#ifndef SQLITE_OMIT_CTE
+ if( eDest==SRT_DistFifo ){
+ /* If the destination is DistFifo, then cursor (iParm+1) is open
+ ** on an ephemeral index. If the current row is already present
+ ** in the index, do not write it to the output. If not, add the
+ ** current row to the index and proceed with writing it to the
+ ** output table as well. */
+ int addr = sqlite3VdbeCurrentAddr(v) + 4;
+ sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
+ assert( pSort==0 );
+ }
+#endif
+ if( pSort ){
+ assert( regResult==regOrig );
+ pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
+ }else{
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
+ break;
+ }
+
+ case SRT_Upfrom: {
+ if( pSort ){
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ int i2 = pDest->iSDParm2;
+ int r1 = sqlite3GetTempReg(pParse);
+
+ /* If the UPDATE FROM join is an aggregate that matches no rows, it
+ ** might still be trying to return one row, because that is what
+ ** aggregates do. Don't record that empty row in the output table. */
+ sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
+
+ sqlite3VdbeAddOp3(v, OP_MakeRecord,
+ regResult+(i2<0), nResultCol-(i2<0), r1);
+ if( i2<0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
+ }
+ }
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ if( pSort ){
+ /* At first glance you would think we could optimize out the
+ ** ORDER BY in this case since the order of entries in the set
+ ** does not matter. But there might be a LIMIT clause, in which
+ ** case the order does matter */
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
+ r1, pDest->zAffSdst, nResultCol);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ break;
+ }
+
+
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell or array of
+ ** memory cells and break out of the scan loop.
+ */
+ case SRT_Mem: {
+ if( pSort ){
+ assert( nResultCol<=pDest->nSdst );
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ assert( nResultCol==pDest->nSdst );
+ assert( regResult==iParm );
+ /* The LIMIT clause will jump out of the loop for us */
+ }
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ case SRT_Coroutine: /* Send data to a co-routine */
+ case SRT_Output: { /* Return the results */
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ if( pSort ){
+ pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
+ nPrefixReg);
+ }else if( eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
+ }
+ break;
+ }
+
+#ifndef SQLITE_OMIT_CTE
+ /* Write the results into a priority queue that is order according to
+ ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
+ ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
+ ** pSO->nExpr columns, then make sure all keys are unique by adding a
+ ** final OP_Sequence column. The last column is the record as a blob.
+ */
+ case SRT_DistQueue:
+ case SRT_Queue: {
+ int nKey;
+ int r1, r2, r3;
+ int addrTest = 0;
+ ExprList *pSO;
+ pSO = pDest->pOrderBy;
+ assert( pSO );
+ nKey = pSO->nExpr;
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempRange(pParse, nKey+2);
+ r3 = r2+nKey+1;
+ if( eDest==SRT_DistQueue ){
+ /* If the destination is DistQueue, then cursor (iParm+1) is open
+ ** on a second ephemeral index that holds all values every previously
+ ** added to the queue. */
+ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
+ regResult, nResultCol);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
+ if( eDest==SRT_DistQueue ){
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
+ for(i=0; i<nKey; i++){
+ sqlite3VdbeAddOp2(v, OP_SCopy,
+ regResult + pSO->a[i].u.x.iOrderByCol - 1,
+ r2+i);
+ }
+ sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
+ if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempRange(pParse, r2, nKey+2);
+ break;
+ }
+#endif /* SQLITE_OMIT_CTE */
+
+
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ break;
+ }
+#endif
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached. Except, if
+ ** there is a sorter, in which case the sorter has already limited
+ ** the output for us.
+ */
+ if( pSort==0 && p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
+ }
+}
+
+/*
+** Allocate a KeyInfo object sufficient for an index of N key columns and
+** X extra columns.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
+ int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
+ KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
+ if( p ){
+ p->aSortFlags = (u8*)&p->aColl[N+X];
+ p->nKeyField = (u16)N;
+ p->nAllField = (u16)(N+X);
+ p->enc = ENC(db);
+ p->db = db;
+ p->nRef = 1;
+ memset(&p[1], 0, nExtra);
+ }else{
+ return (KeyInfo*)sqlite3OomFault(db);
+ }
+ return p;
+}
+
+/*
+** Deallocate a KeyInfo object
+*/
+SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){
+ if( p ){
+ assert( p->nRef>0 );
+ p->nRef--;
+ if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
+ }
+}
+
+/*
+** Make a new pointer to a KeyInfo object
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
+ if( p ){
+ assert( p->nRef>0 );
+ p->nRef++;
+ }
+ return p;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return TRUE if a KeyInfo object can be change. The KeyInfo object
+** can only be changed if this is just a single reference to the object.
+**
+** This routine is used only inside of assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
+#endif /* SQLITE_DEBUG */
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause. If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtained from malloc. The calling
+** function is responsible for seeing that this structure is eventually
+** freed.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* Form the KeyInfo object from this ExprList */
+ int iStart, /* Begin with this column of pList */
+ int nExtra /* Add this many extra columns to the end */
+){
+ int nExpr;
+ KeyInfo *pInfo;
+ struct ExprList_item *pItem;
+ sqlite3 *db = pParse->db;
+ int i;
+
+ nExpr = pList->nExpr;
+ pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
+ if( pInfo ){
+ assert( sqlite3KeyInfoIsWriteable(pInfo) );
+ for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
+ pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
+ pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
+ }
+ }
+ return pInfo;
+}
+
+/*
+** Name of the connection operator, used for error messages.
+*/
+SQLITE_PRIVATE const char *sqlite3SelectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
+** is a no-op. Otherwise, it adds a single row of output to the EQP result,
+** where the caption is of the form:
+**
+** "USE TEMP B-TREE FOR xxx"
+**
+** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
+** is determined by the zUsage argument.
+*/
+static void explainTempTable(Parse *pParse, const char *zUsage){
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
+}
+
+/*
+** Assign expression b to lvalue a. A second, no-op, version of this macro
+** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
+** in sqlite3Select() to assign values to structure member variables that
+** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
+** code with #ifndef directives.
+*/
+# define explainSetInteger(a, b) a = b
+
+#else
+/* No-op versions of the explainXXX() functions and macros. */
+# define explainTempTable(y,z)
+# define explainSetInteger(y,z)
+#endif
+
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SortCtx *pSort, /* Information on the ORDER BY clause */
+ int nColumn, /* Number of columns of data */
+ SelectDest *pDest /* Write the sorted results here */
+){
+ Vdbe *v = pParse->pVdbe; /* The prepared statement */
+ int addrBreak = pSort->labelDone; /* Jump here to exit loop */
+ int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
+ int addr; /* Top of output loop. Jump for Next. */
+ int addrOnce = 0;
+ int iTab;
+ ExprList *pOrderBy = pSort->pOrderBy;
+ int eDest = pDest->eDest;
+ int iParm = pDest->iSDParm;
+ int regRow;
+ int regRowid;
+ int iCol;
+ int nKey; /* Number of key columns in sorter record */
+ int iSortTab; /* Sorter cursor to read from */
+ int i;
+ int bSeq; /* True if sorter record includes seq. no. */
+ int nRefKey = 0;
+ struct ExprList_item *aOutEx = p->pEList->a;
+
+ assert( addrBreak<0 );
+ if( pSort->labelBkOut ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
+ sqlite3VdbeGoto(v, addrBreak);
+ sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
+ }
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ /* Open any cursors needed for sorter-reference expressions */
+ for(i=0; i<pSort->nDefer; i++){
+ Table *pTab = pSort->aDefer[i].pTab;
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
+ nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
+ }
+#endif
+
+ iTab = pSort->iECursor;
+ if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
+ if( eDest==SRT_Mem && p->iOffset ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
+ }
+ regRowid = 0;
+ regRow = pDest->iSdst;
+ }else{
+ regRowid = sqlite3GetTempReg(pParse);
+ if( eDest==SRT_EphemTab || eDest==SRT_Table ){
+ regRow = sqlite3GetTempReg(pParse);
+ nColumn = 0;
+ }else{
+ regRow = sqlite3GetTempRange(pParse, nColumn);
+ }
+ }
+ nKey = pOrderBy->nExpr - pSort->nOBSat;
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ int regSortOut = ++pParse->nMem;
+ iSortTab = pParse->nTab++;
+ if( pSort->labelBkOut ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
+ nKey+1+nColumn+nRefKey);
+ if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
+ VdbeCoverage(v);
+ assert( p->iLimit==0 && p->iOffset==0 );
+ sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
+ bSeq = 0;
+ }else{
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
+ codeOffset(v, p->iOffset, addrContinue);
+ iSortTab = iTab;
+ bSeq = 1;
+ if( p->iOffset>0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ }
+ }
+ for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( aOutEx[i].fg.bSorterRef ) continue;
+#endif
+ if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pSort->nDefer ){
+ int iKey = iCol+1;
+ int regKey = sqlite3GetTempRange(pParse, nRefKey);
+
+ for(i=0; i<pSort->nDefer; i++){
+ int iCsr = pSort->aDefer[i].iCsr;
+ Table *pTab = pSort->aDefer[i].pTab;
+ int nKey = pSort->aDefer[i].nKey;
+
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
+ sqlite3VdbeCurrentAddr(v)+1, regKey);
+ }else{
+ int k;
+ int iJmp;
+ assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
+ for(k=0; k<nKey; k++){
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
+ }
+ iJmp = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
+ sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
+ }
+ }
+ sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
+ }
+#endif
+ for(i=nColumn-1; i>=0; i--){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( aOutEx[i].fg.bSorterRef ){
+ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
+ }else
+#endif
+ {
+ int iRead;
+ if( aOutEx[i].u.x.iOrderByCol ){
+ iRead = aOutEx[i].u.x.iOrderByCol-1;
+ }else{
+ iRead = iCol--;
+ }
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
+ VdbeComment((v, "%s", aOutEx[i].zEName));
+ }
+ }
+ switch( eDest ){
+ case SRT_Table:
+ case SRT_EphemTab: {
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case SRT_Set: {
+ assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
+ pDest->zAffSdst, nColumn);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
+ break;
+ }
+ case SRT_Mem: {
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+ case SRT_Upfrom: {
+ int i2 = pDest->iSDParm2;
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
+ if( i2<0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
+ }
+ break;
+ }
+ default: {
+ assert( eDest==SRT_Output || eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ testcase( eDest==SRT_Coroutine );
+ if( eDest==SRT_Output ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
+ }else{
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ }
+ break;
+ }
+ }
+ if( regRowid ){
+ if( eDest==SRT_Set ){
+ sqlite3ReleaseTempRange(pParse, regRow, nColumn);
+ }else{
+ sqlite3ReleaseTempReg(pParse, regRow);
+ }
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ }
+ /* The bottom of the loop
+ */
+ sqlite3VdbeResolveLabel(v, addrContinue);
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
+ }
+ if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** Also try to estimate the size of the returned value and return that
+** result in *pEstWidth.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is
+** considered a column by this function.
+**
+** SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl);
+** SELECT abc FROM (SELECT col AS abc FROM tbl);
+**
+** The declaration type for any expression other than a column is NULL.
+**
+** This routine has either 3 or 6 parameters depending on whether or not
+** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
+*/
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
+#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
+# define columnType(A,B,C,D,E) columnTypeImpl(A,B)
+#endif
+static const char *columnTypeImpl(
+ NameContext *pNC,
+#ifndef SQLITE_ENABLE_COLUMN_METADATA
+ Expr *pExpr
+#else
+ Expr *pExpr,
+ const char **pzOrigDb,
+ const char **pzOrigTab,
+ const char **pzOrigCol
+#endif
+){
+ char const *zType = 0;
+ int j;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ char const *zOrigDb = 0;
+ char const *zOrigTab = 0;
+ char const *zOrigCol = 0;
+#endif
+
+ assert( pExpr!=0 );
+ assert( pNC->pSrcList!=0 );
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ /* The expression is a column. Locate the table the column is being
+ ** extracted from in NameContext.pSrcList. This table may be real
+ ** database table or a subquery.
+ */
+ Table *pTab = 0; /* Table structure column is extracted from */
+ Select *pS = 0; /* Select the column is extracted from */
+ int iCol = pExpr->iColumn; /* Index of column in pTab */
+ while( pNC && !pTab ){
+ SrcList *pTabList = pNC->pSrcList;
+ for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+ if( j<pTabList->nSrc ){
+ pTab = pTabList->a[j].pTab;
+ pS = pTabList->a[j].pSelect;
+ }else{
+ pNC = pNC->pNext;
+ }
+ }
+
+ if( pTab==0 ){
+ /* At one time, code such as "SELECT new.x" within a trigger would
+ ** cause this condition to run. Since then, we have restructured how
+ ** trigger code is generated and so this condition is no longer
+ ** possible. However, it can still be true for statements like
+ ** the following:
+ **
+ ** CREATE TABLE t1(col INTEGER);
+ ** SELECT (SELECT t1.col) FROM FROM t1;
+ **
+ ** when columnType() is called on the expression "t1.col" in the
+ ** sub-select. In this case, set the column type to NULL, even
+ ** though it should really be "INTEGER".
+ **
+ ** This is not a problem, as the column type of "t1.col" is never
+ ** used. When columnType() is called on the expression
+ ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
+ ** branch below. */
+ break;
+ }
+
+ assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
+ if( pS ){
+ /* The "table" is actually a sub-select or a view in the FROM clause
+ ** of the SELECT statement. Return the declaration type and origin
+ ** data for the result-set column of the sub-select.
+ */
+ if( iCol<pS->pEList->nExpr
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ && iCol>=0
+#else
+ && ALWAYS(iCol>=0)
+#endif
+ ){
+ /* If iCol is less than zero, then the expression requests the
+ ** rowid of the sub-select or view. This expression is legal (see
+ ** test case misc2.2.2) - it always evaluates to NULL.
+ */
+ NameContext sNC;
+ Expr *p = pS->pEList->a[iCol].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
+ }
+ }else{
+ /* A real table or a CTE table */
+ assert( !pS );
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ zOrigCol = "rowid";
+ }else{
+ zOrigCol = pTab->aCol[iCol].zCnName;
+ zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
+ }
+ zOrigTab = pTab->zName;
+ if( pNC->pParse && pTab->pSchema ){
+ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+ zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
+ }
+#else
+ assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ }else{
+ zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
+ }
+#endif
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT: {
+ /* The expression is a sub-select. Return the declaration type and
+ ** origin info for the single column in the result set of the SELECT
+ ** statement.
+ */
+ NameContext sNC;
+ Select *pS;
+ Expr *p;
+ assert( ExprUseXSelect(pExpr) );
+ pS = pExpr->x.pSelect;
+ p = pS->pEList->a[0].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+ break;
+ }
+#endif
+ }
+
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ if( pzOrigDb ){
+ assert( pzOrigTab && pzOrigCol );
+ *pzOrigDb = zOrigDb;
+ *pzOrigTab = zOrigTab;
+ *pzOrigCol = zOrigCol;
+ }
+#endif
+ return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+#ifndef SQLITE_OMIT_DECLTYPE
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ NameContext sNC;
+ sNC.pSrcList = pTabList;
+ sNC.pParse = pParse;
+ sNC.pNext = 0;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ const char *zOrigDb = 0;
+ const char *zOrigTab = 0;
+ const char *zOrigCol = 0;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+ /* The vdbe must make its own copy of the column-type and other
+ ** column specific strings, in case the schema is reset before this
+ ** virtual machine is deleted.
+ */
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
+#else
+ zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
+ }
+#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
+}
+
+
+/*
+** Compute the column names for a SELECT statement.
+**
+** The only guarantee that SQLite makes about column names is that if the
+** column has an AS clause assigning it a name, that will be the name used.
+** That is the only documented guarantee. However, countless applications
+** developed over the years have made baseless assumptions about column names
+** and will break if those assumptions changes. Hence, use extreme caution
+** when modifying this routine to avoid breaking legacy.
+**
+** See Also: sqlite3ColumnsFromExprList()
+**
+** The PRAGMA short_column_names and PRAGMA full_column_names settings are
+** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
+** applications should operate this way. Nevertheless, we need to support the
+** other modes for legacy:
+**
+** short=OFF, full=OFF: Column name is the text of the expression has it
+** originally appears in the SELECT statement. In
+** other words, the zSpan of the result expression.
+**
+** short=ON, full=OFF: (This is the default setting). If the result
+** refers directly to a table column, then the
+** result column name is just the table column
+** name: COLUMN. Otherwise use zSpan.
+**
+** full=ON, short=ANY: If the result refers directly to a table column,
+** then the result column name with the table name
+** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
+*/
+SQLITE_PRIVATE void sqlite3GenerateColumnNames(
+ Parse *pParse, /* Parser context */
+ Select *pSelect /* Generate column names for this SELECT statement */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ Table *pTab;
+ SrcList *pTabList;
+ ExprList *pEList;
+ sqlite3 *db = pParse->db;
+ int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
+ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ /* If this is an EXPLAIN, skip this step */
+ if( pParse->explain ){
+ return;
+ }
+#endif
+
+ if( pParse->colNamesSet ) return;
+ /* Column names are determined by the left-most term of a compound select */
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
+ pTabList = pSelect->pSrc;
+ pEList = pSelect->pEList;
+ assert( v!=0 );
+ assert( pTabList!=0 );
+ pParse->colNamesSet = 1;
+ fullName = (db->flags & SQLITE_FullColNames)!=0;
+ srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
+ sqlite3VdbeSetNumCols(v, pEList->nExpr);
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+
+ assert( p!=0 );
+ assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
+ assert( p->op!=TK_COLUMN
+ || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
+ if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
+ /* An AS clause always takes first priority */
+ char *zName = pEList->a[i].zEName;
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
+ }else if( srcName && p->op==TK_COLUMN ){
+ char *zCol;
+ int iCol = p->iColumn;
+ pTab = p->y.pTab;
+ assert( pTab!=0 );
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "rowid";
+ }else{
+ zCol = pTab->aCol[iCol].zCnName;
+ }
+ if( fullName ){
+ char *zName = 0;
+ zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
+ }else{
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
+ }
+ }else{
+ const char *z = pEList->a[i].zEName;
+ z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
+ }
+ }
+ generateColumnTypes(pParse, pTabList, pEList);
+}
+
+/*
+** Given an expression list (which is really the list of expressions
+** that form the result set of a SELECT statement) compute appropriate
+** column names for a table that would hold the expression list.
+**
+** All column names will be unique.
+**
+** Only the column names are computed. Column.zType, Column.zColl,
+** and other fields of Column are zeroed.
+**
+** Return SQLITE_OK on success. If a memory allocation error occurs,
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
+**
+** The only guarantee that SQLite makes about column names is that if the
+** column has an AS clause assigning it a name, that will be the name used.
+** That is the only documented guarantee. However, countless applications
+** developed over the years have made baseless assumptions about column names
+** and will break if those assumptions changes. Hence, use extreme caution
+** when modifying this routine to avoid breaking legacy.
+**
+** See Also: sqlite3GenerateColumnNames()
+*/
+SQLITE_PRIVATE int sqlite3ColumnsFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* Expr list from which to derive column names */
+ i16 *pnCol, /* Write the number of columns here */
+ Column **paCol /* Write the new column list here */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ int i, j; /* Loop counters */
+ u32 cnt; /* Index added to make the name unique */
+ Column *aCol, *pCol; /* For looping over result columns */
+ int nCol; /* Number of columns in the result set */
+ char *zName; /* Column name */
+ int nName; /* Size of name in zName[] */
+ Hash ht; /* Hash table of column names */
+ Table *pTab;
+
+ sqlite3HashInit(&ht);
+ if( pEList ){
+ nCol = pEList->nExpr;
+ aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
+ testcase( aCol==0 );
+ if( NEVER(nCol>32767) ) nCol = 32767;
+ }else{
+ nCol = 0;
+ aCol = 0;
+ }
+ assert( nCol==(i16)nCol );
+ *pnCol = nCol;
+ *paCol = aCol;
+
+ for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
+ struct ExprList_item *pX = &pEList->a[i];
+ struct ExprList_item *pCollide;
+ /* Get an appropriate name for the column
+ */
+ if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
+ /* If the column contains an "AS <name>" phrase, use <name> as the name */
+ }else{
+ Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
+ while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
+ pColExpr = pColExpr->pRight;
+ assert( pColExpr!=0 );
+ }
+ if( pColExpr->op==TK_COLUMN
+ && ALWAYS( ExprUseYTab(pColExpr) )
+ && ALWAYS( pColExpr->y.pTab!=0 )
+ ){
+ /* For columns use the column name name */
+ int iCol = pColExpr->iColumn;
+ pTab = pColExpr->y.pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
+ }else if( pColExpr->op==TK_ID ){
+ assert( !ExprHasProperty(pColExpr, EP_IntValue) );
+ zName = pColExpr->u.zToken;
+ }else{
+ /* Use the original text of the column expression as its name */
+ assert( zName==pX->zEName ); /* pointer comparison intended */
+ }
+ }
+ if( zName && !sqlite3IsTrueOrFalse(zName) ){
+ zName = sqlite3DbStrDup(db, zName);
+ }else{
+ zName = sqlite3MPrintf(db,"column%d",i+1);
+ }
+
+ /* Make sure the column name is unique. If the name is not unique,
+ ** append an integer to the name so that it becomes unique.
+ */
+ cnt = 0;
+ while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
+ if( pCollide->fg.bUsingTerm ){
+ pCol->colFlags |= COLFLAG_NOEXPAND;
+ }
+ nName = sqlite3Strlen30(zName);
+ if( nName>0 ){
+ for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
+ if( zName[j]==':' ) nName = j;
+ }
+ zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
+ if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
+ }
+ pCol->zCnName = zName;
+ pCol->hName = sqlite3StrIHash(zName);
+ if( pX->fg.bNoExpand ){
+ pCol->colFlags |= COLFLAG_NOEXPAND;
+ }
+ sqlite3ColumnPropertiesFromName(0, pCol);
+ if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
+ sqlite3OomFault(db);
+ }
+ }
+ sqlite3HashClear(&ht);
+ if( db->mallocFailed ){
+ for(j=0; j<i; j++){
+ sqlite3DbFree(db, aCol[j].zCnName);
+ }
+ sqlite3DbFree(db, aCol);
+ *paCol = 0;
+ *pnCol = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Add type and collation information to a column list based on
+** a SELECT statement.
+**
+** The column list presumably came from selectColumnNamesFromExprList().
+** The column list has only names, not types or collations. This
+** routine goes through and adds the types and collations.
+**
+** This routine requires that all identifiers in the SELECT
+** statement be resolved.
+*/
+SQLITE_PRIVATE void sqlite3SelectAddColumnTypeAndCollation(
+ Parse *pParse, /* Parsing contexts */
+ Table *pTab, /* Add column type information to this table */
+ Select *pSelect, /* SELECT used to determine types and collations */
+ char aff /* Default affinity for columns */
+){
+ sqlite3 *db = pParse->db;
+ NameContext sNC;
+ Column *pCol;
+ CollSeq *pColl;
+ int i;
+ Expr *p;
+ struct ExprList_item *a;
+
+ assert( pSelect!=0 );
+ assert( (pSelect->selFlags & SF_Resolved)!=0 );
+ assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
+ if( db->mallocFailed ) return;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pSrcList = pSelect->pSrc;
+ a = pSelect->pEList->a;
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
+ const char *zType;
+ i64 n, m;
+ pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
+ p = a[i].pExpr;
+ zType = columnType(&sNC, p, 0, 0, 0);
+ /* pCol->szEst = ... // Column size est for SELECT tables never used */
+ pCol->affinity = sqlite3ExprAffinity(p);
+ if( zType ){
+ m = sqlite3Strlen30(zType);
+ n = sqlite3Strlen30(pCol->zCnName);
+ pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
+ if( pCol->zCnName ){
+ memcpy(&pCol->zCnName[n+1], zType, m+1);
+ pCol->colFlags |= COLFLAG_HASTYPE;
+ }else{
+ testcase( pCol->colFlags & COLFLAG_HASTYPE );
+ pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
+ }
+ }
+ if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ if( pColl ){
+ assert( pTab->pIndex==0 );
+ sqlite3ColumnSetColl(db, pCol, pColl->zName);
+ }
+ }
+ pTab->szTabRow = 1; /* Any non-zero value works */
+}
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
+ Table *pTab;
+ sqlite3 *db = pParse->db;
+ u64 savedFlags;
+
+ savedFlags = db->flags;
+ db->flags &= ~(u64)SQLITE_FullColNames;
+ db->flags |= SQLITE_ShortColNames;
+ sqlite3SelectPrep(pParse, pSelect, 0);
+ db->flags = savedFlags;
+ if( pParse->nErr ) return 0;
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ pTab->nTabRef = 1;
+ pTab->zName = 0;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+ sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
+ sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
+ pTab->iPKey = -1;
+ if( db->mallocFailed ){
+ sqlite3DeleteTable(db, pTab);
+ return 0;
+ }
+ return pTab;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
+ if( pParse->pVdbe ){
+ return pParse->pVdbe;
+ }
+ if( pParse->pToplevel==0
+ && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
+ ){
+ pParse->okConstFactor = 1;
+ }
+ return sqlite3VdbeCreate(pParse);
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
+** are the integer memory register numbers for counters used to compute
+** the limit and offset. If there is no limit and/or offset, then
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
+** and iOffset should have been preset to appropriate default values (zero)
+** prior to calling this routine.
+**
+** The iOffset register (if it exists) is initialized to the value
+** of the OFFSET. The iLimit register is initialized to LIMIT. Register
+** iOffset+1 is initialized to LIMIT+OFFSET.
+**
+** Only if pLimit->pLeft!=0 do the limit registers get
+** redefined. The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+ Vdbe *v = 0;
+ int iLimit = 0;
+ int iOffset;
+ int n;
+ Expr *pLimit = p->pLimit;
+
+ if( p->iLimit ) return;
+
+ /*
+ ** "LIMIT -1" always shows all rows. There is some
+ ** controversy about what the correct behavior should be.
+ ** The current implementation interprets "LIMIT 0" to mean
+ ** no rows.
+ */
+ if( pLimit ){
+ assert( pLimit->op==TK_LIMIT );
+ assert( pLimit->pLeft!=0 );
+ p->iLimit = iLimit = ++pParse->nMem;
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
+ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ if( n==0 ){
+ sqlite3VdbeGoto(v, iBreak);
+ }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
+ p->nSelectRow = sqlite3LogEst((u64)n);
+ p->selFlags |= SF_FixedLimit;
+ }
+ }else{
+ sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
+ VdbeComment((v, "LIMIT counter"));
+ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
+ }
+ if( pLimit->pRight ){
+ p->iOffset = iOffset = ++pParse->nMem;
+ pParse->nMem++; /* Allocate an extra register for limit+offset */
+ sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
+ VdbeComment((v, "OFFSET counter"));
+ sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
+ VdbeComment((v, "LIMIT+OFFSET"));
+ }
+ }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p". Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+ CollSeq *pRet;
+ if( p->pPrior ){
+ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+ }else{
+ pRet = 0;
+ }
+ assert( iCol>=0 );
+ /* iCol must be less than p->pEList->nExpr. Otherwise an error would
+ ** have been thrown during name resolution and we would not have gotten
+ ** this far */
+ if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
+ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+ }
+ return pRet;
+}
+
+/*
+** The select statement passed as the second parameter is a compound SELECT
+** with an ORDER BY clause. This function allocates and returns a KeyInfo
+** structure suitable for implementing the ORDER BY.
+**
+** Space to hold the KeyInfo structure is obtained from malloc. The calling
+** function is responsible for ensuring that this structure is eventually
+** freed.
+*/
+static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
+ ExprList *pOrderBy = p->pOrderBy;
+ int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
+ sqlite3 *db = pParse->db;
+ KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
+ if( pRet ){
+ int i;
+ for(i=0; i<nOrderBy; i++){
+ struct ExprList_item *pItem = &pOrderBy->a[i];
+ Expr *pTerm = pItem->pExpr;
+ CollSeq *pColl;
+
+ if( pTerm->flags & EP_Collate ){
+ pColl = sqlite3ExprCollSeq(pParse, pTerm);
+ }else{
+ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
+ if( pColl==0 ) pColl = db->pDfltColl;
+ pOrderBy->a[i].pExpr =
+ sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
+ }
+ assert( sqlite3KeyInfoIsWriteable(pRet) );
+ pRet->aColl[i] = pColl;
+ pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
+ }
+ }
+
+ return pRet;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** This routine generates VDBE code to compute the content of a WITH RECURSIVE
+** query of the form:
+**
+** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
+** \___________/ \_______________/
+** p->pPrior p
+**
+**
+** There is exactly one reference to the recursive-table in the FROM clause
+** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
+**
+** The setup-query runs once to generate an initial set of rows that go
+** into a Queue table. Rows are extracted from the Queue table one by
+** one. Each row extracted from Queue is output to pDest. Then the single
+** extracted row (now in the iCurrent table) becomes the content of the
+** recursive-table for a recursive-query run. The output of the recursive-query
+** is added back into the Queue table. Then another row is extracted from Queue
+** and the iteration continues until the Queue table is empty.
+**
+** If the compound query operator is UNION then no duplicate rows are ever
+** inserted into the Queue table. The iDistinct table keeps a copy of all rows
+** that have ever been inserted into Queue and causes duplicates to be
+** discarded. If the operator is UNION ALL, then duplicates are allowed.
+**
+** If the query has an ORDER BY, then entries in the Queue table are kept in
+** ORDER BY order and the first entry is extracted for each cycle. Without
+** an ORDER BY, the Queue table is just a FIFO.
+**
+** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
+** have been output to pDest. A LIMIT of zero means to output no rows and a
+** negative LIMIT means to output all rows. If there is also an OFFSET clause
+** with a positive value, then the first OFFSET outputs are discarded rather
+** than being sent to pDest. The LIMIT count does not begin until after OFFSET
+** rows have been skipped.
+*/
+static void generateWithRecursiveQuery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The recursive SELECT to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
+ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
+ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
+ Select *pSetup; /* The setup query */
+ Select *pFirstRec; /* Left-most recursive term */
+ int addrTop; /* Top of the loop */
+ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
+ int iCurrent = 0; /* The Current table */
+ int regCurrent; /* Register holding Current table */
+ int iQueue; /* The Queue table */
+ int iDistinct = 0; /* To ensure unique results if UNION */
+ int eDest = SRT_Fifo; /* How to write to Queue */
+ SelectDest destQueue; /* SelectDest targetting the Queue table */
+ int i; /* Loop counter */
+ int rc; /* Result code */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Expr *pLimit; /* Saved LIMIT and OFFSET */
+ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ){
+ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
+ return;
+ }
+#endif
+
+ /* Obtain authorization to do a recursive query */
+ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
+
+ /* Process the LIMIT and OFFSET clauses, if they exist */
+ addrBreak = sqlite3VdbeMakeLabel(pParse);
+ p->nSelectRow = 320; /* 4 billion rows */
+ computeLimitRegisters(pParse, p, addrBreak);
+ pLimit = p->pLimit;
+ regLimit = p->iLimit;
+ regOffset = p->iOffset;
+ p->pLimit = 0;
+ p->iLimit = p->iOffset = 0;
+ pOrderBy = p->pOrderBy;
+
+ /* Locate the cursor number of the Current table */
+ for(i=0; ALWAYS(i<pSrc->nSrc); i++){
+ if( pSrc->a[i].fg.isRecursive ){
+ iCurrent = pSrc->a[i].iCursor;
+ break;
+ }
+ }
+
+ /* Allocate cursors numbers for Queue and Distinct. The cursor number for
+ ** the Distinct table must be exactly one greater than Queue in order
+ ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
+ iQueue = pParse->nTab++;
+ if( p->op==TK_UNION ){
+ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
+ iDistinct = pParse->nTab++;
+ }else{
+ eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
+ }
+ sqlite3SelectDestInit(&destQueue, eDest, iQueue);
+
+ /* Allocate cursors for Current, Queue, and Distinct. */
+ regCurrent = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
+ if( pOrderBy ){
+ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
+ (char*)pKeyInfo, P4_KEYINFO);
+ destQueue.pOrderBy = pOrderBy;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
+ }
+ VdbeComment((v, "Queue table"));
+ if( iDistinct ){
+ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
+ p->selFlags |= SF_UsesEphemeral;
+ }
+
+ /* Detach the ORDER BY clause from the compound SELECT */
+ p->pOrderBy = 0;
+
+ /* Figure out how many elements of the compound SELECT are part of the
+ ** recursive query. Make sure no recursive elements use aggregate
+ ** functions. Mark the recursive elements as UNION ALL even if they
+ ** are really UNION because the distinctness will be enforced by the
+ ** iDistinct table. pFirstRec is left pointing to the left-most
+ ** recursive term of the CTE.
+ */
+ for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
+ if( pFirstRec->selFlags & SF_Aggregate ){
+ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
+ goto end_of_recursive_query;
+ }
+ pFirstRec->op = TK_ALL;
+ if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
+ }
+
+ /* Store the results of the setup-query in Queue. */
+ pSetup = pFirstRec->pPrior;
+ pSetup->pNext = 0;
+ ExplainQueryPlan((pParse, 1, "SETUP"));
+ rc = sqlite3Select(pParse, pSetup, &destQueue);
+ pSetup->pNext = p;
+ if( rc ) goto end_of_recursive_query;
+
+ /* Find the next row in the Queue and output that row */
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
+
+ /* Transfer the next row in Queue over to Current */
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
+ if( pOrderBy ){
+ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
+ }
+ sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
+
+ /* Output the single row in Current */
+ addrCont = sqlite3VdbeMakeLabel(pParse);
+ codeOffset(v, regOffset, addrCont);
+ selectInnerLoop(pParse, p, iCurrent,
+ 0, 0, pDest, addrCont, addrBreak);
+ if( regLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeResolveLabel(v, addrCont);
+
+ /* Execute the recursive SELECT taking the single row in Current as
+ ** the value for the recursive-table. Store the results in the Queue.
+ */
+ pFirstRec->pPrior = 0;
+ ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
+ sqlite3Select(pParse, p, &destQueue);
+ assert( pFirstRec->pPrior==0 );
+ pFirstRec->pPrior = pSetup;
+
+ /* Keep running the loop until the Queue is empty */
+ sqlite3VdbeGoto(v, addrTop);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+
+end_of_recursive_query:
+ sqlite3ExprListDelete(pParse->db, p->pOrderBy);
+ p->pOrderBy = pOrderBy;
+ p->pLimit = pLimit;
+ return;
+}
+#endif /* SQLITE_OMIT_CTE */
+
+/* Forward references */
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+);
+
+/*
+** Handle the special case of a compound-select that originates from a
+** VALUES clause. By handling this as a special case, we avoid deep
+** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
+** on a VALUES clause.
+**
+** Because the Select object originates from a VALUES clause:
+** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
+** (2) All terms are UNION ALL
+** (3) There is no ORDER BY clause
+**
+** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
+** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
+** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
+** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
+*/
+static int multiSelectValues(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int nRow = 1;
+ int rc = 0;
+ int bShowAll = p->pLimit==0;
+ assert( p->selFlags & SF_MultiValue );
+ do{
+ assert( p->selFlags & SF_Values );
+ assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
+ assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ) return -1;
+#endif
+ if( p->pPrior==0 ) break;
+ assert( p->pPrior->pNext==p );
+ p = p->pPrior;
+ nRow += bShowAll;
+ }while(1);
+ ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
+ nRow==1 ? "" : "S"));
+ while( p ){
+ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
+ if( !bShowAll ) break;
+ p->nSelectRow = nRow;
+ p = p->pNext;
+ }
+ return rc;
+}
+
+/*
+** Return true if the SELECT statement which is known to be the recursive
+** part of a recursive CTE still has its anchor terms attached. If the
+** anchor terms have already been removed, then return false.
+*/
+static int hasAnchor(Select *p){
+ while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
+ return p!=0;
+}
+
+/*
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int rc = SQLITE_OK; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest dest; /* Alternative data destination */
+ Select *pDelete = 0; /* Chain of simple selects to delete */
+ sqlite3 *db; /* Database connection */
+
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
+ ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+ */
+ assert( p && p->pPrior ); /* Calling function guarantees this much */
+ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
+ assert( p->selFlags & SF_Compound );
+ db = pParse->db;
+ pPrior = p->pPrior;
+ dest = *pDest;
+ assert( pPrior->pOrderBy==0 );
+ assert( pPrior->pLimit==0 );
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 ); /* The VDBE already created by calling function */
+
+ /* Create the destination temporary table if necessary
+ */
+ if( dest.eDest==SRT_EphemTab ){
+ assert( p->pEList );
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
+ dest.eDest = SRT_Table;
+ }
+
+ /* Special handling for a compound-select that originates as a VALUES clause.
+ */
+ if( p->selFlags & SF_MultiValue ){
+ rc = multiSelectValues(pParse, p, &dest);
+ if( rc>=0 ) goto multi_select_end;
+ rc = SQLITE_OK;
+ }
+
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ assert( p->pEList->nExpr==pPrior->pEList->nExpr );
+
+#ifndef SQLITE_OMIT_CTE
+ if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
+ generateWithRecursiveQuery(pParse, p, &dest);
+ }else
+#endif
+
+ /* Compound SELECTs that have an ORDER BY clause are handled separately.
+ */
+ if( p->pOrderBy ){
+ return multiSelectOrderBy(pParse, p, pDest);
+ }else{
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( pPrior->pPrior==0 ){
+ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
+ ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
+ }
+#endif
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ switch( p->op ){
+ case TK_ALL: {
+ int addr = 0;
+ int nLimit = 0; /* Initialize to suppress harmless compiler warning */
+ assert( !pPrior->pLimit );
+ pPrior->iLimit = p->iLimit;
+ pPrior->iOffset = p->iOffset;
+ pPrior->pLimit = p->pLimit;
+ SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &dest);
+ pPrior->pLimit = 0;
+ if( rc ){
+ goto multi_select_end;
+ }
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ if( p->iOffset ){
+ sqlite3VdbeAddOp3(v, OP_OffsetLimit,
+ p->iLimit, p->iOffset+1, p->iOffset);
+ }
+ }
+ ExplainQueryPlan((pParse, 1, "UNION ALL"));
+ SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
+ rc = sqlite3Select(pParse, p, &dest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ if( p->pLimit
+ && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
+ && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
+ ){
+ p->nSelectRow = sqlite3LogEst((u64)nLimit);
+ }
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temp table holding result */
+ u8 op = 0; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ Expr *pLimit; /* Saved values of p->nLimit */
+ int addr;
+ SelectDest uniondest;
+
+ testcase( p->op==TK_EXCEPT );
+ testcase( p->op==TK_UNION );
+ priorOp = SRT_Union;
+ if( dest.eDest==priorOp ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ assert( p->pLimit==0 ); /* Not allowed on leftward elements */
+ unionTab = dest.iSDParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ findRightmost(p)->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+ }
+
+
+ /* Code the SELECT statements to our left
+ */
+ assert( !pPrior->pOrderBy );
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+ SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &uniondest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT statement
+ */
+ if( p->op==TK_EXCEPT ){
+ op = SRT_Except;
+ }else{
+ assert( p->op==TK_UNION );
+ op = SRT_Union;
+ }
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ uniondest.eDest = op;
+ ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
+ sqlite3SelectOpName(p->op)));
+ SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
+ rc = sqlite3Select(pParse, p, &uniondest);
+ testcase( rc!=SQLITE_OK );
+ assert( p->pOrderBy==0 );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->pOrderBy = 0;
+ if( p->op==TK_UNION ){
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+ p->iLimit = 0;
+ p->iOffset = 0;
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
+ assert( p->pEList || db->mallocFailed );
+ if( dest.eDest!=priorOp && db->mallocFailed==0 ){
+ int iCont, iBreak, iStart;
+ iBreak = sqlite3VdbeMakeLabel(pParse);
+ iCont = sqlite3VdbeMakeLabel(pParse);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
+ iStart = sqlite3VdbeCurrentAddr(v);
+ selectInnerLoop(pParse, p, unionTab,
+ 0, 0, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
+ }
+ break;
+ }
+ default: assert( p->op==TK_INTERSECT ); {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+ Expr *pLimit;
+ int addr;
+ SelectDest intersectdest;
+ int r1;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ findRightmost(p)->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+ SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &intersectdest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
+ assert( p->addrOpenEphm[1] == -1 );
+ p->addrOpenEphm[1] = addr;
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ intersectdest.iSDParm = tab2;
+ ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
+ sqlite3SelectOpName(p->op)));
+ SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
+ rc = sqlite3Select(pParse, p, &intersectdest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ if( p->nSelectRow>pPrior->nSelectRow ){
+ p->nSelectRow = pPrior->nSelectRow;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ if( rc ) break;
+ assert( p->pEList );
+ iBreak = sqlite3VdbeMakeLabel(pParse);
+ iCont = sqlite3VdbeMakeLabel(pParse);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
+ r1 = sqlite3GetTempReg(pParse);
+ iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, r1);
+ selectInnerLoop(pParse, p, tab1,
+ 0, 0, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
+ break;
+ }
+ }
+
+ #ifndef SQLITE_OMIT_EXPLAIN
+ if( p->pNext==0 ){
+ ExplainQueryPlanPop(pParse);
+ }
+ #endif
+ }
+ if( pParse->nErr ) goto multi_select_end;
+
+ /* Compute collating sequences used by
+ ** temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables.
+ **
+ ** This section is run by the right-most SELECT statement only.
+ ** SELECT statements to the left always skip this part. The right-most
+ ** SELECT might also skip this part if it has no ORDER BY clause and
+ ** no temp tables are required.
+ */
+ if( p->selFlags & SF_UsesEphemeral ){
+ int i; /* Loop counter */
+ KeyInfo *pKeyInfo; /* Collating sequence for the result set */
+ Select *pLoop; /* For looping through SELECT statements */
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
+ int nCol; /* Number of columns in result set */
+
+ assert( p->pNext==0 );
+ assert( p->pEList!=0 );
+ nCol = p->pEList->nExpr;
+ pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
+ if( !pKeyInfo ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto multi_select_end;
+ }
+ for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+ *apColl = multiSelectCollSeq(pParse, p, i);
+ if( 0==*apColl ){
+ *apColl = db->pDfltColl;
+ }
+ }
+
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+ for(i=0; i<2; i++){
+ int addr = pLoop->addrOpenEphm[i];
+ if( addr<0 ){
+ /* If [0] is unused then [1] is also unused. So we can
+ ** always safely abort as soon as the first unused slot is found */
+ assert( pLoop->addrOpenEphm[1]<0 );
+ break;
+ }
+ sqlite3VdbeChangeP2(v, addr, nCol);
+ sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
+ P4_KEYINFO);
+ pLoop->addrOpenEphm[i] = -1;
+ }
+ }
+ sqlite3KeyInfoUnref(pKeyInfo);
+ }
+
+multi_select_end:
+ pDest->iSdst = dest.iSdst;
+ pDest->nSdst = dest.nSdst;
+ if( pDelete ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3SelectDelete,
+ pDelete);
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Error message for when two or more terms of a compound select have different
+** size result sets.
+*/
+SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
+ if( p->selFlags & SF_Values ){
+ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
+ }else{
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns",
+ sqlite3SelectOpName(p->op));
+ }
+}
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statment.
+**
+** The data to be output is contained in pIn->iSdst. There are
+** pIn->nSdst columns to be output. pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is the first register in a vector that
+** records the previous output. mem[regPrev] is a flag that is false
+** if there has been no previous output. If regPrev>0 then code is
+** generated to suppress duplicates. pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SelectDest *pIn, /* Coroutine supplying data */
+ SelectDest *pDest, /* Where to send the data */
+ int regReturn, /* The return address register */
+ int regPrev, /* Previous result register. No uniqueness if 0 */
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */
+ int iBreak /* Jump here if we hit the LIMIT */
+){
+ Vdbe *v = pParse->pVdbe;
+ int iContinue;
+ int addr;
+
+ addr = sqlite3VdbeCurrentAddr(v);
+ iContinue = sqlite3VdbeMakeLabel(pParse);
+
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
+ */
+ if( regPrev ){
+ int addr1, addr2;
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
+ addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+ }
+ if( pParse->db->mallocFailed ) return 0;
+
+ /* Suppress the first OFFSET entries if there is an OFFSET clause
+ */
+ codeOffset(v, p->iOffset, iContinue);
+
+ assert( pDest->eDest!=SRT_Exists );
+ assert( pDest->eDest!=SRT_Table );
+ switch( pDest->eDest ){
+ /* Store the result as data using a unique key.
+ */
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)".
+ */
+ case SRT_Set: {
+ int r1;
+ testcase( pIn->nSdst>1 );
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
+ r1, pDest->zAffSdst, pIn->nSdst);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
+ pIn->iSdst, pIn->nSdst);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop. Note that the select might return multiple columns
+ ** if it is the RHS of a row-value IN operator.
+ */
+ case SRT_Mem: {
+ testcase( pIn->nSdst>1 );
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
+ /* The LIMIT clause will jump out of the loop for us */
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* The results are stored in a sequence of registers
+ ** starting at pDest->iSdst. Then the co-routine yields.
+ */
+ case SRT_Coroutine: {
+ if( pDest->iSdst==0 ){
+ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
+ pDest->nSdst = pIn->nSdst;
+ }
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ break;
+ }
+
+ /* If none of the above, then the result destination must be
+ ** SRT_Output. This routine is never called with any other
+ ** destination other than the ones handled above or SRT_Output.
+ **
+ ** For SRT_Output, results are stored in a sequence of registers.
+ ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
+ ** return the next row of result.
+ */
+ default: {
+ assert( pDest->eDest==SRT_Output );
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
+ break;
+ }
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
+ }
+
+ /* Generate the subroutine return
+ */
+ sqlite3VdbeResolveLabel(v, iContinue);
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+ return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+** <selectA> <operator> <selectB> ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines. Then run the co-routines in parallel and merge the results
+** into the output. In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+** outA: Move the output of the selectA coroutine into the output
+** of the compound query.
+**
+** outB: Move the output of the selectB coroutine into the output
+** of the compound query. (Only generated for UNION and
+** UNION ALL. EXCEPT and INSERTSECT never output a row that
+** appears only in B.)
+**
+** AltB: Called when there is data from both coroutines and A<B.
+**
+** AeqB: Called when there is data from both coroutines and A==B.
+**
+** AgtB: Called when there is data from both coroutines and A>B.
+**
+** EofA: Called when data is exhausted from selectA.
+**
+** EofB: Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which
+** <operator> is used:
+**
+**
+** UNION ALL UNION EXCEPT INTERSECT
+** ------------- ----------------- -------------- -----------------
+** AltB: outA, nextA outA, nextA outA, nextA nextA
+**
+** AeqB: outA, nextA nextA nextA outA, nextA
+**
+** AgtB: outB, nextB outB, nextB nextB nextB
+**
+** EofA: outB, nextB outB, nextB halt halt
+**
+** EofB: outA, nextA outA, nextA outA, nextA halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine. The regPrev register set holds the previously
+** output value. A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom. Like this:
+**
+** goto Init
+** coA: coroutine for left query (A)
+** coB: coroutine for right query (B)
+** outA: output one row of A
+** outB: output one row of B (UNION and UNION ALL only)
+** EofA: ...
+** EofB: ...
+** AltB: ...
+** AeqB: ...
+** AgtB: ...
+** Init: initialize coroutine registers
+** yield coA
+** if eof(A) goto EofA
+** yield coB
+** if eof(B) goto EofB
+** Cmpr: Compare A, B
+** Jump AltB, AeqB, AgtB
+** End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return. EofA and EofB loop
+** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int i, j; /* Loop counters */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Select *pSplit; /* Left-most SELECT in the right-hand group */
+ int nSelect; /* Number of SELECT statements in the compound */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest destA; /* Destination for coroutine A */
+ SelectDest destB; /* Destination for coroutine B */
+ int regAddrA; /* Address register for select-A coroutine */
+ int regAddrB; /* Address register for select-B coroutine */
+ int addrSelectA; /* Address of the select-A coroutine */
+ int addrSelectB; /* Address of the select-B coroutine */
+ int regOutA; /* Address register for the output-A subroutine */
+ int regOutB; /* Address register for the output-B subroutine */
+ int addrOutA; /* Address of the output-A subroutine */
+ int addrOutB = 0; /* Address of the output-B subroutine */
+ int addrEofA; /* Address of the select-A-exhausted subroutine */
+ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
+ int addrEofB; /* Address of the select-B-exhausted subroutine */
+ int addrAltB; /* Address of the A<B subroutine */
+ int addrAeqB; /* Address of the A==B subroutine */
+ int addrAgtB; /* Address of the A>B subroutine */
+ int regLimitA; /* Limit register for select-A */
+ int regLimitB; /* Limit register for select-A */
+ int regPrev; /* A range of registers to hold previous output */
+ int savedLimit; /* Saved value of p->iLimit */
+ int savedOffset; /* Saved value of p->iOffset */
+ int labelCmpr; /* Label for the start of the merge algorithm */
+ int labelEnd; /* Label for the end of the overall SELECT stmt */
+ int addr1; /* Jump instructions that get retargetted */
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
+
+ assert( p->pOrderBy!=0 );
+ assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
+ labelEnd = sqlite3VdbeMakeLabel(pParse);
+ labelCmpr = sqlite3VdbeMakeLabel(pParse);
+
+
+ /* Patch up the ORDER BY clause
+ */
+ op = p->op;
+ assert( p->pPrior->pOrderBy==0 );
+ pOrderBy = p->pOrderBy;
+ assert( pOrderBy );
+ nOrderBy = pOrderBy->nExpr;
+
+ /* For operators other than UNION ALL we have to make sure that
+ ** the ORDER BY clause covers every term of the result set. Add
+ ** terms to the ORDER BY clause as necessary.
+ */
+ if( op!=TK_ALL ){
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+ struct ExprList_item *pItem;
+ for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
+ assert( pItem!=0 );
+ assert( pItem->u.x.iOrderByCol>0 );
+ if( pItem->u.x.iOrderByCol==i ) break;
+ }
+ if( j==nOrderBy ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return SQLITE_NOMEM_BKPT;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = i;
+ p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
+ if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
+ }
+ }
+ }
+
+ /* Compute the comparison permutation and keyinfo that is used with
+ ** the permutation used to determine if the next
+ ** row of results comes from selectA or selectB. Also add explicit
+ ** collations to the ORDER BY clause terms so that when the subqueries
+ ** to the right and the left are evaluated, they use the correct
+ ** collation.
+ */
+ aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
+ if( aPermute ){
+ struct ExprList_item *pItem;
+ aPermute[0] = nOrderBy;
+ for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
+ assert( pItem!=0 );
+ assert( pItem->u.x.iOrderByCol>0 );
+ assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
+ aPermute[i] = pItem->u.x.iOrderByCol - 1;
+ }
+ pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
+ }else{
+ pKeyMerge = 0;
+ }
+
+ /* Allocate a range of temporary registers and the KeyInfo needed
+ ** for the logic that removes duplicate result rows when the
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+ */
+ if( op==TK_ALL ){
+ regPrev = 0;
+ }else{
+ int nExpr = p->pEList->nExpr;
+ assert( nOrderBy>=nExpr || db->mallocFailed );
+ regPrev = pParse->nMem+1;
+ pParse->nMem += nExpr+1;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+ pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
+ if( pKeyDup ){
+ assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
+ for(i=0; i<nExpr; i++){
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+ pKeyDup->aSortFlags[i] = 0;
+ }
+ }
+ }
+
+ /* Separate the left and the right query from one another
+ */
+ nSelect = 1;
+ if( (op==TK_ALL || op==TK_UNION)
+ && OptimizationEnabled(db, SQLITE_BalancedMerge)
+ ){
+ for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
+ nSelect++;
+ assert( pSplit->pPrior->pNext==pSplit );
+ }
+ }
+ if( nSelect<=3 ){
+ pSplit = p;
+ }else{
+ pSplit = p;
+ for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
+ }
+ pPrior = pSplit->pPrior;
+ assert( pPrior!=0 );
+ pSplit->pPrior = 0;
+ pPrior->pNext = 0;
+ assert( p->pOrderBy == pOrderBy );
+ assert( pOrderBy!=0 || db->mallocFailed );
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
+ sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
+ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
+
+ /* Compute the limit registers */
+ computeLimitRegisters(pParse, p, labelEnd);
+ if( p->iLimit && op==TK_ALL ){
+ regLimitA = ++pParse->nMem;
+ regLimitB = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+ regLimitA);
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+ }else{
+ regLimitA = regLimitB = 0;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = 0;
+
+ regAddrA = ++pParse->nMem;
+ regAddrB = ++pParse->nMem;
+ regOutA = ++pParse->nMem;
+ regOutB = ++pParse->nMem;
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+ ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
+
+ /* Generate a coroutine to evaluate the SELECT statement to the
+ ** left of the compound operator - the "A" select.
+ */
+ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
+ addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
+ VdbeComment((v, "left SELECT"));
+ pPrior->iLimit = regLimitA;
+ ExplainQueryPlan((pParse, 1, "LEFT"));
+ sqlite3Select(pParse, pPrior, &destA);
+ sqlite3VdbeEndCoroutine(v, regAddrA);
+ sqlite3VdbeJumpHere(v, addr1);
+
+ /* Generate a coroutine to evaluate the SELECT statement on
+ ** the right - the "B" select
+ */
+ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
+ addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
+ VdbeComment((v, "right SELECT"));
+ savedLimit = p->iLimit;
+ savedOffset = p->iOffset;
+ p->iLimit = regLimitB;
+ p->iOffset = 0;
+ ExplainQueryPlan((pParse, 1, "RIGHT"));
+ sqlite3Select(pParse, p, &destB);
+ p->iLimit = savedLimit;
+ p->iOffset = savedOffset;
+ sqlite3VdbeEndCoroutine(v, regAddrB);
+
+ /* Generate a subroutine that outputs the current row of the A
+ ** select as the next output row of the compound select.
+ */
+ VdbeNoopComment((v, "Output routine for A"));
+ addrOutA = generateOutputSubroutine(pParse,
+ p, &destA, pDest, regOutA,
+ regPrev, pKeyDup, labelEnd);
+
+ /* Generate a subroutine that outputs the current row of the B
+ ** select as the next output row of the compound select.
+ */
+ if( op==TK_ALL || op==TK_UNION ){
+ VdbeNoopComment((v, "Output routine for B"));
+ addrOutB = generateOutputSubroutine(pParse,
+ p, &destB, pDest, regOutB,
+ regPrev, pKeyDup, labelEnd);
+ }
+ sqlite3KeyInfoUnref(pKeyDup);
+
+ /* Generate a subroutine to run when the results from select A
+ ** are exhausted and only data in select B remains.
+ */
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){
+ addrEofA_noB = addrEofA = labelEnd;
+ }else{
+ VdbeNoopComment((v, "eof-A subroutine"));
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
+ VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrEofA);
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ }
+
+ /* Generate a subroutine to run when the results from select B
+ ** are exhausted and only data in select A remains.
+ */
+ if( op==TK_INTERSECT ){
+ addrEofB = addrEofA;
+ if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
+ }else{
+ VdbeNoopComment((v, "eof-B subroutine"));
+ addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrEofB);
+ }
+
+ /* Generate code to handle the case of A<B
+ */
+ VdbeNoopComment((v, "A-lt-B subroutine"));
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+
+ /* Generate code to handle the case of A==B
+ */
+ if( op==TK_ALL ){
+ addrAeqB = addrAltB;
+ }else if( op==TK_INTERSECT ){
+ addrAeqB = addrAltB;
+ addrAltB++;
+ }else{
+ VdbeNoopComment((v, "A-eq-B subroutine"));
+ addrAeqB =
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+ }
+
+ /* Generate code to handle the case of A>B
+ */
+ VdbeNoopComment((v, "A-gt-B subroutine"));
+ addrAgtB = sqlite3VdbeCurrentAddr(v);
+ if( op==TK_ALL || op==TK_UNION ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ }
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+
+ /* This code runs once to initialize everything.
+ */
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
+
+ /* Implement the main merge loop
+ */
+ sqlite3VdbeResolveLabel(v, labelCmpr);
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
+ (char*)pKeyMerge, P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
+
+ /* Jump to the this point in order to terminate the query.
+ */
+ sqlite3VdbeResolveLabel(v, labelEnd);
+
+ /* Reassemble the compound query so that it will be freed correctly
+ ** by the calling function */
+ if( pSplit->pPrior ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
+ }
+ pSplit->pPrior = pPrior;
+ pPrior->pNext = pSplit;
+ sqlite3ExprListDelete(db, pPrior->pOrderBy);
+ pPrior->pOrderBy = 0;
+
+ /*** TBD: Insert subroutine calls to close cursors on incomplete
+ **** subqueries ****/
+ ExplainQueryPlanPop(pParse);
+ return pParse->nErr!=0;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+
+/* An instance of the SubstContext object describes an substitution edit
+** to be performed on a parse tree.
+**
+** All references to columns in table iTable are to be replaced by corresponding
+** expressions in pEList.
+**
+** ## About "isOuterJoin":
+**
+** The isOuterJoin column indicates that the replacement will occur into a
+** position in the parent that NULL-able due to an OUTER JOIN. Either the
+** target slot in the parent is the right operand of a LEFT JOIN, or one of
+** the left operands of a RIGHT JOIN. In either case, we need to potentially
+** bypass the substituted expression with OP_IfNullRow.
+**
+** Suppose the original expression integer constant. Even though the table
+** has the nullRow flag set, because the expression is an integer constant,
+** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
+** that checks to see if the nullRow flag is set on the table. If the nullRow
+** flag is set, then the value in the register is set to NULL and the original
+** expression is bypassed. If the nullRow flag is not set, then the original
+** expression runs to populate the register.
+**
+** Example where this is needed:
+**
+** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
+** CREATE TABLE t2(x INT UNIQUE);
+**
+** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
+**
+** When the subquery on the right side of the LEFT JOIN is flattened, we
+** have to add OP_IfNullRow in front of the OP_Integer that implements the
+** "m" value of the subquery so that a NULL will be loaded instead of 59
+** when processing a non-matched row of the left.
+*/
+typedef struct SubstContext {
+ Parse *pParse; /* The parsing context */
+ int iTable; /* Replace references to this table */
+ int iNewTable; /* New table number */
+ int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
+ ExprList *pEList; /* Replacement expressions */
+} SubstContext;
+
+/* Forward Declarations */
+static void substExprList(SubstContext*, ExprList*);
+static void substSelect(SubstContext*, Select*, int);
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.)
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine makes the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static Expr *substExpr(
+ SubstContext *pSubst, /* Description of the substitution */
+ Expr *pExpr /* Expr in which substitution occurs */
+){
+ if( pExpr==0 ) return 0;
+ if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
+ && pExpr->w.iJoin==pSubst->iTable
+ ){
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ pExpr->w.iJoin = pSubst->iNewTable;
+ }
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pSubst->iTable
+ && !ExprHasProperty(pExpr, EP_FixedCol)
+ ){
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ if( pExpr->iColumn<0 ){
+ pExpr->op = TK_NULL;
+ }else
+#endif
+ {
+ Expr *pNew;
+ Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
+ Expr ifNullRow;
+ assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
+ assert( pExpr->pRight==0 );
+ if( sqlite3ExprIsVector(pCopy) ){
+ sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
+ }else{
+ sqlite3 *db = pSubst->pParse->db;
+ if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
+ memset(&ifNullRow, 0, sizeof(ifNullRow));
+ ifNullRow.op = TK_IF_NULL_ROW;
+ ifNullRow.pLeft = pCopy;
+ ifNullRow.iTable = pSubst->iNewTable;
+ ifNullRow.flags = EP_IfNullRow;
+ pCopy = &ifNullRow;
+ }
+ testcase( ExprHasProperty(pCopy, EP_Subquery) );
+ pNew = sqlite3ExprDup(db, pCopy, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pNew);
+ return pExpr;
+ }
+ if( pSubst->isOuterJoin ){
+ ExprSetProperty(pNew, EP_CanBeNull);
+ }
+ if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
+ sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
+ pExpr->flags & (EP_OuterON|EP_InnerON));
+ }
+ sqlite3ExprDelete(db, pExpr);
+ pExpr = pNew;
+ if( pExpr->op==TK_TRUEFALSE ){
+ pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
+ pExpr->op = TK_INTEGER;
+ ExprSetProperty(pExpr, EP_IntValue);
+ }
+
+ /* Ensure that the expression now has an implicit collation sequence,
+ ** just as it did when it was a column of a view or sub-query. */
+ if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
+ CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
+ pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
+ (pColl ? pColl->zName : "BINARY")
+ );
+ }
+ ExprClearProperty(pExpr, EP_Collate);
+ }
+ }
+ }else{
+ if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
+ pExpr->iTable = pSubst->iNewTable;
+ }
+ pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
+ pExpr->pRight = substExpr(pSubst, pExpr->pRight);
+ if( ExprUseXSelect(pExpr) ){
+ substSelect(pSubst, pExpr->x.pSelect, 1);
+ }else{
+ substExprList(pSubst, pExpr->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ Window *pWin = pExpr->y.pWin;
+ pWin->pFilter = substExpr(pSubst, pWin->pFilter);
+ substExprList(pSubst, pWin->pPartition);
+ substExprList(pSubst, pWin->pOrderBy);
+ }
+#endif
+ }
+ return pExpr;
+}
+static void substExprList(
+ SubstContext *pSubst, /* Description of the substitution */
+ ExprList *pList /* List to scan and in which to make substitutes */
+){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
+ }
+}
+static void substSelect(
+ SubstContext *pSubst, /* Description of the substitution */
+ Select *p, /* SELECT statement in which to make substitutions */
+ int doPrior /* Do substitutes on p->pPrior too */
+){
+ SrcList *pSrc;
+ SrcItem *pItem;
+ int i;
+ if( !p ) return;
+ do{
+ substExprList(pSubst, p->pEList);
+ substExprList(pSubst, p->pGroupBy);
+ substExprList(pSubst, p->pOrderBy);
+ p->pHaving = substExpr(pSubst, p->pHaving);
+ p->pWhere = substExpr(pSubst, p->pWhere);
+ pSrc = p->pSrc;
+ assert( pSrc!=0 );
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ substSelect(pSubst, pItem->pSelect, 1);
+ if( pItem->fg.isTabFunc ){
+ substExprList(pSubst, pItem->u1.pFuncArg);
+ }
+ }
+ }while( doPrior && (p = p->pPrior)!=0 );
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** pSelect is a SELECT statement and pSrcItem is one item in the FROM
+** clause of that SELECT.
+**
+** This routine scans the entire SELECT statement and recomputes the
+** pSrcItem->colUsed mask.
+*/
+static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
+ SrcItem *pItem;
+ if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
+ pItem = pWalker->u.pSrcItem;
+ if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
+ if( pExpr->iColumn<0 ) return WRC_Continue;
+ pItem->colUsed |= sqlite3ExprColUsed(pExpr);
+ return WRC_Continue;
+}
+static void recomputeColumnsUsed(
+ Select *pSelect, /* The complete SELECT statement */
+ SrcItem *pSrcItem /* Which FROM clause item to recompute */
+){
+ Walker w;
+ if( NEVER(pSrcItem->pTab==0) ) return;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = recomputeColumnsUsedExpr;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.u.pSrcItem = pSrcItem;
+ pSrcItem->colUsed = 0;
+ sqlite3WalkSelect(&w, pSelect);
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** Assign new cursor numbers to each of the items in pSrc. For each
+** new cursor number assigned, set an entry in the aCsrMap[] array
+** to map the old cursor number to the new:
+**
+** aCsrMap[iOld+1] = iNew;
+**
+** The array is guaranteed by the caller to be large enough for all
+** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
+**
+** If pSrc contains any sub-selects, call this routine recursively
+** on the FROM clause of each such sub-select, with iExcept set to -1.
+*/
+static void srclistRenumberCursors(
+ Parse *pParse, /* Parse context */
+ int *aCsrMap, /* Array to store cursor mappings in */
+ SrcList *pSrc, /* FROM clause to renumber */
+ int iExcept /* FROM clause item to skip */
+){
+ int i;
+ SrcItem *pItem;
+ for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
+ if( i!=iExcept ){
+ Select *p;
+ assert( pItem->iCursor < aCsrMap[0] );
+ if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
+ aCsrMap[pItem->iCursor+1] = pParse->nTab++;
+ }
+ pItem->iCursor = aCsrMap[pItem->iCursor+1];
+ for(p=pItem->pSelect; p; p=p->pPrior){
+ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
+ }
+ }
+ }
+}
+
+/*
+** *piCursor is a cursor number. Change it if it needs to be mapped.
+*/
+static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
+ int *aCsrMap = pWalker->u.aiCol;
+ int iCsr = *piCursor;
+ if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
+ *piCursor = aCsrMap[iCsr+1];
+ }
+}
+
+/*
+** Expression walker callback used by renumberCursors() to update
+** Expr objects to match newly assigned cursor numbers.
+*/
+static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
+ int op = pExpr->op;
+ if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
+ renumberCursorDoMapping(pWalker, &pExpr->iTable);
+ }
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
+** of the SELECT statement passed as the second argument, and to each
+** cursor in the FROM clause of any FROM clause sub-selects, recursively.
+** Except, do not assign a new cursor number to the iExcept'th element in
+** the FROM clause of (*p). Update all expressions and other references
+** to refer to the new cursor numbers.
+**
+** Argument aCsrMap is an array that may be used for temporary working
+** space. Two guarantees are made by the caller:
+**
+** * the array is larger than the largest cursor number used within the
+** select statement passed as an argument, and
+**
+** * the array entries for all cursor numbers that do *not* appear in
+** FROM clauses of the select statement as described above are
+** initialized to zero.
+*/
+static void renumberCursors(
+ Parse *pParse, /* Parse context */
+ Select *p, /* Select to renumber cursors within */
+ int iExcept, /* FROM clause item to skip */
+ int *aCsrMap /* Working space */
+){
+ Walker w;
+ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
+ memset(&w, 0, sizeof(w));
+ w.u.aiCol = aCsrMap;
+ w.xExprCallback = renumberCursorsCb;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ sqlite3WalkSelect(&w, p);
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** This routine attempts to flatten subqueries as a performance optimization.
+** This routine returns 1 if it makes changes and 0 if no flattening occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simplification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is subject to the following constraints:
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** The subquery and the outer query cannot both be aggregates.
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** (2) If the subquery is an aggregate then
+** (2a) the outer query must not be a join and
+** (2b) the outer query must not use subqueries
+** other than the one FROM-clause subquery that is a candidate
+** for flattening. (This is due to ticket [2f7170d73bf9abf80]
+** from 2015-02-09.)
+**
+** (3) If the subquery is the right operand of a LEFT JOIN then
+** (3a) the subquery may not be a join and
+** (3b) the FROM clause of the subquery may not contain a virtual
+** table and
+** (3c) the outer query may not be an aggregate.
+** (3d) the outer query may not be DISTINCT.
+** See also (26) for restrictions on RIGHT JOIN.
+**
+** (4) The subquery can not be DISTINCT.
+**
+** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
+** sub-queries that were excluded from this optimization. Restriction
+** (4) has since been expanded to exclude all DISTINCT subqueries.
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** If the subquery is aggregate, the outer query may not be DISTINCT.
+**
+** (7) The subquery must have a FROM clause. TODO: For subqueries without
+** A FROM clause, consider adding a FROM clause with the special
+** table sqlite_once that consists of a single row containing a
+** single NULL.
+**
+** (8) If the subquery uses LIMIT then the outer query may not be a join.
+**
+** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
+**
+** (**) Restriction (10) was removed from the code on 2005-02-05 but we
+** accidently carried the comment forward until 2014-09-15. Original
+** constraint: "If the subquery is aggregate then the outer query
+** may not use LIMIT."
+**
+** (11) The subquery and the outer query may not both have ORDER BY clauses.
+**
+** (**) Not implemented. Subsumed into restriction (3). Was previously
+** a separate restriction deriving from ticket #350.
+**
+** (13) The subquery and outer query may not both use LIMIT.
+**
+** (14) The subquery may not use OFFSET.
+**
+** (15) If the outer query is part of a compound select, then the
+** subquery may not use LIMIT.
+** (See ticket #2339 and ticket [02a8e81d44]).
+**
+** (16) If the outer query is aggregate, then the subquery may not
+** use ORDER BY. (Ticket #2942) This used to not matter
+** until we introduced the group_concat() function.
+**
+** (17) If the subquery is a compound select, then
+** (17a) all compound operators must be a UNION ALL, and
+** (17b) no terms within the subquery compound may be aggregate
+** or DISTINCT, and
+** (17c) every term within the subquery compound must have a FROM clause
+** (17d) the outer query may not be
+** (17d1) aggregate, or
+** (17d2) DISTINCT
+** (17e) the subquery may not contain window functions, and
+** (17f) the subquery must not be the RHS of a LEFT JOIN.
+** (17g) either the subquery is the first element of the outer
+** query or there are no RIGHT or FULL JOINs in any arm
+** of the subquery. (This is a duplicate of condition (27b).)
+**
+** The parent and sub-query may contain WHERE clauses. Subject to
+** rules (11), (13) and (14), they may also contain ORDER BY,
+** LIMIT and OFFSET clauses. The subquery cannot use any compound
+** operator other than UNION ALL because all the other compound
+** operators have an implied DISTINCT which is disallowed by
+** restriction (4).
+**
+** Also, each component of the sub-query must return the same number
+** of result columns. This is actually a requirement for any compound
+** SELECT statement, but all the code here does is make sure that no
+** such (illegal) sub-query is flattened. The caller will detect the
+** syntax error and return a detailed message.
+**
+** (18) If the sub-query is a compound select, then all terms of the
+** ORDER BY clause of the parent must be copies of a term returned
+** by the parent query.
+**
+** (19) If the subquery uses LIMIT then the outer query may not
+** have a WHERE clause.
+**
+** (20) If the sub-query is a compound select, then it must not use
+** an ORDER BY clause. Ticket #3773. We could relax this constraint
+** somewhat by saying that the terms of the ORDER BY clause must
+** appear as unmodified result columns in the outer query. But we
+** have other optimizations in mind to deal with that case.
+**
+** (21) If the subquery uses LIMIT then the outer query may not be
+** DISTINCT. (See ticket [752e1646fc]).
+**
+** (22) The subquery may not be a recursive CTE.
+**
+** (23) If the outer query is a recursive CTE, then the sub-query may not be
+** a compound query. This restriction is because transforming the
+** parent to a compound query confuses the code that handles
+** recursive queries in multiSelect().
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** The subquery may not be an aggregate that uses the built-in min() or
+** or max() functions. (Without this restriction, a query like:
+** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
+** return the value X for which Y was maximal.)
+**
+** (25) If either the subquery or the parent query contains a window
+** function in the select list or ORDER BY clause, flattening
+** is not attempted.
+**
+** (26) The subquery may not be the right operand of a RIGHT JOIN.
+** See also (3) for restrictions on LEFT JOIN.
+**
+** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
+** is the first element of the parent query. This must be the
+** the case if:
+** (27a) the subquery is not compound query, and
+** (27b) the subquery is a compound query and the RIGHT JOIN occurs
+** in any arm of the compound query. (See also (17g).)
+**
+** (28) The subquery is not a MATERIALIZED CTE.
+**
+** (29) Either the subquery is not the right-hand operand of a join with an
+** ON or USING clause nor the right-hand operand of a NATURAL JOIN, or
+** the right-most table within the FROM clause of the subquery
+** is not part of an outer join.
+**
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg /* True if outer SELECT uses aggregate functions */
+){
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ Select *pParent; /* Current UNION ALL term of the other query */
+ Select *pSub; /* The inner query or "subquery" */
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
+ int iNewParent = -1;/* Replacement table for iParent */
+ int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
+ int i; /* Loop counter */
+ Expr *pWhere; /* The WHERE clause */
+ SrcItem *pSubitem; /* The subquery */
+ sqlite3 *db = pParse->db;
+ Walker w; /* Walker to persist agginfo data */
+ int *aCsrMap = 0;
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ assert( p!=0 );
+ assert( p->pPrior==0 );
+ if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSubitem = &pSrc->a[iFrom];
+ iParent = pSubitem->iCursor;
+ pSub = pSubitem->pSelect;
+ assert( pSub!=0 );
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
+#endif
+
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+ ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
+ ** because they could be computed at compile-time. But when LIMIT and OFFSET
+ ** became arbitrary expressions, we were forced to add restrictions (13)
+ ** and (14). */
+ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
+ if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
+ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
+ return 0; /* Restriction (15) */
+ }
+ if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
+ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
+ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
+ return 0; /* Restrictions (8)(9) */
+ }
+ if( p->pOrderBy && pSub->pOrderBy ){
+ return 0; /* Restriction (11) */
+ }
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
+ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
+ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
+ return 0; /* Restriction (21) */
+ }
+ if( pSub->selFlags & (SF_Recursive) ){
+ return 0; /* Restrictions (22) */
+ }
+
+ /*
+ ** If the subquery is the right operand of a LEFT JOIN, then the
+ ** subquery may not be a join itself (3a). Example of why this is not
+ ** allowed:
+ **
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
+ **
+ ** which is not at all the same thing.
+ **
+ ** If the subquery is the right operand of a LEFT JOIN, then the outer
+ ** query cannot be an aggregate. (3c) This is an artifact of the way
+ ** aggregates are processed - there is no mechanism to determine if
+ ** the LEFT JOIN table should be all-NULL.
+ **
+ ** See also tickets #306, #350, and #3300.
+ */
+ if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
+ if( pSubSrc->nSrc>1 /* (3a) */
+ || isAgg /* (3c) */
+ || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
+ || (p->selFlags & SF_Distinct)!=0 /* (3d) */
+ || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
+ ){
+ return 0;
+ }
+ isOuterJoin = 1;
+ }
+#ifdef SQLITE_EXTRA_IFNULLROW
+ else if( iFrom>0 && !isAgg ){
+ /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for
+ ** every reference to any result column from subquery in a join, even
+ ** though they are not necessary. This will stress-test the OP_IfNullRow
+ ** opcode. */
+ isOuterJoin = -1;
+ }
+#endif
+
+ assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
+ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ return 0; /* Restriction (27a) */
+ }
+ if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
+ return 0; /* (28) */
+ }
+
+ /* Restriction (29):
+ **
+ ** We do not want two constraints on the same term of the flattened
+ ** query where one constraint has EP_InnerON and the other is EP_OuterON.
+ ** To prevent this, one or the other of the following conditions must be
+ ** false:
+ **
+ ** (29a) The right-most entry in the FROM clause of the subquery
+ ** must not be part of an outer join.
+ **
+ ** (29b) The subquery itself must not be the right operand of a
+ ** NATURAL join or a join that as an ON or USING clause.
+ **
+ ** These conditions are sufficient to keep an EP_OuterON from being
+ ** flattened into an EP_InnerON. Restrictions (3a) and (27a) prevent
+ ** an EP_InnerON from being flattened into an EP_OuterON.
+ */
+ if( pSubSrc->nSrc>=2
+ && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0
+ ){
+ if( (pSubitem->fg.jointype & JT_NATURAL)!=0
+ || pSubitem->fg.isUsing
+ || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */
+ || pSubitem->fg.isOn
+ ){
+ return 0;
+ }
+ }
+
+ /* Restriction (17): If the sub-query is a compound SELECT, then it must
+ ** use only the UNION ALL operator. And none of the simple select queries
+ ** that make up the compound SELECT are allowed to be aggregate or distinct
+ ** queries.
+ */
+ if( pSub->pPrior ){
+ if( pSub->pOrderBy ){
+ return 0; /* Restriction (20) */
+ }
+ if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
+ return 0; /* (17d1), (17d2), or (17f) */
+ }
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ assert( pSub->pSrc!=0 );
+ assert( (pSub->selFlags & SF_Recursive)==0 );
+ assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
+ if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
+ || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
+ || pSub1->pSrc->nSrc<1 /* (17c) */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ || pSub1->pWin /* (17e) */
+#endif
+ ){
+ return 0;
+ }
+ if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ /* Without this restriction, the JT_LTORJ flag would end up being
+ ** omitted on left-hand tables of the right join that is being
+ ** flattened. */
+ return 0; /* Restrictions (17g), (27b) */
+ }
+ testcase( pSub1->pSrc->nSrc>1 );
+ }
+
+ /* Restriction (18). */
+ if( p->pOrderBy ){
+ int ii;
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
+ }
+ }
+
+ /* Restriction (23) */
+ if( (p->selFlags & SF_Recursive) ) return 0;
+
+ if( pSrc->nSrc>1 ){
+ if( pParse->nSelect>500 ) return 0;
+ if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
+ aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
+ if( aCsrMap ) aCsrMap[0] = pParse->nTab;
+ }
+ }
+
+ /***** If we reach this point, flattening is permitted. *****/
+ SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
+ pSub->selId, pSub, iFrom));
+
+ /* Authorize the subquery */
+ pParse->zAuthContext = pSubitem->zName;
+ TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+ testcase( i==SQLITE_DENY );
+ pParse->zAuthContext = zSavedAuthContext;
+
+ /* Delete the transient structures associated with thesubquery */
+ pSub1 = pSubitem->pSelect;
+ sqlite3DbFree(db, pSubitem->zDatabase);
+ sqlite3DbFree(db, pSubitem->zName);
+ sqlite3DbFree(db, pSubitem->zAlias);
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ pSubitem->pSelect = 0;
+ assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
+
+ /* If the sub-query is a compound SELECT statement, then (by restrictions
+ ** 17 and 18 above) it must be a UNION ALL and the parent query must
+ ** be of the form:
+ **
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
+ **
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+ ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
+ ** OFFSET clauses and joins them to the left-hand-side of the original
+ ** using UNION ALL operators. In this case N is the number of simple
+ ** select statements in the compound sub-query.
+ **
+ ** Example:
+ **
+ ** SELECT a+1 FROM (
+ ** SELECT x FROM tab
+ ** UNION ALL
+ ** SELECT y FROM tab
+ ** UNION ALL
+ ** SELECT abs(z*2) FROM tab2
+ ** ) WHERE a!=5 ORDER BY 1
+ **
+ ** Transformed into:
+ **
+ ** SELECT x+1 FROM tab WHERE x+1!=5
+ ** UNION ALL
+ ** SELECT y+1 FROM tab WHERE y+1!=5
+ ** UNION ALL
+ ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
+ ** ORDER BY 1
+ **
+ ** We call this the "compound-subquery flattening".
+ */
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+ Select *pNew;
+ ExprList *pOrderBy = p->pOrderBy;
+ Expr *pLimit = p->pLimit;
+ Select *pPrior = p->pPrior;
+ Table *pItemTab = pSubitem->pTab;
+ pSubitem->pTab = 0;
+ p->pOrderBy = 0;
+ p->pPrior = 0;
+ p->pLimit = 0;
+ pNew = sqlite3SelectDup(db, p, 0);
+ p->pLimit = pLimit;
+ p->pOrderBy = pOrderBy;
+ p->op = TK_ALL;
+ pSubitem->pTab = pItemTab;
+ if( pNew==0 ){
+ p->pPrior = pPrior;
+ }else{
+ pNew->selId = ++pParse->nSelect;
+ if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
+ renumberCursors(pParse, pNew, iFrom, aCsrMap);
+ }
+ pNew->pPrior = pPrior;
+ if( pPrior ) pPrior->pNext = pNew;
+ pNew->pNext = p;
+ p->pPrior = pNew;
+ SELECTTRACE(2,pParse,p,("compound-subquery flattener"
+ " creates %u as peer\n",pNew->selId));
+ }
+ assert( pSubitem->pSelect==0 );
+ }
+ sqlite3DbFree(db, aCsrMap);
+ if( db->mallocFailed ){
+ pSubitem->pSelect = pSub1;
+ return 1;
+ }
+
+ /* Defer deleting the Table object associated with the
+ ** subquery until code generation is
+ ** complete, since there may still exist Expr.pTab entries that
+ ** refer to the subquery even after flattening. Ticket #3346.
+ **
+ ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
+ */
+ if( ALWAYS(pSubitem->pTab!=0) ){
+ Table *pTabToDel = pSubitem->pTab;
+ if( pTabToDel->nTabRef==1 ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ sqlite3ParserAddCleanup(pToplevel,
+ (void(*)(sqlite3*,void*))sqlite3DeleteTable,
+ pTabToDel);
+ testcase( pToplevel->earlyCleanup );
+ }else{
+ pTabToDel->nTabRef--;
+ }
+ pSubitem->pTab = 0;
+ }
+
+ /* The following loop runs once for each term in a compound-subquery
+ ** flattening (as described above). If we are doing a different kind
+ ** of flattening - a flattening other than a compound-subquery flattening -
+ ** then this loop only runs once.
+ **
+ ** This loop moves all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ pSub = pSub1;
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
+ int nSubSrc;
+ u8 jointype = 0;
+ u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
+ assert( pSub!=0 );
+ pSubSrc = pSub->pSrc; /* FROM clause of subquery */
+ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
+ pSrc = pParent->pSrc; /* FROM clause of the outer query */
+
+ if( pParent==p ){
+ jointype = pSubitem->fg.jointype; /* First time through the loop */
+ }
+
+ /* The subquery uses a single slot of the FROM clause of the outer
+ ** query. If the subquery has more than one element in its FROM clause,
+ ** then expand the outer query to make space for it to hold all elements
+ ** of the subquery.
+ **
+ ** Example:
+ **
+ ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
+ **
+ ** The outer query has 3 slots in its FROM clause. One slot of the
+ ** outer query (the middle slot) is used by the subquery. The next
+ ** block of code will expand the outer query FROM clause to 4 slots.
+ ** The middle slot is expanded to two slots in order to make space
+ ** for the two elements in the FROM clause of the subquery.
+ */
+ if( nSubSrc>1 ){
+ pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
+ if( pSrc==0 ) break;
+ pParent->pSrc = pSrc;
+ }
+
+ /* Transfer the FROM clause terms from the subquery into the
+ ** outer query.
+ */
+ for(i=0; i<nSubSrc; i++){
+ SrcItem *pItem = &pSrc->a[i+iFrom];
+ if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
+ assert( pItem->fg.isTabFunc==0 );
+ *pItem = pSubSrc->a[i];
+ pItem->fg.jointype |= ltorj;
+ iNewParent = pSubSrc->a[i].iCursor;
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+ }
+ pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
+ pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
+ /* At this point, any non-zero iOrderByCol values indicate that the
+ ** ORDER BY column expression is identical to the iOrderByCol'th
+ ** expression returned by SELECT statement pSub. Since these values
+ ** do not necessarily correspond to columns in SELECT statement pParent,
+ ** zero them before transfering the ORDER BY clause.
+ **
+ ** Not doing this may cause an error if a subsequent call to this
+ ** function attempts to flatten a compound sub-query into pParent
+ ** (the only way this can happen is if the compound sub-query is
+ ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
+ ExprList *pOrderBy = pSub->pOrderBy;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].u.x.iOrderByCol = 0;
+ }
+ assert( pParent->pOrderBy==0 );
+ pParent->pOrderBy = pOrderBy;
+ pSub->pOrderBy = 0;
+ }
+ pWhere = pSub->pWhere;
+ pSub->pWhere = 0;
+ if( isOuterJoin>0 ){
+ sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
+ }
+ if( pWhere ){
+ if( pParent->pWhere ){
+ pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
+ }else{
+ pParent->pWhere = pWhere;
+ }
+ }
+ if( db->mallocFailed==0 ){
+ SubstContext x;
+ x.pParse = pParse;
+ x.iTable = iParent;
+ x.iNewTable = iNewParent;
+ x.isOuterJoin = isOuterJoin;
+ x.pEList = pSub->pEList;
+ substSelect(&x, pParent, 0);
+ }
+
+ /* The flattened query is a compound if either the inner or the
+ ** outer query is a compound. */
+ pParent->selFlags |= pSub->selFlags & SF_Compound;
+ assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
+
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ pParent->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
+ }
+
+ /* Recompute the SrcList_item.colUsed masks for the flattened
+ ** tables. */
+ for(i=0; i<nSubSrc; i++){
+ recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
+ }
+ }
+
+ /* Finially, delete what is left of the subquery and return
+ ** success.
+ */
+ sqlite3AggInfoPersistWalkerInit(&w, pParse);
+ sqlite3WalkSelect(&w,pSub1);
+ sqlite3SelectDelete(db, pSub1);
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ return 1;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** A structure to keep track of all of the column values that are fixed to
+** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
+*/
+typedef struct WhereConst WhereConst;
+struct WhereConst {
+ Parse *pParse; /* Parsing context */
+ u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
+ int nConst; /* Number for COLUMN=CONSTANT terms */
+ int nChng; /* Number of times a constant is propagated */
+ int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
+ u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
+ ** Either EP_OuterON or EP_InnerON|EP_OuterON */
+ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
+};
+
+/*
+** Add a new entry to the pConst object. Except, do not add duplicate
+** pColumn entires. Also, do not add if doing so would not be appropriate.
+**
+** The caller guarantees the pColumn is a column and pValue is a constant.
+** This routine has to do some additional checks before completing the
+** insert.
+*/
+static void constInsert(
+ WhereConst *pConst, /* The WhereConst into which we are inserting */
+ Expr *pColumn, /* The COLUMN part of the constraint */
+ Expr *pValue, /* The VALUE part of the constraint */
+ Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
+){
+ int i;
+ assert( pColumn->op==TK_COLUMN );
+ assert( sqlite3ExprIsConstant(pValue) );
+
+ if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
+ if( sqlite3ExprAffinity(pValue)!=0 ) return;
+ if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
+ return;
+ }
+
+ /* 2018-10-25 ticket [cf5ed20f]
+ ** Make sure the same pColumn is not inserted more than once */
+ for(i=0; i<pConst->nConst; i++){
+ const Expr *pE2 = pConst->apExpr[i*2];
+ assert( pE2->op==TK_COLUMN );
+ if( pE2->iTable==pColumn->iTable
+ && pE2->iColumn==pColumn->iColumn
+ ){
+ return; /* Already present. Return without doing anything. */
+ }
+ }
+ if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
+ pConst->bHasAffBlob = 1;
+ }
+
+ pConst->nConst++;
+ pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
+ pConst->nConst*2*sizeof(Expr*));
+ if( pConst->apExpr==0 ){
+ pConst->nConst = 0;
+ }else{
+ pConst->apExpr[pConst->nConst*2-2] = pColumn;
+ pConst->apExpr[pConst->nConst*2-1] = pValue;
+ }
+}
+
+/*
+** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
+** is a constant expression and where the term must be true because it
+** is part of the AND-connected terms of the expression. For each term
+** found, add it to the pConst structure.
+*/
+static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
+ Expr *pRight, *pLeft;
+ if( NEVER(pExpr==0) ) return;
+ if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ return;
+ }
+ if( pExpr->op==TK_AND ){
+ findConstInWhere(pConst, pExpr->pRight);
+ findConstInWhere(pConst, pExpr->pLeft);
+ return;
+ }
+ if( pExpr->op!=TK_EQ ) return;
+ pRight = pExpr->pRight;
+ pLeft = pExpr->pLeft;
+ assert( pRight!=0 );
+ assert( pLeft!=0 );
+ if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
+ constInsert(pConst,pRight,pLeft,pExpr);
+ }
+ if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
+ constInsert(pConst,pLeft,pRight,pExpr);
+ }
+}
+
+/*
+** This is a helper function for Walker callback propagateConstantExprRewrite().
+**
+** Argument pExpr is a candidate expression to be replaced by a value. If
+** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
+** then overwrite it with the corresponding value. Except, do not do so
+** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
+** is SQLITE_AFF_BLOB.
+*/
+static int propagateConstantExprRewriteOne(
+ WhereConst *pConst,
+ Expr *pExpr,
+ int bIgnoreAffBlob
+){
+ int i;
+ if( pConst->pOomFault[0] ) return WRC_Prune;
+ if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
+ if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
+ testcase( ExprHasProperty(pExpr, EP_FixedCol) );
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ return WRC_Continue;
+ }
+ for(i=0; i<pConst->nConst; i++){
+ Expr *pColumn = pConst->apExpr[i*2];
+ if( pColumn==pExpr ) continue;
+ if( pColumn->iTable!=pExpr->iTable ) continue;
+ if( pColumn->iColumn!=pExpr->iColumn ) continue;
+ if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
+ break;
+ }
+ /* A match is found. Add the EP_FixedCol property */
+ pConst->nChng++;
+ ExprClearProperty(pExpr, EP_Leaf);
+ ExprSetProperty(pExpr, EP_FixedCol);
+ assert( pExpr->pLeft==0 );
+ pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
+ if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
+ break;
+ }
+ return WRC_Prune;
+}
+
+/*
+** This is a Walker expression callback. pExpr is a node from the WHERE
+** clause of a SELECT statement. This function examines pExpr to see if
+** any substitutions based on the contents of pWalker->u.pConst should
+** be made to pExpr or its immediate children.
+**
+** A substitution is made if:
+**
+** + pExpr is a column with an affinity other than BLOB that matches
+** one of the columns in pWalker->u.pConst, or
+**
+** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
+** uses an affinity other than TEXT and one of its immediate
+** children is a column that matches one of the columns in
+** pWalker->u.pConst.
+*/
+static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
+ WhereConst *pConst = pWalker->u.pConst;
+ assert( TK_GT==TK_EQ+1 );
+ assert( TK_LE==TK_EQ+2 );
+ assert( TK_LT==TK_EQ+3 );
+ assert( TK_GE==TK_EQ+4 );
+ if( pConst->bHasAffBlob ){
+ if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
+ || pExpr->op==TK_IS
+ ){
+ propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
+ if( pConst->pOomFault[0] ) return WRC_Prune;
+ if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
+ propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
+ }
+ }
+ }
+ return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
+}
+
+/*
+** The WHERE-clause constant propagation optimization.
+**
+** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
+** CONSTANT=COLUMN that are top-level AND-connected terms that are not
+** part of a ON clause from a LEFT JOIN, then throughout the query
+** replace all other occurrences of COLUMN with CONSTANT.
+**
+** For example, the query:
+**
+** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
+**
+** Is transformed into
+**
+** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
+**
+** Return true if any transformations where made and false if not.
+**
+** Implementation note: Constant propagation is tricky due to affinity
+** and collating sequence interactions. Consider this example:
+**
+** CREATE TABLE t1(a INT,b TEXT);
+** INSERT INTO t1 VALUES(123,'0123');
+** SELECT * FROM t1 WHERE a=123 AND b=a;
+** SELECT * FROM t1 WHERE a=123 AND b=123;
+**
+** The two SELECT statements above should return different answers. b=a
+** is alway true because the comparison uses numeric affinity, but b=123
+** is false because it uses text affinity and '0123' is not the same as '123'.
+** To work around this, the expression tree is not actually changed from
+** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
+** and the "123" value is hung off of the pLeft pointer. Code generator
+** routines know to generate the constant "123" instead of looking up the
+** column value. Also, to avoid collation problems, this optimization is
+** only attempted if the "a=123" term uses the default BINARY collation.
+**
+** 2021-05-25 forum post 6a06202608: Another troublesome case is...
+**
+** CREATE TABLE t1(x);
+** INSERT INTO t1 VALUES(10.0);
+** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
+**
+** The query should return no rows, because the t1.x value is '10.0' not '10'
+** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
+** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
+** resulting in a false positive. To avoid this, constant propagation for
+** columns with BLOB affinity is only allowed if the constant is used with
+** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
+** type conversions to occur. See logic associated with the bHasAffBlob flag
+** for details.
+*/
+static int propagateConstants(
+ Parse *pParse, /* The parsing context */
+ Select *p /* The query in which to propagate constants */
+){
+ WhereConst x;
+ Walker w;
+ int nChng = 0;
+ x.pParse = pParse;
+ x.pOomFault = &pParse->db->mallocFailed;
+ do{
+ x.nConst = 0;
+ x.nChng = 0;
+ x.apExpr = 0;
+ x.bHasAffBlob = 0;
+ if( ALWAYS(p->pSrc!=0)
+ && p->pSrc->nSrc>0
+ && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
+ ){
+ /* Do not propagate constants on any ON clause if there is a
+ ** RIGHT JOIN anywhere in the query */
+ x.mExcludeOn = EP_InnerON | EP_OuterON;
+ }else{
+ /* Do not propagate constants through the ON clause of a LEFT JOIN */
+ x.mExcludeOn = EP_OuterON;
+ }
+ findConstInWhere(&x, p->pWhere);
+ if( x.nConst ){
+ memset(&w, 0, sizeof(w));
+ w.pParse = pParse;
+ w.xExprCallback = propagateConstantExprRewrite;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = 0;
+ w.walkerDepth = 0;
+ w.u.pConst = &x;
+ sqlite3WalkExpr(&w, p->pWhere);
+ sqlite3DbFree(x.pParse->db, x.apExpr);
+ nChng += x.nChng;
+ }
+ }while( x.nChng );
+ return nChng;
+}
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+# if !defined(SQLITE_OMIT_WINDOWFUNC)
+/*
+** This function is called to determine whether or not it is safe to
+** push WHERE clause expression pExpr down to FROM clause sub-query
+** pSubq, which contains at least one window function. Return 1
+** if it is safe and the expression should be pushed down, or 0
+** otherwise.
+**
+** It is only safe to push the expression down if it consists only
+** of constants and copies of expressions that appear in the PARTITION
+** BY clause of all window function used by the sub-query. It is safe
+** to filter out entire partitions, but not rows within partitions, as
+** this may change the results of the window functions.
+**
+** At the time this function is called it is guaranteed that
+**
+** * the sub-query uses only one distinct window frame, and
+** * that the window frame has a PARTITION BY clase.
+*/
+static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
+ assert( pSubq->pWin->pPartition );
+ assert( (pSubq->selFlags & SF_MultiPart)==0 );
+ assert( pSubq->pPrior==0 );
+ return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
+}
+# endif /* SQLITE_OMIT_WINDOWFUNC */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** Make copies of relevant WHERE clause terms of the outer query into
+** the WHERE clause of subquery. Example:
+**
+** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
+**
+** Transformed into:
+**
+** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
+** WHERE x=5 AND y=10;
+**
+** The hope is that the terms added to the inner query will make it more
+** efficient.
+**
+** Do not attempt this optimization if:
+**
+** (1) (** This restriction was removed on 2017-09-29. We used to
+** disallow this optimization for aggregate subqueries, but now
+** it is allowed by putting the extra terms on the HAVING clause.
+** The added HAVING clause is pointless if the subquery lacks
+** a GROUP BY clause. But such a HAVING clause is also harmless
+** so there does not appear to be any reason to add extra logic
+** to suppress it. **)
+**
+** (2) The inner query is the recursive part of a common table expression.
+**
+** (3) The inner query has a LIMIT clause (since the changes to the WHERE
+** clause would change the meaning of the LIMIT).
+**
+** (4) The inner query is the right operand of a LEFT JOIN and the
+** expression to be pushed down does not come from the ON clause
+** on that LEFT JOIN.
+**
+** (5) The WHERE clause expression originates in the ON or USING clause
+** of a LEFT JOIN where iCursor is not the right-hand table of that
+** left join. An example:
+**
+** SELECT *
+** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
+** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
+** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
+**
+** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
+** But if the (b2=2) term were to be pushed down into the bb subquery,
+** then the (1,1,NULL) row would be suppressed.
+**
+** (6) Window functions make things tricky as changes to the WHERE clause
+** of the inner query could change the window over which window
+** functions are calculated. Therefore, do not attempt the optimization
+** if:
+**
+** (6a) The inner query uses multiple incompatible window partitions.
+**
+** (6b) The inner query is a compound and uses window-functions.
+**
+** (6c) The WHERE clause does not consist entirely of constants and
+** copies of expressions found in the PARTITION BY clause of
+** all window-functions used by the sub-query. It is safe to
+** filter out entire partitions, as this does not change the
+** window over which any window-function is calculated.
+**
+** (7) The inner query is a Common Table Expression (CTE) that should
+** be materialized. (This restriction is implemented in the calling
+** routine.)
+**
+** Return 0 if no changes are made and non-zero if one or more WHERE clause
+** terms are duplicated into the subquery.
+*/
+static int pushDownWhereTerms(
+ Parse *pParse, /* Parse context (for malloc() and error reporting) */
+ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
+ Expr *pWhere, /* The WHERE clause of the outer query */
+ SrcItem *pSrc /* The subquery term of the outer FROM clause */
+){
+ Expr *pNew;
+ int nChng = 0;
+ if( pWhere==0 ) return 0;
+ if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
+ if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSubq->pPrior ){
+ Select *pSel;
+ for(pSel=pSubq; pSel; pSel=pSel->pPrior){
+ if( pSel->pWin ) return 0; /* restriction (6b) */
+ }
+ }else{
+ if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+ /* Only the first term of a compound can have a WITH clause. But make
+ ** sure no other terms are marked SF_Recursive in case something changes
+ ** in the future.
+ */
+ {
+ Select *pX;
+ for(pX=pSubq; pX; pX=pX->pPrior){
+ assert( (pX->selFlags & (SF_Recursive))==0 );
+ }
+ }
+#endif
+
+ if( pSubq->pLimit!=0 ){
+ return 0; /* restriction (3) */
+ }
+ while( pWhere->op==TK_AND ){
+ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
+ pWhere = pWhere->pLeft;
+ }
+
+#if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
+ if( isLeftJoin
+ && (ExprHasProperty(pWhere,EP_OuterON)==0
+ || pWhere->w.iJoin!=iCursor)
+ ){
+ return 0; /* restriction (4) */
+ }
+ if( ExprHasProperty(pWhere,EP_OuterON)
+ && pWhere->w.iJoin!=iCursor
+ ){
+ return 0; /* restriction (5) */
+ }
+#endif
+
+ if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
+ nChng++;
+ pSubq->selFlags |= SF_PushDown;
+ while( pSubq ){
+ SubstContext x;
+ pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
+ unsetJoinExpr(pNew, -1, 1);
+ x.pParse = pParse;
+ x.iTable = pSrc->iCursor;
+ x.iNewTable = pSrc->iCursor;
+ x.isOuterJoin = 0;
+ x.pEList = pSubq->pEList;
+ pNew = substExpr(&x, pNew);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
+ /* Restriction 6c has prevented push-down in this case */
+ sqlite3ExprDelete(pParse->db, pNew);
+ nChng--;
+ break;
+ }
+#endif
+ if( pSubq->selFlags & SF_Aggregate ){
+ pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
+ }else{
+ pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
+ }
+ pSubq = pSubq->pPrior;
+ }
+ }
+ return nChng;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** The pFunc is the only aggregate function in the query. Check to see
+** if the query is a candidate for the min/max optimization.
+**
+** If the query is a candidate for the min/max optimization, then set
+** *ppMinMax to be an ORDER BY clause to be used for the optimization
+** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
+** whether pFunc is a min() or max() function.
+**
+** If the query is not a candidate for the min/max optimization, return
+** WHERE_ORDERBY_NORMAL (which must be zero).
+**
+** This routine must be called after aggregate functions have been
+** located but before their arguments have been subjected to aggregate
+** analysis.
+*/
+static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
+ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
+ ExprList *pEList; /* Arguments to agg function */
+ const char *zFunc; /* Name of aggregate function pFunc */
+ ExprList *pOrderBy;
+ u8 sortFlags = 0;
+
+ assert( *ppMinMax==0 );
+ assert( pFunc->op==TK_AGG_FUNCTION );
+ assert( !IsWindowFunc(pFunc) );
+ assert( ExprUseXList(pFunc) );
+ pEList = pFunc->x.pList;
+ if( pEList==0
+ || pEList->nExpr!=1
+ || ExprHasProperty(pFunc, EP_WinFunc)
+ || OptimizationDisabled(db, SQLITE_MinMaxOpt)
+ ){
+ return eRet;
+ }
+ assert( !ExprHasProperty(pFunc, EP_IntValue) );
+ zFunc = pFunc->u.zToken;
+ if( sqlite3StrICmp(zFunc, "min")==0 ){
+ eRet = WHERE_ORDERBY_MIN;
+ if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
+ sortFlags = KEYINFO_ORDER_BIGNULL;
+ }
+ }else if( sqlite3StrICmp(zFunc, "max")==0 ){
+ eRet = WHERE_ORDERBY_MAX;
+ sortFlags = KEYINFO_ORDER_DESC;
+ }else{
+ return eRet;
+ }
+ *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
+ assert( pOrderBy!=0 || db->mallocFailed );
+ if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
+ return eRet;
+}
+
+/*
+** The select statement passed as the first argument is an aggregate query.
+** The second argument is the associated aggregate-info object. This
+** function tests if the SELECT is of the form:
+**
+** SELECT count(*) FROM <tbl>
+**
+** where table is a database table, not a sub-select or view. If the query
+** does match this pattern, then a pointer to the Table object representing
+** <tbl> is returned. Otherwise, NULL is returned.
+**
+** This routine checks to see if it is safe to use the count optimization.
+** A correct answer is still obtained (though perhaps more slowly) if
+** this routine returns NULL when it could have returned a table pointer.
+** But returning the pointer when NULL should have been returned can
+** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
+*/
+static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
+ Table *pTab;
+ Expr *pExpr;
+
+ assert( !p->pGroupBy );
+
+ if( p->pWhere
+ || p->pEList->nExpr!=1
+ || p->pSrc->nSrc!=1
+ || p->pSrc->a[0].pSelect
+ || pAggInfo->nFunc!=1
+ || p->pHaving
+ ){
+ return 0;
+ }
+ pTab = p->pSrc->a[0].pTab;
+ assert( pTab!=0 );
+ assert( !IsView(pTab) );
+ if( !IsOrdinaryTable(pTab) ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ assert( pExpr!=0 );
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( pExpr->pAggInfo!=pAggInfo ) return 0;
+ if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
+ assert( pAggInfo->aFunc[0].pFExpr==pExpr );
+ testcase( ExprHasProperty(pExpr, EP_Distinct) );
+ testcase( ExprHasProperty(pExpr, EP_WinFunc) );
+ if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
+
+ return pTab;
+}
+
+/*
+** If the source-list item passed as an argument was augmented with an
+** INDEXED BY clause, then try to locate the specified index. If there
+** was such a clause and the named index cannot be found, return
+** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
+** pFrom->pIndex and return SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
+ Table *pTab = pFrom->pTab;
+ char *zIndexedBy = pFrom->u1.zIndexedBy;
+ Index *pIdx;
+ assert( pTab!=0 );
+ assert( pFrom->fg.isIndexedBy!=0 );
+
+ for(pIdx=pTab->pIndex;
+ pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
+ pIdx=pIdx->pNext
+ );
+ if( !pIdx ){
+ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
+ pParse->checkSchema = 1;
+ return SQLITE_ERROR;
+ }
+ assert( pFrom->fg.isCte==0 );
+ pFrom->u2.pIBIndex = pIdx;
+ return SQLITE_OK;
+}
+
+/*
+** Detect compound SELECT statements that use an ORDER BY clause with
+** an alternative collating sequence.
+**
+** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
+**
+** These are rewritten as a subquery:
+**
+** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
+** ORDER BY ... COLLATE ...
+**
+** This transformation is necessary because the multiSelectOrderBy() routine
+** above that generates the code for a compound SELECT with an ORDER BY clause
+** uses a merge algorithm that requires the same collating sequence on the
+** result columns as on the ORDER BY clause. See ticket
+** http://www.sqlite.org/src/info/6709574d2a
+**
+** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
+** The UNION ALL operator works fine with multiSelectOrderBy() even when
+** there are COLLATE terms in the ORDER BY.
+*/
+static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
+ int i;
+ Select *pNew;
+ Select *pX;
+ sqlite3 *db;
+ struct ExprList_item *a;
+ SrcList *pNewSrc;
+ Parse *pParse;
+ Token dummy;
+
+ if( p->pPrior==0 ) return WRC_Continue;
+ if( p->pOrderBy==0 ) return WRC_Continue;
+ for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
+ if( pX==0 ) return WRC_Continue;
+ a = p->pOrderBy->a;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ /* If iOrderByCol is already non-zero, then it has already been matched
+ ** to a result column of the SELECT statement. This occurs when the
+ ** SELECT is rewritten for window-functions processing and then passed
+ ** to sqlite3SelectPrep() and similar a second time. The rewriting done
+ ** by this function is not required in this case. */
+ if( a[0].u.x.iOrderByCol ) return WRC_Continue;
+#endif
+ for(i=p->pOrderBy->nExpr-1; i>=0; i--){
+ if( a[i].pExpr->flags & EP_Collate ) break;
+ }
+ if( i<0 ) return WRC_Continue;
+
+ /* If we reach this point, that means the transformation is required. */
+
+ pParse = pWalker->pParse;
+ db = pParse->db;
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+ if( pNew==0 ) return WRC_Abort;
+ memset(&dummy, 0, sizeof(dummy));
+ pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
+ if( pNewSrc==0 ) return WRC_Abort;
+ *pNew = *p;
+ p->pSrc = pNewSrc;
+ p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
+ p->op = TK_SELECT;
+ p->pWhere = 0;
+ pNew->pGroupBy = 0;
+ pNew->pHaving = 0;
+ pNew->pOrderBy = 0;
+ p->pPrior = 0;
+ p->pNext = 0;
+ p->pWith = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ p->pWinDefn = 0;
+#endif
+ p->selFlags &= ~SF_Compound;
+ assert( (p->selFlags & SF_Converted)==0 );
+ p->selFlags |= SF_Converted;
+ assert( pNew->pPrior!=0 );
+ pNew->pPrior->pNext = pNew;
+ pNew->pLimit = 0;
+ return WRC_Continue;
+}
+
+/*
+** Check to see if the FROM clause term pFrom has table-valued function
+** arguments. If it does, leave an error message in pParse and return
+** non-zero, since pFrom is not allowed to be a table-valued function.
+*/
+static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
+ if( pFrom->fg.isTabFunc ){
+ sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
+ return 1;
+ }
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** Argument pWith (which may be NULL) points to a linked list of nested
+** WITH contexts, from inner to outermost. If the table identified by
+** FROM clause element pItem is really a common-table-expression (CTE)
+** then return a pointer to the CTE definition for that table. Otherwise
+** return NULL.
+**
+** If a non-NULL value is returned, set *ppContext to point to the With
+** object that the returned CTE belongs to.
+*/
+static struct Cte *searchWith(
+ With *pWith, /* Current innermost WITH clause */
+ SrcItem *pItem, /* FROM clause element to resolve */
+ With **ppContext /* OUT: WITH clause return value belongs to */
+){
+ const char *zName = pItem->zName;
+ With *p;
+ assert( pItem->zDatabase==0 );
+ assert( zName!=0 );
+ for(p=pWith; p; p=p->pOuter){
+ int i;
+ for(i=0; i<p->nCte; i++){
+ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
+ *ppContext = p;
+ return &p->a[i];
+ }
+ }
+ if( p->bView ) break;
+ }
+ return 0;
+}
+
+/* The code generator maintains a stack of active WITH clauses
+** with the inner-most WITH clause being at the top of the stack.
+**
+** This routine pushes the WITH clause passed as the second argument
+** onto the top of the stack. If argument bFree is true, then this
+** WITH clause will never be popped from the stack but should instead
+** be freed along with the Parse object. In other cases, when
+** bFree==0, the With object will be freed along with the SELECT
+** statement with which it is associated.
+**
+** This routine returns a copy of pWith. Or, if bFree is true and
+** the pWith object is destroyed immediately due to an OOM condition,
+** then this routine return NULL.
+**
+** If bFree is true, do not continue to use the pWith pointer after
+** calling this routine, Instead, use only the return value.
+*/
+SQLITE_PRIVATE With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
+ if( pWith ){
+ if( bFree ){
+ pWith = (With*)sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3WithDelete,
+ pWith);
+ if( pWith==0 ) return 0;
+ }
+ if( pParse->nErr==0 ){
+ assert( pParse->pWith!=pWith );
+ pWith->pOuter = pParse->pWith;
+ pParse->pWith = pWith;
+ }
+ }
+ return pWith;
+}
+
+/*
+** This function checks if argument pFrom refers to a CTE declared by
+** a WITH clause on the stack currently maintained by the parser (on the
+** pParse->pWith linked list). And if currently processing a CTE
+** CTE expression, through routine checks to see if the reference is
+** a recursive reference to the CTE.
+**
+** If pFrom matches a CTE according to either of these two above, pFrom->pTab
+** and other fields are populated accordingly.
+**
+** Return 0 if no match is found.
+** Return 1 if a match is found.
+** Return 2 if an error condition is detected.
+*/
+static int resolveFromTermToCte(
+ Parse *pParse, /* The parsing context */
+ Walker *pWalker, /* Current tree walker */
+ SrcItem *pFrom /* The FROM clause term to check */
+){
+ Cte *pCte; /* Matched CTE (or NULL if no match) */
+ With *pWith; /* The matching WITH */
+
+ assert( pFrom->pTab==0 );
+ if( pParse->pWith==0 ){
+ /* There are no WITH clauses in the stack. No match is possible */
+ return 0;
+ }
+ if( pParse->nErr ){
+ /* Prior errors might have left pParse->pWith in a goofy state, so
+ ** go no further. */
+ return 0;
+ }
+ if( pFrom->zDatabase!=0 ){
+ /* The FROM term contains a schema qualifier (ex: main.t1) and so
+ ** it cannot possibly be a CTE reference. */
+ return 0;
+ }
+ if( pFrom->fg.notCte ){
+ /* The FROM term is specifically excluded from matching a CTE.
+ ** (1) It is part of a trigger that used to have zDatabase but had
+ ** zDatabase removed by sqlite3FixTriggerStep().
+ ** (2) This is the first term in the FROM clause of an UPDATE.
+ */
+ return 0;
+ }
+ pCte = searchWith(pParse->pWith, pFrom, &pWith);
+ if( pCte ){
+ sqlite3 *db = pParse->db;
+ Table *pTab;
+ ExprList *pEList;
+ Select *pSel;
+ Select *pLeft; /* Left-most SELECT statement */
+ Select *pRecTerm; /* Left-most recursive term */
+ int bMayRecursive; /* True if compound joined by UNION [ALL] */
+ With *pSavedWith; /* Initial value of pParse->pWith */
+ int iRecTab = -1; /* Cursor for recursive table */
+ CteUse *pCteUse;
+
+ /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
+ ** recursive reference to CTE pCte. Leave an error in pParse and return
+ ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
+ ** In this case, proceed. */
+ if( pCte->zCteErr ){
+ sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
+ return 2;
+ }
+ if( cannotBeFunction(pParse, pFrom) ) return 2;
+
+ assert( pFrom->pTab==0 );
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return 2;
+ pCteUse = pCte->pUse;
+ if( pCteUse==0 ){
+ pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
+ if( pCteUse==0
+ || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
+ ){
+ sqlite3DbFree(db, pTab);
+ return 2;
+ }
+ pCteUse->eM10d = pCte->eM10d;
+ }
+ pFrom->pTab = pTab;
+ pTab->nTabRef = 1;
+ pTab->zName = sqlite3DbStrDup(db, pCte->zName);
+ pTab->iPKey = -1;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
+ pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
+ if( db->mallocFailed ) return 2;
+ pFrom->pSelect->selFlags |= SF_CopyCte;
+ assert( pFrom->pSelect );
+ if( pFrom->fg.isIndexedBy ){
+ sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
+ return 2;
+ }
+ pFrom->fg.isCte = 1;
+ pFrom->u2.pCteUse = pCteUse;
+ pCteUse->nUse++;
+ if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
+ pCteUse->eM10d = M10d_Yes;
+ }
+
+ /* Check if this is a recursive CTE. */
+ pRecTerm = pSel = pFrom->pSelect;
+ bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
+ while( bMayRecursive && pRecTerm->op==pSel->op ){
+ int i;
+ SrcList *pSrc = pRecTerm->pSrc;
+ assert( pRecTerm->pPrior!=0 );
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *pItem = &pSrc->a[i];
+ if( pItem->zDatabase==0
+ && pItem->zName!=0
+ && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
+ ){
+ pItem->pTab = pTab;
+ pTab->nTabRef++;
+ pItem->fg.isRecursive = 1;
+ if( pRecTerm->selFlags & SF_Recursive ){
+ sqlite3ErrorMsg(pParse,
+ "multiple references to recursive table: %s", pCte->zName
+ );
+ return 2;
+ }
+ pRecTerm->selFlags |= SF_Recursive;
+ if( iRecTab<0 ) iRecTab = pParse->nTab++;
+ pItem->iCursor = iRecTab;
+ }
+ }
+ if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
+ pRecTerm = pRecTerm->pPrior;
+ }
+
+ pCte->zCteErr = "circular reference: %s";
+ pSavedWith = pParse->pWith;
+ pParse->pWith = pWith;
+ if( pSel->selFlags & SF_Recursive ){
+ int rc;
+ assert( pRecTerm!=0 );
+ assert( (pRecTerm->selFlags & SF_Recursive)==0 );
+ assert( pRecTerm->pNext!=0 );
+ assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
+ assert( pRecTerm->pWith==0 );
+ pRecTerm->pWith = pSel->pWith;
+ rc = sqlite3WalkSelect(pWalker, pRecTerm);
+ pRecTerm->pWith = 0;
+ if( rc ){
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ }else{
+ if( sqlite3WalkSelect(pWalker, pSel) ){
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ }
+ pParse->pWith = pWith;
+
+ for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
+ pEList = pLeft->pEList;
+ if( pCte->pCols ){
+ if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
+ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
+ pCte->zName, pEList->nExpr, pCte->pCols->nExpr
+ );
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ pEList = pCte->pCols;
+ }
+
+ sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
+ if( bMayRecursive ){
+ if( pSel->selFlags & SF_Recursive ){
+ pCte->zCteErr = "multiple recursive references: %s";
+ }else{
+ pCte->zCteErr = "recursive reference in a subquery: %s";
+ }
+ sqlite3WalkSelect(pWalker, pSel);
+ }
+ pCte->zCteErr = 0;
+ pParse->pWith = pSavedWith;
+ return 1; /* Success */
+ }
+ return 0; /* No match */
+}
+#endif
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** If the SELECT passed as the second argument has an associated WITH
+** clause, pop it from the stack stored as part of the Parse object.
+**
+** This function is used as the xSelectCallback2() callback by
+** sqlite3SelectExpand() when walking a SELECT tree to resolve table
+** names and other FROM clause elements.
+*/
+SQLITE_PRIVATE void sqlite3SelectPopWith(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
+ With *pWith = findRightmost(p)->pWith;
+ if( pWith!=0 ){
+ assert( pParse->pWith==pWith || pParse->nErr );
+ pParse->pWith = pWith->pOuter;
+ }
+ }
+}
+#endif
+
+/*
+** The SrcList_item structure passed as the second argument represents a
+** sub-query in the FROM clause of a SELECT statement. This function
+** allocates and populates the SrcList_item.pTab object. If successful,
+** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
+** SQLITE_NOMEM.
+*/
+SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
+ Select *pSel = pFrom->pSelect;
+ Table *pTab;
+
+ assert( pSel );
+ pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
+ if( pTab==0 ) return SQLITE_NOMEM;
+ pTab->nTabRef = 1;
+ if( pFrom->zAlias ){
+ pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
+ }else{
+ pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
+ }
+ while( pSel->pPrior ){ pSel = pSel->pPrior; }
+ sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
+ pTab->iPKey = -1;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
+ /* The usual case - do not allow ROWID on a subquery */
+ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
+#else
+ pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
+#endif
+ return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
+}
+
+
+/*
+** Check the N SrcItem objects to the right of pBase. (N might be zero!)
+** If any of those SrcItem objects have a USING clause containing zName
+** then return true.
+**
+** If N is zero, or none of the N SrcItem objects to the right of pBase
+** contains a USING clause, or if none of the USING clauses contain zName,
+** then return false.
+*/
+static int inAnyUsingClause(
+ const char *zName, /* Name we are looking for */
+ SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
+ int N /* How many SrcItems to check */
+){
+ while( N>0 ){
+ N--;
+ pBase++;
+ if( pBase->fg.isUsing==0 ) continue;
+ if( NEVER(pBase->u3.pUsing==0) ) continue;
+ if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+
+/*
+** This routine is a Walker callback for "expanding" a SELECT statement.
+** "Expanding" means to do the following:
+**
+** (1) Make sure VDBE cursor numbers have been assigned to every
+** element of the FROM clause.
+**
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines FROM clause. When views appear in the FROM clause,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the persistent representation
+** of the view.
+**
+** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (4) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+*/
+static int selectExpander(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i, j, k, rc;
+ SrcList *pTabList;
+ ExprList *pEList;
+ SrcItem *pFrom;
+ sqlite3 *db = pParse->db;
+ Expr *pE, *pRight, *pExpr;
+ u16 selFlags = p->selFlags;
+ u32 elistFlags = 0;
+
+ p->selFlags |= SF_Expanded;
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+ assert( p->pSrc!=0 );
+ if( (selFlags & SF_Expanded)!=0 ){
+ return WRC_Prune;
+ }
+ if( pWalker->eCode ){
+ /* Renumber selId because it has been copied from a view */
+ p->selId = ++pParse->nSelect;
+ }
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+ if( pParse->pWith && (p->selFlags & SF_View) ){
+ if( p->pWith==0 ){
+ p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
+ if( p->pWith==0 ){
+ return WRC_Abort;
+ }
+ }
+ p->pWith->bView = 1;
+ }
+ sqlite3WithPush(pParse, p->pWith, 0);
+
+ /* Make sure cursor numbers have been assigned to all entries in
+ ** the FROM clause of the SELECT statement.
+ */
+ sqlite3SrcListAssignCursors(pParse, pTabList);
+
+ /* Look up every table named in the FROM clause of the select. If
+ ** an entry of the FROM clause is a subquery instead of a table or view,
+ ** then create a transient table structure to describe the subquery.
+ */
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab;
+ assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
+ if( pFrom->pTab ) continue;
+ assert( pFrom->fg.isRecursive==0 );
+ if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Select *pSel = pFrom->pSelect;
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pSel!=0 );
+ assert( pFrom->pTab==0 );
+ if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
+ if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
+#endif
+#ifndef SQLITE_OMIT_CTE
+ }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
+ if( rc>1 ) return WRC_Abort;
+ pTab = pFrom->pTab;
+ assert( pTab!=0 );
+#endif
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
+ if( pTab==0 ) return WRC_Abort;
+ if( pTab->nTabRef>=0xffff ){
+ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
+ pTab->zName);
+ pFrom->pTab = 0;
+ return WRC_Abort;
+ }
+ pTab->nTabRef++;
+ if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+ if( !IsOrdinaryTable(pTab) ){
+ i16 nCol;
+ u8 eCodeOrig = pWalker->eCode;
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
+ assert( pFrom->pSelect==0 );
+ if( IsView(pTab) ){
+ if( (db->flags & SQLITE_EnableView)==0
+ && pTab->pSchema!=db->aDb[1].pSchema
+ ){
+ sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
+ pTab->zName);
+ }
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( ALWAYS(IsVirtual(pTab))
+ && pFrom->fg.fromDDL
+ && ALWAYS(pTab->u.vtab.p!=0)
+ && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
+ ){
+ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
+ pTab->zName);
+ }
+ assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
+#endif
+ nCol = pTab->nCol;
+ pTab->nCol = -1;
+ pWalker->eCode = 1; /* Turn on Select.selId renumbering */
+ sqlite3WalkSelect(pWalker, pFrom->pSelect);
+ pWalker->eCode = eCodeOrig;
+ pTab->nCol = nCol;
+ }
+#endif
+ }
+
+ /* Locate the index named by the INDEXED BY clause, if any. */
+ if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ assert( db->mallocFailed==0 || pParse->nErr!=0 );
+ if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
+ return WRC_Abort;
+ }
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ASTERISK operator for each "*" that it found in the column
+ ** list. The following code just has to locate the TK_ASTERISK
+ ** expressions and expand each one to the list of all columns in
+ ** all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ASTERISK ) break;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
+ if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
+ elistFlags |= pE->flags;
+ }
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ int flags = pParse->db->flags;
+ int longNames = (flags & SQLITE_FullColNames)!=0
+ && (flags & SQLITE_ShortColNames)==0;
+
+ for(k=0; k<pEList->nExpr; k++){
+ pE = a[k].pExpr;
+ elistFlags |= pE->flags;
+ pRight = pE->pRight;
+ assert( pE->op!=TK_DOT || pRight!=0 );
+ if( pE->op!=TK_ASTERISK
+ && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
+ ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
+ if( pNew ){
+ pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
+ pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
+ a[k].zEName = 0;
+ }
+ a[k].pExpr = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ char *zTName = 0; /* text of name of TABLE */
+ if( pE->op==TK_DOT ){
+ assert( pE->pLeft!=0 );
+ assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
+ zTName = pE->pLeft->u.zToken;
+ }
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab; /* Table for this data source */
+ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
+ char *zTabName; /* AS name for this data source */
+ const char *zSchemaName = 0; /* Schema name for this data source */
+ int iDb; /* Schema index for this data src */
+ IdList *pUsing; /* USING clause for pFrom[1] */
+
+ if( (zTabName = pFrom->zAlias)==0 ){
+ zTabName = pTab->zName;
+ }
+ if( db->mallocFailed ) break;
+ assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
+ if( pFrom->fg.isNestedFrom ){
+ assert( pFrom->pSelect!=0 );
+ pNestedFrom = pFrom->pSelect->pEList;
+ assert( pNestedFrom!=0 );
+ assert( pNestedFrom->nExpr==pTab->nCol );
+ }else{
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
+ continue;
+ }
+ pNestedFrom = 0;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
+ }
+ if( i+1<pTabList->nSrc
+ && pFrom[1].fg.isUsing
+ && (selFlags & SF_NestedFrom)!=0
+ ){
+ int ii;
+ pUsing = pFrom[1].u3.pUsing;
+ for(ii=0; ii<pUsing->nId; ii++){
+ const char *zUName = pUsing->a[ii].zName;
+ pRight = sqlite3Expr(db, TK_ID, zUName);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
+ if( pNew ){
+ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
+ assert( pX->zEName==0 );
+ pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
+ pX->fg.eEName = ENAME_TAB;
+ pX->fg.bUsingTerm = 1;
+ }
+ }
+ }else{
+ pUsing = 0;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ char *zName = pTab->aCol[j].zCnName;
+ struct ExprList_item *pX; /* Newly added ExprList term */
+
+ assert( zName );
+ if( zTName
+ && pNestedFrom
+ && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
+ ){
+ continue;
+ }
+
+ /* If a column is marked as 'hidden', omit it from the expanded
+ ** result-set list unless the SELECT has the SF_IncludeHidden
+ ** bit set.
+ */
+ if( (p->selFlags & SF_IncludeHidden)==0
+ && IsHiddenColumn(&pTab->aCol[j])
+ ){
+ continue;
+ }
+ if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
+ && zTName==0
+ && (selFlags & (SF_NestedFrom))==0
+ ){
+ continue;
+ }
+ tableSeen = 1;
+
+ if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
+ if( pFrom->fg.isUsing
+ && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
+ ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ }
+ pRight = sqlite3Expr(db, TK_ID, zName);
+ if( (pTabList->nSrc>1
+ && ( (pFrom->fg.jointype & JT_LTORJ)==0
+ || (selFlags & SF_NestedFrom)!=0
+ || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
+ )
+ )
+ || IN_RENAME_OBJECT
+ ){
+ Expr *pLeft;
+ pLeft = sqlite3Expr(db, TK_ID, zTabName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
+ if( IN_RENAME_OBJECT && pE->pLeft ){
+ sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
+ }
+ if( zSchemaName ){
+ pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
+ }
+ }else{
+ pExpr = pRight;
+ }
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
+ if( pNew==0 ){
+ break; /* OOM */
+ }
+ pX = &pNew->a[pNew->nExpr-1];
+ assert( pX->zEName==0 );
+ if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
+ if( pNestedFrom ){
+ pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
+ testcase( pX->zEName==0 );
+ }else{
+ pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
+ zSchemaName, zTabName, zName);
+ testcase( pX->zEName==0 );
+ }
+ pX->fg.eEName = ENAME_TAB;
+ if( (pFrom->fg.isUsing
+ && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
+ || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
+ || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
+ ){
+ pX->fg.bNoExpand = 1;
+ }
+ }else if( longNames ){
+ pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
+ pX->fg.eEName = ENAME_NAME;
+ }else{
+ pX->zEName = sqlite3DbStrDup(db, zName);
+ pX->fg.eEName = ENAME_NAME;
+ }
+ }
+ }
+ if( !tableSeen ){
+ if( zTName ){
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+ }else{
+ sqlite3ErrorMsg(pParse, "no tables specified");
+ }
+ }
+ }
+ }
+ sqlite3ExprListDelete(db, pEList);
+ p->pEList = pNew;
+ }
+ if( p->pEList ){
+ if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns in result set");
+ return WRC_Abort;
+ }
+ if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
+ p->selFlags |= SF_ComplexResult;
+ }
+ }
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ return WRC_Continue;
+}
+
+#if SQLITE_DEBUG
+/*
+** Always assert. This xSelectCallback2 implementation proves that the
+** xSelectCallback2 is never invoked.
+*/
+SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ assert( 0 );
+}
+#endif
+/*
+** This routine "expands" a SELECT statement and all of its subqueries.
+** For additional information on what it means to "expand" a SELECT
+** statement, see the comment on the selectExpand worker callback above.
+**
+** Expanding a SELECT statement is the first step in processing a
+** SELECT statement. The SELECT statement must be expanded before
+** name resolution is performed.
+**
+** If anything goes wrong, an error message is written into pParse.
+** The calling function can detect the problem by looking at pParse->nErr
+** and/or pParse->db->mallocFailed.
+*/
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
+ Walker w;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.pParse = pParse;
+ if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
+ w.xSelectCallback = convertCompoundSelectToSubquery;
+ w.xSelectCallback2 = 0;
+ sqlite3WalkSelect(&w, pSelect);
+ }
+ w.xSelectCallback = selectExpander;
+ w.xSelectCallback2 = sqlite3SelectPopWith;
+ w.eCode = 0;
+ sqlite3WalkSelect(&w, pSelect);
+}
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
+** interface.
+**
+** For each FROM-clause subquery, add Column.zType and Column.zColl
+** information to the Table structure that represents the result set
+** of that subquery.
+**
+** The Table structure that represents the result set was constructed
+** by selectExpander() but the type and collation information was omitted
+** at that point because identifiers had not yet been resolved. This
+** routine is called after identifier resolution.
+*/
+static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
+ Parse *pParse;
+ int i;
+ SrcList *pTabList;
+ SrcItem *pFrom;
+
+ assert( p->selFlags & SF_Resolved );
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ p->selFlags |= SF_HasTypeInfo;
+ pParse = pWalker->pParse;
+ pTabList = p->pSrc;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ assert( pTab!=0 );
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ Select *pSel = pFrom->pSelect;
+ if( pSel ){
+ while( pSel->pPrior ) pSel = pSel->pPrior;
+ sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
+ SQLITE_AFF_NONE);
+ }
+ }
+ }
+}
+#endif
+
+
+/*
+** This routine adds datatype and collating sequence information to
+** the Table structures of all FROM-clause subqueries in a
+** SELECT statement.
+**
+** Use this routine after name resolution.
+*/
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Walker w;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = selectAddSubqueryTypeInfo;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+#endif
+}
+
+
+/*
+** This routine sets up a SELECT statement for processing. The
+** following is accomplished:
+**
+** * VDBE Cursor numbers are assigned to all FROM-clause terms.
+** * Ephemeral Table objects are created for all FROM-clause subqueries.
+** * ON and USING clauses are shifted into WHERE statements
+** * Wildcards "*" and "TABLE.*" in result sets are expanded.
+** * Identifiers in expression are matched to tables.
+**
+** This routine acts recursively on all subqueries within the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3SelectPrep(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for container */
+){
+ assert( p!=0 || pParse->db->mallocFailed );
+ assert( pParse->db->pParse==pParse );
+ if( pParse->db->mallocFailed ) return;
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ sqlite3SelectExpand(pParse, p);
+ if( pParse->nErr ) return;
+ sqlite3ResolveSelectNames(pParse, p, pOuterNC);
+ if( pParse->nErr ) return;
+ sqlite3SelectAddTypeInfo(pParse, p);
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate. This
+** routine generates code that stores NULLs in all of those memory
+** cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pFunc;
+ int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
+ assert( pParse->db->pParse==pParse );
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ if( nReg==0 ) return;
+ if( pParse->nErr ) return;
+#ifdef SQLITE_DEBUG
+ /* Verify that all AggInfo registers are within the range specified by
+ ** AggInfo.mnReg..AggInfo.mxReg */
+ assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
+ for(i=0; i<pAggInfo->nColumn; i++){
+ assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
+ && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
+ && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
+ }
+#endif
+ sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
+ for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+ if( pFunc->iDistinct>=0 ){
+ Expr *pE = pFunc->pFExpr;
+ assert( ExprUseXList(pE) );
+ if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
+ "argument");
+ pFunc->iDistinct = -1;
+ }else{
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
+ pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
+ pFunc->pFunc->zName));
+ }
+ }
+ }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ ExprList *pList;
+ assert( ExprUseXList(pF->pFExpr) );
+ pList = pF->pFExpr->x.pList;
+ sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ }
+}
+
+
+/*
+** Update the accumulator memory cells for an aggregate based on
+** the current cursor position.
+**
+** If regAcc is non-zero and there are no min() or max() aggregates
+** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
+** registers if register regAcc contains 0. The caller will take care
+** of setting and clearing regAcc.
+*/
+static void updateAccumulator(
+ Parse *pParse,
+ int regAcc,
+ AggInfo *pAggInfo,
+ int eDistinctType
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int regHit = 0;
+ int addrHitTest = 0;
+ struct AggInfo_func *pF;
+ struct AggInfo_col *pC;
+
+ pAggInfo->directMode = 1;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ int nArg;
+ int addrNext = 0;
+ int regAgg;
+ ExprList *pList;
+ assert( ExprUseXList(pF->pFExpr) );
+ assert( !IsWindowFunc(pF->pFExpr) );
+ pList = pF->pFExpr->x.pList;
+ if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
+ Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
+ if( pAggInfo->nAccumulator
+ && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
+ && regAcc
+ ){
+ /* If regAcc==0, there there exists some min() or max() function
+ ** without a FILTER clause that will ensure the magnet registers
+ ** are populated. */
+ if( regHit==0 ) regHit = ++pParse->nMem;
+ /* If this is the first row of the group (regAcc contains 0), clear the
+ ** "magnet" register regHit so that the accumulator registers
+ ** are populated if the FILTER clause jumps over the the
+ ** invocation of min() or max() altogether. Or, if this is not
+ ** the first row (regAcc contains 1), set the magnet register so that
+ ** the accumulators are not populated unless the min()/max() is invoked
+ ** and indicates that they should be. */
+ sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
+ }
+ addrNext = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
+ }
+ if( pList ){
+ nArg = pList->nExpr;
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
+ }else{
+ nArg = 0;
+ regAgg = 0;
+ }
+ if( pF->iDistinct>=0 && pList ){
+ if( addrNext==0 ){
+ addrNext = sqlite3VdbeMakeLabel(pParse);
+ }
+ pF->iDistinct = codeDistinct(pParse, eDistinctType,
+ pF->iDistinct, addrNext, pList, regAgg);
+ }
+ if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ CollSeq *pColl = 0;
+ struct ExprList_item *pItem;
+ int j;
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
+ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ if( addrNext ){
+ sqlite3VdbeResolveLabel(v, addrNext);
+ }
+ }
+ if( regHit==0 && pAggInfo->nAccumulator ){
+ regHit = regAcc;
+ }
+ if( regHit ){
+ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
+ }
+ for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+ sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
+ }
+
+ pAggInfo->directMode = 0;
+ if( addrHitTest ){
+ sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
+ }
+}
+
+/*
+** Add a single OP_Explain instruction to the VDBE to explain a simple
+** count(*) query ("SELECT count(*) FROM pTab").
+*/
+#ifndef SQLITE_OMIT_EXPLAIN
+static void explainSimpleCount(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being queried */
+ Index *pIdx /* Index used to optimize scan, or NULL */
+){
+ if( pParse->explain==2 ){
+ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
+ sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
+ pTab->zName,
+ bCover ? " USING COVERING INDEX " : "",
+ bCover ? pIdx->zName : ""
+ );
+ }
+}
+#else
+# define explainSimpleCount(a,b,c)
+#endif
+
+/*
+** sqlite3WalkExpr() callback used by havingToWhere().
+**
+** If the node passed to the callback is a TK_AND node, return
+** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
+**
+** Otherwise, return WRC_Prune. In this case, also check if the
+** sub-expression matches the criteria for being moved to the WHERE
+** clause. If so, add it to the WHERE clause and replace the sub-expression
+** within the HAVING expression with a constant "1".
+*/
+static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op!=TK_AND ){
+ Select *pS = pWalker->u.pSelect;
+ /* This routine is called before the HAVING clause of the current
+ ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
+ ** here, it indicates that the expression is a correlated reference to a
+ ** column from an outer aggregate query, or an aggregate function that
+ ** belongs to an outer query. Do not move the expression to the WHERE
+ ** clause in this obscure case, as doing so may corrupt the outer Select
+ ** statements AggInfo structure. */
+ if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
+ && ExprAlwaysFalse(pExpr)==0
+ && pExpr->pAggInfo==0
+ ){
+ sqlite3 *db = pWalker->pParse->db;
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
+ if( pNew ){
+ Expr *pWhere = pS->pWhere;
+ SWAP(Expr, *pNew, *pExpr);
+ pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
+ pS->pWhere = pNew;
+ pWalker->eCode = 1;
+ }
+ }
+ return WRC_Prune;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Transfer eligible terms from the HAVING clause of a query, which is
+** processed after grouping, to the WHERE clause, which is processed before
+** grouping. For example, the query:
+**
+** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
+**
+** can be rewritten as:
+**
+** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
+**
+** A term of the HAVING expression is eligible for transfer if it consists
+** entirely of constants and expressions that are also GROUP BY terms that
+** use the "BINARY" collation sequence.
+*/
+static void havingToWhere(Parse *pParse, Select *p){
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(sWalker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = havingToWhereExprCb;
+ sWalker.u.pSelect = p;
+ sqlite3WalkExpr(&sWalker, p->pHaving);
+#if TREETRACE_ENABLED
+ if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
+ SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+}
+
+/*
+** Check to see if the pThis entry of pTabList is a self-join of a prior view.
+** If it is, then return the SrcList_item for the prior view. If it is not,
+** then return 0.
+*/
+static SrcItem *isSelfJoinView(
+ SrcList *pTabList, /* Search for self-joins in this FROM clause */
+ SrcItem *pThis /* Search for prior reference to this subquery */
+){
+ SrcItem *pItem;
+ assert( pThis->pSelect!=0 );
+ if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
+ for(pItem = pTabList->a; pItem<pThis; pItem++){
+ Select *pS1;
+ if( pItem->pSelect==0 ) continue;
+ if( pItem->fg.viaCoroutine ) continue;
+ if( pItem->zName==0 ) continue;
+ assert( pItem->pTab!=0 );
+ assert( pThis->pTab!=0 );
+ if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
+ if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
+ pS1 = pItem->pSelect;
+ if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
+ /* The query flattener left two different CTE tables with identical
+ ** names in the same FROM clause. */
+ continue;
+ }
+ if( pItem->pSelect->selFlags & SF_PushDown ){
+ /* The view was modified by some other optimization such as
+ ** pushDownWhereTerms() */
+ continue;
+ }
+ return pItem;
+ }
+ return 0;
+}
+
+/*
+** Deallocate a single AggInfo object
+*/
+static void agginfoFree(sqlite3 *db, AggInfo *p){
+ sqlite3DbFree(db, p->aCol);
+ sqlite3DbFree(db, p->aFunc);
+ sqlite3DbFreeNN(db, p);
+}
+
+#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
+/*
+** Attempt to transform a query of the form
+**
+** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
+**
+** Into this:
+**
+** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
+**
+** The transformation only works if all of the following are true:
+**
+** * The subquery is a UNION ALL of two or more terms
+** * The subquery does not have a LIMIT clause
+** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
+** * The outer query is a simple count(*) with no WHERE clause or other
+** extraneous syntax.
+**
+** Return TRUE if the optimization is undertaken.
+*/
+static int countOfViewOptimization(Parse *pParse, Select *p){
+ Select *pSub, *pPrior;
+ Expr *pExpr;
+ Expr *pCount;
+ sqlite3 *db;
+ if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
+ if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
+ if( p->pWhere ) return 0;
+ if( p->pGroupBy ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
+ assert( ExprUseUToken(pExpr) );
+ if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
+ assert( ExprUseXList(pExpr) );
+ if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
+ if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
+ pSub = p->pSrc->a[0].pSelect;
+ if( pSub==0 ) return 0; /* The FROM is a subquery */
+ if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
+ do{
+ if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
+ if( pSub->pWhere ) return 0; /* No WHERE clause */
+ if( pSub->pLimit ) return 0; /* No LIMIT clause */
+ if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
+ pSub = pSub->pPrior; /* Repeat over compound */
+ }while( pSub );
+
+ /* If we reach this point then it is OK to perform the transformation */
+
+ db = pParse->db;
+ pCount = pExpr;
+ pExpr = 0;
+ pSub = p->pSrc->a[0].pSelect;
+ p->pSrc->a[0].pSelect = 0;
+ sqlite3SrcListDelete(db, p->pSrc);
+ p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
+ while( pSub ){
+ Expr *pTerm;
+ pPrior = pSub->pPrior;
+ pSub->pPrior = 0;
+ pSub->pNext = 0;
+ pSub->selFlags |= SF_Aggregate;
+ pSub->selFlags &= ~SF_Compound;
+ pSub->nSelectRow = 0;
+ sqlite3ExprListDelete(db, pSub->pEList);
+ pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
+ pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
+ pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
+ sqlite3PExprAddSelect(pParse, pTerm, pSub);
+ if( pExpr==0 ){
+ pExpr = pTerm;
+ }else{
+ pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
+ }
+ pSub = pPrior;
+ }
+ p->pEList->a[0].pExpr = pExpr;
+ p->selFlags &= ~SF_Aggregate;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ return 1;
+}
+#endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
+
+/*
+** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
+** as pSrcItem but has the same alias as p0, then return true.
+** Otherwise return false.
+*/
+static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *p1 = &pSrc->a[i];
+ if( p1==p0 ) continue;
+ if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
+ return 1;
+ }
+ if( p1->pSelect
+ && (p1->pSelect->selFlags & SF_NestedFrom)!=0
+ && sameSrcAlias(p0, p1->pSelect->pSrc)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Generate code for the SELECT statement given in the p argument.
+**
+** The results are returned according to the SelectDest structure.
+** See comments in sqliteInt.h for further information.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+*/
+SQLITE_PRIVATE int sqlite3Select(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ SelectDest *pDest /* What to do with the query results */
+){
+ int i, j; /* Loop counters */
+ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
+ Vdbe *v; /* The virtual machine under construction */
+ int isAgg; /* True for select lists like "count(*)" */
+ ExprList *pEList = 0; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ AggInfo *pAggInfo = 0; /* Aggregate information */
+ int rc = 1; /* Value to return from this function */
+ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
+ SortCtx sSort; /* Info on how to code the ORDER BY clause */
+ int iEnd; /* Address of the end of the query */
+ sqlite3 *db; /* The database connection */
+ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
+ u8 minMaxFlag; /* Flag for min/max queries */
+
+ db = pParse->db;
+ assert( pParse==db->pParse );
+ v = sqlite3GetVdbe(pParse);
+ if( p==0 || pParse->nErr ){
+ return 1;
+ }
+ assert( db->mallocFailed==0 );
+ if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+#if TREETRACE_ENABLED
+ SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
+ if( sqlite3TreeTrace & 0x10100 ){
+ if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
+ __FILE__, __LINE__);
+ }
+ sqlite3ShowSelect(p);
+ }
+#endif
+
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
+ if( IgnorableDistinct(pDest) ){
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
+ pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
+ /* All of these destinations are also able to ignore the ORDER BY clause */
+ if( p->pOrderBy ){
+#if TREETRACE_ENABLED
+ SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
+ if( sqlite3TreeTrace & 0x100 ){
+ sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
+ }
+#endif
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ p->pOrderBy);
+ testcase( pParse->earlyCleanup );
+ p->pOrderBy = 0;
+ }
+ p->selFlags &= ~SF_Distinct;
+ p->selFlags |= SF_NoopOrderBy;
+ }
+ sqlite3SelectPrep(pParse, p, 0);
+ if( pParse->nErr ){
+ goto select_end;
+ }
+ assert( db->mallocFailed==0 );
+ assert( p->pEList!=0 );
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x104 ){
+ SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ /* If the SF_UFSrcCheck flag is set, then this function is being called
+ ** as part of populating the temp table for an UPDATE...FROM statement.
+ ** In this case, it is an error if the target object (pSrc->a[0]) name
+ ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
+ **
+ ** Postgres disallows this case too. The reason is that some other
+ ** systems handle this case differently, and not all the same way,
+ ** which is just confusing. To avoid this, we follow PG's lead and
+ ** disallow it altogether. */
+ if( p->selFlags & SF_UFSrcCheck ){
+ SrcItem *p0 = &p->pSrc->a[0];
+ if( sameSrcAlias(p0, p->pSrc) ){
+ sqlite3ErrorMsg(pParse,
+ "target object/alias may not appear in FROM clause: %s",
+ p0->zAlias ? p0->zAlias : p0->pTab->zName
+ );
+ goto select_end;
+ }
+
+ /* Clear the SF_UFSrcCheck flag. The check has already been performed,
+ ** and leaving this flag set can cause errors if a compound sub-query
+ ** in p->pSrc is flattened into this query and this function called
+ ** again as part of compound SELECT processing. */
+ p->selFlags &= ~SF_UFSrcCheck;
+ }
+
+ if( pDest->eDest==SRT_Output ){
+ sqlite3GenerateColumnNames(pParse, p);
+ }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( sqlite3WindowRewrite(pParse, p) ){
+ assert( pParse->nErr );
+ goto select_end;
+ }
+#if TREETRACE_ENABLED
+ if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
+ SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ pTabList = p->pSrc;
+ isAgg = (p->selFlags & SF_Aggregate)!=0;
+ memset(&sSort, 0, sizeof(sSort));
+ sSort.pOrderBy = p->pOrderBy;
+
+ /* Try to do various optimizations (flattening subqueries, and strength
+ ** reduction of join operators) in the FROM clause up into the main query
+ */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
+ SrcItem *pItem = &pTabList->a[i];
+ Select *pSub = pItem->pSelect;
+ Table *pTab = pItem->pTab;
+
+ /* The expander should have already created transient Table objects
+ ** even for FROM clause elements such as subqueries that do not correspond
+ ** to a real table */
+ assert( pTab!=0 );
+
+ /* Convert LEFT JOIN into JOIN if there are terms of the right table
+ ** of the LEFT JOIN used in the WHERE clause.
+ */
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
+ && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
+ && OptimizationEnabled(db, SQLITE_SimplifyJoin)
+ ){
+ SELECTTRACE(0x100,pParse,p,
+ ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
+ pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
+ assert( pItem->iCursor>=0 );
+ unsetJoinExpr(p->pWhere, pItem->iCursor,
+ pTabList->a[0].fg.jointype & JT_LTORJ);
+ }
+
+ /* No futher action if this term of the FROM clause is no a subquery */
+ if( pSub==0 ) continue;
+
+ /* Catch mismatch in the declared columns of a view and the number of
+ ** columns in the SELECT on the RHS */
+ if( pTab->nCol!=pSub->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
+ pTab->nCol, pTab->zName, pSub->pEList->nExpr);
+ goto select_end;
+ }
+
+ /* Do not try to flatten an aggregate subquery.
+ **
+ ** Flattening an aggregate subquery is only possible if the outer query
+ ** is not a join. But if the outer query is not a join, then the subquery
+ ** will be implemented as a co-routine and there is no advantage to
+ ** flattening in that case.
+ */
+ if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
+ assert( pSub->pGroupBy==0 );
+
+ /* If a FROM-clause subquery has an ORDER BY clause that is not
+ ** really doing anything, then delete it now so that it does not
+ ** interfere with query flattening. See the discussion at
+ ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
+ **
+ ** Beware of these cases where the ORDER BY clause may not be safely
+ ** omitted:
+ **
+ ** (1) There is also a LIMIT clause
+ ** (2) The subquery was added to help with window-function
+ ** processing
+ ** (3) The subquery is in the FROM clause of an UPDATE
+ ** (4) The outer query uses an aggregate function other than
+ ** the built-in count(), min(), or max().
+ ** (5) The ORDER BY isn't going to accomplish anything because
+ ** one of:
+ ** (a) The outer query has a different ORDER BY clause
+ ** (b) The subquery is part of a join
+ ** See forum post 062d576715d277c8
+ */
+ if( pSub->pOrderBy!=0
+ && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
+ && pSub->pLimit==0 /* Condition (1) */
+ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
+ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
+ && OptimizationEnabled(db, SQLITE_OmitOrderBy)
+ ){
+ SELECTTRACE(0x100,pParse,p,
+ ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ pSub->pOrderBy);
+ pSub->pOrderBy = 0;
+ }
+
+ /* If the outer query contains a "complex" result set (that is,
+ ** if the result set of the outer query uses functions or subqueries)
+ ** and if the subquery contains an ORDER BY clause and if
+ ** it will be implemented as a co-routine, then do not flatten. This
+ ** restriction allows SQL constructs like this:
+ **
+ ** SELECT expensive_function(x)
+ ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
+ **
+ ** The expensive_function() is only computed on the 10 rows that
+ ** are output, rather than every row of the table.
+ **
+ ** The requirement that the outer query have a complex result set
+ ** means that flattening does occur on simpler SQL constraints without
+ ** the expensive_function() like:
+ **
+ ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
+ */
+ if( pSub->pOrderBy!=0
+ && i==0
+ && (p->selFlags & SF_ComplexResult)!=0
+ && (pTabList->nSrc==1
+ || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
+ ){
+ continue;
+ }
+
+ if( flattenSubquery(pParse, p, i, isAgg) ){
+ if( pParse->nErr ) goto select_end;
+ /* This subquery can be absorbed into its parent. */
+ i = -1;
+ }
+ pTabList = p->pSrc;
+ if( db->mallocFailed ) goto select_end;
+ if( !IgnorableOrderby(pDest) ){
+ sSort.pOrderBy = p->pOrderBy;
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* Handle compound SELECT statements using the separate multiSelect()
+ ** procedure.
+ */
+ if( p->pPrior ){
+ rc = multiSelect(pParse, p, pDest);
+#if TREETRACE_ENABLED
+ SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
+ if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
+ return rc;
+ }
+#endif
+
+ /* Do the WHERE-clause constant propagation optimization if this is
+ ** a join. No need to speed time on this operation for non-join queries
+ ** as the equivalent optimization will be handled by query planner in
+ ** sqlite3WhereBegin().
+ */
+ if( p->pWhere!=0
+ && p->pWhere->op==TK_AND
+ && OptimizationEnabled(db, SQLITE_PropagateConst)
+ && propagateConstants(pParse, p)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }else{
+ SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
+ }
+
+#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
+ if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
+ && countOfViewOptimization(pParse, p)
+ ){
+ if( db->mallocFailed ) goto select_end;
+ pEList = p->pEList;
+ pTabList = p->pSrc;
+ }
+#endif
+
+ /* For each term in the FROM clause, do two things:
+ ** (1) Authorized unreferenced tables
+ ** (2) Generate code for all sub-queries
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ SrcItem *pItem = &pTabList->a[i];
+ SrcItem *pPrior;
+ SelectDest dest;
+ Select *pSub;
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ const char *zSavedAuthContext;
+#endif
+
+ /* Issue SQLITE_READ authorizations with a fake column name for any
+ ** tables that are referenced but from which no values are extracted.
+ ** Examples of where these kinds of null SQLITE_READ authorizations
+ ** would occur:
+ **
+ ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
+ ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
+ **
+ ** The fake column name is an empty string. It is possible for a table to
+ ** have a column named by the empty string, in which case there is no way to
+ ** distinguish between an unreferenced table and an actual reference to the
+ ** "" column. The original design was for the fake column name to be a NULL,
+ ** which would be unambiguous. But legacy authorization callbacks might
+ ** assume the column name is non-NULL and segfault. The use of an empty
+ ** string for the fake column name seems safer.
+ */
+ if( pItem->colUsed==0 && pItem->zName!=0 ){
+ sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
+ }
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ /* Generate code for all sub-queries in the FROM clause
+ */
+ pSub = pItem->pSelect;
+ if( pSub==0 ) continue;
+
+ /* The code for a subquery should only be generated once. */
+ assert( pItem->addrFillSub==0 );
+
+ /* Increment Parse.nHeight by the height of the largest expression
+ ** tree referred to by this, the parent select. The child select
+ ** may contain expression trees of at most
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+ ** more conservative than necessary, but much easier than enforcing
+ ** an exact limit.
+ */
+ pParse->nHeight += sqlite3SelectExprHeight(p);
+
+ /* Make copies of constant WHERE-clause terms in the outer query down
+ ** inside the subquery. This can help the subquery to run more efficiently.
+ */
+ if( OptimizationEnabled(db, SQLITE_PushDown)
+ && (pItem->fg.isCte==0
+ || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
+ && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,
+ ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
+ }else{
+ SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
+ }
+
+ zSavedAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = pItem->zName;
+
+ /* Generate code to implement the subquery
+ **
+ ** The subquery is implemented as a co-routine if all of the following are
+ ** true:
+ **
+ ** (1) the subquery is guaranteed to be the outer loop (so that
+ ** it does not need to be computed more than once), and
+ ** (2) the subquery is not a CTE that should be materialized
+ ** (3) the subquery is not part of a left operand for a RIGHT JOIN
+ */
+ if( i==0
+ && (pTabList->nSrc==1
+ || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */
+ && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */
+ && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */
+ ){
+ /* Implement a co-routine that will return a single row of the result
+ ** set on each invocation.
+ */
+ int addrTop = sqlite3VdbeCurrentAddr(v)+1;
+
+ pItem->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
+ VdbeComment((v, "%!S", pItem));
+ pItem->addrFillSub = addrTop;
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
+ ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->pTab->nRowLogEst = pSub->nSelectRow;
+ pItem->fg.viaCoroutine = 1;
+ pItem->regResult = dest.iSdst;
+ sqlite3VdbeEndCoroutine(v, pItem->regReturn);
+ sqlite3VdbeJumpHere(v, addrTop-1);
+ sqlite3ClearTempRegCache(pParse);
+ }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
+ /* This is a CTE for which materialization code has already been
+ ** generated. Invoke the subroutine to compute the materialization,
+ ** the make the pItem->iCursor be a copy of the ephemerial table that
+ ** holds the result of the materialization. */
+ CteUse *pCteUse = pItem->u2.pCteUse;
+ sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
+ if( pItem->iCursor!=pCteUse->iCur ){
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
+ VdbeComment((v, "%!S", pItem));
+ }
+ pSub->nSelectRow = pCteUse->nRowEst;
+ }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
+ /* This view has already been materialized by a prior entry in
+ ** this same FROM clause. Reuse it. */
+ if( pPrior->addrFillSub ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
+ }
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
+ pSub->nSelectRow = pPrior->pSelect->nSelectRow;
+ }else{
+ /* Materialize the view. If the view is not correlated, generate a
+ ** subroutine to do the materialization so that subsequent uses of
+ ** the same view can reuse the materialization. */
+ int topAddr;
+ int onceAddr = 0;
+
+ pItem->regReturn = ++pParse->nMem;
+ topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
+ pItem->addrFillSub = topAddr+1;
+ pItem->fg.isMaterialized = 1;
+ if( pItem->fg.isCorrelated==0 ){
+ /* If the subquery is not correlated and if we are not inside of
+ ** a trigger, then we only need to compute the value of the subquery
+ ** once. */
+ onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ VdbeComment((v, "materialize %!S", pItem));
+ }else{
+ VdbeNoopComment((v, "materialize %!S", pItem));
+ }
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+ ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->pTab->nRowLogEst = pSub->nSelectRow;
+ if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
+ sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
+ VdbeComment((v, "end %!S", pItem));
+ sqlite3VdbeJumpHere(v, topAddr);
+ sqlite3ClearTempRegCache(pParse);
+ if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
+ CteUse *pCteUse = pItem->u2.pCteUse;
+ pCteUse->addrM9e = pItem->addrFillSub;
+ pCteUse->regRtn = pItem->regReturn;
+ pCteUse->iCur = pItem->iCursor;
+ pCteUse->nRowEst = pSub->nSelectRow;
+ }
+ }
+ if( db->mallocFailed ) goto select_end;
+ pParse->nHeight -= sqlite3SelectExprHeight(p);
+ pParse->zAuthContext = zSavedAuthContext;
+#endif
+ }
+
+ /* Various elements of the SELECT copied into local variables for
+ ** convenience */
+ pEList = p->pEList;
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
+ ** if the select-list is the same as the ORDER BY list, then this query
+ ** can be rewritten as a GROUP BY. In other words, this:
+ **
+ ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
+ **
+ ** is transformed to:
+ **
+ ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
+ **
+ ** The second form is preferred as a single index (or temp-table) may be
+ ** used for both the ORDER BY and DISTINCT processing. As originally
+ ** written the query must use a temp-table for at least one of the ORDER
+ ** BY and DISTINCT, and an index or separate temp-table for the other.
+ */
+ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
+ && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ && p->pWin==0
+#endif
+ ){
+ p->selFlags &= ~SF_Distinct;
+ pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
+ p->selFlags |= SF_Aggregate;
+ /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
+ ** the sDistinct.isTnct is still set. Hence, isTnct represents the
+ ** original setting of the SF_Distinct flag, not the current setting */
+ assert( sDistinct.isTnct );
+ sDistinct.isTnct = 2;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }
+
+ /* If there is an ORDER BY clause, then create an ephemeral index to
+ ** do the sorting. But this sorting ephemeral index might end up
+ ** being unused if the data can be extracted in pre-sorted order.
+ ** If that is the case, then the OP_OpenEphemeral instruction will be
+ ** changed to an OP_Noop once we figure out that the sorting index is
+ ** not needed. The sSort.addrSortIndex variable is used to facilitate
+ ** that change.
+ */
+ if( sSort.pOrderBy ){
+ KeyInfo *pKeyInfo;
+ pKeyInfo = sqlite3KeyInfoFromExprList(
+ pParse, sSort.pOrderBy, 0, pEList->nExpr);
+ sSort.iECursor = pParse->nTab++;
+ sSort.addrSortIndex =
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
+ (char*)pKeyInfo, P4_KEYINFO
+ );
+ }else{
+ sSort.addrSortIndex = -1;
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( pDest->eDest==SRT_EphemTab ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
+ if( p->selFlags & SF_NestedFrom ){
+ /* Delete or NULL-out result columns that will never be used */
+ int ii;
+ for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
+ sqlite3ExprDelete(db, pEList->a[ii].pExpr);
+ sqlite3DbFree(db, pEList->a[ii].zEName);
+ pEList->nExpr--;
+ }
+ for(ii=0; ii<pEList->nExpr; ii++){
+ if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
+ }
+ }
+ }
+
+ /* Set the limiter.
+ */
+ iEnd = sqlite3VdbeMakeLabel(pParse);
+ if( (p->selFlags & SF_FixedLimit)==0 ){
+ p->nSelectRow = 320; /* 4 billion rows */
+ }
+ computeLimitRegisters(pParse, p, iEnd);
+ if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
+ sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
+ sSort.sortFlags |= SORTFLAG_UseSorter;
+ }
+
+ /* Open an ephemeral index to use for the distinct set.
+ */
+ if( p->selFlags & SF_Distinct ){
+ sDistinct.tabTnct = pParse->nTab++;
+ sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sDistinct.tabTnct, 0, 0,
+ (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
+ P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
+ sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
+ }else{
+ sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
+ }
+
+ if( !isAgg && pGroupBy==0 ){
+ /* No aggregate functions and no GROUP BY clause */
+ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
+ | (p->selFlags & SF_FixedLimit);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin = p->pWin; /* Main window object (or NULL) */
+ if( pWin ){
+ sqlite3WindowCodeInit(pParse, p);
+ }
+#endif
+ assert( WHERE_USE_LIMIT==SF_FixedLimit );
+
+
+ /* Begin the database scan. */
+ SELECTTRACE(1,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
+ p->pEList, p, wctrlFlags, p->nSelectRow);
+ if( pWInfo==0 ) goto select_end;
+ if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
+ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
+ }
+ if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
+ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
+ }
+ if( sSort.pOrderBy ){
+ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
+ sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
+ if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
+ sSort.pOrderBy = 0;
+ }
+ }
+ SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
+
+ /* If sorting index that was created by a prior OP_OpenEphemeral
+ ** instruction ended up not being needed, then change the OP_OpenEphemeral
+ ** into an OP_Noop.
+ */
+ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
+ }
+
+ assert( p->pEList==pEList );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ int addrGosub = sqlite3VdbeMakeLabel(pParse);
+ int iCont = sqlite3VdbeMakeLabel(pParse);
+ int iBreak = sqlite3VdbeMakeLabel(pParse);
+ int regGosub = ++pParse->nMem;
+
+ sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
+
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
+ sqlite3VdbeResolveLabel(v, addrGosub);
+ VdbeNoopComment((v, "inner-loop subroutine"));
+ sSort.labelOBLopt = 0;
+ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp1(v, OP_Return, regGosub);
+ VdbeComment((v, "end inner-loop subroutine"));
+ sqlite3VdbeResolveLabel(v, iBreak);
+ }else
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ {
+ /* Use the standard inner loop. */
+ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
+ sqlite3WhereContinueLabel(pWInfo),
+ sqlite3WhereBreakLabel(pWInfo));
+
+ /* End the database scan loop.
+ */
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ }
+ }else{
+ /* This case when there exist aggregate functions or a GROUP BY clause
+ ** or both */
+ NameContext sNC; /* Name context for processing aggregate information */
+ int iAMem; /* First Mem address for storing current GROUP BY */
+ int iBMem; /* First Mem address for previous GROUP BY */
+ int iUseFlag; /* Mem address holding flag indicating that at least
+ ** one row of the input to the aggregator has been
+ ** processed */
+ int iAbortFlag; /* Mem address which causes query abort if positive */
+ int groupBySort; /* Rows come from source in GROUP BY order */
+ int addrEnd; /* End of processing for this SELECT */
+ int sortPTab = 0; /* Pseudotable used to decode sorting results */
+ int sortOut = 0; /* Output register from the sorter */
+ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
+
+ /* Remove any and all aliases between the result set and the
+ ** GROUP BY clause.
+ */
+ if( pGroupBy ){
+ int k; /* Loop counter */
+ struct ExprList_item *pItem; /* For looping over expression in a list */
+
+ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
+ pItem->u.x.iAlias = 0;
+ }
+ for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
+ pItem->u.x.iAlias = 0;
+ }
+ assert( 66==sqlite3LogEst(100) );
+ if( p->nSelectRow>66 ) p->nSelectRow = 66;
+
+ /* If there is both a GROUP BY and an ORDER BY clause and they are
+ ** identical, then it may be possible to disable the ORDER BY clause
+ ** on the grounds that the GROUP BY will cause elements to come out
+ ** in the correct order. It also may not - the GROUP BY might use a
+ ** database index that causes rows to be grouped together as required
+ ** but not actually sorted. Either way, record the fact that the
+ ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
+ ** variable. */
+ if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
+ int ii;
+ /* The GROUP BY processing doesn't care whether rows are delivered in
+ ** ASC or DESC order - only that each group is returned contiguously.
+ ** So set the ASC/DESC flags in the GROUP BY to match those in the
+ ** ORDER BY to maximize the chances of rows being delivered in an
+ ** order that makes the ORDER BY redundant. */
+ for(ii=0; ii<pGroupBy->nExpr; ii++){
+ u8 sortFlags;
+ sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
+ pGroupBy->a[ii].fg.sortFlags = sortFlags;
+ }
+ if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
+ orderByGrp = 1;
+ }
+ }
+ }else{
+ assert( 0==sqlite3LogEst(1) );
+ p->nSelectRow = 0;
+ }
+
+ /* Create a label to jump to when we want to abort the query */
+ addrEnd = sqlite3VdbeMakeLabel(pParse);
+
+ /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+ ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+ ** SELECT statement.
+ */
+ pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
+ if( pAggInfo ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
+ testcase( pParse->earlyCleanup );
+ }
+ if( db->mallocFailed ){
+ goto select_end;
+ }
+ pAggInfo->selId = p->selId;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.uNC.pAggInfo = pAggInfo;
+ VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
+ pAggInfo->mnReg = pParse->nMem+1;
+ pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
+ pAggInfo->pGroupBy = pGroupBy;
+ sqlite3ExprAnalyzeAggList(&sNC, pEList);
+ sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
+ if( pHaving ){
+ if( pGroupBy ){
+ assert( pWhere==p->pWhere );
+ assert( pHaving==p->pHaving );
+ assert( pGroupBy==p->pGroupBy );
+ havingToWhere(pParse, p);
+ pWhere = p->pWhere;
+ }
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
+ }
+ pAggInfo->nAccumulator = pAggInfo->nColumn;
+ if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
+ minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
+ }else{
+ minMaxFlag = WHERE_ORDERBY_NORMAL;
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
+ assert( ExprUseXList(pExpr) );
+ sNC.ncFlags |= NC_InAggFunc;
+ sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( !IsWindowFunc(pExpr) );
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
+ }
+#endif
+ sNC.ncFlags &= ~NC_InAggFunc;
+ }
+ pAggInfo->mxReg = pParse->nMem;
+ if( db->mallocFailed ) goto select_end;
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ int ii;
+ SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
+ sqlite3TreeViewSelect(0, p, 0);
+ if( minMaxFlag ){
+ sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
+ sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
+ }
+ for(ii=0; ii<pAggInfo->nColumn; ii++){
+ sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
+ ii, pAggInfo->aCol[ii].iMem);
+ sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
+ }
+ for(ii=0; ii<pAggInfo->nFunc; ii++){
+ sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
+ ii, pAggInfo->aFunc[ii].iMem);
+ sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
+ }
+ }
+#endif
+
+
+ /* Processing for aggregates with GROUP BY is very different and
+ ** much more complex than aggregates without a GROUP BY.
+ */
+ if( pGroupBy ){
+ KeyInfo *pKeyInfo; /* Keying information for the group by clause */
+ int addr1; /* A-vs-B comparision jump */
+ int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int regOutputRow; /* Return address register for output subroutine */
+ int addrSetAbort; /* Set the abort flag and return */
+ int addrTopOfLoop; /* Top of the input loop */
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+ int addrReset; /* Subroutine for resetting the accumulator */
+ int regReset; /* Return address register for reset subroutine */
+ ExprList *pDistinct = 0;
+ u16 distFlag = 0;
+ int eDist = WHERE_DISTINCT_NOOP;
+
+ if( pAggInfo->nFunc==1
+ && pAggInfo->aFunc[0].iDistinct>=0
+ && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
+ && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
+ && pAggInfo->aFunc[0].pFExpr->x.pList!=0
+ ){
+ Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
+ pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
+ distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
+ }
+
+ /* If there is a GROUP BY clause we might need a sorting index to
+ ** implement it. Allocate that sorting index now. If it turns out
+ ** that we do not need it after all, the OP_SorterOpen instruction
+ ** will be converted into a Noop.
+ */
+ pAggInfo->sortingIdx = pParse->nTab++;
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
+ 0, pAggInfo->nColumn);
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
+ pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
+ 0, (char*)pKeyInfo, P4_KEYINFO);
+
+ /* Initialize memory locations used by GROUP BY aggregate processing
+ */
+ iUseFlag = ++pParse->nMem;
+ iAbortFlag = ++pParse->nMem;
+ regOutputRow = ++pParse->nMem;
+ addrOutputRow = sqlite3VdbeMakeLabel(pParse);
+ regReset = ++pParse->nMem;
+ addrReset = sqlite3VdbeMakeLabel(pParse);
+ iAMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ iBMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+ VdbeComment((v, "clear abort flag"));
+ sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
+
+ /* Begin a loop that will extract all source rows in GROUP BY order.
+ ** This might involve two separate loops with an OP_Sort in between, or
+ ** it might be a single loop that uses an index to extract information
+ ** in the right order to begin with.
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ SELECTTRACE(1,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
+ 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
+ | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
+ );
+ if( pWInfo==0 ){
+ sqlite3ExprListDelete(db, pDistinct);
+ goto select_end;
+ }
+ eDist = sqlite3WhereIsDistinct(pWInfo);
+ SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
+ if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
+ /* The optimizer is able to deliver rows in group by order so
+ ** we do not have to sort. The OP_OpenEphemeral table will be
+ ** cancelled later because we still need to use the pKeyInfo
+ */
+ groupBySort = 0;
+ }else{
+ /* Rows are coming out in undetermined order. We have to push
+ ** each row into a sorting index, terminate the first loop,
+ ** then loop over the sorting index in order to get the output
+ ** in sorted order
+ */
+ int regBase;
+ int regRecord;
+ int nCol;
+ int nGroupBy;
+
+ explainTempTable(pParse,
+ (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
+ "DISTINCT" : "GROUP BY");
+
+ groupBySort = 1;
+ nGroupBy = pGroupBy->nExpr;
+ nCol = nGroupBy;
+ j = nGroupBy;
+ for(i=0; i<pAggInfo->nColumn; i++){
+ if( pAggInfo->aCol[i].iSorterColumn>=j ){
+ nCol++;
+ j++;
+ }
+ }
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
+ j = nGroupBy;
+ for(i=0; i<pAggInfo->nColumn; i++){
+ struct AggInfo_col *pCol = &pAggInfo->aCol[i];
+ if( pCol->iSorterColumn>=j ){
+ int r1 = j + regBase;
+ sqlite3ExprCodeGetColumnOfTable(v,
+ pCol->pTab, pCol->iTable, pCol->iColumn, r1);
+ j++;
+ }
+ }
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
+ sortOut = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
+ sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
+ VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
+ pAggInfo->useSortingIdx = 1;
+ }
+
+ /* If the index or temporary table used by the GROUP BY sort
+ ** will naturally deliver rows in the order required by the ORDER BY
+ ** clause, cancel the ephemeral table open coded earlier.
+ **
+ ** This is an optimization - the correct answer should result regardless.
+ ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
+ ** disable this optimization for testing purposes. */
+ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
+ && (groupBySort || sqlite3WhereIsSorted(pWInfo))
+ ){
+ sSort.pOrderBy = 0;
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
+ }
+
+ /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+ ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+ ** Then compare the current GROUP BY terms against the GROUP BY terms
+ ** from the previous row currently stored in a0, a1, a2...
+ */
+ addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
+ sortOut, sortPTab);
+ }
+ for(j=0; j<pGroupBy->nExpr; j++){
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
+ }else{
+ pAggInfo->directMode = 1;
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
+ }
+ }
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
+ addr1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
+
+ /* Generate code that runs whenever the GROUP BY changes.
+ ** Changes in the GROUP BY are detected by the previous code
+ ** block. If there were no changes, this block is skipped.
+ **
+ ** This code copies current group by terms in b0,b1,b2,...
+ ** over to a0,a1,a2. It then calls the output subroutine
+ ** and resets the aggregate accumulator registers in preparation
+ ** for the next GROUP BY batch.
+ */
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output one row"));
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
+ VdbeComment((v, "check abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ VdbeComment((v, "reset accumulator"));
+
+ /* Update the aggregate accumulators based on the content of
+ ** the current row
+ */
+ sqlite3VdbeJumpHere(v, addr1);
+ updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+ VdbeComment((v, "indicate data in accumulator"));
+
+ /* End of the loop
+ */
+ if( groupBySort ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
+ VdbeCoverage(v);
+ }else{
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeChangeToNoop(v, addrSortingIdx);
+ }
+ sqlite3ExprListDelete(db, pDistinct);
+
+ /* Output the final row of result
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output final row"));
+
+ /* Jump over the subroutines
+ */
+ sqlite3VdbeGoto(v, addrEnd);
+
+ /* Generate a subroutine that outputs a single row of the result
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag
+ ** is less than or equal to zero, the subroutine is a no-op. If
+ ** the processing calls for the query to abort, this subroutine
+ ** increments the iAbortFlag memory location before returning in
+ ** order to signal the caller to abort.
+ */
+ addrSetAbort = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+ VdbeComment((v, "set abort flag"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ sqlite3VdbeResolveLabel(v, addrOutputRow);
+ addrOutputRow = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+ VdbeCoverage(v);
+ VdbeComment((v, "Groupby result generator entry point"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ finalizeAggFunctions(pParse, pAggInfo);
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, -1, &sSort,
+ &sDistinct, pDest,
+ addrOutputRow+1, addrSetAbort);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ VdbeComment((v, "end groupby result generator"));
+
+ /* Generate a subroutine that will reset the group-by accumulator
+ */
+ sqlite3VdbeResolveLabel(v, addrReset);
+ resetAccumulator(pParse, pAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+ VdbeComment((v, "indicate accumulator empty"));
+ sqlite3VdbeAddOp1(v, OP_Return, regReset);
+
+ if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
+ struct AggInfo_func *pF = &pAggInfo->aFunc[0];
+ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
+ }
+ } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
+ else {
+ Table *pTab;
+ if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
+ /* If isSimpleCount() returns a pointer to a Table structure, then
+ ** the SQL statement is of the form:
+ **
+ ** SELECT count(*) FROM <tbl>
+ **
+ ** where the Table structure returned represents table <tbl>.
+ **
+ ** This statement is so common that it is optimized specially. The
+ ** OP_Count instruction is executed either on the intkey table that
+ ** contains the data for table <tbl> or on one of its indexes. It
+ ** is better to execute the op on an index, as indexes are almost
+ ** always spread across less pages than their corresponding tables.
+ */
+ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
+ Index *pIdx; /* Iterator variable */
+ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
+ Index *pBest = 0; /* Best index found so far */
+ Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
+
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ /* Search for the index that has the lowest scan cost.
+ **
+ ** (2011-04-15) Do not do a full scan of an unordered index.
+ **
+ ** (2013-10-03) Do not count the entries in a partial index.
+ **
+ ** In practice the KeyInfo structure will not be used. It is only
+ ** passed to keep OP_OpenRead happy.
+ */
+ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
+ if( !p->pSrc->a[0].fg.notIndexed ){
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->bUnordered==0
+ && pIdx->szIdxRow<pTab->szTabRow
+ && pIdx->pPartIdxWhere==0
+ && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
+ ){
+ pBest = pIdx;
+ }
+ }
+ }
+ if( pBest ){
+ iRoot = pBest->tnum;
+ pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
+ }
+
+ /* Open a read-only cursor, execute the OP_Count, close the cursor. */
+ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
+ }
+ sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ explainSimpleCount(pParse, pTab, pBest);
+ }else{
+ int regAcc = 0; /* "populate accumulators" flag */
+ ExprList *pDistinct = 0;
+ u16 distFlag = 0;
+ int eDist;
+
+ /* If there are accumulator registers but no min() or max() functions
+ ** without FILTER clauses, allocate register regAcc. Register regAcc
+ ** will contain 0 the first time the inner loop runs, and 1 thereafter.
+ ** The code generated by updateAccumulator() uses this to ensure
+ ** that the accumulator registers are (a) updated only once if
+ ** there are no min() or max functions or (b) always updated for the
+ ** first row visited by the aggregate, so that they are updated at
+ ** least once even if the FILTER clause means the min() or max()
+ ** function visits zero rows. */
+ if( pAggInfo->nAccumulator ){
+ for(i=0; i<pAggInfo->nFunc; i++){
+ if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
+ continue;
+ }
+ if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
+ break;
+ }
+ }
+ if( i==pAggInfo->nFunc ){
+ regAcc = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
+ }
+ }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
+ assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
+ pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
+ distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
+ }
+
+ /* This case runs if the aggregate has no GROUP BY clause. The
+ ** processing is much simpler since there is only a single row
+ ** of output.
+ */
+ assert( p->pGroupBy==0 );
+ resetAccumulator(pParse, pAggInfo);
+
+ /* If this query is a candidate for the min/max optimization, then
+ ** minMaxFlag will have been previously set to either
+ ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
+ ** be an appropriate ORDER BY expression for the optimization.
+ */
+ assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
+ assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
+
+ SELECTTRACE(1,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
+ pDistinct, 0, minMaxFlag|distFlag, 0);
+ if( pWInfo==0 ){
+ goto select_end;
+ }
+ SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
+ eDist = sqlite3WhereIsDistinct(pWInfo);
+ updateAccumulator(pParse, regAcc, pAggInfo, eDist);
+ if( eDist!=WHERE_DISTINCT_NOOP ){
+ struct AggInfo_func *pF = pAggInfo->aFunc;
+ if( pF ){
+ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
+ }
+ }
+
+ if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
+ if( minMaxFlag ){
+ sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
+ }
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ finalizeAggFunctions(pParse, pAggInfo);
+ }
+
+ sSort.pOrderBy = 0;
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, -1, 0, 0,
+ pDest, addrEnd, addrEnd);
+ }
+ sqlite3VdbeResolveLabel(v, addrEnd);
+
+ } /* endif aggregate query */
+
+ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
+ explainTempTable(pParse, "DISTINCT");
+ }
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( sSort.pOrderBy ){
+ explainTempTable(pParse,
+ sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
+ assert( p->pEList==pEList );
+ generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
+ }
+
+ /* Jump here to skip this query
+ */
+ sqlite3VdbeResolveLabel(v, iEnd);
+
+ /* The SELECT has been coded. If there is an error in the Parse structure,
+ ** set the return code to 1. Otherwise 0. */
+ rc = (pParse->nErr>0);
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+ assert( db->mallocFailed==0 || db->mallocFailed==1 );
+ assert( db->mallocFailed==0 || pParse->nErr!=0 );
+ sqlite3ExprListDelete(db, pMinMaxOrderBy);
+#ifdef SQLITE_DEBUG
+ if( pAggInfo && !db->mallocFailed ){
+ for(i=0; i<pAggInfo->nColumn; i++){
+ Expr *pExpr = pAggInfo->aCol[i].pCExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->pAggInfo==pAggInfo );
+ assert( pExpr->iAgg==i );
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->pAggInfo==pAggInfo );
+ assert( pExpr->iAgg==i );
+ }
+ }
+#endif
+
+#if TREETRACE_ENABLED
+ SELECTTRACE(0x1,pParse,p,("end processing\n"));
+ if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ ExplainQueryPlanPop(pParse);
+ return rc;
+}
+
+/************** End of select.c **********************************************/
+/************** Begin file table.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the sqlite3_get_table() and sqlite3_free_table()
+** interface routines. These are just wrappers around the main
+** interface routine of sqlite3_exec().
+**
+** These routines are in a separate files so that they will not be linked
+** if they are not used.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_GET_TABLE
+
+/*
+** This structure is used to pass data from sqlite3_get_table() through
+** to the callback function is uses to build the result.
+*/
+typedef struct TabResult {
+ char **azResult; /* Accumulated output */
+ char *zErrMsg; /* Error message text, if an error occurs */
+ u32 nAlloc; /* Slots allocated for azResult[] */
+ u32 nRow; /* Number of rows in the result */
+ u32 nColumn; /* Number of columns in the result */
+ u32 nData; /* Slots used in azResult[]. (nRow+1)*nColumn */
+ int rc; /* Return code from sqlite3_exec() */
+} TabResult;
+
+/*
+** This routine is called once for each row in the result table. Its job
+** is to fill in the TabResult structure appropriately, allocating new
+** memory as necessary.
+*/
+static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
+ TabResult *p = (TabResult*)pArg; /* Result accumulator */
+ int need; /* Slots needed in p->azResult[] */
+ int i; /* Loop counter */
+ char *z; /* A single column of result */
+
+ /* Make sure there is enough space in p->azResult to hold everything
+ ** we need to remember from this invocation of the callback.
+ */
+ if( p->nRow==0 && argv!=0 ){
+ need = nCol*2;
+ }else{
+ need = nCol;
+ }
+ if( p->nData + need > p->nAlloc ){
+ char **azNew;
+ p->nAlloc = p->nAlloc*2 + need;
+ azNew = sqlite3Realloc( p->azResult, sizeof(char*)*p->nAlloc );
+ if( azNew==0 ) goto malloc_failed;
+ p->azResult = azNew;
+ }
+
+ /* If this is the first row, then generate an extra row containing
+ ** the names of all columns.
+ */
+ if( p->nRow==0 ){
+ p->nColumn = nCol;
+ for(i=0; i<nCol; i++){
+ z = sqlite3_mprintf("%s", colv[i]);
+ if( z==0 ) goto malloc_failed;
+ p->azResult[p->nData++] = z;
+ }
+ }else if( (int)p->nColumn!=nCol ){
+ sqlite3_free(p->zErrMsg);
+ p->zErrMsg = sqlite3_mprintf(
+ "sqlite3_get_table() called with two or more incompatible queries"
+ );
+ p->rc = SQLITE_ERROR;
+ return 1;
+ }
+
+ /* Copy over the row data
+ */
+ if( argv!=0 ){
+ for(i=0; i<nCol; i++){
+ if( argv[i]==0 ){
+ z = 0;
+ }else{
+ int n = sqlite3Strlen30(argv[i])+1;
+ z = sqlite3_malloc64( n );
+ if( z==0 ) goto malloc_failed;
+ memcpy(z, argv[i], n);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ p->nRow++;
+ }
+ return 0;
+
+malloc_failed:
+ p->rc = SQLITE_NOMEM_BKPT;
+ return 1;
+}
+
+/*
+** Query the database. But instead of invoking a callback for each row,
+** malloc() for space to hold the result and return the entire results
+** at the conclusion of the call.
+**
+** The result that is written to ***pazResult is held in memory obtained
+** from malloc(). But the caller cannot free this memory directly.
+** Instead, the entire table should be passed to sqlite3_free_table() when
+** the calling procedure is finished using it.
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ char ***pazResult, /* Write the result table here */
+ int *pnRow, /* Write the number of rows in the result here */
+ int *pnColumn, /* Write the number of columns of result here */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc;
+ TabResult res;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || pazResult==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *pazResult = 0;
+ if( pnColumn ) *pnColumn = 0;
+ if( pnRow ) *pnRow = 0;
+ if( pzErrMsg ) *pzErrMsg = 0;
+ res.zErrMsg = 0;
+ res.nRow = 0;
+ res.nColumn = 0;
+ res.nData = 1;
+ res.nAlloc = 20;
+ res.rc = SQLITE_OK;
+ res.azResult = sqlite3_malloc64(sizeof(char*)*res.nAlloc );
+ if( res.azResult==0 ){
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM_BKPT;
+ }
+ res.azResult[0] = 0;
+ rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
+ assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
+ res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
+ if( (rc&0xff)==SQLITE_ABORT ){
+ sqlite3_free_table(&res.azResult[1]);
+ if( res.zErrMsg ){
+ if( pzErrMsg ){
+ sqlite3_free(*pzErrMsg);
+ *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
+ }
+ sqlite3_free(res.zErrMsg);
+ }
+ db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
+ return res.rc;
+ }
+ sqlite3_free(res.zErrMsg);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free_table(&res.azResult[1]);
+ return rc;
+ }
+ if( res.nAlloc>res.nData ){
+ char **azNew;
+ azNew = sqlite3Realloc( res.azResult, sizeof(char*)*res.nData );
+ if( azNew==0 ){
+ sqlite3_free_table(&res.azResult[1]);
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM_BKPT;
+ }
+ res.azResult = azNew;
+ }
+ *pazResult = &res.azResult[1];
+ if( pnColumn ) *pnColumn = res.nColumn;
+ if( pnRow ) *pnRow = res.nRow;
+ return rc;
+}
+
+/*
+** This routine frees the space the sqlite3_get_table() malloced.
+*/
+SQLITE_API void sqlite3_free_table(
+ char **azResult /* Result returned from sqlite3_get_table() */
+){
+ if( azResult ){
+ int i, n;
+ azResult--;
+ assert( azResult!=0 );
+ n = SQLITE_PTR_TO_INT(azResult[0]);
+ for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
+ sqlite3_free(azResult);
+ }
+}
+
+#endif /* SQLITE_OMIT_GET_TABLE */
+
+/************** End of table.c ***********************************************/
+/************** Begin file trigger.c *****************************************/
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation for TRIGGERs
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_TRIGGER
+/*
+** Delete a linked list of TriggerStep structures.
+*/
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
+ while( pTriggerStep ){
+ TriggerStep * pTmp = pTriggerStep;
+ pTriggerStep = pTriggerStep->pNext;
+
+ sqlite3ExprDelete(db, pTmp->pWhere);
+ sqlite3ExprListDelete(db, pTmp->pExprList);
+ sqlite3SelectDelete(db, pTmp->pSelect);
+ sqlite3IdListDelete(db, pTmp->pIdList);
+ sqlite3UpsertDelete(db, pTmp->pUpsert);
+ sqlite3SrcListDelete(db, pTmp->pFrom);
+ sqlite3DbFree(db, pTmp->zSpan);
+
+ sqlite3DbFree(db, pTmp);
+ }
+}
+
+/*
+** Given table pTab, return a list of all the triggers attached to
+** the table. The list is connected by Trigger.pNext pointers.
+**
+** All of the triggers on pTab that are in the same database as pTab
+** are already attached to pTab->pTrigger. But there might be additional
+** triggers on pTab in the TEMP schema. This routine prepends all
+** TEMP triggers on pTab to the beginning of the pTab->pTrigger list
+** and returns the combined list.
+**
+** To state it another way: This routine returns a list of all triggers
+** that fire off of pTab. The list will include any TEMP triggers on
+** pTab as well as the triggers lised in pTab->pTrigger.
+*/
+SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
+ Schema *pTmpSchema; /* Schema of the pTab table */
+ Trigger *pList; /* List of triggers to return */
+ HashElem *p; /* Loop variable for TEMP triggers */
+
+ assert( pParse->disableTriggers==0 );
+ pTmpSchema = pParse->db->aDb[1].pSchema;
+ p = sqliteHashFirst(&pTmpSchema->trigHash);
+ pList = pTab->pTrigger;
+ while( p ){
+ Trigger *pTrig = (Trigger *)sqliteHashData(p);
+ if( pTrig->pTabSchema==pTab->pSchema
+ && pTrig->table
+ && 0==sqlite3StrICmp(pTrig->table, pTab->zName)
+ && pTrig->pTabSchema!=pTmpSchema
+ ){
+ pTrig->pNext = pList;
+ pList = pTrig;
+ }else if( pTrig->op==TK_RETURNING ){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ assert( pParse->db->pVtabCtx==0 );
+#endif
+ assert( pParse->bReturning );
+ assert( &(pParse->u1.pReturning->retTrig) == pTrig );
+ pTrig->table = pTab->zName;
+ pTrig->pTabSchema = pTab->pSchema;
+ pTrig->pNext = pList;
+ pList = pTrig;
+ }
+ p = sqliteHashNext(p);
+ }
+#if 0
+ if( pList ){
+ Trigger *pX;
+ printf("Triggers for %s:", pTab->zName);
+ for(pX=pList; pX; pX=pX->pNext){
+ printf(" %s", pX->zName);
+ }
+ printf("\n");
+ fflush(stdout);
+ }
+#endif
+ return pList;
+}
+
+/*
+** This is called by the parser when it sees a CREATE TRIGGER statement
+** up to the point of the BEGIN before the trigger actions. A Trigger
+** structure is generated based on the information available and stored
+** in pParse->pNewTrigger. After the trigger actions have been parsed, the
+** sqlite3FinishTrigger() function is called to complete the trigger
+** construction process.
+*/
+SQLITE_PRIVATE void sqlite3BeginTrigger(
+ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
+ Token *pName1, /* The name of the trigger */
+ Token *pName2, /* The name of the trigger */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
+ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
+ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
+ SrcList *pTableName,/* The name of the table/view the trigger applies to */
+ Expr *pWhen, /* WHEN clause */
+ int isTemp, /* True if the TEMPORARY keyword is present */
+ int noErr /* Suppress errors if the trigger already exists */
+){
+ Trigger *pTrigger = 0; /* The new trigger */
+ Table *pTab; /* Table that the trigger fires off of */
+ char *zName = 0; /* Name of the trigger */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb; /* The database to store the trigger in */
+ Token *pName; /* The unqualified db name */
+ DbFixer sFix; /* State vector for the DB fixer */
+
+ assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
+ assert( pName2!=0 );
+ assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
+ assert( op>0 && op<0xff );
+ if( isTemp ){
+ /* If TEMP was specified, then the trigger name may not be qualified. */
+ if( pName2->n>0 ){
+ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
+ goto trigger_cleanup;
+ }
+ iDb = 1;
+ pName = pName1;
+ }else{
+ /* Figure out the db that the trigger will be created in */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ){
+ goto trigger_cleanup;
+ }
+ }
+ if( !pTableName || db->mallocFailed ){
+ goto trigger_cleanup;
+ }
+
+ /* A long-standing parser bug is that this syntax was allowed:
+ **
+ ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab ....
+ ** ^^^^^^^^
+ **
+ ** To maintain backwards compatibility, ignore the database
+ ** name on pTableName if we are reparsing out of the schema table
+ */
+ if( db->init.busy && iDb!=1 ){
+ sqlite3DbFree(db, pTableName->a[0].zDatabase);
+ pTableName->a[0].zDatabase = 0;
+ }
+
+ /* If the trigger name was unqualified, and the table is a temp table,
+ ** then set iDb to 1 to create the trigger in the temporary database.
+ ** If sqlite3SrcListLookup() returns 0, indicating the table does not
+ ** exist, the error is caught by the block below.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTableName);
+ if( db->init.busy==0 && pName2->n==0 && pTab
+ && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
+
+ /* Ensure the table name matches database name and that the table exists */
+ if( db->mallocFailed ) goto trigger_cleanup;
+ assert( pTableName->nSrc==1 );
+ sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName);
+ if( sqlite3FixSrcList(&sFix, pTableName) ){
+ goto trigger_cleanup;
+ }
+ pTab = sqlite3SrcListLookup(pParse, pTableName);
+ if( !pTab ){
+ /* The table does not exist. */
+ goto trigger_orphan_error;
+ }
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
+ goto trigger_orphan_error;
+ }
+
+ /* Check that the trigger name is not reserved and that no trigger of the
+ ** specified name exists */
+ zName = sqlite3NameFromToken(db, pName);
+ if( zName==0 ){
+ assert( db->mallocFailed );
+ goto trigger_cleanup;
+ }
+ if( sqlite3CheckObjectName(pParse, zName, "trigger", pTab->zName) ){
+ goto trigger_cleanup;
+ }
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( !IN_RENAME_OBJECT ){
+ if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),zName) ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
+ }else{
+ assert( !db->init.busy );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ }
+ goto trigger_cleanup;
+ }
+ }
+
+ /* Do not create a trigger on a system table */
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
+ sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
+ goto trigger_cleanup;
+ }
+
+ /* INSTEAD of triggers are only for views and views only support INSTEAD
+ ** of triggers.
+ */
+ if( IsView(pTab) && tr_tm!=TK_INSTEAD ){
+ sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
+ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName->a);
+ goto trigger_orphan_error;
+ }
+ if( !IsView(pTab) && tr_tm==TK_INSTEAD ){
+ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
+ " trigger on table: %S", pTableName->a);
+ goto trigger_orphan_error;
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( !IN_RENAME_OBJECT ){
+ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ int code = SQLITE_CREATE_TRIGGER;
+ const char *zDb = db->aDb[iTabDb].zDbSName;
+ const char *zDbTrig = isTemp ? db->aDb[1].zDbSName : zDb;
+ if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
+ if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
+ goto trigger_cleanup;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
+ goto trigger_cleanup;
+ }
+ }
+#endif
+
+ /* INSTEAD OF triggers can only appear on views and BEFORE triggers
+ ** cannot appear on views. So we might as well translate every
+ ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
+ ** elsewhere.
+ */
+ if (tr_tm == TK_INSTEAD){
+ tr_tm = TK_BEFORE;
+ }
+
+ /* Build the Trigger object */
+ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
+ if( pTrigger==0 ) goto trigger_cleanup;
+ pTrigger->zName = zName;
+ zName = 0;
+ pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
+ pTrigger->pSchema = db->aDb[iDb].pSchema;
+ pTrigger->pTabSchema = pTab->pSchema;
+ pTrigger->op = (u8)op;
+ pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, pTrigger->table, pTableName->a[0].zName);
+ pTrigger->pWhen = pWhen;
+ pWhen = 0;
+ }else{
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
+ }
+ pTrigger->pColumns = pColumns;
+ pColumns = 0;
+ assert( pParse->pNewTrigger==0 );
+ pParse->pNewTrigger = pTrigger;
+
+trigger_cleanup:
+ sqlite3DbFree(db, zName);
+ sqlite3SrcListDelete(db, pTableName);
+ sqlite3IdListDelete(db, pColumns);
+ sqlite3ExprDelete(db, pWhen);
+ if( !pParse->pNewTrigger ){
+ sqlite3DeleteTrigger(db, pTrigger);
+ }else{
+ assert( pParse->pNewTrigger==pTrigger );
+ }
+ return;
+
+trigger_orphan_error:
+ if( db->init.iDb==1 ){
+ /* Ticket #3810.
+ ** Normally, whenever a table is dropped, all associated triggers are
+ ** dropped too. But if a TEMP trigger is created on a non-TEMP table
+ ** and the table is dropped by a different database connection, the
+ ** trigger is not visible to the database connection that does the
+ ** drop so the trigger cannot be dropped. This results in an
+ ** "orphaned trigger" - a trigger whose associated table is missing.
+ **
+ ** 2020-11-05 see also https://sqlite.org/forum/forumpost/157dc791df
+ */
+ db->init.orphanTrigger = 1;
+ }
+ goto trigger_cleanup;
+}
+
+/*
+** This routine is called after all of the trigger actions have been parsed
+** in order to complete the process of building the trigger.
+*/
+SQLITE_PRIVATE void sqlite3FinishTrigger(
+ Parse *pParse, /* Parser context */
+ TriggerStep *pStepList, /* The triggered program */
+ Token *pAll /* Token that describes the complete CREATE TRIGGER */
+){
+ Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */
+ char *zName; /* Name of trigger */
+ sqlite3 *db = pParse->db; /* The database */
+ DbFixer sFix; /* Fixer object */
+ int iDb; /* Database containing the trigger */
+ Token nameToken; /* Trigger name for error reporting */
+
+ pParse->pNewTrigger = 0;
+ if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
+ zName = pTrig->zName;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
+ pTrig->step_list = pStepList;
+ while( pStepList ){
+ pStepList->pTrig = pTrig;
+ pStepList = pStepList->pNext;
+ }
+ sqlite3TokenInit(&nameToken, pTrig->zName);
+ sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken);
+ if( sqlite3FixTriggerStep(&sFix, pTrig->step_list)
+ || sqlite3FixExpr(&sFix, pTrig->pWhen)
+ ){
+ goto triggerfinish_cleanup;
+ }
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( IN_RENAME_OBJECT ){
+ assert( !db->init.busy );
+ pParse->pNewTrigger = pTrig;
+ pTrig = 0;
+ }else
+#endif
+
+ /* if we are not initializing,
+ ** build the sqlite_schema entry
+ */
+ if( !db->init.busy ){
+ Vdbe *v;
+ char *z;
+
+ /* If this is a new CREATE TABLE statement, and if shadow tables
+ ** are read-only, and the trigger makes a change to a shadow table,
+ ** then raise an error - do not allow the trigger to be created. */
+ if( sqlite3ReadOnlyShadowTables(db) ){
+ TriggerStep *pStep;
+ for(pStep=pTrig->step_list; pStep; pStep=pStep->pNext){
+ if( pStep->zTarget!=0
+ && sqlite3ShadowTableName(db, pStep->zTarget)
+ ){
+ sqlite3ErrorMsg(pParse,
+ "trigger \"%s\" may not write to shadow table \"%s\"",
+ pTrig->zName, pStep->zTarget);
+ goto triggerfinish_cleanup;
+ }
+ }
+ }
+
+ /* Make an entry in the sqlite_schema table */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto triggerfinish_cleanup;
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
+ testcase( z==0 );
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q." LEGACY_SCHEMA_TABLE
+ " VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
+ db->aDb[iDb].zDbSName, zName,
+ pTrig->table, z);
+ sqlite3DbFree(db, z);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddParseSchemaOp(v, iDb,
+ sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName), 0);
+ }
+
+ if( db->init.busy ){
+ Trigger *pLink = pTrig;
+ Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ assert( pLink!=0 );
+ pTrig = sqlite3HashInsert(pHash, zName, pTrig);
+ if( pTrig ){
+ sqlite3OomFault(db);
+ }else if( pLink->pSchema==pLink->pTabSchema ){
+ Table *pTab;
+ pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table);
+ assert( pTab!=0 );
+ pLink->pNext = pTab->pTrigger;
+ pTab->pTrigger = pLink;
+ }
+ }
+
+triggerfinish_cleanup:
+ sqlite3DeleteTrigger(db, pTrig);
+ assert( IN_RENAME_OBJECT || !pParse->pNewTrigger );
+ sqlite3DeleteTriggerStep(db, pStepList);
+}
+
+/*
+** Duplicate a range of text from an SQL statement, then convert all
+** whitespace characters into ordinary space characters.
+*/
+static char *triggerSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
+ char *z = sqlite3DbSpanDup(db, zStart, zEnd);
+ int i;
+ if( z ) for(i=0; z[i]; i++) if( sqlite3Isspace(z[i]) ) z[i] = ' ';
+ return z;
+}
+
+/*
+** Turn a SELECT statement (that the pSelect parameter points to) into
+** a trigger step. Return a pointer to a TriggerStep structure.
+**
+** The parser calls this routine when it finds a SELECT statement in
+** body of a TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(
+ sqlite3 *db, /* Database connection */
+ Select *pSelect, /* The SELECT statement */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
+ if( pTriggerStep==0 ) {
+ sqlite3SelectDelete(db, pSelect);
+ return 0;
+ }
+ pTriggerStep->op = TK_SELECT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->orconf = OE_Default;
+ pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd);
+ return pTriggerStep;
+}
+
+/*
+** Allocate space to hold a new trigger step. The allocated space
+** holds both the TriggerStep object and the TriggerStep.target.z string.
+**
+** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
+*/
+static TriggerStep *triggerStepAllocate(
+ Parse *pParse, /* Parser context */
+ u8 op, /* Trigger opcode */
+ Token *pName, /* The target name */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ if( pParse->nErr ) return 0;
+ pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1);
+ if( pTriggerStep ){
+ char *z = (char*)&pTriggerStep[1];
+ memcpy(z, pName->z, pName->n);
+ sqlite3Dequote(z);
+ pTriggerStep->zTarget = z;
+ pTriggerStep->op = op;
+ pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, pTriggerStep->zTarget, pName);
+ }
+ }
+ return pTriggerStep;
+}
+
+/*
+** Build a trigger step out of an INSERT statement. Return a pointer
+** to the new trigger step.
+**
+** The parser calls this routine when it sees an INSERT inside the
+** body of a trigger.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
+ Parse *pParse, /* Parser */
+ Token *pTableName, /* Name of the table into which we insert */
+ IdList *pColumn, /* List of columns in pTableName to insert into */
+ Select *pSelect, /* A SELECT statement that supplies values */
+ u8 orconf, /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
+ Upsert *pUpsert, /* ON CONFLICT clauses for upsert */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ assert(pSelect != 0 || db->mallocFailed);
+
+ pTriggerStep = triggerStepAllocate(pParse, TK_INSERT, pTableName,zStart,zEnd);
+ if( pTriggerStep ){
+ if( IN_RENAME_OBJECT ){
+ pTriggerStep->pSelect = pSelect;
+ pSelect = 0;
+ }else{
+ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ }
+ pTriggerStep->pIdList = pColumn;
+ pTriggerStep->pUpsert = pUpsert;
+ pTriggerStep->orconf = orconf;
+ if( pUpsert ){
+ sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget);
+ }
+ }else{
+ testcase( pColumn );
+ sqlite3IdListDelete(db, pColumn);
+ testcase( pUpsert );
+ sqlite3UpsertDelete(db, pUpsert);
+ }
+ sqlite3SelectDelete(db, pSelect);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements an UPDATE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees an UPDATE statement inside the body of a CREATE TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
+ Parse *pParse, /* Parser */
+ Token *pTableName, /* Name of the table to be updated */
+ SrcList *pFrom, /* FROM clause for an UPDATE-FROM, or NULL */
+ ExprList *pEList, /* The SET clause: list of column and new values */
+ Expr *pWhere, /* The WHERE clause */
+ u8 orconf, /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ pTriggerStep = triggerStepAllocate(pParse, TK_UPDATE, pTableName,zStart,zEnd);
+ if( pTriggerStep ){
+ if( IN_RENAME_OBJECT ){
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->pFrom = pFrom;
+ pEList = 0;
+ pWhere = 0;
+ pFrom = 0;
+ }else{
+ pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
+ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pTriggerStep->pFrom = sqlite3SrcListDup(db, pFrom, EXPRDUP_REDUCE);
+ }
+ pTriggerStep->orconf = orconf;
+ }
+ sqlite3ExprListDelete(db, pEList);
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3SrcListDelete(db, pFrom);
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements a DELETE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees a DELETE statement inside the body of a CREATE TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
+ Parse *pParse, /* Parser */
+ Token *pTableName, /* The table from which rows are deleted */
+ Expr *pWhere, /* The WHERE clause */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ pTriggerStep = triggerStepAllocate(pParse, TK_DELETE, pTableName,zStart,zEnd);
+ if( pTriggerStep ){
+ if( IN_RENAME_OBJECT ){
+ pTriggerStep->pWhere = pWhere;
+ pWhere = 0;
+ }else{
+ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ }
+ pTriggerStep->orconf = OE_Default;
+ }
+ sqlite3ExprDelete(db, pWhere);
+ return pTriggerStep;
+}
+
+/*
+** Recursively delete a Trigger structure
+*/
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
+ if( pTrigger==0 || pTrigger->bReturning ) return;
+ sqlite3DeleteTriggerStep(db, pTrigger->step_list);
+ sqlite3DbFree(db, pTrigger->zName);
+ sqlite3DbFree(db, pTrigger->table);
+ sqlite3ExprDelete(db, pTrigger->pWhen);
+ sqlite3IdListDelete(db, pTrigger->pColumns);
+ sqlite3DbFree(db, pTrigger);
+}
+
+/*
+** This function is called to drop a trigger from the database schema.
+**
+** This may be called directly from the parser and therefore identifies
+** the trigger by name. The sqlite3DropTriggerPtr() routine does the
+** same job as this routine except it takes a pointer to the trigger
+** instead of the trigger name.
+**/
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
+ Trigger *pTrigger = 0;
+ int i;
+ const char *zDb;
+ const char *zName;
+ sqlite3 *db = pParse->db;
+
+ if( db->mallocFailed ) goto drop_trigger_cleanup;
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto drop_trigger_cleanup;
+ }
+
+ assert( pName->nSrc==1 );
+ zDb = pName->a[0].zDatabase;
+ zName = pName->a[0].zName;
+ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
+ assert( sqlite3SchemaMutexHeld(db, j, 0) );
+ pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName);
+ if( pTrigger ) break;
+ }
+ if( !pTrigger ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName->a);
+ }else{
+ sqlite3CodeVerifyNamedSchema(pParse, zDb);
+ }
+ pParse->checkSchema = 1;
+ goto drop_trigger_cleanup;
+ }
+ sqlite3DropTriggerPtr(pParse, pTrigger);
+
+drop_trigger_cleanup:
+ sqlite3SrcListDelete(db, pName);
+}
+
+/*
+** Return a pointer to the Table structure for the table that a trigger
+** is set on.
+*/
+static Table *tableOfTrigger(Trigger *pTrigger){
+ return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table);
+}
+
+
+/*
+** Drop a trigger given a pointer to that trigger.
+*/
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
+ Table *pTable;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+ pTable = tableOfTrigger(pTrigger);
+ assert( (pTable && pTable->pSchema==pTrigger->pSchema) || iDb==1 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( pTable ){
+ int code = SQLITE_DROP_TRIGGER;
+ const char *zDb = db->aDb[iDb].zDbSName;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
+ if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) ||
+ sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ return;
+ }
+ }
+#endif
+
+ /* Generate code to destroy the database record of the trigger.
+ */
+ if( (v = sqlite3GetVdbe(pParse))!=0 ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='trigger'",
+ db->aDb[iDb].zDbSName, pTrigger->zName
+ );
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
+ }
+}
+
+/*
+** Remove a trigger from the hash tables of the sqlite* pointer.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
+ Trigger *pTrigger;
+ Hash *pHash;
+
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pHash = &(db->aDb[iDb].pSchema->trigHash);
+ pTrigger = sqlite3HashInsert(pHash, zName, 0);
+ if( ALWAYS(pTrigger) ){
+ if( pTrigger->pSchema==pTrigger->pTabSchema ){
+ Table *pTab = tableOfTrigger(pTrigger);
+ if( pTab ){
+ Trigger **pp;
+ for(pp=&pTab->pTrigger; *pp; pp=&((*pp)->pNext)){
+ if( *pp==pTrigger ){
+ *pp = (*pp)->pNext;
+ break;
+ }
+ }
+ }
+ }
+ sqlite3DeleteTrigger(db, pTrigger);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+}
+
+/*
+** pEList is the SET clause of an UPDATE statement. Each entry
+** in pEList is of the format <id>=<expr>. If any of the entries
+** in pEList have an <id> which matches an identifier in pIdList,
+** then return TRUE. If pIdList==NULL, then it is considered a
+** wildcard that matches anything. Likewise if pEList==NULL then
+** it matches anything so always return true. Return false only
+** if there is no match.
+*/
+static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){
+ int e;
+ if( pIdList==0 || NEVER(pEList==0) ) return 1;
+ for(e=0; e<pEList->nExpr; e++){
+ if( sqlite3IdListIndex(pIdList, pEList->a[e].zEName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Return true if any TEMP triggers exist
+*/
+static int tempTriggersExist(sqlite3 *db){
+ if( NEVER(db->aDb[1].pSchema==0) ) return 0;
+ if( sqliteHashFirst(&db->aDb[1].pSchema->trigHash)==0 ) return 0;
+ return 1;
+}
+
+/*
+** Return a list of all triggers on table pTab if there exists at least
+** one trigger that must be fired when an operation of type 'op' is
+** performed on the table, and, if that operation is an UPDATE, if at
+** least one of the columns in pChanges is being modified.
+*/
+static SQLITE_NOINLINE Trigger *triggersReallyExist(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* The table the contains the triggers */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ ExprList *pChanges, /* Columns that change in an UPDATE statement */
+ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+){
+ int mask = 0;
+ Trigger *pList = 0;
+ Trigger *p;
+
+ pList = sqlite3TriggerList(pParse, pTab);
+ assert( pList==0 || IsVirtual(pTab)==0
+ || (pList->bReturning && pList->pNext==0) );
+ if( pList!=0 ){
+ p = pList;
+ if( (pParse->db->flags & SQLITE_EnableTrigger)==0
+ && pTab->pTrigger!=0
+ ){
+ /* The SQLITE_DBCONFIG_ENABLE_TRIGGER setting is off. That means that
+ ** only TEMP triggers are allowed. Truncate the pList so that it
+ ** includes only TEMP triggers */
+ if( pList==pTab->pTrigger ){
+ pList = 0;
+ goto exit_triggers_exist;
+ }
+ while( ALWAYS(p->pNext) && p->pNext!=pTab->pTrigger ) p = p->pNext;
+ p->pNext = 0;
+ p = pList;
+ }
+ do{
+ if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){
+ mask |= p->tr_tm;
+ }else if( p->op==TK_RETURNING ){
+ /* The first time a RETURNING trigger is seen, the "op" value tells
+ ** us what time of trigger it should be. */
+ assert( sqlite3IsToplevel(pParse) );
+ p->op = op;
+ if( IsVirtual(pTab) ){
+ if( op!=TK_INSERT ){
+ sqlite3ErrorMsg(pParse,
+ "%s RETURNING is not available on virtual tables",
+ op==TK_DELETE ? "DELETE" : "UPDATE");
+ }
+ p->tr_tm = TRIGGER_BEFORE;
+ }else{
+ p->tr_tm = TRIGGER_AFTER;
+ }
+ mask |= p->tr_tm;
+ }else if( p->bReturning && p->op==TK_INSERT && op==TK_UPDATE
+ && sqlite3IsToplevel(pParse) ){
+ /* Also fire a RETURNING trigger for an UPSERT */
+ mask |= p->tr_tm;
+ }
+ p = p->pNext;
+ }while( p );
+ }
+exit_triggers_exist:
+ if( pMask ){
+ *pMask = mask;
+ }
+ return (mask ? pList : 0);
+}
+SQLITE_PRIVATE Trigger *sqlite3TriggersExist(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* The table the contains the triggers */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ ExprList *pChanges, /* Columns that change in an UPDATE statement */
+ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+){
+ assert( pTab!=0 );
+ if( (pTab->pTrigger==0 && !tempTriggersExist(pParse->db))
+ || pParse->disableTriggers
+ ){
+ if( pMask ) *pMask = 0;
+ return 0;
+ }
+ return triggersReallyExist(pParse,pTab,op,pChanges,pMask);
+}
+
+/*
+** Convert the pStep->zTarget string into a SrcList and return a pointer
+** to that SrcList.
+**
+** This routine adds a specific database name, if needed, to the target when
+** forming the SrcList. This prevents a trigger in one database from
+** referring to a target in another database. An exception is when the
+** trigger is in TEMP in which case it can refer to any other database it
+** wants.
+*/
+SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc(
+ Parse *pParse, /* The parsing context */
+ TriggerStep *pStep /* The trigger containing the target token */
+){
+ sqlite3 *db = pParse->db;
+ SrcList *pSrc; /* SrcList to be returned */
+ char *zName = sqlite3DbStrDup(db, pStep->zTarget);
+ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ assert( pSrc==0 || pSrc->nSrc==1 );
+ assert( zName || pSrc==0 );
+ if( pSrc ){
+ Schema *pSchema = pStep->pTrig->pSchema;
+ pSrc->a[0].zName = zName;
+ if( pSchema!=db->aDb[1].pSchema ){
+ pSrc->a[0].pSchema = pSchema;
+ }
+ if( pStep->pFrom ){
+ SrcList *pDup = sqlite3SrcListDup(db, pStep->pFrom, 0);
+ if( pDup && pDup->nSrc>1 && !IN_RENAME_OBJECT ){
+ Select *pSubquery;
+ Token as;
+ pSubquery = sqlite3SelectNew(pParse,0,pDup,0,0,0,0,SF_NestedFrom,0);
+ as.n = 0;
+ as.z = 0;
+ pDup = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0);
+ }
+ pSrc = sqlite3SrcListAppendList(pParse, pSrc, pDup);
+ }
+ }else{
+ sqlite3DbFree(db, zName);
+ }
+ return pSrc;
+}
+
+/*
+** Return true if the pExpr term from the RETURNING clause argument
+** list is of the form "*". Raise an error if the terms if of the
+** form "table.*".
+*/
+static int isAsteriskTerm(
+ Parse *pParse, /* Parsing context */
+ Expr *pTerm /* A term in the RETURNING clause */
+){
+ assert( pTerm!=0 );
+ if( pTerm->op==TK_ASTERISK ) return 1;
+ if( pTerm->op!=TK_DOT ) return 0;
+ assert( pTerm->pRight!=0 );
+ assert( pTerm->pLeft!=0 );
+ if( pTerm->pRight->op!=TK_ASTERISK ) return 0;
+ sqlite3ErrorMsg(pParse, "RETURNING may not use \"TABLE.*\" wildcards");
+ return 1;
+}
+
+/* The input list pList is the list of result set terms from a RETURNING
+** clause. The table that we are returning from is pTab.
+**
+** This routine makes a copy of the pList, and at the same time expands
+** any "*" wildcards to be the complete set of columns from pTab.
+*/
+static ExprList *sqlite3ExpandReturning(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* The arguments to RETURNING */
+ Table *pTab /* The table being updated */
+){
+ ExprList *pNew = 0;
+ sqlite3 *db = pParse->db;
+ int i;
+
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pOldExpr = pList->a[i].pExpr;
+ if( NEVER(pOldExpr==0) ) continue;
+ if( isAsteriskTerm(pParse, pOldExpr) ){
+ int jj;
+ for(jj=0; jj<pTab->nCol; jj++){
+ Expr *pNewExpr;
+ if( IsHiddenColumn(pTab->aCol+jj) ) continue;
+ pNewExpr = sqlite3Expr(db, TK_ID, pTab->aCol[jj].zCnName);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr);
+ if( !db->mallocFailed ){
+ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1];
+ pItem->zEName = sqlite3DbStrDup(db, pTab->aCol[jj].zCnName);
+ pItem->fg.eEName = ENAME_NAME;
+ }
+ }
+ }else{
+ Expr *pNewExpr = sqlite3ExprDup(db, pOldExpr, 0);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr);
+ if( !db->mallocFailed && ALWAYS(pList->a[i].zEName!=0) ){
+ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1];
+ pItem->zEName = sqlite3DbStrDup(db, pList->a[i].zEName);
+ pItem->fg.eEName = pList->a[i].fg.eEName;
+ }
+ }
+ }
+ return pNew;
+}
+
+/*
+** Generate code for the RETURNING trigger. Unlike other triggers
+** that invoke a subprogram in the bytecode, the code for RETURNING
+** is generated in-line.
+*/
+static void codeReturningTrigger(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* The trigger step that defines the RETURNING */
+ Table *pTab, /* The table to code triggers from */
+ int regIn /* The first in an array of registers */
+){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+ ExprList *pNew;
+ Returning *pReturning;
+ Select sSelect;
+ SrcList sFrom;
+
+ assert( v!=0 );
+ assert( pParse->bReturning );
+ assert( db->pParse==pParse );
+ pReturning = pParse->u1.pReturning;
+ assert( pTrigger == &(pReturning->retTrig) );
+ memset(&sSelect, 0, sizeof(sSelect));
+ memset(&sFrom, 0, sizeof(sFrom));
+ sSelect.pEList = sqlite3ExprListDup(db, pReturning->pReturnEL, 0);
+ sSelect.pSrc = &sFrom;
+ sFrom.nSrc = 1;
+ sFrom.a[0].pTab = pTab;
+ sFrom.a[0].iCursor = -1;
+ sqlite3SelectPrep(pParse, &sSelect, 0);
+ if( pParse->nErr==0 ){
+ assert( db->mallocFailed==0 );
+ sqlite3GenerateColumnNames(pParse, &sSelect);
+ }
+ sqlite3ExprListDelete(db, sSelect.pEList);
+ pNew = sqlite3ExpandReturning(pParse, pReturning->pReturnEL, pTab);
+ if( !db->mallocFailed ){
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ if( pReturning->nRetCol==0 ){
+ pReturning->nRetCol = pNew->nExpr;
+ pReturning->iRetCur = pParse->nTab++;
+ }
+ sNC.pParse = pParse;
+ sNC.uNC.iBaseReg = regIn;
+ sNC.ncFlags = NC_UBaseReg;
+ pParse->eTriggerOp = pTrigger->op;
+ pParse->pTriggerTab = pTab;
+ if( sqlite3ResolveExprListNames(&sNC, pNew)==SQLITE_OK
+ && ALWAYS(!db->mallocFailed)
+ ){
+ int i;
+ int nCol = pNew->nExpr;
+ int reg = pParse->nMem+1;
+ pParse->nMem += nCol+2;
+ pReturning->iRetReg = reg;
+ for(i=0; i<nCol; i++){
+ Expr *pCol = pNew->a[i].pExpr;
+ assert( pCol!=0 ); /* Due to !db->mallocFailed ~9 lines above */
+ sqlite3ExprCodeFactorable(pParse, pCol, reg+i);
+ if( sqlite3ExprAffinity(pCol)==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, reg+i);
+ }
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, i, reg+i);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pReturning->iRetCur, reg+i+1);
+ sqlite3VdbeAddOp3(v, OP_Insert, pReturning->iRetCur, reg+i, reg+i+1);
+ }
+ }
+ sqlite3ExprListDelete(db, pNew);
+ pParse->eTriggerOp = 0;
+ pParse->pTriggerTab = 0;
+}
+
+
+
+/*
+** Generate VDBE code for the statements inside the body of a single
+** trigger.
+*/
+static int codeTriggerProgram(
+ Parse *pParse, /* The parser context */
+ TriggerStep *pStepList, /* List of statements inside the trigger body */
+ int orconf /* Conflict algorithm. (OE_Abort, etc) */
+){
+ TriggerStep *pStep;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+
+ assert( pParse->pTriggerTab && pParse->pToplevel );
+ assert( pStepList );
+ assert( v!=0 );
+ for(pStep=pStepList; pStep; pStep=pStep->pNext){
+ /* Figure out the ON CONFLICT policy that will be used for this step
+ ** of the trigger program. If the statement that caused this trigger
+ ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use
+ ** the ON CONFLICT policy that was specified as part of the trigger
+ ** step statement. Example:
+ **
+ ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN;
+ ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
+ ** END;
+ **
+ ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy
+ ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy
+ */
+ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
+ assert( pParse->okConstFactor==0 );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( pStep->zSpan ){
+ sqlite3VdbeAddOp4(v, OP_Trace, 0x7fffffff, 1, 0,
+ sqlite3MPrintf(db, "-- %s", pStep->zSpan),
+ P4_DYNAMIC);
+ }
+#endif
+
+ switch( pStep->op ){
+ case TK_UPDATE: {
+ sqlite3Update(pParse,
+ sqlite3TriggerStepSrc(pParse, pStep),
+ sqlite3ExprListDup(db, pStep->pExprList, 0),
+ sqlite3ExprDup(db, pStep->pWhere, 0),
+ pParse->eOrconf, 0, 0, 0
+ );
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ break;
+ }
+ case TK_INSERT: {
+ sqlite3Insert(pParse,
+ sqlite3TriggerStepSrc(pParse, pStep),
+ sqlite3SelectDup(db, pStep->pSelect, 0),
+ sqlite3IdListDup(db, pStep->pIdList),
+ pParse->eOrconf,
+ sqlite3UpsertDup(db, pStep->pUpsert)
+ );
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ break;
+ }
+ case TK_DELETE: {
+ sqlite3DeleteFrom(pParse,
+ sqlite3TriggerStepSrc(pParse, pStep),
+ sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0
+ );
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ break;
+ }
+ default: assert( pStep->op==TK_SELECT ); {
+ SelectDest sDest;
+ Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0);
+ sqlite3SelectDestInit(&sDest, SRT_Discard, 0);
+ sqlite3Select(pParse, pSelect, &sDest);
+ sqlite3SelectDelete(db, pSelect);
+ break;
+ }
+ }
+ }
+
+ return 0;
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/*
+** This function is used to add VdbeComment() annotations to a VDBE
+** program. It is not used in production code, only for debugging.
+*/
+static const char *onErrorText(int onError){
+ switch( onError ){
+ case OE_Abort: return "abort";
+ case OE_Rollback: return "rollback";
+ case OE_Fail: return "fail";
+ case OE_Replace: return "replace";
+ case OE_Ignore: return "ignore";
+ case OE_Default: return "default";
+ }
+ return "n/a";
+}
+#endif
+
+/*
+** Parse context structure pFrom has just been used to create a sub-vdbe
+** (trigger program). If an error has occurred, transfer error information
+** from pFrom to pTo.
+*/
+static void transferParseError(Parse *pTo, Parse *pFrom){
+ assert( pFrom->zErrMsg==0 || pFrom->nErr );
+ assert( pTo->zErrMsg==0 || pTo->nErr );
+ if( pTo->nErr==0 ){
+ pTo->zErrMsg = pFrom->zErrMsg;
+ pTo->nErr = pFrom->nErr;
+ pTo->rc = pFrom->rc;
+ }else{
+ sqlite3DbFree(pFrom->db, pFrom->zErrMsg);
+ }
+}
+
+/*
+** Create and populate a new TriggerPrg object with a sub-program
+** implementing trigger pTrigger with ON CONFLICT policy orconf.
+*/
+static TriggerPrg *codeRowTrigger(
+ Parse *pParse, /* Current parse context */
+ Trigger *pTrigger, /* Trigger to code */
+ Table *pTab, /* The table pTrigger is attached to */
+ int orconf /* ON CONFLICT policy to code trigger program with */
+){
+ Parse *pTop = sqlite3ParseToplevel(pParse);
+ sqlite3 *db = pParse->db; /* Database handle */
+ TriggerPrg *pPrg; /* Value to return */
+ Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */
+ Vdbe *v; /* Temporary VM */
+ NameContext sNC; /* Name context for sub-vdbe */
+ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */
+ int iEndTrigger = 0; /* Label to jump to if WHEN is false */
+ Parse sSubParse; /* Parse context for sub-vdbe */
+
+ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
+ assert( pTop->pVdbe );
+
+ /* Allocate the TriggerPrg and SubProgram objects. To ensure that they
+ ** are freed if an error occurs, link them into the Parse.pTriggerPrg
+ ** list of the top-level Parse object sooner rather than later. */
+ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg));
+ if( !pPrg ) return 0;
+ pPrg->pNext = pTop->pTriggerPrg;
+ pTop->pTriggerPrg = pPrg;
+ pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
+ if( !pProgram ) return 0;
+ sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram);
+ pPrg->pTrigger = pTrigger;
+ pPrg->orconf = orconf;
+ pPrg->aColmask[0] = 0xffffffff;
+ pPrg->aColmask[1] = 0xffffffff;
+
+ /* Allocate and populate a new Parse context to use for coding the
+ ** trigger sub-program. */
+ sqlite3ParseObjectInit(&sSubParse, db);
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = &sSubParse;
+ sSubParse.pTriggerTab = pTab;
+ sSubParse.pToplevel = pTop;
+ sSubParse.zAuthContext = pTrigger->zName;
+ sSubParse.eTriggerOp = pTrigger->op;
+ sSubParse.nQueryLoop = pParse->nQueryLoop;
+ sSubParse.disableVtab = pParse->disableVtab;
+
+ v = sqlite3GetVdbe(&sSubParse);
+ if( v ){
+ VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)",
+ pTrigger->zName, onErrorText(orconf),
+ (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
+ (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
+ (pTrigger->op==TK_INSERT ? "INSERT" : ""),
+ (pTrigger->op==TK_DELETE ? "DELETE" : ""),
+ pTab->zName
+ ));
+#ifndef SQLITE_OMIT_TRACE
+ if( pTrigger->zName ){
+ sqlite3VdbeChangeP4(v, -1,
+ sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
+ );
+ }
+#endif
+
+ /* If one was specified, code the WHEN clause. If it evaluates to false
+ ** (or NULL) the sub-vdbe is immediately halted by jumping to the
+ ** OP_Halt inserted at the end of the program. */
+ if( pTrigger->pWhen ){
+ pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
+ if( db->mallocFailed==0
+ && SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen)
+ ){
+ iEndTrigger = sqlite3VdbeMakeLabel(&sSubParse);
+ sqlite3ExprIfFalse(&sSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL);
+ }
+ sqlite3ExprDelete(db, pWhen);
+ }
+
+ /* Code the trigger program into the sub-vdbe. */
+ codeTriggerProgram(&sSubParse, pTrigger->step_list, orconf);
+
+ /* Insert an OP_Halt at the end of the sub-program. */
+ if( iEndTrigger ){
+ sqlite3VdbeResolveLabel(v, iEndTrigger);
+ }
+ sqlite3VdbeAddOp0(v, OP_Halt);
+ VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf)));
+ transferParseError(pParse, &sSubParse);
+
+ if( pParse->nErr==0 ){
+ assert( db->mallocFailed==0 );
+ pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg);
+ }
+ pProgram->nMem = sSubParse.nMem;
+ pProgram->nCsr = sSubParse.nTab;
+ pProgram->token = (void *)pTrigger;
+ pPrg->aColmask[0] = sSubParse.oldmask;
+ pPrg->aColmask[1] = sSubParse.newmask;
+ sqlite3VdbeDelete(v);
+ }else{
+ transferParseError(pParse, &sSubParse);
+ }
+
+ assert( !sSubParse.pTriggerPrg && !sSubParse.nMaxArg );
+ sqlite3ParseObjectReset(&sSubParse);
+ return pPrg;
+}
+
+/*
+** Return a pointer to a TriggerPrg object containing the sub-program for
+** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such
+** TriggerPrg object exists, a new object is allocated and populated before
+** being returned.
+*/
+static TriggerPrg *getRowTrigger(
+ Parse *pParse, /* Current parse context */
+ Trigger *pTrigger, /* Trigger to code */
+ Table *pTab, /* The table trigger pTrigger is attached to */
+ int orconf /* ON CONFLICT algorithm. */
+){
+ Parse *pRoot = sqlite3ParseToplevel(pParse);
+ TriggerPrg *pPrg;
+
+ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
+
+ /* It may be that this trigger has already been coded (or is in the
+ ** process of being coded). If this is the case, then an entry with
+ ** a matching TriggerPrg.pTrigger field will be present somewhere
+ ** in the Parse.pTriggerPrg list. Search for such an entry. */
+ for(pPrg=pRoot->pTriggerPrg;
+ pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf);
+ pPrg=pPrg->pNext
+ );
+
+ /* If an existing TriggerPrg could not be located, create a new one. */
+ if( !pPrg ){
+ pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf);
+ pParse->db->errByteOffset = -1;
+ }
+
+ return pPrg;
+}
+
+/*
+** Generate code for the trigger program associated with trigger p on
+** table pTab. The reg, orconf and ignoreJump parameters passed to this
+** function are the same as those described in the header function for
+** sqlite3CodeRowTrigger()
+*/
+SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(
+ Parse *pParse, /* Parse context */
+ Trigger *p, /* Trigger to code */
+ Table *pTab, /* The table to code triggers from */
+ int reg, /* Reg array containing OLD.* and NEW.* values */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
+){
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */
+ TriggerPrg *pPrg;
+ pPrg = getRowTrigger(pParse, p, pTab, orconf);
+ assert( pPrg || pParse->nErr );
+
+ /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program
+ ** is a pointer to the sub-vdbe containing the trigger program. */
+ if( pPrg ){
+ int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));
+
+ sqlite3VdbeAddOp4(v, OP_Program, reg, ignoreJump, ++pParse->nMem,
+ (const char *)pPrg->pProgram, P4_SUBPROGRAM);
+ VdbeComment(
+ (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));
+
+ /* Set the P5 operand of the OP_Program instruction to non-zero if
+ ** recursive invocation of this trigger program is disallowed. Recursive
+ ** invocation is disallowed if (a) the sub-program is really a trigger,
+ ** not a foreign key action, and (b) the flag to enable recursive triggers
+ ** is clear. */
+ sqlite3VdbeChangeP5(v, (u8)bRecursive);
+ }
+}
+
+/*
+** This is called to code the required FOR EACH ROW triggers for an operation
+** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE)
+** is given by the op parameter. The tr_tm parameter determines whether the
+** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then
+** parameter pChanges is passed the list of columns being modified.
+**
+** If there are no triggers that fire at the specified time for the specified
+** operation on pTab, this function is a no-op.
+**
+** The reg argument is the address of the first in an array of registers
+** that contain the values substituted for the new.* and old.* references
+** in the trigger program. If N is the number of columns in table pTab
+** (a copy of pTab->nCol), then registers are populated as follows:
+**
+** Register Contains
+** ------------------------------------------------------
+** reg+0 OLD.rowid
+** reg+1 OLD.* value of left-most column of pTab
+** ... ...
+** reg+N OLD.* value of right-most column of pTab
+** reg+N+1 NEW.rowid
+** reg+N+2 NEW.* value of left-most column of pTab
+** ... ...
+** reg+N+N+1 NEW.* value of right-most column of pTab
+**
+** For ON DELETE triggers, the registers containing the NEW.* values will
+** never be accessed by the trigger program, so they are not allocated or
+** populated by the caller (there is no data to populate them with anyway).
+** Similarly, for ON INSERT triggers the values stored in the OLD.* registers
+** are never accessed, and so are not allocated by the caller. So, for an
+** ON INSERT trigger, the value passed to this function as parameter reg
+** is not a readable register, although registers (reg+N) through
+** (reg+N+N+1) are.
+**
+** Parameter orconf is the default conflict resolution algorithm for the
+** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump
+** is the instruction that control should jump to if a trigger program
+** raises an IGNORE exception.
+*/
+SQLITE_PRIVATE void sqlite3CodeRowTrigger(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* List of triggers on table pTab */
+ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int reg, /* The first in an array of registers (see above) */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
+){
+ Trigger *p; /* Used to iterate through pTrigger list */
+
+ assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE );
+ assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER );
+ assert( (op==TK_UPDATE)==(pChanges!=0) );
+
+ for(p=pTrigger; p; p=p->pNext){
+
+ /* Sanity checking: The schema for the trigger and for the table are
+ ** always defined. The trigger must be in the same schema as the table
+ ** or else it must be a TEMP trigger. */
+ assert( p->pSchema!=0 );
+ assert( p->pTabSchema!=0 );
+ assert( p->pSchema==p->pTabSchema
+ || p->pSchema==pParse->db->aDb[1].pSchema );
+
+ /* Determine whether we should code this trigger. One of two choices:
+ ** 1. The trigger is an exact match to the current DML statement
+ ** 2. This is a RETURNING trigger for INSERT but we are currently
+ ** doing the UPDATE part of an UPSERT.
+ */
+ if( (p->op==op || (p->bReturning && p->op==TK_INSERT && op==TK_UPDATE))
+ && p->tr_tm==tr_tm
+ && checkColumnOverlap(p->pColumns, pChanges)
+ ){
+ if( !p->bReturning ){
+ sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump);
+ }else if( sqlite3IsToplevel(pParse) ){
+ codeReturningTrigger(pParse, p, pTab, reg);
+ }
+ }
+ }
+}
+
+/*
+** Triggers may access values stored in the old.* or new.* pseudo-table.
+** This function returns a 32-bit bitmask indicating which columns of the
+** old.* or new.* tables actually are used by triggers. This information
+** may be used by the caller, for example, to avoid having to load the entire
+** old.* record into memory when executing an UPDATE or DELETE command.
+**
+** Bit 0 of the returned mask is set if the left-most column of the
+** table may be accessed using an [old|new].<col> reference. Bit 1 is set if
+** the second leftmost column value is required, and so on. If there
+** are more than 32 columns in the table, and at least one of the columns
+** with an index greater than 32 may be accessed, 0xffffffff is returned.
+**
+** It is not possible to determine if the old.rowid or new.rowid column is
+** accessed by triggers. The caller must always assume that it is.
+**
+** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned
+** applies to the old.* table. If 1, the new.* table.
+**
+** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE
+** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only
+** included in the returned mask if the TRIGGER_BEFORE bit is set in the
+** tr_tm parameter. Similarly, values accessed by AFTER triggers are only
+** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm.
+*/
+SQLITE_PRIVATE u32 sqlite3TriggerColmask(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* List of triggers on table pTab */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int isNew, /* 1 for new.* ref mask, 0 for old.* ref mask */
+ int tr_tm, /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int orconf /* Default ON CONFLICT policy for trigger steps */
+){
+ const int op = pChanges ? TK_UPDATE : TK_DELETE;
+ u32 mask = 0;
+ Trigger *p;
+
+ assert( isNew==1 || isNew==0 );
+ for(p=pTrigger; p; p=p->pNext){
+ if( p->op==op
+ && (tr_tm&p->tr_tm)
+ && checkColumnOverlap(p->pColumns,pChanges)
+ ){
+ if( p->bReturning ){
+ mask = 0xffffffff;
+ }else{
+ TriggerPrg *pPrg;
+ pPrg = getRowTrigger(pParse, p, pTab, orconf);
+ if( pPrg ){
+ mask |= pPrg->aColmask[isNew];
+ }
+ }
+ }
+ }
+
+ return mask;
+}
+
+#endif /* !defined(SQLITE_OMIT_TRIGGER) */
+
+/************** End of trigger.c *********************************************/
+/************** Begin file update.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle UPDATE statements.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Forward declaration */
+static void updateVirtualTable(
+ Parse *pParse, /* The parsing context */
+ SrcList *pSrc, /* The virtual table to be modified */
+ Table *pTab, /* The virtual table */
+ ExprList *pChanges, /* The columns to change in the UPDATE statement */
+ Expr *pRowidExpr, /* Expression used to recompute the rowid */
+ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
+ Expr *pWhere, /* WHERE clause of the UPDATE statement */
+ int onError /* ON CONFLICT strategy */
+);
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** The most recently coded instruction was an OP_Column to retrieve the
+** i-th column of table pTab. This routine sets the P4 parameter of the
+** OP_Column to the default value, if any.
+**
+** The default value of a column is specified by a DEFAULT clause in the
+** column definition. This was either supplied by the user when the table
+** was created, or added later to the table definition by an ALTER TABLE
+** command. If the latter, then the row-records in the table btree on disk
+** may not contain a value for the column and the default value, taken
+** from the P4 parameter of the OP_Column instruction, is returned instead.
+** If the former, then all row-records are guaranteed to include a value
+** for the column and the P4 value is not required.
+**
+** Column definitions created by an ALTER TABLE command may only have
+** literal default values specified: a number, null or a string. (If a more
+** complicated default expression value was provided, it is evaluated
+** when the ALTER TABLE is executed and one of the literal values written
+** into the sqlite_schema table.)
+**
+** Therefore, the P4 parameter is only required if the default value for
+** the column is a literal number, string or null. The sqlite3ValueFromExpr()
+** function is capable of transforming these types of expressions into
+** sqlite3_value objects.
+**
+** If column as REAL affinity and the table is an ordinary b-tree table
+** (not a virtual table) then the value might have been stored as an
+** integer. In that case, add an OP_RealAffinity opcode to make sure
+** it has been converted into REAL.
+*/
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
+ assert( pTab!=0 );
+ if( !IsView(pTab) ){
+ sqlite3_value *pValue = 0;
+ u8 enc = ENC(sqlite3VdbeDb(v));
+ Column *pCol = &pTab->aCol[i];
+ VdbeComment((v, "%s.%s", pTab->zName, pCol->zCnName));
+ assert( i<pTab->nCol );
+ sqlite3ValueFromExpr(sqlite3VdbeDb(v),
+ sqlite3ColumnExpr(pTab,pCol), enc,
+ pCol->affinity, &pValue);
+ if( pValue ){
+ sqlite3VdbeAppendP4(v, pValue, P4_MEM);
+ }
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( pTab->aCol[i].affinity==SQLITE_AFF_REAL && !IsVirtual(pTab) ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
+ }
+#endif
+}
+
+/*
+** Check to see if column iCol of index pIdx references any of the
+** columns defined by aXRef and chngRowid. Return true if it does
+** and false if not. This is an optimization. False-positives are a
+** performance degradation, but false-negatives can result in a corrupt
+** index and incorrect answers.
+**
+** aXRef[j] will be non-negative if column j of the original table is
+** being updated. chngRowid will be true if the rowid of the table is
+** being updated.
+*/
+static int indexColumnIsBeingUpdated(
+ Index *pIdx, /* The index to check */
+ int iCol, /* Which column of the index to check */
+ int *aXRef, /* aXRef[j]>=0 if column j is being updated */
+ int chngRowid /* true if the rowid is being updated */
+){
+ i16 iIdxCol = pIdx->aiColumn[iCol];
+ assert( iIdxCol!=XN_ROWID ); /* Cannot index rowid */
+ if( iIdxCol>=0 ){
+ return aXRef[iIdxCol]>=0;
+ }
+ assert( iIdxCol==XN_EXPR );
+ assert( pIdx->aColExpr!=0 );
+ assert( pIdx->aColExpr->a[iCol].pExpr!=0 );
+ return sqlite3ExprReferencesUpdatedColumn(pIdx->aColExpr->a[iCol].pExpr,
+ aXRef,chngRowid);
+}
+
+/*
+** Check to see if index pIdx is a partial index whose conditional
+** expression might change values due to an UPDATE. Return true if
+** the index is subject to change and false if the index is guaranteed
+** to be unchanged. This is an optimization. False-positives are a
+** performance degradation, but false-negatives can result in a corrupt
+** index and incorrect answers.
+**
+** aXRef[j] will be non-negative if column j of the original table is
+** being updated. chngRowid will be true if the rowid of the table is
+** being updated.
+*/
+static int indexWhereClauseMightChange(
+ Index *pIdx, /* The index to check */
+ int *aXRef, /* aXRef[j]>=0 if column j is being updated */
+ int chngRowid /* true if the rowid is being updated */
+){
+ if( pIdx->pPartIdxWhere==0 ) return 0;
+ return sqlite3ExprReferencesUpdatedColumn(pIdx->pPartIdxWhere,
+ aXRef, chngRowid);
+}
+
+/*
+** Allocate and return a pointer to an expression of type TK_ROW with
+** Expr.iColumn set to value (iCol+1). The resolver will modify the
+** expression to be a TK_COLUMN reading column iCol of the first
+** table in the source-list (pSrc->a[0]).
+*/
+static Expr *exprRowColumn(Parse *pParse, int iCol){
+ Expr *pRet = sqlite3PExpr(pParse, TK_ROW, 0, 0);
+ if( pRet ) pRet->iColumn = iCol+1;
+ return pRet;
+}
+
+/*
+** Assuming both the pLimit and pOrderBy parameters are NULL, this function
+** generates VM code to run the query:
+**
+** SELECT <other-columns>, pChanges FROM pTabList WHERE pWhere
+**
+** and write the results to the ephemeral table already opened as cursor
+** iEph. None of pChanges, pTabList or pWhere are modified or consumed by
+** this function, they must be deleted by the caller.
+**
+** Or, if pLimit and pOrderBy are not NULL, and pTab is not a view:
+**
+** SELECT <other-columns>, pChanges FROM pTabList
+** WHERE pWhere
+** GROUP BY <other-columns>
+** ORDER BY pOrderBy LIMIT pLimit
+**
+** If pTab is a view, the GROUP BY clause is omitted.
+**
+** Exactly how results are written to table iEph, and exactly what
+** the <other-columns> in the query above are is determined by the type
+** of table pTabList->a[0].pTab.
+**
+** If the table is a WITHOUT ROWID table, then argument pPk must be its
+** PRIMARY KEY. In this case <other-columns> are the primary key columns
+** of the table, in order. The results of the query are written to ephemeral
+** table iEph as index keys, using OP_IdxInsert.
+**
+** If the table is actually a view, then <other-columns> are all columns of
+** the view. The results are written to the ephemeral table iEph as records
+** with automatically assigned integer keys.
+**
+** If the table is a virtual or ordinary intkey table, then <other-columns>
+** is its rowid. For a virtual table, the results are written to iEph as
+** records with automatically assigned integer keys For intkey tables, the
+** rowid value in <other-columns> is used as the integer key, and the
+** remaining fields make up the table record.
+*/
+static void updateFromSelect(
+ Parse *pParse, /* Parse context */
+ int iEph, /* Cursor for open eph. table */
+ Index *pPk, /* PK if table 0 is WITHOUT ROWID */
+ ExprList *pChanges, /* List of expressions to return */
+ SrcList *pTabList, /* List of tables to select from */
+ Expr *pWhere, /* WHERE clause for query */
+ ExprList *pOrderBy, /* ORDER BY clause */
+ Expr *pLimit /* LIMIT clause */
+){
+ int i;
+ SelectDest dest;
+ Select *pSelect = 0;
+ ExprList *pList = 0;
+ ExprList *pGrp = 0;
+ Expr *pLimit2 = 0;
+ ExprList *pOrderBy2 = 0;
+ sqlite3 *db = pParse->db;
+ Table *pTab = pTabList->a[0].pTab;
+ SrcList *pSrc;
+ Expr *pWhere2;
+ int eDest;
+
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( pOrderBy && pLimit==0 ) {
+ sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on UPDATE");
+ return;
+ }
+ pOrderBy2 = sqlite3ExprListDup(db, pOrderBy, 0);
+ pLimit2 = sqlite3ExprDup(db, pLimit, 0);
+#else
+ UNUSED_PARAMETER(pOrderBy);
+ UNUSED_PARAMETER(pLimit);
+#endif
+
+ pSrc = sqlite3SrcListDup(db, pTabList, 0);
+ pWhere2 = sqlite3ExprDup(db, pWhere, 0);
+
+ assert( pTabList->nSrc>1 );
+ if( pSrc ){
+ pSrc->a[0].fg.notCte = 1;
+ pSrc->a[0].iCursor = -1;
+ pSrc->a[0].pTab->nTabRef--;
+ pSrc->a[0].pTab = 0;
+ }
+ if( pPk ){
+ for(i=0; i<pPk->nKeyCol; i++){
+ Expr *pNew = exprRowColumn(pParse, pPk->aiColumn[i]);
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( pLimit ){
+ pGrp = sqlite3ExprListAppend(pParse, pGrp, sqlite3ExprDup(db, pNew, 0));
+ }
+#endif
+ pList = sqlite3ExprListAppend(pParse, pList, pNew);
+ }
+ eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom;
+ }else if( IsView(pTab) ){
+ for(i=0; i<pTab->nCol; i++){
+ pList = sqlite3ExprListAppend(pParse, pList, exprRowColumn(pParse, i));
+ }
+ eDest = SRT_Table;
+ }else{
+ eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom;
+ pList = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0));
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( pLimit ){
+ pGrp = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0));
+ }
+#endif
+ }
+ assert( pChanges!=0 || pParse->db->mallocFailed );
+ if( pChanges ){
+ for(i=0; i<pChanges->nExpr; i++){
+ pList = sqlite3ExprListAppend(pParse, pList,
+ sqlite3ExprDup(db, pChanges->a[i].pExpr, 0)
+ );
+ }
+ }
+ pSelect = sqlite3SelectNew(pParse, pList,
+ pSrc, pWhere2, pGrp, 0, pOrderBy2, SF_UFSrcCheck|SF_IncludeHidden, pLimit2
+ );
+ if( pSelect ) pSelect->selFlags |= SF_OrderByReqd;
+ sqlite3SelectDestInit(&dest, eDest, iEph);
+ dest.iSDParm2 = (pPk ? pPk->nKeyCol : -1);
+ sqlite3Select(pParse, pSelect, &dest);
+ sqlite3SelectDelete(db, pSelect);
+}
+
+/*
+** Process an UPDATE statement.
+**
+** UPDATE OR IGNORE tbl SET a=b, c=d FROM tbl2... WHERE e<5 AND f NOT NULL;
+** \_______/ \_/ \______/ \_____/ \________________/
+** onError | pChanges | pWhere
+** \_______________________/
+** pTabList
+*/
+SQLITE_PRIVATE void sqlite3Update(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table in which we should change things */
+ ExprList *pChanges, /* Things to be changed */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ int onError, /* How to handle constraint errors */
+ ExprList *pOrderBy, /* ORDER BY clause. May be null */
+ Expr *pLimit, /* LIMIT clause. May be null */
+ Upsert *pUpsert /* ON CONFLICT clause, or null */
+){
+ int i, j, k; /* Loop counters */
+ Table *pTab; /* The table to be updated */
+ int addrTop = 0; /* VDBE instruction address of the start of the loop */
+ WhereInfo *pWInfo = 0; /* Information about the WHERE clause */
+ Vdbe *v; /* The virtual database engine */
+ Index *pIdx; /* For looping over indices */
+ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */
+ int nIdx; /* Number of indices that need updating */
+ int nAllIdx; /* Total number of indexes */
+ int iBaseCur; /* Base cursor number */
+ int iDataCur; /* Cursor for the canonical data btree */
+ int iIdxCur; /* Cursor for the first index */
+ sqlite3 *db; /* The database structure */
+ int *aRegIdx = 0; /* Registers for to each index and the main table */
+ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
+ ** an expression for the i-th column of the table.
+ ** aXRef[i]==-1 if the i-th column is not changed. */
+ u8 *aToOpen; /* 1 for tables and indices to be opened */
+ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */
+ u8 chngRowid; /* Rowid changed in a normal table */
+ u8 chngKey; /* Either chngPk or chngRowid */
+ Expr *pRowidExpr = 0; /* Expression defining the new record number */
+ int iRowidExpr = -1; /* Index of "rowid=" (or IPK) assignment in pChanges */
+ AuthContext sContext; /* The authorization context */
+ NameContext sNC; /* The name-context to resolve expressions in */
+ int iDb; /* Database containing the table being updated */
+ int eOnePass; /* ONEPASS_XXX value from where.c */
+ int hasFK; /* True if foreign key processing is required */
+ int labelBreak; /* Jump here to break out of UPDATE loop */
+ int labelContinue; /* Jump here to continue next step of UPDATE loop */
+ int flags; /* Flags for sqlite3WhereBegin() */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True when updating a view (INSTEAD OF trigger) */
+ Trigger *pTrigger; /* List of triggers on pTab, if required */
+ int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+#endif
+ int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */
+ int iEph = 0; /* Ephemeral table holding all primary key values */
+ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */
+ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */
+ int addrOpen = 0; /* Address of OP_OpenEphemeral */
+ int iPk = 0; /* First of nPk cells holding PRIMARY KEY value */
+ i16 nPk = 0; /* Number of components of the PRIMARY KEY */
+ int bReplace = 0; /* True if REPLACE conflict resolution might happen */
+ int bFinishSeek = 1; /* The OP_FinishSeek opcode is needed */
+ int nChangeFrom = 0; /* If there is a FROM, pChanges->nExpr, else 0 */
+
+ /* Register Allocations */
+ int regRowCount = 0; /* A count of rows changed */
+ int regOldRowid = 0; /* The old rowid */
+ int regNewRowid = 0; /* The new rowid */
+ int regNew = 0; /* Content of the NEW.* table in triggers */
+ int regOld = 0; /* Content of OLD.* table in triggers */
+ int regRowSet = 0; /* Rowset of rows to be updated */
+ int regKey = 0; /* composite PRIMARY KEY value */
+
+ memset(&sContext, 0, sizeof(sContext));
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto update_cleanup;
+ }
+ assert( db->mallocFailed==0 );
+
+ /* Locate the table which we want to update.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto update_cleanup;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+
+ /* Figure out if we have any triggers and if the table being
+ ** updated is a view.
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask);
+ isView = IsView(pTab);
+ assert( pTrigger || tmask==0 );
+#else
+# define pTrigger 0
+# define isView 0
+# define tmask 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Update() at %s:%d", __FILE__, __LINE__);
+ sqlite3TreeViewUpdate(pParse->pWith, pTabList, pChanges, pWhere,
+ onError, pOrderBy, pLimit, pUpsert, pTrigger);
+ }
+#endif
+
+ /* If there was a FROM clause, set nChangeFrom to the number of expressions
+ ** in the change-list. Otherwise, set it to 0. There cannot be a FROM
+ ** clause if this function is being called to generate code for part of
+ ** an UPSERT statement. */
+ nChangeFrom = (pTabList->nSrc>1) ? pChanges->nExpr : 0;
+ assert( nChangeFrom==0 || pUpsert==0 );
+
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( !isView && nChangeFrom==0 ){
+ pWhere = sqlite3LimitWhere(
+ pParse, pTabList, pWhere, pOrderBy, pLimit, "UPDATE"
+ );
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto update_cleanup;
+ }
+ if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
+ goto update_cleanup;
+ }
+
+ /* Allocate a cursors for the main database table and for all indices.
+ ** The index cursors might not be used, but if they are used they
+ ** need to occur right after the database cursor. So go ahead and
+ ** allocate enough space, just in case.
+ */
+ iBaseCur = iDataCur = pParse->nTab++;
+ iIdxCur = iDataCur+1;
+ pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
+ testcase( pPk!=0 && pPk!=pTab->pIndex );
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
+ if( pPk==pIdx ){
+ iDataCur = pParse->nTab;
+ }
+ pParse->nTab++;
+ }
+ if( pUpsert ){
+ /* On an UPSERT, reuse the same cursors already opened by INSERT */
+ iDataCur = pUpsert->iDataCur;
+ iIdxCur = pUpsert->iIdxCur;
+ pParse->nTab = iBaseCur;
+ }
+ pTabList->a[0].iCursor = iDataCur;
+
+ /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].
+ ** Initialize aXRef[] and aToOpen[] to their default values.
+ */
+ aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx+1) + nIdx+2 );
+ if( aXRef==0 ) goto update_cleanup;
+ aRegIdx = aXRef+pTab->nCol;
+ aToOpen = (u8*)(aRegIdx+nIdx+1);
+ memset(aToOpen, 1, nIdx+1);
+ aToOpen[nIdx+1] = 0;
+ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
+
+ /* Initialize the name-context */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.uNC.pUpsert = pUpsert;
+ sNC.ncFlags = NC_UUpsert;
+
+ /* Begin generating code. */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto update_cleanup;
+
+ /* Resolve the column names in all the expressions of the
+ ** of the UPDATE statement. Also find the column index
+ ** for each column to be updated in the pChanges array. For each
+ ** column to be updated, make sure we have authorization to change
+ ** that column.
+ */
+ chngRowid = chngPk = 0;
+ for(i=0; i<pChanges->nExpr; i++){
+ u8 hCol = sqlite3StrIHash(pChanges->a[i].zEName);
+ /* If this is an UPDATE with a FROM clause, do not resolve expressions
+ ** here. The call to sqlite3Select() below will do that. */
+ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
+ goto update_cleanup;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ if( pTab->aCol[j].hName==hCol
+ && sqlite3StrICmp(pTab->aCol[j].zCnName, pChanges->a[i].zEName)==0
+ ){
+ if( j==pTab->iPKey ){
+ chngRowid = 1;
+ pRowidExpr = pChanges->a[i].pExpr;
+ iRowidExpr = i;
+ }else if( pPk && (pTab->aCol[j].colFlags & COLFLAG_PRIMKEY)!=0 ){
+ chngPk = 1;
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ else if( pTab->aCol[j].colFlags & COLFLAG_GENERATED ){
+ testcase( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL );
+ testcase( pTab->aCol[j].colFlags & COLFLAG_STORED );
+ sqlite3ErrorMsg(pParse,
+ "cannot UPDATE generated column \"%s\"",
+ pTab->aCol[j].zCnName);
+ goto update_cleanup;
+ }
+#endif
+ aXRef[j] = i;
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( pPk==0 && sqlite3IsRowid(pChanges->a[i].zEName) ){
+ j = -1;
+ chngRowid = 1;
+ pRowidExpr = pChanges->a[i].pExpr;
+ iRowidExpr = i;
+ }else{
+ sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zEName);
+ pParse->checkSchema = 1;
+ goto update_cleanup;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int rc;
+ rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
+ j<0 ? "ROWID" : pTab->aCol[j].zCnName,
+ db->aDb[iDb].zDbSName);
+ if( rc==SQLITE_DENY ){
+ goto update_cleanup;
+ }else if( rc==SQLITE_IGNORE ){
+ aXRef[j] = -1;
+ }
+ }
+#endif
+ }
+ assert( (chngRowid & chngPk)==0 );
+ assert( chngRowid==0 || chngRowid==1 );
+ assert( chngPk==0 || chngPk==1 );
+ chngKey = chngRowid + chngPk;
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Mark generated columns as changing if their generator expressions
+ ** reference any changing column. The actual aXRef[] value for
+ ** generated expressions is not used, other than to check to see that it
+ ** is non-negative, so the value of aXRef[] for generated columns can be
+ ** set to any non-negative number. We use 99999 so that the value is
+ ** obvious when looking at aXRef[] in a symbolic debugger.
+ */
+ if( pTab->tabFlags & TF_HasGenerated ){
+ int bProgress;
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ do{
+ bProgress = 0;
+ for(i=0; i<pTab->nCol; i++){
+ if( aXRef[i]>=0 ) continue;
+ if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ) continue;
+ if( sqlite3ExprReferencesUpdatedColumn(
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ aXRef, chngRowid)
+ ){
+ aXRef[i] = 99999;
+ bProgress = 1;
+ }
+ }
+ }while( bProgress );
+ }
+#endif
+
+ /* The SET expressions are not actually used inside the WHERE loop.
+ ** So reset the colUsed mask. Unless this is a virtual table. In that
+ ** case, set all bits of the colUsed mask (to ensure that the virtual
+ ** table implementation makes all columns available).
+ */
+ pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0;
+
+ hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);
+
+ /* There is one entry in the aRegIdx[] array for each index on the table
+ ** being updated. Fill in aRegIdx[] with a register number that will hold
+ ** the key for accessing each index.
+ */
+ if( onError==OE_Replace ) bReplace = 1;
+ for(nAllIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nAllIdx++){
+ int reg;
+ if( chngKey || hasFK>1 || pIdx==pPk
+ || indexWhereClauseMightChange(pIdx,aXRef,chngRowid)
+ ){
+ reg = ++pParse->nMem;
+ pParse->nMem += pIdx->nColumn;
+ }else{
+ reg = 0;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( indexColumnIsBeingUpdated(pIdx, i, aXRef, chngRowid) ){
+ reg = ++pParse->nMem;
+ pParse->nMem += pIdx->nColumn;
+ if( onError==OE_Default && pIdx->onError==OE_Replace ){
+ bReplace = 1;
+ }
+ break;
+ }
+ }
+ }
+ if( reg==0 ) aToOpen[nAllIdx+1] = 0;
+ aRegIdx[nAllIdx] = reg;
+ }
+ aRegIdx[nAllIdx] = ++pParse->nMem; /* Register storing the table record */
+ if( bReplace ){
+ /* If REPLACE conflict resolution might be invoked, open cursors on all
+ ** indexes in case they are needed to delete records. */
+ memset(aToOpen, 1, nIdx+1);
+ }
+
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, pTrigger || hasFK, iDb);
+
+ /* Allocate required registers. */
+ if( !IsVirtual(pTab) ){
+ /* For now, regRowSet and aRegIdx[nAllIdx] share the same register.
+ ** If regRowSet turns out to be needed, then aRegIdx[nAllIdx] will be
+ ** reallocated. aRegIdx[nAllIdx] is the register in which the main
+ ** table record is written. regRowSet holds the RowSet for the
+ ** two-pass update algorithm. */
+ assert( aRegIdx[nAllIdx]==pParse->nMem );
+ regRowSet = aRegIdx[nAllIdx];
+ regOldRowid = regNewRowid = ++pParse->nMem;
+ if( chngPk || pTrigger || hasFK ){
+ regOld = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol;
+ }
+ if( chngKey || pTrigger || hasFK ){
+ regNewRowid = ++pParse->nMem;
+ }
+ regNew = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol;
+ }
+
+ /* Start the view context. */
+ if( isView ){
+ sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* If we are trying to update a view, realize that view into
+ ** an ephemeral table.
+ */
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+ if( nChangeFrom==0 && isView ){
+ sqlite3MaterializeView(pParse, pTab,
+ pWhere, pOrderBy, pLimit, iDataCur
+ );
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ /* Resolve the column names in all the expressions in the
+ ** WHERE clause.
+ */
+ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pWhere) ){
+ goto update_cleanup;
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Virtual tables must be handled separately */
+ if( IsVirtual(pTab) ){
+ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
+ pWhere, onError);
+ goto update_cleanup;
+ }
+#endif
+
+ /* Jump to labelBreak to abandon further processing of this UPDATE */
+ labelContinue = labelBreak = sqlite3VdbeMakeLabel(pParse);
+
+ /* Not an UPSERT. Normal processing. Begin by
+ ** initialize the count of updated rows */
+ if( (db->flags&SQLITE_CountRows)!=0
+ && !pParse->pTriggerTab
+ && !pParse->nested
+ && !pParse->bReturning
+ && pUpsert==0
+ ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
+ }
+
+ if( nChangeFrom==0 && HasRowid(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
+ iEph = pParse->nTab++;
+ addrOpen = sqlite3VdbeAddOp3(v, OP_OpenEphemeral, iEph, 0, regRowSet);
+ }else{
+ assert( pPk!=0 || HasRowid(pTab) );
+ nPk = pPk ? pPk->nKeyCol : 0;
+ iPk = pParse->nMem+1;
+ pParse->nMem += nPk;
+ pParse->nMem += nChangeFrom;
+ regKey = ++pParse->nMem;
+ if( pUpsert==0 ){
+ int nEphCol = nPk + nChangeFrom + (isView ? pTab->nCol : 0);
+ iEph = pParse->nTab++;
+ if( pPk ) sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1);
+ addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nEphCol);
+ if( pPk ){
+ KeyInfo *pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pPk);
+ if( pKeyInfo ){
+ pKeyInfo->nAllField = nEphCol;
+ sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
+ }
+ }
+ if( nChangeFrom ){
+ updateFromSelect(
+ pParse, iEph, pPk, pChanges, pTabList, pWhere, pOrderBy, pLimit
+ );
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( isView ) iDataCur = iEph;
+#endif
+ }
+ }
+ }
+
+ if( nChangeFrom ){
+ sqlite3MultiWrite(pParse);
+ eOnePass = ONEPASS_OFF;
+ nKey = nPk;
+ regKey = iPk;
+ }else{
+ if( pUpsert ){
+ /* If this is an UPSERT, then all cursors have already been opened by
+ ** the outer INSERT and the data cursor should be pointing at the row
+ ** that is to be updated. So bypass the code that searches for the
+ ** row(s) to be updated.
+ */
+ pWInfo = 0;
+ eOnePass = ONEPASS_SINGLE;
+ sqlite3ExprIfFalse(pParse, pWhere, labelBreak, SQLITE_JUMPIFNULL);
+ bFinishSeek = 0;
+ }else{
+ /* Begin the database scan.
+ **
+ ** Do not consider a single-pass strategy for a multi-row update if
+ ** there are any triggers or foreign keys to process, or rows may
+ ** be deleted as a result of REPLACE conflict handling. Any of these
+ ** things might disturb a cursor being used to scan through the table
+ ** or index, causing a single-pass approach to malfunction. */
+ flags = WHERE_ONEPASS_DESIRED;
+ if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace ){
+ flags |= WHERE_ONEPASS_MULTIROW;
+ }
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,0,0,flags,iIdxCur);
+ if( pWInfo==0 ) goto update_cleanup;
+
+ /* A one-pass strategy that might update more than one row may not
+ ** be used if any column of the index used for the scan is being
+ ** updated. Otherwise, if there is an index on "b", statements like
+ ** the following could create an infinite loop:
+ **
+ ** UPDATE t1 SET b=b+1 WHERE b>?
+ **
+ ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI
+ ** strategy that uses an index for which one or more columns are being
+ ** updated. */
+ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
+ bFinishSeek = sqlite3WhereUsesDeferredSeek(pWInfo);
+ if( eOnePass!=ONEPASS_SINGLE ){
+ sqlite3MultiWrite(pParse);
+ if( eOnePass==ONEPASS_MULTI ){
+ int iCur = aiCurOnePass[1];
+ if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){
+ eOnePass = ONEPASS_OFF;
+ }
+ assert( iCur!=iDataCur || !HasRowid(pTab) );
+ }
+ }
+ }
+
+ if( HasRowid(pTab) ){
+ /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF
+ ** mode, write the rowid into the FIFO. In either of the one-pass modes,
+ ** leave it in register regOldRowid. */
+ sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
+ if( eOnePass==ONEPASS_OFF ){
+ aRegIdx[nAllIdx] = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_Insert, iEph, regRowSet, regOldRowid);
+ }else{
+ if( ALWAYS(addrOpen) ) sqlite3VdbeChangeToNoop(v, addrOpen);
+ }
+ }else{
+ /* Read the PK of the current row into an array of registers. In
+ ** ONEPASS_OFF mode, serialize the array into a record and store it in
+ ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change
+ ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table
+ ** is not required) and leave the PK fields in the array of registers. */
+ for(i=0; i<nPk; i++){
+ assert( pPk->aiColumn[i]>=0 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur,
+ pPk->aiColumn[i], iPk+i);
+ }
+ if( eOnePass ){
+ if( addrOpen ) sqlite3VdbeChangeToNoop(v, addrOpen);
+ nKey = nPk;
+ regKey = iPk;
+ }else{
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
+ sqlite3IndexAffinityStr(db, pPk), nPk);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk);
+ }
+ }
+ }
+
+ if( pUpsert==0 ){
+ if( nChangeFrom==0 && eOnePass!=ONEPASS_MULTI ){
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ if( !isView ){
+ int addrOnce = 0;
+
+ /* Open every index that needs updating. */
+ if( eOnePass!=ONEPASS_OFF ){
+ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
+ if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
+ }
+
+ if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur,
+ aToOpen, 0, 0);
+ if( addrOnce ){
+ sqlite3VdbeJumpHereOrPopInst(v, addrOnce);
+ }
+ }
+
+ /* Top of the update loop */
+ if( eOnePass!=ONEPASS_OFF ){
+ if( aiCurOnePass[0]!=iDataCur
+ && aiCurOnePass[1]!=iDataCur
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ && !isView
+#endif
+ ){
+ assert( pPk );
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey,nKey);
+ VdbeCoverage(v);
+ }
+ if( eOnePass!=ONEPASS_SINGLE ){
+ labelContinue = sqlite3VdbeMakeLabel(pParse);
+ }
+ sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
+ VdbeCoverageIf(v, pPk==0);
+ VdbeCoverageIf(v, pPk!=0);
+ }else if( pPk || nChangeFrom ){
+ labelContinue = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
+ addrTop = sqlite3VdbeCurrentAddr(v);
+ if( nChangeFrom ){
+ if( !isView ){
+ if( pPk ){
+ for(i=0; i<nPk; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, i, iPk+i);
+ }
+ sqlite3VdbeAddOp4Int(
+ v, OP_NotFound, iDataCur, labelContinue, iPk, nPk
+ ); VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rowid, iEph, regOldRowid);
+ sqlite3VdbeAddOp3(
+ v, OP_NotExists, iDataCur, labelContinue, regOldRowid
+ ); VdbeCoverage(v);
+ }
+ }
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey);
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey,0);
+ VdbeCoverage(v);
+ }
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
+ labelContinue = sqlite3VdbeMakeLabel(pParse);
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rowid, iEph, regOldRowid);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
+ VdbeCoverage(v);
+ }
+ }
+
+ /* If the rowid value will change, set register regNewRowid to
+ ** contain the new value. If the rowid is not being modified,
+ ** then regNewRowid is the same register as regOldRowid, which is
+ ** already populated. */
+ assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid );
+ if( chngRowid ){
+ assert( iRowidExpr>=0 );
+ if( nChangeFrom==0 ){
+ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, iRowidExpr, regNewRowid);
+ }
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v);
+ }
+
+ /* Compute the old pre-UPDATE content of the row being changed, if that
+ ** information is needed */
+ if( chngPk || hasFK || pTrigger ){
+ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0);
+ oldmask |= sqlite3TriggerColmask(pParse,
+ pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError
+ );
+ for(i=0; i<pTab->nCol; i++){
+ u32 colFlags = pTab->aCol[i].colFlags;
+ k = sqlite3TableColumnToStorage(pTab, i) + regOld;
+ if( oldmask==0xffffffff
+ || (i<32 && (oldmask & MASKBIT32(i))!=0)
+ || (colFlags & COLFLAG_PRIMKEY)!=0
+ ){
+ testcase( oldmask!=0xffffffff && i==31 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, k);
+ }
+ }
+ if( chngRowid==0 && pPk==0 ){
+ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
+ }
+ }
+
+ /* Populate the array of registers beginning at regNew with the new
+ ** row data. This array is used to check constants, create the new
+ ** table and index records, and as the values for any new.* references
+ ** made by triggers.
+ **
+ ** If there are one or more BEFORE triggers, then do not populate the
+ ** registers associated with columns that are (a) not modified by
+ ** this UPDATE statement and (b) not accessed by new.* references. The
+ ** values for registers not modified by the UPDATE must be reloaded from
+ ** the database after the BEFORE triggers are fired anyway (as the trigger
+ ** may have modified them). So not loading those that are not going to
+ ** be used eliminates some redundant opcodes.
+ */
+ newmask = sqlite3TriggerColmask(
+ pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError
+ );
+ for(i=0, k=regNew; i<pTab->nCol; i++, k++){
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, k);
+ }else if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)!=0 ){
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--;
+ }else{
+ j = aXRef[i];
+ if( j>=0 ){
+ if( nChangeFrom ){
+ int nOff = (isView ? pTab->nCol : nPk);
+ assert( eOnePass==ONEPASS_OFF );
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, nOff+j, k);
+ }else{
+ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, k);
+ }
+ }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){
+ /* This branch loads the value of a column that will not be changed
+ ** into a register. This is done if there are no BEFORE triggers, or
+ ** if there are one or more BEFORE triggers that use this value via
+ ** a new.* reference in a trigger program.
+ */
+ testcase( i==31 );
+ testcase( i==32 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k);
+ bFinishSeek = 0;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, k);
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pTab->tabFlags & TF_HasGenerated ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ sqlite3ComputeGeneratedColumns(pParse, regNew, pTab);
+ }
+#endif
+
+ /* Fire any BEFORE UPDATE triggers. This happens before constraints are
+ ** verified. One could argue that this is wrong.
+ */
+ if( tmask&TRIGGER_BEFORE ){
+ sqlite3TableAffinity(v, pTab, regNew);
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
+ TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue);
+
+ if( !isView ){
+ /* The row-trigger may have deleted the row being updated. In this
+ ** case, jump to the next row. No updates or AFTER triggers are
+ ** required. This behavior - what happens when the row being updated
+ ** is deleted or renamed by a BEFORE trigger - is left undefined in the
+ ** documentation.
+ */
+ if( pPk ){
+ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey);
+ VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid);
+ VdbeCoverage(v);
+ }
+
+ /* After-BEFORE-trigger-reload-loop:
+ ** If it did not delete it, the BEFORE trigger may still have modified
+ ** some of the columns of the row being updated. Load the values for
+ ** all columns not modified by the update statement into their registers
+ ** in case this has happened. Only unmodified columns are reloaded.
+ ** The values computed for modified columns use the values before the
+ ** BEFORE trigger runs. See test case trigger1-18.0 (added 2018-04-26)
+ ** for an example.
+ */
+ for(i=0, k=regNew; i<pTab->nCol; i++, k++){
+ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--;
+ }else if( aXRef[i]<0 && i!=pTab->iPKey ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k);
+ }
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pTab->tabFlags & TF_HasGenerated ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ sqlite3ComputeGeneratedColumns(pParse, regNew, pTab);
+ }
+#endif
+ }
+ }
+
+ if( !isView ){
+ /* Do constraint checks. */
+ assert( regOldRowid>0 );
+ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
+ regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
+ aXRef, 0);
+
+ /* If REPLACE conflict handling may have been used, or if the PK of the
+ ** row is changing, then the GenerateConstraintChecks() above may have
+ ** moved cursor iDataCur. Reseek it. */
+ if( bReplace || chngKey ){
+ if( pPk ){
+ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid);
+ }
+ VdbeCoverage(v);
+ }
+
+ /* Do FK constraint checks. */
+ if( hasFK ){
+ sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
+ }
+
+ /* Delete the index entries associated with the current record. */
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx, -1);
+
+ /* We must run the OP_FinishSeek opcode to resolve a prior
+ ** OP_DeferredSeek if there is any possibility that there have been
+ ** no OP_Column opcodes since the OP_DeferredSeek was issued. But
+ ** we want to avoid the OP_FinishSeek if possible, as running it
+ ** costs CPU cycles. */
+ if( bFinishSeek ){
+ sqlite3VdbeAddOp1(v, OP_FinishSeek, iDataCur);
+ }
+
+ /* If changing the rowid value, or if there are foreign key constraints
+ ** to process, delete the old record. Otherwise, add a noop OP_Delete
+ ** to invoke the pre-update hook.
+ **
+ ** That (regNew==regnewRowid+1) is true is also important for the
+ ** pre-update hook. If the caller invokes preupdate_new(), the returned
+ ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
+ ** is the column index supplied by the user.
+ */
+ assert( regNew==regNewRowid+1 );
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
+ OPFLAG_ISUPDATE | ((hasFK>1 || chngKey) ? 0 : OPFLAG_ISNOOP),
+ regNewRowid
+ );
+ if( eOnePass==ONEPASS_MULTI ){
+ assert( hasFK==0 && chngKey==0 );
+ sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
+ }
+ if( !pParse->nested ){
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ }
+#else
+ if( hasFK>1 || chngKey ){
+ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
+ }
+#endif
+
+ if( hasFK ){
+ sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey);
+ }
+
+ /* Insert the new index entries and the new record. */
+ sqlite3CompleteInsertion(
+ pParse, pTab, iDataCur, iIdxCur, regNewRowid, aRegIdx,
+ OPFLAG_ISUPDATE | (eOnePass==ONEPASS_MULTI ? OPFLAG_SAVEPOSITION : 0),
+ 0, 0
+ );
+
+ /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
+ ** handle rows (possibly in other tables) that refer via a foreign key
+ ** to the row just updated. */
+ if( hasFK ){
+ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
+ }
+ }
+
+ /* Increment the row counter
+ */
+ if( regRowCount ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
+ }
+
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
+ TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);
+
+ /* Repeat the above with the next record to be updated, until
+ ** all record selected by the WHERE clause have been updated.
+ */
+ if( eOnePass==ONEPASS_SINGLE ){
+ /* Nothing to do at end-of-loop for a single-pass */
+ }else if( eOnePass==ONEPASS_MULTI ){
+ sqlite3VdbeResolveLabel(v, labelContinue);
+ sqlite3WhereEnd(pWInfo);
+ }else{
+ sqlite3VdbeResolveLabel(v, labelContinue);
+ sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v);
+ }
+ sqlite3VdbeResolveLabel(v, labelBreak);
+
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 && pUpsert==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /*
+ ** Return the number of rows that were changed, if we are tracking
+ ** that information.
+ */
+ if( regRowCount ){
+ sqlite3CodeChangeCount(v, regRowCount, "rows updated");
+ }
+
+update_cleanup:
+ sqlite3AuthContextPop(&sContext);
+ sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pChanges);
+ sqlite3ExprDelete(db, pWhere);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
+ sqlite3ExprListDelete(db, pOrderBy);
+ sqlite3ExprDelete(db, pLimit);
+#endif
+ return;
+}
+/* Make sure "isView" and other macros defined above are undefined. Otherwise
+** they may interfere with compilation of other functions in this file
+** (or in another file, if this file becomes part of the amalgamation). */
+#ifdef isView
+ #undef isView
+#endif
+#ifdef pTrigger
+ #undef pTrigger
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Generate code for an UPDATE of a virtual table.
+**
+** There are two possible strategies - the default and the special
+** "onepass" strategy. Onepass is only used if the virtual table
+** implementation indicates that pWhere may match at most one row.
+**
+** The default strategy is to create an ephemeral table that contains
+** for each row to be changed:
+**
+** (A) The original rowid of that row.
+** (B) The revised rowid for the row.
+** (C) The content of every column in the row.
+**
+** Then loop through the contents of this ephemeral table executing a
+** VUpdate for each row. When finished, drop the ephemeral table.
+**
+** The "onepass" strategy does not use an ephemeral table. Instead, it
+** stores the same values (A, B and C above) in a register array and
+** makes a single invocation of VUpdate.
+*/
+static void updateVirtualTable(
+ Parse *pParse, /* The parsing context */
+ SrcList *pSrc, /* The virtual table to be modified */
+ Table *pTab, /* The virtual table */
+ ExprList *pChanges, /* The columns to change in the UPDATE statement */
+ Expr *pRowid, /* Expression used to recompute the rowid */
+ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
+ Expr *pWhere, /* WHERE clause of the UPDATE statement */
+ int onError /* ON CONFLICT strategy */
+){
+ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
+ int ephemTab; /* Table holding the result of the SELECT */
+ int i; /* Loop counter */
+ sqlite3 *db = pParse->db; /* Database connection */
+ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab);
+ WhereInfo *pWInfo = 0;
+ int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */
+ int regArg; /* First register in VUpdate arg array */
+ int regRec; /* Register in which to assemble record */
+ int regRowid; /* Register for ephem table rowid */
+ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */
+ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */
+ int eOnePass; /* True to use onepass strategy */
+ int addr; /* Address of OP_OpenEphemeral */
+
+ /* Allocate nArg registers in which to gather the arguments for VUpdate. Then
+ ** create and open the ephemeral table in which the records created from
+ ** these arguments will be temporarily stored. */
+ assert( v );
+ ephemTab = pParse->nTab++;
+ addr= sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, nArg);
+ regArg = pParse->nMem + 1;
+ pParse->nMem += nArg;
+ if( pSrc->nSrc>1 ){
+ Index *pPk = 0;
+ Expr *pRow;
+ ExprList *pList;
+ if( HasRowid(pTab) ){
+ if( pRowid ){
+ pRow = sqlite3ExprDup(db, pRowid, 0);
+ }else{
+ pRow = sqlite3PExpr(pParse, TK_ROW, 0, 0);
+ }
+ }else{
+ i16 iPk; /* PRIMARY KEY column */
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->nKeyCol==1 );
+ iPk = pPk->aiColumn[0];
+ if( aXRef[iPk]>=0 ){
+ pRow = sqlite3ExprDup(db, pChanges->a[aXRef[iPk]].pExpr, 0);
+ }else{
+ pRow = exprRowColumn(pParse, iPk);
+ }
+ }
+ pList = sqlite3ExprListAppend(pParse, 0, pRow);
+
+ for(i=0; i<pTab->nCol; i++){
+ if( aXRef[i]>=0 ){
+ pList = sqlite3ExprListAppend(pParse, pList,
+ sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0)
+ );
+ }else{
+ pList = sqlite3ExprListAppend(pParse, pList, exprRowColumn(pParse, i));
+ }
+ }
+
+ updateFromSelect(pParse, ephemTab, pPk, pList, pSrc, pWhere, 0, 0);
+ sqlite3ExprListDelete(db, pList);
+ eOnePass = ONEPASS_OFF;
+ }else{
+ regRec = ++pParse->nMem;
+ regRowid = ++pParse->nMem;
+
+ /* Start scanning the virtual table */
+ pWInfo = sqlite3WhereBegin(
+ pParse, pSrc, pWhere, 0, 0, 0, WHERE_ONEPASS_DESIRED, 0
+ );
+ if( pWInfo==0 ) return;
+
+ /* Populate the argument registers. */
+ for(i=0; i<pTab->nCol; i++){
+ assert( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 );
+ if( aXRef[i]>=0 ){
+ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i);
+ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG);/* For sqlite3_vtab_nochange() */
+ }
+ }
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg);
+ if( pRowid ){
+ sqlite3ExprCode(pParse, pRowid, regArg+1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg+1);
+ }
+ }else{
+ Index *pPk; /* PRIMARY KEY index */
+ i16 iPk; /* PRIMARY KEY column */
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->nKeyCol==1 );
+ iPk = pPk->aiColumn[0];
+ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1);
+ }
+
+ eOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy);
+
+ /* There is no ONEPASS_MULTI on virtual tables */
+ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
+
+ if( eOnePass ){
+ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded
+ ** above. */
+ sqlite3VdbeChangeToNoop(v, addr);
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ }else{
+ /* Create a record from the argument register contents and insert it into
+ ** the ephemeral table. */
+ sqlite3MultiWrite(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec);
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_NULL_TRIM)
+ /* Signal an assert() within OP_MakeRecord that it is allowed to
+ ** accept no-change records with serial_type 10 */
+ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
+#endif
+ sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid);
+ }
+ }
+
+
+ if( eOnePass==ONEPASS_OFF ){
+ /* End the virtual table scan */
+ if( pSrc->nSrc==1 ){
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ /* Begin scannning through the ephemeral table. */
+ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v);
+
+ /* Extract arguments from the current row of the ephemeral table and
+ ** invoke the VUpdate method. */
+ for(i=0; i<nArg; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i);
+ }
+ }
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, nArg, regArg, pVTab, P4_VTAB);
+ sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
+ sqlite3MayAbort(pParse);
+
+ /* End of the ephemeral table scan. Or, if using the onepass strategy,
+ ** jump to here if the scan visited zero rows. */
+ if( eOnePass==ONEPASS_OFF ){
+ sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
+ }else{
+ sqlite3WhereEnd(pWInfo);
+ }
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/************** End of update.c **********************************************/
+/************** Begin file upsert.c ******************************************/
+/*
+** 2018-04-12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement various aspects of UPSERT
+** processing and handling of the Upsert object.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_UPSERT
+/*
+** Free a list of Upsert objects
+*/
+static void SQLITE_NOINLINE upsertDelete(sqlite3 *db, Upsert *p){
+ do{
+ Upsert *pNext = p->pNextUpsert;
+ sqlite3ExprListDelete(db, p->pUpsertTarget);
+ sqlite3ExprDelete(db, p->pUpsertTargetWhere);
+ sqlite3ExprListDelete(db, p->pUpsertSet);
+ sqlite3ExprDelete(db, p->pUpsertWhere);
+ sqlite3DbFree(db, p->pToFree);
+ sqlite3DbFree(db, p);
+ p = pNext;
+ }while( p );
+}
+SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){
+ if( p ) upsertDelete(db, p);
+}
+
+
+/*
+** Duplicate an Upsert object.
+*/
+SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){
+ if( p==0 ) return 0;
+ return sqlite3UpsertNew(db,
+ sqlite3ExprListDup(db, p->pUpsertTarget, 0),
+ sqlite3ExprDup(db, p->pUpsertTargetWhere, 0),
+ sqlite3ExprListDup(db, p->pUpsertSet, 0),
+ sqlite3ExprDup(db, p->pUpsertWhere, 0),
+ sqlite3UpsertDup(db, p->pNextUpsert)
+ );
+}
+
+/*
+** Create a new Upsert object.
+*/
+SQLITE_PRIVATE Upsert *sqlite3UpsertNew(
+ sqlite3 *db, /* Determines which memory allocator to use */
+ ExprList *pTarget, /* Target argument to ON CONFLICT, or NULL */
+ Expr *pTargetWhere, /* Optional WHERE clause on the target */
+ ExprList *pSet, /* UPDATE columns, or NULL for a DO NOTHING */
+ Expr *pWhere, /* WHERE clause for the ON CONFLICT UPDATE */
+ Upsert *pNext /* Next ON CONFLICT clause in the list */
+){
+ Upsert *pNew;
+ pNew = sqlite3DbMallocZero(db, sizeof(Upsert));
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pTarget);
+ sqlite3ExprDelete(db, pTargetWhere);
+ sqlite3ExprListDelete(db, pSet);
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3UpsertDelete(db, pNext);
+ return 0;
+ }else{
+ pNew->pUpsertTarget = pTarget;
+ pNew->pUpsertTargetWhere = pTargetWhere;
+ pNew->pUpsertSet = pSet;
+ pNew->pUpsertWhere = pWhere;
+ pNew->isDoUpdate = pSet!=0;
+ pNew->pNextUpsert = pNext;
+ }
+ return pNew;
+}
+
+/*
+** Analyze the ON CONFLICT clause described by pUpsert. Resolve all
+** symbols in the conflict-target.
+**
+** Return SQLITE_OK if everything works, or an error code is something
+** is wrong.
+*/
+SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget(
+ Parse *pParse, /* The parsing context */
+ SrcList *pTabList, /* Table into which we are inserting */
+ Upsert *pUpsert /* The ON CONFLICT clauses */
+){
+ Table *pTab; /* That table into which we are inserting */
+ int rc; /* Result code */
+ int iCursor; /* Cursor used by pTab */
+ Index *pIdx; /* One of the indexes of pTab */
+ ExprList *pTarget; /* The conflict-target clause */
+ Expr *pTerm; /* One term of the conflict-target clause */
+ NameContext sNC; /* Context for resolving symbolic names */
+ Expr sCol[2]; /* Index column converted into an Expr */
+ int nClause = 0; /* Counter of ON CONFLICT clauses */
+
+ assert( pTabList->nSrc==1 );
+ assert( pTabList->a[0].pTab!=0 );
+ assert( pUpsert!=0 );
+ assert( pUpsert->pUpsertTarget!=0 );
+
+ /* Resolve all symbolic names in the conflict-target clause, which
+ ** includes both the list of columns and the optional partial-index
+ ** WHERE clause.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ for(; pUpsert && pUpsert->pUpsertTarget;
+ pUpsert=pUpsert->pNextUpsert, nClause++){
+ rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
+ if( rc ) return rc;
+ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
+ if( rc ) return rc;
+
+ /* Check to see if the conflict target matches the rowid. */
+ pTab = pTabList->a[0].pTab;
+ pTarget = pUpsert->pUpsertTarget;
+ iCursor = pTabList->a[0].iCursor;
+ if( HasRowid(pTab)
+ && pTarget->nExpr==1
+ && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN
+ && pTerm->iColumn==XN_ROWID
+ ){
+ /* The conflict-target is the rowid of the primary table */
+ assert( pUpsert->pUpsertIdx==0 );
+ continue;
+ }
+
+ /* Initialize sCol[0..1] to be an expression parse tree for a
+ ** single column of an index. The sCol[0] node will be the TK_COLLATE
+ ** operator and sCol[1] will be the TK_COLUMN operator. Code below
+ ** will populate the specific collation and column number values
+ ** prior to comparing against the conflict-target expression.
+ */
+ memset(sCol, 0, sizeof(sCol));
+ sCol[0].op = TK_COLLATE;
+ sCol[0].pLeft = &sCol[1];
+ sCol[1].op = TK_COLUMN;
+ sCol[1].iTable = pTabList->a[0].iCursor;
+
+ /* Check for matches against other indexes */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int ii, jj, nn;
+ if( !IsUniqueIndex(pIdx) ) continue;
+ if( pTarget->nExpr!=pIdx->nKeyCol ) continue;
+ if( pIdx->pPartIdxWhere ){
+ if( pUpsert->pUpsertTargetWhere==0 ) continue;
+ if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere,
+ pIdx->pPartIdxWhere, iCursor)!=0 ){
+ continue;
+ }
+ }
+ nn = pIdx->nKeyCol;
+ for(ii=0; ii<nn; ii++){
+ Expr *pExpr;
+ sCol[0].u.zToken = (char*)pIdx->azColl[ii];
+ if( pIdx->aiColumn[ii]==XN_EXPR ){
+ assert( pIdx->aColExpr!=0 );
+ assert( pIdx->aColExpr->nExpr>ii );
+ pExpr = pIdx->aColExpr->a[ii].pExpr;
+ if( pExpr->op!=TK_COLLATE ){
+ sCol[0].pLeft = pExpr;
+ pExpr = &sCol[0];
+ }
+ }else{
+ sCol[0].pLeft = &sCol[1];
+ sCol[1].iColumn = pIdx->aiColumn[ii];
+ pExpr = &sCol[0];
+ }
+ for(jj=0; jj<nn; jj++){
+ if( sqlite3ExprCompare(pParse,pTarget->a[jj].pExpr,pExpr,iCursor)<2 ){
+ break; /* Column ii of the index matches column jj of target */
+ }
+ }
+ if( jj>=nn ){
+ /* The target contains no match for column jj of the index */
+ break;
+ }
+ }
+ if( ii<nn ){
+ /* Column ii of the index did not match any term of the conflict target.
+ ** Continue the search with the next index. */
+ continue;
+ }
+ pUpsert->pUpsertIdx = pIdx;
+ break;
+ }
+ if( pUpsert->pUpsertIdx==0 ){
+ char zWhich[16];
+ if( nClause==0 && pUpsert->pNextUpsert==0 ){
+ zWhich[0] = 0;
+ }else{
+ sqlite3_snprintf(sizeof(zWhich),zWhich,"%r ", nClause+1);
+ }
+ sqlite3ErrorMsg(pParse, "%sON CONFLICT clause does not match any "
+ "PRIMARY KEY or UNIQUE constraint", zWhich);
+ return SQLITE_ERROR;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return true if pUpsert is the last ON CONFLICT clause with a
+** conflict target, or if pUpsert is followed by another ON CONFLICT
+** clause that targets the INTEGER PRIMARY KEY.
+*/
+SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert *pUpsert){
+ Upsert *pNext;
+ if( NEVER(pUpsert==0) ) return 0;
+ pNext = pUpsert->pNextUpsert;
+ if( pNext==0 ) return 1;
+ if( pNext->pUpsertTarget==0 ) return 1;
+ if( pNext->pUpsertIdx==0 ) return 1;
+ return 0;
+}
+
+/*
+** Given the list of ON CONFLICT clauses described by pUpsert, and
+** a particular index pIdx, return a pointer to the particular ON CONFLICT
+** clause that applies to the index. Or, if the index is not subject to
+** any ON CONFLICT clause, return NULL.
+*/
+SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert *pUpsert, Index *pIdx){
+ while(
+ pUpsert
+ && pUpsert->pUpsertTarget!=0
+ && pUpsert->pUpsertIdx!=pIdx
+ ){
+ pUpsert = pUpsert->pNextUpsert;
+ }
+ return pUpsert;
+}
+
+/*
+** Generate bytecode that does an UPDATE as part of an upsert.
+**
+** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK.
+** In this case parameter iCur is a cursor open on the table b-tree that
+** currently points to the conflicting table row. Otherwise, if pIdx
+** is not NULL, then pIdx is the constraint that failed and iCur is a
+** cursor points to the conflicting row.
+*/
+SQLITE_PRIVATE void sqlite3UpsertDoUpdate(
+ Parse *pParse, /* The parsing and code-generating context */
+ Upsert *pUpsert, /* The ON CONFLICT clause for the upsert */
+ Table *pTab, /* The table being updated */
+ Index *pIdx, /* The UNIQUE constraint that failed */
+ int iCur /* Cursor for pIdx (or pTab if pIdx==NULL) */
+){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+ SrcList *pSrc; /* FROM clause for the UPDATE */
+ int iDataCur;
+ int i;
+ Upsert *pTop = pUpsert;
+
+ assert( v!=0 );
+ assert( pUpsert!=0 );
+ iDataCur = pUpsert->iDataCur;
+ pUpsert = sqlite3UpsertOfIndex(pTop, pIdx);
+ VdbeNoopComment((v, "Begin DO UPDATE of UPSERT"));
+ if( pIdx && iCur!=iDataCur ){
+ if( HasRowid(pTab) ){
+ int regRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ int nPk = pPk->nKeyCol;
+ int iPk = pParse->nMem+1;
+ pParse->nMem += nPk;
+ for(i=0; i<nPk; i++){
+ int k;
+ assert( pPk->aiColumn[i]>=0 );
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i);
+ VdbeComment((v, "%s.%s", pIdx->zName,
+ pTab->aCol[pPk->aiColumn[i]].zCnName));
+ }
+ sqlite3VdbeVerifyAbortable(v, OE_Abort);
+ i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0,
+ "corrupt database", P4_STATIC);
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeJumpHere(v, i);
+ }
+ }
+ /* pUpsert does not own pTop->pUpsertSrc - the outer INSERT statement does.
+ ** So we have to make a copy before passing it down into sqlite3Update() */
+ pSrc = sqlite3SrcListDup(db, pTop->pUpsertSrc, 0);
+ /* excluded.* columns of type REAL need to be converted to a hard real */
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, pTop->regData+i);
+ }
+ }
+ sqlite3Update(pParse, pSrc, sqlite3ExprListDup(db,pUpsert->pUpsertSet,0),
+ sqlite3ExprDup(db,pUpsert->pUpsertWhere,0), OE_Abort, 0, 0, pUpsert);
+ VdbeNoopComment((v, "End DO UPDATE of UPSERT"));
+}
+
+#endif /* SQLITE_OMIT_UPSERT */
+
+/************** End of upsert.c **********************************************/
+/************** Begin file vacuum.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the VACUUM command.
+**
+** Most of the code in this file may be omitted by defining the
+** SQLITE_OMIT_VACUUM macro.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+
+/*
+** Execute zSql on database db.
+**
+** If zSql returns rows, then each row will have exactly one
+** column. (This will only happen if zSql begins with "SELECT".)
+** Take each row of result and call execSql() again recursively.
+**
+** The execSqlF() routine does the same thing, except it accepts
+** a format string as its third argument
+*/
+static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
+ sqlite3_stmt *pStmt;
+ int rc;
+
+ /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
+ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
+ assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
+ /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX,
+ ** or INSERT. Historically there have been attacks that first
+ ** corrupt the sqlite_schema.sql field with other kinds of statements
+ ** then run VACUUM to get those statements to execute at inappropriate
+ ** times. */
+ if( zSubSql
+ && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0)
+ ){
+ rc = execSql(db, pzErrMsg, zSubSql);
+ if( rc!=SQLITE_OK ) break;
+ }
+ }
+ assert( rc!=SQLITE_ROW );
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ if( rc ){
+ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
+ }
+ (void)sqlite3_finalize(pStmt);
+ return rc;
+}
+static int execSqlF(sqlite3 *db, char **pzErrMsg, const char *zSql, ...){
+ char *z;
+ va_list ap;
+ int rc;
+ va_start(ap, zSql);
+ z = sqlite3VMPrintf(db, zSql, ap);
+ va_end(ap);
+ if( z==0 ) return SQLITE_NOMEM;
+ rc = execSql(db, pzErrMsg, z);
+ sqlite3DbFree(db, z);
+ return rc;
+}
+
+/*
+** The VACUUM command is used to clean up the database,
+** collapse free space, etc. It is modelled after the VACUUM command
+** in PostgreSQL. The VACUUM command works as follows:
+**
+** (1) Create a new transient database file
+** (2) Copy all content from the database being vacuumed into
+** the new transient database file
+** (3) Copy content from the transient database back into the
+** original database.
+**
+** The transient database requires temporary disk space approximately
+** equal to the size of the original database. The copy operation of
+** step (3) requires additional temporary disk space approximately equal
+** to the size of the original database for the rollback journal.
+** Hence, temporary disk space that is approximately 2x the size of the
+** original database is required. Every page of the database is written
+** approximately 3 times: Once for step (2) and twice for step (3).
+** Two writes per page are required in step (3) because the original
+** database content must be written into the rollback journal prior to
+** overwriting the database with the vacuumed content.
+**
+** Only 1x temporary space and only 1x writes would be required if
+** the copy of step (3) were replaced by deleting the original database
+** and renaming the transient database as the original. But that will
+** not work if other processes are attached to the original database.
+** And a power loss in between deleting the original and renaming the
+** transient would cause the database file to appear to be deleted
+** following reboot.
+*/
+SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse, Token *pNm, Expr *pInto){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int iDb = 0;
+ if( v==0 ) goto build_vacuum_end;
+ if( pParse->nErr ) goto build_vacuum_end;
+ if( pNm ){
+#ifndef SQLITE_BUG_COMPATIBLE_20160819
+ /* Default behavior: Report an error if the argument to VACUUM is
+ ** not recognized */
+ iDb = sqlite3TwoPartName(pParse, pNm, pNm, &pNm);
+ if( iDb<0 ) goto build_vacuum_end;
+#else
+ /* When SQLITE_BUG_COMPATIBLE_20160819 is defined, unrecognized arguments
+ ** to VACUUM are silently ignored. This is a back-out of a bug fix that
+ ** occurred on 2016-08-19 (https://www.sqlite.org/src/info/083f9e6270).
+ ** The buggy behavior is required for binary compatibility with some
+ ** legacy applications. */
+ iDb = sqlite3FindDb(pParse->db, pNm);
+ if( iDb<0 ) iDb = 0;
+#endif
+ }
+ if( iDb!=1 ){
+ int iIntoReg = 0;
+ if( pInto && sqlite3ResolveSelfReference(pParse,0,0,pInto,0)==0 ){
+ iIntoReg = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pInto, iIntoReg);
+ }
+ sqlite3VdbeAddOp2(v, OP_Vacuum, iDb, iIntoReg);
+ sqlite3VdbeUsesBtree(v, iDb);
+ }
+build_vacuum_end:
+ sqlite3ExprDelete(pParse->db, pInto);
+ return;
+}
+
+/*
+** This routine implements the OP_Vacuum opcode of the VDBE.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3RunVacuum(
+ char **pzErrMsg, /* Write error message here */
+ sqlite3 *db, /* Database connection */
+ int iDb, /* Which attached DB to vacuum */
+ sqlite3_value *pOut /* Write results here, if not NULL. VACUUM INTO */
+){
+ int rc = SQLITE_OK; /* Return code from service routines */
+ Btree *pMain; /* The database being vacuumed */
+ Btree *pTemp; /* The temporary database we vacuum into */
+ u32 saved_mDbFlags; /* Saved value of db->mDbFlags */
+ u64 saved_flags; /* Saved value of db->flags */
+ i64 saved_nChange; /* Saved value of db->nChange */
+ i64 saved_nTotalChange; /* Saved value of db->nTotalChange */
+ u32 saved_openFlags; /* Saved value of db->openFlags */
+ u8 saved_mTrace; /* Saved trace settings */
+ Db *pDb = 0; /* Database to detach at end of vacuum */
+ int isMemDb; /* True if vacuuming a :memory: database */
+ int nRes; /* Bytes of reserved space at the end of each page */
+ int nDb; /* Number of attached databases */
+ const char *zDbMain; /* Schema name of database to vacuum */
+ const char *zOut; /* Name of output file */
+
+ if( !db->autoCommit ){
+ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
+ return SQLITE_ERROR; /* IMP: R-12218-18073 */
+ }
+ if( db->nVdbeActive>1 ){
+ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
+ return SQLITE_ERROR; /* IMP: R-15610-35227 */
+ }
+ saved_openFlags = db->openFlags;
+ if( pOut ){
+ if( sqlite3_value_type(pOut)!=SQLITE_TEXT ){
+ sqlite3SetString(pzErrMsg, db, "non-text filename");
+ return SQLITE_ERROR;
+ }
+ zOut = (const char*)sqlite3_value_text(pOut);
+ db->openFlags &= ~SQLITE_OPEN_READONLY;
+ db->openFlags |= SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
+ }else{
+ zOut = "";
+ }
+
+ /* Save the current value of the database flags so that it can be
+ ** restored before returning. Then set the writable-schema flag, and
+ ** disable CHECK and foreign key constraints. */
+ saved_flags = db->flags;
+ saved_mDbFlags = db->mDbFlags;
+ saved_nChange = db->nChange;
+ saved_nTotalChange = db->nTotalChange;
+ saved_mTrace = db->mTrace;
+ db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
+ db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum;
+ db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder
+ | SQLITE_Defensive | SQLITE_CountRows);
+ db->mTrace = 0;
+
+ zDbMain = db->aDb[iDb].zDbSName;
+ pMain = db->aDb[iDb].pBt;
+ isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));
+
+ /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
+ ** can be set to 'off' for this file, as it is not recovered if a crash
+ ** occurs anyway. The integrity of the database is maintained by a
+ ** (possibly synchronous) transaction opened on the main database before
+ ** sqlite3BtreeCopyFile() is called.
+ **
+ ** An optimisation would be to use a non-journaled pager.
+ ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
+ ** that actually made the VACUUM run slower. Very little journalling
+ ** actually occurs when doing a vacuum since the vacuum_db is initially
+ ** empty. Only the journal header is written. Apparently it takes more
+ ** time to parse and run the PRAGMA to turn journalling off than it does
+ ** to write the journal header file.
+ */
+ nDb = db->nDb;
+ rc = execSqlF(db, pzErrMsg, "ATTACH %Q AS vacuum_db", zOut);
+ db->openFlags = saved_openFlags;
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ assert( (db->nDb-1)==nDb );
+ pDb = &db->aDb[nDb];
+ assert( strcmp(pDb->zDbSName,"vacuum_db")==0 );
+ pTemp = pDb->pBt;
+ if( pOut ){
+ sqlite3_file *id = sqlite3PagerFile(sqlite3BtreePager(pTemp));
+ i64 sz = 0;
+ if( id->pMethods!=0 && (sqlite3OsFileSize(id, &sz)!=SQLITE_OK || sz>0) ){
+ rc = SQLITE_ERROR;
+ sqlite3SetString(pzErrMsg, db, "output file already exists");
+ goto end_of_vacuum;
+ }
+ db->mDbFlags |= DBFLAG_VacuumInto;
+ }
+ nRes = sqlite3BtreeGetRequestedReserve(pMain);
+
+ /* A VACUUM cannot change the pagesize of an encrypted database. */
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+ if( db->nextPagesize ){
+ extern void sqlcipherCodecGetKey(sqlite3*, int, void**, int*);
+ int nKey;
+ char *zKey;
+ sqlcipherCodecGetKey(db, iDb, (void**)&zKey, &nKey);
+ if( nKey ) db->nextPagesize = 0;
+ }
+#endif
+/* END SQLCIPHER */
+
+ sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size);
+ sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain,0));
+ sqlite3BtreeSetPagerFlags(pTemp, PAGER_SYNCHRONOUS_OFF|PAGER_CACHESPILL);
+
+ /* Begin a transaction and take an exclusive lock on the main database
+ ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below,
+ ** to ensure that we do not try to change the page-size on a WAL database.
+ */
+ rc = execSql(db, pzErrMsg, "BEGIN");
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeBeginTrans(pMain, pOut==0 ? 2 : 0, 0);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Do not attempt to change the page size for a WAL database */
+ if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain))
+ ==PAGER_JOURNALMODE_WAL
+ && pOut==0
+ ){
+ db->nextPagesize = 0;
+ }
+
+ if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
+ || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
+ || NEVER(db->mallocFailed)
+ ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto end_of_vacuum;
+ }
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
+ sqlite3BtreeGetAutoVacuum(pMain));
+#endif
+
+ /* Query the schema of the main database. Create a mirror schema
+ ** in the temporary database.
+ */
+ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */
+ rc = execSqlF(db, pzErrMsg,
+ "SELECT sql FROM \"%w\".sqlite_schema"
+ " WHERE type='table'AND name<>'sqlite_sequence'"
+ " AND coalesce(rootpage,1)>0",
+ zDbMain
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = execSqlF(db, pzErrMsg,
+ "SELECT sql FROM \"%w\".sqlite_schema"
+ " WHERE type='index'",
+ zDbMain
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ db->init.iDb = 0;
+
+ /* Loop through the tables in the main database. For each, do
+ ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy
+ ** the contents to the temporary database.
+ */
+ rc = execSqlF(db, pzErrMsg,
+ "SELECT'INSERT INTO vacuum_db.'||quote(name)"
+ "||' SELECT*FROM\"%w\".'||quote(name)"
+ "FROM vacuum_db.sqlite_schema "
+ "WHERE type='table'AND coalesce(rootpage,1)>0",
+ zDbMain
+ );
+ assert( (db->mDbFlags & DBFLAG_Vacuum)!=0 );
+ db->mDbFlags &= ~DBFLAG_Vacuum;
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Copy the triggers, views, and virtual tables from the main database
+ ** over to the temporary database. None of these objects has any
+ ** associated storage, so all we have to do is copy their entries
+ ** from the schema table.
+ */
+ rc = execSqlF(db, pzErrMsg,
+ "INSERT INTO vacuum_db.sqlite_schema"
+ " SELECT*FROM \"%w\".sqlite_schema"
+ " WHERE type IN('view','trigger')"
+ " OR(type='table'AND rootpage=0)",
+ zDbMain
+ );
+ if( rc ) goto end_of_vacuum;
+
+ /* At this point, there is a write transaction open on both the
+ ** vacuum database and the main database. Assuming no error occurs,
+ ** both transactions are closed by this block - the main database
+ ** transaction by sqlite3BtreeCopyFile() and the other by an explicit
+ ** call to sqlite3BtreeCommit().
+ */
+ {
+ u32 meta;
+ int i;
+
+ /* This array determines which meta meta values are preserved in the
+ ** vacuum. Even entries are the meta value number and odd entries
+ ** are an increment to apply to the meta value after the vacuum.
+ ** The increment is used to increase the schema cookie so that other
+ ** connections to the same database will know to reread the schema.
+ */
+ static const unsigned char aCopy[] = {
+ BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */
+ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */
+ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */
+ BTREE_USER_VERSION, 0, /* Preserve the user version */
+ BTREE_APPLICATION_ID, 0, /* Preserve the application id */
+ };
+
+ assert( SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pTemp) );
+ assert( pOut!=0 || SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pMain) );
+
+ /* Copy Btree meta values */
+ for(i=0; i<ArraySize(aCopy); i+=2){
+ /* GetMeta() and UpdateMeta() cannot fail in this context because
+ ** we already have page 1 loaded into cache and marked dirty. */
+ sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
+ rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
+ if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum;
+ }
+
+ if( pOut==0 ){
+ rc = sqlite3BtreeCopyFile(pMain, pTemp);
+ }
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeCommit(pTemp);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pOut==0 ){
+ sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
+ }
+#endif
+ }
+
+ assert( rc==SQLITE_OK );
+ if( pOut==0 ){
+ nRes = sqlite3BtreeGetRequestedReserve(pTemp);
+ rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1);
+ }
+
+end_of_vacuum:
+ /* Restore the original value of db->flags */
+ db->init.iDb = 0;
+ db->mDbFlags = saved_mDbFlags;
+ db->flags = saved_flags;
+ db->nChange = saved_nChange;
+ db->nTotalChange = saved_nTotalChange;
+ db->mTrace = saved_mTrace;
+ sqlite3BtreeSetPageSize(pMain, -1, 0, 1);
+
+ /* Currently there is an SQL level transaction open on the vacuum
+ ** database. No locks are held on any other files (since the main file
+ ** was committed at the btree level). So it safe to end the transaction
+ ** by manually setting the autoCommit flag to true and detaching the
+ ** vacuum database. The vacuum_db journal file is deleted when the pager
+ ** is closed by the DETACH.
+ */
+ db->autoCommit = 1;
+
+ if( pDb ){
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ pDb->pSchema = 0;
+ }
+
+ /* This both clears the schemas and reduces the size of the db->aDb[]
+ ** array. */
+ sqlite3ResetAllSchemasOfConnection(db);
+
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
+
+/************** End of vacuum.c **********************************************/
+/************** Begin file vtab.c ********************************************/
+/*
+** 2006 June 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to help implement virtual tables.
+*/
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* #include "sqliteInt.h" */
+
+/*
+** Before a virtual table xCreate() or xConnect() method is invoked, the
+** sqlite3.pVtabCtx member variable is set to point to an instance of
+** this struct allocated on the stack. It is used by the implementation of
+** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
+** are invoked only from within xCreate and xConnect methods.
+*/
+struct VtabCtx {
+ VTable *pVTable; /* The virtual table being constructed */
+ Table *pTab; /* The Table object to which the virtual table belongs */
+ VtabCtx *pPrior; /* Parent context (if any) */
+ int bDeclared; /* True after sqlite3_declare_vtab() is called */
+};
+
+/*
+** Construct and install a Module object for a virtual table. When this
+** routine is called, it is guaranteed that all appropriate locks are held
+** and the module is not already part of the connection.
+**
+** If there already exists a module with zName, replace it with the new one.
+** If pModule==0, then delete the module zName if it exists.
+*/
+SQLITE_PRIVATE Module *sqlite3VtabCreateModule(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+ Module *pMod;
+ Module *pDel;
+ char *zCopy;
+ if( pModule==0 ){
+ zCopy = (char*)zName;
+ pMod = 0;
+ }else{
+ int nName = sqlite3Strlen30(zName);
+ pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1);
+ if( pMod==0 ){
+ sqlite3OomFault(db);
+ return 0;
+ }
+ zCopy = (char *)(&pMod[1]);
+ memcpy(zCopy, zName, nName+1);
+ pMod->zName = zCopy;
+ pMod->pModule = pModule;
+ pMod->pAux = pAux;
+ pMod->xDestroy = xDestroy;
+ pMod->pEpoTab = 0;
+ pMod->nRefModule = 1;
+ }
+ pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
+ if( pDel ){
+ if( pDel==pMod ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, pDel);
+ pMod = 0;
+ }else{
+ sqlite3VtabEponymousTableClear(db, pDel);
+ sqlite3VtabModuleUnref(db, pDel);
+ }
+ }
+ return pMod;
+}
+
+/*
+** The actual function that does the work of creating a new module.
+** This function implements the sqlite3_create_module() and
+** sqlite3_create_module_v2() interfaces.
+*/
+static int createModule(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+ int rc = SQLITE_OK;
+
+ sqlite3_mutex_enter(db->mutex);
+ (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy);
+ rc = sqlite3ApiExit(db, rc);
+ if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux /* Context pointer for xCreate/xConnect */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ return createModule(db, zName, pModule, pAux, 0);
+}
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ return createModule(db, zName, pModule, pAux, xDestroy);
+}
+
+/*
+** External API to drop all virtual-table modules, except those named
+** on the azNames list.
+*/
+SQLITE_API int sqlite3_drop_modules(sqlite3 *db, const char** azNames){
+ HashElem *pThis, *pNext;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){
+ Module *pMod = (Module*)sqliteHashData(pThis);
+ pNext = sqliteHashNext(pThis);
+ if( azNames ){
+ int ii;
+ for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){}
+ if( azNames[ii]!=0 ) continue;
+ }
+ createModule(db, pMod->zName, 0, 0, 0);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Decrement the reference count on a Module object. Destroy the
+** module when the reference count reaches zero.
+*/
+SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){
+ assert( pMod->nRefModule>0 );
+ pMod->nRefModule--;
+ if( pMod->nRefModule==0 ){
+ if( pMod->xDestroy ){
+ pMod->xDestroy(pMod->pAux);
+ }
+ assert( pMod->pEpoTab==0 );
+ sqlite3DbFree(db, pMod);
+ }
+}
+
+/*
+** Lock the virtual table so that it cannot be disconnected.
+** Locks nest. Every lock should have a corresponding unlock.
+** If an unlock is omitted, resources leaks will occur.
+**
+** If a disconnect is attempted while a virtual table is locked,
+** the disconnect is deferred until all locks have been removed.
+*/
+SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){
+ pVTab->nRef++;
+}
+
+
+/*
+** pTab is a pointer to a Table structure representing a virtual-table.
+** Return a pointer to the VTable object used by connection db to access
+** this virtual-table, if one has been created, or NULL otherwise.
+*/
+SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
+ VTable *pVtab;
+ assert( IsVirtual(pTab) );
+ for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
+ return pVtab;
+}
+
+/*
+** Decrement the ref-count on a virtual table object. When the ref-count
+** reaches zero, call the xDisconnect() method to delete the object.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
+ sqlite3 *db = pVTab->db;
+
+ assert( db );
+ assert( pVTab->nRef>0 );
+ assert( db->eOpenState==SQLITE_STATE_OPEN
+ || db->eOpenState==SQLITE_STATE_ZOMBIE );
+
+ pVTab->nRef--;
+ if( pVTab->nRef==0 ){
+ sqlite3_vtab *p = pVTab->pVtab;
+ sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod);
+ if( p ){
+ p->pModule->xDisconnect(p);
+ }
+ sqlite3DbFree(db, pVTab);
+ }
+}
+
+/*
+** Table p is a virtual table. This function moves all elements in the
+** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated
+** database connections to be disconnected at the next opportunity.
+** Except, if argument db is not NULL, then the entry associated with
+** connection db is left in the p->u.vtab.p list.
+*/
+static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
+ VTable *pRet = 0;
+ VTable *pVTable;
+
+ assert( IsVirtual(p) );
+ pVTable = p->u.vtab.p;
+ p->u.vtab.p = 0;
+
+ /* Assert that the mutex (if any) associated with the BtShared database
+ ** that contains table p is held by the caller. See header comments
+ ** above function sqlite3VtabUnlockList() for an explanation of why
+ ** this makes it safe to access the sqlite3.pDisconnect list of any
+ ** database connection that may have an entry in the p->u.vtab.p list.
+ */
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
+
+ while( pVTable ){
+ sqlite3 *db2 = pVTable->db;
+ VTable *pNext = pVTable->pNext;
+ assert( db2 );
+ if( db2==db ){
+ pRet = pVTable;
+ p->u.vtab.p = pRet;
+ pRet->pNext = 0;
+ }else{
+ pVTable->pNext = db2->pDisconnect;
+ db2->pDisconnect = pVTable;
+ }
+ pVTable = pNext;
+ }
+
+ assert( !db || pRet );
+ return pRet;
+}
+
+/*
+** Table *p is a virtual table. This function removes the VTable object
+** for table *p associated with database connection db from the linked
+** list in p->pVTab. It also decrements the VTable ref count. This is
+** used when closing database connection db to free all of its VTable
+** objects without disturbing the rest of the Schema object (which may
+** be being used by other shared-cache connections).
+*/
+SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
+ VTable **ppVTab;
+
+ assert( IsVirtual(p) );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){
+ if( (*ppVTab)->db==db ){
+ VTable *pVTab = *ppVTab;
+ *ppVTab = pVTab->pNext;
+ sqlite3VtabUnlock(pVTab);
+ break;
+ }
+ }
+}
+
+
+/*
+** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
+**
+** This function may only be called when the mutexes associated with all
+** shared b-tree databases opened using connection db are held by the
+** caller. This is done to protect the sqlite3.pDisconnect list. The
+** sqlite3.pDisconnect list is accessed only as follows:
+**
+** 1) By this function. In this case, all BtShared mutexes and the mutex
+** associated with the database handle itself must be held.
+**
+** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
+** the sqlite3.pDisconnect list. In this case either the BtShared mutex
+** associated with the database the virtual table is stored in is held
+** or, if the virtual table is stored in a non-sharable database, then
+** the database handle mutex is held.
+**
+** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
+** by multiple threads. It is thread-safe.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){
+ VTable *p = db->pDisconnect;
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ if( p ){
+ db->pDisconnect = 0;
+ sqlite3ExpirePreparedStatements(db, 0);
+ do {
+ VTable *pNext = p->pNext;
+ sqlite3VtabUnlock(p);
+ p = pNext;
+ }while( p );
+ }
+}
+
+/*
+** Clear any and all virtual-table information from the Table record.
+** This routine is called, for example, just before deleting the Table
+** record.
+**
+** Since it is a virtual-table, the Table structure contains a pointer
+** to the head of a linked list of VTable structures. Each VTable
+** structure is associated with a single sqlite3* user of the schema.
+** The reference count of the VTable structure associated with database
+** connection db is decremented immediately (which may lead to the
+** structure being xDisconnected and free). Any other VTable structures
+** in the list are moved to the sqlite3.pDisconnect list of the associated
+** database connection.
+*/
+SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){
+ assert( IsVirtual(p) );
+ if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
+ if( p->u.vtab.azArg ){
+ int i;
+ for(i=0; i<p->u.vtab.nArg; i++){
+ if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]);
+ }
+ sqlite3DbFree(db, p->u.vtab.azArg);
+ }
+}
+
+/*
+** Add a new module argument to pTable->u.vtab.azArg[].
+** The string is not copied - the pointer is stored. The
+** string will be freed automatically when the table is
+** deleted.
+*/
+static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){
+ sqlite3_int64 nBytes;
+ char **azModuleArg;
+ sqlite3 *db = pParse->db;
+
+ assert( IsVirtual(pTable) );
+ nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg);
+ if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName);
+ }
+ azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes);
+ if( azModuleArg==0 ){
+ sqlite3DbFree(db, zArg);
+ }else{
+ int i = pTable->u.vtab.nArg++;
+ azModuleArg[i] = zArg;
+ azModuleArg[i+1] = 0;
+ pTable->u.vtab.azArg = azModuleArg;
+ }
+}
+
+/*
+** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
+** statement. The module name has been parsed, but the optional list
+** of parameters that follow the module name are still pending.
+*/
+SQLITE_PRIVATE void sqlite3VtabBeginParse(
+ Parse *pParse, /* Parsing context */
+ Token *pName1, /* Name of new table, or database name */
+ Token *pName2, /* Name of new table or NULL */
+ Token *pModuleName, /* Name of the module for the virtual table */
+ int ifNotExists /* No error if the table already exists */
+){
+ Table *pTable; /* The new virtual table */
+ sqlite3 *db; /* Database connection */
+
+ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
+ pTable = pParse->pNewTable;
+ if( pTable==0 ) return;
+ assert( 0==pTable->pIndex );
+ pTable->eTabType = TABTYP_VTAB;
+
+ db = pParse->db;
+
+ assert( pTable->u.vtab.nArg==0 );
+ addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName));
+ addModuleArgument(pParse, pTable, 0);
+ addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName));
+ assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
+ || (pParse->sNameToken.z==pName1->z && pName2->z==0)
+ );
+ pParse->sNameToken.n = (int)(
+ &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
+ );
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Creating a virtual table invokes the authorization callback twice.
+ ** The first invocation, to obtain permission to INSERT a row into the
+ ** sqlite_schema table, has already been made by sqlite3StartTable().
+ ** The second call, to obtain permission to create the table, is made now.
+ */
+ if( pTable->u.vtab.azArg ){
+ int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
+ assert( iDb>=0 ); /* The database the table is being created in */
+ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
+ pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName);
+ }
+#endif
+}
+
+/*
+** This routine takes the module argument that has been accumulating
+** in pParse->zArg[] and appends it to the list of arguments on the
+** virtual table currently under construction in pParse->pTable.
+*/
+static void addArgumentToVtab(Parse *pParse){
+ if( pParse->sArg.z && pParse->pNewTable ){
+ const char *z = (const char*)pParse->sArg.z;
+ int n = pParse->sArg.n;
+ sqlite3 *db = pParse->db;
+ addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
+ }
+}
+
+/*
+** The parser calls this routine after the CREATE VIRTUAL TABLE statement
+** has been completely parsed.
+*/
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
+ Table *pTab = pParse->pNewTable; /* The table being constructed */
+ sqlite3 *db = pParse->db; /* The database connection */
+
+ if( pTab==0 ) return;
+ assert( IsVirtual(pTab) );
+ addArgumentToVtab(pParse);
+ pParse->sArg.z = 0;
+ if( pTab->u.vtab.nArg<1 ) return;
+
+ /* If the CREATE VIRTUAL TABLE statement is being entered for the
+ ** first time (in other words if the virtual table is actually being
+ ** created now instead of just being read out of sqlite_schema) then
+ ** do additional initialization work and store the statement text
+ ** in the sqlite_schema table.
+ */
+ if( !db->init.busy ){
+ char *zStmt;
+ char *zWhere;
+ int iDb;
+ int iReg;
+ Vdbe *v;
+
+ sqlite3MayAbort(pParse);
+
+ /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
+ if( pEnd ){
+ pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
+ }
+ zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
+
+ /* A slot for the record has already been allocated in the
+ ** schema table. We just need to update that slot with all
+ ** the information we've collected.
+ **
+ ** The VM register number pParse->regRowid holds the rowid of an
+ ** entry in the sqlite_schema table tht was created for this vtab
+ ** by sqlite3StartTable().
+ */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE " "
+ "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
+ "WHERE rowid=#%d",
+ db->aDb[iDb].zDbSName,
+ pTab->zName,
+ pTab->zName,
+ zStmt,
+ pParse->regRowid
+ );
+ v = sqlite3GetVdbe(pParse);
+ sqlite3ChangeCookie(pParse, iDb);
+
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt);
+ sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0);
+ sqlite3DbFree(db, zStmt);
+
+ iReg = ++pParse->nMem;
+ sqlite3VdbeLoadString(v, iReg, pTab->zName);
+ sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
+ }else{
+ /* If we are rereading the sqlite_schema table create the in-memory
+ ** record of the table. */
+ Table *pOld;
+ Schema *pSchema = pTab->pSchema;
+ const char *zName = pTab->zName;
+ assert( zName!=0 );
+ sqlite3MarkAllShadowTablesOf(db, pTab);
+ pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
+ if( pOld ){
+ sqlite3OomFault(db);
+ assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
+ return;
+ }
+ pParse->pNewTable = 0;
+ }
+}
+
+/*
+** The parser calls this routine when it sees the first token
+** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
+ addArgumentToVtab(pParse);
+ pParse->sArg.z = 0;
+ pParse->sArg.n = 0;
+}
+
+/*
+** The parser calls this routine for each token after the first token
+** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
+ Token *pArg = &pParse->sArg;
+ if( pArg->z==0 ){
+ pArg->z = p->z;
+ pArg->n = p->n;
+ }else{
+ assert(pArg->z <= p->z);
+ pArg->n = (int)(&p->z[p->n] - pArg->z);
+ }
+}
+
+/*
+** Invoke a virtual table constructor (either xCreate or xConnect). The
+** pointer to the function to invoke is passed as the fourth parameter
+** to this procedure.
+*/
+static int vtabCallConstructor(
+ sqlite3 *db,
+ Table *pTab,
+ Module *pMod,
+ int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
+ char **pzErr
+){
+ VtabCtx sCtx;
+ VTable *pVTable;
+ int rc;
+ const char *const*azArg;
+ int nArg = pTab->u.vtab.nArg;
+ char *zErr = 0;
+ char *zModuleName;
+ int iDb;
+ VtabCtx *pCtx;
+
+ assert( IsVirtual(pTab) );
+ azArg = (const char *const*)pTab->u.vtab.azArg;
+
+ /* Check that the virtual-table is not already being initialized */
+ for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
+ if( pCtx->pTab==pTab ){
+ *pzErr = sqlite3MPrintf(db,
+ "vtable constructor called recursively: %s", pTab->zName
+ );
+ return SQLITE_LOCKED;
+ }
+ }
+
+ zModuleName = sqlite3DbStrDup(db, pTab->zName);
+ if( !zModuleName ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ pVTable = sqlite3MallocZero(sizeof(VTable));
+ if( !pVTable ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, zModuleName);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pVTable->db = db;
+ pVTable->pMod = pMod;
+ pVTable->eVtabRisk = SQLITE_VTABRISK_Normal;
+
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName;
+
+ /* Invoke the virtual table constructor */
+ assert( &db->pVtabCtx );
+ assert( xConstruct );
+ sCtx.pTab = pTab;
+ sCtx.pVTable = pVTable;
+ sCtx.pPrior = db->pVtabCtx;
+ sCtx.bDeclared = 0;
+ db->pVtabCtx = &sCtx;
+ rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
+ db->pVtabCtx = sCtx.pPrior;
+ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
+ assert( sCtx.pTab==pTab );
+
+ if( SQLITE_OK!=rc ){
+ if( zErr==0 ){
+ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
+ }else {
+ *pzErr = sqlite3MPrintf(db, "%s", zErr);
+ sqlite3_free(zErr);
+ }
+ sqlite3DbFree(db, pVTable);
+ }else if( ALWAYS(pVTable->pVtab) ){
+ /* Justification of ALWAYS(): A correct vtab constructor must allocate
+ ** the sqlite3_vtab object if successful. */
+ memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
+ pVTable->pVtab->pModule = pMod->pModule;
+ pMod->nRefModule++;
+ pVTable->nRef = 1;
+ if( sCtx.bDeclared==0 ){
+ const char *zFormat = "vtable constructor did not declare schema: %s";
+ *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
+ sqlite3VtabUnlock(pVTable);
+ rc = SQLITE_ERROR;
+ }else{
+ int iCol;
+ u16 oooHidden = 0;
+ /* If everything went according to plan, link the new VTable structure
+ ** into the linked list headed by pTab->u.vtab.p. Then loop through the
+ ** columns of the table to see if any of them contain the token "hidden".
+ ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
+ ** the type string. */
+ pVTable->pNext = pTab->u.vtab.p;
+ pTab->u.vtab.p = pVTable;
+
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
+ int nType;
+ int i = 0;
+ nType = sqlite3Strlen30(zType);
+ for(i=0; i<nType; i++){
+ if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
+ && (i==0 || zType[i-1]==' ')
+ && (zType[i+6]=='\0' || zType[i+6]==' ')
+ ){
+ break;
+ }
+ }
+ if( i<nType ){
+ int j;
+ int nDel = 6 + (zType[i+6] ? 1 : 0);
+ for(j=i; (j+nDel)<=nType; j++){
+ zType[j] = zType[j+nDel];
+ }
+ if( zType[i]=='\0' && i>0 ){
+ assert(zType[i-1]==' ');
+ zType[i-1] = '\0';
+ }
+ pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
+ pTab->tabFlags |= TF_HasHidden;
+ oooHidden = TF_OOOHidden;
+ }else{
+ pTab->tabFlags |= oooHidden;
+ }
+ }
+ }
+ }
+
+ sqlite3DbFree(db, zModuleName);
+ return rc;
+}
+
+/*
+** This function is invoked by the parser to call the xConnect() method
+** of the virtual table pTab. If an error occurs, an error code is returned
+** and an error left in pParse.
+**
+** This call is a no-op if table pTab is not a virtual table.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
+ sqlite3 *db = pParse->db;
+ const char *zMod;
+ Module *pMod;
+ int rc;
+
+ assert( pTab );
+ assert( IsVirtual(pTab) );
+ if( sqlite3GetVTable(db, pTab) ){
+ return SQLITE_OK;
+ }
+
+ /* Locate the required virtual table module */
+ zMod = pTab->u.vtab.azArg[0];
+ pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
+
+ if( !pMod ){
+ const char *zModule = pTab->u.vtab.azArg[0];
+ sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
+ rc = SQLITE_ERROR;
+ }else{
+ char *zErr = 0;
+ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "%s", zErr);
+ pParse->rc = rc;
+ }
+ sqlite3DbFree(db, zErr);
+ }
+
+ return rc;
+}
+/*
+** Grow the db->aVTrans[] array so that there is room for at least one
+** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
+*/
+static int growVTrans(sqlite3 *db){
+ const int ARRAY_INCR = 5;
+
+ /* Grow the sqlite3.aVTrans array if required */
+ if( (db->nVTrans%ARRAY_INCR)==0 ){
+ VTable **aVTrans;
+ sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)*
+ ((sqlite3_int64)db->nVTrans + ARRAY_INCR);
+ aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
+ if( !aVTrans ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
+ db->aVTrans = aVTrans;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
+** have already been reserved using growVTrans().
+*/
+static void addToVTrans(sqlite3 *db, VTable *pVTab){
+ /* Add pVtab to the end of sqlite3.aVTrans */
+ db->aVTrans[db->nVTrans++] = pVTab;
+ sqlite3VtabLock(pVTab);
+}
+
+/*
+** This function is invoked by the vdbe to call the xCreate method
+** of the virtual table named zTab in database iDb.
+**
+** If an error occurs, *pzErr is set to point to an English language
+** description of the error and an SQLITE_XXX error code is returned.
+** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
+ int rc = SQLITE_OK;
+ Table *pTab;
+ Module *pMod;
+ const char *zMod;
+
+ pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
+ assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p );
+
+ /* Locate the required virtual table module */
+ zMod = pTab->u.vtab.azArg[0];
+ pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
+
+ /* If the module has been registered and includes a Create method,
+ ** invoke it now. If the module has not been registered, return an
+ ** error. Otherwise, do nothing.
+ */
+ if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
+ *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
+ rc = SQLITE_ERROR;
+ }else{
+ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
+ }
+
+ /* Justification of ALWAYS(): The xConstructor method is required to
+ ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
+ if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
+ rc = growVTrans(db);
+ if( rc==SQLITE_OK ){
+ addToVTrans(db, sqlite3GetVTable(db, pTab));
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is used to set the schema of a virtual table. It is only
+** valid to call this function from within the xCreate() or xConnect() of a
+** virtual table module.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
+ VtabCtx *pCtx;
+ int rc = SQLITE_OK;
+ Table *pTab;
+ Parse sParse;
+ int initBusy;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pCtx = db->pVtabCtx;
+ if( !pCtx || pCtx->bDeclared ){
+ sqlite3Error(db, SQLITE_MISUSE);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_MISUSE_BKPT;
+ }
+ pTab = pCtx->pTab;
+ assert( IsVirtual(pTab) );
+
+ sqlite3ParseObjectInit(&sParse, db);
+ sParse.eParseMode = PARSE_MODE_DECLARE_VTAB;
+ sParse.disableTriggers = 1;
+ /* We should never be able to reach this point while loading the
+ ** schema. Nevertheless, defend against that (turn off db->init.busy)
+ ** in case a bug arises. */
+ assert( db->init.busy==0 );
+ initBusy = db->init.busy;
+ db->init.busy = 0;
+ sParse.nQueryLoop = 1;
+ if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable)
+ && ALWAYS(sParse.pNewTable!=0)
+ && ALWAYS(!db->mallocFailed)
+ && IsOrdinaryTable(sParse.pNewTable)
+ ){
+ assert( sParse.zErrMsg==0 );
+ if( !pTab->aCol ){
+ Table *pNew = sParse.pNewTable;
+ Index *pIdx;
+ pTab->aCol = pNew->aCol;
+ sqlite3ExprListDelete(db, pNew->u.tab.pDfltList);
+ pTab->nNVCol = pTab->nCol = pNew->nCol;
+ pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
+ pNew->nCol = 0;
+ pNew->aCol = 0;
+ assert( pTab->pIndex==0 );
+ assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 );
+ if( !HasRowid(pNew)
+ && pCtx->pVTable->pMod->pModule->xUpdate!=0
+ && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1
+ ){
+ /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0)
+ ** or else must have a single-column PRIMARY KEY */
+ rc = SQLITE_ERROR;
+ }
+ pIdx = pNew->pIndex;
+ if( pIdx ){
+ assert( pIdx->pNext==0 );
+ pTab->pIndex = pIdx;
+ pNew->pIndex = 0;
+ pIdx->pTable = pTab;
+ }
+ }
+ pCtx->bDeclared = 1;
+ }else{
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR,
+ (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg);
+ sqlite3DbFree(db, sParse.zErrMsg);
+ rc = SQLITE_ERROR;
+ }
+ sParse.eParseMode = PARSE_MODE_NORMAL;
+
+ if( sParse.pVdbe ){
+ sqlite3VdbeFinalize(sParse.pVdbe);
+ }
+ sqlite3DeleteTable(db, sParse.pNewTable);
+ sqlite3ParseObjectReset(&sParse);
+ db->init.busy = initBusy;
+
+ assert( (rc&0xff)==rc );
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This function is invoked by the vdbe to call the xDestroy method
+** of the virtual table named zTab in database iDb. This occurs
+** when a DROP TABLE is mentioned.
+**
+** This call is a no-op if zTab is not a virtual table.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
+ int rc = SQLITE_OK;
+ Table *pTab;
+
+ pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
+ if( ALWAYS(pTab!=0)
+ && ALWAYS(IsVirtual(pTab))
+ && ALWAYS(pTab->u.vtab.p!=0)
+ ){
+ VTable *p;
+ int (*xDestroy)(sqlite3_vtab *);
+ for(p=pTab->u.vtab.p; p; p=p->pNext){
+ assert( p->pVtab );
+ if( p->pVtab->nRef>0 ){
+ return SQLITE_LOCKED;
+ }
+ }
+ p = vtabDisconnectAll(db, pTab);
+ xDestroy = p->pMod->pModule->xDestroy;
+ if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect;
+ assert( xDestroy!=0 );
+ pTab->nTabRef++;
+ rc = xDestroy(p->pVtab);
+ /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
+ if( rc==SQLITE_OK ){
+ assert( pTab->u.vtab.p==p && p->pNext==0 );
+ p->pVtab = 0;
+ pTab->u.vtab.p = 0;
+ sqlite3VtabUnlock(p);
+ }
+ sqlite3DeleteTable(db, pTab);
+ }
+
+ return rc;
+}
+
+/*
+** This function invokes either the xRollback or xCommit method
+** of each of the virtual tables in the sqlite3.aVTrans array. The method
+** called is identified by the second argument, "offset", which is
+** the offset of the method to call in the sqlite3_module structure.
+**
+** The array is cleared after invoking the callbacks.
+*/
+static void callFinaliser(sqlite3 *db, int offset){
+ int i;
+ if( db->aVTrans ){
+ VTable **aVTrans = db->aVTrans;
+ db->aVTrans = 0;
+ for(i=0; i<db->nVTrans; i++){
+ VTable *pVTab = aVTrans[i];
+ sqlite3_vtab *p = pVTab->pVtab;
+ if( p ){
+ int (*x)(sqlite3_vtab *);
+ x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
+ if( x ) x(p);
+ }
+ pVTab->iSavepoint = 0;
+ sqlite3VtabUnlock(pVTab);
+ }
+ sqlite3DbFree(db, aVTrans);
+ db->nVTrans = 0;
+ }
+}
+
+/*
+** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
+** array. Return the error code for the first error that occurs, or
+** SQLITE_OK if all xSync operations are successful.
+**
+** If an error message is available, leave it in p->zErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
+ int i;
+ int rc = SQLITE_OK;
+ VTable **aVTrans = db->aVTrans;
+
+ db->aVTrans = 0;
+ for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
+ int (*x)(sqlite3_vtab *);
+ sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
+ if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
+ rc = x(pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ }
+ }
+ db->aVTrans = aVTrans;
+ return rc;
+}
+
+/*
+** Invoke the xRollback method of all virtual tables in the
+** sqlite3.aVTrans array. Then clear the array itself.
+*/
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xRollback));
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xCommit method of all virtual tables in the
+** sqlite3.aVTrans array. Then clear the array itself.
+*/
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xCommit));
+ return SQLITE_OK;
+}
+
+/*
+** If the virtual table pVtab supports the transaction interface
+** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
+** not currently open, invoke the xBegin method now.
+**
+** If the xBegin call is successful, place the sqlite3_vtab pointer
+** in the sqlite3.aVTrans array.
+*/
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
+ int rc = SQLITE_OK;
+ const sqlite3_module *pModule;
+
+ /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
+ ** than zero, then this function is being called from within a
+ ** virtual module xSync() callback. It is illegal to write to
+ ** virtual module tables in this case, so return SQLITE_LOCKED.
+ */
+ if( sqlite3VtabInSync(db) ){
+ return SQLITE_LOCKED;
+ }
+ if( !pVTab ){
+ return SQLITE_OK;
+ }
+ pModule = pVTab->pVtab->pModule;
+
+ if( pModule->xBegin ){
+ int i;
+
+ /* If pVtab is already in the aVTrans array, return early */
+ for(i=0; i<db->nVTrans; i++){
+ if( db->aVTrans[i]==pVTab ){
+ return SQLITE_OK;
+ }
+ }
+
+ /* Invoke the xBegin method. If successful, add the vtab to the
+ ** sqlite3.aVTrans[] array. */
+ rc = growVTrans(db);
+ if( rc==SQLITE_OK ){
+ rc = pModule->xBegin(pVTab->pVtab);
+ if( rc==SQLITE_OK ){
+ int iSvpt = db->nStatement + db->nSavepoint;
+ addToVTrans(db, pVTab);
+ if( iSvpt && pModule->xSavepoint ){
+ pVTab->iSavepoint = iSvpt;
+ rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
+ }
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
+** virtual tables that currently have an open transaction. Pass iSavepoint
+** as the second argument to the virtual table method invoked.
+**
+** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
+** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
+** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
+** an open transaction is invoked.
+**
+** If any virtual table method returns an error code other than SQLITE_OK,
+** processing is abandoned and the error returned to the caller of this
+** function immediately. If all calls to virtual table methods are successful,
+** SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
+ int rc = SQLITE_OK;
+
+ assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
+ assert( iSavepoint>=-1 );
+ if( db->aVTrans ){
+ int i;
+ for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
+ VTable *pVTab = db->aVTrans[i];
+ const sqlite3_module *pMod = pVTab->pMod->pModule;
+ if( pVTab->pVtab && pMod->iVersion>=2 ){
+ int (*xMethod)(sqlite3_vtab *, int);
+ sqlite3VtabLock(pVTab);
+ switch( op ){
+ case SAVEPOINT_BEGIN:
+ xMethod = pMod->xSavepoint;
+ pVTab->iSavepoint = iSavepoint+1;
+ break;
+ case SAVEPOINT_ROLLBACK:
+ xMethod = pMod->xRollbackTo;
+ break;
+ default:
+ xMethod = pMod->xRelease;
+ break;
+ }
+ if( xMethod && pVTab->iSavepoint>iSavepoint ){
+ rc = xMethod(pVTab->pVtab, iSavepoint);
+ }
+ sqlite3VtabUnlock(pVTab);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** The first parameter (pDef) is a function implementation. The
+** second parameter (pExpr) is the first argument to this function.
+** If pExpr is a column in a virtual table, then let the virtual
+** table implementation have an opportunity to overload the function.
+**
+** This routine is used to allow virtual table implementations to
+** overload MATCH, LIKE, GLOB, and REGEXP operators.
+**
+** Return either the pDef argument (indicating no change) or a
+** new FuncDef structure that is marked as ephemeral using the
+** SQLITE_FUNC_EPHEM flag.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
+ sqlite3 *db, /* Database connection for reporting malloc problems */
+ FuncDef *pDef, /* Function to possibly overload */
+ int nArg, /* Number of arguments to the function */
+ Expr *pExpr /* First argument to the function */
+){
+ Table *pTab;
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pMod;
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
+ void *pArg = 0;
+ FuncDef *pNew;
+ int rc = 0;
+
+ /* Check to see the left operand is a column in a virtual table */
+ if( NEVER(pExpr==0) ) return pDef;
+ if( pExpr->op!=TK_COLUMN ) return pDef;
+ assert( ExprUseYTab(pExpr) );
+ pTab = pExpr->y.pTab;
+ if( pTab==0 ) return pDef;
+ if( !IsVirtual(pTab) ) return pDef;
+ pVtab = sqlite3GetVTable(db, pTab)->pVtab;
+ assert( pVtab!=0 );
+ assert( pVtab->pModule!=0 );
+ pMod = (sqlite3_module *)pVtab->pModule;
+ if( pMod->xFindFunction==0 ) return pDef;
+
+ /* Call the xFindFunction method on the virtual table implementation
+ ** to see if the implementation wants to overload this function.
+ **
+ ** Though undocumented, we have historically always invoked xFindFunction
+ ** with an all lower-case function name. Continue in this tradition to
+ ** avoid any chance of an incompatibility.
+ */
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; pDef->zName[i]; i++){
+ unsigned char x = (unsigned char)pDef->zName[i];
+ assert( x==sqlite3UpperToLower[x] );
+ }
+ }
+#endif
+ rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
+ if( rc==0 ){
+ return pDef;
+ }
+
+ /* Create a new ephemeral function definition for the overloaded
+ ** function */
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
+ + sqlite3Strlen30(pDef->zName) + 1);
+ if( pNew==0 ){
+ return pDef;
+ }
+ *pNew = *pDef;
+ pNew->zName = (const char*)&pNew[1];
+ memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
+ pNew->xSFunc = xSFunc;
+ pNew->pUserData = pArg;
+ pNew->funcFlags |= SQLITE_FUNC_EPHEM;
+ return pNew;
+}
+
+/*
+** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
+** array so that an OP_VBegin will get generated for it. Add pTab to the
+** array if it is missing. If pTab is already in the array, this routine
+** is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ int i, n;
+ Table **apVtabLock;
+
+ assert( IsVirtual(pTab) );
+ for(i=0; i<pToplevel->nVtabLock; i++){
+ if( pTab==pToplevel->apVtabLock[i] ) return;
+ }
+ n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
+ apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n);
+ if( apVtabLock ){
+ pToplevel->apVtabLock = apVtabLock;
+ pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
+ }else{
+ sqlite3OomFault(pToplevel->db);
+ }
+}
+
+/*
+** Check to see if virtual table module pMod can be have an eponymous
+** virtual table instance. If it can, create one if one does not already
+** exist. Return non-zero if either the eponymous virtual table instance
+** exists when this routine returns or if an attempt to create it failed
+** and an error message was left in pParse.
+**
+** An eponymous virtual table instance is one that is named after its
+** module, and more importantly, does not require a CREATE VIRTUAL TABLE
+** statement in order to come into existance. Eponymous virtual table
+** instances always exist. They cannot be DROP-ed.
+**
+** Any virtual table module for which xConnect and xCreate are the same
+** method can have an eponymous virtual table instance.
+*/
+SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
+ const sqlite3_module *pModule = pMod->pModule;
+ Table *pTab;
+ char *zErr = 0;
+ int rc;
+ sqlite3 *db = pParse->db;
+ if( pMod->pEpoTab ) return 1;
+ if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return 0;
+ pTab->zName = sqlite3DbStrDup(db, pMod->zName);
+ if( pTab->zName==0 ){
+ sqlite3DbFree(db, pTab);
+ return 0;
+ }
+ pMod->pEpoTab = pTab;
+ pTab->nTabRef = 1;
+ pTab->eTabType = TABTYP_VTAB;
+ pTab->pSchema = db->aDb[0].pSchema;
+ assert( pTab->u.vtab.nArg==0 );
+ pTab->iPKey = -1;
+ pTab->tabFlags |= TF_Eponymous;
+ addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
+ addModuleArgument(pParse, pTab, 0);
+ addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
+ rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
+ if( rc ){
+ sqlite3ErrorMsg(pParse, "%s", zErr);
+ sqlite3DbFree(db, zErr);
+ sqlite3VtabEponymousTableClear(db, pMod);
+ }
+ return 1;
+}
+
+/*
+** Erase the eponymous virtual table instance associated with
+** virtual table module pMod, if it exists.
+*/
+SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
+ Table *pTab = pMod->pEpoTab;
+ if( pTab!=0 ){
+ /* Mark the table as Ephemeral prior to deleting it, so that the
+ ** sqlite3DeleteTable() routine will know that it is not stored in
+ ** the schema. */
+ pTab->tabFlags |= TF_Ephemeral;
+ sqlite3DeleteTable(db, pTab);
+ pMod->pEpoTab = 0;
+ }
+}
+
+/*
+** Return the ON CONFLICT resolution mode in effect for the virtual
+** table update operation currently in progress.
+**
+** The results of this routine are undefined unless it is called from
+** within an xUpdate method.
+*/
+SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){
+ static const unsigned char aMap[] = {
+ SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
+ };
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
+ assert( OE_Ignore==4 && OE_Replace==5 );
+ assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
+ return (int)aMap[db->vtabOnConflict-1];
+}
+
+/*
+** Call from within the xCreate() or xConnect() methods to provide
+** the SQLite core with additional information about the behavior
+** of the virtual table being implemented.
+*/
+SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){
+ va_list ap;
+ int rc = SQLITE_OK;
+ VtabCtx *p;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ p = db->pVtabCtx;
+ if( !p ){
+ rc = SQLITE_MISUSE_BKPT;
+ }else{
+ assert( p->pTab==0 || IsVirtual(p->pTab) );
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
+ p->pVTable->bConstraint = (u8)va_arg(ap, int);
+ break;
+ }
+ case SQLITE_VTAB_INNOCUOUS: {
+ p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low;
+ break;
+ }
+ case SQLITE_VTAB_DIRECTONLY: {
+ p->pVTable->eVtabRisk = SQLITE_VTABRISK_High;
+ break;
+ }
+ default: {
+ rc = SQLITE_MISUSE_BKPT;
+ break;
+ }
+ }
+ va_end(ap);
+ }
+
+ if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/************** End of vtab.c ************************************************/
+/************** Begin file wherecode.c ***************************************/
+/*
+** 2015-06-06
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements.
+**
+** This file was split off from where.c on 2015-06-06 in order to reduce the
+** size of where.c and make it easier to edit. This file contains the routines
+** that actually generate the bulk of the WHERE loop code. The original where.c
+** file retains the code that does query planning and analysis.
+*/
+/* #include "sqliteInt.h" */
+/************** Include whereInt.h in the middle of wherecode.c **************/
+/************** Begin file whereInt.h ****************************************/
+/*
+** 2013-11-12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains structure and macro definitions for the query
+** planner logic in "where.c". These definitions are broken out into
+** a separate source file for easier editing.
+*/
+#ifndef SQLITE_WHEREINT_H
+#define SQLITE_WHEREINT_H
+
+
+/* Forward references
+*/
+typedef struct WhereClause WhereClause;
+typedef struct WhereMaskSet WhereMaskSet;
+typedef struct WhereOrInfo WhereOrInfo;
+typedef struct WhereAndInfo WhereAndInfo;
+typedef struct WhereLevel WhereLevel;
+typedef struct WhereLoop WhereLoop;
+typedef struct WherePath WherePath;
+typedef struct WhereTerm WhereTerm;
+typedef struct WhereLoopBuilder WhereLoopBuilder;
+typedef struct WhereScan WhereScan;
+typedef struct WhereOrCost WhereOrCost;
+typedef struct WhereOrSet WhereOrSet;
+typedef struct WhereMemBlock WhereMemBlock;
+typedef struct WhereRightJoin WhereRightJoin;
+
+/*
+** This object is a header on a block of allocated memory that will be
+** automatically freed when its WInfo oject is destructed.
+*/
+struct WhereMemBlock {
+ WhereMemBlock *pNext; /* Next block in the chain */
+ u64 sz; /* Bytes of space */
+};
+
+/*
+** Extra information attached to a WhereLevel that is a RIGHT JOIN.
+*/
+struct WhereRightJoin {
+ int iMatch; /* Cursor used to determine prior matched rows */
+ int regBloom; /* Bloom filter for iRJMatch */
+ int regReturn; /* Return register for the interior subroutine */
+ int addrSubrtn; /* Starting address for the interior subroutine */
+ int endSubrtn; /* The last opcode in the interior subroutine */
+};
+
+/*
+** This object contains information needed to implement a single nested
+** loop in WHERE clause.
+**
+** Contrast this object with WhereLoop. This object describes the
+** implementation of the loop. WhereLoop describes the algorithm.
+** This object contains a pointer to the WhereLoop algorithm as one of
+** its elements.
+**
+** The WhereInfo object contains a single instance of this object for
+** each term in the FROM clause (which is to say, for each of the
+** nested loops as implemented). The order of WhereLevel objects determines
+** the loop nested order, with WhereInfo.a[0] being the outer loop and
+** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop.
+*/
+struct WhereLevel {
+ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
+ int iTabCur; /* The VDBE cursor used to access the table */
+ int iIdxCur; /* The VDBE cursor used to access pIdx */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrNxt; /* Jump here to start the next IN combination */
+ int addrSkip; /* Jump here for next iteration of skip-scan */
+ int addrCont; /* Jump here to continue with the next loop cycle */
+ int addrFirst; /* First instruction of interior of the loop */
+ int addrBody; /* Beginning of the body of this loop */
+ int regBignull; /* big-null flag reg. True if a NULL-scan is needed */
+ int addrBignull; /* Jump here for next part of big-null scan */
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ u32 iLikeRepCntr; /* LIKE range processing counter register (times 2) */
+ int addrLikeRep; /* LIKE range processing address */
+#endif
+ int regFilter; /* Bloom filter */
+ WhereRightJoin *pRJ; /* Extra information for RIGHT JOIN */
+ u8 iFrom; /* Which entry in the FROM clause */
+ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */
+ int p1, p2; /* Operands of the opcode used to end the loop */
+ union { /* Information that depends on pWLoop->wsFlags */
+ struct {
+ int nIn; /* Number of entries in aInLoop[] */
+ struct InLoop {
+ int iCur; /* The VDBE cursor used by this IN operator */
+ int addrInTop; /* Top of the IN loop */
+ int iBase; /* Base register of multi-key index record */
+ int nPrefix; /* Number of prior entires in the key */
+ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */
+ } *aInLoop; /* Information about each nested IN operator */
+ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
+ Index *pCoveringIdx; /* Possible covering index for WHERE_MULTI_OR */
+ } u;
+ struct WhereLoop *pWLoop; /* The selected WhereLoop object */
+ Bitmask notReady; /* FROM entries not usable at this level */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrVisit; /* Address at which row is visited */
+#endif
+};
+
+/*
+** Each instance of this object represents an algorithm for evaluating one
+** term of a join. Every term of the FROM clause will have at least
+** one corresponding WhereLoop object (unless INDEXED BY constraints
+** prevent a query solution - which is an error) and many terms of the
+** FROM clause will have multiple WhereLoop objects, each describing a
+** potential way of implementing that FROM-clause term, together with
+** dependencies and cost estimates for using the chosen algorithm.
+**
+** Query planning consists of building up a collection of these WhereLoop
+** objects, then computing a particular sequence of WhereLoop objects, with
+** one WhereLoop object per FROM clause term, that satisfy all dependencies
+** and that minimize the overall cost.
+*/
+struct WhereLoop {
+ Bitmask prereq; /* Bitmask of other loops that must run first */
+ Bitmask maskSelf; /* Bitmask identifying table iTab */
+#ifdef SQLITE_DEBUG
+ char cId; /* Symbolic ID of this loop for debugging use */
+#endif
+ u8 iTab; /* Position in FROM clause of table for this loop */
+ u8 iSortIdx; /* Sorting index number. 0==None */
+ LogEst rSetup; /* One-time setup cost (ex: create transient index) */
+ LogEst rRun; /* Cost of running each loop */
+ LogEst nOut; /* Estimated number of output rows */
+ union {
+ struct { /* Information for internal btree tables */
+ u16 nEq; /* Number of equality constraints */
+ u16 nBtm; /* Size of BTM vector */
+ u16 nTop; /* Size of TOP vector */
+ u16 nDistinctCol; /* Index columns used to sort for DISTINCT */
+ Index *pIndex; /* Index used, or NULL */
+ } btree;
+ struct { /* Information for virtual tables */
+ int idxNum; /* Index number */
+ u32 needFree : 1; /* True if sqlite3_free(idxStr) is needed */
+ u32 bOmitOffset : 1; /* True to let virtual table handle offset */
+ i8 isOrdered; /* True if satisfies ORDER BY */
+ u16 omitMask; /* Terms that may be omitted */
+ char *idxStr; /* Index identifier string */
+ u32 mHandleIn; /* Terms to handle as IN(...) instead of == */
+ } vtab;
+ } u;
+ u32 wsFlags; /* WHERE_* flags describing the plan */
+ u16 nLTerm; /* Number of entries in aLTerm[] */
+ u16 nSkip; /* Number of NULL aLTerm[] entries */
+ /**** whereLoopXfer() copies fields above ***********************/
+# define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
+ u16 nLSlot; /* Number of slots allocated for aLTerm[] */
+ WhereTerm **aLTerm; /* WhereTerms used */
+ WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
+ WhereTerm *aLTermSpace[3]; /* Initial aLTerm[] space */
+};
+
+/* This object holds the prerequisites and the cost of running a
+** subquery on one operand of an OR operator in the WHERE clause.
+** See WhereOrSet for additional information
+*/
+struct WhereOrCost {
+ Bitmask prereq; /* Prerequisites */
+ LogEst rRun; /* Cost of running this subquery */
+ LogEst nOut; /* Number of outputs for this subquery */
+};
+
+/* The WhereOrSet object holds a set of possible WhereOrCosts that
+** correspond to the subquery(s) of OR-clause processing. Only the
+** best N_OR_COST elements are retained.
+*/
+#define N_OR_COST 3
+struct WhereOrSet {
+ u16 n; /* Number of valid a[] entries */
+ WhereOrCost a[N_OR_COST]; /* Set of best costs */
+};
+
+/*
+** Each instance of this object holds a sequence of WhereLoop objects
+** that implement some or all of a query plan.
+**
+** Think of each WhereLoop object as a node in a graph with arcs
+** showing dependencies and costs for travelling between nodes. (That is
+** not a completely accurate description because WhereLoop costs are a
+** vector, not a scalar, and because dependencies are many-to-one, not
+** one-to-one as are graph nodes. But it is a useful visualization aid.)
+** Then a WherePath object is a path through the graph that visits some
+** or all of the WhereLoop objects once.
+**
+** The "solver" works by creating the N best WherePath objects of length
+** 1. Then using those as a basis to compute the N best WherePath objects
+** of length 2. And so forth until the length of WherePaths equals the
+** number of nodes in the FROM clause. The best (lowest cost) WherePath
+** at the end is the chosen query plan.
+*/
+struct WherePath {
+ Bitmask maskLoop; /* Bitmask of all WhereLoop objects in this path */
+ Bitmask revLoop; /* aLoop[]s that should be reversed for ORDER BY */
+ LogEst nRow; /* Estimated number of rows generated by this path */
+ LogEst rCost; /* Total cost of this path */
+ LogEst rUnsorted; /* Total cost of this path ignoring sorting costs */
+ i8 isOrdered; /* No. of ORDER BY terms satisfied. -1 for unknown */
+ WhereLoop **aLoop; /* Array of WhereLoop objects implementing this path */
+};
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by AND operators,
+** usually, or sometimes subexpressions separated by OR.
+**
+** All WhereTerms are collected into a single WhereClause structure.
+** The following identity holds:
+**
+** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
+**
+** When a term is of the form:
+**
+** X <op> <expr>
+**
+** where X is a column name and <op> is one of certain operators,
+** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
+** cursor number and column number for X. WhereTerm.eOperator records
+** the <op> using a bitmask encoding defined by WO_xxx below. The
+** use of a bitmask encoding for the operator allows us to search
+** quickly for terms that match any of several different operators.
+**
+** A WhereTerm might also be two or more subterms connected by OR:
+**
+** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
+**
+** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR
+** and the WhereTerm.u.pOrInfo field points to auxiliary information that
+** is collected about the OR clause.
+**
+** If a term in the WHERE clause does not match either of the two previous
+** categories, then eOperator==0. The WhereTerm.pExpr field is still set
+** to the original subexpression content and wtFlags is set up appropriately
+** but no other fields in the WhereTerm object are meaningful.
+**
+** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
+** but they do so indirectly. A single WhereMaskSet structure translates
+** cursor number into bits and the translated bit is stored in the prereq
+** fields. The translation is used in order to maximize the number of
+** bits that will fit in a Bitmask. The VDBE cursor numbers might be
+** spread out over the non-negative integers. For example, the cursor
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
+** translates these sparse cursor numbers into consecutive integers
+** beginning with 0 in order to make the best possible use of the available
+** bits in the Bitmask. So, in the example above, the cursor numbers
+** would be mapped into integers 0 through 7.
+**
+** The number of terms in a join is limited by the number of bits
+** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
+** is only able to process joins with 64 or fewer tables.
+*/
+struct WhereTerm {
+ Expr *pExpr; /* Pointer to the subexpression that is this term */
+ WhereClause *pWC; /* The clause this term is part of */
+ LogEst truthProb; /* Probability of truth for this expression */
+ u16 wtFlags; /* TERM_xxx bit flags. See below */
+ u16 eOperator; /* A WO_xx value describing <op> */
+ u8 nChild; /* Number of children that must disable us */
+ u8 eMatchOp; /* Op for vtab MATCH/LIKE/GLOB/REGEXP terms */
+ int iParent; /* Disable pWC->a[iParent] when this term disabled */
+ int leftCursor; /* Cursor number of X in "X <op> <expr>" */
+ union {
+ struct {
+ int leftColumn; /* Column number of X in "X <op> <expr>" */
+ int iField; /* Field in (?,?,?) IN (SELECT...) vector */
+ } x; /* Opcode other than OP_OR or OP_AND */
+ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */
+ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
+ } u;
+ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
+ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
+};
+
+/*
+** Allowed values of WhereTerm.wtFlags
+*/
+#define TERM_DYNAMIC 0x0001 /* Need to call sqlite3ExprDelete(db, pExpr) */
+#define TERM_VIRTUAL 0x0002 /* Added by the optimizer. Do not code */
+#define TERM_CODED 0x0004 /* This term is already coded */
+#define TERM_COPIED 0x0008 /* Has a child */
+#define TERM_ORINFO 0x0010 /* Need to free the WhereTerm.u.pOrInfo object */
+#define TERM_ANDINFO 0x0020 /* Need to free the WhereTerm.u.pAndInfo obj */
+#define TERM_OK 0x0040 /* Used during OR-clause processing */
+#define TERM_VNULL 0x0080 /* Manufactured x>NULL or x<=NULL term */
+#define TERM_LIKEOPT 0x0100 /* Virtual terms from the LIKE optimization */
+#define TERM_LIKECOND 0x0200 /* Conditionally this LIKE operator term */
+#define TERM_LIKE 0x0400 /* The original LIKE operator */
+#define TERM_IS 0x0800 /* Term.pExpr is an IS operator */
+#define TERM_VARSELECT 0x1000 /* Term.pExpr contains a correlated sub-query */
+#define TERM_HEURTRUTH 0x2000 /* Heuristic truthProb used */
+#ifdef SQLITE_ENABLE_STAT4
+# define TERM_HIGHTRUTH 0x4000 /* Term excludes few rows */
+#else
+# define TERM_HIGHTRUTH 0 /* Only used with STAT4 */
+#endif
+#define TERM_SLICE 0x8000 /* One slice of a row-value/vector comparison */
+
+/*
+** An instance of the WhereScan object is used as an iterator for locating
+** terms in the WHERE clause that are useful to the query planner.
+*/
+struct WhereScan {
+ WhereClause *pOrigWC; /* Original, innermost WhereClause */
+ WhereClause *pWC; /* WhereClause currently being scanned */
+ const char *zCollName; /* Required collating sequence, if not NULL */
+ Expr *pIdxExpr; /* Search for this index expression */
+ int k; /* Resume scanning at this->pWC->a[this->k] */
+ u32 opMask; /* Acceptable operators */
+ char idxaff; /* Must match this affinity, if zCollName!=NULL */
+ unsigned char iEquiv; /* Current slot in aiCur[] and aiColumn[] */
+ unsigned char nEquiv; /* Number of entries in aiCur[] and aiColumn[] */
+ int aiCur[11]; /* Cursors in the equivalence class */
+ i16 aiColumn[11]; /* Corresponding column number in the eq-class */
+};
+
+/*
+** An instance of the following structure holds all information about a
+** WHERE clause. Mostly this is a container for one or more WhereTerms.
+**
+** Explanation of pOuter: For a WHERE clause of the form
+**
+** a AND ((b AND c) OR (d AND e)) AND f
+**
+** There are separate WhereClause objects for the whole clause and for
+** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the
+** subclauses points to the WhereClause object for the whole clause.
+*/
+struct WhereClause {
+ WhereInfo *pWInfo; /* WHERE clause processing context */
+ WhereClause *pOuter; /* Outer conjunction */
+ u8 op; /* Split operator. TK_AND or TK_OR */
+ u8 hasOr; /* True if any a[].eOperator is WO_OR */
+ int nTerm; /* Number of terms */
+ int nSlot; /* Number of entries in a[] */
+ int nBase; /* Number of terms through the last non-Virtual */
+ WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
+#if defined(SQLITE_SMALL_STACK)
+ WhereTerm aStatic[1]; /* Initial static space for a[] */
+#else
+ WhereTerm aStatic[8]; /* Initial static space for a[] */
+#endif
+};
+
+/*
+** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereOrInfo {
+ WhereClause wc; /* Decomposition into subterms */
+ Bitmask indexable; /* Bitmask of all indexable tables in the clause */
+};
+
+/*
+** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereAndInfo {
+ WhereClause wc; /* The subexpression broken out */
+};
+
+/*
+** An instance of the following structure keeps track of a mapping
+** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
+**
+** The VDBE cursor numbers are small integers contained in
+** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
+** clause, the cursor numbers might not begin with 0 and they might
+** contain gaps in the numbering sequence. But we want to make maximum
+** use of the bits in our bitmasks. This structure provides a mapping
+** from the sparse cursor numbers into consecutive integers beginning
+** with 0.
+**
+** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
+** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
+**
+** For example, if the WHERE clause expression used these VDBE
+** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
+** would map those cursor numbers into bits 0 through 5.
+**
+** Note that the mapping is not necessarily ordered. In the example
+** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
+** 57->5, 73->4. Or one of 719 other combinations might be used. It
+** does not really matter. What is important is that sparse cursor
+** numbers all get mapped into bit numbers that begin with 0 and contain
+** no gaps.
+*/
+struct WhereMaskSet {
+ int bVarSelect; /* Used by sqlite3WhereExprUsage() */
+ int n; /* Number of assigned cursor values */
+ int ix[BMS]; /* Cursor assigned to each bit */
+};
+
+/*
+** This object is a convenience wrapper holding all information needed
+** to construct WhereLoop objects for a particular query.
+*/
+struct WhereLoopBuilder {
+ WhereInfo *pWInfo; /* Information about this WHERE */
+ WhereClause *pWC; /* WHERE clause terms */
+ WhereLoop *pNew; /* Template WhereLoop */
+ WhereOrSet *pOrSet; /* Record best loops here, if not NULL */
+#ifdef SQLITE_ENABLE_STAT4
+ UnpackedRecord *pRec; /* Probe for stat4 (if required) */
+ int nRecValid; /* Number of valid fields currently in pRec */
+#endif
+ unsigned char bldFlags1; /* First set of SQLITE_BLDF_* flags */
+ unsigned char bldFlags2; /* Second set of SQLITE_BLDF_* flags */
+ unsigned int iPlanLimit; /* Search limiter */
+};
+
+/* Allowed values for WhereLoopBuider.bldFlags */
+#define SQLITE_BLDF1_INDEXED 0x0001 /* An index is used */
+#define SQLITE_BLDF1_UNIQUE 0x0002 /* All keys of a UNIQUE index used */
+
+#define SQLITE_BLDF2_2NDPASS 0x0004 /* Second builder pass needed */
+
+/* The WhereLoopBuilder.iPlanLimit is used to limit the number of
+** index+constraint combinations the query planner will consider for a
+** particular query. If this parameter is unlimited, then certain
+** pathological queries can spend excess time in the sqlite3WhereBegin()
+** routine. The limit is high enough that is should not impact real-world
+** queries.
+**
+** SQLITE_QUERY_PLANNER_LIMIT is the baseline limit. The limit is
+** increased by SQLITE_QUERY_PLANNER_LIMIT_INCR before each term of the FROM
+** clause is processed, so that every table in a join is guaranteed to be
+** able to propose a some index+constraint combinations even if the initial
+** baseline limit was exhausted by prior tables of the join.
+*/
+#ifndef SQLITE_QUERY_PLANNER_LIMIT
+# define SQLITE_QUERY_PLANNER_LIMIT 20000
+#endif
+#ifndef SQLITE_QUERY_PLANNER_LIMIT_INCR
+# define SQLITE_QUERY_PLANNER_LIMIT_INCR 1000
+#endif
+
+/*
+** Each instance of this object records a change to a single node
+** in an expression tree to cause that node to point to a column
+** of an index rather than an expression or a virtual column. All
+** such transformations need to be undone at the end of WHERE clause
+** processing.
+*/
+typedef struct WhereExprMod WhereExprMod;
+struct WhereExprMod {
+ WhereExprMod *pNext; /* Next translation on a list of them all */
+ Expr *pExpr; /* The Expr node that was transformed */
+ Expr orig; /* Original value of the Expr node */
+};
+
+/*
+** The WHERE clause processing routine has two halves. The
+** first part does the start of the WHERE loop and the second
+** half does the tail of the WHERE loop. An instance of
+** this structure is returned by the first half and passed
+** into the second half to give some continuity.
+**
+** An instance of this object holds the complete state of the query
+** planner.
+*/
+struct WhereInfo {
+ Parse *pParse; /* Parsing and code generating context */
+ SrcList *pTabList; /* List of tables in the join */
+ ExprList *pOrderBy; /* The ORDER BY clause or NULL */
+ ExprList *pResultSet; /* Result set of the query */
+ Expr *pWhere; /* The complete WHERE clause */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ Select *pLimit; /* Used to access LIMIT expr/registers for vtabs */
+#endif
+ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */
+ int iContinue; /* Jump here to continue with next record */
+ int iBreak; /* Jump here to break out of the loop */
+ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */
+ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
+ LogEst iLimit; /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
+ u8 nLevel; /* Number of nested loop */
+ i8 nOBSat; /* Number of ORDER BY terms satisfied by indices */
+ u8 eOnePass; /* ONEPASS_OFF, or _SINGLE, or _MULTI */
+ u8 eDistinct; /* One of the WHERE_DISTINCT_* values */
+ unsigned bDeferredSeek :1; /* Uses OP_DeferredSeek */
+ unsigned untestedTerms :1; /* Not all WHERE terms resolved by outer loop */
+ unsigned bOrderedInnerLoop:1;/* True if only the inner-most loop is ordered */
+ unsigned sorted :1; /* True if really sorted (not just grouped) */
+ LogEst nRowOut; /* Estimated number of output rows */
+ int iTop; /* The very beginning of the WHERE loop */
+ int iEndWhere; /* End of the WHERE clause itself */
+ WhereLoop *pLoops; /* List of all WhereLoop objects */
+ WhereExprMod *pExprMods; /* Expression modifications */
+ WhereMemBlock *pMemToFree;/* Memory to free when this object destroyed */
+ Bitmask revMask; /* Mask of ORDER BY terms that need reversing */
+ WhereClause sWC; /* Decomposition of the WHERE clause */
+ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */
+ WhereLevel a[1]; /* Information about each nest loop in WHERE */
+};
+
+/*
+** Private interfaces - callable only by other where.c routines.
+**
+** where.c:
+*/
+SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet*,int);
+#ifdef WHERETRACE_ENABLED
+SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC);
+SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm);
+SQLITE_PRIVATE void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC);
+#endif
+SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u32 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+);
+SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte);
+SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte);
+
+/* wherecode.c: */
+#ifndef SQLITE_OMIT_EXPLAIN
+SQLITE_PRIVATE int sqlite3WhereExplainOneScan(
+ Parse *pParse, /* Parse context */
+ SrcList *pTabList, /* Table list this loop refers to */
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
+);
+SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter(
+ const Parse *pParse, /* Parse context */
+ const WhereInfo *pWInfo, /* WHERE clause */
+ const WhereLevel *pLevel /* Bloom filter on this level */
+);
+#else
+# define sqlite3WhereExplainOneScan(u,v,w,x) 0
+# define sqlite3WhereExplainBloomFilter(u,v,w) 0
+#endif /* SQLITE_OMIT_EXPLAIN */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+SQLITE_PRIVATE void sqlite3WhereAddScanStatus(
+ Vdbe *v, /* Vdbe to add scanstatus entry to */
+ SrcList *pSrclist, /* FROM clause pLvl reads data from */
+ WhereLevel *pLvl, /* Level to add scanstatus() entry for */
+ int addrExplain /* Address of OP_Explain (or 0) */
+);
+#else
+# define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d)
+#endif
+SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
+ Parse *pParse, /* Parsing context */
+ Vdbe *v, /* Prepared statement under construction */
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ WhereLevel *pLevel, /* The current level pointer */
+ Bitmask notReady /* Which tables are currently available */
+);
+SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
+ WhereInfo *pWInfo,
+ int iLevel,
+ WhereLevel *pLevel
+);
+
+/* whereexpr.c: */
+SQLITE_PRIVATE void sqlite3WhereClauseInit(WhereClause*,WhereInfo*);
+SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause*);
+SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause*,Expr*,u8);
+SQLITE_PRIVATE void sqlite3WhereAddLimit(WhereClause*, Select*);
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*);
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet*, Expr*);
+SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*);
+SQLITE_PRIVATE void sqlite3WhereExprAnalyze(SrcList*, WhereClause*);
+SQLITE_PRIVATE void sqlite3WhereTabFuncArgs(Parse*, SrcItem*, WhereClause*);
+
+
+
+
+
+/*
+** Bitmasks for the operators on WhereTerm objects. These are all
+** operators that are of interest to the query planner. An
+** OR-ed combination of these values can be used when searching for
+** particular WhereTerms within a WhereClause.
+**
+** Value constraints:
+** WO_EQ == SQLITE_INDEX_CONSTRAINT_EQ
+** WO_LT == SQLITE_INDEX_CONSTRAINT_LT
+** WO_LE == SQLITE_INDEX_CONSTRAINT_LE
+** WO_GT == SQLITE_INDEX_CONSTRAINT_GT
+** WO_GE == SQLITE_INDEX_CONSTRAINT_GE
+*/
+#define WO_IN 0x0001
+#define WO_EQ 0x0002
+#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
+#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
+#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
+#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
+#define WO_AUX 0x0040 /* Op useful to virtual tables only */
+#define WO_IS 0x0080
+#define WO_ISNULL 0x0100
+#define WO_OR 0x0200 /* Two or more OR-connected terms */
+#define WO_AND 0x0400 /* Two or more AND-connected terms */
+#define WO_EQUIV 0x0800 /* Of the form A==B, both columns */
+#define WO_NOOP 0x1000 /* This term does not restrict search space */
+#define WO_ROWVAL 0x2000 /* A row-value term */
+
+#define WO_ALL 0x3fff /* Mask of all possible WO_* values */
+#define WO_SINGLE 0x01ff /* Mask of all non-compound WO_* values */
+
+/*
+** These are definitions of bits in the WhereLoop.wsFlags field.
+** The particular combination of bits in each WhereLoop help to
+** determine the algorithm that WhereLoop represents.
+*/
+#define WHERE_COLUMN_EQ 0x00000001 /* x=EXPR */
+#define WHERE_COLUMN_RANGE 0x00000002 /* x<EXPR and/or x>EXPR */
+#define WHERE_COLUMN_IN 0x00000004 /* x IN (...) */
+#define WHERE_COLUMN_NULL 0x00000008 /* x IS NULL */
+#define WHERE_CONSTRAINT 0x0000000f /* Any of the WHERE_COLUMN_xxx values */
+#define WHERE_TOP_LIMIT 0x00000010 /* x<EXPR or x<=EXPR constraint */
+#define WHERE_BTM_LIMIT 0x00000020 /* x>EXPR or x>=EXPR constraint */
+#define WHERE_BOTH_LIMIT 0x00000030 /* Both x>EXPR and x<EXPR */
+#define WHERE_IDX_ONLY 0x00000040 /* Use index only - omit table */
+#define WHERE_IPK 0x00000100 /* x is the INTEGER PRIMARY KEY */
+#define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */
+#define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */
+#define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */
+#define WHERE_ONEROW 0x00001000 /* Selects no more than one row */
+#define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */
+#define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */
+#define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */
+#define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/
+#define WHERE_PARTIALIDX 0x00020000 /* The automatic index is partial */
+#define WHERE_IN_EARLYOUT 0x00040000 /* Perhaps quit IN loops early */
+#define WHERE_BIGNULL_SORT 0x00080000 /* Column nEq of index is BIGNULL */
+#define WHERE_IN_SEEKSCAN 0x00100000 /* Seek-scan optimization for IN */
+#define WHERE_TRANSCONS 0x00200000 /* Uses a transitive constraint */
+#define WHERE_BLOOMFILTER 0x00400000 /* Consider using a Bloom-filter */
+#define WHERE_SELFCULL 0x00800000 /* nOut reduced by extra WHERE terms */
+#define WHERE_OMIT_OFFSET 0x01000000 /* Set offset counter to zero */
+
+#endif /* !defined(SQLITE_WHEREINT_H) */
+
+/************** End of whereInt.h ********************************************/
+/************** Continuing where we left off in wherecode.c ******************/
+
+#ifndef SQLITE_OMIT_EXPLAIN
+
+/*
+** Return the name of the i-th column of the pIdx index.
+*/
+static const char *explainIndexColumnName(Index *pIdx, int i){
+ i = pIdx->aiColumn[i];
+ if( i==XN_EXPR ) return "<expr>";
+ if( i==XN_ROWID ) return "rowid";
+ return pIdx->pTable->aCol[i].zCnName;
+}
+
+/*
+** This routine is a helper for explainIndexRange() below
+**
+** pStr holds the text of an expression that we are building up one term
+** at a time. This routine adds a new term to the end of the expression.
+** Terms are separated by AND so add the "AND" text for second and subsequent
+** terms only.
+*/
+static void explainAppendTerm(
+ StrAccum *pStr, /* The text expression being built */
+ Index *pIdx, /* Index to read column names from */
+ int nTerm, /* Number of terms */
+ int iTerm, /* Zero-based index of first term. */
+ int bAnd, /* Non-zero to append " AND " */
+ const char *zOp /* Name of the operator */
+){
+ int i;
+
+ assert( nTerm>=1 );
+ if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
+
+ if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
+ for(i=0; i<nTerm; i++){
+ if( i ) sqlite3_str_append(pStr, ",", 1);
+ sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
+ }
+ if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
+
+ sqlite3_str_append(pStr, zOp, 1);
+
+ if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
+ for(i=0; i<nTerm; i++){
+ if( i ) sqlite3_str_append(pStr, ",", 1);
+ sqlite3_str_append(pStr, "?", 1);
+ }
+ if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
+}
+
+/*
+** Argument pLevel describes a strategy for scanning table pTab. This
+** function appends text to pStr that describes the subset of table
+** rows scanned by the strategy in the form of an SQL expression.
+**
+** For example, if the query:
+**
+** SELECT * FROM t1 WHERE a=1 AND b>2;
+**
+** is run and there is an index on (a, b), then this function returns a
+** string similar to:
+**
+** "a=? AND b>?"
+*/
+static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
+ Index *pIndex = pLoop->u.btree.pIndex;
+ u16 nEq = pLoop->u.btree.nEq;
+ u16 nSkip = pLoop->nSkip;
+ int i, j;
+
+ if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
+ sqlite3_str_append(pStr, " (", 2);
+ for(i=0; i<nEq; i++){
+ const char *z = explainIndexColumnName(pIndex, i);
+ if( i ) sqlite3_str_append(pStr, " AND ", 5);
+ sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
+ }
+
+ j = i;
+ if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
+ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
+ i = 1;
+ }
+ if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
+ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
+ }
+ sqlite3_str_append(pStr, ")", 1);
+}
+
+/*
+** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
+** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
+** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
+** is added to the output to describe the table scan strategy in pLevel.
+**
+** If an OP_Explain opcode is added to the VM, its address is returned.
+** Otherwise, if no OP_Explain is coded, zero is returned.
+*/
+SQLITE_PRIVATE int sqlite3WhereExplainOneScan(
+ Parse *pParse, /* Parse context */
+ SrcList *pTabList, /* Table list this loop refers to */
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
+){
+ int ret = 0;
+#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( sqlite3ParseToplevel(pParse)->explain==2 )
+#endif
+ {
+ SrcItem *pItem = &pTabList->a[pLevel->iFrom];
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */
+ sqlite3 *db = pParse->db; /* Database handle */
+ int isSearch; /* True for a SEARCH. False for SCAN. */
+ WhereLoop *pLoop; /* The controlling WhereLoop object */
+ u32 flags; /* Flags that describe this loop */
+ char *zMsg; /* Text to add to EQP output */
+ StrAccum str; /* EQP output string */
+ char zBuf[100]; /* Initial space for EQP output string */
+
+ pLoop = pLevel->pWLoop;
+ flags = pLoop->wsFlags;
+ if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
+
+ isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
+ || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
+ || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
+
+ sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
+ str.printfFlags = SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
+ if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
+ const char *zFmt = 0;
+ Index *pIdx;
+
+ assert( pLoop->u.btree.pIndex!=0 );
+ pIdx = pLoop->u.btree.pIndex;
+ assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
+ if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
+ if( isSearch ){
+ zFmt = "PRIMARY KEY";
+ }
+ }else if( flags & WHERE_PARTIALIDX ){
+ zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
+ }else if( flags & WHERE_AUTO_INDEX ){
+ zFmt = "AUTOMATIC COVERING INDEX";
+ }else if( flags & WHERE_IDX_ONLY ){
+ zFmt = "COVERING INDEX %s";
+ }else{
+ zFmt = "INDEX %s";
+ }
+ if( zFmt ){
+ sqlite3_str_append(&str, " USING ", 7);
+ sqlite3_str_appendf(&str, zFmt, pIdx->zName);
+ explainIndexRange(&str, pLoop);
+ }
+ }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
+ char cRangeOp;
+#if 0 /* Better output, but breaks many tests */
+ const Table *pTab = pItem->pTab;
+ const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
+ "rowid";
+#else
+ const char *zRowid = "rowid";
+#endif
+ sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
+ if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
+ cRangeOp = '=';
+ }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
+ sqlite3_str_appendf(&str, ">? AND %s", zRowid);
+ cRangeOp = '<';
+ }else if( flags&WHERE_BTM_LIMIT ){
+ cRangeOp = '>';
+ }else{
+ assert( flags&WHERE_TOP_LIMIT);
+ cRangeOp = '<';
+ }
+ sqlite3_str_appendf(&str, "%c?)", cRangeOp);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
+ sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
+ pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
+ }
+#endif
+ if( pItem->fg.jointype & JT_LEFT ){
+ sqlite3_str_appendf(&str, " LEFT-JOIN");
+ }
+#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
+ if( pLoop->nOut>=10 ){
+ sqlite3_str_appendf(&str, " (~%llu rows)",
+ sqlite3LogEstToInt(pLoop->nOut));
+ }else{
+ sqlite3_str_append(&str, " (~1 row)", 9);
+ }
+#endif
+ zMsg = sqlite3StrAccumFinish(&str);
+ sqlite3ExplainBreakpoint("",zMsg);
+ ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
+ pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
+ }
+ return ret;
+}
+
+/*
+** Add a single OP_Explain opcode that describes a Bloom filter.
+**
+** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
+** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
+** required and this routine is a no-op.
+**
+** If an OP_Explain opcode is added to the VM, its address is returned.
+** Otherwise, if no OP_Explain is coded, zero is returned.
+*/
+SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter(
+ const Parse *pParse, /* Parse context */
+ const WhereInfo *pWInfo, /* WHERE clause */
+ const WhereLevel *pLevel /* Bloom filter on this level */
+){
+ int ret = 0;
+ SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */
+ sqlite3 *db = pParse->db; /* Database handle */
+ char *zMsg; /* Text to add to EQP output */
+ int i; /* Loop counter */
+ WhereLoop *pLoop; /* The where loop */
+ StrAccum str; /* EQP output string */
+ char zBuf[100]; /* Initial space for EQP output string */
+
+ sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
+ str.printfFlags = SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
+ pLoop = pLevel->pWLoop;
+ if( pLoop->wsFlags & WHERE_IPK ){
+ const Table *pTab = pItem->pTab;
+ if( pTab->iPKey>=0 ){
+ sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
+ }else{
+ sqlite3_str_appendf(&str, "rowid=?");
+ }
+ }else{
+ for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
+ const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
+ if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
+ sqlite3_str_appendf(&str, "%s=?", z);
+ }
+ }
+ sqlite3_str_append(&str, ")", 1);
+ zMsg = sqlite3StrAccumFinish(&str);
+ ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
+ pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
+ return ret;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+/*
+** Configure the VM passed as the first argument with an
+** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
+** implement level pLvl. Argument pSrclist is a pointer to the FROM
+** clause that the scan reads data from.
+**
+** If argument addrExplain is not 0, it must be the address of an
+** OP_Explain instruction that describes the same loop.
+*/
+SQLITE_PRIVATE void sqlite3WhereAddScanStatus(
+ Vdbe *v, /* Vdbe to add scanstatus entry to */
+ SrcList *pSrclist, /* FROM clause pLvl reads data from */
+ WhereLevel *pLvl, /* Level to add scanstatus() entry for */
+ int addrExplain /* Address of OP_Explain (or 0) */
+){
+ const char *zObj = 0;
+ WhereLoop *pLoop = pLvl->pWLoop;
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
+ zObj = pLoop->u.btree.pIndex->zName;
+ }else{
+ zObj = pSrclist->a[pLvl->iFrom].zName;
+ }
+ sqlite3VdbeScanStatus(
+ v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
+ );
+}
+#endif
+
+
+/*
+** Disable a term in the WHERE clause. Except, do not disable the term
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON
+** or USING clause of that join.
+**
+** Consider the term t2.z='ok' in the following queries:
+**
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
+**
+** The t2.z='ok' is disabled in the in (2) because it originates
+** in the ON clause. The term is disabled in (3) because it is not part
+** of a LEFT OUTER JOIN. In (1), the term is not disabled.
+**
+** Disabling a term causes that term to not be tested in the inner loop
+** of the join. Disabling is an optimization. When terms are satisfied
+** by indices, we disable them to prevent redundant tests in the inner
+** loop. We would get the correct results if nothing were ever disabled,
+** but joins might run a little slower. The trick is to disable as much
+** as we can without disabling too much. If we disabled in (1), we'd get
+** the wrong answer. See ticket #813.
+**
+** If all the children of a term are disabled, then that term is also
+** automatically disabled. In this way, terms get disabled if derived
+** virtual terms are tested first. For example:
+**
+** x GLOB 'abc*' AND x>='abc' AND x<'acd'
+** \___________/ \______/ \_____/
+** parent child1 child2
+**
+** Only the parent term was in the original WHERE clause. The child1
+** and child2 terms were added by the LIKE optimization. If both of
+** the virtual child terms are valid, then testing of the parent can be
+** skipped.
+**
+** Usually the parent term is marked as TERM_CODED. But if the parent
+** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
+** The TERM_LIKECOND marking indicates that the term should be coded inside
+** a conditional such that is only evaluated on the second pass of a
+** LIKE-optimization loop, when scanning BLOBs instead of strings.
+*/
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
+ int nLoop = 0;
+ assert( pTerm!=0 );
+ while( (pTerm->wtFlags & TERM_CODED)==0
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
+ && (pLevel->notReady & pTerm->prereqAll)==0
+ ){
+ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
+ pTerm->wtFlags |= TERM_LIKECOND;
+ }else{
+ pTerm->wtFlags |= TERM_CODED;
+ }
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x20000 ){
+ sqlite3DebugPrintf("DISABLE-");
+ sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
+ }
+#endif
+ if( pTerm->iParent<0 ) break;
+ pTerm = &pTerm->pWC->a[pTerm->iParent];
+ assert( pTerm!=0 );
+ pTerm->nChild--;
+ if( pTerm->nChild!=0 ) break;
+ nLoop++;
+ }
+}
+
+/*
+** Code an OP_Affinity opcode to apply the column affinity string zAff
+** to the n registers starting at base.
+**
+** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
+** are no-ops) at the beginning and end of zAff are ignored. If all entries
+** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
+**
+** This routine makes its own copy of zAff so that the caller is free
+** to modify zAff after this routine returns.
+*/
+static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
+ Vdbe *v = pParse->pVdbe;
+ if( zAff==0 ){
+ assert( pParse->db->mallocFailed );
+ return;
+ }
+ assert( v!=0 );
+
+ /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
+ ** entries at the beginning and end of the affinity string.
+ */
+ assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
+ while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
+ n--;
+ base++;
+ zAff++;
+ }
+ while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
+ n--;
+ }
+
+ /* Code the OP_Affinity opcode if there is anything left to do. */
+ if( n>0 ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
+ }
+}
+
+/*
+** Expression pRight, which is the RHS of a comparison operation, is
+** either a vector of n elements or, if n==1, a scalar expression.
+** Before the comparison operation, affinity zAff is to be applied
+** to the pRight values. This function modifies characters within the
+** affinity string to SQLITE_AFF_BLOB if either:
+**
+** * the comparison will be performed with no affinity, or
+** * the affinity change in zAff is guaranteed not to change the value.
+*/
+static void updateRangeAffinityStr(
+ Expr *pRight, /* RHS of comparison */
+ int n, /* Number of vector elements in comparison */
+ char *zAff /* Affinity string to modify */
+){
+ int i;
+ for(i=0; i<n; i++){
+ Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
+ if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
+ || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
+ ){
+ zAff[i] = SQLITE_AFF_BLOB;
+ }
+ }
+}
+
+
+/*
+** pX is an expression of the form: (vector) IN (SELECT ...)
+** In other words, it is a vector IN operator with a SELECT clause on the
+** LHS. But not all terms in the vector are indexable and the terms might
+** not be in the correct order for indexing.
+**
+** This routine makes a copy of the input pX expression and then adjusts
+** the vector on the LHS with corresponding changes to the SELECT so that
+** the vector contains only index terms and those terms are in the correct
+** order. The modified IN expression is returned. The caller is responsible
+** for deleting the returned expression.
+**
+** Example:
+**
+** CREATE TABLE t1(a,b,c,d,e,f);
+** CREATE INDEX t1x1 ON t1(e,c);
+** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
+** \_______________________________________/
+** The pX expression
+**
+** Since only columns e and c can be used with the index, in that order,
+** the modified IN expression that is returned will be:
+**
+** (e,c) IN (SELECT z,x FROM t2)
+**
+** The reduced pX is different from the original (obviously) and thus is
+** only used for indexing, to improve performance. The original unaltered
+** IN expression must also be run on each output row for correctness.
+*/
+static Expr *removeUnindexableInClauseTerms(
+ Parse *pParse, /* The parsing context */
+ int iEq, /* Look at loop terms starting here */
+ WhereLoop *pLoop, /* The current loop */
+ Expr *pX /* The IN expression to be reduced */
+){
+ sqlite3 *db = pParse->db;
+ Expr *pNew;
+ pNew = sqlite3ExprDup(db, pX, 0);
+ if( db->mallocFailed==0 ){
+ ExprList *pOrigRhs; /* Original unmodified RHS */
+ ExprList *pOrigLhs; /* Original unmodified LHS */
+ ExprList *pRhs = 0; /* New RHS after modifications */
+ ExprList *pLhs = 0; /* New LHS after mods */
+ int i; /* Loop counter */
+ Select *pSelect; /* Pointer to the SELECT on the RHS */
+
+ assert( ExprUseXSelect(pNew) );
+ pOrigRhs = pNew->x.pSelect->pEList;
+ assert( pNew->pLeft!=0 );
+ assert( ExprUseXList(pNew->pLeft) );
+ pOrigLhs = pNew->pLeft->x.pList;
+ for(i=iEq; i<pLoop->nLTerm; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ int iField;
+ assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
+ iField = pLoop->aLTerm[i]->u.x.iField - 1;
+ if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
+ pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
+ pOrigRhs->a[iField].pExpr = 0;
+ assert( pOrigLhs->a[iField].pExpr!=0 );
+ pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
+ pOrigLhs->a[iField].pExpr = 0;
+ }
+ }
+ sqlite3ExprListDelete(db, pOrigRhs);
+ sqlite3ExprListDelete(db, pOrigLhs);
+ pNew->pLeft->x.pList = pLhs;
+ pNew->x.pSelect->pEList = pRhs;
+ if( pLhs && pLhs->nExpr==1 ){
+ /* Take care here not to generate a TK_VECTOR containing only a
+ ** single value. Since the parser never creates such a vector, some
+ ** of the subroutines do not handle this case. */
+ Expr *p = pLhs->a[0].pExpr;
+ pLhs->a[0].pExpr = 0;
+ sqlite3ExprDelete(db, pNew->pLeft);
+ pNew->pLeft = p;
+ }
+ pSelect = pNew->x.pSelect;
+ if( pSelect->pOrderBy ){
+ /* If the SELECT statement has an ORDER BY clause, zero the
+ ** iOrderByCol variables. These are set to non-zero when an
+ ** ORDER BY term exactly matches one of the terms of the
+ ** result-set. Since the result-set of the SELECT statement may
+ ** have been modified or reordered, these variables are no longer
+ ** set correctly. Since setting them is just an optimization,
+ ** it's easiest just to zero them here. */
+ ExprList *pOrderBy = pSelect->pOrderBy;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].u.x.iOrderByCol = 0;
+ }
+ }
+
+#if 0
+ printf("For indexing, change the IN expr:\n");
+ sqlite3TreeViewExpr(0, pX, 0);
+ printf("Into:\n");
+ sqlite3TreeViewExpr(0, pNew, 0);
+#endif
+ }
+ return pNew;
+}
+
+
+/*
+** Generate code for a single equality term of the WHERE clause. An equality
+** term can be either X=expr or X IN (...). pTerm is the term to be
+** coded.
+**
+** The current value for the constraint is left in a register, the index
+** of which is returned. An attempt is made store the result in iTarget but
+** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
+** constraint is a TK_EQ or TK_IS, then the current value might be left in
+** some other register and it is the caller's responsibility to compensate.
+**
+** For a constraint of the form X=expr, the expression is evaluated in
+** straight-line code. For constraints of the form X IN (...)
+** this routine sets up a loop that will iterate over all values of X.
+*/
+static int codeEqualityTerm(
+ Parse *pParse, /* The parsing context */
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
+ WhereLevel *pLevel, /* The level of the FROM clause we are working on */
+ int iEq, /* Index of the equality term within this level */
+ int bRev, /* True for reverse-order IN operations */
+ int iTarget /* Attempt to leave results in this register */
+){
+ Expr *pX = pTerm->pExpr;
+ Vdbe *v = pParse->pVdbe;
+ int iReg; /* Register holding results */
+
+ assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
+ assert( iTarget>0 );
+ if( pX->op==TK_EQ || pX->op==TK_IS ){
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
+ }else if( pX->op==TK_ISNULL ){
+ iReg = iTarget;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
+#ifndef SQLITE_OMIT_SUBQUERY
+ }else{
+ int eType = IN_INDEX_NOOP;
+ int iTab;
+ struct InLoop *pIn;
+ WhereLoop *pLoop = pLevel->pWLoop;
+ int i;
+ int nEq = 0;
+ int *aiMap = 0;
+
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
+ && pLoop->u.btree.pIndex!=0
+ && pLoop->u.btree.pIndex->aSortOrder[iEq]
+ ){
+ testcase( iEq==0 );
+ testcase( bRev );
+ bRev = !bRev;
+ }
+ assert( pX->op==TK_IN );
+ iReg = iTarget;
+
+ for(i=0; i<iEq; i++){
+ if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
+ disableTerm(pLevel, pTerm);
+ return iTarget;
+ }
+ }
+ for(i=iEq;i<pLoop->nLTerm; i++){
+ assert( pLoop->aLTerm[i]!=0 );
+ if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
+ }
+
+ iTab = 0;
+ if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
+ }else{
+ Expr *pExpr = pTerm->pExpr;
+ if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
+ sqlite3 *db = pParse->db;
+ pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
+ if( !db->mallocFailed ){
+ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
+ pExpr->iTable = iTab;
+ }
+ sqlite3ExprDelete(db, pX);
+ }else{
+ int n = sqlite3ExprVectorSize(pX->pLeft);
+ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n));
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
+ }
+ pX = pExpr;
+ }
+
+ if( eType==IN_INDEX_INDEX_DESC ){
+ testcase( bRev );
+ bRev = !bRev;
+ }
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
+ VdbeCoverageIf(v, bRev);
+ VdbeCoverageIf(v, !bRev);
+
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
+ pLoop->wsFlags |= WHERE_IN_ABLE;
+ if( pLevel->u.in.nIn==0 ){
+ pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
+ }
+ if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
+ pLoop->wsFlags |= WHERE_IN_EARLYOUT;
+ }
+
+ i = pLevel->u.in.nIn;
+ pLevel->u.in.nIn += nEq;
+ pLevel->u.in.aInLoop =
+ sqlite3WhereRealloc(pTerm->pWC->pWInfo,
+ pLevel->u.in.aInLoop,
+ sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
+ pIn = pLevel->u.in.aInLoop;
+ if( pIn ){
+ int iMap = 0; /* Index in aiMap[] */
+ pIn += i;
+ for(i=iEq;i<pLoop->nLTerm; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ int iOut = iReg + i - iEq;
+ if( eType==IN_INDEX_ROWID ){
+ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
+ }else{
+ int iCol = aiMap ? aiMap[iMap++] : 0;
+ pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
+ }
+ sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
+ if( i==iEq ){
+ pIn->iCur = iTab;
+ pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
+ if( iEq>0 ){
+ pIn->iBase = iReg - i;
+ pIn->nPrefix = i;
+ }else{
+ pIn->nPrefix = 0;
+ }
+ }else{
+ pIn->eEndLoopOp = OP_Noop;
+ }
+ pIn++;
+ }
+ }
+ testcase( iEq>0
+ && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
+ && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
+ if( iEq>0
+ && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
+ ){
+ sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
+ }
+ }else{
+ pLevel->u.in.nIn = 0;
+ }
+ sqlite3DbFree(pParse->db, aiMap);
+#endif
+ }
+
+ /* As an optimization, try to disable the WHERE clause term that is
+ ** driving the index as it will always be true. The correct answer is
+ ** obtained regardless, but we might get the answer with fewer CPU cycles
+ ** by omitting the term.
+ **
+ ** But do not disable the term unless we are certain that the term is
+ ** not a transitive constraint. For an example of where that does not
+ ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
+ */
+ if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
+ || (pTerm->eOperator & WO_EQUIV)==0
+ ){
+ disableTerm(pLevel, pTerm);
+ }
+
+ return iReg;
+}
+
+/*
+** Generate code that will evaluate all == and IN constraints for an
+** index scan.
+**
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
+** The index has as many as three equality constraints, but in this
+** example, the third "c" value is an inequality. So only two
+** constraints are coded. This routine will generate code to evaluate
+** a==5 and b IN (1,2,3). The current values for a and b will be stored
+** in consecutive registers and the index of the first register is returned.
+**
+** In the example above nEq==2. But this subroutine works for any value
+** of nEq including 0. If nEq==0, this routine is nearly a no-op.
+** The only thing it does is allocate the pLevel->iMem memory cell and
+** compute the affinity string.
+**
+** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
+** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
+** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
+** occurs after the nEq quality constraints.
+**
+** This routine allocates a range of nEq+nExtraReg memory cells and returns
+** the index of the first memory cell in that range. The code that
+** calls this routine will use that memory range to store keys for
+** start and termination conditions of the loop.
+** key value of the loop. If one or more IN operators appear, then
+** this routine allocates an additional nEq memory cells for internal
+** use.
+**
+** Before returning, *pzAff is set to point to a buffer containing a
+** copy of the column affinity string of the index allocated using
+** sqlite3DbMalloc(). Except, entries in the copy of the string associated
+** with equality constraints that use BLOB or NONE affinity are set to
+** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
+**
+** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
+** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
+**
+** In the example above, the index on t1(a) has TEXT affinity. But since
+** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
+** no conversion should be attempted before using a t2.b value as part of
+** a key to search the index. Hence the first byte in the returned affinity
+** string in this example would be set to SQLITE_AFF_BLOB.
+*/
+static int codeAllEqualityTerms(
+ Parse *pParse, /* Parsing context */
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
+ int bRev, /* Reverse the order of IN operators */
+ int nExtraReg, /* Number of extra registers to allocate */
+ char **pzAff /* OUT: Set to point to affinity string */
+){
+ u16 nEq; /* The number of == or IN constraints to code */
+ u16 nSkip; /* Number of left-most columns to skip */
+ Vdbe *v = pParse->pVdbe; /* The vm under construction */
+ Index *pIdx; /* The index being used for this loop */
+ WhereTerm *pTerm; /* A single constraint term */
+ WhereLoop *pLoop; /* The WhereLoop object */
+ int j; /* Loop counter */
+ int regBase; /* Base register */
+ int nReg; /* Number of registers to allocate */
+ char *zAff; /* Affinity string to return */
+
+ /* This module is only called on query plans that use an index. */
+ pLoop = pLevel->pWLoop;
+ assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ nEq = pLoop->u.btree.nEq;
+ nSkip = pLoop->nSkip;
+ pIdx = pLoop->u.btree.pIndex;
+ assert( pIdx!=0 );
+
+ /* Figure out how many memory cells we will need then allocate them.
+ */
+ regBase = pParse->nMem + 1;
+ nReg = pLoop->u.btree.nEq + nExtraReg;
+ pParse->nMem += nReg;
+
+ zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
+ assert( zAff!=0 || pParse->db->mallocFailed );
+
+ if( nSkip ){
+ int iIdxCur = pLevel->iIdxCur;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
+ sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
+ j = sqlite3VdbeAddOp0(v, OP_Goto);
+ assert( pLevel->addrSkip==0 );
+ pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
+ iIdxCur, 0, regBase, nSkip);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ sqlite3VdbeJumpHere(v, j);
+ for(j=0; j<nSkip; j++){
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
+ testcase( pIdx->aiColumn[j]==XN_EXPR );
+ VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
+ }
+ }
+
+ /* Evaluate the equality constraints
+ */
+ assert( zAff==0 || (int)strlen(zAff)>=nEq );
+ for(j=nSkip; j<nEq; j++){
+ int r1;
+ pTerm = pLoop->aLTerm[j];
+ assert( pTerm!=0 );
+ /* The following testcase is true for indices with redundant columns.
+ ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
+ testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
+ if( r1!=regBase+j ){
+ if( nReg==1 ){
+ sqlite3ReleaseTempReg(pParse, regBase);
+ regBase = r1;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
+ }
+ }
+ }
+ for(j=nSkip; j<nEq; j++){
+ pTerm = pLoop->aLTerm[j];
+ if( pTerm->eOperator & WO_IN ){
+ if( pTerm->pExpr->flags & EP_xIsSelect ){
+ /* No affinity ever needs to be (or should be) applied to a value
+ ** from the RHS of an "? IN (SELECT ...)" expression. The
+ ** sqlite3FindInIndex() routine has already ensured that the
+ ** affinity of the comparison has been applied to the value. */
+ if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
+ }
+ }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
+ Expr *pRight = pTerm->pExpr->pRight;
+ if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
+ VdbeCoverage(v);
+ }
+ if( pParse->nErr==0 ){
+ assert( pParse->db->mallocFailed==0 );
+ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
+ zAff[j] = SQLITE_AFF_BLOB;
+ }
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
+ zAff[j] = SQLITE_AFF_BLOB;
+ }
+ }
+ }
+ }
+ *pzAff = zAff;
+ return regBase;
+}
+
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+/*
+** If the most recently coded instruction is a constant range constraint
+** (a string literal) that originated from the LIKE optimization, then
+** set P3 and P5 on the OP_String opcode so that the string will be cast
+** to a BLOB at appropriate times.
+**
+** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
+** expression: "x>='ABC' AND x<'abd'". But this requires that the range
+** scan loop run twice, once for strings and a second time for BLOBs.
+** The OP_String opcodes on the second pass convert the upper and lower
+** bound string constants to blobs. This routine makes the necessary changes
+** to the OP_String opcodes for that to happen.
+**
+** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
+** only the one pass through the string space is required, so this routine
+** becomes a no-op.
+*/
+static void whereLikeOptimizationStringFixup(
+ Vdbe *v, /* prepared statement under construction */
+ WhereLevel *pLevel, /* The loop that contains the LIKE operator */
+ WhereTerm *pTerm /* The upper or lower bound just coded */
+){
+ if( pTerm->wtFlags & TERM_LIKEOPT ){
+ VdbeOp *pOp;
+ assert( pLevel->iLikeRepCntr>0 );
+ pOp = sqlite3VdbeGetOp(v, -1);
+ assert( pOp!=0 );
+ assert( pOp->opcode==OP_String8
+ || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
+ pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
+ pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
+ }
+}
+#else
+# define whereLikeOptimizationStringFixup(A,B,C)
+#endif
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/*
+** Information is passed from codeCursorHint() down to individual nodes of
+** the expression tree (by sqlite3WalkExpr()) using an instance of this
+** structure.
+*/
+struct CCurHint {
+ int iTabCur; /* Cursor for the main table */
+ int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
+ Index *pIdx; /* The index used to access the table */
+};
+
+/*
+** This function is called for every node of an expression that is a candidate
+** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
+** the table CCurHint.iTabCur, verify that the same column can be
+** accessed through the index. If it cannot, then set pWalker->eCode to 1.
+*/
+static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
+ struct CCurHint *pHint = pWalker->u.pCCurHint;
+ assert( pHint->pIdx!=0 );
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pHint->iTabCur
+ && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
+ ){
+ pWalker->eCode = 1;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Test whether or not expression pExpr, which was part of a WHERE clause,
+** should be included in the cursor-hint for a table that is on the rhs
+** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
+** expression is not suitable.
+**
+** An expression is unsuitable if it might evaluate to non NULL even if
+** a TK_COLUMN node that does affect the value of the expression is set
+** to NULL. For example:
+**
+** col IS NULL
+** col IS NOT NULL
+** coalesce(col, 1)
+** CASE WHEN col THEN 0 ELSE 1 END
+*/
+static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_IS
+ || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
+ || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
+ ){
+ pWalker->eCode = 1;
+ }else if( pExpr->op==TK_FUNCTION ){
+ int d1;
+ char d2[4];
+ if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
+ pWalker->eCode = 1;
+ }
+ }
+
+ return WRC_Continue;
+}
+
+
+/*
+** This function is called on every node of an expression tree used as an
+** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
+** that accesses any table other than the one identified by
+** CCurHint.iTabCur, then do the following:
+**
+** 1) allocate a register and code an OP_Column instruction to read
+** the specified column into the new register, and
+**
+** 2) transform the expression node to a TK_REGISTER node that reads
+** from the newly populated register.
+**
+** Also, if the node is a TK_COLUMN that does access the table idenified
+** by pCCurHint.iTabCur, and an index is being used (which we will
+** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
+** an access of the index rather than the original table.
+*/
+static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
+ int rc = WRC_Continue;
+ struct CCurHint *pHint = pWalker->u.pCCurHint;
+ if( pExpr->op==TK_COLUMN ){
+ if( pExpr->iTable!=pHint->iTabCur ){
+ int reg = ++pWalker->pParse->nMem; /* Register for column value */
+ sqlite3ExprCode(pWalker->pParse, pExpr, reg);
+ pExpr->op = TK_REGISTER;
+ pExpr->iTable = reg;
+ }else if( pHint->pIdx!=0 ){
+ pExpr->iTable = pHint->iIdxCur;
+ pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
+ assert( pExpr->iColumn>=0 );
+ }
+ }else if( pExpr->op==TK_AGG_FUNCTION ){
+ /* An aggregate function in the WHERE clause of a query means this must
+ ** be a correlated sub-query, and expression pExpr is an aggregate from
+ ** the parent context. Do not walk the function arguments in this case.
+ **
+ ** todo: It should be possible to replace this node with a TK_REGISTER
+ ** expression, as the result of the expression must be stored in a
+ ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
+ rc = WRC_Prune;
+ }
+ return rc;
+}
+
+/*
+** Insert an OP_CursorHint instruction if it is appropriate to do so.
+*/
+static void codeCursorHint(
+ SrcItem *pTabItem, /* FROM clause item */
+ WhereInfo *pWInfo, /* The where clause */
+ WhereLevel *pLevel, /* Which loop to provide hints for */
+ WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
+){
+ Parse *pParse = pWInfo->pParse;
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ Expr *pExpr = 0;
+ WhereLoop *pLoop = pLevel->pWLoop;
+ int iCur;
+ WhereClause *pWC;
+ WhereTerm *pTerm;
+ int i, j;
+ struct CCurHint sHint;
+ Walker sWalker;
+
+ if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
+ iCur = pLevel->iTabCur;
+ assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
+ sHint.iTabCur = iCur;
+ sHint.iIdxCur = pLevel->iIdxCur;
+ sHint.pIdx = pLoop->u.btree.pIndex;
+ memset(&sWalker, 0, sizeof(sWalker));
+ sWalker.pParse = pParse;
+ sWalker.u.pCCurHint = &sHint;
+ pWC = &pWInfo->sWC;
+ for(i=0; i<pWC->nBase; i++){
+ pTerm = &pWC->a[i];
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( pTerm->prereqAll & pLevel->notReady ) continue;
+
+ /* Any terms specified as part of the ON(...) clause for any LEFT
+ ** JOIN for which the current table is not the rhs are omitted
+ ** from the cursor-hint.
+ **
+ ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
+ ** that were specified as part of the WHERE clause must be excluded.
+ ** This is to address the following:
+ **
+ ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
+ **
+ ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
+ ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
+ ** pushed down to the cursor, this row is filtered out, causing
+ ** SQLite to synthesize a row of NULL values. Which does match the
+ ** WHERE clause, and so the query returns a row. Which is incorrect.
+ **
+ ** For the same reason, WHERE terms such as:
+ **
+ ** WHERE 1 = (t2.c IS NULL)
+ **
+ ** are also excluded. See codeCursorHintIsOrFunction() for details.
+ */
+ if( pTabItem->fg.jointype & JT_LEFT ){
+ Expr *pExpr = pTerm->pExpr;
+ if( !ExprHasProperty(pExpr, EP_OuterON)
+ || pExpr->w.iJoin!=pTabItem->iCursor
+ ){
+ sWalker.eCode = 0;
+ sWalker.xExprCallback = codeCursorHintIsOrFunction;
+ sqlite3WalkExpr(&sWalker, pTerm->pExpr);
+ if( sWalker.eCode ) continue;
+ }
+ }else{
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
+ }
+
+ /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
+ ** the cursor. These terms are not needed as hints for a pure range
+ ** scan (that has no == terms) so omit them. */
+ if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
+ for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
+ if( j<pLoop->nLTerm ) continue;
+ }
+
+ /* No subqueries or non-deterministic functions allowed */
+ if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
+
+ /* For an index scan, make sure referenced columns are actually in
+ ** the index. */
+ if( sHint.pIdx!=0 ){
+ sWalker.eCode = 0;
+ sWalker.xExprCallback = codeCursorHintCheckExpr;
+ sqlite3WalkExpr(&sWalker, pTerm->pExpr);
+ if( sWalker.eCode ) continue;
+ }
+
+ /* If we survive all prior tests, that means this term is worth hinting */
+ pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
+ }
+ if( pExpr!=0 ){
+ sWalker.xExprCallback = codeCursorHintFixExpr;
+ sqlite3WalkExpr(&sWalker, pExpr);
+ sqlite3VdbeAddOp4(v, OP_CursorHint,
+ (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
+ (const char*)pExpr, P4_EXPR);
+ }
+}
+#else
+# define codeCursorHint(A,B,C,D) /* No-op */
+#endif /* SQLITE_ENABLE_CURSOR_HINTS */
+
+/*
+** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
+** a rowid value just read from cursor iIdxCur, open on index pIdx. This
+** function generates code to do a deferred seek of cursor iCur to the
+** rowid stored in register iRowid.
+**
+** Normally, this is just:
+**
+** OP_DeferredSeek $iCur $iRowid
+**
+** Which causes a seek on $iCur to the row with rowid $iRowid.
+**
+** However, if the scan currently being coded is a branch of an OR-loop and
+** the statement currently being coded is a SELECT, then additional information
+** is added that might allow OP_Column to omit the seek and instead do its
+** lookup on the index, thus avoiding an expensive seek operation. To
+** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
+** and P4 is set to an array of integers containing one entry for each column
+** in the table. For each table column, if the column is the i'th
+** column of the index, then the corresponding array entry is set to (i+1).
+** If the column does not appear in the index at all, the array entry is set
+** to 0. The OP_Column opcode can check this array to see if the column it
+** wants is in the index and if it is, it will substitute the index cursor
+** and column number and continue with those new values, rather than seeking
+** the table cursor.
+*/
+static void codeDeferredSeek(
+ WhereInfo *pWInfo, /* Where clause context */
+ Index *pIdx, /* Index scan is using */
+ int iCur, /* Cursor for IPK b-tree */
+ int iIdxCur /* Index cursor */
+){
+ Parse *pParse = pWInfo->pParse; /* Parse context */
+ Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
+
+ assert( iIdxCur>0 );
+ assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
+
+ pWInfo->bDeferredSeek = 1;
+ sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
+ if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
+ && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
+ ){
+ int i;
+ Table *pTab = pIdx->pTable;
+ u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
+ if( ai ){
+ ai[0] = pTab->nCol;
+ for(i=0; i<pIdx->nColumn-1; i++){
+ int x1, x2;
+ assert( pIdx->aiColumn[i]<pTab->nCol );
+ x1 = pIdx->aiColumn[i];
+ x2 = sqlite3TableColumnToStorage(pTab, x1);
+ testcase( x1!=x2 );
+ if( x1>=0 ) ai[x2+1] = i+1;
+ }
+ sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
+ }
+ }
+}
+
+/*
+** If the expression passed as the second argument is a vector, generate
+** code to write the first nReg elements of the vector into an array
+** of registers starting with iReg.
+**
+** If the expression is not a vector, then nReg must be passed 1. In
+** this case, generate code to evaluate the expression and leave the
+** result in register iReg.
+*/
+static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
+ assert( nReg>0 );
+ if( p && sqlite3ExprIsVector(p) ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( ExprUseXSelect(p) ){
+ Vdbe *v = pParse->pVdbe;
+ int iSelect;
+ assert( p->op==TK_SELECT );
+ iSelect = sqlite3CodeSubselect(pParse, p);
+ sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
+ }else
+#endif
+ {
+ int i;
+ const ExprList *pList;
+ assert( ExprUseXList(p) );
+ pList = p->x.pList;
+ assert( nReg<=pList->nExpr );
+ for(i=0; i<nReg; i++){
+ sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
+ }
+ }
+ }else{
+ assert( nReg==1 || pParse->nErr );
+ sqlite3ExprCode(pParse, p, iReg);
+ }
+}
+
+/* An instance of the IdxExprTrans object carries information about a
+** mapping from an expression on table columns into a column in an index
+** down through the Walker.
+*/
+typedef struct IdxExprTrans {
+ Expr *pIdxExpr; /* The index expression */
+ int iTabCur; /* The cursor of the corresponding table */
+ int iIdxCur; /* The cursor for the index */
+ int iIdxCol; /* The column for the index */
+ int iTabCol; /* The column for the table */
+ WhereInfo *pWInfo; /* Complete WHERE clause information */
+ sqlite3 *db; /* Database connection (for malloc()) */
+} IdxExprTrans;
+
+/*
+** Preserve pExpr on the WhereETrans list of the WhereInfo.
+*/
+static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
+ WhereExprMod *pNew;
+ pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
+ if( pNew==0 ) return;
+ pNew->pNext = pTrans->pWInfo->pExprMods;
+ pTrans->pWInfo->pExprMods = pNew;
+ pNew->pExpr = pExpr;
+ memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
+}
+
+/* The walker node callback used to transform matching expressions into
+** a reference to an index column for an index on an expression.
+**
+** If pExpr matches, then transform it into a reference to the index column
+** that contains the value of pExpr.
+*/
+static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
+ IdxExprTrans *pX = p->u.pIdxTrans;
+ if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
+ pExpr = sqlite3ExprSkipCollate(pExpr);
+ preserveExpr(pX, pExpr);
+ pExpr->affExpr = sqlite3ExprAffinity(pExpr);
+ pExpr->op = TK_COLUMN;
+ pExpr->iTable = pX->iIdxCur;
+ pExpr->iColumn = pX->iIdxCol;
+ testcase( ExprHasProperty(pExpr, EP_Unlikely) );
+ ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
+ pExpr->y.pTab = 0;
+ return WRC_Prune;
+ }else{
+ return WRC_Continue;
+ }
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/* A walker node callback that translates a column reference to a table
+** into a corresponding column reference of an index.
+*/
+static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN ){
+ IdxExprTrans *pX = p->u.pIdxTrans;
+ if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
+ assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
+ preserveExpr(pX, pExpr);
+ pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
+ pExpr->iTable = pX->iIdxCur;
+ pExpr->iColumn = pX->iIdxCol;
+ pExpr->y.pTab = 0;
+ }
+ }
+ return WRC_Continue;
+}
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+
+/*
+** For an indexes on expression X, locate every instance of expression X
+** in pExpr and change that subexpression into a reference to the appropriate
+** column of the index.
+**
+** 2019-10-24: Updated to also translate references to a VIRTUAL column in
+** the table into references to the corresponding (stored) column of the
+** index.
+*/
+static void whereIndexExprTrans(
+ Index *pIdx, /* The Index */
+ int iTabCur, /* Cursor of the table that is being indexed */
+ int iIdxCur, /* Cursor of the index itself */
+ WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
+){
+ int iIdxCol; /* Column number of the index */
+ ExprList *aColExpr; /* Expressions that are indexed */
+ Table *pTab;
+ Walker w;
+ IdxExprTrans x;
+ aColExpr = pIdx->aColExpr;
+ if( aColExpr==0 && !pIdx->bHasVCol ){
+ /* The index does not reference any expressions or virtual columns
+ ** so no translations are needed. */
+ return;
+ }
+ pTab = pIdx->pTable;
+ memset(&w, 0, sizeof(w));
+ w.u.pIdxTrans = &x;
+ x.iTabCur = iTabCur;
+ x.iIdxCur = iIdxCur;
+ x.pWInfo = pWInfo;
+ x.db = pWInfo->pParse->db;
+ for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
+ i16 iRef = pIdx->aiColumn[iIdxCol];
+ if( iRef==XN_EXPR ){
+ assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
+ x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
+ if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
+ w.xExprCallback = whereIndexExprTransNode;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ }else if( iRef>=0
+ && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
+ && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
+ || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
+ sqlite3StrBINARY)==0)
+ ){
+ /* Check to see if there are direct references to generated columns
+ ** that are contained in the index. Pulling the generated column
+ ** out of the index is an optimization only - the main table is always
+ ** available if the index cannot be used. To avoid unnecessary
+ ** complication, omit this optimization if the collating sequence for
+ ** the column is non-standard */
+ x.iTabCol = iRef;
+ w.xExprCallback = whereIndexExprTransColumn;
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+ }else{
+ continue;
+ }
+ x.iIdxCol = iIdxCol;
+ sqlite3WalkExpr(&w, pWInfo->pWhere);
+ sqlite3WalkExprList(&w, pWInfo->pOrderBy);
+ sqlite3WalkExprList(&w, pWInfo->pResultSet);
+ }
+}
+
+/*
+** The pTruth expression is always true because it is the WHERE clause
+** a partial index that is driving a query loop. Look through all of the
+** WHERE clause terms on the query, and if any of those terms must be
+** true because pTruth is true, then mark those WHERE clause terms as
+** coded.
+*/
+static void whereApplyPartialIndexConstraints(
+ Expr *pTruth,
+ int iTabCur,
+ WhereClause *pWC
+){
+ int i;
+ WhereTerm *pTerm;
+ while( pTruth->op==TK_AND ){
+ whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
+ pTruth = pTruth->pRight;
+ }
+ for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ Expr *pExpr;
+ if( pTerm->wtFlags & TERM_CODED ) continue;
+ pExpr = pTerm->pExpr;
+ if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+}
+
+/*
+** This routine is called right after An OP_Filter has been generated and
+** before the corresponding index search has been performed. This routine
+** checks to see if there are additional Bloom filters in inner loops that
+** can be checked prior to doing the index lookup. If there are available
+** inner-loop Bloom filters, then evaluate those filters now, before the
+** index lookup. The idea is that a Bloom filter check is way faster than
+** an index lookup, and the Bloom filter might return false, meaning that
+** the index lookup can be skipped.
+**
+** We know that an inner loop uses a Bloom filter because it has the
+** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked,
+** then clear the WhereLevel.regFilter value to prevent the Bloom filter
+** from being checked a second time when the inner loop is evaluated.
+*/
+static SQLITE_NOINLINE void filterPullDown(
+ Parse *pParse, /* Parsing context */
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ int addrNxt, /* Jump here to bypass inner loops */
+ Bitmask notReady /* Loops that are not ready */
+){
+ while( ++iLevel < pWInfo->nLevel ){
+ WhereLevel *pLevel = &pWInfo->a[iLevel];
+ WhereLoop *pLoop = pLevel->pWLoop;
+ if( pLevel->regFilter==0 ) continue;
+ if( pLevel->pWLoop->nSkip ) continue;
+ /* ,--- Because sqlite3ConstructBloomFilter() has will not have set
+ ** vvvvv--' pLevel->regFilter if this were true. */
+ if( NEVER(pLoop->prereq & notReady) ) continue;
+ assert( pLevel->addrBrk==0 );
+ pLevel->addrBrk = addrNxt;
+ if( pLoop->wsFlags & WHERE_IPK ){
+ WhereTerm *pTerm = pLoop->aLTerm[0];
+ int regRowid;
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ regRowid = sqlite3GetTempReg(pParse);
+ regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
+ sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
+ addrNxt, regRowid, 1);
+ VdbeCoverage(pParse->pVdbe);
+ }else{
+ u16 nEq = pLoop->u.btree.nEq;
+ int r1;
+ char *zStartAff;
+
+ assert( pLoop->wsFlags & WHERE_INDEXED );
+ assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
+ r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
+ codeApplyAffinity(pParse, r1, nEq, zStartAff);
+ sqlite3DbFree(pParse->db, zStartAff);
+ sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
+ addrNxt, r1, nEq);
+ VdbeCoverage(pParse->pVdbe);
+ }
+ pLevel->regFilter = 0;
+ pLevel->addrBrk = 0;
+ }
+}
+
+/*
+** Generate code for the start of the iLevel-th loop in the WHERE clause
+** implementation described by pWInfo.
+*/
+SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
+ Parse *pParse, /* Parsing context */
+ Vdbe *v, /* Prepared statement under construction */
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ WhereLevel *pLevel, /* The current level pointer */
+ Bitmask notReady /* Which tables are currently available */
+){
+ int j, k; /* Loop counters */
+ int iCur; /* The VDBE cursor for the table */
+ int addrNxt; /* Where to jump to continue with the next IN case */
+ int bRev; /* True if we need to scan in reverse order */
+ WhereLoop *pLoop; /* The WhereLoop object being coded */
+ WhereClause *pWC; /* Decomposition of the entire WHERE clause */
+ WhereTerm *pTerm; /* A WHERE clause term */
+ sqlite3 *db; /* Database connection */
+ SrcItem *pTabItem; /* FROM clause term being coded */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrHalt; /* addrBrk for the outermost loop */
+ int addrCont; /* Jump here to continue with next cycle */
+ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
+ int iReleaseReg = 0; /* Temp register to free before returning */
+ Index *pIdx = 0; /* Index used by loop (if any) */
+ int iLoop; /* Iteration of constraint generator loop */
+
+ pWC = &pWInfo->sWC;
+ db = pParse->db;
+ pLoop = pLevel->pWLoop;
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ iCur = pTabItem->iCursor;
+ pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
+ bRev = (pWInfo->revMask>>iLevel)&1;
+ VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
+#if WHERETRACE_ENABLED /* 0x20800 */
+ if( sqlite3WhereTrace & 0x800 ){
+ sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
+ iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
+ sqlite3WhereLoopPrint(pLoop, pWC);
+ }
+ if( sqlite3WhereTrace & 0x20000 ){
+ if( iLevel==0 ){
+ sqlite3DebugPrintf("WHERE clause being coded:\n");
+ sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
+ }
+ sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
+ sqlite3WhereClausePrint(pWC);
+ }
+#endif
+
+ /* Create labels for the "break" and "continue" instructions
+ ** for the current loop. Jump to addrBrk to break out of a loop.
+ ** Jump to cont to go immediately to the next iteration of the
+ ** loop.
+ **
+ ** When there is an IN operator, we also have a "addrNxt" label that
+ ** means to continue with the next IN value combination. When
+ ** there are no IN operators in the constraints, the "addrNxt" label
+ ** is the same as "addrBrk".
+ */
+ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
+ addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
+ || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
+ );
+ if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
+ pLevel->iLeftJoin = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
+ VdbeComment((v, "init LEFT JOIN no-match flag"));
+ }
+
+ /* Compute a safe address to jump to if we discover that the table for
+ ** this loop is empty and can never contribute content. */
+ for(j=iLevel; j>0; j--){
+ if( pWInfo->a[j].iLeftJoin ) break;
+ if( pWInfo->a[j].pRJ ) break;
+ }
+ addrHalt = pWInfo->a[j].addrBrk;
+
+ /* Special case of a FROM clause subquery implemented as a co-routine */
+ if( pTabItem->fg.viaCoroutine ){
+ int regYield = pTabItem->regReturn;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
+ pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
+ VdbeCoverage(v);
+ VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
+ pLevel->op = OP_Goto;
+ }else
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ /* Case 1: The table is a virtual-table. Use the VFilter and VNext
+ ** to access the data.
+ */
+ int iReg; /* P3 Value for OP_VFilter */
+ int addrNotFound;
+ int nConstraint = pLoop->nLTerm;
+
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2);
+ addrNotFound = pLevel->addrBrk;
+ for(j=0; j<nConstraint; j++){
+ int iTarget = iReg+j+2;
+ pTerm = pLoop->aLTerm[j];
+ if( NEVER(pTerm==0) ) continue;
+ if( pTerm->eOperator & WO_IN ){
+ if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
+ int iTab = pParse->nTab++;
+ int iCache = ++pParse->nMem;
+ sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
+ sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
+ }else{
+ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
+ addrNotFound = pLevel->addrNxt;
+ }
+ }else{
+ Expr *pRight = pTerm->pExpr->pRight;
+ codeExprOrVector(pParse, pRight, iTarget, 1);
+ if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
+ && pLoop->u.vtab.bOmitOffset
+ ){
+ assert( pTerm->eOperator==WO_AUX );
+ assert( pWInfo->pLimit!=0 );
+ assert( pWInfo->pLimit->iOffset>0 );
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
+ VdbeComment((v,"Zero OFFSET counter"));
+ }
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
+ sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
+ pLoop->u.vtab.idxStr,
+ pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
+ VdbeCoverage(v);
+ pLoop->u.vtab.needFree = 0;
+ /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
+ ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
+ if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
+ pLevel->p1 = iCur;
+ pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
+
+ for(j=0; j<nConstraint; j++){
+ pTerm = pLoop->aLTerm[j];
+ if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
+ disableTerm(pLevel, pTerm);
+ continue;
+ }
+ if( (pTerm->eOperator & WO_IN)!=0
+ && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
+ && !db->mallocFailed
+ ){
+ Expr *pCompare; /* The comparison operator */
+ Expr *pRight; /* RHS of the comparison */
+ VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
+ int iIn; /* IN loop corresponding to the j-th constraint */
+
+ /* Reload the constraint value into reg[iReg+j+2]. The same value
+ ** was loaded into the same register prior to the OP_VFilter, but
+ ** the xFilter implementation might have changed the datatype or
+ ** encoding of the value in the register, so it *must* be reloaded.
+ */
+ for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
+ pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
+ if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
+ || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
+ ){
+ testcase( pOp->opcode==OP_Rowid );
+ sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
+ break;
+ }
+ }
+
+ /* Generate code that will continue to the next row if
+ ** the IN constraint is not satisfied
+ */
+ pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
+ if( !db->mallocFailed ){
+ int iFld = pTerm->u.x.iField;
+ Expr *pLeft = pTerm->pExpr->pLeft;
+ assert( pLeft!=0 );
+ if( iFld>0 ){
+ assert( pLeft->op==TK_VECTOR );
+ assert( ExprUseXList(pLeft) );
+ assert( iFld<=pLeft->x.pList->nExpr );
+ pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
+ }else{
+ pCompare->pLeft = pLeft;
+ }
+ pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pRight ){
+ pRight->iTable = iReg+j+2;
+ sqlite3ExprIfFalse(
+ pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
+ );
+ }
+ pCompare->pLeft = 0;
+ }
+ sqlite3ExprDelete(db, pCompare);
+ }
+ }
+
+ /* These registers need to be preserved in case there is an IN operator
+ ** loop. So we could deallocate the registers here (and potentially
+ ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
+ ** simpler and safer to simply not reuse the registers.
+ **
+ ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
+ */
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ if( (pLoop->wsFlags & WHERE_IPK)!=0
+ && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
+ ){
+ /* Case 2: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ assert( pLoop->u.btree.nEq==1 );
+ pTerm = pLoop->aLTerm[0];
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ iReleaseReg = ++pParse->nMem;
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
+ if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
+ addrNxt = pLevel->addrNxt;
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
+ iRowidReg, 1);
+ VdbeCoverage(v);
+ filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
+ }
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
+ VdbeCoverage(v);
+ pLevel->op = OP_Noop;
+ }else if( (pLoop->wsFlags & WHERE_IPK)!=0
+ && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
+ ){
+ /* Case 3: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+ int memEndValue = 0;
+ WhereTerm *pStart, *pEnd;
+
+ j = 0;
+ pStart = pEnd = 0;
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
+ assert( pStart!=0 || pEnd!=0 );
+ if( bRev ){
+ pTerm = pStart;
+ pStart = pEnd;
+ pEnd = pTerm;
+ }
+ codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
+ if( pStart ){
+ Expr *pX; /* The expression that defines the start bound */
+ int r1, rTemp; /* Registers for holding the start boundary */
+ int op; /* Cursor seek operation */
+
+ /* The following constant maps TK_xx codes into corresponding
+ ** seek opcodes. It depends on a particular ordering of TK_xx
+ */
+ const u8 aMoveOp[] = {
+ /* TK_GT */ OP_SeekGT,
+ /* TK_LE */ OP_SeekLE,
+ /* TK_LT */ OP_SeekLT,
+ /* TK_GE */ OP_SeekGE
+ };
+ assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
+ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
+ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
+
+ assert( (pStart->wtFlags & TERM_VNULL)==0 );
+ testcase( pStart->wtFlags & TERM_VIRTUAL );
+ pX = pStart->pExpr;
+ assert( pX!=0 );
+ testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
+ if( sqlite3ExprIsVector(pX->pRight) ){
+ r1 = rTemp = sqlite3GetTempReg(pParse);
+ codeExprOrVector(pParse, pX->pRight, r1, 1);
+ testcase( pX->op==TK_GT );
+ testcase( pX->op==TK_GE );
+ testcase( pX->op==TK_LT );
+ testcase( pX->op==TK_LE );
+ op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
+ assert( pX->op!=TK_GT || op==OP_SeekGE );
+ assert( pX->op!=TK_GE || op==OP_SeekGE );
+ assert( pX->op!=TK_LT || op==OP_SeekLE );
+ assert( pX->op!=TK_LE || op==OP_SeekLE );
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
+ disableTerm(pLevel, pStart);
+ op = aMoveOp[(pX->op - TK_GT)];
+ }
+ sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
+ VdbeComment((v, "pk"));
+ VdbeCoverageIf(v, pX->op==TK_GT);
+ VdbeCoverageIf(v, pX->op==TK_LE);
+ VdbeCoverageIf(v, pX->op==TK_LT);
+ VdbeCoverageIf(v, pX->op==TK_GE);
+ sqlite3ReleaseTempReg(pParse, rTemp);
+ }else{
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ }
+ if( pEnd ){
+ Expr *pX;
+ pX = pEnd->pExpr;
+ assert( pX!=0 );
+ assert( (pEnd->wtFlags & TERM_VNULL)==0 );
+ testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
+ testcase( pEnd->wtFlags & TERM_VIRTUAL );
+ memEndValue = ++pParse->nMem;
+ codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
+ if( 0==sqlite3ExprIsVector(pX->pRight)
+ && (pX->op==TK_LT || pX->op==TK_GT)
+ ){
+ testOp = bRev ? OP_Le : OP_Ge;
+ }else{
+ testOp = bRev ? OP_Lt : OP_Gt;
+ }
+ if( 0==sqlite3ExprIsVector(pX->pRight) ){
+ disableTerm(pLevel, pEnd);
+ }
+ }
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ assert( pLevel->p5==0 );
+ if( testOp!=OP_Noop ){
+ iRowidReg = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
+ sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
+ VdbeCoverageIf(v, testOp==OP_Le);
+ VdbeCoverageIf(v, testOp==OP_Lt);
+ VdbeCoverageIf(v, testOp==OP_Ge);
+ VdbeCoverageIf(v, testOp==OP_Gt);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
+ }
+ }else if( pLoop->wsFlags & WHERE_INDEXED ){
+ /* Case 4: A scan using an index.
+ **
+ ** The WHERE clause may contain zero or more equality
+ ** terms ("==" or "IN" operators) that refer to the N
+ ** left-most columns of the index. It may also contain
+ ** inequality constraints (>, <, >= or <=) on the indexed
+ ** column that immediately follows the N equalities. Only
+ ** the right-most column can be an inequality - the rest must
+ ** use the "==" and "IN" operators. For example, if the
+ ** index is on (x,y,z), then the following clauses are all
+ ** optimized:
+ **
+ ** x=5
+ ** x=5 AND y=10
+ ** x=5 AND y<10
+ ** x=5 AND y>5 AND y<10
+ ** x=5 AND y=5 AND z<=10
+ **
+ ** The z<10 term of the following cannot be used, only
+ ** the x=5 term:
+ **
+ ** x=5 AND z<10
+ **
+ ** N may be zero if there are inequality constraints.
+ ** If there are no inequality constraints, then N is at
+ ** least one.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ static const u8 aStartOp[] = {
+ 0,
+ 0,
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */
+ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
+ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
+ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
+ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
+ };
+ static const u8 aEndOp[] = {
+ OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
+ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
+ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
+ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
+ };
+ u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
+ u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
+ u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
+ int regBase; /* Base register holding constraint values */
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
+ int startEq; /* True if range start uses ==, >= or <= */
+ int endEq; /* True if range end uses ==, >= or <= */
+ int start_constraints; /* Start of range is constrained */
+ int nConstraint; /* Number of constraint terms */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int nExtraReg = 0; /* Number of extra registers needed */
+ int op; /* Instruction opcode */
+ char *zStartAff; /* Affinity for start of range constraint */
+ char *zEndAff = 0; /* Affinity for end of range constraint */
+ u8 bSeekPastNull = 0; /* True to seek past initial nulls */
+ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
+ int omitTable; /* True if we use the index only */
+ int regBignull = 0; /* big-null flag register */
+ int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */
+
+ pIdx = pLoop->u.btree.pIndex;
+ iIdxCur = pLevel->iIdxCur;
+ assert( nEq>=pLoop->nSkip );
+
+ /* Find any inequality constraint terms for the start and end
+ ** of the range.
+ */
+ j = nEq;
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
+ pRangeStart = pLoop->aLTerm[j++];
+ nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
+ /* Like optimization range constraints always occur in pairs */
+ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
+ (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
+ }
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
+ pRangeEnd = pLoop->aLTerm[j++];
+ nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
+ assert( pRangeStart!=0 ); /* LIKE opt constraints */
+ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
+ pLevel->iLikeRepCntr = (u32)++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
+ VdbeComment((v, "LIKE loop counter"));
+ pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
+ /* iLikeRepCntr actually stores 2x the counter register number. The
+ ** bottom bit indicates whether the search order is ASC or DESC. */
+ testcase( bRev );
+ testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
+ assert( (bRev & ~1)==0 );
+ pLevel->iLikeRepCntr <<=1;
+ pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
+ }
+#endif
+ if( pRangeStart==0 ){
+ j = pIdx->aiColumn[nEq];
+ if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
+ bSeekPastNull = 1;
+ }
+ }
+ }
+ assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
+
+ /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
+ ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
+ ** FIRST). In both cases separate ordered scans are made of those
+ ** index entries for which the column is null and for those for which
+ ** it is not. For an ASC sort, the non-NULL entries are scanned first.
+ ** For DESC, NULL entries are scanned first.
+ */
+ if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
+ && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
+ ){
+ assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
+ assert( pRangeEnd==0 && pRangeStart==0 );
+ testcase( pLoop->nSkip>0 );
+ nExtraReg = 1;
+ bSeekPastNull = 1;
+ pLevel->regBignull = regBignull = ++pParse->nMem;
+ if( pLevel->iLeftJoin ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
+ }
+ pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
+ }
+
+ /* If we are doing a reverse order scan on an ascending index, or
+ ** a forward order scan on a descending index, interchange the
+ ** start and end terms (pRangeStart and pRangeEnd).
+ */
+ if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart);
+ SWAP(u8, bSeekPastNull, bStopAtNull);
+ SWAP(u8, nBtm, nTop);
+ }
+
+ if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
+ /* In case OP_SeekScan is used, ensure that the index cursor does not
+ ** point to a valid row for the first iteration of this loop. */
+ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
+ }
+
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and store the values of those terms in an array of registers
+ ** starting at regBase.
+ */
+ codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
+ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
+ assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
+ if( zStartAff && nTop ){
+ zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
+ }
+ addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
+
+ testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
+ testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
+ testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
+ testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
+ start_constraints = pRangeStart || nEq>0;
+
+ /* Seek the index cursor to the start of the range. */
+ nConstraint = nEq;
+ if( pRangeStart ){
+ Expr *pRight = pRangeStart->pExpr->pRight;
+ codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
+ whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
+ if( (pRangeStart->wtFlags & TERM_VNULL)==0
+ && sqlite3ExprCanBeNull(pRight)
+ ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
+ VdbeCoverage(v);
+ }
+ if( zStartAff ){
+ updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
+ }
+ nConstraint += nBtm;
+ testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
+ if( sqlite3ExprIsVector(pRight)==0 ){
+ disableTerm(pLevel, pRangeStart);
+ }else{
+ startEq = 1;
+ }
+ bSeekPastNull = 0;
+ }else if( bSeekPastNull ){
+ startEq = 0;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ start_constraints = 1;
+ nConstraint++;
+ }else if( regBignull ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ start_constraints = 1;
+ nConstraint++;
+ }
+ codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
+ if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
+ /* The skip-scan logic inside the call to codeAllEqualityConstraints()
+ ** above has already left the cursor sitting on the correct row,
+ ** so no further seeking is needed */
+ }else{
+ if( regBignull ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
+ VdbeComment((v, "NULL-scan pass ctr"));
+ }
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
+ regBase, nEq);
+ VdbeCoverage(v);
+ filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
+ }
+
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
+ assert( op!=0 );
+ if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
+ assert( regBignull==0 );
+ /* TUNING: The OP_SeekScan opcode seeks to reduce the number
+ ** of expensive seek operations by replacing a single seek with
+ ** 1 or more step operations. The question is, how many steps
+ ** should we try before giving up and going with a seek. The cost
+ ** of a seek is proportional to the logarithm of the of the number
+ ** of entries in the tree, so basing the number of steps to try
+ ** on the estimated number of rows in the btree seems like a good
+ ** guess. */
+ addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
+ (pIdx->aiRowLogEst[0]+9)/10);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
+ VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
+ VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
+ VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
+ VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
+ VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
+
+ assert( bSeekPastNull==0 || bStopAtNull==0 );
+ if( regBignull ){
+ assert( bSeekPastNull==1 || bStopAtNull==1 );
+ assert( bSeekPastNull==!bStopAtNull );
+ assert( bStopAtNull==startEq );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
+ op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
+ nConstraint-startEq);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
+ VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
+ VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
+ VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
+ assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
+ }
+ }
+
+ /* Load the value for the inequality constraint at the end of the
+ ** range (if any).
+ */
+ nConstraint = nEq;
+ assert( pLevel->p2==0 );
+ if( pRangeEnd ){
+ Expr *pRight = pRangeEnd->pExpr->pRight;
+ if( addrSeekScan ){
+ /* For a seek-scan that has a range on the lowest term of the index,
+ ** we have to make the top of the loop be code that sets the end
+ ** condition of the range. Otherwise, the OP_SeekScan might jump
+ ** over that initialization, leaving the range-end value set to the
+ ** range-start value, resulting in a wrong answer.
+ ** See ticket 5981a8c041a3c2f3 (2021-11-02).
+ */
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+ }
+ codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
+ whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
+ if( (pRangeEnd->wtFlags & TERM_VNULL)==0
+ && sqlite3ExprCanBeNull(pRight)
+ ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
+ VdbeCoverage(v);
+ }
+ if( zEndAff ){
+ updateRangeAffinityStr(pRight, nTop, zEndAff);
+ codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
+ }else{
+ assert( pParse->db->mallocFailed );
+ }
+ nConstraint += nTop;
+ testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
+
+ if( sqlite3ExprIsVector(pRight)==0 ){
+ disableTerm(pLevel, pRangeEnd);
+ }else{
+ endEq = 1;
+ }
+ }else if( bStopAtNull ){
+ if( regBignull==0 ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ endEq = 0;
+ }
+ nConstraint++;
+ }
+ sqlite3DbFree(db, zStartAff);
+ sqlite3DbFree(db, zEndAff);
+
+ /* Top of the loop body */
+ if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ /* Check if the index cursor is past the end of the range. */
+ if( nConstraint ){
+ if( regBignull ){
+ /* Except, skip the end-of-range check while doing the NULL-scan */
+ sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
+ VdbeComment((v, "If NULL-scan 2nd pass"));
+ VdbeCoverage(v);
+ }
+ op = aEndOp[bRev*2 + endEq];
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
+ testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
+ testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
+ testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
+ testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
+ if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
+ }
+ if( regBignull ){
+ /* During a NULL-scan, check to see if we have reached the end of
+ ** the NULLs */
+ assert( bSeekPastNull==!bStopAtNull );
+ assert( bSeekPastNull+bStopAtNull==1 );
+ assert( nConstraint+bSeekPastNull>0 );
+ sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeComment((v, "If NULL-scan 1st pass"));
+ VdbeCoverage(v);
+ op = aEndOp[bRev*2 + bSeekPastNull];
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
+ nConstraint+bSeekPastNull);
+ testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
+ testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
+ testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
+ testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
+ }
+
+ if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
+ sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
+ }
+
+ /* Seek the table cursor, if required */
+ omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
+ && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
+ if( omitTable ){
+ /* pIdx is a covering index. No need to access the main table. */
+ }else if( HasRowid(pIdx->pTable) ){
+ codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
+ }else if( iCur!=iIdxCur ){
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
+ iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ for(j=0; j<pPk->nKeyCol; j++){
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
+ }
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
+ iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
+ }
+
+ if( pLevel->iLeftJoin==0 ){
+ /* If pIdx is an index on one or more expressions, then look through
+ ** all the expressions in pWInfo and try to transform matching expressions
+ ** into reference to index columns. Also attempt to translate references
+ ** to virtual columns in the table into references to (stored) columns
+ ** of the index.
+ **
+ ** Do not do this for the RHS of a LEFT JOIN. This is because the
+ ** expression may be evaluated after OP_NullRow has been executed on
+ ** the cursor. In this case it is important to do the full evaluation,
+ ** as the result of the expression may not be NULL, even if all table
+ ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
+ **
+ ** Also, do not do this when processing one index an a multi-index
+ ** OR clause, since the transformation will become invalid once we
+ ** move forward to the next index.
+ ** https://sqlite.org/src/info/4e8e4857d32d401f
+ */
+ if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){
+ whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
+ }
+
+ /* If a partial index is driving the loop, try to eliminate WHERE clause
+ ** terms from the query that must be true due to the WHERE clause of
+ ** the partial index.
+ **
+ ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
+ ** for a LEFT JOIN.
+ */
+ if( pIdx->pPartIdxWhere ){
+ whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
+ }
+ }else{
+ testcase( pIdx->pPartIdxWhere );
+ /* The following assert() is not a requirement, merely an observation:
+ ** The OR-optimization doesn't work for the right hand table of
+ ** a LEFT JOIN: */
+ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
+ }
+
+ /* Record the instruction used to terminate the loop. */
+ if( pLoop->wsFlags & WHERE_ONEROW ){
+ pLevel->op = OP_Noop;
+ }else if( bRev ){
+ pLevel->op = OP_Prev;
+ }else{
+ pLevel->op = OP_Next;
+ }
+ pLevel->p1 = iIdxCur;
+ pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }else{
+ assert( pLevel->p5==0 );
+ }
+ if( omitTable ) pIdx = 0;
+ }else
+
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ if( pLoop->wsFlags & WHERE_MULTI_OR ){
+ /* Case 5: Two or more separately indexed terms connected by OR
+ **
+ ** Example:
+ **
+ ** CREATE TABLE t1(a,b,c,d);
+ ** CREATE INDEX i1 ON t1(a);
+ ** CREATE INDEX i2 ON t1(b);
+ ** CREATE INDEX i3 ON t1(c);
+ **
+ ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
+ **
+ ** In the example, there are three indexed terms connected by OR.
+ ** The top of the loop looks like this:
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ **
+ ** Then, for each indexed term, the following. The arguments to
+ ** RowSetTest are such that the rowid of the current row is inserted
+ ** into the RowSet. If it is already present, control skips the
+ ** Gosub opcode and jumps straight to the code generated by WhereEnd().
+ **
+ ** sqlite3WhereBegin(<term>)
+ ** RowSetTest # Insert rowid into rowset
+ ** Gosub 2 A
+ ** sqlite3WhereEnd()
+ **
+ ** Following the above, code to terminate the loop. Label A, the target
+ ** of the Gosub above, jumps to the instruction right after the Goto.
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ ** Goto B # The loop is finished.
+ **
+ ** A: <loop body> # Return data, whatever.
+ **
+ ** Return 2 # Jump back to the Gosub
+ **
+ ** B: <after the loop>
+ **
+ ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
+ ** use an ephemeral index instead of a RowSet to record the primary
+ ** keys of the rows we have already seen.
+ **
+ */
+ WhereClause *pOrWc; /* The OR-clause broken out into subterms */
+ SrcList *pOrTab; /* Shortened table list or OR-clause generation */
+ Index *pCov = 0; /* Potential covering index (or NULL) */
+ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
+
+ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
+ int regRowset = 0; /* Register for RowSet object */
+ int regRowid = 0; /* Register holding rowid */
+ int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
+ int iRetInit; /* Address of regReturn init */
+ int untestedTerms = 0; /* Some terms not completely tested */
+ int ii; /* Loop counter */
+ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
+ Table *pTab = pTabItem->pTab;
+
+ pTerm = pLoop->aLTerm[0];
+ assert( pTerm!=0 );
+ assert( pTerm->eOperator & WO_OR );
+ assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
+ pOrWc = &pTerm->u.pOrInfo->wc;
+ pLevel->op = OP_Return;
+ pLevel->p1 = regReturn;
+
+ /* Set up a new SrcList in pOrTab containing the table being scanned
+ ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
+ ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
+ */
+ if( pWInfo->nLevel>1 ){
+ int nNotReady; /* The number of notReady tables */
+ SrcItem *origSrc; /* Original list of tables */
+ nNotReady = pWInfo->nLevel - iLevel - 1;
+ pOrTab = sqlite3StackAllocRaw(db,
+ sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
+ if( pOrTab==0 ) return notReady;
+ pOrTab->nAlloc = (u8)(nNotReady + 1);
+ pOrTab->nSrc = pOrTab->nAlloc;
+ memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
+ origSrc = pWInfo->pTabList->a;
+ for(k=1; k<=nNotReady; k++){
+ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
+ }
+ }else{
+ pOrTab = pWInfo->pTabList;
+ }
+
+ /* Initialize the rowset register to contain NULL. An SQL NULL is
+ ** equivalent to an empty rowset. Or, create an ephemeral index
+ ** capable of holding primary keys in the case of a WITHOUT ROWID.
+ **
+ ** Also initialize regReturn to contain the address of the instruction
+ ** immediately following the OP_Return at the bottom of the loop. This
+ ** is required in a few obscure LEFT JOIN cases where control jumps
+ ** over the top of the loop into the body of it. In this case the
+ ** correct response for the end-of-loop code (the OP_Return) is to
+ ** fall through to the next instruction, just as an OP_Next does if
+ ** called on an uninitialized cursor.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ if( HasRowid(pTab) ){
+ regRowset = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ regRowset = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+ regRowid = ++pParse->nMem;
+ }
+ iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
+
+ /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
+ ** Then for every term xN, evaluate as the subexpression: xN AND y
+ ** That way, terms in y that are factored into the disjunction will
+ ** be picked up by the recursive calls to sqlite3WhereBegin() below.
+ **
+ ** Actually, each subexpression is converted to "xN AND w" where w is
+ ** the "interesting" terms of z - terms that did not originate in the
+ ** ON or USING clause of a LEFT JOIN, and terms that are usable as
+ ** indices.
+ **
+ ** This optimization also only applies if the (x1 OR x2 OR ...) term
+ ** is not contained in the ON clause of a LEFT JOIN.
+ ** See ticket http://www.sqlite.org/src/info/f2369304e4
+ **
+ ** 2022-02-04: Do not push down slices of a row-value comparison.
+ ** In other words, "w" or "y" may not be a slice of a vector. Otherwise,
+ ** the initialization of the right-hand operand of the vector comparison
+ ** might not occur, or might occur only in an OR branch that is not
+ ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
+ **
+ ** 2022-03-03: Do not push down expressions that involve subqueries.
+ ** The subquery might get coded as a subroutine. Any table-references
+ ** in the subquery might be resolved to index-references for the index on
+ ** the OR branch in which the subroutine is coded. But if the subroutine
+ ** is invoked from a different OR branch that uses a different index, such
+ ** index-references will not work. tag-20220303a
+ ** https://sqlite.org/forum/forumpost/36937b197273d403
+ */
+ if( pWC->nTerm>1 ){
+ int iTerm;
+ for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
+ Expr *pExpr = pWC->a[iTerm].pExpr;
+ if( &pWC->a[iTerm] == pTerm ) continue;
+ testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
+ testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
+ testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
+ if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
+ continue;
+ }
+ if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
+ if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
+ }
+ if( pAndExpr ){
+ /* The extra 0x10000 bit on the opcode is masked off and does not
+ ** become part of the new Expr.op. However, it does make the
+ ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
+ ** prevents sqlite3PExpr() from applying the AND short-circuit
+ ** optimization, which we do not want here. */
+ pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
+ }
+ }
+
+ /* Run a separate WHERE clause for each term of the OR clause. After
+ ** eliminating duplicates from other WHERE clauses, the action for each
+ ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
+ */
+ ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
+ for(ii=0; ii<pOrWc->nTerm; ii++){
+ WhereTerm *pOrTerm = &pOrWc->a[ii];
+ if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */
+ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
+ Expr *pDelete; /* Local copy of OR clause term */
+ int jmp1 = 0; /* Address of jump operation */
+ testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
+ && !ExprHasProperty(pOrExpr, EP_OuterON)
+ ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
+ pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDelete);
+ continue;
+ }
+ if( pAndExpr ){
+ pAndExpr->pLeft = pOrExpr;
+ pOrExpr = pAndExpr;
+ }
+ /* Loop through table entries that match term pOrTerm. */
+ ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
+ WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
+ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
+ WHERE_OR_SUBCLAUSE, iCovCur);
+ assert( pSubWInfo || pParse->nErr );
+ if( pSubWInfo ){
+ WhereLoop *pSubLoop;
+ int addrExplain = sqlite3WhereExplainOneScan(
+ pParse, pOrTab, &pSubWInfo->a[0], 0
+ );
+ sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
+
+ /* This is the sub-WHERE clause body. First skip over
+ ** duplicate rows from prior sub-WHERE clauses, and record the
+ ** rowid (or PRIMARY KEY) for the current row so that the same
+ ** row will be skipped in subsequent sub-WHERE clauses.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
+ if( HasRowid(pTab) ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
+ jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
+ regRowid, iSet);
+ VdbeCoverage(v);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ int nPk = pPk->nKeyCol;
+ int iPk;
+ int r;
+
+ /* Read the PK into an array of temp registers. */
+ r = sqlite3GetTempRange(pParse, nPk);
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
+ }
+
+ /* Check if the temp table already contains this key. If so,
+ ** the row has already been included in the result set and
+ ** can be ignored (by jumping past the Gosub below). Otherwise,
+ ** insert the key into the temp table and proceed with processing
+ ** the row.
+ **
+ ** Use some of the same optimizations as OP_RowSetTest: If iSet
+ ** is zero, assume that the key cannot already be present in
+ ** the temp table. And if iSet is -1, assume that there is no
+ ** need to insert the key into the temp table, as it will never
+ ** be tested for. */
+ if( iSet ){
+ jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
+ VdbeCoverage(v);
+ }
+ if( iSet>=0 ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
+ r, nPk);
+ if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
+
+ /* Release the array of temp registers */
+ sqlite3ReleaseTempRange(pParse, r, nPk);
+ }
+ }
+
+ /* Invoke the main loop body as a subroutine */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
+
+ /* Jump here (skipping the main loop body subroutine) if the
+ ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
+ if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
+
+ /* The pSubWInfo->untestedTerms flag means that this OR term
+ ** contained one or more AND term from a notReady table. The
+ ** terms from the notReady table could not be tested and will
+ ** need to be tested later.
+ */
+ if( pSubWInfo->untestedTerms ) untestedTerms = 1;
+
+ /* If all of the OR-connected terms are optimized using the same
+ ** index, and the index is opened using the same cursor number
+ ** by each call to sqlite3WhereBegin() made by this loop, it may
+ ** be possible to use that index as a covering index.
+ **
+ ** If the call to sqlite3WhereBegin() above resulted in a scan that
+ ** uses an index, and this is either the first OR-connected term
+ ** processed or the index is the same as that used by all previous
+ ** terms, set pCov to the candidate covering index. Otherwise, set
+ ** pCov to NULL to indicate that no candidate covering index will
+ ** be available.
+ */
+ pSubLoop = pSubWInfo->a[0].pWLoop;
+ assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
+ if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
+ && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
+ && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
+ ){
+ assert( pSubWInfo->a[0].iIdxCur==iCovCur );
+ pCov = pSubLoop->u.btree.pIndex;
+ }else{
+ pCov = 0;
+ }
+ if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
+ pWInfo->bDeferredSeek = 1;
+ }
+
+ /* Finish the loop through table entries that match term pOrTerm. */
+ sqlite3WhereEnd(pSubWInfo);
+ ExplainQueryPlanPop(pParse);
+ }
+ sqlite3ExprDelete(db, pDelete);
+ }
+ }
+ ExplainQueryPlanPop(pParse);
+ assert( pLevel->pWLoop==pLoop );
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
+ assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
+ pLevel->u.pCoveringIdx = pCov;
+ if( pCov ) pLevel->iIdxCur = iCovCur;
+ if( pAndExpr ){
+ pAndExpr->pLeft = 0;
+ sqlite3ExprDelete(db, pAndExpr);
+ }
+ sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeGoto(v, pLevel->addrBrk);
+ sqlite3VdbeResolveLabel(v, iLoopBody);
+
+ /* Set the P2 operand of the OP_Return opcode that will end the current
+ ** loop to point to this spot, which is the top of the next containing
+ ** loop. The byte-code formatter will use that P2 value as a hint to
+ ** indent everything in between the this point and the final OP_Return.
+ ** See tag-20220407a in vdbe.c and shell.c */
+ assert( pLevel->op==OP_Return );
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
+ if( !untestedTerms ) disableTerm(pLevel, pTerm);
+ }else
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+
+ {
+ /* Case 6: There is no usable index. We must do a complete
+ ** scan of the entire table.
+ */
+ static const u8 aStep[] = { OP_Next, OP_Prev };
+ static const u8 aStart[] = { OP_Rewind, OP_Last };
+ assert( bRev==0 || bRev==1 );
+ if( pTabItem->fg.isRecursive ){
+ /* Tables marked isRecursive have only a single row that is stored in
+ ** a pseudo-cursor. No need to Rewind or Next such cursors. */
+ pLevel->op = OP_Noop;
+ }else{
+ codeCursorHint(pTabItem, pWInfo, pLevel, 0);
+ pLevel->op = aStep[bRev];
+ pLevel->p1 = iCur;
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }
+ }
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
+#endif
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ **
+ ** This loop may run between one and three times, depending on the
+ ** constraints to be generated. The value of stack variable iLoop
+ ** determines the constraints coded by each iteration, as follows:
+ **
+ ** iLoop==1: Code only expressions that are entirely covered by pIdx.
+ ** iLoop==2: Code remaining expressions that do not contain correlated
+ ** sub-queries.
+ ** iLoop==3: Code all remaining expressions.
+ **
+ ** An effort is made to skip unnecessary iterations of the loop.
+ */
+ iLoop = (pIdx ? 1 : 2);
+ do{
+ int iNext = 0; /* Next value for iLoop */
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
+ Expr *pE;
+ int skipLikeAddr = 0;
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
+ testcase( pWInfo->untestedTerms==0
+ && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
+ pWInfo->untestedTerms = 1;
+ continue;
+ }
+ pE = pTerm->pExpr;
+ assert( pE!=0 );
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
+ if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
+ /* Defer processing WHERE clause constraints until after outer
+ ** join processing. tag-20220513a */
+ continue;
+ }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
+ && !ExprHasProperty(pE,EP_OuterON) ){
+ continue;
+ }else{
+ Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
+ if( m & pLevel->notReady ){
+ /* An ON clause that is not ripe */
+ continue;
+ }
+ }
+ }
+ if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
+ iNext = 2;
+ continue;
+ }
+ if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
+ if( iNext==0 ) iNext = 3;
+ continue;
+ }
+
+ if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
+ /* If the TERM_LIKECOND flag is set, that means that the range search
+ ** is sufficient to guarantee that the LIKE operator is true, so we
+ ** can skip the call to the like(A,B) function. But this only works
+ ** for strings. So do not skip the call to the function on the pass
+ ** that compares BLOBs. */
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ continue;
+#else
+ u32 x = pLevel->iLikeRepCntr;
+ if( x>0 ){
+ skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
+ VdbeCoverageIf(v, (x&1)==1);
+ VdbeCoverageIf(v, (x&1)==0);
+ }
+#endif
+ }
+#ifdef WHERETRACE_ENABLED /* 0xffff */
+ if( sqlite3WhereTrace ){
+ VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
+ pWC->nTerm-j, pTerm, iLoop));
+ }
+ if( sqlite3WhereTrace & 0x800 ){
+ sqlite3DebugPrintf("Coding auxiliary constraint:\n");
+ sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
+ }
+#endif
+ sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
+ if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ iLoop = iNext;
+ }while( iLoop>0 );
+
+ /* Insert code to test for implied constraints based on transitivity
+ ** of the "==" operator.
+ **
+ ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
+ ** and we are coding the t1 loop and the t2 loop has not yet coded,
+ ** then we cannot use the "t1.a=t2.b" constraint, but we can code
+ ** the implied "t1.a=123" constraint.
+ */
+ for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
+ Expr *pE, sEAlt;
+ WhereTerm *pAlt;
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
+ if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
+ if( pTerm->leftCursor!=iCur ) continue;
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
+ pE = pTerm->pExpr;
+#ifdef WHERETRACE_ENABLED /* 0x800 */
+ if( sqlite3WhereTrace & 0x800 ){
+ sqlite3DebugPrintf("Coding transitive constraint:\n");
+ sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
+ }
+#endif
+ assert( !ExprHasProperty(pE, EP_OuterON) );
+ assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
+ WO_EQ|WO_IN|WO_IS, 0);
+ if( pAlt==0 ) continue;
+ if( pAlt->wtFlags & (TERM_CODED) ) continue;
+ if( (pAlt->eOperator & WO_IN)
+ && ExprUseXSelect(pAlt->pExpr)
+ && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
+ ){
+ continue;
+ }
+ testcase( pAlt->eOperator & WO_EQ );
+ testcase( pAlt->eOperator & WO_IS );
+ testcase( pAlt->eOperator & WO_IN );
+ VdbeModuleComment((v, "begin transitive constraint"));
+ sEAlt = *pAlt->pExpr;
+ sEAlt.pLeft = pE->pLeft;
+ sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
+ pAlt->wtFlags |= TERM_CODED;
+ }
+
+ /* For a RIGHT OUTER JOIN, record the fact that the current row has
+ ** been matched at least once.
+ */
+ if( pLevel->pRJ ){
+ Table *pTab;
+ int nPk;
+ int r;
+ int jmp1 = 0;
+ WhereRightJoin *pRJ = pLevel->pRJ;
+
+ /* pTab is the right-hand table of the RIGHT JOIN. Generate code that
+ ** will record that the current row of that table has been matched at
+ ** least once. This is accomplished by storing the PK for the row in
+ ** both the iMatch index and the regBloom Bloom filter.
+ */
+ pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
+ if( HasRowid(pTab) ){
+ r = sqlite3GetTempRange(pParse, 2);
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
+ nPk = 1;
+ }else{
+ int iPk;
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ nPk = pPk->nKeyCol;
+ r = sqlite3GetTempRange(pParse, nPk+1);
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
+ }
+ }
+ jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
+ VdbeCoverage(v);
+ VdbeComment((v, "match against %s", pTab->zName));
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3VdbeJumpHere(v, jmp1);
+ sqlite3ReleaseTempRange(pParse, r, nPk+1);
+ }
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
+ VdbeComment((v, "record LEFT JOIN hit"));
+ if( pLevel->pRJ==0 ){
+ goto code_outer_join_constraints; /* WHERE clause constraints */
+ }
+ }
+
+ if( pLevel->pRJ ){
+ /* Create a subroutine used to process all interior loops and code
+ ** of the RIGHT JOIN. During normal operation, the subroutine will
+ ** be in-line with the rest of the code. But at the end, a separate
+ ** loop will run that invokes this subroutine for unmatched rows
+ ** of pTab, with all tables to left begin set to NULL.
+ */
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
+ pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
+ assert( pParse->withinRJSubrtn < 255 );
+ pParse->withinRJSubrtn++;
+
+ /* WHERE clause constraints must be deferred until after outer join
+ ** row elimination has completed, since WHERE clause constraints apply
+ ** to the results of the OUTER JOIN. The following loop generates the
+ ** appropriate WHERE clause constraint checks. tag-20220513a.
+ */
+ code_outer_join_constraints:
+ for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
+ assert( pWInfo->untestedTerms );
+ continue;
+ }
+ if( pTabItem->fg.jointype & JT_LTORJ ) continue;
+ assert( pTerm->pExpr );
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+
+#if WHERETRACE_ENABLED /* 0x20800 */
+ if( sqlite3WhereTrace & 0x20000 ){
+ sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
+ iLevel);
+ sqlite3WhereClausePrint(pWC);
+ }
+ if( sqlite3WhereTrace & 0x800 ){
+ sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
+ iLevel, (u64)pLevel->notReady);
+ }
+#endif
+ return pLevel->notReady;
+}
+
+/*
+** Generate the code for the loop that finds all non-matched terms
+** for a RIGHT JOIN.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
+ WhereInfo *pWInfo,
+ int iLevel,
+ WhereLevel *pLevel
+){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ Expr *pSubWhere = 0;
+ WhereClause *pWC = &pWInfo->sWC;
+ WhereInfo *pSubWInfo;
+ WhereLoop *pLoop = pLevel->pWLoop;
+ SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ SrcList sFrom;
+ Bitmask mAll = 0;
+ int k;
+
+ ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
+ sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
+ pRJ->regReturn);
+ for(k=0; k<iLevel; k++){
+ int iIdxCur;
+ mAll |= pWInfo->a[k].pWLoop->maskSelf;
+ sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
+ iIdxCur = pWInfo->a[k].iIdxCur;
+ if( iIdxCur ){
+ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
+ }
+ }
+ if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
+ mAll |= pLoop->maskSelf;
+ for(k=0; k<pWC->nTerm; k++){
+ WhereTerm *pTerm = &pWC->a[k];
+ if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
+ && pTerm->eOperator!=WO_ROWVAL
+ ){
+ break;
+ }
+ if( pTerm->prereqAll & ~mAll ) continue;
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
+ pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
+ sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
+ }
+ }
+ sFrom.nSrc = 1;
+ sFrom.nAlloc = 1;
+ memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
+ sFrom.a[0].fg.jointype = 0;
+ assert( pParse->withinRJSubrtn < 100 );
+ pParse->withinRJSubrtn++;
+ pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
+ WHERE_RIGHT_JOIN, 0);
+ if( pSubWInfo ){
+ int iCur = pLevel->iTabCur;
+ int r = ++pParse->nMem;
+ int nPk;
+ int jmp;
+ int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
+ Table *pTab = pTabItem->pTab;
+ if( HasRowid(pTab) ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
+ nPk = 1;
+ }else{
+ int iPk;
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ nPk = pPk->nKeyCol;
+ pParse->nMem += nPk - 1;
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
+ }
+ }
+ jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, jmp);
+ sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
+ sqlite3WhereEnd(pSubWInfo);
+ }
+ sqlite3ExprDelete(pParse->db, pSubWhere);
+ ExplainQueryPlanPop(pParse);
+ assert( pParse->withinRJSubrtn>0 );
+ pParse->withinRJSubrtn--;
+}
+
+/************** End of wherecode.c *******************************************/
+/************** Begin file whereexpr.c ***************************************/
+/*
+** 2015-06-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements.
+**
+** This file was originally part of where.c but was split out to improve
+** readability and editabiliity. This file contains utility routines for
+** analyzing Expr objects in the WHERE clause.
+*/
+/* #include "sqliteInt.h" */
+/* #include "whereInt.h" */
+
+/* Forward declarations */
+static void exprAnalyze(SrcList*, WhereClause*, int);
+
+/*
+** Deallocate all memory associated with a WhereOrInfo object.
+*/
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
+ sqlite3WhereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Deallocate all memory associated with a WhereAndInfo object.
+*/
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
+ sqlite3WhereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Add a single new WhereTerm entry to the WhereClause object pWC.
+** The new WhereTerm object is constructed from Expr p and with wtFlags.
+** The index in pWC->a[] of the new WhereTerm is returned on success.
+** 0 is returned if the new WhereTerm could not be added due to a memory
+** allocation error. The memory allocation failure will be recorded in
+** the db->mallocFailed flag so that higher-level functions can detect it.
+**
+** This routine will increase the size of the pWC->a[] array as necessary.
+**
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
+** for freeing the expression p is assumed by the WhereClause object pWC.
+** This is true even if this routine fails to allocate a new WhereTerm.
+**
+** WARNING: This routine might reallocate the space used to store
+** WhereTerms. All pointers to WhereTerms should be invalidated after
+** calling this routine. Such pointers may be reinitialized by referencing
+** the pWC->a[] array.
+*/
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
+ WhereTerm *pTerm;
+ int idx;
+ testcase( wtFlags & TERM_VIRTUAL );
+ if( pWC->nTerm>=pWC->nSlot ){
+ WhereTerm *pOld = pWC->a;
+ sqlite3 *db = pWC->pWInfo->pParse->db;
+ pWC->a = sqlite3WhereMalloc(pWC->pWInfo, sizeof(pWC->a[0])*pWC->nSlot*2 );
+ if( pWC->a==0 ){
+ if( wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, p);
+ }
+ pWC->a = pOld;
+ return 0;
+ }
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
+ pWC->nSlot = pWC->nSlot*2;
+ }
+ pTerm = &pWC->a[idx = pWC->nTerm++];
+ if( (wtFlags & TERM_VIRTUAL)==0 ) pWC->nBase = pWC->nTerm;
+ if( p && ExprHasProperty(p, EP_Unlikely) ){
+ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
+ }else{
+ pTerm->truthProb = 1;
+ }
+ pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
+ pTerm->wtFlags = wtFlags;
+ pTerm->pWC = pWC;
+ pTerm->iParent = -1;
+ memset(&pTerm->eOperator, 0,
+ sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
+ return idx;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause term. The allowed operators are
+** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
+*/
+static int allowedOp(int op){
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE );
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE );
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE );
+ assert( TK_GE==TK_EQ+4 );
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
+}
+
+/*
+** Commute a comparison operator. Expressions of the form "X op Y"
+** are converted into "Y op X".
+*/
+static u16 exprCommute(Parse *pParse, Expr *pExpr){
+ if( pExpr->pLeft->op==TK_VECTOR
+ || pExpr->pRight->op==TK_VECTOR
+ || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
+ sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
+ ){
+ pExpr->flags ^= EP_Commuted;
+ }
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
+ if( pExpr->op>=TK_GT ){
+ assert( TK_LT==TK_GT+2 );
+ assert( TK_GE==TK_LE+2 );
+ assert( TK_GT>TK_EQ );
+ assert( TK_GT<TK_LE );
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+ }
+ return 0;
+}
+
+/*
+** Translate from TK_xx operator to WO_xx bitmask.
+*/
+static u16 operatorMask(int op){
+ u16 c;
+ assert( allowedOp(op) );
+ if( op==TK_IN ){
+ c = WO_IN;
+ }else if( op==TK_ISNULL ){
+ c = WO_ISNULL;
+ }else if( op==TK_IS ){
+ c = WO_IS;
+ }else{
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
+ c = (u16)(WO_EQ<<(op-TK_EQ));
+ }
+ assert( op!=TK_ISNULL || c==WO_ISNULL );
+ assert( op!=TK_IN || c==WO_IN );
+ assert( op!=TK_EQ || c==WO_EQ );
+ assert( op!=TK_LT || c==WO_LT );
+ assert( op!=TK_LE || c==WO_LE );
+ assert( op!=TK_GT || c==WO_GT );
+ assert( op!=TK_GE || c==WO_GE );
+ assert( op!=TK_IS || c==WO_IS );
+ return c;
+}
+
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+/*
+** Check to see if the given expression is a LIKE or GLOB operator that
+** can be optimized using inequality constraints. Return TRUE if it is
+** so and false if not.
+**
+** In order for the operator to be optimizible, the RHS must be a string
+** literal that does not begin with a wildcard. The LHS must be a column
+** that may only be NULL, a string, or a BLOB, never a number. (This means
+** that virtual tables cannot participate in the LIKE optimization.) The
+** collating sequence for the column on the LHS must be appropriate for
+** the operator.
+*/
+static int isLikeOrGlob(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* Test this expression */
+ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
+ int *pisComplete, /* True if the only wildcard is % in the last character */
+ int *pnoCase /* True if uppercase is equivalent to lowercase */
+){
+ const u8 *z = 0; /* String on RHS of LIKE operator */
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
+ ExprList *pList; /* List of operands to the LIKE operator */
+ u8 c; /* One character in z[] */
+ int cnt; /* Number of non-wildcard prefix characters */
+ u8 wc[4]; /* Wildcard characters */
+ sqlite3 *db = pParse->db; /* Database connection */
+ sqlite3_value *pVal = 0;
+ int op; /* Opcode of pRight */
+ int rc; /* Result code to return */
+
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
+ return 0;
+ }
+#ifdef SQLITE_EBCDIC
+ if( *pnoCase ) return 0;
+#endif
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ pLeft = pList->a[1].pExpr;
+
+ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
+ op = pRight->op;
+ if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
+ Vdbe *pReprepare = pParse->pReprepare;
+ int iCol = pRight->iColumn;
+ pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
+ if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
+ z = sqlite3_value_text(pVal);
+ }
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
+ assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
+ }else if( op==TK_STRING ){
+ assert( !ExprHasProperty(pRight, EP_IntValue) );
+ z = (u8*)pRight->u.zToken;
+ }
+ if( z ){
+
+ /* Count the number of prefix characters prior to the first wildcard */
+ cnt = 0;
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
+ cnt++;
+ if( c==wc[3] && z[cnt]!=0 ) cnt++;
+ }
+
+ /* The optimization is possible only if (1) the pattern does not begin
+ ** with a wildcard and if (2) the non-wildcard prefix does not end with
+ ** an (illegal 0xff) character, or (3) the pattern does not consist of
+ ** a single escape character. The second condition is necessary so
+ ** that we can increment the prefix key to find an upper bound for the
+ ** range search. The third is because the caller assumes that the pattern
+ ** consists of at least one character after all escapes have been
+ ** removed. */
+ if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
+ Expr *pPrefix;
+
+ /* A "complete" match if the pattern ends with "*" or "%" */
+ *pisComplete = c==wc[0] && z[cnt+1]==0;
+
+ /* Get the pattern prefix. Remove all escapes from the prefix. */
+ pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
+ if( pPrefix ){
+ int iFrom, iTo;
+ char *zNew;
+ assert( !ExprHasProperty(pPrefix, EP_IntValue) );
+ zNew = pPrefix->u.zToken;
+ zNew[cnt] = 0;
+ for(iFrom=iTo=0; iFrom<cnt; iFrom++){
+ if( zNew[iFrom]==wc[3] ) iFrom++;
+ zNew[iTo++] = zNew[iFrom];
+ }
+ zNew[iTo] = 0;
+ assert( iTo>0 );
+
+ /* If the LHS is not an ordinary column with TEXT affinity, then the
+ ** pattern prefix boundaries (both the start and end boundaries) must
+ ** not look like a number. Otherwise the pattern might be treated as
+ ** a number, which will invalidate the LIKE optimization.
+ **
+ ** Getting this right has been a persistent source of bugs in the
+ ** LIKE optimization. See, for example:
+ ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
+ ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
+ ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
+ ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
+ ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
+ */
+ if( pLeft->op!=TK_COLUMN
+ || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
+ || (ALWAYS( ExprUseYTab(pLeft) )
+ && pLeft->y.pTab
+ && IsVirtual(pLeft->y.pTab)) /* Might be numeric */
+ ){
+ int isNum;
+ double rDummy;
+ isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
+ if( isNum<=0 ){
+ if( iTo==1 && zNew[0]=='-' ){
+ isNum = +1;
+ }else{
+ zNew[iTo-1]++;
+ isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
+ zNew[iTo-1]--;
+ }
+ }
+ if( isNum>0 ){
+ sqlite3ExprDelete(db, pPrefix);
+ sqlite3ValueFree(pVal);
+ return 0;
+ }
+ }
+ }
+ *ppPrefix = pPrefix;
+
+ /* If the RHS pattern is a bound parameter, make arrangements to
+ ** reprepare the statement when that parameter is rebound */
+ if( op==TK_VARIABLE ){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeSetVarmask(v, pRight->iColumn);
+ assert( !ExprHasProperty(pRight, EP_IntValue) );
+ if( *pisComplete && pRight->u.zToken[1] ){
+ /* If the rhs of the LIKE expression is a variable, and the current
+ ** value of the variable means there is no need to invoke the LIKE
+ ** function, then no OP_Variable will be added to the program.
+ ** This causes problems for the sqlite3_bind_parameter_name()
+ ** API. To work around them, add a dummy OP_Variable here.
+ */
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3ExprCodeTarget(pParse, pRight, r1);
+ sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ }
+ }else{
+ z = 0;
+ }
+ }
+
+ rc = (z!=0);
+ sqlite3ValueFree(pVal);
+ return rc;
+}
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Check to see if the pExpr expression is a form that needs to be passed
+** to the xBestIndex method of virtual tables. Forms of interest include:
+**
+** Expression Virtual Table Operator
+** ----------------------- ---------------------------------
+** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH
+** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB
+** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE
+** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP
+** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE
+** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE
+** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT
+** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT
+** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL
+**
+** In every case, "column" must be a column of a virtual table. If there
+** is a match, set *ppLeft to the "column" expression, set *ppRight to the
+** "expr" expression (even though in forms (6) and (8) the column is on the
+** right and the expression is on the left). Also set *peOp2 to the
+** appropriate virtual table operator. The return value is 1 or 2 if there
+** is a match. The usual return is 1, but if the RHS is also a column
+** of virtual table in forms (5) or (7) then return 2.
+**
+** If the expression matches none of the patterns above, return 0.
+*/
+static int isAuxiliaryVtabOperator(
+ sqlite3 *db, /* Parsing context */
+ Expr *pExpr, /* Test this expression */
+ unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */
+ Expr **ppLeft, /* Column expression to left of MATCH/op2 */
+ Expr **ppRight /* Expression to left of MATCH/op2 */
+){
+ if( pExpr->op==TK_FUNCTION ){
+ static const struct Op2 {
+ const char *zOp;
+ unsigned char eOp2;
+ } aOp[] = {
+ { "match", SQLITE_INDEX_CONSTRAINT_MATCH },
+ { "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
+ { "like", SQLITE_INDEX_CONSTRAINT_LIKE },
+ { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
+ };
+ ExprList *pList;
+ Expr *pCol; /* Column reference */
+ int i;
+
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ if( pList==0 || pList->nExpr!=2 ){
+ return 0;
+ }
+
+ /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
+ ** virtual table on their second argument, which is the same as
+ ** the left-hand side operand in their in-fix form.
+ **
+ ** vtab_column MATCH expression
+ ** MATCH(expression,vtab_column)
+ */
+ pCol = pList->a[1].pExpr;
+ assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
+ testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
+ if( ExprIsVtab(pCol) ){
+ for(i=0; i<ArraySize(aOp); i++){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
+ *peOp2 = aOp[i].eOp2;
+ *ppRight = pList->a[0].pExpr;
+ *ppLeft = pCol;
+ return 1;
+ }
+ }
+ }
+
+ /* We can also match against the first column of overloaded
+ ** functions where xFindFunction returns a value of at least
+ ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
+ **
+ ** OVERLOADED(vtab_column,expression)
+ **
+ ** Historically, xFindFunction expected to see lower-case function
+ ** names. But for this use case, xFindFunction is expected to deal
+ ** with function names in an arbitrary case.
+ */
+ pCol = pList->a[0].pExpr;
+ assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
+ testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
+ if( ExprIsVtab(pCol) ){
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pMod;
+ void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
+ void *pNotUsed;
+ pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
+ assert( pVtab!=0 );
+ assert( pVtab->pModule!=0 );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pMod = (sqlite3_module *)pVtab->pModule;
+ if( pMod->xFindFunction!=0 ){
+ i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
+ if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
+ *peOp2 = i;
+ *ppRight = pList->a[1].pExpr;
+ *ppLeft = pCol;
+ return 1;
+ }
+ }
+ }
+ }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
+ int res = 0;
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
+ testcase( pLeft->op==TK_COLUMN && pLeft->y.pTab==0 );
+ if( ExprIsVtab(pLeft) ){
+ res++;
+ }
+ assert( pRight==0 || pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
+ testcase( pRight && pRight->op==TK_COLUMN && pRight->y.pTab==0 );
+ if( pRight && ExprIsVtab(pRight) ){
+ res++;
+ SWAP(Expr*, pLeft, pRight);
+ }
+ *ppLeft = pLeft;
+ *ppRight = pRight;
+ if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
+ if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
+ if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
+ return res;
+ }
+ return 0;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** If the pBase expression originated in the ON or USING clause of
+** a join, then transfer the appropriate markings over to derived.
+*/
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
+ if( pDerived && ExprHasProperty(pBase, EP_OuterON|EP_InnerON) ){
+ pDerived->flags |= pBase->flags & (EP_OuterON|EP_InnerON);
+ pDerived->w.iJoin = pBase->w.iJoin;
+ }
+}
+
+/*
+** Mark term iChild as being a child of term iParent
+*/
+static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
+ pWC->a[iChild].iParent = iParent;
+ pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
+ pWC->a[iParent].nChild++;
+}
+
+/*
+** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
+** a conjunction, then return just pTerm when N==0. If N is exceeds
+** the number of available subterms, return NULL.
+*/
+static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
+ if( pTerm->eOperator!=WO_AND ){
+ return N==0 ? pTerm : 0;
+ }
+ if( N<pTerm->u.pAndInfo->wc.nTerm ){
+ return &pTerm->u.pAndInfo->wc.a[N];
+ }
+ return 0;
+}
+
+/*
+** Subterms pOne and pTwo are contained within WHERE clause pWC. The
+** two subterms are in disjunction - they are OR-ed together.
+**
+** If these two terms are both of the form: "A op B" with the same
+** A and B values but different operators and if the operators are
+** compatible (if one is = and the other is <, for example) then
+** add a new virtual AND term to pWC that is the combination of the
+** two.
+**
+** Some examples:
+**
+** x<y OR x=y --> x<=y
+** x=y OR x=y --> x=y
+** x<=y OR x<y --> x<=y
+**
+** The following is NOT generated:
+**
+** x<y OR x>y --> x!=y
+*/
+static void whereCombineDisjuncts(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* The complete WHERE clause */
+ WhereTerm *pOne, /* First disjunct */
+ WhereTerm *pTwo /* Second disjunct */
+){
+ u16 eOp = pOne->eOperator | pTwo->eOperator;
+ sqlite3 *db; /* Database connection (for malloc) */
+ Expr *pNew; /* New virtual expression */
+ int op; /* Operator for the combined expression */
+ int idxNew; /* Index in pWC of the next virtual term */
+
+ if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return;
+ if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
+ if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
+ if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
+ && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
+ assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
+ assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
+ if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
+ if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
+ /* If we reach this point, it means the two subterms can be combined */
+ if( (eOp & (eOp-1))!=0 ){
+ if( eOp & (WO_LT|WO_LE) ){
+ eOp = WO_LE;
+ }else{
+ assert( eOp & (WO_GT|WO_GE) );
+ eOp = WO_GE;
+ }
+ }
+ db = pWC->pWInfo->pParse->db;
+ pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
+ if( pNew==0 ) return;
+ for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
+ pNew->op = op;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pWC, idxNew);
+}
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Analyze a term that consists of two or more OR-connected
+** subterms. So in:
+**
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
+** ^^^^^^^^^^^^^^^^^^^^
+**
+** This routine analyzes terms such as the middle term in the above example.
+** A WhereOrTerm object is computed and attached to the term under
+** analysis, regardless of the outcome of the analysis. Hence:
+**
+** WhereTerm.wtFlags |= TERM_ORINFO
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
+**
+** The term being analyzed must have two or more of OR-connected subterms.
+** A single subterm might be a set of AND-connected sub-subterms.
+** Examples of terms under analysis:
+**
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
+** (B) x=expr1 OR expr2=x OR x=expr3
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
+** (F) x>A OR (x=A AND y>=B)
+**
+** CASE 1:
+**
+** If all subterms are of the form T.C=expr for some single column of C and
+** a single table T (as shown in example B above) then create a new virtual
+** term that is an equivalent IN expression. In other words, if the term
+** being analyzed is:
+**
+** x = expr1 OR expr2 = x OR x = expr3
+**
+** then create a new virtual term like this:
+**
+** x IN (expr1,expr2,expr3)
+**
+** CASE 2:
+**
+** If there are exactly two disjuncts and one side has x>A and the other side
+** has x=A (for the same x and A) then add a new virtual conjunct term to the
+** WHERE clause of the form "x>=A". Example:
+**
+** x>A OR (x=A AND y>B) adds: x>=A
+**
+** The added conjunct can sometimes be helpful in query planning.
+**
+** CASE 3:
+**
+** If all subterms are indexable by a single table T, then set
+**
+** WhereTerm.eOperator = WO_OR
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
+**
+** A subterm is "indexable" if it is of the form
+** "T.C <op> <expr>" where C is any column of table T and
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
+** A subterm is also indexable if it is an AND of two or more
+** subsubterms at least one of which is indexable. Indexable AND
+** subterms have their eOperator set to WO_AND and they have
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
+**
+** From another point of view, "indexable" means that the subterm could
+** potentially be used with an index if an appropriate index exists.
+** This analysis does not consider whether or not the index exists; that
+** is decided elsewhere. This analysis only looks at whether subterms
+** appropriate for indexing exist.
+**
+** All examples A through E above satisfy case 3. But if a term
+** also satisfies case 1 (such as B) we know that the optimizer will
+** always prefer case 1, so in that case we pretend that case 3 is not
+** satisfied.
+**
+** It might be the case that multiple tables are indexable. For example,
+** (E) above is indexable on tables P, Q, and R.
+**
+** Terms that satisfy case 3 are candidates for lookup by using
+** separate indices to find rowids for each subterm and composing
+** the union of all rowids using a RowSet object. This is similar
+** to "bitmap indices" in other database engines.
+**
+** OTHERWISE:
+**
+** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
+** zero. This term is not useful for search.
+*/
+static void exprAnalyzeOrTerm(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the complete WHERE clause */
+ int idxTerm /* Index of the OR-term to be analyzed */
+){
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
+ Parse *pParse = pWInfo->pParse; /* Parser context */
+ sqlite3 *db = pParse->db; /* Database connection */
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */
+ int i; /* Loop counters */
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
+
+ /*
+ ** Break the OR clause into its separate subterms. The subterms are
+ ** stored in a WhereClause structure containing within the WhereOrInfo
+ ** object that is attached to the original OR clause term.
+ */
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
+ assert( pExpr->op==TK_OR );
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
+ if( pOrInfo==0 ) return;
+ pTerm->wtFlags |= TERM_ORINFO;
+ pOrWc = &pOrInfo->wc;
+ memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
+ sqlite3WhereClauseInit(pOrWc, pWInfo);
+ sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
+ sqlite3WhereExprAnalyze(pSrc, pOrWc);
+ if( db->mallocFailed ) return;
+ assert( pOrWc->nTerm>=2 );
+
+ /*
+ ** Compute the set of tables that might satisfy cases 1 or 3.
+ */
+ indexable = ~(Bitmask)0;
+ chngToIN = ~(Bitmask)0;
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
+ WhereAndInfo *pAndInfo;
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
+ chngToIN = 0;
+ pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
+ if( pAndInfo ){
+ WhereClause *pAndWC;
+ WhereTerm *pAndTerm;
+ int j;
+ Bitmask b = 0;
+ pOrTerm->u.pAndInfo = pAndInfo;
+ pOrTerm->wtFlags |= TERM_ANDINFO;
+ pOrTerm->eOperator = WO_AND;
+ pOrTerm->leftCursor = -1;
+ pAndWC = &pAndInfo->wc;
+ memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
+ sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
+ sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
+ sqlite3WhereExprAnalyze(pSrc, pAndWC);
+ pAndWC->pOuter = pWC;
+ if( !db->mallocFailed ){
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
+ assert( pAndTerm->pExpr );
+ if( allowedOp(pAndTerm->pExpr->op)
+ || pAndTerm->eOperator==WO_AUX
+ ){
+ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
+ }
+ }
+ }
+ indexable &= b;
+ }
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){
+ /* Skip this term for now. We revisit it when we process the
+ ** corresponding TERM_VIRTUAL term */
+ }else{
+ Bitmask b;
+ b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
+ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
+ }
+ indexable &= b;
+ if( (pOrTerm->eOperator & WO_EQ)==0 ){
+ chngToIN = 0;
+ }else{
+ chngToIN &= b;
+ }
+ }
+ }
+
+ /*
+ ** Record the set of tables that satisfy case 3. The set might be
+ ** empty.
+ */
+ pOrInfo->indexable = indexable;
+ pTerm->eOperator = WO_OR;
+ pTerm->leftCursor = -1;
+ if( indexable ){
+ pWC->hasOr = 1;
+ }
+
+ /* For a two-way OR, attempt to implementation case 2.
+ */
+ if( indexable && pOrWc->nTerm==2 ){
+ int iOne = 0;
+ WhereTerm *pOne;
+ while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
+ int iTwo = 0;
+ WhereTerm *pTwo;
+ while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
+ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
+ }
+ }
+ }
+
+ /*
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But
+ ** we have to do some additional checking to see if case 1 really
+ ** is satisfied.
+ **
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
+ ** that there is no possibility of transforming the OR clause into an
+ ** IN operator because one or more terms in the OR clause contain
+ ** something other than == on a column in the single table. The 1-bit
+ ** case means that every term of the OR clause is of the form
+ ** "table.column=expr" for some single table. The one bit that is set
+ ** will correspond to the common table. We still need to check to make
+ ** sure the same column is used on all terms. The 2-bit case is when
+ ** the all terms are of the form "table1.column=table2.column". It
+ ** might be possible to form an IN operator with either table1.column
+ ** or table2.column as the LHS if either is common to every term of
+ ** the OR clause.
+ **
+ ** Note that terms of the form "table.column1=table.column2" (the
+ ** same table on both sizes of the ==) cannot be optimized.
+ */
+ if( chngToIN ){
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */
+ int iColumn = -1; /* Column index on lhs of IN operator */
+ int iCursor = -1; /* Table cursor common to all terms */
+ int j = 0; /* Loop counter */
+
+ /* Search for a table and column that appears on one side or the
+ ** other of the == operator in every subterm. That table and column
+ ** will be recorded in iCursor and iColumn. There might not be any
+ ** such table and column. Set okToChngToIN if an appropriate table
+ ** and column is found but leave okToChngToIN false if not found.
+ */
+ for(j=0; j<2 && !okToChngToIN; j++){
+ Expr *pLeft = 0;
+ pOrTerm = pOrWc->a;
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
+ assert( pOrTerm->eOperator & WO_EQ );
+ pOrTerm->wtFlags &= ~TERM_OK;
+ if( pOrTerm->leftCursor==iCursor ){
+ /* This is the 2-bit case and we are on the second iteration and
+ ** current term is from the first iteration. So skip this term. */
+ assert( j==1 );
+ continue;
+ }
+ if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
+ pOrTerm->leftCursor))==0 ){
+ /* This term must be of the form t1.a==t2.b where t2 is in the
+ ** chngToIN set but t1 is not. This term will be either preceded
+ ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
+ ** and use its inversion. */
+ testcase( pOrTerm->wtFlags & TERM_COPIED );
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
+ continue;
+ }
+ assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iColumn = pOrTerm->u.x.leftColumn;
+ iCursor = pOrTerm->leftCursor;
+ pLeft = pOrTerm->pExpr->pLeft;
+ break;
+ }
+ if( i<0 ){
+ /* No candidate table+column was found. This can only occur
+ ** on the second iteration */
+ assert( j==1 );
+ assert( IsPowerOfTwo(chngToIN) );
+ assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
+ break;
+ }
+ testcase( j==1 );
+
+ /* We have found a candidate table and column. Check to see if that
+ ** table and column is common to every term in the OR clause */
+ okToChngToIN = 1;
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){
+ assert( pOrTerm->eOperator & WO_EQ );
+ assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
+ if( pOrTerm->leftCursor!=iCursor ){
+ pOrTerm->wtFlags &= ~TERM_OK;
+ }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR
+ && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
+ )){
+ okToChngToIN = 0;
+ }else{
+ int affLeft, affRight;
+ /* If the right-hand side is also a column, then the affinities
+ ** of both right and left sides must be such that no type
+ ** conversions are required on the right. (Ticket #2249)
+ */
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
+ if( affRight!=0 && affRight!=affLeft ){
+ okToChngToIN = 0;
+ }else{
+ pOrTerm->wtFlags |= TERM_OK;
+ }
+ }
+ }
+ }
+
+ /* At this point, okToChngToIN is true if original pTerm satisfies
+ ** case 1. In that case, construct a new virtual term that is
+ ** pTerm converted into an IN operator.
+ */
+ if( okToChngToIN ){
+ Expr *pDup; /* A transient duplicate expression */
+ ExprList *pList = 0; /* The RHS of the IN operator */
+ Expr *pLeft = 0; /* The LHS of the IN operator */
+ Expr *pNew; /* The complete IN operator */
+
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
+ if( (pOrTerm->wtFlags & TERM_OK)==0 ) continue;
+ assert( pOrTerm->eOperator & WO_EQ );
+ assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
+ assert( pOrTerm->leftCursor==iCursor );
+ assert( pOrTerm->u.x.leftColumn==iColumn );
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
+ pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
+ pLeft = pOrTerm->pExpr->pLeft;
+ }
+ assert( pLeft!=0 );
+ pDup = sqlite3ExprDup(db, pLeft, 0);
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
+ if( pNew ){
+ int idxNew;
+ transferJoinMarkings(pNew, pExpr);
+ assert( ExprUseXList(pNew) );
+ pNew->x.pList = pList;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */
+ markTermAsChild(pWC, idxNew, idxTerm);
+ }else{
+ sqlite3ExprListDelete(db, pList);
+ }
+ }
+ }
+}
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
+
+/*
+** We already know that pExpr is a binary operator where both operands are
+** column references. This routine checks to see if pExpr is an equivalence
+** relation:
+** 1. The SQLITE_Transitive optimization must be enabled
+** 2. Must be either an == or an IS operator
+** 3. Not originating in the ON clause of an OUTER JOIN
+** 4. The affinities of A and B must be compatible
+** 5a. Both operands use the same collating sequence OR
+** 5b. The overall collating sequence is BINARY
+** If this routine returns TRUE, that means that the RHS can be substituted
+** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
+** This is an optimization. No harm comes from returning 0. But if 1 is
+** returned when it should not be, then incorrect answers might result.
+*/
+static int termIsEquivalence(Parse *pParse, Expr *pExpr){
+ char aff1, aff2;
+ CollSeq *pColl;
+ if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
+ if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
+ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;
+ aff1 = sqlite3ExprAffinity(pExpr->pLeft);
+ aff2 = sqlite3ExprAffinity(pExpr->pRight);
+ if( aff1!=aff2
+ && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
+ ){
+ return 0;
+ }
+ pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
+ if( sqlite3IsBinary(pColl) ) return 1;
+ return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
+}
+
+/*
+** Recursively walk the expressions of a SELECT statement and generate
+** a bitmask indicating which tables are used in that expression
+** tree.
+*/
+static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
+ Bitmask mask = 0;
+ while( pS ){
+ SrcList *pSrc = pS->pSrc;
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
+ mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
+ mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
+ if( ALWAYS(pSrc!=0) ){
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
+ if( pSrc->a[i].fg.isUsing==0 ){
+ mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].u3.pOn);
+ }
+ if( pSrc->a[i].fg.isTabFunc ){
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
+ }
+ }
+ }
+ pS = pS->pPrior;
+ }
+ return mask;
+}
+
+/*
+** Expression pExpr is one operand of a comparison operator that might
+** be useful for indexing. This routine checks to see if pExpr appears
+** in any index. Return TRUE (1) if pExpr is an indexed term and return
+** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor
+** number of the table that is indexed and aiCurCol[1] to the column number
+** of the column that is indexed, or XN_EXPR (-2) if an expression is being
+** indexed.
+**
+** If pExpr is a TK_COLUMN column reference, then this routine always returns
+** true even if that particular column is not indexed, because the column
+** might be added to an automatic index later.
+*/
+static SQLITE_NOINLINE int exprMightBeIndexed2(
+ SrcList *pFrom, /* The FROM clause */
+ Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
+ int *aiCurCol, /* Write the referenced table cursor and column here */
+ Expr *pExpr /* An operand of a comparison operator */
+){
+ Index *pIdx;
+ int i;
+ int iCur;
+ for(i=0; mPrereq>1; i++, mPrereq>>=1){}
+ iCur = pFrom->a[i].iCursor;
+ for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->aColExpr==0 ) continue;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
+ if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
+ aiCurCol[0] = iCur;
+ aiCurCol[1] = XN_EXPR;
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+static int exprMightBeIndexed(
+ SrcList *pFrom, /* The FROM clause */
+ Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
+ int *aiCurCol, /* Write the referenced table cursor & column here */
+ Expr *pExpr, /* An operand of a comparison operator */
+ int op /* The specific comparison operator */
+){
+ /* If this expression is a vector to the left or right of a
+ ** inequality constraint (>, <, >= or <=), perform the processing
+ ** on the first element of the vector. */
+ assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
+ assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
+ assert( op<=TK_GE );
+ if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
+ assert( ExprUseXList(pExpr) );
+ pExpr = pExpr->x.pList->a[0].pExpr;
+
+ }
+
+ if( pExpr->op==TK_COLUMN ){
+ aiCurCol[0] = pExpr->iTable;
+ aiCurCol[1] = pExpr->iColumn;
+ return 1;
+ }
+ if( mPrereq==0 ) return 0; /* No table references */
+ if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */
+ return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
+}
+
+
+/*
+** The input to this routine is an WhereTerm structure with only the
+** "pExpr" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the WhereTerm
+** structure.
+**
+** If the expression is of the form "<expr> <op> X" it gets commuted
+** to the standard form of "X <op> <expr>".
+**
+** If the expression is of the form "X <op> Y" where both X and Y are
+** columns, then the original expression is unchanged and a new virtual
+** term of the form "Y <op> X" is added to the WHERE clause and
+** analyzed separately. The original term is marked with TERM_COPIED
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
+** is a commuted copy of a prior term.) The original term has nChild=1
+** and the copy has idxParent set to the index of the original term.
+*/
+static void exprAnalyze(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the WHERE clause */
+ int idxTerm /* Index of the term to be analyzed */
+){
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
+ WhereTerm *pTerm; /* The term to be analyzed */
+ WhereMaskSet *pMaskSet; /* Set of table index masks */
+ Expr *pExpr; /* The expression to be analyzed */
+ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
+ Bitmask prereqAll; /* Prerequesites of pExpr */
+ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
+ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
+ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
+ int noCase = 0; /* uppercase equivalent to lowercase */
+ int op; /* Top-level operator. pExpr->op */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection */
+ unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */
+ int nLeft; /* Number of elements on left side vector */
+
+ if( db->mallocFailed ){
+ return;
+ }
+ assert( pWC->nTerm > idxTerm );
+ pTerm = &pWC->a[idxTerm];
+ pMaskSet = &pWInfo->sMaskSet;
+ pExpr = pTerm->pExpr;
+ assert( pExpr!=0 ); /* Because malloc() has not failed */
+ assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
+ pMaskSet->bVarSelect = 0;
+ prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
+ op = pExpr->op;
+ if( op==TK_IN ){
+ assert( pExpr->pRight==0 );
+ if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
+ if( ExprUseXSelect(pExpr) ){
+ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
+ }else{
+ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
+ }
+ prereqAll = prereqLeft | pTerm->prereqRight;
+ }else{
+ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
+ if( pExpr->pLeft==0
+ || ExprHasProperty(pExpr, EP_xIsSelect|EP_IfNullRow)
+ || pExpr->x.pList!=0
+ ){
+ prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
+ }else{
+ prereqAll = prereqLeft | pTerm->prereqRight;
+ }
+ }
+ if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
+
+#ifdef SQLITE_DEBUG
+ if( prereqAll!=sqlite3WhereExprUsageNN(pMaskSet, pExpr) ){
+ printf("\n*** Incorrect prereqAll computed for:\n");
+ sqlite3TreeViewExpr(0,pExpr,0);
+ assert( 0 );
+ }
+#endif
+
+ if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) ){
+ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->w.iJoin);
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ prereqAll |= x;
+ extraRight = x-1; /* ON clause terms may not be used with an index
+ ** on left table of a LEFT JOIN. Ticket #3015 */
+ if( (prereqAll>>1)>=x ){
+ sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
+ return;
+ }
+ }else if( (prereqAll>>1)>=x ){
+ /* The ON clause of an INNER JOIN references a table to its right.
+ ** Most other SQL database engines raise an error. But SQLite versions
+ ** 3.0 through 3.38 just put the ON clause constraint into the WHERE
+ ** clause and carried on. Beginning with 3.39, raise an error only
+ ** if there is a RIGHT or FULL JOIN in the query. This makes SQLite
+ ** more like other systems, and also preserves legacy. */
+ if( ALWAYS(pSrc->nSrc>0) && (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
+ return;
+ }
+ ExprClearProperty(pExpr, EP_InnerON);
+ }
+ }
+ pTerm->prereqAll = prereqAll;
+ pTerm->leftCursor = -1;
+ pTerm->iParent = -1;
+ pTerm->eOperator = 0;
+ if( allowedOp(op) ){
+ int aiCurCol[2];
+ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
+ Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
+ u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
+
+ if( pTerm->u.x.iField>0 ){
+ assert( op==TK_IN );
+ assert( pLeft->op==TK_VECTOR );
+ assert( ExprUseXList(pLeft) );
+ pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr;
+ }
+
+ if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
+ pTerm->leftCursor = aiCurCol[0];
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ pTerm->u.x.leftColumn = aiCurCol[1];
+ pTerm->eOperator = operatorMask(op) & opMask;
+ }
+ if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
+ if( pRight
+ && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
+ && !ExprHasProperty(pRight, EP_FixedCol)
+ ){
+ WhereTerm *pNew;
+ Expr *pDup;
+ u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
+ assert( pTerm->u.x.iField==0 );
+ if( pTerm->leftCursor>=0 ){
+ int idxNew;
+ pDup = sqlite3ExprDup(db, pExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ return;
+ }
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
+ if( idxNew==0 ) return;
+ pNew = &pWC->a[idxNew];
+ markTermAsChild(pWC, idxNew, idxTerm);
+ if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_COPIED;
+
+ if( termIsEquivalence(pParse, pDup) ){
+ pTerm->eOperator |= WO_EQUIV;
+ eExtraOp = WO_EQUIV;
+ }
+ }else{
+ pDup = pExpr;
+ pNew = pTerm;
+ }
+ pNew->wtFlags |= exprCommute(pParse, pDup);
+ pNew->leftCursor = aiCurCol[0];
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ pNew->u.x.leftColumn = aiCurCol[1];
+ testcase( (prereqLeft | extraRight) != prereqLeft );
+ pNew->prereqRight = prereqLeft | extraRight;
+ pNew->prereqAll = prereqAll;
+ pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
+ }else
+ if( op==TK_ISNULL
+ && !ExprHasProperty(pExpr,EP_OuterON)
+ && 0==sqlite3ExprCanBeNull(pLeft)
+ ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pExpr->op = TK_TRUEFALSE;
+ pExpr->u.zToken = "false";
+ ExprSetProperty(pExpr, EP_IsFalse);
+ pTerm->prereqAll = 0;
+ pTerm->eOperator = 0;
+ }
+ }
+
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ /* If a term is the BETWEEN operator, create two new virtual terms
+ ** that define the range that the BETWEEN implements. For example:
+ **
+ ** a BETWEEN b AND c
+ **
+ ** is converted into:
+ **
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
+ **
+ ** The two new terms are added onto the end of the WhereClause object.
+ ** The new terms are "dynamic" and are children of the original BETWEEN
+ ** term. That means that if the BETWEEN term is coded, the children are
+ ** skipped. Or, if the children are satisfied by an index, the original
+ ** BETWEEN term is skipped.
+ */
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
+ ExprList *pList;
+ int i;
+ static const u8 ops[] = {TK_GE, TK_LE};
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ for(i=0; i<2; i++){
+ Expr *pNewExpr;
+ int idxNew;
+ pNewExpr = sqlite3PExpr(pParse, ops[i],
+ sqlite3ExprDup(db, pExpr->pLeft, 0),
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0));
+ transferJoinMarkings(pNewExpr, pExpr);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ markTermAsChild(pWC, idxNew, idxTerm);
+ }
+ }
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+ /* Analyze a term that is composed of two or more subterms connected by
+ ** an OR operator.
+ */
+ else if( pExpr->op==TK_OR ){
+ assert( pWC->op==TK_AND );
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+ /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently
+ ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
+ ** virtual term of that form.
+ **
+ ** The virtual term must be tagged with TERM_VNULL.
+ */
+ else if( pExpr->op==TK_NOTNULL ){
+ if( pExpr->pLeft->op==TK_COLUMN
+ && pExpr->pLeft->iColumn>=0
+ && !ExprHasProperty(pExpr, EP_OuterON)
+ ){
+ Expr *pNewExpr;
+ Expr *pLeft = pExpr->pLeft;
+ int idxNew;
+ WhereTerm *pNewTerm;
+
+ pNewExpr = sqlite3PExpr(pParse, TK_GT,
+ sqlite3ExprDup(db, pLeft, 0),
+ sqlite3ExprAlloc(db, TK_NULL, 0, 0));
+
+ idxNew = whereClauseInsert(pWC, pNewExpr,
+ TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
+ if( idxNew ){
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = 0;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->u.x.leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_GT;
+ markTermAsChild(pWC, idxNew, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ }
+ }
+
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+ /* Add constraints to reduce the search space on a LIKE or GLOB
+ ** operator.
+ **
+ ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
+ **
+ ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
+ **
+ ** The last character of the prefix "abc" is incremented to form the
+ ** termination condition "abd". If case is not significant (the default
+ ** for LIKE) then the lower-bound is made all uppercase and the upper-
+ ** bound is made all lowercase so that the bounds also work when comparing
+ ** BLOBs.
+ */
+ else if( pExpr->op==TK_FUNCTION
+ && pWC->op==TK_AND
+ && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
+ ){
+ Expr *pLeft; /* LHS of LIKE/GLOB operator */
+ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
+ Expr *pNewExpr1;
+ Expr *pNewExpr2;
+ int idxNew1;
+ int idxNew2;
+ const char *zCollSeqName; /* Name of collating sequence */
+ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
+
+ assert( ExprUseXList(pExpr) );
+ pLeft = pExpr->x.pList->a[1].pExpr;
+ pStr2 = sqlite3ExprDup(db, pStr1, 0);
+ assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) );
+ assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) );
+
+
+ /* Convert the lower bound to upper-case and the upper bound to
+ ** lower-case (upper-case is less than lower-case in ASCII) so that
+ ** the range constraints also work for BLOBs
+ */
+ if( noCase && !pParse->db->mallocFailed ){
+ int i;
+ char c;
+ pTerm->wtFlags |= TERM_LIKE;
+ for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
+ pStr1->u.zToken[i] = sqlite3Toupper(c);
+ pStr2->u.zToken[i] = sqlite3Tolower(c);
+ }
+ }
+
+ if( !db->mallocFailed ){
+ u8 c, *pC; /* Last character before the first wildcard */
+ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
+ c = *pC;
+ if( noCase ){
+ /* The point is to increment the last character before the first
+ ** wildcard. But if we increment '@', that will push it into the
+ ** alphabetic range where case conversions will mess up the
+ ** inequality. To avoid this, make sure to also run the full
+ ** LIKE on all candidate expressions by clearing the isComplete flag
+ */
+ if( c=='A'-1 ) isComplete = 0;
+ c = sqlite3UpperToLower[c];
+ }
+ *pC = c + 1;
+ }
+ zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
+ pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
+ sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
+ pStr1);
+ transferJoinMarkings(pNewExpr1, pExpr);
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
+ testcase( idxNew1==0 );
+ exprAnalyze(pSrc, pWC, idxNew1);
+ pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
+ sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
+ pStr2);
+ transferJoinMarkings(pNewExpr2, pExpr);
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
+ testcase( idxNew2==0 );
+ exprAnalyze(pSrc, pWC, idxNew2);
+ pTerm = &pWC->a[idxTerm];
+ if( isComplete ){
+ markTermAsChild(pWC, idxNew1, idxTerm);
+ markTermAsChild(pWC, idxNew2, idxTerm);
+ }
+ }
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+ /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
+ ** new terms for each component comparison - "a = ?" and "b = ?". The
+ ** new terms completely replace the original vector comparison, which is
+ ** no longer used.
+ **
+ ** This is only required if at least one side of the comparison operation
+ ** is not a sub-select.
+ **
+ ** tag-20220128a
+ */
+ if( (pExpr->op==TK_EQ || pExpr->op==TK_IS)
+ && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
+ && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
+ && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
+ || (pExpr->pRight->flags & EP_xIsSelect)==0)
+ && pWC->op==TK_AND
+ ){
+ int i;
+ for(i=0; i<nLeft; i++){
+ int idxNew;
+ Expr *pNew;
+ Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i, nLeft);
+ Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft);
+
+ pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
+ transferJoinMarkings(pNew, pExpr);
+ idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_SLICE);
+ exprAnalyze(pSrc, pWC, idxNew);
+ }
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */
+ pTerm->eOperator = WO_ROWVAL;
+ }
+
+ /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
+ ** a virtual term for each vector component. The expression object
+ ** used by each such virtual term is pExpr (the full vector IN(...)
+ ** expression). The WhereTerm.u.x.iField variable identifies the index within
+ ** the vector on the LHS that the virtual term represents.
+ **
+ ** This only works if the RHS is a simple SELECT (not a compound) that does
+ ** not use window functions.
+ */
+ else if( pExpr->op==TK_IN
+ && pTerm->u.x.iField==0
+ && pExpr->pLeft->op==TK_VECTOR
+ && ALWAYS( ExprUseXSelect(pExpr) )
+ && pExpr->x.pSelect->pPrior==0
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ && pExpr->x.pSelect->pWin==0
+#endif
+ && pWC->op==TK_AND
+ ){
+ int i;
+ for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
+ int idxNew;
+ idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL|TERM_SLICE);
+ pWC->a[idxNew].u.x.iField = i+1;
+ exprAnalyze(pSrc, pWC, idxNew);
+ markTermAsChild(pWC, idxNew, idxTerm);
+ }
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Add a WO_AUX auxiliary term to the constraint set if the
+ ** current expression is of the form "column OP expr" where OP
+ ** is an operator that gets passed into virtual tables but which is
+ ** not normally optimized for ordinary tables. In other words, OP
+ ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
+ ** This information is used by the xBestIndex methods of
+ ** virtual tables. The native query optimizer does not attempt
+ ** to do anything with MATCH functions.
+ */
+ else if( pWC->op==TK_AND ){
+ Expr *pRight = 0, *pLeft = 0;
+ int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
+ while( res-- > 0 ){
+ int idxNew;
+ WhereTerm *pNewTerm;
+ Bitmask prereqColumn, prereqExpr;
+
+ prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
+ prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
+ if( (prereqExpr & prereqColumn)==0 ){
+ Expr *pNewExpr;
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
+ 0, sqlite3ExprDup(db, pRight, 0));
+ if( ExprHasProperty(pExpr, EP_OuterON) && pNewExpr ){
+ ExprSetProperty(pNewExpr, EP_OuterON);
+ pNewExpr->w.iJoin = pExpr->w.iJoin;
+ }
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = prereqExpr;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->u.x.leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_AUX;
+ pNewTerm->eMatchOp = eOp2;
+ markTermAsChild(pWC, idxNew, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ SWAP(Expr*, pLeft, pRight);
+ }
+ }
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive
+ ** an index for tables to the left of the join.
+ */
+ testcase( pTerm!=&pWC->a[idxTerm] );
+ pTerm = &pWC->a[idxTerm];
+ pTerm->prereqRight |= extraRight;
+}
+
+/***************************************************************************
+** Routines with file scope above. Interface to the rest of the where.c
+** subsystem follows.
+***************************************************************************/
+
+/*
+** This routine identifies subexpressions in the WHERE clause where
+** each subexpression is separated by the AND operator or some other
+** operator specified in the op parameter. The WhereClause structure
+** is filled with pointers to subexpressions. For example:
+**
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
+** \________/ \_______________/ \________________/
+** slot[0] slot[1] slot[2]
+**
+** The original WHERE clause in pExpr is unaltered. All this routine
+** does is make slot[] entries point to substructure within pExpr.
+**
+** In the previous sentence and in the diagram, "slot[]" refers to
+** the WhereClause.a[] array. The slot[] array grows as needed to contain
+** all terms of the WHERE clause.
+*/
+SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
+ Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
+ pWC->op = op;
+ assert( pE2!=0 || pExpr==0 );
+ if( pE2==0 ) return;
+ if( pE2->op!=op ){
+ whereClauseInsert(pWC, pExpr, 0);
+ }else{
+ sqlite3WhereSplit(pWC, pE2->pLeft, op);
+ sqlite3WhereSplit(pWC, pE2->pRight, op);
+ }
+}
+
+/*
+** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or
+** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the
+** where-clause passed as the first argument. The value for the term
+** is found in register iReg.
+**
+** In the common case where the value is a simple integer
+** (example: "LIMIT 5 OFFSET 10") then the expression codes as a
+** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value().
+** If not, then it codes as a TK_REGISTER expression.
+*/
+static void whereAddLimitExpr(
+ WhereClause *pWC, /* Add the constraint to this WHERE clause */
+ int iReg, /* Register that will hold value of the limit/offset */
+ Expr *pExpr, /* Expression that defines the limit/offset */
+ int iCsr, /* Cursor to which the constraint applies */
+ int eMatchOp /* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */
+){
+ Parse *pParse = pWC->pWInfo->pParse;
+ sqlite3 *db = pParse->db;
+ Expr *pNew;
+ int iVal = 0;
+
+ if( sqlite3ExprIsInteger(pExpr, &iVal) && iVal>=0 ){
+ Expr *pVal = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pVal==0 ) return;
+ ExprSetProperty(pVal, EP_IntValue);
+ pVal->u.iValue = iVal;
+ pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal);
+ }else{
+ Expr *pVal = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pVal==0 ) return;
+ pVal->iTable = iReg;
+ pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal);
+ }
+ if( pNew ){
+ WhereTerm *pTerm;
+ int idx;
+ idx = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_VIRTUAL);
+ pTerm = &pWC->a[idx];
+ pTerm->leftCursor = iCsr;
+ pTerm->eOperator = WO_AUX;
+ pTerm->eMatchOp = eMatchOp;
+ }
+}
+
+/*
+** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the
+** SELECT statement passed as the second argument. These terms are only
+** added if:
+**
+** 1. The SELECT statement has a LIMIT clause, and
+** 2. The SELECT statement is not an aggregate or DISTINCT query, and
+** 3. The SELECT statement has exactly one object in its from clause, and
+** that object is a virtual table, and
+** 4. There are no terms in the WHERE clause that will not be passed
+** to the virtual table xBestIndex method.
+** 5. The ORDER BY clause, if any, will be made available to the xBestIndex
+** method.
+**
+** LIMIT and OFFSET terms are ignored by most of the planner code. They
+** exist only so that they may be passed to the xBestIndex method of the
+** single virtual table in the FROM clause of the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3WhereAddLimit(WhereClause *pWC, Select *p){
+ assert( p==0 || (p->pGroupBy==0 && (p->selFlags & SF_Aggregate)==0) );
+ if( (p && p->pLimit) /* 1 */
+ && (p->selFlags & (SF_Distinct|SF_Aggregate))==0 /* 2 */
+ && (p->pSrc->nSrc==1 && IsVirtual(p->pSrc->a[0].pTab)) /* 3 */
+ ){
+ ExprList *pOrderBy = p->pOrderBy;
+ int iCsr = p->pSrc->a[0].iCursor;
+ int ii;
+
+ /* Check condition (4). Return early if it is not met. */
+ for(ii=0; ii<pWC->nTerm; ii++){
+ if( pWC->a[ii].wtFlags & TERM_CODED ){
+ /* This term is a vector operation that has been decomposed into
+ ** other, subsequent terms. It can be ignored. See tag-20220128a */
+ assert( pWC->a[ii].wtFlags & TERM_VIRTUAL );
+ assert( pWC->a[ii].eOperator==WO_ROWVAL );
+ continue;
+ }
+ if( pWC->a[ii].leftCursor!=iCsr ) return;
+ }
+
+ /* Check condition (5). Return early if it is not met. */
+ if( pOrderBy ){
+ for(ii=0; ii<pOrderBy->nExpr; ii++){
+ Expr *pExpr = pOrderBy->a[ii].pExpr;
+ if( pExpr->op!=TK_COLUMN ) return;
+ if( pExpr->iTable!=iCsr ) return;
+ if( pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) return;
+ }
+ }
+
+ /* All conditions are met. Add the terms to the where-clause object. */
+ assert( p->pLimit->op==TK_LIMIT );
+ whereAddLimitExpr(pWC, p->iLimit, p->pLimit->pLeft,
+ iCsr, SQLITE_INDEX_CONSTRAINT_LIMIT);
+ if( p->iOffset>0 ){
+ whereAddLimitExpr(pWC, p->iOffset, p->pLimit->pRight,
+ iCsr, SQLITE_INDEX_CONSTRAINT_OFFSET);
+ }
+ }
+}
+
+/*
+** Initialize a preallocated WhereClause structure.
+*/
+SQLITE_PRIVATE void sqlite3WhereClauseInit(
+ WhereClause *pWC, /* The WhereClause to be initialized */
+ WhereInfo *pWInfo /* The WHERE processing context */
+){
+ pWC->pWInfo = pWInfo;
+ pWC->hasOr = 0;
+ pWC->pOuter = 0;
+ pWC->nTerm = 0;
+ pWC->nBase = 0;
+ pWC->nSlot = ArraySize(pWC->aStatic);
+ pWC->a = pWC->aStatic;
+}
+
+/*
+** Deallocate a WhereClause structure. The WhereClause structure
+** itself is not freed. This routine is the inverse of
+** sqlite3WhereClauseInit().
+*/
+SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){
+ sqlite3 *db = pWC->pWInfo->pParse->db;
+ assert( pWC->nTerm>=pWC->nBase );
+ if( pWC->nTerm>0 ){
+ WhereTerm *a = pWC->a;
+ WhereTerm *aLast = &pWC->a[pWC->nTerm-1];
+#ifdef SQLITE_DEBUG
+ int i;
+ /* Verify that every term past pWC->nBase is virtual */
+ for(i=pWC->nBase; i<pWC->nTerm; i++){
+ assert( (pWC->a[i].wtFlags & TERM_VIRTUAL)!=0 );
+ }
+#endif
+ while(1){
+ assert( a->eMatchOp==0 || a->eOperator==WO_AUX );
+ if( a->wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, a->pExpr);
+ }
+ if( a->wtFlags & (TERM_ORINFO|TERM_ANDINFO) ){
+ if( a->wtFlags & TERM_ORINFO ){
+ assert( (a->wtFlags & TERM_ANDINFO)==0 );
+ whereOrInfoDelete(db, a->u.pOrInfo);
+ }else{
+ assert( (a->wtFlags & TERM_ANDINFO)!=0 );
+ whereAndInfoDelete(db, a->u.pAndInfo);
+ }
+ }
+ if( a==aLast ) break;
+ a++;
+ }
+ }
+}
+
+
+/*
+** These routines walk (recursively) an expression tree and generate
+** a bitmask indicating which tables are used in that expression
+** tree.
+**
+** sqlite3WhereExprUsage(MaskSet, Expr) ->
+**
+** Return a Bitmask of all tables referenced by Expr. Expr can be
+** be NULL, in which case 0 is returned.
+**
+** sqlite3WhereExprUsageNN(MaskSet, Expr) ->
+**
+** Same as sqlite3WhereExprUsage() except that Expr must not be
+** NULL. The "NN" suffix on the name stands for "Not Null".
+**
+** sqlite3WhereExprListUsage(MaskSet, ExprList) ->
+**
+** Return a Bitmask of all tables referenced by every expression
+** in the expression list ExprList. ExprList can be NULL, in which
+** case 0 is returned.
+**
+** sqlite3WhereExprUsageFull(MaskSet, ExprList) ->
+**
+** Internal use only. Called only by sqlite3WhereExprUsageNN() for
+** complex expressions that require pushing register values onto
+** the stack. Many calls to sqlite3WhereExprUsageNN() do not need
+** the more complex analysis done by this routine. Hence, the
+** computations done by this routine are broken out into a separate
+** "no-inline" function to avoid the stack push overhead in the
+** common case where it is not needed.
+*/
+static SQLITE_NOINLINE Bitmask sqlite3WhereExprUsageFull(
+ WhereMaskSet *pMaskSet,
+ Expr *p
+){
+ Bitmask mask;
+ mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
+ if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
+ if( p->pRight ){
+ mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
+ assert( p->x.pList==0 );
+ }else if( ExprUseXSelect(p) ){
+ if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
+ mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
+ }else if( p->x.pList ){
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){
+ assert( p->y.pWin!=0 );
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
+ mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
+ }
+#endif
+ return mask;
+}
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
+ if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
+ return sqlite3WhereGetMask(pMaskSet, p->iTable);
+ }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
+ assert( p->op!=TK_IF_NULL_ROW );
+ return 0;
+ }
+ return sqlite3WhereExprUsageFull(pMaskSet, p);
+}
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
+ return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
+}
+SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
+ int i;
+ Bitmask mask = 0;
+ if( pList ){
+ for(i=0; i<pList->nExpr; i++){
+ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+
+
+/*
+** Call exprAnalyze on all terms in a WHERE clause.
+**
+** Note that exprAnalyze() might add new virtual terms onto the
+** end of the WHERE clause. We do not want to analyze these new
+** virtual terms, so start analyzing at the end and work forward
+** so that the added virtual terms are never processed.
+*/
+SQLITE_PRIVATE void sqlite3WhereExprAnalyze(
+ SrcList *pTabList, /* the FROM clause */
+ WhereClause *pWC /* the WHERE clause to be analyzed */
+){
+ int i;
+ for(i=pWC->nTerm-1; i>=0; i--){
+ exprAnalyze(pTabList, pWC, i);
+ }
+}
+
+/*
+** For table-valued-functions, transform the function arguments into
+** new WHERE clause terms.
+**
+** Each function argument translates into an equality constraint against
+** a HIDDEN column in the table.
+*/
+SQLITE_PRIVATE void sqlite3WhereTabFuncArgs(
+ Parse *pParse, /* Parsing context */
+ SrcItem *pItem, /* The FROM clause term to process */
+ WhereClause *pWC /* Xfer function arguments to here */
+){
+ Table *pTab;
+ int j, k;
+ ExprList *pArgs;
+ Expr *pColRef;
+ Expr *pTerm;
+ if( pItem->fg.isTabFunc==0 ) return;
+ pTab = pItem->pTab;
+ assert( pTab!=0 );
+ pArgs = pItem->u1.pFuncArg;
+ if( pArgs==0 ) return;
+ for(j=k=0; j<pArgs->nExpr; j++){
+ Expr *pRhs;
+ u32 joinType;
+ while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
+ if( k>=pTab->nCol ){
+ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
+ pTab->zName, j);
+ return;
+ }
+ pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
+ if( pColRef==0 ) return;
+ pColRef->iTable = pItem->iCursor;
+ pColRef->iColumn = k++;
+ assert( ExprUseYTab(pColRef) );
+ pColRef->y.pTab = pTab;
+ pItem->colUsed |= sqlite3ExprColUsed(pColRef);
+ pRhs = sqlite3PExpr(pParse, TK_UPLUS,
+ sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
+ pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
+ if( pItem->fg.jointype & (JT_LEFT|JT_LTORJ) ){
+ joinType = EP_OuterON;
+ }else{
+ joinType = EP_InnerON;
+ }
+ sqlite3SetJoinExpr(pTerm, pItem->iCursor, joinType);
+ whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
+ }
+}
+
+/************** End of whereexpr.c *******************************************/
+/************** Begin file where.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. This module is responsible for
+** generating the code that loops through a table looking for applicable
+** rows. Indices are selected and used to speed the search when doing
+** so is applicable. Because this module is responsible for selecting
+** indices, you might also think of this module as the "query optimizer".
+*/
+/* #include "sqliteInt.h" */
+/* #include "whereInt.h" */
+
+/*
+** Extra information appended to the end of sqlite3_index_info but not
+** visible to the xBestIndex function, at least not directly. The
+** sqlite3_vtab_collation() interface knows how to reach it, however.
+**
+** This object is not an API and can be changed from one release to the
+** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
+** agree on the structure, all will be well.
+*/
+typedef struct HiddenIndexInfo HiddenIndexInfo;
+struct HiddenIndexInfo {
+ WhereClause *pWC; /* The Where clause being analyzed */
+ Parse *pParse; /* The parsing context */
+ int eDistinct; /* Value to return from sqlite3_vtab_distinct() */
+ u32 mIn; /* Mask of terms that are <col> IN (...) */
+ u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */
+ sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST
+ ** because extra space is allocated to hold up
+ ** to nTerm such values */
+};
+
+/* Forward declaration of methods */
+static int whereLoopResize(sqlite3*, WhereLoop*, int);
+
+/*
+** Return the estimated number of output rows from a WHERE clause
+*/
+SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
+ return pWInfo->nRowOut;
+}
+
+/*
+** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
+** WHERE clause returns outputs for DISTINCT processing.
+*/
+SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
+ return pWInfo->eDistinct;
+}
+
+/*
+** Return the number of ORDER BY terms that are satisfied by the
+** WHERE clause. A return of 0 means that the output must be
+** completely sorted. A return equal to the number of ORDER BY
+** terms means that no sorting is needed at all. A return that
+** is positive but less than the number of ORDER BY terms means that
+** block sorting is required.
+*/
+SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
+ return pWInfo->nOBSat;
+}
+
+/*
+** In the ORDER BY LIMIT optimization, if the inner-most loop is known
+** to emit rows in increasing order, and if the last row emitted by the
+** inner-most loop did not fit within the sorter, then we can skip all
+** subsequent rows for the current iteration of the inner loop (because they
+** will not fit in the sorter either) and continue with the second inner
+** loop - the loop immediately outside the inner-most.
+**
+** When a row does not fit in the sorter (because the sorter already
+** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
+** label returned by this function.
+**
+** If the ORDER BY LIMIT optimization applies, the jump destination should
+** be the continuation for the second-inner-most loop. If the ORDER BY
+** LIMIT optimization does not apply, then the jump destination should
+** be the continuation for the inner-most loop.
+**
+** It is always safe for this routine to return the continuation of the
+** inner-most loop, in the sense that a correct answer will result.
+** Returning the continuation the second inner loop is an optimization
+** that might make the code run a little faster, but should not change
+** the final answer.
+*/
+SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
+ WhereLevel *pInner;
+ if( !pWInfo->bOrderedInnerLoop ){
+ /* The ORDER BY LIMIT optimization does not apply. Jump to the
+ ** continuation of the inner-most loop. */
+ return pWInfo->iContinue;
+ }
+ pInner = &pWInfo->a[pWInfo->nLevel-1];
+ assert( pInner->addrNxt!=0 );
+ return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
+}
+
+/*
+** While generating code for the min/max optimization, after handling
+** the aggregate-step call to min() or max(), check to see if any
+** additional looping is required. If the output order is such that
+** we are certain that the correct answer has already been found, then
+** code an OP_Goto to by pass subsequent processing.
+**
+** Any extra OP_Goto that is coded here is an optimization. The
+** correct answer should be obtained regardless. This OP_Goto just
+** makes the answer appear faster.
+*/
+SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
+ WhereLevel *pInner;
+ int i;
+ if( !pWInfo->bOrderedInnerLoop ) return;
+ if( pWInfo->nOBSat==0 ) return;
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ pInner = &pWInfo->a[i];
+ if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
+ sqlite3VdbeGoto(v, pInner->addrNxt);
+ return;
+ }
+ }
+ sqlite3VdbeGoto(v, pWInfo->iBreak);
+}
+
+/*
+** Return the VDBE address or label to jump to in order to continue
+** immediately with the next row of a WHERE clause.
+*/
+SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
+ assert( pWInfo->iContinue!=0 );
+ return pWInfo->iContinue;
+}
+
+/*
+** Return the VDBE address or label to jump to in order to break
+** out of a WHERE loop.
+*/
+SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
+ return pWInfo->iBreak;
+}
+
+/*
+** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
+** operate directly on the rowids returned by a WHERE clause. Return
+** ONEPASS_SINGLE (1) if the statement can operation directly because only
+** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
+** optimization can be used on multiple
+**
+** If the ONEPASS optimization is used (if this routine returns true)
+** then also write the indices of open cursors used by ONEPASS
+** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
+** table and iaCur[1] gets the cursor used by an auxiliary index.
+** Either value may be -1, indicating that cursor is not used.
+** Any cursors returned will have been opened for writing.
+**
+** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
+** unable to use the ONEPASS optimization.
+*/
+SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
+ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
+ sqlite3DebugPrintf("%s cursors: %d %d\n",
+ pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
+ aiCur[0], aiCur[1]);
+ }
+#endif
+ return pWInfo->eOnePass;
+}
+
+/*
+** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
+** the data cursor to the row selected by the index cursor.
+*/
+SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
+ return pWInfo->bDeferredSeek;
+}
+
+/*
+** Move the content of pSrc into pDest
+*/
+static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
+ pDest->n = pSrc->n;
+ memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
+}
+
+/*
+** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
+**
+** The new entry might overwrite an existing entry, or it might be
+** appended, or it might be discarded. Do whatever is the right thing
+** so that pSet keeps the N_OR_COST best entries seen so far.
+*/
+static int whereOrInsert(
+ WhereOrSet *pSet, /* The WhereOrSet to be updated */
+ Bitmask prereq, /* Prerequisites of the new entry */
+ LogEst rRun, /* Run-cost of the new entry */
+ LogEst nOut /* Number of outputs for the new entry */
+){
+ u16 i;
+ WhereOrCost *p;
+ for(i=pSet->n, p=pSet->a; i>0; i--, p++){
+ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
+ goto whereOrInsert_done;
+ }
+ if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
+ return 0;
+ }
+ }
+ if( pSet->n<N_OR_COST ){
+ p = &pSet->a[pSet->n++];
+ p->nOut = nOut;
+ }else{
+ p = pSet->a;
+ for(i=1; i<pSet->n; i++){
+ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
+ }
+ if( p->rRun<=rRun ) return 0;
+ }
+whereOrInsert_done:
+ p->prereq = prereq;
+ p->rRun = rRun;
+ if( p->nOut>nOut ) p->nOut = nOut;
+ return 1;
+}
+
+/*
+** Return the bitmask for the given cursor number. Return 0 if
+** iCursor is not in the set.
+*/
+SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
+ int i;
+ assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
+ assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
+ assert( iCursor>=-1 );
+ if( pMaskSet->ix[0]==iCursor ){
+ return 1;
+ }
+ for(i=1; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ){
+ return MASKBIT(i);
+ }
+ }
+ return 0;
+}
+
+/* Allocate memory that is automatically freed when pWInfo is freed.
+*/
+SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
+ WhereMemBlock *pBlock;
+ pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
+ if( pBlock ){
+ pBlock->pNext = pWInfo->pMemToFree;
+ pBlock->sz = nByte;
+ pWInfo->pMemToFree = pBlock;
+ pBlock++;
+ }
+ return (void*)pBlock;
+}
+SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
+ void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
+ if( pNew && pOld ){
+ WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
+ pOldBlk--;
+ assert( pOldBlk->sz<nByte );
+ memcpy(pNew, pOld, pOldBlk->sz);
+ }
+ return pNew;
+}
+
+/*
+** Create a new mask for cursor iCursor.
+**
+** There is one cursor per table in the FROM clause. The number of
+** tables in the FROM clause is limited by a test early in the
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
+** array will never overflow.
+*/
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
+}
+
+/*
+** If the right-hand branch of the expression is a TK_COLUMN, then return
+** a pointer to the right-hand branch. Otherwise, return NULL.
+*/
+static Expr *whereRightSubexprIsColumn(Expr *p){
+ p = sqlite3ExprSkipCollateAndLikely(p->pRight);
+ if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
+ return p;
+ }
+ return 0;
+}
+
+/*
+** Advance to the next WhereTerm that matches according to the criteria
+** established when the pScan object was initialized by whereScanInit().
+** Return NULL if there are no more matching WhereTerms.
+*/
+static WhereTerm *whereScanNext(WhereScan *pScan){
+ int iCur; /* The cursor on the LHS of the term */
+ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
+ Expr *pX; /* An expression being tested */
+ WhereClause *pWC; /* Shorthand for pScan->pWC */
+ WhereTerm *pTerm; /* The term being tested */
+ int k = pScan->k; /* Where to start scanning */
+
+ assert( pScan->iEquiv<=pScan->nEquiv );
+ pWC = pScan->pWC;
+ while(1){
+ iColumn = pScan->aiColumn[pScan->iEquiv-1];
+ iCur = pScan->aiCur[pScan->iEquiv-1];
+ assert( pWC!=0 );
+ assert( iCur>=0 );
+ do{
+ for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
+ if( pTerm->leftCursor==iCur
+ && pTerm->u.x.leftColumn==iColumn
+ && (iColumn!=XN_EXPR
+ || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
+ pScan->pIdxExpr,iCur)==0)
+ && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
+ ){
+ if( (pTerm->eOperator & WO_EQUIV)!=0
+ && pScan->nEquiv<ArraySize(pScan->aiCur)
+ && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
+ ){
+ int j;
+ for(j=0; j<pScan->nEquiv; j++){
+ if( pScan->aiCur[j]==pX->iTable
+ && pScan->aiColumn[j]==pX->iColumn ){
+ break;
+ }
+ }
+ if( j==pScan->nEquiv ){
+ pScan->aiCur[j] = pX->iTable;
+ pScan->aiColumn[j] = pX->iColumn;
+ pScan->nEquiv++;
+ }
+ }
+ if( (pTerm->eOperator & pScan->opMask)!=0 ){
+ /* Verify the affinity and collating sequence match */
+ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
+ CollSeq *pColl;
+ Parse *pParse = pWC->pWInfo->pParse;
+ pX = pTerm->pExpr;
+ if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
+ continue;
+ }
+ assert(pX->pLeft);
+ pColl = sqlite3ExprCompareCollSeq(pParse, pX);
+ if( pColl==0 ) pColl = pParse->db->pDfltColl;
+ if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
+ continue;
+ }
+ }
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
+ && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
+ && pX->op==TK_COLUMN
+ && pX->iTable==pScan->aiCur[0]
+ && pX->iColumn==pScan->aiColumn[0]
+ ){
+ testcase( pTerm->eOperator & WO_IS );
+ continue;
+ }
+ pScan->pWC = pWC;
+ pScan->k = k+1;
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x20000 ){
+ int ii;
+ sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
+ pTerm, pScan->nEquiv);
+ for(ii=0; ii<pScan->nEquiv; ii++){
+ sqlite3DebugPrintf(" {%d:%d}",
+ pScan->aiCur[ii], pScan->aiColumn[ii]);
+ }
+ sqlite3DebugPrintf("\n");
+ }
+#endif
+ return pTerm;
+ }
+ }
+ }
+ pWC = pWC->pOuter;
+ k = 0;
+ }while( pWC!=0 );
+ if( pScan->iEquiv>=pScan->nEquiv ) break;
+ pWC = pScan->pOrigWC;
+ k = 0;
+ pScan->iEquiv++;
+ }
+ return 0;
+}
+
+/*
+** This is whereScanInit() for the case of an index on an expression.
+** It is factored out into a separate tail-recursion subroutine so that
+** the normal whereScanInit() routine, which is a high-runner, does not
+** need to push registers onto the stack as part of its prologue.
+*/
+static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
+ pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
+ return whereScanNext(pScan);
+}
+
+/*
+** Initialize a WHERE clause scanner object. Return a pointer to the
+** first match. Return NULL if there are no matches.
+**
+** The scanner will be searching the WHERE clause pWC. It will look
+** for terms of the form "X <op> <expr>" where X is column iColumn of table
+** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
+** must be one of the indexes of table iCur.
+**
+** The <op> must be one of the operators described by opMask.
+**
+** If the search is for X and the WHERE clause contains terms of the
+** form X=Y then this routine might also return terms of the form
+** "Y <op> <expr>". The number of levels of transitivity is limited,
+** but is enough to handle most commonly occurring SQL statements.
+**
+** If X is not the INTEGER PRIMARY KEY then X must be compatible with
+** index pIdx.
+*/
+static WhereTerm *whereScanInit(
+ WhereScan *pScan, /* The WhereScan object being initialized */
+ WhereClause *pWC, /* The WHERE clause to be scanned */
+ int iCur, /* Cursor to scan for */
+ int iColumn, /* Column to scan for */
+ u32 opMask, /* Operator(s) to scan for */
+ Index *pIdx /* Must be compatible with this index */
+){
+ pScan->pOrigWC = pWC;
+ pScan->pWC = pWC;
+ pScan->pIdxExpr = 0;
+ pScan->idxaff = 0;
+ pScan->zCollName = 0;
+ pScan->opMask = opMask;
+ pScan->k = 0;
+ pScan->aiCur[0] = iCur;
+ pScan->nEquiv = 1;
+ pScan->iEquiv = 1;
+ if( pIdx ){
+ int j = iColumn;
+ iColumn = pIdx->aiColumn[j];
+ if( iColumn==pIdx->pTable->iPKey ){
+ iColumn = XN_ROWID;
+ }else if( iColumn>=0 ){
+ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
+ pScan->zCollName = pIdx->azColl[j];
+ }else if( iColumn==XN_EXPR ){
+ pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
+ pScan->zCollName = pIdx->azColl[j];
+ pScan->aiColumn[0] = XN_EXPR;
+ return whereScanInitIndexExpr(pScan);
+ }
+ }else if( iColumn==XN_EXPR ){
+ return 0;
+ }
+ pScan->aiColumn[0] = iColumn;
+ return whereScanNext(pScan);
+}
+
+/*
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
+** where X is a reference to the iColumn of table iCur or of index pIdx
+** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
+** the op parameter. Return a pointer to the term. Return 0 if not found.
+**
+** If pIdx!=0 then it must be one of the indexes of table iCur.
+** Search for terms matching the iColumn-th column of pIdx
+** rather than the iColumn-th column of table iCur.
+**
+** The term returned might by Y=<expr> if there is another constraint in
+** the WHERE clause that specifies that X=Y. Any such constraints will be
+** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
+** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
+** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
+** other equivalent values. Hence a search for X will return <expr> if X=A1
+** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
+**
+** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
+** then try for the one with no dependencies on <expr> - in other words where
+** <expr> is a constant expression of some kind. Only return entries of
+** the form "X <op> Y" where Y is a column in another table if no terms of
+** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
+** exist, try to return a term that does not use WO_EQUIV.
+*/
+SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u32 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+){
+ WhereTerm *pResult = 0;
+ WhereTerm *p;
+ WhereScan scan;
+
+ p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
+ op &= WO_EQ|WO_IS;
+ while( p ){
+ if( (p->prereqRight & notReady)==0 ){
+ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
+ testcase( p->eOperator & WO_IS );
+ return p;
+ }
+ if( pResult==0 ) pResult = p;
+ }
+ p = whereScanNext(&scan);
+ }
+ return pResult;
+}
+
+/*
+** This function searches pList for an entry that matches the iCol-th column
+** of index pIdx.
+**
+** If such an expression is found, its index in pList->a[] is returned. If
+** no expression is found, -1 is returned.
+*/
+static int findIndexCol(
+ Parse *pParse, /* Parse context */
+ ExprList *pList, /* Expression list to search */
+ int iBase, /* Cursor for table associated with pIdx */
+ Index *pIdx, /* Index to match column of */
+ int iCol /* Column of index to match */
+){
+ int i;
+ const char *zColl = pIdx->azColl[iCol];
+
+ for(i=0; i<pList->nExpr; i++){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
+ if( ALWAYS(p!=0)
+ && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
+ && p->iColumn==pIdx->aiColumn[iCol]
+ && p->iTable==iBase
+ ){
+ CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
+ if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
+ return i;
+ }
+ }
+ }
+
+ return -1;
+}
+
+/*
+** Return TRUE if the iCol-th column of index pIdx is NOT NULL
+*/
+static int indexColumnNotNull(Index *pIdx, int iCol){
+ int j;
+ assert( pIdx!=0 );
+ assert( iCol>=0 && iCol<pIdx->nColumn );
+ j = pIdx->aiColumn[iCol];
+ if( j>=0 ){
+ return pIdx->pTable->aCol[j].notNull;
+ }else if( j==(-1) ){
+ return 1;
+ }else{
+ assert( j==(-2) );
+ return 0; /* Assume an indexed expression can always yield a NULL */
+
+ }
+}
+
+/*
+** Return true if the DISTINCT expression-list passed as the third argument
+** is redundant.
+**
+** A DISTINCT list is redundant if any subset of the columns in the
+** DISTINCT list are collectively unique and individually non-null.
+*/
+static int isDistinctRedundant(
+ Parse *pParse, /* Parsing context */
+ SrcList *pTabList, /* The FROM clause */
+ WhereClause *pWC, /* The WHERE clause */
+ ExprList *pDistinct /* The result set that needs to be DISTINCT */
+){
+ Table *pTab;
+ Index *pIdx;
+ int i;
+ int iBase;
+
+ /* If there is more than one table or sub-select in the FROM clause of
+ ** this query, then it will not be possible to show that the DISTINCT
+ ** clause is redundant. */
+ if( pTabList->nSrc!=1 ) return 0;
+ iBase = pTabList->a[0].iCursor;
+ pTab = pTabList->a[0].pTab;
+
+ /* If any of the expressions is an IPK column on table iBase, then return
+ ** true. Note: The (p->iTable==iBase) part of this test may be false if the
+ ** current SELECT is a correlated sub-query.
+ */
+ for(i=0; i<pDistinct->nExpr; i++){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
+ if( NEVER(p==0) ) continue;
+ if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
+ if( p->iTable==iBase && p->iColumn<0 ) return 1;
+ }
+
+ /* Loop through all indices on the table, checking each to see if it makes
+ ** the DISTINCT qualifier redundant. It does so if:
+ **
+ ** 1. The index is itself UNIQUE, and
+ **
+ ** 2. All of the columns in the index are either part of the pDistinct
+ ** list, or else the WHERE clause contains a term of the form "col=X",
+ ** where X is a constant value. The collation sequences of the
+ ** comparison and select-list expressions must match those of the index.
+ **
+ ** 3. All of those index columns for which the WHERE clause does not
+ ** contain a "col=X" term are subject to a NOT NULL constraint.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( !IsUniqueIndex(pIdx) ) continue;
+ if( pIdx->pPartIdxWhere ) continue;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
+ if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
+ if( indexColumnNotNull(pIdx, i)==0 ) break;
+ }
+ }
+ if( i==pIdx->nKeyCol ){
+ /* This index implies that the DISTINCT qualifier is redundant. */
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+
+/*
+** Estimate the logarithm of the input value to base 2.
+*/
+static LogEst estLog(LogEst N){
+ return N<=10 ? 0 : sqlite3LogEst(N) - 33;
+}
+
+/*
+** Convert OP_Column opcodes to OP_Copy in previously generated code.
+**
+** This routine runs over generated VDBE code and translates OP_Column
+** opcodes into OP_Copy when the table is being accessed via co-routine
+** instead of via table lookup.
+**
+** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
+** cursor iTabCur are transformed into OP_Sequence opcode for the
+** iAutoidxCur cursor, in order to generate unique rowids for the
+** automatic index being generated.
+*/
+static void translateColumnToCopy(
+ Parse *pParse, /* Parsing context */
+ int iStart, /* Translate from this opcode to the end */
+ int iTabCur, /* OP_Column/OP_Rowid references to this table */
+ int iRegister, /* The first column is in this register */
+ int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
+){
+ Vdbe *v = pParse->pVdbe;
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ if( pParse->db->mallocFailed ) return;
+ for(; iStart<iEnd; iStart++, pOp++){
+ if( pOp->p1!=iTabCur ) continue;
+ if( pOp->opcode==OP_Column ){
+ pOp->opcode = OP_Copy;
+ pOp->p1 = pOp->p2 + iRegister;
+ pOp->p2 = pOp->p3;
+ pOp->p3 = 0;
+ pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->opcode = OP_Sequence;
+ pOp->p1 = iAutoidxCur;
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ if( iAutoidxCur==0 ){
+ pOp->opcode = OP_Null;
+ pOp->p3 = 0;
+ }
+#endif
+ }
+ }
+}
+
+/*
+** Two routines for printing the content of an sqlite3_index_info
+** structure. Used for testing and debugging only. If neither
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
+** are no-ops.
+*/
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
+static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
+ int i;
+ if( !sqlite3WhereTrace ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(
+ " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
+ i,
+ p->aConstraint[i].iColumn,
+ p->aConstraint[i].iTermOffset,
+ p->aConstraint[i].op,
+ p->aConstraint[i].usable,
+ sqlite3_vtab_collation(p,i));
+ }
+ for(i=0; i<p->nOrderBy; i++){
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
+ i,
+ p->aOrderBy[i].iColumn,
+ p->aOrderBy[i].desc);
+ }
+}
+static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
+ int i;
+ if( !sqlite3WhereTrace ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
+ i,
+ p->aConstraintUsage[i].argvIndex,
+ p->aConstraintUsage[i].omit);
+ }
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
+ sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
+}
+#else
+#define whereTraceIndexInfoInputs(A)
+#define whereTraceIndexInfoOutputs(A)
+#endif
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** Return TRUE if the WHERE clause term pTerm is of a form where it
+** could be used with an index to access pSrc, assuming an appropriate
+** index existed.
+*/
+static int termCanDriveIndex(
+ const WhereTerm *pTerm, /* WHERE clause term to check */
+ const SrcItem *pSrc, /* Table we are trying to access */
+ const Bitmask notReady /* Tables in outer loops of the join */
+){
+ char aff;
+ if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
+ assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
+ testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
+ testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
+ || pTerm->pExpr->w.iJoin != pSrc->iCursor
+ ){
+ return 0; /* See tag-20191211-001 */
+ }
+ }
+ if( (pTerm->prereqRight & notReady)!=0 ) return 0;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ if( pTerm->u.x.leftColumn<0 ) return 0;
+ aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
+ testcase( pTerm->pExpr->op==TK_IS );
+ return 1;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** Generate code to construct the Index object for an automatic index
+** and to set up the WhereLevel object pLevel so that the code generator
+** makes use of the automatic index.
+*/
+static SQLITE_NOINLINE void constructAutomaticIndex(
+ Parse *pParse, /* The parsing context */
+ const WhereClause *pWC, /* The WHERE clause */
+ const SrcItem *pSrc, /* The FROM clause term to get the next index */
+ const Bitmask notReady, /* Mask of cursors that are not available */
+ WhereLevel *pLevel /* Write new index here */
+){
+ int nKeyCol; /* Number of columns in the constructed index */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ WhereTerm *pWCEnd; /* End of pWC->a[] */
+ Index *pIdx; /* Object describing the transient index */
+ Vdbe *v; /* Prepared statement under construction */
+ int addrInit; /* Address of the initialization bypass jump */
+ Table *pTable; /* The table being indexed */
+ int addrTop; /* Top of the index fill loop */
+ int regRecord; /* Register holding an index record */
+ int n; /* Column counter */
+ int i; /* Loop counter */
+ int mxBitCol; /* Maximum column in pSrc->colUsed */
+ CollSeq *pColl; /* Collating sequence to on a column */
+ WhereLoop *pLoop; /* The Loop object */
+ char *zNotUsed; /* Extra space on the end of pIdx */
+ Bitmask idxCols; /* Bitmap of columns used for indexing */
+ Bitmask extraCols; /* Bitmap of additional columns */
+ u8 sentWarning = 0; /* True if a warnning has been issued */
+ Expr *pPartial = 0; /* Partial Index Expression */
+ int iContinue = 0; /* Jump here to skip excluded rows */
+ SrcItem *pTabItem; /* FROM clause term being indexed */
+ int addrCounter = 0; /* Address where integer counter is initialized */
+ int regBase; /* Array of registers where record is assembled */
+
+ /* Generate code to skip over the creation and initialization of the
+ ** transient index on 2nd and subsequent iterations of the loop. */
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+
+ /* Count the number of columns that will be added to the index
+ ** and used to match WHERE clause constraints */
+ nKeyCol = 0;
+ pTable = pSrc->pTab;
+ pWCEnd = &pWC->a[pWC->nTerm];
+ pLoop = pLevel->pWLoop;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ Expr *pExpr = pTerm->pExpr;
+ /* Make the automatic index a partial index if there are terms in the
+ ** WHERE clause (or the ON clause of a LEFT join) that constrain which
+ ** rows of the target table (pSrc) that can be used. */
+ if( (pTerm->wtFlags & TERM_VIRTUAL)==0
+ && sqlite3ExprIsTableConstraint(pExpr, pSrc)
+ ){
+ pPartial = sqlite3ExprAnd(pParse, pPartial,
+ sqlite3ExprDup(pParse->db, pExpr, 0));
+ }
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol;
+ Bitmask cMask;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iCol = pTerm->u.x.leftColumn;
+ cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
+ testcase( iCol==BMS );
+ testcase( iCol==BMS-1 );
+ if( !sentWarning ){
+ sqlite3_log(SQLITE_WARNING_AUTOINDEX,
+ "automatic index on %s(%s)", pTable->zName,
+ pTable->aCol[iCol].zCnName);
+ sentWarning = 1;
+ }
+ if( (idxCols & cMask)==0 ){
+ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
+ goto end_auto_index_create;
+ }
+ pLoop->aLTerm[nKeyCol++] = pTerm;
+ idxCols |= cMask;
+ }
+ }
+ }
+ assert( nKeyCol>0 || pParse->db->mallocFailed );
+ pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
+ pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
+ | WHERE_AUTO_INDEX;
+
+ /* Count the number of additional columns needed to create a
+ ** covering index. A "covering index" is an index that contains all
+ ** columns that are needed by the query. With a covering index, the
+ ** original table never needs to be accessed. Automatic indices must
+ ** be a covering index because the index will not be updated if the
+ ** original table changes and the index and table cannot both be used
+ ** if they go out of sync.
+ */
+ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
+ mxBitCol = MIN(BMS-1,pTable->nCol);
+ testcase( pTable->nCol==BMS-1 );
+ testcase( pTable->nCol==BMS-2 );
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & MASKBIT(i) ) nKeyCol++;
+ }
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){
+ nKeyCol += pTable->nCol - BMS + 1;
+ }
+
+ /* Construct the Index object to describe this index */
+ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
+ if( pIdx==0 ) goto end_auto_index_create;
+ pLoop->u.btree.pIndex = pIdx;
+ pIdx->zName = "auto-index";
+ pIdx->pTable = pTable;
+ n = 0;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol;
+ Bitmask cMask;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iCol = pTerm->u.x.leftColumn;
+ cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
+ testcase( iCol==BMS-1 );
+ testcase( iCol==BMS );
+ if( (idxCols & cMask)==0 ){
+ Expr *pX = pTerm->pExpr;
+ idxCols |= cMask;
+ pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
+ pColl = sqlite3ExprCompareCollSeq(pParse, pX);
+ assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
+ pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
+ n++;
+ }
+ }
+ }
+ assert( (u32)n==pLoop->u.btree.nEq );
+
+ /* Add additional columns needed to make the automatic index into
+ ** a covering index */
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & MASKBIT(i) ){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+ n++;
+ }
+ }
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){
+ for(i=BMS-1; i<pTable->nCol; i++){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+ n++;
+ }
+ }
+ assert( n==nKeyCol );
+ pIdx->aiColumn[n] = XN_ROWID;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+
+ /* Create the automatic index */
+ assert( pLevel->iIdxCur>=0 );
+ pLevel->iIdxCur = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "for %s", pTable->zName));
+ if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
+ pLevel->regFilter = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
+ }
+
+ /* Fill the automatic index with content */
+ pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
+ if( pTabItem->fg.viaCoroutine ){
+ int regYield = pTabItem->regReturn;
+ addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
+ addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
+ VdbeCoverage(v);
+ VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
+ }else{
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
+ }
+ if( pPartial ){
+ iContinue = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
+ pLoop->wsFlags |= WHERE_PARTIALIDX;
+ }
+ regRecord = sqlite3GetTempReg(pParse);
+ regBase = sqlite3GenerateIndexKey(
+ pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
+ );
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
+ regBase, pLoop->u.btree.nEq);
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
+ if( pTabItem->fg.viaCoroutine ){
+ sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
+ testcase( pParse->db->mallocFailed );
+ assert( pLevel->iIdxCur>0 );
+ translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
+ pTabItem->regResult, pLevel->iIdxCur);
+ sqlite3VdbeGoto(v, addrTop);
+ pTabItem->fg.viaCoroutine = 0;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
+ }
+ sqlite3VdbeJumpHere(v, addrTop);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+
+ /* Jump here when skipping the initialization */
+ sqlite3VdbeJumpHere(v, addrInit);
+
+end_auto_index_create:
+ sqlite3ExprDelete(pParse->db, pPartial);
+}
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+/*
+** Generate bytecode that will initialize a Bloom filter that is appropriate
+** for pLevel.
+**
+** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
+** flag set, initialize a Bloomfilter for them as well. Except don't do
+** this recursive initialization if the SQLITE_BloomPulldown optimization has
+** been turned off.
+**
+** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
+** from the loop, but the regFilter value is set to a register that implements
+** the Bloom filter. When regFilter is positive, the
+** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
+** and skip the subsequence B-Tree seek if the Bloom filter indicates that
+** no matching rows exist.
+**
+** This routine may only be called if it has previously been determined that
+** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
+** is set.
+*/
+static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ int iLevel, /* Index in pWInfo->a[] that is pLevel */
+ WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */
+ Bitmask notReady /* Loops that are not ready */
+){
+ int addrOnce; /* Address of opening OP_Once */
+ int addrTop; /* Address of OP_Rewind */
+ int addrCont; /* Jump here to skip a row */
+ const WhereTerm *pTerm; /* For looping over WHERE clause terms */
+ const WhereTerm *pWCEnd; /* Last WHERE clause term */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */
+ WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */
+ int iCur; /* Cursor for table getting the filter */
+
+ assert( pLoop!=0 );
+ assert( v!=0 );
+ assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
+
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ do{
+ const SrcItem *pItem;
+ const Table *pTab;
+ u64 sz;
+ sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
+ addrCont = sqlite3VdbeMakeLabel(pParse);
+ iCur = pLevel->iTabCur;
+ pLevel->regFilter = ++pParse->nMem;
+
+ /* The Bloom filter is a Blob held in a register. Initialize it
+ ** to zero-filled blob of at least 80K bits, but maybe more if the
+ ** estimated size of the table is larger. We could actually
+ ** measure the size of the table at run-time using OP_Count with
+ ** P3==1 and use that value to initialize the blob. But that makes
+ ** testing complicated. By basing the blob size on the value in the
+ ** sqlite_stat1 table, testing is much easier.
+ */
+ pItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ assert( pItem!=0 );
+ pTab = pItem->pTab;
+ assert( pTab!=0 );
+ sz = sqlite3LogEstToInt(pTab->nRowLogEst);
+ if( sz<10000 ){
+ sz = 10000;
+ }else if( sz>10000000 ){
+ sz = 10000000;
+ }
+ sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
+
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
+ for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
+ Expr *pExpr = pTerm->pExpr;
+ if( (pTerm->wtFlags & TERM_VIRTUAL)==0
+ && sqlite3ExprIsTableConstraint(pExpr, pItem)
+ ){
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ }
+ }
+ if( pLoop->wsFlags & WHERE_IPK ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }else{
+ Index *pIdx = pLoop->u.btree.pIndex;
+ int n = pLoop->u.btree.nEq;
+ int r1 = sqlite3GetTempRange(pParse, n);
+ int jj;
+ for(jj=0; jj<n; jj++){
+ int iCol = pIdx->aiColumn[jj];
+ assert( pIdx->pTable==pItem->pTab );
+ sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
+ }
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
+ sqlite3ReleaseTempRange(pParse, r1, n);
+ }
+ sqlite3VdbeResolveLabel(v, addrCont);
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrTop);
+ pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
+ if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
+ while( ++iLevel < pWInfo->nLevel ){
+ const SrcItem *pTabItem;
+ pLevel = &pWInfo->a[iLevel];
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
+ pLoop = pLevel->pWLoop;
+ if( NEVER(pLoop==0) ) continue;
+ if( pLoop->prereq & notReady ) continue;
+ if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
+ ==WHERE_BLOOMFILTER
+ ){
+ /* This is a candidate for bloom-filter pull-down (early evaluation).
+ ** The test that WHERE_COLUMN_IN is omitted is important, as we are
+ ** not able to do early evaluation of bloom filters that make use of
+ ** the IN operator */
+ break;
+ }
+ }
+ }while( iLevel < pWInfo->nLevel );
+ sqlite3VdbeJumpHere(v, addrOnce);
+}
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Allocate and populate an sqlite3_index_info structure. It is the
+** responsibility of the caller to eventually release the structure
+** by passing the pointer returned by this function to freeIndexInfo().
+*/
+static sqlite3_index_info *allocateIndexInfo(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ WhereClause *pWC, /* The WHERE clause being analyzed */
+ Bitmask mUnusable, /* Ignore terms with these prereqs */
+ SrcItem *pSrc, /* The FROM clause term that is the vtab */
+ u16 *pmNoOmit /* Mask of terms not to omit */
+){
+ int i, j;
+ int nTerm;
+ Parse *pParse = pWInfo->pParse;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_orderby *pIdxOrderBy;
+ struct sqlite3_index_constraint_usage *pUsage;
+ struct HiddenIndexInfo *pHidden;
+ WhereTerm *pTerm;
+ int nOrderBy;
+ sqlite3_index_info *pIdxInfo;
+ u16 mNoOmit = 0;
+ const Table *pTab;
+ int eDistinct = 0;
+ ExprList *pOrderBy = pWInfo->pOrderBy;
+
+ assert( pSrc!=0 );
+ pTab = pSrc->pTab;
+ assert( pTab!=0 );
+ assert( IsVirtual(pTab) );
+
+ /* Find all WHERE clause constraints referring to this virtual table.
+ ** Mark each term with the TERM_OK flag. Set nTerm to the number of
+ ** terms found.
+ */
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ pTerm->wtFlags &= ~TERM_OK;
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ if( pTerm->prereqRight & mUnusable ) continue;
+ assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
+ testcase( pTerm->eOperator & WO_IN );
+ testcase( pTerm->eOperator & WO_ISNULL );
+ testcase( pTerm->eOperator & WO_IS );
+ testcase( pTerm->eOperator & WO_ALL );
+ if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
+ if( pTerm->wtFlags & TERM_VNULL ) continue;
+
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ assert( pTerm->u.x.leftColumn>=XN_ROWID );
+ assert( pTerm->u.x.leftColumn<pTab->nCol );
+
+ /* tag-20191211-002: WHERE-clause constraints are not useful to the
+ ** right-hand table of a LEFT JOIN nor to the either table of a
+ ** RIGHT JOIN. See tag-20191211-001 for the
+ ** equivalent restriction for ordinary tables. */
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
+ testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
+ || pTerm->pExpr->w.iJoin != pSrc->iCursor
+ ){
+ continue;
+ }
+ }
+ nTerm++;
+ pTerm->wtFlags |= TERM_OK;
+ }
+
+ /* If the ORDER BY clause contains only columns in the current
+ ** virtual table then allocate space for the aOrderBy part of
+ ** the sqlite3_index_info structure.
+ */
+ nOrderBy = 0;
+ if( pOrderBy ){
+ int n = pOrderBy->nExpr;
+ for(i=0; i<n; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ Expr *pE2;
+
+ /* Skip over constant terms in the ORDER BY clause */
+ if( sqlite3ExprIsConstant(pExpr) ){
+ continue;
+ }
+
+ /* Virtual tables are unable to deal with NULLS FIRST */
+ if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
+
+ /* First case - a direct column references without a COLLATE operator */
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
+ assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
+ continue;
+ }
+
+ /* 2nd case - a column reference with a COLLATE operator. Only match
+ ** of the COLLATE operator matches the collation of the column. */
+ if( pExpr->op==TK_COLLATE
+ && (pE2 = pExpr->pLeft)->op==TK_COLUMN
+ && pE2->iTable==pSrc->iCursor
+ ){
+ const char *zColl; /* The collating sequence name */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken!=0 );
+ assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
+ pExpr->iColumn = pE2->iColumn;
+ if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */
+ zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
+ if( zColl==0 ) zColl = sqlite3StrBINARY;
+ if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
+ }
+
+ /* No matches cause a break out of the loop */
+ break;
+ }
+ if( i==n ){
+ nOrderBy = n;
+ if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
+ eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
+ }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
+ eDistinct = 1;
+ }
+ }
+ }
+
+ /* Allocate the sqlite3_index_info structure
+ */
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
+ + sizeof(sqlite3_value*)*nTerm );
+ if( pIdxInfo==0 ){
+ sqlite3ErrorMsg(pParse, "out of memory");
+ return 0;
+ }
+ pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
+ pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
+ pIdxInfo->aConstraint = pIdxCons;
+ pIdxInfo->aOrderBy = pIdxOrderBy;
+ pIdxInfo->aConstraintUsage = pUsage;
+ pHidden->pWC = pWC;
+ pHidden->pParse = pParse;
+ pHidden->eDistinct = eDistinct;
+ pHidden->mIn = 0;
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ u16 op;
+ if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
+ pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
+ pIdxCons[j].iTermOffset = i;
+ op = pTerm->eOperator & WO_ALL;
+ if( op==WO_IN ){
+ if( (pTerm->wtFlags & TERM_SLICE)==0 ){
+ pHidden->mIn |= SMASKBIT32(j);
+ }
+ op = WO_EQ;
+ }
+ if( op==WO_AUX ){
+ pIdxCons[j].op = pTerm->eMatchOp;
+ }else if( op & (WO_ISNULL|WO_IS) ){
+ if( op==WO_ISNULL ){
+ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
+ }else{
+ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
+ }
+ }else{
+ pIdxCons[j].op = (u8)op;
+ /* The direct assignment in the previous line is possible only because
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
+ ** following asserts verify this fact. */
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
+ assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
+
+ if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
+ && sqlite3ExprIsVector(pTerm->pExpr->pRight)
+ ){
+ testcase( j!=i );
+ if( j<16 ) mNoOmit |= (1 << j);
+ if( op==WO_LT ) pIdxCons[j].op = WO_LE;
+ if( op==WO_GT ) pIdxCons[j].op = WO_GE;
+ }
+ }
+
+ j++;
+ }
+ assert( j==nTerm );
+ pIdxInfo->nConstraint = j;
+ for(i=j=0; i<nOrderBy; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ if( sqlite3ExprIsConstant(pExpr) ) continue;
+ assert( pExpr->op==TK_COLUMN
+ || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
+ && pExpr->iColumn==pExpr->pLeft->iColumn) );
+ pIdxOrderBy[j].iColumn = pExpr->iColumn;
+ pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
+ j++;
+ }
+ pIdxInfo->nOrderBy = j;
+
+ *pmNoOmit = mNoOmit;
+ return pIdxInfo;
+}
+
+/*
+** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
+** and possibly modified by xBestIndex methods.
+*/
+static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden;
+ int i;
+ assert( pIdxInfo!=0 );
+ pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ assert( pHidden->pParse!=0 );
+ assert( pHidden->pParse->db==db );
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
+ pHidden->aRhs[i] = 0;
+ }
+ sqlite3DbFree(db, pIdxInfo);
+}
+
+/*
+** The table object reference passed as the second argument to this function
+** must represent a virtual table. This function invokes the xBestIndex()
+** method of the virtual table with the sqlite3_index_info object that
+** comes in as the 3rd argument to this function.
+**
+** If an error occurs, pParse is populated with an error message and an
+** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
+** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
+** the current configuration of "unusable" flags in sqlite3_index_info can
+** not result in a valid plan.
+**
+** Whether or not an error is returned, it is the responsibility of the
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
+** that this is required.
+*/
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
+ int rc;
+
+ whereTraceIndexInfoInputs(p);
+ pParse->db->nSchemaLock++;
+ rc = pVtab->pModule->xBestIndex(pVtab, p);
+ pParse->db->nSchemaLock--;
+ whereTraceIndexInfoOutputs(p);
+
+ if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(pParse->db);
+ }else if( !pVtab->zErrMsg ){
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }else{
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
+ }
+ }
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+ return rc;
+}
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the location of a particular key among all keys in an
+** index. Store the results in aStat as follows:
+**
+** aStat[0] Est. number of rows less than pRec
+** aStat[1] Est. number of rows equal to pRec
+**
+** Return the index of the sample that is the smallest sample that
+** is greater than or equal to pRec. Note that this index is not an index
+** into the aSample[] array - it is an index into a virtual set of samples
+** based on the contents of aSample[] and the number of fields in record
+** pRec.
+*/
+static int whereKeyStats(
+ Parse *pParse, /* Database connection */
+ Index *pIdx, /* Index to consider domain of */
+ UnpackedRecord *pRec, /* Vector of values to consider */
+ int roundUp, /* Round up if true. Round down if false */
+ tRowcnt *aStat /* OUT: stats written here */
+){
+ IndexSample *aSample = pIdx->aSample;
+ int iCol; /* Index of required stats in anEq[] etc. */
+ int i; /* Index of first sample >= pRec */
+ int iSample; /* Smallest sample larger than or equal to pRec */
+ int iMin = 0; /* Smallest sample not yet tested */
+ int iTest; /* Next sample to test */
+ int res; /* Result of comparison operation */
+ int nField; /* Number of fields in pRec */
+ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
+
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( pParse );
+#endif
+ assert( pRec!=0 );
+ assert( pIdx->nSample>0 );
+ assert( pRec->nField>0 );
+
+ /* Do a binary search to find the first sample greater than or equal
+ ** to pRec. If pRec contains a single field, the set of samples to search
+ ** is simply the aSample[] array. If the samples in aSample[] contain more
+ ** than one fields, all fields following the first are ignored.
+ **
+ ** If pRec contains N fields, where N is more than one, then as well as the
+ ** samples in aSample[] (truncated to N fields), the search also has to
+ ** consider prefixes of those samples. For example, if the set of samples
+ ** in aSample is:
+ **
+ ** aSample[0] = (a, 5)
+ ** aSample[1] = (a, 10)
+ ** aSample[2] = (b, 5)
+ ** aSample[3] = (c, 100)
+ ** aSample[4] = (c, 105)
+ **
+ ** Then the search space should ideally be the samples above and the
+ ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
+ ** the code actually searches this set:
+ **
+ ** 0: (a)
+ ** 1: (a, 5)
+ ** 2: (a, 10)
+ ** 3: (a, 10)
+ ** 4: (b)
+ ** 5: (b, 5)
+ ** 6: (c)
+ ** 7: (c, 100)
+ ** 8: (c, 105)
+ ** 9: (c, 105)
+ **
+ ** For each sample in the aSample[] array, N samples are present in the
+ ** effective sample array. In the above, samples 0 and 1 are based on
+ ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
+ **
+ ** Often, sample i of each block of N effective samples has (i+1) fields.
+ ** Except, each sample may be extended to ensure that it is greater than or
+ ** equal to the previous sample in the array. For example, in the above,
+ ** sample 2 is the first sample of a block of N samples, so at first it
+ ** appears that it should be 1 field in size. However, that would make it
+ ** smaller than sample 1, so the binary search would not work. As a result,
+ ** it is extended to two fields. The duplicates that this creates do not
+ ** cause any problems.
+ */
+ nField = MIN(pRec->nField, pIdx->nSample);
+ iCol = 0;
+ iSample = pIdx->nSample * nField;
+ do{
+ int iSamp; /* Index in aSample[] of test sample */
+ int n; /* Number of fields in test sample */
+
+ iTest = (iMin+iSample)/2;
+ iSamp = iTest / nField;
+ if( iSamp>0 ){
+ /* The proposed effective sample is a prefix of sample aSample[iSamp].
+ ** Specifically, the shortest prefix of at least (1 + iTest%nField)
+ ** fields that is greater than the previous effective sample. */
+ for(n=(iTest % nField) + 1; n<nField; n++){
+ if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
+ }
+ }else{
+ n = iTest + 1;
+ }
+
+ pRec->nField = n;
+ res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
+ if( res<0 ){
+ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
+ iMin = iTest+1;
+ }else if( res==0 && n<nField ){
+ iLower = aSample[iSamp].anLt[n-1];
+ iMin = iTest+1;
+ res = -1;
+ }else{
+ iSample = iTest;
+ iCol = n-1;
+ }
+ }while( res && iMin<iSample );
+ i = iSample / nField;
+
+#ifdef SQLITE_DEBUG
+ /* The following assert statements check that the binary search code
+ ** above found the right answer. This block serves no purpose other
+ ** than to invoke the asserts. */
+ if( pParse->db->mallocFailed==0 ){
+ if( res==0 ){
+ /* If (res==0) is true, then pRec must be equal to sample i. */
+ assert( i<pIdx->nSample );
+ assert( iCol==nField-1 );
+ pRec->nField = nField;
+ assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
+ || pParse->db->mallocFailed
+ );
+ }else{
+ /* Unless i==pIdx->nSample, indicating that pRec is larger than
+ ** all samples in the aSample[] array, pRec must be smaller than the
+ ** (iCol+1) field prefix of sample i. */
+ assert( i<=pIdx->nSample && i>=0 );
+ pRec->nField = iCol+1;
+ assert( i==pIdx->nSample
+ || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
+ || pParse->db->mallocFailed );
+
+ /* if i==0 and iCol==0, then record pRec is smaller than all samples
+ ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
+ ** be greater than or equal to the (iCol) field prefix of sample i.
+ ** If (i>0), then pRec must also be greater than sample (i-1). */
+ if( iCol>0 ){
+ pRec->nField = iCol;
+ assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
+ || pParse->db->mallocFailed );
+ }
+ if( i>0 ){
+ pRec->nField = nField;
+ assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
+ || pParse->db->mallocFailed );
+ }
+ }
+ }
+#endif /* ifdef SQLITE_DEBUG */
+
+ if( res==0 ){
+ /* Record pRec is equal to sample i */
+ assert( iCol==nField-1 );
+ aStat[0] = aSample[i].anLt[iCol];
+ aStat[1] = aSample[i].anEq[iCol];
+ }else{
+ /* At this point, the (iCol+1) field prefix of aSample[i] is the first
+ ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
+ ** is larger than all samples in the array. */
+ tRowcnt iUpper, iGap;
+ if( i>=pIdx->nSample ){
+ iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
+ }else{
+ iUpper = aSample[i].anLt[iCol];
+ }
+
+ if( iLower>=iUpper ){
+ iGap = 0;
+ }else{
+ iGap = iUpper - iLower;
+ }
+ if( roundUp ){
+ iGap = (iGap*2)/3;
+ }else{
+ iGap = iGap/3;
+ }
+ aStat[0] = iLower + iGap;
+ aStat[1] = pIdx->aAvgEq[nField-1];
+ }
+
+ /* Restore the pRec->nField value before returning. */
+ pRec->nField = nField;
+ return i;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** If it is not NULL, pTerm is a term that provides an upper or lower
+** bound on a range scan. Without considering pTerm, it is estimated
+** that the scan will visit nNew rows. This function returns the number
+** estimated to be visited after taking pTerm into account.
+**
+** If the user explicitly specified a likelihood() value for this term,
+** then the return value is the likelihood multiplied by the number of
+** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
+** has a likelihood of 0.50, and any other term a likelihood of 0.25.
+*/
+static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
+ LogEst nRet = nNew;
+ if( pTerm ){
+ if( pTerm->truthProb<=0 ){
+ nRet += pTerm->truthProb;
+ }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
+ nRet -= 20; assert( 20==sqlite3LogEst(4) );
+ }
+ }
+ return nRet;
+}
+
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Return the affinity for a single column of an index.
+*/
+SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
+ assert( iCol>=0 && iCol<pIdx->nColumn );
+ if( !pIdx->zColAff ){
+ if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
+ }
+ assert( pIdx->zColAff[iCol]!=0 );
+ return pIdx->zColAff[iCol];
+}
+#endif
+
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** This function is called to estimate the number of rows visited by a
+** range-scan on a skip-scan index. For example:
+**
+** CREATE INDEX i1 ON t1(a, b, c);
+** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
+**
+** Value pLoop->nOut is currently set to the estimated number of rows
+** visited for scanning (a=? AND b=?). This function reduces that estimate
+** by some factor to account for the (c BETWEEN ? AND ?) expression based
+** on the stat4 data for the index. this scan will be peformed multiple
+** times (once for each (a,b) combination that matches a=?) is dealt with
+** by the caller.
+**
+** It does this by scanning through all stat4 samples, comparing values
+** extracted from pLower and pUpper with the corresponding column in each
+** sample. If L and U are the number of samples found to be less than or
+** equal to the values extracted from pLower and pUpper respectively, and
+** N is the total number of samples, the pLoop->nOut value is adjusted
+** as follows:
+**
+** nOut = nOut * ( min(U - L, 1) / N )
+**
+** If pLower is NULL, or a value cannot be extracted from the term, L is
+** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
+** U is set to N.
+**
+** Normally, this function sets *pbDone to 1 before returning. However,
+** if no value can be extracted from either pLower or pUpper (and so the
+** estimate of the number of rows delivered remains unchanged), *pbDone
+** is left as is.
+**
+** If an error occurs, an SQLite error code is returned. Otherwise,
+** SQLITE_OK.
+*/
+static int whereRangeSkipScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop, /* Update the .nOut value of this loop */
+ int *pbDone /* Set to true if at least one expr. value extracted */
+){
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+ sqlite3 *db = pParse->db;
+ int nLower = -1;
+ int nUpper = p->nSample+1;
+ int rc = SQLITE_OK;
+ u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
+ CollSeq *pColl;
+
+ sqlite3_value *p1 = 0; /* Value extracted from pLower */
+ sqlite3_value *p2 = 0; /* Value extracted from pUpper */
+ sqlite3_value *pVal = 0; /* Value extracted from record */
+
+ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
+ if( pLower ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
+ nLower = 0;
+ }
+ if( pUpper && rc==SQLITE_OK ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
+ nUpper = p2 ? 0 : p->nSample;
+ }
+
+ if( p1 || p2 ){
+ int i;
+ int nDiff;
+ for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
+ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
+ if( rc==SQLITE_OK && p1 ){
+ int res = sqlite3MemCompare(p1, pVal, pColl);
+ if( res>=0 ) nLower++;
+ }
+ if( rc==SQLITE_OK && p2 ){
+ int res = sqlite3MemCompare(p2, pVal, pColl);
+ if( res>=0 ) nUpper++;
+ }
+ }
+ nDiff = (nUpper - nLower);
+ if( nDiff<=0 ) nDiff = 1;
+
+ /* If there is both an upper and lower bound specified, and the
+ ** comparisons indicate that they are close together, use the fallback
+ ** method (assume that the scan visits 1/64 of the rows) for estimating
+ ** the number of rows visited. Otherwise, estimate the number of rows
+ ** using the method described in the header comment for this function. */
+ if( nDiff!=1 || pUpper==0 || pLower==0 ){
+ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
+ pLoop->nOut -= nAdjust;
+ *pbDone = 1;
+ WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
+ nLower, nUpper, nAdjust*-1, pLoop->nOut));
+ }
+
+ }else{
+ assert( *pbDone==0 );
+ }
+
+ sqlite3ValueFree(p1);
+ sqlite3ValueFree(p2);
+ sqlite3ValueFree(pVal);
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** This function is used to estimate the number of rows that will be visited
+** by scanning an index for a range of values. The range may have an upper
+** bound, a lower bound, or both. The WHERE clause terms that set the upper
+** and lower bounds are represented by pLower and pUpper respectively. For
+** example, assuming that index p is on t1(a):
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+** |_____| |_____|
+** | |
+** pLower pUpper
+**
+** If either of the upper or lower bound is not present, then NULL is passed in
+** place of the corresponding WhereTerm.
+**
+** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
+** column subject to the range constraint. Or, equivalently, the number of
+** equality constraints optimized by the proposed index scan. For example,
+** assuming index p is on t1(a, b), and the SQL query is:
+**
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
+**
+** then nEq is set to 1 (as the range restricted column, b, is the second
+** left-most column of the index). Or, if the query is:
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+**
+** then nEq is set to 0.
+**
+** When this function is called, *pnOut is set to the sqlite3LogEst() of the
+** number of rows that the index scan is expected to visit without
+** considering the range constraints. If nEq is 0, then *pnOut is the number of
+** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
+** to account for the range constraints pLower and pUpper.
+**
+** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
+** used, a single range inequality reduces the search space by a factor of 4.
+** and a pair of constraints (x>? AND x<?) reduces the expected number of
+** rows visited by a factor of 64.
+*/
+static int whereRangeScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
+){
+ int rc = SQLITE_OK;
+ int nOut = pLoop->nOut;
+ LogEst nNew;
+
+#ifdef SQLITE_ENABLE_STAT4
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+
+ if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
+ && OptimizationEnabled(pParse->db, SQLITE_Stat4)
+ ){
+ if( nEq==pBuilder->nRecValid ){
+ UnpackedRecord *pRec = pBuilder->pRec;
+ tRowcnt a[2];
+ int nBtm = pLoop->u.btree.nBtm;
+ int nTop = pLoop->u.btree.nTop;
+
+ /* Variable iLower will be set to the estimate of the number of rows in
+ ** the index that are less than the lower bound of the range query. The
+ ** lower bound being the concatenation of $P and $L, where $P is the
+ ** key-prefix formed by the nEq values matched against the nEq left-most
+ ** columns of the index, and $L is the value in pLower.
+ **
+ ** Or, if pLower is NULL or $L cannot be extracted from it (because it
+ ** is not a simple variable or literal value), the lower bound of the
+ ** range is $P. Due to a quirk in the way whereKeyStats() works, even
+ ** if $L is available, whereKeyStats() is called for both ($P) and
+ ** ($P:$L) and the larger of the two returned values is used.
+ **
+ ** Similarly, iUpper is to be set to the estimate of the number of rows
+ ** less than the upper bound of the range query. Where the upper bound
+ ** is either ($P) or ($P:$U). Again, even if $U is available, both values
+ ** of iUpper are requested of whereKeyStats() and the smaller used.
+ **
+ ** The number of rows between the two bounds is then just iUpper-iLower.
+ */
+ tRowcnt iLower; /* Rows less than the lower bound */
+ tRowcnt iUpper; /* Rows less than the upper bound */
+ int iLwrIdx = -2; /* aSample[] for the lower bound */
+ int iUprIdx = -1; /* aSample[] for the upper bound */
+
+ if( pRec ){
+ testcase( pRec->nField!=pBuilder->nRecValid );
+ pRec->nField = pBuilder->nRecValid;
+ }
+ /* Determine iLower and iUpper using ($P) only. */
+ if( nEq==0 ){
+ iLower = 0;
+ iUpper = p->nRowEst0;
+ }else{
+ /* Note: this call could be optimized away - since the same values must
+ ** have been requested when testing key $P in whereEqualScanEst(). */
+ whereKeyStats(pParse, p, pRec, 0, a);
+ iLower = a[0];
+ iUpper = a[0] + a[1];
+ }
+
+ assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
+ assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
+ assert( p->aSortOrder!=0 );
+ if( p->aSortOrder[nEq] ){
+ /* The roles of pLower and pUpper are swapped for a DESC index */
+ SWAP(WhereTerm*, pLower, pUpper);
+ SWAP(int, nBtm, nTop);
+ }
+
+ /* If possible, improve on the iLower estimate using ($P:$L). */
+ if( pLower ){
+ int n; /* Values extracted from pExpr */
+ Expr *pExpr = pLower->pExpr->pRight;
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
+ if( rc==SQLITE_OK && n ){
+ tRowcnt iNew;
+ u16 mask = WO_GT|WO_LE;
+ if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
+ iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
+ iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
+ if( iNew>iLower ) iLower = iNew;
+ nOut--;
+ pLower = 0;
+ }
+ }
+
+ /* If possible, improve on the iUpper estimate using ($P:$U). */
+ if( pUpper ){
+ int n; /* Values extracted from pExpr */
+ Expr *pExpr = pUpper->pExpr->pRight;
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
+ if( rc==SQLITE_OK && n ){
+ tRowcnt iNew;
+ u16 mask = WO_GT|WO_LE;
+ if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
+ iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
+ iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
+ if( iNew<iUpper ) iUpper = iNew;
+ nOut--;
+ pUpper = 0;
+ }
+ }
+
+ pBuilder->pRec = pRec;
+ if( rc==SQLITE_OK ){
+ if( iUpper>iLower ){
+ nNew = sqlite3LogEst(iUpper - iLower);
+ /* TUNING: If both iUpper and iLower are derived from the same
+ ** sample, then assume they are 4x more selective. This brings
+ ** the estimated selectivity more in line with what it would be
+ ** if estimated without the use of STAT4 tables. */
+ if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
+ }else{
+ nNew = 10; assert( 10==sqlite3LogEst(2) );
+ }
+ if( nNew<nOut ){
+ nOut = nNew;
+ }
+ WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
+ (u32)iLower, (u32)iUpper, nOut));
+ }
+ }else{
+ int bDone = 0;
+ rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
+ if( bDone ) return rc;
+ }
+ }
+#else
+ UNUSED_PARAMETER(pParse);
+ UNUSED_PARAMETER(pBuilder);
+ assert( pLower || pUpper );
+#endif
+ assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
+ nNew = whereRangeAdjust(pLower, nOut);
+ nNew = whereRangeAdjust(pUpper, nNew);
+
+ /* TUNING: If there is both an upper and lower limit and neither limit
+ ** has an application-defined likelihood(), assume the range is
+ ** reduced by an additional 75%. This means that, by default, an open-ended
+ ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
+ ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
+ ** match 1/64 of the index. */
+ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
+ nNew -= 20;
+ }
+
+ nOut -= (pLower!=0) + (pUpper!=0);
+ if( nNew<10 ) nNew = 10;
+ if( nNew<nOut ) nOut = nNew;
+#if defined(WHERETRACE_ENABLED)
+ if( pLoop->nOut>nOut ){
+ WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
+ pLoop->nOut, nOut));
+ }
+#endif
+ pLoop->nOut = (LogEst)nOut;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the number of rows that will be returned based on
+** an equality constraint x=VALUE and where that VALUE occurs in
+** the histogram data. This only works when x is the left-most
+** column of an index and sqlite_stat4 histogram data is available
+** for that index. When pExpr==NULL that means the constraint is
+** "x IS NULL" instead of "x=VALUE".
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereEqualScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
+ tRowcnt *pnRow /* Write the revised row estimate here */
+){
+ Index *p = pBuilder->pNew->u.btree.pIndex;
+ int nEq = pBuilder->pNew->u.btree.nEq;
+ UnpackedRecord *pRec = pBuilder->pRec;
+ int rc; /* Subfunction return code */
+ tRowcnt a[2]; /* Statistics */
+ int bOk;
+
+ assert( nEq>=1 );
+ assert( nEq<=p->nColumn );
+ assert( p->aSample!=0 );
+ assert( p->nSample>0 );
+ assert( pBuilder->nRecValid<nEq );
+
+ /* If values are not available for all fields of the index to the left
+ ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
+ if( pBuilder->nRecValid<(nEq-1) ){
+ return SQLITE_NOTFOUND;
+ }
+
+ /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
+ ** below would return the same value. */
+ if( nEq>=p->nColumn ){
+ *pnRow = 1;
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
+ pBuilder->pRec = pRec;
+ if( rc!=SQLITE_OK ) return rc;
+ if( bOk==0 ) return SQLITE_NOTFOUND;
+ pBuilder->nRecValid = nEq;
+
+ whereKeyStats(pParse, p, pRec, 0, a);
+ WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
+ p->zName, nEq-1, (int)a[1]));
+ *pnRow = a[1];
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the number of rows that will be returned based on
+** an IN constraint where the right-hand side of the IN operator
+** is a list of values. Example:
+**
+** WHERE x IN (1,2,3,4)
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereInScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
+ tRowcnt *pnRow /* Write the revised row estimate here */
+){
+ Index *p = pBuilder->pNew->u.btree.pIndex;
+ i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
+ int nRecValid = pBuilder->nRecValid;
+ int rc = SQLITE_OK; /* Subfunction return code */
+ tRowcnt nEst; /* Number of rows for a single term */
+ tRowcnt nRowEst = 0; /* New estimate of the number of rows */
+ int i; /* Loop counter */
+
+ assert( p->aSample!=0 );
+ for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
+ nEst = nRow0;
+ rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
+ nRowEst += nEst;
+ pBuilder->nRecValid = nRecValid;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( nRowEst > nRow0 ) nRowEst = nRow0;
+ *pnRow = nRowEst;
+ WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
+ }
+ assert( pBuilder->nRecValid==nRecValid );
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Print the content of a WhereTerm object
+*/
+SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
+ if( pTerm==0 ){
+ sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
+ }else{
+ char zType[8];
+ char zLeft[50];
+ memcpy(zType, "....", 5);
+ if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
+ if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
+ if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
+ if( pTerm->eOperator & WO_SINGLE ){
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
+ pTerm->leftCursor, pTerm->u.x.leftColumn);
+ }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
+ pTerm->u.pOrInfo->indexable);
+ }else{
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
+ }
+ sqlite3DebugPrintf(
+ "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
+ iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
+ /* The 0x10000 .wheretrace flag causes extra information to be
+ ** shown about each Term */
+ if( sqlite3WhereTrace & 0x10000 ){
+ sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
+ pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
+ }
+ if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
+ sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
+ }
+ if( pTerm->iParent>=0 ){
+ sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
+ }
+ sqlite3DebugPrintf("\n");
+ sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
+ }
+}
+#endif
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Show the complete content of a WhereClause
+*/
+SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC){
+ int i;
+ for(i=0; i<pWC->nTerm; i++){
+ sqlite3WhereTermPrint(&pWC->a[i], i);
+ }
+}
+#endif
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Print a WhereLoop object for debugging purposes
+*/
+SQLITE_PRIVATE void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
+ WhereInfo *pWInfo = pWC->pWInfo;
+ int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
+ SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
+ Table *pTab = pItem->pTab;
+ Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
+ sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
+ p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
+ sqlite3DebugPrintf(" %12s",
+ pItem->zAlias ? pItem->zAlias : pTab->zName);
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
+ const char *zName;
+ if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
+ if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
+ int i = sqlite3Strlen30(zName) - 1;
+ while( zName[i]!='_' ) i--;
+ zName += i;
+ }
+ sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
+ }else{
+ sqlite3DebugPrintf("%20s","");
+ }
+ }else{
+ char *z;
+ if( p->u.vtab.idxStr ){
+ z = sqlite3_mprintf("(%d,\"%s\",%#x)",
+ p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
+ }else{
+ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
+ }
+ sqlite3DebugPrintf(" %-19s", z);
+ sqlite3_free(z);
+ }
+ if( p->wsFlags & WHERE_SKIPSCAN ){
+ sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
+ }else{
+ sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
+ }
+ sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
+ if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
+ int i;
+ for(i=0; i<p->nLTerm; i++){
+ sqlite3WhereTermPrint(p->aLTerm[i], i);
+ }
+ }
+}
+#endif
+
+/*
+** Convert bulk memory into a valid WhereLoop that can be passed
+** to whereLoopClear harmlessly.
+*/
+static void whereLoopInit(WhereLoop *p){
+ p->aLTerm = p->aLTermSpace;
+ p->nLTerm = 0;
+ p->nLSlot = ArraySize(p->aLTermSpace);
+ p->wsFlags = 0;
+}
+
+/*
+** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
+*/
+static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
+ if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
+ sqlite3_free(p->u.vtab.idxStr);
+ p->u.vtab.needFree = 0;
+ p->u.vtab.idxStr = 0;
+ }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
+ sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
+ sqlite3DbFreeNN(db, p->u.btree.pIndex);
+ p->u.btree.pIndex = 0;
+ }
+ }
+}
+
+/*
+** Deallocate internal memory used by a WhereLoop object
+*/
+static void whereLoopClear(sqlite3 *db, WhereLoop *p){
+ if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
+ whereLoopClearUnion(db, p);
+ whereLoopInit(p);
+}
+
+/*
+** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
+*/
+static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
+ WhereTerm **paNew;
+ if( p->nLSlot>=n ) return SQLITE_OK;
+ n = (n+7)&~7;
+ paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
+ if( paNew==0 ) return SQLITE_NOMEM_BKPT;
+ memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
+ if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
+ p->aLTerm = paNew;
+ p->nLSlot = n;
+ return SQLITE_OK;
+}
+
+/*
+** Transfer content from the second pLoop into the first.
+*/
+static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
+ whereLoopClearUnion(db, pTo);
+ if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
+ memset(pTo, 0, WHERE_LOOP_XFER_SZ);
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
+ memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
+ if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
+ pFrom->u.vtab.needFree = 0;
+ }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
+ pFrom->u.btree.pIndex = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Delete a WhereLoop object
+*/
+static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
+ whereLoopClear(db, p);
+ sqlite3DbFreeNN(db, p);
+}
+
+/*
+** Free a WhereInfo structure
+*/
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
+ assert( pWInfo!=0 );
+ sqlite3WhereClauseClear(&pWInfo->sWC);
+ while( pWInfo->pLoops ){
+ WhereLoop *p = pWInfo->pLoops;
+ pWInfo->pLoops = p->pNextLoop;
+ whereLoopDelete(db, p);
+ }
+ assert( pWInfo->pExprMods==0 );
+ while( pWInfo->pMemToFree ){
+ WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
+ sqlite3DbFreeNN(db, pWInfo->pMemToFree);
+ pWInfo->pMemToFree = pNext;
+ }
+ sqlite3DbFreeNN(db, pWInfo);
+}
+
+/* Undo all Expr node modifications
+*/
+static void whereUndoExprMods(WhereInfo *pWInfo){
+ while( pWInfo->pExprMods ){
+ WhereExprMod *p = pWInfo->pExprMods;
+ pWInfo->pExprMods = p->pNext;
+ memcpy(p->pExpr, &p->orig, sizeof(p->orig));
+ sqlite3DbFree(pWInfo->pParse->db, p);
+ }
+}
+
+/*
+** Return TRUE if all of the following are true:
+**
+** (1) X has the same or lower cost, or returns the same or fewer rows,
+** than Y.
+** (2) X uses fewer WHERE clause terms than Y
+** (3) Every WHERE clause term used by X is also used by Y
+** (4) X skips at least as many columns as Y
+** (5) If X is a covering index, than Y is too
+**
+** Conditions (2) and (3) mean that X is a "proper subset" of Y.
+** If X is a proper subset of Y then Y is a better choice and ought
+** to have a lower cost. This routine returns TRUE when that cost
+** relationship is inverted and needs to be adjusted. Constraint (4)
+** was added because if X uses skip-scan less than Y it still might
+** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
+** was added because a covering index probably deserves to have a lower cost
+** than a non-covering index even if it is a proper subset.
+*/
+static int whereLoopCheaperProperSubset(
+ const WhereLoop *pX, /* First WhereLoop to compare */
+ const WhereLoop *pY /* Compare against this WhereLoop */
+){
+ int i, j;
+ if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
+ return 0; /* X is not a subset of Y */
+ }
+ if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
+ if( pY->nSkip > pX->nSkip ) return 0;
+ for(i=pX->nLTerm-1; i>=0; i--){
+ if( pX->aLTerm[i]==0 ) continue;
+ for(j=pY->nLTerm-1; j>=0; j--){
+ if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
+ }
+ if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
+ }
+ if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
+ && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
+ return 0; /* Constraint (5) */
+ }
+ return 1; /* All conditions meet */
+}
+
+/*
+** Try to adjust the cost and number of output rows of WhereLoop pTemplate
+** upwards or downwards so that:
+**
+** (1) pTemplate costs less than any other WhereLoops that are a proper
+** subset of pTemplate
+**
+** (2) pTemplate costs more than any other WhereLoops for which pTemplate
+** is a proper subset.
+**
+** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
+** WHERE clause terms than Y and that every WHERE clause term used by X is
+** also used by Y.
+*/
+static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
+ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
+ for(; p; p=p->pNextLoop){
+ if( p->iTab!=pTemplate->iTab ) continue;
+ if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
+ if( whereLoopCheaperProperSubset(p, pTemplate) ){
+ /* Adjust pTemplate cost downward so that it is cheaper than its
+ ** subset p. */
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
+ pTemplate->rRun, pTemplate->nOut,
+ MIN(p->rRun, pTemplate->rRun),
+ MIN(p->nOut - 1, pTemplate->nOut)));
+ pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
+ pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
+ }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
+ /* Adjust pTemplate cost upward so that it is costlier than p since
+ ** pTemplate is a proper subset of p */
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
+ pTemplate->rRun, pTemplate->nOut,
+ MAX(p->rRun, pTemplate->rRun),
+ MAX(p->nOut + 1, pTemplate->nOut)));
+ pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
+ pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
+ }
+ }
+}
+
+/*
+** Search the list of WhereLoops in *ppPrev looking for one that can be
+** replaced by pTemplate.
+**
+** Return NULL if pTemplate does not belong on the WhereLoop list.
+** In other words if pTemplate ought to be dropped from further consideration.
+**
+** If pX is a WhereLoop that pTemplate can replace, then return the
+** link that points to pX.
+**
+** If pTemplate cannot replace any existing element of the list but needs
+** to be added to the list as a new entry, then return a pointer to the
+** tail of the list.
+*/
+static WhereLoop **whereLoopFindLesser(
+ WhereLoop **ppPrev,
+ const WhereLoop *pTemplate
+){
+ WhereLoop *p;
+ for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
+ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
+ /* If either the iTab or iSortIdx values for two WhereLoop are different
+ ** then those WhereLoops need to be considered separately. Neither is
+ ** a candidate to replace the other. */
+ continue;
+ }
+ /* In the current implementation, the rSetup value is either zero
+ ** or the cost of building an automatic index (NlogN) and the NlogN
+ ** is the same for compatible WhereLoops. */
+ assert( p->rSetup==0 || pTemplate->rSetup==0
+ || p->rSetup==pTemplate->rSetup );
+
+ /* whereLoopAddBtree() always generates and inserts the automatic index
+ ** case first. Hence compatible candidate WhereLoops never have a larger
+ ** rSetup. Call this SETUP-INVARIANT */
+ assert( p->rSetup>=pTemplate->rSetup );
+
+ /* Any loop using an appliation-defined index (or PRIMARY KEY or
+ ** UNIQUE constraint) with one or more == constraints is better
+ ** than an automatic index. Unless it is a skip-scan. */
+ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
+ && (pTemplate->nSkip)==0
+ && (pTemplate->wsFlags & WHERE_INDEXED)!=0
+ && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
+ && (p->prereq & pTemplate->prereq)==pTemplate->prereq
+ ){
+ break;
+ }
+
+ /* If existing WhereLoop p is better than pTemplate, pTemplate can be
+ ** discarded. WhereLoop p is better if:
+ ** (1) p has no more dependencies than pTemplate, and
+ ** (2) p has an equal or lower cost than pTemplate
+ */
+ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
+ && p->rSetup<=pTemplate->rSetup /* (2a) */
+ && p->rRun<=pTemplate->rRun /* (2b) */
+ && p->nOut<=pTemplate->nOut /* (2c) */
+ ){
+ return 0; /* Discard pTemplate */
+ }
+
+ /* If pTemplate is always better than p, then cause p to be overwritten
+ ** with pTemplate. pTemplate is better than p if:
+ ** (1) pTemplate has no more dependences than p, and
+ ** (2) pTemplate has an equal or lower cost than p.
+ */
+ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
+ && p->rRun>=pTemplate->rRun /* (2a) */
+ && p->nOut>=pTemplate->nOut /* (2b) */
+ ){
+ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
+ break; /* Cause p to be overwritten by pTemplate */
+ }
+ }
+ return ppPrev;
+}
+
+/*
+** Insert or replace a WhereLoop entry using the template supplied.
+**
+** An existing WhereLoop entry might be overwritten if the new template
+** is better and has fewer dependencies. Or the template will be ignored
+** and no insert will occur if an existing WhereLoop is faster and has
+** fewer dependencies than the template. Otherwise a new WhereLoop is
+** added based on the template.
+**
+** If pBuilder->pOrSet is not NULL then we care about only the
+** prerequisites and rRun and nOut costs of the N best loops. That
+** information is gathered in the pBuilder->pOrSet object. This special
+** processing mode is used only for OR clause processing.
+**
+** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
+** still might overwrite similar loops with the new template if the
+** new template is better. Loops may be overwritten if the following
+** conditions are met:
+**
+** (1) They have the same iTab.
+** (2) They have the same iSortIdx.
+** (3) The template has same or fewer dependencies than the current loop
+** (4) The template has the same or lower cost than the current loop
+*/
+static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
+ WhereLoop **ppPrev, *p;
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ sqlite3 *db = pWInfo->pParse->db;
+ int rc;
+
+ /* Stop the search once we hit the query planner search limit */
+ if( pBuilder->iPlanLimit==0 ){
+ WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
+ if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
+ return SQLITE_DONE;
+ }
+ pBuilder->iPlanLimit--;
+
+ whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
+
+ /* If pBuilder->pOrSet is defined, then only keep track of the costs
+ ** and prereqs.
+ */
+ if( pBuilder->pOrSet!=0 ){
+ if( pTemplate->nLTerm ){
+#if WHERETRACE_ENABLED
+ u16 n = pBuilder->pOrSet->n;
+ int x =
+#endif
+ whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
+ pTemplate->nOut);
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ }
+ return SQLITE_OK;
+ }
+
+ /* Look for an existing WhereLoop to replace with pTemplate
+ */
+ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
+
+ if( ppPrev==0 ){
+ /* There already exists a WhereLoop on the list that is better
+ ** than pTemplate, so just ignore pTemplate */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(" skip: ");
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ return SQLITE_OK;
+ }else{
+ p = *ppPrev;
+ }
+
+ /* If we reach this point it means that either p[] should be overwritten
+ ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
+ ** WhereLoop and insert it.
+ */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ if( p!=0 ){
+ sqlite3DebugPrintf("replace: ");
+ sqlite3WhereLoopPrint(p, pBuilder->pWC);
+ sqlite3DebugPrintf(" with: ");
+ }else{
+ sqlite3DebugPrintf(" add: ");
+ }
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ if( p==0 ){
+ /* Allocate a new WhereLoop to add to the end of the list */
+ *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ whereLoopInit(p);
+ p->pNextLoop = 0;
+ }else{
+ /* We will be overwriting WhereLoop p[]. But before we do, first
+ ** go through the rest of the list and delete any other entries besides
+ ** p[] that are also supplated by pTemplate */
+ WhereLoop **ppTail = &p->pNextLoop;
+ WhereLoop *pToDel;
+ while( *ppTail ){
+ ppTail = whereLoopFindLesser(ppTail, pTemplate);
+ if( ppTail==0 ) break;
+ pToDel = *ppTail;
+ if( pToDel==0 ) break;
+ *ppTail = pToDel->pNextLoop;
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(" delete: ");
+ sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
+ }
+#endif
+ whereLoopDelete(db, pToDel);
+ }
+ }
+ rc = whereLoopXfer(db, p, pTemplate);
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
+ Index *pIndex = p->u.btree.pIndex;
+ if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
+ p->u.btree.pIndex = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Adjust the WhereLoop.nOut value downward to account for terms of the
+** WHERE clause that reference the loop but which are not used by an
+** index.
+*
+** For every WHERE clause term that is not used by the index
+** and which has a truth probability assigned by one of the likelihood(),
+** likely(), or unlikely() SQL functions, reduce the estimated number
+** of output rows by the probability specified.
+**
+** TUNING: For every WHERE clause term that is not used by the index
+** and which does not have an assigned truth probability, heuristics
+** described below are used to try to estimate the truth probability.
+** TODO --> Perhaps this is something that could be improved by better
+** table statistics.
+**
+** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
+** value corresponds to -1 in LogEst notation, so this means decrement
+** the WhereLoop.nOut field for every such WHERE clause term.
+**
+** Heuristic 2: If there exists one or more WHERE clause terms of the
+** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
+** final output row estimate is no greater than 1/4 of the total number
+** of rows in the table. In other words, assume that x==EXPR will filter
+** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
+** "x" column is boolean or else -1 or 0 or 1 is a common default value
+** on the "x" column and so in that case only cap the output row estimate
+** at 1/2 instead of 1/4.
+*/
+static void whereLoopOutputAdjust(
+ WhereClause *pWC, /* The WHERE clause */
+ WhereLoop *pLoop, /* The loop to adjust downward */
+ LogEst nRow /* Number of rows in the entire table */
+){
+ WhereTerm *pTerm, *pX;
+ Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
+ int i, j;
+ LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
+
+ assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
+ for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
+ assert( pTerm!=0 );
+ if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
+ if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
+ if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
+ for(j=pLoop->nLTerm-1; j>=0; j--){
+ pX = pLoop->aLTerm[j];
+ if( pX==0 ) continue;
+ if( pX==pTerm ) break;
+ if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
+ }
+ if( j<0 ){
+ if( pLoop->maskSelf==pTerm->prereqAll ){
+ /* If there are extra terms in the WHERE clause not used by an index
+ ** that depend only on the table being scanned, and that will tend to
+ ** cause many rows to be omitted, then mark that table as
+ ** "self-culling".
+ **
+ ** 2022-03-24: Self-culling only applies if either the extra terms
+ ** are straight comparison operators that are non-true with NULL
+ ** operand, or if the loop is not an OUTER JOIN.
+ */
+ if( (pTerm->eOperator & 0x3f)!=0
+ || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
+ & (JT_LEFT|JT_LTORJ))==0
+ ){
+ pLoop->wsFlags |= WHERE_SELFCULL;
+ }
+ }
+ if( pTerm->truthProb<=0 ){
+ /* If a truth probability is specified using the likelihood() hints,
+ ** then use the probability provided by the application. */
+ pLoop->nOut += pTerm->truthProb;
+ }else{
+ /* In the absence of explicit truth probabilities, use heuristics to
+ ** guess a reasonable truth probability. */
+ pLoop->nOut--;
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
+ && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
+ ){
+ Expr *pRight = pTerm->pExpr->pRight;
+ int k = 0;
+ testcase( pTerm->pExpr->op==TK_IS );
+ if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
+ k = 10;
+ }else{
+ k = 20;
+ }
+ if( iReduce<k ){
+ pTerm->wtFlags |= TERM_HEURTRUTH;
+ iReduce = k;
+ }
+ }
+ }
+ }
+ }
+ if( pLoop->nOut > nRow-iReduce ){
+ pLoop->nOut = nRow - iReduce;
+ }
+}
+
+/*
+** Term pTerm is a vector range comparison operation. The first comparison
+** in the vector can be optimized using column nEq of the index. This
+** function returns the total number of vector elements that can be used
+** as part of the range comparison.
+**
+** For example, if the query is:
+**
+** WHERE a = ? AND (b, c, d) > (?, ?, ?)
+**
+** and the index:
+**
+** CREATE INDEX ... ON (a, b, c, d, e)
+**
+** then this function would be invoked with nEq=1. The value returned in
+** this case is 3.
+*/
+static int whereRangeVectorLen(
+ Parse *pParse, /* Parsing context */
+ int iCur, /* Cursor open on pIdx */
+ Index *pIdx, /* The index to be used for a inequality constraint */
+ int nEq, /* Number of prior equality constraints on same index */
+ WhereTerm *pTerm /* The vector inequality constraint */
+){
+ int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
+ int i;
+
+ nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
+ for(i=1; i<nCmp; i++){
+ /* Test if comparison i of pTerm is compatible with column (i+nEq)
+ ** of the index. If not, exit the loop. */
+ char aff; /* Comparison affinity */
+ char idxaff = 0; /* Indexed columns affinity */
+ CollSeq *pColl; /* Comparison collation sequence */
+ Expr *pLhs, *pRhs;
+
+ assert( ExprUseXList(pTerm->pExpr->pLeft) );
+ pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
+ pRhs = pTerm->pExpr->pRight;
+ if( ExprUseXSelect(pRhs) ){
+ pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
+ }else{
+ pRhs = pRhs->x.pList->a[i].pExpr;
+ }
+
+ /* Check that the LHS of the comparison is a column reference to
+ ** the right column of the right source table. And that the sort
+ ** order of the index column is the same as the sort order of the
+ ** leftmost index column. */
+ if( pLhs->op!=TK_COLUMN
+ || pLhs->iTable!=iCur
+ || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
+ || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
+ ){
+ break;
+ }
+
+ testcase( pLhs->iColumn==XN_ROWID );
+ aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
+ idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
+ if( aff!=idxaff ) break;
+
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
+ if( pColl==0 ) break;
+ if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
+ }
+ return i;
+}
+
+/*
+** Adjust the cost C by the costMult facter T. This only occurs if
+** compiled with -DSQLITE_ENABLE_COSTMULT
+*/
+#ifdef SQLITE_ENABLE_COSTMULT
+# define ApplyCostMultiplier(C,T) C += T
+#else
+# define ApplyCostMultiplier(C,T)
+#endif
+
+/*
+** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
+** index pIndex. Try to match one more.
+**
+** When this function is called, pBuilder->pNew->nOut contains the
+** number of rows expected to be visited by filtering using the nEq
+** terms only. If it is modified, this value is restored before this
+** function returns.
+**
+** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
+** a fake index used for the INTEGER PRIMARY KEY.
+*/
+static int whereLoopAddBtreeIndex(
+ WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
+ SrcItem *pSrc, /* FROM clause term being analyzed */
+ Index *pProbe, /* An index on pSrc */
+ LogEst nInMul /* log(Number of iterations due to IN) */
+){
+ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection malloc context */
+ WhereLoop *pNew; /* Template WhereLoop under construction */
+ WhereTerm *pTerm; /* A WhereTerm under consideration */
+ int opMask; /* Valid operators for constraints */
+ WhereScan scan; /* Iterator for WHERE terms */
+ Bitmask saved_prereq; /* Original value of pNew->prereq */
+ u16 saved_nLTerm; /* Original value of pNew->nLTerm */
+ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
+ u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
+ u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
+ u16 saved_nSkip; /* Original value of pNew->nSkip */
+ u32 saved_wsFlags; /* Original value of pNew->wsFlags */
+ LogEst saved_nOut; /* Original value of pNew->nOut */
+ int rc = SQLITE_OK; /* Return code */
+ LogEst rSize; /* Number of rows in the table */
+ LogEst rLogSize; /* Logarithm of table size */
+ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
+
+ pNew = pBuilder->pNew;
+ if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
+ WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
+ pProbe->pTable->zName,pProbe->zName,
+ pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
+
+ assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
+ if( pNew->wsFlags & WHERE_BTM_LIMIT ){
+ opMask = WO_LT|WO_LE;
+ }else{
+ assert( pNew->u.btree.nBtm==0 );
+ opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
+ }
+ if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
+
+ assert( pNew->u.btree.nEq<pProbe->nColumn );
+ assert( pNew->u.btree.nEq<pProbe->nKeyCol
+ || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
+
+ saved_nEq = pNew->u.btree.nEq;
+ saved_nBtm = pNew->u.btree.nBtm;
+ saved_nTop = pNew->u.btree.nTop;
+ saved_nSkip = pNew->nSkip;
+ saved_nLTerm = pNew->nLTerm;
+ saved_wsFlags = pNew->wsFlags;
+ saved_prereq = pNew->prereq;
+ saved_nOut = pNew->nOut;
+ pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
+ opMask, pProbe);
+ pNew->rSetup = 0;
+ rSize = pProbe->aiRowLogEst[0];
+ rLogSize = estLog(rSize);
+ for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
+ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
+ LogEst rCostIdx;
+ LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
+ int nIn = 0;
+#ifdef SQLITE_ENABLE_STAT4
+ int nRecValid = pBuilder->nRecValid;
+#endif
+ if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
+ && indexColumnNotNull(pProbe, saved_nEq)
+ ){
+ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
+ }
+ if( pTerm->prereqRight & pNew->maskSelf ) continue;
+
+ /* Do not allow the upper bound of a LIKE optimization range constraint
+ ** to mix with a lower range bound from some other source */
+ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
+
+ /* tag-20191211-001: Do not allow constraints from the WHERE clause to
+ ** be used by the right table of a LEFT JOIN nor by the left table of a
+ ** RIGHT JOIN. Only constraints in the ON clause are allowed.
+ ** See tag-20191211-002 for the vtab equivalent.
+ **
+ ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f
+ ** for an example of a WHERE clause constraints that may not be used on
+ ** the right table of a RIGHT JOIN because the constraint implies a
+ ** not-NULL condition on the left table of the RIGHT JOIN.
+ **
+ ** 2022-06-10: The same condition applies to termCanDriveIndex() above.
+ ** https://sqlite.org/forum/forumpost/51e6959f61
+ */
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
+ testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
+ testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
+ || pTerm->pExpr->w.iJoin != pSrc->iCursor
+ ){
+ continue;
+ }
+ }
+
+ if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
+ pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
+ }else{
+ pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
+ }
+ pNew->wsFlags = saved_wsFlags;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->u.btree.nBtm = saved_nBtm;
+ pNew->u.btree.nTop = saved_nTop;
+ pNew->nLTerm = saved_nLTerm;
+ if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
+ pNew->aLTerm[pNew->nLTerm++] = pTerm;
+ pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
+
+ assert( nInMul==0
+ || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
+ || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
+ || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
+ );
+
+ if( eOp & WO_IN ){
+ Expr *pExpr = pTerm->pExpr;
+ if( ExprUseXSelect(pExpr) ){
+ /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
+ int i;
+ nIn = 46; assert( 46==sqlite3LogEst(25) );
+
+ /* The expression may actually be of the form (x, y) IN (SELECT...).
+ ** In this case there is a separate term for each of (x) and (y).
+ ** However, the nIn multiplier should only be applied once, not once
+ ** for each such term. The following loop checks that pTerm is the
+ ** first such term in use, and sets nIn back to 0 if it is not. */
+ for(i=0; i<pNew->nLTerm-1; i++){
+ if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
+ }
+ }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
+ /* "x IN (value, value, ...)" */
+ nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
+ }
+ if( pProbe->hasStat1 && rLogSize>=10 ){
+ LogEst M, logK, x;
+ /* Let:
+ ** N = the total number of rows in the table
+ ** K = the number of entries on the RHS of the IN operator
+ ** M = the number of rows in the table that match terms to the
+ ** to the left in the same index. If the IN operator is on
+ ** the left-most index column, M==N.
+ **
+ ** Given the definitions above, it is better to omit the IN operator
+ ** from the index lookup and instead do a scan of the M elements,
+ ** testing each scanned row against the IN operator separately, if:
+ **
+ ** M*log(K) < K*log(N)
+ **
+ ** Our estimates for M, K, and N might be inaccurate, so we build in
+ ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
+ ** with the index, as using an index has better worst-case behavior.
+ ** If we do not have real sqlite_stat1 data, always prefer to use
+ ** the index. Do not bother with this optimization on very small
+ ** tables (less than 2 rows) as it is pointless in that case.
+ */
+ M = pProbe->aiRowLogEst[saved_nEq];
+ logK = estLog(nIn);
+ /* TUNING v----- 10 to bias toward indexed IN */
+ x = M + logK + 10 - (nIn + rLogSize);
+ if( x>=0 ){
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
+ "prefers indexed lookup\n",
+ saved_nEq, M, logK, nIn, rLogSize, x));
+ }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
+ " nInMul=%d) prefers skip-scan\n",
+ saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
+ pNew->wsFlags |= WHERE_IN_SEEKSCAN;
+ }else{
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
+ " nInMul=%d) prefers normal scan\n",
+ saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
+ continue;
+ }
+ }
+ pNew->wsFlags |= WHERE_COLUMN_IN;
+ }else if( eOp & (WO_EQ|WO_IS) ){
+ int iCol = pProbe->aiColumn[saved_nEq];
+ pNew->wsFlags |= WHERE_COLUMN_EQ;
+ assert( saved_nEq==pNew->u.btree.nEq );
+ if( iCol==XN_ROWID
+ || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
+ ){
+ if( iCol==XN_ROWID || pProbe->uniqNotNull
+ || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
+ ){
+ pNew->wsFlags |= WHERE_ONEROW;
+ }else{
+ pNew->wsFlags |= WHERE_UNQ_WANTED;
+ }
+ }
+ if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
+ }else if( eOp & WO_ISNULL ){
+ pNew->wsFlags |= WHERE_COLUMN_NULL;
+ }else if( eOp & (WO_GT|WO_GE) ){
+ testcase( eOp & WO_GT );
+ testcase( eOp & WO_GE );
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
+ pNew->u.btree.nBtm = whereRangeVectorLen(
+ pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
+ );
+ pBtm = pTerm;
+ pTop = 0;
+ if( pTerm->wtFlags & TERM_LIKEOPT ){
+ /* Range constraints that come from the LIKE optimization are
+ ** always used in pairs. */
+ pTop = &pTerm[1];
+ assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
+ assert( pTop->wtFlags & TERM_LIKEOPT );
+ assert( pTop->eOperator==WO_LT );
+ if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
+ pNew->aLTerm[pNew->nLTerm++] = pTop;
+ pNew->wsFlags |= WHERE_TOP_LIMIT;
+ pNew->u.btree.nTop = 1;
+ }
+ }else{
+ assert( eOp & (WO_LT|WO_LE) );
+ testcase( eOp & WO_LT );
+ testcase( eOp & WO_LE );
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
+ pNew->u.btree.nTop = whereRangeVectorLen(
+ pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
+ );
+ pTop = pTerm;
+ pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
+ pNew->aLTerm[pNew->nLTerm-2] : 0;
+ }
+
+ /* At this point pNew->nOut is set to the number of rows expected to
+ ** be visited by the index scan before considering term pTerm, or the
+ ** values of nIn and nInMul. In other words, assuming that all
+ ** "x IN(...)" terms are replaced with "x = ?". This block updates
+ ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
+ assert( pNew->nOut==saved_nOut );
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ /* Adjust nOut using stat4 data. Or, if there is no stat4
+ ** data, using some other estimate. */
+ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
+ }else{
+ int nEq = ++pNew->u.btree.nEq;
+ assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
+
+ assert( pNew->nOut==saved_nOut );
+ if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
+ assert( (eOp & WO_IN) || nIn==0 );
+ testcase( eOp & WO_IN );
+ pNew->nOut += pTerm->truthProb;
+ pNew->nOut -= nIn;
+ }else{
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt nOut = 0;
+ if( nInMul==0
+ && pProbe->nSample
+ && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
+ && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
+ && OptimizationEnabled(db, SQLITE_Stat4)
+ ){
+ Expr *pExpr = pTerm->pExpr;
+ if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
+ testcase( eOp & WO_EQ );
+ testcase( eOp & WO_IS );
+ testcase( eOp & WO_ISNULL );
+ rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
+ }else{
+ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
+ }
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
+ if( nOut ){
+ pNew->nOut = sqlite3LogEst(nOut);
+ if( nEq==1
+ /* TUNING: Mark terms as "low selectivity" if they seem likely
+ ** to be true for half or more of the rows in the table.
+ ** See tag-202002240-1 */
+ && pNew->nOut+10 > pProbe->aiRowLogEst[0]
+ ){
+#if WHERETRACE_ENABLED /* 0x01 */
+ if( sqlite3WhereTrace & 0x01 ){
+ sqlite3DebugPrintf(
+ "STAT4 determines term has low selectivity:\n");
+ sqlite3WhereTermPrint(pTerm, 999);
+ }
+#endif
+ pTerm->wtFlags |= TERM_HIGHTRUTH;
+ if( pTerm->wtFlags & TERM_HEURTRUTH ){
+ /* If the term has previously been used with an assumption of
+ ** higher selectivity, then set the flag to rerun the
+ ** loop computations. */
+ pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
+ }
+ }
+ if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
+ pNew->nOut -= nIn;
+ }
+ }
+ if( nOut==0 )
+#endif
+ {
+ pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
+ if( eOp & WO_ISNULL ){
+ /* TUNING: If there is no likelihood() value, assume that a
+ ** "col IS NULL" expression matches twice as many rows
+ ** as (col=?). */
+ pNew->nOut += 10;
+ }
+ }
+ }
+ }
+
+ /* Set rCostIdx to the cost of visiting selected rows in index. Add
+ ** it to pNew->rRun, which is currently set to the cost of the index
+ ** seek only. Then, if this is a non-covering index, add the cost of
+ ** visiting the rows in the main table. */
+ assert( pSrc->pTab->szTabRow>0 );
+ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
+ pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
+ if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
+ }
+ ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
+
+ nOutUnadjusted = pNew->nOut;
+ pNew->rRun += nInMul + nIn;
+ pNew->nOut += nInMul + nIn;
+ whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
+ rc = whereLoopInsert(pBuilder, pNew);
+
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ pNew->nOut = saved_nOut;
+ }else{
+ pNew->nOut = nOutUnadjusted;
+ }
+
+ if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
+ && pNew->u.btree.nEq<pProbe->nColumn
+ && (pNew->u.btree.nEq<pProbe->nKeyCol ||
+ pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
+ ){
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
+ }
+ pNew->nOut = saved_nOut;
+#ifdef SQLITE_ENABLE_STAT4
+ pBuilder->nRecValid = nRecValid;
+#endif
+ }
+ pNew->prereq = saved_prereq;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->u.btree.nBtm = saved_nBtm;
+ pNew->u.btree.nTop = saved_nTop;
+ pNew->nSkip = saved_nSkip;
+ pNew->wsFlags = saved_wsFlags;
+ pNew->nOut = saved_nOut;
+ pNew->nLTerm = saved_nLTerm;
+
+ /* Consider using a skip-scan if there are no WHERE clause constraints
+ ** available for the left-most terms of the index, and if the average
+ ** number of repeats in the left-most terms is at least 18.
+ **
+ ** The magic number 18 is selected on the basis that scanning 17 rows
+ ** is almost always quicker than an index seek (even though if the index
+ ** contains fewer than 2^17 rows we assume otherwise in other parts of
+ ** the code). And, even if it is not, it should not be too much slower.
+ ** On the other hand, the extra seeks could end up being significantly
+ ** more expensive. */
+ assert( 42==sqlite3LogEst(18) );
+ if( saved_nEq==saved_nSkip
+ && saved_nEq+1<pProbe->nKeyCol
+ && saved_nEq==pNew->nLTerm
+ && pProbe->noSkipScan==0
+ && pProbe->hasStat1!=0
+ && OptimizationEnabled(db, SQLITE_SkipScan)
+ && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
+ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
+ ){
+ LogEst nIter;
+ pNew->u.btree.nEq++;
+ pNew->nSkip++;
+ pNew->aLTerm[pNew->nLTerm++] = 0;
+ pNew->wsFlags |= WHERE_SKIPSCAN;
+ nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
+ pNew->nOut -= nIter;
+ /* TUNING: Because uncertainties in the estimates for skip-scan queries,
+ ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
+ nIter += 5;
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
+ pNew->nOut = saved_nOut;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->nSkip = saved_nSkip;
+ pNew->wsFlags = saved_wsFlags;
+ }
+
+ WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
+ pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
+ return rc;
+}
+
+/*
+** Return True if it is possible that pIndex might be useful in
+** implementing the ORDER BY clause in pBuilder.
+**
+** Return False if pBuilder does not contain an ORDER BY clause or
+** if there is no way for pIndex to be useful in implementing that
+** ORDER BY clause.
+*/
+static int indexMightHelpWithOrderBy(
+ WhereLoopBuilder *pBuilder,
+ Index *pIndex,
+ int iCursor
+){
+ ExprList *pOB;
+ ExprList *aColExpr;
+ int ii, jj;
+
+ if( pIndex->bUnordered ) return 0;
+ if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
+ for(ii=0; ii<pOB->nExpr; ii++){
+ Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
+ if( NEVER(pExpr==0) ) continue;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
+ if( pExpr->iColumn<0 ) return 1;
+ for(jj=0; jj<pIndex->nKeyCol; jj++){
+ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
+ }
+ }else if( (aColExpr = pIndex->aColExpr)!=0 ){
+ for(jj=0; jj<pIndex->nKeyCol; jj++){
+ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
+ if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/* Check to see if a partial index with pPartIndexWhere can be used
+** in the current query. Return true if it can be and false if not.
+*/
+static int whereUsablePartialIndex(
+ int iTab, /* The table for which we want an index */
+ u8 jointype, /* The JT_* flags on the join */
+ WhereClause *pWC, /* The WHERE clause of the query */
+ Expr *pWhere /* The WHERE clause from the partial index */
+){
+ int i;
+ WhereTerm *pTerm;
+ Parse *pParse;
+
+ if( jointype & JT_LTORJ ) return 0;
+ pParse = pWC->pWInfo->pParse;
+ while( pWhere->op==TK_AND ){
+ if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
+ pWhere = pWhere->pRight;
+ }
+ if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
+ for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ Expr *pExpr;
+ pExpr = pTerm->pExpr;
+ if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
+ && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
+ && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
+ && (pTerm->wtFlags & TERM_VNULL)==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Add all WhereLoop objects for a single table of the join where the table
+** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
+** a b-tree table, not a virtual table.
+**
+** The costs (WhereLoop.rRun) of the b-tree loops added by this function
+** are calculated as follows:
+**
+** For a full scan, assuming the table (or index) contains nRow rows:
+**
+** cost = nRow * 3.0 // full-table scan
+** cost = nRow * K // scan of covering index
+** cost = nRow * (K+3.0) // scan of non-covering index
+**
+** where K is a value between 1.1 and 3.0 set based on the relative
+** estimated average size of the index and table records.
+**
+** For an index scan, where nVisit is the number of index rows visited
+** by the scan, and nSeek is the number of seek operations required on
+** the index b-tree:
+**
+** cost = nSeek * (log(nRow) + K * nVisit) // covering index
+** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
+**
+** Normally, nSeek is 1. nSeek values greater than 1 come about if the
+** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
+** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
+**
+** The estimated values (nRow, nVisit, nSeek) often contain a large amount
+** of uncertainty. For this reason, scoring is designed to pick plans that
+** "do the least harm" if the estimates are inaccurate. For example, a
+** log(nRow) factor is omitted from a non-covering index scan in order to
+** bias the scoring in favor of using an index, since the worst-case
+** performance of using an index is far better than the worst-case performance
+** of a full table scan.
+*/
+static int whereLoopAddBtree(
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */
+ Bitmask mPrereq /* Extra prerequesites for using this table */
+){
+ WhereInfo *pWInfo; /* WHERE analysis context */
+ Index *pProbe; /* An index we are evaluating */
+ Index sPk; /* A fake index object for the primary key */
+ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
+ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
+ SrcList *pTabList; /* The FROM clause */
+ SrcItem *pSrc; /* The FROM clause btree term to add */
+ WhereLoop *pNew; /* Template WhereLoop object */
+ int rc = SQLITE_OK; /* Return code */
+ int iSortIdx = 1; /* Index number */
+ int b; /* A boolean value */
+ LogEst rSize; /* number of rows in the table */
+ WhereClause *pWC; /* The parsed WHERE clause */
+ Table *pTab; /* Table being queried */
+
+ pNew = pBuilder->pNew;
+ pWInfo = pBuilder->pWInfo;
+ pTabList = pWInfo->pTabList;
+ pSrc = pTabList->a + pNew->iTab;
+ pTab = pSrc->pTab;
+ pWC = pBuilder->pWC;
+ assert( !IsVirtual(pSrc->pTab) );
+
+ if( pSrc->fg.isIndexedBy ){
+ assert( pSrc->fg.isCte==0 );
+ /* An INDEXED BY clause specifies a particular index to use */
+ pProbe = pSrc->u2.pIBIndex;
+ }else if( !HasRowid(pTab) ){
+ pProbe = pTab->pIndex;
+ }else{
+ /* There is no INDEXED BY clause. Create a fake Index object in local
+ ** variable sPk to represent the rowid primary key index. Make this
+ ** fake index the first in a chain of Index objects with all of the real
+ ** indices to follow */
+ Index *pFirst; /* First of real indices on the table */
+ memset(&sPk, 0, sizeof(Index));
+ sPk.nKeyCol = 1;
+ sPk.nColumn = 1;
+ sPk.aiColumn = &aiColumnPk;
+ sPk.aiRowLogEst = aiRowEstPk;
+ sPk.onError = OE_Replace;
+ sPk.pTable = pTab;
+ sPk.szIdxRow = pTab->szTabRow;
+ sPk.idxType = SQLITE_IDXTYPE_IPK;
+ aiRowEstPk[0] = pTab->nRowLogEst;
+ aiRowEstPk[1] = 0;
+ pFirst = pSrc->pTab->pIndex;
+ if( pSrc->fg.notIndexed==0 ){
+ /* The real indices of the table are only considered if the
+ ** NOT INDEXED qualifier is omitted from the FROM clause */
+ sPk.pNext = pFirst;
+ }
+ pProbe = &sPk;
+ }
+ rSize = pTab->nRowLogEst;
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ /* Automatic indexes */
+ if( !pBuilder->pOrSet /* Not part of an OR optimization */
+ && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
+ && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
+ && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
+ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
+ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
+ && !pSrc->fg.isCorrelated /* Not a correlated subquery */
+ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
+ && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
+ ){
+ /* Generate auto-index WhereLoops */
+ LogEst rLogSize; /* Logarithm of the number of rows in the table */
+ WhereTerm *pTerm;
+ WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
+ rLogSize = estLog(rSize);
+ for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
+ if( pTerm->prereqRight & pNew->maskSelf ) continue;
+ if( termCanDriveIndex(pTerm, pSrc, 0) ){
+ pNew->u.btree.nEq = 1;
+ pNew->nSkip = 0;
+ pNew->u.btree.pIndex = 0;
+ pNew->nLTerm = 1;
+ pNew->aLTerm[0] = pTerm;
+ /* TUNING: One-time cost for computing the automatic index is
+ ** estimated to be X*N*log2(N) where N is the number of rows in
+ ** the table being indexed and where X is 7 (LogEst=28) for normal
+ ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
+ ** of X is smaller for views and subqueries so that the query planner
+ ** will be more aggressive about generating automatic indexes for
+ ** those objects, since there is no opportunity to add schema
+ ** indexes on subqueries and views. */
+ pNew->rSetup = rLogSize + rSize;
+ if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
+ pNew->rSetup += 28;
+ }else{
+ pNew->rSetup -= 10;
+ }
+ ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
+ if( pNew->rSetup<0 ) pNew->rSetup = 0;
+ /* TUNING: Each index lookup yields 20 rows in the table. This
+ ** is more than the usual guess of 10 rows, since we have no way
+ ** of knowing how selective the index will ultimately be. It would
+ ** not be unreasonable to make this value much larger. */
+ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
+ pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
+ pNew->wsFlags = WHERE_AUTO_INDEX;
+ pNew->prereq = mPrereq | pTerm->prereqRight;
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ }
+ }
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+ /* Loop over all indices. If there was an INDEXED BY clause, then only
+ ** consider index pProbe. */
+ for(; rc==SQLITE_OK && pProbe;
+ pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
+ ){
+ if( pProbe->pPartIdxWhere!=0
+ && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
+ pProbe->pPartIdxWhere)
+ ){
+ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
+ continue; /* Partial index inappropriate for this query */
+ }
+ if( pProbe->bNoQuery ) continue;
+ rSize = pProbe->aiRowLogEst[0];
+ pNew->u.btree.nEq = 0;
+ pNew->u.btree.nBtm = 0;
+ pNew->u.btree.nTop = 0;
+ pNew->nSkip = 0;
+ pNew->nLTerm = 0;
+ pNew->iSortIdx = 0;
+ pNew->rSetup = 0;
+ pNew->prereq = mPrereq;
+ pNew->nOut = rSize;
+ pNew->u.btree.pIndex = pProbe;
+ b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
+
+ /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
+ assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
+ if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
+ /* Integer primary key index */
+ pNew->wsFlags = WHERE_IPK;
+
+ /* Full table scan */
+ pNew->iSortIdx = b ? iSortIdx : 0;
+ /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
+ ** extra cost designed to discourage the use of full table scans,
+ ** since index lookups have better worst-case performance if our
+ ** stat guesses are wrong. Reduce the 3.0 penalty slightly
+ ** (to 2.75) if we have valid STAT4 information for the table.
+ ** At 2.75, a full table scan is preferred over using an index on
+ ** a column with just two distinct values where each value has about
+ ** an equal number of appearances. Without STAT4 data, we still want
+ ** to use an index in that case, since the constraint might be for
+ ** the scarcer of the two values, and in that case an index lookup is
+ ** better.
+ */
+#ifdef SQLITE_ENABLE_STAT4
+ pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
+#else
+ pNew->rRun = rSize + 16;
+#endif
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
+ whereLoopOutputAdjust(pWC, pNew, rSize);
+ rc = whereLoopInsert(pBuilder, pNew);
+ pNew->nOut = rSize;
+ if( rc ) break;
+ }else{
+ Bitmask m;
+ if( pProbe->isCovering ){
+ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
+ m = 0;
+ }else{
+ m = pSrc->colUsed & pProbe->colNotIdxed;
+ pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
+ }
+
+ /* Full scan via index */
+ if( b
+ || !HasRowid(pTab)
+ || pProbe->pPartIdxWhere!=0
+ || pSrc->fg.isIndexedBy
+ || ( m==0
+ && pProbe->bUnordered==0
+ && (pProbe->szIdxRow<pTab->szTabRow)
+ && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
+ && sqlite3GlobalConfig.bUseCis
+ && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
+ )
+ ){
+ pNew->iSortIdx = b ? iSortIdx : 0;
+
+ /* The cost of visiting the index rows is N*K, where K is
+ ** between 1.1 and 3.0, depending on the relative sizes of the
+ ** index and table rows. */
+ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
+ if( m!=0 ){
+ /* If this is a non-covering index scan, add in the cost of
+ ** doing table lookups. The cost will be 3x the number of
+ ** lookups. Take into account WHERE clause terms that can be
+ ** satisfied using just the index, and that do not require a
+ ** table lookup. */
+ LogEst nLookup = rSize + 16; /* Base cost: N*3 */
+ int ii;
+ int iCur = pSrc->iCursor;
+ WhereClause *pWC2 = &pWInfo->sWC;
+ for(ii=0; ii<pWC2->nTerm; ii++){
+ WhereTerm *pTerm = &pWC2->a[ii];
+ if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
+ break;
+ }
+ /* pTerm can be evaluated using just the index. So reduce
+ ** the expected number of table lookups accordingly */
+ if( pTerm->truthProb<=0 ){
+ nLookup += pTerm->truthProb;
+ }else{
+ nLookup--;
+ if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
+ }
+ }
+
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
+ }
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
+ whereLoopOutputAdjust(pWC, pNew, rSize);
+ if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
+ /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
+ ** because the cursor used to access the index might not be
+ ** positioned to the correct row during the right-join no-match
+ ** loop. */
+ }else{
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ pNew->nOut = rSize;
+ if( rc ) break;
+ }
+ }
+
+ pBuilder->bldFlags1 = 0;
+ rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
+ if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
+ /* If a non-unique index is used, or if a prefix of the key for
+ ** unique index is used (making the index functionally non-unique)
+ ** then the sqlite_stat1 data becomes important for scoring the
+ ** plan */
+ pTab->tabFlags |= TF_StatsUsed;
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3Stat4ProbeFree(pBuilder->pRec);
+ pBuilder->nRecValid = 0;
+ pBuilder->pRec = 0;
+#endif
+ }
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+/*
+** Return true if pTerm is a virtual table LIMIT or OFFSET term.
+*/
+static int isLimitTerm(WhereTerm *pTerm){
+ assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
+ return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
+ && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
+}
+
+/*
+** Argument pIdxInfo is already populated with all constraints that may
+** be used by the virtual table identified by pBuilder->pNew->iTab. This
+** function marks a subset of those constraints usable, invokes the
+** xBestIndex method and adds the returned plan to pBuilder.
+**
+** A constraint is marked usable if:
+**
+** * Argument mUsable indicates that its prerequisites are available, and
+**
+** * It is not one of the operators specified in the mExclude mask passed
+** as the fourth argument (which in practice is either WO_IN or 0).
+**
+** Argument mPrereq is a mask of tables that must be scanned before the
+** virtual table in question. These are added to the plans prerequisites
+** before it is added to pBuilder.
+**
+** Output parameter *pbIn is set to true if the plan added to pBuilder
+** uses one or more WO_IN terms, or false otherwise.
+*/
+static int whereLoopAddVirtualOne(
+ WhereLoopBuilder *pBuilder,
+ Bitmask mPrereq, /* Mask of tables that must be used. */
+ Bitmask mUsable, /* Mask of usable tables */
+ u16 mExclude, /* Exclude terms using these operators */
+ sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
+ u16 mNoOmit, /* Do not omit these constraints */
+ int *pbIn, /* OUT: True if plan uses an IN(...) op */
+ int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */
+){
+ WhereClause *pWC = pBuilder->pWC;
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
+ int i;
+ int mxTerm;
+ int rc = SQLITE_OK;
+ WhereLoop *pNew = pBuilder->pNew;
+ Parse *pParse = pBuilder->pWInfo->pParse;
+ SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
+ int nConstraint = pIdxInfo->nConstraint;
+
+ assert( (mUsable & mPrereq)==mPrereq );
+ *pbIn = 0;
+ pNew->prereq = mPrereq;
+
+ /* Set the usable flag on the subset of constraints identified by
+ ** arguments mUsable and mExclude. */
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<nConstraint; i++, pIdxCons++){
+ WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
+ pIdxCons->usable = 0;
+ if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
+ && (pTerm->eOperator & mExclude)==0
+ && (pbRetryLimit || !isLimitTerm(pTerm))
+ ){
+ pIdxCons->usable = 1;
+ }
+ }
+
+ /* Initialize the output fields of the sqlite3_index_info structure */
+ memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
+ assert( pIdxInfo->needToFreeIdxStr==0 );
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->idxNum = 0;
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
+ pIdxInfo->estimatedRows = 25;
+ pIdxInfo->idxFlags = 0;
+ pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
+ pHidden->mHandleIn = 0;
+
+ /* Invoke the virtual table xBestIndex() method */
+ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
+ if( rc ){
+ if( rc==SQLITE_CONSTRAINT ){
+ /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
+ ** that the particular combination of parameters provided is unusable.
+ ** Make no entries in the loop table.
+ */
+ WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+
+ mxTerm = -1;
+ assert( pNew->nLSlot>=nConstraint );
+ memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
+ memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<nConstraint; i++, pIdxCons++){
+ int iTerm;
+ if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
+ WhereTerm *pTerm;
+ int j = pIdxCons->iTermOffset;
+ if( iTerm>=nConstraint
+ || j<0
+ || j>=pWC->nTerm
+ || pNew->aLTerm[iTerm]!=0
+ || pIdxCons->usable==0
+ ){
+ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
+ testcase( pIdxInfo->needToFreeIdxStr );
+ return SQLITE_ERROR;
+ }
+ testcase( iTerm==nConstraint-1 );
+ testcase( j==0 );
+ testcase( j==pWC->nTerm-1 );
+ pTerm = &pWC->a[j];
+ pNew->prereq |= pTerm->prereqRight;
+ assert( iTerm<pNew->nLSlot );
+ pNew->aLTerm[iTerm] = pTerm;
+ if( iTerm>mxTerm ) mxTerm = iTerm;
+ testcase( iTerm==15 );
+ testcase( iTerm==16 );
+ if( pUsage[i].omit ){
+ if( i<16 && ((1<<i)&mNoOmit)==0 ){
+ testcase( i!=iTerm );
+ pNew->u.vtab.omitMask |= 1<<iTerm;
+ }else{
+ testcase( i!=iTerm );
+ }
+ if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
+ pNew->u.vtab.bOmitOffset = 1;
+ }
+ }
+ if( SMASKBIT32(i) & pHidden->mHandleIn ){
+ pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
+ }else if( (pTerm->eOperator & WO_IN)!=0 ){
+ /* A virtual table that is constrained by an IN clause may not
+ ** consume the ORDER BY clause because (1) the order of IN terms
+ ** is not necessarily related to the order of output terms and
+ ** (2) Multiple outputs from a single IN value will not merge
+ ** together. */
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
+ *pbIn = 1; assert( (mExclude & WO_IN)==0 );
+ }
+
+ assert( pbRetryLimit || !isLimitTerm(pTerm) );
+ if( isLimitTerm(pTerm) && *pbIn ){
+ /* If there is an IN(...) term handled as an == (separate call to
+ ** xFilter for each value on the RHS of the IN) and a LIMIT or
+ ** OFFSET term handled as well, the plan is unusable. Set output
+ ** variable *pbRetryLimit to true to tell the caller to retry with
+ ** LIMIT and OFFSET disabled. */
+ if( pIdxInfo->needToFreeIdxStr ){
+ sqlite3_free(pIdxInfo->idxStr);
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->needToFreeIdxStr = 0;
+ }
+ *pbRetryLimit = 1;
+ return SQLITE_OK;
+ }
+ }
+ }
+
+ pNew->nLTerm = mxTerm+1;
+ for(i=0; i<=mxTerm; i++){
+ if( pNew->aLTerm[i]==0 ){
+ /* The non-zero argvIdx values must be contiguous. Raise an
+ ** error if they are not */
+ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
+ testcase( pIdxInfo->needToFreeIdxStr );
+ return SQLITE_ERROR;
+ }
+ }
+ assert( pNew->nLTerm<=pNew->nLSlot );
+ pNew->u.vtab.idxNum = pIdxInfo->idxNum;
+ pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
+ pIdxInfo->needToFreeIdxStr = 0;
+ pNew->u.vtab.idxStr = pIdxInfo->idxStr;
+ pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
+ pIdxInfo->nOrderBy : 0);
+ pNew->rSetup = 0;
+ pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
+ pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
+
+ /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
+ ** that the scan will visit at most one row. Clear it otherwise. */
+ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
+ pNew->wsFlags |= WHERE_ONEROW;
+ }else{
+ pNew->wsFlags &= ~WHERE_ONEROW;
+ }
+ rc = whereLoopInsert(pBuilder, pNew);
+ if( pNew->u.vtab.needFree ){
+ sqlite3_free(pNew->u.vtab.idxStr);
+ pNew->u.vtab.needFree = 0;
+ }
+ WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
+ *pbIn, (sqlite3_uint64)mPrereq,
+ (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
+
+ return rc;
+}
+
+/*
+** Return the collating sequence for a constraint passed into xBestIndex.
+**
+** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
+** This routine depends on there being a HiddenIndexInfo structure immediately
+** following the sqlite3_index_info structure.
+**
+** Return a pointer to the collation name:
+**
+** 1. If there is an explicit COLLATE operator on the constaint, return it.
+**
+** 2. Else, if the column has an alternative collation, return that.
+**
+** 3. Otherwise, return "BINARY".
+*/
+SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ const char *zRet = 0;
+ if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
+ CollSeq *pC = 0;
+ int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
+ Expr *pX = pHidden->pWC->a[iTerm].pExpr;
+ if( pX->pLeft ){
+ pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
+ }
+ zRet = (pC ? pC->zName : sqlite3StrBINARY);
+ }
+ return zRet;
+}
+
+/*
+** Return true if constraint iCons is really an IN(...) constraint, or
+** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
+** or clear (if bHandle==0) the flag to handle it using an iterator.
+*/
+SQLITE_API int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ u32 m = SMASKBIT32(iCons);
+ if( m & pHidden->mIn ){
+ if( bHandle==0 ){
+ pHidden->mHandleIn &= ~m;
+ }else if( bHandle>0 ){
+ pHidden->mHandleIn |= m;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** This interface is callable from within the xBestIndex callback only.
+**
+** If possible, set (*ppVal) to point to an object containing the value
+** on the right-hand-side of constraint iCons.
+*/
+SQLITE_API int sqlite3_vtab_rhs_value(
+ sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */
+ int iCons, /* Constraint for which RHS is wanted */
+ sqlite3_value **ppVal /* Write value extracted here */
+){
+ HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
+ sqlite3_value *pVal = 0;
+ int rc = SQLITE_OK;
+ if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
+ rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
+ }else{
+ if( pH->aRhs[iCons]==0 ){
+ WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
+ rc = sqlite3ValueFromExpr(
+ pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
+ SQLITE_AFF_BLOB, &pH->aRhs[iCons]
+ );
+ testcase( rc!=SQLITE_OK );
+ }
+ pVal = pH->aRhs[iCons];
+ }
+ *ppVal = pVal;
+
+ if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */
+ rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */
+ }
+
+ return rc;
+}
+
+/*
+** Return true if ORDER BY clause may be handled as DISTINCT.
+*/
+SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
+ return pHidden->eDistinct;
+}
+
+#if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
+ && !defined(SQLITE_OMIT_VIRTUALTABLE)
+/*
+** Cause the prepared statement that is associated with a call to
+** xBestIndex to potentiall use all schemas. If the statement being
+** prepared is read-only, then just start read transactions on all
+** schemas. But if this is a write operation, start writes on all
+** schemas.
+**
+** This is used by the (built-in) sqlite_dbpage virtual table.
+*/
+SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ Parse *pParse = pHidden->pParse;
+ int nDb = pParse->db->nDb;
+ int i;
+ for(i=0; i<nDb; i++){
+ sqlite3CodeVerifySchema(pParse, i);
+ }
+ if( pParse->writeMask ){
+ for(i=0; i<nDb; i++){
+ sqlite3BeginWriteOperation(pParse, 0, i);
+ }
+ }
+}
+#endif
+
+/*
+** Add all WhereLoop objects for a table of the join identified by
+** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
+**
+** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
+** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
+** entries that occur before the virtual table in the FROM clause and are
+** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
+** mUnusable mask contains all FROM clause entries that occur after the
+** virtual table and are separated from it by at least one LEFT or
+** CROSS JOIN.
+**
+** For example, if the query were:
+**
+** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
+**
+** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
+**
+** All the tables in mPrereq must be scanned before the current virtual
+** table. So any terms for which all prerequisites are satisfied by
+** mPrereq may be specified as "usable" in all calls to xBestIndex.
+** Conversely, all tables in mUnusable must be scanned after the current
+** virtual table, so any terms for which the prerequisites overlap with
+** mUnusable should always be configured as "not-usable" for xBestIndex.
+*/
+static int whereLoopAddVirtual(
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */
+ Bitmask mPrereq, /* Tables that must be scanned before this one */
+ Bitmask mUnusable /* Tables that must be scanned after this one */
+){
+ int rc = SQLITE_OK; /* Return code */
+ WhereInfo *pWInfo; /* WHERE analysis context */
+ Parse *pParse; /* The parsing context */
+ WhereClause *pWC; /* The WHERE clause */
+ SrcItem *pSrc; /* The FROM clause term to search */
+ sqlite3_index_info *p; /* Object to pass to xBestIndex() */
+ int nConstraint; /* Number of constraints in p */
+ int bIn; /* True if plan uses IN(...) operator */
+ WhereLoop *pNew;
+ Bitmask mBest; /* Tables used by best possible plan */
+ u16 mNoOmit;
+ int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */
+
+ assert( (mPrereq & mUnusable)==0 );
+ pWInfo = pBuilder->pWInfo;
+ pParse = pWInfo->pParse;
+ pWC = pBuilder->pWC;
+ pNew = pBuilder->pNew;
+ pSrc = &pWInfo->pTabList->a[pNew->iTab];
+ assert( IsVirtual(pSrc->pTab) );
+ p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ pNew->rSetup = 0;
+ pNew->wsFlags = WHERE_VIRTUALTABLE;
+ pNew->nLTerm = 0;
+ pNew->u.vtab.needFree = 0;
+ nConstraint = p->nConstraint;
+ if( whereLoopResize(pParse->db, pNew, nConstraint) ){
+ freeIndexInfo(pParse->db, p);
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* First call xBestIndex() with all constraints usable. */
+ WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
+ WHERETRACE(0x40, (" VirtualOne: all usable\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
+ );
+ if( bRetry ){
+ assert( rc==SQLITE_OK );
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
+ );
+ }
+
+ /* If the call to xBestIndex() with all terms enabled produced a plan
+ ** that does not require any source tables (IOW: a plan with mBest==0)
+ ** and does not use an IN(...) operator, then there is no point in making
+ ** any further calls to xBestIndex() since they will all return the same
+ ** result (if the xBestIndex() implementation is sane). */
+ if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
+ int seenZero = 0; /* True if a plan with no prereqs seen */
+ int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
+ Bitmask mPrev = 0;
+ Bitmask mBestNoIn = 0;
+
+ /* If the plan produced by the earlier call uses an IN(...) term, call
+ ** xBestIndex again, this time with IN(...) terms disabled. */
+ if( bIn ){
+ WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
+ assert( bIn==0 );
+ mBestNoIn = pNew->prereq & ~mPrereq;
+ if( mBestNoIn==0 ){
+ seenZero = 1;
+ seenZeroNoIN = 1;
+ }
+ }
+
+ /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
+ ** in the set of terms that apply to the current virtual table. */
+ while( rc==SQLITE_OK ){
+ int i;
+ Bitmask mNext = ALLBITS;
+ assert( mNext>0 );
+ for(i=0; i<nConstraint; i++){
+ Bitmask mThis = (
+ pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
+ );
+ if( mThis>mPrev && mThis<mNext ) mNext = mThis;
+ }
+ mPrev = mNext;
+ if( mNext==ALLBITS ) break;
+ if( mNext==mBest || mNext==mBestNoIn ) continue;
+ WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
+ (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
+ if( pNew->prereq==mPrereq ){
+ seenZero = 1;
+ if( bIn==0 ) seenZeroNoIN = 1;
+ }
+ }
+
+ /* If the calls to xBestIndex() in the above loop did not find a plan
+ ** that requires no source tables at all (i.e. one guaranteed to be
+ ** usable), make a call here with all source tables disabled */
+ if( rc==SQLITE_OK && seenZero==0 ){
+ WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
+ if( bIn==0 ) seenZeroNoIN = 1;
+ }
+
+ /* If the calls to xBestIndex() have so far failed to find a plan
+ ** that requires no source tables at all and does not use an IN(...)
+ ** operator, make a final call to obtain one here. */
+ if( rc==SQLITE_OK && seenZeroNoIN==0 ){
+ WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
+ }
+ }
+
+ if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
+ freeIndexInfo(pParse->db, p);
+ WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
+ return rc;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** Add WhereLoop entries to handle OR terms. This works for either
+** btrees or virtual tables.
+*/
+static int whereLoopAddOr(
+ WhereLoopBuilder *pBuilder,
+ Bitmask mPrereq,
+ Bitmask mUnusable
+){
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ WhereClause *pWC;
+ WhereLoop *pNew;
+ WhereTerm *pTerm, *pWCEnd;
+ int rc = SQLITE_OK;
+ int iCur;
+ WhereClause tempWC;
+ WhereLoopBuilder sSubBuild;
+ WhereOrSet sSum, sCur;
+ SrcItem *pItem;
+
+ pWC = pBuilder->pWC;
+ pWCEnd = pWC->a + pWC->nTerm;
+ pNew = pBuilder->pNew;
+ memset(&sSum, 0, sizeof(sSum));
+ pItem = pWInfo->pTabList->a + pNew->iTab;
+ iCur = pItem->iCursor;
+
+ /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
+ if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
+
+ for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
+ if( (pTerm->eOperator & WO_OR)!=0
+ && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
+ ){
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
+ WhereTerm *pOrTerm;
+ int once = 1;
+ int i, j;
+
+ sSubBuild = *pBuilder;
+ sSubBuild.pOrSet = &sCur;
+
+ WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
+ if( (pOrTerm->eOperator & WO_AND)!=0 ){
+ sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
+ }else if( pOrTerm->leftCursor==iCur ){
+ tempWC.pWInfo = pWC->pWInfo;
+ tempWC.pOuter = pWC;
+ tempWC.op = TK_AND;
+ tempWC.nTerm = 1;
+ tempWC.nBase = 1;
+ tempWC.a = pOrTerm;
+ sSubBuild.pWC = &tempWC;
+ }else{
+ continue;
+ }
+ sCur.n = 0;
+#ifdef WHERETRACE_ENABLED
+ WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
+ (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
+ if( sqlite3WhereTrace & 0x400 ){
+ sqlite3WhereClausePrint(sSubBuild.pWC);
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pItem->pTab) ){
+ rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
+ }else
+#endif
+ {
+ rc = whereLoopAddBtree(&sSubBuild, mPrereq);
+ }
+ if( rc==SQLITE_OK ){
+ rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
+ }
+ assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
+ || rc==SQLITE_NOMEM );
+ testcase( rc==SQLITE_NOMEM && sCur.n>0 );
+ testcase( rc==SQLITE_DONE );
+ if( sCur.n==0 ){
+ sSum.n = 0;
+ break;
+ }else if( once ){
+ whereOrMove(&sSum, &sCur);
+ once = 0;
+ }else{
+ WhereOrSet sPrev;
+ whereOrMove(&sPrev, &sSum);
+ sSum.n = 0;
+ for(i=0; i<sPrev.n; i++){
+ for(j=0; j<sCur.n; j++){
+ whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
+ sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
+ sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
+ }
+ }
+ }
+ }
+ pNew->nLTerm = 1;
+ pNew->aLTerm[0] = pTerm;
+ pNew->wsFlags = WHERE_MULTI_OR;
+ pNew->rSetup = 0;
+ pNew->iSortIdx = 0;
+ memset(&pNew->u, 0, sizeof(pNew->u));
+ for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
+ /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
+ ** of all sub-scans required by the OR-scan. However, due to rounding
+ ** errors, it may be that the cost of the OR-scan is equal to its
+ ** most expensive sub-scan. Add the smallest possible penalty
+ ** (equivalent to multiplying the cost by 1.07) to ensure that
+ ** this does not happen. Otherwise, for WHERE clauses such as the
+ ** following where there is an index on "y":
+ **
+ ** WHERE likelihood(x=?, 0.99) OR y=?
+ **
+ ** the planner may elect to "OR" together a full-table scan and an
+ ** index lookup. And other similarly odd results. */
+ pNew->rRun = sSum.a[i].rRun + 1;
+ pNew->nOut = sSum.a[i].nOut;
+ pNew->prereq = sSum.a[i].prereq;
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
+ }
+ }
+ return rc;
+}
+
+/*
+** Add all WhereLoop objects for all tables
+*/
+static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ Bitmask mPrereq = 0;
+ Bitmask mPrior = 0;
+ int iTab;
+ SrcList *pTabList = pWInfo->pTabList;
+ SrcItem *pItem;
+ SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
+ sqlite3 *db = pWInfo->pParse->db;
+ int rc = SQLITE_OK;
+ int bFirstPastRJ = 0;
+ int hasRightJoin = 0;
+ WhereLoop *pNew;
+
+
+ /* Loop over the tables in the join, from left to right */
+ pNew = pBuilder->pNew;
+ whereLoopInit(pNew);
+ pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
+ for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
+ Bitmask mUnusable = 0;
+ pNew->iTab = iTab;
+ pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
+ pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
+ if( bFirstPastRJ
+ || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
+ ){
+ /* Add prerequisites to prevent reordering of FROM clause terms
+ ** across CROSS joins and outer joins. The bFirstPastRJ boolean
+ ** prevents the right operand of a RIGHT JOIN from being swapped with
+ ** other elements even further to the right.
+ **
+ ** The JT_LTORJ case and the hasRightJoin flag work together to
+ ** prevent FROM-clause terms from moving from the right side of
+ ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
+ ** is itself on the left side of a RIGHT JOIN.
+ */
+ if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
+ mPrereq |= mPrior;
+ bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
+ }else if( !hasRightJoin ){
+ mPrereq = 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pItem->pTab) ){
+ SrcItem *p;
+ for(p=&pItem[1]; p<pEnd; p++){
+ if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
+ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
+ }
+ }
+ rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ {
+ rc = whereLoopAddBtree(pBuilder, mPrereq);
+ }
+ if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
+ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
+ }
+ mPrior |= pNew->maskSelf;
+ if( rc || db->mallocFailed ){
+ if( rc==SQLITE_DONE ){
+ /* We hit the query planner search limit set by iPlanLimit */
+ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
+ rc = SQLITE_OK;
+ }else{
+ break;
+ }
+ }
+ }
+
+ whereLoopClear(db, pNew);
+ return rc;
+}
+
+/*
+** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
+** parameters) to see if it outputs rows in the requested ORDER BY
+** (or GROUP BY) without requiring a separate sort operation. Return N:
+**
+** N>0: N terms of the ORDER BY clause are satisfied
+** N==0: No terms of the ORDER BY clause are satisfied
+** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
+**
+** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
+** strict. With GROUP BY and DISTINCT the only requirement is that
+** equivalent rows appear immediately adjacent to one another. GROUP BY
+** and DISTINCT do not require rows to appear in any particular order as long
+** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
+** the pOrderBy terms can be matched in any order. With ORDER BY, the
+** pOrderBy terms must be matched in strict left-to-right order.
+*/
+static i8 wherePathSatisfiesOrderBy(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
+ WherePath *pPath, /* The WherePath to check */
+ u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
+ u16 nLoop, /* Number of entries in pPath->aLoop[] */
+ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
+ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
+){
+ u8 revSet; /* True if rev is known */
+ u8 rev; /* Composite sort order */
+ u8 revIdx; /* Index sort order */
+ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
+ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
+ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
+ u16 eqOpMask; /* Allowed equality operators */
+ u16 nKeyCol; /* Number of key columns in pIndex */
+ u16 nColumn; /* Total number of ordered columns in the index */
+ u16 nOrderBy; /* Number terms in the ORDER BY clause */
+ int iLoop; /* Index of WhereLoop in pPath being processed */
+ int i, j; /* Loop counters */
+ int iCur; /* Cursor number for current WhereLoop */
+ int iColumn; /* A column number within table iCur */
+ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ Expr *pOBExpr; /* An expression from the ORDER BY clause */
+ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
+ Index *pIndex; /* The index associated with pLoop */
+ sqlite3 *db = pWInfo->pParse->db; /* Database connection */
+ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
+ Bitmask obDone; /* Mask of all ORDER BY terms */
+ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
+ Bitmask ready; /* Mask of inner loops */
+
+ /*
+ ** We say the WhereLoop is "one-row" if it generates no more than one
+ ** row of output. A WhereLoop is one-row if all of the following are true:
+ ** (a) All index columns match with WHERE_COLUMN_EQ.
+ ** (b) The index is unique
+ ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
+ ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
+ **
+ ** We say the WhereLoop is "order-distinct" if the set of columns from
+ ** that WhereLoop that are in the ORDER BY clause are different for every
+ ** row of the WhereLoop. Every one-row WhereLoop is automatically
+ ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
+ ** is not order-distinct. To be order-distinct is not quite the same as being
+ ** UNIQUE since a UNIQUE column or index can have multiple rows that
+ ** are NULL and NULL values are equivalent for the purpose of order-distinct.
+ ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
+ **
+ ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
+ ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
+ ** automatically order-distinct.
+ */
+
+ assert( pOrderBy!=0 );
+ if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
+
+ nOrderBy = pOrderBy->nExpr;
+ testcase( nOrderBy==BMS-1 );
+ if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
+ isOrderDistinct = 1;
+ obDone = MASKBIT(nOrderBy)-1;
+ orderDistinctMask = 0;
+ ready = 0;
+ eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
+ if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
+ eqOpMask |= WO_IN;
+ }
+ for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
+ if( iLoop>0 ) ready |= pLoop->maskSelf;
+ if( iLoop<nLoop ){
+ pLoop = pPath->aLoop[iLoop];
+ if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
+ }else{
+ pLoop = pLast;
+ }
+ if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
+ if( pLoop->u.vtab.isOrdered
+ && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
+ ){
+ obSat = obDone;
+ }
+ break;
+ }else if( wctrlFlags & WHERE_DISTINCTBY ){
+ pLoop->u.btree.nDistinctCol = 0;
+ }
+ iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
+
+ /* Mark off any ORDER BY term X that is a column in the table of
+ ** the current loop for which there is term in the WHERE
+ ** clause of the form X IS NULL or X=? that reference only outer
+ ** loops.
+ */
+ for(i=0; i<nOrderBy; i++){
+ if( MASKBIT(i) & obSat ) continue;
+ pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
+ if( NEVER(pOBExpr==0) ) continue;
+ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
+ if( pOBExpr->iTable!=iCur ) continue;
+ pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
+ ~ready, eqOpMask, 0);
+ if( pTerm==0 ) continue;
+ if( pTerm->eOperator==WO_IN ){
+ /* IN terms are only valid for sorting in the ORDER BY LIMIT
+ ** optimization, and then only if they are actually used
+ ** by the query plan */
+ assert( wctrlFlags &
+ (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
+ for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
+ if( j>=pLoop->nLTerm ) continue;
+ }
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
+ Parse *pParse = pWInfo->pParse;
+ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
+ CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
+ assert( pColl1 );
+ if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
+ continue;
+ }
+ testcase( pTerm->pExpr->op==TK_IS );
+ }
+ obSat |= MASKBIT(i);
+ }
+
+ if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
+ if( pLoop->wsFlags & WHERE_IPK ){
+ pIndex = 0;
+ nKeyCol = 0;
+ nColumn = 1;
+ }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
+ return 0;
+ }else{
+ nKeyCol = pIndex->nKeyCol;
+ nColumn = pIndex->nColumn;
+ assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
+ assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
+ || !HasRowid(pIndex->pTable));
+ /* All relevant terms of the index must also be non-NULL in order
+ ** for isOrderDistinct to be true. So the isOrderDistint value
+ ** computed here might be a false positive. Corrections will be
+ ** made at tag-20210426-1 below */
+ isOrderDistinct = IsUniqueIndex(pIndex)
+ && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
+ }
+
+ /* Loop through all columns of the index and deal with the ones
+ ** that are not constrained by == or IN.
+ */
+ rev = revSet = 0;
+ distinctColumns = 0;
+ for(j=0; j<nColumn; j++){
+ u8 bOnce = 1; /* True to run the ORDER BY search loop */
+
+ assert( j>=pLoop->u.btree.nEq
+ || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
+ );
+ if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
+ u16 eOp = pLoop->aLTerm[j]->eOperator;
+
+ /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
+ ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
+ ** terms imply that the index is not UNIQUE NOT NULL in which case
+ ** the loop need to be marked as not order-distinct because it can
+ ** have repeated NULL rows.
+ **
+ ** If the current term is a column of an ((?,?) IN (SELECT...))
+ ** expression for which the SELECT returns more than one column,
+ ** check that it is the only column used by this loop. Otherwise,
+ ** if it is one of two or more, none of the columns can be
+ ** considered to match an ORDER BY term.
+ */
+ if( (eOp & eqOpMask)!=0 ){
+ if( eOp & (WO_ISNULL|WO_IS) ){
+ testcase( eOp & WO_ISNULL );
+ testcase( eOp & WO_IS );
+ testcase( isOrderDistinct );
+ isOrderDistinct = 0;
+ }
+ continue;
+ }else if( ALWAYS(eOp & WO_IN) ){
+ /* ALWAYS() justification: eOp is an equality operator due to the
+ ** j<pLoop->u.btree.nEq constraint above. Any equality other
+ ** than WO_IN is captured by the previous "if". So this one
+ ** always has to be WO_IN. */
+ Expr *pX = pLoop->aLTerm[j]->pExpr;
+ for(i=j+1; i<pLoop->u.btree.nEq; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
+ bOnce = 0;
+ break;
+ }
+ }
+ }
+ }
+
+ /* Get the column number in the table (iColumn) and sort order
+ ** (revIdx) for the j-th column of the index.
+ */
+ if( pIndex ){
+ iColumn = pIndex->aiColumn[j];
+ revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
+ if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
+ }else{
+ iColumn = XN_ROWID;
+ revIdx = 0;
+ }
+
+ /* An unconstrained column that might be NULL means that this
+ ** WhereLoop is not well-ordered. tag-20210426-1
+ */
+ if( isOrderDistinct ){
+ if( iColumn>=0
+ && j>=pLoop->u.btree.nEq
+ && pIndex->pTable->aCol[iColumn].notNull==0
+ ){
+ isOrderDistinct = 0;
+ }
+ if( iColumn==XN_EXPR ){
+ isOrderDistinct = 0;
+ }
+ }
+
+ /* Find the ORDER BY term that corresponds to the j-th column
+ ** of the index and mark that ORDER BY term off
+ */
+ isMatch = 0;
+ for(i=0; bOnce && i<nOrderBy; i++){
+ if( MASKBIT(i) & obSat ) continue;
+ pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
+ testcase( wctrlFlags & WHERE_GROUPBY );
+ testcase( wctrlFlags & WHERE_DISTINCTBY );
+ if( NEVER(pOBExpr==0) ) continue;
+ if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
+ if( iColumn>=XN_ROWID ){
+ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
+ if( pOBExpr->iTable!=iCur ) continue;
+ if( pOBExpr->iColumn!=iColumn ) continue;
+ }else{
+ Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
+ if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
+ continue;
+ }
+ }
+ if( iColumn!=XN_ROWID ){
+ pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
+ if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
+ }
+ if( wctrlFlags & WHERE_DISTINCTBY ){
+ pLoop->u.btree.nDistinctCol = j+1;
+ }
+ isMatch = 1;
+ break;
+ }
+ if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
+ /* Make sure the sort order is compatible in an ORDER BY clause.
+ ** Sort order is irrelevant for a GROUP BY clause. */
+ if( revSet ){
+ if( (rev ^ revIdx)
+ != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
+ ){
+ isMatch = 0;
+ }
+ }else{
+ rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
+ if( rev ) *pRevMask |= MASKBIT(iLoop);
+ revSet = 1;
+ }
+ }
+ if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
+ if( j==pLoop->u.btree.nEq ){
+ pLoop->wsFlags |= WHERE_BIGNULL_SORT;
+ }else{
+ isMatch = 0;
+ }
+ }
+ if( isMatch ){
+ if( iColumn==XN_ROWID ){
+ testcase( distinctColumns==0 );
+ distinctColumns = 1;
+ }
+ obSat |= MASKBIT(i);
+ }else{
+ /* No match found */
+ if( j==0 || j<nKeyCol ){
+ testcase( isOrderDistinct!=0 );
+ isOrderDistinct = 0;
+ }
+ break;
+ }
+ } /* end Loop over all index columns */
+ if( distinctColumns ){
+ testcase( isOrderDistinct==0 );
+ isOrderDistinct = 1;
+ }
+ } /* end-if not one-row */
+
+ /* Mark off any other ORDER BY terms that reference pLoop */
+ if( isOrderDistinct ){
+ orderDistinctMask |= pLoop->maskSelf;
+ for(i=0; i<nOrderBy; i++){
+ Expr *p;
+ Bitmask mTerm;
+ if( MASKBIT(i) & obSat ) continue;
+ p = pOrderBy->a[i].pExpr;
+ mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
+ if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
+ if( (mTerm&~orderDistinctMask)==0 ){
+ obSat |= MASKBIT(i);
+ }
+ }
+ }
+ } /* End the loop over all WhereLoops from outer-most down to inner-most */
+ if( obSat==obDone ) return (i8)nOrderBy;
+ if( !isOrderDistinct ){
+ for(i=nOrderBy-1; i>0; i--){
+ Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
+ if( (obSat&m)==m ) return i;
+ }
+ return 0;
+ }
+ return -1;
+}
+
+
+/*
+** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
+** the planner assumes that the specified pOrderBy list is actually a GROUP
+** BY clause - and so any order that groups rows as required satisfies the
+** request.
+**
+** Normally, in this case it is not possible for the caller to determine
+** whether or not the rows are really being delivered in sorted order, or
+** just in some other order that provides the required grouping. However,
+** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
+** this function may be called on the returned WhereInfo object. It returns
+** true if the rows really will be sorted in the specified order, or false
+** otherwise.
+**
+** For example, assuming:
+**
+** CREATE INDEX i1 ON t1(x, Y);
+**
+** then
+**
+** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
+** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
+*/
+SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo *pWInfo){
+ assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
+ assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
+ return pWInfo->sorted;
+}
+
+#ifdef WHERETRACE_ENABLED
+/* For debugging use only: */
+static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
+ static char zName[65];
+ int i;
+ for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
+ if( pLast ) zName[i++] = pLast->cId;
+ zName[i] = 0;
+ return zName;
+}
+#endif
+
+/*
+** Return the cost of sorting nRow rows, assuming that the keys have
+** nOrderby columns and that the first nSorted columns are already in
+** order.
+*/
+static LogEst whereSortingCost(
+ WhereInfo *pWInfo,
+ LogEst nRow,
+ int nOrderBy,
+ int nSorted
+){
+ /* TUNING: Estimated cost of a full external sort, where N is
+ ** the number of rows to sort is:
+ **
+ ** cost = (3.0 * N * log(N)).
+ **
+ ** Or, if the order-by clause has X terms but only the last Y
+ ** terms are out of order, then block-sorting will reduce the
+ ** sorting cost to:
+ **
+ ** cost = (3.0 * N * log(N)) * (Y/X)
+ **
+ ** The (Y/X) term is implemented using stack variable rScale
+ ** below.
+ */
+ LogEst rScale, rSortCost;
+ assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
+ rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
+ rSortCost = nRow + rScale + 16;
+
+ /* Multiple by log(M) where M is the number of output rows.
+ ** Use the LIMIT for M if it is smaller. Or if this sort is for
+ ** a DISTINCT operator, M will be the number of distinct output
+ ** rows, so fudge it downwards a bit.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
+ nRow = pWInfo->iLimit;
+ }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
+ /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
+ ** reduces the number of output rows by a factor of 2 */
+ if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
+ }
+ rSortCost += estLog(nRow);
+ return rSortCost;
+}
+
+/*
+** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
+** attempts to find the lowest cost path that visits each WhereLoop
+** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
+**
+** Assume that the total number of output rows that will need to be sorted
+** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
+** costs if nRowEst==0.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
+** error occurs.
+*/
+static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
+ int mxChoice; /* Maximum number of simultaneous paths tracked */
+ int nLoop; /* Number of terms in the join */
+ Parse *pParse; /* Parsing context */
+ sqlite3 *db; /* The database connection */
+ int iLoop; /* Loop counter over the terms of the join */
+ int ii, jj; /* Loop counters */
+ int mxI = 0; /* Index of next entry to replace */
+ int nOrderBy; /* Number of ORDER BY clause terms */
+ LogEst mxCost = 0; /* Maximum cost of a set of paths */
+ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
+ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
+ WherePath *aFrom; /* All nFrom paths at the previous level */
+ WherePath *aTo; /* The nTo best paths at the current level */
+ WherePath *pFrom; /* An element of aFrom[] that we are working on */
+ WherePath *pTo; /* An element of aTo[] that we are working on */
+ WhereLoop *pWLoop; /* One of the WhereLoop objects */
+ WhereLoop **pX; /* Used to divy up the pSpace memory */
+ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
+ char *pSpace; /* Temporary memory used by this routine */
+ int nSpace; /* Bytes of space allocated at pSpace */
+
+ pParse = pWInfo->pParse;
+ db = pParse->db;
+ nLoop = pWInfo->nLevel;
+ /* TUNING: For simple queries, only the best path is tracked.
+ ** For 2-way joins, the 5 best paths are followed.
+ ** For joins of 3 or more tables, track the 10 best paths */
+ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
+ assert( nLoop<=pWInfo->pTabList->nSrc );
+ WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
+
+ /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
+ ** case the purpose of this call is to estimate the number of rows returned
+ ** by the overall query. Once this estimate has been obtained, the caller
+ ** will invoke this function a second time, passing the estimate as the
+ ** nRowEst parameter. */
+ if( pWInfo->pOrderBy==0 || nRowEst==0 ){
+ nOrderBy = 0;
+ }else{
+ nOrderBy = pWInfo->pOrderBy->nExpr;
+ }
+
+ /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
+ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
+ nSpace += sizeof(LogEst) * nOrderBy;
+ pSpace = sqlite3DbMallocRawNN(db, nSpace);
+ if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
+ aTo = (WherePath*)pSpace;
+ aFrom = aTo+mxChoice;
+ memset(aFrom, 0, sizeof(aFrom[0]));
+ pX = (WhereLoop**)(aFrom+mxChoice);
+ for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
+ pFrom->aLoop = pX;
+ }
+ if( nOrderBy ){
+ /* If there is an ORDER BY clause and it is not being ignored, set up
+ ** space for the aSortCost[] array. Each element of the aSortCost array
+ ** is either zero - meaning it has not yet been initialized - or the
+ ** cost of sorting nRowEst rows of data where the first X terms of
+ ** the ORDER BY clause are already in order, where X is the array
+ ** index. */
+ aSortCost = (LogEst*)pX;
+ memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
+ }
+ assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
+ assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
+
+ /* Seed the search with a single WherePath containing zero WhereLoops.
+ **
+ ** TUNING: Do not let the number of iterations go above 28. If the cost
+ ** of computing an automatic index is not paid back within the first 28
+ ** rows, then do not use the automatic index. */
+ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
+ nFrom = 1;
+ assert( aFrom[0].isOrdered==0 );
+ if( nOrderBy ){
+ /* If nLoop is zero, then there are no FROM terms in the query. Since
+ ** in this case the query may return a maximum of one row, the results
+ ** are already in the requested order. Set isOrdered to nOrderBy to
+ ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
+ ** -1, indicating that the result set may or may not be ordered,
+ ** depending on the loops added to the current plan. */
+ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
+ }
+
+ /* Compute successively longer WherePaths using the previous generation
+ ** of WherePaths as the basis for the next. Keep track of the mxChoice
+ ** best paths at each generation */
+ for(iLoop=0; iLoop<nLoop; iLoop++){
+ nTo = 0;
+ for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
+ for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
+ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
+ LogEst rCost; /* Cost of path (pFrom+pWLoop) */
+ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
+ i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
+ Bitmask maskNew; /* Mask of src visited by (..) */
+ Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
+
+ if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
+ if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
+ if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
+ /* Do not use an automatic index if the this loop is expected
+ ** to run less than 1.25 times. It is tempting to also exclude
+ ** automatic index usage on an outer loop, but sometimes an automatic
+ ** index is useful in the outer loop of a correlated subquery. */
+ assert( 10==sqlite3LogEst(2) );
+ continue;
+ }
+
+ /* At this point, pWLoop is a candidate to be the next loop.
+ ** Compute its cost */
+ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
+ rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
+ nOut = pFrom->nRow + pWLoop->nOut;
+ maskNew = pFrom->maskLoop | pWLoop->maskSelf;
+ if( isOrdered<0 ){
+ isOrdered = wherePathSatisfiesOrderBy(pWInfo,
+ pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
+ iLoop, pWLoop, &revMask);
+ }else{
+ revMask = pFrom->revLoop;
+ }
+ if( isOrdered>=0 && isOrdered<nOrderBy ){
+ if( aSortCost[isOrdered]==0 ){
+ aSortCost[isOrdered] = whereSortingCost(
+ pWInfo, nRowEst, nOrderBy, isOrdered
+ );
+ }
+ /* TUNING: Add a small extra penalty (5) to sorting as an
+ ** extra encouragment to the query planner to select a plan
+ ** where the rows emerge in the correct order without any sorting
+ ** required. */
+ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
+
+ WHERETRACE(0x002,
+ ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
+ aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
+ rUnsorted, rCost));
+ }else{
+ rCost = rUnsorted;
+ rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
+ }
+
+ /* Check to see if pWLoop should be added to the set of
+ ** mxChoice best-so-far paths.
+ **
+ ** First look for an existing path among best-so-far paths
+ ** that covers the same set of loops and has the same isOrdered
+ ** setting as the current path candidate.
+ **
+ ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
+ ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
+ ** of legal values for isOrdered, -1..64.
+ */
+ for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
+ if( pTo->maskLoop==maskNew
+ && ((pTo->isOrdered^isOrdered)&0x80)==0
+ ){
+ testcase( jj==nTo-1 );
+ break;
+ }
+ }
+ if( jj>=nTo ){
+ /* None of the existing best-so-far paths match the candidate. */
+ if( nTo>=mxChoice
+ && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
+ ){
+ /* The current candidate is no better than any of the mxChoice
+ ** paths currently in the best-so-far buffer. So discard
+ ** this candidate as not viable. */
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ }
+#endif
+ continue;
+ }
+ /* If we reach this points it means that the new candidate path
+ ** needs to be added to the set of best-so-far paths. */
+ if( nTo<mxChoice ){
+ /* Increase the size of the aTo set by one */
+ jj = nTo++;
+ }else{
+ /* New path replaces the prior worst to keep count below mxChoice */
+ jj = mxI;
+ }
+ pTo = &aTo[jj];
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ }
+#endif
+ }else{
+ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
+ ** same set of loops and has the same isOrdered setting as the
+ ** candidate path. Check to see if the candidate should replace
+ ** pTo or if the candidate should be skipped.
+ **
+ ** The conditional is an expanded vector comparison equivalent to:
+ ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
+ */
+ if( pTo->rCost<rCost
+ || (pTo->rCost==rCost
+ && (pTo->nRow<nOut
+ || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
+ )
+ )
+ ){
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf(
+ "Skip %s cost=%-3d,%3d,%3d order=%c",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
+ }
+#endif
+ /* Discard the candidate path from further consideration */
+ testcase( pTo->rCost==rCost );
+ continue;
+ }
+ testcase( pTo->rCost==rCost+1 );
+ /* Control reaches here if the candidate path is better than the
+ ** pTo path. Replace pTo with the candidate. */
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf(
+ "Update %s cost=%-3d,%3d,%3d order=%c",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
+ }
+#endif
+ }
+ /* pWLoop is a winner. Add it to the set of best so far */
+ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
+ pTo->revLoop = revMask;
+ pTo->nRow = nOut;
+ pTo->rCost = rCost;
+ pTo->rUnsorted = rUnsorted;
+ pTo->isOrdered = isOrdered;
+ memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
+ pTo->aLoop[iLoop] = pWLoop;
+ if( nTo>=mxChoice ){
+ mxI = 0;
+ mxCost = aTo[0].rCost;
+ mxUnsorted = aTo[0].nRow;
+ for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
+ if( pTo->rCost>mxCost
+ || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
+ ){
+ mxCost = pTo->rCost;
+ mxUnsorted = pTo->rUnsorted;
+ mxI = jj;
+ }
+ }
+ }
+ }
+ }
+
+#ifdef WHERETRACE_ENABLED /* >=2 */
+ if( sqlite3WhereTrace & 0x02 ){
+ sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
+ for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
+ sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
+ if( pTo->isOrdered>0 ){
+ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
+ }else{
+ sqlite3DebugPrintf("\n");
+ }
+ }
+ }
+#endif
+
+ /* Swap the roles of aFrom and aTo for the next generation */
+ pFrom = aTo;
+ aTo = aFrom;
+ aFrom = pFrom;
+ nFrom = nTo;
+ }
+
+ if( nFrom==0 ){
+ sqlite3ErrorMsg(pParse, "no query solution");
+ sqlite3DbFreeNN(db, pSpace);
+ return SQLITE_ERROR;
+ }
+
+ /* Find the lowest cost path. pFrom will be left pointing to that path */
+ pFrom = aFrom;
+ for(ii=1; ii<nFrom; ii++){
+ if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
+ }
+ assert( pWInfo->nLevel==nLoop );
+ /* Load the lowest cost path into pWInfo */
+ for(iLoop=0; iLoop<nLoop; iLoop++){
+ WhereLevel *pLevel = pWInfo->a + iLoop;
+ pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
+ pLevel->iFrom = pWLoop->iTab;
+ pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
+ }
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
+ && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
+ && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
+ && nRowEst
+ ){
+ Bitmask notUsed;
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
+ WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
+ if( rc==pWInfo->pResultSet->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ }
+ pWInfo->bOrderedInnerLoop = 0;
+ if( pWInfo->pOrderBy ){
+ pWInfo->nOBSat = pFrom->isOrdered;
+ if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
+ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ }else{
+ pWInfo->revMask = pFrom->revLoop;
+ if( pWInfo->nOBSat<=0 ){
+ pWInfo->nOBSat = 0;
+ if( nLoop>0 ){
+ u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
+ if( (wsFlags & WHERE_ONEROW)==0
+ && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
+ ){
+ Bitmask m = 0;
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
+ WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
+ testcase( wsFlags & WHERE_IPK );
+ testcase( wsFlags & WHERE_COLUMN_IN );
+ if( rc==pWInfo->pOrderBy->nExpr ){
+ pWInfo->bOrderedInnerLoop = 1;
+ pWInfo->revMask = m;
+ }
+ }
+ }
+ }else if( nLoop
+ && pWInfo->nOBSat==1
+ && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
+ ){
+ pWInfo->bOrderedInnerLoop = 1;
+ }
+ }
+ if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
+ && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
+ ){
+ Bitmask revMask = 0;
+ int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
+ pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
+ );
+ assert( pWInfo->sorted==0 );
+ if( nOrder==pWInfo->pOrderBy->nExpr ){
+ pWInfo->sorted = 1;
+ pWInfo->revMask = revMask;
+ }
+ }
+ }
+
+
+ pWInfo->nRowOut = pFrom->nRow;
+
+ /* Free temporary memory and return success */
+ sqlite3DbFreeNN(db, pSpace);
+ return SQLITE_OK;
+}
+
+/*
+** Most queries use only a single table (they are not joins) and have
+** simple == constraints against indexed fields. This routine attempts
+** to plan those simple cases using much less ceremony than the
+** general-purpose query planner, and thereby yield faster sqlite3_prepare()
+** times for the common case.
+**
+** Return non-zero on success, if this query can be handled by this
+** no-frills query planner. Return zero if this query needs the
+** general-purpose query planner.
+*/
+static int whereShortCut(WhereLoopBuilder *pBuilder){
+ WhereInfo *pWInfo;
+ SrcItem *pItem;
+ WhereClause *pWC;
+ WhereTerm *pTerm;
+ WhereLoop *pLoop;
+ int iCur;
+ int j;
+ Table *pTab;
+ Index *pIdx;
+ WhereScan scan;
+
+ pWInfo = pBuilder->pWInfo;
+ if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
+ assert( pWInfo->pTabList->nSrc>=1 );
+ pItem = pWInfo->pTabList->a;
+ pTab = pItem->pTab;
+ if( IsVirtual(pTab) ) return 0;
+ if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
+ testcase( pItem->fg.isIndexedBy );
+ testcase( pItem->fg.notIndexed );
+ return 0;
+ }
+ iCur = pItem->iCursor;
+ pWC = &pWInfo->sWC;
+ pLoop = pBuilder->pNew;
+ pLoop->wsFlags = 0;
+ pLoop->nSkip = 0;
+ pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
+ while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
+ if( pTerm ){
+ testcase( pTerm->eOperator & WO_IS );
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
+ pLoop->aLTerm[0] = pTerm;
+ pLoop->nLTerm = 1;
+ pLoop->u.btree.nEq = 1;
+ /* TUNING: Cost of a rowid lookup is 10 */
+ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
+ }else{
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int opMask;
+ assert( pLoop->aLTermSpace==pLoop->aLTerm );
+ if( !IsUniqueIndex(pIdx)
+ || pIdx->pPartIdxWhere!=0
+ || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
+ ) continue;
+ opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
+ for(j=0; j<pIdx->nKeyCol; j++){
+ pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
+ while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
+ if( pTerm==0 ) break;
+ testcase( pTerm->eOperator & WO_IS );
+ pLoop->aLTerm[j] = pTerm;
+ }
+ if( j!=pIdx->nKeyCol ) continue;
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
+ if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
+ pLoop->wsFlags |= WHERE_IDX_ONLY;
+ }
+ pLoop->nLTerm = j;
+ pLoop->u.btree.nEq = j;
+ pLoop->u.btree.pIndex = pIdx;
+ /* TUNING: Cost of a unique index lookup is 15 */
+ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
+ break;
+ }
+ }
+ if( pLoop->wsFlags ){
+ pLoop->nOut = (LogEst)1;
+ pWInfo->a[0].pWLoop = pLoop;
+ assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
+ pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
+ pWInfo->a[0].iTabCur = iCur;
+ pWInfo->nRowOut = 1;
+ if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
+ if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+ if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
+#ifdef SQLITE_DEBUG
+ pLoop->cId = '0';
+#endif
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace ){
+ sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
+ }
+#endif
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Helper function for exprIsDeterministic().
+*/
+static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Return true if the expression contains no non-deterministic SQL
+** functions. Do not consider non-deterministic SQL functions that are
+** part of sub-select statements.
+*/
+static int exprIsDeterministic(Expr *p){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.eCode = 1;
+ w.xExprCallback = exprNodeIsDeterministic;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Display all WhereLoops in pWInfo
+*/
+static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
+ if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
+ WhereLoop *p;
+ int i;
+ static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
+ "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
+ for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
+ p->cId = zLabel[i%(sizeof(zLabel)-1)];
+ sqlite3WhereLoopPrint(p, pWC);
+ }
+ }
+}
+# define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
+#else
+# define WHERETRACE_ALL_LOOPS(W,C)
+#endif
+
+/* Attempt to omit tables from a join that do not affect the result.
+** For a table to not affect the result, the following must be true:
+**
+** 1) The query must not be an aggregate.
+** 2) The table must be the RHS of a LEFT JOIN.
+** 3) Either the query must be DISTINCT, or else the ON or USING clause
+** must contain a constraint that limits the scan of the table to
+** at most a single row.
+** 4) The table must not be referenced by any part of the query apart
+** from its own USING or ON clause.
+**
+** For example, given:
+**
+** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
+** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
+** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
+**
+** then table t2 can be omitted from the following:
+**
+** SELECT v1, v3 FROM t1
+** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
+** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
+**
+** or from:
+**
+** SELECT DISTINCT v1, v3 FROM t1
+** LEFT JOIN t2
+** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
+*/
+static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
+ WhereInfo *pWInfo,
+ Bitmask notReady
+){
+ int i;
+ Bitmask tabUsed;
+
+ /* Preconditions checked by the caller */
+ assert( pWInfo->nLevel>=2 );
+ assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
+
+ /* These two preconditions checked by the caller combine to guarantee
+ ** condition (1) of the header comment */
+ assert( pWInfo->pResultSet!=0 );
+ assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
+
+ tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
+ if( pWInfo->pOrderBy ){
+ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
+ }
+ for(i=pWInfo->nLevel-1; i>=1; i--){
+ WhereTerm *pTerm, *pEnd;
+ SrcItem *pItem;
+ WhereLoop *pLoop;
+ pLoop = pWInfo->a[i].pWLoop;
+ pItem = &pWInfo->pTabList->a[pLoop->iTab];
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
+ && (pLoop->wsFlags & WHERE_ONEROW)==0
+ ){
+ continue;
+ }
+ if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
+ pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
+ for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
+ || pTerm->pExpr->w.iJoin!=pItem->iCursor
+ ){
+ break;
+ }
+ }
+ }
+ if( pTerm<pEnd ) continue;
+ WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
+ notReady &= ~pLoop->maskSelf;
+ for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+ if( i!=pWInfo->nLevel-1 ){
+ int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
+ memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
+ }
+ pWInfo->nLevel--;
+ assert( pWInfo->nLevel>0 );
+ }
+ return notReady;
+}
+
+/*
+** Check to see if there are any SEARCH loops that might benefit from
+** using a Bloom filter. Consider a Bloom filter if:
+**
+** (1) The SEARCH happens more than N times where N is the number
+** of rows in the table that is being considered for the Bloom
+** filter.
+** (2) Some searches are expected to find zero rows. (This is determined
+** by the WHERE_SELFCULL flag on the term.)
+** (3) Bloom-filter processing is not disabled. (Checked by the
+** caller.)
+** (4) The size of the table being searched is known by ANALYZE.
+**
+** This block of code merely checks to see if a Bloom filter would be
+** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
+** WhereLoop. The implementation of the Bloom filter comes further
+** down where the code for each WhereLoop is generated.
+*/
+static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
+ const WhereInfo *pWInfo
+){
+ int i;
+ LogEst nSearch;
+
+ assert( pWInfo->nLevel>=2 );
+ assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
+ nSearch = pWInfo->a[0].pWLoop->nOut;
+ for(i=1; i<pWInfo->nLevel; i++){
+ WhereLoop *pLoop = pWInfo->a[i].pWLoop;
+ const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
+ if( (pLoop->wsFlags & reqFlags)==reqFlags
+ /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
+ && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
+ ){
+ SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
+ Table *pTab = pItem->pTab;
+ pTab->tabFlags |= TF_StatsUsed;
+ if( nSearch > pTab->nRowLogEst
+ && (pTab->tabFlags & TF_HasStat1)!=0
+ ){
+ testcase( pItem->fg.jointype & JT_LEFT );
+ pLoop->wsFlags |= WHERE_BLOOMFILTER;
+ pLoop->wsFlags &= ~WHERE_IDX_ONLY;
+ WHERETRACE(0xffff, (
+ "-> use Bloom-filter on loop %c because there are ~%.1e "
+ "lookups into %s which has only ~%.1e rows\n",
+ pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
+ (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
+ }
+ }
+ nSearch += pLoop->nOut;
+ }
+}
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an opaque structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqlite3WhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqlite3WhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqlite3WhereEnd()
+** end /
+**
+** Note that the loops might not be nested in the order in which they
+** appear in the FROM clause if a different order is better able to make
+** use of indices. Note also that when the IN operator appears in
+** the WHERE clause, it might result in additional nested loops for
+** scanning through all values on the right-hand side of the IN.
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqlite3WhereEnd() generates the code to close them.
+**
+** The code that sqlite3WhereBegin() generates leaves the cursors named
+** in pTabList pointing at their appropriate entries. The [...] code
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract
+** data from the various tables of the loop.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptally coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
+** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
+**
+** The iIdxCur parameter is the cursor number of an index. If
+** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
+** to use for OR clause processing. The WHERE clause should use this
+** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
+** the first cursor in an array of cursors for all indices. iIdxCur should
+** be used to compute the appropriate cursor depending on which index is
+** used.
+*/
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
+ ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
+ Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */
+ u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
+ int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
+ ** If WHERE_USE_LIMIT, then the limit amount */
+){
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
+ int nTabList; /* Number of elements in pTabList */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ Bitmask notReady; /* Cursors that are not yet positioned */
+ WhereLoopBuilder sWLB; /* The WhereLoop builder */
+ WhereMaskSet *pMaskSet; /* The expression mask set */
+ WhereLevel *pLevel; /* A single level in pWInfo->a[] */
+ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
+ int ii; /* Loop counter */
+ sqlite3 *db; /* Database connection */
+ int rc; /* Return code */
+ u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
+
+ assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
+ (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
+ ));
+
+ /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
+ assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
+ || (wctrlFlags & WHERE_USE_LIMIT)==0 );
+
+ /* Variable initialization */
+ db = pParse->db;
+ memset(&sWLB, 0, sizeof(sWLB));
+
+ /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
+ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
+ if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
+
+ /* The number of tables in the FROM clause is limited by the number of
+ ** bits in a Bitmask
+ */
+ testcase( pTabList->nSrc==BMS );
+ if( pTabList->nSrc>BMS ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
+ return 0;
+ }
+
+ /* This function normally generates a nested loop for all tables in
+ ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
+ ** only generate code for the first table in pTabList and assume that
+ ** any cursors associated with subsequent tables are uninitialized.
+ */
+ nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value. A single allocation is used to store the WhereInfo
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on
+ ** some architectures. Hence the ROUND8() below.
+ */
+ nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
+ pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, pWInfo);
+ pWInfo = 0;
+ goto whereBeginError;
+ }
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->pOrderBy = pOrderBy;
+ pWInfo->pWhere = pWhere;
+ pWInfo->pResultSet = pResultSet;
+ pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
+ pWInfo->nLevel = nTabList;
+ pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
+ pWInfo->wctrlFlags = wctrlFlags;
+ pWInfo->iLimit = iAuxArg;
+ pWInfo->savedNQueryLoop = pParse->nQueryLoop;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ pWInfo->pLimit = pLimit;
+#endif
+ memset(&pWInfo->nOBSat, 0,
+ offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
+ memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
+ assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
+ pMaskSet = &pWInfo->sMaskSet;
+ pMaskSet->n = 0;
+ pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
+ ** a valid cursor number, to avoid an initial
+ ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
+ sWLB.pWInfo = pWInfo;
+ sWLB.pWC = &pWInfo->sWC;
+ sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
+ assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
+ whereLoopInit(sWLB.pNew);
+#ifdef SQLITE_DEBUG
+ sWLB.pNew->cId = '*';
+#endif
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator.
+ */
+ sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
+ sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
+
+ /* Special case: No FROM clause
+ */
+ if( nTabList==0 ){
+ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
+ if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
+ && OptimizationEnabled(db, SQLITE_DistinctOpt)
+ ){
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+ ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
+ }else{
+ /* Assign a bit from the bitmask to every term in the FROM clause.
+ **
+ ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
+ **
+ ** The rule of the previous sentence ensures thta if X is the bitmask for
+ ** a table T, then X-1 is the bitmask for all other tables to the left of T.
+ ** Knowing the bitmask for all tables to the left of a left join is
+ ** important. Ticket #3015.
+ **
+ ** Note that bitmasks are created for all pTabList->nSrc tables in
+ ** pTabList, not just the first nTabList tables. nTabList is normally
+ ** equal to pTabList->nSrc but might be shortened to 1 if the
+ ** WHERE_OR_SUBCLAUSE flag is set.
+ */
+ ii = 0;
+ do{
+ createMask(pMaskSet, pTabList->a[ii].iCursor);
+ sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
+ }while( (++ii)<pTabList->nSrc );
+ #ifdef SQLITE_DEBUG
+ {
+ Bitmask mx = 0;
+ for(ii=0; ii<pTabList->nSrc; ii++){
+ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
+ assert( m>=mx );
+ mx = m;
+ }
+ }
+ #endif
+ }
+
+ /* Analyze all of the subexpressions. */
+ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
+ sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
+ if( pParse->nErr ) goto whereBeginError;
+
+ /* Special case: WHERE terms that do not refer to any tables in the join
+ ** (constant expressions). Evaluate each such term, and jump over all the
+ ** generated code if the result is not true.
+ **
+ ** Do not do this if the expression contains non-deterministic functions
+ ** that are not within a sub-select. This is not strictly required, but
+ ** preserves SQLite's legacy behaviour in the following two cases:
+ **
+ ** FROM ... WHERE random()>0; -- eval random() once per row
+ ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
+ */
+ for(ii=0; ii<sWLB.pWC->nBase; ii++){
+ WhereTerm *pT = &sWLB.pWC->a[ii];
+ if( pT->wtFlags & TERM_VIRTUAL ) continue;
+ if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
+ sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
+ pT->wtFlags |= TERM_CODED;
+ }
+ }
+
+ if( wctrlFlags & WHERE_WANT_DISTINCT ){
+ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
+ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
+ ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
+ wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
+ /* The DISTINCT marking is pointless. Ignore it. */
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }else if( pOrderBy==0 ){
+ /* Try to ORDER BY the result set to make distinct processing easier */
+ pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
+ pWInfo->pOrderBy = pResultSet;
+ }
+ }
+
+ /* Construct the WhereLoop objects */
+#if defined(WHERETRACE_ENABLED)
+ if( sqlite3WhereTrace & 0xffff ){
+ sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
+ if( wctrlFlags & WHERE_USE_LIMIT ){
+ sqlite3DebugPrintf(", limit: %d", iAuxArg);
+ }
+ sqlite3DebugPrintf(")\n");
+ if( sqlite3WhereTrace & 0x100 ){
+ Select sSelect;
+ memset(&sSelect, 0, sizeof(sSelect));
+ sSelect.selFlags = SF_WhereBegin;
+ sSelect.pSrc = pTabList;
+ sSelect.pWhere = pWhere;
+ sSelect.pOrderBy = pOrderBy;
+ sSelect.pEList = pResultSet;
+ sqlite3TreeViewSelect(0, &sSelect, 0);
+ }
+ }
+ if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
+ sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
+ sqlite3WhereClausePrint(sWLB.pWC);
+ }
+#endif
+
+ if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
+ rc = whereLoopAddAll(&sWLB);
+ if( rc ) goto whereBeginError;
+
+#ifdef SQLITE_ENABLE_STAT4
+ /* If one or more WhereTerm.truthProb values were used in estimating
+ ** loop parameters, but then those truthProb values were subsequently
+ ** changed based on STAT4 information while computing subsequent loops,
+ ** then we need to rerun the whole loop building process so that all
+ ** loops will be built using the revised truthProb values. */
+ if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
+ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
+ WHERETRACE(0xffff,
+ ("**** Redo all loop computations due to"
+ " TERM_HIGHTRUTH changes ****\n"));
+ while( pWInfo->pLoops ){
+ WhereLoop *p = pWInfo->pLoops;
+ pWInfo->pLoops = p->pNextLoop;
+ whereLoopDelete(db, p);
+ }
+ rc = whereLoopAddAll(&sWLB);
+ if( rc ) goto whereBeginError;
+ }
+#endif
+ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
+
+ wherePathSolver(pWInfo, 0);
+ if( db->mallocFailed ) goto whereBeginError;
+ if( pWInfo->pOrderBy ){
+ wherePathSolver(pWInfo, pWInfo->nRowOut+1);
+ if( db->mallocFailed ) goto whereBeginError;
+ }
+ }
+ if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
+ pWInfo->revMask = ALLBITS;
+ }
+ if( pParse->nErr ){
+ goto whereBeginError;
+ }
+ assert( db->mallocFailed==0 );
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace ){
+ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
+ if( pWInfo->nOBSat>0 ){
+ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
+ }
+ switch( pWInfo->eDistinct ){
+ case WHERE_DISTINCT_UNIQUE: {
+ sqlite3DebugPrintf(" DISTINCT=unique");
+ break;
+ }
+ case WHERE_DISTINCT_ORDERED: {
+ sqlite3DebugPrintf(" DISTINCT=ordered");
+ break;
+ }
+ case WHERE_DISTINCT_UNORDERED: {
+ sqlite3DebugPrintf(" DISTINCT=unordered");
+ break;
+ }
+ }
+ sqlite3DebugPrintf("\n");
+ for(ii=0; ii<pWInfo->nLevel; ii++){
+ sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
+ }
+ }
+#endif
+
+ /* Attempt to omit tables from a join that do not affect the result.
+ ** See the comment on whereOmitNoopJoin() for further information.
+ **
+ ** This query optimization is factored out into a separate "no-inline"
+ ** procedure to keep the sqlite3WhereBegin() procedure from becoming
+ ** too large. If sqlite3WhereBegin() becomes too large, that prevents
+ ** some C-compiler optimizers from in-lining the
+ ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
+ ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
+ */
+ notReady = ~(Bitmask)0;
+ if( pWInfo->nLevel>=2
+ && pResultSet!=0 /* these two combine to guarantee */
+ && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
+ && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
+ ){
+ notReady = whereOmitNoopJoin(pWInfo, notReady);
+ nTabList = pWInfo->nLevel;
+ assert( nTabList>0 );
+ }
+
+ /* Check to see if there are any SEARCH loops that might benefit from
+ ** using a Bloom filter.
+ */
+ if( pWInfo->nLevel>=2
+ && OptimizationEnabled(db, SQLITE_BloomFilter)
+ ){
+ whereCheckIfBloomFilterIsUseful(pWInfo);
+ }
+
+#if defined(WHERETRACE_ENABLED)
+ if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
+ sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
+ sqlite3WhereClausePrint(sWLB.pWC);
+ }
+ WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
+#endif
+ pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
+
+ /* If the caller is an UPDATE or DELETE statement that is requesting
+ ** to use a one-pass algorithm, determine if this is appropriate.
+ **
+ ** A one-pass approach can be used if the caller has requested one
+ ** and either (a) the scan visits at most one row or (b) each
+ ** of the following are true:
+ **
+ ** * the caller has indicated that a one-pass approach can be used
+ ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
+ ** * the table is not a virtual table, and
+ ** * either the scan does not use the OR optimization or the caller
+ ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
+ ** for DELETE).
+ **
+ ** The last qualification is because an UPDATE statement uses
+ ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
+ ** use a one-pass approach, and this is not set accurately for scans
+ ** that use the OR optimization.
+ */
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
+ int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
+ int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
+ assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
+ if( bOnerow || (
+ 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
+ && !IsVirtual(pTabList->a[0].pTab)
+ && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
+ )){
+ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
+ if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
+ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
+ bFordelete = OPFLAG_FORDELETE;
+ }
+ pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
+ }
+ }
+ }
+
+ /* Open all tables in the pTabList and any indices selected for
+ ** searching those tables.
+ */
+ for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
+ Table *pTab; /* Table to open */
+ int iDb; /* Index of database containing table/index */
+ SrcItem *pTabItem;
+
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ pTab = pTabItem->pTab;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pLoop = pLevel->pWLoop;
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
+ /* Do nothing */
+ }else
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ int iCur = pTabItem->iCursor;
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
+ }else if( IsVirtual(pTab) ){
+ /* noop */
+ }else
+#endif
+ if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
+ || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
+ ){
+ int op = OP_OpenRead;
+ if( pWInfo->eOnePass!=ONEPASS_OFF ){
+ op = OP_OpenWrite;
+ pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
+ };
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
+ assert( pTabItem->iCursor==pLevel->iTabCur );
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
+ if( pWInfo->eOnePass==ONEPASS_OFF
+ && pTab->nCol<BMS
+ && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
+ && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
+ ){
+ /* If we know that only a prefix of the record will be used,
+ ** it is advantageous to reduce the "column count" field in
+ ** the P4 operand of the OP_OpenRead/Write opcode. */
+ Bitmask b = pTabItem->colUsed;
+ int n = 0;
+ for(; b; b=b>>1, n++){}
+ sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
+ assert( n<=pTab->nCol );
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ if( pLoop->u.btree.pIndex!=0 ){
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
+ }else
+#endif
+ {
+ sqlite3VdbeChangeP5(v, bFordelete);
+ }
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
+ (const u8*)&pTabItem->colUsed, P4_INT64);
+#endif
+ }else{
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ }
+ if( pLoop->wsFlags & WHERE_INDEXED ){
+ Index *pIx = pLoop->u.btree.pIndex;
+ int iIndexCur;
+ int op = OP_OpenRead;
+ /* iAuxArg is always set to a positive value if ONEPASS is possible */
+ assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
+ ){
+ /* This is one term of an OR-optimization using the PRIMARY KEY of a
+ ** WITHOUT ROWID table. No need for a separate index */
+ iIndexCur = pLevel->iTabCur;
+ op = 0;
+ }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
+ Index *pJ = pTabItem->pTab->pIndex;
+ iIndexCur = iAuxArg;
+ assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
+ while( ALWAYS(pJ) && pJ!=pIx ){
+ iIndexCur++;
+ pJ = pJ->pNext;
+ }
+ op = OP_OpenWrite;
+ pWInfo->aiCurOnePass[1] = iIndexCur;
+ }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
+ iIndexCur = iAuxArg;
+ op = OP_ReopenIdx;
+ }else{
+ iIndexCur = pParse->nTab++;
+ }
+ pLevel->iIdxCur = iIndexCur;
+ assert( pIx!=0 );
+ assert( pIx->pSchema==pTab->pSchema );
+ assert( iIndexCur>=0 );
+ if( op ){
+ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
+ && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
+ && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
+ && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
+ && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
+ && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
+ ){
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
+ }
+ VdbeComment((v, "%s", pIx->zName));
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ {
+ u64 colUsed = 0;
+ int ii, jj;
+ for(ii=0; ii<pIx->nColumn; ii++){
+ jj = pIx->aiColumn[ii];
+ if( jj<0 ) continue;
+ if( jj>63 ) jj = 63;
+ if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
+ colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
+ }
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
+ (u8*)&colUsed, P4_INT64);
+ }
+#endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
+ }
+ }
+ if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
+ if( (pTabItem->fg.jointype & JT_RIGHT)!=0
+ && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
+ ){
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ pRJ->iMatch = pParse->nTab++;
+ pRJ->regBloom = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
+ pRJ->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
+ assert( pTab==pTabItem->pTab );
+ if( HasRowid(pTab) ){
+ KeyInfo *pInfo;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
+ pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
+ if( pInfo ){
+ pInfo->aColl[0] = 0;
+ pInfo->aSortFlags[0] = 0;
+ sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
+ }
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+ pLoop->wsFlags &= ~WHERE_IDX_ONLY;
+ /* The nature of RIGHT JOIN processing is such that it messes up
+ ** the output order. So omit any ORDER BY/GROUP BY elimination
+ ** optimizations. We need to do an actual sort for RIGHT JOIN. */
+ pWInfo->nOBSat = 0;
+ pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
+ }
+ }
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
+ if( db->mallocFailed ) goto whereBeginError;
+
+ /* Generate the code to do the search. Each iteration of the for
+ ** loop below generates code for a single nested loop of the VM
+ ** program.
+ */
+ for(ii=0; ii<nTabList; ii++){
+ int addrExplain;
+ int wsFlags;
+ SrcItem *pSrc;
+ if( pParse->nErr ) goto whereBeginError;
+ pLevel = &pWInfo->a[ii];
+ wsFlags = pLevel->pWLoop->wsFlags;
+ pSrc = &pTabList->a[pLevel->iFrom];
+ if( pSrc->fg.isMaterialized ){
+ if( pSrc->fg.isCorrelated ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
+ }else{
+ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
+ sqlite3VdbeJumpHere(v, iOnce);
+ }
+ }
+ if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
+ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ constructAutomaticIndex(pParse, &pWInfo->sWC,
+ &pTabList->a[pLevel->iFrom], notReady, pLevel);
+#endif
+ }else{
+ sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
+ }
+ if( db->mallocFailed ) goto whereBeginError;
+ }
+ addrExplain = sqlite3WhereExplainOneScan(
+ pParse, pTabList, pLevel, wctrlFlags
+ );
+ pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
+ notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
+ pWInfo->iContinue = pLevel->addrCont;
+ if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
+ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
+ }
+ }
+
+ /* Done. */
+ VdbeModuleComment((v, "Begin WHERE-core"));
+ pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
+ return pWInfo;
+
+ /* Jump here if malloc fails */
+whereBeginError:
+ if( pWInfo ){
+ testcase( pWInfo->pExprMods!=0 );
+ whereUndoExprMods(pWInfo);
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ }
+ return 0;
+}
+
+/*
+** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
+** index rather than the main table. In SQLITE_DEBUG mode, we want
+** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
+** does that.
+*/
+#ifndef SQLITE_DEBUG
+# define OpcodeRewriteTrace(D,K,P) /* no-op */
+#else
+# define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
+ static void sqlite3WhereOpcodeRewriteTrace(
+ sqlite3 *db,
+ int pc,
+ VdbeOp *pOp
+ ){
+ if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
+ sqlite3VdbePrintOp(0, pc, pOp);
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if cursor iCur is opened by instruction k of the
+** bytecode. Used inside of assert() only.
+*/
+static int cursorIsOpen(Vdbe *v, int iCur, int k){
+ while( k>=0 ){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
+ if( pOp->p1!=iCur ) continue;
+ if( pOp->opcode==OP_Close ) return 0;
+ if( pOp->opcode==OP_OpenRead ) return 1;
+ if( pOp->opcode==OP_OpenWrite ) return 1;
+ if( pOp->opcode==OP_OpenDup ) return 1;
+ if( pOp->opcode==OP_OpenAutoindex ) return 1;
+ if( pOp->opcode==OP_OpenEphemeral ) return 1;
+ }
+ return 0;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqlite3WhereBegin() for additional information.
+*/
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ WhereLoop *pLoop;
+ SrcList *pTabList = pWInfo->pTabList;
+ sqlite3 *db = pParse->db;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ int nRJ = 0;
+
+ /* Generate loop termination code.
+ */
+ VdbeModuleComment((v, "End WHERE-core"));
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ int addr;
+ pLevel = &pWInfo->a[i];
+ if( pLevel->pRJ ){
+ /* Terminate the subroutine that forms the interior of the loop of
+ ** the RIGHT JOIN table */
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ pLevel->addrCont = 0;
+ pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
+ VdbeCoverage(v);
+ nRJ++;
+ }
+ pLoop = pLevel->pWLoop;
+ if( pLevel->op!=OP_Noop ){
+#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ int addrSeek = 0;
+ Index *pIdx;
+ int n;
+ if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
+ && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
+ && (pLoop->wsFlags & WHERE_INDEXED)!=0
+ && (pIdx = pLoop->u.btree.pIndex)->hasStat1
+ && (n = pLoop->u.btree.nDistinctCol)>0
+ && pIdx->aiRowLogEst[n]>=36
+ ){
+ int r1 = pParse->nMem+1;
+ int j, op;
+ for(j=0; j<n; j++){
+ sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
+ }
+ pParse->nMem += n+1;
+ op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
+ addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
+ VdbeCoverageIf(v, op==OP_SeekLT);
+ VdbeCoverageIf(v, op==OP_SeekGT);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
+ }
+#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
+ /* The common case: Advance to the next row */
+ if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
+ sqlite3VdbeChangeP5(v, pLevel->p5);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, pLevel->op==OP_Next);
+ VdbeCoverageIf(v, pLevel->op==OP_Prev);
+ VdbeCoverageIf(v, pLevel->op==OP_VNext);
+ if( pLevel->regBignull ){
+ sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
+ VdbeCoverage(v);
+ }
+#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
+#endif
+ }else if( pLevel->addrCont ){
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ }
+ if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
+ struct InLoop *pIn;
+ int j;
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
+ assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
+ || pParse->db->mallocFailed );
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ if( pIn->eEndLoopOp!=OP_Noop ){
+ if( pIn->nPrefix ){
+ int bEarlyOut =
+ (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
+ && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
+ if( pLevel->iLeftJoin ){
+ /* For LEFT JOIN queries, cursor pIn->iCur may not have been
+ ** opened yet. This occurs for WHERE clauses such as
+ ** "a = ? AND b IN (...)", where the index is on (a, b). If
+ ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
+ ** never have been coded, but the body of the loop run to
+ ** return the null-row. So, if the cursor is not open yet,
+ ** jump over the OP_Next or OP_Prev instruction about to
+ ** be coded. */
+ sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
+ sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
+ VdbeCoverage(v);
+ }
+ if( bEarlyOut ){
+ sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
+ sqlite3VdbeCurrentAddr(v)+2,
+ pIn->iBase, pIn->nPrefix);
+ VdbeCoverage(v);
+ /* Retarget the OP_IsNull against the left operand of IN so
+ ** it jumps past the OP_IfNoHope. This is because the
+ ** OP_IsNull also bypasses the OP_Affinity opcode that is
+ ** required by OP_IfNoHope. */
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ }
+ }
+ sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
+ }
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
+ }
+ }
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
+ if( pLevel->pRJ ){
+ sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
+ VdbeCoverage(v);
+ }
+ if( pLevel->addrSkip ){
+ sqlite3VdbeGoto(v, pLevel->addrSkip);
+ VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip);
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
+ }
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( pLevel->addrLikeRep ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
+ pLevel->addrLikeRep);
+ VdbeCoverage(v);
+ }
+#endif
+ if( pLevel->iLeftJoin ){
+ int ws = pLoop->wsFlags;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
+ assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
+ if( (ws & WHERE_IDX_ONLY)==0 ){
+ assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
+ }
+ if( (ws & WHERE_INDEXED)
+ || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
+ ){
+ if( ws & WHERE_MULTI_OR ){
+ Index *pIx = pLevel->u.pCoveringIdx;
+ int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
+ sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ }
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
+ }
+ if( pLevel->op==OP_Return ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
+ }else{
+ sqlite3VdbeGoto(v, pLevel->addrFirst);
+ }
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
+ pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
+ }
+
+ assert( pWInfo->nLevel<=pTabList->nSrc );
+ if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
+ for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
+ int k, last;
+ VdbeOp *pOp, *pLastOp;
+ Index *pIdx = 0;
+ SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
+ Table *pTab = pTabItem->pTab;
+ assert( pTab!=0 );
+ pLoop = pLevel->pWLoop;
+
+ /* Do RIGHT JOIN processing. Generate code that will output the
+ ** unmatched rows of the right operand of the RIGHT JOIN with
+ ** all of the columns of the left operand set to NULL.
+ */
+ if( pLevel->pRJ ){
+ sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
+ continue;
+ }
+
+ /* For a co-routine, change all OP_Column references to the table of
+ ** the co-routine into OP_Copy of result contained in a register.
+ ** OP_Rowid becomes OP_Null.
+ */
+ if( pTabItem->fg.viaCoroutine ){
+ testcase( pParse->db->mallocFailed );
+ translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
+ pTabItem->regResult, 0);
+ continue;
+ }
+
+ /* If this scan uses an index, make VDBE code substitutions to read data
+ ** from the index instead of from the table where possible. In some cases
+ ** this optimization prevents the table from ever being read, which can
+ ** yield a significant performance boost.
+ **
+ ** Calls to the code generator in between sqlite3WhereBegin and
+ ** sqlite3WhereEnd will have created code that references the table
+ ** directly. This loop scans all that code looking for opcodes
+ ** that reference the table and converts them into opcodes that
+ ** reference the index.
+ */
+ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
+ pIdx = pLoop->u.btree.pIndex;
+ }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
+ pIdx = pLevel->u.pCoveringIdx;
+ }
+ if( pIdx
+ && !db->mallocFailed
+ ){
+ if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
+ last = iEnd;
+ }else{
+ last = pWInfo->iEndWhere;
+ }
+ k = pLevel->addrBody + 1;
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeAddopTrace ){
+ printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
+ }
+ /* Proof that the "+1" on the k value above is safe */
+ pOp = sqlite3VdbeGetOp(v, k - 1);
+ assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
+ assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
+ assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
+#endif
+ pOp = sqlite3VdbeGetOp(v, k);
+ pLastOp = pOp + (last - k);
+ assert( pOp<=pLastOp );
+ do{
+ if( pOp->p1!=pLevel->iTabCur ){
+ /* no-op */
+ }else if( pOp->opcode==OP_Column
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ || pOp->opcode==OP_Offset
+#endif
+ ){
+ int x = pOp->p2;
+ assert( pIdx->pTable==pTab );
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ if( pOp->opcode==OP_Offset ){
+ /* Do not need to translate the column number */
+ }else
+#endif
+ if( !HasRowid(pTab) ){
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ x = pPk->aiColumn[x];
+ assert( x>=0 );
+ }else{
+ testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
+ x = sqlite3StorageColumnToTable(pTab,x);
+ }
+ x = sqlite3TableColumnToIndex(pIdx, x);
+ if( x>=0 ){
+ pOp->p2 = x;
+ pOp->p1 = pLevel->iIdxCur;
+ OpcodeRewriteTrace(db, k, pOp);
+ }else{
+ /* Unable to translate the table reference into an index
+ ** reference. Verify that this is harmless - that the
+ ** table being referenced really is open.
+ */
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || cursorIsOpen(v,pOp->p1,k)
+ || pOp->opcode==OP_Offset
+ );
+#else
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || cursorIsOpen(v,pOp->p1,k)
+ );
+#endif
+ }
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->p1 = pLevel->iIdxCur;
+ pOp->opcode = OP_IdxRowid;
+ OpcodeRewriteTrace(db, k, pOp);
+ }else if( pOp->opcode==OP_IfNullRow ){
+ pOp->p1 = pLevel->iIdxCur;
+ OpcodeRewriteTrace(db, k, pOp);
+ }
+#ifdef SQLITE_DEBUG
+ k++;
+#endif
+ }while( (++pOp)<pLastOp );
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
+#endif
+ }
+ }
+
+ /* The "break" point is here, just past the end of the outer loop.
+ ** Set it.
+ */
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
+
+ /* Final cleanup
+ */
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ pParse->withinRJSubrtn -= nRJ;
+ return;
+}
+
+/************** End of where.c ***********************************************/
+/************** Begin file window.c ******************************************/
+/*
+** 2018 May 08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+
+/*
+** SELECT REWRITING
+**
+** Any SELECT statement that contains one or more window functions in
+** either the select list or ORDER BY clause (the only two places window
+** functions may be used) is transformed by function sqlite3WindowRewrite()
+** in order to support window function processing. For example, with the
+** schema:
+**
+** CREATE TABLE t1(a, b, c, d, e, f, g);
+**
+** the statement:
+**
+** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
+**
+** is transformed to:
+**
+** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
+** SELECT a, e, c, d, b FROM t1 ORDER BY c, d
+** ) ORDER BY e;
+**
+** The flattening optimization is disabled when processing this transformed
+** SELECT statement. This allows the implementation of the window function
+** (in this case max()) to process rows sorted in order of (c, d), which
+** makes things easier for obvious reasons. More generally:
+**
+** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
+** the sub-query.
+**
+** * ORDER BY, LIMIT and OFFSET remain part of the parent query.
+**
+** * Terminals from each of the expression trees that make up the
+** select-list and ORDER BY expressions in the parent query are
+** selected by the sub-query. For the purposes of the transformation,
+** terminals are column references and aggregate functions.
+**
+** If there is more than one window function in the SELECT that uses
+** the same window declaration (the OVER bit), then a single scan may
+** be used to process more than one window function. For example:
+**
+** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
+** min(e) OVER (PARTITION BY c ORDER BY d)
+** FROM t1;
+**
+** is transformed in the same way as the example above. However:
+**
+** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
+** min(e) OVER (PARTITION BY a ORDER BY b)
+** FROM t1;
+**
+** Must be transformed to:
+**
+** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
+** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
+** SELECT a, e, c, d, b FROM t1 ORDER BY a, b
+** ) ORDER BY c, d
+** ) ORDER BY e;
+**
+** so that both min() and max() may process rows in the order defined by
+** their respective window declarations.
+**
+** INTERFACE WITH SELECT.C
+**
+** When processing the rewritten SELECT statement, code in select.c calls
+** sqlite3WhereBegin() to begin iterating through the results of the
+** sub-query, which is always implemented as a co-routine. It then calls
+** sqlite3WindowCodeStep() to process rows and finish the scan by calling
+** sqlite3WhereEnd().
+**
+** sqlite3WindowCodeStep() generates VM code so that, for each row returned
+** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
+** When the sub-routine is invoked:
+**
+** * The results of all window-functions for the row are stored
+** in the associated Window.regResult registers.
+**
+** * The required terminal values are stored in the current row of
+** temp table Window.iEphCsr.
+**
+** In some cases, depending on the window frame and the specific window
+** functions invoked, sqlite3WindowCodeStep() caches each entire partition
+** in a temp table before returning any rows. In other cases it does not.
+** This detail is encapsulated within this file, the code generated by
+** select.c is the same in either case.
+**
+** BUILT-IN WINDOW FUNCTIONS
+**
+** This implementation features the following built-in window functions:
+**
+** row_number()
+** rank()
+** dense_rank()
+** percent_rank()
+** cume_dist()
+** ntile(N)
+** lead(expr [, offset [, default]])
+** lag(expr [, offset [, default]])
+** first_value(expr)
+** last_value(expr)
+** nth_value(expr, N)
+**
+** These are the same built-in window functions supported by Postgres.
+** Although the behaviour of aggregate window functions (functions that
+** can be used as either aggregates or window funtions) allows them to
+** be implemented using an API, built-in window functions are much more
+** esoteric. Additionally, some window functions (e.g. nth_value())
+** may only be implemented by caching the entire partition in memory.
+** As such, some built-in window functions use the same API as aggregate
+** window functions and some are implemented directly using VDBE
+** instructions. Additionally, for those functions that use the API, the
+** window frame is sometimes modified before the SELECT statement is
+** rewritten. For example, regardless of the specified window frame, the
+** row_number() function always uses:
+**
+** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+**
+** See sqlite3WindowUpdate() for details.
+**
+** As well as some of the built-in window functions, aggregate window
+** functions min() and max() are implemented using VDBE instructions if
+** the start of the window frame is declared as anything other than
+** UNBOUNDED PRECEDING.
+*/
+
+/*
+** Implementation of built-in window function row_number(). Assumes that the
+** window frame has been coerced to:
+**
+** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+*/
+static void row_numberStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ) (*p)++;
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void row_numberValueFunc(sqlite3_context *pCtx){
+ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ sqlite3_result_int64(pCtx, (p ? *p : 0));
+}
+
+/*
+** Context object type used by rank(), dense_rank(), percent_rank() and
+** cume_dist().
+*/
+struct CallCount {
+ i64 nValue;
+ i64 nStep;
+ i64 nTotal;
+};
+
+/*
+** Implementation of built-in window function dense_rank(). Assumes that
+** the window frame has been set to:
+**
+** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+*/
+static void dense_rankStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ) p->nStep = 1;
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void dense_rankValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ if( p->nStep ){
+ p->nValue++;
+ p->nStep = 0;
+ }
+ sqlite3_result_int64(pCtx, p->nValue);
+ }
+}
+
+/*
+** Implementation of built-in window function nth_value(). This
+** implementation is used in "slow mode" only - when the EXCLUDE clause
+** is not set to the default value "NO OTHERS".
+*/
+struct NthValueCtx {
+ i64 nStep;
+ sqlite3_value *pValue;
+};
+static void nth_valueStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ i64 iVal;
+ switch( sqlite3_value_numeric_type(apArg[1]) ){
+ case SQLITE_INTEGER:
+ iVal = sqlite3_value_int64(apArg[1]);
+ break;
+ case SQLITE_FLOAT: {
+ double fVal = sqlite3_value_double(apArg[1]);
+ if( ((i64)fVal)!=fVal ) goto error_out;
+ iVal = (i64)fVal;
+ break;
+ }
+ default:
+ goto error_out;
+ }
+ if( iVal<=0 ) goto error_out;
+
+ p->nStep++;
+ if( iVal==p->nStep ){
+ p->pValue = sqlite3_value_dup(apArg[0]);
+ if( !p->pValue ){
+ sqlite3_result_error_nomem(pCtx);
+ }
+ }
+ }
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+ return;
+
+ error_out:
+ sqlite3_result_error(
+ pCtx, "second argument to nth_value must be a positive integer", -1
+ );
+}
+static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
+ if( p && p->pValue ){
+ sqlite3_result_value(pCtx, p->pValue);
+ sqlite3_value_free(p->pValue);
+ p->pValue = 0;
+ }
+}
+#define nth_valueInvFunc noopStepFunc
+#define nth_valueValueFunc noopValueFunc
+
+static void first_valueStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->pValue==0 ){
+ p->pValue = sqlite3_value_dup(apArg[0]);
+ if( !p->pValue ){
+ sqlite3_result_error_nomem(pCtx);
+ }
+ }
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void first_valueFinalizeFunc(sqlite3_context *pCtx){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->pValue ){
+ sqlite3_result_value(pCtx, p->pValue);
+ sqlite3_value_free(p->pValue);
+ p->pValue = 0;
+ }
+}
+#define first_valueInvFunc noopStepFunc
+#define first_valueValueFunc noopValueFunc
+
+/*
+** Implementation of built-in window function rank(). Assumes that
+** the window frame has been set to:
+**
+** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+*/
+static void rankStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nStep++;
+ if( p->nValue==0 ){
+ p->nValue = p->nStep;
+ }
+ }
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void rankValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ sqlite3_result_int64(pCtx, p->nValue);
+ p->nValue = 0;
+ }
+}
+
+/*
+** Implementation of built-in window function percent_rank(). Assumes that
+** the window frame has been set to:
+**
+** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
+*/
+static void percent_rankStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nTotal++;
+ }
+}
+static void percent_rankInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ p->nStep++;
+}
+static void percent_rankValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nValue = p->nStep;
+ if( p->nTotal>1 ){
+ double r = (double)p->nValue / (double)(p->nTotal-1);
+ sqlite3_result_double(pCtx, r);
+ }else{
+ sqlite3_result_double(pCtx, 0.0);
+ }
+ }
+}
+#define percent_rankFinalizeFunc percent_rankValueFunc
+
+/*
+** Implementation of built-in window function cume_dist(). Assumes that
+** the window frame has been set to:
+**
+** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
+*/
+static void cume_distStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nTotal++;
+ }
+}
+static void cume_distInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ p->nStep++;
+}
+static void cume_distValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
+ if( p ){
+ double r = (double)(p->nStep) / (double)(p->nTotal);
+ sqlite3_result_double(pCtx, r);
+ }
+}
+#define cume_distFinalizeFunc cume_distValueFunc
+
+/*
+** Context object for ntile() window function.
+*/
+struct NtileCtx {
+ i64 nTotal; /* Total rows in partition */
+ i64 nParam; /* Parameter passed to ntile(N) */
+ i64 iRow; /* Current row */
+};
+
+/*
+** Implementation of ntile(). This assumes that the window frame has
+** been coerced to:
+**
+** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
+*/
+static void ntileStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NtileCtx *p;
+ assert( nArg==1 ); UNUSED_PARAMETER(nArg);
+ p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ if( p->nTotal==0 ){
+ p->nParam = sqlite3_value_int64(apArg[0]);
+ if( p->nParam<=0 ){
+ sqlite3_result_error(
+ pCtx, "argument of ntile must be a positive integer", -1
+ );
+ }
+ }
+ p->nTotal++;
+ }
+}
+static void ntileInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NtileCtx *p;
+ assert( nArg==1 ); UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+ p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ p->iRow++;
+}
+static void ntileValueFunc(sqlite3_context *pCtx){
+ struct NtileCtx *p;
+ p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->nParam>0 ){
+ int nSize = (p->nTotal / p->nParam);
+ if( nSize==0 ){
+ sqlite3_result_int64(pCtx, p->iRow+1);
+ }else{
+ i64 nLarge = p->nTotal - p->nParam*nSize;
+ i64 iSmall = nLarge*(nSize+1);
+ i64 iRow = p->iRow;
+
+ assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
+
+ if( iRow<iSmall ){
+ sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
+ }else{
+ sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
+ }
+ }
+ }
+}
+#define ntileFinalizeFunc ntileValueFunc
+
+/*
+** Context object for last_value() window function.
+*/
+struct LastValueCtx {
+ sqlite3_value *pVal;
+ int nVal;
+};
+
+/*
+** Implementation of last_value().
+*/
+static void last_valueStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct LastValueCtx *p;
+ UNUSED_PARAMETER(nArg);
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ sqlite3_value_free(p->pVal);
+ p->pVal = sqlite3_value_dup(apArg[0]);
+ if( p->pVal==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ p->nVal++;
+ }
+ }
+}
+static void last_valueInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct LastValueCtx *p;
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( ALWAYS(p) ){
+ p->nVal--;
+ if( p->nVal==0 ){
+ sqlite3_value_free(p->pVal);
+ p->pVal = 0;
+ }
+ }
+}
+static void last_valueValueFunc(sqlite3_context *pCtx){
+ struct LastValueCtx *p;
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
+ if( p && p->pVal ){
+ sqlite3_result_value(pCtx, p->pVal);
+ }
+}
+static void last_valueFinalizeFunc(sqlite3_context *pCtx){
+ struct LastValueCtx *p;
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->pVal ){
+ sqlite3_result_value(pCtx, p->pVal);
+ sqlite3_value_free(p->pVal);
+ p->pVal = 0;
+ }
+}
+
+/*
+** Static names for the built-in window function names. These static
+** names are used, rather than string literals, so that FuncDef objects
+** can be associated with a particular window function by direct
+** comparison of the zName pointer. Example:
+**
+** if( pFuncDef->zName==row_valueName ){ ... }
+*/
+static const char row_numberName[] = "row_number";
+static const char dense_rankName[] = "dense_rank";
+static const char rankName[] = "rank";
+static const char percent_rankName[] = "percent_rank";
+static const char cume_distName[] = "cume_dist";
+static const char ntileName[] = "ntile";
+static const char last_valueName[] = "last_value";
+static const char nth_valueName[] = "nth_value";
+static const char first_valueName[] = "first_value";
+static const char leadName[] = "lead";
+static const char lagName[] = "lag";
+
+/*
+** No-op implementations of xStep() and xFinalize(). Used as place-holders
+** for built-in window functions that never call those interfaces.
+**
+** The noopValueFunc() is called but is expected to do nothing. The
+** noopStepFunc() is never called, and so it is marked with NO_TEST to
+** let the test coverage routine know not to expect this function to be
+** invoked.
+*/
+static void noopStepFunc( /*NO_TEST*/
+ sqlite3_context *p, /*NO_TEST*/
+ int n, /*NO_TEST*/
+ sqlite3_value **a /*NO_TEST*/
+){ /*NO_TEST*/
+ UNUSED_PARAMETER(p); /*NO_TEST*/
+ UNUSED_PARAMETER(n); /*NO_TEST*/
+ UNUSED_PARAMETER(a); /*NO_TEST*/
+ assert(0); /*NO_TEST*/
+} /*NO_TEST*/
+static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
+
+/* Window functions that use all window interfaces: xStep, xFinal,
+** xValue, and xInverse */
+#define WINDOWFUNCALL(name,nArg,extra) { \
+ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
+ name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \
+ name ## InvFunc, name ## Name, {0} \
+}
+
+/* Window functions that are implemented using bytecode and thus have
+** no-op routines for their methods */
+#define WINDOWFUNCNOOP(name,nArg,extra) { \
+ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
+ noopStepFunc, noopValueFunc, noopValueFunc, \
+ noopStepFunc, name ## Name, {0} \
+}
+
+/* Window functions that use all window interfaces: xStep, the
+** same routine for xFinalize and xValue and which never call
+** xInverse. */
+#define WINDOWFUNCX(name,nArg,extra) { \
+ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
+ name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \
+ noopStepFunc, name ## Name, {0} \
+}
+
+
+/*
+** Register those built-in window functions that are not also aggregates.
+*/
+SQLITE_PRIVATE void sqlite3WindowFunctions(void){
+ static FuncDef aWindowFuncs[] = {
+ WINDOWFUNCX(row_number, 0, 0),
+ WINDOWFUNCX(dense_rank, 0, 0),
+ WINDOWFUNCX(rank, 0, 0),
+ WINDOWFUNCALL(percent_rank, 0, 0),
+ WINDOWFUNCALL(cume_dist, 0, 0),
+ WINDOWFUNCALL(ntile, 1, 0),
+ WINDOWFUNCALL(last_value, 1, 0),
+ WINDOWFUNCALL(nth_value, 2, 0),
+ WINDOWFUNCALL(first_value, 1, 0),
+ WINDOWFUNCNOOP(lead, 1, 0),
+ WINDOWFUNCNOOP(lead, 2, 0),
+ WINDOWFUNCNOOP(lead, 3, 0),
+ WINDOWFUNCNOOP(lag, 1, 0),
+ WINDOWFUNCNOOP(lag, 2, 0),
+ WINDOWFUNCNOOP(lag, 3, 0),
+ };
+ sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
+}
+
+static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
+ Window *p;
+ for(p=pList; p; p=p->pNextWin){
+ if( sqlite3StrICmp(p->zName, zName)==0 ) break;
+ }
+ if( p==0 ){
+ sqlite3ErrorMsg(pParse, "no such window: %s", zName);
+ }
+ return p;
+}
+
+/*
+** This function is called immediately after resolving the function name
+** for a window function within a SELECT statement. Argument pList is a
+** linked list of WINDOW definitions for the current SELECT statement.
+** Argument pFunc is the function definition just resolved and pWin
+** is the Window object representing the associated OVER clause. This
+** function updates the contents of pWin as follows:
+**
+** * If the OVER clause refered to a named window (as in "max(x) OVER win"),
+** search list pList for a matching WINDOW definition, and update pWin
+** accordingly. If no such WINDOW clause can be found, leave an error
+** in pParse.
+**
+** * If the function is a built-in window function that requires the
+** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
+** of this file), pWin is updated here.
+*/
+SQLITE_PRIVATE void sqlite3WindowUpdate(
+ Parse *pParse,
+ Window *pList, /* List of named windows for this SELECT */
+ Window *pWin, /* Window frame to update */
+ FuncDef *pFunc /* Window function definition */
+){
+ if( pWin->zName && pWin->eFrmType==0 ){
+ Window *p = windowFind(pParse, pList, pWin->zName);
+ if( p==0 ) return;
+ pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
+ pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
+ pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
+ pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
+ pWin->eStart = p->eStart;
+ pWin->eEnd = p->eEnd;
+ pWin->eFrmType = p->eFrmType;
+ pWin->eExclude = p->eExclude;
+ }else{
+ sqlite3WindowChain(pParse, pWin, pList);
+ }
+ if( (pWin->eFrmType==TK_RANGE)
+ && (pWin->pStart || pWin->pEnd)
+ && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
+ ){
+ sqlite3ErrorMsg(pParse,
+ "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
+ );
+ }else
+ if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
+ sqlite3 *db = pParse->db;
+ if( pWin->pFilter ){
+ sqlite3ErrorMsg(pParse,
+ "FILTER clause may only be used with aggregate window functions"
+ );
+ }else{
+ struct WindowUpdate {
+ const char *zFunc;
+ int eFrmType;
+ int eStart;
+ int eEnd;
+ } aUp[] = {
+ { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
+ { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
+ { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
+ { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED },
+ { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
+ { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED },
+ { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED },
+ { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
+ };
+ int i;
+ for(i=0; i<ArraySize(aUp); i++){
+ if( pFunc->zName==aUp[i].zFunc ){
+ sqlite3ExprDelete(db, pWin->pStart);
+ sqlite3ExprDelete(db, pWin->pEnd);
+ pWin->pEnd = pWin->pStart = 0;
+ pWin->eFrmType = aUp[i].eFrmType;
+ pWin->eStart = aUp[i].eStart;
+ pWin->eEnd = aUp[i].eEnd;
+ pWin->eExclude = 0;
+ if( pWin->eStart==TK_FOLLOWING ){
+ pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
+ }
+ break;
+ }
+ }
+ }
+ }
+ pWin->pWFunc = pFunc;
+}
+
+/*
+** Context object passed through sqlite3WalkExprList() to
+** selectWindowRewriteExprCb() by selectWindowRewriteEList().
+*/
+typedef struct WindowRewrite WindowRewrite;
+struct WindowRewrite {
+ Window *pWin;
+ SrcList *pSrc;
+ ExprList *pSub;
+ Table *pTab;
+ Select *pSubSelect; /* Current sub-select, if any */
+};
+
+/*
+** Callback function used by selectWindowRewriteEList(). If necessary,
+** this function appends to the output expression-list and updates
+** expression (*ppExpr) in place.
+*/
+static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
+ struct WindowRewrite *p = pWalker->u.pRewrite;
+ Parse *pParse = pWalker->pParse;
+ assert( p!=0 );
+ assert( p->pWin!=0 );
+
+ /* If this function is being called from within a scalar sub-select
+ ** that used by the SELECT statement being processed, only process
+ ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
+ ** not process aggregates or window functions at all, as they belong
+ ** to the scalar sub-select. */
+ if( p->pSubSelect ){
+ if( pExpr->op!=TK_COLUMN ){
+ return WRC_Continue;
+ }else{
+ int nSrc = p->pSrc->nSrc;
+ int i;
+ for(i=0; i<nSrc; i++){
+ if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
+ }
+ if( i==nSrc ) return WRC_Continue;
+ }
+ }
+
+ switch( pExpr->op ){
+
+ case TK_FUNCTION:
+ if( !ExprHasProperty(pExpr, EP_WinFunc) ){
+ break;
+ }else{
+ Window *pWin;
+ for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
+ if( pExpr->y.pWin==pWin ){
+ assert( pWin->pOwner==pExpr );
+ return WRC_Prune;
+ }
+ }
+ }
+ /* no break */ deliberate_fall_through
+
+ case TK_AGG_FUNCTION:
+ case TK_COLUMN: {
+ int iCol = -1;
+ if( pParse->db->mallocFailed ) return WRC_Abort;
+ if( p->pSub ){
+ int i;
+ for(i=0; i<p->pSub->nExpr; i++){
+ if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
+ iCol = i;
+ break;
+ }
+ }
+ }
+ if( iCol<0 ){
+ Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
+ if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
+ p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
+ }
+ if( p->pSub ){
+ int f = pExpr->flags & EP_Collate;
+ assert( ExprHasProperty(pExpr, EP_Static)==0 );
+ ExprSetProperty(pExpr, EP_Static);
+ sqlite3ExprDelete(pParse->db, pExpr);
+ ExprClearProperty(pExpr, EP_Static);
+ memset(pExpr, 0, sizeof(Expr));
+
+ pExpr->op = TK_COLUMN;
+ pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
+ pExpr->iTable = p->pWin->iEphCsr;
+ pExpr->y.pTab = p->pTab;
+ pExpr->flags = f;
+ }
+ if( pParse->db->mallocFailed ) return WRC_Abort;
+ break;
+ }
+
+ default: /* no-op */
+ break;
+ }
+
+ return WRC_Continue;
+}
+static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
+ struct WindowRewrite *p = pWalker->u.pRewrite;
+ Select *pSave = p->pSubSelect;
+ if( pSave==pSelect ){
+ return WRC_Continue;
+ }else{
+ p->pSubSelect = pSelect;
+ sqlite3WalkSelect(pWalker, pSelect);
+ p->pSubSelect = pSave;
+ }
+ return WRC_Prune;
+}
+
+
+/*
+** Iterate through each expression in expression-list pEList. For each:
+**
+** * TK_COLUMN,
+** * aggregate function, or
+** * window function with a Window object that is not a member of the
+** Window list passed as the second argument (pWin).
+**
+** Append the node to output expression-list (*ppSub). And replace it
+** with a TK_COLUMN that reads the (N-1)th element of table
+** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
+** appending the new one.
+*/
+static void selectWindowRewriteEList(
+ Parse *pParse,
+ Window *pWin,
+ SrcList *pSrc,
+ ExprList *pEList, /* Rewrite expressions in this list */
+ Table *pTab,
+ ExprList **ppSub /* IN/OUT: Sub-select expression-list */
+){
+ Walker sWalker;
+ WindowRewrite sRewrite;
+
+ assert( pWin!=0 );
+ memset(&sWalker, 0, sizeof(Walker));
+ memset(&sRewrite, 0, sizeof(WindowRewrite));
+
+ sRewrite.pSub = *ppSub;
+ sRewrite.pWin = pWin;
+ sRewrite.pSrc = pSrc;
+ sRewrite.pTab = pTab;
+
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = selectWindowRewriteExprCb;
+ sWalker.xSelectCallback = selectWindowRewriteSelectCb;
+ sWalker.u.pRewrite = &sRewrite;
+
+ (void)sqlite3WalkExprList(&sWalker, pEList);
+
+ *ppSub = sRewrite.pSub;
+}
+
+/*
+** Append a copy of each expression in expression-list pAppend to
+** expression list pList. Return a pointer to the result list.
+*/
+static ExprList *exprListAppendList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ ExprList *pAppend, /* List of values to append. Might be NULL */
+ int bIntToNull
+){
+ if( pAppend ){
+ int i;
+ int nInit = pList ? pList->nExpr : 0;
+ for(i=0; i<pAppend->nExpr; i++){
+ sqlite3 *db = pParse->db;
+ Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
+ assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ break;
+ }
+ if( bIntToNull ){
+ int iDummy;
+ Expr *pSub;
+ pSub = sqlite3ExprSkipCollateAndLikely(pDup);
+ if( sqlite3ExprIsInteger(pSub, &iDummy) ){
+ pSub->op = TK_NULL;
+ pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
+ pSub->u.zToken = 0;
+ }
+ }
+ pList = sqlite3ExprListAppend(pParse, pList, pDup);
+ if( pList ) pList->a[nInit+i].fg.sortFlags = pAppend->a[i].fg.sortFlags;
+ }
+ }
+ return pList;
+}
+
+/*
+** When rewriting a query, if the new subquery in the FROM clause
+** contains TK_AGG_FUNCTION nodes that refer to an outer query,
+** then we have to increase the Expr->op2 values of those nodes
+** due to the extra subquery layer that was added.
+**
+** See also the incrAggDepth() routine in resolve.c
+*/
+static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_AGG_FUNCTION
+ && pExpr->op2>=pWalker->walkerDepth
+ ){
+ pExpr->op2++;
+ }
+ return WRC_Continue;
+}
+
+static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3ErrorMsg(pWalker->pParse,
+ "misuse of aggregate: %s()", pExpr->u.zToken);
+ }
+ return WRC_Continue;
+}
+
+/*
+** If the SELECT statement passed as the second argument does not invoke
+** any SQL window functions, this function is a no-op. Otherwise, it
+** rewrites the SELECT statement so that window function xStep functions
+** are invoked in the correct order as described under "SELECT REWRITING"
+** at the top of this file.
+*/
+SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){
+ int rc = SQLITE_OK;
+ if( p->pWin
+ && p->pPrior==0
+ && ALWAYS((p->selFlags & SF_WinRewrite)==0)
+ && ALWAYS(!IN_RENAME_OBJECT)
+ ){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ sqlite3 *db = pParse->db;
+ Select *pSub = 0; /* The subquery */
+ SrcList *pSrc = p->pSrc;
+ Expr *pWhere = p->pWhere;
+ ExprList *pGroupBy = p->pGroupBy;
+ Expr *pHaving = p->pHaving;
+ ExprList *pSort = 0;
+
+ ExprList *pSublist = 0; /* Expression list for sub-query */
+ Window *pMWin = p->pWin; /* Main window object */
+ Window *pWin; /* Window object iterator */
+ Table *pTab;
+ Walker w;
+
+ u32 selFlags = p->selFlags;
+
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ){
+ return sqlite3ErrorToParser(db, SQLITE_NOMEM);
+ }
+ sqlite3AggInfoPersistWalkerInit(&w, pParse);
+ sqlite3WalkSelect(&w, p);
+ if( (p->selFlags & SF_Aggregate)==0 ){
+ w.xExprCallback = disallowAggregatesInOrderByCb;
+ w.xSelectCallback = 0;
+ sqlite3WalkExprList(&w, p->pOrderBy);
+ }
+
+ p->pSrc = 0;
+ p->pWhere = 0;
+ p->pGroupBy = 0;
+ p->pHaving = 0;
+ p->selFlags &= ~SF_Aggregate;
+ p->selFlags |= SF_WinRewrite;
+
+ /* Create the ORDER BY clause for the sub-select. This is the concatenation
+ ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
+ ** redundant, remove the ORDER BY from the parent SELECT. */
+ pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
+ pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
+ if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
+ int nSave = pSort->nExpr;
+ pSort->nExpr = p->pOrderBy->nExpr;
+ if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ p->pOrderBy = 0;
+ }
+ pSort->nExpr = nSave;
+ }
+
+ /* Assign a cursor number for the ephemeral table used to buffer rows.
+ ** The OpenEphemeral instruction is coded later, after it is known how
+ ** many columns the table will have. */
+ pMWin->iEphCsr = pParse->nTab++;
+ pParse->nTab += 3;
+
+ selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
+ selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
+ pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
+
+ /* Append the PARTITION BY and ORDER BY expressions to the to the
+ ** sub-select expression list. They are required to figure out where
+ ** boundaries for partitions and sets of peer rows lie. */
+ pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
+ pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
+
+ /* Append the arguments passed to each window function to the
+ ** sub-select expression list. Also allocate two registers for each
+ ** window function - one for the accumulator, another for interim
+ ** results. */
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ ExprList *pArgs;
+ assert( ExprUseXList(pWin->pOwner) );
+ assert( pWin->pWFunc!=0 );
+ pArgs = pWin->pOwner->x.pList;
+ if( pWin->pWFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
+ selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
+ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
+ pWin->bExprArgs = 1;
+ }else{
+ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
+ pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
+ }
+ if( pWin->pFilter ){
+ Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
+ pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
+ }
+ pWin->regAccum = ++pParse->nMem;
+ pWin->regResult = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ }
+
+ /* If there is no ORDER BY or PARTITION BY clause, and the window
+ ** function accepts zero arguments, and there are no other columns
+ ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
+ ** that pSublist is still NULL here. Add a constant expression here to
+ ** keep everything legal in this case.
+ */
+ if( pSublist==0 ){
+ pSublist = sqlite3ExprListAppend(pParse, 0,
+ sqlite3Expr(db, TK_INTEGER, "0")
+ );
+ }
+
+ pSub = sqlite3SelectNew(
+ pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
+ );
+ SELECTTRACE(1,pParse,pSub,
+ ("New window-function subquery in FROM clause of (%u/%p)\n",
+ p->selId, p));
+ p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside
+ ** of sqlite3DbMallocRawNN() called from
+ ** sqlite3SrcListAppend() */
+ if( p->pSrc ){
+ Table *pTab2;
+ p->pSrc->a[0].pSelect = pSub;
+ sqlite3SrcListAssignCursors(pParse, p->pSrc);
+ pSub->selFlags |= SF_Expanded|SF_OrderByReqd;
+ pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
+ pSub->selFlags |= (selFlags & SF_Aggregate);
+ if( pTab2==0 ){
+ /* Might actually be some other kind of error, but in that case
+ ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
+ ** the correct error message regardless. */
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pTab, pTab2, sizeof(Table));
+ pTab->tabFlags |= TF_Ephemeral;
+ p->pSrc->a[0].pTab = pTab;
+ pTab = pTab2;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
+ w.xSelectCallback = sqlite3WalkerDepthIncrease;
+ w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
+ sqlite3WalkSelect(&w, pSub);
+ }
+ }else{
+ sqlite3SelectDelete(db, pSub);
+ }
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+
+ /* Defer deleting the temporary table pTab because if an error occurred,
+ ** there could still be references to that table embedded in the
+ ** result-set or ORDER BY clause of the SELECT statement p. */
+ sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab);
+ }
+
+ assert( rc==SQLITE_OK || pParse->nErr!=0 );
+ return rc;
+}
+
+/*
+** Unlink the Window object from the Select to which it is attached,
+** if it is attached.
+*/
+SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window *p){
+ if( p->ppThis ){
+ *p->ppThis = p->pNextWin;
+ if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
+ p->ppThis = 0;
+ }
+}
+
+/*
+** Free the Window object passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3 *db, Window *p){
+ if( p ){
+ sqlite3WindowUnlinkFromSelect(p);
+ sqlite3ExprDelete(db, p->pFilter);
+ sqlite3ExprListDelete(db, p->pPartition);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3ExprDelete(db, p->pEnd);
+ sqlite3ExprDelete(db, p->pStart);
+ sqlite3DbFree(db, p->zName);
+ sqlite3DbFree(db, p->zBase);
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Free the linked list of Window objects starting at the second argument.
+*/
+SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p){
+ while( p ){
+ Window *pNext = p->pNextWin;
+ sqlite3WindowDelete(db, p);
+ p = pNext;
+ }
+}
+
+/*
+** The argument expression is an PRECEDING or FOLLOWING offset. The
+** value should be a non-negative integer. If the value is not a
+** constant, change it to NULL. The fact that it is then a non-negative
+** integer will be caught later. But it is important not to leave
+** variable values in the expression tree.
+*/
+static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
+ if( 0==sqlite3ExprIsConstant(pExpr) ){
+ if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
+ sqlite3ExprDelete(pParse->db, pExpr);
+ pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
+ }
+ return pExpr;
+}
+
+/*
+** Allocate and return a new Window object describing a Window Definition.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowAlloc(
+ Parse *pParse, /* Parsing context */
+ int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
+ int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
+ Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */
+ int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
+ Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */
+ u8 eExclude /* EXCLUDE clause */
+){
+ Window *pWin = 0;
+ int bImplicitFrame = 0;
+
+ /* Parser assures the following: */
+ assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
+ assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
+ || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
+ assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
+ || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
+ assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
+ assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
+
+ if( eType==0 ){
+ bImplicitFrame = 1;
+ eType = TK_RANGE;
+ }
+
+ /* Additionally, the
+ ** starting boundary type may not occur earlier in the following list than
+ ** the ending boundary type:
+ **
+ ** UNBOUNDED PRECEDING
+ ** <expr> PRECEDING
+ ** CURRENT ROW
+ ** <expr> FOLLOWING
+ ** UNBOUNDED FOLLOWING
+ **
+ ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
+ ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
+ ** frame boundary.
+ */
+ if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
+ || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
+ ){
+ sqlite3ErrorMsg(pParse, "unsupported frame specification");
+ goto windowAllocErr;
+ }
+
+ pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
+ if( pWin==0 ) goto windowAllocErr;
+ pWin->eFrmType = eType;
+ pWin->eStart = eStart;
+ pWin->eEnd = eEnd;
+ if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
+ eExclude = TK_NO;
+ }
+ pWin->eExclude = eExclude;
+ pWin->bImplicitFrame = bImplicitFrame;
+ pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
+ pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
+ return pWin;
+
+windowAllocErr:
+ sqlite3ExprDelete(pParse->db, pEnd);
+ sqlite3ExprDelete(pParse->db, pStart);
+ return 0;
+}
+
+/*
+** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
+** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
+** equivalent nul-terminated string.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowAssemble(
+ Parse *pParse,
+ Window *pWin,
+ ExprList *pPartition,
+ ExprList *pOrderBy,
+ Token *pBase
+){
+ if( pWin ){
+ pWin->pPartition = pPartition;
+ pWin->pOrderBy = pOrderBy;
+ if( pBase ){
+ pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
+ }
+ }else{
+ sqlite3ExprListDelete(pParse->db, pPartition);
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ }
+ return pWin;
+}
+
+/*
+** Window *pWin has just been created from a WINDOW clause. Tokne pBase
+** is the base window. Earlier windows from the same WINDOW clause are
+** stored in the linked list starting at pWin->pNextWin. This function
+** either updates *pWin according to the base specification, or else
+** leaves an error in pParse.
+*/
+SQLITE_PRIVATE void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
+ if( pWin->zBase ){
+ sqlite3 *db = pParse->db;
+ Window *pExist = windowFind(pParse, pList, pWin->zBase);
+ if( pExist ){
+ const char *zErr = 0;
+ /* Check for errors */
+ if( pWin->pPartition ){
+ zErr = "PARTITION clause";
+ }else if( pExist->pOrderBy && pWin->pOrderBy ){
+ zErr = "ORDER BY clause";
+ }else if( pExist->bImplicitFrame==0 ){
+ zErr = "frame specification";
+ }
+ if( zErr ){
+ sqlite3ErrorMsg(pParse,
+ "cannot override %s of window: %s", zErr, pWin->zBase
+ );
+ }else{
+ pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
+ if( pExist->pOrderBy ){
+ assert( pWin->pOrderBy==0 );
+ pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
+ }
+ sqlite3DbFree(db, pWin->zBase);
+ pWin->zBase = 0;
+ }
+ }
+ }
+}
+
+/*
+** Attach window object pWin to expression p.
+*/
+SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
+ if( p ){
+ assert( p->op==TK_FUNCTION );
+ assert( pWin );
+ p->y.pWin = pWin;
+ ExprSetProperty(p, EP_WinFunc);
+ pWin->pOwner = p;
+ if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
+ sqlite3ErrorMsg(pParse,
+ "DISTINCT is not supported for window functions"
+ );
+ }
+ }else{
+ sqlite3WindowDelete(pParse->db, pWin);
+ }
+}
+
+/*
+** Possibly link window pWin into the list at pSel->pWin (window functions
+** to be processed as part of SELECT statement pSel). The window is linked
+** in if either (a) there are no other windows already linked to this
+** SELECT, or (b) the windows already linked use a compatible window frame.
+*/
+SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin){
+ if( pSel ){
+ if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
+ pWin->pNextWin = pSel->pWin;
+ if( pSel->pWin ){
+ pSel->pWin->ppThis = &pWin->pNextWin;
+ }
+ pSel->pWin = pWin;
+ pWin->ppThis = &pSel->pWin;
+ }else{
+ if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
+ pSel->selFlags |= SF_MultiPart;
+ }
+ }
+ }
+}
+
+/*
+** Return 0 if the two window objects are identical, 1 if they are
+** different, or 2 if it cannot be determined if the objects are identical
+** or not. Identical window objects can be processed in a single scan.
+*/
+SQLITE_PRIVATE int sqlite3WindowCompare(
+ const Parse *pParse,
+ const Window *p1,
+ const Window *p2,
+ int bFilter
+){
+ int res;
+ if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
+ if( p1->eFrmType!=p2->eFrmType ) return 1;
+ if( p1->eStart!=p2->eStart ) return 1;
+ if( p1->eEnd!=p2->eEnd ) return 1;
+ if( p1->eExclude!=p2->eExclude ) return 1;
+ if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
+ if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
+ if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
+ return res;
+ }
+ if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
+ return res;
+ }
+ if( bFilter ){
+ if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
+ return res;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** This is called by code in select.c before it calls sqlite3WhereBegin()
+** to begin iterating through the sub-query results. It is used to allocate
+** and initialize registers and cursors used by sqlite3WindowCodeStep().
+*/
+SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
+ int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
+ Window *pMWin = pSelect->pWin;
+ Window *pWin;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
+
+ /* Allocate registers to use for PARTITION BY values, if any. Initialize
+ ** said registers to NULL. */
+ if( pMWin->pPartition ){
+ int nExpr = pMWin->pPartition->nExpr;
+ pMWin->regPart = pParse->nMem+1;
+ pParse->nMem += nExpr;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
+ }
+
+ pMWin->regOne = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
+
+ if( pMWin->eExclude ){
+ pMWin->regStartRowid = ++pParse->nMem;
+ pMWin->regEndRowid = ++pParse->nMem;
+ pMWin->csrApp = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
+ return;
+ }
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *p = pWin->pWFunc;
+ if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
+ /* The inline versions of min() and max() require a single ephemeral
+ ** table and 3 registers. The registers are used as follows:
+ **
+ ** regApp+0: slot to copy min()/max() argument to for MakeRecord
+ ** regApp+1: integer value used to ensure keys are unique
+ ** regApp+2: output of MakeRecord
+ */
+ ExprList *pList;
+ KeyInfo *pKeyInfo;
+ assert( ExprUseXList(pWin->pOwner) );
+ pList = pWin->pOwner->x.pList;
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
+ pWin->csrApp = pParse->nTab++;
+ pWin->regApp = pParse->nMem+1;
+ pParse->nMem += 3;
+ if( pKeyInfo && pWin->pWFunc->zName[1]=='i' ){
+ assert( pKeyInfo->aSortFlags[0]==0 );
+ pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
+ }
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
+ sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
+ }
+ else if( p->zName==nth_valueName || p->zName==first_valueName ){
+ /* Allocate two registers at pWin->regApp. These will be used to
+ ** store the start and end index of the current frame. */
+ pWin->regApp = pParse->nMem+1;
+ pWin->csrApp = pParse->nTab++;
+ pParse->nMem += 2;
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
+ }
+ else if( p->zName==leadName || p->zName==lagName ){
+ pWin->csrApp = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
+ }
+ }
+}
+
+#define WINDOW_STARTING_INT 0
+#define WINDOW_ENDING_INT 1
+#define WINDOW_NTH_VALUE_INT 2
+#define WINDOW_STARTING_NUM 3
+#define WINDOW_ENDING_NUM 4
+
+/*
+** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
+** value of the second argument to nth_value() (eCond==2) has just been
+** evaluated and the result left in register reg. This function generates VM
+** code to check that the value is a non-negative integer and throws an
+** exception if it is not.
+*/
+static void windowCheckValue(Parse *pParse, int reg, int eCond){
+ static const char *azErr[] = {
+ "frame starting offset must be a non-negative integer",
+ "frame ending offset must be a non-negative integer",
+ "second argument to nth_value must be a positive integer",
+ "frame starting offset must be a non-negative number",
+ "frame ending offset must be a non-negative number",
+ };
+ static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int regZero = sqlite3GetTempReg(pParse);
+ assert( eCond>=0 && eCond<ArraySize(azErr) );
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
+ if( eCond>=WINDOW_STARTING_NUM ){
+ int regString = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
+ sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
+ VdbeCoverage(v);
+ assert( eCond==3 || eCond==4 );
+ VdbeCoverageIf(v, eCond==3);
+ VdbeCoverageIf(v, eCond==4);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ assert( eCond==0 || eCond==1 || eCond==2 );
+ VdbeCoverageIf(v, eCond==0);
+ VdbeCoverageIf(v, eCond==1);
+ VdbeCoverageIf(v, eCond==2);
+ }
+ sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
+ VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
+ VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */
+ VdbeCoverageNeverNullIf(v, eCond==2);
+ VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
+ VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
+ sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
+ sqlite3ReleaseTempReg(pParse, regZero);
+}
+
+/*
+** Return the number of arguments passed to the window-function associated
+** with the object passed as the only argument to this function.
+*/
+static int windowArgCount(Window *pWin){
+ const ExprList *pList;
+ assert( ExprUseXList(pWin->pOwner) );
+ pList = pWin->pOwner->x.pList;
+ return (pList ? pList->nExpr : 0);
+}
+
+typedef struct WindowCodeArg WindowCodeArg;
+typedef struct WindowCsrAndReg WindowCsrAndReg;
+
+/*
+** See comments above struct WindowCodeArg.
+*/
+struct WindowCsrAndReg {
+ int csr; /* Cursor number */
+ int reg; /* First in array of peer values */
+};
+
+/*
+** A single instance of this structure is allocated on the stack by
+** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
+** routines. This is to reduce the number of arguments required by each
+** helper function.
+**
+** regArg:
+** Each window function requires an accumulator register (just as an
+** ordinary aggregate function does). This variable is set to the first
+** in an array of accumulator registers - one for each window function
+** in the WindowCodeArg.pMWin list.
+**
+** eDelete:
+** The window functions implementation sometimes caches the input rows
+** that it processes in a temporary table. If it is not zero, this
+** variable indicates when rows may be removed from the temp table (in
+** order to reduce memory requirements - it would always be safe just
+** to leave them there). Possible values for eDelete are:
+**
+** WINDOW_RETURN_ROW:
+** An input row can be discarded after it is returned to the caller.
+**
+** WINDOW_AGGINVERSE:
+** An input row can be discarded after the window functions xInverse()
+** callbacks have been invoked in it.
+**
+** WINDOW_AGGSTEP:
+** An input row can be discarded after the window functions xStep()
+** callbacks have been invoked in it.
+**
+** start,current,end
+** Consider a window-frame similar to the following:
+**
+** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
+**
+** The windows functions implmentation caches the input rows in a temp
+** table, sorted by "a, b" (it actually populates the cache lazily, and
+** aggressively removes rows once they are no longer required, but that's
+** a mere detail). It keeps three cursors open on the temp table. One
+** (current) that points to the next row to return to the query engine
+** once its window function values have been calculated. Another (end)
+** points to the next row to call the xStep() method of each window function
+** on (so that it is 2 groups ahead of current). And a third (start) that
+** points to the next row to call the xInverse() method of each window
+** function on.
+**
+** Each cursor (start, current and end) consists of a VDBE cursor
+** (WindowCsrAndReg.csr) and an array of registers (starting at
+** WindowCodeArg.reg) that always contains a copy of the peer values
+** read from the corresponding cursor.
+**
+** Depending on the window-frame in question, all three cursors may not
+** be required. In this case both WindowCodeArg.csr and reg are set to
+** 0.
+*/
+struct WindowCodeArg {
+ Parse *pParse; /* Parse context */
+ Window *pMWin; /* First in list of functions being processed */
+ Vdbe *pVdbe; /* VDBE object */
+ int addrGosub; /* OP_Gosub to this address to return one row */
+ int regGosub; /* Register used with OP_Gosub(addrGosub) */
+ int regArg; /* First in array of accumulator registers */
+ int eDelete; /* See above */
+ int regRowid;
+
+ WindowCsrAndReg start;
+ WindowCsrAndReg current;
+ WindowCsrAndReg end;
+};
+
+/*
+** Generate VM code to read the window frames peer values from cursor csr into
+** an array of registers starting at reg.
+*/
+static void windowReadPeerValues(
+ WindowCodeArg *p,
+ int csr,
+ int reg
+){
+ Window *pMWin = p->pMWin;
+ ExprList *pOrderBy = pMWin->pOrderBy;
+ if( pOrderBy ){
+ Vdbe *v = sqlite3GetVdbe(p->pParse);
+ ExprList *pPart = pMWin->pPartition;
+ int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
+ int i;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
+ }
+ }
+}
+
+/*
+** Generate VM code to invoke either xStep() (if bInverse is 0) or
+** xInverse (if bInverse is non-zero) for each window function in the
+** linked list starting at pMWin. Or, for built-in window functions
+** that do not use the standard function API, generate the required
+** inline VM code.
+**
+** If argument csr is greater than or equal to 0, then argument reg is
+** the first register in an array of registers guaranteed to be large
+** enough to hold the array of arguments for each function. In this case
+** the arguments are extracted from the current row of csr into the
+** array of registers before invoking OP_AggStep or OP_AggInverse
+**
+** Or, if csr is less than zero, then the array of registers at reg is
+** already populated with all columns from the current row of the sub-query.
+**
+** If argument regPartSize is non-zero, then it is a register containing the
+** number of rows in the current partition.
+*/
+static void windowAggStep(
+ WindowCodeArg *p,
+ Window *pMWin, /* Linked list of window functions */
+ int csr, /* Read arguments from this cursor */
+ int bInverse, /* True to invoke xInverse instead of xStep */
+ int reg /* Array of registers */
+){
+ Parse *pParse = p->pParse;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ Window *pWin;
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ int regArg;
+ int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
+ int i;
+
+ assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
+
+ /* All OVER clauses in the same window function aggregate step must
+ ** be the same. */
+ assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
+
+ for(i=0; i<nArg; i++){
+ if( i!=1 || pFunc->zName!=nth_valueName ){
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
+ }
+ }
+ regArg = reg;
+
+ if( pMWin->regStartRowid==0
+ && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
+ && (pWin->eStart!=TK_UNBOUNDED)
+ ){
+ int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
+ VdbeCoverage(v);
+ if( bInverse==0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
+ VdbeCoverageNeverTaken(v);
+ sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ }
+ sqlite3VdbeJumpHere(v, addrIsNull);
+ }else if( pWin->regApp ){
+ assert( pFunc->zName==nth_valueName
+ || pFunc->zName==first_valueName
+ );
+ assert( bInverse==0 || bInverse==1 );
+ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
+ }else if( pFunc->xSFunc!=noopStepFunc ){
+ int addrIf = 0;
+ if( pWin->pFilter ){
+ int regTmp;
+ assert( ExprUseXList(pWin->pOwner) );
+ assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
+ assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 );
+ regTmp = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
+ addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, regTmp);
+ }
+
+ if( pWin->bExprArgs ){
+ int iOp = sqlite3VdbeCurrentAddr(v);
+ int iEnd;
+
+ assert( ExprUseXList(pWin->pOwner) );
+ nArg = pWin->pOwner->x.pList->nExpr;
+ regArg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
+
+ for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp);
+ if( pOp->opcode==OP_Column && pOp->p1==pMWin->iEphCsr ){
+ pOp->p1 = csr;
+ }
+ }
+ }
+ if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ CollSeq *pColl;
+ assert( nArg>0 );
+ assert( ExprUseXList(pWin->pOwner) );
+ pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
+ bInverse, regArg, pWin->regAccum);
+ sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ if( pWin->bExprArgs ){
+ sqlite3ReleaseTempRange(pParse, regArg, nArg);
+ }
+ if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
+ }
+ }
+}
+
+/*
+** Values that may be passed as the second argument to windowCodeOp().
+*/
+#define WINDOW_RETURN_ROW 1
+#define WINDOW_AGGINVERSE 2
+#define WINDOW_AGGSTEP 3
+
+/*
+** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
+** (bFin==1) for each window function in the linked list starting at
+** pMWin. Or, for built-in window-functions that do not use the standard
+** API, generate the equivalent VM code.
+*/
+static void windowAggFinal(WindowCodeArg *p, int bFin){
+ Parse *pParse = p->pParse;
+ Window *pMWin = p->pMWin;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ Window *pWin;
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ if( pMWin->regStartRowid==0
+ && (pWin->pWFunc->funcFlags & SQLITE_FUNC_MINMAX)
+ && (pWin->eStart!=TK_UNBOUNDED)
+ ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
+ sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ }else if( pWin->regApp ){
+ assert( pMWin->regStartRowid==0 );
+ }else{
+ int nArg = windowArgCount(pWin);
+ if( bFin ){
+ sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
+ sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF);
+ sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
+ sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF);
+ }
+ }
+ }
+}
+
+/*
+** Generate code to calculate the current values of all window functions in the
+** p->pMWin list by doing a full scan of the current window frame. Store the
+** results in the Window.regResult registers, ready to return the upper
+** layer.
+*/
+static void windowFullScan(WindowCodeArg *p){
+ Window *pWin;
+ Parse *pParse = p->pParse;
+ Window *pMWin = p->pMWin;
+ Vdbe *v = p->pVdbe;
+
+ int regCRowid = 0; /* Current rowid value */
+ int regCPeer = 0; /* Current peer values */
+ int regRowid = 0; /* AggStep rowid value */
+ int regPeer = 0; /* AggStep peer values */
+
+ int nPeer;
+ int lblNext;
+ int lblBrk;
+ int addrNext;
+ int csr;
+
+ VdbeModuleComment((v, "windowFullScan begin"));
+
+ assert( pMWin!=0 );
+ csr = pMWin->csrApp;
+ nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
+
+ lblNext = sqlite3VdbeMakeLabel(pParse);
+ lblBrk = sqlite3VdbeMakeLabel(pParse);
+
+ regCRowid = sqlite3GetTempReg(pParse);
+ regRowid = sqlite3GetTempReg(pParse);
+ if( nPeer ){
+ regCPeer = sqlite3GetTempRange(pParse, nPeer);
+ regPeer = sqlite3GetTempRange(pParse, nPeer);
+ }
+
+ sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
+ windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ }
+
+ sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
+ VdbeCoverage(v);
+ addrNext = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
+ VdbeCoverageNeverNull(v);
+
+ if( pMWin->eExclude==TK_CURRENT ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
+ VdbeCoverageNeverNull(v);
+ }else if( pMWin->eExclude!=TK_NO ){
+ int addr;
+ int addrEq = 0;
+ KeyInfo *pKeyInfo = 0;
+
+ if( pMWin->pOrderBy ){
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
+ }
+ if( pMWin->eExclude==TK_TIES ){
+ addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
+ VdbeCoverageNeverNull(v);
+ }
+ if( pKeyInfo ){
+ windowReadPeerValues(p, csr, regPeer);
+ sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
+ sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
+ addr = sqlite3VdbeCurrentAddr(v)+1;
+ sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
+ VdbeCoverageEqNe(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
+ }
+ if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
+ }
+
+ windowAggStep(p, pMWin, csr, 0, p->regArg);
+
+ sqlite3VdbeResolveLabel(v, lblNext);
+ sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrNext-1);
+ sqlite3VdbeJumpHere(v, addrNext+1);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regCRowid);
+ if( nPeer ){
+ sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
+ sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
+ }
+
+ windowAggFinal(p, 1);
+ VdbeModuleComment((v, "windowFullScan end"));
+}
+
+/*
+** Invoke the sub-routine at regGosub (generated by code in select.c) to
+** return the current row of Window.iEphCsr. If all window functions are
+** aggregate window functions that use the standard API, a single
+** OP_Gosub instruction is all that this routine generates. Extra VM code
+** for per-row processing is only generated for the following built-in window
+** functions:
+**
+** nth_value()
+** first_value()
+** lag()
+** lead()
+*/
+static void windowReturnOneRow(WindowCodeArg *p){
+ Window *pMWin = p->pMWin;
+ Vdbe *v = p->pVdbe;
+
+ if( pMWin->regStartRowid ){
+ windowFullScan(p);
+ }else{
+ Parse *pParse = p->pParse;
+ Window *pWin;
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ assert( ExprUseXList(pWin->pOwner) );
+ if( pFunc->zName==nth_valueName
+ || pFunc->zName==first_valueName
+ ){
+ int csr = pWin->csrApp;
+ int lbl = sqlite3VdbeMakeLabel(pParse);
+ int tmpReg = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
+
+ if( pFunc->zName==nth_valueName ){
+ sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
+ windowCheckValue(pParse, tmpReg, 2);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
+ }
+ sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
+ sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
+ VdbeCoverageNeverNull(v);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
+ VdbeCoverageNeverTaken(v);
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
+ sqlite3VdbeResolveLabel(v, lbl);
+ sqlite3ReleaseTempReg(pParse, tmpReg);
+ }
+ else if( pFunc->zName==leadName || pFunc->zName==lagName ){
+ int nArg = pWin->pOwner->x.pList->nExpr;
+ int csr = pWin->csrApp;
+ int lbl = sqlite3VdbeMakeLabel(pParse);
+ int tmpReg = sqlite3GetTempReg(pParse);
+ int iEph = pMWin->iEphCsr;
+
+ if( nArg<3 ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
+ }
+ sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
+ if( nArg<2 ){
+ int val = (pFunc->zName==leadName ? 1 : -1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
+ }else{
+ int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
+ int tmpReg2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
+ sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
+ sqlite3ReleaseTempReg(pParse, tmpReg2);
+ }
+
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
+ sqlite3VdbeResolveLabel(v, lbl);
+ sqlite3ReleaseTempReg(pParse, tmpReg);
+ }
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
+}
+
+/*
+** Generate code to set the accumulator register for each window function
+** in the linked list passed as the second argument to NULL. And perform
+** any equivalent initialization required by any built-in window functions
+** in the list.
+*/
+static int windowInitAccum(Parse *pParse, Window *pMWin){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int regArg;
+ int nArg = 0;
+ Window *pWin;
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ assert( pWin->regAccum );
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ nArg = MAX(nArg, windowArgCount(pWin));
+ if( pMWin->regStartRowid==0 ){
+ if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
+ }
+
+ if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
+ assert( pWin->eStart!=TK_UNBOUNDED );
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
+ }
+ }
+ }
+ regArg = pParse->nMem+1;
+ pParse->nMem += nArg;
+ return regArg;
+}
+
+/*
+** Return true if the current frame should be cached in the ephemeral table,
+** even if there are no xInverse() calls required.
+*/
+static int windowCacheFrame(Window *pMWin){
+ Window *pWin;
+ if( pMWin->regStartRowid ) return 1;
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ if( (pFunc->zName==nth_valueName)
+ || (pFunc->zName==first_valueName)
+ || (pFunc->zName==leadName)
+ || (pFunc->zName==lagName)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** regOld and regNew are each the first register in an array of size
+** pOrderBy->nExpr. This function generates code to compare the two
+** arrays of registers using the collation sequences and other comparison
+** parameters specified by pOrderBy.
+**
+** If the two arrays are not equal, the contents of regNew is copied to
+** regOld and control falls through. Otherwise, if the contents of the arrays
+** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
+*/
+static void windowIfNewPeer(
+ Parse *pParse,
+ ExprList *pOrderBy,
+ int regNew, /* First in array of new values */
+ int regOld, /* First in array of old values */
+ int addr /* Jump here */
+){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( pOrderBy ){
+ int nVal = pOrderBy->nExpr;
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
+ sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
+ sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump,
+ sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
+ );
+ VdbeCoverageEqNe(v);
+ sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
+ }
+}
+
+/*
+** This function is called as part of generating VM programs for RANGE
+** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
+** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
+** code equivalent to:
+**
+** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
+**
+** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
+** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
+**
+** If the sort-order for the ORDER BY term in the window is DESC, then the
+** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
+** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
+** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
+** is OP_Ge, the generated code is equivalent to:
+**
+** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
+**
+** A special type of arithmetic is used such that if csr1.peerVal is not
+** a numeric type (real or integer), then the result of the addition
+** or subtraction is a a copy of csr1.peerVal.
+*/
+static void windowCodeRangeTest(
+ WindowCodeArg *p,
+ int op, /* OP_Ge, OP_Gt, or OP_Le */
+ int csr1, /* Cursor number for cursor 1 */
+ int regVal, /* Register containing non-negative number */
+ int csr2, /* Cursor number for cursor 2 */
+ int lbl /* Jump destination if condition is true */
+){
+ Parse *pParse = p->pParse;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */
+ int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */
+ int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */
+ int regString = ++pParse->nMem; /* Reg. for constant value '' */
+ int arith = OP_Add; /* OP_Add or OP_Subtract */
+ int addrGe; /* Jump destination */
+ int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */
+ CollSeq *pColl;
+
+ /* Read the peer-value from each cursor into a register */
+ windowReadPeerValues(p, csr1, reg1);
+ windowReadPeerValues(p, csr2, reg2);
+
+ assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
+ assert( pOrderBy && pOrderBy->nExpr==1 );
+ if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_DESC ){
+ switch( op ){
+ case OP_Ge: op = OP_Le; break;
+ case OP_Gt: op = OP_Lt; break;
+ default: assert( op==OP_Le ); op = OP_Ge; break;
+ }
+ arith = OP_Subtract;
+ }
+
+ VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
+ reg1, (arith==OP_Add ? "+" : "-"), regVal,
+ ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
+ ));
+
+ /* If the BIGNULL flag is set for the ORDER BY, then it is required to
+ ** consider NULL values to be larger than all other values, instead of
+ ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
+ ** (and adding that capability causes a performance regression), so
+ ** instead if the BIGNULL flag is set then cases where either reg1 or
+ ** reg2 are NULL are handled separately in the following block. The code
+ ** generated is equivalent to:
+ **
+ ** if( reg1 IS NULL ){
+ ** if( op==OP_Ge ) goto lbl;
+ ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
+ ** if( op==OP_Le && reg2 IS NULL ) goto lbl;
+ ** }else if( reg2 IS NULL ){
+ ** if( op==OP_Le ) goto lbl;
+ ** }
+ **
+ ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
+ ** not taken, control jumps over the comparison operator coded below this
+ ** block. */
+ if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_BIGNULL ){
+ /* This block runs if reg1 contains a NULL. */
+ int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
+ switch( op ){
+ case OP_Ge:
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
+ break;
+ case OP_Gt:
+ sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
+ VdbeCoverage(v);
+ break;
+ case OP_Le:
+ sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
+ VdbeCoverage(v);
+ break;
+ default: assert( op==OP_Lt ); /* no-op */ break;
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
+
+ /* This block runs if reg1 is not NULL, but reg2 is. */
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
+ if( op==OP_Gt || op==OP_Ge ){
+ sqlite3VdbeChangeP2(v, -1, addrDone);
+ }
+ }
+
+ /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
+ ** This block adds (or subtracts for DESC) the numeric value in regVal
+ ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
+ ** then leave reg1 as it is. In pseudo-code, this is implemented as:
+ **
+ ** if( reg1>='' ) goto addrGe;
+ ** reg1 = reg1 +/- regVal
+ ** addrGe:
+ **
+ ** Since all strings and blobs are greater-than-or-equal-to an empty string,
+ ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
+ ** then the arithmetic is performed, but since adding or subtracting from
+ ** NULL is always NULL anyway, this case is handled as required too. */
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
+ addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
+ VdbeCoverage(v);
+ if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
+ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
+ sqlite3VdbeJumpHere(v, addrGe);
+
+ /* Compare registers reg2 and reg1, taking the jump if required. Note that
+ ** control skips over this test if the BIGNULL flag is set and either
+ ** reg1 or reg2 contain a NULL value. */
+ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
+ pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
+ sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ sqlite3VdbeResolveLabel(v, addrDone);
+
+ assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
+ testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
+ testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
+ testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
+ testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
+ sqlite3ReleaseTempReg(pParse, reg1);
+ sqlite3ReleaseTempReg(pParse, reg2);
+
+ VdbeModuleComment((v, "CodeRangeTest: end"));
+}
+
+/*
+** Helper function for sqlite3WindowCodeStep(). Each call to this function
+** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
+** operation. Refer to the header comment for sqlite3WindowCodeStep() for
+** details.
+*/
+static int windowCodeOp(
+ WindowCodeArg *p, /* Context object */
+ int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
+ int regCountdown, /* Register for OP_IfPos countdown */
+ int jumpOnEof /* Jump here if stepped cursor reaches EOF */
+){
+ int csr, reg;
+ Parse *pParse = p->pParse;
+ Window *pMWin = p->pMWin;
+ int ret = 0;
+ Vdbe *v = p->pVdbe;
+ int addrContinue = 0;
+ int bPeer = (pMWin->eFrmType!=TK_ROWS);
+
+ int lblDone = sqlite3VdbeMakeLabel(pParse);
+ int addrNextRange = 0;
+
+ /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
+ ** starts with UNBOUNDED PRECEDING. */
+ if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
+ assert( regCountdown==0 && jumpOnEof==0 );
+ return 0;
+ }
+
+ if( regCountdown>0 ){
+ if( pMWin->eFrmType==TK_RANGE ){
+ addrNextRange = sqlite3VdbeCurrentAddr(v);
+ assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
+ if( op==WINDOW_AGGINVERSE ){
+ if( pMWin->eStart==TK_FOLLOWING ){
+ windowCodeRangeTest(
+ p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
+ );
+ }else{
+ windowCodeRangeTest(
+ p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
+ );
+ }
+ }else{
+ windowCodeRangeTest(
+ p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
+ );
+ }
+ }else{
+ sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
+ VdbeCoverage(v);
+ }
+ }
+
+ if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
+ windowAggFinal(p, 0);
+ }
+ addrContinue = sqlite3VdbeCurrentAddr(v);
+
+ /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
+ ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
+ ** start cursor does not advance past the end cursor within the
+ ** temporary table. It otherwise might, if (a>b). Also ensure that,
+ ** if the input cursor is still finding new rows, that the end
+ ** cursor does not go past it to EOF. */
+ if( pMWin->eStart==pMWin->eEnd && regCountdown
+ && pMWin->eFrmType==TK_RANGE
+ ){
+ int regRowid1 = sqlite3GetTempReg(pParse);
+ int regRowid2 = sqlite3GetTempReg(pParse);
+ if( op==WINDOW_AGGINVERSE ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
+ sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
+ sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
+ VdbeCoverage(v);
+ }else if( p->regRowid ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1);
+ sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1);
+ VdbeCoverageNeverNull(v);
+ }
+ sqlite3ReleaseTempReg(pParse, regRowid1);
+ sqlite3ReleaseTempReg(pParse, regRowid2);
+ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
+ }
+
+ switch( op ){
+ case WINDOW_RETURN_ROW:
+ csr = p->current.csr;
+ reg = p->current.reg;
+ windowReturnOneRow(p);
+ break;
+
+ case WINDOW_AGGINVERSE:
+ csr = p->start.csr;
+ reg = p->start.reg;
+ if( pMWin->regStartRowid ){
+ assert( pMWin->regEndRowid );
+ sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
+ }else{
+ windowAggStep(p, pMWin, csr, 1, p->regArg);
+ }
+ break;
+
+ default:
+ assert( op==WINDOW_AGGSTEP );
+ csr = p->end.csr;
+ reg = p->end.reg;
+ if( pMWin->regStartRowid ){
+ assert( pMWin->regEndRowid );
+ sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
+ }else{
+ windowAggStep(p, pMWin, csr, 0, p->regArg);
+ }
+ break;
+ }
+
+ if( op==p->eDelete ){
+ sqlite3VdbeAddOp1(v, OP_Delete, csr);
+ sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
+ }
+
+ if( jumpOnEof ){
+ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ ret = sqlite3VdbeAddOp0(v, OP_Goto);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
+ VdbeCoverage(v);
+ if( bPeer ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
+ }
+ }
+
+ if( bPeer ){
+ int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
+ int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
+ windowReadPeerValues(p, csr, regTmp);
+ windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
+ sqlite3ReleaseTempRange(pParse, regTmp, nReg);
+ }
+
+ if( addrNextRange ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
+ }
+ sqlite3VdbeResolveLabel(v, lblDone);
+ return ret;
+}
+
+
+/*
+** Allocate and return a duplicate of the Window object indicated by the
+** third argument. Set the Window.pOwner field of the new object to
+** pOwner.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
+ Window *pNew = 0;
+ if( ALWAYS(p) ){
+ pNew = sqlite3DbMallocZero(db, sizeof(Window));
+ if( pNew ){
+ pNew->zName = sqlite3DbStrDup(db, p->zName);
+ pNew->zBase = sqlite3DbStrDup(db, p->zBase);
+ pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
+ pNew->pWFunc = p->pWFunc;
+ pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
+ pNew->eFrmType = p->eFrmType;
+ pNew->eEnd = p->eEnd;
+ pNew->eStart = p->eStart;
+ pNew->eExclude = p->eExclude;
+ pNew->regResult = p->regResult;
+ pNew->regAccum = p->regAccum;
+ pNew->iArgCol = p->iArgCol;
+ pNew->iEphCsr = p->iEphCsr;
+ pNew->bExprArgs = p->bExprArgs;
+ pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
+ pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
+ pNew->pOwner = pOwner;
+ pNew->bImplicitFrame = p->bImplicitFrame;
+ }
+ }
+ return pNew;
+}
+
+/*
+** Return a copy of the linked list of Window objects passed as the
+** second argument.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
+ Window *pWin;
+ Window *pRet = 0;
+ Window **pp = &pRet;
+
+ for(pWin=p; pWin; pWin=pWin->pNextWin){
+ *pp = sqlite3WindowDup(db, 0, pWin);
+ if( *pp==0 ) break;
+ pp = &((*pp)->pNextWin);
+ }
+
+ return pRet;
+}
+
+/*
+** Return true if it can be determined at compile time that expression
+** pExpr evaluates to a value that, when cast to an integer, is greater
+** than zero. False otherwise.
+**
+** If an OOM error occurs, this function sets the Parse.db.mallocFailed
+** flag and returns zero.
+*/
+static int windowExprGtZero(Parse *pParse, Expr *pExpr){
+ int ret = 0;
+ sqlite3 *db = pParse->db;
+ sqlite3_value *pVal = 0;
+ sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
+ if( pVal && sqlite3_value_int(pVal)>0 ){
+ ret = 1;
+ }
+ sqlite3ValueFree(pVal);
+ return ret;
+}
+
+/*
+** sqlite3WhereBegin() has already been called for the SELECT statement
+** passed as the second argument when this function is invoked. It generates
+** code to populate the Window.regResult register for each window function
+** and invoke the sub-routine at instruction addrGosub once for each row.
+** sqlite3WhereEnd() is always called before returning.
+**
+** This function handles several different types of window frames, which
+** require slightly different processing. The following pseudo code is
+** used to implement window frames of the form:
+**
+** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
+**
+** Other window frame types use variants of the following:
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+**
+** if( first row of partition ){
+** // Rewind three cursors, all open on the eph table.
+** Rewind(csrEnd);
+** Rewind(csrStart);
+** Rewind(csrCurrent);
+**
+** regEnd = <expr2> // FOLLOWING expression
+** regStart = <expr1> // PRECEDING expression
+** }else{
+** // First time this branch is taken, the eph table contains two
+** // rows. The first row in the partition, which all three cursors
+** // currently point to, and the following row.
+** AGGSTEP
+** if( (regEnd--)<=0 ){
+** RETURN_ROW
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** }
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** RETURN ROW
+** if( csrCurrent is EOF ) break;
+** if( (regStart--)<=0 ){
+** AggInverse(csrStart)
+** Next(csrStart)
+** }
+** }
+**
+** The pseudo-code above uses the following shorthand:
+**
+** AGGSTEP: invoke the aggregate xStep() function for each window function
+** with arguments read from the current row of cursor csrEnd, then
+** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
+**
+** RETURN_ROW: return a row to the caller based on the contents of the
+** current row of csrCurrent and the current state of all
+** aggregates. Then step cursor csrCurrent forward one row.
+**
+** AGGINVERSE: invoke the aggregate xInverse() function for each window
+** functions with arguments read from the current row of cursor
+** csrStart. Then step csrStart forward one row.
+**
+** There are two other ROWS window frames that are handled significantly
+** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
+** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
+** cases because they change the order in which the three cursors (csrStart,
+** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
+** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
+** three.
+**
+** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** if( (regEnd--)<=0 ){
+** AGGSTEP
+** }
+** RETURN_ROW
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** }
+** }
+** }
+** flush:
+** if( (regEnd--)<=0 ){
+** AGGSTEP
+** }
+** RETURN_ROW
+**
+**
+** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = regEnd - <expr1>
+** }else{
+** AGGSTEP
+** if( (regEnd--)<=0 ){
+** RETURN_ROW
+** }
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** if( (regEnd--)<=0 ){
+** RETURN_ROW
+** if( eof ) break;
+** }
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** if( eof ) break
+** }
+** }
+** while( !eof csrCurrent ){
+** RETURN_ROW
+** }
+**
+** For the most part, the patterns above are adapted to support UNBOUNDED by
+** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
+** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
+** This is optimized of course - branches that will never be taken and
+** conditions that are always true are omitted from the VM code. The only
+** exceptional case is:
+**
+** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regStart = <expr1>
+** }else{
+** AGGSTEP
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** if( eof ) break
+** }
+** RETURN_ROW
+** }
+** while( !eof csrCurrent ){
+** RETURN_ROW
+** }
+**
+** Also requiring special handling are the cases:
+**
+** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
+** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
+**
+** when (expr1 < expr2). This is detected at runtime, not by this function.
+** To handle this case, the pseudo-code programs depicted above are modified
+** slightly to be:
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** if( regEnd < regStart ){
+** RETURN_ROW
+** delete eph table contents
+** continue
+** }
+** ...
+**
+** The new "continue" statement in the above jumps to the next iteration
+** of the outer loop - the one started by sqlite3WhereBegin().
+**
+** The various GROUPS cases are implemented using the same patterns as
+** ROWS. The VM code is modified slightly so that:
+**
+** 1. The else branch in the main loop is only taken if the row just
+** added to the ephemeral table is the start of a new group. In
+** other words, it becomes:
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else if( new group ){
+** ...
+** }
+** }
+**
+** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
+** AGGINVERSE step processes the current row of the relevant cursor and
+** all subsequent rows belonging to the same group.
+**
+** RANGE window frames are a little different again. As for GROUPS, the
+** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
+** deal in groups instead of rows. As for ROWS and GROUPS, there are three
+** basic cases:
+**
+** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** AGGSTEP
+** while( (csrCurrent.key + regEnd) < csrEnd.key ){
+** RETURN_ROW
+** while( csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** RETURN ROW
+** if( csrCurrent is EOF ) break;
+** while( csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** }
+** }
+**
+** In the above notation, "csr.key" means the current value of the ORDER BY
+** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
+** or <expr PRECEDING) read from cursor csr.
+**
+** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
+** AGGSTEP
+** }
+** while( (csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** RETURN_ROW
+** }
+** }
+** flush:
+** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
+** AGGSTEP
+** }
+** while( (csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** RETURN_ROW
+**
+** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** AGGSTEP
+** while( (csrCurrent.key + regEnd) < csrEnd.key ){
+** while( (csrCurrent.key + regStart) > csrStart.key ){
+** AGGINVERSE
+** }
+** RETURN_ROW
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** while( (csrCurrent.key + regStart) > csrStart.key ){
+** AGGINVERSE
+** if( eof ) break "while( 1 )" loop.
+** }
+** RETURN_ROW
+** }
+** while( !eof csrCurrent ){
+** RETURN_ROW
+** }
+**
+** The text above leaves out many details. Refer to the code and comments
+** below for a more complete picture.
+*/
+SQLITE_PRIVATE void sqlite3WindowCodeStep(
+ Parse *pParse, /* Parse context */
+ Select *p, /* Rewritten SELECT statement */
+ WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */
+ int regGosub, /* Register for OP_Gosub */
+ int addrGosub /* OP_Gosub here to return each row */
+){
+ Window *pMWin = p->pWin;
+ ExprList *pOrderBy = pMWin->pOrderBy;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int csrWrite; /* Cursor used to write to eph. table */
+ int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */
+ int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */
+ int iInput; /* To iterate through sub cols */
+ int addrNe; /* Address of OP_Ne */
+ int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */
+ int addrInteger = 0; /* Address of OP_Integer */
+ int addrEmpty; /* Address of OP_Rewind in flush: */
+ int regNew; /* Array of registers holding new input row */
+ int regRecord; /* regNew array in record form */
+ int regNewPeer = 0; /* Peer values for new row (part of regNew) */
+ int regPeer = 0; /* Peer values for current row */
+ int regFlushPart = 0; /* Register for "Gosub flush_partition" */
+ WindowCodeArg s; /* Context object for sub-routines */
+ int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */
+ int regStart = 0; /* Value of <expr> PRECEDING */
+ int regEnd = 0; /* Value of <expr> FOLLOWING */
+
+ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
+ || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
+ );
+ assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
+ || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
+ );
+ assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
+ || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
+ || pMWin->eExclude==TK_NO
+ );
+
+ lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
+
+ /* Fill in the context object */
+ memset(&s, 0, sizeof(WindowCodeArg));
+ s.pParse = pParse;
+ s.pMWin = pMWin;
+ s.pVdbe = v;
+ s.regGosub = regGosub;
+ s.addrGosub = addrGosub;
+ s.current.csr = pMWin->iEphCsr;
+ csrWrite = s.current.csr+1;
+ s.start.csr = s.current.csr+2;
+ s.end.csr = s.current.csr+3;
+
+ /* Figure out when rows may be deleted from the ephemeral table. There
+ ** are four options - they may never be deleted (eDelete==0), they may
+ ** be deleted as soon as they are no longer part of the window frame
+ ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
+ ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
+ ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
+ switch( pMWin->eStart ){
+ case TK_FOLLOWING:
+ if( pMWin->eFrmType!=TK_RANGE
+ && windowExprGtZero(pParse, pMWin->pStart)
+ ){
+ s.eDelete = WINDOW_RETURN_ROW;
+ }
+ break;
+ case TK_UNBOUNDED:
+ if( windowCacheFrame(pMWin)==0 ){
+ if( pMWin->eEnd==TK_PRECEDING ){
+ if( pMWin->eFrmType!=TK_RANGE
+ && windowExprGtZero(pParse, pMWin->pEnd)
+ ){
+ s.eDelete = WINDOW_AGGSTEP;
+ }
+ }else{
+ s.eDelete = WINDOW_RETURN_ROW;
+ }
+ }
+ break;
+ default:
+ s.eDelete = WINDOW_AGGINVERSE;
+ break;
+ }
+
+ /* Allocate registers for the array of values from the sub-query, the
+ ** samve values in record form, and the rowid used to insert said record
+ ** into the ephemeral table. */
+ regNew = pParse->nMem+1;
+ pParse->nMem += nInput;
+ regRecord = ++pParse->nMem;
+ s.regRowid = ++pParse->nMem;
+
+ /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
+ ** clause, allocate registers to store the results of evaluating each
+ ** <expr>. */
+ if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
+ regStart = ++pParse->nMem;
+ }
+ if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
+ regEnd = ++pParse->nMem;
+ }
+
+ /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
+ ** registers to store copies of the ORDER BY expressions (peer values)
+ ** for the main loop, and for each cursor (start, current and end). */
+ if( pMWin->eFrmType!=TK_ROWS ){
+ int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
+ regNewPeer = regNew + pMWin->nBufferCol;
+ if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
+ regPeer = pParse->nMem+1; pParse->nMem += nPeer;
+ s.start.reg = pParse->nMem+1; pParse->nMem += nPeer;
+ s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
+ s.end.reg = pParse->nMem+1; pParse->nMem += nPeer;
+ }
+
+ /* Load the column values for the row returned by the sub-select
+ ** into an array of registers starting at regNew. Assemble them into
+ ** a record in register regRecord. */
+ for(iInput=0; iInput<nInput; iInput++){
+ sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
+
+ /* An input row has just been read into an array of registers starting
+ ** at regNew. If the window has a PARTITION clause, this block generates
+ ** VM code to check if the input row is the start of a new partition.
+ ** If so, it does an OP_Gosub to an address to be filled in later. The
+ ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
+ if( pMWin->pPartition ){
+ int addr;
+ ExprList *pPart = pMWin->pPartition;
+ int nPart = pPart->nExpr;
+ int regNewPart = regNew + pMWin->nBufferCol;
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
+
+ regFlushPart = ++pParse->nMem;
+ addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
+ sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
+ VdbeCoverageEqNe(v);
+ addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
+ VdbeComment((v, "call flush_partition"));
+ sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
+ }
+
+ /* Insert the new row into the ephemeral table */
+ sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid);
+ addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid);
+ VdbeCoverageNeverNull(v);
+
+ /* This block is run for the first row of each partition */
+ s.regArg = windowInitAccum(pParse, pMWin);
+
+ if( regStart ){
+ sqlite3ExprCode(pParse, pMWin->pStart, regStart);
+ windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
+ }
+ if( regEnd ){
+ sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
+ windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
+ }
+
+ if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
+ int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
+ int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
+ VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
+ VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */
+ windowAggFinal(&s, 0);
+ sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
+ VdbeCoverageNeverTaken(v);
+ windowReturnOneRow(&s);
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
+ sqlite3VdbeJumpHere(v, addrGe);
+ }
+ if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
+ assert( pMWin->eEnd==TK_FOLLOWING );
+ sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
+ }
+
+ if( pMWin->eStart!=TK_UNBOUNDED ){
+ sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
+ VdbeCoverageNeverTaken(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
+ VdbeCoverageNeverTaken(v);
+ sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
+ VdbeCoverageNeverTaken(v);
+ if( regPeer && pOrderBy ){
+ sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
+ sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
+ sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
+ sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
+ }
+
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
+
+ sqlite3VdbeJumpHere(v, addrNe);
+
+ /* Beginning of the block executed for the second and subsequent rows. */
+ if( regPeer ){
+ windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
+ }
+ if( pMWin->eStart==TK_FOLLOWING ){
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ if( pMWin->eEnd!=TK_UNBOUNDED ){
+ if( pMWin->eFrmType==TK_RANGE ){
+ int lbl = sqlite3VdbeMakeLabel(pParse);
+ int addrNext = sqlite3VdbeCurrentAddr(v);
+ windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
+ sqlite3VdbeResolveLabel(v, lbl);
+ }else{
+ windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ }
+ }
+ }else
+ if( pMWin->eEnd==TK_PRECEDING ){
+ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
+ windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
+ if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ }else{
+ int addr = 0;
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ if( pMWin->eEnd!=TK_UNBOUNDED ){
+ if( pMWin->eFrmType==TK_RANGE ){
+ int lbl = 0;
+ addr = sqlite3VdbeCurrentAddr(v);
+ if( regEnd ){
+ lbl = sqlite3VdbeMakeLabel(pParse);
+ windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
+ }
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ if( regEnd ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
+ sqlite3VdbeResolveLabel(v, lbl);
+ }
+ }else{
+ if( regEnd ){
+ addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
+ VdbeCoverage(v);
+ }
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ if( regEnd ) sqlite3VdbeJumpHere(v, addr);
+ }
+ }
+ }
+
+ /* End of the main input loop */
+ sqlite3VdbeResolveLabel(v, lblWhereEnd);
+ sqlite3WhereEnd(pWInfo);
+
+ /* Fall through */
+ if( pMWin->pPartition ){
+ addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
+ sqlite3VdbeJumpHere(v, addrGosubFlush);
+ }
+
+ s.regRowid = 0;
+ addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
+ VdbeCoverage(v);
+ if( pMWin->eEnd==TK_PRECEDING ){
+ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
+ windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
+ if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ }else if( pMWin->eStart==TK_FOLLOWING ){
+ int addrStart;
+ int addrBreak1;
+ int addrBreak2;
+ int addrBreak3;
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ if( pMWin->eFrmType==TK_RANGE ){
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
+ addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
+ }else
+ if( pMWin->eEnd==TK_UNBOUNDED ){
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
+ addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
+ }else{
+ assert( pMWin->eEnd==TK_FOLLOWING );
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
+ addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
+ sqlite3VdbeJumpHere(v, addrBreak2);
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
+ sqlite3VdbeJumpHere(v, addrBreak1);
+ sqlite3VdbeJumpHere(v, addrBreak3);
+ }else{
+ int addrBreak;
+ int addrStart;
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
+ sqlite3VdbeJumpHere(v, addrBreak);
+ }
+ sqlite3VdbeJumpHere(v, addrEmpty);
+
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
+ if( pMWin->pPartition ){
+ if( pMWin->regStartRowid ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
+ }
+ sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
+ }
+}
+
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/************** End of window.c **********************************************/
+/************** Begin file parse.c *******************************************/
+/* This file is automatically generated by Lemon from input grammar
+** source file "parse.y". */
+/*
+** 2001-09-15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains SQLite's SQL parser.
+**
+** The canonical source code to this file ("parse.y") is a Lemon grammar
+** file that specifies the input grammar and actions to take while parsing.
+** That input file is processed by Lemon to generate a C-language
+** implementation of a parser for the given grammer. You might be reading
+** this comment as part of the translated C-code. Edits should be made
+** to the original parse.y sources.
+*/
+
+/* #include "sqliteInt.h" */
+
+/*
+** Disable all error recovery processing in the parser push-down
+** automaton.
+*/
+#define YYNOERRORRECOVERY 1
+
+/*
+** Make yytestcase() the same as testcase()
+*/
+#define yytestcase(X) testcase(X)
+
+/*
+** Indicate that sqlite3ParserFree() will never be called with a null
+** pointer.
+*/
+#define YYPARSEFREENEVERNULL 1
+
+/*
+** In the amalgamation, the parse.c file generated by lemon and the
+** tokenize.c file are concatenated. In that case, sqlite3RunParser()
+** has access to the the size of the yyParser object and so the parser
+** engine can be allocated from stack. In that case, only the
+** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
+** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
+** omitted.
+*/
+#ifdef SQLITE_AMALGAMATION
+# define sqlite3Parser_ENGINEALWAYSONSTACK 1
+#endif
+
+/*
+** Alternative datatype for the argument to the malloc() routine passed
+** into sqlite3ParserAlloc(). The default is size_t.
+*/
+#define YYMALLOCARGTYPE u64
+
+/*
+** An instance of the following structure describes the event of a
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
+**
+** UPDATE ON (a,b,c)
+**
+** Then the "b" IdList records the list "a,b,c".
+*/
+struct TrigEvent { int a; IdList * b; };
+
+struct FrameBound { int eType; Expr *pExpr; };
+
+/*
+** Disable lookaside memory allocation for objects that might be
+** shared across database connections.
+*/
+static void disableLookaside(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ pParse->disableLookaside++;
+ DisableLookaside;
+}
+
+#if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \
+ && defined(SQLITE_UDL_CAPABLE_PARSER)
+/*
+** Issue an error message if an ORDER BY or LIMIT clause occurs on an
+** UPDATE or DELETE statement.
+*/
+static void updateDeleteLimitError(
+ Parse *pParse,
+ ExprList *pOrderBy,
+ Expr *pLimit
+){
+ if( pOrderBy ){
+ sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\"");
+ }else{
+ sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\"");
+ }
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ sqlite3ExprDelete(pParse->db, pLimit);
+}
+#endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */
+
+
+ /*
+ ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
+ ** all elements in the list. And make sure list length does not exceed
+ ** SQLITE_LIMIT_COMPOUND_SELECT.
+ */
+ static void parserDoubleLinkSelect(Parse *pParse, Select *p){
+ assert( p!=0 );
+ if( p->pPrior ){
+ Select *pNext = 0, *pLoop = p;
+ int mxSelect, cnt = 1;
+ while(1){
+ pLoop->pNext = pNext;
+ pLoop->selFlags |= SF_Compound;
+ pNext = pLoop;
+ pLoop = pLoop->pPrior;
+ if( pLoop==0 ) break;
+ cnt++;
+ if( pLoop->pOrderBy || pLoop->pLimit ){
+ sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
+ pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT",
+ sqlite3SelectOpName(pNext->op));
+ break;
+ }
+ }
+ if( (p->selFlags & SF_MultiValue)==0 &&
+ (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
+ cnt>mxSelect
+ ){
+ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+ }
+ }
+ }
+
+ /* Attach a With object describing the WITH clause to a Select
+ ** object describing the query for which the WITH clause is a prefix.
+ */
+ static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){
+ if( pSelect ){
+ pSelect->pWith = pWith;
+ parserDoubleLinkSelect(pParse, pSelect);
+ }else{
+ sqlite3WithDelete(pParse->db, pWith);
+ }
+ return pSelect;
+ }
+
+
+ /* Construct a new Expr object from a single token */
+ static Expr *tokenExpr(Parse *pParse, int op, Token t){
+ Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
+ if( p ){
+ /* memset(p, 0, sizeof(Expr)); */
+ p->op = (u8)op;
+ p->affExpr = 0;
+ p->flags = EP_Leaf;
+ ExprClearVVAProperties(p);
+ /* p->iAgg = -1; // Not required */
+ p->pLeft = p->pRight = 0;
+ p->pAggInfo = 0;
+ memset(&p->x, 0, sizeof(p->x));
+ memset(&p->y, 0, sizeof(p->y));
+ p->op2 = 0;
+ p->iTable = 0;
+ p->iColumn = 0;
+ p->u.zToken = (char*)&p[1];
+ memcpy(p->u.zToken, t.z, t.n);
+ p->u.zToken[t.n] = 0;
+ p->w.iOfst = (int)(t.z - pParse->zTail);
+ if( sqlite3Isquote(p->u.zToken[0]) ){
+ sqlite3DequoteExpr(p);
+ }
+#if SQLITE_MAX_EXPR_DEPTH>0
+ p->nHeight = 1;
+#endif
+ if( IN_RENAME_OBJECT ){
+ return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t);
+ }
+ }
+ return p;
+ }
+
+
+ /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
+ ** unary TK_ISNULL or TK_NOTNULL expression. */
+ static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
+ sqlite3 *db = pParse->db;
+ if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){
+ pA->op = (u8)op;
+ sqlite3ExprDelete(db, pA->pRight);
+ pA->pRight = 0;
+ }
+ }
+
+ /* Add a single new term to an ExprList that is used to store a
+ ** list of identifiers. Report an error if the ID list contains
+ ** a COLLATE clause or an ASC or DESC keyword, except ignore the
+ ** error while parsing a legacy schema.
+ */
+ static ExprList *parserAddExprIdListTerm(
+ Parse *pParse,
+ ExprList *pPrior,
+ Token *pIdToken,
+ int hasCollate,
+ int sortOrder
+ ){
+ ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
+ if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
+ && pParse->db->init.busy==0
+ ){
+ sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
+ pIdToken->n, pIdToken->z);
+ }
+ sqlite3ExprListSetName(pParse, p, pIdToken, 1);
+ return p;
+ }
+
+#if TK_SPAN>255
+# error too many tokens in the grammar
+#endif
+/**************** End of %include directives **********************************/
+/* These constants specify the various numeric values for terminal symbols.
+***************** Begin token definitions *************************************/
+#ifndef TK_SEMI
+#define TK_SEMI 1
+#define TK_EXPLAIN 2
+#define TK_QUERY 3
+#define TK_PLAN 4
+#define TK_BEGIN 5
+#define TK_TRANSACTION 6
+#define TK_DEFERRED 7
+#define TK_IMMEDIATE 8
+#define TK_EXCLUSIVE 9
+#define TK_COMMIT 10
+#define TK_END 11
+#define TK_ROLLBACK 12
+#define TK_SAVEPOINT 13
+#define TK_RELEASE 14
+#define TK_TO 15
+#define TK_TABLE 16
+#define TK_CREATE 17
+#define TK_IF 18
+#define TK_NOT 19
+#define TK_EXISTS 20
+#define TK_TEMP 21
+#define TK_LP 22
+#define TK_RP 23
+#define TK_AS 24
+#define TK_COMMA 25
+#define TK_WITHOUT 26
+#define TK_ABORT 27
+#define TK_ACTION 28
+#define TK_AFTER 29
+#define TK_ANALYZE 30
+#define TK_ASC 31
+#define TK_ATTACH 32
+#define TK_BEFORE 33
+#define TK_BY 34
+#define TK_CASCADE 35
+#define TK_CAST 36
+#define TK_CONFLICT 37
+#define TK_DATABASE 38
+#define TK_DESC 39
+#define TK_DETACH 40
+#define TK_EACH 41
+#define TK_FAIL 42
+#define TK_OR 43
+#define TK_AND 44
+#define TK_IS 45
+#define TK_MATCH 46
+#define TK_LIKE_KW 47
+#define TK_BETWEEN 48
+#define TK_IN 49
+#define TK_ISNULL 50
+#define TK_NOTNULL 51
+#define TK_NE 52
+#define TK_EQ 53
+#define TK_GT 54
+#define TK_LE 55
+#define TK_LT 56
+#define TK_GE 57
+#define TK_ESCAPE 58
+#define TK_ID 59
+#define TK_COLUMNKW 60
+#define TK_DO 61
+#define TK_FOR 62
+#define TK_IGNORE 63
+#define TK_INITIALLY 64
+#define TK_INSTEAD 65
+#define TK_NO 66
+#define TK_KEY 67
+#define TK_OF 68
+#define TK_OFFSET 69
+#define TK_PRAGMA 70
+#define TK_RAISE 71
+#define TK_RECURSIVE 72
+#define TK_REPLACE 73
+#define TK_RESTRICT 74
+#define TK_ROW 75
+#define TK_ROWS 76
+#define TK_TRIGGER 77
+#define TK_VACUUM 78
+#define TK_VIEW 79
+#define TK_VIRTUAL 80
+#define TK_WITH 81
+#define TK_NULLS 82
+#define TK_FIRST 83
+#define TK_LAST 84
+#define TK_CURRENT 85
+#define TK_FOLLOWING 86
+#define TK_PARTITION 87
+#define TK_PRECEDING 88
+#define TK_RANGE 89
+#define TK_UNBOUNDED 90
+#define TK_EXCLUDE 91
+#define TK_GROUPS 92
+#define TK_OTHERS 93
+#define TK_TIES 94
+#define TK_GENERATED 95
+#define TK_ALWAYS 96
+#define TK_MATERIALIZED 97
+#define TK_REINDEX 98
+#define TK_RENAME 99
+#define TK_CTIME_KW 100
+#define TK_ANY 101
+#define TK_BITAND 102
+#define TK_BITOR 103
+#define TK_LSHIFT 104
+#define TK_RSHIFT 105
+#define TK_PLUS 106
+#define TK_MINUS 107
+#define TK_STAR 108
+#define TK_SLASH 109
+#define TK_REM 110
+#define TK_CONCAT 111
+#define TK_PTR 112
+#define TK_COLLATE 113
+#define TK_BITNOT 114
+#define TK_ON 115
+#define TK_INDEXED 116
+#define TK_STRING 117
+#define TK_JOIN_KW 118
+#define TK_CONSTRAINT 119
+#define TK_DEFAULT 120
+#define TK_NULL 121
+#define TK_PRIMARY 122
+#define TK_UNIQUE 123
+#define TK_CHECK 124
+#define TK_REFERENCES 125
+#define TK_AUTOINCR 126
+#define TK_INSERT 127
+#define TK_DELETE 128
+#define TK_UPDATE 129
+#define TK_SET 130
+#define TK_DEFERRABLE 131
+#define TK_FOREIGN 132
+#define TK_DROP 133
+#define TK_UNION 134
+#define TK_ALL 135
+#define TK_EXCEPT 136
+#define TK_INTERSECT 137
+#define TK_SELECT 138
+#define TK_VALUES 139
+#define TK_DISTINCT 140
+#define TK_DOT 141
+#define TK_FROM 142
+#define TK_JOIN 143
+#define TK_USING 144
+#define TK_ORDER 145
+#define TK_GROUP 146
+#define TK_HAVING 147
+#define TK_LIMIT 148
+#define TK_WHERE 149
+#define TK_RETURNING 150
+#define TK_INTO 151
+#define TK_NOTHING 152
+#define TK_FLOAT 153
+#define TK_BLOB 154
+#define TK_INTEGER 155
+#define TK_VARIABLE 156
+#define TK_CASE 157
+#define TK_WHEN 158
+#define TK_THEN 159
+#define TK_ELSE 160
+#define TK_INDEX 161
+#define TK_ALTER 162
+#define TK_ADD 163
+#define TK_WINDOW 164
+#define TK_OVER 165
+#define TK_FILTER 166
+#define TK_COLUMN 167
+#define TK_AGG_FUNCTION 168
+#define TK_AGG_COLUMN 169
+#define TK_TRUEFALSE 170
+#define TK_ISNOT 171
+#define TK_FUNCTION 172
+#define TK_UMINUS 173
+#define TK_UPLUS 174
+#define TK_TRUTH 175
+#define TK_REGISTER 176
+#define TK_VECTOR 177
+#define TK_SELECT_COLUMN 178
+#define TK_IF_NULL_ROW 179
+#define TK_ASTERISK 180
+#define TK_SPAN 181
+#define TK_ERROR 182
+#define TK_SPACE 183
+#define TK_ILLEGAL 184
+#endif
+/**************** End token definitions ***************************************/
+
+/* The next sections is a series of control #defines.
+** various aspects of the generated parser.
+** YYCODETYPE is the data type used to store the integer codes
+** that represent terminal and non-terminal symbols.
+** "unsigned char" is used if there are fewer than
+** 256 symbols. Larger types otherwise.
+** YYNOCODE is a number of type YYCODETYPE that is not used for
+** any terminal or nonterminal symbol.
+** YYFALLBACK If defined, this indicates that one or more tokens
+** (also known as: "terminal symbols") have fall-back
+** values which should be used if the original symbol
+** would not parse. This permits keywords to sometimes
+** be used as identifiers, for example.
+** YYACTIONTYPE is the data type used for "action codes" - numbers
+** that indicate what to do in response to the next
+** token.
+** sqlite3ParserTOKENTYPE is the data type used for minor type for terminal
+** symbols. Background: A "minor type" is a semantic
+** value associated with a terminal or non-terminal
+** symbols. For example, for an "ID" terminal symbol,
+** the minor type might be the name of the identifier.
+** Each non-terminal can have a different minor type.
+** Terminal symbols all have the same minor type, though.
+** This macros defines the minor type for terminal
+** symbols.
+** YYMINORTYPE is the data type used for all minor types.
+** This is typically a union of many types, one of
+** which is sqlite3ParserTOKENTYPE. The entry in the union
+** for terminal symbols is called "yy0".
+** YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
+** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
+** sqlite3ParserARG_PARAM Code to pass %extra_argument as a subroutine parameter
+** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
+** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
+** sqlite3ParserCTX_* As sqlite3ParserARG_ except for %extra_context
+** YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+** YYNSTATE the combined number of states.
+** YYNRULE the number of rules in the grammar
+** YYNTOKEN Number of terminal symbols
+** YY_MAX_SHIFT Maximum value for shift actions
+** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
+** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
+** YY_ERROR_ACTION The yy_action[] code for syntax error
+** YY_ACCEPT_ACTION The yy_action[] code for accept
+** YY_NO_ACTION The yy_action[] code for no-op
+** YY_MIN_REDUCE Minimum value for reduce actions
+** YY_MAX_REDUCE Maximum value for reduce actions
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/************* Begin control #defines *****************************************/
+#define YYCODETYPE unsigned short int
+#define YYNOCODE 319
+#define YYACTIONTYPE unsigned short int
+#define YYWILDCARD 101
+#define sqlite3ParserTOKENTYPE Token
+typedef union {
+ int yyinit;
+ sqlite3ParserTOKENTYPE yy0;
+ TriggerStep* yy33;
+ Window* yy41;
+ Select* yy47;
+ SrcList* yy131;
+ struct TrigEvent yy180;
+ struct {int value; int mask;} yy231;
+ IdList* yy254;
+ u32 yy285;
+ ExprList* yy322;
+ Cte* yy385;
+ int yy394;
+ Upsert* yy444;
+ u8 yy516;
+ With* yy521;
+ const char* yy522;
+ Expr* yy528;
+ OnOrUsing yy561;
+ struct FrameBound yy595;
+} YYMINORTYPE;
+#ifndef YYSTACKDEPTH
+#define YYSTACKDEPTH 100
+#endif
+#define sqlite3ParserARG_SDECL
+#define sqlite3ParserARG_PDECL
+#define sqlite3ParserARG_PARAM
+#define sqlite3ParserARG_FETCH
+#define sqlite3ParserARG_STORE
+#define sqlite3ParserCTX_SDECL Parse *pParse;
+#define sqlite3ParserCTX_PDECL ,Parse *pParse
+#define sqlite3ParserCTX_PARAM ,pParse
+#define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse;
+#define sqlite3ParserCTX_STORE yypParser->pParse=pParse;
+#define YYFALLBACK 1
+#define YYNSTATE 576
+#define YYNRULE 405
+#define YYNRULE_WITH_ACTION 342
+#define YYNTOKEN 185
+#define YY_MAX_SHIFT 575
+#define YY_MIN_SHIFTREDUCE 835
+#define YY_MAX_SHIFTREDUCE 1239
+#define YY_ERROR_ACTION 1240
+#define YY_ACCEPT_ACTION 1241
+#define YY_NO_ACTION 1242
+#define YY_MIN_REDUCE 1243
+#define YY_MAX_REDUCE 1647
+/************* End control #defines *******************************************/
+#define YY_NLOOKAHEAD ((int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])))
+
+/* Define the yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef yytestcase
+# define yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
+** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE.
+**
+** N == YY_ERROR_ACTION A syntax error has occurred.
+**
+** N == YY_ACCEPT_ACTION The parser accepts its input.
+**
+** N == YY_NO_ACTION No such action. Denotes unused
+** slots in the yy_action[] table.
+**
+** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE
+** and YY_MAX_REDUCE
+**
+** The action table is constructed as a single large table named yy_action[].
+** Given state S and lookahead X, the action is computed as either:
+**
+** (A) N = yy_action[ yy_shift_ofst[S] + X ]
+** (B) N = yy_default[S]
+**
+** The (A) formula is preferred. The B formula is used instead if
+** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X.
+**
+** The formulas above are for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the yy_reduce_ofst[] array is used in place of
+** the yy_shift_ofst[] array.
+**
+** The following are the tables generated in this section:
+**
+** yy_action[] A single table containing all actions.
+** yy_lookahead[] A table containing the lookahead for each entry in
+** yy_action. Used to detect hash collisions.
+** yy_shift_ofst[] For each state, the offset into yy_action for
+** shifting terminals.
+** yy_reduce_ofst[] For each state, the offset into yy_action for
+** shifting non-terminals after a reduce.
+** yy_default[] Default action for each state.
+**
+*********** Begin parsing tables **********************************************/
+#define YY_ACTTAB_COUNT (2098)
+static const YYACTIONTYPE yy_action[] = {
+ /* 0 */ 568, 208, 568, 118, 115, 229, 568, 118, 115, 229,
+ /* 10 */ 568, 1314, 377, 1293, 408, 562, 562, 562, 568, 409,
+ /* 20 */ 378, 1314, 1276, 41, 41, 41, 41, 208, 1526, 71,
+ /* 30 */ 71, 971, 419, 41, 41, 491, 303, 279, 303, 972,
+ /* 40 */ 397, 71, 71, 125, 126, 80, 1217, 1217, 1050, 1053,
+ /* 50 */ 1040, 1040, 123, 123, 124, 124, 124, 124, 476, 409,
+ /* 60 */ 1241, 1, 1, 575, 2, 1245, 550, 118, 115, 229,
+ /* 70 */ 317, 480, 146, 480, 524, 118, 115, 229, 529, 1327,
+ /* 80 */ 417, 523, 142, 125, 126, 80, 1217, 1217, 1050, 1053,
+ /* 90 */ 1040, 1040, 123, 123, 124, 124, 124, 124, 118, 115,
+ /* 100 */ 229, 327, 122, 122, 122, 122, 121, 121, 120, 120,
+ /* 110 */ 120, 119, 116, 444, 284, 284, 284, 284, 442, 442,
+ /* 120 */ 442, 1567, 376, 1569, 1192, 375, 1163, 565, 1163, 565,
+ /* 130 */ 409, 1567, 537, 259, 226, 444, 101, 145, 449, 316,
+ /* 140 */ 559, 240, 122, 122, 122, 122, 121, 121, 120, 120,
+ /* 150 */ 120, 119, 116, 444, 125, 126, 80, 1217, 1217, 1050,
+ /* 160 */ 1053, 1040, 1040, 123, 123, 124, 124, 124, 124, 142,
+ /* 170 */ 294, 1192, 339, 448, 120, 120, 120, 119, 116, 444,
+ /* 180 */ 127, 1192, 1193, 1194, 148, 441, 440, 568, 119, 116,
+ /* 190 */ 444, 124, 124, 124, 124, 117, 122, 122, 122, 122,
+ /* 200 */ 121, 121, 120, 120, 120, 119, 116, 444, 454, 113,
+ /* 210 */ 13, 13, 546, 122, 122, 122, 122, 121, 121, 120,
+ /* 220 */ 120, 120, 119, 116, 444, 422, 316, 559, 1192, 1193,
+ /* 230 */ 1194, 149, 1224, 409, 1224, 124, 124, 124, 124, 122,
+ /* 240 */ 122, 122, 122, 121, 121, 120, 120, 120, 119, 116,
+ /* 250 */ 444, 465, 342, 1037, 1037, 1051, 1054, 125, 126, 80,
+ /* 260 */ 1217, 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124,
+ /* 270 */ 124, 124, 1279, 522, 222, 1192, 568, 409, 224, 514,
+ /* 280 */ 175, 82, 83, 122, 122, 122, 122, 121, 121, 120,
+ /* 290 */ 120, 120, 119, 116, 444, 1007, 16, 16, 1192, 133,
+ /* 300 */ 133, 125, 126, 80, 1217, 1217, 1050, 1053, 1040, 1040,
+ /* 310 */ 123, 123, 124, 124, 124, 124, 122, 122, 122, 122,
+ /* 320 */ 121, 121, 120, 120, 120, 119, 116, 444, 1041, 546,
+ /* 330 */ 1192, 373, 1192, 1193, 1194, 252, 1434, 399, 504, 501,
+ /* 340 */ 500, 111, 560, 566, 4, 926, 926, 433, 499, 340,
+ /* 350 */ 460, 328, 360, 394, 1237, 1192, 1193, 1194, 563, 568,
+ /* 360 */ 122, 122, 122, 122, 121, 121, 120, 120, 120, 119,
+ /* 370 */ 116, 444, 284, 284, 369, 1580, 1607, 441, 440, 154,
+ /* 380 */ 409, 445, 71, 71, 1286, 565, 1221, 1192, 1193, 1194,
+ /* 390 */ 85, 1223, 271, 557, 543, 515, 1561, 568, 98, 1222,
+ /* 400 */ 6, 1278, 472, 142, 125, 126, 80, 1217, 1217, 1050,
+ /* 410 */ 1053, 1040, 1040, 123, 123, 124, 124, 124, 124, 550,
+ /* 420 */ 13, 13, 1027, 507, 1224, 1192, 1224, 549, 109, 109,
+ /* 430 */ 222, 568, 1238, 175, 568, 427, 110, 197, 445, 570,
+ /* 440 */ 569, 430, 1552, 1017, 325, 551, 1192, 270, 287, 368,
+ /* 450 */ 510, 363, 509, 257, 71, 71, 543, 71, 71, 359,
+ /* 460 */ 316, 559, 1613, 122, 122, 122, 122, 121, 121, 120,
+ /* 470 */ 120, 120, 119, 116, 444, 1017, 1017, 1019, 1020, 27,
+ /* 480 */ 284, 284, 1192, 1193, 1194, 1158, 568, 1612, 409, 901,
+ /* 490 */ 190, 550, 356, 565, 550, 937, 533, 517, 1158, 516,
+ /* 500 */ 413, 1158, 552, 1192, 1193, 1194, 568, 544, 1554, 51,
+ /* 510 */ 51, 214, 125, 126, 80, 1217, 1217, 1050, 1053, 1040,
+ /* 520 */ 1040, 123, 123, 124, 124, 124, 124, 1192, 474, 135,
+ /* 530 */ 135, 409, 284, 284, 1490, 505, 121, 121, 120, 120,
+ /* 540 */ 120, 119, 116, 444, 1007, 565, 518, 217, 541, 1561,
+ /* 550 */ 316, 559, 142, 6, 532, 125, 126, 80, 1217, 1217,
+ /* 560 */ 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124, 124,
+ /* 570 */ 1555, 122, 122, 122, 122, 121, 121, 120, 120, 120,
+ /* 580 */ 119, 116, 444, 485, 1192, 1193, 1194, 482, 281, 1267,
+ /* 590 */ 957, 252, 1192, 373, 504, 501, 500, 1192, 340, 571,
+ /* 600 */ 1192, 571, 409, 292, 499, 957, 876, 191, 480, 316,
+ /* 610 */ 559, 384, 290, 380, 122, 122, 122, 122, 121, 121,
+ /* 620 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1217,
+ /* 630 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 640 */ 124, 409, 394, 1136, 1192, 869, 100, 284, 284, 1192,
+ /* 650 */ 1193, 1194, 373, 1093, 1192, 1193, 1194, 1192, 1193, 1194,
+ /* 660 */ 565, 455, 32, 373, 233, 125, 126, 80, 1217, 1217,
+ /* 670 */ 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124, 124,
+ /* 680 */ 1433, 959, 568, 228, 958, 122, 122, 122, 122, 121,
+ /* 690 */ 121, 120, 120, 120, 119, 116, 444, 1158, 228, 1192,
+ /* 700 */ 157, 1192, 1193, 1194, 1553, 13, 13, 301, 957, 1232,
+ /* 710 */ 1158, 153, 409, 1158, 373, 1583, 1176, 5, 369, 1580,
+ /* 720 */ 429, 1238, 3, 957, 122, 122, 122, 122, 121, 121,
+ /* 730 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1217,
+ /* 740 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 750 */ 124, 409, 208, 567, 1192, 1028, 1192, 1193, 1194, 1192,
+ /* 760 */ 388, 852, 155, 1552, 286, 402, 1098, 1098, 488, 568,
+ /* 770 */ 465, 342, 1319, 1319, 1552, 125, 126, 80, 1217, 1217,
+ /* 780 */ 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124, 124,
+ /* 790 */ 129, 568, 13, 13, 374, 122, 122, 122, 122, 121,
+ /* 800 */ 121, 120, 120, 120, 119, 116, 444, 302, 568, 453,
+ /* 810 */ 528, 1192, 1193, 1194, 13, 13, 1192, 1193, 1194, 1297,
+ /* 820 */ 463, 1267, 409, 1317, 1317, 1552, 1012, 453, 452, 200,
+ /* 830 */ 299, 71, 71, 1265, 122, 122, 122, 122, 121, 121,
+ /* 840 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1217,
+ /* 850 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 860 */ 124, 409, 227, 1073, 1158, 284, 284, 419, 312, 278,
+ /* 870 */ 278, 285, 285, 1419, 406, 405, 382, 1158, 565, 568,
+ /* 880 */ 1158, 1196, 565, 1600, 565, 125, 126, 80, 1217, 1217,
+ /* 890 */ 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124, 124,
+ /* 900 */ 453, 1482, 13, 13, 1536, 122, 122, 122, 122, 121,
+ /* 910 */ 121, 120, 120, 120, 119, 116, 444, 201, 568, 354,
+ /* 920 */ 1586, 575, 2, 1245, 840, 841, 842, 1562, 317, 1212,
+ /* 930 */ 146, 6, 409, 255, 254, 253, 206, 1327, 9, 1196,
+ /* 940 */ 262, 71, 71, 424, 122, 122, 122, 122, 121, 121,
+ /* 950 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1217,
+ /* 960 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 970 */ 124, 568, 284, 284, 568, 1213, 409, 574, 313, 1245,
+ /* 980 */ 349, 1296, 352, 419, 317, 565, 146, 491, 525, 1643,
+ /* 990 */ 395, 371, 491, 1327, 70, 70, 1295, 71, 71, 240,
+ /* 1000 */ 1325, 104, 80, 1217, 1217, 1050, 1053, 1040, 1040, 123,
+ /* 1010 */ 123, 124, 124, 124, 124, 122, 122, 122, 122, 121,
+ /* 1020 */ 121, 120, 120, 120, 119, 116, 444, 1114, 284, 284,
+ /* 1030 */ 428, 448, 1525, 1213, 439, 284, 284, 1489, 1352, 311,
+ /* 1040 */ 474, 565, 1115, 971, 491, 491, 217, 1263, 565, 1538,
+ /* 1050 */ 568, 972, 207, 568, 1027, 240, 383, 1116, 519, 122,
+ /* 1060 */ 122, 122, 122, 121, 121, 120, 120, 120, 119, 116,
+ /* 1070 */ 444, 1018, 107, 71, 71, 1017, 13, 13, 912, 568,
+ /* 1080 */ 1495, 568, 284, 284, 97, 526, 491, 448, 913, 1326,
+ /* 1090 */ 1322, 545, 409, 284, 284, 565, 151, 209, 1495, 1497,
+ /* 1100 */ 262, 450, 55, 55, 56, 56, 565, 1017, 1017, 1019,
+ /* 1110 */ 443, 332, 409, 527, 12, 295, 125, 126, 80, 1217,
+ /* 1120 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 1130 */ 124, 347, 409, 864, 1534, 1213, 125, 126, 80, 1217,
+ /* 1140 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 1150 */ 124, 1137, 1641, 474, 1641, 371, 125, 114, 80, 1217,
+ /* 1160 */ 1217, 1050, 1053, 1040, 1040, 123, 123, 124, 124, 124,
+ /* 1170 */ 124, 1495, 329, 474, 331, 122, 122, 122, 122, 121,
+ /* 1180 */ 121, 120, 120, 120, 119, 116, 444, 203, 1419, 568,
+ /* 1190 */ 1294, 864, 464, 1213, 436, 122, 122, 122, 122, 121,
+ /* 1200 */ 121, 120, 120, 120, 119, 116, 444, 553, 1137, 1642,
+ /* 1210 */ 539, 1642, 15, 15, 892, 122, 122, 122, 122, 121,
+ /* 1220 */ 121, 120, 120, 120, 119, 116, 444, 568, 298, 538,
+ /* 1230 */ 1135, 1419, 1559, 1560, 1331, 409, 6, 6, 1169, 1268,
+ /* 1240 */ 415, 320, 284, 284, 1419, 508, 565, 525, 300, 457,
+ /* 1250 */ 43, 43, 568, 893, 12, 565, 330, 478, 425, 407,
+ /* 1260 */ 126, 80, 1217, 1217, 1050, 1053, 1040, 1040, 123, 123,
+ /* 1270 */ 124, 124, 124, 124, 568, 57, 57, 288, 1192, 1419,
+ /* 1280 */ 496, 458, 392, 392, 391, 273, 389, 1135, 1558, 849,
+ /* 1290 */ 1169, 407, 6, 568, 321, 1158, 470, 44, 44, 1557,
+ /* 1300 */ 1114, 426, 234, 6, 323, 256, 540, 256, 1158, 431,
+ /* 1310 */ 568, 1158, 322, 17, 487, 1115, 58, 58, 122, 122,
+ /* 1320 */ 122, 122, 121, 121, 120, 120, 120, 119, 116, 444,
+ /* 1330 */ 1116, 216, 481, 59, 59, 1192, 1193, 1194, 111, 560,
+ /* 1340 */ 324, 4, 236, 456, 526, 568, 237, 456, 568, 437,
+ /* 1350 */ 168, 556, 420, 141, 479, 563, 568, 293, 568, 1095,
+ /* 1360 */ 568, 293, 568, 1095, 531, 568, 872, 8, 60, 60,
+ /* 1370 */ 235, 61, 61, 568, 414, 568, 414, 568, 445, 62,
+ /* 1380 */ 62, 45, 45, 46, 46, 47, 47, 199, 49, 49,
+ /* 1390 */ 557, 568, 359, 568, 100, 486, 50, 50, 63, 63,
+ /* 1400 */ 64, 64, 561, 415, 535, 410, 568, 1027, 568, 534,
+ /* 1410 */ 316, 559, 316, 559, 65, 65, 14, 14, 568, 1027,
+ /* 1420 */ 568, 512, 932, 872, 1018, 109, 109, 931, 1017, 66,
+ /* 1430 */ 66, 131, 131, 110, 451, 445, 570, 569, 416, 177,
+ /* 1440 */ 1017, 132, 132, 67, 67, 568, 467, 568, 932, 471,
+ /* 1450 */ 1364, 283, 226, 931, 315, 1363, 407, 568, 459, 407,
+ /* 1460 */ 1017, 1017, 1019, 239, 407, 86, 213, 1350, 52, 52,
+ /* 1470 */ 68, 68, 1017, 1017, 1019, 1020, 27, 1585, 1180, 447,
+ /* 1480 */ 69, 69, 288, 97, 108, 1541, 106, 392, 392, 391,
+ /* 1490 */ 273, 389, 568, 879, 849, 883, 568, 111, 560, 466,
+ /* 1500 */ 4, 568, 152, 30, 38, 568, 1132, 234, 396, 323,
+ /* 1510 */ 111, 560, 527, 4, 563, 53, 53, 322, 568, 163,
+ /* 1520 */ 163, 568, 337, 468, 164, 164, 333, 563, 76, 76,
+ /* 1530 */ 568, 289, 1514, 568, 31, 1513, 568, 445, 338, 483,
+ /* 1540 */ 100, 54, 54, 344, 72, 72, 296, 236, 1080, 557,
+ /* 1550 */ 445, 879, 1360, 134, 134, 168, 73, 73, 141, 161,
+ /* 1560 */ 161, 1574, 557, 535, 568, 319, 568, 348, 536, 1009,
+ /* 1570 */ 473, 261, 261, 891, 890, 235, 535, 568, 1027, 568,
+ /* 1580 */ 475, 534, 261, 367, 109, 109, 521, 136, 136, 130,
+ /* 1590 */ 130, 1027, 110, 366, 445, 570, 569, 109, 109, 1017,
+ /* 1600 */ 162, 162, 156, 156, 568, 110, 1080, 445, 570, 569,
+ /* 1610 */ 410, 351, 1017, 568, 353, 316, 559, 568, 343, 568,
+ /* 1620 */ 100, 497, 357, 258, 100, 898, 899, 140, 140, 355,
+ /* 1630 */ 1310, 1017, 1017, 1019, 1020, 27, 139, 139, 362, 451,
+ /* 1640 */ 137, 137, 138, 138, 1017, 1017, 1019, 1020, 27, 1180,
+ /* 1650 */ 447, 568, 372, 288, 111, 560, 1021, 4, 392, 392,
+ /* 1660 */ 391, 273, 389, 568, 1141, 849, 568, 1076, 568, 258,
+ /* 1670 */ 492, 563, 568, 211, 75, 75, 555, 962, 234, 261,
+ /* 1680 */ 323, 111, 560, 929, 4, 113, 77, 77, 322, 74,
+ /* 1690 */ 74, 42, 42, 1373, 445, 48, 48, 1418, 563, 974,
+ /* 1700 */ 975, 1092, 1091, 1092, 1091, 862, 557, 150, 930, 1346,
+ /* 1710 */ 113, 1358, 554, 1424, 1021, 1275, 1266, 1254, 236, 1253,
+ /* 1720 */ 1255, 445, 1593, 1343, 308, 276, 168, 309, 11, 141,
+ /* 1730 */ 393, 310, 232, 557, 1405, 1027, 335, 291, 1400, 219,
+ /* 1740 */ 336, 109, 109, 936, 297, 1410, 235, 341, 477, 110,
+ /* 1750 */ 502, 445, 570, 569, 1393, 1409, 1017, 400, 1293, 365,
+ /* 1760 */ 223, 1486, 1027, 1485, 1355, 1356, 1354, 1353, 109, 109,
+ /* 1770 */ 204, 1596, 1232, 558, 265, 218, 110, 205, 445, 570,
+ /* 1780 */ 569, 410, 387, 1017, 1533, 179, 316, 559, 1017, 1017,
+ /* 1790 */ 1019, 1020, 27, 230, 1531, 1229, 79, 560, 85, 4,
+ /* 1800 */ 418, 215, 548, 81, 84, 188, 1406, 173, 181, 461,
+ /* 1810 */ 451, 35, 462, 563, 183, 1017, 1017, 1019, 1020, 27,
+ /* 1820 */ 184, 1491, 185, 186, 495, 242, 98, 398, 1412, 36,
+ /* 1830 */ 1411, 484, 91, 469, 401, 1414, 445, 192, 1480, 246,
+ /* 1840 */ 1502, 490, 346, 277, 248, 196, 493, 511, 557, 350,
+ /* 1850 */ 1256, 249, 250, 403, 1313, 1312, 111, 560, 432, 4,
+ /* 1860 */ 1311, 1304, 93, 1611, 883, 1610, 224, 404, 434, 520,
+ /* 1870 */ 263, 435, 1579, 563, 1283, 1282, 364, 1027, 306, 1281,
+ /* 1880 */ 264, 1609, 1565, 109, 109, 370, 1303, 307, 1564, 438,
+ /* 1890 */ 128, 110, 1378, 445, 570, 569, 445, 546, 1017, 10,
+ /* 1900 */ 1466, 105, 381, 1377, 34, 572, 99, 1336, 557, 314,
+ /* 1910 */ 1186, 530, 272, 274, 379, 210, 1335, 547, 385, 386,
+ /* 1920 */ 275, 573, 1251, 1246, 411, 412, 1518, 165, 178, 1519,
+ /* 1930 */ 1017, 1017, 1019, 1020, 27, 1517, 1516, 1027, 78, 147,
+ /* 1940 */ 166, 220, 221, 109, 109, 836, 304, 167, 446, 212,
+ /* 1950 */ 318, 110, 231, 445, 570, 569, 144, 1090, 1017, 1088,
+ /* 1960 */ 326, 180, 169, 1212, 182, 334, 238, 915, 241, 1104,
+ /* 1970 */ 187, 170, 171, 421, 87, 88, 423, 189, 89, 90,
+ /* 1980 */ 172, 1107, 243, 1103, 244, 158, 18, 245, 345, 247,
+ /* 1990 */ 1017, 1017, 1019, 1020, 27, 261, 1096, 193, 1226, 489,
+ /* 2000 */ 194, 37, 366, 851, 494, 251, 195, 506, 92, 19,
+ /* 2010 */ 498, 358, 20, 503, 881, 361, 94, 894, 305, 159,
+ /* 2020 */ 513, 39, 95, 1174, 160, 1056, 966, 1143, 96, 174,
+ /* 2030 */ 1142, 225, 280, 282, 198, 960, 113, 1164, 1160, 260,
+ /* 2040 */ 21, 22, 23, 1162, 1168, 1167, 1148, 24, 33, 25,
+ /* 2050 */ 202, 542, 26, 100, 1071, 102, 1057, 103, 7, 1055,
+ /* 2060 */ 1059, 1113, 1060, 1112, 266, 267, 28, 40, 390, 1022,
+ /* 2070 */ 863, 112, 29, 564, 1182, 1181, 268, 176, 143, 925,
+ /* 2080 */ 1242, 1242, 1242, 1242, 1242, 1242, 1242, 1242, 1242, 1242,
+ /* 2090 */ 1242, 1242, 1242, 1242, 269, 1602, 1242, 1601,
+};
+static const YYCODETYPE yy_lookahead[] = {
+ /* 0 */ 193, 193, 193, 274, 275, 276, 193, 274, 275, 276,
+ /* 10 */ 193, 223, 219, 225, 206, 210, 211, 212, 193, 19,
+ /* 20 */ 219, 233, 216, 216, 217, 216, 217, 193, 295, 216,
+ /* 30 */ 217, 31, 193, 216, 217, 193, 228, 213, 230, 39,
+ /* 40 */ 206, 216, 217, 43, 44, 45, 46, 47, 48, 49,
+ /* 50 */ 50, 51, 52, 53, 54, 55, 56, 57, 193, 19,
+ /* 60 */ 185, 186, 187, 188, 189, 190, 253, 274, 275, 276,
+ /* 70 */ 195, 193, 197, 193, 261, 274, 275, 276, 253, 204,
+ /* 80 */ 238, 204, 81, 43, 44, 45, 46, 47, 48, 49,
+ /* 90 */ 50, 51, 52, 53, 54, 55, 56, 57, 274, 275,
+ /* 100 */ 276, 262, 102, 103, 104, 105, 106, 107, 108, 109,
+ /* 110 */ 110, 111, 112, 113, 239, 240, 239, 240, 210, 211,
+ /* 120 */ 212, 314, 315, 314, 59, 316, 86, 252, 88, 252,
+ /* 130 */ 19, 314, 315, 256, 257, 113, 25, 72, 296, 138,
+ /* 140 */ 139, 266, 102, 103, 104, 105, 106, 107, 108, 109,
+ /* 150 */ 110, 111, 112, 113, 43, 44, 45, 46, 47, 48,
+ /* 160 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 81,
+ /* 170 */ 292, 59, 292, 298, 108, 109, 110, 111, 112, 113,
+ /* 180 */ 69, 116, 117, 118, 72, 106, 107, 193, 111, 112,
+ /* 190 */ 113, 54, 55, 56, 57, 58, 102, 103, 104, 105,
+ /* 200 */ 106, 107, 108, 109, 110, 111, 112, 113, 120, 25,
+ /* 210 */ 216, 217, 145, 102, 103, 104, 105, 106, 107, 108,
+ /* 220 */ 109, 110, 111, 112, 113, 231, 138, 139, 116, 117,
+ /* 230 */ 118, 164, 153, 19, 155, 54, 55, 56, 57, 102,
+ /* 240 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
+ /* 250 */ 113, 128, 129, 46, 47, 48, 49, 43, 44, 45,
+ /* 260 */ 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
+ /* 270 */ 56, 57, 216, 193, 25, 59, 193, 19, 165, 166,
+ /* 280 */ 193, 67, 24, 102, 103, 104, 105, 106, 107, 108,
+ /* 290 */ 109, 110, 111, 112, 113, 73, 216, 217, 59, 216,
+ /* 300 */ 217, 43, 44, 45, 46, 47, 48, 49, 50, 51,
+ /* 310 */ 52, 53, 54, 55, 56, 57, 102, 103, 104, 105,
+ /* 320 */ 106, 107, 108, 109, 110, 111, 112, 113, 121, 145,
+ /* 330 */ 59, 193, 116, 117, 118, 119, 273, 204, 122, 123,
+ /* 340 */ 124, 19, 20, 134, 22, 136, 137, 19, 132, 127,
+ /* 350 */ 128, 129, 24, 22, 23, 116, 117, 118, 36, 193,
+ /* 360 */ 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ /* 370 */ 112, 113, 239, 240, 311, 312, 215, 106, 107, 241,
+ /* 380 */ 19, 59, 216, 217, 223, 252, 115, 116, 117, 118,
+ /* 390 */ 151, 120, 26, 71, 193, 308, 309, 193, 149, 128,
+ /* 400 */ 313, 216, 269, 81, 43, 44, 45, 46, 47, 48,
+ /* 410 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 253,
+ /* 420 */ 216, 217, 100, 95, 153, 59, 155, 261, 106, 107,
+ /* 430 */ 25, 193, 101, 193, 193, 231, 114, 25, 116, 117,
+ /* 440 */ 118, 113, 304, 121, 193, 204, 59, 119, 120, 121,
+ /* 450 */ 122, 123, 124, 125, 216, 217, 193, 216, 217, 131,
+ /* 460 */ 138, 139, 230, 102, 103, 104, 105, 106, 107, 108,
+ /* 470 */ 109, 110, 111, 112, 113, 153, 154, 155, 156, 157,
+ /* 480 */ 239, 240, 116, 117, 118, 76, 193, 23, 19, 25,
+ /* 490 */ 22, 253, 23, 252, 253, 108, 87, 204, 89, 261,
+ /* 500 */ 198, 92, 261, 116, 117, 118, 193, 306, 307, 216,
+ /* 510 */ 217, 150, 43, 44, 45, 46, 47, 48, 49, 50,
+ /* 520 */ 51, 52, 53, 54, 55, 56, 57, 59, 193, 216,
+ /* 530 */ 217, 19, 239, 240, 283, 23, 106, 107, 108, 109,
+ /* 540 */ 110, 111, 112, 113, 73, 252, 253, 142, 308, 309,
+ /* 550 */ 138, 139, 81, 313, 145, 43, 44, 45, 46, 47,
+ /* 560 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 570 */ 307, 102, 103, 104, 105, 106, 107, 108, 109, 110,
+ /* 580 */ 111, 112, 113, 281, 116, 117, 118, 285, 23, 193,
+ /* 590 */ 25, 119, 59, 193, 122, 123, 124, 59, 127, 203,
+ /* 600 */ 59, 205, 19, 268, 132, 25, 23, 22, 193, 138,
+ /* 610 */ 139, 249, 204, 251, 102, 103, 104, 105, 106, 107,
+ /* 620 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 630 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 640 */ 57, 19, 22, 23, 59, 23, 25, 239, 240, 116,
+ /* 650 */ 117, 118, 193, 11, 116, 117, 118, 116, 117, 118,
+ /* 660 */ 252, 269, 22, 193, 15, 43, 44, 45, 46, 47,
+ /* 670 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 680 */ 273, 143, 193, 118, 143, 102, 103, 104, 105, 106,
+ /* 690 */ 107, 108, 109, 110, 111, 112, 113, 76, 118, 59,
+ /* 700 */ 241, 116, 117, 118, 304, 216, 217, 292, 143, 60,
+ /* 710 */ 89, 241, 19, 92, 193, 193, 23, 22, 311, 312,
+ /* 720 */ 231, 101, 22, 143, 102, 103, 104, 105, 106, 107,
+ /* 730 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 740 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 750 */ 57, 19, 193, 193, 59, 23, 116, 117, 118, 59,
+ /* 760 */ 201, 21, 241, 304, 22, 206, 127, 128, 129, 193,
+ /* 770 */ 128, 129, 235, 236, 304, 43, 44, 45, 46, 47,
+ /* 780 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 790 */ 22, 193, 216, 217, 193, 102, 103, 104, 105, 106,
+ /* 800 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 193,
+ /* 810 */ 193, 116, 117, 118, 216, 217, 116, 117, 118, 226,
+ /* 820 */ 80, 193, 19, 235, 236, 304, 23, 211, 212, 231,
+ /* 830 */ 204, 216, 217, 205, 102, 103, 104, 105, 106, 107,
+ /* 840 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 850 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 860 */ 57, 19, 193, 123, 76, 239, 240, 193, 253, 239,
+ /* 870 */ 240, 239, 240, 193, 106, 107, 193, 89, 252, 193,
+ /* 880 */ 92, 59, 252, 141, 252, 43, 44, 45, 46, 47,
+ /* 890 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 900 */ 284, 161, 216, 217, 193, 102, 103, 104, 105, 106,
+ /* 910 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 16,
+ /* 920 */ 187, 188, 189, 190, 7, 8, 9, 309, 195, 25,
+ /* 930 */ 197, 313, 19, 127, 128, 129, 262, 204, 22, 117,
+ /* 940 */ 24, 216, 217, 263, 102, 103, 104, 105, 106, 107,
+ /* 950 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 960 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 970 */ 57, 193, 239, 240, 193, 59, 19, 188, 253, 190,
+ /* 980 */ 77, 226, 79, 193, 195, 252, 197, 193, 19, 301,
+ /* 990 */ 302, 193, 193, 204, 216, 217, 226, 216, 217, 266,
+ /* 1000 */ 204, 159, 45, 46, 47, 48, 49, 50, 51, 52,
+ /* 1010 */ 53, 54, 55, 56, 57, 102, 103, 104, 105, 106,
+ /* 1020 */ 107, 108, 109, 110, 111, 112, 113, 12, 239, 240,
+ /* 1030 */ 232, 298, 238, 117, 253, 239, 240, 238, 259, 260,
+ /* 1040 */ 193, 252, 27, 31, 193, 193, 142, 204, 252, 193,
+ /* 1050 */ 193, 39, 262, 193, 100, 266, 278, 42, 204, 102,
+ /* 1060 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
+ /* 1070 */ 113, 117, 159, 216, 217, 121, 216, 217, 63, 193,
+ /* 1080 */ 193, 193, 239, 240, 115, 116, 193, 298, 73, 238,
+ /* 1090 */ 238, 231, 19, 239, 240, 252, 22, 24, 211, 212,
+ /* 1100 */ 24, 193, 216, 217, 216, 217, 252, 153, 154, 155,
+ /* 1110 */ 253, 16, 19, 144, 213, 268, 43, 44, 45, 46,
+ /* 1120 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 1130 */ 57, 238, 19, 59, 193, 59, 43, 44, 45, 46,
+ /* 1140 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 1150 */ 57, 22, 23, 193, 25, 193, 43, 44, 45, 46,
+ /* 1160 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 1170 */ 57, 284, 77, 193, 79, 102, 103, 104, 105, 106,
+ /* 1180 */ 107, 108, 109, 110, 111, 112, 113, 286, 193, 193,
+ /* 1190 */ 193, 117, 291, 117, 232, 102, 103, 104, 105, 106,
+ /* 1200 */ 107, 108, 109, 110, 111, 112, 113, 204, 22, 23,
+ /* 1210 */ 66, 25, 216, 217, 35, 102, 103, 104, 105, 106,
+ /* 1220 */ 107, 108, 109, 110, 111, 112, 113, 193, 268, 85,
+ /* 1230 */ 101, 193, 309, 309, 240, 19, 313, 313, 94, 208,
+ /* 1240 */ 209, 193, 239, 240, 193, 66, 252, 19, 268, 244,
+ /* 1250 */ 216, 217, 193, 74, 213, 252, 161, 19, 263, 254,
+ /* 1260 */ 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ /* 1270 */ 54, 55, 56, 57, 193, 216, 217, 5, 59, 193,
+ /* 1280 */ 19, 244, 10, 11, 12, 13, 14, 101, 309, 17,
+ /* 1290 */ 146, 254, 313, 193, 193, 76, 115, 216, 217, 309,
+ /* 1300 */ 12, 263, 30, 313, 32, 46, 87, 46, 89, 130,
+ /* 1310 */ 193, 92, 40, 22, 263, 27, 216, 217, 102, 103,
+ /* 1320 */ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
+ /* 1330 */ 42, 150, 291, 216, 217, 116, 117, 118, 19, 20,
+ /* 1340 */ 193, 22, 70, 260, 116, 193, 24, 264, 193, 263,
+ /* 1350 */ 78, 63, 61, 81, 116, 36, 193, 260, 193, 29,
+ /* 1360 */ 193, 264, 193, 33, 145, 193, 59, 48, 216, 217,
+ /* 1370 */ 98, 216, 217, 193, 115, 193, 115, 193, 59, 216,
+ /* 1380 */ 217, 216, 217, 216, 217, 216, 217, 255, 216, 217,
+ /* 1390 */ 71, 193, 131, 193, 25, 65, 216, 217, 216, 217,
+ /* 1400 */ 216, 217, 208, 209, 85, 133, 193, 100, 193, 90,
+ /* 1410 */ 138, 139, 138, 139, 216, 217, 216, 217, 193, 100,
+ /* 1420 */ 193, 108, 135, 116, 117, 106, 107, 140, 121, 216,
+ /* 1430 */ 217, 216, 217, 114, 162, 116, 117, 118, 299, 300,
+ /* 1440 */ 121, 216, 217, 216, 217, 193, 244, 193, 135, 244,
+ /* 1450 */ 193, 256, 257, 140, 244, 193, 254, 193, 193, 254,
+ /* 1460 */ 153, 154, 155, 141, 254, 149, 150, 258, 216, 217,
+ /* 1470 */ 216, 217, 153, 154, 155, 156, 157, 0, 1, 2,
+ /* 1480 */ 216, 217, 5, 115, 158, 193, 160, 10, 11, 12,
+ /* 1490 */ 13, 14, 193, 59, 17, 126, 193, 19, 20, 129,
+ /* 1500 */ 22, 193, 22, 22, 24, 193, 23, 30, 25, 32,
+ /* 1510 */ 19, 20, 144, 22, 36, 216, 217, 40, 193, 216,
+ /* 1520 */ 217, 193, 152, 129, 216, 217, 193, 36, 216, 217,
+ /* 1530 */ 193, 99, 193, 193, 53, 193, 193, 59, 23, 193,
+ /* 1540 */ 25, 216, 217, 193, 216, 217, 152, 70, 59, 71,
+ /* 1550 */ 59, 117, 193, 216, 217, 78, 216, 217, 81, 216,
+ /* 1560 */ 217, 318, 71, 85, 193, 133, 193, 193, 90, 23,
+ /* 1570 */ 23, 25, 25, 120, 121, 98, 85, 193, 100, 193,
+ /* 1580 */ 23, 90, 25, 121, 106, 107, 19, 216, 217, 216,
+ /* 1590 */ 217, 100, 114, 131, 116, 117, 118, 106, 107, 121,
+ /* 1600 */ 216, 217, 216, 217, 193, 114, 117, 116, 117, 118,
+ /* 1610 */ 133, 193, 121, 193, 193, 138, 139, 193, 23, 193,
+ /* 1620 */ 25, 23, 23, 25, 25, 7, 8, 216, 217, 193,
+ /* 1630 */ 193, 153, 154, 155, 156, 157, 216, 217, 193, 162,
+ /* 1640 */ 216, 217, 216, 217, 153, 154, 155, 156, 157, 1,
+ /* 1650 */ 2, 193, 193, 5, 19, 20, 59, 22, 10, 11,
+ /* 1660 */ 12, 13, 14, 193, 97, 17, 193, 23, 193, 25,
+ /* 1670 */ 288, 36, 193, 242, 216, 217, 236, 23, 30, 25,
+ /* 1680 */ 32, 19, 20, 23, 22, 25, 216, 217, 40, 216,
+ /* 1690 */ 217, 216, 217, 193, 59, 216, 217, 193, 36, 83,
+ /* 1700 */ 84, 153, 153, 155, 155, 23, 71, 25, 23, 193,
+ /* 1710 */ 25, 193, 193, 193, 117, 193, 193, 193, 70, 193,
+ /* 1720 */ 193, 59, 193, 255, 255, 287, 78, 255, 243, 81,
+ /* 1730 */ 191, 255, 297, 71, 271, 100, 293, 245, 267, 214,
+ /* 1740 */ 246, 106, 107, 108, 246, 271, 98, 245, 293, 114,
+ /* 1750 */ 220, 116, 117, 118, 267, 271, 121, 271, 225, 219,
+ /* 1760 */ 229, 219, 100, 219, 259, 259, 259, 259, 106, 107,
+ /* 1770 */ 249, 196, 60, 280, 141, 243, 114, 249, 116, 117,
+ /* 1780 */ 118, 133, 245, 121, 200, 297, 138, 139, 153, 154,
+ /* 1790 */ 155, 156, 157, 297, 200, 38, 19, 20, 151, 22,
+ /* 1800 */ 200, 150, 140, 294, 294, 22, 272, 43, 234, 18,
+ /* 1810 */ 162, 270, 200, 36, 237, 153, 154, 155, 156, 157,
+ /* 1820 */ 237, 283, 237, 237, 18, 199, 149, 246, 272, 270,
+ /* 1830 */ 272, 200, 158, 246, 246, 234, 59, 234, 246, 199,
+ /* 1840 */ 290, 62, 289, 200, 199, 22, 221, 115, 71, 200,
+ /* 1850 */ 200, 199, 199, 221, 218, 218, 19, 20, 64, 22,
+ /* 1860 */ 218, 227, 22, 224, 126, 224, 165, 221, 24, 305,
+ /* 1870 */ 200, 113, 312, 36, 218, 220, 218, 100, 282, 218,
+ /* 1880 */ 91, 218, 317, 106, 107, 221, 227, 282, 317, 82,
+ /* 1890 */ 148, 114, 265, 116, 117, 118, 59, 145, 121, 22,
+ /* 1900 */ 277, 158, 200, 265, 25, 202, 147, 250, 71, 279,
+ /* 1910 */ 13, 146, 194, 194, 249, 248, 250, 140, 247, 246,
+ /* 1920 */ 6, 192, 192, 192, 303, 303, 213, 207, 300, 213,
+ /* 1930 */ 153, 154, 155, 156, 157, 213, 213, 100, 213, 222,
+ /* 1940 */ 207, 214, 214, 106, 107, 4, 222, 207, 3, 22,
+ /* 1950 */ 163, 114, 15, 116, 117, 118, 16, 23, 121, 23,
+ /* 1960 */ 139, 151, 130, 25, 142, 16, 24, 20, 144, 1,
+ /* 1970 */ 142, 130, 130, 61, 53, 53, 37, 151, 53, 53,
+ /* 1980 */ 130, 116, 34, 1, 141, 5, 22, 115, 161, 141,
+ /* 1990 */ 153, 154, 155, 156, 157, 25, 68, 68, 75, 41,
+ /* 2000 */ 115, 24, 131, 20, 19, 125, 22, 96, 22, 22,
+ /* 2010 */ 67, 23, 22, 67, 59, 24, 22, 28, 67, 23,
+ /* 2020 */ 22, 22, 149, 23, 23, 23, 116, 23, 25, 37,
+ /* 2030 */ 97, 141, 23, 23, 22, 143, 25, 75, 88, 34,
+ /* 2040 */ 34, 34, 34, 86, 75, 93, 23, 34, 22, 34,
+ /* 2050 */ 25, 24, 34, 25, 23, 142, 23, 142, 44, 23,
+ /* 2060 */ 23, 23, 11, 23, 25, 22, 22, 22, 15, 23,
+ /* 2070 */ 23, 22, 22, 25, 1, 1, 141, 25, 23, 135,
+ /* 2080 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2090 */ 319, 319, 319, 319, 141, 141, 319, 141, 319, 319,
+ /* 2100 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2110 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2120 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2130 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2140 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2150 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2160 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2170 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2180 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2190 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2200 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2210 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2220 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2230 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2240 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2250 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2260 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2270 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2280 */ 319, 319, 319,
+};
+#define YY_SHIFT_COUNT (575)
+#define YY_SHIFT_MIN (0)
+#define YY_SHIFT_MAX (2074)
+static const unsigned short int yy_shift_ofst[] = {
+ /* 0 */ 1648, 1477, 1272, 322, 322, 1, 1319, 1478, 1491, 1837,
+ /* 10 */ 1837, 1837, 471, 0, 0, 214, 1093, 1837, 1837, 1837,
+ /* 20 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 30 */ 271, 271, 1219, 1219, 216, 88, 1, 1, 1, 1,
+ /* 40 */ 1, 40, 111, 258, 361, 469, 512, 583, 622, 693,
+ /* 50 */ 732, 803, 842, 913, 1073, 1093, 1093, 1093, 1093, 1093,
+ /* 60 */ 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093,
+ /* 70 */ 1093, 1093, 1093, 1113, 1093, 1216, 957, 957, 1635, 1662,
+ /* 80 */ 1777, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 90 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 100 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 110 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 120 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 130 */ 137, 181, 181, 181, 181, 181, 181, 181, 94, 430,
+ /* 140 */ 66, 65, 112, 366, 533, 533, 740, 1261, 533, 533,
+ /* 150 */ 79, 79, 533, 412, 412, 412, 77, 412, 123, 113,
+ /* 160 */ 113, 22, 22, 2098, 2098, 328, 328, 328, 239, 468,
+ /* 170 */ 468, 468, 468, 1015, 1015, 409, 366, 1129, 1186, 533,
+ /* 180 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 533,
+ /* 190 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 969,
+ /* 200 */ 621, 621, 533, 642, 788, 788, 1228, 1228, 822, 822,
+ /* 210 */ 67, 1274, 2098, 2098, 2098, 2098, 2098, 2098, 2098, 1307,
+ /* 220 */ 954, 954, 585, 472, 640, 387, 695, 538, 541, 700,
+ /* 230 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 533,
+ /* 240 */ 222, 533, 533, 533, 533, 533, 533, 533, 533, 533,
+ /* 250 */ 533, 533, 533, 1179, 1179, 1179, 533, 533, 533, 565,
+ /* 260 */ 533, 533, 533, 916, 1144, 533, 533, 1288, 533, 533,
+ /* 270 */ 533, 533, 533, 533, 533, 533, 639, 1330, 209, 1076,
+ /* 280 */ 1076, 1076, 1076, 580, 209, 209, 1313, 768, 917, 649,
+ /* 290 */ 1181, 1316, 405, 1316, 1238, 249, 1181, 1181, 249, 1181,
+ /* 300 */ 405, 1238, 1369, 464, 1259, 1012, 1012, 1012, 1368, 1368,
+ /* 310 */ 1368, 1368, 184, 184, 1326, 904, 1287, 1480, 1712, 1712,
+ /* 320 */ 1633, 1633, 1757, 1757, 1633, 1647, 1651, 1783, 1764, 1791,
+ /* 330 */ 1791, 1791, 1791, 1633, 1806, 1677, 1651, 1651, 1677, 1783,
+ /* 340 */ 1764, 1677, 1764, 1677, 1633, 1806, 1674, 1779, 1633, 1806,
+ /* 350 */ 1823, 1633, 1806, 1633, 1806, 1823, 1732, 1732, 1732, 1794,
+ /* 360 */ 1840, 1840, 1823, 1732, 1738, 1732, 1794, 1732, 1732, 1701,
+ /* 370 */ 1844, 1758, 1758, 1823, 1633, 1789, 1789, 1807, 1807, 1742,
+ /* 380 */ 1752, 1877, 1633, 1743, 1742, 1759, 1765, 1677, 1879, 1897,
+ /* 390 */ 1897, 1914, 1914, 1914, 2098, 2098, 2098, 2098, 2098, 2098,
+ /* 400 */ 2098, 2098, 2098, 2098, 2098, 2098, 2098, 2098, 2098, 207,
+ /* 410 */ 1095, 331, 620, 903, 806, 1074, 1483, 1432, 1481, 1322,
+ /* 420 */ 1370, 1394, 1515, 1291, 1546, 1547, 1557, 1595, 1598, 1599,
+ /* 430 */ 1434, 1453, 1618, 1462, 1567, 1489, 1644, 1654, 1616, 1660,
+ /* 440 */ 1548, 1549, 1682, 1685, 1597, 742, 1941, 1945, 1927, 1787,
+ /* 450 */ 1937, 1940, 1934, 1936, 1821, 1810, 1832, 1938, 1938, 1942,
+ /* 460 */ 1822, 1947, 1824, 1949, 1968, 1828, 1841, 1938, 1842, 1912,
+ /* 470 */ 1939, 1938, 1826, 1921, 1922, 1925, 1926, 1850, 1865, 1948,
+ /* 480 */ 1843, 1982, 1980, 1964, 1872, 1827, 1928, 1970, 1929, 1923,
+ /* 490 */ 1958, 1848, 1885, 1977, 1983, 1985, 1871, 1880, 1984, 1943,
+ /* 500 */ 1986, 1987, 1988, 1990, 1946, 1955, 1991, 1911, 1989, 1994,
+ /* 510 */ 1951, 1992, 1996, 1873, 1998, 2000, 2001, 2002, 2003, 2004,
+ /* 520 */ 1999, 1933, 1890, 2009, 2010, 1910, 2005, 2012, 1892, 2011,
+ /* 530 */ 2006, 2007, 2008, 2013, 1950, 1962, 1957, 2014, 1969, 1952,
+ /* 540 */ 2015, 2023, 2026, 2027, 2025, 2028, 2018, 1913, 1915, 2031,
+ /* 550 */ 2011, 2033, 2036, 2037, 2038, 2039, 2040, 2043, 2051, 2044,
+ /* 560 */ 2045, 2046, 2047, 2049, 2050, 2048, 1944, 1935, 1953, 1954,
+ /* 570 */ 1956, 2052, 2055, 2053, 2073, 2074,
+};
+#define YY_REDUCE_COUNT (408)
+#define YY_REDUCE_MIN (-271)
+#define YY_REDUCE_MAX (1740)
+static const short yy_reduce_ofst[] = {
+ /* 0 */ -125, 733, 789, 241, 293, -123, -193, -191, -183, -187,
+ /* 10 */ 166, 238, 133, -207, -199, -267, -176, -6, 204, 489,
+ /* 20 */ 576, -175, 598, 686, 615, 725, 860, 778, 781, 857,
+ /* 30 */ 616, 887, 87, 240, -192, 408, 626, 796, 843, 854,
+ /* 40 */ 1003, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 50 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 60 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 70 */ -271, -271, -271, -271, -271, -271, -271, -271, 80, 83,
+ /* 80 */ 313, 886, 888, 996, 1034, 1059, 1081, 1100, 1117, 1152,
+ /* 90 */ 1155, 1163, 1165, 1167, 1169, 1172, 1180, 1182, 1184, 1198,
+ /* 100 */ 1200, 1213, 1215, 1225, 1227, 1252, 1254, 1264, 1299, 1303,
+ /* 110 */ 1308, 1312, 1325, 1328, 1337, 1340, 1343, 1371, 1373, 1384,
+ /* 120 */ 1386, 1411, 1420, 1424, 1426, 1458, 1470, 1473, 1475, 1479,
+ /* 130 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 140 */ -271, 138, 459, 396, -158, 470, 302, -212, 521, 201,
+ /* 150 */ -195, -92, 559, 630, 632, 630, -271, 632, 901, 63,
+ /* 160 */ 407, -271, -271, -271, -271, 161, 161, 161, 251, 335,
+ /* 170 */ 847, 960, 980, 537, 588, 618, 628, 688, 688, -166,
+ /* 180 */ -161, 674, 790, 794, 799, 851, 852, -122, 680, -120,
+ /* 190 */ 995, 1038, 415, 1051, 893, 798, 962, 400, 1086, 779,
+ /* 200 */ 923, 924, 263, 1041, 979, 990, 1083, 1097, 1031, 1194,
+ /* 210 */ 362, 994, 1139, 1005, 1037, 1202, 1205, 1195, 1210, -194,
+ /* 220 */ 56, 185, -135, 232, 522, 560, 601, 617, 669, 683,
+ /* 230 */ 711, 856, 908, 941, 1048, 1101, 1147, 1257, 1262, 1265,
+ /* 240 */ 392, 1292, 1333, 1339, 1342, 1346, 1350, 1359, 1374, 1418,
+ /* 250 */ 1421, 1436, 1437, 593, 755, 770, 997, 1445, 1459, 1209,
+ /* 260 */ 1500, 1504, 1516, 1132, 1243, 1518, 1519, 1440, 1520, 560,
+ /* 270 */ 1522, 1523, 1524, 1526, 1527, 1529, 1382, 1438, 1431, 1468,
+ /* 280 */ 1469, 1472, 1476, 1209, 1431, 1431, 1485, 1525, 1539, 1435,
+ /* 290 */ 1463, 1471, 1492, 1487, 1443, 1494, 1474, 1484, 1498, 1486,
+ /* 300 */ 1502, 1455, 1530, 1531, 1533, 1540, 1542, 1544, 1505, 1506,
+ /* 310 */ 1507, 1508, 1521, 1528, 1493, 1537, 1532, 1575, 1488, 1496,
+ /* 320 */ 1584, 1594, 1509, 1510, 1600, 1538, 1534, 1541, 1574, 1577,
+ /* 330 */ 1583, 1585, 1586, 1612, 1626, 1581, 1556, 1558, 1587, 1559,
+ /* 340 */ 1601, 1588, 1603, 1592, 1631, 1640, 1550, 1553, 1643, 1645,
+ /* 350 */ 1625, 1649, 1652, 1650, 1653, 1632, 1636, 1637, 1642, 1634,
+ /* 360 */ 1639, 1641, 1646, 1656, 1655, 1658, 1659, 1661, 1663, 1560,
+ /* 370 */ 1564, 1596, 1605, 1664, 1670, 1565, 1571, 1627, 1638, 1657,
+ /* 380 */ 1665, 1623, 1702, 1630, 1666, 1667, 1671, 1673, 1703, 1718,
+ /* 390 */ 1719, 1729, 1730, 1731, 1621, 1622, 1628, 1720, 1713, 1716,
+ /* 400 */ 1722, 1723, 1733, 1717, 1724, 1727, 1728, 1725, 1740,
+};
+static const YYACTIONTYPE yy_default[] = {
+ /* 0 */ 1647, 1647, 1647, 1475, 1240, 1351, 1240, 1240, 1240, 1475,
+ /* 10 */ 1475, 1475, 1240, 1381, 1381, 1528, 1273, 1240, 1240, 1240,
+ /* 20 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1474, 1240, 1240,
+ /* 30 */ 1240, 1240, 1563, 1563, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 40 */ 1240, 1240, 1390, 1240, 1397, 1240, 1240, 1240, 1240, 1240,
+ /* 50 */ 1476, 1477, 1240, 1240, 1240, 1527, 1529, 1492, 1404, 1403,
+ /* 60 */ 1402, 1401, 1510, 1369, 1395, 1388, 1392, 1470, 1471, 1469,
+ /* 70 */ 1473, 1477, 1476, 1240, 1391, 1438, 1454, 1437, 1240, 1240,
+ /* 80 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 90 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 100 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 110 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 120 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 130 */ 1446, 1453, 1452, 1451, 1460, 1450, 1447, 1440, 1439, 1441,
+ /* 140 */ 1442, 1240, 1240, 1264, 1240, 1240, 1261, 1315, 1240, 1240,
+ /* 150 */ 1240, 1240, 1240, 1547, 1546, 1240, 1443, 1240, 1273, 1432,
+ /* 160 */ 1431, 1457, 1444, 1456, 1455, 1535, 1599, 1598, 1493, 1240,
+ /* 170 */ 1240, 1240, 1240, 1240, 1240, 1563, 1240, 1240, 1240, 1240,
+ /* 180 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 190 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1371,
+ /* 200 */ 1563, 1563, 1240, 1273, 1563, 1563, 1372, 1372, 1269, 1269,
+ /* 210 */ 1375, 1240, 1542, 1342, 1342, 1342, 1342, 1351, 1342, 1240,
+ /* 220 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 230 */ 1240, 1240, 1240, 1240, 1532, 1530, 1240, 1240, 1240, 1240,
+ /* 240 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 250 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 260 */ 1240, 1240, 1240, 1347, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 270 */ 1240, 1240, 1240, 1240, 1240, 1592, 1240, 1505, 1329, 1347,
+ /* 280 */ 1347, 1347, 1347, 1349, 1330, 1328, 1341, 1274, 1247, 1639,
+ /* 290 */ 1407, 1396, 1348, 1396, 1636, 1394, 1407, 1407, 1394, 1407,
+ /* 300 */ 1348, 1636, 1290, 1615, 1285, 1381, 1381, 1381, 1371, 1371,
+ /* 310 */ 1371, 1371, 1375, 1375, 1472, 1348, 1341, 1240, 1639, 1639,
+ /* 320 */ 1357, 1357, 1638, 1638, 1357, 1493, 1623, 1416, 1318, 1324,
+ /* 330 */ 1324, 1324, 1324, 1357, 1258, 1394, 1623, 1623, 1394, 1416,
+ /* 340 */ 1318, 1394, 1318, 1394, 1357, 1258, 1509, 1633, 1357, 1258,
+ /* 350 */ 1483, 1357, 1258, 1357, 1258, 1483, 1316, 1316, 1316, 1305,
+ /* 360 */ 1240, 1240, 1483, 1316, 1290, 1316, 1305, 1316, 1316, 1581,
+ /* 370 */ 1240, 1487, 1487, 1483, 1357, 1573, 1573, 1384, 1384, 1389,
+ /* 380 */ 1375, 1478, 1357, 1240, 1389, 1387, 1385, 1394, 1308, 1595,
+ /* 390 */ 1595, 1591, 1591, 1591, 1644, 1644, 1542, 1608, 1273, 1273,
+ /* 400 */ 1273, 1273, 1608, 1292, 1292, 1274, 1274, 1273, 1608, 1240,
+ /* 410 */ 1240, 1240, 1240, 1240, 1240, 1603, 1240, 1537, 1494, 1361,
+ /* 420 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 430 */ 1240, 1240, 1240, 1240, 1548, 1240, 1240, 1240, 1240, 1240,
+ /* 440 */ 1240, 1240, 1240, 1240, 1240, 1421, 1240, 1243, 1539, 1240,
+ /* 450 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1398, 1399, 1362,
+ /* 460 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1413, 1240, 1240,
+ /* 470 */ 1240, 1408, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 480 */ 1635, 1240, 1240, 1240, 1240, 1240, 1240, 1508, 1507, 1240,
+ /* 490 */ 1240, 1359, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 500 */ 1240, 1240, 1240, 1240, 1240, 1288, 1240, 1240, 1240, 1240,
+ /* 510 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 520 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1386,
+ /* 530 */ 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 540 */ 1240, 1240, 1240, 1240, 1578, 1376, 1240, 1240, 1240, 1240,
+ /* 550 */ 1626, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240, 1240,
+ /* 560 */ 1240, 1240, 1240, 1240, 1240, 1619, 1332, 1423, 1240, 1422,
+ /* 570 */ 1426, 1262, 1240, 1252, 1240, 1240,
+};
+/********** End of lemon-generated parsing tables *****************************/
+
+/* The next table maps tokens (terminal symbols) into fallback tokens.
+** If a construct like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammar, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+**
+** This feature can be used, for example, to cause some keywords in a language
+** to revert to identifiers if they keyword does not apply in the context where
+** it appears.
+*/
+#ifdef YYFALLBACK
+static const YYCODETYPE yyFallback[] = {
+ 0, /* $ => nothing */
+ 0, /* SEMI => nothing */
+ 59, /* EXPLAIN => ID */
+ 59, /* QUERY => ID */
+ 59, /* PLAN => ID */
+ 59, /* BEGIN => ID */
+ 0, /* TRANSACTION => nothing */
+ 59, /* DEFERRED => ID */
+ 59, /* IMMEDIATE => ID */
+ 59, /* EXCLUSIVE => ID */
+ 0, /* COMMIT => nothing */
+ 59, /* END => ID */
+ 59, /* ROLLBACK => ID */
+ 59, /* SAVEPOINT => ID */
+ 59, /* RELEASE => ID */
+ 0, /* TO => nothing */
+ 0, /* TABLE => nothing */
+ 0, /* CREATE => nothing */
+ 59, /* IF => ID */
+ 0, /* NOT => nothing */
+ 0, /* EXISTS => nothing */
+ 59, /* TEMP => ID */
+ 0, /* LP => nothing */
+ 0, /* RP => nothing */
+ 0, /* AS => nothing */
+ 0, /* COMMA => nothing */
+ 59, /* WITHOUT => ID */
+ 59, /* ABORT => ID */
+ 59, /* ACTION => ID */
+ 59, /* AFTER => ID */
+ 59, /* ANALYZE => ID */
+ 59, /* ASC => ID */
+ 59, /* ATTACH => ID */
+ 59, /* BEFORE => ID */
+ 59, /* BY => ID */
+ 59, /* CASCADE => ID */
+ 59, /* CAST => ID */
+ 59, /* CONFLICT => ID */
+ 59, /* DATABASE => ID */
+ 59, /* DESC => ID */
+ 59, /* DETACH => ID */
+ 59, /* EACH => ID */
+ 59, /* FAIL => ID */
+ 0, /* OR => nothing */
+ 0, /* AND => nothing */
+ 0, /* IS => nothing */
+ 59, /* MATCH => ID */
+ 59, /* LIKE_KW => ID */
+ 0, /* BETWEEN => nothing */
+ 0, /* IN => nothing */
+ 0, /* ISNULL => nothing */
+ 0, /* NOTNULL => nothing */
+ 0, /* NE => nothing */
+ 0, /* EQ => nothing */
+ 0, /* GT => nothing */
+ 0, /* LE => nothing */
+ 0, /* LT => nothing */
+ 0, /* GE => nothing */
+ 0, /* ESCAPE => nothing */
+ 0, /* ID => nothing */
+ 59, /* COLUMNKW => ID */
+ 59, /* DO => ID */
+ 59, /* FOR => ID */
+ 59, /* IGNORE => ID */
+ 59, /* INITIALLY => ID */
+ 59, /* INSTEAD => ID */
+ 59, /* NO => ID */
+ 59, /* KEY => ID */
+ 59, /* OF => ID */
+ 59, /* OFFSET => ID */
+ 59, /* PRAGMA => ID */
+ 59, /* RAISE => ID */
+ 59, /* RECURSIVE => ID */
+ 59, /* REPLACE => ID */
+ 59, /* RESTRICT => ID */
+ 59, /* ROW => ID */
+ 59, /* ROWS => ID */
+ 59, /* TRIGGER => ID */
+ 59, /* VACUUM => ID */
+ 59, /* VIEW => ID */
+ 59, /* VIRTUAL => ID */
+ 59, /* WITH => ID */
+ 59, /* NULLS => ID */
+ 59, /* FIRST => ID */
+ 59, /* LAST => ID */
+ 59, /* CURRENT => ID */
+ 59, /* FOLLOWING => ID */
+ 59, /* PARTITION => ID */
+ 59, /* PRECEDING => ID */
+ 59, /* RANGE => ID */
+ 59, /* UNBOUNDED => ID */
+ 59, /* EXCLUDE => ID */
+ 59, /* GROUPS => ID */
+ 59, /* OTHERS => ID */
+ 59, /* TIES => ID */
+ 59, /* GENERATED => ID */
+ 59, /* ALWAYS => ID */
+ 59, /* MATERIALIZED => ID */
+ 59, /* REINDEX => ID */
+ 59, /* RENAME => ID */
+ 59, /* CTIME_KW => ID */
+ 0, /* ANY => nothing */
+ 0, /* BITAND => nothing */
+ 0, /* BITOR => nothing */
+ 0, /* LSHIFT => nothing */
+ 0, /* RSHIFT => nothing */
+ 0, /* PLUS => nothing */
+ 0, /* MINUS => nothing */
+ 0, /* STAR => nothing */
+ 0, /* SLASH => nothing */
+ 0, /* REM => nothing */
+ 0, /* CONCAT => nothing */
+ 0, /* PTR => nothing */
+ 0, /* COLLATE => nothing */
+ 0, /* BITNOT => nothing */
+ 0, /* ON => nothing */
+ 0, /* INDEXED => nothing */
+ 0, /* STRING => nothing */
+ 0, /* JOIN_KW => nothing */
+ 0, /* CONSTRAINT => nothing */
+ 0, /* DEFAULT => nothing */
+ 0, /* NULL => nothing */
+ 0, /* PRIMARY => nothing */
+ 0, /* UNIQUE => nothing */
+ 0, /* CHECK => nothing */
+ 0, /* REFERENCES => nothing */
+ 0, /* AUTOINCR => nothing */
+ 0, /* INSERT => nothing */
+ 0, /* DELETE => nothing */
+ 0, /* UPDATE => nothing */
+ 0, /* SET => nothing */
+ 0, /* DEFERRABLE => nothing */
+ 0, /* FOREIGN => nothing */
+ 0, /* DROP => nothing */
+ 0, /* UNION => nothing */
+ 0, /* ALL => nothing */
+ 0, /* EXCEPT => nothing */
+ 0, /* INTERSECT => nothing */
+ 0, /* SELECT => nothing */
+ 0, /* VALUES => nothing */
+ 0, /* DISTINCT => nothing */
+ 0, /* DOT => nothing */
+ 0, /* FROM => nothing */
+ 0, /* JOIN => nothing */
+ 0, /* USING => nothing */
+ 0, /* ORDER => nothing */
+ 0, /* GROUP => nothing */
+ 0, /* HAVING => nothing */
+ 0, /* LIMIT => nothing */
+ 0, /* WHERE => nothing */
+ 0, /* RETURNING => nothing */
+ 0, /* INTO => nothing */
+ 0, /* NOTHING => nothing */
+ 0, /* FLOAT => nothing */
+ 0, /* BLOB => nothing */
+ 0, /* INTEGER => nothing */
+ 0, /* VARIABLE => nothing */
+ 0, /* CASE => nothing */
+ 0, /* WHEN => nothing */
+ 0, /* THEN => nothing */
+ 0, /* ELSE => nothing */
+ 0, /* INDEX => nothing */
+ 0, /* ALTER => nothing */
+ 0, /* ADD => nothing */
+ 0, /* WINDOW => nothing */
+ 0, /* OVER => nothing */
+ 0, /* FILTER => nothing */
+ 0, /* COLUMN => nothing */
+ 0, /* AGG_FUNCTION => nothing */
+ 0, /* AGG_COLUMN => nothing */
+ 0, /* TRUEFALSE => nothing */
+ 0, /* ISNOT => nothing */
+ 0, /* FUNCTION => nothing */
+ 0, /* UMINUS => nothing */
+ 0, /* UPLUS => nothing */
+ 0, /* TRUTH => nothing */
+ 0, /* REGISTER => nothing */
+ 0, /* VECTOR => nothing */
+ 0, /* SELECT_COLUMN => nothing */
+ 0, /* IF_NULL_ROW => nothing */
+ 0, /* ASTERISK => nothing */
+ 0, /* SPAN => nothing */
+ 0, /* ERROR => nothing */
+ 0, /* SPACE => nothing */
+ 0, /* ILLEGAL => nothing */
+};
+#endif /* YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+**
+** After the "shift" half of a SHIFTREDUCE action, the stateno field
+** actually contains the reduce action for the second half of the
+** SHIFTREDUCE.
+*/
+struct yyStackEntry {
+ YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
+ YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct yyStackEntry yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct yyParser {
+ yyStackEntry *yytos; /* Pointer to top element of the stack */
+#ifdef YYTRACKMAXSTACKDEPTH
+ int yyhwm; /* High-water mark of the stack */
+#endif
+#ifndef YYNOERRORRECOVERY
+ int yyerrcnt; /* Shifts left before out of the error */
+#endif
+ sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
+ sqlite3ParserCTX_SDECL /* A place to hold %extra_context */
+#if YYSTACKDEPTH<=0
+ int yystksz; /* Current side of the stack */
+ yyStackEntry *yystack; /* The parser's stack */
+ yyStackEntry yystk0; /* First stack entry */
+#else
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
+ yyStackEntry *yystackEnd; /* Last entry in the stack */
+#endif
+};
+typedef struct yyParser yyParser;
+
+/* #include <assert.h> */
+#ifndef NDEBUG
+/* #include <stdio.h> */
+static FILE *yyTraceFILE = 0;
+static char *yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ yyTraceFILE = TraceFILE;
+ yyTracePrompt = zTracePrompt;
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#if defined(YYCOVERAGE) || !defined(NDEBUG)
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const yyTokenName[] = {
+ /* 0 */ "$",
+ /* 1 */ "SEMI",
+ /* 2 */ "EXPLAIN",
+ /* 3 */ "QUERY",
+ /* 4 */ "PLAN",
+ /* 5 */ "BEGIN",
+ /* 6 */ "TRANSACTION",
+ /* 7 */ "DEFERRED",
+ /* 8 */ "IMMEDIATE",
+ /* 9 */ "EXCLUSIVE",
+ /* 10 */ "COMMIT",
+ /* 11 */ "END",
+ /* 12 */ "ROLLBACK",
+ /* 13 */ "SAVEPOINT",
+ /* 14 */ "RELEASE",
+ /* 15 */ "TO",
+ /* 16 */ "TABLE",
+ /* 17 */ "CREATE",
+ /* 18 */ "IF",
+ /* 19 */ "NOT",
+ /* 20 */ "EXISTS",
+ /* 21 */ "TEMP",
+ /* 22 */ "LP",
+ /* 23 */ "RP",
+ /* 24 */ "AS",
+ /* 25 */ "COMMA",
+ /* 26 */ "WITHOUT",
+ /* 27 */ "ABORT",
+ /* 28 */ "ACTION",
+ /* 29 */ "AFTER",
+ /* 30 */ "ANALYZE",
+ /* 31 */ "ASC",
+ /* 32 */ "ATTACH",
+ /* 33 */ "BEFORE",
+ /* 34 */ "BY",
+ /* 35 */ "CASCADE",
+ /* 36 */ "CAST",
+ /* 37 */ "CONFLICT",
+ /* 38 */ "DATABASE",
+ /* 39 */ "DESC",
+ /* 40 */ "DETACH",
+ /* 41 */ "EACH",
+ /* 42 */ "FAIL",
+ /* 43 */ "OR",
+ /* 44 */ "AND",
+ /* 45 */ "IS",
+ /* 46 */ "MATCH",
+ /* 47 */ "LIKE_KW",
+ /* 48 */ "BETWEEN",
+ /* 49 */ "IN",
+ /* 50 */ "ISNULL",
+ /* 51 */ "NOTNULL",
+ /* 52 */ "NE",
+ /* 53 */ "EQ",
+ /* 54 */ "GT",
+ /* 55 */ "LE",
+ /* 56 */ "LT",
+ /* 57 */ "GE",
+ /* 58 */ "ESCAPE",
+ /* 59 */ "ID",
+ /* 60 */ "COLUMNKW",
+ /* 61 */ "DO",
+ /* 62 */ "FOR",
+ /* 63 */ "IGNORE",
+ /* 64 */ "INITIALLY",
+ /* 65 */ "INSTEAD",
+ /* 66 */ "NO",
+ /* 67 */ "KEY",
+ /* 68 */ "OF",
+ /* 69 */ "OFFSET",
+ /* 70 */ "PRAGMA",
+ /* 71 */ "RAISE",
+ /* 72 */ "RECURSIVE",
+ /* 73 */ "REPLACE",
+ /* 74 */ "RESTRICT",
+ /* 75 */ "ROW",
+ /* 76 */ "ROWS",
+ /* 77 */ "TRIGGER",
+ /* 78 */ "VACUUM",
+ /* 79 */ "VIEW",
+ /* 80 */ "VIRTUAL",
+ /* 81 */ "WITH",
+ /* 82 */ "NULLS",
+ /* 83 */ "FIRST",
+ /* 84 */ "LAST",
+ /* 85 */ "CURRENT",
+ /* 86 */ "FOLLOWING",
+ /* 87 */ "PARTITION",
+ /* 88 */ "PRECEDING",
+ /* 89 */ "RANGE",
+ /* 90 */ "UNBOUNDED",
+ /* 91 */ "EXCLUDE",
+ /* 92 */ "GROUPS",
+ /* 93 */ "OTHERS",
+ /* 94 */ "TIES",
+ /* 95 */ "GENERATED",
+ /* 96 */ "ALWAYS",
+ /* 97 */ "MATERIALIZED",
+ /* 98 */ "REINDEX",
+ /* 99 */ "RENAME",
+ /* 100 */ "CTIME_KW",
+ /* 101 */ "ANY",
+ /* 102 */ "BITAND",
+ /* 103 */ "BITOR",
+ /* 104 */ "LSHIFT",
+ /* 105 */ "RSHIFT",
+ /* 106 */ "PLUS",
+ /* 107 */ "MINUS",
+ /* 108 */ "STAR",
+ /* 109 */ "SLASH",
+ /* 110 */ "REM",
+ /* 111 */ "CONCAT",
+ /* 112 */ "PTR",
+ /* 113 */ "COLLATE",
+ /* 114 */ "BITNOT",
+ /* 115 */ "ON",
+ /* 116 */ "INDEXED",
+ /* 117 */ "STRING",
+ /* 118 */ "JOIN_KW",
+ /* 119 */ "CONSTRAINT",
+ /* 120 */ "DEFAULT",
+ /* 121 */ "NULL",
+ /* 122 */ "PRIMARY",
+ /* 123 */ "UNIQUE",
+ /* 124 */ "CHECK",
+ /* 125 */ "REFERENCES",
+ /* 126 */ "AUTOINCR",
+ /* 127 */ "INSERT",
+ /* 128 */ "DELETE",
+ /* 129 */ "UPDATE",
+ /* 130 */ "SET",
+ /* 131 */ "DEFERRABLE",
+ /* 132 */ "FOREIGN",
+ /* 133 */ "DROP",
+ /* 134 */ "UNION",
+ /* 135 */ "ALL",
+ /* 136 */ "EXCEPT",
+ /* 137 */ "INTERSECT",
+ /* 138 */ "SELECT",
+ /* 139 */ "VALUES",
+ /* 140 */ "DISTINCT",
+ /* 141 */ "DOT",
+ /* 142 */ "FROM",
+ /* 143 */ "JOIN",
+ /* 144 */ "USING",
+ /* 145 */ "ORDER",
+ /* 146 */ "GROUP",
+ /* 147 */ "HAVING",
+ /* 148 */ "LIMIT",
+ /* 149 */ "WHERE",
+ /* 150 */ "RETURNING",
+ /* 151 */ "INTO",
+ /* 152 */ "NOTHING",
+ /* 153 */ "FLOAT",
+ /* 154 */ "BLOB",
+ /* 155 */ "INTEGER",
+ /* 156 */ "VARIABLE",
+ /* 157 */ "CASE",
+ /* 158 */ "WHEN",
+ /* 159 */ "THEN",
+ /* 160 */ "ELSE",
+ /* 161 */ "INDEX",
+ /* 162 */ "ALTER",
+ /* 163 */ "ADD",
+ /* 164 */ "WINDOW",
+ /* 165 */ "OVER",
+ /* 166 */ "FILTER",
+ /* 167 */ "COLUMN",
+ /* 168 */ "AGG_FUNCTION",
+ /* 169 */ "AGG_COLUMN",
+ /* 170 */ "TRUEFALSE",
+ /* 171 */ "ISNOT",
+ /* 172 */ "FUNCTION",
+ /* 173 */ "UMINUS",
+ /* 174 */ "UPLUS",
+ /* 175 */ "TRUTH",
+ /* 176 */ "REGISTER",
+ /* 177 */ "VECTOR",
+ /* 178 */ "SELECT_COLUMN",
+ /* 179 */ "IF_NULL_ROW",
+ /* 180 */ "ASTERISK",
+ /* 181 */ "SPAN",
+ /* 182 */ "ERROR",
+ /* 183 */ "SPACE",
+ /* 184 */ "ILLEGAL",
+ /* 185 */ "input",
+ /* 186 */ "cmdlist",
+ /* 187 */ "ecmd",
+ /* 188 */ "cmdx",
+ /* 189 */ "explain",
+ /* 190 */ "cmd",
+ /* 191 */ "transtype",
+ /* 192 */ "trans_opt",
+ /* 193 */ "nm",
+ /* 194 */ "savepoint_opt",
+ /* 195 */ "create_table",
+ /* 196 */ "create_table_args",
+ /* 197 */ "createkw",
+ /* 198 */ "temp",
+ /* 199 */ "ifnotexists",
+ /* 200 */ "dbnm",
+ /* 201 */ "columnlist",
+ /* 202 */ "conslist_opt",
+ /* 203 */ "table_option_set",
+ /* 204 */ "select",
+ /* 205 */ "table_option",
+ /* 206 */ "columnname",
+ /* 207 */ "carglist",
+ /* 208 */ "typetoken",
+ /* 209 */ "typename",
+ /* 210 */ "signed",
+ /* 211 */ "plus_num",
+ /* 212 */ "minus_num",
+ /* 213 */ "scanpt",
+ /* 214 */ "scantok",
+ /* 215 */ "ccons",
+ /* 216 */ "term",
+ /* 217 */ "expr",
+ /* 218 */ "onconf",
+ /* 219 */ "sortorder",
+ /* 220 */ "autoinc",
+ /* 221 */ "eidlist_opt",
+ /* 222 */ "refargs",
+ /* 223 */ "defer_subclause",
+ /* 224 */ "generated",
+ /* 225 */ "refarg",
+ /* 226 */ "refact",
+ /* 227 */ "init_deferred_pred_opt",
+ /* 228 */ "conslist",
+ /* 229 */ "tconscomma",
+ /* 230 */ "tcons",
+ /* 231 */ "sortlist",
+ /* 232 */ "eidlist",
+ /* 233 */ "defer_subclause_opt",
+ /* 234 */ "orconf",
+ /* 235 */ "resolvetype",
+ /* 236 */ "raisetype",
+ /* 237 */ "ifexists",
+ /* 238 */ "fullname",
+ /* 239 */ "selectnowith",
+ /* 240 */ "oneselect",
+ /* 241 */ "wqlist",
+ /* 242 */ "multiselect_op",
+ /* 243 */ "distinct",
+ /* 244 */ "selcollist",
+ /* 245 */ "from",
+ /* 246 */ "where_opt",
+ /* 247 */ "groupby_opt",
+ /* 248 */ "having_opt",
+ /* 249 */ "orderby_opt",
+ /* 250 */ "limit_opt",
+ /* 251 */ "window_clause",
+ /* 252 */ "values",
+ /* 253 */ "nexprlist",
+ /* 254 */ "sclp",
+ /* 255 */ "as",
+ /* 256 */ "seltablist",
+ /* 257 */ "stl_prefix",
+ /* 258 */ "joinop",
+ /* 259 */ "on_using",
+ /* 260 */ "indexed_by",
+ /* 261 */ "exprlist",
+ /* 262 */ "xfullname",
+ /* 263 */ "idlist",
+ /* 264 */ "indexed_opt",
+ /* 265 */ "nulls",
+ /* 266 */ "with",
+ /* 267 */ "where_opt_ret",
+ /* 268 */ "setlist",
+ /* 269 */ "insert_cmd",
+ /* 270 */ "idlist_opt",
+ /* 271 */ "upsert",
+ /* 272 */ "returning",
+ /* 273 */ "filter_over",
+ /* 274 */ "likeop",
+ /* 275 */ "between_op",
+ /* 276 */ "in_op",
+ /* 277 */ "paren_exprlist",
+ /* 278 */ "case_operand",
+ /* 279 */ "case_exprlist",
+ /* 280 */ "case_else",
+ /* 281 */ "uniqueflag",
+ /* 282 */ "collate",
+ /* 283 */ "vinto",
+ /* 284 */ "nmnum",
+ /* 285 */ "trigger_decl",
+ /* 286 */ "trigger_cmd_list",
+ /* 287 */ "trigger_time",
+ /* 288 */ "trigger_event",
+ /* 289 */ "foreach_clause",
+ /* 290 */ "when_clause",
+ /* 291 */ "trigger_cmd",
+ /* 292 */ "trnm",
+ /* 293 */ "tridxby",
+ /* 294 */ "database_kw_opt",
+ /* 295 */ "key_opt",
+ /* 296 */ "add_column_fullname",
+ /* 297 */ "kwcolumn_opt",
+ /* 298 */ "create_vtab",
+ /* 299 */ "vtabarglist",
+ /* 300 */ "vtabarg",
+ /* 301 */ "vtabargtoken",
+ /* 302 */ "lp",
+ /* 303 */ "anylist",
+ /* 304 */ "wqitem",
+ /* 305 */ "wqas",
+ /* 306 */ "windowdefn_list",
+ /* 307 */ "windowdefn",
+ /* 308 */ "window",
+ /* 309 */ "frame_opt",
+ /* 310 */ "part_opt",
+ /* 311 */ "filter_clause",
+ /* 312 */ "over_clause",
+ /* 313 */ "range_or_rows",
+ /* 314 */ "frame_bound",
+ /* 315 */ "frame_bound_s",
+ /* 316 */ "frame_bound_e",
+ /* 317 */ "frame_exclude_opt",
+ /* 318 */ "frame_exclude",
+};
+#endif /* defined(YYCOVERAGE) || !defined(NDEBUG) */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const yyRuleName[] = {
+ /* 0 */ "explain ::= EXPLAIN",
+ /* 1 */ "explain ::= EXPLAIN QUERY PLAN",
+ /* 2 */ "cmdx ::= cmd",
+ /* 3 */ "cmd ::= BEGIN transtype trans_opt",
+ /* 4 */ "transtype ::=",
+ /* 5 */ "transtype ::= DEFERRED",
+ /* 6 */ "transtype ::= IMMEDIATE",
+ /* 7 */ "transtype ::= EXCLUSIVE",
+ /* 8 */ "cmd ::= COMMIT|END trans_opt",
+ /* 9 */ "cmd ::= ROLLBACK trans_opt",
+ /* 10 */ "cmd ::= SAVEPOINT nm",
+ /* 11 */ "cmd ::= RELEASE savepoint_opt nm",
+ /* 12 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm",
+ /* 13 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm",
+ /* 14 */ "createkw ::= CREATE",
+ /* 15 */ "ifnotexists ::=",
+ /* 16 */ "ifnotexists ::= IF NOT EXISTS",
+ /* 17 */ "temp ::= TEMP",
+ /* 18 */ "temp ::=",
+ /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP table_option_set",
+ /* 20 */ "create_table_args ::= AS select",
+ /* 21 */ "table_option_set ::=",
+ /* 22 */ "table_option_set ::= table_option_set COMMA table_option",
+ /* 23 */ "table_option ::= WITHOUT nm",
+ /* 24 */ "table_option ::= nm",
+ /* 25 */ "columnname ::= nm typetoken",
+ /* 26 */ "typetoken ::=",
+ /* 27 */ "typetoken ::= typename LP signed RP",
+ /* 28 */ "typetoken ::= typename LP signed COMMA signed RP",
+ /* 29 */ "typename ::= typename ID|STRING",
+ /* 30 */ "scanpt ::=",
+ /* 31 */ "scantok ::=",
+ /* 32 */ "ccons ::= CONSTRAINT nm",
+ /* 33 */ "ccons ::= DEFAULT scantok term",
+ /* 34 */ "ccons ::= DEFAULT LP expr RP",
+ /* 35 */ "ccons ::= DEFAULT PLUS scantok term",
+ /* 36 */ "ccons ::= DEFAULT MINUS scantok term",
+ /* 37 */ "ccons ::= DEFAULT scantok ID|INDEXED",
+ /* 38 */ "ccons ::= NOT NULL onconf",
+ /* 39 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
+ /* 40 */ "ccons ::= UNIQUE onconf",
+ /* 41 */ "ccons ::= CHECK LP expr RP",
+ /* 42 */ "ccons ::= REFERENCES nm eidlist_opt refargs",
+ /* 43 */ "ccons ::= defer_subclause",
+ /* 44 */ "ccons ::= COLLATE ID|STRING",
+ /* 45 */ "generated ::= LP expr RP",
+ /* 46 */ "generated ::= LP expr RP ID",
+ /* 47 */ "autoinc ::=",
+ /* 48 */ "autoinc ::= AUTOINCR",
+ /* 49 */ "refargs ::=",
+ /* 50 */ "refargs ::= refargs refarg",
+ /* 51 */ "refarg ::= MATCH nm",
+ /* 52 */ "refarg ::= ON INSERT refact",
+ /* 53 */ "refarg ::= ON DELETE refact",
+ /* 54 */ "refarg ::= ON UPDATE refact",
+ /* 55 */ "refact ::= SET NULL",
+ /* 56 */ "refact ::= SET DEFAULT",
+ /* 57 */ "refact ::= CASCADE",
+ /* 58 */ "refact ::= RESTRICT",
+ /* 59 */ "refact ::= NO ACTION",
+ /* 60 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
+ /* 61 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
+ /* 62 */ "init_deferred_pred_opt ::=",
+ /* 63 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
+ /* 64 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
+ /* 65 */ "conslist_opt ::=",
+ /* 66 */ "tconscomma ::= COMMA",
+ /* 67 */ "tcons ::= CONSTRAINT nm",
+ /* 68 */ "tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf",
+ /* 69 */ "tcons ::= UNIQUE LP sortlist RP onconf",
+ /* 70 */ "tcons ::= CHECK LP expr RP onconf",
+ /* 71 */ "tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt",
+ /* 72 */ "defer_subclause_opt ::=",
+ /* 73 */ "onconf ::=",
+ /* 74 */ "onconf ::= ON CONFLICT resolvetype",
+ /* 75 */ "orconf ::=",
+ /* 76 */ "orconf ::= OR resolvetype",
+ /* 77 */ "resolvetype ::= IGNORE",
+ /* 78 */ "resolvetype ::= REPLACE",
+ /* 79 */ "cmd ::= DROP TABLE ifexists fullname",
+ /* 80 */ "ifexists ::= IF EXISTS",
+ /* 81 */ "ifexists ::=",
+ /* 82 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select",
+ /* 83 */ "cmd ::= DROP VIEW ifexists fullname",
+ /* 84 */ "cmd ::= select",
+ /* 85 */ "select ::= WITH wqlist selectnowith",
+ /* 86 */ "select ::= WITH RECURSIVE wqlist selectnowith",
+ /* 87 */ "select ::= selectnowith",
+ /* 88 */ "selectnowith ::= selectnowith multiselect_op oneselect",
+ /* 89 */ "multiselect_op ::= UNION",
+ /* 90 */ "multiselect_op ::= UNION ALL",
+ /* 91 */ "multiselect_op ::= EXCEPT|INTERSECT",
+ /* 92 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
+ /* 93 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt",
+ /* 94 */ "values ::= VALUES LP nexprlist RP",
+ /* 95 */ "values ::= values COMMA LP nexprlist RP",
+ /* 96 */ "distinct ::= DISTINCT",
+ /* 97 */ "distinct ::= ALL",
+ /* 98 */ "distinct ::=",
+ /* 99 */ "sclp ::=",
+ /* 100 */ "selcollist ::= sclp scanpt expr scanpt as",
+ /* 101 */ "selcollist ::= sclp scanpt STAR",
+ /* 102 */ "selcollist ::= sclp scanpt nm DOT STAR",
+ /* 103 */ "as ::= AS nm",
+ /* 104 */ "as ::=",
+ /* 105 */ "from ::=",
+ /* 106 */ "from ::= FROM seltablist",
+ /* 107 */ "stl_prefix ::= seltablist joinop",
+ /* 108 */ "stl_prefix ::=",
+ /* 109 */ "seltablist ::= stl_prefix nm dbnm as on_using",
+ /* 110 */ "seltablist ::= stl_prefix nm dbnm as indexed_by on_using",
+ /* 111 */ "seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using",
+ /* 112 */ "seltablist ::= stl_prefix LP select RP as on_using",
+ /* 113 */ "seltablist ::= stl_prefix LP seltablist RP as on_using",
+ /* 114 */ "dbnm ::=",
+ /* 115 */ "dbnm ::= DOT nm",
+ /* 116 */ "fullname ::= nm",
+ /* 117 */ "fullname ::= nm DOT nm",
+ /* 118 */ "xfullname ::= nm",
+ /* 119 */ "xfullname ::= nm DOT nm",
+ /* 120 */ "xfullname ::= nm DOT nm AS nm",
+ /* 121 */ "xfullname ::= nm AS nm",
+ /* 122 */ "joinop ::= COMMA|JOIN",
+ /* 123 */ "joinop ::= JOIN_KW JOIN",
+ /* 124 */ "joinop ::= JOIN_KW nm JOIN",
+ /* 125 */ "joinop ::= JOIN_KW nm nm JOIN",
+ /* 126 */ "on_using ::= ON expr",
+ /* 127 */ "on_using ::= USING LP idlist RP",
+ /* 128 */ "on_using ::=",
+ /* 129 */ "indexed_opt ::=",
+ /* 130 */ "indexed_by ::= INDEXED BY nm",
+ /* 131 */ "indexed_by ::= NOT INDEXED",
+ /* 132 */ "orderby_opt ::=",
+ /* 133 */ "orderby_opt ::= ORDER BY sortlist",
+ /* 134 */ "sortlist ::= sortlist COMMA expr sortorder nulls",
+ /* 135 */ "sortlist ::= expr sortorder nulls",
+ /* 136 */ "sortorder ::= ASC",
+ /* 137 */ "sortorder ::= DESC",
+ /* 138 */ "sortorder ::=",
+ /* 139 */ "nulls ::= NULLS FIRST",
+ /* 140 */ "nulls ::= NULLS LAST",
+ /* 141 */ "nulls ::=",
+ /* 142 */ "groupby_opt ::=",
+ /* 143 */ "groupby_opt ::= GROUP BY nexprlist",
+ /* 144 */ "having_opt ::=",
+ /* 145 */ "having_opt ::= HAVING expr",
+ /* 146 */ "limit_opt ::=",
+ /* 147 */ "limit_opt ::= LIMIT expr",
+ /* 148 */ "limit_opt ::= LIMIT expr OFFSET expr",
+ /* 149 */ "limit_opt ::= LIMIT expr COMMA expr",
+ /* 150 */ "cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret",
+ /* 151 */ "where_opt ::=",
+ /* 152 */ "where_opt ::= WHERE expr",
+ /* 153 */ "where_opt_ret ::=",
+ /* 154 */ "where_opt_ret ::= WHERE expr",
+ /* 155 */ "where_opt_ret ::= RETURNING selcollist",
+ /* 156 */ "where_opt_ret ::= WHERE expr RETURNING selcollist",
+ /* 157 */ "cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret",
+ /* 158 */ "setlist ::= setlist COMMA nm EQ expr",
+ /* 159 */ "setlist ::= setlist COMMA LP idlist RP EQ expr",
+ /* 160 */ "setlist ::= nm EQ expr",
+ /* 161 */ "setlist ::= LP idlist RP EQ expr",
+ /* 162 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert",
+ /* 163 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning",
+ /* 164 */ "upsert ::=",
+ /* 165 */ "upsert ::= RETURNING selcollist",
+ /* 166 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert",
+ /* 167 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert",
+ /* 168 */ "upsert ::= ON CONFLICT DO NOTHING returning",
+ /* 169 */ "upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning",
+ /* 170 */ "returning ::= RETURNING selcollist",
+ /* 171 */ "insert_cmd ::= INSERT orconf",
+ /* 172 */ "insert_cmd ::= REPLACE",
+ /* 173 */ "idlist_opt ::=",
+ /* 174 */ "idlist_opt ::= LP idlist RP",
+ /* 175 */ "idlist ::= idlist COMMA nm",
+ /* 176 */ "idlist ::= nm",
+ /* 177 */ "expr ::= LP expr RP",
+ /* 178 */ "expr ::= ID|INDEXED",
+ /* 179 */ "expr ::= JOIN_KW",
+ /* 180 */ "expr ::= nm DOT nm",
+ /* 181 */ "expr ::= nm DOT nm DOT nm",
+ /* 182 */ "term ::= NULL|FLOAT|BLOB",
+ /* 183 */ "term ::= STRING",
+ /* 184 */ "term ::= INTEGER",
+ /* 185 */ "expr ::= VARIABLE",
+ /* 186 */ "expr ::= expr COLLATE ID|STRING",
+ /* 187 */ "expr ::= CAST LP expr AS typetoken RP",
+ /* 188 */ "expr ::= ID|INDEXED LP distinct exprlist RP",
+ /* 189 */ "expr ::= ID|INDEXED LP STAR RP",
+ /* 190 */ "expr ::= ID|INDEXED LP distinct exprlist RP filter_over",
+ /* 191 */ "expr ::= ID|INDEXED LP STAR RP filter_over",
+ /* 192 */ "term ::= CTIME_KW",
+ /* 193 */ "expr ::= LP nexprlist COMMA expr RP",
+ /* 194 */ "expr ::= expr AND expr",
+ /* 195 */ "expr ::= expr OR expr",
+ /* 196 */ "expr ::= expr LT|GT|GE|LE expr",
+ /* 197 */ "expr ::= expr EQ|NE expr",
+ /* 198 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
+ /* 199 */ "expr ::= expr PLUS|MINUS expr",
+ /* 200 */ "expr ::= expr STAR|SLASH|REM expr",
+ /* 201 */ "expr ::= expr CONCAT expr",
+ /* 202 */ "likeop ::= NOT LIKE_KW|MATCH",
+ /* 203 */ "expr ::= expr likeop expr",
+ /* 204 */ "expr ::= expr likeop expr ESCAPE expr",
+ /* 205 */ "expr ::= expr ISNULL|NOTNULL",
+ /* 206 */ "expr ::= expr NOT NULL",
+ /* 207 */ "expr ::= expr IS expr",
+ /* 208 */ "expr ::= expr IS NOT expr",
+ /* 209 */ "expr ::= expr IS NOT DISTINCT FROM expr",
+ /* 210 */ "expr ::= expr IS DISTINCT FROM expr",
+ /* 211 */ "expr ::= NOT expr",
+ /* 212 */ "expr ::= BITNOT expr",
+ /* 213 */ "expr ::= PLUS|MINUS expr",
+ /* 214 */ "expr ::= expr PTR expr",
+ /* 215 */ "between_op ::= BETWEEN",
+ /* 216 */ "between_op ::= NOT BETWEEN",
+ /* 217 */ "expr ::= expr between_op expr AND expr",
+ /* 218 */ "in_op ::= IN",
+ /* 219 */ "in_op ::= NOT IN",
+ /* 220 */ "expr ::= expr in_op LP exprlist RP",
+ /* 221 */ "expr ::= LP select RP",
+ /* 222 */ "expr ::= expr in_op LP select RP",
+ /* 223 */ "expr ::= expr in_op nm dbnm paren_exprlist",
+ /* 224 */ "expr ::= EXISTS LP select RP",
+ /* 225 */ "expr ::= CASE case_operand case_exprlist case_else END",
+ /* 226 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
+ /* 227 */ "case_exprlist ::= WHEN expr THEN expr",
+ /* 228 */ "case_else ::= ELSE expr",
+ /* 229 */ "case_else ::=",
+ /* 230 */ "case_operand ::= expr",
+ /* 231 */ "case_operand ::=",
+ /* 232 */ "exprlist ::=",
+ /* 233 */ "nexprlist ::= nexprlist COMMA expr",
+ /* 234 */ "nexprlist ::= expr",
+ /* 235 */ "paren_exprlist ::=",
+ /* 236 */ "paren_exprlist ::= LP exprlist RP",
+ /* 237 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt",
+ /* 238 */ "uniqueflag ::= UNIQUE",
+ /* 239 */ "uniqueflag ::=",
+ /* 240 */ "eidlist_opt ::=",
+ /* 241 */ "eidlist_opt ::= LP eidlist RP",
+ /* 242 */ "eidlist ::= eidlist COMMA nm collate sortorder",
+ /* 243 */ "eidlist ::= nm collate sortorder",
+ /* 244 */ "collate ::=",
+ /* 245 */ "collate ::= COLLATE ID|STRING",
+ /* 246 */ "cmd ::= DROP INDEX ifexists fullname",
+ /* 247 */ "cmd ::= VACUUM vinto",
+ /* 248 */ "cmd ::= VACUUM nm vinto",
+ /* 249 */ "vinto ::= INTO expr",
+ /* 250 */ "vinto ::=",
+ /* 251 */ "cmd ::= PRAGMA nm dbnm",
+ /* 252 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
+ /* 253 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
+ /* 254 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
+ /* 255 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP",
+ /* 256 */ "plus_num ::= PLUS INTEGER|FLOAT",
+ /* 257 */ "minus_num ::= MINUS INTEGER|FLOAT",
+ /* 258 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END",
+ /* 259 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
+ /* 260 */ "trigger_time ::= BEFORE|AFTER",
+ /* 261 */ "trigger_time ::= INSTEAD OF",
+ /* 262 */ "trigger_time ::=",
+ /* 263 */ "trigger_event ::= DELETE|INSERT",
+ /* 264 */ "trigger_event ::= UPDATE",
+ /* 265 */ "trigger_event ::= UPDATE OF idlist",
+ /* 266 */ "when_clause ::=",
+ /* 267 */ "when_clause ::= WHEN expr",
+ /* 268 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
+ /* 269 */ "trigger_cmd_list ::= trigger_cmd SEMI",
+ /* 270 */ "trnm ::= nm DOT nm",
+ /* 271 */ "tridxby ::= INDEXED BY nm",
+ /* 272 */ "tridxby ::= NOT INDEXED",
+ /* 273 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt",
+ /* 274 */ "trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt",
+ /* 275 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt",
+ /* 276 */ "trigger_cmd ::= scanpt select scanpt",
+ /* 277 */ "expr ::= RAISE LP IGNORE RP",
+ /* 278 */ "expr ::= RAISE LP raisetype COMMA nm RP",
+ /* 279 */ "raisetype ::= ROLLBACK",
+ /* 280 */ "raisetype ::= ABORT",
+ /* 281 */ "raisetype ::= FAIL",
+ /* 282 */ "cmd ::= DROP TRIGGER ifexists fullname",
+ /* 283 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
+ /* 284 */ "cmd ::= DETACH database_kw_opt expr",
+ /* 285 */ "key_opt ::=",
+ /* 286 */ "key_opt ::= KEY expr",
+ /* 287 */ "cmd ::= REINDEX",
+ /* 288 */ "cmd ::= REINDEX nm dbnm",
+ /* 289 */ "cmd ::= ANALYZE",
+ /* 290 */ "cmd ::= ANALYZE nm dbnm",
+ /* 291 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
+ /* 292 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist",
+ /* 293 */ "cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm",
+ /* 294 */ "add_column_fullname ::= fullname",
+ /* 295 */ "cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm",
+ /* 296 */ "cmd ::= create_vtab",
+ /* 297 */ "cmd ::= create_vtab LP vtabarglist RP",
+ /* 298 */ "create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm",
+ /* 299 */ "vtabarg ::=",
+ /* 300 */ "vtabargtoken ::= ANY",
+ /* 301 */ "vtabargtoken ::= lp anylist RP",
+ /* 302 */ "lp ::= LP",
+ /* 303 */ "with ::= WITH wqlist",
+ /* 304 */ "with ::= WITH RECURSIVE wqlist",
+ /* 305 */ "wqas ::= AS",
+ /* 306 */ "wqas ::= AS MATERIALIZED",
+ /* 307 */ "wqas ::= AS NOT MATERIALIZED",
+ /* 308 */ "wqitem ::= nm eidlist_opt wqas LP select RP",
+ /* 309 */ "wqlist ::= wqitem",
+ /* 310 */ "wqlist ::= wqlist COMMA wqitem",
+ /* 311 */ "windowdefn_list ::= windowdefn",
+ /* 312 */ "windowdefn_list ::= windowdefn_list COMMA windowdefn",
+ /* 313 */ "windowdefn ::= nm AS LP window RP",
+ /* 314 */ "window ::= PARTITION BY nexprlist orderby_opt frame_opt",
+ /* 315 */ "window ::= nm PARTITION BY nexprlist orderby_opt frame_opt",
+ /* 316 */ "window ::= ORDER BY sortlist frame_opt",
+ /* 317 */ "window ::= nm ORDER BY sortlist frame_opt",
+ /* 318 */ "window ::= frame_opt",
+ /* 319 */ "window ::= nm frame_opt",
+ /* 320 */ "frame_opt ::=",
+ /* 321 */ "frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt",
+ /* 322 */ "frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt",
+ /* 323 */ "range_or_rows ::= RANGE|ROWS|GROUPS",
+ /* 324 */ "frame_bound_s ::= frame_bound",
+ /* 325 */ "frame_bound_s ::= UNBOUNDED PRECEDING",
+ /* 326 */ "frame_bound_e ::= frame_bound",
+ /* 327 */ "frame_bound_e ::= UNBOUNDED FOLLOWING",
+ /* 328 */ "frame_bound ::= expr PRECEDING|FOLLOWING",
+ /* 329 */ "frame_bound ::= CURRENT ROW",
+ /* 330 */ "frame_exclude_opt ::=",
+ /* 331 */ "frame_exclude_opt ::= EXCLUDE frame_exclude",
+ /* 332 */ "frame_exclude ::= NO OTHERS",
+ /* 333 */ "frame_exclude ::= CURRENT ROW",
+ /* 334 */ "frame_exclude ::= GROUP|TIES",
+ /* 335 */ "window_clause ::= WINDOW windowdefn_list",
+ /* 336 */ "filter_over ::= filter_clause over_clause",
+ /* 337 */ "filter_over ::= over_clause",
+ /* 338 */ "filter_over ::= filter_clause",
+ /* 339 */ "over_clause ::= OVER LP window RP",
+ /* 340 */ "over_clause ::= OVER nm",
+ /* 341 */ "filter_clause ::= FILTER LP WHERE expr RP",
+ /* 342 */ "input ::= cmdlist",
+ /* 343 */ "cmdlist ::= cmdlist ecmd",
+ /* 344 */ "cmdlist ::= ecmd",
+ /* 345 */ "ecmd ::= SEMI",
+ /* 346 */ "ecmd ::= cmdx SEMI",
+ /* 347 */ "ecmd ::= explain cmdx SEMI",
+ /* 348 */ "trans_opt ::=",
+ /* 349 */ "trans_opt ::= TRANSACTION",
+ /* 350 */ "trans_opt ::= TRANSACTION nm",
+ /* 351 */ "savepoint_opt ::= SAVEPOINT",
+ /* 352 */ "savepoint_opt ::=",
+ /* 353 */ "cmd ::= create_table create_table_args",
+ /* 354 */ "table_option_set ::= table_option",
+ /* 355 */ "columnlist ::= columnlist COMMA columnname carglist",
+ /* 356 */ "columnlist ::= columnname carglist",
+ /* 357 */ "nm ::= ID|INDEXED",
+ /* 358 */ "nm ::= STRING",
+ /* 359 */ "nm ::= JOIN_KW",
+ /* 360 */ "typetoken ::= typename",
+ /* 361 */ "typename ::= ID|STRING",
+ /* 362 */ "signed ::= plus_num",
+ /* 363 */ "signed ::= minus_num",
+ /* 364 */ "carglist ::= carglist ccons",
+ /* 365 */ "carglist ::=",
+ /* 366 */ "ccons ::= NULL onconf",
+ /* 367 */ "ccons ::= GENERATED ALWAYS AS generated",
+ /* 368 */ "ccons ::= AS generated",
+ /* 369 */ "conslist_opt ::= COMMA conslist",
+ /* 370 */ "conslist ::= conslist tconscomma tcons",
+ /* 371 */ "conslist ::= tcons",
+ /* 372 */ "tconscomma ::=",
+ /* 373 */ "defer_subclause_opt ::= defer_subclause",
+ /* 374 */ "resolvetype ::= raisetype",
+ /* 375 */ "selectnowith ::= oneselect",
+ /* 376 */ "oneselect ::= values",
+ /* 377 */ "sclp ::= selcollist COMMA",
+ /* 378 */ "as ::= ID|STRING",
+ /* 379 */ "indexed_opt ::= indexed_by",
+ /* 380 */ "returning ::=",
+ /* 381 */ "expr ::= term",
+ /* 382 */ "likeop ::= LIKE_KW|MATCH",
+ /* 383 */ "exprlist ::= nexprlist",
+ /* 384 */ "nmnum ::= plus_num",
+ /* 385 */ "nmnum ::= nm",
+ /* 386 */ "nmnum ::= ON",
+ /* 387 */ "nmnum ::= DELETE",
+ /* 388 */ "nmnum ::= DEFAULT",
+ /* 389 */ "plus_num ::= INTEGER|FLOAT",
+ /* 390 */ "foreach_clause ::=",
+ /* 391 */ "foreach_clause ::= FOR EACH ROW",
+ /* 392 */ "trnm ::= nm",
+ /* 393 */ "tridxby ::=",
+ /* 394 */ "database_kw_opt ::= DATABASE",
+ /* 395 */ "database_kw_opt ::=",
+ /* 396 */ "kwcolumn_opt ::=",
+ /* 397 */ "kwcolumn_opt ::= COLUMNKW",
+ /* 398 */ "vtabarglist ::= vtabarg",
+ /* 399 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
+ /* 400 */ "vtabarg ::= vtabarg vtabargtoken",
+ /* 401 */ "anylist ::=",
+ /* 402 */ "anylist ::= anylist LP anylist RP",
+ /* 403 */ "anylist ::= anylist ANY",
+ /* 404 */ "with ::=",
+};
+#endif /* NDEBUG */
+
+
+#if YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack. Return the number
+** of errors. Return 0 on success.
+*/
+static int yyGrowStack(yyParser *p){
+ int newSize;
+ int idx;
+ yyStackEntry *pNew;
+
+ newSize = p->yystksz*2 + 100;
+ idx = p->yytos ? (int)(p->yytos - p->yystack) : 0;
+ if( p->yystack==&p->yystk0 ){
+ pNew = malloc(newSize*sizeof(pNew[0]));
+ if( pNew ) pNew[0] = p->yystk0;
+ }else{
+ pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
+ }
+ if( pNew ){
+ p->yystack = pNew;
+ p->yytos = &p->yystack[idx];
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n",
+ yyTracePrompt, p->yystksz, newSize);
+ }
+#endif
+ p->yystksz = newSize;
+ }
+ return pNew==0;
+}
+#endif
+
+/* Datatype of the argument to the memory allocated passed as the
+** second argument to sqlite3ParserAlloc() below. This can be changed by
+** putting an appropriate #define in the %include section of the input
+** grammar.
+*/
+#ifndef YYMALLOCARGTYPE
+# define YYMALLOCARGTYPE size_t
+#endif
+
+/* Initialize a new parser that has already been allocated.
+*/
+SQLITE_PRIVATE void sqlite3ParserInit(void *yypRawParser sqlite3ParserCTX_PDECL){
+ yyParser *yypParser = (yyParser*)yypRawParser;
+ sqlite3ParserCTX_STORE
+#ifdef YYTRACKMAXSTACKDEPTH
+ yypParser->yyhwm = 0;
+#endif
+#if YYSTACKDEPTH<=0
+ yypParser->yytos = NULL;
+ yypParser->yystack = NULL;
+ yypParser->yystksz = 0;
+ if( yyGrowStack(yypParser) ){
+ yypParser->yystack = &yypParser->yystk0;
+ yypParser->yystksz = 1;
+ }
+#endif
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ yypParser->yytos = yypParser->yystack;
+ yypParser->yystack[0].stateno = 0;
+ yypParser->yystack[0].major = 0;
+#if YYSTACKDEPTH>0
+ yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1];
+#endif
+}
+
+#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqlite3Parser and sqlite3ParserFree.
+*/
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE) sqlite3ParserCTX_PDECL){
+ yyParser *yypParser;
+ yypParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
+ if( yypParser ){
+ sqlite3ParserCTX_STORE
+ sqlite3ParserInit(yypParser sqlite3ParserCTX_PARAM);
+ }
+ return (void*)yypParser;
+}
+#endif /* sqlite3Parser_ENGINEALWAYSONSTACK */
+
+
+/* The following function deletes the "minor type" or semantic value
+** associated with a symbol. The symbol can be either a terminal
+** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
+** a pointer to the value to be deleted. The code used to do the
+** deletions is derived from the %destructor and/or %token_destructor
+** directives of the input grammar.
+*/
+static void yy_destructor(
+ yyParser *yypParser, /* The parser */
+ YYCODETYPE yymajor, /* Type code for object to destroy */
+ YYMINORTYPE *yypminor /* The object to be destroyed */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+ switch( yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are *not* used
+ ** inside the C code.
+ */
+/********* Begin destructor definitions ***************************************/
+ case 204: /* select */
+ case 239: /* selectnowith */
+ case 240: /* oneselect */
+ case 252: /* values */
+{
+sqlite3SelectDelete(pParse->db, (yypminor->yy47));
+}
+ break;
+ case 216: /* term */
+ case 217: /* expr */
+ case 246: /* where_opt */
+ case 248: /* having_opt */
+ case 267: /* where_opt_ret */
+ case 278: /* case_operand */
+ case 280: /* case_else */
+ case 283: /* vinto */
+ case 290: /* when_clause */
+ case 295: /* key_opt */
+ case 311: /* filter_clause */
+{
+sqlite3ExprDelete(pParse->db, (yypminor->yy528));
+}
+ break;
+ case 221: /* eidlist_opt */
+ case 231: /* sortlist */
+ case 232: /* eidlist */
+ case 244: /* selcollist */
+ case 247: /* groupby_opt */
+ case 249: /* orderby_opt */
+ case 253: /* nexprlist */
+ case 254: /* sclp */
+ case 261: /* exprlist */
+ case 268: /* setlist */
+ case 277: /* paren_exprlist */
+ case 279: /* case_exprlist */
+ case 310: /* part_opt */
+{
+sqlite3ExprListDelete(pParse->db, (yypminor->yy322));
+}
+ break;
+ case 238: /* fullname */
+ case 245: /* from */
+ case 256: /* seltablist */
+ case 257: /* stl_prefix */
+ case 262: /* xfullname */
+{
+sqlite3SrcListDelete(pParse->db, (yypminor->yy131));
+}
+ break;
+ case 241: /* wqlist */
+{
+sqlite3WithDelete(pParse->db, (yypminor->yy521));
+}
+ break;
+ case 251: /* window_clause */
+ case 306: /* windowdefn_list */
+{
+sqlite3WindowListDelete(pParse->db, (yypminor->yy41));
+}
+ break;
+ case 263: /* idlist */
+ case 270: /* idlist_opt */
+{
+sqlite3IdListDelete(pParse->db, (yypminor->yy254));
+}
+ break;
+ case 273: /* filter_over */
+ case 307: /* windowdefn */
+ case 308: /* window */
+ case 309: /* frame_opt */
+ case 312: /* over_clause */
+{
+sqlite3WindowDelete(pParse->db, (yypminor->yy41));
+}
+ break;
+ case 286: /* trigger_cmd_list */
+ case 291: /* trigger_cmd */
+{
+sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy33));
+}
+ break;
+ case 288: /* trigger_event */
+{
+sqlite3IdListDelete(pParse->db, (yypminor->yy180).b);
+}
+ break;
+ case 314: /* frame_bound */
+ case 315: /* frame_bound_s */
+ case 316: /* frame_bound_e */
+{
+sqlite3ExprDelete(pParse->db, (yypminor->yy595).pExpr);
+}
+ break;
+/********* End destructor definitions *****************************************/
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+*/
+static void yy_pop_parser_stack(yyParser *pParser){
+ yyStackEntry *yytos;
+ assert( pParser->yytos!=0 );
+ assert( pParser->yytos > pParser->yystack );
+ yytos = pParser->yytos--;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sPopping %s\n",
+ yyTracePrompt,
+ yyTokenName[yytos->major]);
+ }
+#endif
+ yy_destructor(pParser, yytos->major, &yytos->minor);
+}
+
+/*
+** Clear all secondary memory allocations from the parser
+*/
+SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){
+ yyParser *pParser = (yyParser*)p;
+ while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser);
+#if YYSTACKDEPTH<=0
+ if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack);
+#endif
+}
+
+#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
+/*
+** Deallocate and destroy a parser. Destructors are called for
+** all stack elements before shutting the parser down.
+**
+** If the YYPARSEFREENEVERNULL macro exists (for example because it
+** is defined in a %include section of the input grammar) then it is
+** assumed that the input pointer is never NULL.
+*/
+SQLITE_PRIVATE void sqlite3ParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+#ifndef YYPARSEFREENEVERNULL
+ if( p==0 ) return;
+#endif
+ sqlite3ParserFinalize(p);
+ (*freeProc)(p);
+}
+#endif /* sqlite3Parser_ENGINEALWAYSONSTACK */
+
+/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
+ yyParser *pParser = (yyParser*)p;
+ return pParser->yyhwm;
+}
+#endif
+
+/* This array of booleans keeps track of the parser statement
+** coverage. The element yycoverage[X][Y] is set when the parser
+** is in state X and has a lookahead token Y. In a well-tested
+** systems, every element of this matrix should end up being set.
+*/
+#if defined(YYCOVERAGE)
+static unsigned char yycoverage[YYNSTATE][YYNTOKEN];
+#endif
+
+/*
+** Write into out a description of every state/lookahead combination that
+**
+** (1) has not been used by the parser, and
+** (2) is not a syntax error.
+**
+** Return the number of missed state/lookahead combinations.
+*/
+#if defined(YYCOVERAGE)
+SQLITE_PRIVATE int sqlite3ParserCoverage(FILE *out){
+ int stateno, iLookAhead, i;
+ int nMissed = 0;
+ for(stateno=0; stateno<YYNSTATE; stateno++){
+ i = yy_shift_ofst[stateno];
+ for(iLookAhead=0; iLookAhead<YYNTOKEN; iLookAhead++){
+ if( yy_lookahead[i+iLookAhead]!=iLookAhead ) continue;
+ if( yycoverage[stateno][iLookAhead]==0 ) nMissed++;
+ if( out ){
+ fprintf(out,"State %d lookahead %s %s\n", stateno,
+ yyTokenName[iLookAhead],
+ yycoverage[stateno][iLookAhead] ? "ok" : "missed");
+ }
+ }
+ }
+ return nMissed;
+}
+#endif
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+*/
+static YYACTIONTYPE yy_find_shift_action(
+ YYCODETYPE iLookAhead, /* The look-ahead token */
+ YYACTIONTYPE stateno /* Current state number */
+){
+ int i;
+
+ if( stateno>YY_MAX_SHIFT ) return stateno;
+ assert( stateno <= YY_SHIFT_COUNT );
+#if defined(YYCOVERAGE)
+ yycoverage[stateno][iLookAhead] = 1;
+#endif
+ do{
+ i = yy_shift_ofst[stateno];
+ assert( i>=0 );
+ assert( i<=YY_ACTTAB_COUNT );
+ assert( i+YYNTOKEN<=(int)YY_NLOOKAHEAD );
+ assert( iLookAhead!=YYNOCODE );
+ assert( iLookAhead < YYNTOKEN );
+ i += iLookAhead;
+ assert( i<(int)YY_NLOOKAHEAD );
+ if( yy_lookahead[i]!=iLookAhead ){
+#ifdef YYFALLBACK
+ YYCODETYPE iFallback; /* Fallback token */
+ assert( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0]) );
+ iFallback = yyFallback[iLookAhead];
+ if( iFallback!=0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
+ }
+#endif
+ assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
+ iLookAhead = iFallback;
+ continue;
+ }
+#endif
+#ifdef YYWILDCARD
+ {
+ int j = i - iLookAhead + YYWILDCARD;
+ assert( j<(int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])) );
+ if( yy_lookahead[j]==YYWILDCARD && iLookAhead>0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead],
+ yyTokenName[YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return yy_action[j];
+ }
+ }
+#endif /* YYWILDCARD */
+ return yy_default[stateno];
+ }else{
+ assert( i>=0 && i<(int)(sizeof(yy_action)/sizeof(yy_action[0])) );
+ return yy_action[i];
+ }
+ }while(1);
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+*/
+static YYACTIONTYPE yy_find_reduce_action(
+ YYACTIONTYPE stateno, /* Current state number */
+ YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef YYERRORSYMBOL
+ if( stateno>YY_REDUCE_COUNT ){
+ return yy_default[stateno];
+ }
+#else
+ assert( stateno<=YY_REDUCE_COUNT );
+#endif
+ i = yy_reduce_ofst[stateno];
+ assert( iLookAhead!=YYNOCODE );
+ i += iLookAhead;
+#ifdef YYERRORSYMBOL
+ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
+ return yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<YY_ACTTAB_COUNT );
+ assert( yy_lookahead[i]==iLookAhead );
+#endif
+ return yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void yyStackOverflow(yyParser *yypParser){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+/******** Begin %stack_overflow code ******************************************/
+
+ sqlite3ErrorMsg(pParse, "parser stack overflow");
+/******** End %stack_overflow code ********************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument var */
+ sqlite3ParserCTX_STORE
+}
+
+/*
+** Print tracing information for a SHIFT action
+*/
+#ifndef NDEBUG
+static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){
+ if( yyTraceFILE ){
+ if( yyNewState<YYNSTATE ){
+ fprintf(yyTraceFILE,"%s%s '%s', go to state %d\n",
+ yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major],
+ yyNewState);
+ }else{
+ fprintf(yyTraceFILE,"%s%s '%s', pending reduce %d\n",
+ yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major],
+ yyNewState - YY_MIN_REDUCE);
+ }
+ }
+}
+#else
+# define yyTraceShift(X,Y,Z)
+#endif
+
+/*
+** Perform a shift action.
+*/
+static void yy_shift(
+ yyParser *yypParser, /* The parser to be shifted */
+ YYACTIONTYPE yyNewState, /* The new state to shift in */
+ YYCODETYPE yyMajor, /* The major token to shift in */
+ sqlite3ParserTOKENTYPE yyMinor /* The minor token to shift in */
+){
+ yyStackEntry *yytos;
+ yypParser->yytos++;
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
+ yypParser->yyhwm++;
+ assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) );
+ }
+#endif
+#if YYSTACKDEPTH>0
+ if( yypParser->yytos>yypParser->yystackEnd ){
+ yypParser->yytos--;
+ yyStackOverflow(yypParser);
+ return;
+ }
+#else
+ if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){
+ if( yyGrowStack(yypParser) ){
+ yypParser->yytos--;
+ yyStackOverflow(yypParser);
+ return;
+ }
+ }
+#endif
+ if( yyNewState > YY_MAX_SHIFT ){
+ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
+ }
+ yytos = yypParser->yytos;
+ yytos->stateno = yyNewState;
+ yytos->major = yyMajor;
+ yytos->minor.yy0 = yyMinor;
+ yyTraceShift(yypParser, yyNewState, "Shift");
+}
+
+/* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side
+** of that rule */
+static const YYCODETYPE yyRuleInfoLhs[] = {
+ 189, /* (0) explain ::= EXPLAIN */
+ 189, /* (1) explain ::= EXPLAIN QUERY PLAN */
+ 188, /* (2) cmdx ::= cmd */
+ 190, /* (3) cmd ::= BEGIN transtype trans_opt */
+ 191, /* (4) transtype ::= */
+ 191, /* (5) transtype ::= DEFERRED */
+ 191, /* (6) transtype ::= IMMEDIATE */
+ 191, /* (7) transtype ::= EXCLUSIVE */
+ 190, /* (8) cmd ::= COMMIT|END trans_opt */
+ 190, /* (9) cmd ::= ROLLBACK trans_opt */
+ 190, /* (10) cmd ::= SAVEPOINT nm */
+ 190, /* (11) cmd ::= RELEASE savepoint_opt nm */
+ 190, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
+ 195, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */
+ 197, /* (14) createkw ::= CREATE */
+ 199, /* (15) ifnotexists ::= */
+ 199, /* (16) ifnotexists ::= IF NOT EXISTS */
+ 198, /* (17) temp ::= TEMP */
+ 198, /* (18) temp ::= */
+ 196, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */
+ 196, /* (20) create_table_args ::= AS select */
+ 203, /* (21) table_option_set ::= */
+ 203, /* (22) table_option_set ::= table_option_set COMMA table_option */
+ 205, /* (23) table_option ::= WITHOUT nm */
+ 205, /* (24) table_option ::= nm */
+ 206, /* (25) columnname ::= nm typetoken */
+ 208, /* (26) typetoken ::= */
+ 208, /* (27) typetoken ::= typename LP signed RP */
+ 208, /* (28) typetoken ::= typename LP signed COMMA signed RP */
+ 209, /* (29) typename ::= typename ID|STRING */
+ 213, /* (30) scanpt ::= */
+ 214, /* (31) scantok ::= */
+ 215, /* (32) ccons ::= CONSTRAINT nm */
+ 215, /* (33) ccons ::= DEFAULT scantok term */
+ 215, /* (34) ccons ::= DEFAULT LP expr RP */
+ 215, /* (35) ccons ::= DEFAULT PLUS scantok term */
+ 215, /* (36) ccons ::= DEFAULT MINUS scantok term */
+ 215, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */
+ 215, /* (38) ccons ::= NOT NULL onconf */
+ 215, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */
+ 215, /* (40) ccons ::= UNIQUE onconf */
+ 215, /* (41) ccons ::= CHECK LP expr RP */
+ 215, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */
+ 215, /* (43) ccons ::= defer_subclause */
+ 215, /* (44) ccons ::= COLLATE ID|STRING */
+ 224, /* (45) generated ::= LP expr RP */
+ 224, /* (46) generated ::= LP expr RP ID */
+ 220, /* (47) autoinc ::= */
+ 220, /* (48) autoinc ::= AUTOINCR */
+ 222, /* (49) refargs ::= */
+ 222, /* (50) refargs ::= refargs refarg */
+ 225, /* (51) refarg ::= MATCH nm */
+ 225, /* (52) refarg ::= ON INSERT refact */
+ 225, /* (53) refarg ::= ON DELETE refact */
+ 225, /* (54) refarg ::= ON UPDATE refact */
+ 226, /* (55) refact ::= SET NULL */
+ 226, /* (56) refact ::= SET DEFAULT */
+ 226, /* (57) refact ::= CASCADE */
+ 226, /* (58) refact ::= RESTRICT */
+ 226, /* (59) refact ::= NO ACTION */
+ 223, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+ 223, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ 227, /* (62) init_deferred_pred_opt ::= */
+ 227, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ 227, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+ 202, /* (65) conslist_opt ::= */
+ 229, /* (66) tconscomma ::= COMMA */
+ 230, /* (67) tcons ::= CONSTRAINT nm */
+ 230, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
+ 230, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */
+ 230, /* (70) tcons ::= CHECK LP expr RP onconf */
+ 230, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
+ 233, /* (72) defer_subclause_opt ::= */
+ 218, /* (73) onconf ::= */
+ 218, /* (74) onconf ::= ON CONFLICT resolvetype */
+ 234, /* (75) orconf ::= */
+ 234, /* (76) orconf ::= OR resolvetype */
+ 235, /* (77) resolvetype ::= IGNORE */
+ 235, /* (78) resolvetype ::= REPLACE */
+ 190, /* (79) cmd ::= DROP TABLE ifexists fullname */
+ 237, /* (80) ifexists ::= IF EXISTS */
+ 237, /* (81) ifexists ::= */
+ 190, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
+ 190, /* (83) cmd ::= DROP VIEW ifexists fullname */
+ 190, /* (84) cmd ::= select */
+ 204, /* (85) select ::= WITH wqlist selectnowith */
+ 204, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */
+ 204, /* (87) select ::= selectnowith */
+ 239, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */
+ 242, /* (89) multiselect_op ::= UNION */
+ 242, /* (90) multiselect_op ::= UNION ALL */
+ 242, /* (91) multiselect_op ::= EXCEPT|INTERSECT */
+ 240, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+ 240, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */
+ 252, /* (94) values ::= VALUES LP nexprlist RP */
+ 252, /* (95) values ::= values COMMA LP nexprlist RP */
+ 243, /* (96) distinct ::= DISTINCT */
+ 243, /* (97) distinct ::= ALL */
+ 243, /* (98) distinct ::= */
+ 254, /* (99) sclp ::= */
+ 244, /* (100) selcollist ::= sclp scanpt expr scanpt as */
+ 244, /* (101) selcollist ::= sclp scanpt STAR */
+ 244, /* (102) selcollist ::= sclp scanpt nm DOT STAR */
+ 255, /* (103) as ::= AS nm */
+ 255, /* (104) as ::= */
+ 245, /* (105) from ::= */
+ 245, /* (106) from ::= FROM seltablist */
+ 257, /* (107) stl_prefix ::= seltablist joinop */
+ 257, /* (108) stl_prefix ::= */
+ 256, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */
+ 256, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */
+ 256, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */
+ 256, /* (112) seltablist ::= stl_prefix LP select RP as on_using */
+ 256, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */
+ 200, /* (114) dbnm ::= */
+ 200, /* (115) dbnm ::= DOT nm */
+ 238, /* (116) fullname ::= nm */
+ 238, /* (117) fullname ::= nm DOT nm */
+ 262, /* (118) xfullname ::= nm */
+ 262, /* (119) xfullname ::= nm DOT nm */
+ 262, /* (120) xfullname ::= nm DOT nm AS nm */
+ 262, /* (121) xfullname ::= nm AS nm */
+ 258, /* (122) joinop ::= COMMA|JOIN */
+ 258, /* (123) joinop ::= JOIN_KW JOIN */
+ 258, /* (124) joinop ::= JOIN_KW nm JOIN */
+ 258, /* (125) joinop ::= JOIN_KW nm nm JOIN */
+ 259, /* (126) on_using ::= ON expr */
+ 259, /* (127) on_using ::= USING LP idlist RP */
+ 259, /* (128) on_using ::= */
+ 264, /* (129) indexed_opt ::= */
+ 260, /* (130) indexed_by ::= INDEXED BY nm */
+ 260, /* (131) indexed_by ::= NOT INDEXED */
+ 249, /* (132) orderby_opt ::= */
+ 249, /* (133) orderby_opt ::= ORDER BY sortlist */
+ 231, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */
+ 231, /* (135) sortlist ::= expr sortorder nulls */
+ 219, /* (136) sortorder ::= ASC */
+ 219, /* (137) sortorder ::= DESC */
+ 219, /* (138) sortorder ::= */
+ 265, /* (139) nulls ::= NULLS FIRST */
+ 265, /* (140) nulls ::= NULLS LAST */
+ 265, /* (141) nulls ::= */
+ 247, /* (142) groupby_opt ::= */
+ 247, /* (143) groupby_opt ::= GROUP BY nexprlist */
+ 248, /* (144) having_opt ::= */
+ 248, /* (145) having_opt ::= HAVING expr */
+ 250, /* (146) limit_opt ::= */
+ 250, /* (147) limit_opt ::= LIMIT expr */
+ 250, /* (148) limit_opt ::= LIMIT expr OFFSET expr */
+ 250, /* (149) limit_opt ::= LIMIT expr COMMA expr */
+ 190, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */
+ 246, /* (151) where_opt ::= */
+ 246, /* (152) where_opt ::= WHERE expr */
+ 267, /* (153) where_opt_ret ::= */
+ 267, /* (154) where_opt_ret ::= WHERE expr */
+ 267, /* (155) where_opt_ret ::= RETURNING selcollist */
+ 267, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */
+ 190, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */
+ 268, /* (158) setlist ::= setlist COMMA nm EQ expr */
+ 268, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */
+ 268, /* (160) setlist ::= nm EQ expr */
+ 268, /* (161) setlist ::= LP idlist RP EQ expr */
+ 190, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */
+ 190, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */
+ 271, /* (164) upsert ::= */
+ 271, /* (165) upsert ::= RETURNING selcollist */
+ 271, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */
+ 271, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */
+ 271, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */
+ 271, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */
+ 272, /* (170) returning ::= RETURNING selcollist */
+ 269, /* (171) insert_cmd ::= INSERT orconf */
+ 269, /* (172) insert_cmd ::= REPLACE */
+ 270, /* (173) idlist_opt ::= */
+ 270, /* (174) idlist_opt ::= LP idlist RP */
+ 263, /* (175) idlist ::= idlist COMMA nm */
+ 263, /* (176) idlist ::= nm */
+ 217, /* (177) expr ::= LP expr RP */
+ 217, /* (178) expr ::= ID|INDEXED */
+ 217, /* (179) expr ::= JOIN_KW */
+ 217, /* (180) expr ::= nm DOT nm */
+ 217, /* (181) expr ::= nm DOT nm DOT nm */
+ 216, /* (182) term ::= NULL|FLOAT|BLOB */
+ 216, /* (183) term ::= STRING */
+ 216, /* (184) term ::= INTEGER */
+ 217, /* (185) expr ::= VARIABLE */
+ 217, /* (186) expr ::= expr COLLATE ID|STRING */
+ 217, /* (187) expr ::= CAST LP expr AS typetoken RP */
+ 217, /* (188) expr ::= ID|INDEXED LP distinct exprlist RP */
+ 217, /* (189) expr ::= ID|INDEXED LP STAR RP */
+ 217, /* (190) expr ::= ID|INDEXED LP distinct exprlist RP filter_over */
+ 217, /* (191) expr ::= ID|INDEXED LP STAR RP filter_over */
+ 216, /* (192) term ::= CTIME_KW */
+ 217, /* (193) expr ::= LP nexprlist COMMA expr RP */
+ 217, /* (194) expr ::= expr AND expr */
+ 217, /* (195) expr ::= expr OR expr */
+ 217, /* (196) expr ::= expr LT|GT|GE|LE expr */
+ 217, /* (197) expr ::= expr EQ|NE expr */
+ 217, /* (198) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
+ 217, /* (199) expr ::= expr PLUS|MINUS expr */
+ 217, /* (200) expr ::= expr STAR|SLASH|REM expr */
+ 217, /* (201) expr ::= expr CONCAT expr */
+ 274, /* (202) likeop ::= NOT LIKE_KW|MATCH */
+ 217, /* (203) expr ::= expr likeop expr */
+ 217, /* (204) expr ::= expr likeop expr ESCAPE expr */
+ 217, /* (205) expr ::= expr ISNULL|NOTNULL */
+ 217, /* (206) expr ::= expr NOT NULL */
+ 217, /* (207) expr ::= expr IS expr */
+ 217, /* (208) expr ::= expr IS NOT expr */
+ 217, /* (209) expr ::= expr IS NOT DISTINCT FROM expr */
+ 217, /* (210) expr ::= expr IS DISTINCT FROM expr */
+ 217, /* (211) expr ::= NOT expr */
+ 217, /* (212) expr ::= BITNOT expr */
+ 217, /* (213) expr ::= PLUS|MINUS expr */
+ 217, /* (214) expr ::= expr PTR expr */
+ 275, /* (215) between_op ::= BETWEEN */
+ 275, /* (216) between_op ::= NOT BETWEEN */
+ 217, /* (217) expr ::= expr between_op expr AND expr */
+ 276, /* (218) in_op ::= IN */
+ 276, /* (219) in_op ::= NOT IN */
+ 217, /* (220) expr ::= expr in_op LP exprlist RP */
+ 217, /* (221) expr ::= LP select RP */
+ 217, /* (222) expr ::= expr in_op LP select RP */
+ 217, /* (223) expr ::= expr in_op nm dbnm paren_exprlist */
+ 217, /* (224) expr ::= EXISTS LP select RP */
+ 217, /* (225) expr ::= CASE case_operand case_exprlist case_else END */
+ 279, /* (226) case_exprlist ::= case_exprlist WHEN expr THEN expr */
+ 279, /* (227) case_exprlist ::= WHEN expr THEN expr */
+ 280, /* (228) case_else ::= ELSE expr */
+ 280, /* (229) case_else ::= */
+ 278, /* (230) case_operand ::= expr */
+ 278, /* (231) case_operand ::= */
+ 261, /* (232) exprlist ::= */
+ 253, /* (233) nexprlist ::= nexprlist COMMA expr */
+ 253, /* (234) nexprlist ::= expr */
+ 277, /* (235) paren_exprlist ::= */
+ 277, /* (236) paren_exprlist ::= LP exprlist RP */
+ 190, /* (237) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
+ 281, /* (238) uniqueflag ::= UNIQUE */
+ 281, /* (239) uniqueflag ::= */
+ 221, /* (240) eidlist_opt ::= */
+ 221, /* (241) eidlist_opt ::= LP eidlist RP */
+ 232, /* (242) eidlist ::= eidlist COMMA nm collate sortorder */
+ 232, /* (243) eidlist ::= nm collate sortorder */
+ 282, /* (244) collate ::= */
+ 282, /* (245) collate ::= COLLATE ID|STRING */
+ 190, /* (246) cmd ::= DROP INDEX ifexists fullname */
+ 190, /* (247) cmd ::= VACUUM vinto */
+ 190, /* (248) cmd ::= VACUUM nm vinto */
+ 283, /* (249) vinto ::= INTO expr */
+ 283, /* (250) vinto ::= */
+ 190, /* (251) cmd ::= PRAGMA nm dbnm */
+ 190, /* (252) cmd ::= PRAGMA nm dbnm EQ nmnum */
+ 190, /* (253) cmd ::= PRAGMA nm dbnm LP nmnum RP */
+ 190, /* (254) cmd ::= PRAGMA nm dbnm EQ minus_num */
+ 190, /* (255) cmd ::= PRAGMA nm dbnm LP minus_num RP */
+ 211, /* (256) plus_num ::= PLUS INTEGER|FLOAT */
+ 212, /* (257) minus_num ::= MINUS INTEGER|FLOAT */
+ 190, /* (258) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
+ 285, /* (259) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+ 287, /* (260) trigger_time ::= BEFORE|AFTER */
+ 287, /* (261) trigger_time ::= INSTEAD OF */
+ 287, /* (262) trigger_time ::= */
+ 288, /* (263) trigger_event ::= DELETE|INSERT */
+ 288, /* (264) trigger_event ::= UPDATE */
+ 288, /* (265) trigger_event ::= UPDATE OF idlist */
+ 290, /* (266) when_clause ::= */
+ 290, /* (267) when_clause ::= WHEN expr */
+ 286, /* (268) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+ 286, /* (269) trigger_cmd_list ::= trigger_cmd SEMI */
+ 292, /* (270) trnm ::= nm DOT nm */
+ 293, /* (271) tridxby ::= INDEXED BY nm */
+ 293, /* (272) tridxby ::= NOT INDEXED */
+ 291, /* (273) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */
+ 291, /* (274) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */
+ 291, /* (275) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */
+ 291, /* (276) trigger_cmd ::= scanpt select scanpt */
+ 217, /* (277) expr ::= RAISE LP IGNORE RP */
+ 217, /* (278) expr ::= RAISE LP raisetype COMMA nm RP */
+ 236, /* (279) raisetype ::= ROLLBACK */
+ 236, /* (280) raisetype ::= ABORT */
+ 236, /* (281) raisetype ::= FAIL */
+ 190, /* (282) cmd ::= DROP TRIGGER ifexists fullname */
+ 190, /* (283) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+ 190, /* (284) cmd ::= DETACH database_kw_opt expr */
+ 295, /* (285) key_opt ::= */
+ 295, /* (286) key_opt ::= KEY expr */
+ 190, /* (287) cmd ::= REINDEX */
+ 190, /* (288) cmd ::= REINDEX nm dbnm */
+ 190, /* (289) cmd ::= ANALYZE */
+ 190, /* (290) cmd ::= ANALYZE nm dbnm */
+ 190, /* (291) cmd ::= ALTER TABLE fullname RENAME TO nm */
+ 190, /* (292) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */
+ 190, /* (293) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */
+ 296, /* (294) add_column_fullname ::= fullname */
+ 190, /* (295) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */
+ 190, /* (296) cmd ::= create_vtab */
+ 190, /* (297) cmd ::= create_vtab LP vtabarglist RP */
+ 298, /* (298) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
+ 300, /* (299) vtabarg ::= */
+ 301, /* (300) vtabargtoken ::= ANY */
+ 301, /* (301) vtabargtoken ::= lp anylist RP */
+ 302, /* (302) lp ::= LP */
+ 266, /* (303) with ::= WITH wqlist */
+ 266, /* (304) with ::= WITH RECURSIVE wqlist */
+ 305, /* (305) wqas ::= AS */
+ 305, /* (306) wqas ::= AS MATERIALIZED */
+ 305, /* (307) wqas ::= AS NOT MATERIALIZED */
+ 304, /* (308) wqitem ::= nm eidlist_opt wqas LP select RP */
+ 241, /* (309) wqlist ::= wqitem */
+ 241, /* (310) wqlist ::= wqlist COMMA wqitem */
+ 306, /* (311) windowdefn_list ::= windowdefn */
+ 306, /* (312) windowdefn_list ::= windowdefn_list COMMA windowdefn */
+ 307, /* (313) windowdefn ::= nm AS LP window RP */
+ 308, /* (314) window ::= PARTITION BY nexprlist orderby_opt frame_opt */
+ 308, /* (315) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */
+ 308, /* (316) window ::= ORDER BY sortlist frame_opt */
+ 308, /* (317) window ::= nm ORDER BY sortlist frame_opt */
+ 308, /* (318) window ::= frame_opt */
+ 308, /* (319) window ::= nm frame_opt */
+ 309, /* (320) frame_opt ::= */
+ 309, /* (321) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */
+ 309, /* (322) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */
+ 313, /* (323) range_or_rows ::= RANGE|ROWS|GROUPS */
+ 315, /* (324) frame_bound_s ::= frame_bound */
+ 315, /* (325) frame_bound_s ::= UNBOUNDED PRECEDING */
+ 316, /* (326) frame_bound_e ::= frame_bound */
+ 316, /* (327) frame_bound_e ::= UNBOUNDED FOLLOWING */
+ 314, /* (328) frame_bound ::= expr PRECEDING|FOLLOWING */
+ 314, /* (329) frame_bound ::= CURRENT ROW */
+ 317, /* (330) frame_exclude_opt ::= */
+ 317, /* (331) frame_exclude_opt ::= EXCLUDE frame_exclude */
+ 318, /* (332) frame_exclude ::= NO OTHERS */
+ 318, /* (333) frame_exclude ::= CURRENT ROW */
+ 318, /* (334) frame_exclude ::= GROUP|TIES */
+ 251, /* (335) window_clause ::= WINDOW windowdefn_list */
+ 273, /* (336) filter_over ::= filter_clause over_clause */
+ 273, /* (337) filter_over ::= over_clause */
+ 273, /* (338) filter_over ::= filter_clause */
+ 312, /* (339) over_clause ::= OVER LP window RP */
+ 312, /* (340) over_clause ::= OVER nm */
+ 311, /* (341) filter_clause ::= FILTER LP WHERE expr RP */
+ 185, /* (342) input ::= cmdlist */
+ 186, /* (343) cmdlist ::= cmdlist ecmd */
+ 186, /* (344) cmdlist ::= ecmd */
+ 187, /* (345) ecmd ::= SEMI */
+ 187, /* (346) ecmd ::= cmdx SEMI */
+ 187, /* (347) ecmd ::= explain cmdx SEMI */
+ 192, /* (348) trans_opt ::= */
+ 192, /* (349) trans_opt ::= TRANSACTION */
+ 192, /* (350) trans_opt ::= TRANSACTION nm */
+ 194, /* (351) savepoint_opt ::= SAVEPOINT */
+ 194, /* (352) savepoint_opt ::= */
+ 190, /* (353) cmd ::= create_table create_table_args */
+ 203, /* (354) table_option_set ::= table_option */
+ 201, /* (355) columnlist ::= columnlist COMMA columnname carglist */
+ 201, /* (356) columnlist ::= columnname carglist */
+ 193, /* (357) nm ::= ID|INDEXED */
+ 193, /* (358) nm ::= STRING */
+ 193, /* (359) nm ::= JOIN_KW */
+ 208, /* (360) typetoken ::= typename */
+ 209, /* (361) typename ::= ID|STRING */
+ 210, /* (362) signed ::= plus_num */
+ 210, /* (363) signed ::= minus_num */
+ 207, /* (364) carglist ::= carglist ccons */
+ 207, /* (365) carglist ::= */
+ 215, /* (366) ccons ::= NULL onconf */
+ 215, /* (367) ccons ::= GENERATED ALWAYS AS generated */
+ 215, /* (368) ccons ::= AS generated */
+ 202, /* (369) conslist_opt ::= COMMA conslist */
+ 228, /* (370) conslist ::= conslist tconscomma tcons */
+ 228, /* (371) conslist ::= tcons */
+ 229, /* (372) tconscomma ::= */
+ 233, /* (373) defer_subclause_opt ::= defer_subclause */
+ 235, /* (374) resolvetype ::= raisetype */
+ 239, /* (375) selectnowith ::= oneselect */
+ 240, /* (376) oneselect ::= values */
+ 254, /* (377) sclp ::= selcollist COMMA */
+ 255, /* (378) as ::= ID|STRING */
+ 264, /* (379) indexed_opt ::= indexed_by */
+ 272, /* (380) returning ::= */
+ 217, /* (381) expr ::= term */
+ 274, /* (382) likeop ::= LIKE_KW|MATCH */
+ 261, /* (383) exprlist ::= nexprlist */
+ 284, /* (384) nmnum ::= plus_num */
+ 284, /* (385) nmnum ::= nm */
+ 284, /* (386) nmnum ::= ON */
+ 284, /* (387) nmnum ::= DELETE */
+ 284, /* (388) nmnum ::= DEFAULT */
+ 211, /* (389) plus_num ::= INTEGER|FLOAT */
+ 289, /* (390) foreach_clause ::= */
+ 289, /* (391) foreach_clause ::= FOR EACH ROW */
+ 292, /* (392) trnm ::= nm */
+ 293, /* (393) tridxby ::= */
+ 294, /* (394) database_kw_opt ::= DATABASE */
+ 294, /* (395) database_kw_opt ::= */
+ 297, /* (396) kwcolumn_opt ::= */
+ 297, /* (397) kwcolumn_opt ::= COLUMNKW */
+ 299, /* (398) vtabarglist ::= vtabarg */
+ 299, /* (399) vtabarglist ::= vtabarglist COMMA vtabarg */
+ 300, /* (400) vtabarg ::= vtabarg vtabargtoken */
+ 303, /* (401) anylist ::= */
+ 303, /* (402) anylist ::= anylist LP anylist RP */
+ 303, /* (403) anylist ::= anylist ANY */
+ 266, /* (404) with ::= */
+};
+
+/* For rule J, yyRuleInfoNRhs[J] contains the negative of the number
+** of symbols on the right-hand side of that rule. */
+static const signed char yyRuleInfoNRhs[] = {
+ -1, /* (0) explain ::= EXPLAIN */
+ -3, /* (1) explain ::= EXPLAIN QUERY PLAN */
+ -1, /* (2) cmdx ::= cmd */
+ -3, /* (3) cmd ::= BEGIN transtype trans_opt */
+ 0, /* (4) transtype ::= */
+ -1, /* (5) transtype ::= DEFERRED */
+ -1, /* (6) transtype ::= IMMEDIATE */
+ -1, /* (7) transtype ::= EXCLUSIVE */
+ -2, /* (8) cmd ::= COMMIT|END trans_opt */
+ -2, /* (9) cmd ::= ROLLBACK trans_opt */
+ -2, /* (10) cmd ::= SAVEPOINT nm */
+ -3, /* (11) cmd ::= RELEASE savepoint_opt nm */
+ -5, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
+ -6, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */
+ -1, /* (14) createkw ::= CREATE */
+ 0, /* (15) ifnotexists ::= */
+ -3, /* (16) ifnotexists ::= IF NOT EXISTS */
+ -1, /* (17) temp ::= TEMP */
+ 0, /* (18) temp ::= */
+ -5, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */
+ -2, /* (20) create_table_args ::= AS select */
+ 0, /* (21) table_option_set ::= */
+ -3, /* (22) table_option_set ::= table_option_set COMMA table_option */
+ -2, /* (23) table_option ::= WITHOUT nm */
+ -1, /* (24) table_option ::= nm */
+ -2, /* (25) columnname ::= nm typetoken */
+ 0, /* (26) typetoken ::= */
+ -4, /* (27) typetoken ::= typename LP signed RP */
+ -6, /* (28) typetoken ::= typename LP signed COMMA signed RP */
+ -2, /* (29) typename ::= typename ID|STRING */
+ 0, /* (30) scanpt ::= */
+ 0, /* (31) scantok ::= */
+ -2, /* (32) ccons ::= CONSTRAINT nm */
+ -3, /* (33) ccons ::= DEFAULT scantok term */
+ -4, /* (34) ccons ::= DEFAULT LP expr RP */
+ -4, /* (35) ccons ::= DEFAULT PLUS scantok term */
+ -4, /* (36) ccons ::= DEFAULT MINUS scantok term */
+ -3, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */
+ -3, /* (38) ccons ::= NOT NULL onconf */
+ -5, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */
+ -2, /* (40) ccons ::= UNIQUE onconf */
+ -4, /* (41) ccons ::= CHECK LP expr RP */
+ -4, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */
+ -1, /* (43) ccons ::= defer_subclause */
+ -2, /* (44) ccons ::= COLLATE ID|STRING */
+ -3, /* (45) generated ::= LP expr RP */
+ -4, /* (46) generated ::= LP expr RP ID */
+ 0, /* (47) autoinc ::= */
+ -1, /* (48) autoinc ::= AUTOINCR */
+ 0, /* (49) refargs ::= */
+ -2, /* (50) refargs ::= refargs refarg */
+ -2, /* (51) refarg ::= MATCH nm */
+ -3, /* (52) refarg ::= ON INSERT refact */
+ -3, /* (53) refarg ::= ON DELETE refact */
+ -3, /* (54) refarg ::= ON UPDATE refact */
+ -2, /* (55) refact ::= SET NULL */
+ -2, /* (56) refact ::= SET DEFAULT */
+ -1, /* (57) refact ::= CASCADE */
+ -1, /* (58) refact ::= RESTRICT */
+ -2, /* (59) refact ::= NO ACTION */
+ -3, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+ -2, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ 0, /* (62) init_deferred_pred_opt ::= */
+ -2, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ -2, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+ 0, /* (65) conslist_opt ::= */
+ -1, /* (66) tconscomma ::= COMMA */
+ -2, /* (67) tcons ::= CONSTRAINT nm */
+ -7, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
+ -5, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */
+ -5, /* (70) tcons ::= CHECK LP expr RP onconf */
+ -10, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
+ 0, /* (72) defer_subclause_opt ::= */
+ 0, /* (73) onconf ::= */
+ -3, /* (74) onconf ::= ON CONFLICT resolvetype */
+ 0, /* (75) orconf ::= */
+ -2, /* (76) orconf ::= OR resolvetype */
+ -1, /* (77) resolvetype ::= IGNORE */
+ -1, /* (78) resolvetype ::= REPLACE */
+ -4, /* (79) cmd ::= DROP TABLE ifexists fullname */
+ -2, /* (80) ifexists ::= IF EXISTS */
+ 0, /* (81) ifexists ::= */
+ -9, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
+ -4, /* (83) cmd ::= DROP VIEW ifexists fullname */
+ -1, /* (84) cmd ::= select */
+ -3, /* (85) select ::= WITH wqlist selectnowith */
+ -4, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */
+ -1, /* (87) select ::= selectnowith */
+ -3, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */
+ -1, /* (89) multiselect_op ::= UNION */
+ -2, /* (90) multiselect_op ::= UNION ALL */
+ -1, /* (91) multiselect_op ::= EXCEPT|INTERSECT */
+ -9, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+ -10, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */
+ -4, /* (94) values ::= VALUES LP nexprlist RP */
+ -5, /* (95) values ::= values COMMA LP nexprlist RP */
+ -1, /* (96) distinct ::= DISTINCT */
+ -1, /* (97) distinct ::= ALL */
+ 0, /* (98) distinct ::= */
+ 0, /* (99) sclp ::= */
+ -5, /* (100) selcollist ::= sclp scanpt expr scanpt as */
+ -3, /* (101) selcollist ::= sclp scanpt STAR */
+ -5, /* (102) selcollist ::= sclp scanpt nm DOT STAR */
+ -2, /* (103) as ::= AS nm */
+ 0, /* (104) as ::= */
+ 0, /* (105) from ::= */
+ -2, /* (106) from ::= FROM seltablist */
+ -2, /* (107) stl_prefix ::= seltablist joinop */
+ 0, /* (108) stl_prefix ::= */
+ -5, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */
+ -6, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */
+ -8, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */
+ -6, /* (112) seltablist ::= stl_prefix LP select RP as on_using */
+ -6, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */
+ 0, /* (114) dbnm ::= */
+ -2, /* (115) dbnm ::= DOT nm */
+ -1, /* (116) fullname ::= nm */
+ -3, /* (117) fullname ::= nm DOT nm */
+ -1, /* (118) xfullname ::= nm */
+ -3, /* (119) xfullname ::= nm DOT nm */
+ -5, /* (120) xfullname ::= nm DOT nm AS nm */
+ -3, /* (121) xfullname ::= nm AS nm */
+ -1, /* (122) joinop ::= COMMA|JOIN */
+ -2, /* (123) joinop ::= JOIN_KW JOIN */
+ -3, /* (124) joinop ::= JOIN_KW nm JOIN */
+ -4, /* (125) joinop ::= JOIN_KW nm nm JOIN */
+ -2, /* (126) on_using ::= ON expr */
+ -4, /* (127) on_using ::= USING LP idlist RP */
+ 0, /* (128) on_using ::= */
+ 0, /* (129) indexed_opt ::= */
+ -3, /* (130) indexed_by ::= INDEXED BY nm */
+ -2, /* (131) indexed_by ::= NOT INDEXED */
+ 0, /* (132) orderby_opt ::= */
+ -3, /* (133) orderby_opt ::= ORDER BY sortlist */
+ -5, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */
+ -3, /* (135) sortlist ::= expr sortorder nulls */
+ -1, /* (136) sortorder ::= ASC */
+ -1, /* (137) sortorder ::= DESC */
+ 0, /* (138) sortorder ::= */
+ -2, /* (139) nulls ::= NULLS FIRST */
+ -2, /* (140) nulls ::= NULLS LAST */
+ 0, /* (141) nulls ::= */
+ 0, /* (142) groupby_opt ::= */
+ -3, /* (143) groupby_opt ::= GROUP BY nexprlist */
+ 0, /* (144) having_opt ::= */
+ -2, /* (145) having_opt ::= HAVING expr */
+ 0, /* (146) limit_opt ::= */
+ -2, /* (147) limit_opt ::= LIMIT expr */
+ -4, /* (148) limit_opt ::= LIMIT expr OFFSET expr */
+ -4, /* (149) limit_opt ::= LIMIT expr COMMA expr */
+ -6, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */
+ 0, /* (151) where_opt ::= */
+ -2, /* (152) where_opt ::= WHERE expr */
+ 0, /* (153) where_opt_ret ::= */
+ -2, /* (154) where_opt_ret ::= WHERE expr */
+ -2, /* (155) where_opt_ret ::= RETURNING selcollist */
+ -4, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */
+ -9, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */
+ -5, /* (158) setlist ::= setlist COMMA nm EQ expr */
+ -7, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */
+ -3, /* (160) setlist ::= nm EQ expr */
+ -5, /* (161) setlist ::= LP idlist RP EQ expr */
+ -7, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */
+ -8, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */
+ 0, /* (164) upsert ::= */
+ -2, /* (165) upsert ::= RETURNING selcollist */
+ -12, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */
+ -9, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */
+ -5, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */
+ -8, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */
+ -2, /* (170) returning ::= RETURNING selcollist */
+ -2, /* (171) insert_cmd ::= INSERT orconf */
+ -1, /* (172) insert_cmd ::= REPLACE */
+ 0, /* (173) idlist_opt ::= */
+ -3, /* (174) idlist_opt ::= LP idlist RP */
+ -3, /* (175) idlist ::= idlist COMMA nm */
+ -1, /* (176) idlist ::= nm */
+ -3, /* (177) expr ::= LP expr RP */
+ -1, /* (178) expr ::= ID|INDEXED */
+ -1, /* (179) expr ::= JOIN_KW */
+ -3, /* (180) expr ::= nm DOT nm */
+ -5, /* (181) expr ::= nm DOT nm DOT nm */
+ -1, /* (182) term ::= NULL|FLOAT|BLOB */
+ -1, /* (183) term ::= STRING */
+ -1, /* (184) term ::= INTEGER */
+ -1, /* (185) expr ::= VARIABLE */
+ -3, /* (186) expr ::= expr COLLATE ID|STRING */
+ -6, /* (187) expr ::= CAST LP expr AS typetoken RP */
+ -5, /* (188) expr ::= ID|INDEXED LP distinct exprlist RP */
+ -4, /* (189) expr ::= ID|INDEXED LP STAR RP */
+ -6, /* (190) expr ::= ID|INDEXED LP distinct exprlist RP filter_over */
+ -5, /* (191) expr ::= ID|INDEXED LP STAR RP filter_over */
+ -1, /* (192) term ::= CTIME_KW */
+ -5, /* (193) expr ::= LP nexprlist COMMA expr RP */
+ -3, /* (194) expr ::= expr AND expr */
+ -3, /* (195) expr ::= expr OR expr */
+ -3, /* (196) expr ::= expr LT|GT|GE|LE expr */
+ -3, /* (197) expr ::= expr EQ|NE expr */
+ -3, /* (198) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
+ -3, /* (199) expr ::= expr PLUS|MINUS expr */
+ -3, /* (200) expr ::= expr STAR|SLASH|REM expr */
+ -3, /* (201) expr ::= expr CONCAT expr */
+ -2, /* (202) likeop ::= NOT LIKE_KW|MATCH */
+ -3, /* (203) expr ::= expr likeop expr */
+ -5, /* (204) expr ::= expr likeop expr ESCAPE expr */
+ -2, /* (205) expr ::= expr ISNULL|NOTNULL */
+ -3, /* (206) expr ::= expr NOT NULL */
+ -3, /* (207) expr ::= expr IS expr */
+ -4, /* (208) expr ::= expr IS NOT expr */
+ -6, /* (209) expr ::= expr IS NOT DISTINCT FROM expr */
+ -5, /* (210) expr ::= expr IS DISTINCT FROM expr */
+ -2, /* (211) expr ::= NOT expr */
+ -2, /* (212) expr ::= BITNOT expr */
+ -2, /* (213) expr ::= PLUS|MINUS expr */
+ -3, /* (214) expr ::= expr PTR expr */
+ -1, /* (215) between_op ::= BETWEEN */
+ -2, /* (216) between_op ::= NOT BETWEEN */
+ -5, /* (217) expr ::= expr between_op expr AND expr */
+ -1, /* (218) in_op ::= IN */
+ -2, /* (219) in_op ::= NOT IN */
+ -5, /* (220) expr ::= expr in_op LP exprlist RP */
+ -3, /* (221) expr ::= LP select RP */
+ -5, /* (222) expr ::= expr in_op LP select RP */
+ -5, /* (223) expr ::= expr in_op nm dbnm paren_exprlist */
+ -4, /* (224) expr ::= EXISTS LP select RP */
+ -5, /* (225) expr ::= CASE case_operand case_exprlist case_else END */
+ -5, /* (226) case_exprlist ::= case_exprlist WHEN expr THEN expr */
+ -4, /* (227) case_exprlist ::= WHEN expr THEN expr */
+ -2, /* (228) case_else ::= ELSE expr */
+ 0, /* (229) case_else ::= */
+ -1, /* (230) case_operand ::= expr */
+ 0, /* (231) case_operand ::= */
+ 0, /* (232) exprlist ::= */
+ -3, /* (233) nexprlist ::= nexprlist COMMA expr */
+ -1, /* (234) nexprlist ::= expr */
+ 0, /* (235) paren_exprlist ::= */
+ -3, /* (236) paren_exprlist ::= LP exprlist RP */
+ -12, /* (237) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
+ -1, /* (238) uniqueflag ::= UNIQUE */
+ 0, /* (239) uniqueflag ::= */
+ 0, /* (240) eidlist_opt ::= */
+ -3, /* (241) eidlist_opt ::= LP eidlist RP */
+ -5, /* (242) eidlist ::= eidlist COMMA nm collate sortorder */
+ -3, /* (243) eidlist ::= nm collate sortorder */
+ 0, /* (244) collate ::= */
+ -2, /* (245) collate ::= COLLATE ID|STRING */
+ -4, /* (246) cmd ::= DROP INDEX ifexists fullname */
+ -2, /* (247) cmd ::= VACUUM vinto */
+ -3, /* (248) cmd ::= VACUUM nm vinto */
+ -2, /* (249) vinto ::= INTO expr */
+ 0, /* (250) vinto ::= */
+ -3, /* (251) cmd ::= PRAGMA nm dbnm */
+ -5, /* (252) cmd ::= PRAGMA nm dbnm EQ nmnum */
+ -6, /* (253) cmd ::= PRAGMA nm dbnm LP nmnum RP */
+ -5, /* (254) cmd ::= PRAGMA nm dbnm EQ minus_num */
+ -6, /* (255) cmd ::= PRAGMA nm dbnm LP minus_num RP */
+ -2, /* (256) plus_num ::= PLUS INTEGER|FLOAT */
+ -2, /* (257) minus_num ::= MINUS INTEGER|FLOAT */
+ -5, /* (258) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
+ -11, /* (259) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+ -1, /* (260) trigger_time ::= BEFORE|AFTER */
+ -2, /* (261) trigger_time ::= INSTEAD OF */
+ 0, /* (262) trigger_time ::= */
+ -1, /* (263) trigger_event ::= DELETE|INSERT */
+ -1, /* (264) trigger_event ::= UPDATE */
+ -3, /* (265) trigger_event ::= UPDATE OF idlist */
+ 0, /* (266) when_clause ::= */
+ -2, /* (267) when_clause ::= WHEN expr */
+ -3, /* (268) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+ -2, /* (269) trigger_cmd_list ::= trigger_cmd SEMI */
+ -3, /* (270) trnm ::= nm DOT nm */
+ -3, /* (271) tridxby ::= INDEXED BY nm */
+ -2, /* (272) tridxby ::= NOT INDEXED */
+ -9, /* (273) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */
+ -8, /* (274) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */
+ -6, /* (275) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */
+ -3, /* (276) trigger_cmd ::= scanpt select scanpt */
+ -4, /* (277) expr ::= RAISE LP IGNORE RP */
+ -6, /* (278) expr ::= RAISE LP raisetype COMMA nm RP */
+ -1, /* (279) raisetype ::= ROLLBACK */
+ -1, /* (280) raisetype ::= ABORT */
+ -1, /* (281) raisetype ::= FAIL */
+ -4, /* (282) cmd ::= DROP TRIGGER ifexists fullname */
+ -6, /* (283) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+ -3, /* (284) cmd ::= DETACH database_kw_opt expr */
+ 0, /* (285) key_opt ::= */
+ -2, /* (286) key_opt ::= KEY expr */
+ -1, /* (287) cmd ::= REINDEX */
+ -3, /* (288) cmd ::= REINDEX nm dbnm */
+ -1, /* (289) cmd ::= ANALYZE */
+ -3, /* (290) cmd ::= ANALYZE nm dbnm */
+ -6, /* (291) cmd ::= ALTER TABLE fullname RENAME TO nm */
+ -7, /* (292) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */
+ -6, /* (293) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */
+ -1, /* (294) add_column_fullname ::= fullname */
+ -8, /* (295) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */
+ -1, /* (296) cmd ::= create_vtab */
+ -4, /* (297) cmd ::= create_vtab LP vtabarglist RP */
+ -8, /* (298) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
+ 0, /* (299) vtabarg ::= */
+ -1, /* (300) vtabargtoken ::= ANY */
+ -3, /* (301) vtabargtoken ::= lp anylist RP */
+ -1, /* (302) lp ::= LP */
+ -2, /* (303) with ::= WITH wqlist */
+ -3, /* (304) with ::= WITH RECURSIVE wqlist */
+ -1, /* (305) wqas ::= AS */
+ -2, /* (306) wqas ::= AS MATERIALIZED */
+ -3, /* (307) wqas ::= AS NOT MATERIALIZED */
+ -6, /* (308) wqitem ::= nm eidlist_opt wqas LP select RP */
+ -1, /* (309) wqlist ::= wqitem */
+ -3, /* (310) wqlist ::= wqlist COMMA wqitem */
+ -1, /* (311) windowdefn_list ::= windowdefn */
+ -3, /* (312) windowdefn_list ::= windowdefn_list COMMA windowdefn */
+ -5, /* (313) windowdefn ::= nm AS LP window RP */
+ -5, /* (314) window ::= PARTITION BY nexprlist orderby_opt frame_opt */
+ -6, /* (315) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */
+ -4, /* (316) window ::= ORDER BY sortlist frame_opt */
+ -5, /* (317) window ::= nm ORDER BY sortlist frame_opt */
+ -1, /* (318) window ::= frame_opt */
+ -2, /* (319) window ::= nm frame_opt */
+ 0, /* (320) frame_opt ::= */
+ -3, /* (321) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */
+ -6, /* (322) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */
+ -1, /* (323) range_or_rows ::= RANGE|ROWS|GROUPS */
+ -1, /* (324) frame_bound_s ::= frame_bound */
+ -2, /* (325) frame_bound_s ::= UNBOUNDED PRECEDING */
+ -1, /* (326) frame_bound_e ::= frame_bound */
+ -2, /* (327) frame_bound_e ::= UNBOUNDED FOLLOWING */
+ -2, /* (328) frame_bound ::= expr PRECEDING|FOLLOWING */
+ -2, /* (329) frame_bound ::= CURRENT ROW */
+ 0, /* (330) frame_exclude_opt ::= */
+ -2, /* (331) frame_exclude_opt ::= EXCLUDE frame_exclude */
+ -2, /* (332) frame_exclude ::= NO OTHERS */
+ -2, /* (333) frame_exclude ::= CURRENT ROW */
+ -1, /* (334) frame_exclude ::= GROUP|TIES */
+ -2, /* (335) window_clause ::= WINDOW windowdefn_list */
+ -2, /* (336) filter_over ::= filter_clause over_clause */
+ -1, /* (337) filter_over ::= over_clause */
+ -1, /* (338) filter_over ::= filter_clause */
+ -4, /* (339) over_clause ::= OVER LP window RP */
+ -2, /* (340) over_clause ::= OVER nm */
+ -5, /* (341) filter_clause ::= FILTER LP WHERE expr RP */
+ -1, /* (342) input ::= cmdlist */
+ -2, /* (343) cmdlist ::= cmdlist ecmd */
+ -1, /* (344) cmdlist ::= ecmd */
+ -1, /* (345) ecmd ::= SEMI */
+ -2, /* (346) ecmd ::= cmdx SEMI */
+ -3, /* (347) ecmd ::= explain cmdx SEMI */
+ 0, /* (348) trans_opt ::= */
+ -1, /* (349) trans_opt ::= TRANSACTION */
+ -2, /* (350) trans_opt ::= TRANSACTION nm */
+ -1, /* (351) savepoint_opt ::= SAVEPOINT */
+ 0, /* (352) savepoint_opt ::= */
+ -2, /* (353) cmd ::= create_table create_table_args */
+ -1, /* (354) table_option_set ::= table_option */
+ -4, /* (355) columnlist ::= columnlist COMMA columnname carglist */
+ -2, /* (356) columnlist ::= columnname carglist */
+ -1, /* (357) nm ::= ID|INDEXED */
+ -1, /* (358) nm ::= STRING */
+ -1, /* (359) nm ::= JOIN_KW */
+ -1, /* (360) typetoken ::= typename */
+ -1, /* (361) typename ::= ID|STRING */
+ -1, /* (362) signed ::= plus_num */
+ -1, /* (363) signed ::= minus_num */
+ -2, /* (364) carglist ::= carglist ccons */
+ 0, /* (365) carglist ::= */
+ -2, /* (366) ccons ::= NULL onconf */
+ -4, /* (367) ccons ::= GENERATED ALWAYS AS generated */
+ -2, /* (368) ccons ::= AS generated */
+ -2, /* (369) conslist_opt ::= COMMA conslist */
+ -3, /* (370) conslist ::= conslist tconscomma tcons */
+ -1, /* (371) conslist ::= tcons */
+ 0, /* (372) tconscomma ::= */
+ -1, /* (373) defer_subclause_opt ::= defer_subclause */
+ -1, /* (374) resolvetype ::= raisetype */
+ -1, /* (375) selectnowith ::= oneselect */
+ -1, /* (376) oneselect ::= values */
+ -2, /* (377) sclp ::= selcollist COMMA */
+ -1, /* (378) as ::= ID|STRING */
+ -1, /* (379) indexed_opt ::= indexed_by */
+ 0, /* (380) returning ::= */
+ -1, /* (381) expr ::= term */
+ -1, /* (382) likeop ::= LIKE_KW|MATCH */
+ -1, /* (383) exprlist ::= nexprlist */
+ -1, /* (384) nmnum ::= plus_num */
+ -1, /* (385) nmnum ::= nm */
+ -1, /* (386) nmnum ::= ON */
+ -1, /* (387) nmnum ::= DELETE */
+ -1, /* (388) nmnum ::= DEFAULT */
+ -1, /* (389) plus_num ::= INTEGER|FLOAT */
+ 0, /* (390) foreach_clause ::= */
+ -3, /* (391) foreach_clause ::= FOR EACH ROW */
+ -1, /* (392) trnm ::= nm */
+ 0, /* (393) tridxby ::= */
+ -1, /* (394) database_kw_opt ::= DATABASE */
+ 0, /* (395) database_kw_opt ::= */
+ 0, /* (396) kwcolumn_opt ::= */
+ -1, /* (397) kwcolumn_opt ::= COLUMNKW */
+ -1, /* (398) vtabarglist ::= vtabarg */
+ -3, /* (399) vtabarglist ::= vtabarglist COMMA vtabarg */
+ -2, /* (400) vtabarg ::= vtabarg vtabargtoken */
+ 0, /* (401) anylist ::= */
+ -4, /* (402) anylist ::= anylist LP anylist RP */
+ -2, /* (403) anylist ::= anylist ANY */
+ 0, /* (404) with ::= */
+};
+
+static void yy_accept(yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+**
+** The yyLookahead and yyLookaheadToken parameters provide reduce actions
+** access to the lookahead token (if any). The yyLookahead will be YYNOCODE
+** if the lookahead token has already been consumed. As this procedure is
+** only called from one place, optimizing compilers will in-line it, which
+** means that the extra parameters have no performance impact.
+*/
+static YYACTIONTYPE yy_reduce(
+ yyParser *yypParser, /* The parser */
+ unsigned int yyruleno, /* Number of the rule by which to reduce */
+ int yyLookahead, /* Lookahead token, or YYNOCODE if none */
+ sqlite3ParserTOKENTYPE yyLookaheadToken /* Value of the lookahead token */
+ sqlite3ParserCTX_PDECL /* %extra_context */
+){
+ int yygoto; /* The next state */
+ YYACTIONTYPE yyact; /* The next action */
+ yyStackEntry *yymsp; /* The top of the parser's stack */
+ int yysize; /* Amount to pop the stack */
+ sqlite3ParserARG_FETCH
+ (void)yyLookahead;
+ (void)yyLookaheadToken;
+ yymsp = yypParser->yytos;
+
+ switch( yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+/********** Begin reduce actions **********************************************/
+ YYMINORTYPE yylhsminor;
+ case 0: /* explain ::= EXPLAIN */
+{ pParse->explain = 1; }
+ break;
+ case 1: /* explain ::= EXPLAIN QUERY PLAN */
+{ pParse->explain = 2; }
+ break;
+ case 2: /* cmdx ::= cmd */
+{ sqlite3FinishCoding(pParse); }
+ break;
+ case 3: /* cmd ::= BEGIN transtype trans_opt */
+{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy394);}
+ break;
+ case 4: /* transtype ::= */
+{yymsp[1].minor.yy394 = TK_DEFERRED;}
+ break;
+ case 5: /* transtype ::= DEFERRED */
+ case 6: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==6);
+ case 7: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==7);
+ case 323: /* range_or_rows ::= RANGE|ROWS|GROUPS */ yytestcase(yyruleno==323);
+{yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/}
+ break;
+ case 8: /* cmd ::= COMMIT|END trans_opt */
+ case 9: /* cmd ::= ROLLBACK trans_opt */ yytestcase(yyruleno==9);
+{sqlite3EndTransaction(pParse,yymsp[-1].major);}
+ break;
+ case 10: /* cmd ::= SAVEPOINT nm */
+{
+ sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0);
+}
+ break;
+ case 11: /* cmd ::= RELEASE savepoint_opt nm */
+{
+ sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0);
+}
+ break;
+ case 12: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
+{
+ sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
+}
+ break;
+ case 13: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
+{
+ sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy394,0,0,yymsp[-2].minor.yy394);
+}
+ break;
+ case 14: /* createkw ::= CREATE */
+{disableLookaside(pParse);}
+ break;
+ case 15: /* ifnotexists ::= */
+ case 18: /* temp ::= */ yytestcase(yyruleno==18);
+ case 47: /* autoinc ::= */ yytestcase(yyruleno==47);
+ case 62: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==62);
+ case 72: /* defer_subclause_opt ::= */ yytestcase(yyruleno==72);
+ case 81: /* ifexists ::= */ yytestcase(yyruleno==81);
+ case 98: /* distinct ::= */ yytestcase(yyruleno==98);
+ case 244: /* collate ::= */ yytestcase(yyruleno==244);
+{yymsp[1].minor.yy394 = 0;}
+ break;
+ case 16: /* ifnotexists ::= IF NOT EXISTS */
+{yymsp[-2].minor.yy394 = 1;}
+ break;
+ case 17: /* temp ::= TEMP */
+{yymsp[0].minor.yy394 = pParse->db->init.busy==0;}
+ break;
+ case 19: /* create_table_args ::= LP columnlist conslist_opt RP table_option_set */
+{
+ sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy285,0);
+}
+ break;
+ case 20: /* create_table_args ::= AS select */
+{
+ sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy47);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47);
+}
+ break;
+ case 21: /* table_option_set ::= */
+{yymsp[1].minor.yy285 = 0;}
+ break;
+ case 22: /* table_option_set ::= table_option_set COMMA table_option */
+{yylhsminor.yy285 = yymsp[-2].minor.yy285|yymsp[0].minor.yy285;}
+ yymsp[-2].minor.yy285 = yylhsminor.yy285;
+ break;
+ case 23: /* table_option ::= WITHOUT nm */
+{
+ if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){
+ yymsp[-1].minor.yy285 = TF_WithoutRowid | TF_NoVisibleRowid;
+ }else{
+ yymsp[-1].minor.yy285 = 0;
+ sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
+ }
+}
+ break;
+ case 24: /* table_option ::= nm */
+{
+ if( yymsp[0].minor.yy0.n==6 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"strict",6)==0 ){
+ yylhsminor.yy285 = TF_Strict;
+ }else{
+ yylhsminor.yy285 = 0;
+ sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
+ }
+}
+ yymsp[0].minor.yy285 = yylhsminor.yy285;
+ break;
+ case 25: /* columnname ::= nm typetoken */
+{sqlite3AddColumn(pParse,yymsp[-1].minor.yy0,yymsp[0].minor.yy0);}
+ break;
+ case 26: /* typetoken ::= */
+ case 65: /* conslist_opt ::= */ yytestcase(yyruleno==65);
+ case 104: /* as ::= */ yytestcase(yyruleno==104);
+{yymsp[1].minor.yy0.n = 0; yymsp[1].minor.yy0.z = 0;}
+ break;
+ case 27: /* typetoken ::= typename LP signed RP */
+{
+ yymsp[-3].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z);
+}
+ break;
+ case 28: /* typetoken ::= typename LP signed COMMA signed RP */
+{
+ yymsp[-5].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z);
+}
+ break;
+ case 29: /* typename ::= typename ID|STRING */
+{yymsp[-1].minor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);}
+ break;
+ case 30: /* scanpt ::= */
+{
+ assert( yyLookahead!=YYNOCODE );
+ yymsp[1].minor.yy522 = yyLookaheadToken.z;
+}
+ break;
+ case 31: /* scantok ::= */
+{
+ assert( yyLookahead!=YYNOCODE );
+ yymsp[1].minor.yy0 = yyLookaheadToken;
+}
+ break;
+ case 32: /* ccons ::= CONSTRAINT nm */
+ case 67: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==67);
+{pParse->constraintName = yymsp[0].minor.yy0;}
+ break;
+ case 33: /* ccons ::= DEFAULT scantok term */
+{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-1].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);}
+ break;
+ case 34: /* ccons ::= DEFAULT LP expr RP */
+{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z+1,yymsp[0].minor.yy0.z);}
+ break;
+ case 35: /* ccons ::= DEFAULT PLUS scantok term */
+{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);}
+ break;
+ case 36: /* ccons ::= DEFAULT MINUS scantok term */
+{
+ Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy528, 0);
+ sqlite3AddDefaultValue(pParse,p,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);
+}
+ break;
+ case 37: /* ccons ::= DEFAULT scantok ID|INDEXED */
+{
+ Expr *p = tokenExpr(pParse, TK_STRING, yymsp[0].minor.yy0);
+ if( p ){
+ sqlite3ExprIdToTrueFalse(p);
+ testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
+ }
+ sqlite3AddDefaultValue(pParse,p,yymsp[0].minor.yy0.z,yymsp[0].minor.yy0.z+yymsp[0].minor.yy0.n);
+}
+ break;
+ case 38: /* ccons ::= NOT NULL onconf */
+{sqlite3AddNotNull(pParse, yymsp[0].minor.yy394);}
+ break;
+ case 39: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
+{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy394,yymsp[0].minor.yy394,yymsp[-2].minor.yy394);}
+ break;
+ case 40: /* ccons ::= UNIQUE onconf */
+{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy394,0,0,0,0,
+ SQLITE_IDXTYPE_UNIQUE);}
+ break;
+ case 41: /* ccons ::= CHECK LP expr RP */
+{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z,yymsp[0].minor.yy0.z);}
+ break;
+ case 42: /* ccons ::= REFERENCES nm eidlist_opt refargs */
+{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy322,yymsp[0].minor.yy394);}
+ break;
+ case 43: /* ccons ::= defer_subclause */
+{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy394);}
+ break;
+ case 44: /* ccons ::= COLLATE ID|STRING */
+{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
+ break;
+ case 45: /* generated ::= LP expr RP */
+{sqlite3AddGenerated(pParse,yymsp[-1].minor.yy528,0);}
+ break;
+ case 46: /* generated ::= LP expr RP ID */
+{sqlite3AddGenerated(pParse,yymsp[-2].minor.yy528,&yymsp[0].minor.yy0);}
+ break;
+ case 48: /* autoinc ::= AUTOINCR */
+{yymsp[0].minor.yy394 = 1;}
+ break;
+ case 49: /* refargs ::= */
+{ yymsp[1].minor.yy394 = OE_None*0x0101; /* EV: R-19803-45884 */}
+ break;
+ case 50: /* refargs ::= refargs refarg */
+{ yymsp[-1].minor.yy394 = (yymsp[-1].minor.yy394 & ~yymsp[0].minor.yy231.mask) | yymsp[0].minor.yy231.value; }
+ break;
+ case 51: /* refarg ::= MATCH nm */
+{ yymsp[-1].minor.yy231.value = 0; yymsp[-1].minor.yy231.mask = 0x000000; }
+ break;
+ case 52: /* refarg ::= ON INSERT refact */
+{ yymsp[-2].minor.yy231.value = 0; yymsp[-2].minor.yy231.mask = 0x000000; }
+ break;
+ case 53: /* refarg ::= ON DELETE refact */
+{ yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394; yymsp[-2].minor.yy231.mask = 0x0000ff; }
+ break;
+ case 54: /* refarg ::= ON UPDATE refact */
+{ yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394<<8; yymsp[-2].minor.yy231.mask = 0x00ff00; }
+ break;
+ case 55: /* refact ::= SET NULL */
+{ yymsp[-1].minor.yy394 = OE_SetNull; /* EV: R-33326-45252 */}
+ break;
+ case 56: /* refact ::= SET DEFAULT */
+{ yymsp[-1].minor.yy394 = OE_SetDflt; /* EV: R-33326-45252 */}
+ break;
+ case 57: /* refact ::= CASCADE */
+{ yymsp[0].minor.yy394 = OE_Cascade; /* EV: R-33326-45252 */}
+ break;
+ case 58: /* refact ::= RESTRICT */
+{ yymsp[0].minor.yy394 = OE_Restrict; /* EV: R-33326-45252 */}
+ break;
+ case 59: /* refact ::= NO ACTION */
+{ yymsp[-1].minor.yy394 = OE_None; /* EV: R-33326-45252 */}
+ break;
+ case 60: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+{yymsp[-2].minor.yy394 = 0;}
+ break;
+ case 61: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ case 76: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==76);
+ case 171: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==171);
+{yymsp[-1].minor.yy394 = yymsp[0].minor.yy394;}
+ break;
+ case 63: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ case 80: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==80);
+ case 216: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==216);
+ case 219: /* in_op ::= NOT IN */ yytestcase(yyruleno==219);
+ case 245: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==245);
+{yymsp[-1].minor.yy394 = 1;}
+ break;
+ case 64: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+{yymsp[-1].minor.yy394 = 0;}
+ break;
+ case 66: /* tconscomma ::= COMMA */
+{pParse->constraintName.n = 0;}
+ break;
+ case 68: /* tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
+{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy322,yymsp[0].minor.yy394,yymsp[-2].minor.yy394,0);}
+ break;
+ case 69: /* tcons ::= UNIQUE LP sortlist RP onconf */
+{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy322,yymsp[0].minor.yy394,0,0,0,0,
+ SQLITE_IDXTYPE_UNIQUE);}
+ break;
+ case 70: /* tcons ::= CHECK LP expr RP onconf */
+{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy528,yymsp[-3].minor.yy0.z,yymsp[-1].minor.yy0.z);}
+ break;
+ case 71: /* tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
+{
+ sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy322, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[-1].minor.yy394);
+ sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy394);
+}
+ break;
+ case 73: /* onconf ::= */
+ case 75: /* orconf ::= */ yytestcase(yyruleno==75);
+{yymsp[1].minor.yy394 = OE_Default;}
+ break;
+ case 74: /* onconf ::= ON CONFLICT resolvetype */
+{yymsp[-2].minor.yy394 = yymsp[0].minor.yy394;}
+ break;
+ case 77: /* resolvetype ::= IGNORE */
+{yymsp[0].minor.yy394 = OE_Ignore;}
+ break;
+ case 78: /* resolvetype ::= REPLACE */
+ case 172: /* insert_cmd ::= REPLACE */ yytestcase(yyruleno==172);
+{yymsp[0].minor.yy394 = OE_Replace;}
+ break;
+ case 79: /* cmd ::= DROP TABLE ifexists fullname */
+{
+ sqlite3DropTable(pParse, yymsp[0].minor.yy131, 0, yymsp[-1].minor.yy394);
+}
+ break;
+ case 82: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
+{
+ sqlite3CreateView(pParse, &yymsp[-8].minor.yy0, &yymsp[-4].minor.yy0, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[0].minor.yy47, yymsp[-7].minor.yy394, yymsp[-5].minor.yy394);
+}
+ break;
+ case 83: /* cmd ::= DROP VIEW ifexists fullname */
+{
+ sqlite3DropTable(pParse, yymsp[0].minor.yy131, 1, yymsp[-1].minor.yy394);
+}
+ break;
+ case 84: /* cmd ::= select */
+{
+ SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0};
+ sqlite3Select(pParse, yymsp[0].minor.yy47, &dest);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47);
+}
+ break;
+ case 85: /* select ::= WITH wqlist selectnowith */
+{yymsp[-2].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);}
+ break;
+ case 86: /* select ::= WITH RECURSIVE wqlist selectnowith */
+{yymsp[-3].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);}
+ break;
+ case 87: /* select ::= selectnowith */
+{
+ Select *p = yymsp[0].minor.yy47;
+ if( p ){
+ parserDoubleLinkSelect(pParse, p);
+ }
+ yymsp[0].minor.yy47 = p; /*A-overwrites-X*/
+}
+ break;
+ case 88: /* selectnowith ::= selectnowith multiselect_op oneselect */
+{
+ Select *pRhs = yymsp[0].minor.yy47;
+ Select *pLhs = yymsp[-2].minor.yy47;
+ if( pRhs && pRhs->pPrior ){
+ SrcList *pFrom;
+ Token x;
+ x.n = 0;
+ parserDoubleLinkSelect(pParse, pRhs);
+ pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0);
+ pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
+ }
+ if( pRhs ){
+ pRhs->op = (u8)yymsp[-1].minor.yy394;
+ pRhs->pPrior = pLhs;
+ if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
+ pRhs->selFlags &= ~SF_MultiValue;
+ if( yymsp[-1].minor.yy394!=TK_ALL ) pParse->hasCompound = 1;
+ }else{
+ sqlite3SelectDelete(pParse->db, pLhs);
+ }
+ yymsp[-2].minor.yy47 = pRhs;
+}
+ break;
+ case 89: /* multiselect_op ::= UNION */
+ case 91: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==91);
+{yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-OP*/}
+ break;
+ case 90: /* multiselect_op ::= UNION ALL */
+{yymsp[-1].minor.yy394 = TK_ALL;}
+ break;
+ case 92: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+{
+ yymsp[-8].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy322,yymsp[-5].minor.yy131,yymsp[-4].minor.yy528,yymsp[-3].minor.yy322,yymsp[-2].minor.yy528,yymsp[-1].minor.yy322,yymsp[-7].minor.yy394,yymsp[0].minor.yy528);
+}
+ break;
+ case 93: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */
+{
+ yymsp[-9].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-7].minor.yy322,yymsp[-6].minor.yy131,yymsp[-5].minor.yy528,yymsp[-4].minor.yy322,yymsp[-3].minor.yy528,yymsp[-1].minor.yy322,yymsp[-8].minor.yy394,yymsp[0].minor.yy528);
+ if( yymsp[-9].minor.yy47 ){
+ yymsp[-9].minor.yy47->pWinDefn = yymsp[-2].minor.yy41;
+ }else{
+ sqlite3WindowListDelete(pParse->db, yymsp[-2].minor.yy41);
+ }
+}
+ break;
+ case 94: /* values ::= VALUES LP nexprlist RP */
+{
+ yymsp[-3].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values,0);
+}
+ break;
+ case 95: /* values ::= values COMMA LP nexprlist RP */
+{
+ Select *pRight, *pLeft = yymsp[-4].minor.yy47;
+ pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values|SF_MultiValue,0);
+ if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
+ if( pRight ){
+ pRight->op = TK_ALL;
+ pRight->pPrior = pLeft;
+ yymsp[-4].minor.yy47 = pRight;
+ }else{
+ yymsp[-4].minor.yy47 = pLeft;
+ }
+}
+ break;
+ case 96: /* distinct ::= DISTINCT */
+{yymsp[0].minor.yy394 = SF_Distinct;}
+ break;
+ case 97: /* distinct ::= ALL */
+{yymsp[0].minor.yy394 = SF_All;}
+ break;
+ case 99: /* sclp ::= */
+ case 132: /* orderby_opt ::= */ yytestcase(yyruleno==132);
+ case 142: /* groupby_opt ::= */ yytestcase(yyruleno==142);
+ case 232: /* exprlist ::= */ yytestcase(yyruleno==232);
+ case 235: /* paren_exprlist ::= */ yytestcase(yyruleno==235);
+ case 240: /* eidlist_opt ::= */ yytestcase(yyruleno==240);
+{yymsp[1].minor.yy322 = 0;}
+ break;
+ case 100: /* selcollist ::= sclp scanpt expr scanpt as */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[-2].minor.yy528);
+ if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[0].minor.yy0, 1);
+ sqlite3ExprListSetSpan(pParse,yymsp[-4].minor.yy322,yymsp[-3].minor.yy522,yymsp[-1].minor.yy522);
+}
+ break;
+ case 101: /* selcollist ::= sclp scanpt STAR */
+{
+ Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
+ yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, p);
+}
+ break;
+ case 102: /* selcollist ::= sclp scanpt nm DOT STAR */
+{
+ Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
+ Expr *pLeft = tokenExpr(pParse, TK_ID, yymsp[-2].minor.yy0);
+ Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, pDot);
+}
+ break;
+ case 103: /* as ::= AS nm */
+ case 115: /* dbnm ::= DOT nm */ yytestcase(yyruleno==115);
+ case 256: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==256);
+ case 257: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==257);
+{yymsp[-1].minor.yy0 = yymsp[0].minor.yy0;}
+ break;
+ case 105: /* from ::= */
+ case 108: /* stl_prefix ::= */ yytestcase(yyruleno==108);
+{yymsp[1].minor.yy131 = 0;}
+ break;
+ case 106: /* from ::= FROM seltablist */
+{
+ yymsp[-1].minor.yy131 = yymsp[0].minor.yy131;
+ sqlite3SrcListShiftJoinType(pParse,yymsp[-1].minor.yy131);
+}
+ break;
+ case 107: /* stl_prefix ::= seltablist joinop */
+{
+ if( ALWAYS(yymsp[-1].minor.yy131 && yymsp[-1].minor.yy131->nSrc>0) ) yymsp[-1].minor.yy131->a[yymsp[-1].minor.yy131->nSrc-1].fg.jointype = (u8)yymsp[0].minor.yy394;
+}
+ break;
+ case 109: /* seltablist ::= stl_prefix nm dbnm as on_using */
+{
+ yymsp[-4].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-4].minor.yy131,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561);
+}
+ break;
+ case 110: /* seltablist ::= stl_prefix nm dbnm as indexed_by on_using */
+{
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,0,&yymsp[0].minor.yy561);
+ sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-1].minor.yy0);
+}
+ break;
+ case 111: /* seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */
+{
+ yymsp[-7].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-7].minor.yy131,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561);
+ sqlite3SrcListFuncArgs(pParse, yymsp[-7].minor.yy131, yymsp[-3].minor.yy322);
+}
+ break;
+ case 112: /* seltablist ::= stl_prefix LP select RP as on_using */
+{
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,yymsp[-3].minor.yy47,&yymsp[0].minor.yy561);
+ }
+ break;
+ case 113: /* seltablist ::= stl_prefix LP seltablist RP as on_using */
+{
+ if( yymsp[-5].minor.yy131==0 && yymsp[-1].minor.yy0.n==0 && yymsp[0].minor.yy561.pOn==0 && yymsp[0].minor.yy561.pUsing==0 ){
+ yymsp[-5].minor.yy131 = yymsp[-3].minor.yy131;
+ }else if( yymsp[-3].minor.yy131->nSrc==1 ){
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561);
+ if( yymsp[-5].minor.yy131 ){
+ SrcItem *pNew = &yymsp[-5].minor.yy131->a[yymsp[-5].minor.yy131->nSrc-1];
+ SrcItem *pOld = yymsp[-3].minor.yy131->a;
+ pNew->zName = pOld->zName;
+ pNew->zDatabase = pOld->zDatabase;
+ pNew->pSelect = pOld->pSelect;
+ if( pNew->pSelect && (pNew->pSelect->selFlags & SF_NestedFrom)!=0 ){
+ pNew->fg.isNestedFrom = 1;
+ }
+ if( pOld->fg.isTabFunc ){
+ pNew->u1.pFuncArg = pOld->u1.pFuncArg;
+ pOld->u1.pFuncArg = 0;
+ pOld->fg.isTabFunc = 0;
+ pNew->fg.isTabFunc = 1;
+ }
+ pOld->zName = pOld->zDatabase = 0;
+ pOld->pSelect = 0;
+ }
+ sqlite3SrcListDelete(pParse->db, yymsp[-3].minor.yy131);
+ }else{
+ Select *pSubquery;
+ sqlite3SrcListShiftJoinType(pParse,yymsp[-3].minor.yy131);
+ pSubquery = sqlite3SelectNew(pParse,0,yymsp[-3].minor.yy131,0,0,0,0,SF_NestedFrom,0);
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,pSubquery,&yymsp[0].minor.yy561);
+ }
+ }
+ break;
+ case 114: /* dbnm ::= */
+ case 129: /* indexed_opt ::= */ yytestcase(yyruleno==129);
+{yymsp[1].minor.yy0.z=0; yymsp[1].minor.yy0.n=0;}
+ break;
+ case 116: /* fullname ::= nm */
+{
+ yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0);
+ if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0);
+}
+ yymsp[0].minor.yy131 = yylhsminor.yy131;
+ break;
+ case 117: /* fullname ::= nm DOT nm */
+{
+ yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
+ if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0);
+}
+ yymsp[-2].minor.yy131 = yylhsminor.yy131;
+ break;
+ case 118: /* xfullname ::= nm */
+{yymsp[0].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0); /*A-overwrites-X*/}
+ break;
+ case 119: /* xfullname ::= nm DOT nm */
+{yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/}
+ break;
+ case 120: /* xfullname ::= nm DOT nm AS nm */
+{
+ yymsp[-4].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,&yymsp[-2].minor.yy0); /*A-overwrites-X*/
+ if( yymsp[-4].minor.yy131 ) yymsp[-4].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0);
+}
+ break;
+ case 121: /* xfullname ::= nm AS nm */
+{
+ yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,0); /*A-overwrites-X*/
+ if( yymsp[-2].minor.yy131 ) yymsp[-2].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0);
+}
+ break;
+ case 122: /* joinop ::= COMMA|JOIN */
+{ yymsp[0].minor.yy394 = JT_INNER; }
+ break;
+ case 123: /* joinop ::= JOIN_KW JOIN */
+{yymsp[-1].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); /*X-overwrites-A*/}
+ break;
+ case 124: /* joinop ::= JOIN_KW nm JOIN */
+{yymsp[-2].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); /*X-overwrites-A*/}
+ break;
+ case 125: /* joinop ::= JOIN_KW nm nm JOIN */
+{yymsp[-3].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0);/*X-overwrites-A*/}
+ break;
+ case 126: /* on_using ::= ON expr */
+{yymsp[-1].minor.yy561.pOn = yymsp[0].minor.yy528; yymsp[-1].minor.yy561.pUsing = 0;}
+ break;
+ case 127: /* on_using ::= USING LP idlist RP */
+{yymsp[-3].minor.yy561.pOn = 0; yymsp[-3].minor.yy561.pUsing = yymsp[-1].minor.yy254;}
+ break;
+ case 128: /* on_using ::= */
+{yymsp[1].minor.yy561.pOn = 0; yymsp[1].minor.yy561.pUsing = 0;}
+ break;
+ case 130: /* indexed_by ::= INDEXED BY nm */
+{yymsp[-2].minor.yy0 = yymsp[0].minor.yy0;}
+ break;
+ case 131: /* indexed_by ::= NOT INDEXED */
+{yymsp[-1].minor.yy0.z=0; yymsp[-1].minor.yy0.n=1;}
+ break;
+ case 133: /* orderby_opt ::= ORDER BY sortlist */
+ case 143: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==143);
+{yymsp[-2].minor.yy322 = yymsp[0].minor.yy322;}
+ break;
+ case 134: /* sortlist ::= sortlist COMMA expr sortorder nulls */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322,yymsp[-2].minor.yy528);
+ sqlite3ExprListSetSortOrder(yymsp[-4].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394);
+}
+ break;
+ case 135: /* sortlist ::= expr sortorder nulls */
+{
+ yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[-2].minor.yy528); /*A-overwrites-Y*/
+ sqlite3ExprListSetSortOrder(yymsp[-2].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394);
+}
+ break;
+ case 136: /* sortorder ::= ASC */
+{yymsp[0].minor.yy394 = SQLITE_SO_ASC;}
+ break;
+ case 137: /* sortorder ::= DESC */
+{yymsp[0].minor.yy394 = SQLITE_SO_DESC;}
+ break;
+ case 138: /* sortorder ::= */
+ case 141: /* nulls ::= */ yytestcase(yyruleno==141);
+{yymsp[1].minor.yy394 = SQLITE_SO_UNDEFINED;}
+ break;
+ case 139: /* nulls ::= NULLS FIRST */
+{yymsp[-1].minor.yy394 = SQLITE_SO_ASC;}
+ break;
+ case 140: /* nulls ::= NULLS LAST */
+{yymsp[-1].minor.yy394 = SQLITE_SO_DESC;}
+ break;
+ case 144: /* having_opt ::= */
+ case 146: /* limit_opt ::= */ yytestcase(yyruleno==146);
+ case 151: /* where_opt ::= */ yytestcase(yyruleno==151);
+ case 153: /* where_opt_ret ::= */ yytestcase(yyruleno==153);
+ case 229: /* case_else ::= */ yytestcase(yyruleno==229);
+ case 231: /* case_operand ::= */ yytestcase(yyruleno==231);
+ case 250: /* vinto ::= */ yytestcase(yyruleno==250);
+{yymsp[1].minor.yy528 = 0;}
+ break;
+ case 145: /* having_opt ::= HAVING expr */
+ case 152: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==152);
+ case 154: /* where_opt_ret ::= WHERE expr */ yytestcase(yyruleno==154);
+ case 228: /* case_else ::= ELSE expr */ yytestcase(yyruleno==228);
+ case 249: /* vinto ::= INTO expr */ yytestcase(yyruleno==249);
+{yymsp[-1].minor.yy528 = yymsp[0].minor.yy528;}
+ break;
+ case 147: /* limit_opt ::= LIMIT expr */
+{yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,0);}
+ break;
+ case 148: /* limit_opt ::= LIMIT expr OFFSET expr */
+{yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);}
+ break;
+ case 149: /* limit_opt ::= LIMIT expr COMMA expr */
+{yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,yymsp[-2].minor.yy528);}
+ break;
+ case 150: /* cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */
+{
+ sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy131, &yymsp[-1].minor.yy0);
+ sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy131,yymsp[0].minor.yy528,0,0);
+}
+ break;
+ case 155: /* where_opt_ret ::= RETURNING selcollist */
+{sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-1].minor.yy528 = 0;}
+ break;
+ case 156: /* where_opt_ret ::= WHERE expr RETURNING selcollist */
+{sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-3].minor.yy528 = yymsp[-2].minor.yy528;}
+ break;
+ case 157: /* cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */
+{
+ sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-4].minor.yy0);
+ sqlite3ExprListCheckLength(pParse,yymsp[-2].minor.yy322,"set list");
+ if( yymsp[-1].minor.yy131 ){
+ SrcList *pFromClause = yymsp[-1].minor.yy131;
+ if( pFromClause->nSrc>1 ){
+ Select *pSubquery;
+ Token as;
+ pSubquery = sqlite3SelectNew(pParse,0,pFromClause,0,0,0,0,SF_NestedFrom,0);
+ as.n = 0;
+ as.z = 0;
+ pFromClause = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0);
+ }
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendList(pParse, yymsp[-5].minor.yy131, pFromClause);
+ }
+ sqlite3Update(pParse,yymsp[-5].minor.yy131,yymsp[-2].minor.yy322,yymsp[0].minor.yy528,yymsp[-6].minor.yy394,0,0,0);
+}
+ break;
+ case 158: /* setlist ::= setlist COMMA nm EQ expr */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[0].minor.yy528);
+ sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, 1);
+}
+ break;
+ case 159: /* setlist ::= setlist COMMA LP idlist RP EQ expr */
+{
+ yymsp[-6].minor.yy322 = sqlite3ExprListAppendVector(pParse, yymsp[-6].minor.yy322, yymsp[-3].minor.yy254, yymsp[0].minor.yy528);
+}
+ break;
+ case 160: /* setlist ::= nm EQ expr */
+{
+ yylhsminor.yy322 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy528);
+ sqlite3ExprListSetName(pParse, yylhsminor.yy322, &yymsp[-2].minor.yy0, 1);
+}
+ yymsp[-2].minor.yy322 = yylhsminor.yy322;
+ break;
+ case 161: /* setlist ::= LP idlist RP EQ expr */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppendVector(pParse, 0, yymsp[-3].minor.yy254, yymsp[0].minor.yy528);
+}
+ break;
+ case 162: /* cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */
+{
+ sqlite3Insert(pParse, yymsp[-3].minor.yy131, yymsp[-1].minor.yy47, yymsp[-2].minor.yy254, yymsp[-5].minor.yy394, yymsp[0].minor.yy444);
+}
+ break;
+ case 163: /* cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */
+{
+ sqlite3Insert(pParse, yymsp[-4].minor.yy131, 0, yymsp[-3].minor.yy254, yymsp[-6].minor.yy394, 0);
+}
+ break;
+ case 164: /* upsert ::= */
+{ yymsp[1].minor.yy444 = 0; }
+ break;
+ case 165: /* upsert ::= RETURNING selcollist */
+{ yymsp[-1].minor.yy444 = 0; sqlite3AddReturning(pParse,yymsp[0].minor.yy322); }
+ break;
+ case 166: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */
+{ yymsp[-11].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-8].minor.yy322,yymsp[-6].minor.yy528,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,yymsp[0].minor.yy444);}
+ break;
+ case 167: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */
+{ yymsp[-8].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-5].minor.yy322,yymsp[-3].minor.yy528,0,0,yymsp[0].minor.yy444); }
+ break;
+ case 168: /* upsert ::= ON CONFLICT DO NOTHING returning */
+{ yymsp[-4].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,0,0,0); }
+ break;
+ case 169: /* upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */
+{ yymsp[-7].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,0);}
+ break;
+ case 170: /* returning ::= RETURNING selcollist */
+{sqlite3AddReturning(pParse,yymsp[0].minor.yy322);}
+ break;
+ case 173: /* idlist_opt ::= */
+{yymsp[1].minor.yy254 = 0;}
+ break;
+ case 174: /* idlist_opt ::= LP idlist RP */
+{yymsp[-2].minor.yy254 = yymsp[-1].minor.yy254;}
+ break;
+ case 175: /* idlist ::= idlist COMMA nm */
+{yymsp[-2].minor.yy254 = sqlite3IdListAppend(pParse,yymsp[-2].minor.yy254,&yymsp[0].minor.yy0);}
+ break;
+ case 176: /* idlist ::= nm */
+{yymsp[0].minor.yy254 = sqlite3IdListAppend(pParse,0,&yymsp[0].minor.yy0); /*A-overwrites-Y*/}
+ break;
+ case 177: /* expr ::= LP expr RP */
+{yymsp[-2].minor.yy528 = yymsp[-1].minor.yy528;}
+ break;
+ case 178: /* expr ::= ID|INDEXED */
+ case 179: /* expr ::= JOIN_KW */ yytestcase(yyruleno==179);
+{yymsp[0].minor.yy528=tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); /*A-overwrites-X*/}
+ break;
+ case 180: /* expr ::= nm DOT nm */
+{
+ Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0);
+ Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0);
+ yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
+}
+ yymsp[-2].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 181: /* expr ::= nm DOT nm DOT nm */
+{
+ Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-4].minor.yy0);
+ Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0);
+ Expr *temp3 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0);
+ Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, 0, temp1);
+ }
+ yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
+}
+ yymsp[-4].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 182: /* term ::= NULL|FLOAT|BLOB */
+ case 183: /* term ::= STRING */ yytestcase(yyruleno==183);
+{yymsp[0].minor.yy528=tokenExpr(pParse,yymsp[0].major,yymsp[0].minor.yy0); /*A-overwrites-X*/}
+ break;
+ case 184: /* term ::= INTEGER */
+{
+ yylhsminor.yy528 = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &yymsp[0].minor.yy0, 1);
+ if( yylhsminor.yy528 ) yylhsminor.yy528->w.iOfst = (int)(yymsp[0].minor.yy0.z - pParse->zTail);
+}
+ yymsp[0].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 185: /* expr ::= VARIABLE */
+{
+ if( !(yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1])) ){
+ u32 n = yymsp[0].minor.yy0.n;
+ yymsp[0].minor.yy528 = tokenExpr(pParse, TK_VARIABLE, yymsp[0].minor.yy0);
+ sqlite3ExprAssignVarNumber(pParse, yymsp[0].minor.yy528, n);
+ }else{
+ /* When doing a nested parse, one can include terms in an expression
+ ** that look like this: #1 #2 ... These terms refer to registers
+ ** in the virtual machine. #N is the N-th register. */
+ Token t = yymsp[0].minor.yy0; /*A-overwrites-X*/
+ assert( t.n>=2 );
+ if( pParse->nested==0 ){
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
+ yymsp[0].minor.yy528 = 0;
+ }else{
+ yymsp[0].minor.yy528 = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
+ if( yymsp[0].minor.yy528 ) sqlite3GetInt32(&t.z[1], &yymsp[0].minor.yy528->iTable);
+ }
+ }
+}
+ break;
+ case 186: /* expr ::= expr COLLATE ID|STRING */
+{
+ yymsp[-2].minor.yy528 = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy528, &yymsp[0].minor.yy0, 1);
+}
+ break;
+ case 187: /* expr ::= CAST LP expr AS typetoken RP */
+{
+ yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_CAST, &yymsp[-1].minor.yy0, 1);
+ sqlite3ExprAttachSubtrees(pParse->db, yymsp[-5].minor.yy528, yymsp[-3].minor.yy528, 0);
+}
+ break;
+ case 188: /* expr ::= ID|INDEXED LP distinct exprlist RP */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0, yymsp[-2].minor.yy394);
+}
+ yymsp[-4].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 189: /* expr ::= ID|INDEXED LP STAR RP */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0, 0);
+}
+ yymsp[-3].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 190: /* expr ::= ID|INDEXED LP distinct exprlist RP filter_over */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-2].minor.yy322, &yymsp[-5].minor.yy0, yymsp[-3].minor.yy394);
+ sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41);
+}
+ yymsp[-5].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 191: /* expr ::= ID|INDEXED LP STAR RP filter_over */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-4].minor.yy0, 0);
+ sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41);
+}
+ yymsp[-4].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 192: /* term ::= CTIME_KW */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0, 0);
+}
+ yymsp[0].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 193: /* expr ::= LP nexprlist COMMA expr RP */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
+ if( yymsp[-4].minor.yy528 ){
+ yymsp[-4].minor.yy528->x.pList = pList;
+ if( ALWAYS(pList->nExpr) ){
+ yymsp[-4].minor.yy528->flags |= pList->a[0].pExpr->flags & EP_Propagate;
+ }
+ }else{
+ sqlite3ExprListDelete(pParse->db, pList);
+ }
+}
+ break;
+ case 194: /* expr ::= expr AND expr */
+{yymsp[-2].minor.yy528=sqlite3ExprAnd(pParse,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);}
+ break;
+ case 195: /* expr ::= expr OR expr */
+ case 196: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==196);
+ case 197: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==197);
+ case 198: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==198);
+ case 199: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==199);
+ case 200: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==200);
+ case 201: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==201);
+{yymsp[-2].minor.yy528=sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);}
+ break;
+ case 202: /* likeop ::= NOT LIKE_KW|MATCH */
+{yymsp[-1].minor.yy0=yymsp[0].minor.yy0; yymsp[-1].minor.yy0.n|=0x80000000; /*yymsp[-1].minor.yy0-overwrite-yymsp[0].minor.yy0*/}
+ break;
+ case 203: /* expr ::= expr likeop expr */
+{
+ ExprList *pList;
+ int bNot = yymsp[-1].minor.yy0.n & 0x80000000;
+ yymsp[-1].minor.yy0.n &= 0x7fffffff;
+ pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy528);
+ yymsp[-2].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0);
+ if( bNot ) yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-2].minor.yy528, 0);
+ if( yymsp[-2].minor.yy528 ) yymsp[-2].minor.yy528->flags |= EP_InfixFunc;
+}
+ break;
+ case 204: /* expr ::= expr likeop expr ESCAPE expr */
+{
+ ExprList *pList;
+ int bNot = yymsp[-3].minor.yy0.n & 0x80000000;
+ yymsp[-3].minor.yy0.n &= 0x7fffffff;
+ pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy0, 0);
+ if( bNot ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528 ) yymsp[-4].minor.yy528->flags |= EP_InfixFunc;
+}
+ break;
+ case 205: /* expr ::= expr ISNULL|NOTNULL */
+{yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,yymsp[0].major,yymsp[-1].minor.yy528,0);}
+ break;
+ case 206: /* expr ::= expr NOT NULL */
+{yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_NOTNULL,yymsp[-2].minor.yy528,0);}
+ break;
+ case 207: /* expr ::= expr IS expr */
+{
+ yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-2].minor.yy528, TK_ISNULL);
+}
+ break;
+ case 208: /* expr ::= expr IS NOT expr */
+{
+ yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-3].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-3].minor.yy528, TK_NOTNULL);
+}
+ break;
+ case 209: /* expr ::= expr IS NOT DISTINCT FROM expr */
+{
+ yymsp[-5].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-5].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-5].minor.yy528, TK_ISNULL);
+}
+ break;
+ case 210: /* expr ::= expr IS DISTINCT FROM expr */
+{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-4].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-4].minor.yy528, TK_NOTNULL);
+}
+ break;
+ case 211: /* expr ::= NOT expr */
+ case 212: /* expr ::= BITNOT expr */ yytestcase(yyruleno==212);
+{yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy528, 0);/*A-overwrites-B*/}
+ break;
+ case 213: /* expr ::= PLUS|MINUS expr */
+{
+ yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major==TK_PLUS ? TK_UPLUS : TK_UMINUS, yymsp[0].minor.yy528, 0);
+ /*A-overwrites-B*/
+}
+ break;
+ case 214: /* expr ::= expr PTR expr */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse, 0, yymsp[-2].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse, pList, yymsp[0].minor.yy528);
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0);
+}
+ yymsp[-2].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 215: /* between_op ::= BETWEEN */
+ case 218: /* in_op ::= IN */ yytestcase(yyruleno==218);
+{yymsp[0].minor.yy394 = 0;}
+ break;
+ case 217: /* expr ::= expr between_op expr AND expr */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528 ){
+ yymsp[-4].minor.yy528->x.pList = pList;
+ }else{
+ sqlite3ExprListDelete(pParse->db, pList);
+ }
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+}
+ break;
+ case 220: /* expr ::= expr in_op LP exprlist RP */
+{
+ if( yymsp[-1].minor.yy322==0 ){
+ /* Expressions of the form
+ **
+ ** expr1 IN ()
+ ** expr1 NOT IN ()
+ **
+ ** simplify to constants 0 (false) and 1 (true), respectively,
+ ** regardless of the value of expr1.
+ */
+ sqlite3ExprUnmapAndDelete(pParse, yymsp[-4].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3Expr(pParse->db, TK_STRING, yymsp[-3].minor.yy394 ? "true" : "false");
+ if( yymsp[-4].minor.yy528 ) sqlite3ExprIdToTrueFalse(yymsp[-4].minor.yy528);
+ }else{
+ Expr *pRHS = yymsp[-1].minor.yy322->a[0].pExpr;
+ if( yymsp[-1].minor.yy322->nExpr==1 && sqlite3ExprIsConstant(pRHS) && yymsp[-4].minor.yy528->op!=TK_VECTOR ){
+ yymsp[-1].minor.yy322->a[0].pExpr = 0;
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
+ pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_EQ, yymsp[-4].minor.yy528, pRHS);
+ }else{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528==0 ){
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
+ }else if( yymsp[-4].minor.yy528->pLeft->op==TK_VECTOR ){
+ int nExpr = yymsp[-4].minor.yy528->pLeft->x.pList->nExpr;
+ Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, yymsp[-1].minor.yy322);
+ if( pSelectRHS ){
+ parserDoubleLinkSelect(pParse, pSelectRHS);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelectRHS);
+ }
+ }else{
+ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy322;
+ sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528);
+ }
+ }
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ }
+ }
+ break;
+ case 221: /* expr ::= LP select RP */
+{
+ yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-2].minor.yy528, yymsp[-1].minor.yy47);
+ }
+ break;
+ case 222: /* expr ::= expr in_op LP select RP */
+{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, yymsp[-1].minor.yy47);
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ }
+ break;
+ case 223: /* expr ::= expr in_op nm dbnm paren_exprlist */
+{
+ SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0);
+ Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
+ if( yymsp[0].minor.yy322 ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, yymsp[0].minor.yy322);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelect);
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ }
+ break;
+ case 224: /* expr ::= EXISTS LP select RP */
+{
+ Expr *p;
+ p = yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
+ sqlite3PExprAddSelect(pParse, p, yymsp[-1].minor.yy47);
+ }
+ break;
+ case 225: /* expr ::= CASE case_operand case_exprlist case_else END */
+{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528 ){
+ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy528 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528) : yymsp[-2].minor.yy322;
+ sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528);
+ }else{
+ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy322);
+ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528);
+ }
+}
+ break;
+ case 226: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[-2].minor.yy528);
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[0].minor.yy528);
+}
+ break;
+ case 227: /* case_exprlist ::= WHEN expr THEN expr */
+{
+ yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528);
+ yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322, yymsp[0].minor.yy528);
+}
+ break;
+ case 230: /* case_operand ::= expr */
+{yymsp[0].minor.yy528 = yymsp[0].minor.yy528; /*A-overwrites-X*/}
+ break;
+ case 233: /* nexprlist ::= nexprlist COMMA expr */
+{yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[0].minor.yy528);}
+ break;
+ case 234: /* nexprlist ::= expr */
+{yymsp[0].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy528); /*A-overwrites-Y*/}
+ break;
+ case 236: /* paren_exprlist ::= LP exprlist RP */
+ case 241: /* eidlist_opt ::= LP eidlist RP */ yytestcase(yyruleno==241);
+{yymsp[-2].minor.yy322 = yymsp[-1].minor.yy322;}
+ break;
+ case 237: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
+{
+ sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0,
+ sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy322, yymsp[-10].minor.yy394,
+ &yymsp[-11].minor.yy0, yymsp[0].minor.yy528, SQLITE_SO_ASC, yymsp[-8].minor.yy394, SQLITE_IDXTYPE_APPDEF);
+ if( IN_RENAME_OBJECT && pParse->pNewIndex ){
+ sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &yymsp[-4].minor.yy0);
+ }
+}
+ break;
+ case 238: /* uniqueflag ::= UNIQUE */
+ case 280: /* raisetype ::= ABORT */ yytestcase(yyruleno==280);
+{yymsp[0].minor.yy394 = OE_Abort;}
+ break;
+ case 239: /* uniqueflag ::= */
+{yymsp[1].minor.yy394 = OE_None;}
+ break;
+ case 242: /* eidlist ::= eidlist COMMA nm collate sortorder */
+{
+ yymsp[-4].minor.yy322 = parserAddExprIdListTerm(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394);
+}
+ break;
+ case 243: /* eidlist ::= nm collate sortorder */
+{
+ yymsp[-2].minor.yy322 = parserAddExprIdListTerm(pParse, 0, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394); /*A-overwrites-Y*/
+}
+ break;
+ case 246: /* cmd ::= DROP INDEX ifexists fullname */
+{sqlite3DropIndex(pParse, yymsp[0].minor.yy131, yymsp[-1].minor.yy394);}
+ break;
+ case 247: /* cmd ::= VACUUM vinto */
+{sqlite3Vacuum(pParse,0,yymsp[0].minor.yy528);}
+ break;
+ case 248: /* cmd ::= VACUUM nm vinto */
+{sqlite3Vacuum(pParse,&yymsp[-1].minor.yy0,yymsp[0].minor.yy528);}
+ break;
+ case 251: /* cmd ::= PRAGMA nm dbnm */
+{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
+ break;
+ case 252: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
+ break;
+ case 253: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
+ break;
+ case 254: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
+ break;
+ case 255: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
+ break;
+ case 258: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
+{
+ Token all;
+ all.z = yymsp[-3].minor.yy0.z;
+ all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
+ sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy33, &all);
+}
+ break;
+ case 259: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+{
+ sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy394, yymsp[-4].minor.yy180.a, yymsp[-4].minor.yy180.b, yymsp[-2].minor.yy131, yymsp[0].minor.yy528, yymsp[-10].minor.yy394, yymsp[-8].minor.yy394);
+ yymsp[-10].minor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0); /*A-overwrites-T*/
+}
+ break;
+ case 260: /* trigger_time ::= BEFORE|AFTER */
+{ yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/ }
+ break;
+ case 261: /* trigger_time ::= INSTEAD OF */
+{ yymsp[-1].minor.yy394 = TK_INSTEAD;}
+ break;
+ case 262: /* trigger_time ::= */
+{ yymsp[1].minor.yy394 = TK_BEFORE; }
+ break;
+ case 263: /* trigger_event ::= DELETE|INSERT */
+ case 264: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==264);
+{yymsp[0].minor.yy180.a = yymsp[0].major; /*A-overwrites-X*/ yymsp[0].minor.yy180.b = 0;}
+ break;
+ case 265: /* trigger_event ::= UPDATE OF idlist */
+{yymsp[-2].minor.yy180.a = TK_UPDATE; yymsp[-2].minor.yy180.b = yymsp[0].minor.yy254;}
+ break;
+ case 266: /* when_clause ::= */
+ case 285: /* key_opt ::= */ yytestcase(yyruleno==285);
+{ yymsp[1].minor.yy528 = 0; }
+ break;
+ case 267: /* when_clause ::= WHEN expr */
+ case 286: /* key_opt ::= KEY expr */ yytestcase(yyruleno==286);
+{ yymsp[-1].minor.yy528 = yymsp[0].minor.yy528; }
+ break;
+ case 268: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+{
+ assert( yymsp[-2].minor.yy33!=0 );
+ yymsp[-2].minor.yy33->pLast->pNext = yymsp[-1].minor.yy33;
+ yymsp[-2].minor.yy33->pLast = yymsp[-1].minor.yy33;
+}
+ break;
+ case 269: /* trigger_cmd_list ::= trigger_cmd SEMI */
+{
+ assert( yymsp[-1].minor.yy33!=0 );
+ yymsp[-1].minor.yy33->pLast = yymsp[-1].minor.yy33;
+}
+ break;
+ case 270: /* trnm ::= nm DOT nm */
+{
+ yymsp[-2].minor.yy0 = yymsp[0].minor.yy0;
+ sqlite3ErrorMsg(pParse,
+ "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
+ "statements within triggers");
+}
+ break;
+ case 271: /* tridxby ::= INDEXED BY nm */
+{
+ sqlite3ErrorMsg(pParse,
+ "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
+ "within triggers");
+}
+ break;
+ case 272: /* tridxby ::= NOT INDEXED */
+{
+ sqlite3ErrorMsg(pParse,
+ "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
+ "within triggers");
+}
+ break;
+ case 273: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */
+{yylhsminor.yy33 = sqlite3TriggerUpdateStep(pParse, &yymsp[-6].minor.yy0, yymsp[-2].minor.yy131, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528, yymsp[-7].minor.yy394, yymsp[-8].minor.yy0.z, yymsp[0].minor.yy522);}
+ yymsp[-8].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 274: /* trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */
+{
+ yylhsminor.yy33 = sqlite3TriggerInsertStep(pParse,&yymsp[-4].minor.yy0,yymsp[-3].minor.yy254,yymsp[-2].minor.yy47,yymsp[-6].minor.yy394,yymsp[-1].minor.yy444,yymsp[-7].minor.yy522,yymsp[0].minor.yy522);/*yylhsminor.yy33-overwrites-yymsp[-6].minor.yy394*/
+}
+ yymsp[-7].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 275: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */
+{yylhsminor.yy33 = sqlite3TriggerDeleteStep(pParse, &yymsp[-3].minor.yy0, yymsp[-1].minor.yy528, yymsp[-5].minor.yy0.z, yymsp[0].minor.yy522);}
+ yymsp[-5].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 276: /* trigger_cmd ::= scanpt select scanpt */
+{yylhsminor.yy33 = sqlite3TriggerSelectStep(pParse->db, yymsp[-1].minor.yy47, yymsp[-2].minor.yy522, yymsp[0].minor.yy522); /*yylhsminor.yy33-overwrites-yymsp[-1].minor.yy47*/}
+ yymsp[-2].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 277: /* expr ::= RAISE LP IGNORE RP */
+{
+ yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
+ if( yymsp[-3].minor.yy528 ){
+ yymsp[-3].minor.yy528->affExpr = OE_Ignore;
+ }
+}
+ break;
+ case 278: /* expr ::= RAISE LP raisetype COMMA nm RP */
+{
+ yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_RAISE, &yymsp[-1].minor.yy0, 1);
+ if( yymsp[-5].minor.yy528 ) {
+ yymsp[-5].minor.yy528->affExpr = (char)yymsp[-3].minor.yy394;
+ }
+}
+ break;
+ case 279: /* raisetype ::= ROLLBACK */
+{yymsp[0].minor.yy394 = OE_Rollback;}
+ break;
+ case 281: /* raisetype ::= FAIL */
+{yymsp[0].minor.yy394 = OE_Fail;}
+ break;
+ case 282: /* cmd ::= DROP TRIGGER ifexists fullname */
+{
+ sqlite3DropTrigger(pParse,yymsp[0].minor.yy131,yymsp[-1].minor.yy394);
+}
+ break;
+ case 283: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+{
+ sqlite3Attach(pParse, yymsp[-3].minor.yy528, yymsp[-1].minor.yy528, yymsp[0].minor.yy528);
+}
+ break;
+ case 284: /* cmd ::= DETACH database_kw_opt expr */
+{
+ sqlite3Detach(pParse, yymsp[0].minor.yy528);
+}
+ break;
+ case 287: /* cmd ::= REINDEX */
+{sqlite3Reindex(pParse, 0, 0);}
+ break;
+ case 288: /* cmd ::= REINDEX nm dbnm */
+{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
+ break;
+ case 289: /* cmd ::= ANALYZE */
+{sqlite3Analyze(pParse, 0, 0);}
+ break;
+ case 290: /* cmd ::= ANALYZE nm dbnm */
+{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
+ break;
+ case 291: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
+{
+ sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy131,&yymsp[0].minor.yy0);
+}
+ break;
+ case 292: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */
+{
+ yymsp[-1].minor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-1].minor.yy0.z) + pParse->sLastToken.n;
+ sqlite3AlterFinishAddColumn(pParse, &yymsp[-1].minor.yy0);
+}
+ break;
+ case 293: /* cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */
+{
+ sqlite3AlterDropColumn(pParse, yymsp[-3].minor.yy131, &yymsp[0].minor.yy0);
+}
+ break;
+ case 294: /* add_column_fullname ::= fullname */
+{
+ disableLookaside(pParse);
+ sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy131);
+}
+ break;
+ case 295: /* cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */
+{
+ sqlite3AlterRenameColumn(pParse, yymsp[-5].minor.yy131, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0);
+}
+ break;
+ case 296: /* cmd ::= create_vtab */
+{sqlite3VtabFinishParse(pParse,0);}
+ break;
+ case 297: /* cmd ::= create_vtab LP vtabarglist RP */
+{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
+ break;
+ case 298: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
+{
+ sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy394);
+}
+ break;
+ case 299: /* vtabarg ::= */
+{sqlite3VtabArgInit(pParse);}
+ break;
+ case 300: /* vtabargtoken ::= ANY */
+ case 301: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==301);
+ case 302: /* lp ::= LP */ yytestcase(yyruleno==302);
+{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
+ break;
+ case 303: /* with ::= WITH wqlist */
+ case 304: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==304);
+{ sqlite3WithPush(pParse, yymsp[0].minor.yy521, 1); }
+ break;
+ case 305: /* wqas ::= AS */
+{yymsp[0].minor.yy516 = M10d_Any;}
+ break;
+ case 306: /* wqas ::= AS MATERIALIZED */
+{yymsp[-1].minor.yy516 = M10d_Yes;}
+ break;
+ case 307: /* wqas ::= AS NOT MATERIALIZED */
+{yymsp[-2].minor.yy516 = M10d_No;}
+ break;
+ case 308: /* wqitem ::= nm eidlist_opt wqas LP select RP */
+{
+ yymsp[-5].minor.yy385 = sqlite3CteNew(pParse, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy322, yymsp[-1].minor.yy47, yymsp[-3].minor.yy516); /*A-overwrites-X*/
+}
+ break;
+ case 309: /* wqlist ::= wqitem */
+{
+ yymsp[0].minor.yy521 = sqlite3WithAdd(pParse, 0, yymsp[0].minor.yy385); /*A-overwrites-X*/
+}
+ break;
+ case 310: /* wqlist ::= wqlist COMMA wqitem */
+{
+ yymsp[-2].minor.yy521 = sqlite3WithAdd(pParse, yymsp[-2].minor.yy521, yymsp[0].minor.yy385);
+}
+ break;
+ case 311: /* windowdefn_list ::= windowdefn */
+{ yylhsminor.yy41 = yymsp[0].minor.yy41; }
+ yymsp[0].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 312: /* windowdefn_list ::= windowdefn_list COMMA windowdefn */
+{
+ assert( yymsp[0].minor.yy41!=0 );
+ sqlite3WindowChain(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy41);
+ yymsp[0].minor.yy41->pNextWin = yymsp[-2].minor.yy41;
+ yylhsminor.yy41 = yymsp[0].minor.yy41;
+}
+ yymsp[-2].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 313: /* windowdefn ::= nm AS LP window RP */
+{
+ if( ALWAYS(yymsp[-1].minor.yy41) ){
+ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[-4].minor.yy0.z, yymsp[-4].minor.yy0.n);
+ }
+ yylhsminor.yy41 = yymsp[-1].minor.yy41;
+}
+ yymsp[-4].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 314: /* window ::= PARTITION BY nexprlist orderby_opt frame_opt */
+{
+ yymsp[-4].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, 0);
+}
+ break;
+ case 315: /* window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, &yymsp[-5].minor.yy0);
+}
+ yymsp[-5].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 316: /* window ::= ORDER BY sortlist frame_opt */
+{
+ yymsp[-3].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, 0);
+}
+ break;
+ case 317: /* window ::= nm ORDER BY sortlist frame_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0);
+}
+ yymsp[-4].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 318: /* window ::= frame_opt */
+ case 337: /* filter_over ::= over_clause */ yytestcase(yyruleno==337);
+{
+ yylhsminor.yy41 = yymsp[0].minor.yy41;
+}
+ yymsp[0].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 319: /* window ::= nm frame_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, 0, &yymsp[-1].minor.yy0);
+}
+ yymsp[-1].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 320: /* frame_opt ::= */
+{
+ yymsp[1].minor.yy41 = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0);
+}
+ break;
+ case 321: /* frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-2].minor.yy394, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, TK_CURRENT, 0, yymsp[0].minor.yy516);
+}
+ yymsp[-2].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 322: /* frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-5].minor.yy394, yymsp[-3].minor.yy595.eType, yymsp[-3].minor.yy595.pExpr, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, yymsp[0].minor.yy516);
+}
+ yymsp[-5].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 324: /* frame_bound_s ::= frame_bound */
+ case 326: /* frame_bound_e ::= frame_bound */ yytestcase(yyruleno==326);
+{yylhsminor.yy595 = yymsp[0].minor.yy595;}
+ yymsp[0].minor.yy595 = yylhsminor.yy595;
+ break;
+ case 325: /* frame_bound_s ::= UNBOUNDED PRECEDING */
+ case 327: /* frame_bound_e ::= UNBOUNDED FOLLOWING */ yytestcase(yyruleno==327);
+ case 329: /* frame_bound ::= CURRENT ROW */ yytestcase(yyruleno==329);
+{yylhsminor.yy595.eType = yymsp[-1].major; yylhsminor.yy595.pExpr = 0;}
+ yymsp[-1].minor.yy595 = yylhsminor.yy595;
+ break;
+ case 328: /* frame_bound ::= expr PRECEDING|FOLLOWING */
+{yylhsminor.yy595.eType = yymsp[0].major; yylhsminor.yy595.pExpr = yymsp[-1].minor.yy528;}
+ yymsp[-1].minor.yy595 = yylhsminor.yy595;
+ break;
+ case 330: /* frame_exclude_opt ::= */
+{yymsp[1].minor.yy516 = 0;}
+ break;
+ case 331: /* frame_exclude_opt ::= EXCLUDE frame_exclude */
+{yymsp[-1].minor.yy516 = yymsp[0].minor.yy516;}
+ break;
+ case 332: /* frame_exclude ::= NO OTHERS */
+ case 333: /* frame_exclude ::= CURRENT ROW */ yytestcase(yyruleno==333);
+{yymsp[-1].minor.yy516 = yymsp[-1].major; /*A-overwrites-X*/}
+ break;
+ case 334: /* frame_exclude ::= GROUP|TIES */
+{yymsp[0].minor.yy516 = yymsp[0].major; /*A-overwrites-X*/}
+ break;
+ case 335: /* window_clause ::= WINDOW windowdefn_list */
+{ yymsp[-1].minor.yy41 = yymsp[0].minor.yy41; }
+ break;
+ case 336: /* filter_over ::= filter_clause over_clause */
+{
+ if( yymsp[0].minor.yy41 ){
+ yymsp[0].minor.yy41->pFilter = yymsp[-1].minor.yy528;
+ }else{
+ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528);
+ }
+ yylhsminor.yy41 = yymsp[0].minor.yy41;
+}
+ yymsp[-1].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 338: /* filter_over ::= filter_clause */
+{
+ yylhsminor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
+ if( yylhsminor.yy41 ){
+ yylhsminor.yy41->eFrmType = TK_FILTER;
+ yylhsminor.yy41->pFilter = yymsp[0].minor.yy528;
+ }else{
+ sqlite3ExprDelete(pParse->db, yymsp[0].minor.yy528);
+ }
+}
+ yymsp[0].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 339: /* over_clause ::= OVER LP window RP */
+{
+ yymsp[-3].minor.yy41 = yymsp[-1].minor.yy41;
+ assert( yymsp[-3].minor.yy41!=0 );
+}
+ break;
+ case 340: /* over_clause ::= OVER nm */
+{
+ yymsp[-1].minor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
+ if( yymsp[-1].minor.yy41 ){
+ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n);
+ }
+}
+ break;
+ case 341: /* filter_clause ::= FILTER LP WHERE expr RP */
+{ yymsp[-4].minor.yy528 = yymsp[-1].minor.yy528; }
+ break;
+ default:
+ /* (342) input ::= cmdlist */ yytestcase(yyruleno==342);
+ /* (343) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==343);
+ /* (344) cmdlist ::= ecmd (OPTIMIZED OUT) */ assert(yyruleno!=344);
+ /* (345) ecmd ::= SEMI */ yytestcase(yyruleno==345);
+ /* (346) ecmd ::= cmdx SEMI */ yytestcase(yyruleno==346);
+ /* (347) ecmd ::= explain cmdx SEMI (NEVER REDUCES) */ assert(yyruleno!=347);
+ /* (348) trans_opt ::= */ yytestcase(yyruleno==348);
+ /* (349) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==349);
+ /* (350) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==350);
+ /* (351) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==351);
+ /* (352) savepoint_opt ::= */ yytestcase(yyruleno==352);
+ /* (353) cmd ::= create_table create_table_args */ yytestcase(yyruleno==353);
+ /* (354) table_option_set ::= table_option (OPTIMIZED OUT) */ assert(yyruleno!=354);
+ /* (355) columnlist ::= columnlist COMMA columnname carglist */ yytestcase(yyruleno==355);
+ /* (356) columnlist ::= columnname carglist */ yytestcase(yyruleno==356);
+ /* (357) nm ::= ID|INDEXED */ yytestcase(yyruleno==357);
+ /* (358) nm ::= STRING */ yytestcase(yyruleno==358);
+ /* (359) nm ::= JOIN_KW */ yytestcase(yyruleno==359);
+ /* (360) typetoken ::= typename */ yytestcase(yyruleno==360);
+ /* (361) typename ::= ID|STRING */ yytestcase(yyruleno==361);
+ /* (362) signed ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=362);
+ /* (363) signed ::= minus_num (OPTIMIZED OUT) */ assert(yyruleno!=363);
+ /* (364) carglist ::= carglist ccons */ yytestcase(yyruleno==364);
+ /* (365) carglist ::= */ yytestcase(yyruleno==365);
+ /* (366) ccons ::= NULL onconf */ yytestcase(yyruleno==366);
+ /* (367) ccons ::= GENERATED ALWAYS AS generated */ yytestcase(yyruleno==367);
+ /* (368) ccons ::= AS generated */ yytestcase(yyruleno==368);
+ /* (369) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==369);
+ /* (370) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==370);
+ /* (371) conslist ::= tcons (OPTIMIZED OUT) */ assert(yyruleno!=371);
+ /* (372) tconscomma ::= */ yytestcase(yyruleno==372);
+ /* (373) defer_subclause_opt ::= defer_subclause (OPTIMIZED OUT) */ assert(yyruleno!=373);
+ /* (374) resolvetype ::= raisetype (OPTIMIZED OUT) */ assert(yyruleno!=374);
+ /* (375) selectnowith ::= oneselect (OPTIMIZED OUT) */ assert(yyruleno!=375);
+ /* (376) oneselect ::= values */ yytestcase(yyruleno==376);
+ /* (377) sclp ::= selcollist COMMA */ yytestcase(yyruleno==377);
+ /* (378) as ::= ID|STRING */ yytestcase(yyruleno==378);
+ /* (379) indexed_opt ::= indexed_by (OPTIMIZED OUT) */ assert(yyruleno!=379);
+ /* (380) returning ::= */ yytestcase(yyruleno==380);
+ /* (381) expr ::= term (OPTIMIZED OUT) */ assert(yyruleno!=381);
+ /* (382) likeop ::= LIKE_KW|MATCH */ yytestcase(yyruleno==382);
+ /* (383) exprlist ::= nexprlist */ yytestcase(yyruleno==383);
+ /* (384) nmnum ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=384);
+ /* (385) nmnum ::= nm (OPTIMIZED OUT) */ assert(yyruleno!=385);
+ /* (386) nmnum ::= ON */ yytestcase(yyruleno==386);
+ /* (387) nmnum ::= DELETE */ yytestcase(yyruleno==387);
+ /* (388) nmnum ::= DEFAULT */ yytestcase(yyruleno==388);
+ /* (389) plus_num ::= INTEGER|FLOAT */ yytestcase(yyruleno==389);
+ /* (390) foreach_clause ::= */ yytestcase(yyruleno==390);
+ /* (391) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==391);
+ /* (392) trnm ::= nm */ yytestcase(yyruleno==392);
+ /* (393) tridxby ::= */ yytestcase(yyruleno==393);
+ /* (394) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==394);
+ /* (395) database_kw_opt ::= */ yytestcase(yyruleno==395);
+ /* (396) kwcolumn_opt ::= */ yytestcase(yyruleno==396);
+ /* (397) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==397);
+ /* (398) vtabarglist ::= vtabarg */ yytestcase(yyruleno==398);
+ /* (399) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==399);
+ /* (400) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==400);
+ /* (401) anylist ::= */ yytestcase(yyruleno==401);
+ /* (402) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==402);
+ /* (403) anylist ::= anylist ANY */ yytestcase(yyruleno==403);
+ /* (404) with ::= */ yytestcase(yyruleno==404);
+ break;
+/********** End reduce actions ************************************************/
+ };
+ assert( yyruleno<sizeof(yyRuleInfoLhs)/sizeof(yyRuleInfoLhs[0]) );
+ yygoto = yyRuleInfoLhs[yyruleno];
+ yysize = yyRuleInfoNRhs[yyruleno];
+ yyact = yy_find_reduce_action(yymsp[yysize].stateno,(YYCODETYPE)yygoto);
+
+ /* There are no SHIFTREDUCE actions on nonterminals because the table
+ ** generator has simplified them to pure REDUCE actions. */
+ assert( !(yyact>YY_MAX_SHIFT && yyact<=YY_MAX_SHIFTREDUCE) );
+
+ /* It is not possible for a REDUCE to be followed by an error */
+ assert( yyact!=YY_ERROR_ACTION );
+
+ yymsp += yysize+1;
+ yypParser->yytos = yymsp;
+ yymsp->stateno = (YYACTIONTYPE)yyact;
+ yymsp->major = (YYCODETYPE)yygoto;
+ yyTraceShift(yypParser, yyact, "... then shift");
+ return yyact;
+}
+
+/*
+** The following code executes when the parse fails
+*/
+#ifndef YYNOERRORRECOVERY
+static void yy_parse_failed(
+ yyParser *yypParser /* The parser */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+/************ Begin %parse_failure code ***************************************/
+/************ End %parse_failure code *****************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3ParserCTX_STORE
+}
+#endif /* YYNOERRORRECOVERY */
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void yy_syntax_error(
+ yyParser *yypParser, /* The parser */
+ int yymajor, /* The major type of the error token */
+ sqlite3ParserTOKENTYPE yyminor /* The minor type of the error token */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#define TOKEN yyminor
+/************ Begin %syntax_error code ****************************************/
+
+ UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
+ if( TOKEN.z[0] ){
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
+ }else{
+ sqlite3ErrorMsg(pParse, "incomplete input");
+ }
+/************ End %syntax_error code ******************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3ParserCTX_STORE
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void yy_accept(
+ yyParser *yypParser /* The parser */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
+ }
+#endif
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ assert( yypParser->yytos==yypParser->yystack );
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+/*********** Begin %parse_accept code *****************************************/
+/*********** End %parse_accept code *******************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3ParserCTX_STORE
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqlite3ParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+SQLITE_PRIVATE void sqlite3Parser(
+ void *yyp, /* The parser */
+ int yymajor, /* The major token code number */
+ sqlite3ParserTOKENTYPE yyminor /* The value for the token */
+ sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ YYMINORTYPE yyminorunion;
+ YYACTIONTYPE yyact; /* The parser action. */
+#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
+ int yyendofinput; /* True if we are at the end of input */
+#endif
+#ifdef YYERRORSYMBOL
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
+#endif
+ yyParser *yypParser = (yyParser*)yyp; /* The parser */
+ sqlite3ParserCTX_FETCH
+ sqlite3ParserARG_STORE
+
+ assert( yypParser->yytos!=0 );
+#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
+ yyendofinput = (yymajor==0);
+#endif
+
+ yyact = yypParser->yytos->stateno;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ if( yyact < YY_MIN_REDUCE ){
+ fprintf(yyTraceFILE,"%sInput '%s' in state %d\n",
+ yyTracePrompt,yyTokenName[yymajor],yyact);
+ }else{
+ fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
+ yyTracePrompt,yyTokenName[yymajor],yyact-YY_MIN_REDUCE);
+ }
+ }
+#endif
+
+ while(1){ /* Exit by "break" */
+ assert( yypParser->yytos>=yypParser->yystack );
+ assert( yyact==yypParser->yytos->stateno );
+ yyact = yy_find_shift_action((YYCODETYPE)yymajor,yyact);
+ if( yyact >= YY_MIN_REDUCE ){
+ unsigned int yyruleno = yyact - YY_MIN_REDUCE; /* Reduce by this rule */
+#ifndef NDEBUG
+ assert( yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) );
+ if( yyTraceFILE ){
+ int yysize = yyRuleInfoNRhs[yyruleno];
+ if( yysize ){
+ fprintf(yyTraceFILE, "%sReduce %d [%s]%s, pop back to state %d.\n",
+ yyTracePrompt,
+ yyruleno, yyRuleName[yyruleno],
+ yyruleno<YYNRULE_WITH_ACTION ? "" : " without external action",
+ yypParser->yytos[yysize].stateno);
+ }else{
+ fprintf(yyTraceFILE, "%sReduce %d [%s]%s.\n",
+ yyTracePrompt, yyruleno, yyRuleName[yyruleno],
+ yyruleno<YYNRULE_WITH_ACTION ? "" : " without external action");
+ }
+ }
+#endif /* NDEBUG */
+
+ /* Check that the stack is large enough to grow by a single entry
+ ** if the RHS of the rule is empty. This ensures that there is room
+ ** enough on the stack to push the LHS value */
+ if( yyRuleInfoNRhs[yyruleno]==0 ){
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
+ yypParser->yyhwm++;
+ assert( yypParser->yyhwm ==
+ (int)(yypParser->yytos - yypParser->yystack));
+ }
+#endif
+#if YYSTACKDEPTH>0
+ if( yypParser->yytos>=yypParser->yystackEnd ){
+ yyStackOverflow(yypParser);
+ break;
+ }
+#else
+ if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){
+ if( yyGrowStack(yypParser) ){
+ yyStackOverflow(yypParser);
+ break;
+ }
+ }
+#endif
+ }
+ yyact = yy_reduce(yypParser,yyruleno,yymajor,yyminor sqlite3ParserCTX_PARAM);
+ }else if( yyact <= YY_MAX_SHIFTREDUCE ){
+ yy_shift(yypParser,yyact,(YYCODETYPE)yymajor,yyminor);
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt--;
+#endif
+ break;
+ }else if( yyact==YY_ACCEPT_ACTION ){
+ yypParser->yytos--;
+ yy_accept(yypParser);
+ return;
+ }else{
+ assert( yyact == YY_ERROR_ACTION );
+ yyminorunion.yy0 = yyminor;
+#ifdef YYERRORSYMBOL
+ int yymx;
+#endif
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
+ }
+#endif
+#ifdef YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( yypParser->yyerrcnt<0 ){
+ yy_syntax_error(yypParser,yymajor,yyminor);
+ }
+ yymx = yypParser->yytos->major;
+ if( yymx==YYERRORSYMBOL || yyerrorhit ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
+ yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+ yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion);
+ yymajor = YYNOCODE;
+ }else{
+ while( yypParser->yytos > yypParser->yystack ){
+ yyact = yy_find_reduce_action(yypParser->yytos->stateno,
+ YYERRORSYMBOL);
+ if( yyact<=YY_MAX_SHIFTREDUCE ) break;
+ yy_pop_parser_stack(yypParser);
+ }
+ if( yypParser->yytos <= yypParser->yystack || yymajor==0 ){
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ yy_parse_failed(yypParser);
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ yymajor = YYNOCODE;
+ }else if( yymx!=YYERRORSYMBOL ){
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor);
+ }
+ }
+ yypParser->yyerrcnt = 3;
+ yyerrorhit = 1;
+ if( yymajor==YYNOCODE ) break;
+ yyact = yypParser->yytos->stateno;
+#elif defined(YYNOERRORRECOVERY)
+ /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ yy_syntax_error(yypParser,yymajor, yyminor);
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ break;
+#else /* YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( yypParser->yyerrcnt<=0 ){
+ yy_syntax_error(yypParser,yymajor, yyminor);
+ }
+ yypParser->yyerrcnt = 3;
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ if( yyendofinput ){
+ yy_parse_failed(yypParser);
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ }
+ break;
+#endif
+ }
+ }
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ yyStackEntry *i;
+ char cDiv = '[';
+ fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
+ for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){
+ fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]);
+ cDiv = ' ';
+ }
+ fprintf(yyTraceFILE,"]\n");
+ }
+#endif
+ return;
+}
+
+/*
+** Return the fallback token corresponding to canonical token iToken, or
+** 0 if iToken has no fallback.
+*/
+SQLITE_PRIVATE int sqlite3ParserFallback(int iToken){
+#ifdef YYFALLBACK
+ assert( iToken<(int)(sizeof(yyFallback)/sizeof(yyFallback[0])) );
+ return yyFallback[iToken];
+#else
+ (void)iToken;
+ return 0;
+#endif
+}
+
+/************** End of parse.c ***********************************************/
+/************** Begin file tokenize.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that splits an SQL input string up into
+** individual tokens and sends those tokens one-by-one over to the
+** parser for analysis.
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+
+/* Character classes for tokenizing
+**
+** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented
+** using a lookup table, whereas a switch() directly on c uses a binary search.
+** The lookup table is much faster. To maximize speed, and to ensure that
+** a lookup table is used, all of the classes need to be small integers and
+** all of them need to be used within the switch.
+*/
+#define CC_X 0 /* The letter 'x', or start of BLOB literal */
+#define CC_KYWD0 1 /* First letter of a keyword */
+#define CC_KYWD 2 /* Alphabetics or '_'. Usable in a keyword */
+#define CC_DIGIT 3 /* Digits */
+#define CC_DOLLAR 4 /* '$' */
+#define CC_VARALPHA 5 /* '@', '#', ':'. Alphabetic SQL variables */
+#define CC_VARNUM 6 /* '?'. Numeric SQL variables */
+#define CC_SPACE 7 /* Space characters */
+#define CC_QUOTE 8 /* '"', '\'', or '`'. String literals, quoted ids */
+#define CC_QUOTE2 9 /* '['. [...] style quoted ids */
+#define CC_PIPE 10 /* '|'. Bitwise OR or concatenate */
+#define CC_MINUS 11 /* '-'. Minus or SQL-style comment */
+#define CC_LT 12 /* '<'. Part of < or <= or <> */
+#define CC_GT 13 /* '>'. Part of > or >= */
+#define CC_EQ 14 /* '='. Part of = or == */
+#define CC_BANG 15 /* '!'. Part of != */
+#define CC_SLASH 16 /* '/'. / or c-style comment */
+#define CC_LP 17 /* '(' */
+#define CC_RP 18 /* ')' */
+#define CC_SEMI 19 /* ';' */
+#define CC_PLUS 20 /* '+' */
+#define CC_STAR 21 /* '*' */
+#define CC_PERCENT 22 /* '%' */
+#define CC_COMMA 23 /* ',' */
+#define CC_AND 24 /* '&' */
+#define CC_TILDA 25 /* '~' */
+#define CC_DOT 26 /* '.' */
+#define CC_ID 27 /* unicode characters usable in IDs */
+#define CC_ILLEGAL 28 /* Illegal character */
+#define CC_NUL 29 /* 0x00 */
+#define CC_BOM 30 /* First byte of UTF8 BOM: 0xEF 0xBB 0xBF */
+
+static const unsigned char aiClass[] = {
+#ifdef SQLITE_ASCII
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
+/* 0x */ 29, 28, 28, 28, 28, 28, 28, 28, 28, 7, 7, 28, 7, 7, 28, 28,
+/* 1x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 2x */ 7, 15, 8, 5, 4, 22, 24, 8, 17, 18, 21, 20, 23, 11, 26, 16,
+/* 3x */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 19, 12, 14, 13, 6,
+/* 4x */ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+/* 5x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 9, 28, 28, 28, 2,
+/* 6x */ 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+/* 7x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 28, 10, 28, 25, 28,
+/* 8x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* 9x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Ax */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Bx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Cx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Dx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Ex */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 30,
+/* Fx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27
+#endif
+#ifdef SQLITE_EBCDIC
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
+/* 0x */ 29, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 7, 7, 28, 28,
+/* 1x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 2x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 3x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 4x */ 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 26, 12, 17, 20, 10,
+/* 5x */ 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 15, 4, 21, 18, 19, 28,
+/* 6x */ 11, 16, 28, 28, 28, 28, 28, 28, 28, 28, 28, 23, 22, 2, 13, 6,
+/* 7x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 8, 5, 5, 5, 8, 14, 8,
+/* 8x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* 9x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* Ax */ 28, 25, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28,
+/* Bx */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 9, 28, 28, 28, 28, 28,
+/* Cx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* Dx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* Ex */ 28, 28, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28,
+/* Fx */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 28, 28, 28, 28, 28, 28,
+#endif
+};
+
+/*
+** The charMap() macro maps alphabetic characters (only) into their
+** lower-case ASCII equivalent. On ASCII machines, this is just
+** an upper-to-lower case map. On EBCDIC machines we also need
+** to adjust the encoding. The mapping is only valid for alphabetics
+** which are the only characters for which this feature is used.
+**
+** Used by keywordhash.h
+*/
+#ifdef SQLITE_ASCII
+# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
+#endif
+#ifdef SQLITE_EBCDIC
+# define charMap(X) ebcdicToAscii[(unsigned char)X]
+const unsigned char ebcdicToAscii[] = {
+/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
+ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
+ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
+ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
+ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
+ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
+ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
+};
+#endif
+
+/*
+** The sqlite3KeywordCode function looks up an identifier to determine if
+** it is a keyword. If it is a keyword, the token code of that keyword is
+** returned. If the input is not a keyword, TK_ID is returned.
+**
+** The implementation of this routine was generated by a program,
+** mkkeywordhash.c, located in the tool subdirectory of the distribution.
+** The output of the mkkeywordhash.c program is written into a file
+** named keywordhash.h and then included into this source file by
+** the #include below.
+*/
+/************** Include keywordhash.h in the middle of tokenize.c ************/
+/************** Begin file keywordhash.h *************************************/
+/***** This file contains automatically generated code ******
+**
+** The code in this file has been automatically generated by
+**
+** sqlite/tool/mkkeywordhash.c
+**
+** The code in this file implements a function that determines whether
+** or not a given identifier is really an SQL keyword. The same thing
+** might be implemented more directly using a hand-written hash table.
+** But by using this automatically generated code, the size of the code
+** is substantially reduced. This is important for embedded applications
+** on platforms with limited memory.
+*/
+/* Hash score: 231 */
+/* zKWText[] encodes 1007 bytes of keyword text in 667 bytes */
+/* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */
+/* ABLEFTHENDEFERRABLELSEXCLUDELETEMPORARYISNULLSAVEPOINTERSECT */
+/* IESNOTNULLIKEXCEPTRANSACTIONATURALTERAISEXCLUSIVEXISTS */
+/* CONSTRAINTOFFSETRIGGERANGENERATEDETACHAVINGLOBEGINNEREFERENCES */
+/* UNIQUERYWITHOUTERELEASEATTACHBETWEENOTHINGROUPSCASCADEFAULT */
+/* CASECOLLATECREATECURRENT_DATEIMMEDIATEJOINSERTMATCHPLANALYZE */
+/* PRAGMATERIALIZEDEFERREDISTINCTUPDATEVALUESVIRTUALWAYSWHENWHERE */
+/* CURSIVEABORTAFTERENAMEANDROPARTITIONAUTOINCREMENTCASTCOLUMN */
+/* COMMITCONFLICTCROSSCURRENT_TIMESTAMPRECEDINGFAILASTFILTER */
+/* EPLACEFIRSTFOLLOWINGFROMFULLIMITIFORDERESTRICTOTHERSOVER */
+/* ETURNINGRIGHTROLLBACKROWSUNBOUNDEDUNIONUSINGVACUUMVIEWINDOWBY */
+/* INITIALLYPRIMARY */
+static const char zKWText[666] = {
+ 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
+ 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
+ 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
+ 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
+ 'E','R','R','A','B','L','E','L','S','E','X','C','L','U','D','E','L','E',
+ 'T','E','M','P','O','R','A','R','Y','I','S','N','U','L','L','S','A','V',
+ 'E','P','O','I','N','T','E','R','S','E','C','T','I','E','S','N','O','T',
+ 'N','U','L','L','I','K','E','X','C','E','P','T','R','A','N','S','A','C',
+ 'T','I','O','N','A','T','U','R','A','L','T','E','R','A','I','S','E','X',
+ 'C','L','U','S','I','V','E','X','I','S','T','S','C','O','N','S','T','R',
+ 'A','I','N','T','O','F','F','S','E','T','R','I','G','G','E','R','A','N',
+ 'G','E','N','E','R','A','T','E','D','E','T','A','C','H','A','V','I','N',
+ 'G','L','O','B','E','G','I','N','N','E','R','E','F','E','R','E','N','C',
+ 'E','S','U','N','I','Q','U','E','R','Y','W','I','T','H','O','U','T','E',
+ 'R','E','L','E','A','S','E','A','T','T','A','C','H','B','E','T','W','E',
+ 'E','N','O','T','H','I','N','G','R','O','U','P','S','C','A','S','C','A',
+ 'D','E','F','A','U','L','T','C','A','S','E','C','O','L','L','A','T','E',
+ 'C','R','E','A','T','E','C','U','R','R','E','N','T','_','D','A','T','E',
+ 'I','M','M','E','D','I','A','T','E','J','O','I','N','S','E','R','T','M',
+ 'A','T','C','H','P','L','A','N','A','L','Y','Z','E','P','R','A','G','M',
+ 'A','T','E','R','I','A','L','I','Z','E','D','E','F','E','R','R','E','D',
+ 'I','S','T','I','N','C','T','U','P','D','A','T','E','V','A','L','U','E',
+ 'S','V','I','R','T','U','A','L','W','A','Y','S','W','H','E','N','W','H',
+ 'E','R','E','C','U','R','S','I','V','E','A','B','O','R','T','A','F','T',
+ 'E','R','E','N','A','M','E','A','N','D','R','O','P','A','R','T','I','T',
+ 'I','O','N','A','U','T','O','I','N','C','R','E','M','E','N','T','C','A',
+ 'S','T','C','O','L','U','M','N','C','O','M','M','I','T','C','O','N','F',
+ 'L','I','C','T','C','R','O','S','S','C','U','R','R','E','N','T','_','T',
+ 'I','M','E','S','T','A','M','P','R','E','C','E','D','I','N','G','F','A',
+ 'I','L','A','S','T','F','I','L','T','E','R','E','P','L','A','C','E','F',
+ 'I','R','S','T','F','O','L','L','O','W','I','N','G','F','R','O','M','F',
+ 'U','L','L','I','M','I','T','I','F','O','R','D','E','R','E','S','T','R',
+ 'I','C','T','O','T','H','E','R','S','O','V','E','R','E','T','U','R','N',
+ 'I','N','G','R','I','G','H','T','R','O','L','L','B','A','C','K','R','O',
+ 'W','S','U','N','B','O','U','N','D','E','D','U','N','I','O','N','U','S',
+ 'I','N','G','V','A','C','U','U','M','V','I','E','W','I','N','D','O','W',
+ 'B','Y','I','N','I','T','I','A','L','L','Y','P','R','I','M','A','R','Y',
+};
+/* aKWHash[i] is the hash value for the i-th keyword */
+static const unsigned char aKWHash[127] = {
+ 84, 92, 134, 82, 105, 29, 0, 0, 94, 0, 85, 72, 0,
+ 53, 35, 86, 15, 0, 42, 97, 54, 89, 135, 19, 0, 0,
+ 140, 0, 40, 129, 0, 22, 107, 0, 9, 0, 0, 123, 80,
+ 0, 78, 6, 0, 65, 103, 147, 0, 136, 115, 0, 0, 48,
+ 0, 90, 24, 0, 17, 0, 27, 70, 23, 26, 5, 60, 142,
+ 110, 122, 0, 73, 91, 71, 145, 61, 120, 74, 0, 49, 0,
+ 11, 41, 0, 113, 0, 0, 0, 109, 10, 111, 116, 125, 14,
+ 50, 124, 0, 100, 0, 18, 121, 144, 56, 130, 139, 88, 83,
+ 37, 30, 126, 0, 0, 108, 51, 131, 128, 0, 34, 0, 0,
+ 132, 0, 98, 38, 39, 0, 20, 45, 117, 93,
+};
+/* aKWNext[] forms the hash collision chain. If aKWHash[i]==0
+** then the i-th keyword has no more hash collisions. Otherwise,
+** the next keyword with the same hash is aKWHash[i]-1. */
+static const unsigned char aKWNext[147] = {
+ 0, 0, 0, 0, 4, 0, 43, 0, 0, 106, 114, 0, 0,
+ 0, 2, 0, 0, 143, 0, 0, 0, 13, 0, 0, 0, 0,
+ 141, 0, 0, 119, 52, 0, 0, 137, 12, 0, 0, 62, 0,
+ 138, 0, 133, 0, 0, 36, 0, 0, 28, 77, 0, 0, 0,
+ 0, 59, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 69, 0, 0, 0, 0, 0, 146, 3, 0, 58, 0, 1,
+ 75, 0, 0, 0, 31, 0, 0, 0, 0, 0, 127, 0, 104,
+ 0, 64, 66, 63, 0, 0, 0, 0, 0, 46, 0, 16, 8,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 101, 0,
+ 112, 21, 7, 67, 0, 79, 96, 118, 0, 0, 68, 0, 0,
+ 99, 44, 0, 55, 0, 76, 0, 95, 32, 33, 57, 25, 0,
+ 102, 0, 0, 87,
+};
+/* aKWLen[i] is the length (in bytes) of the i-th keyword */
+static const unsigned char aKWLen[147] = {
+ 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6,
+ 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 7,
+ 6, 9, 4, 2, 6, 5, 9, 9, 4, 7, 3, 2, 4,
+ 4, 6, 11, 6, 2, 7, 5, 5, 9, 6, 10, 4, 6,
+ 2, 3, 7, 5, 9, 6, 6, 4, 5, 5, 10, 6, 5,
+ 7, 4, 5, 7, 6, 7, 7, 6, 5, 7, 3, 7, 4,
+ 7, 6, 12, 9, 4, 6, 5, 4, 7, 6, 12, 8, 8,
+ 2, 6, 6, 7, 6, 4, 5, 9, 5, 5, 6, 3, 4,
+ 9, 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 9,
+ 4, 4, 6, 7, 5, 9, 4, 4, 5, 2, 5, 8, 6,
+ 4, 9, 5, 8, 4, 3, 9, 5, 5, 6, 4, 6, 2,
+ 2, 9, 3, 7,
+};
+/* aKWOffset[i] is the index into zKWText[] of the start of
+** the text for the i-th keyword. */
+static const unsigned short int aKWOffset[147] = {
+ 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33,
+ 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81,
+ 86, 90, 90, 94, 99, 101, 105, 111, 119, 123, 123, 123, 126,
+ 129, 132, 137, 142, 146, 147, 152, 156, 160, 168, 174, 181, 184,
+ 184, 187, 189, 195, 198, 206, 211, 216, 219, 222, 226, 236, 239,
+ 244, 244, 248, 252, 259, 265, 271, 277, 277, 283, 284, 288, 295,
+ 299, 306, 312, 324, 333, 335, 341, 346, 348, 355, 359, 370, 377,
+ 378, 385, 391, 397, 402, 408, 412, 415, 424, 429, 433, 439, 441,
+ 444, 453, 455, 457, 466, 470, 476, 482, 490, 495, 495, 495, 511,
+ 520, 523, 527, 532, 539, 544, 553, 557, 560, 565, 567, 571, 579,
+ 585, 588, 597, 602, 610, 610, 614, 623, 628, 633, 639, 642, 645,
+ 648, 650, 655, 659,
+};
+/* aKWCode[i] is the parser symbol code for the i-th keyword */
+static const unsigned char aKWCode[147] = {
+ TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE,
+ TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN,
+ TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD,
+ TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE,
+ TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE,
+ TK_EXCLUDE, TK_DELETE, TK_TEMP, TK_TEMP, TK_OR,
+ TK_ISNULL, TK_NULLS, TK_SAVEPOINT, TK_INTERSECT, TK_TIES,
+ TK_NOTNULL, TK_NOT, TK_NO, TK_NULL, TK_LIKE_KW,
+ TK_EXCEPT, TK_TRANSACTION,TK_ACTION, TK_ON, TK_JOIN_KW,
+ TK_ALTER, TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_CONSTRAINT,
+ TK_INTO, TK_OFFSET, TK_OF, TK_SET, TK_TRIGGER,
+ TK_RANGE, TK_GENERATED, TK_DETACH, TK_HAVING, TK_LIKE_KW,
+ TK_BEGIN, TK_JOIN_KW, TK_REFERENCES, TK_UNIQUE, TK_QUERY,
+ TK_WITHOUT, TK_WITH, TK_JOIN_KW, TK_RELEASE, TK_ATTACH,
+ TK_BETWEEN, TK_NOTHING, TK_GROUPS, TK_GROUP, TK_CASCADE,
+ TK_ASC, TK_DEFAULT, TK_CASE, TK_COLLATE, TK_CREATE,
+ TK_CTIME_KW, TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH,
+ TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_MATERIALIZED, TK_DEFERRED,
+ TK_DISTINCT, TK_IS, TK_UPDATE, TK_VALUES, TK_VIRTUAL,
+ TK_ALWAYS, TK_WHEN, TK_WHERE, TK_RECURSIVE, TK_ABORT,
+ TK_AFTER, TK_RENAME, TK_AND, TK_DROP, TK_PARTITION,
+ TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW,
+ TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW,
+ TK_CURRENT, TK_PRECEDING, TK_FAIL, TK_LAST, TK_FILTER,
+ TK_REPLACE, TK_FIRST, TK_FOLLOWING, TK_FROM, TK_JOIN_KW,
+ TK_LIMIT, TK_IF, TK_ORDER, TK_RESTRICT, TK_OTHERS,
+ TK_OVER, TK_RETURNING, TK_JOIN_KW, TK_ROLLBACK, TK_ROWS,
+ TK_ROW, TK_UNBOUNDED, TK_UNION, TK_USING, TK_VACUUM,
+ TK_VIEW, TK_WINDOW, TK_DO, TK_BY, TK_INITIALLY,
+ TK_ALL, TK_PRIMARY,
+};
+/* Hash table decoded:
+** 0: INSERT
+** 1: IS
+** 2: ROLLBACK TRIGGER
+** 3: IMMEDIATE
+** 4: PARTITION
+** 5: TEMP
+** 6:
+** 7:
+** 8: VALUES WITHOUT
+** 9:
+** 10: MATCH
+** 11: NOTHING
+** 12:
+** 13: OF
+** 14: TIES IGNORE
+** 15: PLAN
+** 16: INSTEAD INDEXED
+** 17:
+** 18: TRANSACTION RIGHT
+** 19: WHEN
+** 20: SET HAVING
+** 21: MATERIALIZED IF
+** 22: ROWS
+** 23: SELECT
+** 24:
+** 25:
+** 26: VACUUM SAVEPOINT
+** 27:
+** 28: LIKE UNION VIRTUAL REFERENCES
+** 29: RESTRICT
+** 30:
+** 31: THEN REGEXP
+** 32: TO
+** 33:
+** 34: BEFORE
+** 35:
+** 36:
+** 37: FOLLOWING COLLATE CASCADE
+** 38: CREATE
+** 39:
+** 40: CASE REINDEX
+** 41: EACH
+** 42:
+** 43: QUERY
+** 44: AND ADD
+** 45: PRIMARY ANALYZE
+** 46:
+** 47: ROW ASC DETACH
+** 48: CURRENT_TIME CURRENT_DATE
+** 49:
+** 50:
+** 51: EXCLUSIVE TEMPORARY
+** 52:
+** 53: DEFERRED
+** 54: DEFERRABLE
+** 55:
+** 56: DATABASE
+** 57:
+** 58: DELETE VIEW GENERATED
+** 59: ATTACH
+** 60: END
+** 61: EXCLUDE
+** 62: ESCAPE DESC
+** 63: GLOB
+** 64: WINDOW ELSE
+** 65: COLUMN
+** 66: FIRST
+** 67:
+** 68: GROUPS ALL
+** 69: DISTINCT DROP KEY
+** 70: BETWEEN
+** 71: INITIALLY
+** 72: BEGIN
+** 73: FILTER CHECK ACTION
+** 74: GROUP INDEX
+** 75:
+** 76: EXISTS DEFAULT
+** 77:
+** 78: FOR CURRENT_TIMESTAMP
+** 79: EXCEPT
+** 80:
+** 81: CROSS
+** 82:
+** 83:
+** 84:
+** 85: CAST
+** 86: FOREIGN AUTOINCREMENT
+** 87: COMMIT
+** 88: CURRENT AFTER ALTER
+** 89: FULL FAIL CONFLICT
+** 90: EXPLAIN
+** 91: CONSTRAINT
+** 92: FROM ALWAYS
+** 93:
+** 94: ABORT
+** 95:
+** 96: AS DO
+** 97: REPLACE WITH RELEASE
+** 98: BY RENAME
+** 99: RANGE RAISE
+** 100: OTHERS
+** 101: USING NULLS
+** 102: PRAGMA
+** 103: JOIN ISNULL OFFSET
+** 104: NOT
+** 105: OR LAST LEFT
+** 106: LIMIT
+** 107:
+** 108:
+** 109: IN
+** 110: INTO
+** 111: OVER RECURSIVE
+** 112: ORDER OUTER
+** 113:
+** 114: INTERSECT UNBOUNDED
+** 115:
+** 116:
+** 117: RETURNING ON
+** 118:
+** 119: WHERE
+** 120: NO INNER
+** 121: NULL
+** 122:
+** 123: TABLE
+** 124: NATURAL NOTNULL
+** 125: PRECEDING
+** 126: UPDATE UNIQUE
+*/
+/* Check to see if z[0..n-1] is a keyword. If it is, write the
+** parser symbol code for that keyword into *pType. Always
+** return the integer n (the length of the token). */
+static int keywordCode(const char *z, int n, int *pType){
+ int i, j;
+ const char *zKW;
+ if( n>=2 ){
+ i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n*1) % 127;
+ for(i=((int)aKWHash[i])-1; i>=0; i=((int)aKWNext[i])-1){
+ if( aKWLen[i]!=n ) continue;
+ zKW = &zKWText[aKWOffset[i]];
+#ifdef SQLITE_ASCII
+ if( (z[0]&~0x20)!=zKW[0] ) continue;
+ if( (z[1]&~0x20)!=zKW[1] ) continue;
+ j = 2;
+ while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }
+#endif
+#ifdef SQLITE_EBCDIC
+ if( toupper(z[0])!=zKW[0] ) continue;
+ if( toupper(z[1])!=zKW[1] ) continue;
+ j = 2;
+ while( j<n && toupper(z[j])==zKW[j] ){ j++; }
+#endif
+ if( j<n ) continue;
+ testcase( i==0 ); /* REINDEX */
+ testcase( i==1 ); /* INDEXED */
+ testcase( i==2 ); /* INDEX */
+ testcase( i==3 ); /* DESC */
+ testcase( i==4 ); /* ESCAPE */
+ testcase( i==5 ); /* EACH */
+ testcase( i==6 ); /* CHECK */
+ testcase( i==7 ); /* KEY */
+ testcase( i==8 ); /* BEFORE */
+ testcase( i==9 ); /* FOREIGN */
+ testcase( i==10 ); /* FOR */
+ testcase( i==11 ); /* IGNORE */
+ testcase( i==12 ); /* REGEXP */
+ testcase( i==13 ); /* EXPLAIN */
+ testcase( i==14 ); /* INSTEAD */
+ testcase( i==15 ); /* ADD */
+ testcase( i==16 ); /* DATABASE */
+ testcase( i==17 ); /* AS */
+ testcase( i==18 ); /* SELECT */
+ testcase( i==19 ); /* TABLE */
+ testcase( i==20 ); /* LEFT */
+ testcase( i==21 ); /* THEN */
+ testcase( i==22 ); /* END */
+ testcase( i==23 ); /* DEFERRABLE */
+ testcase( i==24 ); /* ELSE */
+ testcase( i==25 ); /* EXCLUDE */
+ testcase( i==26 ); /* DELETE */
+ testcase( i==27 ); /* TEMPORARY */
+ testcase( i==28 ); /* TEMP */
+ testcase( i==29 ); /* OR */
+ testcase( i==30 ); /* ISNULL */
+ testcase( i==31 ); /* NULLS */
+ testcase( i==32 ); /* SAVEPOINT */
+ testcase( i==33 ); /* INTERSECT */
+ testcase( i==34 ); /* TIES */
+ testcase( i==35 ); /* NOTNULL */
+ testcase( i==36 ); /* NOT */
+ testcase( i==37 ); /* NO */
+ testcase( i==38 ); /* NULL */
+ testcase( i==39 ); /* LIKE */
+ testcase( i==40 ); /* EXCEPT */
+ testcase( i==41 ); /* TRANSACTION */
+ testcase( i==42 ); /* ACTION */
+ testcase( i==43 ); /* ON */
+ testcase( i==44 ); /* NATURAL */
+ testcase( i==45 ); /* ALTER */
+ testcase( i==46 ); /* RAISE */
+ testcase( i==47 ); /* EXCLUSIVE */
+ testcase( i==48 ); /* EXISTS */
+ testcase( i==49 ); /* CONSTRAINT */
+ testcase( i==50 ); /* INTO */
+ testcase( i==51 ); /* OFFSET */
+ testcase( i==52 ); /* OF */
+ testcase( i==53 ); /* SET */
+ testcase( i==54 ); /* TRIGGER */
+ testcase( i==55 ); /* RANGE */
+ testcase( i==56 ); /* GENERATED */
+ testcase( i==57 ); /* DETACH */
+ testcase( i==58 ); /* HAVING */
+ testcase( i==59 ); /* GLOB */
+ testcase( i==60 ); /* BEGIN */
+ testcase( i==61 ); /* INNER */
+ testcase( i==62 ); /* REFERENCES */
+ testcase( i==63 ); /* UNIQUE */
+ testcase( i==64 ); /* QUERY */
+ testcase( i==65 ); /* WITHOUT */
+ testcase( i==66 ); /* WITH */
+ testcase( i==67 ); /* OUTER */
+ testcase( i==68 ); /* RELEASE */
+ testcase( i==69 ); /* ATTACH */
+ testcase( i==70 ); /* BETWEEN */
+ testcase( i==71 ); /* NOTHING */
+ testcase( i==72 ); /* GROUPS */
+ testcase( i==73 ); /* GROUP */
+ testcase( i==74 ); /* CASCADE */
+ testcase( i==75 ); /* ASC */
+ testcase( i==76 ); /* DEFAULT */
+ testcase( i==77 ); /* CASE */
+ testcase( i==78 ); /* COLLATE */
+ testcase( i==79 ); /* CREATE */
+ testcase( i==80 ); /* CURRENT_DATE */
+ testcase( i==81 ); /* IMMEDIATE */
+ testcase( i==82 ); /* JOIN */
+ testcase( i==83 ); /* INSERT */
+ testcase( i==84 ); /* MATCH */
+ testcase( i==85 ); /* PLAN */
+ testcase( i==86 ); /* ANALYZE */
+ testcase( i==87 ); /* PRAGMA */
+ testcase( i==88 ); /* MATERIALIZED */
+ testcase( i==89 ); /* DEFERRED */
+ testcase( i==90 ); /* DISTINCT */
+ testcase( i==91 ); /* IS */
+ testcase( i==92 ); /* UPDATE */
+ testcase( i==93 ); /* VALUES */
+ testcase( i==94 ); /* VIRTUAL */
+ testcase( i==95 ); /* ALWAYS */
+ testcase( i==96 ); /* WHEN */
+ testcase( i==97 ); /* WHERE */
+ testcase( i==98 ); /* RECURSIVE */
+ testcase( i==99 ); /* ABORT */
+ testcase( i==100 ); /* AFTER */
+ testcase( i==101 ); /* RENAME */
+ testcase( i==102 ); /* AND */
+ testcase( i==103 ); /* DROP */
+ testcase( i==104 ); /* PARTITION */
+ testcase( i==105 ); /* AUTOINCREMENT */
+ testcase( i==106 ); /* TO */
+ testcase( i==107 ); /* IN */
+ testcase( i==108 ); /* CAST */
+ testcase( i==109 ); /* COLUMN */
+ testcase( i==110 ); /* COMMIT */
+ testcase( i==111 ); /* CONFLICT */
+ testcase( i==112 ); /* CROSS */
+ testcase( i==113 ); /* CURRENT_TIMESTAMP */
+ testcase( i==114 ); /* CURRENT_TIME */
+ testcase( i==115 ); /* CURRENT */
+ testcase( i==116 ); /* PRECEDING */
+ testcase( i==117 ); /* FAIL */
+ testcase( i==118 ); /* LAST */
+ testcase( i==119 ); /* FILTER */
+ testcase( i==120 ); /* REPLACE */
+ testcase( i==121 ); /* FIRST */
+ testcase( i==122 ); /* FOLLOWING */
+ testcase( i==123 ); /* FROM */
+ testcase( i==124 ); /* FULL */
+ testcase( i==125 ); /* LIMIT */
+ testcase( i==126 ); /* IF */
+ testcase( i==127 ); /* ORDER */
+ testcase( i==128 ); /* RESTRICT */
+ testcase( i==129 ); /* OTHERS */
+ testcase( i==130 ); /* OVER */
+ testcase( i==131 ); /* RETURNING */
+ testcase( i==132 ); /* RIGHT */
+ testcase( i==133 ); /* ROLLBACK */
+ testcase( i==134 ); /* ROWS */
+ testcase( i==135 ); /* ROW */
+ testcase( i==136 ); /* UNBOUNDED */
+ testcase( i==137 ); /* UNION */
+ testcase( i==138 ); /* USING */
+ testcase( i==139 ); /* VACUUM */
+ testcase( i==140 ); /* VIEW */
+ testcase( i==141 ); /* WINDOW */
+ testcase( i==142 ); /* DO */
+ testcase( i==143 ); /* BY */
+ testcase( i==144 ); /* INITIALLY */
+ testcase( i==145 ); /* ALL */
+ testcase( i==146 ); /* PRIMARY */
+ *pType = aKWCode[i];
+ break;
+ }
+ }
+ return n;
+}
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
+ int id = TK_ID;
+ keywordCode((char*)z, n, &id);
+ return id;
+}
+#define SQLITE_N_KEYWORD 147
+SQLITE_API int sqlite3_keyword_name(int i,const char **pzName,int *pnName){
+ if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR;
+ *pzName = zKWText + aKWOffset[i];
+ *pnName = aKWLen[i];
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }
+SQLITE_API int sqlite3_keyword_check(const char *zName, int nName){
+ return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);
+}
+
+/************** End of keywordhash.h *****************************************/
+/************** Continuing where we left off in tokenize.c *******************/
+
+
+/*
+** If X is a character that can be used in an identifier then
+** IdChar(X) will be true. Otherwise it is false.
+**
+** For ASCII, any character with the high-order bit set is
+** allowed in an identifier. For 7-bit characters,
+** sqlite3IsIdChar[X] must be 1.
+**
+** For EBCDIC, the rules are more complex but have the same
+** end result.
+**
+** Ticket #1066. the SQL standard does not allow '$' in the
+** middle of identifiers. But many SQL implementations do.
+** SQLite will allow '$' in identifiers for compatibility.
+** But the feature is undocumented.
+*/
+#ifdef SQLITE_ASCII
+#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
+};
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+
+/* Make the IdChar function accessible from ctime.c and alter.c */
+SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Return the id of the next token in string (*pz). Before returning, set
+** (*pz) to point to the byte following the parsed token.
+*/
+static int getToken(const unsigned char **pz){
+ const unsigned char *z = *pz;
+ int t; /* Token type to return */
+ do {
+ z += sqlite3GetToken(z, &t);
+ }while( t==TK_SPACE );
+ if( t==TK_ID
+ || t==TK_STRING
+ || t==TK_JOIN_KW
+ || t==TK_WINDOW
+ || t==TK_OVER
+ || sqlite3ParserFallback(t)==TK_ID
+ ){
+ t = TK_ID;
+ }
+ *pz = z;
+ return t;
+}
+
+/*
+** The following three functions are called immediately after the tokenizer
+** reads the keywords WINDOW, OVER and FILTER, respectively, to determine
+** whether the token should be treated as a keyword or an SQL identifier.
+** This cannot be handled by the usual lemon %fallback method, due to
+** the ambiguity in some constructions. e.g.
+**
+** SELECT sum(x) OVER ...
+**
+** In the above, "OVER" might be a keyword, or it might be an alias for the
+** sum(x) expression. If a "%fallback ID OVER" directive were added to
+** grammar, then SQLite would always treat "OVER" as an alias, making it
+** impossible to call a window-function without a FILTER clause.
+**
+** WINDOW is treated as a keyword if:
+**
+** * the following token is an identifier, or a keyword that can fallback
+** to being an identifier, and
+** * the token after than one is TK_AS.
+**
+** OVER is a keyword if:
+**
+** * the previous token was TK_RP, and
+** * the next token is either TK_LP or an identifier.
+**
+** FILTER is a keyword if:
+**
+** * the previous token was TK_RP, and
+** * the next token is TK_LP.
+*/
+static int analyzeWindowKeyword(const unsigned char *z){
+ int t;
+ t = getToken(&z);
+ if( t!=TK_ID ) return TK_ID;
+ t = getToken(&z);
+ if( t!=TK_AS ) return TK_ID;
+ return TK_WINDOW;
+}
+static int analyzeOverKeyword(const unsigned char *z, int lastToken){
+ if( lastToken==TK_RP ){
+ int t = getToken(&z);
+ if( t==TK_LP || t==TK_ID ) return TK_OVER;
+ }
+ return TK_ID;
+}
+static int analyzeFilterKeyword(const unsigned char *z, int lastToken){
+ if( lastToken==TK_RP && getToken(&z)==TK_LP ){
+ return TK_FILTER;
+ }
+ return TK_ID;
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Return the length (in bytes) of the token that begins at z[0].
+** Store the token type in *tokenType before returning.
+*/
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
+ int i, c;
+ switch( aiClass[*z] ){ /* Switch on the character-class of the first byte
+ ** of the token. See the comment on the CC_ defines
+ ** above. */
+ case CC_SPACE: {
+ testcase( z[0]==' ' );
+ testcase( z[0]=='\t' );
+ testcase( z[0]=='\n' );
+ testcase( z[0]=='\f' );
+ testcase( z[0]=='\r' );
+ for(i=1; sqlite3Isspace(z[i]); i++){}
+ *tokenType = TK_SPACE;
+ return i;
+ }
+ case CC_MINUS: {
+ if( z[1]=='-' ){
+ for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
+ *tokenType = TK_SPACE; /* IMP: R-22934-25134 */
+ return i;
+ }else if( z[1]=='>' ){
+ *tokenType = TK_PTR;
+ return 2 + (z[2]=='>');
+ }
+ *tokenType = TK_MINUS;
+ return 1;
+ }
+ case CC_LP: {
+ *tokenType = TK_LP;
+ return 1;
+ }
+ case CC_RP: {
+ *tokenType = TK_RP;
+ return 1;
+ }
+ case CC_SEMI: {
+ *tokenType = TK_SEMI;
+ return 1;
+ }
+ case CC_PLUS: {
+ *tokenType = TK_PLUS;
+ return 1;
+ }
+ case CC_STAR: {
+ *tokenType = TK_STAR;
+ return 1;
+ }
+ case CC_SLASH: {
+ if( z[1]!='*' || z[2]==0 ){
+ *tokenType = TK_SLASH;
+ return 1;
+ }
+ for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
+ if( c ) i++;
+ *tokenType = TK_SPACE; /* IMP: R-22934-25134 */
+ return i;
+ }
+ case CC_PERCENT: {
+ *tokenType = TK_REM;
+ return 1;
+ }
+ case CC_EQ: {
+ *tokenType = TK_EQ;
+ return 1 + (z[1]=='=');
+ }
+ case CC_LT: {
+ if( (c=z[1])=='=' ){
+ *tokenType = TK_LE;
+ return 2;
+ }else if( c=='>' ){
+ *tokenType = TK_NE;
+ return 2;
+ }else if( c=='<' ){
+ *tokenType = TK_LSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_LT;
+ return 1;
+ }
+ }
+ case CC_GT: {
+ if( (c=z[1])=='=' ){
+ *tokenType = TK_GE;
+ return 2;
+ }else if( c=='>' ){
+ *tokenType = TK_RSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_GT;
+ return 1;
+ }
+ }
+ case CC_BANG: {
+ if( z[1]!='=' ){
+ *tokenType = TK_ILLEGAL;
+ return 1;
+ }else{
+ *tokenType = TK_NE;
+ return 2;
+ }
+ }
+ case CC_PIPE: {
+ if( z[1]!='|' ){
+ *tokenType = TK_BITOR;
+ return 1;
+ }else{
+ *tokenType = TK_CONCAT;
+ return 2;
+ }
+ }
+ case CC_COMMA: {
+ *tokenType = TK_COMMA;
+ return 1;
+ }
+ case CC_AND: {
+ *tokenType = TK_BITAND;
+ return 1;
+ }
+ case CC_TILDA: {
+ *tokenType = TK_BITNOT;
+ return 1;
+ }
+ case CC_QUOTE: {
+ int delim = z[0];
+ testcase( delim=='`' );
+ testcase( delim=='\'' );
+ testcase( delim=='"' );
+ for(i=1; (c=z[i])!=0; i++){
+ if( c==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ if( c=='\'' ){
+ *tokenType = TK_STRING;
+ return i+1;
+ }else if( c!=0 ){
+ *tokenType = TK_ID;
+ return i+1;
+ }else{
+ *tokenType = TK_ILLEGAL;
+ return i;
+ }
+ }
+ case CC_DOT: {
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( !sqlite3Isdigit(z[1]) )
+#endif
+ {
+ *tokenType = TK_DOT;
+ return 1;
+ }
+ /* If the next character is a digit, this is a floating point
+ ** number that begins with ".". Fall thru into the next case */
+ /* no break */ deliberate_fall_through
+ }
+ case CC_DIGIT: {
+ testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' );
+ testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' );
+ testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' );
+ testcase( z[0]=='9' );
+ *tokenType = TK_INTEGER;
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){
+ for(i=3; sqlite3Isxdigit(z[i]); i++){}
+ return i;
+ }
+#endif
+ for(i=0; sqlite3Isdigit(z[i]); i++){}
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( z[i]=='.' ){
+ i++;
+ while( sqlite3Isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+ if( (z[i]=='e' || z[i]=='E') &&
+ ( sqlite3Isdigit(z[i+1])
+ || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
+ )
+ ){
+ i += 2;
+ while( sqlite3Isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+#endif
+ while( IdChar(z[i]) ){
+ *tokenType = TK_ILLEGAL;
+ i++;
+ }
+ return i;
+ }
+ case CC_QUOTE2: {
+ for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
+ *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
+ return i;
+ }
+ case CC_VARNUM: {
+ *tokenType = TK_VARIABLE;
+ for(i=1; sqlite3Isdigit(z[i]); i++){}
+ return i;
+ }
+ case CC_DOLLAR:
+ case CC_VARALPHA: {
+ int n = 0;
+ testcase( z[0]=='$' ); testcase( z[0]=='@' );
+ testcase( z[0]==':' ); testcase( z[0]=='#' );
+ *tokenType = TK_VARIABLE;
+ for(i=1; (c=z[i])!=0; i++){
+ if( IdChar(c) ){
+ n++;
+#ifndef SQLITE_OMIT_TCL_VARIABLE
+ }else if( c=='(' && n>0 ){
+ do{
+ i++;
+ }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
+ if( c==')' ){
+ i++;
+ }else{
+ *tokenType = TK_ILLEGAL;
+ }
+ break;
+ }else if( c==':' && z[i+1]==':' ){
+ i++;
+#endif
+ }else{
+ break;
+ }
+ }
+ if( n==0 ) *tokenType = TK_ILLEGAL;
+ return i;
+ }
+ case CC_KYWD0: {
+ for(i=1; aiClass[z[i]]<=CC_KYWD; i++){}
+ if( IdChar(z[i]) ){
+ /* This token started out using characters that can appear in keywords,
+ ** but z[i] is a character not allowed within keywords, so this must
+ ** be an identifier instead */
+ i++;
+ break;
+ }
+ *tokenType = TK_ID;
+ return keywordCode((char*)z, i, tokenType);
+ }
+ case CC_X: {
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ testcase( z[0]=='x' ); testcase( z[0]=='X' );
+ if( z[1]=='\'' ){
+ *tokenType = TK_BLOB;
+ for(i=2; sqlite3Isxdigit(z[i]); i++){}
+ if( z[i]!='\'' || i%2 ){
+ *tokenType = TK_ILLEGAL;
+ while( z[i] && z[i]!='\'' ){ i++; }
+ }
+ if( z[i] ) i++;
+ return i;
+ }
+#endif
+ /* If it is not a BLOB literal, then it must be an ID, since no
+ ** SQL keywords start with the letter 'x'. Fall through */
+ /* no break */ deliberate_fall_through
+ }
+ case CC_KYWD:
+ case CC_ID: {
+ i = 1;
+ break;
+ }
+ case CC_BOM: {
+ if( z[1]==0xbb && z[2]==0xbf ){
+ *tokenType = TK_SPACE;
+ return 3;
+ }
+ i = 1;
+ break;
+ }
+ case CC_NUL: {
+ *tokenType = TK_ILLEGAL;
+ return 0;
+ }
+ default: {
+ *tokenType = TK_ILLEGAL;
+ return 1;
+ }
+ }
+ while( IdChar(z[i]) ){ i++; }
+ *tokenType = TK_ID;
+ return i;
+}
+
+/*
+** Run the parser on the given SQL string.
+*/
+SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql){
+ int nErr = 0; /* Number of errors encountered */
+ void *pEngine; /* The LEMON-generated LALR(1) parser */
+ int n = 0; /* Length of the next token token */
+ int tokenType; /* type of the next token */
+ int lastTokenParsed = -1; /* type of the previous token */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int mxSqlLen; /* Max length of an SQL string */
+ Parse *pParentParse = 0; /* Outer parse context, if any */
+#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
+ yyParser sEngine; /* Space to hold the Lemon-generated Parser object */
+#endif
+ VVA_ONLY( u8 startedWithOom = db->mallocFailed );
+
+ assert( zSql!=0 );
+ mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+ if( db->nVdbeActive==0 ){
+ AtomicStore(&db->u1.isInterrupted, 0);
+ }
+ pParse->rc = SQLITE_OK;
+ pParse->zTail = zSql;
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_ParserTrace ){
+ printf("parser: [[[%s]]]\n", zSql);
+ sqlite3ParserTrace(stdout, "parser: ");
+ }else{
+ sqlite3ParserTrace(0, 0);
+ }
+#endif
+#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
+ pEngine = &sEngine;
+ sqlite3ParserInit(pEngine, pParse);
+#else
+ pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse);
+ if( pEngine==0 ){
+ sqlite3OomFault(db);
+ return SQLITE_NOMEM_BKPT;
+ }
+#endif
+ assert( pParse->pNewTable==0 );
+ assert( pParse->pNewTrigger==0 );
+ assert( pParse->nVar==0 );
+ assert( pParse->pVList==0 );
+ pParentParse = db->pParse;
+ db->pParse = pParse;
+ while( 1 ){
+ n = sqlite3GetToken((u8*)zSql, &tokenType);
+ mxSqlLen -= n;
+ if( mxSqlLen<0 ){
+ pParse->rc = SQLITE_TOOBIG;
+ pParse->nErr++;
+ break;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( tokenType>=TK_WINDOW ){
+ assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER
+ || tokenType==TK_ILLEGAL || tokenType==TK_WINDOW
+ );
+#else
+ if( tokenType>=TK_SPACE ){
+ assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ pParse->rc = SQLITE_INTERRUPT;
+ pParse->nErr++;
+ break;
+ }
+ if( tokenType==TK_SPACE ){
+ zSql += n;
+ continue;
+ }
+ if( zSql[0]==0 ){
+ /* Upon reaching the end of input, call the parser two more times
+ ** with tokens TK_SEMI and 0, in that order. */
+ if( lastTokenParsed==TK_SEMI ){
+ tokenType = 0;
+ }else if( lastTokenParsed==0 ){
+ break;
+ }else{
+ tokenType = TK_SEMI;
+ }
+ n = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ }else if( tokenType==TK_WINDOW ){
+ assert( n==6 );
+ tokenType = analyzeWindowKeyword((const u8*)&zSql[6]);
+ }else if( tokenType==TK_OVER ){
+ assert( n==4 );
+ tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed);
+ }else if( tokenType==TK_FILTER ){
+ assert( n==6 );
+ tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed);
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ }else{
+ Token x;
+ x.z = zSql;
+ x.n = n;
+ sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"", &x);
+ break;
+ }
+ }
+ pParse->sLastToken.z = zSql;
+ pParse->sLastToken.n = n;
+ sqlite3Parser(pEngine, tokenType, pParse->sLastToken);
+ lastTokenParsed = tokenType;
+ zSql += n;
+ assert( db->mallocFailed==0 || pParse->rc!=SQLITE_OK || startedWithOom );
+ if( pParse->rc!=SQLITE_OK ) break;
+ }
+ assert( nErr==0 );
+#ifdef YYTRACKMAXSTACKDEPTH
+ sqlite3_mutex_enter(sqlite3MallocMutex());
+ sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
+ sqlite3ParserStackPeak(pEngine)
+ );
+ sqlite3_mutex_leave(sqlite3MallocMutex());
+#endif /* YYDEBUG */
+#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
+ sqlite3ParserFinalize(pEngine);
+#else
+ sqlite3ParserFree(pEngine, sqlite3_free);
+#endif
+ if( db->mallocFailed ){
+ pParse->rc = SQLITE_NOMEM_BKPT;
+ }
+ if( pParse->zErrMsg || (pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE) ){
+ if( pParse->zErrMsg==0 ){
+ pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
+ }
+ sqlite3_log(pParse->rc, "%s in \"%s\"", pParse->zErrMsg, pParse->zTail);
+ nErr++;
+ }
+ pParse->zTail = zSql;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_free(pParse->apVtabLock);
+#endif
+
+ if( pParse->pNewTable && !IN_SPECIAL_PARSE ){
+ /* If the pParse->declareVtab flag is set, do not delete any table
+ ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
+ ** will take responsibility for freeing the Table structure.
+ */
+ sqlite3DeleteTable(db, pParse->pNewTable);
+ }
+ if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){
+ sqlite3DeleteTrigger(db, pParse->pNewTrigger);
+ }
+ if( pParse->pVList ) sqlite3DbFreeNN(db, pParse->pVList);
+ db->pParse = pParentParse;
+ assert( nErr==0 || pParse->rc!=SQLITE_OK );
+ return nErr;
+}
+
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** Insert a single space character into pStr if the current string
+** ends with an identifier
+*/
+static void addSpaceSeparator(sqlite3_str *pStr){
+ if( pStr->nChar && sqlite3IsIdChar(pStr->zText[pStr->nChar-1]) ){
+ sqlite3_str_append(pStr, " ", 1);
+ }
+}
+
+/*
+** Compute a normalization of the SQL given by zSql[0..nSql-1]. Return
+** the normalization in space obtained from sqlite3DbMalloc(). Or return
+** NULL if anything goes wrong or if zSql is NULL.
+*/
+SQLITE_PRIVATE char *sqlite3Normalize(
+ Vdbe *pVdbe, /* VM being reprepared */
+ const char *zSql /* The original SQL string */
+){
+ sqlite3 *db; /* The database connection */
+ int i; /* Next unread byte of zSql[] */
+ int n; /* length of current token */
+ int tokenType; /* type of current token */
+ int prevType = 0; /* Previous non-whitespace token */
+ int nParen; /* Number of nested levels of parentheses */
+ int iStartIN; /* Start of RHS of IN operator in z[] */
+ int nParenAtIN; /* Value of nParent at start of RHS of IN operator */
+ u32 j; /* Bytes of normalized SQL generated so far */
+ sqlite3_str *pStr; /* The normalized SQL string under construction */
+
+ db = sqlite3VdbeDb(pVdbe);
+ tokenType = -1;
+ nParen = iStartIN = nParenAtIN = 0;
+ pStr = sqlite3_str_new(db);
+ assert( pStr!=0 ); /* sqlite3_str_new() never returns NULL */
+ for(i=0; zSql[i] && pStr->accError==0; i+=n){
+ if( tokenType!=TK_SPACE ){
+ prevType = tokenType;
+ }
+ n = sqlite3GetToken((unsigned char*)zSql+i, &tokenType);
+ if( NEVER(n<=0) ) break;
+ switch( tokenType ){
+ case TK_SPACE: {
+ break;
+ }
+ case TK_NULL: {
+ if( prevType==TK_IS || prevType==TK_NOT ){
+ sqlite3_str_append(pStr, " NULL", 5);
+ break;
+ }
+ /* Fall through */
+ }
+ case TK_STRING:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_VARIABLE:
+ case TK_BLOB: {
+ sqlite3_str_append(pStr, "?", 1);
+ break;
+ }
+ case TK_LP: {
+ nParen++;
+ if( prevType==TK_IN ){
+ iStartIN = pStr->nChar;
+ nParenAtIN = nParen;
+ }
+ sqlite3_str_append(pStr, "(", 1);
+ break;
+ }
+ case TK_RP: {
+ if( iStartIN>0 && nParen==nParenAtIN ){
+ assert( pStr->nChar>=(u32)iStartIN );
+ pStr->nChar = iStartIN+1;
+ sqlite3_str_append(pStr, "?,?,?", 5);
+ iStartIN = 0;
+ }
+ nParen--;
+ sqlite3_str_append(pStr, ")", 1);
+ break;
+ }
+ case TK_ID: {
+ iStartIN = 0;
+ j = pStr->nChar;
+ if( sqlite3Isquote(zSql[i]) ){
+ char *zId = sqlite3DbStrNDup(db, zSql+i, n);
+ int nId;
+ int eType = 0;
+ if( zId==0 ) break;
+ sqlite3Dequote(zId);
+ if( zSql[i]=='"' && sqlite3VdbeUsesDoubleQuotedString(pVdbe, zId) ){
+ sqlite3_str_append(pStr, "?", 1);
+ sqlite3DbFree(db, zId);
+ break;
+ }
+ nId = sqlite3Strlen30(zId);
+ if( sqlite3GetToken((u8*)zId, &eType)==nId && eType==TK_ID ){
+ addSpaceSeparator(pStr);
+ sqlite3_str_append(pStr, zId, nId);
+ }else{
+ sqlite3_str_appendf(pStr, "\"%w\"", zId);
+ }
+ sqlite3DbFree(db, zId);
+ }else{
+ addSpaceSeparator(pStr);
+ sqlite3_str_append(pStr, zSql+i, n);
+ }
+ while( j<pStr->nChar ){
+ pStr->zText[j] = sqlite3Tolower(pStr->zText[j]);
+ j++;
+ }
+ break;
+ }
+ case TK_SELECT: {
+ iStartIN = 0;
+ /* fall through */
+ }
+ default: {
+ if( sqlite3IsIdChar(zSql[i]) ) addSpaceSeparator(pStr);
+ j = pStr->nChar;
+ sqlite3_str_append(pStr, zSql+i, n);
+ while( j<pStr->nChar ){
+ pStr->zText[j] = sqlite3Toupper(pStr->zText[j]);
+ j++;
+ }
+ break;
+ }
+ }
+ }
+ if( tokenType!=TK_SEMI ) sqlite3_str_append(pStr, ";", 1);
+ return sqlite3_str_finish(pStr);
+}
+#endif /* SQLITE_ENABLE_NORMALIZE */
+
+/************** End of tokenize.c ********************************************/
+/************** Begin file complete.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that implements the sqlite3_complete() API.
+** This code used to be part of the tokenizer.c source file. But by
+** separating it out, the code will be automatically omitted from
+** static links that do not use it.
+*/
+/* #include "sqliteInt.h" */
+#ifndef SQLITE_OMIT_COMPLETE
+
+/*
+** This is defined in tokenize.c. We just have to import the definition.
+*/
+#ifndef SQLITE_AMALGAMATION
+#ifdef SQLITE_ASCII
+#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+#endif /* SQLITE_AMALGAMATION */
+
+
+/*
+** Token types used by the sqlite3_complete() routine. See the header
+** comments on that procedure for additional information.
+*/
+#define tkSEMI 0
+#define tkWS 1
+#define tkOTHER 2
+#ifndef SQLITE_OMIT_TRIGGER
+#define tkEXPLAIN 3
+#define tkCREATE 4
+#define tkTEMP 5
+#define tkTRIGGER 6
+#define tkEND 7
+#endif
+
+/*
+** Return TRUE if the given SQL string ends in a semicolon.
+**
+** Special handling is require for CREATE TRIGGER statements.
+** Whenever the CREATE TRIGGER keywords are seen, the statement
+** must end with ";END;".
+**
+** This implementation uses a state machine with 8 states:
+**
+** (0) INVALID We have not yet seen a non-whitespace character.
+**
+** (1) START At the beginning or end of an SQL statement. This routine
+** returns 1 if it ends in the START state and 0 if it ends
+** in any other state.
+**
+** (2) NORMAL We are in the middle of statement which ends with a single
+** semicolon.
+**
+** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
+** a statement.
+**
+** (4) CREATE The keyword CREATE has been seen at the beginning of a
+** statement, possibly preceded by EXPLAIN and/or followed by
+** TEMP or TEMPORARY
+**
+** (5) TRIGGER We are in the middle of a trigger definition that must be
+** ended by a semicolon, the keyword END, and another semicolon.
+**
+** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at
+** the end of a trigger definition.
+**
+** (7) END We've seen the ";END" of the ";END;" that occurs at the end
+** of a trigger definition.
+**
+** Transitions between states above are determined by tokens extracted
+** from the input. The following tokens are significant:
+**
+** (0) tkSEMI A semicolon.
+** (1) tkWS Whitespace.
+** (2) tkOTHER Any other SQL token.
+** (3) tkEXPLAIN The "explain" keyword.
+** (4) tkCREATE The "create" keyword.
+** (5) tkTEMP The "temp" or "temporary" keyword.
+** (6) tkTRIGGER The "trigger" keyword.
+** (7) tkEND The "end" keyword.
+**
+** Whitespace never causes a state transition and is always ignored.
+** This means that a SQL string of all whitespace is invalid.
+**
+** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
+** to recognize the end of a trigger can be omitted. All we have to do
+** is look for a semicolon that is not part of an string or comment.
+*/
+SQLITE_API int sqlite3_complete(const char *zSql){
+ u8 state = 0; /* Current state, using numbers defined in header comment */
+ u8 token; /* Value of the next token */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* A complex statement machine used to detect the end of a CREATE TRIGGER
+ ** statement. This is the normal case.
+ */
+ static const u8 trans[8][8] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
+ /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, },
+ /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, },
+ /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, },
+ /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, },
+ /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, },
+ /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, },
+ /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, },
+ /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, },
+ };
+#else
+ /* If triggers are not supported by this compile then the statement machine
+ ** used to detect the end of a statement is much simpler
+ */
+ static const u8 trans[3][3] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER */
+ /* 0 INVALID: */ { 1, 0, 2, },
+ /* 1 START: */ { 1, 1, 2, },
+ /* 2 NORMAL: */ { 1, 2, 2, },
+ };
+#endif /* SQLITE_OMIT_TRIGGER */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zSql==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ while( *zSql ){
+ switch( *zSql ){
+ case ';': { /* A semicolon */
+ token = tkSEMI;
+ break;
+ }
+ case ' ':
+ case '\r':
+ case '\t':
+ case '\n':
+ case '\f': { /* White space is ignored */
+ token = tkWS;
+ break;
+ }
+ case '/': { /* C-style comments */
+ if( zSql[1]!='*' ){
+ token = tkOTHER;
+ break;
+ }
+ zSql += 2;
+ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
+ if( zSql[0]==0 ) return 0;
+ zSql++;
+ token = tkWS;
+ break;
+ }
+ case '-': { /* SQL-style comments from "--" to end of line */
+ if( zSql[1]!='-' ){
+ token = tkOTHER;
+ break;
+ }
+ while( *zSql && *zSql!='\n' ){ zSql++; }
+ if( *zSql==0 ) return state==1;
+ token = tkWS;
+ break;
+ }
+ case '[': { /* Microsoft-style identifiers in [...] */
+ zSql++;
+ while( *zSql && *zSql!=']' ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ case '`': /* Grave-accent quoted symbols used by MySQL */
+ case '"': /* single- and double-quoted strings */
+ case '\'': {
+ int c = *zSql;
+ zSql++;
+ while( *zSql && *zSql!=c ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ default: {
+#ifdef SQLITE_EBCDIC
+ unsigned char c;
+#endif
+ if( IdChar((u8)*zSql) ){
+ /* Keywords and unquoted identifiers */
+ int nId;
+ for(nId=1; IdChar(zSql[nId]); nId++){}
+#ifdef SQLITE_OMIT_TRIGGER
+ token = tkOTHER;
+#else
+ switch( *zSql ){
+ case 'c': case 'C': {
+ if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
+ token = tkCREATE;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 't': case 'T': {
+ if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
+ token = tkTRIGGER;
+ }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
+ token = tkTEMP;
+ }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
+ token = tkTEMP;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 'e': case 'E': {
+ if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
+ token = tkEND;
+ }else
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
+ token = tkEXPLAIN;
+ }else
+#endif
+ {
+ token = tkOTHER;
+ }
+ break;
+ }
+ default: {
+ token = tkOTHER;
+ break;
+ }
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ zSql += nId-1;
+ }else{
+ /* Operators and special symbols */
+ token = tkOTHER;
+ }
+ break;
+ }
+ }
+ state = trans[state][token];
+ zSql++;
+ }
+ return state==1;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine is the same as the sqlite3_complete() routine described
+** above, except that the parameter is required to be UTF-16 encoded, not
+** UTF-8.
+*/
+SQLITE_API int sqlite3_complete16(const void *zSql){
+ sqlite3_value *pVal;
+ char const *zSql8;
+ int rc;
+
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zSql8 ){
+ rc = sqlite3_complete(zSql8);
+ }else{
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3ValueFree(pVal);
+ return rc & 0xff;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_COMPLETE */
+
+/************** End of complete.c ********************************************/
+/************** Begin file main.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+*/
+/* #include "sqliteInt.h" */
+
+#ifdef SQLITE_ENABLE_FTS3
+/************** Include fts3.h in the middle of main.c ***********************/
+/************** Begin file fts3.h ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
+*/
+/* #include "sqlite3.h" */
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of fts3.h ************************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+/************** Include rtree.h in the middle of main.c **********************/
+/************** Begin file rtree.h *******************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** RTREE library. All it does is declare the sqlite3RtreeInit() interface.
+*/
+/* #include "sqlite3.h" */
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# undef SQLITE_ENABLE_RTREE
+#endif
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of rtree.h ***********************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+#if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS)
+/************** Include sqliteicu.h in the middle of main.c ******************/
+/************** Begin file sqliteicu.h ***************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** ICU extension. All it does is declare the sqlite3IcuInit() interface.
+*/
+/* #include "sqlite3.h" */
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of sqliteicu.h *******************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+
+/*
+** This is an extension initializer that is a no-op and always
+** succeeds, except that it fails if the fault-simulation is set
+** to 500.
+*/
+static int sqlite3TestExtInit(sqlite3 *db){
+ (void)db;
+ return sqlite3FaultSim(500);
+}
+
+
+/*
+** Forward declarations of external module initializer functions
+** for modules that need them.
+*/
+#ifdef SQLITE_ENABLE_FTS1
+SQLITE_PRIVATE int sqlite3Fts1Init(sqlite3*);
+#endif
+#ifdef SQLITE_ENABLE_FTS2
+SQLITE_PRIVATE int sqlite3Fts2Init(sqlite3*);
+#endif
+#ifdef SQLITE_ENABLE_FTS5
+SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3*);
+#endif
+#ifdef SQLITE_ENABLE_STMTVTAB
+SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3*);
+#endif
+
+/*
+** An array of pointers to extension initializer functions for
+** built-in extensions.
+*/
+static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = {
+#ifdef SQLITE_ENABLE_FTS1
+ sqlite3Fts1Init,
+#endif
+#ifdef SQLITE_ENABLE_FTS2
+ sqlite3Fts2Init,
+#endif
+#ifdef SQLITE_ENABLE_FTS3
+ sqlite3Fts3Init,
+#endif
+#ifdef SQLITE_ENABLE_FTS5
+ sqlite3Fts5Init,
+#endif
+#if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS)
+ sqlite3IcuInit,
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+ sqlite3RtreeInit,
+#endif
+#ifdef SQLITE_ENABLE_DBPAGE_VTAB
+ sqlite3DbpageRegister,
+#endif
+#ifdef SQLITE_ENABLE_DBSTAT_VTAB
+ sqlite3DbstatRegister,
+#endif
+ sqlite3TestExtInit,
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
+ sqlite3JsonTableFunctions,
+#endif
+#ifdef SQLITE_ENABLE_STMTVTAB
+ sqlite3StmtVtabInit,
+#endif
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+ sqlite3VdbeBytecodeVtabInit,
+#endif
+};
+
+#ifndef SQLITE_AMALGAMATION
+/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
+** contains the text of SQLITE_VERSION macro.
+*/
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+#endif
+
+/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
+** a pointer to the to the sqlite3_version[] string constant.
+*/
+SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
+
+/* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a
+** pointer to a string constant whose value is the same as the
+** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using
+** an edited copy of the amalgamation, then the last four characters of
+** the hash might be different from SQLITE_SOURCE_ID.
+*/
+/* SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } */
+
+/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
+** returns an integer equal to SQLITE_VERSION_NUMBER.
+*/
+SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
+
+/* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
+** zero if and only if SQLite was compiled with mutexing code omitted due to
+** the SQLITE_THREADSAFE compile-time option being set to 0.
+*/
+SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
+
+/*
+** When compiling the test fixture or with debugging enabled (on Win32),
+** this variable being set to non-zero will cause OSTRACE macros to emit
+** extra diagnostic information.
+*/
+#ifdef SQLITE_HAVE_OS_TRACE
+# ifndef SQLITE_DEBUG_OS_TRACE
+# define SQLITE_DEBUG_OS_TRACE 0
+# endif
+ int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
+#endif
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** If the following function pointer is not NULL and if
+** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
+** I/O active are written using this function. These messages
+** are intended for debugging activity only.
+*/
+SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0;
+#endif
+
+/*
+** If the following global variable points to a string which is the
+** name of a directory, then that directory will be used to store
+** temporary files.
+**
+** See also the "PRAGMA temp_store_directory" SQL command.
+*/
+SQLITE_API char *sqlite3_temp_directory = 0;
+
+/*
+** If the following global variable points to a string which is the
+** name of a directory, then that directory will be used to store
+** all database files specified with a relative pathname.
+**
+** See also the "PRAGMA data_store_directory" SQL command.
+*/
+SQLITE_API char *sqlite3_data_directory = 0;
+
+/*
+** Initialize SQLite.
+**
+** This routine must be called to initialize the memory allocation,
+** VFS, and mutex subsystems prior to doing any serious work with
+** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
+** this routine will be called automatically by key routines such as
+** sqlite3_open().
+**
+** This routine is a no-op except on its very first call for the process,
+** or for the first call after a call to sqlite3_shutdown.
+**
+** The first thread to call this routine runs the initialization to
+** completion. If subsequent threads call this routine before the first
+** thread has finished the initialization process, then the subsequent
+** threads must block until the first thread finishes with the initialization.
+**
+** The first thread might call this routine recursively. Recursive
+** calls to this routine should not block, of course. Otherwise the
+** initialization process would never complete.
+**
+** Let X be the first thread to enter this routine. Let Y be some other
+** thread. Then while the initial invocation of this routine by X is
+** incomplete, it is required that:
+**
+** * Calls to this routine from Y must block until the outer-most
+** call by X completes.
+**
+** * Recursive calls to this routine from thread X return immediately
+** without blocking.
+*/
+SQLITE_API int sqlite3_initialize(void){
+ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */
+ int rc; /* Result code */
+#ifdef SQLITE_EXTRA_INIT
+ int bRunExtraInit = 0; /* Extra initialization needed */
+#endif
+
+#ifdef SQLITE_OMIT_WSD
+ rc = sqlite3_wsd_init(4096, 24);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+#endif
+
+ /* If the following assert() fails on some obscure processor/compiler
+ ** combination, the work-around is to set the correct pointer
+ ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */
+ assert( SQLITE_PTRSIZE==sizeof(char*) );
+
+ /* If SQLite is already completely initialized, then this call
+ ** to sqlite3_initialize() should be a no-op. But the initialization
+ ** must be complete. So isInit must not be set until the very end
+ ** of this routine.
+ */
+ if( sqlite3GlobalConfig.isInit ){
+ sqlite3MemoryBarrier();
+ return SQLITE_OK;
+ }
+
+ /* Make sure the mutex subsystem is initialized. If unable to
+ ** initialize the mutex subsystem, return early with the error.
+ ** If the system is so sick that we are unable to allocate a mutex,
+ ** there is not much SQLite is going to be able to do.
+ **
+ ** The mutex subsystem must take care of serializing its own
+ ** initialization.
+ */
+ rc = sqlite3MutexInit();
+ if( rc ) return rc;
+
+ /* Initialize the malloc() system and the recursive pInitMutex mutex.
+ ** This operation is protected by the STATIC_MAIN mutex. Note that
+ ** MutexAlloc() is called for a static mutex prior to initializing the
+ ** malloc subsystem - this implies that the allocation of a static
+ ** mutex must not require support from the malloc subsystem.
+ */
+ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(pMainMtx);
+ sqlite3GlobalConfig.isMutexInit = 1;
+ if( !sqlite3GlobalConfig.isMallocInit ){
+ rc = sqlite3MallocInit();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.isMallocInit = 1;
+ if( !sqlite3GlobalConfig.pInitMutex ){
+ sqlite3GlobalConfig.pInitMutex =
+ sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.nRefInitMutex++;
+ }
+ sqlite3_mutex_leave(pMainMtx);
+
+ /* If rc is not SQLITE_OK at this point, then either the malloc
+ ** subsystem could not be initialized or the system failed to allocate
+ ** the pInitMutex mutex. Return an error in either case. */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Do the rest of the initialization under the recursive mutex so
+ ** that we will be able to handle recursive calls into
+ ** sqlite3_initialize(). The recursive calls normally come through
+ ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
+ ** recursive calls might also be possible.
+ **
+ ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
+ ** to the xInit method, so the xInit method need not be threadsafe.
+ **
+ ** The following mutex is what serializes access to the appdef pcache xInit
+ ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the
+ ** call to sqlite3PcacheInitialize().
+ */
+ sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
+ if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
+ sqlite3GlobalConfig.inProgress = 1;
+#ifdef SQLITE_ENABLE_SQLLOG
+ {
+ extern void sqlite3_init_sqllog(void);
+ sqlite3_init_sqllog();
+ }
+#endif
+ memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions));
+ sqlite3RegisterBuiltinFunctions();
+ if( sqlite3GlobalConfig.isPCacheInit==0 ){
+ rc = sqlite3PcacheInitialize();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.isPCacheInit = 1;
+ rc = sqlite3OsInit();
+ }
+#ifndef SQLITE_OMIT_DESERIALIZE
+ if( rc==SQLITE_OK ){
+ rc = sqlite3MemdbInit();
+ }
+#endif
+ if( rc==SQLITE_OK ){
+ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
+ sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
+ sqlite3MemoryBarrier();
+ sqlite3GlobalConfig.isInit = 1;
+#ifdef SQLITE_EXTRA_INIT
+ bRunExtraInit = 1;
+#endif
+ }
+ sqlite3GlobalConfig.inProgress = 0;
+ }
+ sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
+
+ /* Go back under the static mutex and clean up the recursive
+ ** mutex to prevent a resource leak.
+ */
+ sqlite3_mutex_enter(pMainMtx);
+ sqlite3GlobalConfig.nRefInitMutex--;
+ if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
+ assert( sqlite3GlobalConfig.nRefInitMutex==0 );
+ sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
+ sqlite3GlobalConfig.pInitMutex = 0;
+ }
+ sqlite3_mutex_leave(pMainMtx);
+
+ /* The following is just a sanity check to make sure SQLite has
+ ** been compiled correctly. It is important to run this code, but
+ ** we don't want to run it too often and soak up CPU cycles for no
+ ** reason. So we run it once during initialization.
+ */
+#ifndef NDEBUG
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ /* This section of code's only "output" is via assert() statements. */
+ if( rc==SQLITE_OK ){
+ u64 x = (((u64)1)<<63)-1;
+ double y;
+ assert(sizeof(x)==8);
+ assert(sizeof(x)==sizeof(y));
+ memcpy(&y, &x, 8);
+ assert( sqlite3IsNaN(y) );
+ }
+#endif
+#endif
+
+ /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
+ ** compile-time option.
+ */
+#ifdef SQLITE_EXTRA_INIT
+ if( bRunExtraInit ){
+ int SQLITE_EXTRA_INIT(const char*);
+ rc = SQLITE_EXTRA_INIT(0);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Undo the effects of sqlite3_initialize(). Must not be called while
+** there are outstanding database connections or memory allocations or
+** while any part of SQLite is otherwise in use in any thread. This
+** routine is not threadsafe. But it is safe to invoke this routine
+** on when SQLite is already shut down. If SQLite is already shut down
+** when this routine is invoked, then this routine is a harmless no-op.
+*/
+SQLITE_API int sqlite3_shutdown(void){
+#ifdef SQLITE_OMIT_WSD
+ int rc = sqlite3_wsd_init(4096, 24);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+#endif
+
+ if( sqlite3GlobalConfig.isInit ){
+#ifdef SQLITE_EXTRA_SHUTDOWN
+ void SQLITE_EXTRA_SHUTDOWN(void);
+ SQLITE_EXTRA_SHUTDOWN();
+#endif
+ sqlite3_os_end();
+ sqlite3_reset_auto_extension();
+ sqlite3GlobalConfig.isInit = 0;
+ }
+ if( sqlite3GlobalConfig.isPCacheInit ){
+ sqlite3PcacheShutdown();
+ sqlite3GlobalConfig.isPCacheInit = 0;
+ }
+ if( sqlite3GlobalConfig.isMallocInit ){
+ sqlite3MallocEnd();
+ sqlite3GlobalConfig.isMallocInit = 0;
+
+#ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
+ /* The heap subsystem has now been shutdown and these values are supposed
+ ** to be NULL or point to memory that was obtained from sqlite3_malloc(),
+ ** which would rely on that heap subsystem; therefore, make sure these
+ ** values cannot refer to heap memory that was just invalidated when the
+ ** heap subsystem was shutdown. This is only done if the current call to
+ ** this function resulted in the heap subsystem actually being shutdown.
+ */
+ sqlite3_data_directory = 0;
+ sqlite3_temp_directory = 0;
+#endif
+ }
+ if( sqlite3GlobalConfig.isMutexInit ){
+ sqlite3MutexEnd();
+ sqlite3GlobalConfig.isMutexInit = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** This API allows applications to modify the global configuration of
+** the SQLite library at run-time.
+**
+** This routine should only be called when there are no outstanding
+** database connections or memory allocations. This routine is not
+** threadsafe. Failure to heed these warnings can lead to unpredictable
+** behavior.
+*/
+SQLITE_API int sqlite3_config(int op, ...){
+ va_list ap;
+ int rc = SQLITE_OK;
+
+ /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
+ ** the SQLite library is in use. */
+ if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
+
+ va_start(ap, op);
+ switch( op ){
+
+ /* Mutex configuration options are only available in a threadsafe
+ ** compile.
+ */
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */
+ case SQLITE_CONFIG_SINGLETHREAD: {
+ /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to
+ ** Single-thread. */
+ sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */
+ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
+ case SQLITE_CONFIG_MULTITHREAD: {
+ /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to
+ ** Multi-thread. */
+ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */
+ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
+ case SQLITE_CONFIG_SERIALIZED: {
+ /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to
+ ** Serialized. */
+ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */
+ sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
+ case SQLITE_CONFIG_MUTEX: {
+ /* Specify an alternative mutex implementation */
+ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */
+ case SQLITE_CONFIG_GETMUTEX: {
+ /* Retrieve the current mutex implementation */
+ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_MALLOC: {
+ /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a
+ ** single argument which is a pointer to an instance of the
+ ** sqlite3_mem_methods structure. The argument specifies alternative
+ ** low-level memory allocation routines to be used in place of the memory
+ ** allocation routines built into SQLite. */
+ sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
+ break;
+ }
+ case SQLITE_CONFIG_GETMALLOC: {
+ /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a
+ ** single argument which is a pointer to an instance of the
+ ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is
+ ** filled with the currently defined memory allocation routines. */
+ if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
+ *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
+ break;
+ }
+ case SQLITE_CONFIG_MEMSTATUS: {
+ /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes
+ ** single argument of type int, interpreted as a boolean, which enables
+ ** or disables the collection of memory allocation statistics. */
+ sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_SMALL_MALLOC: {
+ sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_PAGECACHE: {
+ /* EVIDENCE-OF: R-18761-36601 There are three arguments to
+ ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem),
+ ** the size of each page cache line (sz), and the number of cache lines
+ ** (N). */
+ sqlite3GlobalConfig.pPage = va_arg(ap, void*);
+ sqlite3GlobalConfig.szPage = va_arg(ap, int);
+ sqlite3GlobalConfig.nPage = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_PCACHE_HDRSZ: {
+ /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes
+ ** a single parameter which is a pointer to an integer and writes into
+ ** that integer the number of extra bytes per page required for each page
+ ** in SQLITE_CONFIG_PAGECACHE. */
+ *va_arg(ap, int*) =
+ sqlite3HeaderSizeBtree() +
+ sqlite3HeaderSizePcache() +
+ sqlite3HeaderSizePcache1();
+ break;
+ }
+
+ case SQLITE_CONFIG_PCACHE: {
+ /* no-op */
+ break;
+ }
+ case SQLITE_CONFIG_GETPCACHE: {
+ /* now an error */
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ case SQLITE_CONFIG_PCACHE2: {
+ /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a
+ ** single argument which is a pointer to an sqlite3_pcache_methods2
+ ** object. This object specifies the interface to a custom page cache
+ ** implementation. */
+ sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
+ break;
+ }
+ case SQLITE_CONFIG_GETPCACHE2: {
+ /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a
+ ** single argument which is a pointer to an sqlite3_pcache_methods2
+ ** object. SQLite copies of the current page cache implementation into
+ ** that object. */
+ if( sqlite3GlobalConfig.pcache2.xInit==0 ){
+ sqlite3PCacheSetDefault();
+ }
+ *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
+ break;
+ }
+
+/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
+** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
+** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
+#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
+ case SQLITE_CONFIG_HEAP: {
+ /* EVIDENCE-OF: R-19854-42126 There are three arguments to
+ ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
+ ** number of bytes in the memory buffer, and the minimum allocation size.
+ */
+ sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
+ sqlite3GlobalConfig.nHeap = va_arg(ap, int);
+ sqlite3GlobalConfig.mnReq = va_arg(ap, int);
+
+ if( sqlite3GlobalConfig.mnReq<1 ){
+ sqlite3GlobalConfig.mnReq = 1;
+ }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
+ /* cap min request size at 2^12 */
+ sqlite3GlobalConfig.mnReq = (1<<12);
+ }
+
+ if( sqlite3GlobalConfig.pHeap==0 ){
+ /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer)
+ ** is NULL, then SQLite reverts to using its default memory allocator
+ ** (the system malloc() implementation), undoing any prior invocation of
+ ** SQLITE_CONFIG_MALLOC.
+ **
+ ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to
+ ** revert to its default implementation when sqlite3_initialize() is run
+ */
+ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
+ }else{
+ /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the
+ ** alternative memory allocator is engaged to handle all of SQLites
+ ** memory allocation needs. */
+#ifdef SQLITE_ENABLE_MEMSYS3
+ sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+ sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
+#endif
+ }
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_LOOKASIDE: {
+ sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
+ sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
+ break;
+ }
+
+ /* Record a pointer to the logger function and its first argument.
+ ** The default is NULL. Logging is disabled if the function pointer is
+ ** NULL.
+ */
+ case SQLITE_CONFIG_LOG: {
+ /* MSVC is picky about pulling func ptrs from va lists.
+ ** http://support.microsoft.com/kb/47961
+ ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
+ */
+ typedef void(*LOGFUNC_t)(void*,int,const char*);
+ sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
+ sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
+ break;
+ }
+
+ /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
+ ** can be changed at start-time using the
+ ** sqlite3_config(SQLITE_CONFIG_URI,1) or
+ ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
+ */
+ case SQLITE_CONFIG_URI: {
+ /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single
+ ** argument of type int. If non-zero, then URI handling is globally
+ ** enabled. If the parameter is zero, then URI handling is globally
+ ** disabled. */
+ sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
+ break;
+ }
+
+ case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
+ /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN
+ ** option takes a single integer argument which is interpreted as a
+ ** boolean in order to enable or disable the use of covering indices for
+ ** full table scans in the query optimizer. */
+ sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
+ break;
+ }
+
+#ifdef SQLITE_ENABLE_SQLLOG
+ case SQLITE_CONFIG_SQLLOG: {
+ typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
+ sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
+ sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_MMAP_SIZE: {
+ /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit
+ ** integer (sqlite3_int64) values that are the default mmap size limit
+ ** (the default setting for PRAGMA mmap_size) and the maximum allowed
+ ** mmap size limit. */
+ sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
+ sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
+ /* EVIDENCE-OF: R-53367-43190 If either argument to this option is
+ ** negative, then that argument is changed to its compile-time default.
+ **
+ ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
+ ** silently truncated if necessary so that it does not exceed the
+ ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
+ ** compile-time option.
+ */
+ if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
+ mxMmap = SQLITE_MAX_MMAP_SIZE;
+ }
+ if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
+ if( szMmap>mxMmap) szMmap = mxMmap;
+ sqlite3GlobalConfig.mxMmap = mxMmap;
+ sqlite3GlobalConfig.szMmap = szMmap;
+ break;
+ }
+
+#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */
+ case SQLITE_CONFIG_WIN32_HEAPSIZE: {
+ /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit
+ ** unsigned integer value that specifies the maximum size of the created
+ ** heap. */
+ sqlite3GlobalConfig.nHeap = va_arg(ap, int);
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_PMASZ: {
+ sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int);
+ break;
+ }
+
+ case SQLITE_CONFIG_STMTJRNL_SPILL: {
+ sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int);
+ break;
+ }
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ case SQLITE_CONFIG_SORTERREF_SIZE: {
+ int iVal = va_arg(ap, int);
+ if( iVal<0 ){
+ iVal = SQLITE_DEFAULT_SORTERREF_SIZE;
+ }
+ sqlite3GlobalConfig.szSorterRef = (u32)iVal;
+ break;
+ }
+#endif /* SQLITE_ENABLE_SORTER_REFERENCES */
+
+#ifndef SQLITE_OMIT_DESERIALIZE
+ case SQLITE_CONFIG_MEMDB_MAXSIZE: {
+ sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64);
+ break;
+ }
+#endif /* SQLITE_OMIT_DESERIALIZE */
+
+ default: {
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Set up the lookaside buffers for a database connection.
+** Return SQLITE_OK on success.
+** If lookaside is already active, return SQLITE_BUSY.
+**
+** The sz parameter is the number of bytes in each lookaside slot.
+** The cnt parameter is the number of slots. If pStart is NULL the
+** space for the lookaside memory is obtained from sqlite3_malloc().
+** If pStart is not NULL then it is sz*cnt bytes of memory to use for
+** the lookaside memory.
+*/
+static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
+#ifndef SQLITE_OMIT_LOOKASIDE
+ void *pStart;
+ sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt;
+ int nBig; /* Number of full-size slots */
+ int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */
+
+ if( sqlite3LookasideUsed(db,0)>0 ){
+ return SQLITE_BUSY;
+ }
+ /* Free any existing lookaside buffer for this handle before
+ ** allocating a new one so we don't have to have space for
+ ** both at the same time.
+ */
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
+ ** than a pointer to be useful.
+ */
+ sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
+ if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
+ if( cnt<0 ) cnt = 0;
+ if( sz==0 || cnt==0 ){
+ sz = 0;
+ pStart = 0;
+ }else if( pBuf==0 ){
+ sqlite3BeginBenignMalloc();
+ pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */
+ sqlite3EndBenignMalloc();
+ if( pStart ) szAlloc = sqlite3MallocSize(pStart);
+ }else{
+ pStart = pBuf;
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( sz>=LOOKASIDE_SMALL*3 ){
+ nBig = szAlloc/(3*LOOKASIDE_SMALL+sz);
+ nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL;
+ }else if( sz>=LOOKASIDE_SMALL*2 ){
+ nBig = szAlloc/(LOOKASIDE_SMALL+sz);
+ nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL;
+ }else
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( sz>0 ){
+ nBig = szAlloc/sz;
+ nSm = 0;
+ }else{
+ nBig = nSm = 0;
+ }
+ db->lookaside.pStart = pStart;
+ db->lookaside.pInit = 0;
+ db->lookaside.pFree = 0;
+ db->lookaside.sz = (u16)sz;
+ db->lookaside.szTrue = (u16)sz;
+ if( pStart ){
+ int i;
+ LookasideSlot *p;
+ assert( sz > (int)sizeof(LookasideSlot*) );
+ p = (LookasideSlot*)pStart;
+ for(i=0; i<nBig; i++){
+ p->pNext = db->lookaside.pInit;
+ db->lookaside.pInit = p;
+ p = (LookasideSlot*)&((u8*)p)[sz];
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ db->lookaside.pSmallInit = 0;
+ db->lookaside.pSmallFree = 0;
+ db->lookaside.pMiddle = p;
+ for(i=0; i<nSm; i++){
+ p->pNext = db->lookaside.pSmallInit;
+ db->lookaside.pSmallInit = p;
+ p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL];
+ }
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ assert( ((uptr)p)<=szAlloc + (uptr)pStart );
+ db->lookaside.pEnd = p;
+ db->lookaside.bDisable = 0;
+ db->lookaside.bMalloced = pBuf==0 ?1:0;
+ db->lookaside.nSlot = nBig+nSm;
+ }else{
+ db->lookaside.pStart = db;
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ db->lookaside.pSmallInit = 0;
+ db->lookaside.pSmallFree = 0;
+ db->lookaside.pMiddle = db;
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ db->lookaside.pEnd = db;
+ db->lookaside.bDisable = 1;
+ db->lookaside.sz = 0;
+ db->lookaside.bMalloced = 0;
+ db->lookaside.nSlot = 0;
+ }
+ assert( sqlite3LookasideUsed(db,0)==0 );
+#endif /* SQLITE_OMIT_LOOKASIDE */
+ return SQLITE_OK;
+}
+
+/*
+** Return the mutex associated with a database connection.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->mutex;
+}
+
+/*
+** Free up as much memory as we can from the given database
+** connection.
+*/
+SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){
+ int i;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ sqlite3PagerShrink(pPager);
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Flush any dirty pages in the pager-cache for any attached database
+** to disk.
+*/
+SQLITE_API int sqlite3_db_cacheflush(sqlite3 *db){
+ int i;
+ int rc = SQLITE_OK;
+ int bSeenBusy = 0;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ rc = sqlite3PagerFlush(pPager);
+ if( rc==SQLITE_BUSY ){
+ bSeenBusy = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ sqlite3_mutex_leave(db->mutex);
+ return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc);
+}
+
+/*
+** Configuration settings for an individual database connection
+*/
+SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
+ va_list ap;
+ int rc;
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_DBCONFIG_MAINDBNAME: {
+ /* IMP: R-06824-28531 */
+ /* IMP: R-36257-52125 */
+ db->aDb[0].zDbSName = va_arg(ap,char*);
+ rc = SQLITE_OK;
+ break;
+ }
+ case SQLITE_DBCONFIG_LOOKASIDE: {
+ void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
+ int sz = va_arg(ap, int); /* IMP: R-47871-25994 */
+ int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */
+ rc = setupLookaside(db, pBuf, sz, cnt);
+ break;
+ }
+ default: {
+ static const struct {
+ int op; /* The opcode */
+ u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */
+ } aFlagOp[] = {
+ { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys },
+ { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger },
+ { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView },
+ { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer },
+ { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension },
+ { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose },
+ { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG },
+ { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP },
+ { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase },
+ { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive },
+ { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema|
+ SQLITE_NoSchemaError },
+ { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter },
+ { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL },
+ { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML },
+ { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt },
+ { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema },
+ };
+ unsigned int i;
+ rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
+ for(i=0; i<ArraySize(aFlagOp); i++){
+ if( aFlagOp[i].op==op ){
+ int onoff = va_arg(ap, int);
+ int *pRes = va_arg(ap, int*);
+ u64 oldFlags = db->flags;
+ if( onoff>0 ){
+ db->flags |= aFlagOp[i].mask;
+ }else if( onoff==0 ){
+ db->flags &= ~(u64)aFlagOp[i].mask;
+ }
+ if( oldFlags!=db->flags ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ }
+ if( pRes ){
+ *pRes = (db->flags & aFlagOp[i].mask)!=0;
+ }
+ rc = SQLITE_OK;
+ break;
+ }
+ }
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+/*
+** This is the default collating function named "BINARY" which is always
+** available.
+*/
+static int binCollFunc(
+ void *NotUsed,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ int rc, n;
+ UNUSED_PARAMETER(NotUsed);
+ n = nKey1<nKey2 ? nKey1 : nKey2;
+ /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares
+ ** strings byte by byte using the memcmp() function from the standard C
+ ** library. */
+ assert( pKey1 && pKey2 );
+ rc = memcmp(pKey1, pKey2, n);
+ if( rc==0 ){
+ rc = nKey1 - nKey2;
+ }
+ return rc;
+}
+
+/*
+** This is the collating function named "RTRIM" which is always
+** available. Ignore trailing spaces.
+*/
+static int rtrimCollFunc(
+ void *pUser,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ const u8 *pK1 = (const u8*)pKey1;
+ const u8 *pK2 = (const u8*)pKey2;
+ while( nKey1 && pK1[nKey1-1]==' ' ) nKey1--;
+ while( nKey2 && pK2[nKey2-1]==' ' ) nKey2--;
+ return binCollFunc(pUser, nKey1, pKey1, nKey2, pKey2);
+}
+
+/*
+** Return true if CollSeq is the default built-in BINARY.
+*/
+SQLITE_PRIVATE int sqlite3IsBinary(const CollSeq *p){
+ assert( p==0 || p->xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 );
+ return p==0 || p->xCmp==binCollFunc;
+}
+
+/*
+** Another built-in collating sequence: NOCASE.
+**
+** This collating sequence is intended to be used for "case independent
+** comparison". SQLite's knowledge of upper and lower case equivalents
+** extends only to the 26 characters used in the English language.
+**
+** At the moment there is only a UTF-8 implementation.
+*/
+static int nocaseCollatingFunc(
+ void *NotUsed,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ int r = sqlite3StrNICmp(
+ (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
+ UNUSED_PARAMETER(NotUsed);
+ if( 0==r ){
+ r = nKey1-nKey2;
+ }
+ return r;
+}
+
+/*
+** Return the ROWID of the most recent insert
+*/
+SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->lastRowid;
+}
+
+/*
+** Set the value returned by the sqlite3_last_insert_rowid() API function.
+*/
+SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->lastRowid = iRowid;
+ sqlite3_mutex_leave(db->mutex);
+}
+
+/*
+** Return the number of changes in the most recent call to sqlite3_exec().
+*/
+SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->nChange;
+}
+SQLITE_API int sqlite3_changes(sqlite3 *db){
+ return (int)sqlite3_changes64(db);
+}
+
+/*
+** Return the number of changes since the database handle was opened.
+*/
+SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->nTotalChange;
+}
+SQLITE_API int sqlite3_total_changes(sqlite3 *db){
+ return (int)sqlite3_total_changes64(db);
+}
+
+/*
+** Close all open savepoints. This function only manipulates fields of the
+** database handle object, it does not close any savepoints that may be open
+** at the b-tree/pager level.
+*/
+SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){
+ while( db->pSavepoint ){
+ Savepoint *pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ }
+ db->nSavepoint = 0;
+ db->nStatement = 0;
+ db->isTransactionSavepoint = 0;
+}
+
+/*
+** Invoke the destructor function associated with FuncDef p, if any. Except,
+** if this is not the last copy of the function, do not invoke it. Multiple
+** copies of a single function are created when create_function() is called
+** with SQLITE_ANY as the encoding.
+*/
+static void functionDestroy(sqlite3 *db, FuncDef *p){
+ FuncDestructor *pDestructor;
+ assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
+ pDestructor = p->u.pDestructor;
+ if( pDestructor ){
+ pDestructor->nRef--;
+ if( pDestructor->nRef==0 ){
+ pDestructor->xDestroy(pDestructor->pUserData);
+ sqlite3DbFree(db, pDestructor);
+ }
+ }
+}
+
+/*
+** Disconnect all sqlite3_vtab objects that belong to database connection
+** db. This is called when db is being closed.
+*/
+static void disconnectAllVtab(sqlite3 *db){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int i;
+ HashElem *p;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Schema *pSchema = db->aDb[i].pSchema;
+ if( pSchema ){
+ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
+ Table *pTab = (Table *)sqliteHashData(p);
+ if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
+ }
+ }
+ }
+ for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){
+ Module *pMod = (Module *)sqliteHashData(p);
+ if( pMod->pEpoTab ){
+ sqlite3VtabDisconnect(db, pMod->pEpoTab);
+ }
+ }
+ sqlite3VtabUnlockList(db);
+ sqlite3BtreeLeaveAll(db);
+#else
+ UNUSED_PARAMETER(db);
+#endif
+}
+
+/*
+** Return TRUE if database connection db has unfinalized prepared
+** statements or unfinished sqlite3_backup objects.
+*/
+static int connectionIsBusy(sqlite3 *db){
+ int j;
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( db->pVdbe ) return 1;
+ for(j=0; j<db->nDb; j++){
+ Btree *pBt = db->aDb[j].pBt;
+ if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Close an existing SQLite database
+*/
+static int sqlite3Close(sqlite3 *db, int forceZombie){
+ if( !db ){
+ /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or
+ ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */
+ return SQLITE_OK;
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mTrace & SQLITE_TRACE_CLOSE ){
+ db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0);
+ }
+
+ /* Force xDisconnect calls on all virtual tables */
+ disconnectAllVtab(db);
+
+ /* If a transaction is open, the disconnectAllVtab() call above
+ ** will not have called the xDisconnect() method on any virtual
+ ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
+ ** call will do so. We need to do this before the check for active
+ ** SQL statements below, as the v-table implementation may be storing
+ ** some prepared statements internally.
+ */
+ sqlite3VtabRollback(db);
+
+ /* Legacy behavior (sqlite3_close() behavior) is to return
+ ** SQLITE_BUSY if the connection can not be closed immediately.
+ */
+ if( !forceZombie && connectionIsBusy(db) ){
+ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized "
+ "statements or unfinished backups");
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_BUSY;
+ }
+
+#ifdef SQLITE_ENABLE_SQLLOG
+ if( sqlite3GlobalConfig.xSqllog ){
+ /* Closing the handle. Fourth parameter is passed the value 2. */
+ sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2);
+ }
+#endif
+
+ /* Convert the connection into a zombie and then close it.
+ */
+ db->eOpenState = SQLITE_STATE_ZOMBIE;
+ sqlite3LeaveMutexAndCloseZombie(db);
+ return SQLITE_OK;
+}
+
+/*
+** Return the transaction state for a single databse, or the maximum
+** transaction state over all attached databases if zSchema is null.
+*/
+SQLITE_API int sqlite3_txn_state(sqlite3 *db, const char *zSchema){
+ int iDb, nDb;
+ int iTxn = -1;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return -1;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( zSchema ){
+ nDb = iDb = sqlite3FindDbName(db, zSchema);
+ if( iDb<0 ) nDb--;
+ }else{
+ iDb = 0;
+ nDb = db->nDb-1;
+ }
+ for(; iDb<=nDb; iDb++){
+ Btree *pBt = db->aDb[iDb].pBt;
+ int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE;
+ if( x>iTxn ) iTxn = x;
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return iTxn;
+}
+
+/*
+** Two variations on the public interface for closing a database
+** connection. The sqlite3_close() version returns SQLITE_BUSY and
+** leaves the connection open if there are unfinalized prepared
+** statements or unfinished sqlite3_backups. The sqlite3_close_v2()
+** version forces the connection to become a zombie if there are
+** unclosed resources, and arranges for deallocation when the last
+** prepare statement or sqlite3_backup closes.
+*/
+SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
+SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }
+
+
+/*
+** Close the mutex on database connection db.
+**
+** Furthermore, if database connection db is a zombie (meaning that there
+** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
+** every sqlite3_stmt has now been finalized and every sqlite3_backup has
+** finished, then free all resources.
+*/
+SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
+ HashElem *i; /* Hash table iterator */
+ int j;
+
+ /* If there are outstanding sqlite3_stmt or sqlite3_backup objects
+ ** or if the connection has not yet been closed by sqlite3_close_v2(),
+ ** then just leave the mutex and return.
+ */
+ if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){
+ sqlite3_mutex_leave(db->mutex);
+ return;
+ }
+
+ /* If we reach this point, it means that the database connection has
+ ** closed all sqlite3_stmt and sqlite3_backup objects and has been
+ ** passed to sqlite3_close (meaning that it is a zombie). Therefore,
+ ** go ahead and free all resources.
+ */
+
+ /* If a transaction is open, roll it back. This also ensures that if
+ ** any database schemas have been modified by an uncommitted transaction
+ ** they are reset. And that the required b-tree mutex is held to make
+ ** the pager rollback and schema reset an atomic operation. */
+ sqlite3RollbackAll(db, SQLITE_OK);
+
+ /* Free any outstanding Savepoint structures. */
+ sqlite3CloseSavepoints(db);
+
+ /* Close all database connections */
+ for(j=0; j<db->nDb; j++){
+ struct Db *pDb = &db->aDb[j];
+ if( pDb->pBt ){
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ if( j!=1 ){
+ pDb->pSchema = 0;
+ }
+ }
+ }
+ /* Clear the TEMP schema separately and last */
+ if( db->aDb[1].pSchema ){
+ sqlite3SchemaClear(db->aDb[1].pSchema);
+ }
+ sqlite3VtabUnlockList(db);
+
+ /* Free up the array of auxiliary databases */
+ sqlite3CollapseDatabaseArray(db);
+ assert( db->nDb<=2 );
+ assert( db->aDb==db->aDbStatic );
+
+ /* Tell the code in notify.c that the connection no longer holds any
+ ** locks and does not require any further unlock-notify callbacks.
+ */
+ sqlite3ConnectionClosed(db);
+
+ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
+ FuncDef *pNext, *p;
+ p = sqliteHashData(i);
+ do{
+ functionDestroy(db, p);
+ pNext = p->pNext;
+ sqlite3DbFree(db, p);
+ p = pNext;
+ }while( p );
+ }
+ sqlite3HashClear(&db->aFunc);
+ for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
+ CollSeq *pColl = (CollSeq *)sqliteHashData(i);
+ /* Invoke any destructors registered for collation sequence user data. */
+ for(j=0; j<3; j++){
+ if( pColl[j].xDel ){
+ pColl[j].xDel(pColl[j].pUser);
+ }
+ }
+ sqlite3DbFree(db, pColl);
+ }
+ sqlite3HashClear(&db->aCollSeq);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
+ Module *pMod = (Module *)sqliteHashData(i);
+ sqlite3VtabEponymousTableClear(db, pMod);
+ sqlite3VtabModuleUnref(db, pMod);
+ }
+ sqlite3HashClear(&db->aModule);
+#endif
+
+ sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */
+ sqlite3ValueFree(db->pErr);
+ sqlite3CloseExtensions(db);
+#if SQLITE_USER_AUTHENTICATION
+ sqlite3_free(db->auth.zAuthUser);
+ sqlite3_free(db->auth.zAuthPW);
+#endif
+
+ db->eOpenState = SQLITE_STATE_ERROR;
+
+ /* The temp-database schema is allocated differently from the other schema
+ ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
+ ** So it needs to be freed here. Todo: Why not roll the temp schema into
+ ** the same sqliteMalloc() as the one that allocates the database
+ ** structure?
+ */
+ sqlite3DbFree(db, db->aDb[1].pSchema);
+ if( db->xAutovacDestr ){
+ db->xAutovacDestr(db->pAutovacPagesArg);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ db->eOpenState = SQLITE_STATE_CLOSED;
+ sqlite3_mutex_free(db->mutex);
+ assert( sqlite3LookasideUsed(db,0)==0 );
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ sqlite3_free(db);
+}
+
+/*
+** Rollback all database files. If tripCode is not SQLITE_OK, then
+** any write cursors are invalidated ("tripped" - as in "tripping a circuit
+** breaker") and made to return tripCode if there are any further
+** attempts to use that cursor. Read cursors remain open and valid
+** but are "saved" in case the table pages are moved around.
+*/
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){
+ int i;
+ int inTrans = 0;
+ int schemaChange;
+ assert( sqlite3_mutex_held(db->mutex) );
+ sqlite3BeginBenignMalloc();
+
+ /* Obtain all b-tree mutexes before making any calls to BtreeRollback().
+ ** This is important in case the transaction being rolled back has
+ ** modified the database schema. If the b-tree mutexes are not taken
+ ** here, then another shared-cache connection might sneak in between
+ ** the database rollback and schema reset, which can cause false
+ ** corruption reports in some cases. */
+ sqlite3BtreeEnterAll(db);
+ schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0;
+
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p ){
+ if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){
+ inTrans = 1;
+ }
+ sqlite3BtreeRollback(p, tripCode, !schemaChange);
+ }
+ }
+ sqlite3VtabRollback(db);
+ sqlite3EndBenignMalloc();
+
+ if( schemaChange ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ sqlite3BtreeLeaveAll(db);
+
+ /* Any deferred constraint violations have now been resolved. */
+ db->nDeferredCons = 0;
+ db->nDeferredImmCons = 0;
+ db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly);
+
+ /* If one has been configured, invoke the rollback-hook callback */
+ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
+ db->xRollbackCallback(db->pRollbackArg);
+ }
+}
+
+/*
+** Return a static string containing the name corresponding to the error code
+** specified in the argument.
+*/
+#if defined(SQLITE_NEED_ERR_NAME)
+SQLITE_PRIVATE const char *sqlite3ErrName(int rc){
+ const char *zName = 0;
+ int i, origRc = rc;
+ for(i=0; i<2 && zName==0; i++, rc &= 0xff){
+ switch( rc ){
+ case SQLITE_OK: zName = "SQLITE_OK"; break;
+ case SQLITE_ERROR: zName = "SQLITE_ERROR"; break;
+ case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break;
+ case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break;
+ case SQLITE_PERM: zName = "SQLITE_PERM"; break;
+ case SQLITE_ABORT: zName = "SQLITE_ABORT"; break;
+ case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break;
+ case SQLITE_BUSY: zName = "SQLITE_BUSY"; break;
+ case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break;
+ case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break;
+ case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break;
+ case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
+ case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break;
+ case SQLITE_READONLY: zName = "SQLITE_READONLY"; break;
+ case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break;
+ case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break;
+ case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break;
+ case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break;
+ case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break;
+ case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break;
+ case SQLITE_IOERR: zName = "SQLITE_IOERR"; break;
+ case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break;
+ case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break;
+ case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break;
+ case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break;
+ case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break;
+ case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break;
+ case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break;
+ case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break;
+ case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break;
+ case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break;
+ case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break;
+ case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break;
+ case SQLITE_IOERR_CHECKRESERVEDLOCK:
+ zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
+ case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break;
+ case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break;
+ case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break;
+ case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break;
+ case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break;
+ case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break;
+ case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break;
+ case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break;
+ case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
+ case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break;
+ case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break;
+ case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break;
+ case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break;
+ case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break;
+ case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break;
+ case SQLITE_FULL: zName = "SQLITE_FULL"; break;
+ case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break;
+ case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
+ case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break;
+ case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break;
+ case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break;
+ case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break;
+ case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break;
+ case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break;
+ case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break;
+ case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break;
+ case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break;
+ case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
+ case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
+ case SQLITE_CONSTRAINT_FOREIGNKEY:
+ zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break;
+ case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break;
+ case SQLITE_CONSTRAINT_PRIMARYKEY:
+ zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break;
+ case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break;
+ case SQLITE_CONSTRAINT_COMMITHOOK:
+ zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break;
+ case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break;
+ case SQLITE_CONSTRAINT_FUNCTION:
+ zName = "SQLITE_CONSTRAINT_FUNCTION"; break;
+ case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break;
+ case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break;
+ case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break;
+ case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break;
+ case SQLITE_AUTH: zName = "SQLITE_AUTH"; break;
+ case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break;
+ case SQLITE_RANGE: zName = "SQLITE_RANGE"; break;
+ case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break;
+ case SQLITE_ROW: zName = "SQLITE_ROW"; break;
+ case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break;
+ case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
+ case SQLITE_NOTICE_RECOVER_ROLLBACK:
+ zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
+ case SQLITE_WARNING: zName = "SQLITE_WARNING"; break;
+ case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break;
+ case SQLITE_DONE: zName = "SQLITE_DONE"; break;
+ }
+ }
+ if( zName==0 ){
+ static char zBuf[50];
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
+ zName = zBuf;
+ }
+ return zName;
+}
+#endif
+
+/*
+** Return a static string that describes the kind of error specified in the
+** argument.
+*/
+SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
+ static const char* const aMsg[] = {
+ /* SQLITE_OK */ "not an error",
+ /* SQLITE_ERROR */ "SQL logic error",
+ /* SQLITE_INTERNAL */ 0,
+ /* SQLITE_PERM */ "access permission denied",
+ /* SQLITE_ABORT */ "query aborted",
+ /* SQLITE_BUSY */ "database is locked",
+ /* SQLITE_LOCKED */ "database table is locked",
+ /* SQLITE_NOMEM */ "out of memory",
+ /* SQLITE_READONLY */ "attempt to write a readonly database",
+ /* SQLITE_INTERRUPT */ "interrupted",
+ /* SQLITE_IOERR */ "disk I/O error",
+ /* SQLITE_CORRUPT */ "database disk image is malformed",
+ /* SQLITE_NOTFOUND */ "unknown operation",
+ /* SQLITE_FULL */ "database or disk is full",
+ /* SQLITE_CANTOPEN */ "unable to open database file",
+ /* SQLITE_PROTOCOL */ "locking protocol",
+ /* SQLITE_EMPTY */ 0,
+ /* SQLITE_SCHEMA */ "database schema has changed",
+ /* SQLITE_TOOBIG */ "string or blob too big",
+ /* SQLITE_CONSTRAINT */ "constraint failed",
+ /* SQLITE_MISMATCH */ "datatype mismatch",
+ /* SQLITE_MISUSE */ "bad parameter or other API misuse",
+#ifdef SQLITE_DISABLE_LFS
+ /* SQLITE_NOLFS */ "large file support is disabled",
+#else
+ /* SQLITE_NOLFS */ 0,
+#endif
+ /* SQLITE_AUTH */ "authorization denied",
+ /* SQLITE_FORMAT */ 0,
+ /* SQLITE_RANGE */ "column index out of range",
+ /* SQLITE_NOTADB */ "file is not a database",
+ /* SQLITE_NOTICE */ "notification message",
+ /* SQLITE_WARNING */ "warning message",
+ };
+ const char *zErr = "unknown error";
+ switch( rc ){
+ case SQLITE_ABORT_ROLLBACK: {
+ zErr = "abort due to ROLLBACK";
+ break;
+ }
+ case SQLITE_ROW: {
+ zErr = "another row available";
+ break;
+ }
+ case SQLITE_DONE: {
+ zErr = "no more rows available";
+ break;
+ }
+ default: {
+ rc &= 0xff;
+ if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
+ zErr = aMsg[rc];
+ }
+ break;
+ }
+ }
+ return zErr;
+}
+
+/*
+** This routine implements a busy callback that sleeps and tries
+** again until a timeout value is reached. The timeout value is
+** an integer number of milliseconds passed in as the first
+** argument.
+**
+** Return non-zero to retry the lock. Return zero to stop trying
+** and cause SQLite to return SQLITE_BUSY.
+*/
+static int sqliteDefaultBusyCallback(
+ void *ptr, /* Database connection */
+ int count /* Number of times table has been busy */
+){
+#if SQLITE_OS_WIN || HAVE_USLEEP
+ /* This case is for systems that have support for sleeping for fractions of
+ ** a second. Examples: All windows systems, unix systems with usleep() */
+ static const u8 delays[] =
+ { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
+ static const u8 totals[] =
+ { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
+# define NDELAY ArraySize(delays)
+ sqlite3 *db = (sqlite3 *)ptr;
+ int tmout = db->busyTimeout;
+ int delay, prior;
+
+ assert( count>=0 );
+ if( count < NDELAY ){
+ delay = delays[count];
+ prior = totals[count];
+ }else{
+ delay = delays[NDELAY-1];
+ prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
+ }
+ if( prior + delay > tmout ){
+ delay = tmout - prior;
+ if( delay<=0 ) return 0;
+ }
+ sqlite3OsSleep(db->pVfs, delay*1000);
+ return 1;
+#else
+ /* This case for unix systems that lack usleep() support. Sleeping
+ ** must be done in increments of whole seconds */
+ sqlite3 *db = (sqlite3 *)ptr;
+ int tmout = ((sqlite3 *)ptr)->busyTimeout;
+ if( (count+1)*1000 > tmout ){
+ return 0;
+ }
+ sqlite3OsSleep(db->pVfs, 1000000);
+ return 1;
+#endif
+}
+
+/*
+** Invoke the given busy handler.
+**
+** This routine is called when an operation failed to acquire a
+** lock on VFS file pFile.
+**
+** If this routine returns non-zero, the lock is retried. If it
+** returns 0, the operation aborts with an SQLITE_BUSY error.
+*/
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
+ int rc;
+ if( p->xBusyHandler==0 || p->nBusy<0 ) return 0;
+ rc = p->xBusyHandler(p->pBusyArg, p->nBusy);
+ if( rc==0 ){
+ p->nBusy = -1;
+ }else{
+ p->nBusy++;
+ }
+ return rc;
+}
+
+/*
+** This routine sets the busy callback for an Sqlite database to the
+** given callback function with the given argument.
+*/
+SQLITE_API int sqlite3_busy_handler(
+ sqlite3 *db,
+ int (*xBusy)(void*,int),
+ void *pArg
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->busyHandler.xBusyHandler = xBusy;
+ db->busyHandler.pBusyArg = pArg;
+ db->busyHandler.nBusy = 0;
+ db->busyTimeout = 0;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+/*
+** This routine sets the progress callback for an Sqlite database to the
+** given callback function with the given argument. The progress callback will
+** be invoked every nOps opcodes.
+*/
+SQLITE_API void sqlite3_progress_handler(
+ sqlite3 *db,
+ int nOps,
+ int (*xProgress)(void*),
+ void *pArg
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( nOps>0 ){
+ db->xProgress = xProgress;
+ db->nProgressOps = (unsigned)nOps;
+ db->pProgressArg = pArg;
+ }else{
+ db->xProgress = 0;
+ db->nProgressOps = 0;
+ db->pProgressArg = 0;
+ }
+ sqlite3_mutex_leave(db->mutex);
+}
+#endif
+
+
+/*
+** This routine installs a default busy handler that waits for the
+** specified number of milliseconds before returning 0.
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ if( ms>0 ){
+ sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback,
+ (void*)db);
+ db->busyTimeout = ms;
+ }else{
+ sqlite3_busy_handler(db, 0, 0);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Cause any pending operation to stop at its earliest opportunity.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+ AtomicStore(&db->u1.isInterrupted, 1);
+}
+
+
+/*
+** This function is exactly the same as sqlite3_create_function(), except
+** that it is designed to be called by internal code. The difference is
+** that if a malloc() fails in sqlite3_create_function(), an error code
+** is returned and the mallocFailed flag cleared.
+*/
+SQLITE_PRIVATE int sqlite3CreateFunc(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int enc,
+ void *pUserData,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value **),
+ FuncDestructor *pDestructor
+){
+ FuncDef *p;
+ int extraFlags;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( xValue==0 || xSFunc==0 );
+ if( zFunctionName==0 /* Must have a valid name */
+ || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */
+ || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */
+ || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */
+ || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG)
+ || (255<sqlite3Strlen30(zFunctionName))
+ ){
+ return SQLITE_MISUSE_BKPT;
+ }
+
+ assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
+ assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY );
+ extraFlags = enc & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY|
+ SQLITE_SUBTYPE|SQLITE_INNOCUOUS);
+ enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
+
+ /* The SQLITE_INNOCUOUS flag is the same bit as SQLITE_FUNC_UNSAFE. But
+ ** the meaning is inverted. So flip the bit. */
+ assert( SQLITE_FUNC_UNSAFE==SQLITE_INNOCUOUS );
+ extraFlags ^= SQLITE_FUNC_UNSAFE;
+
+
+#ifndef SQLITE_OMIT_UTF16
+ /* If SQLITE_UTF16 is specified as the encoding type, transform this
+ ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
+ ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
+ **
+ ** If SQLITE_ANY is specified, add three versions of the function
+ ** to the hash table.
+ */
+ switch( enc ){
+ case SQLITE_UTF16:
+ enc = SQLITE_UTF16NATIVE;
+ break;
+ case SQLITE_ANY: {
+ int rc;
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg,
+ (SQLITE_UTF8|extraFlags)^SQLITE_FUNC_UNSAFE,
+ pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg,
+ (SQLITE_UTF16LE|extraFlags)^SQLITE_FUNC_UNSAFE,
+ pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ enc = SQLITE_UTF16BE;
+ break;
+ }
+ case SQLITE_UTF8:
+ case SQLITE_UTF16LE:
+ case SQLITE_UTF16BE:
+ break;
+ default:
+ enc = SQLITE_UTF8;
+ break;
+ }
+#else
+ enc = SQLITE_UTF8;
+#endif
+
+ /* Check if an existing function is being overridden or deleted. If so,
+ ** and there are active VMs, then return SQLITE_BUSY. If a function
+ ** is being overridden/deleted but there are no active VMs, allow the
+ ** operation to continue but invalidate all precompiled statements.
+ */
+ p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0);
+ if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){
+ if( db->nVdbeActive ){
+ sqlite3ErrorWithMsg(db, SQLITE_BUSY,
+ "unable to delete/modify user-function due to active statements");
+ assert( !db->mallocFailed );
+ return SQLITE_BUSY;
+ }else{
+ sqlite3ExpirePreparedStatements(db, 0);
+ }
+ }else if( xSFunc==0 && xFinal==0 ){
+ /* Trying to delete a function that does not exist. This is a no-op.
+ ** https://sqlite.org/forum/forumpost/726219164b */
+ return SQLITE_OK;
+ }
+
+ p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1);
+ assert(p || db->mallocFailed);
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* If an older version of the function with a configured destructor is
+ ** being replaced invoke the destructor function here. */
+ functionDestroy(db, p);
+
+ if( pDestructor ){
+ pDestructor->nRef++;
+ }
+ p->u.pDestructor = pDestructor;
+ p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
+ testcase( p->funcFlags & SQLITE_DETERMINISTIC );
+ testcase( p->funcFlags & SQLITE_DIRECTONLY );
+ p->xSFunc = xSFunc ? xSFunc : xStep;
+ p->xFinalize = xFinal;
+ p->xValue = xValue;
+ p->xInverse = xInverse;
+ p->pUserData = pUserData;
+ p->nArg = (u16)nArg;
+ return SQLITE_OK;
+}
+
+/*
+** Worker function used by utf-8 APIs that create new functions:
+**
+** sqlite3_create_function()
+** sqlite3_create_function_v2()
+** sqlite3_create_window_function()
+*/
+static int createFunctionApi(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*)
+){
+ int rc = SQLITE_ERROR;
+ FuncDestructor *pArg = 0;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( xDestroy ){
+ pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor));
+ if( !pArg ){
+ sqlite3OomFault(db);
+ xDestroy(p);
+ goto out;
+ }
+ pArg->nRef = 0;
+ pArg->xDestroy = xDestroy;
+ pArg->pUserData = p;
+ }
+ rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p,
+ xSFunc, xStep, xFinal, xValue, xInverse, pArg
+ );
+ if( pArg && pArg->nRef==0 ){
+ assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) );
+ xDestroy(p);
+ sqlite3_free(pArg);
+ }
+
+ out:
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Create new user functions.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*)
+){
+ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep,
+ xFinal, 0, 0, 0);
+}
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xDestroy)(void *)
+){
+ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep,
+ xFinal, 0, 0, xDestroy);
+}
+SQLITE_API int sqlite3_create_window_function(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value **),
+ void (*xDestroy)(void *)
+){
+ return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep,
+ xFinal, xValue, xInverse, xDestroy);
+}
+
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+){
+ int rc;
+ char *zFunc8;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
+ rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0);
+ sqlite3DbFree(db, zFunc8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif
+
+
+/*
+** The following is the implementation of an SQL function that always
+** fails with an error message stating that the function is used in the
+** wrong context. The sqlite3_overload_function() API might construct
+** SQL function that use this routine so that the functions will exist
+** for name resolution but are actually overloaded by the xFindFunction
+** method of virtual tables.
+*/
+static void sqlite3InvalidFunction(
+ sqlite3_context *context, /* The function calling context */
+ int NotUsed, /* Number of arguments to the function */
+ sqlite3_value **NotUsed2 /* Value of each argument */
+){
+ const char *zName = (const char*)sqlite3_user_data(context);
+ char *zErr;
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ zErr = sqlite3_mprintf(
+ "unable to use function %s in the requested context", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+}
+
+/*
+** Declare that a function has been overloaded by a virtual table.
+**
+** If the function already exists as a regular global function, then
+** this routine is a no-op. If the function does not exist, then create
+** a new one that always throws a run-time error.
+**
+** When virtual tables intend to provide an overloaded function, they
+** should call this routine to make sure the global function exists.
+** A global function must exist in order for name resolution to work
+** properly.
+*/
+SQLITE_API int sqlite3_overload_function(
+ sqlite3 *db,
+ const char *zName,
+ int nArg
+){
+ int rc;
+ char *zCopy;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0;
+ sqlite3_mutex_leave(db->mutex);
+ if( rc ) return SQLITE_OK;
+ zCopy = sqlite3_mprintf(zName);
+ if( zCopy==0 ) return SQLITE_NOMEM;
+ return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8,
+ zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free);
+}
+
+#ifndef SQLITE_OMIT_TRACE
+/*
+** Register a trace function. The pArg from the previously registered trace
+** is returned.
+**
+** A NULL trace function means that no tracing is executes. A non-NULL
+** trace is a pointer to a function that is invoked at the start of each
+** SQL statement.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){
+ void *pOld;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pTraceArg;
+ db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0;
+ db->trace.xLegacy = xTrace;
+ db->pTraceArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+#endif /* SQLITE_OMIT_DEPRECATED */
+
+/* Register a trace callback using the version-2 interface.
+*/
+SQLITE_API int sqlite3_trace_v2(
+ sqlite3 *db, /* Trace this connection */
+ unsigned mTrace, /* Mask of events to be traced */
+ int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */
+ void *pArg /* Context */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( mTrace==0 ) xTrace = 0;
+ if( xTrace==0 ) mTrace = 0;
+ db->mTrace = mTrace;
+ db->trace.xV2 = xTrace;
+ db->pTraceArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Register a profile function. The pArg from the previously registered
+** profile function is returned.
+**
+** A NULL profile function means that no profiling is executes. A non-NULL
+** profile is a pointer to a function that is invoked at the conclusion of
+** each SQL statement that is run.
+*/
+SQLITE_API void *sqlite3_profile(
+ sqlite3 *db,
+ void (*xProfile)(void*,const char*,sqlite_uint64),
+ void *pArg
+){
+ void *pOld;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pProfileArg;
+ db->xProfile = xProfile;
+ db->pProfileArg = pArg;
+ db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK;
+ if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+#endif /* SQLITE_OMIT_DEPRECATED */
+#endif /* SQLITE_OMIT_TRACE */
+
+/*
+** Register a function to be invoked when a transaction commits.
+** If the invoked function returns non-zero, then the commit becomes a
+** rollback.
+*/
+SQLITE_API void *sqlite3_commit_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ int (*xCallback)(void*), /* Function to invoke on each commit */
+ void *pArg /* Argument to the function */
+){
+ void *pOld;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pCommitArg;
+ db->xCommitCallback = xCallback;
+ db->pCommitArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+
+/*
+** Register a callback to be invoked each time a row is updated,
+** inserted or deleted using this database connection.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
+ void *pArg /* Argument to the function */
+){
+ void *pRet;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pUpdateArg;
+ db->xUpdateCallback = xCallback;
+ db->pUpdateArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+
+/*
+** Register a callback to be invoked each time a transaction is rolled
+** back by this database connection.
+*/
+SQLITE_API void *sqlite3_rollback_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void (*xCallback)(void*), /* Callback function */
+ void *pArg /* Argument to the function */
+){
+ void *pRet;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pRollbackArg;
+ db->xRollbackCallback = xCallback;
+ db->pRollbackArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** Register a callback to be invoked each time a row is updated,
+** inserted or deleted using this database connection.
+*/
+SQLITE_API void *sqlite3_preupdate_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void(*xCallback)( /* Callback function */
+ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64),
+ void *pArg /* First callback argument */
+){
+ void *pRet;
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pPreUpdateArg;
+ db->xPreUpdateCallback = xCallback;
+ db->pPreUpdateArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+/*
+** Register a function to be invoked prior to each autovacuum that
+** determines the number of pages to vacuum.
+*/
+SQLITE_API int sqlite3_autovacuum_pages(
+ sqlite3 *db, /* Attach the hook to this database */
+ unsigned int (*xCallback)(void*,const char*,u32,u32,u32),
+ void *pArg, /* Argument to the function */
+ void (*xDestructor)(void*) /* Destructor for pArg */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ if( xDestructor ) xDestructor(pArg);
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( db->xAutovacDestr ){
+ db->xAutovacDestr(db->pAutovacPagesArg);
+ }
+ db->xAutovacPages = xCallback;
+ db->pAutovacPagesArg = pArg;
+ db->xAutovacDestr = xDestructor;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
+** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
+** is greater than sqlite3.pWalArg cast to an integer (the value configured by
+** wal_autocheckpoint()).
+*/
+SQLITE_PRIVATE int sqlite3WalDefaultHook(
+ void *pClientData, /* Argument */
+ sqlite3 *db, /* Connection */
+ const char *zDb, /* Database */
+ int nFrame /* Size of WAL */
+){
+ if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
+ sqlite3BeginBenignMalloc();
+ sqlite3_wal_checkpoint(db, zDb);
+ sqlite3EndBenignMalloc();
+ }
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_WAL */
+
+/*
+** Configure an sqlite3_wal_hook() callback to automatically checkpoint
+** a database after committing a transaction if there are nFrame or
+** more frames in the log file. Passing zero or a negative value as the
+** nFrame parameter disables automatic checkpoints entirely.
+**
+** The callback registered by this function replaces any existing callback
+** registered using sqlite3_wal_hook(). Likewise, registering a callback
+** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
+** configured by this function.
+*/
+SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
+#ifdef SQLITE_OMIT_WAL
+ UNUSED_PARAMETER(db);
+ UNUSED_PARAMETER(nFrame);
+#else
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ if( nFrame>0 ){
+ sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
+ }else{
+ sqlite3_wal_hook(db, 0, 0);
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Register a callback to be invoked each time a transaction is written
+** into the write-ahead-log by this database connection.
+*/
+SQLITE_API void *sqlite3_wal_hook(
+ sqlite3 *db, /* Attach the hook to this db handle */
+ int(*xCallback)(void *, sqlite3*, const char*, int),
+ void *pArg /* First argument passed to xCallback() */
+){
+#ifndef SQLITE_OMIT_WAL
+ void *pRet;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pWalArg;
+ db->xWalCallback = xCallback;
+ db->pWalArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+#else
+ return 0;
+#endif
+}
+
+/*
+** Checkpoint database zDb.
+*/
+SQLITE_API int sqlite3_wal_checkpoint_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of attached database (or NULL) */
+ int eMode, /* SQLITE_CHECKPOINT_* value */
+ int *pnLog, /* OUT: Size of WAL log in frames */
+ int *pnCkpt /* OUT: Total number of frames checkpointed */
+){
+#ifdef SQLITE_OMIT_WAL
+ return SQLITE_OK;
+#else
+ int rc; /* Return code */
+ int iDb; /* Schema to checkpoint */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+
+ /* Initialize the output variables to -1 in case an error occurs. */
+ if( pnLog ) *pnLog = -1;
+ if( pnCkpt ) *pnCkpt = -1;
+
+ assert( SQLITE_CHECKPOINT_PASSIVE==0 );
+ assert( SQLITE_CHECKPOINT_FULL==1 );
+ assert( SQLITE_CHECKPOINT_RESTART==2 );
+ assert( SQLITE_CHECKPOINT_TRUNCATE==3 );
+ if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){
+ /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint
+ ** mode: */
+ return SQLITE_MISUSE;
+ }
+
+ sqlite3_mutex_enter(db->mutex);
+ if( zDb && zDb[0] ){
+ iDb = sqlite3FindDbName(db, zDb);
+ }else{
+ iDb = SQLITE_MAX_DB; /* This means process all schemas */
+ }
+ if( iDb<0 ){
+ rc = SQLITE_ERROR;
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb);
+ }else{
+ db->busyHandler.nBusy = 0;
+ rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
+ sqlite3Error(db, rc);
+ }
+ rc = sqlite3ApiExit(db, rc);
+
+ /* If there are no active statements, clear the interrupt flag at this
+ ** point. */
+ if( db->nVdbeActive==0 ){
+ AtomicStore(&db->u1.isInterrupted, 0);
+ }
+
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+#endif
+}
+
+
+/*
+** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
+** to contains a zero-length string, all attached databases are
+** checkpointed.
+*/
+SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
+ /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to
+ ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */
+ return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0);
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Run a checkpoint on database iDb. This is a no-op if database iDb is
+** not currently open in WAL mode.
+**
+** If a transaction is open on the database being checkpointed, this
+** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
+** an error occurs while running the checkpoint, an SQLite error code is
+** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
+**
+** The mutex on database handle db should be held by the caller. The mutex
+** associated with the specific b-tree being checkpointed is taken by
+** this function while the checkpoint is running.
+**
+** If iDb is passed SQLITE_MAX_DB then all attached databases are
+** checkpointed. If an error is encountered it is returned immediately -
+** no attempt is made to checkpoint any remaining databases.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART
+** or TRUNCATE.
+*/
+SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* Used to iterate through attached dbs */
+ int bBusy = 0; /* True if SQLITE_BUSY has been encountered */
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( !pnLog || *pnLog==-1 );
+ assert( !pnCkpt || *pnCkpt==-1 );
+ testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */
+ testcase( iDb==SQLITE_MAX_DB );
+
+ for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
+ if( i==iDb || iDb==SQLITE_MAX_DB ){
+ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
+ pnLog = 0;
+ pnCkpt = 0;
+ if( rc==SQLITE_BUSY ){
+ bBusy = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
+}
+#endif /* SQLITE_OMIT_WAL */
+
+/*
+** This function returns true if main-memory should be used instead of
+** a temporary file for transient pager files and statement journals.
+** The value returned depends on the value of db->temp_store (runtime
+** parameter) and the compile time value of SQLITE_TEMP_STORE. The
+** following table describes the relationship between these two values
+** and this functions return value.
+**
+** SQLITE_TEMP_STORE db->temp_store Location of temporary database
+** ----------------- -------------- ------------------------------
+** 0 any file (return 0)
+** 1 1 file (return 0)
+** 1 2 memory (return 1)
+** 1 0 file (return 0)
+** 2 1 file (return 0)
+** 2 2 memory (return 1)
+** 2 0 memory (return 1)
+** 3 any memory (return 1)
+*/
+SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){
+#if SQLITE_TEMP_STORE==1
+ return ( db->temp_store==2 );
+#endif
+#if SQLITE_TEMP_STORE==2
+ return ( db->temp_store!=1 );
+#endif
+#if SQLITE_TEMP_STORE==3
+ UNUSED_PARAMETER(db);
+ return 1;
+#endif
+#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
+ UNUSED_PARAMETER(db);
+ return 0;
+#endif
+}
+
+/*
+** Return UTF-8 encoded English language explanation of the most recent
+** error.
+*/
+SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
+ const char *z;
+ if( !db ){
+ return sqlite3ErrStr(SQLITE_NOMEM_BKPT);
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
+ }
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mallocFailed ){
+ z = sqlite3ErrStr(SQLITE_NOMEM_BKPT);
+ }else{
+ testcase( db->pErr==0 );
+ z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0;
+ assert( !db->mallocFailed );
+ if( z==0 ){
+ z = sqlite3ErrStr(db->errCode);
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return z;
+}
+
+/*
+** Return the byte offset of the most recent error
+*/
+SQLITE_API int sqlite3_error_offset(sqlite3 *db){
+ int iOffset = -1;
+ if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){
+ sqlite3_mutex_enter(db->mutex);
+ iOffset = db->errByteOffset;
+ sqlite3_mutex_leave(db->mutex);
+ }
+ return iOffset;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Return UTF-16 encoded English language explanation of the most recent
+** error.
+*/
+SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
+ static const u16 outOfMem[] = {
+ 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
+ };
+ static const u16 misuse[] = {
+ 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ',
+ 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ',
+ 'm', 'i', 's', 'u', 's', 'e', 0
+ };
+
+ const void *z;
+ if( !db ){
+ return (void *)outOfMem;
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return (void *)misuse;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mallocFailed ){
+ z = (void *)outOfMem;
+ }else{
+ z = sqlite3_value_text16(db->pErr);
+ if( z==0 ){
+ sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode));
+ z = sqlite3_value_text16(db->pErr);
+ }
+ /* A malloc() may have failed within the call to sqlite3_value_text16()
+ ** above. If this is the case, then the db->mallocFailed flag needs to
+ ** be cleared before returning. Do this directly, instead of via
+ ** sqlite3ApiExit(), to avoid setting the database handle error message.
+ */
+ sqlite3OomClear(db);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return z;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the most recent error code generated by an SQLite routine. If NULL is
+** passed to this function, we assume a malloc() failed during sqlite3_open().
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( !db || db->mallocFailed ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ return db->errCode & db->errMask;
+}
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( !db || db->mallocFailed ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ return db->errCode;
+}
+SQLITE_API int sqlite3_system_errno(sqlite3 *db){
+ return db ? db->iSysErrno : 0;
+}
+
+/*
+** Return a string that describes the kind of error specified in the
+** argument. For now, this simply calls the internal sqlite3ErrStr()
+** function.
+*/
+SQLITE_API const char *sqlite3_errstr(int rc){
+ return sqlite3ErrStr(rc);
+}
+
+/*
+** Create a new collating function for database "db". The name is zName
+** and the encoding is enc.
+*/
+static int createCollation(
+ sqlite3* db,
+ const char *zName,
+ u8 enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
+){
+ CollSeq *pColl;
+ int enc2;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ /* If SQLITE_UTF16 is specified as the encoding type, transform this
+ ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
+ ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
+ */
+ enc2 = enc;
+ testcase( enc2==SQLITE_UTF16 );
+ testcase( enc2==SQLITE_UTF16_ALIGNED );
+ if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
+ enc2 = SQLITE_UTF16NATIVE;
+ }
+ if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
+ return SQLITE_MISUSE_BKPT;
+ }
+
+ /* Check if this call is removing or replacing an existing collation
+ ** sequence. If so, and there are active VMs, return busy. If there
+ ** are no active VMs, invalidate any pre-compiled statements.
+ */
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
+ if( pColl && pColl->xCmp ){
+ if( db->nVdbeActive ){
+ sqlite3ErrorWithMsg(db, SQLITE_BUSY,
+ "unable to delete/modify collation sequence due to active statements");
+ return SQLITE_BUSY;
+ }
+ sqlite3ExpirePreparedStatements(db, 0);
+
+ /* If collation sequence pColl was created directly by a call to
+ ** sqlite3_create_collation, and not generated by synthCollSeq(),
+ ** then any copies made by synthCollSeq() need to be invalidated.
+ ** Also, collation destructor - CollSeq.xDel() - function may need
+ ** to be called.
+ */
+ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
+ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName);
+ int j;
+ for(j=0; j<3; j++){
+ CollSeq *p = &aColl[j];
+ if( p->enc==pColl->enc ){
+ if( p->xDel ){
+ p->xDel(p->pUser);
+ }
+ p->xCmp = 0;
+ }
+ }
+ }
+ }
+
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
+ if( pColl==0 ) return SQLITE_NOMEM_BKPT;
+ pColl->xCmp = xCompare;
+ pColl->pUser = pCtx;
+ pColl->xDel = xDel;
+ pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
+ sqlite3Error(db, SQLITE_OK);
+ return SQLITE_OK;
+}
+
+
+/*
+** This array defines hard upper bounds on limit values. The
+** initializer must be kept in sync with the SQLITE_LIMIT_*
+** #defines in sqlite3.h.
+*/
+static const int aHardLimit[] = {
+ SQLITE_MAX_LENGTH,
+ SQLITE_MAX_SQL_LENGTH,
+ SQLITE_MAX_COLUMN,
+ SQLITE_MAX_EXPR_DEPTH,
+ SQLITE_MAX_COMPOUND_SELECT,
+ SQLITE_MAX_VDBE_OP,
+ SQLITE_MAX_FUNCTION_ARG,
+ SQLITE_MAX_ATTACHED,
+ SQLITE_MAX_LIKE_PATTERN_LENGTH,
+ SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */
+ SQLITE_MAX_TRIGGER_DEPTH,
+ SQLITE_MAX_WORKER_THREADS,
+};
+
+/*
+** Make sure the hard limits are set to reasonable values
+*/
+#if SQLITE_MAX_LENGTH<100
+# error SQLITE_MAX_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH<100
+# error SQLITE_MAX_SQL_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
+# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
+#endif
+#if SQLITE_MAX_COMPOUND_SELECT<2
+# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
+#endif
+#if SQLITE_MAX_VDBE_OP<40
+# error SQLITE_MAX_VDBE_OP must be at least 40
+#endif
+#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127
+# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127
+#endif
+#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125
+# error SQLITE_MAX_ATTACHED must be between 0 and 125
+#endif
+#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
+# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
+#endif
+#if SQLITE_MAX_COLUMN>32767
+# error SQLITE_MAX_COLUMN must not exceed 32767
+#endif
+#if SQLITE_MAX_TRIGGER_DEPTH<1
+# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
+#endif
+#if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50
+# error SQLITE_MAX_WORKER_THREADS must be between 0 and 50
+#endif
+
+
+/*
+** Change the value of a limit. Report the old value.
+** If an invalid limit index is supplied, report -1.
+** Make no changes but still report the old value if the
+** new limit is negative.
+**
+** A new lower limit does not shrink existing constructs.
+** It merely prevents new constructs that exceed the limit
+** from forming.
+*/
+SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
+ int oldLimit;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return -1;
+ }
+#endif
+
+ /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
+ ** there is a hard upper bound set at compile-time by a C preprocessor
+ ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
+ ** "_MAX_".)
+ */
+ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
+ assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
+ assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
+ assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
+ assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
+ assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
+ assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
+ SQLITE_MAX_LIKE_PATTERN_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
+ assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
+ assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS );
+ assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) );
+
+
+ if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
+ return -1;
+ }
+ oldLimit = db->aLimit[limitId];
+ if( newLimit>=0 ){ /* IMP: R-52476-28732 */
+ if( newLimit>aHardLimit[limitId] ){
+ newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */
+ }else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){
+ newLimit = 1;
+ }
+ db->aLimit[limitId] = newLimit;
+ }
+ return oldLimit; /* IMP: R-53341-35419 */
+}
+
+/*
+** This function is used to parse both URIs and non-URI filenames passed by the
+** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
+** URIs specified as part of ATTACH statements.
+**
+** The first argument to this function is the name of the VFS to use (or
+** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
+** query parameter. The second argument contains the URI (or non-URI filename)
+** itself. When this function is called the *pFlags variable should contain
+** the default flags to open the database handle with. The value stored in
+** *pFlags may be updated before returning if the URI filename contains
+** "cache=xxx" or "mode=xxx" query parameters.
+**
+** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
+** the VFS that should be used to open the database file. *pzFile is set to
+** point to a buffer containing the name of the file to open. The value
+** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter()
+** and is in the same format as names created using sqlite3_create_filename().
+** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on
+** the value returned in *pzFile to avoid a memory leak.
+**
+** If an error occurs, then an SQLite error code is returned and *pzErrMsg
+** may be set to point to a buffer containing an English language error
+** message. It is the responsibility of the caller to eventually release
+** this buffer by calling sqlite3_free().
+*/
+SQLITE_PRIVATE int sqlite3ParseUri(
+ const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */
+ const char *zUri, /* Nul-terminated URI to parse */
+ unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */
+ sqlite3_vfs **ppVfs, /* OUT: VFS to use */
+ char **pzFile, /* OUT: Filename component of URI */
+ char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */
+){
+ int rc = SQLITE_OK;
+ unsigned int flags = *pFlags;
+ const char *zVfs = zDefaultVfs;
+ char *zFile;
+ char c;
+ int nUri = sqlite3Strlen30(zUri);
+
+ assert( *pzErrMsg==0 );
+
+ if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */
+ || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */
+ && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
+ ){
+ char *zOpt;
+ int eState; /* Parser state when parsing URI */
+ int iIn; /* Input character index */
+ int iOut = 0; /* Output character index */
+ u64 nByte = nUri+8; /* Bytes of space to allocate */
+
+ /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
+ ** method that there may be extra parameters following the file-name. */
+ flags |= SQLITE_OPEN_URI;
+
+ for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
+ zFile = sqlite3_malloc64(nByte);
+ if( !zFile ) return SQLITE_NOMEM_BKPT;
+
+ memset(zFile, 0, 4); /* 4-byte of 0x00 is the start of DB name marker */
+ zFile += 4;
+
+ iIn = 5;
+#ifdef SQLITE_ALLOW_URI_AUTHORITY
+ if( strncmp(zUri+5, "///", 3)==0 ){
+ iIn = 7;
+ /* The following condition causes URIs with five leading / characters
+ ** like file://///host/path to be converted into UNCs like //host/path.
+ ** The correct URI for that UNC has only two or four leading / characters
+ ** file://host/path or file:////host/path. But 5 leading slashes is a
+ ** common error, we are told, so we handle it as a special case. */
+ if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; }
+ }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){
+ iIn = 16;
+ }
+#else
+ /* Discard the scheme and authority segments of the URI. */
+ if( zUri[5]=='/' && zUri[6]=='/' ){
+ iIn = 7;
+ while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
+ if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
+ *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
+ iIn-7, &zUri[7]);
+ rc = SQLITE_ERROR;
+ goto parse_uri_out;
+ }
+ }
+#endif
+
+ /* Copy the filename and any query parameters into the zFile buffer.
+ ** Decode %HH escape codes along the way.
+ **
+ ** Within this loop, variable eState may be set to 0, 1 or 2, depending
+ ** on the parsing context. As follows:
+ **
+ ** 0: Parsing file-name.
+ ** 1: Parsing name section of a name=value query parameter.
+ ** 2: Parsing value section of a name=value query parameter.
+ */
+ eState = 0;
+ while( (c = zUri[iIn])!=0 && c!='#' ){
+ iIn++;
+ if( c=='%'
+ && sqlite3Isxdigit(zUri[iIn])
+ && sqlite3Isxdigit(zUri[iIn+1])
+ ){
+ int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
+ octet += sqlite3HexToInt(zUri[iIn++]);
+
+ assert( octet>=0 && octet<256 );
+ if( octet==0 ){
+#ifndef SQLITE_ENABLE_URI_00_ERROR
+ /* This branch is taken when "%00" appears within the URI. In this
+ ** case we ignore all text in the remainder of the path, name or
+ ** value currently being parsed. So ignore the current character
+ ** and skip to the next "?", "=" or "&", as appropriate. */
+ while( (c = zUri[iIn])!=0 && c!='#'
+ && (eState!=0 || c!='?')
+ && (eState!=1 || (c!='=' && c!='&'))
+ && (eState!=2 || c!='&')
+ ){
+ iIn++;
+ }
+ continue;
+#else
+ /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */
+ *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri");
+ rc = SQLITE_ERROR;
+ goto parse_uri_out;
+#endif
+ }
+ c = octet;
+ }else if( eState==1 && (c=='&' || c=='=') ){
+ if( zFile[iOut-1]==0 ){
+ /* An empty option name. Ignore this option altogether. */
+ while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
+ continue;
+ }
+ if( c=='&' ){
+ zFile[iOut++] = '\0';
+ }else{
+ eState = 2;
+ }
+ c = 0;
+ }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
+ c = 0;
+ eState = 1;
+ }
+ zFile[iOut++] = c;
+ }
+ if( eState==1 ) zFile[iOut++] = '\0';
+ memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */
+
+ /* Check if there were any options specified that should be interpreted
+ ** here. Options that are interpreted here include "vfs" and those that
+ ** correspond to flags that may be passed to the sqlite3_open_v2()
+ ** method. */
+ zOpt = &zFile[sqlite3Strlen30(zFile)+1];
+ while( zOpt[0] ){
+ int nOpt = sqlite3Strlen30(zOpt);
+ char *zVal = &zOpt[nOpt+1];
+ int nVal = sqlite3Strlen30(zVal);
+
+ if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
+ zVfs = zVal;
+ }else{
+ struct OpenMode {
+ const char *z;
+ int mode;
+ } *aMode = 0;
+ char *zModeType = 0;
+ int mask = 0;
+ int limit = 0;
+
+ if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
+ static struct OpenMode aCacheMode[] = {
+ { "shared", SQLITE_OPEN_SHAREDCACHE },
+ { "private", SQLITE_OPEN_PRIVATECACHE },
+ { 0, 0 }
+ };
+
+ mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
+ aMode = aCacheMode;
+ limit = mask;
+ zModeType = "cache";
+ }
+ if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
+ static struct OpenMode aOpenMode[] = {
+ { "ro", SQLITE_OPEN_READONLY },
+ { "rw", SQLITE_OPEN_READWRITE },
+ { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
+ { "memory", SQLITE_OPEN_MEMORY },
+ { 0, 0 }
+ };
+
+ mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE
+ | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY;
+ aMode = aOpenMode;
+ limit = mask & flags;
+ zModeType = "access";
+ }
+
+ if( aMode ){
+ int i;
+ int mode = 0;
+ for(i=0; aMode[i].z; i++){
+ const char *z = aMode[i].z;
+ if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
+ mode = aMode[i].mode;
+ break;
+ }
+ }
+ if( mode==0 ){
+ *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
+ rc = SQLITE_ERROR;
+ goto parse_uri_out;
+ }
+ if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){
+ *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
+ zModeType, zVal);
+ rc = SQLITE_PERM;
+ goto parse_uri_out;
+ }
+ flags = (flags & ~mask) | mode;
+ }
+ }
+
+ zOpt = &zVal[nVal+1];
+ }
+
+ }else{
+ zFile = sqlite3_malloc64(nUri+8);
+ if( !zFile ) return SQLITE_NOMEM_BKPT;
+ memset(zFile, 0, 4);
+ zFile += 4;
+ if( nUri ){
+ memcpy(zFile, zUri, nUri);
+ }
+ memset(zFile+nUri, 0, 4);
+ flags &= ~SQLITE_OPEN_URI;
+ }
+
+ *ppVfs = sqlite3_vfs_find(zVfs);
+ if( *ppVfs==0 ){
+ *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
+ rc = SQLITE_ERROR;
+ }
+ parse_uri_out:
+ if( rc!=SQLITE_OK ){
+ sqlite3_free_filename(zFile);
+ zFile = 0;
+ }
+ *pFlags = flags;
+ *pzFile = zFile;
+ return rc;
+}
+
+/*
+** This routine does the core work of extracting URI parameters from a
+** database filename for the sqlite3_uri_parameter() interface.
+*/
+static const char *uriParameter(const char *zFilename, const char *zParam){
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ while( ALWAYS(zFilename!=0) && zFilename[0] ){
+ int x = strcmp(zFilename, zParam);
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ if( x==0 ) return zFilename;
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ }
+ return 0;
+}
+
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC)
+/*
+** Process URI filename query parameters relevant to the SQLite Encryption
+** Extension. Return true if any of the relevant query parameters are
+** seen and return false if not.
+*/
+SQLITE_PRIVATE int sqlite3CodecQueryParameters(
+ sqlite3 *db, /* Database connection */
+ const char *zDb, /* Which schema is being created/attached */
+ const char *zUri /* URI filename */
+){
+ const char *zKey;
+ if( zUri==0 ){
+ return 0;
+ }else if( (zKey = uriParameter(zUri, "hexkey"))!=0 && zKey[0] ){
+ u8 iByte;
+ int i;
+ char zDecoded[40];
+ for(i=0, iByte=0; i<sizeof(zDecoded)*2 && sqlite3Isxdigit(zKey[i]); i++){
+ iByte = (iByte<<4) + sqlite3HexToInt(zKey[i]);
+ if( (i&1)!=0 ) zDecoded[i/2] = iByte;
+ }
+ sqlite3_key_v2(db, zDb, zDecoded, i/2);
+ return 1;
+ }else if( (zKey = uriParameter(zUri, "key"))!=0 ){
+ sqlite3_key_v2(db, zDb, zKey, sqlite3Strlen30(zKey));
+ return 1;
+ }else if( (zKey = uriParameter(zUri, "textkey"))!=0 ){
+ sqlite3_key_v2(db, zDb, zKey, -1);
+ return 1;
+ }else{
+ return 0;
+ }
+}
+#endif
+/* END SQLCIPHER */
+
+
+/*
+** This routine does the work of opening a database on behalf of
+** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
+** is UTF-8 encoded.
+*/
+static int openDatabase(
+ const char *zFilename, /* Database filename UTF-8 encoded */
+ sqlite3 **ppDb, /* OUT: Returned database handle */
+ unsigned int flags, /* Operational flags */
+ const char *zVfs /* Name of the VFS to use */
+){
+ sqlite3 *db; /* Store allocated handle here */
+ int rc; /* Return code */
+ int isThreadsafe; /* True for threadsafe connections */
+ char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */
+ char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */
+ int i; /* Loop counter */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppDb = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+
+ if( sqlite3GlobalConfig.bCoreMutex==0 ){
+ isThreadsafe = 0;
+ }else if( flags & SQLITE_OPEN_NOMUTEX ){
+ isThreadsafe = 0;
+ }else if( flags & SQLITE_OPEN_FULLMUTEX ){
+ isThreadsafe = 1;
+ }else{
+ isThreadsafe = sqlite3GlobalConfig.bFullMutex;
+ }
+
+ if( flags & SQLITE_OPEN_PRIVATECACHE ){
+ flags &= ~SQLITE_OPEN_SHAREDCACHE;
+ }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
+ flags |= SQLITE_OPEN_SHAREDCACHE;
+ }
+
+ /* Remove harmful bits from the flags parameter
+ **
+ ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
+ ** dealt with in the previous code block. Besides these, the only
+ ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
+ ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
+ ** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved
+ ** bits. Silently mask off all other flags.
+ */
+ flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_MAIN_DB |
+ SQLITE_OPEN_TEMP_DB |
+ SQLITE_OPEN_TRANSIENT_DB |
+ SQLITE_OPEN_MAIN_JOURNAL |
+ SQLITE_OPEN_TEMP_JOURNAL |
+ SQLITE_OPEN_SUBJOURNAL |
+ SQLITE_OPEN_SUPER_JOURNAL |
+ SQLITE_OPEN_NOMUTEX |
+ SQLITE_OPEN_FULLMUTEX |
+ SQLITE_OPEN_WAL
+ );
+
+ /* Allocate the sqlite data structure */
+ db = sqlite3MallocZero( sizeof(sqlite3) );
+ if( db==0 ) goto opendb_out;
+ if( isThreadsafe
+#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
+ || sqlite3GlobalConfig.bCoreMutex
+#endif
+ ){
+ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( db->mutex==0 ){
+ sqlite3_free(db);
+ db = 0;
+ goto opendb_out;
+ }
+ if( isThreadsafe==0 ){
+ sqlite3MutexWarnOnContention(db->mutex);
+ }
+ }
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff;
+ db->nDb = 2;
+ db->eOpenState = SQLITE_STATE_BUSY;
+ db->aDb = db->aDbStatic;
+ db->lookaside.bDisable = 1;
+ db->lookaside.sz = 0;
+
+ assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
+ memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
+ db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS;
+ db->autoCommit = 1;
+ db->nextAutovac = -1;
+ db->szMmap = sqlite3GlobalConfig.szMmap;
+ db->nextPagesize = 0;
+ db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
+#ifdef SQLITE_ENABLE_SORTER_MMAP
+ /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map
+ ** the temporary files used to do external sorts (see code in vdbesort.c)
+ ** is disabled. It can still be used either by defining
+ ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the
+ ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */
+ db->nMaxSorterMmap = 0x7FFFFFFF;
+#endif
+ db->flags |= SQLITE_ShortColNames
+ | SQLITE_EnableTrigger
+ | SQLITE_EnableView
+ | SQLITE_CacheSpill
+#if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0
+ | SQLITE_TrustedSchema
+#endif
+/* The SQLITE_DQS compile-time option determines the default settings
+** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML.
+**
+** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML
+** ---------- ----------------------- -----------------------
+** undefined on on
+** 3 on on
+** 2 on off
+** 1 off on
+** 0 off off
+**
+** Legacy behavior is 3 (double-quoted string literals are allowed anywhere)
+** and so that is the default. But developers are encouranged to use
+** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible.
+*/
+#if !defined(SQLITE_DQS)
+# define SQLITE_DQS 3
+#endif
+#if (SQLITE_DQS&1)==1
+ | SQLITE_DqsDML
+#endif
+#if (SQLITE_DQS&2)==2
+ | SQLITE_DqsDDL
+#endif
+
+#if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
+ | SQLITE_AutoIndex
+#endif
+#if SQLITE_DEFAULT_CKPTFULLFSYNC
+ | SQLITE_CkptFullFSync
+#endif
+#if SQLITE_DEFAULT_FILE_FORMAT<4
+ | SQLITE_LegacyFileFmt
+#endif
+#ifdef SQLITE_ENABLE_LOAD_EXTENSION
+ | SQLITE_LoadExtension
+#endif
+#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+ | SQLITE_RecTriggers
+#endif
+#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
+ | SQLITE_ForeignKeys
+#endif
+#if defined(SQLITE_REVERSE_UNORDERED_SELECTS)
+ | SQLITE_ReverseOrder
+#endif
+#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
+ | SQLITE_CellSizeCk
+#endif
+#if defined(SQLITE_ENABLE_FTS3_TOKENIZER)
+ | SQLITE_Fts3Tokenizer
+#endif
+#if defined(SQLITE_ENABLE_QPSG)
+ | SQLITE_EnableQPSG
+#endif
+#if defined(SQLITE_DEFAULT_DEFENSIVE)
+ | SQLITE_Defensive
+#endif
+#if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE)
+ | SQLITE_LegacyAlter
+#endif
+ ;
+ sqlite3HashInit(&db->aCollSeq);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3HashInit(&db->aModule);
+#endif
+
+ /* Add the default collation sequence BINARY. BINARY works for both UTF-8
+ ** and UTF-16, so add a version for each to avoid any unnecessary
+ ** conversions. The only error that can occur here is a malloc() failure.
+ **
+ ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
+ ** functions:
+ */
+ createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0);
+ createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0);
+ createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0);
+ createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
+ createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0);
+ if( db->mallocFailed ){
+ goto opendb_out;
+ }
+
+ /* Parse the filename/URI argument
+ **
+ ** Only allow sensible combinations of bits in the flags argument.
+ ** Throw an error if any non-sense combination is used. If we
+ ** do not block illegal combinations here, it could trigger
+ ** assert() statements in deeper layers. Sensible combinations
+ ** are:
+ **
+ ** 1: SQLITE_OPEN_READONLY
+ ** 2: SQLITE_OPEN_READWRITE
+ ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
+ */
+ db->openFlags = flags;
+ assert( SQLITE_OPEN_READONLY == 0x01 );
+ assert( SQLITE_OPEN_READWRITE == 0x02 );
+ assert( SQLITE_OPEN_CREATE == 0x04 );
+ testcase( (1<<(flags&7))==0x02 ); /* READONLY */
+ testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
+ testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
+ if( ((1<<(flags&7)) & 0x46)==0 ){
+ rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */
+ }else{
+ rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
+ }
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
+ sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
+ sqlite3_free(zErrMsg);
+ goto opendb_out;
+ }
+
+ /* Open the backend database driver */
+ rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
+ flags | SQLITE_OPEN_MAIN_DB);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_IOERR_NOMEM ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3Error(db, rc);
+ goto opendb_out;
+ }
+ sqlite3BtreeEnter(db->aDb[0].pBt);
+ db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
+ if( !db->mallocFailed ){
+ sqlite3SetTextEncoding(db, SCHEMA_ENC(db));
+ }
+ sqlite3BtreeLeave(db->aDb[0].pBt);
+ db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
+
+ /* The default safety_level for the main database is FULL; for the temp
+ ** database it is OFF. This matches the pager layer defaults.
+ */
+ db->aDb[0].zDbSName = "main";
+ db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1;
+ db->aDb[1].zDbSName = "temp";
+ db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF;
+
+ db->eOpenState = SQLITE_STATE_OPEN;
+ if( db->mallocFailed ){
+ goto opendb_out;
+ }
+
+ /* Register all built-in functions, but do not attempt to read the
+ ** database schema yet. This is delayed until the first time the database
+ ** is accessed.
+ */
+ sqlite3Error(db, SQLITE_OK);
+ sqlite3RegisterPerConnectionBuiltinFunctions(db);
+ rc = sqlite3_errcode(db);
+
+
+ /* Load compiled-in extensions */
+ for(i=0; rc==SQLITE_OK && i<ArraySize(sqlite3BuiltinExtensions); i++){
+ rc = sqlite3BuiltinExtensions[i](db);
+ }
+
+ /* Load automatic extensions - extensions that have been registered
+ ** using the sqlite3_automatic_extension() API.
+ */
+ if( rc==SQLITE_OK ){
+ sqlite3AutoLoadExtensions(db);
+ rc = sqlite3_errcode(db);
+ if( rc!=SQLITE_OK ){
+ goto opendb_out;
+ }
+ }
+
+#ifdef SQLCIPHER_EXT
+ if( !db->mallocFailed && rc==SQLITE_OK ){
+ extern int sqlcipherVtabInit(sqlite3 *);
+ rc = sqlcipherVtabInit(db);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS
+ /* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time
+ ** option gives access to internal functions by default.
+ ** Testing use only!!! */
+ db->mDbFlags |= DBFLAG_InternalFunc;
+#endif
+
+ /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
+ ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
+ ** mode. Doing nothing at all also makes NORMAL the default.
+ */
+#ifdef SQLITE_DEFAULT_LOCKING_MODE
+ db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
+ sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
+ SQLITE_DEFAULT_LOCKING_MODE);
+#endif
+
+ if( rc ) sqlite3Error(db, rc);
+
+ /* Enable the lookaside-malloc subsystem */
+ setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
+ sqlite3GlobalConfig.nLookaside);
+
+ sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
+
+opendb_out:
+ if( db ){
+ assert( db->mutex!=0 || isThreadsafe==0
+ || sqlite3GlobalConfig.bFullMutex==0 );
+ sqlite3_mutex_leave(db->mutex);
+ }
+ rc = sqlite3_errcode(db);
+ assert( db!=0 || (rc&0xff)==SQLITE_NOMEM );
+ if( (rc&0xff)==SQLITE_NOMEM ){
+ sqlite3_close(db);
+ db = 0;
+ }else if( rc!=SQLITE_OK ){
+ db->eOpenState = SQLITE_STATE_SICK;
+ }
+ *ppDb = db;
+#ifdef SQLITE_ENABLE_SQLLOG
+ if( sqlite3GlobalConfig.xSqllog ){
+ /* Opening a db handle. Fourth parameter is passed 0. */
+ void *pArg = sqlite3GlobalConfig.pSqllogArg;
+ sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
+ }
+#endif
+/* BEGIN SQLCIPHER */
+#if defined(SQLITE_HAS_CODEC)
+ if( rc==SQLITE_OK ) sqlite3CodecQueryParameters(db, 0, zOpen);
+#endif
+/* END SQLCIPHER */
+ sqlite3_free_filename(zOpen);
+ return rc;
+}
+
+
+/*
+** Open a new database handle.
+*/
+SQLITE_API int sqlite3_open(
+ const char *zFilename,
+ sqlite3 **ppDb
+){
+ return openDatabase(zFilename, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+}
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+){
+ return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Open a new database handle.
+*/
+SQLITE_API int sqlite3_open16(
+ const void *zFilename,
+ sqlite3 **ppDb
+){
+ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
+ sqlite3_value *pVal;
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppDb = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ if( zFilename==0 ) zFilename = "\000\000";
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zFilename8 ){
+ rc = openDatabase(zFilename8, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+ assert( *ppDb || rc==SQLITE_NOMEM );
+ if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
+ SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE;
+ }
+ }else{
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3ValueFree(pVal);
+
+ return rc & 0xff;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
+ return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0);
+}
+
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
+){
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3* db,
+ const void *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
+ int rc = SQLITE_OK;
+ char *zName8;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
+ if( zName8 ){
+ rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
+ sqlite3DbFree(db, zName8);
+ }
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Register a collation sequence factory callback with the database handle
+** db. Replace any previously installed collation sequence factory.
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3 *db,
+ void *pCollNeededArg,
+ void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->xCollNeeded = xCollNeeded;
+ db->xCollNeeded16 = 0;
+ db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Register a collation sequence factory callback with the database handle
+** db. Replace any previously installed collation sequence factory.
+*/
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3 *db,
+ void *pCollNeededArg,
+ void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->xCollNeeded = 0;
+ db->xCollNeeded16 = xCollNeeded16;
+ db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** This function is now an anachronism. It used to be used to recover from a
+** malloc() failure, but SQLite now does this automatically.
+*/
+SQLITE_API int sqlite3_global_recover(void){
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Test to see whether or not the database connection is in autocommit
+** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
+** by default. Autocommit is disabled by a BEGIN statement and reenabled
+** by the next COMMIT or ROLLBACK.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->autoCommit;
+}
+
+/*
+** The following routines are substitutes for constants SQLITE_CORRUPT,
+** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error
+** constants. They serve two purposes:
+**
+** 1. Serve as a convenient place to set a breakpoint in a debugger
+** to detect when version error conditions occurs.
+**
+** 2. Invoke sqlite3_log() to provide the source code location where
+** a low-level error is first detected.
+*/
+SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType){
+ sqlite3_log(iErr, "%s at line %d of [%.10s]",
+ zType, lineno, 20+sqlite3_sourceid());
+ return iErr;
+}
+SQLITE_PRIVATE int sqlite3CorruptError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption");
+}
+SQLITE_PRIVATE int sqlite3MisuseError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse");
+}
+SQLITE_PRIVATE int sqlite3CantopenError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file");
+}
+#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO)
+SQLITE_PRIVATE int sqlite3CorruptPgnoError(int lineno, Pgno pgno){
+ char zMsg[100];
+ sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno);
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
+}
+#endif
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NomemError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM");
+}
+SQLITE_PRIVATE int sqlite3IoerrnomemError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error");
+}
+#endif
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** This is a convenience routine that makes sure that all thread-specific
+** data for this thread has been deallocated.
+**
+** SQLite no longer uses thread-specific data so this routine is now a
+** no-op. It is retained for historical compatibility.
+*/
+SQLITE_API void sqlite3_thread_cleanup(void){
+}
+#endif
+
+/*
+** Return meta information about a specific column of a database table.
+** See comment in sqlite3.h (sqlite.h.in) for details.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+){
+ int rc;
+ char *zErrMsg = 0;
+ Table *pTab = 0;
+ Column *pCol = 0;
+ int iCol = 0;
+ char const *zDataType = 0;
+ char const *zCollSeq = 0;
+ int notnull = 0;
+ int primarykey = 0;
+ int autoinc = 0;
+
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+
+ /* Ensure the database schema has been loaded */
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ rc = sqlite3Init(db, &zErrMsg);
+ if( SQLITE_OK!=rc ){
+ goto error_out;
+ }
+
+ /* Locate the table in question */
+ pTab = sqlite3FindTable(db, zTableName, zDbName);
+ if( !pTab || IsView(pTab) ){
+ pTab = 0;
+ goto error_out;
+ }
+
+ /* Find the column for which info is requested */
+ if( zColumnName==0 ){
+ /* Query for existance of table only */
+ }else{
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ pCol = &pTab->aCol[iCol];
+ if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){
+ iCol = pTab->iPKey;
+ pCol = iCol>=0 ? &pTab->aCol[iCol] : 0;
+ }else{
+ pTab = 0;
+ goto error_out;
+ }
+ }
+ }
+
+ /* The following block stores the meta information that will be returned
+ ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
+ ** and autoinc. At this point there are two possibilities:
+ **
+ ** 1. The specified column name was rowid", "oid" or "_rowid_"
+ ** and there is no explicitly declared IPK column.
+ **
+ ** 2. The table is not a view and the column name identified an
+ ** explicitly declared column. Copy meta information from *pCol.
+ */
+ if( pCol ){
+ zDataType = sqlite3ColumnType(pCol,0);
+ zCollSeq = sqlite3ColumnColl(pCol);
+ notnull = pCol->notNull!=0;
+ primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
+ autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
+ }else{
+ zDataType = "INTEGER";
+ primarykey = 1;
+ }
+ if( !zCollSeq ){
+ zCollSeq = sqlite3StrBINARY;
+ }
+
+error_out:
+ sqlite3BtreeLeaveAll(db);
+
+ /* Whether the function call succeeded or failed, set the output parameters
+ ** to whatever their local counterparts contain. If an error did occur,
+ ** this has the effect of zeroing all output parameters.
+ */
+ if( pzDataType ) *pzDataType = zDataType;
+ if( pzCollSeq ) *pzCollSeq = zCollSeq;
+ if( pNotNull ) *pNotNull = notnull;
+ if( pPrimaryKey ) *pPrimaryKey = primarykey;
+ if( pAutoinc ) *pAutoinc = autoinc;
+
+ if( SQLITE_OK==rc && !pTab ){
+ sqlite3DbFree(db, zErrMsg);
+ zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
+ zColumnName);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+SQLITE_API int sqlite3_sleep(int ms){
+ sqlite3_vfs *pVfs;
+ int rc;
+ pVfs = sqlite3_vfs_find(0);
+ if( pVfs==0 ) return 0;
+
+ /* This function works in milliseconds, but the underlying OsSleep()
+ ** API uses microseconds. Hence the 1000's.
+ */
+ rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
+ return rc;
+}
+
+/*
+** Enable or disable the extended result codes.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = onoff ? 0xffffffff : 0xff;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xFileControl method on a particular database.
+*/
+SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
+ int rc = SQLITE_ERROR;
+ Btree *pBtree;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pBtree = sqlite3DbNameToBtree(db, zDbName);
+ if( pBtree ){
+ Pager *pPager;
+ sqlite3_file *fd;
+ sqlite3BtreeEnter(pBtree);
+ pPager = sqlite3BtreePager(pBtree);
+ assert( pPager!=0 );
+ fd = sqlite3PagerFile(pPager);
+ assert( fd!=0 );
+ if( op==SQLITE_FCNTL_FILE_POINTER ){
+ *(sqlite3_file**)pArg = fd;
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_VFS_POINTER ){
+ *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager);
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){
+ *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager);
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_DATA_VERSION ){
+ *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager);
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){
+ int iNew = *(int*)pArg;
+ *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree);
+ if( iNew>=0 && iNew<=255 ){
+ sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0);
+ }
+ rc = SQLITE_OK;
+ }else{
+ int nSave = db->busyHandler.nBusy;
+ rc = sqlite3OsFileControl(fd, op, pArg);
+ db->busyHandler.nBusy = nSave;
+ }
+ sqlite3BtreeLeave(pBtree);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Interface to the testing logic.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...){
+ int rc = 0;
+#ifdef SQLITE_UNTESTABLE
+ UNUSED_PARAMETER(op);
+#else
+ va_list ap;
+ va_start(ap, op);
+ switch( op ){
+
+ /*
+ ** Save the current state of the PRNG.
+ */
+ case SQLITE_TESTCTRL_PRNG_SAVE: {
+ sqlite3PrngSaveState();
+ break;
+ }
+
+ /*
+ ** Restore the state of the PRNG to the last state saved using
+ ** PRNG_SAVE. If PRNG_SAVE has never before been called, then
+ ** this verb acts like PRNG_RESET.
+ */
+ case SQLITE_TESTCTRL_PRNG_RESTORE: {
+ sqlite3PrngRestoreState();
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db);
+ **
+ ** Control the seed for the pseudo-random number generator (PRNG) that
+ ** is built into SQLite. Cases:
+ **
+ ** x!=0 && db!=0 Seed the PRNG to the current value of the
+ ** schema cookie in the main database for db, or
+ ** x if the schema cookie is zero. This case
+ ** is convenient to use with database fuzzers
+ ** as it allows the fuzzer some control over the
+ ** the PRNG seed.
+ **
+ ** x!=0 && db==0 Seed the PRNG to the value of x.
+ **
+ ** x==0 && db==0 Revert to default behavior of using the
+ ** xRandomness method on the primary VFS.
+ **
+ ** This test-control also resets the PRNG so that the new seed will
+ ** be used for the next call to sqlite3_randomness().
+ */
+#ifndef SQLITE_OMIT_WSD
+ case SQLITE_TESTCTRL_PRNG_SEED: {
+ int x = va_arg(ap, int);
+ int y;
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ assert( db==0 || db->aDb[0].pSchema!=0 );
+ if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; }
+ sqlite3Config.iPrngSeed = x;
+ sqlite3_randomness(0,0);
+ break;
+ }
+#endif
+
+ /*
+ ** sqlite3_test_control(BITVEC_TEST, size, program)
+ **
+ ** Run a test against a Bitvec object of size. The program argument
+ ** is an array of integers that defines the test. Return -1 on a
+ ** memory allocation error, 0 on success, or non-zero for an error.
+ ** See the sqlite3BitvecBuiltinTest() for additional information.
+ */
+ case SQLITE_TESTCTRL_BITVEC_TEST: {
+ int sz = va_arg(ap, int);
+ int *aProg = va_arg(ap, int*);
+ rc = sqlite3BitvecBuiltinTest(sz, aProg);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(FAULT_INSTALL, xCallback)
+ **
+ ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called,
+ ** if xCallback is not NULL.
+ **
+ ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0)
+ ** is called immediately after installing the new callback and the return
+ ** value from sqlite3FaultSim(0) becomes the return from
+ ** sqlite3_test_control().
+ */
+ case SQLITE_TESTCTRL_FAULT_INSTALL: {
+ /* A bug in MSVC prevents it from understanding pointers to functions
+ ** types in the second argument to va_arg(). Work around the problem
+ ** using a typedef.
+ ** http://support.microsoft.com/kb/47961 <-- dead hyperlink
+ ** Search at http://web.archive.org/ to find the 2015-03-16 archive
+ ** of the link above to see the original text.
+ ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int));
+ */
+ typedef int(*sqlite3FaultFuncType)(int);
+ sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType);
+ rc = sqlite3FaultSim(0);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
+ **
+ ** Register hooks to call to indicate which malloc() failures
+ ** are benign.
+ */
+ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
+ typedef void (*void_function)(void);
+ void_function xBenignBegin;
+ void_function xBenignEnd;
+ xBenignBegin = va_arg(ap, void_function);
+ xBenignEnd = va_arg(ap, void_function);
+ sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
+ **
+ ** Set the PENDING byte to the value in the argument, if X>0.
+ ** Make no changes if X==0. Return the value of the pending byte
+ ** as it existing before this routine was called.
+ **
+ ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in
+ ** an incompatible database file format. Changing the PENDING byte
+ ** while any database connection is open results in undefined and
+ ** deleterious behavior.
+ */
+ case SQLITE_TESTCTRL_PENDING_BYTE: {
+ rc = PENDING_BYTE;
+#ifndef SQLITE_OMIT_WSD
+ {
+ unsigned int newVal = va_arg(ap, unsigned int);
+ if( newVal ) sqlite3PendingByte = newVal;
+ }
+#endif
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
+ **
+ ** This action provides a run-time test to see whether or not
+ ** assert() was enabled at compile-time. If X is true and assert()
+ ** is enabled, then the return value is true. If X is true and
+ ** assert() is disabled, then the return value is zero. If X is
+ ** false and assert() is enabled, then the assertion fires and the
+ ** process aborts. If X is false and assert() is disabled, then the
+ ** return value is zero.
+ */
+ case SQLITE_TESTCTRL_ASSERT: {
+ volatile int x = 0;
+ assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 );
+ rc = x;
+#if defined(SQLITE_DEBUG)
+ /* Invoke these debugging routines so that the compiler does not
+ ** issue "defined but not used" warnings. */
+ if( x==9999 ){
+ sqlite3ShowExpr(0);
+ sqlite3ShowExpr(0);
+ sqlite3ShowExprList(0);
+ sqlite3ShowIdList(0);
+ sqlite3ShowSrcList(0);
+ sqlite3ShowWith(0);
+ sqlite3ShowUpsert(0);
+ sqlite3ShowTriggerStep(0);
+ sqlite3ShowTriggerStepList(0);
+ sqlite3ShowTrigger(0);
+ sqlite3ShowTriggerList(0);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ sqlite3ShowWindow(0);
+ sqlite3ShowWinFunc(0);
+#endif
+ sqlite3ShowSelect(0);
+ }
+#endif
+ break;
+ }
+
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
+ **
+ ** This action provides a run-time test to see how the ALWAYS and
+ ** NEVER macros were defined at compile-time.
+ **
+ ** The return value is ALWAYS(X) if X is true, or 0 if X is false.
+ **
+ ** The recommended test is X==2. If the return value is 2, that means
+ ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
+ ** default setting. If the return value is 1, then ALWAYS() is either
+ ** hard-coded to true or else it asserts if its argument is false.
+ ** The first behavior (hard-coded to true) is the case if
+ ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
+ ** behavior (assert if the argument to ALWAYS() is false) is the case if
+ ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
+ **
+ ** The run-time test procedure might look something like this:
+ **
+ ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
+ ** // ALWAYS() and NEVER() are no-op pass-through macros
+ ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
+ ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
+ ** }else{
+ ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0.
+ ** }
+ */
+ case SQLITE_TESTCTRL_ALWAYS: {
+ int x = va_arg(ap,int);
+ rc = x ? ALWAYS(x) : 0;
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER);
+ **
+ ** The integer returned reveals the byte-order of the computer on which
+ ** SQLite is running:
+ **
+ ** 1 big-endian, determined at run-time
+ ** 10 little-endian, determined at run-time
+ ** 432101 big-endian, determined at compile-time
+ ** 123410 little-endian, determined at compile-time
+ */
+ case SQLITE_TESTCTRL_BYTEORDER: {
+ rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN;
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
+ **
+ ** Enable or disable various optimizations for testing purposes. The
+ ** argument N is a bitmask of optimizations to be disabled. For normal
+ ** operation N should be 0. The idea is that a test program (like the
+ ** SQL Logic Test or SLT test module) can run the same SQL multiple times
+ ** with various optimizations disabled to verify that the same answer
+ ** is obtained in every case.
+ */
+ case SQLITE_TESTCTRL_OPTIMIZATIONS: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ db->dbOptFlags = va_arg(ap, u32);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt);
+ **
+ ** If parameter onoff is 1, subsequent calls to localtime() fail.
+ ** If 2, then invoke xAlt() instead of localtime(). If 0, normal
+ ** processing.
+ **
+ ** xAlt arguments are void pointers, but they really want to be:
+ **
+ ** int xAlt(const time_t*, struct tm*);
+ **
+ ** xAlt should write results in to struct tm object of its 2nd argument
+ ** and return zero on success, or return non-zero on failure.
+ */
+ case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
+ sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
+ if( sqlite3GlobalConfig.bLocaltimeFault==2 ){
+ typedef int(*sqlite3LocaltimeType)(const void*,void*);
+ sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType);
+ }else{
+ sqlite3GlobalConfig.xAltLocaltime = 0;
+ }
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*);
+ **
+ ** Toggle the ability to use internal functions on or off for
+ ** the database connection given in the argument.
+ */
+ case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ db->mDbFlags ^= DBFLAG_InternalFunc;
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
+ **
+ ** Set or clear a flag that indicates that the database file is always well-
+ ** formed and never corrupt. This flag is clear by default, indicating that
+ ** database files might have arbitrary corruption. Setting the flag during
+ ** testing causes certain assert() statements in the code to be activated
+ ** that demonstrat invariants on well-formed database files.
+ */
+ case SQLITE_TESTCTRL_NEVER_CORRUPT: {
+ sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int);
+ **
+ ** Set or clear a flag that causes SQLite to verify that type, name,
+ ** and tbl_name fields of the sqlite_schema table. This is normally
+ ** on, but it is sometimes useful to turn it off for testing.
+ **
+ ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the
+ ** verification of rootpage numbers when parsing the schema. This
+ ** is useful to make it easier to reach strange internal error states
+ ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled
+ ** in production.
+ */
+ case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: {
+ sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int);
+ break;
+ }
+
+ /* Set the threshold at which OP_Once counters reset back to zero.
+ ** By default this is 0x7ffffffe (over 2 billion), but that value is
+ ** too big to test in a reasonable amount of time, so this control is
+ ** provided to set a small and easily reachable reset value.
+ */
+ case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: {
+ sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
+ **
+ ** Set the VDBE coverage callback function to xCallback with context
+ ** pointer ptr.
+ */
+ case SQLITE_TESTCTRL_VDBE_COVERAGE: {
+#ifdef SQLITE_VDBE_COVERAGE
+ typedef void (*branch_callback)(void*,unsigned int,
+ unsigned char,unsigned char);
+ sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
+ sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
+#endif
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */
+ case SQLITE_TESTCTRL_SORTER_MMAP: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ db->nMaxSorterMmap = va_arg(ap, int);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT);
+ **
+ ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
+ ** not.
+ */
+ case SQLITE_TESTCTRL_ISINIT: {
+ if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum);
+ **
+ ** This test control is used to create imposter tables. "db" is a pointer
+ ** to the database connection. dbName is the database name (ex: "main" or
+ ** "temp") which will receive the imposter. "onOff" turns imposter mode on
+ ** or off. "tnum" is the root page of the b-tree to which the imposter
+ ** table should connect.
+ **
+ ** Enable imposter mode only when the schema has already been parsed. Then
+ ** run a single CREATE TABLE statement to construct the imposter table in
+ ** the parsed schema. Then turn imposter mode back off again.
+ **
+ ** If onOff==0 and tnum>0 then reset the schema for all databases, causing
+ ** the schema to be reparsed the next time it is needed. This has the
+ ** effect of erasing all imposter tables.
+ */
+ case SQLITE_TESTCTRL_IMPOSTER: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ int iDb;
+ sqlite3_mutex_enter(db->mutex);
+ iDb = sqlite3FindDbName(db, va_arg(ap,const char*));
+ if( iDb>=0 ){
+ db->init.iDb = iDb;
+ db->init.busy = db->init.imposterTable = va_arg(ap,int);
+ db->init.newTnum = va_arg(ap,int);
+ if( db->init.busy==0 && db->init.newTnum>0 ){
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ break;
+ }
+
+#if defined(YYCOVERAGE)
+ /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out)
+ **
+ ** This test control (only available when SQLite is compiled with
+ ** -DYYCOVERAGE) writes a report onto "out" that shows all
+ ** state/lookahead combinations in the parser state machine
+ ** which are never exercised. If any state is missed, make the
+ ** return code SQLITE_ERROR.
+ */
+ case SQLITE_TESTCTRL_PARSER_COVERAGE: {
+ FILE *out = va_arg(ap, FILE*);
+ if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR;
+ break;
+ }
+#endif /* defined(YYCOVERAGE) */
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*);
+ **
+ ** This test-control causes the most recent sqlite3_result_int64() value
+ ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally,
+ ** MEM_IntReal values only arise during an INSERT operation of integer
+ ** values into a REAL column, so they can be challenging to test. This
+ ** test-control enables us to write an intreal() SQL function that can
+ ** inject an intreal() value at arbitrary places in an SQL statement,
+ ** for testing purposes.
+ */
+ case SQLITE_TESTCTRL_RESULT_INTREAL: {
+ sqlite3_context *pCtx = va_arg(ap, sqlite3_context*);
+ sqlite3ResultIntReal(pCtx);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT,
+ ** sqlite3 *db, // Database connection
+ ** u64 *pnSeek // Write seek count here
+ ** );
+ **
+ ** This test-control queries the seek-counter on the "main" database
+ ** file. The seek-counter is written into *pnSeek and is then reset.
+ ** The seek-count is only available if compiled with SQLITE_DEBUG.
+ */
+ case SQLITE_TESTCTRL_SEEK_COUNT: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ u64 *pn = va_arg(ap, sqlite3_uint64*);
+ *pn = sqlite3BtreeSeekCount(db->aDb->pBt);
+ (void)db; /* Silence harmless unused variable warning */
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr)
+ **
+ ** "ptr" is a pointer to a u32.
+ **
+ ** op==0 Store the current sqlite3TreeTrace in *ptr
+ ** op==1 Set sqlite3TreeTrace to the value *ptr
+ ** op==3 Store the current sqlite3WhereTrace in *ptr
+ ** op==3 Set sqlite3WhereTrace to the value *ptr
+ */
+ case SQLITE_TESTCTRL_TRACEFLAGS: {
+ int opTrace = va_arg(ap, int);
+ u32 *ptr = va_arg(ap, u32*);
+ switch( opTrace ){
+ case 0: *ptr = sqlite3TreeTrace; break;
+ case 1: sqlite3TreeTrace = *ptr; break;
+ case 2: *ptr = sqlite3WhereTrace; break;
+ case 3: sqlite3WhereTrace = *ptr; break;
+ }
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST,
+ ** double fIn, // Input value
+ ** int *pLogEst, // sqlite3LogEstFromDouble(fIn)
+ ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst)
+ ** int *pLogEst2 // sqlite3LogEst(*pInt)
+ ** );
+ **
+ ** Test access for the LogEst conversion routines.
+ */
+ case SQLITE_TESTCTRL_LOGEST: {
+ double rIn = va_arg(ap, double);
+ LogEst rLogEst = sqlite3LogEstFromDouble(rIn);
+ int *pI1 = va_arg(ap,int*);
+ u64 *pU64 = va_arg(ap,u64*);
+ int *pI2 = va_arg(ap,int*);
+ *pI1 = rLogEst;
+ *pU64 = sqlite3LogEstToInt(rLogEst);
+ *pI2 = sqlite3LogEst(*pU64);
+ break;
+ }
+
+
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD)
+ /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue)
+ **
+ ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value
+ ** of the id-th tuning parameter to *piValue. If "id" is between -1
+ ** and -SQLITE_NTUNE, then write the current value of the (-id)-th
+ ** tuning parameter into *piValue.
+ **
+ ** Tuning parameters are for use during transient development builds,
+ ** to help find the best values for constants in the query planner.
+ ** Access tuning parameters using the Tuning(ID) macro. Set the
+ ** parameters in the CLI using ".testctrl tune ID VALUE".
+ **
+ ** Transient use only. Tuning parameters should not be used in
+ ** checked-in code.
+ */
+ case SQLITE_TESTCTRL_TUNE: {
+ int id = va_arg(ap, int);
+ int *piValue = va_arg(ap, int*);
+ if( id>0 && id<=SQLITE_NTUNE ){
+ Tuning(id) = *piValue;
+ }else if( id<0 && id>=-SQLITE_NTUNE ){
+ *piValue = Tuning(-id);
+ }else{
+ rc = SQLITE_NOTFOUND;
+ }
+ break;
+ }
+#endif
+ }
+ va_end(ap);
+#endif /* SQLITE_UNTESTABLE */
+ return rc;
+}
+
+/*
+** The Pager stores the Database filename, Journal filename, and WAL filename
+** consecutively in memory, in that order. The database filename is prefixed
+** by four zero bytes. Locate the start of the database filename by searching
+** backwards for the first byte following four consecutive zero bytes.
+**
+** This only works if the filename passed in was obtained from the Pager.
+*/
+static const char *databaseName(const char *zName){
+ while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){
+ zName--;
+ }
+ return zName;
+}
+
+/*
+** Append text z[] to the end of p[]. Return a pointer to the first
+** character after then zero terminator on the new text in p[].
+*/
+static char *appendText(char *p, const char *z){
+ size_t n = strlen(z);
+ memcpy(p, z, n+1);
+ return p+n+1;
+}
+
+/*
+** Allocate memory to hold names for a database, journal file, WAL file,
+** and query parameters. The pointer returned is valid for use by
+** sqlite3_filename_database() and sqlite3_uri_parameter() and related
+** functions.
+**
+** Memory layout must be compatible with that generated by the pager
+** and expected by sqlite3_uri_parameter() and databaseName().
+*/
+SQLITE_API char *sqlite3_create_filename(
+ const char *zDatabase,
+ const char *zJournal,
+ const char *zWal,
+ int nParam,
+ const char **azParam
+){
+ sqlite3_int64 nByte;
+ int i;
+ char *pResult, *p;
+ nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10;
+ for(i=0; i<nParam*2; i++){
+ nByte += strlen(azParam[i])+1;
+ }
+ pResult = p = sqlite3_malloc64( nByte );
+ if( p==0 ) return 0;
+ memset(p, 0, 4);
+ p += 4;
+ p = appendText(p, zDatabase);
+ for(i=0; i<nParam*2; i++){
+ p = appendText(p, azParam[i]);
+ }
+ *(p++) = 0;
+ p = appendText(p, zJournal);
+ p = appendText(p, zWal);
+ *(p++) = 0;
+ *(p++) = 0;
+ assert( (sqlite3_int64)(p - pResult)==nByte );
+ return pResult + 4;
+}
+
+/*
+** Free memory obtained from sqlite3_create_filename(). It is a severe
+** error to call this routine with any parameter other than a pointer
+** previously obtained from sqlite3_create_filename() or a NULL pointer.
+*/
+SQLITE_API void sqlite3_free_filename(char *p){
+ if( p==0 ) return;
+ p = (char*)databaseName(p);
+ sqlite3_free(p - 4);
+}
+
+
+/*
+** This is a utility routine, useful to VFS implementations, that checks
+** to see if a database file was a URI that contained a specific query
+** parameter, and if so obtains the value of the query parameter.
+**
+** The zFilename argument is the filename pointer passed into the xOpen()
+** method of a VFS implementation. The zParam argument is the name of the
+** query parameter we seek. This routine returns the value of the zParam
+** parameter if it exists. If the parameter does not exist, this routine
+** returns a NULL pointer.
+*/
+SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
+ if( zFilename==0 || zParam==0 ) return 0;
+ zFilename = databaseName(zFilename);
+ return uriParameter(zFilename, zParam);
+}
+
+/*
+** Return a pointer to the name of Nth query parameter of the filename.
+*/
+SQLITE_API const char *sqlite3_uri_key(const char *zFilename, int N){
+ if( zFilename==0 || N<0 ) return 0;
+ zFilename = databaseName(zFilename);
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ while( ALWAYS(zFilename) && zFilename[0] && (N--)>0 ){
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ }
+ return zFilename[0] ? zFilename : 0;
+}
+
+/*
+** Return a boolean value for a query parameter.
+*/
+SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
+ const char *z = sqlite3_uri_parameter(zFilename, zParam);
+ bDflt = bDflt!=0;
+ return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
+}
+
+/*
+** Return a 64-bit integer value for a query parameter.
+*/
+SQLITE_API sqlite3_int64 sqlite3_uri_int64(
+ const char *zFilename, /* Filename as passed to xOpen */
+ const char *zParam, /* URI parameter sought */
+ sqlite3_int64 bDflt /* return if parameter is missing */
+){
+ const char *z = sqlite3_uri_parameter(zFilename, zParam);
+ sqlite3_int64 v;
+ if( z && sqlite3DecOrHexToI64(z, &v)==0 ){
+ bDflt = v;
+ }
+ return bDflt;
+}
+
+/*
+** Translate a filename that was handed to a VFS routine into the corresponding
+** database, journal, or WAL file.
+**
+** It is an error to pass this routine a filename string that was not
+** passed into the VFS from the SQLite core. Doing so is similar to
+** passing free() a pointer that was not obtained from malloc() - it is
+** an error that we cannot easily detect but that will likely cause memory
+** corruption.
+*/
+SQLITE_API const char *sqlite3_filename_database(const char *zFilename){
+ if( zFilename==0 ) return 0;
+ return databaseName(zFilename);
+}
+SQLITE_API const char *sqlite3_filename_journal(const char *zFilename){
+ if( zFilename==0 ) return 0;
+ zFilename = databaseName(zFilename);
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ while( ALWAYS(zFilename) && zFilename[0] ){
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ }
+ return zFilename + 1;
+}
+SQLITE_API const char *sqlite3_filename_wal(const char *zFilename){
+#ifdef SQLITE_OMIT_WAL
+ return 0;
+#else
+ zFilename = sqlite3_filename_journal(zFilename);
+ if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1;
+ return zFilename;
+#endif
+}
+
+/*
+** Return the Btree pointer identified by zDbName. Return NULL if not found.
+*/
+SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
+ int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0;
+ return iDb<0 ? 0 : db->aDb[iDb].pBt;
+}
+
+/*
+** Return the name of the N-th database schema. Return NULL if N is out
+** of range.
+*/
+SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ if( N<0 || N>=db->nDb ){
+ return 0;
+ }else{
+ return db->aDb[N].zDbSName;
+ }
+}
+
+/*
+** Return the filename of the database associated with a database
+** connection.
+*/
+SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
+ Btree *pBt;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ pBt = sqlite3DbNameToBtree(db, zDbName);
+ return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
+}
+
+/*
+** Return 1 if database is read-only or 0 if read/write. Return -1 if
+** no such database exists.
+*/
+SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
+ Btree *pBt;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return -1;
+ }
+#endif
+ pBt = sqlite3DbNameToBtree(db, zDbName);
+ return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** Obtain a snapshot handle for the snapshot of database zDb currently
+** being read by handle db.
+*/
+SQLITE_API int sqlite3_snapshot_get(
+ sqlite3 *db,
+ const char *zDb,
+ sqlite3_snapshot **ppSnapshot
+){
+ int rc = SQLITE_ERROR;
+#ifndef SQLITE_OMIT_WAL
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+
+ if( db->autoCommit==0 ){
+ int iDb = sqlite3FindDbName(db, zDb);
+ if( iDb==0 || iDb>1 ){
+ Btree *pBt = db->aDb[iDb].pBt;
+ if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot);
+ }
+ }
+ }
+ }
+
+ sqlite3_mutex_leave(db->mutex);
+#endif /* SQLITE_OMIT_WAL */
+ return rc;
+}
+
+/*
+** Open a read-transaction on the snapshot idendified by pSnapshot.
+*/
+SQLITE_API int sqlite3_snapshot_open(
+ sqlite3 *db,
+ const char *zDb,
+ sqlite3_snapshot *pSnapshot
+){
+ int rc = SQLITE_ERROR;
+#ifndef SQLITE_OMIT_WAL
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( db->autoCommit==0 ){
+ int iDb;
+ iDb = sqlite3FindDbName(db, zDb);
+ if( iDb==0 || iDb>1 ){
+ Btree *pBt = db->aDb[iDb].pBt;
+ if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ int bUnlock = 0;
+ if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){
+ if( db->nVdbeActive==0 ){
+ rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot);
+ if( rc==SQLITE_OK ){
+ bUnlock = 1;
+ rc = sqlite3BtreeCommit(pBt);
+ }
+ }
+ }else{
+ rc = SQLITE_OK;
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ sqlite3PagerSnapshotOpen(pPager, 0);
+ }
+ if( bUnlock ){
+ sqlite3PagerSnapshotUnlock(pPager);
+ }
+ }
+ }
+ }
+
+ sqlite3_mutex_leave(db->mutex);
+#endif /* SQLITE_OMIT_WAL */
+ return rc;
+}
+
+/*
+** Recover as many snapshots as possible from the wal file associated with
+** schema zDb of database db.
+*/
+SQLITE_API int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){
+ int rc = SQLITE_ERROR;
+ int iDb;
+#ifndef SQLITE_OMIT_WAL
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+
+ sqlite3_mutex_enter(db->mutex);
+ iDb = sqlite3FindDbName(db, zDb);
+ if( iDb==0 || iDb>1 ){
+ Btree *pBt = db->aDb[iDb].pBt;
+ if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt));
+ sqlite3BtreeCommit(pBt);
+ }
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+#endif /* SQLITE_OMIT_WAL */
+ return rc;
+}
+
+/*
+** Free a snapshot handle obtained from sqlite3_snapshot_get().
+*/
+SQLITE_API void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){
+ sqlite3_free(pSnapshot);
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+/*
+** Given the name of a compile-time option, return true if that option
+** was used and false if not.
+**
+** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
+** is not required for a match.
+*/
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
+ int i, n;
+ int nOpt;
+ const char **azCompileOpt;
+
+#if SQLITE_ENABLE_API_ARMOR
+ if( zOptName==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ azCompileOpt = sqlite3CompileOptions(&nOpt);
+
+ if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
+ n = sqlite3Strlen30(zOptName);
+
+ /* Since nOpt is normally in single digits, a linear search is
+ ** adequate. No need for a binary search. */
+ for(i=0; i<nOpt; i++){
+ if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
+ && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Return the N-th compile-time option string. If N is out of range,
+** return a NULL pointer.
+*/
+SQLITE_API const char *sqlite3_compileoption_get(int N){
+ int nOpt;
+ const char **azCompileOpt;
+ azCompileOpt = sqlite3CompileOptions(&nOpt);
+ if( N>=0 && N<nOpt ){
+ return azCompileOpt[N];
+ }
+ return 0;
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/************** End of main.c ************************************************/
+/************** Begin file notify.c ******************************************/
+/*
+** 2009 March 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of the sqlite3_unlock_notify()
+** API method and its associated functionality.
+*/
+/* #include "sqliteInt.h" */
+/* #include "btreeInt.h" */
+
+/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+
+/*
+** Public interfaces:
+**
+** sqlite3ConnectionBlocked()
+** sqlite3ConnectionUnlocked()
+** sqlite3ConnectionClosed()
+** sqlite3_unlock_notify()
+*/
+
+#define assertMutexHeld() \
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) )
+
+/*
+** Head of a linked list of all sqlite3 objects created by this process
+** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection
+** is not NULL. This variable may only accessed while the STATIC_MAIN
+** mutex is held.
+*/
+static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0;
+
+#ifndef NDEBUG
+/*
+** This function is a complex assert() that verifies the following
+** properties of the blocked connections list:
+**
+** 1) Each entry in the list has a non-NULL value for either
+** pUnlockConnection or pBlockingConnection, or both.
+**
+** 2) All entries in the list that share a common value for
+** xUnlockNotify are grouped together.
+**
+** 3) If the argument db is not NULL, then none of the entries in the
+** blocked connections list have pUnlockConnection or pBlockingConnection
+** set to db. This is used when closing connection db.
+*/
+static void checkListProperties(sqlite3 *db){
+ sqlite3 *p;
+ for(p=sqlite3BlockedList; p; p=p->pNextBlocked){
+ int seen = 0;
+ sqlite3 *p2;
+
+ /* Verify property (1) */
+ assert( p->pUnlockConnection || p->pBlockingConnection );
+
+ /* Verify property (2) */
+ for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){
+ if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
+ assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
+ assert( db==0 || p->pUnlockConnection!=db );
+ assert( db==0 || p->pBlockingConnection!=db );
+ }
+ }
+}
+#else
+# define checkListProperties(x)
+#endif
+
+/*
+** Remove connection db from the blocked connections list. If connection
+** db is not currently a part of the list, this function is a no-op.
+*/
+static void removeFromBlockedList(sqlite3 *db){
+ sqlite3 **pp;
+ assertMutexHeld();
+ for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){
+ if( *pp==db ){
+ *pp = (*pp)->pNextBlocked;
+ break;
+ }
+ }
+}
+
+/*
+** Add connection db to the blocked connections list. It is assumed
+** that it is not already a part of the list.
+*/
+static void addToBlockedList(sqlite3 *db){
+ sqlite3 **pp;
+ assertMutexHeld();
+ for(
+ pp=&sqlite3BlockedList;
+ *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify;
+ pp=&(*pp)->pNextBlocked
+ );
+ db->pNextBlocked = *pp;
+ *pp = db;
+}
+
+/*
+** Obtain the STATIC_MAIN mutex.
+*/
+static void enterMutex(void){
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+ checkListProperties(0);
+}
+
+/*
+** Release the STATIC_MAIN mutex.
+*/
+static void leaveMutex(void){
+ assertMutexHeld();
+ checkListProperties(0);
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+}
+
+/*
+** Register an unlock-notify callback.
+**
+** This is called after connection "db" has attempted some operation
+** but has received an SQLITE_LOCKED error because another connection
+** (call it pOther) in the same process was busy using the same shared
+** cache. pOther is found by looking at db->pBlockingConnection.
+**
+** If there is no blocking connection, the callback is invoked immediately,
+** before this routine returns.
+**
+** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
+** a deadlock.
+**
+** Otherwise, make arrangements to invoke xNotify when pOther drops
+** its locks.
+**
+** Each call to this routine overrides any prior callbacks registered
+** on the same "db". If xNotify==0 then any prior callbacks are immediately
+** cancelled.
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *db,
+ void (*xNotify)(void **, int),
+ void *pArg
+){
+ int rc = SQLITE_OK;
+
+ sqlite3_mutex_enter(db->mutex);
+ enterMutex();
+
+ if( xNotify==0 ){
+ removeFromBlockedList(db);
+ db->pBlockingConnection = 0;
+ db->pUnlockConnection = 0;
+ db->xUnlockNotify = 0;
+ db->pUnlockArg = 0;
+ }else if( 0==db->pBlockingConnection ){
+ /* The blocking transaction has been concluded. Or there never was a
+ ** blocking transaction. In either case, invoke the notify callback
+ ** immediately.
+ */
+ xNotify(&pArg, 1);
+ }else{
+ sqlite3 *p;
+
+ for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
+ if( p ){
+ rc = SQLITE_LOCKED; /* Deadlock detected. */
+ }else{
+ db->pUnlockConnection = db->pBlockingConnection;
+ db->xUnlockNotify = xNotify;
+ db->pUnlockArg = pArg;
+ removeFromBlockedList(db);
+ addToBlockedList(db);
+ }
+ }
+
+ leaveMutex();
+ assert( !db->mallocFailed );
+ sqlite3ErrorWithMsg(db, rc, (rc?"database is deadlocked":0));
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This function is called while stepping or preparing a statement
+** associated with connection db. The operation will return SQLITE_LOCKED
+** to the user because it requires a lock that will not be available
+** until connection pBlocker concludes its current transaction.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){
+ enterMutex();
+ if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
+ addToBlockedList(db);
+ }
+ db->pBlockingConnection = pBlocker;
+ leaveMutex();
+}
+
+/*
+** This function is called when
+** the transaction opened by database db has just finished. Locks held
+** by database connection db have been released.
+**
+** This function loops through each entry in the blocked connections
+** list and does the following:
+**
+** 1) If the sqlite3.pBlockingConnection member of a list entry is
+** set to db, then set pBlockingConnection=0.
+**
+** 2) If the sqlite3.pUnlockConnection member of a list entry is
+** set to db, then invoke the configured unlock-notify callback and
+** set pUnlockConnection=0.
+**
+** 3) If the two steps above mean that pBlockingConnection==0 and
+** pUnlockConnection==0, remove the entry from the blocked connections
+** list.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){
+ void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
+ int nArg = 0; /* Number of entries in aArg[] */
+ sqlite3 **pp; /* Iterator variable */
+ void **aArg; /* Arguments to the unlock callback */
+ void **aDyn = 0; /* Dynamically allocated space for aArg[] */
+ void *aStatic[16]; /* Starter space for aArg[]. No malloc required */
+
+ aArg = aStatic;
+ enterMutex(); /* Enter STATIC_MAIN mutex */
+
+ /* This loop runs once for each entry in the blocked-connections list. */
+ for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){
+ sqlite3 *p = *pp;
+
+ /* Step 1. */
+ if( p->pBlockingConnection==db ){
+ p->pBlockingConnection = 0;
+ }
+
+ /* Step 2. */
+ if( p->pUnlockConnection==db ){
+ assert( p->xUnlockNotify );
+ if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
+ xUnlockNotify(aArg, nArg);
+ nArg = 0;
+ }
+
+ sqlite3BeginBenignMalloc();
+ assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
+ assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
+ if( (!aDyn && nArg==(int)ArraySize(aStatic))
+ || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*)))
+ ){
+ /* The aArg[] array needs to grow. */
+ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
+ if( pNew ){
+ memcpy(pNew, aArg, nArg*sizeof(void *));
+ sqlite3_free(aDyn);
+ aDyn = aArg = pNew;
+ }else{
+ /* This occurs when the array of context pointers that need to
+ ** be passed to the unlock-notify callback is larger than the
+ ** aStatic[] array allocated on the stack and the attempt to
+ ** allocate a larger array from the heap has failed.
+ **
+ ** This is a difficult situation to handle. Returning an error
+ ** code to the caller is insufficient, as even if an error code
+ ** is returned the transaction on connection db will still be
+ ** closed and the unlock-notify callbacks on blocked connections
+ ** will go unissued. This might cause the application to wait
+ ** indefinitely for an unlock-notify callback that will never
+ ** arrive.
+ **
+ ** Instead, invoke the unlock-notify callback with the context
+ ** array already accumulated. We can then clear the array and
+ ** begin accumulating any further context pointers without
+ ** requiring any dynamic allocation. This is sub-optimal because
+ ** it means that instead of one callback with a large array of
+ ** context pointers the application will receive two or more
+ ** callbacks with smaller arrays of context pointers, which will
+ ** reduce the applications ability to prioritize multiple
+ ** connections. But it is the best that can be done under the
+ ** circumstances.
+ */
+ xUnlockNotify(aArg, nArg);
+ nArg = 0;
+ }
+ }
+ sqlite3EndBenignMalloc();
+
+ aArg[nArg++] = p->pUnlockArg;
+ xUnlockNotify = p->xUnlockNotify;
+ p->pUnlockConnection = 0;
+ p->xUnlockNotify = 0;
+ p->pUnlockArg = 0;
+ }
+
+ /* Step 3. */
+ if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
+ /* Remove connection p from the blocked connections list. */
+ *pp = p->pNextBlocked;
+ p->pNextBlocked = 0;
+ }else{
+ pp = &p->pNextBlocked;
+ }
+ }
+
+ if( nArg!=0 ){
+ xUnlockNotify(aArg, nArg);
+ }
+ sqlite3_free(aDyn);
+ leaveMutex(); /* Leave STATIC_MAIN mutex */
+}
+
+/*
+** This is called when the database connection passed as an argument is
+** being closed. The connection is removed from the blocked list.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){
+ sqlite3ConnectionUnlocked(db);
+ enterMutex();
+ removeFromBlockedList(db);
+ checkListProperties(db);
+ leaveMutex();
+}
+#endif
+
+/************** End of notify.c **********************************************/
+/************** Begin file fts3.c ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+
+/* The full-text index is stored in a series of b+tree (-like)
+** structures called segments which map terms to doclists. The
+** structures are like b+trees in layout, but are constructed from the
+** bottom up in optimal fashion and are not updatable. Since trees
+** are built from the bottom up, things will be described from the
+** bottom up.
+**
+**
+**** Varints ****
+** The basic unit of encoding is a variable-length integer called a
+** varint. We encode variable-length integers in little-endian order
+** using seven bits * per byte as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** and so on.
+**
+** This is similar in concept to how sqlite encodes "varints" but
+** the encoding is not the same. SQLite varints are big-endian
+** are are limited to 9 bytes in length whereas FTS3 varints are
+** little-endian and can be up to 10 bytes in length (in theory).
+**
+** Example encodings:
+**
+** 1: 0x01
+** 127: 0x7f
+** 128: 0x81 0x00
+**
+**
+**** Document lists ****
+** A doclist (document list) holds a docid-sorted list of hits for a
+** given term. Doclists hold docids and associated token positions.
+** A docid is the unique integer identifier for a single document.
+** A position is the index of a word within the document. The first
+** word of the document has a position of 0.
+**
+** FTS3 used to optionally store character offsets using a compile-time
+** option. But that functionality is no longer supported.
+**
+** A doclist is stored like this:
+**
+** array {
+** varint docid; (delta from previous doclist)
+** array { (position list for column 0)
+** varint position; (2 more than the delta from previous position)
+** }
+** array {
+** varint POS_COLUMN; (marks start of position list for new column)
+** varint column; (index of new column)
+** array {
+** varint position; (2 more than the delta from previous position)
+** }
+** }
+** varint POS_END; (marks end of positions for this document.
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory. A "position" is an index of a token in the token stream
+** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
+** in the same logical place as the position element, and act as sentinals
+** ending a position list array. POS_END is 0. POS_COLUMN is 1.
+** The positions numbers are not stored literally but rather as two more
+** than the difference from the prior position, or the just the position plus
+** 2 for the first position. Example:
+**
+** label: A B C D E F G H I J K
+** value: 123 5 9 1 1 14 35 0 234 72 0
+**
+** The 123 value is the first docid. For column zero in this document
+** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
+** at D signals the start of a new column; the 1 at E indicates that the
+** new column is column number 1. There are two positions at 12 and 45
+** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
+** 234 at I is the delta to next docid (357). It has one position 70
+** (72-2) and then terminates with the 0 at K.
+**
+** A "position-list" is the list of positions for multiple columns for
+** a single docid. A "column-list" is the set of positions for a single
+** column. Hence, a position-list consists of one or more column-lists,
+** a document record consists of a docid followed by a position-list and
+** a doclist consists of one or more document records.
+**
+** A bare doclist omits the position information, becoming an
+** array of varint-encoded docids.
+**
+**** Segment leaf nodes ****
+** Segment leaf nodes store terms and doclists, ordered by term. Leaf
+** nodes are written using LeafWriter, and read using LeafReader (to
+** iterate through a single leaf node's data) and LeavesReader (to
+** iterate through a segment's entire leaf layer). Leaf nodes have
+** the format:
+**
+** varint iHeight; (height from leaf level, always 0)
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of prefix shared with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix];(unshared suffix of next term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory.
+**
+** Leaf nodes are broken into blocks which are stored contiguously in
+** the %_segments table in sorted order. This means that when the end
+** of a node is reached, the next term is in the node with the next
+** greater node id.
+**
+** New data is spilled to a new leaf node when the current node
+** exceeds LEAF_MAX bytes (default 2048). New data which itself is
+** larger than STANDALONE_MIN (default 1024) is placed in a standalone
+** node (a leaf node with a single term and doclist). The goal of
+** these settings is to pack together groups of small doclists while
+** making it efficient to directly access large doclists. The
+** assumption is that large doclists represent terms which are more
+** likely to be query targets.
+**
+** TODO(shess) It may be useful for blocking decisions to be more
+** dynamic. For instance, it may make more sense to have a 2.5k leaf
+** node rather than splitting into 2k and .5k nodes. My intuition is
+** that this might extend through 2x or 4x the pagesize.
+**
+**
+**** Segment interior nodes ****
+** Segment interior nodes store blockids for subtree nodes and terms
+** to describe what data is stored by the each subtree. Interior
+** nodes are written using InteriorWriter, and read using
+** InteriorReader. InteriorWriters are created as needed when
+** SegmentWriter creates new leaf nodes, or when an interior node
+** itself grows too big and must be split. The format of interior
+** nodes:
+**
+** varint iHeight; (height from leaf level, always >0)
+** varint iBlockid; (block id of node's leftmost subtree)
+** optional {
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of shared prefix with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix]; (unshared suffix of next term)
+** }
+** }
+**
+** Here, optional { X } means an optional element, while array { X }
+** means zero or more occurrences of X, adjacent in memory.
+**
+** An interior node encodes n terms separating n+1 subtrees. The
+** subtree blocks are contiguous, so only the first subtree's blockid
+** is encoded. The subtree at iBlockid will contain all terms less
+** than the first term encoded (or all terms if no term is encoded).
+** Otherwise, for terms greater than or equal to pTerm[i] but less
+** than pTerm[i+1], the subtree for that term will be rooted at
+** iBlockid+i. Interior nodes only store enough term data to
+** distinguish adjacent children (if the rightmost term of the left
+** child is "something", and the leftmost term of the right child is
+** "wicked", only "w" is stored).
+**
+** New data is spilled to a new interior node at the same height when
+** the current node exceeds INTERIOR_MAX bytes (default 2048).
+** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
+** interior nodes and making the tree too skinny. The interior nodes
+** at a given height are naturally tracked by interior nodes at
+** height+1, and so on.
+**
+**
+**** Segment directory ****
+** The segment directory in table %_segdir stores meta-information for
+** merging and deleting segments, and also the root node of the
+** segment's tree.
+**
+** The root node is the top node of the segment's tree after encoding
+** the entire segment, restricted to ROOT_MAX bytes (default 1024).
+** This could be either a leaf node or an interior node. If the top
+** node requires more than ROOT_MAX bytes, it is flushed to %_segments
+** and a new root interior node is generated (which should always fit
+** within ROOT_MAX because it only needs space for 2 varints, the
+** height and the blockid of the previous root).
+**
+** The meta-information in the segment directory is:
+** level - segment level (see below)
+** idx - index within level
+** - (level,idx uniquely identify a segment)
+** start_block - first leaf node
+** leaves_end_block - last leaf node
+** end_block - last block (including interior nodes)
+** root - contents of root node
+**
+** If the root node is a leaf node, then start_block,
+** leaves_end_block, and end_block are all 0.
+**
+**
+**** Segment merging ****
+** To amortize update costs, segments are grouped into levels and
+** merged in batches. Each increase in level represents exponentially
+** more documents.
+**
+** New documents (actually, document updates) are tokenized and
+** written individually (using LeafWriter) to a level 0 segment, with
+** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
+** level 0 segments are merged into a single level 1 segment. Level 1
+** is populated like level 0, and eventually MERGE_COUNT level 1
+** segments are merged to a single level 2 segment (representing
+** MERGE_COUNT^2 updates), and so on.
+**
+** A segment merge traverses all segments at a given level in
+** parallel, performing a straightforward sorted merge. Since segment
+** leaf nodes are written in to the %_segments table in order, this
+** merge traverses the underlying sqlite disk structures efficiently.
+** After the merge, all segment blocks from the merged level are
+** deleted.
+**
+** MERGE_COUNT controls how often we merge segments. 16 seems to be
+** somewhat of a sweet spot for insertion performance. 32 and 64 show
+** very similar performance numbers to 16 on insertion, though they're
+** a tiny bit slower (perhaps due to more overhead in merge-time
+** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
+** 16, 2 about 66% slower than 16.
+**
+** At query time, high MERGE_COUNT increases the number of segments
+** which need to be scanned and merged. For instance, with 100k docs
+** inserted:
+**
+** MERGE_COUNT segments
+** 16 25
+** 8 12
+** 4 10
+** 2 6
+**
+** This appears to have only a moderate impact on queries for very
+** frequent terms (which are somewhat dominated by segment merge
+** costs), and infrequent and non-existent terms still seem to be fast
+** even with many segments.
+**
+** TODO(shess) That said, it would be nice to have a better query-side
+** argument for MERGE_COUNT of 16. Also, it is possible/likely that
+** optimizations to things like doclist merging will swing the sweet
+** spot around.
+**
+**
+**
+**** Handling of deletions and updates ****
+** Since we're using a segmented structure, with no docid-oriented
+** index into the term index, we clearly cannot simply update the term
+** index when a document is deleted or updated. For deletions, we
+** write an empty doclist (varint(docid) varint(POS_END)), for updates
+** we simply write the new doclist. Segment merges overwrite older
+** data for a particular docid with newer data, so deletes or updates
+** will eventually overtake the earlier data and knock it out. The
+** query logic likewise merges doclists so that newer data knocks out
+** older data.
+*/
+
+/************** Include fts3Int.h in the middle of fts3.c ********************/
+/************** Begin file fts3Int.h *****************************************/
+/*
+** 2009 Nov 12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+#ifndef _FTSINT_H
+#define _FTSINT_H
+
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+/* FTS3/FTS4 require virtual tables */
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# undef SQLITE_ENABLE_FTS3
+# undef SQLITE_ENABLE_FTS4
+#endif
+
+/*
+** FTS4 is really an extension for FTS3. It is enabled using the
+** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all
+** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
+*/
+#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
+# define SQLITE_ENABLE_FTS3
+#endif
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* If not building as part of the core, include sqlite3ext.h. */
+#ifndef SQLITE_CORE
+/* # include "sqlite3ext.h" */
+SQLITE_EXTENSION_INIT3
+#endif
+
+/* #include "sqlite3.h" */
+/************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/
+/************** Begin file fts3_tokenizer.h **********************************/
+/*
+** 2006 July 10
+**
+** The author disclaims copyright to this source code.
+**
+*************************************************************************
+** Defines the interface to tokenizers used by fulltext-search. There
+** are three basic components:
+**
+** sqlite3_tokenizer_module is a singleton defining the tokenizer
+** interface functions. This is essentially the class structure for
+** tokenizers.
+**
+** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
+** including customization information defined at creation time.
+**
+** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
+** tokens from a particular input.
+*/
+#ifndef _FTS3_TOKENIZER_H_
+#define _FTS3_TOKENIZER_H_
+
+/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
+** If tokenizers are to be allowed to call sqlite3_*() functions, then
+** we will need a way to register the API consistently.
+*/
+/* #include "sqlite3.h" */
+
+/*
+** Structures used by the tokenizer interface. When a new tokenizer
+** implementation is registered, the caller provides a pointer to
+** an sqlite3_tokenizer_module containing pointers to the callback
+** functions that make up an implementation.
+**
+** When an fts3 table is created, it passes any arguments passed to
+** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
+** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
+** implementation. The xCreate() function in turn returns an
+** sqlite3_tokenizer structure representing the specific tokenizer to
+** be used for the fts3 table (customized by the tokenizer clause arguments).
+**
+** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
+** method is called. It returns an sqlite3_tokenizer_cursor object
+** that may be used to tokenize a specific input buffer based on
+** the tokenization rules supplied by a specific sqlite3_tokenizer
+** object.
+*/
+typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
+typedef struct sqlite3_tokenizer sqlite3_tokenizer;
+typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
+
+struct sqlite3_tokenizer_module {
+
+ /*
+ ** Structure version. Should always be set to 0 or 1.
+ */
+ int iVersion;
+
+ /*
+ ** Create a new tokenizer. The values in the argv[] array are the
+ ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
+ ** TABLE statement that created the fts3 table. For example, if
+ ** the following SQL is executed:
+ **
+ ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
+ **
+ ** then argc is set to 2, and the argv[] array contains pointers
+ ** to the strings "arg1" and "arg2".
+ **
+ ** This method should return either SQLITE_OK (0), or an SQLite error
+ ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
+ ** to point at the newly created tokenizer structure. The generic
+ ** sqlite3_tokenizer.pModule variable should not be initialized by
+ ** this callback. The caller will do so.
+ */
+ int (*xCreate)(
+ int argc, /* Size of argv array */
+ const char *const*argv, /* Tokenizer argument strings */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+ );
+
+ /*
+ ** Destroy an existing tokenizer. The fts3 module calls this method
+ ** exactly once for each successful call to xCreate().
+ */
+ int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
+
+ /*
+ ** Create a tokenizer cursor to tokenize an input buffer. The caller
+ ** is responsible for ensuring that the input buffer remains valid
+ ** until the cursor is closed (using the xClose() method).
+ */
+ int (*xOpen)(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
+ const char *pInput, int nBytes, /* Input buffer */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
+ );
+
+ /*
+ ** Destroy an existing tokenizer cursor. The fts3 module calls this
+ ** method exactly once for each successful call to xOpen().
+ */
+ int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
+
+ /*
+ ** Retrieve the next token from the tokenizer cursor pCursor. This
+ ** method should either return SQLITE_OK and set the values of the
+ ** "OUT" variables identified below, or SQLITE_DONE to indicate that
+ ** the end of the buffer has been reached, or an SQLite error code.
+ **
+ ** *ppToken should be set to point at a buffer containing the
+ ** normalized version of the token (i.e. after any case-folding and/or
+ ** stemming has been performed). *pnBytes should be set to the length
+ ** of this buffer in bytes. The input text that generated the token is
+ ** identified by the byte offsets returned in *piStartOffset and
+ ** *piEndOffset. *piStartOffset should be set to the index of the first
+ ** byte of the token in the input buffer. *piEndOffset should be set
+ ** to the index of the first byte just past the end of the token in
+ ** the input buffer.
+ **
+ ** The buffer *ppToken is set to point at is managed by the tokenizer
+ ** implementation. It is only required to be valid until the next call
+ ** to xNext() or xClose().
+ */
+ /* TODO(shess) current implementation requires pInput to be
+ ** nul-terminated. This should either be fixed, or pInput/nBytes
+ ** should be converted to zInput.
+ */
+ int (*xNext)(
+ sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
+ const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
+ int *piStartOffset, /* OUT: Byte offset of token in input buffer */
+ int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
+ int *piPosition /* OUT: Number of tokens returned before this one */
+ );
+
+ /***********************************************************************
+ ** Methods below this point are only available if iVersion>=1.
+ */
+
+ /*
+ ** Configure the language id of a tokenizer cursor.
+ */
+ int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid);
+};
+
+struct sqlite3_tokenizer {
+ const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+struct sqlite3_tokenizer_cursor {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+int fts3_global_term_cnt(int iTerm, int iCol);
+int fts3_term_cnt(int iTerm, int iCol);
+
+
+#endif /* _FTS3_TOKENIZER_H_ */
+
+/************** End of fts3_tokenizer.h **************************************/
+/************** Continuing where we left off in fts3Int.h ********************/
+/************** Include fts3_hash.h in the middle of fts3Int.h ***************/
+/************** Begin file fts3_hash.h ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implementation
+** used in SQLite. We've modified it slightly to serve as a standalone
+** hash table implementation for the full-text indexing module.
+**
+*/
+#ifndef _FTS3_HASH_H_
+#define _FTS3_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct Fts3Hash Fts3Hash;
+typedef struct Fts3HashElem Fts3HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct Fts3Hash {
+ char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ Fts3HashElem *first; /* The first element of the array */
+ int htsize; /* Number of buckets in the hash table */
+ struct _fts3ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ Fts3HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct Fts3HashElem {
+ Fts3HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 2 different modes of operation for a hash table:
+**
+** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is respected in comparisons.
+**
+** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
+*/
+#define FTS3_HASH_STRING 1
+#define FTS3_HASH_BINARY 2
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*);
+SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int);
+
+/*
+** Shorthand for the functions above
+*/
+#define fts3HashInit sqlite3Fts3HashInit
+#define fts3HashInsert sqlite3Fts3HashInsert
+#define fts3HashFind sqlite3Fts3HashFind
+#define fts3HashClear sqlite3Fts3HashClear
+#define fts3HashFindElem sqlite3Fts3HashFindElem
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Fts3Hash h;
+** Fts3HashElem *p;
+** ...
+** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
+** SomeStructure *pData = fts3HashData(p);
+** // do something with pData
+** }
+*/
+#define fts3HashFirst(H) ((H)->first)
+#define fts3HashNext(E) ((E)->next)
+#define fts3HashData(E) ((E)->data)
+#define fts3HashKey(E) ((E)->pKey)
+#define fts3HashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define fts3HashCount(H) ((H)->count)
+
+#endif /* _FTS3_HASH_H_ */
+
+/************** End of fts3_hash.h *******************************************/
+/************** Continuing where we left off in fts3Int.h ********************/
+
+/*
+** This constant determines the maximum depth of an FTS expression tree
+** that the library will create and use. FTS uses recursion to perform
+** various operations on the query tree, so the disadvantage of a large
+** limit is that it may allow very large queries to use large amounts
+** of stack space (perhaps causing a stack overflow).
+*/
+#ifndef SQLITE_FTS3_MAX_EXPR_DEPTH
+# define SQLITE_FTS3_MAX_EXPR_DEPTH 12
+#endif
+
+
+/*
+** This constant controls how often segments are merged. Once there are
+** FTS3_MERGE_COUNT segments of level N, they are merged into a single
+** segment of level N+1.
+*/
+#define FTS3_MERGE_COUNT 16
+
+/*
+** This is the maximum amount of data (in bytes) to store in the
+** Fts3Table.pendingTerms hash table. Normally, the hash table is
+** populated as documents are inserted/updated/deleted in a transaction
+** and used to create a new segment when the transaction is committed.
+** However if this limit is reached midway through a transaction, a new
+** segment is created and the hash table cleared immediately.
+*/
+#define FTS3_MAX_PENDING_DATA (1*1024*1024)
+
+/*
+** Macro to return the number of elements in an array. SQLite has a
+** similar macro called ArraySize(). Use a different name to avoid
+** a collision when building an amalgamation with built-in FTS3.
+*/
+#define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))
+
+
+#ifndef MIN
+# define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
+#ifndef MAX
+# define MAX(x,y) ((x)>(y)?(x):(y))
+#endif
+
+/*
+** Maximum length of a varint encoded integer. The varint format is different
+** from that used by SQLite, so the maximum length is 10, not 9.
+*/
+#define FTS3_VARINT_MAX 10
+
+#define FTS3_BUFFER_PADDING 8
+
+/*
+** FTS4 virtual tables may maintain multiple indexes - one index of all terms
+** in the document set and zero or more prefix indexes. All indexes are stored
+** as one or more b+-trees in the %_segments and %_segdir tables.
+**
+** It is possible to determine which index a b+-tree belongs to based on the
+** value stored in the "%_segdir.level" column. Given this value L, the index
+** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with
+** level values between 0 and 1023 (inclusive) belong to index 0, all levels
+** between 1024 and 2047 to index 1, and so on.
+**
+** It is considered impossible for an index to use more than 1024 levels. In
+** theory though this may happen, but only after at least
+** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables.
+*/
+#define FTS3_SEGDIR_MAXLEVEL 1024
+#define FTS3_SEGDIR_MAXLEVEL_STR "1024"
+
+/*
+** The testcase() macro is only used by the amalgamation. If undefined,
+** make it a no-op.
+*/
+#ifndef testcase
+# define testcase(X)
+#endif
+
+/*
+** Terminator values for position-lists and column-lists.
+*/
+#define POS_COLUMN (1) /* Column-list terminator */
+#define POS_END (0) /* Position-list terminator */
+
+/*
+** The assert_fts3_nc() macro is similar to the assert() macro, except that it
+** is used for assert() conditions that are true only if it can be
+** guranteed that the database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API extern int sqlite3_fts3_may_be_corrupt;
+# define assert_fts3_nc(x) assert(sqlite3_fts3_may_be_corrupt || (x))
+#else
+# define assert_fts3_nc(x) assert(x)
+#endif
+
+/*
+** This section provides definitions to allow the
+** FTS3 extension to be compiled outside of the
+** amalgamation.
+*/
+#ifndef SQLITE_AMALGAMATION
+/*
+** Macros indicating that conditional expressions are always true or
+** false.
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+/*
+** Internal types used by SQLite.
+*/
+typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */
+typedef short int i16; /* 2-byte (or larger) signed integer */
+typedef unsigned int u32; /* 4-byte unsigned integer */
+typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */
+typedef sqlite3_int64 i64; /* 8-byte signed integer */
+
+/*
+** Macro used to suppress compiler warnings for unused parameters.
+*/
+#define UNUSED_PARAMETER(x) (void)(x)
+
+/*
+** Activate assert() only if SQLITE_TEST is enabled.
+*/
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+/*
+** The TESTONLY macro is used to enclose variable declarations or
+** other bits of code that are needed to support the arguments
+** within testcase() and assert() macros.
+*/
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+# define TESTONLY(X) X
+#else
+# define TESTONLY(X)
+#endif
+
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+#define deliberate_fall_through
+
+#endif /* SQLITE_AMALGAMATION */
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3Fts3Corrupt(void);
+# define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt()
+#else
+# define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB
+#endif
+
+typedef struct Fts3Table Fts3Table;
+typedef struct Fts3Cursor Fts3Cursor;
+typedef struct Fts3Expr Fts3Expr;
+typedef struct Fts3Phrase Fts3Phrase;
+typedef struct Fts3PhraseToken Fts3PhraseToken;
+
+typedef struct Fts3Doclist Fts3Doclist;
+typedef struct Fts3SegFilter Fts3SegFilter;
+typedef struct Fts3DeferredToken Fts3DeferredToken;
+typedef struct Fts3SegReader Fts3SegReader;
+typedef struct Fts3MultiSegReader Fts3MultiSegReader;
+
+typedef struct MatchinfoBuffer MatchinfoBuffer;
+
+/*
+** A connection to a fulltext index is an instance of the following
+** structure. The xCreate and xConnect methods create an instance
+** of this structure and xDestroy and xDisconnect free that instance.
+** All other methods receive a pointer to the structure as one of their
+** arguments.
+*/
+struct Fts3Table {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ sqlite3 *db; /* The database connection */
+ const char *zDb; /* logical database name */
+ const char *zName; /* virtual table name */
+ int nColumn; /* number of named columns in virtual table */
+ char **azColumn; /* column names. malloced */
+ u8 *abNotindexed; /* True for 'notindexed' columns */
+ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
+ char *zContentTbl; /* content=xxx option, or NULL */
+ char *zLanguageid; /* languageid=xxx option, or NULL */
+ int nAutoincrmerge; /* Value configured by 'automerge' */
+ u32 nLeafAdd; /* Number of leaf blocks added this trans */
+ int bLock; /* Used to prevent recursive content= tbls */
+
+ /* Precompiled statements used by the implementation. Each of these
+ ** statements is run and reset within a single virtual table API call.
+ */
+ sqlite3_stmt *aStmt[40];
+ sqlite3_stmt *pSeekStmt; /* Cache for fts3CursorSeekStmt() */
+
+ char *zReadExprlist;
+ char *zWriteExprlist;
+
+ int nNodeSize; /* Soft limit for node size */
+ u8 bFts4; /* True for FTS4, false for FTS3 */
+ u8 bHasStat; /* True if %_stat table exists (2==unknown) */
+ u8 bHasDocsize; /* True if %_docsize table exists */
+ u8 bDescIdx; /* True if doclists are in reverse order */
+ u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */
+ int nPgsz; /* Page size for host database */
+ char *zSegmentsTbl; /* Name of %_segments table */
+ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */
+
+ /*
+ ** The following array of hash tables is used to buffer pending index
+ ** updates during transactions. All pending updates buffered at any one
+ ** time must share a common language-id (see the FTS4 langid= feature).
+ ** The current language id is stored in variable iPrevLangid.
+ **
+ ** A single FTS4 table may have multiple full-text indexes. For each index
+ ** there is an entry in the aIndex[] array. Index 0 is an index of all the
+ ** terms that appear in the document set. Each subsequent index in aIndex[]
+ ** is an index of prefixes of a specific length.
+ **
+ ** Variable nPendingData contains an estimate the memory consumed by the
+ ** pending data structures, including hash table overhead, but not including
+ ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash
+ ** tables are flushed to disk. Variable iPrevDocid is the docid of the most
+ ** recently inserted record.
+ */
+ int nIndex; /* Size of aIndex[] */
+ struct Fts3Index {
+ int nPrefix; /* Prefix length (0 for main terms index) */
+ Fts3Hash hPending; /* Pending terms table for this index */
+ } *aIndex;
+ int nMaxPendingData; /* Max pending data before flush to disk */
+ int nPendingData; /* Current bytes of pending data */
+ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */
+ int iPrevLangid; /* Langid of recently inserted document */
+ int bPrevDelete; /* True if last operation was a delete */
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+ /* State variables used for validating that the transaction control
+ ** methods of the virtual table are called at appropriate times. These
+ ** values do not contribute to FTS functionality; they are used for
+ ** verifying the operation of the SQLite core.
+ */
+ int inTransaction; /* True after xBegin but before xCommit/xRollback */
+ int mxSavepoint; /* Largest valid xSavepoint integer */
+#endif
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /* True to disable the incremental doclist optimization. This is controled
+ ** by special insert command 'test-no-incr-doclist'. */
+ int bNoIncrDoclist;
+
+ /* Number of segments in a level */
+ int nMergeCount;
+#endif
+};
+
+/* Macro to find the number of segments to merge */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+# define MergeCount(P) ((P)->nMergeCount)
+#else
+# define MergeCount(P) FTS3_MERGE_COUNT
+#endif
+
+/*
+** When the core wants to read from the virtual table, it creates a
+** virtual table cursor (an instance of the following structure) using
+** the xOpen method. Cursors are destroyed using the xClose method.
+*/
+struct Fts3Cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ i16 eSearch; /* Search strategy (see below) */
+ u8 isEof; /* True if at End Of Results */
+ u8 isRequireSeek; /* True if must seek pStmt to %_content row */
+ u8 bSeekStmt; /* True if pStmt is a seek */
+ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
+ Fts3Expr *pExpr; /* Parsed MATCH query string */
+ int iLangid; /* Language being queried for */
+ int nPhrase; /* Number of matchable phrases in query */
+ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */
+ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */
+ char *pNextId; /* Pointer into the body of aDoclist */
+ char *aDoclist; /* List of docids for full-text queries */
+ int nDoclist; /* Size of buffer at aDoclist */
+ u8 bDesc; /* True to sort in descending order */
+ int eEvalmode; /* An FTS3_EVAL_XX constant */
+ int nRowAvg; /* Average size of database rows, in pages */
+ sqlite3_int64 nDoc; /* Documents in table */
+ i64 iMinDocid; /* Minimum docid to return */
+ i64 iMaxDocid; /* Maximum docid to return */
+ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */
+ MatchinfoBuffer *pMIBuffer; /* Buffer for matchinfo data */
+};
+
+#define FTS3_EVAL_FILTER 0
+#define FTS3_EVAL_NEXT 1
+#define FTS3_EVAL_MATCHINFO 2
+
+/*
+** The Fts3Cursor.eSearch member is always set to one of the following.
+** Actualy, Fts3Cursor.eSearch can be greater than or equal to
+** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index
+** of the column to be searched. For example, in
+**
+** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d);
+** SELECT docid FROM ex1 WHERE b MATCH 'one two three';
+**
+** Because the LHS of the MATCH operator is 2nd column "b",
+** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a,
+** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1"
+** indicating that all columns should be searched,
+** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
+*/
+#define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */
+#define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */
+#define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */
+
+/*
+** The lower 16-bits of the sqlite3_index_info.idxNum value set by
+** the xBestIndex() method contains the Fts3Cursor.eSearch value described
+** above. The upper 16-bits contain a combination of the following
+** bits, used to describe extra constraints on full-text searches.
+*/
+#define FTS3_HAVE_LANGID 0x00010000 /* languageid=? */
+#define FTS3_HAVE_DOCID_GE 0x00020000 /* docid>=? */
+#define FTS3_HAVE_DOCID_LE 0x00040000 /* docid<=? */
+
+struct Fts3Doclist {
+ char *aAll; /* Array containing doclist (or NULL) */
+ int nAll; /* Size of a[] in bytes */
+ char *pNextDocid; /* Pointer to next docid */
+
+ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */
+ int bFreeList; /* True if pList should be sqlite3_free()d */
+ char *pList; /* Pointer to position list following iDocid */
+ int nList; /* Length of position list */
+};
+
+/*
+** A "phrase" is a sequence of one or more tokens that must match in
+** sequence. A single token is the base case and the most common case.
+** For a sequence of tokens contained in double-quotes (i.e. "one two three")
+** nToken will be the number of tokens in the string.
+*/
+struct Fts3PhraseToken {
+ char *z; /* Text of the token */
+ int n; /* Number of bytes in buffer z */
+ int isPrefix; /* True if token ends with a "*" character */
+ int bFirst; /* True if token must appear at position 0 */
+
+ /* Variables above this point are populated when the expression is
+ ** parsed (by code in fts3_expr.c). Below this point the variables are
+ ** used when evaluating the expression. */
+ Fts3DeferredToken *pDeferred; /* Deferred token object for this token */
+ Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */
+};
+
+struct Fts3Phrase {
+ /* Cache of doclist for this phrase. */
+ Fts3Doclist doclist;
+ int bIncr; /* True if doclist is loaded incrementally */
+ int iDoclistToken;
+
+ /* Used by sqlite3Fts3EvalPhrasePoslist() if this is a descendent of an
+ ** OR condition. */
+ char *pOrPoslist;
+ i64 iOrDocid;
+
+ /* Variables below this point are populated by fts3_expr.c when parsing
+ ** a MATCH expression. Everything above is part of the evaluation phase.
+ */
+ int nToken; /* Number of tokens in the phrase */
+ int iColumn; /* Index of column this phrase must match */
+ Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
+};
+
+/*
+** A tree of these objects forms the RHS of a MATCH operator.
+**
+** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist
+** points to a malloced buffer, size nDoclist bytes, containing the results
+** of this phrase query in FTS3 doclist format. As usual, the initial
+** "Length" field found in doclists stored on disk is omitted from this
+** buffer.
+**
+** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global
+** matchinfo data. If it is not NULL, it points to an array of size nCol*3,
+** where nCol is the number of columns in the queried FTS table. The array
+** is populated as follows:
+**
+** aMI[iCol*3 + 0] = Undefined
+** aMI[iCol*3 + 1] = Number of occurrences
+** aMI[iCol*3 + 2] = Number of rows containing at least one instance
+**
+** The aMI array is allocated using sqlite3_malloc(). It should be freed
+** when the expression node is.
+*/
+struct Fts3Expr {
+ int eType; /* One of the FTSQUERY_XXX values defined below */
+ int nNear; /* Valid if eType==FTSQUERY_NEAR */
+ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
+ Fts3Expr *pLeft; /* Left operand */
+ Fts3Expr *pRight; /* Right operand */
+ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
+
+ /* The following are used by the fts3_eval.c module. */
+ sqlite3_int64 iDocid; /* Current docid */
+ u8 bEof; /* True this expression is at EOF already */
+ u8 bStart; /* True if iDocid is valid */
+ u8 bDeferred; /* True if this expression is entirely deferred */
+
+ /* The following are used by the fts3_snippet.c module. */
+ int iPhrase; /* Index of this phrase in matchinfo() results */
+ u32 *aMI; /* See above */
+};
+
+/*
+** Candidate values for Fts3Query.eType. Note that the order of the first
+** four values is in order of precedence when parsing expressions. For
+** example, the following:
+**
+** "a OR b AND c NOT d NEAR e"
+**
+** is equivalent to:
+**
+** "a OR (b AND (c NOT (d NEAR e)))"
+*/
+#define FTSQUERY_NEAR 1
+#define FTSQUERY_NOT 2
+#define FTSQUERY_AND 3
+#define FTSQUERY_OR 4
+#define FTSQUERY_PHRASE 5
+
+
+/* fts3_write.c */
+SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
+SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *);
+SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *);
+SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *);
+SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64,
+ sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
+SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
+ Fts3Table*,int,const char*,int,int,Fts3SegReader**);
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *);
+SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
+SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);
+
+SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
+SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);
+
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
+SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
+SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
+SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);
+#else
+# define sqlite3Fts3FreeDeferredTokens(x)
+# define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK
+# define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK
+# define sqlite3Fts3FreeDeferredDoclists(x)
+# define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK
+#endif
+
+SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *);
+SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *);
+
+/* Special values interpreted by sqlite3SegReaderCursor() */
+#define FTS3_SEGCURSOR_PENDING -1
+#define FTS3_SEGCURSOR_ALL -2
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*);
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *);
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *);
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(Fts3Table *,
+ int, int, int, const char *, int, int, int, Fts3MultiSegReader *);
+
+/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
+#define FTS3_SEGMENT_REQUIRE_POS 0x00000001
+#define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002
+#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
+#define FTS3_SEGMENT_PREFIX 0x00000008
+#define FTS3_SEGMENT_SCAN 0x00000010
+#define FTS3_SEGMENT_FIRST 0x00000020
+
+/* Type passed as 4th argument to SegmentReaderIterate() */
+struct Fts3SegFilter {
+ const char *zTerm;
+ int nTerm;
+ int iCol;
+ int flags;
+};
+
+struct Fts3MultiSegReader {
+ /* Used internally by sqlite3Fts3SegReaderXXX() calls */
+ Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */
+ int nSegment; /* Size of apSegment array */
+ int nAdvance; /* How many seg-readers to advance */
+ Fts3SegFilter *pFilter; /* Pointer to filter object */
+ char *aBuffer; /* Buffer to merge doclists in */
+ i64 nBuffer; /* Allocated size of aBuffer[] in bytes */
+
+ int iColFilter; /* If >=0, filter for this column */
+ int bRestart;
+
+ /* Used by fts3.c only. */
+ int nCost; /* Cost of running iterator */
+ int bLookup; /* True if a lookup of a single entry. */
+
+ /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
+ char *zTerm; /* Pointer to term buffer */
+ int nTerm; /* Size of zTerm in bytes */
+ char *aDoclist; /* Pointer to doclist buffer */
+ int nDoclist; /* Size of aDoclist[] in bytes */
+};
+
+SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table*,int,int);
+
+#define fts3GetVarint32(p, piVal) ( \
+ (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \
+)
+
+/* fts3.c */
+SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char**,const char*,...);
+SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64);
+SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
+SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *, sqlite_uint64 *);
+SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded(const char*,const char*,sqlite3_int64*);
+SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *);
+SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64);
+SQLITE_PRIVATE void sqlite3Fts3Dequote(char *);
+SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*);
+SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *);
+SQLITE_PRIVATE int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *);
+SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int*, Fts3Table*);
+SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc);
+SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut);
+
+/* fts3_tokenizer.c */
+SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *);
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
+SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *,
+ sqlite3_tokenizer **, char **
+);
+SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char);
+
+/* fts3_snippet.c */
+SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*);
+SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *,
+ const char *, const char *, int, int
+);
+SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *);
+SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p);
+
+/* fts3_expr.c */
+SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
+ char **, int, int, int, const char *, int, Fts3Expr **, char **
+);
+SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*);
+SQLITE_PRIVATE int sqlite3Fts3InitTerm(sqlite3 *db);
+#endif
+SQLITE_PRIVATE void *sqlite3Fts3MallocZero(i64 nByte);
+
+SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
+ sqlite3_tokenizer_cursor **
+);
+
+/* fts3_aux.c */
+SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db);
+
+SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);
+
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart(
+ Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
+ Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
+SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **);
+SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);
+
+/* fts3_tokenize_vtab.c */
+SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *, void(*xDestroy)(void*));
+
+/* fts3_unicode2.c (functions generated by parsing unicode text files) */
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int);
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int);
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int);
+#endif
+
+#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
+#endif /* _FTSINT_H */
+
+/************** End of fts3Int.h *********************************************/
+/************** Continuing where we left off in fts3.c ***********************/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
+# define SQLITE_CORE 1
+#endif
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stddef.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+/* #include <stdarg.h> */
+
+/* #include "fts3.h" */
+#ifndef SQLITE_CORE
+/* # include "sqlite3ext.h" */
+ SQLITE_EXTENSION_INIT1
+#endif
+
+typedef struct Fts3HashWrapper Fts3HashWrapper;
+struct Fts3HashWrapper {
+ Fts3Hash hash; /* Hash table */
+ int nRef; /* Number of pointers to this object */
+};
+
+static int fts3EvalNext(Fts3Cursor *pCsr);
+static int fts3EvalStart(Fts3Cursor *pCsr);
+static int fts3TermSegReaderCursor(
+ Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
+
+/*
+** This variable is set to false when running tests for which the on disk
+** structures should not be corrupt. Otherwise, true. If it is false, extra
+** assert() conditions in the fts3 code are activated - conditions that are
+** only true if it is guaranteed that the fts3 database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API int sqlite3_fts3_may_be_corrupt = 1;
+#endif
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
+** The number of bytes written is returned.
+*/
+SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
+ unsigned char *q = (unsigned char *) p;
+ sqlite_uint64 vu = v;
+ do{
+ *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
+ vu >>= 7;
+ }while( vu!=0 );
+ q[-1] &= 0x7f; /* turn off high bit in final byte */
+ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
+ return (int) (q - (unsigned char *)p);
+}
+
+#define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
+ v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \
+ if( (v & mask2)==0 ){ var = v; return ret; }
+#define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
+ v = (*ptr++); \
+ if( (v & mask2)==0 ){ var = v; return ret; }
+
+SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){
+ const unsigned char *p = (const unsigned char*)pBuf;
+ const unsigned char *pStart = p;
+ u32 a;
+ u64 b;
+ int shift;
+
+ GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1);
+ GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2);
+ GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3);
+ GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
+ b = (a & 0x0FFFFFFF );
+
+ for(shift=28; shift<=63; shift+=7){
+ u64 c = *p++;
+ b += (c&0x7F) << shift;
+ if( (c & 0x80)==0 ) break;
+ }
+ *v = b;
+ return (int)(p - pStart);
+}
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read, or 0 on error.
+** The value is stored in *v.
+*/
+SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
+ return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v);
+}
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0] and
+** not extending past pEnd[-1].
+** Return the number of bytes read, or 0 on error.
+** The value is stored in *v.
+*/
+SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded(
+ const char *pBuf,
+ const char *pEnd,
+ sqlite_int64 *v
+){
+ const unsigned char *p = (const unsigned char*)pBuf;
+ const unsigned char *pStart = p;
+ const unsigned char *pX = (const unsigned char*)pEnd;
+ u64 b = 0;
+ int shift;
+ for(shift=0; shift<=63; shift+=7){
+ u64 c = p<pX ? *p : 0;
+ p++;
+ b += (c&0x7F) << shift;
+ if( (c & 0x80)==0 ) break;
+ }
+ *v = b;
+ return (int)(p - pStart);
+}
+
+/*
+** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
+** a non-negative 32-bit integer before it is returned.
+*/
+SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){
+ const unsigned char *ptr = (const unsigned char*)p;
+ u32 a;
+
+#ifndef fts3GetVarint32
+ GETVARINT_INIT(a, ptr, 0, 0x00, 0x80, *pi, 1);
+#else
+ a = (*ptr++);
+ assert( a & 0x80 );
+#endif
+
+ GETVARINT_STEP(a, ptr, 7, 0x7F, 0x4000, *pi, 2);
+ GETVARINT_STEP(a, ptr, 14, 0x3FFF, 0x200000, *pi, 3);
+ GETVARINT_STEP(a, ptr, 21, 0x1FFFFF, 0x10000000, *pi, 4);
+ a = (a & 0x0FFFFFFF );
+ *pi = (int)(a | ((u32)(*ptr & 0x07) << 28));
+ assert( 0==(a & 0x80000000) );
+ assert( *pi>=0 );
+ return 5;
+}
+
+/*
+** Return the number of bytes required to encode v as a varint
+*/
+SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){
+ int i = 0;
+ do{
+ i++;
+ v >>= 7;
+ }while( v!=0 );
+ return i;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+**
+*/
+SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){
+ char quote; /* Quote character (if any ) */
+
+ quote = z[0];
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
+ int iIn = 1; /* Index of next byte to read from input */
+ int iOut = 0; /* Index of next byte to write to output */
+
+ /* If the first byte was a '[', then the close-quote character is a ']' */
+ if( quote=='[' ) quote = ']';
+
+ while( z[iIn] ){
+ if( z[iIn]==quote ){
+ if( z[iIn+1]!=quote ) break;
+ z[iOut++] = quote;
+ iIn += 2;
+ }else{
+ z[iOut++] = z[iIn++];
+ }
+ }
+ z[iOut] = '\0';
+ }
+}
+
+/*
+** Read a single varint from the doclist at *pp and advance *pp to point
+** to the first byte past the end of the varint. Add the value of the varint
+** to *pVal.
+*/
+static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
+ sqlite3_int64 iVal;
+ *pp += sqlite3Fts3GetVarint(*pp, &iVal);
+ *pVal += iVal;
+}
+
+/*
+** When this function is called, *pp points to the first byte following a
+** varint that is part of a doclist (or position-list, or any other list
+** of varints). This function moves *pp to point to the start of that varint,
+** and sets *pVal by the varint value.
+**
+** Argument pStart points to the first byte of the doclist that the
+** varint is part of.
+*/
+static void fts3GetReverseVarint(
+ char **pp,
+ char *pStart,
+ sqlite3_int64 *pVal
+){
+ sqlite3_int64 iVal;
+ char *p;
+
+ /* Pointer p now points at the first byte past the varint we are
+ ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
+ ** clear on character p[-1]. */
+ for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
+ p++;
+ *pp = p;
+
+ sqlite3Fts3GetVarint(p, &iVal);
+ *pVal = iVal;
+}
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ int i;
+
+ assert( p->nPendingData==0 );
+ assert( p->pSegments==0 );
+
+ /* Free any prepared statements held */
+ sqlite3_finalize(p->pSeekStmt);
+ for(i=0; i<SizeofArray(p->aStmt); i++){
+ sqlite3_finalize(p->aStmt[i]);
+ }
+ sqlite3_free(p->zSegmentsTbl);
+ sqlite3_free(p->zReadExprlist);
+ sqlite3_free(p->zWriteExprlist);
+ sqlite3_free(p->zContentTbl);
+ sqlite3_free(p->zLanguageid);
+
+ /* Invoke the tokenizer destructor to free the tokenizer. */
+ p->pTokenizer->pModule->xDestroy(p->pTokenizer);
+
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into *pzErr
+*/
+SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){
+ va_list ap;
+ sqlite3_free(*pzErr);
+ va_start(ap, zFormat);
+ *pzErr = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** Construct one or more SQL statements from the format string given
+** and then evaluate those statements. The success code is written
+** into *pRc.
+**
+** If *pRc is initially non-zero then this routine is a no-op.
+*/
+static void fts3DbExec(
+ int *pRc, /* Success code */
+ sqlite3 *db, /* Database in which to run SQL */
+ const char *zFormat, /* Format string for SQL */
+ ... /* Arguments to the format string */
+){
+ va_list ap;
+ char *zSql;
+ if( *pRc ) return;
+ va_start(ap, zFormat);
+ zSql = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ if( zSql==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts3DestroyMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ int rc = SQLITE_OK; /* Return code */
+ const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
+ sqlite3 *db = p->db; /* Database handle */
+
+ /* Drop the shadow tables */
+ fts3DbExec(&rc, db,
+ "DROP TABLE IF EXISTS %Q.'%q_segments';"
+ "DROP TABLE IF EXISTS %Q.'%q_segdir';"
+ "DROP TABLE IF EXISTS %Q.'%q_docsize';"
+ "DROP TABLE IF EXISTS %Q.'%q_stat';"
+ "%s DROP TABLE IF EXISTS %Q.'%q_content';",
+ zDb, p->zName,
+ zDb, p->zName,
+ zDb, p->zName,
+ zDb, p->zName,
+ (p->zContentTbl ? "--" : ""), zDb,p->zName
+ );
+
+ /* If everything has worked, invoke fts3DisconnectMethod() to free the
+ ** memory associated with the Fts3Table structure and return SQLITE_OK.
+ ** Otherwise, return an SQLite error code.
+ */
+ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
+}
+
+
+/*
+** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
+** passed as the first argument. This is done as part of the xConnect()
+** and xCreate() methods.
+**
+** If *pRc is non-zero when this function is called, it is a no-op.
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
+** before returning.
+*/
+static void fts3DeclareVtab(int *pRc, Fts3Table *p){
+ if( *pRc==SQLITE_OK ){
+ int i; /* Iterator variable */
+ int rc; /* Return code */
+ char *zSql; /* SQL statement passed to declare_vtab() */
+ char *zCols; /* List of user defined columns */
+ const char *zLanguageid;
+
+ zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
+ sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+
+ /* Create a list of user columns for the virtual table */
+ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
+ for(i=1; zCols && i<p->nColumn; i++){
+ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
+ }
+
+ /* Create the whole "CREATE TABLE" statement to pass to SQLite */
+ zSql = sqlite3_mprintf(
+ "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
+ zCols, p->zName, zLanguageid
+ );
+ if( !zCols || !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_declare_vtab(p->db, zSql);
+ }
+
+ sqlite3_free(zSql);
+ sqlite3_free(zCols);
+ *pRc = rc;
+ }
+}
+
+/*
+** Create the %_stat table if it does not already exist.
+*/
+SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
+ fts3DbExec(pRc, p->db,
+ "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
+ "(id INTEGER PRIMARY KEY, value BLOB);",
+ p->zDb, p->zName
+ );
+ if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
+}
+
+/*
+** Create the backing store tables (%_content, %_segments and %_segdir)
+** required by the FTS3 table passed as the only argument. This is done
+** as part of the vtab xCreate() method.
+**
+** If the p->bHasDocsize boolean is true (indicating that this is an
+** FTS4 table, not an FTS3 table) then also create the %_docsize and
+** %_stat tables required by FTS4.
+*/
+static int fts3CreateTables(Fts3Table *p){
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* Iterator variable */
+ sqlite3 *db = p->db; /* The database connection */
+
+ if( p->zContentTbl==0 ){
+ const char *zLanguageid = p->zLanguageid;
+ char *zContentCols; /* Columns of %_content table */
+
+ /* Create a list of user columns for the content table */
+ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
+ for(i=0; zContentCols && i<p->nColumn; i++){
+ char *z = p->azColumn[i];
+ zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
+ }
+ if( zLanguageid && zContentCols ){
+ zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
+ }
+ if( zContentCols==0 ) rc = SQLITE_NOMEM;
+
+ /* Create the content table */
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_content'(%s)",
+ p->zDb, p->zName, zContentCols
+ );
+ sqlite3_free(zContentCols);
+ }
+
+ /* Create other tables */
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
+ p->zDb, p->zName
+ );
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_segdir'("
+ "level INTEGER,"
+ "idx INTEGER,"
+ "start_block INTEGER,"
+ "leaves_end_block INTEGER,"
+ "end_block INTEGER,"
+ "root BLOB,"
+ "PRIMARY KEY(level, idx)"
+ ");",
+ p->zDb, p->zName
+ );
+ if( p->bHasDocsize ){
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
+ p->zDb, p->zName
+ );
+ }
+ assert( p->bHasStat==p->bFts4 );
+ if( p->bHasStat ){
+ sqlite3Fts3CreateStatTable(&rc, p);
+ }
+ return rc;
+}
+
+/*
+** Store the current database page-size in bytes in p->nPgsz.
+**
+** If *pRc is non-zero when this function is called, it is a no-op.
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
+** before returning.
+*/
+static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
+ if( *pRc==SQLITE_OK ){
+ int rc; /* Return code */
+ char *zSql; /* SQL text "PRAGMA %Q.page_size" */
+ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
+
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pStmt);
+ p->nPgsz = sqlite3_column_int(pStmt, 0);
+ rc = sqlite3_finalize(pStmt);
+ }else if( rc==SQLITE_AUTH ){
+ p->nPgsz = 1024;
+ rc = SQLITE_OK;
+ }
+ }
+ assert( p->nPgsz>0 || rc!=SQLITE_OK );
+ sqlite3_free(zSql);
+ *pRc = rc;
+ }
+}
+
+/*
+** "Special" FTS4 arguments are column specifications of the following form:
+**
+** <key> = <value>
+**
+** There may not be whitespace surrounding the "=" character. The <value>
+** term may be quoted, but the <key> may not.
+*/
+static int fts3IsSpecialColumn(
+ const char *z,
+ int *pnKey,
+ char **pzValue
+){
+ char *zValue;
+ const char *zCsr = z;
+
+ while( *zCsr!='=' ){
+ if( *zCsr=='\0' ) return 0;
+ zCsr++;
+ }
+
+ *pnKey = (int)(zCsr-z);
+ zValue = sqlite3_mprintf("%s", &zCsr[1]);
+ if( zValue ){
+ sqlite3Fts3Dequote(zValue);
+ }
+ *pzValue = zValue;
+ return 1;
+}
+
+/*
+** Append the output of a printf() style formatting to an existing string.
+*/
+static void fts3Appendf(
+ int *pRc, /* IN/OUT: Error code */
+ char **pz, /* IN/OUT: Pointer to string buffer */
+ const char *zFormat, /* Printf format string to append */
+ ... /* Arguments for printf format string */
+){
+ if( *pRc==SQLITE_OK ){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ if( z && *pz ){
+ char *z2 = sqlite3_mprintf("%s%s", *pz, z);
+ sqlite3_free(z);
+ z = z2;
+ }
+ if( z==0 ) *pRc = SQLITE_NOMEM;
+ sqlite3_free(*pz);
+ *pz = z;
+ }
+}
+
+/*
+** Return a copy of input string zInput enclosed in double-quotes (") and
+** with all double quote characters escaped. For example:
+**
+** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
+**
+** The pointer returned points to memory obtained from sqlite3_malloc(). It
+** is the callers responsibility to call sqlite3_free() to release this
+** memory.
+*/
+static char *fts3QuoteId(char const *zInput){
+ sqlite3_int64 nRet;
+ char *zRet;
+ nRet = 2 + (int)strlen(zInput)*2 + 1;
+ zRet = sqlite3_malloc64(nRet);
+ if( zRet ){
+ int i;
+ char *z = zRet;
+ *(z++) = '"';
+ for(i=0; zInput[i]; i++){
+ if( zInput[i]=='"' ) *(z++) = '"';
+ *(z++) = zInput[i];
+ }
+ *(z++) = '"';
+ *(z++) = '\0';
+ }
+ return zRet;
+}
+
+/*
+** Return a list of comma separated SQL expressions and a FROM clause that
+** could be used in a SELECT statement such as the following:
+**
+** SELECT <list of expressions> FROM %_content AS x ...
+**
+** to return the docid, followed by each column of text data in order
+** from left to write. If parameter zFunc is not NULL, then instead of
+** being returned directly each column of text data is passed to an SQL
+** function named zFunc first. For example, if zFunc is "unzip" and the
+** table has the three user-defined columns "a", "b", and "c", the following
+** string is returned:
+**
+** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
+**
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
+** is the responsibility of the caller to eventually free it.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
+** no error occurs, *pRc is left unmodified.
+*/
+static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
+ char *zRet = 0;
+ char *zFree = 0;
+ char *zFunction;
+ int i;
+
+ if( p->zContentTbl==0 ){
+ if( !zFunc ){
+ zFunction = "";
+ }else{
+ zFree = zFunction = fts3QuoteId(zFunc);
+ }
+ fts3Appendf(pRc, &zRet, "docid");
+ for(i=0; i<p->nColumn; i++){
+ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
+ }
+ if( p->zLanguageid ){
+ fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
+ }
+ sqlite3_free(zFree);
+ }else{
+ fts3Appendf(pRc, &zRet, "rowid");
+ for(i=0; i<p->nColumn; i++){
+ fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
+ }
+ if( p->zLanguageid ){
+ fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
+ }
+ }
+ fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
+ p->zDb,
+ (p->zContentTbl ? p->zContentTbl : p->zName),
+ (p->zContentTbl ? "" : "_content")
+ );
+ return zRet;
+}
+
+/*
+** Return a list of N comma separated question marks, where N is the number
+** of columns in the %_content table (one for the docid plus one for each
+** user-defined text column).
+**
+** If argument zFunc is not NULL, then all but the first question mark
+** is preceded by zFunc and an open bracket, and followed by a closed
+** bracket. For example, if zFunc is "zip" and the FTS3 table has three
+** user-defined text columns, the following string is returned:
+**
+** "?, zip(?), zip(?), zip(?)"
+**
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
+** is the responsibility of the caller to eventually free it.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
+** no error occurs, *pRc is left unmodified.
+*/
+static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
+ char *zRet = 0;
+ char *zFree = 0;
+ char *zFunction;
+ int i;
+
+ if( !zFunc ){
+ zFunction = "";
+ }else{
+ zFree = zFunction = fts3QuoteId(zFunc);
+ }
+ fts3Appendf(pRc, &zRet, "?");
+ for(i=0; i<p->nColumn; i++){
+ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
+ }
+ if( p->zLanguageid ){
+ fts3Appendf(pRc, &zRet, ", ?");
+ }
+ sqlite3_free(zFree);
+ return zRet;
+}
+
+/*
+** Buffer z contains a positive integer value encoded as utf-8 text.
+** Decode this value and store it in *pnOut, returning the number of bytes
+** consumed. If an overflow error occurs return a negative value.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut){
+ u64 iVal = 0;
+ int i;
+ for(i=0; z[i]>='0' && z[i]<='9'; i++){
+ iVal = iVal*10 + (z[i] - '0');
+ if( iVal>0x7FFFFFFF ) return -1;
+ }
+ *pnOut = (int)iVal;
+ return i;
+}
+
+/*
+** This function interprets the string at (*pp) as a non-negative integer
+** value. It reads the integer and sets *pnOut to the value read, then
+** sets *pp to point to the byte immediately following the last byte of
+** the integer value.
+**
+** Only decimal digits ('0'..'9') may be part of an integer value.
+**
+** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
+** the output value undefined. Otherwise SQLITE_OK is returned.
+**
+** This function is used when parsing the "prefix=" FTS4 parameter.
+*/
+static int fts3GobbleInt(const char **pp, int *pnOut){
+ const int MAX_NPREFIX = 10000000;
+ int nInt = 0; /* Output value */
+ int nByte;
+ nByte = sqlite3Fts3ReadInt(*pp, &nInt);
+ if( nInt>MAX_NPREFIX ){
+ nInt = 0;
+ }
+ if( nByte==0 ){
+ return SQLITE_ERROR;
+ }
+ *pnOut = nInt;
+ *pp += nByte;
+ return SQLITE_OK;
+}
+
+/*
+** This function is called to allocate an array of Fts3Index structures
+** representing the indexes maintained by the current FTS table. FTS tables
+** always maintain the main "terms" index, but may also maintain one or
+** more "prefix" indexes, depending on the value of the "prefix=" parameter
+** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
+**
+** Argument zParam is passed the value of the "prefix=" option if one was
+** specified, or NULL otherwise.
+**
+** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
+** the allocated array. *pnIndex is set to the number of elements in the
+** array. If an error does occur, an SQLite error code is returned.
+**
+** Regardless of whether or not an error is returned, it is the responsibility
+** of the caller to call sqlite3_free() on the output array to free it.
+*/
+static int fts3PrefixParameter(
+ const char *zParam, /* ABC in prefix=ABC parameter to parse */
+ int *pnIndex, /* OUT: size of *apIndex[] array */
+ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
+){
+ struct Fts3Index *aIndex; /* Allocated array */
+ int nIndex = 1; /* Number of entries in array */
+
+ if( zParam && zParam[0] ){
+ const char *p;
+ nIndex++;
+ for(p=zParam; *p; p++){
+ if( *p==',' ) nIndex++;
+ }
+ }
+
+ aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex);
+ *apIndex = aIndex;
+ if( !aIndex ){
+ return SQLITE_NOMEM;
+ }
+
+ memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
+ if( zParam ){
+ const char *p = zParam;
+ int i;
+ for(i=1; i<nIndex; i++){
+ int nPrefix = 0;
+ if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
+ assert( nPrefix>=0 );
+ if( nPrefix==0 ){
+ nIndex--;
+ i--;
+ }else{
+ aIndex[i].nPrefix = nPrefix;
+ }
+ p++;
+ }
+ }
+
+ *pnIndex = nIndex;
+ return SQLITE_OK;
+}
+
+/*
+** This function is called when initializing an FTS4 table that uses the
+** content=xxx option. It determines the number of and names of the columns
+** of the new FTS4 table.
+**
+** The third argument passed to this function is the value passed to the
+** config=xxx option (i.e. "xxx"). This function queries the database for
+** a table of that name. If found, the output variables are populated
+** as follows:
+**
+** *pnCol: Set to the number of columns table xxx has,
+**
+** *pnStr: Set to the total amount of space required to store a copy
+** of each columns name, including the nul-terminator.
+**
+** *pazCol: Set to point to an array of *pnCol strings. Each string is
+** the name of the corresponding column in table xxx. The array
+** and its contents are allocated using a single allocation. It
+** is the responsibility of the caller to free this allocation
+** by eventually passing the *pazCol value to sqlite3_free().
+**
+** If the table cannot be found, an error code is returned and the output
+** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
+** returned (and the output variables are undefined).
+*/
+static int fts3ContentColumns(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
+ const char *zTbl, /* Name of content table */
+ const char ***pazCol, /* OUT: Malloc'd array of column names */
+ int *pnCol, /* OUT: Size of array *pazCol */
+ int *pnStr, /* OUT: Bytes of string content */
+ char **pzErr /* OUT: error message */
+){
+ int rc = SQLITE_OK; /* Return code */
+ char *zSql; /* "SELECT *" statement on zTbl */
+ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
+
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
+ }
+ }
+ sqlite3_free(zSql);
+
+ if( rc==SQLITE_OK ){
+ const char **azCol; /* Output array */
+ sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */
+ int nCol; /* Number of table columns */
+ int i; /* Used to iterate through columns */
+
+ /* Loop through the returned columns. Set nStr to the number of bytes of
+ ** space required to store a copy of each column name, including the
+ ** nul-terminator byte. */
+ nCol = sqlite3_column_count(pStmt);
+ for(i=0; i<nCol; i++){
+ const char *zCol = sqlite3_column_name(pStmt, i);
+ nStr += strlen(zCol) + 1;
+ }
+
+ /* Allocate and populate the array to return. */
+ azCol = (const char **)sqlite3_malloc64(sizeof(char *) * nCol + nStr);
+ if( azCol==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *p = (char *)&azCol[nCol];
+ for(i=0; i<nCol; i++){
+ const char *zCol = sqlite3_column_name(pStmt, i);
+ int n = (int)strlen(zCol)+1;
+ memcpy(p, zCol, n);
+ azCol[i] = p;
+ p += n;
+ }
+ }
+ sqlite3_finalize(pStmt);
+
+ /* Set the output variables. */
+ *pnCol = nCol;
+ *pnStr = nStr;
+ *pazCol = azCol;
+ }
+
+ return rc;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts3" or "fts4")
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> "column name" and other module argument fields.
+*/
+static int fts3InitVtab(
+ int isCreate, /* True for xCreate, false for xConnect */
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Hash table containing tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash;
+ Fts3Table *p = 0; /* Pointer to allocated vtab */
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* Iterator variable */
+ sqlite3_int64 nByte; /* Size of allocation used for *p */
+ int iCol; /* Column index */
+ int nString = 0; /* Bytes required to hold all column names */
+ int nCol = 0; /* Number of columns in the FTS table */
+ char *zCsr; /* Space for holding column names */
+ int nDb; /* Bytes required to hold database name */
+ int nName; /* Bytes required to hold table name */
+ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
+ const char **aCol; /* Array of column names */
+ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
+
+ int nIndex = 0; /* Size of aIndex[] array */
+ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
+
+ /* The results of parsing supported FTS4 key=value options: */
+ int bNoDocsize = 0; /* True to omit %_docsize table */
+ int bDescIdx = 0; /* True to store descending indexes */
+ char *zPrefix = 0; /* Prefix parameter value (or NULL) */
+ char *zCompress = 0; /* compress=? parameter (or NULL) */
+ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
+ char *zContent = 0; /* content=? parameter (or NULL) */
+ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
+ char **azNotindexed = 0; /* The set of notindexed= columns */
+ int nNotindexed = 0; /* Size of azNotindexed[] array */
+
+ assert( strlen(argv[0])==4 );
+ assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
+ || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
+ );
+
+ nDb = (int)strlen(argv[1]) + 1;
+ nName = (int)strlen(argv[2]) + 1;
+
+ nByte = sizeof(const char *) * (argc-2);
+ aCol = (const char **)sqlite3_malloc64(nByte);
+ if( aCol ){
+ memset((void*)aCol, 0, nByte);
+ azNotindexed = (char **)sqlite3_malloc64(nByte);
+ }
+ if( azNotindexed ){
+ memset(azNotindexed, 0, nByte);
+ }
+ if( !aCol || !azNotindexed ){
+ rc = SQLITE_NOMEM;
+ goto fts3_init_out;
+ }
+
+ /* Loop through all of the arguments passed by the user to the FTS3/4
+ ** module (i.e. all the column names and special arguments). This loop
+ ** does the following:
+ **
+ ** + Figures out the number of columns the FTSX table will have, and
+ ** the number of bytes of space that must be allocated to store copies
+ ** of the column names.
+ **
+ ** + If there is a tokenizer specification included in the arguments,
+ ** initializes the tokenizer pTokenizer.
+ */
+ for(i=3; rc==SQLITE_OK && i<argc; i++){
+ char const *z = argv[i];
+ int nKey;
+ char *zVal;
+
+ /* Check if this is a tokenizer specification */
+ if( !pTokenizer
+ && strlen(z)>8
+ && 0==sqlite3_strnicmp(z, "tokenize", 8)
+ && 0==sqlite3Fts3IsIdChar(z[8])
+ ){
+ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
+ }
+
+ /* Check if it is an FTS4 special argument. */
+ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
+ struct Fts4Option {
+ const char *zOpt;
+ int nOpt;
+ } aFts4Opt[] = {
+ { "matchinfo", 9 }, /* 0 -> MATCHINFO */
+ { "prefix", 6 }, /* 1 -> PREFIX */
+ { "compress", 8 }, /* 2 -> COMPRESS */
+ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
+ { "order", 5 }, /* 4 -> ORDER */
+ { "content", 7 }, /* 5 -> CONTENT */
+ { "languageid", 10 }, /* 6 -> LANGUAGEID */
+ { "notindexed", 10 } /* 7 -> NOTINDEXED */
+ };
+
+ int iOpt;
+ if( !zVal ){
+ rc = SQLITE_NOMEM;
+ }else{
+ for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
+ struct Fts4Option *pOp = &aFts4Opt[iOpt];
+ if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
+ break;
+ }
+ }
+ switch( iOpt ){
+ case 0: /* MATCHINFO */
+ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
+ rc = SQLITE_ERROR;
+ }
+ bNoDocsize = 1;
+ break;
+
+ case 1: /* PREFIX */
+ sqlite3_free(zPrefix);
+ zPrefix = zVal;
+ zVal = 0;
+ break;
+
+ case 2: /* COMPRESS */
+ sqlite3_free(zCompress);
+ zCompress = zVal;
+ zVal = 0;
+ break;
+
+ case 3: /* UNCOMPRESS */
+ sqlite3_free(zUncompress);
+ zUncompress = zVal;
+ zVal = 0;
+ break;
+
+ case 4: /* ORDER */
+ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
+ && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
+ ){
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
+ rc = SQLITE_ERROR;
+ }
+ bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
+ break;
+
+ case 5: /* CONTENT */
+ sqlite3_free(zContent);
+ zContent = zVal;
+ zVal = 0;
+ break;
+
+ case 6: /* LANGUAGEID */
+ assert( iOpt==6 );
+ sqlite3_free(zLanguageid);
+ zLanguageid = zVal;
+ zVal = 0;
+ break;
+
+ case 7: /* NOTINDEXED */
+ azNotindexed[nNotindexed++] = zVal;
+ zVal = 0;
+ break;
+
+ default:
+ assert( iOpt==SizeofArray(aFts4Opt) );
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
+ rc = SQLITE_ERROR;
+ break;
+ }
+ sqlite3_free(zVal);
+ }
+ }
+
+ /* Otherwise, the argument is a column name. */
+ else {
+ nString += (int)(strlen(z) + 1);
+ aCol[nCol++] = z;
+ }
+ }
+
+ /* If a content=xxx option was specified, the following:
+ **
+ ** 1. Ignore any compress= and uncompress= options.
+ **
+ ** 2. If no column names were specified as part of the CREATE VIRTUAL
+ ** TABLE statement, use all columns from the content table.
+ */
+ if( rc==SQLITE_OK && zContent ){
+ sqlite3_free(zCompress);
+ sqlite3_free(zUncompress);
+ zCompress = 0;
+ zUncompress = 0;
+ if( nCol==0 ){
+ sqlite3_free((void*)aCol);
+ aCol = 0;
+ rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr);
+
+ /* If a languageid= option was specified, remove the language id
+ ** column from the aCol[] array. */
+ if( rc==SQLITE_OK && zLanguageid ){
+ int j;
+ for(j=0; j<nCol; j++){
+ if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
+ int k;
+ for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
+ nCol--;
+ break;
+ }
+ }
+ }
+ }
+ }
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+
+ if( nCol==0 ){
+ assert( nString==0 );
+ aCol[0] = "content";
+ nString = 8;
+ nCol = 1;
+ }
+
+ if( pTokenizer==0 ){
+ rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+ }
+ assert( pTokenizer );
+
+ rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
+ if( rc==SQLITE_ERROR ){
+ assert( zPrefix );
+ sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix);
+ }
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+
+ /* Allocate and populate the Fts3Table structure. */
+ nByte = sizeof(Fts3Table) + /* Fts3Table */
+ nCol * sizeof(char *) + /* azColumn */
+ nIndex * sizeof(struct Fts3Index) + /* aIndex */
+ nCol * sizeof(u8) + /* abNotindexed */
+ nName + /* zName */
+ nDb + /* zDb */
+ nString; /* Space for azColumn strings */
+ p = (Fts3Table*)sqlite3_malloc64(nByte);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ goto fts3_init_out;
+ }
+ memset(p, 0, nByte);
+ p->db = db;
+ p->nColumn = nCol;
+ p->nPendingData = 0;
+ p->azColumn = (char **)&p[1];
+ p->pTokenizer = pTokenizer;
+ p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
+ p->bHasDocsize = (isFts4 && bNoDocsize==0);
+ p->bHasStat = (u8)isFts4;
+ p->bFts4 = (u8)isFts4;
+ p->bDescIdx = (u8)bDescIdx;
+ p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */
+ p->zContentTbl = zContent;
+ p->zLanguageid = zLanguageid;
+ zContent = 0;
+ zLanguageid = 0;
+ TESTONLY( p->inTransaction = -1 );
+ TESTONLY( p->mxSavepoint = -1 );
+
+ p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
+ memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
+ p->nIndex = nIndex;
+ for(i=0; i<nIndex; i++){
+ fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
+ }
+ p->abNotindexed = (u8 *)&p->aIndex[nIndex];
+
+ /* Fill in the zName and zDb fields of the vtab structure. */
+ zCsr = (char *)&p->abNotindexed[nCol];
+ p->zName = zCsr;
+ memcpy(zCsr, argv[2], nName);
+ zCsr += nName;
+ p->zDb = zCsr;
+ memcpy(zCsr, argv[1], nDb);
+ zCsr += nDb;
+
+ /* Fill in the azColumn array */
+ for(iCol=0; iCol<nCol; iCol++){
+ char *z;
+ int n = 0;
+ z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
+ if( n>0 ){
+ memcpy(zCsr, z, n);
+ }
+ zCsr[n] = '\0';
+ sqlite3Fts3Dequote(zCsr);
+ p->azColumn[iCol] = zCsr;
+ zCsr += n+1;
+ assert( zCsr <= &((char *)p)[nByte] );
+ }
+
+ /* Fill in the abNotindexed array */
+ for(iCol=0; iCol<nCol; iCol++){
+ int n = (int)strlen(p->azColumn[iCol]);
+ for(i=0; i<nNotindexed; i++){
+ char *zNot = azNotindexed[i];
+ if( zNot && n==(int)strlen(zNot)
+ && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
+ ){
+ p->abNotindexed[iCol] = 1;
+ sqlite3_free(zNot);
+ azNotindexed[i] = 0;
+ }
+ }
+ }
+ for(i=0; i<nNotindexed; i++){
+ if( azNotindexed[i] ){
+ sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
+ char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
+ rc = SQLITE_ERROR;
+ sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss);
+ }
+ p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
+ p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+
+ /* If this is an xCreate call, create the underlying tables in the
+ ** database. TODO: For xConnect(), it could verify that said tables exist.
+ */
+ if( isCreate ){
+ rc = fts3CreateTables(p);
+ }
+
+ /* Check to see if a legacy fts3 table has been "upgraded" by the
+ ** addition of a %_stat table so that it can use incremental merge.
+ */
+ if( !isFts4 && !isCreate ){
+ p->bHasStat = 2;
+ }
+
+ /* Figure out the page-size for the database. This is required in order to
+ ** estimate the cost of loading large doclists from the database. */
+ fts3DatabasePageSize(&rc, p);
+ p->nNodeSize = p->nPgsz-35;
+
+#if defined(SQLITE_DEBUG)||defined(SQLITE_TEST)
+ p->nMergeCount = FTS3_MERGE_COUNT;
+#endif
+
+ /* Declare the table schema to SQLite. */
+ fts3DeclareVtab(&rc, p);
+
+fts3_init_out:
+ sqlite3_free(zPrefix);
+ sqlite3_free(aIndex);
+ sqlite3_free(zCompress);
+ sqlite3_free(zUncompress);
+ sqlite3_free(zContent);
+ sqlite3_free(zLanguageid);
+ for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
+ sqlite3_free((void *)aCol);
+ sqlite3_free((void *)azNotindexed);
+ if( rc!=SQLITE_OK ){
+ if( p ){
+ fts3DisconnectMethod((sqlite3_vtab *)p);
+ }else if( pTokenizer ){
+ pTokenizer->pModule->xDestroy(pTokenizer);
+ }
+ }else{
+ assert( p->pSegments==0 );
+ *ppVTab = &p->base;
+ }
+ return rc;
+}
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts3InitVtab().
+*/
+static int fts3ConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts3CreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support estimatedRows. In that case this function is a no-op.
+*/
+static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
+#if SQLITE_VERSION_NUMBER>=3008002
+ if( sqlite3_libversion_number()>=3008002 ){
+ pIdxInfo->estimatedRows = nRow;
+ }
+#endif
+}
+
+/*
+** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support index-info flags. In that case this function is a no-op.
+*/
+static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){
+#if SQLITE_VERSION_NUMBER>=3008012
+ if( sqlite3_libversion_number()>=3008012 ){
+ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
+ }
+#endif
+}
+
+/*
+** Implementation of the xBestIndex method for FTS3 tables. There
+** are three possible strategies, in order of preference:
+**
+** 1. Direct lookup by rowid or docid.
+** 2. Full-text search using a MATCH operator on a non-docid column.
+** 3. Linear scan of %_content table.
+*/
+static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ Fts3Table *p = (Fts3Table *)pVTab;
+ int i; /* Iterator variable */
+ int iCons = -1; /* Index of constraint to use */
+
+ int iLangidCons = -1; /* Index of langid=x constraint, if present */
+ int iDocidGe = -1; /* Index of docid>=x constraint, if present */
+ int iDocidLe = -1; /* Index of docid<=x constraint, if present */
+ int iIdx;
+
+ if( p->bLock ){
+ return SQLITE_ERROR;
+ }
+
+ /* By default use a full table scan. This is an expensive option,
+ ** so search through the constraints to see if a more efficient
+ ** strategy is possible.
+ */
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
+ pInfo->estimatedCost = 5000000;
+ for(i=0; i<pInfo->nConstraint; i++){
+ int bDocid; /* True if this constraint is on docid */
+ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
+ if( pCons->usable==0 ){
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ /* There exists an unusable MATCH constraint. This means that if
+ ** the planner does elect to use the results of this call as part
+ ** of the overall query plan the user will see an "unable to use
+ ** function MATCH in the requested context" error. To discourage
+ ** this, return a very high cost here. */
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
+ pInfo->estimatedCost = 1e50;
+ fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
+ return SQLITE_OK;
+ }
+ continue;
+ }
+
+ bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
+
+ /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
+ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
+ pInfo->idxNum = FTS3_DOCID_SEARCH;
+ pInfo->estimatedCost = 1.0;
+ iCons = i;
+ }
+
+ /* A MATCH constraint. Use a full-text search.
+ **
+ ** If there is more than one MATCH constraint available, use the first
+ ** one encountered. If there is both a MATCH constraint and a direct
+ ** rowid/docid lookup, prefer the MATCH strategy. This is done even
+ ** though the rowid/docid lookup is faster than a MATCH query, selecting
+ ** it would lead to an "unable to use function MATCH in the requested
+ ** context" error.
+ */
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
+ && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
+ ){
+ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
+ pInfo->estimatedCost = 2.0;
+ iCons = i;
+ }
+
+ /* Equality constraint on the langid column */
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
+ && pCons->iColumn==p->nColumn + 2
+ ){
+ iLangidCons = i;
+ }
+
+ if( bDocid ){
+ switch( pCons->op ){
+ case SQLITE_INDEX_CONSTRAINT_GE:
+ case SQLITE_INDEX_CONSTRAINT_GT:
+ iDocidGe = i;
+ break;
+
+ case SQLITE_INDEX_CONSTRAINT_LE:
+ case SQLITE_INDEX_CONSTRAINT_LT:
+ iDocidLe = i;
+ break;
+ }
+ }
+ }
+
+ /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
+ if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo);
+
+ iIdx = 1;
+ if( iCons>=0 ){
+ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
+ pInfo->aConstraintUsage[iCons].omit = 1;
+ }
+ if( iLangidCons>=0 ){
+ pInfo->idxNum |= FTS3_HAVE_LANGID;
+ pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
+ }
+ if( iDocidGe>=0 ){
+ pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
+ pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
+ }
+ if( iDocidLe>=0 ){
+ pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
+ pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
+ }
+
+ /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
+ ** docid) order. Both ascending and descending are possible.
+ */
+ if( pInfo->nOrderBy==1 ){
+ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
+ if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
+ if( pOrder->desc ){
+ pInfo->idxStr = "DESC";
+ }else{
+ pInfo->idxStr = "ASC";
+ }
+ pInfo->orderByConsumed = 1;
+ }
+ }
+
+ assert( p->pSegments==0 );
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
+
+ UNUSED_PARAMETER(pVTab);
+
+ /* Allocate a buffer large enough for an Fts3Cursor structure. If the
+ ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
+ ** if the allocation fails, return SQLITE_NOMEM.
+ */
+ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
+ if( !pCsr ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(Fts3Cursor));
+ return SQLITE_OK;
+}
+
+/*
+** Finalize the statement handle at pCsr->pStmt.
+**
+** Or, if that statement handle is one created by fts3CursorSeekStmt(),
+** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
+** pointer there instead of finalizing it.
+*/
+static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
+ if( pCsr->bSeekStmt ){
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+ if( p->pSeekStmt==0 ){
+ p->pSeekStmt = pCsr->pStmt;
+ sqlite3_reset(pCsr->pStmt);
+ pCsr->pStmt = 0;
+ }
+ pCsr->bSeekStmt = 0;
+ }
+ sqlite3_finalize(pCsr->pStmt);
+}
+
+/*
+** Free all resources currently held by the cursor passed as the only
+** argument.
+*/
+static void fts3ClearCursor(Fts3Cursor *pCsr){
+ fts3CursorFinalizeStmt(pCsr);
+ sqlite3Fts3FreeDeferredTokens(pCsr);
+ sqlite3_free(pCsr->aDoclist);
+ sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
+ sqlite3Fts3ExprFree(pCsr->pExpr);
+ memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
+}
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ fts3ClearCursor(pCsr);
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
+** compose and prepare an SQL statement of the form:
+**
+** "SELECT <columns> FROM %_content WHERE rowid = ?"
+**
+** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
+** it. If an error occurs, return an SQLite error code.
+*/
+static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
+ int rc = SQLITE_OK;
+ if( pCsr->pStmt==0 ){
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+ char *zSql;
+ if( p->pSeekStmt ){
+ pCsr->pStmt = p->pSeekStmt;
+ p->pSeekStmt = 0;
+ }else{
+ zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
+ if( !zSql ) return SQLITE_NOMEM;
+ p->bLock++;
+ rc = sqlite3_prepare_v3(
+ p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
+ );
+ p->bLock--;
+ sqlite3_free(zSql);
+ }
+ if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
+ }
+ return rc;
+}
+
+/*
+** Position the pCsr->pStmt statement so that it is on the row
+** of the %_content table that contains the last match. Return
+** SQLITE_OK on success.
+*/
+static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
+ int rc = SQLITE_OK;
+ if( pCsr->isRequireSeek ){
+ rc = fts3CursorSeekStmt(pCsr);
+ if( rc==SQLITE_OK ){
+ Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab;
+ pTab->bLock++;
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
+ pCsr->isRequireSeek = 0;
+ if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
+ pTab->bLock--;
+ return SQLITE_OK;
+ }else{
+ pTab->bLock--;
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
+ /* If no row was found and no error has occurred, then the %_content
+ ** table is missing a row that is present in the full-text index.
+ ** The data structures are corrupt. */
+ rc = FTS_CORRUPT_VTAB;
+ pCsr->isEof = 1;
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK && pContext ){
+ sqlite3_result_error_code(pContext, rc);
+ }
+ return rc;
+}
+
+/*
+** This function is used to process a single interior node when searching
+** a b-tree for a term or term prefix. The node data is passed to this
+** function via the zNode/nNode parameters. The term to search for is
+** passed in zTerm/nTerm.
+**
+** If piFirst is not NULL, then this function sets *piFirst to the blockid
+** of the child node that heads the sub-tree that may contain the term.
+**
+** If piLast is not NULL, then *piLast is set to the right-most child node
+** that heads a sub-tree that may contain a term for which zTerm/nTerm is
+** a prefix.
+**
+** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
+*/
+static int fts3ScanInteriorNode(
+ const char *zTerm, /* Term to select leaves for */
+ int nTerm, /* Size of term zTerm in bytes */
+ const char *zNode, /* Buffer containing segment interior node */
+ int nNode, /* Size of buffer at zNode */
+ sqlite3_int64 *piFirst, /* OUT: Selected child node */
+ sqlite3_int64 *piLast /* OUT: Selected child node */
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *zCsr = zNode; /* Cursor to iterate through node */
+ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
+ char *zBuffer = 0; /* Buffer to load terms into */
+ i64 nAlloc = 0; /* Size of allocated buffer */
+ int isFirstTerm = 1; /* True when processing first term on page */
+ u64 iChild; /* Block id of child node to descend to */
+ int nBuffer = 0; /* Total term size */
+
+ /* Skip over the 'height' varint that occurs at the start of every
+ ** interior node. Then load the blockid of the left-child of the b-tree
+ ** node into variable iChild.
+ **
+ ** Even if the data structure on disk is corrupted, this (reading two
+ ** varints from the buffer) does not risk an overread. If zNode is a
+ ** root node, then the buffer comes from a SELECT statement. SQLite does
+ ** not make this guarantee explicitly, but in practice there are always
+ ** either more than 20 bytes of allocated space following the nNode bytes of
+ ** contents, or two zero bytes. Or, if the node is read from the %_segments
+ ** table, then there are always 20 bytes of zeroed padding following the
+ ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
+ */
+ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
+ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
+ if( zCsr>zEnd ){
+ return FTS_CORRUPT_VTAB;
+ }
+
+ while( zCsr<zEnd && (piFirst || piLast) ){
+ int cmp; /* memcmp() result */
+ int nSuffix; /* Size of term suffix */
+ int nPrefix = 0; /* Size of term prefix */
+
+ /* Load the next term on the node into zBuffer. Use realloc() to expand
+ ** the size of zBuffer if required. */
+ if( !isFirstTerm ){
+ zCsr += fts3GetVarint32(zCsr, &nPrefix);
+ if( nPrefix>nBuffer ){
+ rc = FTS_CORRUPT_VTAB;
+ goto finish_scan;
+ }
+ }
+ isFirstTerm = 0;
+ zCsr += fts3GetVarint32(zCsr, &nSuffix);
+
+ assert( nPrefix>=0 && nSuffix>=0 );
+ if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ goto finish_scan;
+ }
+ if( (i64)nPrefix+nSuffix>nAlloc ){
+ char *zNew;
+ nAlloc = ((i64)nPrefix+nSuffix) * 2;
+ zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc);
+ if( !zNew ){
+ rc = SQLITE_NOMEM;
+ goto finish_scan;
+ }
+ zBuffer = zNew;
+ }
+ assert( zBuffer );
+ memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
+ nBuffer = nPrefix + nSuffix;
+ zCsr += nSuffix;
+
+ /* Compare the term we are searching for with the term just loaded from
+ ** the interior node. If the specified term is greater than or equal
+ ** to the term from the interior node, then all terms on the sub-tree
+ ** headed by node iChild are smaller than zTerm. No need to search
+ ** iChild.
+ **
+ ** If the interior node term is larger than the specified term, then
+ ** the tree headed by iChild may contain the specified term.
+ */
+ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
+ if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
+ *piFirst = (i64)iChild;
+ piFirst = 0;
+ }
+
+ if( piLast && cmp<0 ){
+ *piLast = (i64)iChild;
+ piLast = 0;
+ }
+
+ iChild++;
+ };
+
+ if( piFirst ) *piFirst = (i64)iChild;
+ if( piLast ) *piLast = (i64)iChild;
+
+ finish_scan:
+ sqlite3_free(zBuffer);
+ return rc;
+}
+
+
+/*
+** The buffer pointed to by argument zNode (size nNode bytes) contains an
+** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
+** contains a term. This function searches the sub-tree headed by the zNode
+** node for the range of leaf nodes that may contain the specified term
+** or terms for which the specified term is a prefix.
+**
+** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
+** left-most leaf node in the tree that may contain the specified term.
+** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
+** right-most leaf node that may contain a term for which the specified
+** term is a prefix.
+**
+** It is possible that the range of returned leaf nodes does not contain
+** the specified term or any terms for which it is a prefix. However, if the
+** segment does contain any such terms, they are stored within the identified
+** range. Because this function only inspects interior segment nodes (and
+** never loads leaf nodes into memory), it is not possible to be sure.
+**
+** If an error occurs, an error code other than SQLITE_OK is returned.
+*/
+static int fts3SelectLeaf(
+ Fts3Table *p, /* Virtual table handle */
+ const char *zTerm, /* Term to select leaves for */
+ int nTerm, /* Size of term zTerm in bytes */
+ const char *zNode, /* Buffer containing segment interior node */
+ int nNode, /* Size of buffer at zNode */
+ sqlite3_int64 *piLeaf, /* Selected leaf node */
+ sqlite3_int64 *piLeaf2 /* Selected leaf node */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int iHeight; /* Height of this node in tree */
+
+ assert( piLeaf || piLeaf2 );
+
+ fts3GetVarint32(zNode, &iHeight);
+ rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
+ assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
+
+ if( rc==SQLITE_OK && iHeight>1 ){
+ char *zBlob = 0; /* Blob read from %_segments table */
+ int nBlob = 0; /* Size of zBlob in bytes */
+
+ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
+ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
+ }
+ sqlite3_free(zBlob);
+ piLeaf = 0;
+ zBlob = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int iNewHeight = 0;
+ fts3GetVarint32(zBlob, &iNewHeight);
+ if( iNewHeight>=iHeight ){
+ rc = FTS_CORRUPT_VTAB;
+ }else{
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
+ }
+ }
+ sqlite3_free(zBlob);
+ }
+
+ return rc;
+}
+
+/*
+** This function is used to create delta-encoded serialized lists of FTS3
+** varints. Each call to this function appends a single varint to a list.
+*/
+static void fts3PutDeltaVarint(
+ char **pp, /* IN/OUT: Output pointer */
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
+ sqlite3_int64 iVal /* Write this value to the list */
+){
+ assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
+ *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
+ *piPrev = iVal;
+}
+
+/*
+** When this function is called, *ppPoslist is assumed to point to the
+** start of a position-list. After it returns, *ppPoslist points to the
+** first byte after the position-list.
+**
+** A position list is list of positions (delta encoded) and columns for
+** a single document record of a doclist. So, in other words, this
+** routine advances *ppPoslist so that it points to the next docid in
+** the doclist, or to the first byte past the end of the doclist.
+**
+** If pp is not NULL, then the contents of the position list are copied
+** to *pp. *pp is set to point to the first byte past the last byte copied
+** before this function returns.
+*/
+static void fts3PoslistCopy(char **pp, char **ppPoslist){
+ char *pEnd = *ppPoslist;
+ char c = 0;
+
+ /* The end of a position list is marked by a zero encoded as an FTS3
+ ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
+ ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
+ ** of some other, multi-byte, value.
+ **
+ ** The following while-loop moves pEnd to point to the first byte that is not
+ ** immediately preceded by a byte with the 0x80 bit set. Then increments
+ ** pEnd once more so that it points to the byte immediately following the
+ ** last byte in the position-list.
+ */
+ while( *pEnd | c ){
+ c = *pEnd++ & 0x80;
+ testcase( c!=0 && (*pEnd)==0 );
+ }
+ pEnd++; /* Advance past the POS_END terminator byte */
+
+ if( pp ){
+ int n = (int)(pEnd - *ppPoslist);
+ char *p = *pp;
+ memcpy(p, *ppPoslist, n);
+ p += n;
+ *pp = p;
+ }
+ *ppPoslist = pEnd;
+}
+
+/*
+** When this function is called, *ppPoslist is assumed to point to the
+** start of a column-list. After it returns, *ppPoslist points to the
+** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
+**
+** A column-list is list of delta-encoded positions for a single column
+** within a single document within a doclist.
+**
+** The column-list is terminated either by a POS_COLUMN varint (1) or
+** a POS_END varint (0). This routine leaves *ppPoslist pointing to
+** the POS_COLUMN or POS_END that terminates the column-list.
+**
+** If pp is not NULL, then the contents of the column-list are copied
+** to *pp. *pp is set to point to the first byte past the last byte copied
+** before this function returns. The POS_COLUMN or POS_END terminator
+** is not copied into *pp.
+*/
+static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
+ char *pEnd = *ppPoslist;
+ char c = 0;
+
+ /* A column-list is terminated by either a 0x01 or 0x00 byte that is
+ ** not part of a multi-byte varint.
+ */
+ while( 0xFE & (*pEnd | c) ){
+ c = *pEnd++ & 0x80;
+ testcase( c!=0 && ((*pEnd)&0xfe)==0 );
+ }
+ if( pp ){
+ int n = (int)(pEnd - *ppPoslist);
+ char *p = *pp;
+ memcpy(p, *ppPoslist, n);
+ p += n;
+ *pp = p;
+ }
+ *ppPoslist = pEnd;
+}
+
+/*
+** Value used to signify the end of an position-list. This must be
+** as large or larger than any value that might appear on the
+** position-list, even a position list that has been corrupted.
+*/
+#define POSITION_LIST_END LARGEST_INT64
+
+/*
+** This function is used to help parse position-lists. When this function is
+** called, *pp may point to the start of the next varint in the position-list
+** being parsed, or it may point to 1 byte past the end of the position-list
+** (in which case **pp will be a terminator bytes POS_END (0) or
+** (1)).
+**
+** If *pp points past the end of the current position-list, set *pi to
+** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
+** increment the current value of *pi by the value read, and set *pp to
+** point to the next value before returning.
+**
+** Before calling this routine *pi must be initialized to the value of
+** the previous position, or zero if we are reading the first position
+** in the position-list. Because positions are delta-encoded, the value
+** of the previous position is needed in order to compute the value of
+** the next position.
+*/
+static void fts3ReadNextPos(
+ char **pp, /* IN/OUT: Pointer into position-list buffer */
+ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
+){
+ if( (**pp)&0xFE ){
+ int iVal;
+ *pp += fts3GetVarint32((*pp), &iVal);
+ *pi += iVal;
+ *pi -= 2;
+ }else{
+ *pi = POSITION_LIST_END;
+ }
+}
+
+/*
+** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
+** the value of iCol encoded as a varint to *pp. This will start a new
+** column list.
+**
+** Set *pp to point to the byte just after the last byte written before
+** returning (do not modify it if iCol==0). Return the total number of bytes
+** written (0 if iCol==0).
+*/
+static int fts3PutColNumber(char **pp, int iCol){
+ int n = 0; /* Number of bytes written */
+ if( iCol ){
+ char *p = *pp; /* Output pointer */
+ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
+ *p = 0x01;
+ *pp = &p[n];
+ }
+ return n;
+}
+
+/*
+** Compute the union of two position lists. The output written
+** into *pp contains all positions of both *pp1 and *pp2 in sorted
+** order and with any duplicates removed. All pointers are
+** updated appropriately. The caller is responsible for insuring
+** that there is enough space in *pp to hold the complete output.
+*/
+static int fts3PoslistMerge(
+ char **pp, /* Output buffer */
+ char **pp1, /* Left input list */
+ char **pp2 /* Right input list */
+){
+ char *p = *pp;
+ char *p1 = *pp1;
+ char *p2 = *pp2;
+
+ while( *p1 || *p2 ){
+ int iCol1; /* The current column index in pp1 */
+ int iCol2; /* The current column index in pp2 */
+
+ if( *p1==POS_COLUMN ){
+ fts3GetVarint32(&p1[1], &iCol1);
+ if( iCol1==0 ) return FTS_CORRUPT_VTAB;
+ }
+ else if( *p1==POS_END ) iCol1 = 0x7fffffff;
+ else iCol1 = 0;
+
+ if( *p2==POS_COLUMN ){
+ fts3GetVarint32(&p2[1], &iCol2);
+ if( iCol2==0 ) return FTS_CORRUPT_VTAB;
+ }
+ else if( *p2==POS_END ) iCol2 = 0x7fffffff;
+ else iCol2 = 0;
+
+ if( iCol1==iCol2 ){
+ sqlite3_int64 i1 = 0; /* Last position from pp1 */
+ sqlite3_int64 i2 = 0; /* Last position from pp2 */
+ sqlite3_int64 iPrev = 0;
+ int n = fts3PutColNumber(&p, iCol1);
+ p1 += n;
+ p2 += n;
+
+ /* At this point, both p1 and p2 point to the start of column-lists
+ ** for the same column (the column with index iCol1 and iCol2).
+ ** A column-list is a list of non-negative delta-encoded varints, each
+ ** incremented by 2 before being stored. Each list is terminated by a
+ ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
+ ** and writes the results to buffer p. p is left pointing to the byte
+ ** after the list written. No terminator (POS_END or POS_COLUMN) is
+ ** written to the output.
+ */
+ fts3GetDeltaVarint(&p1, &i1);
+ fts3GetDeltaVarint(&p2, &i2);
+ if( i1<2 || i2<2 ){
+ break;
+ }
+ do {
+ fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
+ iPrev -= 2;
+ if( i1==i2 ){
+ fts3ReadNextPos(&p1, &i1);
+ fts3ReadNextPos(&p2, &i2);
+ }else if( i1<i2 ){
+ fts3ReadNextPos(&p1, &i1);
+ }else{
+ fts3ReadNextPos(&p2, &i2);
+ }
+ }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
+ }else if( iCol1<iCol2 ){
+ p1 += fts3PutColNumber(&p, iCol1);
+ fts3ColumnlistCopy(&p, &p1);
+ }else{
+ p2 += fts3PutColNumber(&p, iCol2);
+ fts3ColumnlistCopy(&p, &p2);
+ }
+ }
+
+ *p++ = POS_END;
+ *pp = p;
+ *pp1 = p1 + 1;
+ *pp2 = p2 + 1;
+ return SQLITE_OK;
+}
+
+/*
+** This function is used to merge two position lists into one. When it is
+** called, *pp1 and *pp2 must both point to position lists. A position-list is
+** the part of a doclist that follows each document id. For example, if a row
+** contains:
+**
+** 'a b c'|'x y z'|'a b b a'
+**
+** Then the position list for this row for token 'b' would consist of:
+**
+** 0x02 0x01 0x02 0x03 0x03 0x00
+**
+** When this function returns, both *pp1 and *pp2 are left pointing to the
+** byte following the 0x00 terminator of their respective position lists.
+**
+** If isSaveLeft is 0, an entry is added to the output position list for
+** each position in *pp2 for which there exists one or more positions in
+** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
+** when the *pp1 token appears before the *pp2 token, but not more than nToken
+** slots before it.
+**
+** e.g. nToken==1 searches for adjacent positions.
+*/
+static int fts3PoslistPhraseMerge(
+ char **pp, /* IN/OUT: Preallocated output buffer */
+ int nToken, /* Maximum difference in token positions */
+ int isSaveLeft, /* Save the left position */
+ int isExact, /* If *pp1 is exactly nTokens before *pp2 */
+ char **pp1, /* IN/OUT: Left input list */
+ char **pp2 /* IN/OUT: Right input list */
+){
+ char *p = *pp;
+ char *p1 = *pp1;
+ char *p2 = *pp2;
+ int iCol1 = 0;
+ int iCol2 = 0;
+
+ /* Never set both isSaveLeft and isExact for the same invocation. */
+ assert( isSaveLeft==0 || isExact==0 );
+
+ assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 );
+ if( *p1==POS_COLUMN ){
+ p1++;
+ p1 += fts3GetVarint32(p1, &iCol1);
+ }
+ if( *p2==POS_COLUMN ){
+ p2++;
+ p2 += fts3GetVarint32(p2, &iCol2);
+ }
+
+ while( 1 ){
+ if( iCol1==iCol2 ){
+ char *pSave = p;
+ sqlite3_int64 iPrev = 0;
+ sqlite3_int64 iPos1 = 0;
+ sqlite3_int64 iPos2 = 0;
+
+ if( iCol1 ){
+ *p++ = POS_COLUMN;
+ p += sqlite3Fts3PutVarint(p, iCol1);
+ }
+
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
+ if( iPos1<0 || iPos2<0 ) break;
+
+ while( 1 ){
+ if( iPos2==iPos1+nToken
+ || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
+ ){
+ sqlite3_int64 iSave;
+ iSave = isSaveLeft ? iPos1 : iPos2;
+ fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
+ pSave = 0;
+ assert( p );
+ }
+ if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
+ if( (*p2&0xFE)==0 ) break;
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
+ }else{
+ if( (*p1&0xFE)==0 ) break;
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
+ }
+ }
+
+ if( pSave ){
+ assert( pp && p );
+ p = pSave;
+ }
+
+ fts3ColumnlistCopy(0, &p1);
+ fts3ColumnlistCopy(0, &p2);
+ assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
+ if( 0==*p1 || 0==*p2 ) break;
+
+ p1++;
+ p1 += fts3GetVarint32(p1, &iCol1);
+ p2++;
+ p2 += fts3GetVarint32(p2, &iCol2);
+ }
+
+ /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
+ ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
+ ** end of the position list, or the 0x01 that precedes the next
+ ** column-number in the position list.
+ */
+ else if( iCol1<iCol2 ){
+ fts3ColumnlistCopy(0, &p1);
+ if( 0==*p1 ) break;
+ p1++;
+ p1 += fts3GetVarint32(p1, &iCol1);
+ }else{
+ fts3ColumnlistCopy(0, &p2);
+ if( 0==*p2 ) break;
+ p2++;
+ p2 += fts3GetVarint32(p2, &iCol2);
+ }
+ }
+
+ fts3PoslistCopy(0, &p2);
+ fts3PoslistCopy(0, &p1);
+ *pp1 = p1;
+ *pp2 = p2;
+ if( *pp==p ){
+ return 0;
+ }
+ *p++ = 0x00;
+ *pp = p;
+ return 1;
+}
+
+/*
+** Merge two position-lists as required by the NEAR operator. The argument
+** position lists correspond to the left and right phrases of an expression
+** like:
+**
+** "phrase 1" NEAR "phrase number 2"
+**
+** Position list *pp1 corresponds to the left-hand side of the NEAR
+** expression and *pp2 to the right. As usual, the indexes in the position
+** lists are the offsets of the last token in each phrase (tokens "1" and "2"
+** in the example above).
+**
+** The output position list - written to *pp - is a copy of *pp2 with those
+** entries that are not sufficiently NEAR entries in *pp1 removed.
+*/
+static int fts3PoslistNearMerge(
+ char **pp, /* Output buffer */
+ char *aTmp, /* Temporary buffer space */
+ int nRight, /* Maximum difference in token positions */
+ int nLeft, /* Maximum difference in token positions */
+ char **pp1, /* IN/OUT: Left input list */
+ char **pp2 /* IN/OUT: Right input list */
+){
+ char *p1 = *pp1;
+ char *p2 = *pp2;
+
+ char *pTmp1 = aTmp;
+ char *pTmp2;
+ char *aTmp2;
+ int res = 1;
+
+ fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
+ aTmp2 = pTmp2 = pTmp1;
+ *pp1 = p1;
+ *pp2 = p2;
+ fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
+ if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
+ fts3PoslistMerge(pp, &aTmp, &aTmp2);
+ }else if( pTmp1!=aTmp ){
+ fts3PoslistCopy(pp, &aTmp);
+ }else if( pTmp2!=aTmp2 ){
+ fts3PoslistCopy(pp, &aTmp2);
+ }else{
+ res = 0;
+ }
+
+ return res;
+}
+
+/*
+** An instance of this function is used to merge together the (potentially
+** large number of) doclists for each term that matches a prefix query.
+** See function fts3TermSelectMerge() for details.
+*/
+typedef struct TermSelect TermSelect;
+struct TermSelect {
+ char *aaOutput[16]; /* Malloc'd output buffers */
+ int anOutput[16]; /* Size each output buffer in bytes */
+};
+
+/*
+** This function is used to read a single varint from a buffer. Parameter
+** pEnd points 1 byte past the end of the buffer. When this function is
+** called, if *pp points to pEnd or greater, then the end of the buffer
+** has been reached. In this case *pp is set to 0 and the function returns.
+**
+** If *pp does not point to or past pEnd, then a single varint is read
+** from *pp. *pp is then set to point 1 byte past the end of the read varint.
+**
+** If bDescIdx is false, the value read is added to *pVal before returning.
+** If it is true, the value read is subtracted from *pVal before this
+** function returns.
+*/
+static void fts3GetDeltaVarint3(
+ char **pp, /* IN/OUT: Point to read varint from */
+ char *pEnd, /* End of buffer */
+ int bDescIdx, /* True if docids are descending */
+ sqlite3_int64 *pVal /* IN/OUT: Integer value */
+){
+ if( *pp>=pEnd ){
+ *pp = 0;
+ }else{
+ u64 iVal;
+ *pp += sqlite3Fts3GetVarintU(*pp, &iVal);
+ if( bDescIdx ){
+ *pVal = (i64)((u64)*pVal - iVal);
+ }else{
+ *pVal = (i64)((u64)*pVal + iVal);
+ }
+ }
+}
+
+/*
+** This function is used to write a single varint to a buffer. The varint
+** is written to *pp. Before returning, *pp is set to point 1 byte past the
+** end of the value written.
+**
+** If *pbFirst is zero when this function is called, the value written to
+** the buffer is that of parameter iVal.
+**
+** If *pbFirst is non-zero when this function is called, then the value
+** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
+** (if bDescIdx is non-zero).
+**
+** Before returning, this function always sets *pbFirst to 1 and *piPrev
+** to the value of parameter iVal.
+*/
+static void fts3PutDeltaVarint3(
+ char **pp, /* IN/OUT: Output pointer */
+ int bDescIdx, /* True for descending docids */
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
+ int *pbFirst, /* IN/OUT: True after first int written */
+ sqlite3_int64 iVal /* Write this value to the list */
+){
+ sqlite3_uint64 iWrite;
+ if( bDescIdx==0 || *pbFirst==0 ){
+ assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev );
+ iWrite = (u64)iVal - (u64)*piPrev;
+ }else{
+ assert_fts3_nc( *piPrev>=iVal );
+ iWrite = (u64)*piPrev - (u64)iVal;
+ }
+ assert( *pbFirst || *piPrev==0 );
+ assert_fts3_nc( *pbFirst==0 || iWrite>0 );
+ *pp += sqlite3Fts3PutVarint(*pp, iWrite);
+ *piPrev = iVal;
+ *pbFirst = 1;
+}
+
+
+/*
+** This macro is used by various functions that merge doclists. The two
+** arguments are 64-bit docid values. If the value of the stack variable
+** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
+** Otherwise, (i2-i1).
+**
+** Using this makes it easier to write code that can merge doclists that are
+** sorted in either ascending or descending order.
+*/
+/* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */
+#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1)))
+
+/*
+** This function does an "OR" merge of two doclists (output contains all
+** positions contained in either argument doclist). If the docids in the
+** input doclists are sorted in ascending order, parameter bDescDoclist
+** should be false. If they are sorted in ascending order, it should be
+** passed a non-zero value.
+**
+** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
+** containing the output doclist and SQLITE_OK is returned. In this case
+** *pnOut is set to the number of bytes in the output doclist.
+**
+** If an error occurs, an SQLite error code is returned. The output values
+** are undefined in this case.
+*/
+static int fts3DoclistOrMerge(
+ int bDescDoclist, /* True if arguments are desc */
+ char *a1, int n1, /* First doclist */
+ char *a2, int n2, /* Second doclist */
+ char **paOut, int *pnOut /* OUT: Malloc'd doclist */
+){
+ int rc = SQLITE_OK;
+ sqlite3_int64 i1 = 0;
+ sqlite3_int64 i2 = 0;
+ sqlite3_int64 iPrev = 0;
+ char *pEnd1 = &a1[n1];
+ char *pEnd2 = &a2[n2];
+ char *p1 = a1;
+ char *p2 = a2;
+ char *p;
+ char *aOut;
+ int bFirstOut = 0;
+
+ *paOut = 0;
+ *pnOut = 0;
+
+ /* Allocate space for the output. Both the input and output doclists
+ ** are delta encoded. If they are in ascending order (bDescDoclist==0),
+ ** then the first docid in each list is simply encoded as a varint. For
+ ** each subsequent docid, the varint stored is the difference between the
+ ** current and previous docid (a positive number - since the list is in
+ ** ascending order).
+ **
+ ** The first docid written to the output is therefore encoded using the
+ ** same number of bytes as it is in whichever of the input lists it is
+ ** read from. And each subsequent docid read from the same input list
+ ** consumes either the same or less bytes as it did in the input (since
+ ** the difference between it and the previous value in the output must
+ ** be a positive value less than or equal to the delta value read from
+ ** the input list). The same argument applies to all but the first docid
+ ** read from the 'other' list. And to the contents of all position lists
+ ** that will be copied and merged from the input to the output.
+ **
+ ** However, if the first docid copied to the output is a negative number,
+ ** then the encoding of the first docid from the 'other' input list may
+ ** be larger in the output than it was in the input (since the delta value
+ ** may be a larger positive integer than the actual docid).
+ **
+ ** The space required to store the output is therefore the sum of the
+ ** sizes of the two inputs, plus enough space for exactly one of the input
+ ** docids to grow.
+ **
+ ** A symetric argument may be made if the doclists are in descending
+ ** order.
+ */
+ aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING);
+ if( !aOut ) return SQLITE_NOMEM;
+
+ p = aOut;
+ fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
+ while( p1 || p2 ){
+ sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
+
+ if( p2 && p1 && iDiff==0 ){
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
+ rc = fts3PoslistMerge(&p, &p1, &p2);
+ if( rc ) break;
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }else if( !p2 || (p1 && iDiff<0) ){
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
+ fts3PoslistCopy(&p, &p1);
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ }else{
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
+ fts3PoslistCopy(&p, &p2);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }
+
+ assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) );
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(aOut);
+ p = aOut = 0;
+ }else{
+ assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );
+ memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING);
+ }
+ *paOut = aOut;
+ *pnOut = (int)(p-aOut);
+ return rc;
+}
+
+/*
+** This function does a "phrase" merge of two doclists. In a phrase merge,
+** the output contains a copy of each position from the right-hand input
+** doclist for which there is a position in the left-hand input doclist
+** exactly nDist tokens before it.
+**
+** If the docids in the input doclists are sorted in ascending order,
+** parameter bDescDoclist should be false. If they are sorted in ascending
+** order, it should be passed a non-zero value.
+**
+** The right-hand input doclist is overwritten by this function.
+*/
+static int fts3DoclistPhraseMerge(
+ int bDescDoclist, /* True if arguments are desc */
+ int nDist, /* Distance from left to right (1=adjacent) */
+ char *aLeft, int nLeft, /* Left doclist */
+ char **paRight, int *pnRight /* IN/OUT: Right/output doclist */
+){
+ sqlite3_int64 i1 = 0;
+ sqlite3_int64 i2 = 0;
+ sqlite3_int64 iPrev = 0;
+ char *aRight = *paRight;
+ char *pEnd1 = &aLeft[nLeft];
+ char *pEnd2 = &aRight[*pnRight];
+ char *p1 = aLeft;
+ char *p2 = aRight;
+ char *p;
+ int bFirstOut = 0;
+ char *aOut;
+
+ assert( nDist>0 );
+ if( bDescDoclist ){
+ aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX);
+ if( aOut==0 ) return SQLITE_NOMEM;
+ }else{
+ aOut = aRight;
+ }
+ p = aOut;
+
+ fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
+
+ while( p1 && p2 ){
+ sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
+ if( iDiff==0 ){
+ char *pSave = p;
+ sqlite3_int64 iPrevSave = iPrev;
+ int bFirstOutSave = bFirstOut;
+
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
+ if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
+ p = pSave;
+ iPrev = iPrevSave;
+ bFirstOut = bFirstOutSave;
+ }
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }else if( iDiff<0 ){
+ fts3PoslistCopy(0, &p1);
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ }else{
+ fts3PoslistCopy(0, &p2);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }
+ }
+
+ *pnRight = (int)(p - aOut);
+ if( bDescDoclist ){
+ sqlite3_free(aRight);
+ *paRight = aOut;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Argument pList points to a position list nList bytes in size. This
+** function checks to see if the position list contains any entries for
+** a token in position 0 (of any column). If so, it writes argument iDelta
+** to the output buffer pOut, followed by a position list consisting only
+** of the entries from pList at position 0, and terminated by an 0x00 byte.
+** The value returned is the number of bytes written to pOut (if any).
+*/
+SQLITE_PRIVATE int sqlite3Fts3FirstFilter(
+ sqlite3_int64 iDelta, /* Varint that may be written to pOut */
+ char *pList, /* Position list (no 0x00 term) */
+ int nList, /* Size of pList in bytes */
+ char *pOut /* Write output here */
+){
+ int nOut = 0;
+ int bWritten = 0; /* True once iDelta has been written */
+ char *p = pList;
+ char *pEnd = &pList[nList];
+
+ if( *p!=0x01 ){
+ if( *p==0x02 ){
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
+ pOut[nOut++] = 0x02;
+ bWritten = 1;
+ }
+ fts3ColumnlistCopy(0, &p);
+ }
+
+ while( p<pEnd ){
+ sqlite3_int64 iCol;
+ p++;
+ p += sqlite3Fts3GetVarint(p, &iCol);
+ if( *p==0x02 ){
+ if( bWritten==0 ){
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
+ bWritten = 1;
+ }
+ pOut[nOut++] = 0x01;
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
+ pOut[nOut++] = 0x02;
+ }
+ fts3ColumnlistCopy(0, &p);
+ }
+ if( bWritten ){
+ pOut[nOut++] = 0x00;
+ }
+
+ return nOut;
+}
+
+
+/*
+** Merge all doclists in the TermSelect.aaOutput[] array into a single
+** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
+** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
+**
+** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
+** the responsibility of the caller to free any doclists left in the
+** TermSelect.aaOutput[] array.
+*/
+static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
+ char *aOut = 0;
+ int nOut = 0;
+ int i;
+
+ /* Loop through the doclists in the aaOutput[] array. Merge them all
+ ** into a single doclist.
+ */
+ for(i=0; i<SizeofArray(pTS->aaOutput); i++){
+ if( pTS->aaOutput[i] ){
+ if( !aOut ){
+ aOut = pTS->aaOutput[i];
+ nOut = pTS->anOutput[i];
+ pTS->aaOutput[i] = 0;
+ }else{
+ int nNew;
+ char *aNew;
+
+ int rc = fts3DoclistOrMerge(p->bDescIdx,
+ pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
+ );
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(aOut);
+ return rc;
+ }
+
+ sqlite3_free(pTS->aaOutput[i]);
+ sqlite3_free(aOut);
+ pTS->aaOutput[i] = 0;
+ aOut = aNew;
+ nOut = nNew;
+ }
+ }
+ }
+
+ pTS->aaOutput[0] = aOut;
+ pTS->anOutput[0] = nOut;
+ return SQLITE_OK;
+}
+
+/*
+** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
+** as the first argument. The merge is an "OR" merge (see function
+** fts3DoclistOrMerge() for details).
+**
+** This function is called with the doclist for each term that matches
+** a queried prefix. It merges all these doclists into one, the doclist
+** for the specified prefix. Since there can be a very large number of
+** doclists to merge, the merging is done pair-wise using the TermSelect
+** object.
+**
+** This function returns SQLITE_OK if the merge is successful, or an
+** SQLite error code (SQLITE_NOMEM) if an error occurs.
+*/
+static int fts3TermSelectMerge(
+ Fts3Table *p, /* FTS table handle */
+ TermSelect *pTS, /* TermSelect object to merge into */
+ char *aDoclist, /* Pointer to doclist */
+ int nDoclist /* Size of aDoclist in bytes */
+){
+ if( pTS->aaOutput[0]==0 ){
+ /* If this is the first term selected, copy the doclist to the output
+ ** buffer using memcpy().
+ **
+ ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
+ ** allocation. This is so as to ensure that the buffer is big enough
+ ** to hold the current doclist AND'd with any other doclist. If the
+ ** doclists are stored in order=ASC order, this padding would not be
+ ** required (since the size of [doclistA AND doclistB] is always less
+ ** than or equal to the size of [doclistA] in that case). But this is
+ ** not true for order=DESC. For example, a doclist containing (1, -1)
+ ** may be smaller than (-1), as in the first example the -1 may be stored
+ ** as a single-byte delta, whereas in the second it must be stored as a
+ ** FTS3_VARINT_MAX byte varint.
+ **
+ ** Similar padding is added in the fts3DoclistOrMerge() function.
+ */
+ pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1);
+ pTS->anOutput[0] = nDoclist;
+ if( pTS->aaOutput[0] ){
+ memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
+ memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }else{
+ char *aMerge = aDoclist;
+ int nMerge = nDoclist;
+ int iOut;
+
+ for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
+ if( pTS->aaOutput[iOut]==0 ){
+ assert( iOut>0 );
+ pTS->aaOutput[iOut] = aMerge;
+ pTS->anOutput[iOut] = nMerge;
+ break;
+ }else{
+ char *aNew;
+ int nNew;
+
+ int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
+ pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
+ );
+ if( rc!=SQLITE_OK ){
+ if( aMerge!=aDoclist ) sqlite3_free(aMerge);
+ return rc;
+ }
+
+ if( aMerge!=aDoclist ) sqlite3_free(aMerge);
+ sqlite3_free(pTS->aaOutput[iOut]);
+ pTS->aaOutput[iOut] = 0;
+
+ aMerge = aNew;
+ nMerge = nNew;
+ if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
+ pTS->aaOutput[iOut] = aMerge;
+ pTS->anOutput[iOut] = nMerge;
+ }
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
+*/
+static int fts3SegReaderCursorAppend(
+ Fts3MultiSegReader *pCsr,
+ Fts3SegReader *pNew
+){
+ if( (pCsr->nSegment%16)==0 ){
+ Fts3SegReader **apNew;
+ sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
+ apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte);
+ if( !apNew ){
+ sqlite3Fts3SegReaderFree(pNew);
+ return SQLITE_NOMEM;
+ }
+ pCsr->apSegment = apNew;
+ }
+ pCsr->apSegment[pCsr->nSegment++] = pNew;
+ return SQLITE_OK;
+}
+
+/*
+** Add seg-reader objects to the Fts3MultiSegReader object passed as the
+** 8th argument.
+**
+** This function returns SQLITE_OK if successful, or an SQLite error code
+** otherwise.
+*/
+static int fts3SegReaderCursor(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language id */
+ int iIndex, /* Index to search (from 0 to p->nIndex-1) */
+ int iLevel, /* Level of segments to scan */
+ const char *zTerm, /* Term to query for */
+ int nTerm, /* Size of zTerm in bytes */
+ int isPrefix, /* True for a prefix search */
+ int isScan, /* True to scan from zTerm to EOF */
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */
+){
+ int rc = SQLITE_OK; /* Error code */
+ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
+ int rc2; /* Result of sqlite3_reset() */
+
+ /* If iLevel is less than 0 and this is not a scan, include a seg-reader
+ ** for the pending-terms. If this is a scan, then this call must be being
+ ** made by an fts4aux module, not an FTS table. In this case calling
+ ** Fts3SegReaderPending might segfault, as the data structures used by
+ ** fts4aux are not completely populated. So it's easiest to filter these
+ ** calls out here. */
+ if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){
+ Fts3SegReader *pSeg = 0;
+ rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
+ if( rc==SQLITE_OK && pSeg ){
+ rc = fts3SegReaderCursorAppend(pCsr, pSeg);
+ }
+ }
+
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
+ Fts3SegReader *pSeg = 0;
+
+ /* Read the values returned by the SELECT into local variables. */
+ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
+ sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
+ sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
+ int nRoot = sqlite3_column_bytes(pStmt, 4);
+ char const *zRoot = sqlite3_column_blob(pStmt, 4);
+
+ /* If zTerm is not NULL, and this segment is not stored entirely on its
+ ** root node, the range of leaves scanned can be reduced. Do this. */
+ if( iStartBlock && zTerm && zRoot ){
+ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
+ if( rc!=SQLITE_OK ) goto finished;
+ if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
+ }
+
+ rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
+ (isPrefix==0 && isScan==0),
+ iStartBlock, iLeavesEndBlock,
+ iEndBlock, zRoot, nRoot, &pSeg
+ );
+ if( rc!=SQLITE_OK ) goto finished;
+ rc = fts3SegReaderCursorAppend(pCsr, pSeg);
+ }
+ }
+
+ finished:
+ rc2 = sqlite3_reset(pStmt);
+ if( rc==SQLITE_DONE ) rc = rc2;
+
+ return rc;
+}
+
+/*
+** Set up a cursor object for iterating through a full-text index or a
+** single level therein.
+*/
+SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language-id to search */
+ int iIndex, /* Index to search (from 0 to p->nIndex-1) */
+ int iLevel, /* Level of segments to scan */
+ const char *zTerm, /* Term to query for */
+ int nTerm, /* Size of zTerm in bytes */
+ int isPrefix, /* True for a prefix search */
+ int isScan, /* True to scan from zTerm to EOF */
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */
+){
+ assert( iIndex>=0 && iIndex<p->nIndex );
+ assert( iLevel==FTS3_SEGCURSOR_ALL
+ || iLevel==FTS3_SEGCURSOR_PENDING
+ || iLevel>=0
+ );
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
+ assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
+ assert( isPrefix==0 || isScan==0 );
+
+ memset(pCsr, 0, sizeof(Fts3MultiSegReader));
+ return fts3SegReaderCursor(
+ p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
+ );
+}
+
+/*
+** In addition to its current configuration, have the Fts3MultiSegReader
+** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3SegReaderCursorAddZero(
+ Fts3Table *p, /* FTS virtual table handle */
+ int iLangid,
+ const char *zTerm, /* Term to scan doclist of */
+ int nTerm, /* Number of bytes in zTerm */
+ Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
+){
+ return fts3SegReaderCursor(p,
+ iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
+ );
+}
+
+/*
+** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
+** if isPrefix is true, to scan the doclist for all terms for which
+** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
+** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
+** an SQLite error code.
+**
+** It is the responsibility of the caller to free this object by eventually
+** passing it to fts3SegReaderCursorFree()
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+** Output parameter *ppSegcsr is set to 0 if an error occurs.
+*/
+static int fts3TermSegReaderCursor(
+ Fts3Cursor *pCsr, /* Virtual table cursor handle */
+ const char *zTerm, /* Term to query for */
+ int nTerm, /* Size of zTerm in bytes */
+ int isPrefix, /* True for a prefix search */
+ Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
+){
+ Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
+ int rc = SQLITE_NOMEM; /* Return code */
+
+ pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
+ if( pSegcsr ){
+ int i;
+ int bFound = 0; /* True once an index has been found */
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+
+ if( isPrefix ){
+ for(i=1; bFound==0 && i<p->nIndex; i++){
+ if( p->aIndex[i].nPrefix==nTerm ){
+ bFound = 1;
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
+ i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
+ );
+ pSegcsr->bLookup = 1;
+ }
+ }
+
+ for(i=1; bFound==0 && i<p->nIndex; i++){
+ if( p->aIndex[i].nPrefix==nTerm+1 ){
+ bFound = 1;
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
+ i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
+ );
+ if( rc==SQLITE_OK ){
+ rc = fts3SegReaderCursorAddZero(
+ p, pCsr->iLangid, zTerm, nTerm, pSegcsr
+ );
+ }
+ }
+ }
+ }
+
+ if( bFound==0 ){
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
+ 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
+ );
+ pSegcsr->bLookup = !isPrefix;
+ }
+ }
+
+ *ppSegcsr = pSegcsr;
+ return rc;
+}
+
+/*
+** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
+*/
+static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
+ sqlite3Fts3SegReaderFinish(pSegcsr);
+ sqlite3_free(pSegcsr);
+}
+
+/*
+** This function retrieves the doclist for the specified term (or term
+** prefix) from the database.
+*/
+static int fts3TermSelect(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3PhraseToken *pTok, /* Token to query for */
+ int iColumn, /* Column to query (or -ve for all columns) */
+ int *pnOut, /* OUT: Size of buffer at *ppOut */
+ char **ppOut /* OUT: Malloced result buffer */
+){
+ int rc; /* Return code */
+ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
+ TermSelect tsc; /* Object for pair-wise doclist merging */
+ Fts3SegFilter filter; /* Segment term filter configuration */
+
+ pSegcsr = pTok->pSegcsr;
+ memset(&tsc, 0, sizeof(TermSelect));
+
+ filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
+ | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
+ | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
+ | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
+ filter.iCol = iColumn;
+ filter.zTerm = pTok->z;
+ filter.nTerm = pTok->n;
+
+ rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
+ while( SQLITE_OK==rc
+ && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
+ ){
+ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts3TermSelectFinishMerge(p, &tsc);
+ }
+ if( rc==SQLITE_OK ){
+ *ppOut = tsc.aaOutput[0];
+ *pnOut = tsc.anOutput[0];
+ }else{
+ int i;
+ for(i=0; i<SizeofArray(tsc.aaOutput); i++){
+ sqlite3_free(tsc.aaOutput[i]);
+ }
+ }
+
+ fts3SegReaderCursorFree(pSegcsr);
+ pTok->pSegcsr = 0;
+ return rc;
+}
+
+/*
+** This function counts the total number of docids in the doclist stored
+** in buffer aList[], size nList bytes.
+**
+** If the isPoslist argument is true, then it is assumed that the doclist
+** contains a position-list following each docid. Otherwise, it is assumed
+** that the doclist is simply a list of docids stored as delta encoded
+** varints.
+*/
+static int fts3DoclistCountDocids(char *aList, int nList){
+ int nDoc = 0; /* Return value */
+ if( aList ){
+ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
+ char *p = aList; /* Cursor */
+ while( p<aEnd ){
+ nDoc++;
+ while( (*p++)&0x80 ); /* Skip docid varint */
+ fts3PoslistCopy(0, &p); /* Skip over position list */
+ }
+ }
+
+ return nDoc;
+}
+
+/*
+** Advance the cursor to the next row in the %_content table that
+** matches the search criteria. For a MATCH search, this will be
+** the next row that matches. For a full-table scan, this will be
+** simply the next row in the %_content table. For a docid lookup,
+** this routine simply sets the EOF flag.
+**
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
+** even if we reach end-of-file. The fts3EofMethod() will be called
+** subsequently to determine whether or not an EOF was hit.
+*/
+static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
+ int rc;
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
+ if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
+ Fts3Table *pTab = (Fts3Table*)pCursor->pVtab;
+ pTab->bLock++;
+ if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
+ pCsr->isEof = 1;
+ rc = sqlite3_reset(pCsr->pStmt);
+ }else{
+ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
+ rc = SQLITE_OK;
+ }
+ pTab->bLock--;
+ }else{
+ rc = fts3EvalNext((Fts3Cursor *)pCursor);
+ }
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ return rc;
+}
+
+/*
+** If the numeric type of argument pVal is "integer", then return it
+** converted to a 64-bit signed integer. Otherwise, return a copy of
+** the second parameter, iDefault.
+*/
+static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
+ if( pVal ){
+ int eType = sqlite3_value_numeric_type(pVal);
+ if( eType==SQLITE_INTEGER ){
+ return sqlite3_value_int64(pVal);
+ }
+ }
+ return iDefault;
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
+** the %_content table.
+**
+** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
+** in the %_content table.
+**
+** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
+** column on the left-hand side of the MATCH operator is column
+** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
+** side of the MATCH operator.
+*/
+static int fts3FilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ int rc = SQLITE_OK;
+ char *zSql; /* SQL statement used to access %_content */
+ int eSearch;
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab;
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
+
+ sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */
+ sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */
+ sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */
+ sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */
+ int iIdx;
+
+ UNUSED_PARAMETER(idxStr);
+ UNUSED_PARAMETER(nVal);
+
+ if( p->bLock ){
+ return SQLITE_ERROR;
+ }
+
+ eSearch = (idxNum & 0x0000FFFF);
+ assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
+ assert( p->pSegments==0 );
+
+ /* Collect arguments into local variables */
+ iIdx = 0;
+ if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
+ if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
+ if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
+ if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
+ assert( iIdx==nVal );
+
+ /* In case the cursor has been used before, clear it now. */
+ fts3ClearCursor(pCsr);
+
+ /* Set the lower and upper bounds on docids to return */
+ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
+ pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
+
+ if( idxStr ){
+ pCsr->bDesc = (idxStr[0]=='D');
+ }else{
+ pCsr->bDesc = p->bDescIdx;
+ }
+ pCsr->eSearch = (i16)eSearch;
+
+ if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
+ int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
+ const char *zQuery = (const char *)sqlite3_value_text(pCons);
+
+ if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
+ return SQLITE_NOMEM;
+ }
+
+ pCsr->iLangid = 0;
+ if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
+
+ assert( p->base.zErrMsg==0 );
+ rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
+ p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
+ &p->base.zErrMsg
+ );
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ rc = fts3EvalStart(pCsr);
+ sqlite3Fts3SegmentsClose(p);
+ if( rc!=SQLITE_OK ) return rc;
+ pCsr->pNextId = pCsr->aDoclist;
+ pCsr->iPrevId = 0;
+ }
+
+ /* Compile a SELECT statement for this cursor. For a full-table-scan, the
+ ** statement loops through all rows of the %_content table. For a
+ ** full-text query or docid lookup, the statement retrieves a single
+ ** row by docid.
+ */
+ if( eSearch==FTS3_FULLSCAN_SEARCH ){
+ if( pDocidGe || pDocidLe ){
+ zSql = sqlite3_mprintf(
+ "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
+ p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
+ (pCsr->bDesc ? "DESC" : "ASC")
+ );
+ }else{
+ zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
+ p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
+ );
+ }
+ if( zSql ){
+ p->bLock++;
+ rc = sqlite3_prepare_v3(
+ p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
+ );
+ p->bLock--;
+ sqlite3_free(zSql);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }else if( eSearch==FTS3_DOCID_SEARCH ){
+ rc = fts3CursorSeekStmt(pCsr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
+ }
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ return fts3NextMethod(pCursor);
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3Cursor *pCsr = (Fts3Cursor*)pCursor;
+ if( pCsr->isEof ){
+ fts3ClearCursor(pCsr);
+ pCsr->isEof = 1;
+ }
+ return pCsr->isEof;
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts3
+** exposes %_content.docid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
+ *pRowid = pCsr->iPrevId;
+ return SQLITE_OK;
+}
+
+/*
+** This is the xColumn method, called by SQLite to request a value from
+** the row that the supplied cursor currently points to.
+**
+** If:
+**
+** (iCol < p->nColumn) -> The value of the iCol'th user column.
+** (iCol == p->nColumn) -> Magic column with the same name as the table.
+** (iCol == p->nColumn+1) -> Docid column
+** (iCol == p->nColumn+2) -> Langid column
+*/
+static int fts3ColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ int rc = SQLITE_OK; /* Return Code */
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab;
+
+ /* The column value supplied by SQLite must be in range. */
+ assert( iCol>=0 && iCol<=p->nColumn+2 );
+
+ switch( iCol-p->nColumn ){
+ case 0:
+ /* The special 'table-name' column */
+ sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0);
+ break;
+
+ case 1:
+ /* The docid column */
+ sqlite3_result_int64(pCtx, pCsr->iPrevId);
+ break;
+
+ case 2:
+ if( pCsr->pExpr ){
+ sqlite3_result_int64(pCtx, pCsr->iLangid);
+ break;
+ }else if( p->zLanguageid==0 ){
+ sqlite3_result_int(pCtx, 0);
+ break;
+ }else{
+ iCol = p->nColumn;
+ /* no break */ deliberate_fall_through
+ }
+
+ default:
+ /* A user column. Or, if this is a full-table scan, possibly the
+ ** language-id column. Seek the cursor. */
+ rc = fts3CursorSeek(0, pCsr);
+ if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
+ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
+ }
+ break;
+ }
+
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ return rc;
+}
+
+/*
+** This function is the implementation of the xUpdate callback used by
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
+** inserted, updated or deleted.
+*/
+static int fts3UpdateMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
+}
+
+/*
+** Implementation of xSync() method. Flush the contents of the pending-terms
+** hash-table to the database.
+*/
+static int fts3SyncMethod(sqlite3_vtab *pVtab){
+
+ /* Following an incremental-merge operation, assuming that the input
+ ** segments are not completely consumed (the usual case), they are updated
+ ** in place to remove the entries that have already been merged. This
+ ** involves updating the leaf block that contains the smallest unmerged
+ ** entry and each block (if any) between the leaf and the root node. So
+ ** if the height of the input segment b-trees is N, and input segments
+ ** are merged eight at a time, updating the input segments at the end
+ ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
+ ** small - often between 0 and 2. So the overhead of the incremental
+ ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
+ ** dwarfing the actual productive work accomplished, the incremental merge
+ ** is only attempted if it will write at least 64 leaf blocks. Hence
+ ** nMinMerge.
+ **
+ ** Of course, updating the input segments also involves deleting a bunch
+ ** of blocks from the segments table. But this is not considered overhead
+ ** as it would also be required by a crisis-merge that used the same input
+ ** segments.
+ */
+ const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
+
+ Fts3Table *p = (Fts3Table*)pVtab;
+ int rc;
+ i64 iLastRowid = sqlite3_last_insert_rowid(p->db);
+
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc==SQLITE_OK
+ && p->nLeafAdd>(nMinMerge/16)
+ && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
+ ){
+ int mxLevel = 0; /* Maximum relative level value in db */
+ int A; /* Incr-merge parameter A */
+
+ rc = sqlite3Fts3MaxLevel(p, &mxLevel);
+ assert( rc==SQLITE_OK || mxLevel==0 );
+ A = p->nLeafAdd * mxLevel;
+ A += (A/2);
+ if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
+ }
+ sqlite3Fts3SegmentsClose(p);
+ sqlite3_set_last_insert_rowid(p->db, iLastRowid);
+ return rc;
+}
+
+/*
+** If it is currently unknown whether or not the FTS table has an %_stat
+** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
+** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
+** if an error occurs.
+*/
+static int fts3SetHasStat(Fts3Table *p){
+ int rc = SQLITE_OK;
+ if( p->bHasStat==2 ){
+ char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
+ if( zTbl ){
+ int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);
+ sqlite3_free(zTbl);
+ p->bHasStat = (res==SQLITE_OK);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ return rc;
+}
+
+/*
+** Implementation of xBegin() method.
+*/
+static int fts3BeginMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table*)pVtab;
+ int rc;
+ UNUSED_PARAMETER(pVtab);
+ assert( p->pSegments==0 );
+ assert( p->nPendingData==0 );
+ assert( p->inTransaction!=1 );
+ p->nLeafAdd = 0;
+ rc = fts3SetHasStat(p);
+#ifdef SQLITE_DEBUG
+ if( rc==SQLITE_OK ){
+ p->inTransaction = 1;
+ p->mxSavepoint = -1;
+ }
+#endif
+ return rc;
+}
+
+/*
+** Implementation of xCommit() method. This is a no-op. The contents of
+** the pending-terms hash-table have already been flushed into the database
+** by fts3SyncMethod().
+*/
+static int fts3CommitMethod(sqlite3_vtab *pVtab){
+ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
+ UNUSED_PARAMETER(pVtab);
+ assert( p->nPendingData==0 );
+ assert( p->inTransaction!=0 );
+ assert( p->pSegments==0 );
+ TESTONLY( p->inTransaction = 0 );
+ TESTONLY( p->mxSavepoint = -1; );
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xRollback(). Discard the contents of the pending-terms
+** hash-table. Any changes made to the database are reverted by SQLite.
+*/
+static int fts3RollbackMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table*)pVtab;
+ sqlite3Fts3PendingTermsClear(p);
+ assert( p->inTransaction!=0 );
+ TESTONLY( p->inTransaction = 0 );
+ TESTONLY( p->mxSavepoint = -1; );
+ return SQLITE_OK;
+}
+
+/*
+** When called, *ppPoslist must point to the byte immediately following the
+** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
+** moves *ppPoslist so that it instead points to the first byte of the
+** same position list.
+*/
+static void fts3ReversePoslist(char *pStart, char **ppPoslist){
+ char *p = &(*ppPoslist)[-2];
+ char c = 0;
+
+ /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
+ while( p>pStart && (c=*p--)==0 );
+
+ /* Search backwards for a varint with value zero (the end of the previous
+ ** poslist). This is an 0x00 byte preceded by some byte that does not
+ ** have the 0x80 bit set. */
+ while( p>pStart && (*p & 0x80) | c ){
+ c = *p--;
+ }
+ assert( p==pStart || c==0 );
+
+ /* At this point p points to that preceding byte without the 0x80 bit
+ ** set. So to find the start of the poslist, skip forward 2 bytes then
+ ** over a varint.
+ **
+ ** Normally. The other case is that p==pStart and the poslist to return
+ ** is the first in the doclist. In this case do not skip forward 2 bytes.
+ ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
+ ** is required for cases where the first byte of a doclist and the
+ ** doclist is empty. For example, if the first docid is 10, a doclist
+ ** that begins with:
+ **
+ ** 0x0A 0x00 <next docid delta varint>
+ */
+ if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; }
+ while( *p++&0x80 );
+ *ppPoslist = p;
+}
+
+/*
+** Helper function used by the implementation of the overloaded snippet(),
+** offsets() and optimize() SQL functions.
+**
+** If the value passed as the third argument is a blob of size
+** sizeof(Fts3Cursor*), then the blob contents are copied to the
+** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
+** message is written to context pContext and SQLITE_ERROR returned. The
+** string passed via zFunc is used as part of the error message.
+*/
+static int fts3FunctionArg(
+ sqlite3_context *pContext, /* SQL function call context */
+ const char *zFunc, /* Function name */
+ sqlite3_value *pVal, /* argv[0] passed to function */
+ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
+){
+ int rc;
+ *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor");
+ if( (*ppCsr)!=0 ){
+ rc = SQLITE_OK;
+ }else{
+ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
+ sqlite3_result_error(pContext, zErr, -1);
+ sqlite3_free(zErr);
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Implementation of the snippet() function for FTS3
+*/
+static void fts3SnippetFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of apVal[] array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
+ const char *zStart = "<b>";
+ const char *zEnd = "</b>";
+ const char *zEllipsis = "<b>...</b>";
+ int iCol = -1;
+ int nToken = 15; /* Default number of tokens in snippet */
+
+ /* There must be at least one argument passed to this function (otherwise
+ ** the non-overloaded version would have been called instead of this one).
+ */
+ assert( nVal>=1 );
+
+ if( nVal>6 ){
+ sqlite3_result_error(pContext,
+ "wrong number of arguments to function snippet()", -1);
+ return;
+ }
+ if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
+
+ switch( nVal ){
+ case 6: nToken = sqlite3_value_int(apVal[5]);
+ /* no break */ deliberate_fall_through
+ case 5: iCol = sqlite3_value_int(apVal[4]);
+ /* no break */ deliberate_fall_through
+ case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
+ /* no break */ deliberate_fall_through
+ case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
+ /* no break */ deliberate_fall_through
+ case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
+ }
+ if( !zEllipsis || !zEnd || !zStart ){
+ sqlite3_result_error_nomem(pContext);
+ }else if( nToken==0 ){
+ sqlite3_result_text(pContext, "", -1, SQLITE_STATIC);
+ }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
+ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
+ }
+}
+
+/*
+** Implementation of the offsets() function for FTS3
+*/
+static void fts3OffsetsFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of argument array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
+
+ UNUSED_PARAMETER(nVal);
+
+ assert( nVal==1 );
+ if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
+ assert( pCsr );
+ if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
+ sqlite3Fts3Offsets(pContext, pCsr);
+ }
+}
+
+/*
+** Implementation of the special optimize() function for FTS3. This
+** function merges all segments in the database to a single segment.
+** Example usage is:
+**
+** SELECT optimize(t) FROM t LIMIT 1;
+**
+** where 't' is the name of an FTS3 table.
+*/
+static void fts3OptimizeFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of argument array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ int rc; /* Return code */
+ Fts3Table *p; /* Virtual table handle */
+ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
+
+ UNUSED_PARAMETER(nVal);
+
+ assert( nVal==1 );
+ if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
+ p = (Fts3Table *)pCursor->base.pVtab;
+ assert( p );
+
+ rc = sqlite3Fts3Optimize(p);
+
+ switch( rc ){
+ case SQLITE_OK:
+ sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
+ break;
+ case SQLITE_DONE:
+ sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
+ break;
+ default:
+ sqlite3_result_error_code(pContext, rc);
+ break;
+ }
+}
+
+/*
+** Implementation of the matchinfo() function for FTS3
+*/
+static void fts3MatchinfoFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of argument array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
+ assert( nVal==1 || nVal==2 );
+ if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
+ const char *zArg = 0;
+ if( nVal>1 ){
+ zArg = (const char *)sqlite3_value_text(apVal[1]);
+ }
+ sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
+ }
+}
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fts3FindFunctionMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Number of SQL function arguments */
+ const char *zName, /* Name of SQL function */
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
+ void **ppArg /* Unused */
+){
+ struct Overloaded {
+ const char *zName;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } aOverload[] = {
+ { "snippet", fts3SnippetFunc },
+ { "offsets", fts3OffsetsFunc },
+ { "optimize", fts3OptimizeFunc },
+ { "matchinfo", fts3MatchinfoFunc },
+ };
+ int i; /* Iterator variable */
+
+ UNUSED_PARAMETER(pVtab);
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(ppArg);
+
+ for(i=0; i<SizeofArray(aOverload); i++){
+ if( strcmp(zName, aOverload[i].zName)==0 ){
+ *pxFunc = aOverload[i].xFunc;
+ return 1;
+ }
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+/*
+** Implementation of FTS3 xRename method. Rename an fts3 table.
+*/
+static int fts3RenameMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ const char *zName /* New name of table */
+){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ sqlite3 *db = p->db; /* Database connection */
+ int rc; /* Return Code */
+
+ /* At this point it must be known if the %_stat table exists or not.
+ ** So bHasStat may not be 2. */
+ rc = fts3SetHasStat(p);
+
+ /* As it happens, the pending terms table is always empty here. This is
+ ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
+ ** always opens a savepoint transaction. And the xSavepoint() method
+ ** flushes the pending terms table. But leave the (no-op) call to
+ ** PendingTermsFlush() in in case that changes.
+ */
+ assert( p->nPendingData==0 );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ }
+
+ if( p->zContentTbl==0 ){
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
+ p->zDb, p->zName, zName
+ );
+ }
+
+ if( p->bHasDocsize ){
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
+ p->zDb, p->zName, zName
+ );
+ }
+ if( p->bHasStat ){
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
+ p->zDb, p->zName, zName
+ );
+ }
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
+ p->zDb, p->zName, zName
+ );
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
+ p->zDb, p->zName, zName
+ );
+ return rc;
+}
+
+/*
+** The xSavepoint() method.
+**
+** Flush the contents of the pending-terms table to disk.
+*/
+static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ int rc = SQLITE_OK;
+ UNUSED_PARAMETER(iSavepoint);
+ assert( ((Fts3Table *)pVtab)->inTransaction );
+ assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint );
+ TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
+ if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
+ rc = fts3SyncMethod(pVtab);
+ }
+ return rc;
+}
+
+/*
+** The xRelease() method.
+**
+** This is a no-op.
+*/
+static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
+ UNUSED_PARAMETER(iSavepoint);
+ UNUSED_PARAMETER(pVtab);
+ assert( p->inTransaction );
+ assert( p->mxSavepoint >= iSavepoint );
+ TESTONLY( p->mxSavepoint = iSavepoint-1 );
+ return SQLITE_OK;
+}
+
+/*
+** The xRollbackTo() method.
+**
+** Discard the contents of the pending terms table.
+*/
+static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts3Table *p = (Fts3Table*)pVtab;
+ UNUSED_PARAMETER(iSavepoint);
+ assert( p->inTransaction );
+ TESTONLY( p->mxSavepoint = iSavepoint );
+ sqlite3Fts3PendingTermsClear(p);
+ return SQLITE_OK;
+}
+
+/*
+** Return true if zName is the extension on one of the shadow tables used
+** by this module.
+*/
+static int fts3ShadowName(const char *zName){
+ static const char *azName[] = {
+ "content", "docsize", "segdir", "segments", "stat",
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
+ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+static const sqlite3_module fts3Module = {
+ /* iVersion */ 3,
+ /* xCreate */ fts3CreateMethod,
+ /* xConnect */ fts3ConnectMethod,
+ /* xBestIndex */ fts3BestIndexMethod,
+ /* xDisconnect */ fts3DisconnectMethod,
+ /* xDestroy */ fts3DestroyMethod,
+ /* xOpen */ fts3OpenMethod,
+ /* xClose */ fts3CloseMethod,
+ /* xFilter */ fts3FilterMethod,
+ /* xNext */ fts3NextMethod,
+ /* xEof */ fts3EofMethod,
+ /* xColumn */ fts3ColumnMethod,
+ /* xRowid */ fts3RowidMethod,
+ /* xUpdate */ fts3UpdateMethod,
+ /* xBegin */ fts3BeginMethod,
+ /* xSync */ fts3SyncMethod,
+ /* xCommit */ fts3CommitMethod,
+ /* xRollback */ fts3RollbackMethod,
+ /* xFindFunction */ fts3FindFunctionMethod,
+ /* xRename */ fts3RenameMethod,
+ /* xSavepoint */ fts3SavepointMethod,
+ /* xRelease */ fts3ReleaseMethod,
+ /* xRollbackTo */ fts3RollbackToMethod,
+ /* xShadowName */ fts3ShadowName,
+};
+
+/*
+** This function is registered as the module destructor (called when an
+** FTS3 enabled database connection is closed). It frees the memory
+** allocated for the tokenizer hash table.
+*/
+static void hashDestroy(void *p){
+ Fts3HashWrapper *pHash = (Fts3HashWrapper *)p;
+ pHash->nRef--;
+ if( pHash->nRef<=0 ){
+ sqlite3Fts3HashClear(&pHash->hash);
+ sqlite3_free(pHash);
+ }
+}
+
+/*
+** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
+** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
+** respectively. The following three forward declarations are for functions
+** declared in these files used to retrieve the respective implementations.
+**
+** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
+** to by the argument to point to the "simple" tokenizer implementation.
+** And so on.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
+#endif
+#ifdef SQLITE_ENABLE_ICU
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+#endif
+
+/*
+** Initialize the fts3 extension. If this extension is built as part
+** of the sqlite library, then this function is called directly by
+** SQLite. If fts3 is built as a dynamically loadable extension, this
+** function is called by the sqlite3_extension_init() entry point.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
+ int rc = SQLITE_OK;
+ Fts3HashWrapper *pHash = 0;
+ const sqlite3_tokenizer_module *pSimple = 0;
+ const sqlite3_tokenizer_module *pPorter = 0;
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+ const sqlite3_tokenizer_module *pUnicode = 0;
+#endif
+
+#ifdef SQLITE_ENABLE_ICU
+ const sqlite3_tokenizer_module *pIcu = 0;
+ sqlite3Fts3IcuTokenizerModule(&pIcu);
+#endif
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+ sqlite3Fts3UnicodeTokenizer(&pUnicode);
+#endif
+
+#ifdef SQLITE_TEST
+ rc = sqlite3Fts3InitTerm(db);
+ if( rc!=SQLITE_OK ) return rc;
+#endif
+
+ rc = sqlite3Fts3InitAux(db);
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3Fts3SimpleTokenizerModule(&pSimple);
+ sqlite3Fts3PorterTokenizerModule(&pPorter);
+
+ /* Allocate and initialize the hash-table used to store tokenizers. */
+ pHash = sqlite3_malloc(sizeof(Fts3HashWrapper));
+ if( !pHash ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1);
+ pHash->nRef = 0;
+ }
+
+ /* Load the built-in tokenizers into the hash table */
+ if( rc==SQLITE_OK ){
+ if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple)
+ || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter)
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+ || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode)
+#endif
+#ifdef SQLITE_ENABLE_ICU
+ || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu))
+#endif
+ ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+#ifdef SQLITE_TEST
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash);
+ }
+#endif
+
+ /* Create the virtual table wrapper around the hash-table and overload
+ ** the four scalar functions. If this is successful, register the
+ ** module with sqlite.
+ */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer"))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
+ ){
+ pHash->nRef++;
+ rc = sqlite3_create_module_v2(
+ db, "fts3", &fts3Module, (void *)pHash, hashDestroy
+ );
+ if( rc==SQLITE_OK ){
+ pHash->nRef++;
+ rc = sqlite3_create_module_v2(
+ db, "fts4", &fts3Module, (void *)pHash, hashDestroy
+ );
+ }
+ if( rc==SQLITE_OK ){
+ pHash->nRef++;
+ rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy);
+ }
+ return rc;
+ }
+
+
+ /* An error has occurred. Delete the hash table and return the error code. */
+ assert( rc!=SQLITE_OK );
+ if( pHash ){
+ sqlite3Fts3HashClear(&pHash->hash);
+ sqlite3_free(pHash);
+ }
+ return rc;
+}
+
+/*
+** Allocate an Fts3MultiSegReader for each token in the expression headed
+** by pExpr.
+**
+** An Fts3SegReader object is a cursor that can seek or scan a range of
+** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
+** Fts3SegReader objects internally to provide an interface to seek or scan
+** within the union of all segments of a b-tree. Hence the name.
+**
+** If the allocated Fts3MultiSegReader just seeks to a single entry in a
+** segment b-tree (if the term is not a prefix or it is a prefix for which
+** there exists prefix b-tree of the right length) then it may be traversed
+** and merged incrementally. Otherwise, it has to be merged into an in-memory
+** doclist and then traversed.
+*/
+static void fts3EvalAllocateReaders(
+ Fts3Cursor *pCsr, /* FTS cursor handle */
+ Fts3Expr *pExpr, /* Allocate readers for this expression */
+ int *pnToken, /* OUT: Total number of tokens in phrase. */
+ int *pnOr, /* OUT: Total number of OR nodes in expr. */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( pExpr && SQLITE_OK==*pRc ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ int i;
+ int nToken = pExpr->pPhrase->nToken;
+ *pnToken += nToken;
+ for(i=0; i<nToken; i++){
+ Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
+ int rc = fts3TermSegReaderCursor(pCsr,
+ pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
+ );
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return;
+ }
+ }
+ assert( pExpr->pPhrase->iDoclistToken==0 );
+ pExpr->pPhrase->iDoclistToken = -1;
+ }else{
+ *pnOr += (pExpr->eType==FTSQUERY_OR);
+ fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
+ fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
+ }
+ }
+}
+
+/*
+** Arguments pList/nList contain the doclist for token iToken of phrase p.
+** It is merged into the main doclist stored in p->doclist.aAll/nAll.
+**
+** This function assumes that pList points to a buffer allocated using
+** sqlite3_malloc(). This function takes responsibility for eventually
+** freeing the buffer.
+**
+** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
+*/
+static int fts3EvalPhraseMergeToken(
+ Fts3Table *pTab, /* FTS Table pointer */
+ Fts3Phrase *p, /* Phrase to merge pList/nList into */
+ int iToken, /* Token pList/nList corresponds to */
+ char *pList, /* Pointer to doclist */
+ int nList /* Number of bytes in pList */
+){
+ int rc = SQLITE_OK;
+ assert( iToken!=p->iDoclistToken );
+
+ if( pList==0 ){
+ sqlite3_free(p->doclist.aAll);
+ p->doclist.aAll = 0;
+ p->doclist.nAll = 0;
+ }
+
+ else if( p->iDoclistToken<0 ){
+ p->doclist.aAll = pList;
+ p->doclist.nAll = nList;
+ }
+
+ else if( p->doclist.aAll==0 ){
+ sqlite3_free(pList);
+ }
+
+ else {
+ char *pLeft;
+ char *pRight;
+ int nLeft;
+ int nRight;
+ int nDiff;
+
+ if( p->iDoclistToken<iToken ){
+ pLeft = p->doclist.aAll;
+ nLeft = p->doclist.nAll;
+ pRight = pList;
+ nRight = nList;
+ nDiff = iToken - p->iDoclistToken;
+ }else{
+ pRight = p->doclist.aAll;
+ nRight = p->doclist.nAll;
+ pLeft = pList;
+ nLeft = nList;
+ nDiff = p->iDoclistToken - iToken;
+ }
+
+ rc = fts3DoclistPhraseMerge(
+ pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
+ );
+ sqlite3_free(pLeft);
+ p->doclist.aAll = pRight;
+ p->doclist.nAll = nRight;
+ }
+
+ if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
+ return rc;
+}
+
+/*
+** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
+** does not take deferred tokens into account.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3EvalPhraseLoad(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Phrase *p /* Phrase object */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int iToken;
+ int rc = SQLITE_OK;
+
+ for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
+ Fts3PhraseToken *pToken = &p->aToken[iToken];
+ assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
+
+ if( pToken->pSegcsr ){
+ int nThis = 0;
+ char *pThis = 0;
+ rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
+ if( rc==SQLITE_OK ){
+ rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
+ }
+ }
+ assert( pToken->pSegcsr==0 );
+ }
+
+ return rc;
+}
+
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+/*
+** This function is called on each phrase after the position lists for
+** any deferred tokens have been loaded into memory. It updates the phrases
+** current position list to include only those positions that are really
+** instances of the phrase (after considering deferred tokens). If this
+** means that the phrase does not appear in the current row, doclist.pList
+** and doclist.nList are both zeroed.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
+ int iToken; /* Used to iterate through phrase tokens */
+ char *aPoslist = 0; /* Position list for deferred tokens */
+ int nPoslist = 0; /* Number of bytes in aPoslist */
+ int iPrev = -1; /* Token number of previous deferred token */
+ char *aFree = (pPhrase->doclist.bFreeList ? pPhrase->doclist.pList : 0);
+
+ for(iToken=0; iToken<pPhrase->nToken; iToken++){
+ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
+ Fts3DeferredToken *pDeferred = pToken->pDeferred;
+
+ if( pDeferred ){
+ char *pList;
+ int nList;
+ int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( pList==0 ){
+ sqlite3_free(aPoslist);
+ sqlite3_free(aFree);
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ return SQLITE_OK;
+
+ }else if( aPoslist==0 ){
+ aPoslist = pList;
+ nPoslist = nList;
+
+ }else{
+ char *aOut = pList;
+ char *p1 = aPoslist;
+ char *p2 = aOut;
+
+ assert( iPrev>=0 );
+ fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
+ sqlite3_free(aPoslist);
+ aPoslist = pList;
+ nPoslist = (int)(aOut - aPoslist);
+ if( nPoslist==0 ){
+ sqlite3_free(aPoslist);
+ sqlite3_free(aFree);
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ return SQLITE_OK;
+ }
+ }
+ iPrev = iToken;
+ }
+ }
+
+ if( iPrev>=0 ){
+ int nMaxUndeferred = pPhrase->iDoclistToken;
+ if( nMaxUndeferred<0 ){
+ pPhrase->doclist.pList = aPoslist;
+ pPhrase->doclist.nList = nPoslist;
+ pPhrase->doclist.iDocid = pCsr->iPrevId;
+ pPhrase->doclist.bFreeList = 1;
+ }else{
+ int nDistance;
+ char *p1;
+ char *p2;
+ char *aOut;
+
+ if( nMaxUndeferred>iPrev ){
+ p1 = aPoslist;
+ p2 = pPhrase->doclist.pList;
+ nDistance = nMaxUndeferred - iPrev;
+ }else{
+ p1 = pPhrase->doclist.pList;
+ p2 = aPoslist;
+ nDistance = iPrev - nMaxUndeferred;
+ }
+
+ aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING);
+ if( !aOut ){
+ sqlite3_free(aPoslist);
+ return SQLITE_NOMEM;
+ }
+
+ pPhrase->doclist.pList = aOut;
+ assert( p1 && p2 );
+ if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
+ pPhrase->doclist.bFreeList = 1;
+ pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
+ }else{
+ sqlite3_free(aOut);
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ }
+ sqlite3_free(aPoslist);
+ }
+ }
+
+ if( pPhrase->doclist.pList!=aFree ) sqlite3_free(aFree);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_DISABLE_FTS4_DEFERRED */
+
+/*
+** Maximum number of tokens a phrase may have to be considered for the
+** incremental doclists strategy.
+*/
+#define MAX_INCR_PHRASE_TOKENS 4
+
+/*
+** This function is called for each Fts3Phrase in a full-text query
+** expression to initialize the mechanism for returning rows. Once this
+** function has been called successfully on an Fts3Phrase, it may be
+** used with fts3EvalPhraseNext() to iterate through the matching docids.
+**
+** If parameter bOptOk is true, then the phrase may (or may not) use the
+** incremental loading strategy. Otherwise, the entire doclist is loaded into
+** memory within this call.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK; /* Error code */
+ int i;
+
+ /* Determine if doclists may be loaded from disk incrementally. This is
+ ** possible if the bOptOk argument is true, the FTS doclists will be
+ ** scanned in forward order, and the phrase consists of
+ ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
+ ** tokens or prefix tokens that cannot use a prefix-index. */
+ int bHaveIncr = 0;
+ int bIncrOk = (bOptOk
+ && pCsr->bDesc==pTab->bDescIdx
+ && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ && pTab->bNoIncrDoclist==0
+#endif
+ );
+ for(i=0; bIncrOk==1 && i<p->nToken; i++){
+ Fts3PhraseToken *pToken = &p->aToken[i];
+ if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
+ bIncrOk = 0;
+ }
+ if( pToken->pSegcsr ) bHaveIncr = 1;
+ }
+
+ if( bIncrOk && bHaveIncr ){
+ /* Use the incremental approach. */
+ int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
+ for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
+ Fts3PhraseToken *pToken = &p->aToken[i];
+ Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
+ if( pSegcsr ){
+ rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
+ }
+ }
+ p->bIncr = 1;
+ }else{
+ /* Load the full doclist for the phrase into memory. */
+ rc = fts3EvalPhraseLoad(pCsr, p);
+ p->bIncr = 0;
+ }
+
+ assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
+ return rc;
+}
+
+/*
+** This function is used to iterate backwards (from the end to start)
+** through doclists. It is used by this module to iterate through phrase
+** doclists in reverse and by the fts3_write.c module to iterate through
+** pending-terms lists when writing to databases with "order=desc".
+**
+** The doclist may be sorted in ascending (parameter bDescIdx==0) or
+** descending (parameter bDescIdx==1) order of docid. Regardless, this
+** function iterates from the end of the doclist to the beginning.
+*/
+SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(
+ int bDescIdx, /* True if the doclist is desc */
+ char *aDoclist, /* Pointer to entire doclist */
+ int nDoclist, /* Length of aDoclist in bytes */
+ char **ppIter, /* IN/OUT: Iterator pointer */
+ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
+ int *pnList, /* OUT: List length pointer */
+ u8 *pbEof /* OUT: End-of-file flag */
+){
+ char *p = *ppIter;
+
+ assert( nDoclist>0 );
+ assert( *pbEof==0 );
+ assert_fts3_nc( p || *piDocid==0 );
+ assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
+
+ if( p==0 ){
+ sqlite3_int64 iDocid = 0;
+ char *pNext = 0;
+ char *pDocid = aDoclist;
+ char *pEnd = &aDoclist[nDoclist];
+ int iMul = 1;
+
+ while( pDocid<pEnd ){
+ sqlite3_int64 iDelta;
+ pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
+ iDocid += (iMul * iDelta);
+ pNext = pDocid;
+ fts3PoslistCopy(0, &pDocid);
+ while( pDocid<pEnd && *pDocid==0 ) pDocid++;
+ iMul = (bDescIdx ? -1 : 1);
+ }
+
+ *pnList = (int)(pEnd - pNext);
+ *ppIter = pNext;
+ *piDocid = iDocid;
+ }else{
+ int iMul = (bDescIdx ? -1 : 1);
+ sqlite3_int64 iDelta;
+ fts3GetReverseVarint(&p, aDoclist, &iDelta);
+ *piDocid -= (iMul * iDelta);
+
+ if( p==aDoclist ){
+ *pbEof = 1;
+ }else{
+ char *pSave = p;
+ fts3ReversePoslist(aDoclist, &p);
+ *pnList = (int)(pSave - p);
+ }
+ *ppIter = p;
+ }
+}
+
+/*
+** Iterate forwards through a doclist.
+*/
+SQLITE_PRIVATE void sqlite3Fts3DoclistNext(
+ int bDescIdx, /* True if the doclist is desc */
+ char *aDoclist, /* Pointer to entire doclist */
+ int nDoclist, /* Length of aDoclist in bytes */
+ char **ppIter, /* IN/OUT: Iterator pointer */
+ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
+ u8 *pbEof /* OUT: End-of-file flag */
+){
+ char *p = *ppIter;
+
+ assert( nDoclist>0 );
+ assert( *pbEof==0 );
+ assert_fts3_nc( p || *piDocid==0 );
+ assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
+
+ if( p==0 ){
+ p = aDoclist;
+ p += sqlite3Fts3GetVarint(p, piDocid);
+ }else{
+ fts3PoslistCopy(0, &p);
+ while( p<&aDoclist[nDoclist] && *p==0 ) p++;
+ if( p>=&aDoclist[nDoclist] ){
+ *pbEof = 1;
+ }else{
+ sqlite3_int64 iVar;
+ p += sqlite3Fts3GetVarint(p, &iVar);
+ *piDocid += ((bDescIdx ? -1 : 1) * iVar);
+ }
+ }
+
+ *ppIter = p;
+}
+
+/*
+** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
+** to true if EOF is reached.
+*/
+static void fts3EvalDlPhraseNext(
+ Fts3Table *pTab,
+ Fts3Doclist *pDL,
+ u8 *pbEof
+){
+ char *pIter; /* Used to iterate through aAll */
+ char *pEnd; /* 1 byte past end of aAll */
+
+ if( pDL->pNextDocid ){
+ pIter = pDL->pNextDocid;
+ assert( pDL->aAll!=0 || pIter==0 );
+ }else{
+ pIter = pDL->aAll;
+ }
+
+ if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){
+ /* We have already reached the end of this doclist. EOF. */
+ *pbEof = 1;
+ }else{
+ sqlite3_int64 iDelta;
+ pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
+ if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
+ pDL->iDocid += iDelta;
+ }else{
+ pDL->iDocid -= iDelta;
+ }
+ pDL->pList = pIter;
+ fts3PoslistCopy(0, &pIter);
+ pDL->nList = (int)(pIter - pDL->pList);
+
+ /* pIter now points just past the 0x00 that terminates the position-
+ ** list for document pDL->iDocid. However, if this position-list was
+ ** edited in place by fts3EvalNearTrim(), then pIter may not actually
+ ** point to the start of the next docid value. The following line deals
+ ** with this case by advancing pIter past the zero-padding added by
+ ** fts3EvalNearTrim(). */
+ while( pIter<pEnd && *pIter==0 ) pIter++;
+
+ pDL->pNextDocid = pIter;
+ assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
+ *pbEof = 0;
+ }
+}
+
+/*
+** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
+*/
+typedef struct TokenDoclist TokenDoclist;
+struct TokenDoclist {
+ int bIgnore;
+ sqlite3_int64 iDocid;
+ char *pList;
+ int nList;
+};
+
+/*
+** Token pToken is an incrementally loaded token that is part of a
+** multi-token phrase. Advance it to the next matching document in the
+** database and populate output variable *p with the details of the new
+** entry. Or, if the iterator has reached EOF, set *pbEof to true.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK.
+*/
+static int incrPhraseTokenNext(
+ Fts3Table *pTab, /* Virtual table handle */
+ Fts3Phrase *pPhrase, /* Phrase to advance token of */
+ int iToken, /* Specific token to advance */
+ TokenDoclist *p, /* OUT: Docid and doclist for new entry */
+ u8 *pbEof /* OUT: True if iterator is at EOF */
+){
+ int rc = SQLITE_OK;
+
+ if( pPhrase->iDoclistToken==iToken ){
+ assert( p->bIgnore==0 );
+ assert( pPhrase->aToken[iToken].pSegcsr==0 );
+ fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
+ p->pList = pPhrase->doclist.pList;
+ p->nList = pPhrase->doclist.nList;
+ p->iDocid = pPhrase->doclist.iDocid;
+ }else{
+ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
+ assert( pToken->pDeferred==0 );
+ assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
+ if( pToken->pSegcsr ){
+ assert( p->bIgnore==0 );
+ rc = sqlite3Fts3MsrIncrNext(
+ pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
+ );
+ if( p->pList==0 ) *pbEof = 1;
+ }else{
+ p->bIgnore = 1;
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** The phrase iterator passed as the second argument:
+**
+** * features at least one token that uses an incremental doclist, and
+**
+** * does not contain any deferred tokens.
+**
+** Advance it to the next matching documnent in the database and populate
+** the Fts3Doclist.pList and nList fields.
+**
+** If there is no "next" entry and no error occurs, then *pbEof is set to
+** 1 before returning. Otherwise, if no error occurs and the iterator is
+** successfully advanced, *pbEof is set to 0.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK.
+*/
+static int fts3EvalIncrPhraseNext(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Phrase *p, /* Phrase object to advance to next docid */
+ u8 *pbEof /* OUT: Set to 1 if EOF */
+){
+ int rc = SQLITE_OK;
+ Fts3Doclist *pDL = &p->doclist;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ u8 bEof = 0;
+
+ /* This is only called if it is guaranteed that the phrase has at least
+ ** one incremental token. In which case the bIncr flag is set. */
+ assert( p->bIncr==1 );
+
+ if( p->nToken==1 ){
+ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
+ &pDL->iDocid, &pDL->pList, &pDL->nList
+ );
+ if( pDL->pList==0 ) bEof = 1;
+ }else{
+ int bDescDoclist = pCsr->bDesc;
+ struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
+
+ memset(a, 0, sizeof(a));
+ assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
+ assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
+
+ while( bEof==0 ){
+ int bMaxSet = 0;
+ sqlite3_int64 iMax = 0; /* Largest docid for all iterators */
+ int i; /* Used to iterate through tokens */
+
+ /* Advance the iterator for each token in the phrase once. */
+ for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
+ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
+ if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
+ iMax = a[i].iDocid;
+ bMaxSet = 1;
+ }
+ }
+ assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
+ assert( rc!=SQLITE_OK || bMaxSet );
+
+ /* Keep advancing iterators until they all point to the same document */
+ for(i=0; i<p->nToken; i++){
+ while( rc==SQLITE_OK && bEof==0
+ && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
+ ){
+ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
+ if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
+ iMax = a[i].iDocid;
+ i = 0;
+ }
+ }
+ }
+
+ /* Check if the current entries really are a phrase match */
+ if( bEof==0 ){
+ int nList = 0;
+ int nByte = a[p->nToken-1].nList;
+ char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING);
+ if( !aDoclist ) return SQLITE_NOMEM;
+ memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
+ memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);
+
+ for(i=0; i<(p->nToken-1); i++){
+ if( a[i].bIgnore==0 ){
+ char *pL = a[i].pList;
+ char *pR = aDoclist;
+ char *pOut = aDoclist;
+ int nDist = p->nToken-1-i;
+ int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
+ if( res==0 ) break;
+ nList = (int)(pOut - aDoclist);
+ }
+ }
+ if( i==(p->nToken-1) ){
+ pDL->iDocid = iMax;
+ pDL->pList = aDoclist;
+ pDL->nList = nList;
+ pDL->bFreeList = 1;
+ break;
+ }
+ sqlite3_free(aDoclist);
+ }
+ }
+ }
+
+ *pbEof = bEof;
+ return rc;
+}
+
+/*
+** Attempt to move the phrase iterator to point to the next matching docid.
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK.
+**
+** If there is no "next" entry and no error occurs, then *pbEof is set to
+** 1 before returning. Otherwise, if no error occurs and the iterator is
+** successfully advanced, *pbEof is set to 0.
+*/
+static int fts3EvalPhraseNext(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Phrase *p, /* Phrase object to advance to next docid */
+ u8 *pbEof /* OUT: Set to 1 if EOF */
+){
+ int rc = SQLITE_OK;
+ Fts3Doclist *pDL = &p->doclist;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+
+ if( p->bIncr ){
+ rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
+ }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
+ sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
+ &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
+ );
+ pDL->pList = pDL->pNextDocid;
+ }else{
+ fts3EvalDlPhraseNext(pTab, pDL, pbEof);
+ }
+
+ return rc;
+}
+
+/*
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
+** expression. Also the Fts3Expr.bDeferred variable is set to true for any
+** expressions for which all descendent tokens are deferred.
+**
+** If parameter bOptOk is zero, then it is guaranteed that the
+** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
+** each phrase in the expression (subject to deferred token processing).
+** Or, if bOptOk is non-zero, then one or more tokens within the expression
+** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
+**
+** If an error occurs within this function, *pRc is set to an SQLite error
+** code before returning.
+*/
+static void fts3EvalStartReaders(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pExpr, /* Expression to initialize phrases in */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( pExpr && SQLITE_OK==*pRc ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ int nToken = pExpr->pPhrase->nToken;
+ if( nToken ){
+ int i;
+ for(i=0; i<nToken; i++){
+ if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
+ }
+ pExpr->bDeferred = (i==nToken);
+ }
+ *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
+ }else{
+ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
+ fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
+ pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
+ }
+ }
+}
+
+/*
+** An array of the following structures is assembled as part of the process
+** of selecting tokens to defer before the query starts executing (as part
+** of the xFilter() method). There is one element in the array for each
+** token in the FTS expression.
+**
+** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
+** to phrases that are connected only by AND and NEAR operators (not OR or
+** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
+** separately. The root of a tokens AND/NEAR cluster is stored in
+** Fts3TokenAndCost.pRoot.
+*/
+typedef struct Fts3TokenAndCost Fts3TokenAndCost;
+struct Fts3TokenAndCost {
+ Fts3Phrase *pPhrase; /* The phrase the token belongs to */
+ int iToken; /* Position of token in phrase */
+ Fts3PhraseToken *pToken; /* The token itself */
+ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
+ int nOvfl; /* Number of overflow pages to load doclist */
+ int iCol; /* The column the token must match */
+};
+
+/*
+** This function is used to populate an allocated Fts3TokenAndCost array.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, if an error occurs during execution, *pRc is set to an
+** SQLite error code.
+*/
+static void fts3EvalTokenCosts(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
+ Fts3Expr *pExpr, /* Expression to consider */
+ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
+ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==SQLITE_OK ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ int i;
+ for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
+ Fts3TokenAndCost *pTC = (*ppTC)++;
+ pTC->pPhrase = pPhrase;
+ pTC->iToken = i;
+ pTC->pRoot = pRoot;
+ pTC->pToken = &pPhrase->aToken[i];
+ pTC->iCol = pPhrase->iColumn;
+ *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
+ }
+ }else if( pExpr->eType!=FTSQUERY_NOT ){
+ assert( pExpr->eType==FTSQUERY_OR
+ || pExpr->eType==FTSQUERY_AND
+ || pExpr->eType==FTSQUERY_NEAR
+ );
+ assert( pExpr->pLeft && pExpr->pRight );
+ if( pExpr->eType==FTSQUERY_OR ){
+ pRoot = pExpr->pLeft;
+ **ppOr = pRoot;
+ (*ppOr)++;
+ }
+ fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
+ if( pExpr->eType==FTSQUERY_OR ){
+ pRoot = pExpr->pRight;
+ **ppOr = pRoot;
+ (*ppOr)++;
+ }
+ fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
+ }
+ }
+}
+
+/*
+** Determine the average document (row) size in pages. If successful,
+** write this value to *pnPage and return SQLITE_OK. Otherwise, return
+** an SQLite error code.
+**
+** The average document size in pages is calculated by first calculating
+** determining the average size in bytes, B. If B is less than the amount
+** of data that will fit on a single leaf page of an intkey table in
+** this database, then the average docsize is 1. Otherwise, it is 1 plus
+** the number of overflow pages consumed by a record B bytes in size.
+*/
+static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
+ int rc = SQLITE_OK;
+ if( pCsr->nRowAvg==0 ){
+ /* The average document size, which is required to calculate the cost
+ ** of each doclist, has not yet been determined. Read the required
+ ** data from the %_stat table to calculate it.
+ **
+ ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
+ ** varints, where nCol is the number of columns in the FTS3 table.
+ ** The first varint is the number of documents currently stored in
+ ** the table. The following nCol varints contain the total amount of
+ ** data stored in all rows of each column of the table, from left
+ ** to right.
+ */
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
+ sqlite3_stmt *pStmt;
+ sqlite3_int64 nDoc = 0;
+ sqlite3_int64 nByte = 0;
+ const char *pEnd;
+ const char *a;
+
+ rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ a = sqlite3_column_blob(pStmt, 0);
+ testcase( a==0 ); /* If %_stat.value set to X'' */
+ if( a ){
+ pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
+ while( a<pEnd ){
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nByte);
+ }
+ }
+ if( nDoc==0 || nByte==0 ){
+ sqlite3_reset(pStmt);
+ return FTS_CORRUPT_VTAB;
+ }
+
+ pCsr->nDoc = nDoc;
+ pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
+ assert( pCsr->nRowAvg>0 );
+ rc = sqlite3_reset(pStmt);
+ }
+
+ *pnPage = pCsr->nRowAvg;
+ return rc;
+}
+
+/*
+** This function is called to select the tokens (if any) that will be
+** deferred. The array aTC[] has already been populated when this is
+** called.
+**
+** This function is called once for each AND/NEAR cluster in the
+** expression. Each invocation determines which tokens to defer within
+** the cluster with root node pRoot. See comments above the definition
+** of struct Fts3TokenAndCost for more details.
+**
+** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
+** called on each token to defer. Otherwise, an SQLite error code is
+** returned.
+*/
+static int fts3EvalSelectDeferred(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pRoot, /* Consider tokens with this root node */
+ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
+ int nTC /* Number of entries in aTC[] */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int nDocSize = 0; /* Number of pages per doc loaded */
+ int rc = SQLITE_OK; /* Return code */
+ int ii; /* Iterator variable for various purposes */
+ int nOvfl = 0; /* Total overflow pages used by doclists */
+ int nToken = 0; /* Total number of tokens in cluster */
+
+ int nMinEst = 0; /* The minimum count for any phrase so far. */
+ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
+
+ /* Tokens are never deferred for FTS tables created using the content=xxx
+ ** option. The reason being that it is not guaranteed that the content
+ ** table actually contains the same data as the index. To prevent this from
+ ** causing any problems, the deferred token optimization is completely
+ ** disabled for content=xxx tables. */
+ if( pTab->zContentTbl ){
+ return SQLITE_OK;
+ }
+
+ /* Count the tokens in this AND/NEAR cluster. If none of the doclists
+ ** associated with the tokens spill onto overflow pages, or if there is
+ ** only 1 token, exit early. No tokens to defer in this case. */
+ for(ii=0; ii<nTC; ii++){
+ if( aTC[ii].pRoot==pRoot ){
+ nOvfl += aTC[ii].nOvfl;
+ nToken++;
+ }
+ }
+ if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
+
+ /* Obtain the average docsize (in pages). */
+ rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
+ assert( rc!=SQLITE_OK || nDocSize>0 );
+
+
+ /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
+ ** of the number of overflow pages that will be loaded by the pager layer
+ ** to retrieve the entire doclist for the token from the full-text index.
+ ** Load the doclists for tokens that are either:
+ **
+ ** a. The cheapest token in the entire query (i.e. the one visited by the
+ ** first iteration of this loop), or
+ **
+ ** b. Part of a multi-token phrase.
+ **
+ ** After each token doclist is loaded, merge it with the others from the
+ ** same phrase and count the number of documents that the merged doclist
+ ** contains. Set variable "nMinEst" to the smallest number of documents in
+ ** any phrase doclist for which 1 or more token doclists have been loaded.
+ ** Let nOther be the number of other phrases for which it is certain that
+ ** one or more tokens will not be deferred.
+ **
+ ** Then, for each token, defer it if loading the doclist would result in
+ ** loading N or more overflow pages into memory, where N is computed as:
+ **
+ ** (nMinEst + 4^nOther - 1) / (4^nOther)
+ */
+ for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
+ int iTC; /* Used to iterate through aTC[] array. */
+ Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
+
+ /* Set pTC to point to the cheapest remaining token. */
+ for(iTC=0; iTC<nTC; iTC++){
+ if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
+ && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
+ ){
+ pTC = &aTC[iTC];
+ }
+ }
+ assert( pTC );
+
+ if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
+ /* The number of overflow pages to load for this (and therefore all
+ ** subsequent) tokens is greater than the estimated number of pages
+ ** that will be loaded if all subsequent tokens are deferred.
+ */
+ Fts3PhraseToken *pToken = pTC->pToken;
+ rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
+ fts3SegReaderCursorFree(pToken->pSegcsr);
+ pToken->pSegcsr = 0;
+ }else{
+ /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
+ ** for-loop. Except, limit the value to 2^24 to prevent it from
+ ** overflowing the 32-bit integer it is stored in. */
+ if( ii<12 ) nLoad4 = nLoad4*4;
+
+ if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
+ /* Either this is the cheapest token in the entire query, or it is
+ ** part of a multi-token phrase. Either way, the entire doclist will
+ ** (eventually) be loaded into memory. It may as well be now. */
+ Fts3PhraseToken *pToken = pTC->pToken;
+ int nList = 0;
+ char *pList = 0;
+ rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
+ assert( rc==SQLITE_OK || pList==0 );
+ if( rc==SQLITE_OK ){
+ rc = fts3EvalPhraseMergeToken(
+ pTab, pTC->pPhrase, pTC->iToken,pList,nList
+ );
+ }
+ if( rc==SQLITE_OK ){
+ int nCount;
+ nCount = fts3DoclistCountDocids(
+ pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
+ );
+ if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
+ }
+ }
+ }
+ pTC->pToken = 0;
+ }
+
+ return rc;
+}
+
+/*
+** This function is called from within the xFilter method. It initializes
+** the full-text query currently stored in pCsr->pExpr. To iterate through
+** the results of a query, the caller does:
+**
+** fts3EvalStart(pCsr);
+** while( 1 ){
+** fts3EvalNext(pCsr);
+** if( pCsr->bEof ) break;
+** ... return row pCsr->iPrevId to the caller ...
+** }
+*/
+static int fts3EvalStart(Fts3Cursor *pCsr){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int nToken = 0;
+ int nOr = 0;
+
+ /* Allocate a MultiSegReader for each token in the expression. */
+ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
+
+ /* Determine which, if any, tokens in the expression should be deferred. */
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+ if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
+ Fts3TokenAndCost *aTC;
+ aTC = (Fts3TokenAndCost *)sqlite3_malloc64(
+ sizeof(Fts3TokenAndCost) * nToken
+ + sizeof(Fts3Expr *) * nOr * 2
+ );
+
+ if( !aTC ){
+ rc = SQLITE_NOMEM;
+ }else{
+ Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken];
+ int ii;
+ Fts3TokenAndCost *pTC = aTC;
+ Fts3Expr **ppOr = apOr;
+
+ fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
+ nToken = (int)(pTC-aTC);
+ nOr = (int)(ppOr-apOr);
+
+ if( rc==SQLITE_OK ){
+ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
+ for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
+ rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
+ }
+ }
+
+ sqlite3_free(aTC);
+ }
+ }
+#endif
+
+ fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
+ return rc;
+}
+
+/*
+** Invalidate the current position list for phrase pPhrase.
+*/
+static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
+ if( pPhrase->doclist.bFreeList ){
+ sqlite3_free(pPhrase->doclist.pList);
+ }
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ pPhrase->doclist.bFreeList = 0;
+}
+
+/*
+** This function is called to edit the position list associated with
+** the phrase object passed as the fifth argument according to a NEAR
+** condition. For example:
+**
+** abc NEAR/5 "def ghi"
+**
+** Parameter nNear is passed the NEAR distance of the expression (5 in
+** the example above). When this function is called, *paPoslist points to
+** the position list, and *pnToken is the number of phrase tokens in the
+** phrase on the other side of the NEAR operator to pPhrase. For example,
+** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
+** the position list associated with phrase "abc".
+**
+** All positions in the pPhrase position list that are not sufficiently
+** close to a position in the *paPoslist position list are removed. If this
+** leaves 0 positions, zero is returned. Otherwise, non-zero.
+**
+** Before returning, *paPoslist is set to point to the position lsit
+** associated with pPhrase. And *pnToken is set to the number of tokens in
+** pPhrase.
+*/
+static int fts3EvalNearTrim(
+ int nNear, /* NEAR distance. As in "NEAR/nNear". */
+ char *aTmp, /* Temporary space to use */
+ char **paPoslist, /* IN/OUT: Position list */
+ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
+ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
+){
+ int nParam1 = nNear + pPhrase->nToken;
+ int nParam2 = nNear + *pnToken;
+ int nNew;
+ char *p2;
+ char *pOut;
+ int res;
+
+ assert( pPhrase->doclist.pList );
+
+ p2 = pOut = pPhrase->doclist.pList;
+ res = fts3PoslistNearMerge(
+ &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
+ );
+ if( res ){
+ nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
+ assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 );
+ if( nNew>=0 && nNew<=pPhrase->doclist.nList ){
+ assert( pPhrase->doclist.pList[nNew]=='\0' );
+ memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
+ pPhrase->doclist.nList = nNew;
+ }
+ *paPoslist = pPhrase->doclist.pList;
+ *pnToken = pPhrase->nToken;
+ }
+
+ return res;
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
+** Otherwise, it advances the expression passed as the second argument to
+** point to the next matching row in the database. Expressions iterate through
+** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
+** or descending if it is non-zero.
+**
+** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
+** successful, the following variables in pExpr are set:
+**
+** Fts3Expr.bEof (non-zero if EOF - there is no next row)
+** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
+**
+** If the expression is of type FTSQUERY_PHRASE, and the expression is not
+** at EOF, then the following variables are populated with the position list
+** for the phrase for the visited row:
+**
+** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
+** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
+**
+** It says above that this function advances the expression to the next
+** matching row. This is usually true, but there are the following exceptions:
+**
+** 1. Deferred tokens are not taken into account. If a phrase consists
+** entirely of deferred tokens, it is assumed to match every row in
+** the db. In this case the position-list is not populated at all.
+**
+** Or, if a phrase contains one or more deferred tokens and one or
+** more non-deferred tokens, then the expression is advanced to the
+** next possible match, considering only non-deferred tokens. In other
+** words, if the phrase is "A B C", and "B" is deferred, the expression
+** is advanced to the next row that contains an instance of "A * C",
+** where "*" may match any single token. The position list in this case
+** is populated as for "A * C" before returning.
+**
+** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
+** advanced to point to the next row that matches "x AND y".
+**
+** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
+** really a match, taking into account deferred tokens and NEAR operators.
+*/
+static void fts3EvalNextRow(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pExpr, /* Expr. to advance to next matching row */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==SQLITE_OK ){
+ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
+ assert( pExpr->bEof==0 );
+ pExpr->bStart = 1;
+
+ switch( pExpr->eType ){
+ case FTSQUERY_NEAR:
+ case FTSQUERY_AND: {
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+ assert( !pLeft->bDeferred || !pRight->bDeferred );
+
+ if( pLeft->bDeferred ){
+ /* LHS is entirely deferred. So we assume it matches every row.
+ ** Advance the RHS iterator to find the next row visited. */
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ pExpr->iDocid = pRight->iDocid;
+ pExpr->bEof = pRight->bEof;
+ }else if( pRight->bDeferred ){
+ /* RHS is entirely deferred. So we assume it matches every row.
+ ** Advance the LHS iterator to find the next row visited. */
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ pExpr->iDocid = pLeft->iDocid;
+ pExpr->bEof = pLeft->bEof;
+ }else{
+ /* Neither the RHS or LHS are deferred. */
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
+ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
+ if( iDiff==0 ) break;
+ if( iDiff<0 ){
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ }else{
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+ }
+ pExpr->iDocid = pLeft->iDocid;
+ pExpr->bEof = (pLeft->bEof || pRight->bEof);
+ if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
+ assert( pRight->eType==FTSQUERY_PHRASE );
+ if( pRight->pPhrase->doclist.aAll ){
+ Fts3Doclist *pDl = &pRight->pPhrase->doclist;
+ while( *pRc==SQLITE_OK && pRight->bEof==0 ){
+ memset(pDl->pList, 0, pDl->nList);
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+ }
+ if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
+ Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
+ while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
+ memset(pDl->pList, 0, pDl->nList);
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ }
+ }
+ pRight->bEof = pLeft->bEof = 1;
+ }
+ }
+ break;
+ }
+
+ case FTSQUERY_OR: {
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+ sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
+
+ assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
+ assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid );
+
+ if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ }else if( pLeft->bEof || iCmp>0 ){
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }else{
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+
+ pExpr->bEof = (pLeft->bEof && pRight->bEof);
+ iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
+ if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
+ pExpr->iDocid = pLeft->iDocid;
+ }else{
+ pExpr->iDocid = pRight->iDocid;
+ }
+
+ break;
+ }
+
+ case FTSQUERY_NOT: {
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+
+ if( pRight->bStart==0 ){
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ assert( *pRc!=SQLITE_OK || pRight->bStart );
+ }
+
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ if( pLeft->bEof==0 ){
+ while( !*pRc
+ && !pRight->bEof
+ && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
+ ){
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+ }
+ pExpr->iDocid = pLeft->iDocid;
+ pExpr->bEof = pLeft->bEof;
+ break;
+ }
+
+ default: {
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ fts3EvalInvalidatePoslist(pPhrase);
+ *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
+ pExpr->iDocid = pPhrase->doclist.iDocid;
+ break;
+ }
+ }
+ }
+}
+
+/*
+** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
+** cluster, then this function returns 1 immediately.
+**
+** Otherwise, it checks if the current row really does match the NEAR
+** expression, using the data currently stored in the position lists
+** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
+**
+** If the current row is a match, the position list associated with each
+** phrase in the NEAR expression is edited in place to contain only those
+** phrase instances sufficiently close to their peers to satisfy all NEAR
+** constraints. In this case it returns 1. If the NEAR expression does not
+** match the current row, 0 is returned. The position lists may or may not
+** be edited if 0 is returned.
+*/
+static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
+ int res = 1;
+
+ /* The following block runs if pExpr is the root of a NEAR query.
+ ** For example, the query:
+ **
+ ** "w" NEAR "x" NEAR "y" NEAR "z"
+ **
+ ** which is represented in tree form as:
+ **
+ ** |
+ ** +--NEAR--+ <-- root of NEAR query
+ ** | |
+ ** +--NEAR--+ "z"
+ ** | |
+ ** +--NEAR--+ "y"
+ ** | |
+ ** "w" "x"
+ **
+ ** The right-hand child of a NEAR node is always a phrase. The
+ ** left-hand child may be either a phrase or a NEAR node. There are
+ ** no exceptions to this - it's the way the parser in fts3_expr.c works.
+ */
+ if( *pRc==SQLITE_OK
+ && pExpr->eType==FTSQUERY_NEAR
+ && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
+ ){
+ Fts3Expr *p;
+ sqlite3_int64 nTmp = 0; /* Bytes of temp space */
+ char *aTmp; /* Temp space for PoslistNearMerge() */
+
+ /* Allocate temporary working space. */
+ for(p=pExpr; p->pLeft; p=p->pLeft){
+ assert( p->pRight->pPhrase->doclist.nList>0 );
+ nTmp += p->pRight->pPhrase->doclist.nList;
+ }
+ nTmp += p->pPhrase->doclist.nList;
+ aTmp = sqlite3_malloc64(nTmp*2);
+ if( !aTmp ){
+ *pRc = SQLITE_NOMEM;
+ res = 0;
+ }else{
+ char *aPoslist = p->pPhrase->doclist.pList;
+ int nToken = p->pPhrase->nToken;
+
+ for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
+ Fts3Phrase *pPhrase = p->pRight->pPhrase;
+ int nNear = p->nNear;
+ res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
+ }
+
+ aPoslist = pExpr->pRight->pPhrase->doclist.pList;
+ nToken = pExpr->pRight->pPhrase->nToken;
+ for(p=pExpr->pLeft; p && res; p=p->pLeft){
+ int nNear;
+ Fts3Phrase *pPhrase;
+ assert( p->pParent && p->pParent->pLeft==p );
+ nNear = p->pParent->nNear;
+ pPhrase = (
+ p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
+ );
+ res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
+ }
+ }
+
+ sqlite3_free(aTmp);
+ }
+
+ return res;
+}
+
+/*
+** This function is a helper function for sqlite3Fts3EvalTestDeferred().
+** Assuming no error occurs or has occurred, It returns non-zero if the
+** expression passed as the second argument matches the row that pCsr
+** currently points to, or zero if it does not.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** If an error occurs during execution of this function, *pRc is set to
+** the appropriate SQLite error code. In this case the returned value is
+** undefined.
+*/
+static int fts3EvalTestExpr(
+ Fts3Cursor *pCsr, /* FTS cursor handle */
+ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
+ int *pRc /* IN/OUT: Error code */
+){
+ int bHit = 1; /* Return value */
+ if( *pRc==SQLITE_OK ){
+ switch( pExpr->eType ){
+ case FTSQUERY_NEAR:
+ case FTSQUERY_AND:
+ bHit = (
+ fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
+ && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
+ && fts3EvalNearTest(pExpr, pRc)
+ );
+
+ /* If the NEAR expression does not match any rows, zero the doclist for
+ ** all phrases involved in the NEAR. This is because the snippet(),
+ ** offsets() and matchinfo() functions are not supposed to recognize
+ ** any instances of phrases that are part of unmatched NEAR queries.
+ ** For example if this expression:
+ **
+ ** ... MATCH 'a OR (b NEAR c)'
+ **
+ ** is matched against a row containing:
+ **
+ ** 'a b d e'
+ **
+ ** then any snippet() should ony highlight the "a" term, not the "b"
+ ** (as "b" is part of a non-matching NEAR clause).
+ */
+ if( bHit==0
+ && pExpr->eType==FTSQUERY_NEAR
+ && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
+ ){
+ Fts3Expr *p;
+ for(p=pExpr; p->pPhrase==0; p=p->pLeft){
+ if( p->pRight->iDocid==pCsr->iPrevId ){
+ fts3EvalInvalidatePoslist(p->pRight->pPhrase);
+ }
+ }
+ if( p->iDocid==pCsr->iPrevId ){
+ fts3EvalInvalidatePoslist(p->pPhrase);
+ }
+ }
+
+ break;
+
+ case FTSQUERY_OR: {
+ int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
+ int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
+ bHit = bHit1 || bHit2;
+ break;
+ }
+
+ case FTSQUERY_NOT:
+ bHit = (
+ fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
+ && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
+ );
+ break;
+
+ default: {
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+ if( pCsr->pDeferred && (pExpr->bDeferred || (
+ pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.pList
+ ))){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ if( pExpr->bDeferred ){
+ fts3EvalInvalidatePoslist(pPhrase);
+ }
+ *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
+ bHit = (pPhrase->doclist.pList!=0);
+ pExpr->iDocid = pCsr->iPrevId;
+ }else
+#endif
+ {
+ bHit = (
+ pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId
+ && pExpr->pPhrase->doclist.nList>0
+ );
+ }
+ break;
+ }
+ }
+ }
+ return bHit;
+}
+
+/*
+** This function is called as the second part of each xNext operation when
+** iterating through the results of a full-text query. At this point the
+** cursor points to a row that matches the query expression, with the
+** following caveats:
+**
+** * Up until this point, "NEAR" operators in the expression have been
+** treated as "AND".
+**
+** * Deferred tokens have not yet been considered.
+**
+** If *pRc is not SQLITE_OK when this function is called, it immediately
+** returns 0. Otherwise, it tests whether or not after considering NEAR
+** operators and deferred tokens the current row is still a match for the
+** expression. It returns 1 if both of the following are true:
+**
+** 1. *pRc is SQLITE_OK when this function returns, and
+**
+** 2. After scanning the current FTS table row for the deferred tokens,
+** it is determined that the row does *not* match the query.
+**
+** Or, if no error occurs and it seems the current row does match the FTS
+** query, return 0.
+*/
+SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){
+ int rc = *pRc;
+ int bMiss = 0;
+ if( rc==SQLITE_OK ){
+
+ /* If there are one or more deferred tokens, load the current row into
+ ** memory and scan it to determine the position list for each deferred
+ ** token. Then, see if this row is really a match, considering deferred
+ ** tokens and NEAR operators (neither of which were taken into account
+ ** earlier, by fts3EvalNextRow()).
+ */
+ if( pCsr->pDeferred ){
+ rc = fts3CursorSeek(0, pCsr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
+ }
+ }
+ bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
+
+ /* Free the position-lists accumulated for each deferred token above. */
+ sqlite3Fts3FreeDeferredDoclists(pCsr);
+ *pRc = rc;
+ }
+ return (rc==SQLITE_OK && bMiss);
+}
+
+/*
+** Advance to the next document that matches the FTS expression in
+** Fts3Cursor.pExpr.
+*/
+static int fts3EvalNext(Fts3Cursor *pCsr){
+ int rc = SQLITE_OK; /* Return Code */
+ Fts3Expr *pExpr = pCsr->pExpr;
+ assert( pCsr->isEof==0 );
+ if( pExpr==0 ){
+ pCsr->isEof = 1;
+ }else{
+ do {
+ if( pCsr->isRequireSeek==0 ){
+ sqlite3_reset(pCsr->pStmt);
+ }
+ assert( sqlite3_data_count(pCsr->pStmt)==0 );
+ fts3EvalNextRow(pCsr, pExpr, &rc);
+ pCsr->isEof = pExpr->bEof;
+ pCsr->isRequireSeek = 1;
+ pCsr->isMatchinfoNeeded = 1;
+ pCsr->iPrevId = pExpr->iDocid;
+ }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) );
+ }
+
+ /* Check if the cursor is past the end of the docid range specified
+ ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
+ if( rc==SQLITE_OK && (
+ (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
+ || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
+ )){
+ pCsr->isEof = 1;
+ }
+
+ return rc;
+}
+
+/*
+** Restart interation for expression pExpr so that the next call to
+** fts3EvalNext() visits the first row. Do not allow incremental
+** loading or merging of phrase doclists for this iteration.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is
+** a no-op. If an error occurs within this function, *pRc is set to an
+** SQLite error code before returning.
+*/
+static void fts3EvalRestart(
+ Fts3Cursor *pCsr,
+ Fts3Expr *pExpr,
+ int *pRc
+){
+ if( pExpr && *pRc==SQLITE_OK ){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+
+ if( pPhrase ){
+ fts3EvalInvalidatePoslist(pPhrase);
+ if( pPhrase->bIncr ){
+ int i;
+ for(i=0; i<pPhrase->nToken; i++){
+ Fts3PhraseToken *pToken = &pPhrase->aToken[i];
+ assert( pToken->pDeferred==0 );
+ if( pToken->pSegcsr ){
+ sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
+ }
+ }
+ *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
+ }
+ pPhrase->doclist.pNextDocid = 0;
+ pPhrase->doclist.iDocid = 0;
+ pPhrase->pOrPoslist = 0;
+ }
+
+ pExpr->iDocid = 0;
+ pExpr->bEof = 0;
+ pExpr->bStart = 0;
+
+ fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
+ fts3EvalRestart(pCsr, pExpr->pRight, pRc);
+ }
+}
+
+/*
+** After allocating the Fts3Expr.aMI[] array for each phrase in the
+** expression rooted at pExpr, the cursor iterates through all rows matched
+** by pExpr, calling this function for each row. This function increments
+** the values in Fts3Expr.aMI[] according to the position-list currently
+** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
+** expression nodes.
+*/
+static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){
+ if( pExpr ){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ if( pPhrase && pPhrase->doclist.pList ){
+ int iCol = 0;
+ char *p = pPhrase->doclist.pList;
+
+ do{
+ u8 c = 0;
+ int iCnt = 0;
+ while( 0xFE & (*p | c) ){
+ if( (c&0x80)==0 ) iCnt++;
+ c = *p++ & 0x80;
+ }
+
+ /* aMI[iCol*3 + 1] = Number of occurrences
+ ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
+ */
+ pExpr->aMI[iCol*3 + 1] += iCnt;
+ pExpr->aMI[iCol*3 + 2] += (iCnt>0);
+ if( *p==0x00 ) break;
+ p++;
+ p += fts3GetVarint32(p, &iCol);
+ }while( iCol<nCol );
+ }
+
+ fts3EvalUpdateCounts(pExpr->pLeft, nCol);
+ fts3EvalUpdateCounts(pExpr->pRight, nCol);
+ }
+}
+
+/*
+** Expression pExpr must be of type FTSQUERY_PHRASE.
+**
+** If it is not already allocated and populated, this function allocates and
+** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
+** of a NEAR expression, then it also allocates and populates the same array
+** for all other phrases that are part of the NEAR expression.
+**
+** SQLITE_OK is returned if the aMI[] array is successfully allocated and
+** populated. Otherwise, if an error occurs, an SQLite error code is returned.
+*/
+static int fts3EvalGatherStats(
+ Fts3Cursor *pCsr, /* Cursor object */
+ Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pExpr->eType==FTSQUERY_PHRASE );
+ if( pExpr->aMI==0 ){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ Fts3Expr *pRoot; /* Root of NEAR expression */
+ Fts3Expr *p; /* Iterator used for several purposes */
+
+ sqlite3_int64 iPrevId = pCsr->iPrevId;
+ sqlite3_int64 iDocid;
+ u8 bEof;
+
+ /* Find the root of the NEAR expression */
+ pRoot = pExpr;
+ while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
+ pRoot = pRoot->pParent;
+ }
+ iDocid = pRoot->iDocid;
+ bEof = pRoot->bEof;
+ assert( pRoot->bStart );
+
+ /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
+ for(p=pRoot; p; p=p->pLeft){
+ Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
+ assert( pE->aMI==0 );
+ pE->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32));
+ if( !pE->aMI ) return SQLITE_NOMEM;
+ memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
+ }
+
+ fts3EvalRestart(pCsr, pRoot, &rc);
+
+ while( pCsr->isEof==0 && rc==SQLITE_OK ){
+
+ do {
+ /* Ensure the %_content statement is reset. */
+ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
+ assert( sqlite3_data_count(pCsr->pStmt)==0 );
+
+ /* Advance to the next document */
+ fts3EvalNextRow(pCsr, pRoot, &rc);
+ pCsr->isEof = pRoot->bEof;
+ pCsr->isRequireSeek = 1;
+ pCsr->isMatchinfoNeeded = 1;
+ pCsr->iPrevId = pRoot->iDocid;
+ }while( pCsr->isEof==0
+ && pRoot->eType==FTSQUERY_NEAR
+ && sqlite3Fts3EvalTestDeferred(pCsr, &rc)
+ );
+
+ if( rc==SQLITE_OK && pCsr->isEof==0 ){
+ fts3EvalUpdateCounts(pRoot, pTab->nColumn);
+ }
+ }
+
+ pCsr->isEof = 0;
+ pCsr->iPrevId = iPrevId;
+
+ if( bEof ){
+ pRoot->bEof = bEof;
+ }else{
+ /* Caution: pRoot may iterate through docids in ascending or descending
+ ** order. For this reason, even though it seems more defensive, the
+ ** do loop can not be written:
+ **
+ ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
+ */
+ fts3EvalRestart(pCsr, pRoot, &rc);
+ do {
+ fts3EvalNextRow(pCsr, pRoot, &rc);
+ assert_fts3_nc( pRoot->bEof==0 );
+ if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB;
+ }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is used by the matchinfo() module to query a phrase
+** expression node for the following information:
+**
+** 1. The total number of occurrences of the phrase in each column of
+** the FTS table (considering all rows), and
+**
+** 2. For each column, the number of rows in the table for which the
+** column contains at least one instance of the phrase.
+**
+** If no error occurs, SQLITE_OK is returned and the values for each column
+** written into the array aiOut as follows:
+**
+** aiOut[iCol*3 + 1] = Number of occurrences
+** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
+**
+** Caveats:
+**
+** * If a phrase consists entirely of deferred tokens, then all output
+** values are set to the number of documents in the table. In other
+** words we assume that very common tokens occur exactly once in each
+** column of each row of the table.
+**
+** * If a phrase contains some deferred tokens (and some non-deferred
+** tokens), count the potential occurrence identified by considering
+** the non-deferred tokens instead of actual phrase occurrences.
+**
+** * If the phrase is part of a NEAR expression, then only phrase instances
+** that meet the NEAR constraint are included in the counts.
+*/
+SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(
+ Fts3Cursor *pCsr, /* FTS cursor handle */
+ Fts3Expr *pExpr, /* Phrase expression */
+ u32 *aiOut /* Array to write results into (see above) */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int iCol;
+
+ if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
+ assert( pCsr->nDoc>0 );
+ for(iCol=0; iCol<pTab->nColumn; iCol++){
+ aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
+ aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
+ }
+ }else{
+ rc = fts3EvalGatherStats(pCsr, pExpr);
+ if( rc==SQLITE_OK ){
+ assert( pExpr->aMI );
+ for(iCol=0; iCol<pTab->nColumn; iCol++){
+ aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
+ aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The expression pExpr passed as the second argument to this function
+** must be of type FTSQUERY_PHRASE.
+**
+** The returned value is either NULL or a pointer to a buffer containing
+** a position-list indicating the occurrences of the phrase in column iCol
+** of the current row.
+**
+** More specifically, the returned buffer contains 1 varint for each
+** occurrence of the phrase in the column, stored using the normal (delta+2)
+** compression and is terminated by either an 0x01 or 0x00 byte. For example,
+** if the requested column contains "a b X c d X X" and the position-list
+** for 'X' is requested, the buffer returned may contain:
+**
+** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
+**
+** This function works regardless of whether or not the phrase is deferred,
+** incremental, or neither.
+*/
+SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(
+ Fts3Cursor *pCsr, /* FTS3 cursor object */
+ Fts3Expr *pExpr, /* Phrase to return doclist for */
+ int iCol, /* Column to return position list for */
+ char **ppOut /* OUT: Pointer to position list */
+){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ char *pIter;
+ int iThis;
+ sqlite3_int64 iDocid;
+
+ /* If this phrase is applies specifically to some column other than
+ ** column iCol, return a NULL pointer. */
+ *ppOut = 0;
+ assert( iCol>=0 && iCol<pTab->nColumn );
+ if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
+ return SQLITE_OK;
+ }
+
+ iDocid = pExpr->iDocid;
+ pIter = pPhrase->doclist.pList;
+ if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
+ int rc = SQLITE_OK;
+ int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
+ int bOr = 0;
+ u8 bTreeEof = 0;
+ Fts3Expr *p; /* Used to iterate from pExpr to root */
+ Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */
+ int bMatch;
+
+ /* Check if this phrase descends from an OR expression node. If not,
+ ** return NULL. Otherwise, the entry that corresponds to docid
+ ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
+ ** tree that the node is part of has been marked as EOF, but the node
+ ** itself is not EOF, then it may point to an earlier entry. */
+ pNear = pExpr;
+ for(p=pExpr->pParent; p; p=p->pParent){
+ if( p->eType==FTSQUERY_OR ) bOr = 1;
+ if( p->eType==FTSQUERY_NEAR ) pNear = p;
+ if( p->bEof ) bTreeEof = 1;
+ }
+ if( bOr==0 ) return SQLITE_OK;
+
+ /* This is the descendent of an OR node. In this case we cannot use
+ ** an incremental phrase. Load the entire doclist for the phrase
+ ** into memory in this case. */
+ if( pPhrase->bIncr ){
+ int bEofSave = pNear->bEof;
+ fts3EvalRestart(pCsr, pNear, &rc);
+ while( rc==SQLITE_OK && !pNear->bEof ){
+ fts3EvalNextRow(pCsr, pNear, &rc);
+ if( bEofSave==0 && pNear->iDocid==iDocid ) break;
+ }
+ assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
+ if( rc==SQLITE_OK && pNear->bEof!=bEofSave ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+ }
+ if( bTreeEof ){
+ while( rc==SQLITE_OK && !pNear->bEof ){
+ fts3EvalNextRow(pCsr, pNear, &rc);
+ }
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ bMatch = 1;
+ for(p=pNear; p; p=p->pLeft){
+ u8 bEof = 0;
+ Fts3Expr *pTest = p;
+ Fts3Phrase *pPh;
+ assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE );
+ if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight;
+ assert( pTest->eType==FTSQUERY_PHRASE );
+ pPh = pTest->pPhrase;
+
+ pIter = pPh->pOrPoslist;
+ iDocid = pPh->iOrDocid;
+ if( pCsr->bDesc==bDescDoclist ){
+ bEof = !pPh->doclist.nAll ||
+ (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll));
+ while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
+ sqlite3Fts3DoclistNext(
+ bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
+ &pIter, &iDocid, &bEof
+ );
+ }
+ }else{
+ bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll);
+ while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
+ int dummy;
+ sqlite3Fts3DoclistPrev(
+ bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
+ &pIter, &iDocid, &dummy, &bEof
+ );
+ }
+ }
+ pPh->pOrPoslist = pIter;
+ pPh->iOrDocid = iDocid;
+ if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0;
+ }
+
+ if( bMatch ){
+ pIter = pPhrase->pOrPoslist;
+ }else{
+ pIter = 0;
+ }
+ }
+ if( pIter==0 ) return SQLITE_OK;
+
+ if( *pIter==0x01 ){
+ pIter++;
+ pIter += fts3GetVarint32(pIter, &iThis);
+ }else{
+ iThis = 0;
+ }
+ while( iThis<iCol ){
+ fts3ColumnlistCopy(0, &pIter);
+ if( *pIter==0x00 ) return SQLITE_OK;
+ pIter++;
+ pIter += fts3GetVarint32(pIter, &iThis);
+ }
+ if( *pIter==0x00 ){
+ pIter = 0;
+ }
+
+ *ppOut = ((iCol==iThis)?pIter:0);
+ return SQLITE_OK;
+}
+
+/*
+** Free all components of the Fts3Phrase structure that were allocated by
+** the eval module. Specifically, this means to free:
+**
+** * the contents of pPhrase->doclist, and
+** * any Fts3MultiSegReader objects held by phrase tokens.
+*/
+SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
+ if( pPhrase ){
+ int i;
+ sqlite3_free(pPhrase->doclist.aAll);
+ fts3EvalInvalidatePoslist(pPhrase);
+ memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
+ for(i=0; i<pPhrase->nToken; i++){
+ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
+ pPhrase->aToken[i].pSegcsr = 0;
+ }
+ }
+}
+
+
+/*
+** Return SQLITE_CORRUPT_VTAB.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3Fts3Corrupt(){
+ return SQLITE_CORRUPT_VTAB;
+}
+#endif
+
+#if !SQLITE_CORE
+/*
+** Initialize API pointer table, if required.
+*/
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_fts3_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3Fts3Init(db);
+}
+#endif
+
+#endif
+
+/************** End of fts3.c ************************************************/
+/************** Begin file fts3_aux.c ****************************************/
+/*
+** 2011 Jan 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+typedef struct Fts3auxTable Fts3auxTable;
+typedef struct Fts3auxCursor Fts3auxCursor;
+
+struct Fts3auxTable {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ Fts3Table *pFts3Tab;
+};
+
+struct Fts3auxCursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ Fts3MultiSegReader csr; /* Must be right after "base" */
+ Fts3SegFilter filter;
+ char *zStop;
+ int nStop; /* Byte-length of string zStop */
+ int iLangid; /* Language id to query */
+ int isEof; /* True if cursor is at EOF */
+ sqlite3_int64 iRowid; /* Current rowid */
+
+ int iCol; /* Current value of 'col' column */
+ int nStat; /* Size of aStat[] array */
+ struct Fts3auxColstats {
+ sqlite3_int64 nDoc; /* 'documents' values for current csr row */
+ sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */
+ } *aStat;
+};
+
+/*
+** Schema of the terms table.
+*/
+#define FTS3_AUX_SCHEMA \
+ "CREATE TABLE x(term, col, documents, occurrences, languageid HIDDEN)"
+
+/*
+** This function does all the work for both the xConnect and xCreate methods.
+** These tables have no persistent representation of their own, so xConnect
+** and xCreate are identical operations.
+*/
+static int fts3auxConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pUnused, /* Unused */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ char const *zDb; /* Name of database (e.g. "main") */
+ char const *zFts3; /* Name of fts3 table */
+ int nDb; /* Result of strlen(zDb) */
+ int nFts3; /* Result of strlen(zFts3) */
+ sqlite3_int64 nByte; /* Bytes of space to allocate here */
+ int rc; /* value returned by declare_vtab() */
+ Fts3auxTable *p; /* Virtual table object to return */
+
+ UNUSED_PARAMETER(pUnused);
+
+ /* The user should invoke this in one of two forms:
+ **
+ ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table);
+ ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table-db, fts4-table);
+ */
+ if( argc!=4 && argc!=5 ) goto bad_args;
+
+ zDb = argv[1];
+ nDb = (int)strlen(zDb);
+ if( argc==5 ){
+ if( nDb==4 && 0==sqlite3_strnicmp("temp", zDb, 4) ){
+ zDb = argv[3];
+ nDb = (int)strlen(zDb);
+ zFts3 = argv[4];
+ }else{
+ goto bad_args;
+ }
+ }else{
+ zFts3 = argv[3];
+ }
+ nFts3 = (int)strlen(zFts3);
+
+ rc = sqlite3_declare_vtab(db, FTS3_AUX_SCHEMA);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
+ p = (Fts3auxTable *)sqlite3_malloc64(nByte);
+ if( !p ) return SQLITE_NOMEM;
+ memset(p, 0, nByte);
+
+ p->pFts3Tab = (Fts3Table *)&p[1];
+ p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
+ p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
+ p->pFts3Tab->db = db;
+ p->pFts3Tab->nIndex = 1;
+
+ memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
+ memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
+ sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
+
+ *ppVtab = (sqlite3_vtab *)p;
+ return SQLITE_OK;
+
+ bad_args:
+ sqlite3Fts3ErrMsg(pzErr, "invalid arguments to fts4aux constructor");
+ return SQLITE_ERROR;
+}
+
+/*
+** This function does the work for both the xDisconnect and xDestroy methods.
+** These tables have no persistent representation of their own, so xDisconnect
+** and xDestroy are identical operations.
+*/
+static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts3auxTable *p = (Fts3auxTable *)pVtab;
+ Fts3Table *pFts3 = p->pFts3Tab;
+ int i;
+
+ /* Free any prepared statements held */
+ for(i=0; i<SizeofArray(pFts3->aStmt); i++){
+ sqlite3_finalize(pFts3->aStmt[i]);
+ }
+ sqlite3_free(pFts3->zSegmentsTbl);
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+#define FTS4AUX_EQ_CONSTRAINT 1
+#define FTS4AUX_GE_CONSTRAINT 2
+#define FTS4AUX_LE_CONSTRAINT 4
+
+/*
+** xBestIndex - Analyze a WHERE and ORDER BY clause.
+*/
+static int fts3auxBestIndexMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ int iEq = -1;
+ int iGe = -1;
+ int iLe = -1;
+ int iLangid = -1;
+ int iNext = 1; /* Next free argvIndex value */
+
+ UNUSED_PARAMETER(pVTab);
+
+ /* This vtab delivers always results in "ORDER BY term ASC" order. */
+ if( pInfo->nOrderBy==1
+ && pInfo->aOrderBy[0].iColumn==0
+ && pInfo->aOrderBy[0].desc==0
+ ){
+ pInfo->orderByConsumed = 1;
+ }
+
+ /* Search for equality and range constraints on the "term" column.
+ ** And equality constraints on the hidden "languageid" column. */
+ for(i=0; i<pInfo->nConstraint; i++){
+ if( pInfo->aConstraint[i].usable ){
+ int op = pInfo->aConstraint[i].op;
+ int iCol = pInfo->aConstraint[i].iColumn;
+
+ if( iCol==0 ){
+ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i;
+ }
+ if( iCol==4 ){
+ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iLangid = i;
+ }
+ }
+ }
+
+ if( iEq>=0 ){
+ pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT;
+ pInfo->aConstraintUsage[iEq].argvIndex = iNext++;
+ pInfo->estimatedCost = 5;
+ }else{
+ pInfo->idxNum = 0;
+ pInfo->estimatedCost = 20000;
+ if( iGe>=0 ){
+ pInfo->idxNum += FTS4AUX_GE_CONSTRAINT;
+ pInfo->aConstraintUsage[iGe].argvIndex = iNext++;
+ pInfo->estimatedCost /= 2;
+ }
+ if( iLe>=0 ){
+ pInfo->idxNum += FTS4AUX_LE_CONSTRAINT;
+ pInfo->aConstraintUsage[iLe].argvIndex = iNext++;
+ pInfo->estimatedCost /= 2;
+ }
+ }
+ if( iLangid>=0 ){
+ pInfo->aConstraintUsage[iLangid].argvIndex = iNext++;
+ pInfo->estimatedCost--;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** xOpen - Open a cursor.
+*/
+static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts3auxCursor *pCsr; /* Pointer to cursor object to return */
+
+ UNUSED_PARAMETER(pVTab);
+
+ pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor));
+ if( !pCsr ) return SQLITE_NOMEM;
+ memset(pCsr, 0, sizeof(Fts3auxCursor));
+
+ *ppCsr = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** xClose - Close a cursor.
+*/
+static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+
+ sqlite3Fts3SegmentsClose(pFts3);
+ sqlite3Fts3SegReaderFinish(&pCsr->csr);
+ sqlite3_free((void *)pCsr->filter.zTerm);
+ sqlite3_free(pCsr->zStop);
+ sqlite3_free(pCsr->aStat);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){
+ if( nSize>pCsr->nStat ){
+ struct Fts3auxColstats *aNew;
+ aNew = (struct Fts3auxColstats *)sqlite3_realloc64(pCsr->aStat,
+ sizeof(struct Fts3auxColstats) * nSize
+ );
+ if( aNew==0 ) return SQLITE_NOMEM;
+ memset(&aNew[pCsr->nStat], 0,
+ sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat)
+ );
+ pCsr->aStat = aNew;
+ pCsr->nStat = nSize;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** xNext - Advance the cursor to the next row, if any.
+*/
+static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
+ int rc;
+
+ /* Increment our pretend rowid value. */
+ pCsr->iRowid++;
+
+ for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){
+ if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK;
+ }
+
+ rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
+ if( rc==SQLITE_ROW ){
+ int i = 0;
+ int nDoclist = pCsr->csr.nDoclist;
+ char *aDoclist = pCsr->csr.aDoclist;
+ int iCol;
+
+ int eState = 0;
+
+ if( pCsr->zStop ){
+ int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm;
+ int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n);
+ if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){
+ pCsr->isEof = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM;
+ memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat);
+ iCol = 0;
+ rc = SQLITE_OK;
+
+ while( i<nDoclist ){
+ sqlite3_int64 v = 0;
+
+ i += sqlite3Fts3GetVarint(&aDoclist[i], &v);
+ switch( eState ){
+ /* State 0. In this state the integer just read was a docid. */
+ case 0:
+ pCsr->aStat[0].nDoc++;
+ eState = 1;
+ iCol = 0;
+ break;
+
+ /* State 1. In this state we are expecting either a 1, indicating
+ ** that the following integer will be a column number, or the
+ ** start of a position list for column 0.
+ **
+ ** The only difference between state 1 and state 2 is that if the
+ ** integer encountered in state 1 is not 0 or 1, then we need to
+ ** increment the column 0 "nDoc" count for this term.
+ */
+ case 1:
+ assert( iCol==0 );
+ if( v>1 ){
+ pCsr->aStat[1].nDoc++;
+ }
+ eState = 2;
+ /* fall through */
+
+ case 2:
+ if( v==0 ){ /* 0x00. Next integer will be a docid. */
+ eState = 0;
+ }else if( v==1 ){ /* 0x01. Next integer will be a column number. */
+ eState = 3;
+ }else{ /* 2 or greater. A position. */
+ pCsr->aStat[iCol+1].nOcc++;
+ pCsr->aStat[0].nOcc++;
+ }
+ break;
+
+ /* State 3. The integer just read is a column number. */
+ default: assert( eState==3 );
+ iCol = (int)v;
+ if( iCol<1 ){
+ rc = SQLITE_CORRUPT_VTAB;
+ break;
+ }
+ if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM;
+ pCsr->aStat[iCol+1].nDoc++;
+ eState = 2;
+ break;
+ }
+ }
+
+ pCsr->iCol = 0;
+ }else{
+ pCsr->isEof = 1;
+ }
+ return rc;
+}
+
+/*
+** xFilter - Initialize a cursor to point at the start of its data.
+*/
+static int fts3auxFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
+ int rc;
+ int isScan = 0;
+ int iLangVal = 0; /* Language id to query */
+
+ int iEq = -1; /* Index of term=? value in apVal */
+ int iGe = -1; /* Index of term>=? value in apVal */
+ int iLe = -1; /* Index of term<=? value in apVal */
+ int iLangid = -1; /* Index of languageid=? value in apVal */
+ int iNext = 0;
+
+ UNUSED_PARAMETER(nVal);
+ UNUSED_PARAMETER(idxStr);
+
+ assert( idxStr==0 );
+ assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
+ || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
+ || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
+ );
+
+ if( idxNum==FTS4AUX_EQ_CONSTRAINT ){
+ iEq = iNext++;
+ }else{
+ isScan = 1;
+ if( idxNum & FTS4AUX_GE_CONSTRAINT ){
+ iGe = iNext++;
+ }
+ if( idxNum & FTS4AUX_LE_CONSTRAINT ){
+ iLe = iNext++;
+ }
+ }
+ if( iNext<nVal ){
+ iLangid = iNext++;
+ }
+
+ /* In case this cursor is being reused, close and zero it. */
+ testcase(pCsr->filter.zTerm);
+ sqlite3Fts3SegReaderFinish(&pCsr->csr);
+ sqlite3_free((void *)pCsr->filter.zTerm);
+ sqlite3_free(pCsr->aStat);
+ sqlite3_free(pCsr->zStop);
+ memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
+
+ pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
+ if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
+
+ if( iEq>=0 || iGe>=0 ){
+ const unsigned char *zStr = sqlite3_value_text(apVal[0]);
+ assert( (iEq==0 && iGe==-1) || (iEq==-1 && iGe==0) );
+ if( zStr ){
+ pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr);
+ if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM;
+ pCsr->filter.nTerm = (int)strlen(pCsr->filter.zTerm);
+ }
+ }
+
+ if( iLe>=0 ){
+ pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iLe]));
+ if( pCsr->zStop==0 ) return SQLITE_NOMEM;
+ pCsr->nStop = (int)strlen(pCsr->zStop);
+ }
+
+ if( iLangid>=0 ){
+ iLangVal = sqlite3_value_int(apVal[iLangid]);
+
+ /* If the user specified a negative value for the languageid, use zero
+ ** instead. This works, as the "languageid=?" constraint will also
+ ** be tested by the VDBE layer. The test will always be false (since
+ ** this module will not return a row with a negative languageid), and
+ ** so the overall query will return zero rows. */
+ if( iLangVal<0 ) iLangVal = 0;
+ }
+ pCsr->iLangid = iLangVal;
+
+ rc = sqlite3Fts3SegReaderCursor(pFts3, iLangVal, 0, FTS3_SEGCURSOR_ALL,
+ pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
+ }
+
+ if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);
+ return rc;
+}
+
+/*
+** xEof - Return true if the cursor is at EOF, or false otherwise.
+*/
+static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ return pCsr->isEof;
+}
+
+/*
+** xColumn - Return a column value.
+*/
+static int fts3auxColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts3auxCursor *p = (Fts3auxCursor *)pCursor;
+
+ assert( p->isEof==0 );
+ switch( iCol ){
+ case 0: /* term */
+ sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
+ break;
+
+ case 1: /* col */
+ if( p->iCol ){
+ sqlite3_result_int(pCtx, p->iCol-1);
+ }else{
+ sqlite3_result_text(pCtx, "*", -1, SQLITE_STATIC);
+ }
+ break;
+
+ case 2: /* documents */
+ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nDoc);
+ break;
+
+ case 3: /* occurrences */
+ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nOcc);
+ break;
+
+ default: /* languageid */
+ assert( iCol==4 );
+ sqlite3_result_int(pCtx, p->iLangid);
+ break;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** xRowid - Return the current rowid for the cursor.
+*/
+static int fts3auxRowidMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite_int64 *pRowid /* OUT: Rowid value */
+){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ *pRowid = pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Register the fts3aux module with database connection db. Return SQLITE_OK
+** if successful or an error code if sqlite3_create_module() fails.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){
+ static const sqlite3_module fts3aux_module = {
+ 0, /* iVersion */
+ fts3auxConnectMethod, /* xCreate */
+ fts3auxConnectMethod, /* xConnect */
+ fts3auxBestIndexMethod, /* xBestIndex */
+ fts3auxDisconnectMethod, /* xDisconnect */
+ fts3auxDisconnectMethod, /* xDestroy */
+ fts3auxOpenMethod, /* xOpen */
+ fts3auxCloseMethod, /* xClose */
+ fts3auxFilterMethod, /* xFilter */
+ fts3auxNextMethod, /* xNext */
+ fts3auxEofMethod, /* xEof */
+ fts3auxColumnMethod, /* xColumn */
+ fts3auxRowidMethod, /* xRowid */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindFunction */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+ };
+ int rc; /* Return code */
+
+ rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_aux.c ********************************************/
+/************** Begin file fts3_expr.c ***************************************/
+/*
+** 2008 Nov 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This module contains code that implements a parser for fts3 query strings
+** (the right-hand argument to the MATCH operator). Because the supported
+** syntax is relatively simple, the whole tokenizer/parser system is
+** hand-coded.
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/*
+** By default, this module parses the legacy syntax that has been
+** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
+** is defined, then it uses the new syntax. The differences between
+** the new and the old syntaxes are:
+**
+** a) The new syntax supports parenthesis. The old does not.
+**
+** b) The new syntax supports the AND and NOT operators. The old does not.
+**
+** c) The old syntax supports the "-" token qualifier. This is not
+** supported by the new syntax (it is replaced by the NOT operator).
+**
+** d) When using the old syntax, the OR operator has a greater precedence
+** than an implicit AND. When using the new, both implicity and explicit
+** AND operators have a higher precedence than OR.
+**
+** If compiled with SQLITE_TEST defined, then this module exports the
+** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
+** to zero causes the module to use the old syntax. If it is set to
+** non-zero the new syntax is activated. This is so both syntaxes can
+** be tested using a single build of testfixture.
+**
+** The following describes the syntax supported by the fts3 MATCH
+** operator in a similar format to that used by the lemon parser
+** generator. This module does not use actually lemon, it uses a
+** custom parser.
+**
+** query ::= andexpr (OR andexpr)*.
+**
+** andexpr ::= notexpr (AND? notexpr)*.
+**
+** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
+** notexpr ::= LP query RP.
+**
+** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
+**
+** distance_opt ::= .
+** distance_opt ::= / INTEGER.
+**
+** phrase ::= TOKEN.
+** phrase ::= COLUMN:TOKEN.
+** phrase ::= "TOKEN TOKEN TOKEN...".
+*/
+
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_fts3_enable_parentheses = 0;
+#else
+# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
+# define sqlite3_fts3_enable_parentheses 1
+# else
+# define sqlite3_fts3_enable_parentheses 0
+# endif
+#endif
+
+/*
+** Default span for NEAR operators.
+*/
+#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+/*
+** isNot:
+** This variable is used by function getNextNode(). When getNextNode() is
+** called, it sets ParseContext.isNot to true if the 'next node' is a
+** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the
+** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to
+** zero.
+*/
+typedef struct ParseContext ParseContext;
+struct ParseContext {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
+ int iLangid; /* Language id used with tokenizer */
+ const char **azCol; /* Array of column names for fts3 table */
+ int bFts4; /* True to allow FTS4-only syntax */
+ int nCol; /* Number of entries in azCol[] */
+ int iDefaultCol; /* Default column to query */
+ int isNot; /* True if getNextNode() sees a unary - */
+ sqlite3_context *pCtx; /* Write error message here */
+ int nNest; /* Number of nested brackets */
+};
+
+/*
+** This function is equivalent to the standard isspace() function.
+**
+** The standard isspace() can be awkward to use safely, because although it
+** is defined to accept an argument of type int, its behavior when passed
+** an integer that falls outside of the range of the unsigned char type
+** is undefined (and sometimes, "undefined" means segfault). This wrapper
+** is defined to accept an argument of type char, and always returns 0 for
+** any values that fall outside of the range of the unsigned char type (i.e.
+** negative values).
+*/
+static int fts3isspace(char c){
+ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
+}
+
+/*
+** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
+** zero the memory before returning a pointer to it. If unsuccessful,
+** return NULL.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3MallocZero(sqlite3_int64 nByte){
+ void *pRet = sqlite3_malloc64(nByte);
+ if( pRet ) memset(pRet, 0, nByte);
+ return pRet;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(
+ sqlite3_tokenizer *pTokenizer,
+ int iLangid,
+ const char *z,
+ int n,
+ sqlite3_tokenizer_cursor **ppCsr
+){
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ sqlite3_tokenizer_cursor *pCsr = 0;
+ int rc;
+
+ rc = pModule->xOpen(pTokenizer, z, n, &pCsr);
+ assert( rc==SQLITE_OK || pCsr==0 );
+ if( rc==SQLITE_OK ){
+ pCsr->pTokenizer = pTokenizer;
+ if( pModule->iVersion>=1 ){
+ rc = pModule->xLanguageid(pCsr, iLangid);
+ if( rc!=SQLITE_OK ){
+ pModule->xClose(pCsr);
+ pCsr = 0;
+ }
+ }
+ }
+ *ppCsr = pCsr;
+ return rc;
+}
+
+/*
+** Function getNextNode(), which is called by fts3ExprParse(), may itself
+** call fts3ExprParse(). So this forward declaration is required.
+*/
+static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
+
+/*
+** Extract the next token from buffer z (length n) using the tokenizer
+** and other information (column names etc.) in pParse. Create an Fts3Expr
+** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
+** single token and set *ppExpr to point to it. If the end of the buffer is
+** reached before a token is found, set *ppExpr to zero. It is the
+** responsibility of the caller to eventually deallocate the allocated
+** Fts3Expr structure (if any) by passing it to sqlite3_free().
+**
+** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
+** fails.
+*/
+static int getNextToken(
+ ParseContext *pParse, /* fts3 query parse context */
+ int iCol, /* Value for Fts3Phrase.iColumn */
+ const char *z, int n, /* Input string */
+ Fts3Expr **ppExpr, /* OUT: expression */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ int rc;
+ sqlite3_tokenizer_cursor *pCursor;
+ Fts3Expr *pRet = 0;
+ int i = 0;
+
+ /* Set variable i to the maximum number of bytes of input to tokenize. */
+ for(i=0; i<n; i++){
+ if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break;
+ if( z[i]=='"' ) break;
+ }
+
+ *pnConsumed = i;
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
+ if( rc==SQLITE_OK ){
+ const char *zToken;
+ int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;
+ sqlite3_int64 nByte; /* total space to allocate */
+
+ rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
+ if( rc==SQLITE_OK ){
+ nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
+ pRet = (Fts3Expr *)sqlite3Fts3MallocZero(nByte);
+ if( !pRet ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pRet->eType = FTSQUERY_PHRASE;
+ pRet->pPhrase = (Fts3Phrase *)&pRet[1];
+ pRet->pPhrase->nToken = 1;
+ pRet->pPhrase->iColumn = iCol;
+ pRet->pPhrase->aToken[0].n = nToken;
+ pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
+ memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
+
+ if( iEnd<n && z[iEnd]=='*' ){
+ pRet->pPhrase->aToken[0].isPrefix = 1;
+ iEnd++;
+ }
+
+ while( 1 ){
+ if( !sqlite3_fts3_enable_parentheses
+ && iStart>0 && z[iStart-1]=='-'
+ ){
+ pParse->isNot = 1;
+ iStart--;
+ }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){
+ pRet->pPhrase->aToken[0].bFirst = 1;
+ iStart--;
+ }else{
+ break;
+ }
+ }
+
+ }
+ *pnConsumed = iEnd;
+ }else if( i && rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+
+ pModule->xClose(pCursor);
+ }
+
+ *ppExpr = pRet;
+ return rc;
+}
+
+
+/*
+** Enlarge a memory allocation. If an out-of-memory allocation occurs,
+** then free the old allocation.
+*/
+static void *fts3ReallocOrFree(void *pOrig, sqlite3_int64 nNew){
+ void *pRet = sqlite3_realloc64(pOrig, nNew);
+ if( !pRet ){
+ sqlite3_free(pOrig);
+ }
+ return pRet;
+}
+
+/*
+** Buffer zInput, length nInput, contains the contents of a quoted string
+** that appeared as part of an fts3 query expression. Neither quote character
+** is included in the buffer. This function attempts to tokenize the entire
+** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
+** containing the results.
+**
+** If successful, SQLITE_OK is returned and *ppExpr set to point at the
+** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
+** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
+** to 0.
+*/
+static int getNextString(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *zInput, int nInput, /* Input string */
+ Fts3Expr **ppExpr /* OUT: expression */
+){
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ int rc;
+ Fts3Expr *p = 0;
+ sqlite3_tokenizer_cursor *pCursor = 0;
+ char *zTemp = 0;
+ int nTemp = 0;
+
+ const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
+ int nToken = 0;
+
+ /* The final Fts3Expr data structure, including the Fts3Phrase,
+ ** Fts3PhraseToken structures token buffers are all stored as a single
+ ** allocation so that the expression can be freed with a single call to
+ ** sqlite3_free(). Setting this up requires a two pass approach.
+ **
+ ** The first pass, in the block below, uses a tokenizer cursor to iterate
+ ** through the tokens in the expression. This pass uses fts3ReallocOrFree()
+ ** to assemble data in two dynamic buffers:
+ **
+ ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase
+ ** structure, followed by the array of Fts3PhraseToken
+ ** structures. This pass only populates the Fts3PhraseToken array.
+ **
+ ** Buffer zTemp: Contains copies of all tokens.
+ **
+ ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below,
+ ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase
+ ** structures.
+ */
+ rc = sqlite3Fts3OpenTokenizer(
+ pTokenizer, pParse->iLangid, zInput, nInput, &pCursor);
+ if( rc==SQLITE_OK ){
+ int ii;
+ for(ii=0; rc==SQLITE_OK; ii++){
+ const char *zByte;
+ int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0;
+ rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos);
+ if( rc==SQLITE_OK ){
+ Fts3PhraseToken *pToken;
+
+ p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken));
+ if( !p ) goto no_mem;
+
+ zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte);
+ if( !zTemp ) goto no_mem;
+
+ assert( nToken==ii );
+ pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii];
+ memset(pToken, 0, sizeof(Fts3PhraseToken));
+
+ memcpy(&zTemp[nTemp], zByte, nByte);
+ nTemp += nByte;
+
+ pToken->n = nByte;
+ pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*');
+ pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^');
+ nToken = ii+1;
+ }
+ }
+
+ pModule->xClose(pCursor);
+ pCursor = 0;
+ }
+
+ if( rc==SQLITE_DONE ){
+ int jj;
+ char *zBuf = 0;
+
+ p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp);
+ if( !p ) goto no_mem;
+ memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p);
+ p->eType = FTSQUERY_PHRASE;
+ p->pPhrase = (Fts3Phrase *)&p[1];
+ p->pPhrase->iColumn = pParse->iDefaultCol;
+ p->pPhrase->nToken = nToken;
+
+ zBuf = (char *)&p->pPhrase->aToken[nToken];
+ if( zTemp ){
+ memcpy(zBuf, zTemp, nTemp);
+ sqlite3_free(zTemp);
+ }else{
+ assert( nTemp==0 );
+ }
+
+ for(jj=0; jj<p->pPhrase->nToken; jj++){
+ p->pPhrase->aToken[jj].z = zBuf;
+ zBuf += p->pPhrase->aToken[jj].n;
+ }
+ rc = SQLITE_OK;
+ }
+
+ *ppExpr = p;
+ return rc;
+no_mem:
+
+ if( pCursor ){
+ pModule->xClose(pCursor);
+ }
+ sqlite3_free(zTemp);
+ sqlite3_free(p);
+ *ppExpr = 0;
+ return SQLITE_NOMEM;
+}
+
+/*
+** The output variable *ppExpr is populated with an allocated Fts3Expr
+** structure, or set to 0 if the end of the input buffer is reached.
+**
+** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
+** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
+** If SQLITE_ERROR is returned, pContext is populated with an error message.
+*/
+static int getNextNode(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *z, int n, /* Input string */
+ Fts3Expr **ppExpr, /* OUT: expression */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ static const struct Fts3Keyword {
+ char *z; /* Keyword text */
+ unsigned char n; /* Length of the keyword */
+ unsigned char parenOnly; /* Only valid in paren mode */
+ unsigned char eType; /* Keyword code */
+ } aKeyword[] = {
+ { "OR" , 2, 0, FTSQUERY_OR },
+ { "AND", 3, 1, FTSQUERY_AND },
+ { "NOT", 3, 1, FTSQUERY_NOT },
+ { "NEAR", 4, 0, FTSQUERY_NEAR }
+ };
+ int ii;
+ int iCol;
+ int iColLen;
+ int rc;
+ Fts3Expr *pRet = 0;
+
+ const char *zInput = z;
+ int nInput = n;
+
+ pParse->isNot = 0;
+
+ /* Skip over any whitespace before checking for a keyword, an open or
+ ** close bracket, or a quoted string.
+ */
+ while( nInput>0 && fts3isspace(*zInput) ){
+ nInput--;
+ zInput++;
+ }
+ if( nInput==0 ){
+ return SQLITE_DONE;
+ }
+
+ /* See if we are dealing with a keyword. */
+ for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
+ const struct Fts3Keyword *pKey = &aKeyword[ii];
+
+ if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
+ continue;
+ }
+
+ if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
+ int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
+ int nKey = pKey->n;
+ char cNext;
+
+ /* If this is a "NEAR" keyword, check for an explicit nearness. */
+ if( pKey->eType==FTSQUERY_NEAR ){
+ assert( nKey==4 );
+ if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
+ nKey += 1+sqlite3Fts3ReadInt(&zInput[nKey+1], &nNear);
+ }
+ }
+
+ /* At this point this is probably a keyword. But for that to be true,
+ ** the next byte must contain either whitespace, an open or close
+ ** parenthesis, a quote character, or EOF.
+ */
+ cNext = zInput[nKey];
+ if( fts3isspace(cNext)
+ || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
+ ){
+ pRet = (Fts3Expr *)sqlite3Fts3MallocZero(sizeof(Fts3Expr));
+ if( !pRet ){
+ return SQLITE_NOMEM;
+ }
+ pRet->eType = pKey->eType;
+ pRet->nNear = nNear;
+ *ppExpr = pRet;
+ *pnConsumed = (int)((zInput - z) + nKey);
+ return SQLITE_OK;
+ }
+
+ /* Turns out that wasn't a keyword after all. This happens if the
+ ** user has supplied a token such as "ORacle". Continue.
+ */
+ }
+ }
+
+ /* See if we are dealing with a quoted phrase. If this is the case, then
+ ** search for the closing quote and pass the whole string to getNextString()
+ ** for processing. This is easy to do, as fts3 has no syntax for escaping
+ ** a quote character embedded in a string.
+ */
+ if( *zInput=='"' ){
+ for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
+ *pnConsumed = (int)((zInput - z) + ii + 1);
+ if( ii==nInput ){
+ return SQLITE_ERROR;
+ }
+ return getNextString(pParse, &zInput[1], ii-1, ppExpr);
+ }
+
+ if( sqlite3_fts3_enable_parentheses ){
+ if( *zInput=='(' ){
+ int nConsumed = 0;
+ pParse->nNest++;
+#if !defined(SQLITE_MAX_EXPR_DEPTH)
+ if( pParse->nNest>1000 ) return SQLITE_ERROR;
+#elif SQLITE_MAX_EXPR_DEPTH>0
+ if( pParse->nNest>SQLITE_MAX_EXPR_DEPTH ) return SQLITE_ERROR;
+#endif
+ rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed);
+ *pnConsumed = (int)(zInput - z) + 1 + nConsumed;
+ return rc;
+ }else if( *zInput==')' ){
+ pParse->nNest--;
+ *pnConsumed = (int)((zInput - z) + 1);
+ *ppExpr = 0;
+ return SQLITE_DONE;
+ }
+ }
+
+ /* If control flows to this point, this must be a regular token, or
+ ** the end of the input. Read a regular token using the sqlite3_tokenizer
+ ** interface. Before doing so, figure out if there is an explicit
+ ** column specifier for the token.
+ **
+ ** TODO: Strangely, it is not possible to associate a column specifier
+ ** with a quoted phrase, only with a single token. Not sure if this was
+ ** an implementation artifact or an intentional decision when fts3 was
+ ** first implemented. Whichever it was, this module duplicates the
+ ** limitation.
+ */
+ iCol = pParse->iDefaultCol;
+ iColLen = 0;
+ for(ii=0; ii<pParse->nCol; ii++){
+ const char *zStr = pParse->azCol[ii];
+ int nStr = (int)strlen(zStr);
+ if( nInput>nStr && zInput[nStr]==':'
+ && sqlite3_strnicmp(zStr, zInput, nStr)==0
+ ){
+ iCol = ii;
+ iColLen = (int)((zInput - z) + nStr + 1);
+ break;
+ }
+ }
+ rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
+ *pnConsumed += iColLen;
+ return rc;
+}
+
+/*
+** The argument is an Fts3Expr structure for a binary operator (any type
+** except an FTSQUERY_PHRASE). Return an integer value representing the
+** precedence of the operator. Lower values have a higher precedence (i.e.
+** group more tightly). For example, in the C language, the == operator
+** groups more tightly than ||, and would therefore have a higher precedence.
+**
+** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
+** is defined), the order of the operators in precedence from highest to
+** lowest is:
+**
+** NEAR
+** NOT
+** AND (including implicit ANDs)
+** OR
+**
+** Note that when using the old query syntax, the OR operator has a higher
+** precedence than the AND operator.
+*/
+static int opPrecedence(Fts3Expr *p){
+ assert( p->eType!=FTSQUERY_PHRASE );
+ if( sqlite3_fts3_enable_parentheses ){
+ return p->eType;
+ }else if( p->eType==FTSQUERY_NEAR ){
+ return 1;
+ }else if( p->eType==FTSQUERY_OR ){
+ return 2;
+ }
+ assert( p->eType==FTSQUERY_AND );
+ return 3;
+}
+
+/*
+** Argument ppHead contains a pointer to the current head of a query
+** expression tree being parsed. pPrev is the expression node most recently
+** inserted into the tree. This function adds pNew, which is always a binary
+** operator node, into the expression tree based on the relative precedence
+** of pNew and the existing nodes of the tree. This may result in the head
+** of the tree changing, in which case *ppHead is set to the new root node.
+*/
+static void insertBinaryOperator(
+ Fts3Expr **ppHead, /* Pointer to the root node of a tree */
+ Fts3Expr *pPrev, /* Node most recently inserted into the tree */
+ Fts3Expr *pNew /* New binary node to insert into expression tree */
+){
+ Fts3Expr *pSplit = pPrev;
+ while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
+ pSplit = pSplit->pParent;
+ }
+
+ if( pSplit->pParent ){
+ assert( pSplit->pParent->pRight==pSplit );
+ pSplit->pParent->pRight = pNew;
+ pNew->pParent = pSplit->pParent;
+ }else{
+ *ppHead = pNew;
+ }
+ pNew->pLeft = pSplit;
+ pSplit->pParent = pNew;
+}
+
+/*
+** Parse the fts3 query expression found in buffer z, length n. This function
+** returns either when the end of the buffer is reached or an unmatched
+** closing bracket - ')' - is encountered.
+**
+** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
+** parsed form of the expression and *pnConsumed is set to the number of
+** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
+** (out of memory error) or SQLITE_ERROR (parse error) is returned.
+*/
+static int fts3ExprParse(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ Fts3Expr *pRet = 0;
+ Fts3Expr *pPrev = 0;
+ Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
+ int nIn = n;
+ const char *zIn = z;
+ int rc = SQLITE_OK;
+ int isRequirePhrase = 1;
+
+ while( rc==SQLITE_OK ){
+ Fts3Expr *p = 0;
+ int nByte = 0;
+
+ rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
+ assert( nByte>0 || (rc!=SQLITE_OK && p==0) );
+ if( rc==SQLITE_OK ){
+ if( p ){
+ int isPhrase;
+
+ if( !sqlite3_fts3_enable_parentheses
+ && p->eType==FTSQUERY_PHRASE && pParse->isNot
+ ){
+ /* Create an implicit NOT operator. */
+ Fts3Expr *pNot = sqlite3Fts3MallocZero(sizeof(Fts3Expr));
+ if( !pNot ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_NOMEM;
+ goto exprparse_out;
+ }
+ pNot->eType = FTSQUERY_NOT;
+ pNot->pRight = p;
+ p->pParent = pNot;
+ if( pNotBranch ){
+ pNot->pLeft = pNotBranch;
+ pNotBranch->pParent = pNot;
+ }
+ pNotBranch = pNot;
+ p = pPrev;
+ }else{
+ int eType = p->eType;
+ isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
+
+ /* The isRequirePhrase variable is set to true if a phrase or
+ ** an expression contained in parenthesis is required. If a
+ ** binary operator (AND, OR, NOT or NEAR) is encounted when
+ ** isRequirePhrase is set, this is a syntax error.
+ */
+ if( !isPhrase && isRequirePhrase ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_ERROR;
+ goto exprparse_out;
+ }
+
+ if( isPhrase && !isRequirePhrase ){
+ /* Insert an implicit AND operator. */
+ Fts3Expr *pAnd;
+ assert( pRet && pPrev );
+ pAnd = sqlite3Fts3MallocZero(sizeof(Fts3Expr));
+ if( !pAnd ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_NOMEM;
+ goto exprparse_out;
+ }
+ pAnd->eType = FTSQUERY_AND;
+ insertBinaryOperator(&pRet, pPrev, pAnd);
+ pPrev = pAnd;
+ }
+
+ /* This test catches attempts to make either operand of a NEAR
+ ** operator something other than a phrase. For example, either of
+ ** the following:
+ **
+ ** (bracketed expression) NEAR phrase
+ ** phrase NEAR (bracketed expression)
+ **
+ ** Return an error in either case.
+ */
+ if( pPrev && (
+ (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
+ || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
+ )){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_ERROR;
+ goto exprparse_out;
+ }
+
+ if( isPhrase ){
+ if( pRet ){
+ assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
+ pPrev->pRight = p;
+ p->pParent = pPrev;
+ }else{
+ pRet = p;
+ }
+ }else{
+ insertBinaryOperator(&pRet, pPrev, p);
+ }
+ isRequirePhrase = !isPhrase;
+ }
+ pPrev = p;
+ }
+ assert( nByte>0 );
+ }
+ assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
+ nIn -= nByte;
+ zIn += nByte;
+ }
+
+ if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
+ if( !pRet ){
+ rc = SQLITE_ERROR;
+ }else{
+ Fts3Expr *pIter = pNotBranch;
+ while( pIter->pLeft ){
+ pIter = pIter->pLeft;
+ }
+ pIter->pLeft = pRet;
+ pRet->pParent = pIter;
+ pRet = pNotBranch;
+ }
+ }
+ }
+ *pnConsumed = n - nIn;
+
+exprparse_out:
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRet);
+ sqlite3Fts3ExprFree(pNotBranch);
+ pRet = 0;
+ }
+ *ppExpr = pRet;
+ return rc;
+}
+
+/*
+** Return SQLITE_ERROR if the maximum depth of the expression tree passed
+** as the only argument is more than nMaxDepth.
+*/
+static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){
+ int rc = SQLITE_OK;
+ if( p ){
+ if( nMaxDepth<0 ){
+ rc = SQLITE_TOOBIG;
+ }else{
+ rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1);
+ if( rc==SQLITE_OK ){
+ rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** This function attempts to transform the expression tree at (*pp) to
+** an equivalent but more balanced form. The tree is modified in place.
+** If successful, SQLITE_OK is returned and (*pp) set to point to the
+** new root expression node.
+**
+** nMaxDepth is the maximum allowable depth of the balanced sub-tree.
+**
+** Otherwise, if an error occurs, an SQLite error code is returned and
+** expression (*pp) freed.
+*/
+static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){
+ int rc = SQLITE_OK; /* Return code */
+ Fts3Expr *pRoot = *pp; /* Initial root node */
+ Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */
+ int eType = pRoot->eType; /* Type of node in this tree */
+
+ if( nMaxDepth==0 ){
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){
+ Fts3Expr **apLeaf;
+ apLeaf = (Fts3Expr **)sqlite3_malloc64(sizeof(Fts3Expr *) * nMaxDepth);
+ if( 0==apLeaf ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth);
+ }
+
+ if( rc==SQLITE_OK ){
+ int i;
+ Fts3Expr *p;
+
+ /* Set $p to point to the left-most leaf in the tree of eType nodes. */
+ for(p=pRoot; p->eType==eType; p=p->pLeft){
+ assert( p->pParent==0 || p->pParent->pLeft==p );
+ assert( p->pLeft && p->pRight );
+ }
+
+ /* This loop runs once for each leaf in the tree of eType nodes. */
+ while( 1 ){
+ int iLvl;
+ Fts3Expr *pParent = p->pParent; /* Current parent of p */
+
+ assert( pParent==0 || pParent->pLeft==p );
+ p->pParent = 0;
+ if( pParent ){
+ pParent->pLeft = 0;
+ }else{
+ pRoot = 0;
+ }
+ rc = fts3ExprBalance(&p, nMaxDepth-1);
+ if( rc!=SQLITE_OK ) break;
+
+ for(iLvl=0; p && iLvl<nMaxDepth; iLvl++){
+ if( apLeaf[iLvl]==0 ){
+ apLeaf[iLvl] = p;
+ p = 0;
+ }else{
+ assert( pFree );
+ pFree->pLeft = apLeaf[iLvl];
+ pFree->pRight = p;
+ pFree->pLeft->pParent = pFree;
+ pFree->pRight->pParent = pFree;
+
+ p = pFree;
+ pFree = pFree->pParent;
+ p->pParent = 0;
+ apLeaf[iLvl] = 0;
+ }
+ }
+ if( p ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_TOOBIG;
+ break;
+ }
+
+ /* If that was the last leaf node, break out of the loop */
+ if( pParent==0 ) break;
+
+ /* Set $p to point to the next leaf in the tree of eType nodes */
+ for(p=pParent->pRight; p->eType==eType; p=p->pLeft);
+
+ /* Remove pParent from the original tree. */
+ assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent );
+ pParent->pRight->pParent = pParent->pParent;
+ if( pParent->pParent ){
+ pParent->pParent->pLeft = pParent->pRight;
+ }else{
+ assert( pParent==pRoot );
+ pRoot = pParent->pRight;
+ }
+
+ /* Link pParent into the free node list. It will be used as an
+ ** internal node of the new tree. */
+ pParent->pParent = pFree;
+ pFree = pParent;
+ }
+
+ if( rc==SQLITE_OK ){
+ p = 0;
+ for(i=0; i<nMaxDepth; i++){
+ if( apLeaf[i] ){
+ if( p==0 ){
+ p = apLeaf[i];
+ p->pParent = 0;
+ }else{
+ assert( pFree!=0 );
+ pFree->pRight = p;
+ pFree->pLeft = apLeaf[i];
+ pFree->pLeft->pParent = pFree;
+ pFree->pRight->pParent = pFree;
+
+ p = pFree;
+ pFree = pFree->pParent;
+ p->pParent = 0;
+ }
+ }
+ }
+ pRoot = p;
+ }else{
+ /* An error occurred. Delete the contents of the apLeaf[] array
+ ** and pFree list. Everything else is cleaned up by the call to
+ ** sqlite3Fts3ExprFree(pRoot) below. */
+ Fts3Expr *pDel;
+ for(i=0; i<nMaxDepth; i++){
+ sqlite3Fts3ExprFree(apLeaf[i]);
+ }
+ while( (pDel=pFree)!=0 ){
+ pFree = pDel->pParent;
+ sqlite3_free(pDel);
+ }
+ }
+
+ assert( pFree==0 );
+ sqlite3_free( apLeaf );
+ }
+ }else if( eType==FTSQUERY_NOT ){
+ Fts3Expr *pLeft = pRoot->pLeft;
+ Fts3Expr *pRight = pRoot->pRight;
+
+ pRoot->pLeft = 0;
+ pRoot->pRight = 0;
+ pLeft->pParent = 0;
+ pRight->pParent = 0;
+
+ rc = fts3ExprBalance(&pLeft, nMaxDepth-1);
+ if( rc==SQLITE_OK ){
+ rc = fts3ExprBalance(&pRight, nMaxDepth-1);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRight);
+ sqlite3Fts3ExprFree(pLeft);
+ }else{
+ assert( pLeft && pRight );
+ pRoot->pLeft = pLeft;
+ pLeft->pParent = pRoot;
+ pRoot->pRight = pRight;
+ pRight->pParent = pRoot;
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRoot);
+ pRoot = 0;
+ }
+ *pp = pRoot;
+ return rc;
+}
+
+/*
+** This function is similar to sqlite3Fts3ExprParse(), with the following
+** differences:
+**
+** 1. It does not do expression rebalancing.
+** 2. It does not check that the expression does not exceed the
+** maximum allowable depth.
+** 3. Even if it fails, *ppExpr may still be set to point to an
+** expression tree. It should be deleted using sqlite3Fts3ExprFree()
+** in this case.
+*/
+static int fts3ExprParseUnbalanced(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
+ int iLangid, /* Language id for tokenizer */
+ char **azCol, /* Array of column names for fts3 table */
+ int bFts4, /* True to allow FTS4-only syntax */
+ int nCol, /* Number of entries in azCol[] */
+ int iDefaultCol, /* Default column to query */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr /* OUT: Parsed query structure */
+){
+ int nParsed;
+ int rc;
+ ParseContext sParse;
+
+ memset(&sParse, 0, sizeof(ParseContext));
+ sParse.pTokenizer = pTokenizer;
+ sParse.iLangid = iLangid;
+ sParse.azCol = (const char **)azCol;
+ sParse.nCol = nCol;
+ sParse.iDefaultCol = iDefaultCol;
+ sParse.bFts4 = bFts4;
+ if( z==0 ){
+ *ppExpr = 0;
+ return SQLITE_OK;
+ }
+ if( n<0 ){
+ n = (int)strlen(z);
+ }
+ rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
+ assert( rc==SQLITE_OK || *ppExpr==0 );
+
+ /* Check for mismatched parenthesis */
+ if( rc==SQLITE_OK && sParse.nNest ){
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+/*
+** Parameters z and n contain a pointer to and length of a buffer containing
+** an fts3 query expression, respectively. This function attempts to parse the
+** query expression and create a tree of Fts3Expr structures representing the
+** parsed expression. If successful, *ppExpr is set to point to the head
+** of the parsed expression tree and SQLITE_OK is returned. If an error
+** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
+** error) is returned and *ppExpr is set to 0.
+**
+** If parameter n is a negative number, then z is assumed to point to a
+** nul-terminated string and the length is determined using strlen().
+**
+** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
+** use to normalize query tokens while parsing the expression. The azCol[]
+** array, which is assumed to contain nCol entries, should contain the names
+** of each column in the target fts3 table, in order from left to right.
+** Column names must be nul-terminated strings.
+**
+** The iDefaultCol parameter should be passed the index of the table column
+** that appears on the left-hand-side of the MATCH operator (the default
+** column to match against for tokens for which a column name is not explicitly
+** specified as part of the query string), or -1 if tokens may by default
+** match any table column.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ExprParse(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
+ int iLangid, /* Language id for tokenizer */
+ char **azCol, /* Array of column names for fts3 table */
+ int bFts4, /* True to allow FTS4-only syntax */
+ int nCol, /* Number of entries in azCol[] */
+ int iDefaultCol, /* Default column to query */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */
+ char **pzErr /* OUT: Error message (sqlite3_malloc) */
+){
+ int rc = fts3ExprParseUnbalanced(
+ pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr
+ );
+
+ /* Rebalance the expression. And check that its depth does not exceed
+ ** SQLITE_FTS3_MAX_EXPR_DEPTH. */
+ if( rc==SQLITE_OK && *ppExpr ){
+ rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
+ if( rc==SQLITE_OK ){
+ rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(*ppExpr);
+ *ppExpr = 0;
+ if( rc==SQLITE_TOOBIG ){
+ sqlite3Fts3ErrMsg(pzErr,
+ "FTS expression tree is too large (maximum depth %d)",
+ SQLITE_FTS3_MAX_EXPR_DEPTH
+ );
+ rc = SQLITE_ERROR;
+ }else if( rc==SQLITE_ERROR ){
+ sqlite3Fts3ErrMsg(pzErr, "malformed MATCH expression: [%s]", z);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Free a single node of an expression tree.
+*/
+static void fts3FreeExprNode(Fts3Expr *p){
+ assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 );
+ sqlite3Fts3EvalPhraseCleanup(p->pPhrase);
+ sqlite3_free(p->aMI);
+ sqlite3_free(p);
+}
+
+/*
+** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
+**
+** This function would be simpler if it recursively called itself. But
+** that would mean passing a sufficiently large expression to ExprParse()
+** could cause a stack overflow.
+*/
+SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *pDel){
+ Fts3Expr *p;
+ assert( pDel==0 || pDel->pParent==0 );
+ for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){
+ assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft );
+ }
+ while( p ){
+ Fts3Expr *pParent = p->pParent;
+ fts3FreeExprNode(p);
+ if( pParent && p==pParent->pLeft && pParent->pRight ){
+ p = pParent->pRight;
+ while( p && (p->pLeft || p->pRight) ){
+ assert( p==p->pParent->pRight || p==p->pParent->pLeft );
+ p = (p->pLeft ? p->pLeft : p->pRight);
+ }
+ }else{
+ p = pParent;
+ }
+ }
+}
+
+/****************************************************************************
+*****************************************************************************
+** Everything after this point is just test code.
+*/
+
+#ifdef SQLITE_TEST
+
+/* #include <stdio.h> */
+
+/*
+** Return a pointer to a buffer containing a text representation of the
+** expression passed as the first argument. The buffer is obtained from
+** sqlite3_malloc(). It is the responsibility of the caller to use
+** sqlite3_free() to release the memory. If an OOM condition is encountered,
+** NULL is returned.
+**
+** If the second argument is not NULL, then its contents are prepended to
+** the returned expression text and then freed using sqlite3_free().
+*/
+static char *exprToString(Fts3Expr *pExpr, char *zBuf){
+ if( pExpr==0 ){
+ return sqlite3_mprintf("");
+ }
+ switch( pExpr->eType ){
+ case FTSQUERY_PHRASE: {
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ int i;
+ zBuf = sqlite3_mprintf(
+ "%zPHRASE %d 0", zBuf, pPhrase->iColumn);
+ for(i=0; zBuf && i<pPhrase->nToken; i++){
+ zBuf = sqlite3_mprintf("%z %.*s%s", zBuf,
+ pPhrase->aToken[i].n, pPhrase->aToken[i].z,
+ (pPhrase->aToken[i].isPrefix?"+":"")
+ );
+ }
+ return zBuf;
+ }
+
+ case FTSQUERY_NEAR:
+ zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear);
+ break;
+ case FTSQUERY_NOT:
+ zBuf = sqlite3_mprintf("%zNOT ", zBuf);
+ break;
+ case FTSQUERY_AND:
+ zBuf = sqlite3_mprintf("%zAND ", zBuf);
+ break;
+ case FTSQUERY_OR:
+ zBuf = sqlite3_mprintf("%zOR ", zBuf);
+ break;
+ }
+
+ if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf);
+ if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf);
+ if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf);
+
+ if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf);
+ if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf);
+
+ return zBuf;
+}
+
+/*
+** This is the implementation of a scalar SQL function used to test the
+** expression parser. It should be called as follows:
+**
+** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
+**
+** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
+** to parse the query expression (see README.tokenizers). The second argument
+** is the query expression to parse. Each subsequent argument is the name
+** of a column of the fts3 table that the query expression may refer to.
+** For example:
+**
+** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
+*/
+static void fts3ExprTestCommon(
+ int bRebalance,
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_tokenizer *pTokenizer = 0;
+ int rc;
+ char **azCol = 0;
+ const char *zExpr;
+ int nExpr;
+ int nCol;
+ int ii;
+ Fts3Expr *pExpr;
+ char *zBuf = 0;
+ Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context);
+ const char *zTokenizer = 0;
+ char *zErr = 0;
+
+ if( argc<3 ){
+ sqlite3_result_error(context,
+ "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
+ );
+ return;
+ }
+
+ zTokenizer = (const char*)sqlite3_value_text(argv[0]);
+ rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_error(context, zErr, -1);
+ }
+ sqlite3_free(zErr);
+ return;
+ }
+
+ zExpr = (const char *)sqlite3_value_text(argv[1]);
+ nExpr = sqlite3_value_bytes(argv[1]);
+ nCol = argc-2;
+ azCol = (char **)sqlite3_malloc64(nCol*sizeof(char *));
+ if( !azCol ){
+ sqlite3_result_error_nomem(context);
+ goto exprtest_out;
+ }
+ for(ii=0; ii<nCol; ii++){
+ azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
+ }
+
+ if( bRebalance ){
+ char *zDummy = 0;
+ rc = sqlite3Fts3ExprParse(
+ pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
+ );
+ assert( rc==SQLITE_OK || pExpr==0 );
+ sqlite3_free(zDummy);
+ }else{
+ rc = fts3ExprParseUnbalanced(
+ pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr
+ );
+ }
+
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
+ sqlite3Fts3ExprFree(pExpr);
+ sqlite3_result_error(context, "Error parsing expression", -1);
+ }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zBuf);
+ }
+
+ sqlite3Fts3ExprFree(pExpr);
+
+exprtest_out:
+ if( pTokenizer ){
+ rc = pTokenizer->pModule->xDestroy(pTokenizer);
+ }
+ sqlite3_free(azCol);
+}
+
+static void fts3ExprTest(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3ExprTestCommon(0, context, argc, argv);
+}
+static void fts3ExprTestRebalance(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3ExprTestCommon(1, context, argc, argv);
+}
+
+/*
+** Register the query expression parser test function fts3_exprtest()
+** with database connection db.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){
+ int rc = sqlite3_create_function(
+ db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "fts3_exprtest_rebalance",
+ -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0
+ );
+ }
+ return rc;
+}
+
+#endif
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_expr.c *******************************************/
+/************** Begin file fts3_hash.c ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables used in SQLite.
+** We've modified it slightly to serve as a standalone hash table
+** implementation for the full-text indexing module.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <string.h> */
+
+/* #include "fts3_hash.h" */
+
+/*
+** Malloc and Free functions
+*/
+static void *fts3HashMalloc(sqlite3_int64 n){
+ void *p = sqlite3_malloc64(n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+static void fts3HashFree(void *p){
+ sqlite3_free(p);
+}
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants
+** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){
+ assert( pNew!=0 );
+ assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
+ pNew->keyClass = keyClass;
+ pNew->copyKey = copyKey;
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){
+ Fts3HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ fts3HashFree(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ Fts3HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_STRING
+*/
+static int fts3StrHash(const void *pKey, int nKey){
+ const char *z = (const char *)pKey;
+ unsigned h = 0;
+ if( nKey<=0 ) nKey = (int) strlen(z);
+ while( nKey > 0 ){
+ h = (h<<3) ^ h ^ *z++;
+ nKey--;
+ }
+ return (int)(h & 0x7fffffff);
+}
+static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return strncmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_BINARY
+*/
+static int fts3BinHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ return h & 0x7fffffff;
+}
+static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "ftsHashFunction". The function takes a
+** single parameter "keyClass". The return value of ftsHashFunction()
+** is a pointer to another function. Specifically, the return value
+** of ftsHashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*ftsHashFunction(int keyClass))(const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrHash;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinHash;
+ }
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrCompare;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinCompare;
+ }
+}
+
+/* Link an element into the hash table
+*/
+static void fts3HashInsertElement(
+ Fts3Hash *pH, /* The complete hash table */
+ struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
+ Fts3HashElem *pNew /* The element to be inserted */
+){
+ Fts3HashElem *pHead; /* First element already in pEntry */
+ pHead = pEntry->chain;
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+ pEntry->count++;
+ pEntry->chain = pNew;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqliteMalloc() fails.
+**
+** Return non-zero if a memory allocation error occurs.
+*/
+static int fts3Rehash(Fts3Hash *pH, int new_size){
+ struct _fts3ht *new_ht; /* The new hash table */
+ Fts3HashElem *elem, *next_elem; /* For looping over existing elements */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( (new_size & (new_size-1))==0 );
+ new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
+ if( new_ht==0 ) return 1;
+ fts3HashFree(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = ftsHashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ fts3HashInsertElement(pH, &new_ht[h], elem);
+ }
+ return 0;
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static Fts3HashElem *fts3FindElementByHash(
+ const Fts3Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ Fts3HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ struct _fts3ht *pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ xCompare = ftsCompareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void fts3RemoveElementByHash(
+ Fts3Hash *pH, /* The pH containing "elem" */
+ Fts3HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ struct _fts3ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ pEntry->count--;
+ if( pEntry->count<=0 ){
+ pEntry->chain = 0;
+ }
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree( elem );
+ pH->count--;
+ if( pH->count<=0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ fts3HashClear(pH);
+ }
+}
+
+SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(
+ const Fts3Hash *pH,
+ const void *pKey,
+ int nKey
+){
+ int h; /* A hash on key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
+}
+
+/*
+** Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
+ Fts3HashElem *pElem; /* The element that matches key (if any) */
+
+ pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey);
+ return pElem ? pElem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
+ Fts3Hash *pH, /* The hash table to insert into */
+ const void *pKey, /* The key */
+ int nKey, /* Number of bytes in the key */
+ void *data /* The data */
+){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ Fts3HashElem *elem; /* Used to loop thru the element list */
+ Fts3HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = fts3FindElementByHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ fts3RemoveElementByHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ if( (pH->htsize==0 && fts3Rehash(pH,8))
+ || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2))
+ ){
+ pH->count = 0;
+ return data;
+ }
+ assert( pH->htsize>0 );
+ new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = fts3HashMalloc( nKey );
+ if( new_elem->pKey==0 ){
+ fts3HashFree(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ assert( pH->htsize>0 );
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ fts3HashInsertElement(pH, &pH->ht[h], new_elem);
+ new_elem->data = data;
+ return 0;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_hash.c *******************************************/
+/************** Begin file fts3_porter.c *************************************/
+/*
+** 2006 September 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Implementation of the full-text-search tokenizer that implements
+** a Porter stemmer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+
+/* #include "fts3_tokenizer.h" */
+
+/*
+** Class derived from sqlite3_tokenizer
+*/
+typedef struct porter_tokenizer {
+ sqlite3_tokenizer base; /* Base class */
+} porter_tokenizer;
+
+/*
+** Class derived from sqlite3_tokenizer_cursor
+*/
+typedef struct porter_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *zInput; /* input we are tokenizing */
+ int nInput; /* size of the input */
+ int iOffset; /* current position in zInput */
+ int iToken; /* index of next token to be returned */
+ char *zToken; /* storage for current token */
+ int nAllocated; /* space allocated to zToken buffer */
+} porter_tokenizer_cursor;
+
+
+/*
+** Create a new tokenizer instance.
+*/
+static int porterCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ porter_tokenizer *t;
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int porterDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is zInput[0..nInput-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int porterOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, int nInput, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ porter_tokenizer_cursor *c;
+
+ UNUSED_PARAMETER(pTokenizer);
+
+ c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->zInput = zInput;
+ if( zInput==0 ){
+ c->nInput = 0;
+ }else if( nInput<0 ){
+ c->nInput = (int)strlen(zInput);
+ }else{
+ c->nInput = nInput;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->zToken = NULL; /* no space allocated, yet. */
+ c->nAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** porterOpen() above.
+*/
+static int porterClose(sqlite3_tokenizer_cursor *pCursor){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->zToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+/*
+** Vowel or consonant
+*/
+static const char cType[] = {
+ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
+ 1, 1, 1, 2, 1
+};
+
+/*
+** isConsonant() and isVowel() determine if their first character in
+** the string they point to is a consonant or a vowel, according
+** to Porter ruls.
+**
+** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
+** 'Y' is a consonant unless it follows another consonant,
+** in which case it is a vowel.
+**
+** In these routine, the letters are in reverse order. So the 'y' rule
+** is that 'y' is a consonant unless it is followed by another
+** consonent.
+*/
+static int isVowel(const char*);
+static int isConsonant(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return j;
+ return z[1]==0 || isVowel(z + 1);
+}
+static int isVowel(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return 1-j;
+ return isConsonant(z + 1);
+}
+
+/*
+** Let any sequence of one or more vowels be represented by V and let
+** C be sequence of one or more consonants. Then every word can be
+** represented as:
+**
+** [C] (VC){m} [V]
+**
+** In prose: A word is an optional consonant followed by zero or
+** vowel-consonant pairs followed by an optional vowel. "m" is the
+** number of vowel consonant pairs. This routine computes the value
+** of m for the first i bytes of a word.
+**
+** Return true if the m-value for z is 1 or more. In other words,
+** return true if z contains at least one vowel that is followed
+** by a consonant.
+**
+** In this routine z[] is in reverse order. So we are really looking
+** for an instance of a consonant followed by a vowel.
+*/
+static int m_gt_0(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/* Like mgt0 above except we are looking for a value of m which is
+** exactly 1
+*/
+static int m_eq_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 1;
+ while( isConsonant(z) ){ z++; }
+ return *z==0;
+}
+
+/* Like mgt0 above except we are looking for a value of m>1 instead
+** or m>0
+*/
+static int m_gt_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if there is a vowel anywhere within z[0..n-1]
+*/
+static int hasVowel(const char *z){
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if the word ends in a double consonant.
+**
+** The text is reversed here. So we are really looking at
+** the first two characters of z[].
+*/
+static int doubleConsonant(const char *z){
+ return isConsonant(z) && z[0]==z[1];
+}
+
+/*
+** Return TRUE if the word ends with three letters which
+** are consonant-vowel-consonent and where the final consonant
+** is not 'w', 'x', or 'y'.
+**
+** The word is reversed here. So we are really checking the
+** first three letters and the first one cannot be in [wxy].
+*/
+static int star_oh(const char *z){
+ return
+ isConsonant(z) &&
+ z[0]!='w' && z[0]!='x' && z[0]!='y' &&
+ isVowel(z+1) &&
+ isConsonant(z+2);
+}
+
+/*
+** If the word ends with zFrom and xCond() is true for the stem
+** of the word that preceeds the zFrom ending, then change the
+** ending to zTo.
+**
+** The input word *pz and zFrom are both in reverse order. zTo
+** is in normal order.
+**
+** Return TRUE if zFrom matches. Return FALSE if zFrom does not
+** match. Not that TRUE is returned even if xCond() fails and
+** no substitution occurs.
+*/
+static int stem(
+ char **pz, /* The word being stemmed (Reversed) */
+ const char *zFrom, /* If the ending matches this... (Reversed) */
+ const char *zTo, /* ... change the ending to this (not reversed) */
+ int (*xCond)(const char*) /* Condition that must be true */
+){
+ char *z = *pz;
+ while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
+ if( *zFrom!=0 ) return 0;
+ if( xCond && !xCond(z) ) return 1;
+ while( *zTo ){
+ *(--z) = *(zTo++);
+ }
+ *pz = z;
+ return 1;
+}
+
+/*
+** This is the fallback stemmer used when the porter stemmer is
+** inappropriate. The input word is copied into the output with
+** US-ASCII case folding. If the input word is too long (more
+** than 20 bytes if it contains no digits or more than 6 bytes if
+** it contains digits) then word is truncated to 20 or 6 bytes
+** by taking 10 or 3 bytes from the beginning and end.
+*/
+static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, mx, j;
+ int hasDigit = 0;
+ for(i=0; i<nIn; i++){
+ char c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zOut[i] = c - 'A' + 'a';
+ }else{
+ if( c>='0' && c<='9' ) hasDigit = 1;
+ zOut[i] = c;
+ }
+ }
+ mx = hasDigit ? 3 : 10;
+ if( nIn>mx*2 ){
+ for(j=mx, i=nIn-mx; i<nIn; i++, j++){
+ zOut[j] = zOut[i];
+ }
+ i = j;
+ }
+ zOut[i] = 0;
+ *pnOut = i;
+}
+
+
+/*
+** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
+** zOut is at least big enough to hold nIn bytes. Write the actual
+** size of the output word (exclusive of the '\0' terminator) into *pnOut.
+**
+** Any upper-case characters in the US-ASCII character set ([A-Z])
+** are converted to lower case. Upper-case UTF characters are
+** unchanged.
+**
+** Words that are longer than about 20 bytes are stemmed by retaining
+** a few bytes from the beginning and the end of the word. If the
+** word contains digits, 3 bytes are taken from the beginning and
+** 3 bytes from the end. For long words without digits, 10 bytes
+** are taken from each end. US-ASCII case folding still applies.
+**
+** If the input word contains not digits but does characters not
+** in [a-zA-Z] then no stemming is attempted and this routine just
+** copies the input into the input into the output with US-ASCII
+** case folding.
+**
+** Stemming never increases the length of the word. So there is
+** no chance of overflowing the zOut buffer.
+*/
+static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, j;
+ char zReverse[28];
+ char *z, *z2;
+ if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){
+ /* The word is too big or too small for the porter stemmer.
+ ** Fallback to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
+ char c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zReverse[j] = c + 'a' - 'A';
+ }else if( c>='a' && c<='z' ){
+ zReverse[j] = c;
+ }else{
+ /* The use of a character not in [a-zA-Z] means that we fallback
+ ** to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ }
+ memset(&zReverse[sizeof(zReverse)-5], 0, 5);
+ z = &zReverse[j+1];
+
+
+ /* Step 1a */
+ if( z[0]=='s' ){
+ if(
+ !stem(&z, "sess", "ss", 0) &&
+ !stem(&z, "sei", "i", 0) &&
+ !stem(&z, "ss", "ss", 0)
+ ){
+ z++;
+ }
+ }
+
+ /* Step 1b */
+ z2 = z;
+ if( stem(&z, "dee", "ee", m_gt_0) ){
+ /* Do nothing. The work was all in the test */
+ }else if(
+ (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
+ && z!=z2
+ ){
+ if( stem(&z, "ta", "ate", 0) ||
+ stem(&z, "lb", "ble", 0) ||
+ stem(&z, "zi", "ize", 0) ){
+ /* Do nothing. The work was all in the test */
+ }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
+ z++;
+ }else if( m_eq_1(z) && star_oh(z) ){
+ *(--z) = 'e';
+ }
+ }
+
+ /* Step 1c */
+ if( z[0]=='y' && hasVowel(z+1) ){
+ z[0] = 'i';
+ }
+
+ /* Step 2 */
+ switch( z[1] ){
+ case 'a':
+ if( !stem(&z, "lanoita", "ate", m_gt_0) ){
+ stem(&z, "lanoit", "tion", m_gt_0);
+ }
+ break;
+ case 'c':
+ if( !stem(&z, "icne", "ence", m_gt_0) ){
+ stem(&z, "icna", "ance", m_gt_0);
+ }
+ break;
+ case 'e':
+ stem(&z, "rezi", "ize", m_gt_0);
+ break;
+ case 'g':
+ stem(&z, "igol", "log", m_gt_0);
+ break;
+ case 'l':
+ if( !stem(&z, "ilb", "ble", m_gt_0)
+ && !stem(&z, "illa", "al", m_gt_0)
+ && !stem(&z, "iltne", "ent", m_gt_0)
+ && !stem(&z, "ile", "e", m_gt_0)
+ ){
+ stem(&z, "ilsuo", "ous", m_gt_0);
+ }
+ break;
+ case 'o':
+ if( !stem(&z, "noitazi", "ize", m_gt_0)
+ && !stem(&z, "noita", "ate", m_gt_0)
+ ){
+ stem(&z, "rota", "ate", m_gt_0);
+ }
+ break;
+ case 's':
+ if( !stem(&z, "msila", "al", m_gt_0)
+ && !stem(&z, "ssenevi", "ive", m_gt_0)
+ && !stem(&z, "ssenluf", "ful", m_gt_0)
+ ){
+ stem(&z, "ssensuo", "ous", m_gt_0);
+ }
+ break;
+ case 't':
+ if( !stem(&z, "itila", "al", m_gt_0)
+ && !stem(&z, "itivi", "ive", m_gt_0)
+ ){
+ stem(&z, "itilib", "ble", m_gt_0);
+ }
+ break;
+ }
+
+ /* Step 3 */
+ switch( z[0] ){
+ case 'e':
+ if( !stem(&z, "etaci", "ic", m_gt_0)
+ && !stem(&z, "evita", "", m_gt_0)
+ ){
+ stem(&z, "ezila", "al", m_gt_0);
+ }
+ break;
+ case 'i':
+ stem(&z, "itici", "ic", m_gt_0);
+ break;
+ case 'l':
+ if( !stem(&z, "laci", "ic", m_gt_0) ){
+ stem(&z, "luf", "", m_gt_0);
+ }
+ break;
+ case 's':
+ stem(&z, "ssen", "", m_gt_0);
+ break;
+ }
+
+ /* Step 4 */
+ switch( z[1] ){
+ case 'a':
+ if( z[0]=='l' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'c':
+ if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'e':
+ if( z[0]=='r' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'i':
+ if( z[0]=='c' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'l':
+ if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'n':
+ if( z[0]=='t' ){
+ if( z[2]=='a' ){
+ if( m_gt_1(z+3) ){
+ z += 3;
+ }
+ }else if( z[2]=='e' ){
+ if( !stem(&z, "tneme", "", m_gt_1)
+ && !stem(&z, "tnem", "", m_gt_1)
+ ){
+ stem(&z, "tne", "", m_gt_1);
+ }
+ }
+ }
+ break;
+ case 'o':
+ if( z[0]=='u' ){
+ if( m_gt_1(z+2) ){
+ z += 2;
+ }
+ }else if( z[3]=='s' || z[3]=='t' ){
+ stem(&z, "noi", "", m_gt_1);
+ }
+ break;
+ case 's':
+ if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 't':
+ if( !stem(&z, "eta", "", m_gt_1) ){
+ stem(&z, "iti", "", m_gt_1);
+ }
+ break;
+ case 'u':
+ if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 'v':
+ case 'z':
+ if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ }
+
+ /* Step 5a */
+ if( z[0]=='e' ){
+ if( m_gt_1(z+1) ){
+ z++;
+ }else if( m_eq_1(z+1) && !star_oh(z+1) ){
+ z++;
+ }
+ }
+
+ /* Step 5b */
+ if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
+ z++;
+ }
+
+ /* z[] is now the stemmed word in reverse order. Flip it back
+ ** around into forward order and return.
+ */
+ *pnOut = i = (int)strlen(z);
+ zOut[i] = 0;
+ while( *z ){
+ zOut[--i] = *(z++);
+ }
+}
+
+/*
+** Characters that can be part of a token. We assume any character
+** whose value is greater than 0x80 (any UTF character) can be
+** part of a token. In other words, delimiters all must have
+** values of 0x7f or lower.
+*/
+static const char porterIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to porterOpen().
+*/
+static int porterNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
+ const char **pzToken, /* OUT: *pzToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ const char *z = c->zInput;
+
+ while( c->iOffset<c->nInput ){
+ int iStartOffset, ch;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int n = c->iOffset-iStartOffset;
+ if( n>c->nAllocated ){
+ char *pNew;
+ c->nAllocated = n+20;
+ pNew = sqlite3_realloc64(c->zToken, c->nAllocated);
+ if( !pNew ) return SQLITE_NOMEM;
+ c->zToken = pNew;
+ }
+ porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
+ *pzToken = c->zToken;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the porter-stemmer tokenizer
+*/
+static const sqlite3_tokenizer_module porterTokenizerModule = {
+ 0,
+ porterCreate,
+ porterDestroy,
+ porterOpen,
+ porterClose,
+ porterNext,
+ 0
+};
+
+/*
+** Allocate a new porter tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &porterTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_porter.c *****************************************/
+/************** Begin file fts3_tokenizer.c **********************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is part of an SQLite module implementing full-text search.
+** This particular file implements the generic tokenizer interface.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <string.h> */
+
+/*
+** Return true if the two-argument version of fts3_tokenizer()
+** has been activated via a prior call to sqlite3_db_config(db,
+** SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, 1, 0);
+*/
+static int fts3TokenizerEnabled(sqlite3_context *context){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int isEnabled = 0;
+ sqlite3_db_config(db,SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER,-1,&isEnabled);
+ return isEnabled;
+}
+
+/*
+** Implementation of the SQL scalar function for accessing the underlying
+** hash table. This function may be called as follows:
+**
+** SELECT <function-name>(<key-name>);
+** SELECT <function-name>(<key-name>, <pointer>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
+**
+** If the <pointer> argument is specified, it must be a blob value
+** containing a pointer to be stored as the hash data corresponding
+** to the string <key-name>. If <pointer> is not specified, then
+** the string <key-name> must already exist in the has table. Otherwise,
+** an error is returned.
+**
+** Whether or not the <pointer> argument is specified, the value returned
+** is a blob containing the pointer stored as the hash data corresponding
+** to string <key-name> (after the hash-table is updated, if applicable).
+*/
+static void fts3TokenizerFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ Fts3Hash *pHash;
+ void *pPtr = 0;
+ const unsigned char *zName;
+ int nName;
+
+ assert( argc==1 || argc==2 );
+
+ pHash = (Fts3Hash *)sqlite3_user_data(context);
+
+ zName = sqlite3_value_text(argv[0]);
+ nName = sqlite3_value_bytes(argv[0])+1;
+
+ if( argc==2 ){
+ if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[1]) ){
+ void *pOld;
+ int n = sqlite3_value_bytes(argv[1]);
+ if( zName==0 || n!=sizeof(pPtr) ){
+ sqlite3_result_error(context, "argument type mismatch", -1);
+ return;
+ }
+ pPtr = *(void **)sqlite3_value_blob(argv[1]);
+ pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
+ if( pOld==pPtr ){
+ sqlite3_result_error(context, "out of memory", -1);
+ }
+ }else{
+ sqlite3_result_error(context, "fts3tokenize disabled", -1);
+ return;
+ }
+ }else{
+ if( zName ){
+ pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
+ }
+ if( !pPtr ){
+ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ }
+ if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[0]) ){
+ sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
+ }
+}
+
+SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){
+ static const char isFtsIdChar[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+ };
+ return (c&0x80 || isFtsIdChar[(int)(c)]);
+}
+
+SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
+ const char *z1;
+ const char *z2 = 0;
+
+ /* Find the start of the next token. */
+ z1 = zStr;
+ while( z2==0 ){
+ char c = *z1;
+ switch( c ){
+ case '\0': return 0; /* No more tokens here */
+ case '\'':
+ case '"':
+ case '`': {
+ z2 = z1;
+ while( *++z2 && (*z2!=c || *++z2==c) );
+ break;
+ }
+ case '[':
+ z2 = &z1[1];
+ while( *z2 && z2[0]!=']' ) z2++;
+ if( *z2 ) z2++;
+ break;
+
+ default:
+ if( sqlite3Fts3IsIdChar(*z1) ){
+ z2 = &z1[1];
+ while( sqlite3Fts3IsIdChar(*z2) ) z2++;
+ }else{
+ z1++;
+ }
+ }
+ }
+
+ *pn = (int)(z2-z1);
+ return z1;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(
+ Fts3Hash *pHash, /* Tokenizer hash table */
+ const char *zArg, /* Tokenizer name */
+ sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */
+ char **pzErr /* OUT: Set to malloced error message */
+){
+ int rc;
+ char *z = (char *)zArg;
+ int n = 0;
+ char *zCopy;
+ char *zEnd; /* Pointer to nul-term of zCopy */
+ sqlite3_tokenizer_module *m;
+
+ zCopy = sqlite3_mprintf("%s", zArg);
+ if( !zCopy ) return SQLITE_NOMEM;
+ zEnd = &zCopy[strlen(zCopy)];
+
+ z = (char *)sqlite3Fts3NextToken(zCopy, &n);
+ if( z==0 ){
+ assert( n==0 );
+ z = zCopy;
+ }
+ z[n] = '\0';
+ sqlite3Fts3Dequote(z);
+
+ m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
+ if( !m ){
+ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", z);
+ rc = SQLITE_ERROR;
+ }else{
+ char const **aArg = 0;
+ int iArg = 0;
+ z = &z[n+1];
+ while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){
+ sqlite3_int64 nNew = sizeof(char *)*(iArg+1);
+ char const **aNew = (const char **)sqlite3_realloc64((void *)aArg, nNew);
+ if( !aNew ){
+ sqlite3_free(zCopy);
+ sqlite3_free((void *)aArg);
+ return SQLITE_NOMEM;
+ }
+ aArg = aNew;
+ aArg[iArg++] = z;
+ z[n] = '\0';
+ sqlite3Fts3Dequote(z);
+ z = &z[n+1];
+ }
+ rc = m->xCreate(iArg, aArg, ppTok);
+ assert( rc!=SQLITE_OK || *ppTok );
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer");
+ }else{
+ (*ppTok)->pModule = m;
+ }
+ sqlite3_free((void *)aArg);
+ }
+
+ sqlite3_free(zCopy);
+ return rc;
+}
+
+
+#ifdef SQLITE_TEST
+
+#if defined(INCLUDE_SQLITE_TCL_H)
+# include "sqlite_tcl.h"
+#else
+# include "tcl.h"
+#endif
+/* #include <string.h> */
+
+/*
+** Implementation of a special SQL scalar function for testing tokenizers
+** designed to be used in concert with the Tcl testing framework. This
+** function must be called with two or more arguments:
+**
+** SELECT <function-name>(<key-name>, ..., <input-string>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
+** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
+**
+** The return value is a string that may be interpreted as a Tcl
+** list. For each token in the <input-string>, three elements are
+** added to the returned list. The first is the token position, the
+** second is the token text (folded, stemmed, etc.) and the third is the
+** substring of <input-string> associated with the token. For example,
+** using the built-in "simple" tokenizer:
+**
+** SELECT fts_tokenizer_test('simple', 'I don't see how');
+**
+** will return the string:
+**
+** "{0 i I 1 dont don't 2 see see 3 how how}"
+**
+*/
+static void testFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ Fts3Hash *pHash;
+ sqlite3_tokenizer_module *p;
+ sqlite3_tokenizer *pTokenizer = 0;
+ sqlite3_tokenizer_cursor *pCsr = 0;
+
+ const char *zErr = 0;
+
+ const char *zName;
+ int nName;
+ const char *zInput;
+ int nInput;
+
+ const char *azArg[64];
+
+ const char *zToken;
+ int nToken = 0;
+ int iStart = 0;
+ int iEnd = 0;
+ int iPos = 0;
+ int i;
+
+ Tcl_Obj *pRet;
+
+ if( argc<2 ){
+ sqlite3_result_error(context, "insufficient arguments", -1);
+ return;
+ }
+
+ nName = sqlite3_value_bytes(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[0]);
+ nInput = sqlite3_value_bytes(argv[argc-1]);
+ zInput = (const char *)sqlite3_value_text(argv[argc-1]);
+
+ pHash = (Fts3Hash *)sqlite3_user_data(context);
+ p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
+
+ if( !p ){
+ char *zErr2 = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr2, -1);
+ sqlite3_free(zErr2);
+ return;
+ }
+
+ pRet = Tcl_NewObj();
+ Tcl_IncrRefCount(pRet);
+
+ for(i=1; i<argc-1; i++){
+ azArg[i-1] = (const char *)sqlite3_value_text(argv[i]);
+ }
+
+ if( SQLITE_OK!=p->xCreate(argc-2, azArg, &pTokenizer) ){
+ zErr = "error in xCreate()";
+ goto finish;
+ }
+ pTokenizer->pModule = p;
+ if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){
+ zErr = "error in xOpen()";
+ goto finish;
+ }
+
+ while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ zToken = &zInput[iStart];
+ nToken = iEnd-iStart;
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ }
+
+ if( SQLITE_OK!=p->xClose(pCsr) ){
+ zErr = "error in xClose()";
+ goto finish;
+ }
+ if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
+ zErr = "error in xDestroy()";
+ goto finish;
+ }
+
+finish:
+ if( zErr ){
+ sqlite3_result_error(context, zErr, -1);
+ }else{
+ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
+ }
+ Tcl_DecrRefCount(pRet);
+}
+
+static
+int registerTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module *p
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
+
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
+ sqlite3_step(pStmt);
+
+ return sqlite3_finalize(pStmt);
+}
+
+
+static
+int queryTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module **pp
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?)";
+
+ *pp = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB
+ && sqlite3_column_bytes(pStmt, 0)==sizeof(*pp)
+ ){
+ memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
+ }
+ }
+
+ return sqlite3_finalize(pStmt);
+}
+
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+
+/*
+** Implementation of the scalar function fts3_tokenizer_internal_test().
+** This function is used for testing only, it is not included in the
+** build unless SQLITE_TEST is defined.
+**
+** The purpose of this is to test that the fts3_tokenizer() function
+** can be used as designed by the C-code in the queryTokenizer and
+** registerTokenizer() functions above. These two functions are repeated
+** in the README.tokenizer file as an example, so it is important to
+** test them.
+**
+** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
+** function with no arguments. An assert() will fail if a problem is
+** detected. i.e.:
+**
+** SELECT fts3_tokenizer_internal_test();
+**
+*/
+static void intTestFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int rc;
+ const sqlite3_tokenizer_module *p1;
+ const sqlite3_tokenizer_module *p2;
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ /* Test the query function */
+ sqlite3Fts3SimpleTokenizerModule(&p1);
+ rc = queryTokenizer(db, "simple", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p1==p2 );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_ERROR );
+ assert( p2==0 );
+ assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
+
+ /* Test the storage function */
+ if( fts3TokenizerEnabled(context) ){
+ rc = registerTokenizer(db, "nosuchtokenizer", p1);
+ assert( rc==SQLITE_OK );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p2==p1 );
+ }
+
+ sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
+}
+
+#endif
+
+/*
+** Set up SQL objects in database db used to access the contents of
+** the hash table pointed to by argument pHash. The hash table must
+** been initialized to use string keys, and to take a private copy
+** of the key when a value is inserted. i.e. by a call similar to:
+**
+** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
+**
+** This function adds a scalar function (see header comment above
+** fts3TokenizerFunc() in this file for details) and, if ENABLE_TABLE is
+** defined at compilation time, a temporary virtual table (see header
+** comment above struct HashTableVtab) to the database schema. Both
+** provide read/write access to the contents of *pHash.
+**
+** The third argument to this function, zName, is used as the name
+** of both the scalar and, if created, the virtual table.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
+ sqlite3 *db,
+ Fts3Hash *pHash,
+ const char *zName
+){
+ int rc = SQLITE_OK;
+ void *p = (void *)pHash;
+ const int any = SQLITE_UTF8|SQLITE_DIRECTONLY;
+
+#ifdef SQLITE_TEST
+ char *zTest = 0;
+ char *zTest2 = 0;
+ void *pdb = (void *)db;
+ zTest = sqlite3_mprintf("%s_test", zName);
+ zTest2 = sqlite3_mprintf("%s_internal_test", zName);
+ if( !zTest || !zTest2 ){
+ rc = SQLITE_NOMEM;
+ }
+#endif
+
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zName, 1, any, p, fts3TokenizerFunc, 0, 0);
+ }
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zName, 2, any, p, fts3TokenizerFunc, 0, 0);
+ }
+#ifdef SQLITE_TEST
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0);
+ }
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0);
+ }
+#endif
+
+#ifdef SQLITE_TEST
+ sqlite3_free(zTest);
+ sqlite3_free(zTest2);
+#endif
+
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer.c **************************************/
+/************** Begin file fts3_tokenizer1.c *********************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Implementation of the "simple" full-text-search tokenizer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+
+/* #include "fts3_tokenizer.h" */
+
+typedef struct simple_tokenizer {
+ sqlite3_tokenizer base;
+ char delim[128]; /* flag ASCII delimiters */
+} simple_tokenizer;
+
+typedef struct simple_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *pInput; /* input we are tokenizing */
+ int nBytes; /* size of the input */
+ int iOffset; /* current position in pInput */
+ int iToken; /* index of next token to be returned */
+ char *pToken; /* storage for current token */
+ int nTokenAllocated; /* space allocated to zToken buffer */
+} simple_tokenizer_cursor;
+
+
+static int simpleDelim(simple_tokenizer *t, unsigned char c){
+ return c<0x80 && t->delim[c];
+}
+static int fts3_isalnum(int x){
+ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
+}
+
+/*
+** Create a new tokenizer instance.
+*/
+static int simpleCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ simple_tokenizer *t;
+
+ t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+
+ /* TODO(shess) Delimiters need to remain the same from run to run,
+ ** else we need to reindex. One solution would be a meta-table to
+ ** track such information in the database, then we'd only want this
+ ** information on the initial create.
+ */
+ if( argc>1 ){
+ int i, n = (int)strlen(argv[1]);
+ for(i=0; i<n; i++){
+ unsigned char ch = argv[1][i];
+ /* We explicitly don't support UTF-8 delimiters for now. */
+ if( ch>=0x80 ){
+ sqlite3_free(t);
+ return SQLITE_ERROR;
+ }
+ t->delim[ch] = 1;
+ }
+ } else {
+ /* Mark non-alphanumeric ASCII characters as delimiters */
+ int i;
+ for(i=1; i<0x80; i++){
+ t->delim[i] = !fts3_isalnum(i) ? -1 : 0;
+ }
+ }
+
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int simpleOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *pInput, int nBytes, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ simple_tokenizer_cursor *c;
+
+ UNUSED_PARAMETER(pTokenizer);
+
+ c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->pInput = pInput;
+ if( pInput==0 ){
+ c->nBytes = 0;
+ }else if( nBytes<0 ){
+ c->nBytes = (int)strlen(pInput);
+ }else{
+ c->nBytes = nBytes;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->pToken = NULL; /* no space allocated, yet. */
+ c->nTokenAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** simpleOpen() above.
+*/
+static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->pToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to simpleOpen().
+*/
+static int simpleNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
+ unsigned char *p = (unsigned char *)c->pInput;
+
+ while( c->iOffset<c->nBytes ){
+ int iStartOffset;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int i, n = c->iOffset-iStartOffset;
+ if( n>c->nTokenAllocated ){
+ char *pNew;
+ c->nTokenAllocated = n+20;
+ pNew = sqlite3_realloc64(c->pToken, c->nTokenAllocated);
+ if( !pNew ) return SQLITE_NOMEM;
+ c->pToken = pNew;
+ }
+ for(i=0; i<n; i++){
+ /* TODO(shess) This needs expansion to handle UTF-8
+ ** case-insensitivity.
+ */
+ unsigned char ch = p[iStartOffset+i];
+ c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch);
+ }
+ *ppToken = c->pToken;
+ *pnBytes = n;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module simpleTokenizerModule = {
+ 0,
+ simpleCreate,
+ simpleDestroy,
+ simpleOpen,
+ simpleClose,
+ simpleNext,
+ 0,
+};
+
+/*
+** Allocate a new simple tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &simpleTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer1.c *************************************/
+/************** Begin file fts3_tokenize_vtab.c ******************************/
+/*
+** 2013 Apr 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code for the "fts3tokenize" virtual table module.
+** An fts3tokenize virtual table is created as follows:
+**
+** CREATE VIRTUAL TABLE <tbl> USING fts3tokenize(
+** <tokenizer-name>, <arg-1>, ...
+** );
+**
+** The table created has the following schema:
+**
+** CREATE TABLE <tbl>(input, token, start, end, position)
+**
+** When queried, the query must include a WHERE clause of type:
+**
+** input = <string>
+**
+** The virtual table module tokenizes this <string>, using the FTS3
+** tokenizer specified by the arguments to the CREATE VIRTUAL TABLE
+** statement and returns one row for each token in the result. With
+** fields set as follows:
+**
+** input: Always set to a copy of <string>
+** token: A token from the input.
+** start: Byte offset of the token within the input <string>.
+** end: Byte offset of the byte immediately following the end of the
+** token within the input string.
+** pos: Token offset of token within input.
+**
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+typedef struct Fts3tokTable Fts3tokTable;
+typedef struct Fts3tokCursor Fts3tokCursor;
+
+/*
+** Virtual table structure.
+*/
+struct Fts3tokTable {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ const sqlite3_tokenizer_module *pMod;
+ sqlite3_tokenizer *pTok;
+};
+
+/*
+** Virtual table cursor structure.
+*/
+struct Fts3tokCursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ char *zInput; /* Input string */
+ sqlite3_tokenizer_cursor *pCsr; /* Cursor to iterate through zInput */
+ int iRowid; /* Current 'rowid' value */
+ const char *zToken; /* Current 'token' value */
+ int nToken; /* Size of zToken in bytes */
+ int iStart; /* Current 'start' value */
+ int iEnd; /* Current 'end' value */
+ int iPos; /* Current 'pos' value */
+};
+
+/*
+** Query FTS for the tokenizer implementation named zName.
+*/
+static int fts3tokQueryTokenizer(
+ Fts3Hash *pHash,
+ const char *zName,
+ const sqlite3_tokenizer_module **pp,
+ char **pzErr
+){
+ sqlite3_tokenizer_module *p;
+ int nName = (int)strlen(zName);
+
+ p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
+ if( !p ){
+ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", zName);
+ return SQLITE_ERROR;
+ }
+
+ *pp = p;
+ return SQLITE_OK;
+}
+
+/*
+** The second argument, argv[], is an array of pointers to nul-terminated
+** strings. This function makes a copy of the array and strings into a
+** single block of memory. It then dequotes any of the strings that appear
+** to be quoted.
+**
+** If successful, output parameter *pazDequote is set to point at the
+** array of dequoted strings and SQLITE_OK is returned. The caller is
+** responsible for eventually calling sqlite3_free() to free the array
+** in this case. Or, if an error occurs, an SQLite error code is returned.
+** The final value of *pazDequote is undefined in this case.
+*/
+static int fts3tokDequoteArray(
+ int argc, /* Number of elements in argv[] */
+ const char * const *argv, /* Input array */
+ char ***pazDequote /* Output array */
+){
+ int rc = SQLITE_OK; /* Return code */
+ if( argc==0 ){
+ *pazDequote = 0;
+ }else{
+ int i;
+ int nByte = 0;
+ char **azDequote;
+
+ for(i=0; i<argc; i++){
+ nByte += (int)(strlen(argv[i]) + 1);
+ }
+
+ *pazDequote = azDequote = sqlite3_malloc64(sizeof(char *)*argc + nByte);
+ if( azDequote==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *pSpace = (char *)&azDequote[argc];
+ for(i=0; i<argc; i++){
+ int n = (int)strlen(argv[i]);
+ azDequote[i] = pSpace;
+ memcpy(pSpace, argv[i], n+1);
+ sqlite3Fts3Dequote(pSpace);
+ pSpace += (n+1);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Schema of the tokenizer table.
+*/
+#define FTS3_TOK_SCHEMA "CREATE TABLE x(input, token, start, end, position)"
+
+/*
+** This function does all the work for both the xConnect and xCreate methods.
+** These tables have no persistent representation of their own, so xConnect
+** and xCreate are identical operations.
+**
+** argv[0]: module name
+** argv[1]: database name
+** argv[2]: table name
+** argv[3]: first argument (tokenizer name)
+*/
+static int fts3tokConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pHash, /* Hash table of tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ Fts3tokTable *pTab = 0;
+ const sqlite3_tokenizer_module *pMod = 0;
+ sqlite3_tokenizer *pTok = 0;
+ int rc;
+ char **azDequote = 0;
+ int nDequote;
+
+ rc = sqlite3_declare_vtab(db, FTS3_TOK_SCHEMA);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nDequote = argc-3;
+ rc = fts3tokDequoteArray(nDequote, &argv[3], &azDequote);
+
+ if( rc==SQLITE_OK ){
+ const char *zModule;
+ if( nDequote<1 ){
+ zModule = "simple";
+ }else{
+ zModule = azDequote[0];
+ }
+ rc = fts3tokQueryTokenizer((Fts3Hash*)pHash, zModule, &pMod, pzErr);
+ }
+
+ assert( (rc==SQLITE_OK)==(pMod!=0) );
+ if( rc==SQLITE_OK ){
+ const char * const *azArg = 0;
+ if( nDequote>1 ) azArg = (const char * const *)&azDequote[1];
+ rc = pMod->xCreate((nDequote>1 ? nDequote-1 : 0), azArg, &pTok);
+ }
+
+ if( rc==SQLITE_OK ){
+ pTab = (Fts3tokTable *)sqlite3_malloc(sizeof(Fts3tokTable));
+ if( pTab==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ memset(pTab, 0, sizeof(Fts3tokTable));
+ pTab->pMod = pMod;
+ pTab->pTok = pTok;
+ *ppVtab = &pTab->base;
+ }else{
+ if( pTok ){
+ pMod->xDestroy(pTok);
+ }
+ }
+
+ sqlite3_free(azDequote);
+ return rc;
+}
+
+/*
+** This function does the work for both the xDisconnect and xDestroy methods.
+** These tables have no persistent representation of their own, so xDisconnect
+** and xDestroy are identical operations.
+*/
+static int fts3tokDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts3tokTable *pTab = (Fts3tokTable *)pVtab;
+
+ pTab->pMod->xDestroy(pTab->pTok);
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** xBestIndex - Analyze a WHERE and ORDER BY clause.
+*/
+static int fts3tokBestIndexMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ UNUSED_PARAMETER(pVTab);
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ if( pInfo->aConstraint[i].usable
+ && pInfo->aConstraint[i].iColumn==0
+ && pInfo->aConstraint[i].op==SQLITE_INDEX_CONSTRAINT_EQ
+ ){
+ pInfo->idxNum = 1;
+ pInfo->aConstraintUsage[i].argvIndex = 1;
+ pInfo->aConstraintUsage[i].omit = 1;
+ pInfo->estimatedCost = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ pInfo->idxNum = 0;
+ assert( pInfo->estimatedCost>1000000.0 );
+
+ return SQLITE_OK;
+}
+
+/*
+** xOpen - Open a cursor.
+*/
+static int fts3tokOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts3tokCursor *pCsr;
+ UNUSED_PARAMETER(pVTab);
+
+ pCsr = (Fts3tokCursor *)sqlite3_malloc(sizeof(Fts3tokCursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(Fts3tokCursor));
+
+ *ppCsr = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Reset the tokenizer cursor passed as the only argument. As if it had
+** just been returned by fts3tokOpenMethod().
+*/
+static void fts3tokResetCursor(Fts3tokCursor *pCsr){
+ if( pCsr->pCsr ){
+ Fts3tokTable *pTab = (Fts3tokTable *)(pCsr->base.pVtab);
+ pTab->pMod->xClose(pCsr->pCsr);
+ pCsr->pCsr = 0;
+ }
+ sqlite3_free(pCsr->zInput);
+ pCsr->zInput = 0;
+ pCsr->zToken = 0;
+ pCsr->nToken = 0;
+ pCsr->iStart = 0;
+ pCsr->iEnd = 0;
+ pCsr->iPos = 0;
+ pCsr->iRowid = 0;
+}
+
+/*
+** xClose - Close a cursor.
+*/
+static int fts3tokCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+
+ fts3tokResetCursor(pCsr);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** xNext - Advance the cursor to the next row, if any.
+*/
+static int fts3tokNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab);
+ int rc; /* Return code */
+
+ pCsr->iRowid++;
+ rc = pTab->pMod->xNext(pCsr->pCsr,
+ &pCsr->zToken, &pCsr->nToken,
+ &pCsr->iStart, &pCsr->iEnd, &pCsr->iPos
+ );
+
+ if( rc!=SQLITE_OK ){
+ fts3tokResetCursor(pCsr);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+
+ return rc;
+}
+
+/*
+** xFilter - Initialize a cursor to point at the start of its data.
+*/
+static int fts3tokFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ int rc = SQLITE_ERROR;
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab);
+ UNUSED_PARAMETER(idxStr);
+ UNUSED_PARAMETER(nVal);
+
+ fts3tokResetCursor(pCsr);
+ if( idxNum==1 ){
+ const char *zByte = (const char *)sqlite3_value_text(apVal[0]);
+ int nByte = sqlite3_value_bytes(apVal[0]);
+ pCsr->zInput = sqlite3_malloc64(nByte+1);
+ if( pCsr->zInput==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( nByte>0 ) memcpy(pCsr->zInput, zByte, nByte);
+ pCsr->zInput[nByte] = 0;
+ rc = pTab->pMod->xOpen(pTab->pTok, pCsr->zInput, nByte, &pCsr->pCsr);
+ if( rc==SQLITE_OK ){
+ pCsr->pCsr->pTokenizer = pTab->pTok;
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ) return rc;
+ return fts3tokNextMethod(pCursor);
+}
+
+/*
+** xEof - Return true if the cursor is at EOF, or false otherwise.
+*/
+static int fts3tokEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ return (pCsr->zToken==0);
+}
+
+/*
+** xColumn - Return a column value.
+*/
+static int fts3tokColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+
+ /* CREATE TABLE x(input, token, start, end, position) */
+ switch( iCol ){
+ case 0:
+ sqlite3_result_text(pCtx, pCsr->zInput, -1, SQLITE_TRANSIENT);
+ break;
+ case 1:
+ sqlite3_result_text(pCtx, pCsr->zToken, pCsr->nToken, SQLITE_TRANSIENT);
+ break;
+ case 2:
+ sqlite3_result_int(pCtx, pCsr->iStart);
+ break;
+ case 3:
+ sqlite3_result_int(pCtx, pCsr->iEnd);
+ break;
+ default:
+ assert( iCol==4 );
+ sqlite3_result_int(pCtx, pCsr->iPos);
+ break;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** xRowid - Return the current rowid for the cursor.
+*/
+static int fts3tokRowidMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite_int64 *pRowid /* OUT: Rowid value */
+){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ *pRowid = (sqlite3_int64)pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Register the fts3tok module with database connection db. Return SQLITE_OK
+** if successful or an error code if sqlite3_create_module() fails.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3 *db, Fts3Hash *pHash, void(*xDestroy)(void*)){
+ static const sqlite3_module fts3tok_module = {
+ 0, /* iVersion */
+ fts3tokConnectMethod, /* xCreate */
+ fts3tokConnectMethod, /* xConnect */
+ fts3tokBestIndexMethod, /* xBestIndex */
+ fts3tokDisconnectMethod, /* xDisconnect */
+ fts3tokDisconnectMethod, /* xDestroy */
+ fts3tokOpenMethod, /* xOpen */
+ fts3tokCloseMethod, /* xClose */
+ fts3tokFilterMethod, /* xFilter */
+ fts3tokNextMethod, /* xNext */
+ fts3tokEofMethod, /* xEof */
+ fts3tokColumnMethod, /* xColumn */
+ fts3tokRowidMethod, /* xRowid */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindFunction */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+ };
+ int rc; /* Return code */
+
+ rc = sqlite3_create_module_v2(
+ db, "fts3tokenize", &fts3tok_module, (void*)pHash, xDestroy
+ );
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenize_vtab.c **********************************/
+/************** Begin file fts3_write.c **************************************/
+/*
+** 2009 Oct 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file is part of the SQLite FTS3 extension module. Specifically,
+** this file contains code to insert, update and delete rows from FTS3
+** tables. It also contains code to merge FTS3 b-tree segments. Some
+** of the sub-routines used to merge segments are also used by the query
+** code in fts3.c.
+*/
+
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+
+#define FTS_MAX_APPENDABLE_HEIGHT 16
+
+/*
+** When full-text index nodes are loaded from disk, the buffer that they
+** are loaded into has the following number of bytes of padding at the end
+** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
+** of 920 bytes is allocated for it.
+**
+** This means that if we have a pointer into a buffer containing node data,
+** it is always safe to read up to two varints from it without risking an
+** overread, even if the node data is corrupted.
+*/
+#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
+
+/*
+** Under certain circumstances, b-tree nodes (doclists) can be loaded into
+** memory incrementally instead of all at once. This can be a big performance
+** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
+** method before retrieving all query results (as may happen, for example,
+** if a query has a LIMIT clause).
+**
+** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
+** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
+** The code is written so that the hard lower-limit for each of these values
+** is 1. Clearly such small values would be inefficient, but can be useful
+** for testing purposes.
+**
+** If this module is built with SQLITE_TEST defined, these constants may
+** be overridden at runtime for testing purposes. File fts3_test.c contains
+** a Tcl interface to read and write the values.
+*/
+#ifdef SQLITE_TEST
+int test_fts3_node_chunksize = (4*1024);
+int test_fts3_node_chunk_threshold = (4*1024)*4;
+# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
+# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
+#else
+# define FTS3_NODE_CHUNKSIZE (4*1024)
+# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
+#endif
+
+/*
+** The values that may be meaningfully bound to the :1 parameter in
+** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
+*/
+#define FTS_STAT_DOCTOTAL 0
+#define FTS_STAT_INCRMERGEHINT 1
+#define FTS_STAT_AUTOINCRMERGE 2
+
+/*
+** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
+** and incremental merge operation that takes place. This is used for
+** debugging FTS only, it should not usually be turned on in production
+** systems.
+*/
+#ifdef FTS3_LOG_MERGES
+static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
+ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
+}
+#else
+#define fts3LogMerge(x, y)
+#endif
+
+
+typedef struct PendingList PendingList;
+typedef struct SegmentNode SegmentNode;
+typedef struct SegmentWriter SegmentWriter;
+
+/*
+** An instance of the following data structure is used to build doclists
+** incrementally. See function fts3PendingListAppend() for details.
+*/
+struct PendingList {
+ int nData;
+ char *aData;
+ int nSpace;
+ sqlite3_int64 iLastDocid;
+ sqlite3_int64 iLastCol;
+ sqlite3_int64 iLastPos;
+};
+
+
+/*
+** Each cursor has a (possibly empty) linked list of the following objects.
+*/
+struct Fts3DeferredToken {
+ Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
+ int iCol; /* Column token must occur in */
+ Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
+ PendingList *pList; /* Doclist is assembled here */
+};
+
+/*
+** An instance of this structure is used to iterate through the terms on
+** a contiguous set of segment b-tree leaf nodes. Although the details of
+** this structure are only manipulated by code in this file, opaque handles
+** of type Fts3SegReader* are also used by code in fts3.c to iterate through
+** terms when querying the full-text index. See functions:
+**
+** sqlite3Fts3SegReaderNew()
+** sqlite3Fts3SegReaderFree()
+** sqlite3Fts3SegReaderIterate()
+**
+** Methods used to manipulate Fts3SegReader structures:
+**
+** fts3SegReaderNext()
+** fts3SegReaderFirstDocid()
+** fts3SegReaderNextDocid()
+*/
+struct Fts3SegReader {
+ int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
+ u8 bLookup; /* True for a lookup only */
+ u8 rootOnly; /* True for a root-only reader */
+
+ sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
+ sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
+ sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
+ sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
+
+ char *aNode; /* Pointer to node data (or NULL) */
+ int nNode; /* Size of buffer at aNode (or 0) */
+ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
+ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
+
+ Fts3HashElem **ppNextElem;
+
+ /* Variables set by fts3SegReaderNext(). These may be read directly
+ ** by the caller. They are valid from the time SegmentReaderNew() returns
+ ** until SegmentReaderNext() returns something other than SQLITE_OK
+ ** (i.e. SQLITE_DONE).
+ */
+ int nTerm; /* Number of bytes in current term */
+ char *zTerm; /* Pointer to current term */
+ int nTermAlloc; /* Allocated size of zTerm buffer */
+ char *aDoclist; /* Pointer to doclist of current entry */
+ int nDoclist; /* Size of doclist in current entry */
+
+ /* The following variables are used by fts3SegReaderNextDocid() to iterate
+ ** through the current doclist (aDoclist/nDoclist).
+ */
+ char *pOffsetList;
+ int nOffsetList; /* For descending pending seg-readers only */
+ sqlite3_int64 iDocid;
+};
+
+#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
+#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
+
+/*
+** An instance of this structure is used to create a segment b-tree in the
+** database. The internal details of this type are only accessed by the
+** following functions:
+**
+** fts3SegWriterAdd()
+** fts3SegWriterFlush()
+** fts3SegWriterFree()
+*/
+struct SegmentWriter {
+ SegmentNode *pTree; /* Pointer to interior tree structure */
+ sqlite3_int64 iFirst; /* First slot in %_segments written */
+ sqlite3_int64 iFree; /* Next free slot in %_segments */
+ char *zTerm; /* Pointer to previous term buffer */
+ int nTerm; /* Number of bytes in zTerm */
+ int nMalloc; /* Size of malloc'd buffer at zMalloc */
+ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
+ int nSize; /* Size of allocation at aData */
+ int nData; /* Bytes of data in aData */
+ char *aData; /* Pointer to block from malloc() */
+ i64 nLeafData; /* Number of bytes of leaf data written */
+};
+
+/*
+** Type SegmentNode is used by the following three functions to create
+** the interior part of the segment b+-tree structures (everything except
+** the leaf nodes). These functions and type are only ever used by code
+** within the fts3SegWriterXXX() family of functions described above.
+**
+** fts3NodeAddTerm()
+** fts3NodeWrite()
+** fts3NodeFree()
+**
+** When a b+tree is written to the database (either as a result of a merge
+** or the pending-terms table being flushed), leaves are written into the
+** database file as soon as they are completely populated. The interior of
+** the tree is assembled in memory and written out only once all leaves have
+** been populated and stored. This is Ok, as the b+-tree fanout is usually
+** very large, meaning that the interior of the tree consumes relatively
+** little memory.
+*/
+struct SegmentNode {
+ SegmentNode *pParent; /* Parent node (or NULL for root node) */
+ SegmentNode *pRight; /* Pointer to right-sibling */
+ SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
+ int nEntry; /* Number of terms written to node so far */
+ char *zTerm; /* Pointer to previous term buffer */
+ int nTerm; /* Number of bytes in zTerm */
+ int nMalloc; /* Size of malloc'd buffer at zMalloc */
+ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
+ int nData; /* Bytes of valid data so far */
+ char *aData; /* Node data */
+};
+
+/*
+** Valid values for the second argument to fts3SqlStmt().
+*/
+#define SQL_DELETE_CONTENT 0
+#define SQL_IS_EMPTY 1
+#define SQL_DELETE_ALL_CONTENT 2
+#define SQL_DELETE_ALL_SEGMENTS 3
+#define SQL_DELETE_ALL_SEGDIR 4
+#define SQL_DELETE_ALL_DOCSIZE 5
+#define SQL_DELETE_ALL_STAT 6
+#define SQL_SELECT_CONTENT_BY_ROWID 7
+#define SQL_NEXT_SEGMENT_INDEX 8
+#define SQL_INSERT_SEGMENTS 9
+#define SQL_NEXT_SEGMENTS_ID 10
+#define SQL_INSERT_SEGDIR 11
+#define SQL_SELECT_LEVEL 12
+#define SQL_SELECT_LEVEL_RANGE 13
+#define SQL_SELECT_LEVEL_COUNT 14
+#define SQL_SELECT_SEGDIR_MAX_LEVEL 15
+#define SQL_DELETE_SEGDIR_LEVEL 16
+#define SQL_DELETE_SEGMENTS_RANGE 17
+#define SQL_CONTENT_INSERT 18
+#define SQL_DELETE_DOCSIZE 19
+#define SQL_REPLACE_DOCSIZE 20
+#define SQL_SELECT_DOCSIZE 21
+#define SQL_SELECT_STAT 22
+#define SQL_REPLACE_STAT 23
+
+#define SQL_SELECT_ALL_PREFIX_LEVEL 24
+#define SQL_DELETE_ALL_TERMS_SEGDIR 25
+#define SQL_DELETE_SEGDIR_RANGE 26
+#define SQL_SELECT_ALL_LANGID 27
+#define SQL_FIND_MERGE_LEVEL 28
+#define SQL_MAX_LEAF_NODE_ESTIMATE 29
+#define SQL_DELETE_SEGDIR_ENTRY 30
+#define SQL_SHIFT_SEGDIR_ENTRY 31
+#define SQL_SELECT_SEGDIR 32
+#define SQL_CHOMP_SEGDIR 33
+#define SQL_SEGMENT_IS_APPENDABLE 34
+#define SQL_SELECT_INDEXES 35
+#define SQL_SELECT_MXLEVEL 36
+
+#define SQL_SELECT_LEVEL_RANGE2 37
+#define SQL_UPDATE_LEVEL_IDX 38
+#define SQL_UPDATE_LEVEL 39
+
+/*
+** This function is used to obtain an SQLite prepared statement handle
+** for the statement identified by the second argument. If successful,
+** *pp is set to the requested statement handle and SQLITE_OK returned.
+** Otherwise, an SQLite error code is returned and *pp is set to 0.
+**
+** If argument apVal is not NULL, then it must point to an array with
+** at least as many entries as the requested statement has bound
+** parameters. The values are bound to the statements parameters before
+** returning.
+*/
+static int fts3SqlStmt(
+ Fts3Table *p, /* Virtual table handle */
+ int eStmt, /* One of the SQL_XXX constants above */
+ sqlite3_stmt **pp, /* OUT: Statement handle */
+ sqlite3_value **apVal /* Values to bind to statement */
+){
+ const char *azSql[] = {
+/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
+/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
+/* 2 */ "DELETE FROM %Q.'%q_content'",
+/* 3 */ "DELETE FROM %Q.'%q_segments'",
+/* 4 */ "DELETE FROM %Q.'%q_segdir'",
+/* 5 */ "DELETE FROM %Q.'%q_docsize'",
+/* 6 */ "DELETE FROM %Q.'%q_stat'",
+/* 7 */ "SELECT %s WHERE rowid=?",
+/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
+/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
+/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
+/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
+
+ /* Return segments in order from oldest to newest.*/
+/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
+ "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
+/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
+ "ORDER BY level DESC, idx ASC",
+
+/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
+/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
+
+/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
+/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
+/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
+/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
+/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
+/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
+/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
+/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
+/* 24 */ "",
+/* 25 */ "",
+
+/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
+/* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
+
+/* This statement is used to determine which level to read the input from
+** when performing an incremental merge. It returns the absolute level number
+** of the oldest level in the db that contains at least ? segments. Or,
+** if no level in the FTS index contains more than ? segments, the statement
+** returns zero rows. */
+/* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
+ " GROUP BY level HAVING cnt>=?"
+ " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1",
+
+/* Estimate the upper limit on the number of leaf nodes in a new segment
+** created by merging the oldest :2 segments from absolute level :1. See
+** function sqlite3Fts3Incrmerge() for details. */
+/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
+ " FROM (SELECT * FROM %Q.'%q_segdir' "
+ " WHERE level = ? ORDER BY idx ASC LIMIT ?"
+ " )",
+
+/* SQL_DELETE_SEGDIR_ENTRY
+** Delete the %_segdir entry on absolute level :1 with index :2. */
+/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
+
+/* SQL_SHIFT_SEGDIR_ENTRY
+** Modify the idx value for the segment with idx=:3 on absolute level :2
+** to :1. */
+/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
+
+/* SQL_SELECT_SEGDIR
+** Read a single entry from the %_segdir table. The entry from absolute
+** level :1 with index value :2. */
+/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
+ "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
+
+/* SQL_CHOMP_SEGDIR
+** Update the start_block (:1) and root (:2) fields of the %_segdir
+** entry located on absolute level :3 with index :4. */
+/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
+ "WHERE level = ? AND idx = ?",
+
+/* SQL_SEGMENT_IS_APPENDABLE
+** Return a single row if the segment with end_block=? is appendable. Or
+** no rows otherwise. */
+/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
+
+/* SQL_SELECT_INDEXES
+** Return the list of valid segment indexes for absolute level ? */
+/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
+
+/* SQL_SELECT_MXLEVEL
+** Return the largest relative level in the FTS index or indexes. */
+/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
+
+ /* Return segments in order from oldest to newest.*/
+/* 37 */ "SELECT level, idx, end_block "
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
+ "ORDER BY level DESC, idx ASC",
+
+ /* Update statements used while promoting segments */
+/* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
+ "WHERE level=? AND idx=?",
+/* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
+
+ };
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt;
+
+ assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
+ assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
+
+ pStmt = p->aStmt[eStmt];
+ if( !pStmt ){
+ int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
+ char *zSql;
+ if( eStmt==SQL_CONTENT_INSERT ){
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
+ }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
+ f &= ~SQLITE_PREPARE_NO_VTAB;
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
+ }else{
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
+ }
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL);
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ p->aStmt[eStmt] = pStmt;
+ }
+ }
+ if( apVal ){
+ int i;
+ int nParam = sqlite3_bind_parameter_count(pStmt);
+ for(i=0; rc==SQLITE_OK && i<nParam; i++){
+ rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
+ }
+ }
+ *pp = pStmt;
+ return rc;
+}
+
+
+static int fts3SelectDocsize(
+ Fts3Table *pTab, /* FTS3 table handle */
+ sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
+ int rc; /* Return code */
+
+ rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, iDocid);
+ rc = sqlite3_step(pStmt);
+ if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
+ rc = sqlite3_reset(pStmt);
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
+ pStmt = 0;
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+
+ *ppStmt = pStmt;
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(
+ Fts3Table *pTab, /* Fts3 table handle */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ sqlite3_stmt *pStmt = 0;
+ int rc;
+ rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
+ if( sqlite3_step(pStmt)!=SQLITE_ROW
+ || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
+ ){
+ rc = sqlite3_reset(pStmt);
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
+ pStmt = 0;
+ }
+ }
+ *ppStmt = pStmt;
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(
+ Fts3Table *pTab, /* Fts3 table handle */
+ sqlite3_int64 iDocid, /* Docid to read size data for */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ return fts3SelectDocsize(pTab, iDocid, ppStmt);
+}
+
+/*
+** Similar to fts3SqlStmt(). Except, after binding the parameters in
+** array apVal[] to the SQL statement identified by eStmt, the statement
+** is executed.
+**
+** Returns SQLITE_OK if the statement is successfully executed, or an
+** SQLite error code otherwise.
+*/
+static void fts3SqlExec(
+ int *pRC, /* Result code */
+ Fts3Table *p, /* The FTS3 table */
+ int eStmt, /* Index of statement to evaluate */
+ sqlite3_value **apVal /* Parameters to bind */
+){
+ sqlite3_stmt *pStmt;
+ int rc;
+ if( *pRC ) return;
+ rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ }
+ *pRC = rc;
+}
+
+
+/*
+** This function ensures that the caller has obtained an exclusive
+** shared-cache table-lock on the %_segdir table. This is required before
+** writing data to the fts3 table. If this lock is not acquired first, then
+** the caller may end up attempting to take this lock as part of committing
+** a transaction, causing SQLite to return SQLITE_LOCKED or
+** LOCKED_SHAREDCACHEto a COMMIT command.
+**
+** It is best to avoid this because if FTS3 returns any error when
+** committing a transaction, the whole transaction will be rolled back.
+** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
+** It can still happen if the user locks the underlying tables directly
+** instead of accessing them via FTS.
+*/
+static int fts3Writelock(Fts3Table *p){
+ int rc = SQLITE_OK;
+
+ if( p->nPendingData==0 ){
+ sqlite3_stmt *pStmt;
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_null(pStmt, 1);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** FTS maintains a separate indexes for each language-id (a 32-bit integer).
+** Within each language id, a separate index is maintained to store the
+** document terms, and each configured prefix size (configured the FTS
+** "prefix=" option). And each index consists of multiple levels ("relative
+** levels").
+**
+** All three of these values (the language id, the specific index and the
+** level within the index) are encoded in 64-bit integer values stored
+** in the %_segdir table on disk. This function is used to convert three
+** separate component values into the single 64-bit integer value that
+** can be used to query the %_segdir table.
+**
+** Specifically, each language-id/index combination is allocated 1024
+** 64-bit integer level values ("absolute levels"). The main terms index
+** for language-id 0 is allocate values 0-1023. The first prefix index
+** (if any) for language-id 0 is allocated values 1024-2047. And so on.
+** Language 1 indexes are allocated immediately following language 0.
+**
+** So, for a system with nPrefix prefix indexes configured, the block of
+** absolute levels that corresponds to language-id iLangid and index
+** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
+*/
+static sqlite3_int64 getAbsoluteLevel(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language id */
+ int iIndex, /* Index in p->aIndex[] */
+ int iLevel /* Level of segments */
+){
+ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
+ assert_fts3_nc( iLangid>=0 );
+ assert( p->nIndex>0 );
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
+ return iBase + iLevel;
+}
+
+/*
+** Set *ppStmt to a statement handle that may be used to iterate through
+** all rows in the %_segdir table, from oldest to newest. If successful,
+** return SQLITE_OK. If an error occurs while preparing the statement,
+** return an SQLite error code.
+**
+** There is only ever one instance of this SQL statement compiled for
+** each FTS3 table.
+**
+** The statement returns the following columns from the %_segdir table:
+**
+** 0: idx
+** 1: start_block
+** 2: leaves_end_block
+** 3: end_block
+** 4: root
+*/
+SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(
+ Fts3Table *p, /* FTS3 table */
+ int iLangid, /* Language being queried */
+ int iIndex, /* Index for p->aIndex[] */
+ int iLevel, /* Level to select (relative level) */
+ sqlite3_stmt **ppStmt /* OUT: Compiled statement */
+){
+ int rc;
+ sqlite3_stmt *pStmt = 0;
+
+ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ if( iLevel<0 ){
+ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
+ sqlite3_bind_int64(pStmt, 2,
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
+ );
+ }
+ }else{
+ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
+ }
+ }
+ *ppStmt = pStmt;
+ return rc;
+}
+
+
+/*
+** Append a single varint to a PendingList buffer. SQLITE_OK is returned
+** if successful, or an SQLite error code otherwise.
+**
+** This function also serves to allocate the PendingList structure itself.
+** For example, to create a new PendingList structure containing two
+** varints:
+**
+** PendingList *p = 0;
+** fts3PendingListAppendVarint(&p, 1);
+** fts3PendingListAppendVarint(&p, 2);
+*/
+static int fts3PendingListAppendVarint(
+ PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
+ sqlite3_int64 i /* Value to append to data */
+){
+ PendingList *p = *pp;
+
+ /* Allocate or grow the PendingList as required. */
+ if( !p ){
+ p = sqlite3_malloc64(sizeof(*p) + 100);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ p->nSpace = 100;
+ p->aData = (char *)&p[1];
+ p->nData = 0;
+ }
+ else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
+ i64 nNew = p->nSpace * 2;
+ p = sqlite3_realloc64(p, sizeof(*p) + nNew);
+ if( !p ){
+ sqlite3_free(*pp);
+ *pp = 0;
+ return SQLITE_NOMEM;
+ }
+ p->nSpace = (int)nNew;
+ p->aData = (char *)&p[1];
+ }
+
+ /* Append the new serialized varint to the end of the list. */
+ p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
+ p->aData[p->nData] = '\0';
+ *pp = p;
+ return SQLITE_OK;
+}
+
+/*
+** Add a docid/column/position entry to a PendingList structure. Non-zero
+** is returned if the structure is sqlite3_realloced as part of adding
+** the entry. Otherwise, zero.
+**
+** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
+** Zero is always returned in this case. Otherwise, if no OOM error occurs,
+** it is set to SQLITE_OK.
+*/
+static int fts3PendingListAppend(
+ PendingList **pp, /* IN/OUT: PendingList structure */
+ sqlite3_int64 iDocid, /* Docid for entry to add */
+ sqlite3_int64 iCol, /* Column for entry to add */
+ sqlite3_int64 iPos, /* Position of term for entry to add */
+ int *pRc /* OUT: Return code */
+){
+ PendingList *p = *pp;
+ int rc = SQLITE_OK;
+
+ assert( !p || p->iLastDocid<=iDocid );
+
+ if( !p || p->iLastDocid!=iDocid ){
+ u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0);
+ if( p ){
+ assert( p->nData<p->nSpace );
+ assert( p->aData[p->nData]==0 );
+ p->nData++;
+ }
+ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
+ goto pendinglistappend_out;
+ }
+ p->iLastCol = -1;
+ p->iLastPos = 0;
+ p->iLastDocid = iDocid;
+ }
+ if( iCol>0 && p->iLastCol!=iCol ){
+ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
+ || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
+ ){
+ goto pendinglistappend_out;
+ }
+ p->iLastCol = iCol;
+ p->iLastPos = 0;
+ }
+ if( iCol>=0 ){
+ assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
+ rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
+ if( rc==SQLITE_OK ){
+ p->iLastPos = iPos;
+ }
+ }
+
+ pendinglistappend_out:
+ *pRc = rc;
+ if( p!=*pp ){
+ *pp = p;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Free a PendingList object allocated by fts3PendingListAppend().
+*/
+static void fts3PendingListDelete(PendingList *pList){
+ sqlite3_free(pList);
+}
+
+/*
+** Add an entry to one of the pending-terms hash tables.
+*/
+static int fts3PendingTermsAddOne(
+ Fts3Table *p,
+ int iCol,
+ int iPos,
+ Fts3Hash *pHash, /* Pending terms hash table to add entry to */
+ const char *zToken,
+ int nToken
+){
+ PendingList *pList;
+ int rc = SQLITE_OK;
+
+ pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
+ if( pList ){
+ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
+ }
+ if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
+ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
+ /* Malloc failed while inserting the new entry. This can only
+ ** happen if there was no previous entry for this token.
+ */
+ assert( 0==fts3HashFind(pHash, zToken, nToken) );
+ sqlite3_free(pList);
+ rc = SQLITE_NOMEM;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
+ }
+ return rc;
+}
+
+/*
+** Tokenize the nul-terminated string zText and add all tokens to the
+** pending-terms hash-table. The docid used is that currently stored in
+** p->iPrevDocid, and the column is specified by argument iCol.
+**
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
+*/
+static int fts3PendingTermsAdd(
+ Fts3Table *p, /* Table into which text will be inserted */
+ int iLangid, /* Language id to use */
+ const char *zText, /* Text of document to be inserted */
+ int iCol, /* Column into which text is being inserted */
+ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
+){
+ int rc;
+ int iStart = 0;
+ int iEnd = 0;
+ int iPos = 0;
+ int nWord = 0;
+
+ char const *zToken;
+ int nToken = 0;
+
+ sqlite3_tokenizer *pTokenizer = p->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ sqlite3_tokenizer_cursor *pCsr;
+ int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
+ const char**,int*,int*,int*,int*);
+
+ assert( pTokenizer && pModule );
+
+ /* If the user has inserted a NULL value, this function may be called with
+ ** zText==0. In this case, add zero token entries to the hash table and
+ ** return early. */
+ if( zText==0 ){
+ *pnWord = 0;
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ xNext = pModule->xNext;
+ while( SQLITE_OK==rc
+ && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
+ ){
+ int i;
+ if( iPos>=nWord ) nWord = iPos+1;
+
+ /* Positions cannot be negative; we use -1 as a terminator internally.
+ ** Tokens must have a non-zero length.
+ */
+ if( iPos<0 || !zToken || nToken<=0 ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ /* Add the term to the terms index */
+ rc = fts3PendingTermsAddOne(
+ p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
+ );
+
+ /* Add the term to each of the prefix indexes that it is not too
+ ** short for. */
+ for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
+ struct Fts3Index *pIndex = &p->aIndex[i];
+ if( nToken<pIndex->nPrefix ) continue;
+ rc = fts3PendingTermsAddOne(
+ p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
+ );
+ }
+ }
+
+ pModule->xClose(pCsr);
+ *pnWord += nWord;
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc);
+}
+
+/*
+** Calling this function indicates that subsequent calls to
+** fts3PendingTermsAdd() are to add term/position-list pairs for the
+** contents of the document with docid iDocid.
+*/
+static int fts3PendingTermsDocid(
+ Fts3Table *p, /* Full-text table handle */
+ int bDelete, /* True if this op is a delete */
+ int iLangid, /* Language id of row being written */
+ sqlite_int64 iDocid /* Docid of row being written */
+){
+ assert( iLangid>=0 );
+ assert( bDelete==1 || bDelete==0 );
+
+ /* TODO(shess) Explore whether partially flushing the buffer on
+ ** forced-flush would provide better performance. I suspect that if
+ ** we ordered the doclists by size and flushed the largest until the
+ ** buffer was half empty, that would let the less frequent terms
+ ** generate longer doclists.
+ */
+ if( iDocid<p->iPrevDocid
+ || (iDocid==p->iPrevDocid && p->bPrevDelete==0)
+ || p->iPrevLangid!=iLangid
+ || p->nPendingData>p->nMaxPendingData
+ ){
+ int rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ p->iPrevDocid = iDocid;
+ p->iPrevLangid = iLangid;
+ p->bPrevDelete = bDelete;
+ return SQLITE_OK;
+}
+
+/*
+** Discard the contents of the pending-terms hash tables.
+*/
+SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){
+ int i;
+ for(i=0; i<p->nIndex; i++){
+ Fts3HashElem *pElem;
+ Fts3Hash *pHash = &p->aIndex[i].hPending;
+ for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
+ PendingList *pList = (PendingList *)fts3HashData(pElem);
+ fts3PendingListDelete(pList);
+ }
+ fts3HashClear(pHash);
+ }
+ p->nPendingData = 0;
+}
+
+/*
+** This function is called by the xUpdate() method as part of an INSERT
+** operation. It adds entries for each term in the new record to the
+** pendingTerms hash table.
+**
+** Argument apVal is the same as the similarly named argument passed to
+** fts3InsertData(). Parameter iDocid is the docid of the new row.
+*/
+static int fts3InsertTerms(
+ Fts3Table *p,
+ int iLangid,
+ sqlite3_value **apVal,
+ u32 *aSz
+){
+ int i; /* Iterator variable */
+ for(i=2; i<p->nColumn+2; i++){
+ int iCol = i-2;
+ if( p->abNotindexed[iCol]==0 ){
+ const char *zText = (const char *)sqlite3_value_text(apVal[i]);
+ int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is called by the xUpdate() method for an INSERT operation.
+** The apVal parameter is passed a copy of the apVal argument passed by
+** SQLite to the xUpdate() method. i.e:
+**
+** apVal[0] Not used for INSERT.
+** apVal[1] rowid
+** apVal[2] Left-most user-defined column
+** ...
+** apVal[p->nColumn+1] Right-most user-defined column
+** apVal[p->nColumn+2] Hidden column with same name as table
+** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
+** apVal[p->nColumn+4] Hidden languageid column
+*/
+static int fts3InsertData(
+ Fts3Table *p, /* Full-text table */
+ sqlite3_value **apVal, /* Array of values to insert */
+ sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
+){
+ int rc; /* Return code */
+ sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
+
+ if( p->zContentTbl ){
+ sqlite3_value *pRowid = apVal[p->nColumn+3];
+ if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
+ pRowid = apVal[1];
+ }
+ if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
+ return SQLITE_CONSTRAINT;
+ }
+ *piDocid = sqlite3_value_int64(pRowid);
+ return SQLITE_OK;
+ }
+
+ /* Locate the statement handle used to insert data into the %_content
+ ** table. The SQL for this statement is:
+ **
+ ** INSERT INTO %_content VALUES(?, ?, ?, ...)
+ **
+ ** The statement features N '?' variables, where N is the number of user
+ ** defined columns in the FTS3 table, plus one for the docid field.
+ */
+ rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
+ if( rc==SQLITE_OK && p->zLanguageid ){
+ rc = sqlite3_bind_int(
+ pContentInsert, p->nColumn+2,
+ sqlite3_value_int(apVal[p->nColumn+4])
+ );
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* There is a quirk here. The users INSERT statement may have specified
+ ** a value for the "rowid" field, for the "docid" field, or for both.
+ ** Which is a problem, since "rowid" and "docid" are aliases for the
+ ** same value. For example:
+ **
+ ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
+ **
+ ** In FTS3, this is an error. It is an error to specify non-NULL values
+ ** for both docid and some other rowid alias.
+ */
+ if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
+ if( SQLITE_NULL==sqlite3_value_type(apVal[0])
+ && SQLITE_NULL!=sqlite3_value_type(apVal[1])
+ ){
+ /* A rowid/docid conflict. */
+ return SQLITE_ERROR;
+ }
+ rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* Execute the statement to insert the record. Set *piDocid to the
+ ** new docid value.
+ */
+ sqlite3_step(pContentInsert);
+ rc = sqlite3_reset(pContentInsert);
+
+ *piDocid = sqlite3_last_insert_rowid(p->db);
+ return rc;
+}
+
+
+
+/*
+** Remove all data from the FTS3 table. Clear the hash table containing
+** pending terms.
+*/
+static int fts3DeleteAll(Fts3Table *p, int bContent){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* Discard the contents of the pending-terms hash table. */
+ sqlite3Fts3PendingTermsClear(p);
+
+ /* Delete everything from the shadow tables. Except, leave %_content as
+ ** is if bContent is false. */
+ assert( p->zContentTbl==0 || bContent==0 );
+ if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
+ if( p->bHasDocsize ){
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
+ }
+ if( p->bHasStat ){
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
+ }
+ return rc;
+}
+
+/*
+**
+*/
+static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
+ int iLangid = 0;
+ if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
+ return iLangid;
+}
+
+/*
+** The first element in the apVal[] array is assumed to contain the docid
+** (an integer) of a row about to be deleted. Remove all terms from the
+** full-text index.
+*/
+static void fts3DeleteTerms(
+ int *pRC, /* Result code */
+ Fts3Table *p, /* The FTS table to delete from */
+ sqlite3_value *pRowid, /* The docid to be deleted */
+ u32 *aSz, /* Sizes of deleted document written here */
+ int *pbFound /* OUT: Set to true if row really does exist */
+){
+ int rc;
+ sqlite3_stmt *pSelect;
+
+ assert( *pbFound==0 );
+ if( *pRC ) return;
+ rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){
+ int i;
+ int iLangid = langidFromSelect(p, pSelect);
+ i64 iDocid = sqlite3_column_int64(pSelect, 0);
+ rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid);
+ for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
+ int iCol = i-1;
+ if( p->abNotindexed[iCol]==0 ){
+ const char *zText = (const char *)sqlite3_column_text(pSelect, i);
+ rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
+ aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_reset(pSelect);
+ *pRC = rc;
+ return;
+ }
+ *pbFound = 1;
+ }
+ rc = sqlite3_reset(pSelect);
+ }else{
+ sqlite3_reset(pSelect);
+ }
+ *pRC = rc;
+}
+
+/*
+** Forward declaration to account for the circular dependency between
+** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
+*/
+static int fts3SegmentMerge(Fts3Table *, int, int, int);
+
+/*
+** This function allocates a new level iLevel index in the segdir table.
+** Usually, indexes are allocated within a level sequentially starting
+** with 0, so the allocated index is one greater than the value returned
+** by:
+**
+** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
+**
+** However, if there are already FTS3_MERGE_COUNT indexes at the requested
+** level, they are merged into a single level (iLevel+1) segment and the
+** allocated index is 0.
+**
+** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
+** returned. Otherwise, an SQLite error code is returned.
+*/
+static int fts3AllocateSegdirIdx(
+ Fts3Table *p,
+ int iLangid, /* Language id */
+ int iIndex, /* Index for p->aIndex */
+ int iLevel,
+ int *piIdx
+){
+ int rc; /* Return Code */
+ sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
+ int iNext = 0; /* Result of query pNextIdx */
+
+ assert( iLangid>=0 );
+ assert( p->nIndex>=1 );
+
+ /* Set variable iNext to the next available segdir index at level iLevel. */
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(
+ pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
+ );
+ if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
+ iNext = sqlite3_column_int(pNextIdx, 0);
+ }
+ rc = sqlite3_reset(pNextIdx);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
+ ** full, merge all segments in level iLevel into a single iLevel+1
+ ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
+ ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
+ */
+ if( iNext>=MergeCount(p) ){
+ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
+ rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
+ *piIdx = 0;
+ }else{
+ *piIdx = iNext;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The %_segments table is declared as follows:
+**
+** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
+**
+** This function reads data from a single row of the %_segments table. The
+** specific row is identified by the iBlockid parameter. If paBlob is not
+** NULL, then a buffer is allocated using sqlite3_malloc() and populated
+** with the contents of the blob stored in the "block" column of the
+** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
+** to the size of the blob in bytes before returning.
+**
+** If an error occurs, or the table does not contain the specified row,
+** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
+** paBlob is non-NULL, then it is the responsibility of the caller to
+** eventually free the returned buffer.
+**
+** This function may leave an open sqlite3_blob* handle in the
+** Fts3Table.pSegments variable. This handle is reused by subsequent calls
+** to this function. The handle may be closed by calling the
+** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
+** performance improvement, but the blob handle should always be closed
+** before control is returned to the user (to prevent a lock being held
+** on the database file for longer than necessary). Thus, any virtual table
+** method (xFilter etc.) that may directly or indirectly call this function
+** must call sqlite3Fts3SegmentsClose() before returning.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ReadBlock(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
+ char **paBlob, /* OUT: Blob data in malloc'd buffer */
+ int *pnBlob, /* OUT: Size of blob data */
+ int *pnLoad /* OUT: Bytes actually loaded */
+){
+ int rc; /* Return code */
+
+ /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
+ assert( pnBlob );
+
+ if( p->pSegments ){
+ rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
+ }else{
+ if( 0==p->zSegmentsTbl ){
+ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
+ if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
+ }
+ rc = sqlite3_blob_open(
+ p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ int nByte = sqlite3_blob_bytes(p->pSegments);
+ *pnBlob = nByte;
+ if( paBlob ){
+ char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING);
+ if( !aByte ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
+ nByte = FTS3_NODE_CHUNKSIZE;
+ *pnLoad = nByte;
+ }
+ rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
+ memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(aByte);
+ aByte = 0;
+ }
+ }
+ *paBlob = aByte;
+ }
+ }else if( rc==SQLITE_ERROR ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+
+ return rc;
+}
+
+/*
+** Close the blob handle at p->pSegments, if it is open. See comments above
+** the sqlite3Fts3ReadBlock() function for details.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){
+ sqlite3_blob_close(p->pSegments);
+ p->pSegments = 0;
+}
+
+static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
+ int nRead; /* Number of bytes to read */
+ int rc; /* Return code */
+
+ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
+ rc = sqlite3_blob_read(
+ pReader->pBlob,
+ &pReader->aNode[pReader->nPopulate],
+ nRead,
+ pReader->nPopulate
+ );
+
+ if( rc==SQLITE_OK ){
+ pReader->nPopulate += nRead;
+ memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
+ if( pReader->nPopulate==pReader->nNode ){
+ sqlite3_blob_close(pReader->pBlob);
+ pReader->pBlob = 0;
+ pReader->nPopulate = 0;
+ }
+ }
+ return rc;
+}
+
+static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
+ int rc = SQLITE_OK;
+ assert( !pReader->pBlob
+ || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
+ );
+ while( pReader->pBlob && rc==SQLITE_OK
+ && (pFrom - pReader->aNode + nByte)>pReader->nPopulate
+ ){
+ rc = fts3SegReaderIncrRead(pReader);
+ }
+ return rc;
+}
+
+/*
+** Set an Fts3SegReader cursor to point at EOF.
+*/
+static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
+ if( !fts3SegReaderIsRootOnly(pSeg) ){
+ sqlite3_free(pSeg->aNode);
+ sqlite3_blob_close(pSeg->pBlob);
+ pSeg->pBlob = 0;
+ }
+ pSeg->aNode = 0;
+}
+
+/*
+** Move the iterator passed as the first argument to the next term in the
+** segment. If successful, SQLITE_OK is returned. If there is no next term,
+** SQLITE_DONE. Otherwise, an SQLite error code.
+*/
+static int fts3SegReaderNext(
+ Fts3Table *p,
+ Fts3SegReader *pReader,
+ int bIncr
+){
+ int rc; /* Return code of various sub-routines */
+ char *pNext; /* Cursor variable */
+ int nPrefix; /* Number of bytes in term prefix */
+ int nSuffix; /* Number of bytes in term suffix */
+
+ if( !pReader->aDoclist ){
+ pNext = pReader->aNode;
+ }else{
+ pNext = &pReader->aDoclist[pReader->nDoclist];
+ }
+
+ if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
+
+ if( fts3SegReaderIsPending(pReader) ){
+ Fts3HashElem *pElem = *(pReader->ppNextElem);
+ sqlite3_free(pReader->aNode);
+ pReader->aNode = 0;
+ if( pElem ){
+ char *aCopy;
+ PendingList *pList = (PendingList *)fts3HashData(pElem);
+ int nCopy = pList->nData+1;
+
+ int nTerm = fts3HashKeysize(pElem);
+ if( (nTerm+1)>pReader->nTermAlloc ){
+ sqlite3_free(pReader->zTerm);
+ pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2);
+ if( !pReader->zTerm ) return SQLITE_NOMEM;
+ pReader->nTermAlloc = (nTerm+1)*2;
+ }
+ memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm);
+ pReader->zTerm[nTerm] = '\0';
+ pReader->nTerm = nTerm;
+
+ aCopy = (char*)sqlite3_malloc64(nCopy);
+ if( !aCopy ) return SQLITE_NOMEM;
+ memcpy(aCopy, pList->aData, nCopy);
+ pReader->nNode = pReader->nDoclist = nCopy;
+ pReader->aNode = pReader->aDoclist = aCopy;
+ pReader->ppNextElem++;
+ assert( pReader->aNode );
+ }
+ return SQLITE_OK;
+ }
+
+ fts3SegReaderSetEof(pReader);
+
+ /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
+ ** blocks have already been traversed. */
+#ifdef CORRUPT_DB
+ assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB );
+#endif
+ if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Fts3ReadBlock(
+ p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
+ (bIncr ? &pReader->nPopulate : 0)
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ assert( pReader->pBlob==0 );
+ if( bIncr && pReader->nPopulate<pReader->nNode ){
+ pReader->pBlob = p->pSegments;
+ p->pSegments = 0;
+ }
+ pNext = pReader->aNode;
+ }
+
+ assert( !fts3SegReaderIsPending(pReader) );
+
+ rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
+ ** safe (no risk of overread) even if the node data is corrupted. */
+ pNext += fts3GetVarint32(pNext, &nPrefix);
+ pNext += fts3GetVarint32(pNext, &nSuffix);
+ if( nSuffix<=0
+ || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix
+ || nPrefix>pReader->nTerm
+ ){
+ return FTS_CORRUPT_VTAB;
+ }
+
+ /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
+ ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
+ ** overflow - hence the (i64) casts. */
+ if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){
+ i64 nNew = ((i64)nPrefix+nSuffix)*2;
+ char *zNew = sqlite3_realloc64(pReader->zTerm, nNew);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pReader->zTerm = zNew;
+ pReader->nTermAlloc = nNew;
+ }
+
+ rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
+ if( rc!=SQLITE_OK ) return rc;
+
+ memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
+ pReader->nTerm = nPrefix+nSuffix;
+ pNext += nSuffix;
+ pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
+ pReader->aDoclist = pNext;
+ pReader->pOffsetList = 0;
+
+ /* Check that the doclist does not appear to extend past the end of the
+ ** b-tree node. And that the final byte of the doclist is 0x00. If either
+ ** of these statements is untrue, then the data structure is corrupt.
+ */
+ if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode)
+ || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
+ || pReader->nDoclist==0
+ ){
+ return FTS_CORRUPT_VTAB;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Set the SegReader to point to the first docid in the doclist associated
+** with the current term.
+*/
+static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
+ int rc = SQLITE_OK;
+ assert( pReader->aDoclist );
+ assert( !pReader->pOffsetList );
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
+ u8 bEof = 0;
+ pReader->iDocid = 0;
+ pReader->nOffsetList = 0;
+ sqlite3Fts3DoclistPrev(0,
+ pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
+ &pReader->iDocid, &pReader->nOffsetList, &bEof
+ );
+ }else{
+ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
+ if( rc==SQLITE_OK ){
+ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
+ pReader->pOffsetList = &pReader->aDoclist[n];
+ }
+ }
+ return rc;
+}
+
+/*
+** Advance the SegReader to point to the next docid in the doclist
+** associated with the current term.
+**
+** If arguments ppOffsetList and pnOffsetList are not NULL, then
+** *ppOffsetList is set to point to the first column-offset list
+** in the doclist entry (i.e. immediately past the docid varint).
+** *pnOffsetList is set to the length of the set of column-offset
+** lists, not including the nul-terminator byte. For example:
+*/
+static int fts3SegReaderNextDocid(
+ Fts3Table *pTab,
+ Fts3SegReader *pReader, /* Reader to advance to next docid */
+ char **ppOffsetList, /* OUT: Pointer to current position-list */
+ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
+){
+ int rc = SQLITE_OK;
+ char *p = pReader->pOffsetList;
+ char c = 0;
+
+ assert( p );
+
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
+ /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
+ ** Pending-terms doclists are always built up in ascending order, so
+ ** we have to iterate through them backwards here. */
+ u8 bEof = 0;
+ if( ppOffsetList ){
+ *ppOffsetList = pReader->pOffsetList;
+ *pnOffsetList = pReader->nOffsetList - 1;
+ }
+ sqlite3Fts3DoclistPrev(0,
+ pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
+ &pReader->nOffsetList, &bEof
+ );
+ if( bEof ){
+ pReader->pOffsetList = 0;
+ }else{
+ pReader->pOffsetList = p;
+ }
+ }else{
+ char *pEnd = &pReader->aDoclist[pReader->nDoclist];
+
+ /* Pointer p currently points at the first byte of an offset list. The
+ ** following block advances it to point one byte past the end of
+ ** the same offset list. */
+ while( 1 ){
+
+ /* The following line of code (and the "p++" below the while() loop) is
+ ** normally all that is required to move pointer p to the desired
+ ** position. The exception is if this node is being loaded from disk
+ ** incrementally and pointer "p" now points to the first byte past
+ ** the populated part of pReader->aNode[].
+ */
+ while( *p | c ) c = *p++ & 0x80;
+ assert( *p==0 );
+
+ if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
+ rc = fts3SegReaderIncrRead(pReader);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ p++;
+
+ /* If required, populate the output variables with a pointer to and the
+ ** size of the previous offset-list.
+ */
+ if( ppOffsetList ){
+ *ppOffsetList = pReader->pOffsetList;
+ *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
+ }
+
+ /* List may have been edited in place by fts3EvalNearTrim() */
+ while( p<pEnd && *p==0 ) p++;
+
+ /* If there are no more entries in the doclist, set pOffsetList to
+ ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
+ ** Fts3SegReader.pOffsetList to point to the next offset list before
+ ** returning.
+ */
+ if( p>=pEnd ){
+ pReader->pOffsetList = 0;
+ }else{
+ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
+ if( rc==SQLITE_OK ){
+ u64 iDelta;
+ pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta);
+ if( pTab->bDescIdx ){
+ pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta);
+ }else{
+ pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta);
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(
+ Fts3Cursor *pCsr,
+ Fts3MultiSegReader *pMsr,
+ int *pnOvfl
+){
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
+ int nOvfl = 0;
+ int ii;
+ int rc = SQLITE_OK;
+ int pgsz = p->nPgsz;
+
+ assert( p->bFts4 );
+ assert( pgsz>0 );
+
+ for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
+ Fts3SegReader *pReader = pMsr->apSegment[ii];
+ if( !fts3SegReaderIsPending(pReader)
+ && !fts3SegReaderIsRootOnly(pReader)
+ ){
+ sqlite3_int64 jj;
+ for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
+ int nBlob;
+ rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
+ if( rc!=SQLITE_OK ) break;
+ if( (nBlob+35)>pgsz ){
+ nOvfl += (nBlob + 34)/pgsz;
+ }
+ }
+ }
+ }
+ *pnOvfl = nOvfl;
+ return rc;
+}
+
+/*
+** Free all allocations associated with the iterator passed as the
+** second argument.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
+ if( pReader ){
+ sqlite3_free(pReader->zTerm);
+ if( !fts3SegReaderIsRootOnly(pReader) ){
+ sqlite3_free(pReader->aNode);
+ }
+ sqlite3_blob_close(pReader->pBlob);
+ }
+ sqlite3_free(pReader);
+}
+
+/*
+** Allocate a new SegReader object.
+*/
+SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(
+ int iAge, /* Segment "age". */
+ int bLookup, /* True for a lookup only */
+ sqlite3_int64 iStartLeaf, /* First leaf to traverse */
+ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
+ sqlite3_int64 iEndBlock, /* Final block of segment */
+ const char *zRoot, /* Buffer containing root node */
+ int nRoot, /* Size of buffer containing root node */
+ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
+){
+ Fts3SegReader *pReader; /* Newly allocated SegReader object */
+ int nExtra = 0; /* Bytes to allocate segment root node */
+
+ assert( zRoot!=0 || nRoot==0 );
+#ifdef CORRUPT_DB
+ assert( zRoot!=0 || CORRUPT_DB );
+#endif
+
+ if( iStartLeaf==0 ){
+ if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
+ nExtra = nRoot + FTS3_NODE_PADDING;
+ }
+
+ pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra);
+ if( !pReader ){
+ return SQLITE_NOMEM;
+ }
+ memset(pReader, 0, sizeof(Fts3SegReader));
+ pReader->iIdx = iAge;
+ pReader->bLookup = bLookup!=0;
+ pReader->iStartBlock = iStartLeaf;
+ pReader->iLeafEndBlock = iEndLeaf;
+ pReader->iEndBlock = iEndBlock;
+
+ if( nExtra ){
+ /* The entire segment is stored in the root node. */
+ pReader->aNode = (char *)&pReader[1];
+ pReader->rootOnly = 1;
+ pReader->nNode = nRoot;
+ if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot);
+ memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
+ }else{
+ pReader->iCurrentBlock = iStartLeaf-1;
+ }
+ *ppReader = pReader;
+ return SQLITE_OK;
+}
+
+/*
+** This is a comparison function used as a qsort() callback when sorting
+** an array of pending terms by term. This occurs as part of flushing
+** the contents of the pending-terms hash table to the database.
+*/
+static int SQLITE_CDECL fts3CompareElemByTerm(
+ const void *lhs,
+ const void *rhs
+){
+ char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
+ char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
+ int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
+ int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
+
+ int n = (n1<n2 ? n1 : n2);
+ int c = memcmp(z1, z2, n);
+ if( c==0 ){
+ c = n1 - n2;
+ }
+ return c;
+}
+
+/*
+** This function is used to allocate an Fts3SegReader that iterates through
+** a subset of the terms stored in the Fts3Table.pendingTerms array.
+**
+** If the isPrefixIter parameter is zero, then the returned SegReader iterates
+** through each term in the pending-terms table. Or, if isPrefixIter is
+** non-zero, it iterates through each term and its prefixes. For example, if
+** the pending terms hash table contains the terms "sqlite", "mysql" and
+** "firebird", then the iterator visits the following 'terms' (in the order
+** shown):
+**
+** f fi fir fire fireb firebi firebir firebird
+** m my mys mysq mysql
+** s sq sql sqli sqlit sqlite
+**
+** Whereas if isPrefixIter is zero, the terms visited are:
+**
+** firebird mysql sqlite
+*/
+SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
+ Fts3Table *p, /* Virtual table handle */
+ int iIndex, /* Index for p->aIndex */
+ const char *zTerm, /* Term to search for */
+ int nTerm, /* Size of buffer zTerm */
+ int bPrefix, /* True for a prefix iterator */
+ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
+){
+ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
+ Fts3HashElem *pE; /* Iterator variable */
+ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
+ int nElem = 0; /* Size of array at aElem */
+ int rc = SQLITE_OK; /* Return Code */
+ Fts3Hash *pHash;
+
+ pHash = &p->aIndex[iIndex].hPending;
+ if( bPrefix ){
+ int nAlloc = 0; /* Size of allocated array at aElem */
+
+ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
+ char *zKey = (char *)fts3HashKey(pE);
+ int nKey = fts3HashKeysize(pE);
+ if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
+ if( nElem==nAlloc ){
+ Fts3HashElem **aElem2;
+ nAlloc += 16;
+ aElem2 = (Fts3HashElem **)sqlite3_realloc64(
+ aElem, nAlloc*sizeof(Fts3HashElem *)
+ );
+ if( !aElem2 ){
+ rc = SQLITE_NOMEM;
+ nElem = 0;
+ break;
+ }
+ aElem = aElem2;
+ }
+
+ aElem[nElem++] = pE;
+ }
+ }
+
+ /* If more than one term matches the prefix, sort the Fts3HashElem
+ ** objects in term order using qsort(). This uses the same comparison
+ ** callback as is used when flushing terms to disk.
+ */
+ if( nElem>1 ){
+ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
+ }
+
+ }else{
+ /* The query is a simple term lookup that matches at most one term in
+ ** the index. All that is required is a straight hash-lookup.
+ **
+ ** Because the stack address of pE may be accessed via the aElem pointer
+ ** below, the "Fts3HashElem *pE" must be declared so that it is valid
+ ** within this entire function, not just this "else{...}" block.
+ */
+ pE = fts3HashFindElem(pHash, zTerm, nTerm);
+ if( pE ){
+ aElem = &pE;
+ nElem = 1;
+ }
+ }
+
+ if( nElem>0 ){
+ sqlite3_int64 nByte;
+ nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
+ pReader = (Fts3SegReader *)sqlite3_malloc64(nByte);
+ if( !pReader ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pReader, 0, nByte);
+ pReader->iIdx = 0x7FFFFFFF;
+ pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
+ memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
+ }
+ }
+
+ if( bPrefix ){
+ sqlite3_free(aElem);
+ }
+ *ppReader = pReader;
+ return rc;
+}
+
+/*
+** Compare the entries pointed to by two Fts3SegReader structures.
+** Comparison is as follows:
+**
+** 1) EOF is greater than not EOF.
+**
+** 2) The current terms (if any) are compared using memcmp(). If one
+** term is a prefix of another, the longer term is considered the
+** larger.
+**
+** 3) By segment age. An older segment is considered larger.
+*/
+static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
+ int rc;
+ if( pLhs->aNode && pRhs->aNode ){
+ int rc2 = pLhs->nTerm - pRhs->nTerm;
+ if( rc2<0 ){
+ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
+ }else{
+ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
+ }
+ if( rc==0 ){
+ rc = rc2;
+ }
+ }else{
+ rc = (pLhs->aNode==0) - (pRhs->aNode==0);
+ }
+ if( rc==0 ){
+ rc = pRhs->iIdx - pLhs->iIdx;
+ }
+ assert_fts3_nc( rc!=0 );
+ return rc;
+}
+
+/*
+** A different comparison function for SegReader structures. In this
+** version, it is assumed that each SegReader points to an entry in
+** a doclist for identical terms. Comparison is made as follows:
+**
+** 1) EOF (end of doclist in this case) is greater than not EOF.
+**
+** 2) By current docid.
+**
+** 3) By segment age. An older segment is considered larger.
+*/
+static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
+ if( rc==0 ){
+ if( pLhs->iDocid==pRhs->iDocid ){
+ rc = pRhs->iIdx - pLhs->iIdx;
+ }else{
+ rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
+ }
+ }
+ assert( pLhs->aNode && pRhs->aNode );
+ return rc;
+}
+static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
+ if( rc==0 ){
+ if( pLhs->iDocid==pRhs->iDocid ){
+ rc = pRhs->iIdx - pLhs->iIdx;
+ }else{
+ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
+ }
+ }
+ assert( pLhs->aNode && pRhs->aNode );
+ return rc;
+}
+
+/*
+** Compare the term that the Fts3SegReader object passed as the first argument
+** points to with the term specified by arguments zTerm and nTerm.
+**
+** If the pSeg iterator is already at EOF, return 0. Otherwise, return
+** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
+** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
+*/
+static int fts3SegReaderTermCmp(
+ Fts3SegReader *pSeg, /* Segment reader object */
+ const char *zTerm, /* Term to compare to */
+ int nTerm /* Size of term zTerm in bytes */
+){
+ int res = 0;
+ if( pSeg->aNode ){
+ if( pSeg->nTerm>nTerm ){
+ res = memcmp(pSeg->zTerm, zTerm, nTerm);
+ }else{
+ res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
+ }
+ if( res==0 ){
+ res = pSeg->nTerm-nTerm;
+ }
+ }
+ return res;
+}
+
+/*
+** Argument apSegment is an array of nSegment elements. It is known that
+** the final (nSegment-nSuspect) members are already in sorted order
+** (according to the comparison function provided). This function shuffles
+** the array around until all entries are in sorted order.
+*/
+static void fts3SegReaderSort(
+ Fts3SegReader **apSegment, /* Array to sort entries of */
+ int nSegment, /* Size of apSegment array */
+ int nSuspect, /* Unsorted entry count */
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
+){
+ int i; /* Iterator variable */
+
+ assert( nSuspect<=nSegment );
+
+ if( nSuspect==nSegment ) nSuspect--;
+ for(i=nSuspect-1; i>=0; i--){
+ int j;
+ for(j=i; j<(nSegment-1); j++){
+ Fts3SegReader *pTmp;
+ if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
+ pTmp = apSegment[j+1];
+ apSegment[j+1] = apSegment[j];
+ apSegment[j] = pTmp;
+ }
+ }
+
+#ifndef NDEBUG
+ /* Check that the list really is sorted now. */
+ for(i=0; i<(nSuspect-1); i++){
+ assert( xCmp(apSegment[i], apSegment[i+1])<0 );
+ }
+#endif
+}
+
+/*
+** Insert a record into the %_segments table.
+*/
+static int fts3WriteSegment(
+ Fts3Table *p, /* Virtual table handle */
+ sqlite3_int64 iBlock, /* Block id for new block */
+ char *z, /* Pointer to buffer containing block data */
+ int n /* Size of buffer z in bytes */
+){
+ sqlite3_stmt *pStmt;
+ int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, iBlock);
+ sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ sqlite3_bind_null(pStmt, 2);
+ }
+ return rc;
+}
+
+/*
+** Find the largest relative level number in the table. If successful, set
+** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
+** set *pnMax to zero and return an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
+ int rc;
+ int mxLevel = 0;
+ sqlite3_stmt *pStmt = 0;
+
+ rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ mxLevel = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+ *pnMax = mxLevel;
+ return rc;
+}
+
+/*
+** Insert a record into the %_segdir table.
+*/
+static int fts3WriteSegdir(
+ Fts3Table *p, /* Virtual table handle */
+ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
+ int iIdx, /* Value for "idx" field */
+ sqlite3_int64 iStartBlock, /* Value for "start_block" field */
+ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
+ sqlite3_int64 iEndBlock, /* Value for "end_block" field */
+ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */
+ char *zRoot, /* Blob value for "root" field */
+ int nRoot /* Number of bytes in buffer zRoot */
+){
+ sqlite3_stmt *pStmt;
+ int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, iLevel);
+ sqlite3_bind_int(pStmt, 2, iIdx);
+ sqlite3_bind_int64(pStmt, 3, iStartBlock);
+ sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
+ if( nLeafData==0 ){
+ sqlite3_bind_int64(pStmt, 5, iEndBlock);
+ }else{
+ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
+ if( !zEnd ) return SQLITE_NOMEM;
+ sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
+ }
+ sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ sqlite3_bind_null(pStmt, 6);
+ }
+ return rc;
+}
+
+/*
+** Return the size of the common prefix (if any) shared by zPrev and
+** zNext, in bytes. For example,
+**
+** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
+** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
+** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
+*/
+static int fts3PrefixCompress(
+ const char *zPrev, /* Buffer containing previous term */
+ int nPrev, /* Size of buffer zPrev in bytes */
+ const char *zNext, /* Buffer containing next term */
+ int nNext /* Size of buffer zNext in bytes */
+){
+ int n;
+ for(n=0; n<nPrev && n<nNext && zPrev[n]==zNext[n]; n++);
+ assert_fts3_nc( n<nNext );
+ return n;
+}
+
+/*
+** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
+** (according to memcmp) than the previous term.
+*/
+static int fts3NodeAddTerm(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
+ int isCopyTerm, /* True if zTerm/nTerm is transient */
+ const char *zTerm, /* Pointer to buffer containing term */
+ int nTerm /* Size of term in bytes */
+){
+ SegmentNode *pTree = *ppTree;
+ int rc;
+ SegmentNode *pNew;
+
+ /* First try to append the term to the current node. Return early if
+ ** this is possible.
+ */
+ if( pTree ){
+ int nData = pTree->nData; /* Current size of node in bytes */
+ int nReq = nData; /* Required space after adding zTerm */
+ int nPrefix; /* Number of bytes of prefix compression */
+ int nSuffix; /* Suffix length */
+
+ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
+ nSuffix = nTerm-nPrefix;
+
+ /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
+ ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
+ ** compared with BINARY collation. This indicates corruption. */
+ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+
+ nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
+ if( nReq<=p->nNodeSize || !pTree->zTerm ){
+
+ if( nReq>p->nNodeSize ){
+ /* An unusual case: this is the first term to be added to the node
+ ** and the static node buffer (p->nNodeSize bytes) is not large
+ ** enough. Use a separately malloced buffer instead This wastes
+ ** p->nNodeSize bytes, but since this scenario only comes about when
+ ** the database contain two terms that share a prefix of almost 2KB,
+ ** this is not expected to be a serious problem.
+ */
+ assert( pTree->aData==(char *)&pTree[1] );
+ pTree->aData = (char *)sqlite3_malloc64(nReq);
+ if( !pTree->aData ){
+ return SQLITE_NOMEM;
+ }
+ }
+
+ if( pTree->zTerm ){
+ /* There is no prefix-length field for first term in a node */
+ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
+ }
+
+ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
+ memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
+ pTree->nData = nData + nSuffix;
+ pTree->nEntry++;
+
+ if( isCopyTerm ){
+ if( pTree->nMalloc<nTerm ){
+ char *zNew = sqlite3_realloc64(pTree->zMalloc, (i64)nTerm*2);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pTree->nMalloc = nTerm*2;
+ pTree->zMalloc = zNew;
+ }
+ pTree->zTerm = pTree->zMalloc;
+ memcpy(pTree->zTerm, zTerm, nTerm);
+ pTree->nTerm = nTerm;
+ }else{
+ pTree->zTerm = (char *)zTerm;
+ pTree->nTerm = nTerm;
+ }
+ return SQLITE_OK;
+ }
+ }
+
+ /* If control flows to here, it was not possible to append zTerm to the
+ ** current node. Create a new node (a right-sibling of the current node).
+ ** If this is the first node in the tree, the term is added to it.
+ **
+ ** Otherwise, the term is not added to the new node, it is left empty for
+ ** now. Instead, the term is inserted into the parent of pTree. If pTree
+ ** has no parent, one is created here.
+ */
+ pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize);
+ if( !pNew ){
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(SegmentNode));
+ pNew->nData = 1 + FTS3_VARINT_MAX;
+ pNew->aData = (char *)&pNew[1];
+
+ if( pTree ){
+ SegmentNode *pParent = pTree->pParent;
+ rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
+ if( pTree->pParent==0 ){
+ pTree->pParent = pParent;
+ }
+ pTree->pRight = pNew;
+ pNew->pLeftmost = pTree->pLeftmost;
+ pNew->pParent = pParent;
+ pNew->zMalloc = pTree->zMalloc;
+ pNew->nMalloc = pTree->nMalloc;
+ pTree->zMalloc = 0;
+ }else{
+ pNew->pLeftmost = pNew;
+ rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
+ }
+
+ *ppTree = pNew;
+ return rc;
+}
+
+/*
+** Helper function for fts3NodeWrite().
+*/
+static int fts3TreeFinishNode(
+ SegmentNode *pTree,
+ int iHeight,
+ sqlite3_int64 iLeftChild
+){
+ int nStart;
+ assert( iHeight>=1 && iHeight<128 );
+ nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
+ pTree->aData[nStart] = (char)iHeight;
+ sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
+ return nStart;
+}
+
+/*
+** Write the buffer for the segment node pTree and all of its peers to the
+** database. Then call this function recursively to write the parent of
+** pTree and its peers to the database.
+**
+** Except, if pTree is a root node, do not write it to the database. Instead,
+** set output variables *paRoot and *pnRoot to contain the root node.
+**
+** If successful, SQLITE_OK is returned and output variable *piLast is
+** set to the largest blockid written to the database (or zero if no
+** blocks were written to the db). Otherwise, an SQLite error code is
+** returned.
+*/
+static int fts3NodeWrite(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentNode *pTree, /* SegmentNode handle */
+ int iHeight, /* Height of this node in tree */
+ sqlite3_int64 iLeaf, /* Block id of first leaf node */
+ sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
+ sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
+ char **paRoot, /* OUT: Data for root node */
+ int *pnRoot /* OUT: Size of root node in bytes */
+){
+ int rc = SQLITE_OK;
+
+ if( !pTree->pParent ){
+ /* Root node of the tree. */
+ int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
+ *piLast = iFree-1;
+ *pnRoot = pTree->nData - nStart;
+ *paRoot = &pTree->aData[nStart];
+ }else{
+ SegmentNode *pIter;
+ sqlite3_int64 iNextFree = iFree;
+ sqlite3_int64 iNextLeaf = iLeaf;
+ for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
+ int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
+ int nWrite = pIter->nData - nStart;
+
+ rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
+ iNextFree++;
+ iNextLeaf += (pIter->nEntry+1);
+ }
+ if( rc==SQLITE_OK ){
+ assert( iNextLeaf==iFree );
+ rc = fts3NodeWrite(
+ p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Free all memory allocations associated with the tree pTree.
+*/
+static void fts3NodeFree(SegmentNode *pTree){
+ if( pTree ){
+ SegmentNode *p = pTree->pLeftmost;
+ fts3NodeFree(p->pParent);
+ while( p ){
+ SegmentNode *pRight = p->pRight;
+ if( p->aData!=(char *)&p[1] ){
+ sqlite3_free(p->aData);
+ }
+ assert( pRight==0 || p->zMalloc==0 );
+ sqlite3_free(p->zMalloc);
+ sqlite3_free(p);
+ p = pRight;
+ }
+ }
+}
+
+/*
+** Add a term to the segment being constructed by the SegmentWriter object
+** *ppWriter. When adding the first term to a segment, *ppWriter should
+** be passed NULL. This function will allocate a new SegmentWriter object
+** and return it via the input/output variable *ppWriter in this case.
+**
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
+*/
+static int fts3SegWriterAdd(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
+ int isCopyTerm, /* True if buffer zTerm must be copied */
+ const char *zTerm, /* Pointer to buffer containing term */
+ int nTerm, /* Size of term in bytes */
+ const char *aDoclist, /* Pointer to buffer containing doclist */
+ int nDoclist /* Size of doclist in bytes */
+){
+ int nPrefix; /* Size of term prefix in bytes */
+ int nSuffix; /* Size of term suffix in bytes */
+ i64 nReq; /* Number of bytes required on leaf page */
+ int nData;
+ SegmentWriter *pWriter = *ppWriter;
+
+ if( !pWriter ){
+ int rc;
+ sqlite3_stmt *pStmt;
+
+ /* Allocate the SegmentWriter structure */
+ pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter));
+ if( !pWriter ) return SQLITE_NOMEM;
+ memset(pWriter, 0, sizeof(SegmentWriter));
+ *ppWriter = pWriter;
+
+ /* Allocate a buffer in which to accumulate data */
+ pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize);
+ if( !pWriter->aData ) return SQLITE_NOMEM;
+ pWriter->nSize = p->nNodeSize;
+
+ /* Find the next free blockid in the %_segments table */
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ pWriter->iFree = sqlite3_column_int64(pStmt, 0);
+ pWriter->iFirst = pWriter->iFree;
+ }
+ rc = sqlite3_reset(pStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ nData = pWriter->nData;
+
+ nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
+ nSuffix = nTerm-nPrefix;
+
+ /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
+ ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
+ ** compared with BINARY collation. This indicates corruption. */
+ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+
+ /* Figure out how many bytes are required by this new entry */
+ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
+ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
+ nSuffix + /* Term suffix */
+ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
+ nDoclist; /* Doclist data */
+
+ if( nData>0 && nData+nReq>p->nNodeSize ){
+ int rc;
+
+ /* The current leaf node is full. Write it out to the database. */
+ if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB;
+ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
+ if( rc!=SQLITE_OK ) return rc;
+ p->nLeafAdd++;
+
+ /* Add the current term to the interior node tree. The term added to
+ ** the interior tree must:
+ **
+ ** a) be greater than the largest term on the leaf node just written
+ ** to the database (still available in pWriter->zTerm), and
+ **
+ ** b) be less than or equal to the term about to be added to the new
+ ** leaf node (zTerm/nTerm).
+ **
+ ** In other words, it must be the prefix of zTerm 1 byte longer than
+ ** the common prefix (if any) of zTerm and pWriter->zTerm.
+ */
+ assert( nPrefix<nTerm );
+ rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nData = 0;
+ pWriter->nTerm = 0;
+
+ nPrefix = 0;
+ nSuffix = nTerm;
+ nReq = 1 + /* varint containing prefix size */
+ sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
+ nTerm + /* Term suffix */
+ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
+ nDoclist; /* Doclist data */
+ }
+
+ /* Increase the total number of bytes written to account for the new entry. */
+ pWriter->nLeafData += nReq;
+
+ /* If the buffer currently allocated is too small for this entry, realloc
+ ** the buffer to make it large enough.
+ */
+ if( nReq>pWriter->nSize ){
+ char *aNew = sqlite3_realloc64(pWriter->aData, nReq);
+ if( !aNew ) return SQLITE_NOMEM;
+ pWriter->aData = aNew;
+ pWriter->nSize = nReq;
+ }
+ assert( nData+nReq<=pWriter->nSize );
+
+ /* Append the prefix-compressed term and doclist to the buffer. */
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
+ assert( nSuffix>0 );
+ memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
+ nData += nSuffix;
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
+ assert( nDoclist>0 );
+ memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
+ pWriter->nData = nData + nDoclist;
+
+ /* Save the current term so that it can be used to prefix-compress the next.
+ ** If the isCopyTerm parameter is true, then the buffer pointed to by
+ ** zTerm is transient, so take a copy of the term data. Otherwise, just
+ ** store a copy of the pointer.
+ */
+ if( isCopyTerm ){
+ if( nTerm>pWriter->nMalloc ){
+ char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pWriter->nMalloc = nTerm*2;
+ pWriter->zMalloc = zNew;
+ pWriter->zTerm = zNew;
+ }
+ assert( pWriter->zTerm==pWriter->zMalloc );
+ assert( nTerm>0 );
+ memcpy(pWriter->zTerm, zTerm, nTerm);
+ }else{
+ pWriter->zTerm = (char *)zTerm;
+ }
+ pWriter->nTerm = nTerm;
+
+ return SQLITE_OK;
+}
+
+/*
+** Flush all data associated with the SegmentWriter object pWriter to the
+** database. This function must be called after all terms have been added
+** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
+** returned. Otherwise, an SQLite error code.
+*/
+static int fts3SegWriterFlush(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
+ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
+ int iIdx /* Value for 'idx' column of %_segdir */
+){
+ int rc; /* Return code */
+ if( pWriter->pTree ){
+ sqlite3_int64 iLast = 0; /* Largest block id written to database */
+ sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
+ char *zRoot = NULL; /* Pointer to buffer containing root node */
+ int nRoot = 0; /* Size of buffer zRoot */
+
+ iLastLeaf = pWriter->iFree;
+ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
+ if( rc==SQLITE_OK ){
+ rc = fts3NodeWrite(p, pWriter->pTree, 1,
+ pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3WriteSegdir(p, iLevel, iIdx,
+ pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
+ }
+ }else{
+ /* The entire tree fits on the root node. Write it to the segdir table. */
+ rc = fts3WriteSegdir(p, iLevel, iIdx,
+ 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
+ }
+ p->nLeafAdd++;
+ return rc;
+}
+
+/*
+** Release all memory held by the SegmentWriter object passed as the
+** first argument.
+*/
+static void fts3SegWriterFree(SegmentWriter *pWriter){
+ if( pWriter ){
+ sqlite3_free(pWriter->aData);
+ sqlite3_free(pWriter->zMalloc);
+ fts3NodeFree(pWriter->pTree);
+ sqlite3_free(pWriter);
+ }
+}
+
+/*
+** The first value in the apVal[] array is assumed to contain an integer.
+** This function tests if there exist any documents with docid values that
+** are different from that integer. i.e. if deleting the document with docid
+** pRowid would mean the FTS3 table were empty.
+**
+** If successful, *pisEmpty is set to true if the table is empty except for
+** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
+** error occurs, an SQLite error code is returned.
+*/
+static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
+ sqlite3_stmt *pStmt;
+ int rc;
+ if( p->zContentTbl ){
+ /* If using the content=xxx option, assume the table is never empty */
+ *pisEmpty = 0;
+ rc = SQLITE_OK;
+ }else{
+ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *pisEmpty = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+ }
+ return rc;
+}
+
+/*
+** Set *pnMax to the largest segment level in the database for the index
+** iIndex.
+**
+** Segment levels are stored in the 'level' column of the %_segdir table.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if not.
+*/
+static int fts3SegmentMaxLevel(
+ Fts3Table *p,
+ int iLangid,
+ int iIndex,
+ sqlite3_int64 *pnMax
+){
+ sqlite3_stmt *pStmt;
+ int rc;
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ /* Set pStmt to the compiled version of:
+ **
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
+ **
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
+ */
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
+ sqlite3_bind_int64(pStmt, 2,
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
+ );
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *pnMax = sqlite3_column_int64(pStmt, 0);
+ }
+ return sqlite3_reset(pStmt);
+}
+
+/*
+** iAbsLevel is an absolute level that may be assumed to exist within
+** the database. This function checks if it is the largest level number
+** within its index. Assuming no error occurs, *pbMax is set to 1 if
+** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
+** is returned. If an error occurs, an error code is returned and the
+** final value of *pbMax is undefined.
+*/
+static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
+
+ /* Set pStmt to the compiled version of:
+ **
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
+ **
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
+ */
+ sqlite3_stmt *pStmt;
+ int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
+ sqlite3_bind_int64(pStmt, 2,
+ (((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
+ );
+
+ *pbMax = 0;
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
+ }
+ return sqlite3_reset(pStmt);
+}
+
+/*
+** Delete all entries in the %_segments table associated with the segment
+** opened with seg-reader pSeg. This function does not affect the contents
+** of the %_segdir table.
+*/
+static int fts3DeleteSegment(
+ Fts3Table *p, /* FTS table handle */
+ Fts3SegReader *pSeg /* Segment to delete */
+){
+ int rc = SQLITE_OK; /* Return code */
+ if( pSeg->iStartBlock ){
+ sqlite3_stmt *pDelete; /* SQL statement to delete rows */
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
+ sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
+ sqlite3_step(pDelete);
+ rc = sqlite3_reset(pDelete);
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is used after merging multiple segments into a single large
+** segment to delete the old, now redundant, segment b-trees. Specifically,
+** it:
+**
+** 1) Deletes all %_segments entries for the segments associated with
+** each of the SegReader objects in the array passed as the third
+** argument, and
+**
+** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
+** entries regardless of level if (iLevel<0).
+**
+** SQLITE_OK is returned if successful, otherwise an SQLite error code.
+*/
+static int fts3DeleteSegdir(
+ Fts3Table *p, /* Virtual table handle */
+ int iLangid, /* Language id */
+ int iIndex, /* Index for p->aIndex */
+ int iLevel, /* Level of %_segdir entries to delete */
+ Fts3SegReader **apSegment, /* Array of SegReader objects */
+ int nReader /* Size of array apSegment */
+){
+ int rc = SQLITE_OK; /* Return Code */
+ int i; /* Iterator variable */
+ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
+
+ for(i=0; rc==SQLITE_OK && i<nReader; i++){
+ rc = fts3DeleteSegment(p, apSegment[i]);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
+ if( iLevel==FTS3_SEGCURSOR_ALL ){
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
+ sqlite3_bind_int64(pDelete, 2,
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
+ );
+ }
+ }else{
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(
+ pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pDelete);
+ rc = sqlite3_reset(pDelete);
+ }
+
+ return rc;
+}
+
+/*
+** When this function is called, buffer *ppList (size *pnList bytes) contains
+** a position list that may (or may not) feature multiple columns. This
+** function adjusts the pointer *ppList and the length *pnList so that they
+** identify the subset of the position list that corresponds to column iCol.
+**
+** If there are no entries in the input position list for column iCol, then
+** *pnList is set to zero before returning.
+**
+** If parameter bZero is non-zero, then any part of the input list following
+** the end of the output list is zeroed before returning.
+*/
+static void fts3ColumnFilter(
+ int iCol, /* Column to filter on */
+ int bZero, /* Zero out anything following *ppList */
+ char **ppList, /* IN/OUT: Pointer to position list */
+ int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
+){
+ char *pList = *ppList;
+ int nList = *pnList;
+ char *pEnd = &pList[nList];
+ int iCurrent = 0;
+ char *p = pList;
+
+ assert( iCol>=0 );
+ while( 1 ){
+ char c = 0;
+ while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
+
+ if( iCol==iCurrent ){
+ nList = (int)(p - pList);
+ break;
+ }
+
+ nList -= (int)(p - pList);
+ pList = p;
+ if( nList<=0 ){
+ break;
+ }
+ p = &pList[1];
+ p += fts3GetVarint32(p, &iCurrent);
+ }
+
+ if( bZero && (pEnd - &pList[nList])>0){
+ memset(&pList[nList], 0, pEnd - &pList[nList]);
+ }
+ *ppList = pList;
+ *pnList = nList;
+}
+
+/*
+** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
+** existing data). Grow the buffer if required.
+**
+** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
+** trying to resize the buffer, return SQLITE_NOMEM.
+*/
+static int fts3MsrBufferData(
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
+ char *pList,
+ i64 nList
+){
+ if( nList>pMsr->nBuffer ){
+ char *pNew;
+ pMsr->nBuffer = nList*2;
+ pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, pMsr->nBuffer);
+ if( !pNew ) return SQLITE_NOMEM;
+ pMsr->aBuffer = pNew;
+ }
+
+ assert( nList>0 );
+ memcpy(pMsr->aBuffer, pList, nList);
+ return SQLITE_OK;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
+ sqlite3_int64 *piDocid, /* OUT: Docid value */
+ char **paPoslist, /* OUT: Pointer to position list */
+ int *pnPoslist /* OUT: Size of position list in bytes */
+){
+ int nMerge = pMsr->nAdvance;
+ Fts3SegReader **apSegment = pMsr->apSegment;
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
+ );
+
+ if( nMerge==0 ){
+ *paPoslist = 0;
+ return SQLITE_OK;
+ }
+
+ while( 1 ){
+ Fts3SegReader *pSeg;
+ pSeg = pMsr->apSegment[0];
+
+ if( pSeg->pOffsetList==0 ){
+ *paPoslist = 0;
+ break;
+ }else{
+ int rc;
+ char *pList;
+ int nList;
+ int j;
+ sqlite3_int64 iDocid = apSegment[0]->iDocid;
+
+ rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
+ j = 1;
+ while( rc==SQLITE_OK
+ && j<nMerge
+ && apSegment[j]->pOffsetList
+ && apSegment[j]->iDocid==iDocid
+ ){
+ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
+ j++;
+ }
+ if( rc!=SQLITE_OK ) return rc;
+ fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
+
+ if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
+ rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
+ pList = pMsr->aBuffer;
+ }
+
+ if( pMsr->iColFilter>=0 ){
+ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
+ }
+
+ if( nList>0 ){
+ *paPoslist = pList;
+ *piDocid = iDocid;
+ *pnPoslist = nList;
+ break;
+ }
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+static int fts3SegReaderStart(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr, /* Cursor object */
+ const char *zTerm, /* Term searched for (or NULL) */
+ int nTerm /* Length of zTerm in bytes */
+){
+ int i;
+ int nSeg = pCsr->nSegment;
+
+ /* If the Fts3SegFilter defines a specific term (or term prefix) to search
+ ** for, then advance each segment iterator until it points to a term of
+ ** equal or greater value than the specified term. This prevents many
+ ** unnecessary merge/sort operations for the case where single segment
+ ** b-tree leaf nodes contain more than one term.
+ */
+ for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
+ int res = 0;
+ Fts3SegReader *pSeg = pCsr->apSegment[i];
+ do {
+ int rc = fts3SegReaderNext(p, pSeg, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
+
+ if( pSeg->bLookup && res!=0 ){
+ fts3SegReaderSetEof(pSeg);
+ }
+ }
+ fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
+
+ return SQLITE_OK;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr, /* Cursor object */
+ Fts3SegFilter *pFilter /* Restrictions on range of iteration */
+){
+ pCsr->pFilter = pFilter;
+ return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
+}
+
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr, /* Cursor object */
+ int iCol, /* Column to match on. */
+ const char *zTerm, /* Term to iterate through a doclist for */
+ int nTerm /* Number of bytes in zTerm */
+){
+ int i;
+ int rc;
+ int nSegment = pCsr->nSegment;
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
+ );
+
+ assert( pCsr->pFilter==0 );
+ assert( zTerm && nTerm>0 );
+
+ /* Advance each segment iterator until it points to the term zTerm/nTerm. */
+ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Determine how many of the segments actually point to zTerm/nTerm. */
+ for(i=0; i<nSegment; i++){
+ Fts3SegReader *pSeg = pCsr->apSegment[i];
+ if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
+ break;
+ }
+ }
+ pCsr->nAdvance = i;
+
+ /* Advance each of the segments to point to the first docid. */
+ for(i=0; i<pCsr->nAdvance; i++){
+ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
+
+ assert( iCol<0 || iCol<p->nColumn );
+ pCsr->iColFilter = iCol;
+
+ return SQLITE_OK;
+}
+
+/*
+** This function is called on a MultiSegReader that has been started using
+** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
+** have been made. Calling this function puts the MultiSegReader in such
+** a state that if the next two calls are:
+**
+** sqlite3Fts3SegReaderStart()
+** sqlite3Fts3SegReaderStep()
+**
+** then the entire doclist for the term is available in
+** MultiSegReader.aDoclist/nDoclist.
+*/
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
+ int i; /* Used to iterate through segment-readers */
+
+ assert( pCsr->zTerm==0 );
+ assert( pCsr->nTerm==0 );
+ assert( pCsr->aDoclist==0 );
+ assert( pCsr->nDoclist==0 );
+
+ pCsr->nAdvance = 0;
+ pCsr->bRestart = 1;
+ for(i=0; i<pCsr->nSegment; i++){
+ pCsr->apSegment[i]->pOffsetList = 0;
+ pCsr->apSegment[i]->nOffsetList = 0;
+ pCsr->apSegment[i]->iDocid = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){
+ if( nReq>pCsr->nBuffer ){
+ char *aNew;
+ pCsr->nBuffer = nReq*2;
+ aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer);
+ if( !aNew ){
+ return SQLITE_NOMEM;
+ }
+ pCsr->aBuffer = aNew;
+ }
+ return SQLITE_OK;
+}
+
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr /* Cursor object */
+){
+ int rc = SQLITE_OK;
+
+ int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
+ int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
+ int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
+ int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
+ int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
+ int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
+
+ Fts3SegReader **apSegment = pCsr->apSegment;
+ int nSegment = pCsr->nSegment;
+ Fts3SegFilter *pFilter = pCsr->pFilter;
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
+ );
+
+ if( pCsr->nSegment==0 ) return SQLITE_OK;
+
+ do {
+ int nMerge;
+ int i;
+
+ /* Advance the first pCsr->nAdvance entries in the apSegment[] array
+ ** forward. Then sort the list in order of current term again.
+ */
+ for(i=0; i<pCsr->nAdvance; i++){
+ Fts3SegReader *pSeg = apSegment[i];
+ if( pSeg->bLookup ){
+ fts3SegReaderSetEof(pSeg);
+ }else{
+ rc = fts3SegReaderNext(p, pSeg, 0);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
+ pCsr->nAdvance = 0;
+
+ /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
+ assert( rc==SQLITE_OK );
+ if( apSegment[0]->aNode==0 ) break;
+
+ pCsr->nTerm = apSegment[0]->nTerm;
+ pCsr->zTerm = apSegment[0]->zTerm;
+
+ /* If this is a prefix-search, and if the term that apSegment[0] points
+ ** to does not share a suffix with pFilter->zTerm/nTerm, then all
+ ** required callbacks have been made. In this case exit early.
+ **
+ ** Similarly, if this is a search for an exact match, and the first term
+ ** of segment apSegment[0] is not a match, exit early.
+ */
+ if( pFilter->zTerm && !isScan ){
+ if( pCsr->nTerm<pFilter->nTerm
+ || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
+ || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
+ ){
+ break;
+ }
+ }
+
+ nMerge = 1;
+ while( nMerge<nSegment
+ && apSegment[nMerge]->aNode
+ && apSegment[nMerge]->nTerm==pCsr->nTerm
+ && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
+ ){
+ nMerge++;
+ }
+
+ assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
+ if( nMerge==1
+ && !isIgnoreEmpty
+ && !isFirst
+ && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
+ ){
+ pCsr->nDoclist = apSegment[0]->nDoclist;
+ if( fts3SegReaderIsPending(apSegment[0]) ){
+ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist,
+ (i64)pCsr->nDoclist);
+ pCsr->aDoclist = pCsr->aBuffer;
+ }else{
+ pCsr->aDoclist = apSegment[0]->aDoclist;
+ }
+ if( rc==SQLITE_OK ) rc = SQLITE_ROW;
+ }else{
+ int nDoclist = 0; /* Size of doclist */
+ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
+
+ /* The current term of the first nMerge entries in the array
+ ** of Fts3SegReader objects is the same. The doclists must be merged
+ ** and a single term returned with the merged doclist.
+ */
+ for(i=0; i<nMerge; i++){
+ fts3SegReaderFirstDocid(p, apSegment[i]);
+ }
+ fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
+ while( apSegment[0]->pOffsetList ){
+ int j; /* Number of segments that share a docid */
+ char *pList = 0;
+ int nList = 0;
+ int nByte;
+ sqlite3_int64 iDocid = apSegment[0]->iDocid;
+ fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
+ j = 1;
+ while( j<nMerge
+ && apSegment[j]->pOffsetList
+ && apSegment[j]->iDocid==iDocid
+ ){
+ fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
+ j++;
+ }
+
+ if( isColFilter ){
+ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
+ }
+
+ if( !isIgnoreEmpty || nList>0 ){
+
+ /* Calculate the 'docid' delta value to write into the merged
+ ** doclist. */
+ sqlite3_int64 iDelta;
+ if( p->bDescIdx && nDoclist>0 ){
+ if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB;
+ iDelta = (i64)((u64)iPrev - (u64)iDocid);
+ }else{
+ if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
+ iDelta = (i64)((u64)iDocid - (u64)iPrev);
+ }
+
+ nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
+
+ rc = fts3GrowSegReaderBuffer(pCsr,
+ (i64)nByte+nDoclist+FTS3_NODE_PADDING);
+ if( rc ) return rc;
+
+ if( isFirst ){
+ char *a = &pCsr->aBuffer[nDoclist];
+ int nWrite;
+
+ nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
+ if( nWrite ){
+ iPrev = iDocid;
+ nDoclist += nWrite;
+ }
+ }else{
+ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
+ iPrev = iDocid;
+ if( isRequirePos ){
+ memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
+ nDoclist += nList;
+ pCsr->aBuffer[nDoclist++] = '\0';
+ }
+ }
+ }
+
+ fts3SegReaderSort(apSegment, nMerge, j, xCmp);
+ }
+ if( nDoclist>0 ){
+ rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING);
+ if( rc ) return rc;
+ memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING);
+ pCsr->aDoclist = pCsr->aBuffer;
+ pCsr->nDoclist = nDoclist;
+ rc = SQLITE_ROW;
+ }
+ }
+ pCsr->nAdvance = nMerge;
+ }while( rc==SQLITE_OK );
+
+ return rc;
+}
+
+
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(
+ Fts3MultiSegReader *pCsr /* Cursor object */
+){
+ if( pCsr ){
+ int i;
+ for(i=0; i<pCsr->nSegment; i++){
+ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
+ }
+ sqlite3_free(pCsr->apSegment);
+ sqlite3_free(pCsr->aBuffer);
+
+ pCsr->nSegment = 0;
+ pCsr->apSegment = 0;
+ pCsr->aBuffer = 0;
+ }
+}
+
+/*
+** Decode the "end_block" field, selected by column iCol of the SELECT
+** statement passed as the first argument.
+**
+** The "end_block" field may contain either an integer, or a text field
+** containing the text representation of two non-negative integers separated
+** by one or more space (0x20) characters. In the first case, set *piEndBlock
+** to the integer value and *pnByte to zero before returning. In the second,
+** set *piEndBlock to the first value and *pnByte to the second.
+*/
+static void fts3ReadEndBlockField(
+ sqlite3_stmt *pStmt,
+ int iCol,
+ i64 *piEndBlock,
+ i64 *pnByte
+){
+ const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
+ if( zText ){
+ int i;
+ int iMul = 1;
+ u64 iVal = 0;
+ for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
+ iVal = iVal*10 + (zText[i] - '0');
+ }
+ *piEndBlock = (i64)iVal;
+ while( zText[i]==' ' ) i++;
+ iVal = 0;
+ if( zText[i]=='-' ){
+ i++;
+ iMul = -1;
+ }
+ for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
+ iVal = iVal*10 + (zText[i] - '0');
+ }
+ *pnByte = ((i64)iVal * (i64)iMul);
+ }
+}
+
+
+/*
+** A segment of size nByte bytes has just been written to absolute level
+** iAbsLevel. Promote any segments that should be promoted as a result.
+*/
+static int fts3PromoteSegments(
+ Fts3Table *p, /* FTS table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level just updated */
+ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */
+){
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pRange;
+
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
+
+ if( rc==SQLITE_OK ){
+ int bOk = 0;
+ i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
+ i64 nLimit = (nByte*3)/2;
+
+ /* Loop through all entries in the %_segdir table corresponding to
+ ** segments in this index on levels greater than iAbsLevel. If there is
+ ** at least one such segment, and it is possible to determine that all
+ ** such segments are smaller than nLimit bytes in size, they will be
+ ** promoted to level iAbsLevel. */
+ sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
+ sqlite3_bind_int64(pRange, 2, iLast);
+ while( SQLITE_ROW==sqlite3_step(pRange) ){
+ i64 nSize = 0, dummy;
+ fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
+ if( nSize<=0 || nSize>nLimit ){
+ /* If nSize==0, then the %_segdir.end_block field does not not
+ ** contain a size value. This happens if it was written by an
+ ** old version of FTS. In this case it is not possible to determine
+ ** the size of the segment, and so segment promotion does not
+ ** take place. */
+ bOk = 0;
+ break;
+ }
+ bOk = 1;
+ }
+ rc = sqlite3_reset(pRange);
+
+ if( bOk ){
+ int iIdx = 0;
+ sqlite3_stmt *pUpdate1 = 0;
+ sqlite3_stmt *pUpdate2 = 0;
+
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
+ }
+
+ if( rc==SQLITE_OK ){
+
+ /* Loop through all %_segdir entries for segments in this index with
+ ** levels equal to or greater than iAbsLevel. As each entry is visited,
+ ** updated it to set (level = -1) and (idx = N), where N is 0 for the
+ ** oldest segment in the range, 1 for the next oldest, and so on.
+ **
+ ** In other words, move all segments being promoted to level -1,
+ ** setting the "idx" fields as appropriate to keep them in the same
+ ** order. The contents of level -1 (which is never used, except
+ ** transiently here), will be moved back to level iAbsLevel below. */
+ sqlite3_bind_int64(pRange, 1, iAbsLevel);
+ while( SQLITE_ROW==sqlite3_step(pRange) ){
+ sqlite3_bind_int(pUpdate1, 1, iIdx++);
+ sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
+ sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
+ sqlite3_step(pUpdate1);
+ rc = sqlite3_reset(pUpdate1);
+ if( rc!=SQLITE_OK ){
+ sqlite3_reset(pRange);
+ break;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_reset(pRange);
+ }
+
+ /* Move level -1 to level iAbsLevel */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
+ sqlite3_step(pUpdate2);
+ rc = sqlite3_reset(pUpdate2);
+ }
+ }
+ }
+
+
+ return rc;
+}
+
+/*
+** Merge all level iLevel segments in the database into a single
+** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
+** single segment with a level equal to the numerically largest level
+** currently present in the database.
+**
+** If this function is called with iLevel<0, but there is only one
+** segment in the database, SQLITE_DONE is returned immediately.
+** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
+** an SQLite error code is returned.
+*/
+static int fts3SegmentMerge(
+ Fts3Table *p,
+ int iLangid, /* Language id to merge */
+ int iIndex, /* Index in p->aIndex[] to merge */
+ int iLevel /* Level to merge */
+){
+ int rc; /* Return code */
+ int iIdx = 0; /* Index of new segment */
+ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
+ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
+ Fts3SegFilter filter; /* Segment term filter condition */
+ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
+ int bIgnoreEmpty = 0; /* True to ignore empty segments */
+ i64 iMaxLevel = 0; /* Max level number for this index/langid */
+
+ assert( iLevel==FTS3_SEGCURSOR_ALL
+ || iLevel==FTS3_SEGCURSOR_PENDING
+ || iLevel>=0
+ );
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
+ if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
+
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){
+ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
+ if( rc!=SQLITE_OK ) goto finished;
+ }
+
+ if( iLevel==FTS3_SEGCURSOR_ALL ){
+ /* This call is to merge all segments in the database to a single
+ ** segment. The level of the new segment is equal to the numerically
+ ** greatest segment level currently present in the database for this
+ ** index. The idx of the new segment is always 0. */
+ if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){
+ rc = SQLITE_DONE;
+ goto finished;
+ }
+ iNewLevel = iMaxLevel;
+ bIgnoreEmpty = 1;
+
+ }else{
+ /* This call is to merge all segments at level iLevel. find the next
+ ** available segment index at level iLevel+1. The call to
+ ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
+ ** a single iLevel+2 segment if necessary. */
+ assert( FTS3_SEGCURSOR_PENDING==-1 );
+ iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
+ rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
+ bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
+ }
+ if( rc!=SQLITE_OK ) goto finished;
+
+ assert( csr.nSegment>0 );
+ assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
+ assert_fts3_nc(
+ iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL)
+ );
+
+ memset(&filter, 0, sizeof(Fts3SegFilter));
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS;
+ filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
+
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
+ while( SQLITE_OK==rc ){
+ rc = sqlite3Fts3SegReaderStep(p, &csr);
+ if( rc!=SQLITE_ROW ) break;
+ rc = fts3SegWriterAdd(p, &pWriter, 1,
+ csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
+ }
+ if( rc!=SQLITE_OK ) goto finished;
+ assert_fts3_nc( pWriter || bIgnoreEmpty );
+
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){
+ rc = fts3DeleteSegdir(
+ p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
+ );
+ if( rc!=SQLITE_OK ) goto finished;
+ }
+ if( pWriter ){
+ rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
+ if( rc==SQLITE_OK ){
+ if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
+ rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
+ }
+ }
+ }
+
+ finished:
+ fts3SegWriterFree(pWriter);
+ sqlite3Fts3SegReaderFinish(&csr);
+ return rc;
+}
+
+
+/*
+** Flush the contents of pendingTerms to level 0 segments.
+*/
+SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
+ int rc = SQLITE_OK;
+ int i;
+
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
+ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+ sqlite3Fts3PendingTermsClear(p);
+
+ /* Determine the auto-incr-merge setting if unknown. If enabled,
+ ** estimate the number of leaf blocks of content to be written
+ */
+ if( rc==SQLITE_OK && p->bHasStat
+ && p->nAutoincrmerge==0xff && p->nLeafAdd>0
+ ){
+ sqlite3_stmt *pStmt = 0;
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
+ rc = sqlite3_step(pStmt);
+ if( rc==SQLITE_ROW ){
+ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
+ if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
+ }else if( rc==SQLITE_DONE ){
+ p->nAutoincrmerge = 0;
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+ }
+ return rc;
+}
+
+/*
+** Encode N integers as varints into a blob.
+*/
+static void fts3EncodeIntArray(
+ int N, /* The number of integers to encode */
+ u32 *a, /* The integer values */
+ char *zBuf, /* Write the BLOB here */
+ int *pNBuf /* Write number of bytes if zBuf[] used here */
+){
+ int i, j;
+ for(i=j=0; i<N; i++){
+ j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
+ }
+ *pNBuf = j;
+}
+
+/*
+** Decode a blob of varints into N integers
+*/
+static void fts3DecodeIntArray(
+ int N, /* The number of integers to decode */
+ u32 *a, /* Write the integer values */
+ const char *zBuf, /* The BLOB containing the varints */
+ int nBuf /* size of the BLOB */
+){
+ int i = 0;
+ if( nBuf && (zBuf[nBuf-1]&0x80)==0 ){
+ int j;
+ for(i=j=0; i<N && j<nBuf; i++){
+ sqlite3_int64 x;
+ j += sqlite3Fts3GetVarint(&zBuf[j], &x);
+ a[i] = (u32)(x & 0xffffffff);
+ }
+ }
+ while( i<N ) a[i++] = 0;
+}
+
+/*
+** Insert the sizes (in tokens) for each column of the document
+** with docid equal to p->iPrevDocid. The sizes are encoded as
+** a blob of varints.
+*/
+static void fts3InsertDocsize(
+ int *pRC, /* Result code */
+ Fts3Table *p, /* Table into which to insert */
+ u32 *aSz /* Sizes of each column, in tokens */
+){
+ char *pBlob; /* The BLOB encoding of the document size */
+ int nBlob; /* Number of bytes in the BLOB */
+ sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
+ int rc; /* Result code from subfunctions */
+
+ if( *pRC ) return;
+ pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn );
+ if( pBlob==0 ){
+ *pRC = SQLITE_NOMEM;
+ return;
+ }
+ fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
+ rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
+ if( rc ){
+ sqlite3_free(pBlob);
+ *pRC = rc;
+ return;
+ }
+ sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
+ sqlite3_step(pStmt);
+ *pRC = sqlite3_reset(pStmt);
+}
+
+/*
+** Record 0 of the %_stat table contains a blob consisting of N varints,
+** where N is the number of user defined columns in the fts3 table plus
+** two. If nCol is the number of user defined columns, then values of the
+** varints are set as follows:
+**
+** Varint 0: Total number of rows in the table.
+**
+** Varint 1..nCol: For each column, the total number of tokens stored in
+** the column for all rows of the table.
+**
+** Varint 1+nCol: The total size, in bytes, of all text values in all
+** columns of all rows of the table.
+**
+*/
+static void fts3UpdateDocTotals(
+ int *pRC, /* The result code */
+ Fts3Table *p, /* Table being updated */
+ u32 *aSzIns, /* Size increases */
+ u32 *aSzDel, /* Size decreases */
+ int nChng /* Change in the number of documents */
+){
+ char *pBlob; /* Storage for BLOB written into %_stat */
+ int nBlob; /* Size of BLOB written into %_stat */
+ u32 *a; /* Array of integers that becomes the BLOB */
+ sqlite3_stmt *pStmt; /* Statement for reading and writing */
+ int i; /* Loop counter */
+ int rc; /* Result code from subfunctions */
+
+ const int nStat = p->nColumn+2;
+
+ if( *pRC ) return;
+ a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat );
+ if( a==0 ){
+ *pRC = SQLITE_NOMEM;
+ return;
+ }
+ pBlob = (char*)&a[nStat];
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
+ if( rc ){
+ sqlite3_free(a);
+ *pRC = rc;
+ return;
+ }
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
+ if( sqlite3_step(pStmt)==SQLITE_ROW ){
+ fts3DecodeIntArray(nStat, a,
+ sqlite3_column_blob(pStmt, 0),
+ sqlite3_column_bytes(pStmt, 0));
+ }else{
+ memset(a, 0, sizeof(u32)*(nStat) );
+ }
+ rc = sqlite3_reset(pStmt);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(a);
+ *pRC = rc;
+ return;
+ }
+ if( nChng<0 && a[0]<(u32)(-nChng) ){
+ a[0] = 0;
+ }else{
+ a[0] += nChng;
+ }
+ for(i=0; i<p->nColumn+1; i++){
+ u32 x = a[i+1];
+ if( x+aSzIns[i] < aSzDel[i] ){
+ x = 0;
+ }else{
+ x = x + aSzIns[i] - aSzDel[i];
+ }
+ a[i+1] = x;
+ }
+ fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
+ if( rc ){
+ sqlite3_free(a);
+ *pRC = rc;
+ return;
+ }
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
+ sqlite3_step(pStmt);
+ *pRC = sqlite3_reset(pStmt);
+ sqlite3_bind_null(pStmt, 2);
+ sqlite3_free(a);
+}
+
+/*
+** Merge the entire database so that there is one segment for each
+** iIndex/iLangid combination.
+*/
+static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
+ int bSeenDone = 0;
+ int rc;
+ sqlite3_stmt *pAllLangid = 0;
+
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
+ sqlite3_bind_int(pAllLangid, 2, p->nIndex);
+ while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
+ int i;
+ int iLangid = sqlite3_column_int(pAllLangid, 0);
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
+ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
+ if( rc==SQLITE_DONE ){
+ bSeenDone = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ rc2 = sqlite3_reset(pAllLangid);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ sqlite3Fts3SegmentsClose(p);
+
+ return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
+}
+
+/*
+** This function is called when the user executes the following statement:
+**
+** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
+**
+** The entire FTS index is discarded and rebuilt. If the table is one
+** created using the content=xxx option, then the new index is based on
+** the current contents of the xxx table. Otherwise, it is rebuilt based
+** on the contents of the %_content table.
+*/
+static int fts3DoRebuild(Fts3Table *p){
+ int rc; /* Return Code */
+
+ rc = fts3DeleteAll(p, 0);
+ if( rc==SQLITE_OK ){
+ u32 *aSz = 0;
+ u32 *aSzIns = 0;
+ u32 *aSzDel = 0;
+ sqlite3_stmt *pStmt = 0;
+ int nEntry = 0;
+
+ /* Compose and prepare an SQL statement to loop through the content table */
+ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3;
+ aSz = (u32 *)sqlite3_malloc64(nByte);
+ if( aSz==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(aSz, 0, nByte);
+ aSzIns = &aSz[p->nColumn+1];
+ aSzDel = &aSzIns[p->nColumn+1];
+ }
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ int iCol;
+ int iLangid = langidFromSelect(p, pStmt);
+ rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0));
+ memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
+ if( p->abNotindexed[iCol]==0 ){
+ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
+ rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
+ aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
+ }
+ }
+ if( p->bHasDocsize ){
+ fts3InsertDocsize(&rc, p, aSz);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_finalize(pStmt);
+ pStmt = 0;
+ }else{
+ nEntry++;
+ for(iCol=0; iCol<=p->nColumn; iCol++){
+ aSzIns[iCol] += aSz[iCol];
+ }
+ }
+ }
+ if( p->bFts4 ){
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
+ }
+ sqlite3_free(aSz);
+
+ if( pStmt ){
+ int rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** This function opens a cursor used to read the input data for an
+** incremental merge operation. Specifically, it opens a cursor to scan
+** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
+** level iAbsLevel.
+*/
+static int fts3IncrmergeCsr(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level to open */
+ int nSeg, /* Number of segments to merge */
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */
+){
+ int rc; /* Return Code */
+ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
+ sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */
+
+ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
+ memset(pCsr, 0, sizeof(*pCsr));
+ nByte = sizeof(Fts3SegReader *) * nSeg;
+ pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte);
+
+ if( pCsr->apSegment==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->apSegment, 0, nByte);
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int i;
+ int rc2;
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel);
+ assert( pCsr->nSegment==0 );
+ for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
+ rc = sqlite3Fts3SegReaderNew(i, 0,
+ sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
+ sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
+ sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
+ sqlite3_column_blob(pStmt, 4), /* segdir.root */
+ sqlite3_column_bytes(pStmt, 4), /* segdir.root */
+ &pCsr->apSegment[i]
+ );
+ pCsr->nSegment++;
+ }
+ rc2 = sqlite3_reset(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ return rc;
+}
+
+typedef struct IncrmergeWriter IncrmergeWriter;
+typedef struct NodeWriter NodeWriter;
+typedef struct Blob Blob;
+typedef struct NodeReader NodeReader;
+
+/*
+** An instance of the following structure is used as a dynamic buffer
+** to build up nodes or other blobs of data in.
+**
+** The function blobGrowBuffer() is used to extend the allocation.
+*/
+struct Blob {
+ char *a; /* Pointer to allocation */
+ int n; /* Number of valid bytes of data in a[] */
+ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
+};
+
+/*
+** This structure is used to build up buffers containing segment b-tree
+** nodes (blocks).
+*/
+struct NodeWriter {
+ sqlite3_int64 iBlock; /* Current block id */
+ Blob key; /* Last key written to the current block */
+ Blob block; /* Current block image */
+};
+
+/*
+** An object of this type contains the state required to create or append
+** to an appendable b-tree segment.
+*/
+struct IncrmergeWriter {
+ int nLeafEst; /* Space allocated for leaf blocks */
+ int nWork; /* Number of leaf pages flushed */
+ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
+ int iIdx; /* Index of *output* segment in iAbsLevel+1 */
+ sqlite3_int64 iStart; /* Block number of first allocated block */
+ sqlite3_int64 iEnd; /* Block number of last allocated block */
+ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */
+ u8 bNoLeafData; /* If true, store 0 for segment size */
+ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
+};
+
+/*
+** An object of the following type is used to read data from a single
+** FTS segment node. See the following functions:
+**
+** nodeReaderInit()
+** nodeReaderNext()
+** nodeReaderRelease()
+*/
+struct NodeReader {
+ const char *aNode;
+ int nNode;
+ int iOff; /* Current offset within aNode[] */
+
+ /* Output variables. Containing the current node entry. */
+ sqlite3_int64 iChild; /* Pointer to child node */
+ Blob term; /* Current term */
+ const char *aDoclist; /* Pointer to doclist */
+ int nDoclist; /* Size of doclist in bytes */
+};
+
+/*
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, if the allocation at pBlob->a is not already at least nMin
+** bytes in size, extend (realloc) it to be so.
+**
+** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
+** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
+** to reflect the new size of the pBlob->a[] buffer.
+*/
+static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
+ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
+ int nAlloc = nMin;
+ char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc);
+ if( a ){
+ pBlob->nAlloc = nAlloc;
+ pBlob->a = a;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+/*
+** Attempt to advance the node-reader object passed as the first argument to
+** the next entry on the node.
+**
+** Return an error code if an error occurs (SQLITE_NOMEM is possible).
+** Otherwise return SQLITE_OK. If there is no next entry on the node
+** (e.g. because the current entry is the last) set NodeReader->aNode to
+** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
+** variables for the new entry.
+*/
+static int nodeReaderNext(NodeReader *p){
+ int bFirst = (p->term.n==0); /* True for first term on the node */
+ int nPrefix = 0; /* Bytes to copy from previous term */
+ int nSuffix = 0; /* Bytes to append to the prefix */
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( p->aNode );
+ if( p->iChild && bFirst==0 ) p->iChild++;
+ if( p->iOff>=p->nNode ){
+ /* EOF */
+ p->aNode = 0;
+ }else{
+ if( bFirst==0 ){
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
+ }
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
+
+ if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){
+ return FTS_CORRUPT_VTAB;
+ }
+ blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
+ if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){
+ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
+ p->term.n = nPrefix+nSuffix;
+ p->iOff += nSuffix;
+ if( p->iChild==0 ){
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
+ if( (p->nNode-p->iOff)<p->nDoclist ){
+ return FTS_CORRUPT_VTAB;
+ }
+ p->aDoclist = &p->aNode[p->iOff];
+ p->iOff += p->nDoclist;
+ }
+ }
+ }
+
+ assert_fts3_nc( p->iOff<=p->nNode );
+ return rc;
+}
+
+/*
+** Release all dynamic resources held by node-reader object *p.
+*/
+static void nodeReaderRelease(NodeReader *p){
+ sqlite3_free(p->term.a);
+}
+
+/*
+** Initialize a node-reader object to read the node in buffer aNode/nNode.
+**
+** If successful, SQLITE_OK is returned and the NodeReader object set to
+** point to the first entry on the node (if any). Otherwise, an SQLite
+** error code is returned.
+*/
+static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
+ memset(p, 0, sizeof(NodeReader));
+ p->aNode = aNode;
+ p->nNode = nNode;
+
+ /* Figure out if this is a leaf or an internal node. */
+ if( aNode && aNode[0] ){
+ /* An internal node. */
+ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
+ }else{
+ p->iOff = 1;
+ }
+
+ return aNode ? nodeReaderNext(p) : SQLITE_OK;
+}
+
+/*
+** This function is called while writing an FTS segment each time a leaf o
+** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
+** to be greater than the largest key on the node just written, but smaller
+** than or equal to the first key that will be written to the next leaf
+** node.
+**
+** The block id of the leaf node just written to disk may be found in
+** (pWriter->aNodeWriter[0].iBlock) when this function is called.
+*/
+static int fts3IncrmergePush(
+ Fts3Table *p, /* Fts3 table handle */
+ IncrmergeWriter *pWriter, /* Writer object */
+ const char *zTerm, /* Term to write to internal node */
+ int nTerm /* Bytes at zTerm */
+){
+ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
+ int iLayer;
+
+ assert( nTerm>0 );
+ for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
+ sqlite3_int64 iNextPtr = 0;
+ NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
+ int rc = SQLITE_OK;
+ int nPrefix;
+ int nSuffix;
+ int nSpace;
+
+ /* Figure out how much space the key will consume if it is written to
+ ** the current node of layer iLayer. Due to the prefix compression,
+ ** the space required changes depending on which node the key is to
+ ** be added to. */
+ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
+ nSuffix = nTerm - nPrefix;
+ if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+ nSpace = sqlite3Fts3VarintLen(nPrefix);
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
+
+ if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
+ /* If the current node of layer iLayer contains zero keys, or if adding
+ ** the key to it will not cause it to grow to larger than nNodeSize
+ ** bytes in size, write the key here. */
+
+ Blob *pBlk = &pNode->block;
+ if( pBlk->n==0 ){
+ blobGrowBuffer(pBlk, p->nNodeSize, &rc);
+ if( rc==SQLITE_OK ){
+ pBlk->a[0] = (char)iLayer;
+ pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
+ }
+ }
+ blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
+ blobGrowBuffer(&pNode->key, nTerm, &rc);
+
+ if( rc==SQLITE_OK ){
+ if( pNode->key.n ){
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
+ }
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
+ assert( nPrefix+nSuffix<=nTerm );
+ assert( nPrefix>=0 );
+ memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
+ pBlk->n += nSuffix;
+
+ memcpy(pNode->key.a, zTerm, nTerm);
+ pNode->key.n = nTerm;
+ }
+ }else{
+ /* Otherwise, flush the current node of layer iLayer to disk.
+ ** Then allocate a new, empty sibling node. The key will be written
+ ** into the parent of this node. */
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
+
+ assert( pNode->block.nAlloc>=p->nNodeSize );
+ pNode->block.a[0] = (char)iLayer;
+ pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
+
+ iNextPtr = pNode->iBlock;
+ pNode->iBlock++;
+ pNode->key.n = 0;
+ }
+
+ if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
+ iPtr = iNextPtr;
+ }
+
+ assert( 0 );
+ return 0;
+}
+
+/*
+** Append a term and (optionally) doclist to the FTS segment node currently
+** stored in blob *pNode. The node need not contain any terms, but the
+** header must be written before this function is called.
+**
+** A node header is a single 0x00 byte for a leaf node, or a height varint
+** followed by the left-hand-child varint for an internal node.
+**
+** The term to be appended is passed via arguments zTerm/nTerm. For a
+** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
+** node, both aDoclist and nDoclist must be passed 0.
+**
+** If the size of the value in blob pPrev is zero, then this is the first
+** term written to the node. Otherwise, pPrev contains a copy of the
+** previous term. Before this function returns, it is updated to contain a
+** copy of zTerm/nTerm.
+**
+** It is assumed that the buffer associated with pNode is already large
+** enough to accommodate the new entry. The buffer associated with pPrev
+** is extended by this function if requrired.
+**
+** If an error (i.e. OOM condition) occurs, an SQLite error code is
+** returned. Otherwise, SQLITE_OK.
+*/
+static int fts3AppendToNode(
+ Blob *pNode, /* Current node image to append to */
+ Blob *pPrev, /* Buffer containing previous term written */
+ const char *zTerm, /* New term to write */
+ int nTerm, /* Size of zTerm in bytes */
+ const char *aDoclist, /* Doclist (or NULL) to write */
+ int nDoclist /* Size of aDoclist in bytes */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int bFirst = (pPrev->n==0); /* True if this is the first term written */
+ int nPrefix; /* Size of term prefix in bytes */
+ int nSuffix; /* Size of term suffix in bytes */
+
+ /* Node must have already been started. There must be a doclist for a
+ ** leaf node, and there must not be a doclist for an internal node. */
+ assert( pNode->n>0 );
+ assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) );
+
+ blobGrowBuffer(pPrev, nTerm, &rc);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
+ nSuffix = nTerm - nPrefix;
+ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+ memcpy(pPrev->a, zTerm, nTerm);
+ pPrev->n = nTerm;
+
+ if( bFirst==0 ){
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
+ }
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
+ memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
+ pNode->n += nSuffix;
+
+ if( aDoclist ){
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
+ memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
+ pNode->n += nDoclist;
+ }
+
+ assert( pNode->n<=pNode->nAlloc );
+
+ return SQLITE_OK;
+}
+
+/*
+** Append the current term and doclist pointed to by cursor pCsr to the
+** appendable b-tree segment opened for writing by pWriter.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int fts3IncrmergeAppend(
+ Fts3Table *p, /* Fts3 table handle */
+ IncrmergeWriter *pWriter, /* Writer object */
+ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
+){
+ const char *zTerm = pCsr->zTerm;
+ int nTerm = pCsr->nTerm;
+ const char *aDoclist = pCsr->aDoclist;
+ int nDoclist = pCsr->nDoclist;
+ int rc = SQLITE_OK; /* Return code */
+ int nSpace; /* Total space in bytes required on leaf */
+ int nPrefix; /* Size of prefix shared with previous term */
+ int nSuffix; /* Size of suffix (nTerm - nPrefix) */
+ NodeWriter *pLeaf; /* Object used to write leaf nodes */
+
+ pLeaf = &pWriter->aNodeWriter[0];
+ nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
+ nSuffix = nTerm - nPrefix;
+ if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+
+ nSpace = sqlite3Fts3VarintLen(nPrefix);
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
+
+ /* If the current block is not empty, and if adding this term/doclist
+ ** to the current block would make it larger than Fts3Table.nNodeSize
+ ** bytes, write this block out to the database. */
+ if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){
+ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
+ pWriter->nWork++;
+
+ /* Add the current term to the parent node. The term added to the
+ ** parent must:
+ **
+ ** a) be greater than the largest term on the leaf node just written
+ ** to the database (still available in pLeaf->key), and
+ **
+ ** b) be less than or equal to the term about to be added to the new
+ ** leaf node (zTerm/nTerm).
+ **
+ ** In other words, it must be the prefix of zTerm 1 byte longer than
+ ** the common prefix (if any) of zTerm and pWriter->zTerm.
+ */
+ if( rc==SQLITE_OK ){
+ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
+ }
+
+ /* Advance to the next output block */
+ pLeaf->iBlock++;
+ pLeaf->key.n = 0;
+ pLeaf->block.n = 0;
+
+ nSuffix = nTerm;
+ nSpace = 1;
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
+ }
+
+ pWriter->nLeafData += nSpace;
+ blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
+ if( rc==SQLITE_OK ){
+ if( pLeaf->block.n==0 ){
+ pLeaf->block.n = 1;
+ pLeaf->block.a[0] = '\0';
+ }
+ rc = fts3AppendToNode(
+ &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
+ );
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to release all dynamic resources held by the
+** merge-writer object pWriter, and if no error has occurred, to flush
+** all outstanding node buffers held by pWriter to disk.
+**
+** If *pRc is not SQLITE_OK when this function is called, then no attempt
+** is made to write any data to disk. Instead, this function serves only
+** to release outstanding resources.
+**
+** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
+** flushing buffers to disk, *pRc is set to an SQLite error code before
+** returning.
+*/
+static void fts3IncrmergeRelease(
+ Fts3Table *p, /* FTS3 table handle */
+ IncrmergeWriter *pWriter, /* Merge-writer object */
+ int *pRc /* IN/OUT: Error code */
+){
+ int i; /* Used to iterate through non-root layers */
+ int iRoot; /* Index of root in pWriter->aNodeWriter */
+ NodeWriter *pRoot; /* NodeWriter for root node */
+ int rc = *pRc; /* Error code */
+
+ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
+ ** root node. If the segment fits entirely on a single leaf node, iRoot
+ ** will be set to 0. If the root node is the parent of the leaves, iRoot
+ ** will be 1. And so on. */
+ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
+ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
+ if( pNode->block.n>0 ) break;
+ assert( *pRc || pNode->block.nAlloc==0 );
+ assert( *pRc || pNode->key.nAlloc==0 );
+ sqlite3_free(pNode->block.a);
+ sqlite3_free(pNode->key.a);
+ }
+
+ /* Empty output segment. This is a no-op. */
+ if( iRoot<0 ) return;
+
+ /* The entire output segment fits on a single node. Normally, this means
+ ** the node would be stored as a blob in the "root" column of the %_segdir
+ ** table. However, this is not permitted in this case. The problem is that
+ ** space has already been reserved in the %_segments table, and so the
+ ** start_block and end_block fields of the %_segdir table must be populated.
+ ** And, by design or by accident, released versions of FTS cannot handle
+ ** segments that fit entirely on the root node with start_block!=0.
+ **
+ ** Instead, create a synthetic root node that contains nothing but a
+ ** pointer to the single content node. So that the segment consists of a
+ ** single leaf and a single interior (root) node.
+ **
+ ** Todo: Better might be to defer allocating space in the %_segments
+ ** table until we are sure it is needed.
+ */
+ if( iRoot==0 ){
+ Blob *pBlock = &pWriter->aNodeWriter[1].block;
+ blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
+ if( rc==SQLITE_OK ){
+ pBlock->a[0] = 0x01;
+ pBlock->n = 1 + sqlite3Fts3PutVarint(
+ &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
+ );
+ }
+ iRoot = 1;
+ }
+ pRoot = &pWriter->aNodeWriter[iRoot];
+
+ /* Flush all currently outstanding nodes to disk. */
+ for(i=0; i<iRoot; i++){
+ NodeWriter *pNode = &pWriter->aNodeWriter[i];
+ if( pNode->block.n>0 && rc==SQLITE_OK ){
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
+ }
+ sqlite3_free(pNode->block.a);
+ sqlite3_free(pNode->key.a);
+ }
+
+ /* Write the %_segdir record. */
+ if( rc==SQLITE_OK ){
+ rc = fts3WriteSegdir(p,
+ pWriter->iAbsLevel+1, /* level */
+ pWriter->iIdx, /* idx */
+ pWriter->iStart, /* start_block */
+ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
+ pWriter->iEnd, /* end_block */
+ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */
+ pRoot->block.a, pRoot->block.n /* root */
+ );
+ }
+ sqlite3_free(pRoot->block.a);
+ sqlite3_free(pRoot->key.a);
+
+ *pRc = rc;
+}
+
+/*
+** Compare the term in buffer zLhs (size in bytes nLhs) with that in
+** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
+** the other, it is considered to be smaller than the other.
+**
+** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
+** if it is greater.
+*/
+static int fts3TermCmp(
+ const char *zLhs, int nLhs, /* LHS of comparison */
+ const char *zRhs, int nRhs /* RHS of comparison */
+){
+ int nCmp = MIN(nLhs, nRhs);
+ int res;
+
+ if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){
+ res = memcmp(zLhs, zRhs, nCmp);
+ }else{
+ res = 0;
+ }
+ if( res==0 ) res = nLhs - nRhs;
+
+ return res;
+}
+
+
+/*
+** Query to see if the entry in the %_segments table with blockid iEnd is
+** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
+** returning. Otherwise, set *pbRes to 0.
+**
+** Or, if an error occurs while querying the database, return an SQLite
+** error code. The final value of *pbRes is undefined in this case.
+**
+** This is used to test if a segment is an "appendable" segment. If it
+** is, then a NULL entry has been inserted into the %_segments table
+** with blockid %_segdir.end_block.
+*/
+static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
+ int bRes = 0; /* Result to set *pbRes to */
+ sqlite3_stmt *pCheck = 0; /* Statement to query database with */
+ int rc; /* Return code */
+
+ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pCheck, 1, iEnd);
+ if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
+ rc = sqlite3_reset(pCheck);
+ }
+
+ *pbRes = bRes;
+ return rc;
+}
+
+/*
+** This function is called when initializing an incremental-merge operation.
+** It checks if the existing segment with index value iIdx at absolute level
+** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
+** merge-writer object *pWriter is initialized to write to it.
+**
+** An existing segment can be appended to by an incremental merge if:
+**
+** * It was initially created as an appendable segment (with all required
+** space pre-allocated), and
+**
+** * The first key read from the input (arguments zKey and nKey) is
+** greater than the largest key currently stored in the potential
+** output segment.
+*/
+static int fts3IncrmergeLoad(
+ Fts3Table *p, /* Fts3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
+ int iIdx, /* Index of candidate output segment */
+ const char *zKey, /* First key to write */
+ int nKey, /* Number of bytes in nKey */
+ IncrmergeWriter *pWriter /* Populate this object */
+){
+ int rc; /* Return code */
+ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
+ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
+ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
+ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
+ int nRoot = 0; /* Size of aRoot[] in bytes */
+ int rc2; /* Return code from sqlite3_reset() */
+ int bAppendable = 0; /* Set to true if segment is appendable */
+
+ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
+ sqlite3_bind_int(pSelect, 2, iIdx);
+ if( sqlite3_step(pSelect)==SQLITE_ROW ){
+ iStart = sqlite3_column_int64(pSelect, 1);
+ iLeafEnd = sqlite3_column_int64(pSelect, 2);
+ fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
+ if( pWriter->nLeafData<0 ){
+ pWriter->nLeafData = pWriter->nLeafData * -1;
+ }
+ pWriter->bNoLeafData = (pWriter->nLeafData==0);
+ nRoot = sqlite3_column_bytes(pSelect, 4);
+ aRoot = sqlite3_column_blob(pSelect, 4);
+ if( aRoot==0 ){
+ sqlite3_reset(pSelect);
+ return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB;
+ }
+ }else{
+ return sqlite3_reset(pSelect);
+ }
+
+ /* Check for the zero-length marker in the %_segments table */
+ rc = fts3IsAppendable(p, iEnd, &bAppendable);
+
+ /* Check that zKey/nKey is larger than the largest key the candidate */
+ if( rc==SQLITE_OK && bAppendable ){
+ char *aLeaf = 0;
+ int nLeaf = 0;
+
+ rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
+ if( rc==SQLITE_OK ){
+ NodeReader reader;
+ for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
+ rc==SQLITE_OK && reader.aNode;
+ rc = nodeReaderNext(&reader)
+ ){
+ assert( reader.aNode );
+ }
+ if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
+ bAppendable = 0;
+ }
+ nodeReaderRelease(&reader);
+ }
+ sqlite3_free(aLeaf);
+ }
+
+ if( rc==SQLITE_OK && bAppendable ){
+ /* It is possible to append to this segment. Set up the IncrmergeWriter
+ ** object to do so. */
+ int i;
+ int nHeight = (int)aRoot[0];
+ NodeWriter *pNode;
+ if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){
+ sqlite3_reset(pSelect);
+ return FTS_CORRUPT_VTAB;
+ }
+
+ pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
+ pWriter->iStart = iStart;
+ pWriter->iEnd = iEnd;
+ pWriter->iAbsLevel = iAbsLevel;
+ pWriter->iIdx = iIdx;
+
+ for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
+ }
+
+ pNode = &pWriter->aNodeWriter[nHeight];
+ pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
+ blobGrowBuffer(&pNode->block,
+ MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc
+ );
+ if( rc==SQLITE_OK ){
+ memcpy(pNode->block.a, aRoot, nRoot);
+ pNode->block.n = nRoot;
+ memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING);
+ }
+
+ for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
+ NodeReader reader;
+ pNode = &pWriter->aNodeWriter[i];
+
+ if( pNode->block.a){
+ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
+ while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
+ blobGrowBuffer(&pNode->key, reader.term.n, &rc);
+ if( rc==SQLITE_OK ){
+ assert_fts3_nc( reader.term.n>0 || reader.aNode==0 );
+ if( reader.term.n>0 ){
+ memcpy(pNode->key.a, reader.term.a, reader.term.n);
+ }
+ pNode->key.n = reader.term.n;
+ if( i>0 ){
+ char *aBlock = 0;
+ int nBlock = 0;
+ pNode = &pWriter->aNodeWriter[i-1];
+ pNode->iBlock = reader.iChild;
+ rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0);
+ blobGrowBuffer(&pNode->block,
+ MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc
+ );
+ if( rc==SQLITE_OK ){
+ memcpy(pNode->block.a, aBlock, nBlock);
+ pNode->block.n = nBlock;
+ memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING);
+ }
+ sqlite3_free(aBlock);
+ }
+ }
+ }
+ nodeReaderRelease(&reader);
+ }
+ }
+
+ rc2 = sqlite3_reset(pSelect);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ return rc;
+}
+
+/*
+** Determine the largest segment index value that exists within absolute
+** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
+** one before returning SQLITE_OK. Or, if there are no segments at all
+** within level iAbsLevel, set *piIdx to zero.
+**
+** If an error occurs, return an SQLite error code. The final value of
+** *piIdx is undefined in this case.
+*/
+static int fts3IncrmergeOutputIdx(
+ Fts3Table *p, /* FTS Table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
+ int *piIdx /* OUT: Next free index at iAbsLevel+1 */
+){
+ int rc;
+ sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
+
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
+ sqlite3_step(pOutputIdx);
+ *piIdx = sqlite3_column_int(pOutputIdx, 0);
+ rc = sqlite3_reset(pOutputIdx);
+ }
+
+ return rc;
+}
+
+/*
+** Allocate an appendable output segment on absolute level iAbsLevel+1
+** with idx value iIdx.
+**
+** In the %_segdir table, a segment is defined by the values in three
+** columns:
+**
+** start_block
+** leaves_end_block
+** end_block
+**
+** When an appendable segment is allocated, it is estimated that the
+** maximum number of leaf blocks that may be required is the sum of the
+** number of leaf blocks consumed by the input segments, plus the number
+** of input segments, multiplied by two. This value is stored in stack
+** variable nLeafEst.
+**
+** A total of 16*nLeafEst blocks are allocated when an appendable segment
+** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
+** array of leaf nodes starts at the first block allocated. The array
+** of interior nodes that are parents of the leaf nodes start at block
+** (start_block + (1 + end_block - start_block) / 16). And so on.
+**
+** In the actual code below, the value "16" is replaced with the
+** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
+*/
+static int fts3IncrmergeWriter(
+ Fts3Table *p, /* Fts3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
+ int iIdx, /* Index of new output segment */
+ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
+ IncrmergeWriter *pWriter /* Populate this object */
+){
+ int rc; /* Return Code */
+ int i; /* Iterator variable */
+ int nLeafEst = 0; /* Blocks allocated for leaf nodes */
+ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
+ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
+
+ /* Calculate nLeafEst. */
+ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
+ sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
+ if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
+ nLeafEst = sqlite3_column_int(pLeafEst, 0);
+ }
+ rc = sqlite3_reset(pLeafEst);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Calculate the first block to use in the output segment */
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
+ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
+ pWriter->iEnd = pWriter->iStart - 1;
+ pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
+ }
+ rc = sqlite3_reset(pFirstBlock);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Insert the marker in the %_segments table to make sure nobody tries
+ ** to steal the space just allocated. This is also used to identify
+ ** appendable segments. */
+ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pWriter->iAbsLevel = iAbsLevel;
+ pWriter->nLeafEst = nLeafEst;
+ pWriter->iIdx = iIdx;
+
+ /* Set up the array of NodeWriter objects */
+ for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Remove an entry from the %_segdir table. This involves running the
+** following two statements:
+**
+** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
+** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
+**
+** The DELETE statement removes the specific %_segdir level. The UPDATE
+** statement ensures that the remaining segments have contiguously allocated
+** idx values.
+*/
+static int fts3RemoveSegdirEntry(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
+ int iIdx /* Index of %_segdir entry to delete */
+){
+ int rc; /* Return code */
+ sqlite3_stmt *pDelete = 0; /* DELETE statement */
+
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDelete, 1, iAbsLevel);
+ sqlite3_bind_int(pDelete, 2, iIdx);
+ sqlite3_step(pDelete);
+ rc = sqlite3_reset(pDelete);
+ }
+
+ return rc;
+}
+
+/*
+** One or more segments have just been removed from absolute level iAbsLevel.
+** Update the 'idx' values of the remaining segments in the level so that
+** the idx values are a contiguous sequence starting from 0.
+*/
+static int fts3RepackSegdirLevel(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel /* Absolute level to repack */
+){
+ int rc; /* Return code */
+ int *aIdx = 0; /* Array of remaining idx values */
+ int nIdx = 0; /* Valid entries in aIdx[] */
+ int nAlloc = 0; /* Allocated size of aIdx[] */
+ int i; /* Iterator variable */
+ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
+ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel);
+ while( SQLITE_ROW==sqlite3_step(pSelect) ){
+ if( nIdx>=nAlloc ){
+ int *aNew;
+ nAlloc += 16;
+ aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int));
+ if( !aNew ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ aIdx = aNew;
+ }
+ aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
+ }
+ rc2 = sqlite3_reset(pSelect);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
+ }
+
+ assert( p->bIgnoreSavepoint==0 );
+ p->bIgnoreSavepoint = 1;
+ for(i=0; rc==SQLITE_OK && i<nIdx; i++){
+ if( aIdx[i]!=i ){
+ sqlite3_bind_int(pUpdate, 3, aIdx[i]);
+ sqlite3_bind_int(pUpdate, 1, i);
+ sqlite3_step(pUpdate);
+ rc = sqlite3_reset(pUpdate);
+ }
+ }
+ p->bIgnoreSavepoint = 0;
+
+ sqlite3_free(aIdx);
+ return rc;
+}
+
+static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
+ pNode->a[0] = (char)iHeight;
+ if( iChild ){
+ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
+ pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
+ }else{
+ assert( pNode->nAlloc>=1 );
+ pNode->n = 1;
+ }
+}
+
+/*
+** The first two arguments are a pointer to and the size of a segment b-tree
+** node. The node may be a leaf or an internal node.
+**
+** This function creates a new node image in blob object *pNew by copying
+** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
+** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
+*/
+static int fts3TruncateNode(
+ const char *aNode, /* Current node image */
+ int nNode, /* Size of aNode in bytes */
+ Blob *pNew, /* OUT: Write new node image here */
+ const char *zTerm, /* Omit all terms smaller than this */
+ int nTerm, /* Size of zTerm in bytes */
+ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
+){
+ NodeReader reader; /* Reader object */
+ Blob prev = {0, 0, 0}; /* Previous term written to new node */
+ int rc = SQLITE_OK; /* Return code */
+ int bLeaf; /* True for a leaf node */
+
+ if( nNode<1 ) return FTS_CORRUPT_VTAB;
+ bLeaf = aNode[0]=='\0';
+
+ /* Allocate required output space */
+ blobGrowBuffer(pNew, nNode, &rc);
+ if( rc!=SQLITE_OK ) return rc;
+ pNew->n = 0;
+
+ /* Populate new node buffer */
+ for(rc = nodeReaderInit(&reader, aNode, nNode);
+ rc==SQLITE_OK && reader.aNode;
+ rc = nodeReaderNext(&reader)
+ ){
+ if( pNew->n==0 ){
+ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
+ if( res<0 || (bLeaf==0 && res==0) ) continue;
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild);
+ *piBlock = reader.iChild;
+ }
+ rc = fts3AppendToNode(
+ pNew, &prev, reader.term.a, reader.term.n,
+ reader.aDoclist, reader.nDoclist
+ );
+ if( rc!=SQLITE_OK ) break;
+ }
+ if( pNew->n==0 ){
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild);
+ *piBlock = reader.iChild;
+ }
+ assert( pNew->n<=pNew->nAlloc );
+
+ nodeReaderRelease(&reader);
+ sqlite3_free(prev.a);
+ return rc;
+}
+
+/*
+** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
+** level iAbsLevel. This may involve deleting entries from the %_segments
+** table, and modifying existing entries in both the %_segments and %_segdir
+** tables.
+**
+** SQLITE_OK is returned if the segment is updated successfully. Or an
+** SQLite error code otherwise.
+*/
+static int fts3TruncateSegment(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
+ int iIdx, /* Index within level of segment to modify */
+ const char *zTerm, /* Remove terms smaller than this */
+ int nTerm /* Number of bytes in buffer zTerm */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Blob root = {0,0,0}; /* New root page image */
+ Blob block = {0,0,0}; /* Buffer used for any other block */
+ sqlite3_int64 iBlock = 0; /* Block id */
+ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
+ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
+ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
+ if( rc==SQLITE_OK ){
+ int rc2; /* sqlite3_reset() return code */
+ sqlite3_bind_int64(pFetch, 1, iAbsLevel);
+ sqlite3_bind_int(pFetch, 2, iIdx);
+ if( SQLITE_ROW==sqlite3_step(pFetch) ){
+ const char *aRoot = sqlite3_column_blob(pFetch, 4);
+ int nRoot = sqlite3_column_bytes(pFetch, 4);
+ iOldStart = sqlite3_column_int64(pFetch, 1);
+ rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
+ }
+ rc2 = sqlite3_reset(pFetch);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ while( rc==SQLITE_OK && iBlock ){
+ char *aBlock = 0;
+ int nBlock = 0;
+ iNewStart = iBlock;
+
+ rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
+ }
+ sqlite3_free(aBlock);
+ }
+
+ /* Variable iNewStart now contains the first valid leaf node. */
+ if( rc==SQLITE_OK && iNewStart ){
+ sqlite3_stmt *pDel = 0;
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iOldStart);
+ sqlite3_bind_int64(pDel, 2, iNewStart-1);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_stmt *pChomp = 0;
+ rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pChomp, 1, iNewStart);
+ sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
+ sqlite3_bind_int64(pChomp, 3, iAbsLevel);
+ sqlite3_bind_int(pChomp, 4, iIdx);
+ sqlite3_step(pChomp);
+ rc = sqlite3_reset(pChomp);
+ sqlite3_bind_null(pChomp, 2);
+ }
+ }
+
+ sqlite3_free(root.a);
+ sqlite3_free(block.a);
+ return rc;
+}
+
+/*
+** This function is called after an incrmental-merge operation has run to
+** merge (or partially merge) two or more segments from absolute level
+** iAbsLevel.
+**
+** Each input segment is either removed from the db completely (if all of
+** its data was copied to the output segment by the incrmerge operation)
+** or modified in place so that it no longer contains those entries that
+** have been duplicated in the output segment.
+*/
+static int fts3IncrmergeChomp(
+ Fts3Table *p, /* FTS table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
+ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
+ int *pnRem /* Number of segments not deleted */
+){
+ int i;
+ int nRem = 0;
+ int rc = SQLITE_OK;
+
+ for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
+ Fts3SegReader *pSeg = 0;
+ int j;
+
+ /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
+ ** somewhere in the pCsr->apSegment[] array. */
+ for(j=0; ALWAYS(j<pCsr->nSegment); j++){
+ pSeg = pCsr->apSegment[j];
+ if( pSeg->iIdx==i ) break;
+ }
+ assert( j<pCsr->nSegment && pSeg->iIdx==i );
+
+ if( pSeg->aNode==0 ){
+ /* Seg-reader is at EOF. Remove the entire input segment. */
+ rc = fts3DeleteSegment(p, pSeg);
+ if( rc==SQLITE_OK ){
+ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
+ }
+ *pnRem = 0;
+ }else{
+ /* The incremental merge did not copy all the data from this
+ ** segment to the upper level. The segment is modified in place
+ ** so that it contains no keys smaller than zTerm/nTerm. */
+ const char *zTerm = pSeg->zTerm;
+ int nTerm = pSeg->nTerm;
+ rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
+ nRem++;
+ }
+ }
+
+ if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
+ rc = fts3RepackSegdirLevel(p, iAbsLevel);
+ }
+
+ *pnRem = nRem;
+ return rc;
+}
+
+/*
+** Store an incr-merge hint in the database.
+*/
+static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
+ sqlite3_stmt *pReplace = 0;
+ int rc; /* Return code */
+
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
+ sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ sqlite3_bind_null(pReplace, 2);
+ }
+
+ return rc;
+}
+
+/*
+** Load an incr-merge hint from the database. The incr-merge hint, if one
+** exists, is stored in the rowid==1 row of the %_stat table.
+**
+** If successful, populate blob *pHint with the value read from the %_stat
+** table and return SQLITE_OK. Otherwise, if an error occurs, return an
+** SQLite error code.
+*/
+static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
+ sqlite3_stmt *pSelect = 0;
+ int rc;
+
+ pHint->n = 0;
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){
+ const char *aHint = sqlite3_column_blob(pSelect, 0);
+ int nHint = sqlite3_column_bytes(pSelect, 0);
+ if( aHint ){
+ blobGrowBuffer(pHint, nHint, &rc);
+ if( rc==SQLITE_OK ){
+ if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint);
+ pHint->n = nHint;
+ }
+ }
+ }
+ rc2 = sqlite3_reset(pSelect);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ return rc;
+}
+
+/*
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
+** consists of two varints, the absolute level number of the input segments
+** and the number of input segments.
+**
+** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
+** set *pRc to an SQLite error code before returning.
+*/
+static void fts3IncrmergeHintPush(
+ Blob *pHint, /* Hint blob to append to */
+ i64 iAbsLevel, /* First varint to store in hint */
+ int nInput, /* Second varint to store in hint */
+ int *pRc /* IN/OUT: Error code */
+){
+ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
+ if( *pRc==SQLITE_OK ){
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
+ }
+}
+
+/*
+** Read the last entry (most recently pushed) from the hint blob *pHint
+** and then remove the entry. Write the two values read to *piAbsLevel and
+** *pnInput before returning.
+**
+** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
+** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
+*/
+static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
+ const int nHint = pHint->n;
+ int i;
+
+ i = pHint->n-1;
+ if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB;
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
+ if( i==0 ) return FTS_CORRUPT_VTAB;
+ i--;
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
+
+ pHint->n = i;
+ i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
+ i += fts3GetVarint32(&pHint->a[i], pnInput);
+ assert( i<=nHint );
+ if( i!=nHint ) return FTS_CORRUPT_VTAB;
+
+ return SQLITE_OK;
+}
+
+
+/*
+** Attempt an incremental merge that writes nMerge leaf blocks.
+**
+** Incremental merges happen nMin segments at a time. The segments
+** to be merged are the nMin oldest segments (the ones with the smallest
+** values for the _segdir.idx field) in the highest level that contains
+** at least nMin segments. Multiple merges might occur in an attempt to
+** write the quota of nMerge leaf blocks.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
+ int rc; /* Return code */
+ int nRem = nMerge; /* Number of leaf pages yet to be written */
+ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
+ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
+ IncrmergeWriter *pWriter; /* Writer object */
+ int nSeg = 0; /* Number of input segments */
+ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
+ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
+ int bDirtyHint = 0; /* True if blob 'hint' has been modified */
+
+ /* Allocate space for the cursor, filter and writer objects */
+ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
+ pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc);
+ if( !pWriter ) return SQLITE_NOMEM;
+ pFilter = (Fts3SegFilter *)&pWriter[1];
+ pCsr = (Fts3MultiSegReader *)&pFilter[1];
+
+ rc = fts3IncrmergeHintLoad(p, &hint);
+ while( rc==SQLITE_OK && nRem>0 ){
+ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
+ sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
+ int bUseHint = 0; /* True if attempting to append */
+ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
+
+ /* Search the %_segdir table for the absolute level with the smallest
+ ** relative level number that contains at least nMin segments, if any.
+ ** If one is found, set iAbsLevel to the absolute level number and
+ ** nSeg to nMin. If no level with at least nMin segments can be found,
+ ** set nSeg to -1.
+ */
+ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
+ sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin));
+ if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
+ iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
+ nSeg = sqlite3_column_int(pFindLevel, 1);
+ assert( nSeg>=2 );
+ }else{
+ nSeg = -1;
+ }
+ rc = sqlite3_reset(pFindLevel);
+
+ /* If the hint read from the %_stat table is not empty, check if the
+ ** last entry in it specifies a relative level smaller than or equal
+ ** to the level identified by the block above (if any). If so, this
+ ** iteration of the loop will work on merging at the hinted level.
+ */
+ if( rc==SQLITE_OK && hint.n ){
+ int nHint = hint.n;
+ sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
+ int nHintSeg = 0; /* Hint number of segments */
+
+ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
+ if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
+ /* Based on the scan in the block above, it is known that there
+ ** are no levels with a relative level smaller than that of
+ ** iAbsLevel with more than nSeg segments, or if nSeg is -1,
+ ** no levels with more than nMin segments. Use this to limit the
+ ** value of nHintSeg to avoid a large memory allocation in case the
+ ** merge-hint is corrupt*/
+ iAbsLevel = iHintAbsLevel;
+ nSeg = MIN(MAX(nMin,nSeg), nHintSeg);
+ bUseHint = 1;
+ bDirtyHint = 1;
+ }else{
+ /* This undoes the effect of the HintPop() above - so that no entry
+ ** is removed from the hint blob. */
+ hint.n = nHint;
+ }
+ }
+
+ /* If nSeg is less that zero, then there is no level with at least
+ ** nMin segments and no hint in the %_stat table. No work to do.
+ ** Exit early in this case. */
+ if( nSeg<=0 ) break;
+
+ assert( nMod<=0x7FFFFFFF );
+ if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){
+ rc = FTS_CORRUPT_VTAB;
+ break;
+ }
+
+ /* Open a cursor to iterate through the contents of the oldest nSeg
+ ** indexes of absolute level iAbsLevel. If this cursor is opened using
+ ** the 'hint' parameters, it is possible that there are less than nSeg
+ ** segments available in level iAbsLevel. In this case, no work is
+ ** done on iAbsLevel - fall through to the next iteration of the loop
+ ** to start work on some other level. */
+ memset(pWriter, 0, nAlloc);
+ pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
+
+ if( rc==SQLITE_OK ){
+ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
+ assert( bUseHint==1 || bUseHint==0 );
+ if( iIdx==0 || (bUseHint && iIdx==1) ){
+ int bIgnore = 0;
+ rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
+ if( bIgnore ){
+ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
+ }
+ if( SQLITE_OK==rc && pCsr->nSegment==nSeg
+ && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
+ ){
+ int bEmpty = 0;
+ rc = sqlite3Fts3SegReaderStep(p, pCsr);
+ if( rc==SQLITE_OK ){
+ bEmpty = 1;
+ }else if( rc!=SQLITE_ROW ){
+ sqlite3Fts3SegReaderFinish(pCsr);
+ break;
+ }
+ if( bUseHint && iIdx>0 ){
+ const char *zKey = pCsr->zTerm;
+ int nKey = pCsr->nTerm;
+ rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
+ }else{
+ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
+ }
+
+ if( rc==SQLITE_OK && pWriter->nLeafEst ){
+ fts3LogMerge(nSeg, iAbsLevel);
+ if( bEmpty==0 ){
+ do {
+ rc = fts3IncrmergeAppend(p, pWriter, pCsr);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
+ if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
+ }while( rc==SQLITE_ROW );
+ }
+
+ /* Update or delete the input segments */
+ if( rc==SQLITE_OK ){
+ nRem -= (1 + pWriter->nWork);
+ rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
+ if( nSeg!=0 ){
+ bDirtyHint = 1;
+ fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
+ }
+ }
+ }
+
+ if( nSeg!=0 ){
+ pWriter->nLeafData = pWriter->nLeafData * -1;
+ }
+ fts3IncrmergeRelease(p, pWriter, &rc);
+ if( nSeg==0 && pWriter->bNoLeafData==0 ){
+ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
+ }
+ }
+
+ sqlite3Fts3SegReaderFinish(pCsr);
+ }
+
+ /* Write the hint values into the %_stat table for the next incr-merger */
+ if( bDirtyHint && rc==SQLITE_OK ){
+ rc = fts3IncrmergeHintStore(p, &hint);
+ }
+
+ sqlite3_free(pWriter);
+ sqlite3_free(hint.a);
+ return rc;
+}
+
+/*
+** Convert the text beginning at *pz into an integer and return
+** its value. Advance *pz to point to the first character past
+** the integer.
+**
+** This function used for parameters to merge= and incrmerge=
+** commands.
+*/
+static int fts3Getint(const char **pz){
+ const char *z = *pz;
+ int i = 0;
+ while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0';
+ *pz = z;
+ return i;
+}
+
+/*
+** Process statements of the form:
+**
+** INSERT INTO table(table) VALUES('merge=A,B');
+**
+** A and B are integers that decode to be the number of leaf pages
+** written for the merge, and the minimum number of segments on a level
+** before it will be selected for a merge, respectively.
+*/
+static int fts3DoIncrmerge(
+ Fts3Table *p, /* FTS3 table handle */
+ const char *zParam /* Nul-terminated string containing "A,B" */
+){
+ int rc;
+ int nMin = (MergeCount(p) / 2);
+ int nMerge = 0;
+ const char *z = zParam;
+
+ /* Read the first integer value */
+ nMerge = fts3Getint(&z);
+
+ /* If the first integer value is followed by a ',', read the second
+ ** integer value. */
+ if( z[0]==',' && z[1]!='\0' ){
+ z++;
+ nMin = fts3Getint(&z);
+ }
+
+ if( z[0]!='\0' || nMin<2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ rc = SQLITE_OK;
+ if( !p->bHasStat ){
+ assert( p->bFts4==0 );
+ sqlite3Fts3CreateStatTable(&rc, p);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
+ }
+ sqlite3Fts3SegmentsClose(p);
+ }
+ return rc;
+}
+
+/*
+** Process statements of the form:
+**
+** INSERT INTO table(table) VALUES('automerge=X');
+**
+** where X is an integer. X==0 means to turn automerge off. X!=0 means
+** turn it on. The setting is persistent.
+*/
+static int fts3DoAutoincrmerge(
+ Fts3Table *p, /* FTS3 table handle */
+ const char *zParam /* Nul-terminated string containing boolean */
+){
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt = 0;
+ p->nAutoincrmerge = fts3Getint(&zParam);
+ if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){
+ p->nAutoincrmerge = 8;
+ }
+ if( !p->bHasStat ){
+ assert( p->bFts4==0 );
+ sqlite3Fts3CreateStatTable(&rc, p);
+ if( rc ) return rc;
+ }
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
+ if( rc ) return rc;
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
+ sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ return rc;
+}
+
+/*
+** Return a 64-bit checksum for the FTS index entry specified by the
+** arguments to this function.
+*/
+static u64 fts3ChecksumEntry(
+ const char *zTerm, /* Pointer to buffer containing term */
+ int nTerm, /* Size of zTerm in bytes */
+ int iLangid, /* Language id for current row */
+ int iIndex, /* Index (0..Fts3Table.nIndex-1) */
+ i64 iDocid, /* Docid for current row. */
+ int iCol, /* Column number */
+ int iPos /* Position */
+){
+ int i;
+ u64 ret = (u64)iDocid;
+
+ ret += (ret<<3) + iLangid;
+ ret += (ret<<3) + iIndex;
+ ret += (ret<<3) + iCol;
+ ret += (ret<<3) + iPos;
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
+
+ return ret;
+}
+
+/*
+** Return a checksum of all entries in the FTS index that correspond to
+** language id iLangid. The checksum is calculated by XORing the checksums
+** of each individual entry (see fts3ChecksumEntry()) together.
+**
+** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
+** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
+** return value is undefined in this case.
+*/
+static u64 fts3ChecksumIndex(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language id to return cksum for */
+ int iIndex, /* Index to cksum (0..p->nIndex-1) */
+ int *pRc /* OUT: Return code */
+){
+ Fts3SegFilter filter;
+ Fts3MultiSegReader csr;
+ int rc;
+ u64 cksum = 0;
+
+ assert( *pRc==SQLITE_OK );
+
+ memset(&filter, 0, sizeof(filter));
+ memset(&csr, 0, sizeof(csr));
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
+ filter.flags |= FTS3_SEGMENT_SCAN;
+
+ rc = sqlite3Fts3SegReaderCursor(
+ p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
+ }
+
+ if( rc==SQLITE_OK ){
+ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
+ char *pCsr = csr.aDoclist;
+ char *pEnd = &pCsr[csr.nDoclist];
+
+ i64 iDocid = 0;
+ i64 iCol = 0;
+ u64 iPos = 0;
+
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
+ while( pCsr<pEnd ){
+ u64 iVal = 0;
+ pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
+ if( pCsr<pEnd ){
+ if( iVal==0 || iVal==1 ){
+ iCol = 0;
+ iPos = 0;
+ if( iVal ){
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
+ }else{
+ pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
+ if( p->bDescIdx ){
+ iDocid = (i64)((u64)iDocid - iVal);
+ }else{
+ iDocid = (i64)((u64)iDocid + iVal);
+ }
+ }
+ }else{
+ iPos += (iVal - 2);
+ cksum = cksum ^ fts3ChecksumEntry(
+ csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
+ (int)iCol, (int)iPos
+ );
+ }
+ }
+ }
+ }
+ }
+ sqlite3Fts3SegReaderFinish(&csr);
+
+ *pRc = rc;
+ return cksum;
+}
+
+/*
+** Check if the contents of the FTS index match the current contents of the
+** content table. If no error occurs and the contents do match, set *pbOk
+** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
+** to false before returning.
+**
+** If an error occurs (e.g. an OOM or IO error), return an SQLite error
+** code. The final value of *pbOk is undefined in this case.
+*/
+static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
+ int rc = SQLITE_OK; /* Return code */
+ u64 cksum1 = 0; /* Checksum based on FTS index contents */
+ u64 cksum2 = 0; /* Checksum based on %_content contents */
+ sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
+
+ /* This block calculates the checksum according to the FTS index. */
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
+ sqlite3_bind_int(pAllLangid, 2, p->nIndex);
+ while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
+ int iLangid = sqlite3_column_int(pAllLangid, 0);
+ int i;
+ for(i=0; i<p->nIndex; i++){
+ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
+ }
+ }
+ rc2 = sqlite3_reset(pAllLangid);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ /* This block calculates the checksum according to the %_content table */
+ if( rc==SQLITE_OK ){
+ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
+ sqlite3_stmt *pStmt = 0;
+ char *zSql;
+
+ zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iDocid = sqlite3_column_int64(pStmt, 0);
+ int iLang = langidFromSelect(p, pStmt);
+ int iCol;
+
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
+ if( p->abNotindexed[iCol]==0 ){
+ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
+ sqlite3_tokenizer_cursor *pT = 0;
+
+ rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT);
+ while( rc==SQLITE_OK ){
+ char const *zToken; /* Buffer containing token */
+ int nToken = 0; /* Number of bytes in token */
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */
+ int iPos = 0; /* Position of token in zText */
+
+ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
+ if( rc==SQLITE_OK ){
+ int i;
+ cksum2 = cksum2 ^ fts3ChecksumEntry(
+ zToken, nToken, iLang, 0, iDocid, iCol, iPos
+ );
+ for(i=1; i<p->nIndex; i++){
+ if( p->aIndex[i].nPrefix<=nToken ){
+ cksum2 = cksum2 ^ fts3ChecksumEntry(
+ zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
+ );
+ }
+ }
+ }
+ }
+ if( pT ) pModule->xClose(pT);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+ }
+ }
+
+ sqlite3_finalize(pStmt);
+ }
+
+ *pbOk = (cksum1==cksum2);
+ return rc;
+}
+
+/*
+** Run the integrity-check. If no error occurs and the current contents of
+** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
+** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
+**
+** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
+** error code.
+**
+** The integrity-check works as follows. For each token and indexed token
+** prefix in the document set, a 64-bit checksum is calculated (by code
+** in fts3ChecksumEntry()) based on the following:
+**
+** + The index number (0 for the main index, 1 for the first prefix
+** index etc.),
+** + The token (or token prefix) text itself,
+** + The language-id of the row it appears in,
+** + The docid of the row it appears in,
+** + The column it appears in, and
+** + The tokens position within that column.
+**
+** The checksums for all entries in the index are XORed together to create
+** a single checksum for the entire index.
+**
+** The integrity-check code calculates the same checksum in two ways:
+**
+** 1. By scanning the contents of the FTS index, and
+** 2. By scanning and tokenizing the content table.
+**
+** If the two checksums are identical, the integrity-check is deemed to have
+** passed.
+*/
+static int fts3DoIntegrityCheck(
+ Fts3Table *p /* FTS3 table handle */
+){
+ int rc;
+ int bOk = 0;
+ rc = fts3IntegrityCheck(p, &bOk);
+ if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB;
+ return rc;
+}
+
+/*
+** Handle a 'special' INSERT of the form:
+**
+** "INSERT INTO tbl(tbl) VALUES(<expr>)"
+**
+** Argument pVal contains the result of <expr>. Currently the only
+** meaningful value to insert is the text 'optimize'.
+*/
+static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
+ int rc = SQLITE_ERROR; /* Return Code */
+ const char *zVal = (const char *)sqlite3_value_text(pVal);
+ int nVal = sqlite3_value_bytes(pVal);
+
+ if( !zVal ){
+ return SQLITE_NOMEM;
+ }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
+ rc = fts3DoOptimize(p, 0);
+ }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
+ rc = fts3DoRebuild(p);
+ }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
+ rc = fts3DoIntegrityCheck(p);
+ }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
+ rc = fts3DoIncrmerge(p, &zVal[6]);
+ }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
+ rc = fts3DoAutoincrmerge(p, &zVal[10]);
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ }else{
+ int v;
+ if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
+ v = atoi(&zVal[9]);
+ if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v;
+ rc = SQLITE_OK;
+ }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
+ v = atoi(&zVal[11]);
+ if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v;
+ rc = SQLITE_OK;
+ }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){
+ p->bNoIncrDoclist = atoi(&zVal[21]);
+ rc = SQLITE_OK;
+ }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){
+ v = atoi(&zVal[11]);
+ if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v;
+ rc = SQLITE_OK;
+ }
+#endif
+ }
+ return rc;
+}
+
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+/*
+** Delete all cached deferred doclists. Deferred doclists are cached
+** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
+ Fts3DeferredToken *pDef;
+ for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
+ fts3PendingListDelete(pDef->pList);
+ pDef->pList = 0;
+ }
+}
+
+/*
+** Free all entries in the pCsr->pDeffered list. Entries are added to
+** this list using sqlite3Fts3DeferToken().
+*/
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
+ Fts3DeferredToken *pDef;
+ Fts3DeferredToken *pNext;
+ for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
+ pNext = pDef->pNext;
+ fts3PendingListDelete(pDef->pList);
+ sqlite3_free(pDef);
+ }
+ pCsr->pDeferred = 0;
+}
+
+/*
+** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
+** based on the row that pCsr currently points to.
+**
+** A deferred-doclist is like any other doclist with position information
+** included, except that it only contains entries for a single row of the
+** table, not for all rows.
+*/
+SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
+ int rc = SQLITE_OK; /* Return code */
+ if( pCsr->pDeferred ){
+ int i; /* Used to iterate through table columns */
+ sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
+ Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
+
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+ sqlite3_tokenizer *pT = p->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pT->pModule;
+
+ assert( pCsr->isRequireSeek==0 );
+ iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
+
+ for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
+ if( p->abNotindexed[i]==0 ){
+ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
+ sqlite3_tokenizer_cursor *pTC = 0;
+
+ rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
+ while( rc==SQLITE_OK ){
+ char const *zToken; /* Buffer containing token */
+ int nToken = 0; /* Number of bytes in token */
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */
+ int iPos = 0; /* Position of token in zText */
+
+ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
+ Fts3PhraseToken *pPT = pDef->pToken;
+ if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
+ && (pPT->bFirst==0 || iPos==0)
+ && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
+ && (0==memcmp(zToken, pPT->z, pPT->n))
+ ){
+ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
+ }
+ }
+ }
+ if( pTC ) pModule->xClose(pTC);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+ }
+
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
+ if( pDef->pList ){
+ rc = fts3PendingListAppendVarint(&pDef->pList, 0);
+ }
+ }
+ }
+
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(
+ Fts3DeferredToken *p,
+ char **ppData,
+ int *pnData
+){
+ char *pRet;
+ int nSkip;
+ sqlite3_int64 dummy;
+
+ *ppData = 0;
+ *pnData = 0;
+
+ if( p->pList==0 ){
+ return SQLITE_OK;
+ }
+
+ pRet = (char *)sqlite3_malloc64(p->pList->nData);
+ if( !pRet ) return SQLITE_NOMEM;
+
+ nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
+ *pnData = p->pList->nData - nSkip;
+ *ppData = pRet;
+
+ memcpy(pRet, &p->pList->aData[nSkip], *pnData);
+ return SQLITE_OK;
+}
+
+/*
+** Add an entry for token pToken to the pCsr->pDeferred list.
+*/
+SQLITE_PRIVATE int sqlite3Fts3DeferToken(
+ Fts3Cursor *pCsr, /* Fts3 table cursor */
+ Fts3PhraseToken *pToken, /* Token to defer */
+ int iCol /* Column that token must appear in (or -1) */
+){
+ Fts3DeferredToken *pDeferred;
+ pDeferred = sqlite3_malloc64(sizeof(*pDeferred));
+ if( !pDeferred ){
+ return SQLITE_NOMEM;
+ }
+ memset(pDeferred, 0, sizeof(*pDeferred));
+ pDeferred->pToken = pToken;
+ pDeferred->pNext = pCsr->pDeferred;
+ pDeferred->iCol = iCol;
+ pCsr->pDeferred = pDeferred;
+
+ assert( pToken->pDeferred==0 );
+ pToken->pDeferred = pDeferred;
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** SQLite value pRowid contains the rowid of a row that may or may not be
+** present in the FTS3 table. If it is, delete it and adjust the contents
+** of subsiduary data structures accordingly.
+*/
+static int fts3DeleteByRowid(
+ Fts3Table *p,
+ sqlite3_value *pRowid,
+ int *pnChng, /* IN/OUT: Decrement if row is deleted */
+ u32 *aSzDel
+){
+ int rc = SQLITE_OK; /* Return code */
+ int bFound = 0; /* True if *pRowid really is in the table */
+
+ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
+ if( bFound && rc==SQLITE_OK ){
+ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
+ rc = fts3IsEmpty(p, pRowid, &isEmpty);
+ if( rc==SQLITE_OK ){
+ if( isEmpty ){
+ /* Deleting this row means the whole table is empty. In this case
+ ** delete the contents of all three tables and throw away any
+ ** data in the pendingTerms hash table. */
+ rc = fts3DeleteAll(p, 1);
+ *pnChng = 0;
+ memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
+ }else{
+ *pnChng = *pnChng - 1;
+ if( p->zContentTbl==0 ){
+ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
+ }
+ if( p->bHasDocsize ){
+ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function does the work for the xUpdate method of FTS3 virtual
+** tables. The schema of the virtual table being:
+**
+** CREATE TABLE <table name>(
+** <user columns>,
+** <table name> HIDDEN,
+** docid HIDDEN,
+** <langid> HIDDEN
+** );
+**
+**
+*/
+SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(
+ sqlite3_vtab *pVtab, /* FTS3 vtab object */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ int rc = SQLITE_OK; /* Return Code */
+ u32 *aSzIns = 0; /* Sizes of inserted documents */
+ u32 *aSzDel = 0; /* Sizes of deleted documents */
+ int nChng = 0; /* Net change in number of documents */
+ int bInsertDone = 0;
+
+ /* At this point it must be known if the %_stat table exists or not.
+ ** So bHasStat may not be 2. */
+ assert( p->bHasStat==0 || p->bHasStat==1 );
+
+ assert( p->pSegments==0 );
+ assert(
+ nArg==1 /* DELETE operations */
+ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
+ );
+
+ /* Check for a "special" INSERT operation. One of the form:
+ **
+ ** INSERT INTO xyz(xyz) VALUES('command');
+ */
+ if( nArg>1
+ && sqlite3_value_type(apVal[0])==SQLITE_NULL
+ && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
+ ){
+ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
+ goto update_out;
+ }
+
+ if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
+ rc = SQLITE_CONSTRAINT;
+ goto update_out;
+ }
+
+ /* Allocate space to hold the change in document sizes */
+ aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2);
+ if( aSzDel==0 ){
+ rc = SQLITE_NOMEM;
+ goto update_out;
+ }
+ aSzIns = &aSzDel[p->nColumn+1];
+ memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
+
+ rc = fts3Writelock(p);
+ if( rc!=SQLITE_OK ) goto update_out;
+
+ /* If this is an INSERT operation, or an UPDATE that modifies the rowid
+ ** value, then this operation requires constraint handling.
+ **
+ ** If the on-conflict mode is REPLACE, this means that the existing row
+ ** should be deleted from the database before inserting the new row. Or,
+ ** if the on-conflict mode is other than REPLACE, then this method must
+ ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
+ ** modify the database file.
+ */
+ if( nArg>1 && p->zContentTbl==0 ){
+ /* Find the value object that holds the new rowid value. */
+ sqlite3_value *pNewRowid = apVal[3+p->nColumn];
+ if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
+ pNewRowid = apVal[1];
+ }
+
+ if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
+ sqlite3_value_type(apVal[0])==SQLITE_NULL
+ || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
+ )){
+ /* The new rowid is not NULL (in this case the rowid will be
+ ** automatically assigned and there is no chance of a conflict), and
+ ** the statement is either an INSERT or an UPDATE that modifies the
+ ** rowid column. So if the conflict mode is REPLACE, then delete any
+ ** existing row with rowid=pNewRowid.
+ **
+ ** Or, if the conflict mode is not REPLACE, insert the new record into
+ ** the %_content table. If we hit the duplicate rowid constraint (or any
+ ** other error) while doing so, return immediately.
+ **
+ ** This branch may also run if pNewRowid contains a value that cannot
+ ** be losslessly converted to an integer. In this case, the eventual
+ ** call to fts3InsertData() (either just below or further on in this
+ ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
+ ** invoked, it will delete zero rows (since no row will have
+ ** docid=$pNewRowid if $pNewRowid is not an integer value).
+ */
+ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
+ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
+ }else{
+ rc = fts3InsertData(p, apVal, pRowid);
+ bInsertDone = 1;
+ }
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ goto update_out;
+ }
+
+ /* If this is a DELETE or UPDATE operation, remove the old record. */
+ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
+ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
+ rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
+ }
+
+ /* If this is an INSERT or UPDATE operation, insert the new record. */
+ if( nArg>1 && rc==SQLITE_OK ){
+ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
+ if( bInsertDone==0 ){
+ rc = fts3InsertData(p, apVal, pRowid);
+ if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid);
+ }
+ if( rc==SQLITE_OK ){
+ assert( p->iPrevDocid==*pRowid );
+ rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
+ }
+ if( p->bHasDocsize ){
+ fts3InsertDocsize(&rc, p, aSzIns);
+ }
+ nChng++;
+ }
+
+ if( p->bFts4 ){
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
+ }
+
+ update_out:
+ sqlite3_free(aSzDel);
+ sqlite3Fts3SegmentsClose(p);
+ return rc;
+}
+
+/*
+** Flush any data in the pending-terms hash table to disk. If successful,
+** merge all segments in the database (including the new segment, if
+** there was any data to flush) into a single segment.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){
+ int rc;
+ rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3DoOptimize(p, 1);
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){
+ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
+ if( rc2!=SQLITE_OK ) rc = rc2;
+ }else{
+ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
+ sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
+ }
+ }
+ sqlite3Fts3SegmentsClose(p);
+ return rc;
+}
+
+#endif
+
+/************** End of fts3_write.c ******************************************/
+/************** Begin file fts3_snippet.c ************************************/
+/*
+** 2009 Oct 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+#ifndef SQLITE_AMALGAMATION
+typedef sqlite3_int64 i64;
+#endif
+
+/*
+** Characters that may appear in the second argument to matchinfo().
+*/
+#define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */
+#define FTS3_MATCHINFO_NCOL 'c' /* 1 value */
+#define FTS3_MATCHINFO_NDOC 'n' /* 1 value */
+#define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */
+#define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */
+#define FTS3_MATCHINFO_LCS 's' /* nCol values */
+#define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */
+#define FTS3_MATCHINFO_LHITS 'y' /* nCol*nPhrase values */
+#define FTS3_MATCHINFO_LHITS_BM 'b' /* nCol*nPhrase values */
+
+/*
+** The default value for the second argument to matchinfo().
+*/
+#define FTS3_MATCHINFO_DEFAULT "pcx"
+
+
+/*
+** Used as an fts3ExprIterate() context when loading phrase doclists to
+** Fts3Expr.aDoclist[]/nDoclist.
+*/
+typedef struct LoadDoclistCtx LoadDoclistCtx;
+struct LoadDoclistCtx {
+ Fts3Cursor *pCsr; /* FTS3 Cursor */
+ int nPhrase; /* Number of phrases seen so far */
+ int nToken; /* Number of tokens seen so far */
+};
+
+/*
+** The following types are used as part of the implementation of the
+** fts3BestSnippet() routine.
+*/
+typedef struct SnippetIter SnippetIter;
+typedef struct SnippetPhrase SnippetPhrase;
+typedef struct SnippetFragment SnippetFragment;
+
+struct SnippetIter {
+ Fts3Cursor *pCsr; /* Cursor snippet is being generated from */
+ int iCol; /* Extract snippet from this column */
+ int nSnippet; /* Requested snippet length (in tokens) */
+ int nPhrase; /* Number of phrases in query */
+ SnippetPhrase *aPhrase; /* Array of size nPhrase */
+ int iCurrent; /* First token of current snippet */
+};
+
+struct SnippetPhrase {
+ int nToken; /* Number of tokens in phrase */
+ char *pList; /* Pointer to start of phrase position list */
+ i64 iHead; /* Next value in position list */
+ char *pHead; /* Position list data following iHead */
+ i64 iTail; /* Next value in trailing position list */
+ char *pTail; /* Position list data following iTail */
+};
+
+struct SnippetFragment {
+ int iCol; /* Column snippet is extracted from */
+ int iPos; /* Index of first token in snippet */
+ u64 covered; /* Mask of query phrases covered */
+ u64 hlmask; /* Mask of snippet terms to highlight */
+};
+
+/*
+** This type is used as an fts3ExprIterate() context object while
+** accumulating the data returned by the matchinfo() function.
+*/
+typedef struct MatchInfo MatchInfo;
+struct MatchInfo {
+ Fts3Cursor *pCursor; /* FTS3 Cursor */
+ int nCol; /* Number of columns in table */
+ int nPhrase; /* Number of matchable phrases in query */
+ sqlite3_int64 nDoc; /* Number of docs in database */
+ char flag;
+ u32 *aMatchinfo; /* Pre-allocated buffer */
+};
+
+/*
+** An instance of this structure is used to manage a pair of buffers, each
+** (nElem * sizeof(u32)) bytes in size. See the MatchinfoBuffer code below
+** for details.
+*/
+struct MatchinfoBuffer {
+ u8 aRef[3];
+ int nElem;
+ int bGlobal; /* Set if global data is loaded */
+ char *zMatchinfo;
+ u32 aMatchinfo[1];
+};
+
+
+/*
+** The snippet() and offsets() functions both return text values. An instance
+** of the following structure is used to accumulate those values while the
+** functions are running. See fts3StringAppend() for details.
+*/
+typedef struct StrBuffer StrBuffer;
+struct StrBuffer {
+ char *z; /* Pointer to buffer containing string */
+ int n; /* Length of z in bytes (excl. nul-term) */
+ int nAlloc; /* Allocated size of buffer z in bytes */
+};
+
+
+/*************************************************************************
+** Start of MatchinfoBuffer code.
+*/
+
+/*
+** Allocate a two-slot MatchinfoBuffer object.
+*/
+static MatchinfoBuffer *fts3MIBufferNew(size_t nElem, const char *zMatchinfo){
+ MatchinfoBuffer *pRet;
+ sqlite3_int64 nByte = sizeof(u32) * (2*(sqlite3_int64)nElem + 1)
+ + sizeof(MatchinfoBuffer);
+ sqlite3_int64 nStr = strlen(zMatchinfo);
+
+ pRet = sqlite3Fts3MallocZero(nByte + nStr+1);
+ if( pRet ){
+ pRet->aMatchinfo[0] = (u8*)(&pRet->aMatchinfo[1]) - (u8*)pRet;
+ pRet->aMatchinfo[1+nElem] = pRet->aMatchinfo[0]
+ + sizeof(u32)*((int)nElem+1);
+ pRet->nElem = (int)nElem;
+ pRet->zMatchinfo = ((char*)pRet) + nByte;
+ memcpy(pRet->zMatchinfo, zMatchinfo, nStr+1);
+ pRet->aRef[0] = 1;
+ }
+
+ return pRet;
+}
+
+static void fts3MIBufferFree(void *p){
+ MatchinfoBuffer *pBuf = (MatchinfoBuffer*)((u8*)p - ((u32*)p)[-1]);
+
+ assert( (u32*)p==&pBuf->aMatchinfo[1]
+ || (u32*)p==&pBuf->aMatchinfo[pBuf->nElem+2]
+ );
+ if( (u32*)p==&pBuf->aMatchinfo[1] ){
+ pBuf->aRef[1] = 0;
+ }else{
+ pBuf->aRef[2] = 0;
+ }
+
+ if( pBuf->aRef[0]==0 && pBuf->aRef[1]==0 && pBuf->aRef[2]==0 ){
+ sqlite3_free(pBuf);
+ }
+}
+
+static void (*fts3MIBufferAlloc(MatchinfoBuffer *p, u32 **paOut))(void*){
+ void (*xRet)(void*) = 0;
+ u32 *aOut = 0;
+
+ if( p->aRef[1]==0 ){
+ p->aRef[1] = 1;
+ aOut = &p->aMatchinfo[1];
+ xRet = fts3MIBufferFree;
+ }
+ else if( p->aRef[2]==0 ){
+ p->aRef[2] = 1;
+ aOut = &p->aMatchinfo[p->nElem+2];
+ xRet = fts3MIBufferFree;
+ }else{
+ aOut = (u32*)sqlite3_malloc64(p->nElem * sizeof(u32));
+ if( aOut ){
+ xRet = sqlite3_free;
+ if( p->bGlobal ) memcpy(aOut, &p->aMatchinfo[1], p->nElem*sizeof(u32));
+ }
+ }
+
+ *paOut = aOut;
+ return xRet;
+}
+
+static void fts3MIBufferSetGlobal(MatchinfoBuffer *p){
+ p->bGlobal = 1;
+ memcpy(&p->aMatchinfo[2+p->nElem], &p->aMatchinfo[1], p->nElem*sizeof(u32));
+}
+
+/*
+** Free a MatchinfoBuffer object allocated using fts3MIBufferNew()
+*/
+SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p){
+ if( p ){
+ assert( p->aRef[0]==1 );
+ p->aRef[0] = 0;
+ if( p->aRef[0]==0 && p->aRef[1]==0 && p->aRef[2]==0 ){
+ sqlite3_free(p);
+ }
+ }
+}
+
+/*
+** End of MatchinfoBuffer code.
+*************************************************************************/
+
+
+/*
+** This function is used to help iterate through a position-list. A position
+** list is a list of unique integers, sorted from smallest to largest. Each
+** element of the list is represented by an FTS3 varint that takes the value
+** of the difference between the current element and the previous one plus
+** two. For example, to store the position-list:
+**
+** 4 9 113
+**
+** the three varints:
+**
+** 6 7 106
+**
+** are encoded.
+**
+** When this function is called, *pp points to the start of an element of
+** the list. *piPos contains the value of the previous entry in the list.
+** After it returns, *piPos contains the value of the next element of the
+** list and *pp is advanced to the following varint.
+*/
+static void fts3GetDeltaPosition(char **pp, i64 *piPos){
+ int iVal;
+ *pp += fts3GetVarint32(*pp, &iVal);
+ *piPos += (iVal-2);
+}
+
+/*
+** Helper function for fts3ExprIterate() (see below).
+*/
+static int fts3ExprIterate2(
+ Fts3Expr *pExpr, /* Expression to iterate phrases of */
+ int *piPhrase, /* Pointer to phrase counter */
+ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
+ void *pCtx /* Second argument to pass to callback */
+){
+ int rc; /* Return code */
+ int eType = pExpr->eType; /* Type of expression node pExpr */
+
+ if( eType!=FTSQUERY_PHRASE ){
+ assert( pExpr->pLeft && pExpr->pRight );
+ rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx);
+ if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){
+ rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx);
+ }
+ }else{
+ rc = x(pExpr, *piPhrase, pCtx);
+ (*piPhrase)++;
+ }
+ return rc;
+}
+
+/*
+** Iterate through all phrase nodes in an FTS3 query, except those that
+** are part of a sub-tree that is the right-hand-side of a NOT operator.
+** For each phrase node found, the supplied callback function is invoked.
+**
+** If the callback function returns anything other than SQLITE_OK,
+** the iteration is abandoned and the error code returned immediately.
+** Otherwise, SQLITE_OK is returned after a callback has been made for
+** all eligible phrase nodes.
+*/
+static int fts3ExprIterate(
+ Fts3Expr *pExpr, /* Expression to iterate phrases of */
+ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
+ void *pCtx /* Second argument to pass to callback */
+){
+ int iPhrase = 0; /* Variable used as the phrase counter */
+ return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
+}
+
+
+/*
+** This is an fts3ExprIterate() callback used while loading the doclists
+** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
+** fts3ExprLoadDoclists().
+*/
+static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ int rc = SQLITE_OK;
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;
+
+ UNUSED_PARAMETER(iPhrase);
+
+ p->nPhrase++;
+ p->nToken += pPhrase->nToken;
+
+ return rc;
+}
+
+/*
+** Load the doclists for each phrase in the query associated with FTS3 cursor
+** pCsr.
+**
+** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable
+** phrases in the expression (all phrases except those directly or
+** indirectly descended from the right-hand-side of a NOT operator). If
+** pnToken is not NULL, then it is set to the number of tokens in all
+** matchable phrases of the expression.
+*/
+static int fts3ExprLoadDoclists(
+ Fts3Cursor *pCsr, /* Fts3 cursor for current query */
+ int *pnPhrase, /* OUT: Number of phrases in query */
+ int *pnToken /* OUT: Number of tokens in query */
+){
+ int rc; /* Return Code */
+ LoadDoclistCtx sCtx = {0,0,0}; /* Context for fts3ExprIterate() */
+ sCtx.pCsr = pCsr;
+ rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb, (void *)&sCtx);
+ if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
+ if( pnToken ) *pnToken = sCtx.nToken;
+ return rc;
+}
+
+static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ (*(int *)ctx)++;
+ pExpr->iPhrase = iPhrase;
+ return SQLITE_OK;
+}
+static int fts3ExprPhraseCount(Fts3Expr *pExpr){
+ int nPhrase = 0;
+ (void)fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase);
+ return nPhrase;
+}
+
+/*
+** Advance the position list iterator specified by the first two
+** arguments so that it points to the first element with a value greater
+** than or equal to parameter iNext.
+*/
+static void fts3SnippetAdvance(char **ppIter, i64 *piIter, int iNext){
+ char *pIter = *ppIter;
+ if( pIter ){
+ i64 iIter = *piIter;
+
+ while( iIter<iNext ){
+ if( 0==(*pIter & 0xFE) ){
+ iIter = -1;
+ pIter = 0;
+ break;
+ }
+ fts3GetDeltaPosition(&pIter, &iIter);
+ }
+
+ *piIter = iIter;
+ *ppIter = pIter;
+ }
+}
+
+/*
+** Advance the snippet iterator to the next candidate snippet.
+*/
+static int fts3SnippetNextCandidate(SnippetIter *pIter){
+ int i; /* Loop counter */
+
+ if( pIter->iCurrent<0 ){
+ /* The SnippetIter object has just been initialized. The first snippet
+ ** candidate always starts at offset 0 (even if this candidate has a
+ ** score of 0.0).
+ */
+ pIter->iCurrent = 0;
+
+ /* Advance the 'head' iterator of each phrase to the first offset that
+ ** is greater than or equal to (iNext+nSnippet).
+ */
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet);
+ }
+ }else{
+ int iStart;
+ int iEnd = 0x7FFFFFFF;
+
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ if( pPhrase->pHead && pPhrase->iHead<iEnd ){
+ iEnd = pPhrase->iHead;
+ }
+ }
+ if( iEnd==0x7FFFFFFF ){
+ return 1;
+ }
+
+ pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1;
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1);
+ fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart);
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Retrieve information about the current candidate snippet of snippet
+** iterator pIter.
+*/
+static void fts3SnippetDetails(
+ SnippetIter *pIter, /* Snippet iterator */
+ u64 mCovered, /* Bitmask of phrases already covered */
+ int *piToken, /* OUT: First token of proposed snippet */
+ int *piScore, /* OUT: "Score" for this snippet */
+ u64 *pmCover, /* OUT: Bitmask of phrases covered */
+ u64 *pmHighlight /* OUT: Bitmask of terms to highlight */
+){
+ int iStart = pIter->iCurrent; /* First token of snippet */
+ int iScore = 0; /* Score of this snippet */
+ int i; /* Loop counter */
+ u64 mCover = 0; /* Mask of phrases covered by this snippet */
+ u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */
+
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ if( pPhrase->pTail ){
+ char *pCsr = pPhrase->pTail;
+ i64 iCsr = pPhrase->iTail;
+
+ while( iCsr<(iStart+pIter->nSnippet) && iCsr>=iStart ){
+ int j;
+ u64 mPhrase = (u64)1 << (i%64);
+ u64 mPos = (u64)1 << (iCsr - iStart);
+ assert( iCsr>=iStart && (iCsr - iStart)<=64 );
+ assert( i>=0 );
+ if( (mCover|mCovered)&mPhrase ){
+ iScore++;
+ }else{
+ iScore += 1000;
+ }
+ mCover |= mPhrase;
+
+ for(j=0; j<pPhrase->nToken; j++){
+ mHighlight |= (mPos>>j);
+ }
+
+ if( 0==(*pCsr & 0x0FE) ) break;
+ fts3GetDeltaPosition(&pCsr, &iCsr);
+ }
+ }
+ }
+
+ /* Set the output variables before returning. */
+ *piToken = iStart;
+ *piScore = iScore;
+ *pmCover = mCover;
+ *pmHighlight = mHighlight;
+}
+
+/*
+** This function is an fts3ExprIterate() callback used by fts3BestSnippet().
+** Each invocation populates an element of the SnippetIter.aPhrase[] array.
+*/
+static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ SnippetIter *p = (SnippetIter *)ctx;
+ SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
+ char *pCsr;
+ int rc;
+
+ pPhrase->nToken = pExpr->pPhrase->nToken;
+ rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr);
+ assert( rc==SQLITE_OK || pCsr==0 );
+ if( pCsr ){
+ i64 iFirst = 0;
+ pPhrase->pList = pCsr;
+ fts3GetDeltaPosition(&pCsr, &iFirst);
+ if( iFirst<0 ){
+ rc = FTS_CORRUPT_VTAB;
+ }else{
+ pPhrase->pHead = pCsr;
+ pPhrase->pTail = pCsr;
+ pPhrase->iHead = iFirst;
+ pPhrase->iTail = iFirst;
+ }
+ }else{
+ assert( rc!=SQLITE_OK || (
+ pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0
+ ));
+ }
+
+ return rc;
+}
+
+/*
+** Select the fragment of text consisting of nFragment contiguous tokens
+** from column iCol that represent the "best" snippet. The best snippet
+** is the snippet with the highest score, where scores are calculated
+** by adding:
+**
+** (a) +1 point for each occurrence of a matchable phrase in the snippet.
+**
+** (b) +1000 points for the first occurrence of each matchable phrase in
+** the snippet for which the corresponding mCovered bit is not set.
+**
+** The selected snippet parameters are stored in structure *pFragment before
+** returning. The score of the selected snippet is stored in *piScore
+** before returning.
+*/
+static int fts3BestSnippet(
+ int nSnippet, /* Desired snippet length */
+ Fts3Cursor *pCsr, /* Cursor to create snippet for */
+ int iCol, /* Index of column to create snippet from */
+ u64 mCovered, /* Mask of phrases already covered */
+ u64 *pmSeen, /* IN/OUT: Mask of phrases seen */
+ SnippetFragment *pFragment, /* OUT: Best snippet found */
+ int *piScore /* OUT: Score of snippet pFragment */
+){
+ int rc; /* Return Code */
+ int nList; /* Number of phrases in expression */
+ SnippetIter sIter; /* Iterates through snippet candidates */
+ sqlite3_int64 nByte; /* Number of bytes of space to allocate */
+ int iBestScore = -1; /* Best snippet score found so far */
+ int i; /* Loop counter */
+
+ memset(&sIter, 0, sizeof(sIter));
+
+ /* Iterate through the phrases in the expression to count them. The same
+ ** callback makes sure the doclists are loaded for each phrase.
+ */
+ rc = fts3ExprLoadDoclists(pCsr, &nList, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Now that it is known how many phrases there are, allocate and zero
+ ** the required space using malloc().
+ */
+ nByte = sizeof(SnippetPhrase) * nList;
+ sIter.aPhrase = (SnippetPhrase *)sqlite3Fts3MallocZero(nByte);
+ if( !sIter.aPhrase ){
+ return SQLITE_NOMEM;
+ }
+
+ /* Initialize the contents of the SnippetIter object. Then iterate through
+ ** the set of phrases in the expression to populate the aPhrase[] array.
+ */
+ sIter.pCsr = pCsr;
+ sIter.iCol = iCol;
+ sIter.nSnippet = nSnippet;
+ sIter.nPhrase = nList;
+ sIter.iCurrent = -1;
+ rc = fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void*)&sIter);
+ if( rc==SQLITE_OK ){
+
+ /* Set the *pmSeen output variable. */
+ for(i=0; i<nList; i++){
+ if( sIter.aPhrase[i].pHead ){
+ *pmSeen |= (u64)1 << (i%64);
+ }
+ }
+
+ /* Loop through all candidate snippets. Store the best snippet in
+ ** *pFragment. Store its associated 'score' in iBestScore.
+ */
+ pFragment->iCol = iCol;
+ while( !fts3SnippetNextCandidate(&sIter) ){
+ int iPos;
+ int iScore;
+ u64 mCover;
+ u64 mHighlite;
+ fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover,&mHighlite);
+ assert( iScore>=0 );
+ if( iScore>iBestScore ){
+ pFragment->iPos = iPos;
+ pFragment->hlmask = mHighlite;
+ pFragment->covered = mCover;
+ iBestScore = iScore;
+ }
+ }
+
+ *piScore = iBestScore;
+ }
+ sqlite3_free(sIter.aPhrase);
+ return rc;
+}
+
+
+/*
+** Append a string to the string-buffer passed as the first argument.
+**
+** If nAppend is negative, then the length of the string zAppend is
+** determined using strlen().
+*/
+static int fts3StringAppend(
+ StrBuffer *pStr, /* Buffer to append to */
+ const char *zAppend, /* Pointer to data to append to buffer */
+ int nAppend /* Size of zAppend in bytes (or -1) */
+){
+ if( nAppend<0 ){
+ nAppend = (int)strlen(zAppend);
+ }
+
+ /* If there is insufficient space allocated at StrBuffer.z, use realloc()
+ ** to grow the buffer until so that it is big enough to accomadate the
+ ** appended data.
+ */
+ if( pStr->n+nAppend+1>=pStr->nAlloc ){
+ sqlite3_int64 nAlloc = pStr->nAlloc+(sqlite3_int64)nAppend+100;
+ char *zNew = sqlite3_realloc64(pStr->z, nAlloc);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pStr->z = zNew;
+ pStr->nAlloc = nAlloc;
+ }
+ assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) );
+
+ /* Append the data to the string buffer. */
+ memcpy(&pStr->z[pStr->n], zAppend, nAppend);
+ pStr->n += nAppend;
+ pStr->z[pStr->n] = '\0';
+
+ return SQLITE_OK;
+}
+
+/*
+** The fts3BestSnippet() function often selects snippets that end with a
+** query term. That is, the final term of the snippet is always a term
+** that requires highlighting. For example, if 'X' is a highlighted term
+** and '.' is a non-highlighted term, BestSnippet() may select:
+**
+** ........X.....X
+**
+** This function "shifts" the beginning of the snippet forward in the
+** document so that there are approximately the same number of
+** non-highlighted terms to the right of the final highlighted term as there
+** are to the left of the first highlighted term. For example, to this:
+**
+** ....X.....X....
+**
+** This is done as part of extracting the snippet text, not when selecting
+** the snippet. Snippet selection is done based on doclists only, so there
+** is no way for fts3BestSnippet() to know whether or not the document
+** actually contains terms that follow the final highlighted term.
+*/
+static int fts3SnippetShift(
+ Fts3Table *pTab, /* FTS3 table snippet comes from */
+ int iLangid, /* Language id to use in tokenizing */
+ int nSnippet, /* Number of tokens desired for snippet */
+ const char *zDoc, /* Document text to extract snippet from */
+ int nDoc, /* Size of buffer zDoc in bytes */
+ int *piPos, /* IN/OUT: First token of snippet */
+ u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */
+){
+ u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */
+
+ if( hlmask ){
+ int nLeft; /* Tokens to the left of first highlight */
+ int nRight; /* Tokens to the right of last highlight */
+ int nDesired; /* Ideal number of tokens to shift forward */
+
+ for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++);
+ for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++);
+ assert( (nSnippet-1-nRight)<=63 && (nSnippet-1-nRight)>=0 );
+ nDesired = (nLeft-nRight)/2;
+
+ /* Ideally, the start of the snippet should be pushed forward in the
+ ** document nDesired tokens. This block checks if there are actually
+ ** nDesired tokens to the right of the snippet. If so, *piPos and
+ ** *pHlMask are updated to shift the snippet nDesired tokens to the
+ ** right. Otherwise, the snippet is shifted by the number of tokens
+ ** available.
+ */
+ if( nDesired>0 ){
+ int nShift; /* Number of tokens to shift snippet by */
+ int iCurrent = 0; /* Token counter */
+ int rc; /* Return Code */
+ sqlite3_tokenizer_module *pMod;
+ sqlite3_tokenizer_cursor *pC;
+ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
+
+ /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired)
+ ** or more tokens in zDoc/nDoc.
+ */
+ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){
+ const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0;
+ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent);
+ }
+ pMod->xClose(pC);
+ if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; }
+
+ nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet;
+ assert( nShift<=nDesired );
+ if( nShift>0 ){
+ *piPos += nShift;
+ *pHlmask = hlmask >> nShift;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Extract the snippet text for fragment pFragment from cursor pCsr and
+** append it to string buffer pOut.
+*/
+static int fts3SnippetText(
+ Fts3Cursor *pCsr, /* FTS3 Cursor */
+ SnippetFragment *pFragment, /* Snippet to extract */
+ int iFragment, /* Fragment number */
+ int isLast, /* True for final fragment in snippet */
+ int nSnippet, /* Number of tokens in extracted snippet */
+ const char *zOpen, /* String inserted before highlighted term */
+ const char *zClose, /* String inserted after highlighted term */
+ const char *zEllipsis, /* String inserted between snippets */
+ StrBuffer *pOut /* Write output here */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc; /* Return code */
+ const char *zDoc; /* Document text to extract snippet from */
+ int nDoc; /* Size of zDoc in bytes */
+ int iCurrent = 0; /* Current token number of document */
+ int iEnd = 0; /* Byte offset of end of current token */
+ int isShiftDone = 0; /* True after snippet is shifted */
+ int iPos = pFragment->iPos; /* First token of snippet */
+ u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */
+ int iCol = pFragment->iCol+1; /* Query column to extract text from */
+ sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */
+ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */
+
+ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol);
+ if( zDoc==0 ){
+ if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){
+ return SQLITE_NOMEM;
+ }
+ return SQLITE_OK;
+ }
+ nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol);
+
+ /* Open a token cursor on the document. */
+ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
+ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ while( rc==SQLITE_OK ){
+ const char *ZDUMMY; /* Dummy argument used with tokenizer */
+ int DUMMY1 = -1; /* Dummy argument used with tokenizer */
+ int iBegin = 0; /* Offset in zDoc of start of token */
+ int iFin = 0; /* Offset in zDoc of end of token */
+ int isHighlight = 0; /* True for highlighted terms */
+
+ /* Variable DUMMY1 is initialized to a negative value above. Elsewhere
+ ** in the FTS code the variable that the third argument to xNext points to
+ ** is initialized to zero before the first (*but not necessarily
+ ** subsequent*) call to xNext(). This is done for a particular application
+ ** that needs to know whether or not the tokenizer is being used for
+ ** snippet generation or for some other purpose.
+ **
+ ** Extreme care is required when writing code to depend on this
+ ** initialization. It is not a documented part of the tokenizer interface.
+ ** If a tokenizer is used directly by any code outside of FTS, this
+ ** convention might not be respected. */
+ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ /* Special case - the last token of the snippet is also the last token
+ ** of the column. Append any punctuation that occurred between the end
+ ** of the previous token and the end of the document to the output.
+ ** Then break out of the loop. */
+ rc = fts3StringAppend(pOut, &zDoc[iEnd], -1);
+ }
+ break;
+ }
+ if( iCurrent<iPos ){ continue; }
+
+ if( !isShiftDone ){
+ int n = nDoc - iBegin;
+ rc = fts3SnippetShift(
+ pTab, pCsr->iLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask
+ );
+ isShiftDone = 1;
+
+ /* Now that the shift has been done, check if the initial "..." are
+ ** required. They are required if (a) this is not the first fragment,
+ ** or (b) this fragment does not begin at position 0 of its column.
+ */
+ if( rc==SQLITE_OK ){
+ if( iPos>0 || iFragment>0 ){
+ rc = fts3StringAppend(pOut, zEllipsis, -1);
+ }else if( iBegin ){
+ rc = fts3StringAppend(pOut, zDoc, iBegin);
+ }
+ }
+ if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
+ }
+
+ if( iCurrent>=(iPos+nSnippet) ){
+ if( isLast ){
+ rc = fts3StringAppend(pOut, zEllipsis, -1);
+ }
+ break;
+ }
+
+ /* Set isHighlight to true if this term should be highlighted. */
+ isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0;
+
+ if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd);
+ if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1);
+ if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin);
+ if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1);
+
+ iEnd = iFin;
+ }
+
+ pMod->xClose(pC);
+ return rc;
+}
+
+
+/*
+** This function is used to count the entries in a column-list (a
+** delta-encoded list of term offsets within a single column of a single
+** row). When this function is called, *ppCollist should point to the
+** beginning of the first varint in the column-list (the varint that
+** contains the position of the first matching term in the column data).
+** Before returning, *ppCollist is set to point to the first byte after
+** the last varint in the column-list (either the 0x00 signifying the end
+** of the position-list, or the 0x01 that precedes the column number of
+** the next column in the position-list).
+**
+** The number of elements in the column-list is returned.
+*/
+static int fts3ColumnlistCount(char **ppCollist){
+ char *pEnd = *ppCollist;
+ char c = 0;
+ int nEntry = 0;
+
+ /* A column-list is terminated by either a 0x01 or 0x00. */
+ while( 0xFE & (*pEnd | c) ){
+ c = *pEnd++ & 0x80;
+ if( !c ) nEntry++;
+ }
+
+ *ppCollist = pEnd;
+ return nEntry;
+}
+
+/*
+** This function gathers 'y' or 'b' data for a single phrase.
+*/
+static int fts3ExprLHits(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ MatchInfo *p /* Matchinfo context */
+){
+ Fts3Table *pTab = (Fts3Table *)p->pCursor->base.pVtab;
+ int iStart;
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ char *pIter = pPhrase->doclist.pList;
+ int iCol = 0;
+
+ assert( p->flag==FTS3_MATCHINFO_LHITS_BM || p->flag==FTS3_MATCHINFO_LHITS );
+ if( p->flag==FTS3_MATCHINFO_LHITS ){
+ iStart = pExpr->iPhrase * p->nCol;
+ }else{
+ iStart = pExpr->iPhrase * ((p->nCol + 31) / 32);
+ }
+
+ if( pIter ) while( 1 ){
+ int nHit = fts3ColumnlistCount(&pIter);
+ if( (pPhrase->iColumn>=pTab->nColumn || pPhrase->iColumn==iCol) ){
+ if( p->flag==FTS3_MATCHINFO_LHITS ){
+ p->aMatchinfo[iStart + iCol] = (u32)nHit;
+ }else if( nHit ){
+ p->aMatchinfo[iStart + (iCol+1)/32] |= (1 << (iCol&0x1F));
+ }
+ }
+ assert( *pIter==0x00 || *pIter==0x01 );
+ if( *pIter!=0x01 ) break;
+ pIter++;
+ pIter += fts3GetVarint32(pIter, &iCol);
+ if( iCol>=p->nCol ) return FTS_CORRUPT_VTAB;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Gather the results for matchinfo directives 'y' and 'b'.
+*/
+static int fts3ExprLHitGather(
+ Fts3Expr *pExpr,
+ MatchInfo *p
+){
+ int rc = SQLITE_OK;
+ assert( (pExpr->pLeft==0)==(pExpr->pRight==0) );
+ if( pExpr->bEof==0 && pExpr->iDocid==p->pCursor->iPrevId ){
+ if( pExpr->pLeft ){
+ rc = fts3ExprLHitGather(pExpr->pLeft, p);
+ if( rc==SQLITE_OK ) rc = fts3ExprLHitGather(pExpr->pRight, p);
+ }else{
+ rc = fts3ExprLHits(pExpr, p);
+ }
+ }
+ return rc;
+}
+
+/*
+** fts3ExprIterate() callback used to collect the "global" matchinfo stats
+** for a single query.
+**
+** fts3ExprIterate() callback to load the 'global' elements of a
+** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements
+** of the matchinfo array that are constant for all rows returned by the
+** current query.
+**
+** Argument pCtx is actually a pointer to a struct of type MatchInfo. This
+** function populates Matchinfo.aMatchinfo[] as follows:
+**
+** for(iCol=0; iCol<nCol; iCol++){
+** aMatchinfo[3*iPhrase*nCol + 3*iCol + 1] = X;
+** aMatchinfo[3*iPhrase*nCol + 3*iCol + 2] = Y;
+** }
+**
+** where X is the number of matches for phrase iPhrase is column iCol of all
+** rows of the table. Y is the number of rows for which column iCol contains
+** at least one instance of phrase iPhrase.
+**
+** If the phrase pExpr consists entirely of deferred tokens, then all X and
+** Y values are set to nDoc, where nDoc is the number of documents in the
+** file system. This is done because the full-text index doclist is required
+** to calculate these values properly, and the full-text index doclist is
+** not available for deferred tokens.
+*/
+static int fts3ExprGlobalHitsCb(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ int iPhrase, /* Phrase number (numbered from zero) */
+ void *pCtx /* Pointer to MatchInfo structure */
+){
+ MatchInfo *p = (MatchInfo *)pCtx;
+ return sqlite3Fts3EvalPhraseStats(
+ p->pCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol]
+ );
+}
+
+/*
+** fts3ExprIterate() callback used to collect the "local" part of the
+** FTS3_MATCHINFO_HITS array. The local stats are those elements of the
+** array that are different for each row returned by the query.
+*/
+static int fts3ExprLocalHitsCb(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ int iPhrase, /* Phrase number */
+ void *pCtx /* Pointer to MatchInfo structure */
+){
+ int rc = SQLITE_OK;
+ MatchInfo *p = (MatchInfo *)pCtx;
+ int iStart = iPhrase * p->nCol * 3;
+ int i;
+
+ for(i=0; i<p->nCol && rc==SQLITE_OK; i++){
+ char *pCsr;
+ rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr);
+ if( pCsr ){
+ p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr);
+ }else{
+ p->aMatchinfo[iStart+i*3] = 0;
+ }
+ }
+
+ return rc;
+}
+
+static int fts3MatchinfoCheck(
+ Fts3Table *pTab,
+ char cArg,
+ char **pzErr
+){
+ if( (cArg==FTS3_MATCHINFO_NPHRASE)
+ || (cArg==FTS3_MATCHINFO_NCOL)
+ || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4)
+ || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4)
+ || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize)
+ || (cArg==FTS3_MATCHINFO_LCS)
+ || (cArg==FTS3_MATCHINFO_HITS)
+ || (cArg==FTS3_MATCHINFO_LHITS)
+ || (cArg==FTS3_MATCHINFO_LHITS_BM)
+ ){
+ return SQLITE_OK;
+ }
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg);
+ return SQLITE_ERROR;
+}
+
+static size_t fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
+ size_t nVal; /* Number of integers output by cArg */
+
+ switch( cArg ){
+ case FTS3_MATCHINFO_NDOC:
+ case FTS3_MATCHINFO_NPHRASE:
+ case FTS3_MATCHINFO_NCOL:
+ nVal = 1;
+ break;
+
+ case FTS3_MATCHINFO_AVGLENGTH:
+ case FTS3_MATCHINFO_LENGTH:
+ case FTS3_MATCHINFO_LCS:
+ nVal = pInfo->nCol;
+ break;
+
+ case FTS3_MATCHINFO_LHITS:
+ nVal = pInfo->nCol * pInfo->nPhrase;
+ break;
+
+ case FTS3_MATCHINFO_LHITS_BM:
+ nVal = pInfo->nPhrase * ((pInfo->nCol + 31) / 32);
+ break;
+
+ default:
+ assert( cArg==FTS3_MATCHINFO_HITS );
+ nVal = pInfo->nCol * pInfo->nPhrase * 3;
+ break;
+ }
+
+ return nVal;
+}
+
+static int fts3MatchinfoSelectDoctotal(
+ Fts3Table *pTab,
+ sqlite3_stmt **ppStmt,
+ sqlite3_int64 *pnDoc,
+ const char **paLen,
+ const char **ppEnd
+){
+ sqlite3_stmt *pStmt;
+ const char *a;
+ const char *pEnd;
+ sqlite3_int64 nDoc;
+ int n;
+
+
+ if( !*ppStmt ){
+ int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ pStmt = *ppStmt;
+ assert( sqlite3_data_count(pStmt)==1 );
+
+ n = sqlite3_column_bytes(pStmt, 0);
+ a = sqlite3_column_blob(pStmt, 0);
+ if( a==0 ){
+ return FTS_CORRUPT_VTAB;
+ }
+ pEnd = a + n;
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
+ if( nDoc<=0 || a>pEnd ){
+ return FTS_CORRUPT_VTAB;
+ }
+ *pnDoc = nDoc;
+
+ if( paLen ) *paLen = a;
+ if( ppEnd ) *ppEnd = pEnd;
+ return SQLITE_OK;
+}
+
+/*
+** An instance of the following structure is used to store state while
+** iterating through a multi-column position-list corresponding to the
+** hits for a single phrase on a single row in order to calculate the
+** values for a matchinfo() FTS3_MATCHINFO_LCS request.
+*/
+typedef struct LcsIterator LcsIterator;
+struct LcsIterator {
+ Fts3Expr *pExpr; /* Pointer to phrase expression */
+ int iPosOffset; /* Tokens count up to end of this phrase */
+ char *pRead; /* Cursor used to iterate through aDoclist */
+ int iPos; /* Current position */
+};
+
+/*
+** If LcsIterator.iCol is set to the following value, the iterator has
+** finished iterating through all offsets for all columns.
+*/
+#define LCS_ITERATOR_FINISHED 0x7FFFFFFF;
+
+static int fts3MatchinfoLcsCb(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ int iPhrase, /* Phrase number (numbered from zero) */
+ void *pCtx /* Pointer to MatchInfo structure */
+){
+ LcsIterator *aIter = (LcsIterator *)pCtx;
+ aIter[iPhrase].pExpr = pExpr;
+ return SQLITE_OK;
+}
+
+/*
+** Advance the iterator passed as an argument to the next position. Return
+** 1 if the iterator is at EOF or if it now points to the start of the
+** position list for the next column.
+*/
+static int fts3LcsIteratorAdvance(LcsIterator *pIter){
+ char *pRead;
+ sqlite3_int64 iRead;
+ int rc = 0;
+
+ if( NEVER(pIter==0) ) return 1;
+ pRead = pIter->pRead;
+ pRead += sqlite3Fts3GetVarint(pRead, &iRead);
+ if( iRead==0 || iRead==1 ){
+ pRead = 0;
+ rc = 1;
+ }else{
+ pIter->iPos += (int)(iRead-2);
+ }
+
+ pIter->pRead = pRead;
+ return rc;
+}
+
+/*
+** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag.
+**
+** If the call is successful, the longest-common-substring lengths for each
+** column are written into the first nCol elements of the pInfo->aMatchinfo[]
+** array before returning. SQLITE_OK is returned in this case.
+**
+** Otherwise, if an error occurs, an SQLite error code is returned and the
+** data written to the first nCol elements of pInfo->aMatchinfo[] is
+** undefined.
+*/
+static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
+ LcsIterator *aIter;
+ int i;
+ int iCol;
+ int nToken = 0;
+ int rc = SQLITE_OK;
+
+ /* Allocate and populate the array of LcsIterator objects. The array
+ ** contains one element for each matchable phrase in the query.
+ **/
+ aIter = sqlite3Fts3MallocZero(sizeof(LcsIterator) * pCsr->nPhrase);
+ if( !aIter ) return SQLITE_NOMEM;
+ (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);
+
+ for(i=0; i<pInfo->nPhrase; i++){
+ LcsIterator *pIter = &aIter[i];
+ nToken -= pIter->pExpr->pPhrase->nToken;
+ pIter->iPosOffset = nToken;
+ }
+
+ for(iCol=0; iCol<pInfo->nCol; iCol++){
+ int nLcs = 0; /* LCS value for this column */
+ int nLive = 0; /* Number of iterators in aIter not at EOF */
+
+ for(i=0; i<pInfo->nPhrase; i++){
+ LcsIterator *pIt = &aIter[i];
+ rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead);
+ if( rc!=SQLITE_OK ) goto matchinfo_lcs_out;
+ if( pIt->pRead ){
+ pIt->iPos = pIt->iPosOffset;
+ fts3LcsIteratorAdvance(pIt);
+ if( pIt->pRead==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ goto matchinfo_lcs_out;
+ }
+ nLive++;
+ }
+ }
+
+ while( nLive>0 ){
+ LcsIterator *pAdv = 0; /* The iterator to advance by one position */
+ int nThisLcs = 0; /* LCS for the current iterator positions */
+
+ for(i=0; i<pInfo->nPhrase; i++){
+ LcsIterator *pIter = &aIter[i];
+ if( pIter->pRead==0 ){
+ /* This iterator is already at EOF for this column. */
+ nThisLcs = 0;
+ }else{
+ if( pAdv==0 || pIter->iPos<pAdv->iPos ){
+ pAdv = pIter;
+ }
+ if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){
+ nThisLcs++;
+ }else{
+ nThisLcs = 1;
+ }
+ if( nThisLcs>nLcs ) nLcs = nThisLcs;
+ }
+ }
+ if( fts3LcsIteratorAdvance(pAdv) ) nLive--;
+ }
+
+ pInfo->aMatchinfo[iCol] = nLcs;
+ }
+
+ matchinfo_lcs_out:
+ sqlite3_free(aIter);
+ return rc;
+}
+
+/*
+** Populate the buffer pInfo->aMatchinfo[] with an array of integers to
+** be returned by the matchinfo() function. Argument zArg contains the
+** format string passed as the second argument to matchinfo (or the
+** default value "pcx" if no second argument was specified). The format
+** string has already been validated and the pInfo->aMatchinfo[] array
+** is guaranteed to be large enough for the output.
+**
+** If bGlobal is true, then populate all fields of the matchinfo() output.
+** If it is false, then assume that those fields that do not change between
+** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS)
+** have already been populated.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs. If a value other than SQLITE_OK is returned, the state the
+** pInfo->aMatchinfo[] buffer is left in is undefined.
+*/
+static int fts3MatchinfoValues(
+ Fts3Cursor *pCsr, /* FTS3 cursor object */
+ int bGlobal, /* True to grab the global stats */
+ MatchInfo *pInfo, /* Matchinfo context object */
+ const char *zArg /* Matchinfo format string */
+){
+ int rc = SQLITE_OK;
+ int i;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ sqlite3_stmt *pSelect = 0;
+
+ for(i=0; rc==SQLITE_OK && zArg[i]; i++){
+ pInfo->flag = zArg[i];
+ switch( zArg[i] ){
+ case FTS3_MATCHINFO_NPHRASE:
+ if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase;
+ break;
+
+ case FTS3_MATCHINFO_NCOL:
+ if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol;
+ break;
+
+ case FTS3_MATCHINFO_NDOC:
+ if( bGlobal ){
+ sqlite3_int64 nDoc = 0;
+ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0, 0);
+ pInfo->aMatchinfo[0] = (u32)nDoc;
+ }
+ break;
+
+ case FTS3_MATCHINFO_AVGLENGTH:
+ if( bGlobal ){
+ sqlite3_int64 nDoc; /* Number of rows in table */
+ const char *a; /* Aggregate column length array */
+ const char *pEnd; /* First byte past end of length array */
+
+ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a, &pEnd);
+ if( rc==SQLITE_OK ){
+ int iCol;
+ for(iCol=0; iCol<pInfo->nCol; iCol++){
+ u32 iVal;
+ sqlite3_int64 nToken;
+ a += sqlite3Fts3GetVarint(a, &nToken);
+ if( a>pEnd ){
+ rc = SQLITE_CORRUPT_VTAB;
+ break;
+ }
+ iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc);
+ pInfo->aMatchinfo[iCol] = iVal;
+ }
+ }
+ }
+ break;
+
+ case FTS3_MATCHINFO_LENGTH: {
+ sqlite3_stmt *pSelectDocsize = 0;
+ rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize);
+ if( rc==SQLITE_OK ){
+ int iCol;
+ const char *a = sqlite3_column_blob(pSelectDocsize, 0);
+ const char *pEnd = a + sqlite3_column_bytes(pSelectDocsize, 0);
+ for(iCol=0; iCol<pInfo->nCol; iCol++){
+ sqlite3_int64 nToken;
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nToken);
+ if( a>pEnd ){
+ rc = SQLITE_CORRUPT_VTAB;
+ break;
+ }
+ pInfo->aMatchinfo[iCol] = (u32)nToken;
+ }
+ }
+ sqlite3_reset(pSelectDocsize);
+ break;
+ }
+
+ case FTS3_MATCHINFO_LCS:
+ rc = fts3ExprLoadDoclists(pCsr, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3MatchinfoLcs(pCsr, pInfo);
+ }
+ break;
+
+ case FTS3_MATCHINFO_LHITS_BM:
+ case FTS3_MATCHINFO_LHITS: {
+ size_t nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32);
+ memset(pInfo->aMatchinfo, 0, nZero);
+ rc = fts3ExprLHitGather(pCsr->pExpr, pInfo);
+ break;
+ }
+
+ default: {
+ Fts3Expr *pExpr;
+ assert( zArg[i]==FTS3_MATCHINFO_HITS );
+ pExpr = pCsr->pExpr;
+ rc = fts3ExprLoadDoclists(pCsr, 0, 0);
+ if( rc!=SQLITE_OK ) break;
+ if( bGlobal ){
+ if( pCsr->pDeferred ){
+ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc,0,0);
+ if( rc!=SQLITE_OK ) break;
+ }
+ rc = fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo);
+ sqlite3Fts3EvalTestDeferred(pCsr, &rc);
+ if( rc!=SQLITE_OK ) break;
+ }
+ (void)fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo);
+ break;
+ }
+ }
+
+ pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]);
+ }
+
+ sqlite3_reset(pSelect);
+ return rc;
+}
+
+
+/*
+** Populate pCsr->aMatchinfo[] with data for the current row. The
+** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32).
+*/
+static void fts3GetMatchinfo(
+ sqlite3_context *pCtx, /* Return results here */
+ Fts3Cursor *pCsr, /* FTS3 Cursor object */
+ const char *zArg /* Second argument to matchinfo() function */
+){
+ MatchInfo sInfo;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int bGlobal = 0; /* Collect 'global' stats as well as local */
+
+ u32 *aOut = 0;
+ void (*xDestroyOut)(void*) = 0;
+
+ memset(&sInfo, 0, sizeof(MatchInfo));
+ sInfo.pCursor = pCsr;
+ sInfo.nCol = pTab->nColumn;
+
+ /* If there is cached matchinfo() data, but the format string for the
+ ** cache does not match the format string for this request, discard
+ ** the cached data. */
+ if( pCsr->pMIBuffer && strcmp(pCsr->pMIBuffer->zMatchinfo, zArg) ){
+ sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
+ pCsr->pMIBuffer = 0;
+ }
+
+ /* If Fts3Cursor.pMIBuffer is NULL, then this is the first time the
+ ** matchinfo function has been called for this query. In this case
+ ** allocate the array used to accumulate the matchinfo data and
+ ** initialize those elements that are constant for every row.
+ */
+ if( pCsr->pMIBuffer==0 ){
+ size_t nMatchinfo = 0; /* Number of u32 elements in match-info */
+ int i; /* Used to iterate through zArg */
+
+ /* Determine the number of phrases in the query */
+ pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr);
+ sInfo.nPhrase = pCsr->nPhrase;
+
+ /* Determine the number of integers in the buffer returned by this call. */
+ for(i=0; zArg[i]; i++){
+ char *zErr = 0;
+ if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]);
+ }
+
+ /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */
+ pCsr->pMIBuffer = fts3MIBufferNew(nMatchinfo, zArg);
+ if( !pCsr->pMIBuffer ) rc = SQLITE_NOMEM;
+
+ pCsr->isMatchinfoNeeded = 1;
+ bGlobal = 1;
+ }
+
+ if( rc==SQLITE_OK ){
+ xDestroyOut = fts3MIBufferAlloc(pCsr->pMIBuffer, &aOut);
+ if( xDestroyOut==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sInfo.aMatchinfo = aOut;
+ sInfo.nPhrase = pCsr->nPhrase;
+ rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg);
+ if( bGlobal ){
+ fts3MIBufferSetGlobal(pCsr->pMIBuffer);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ if( xDestroyOut ) xDestroyOut(aOut);
+ }else{
+ int n = pCsr->pMIBuffer->nElem * sizeof(u32);
+ sqlite3_result_blob(pCtx, aOut, n, xDestroyOut);
+ }
+}
+
+/*
+** Implementation of snippet() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3Snippet(
+ sqlite3_context *pCtx, /* SQLite function call context */
+ Fts3Cursor *pCsr, /* Cursor object */
+ const char *zStart, /* Snippet start text - "<b>" */
+ const char *zEnd, /* Snippet end text - "</b>" */
+ const char *zEllipsis, /* Snippet ellipsis text - "<b>...</b>" */
+ int iCol, /* Extract snippet from this column */
+ int nToken /* Approximate number of tokens in snippet */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int i;
+ StrBuffer res = {0, 0, 0};
+
+ /* The returned text includes up to four fragments of text extracted from
+ ** the data in the current row. The first iteration of the for(...) loop
+ ** below attempts to locate a single fragment of text nToken tokens in
+ ** size that contains at least one instance of all phrases in the query
+ ** expression that appear in the current row. If such a fragment of text
+ ** cannot be found, the second iteration of the loop attempts to locate
+ ** a pair of fragments, and so on.
+ */
+ int nSnippet = 0; /* Number of fragments in this snippet */
+ SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */
+ int nFToken = -1; /* Number of tokens in each fragment */
+
+ if( !pCsr->pExpr ){
+ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
+ return;
+ }
+
+ /* Limit the snippet length to 64 tokens. */
+ if( nToken<-64 ) nToken = -64;
+ if( nToken>+64 ) nToken = +64;
+
+ for(nSnippet=1; 1; nSnippet++){
+
+ int iSnip; /* Loop counter 0..nSnippet-1 */
+ u64 mCovered = 0; /* Bitmask of phrases covered by snippet */
+ u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */
+
+ if( nToken>=0 ){
+ nFToken = (nToken+nSnippet-1) / nSnippet;
+ }else{
+ nFToken = -1 * nToken;
+ }
+
+ for(iSnip=0; iSnip<nSnippet; iSnip++){
+ int iBestScore = -1; /* Best score of columns checked so far */
+ int iRead; /* Used to iterate through columns */
+ SnippetFragment *pFragment = &aSnippet[iSnip];
+
+ memset(pFragment, 0, sizeof(*pFragment));
+
+ /* Loop through all columns of the table being considered for snippets.
+ ** If the iCol argument to this function was negative, this means all
+ ** columns of the FTS3 table. Otherwise, only column iCol is considered.
+ */
+ for(iRead=0; iRead<pTab->nColumn; iRead++){
+ SnippetFragment sF = {0, 0, 0, 0};
+ int iS = 0;
+ if( iCol>=0 && iRead!=iCol ) continue;
+
+ /* Find the best snippet of nFToken tokens in column iRead. */
+ rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
+ if( rc!=SQLITE_OK ){
+ goto snippet_out;
+ }
+ if( iS>iBestScore ){
+ *pFragment = sF;
+ iBestScore = iS;
+ }
+ }
+
+ mCovered |= pFragment->covered;
+ }
+
+ /* If all query phrases seen by fts3BestSnippet() are present in at least
+ ** one of the nSnippet snippet fragments, break out of the loop.
+ */
+ assert( (mCovered&mSeen)==mCovered );
+ if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break;
+ }
+
+ assert( nFToken>0 );
+
+ for(i=0; i<nSnippet && rc==SQLITE_OK; i++){
+ rc = fts3SnippetText(pCsr, &aSnippet[i],
+ i, (i==nSnippet-1), nFToken, zStart, zEnd, zEllipsis, &res
+ );
+ }
+
+ snippet_out:
+ sqlite3Fts3SegmentsClose(pTab);
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ sqlite3_free(res.z);
+ }else{
+ sqlite3_result_text(pCtx, res.z, -1, sqlite3_free);
+ }
+}
+
+
+typedef struct TermOffset TermOffset;
+typedef struct TermOffsetCtx TermOffsetCtx;
+
+struct TermOffset {
+ char *pList; /* Position-list */
+ i64 iPos; /* Position just read from pList */
+ i64 iOff; /* Offset of this term from read positions */
+};
+
+struct TermOffsetCtx {
+ Fts3Cursor *pCsr;
+ int iCol; /* Column of table to populate aTerm for */
+ int iTerm;
+ sqlite3_int64 iDocid;
+ TermOffset *aTerm;
+};
+
+/*
+** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets().
+*/
+static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ TermOffsetCtx *p = (TermOffsetCtx *)ctx;
+ int nTerm; /* Number of tokens in phrase */
+ int iTerm; /* For looping through nTerm phrase terms */
+ char *pList; /* Pointer to position list for phrase */
+ i64 iPos = 0; /* First position in position-list */
+ int rc;
+
+ UNUSED_PARAMETER(iPhrase);
+ rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pList);
+ nTerm = pExpr->pPhrase->nToken;
+ if( pList ){
+ fts3GetDeltaPosition(&pList, &iPos);
+ assert_fts3_nc( iPos>=0 );
+ }
+
+ for(iTerm=0; iTerm<nTerm; iTerm++){
+ TermOffset *pT = &p->aTerm[p->iTerm++];
+ pT->iOff = nTerm-iTerm-1;
+ pT->pList = pList;
+ pT->iPos = iPos;
+ }
+
+ return rc;
+}
+
+/*
+** Implementation of offsets() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3Offsets(
+ sqlite3_context *pCtx, /* SQLite function call context */
+ Fts3Cursor *pCsr /* Cursor object */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule;
+ int rc; /* Return Code */
+ int nToken; /* Number of tokens in query */
+ int iCol; /* Column currently being processed */
+ StrBuffer res = {0, 0, 0}; /* Result string */
+ TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */
+
+ if( !pCsr->pExpr ){
+ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
+ return;
+ }
+
+ memset(&sCtx, 0, sizeof(sCtx));
+ assert( pCsr->isRequireSeek==0 );
+
+ /* Count the number of terms in the query */
+ rc = fts3ExprLoadDoclists(pCsr, 0, &nToken);
+ if( rc!=SQLITE_OK ) goto offsets_out;
+
+ /* Allocate the array of TermOffset iterators. */
+ sCtx.aTerm = (TermOffset *)sqlite3Fts3MallocZero(sizeof(TermOffset)*nToken);
+ if( 0==sCtx.aTerm ){
+ rc = SQLITE_NOMEM;
+ goto offsets_out;
+ }
+ sCtx.iDocid = pCsr->iPrevId;
+ sCtx.pCsr = pCsr;
+
+ /* Loop through the table columns, appending offset information to
+ ** string-buffer res for each column.
+ */
+ for(iCol=0; iCol<pTab->nColumn; iCol++){
+ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */
+ const char *ZDUMMY; /* Dummy argument used with xNext() */
+ int NDUMMY = 0; /* Dummy argument used with xNext() */
+ int iStart = 0;
+ int iEnd = 0;
+ int iCurrent = 0;
+ const char *zDoc;
+ int nDoc;
+
+ /* Initialize the contents of sCtx.aTerm[] for column iCol. This
+ ** operation may fail if the database contains corrupt records.
+ */
+ sCtx.iCol = iCol;
+ sCtx.iTerm = 0;
+ rc = fts3ExprIterate(pCsr->pExpr, fts3ExprTermOffsetInit, (void*)&sCtx);
+ if( rc!=SQLITE_OK ) goto offsets_out;
+
+ /* Retreive the text stored in column iCol. If an SQL NULL is stored
+ ** in column iCol, jump immediately to the next iteration of the loop.
+ ** If an OOM occurs while retrieving the data (this can happen if SQLite
+ ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM
+ ** to the caller.
+ */
+ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1);
+ nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
+ if( zDoc==0 ){
+ if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){
+ continue;
+ }
+ rc = SQLITE_NOMEM;
+ goto offsets_out;
+ }
+
+ /* Initialize a tokenizer iterator to iterate through column iCol. */
+ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid,
+ zDoc, nDoc, &pC
+ );
+ if( rc!=SQLITE_OK ) goto offsets_out;
+
+ rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
+ while( rc==SQLITE_OK ){
+ int i; /* Used to loop through terms */
+ int iMinPos = 0x7FFFFFFF; /* Position of next token */
+ TermOffset *pTerm = 0; /* TermOffset associated with next token */
+
+ for(i=0; i<nToken; i++){
+ TermOffset *pT = &sCtx.aTerm[i];
+ if( pT->pList && (pT->iPos-pT->iOff)<iMinPos ){
+ iMinPos = pT->iPos-pT->iOff;
+ pTerm = pT;
+ }
+ }
+
+ if( !pTerm ){
+ /* All offsets for this column have been gathered. */
+ rc = SQLITE_DONE;
+ }else{
+ assert_fts3_nc( iCurrent<=iMinPos );
+ if( 0==(0xFE&*pTerm->pList) ){
+ pTerm->pList = 0;
+ }else{
+ fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos);
+ }
+ while( rc==SQLITE_OK && iCurrent<iMinPos ){
+ rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
+ }
+ if( rc==SQLITE_OK ){
+ char aBuffer[64];
+ sqlite3_snprintf(sizeof(aBuffer), aBuffer,
+ "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart
+ );
+ rc = fts3StringAppend(&res, aBuffer, -1);
+ }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+ }
+ }
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+
+ pMod->xClose(pC);
+ if( rc!=SQLITE_OK ) goto offsets_out;
+ }
+
+ offsets_out:
+ sqlite3_free(sCtx.aTerm);
+ assert( rc!=SQLITE_DONE );
+ sqlite3Fts3SegmentsClose(pTab);
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ sqlite3_free(res.z);
+ }else{
+ sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free);
+ }
+ return;
+}
+
+/*
+** Implementation of matchinfo() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3Matchinfo(
+ sqlite3_context *pContext, /* Function call context */
+ Fts3Cursor *pCsr, /* FTS3 table cursor */
+ const char *zArg /* Second arg to matchinfo() function */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ const char *zFormat;
+
+ if( zArg ){
+ zFormat = zArg;
+ }else{
+ zFormat = FTS3_MATCHINFO_DEFAULT;
+ }
+
+ if( !pCsr->pExpr ){
+ sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC);
+ return;
+ }else{
+ /* Retrieve matchinfo() data. */
+ fts3GetMatchinfo(pContext, pCsr, zFormat);
+ sqlite3Fts3SegmentsClose(pTab);
+ }
+}
+
+#endif
+
+/************** End of fts3_snippet.c ****************************************/
+/************** Begin file fts3_unicode.c ************************************/
+/*
+** 2012 May 24
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Implementation of the "unicode" full-text-search tokenizer.
+*/
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+
+/* #include "fts3_tokenizer.h" */
+
+/*
+** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
+** from the sqlite3 source file utf.c. If this file is compiled as part
+** of the amalgamation, they are not required.
+*/
+#ifndef SQLITE_AMALGAMATION
+
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (u8)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+}
+
+#endif /* ifndef SQLITE_AMALGAMATION */
+
+typedef struct unicode_tokenizer unicode_tokenizer;
+typedef struct unicode_cursor unicode_cursor;
+
+struct unicode_tokenizer {
+ sqlite3_tokenizer base;
+ int eRemoveDiacritic;
+ int nException;
+ int *aiException;
+};
+
+struct unicode_cursor {
+ sqlite3_tokenizer_cursor base;
+ const unsigned char *aInput; /* Input text being tokenized */
+ int nInput; /* Size of aInput[] in bytes */
+ int iOff; /* Current offset within aInput[] */
+ int iToken; /* Index of next token to be returned */
+ char *zToken; /* storage for current token */
+ int nAlloc; /* space allocated at zToken */
+};
+
+
+/*
+** Destroy a tokenizer allocated by unicodeCreate().
+*/
+static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){
+ if( pTokenizer ){
+ unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer;
+ sqlite3_free(p->aiException);
+ sqlite3_free(p);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE
+** statement has specified that the tokenizer for this table shall consider
+** all characters in string zIn/nIn to be separators (if bAlnum==0) or
+** token characters (if bAlnum==1).
+**
+** For each codepoint in the zIn/nIn string, this function checks if the
+** sqlite3FtsUnicodeIsalnum() function already returns the desired result.
+** If so, no action is taken. Otherwise, the codepoint is added to the
+** unicode_tokenizer.aiException[] array. For the purposes of tokenization,
+** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all
+** codepoints in the aiException[] array.
+**
+** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic()
+** identifies as a diacritic) occurs in the zIn/nIn string it is ignored.
+** It is not possible to change the behavior of the tokenizer with respect
+** to these codepoints.
+*/
+static int unicodeAddExceptions(
+ unicode_tokenizer *p, /* Tokenizer to add exceptions to */
+ int bAlnum, /* Replace Isalnum() return value with this */
+ const char *zIn, /* Array of characters to make exceptions */
+ int nIn /* Length of z in bytes */
+){
+ const unsigned char *z = (const unsigned char *)zIn;
+ const unsigned char *zTerm = &z[nIn];
+ unsigned int iCode;
+ int nEntry = 0;
+
+ assert( bAlnum==0 || bAlnum==1 );
+
+ while( z<zTerm ){
+ READ_UTF8(z, zTerm, iCode);
+ assert( (sqlite3FtsUnicodeIsalnum((int)iCode) & 0xFFFFFFFE)==0 );
+ if( sqlite3FtsUnicodeIsalnum((int)iCode)!=bAlnum
+ && sqlite3FtsUnicodeIsdiacritic((int)iCode)==0
+ ){
+ nEntry++;
+ }
+ }
+
+ if( nEntry ){
+ int *aNew; /* New aiException[] array */
+ int nNew; /* Number of valid entries in array aNew[] */
+
+ aNew = sqlite3_realloc64(p->aiException,(p->nException+nEntry)*sizeof(int));
+ if( aNew==0 ) return SQLITE_NOMEM;
+ nNew = p->nException;
+
+ z = (const unsigned char *)zIn;
+ while( z<zTerm ){
+ READ_UTF8(z, zTerm, iCode);
+ if( sqlite3FtsUnicodeIsalnum((int)iCode)!=bAlnum
+ && sqlite3FtsUnicodeIsdiacritic((int)iCode)==0
+ ){
+ int i, j;
+ for(i=0; i<nNew && aNew[i]<(int)iCode; i++);
+ for(j=nNew; j>i; j--) aNew[j] = aNew[j-1];
+ aNew[i] = (int)iCode;
+ nNew++;
+ }
+ }
+ p->aiException = aNew;
+ p->nException = nNew;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Return true if the p->aiException[] array contains the value iCode.
+*/
+static int unicodeIsException(unicode_tokenizer *p, int iCode){
+ if( p->nException>0 ){
+ int *a = p->aiException;
+ int iLo = 0;
+ int iHi = p->nException-1;
+
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( iCode==a[iTest] ){
+ return 1;
+ }else if( iCode>a[iTest] ){
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Return true if, for the purposes of tokenization, codepoint iCode is
+** considered a token character (not a separator).
+*/
+static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){
+ assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
+ return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode);
+}
+
+/*
+** Create a new tokenizer instance.
+*/
+static int unicodeCreate(
+ int nArg, /* Size of array argv[] */
+ const char * const *azArg, /* Tokenizer creation arguments */
+ sqlite3_tokenizer **pp /* OUT: New tokenizer handle */
+){
+ unicode_tokenizer *pNew; /* New tokenizer object */
+ int i;
+ int rc = SQLITE_OK;
+
+ pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
+ if( pNew==NULL ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(unicode_tokenizer));
+ pNew->eRemoveDiacritic = 1;
+
+ for(i=0; rc==SQLITE_OK && i<nArg; i++){
+ const char *z = azArg[i];
+ int n = (int)strlen(z);
+
+ if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
+ pNew->eRemoveDiacritic = 1;
+ }
+ else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
+ pNew->eRemoveDiacritic = 0;
+ }
+ else if( n==19 && memcmp("remove_diacritics=2", z, 19)==0 ){
+ pNew->eRemoveDiacritic = 2;
+ }
+ else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){
+ rc = unicodeAddExceptions(pNew, 1, &z[11], n-11);
+ }
+ else if( n>=11 && memcmp("separators=", z, 11)==0 ){
+ rc = unicodeAddExceptions(pNew, 0, &z[11], n-11);
+ }
+ else{
+ /* Unrecognized argument */
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ unicodeDestroy((sqlite3_tokenizer *)pNew);
+ pNew = 0;
+ }
+ *pp = (sqlite3_tokenizer *)pNew;
+ return rc;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int unicodeOpen(
+ sqlite3_tokenizer *p, /* The tokenizer */
+ const char *aInput, /* Input string */
+ int nInput, /* Size of string aInput in bytes */
+ sqlite3_tokenizer_cursor **pp /* OUT: New cursor object */
+){
+ unicode_cursor *pCsr;
+
+ pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(unicode_cursor));
+
+ pCsr->aInput = (const unsigned char *)aInput;
+ if( aInput==0 ){
+ pCsr->nInput = 0;
+ pCsr->aInput = (const unsigned char*)"";
+ }else if( nInput<0 ){
+ pCsr->nInput = (int)strlen(aInput);
+ }else{
+ pCsr->nInput = nInput;
+ }
+
+ *pp = &pCsr->base;
+ UNUSED_PARAMETER(p);
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** simpleOpen() above.
+*/
+static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){
+ unicode_cursor *pCsr = (unicode_cursor *) pCursor;
+ sqlite3_free(pCsr->zToken);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to simpleOpen().
+*/
+static int unicodeNext(
+ sqlite3_tokenizer_cursor *pC, /* Cursor returned by simpleOpen */
+ const char **paToken, /* OUT: Token text */
+ int *pnToken, /* OUT: Number of bytes at *paToken */
+ int *piStart, /* OUT: Starting offset of token */
+ int *piEnd, /* OUT: Ending offset of token */
+ int *piPos /* OUT: Position integer of token */
+){
+ unicode_cursor *pCsr = (unicode_cursor *)pC;
+ unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer);
+ unsigned int iCode = 0;
+ char *zOut;
+ const unsigned char *z = &pCsr->aInput[pCsr->iOff];
+ const unsigned char *zStart = z;
+ const unsigned char *zEnd;
+ const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput];
+
+ /* Scan past any delimiter characters before the start of the next token.
+ ** Return SQLITE_DONE early if this takes us all the way to the end of
+ ** the input. */
+ while( z<zTerm ){
+ READ_UTF8(z, zTerm, iCode);
+ if( unicodeIsAlnum(p, (int)iCode) ) break;
+ zStart = z;
+ }
+ if( zStart>=zTerm ) return SQLITE_DONE;
+
+ zOut = pCsr->zToken;
+ do {
+ int iOut;
+
+ /* Grow the output buffer if required. */
+ if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){
+ char *zNew = sqlite3_realloc64(pCsr->zToken, pCsr->nAlloc+64);
+ if( !zNew ) return SQLITE_NOMEM;
+ zOut = &zNew[zOut - pCsr->zToken];
+ pCsr->zToken = zNew;
+ pCsr->nAlloc += 64;
+ }
+
+ /* Write the folded case of the last character read to the output */
+ zEnd = z;
+ iOut = sqlite3FtsUnicodeFold((int)iCode, p->eRemoveDiacritic);
+ if( iOut ){
+ WRITE_UTF8(zOut, iOut);
+ }
+
+ /* If the cursor is not at EOF, read the next character */
+ if( z>=zTerm ) break;
+ READ_UTF8(z, zTerm, iCode);
+ }while( unicodeIsAlnum(p, (int)iCode)
+ || sqlite3FtsUnicodeIsdiacritic((int)iCode)
+ );
+
+ /* Set the output variables and return. */
+ pCsr->iOff = (int)(z - pCsr->aInput);
+ *paToken = pCsr->zToken;
+ *pnToken = (int)(zOut - pCsr->zToken);
+ *piStart = (int)(zStart - pCsr->aInput);
+ *piEnd = (int)(zEnd - pCsr->aInput);
+ *piPos = pCsr->iToken++;
+ return SQLITE_OK;
+}
+
+/*
+** Set *ppModule to a pointer to the sqlite3_tokenizer_module
+** structure for the unicode tokenizer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){
+ static const sqlite3_tokenizer_module module = {
+ 0,
+ unicodeCreate,
+ unicodeDestroy,
+ unicodeOpen,
+ unicodeClose,
+ unicodeNext,
+ 0,
+ };
+ *ppModule = &module;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+#endif /* ifndef SQLITE_DISABLE_FTS3_UNICODE */
+
+/************** End of fts3_unicode.c ****************************************/
+/************** Begin file fts3_unicode2.c ***********************************/
+/*
+** 2012-05-25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/*
+** DO NOT EDIT THIS MACHINE GENERATED FILE.
+*/
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
+
+/* #include <assert.h> */
+
+/*
+** Return true if the argument corresponds to a unicode codepoint
+** classified as either a letter or a number. Otherwise false.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int c){
+ /* Each unsigned integer in the following array corresponds to a contiguous
+ ** range of unicode codepoints that are not either letters or numbers (i.e.
+ ** codepoints for which this function should return 0).
+ **
+ ** The most significant 22 bits in each 32-bit value contain the first
+ ** codepoint in the range. The least significant 10 bits are used to store
+ ** the size of the range (always at least 1). In other words, the value
+ ** ((C<<22) + N) represents a range of N codepoints starting with codepoint
+ ** C. It is not possible to represent a range larger than 1023 codepoints
+ ** using this format.
+ */
+ static const unsigned int aEntry[] = {
+ 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07,
+ 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01,
+ 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401,
+ 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01,
+ 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01,
+ 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802,
+ 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F,
+ 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401,
+ 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804,
+ 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403,
+ 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812,
+ 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001,
+ 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802,
+ 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805,
+ 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401,
+ 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03,
+ 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807,
+ 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001,
+ 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01,
+ 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804,
+ 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001,
+ 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802,
+ 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01,
+ 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06,
+ 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007,
+ 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006,
+ 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417,
+ 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14,
+ 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07,
+ 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01,
+ 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001,
+ 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802,
+ 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F,
+ 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002,
+ 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802,
+ 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006,
+ 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D,
+ 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802,
+ 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027,
+ 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403,
+ 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805,
+ 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04,
+ 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401,
+ 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005,
+ 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B,
+ 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A,
+ 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001,
+ 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59,
+ 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807,
+ 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01,
+ 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E,
+ 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100,
+ 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10,
+ 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402,
+ 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804,
+ 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012,
+ 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004,
+ 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002,
+ 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803,
+ 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07,
+ 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02,
+ 0x037FFC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802,
+ 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013,
+ 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06,
+ 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003,
+ 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01,
+ 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403,
+ 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009,
+ 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003,
+ 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003,
+ 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E,
+ 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046,
+ 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401,
+ 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401,
+ 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F,
+ 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C,
+ 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002,
+ 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025,
+ 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6,
+ 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46,
+ 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
+ 0x380400F0,
+ };
+ static const unsigned int aAscii[4] = {
+ 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
+ };
+
+ if( (unsigned int)c<128 ){
+ return ( (aAscii[c >> 5] & ((unsigned int)1 << (c & 0x001F)))==0 );
+ }else if( (unsigned int)c<(1<<22) ){
+ unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
+ int iRes = 0;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aEntry[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( aEntry[0]<key );
+ assert( key>=aEntry[iRes] );
+ return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
+ }
+ return 1;
+}
+
+
+/*
+** If the argument is a codepoint corresponding to a lowercase letter
+** in the ASCII range with a diacritic added, return the codepoint
+** of the ASCII letter only. For example, if passed 235 - "LATIN
+** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
+** E"). The resuls of passing a codepoint that corresponds to an
+** uppercase letter are undefined.
+*/
+static int remove_diacritic(int c, int bComplex){
+ unsigned short aDia[] = {
+ 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995,
+ 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286,
+ 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732,
+ 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336,
+ 3456, 3696, 3712, 3728, 3744, 3766, 3832, 3896,
+ 3912, 3928, 3944, 3968, 4008, 4040, 4056, 4106,
+ 4138, 4170, 4202, 4234, 4266, 4296, 4312, 4344,
+ 4408, 4424, 4442, 4472, 4488, 4504, 6148, 6198,
+ 6264, 6280, 6360, 6429, 6505, 6529, 61448, 61468,
+ 61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704,
+ 61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914,
+ 61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218,
+ 62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554,
+ 62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766,
+ 62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118,
+ 63182, 63242, 63274, 63310, 63368, 63390,
+ };
+#define HIBIT ((unsigned char)0x80)
+ unsigned char aChar[] = {
+ '\0', 'a', 'c', 'e', 'i', 'n',
+ 'o', 'u', 'y', 'y', 'a', 'c',
+ 'd', 'e', 'e', 'g', 'h', 'i',
+ 'j', 'k', 'l', 'n', 'o', 'r',
+ 's', 't', 'u', 'u', 'w', 'y',
+ 'z', 'o', 'u', 'a', 'i', 'o',
+ 'u', 'u'|HIBIT, 'a'|HIBIT, 'g', 'k', 'o',
+ 'o'|HIBIT, 'j', 'g', 'n', 'a'|HIBIT, 'a',
+ 'e', 'i', 'o', 'r', 'u', 's',
+ 't', 'h', 'a', 'e', 'o'|HIBIT, 'o',
+ 'o'|HIBIT, 'y', '\0', '\0', '\0', '\0',
+ '\0', '\0', '\0', '\0', 'a', 'b',
+ 'c'|HIBIT, 'd', 'd', 'e'|HIBIT, 'e', 'e'|HIBIT,
+ 'f', 'g', 'h', 'h', 'i', 'i'|HIBIT,
+ 'k', 'l', 'l'|HIBIT, 'l', 'm', 'n',
+ 'o'|HIBIT, 'p', 'r', 'r'|HIBIT, 'r', 's',
+ 's'|HIBIT, 't', 'u', 'u'|HIBIT, 'v', 'w',
+ 'w', 'x', 'y', 'z', 'h', 't',
+ 'w', 'y', 'a', 'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT,
+ 'e', 'e'|HIBIT, 'e'|HIBIT, 'i', 'o', 'o'|HIBIT,
+ 'o'|HIBIT, 'o'|HIBIT, 'u', 'u'|HIBIT, 'u'|HIBIT, 'y',
+ };
+
+ unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
+ int iRes = 0;
+ int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aDia[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( key>=aDia[iRes] );
+ if( bComplex==0 && (aChar[iRes] & 0x80) ) return c;
+ return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F);
+}
+
+
+/*
+** Return true if the argument interpreted as a unicode codepoint
+** is a diacritical modifier character.
+*/
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int c){
+ unsigned int mask0 = 0x08029FDF;
+ unsigned int mask1 = 0x000361F8;
+ if( c<768 || c>817 ) return 0;
+ return (c < 768+32) ?
+ (mask0 & ((unsigned int)1 << (c-768))) :
+ (mask1 & ((unsigned int)1 << (c-768-32)));
+}
+
+
+/*
+** Interpret the argument as a unicode codepoint. If the codepoint
+** is an upper case character that has a lower case equivalent,
+** return the codepoint corresponding to the lower case version.
+** Otherwise, return a copy of the argument.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int c, int eRemoveDiacritic){
+ /* Each entry in the following array defines a rule for folding a range
+ ** of codepoints to lower case. The rule applies to a range of nRange
+ ** codepoints starting at codepoint iCode.
+ **
+ ** If the least significant bit in flags is clear, then the rule applies
+ ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
+ ** need to be folded). Or, if it is set, then the rule only applies to
+ ** every second codepoint in the range, starting with codepoint C.
+ **
+ ** The 7 most significant bits in flags are an index into the aiOff[]
+ ** array. If a specific codepoint C does require folding, then its lower
+ ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
+ **
+ ** The contents of this array are generated by parsing the CaseFolding.txt
+ ** file distributed as part of the "Unicode Character Database". See
+ ** http://www.unicode.org for details.
+ */
+ static const struct TableEntry {
+ unsigned short iCode;
+ unsigned char flags;
+ unsigned char nRange;
+ } aEntry[] = {
+ {65, 14, 26}, {181, 64, 1}, {192, 14, 23},
+ {216, 14, 7}, {256, 1, 48}, {306, 1, 6},
+ {313, 1, 16}, {330, 1, 46}, {376, 116, 1},
+ {377, 1, 6}, {383, 104, 1}, {385, 50, 1},
+ {386, 1, 4}, {390, 44, 1}, {391, 0, 1},
+ {393, 42, 2}, {395, 0, 1}, {398, 32, 1},
+ {399, 38, 1}, {400, 40, 1}, {401, 0, 1},
+ {403, 42, 1}, {404, 46, 1}, {406, 52, 1},
+ {407, 48, 1}, {408, 0, 1}, {412, 52, 1},
+ {413, 54, 1}, {415, 56, 1}, {416, 1, 6},
+ {422, 60, 1}, {423, 0, 1}, {425, 60, 1},
+ {428, 0, 1}, {430, 60, 1}, {431, 0, 1},
+ {433, 58, 2}, {435, 1, 4}, {439, 62, 1},
+ {440, 0, 1}, {444, 0, 1}, {452, 2, 1},
+ {453, 0, 1}, {455, 2, 1}, {456, 0, 1},
+ {458, 2, 1}, {459, 1, 18}, {478, 1, 18},
+ {497, 2, 1}, {498, 1, 4}, {502, 122, 1},
+ {503, 134, 1}, {504, 1, 40}, {544, 110, 1},
+ {546, 1, 18}, {570, 70, 1}, {571, 0, 1},
+ {573, 108, 1}, {574, 68, 1}, {577, 0, 1},
+ {579, 106, 1}, {580, 28, 1}, {581, 30, 1},
+ {582, 1, 10}, {837, 36, 1}, {880, 1, 4},
+ {886, 0, 1}, {902, 18, 1}, {904, 16, 3},
+ {908, 26, 1}, {910, 24, 2}, {913, 14, 17},
+ {931, 14, 9}, {962, 0, 1}, {975, 4, 1},
+ {976, 140, 1}, {977, 142, 1}, {981, 146, 1},
+ {982, 144, 1}, {984, 1, 24}, {1008, 136, 1},
+ {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1},
+ {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1},
+ {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32},
+ {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1},
+ {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38},
+ {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1},
+ {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1},
+ {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6},
+ {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6},
+ {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8},
+ {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2},
+ {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1},
+ {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2},
+ {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2},
+ {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2},
+ {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1},
+ {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16},
+ {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47},
+ {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1},
+ {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1},
+ {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1},
+ {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2},
+ {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1},
+ {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14},
+ {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1},
+ {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1},
+ {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1},
+ {65313, 14, 26},
+ };
+ static const unsigned short aiOff[] = {
+ 1, 2, 8, 15, 16, 26, 28, 32,
+ 37, 38, 40, 48, 63, 64, 69, 71,
+ 79, 80, 116, 202, 203, 205, 206, 207,
+ 209, 210, 211, 213, 214, 217, 218, 219,
+ 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721,
+ 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
+ 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
+ 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
+ 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
+ 65514, 65521, 65527, 65528, 65529,
+ };
+
+ int ret = c;
+
+ assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
+
+ if( c<128 ){
+ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
+ }else if( c<65536 ){
+ const struct TableEntry *p;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ int iRes = -1;
+
+ assert( c>aEntry[0].iCode );
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ int cmp = (c - aEntry[iTest].iCode);
+ if( cmp>=0 ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+
+ assert( iRes>=0 && c>=aEntry[iRes].iCode );
+ p = &aEntry[iRes];
+ if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
+ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
+ assert( ret>0 );
+ }
+
+ if( eRemoveDiacritic ){
+ ret = remove_diacritic(ret, eRemoveDiacritic==2);
+ }
+ }
+
+ else if( c>=66560 && c<66600 ){
+ ret = c + 40;
+ }
+
+ return ret;
+}
+#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
+#endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */
+
+/************** End of fts3_unicode2.c ***************************************/
+/************** Begin file json.c ********************************************/
+/*
+** 2015-08-12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This SQLite JSON functions.
+**
+** This file began as an extension in ext/misc/json1.c in 2015. That
+** extension proved so useful that it has now been moved into the core.
+**
+** For the time being, all JSON is stored as pure text. (We might add
+** a JSONB type in the future which stores a binary encoding of JSON in
+** a BLOB, but there is no support for JSONB in the current implementation.
+** This implementation parses JSON text at 250 MB/s, so it is hard to see
+** how JSONB might improve on that.)
+*/
+#ifndef SQLITE_OMIT_JSON
+/* #include "sqliteInt.h" */
+
+/*
+** Growing our own isspace() routine this way is twice as fast as
+** the library isspace() function, resulting in a 7% overall performance
+** increase for the parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os).
+*/
+static const char jsonIsSpace[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+};
+#define fast_isspace(x) (jsonIsSpace[(unsigned char)x])
+
+#if !defined(SQLITE_DEBUG) && !defined(SQLITE_COVERAGE_TEST)
+# define VVA(X)
+#else
+# define VVA(X) X
+#endif
+
+/* Objects */
+typedef struct JsonString JsonString;
+typedef struct JsonNode JsonNode;
+typedef struct JsonParse JsonParse;
+
+/* An instance of this object represents a JSON string
+** under construction. Really, this is a generic string accumulator
+** that can be and is used to create strings other than JSON.
+*/
+struct JsonString {
+ sqlite3_context *pCtx; /* Function context - put error messages here */
+ char *zBuf; /* Append JSON content here */
+ u64 nAlloc; /* Bytes of storage available in zBuf[] */
+ u64 nUsed; /* Bytes of zBuf[] currently used */
+ u8 bStatic; /* True if zBuf is static space */
+ u8 bErr; /* True if an error has been encountered */
+ char zSpace[100]; /* Initial static space */
+};
+
+/* JSON type values
+*/
+#define JSON_NULL 0
+#define JSON_TRUE 1
+#define JSON_FALSE 2
+#define JSON_INT 3
+#define JSON_REAL 4
+#define JSON_STRING 5
+#define JSON_ARRAY 6
+#define JSON_OBJECT 7
+
+/* The "subtype" set for JSON values */
+#define JSON_SUBTYPE 74 /* Ascii for "J" */
+
+/*
+** Names of the various JSON types:
+*/
+static const char * const jsonType[] = {
+ "null", "true", "false", "integer", "real", "text", "array", "object"
+};
+
+/* Bit values for the JsonNode.jnFlag field
+*/
+#define JNODE_RAW 0x01 /* Content is raw, not JSON encoded */
+#define JNODE_ESCAPE 0x02 /* Content is text with \ escapes */
+#define JNODE_REMOVE 0x04 /* Do not output */
+#define JNODE_REPLACE 0x08 /* Replace with JsonNode.u.iReplace */
+#define JNODE_PATCH 0x10 /* Patch with JsonNode.u.pPatch */
+#define JNODE_APPEND 0x20 /* More ARRAY/OBJECT entries at u.iAppend */
+#define JNODE_LABEL 0x40 /* Is a label of an object */
+
+
+/* A single node of parsed JSON
+*/
+struct JsonNode {
+ u8 eType; /* One of the JSON_ type values */
+ u8 jnFlags; /* JNODE flags */
+ u8 eU; /* Which union element to use */
+ u32 n; /* Bytes of content, or number of sub-nodes */
+ union {
+ const char *zJContent; /* 1: Content for INT, REAL, and STRING */
+ u32 iAppend; /* 2: More terms for ARRAY and OBJECT */
+ u32 iKey; /* 3: Key for ARRAY objects in json_tree() */
+ u32 iReplace; /* 4: Replacement content for JNODE_REPLACE */
+ JsonNode *pPatch; /* 5: Node chain of patch for JNODE_PATCH */
+ } u;
+};
+
+/* A completely parsed JSON string
+*/
+struct JsonParse {
+ u32 nNode; /* Number of slots of aNode[] used */
+ u32 nAlloc; /* Number of slots of aNode[] allocated */
+ JsonNode *aNode; /* Array of nodes containing the parse */
+ const char *zJson; /* Original JSON string */
+ u32 *aUp; /* Index of parent of each node */
+ u8 oom; /* Set to true if out of memory */
+ u8 nErr; /* Number of errors seen */
+ u16 iDepth; /* Nesting depth */
+ int nJson; /* Length of the zJson string in bytes */
+ u32 iHold; /* Replace cache line with the lowest iHold value */
+};
+
+/*
+** Maximum nesting depth of JSON for this implementation.
+**
+** This limit is needed to avoid a stack overflow in the recursive
+** descent parser. A depth of 2000 is far deeper than any sane JSON
+** should go.
+*/
+#define JSON_MAX_DEPTH 2000
+
+/**************************************************************************
+** Utility routines for dealing with JsonString objects
+**************************************************************************/
+
+/* Set the JsonString object to an empty string
+*/
+static void jsonZero(JsonString *p){
+ p->zBuf = p->zSpace;
+ p->nAlloc = sizeof(p->zSpace);
+ p->nUsed = 0;
+ p->bStatic = 1;
+}
+
+/* Initialize the JsonString object
+*/
+static void jsonInit(JsonString *p, sqlite3_context *pCtx){
+ p->pCtx = pCtx;
+ p->bErr = 0;
+ jsonZero(p);
+}
+
+
+/* Free all allocated memory and reset the JsonString object back to its
+** initial state.
+*/
+static void jsonReset(JsonString *p){
+ if( !p->bStatic ) sqlite3_free(p->zBuf);
+ jsonZero(p);
+}
+
+
+/* Report an out-of-memory (OOM) condition
+*/
+static void jsonOom(JsonString *p){
+ p->bErr = 1;
+ sqlite3_result_error_nomem(p->pCtx);
+ jsonReset(p);
+}
+
+/* Enlarge pJson->zBuf so that it can hold at least N more bytes.
+** Return zero on success. Return non-zero on an OOM error
+*/
+static int jsonGrow(JsonString *p, u32 N){
+ u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10;
+ char *zNew;
+ if( p->bStatic ){
+ if( p->bErr ) return 1;
+ zNew = sqlite3_malloc64(nTotal);
+ if( zNew==0 ){
+ jsonOom(p);
+ return SQLITE_NOMEM;
+ }
+ memcpy(zNew, p->zBuf, (size_t)p->nUsed);
+ p->zBuf = zNew;
+ p->bStatic = 0;
+ }else{
+ zNew = sqlite3_realloc64(p->zBuf, nTotal);
+ if( zNew==0 ){
+ jsonOom(p);
+ return SQLITE_NOMEM;
+ }
+ p->zBuf = zNew;
+ }
+ p->nAlloc = nTotal;
+ return SQLITE_OK;
+}
+
+/* Append N bytes from zIn onto the end of the JsonString string.
+*/
+static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){
+ if( N==0 ) return;
+ if( (N+p->nUsed >= p->nAlloc) && jsonGrow(p,N)!=0 ) return;
+ memcpy(p->zBuf+p->nUsed, zIn, N);
+ p->nUsed += N;
+}
+
+/* Append formatted text (not to exceed N bytes) to the JsonString.
+*/
+static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){
+ va_list ap;
+ if( (p->nUsed + N >= p->nAlloc) && jsonGrow(p, N) ) return;
+ va_start(ap, zFormat);
+ sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap);
+ va_end(ap);
+ p->nUsed += (int)strlen(p->zBuf+p->nUsed);
+}
+
+/* Append a single character
+*/
+static void jsonAppendChar(JsonString *p, char c){
+ if( p->nUsed>=p->nAlloc && jsonGrow(p,1)!=0 ) return;
+ p->zBuf[p->nUsed++] = c;
+}
+
+/* Append a comma separator to the output buffer, if the previous
+** character is not '[' or '{'.
+*/
+static void jsonAppendSeparator(JsonString *p){
+ char c;
+ if( p->nUsed==0 ) return;
+ c = p->zBuf[p->nUsed-1];
+ if( c!='[' && c!='{' ) jsonAppendChar(p, ',');
+}
+
+/* Append the N-byte string in zIn to the end of the JsonString string
+** under construction. Enclose the string in "..." and escape
+** any double-quotes or backslash characters contained within the
+** string.
+*/
+static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
+ u32 i;
+ if( zIn==0 || ((N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0) ) return;
+ p->zBuf[p->nUsed++] = '"';
+ for(i=0; i<N; i++){
+ unsigned char c = ((unsigned const char*)zIn)[i];
+ if( c=='"' || c=='\\' ){
+ json_simple_escape:
+ if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return;
+ p->zBuf[p->nUsed++] = '\\';
+ }else if( c<=0x1f ){
+ static const char aSpecial[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ assert( sizeof(aSpecial)==32 );
+ assert( aSpecial['\b']=='b' );
+ assert( aSpecial['\f']=='f' );
+ assert( aSpecial['\n']=='n' );
+ assert( aSpecial['\r']=='r' );
+ assert( aSpecial['\t']=='t' );
+ if( aSpecial[c] ){
+ c = aSpecial[c];
+ goto json_simple_escape;
+ }
+ if( (p->nUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return;
+ p->zBuf[p->nUsed++] = '\\';
+ p->zBuf[p->nUsed++] = 'u';
+ p->zBuf[p->nUsed++] = '0';
+ p->zBuf[p->nUsed++] = '0';
+ p->zBuf[p->nUsed++] = '0' + (c>>4);
+ c = "0123456789abcdef"[c&0xf];
+ }
+ p->zBuf[p->nUsed++] = c;
+ }
+ p->zBuf[p->nUsed++] = '"';
+ assert( p->nUsed<p->nAlloc );
+}
+
+/*
+** Append a function parameter value to the JSON string under
+** construction.
+*/
+static void jsonAppendValue(
+ JsonString *p, /* Append to this JSON string */
+ sqlite3_value *pValue /* Value to append */
+){
+ switch( sqlite3_value_type(pValue) ){
+ case SQLITE_NULL: {
+ jsonAppendRaw(p, "null", 4);
+ break;
+ }
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ const char *z = (const char*)sqlite3_value_text(pValue);
+ u32 n = (u32)sqlite3_value_bytes(pValue);
+ jsonAppendRaw(p, z, n);
+ break;
+ }
+ case SQLITE_TEXT: {
+ const char *z = (const char*)sqlite3_value_text(pValue);
+ u32 n = (u32)sqlite3_value_bytes(pValue);
+ if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){
+ jsonAppendRaw(p, z, n);
+ }else{
+ jsonAppendString(p, z, n);
+ }
+ break;
+ }
+ default: {
+ if( p->bErr==0 ){
+ sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
+ p->bErr = 2;
+ jsonReset(p);
+ }
+ break;
+ }
+ }
+}
+
+
+/* Make the JSON in p the result of the SQL function.
+*/
+static void jsonResult(JsonString *p){
+ if( p->bErr==0 ){
+ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed,
+ p->bStatic ? SQLITE_TRANSIENT : sqlite3_free,
+ SQLITE_UTF8);
+ jsonZero(p);
+ }
+ assert( p->bStatic );
+}
+
+/**************************************************************************
+** Utility routines for dealing with JsonNode and JsonParse objects
+**************************************************************************/
+
+/*
+** Return the number of consecutive JsonNode slots need to represent
+** the parsed JSON at pNode. The minimum answer is 1. For ARRAY and
+** OBJECT types, the number might be larger.
+**
+** Appended elements are not counted. The value returned is the number
+** by which the JsonNode counter should increment in order to go to the
+** next peer value.
+*/
+static u32 jsonNodeSize(JsonNode *pNode){
+ return pNode->eType>=JSON_ARRAY ? pNode->n+1 : 1;
+}
+
+/*
+** Reclaim all memory allocated by a JsonParse object. But do not
+** delete the JsonParse object itself.
+*/
+static void jsonParseReset(JsonParse *pParse){
+ sqlite3_free(pParse->aNode);
+ pParse->aNode = 0;
+ pParse->nNode = 0;
+ pParse->nAlloc = 0;
+ sqlite3_free(pParse->aUp);
+ pParse->aUp = 0;
+}
+
+/*
+** Free a JsonParse object that was obtained from sqlite3_malloc().
+*/
+static void jsonParseFree(JsonParse *pParse){
+ jsonParseReset(pParse);
+ sqlite3_free(pParse);
+}
+
+/*
+** Convert the JsonNode pNode into a pure JSON string and
+** append to pOut. Subsubstructure is also included. Return
+** the number of JsonNode objects that are encoded.
+*/
+static void jsonRenderNode(
+ JsonNode *pNode, /* The node to render */
+ JsonString *pOut, /* Write JSON here */
+ sqlite3_value **aReplace /* Replacement values */
+){
+ assert( pNode!=0 );
+ if( pNode->jnFlags & (JNODE_REPLACE|JNODE_PATCH) ){
+ if( (pNode->jnFlags & JNODE_REPLACE)!=0 && ALWAYS(aReplace!=0) ){
+ assert( pNode->eU==4 );
+ jsonAppendValue(pOut, aReplace[pNode->u.iReplace]);
+ return;
+ }
+ assert( pNode->eU==5 );
+ pNode = pNode->u.pPatch;
+ }
+ switch( pNode->eType ){
+ default: {
+ assert( pNode->eType==JSON_NULL );
+ jsonAppendRaw(pOut, "null", 4);
+ break;
+ }
+ case JSON_TRUE: {
+ jsonAppendRaw(pOut, "true", 4);
+ break;
+ }
+ case JSON_FALSE: {
+ jsonAppendRaw(pOut, "false", 5);
+ break;
+ }
+ case JSON_STRING: {
+ if( pNode->jnFlags & JNODE_RAW ){
+ assert( pNode->eU==1 );
+ jsonAppendString(pOut, pNode->u.zJContent, pNode->n);
+ break;
+ }
+ /* no break */ deliberate_fall_through
+ }
+ case JSON_REAL:
+ case JSON_INT: {
+ assert( pNode->eU==1 );
+ jsonAppendRaw(pOut, pNode->u.zJContent, pNode->n);
+ break;
+ }
+ case JSON_ARRAY: {
+ u32 j = 1;
+ jsonAppendChar(pOut, '[');
+ for(;;){
+ while( j<=pNode->n ){
+ if( (pNode[j].jnFlags & JNODE_REMOVE)==0 ){
+ jsonAppendSeparator(pOut);
+ jsonRenderNode(&pNode[j], pOut, aReplace);
+ }
+ j += jsonNodeSize(&pNode[j]);
+ }
+ if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
+ assert( pNode->eU==2 );
+ pNode = &pNode[pNode->u.iAppend];
+ j = 1;
+ }
+ jsonAppendChar(pOut, ']');
+ break;
+ }
+ case JSON_OBJECT: {
+ u32 j = 1;
+ jsonAppendChar(pOut, '{');
+ for(;;){
+ while( j<=pNode->n ){
+ if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 ){
+ jsonAppendSeparator(pOut);
+ jsonRenderNode(&pNode[j], pOut, aReplace);
+ jsonAppendChar(pOut, ':');
+ jsonRenderNode(&pNode[j+1], pOut, aReplace);
+ }
+ j += 1 + jsonNodeSize(&pNode[j+1]);
+ }
+ if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
+ assert( pNode->eU==2 );
+ pNode = &pNode[pNode->u.iAppend];
+ j = 1;
+ }
+ jsonAppendChar(pOut, '}');
+ break;
+ }
+ }
+}
+
+/*
+** Return a JsonNode and all its descendents as a JSON string.
+*/
+static void jsonReturnJson(
+ JsonNode *pNode, /* Node to return */
+ sqlite3_context *pCtx, /* Return value for this function */
+ sqlite3_value **aReplace /* Array of replacement values */
+){
+ JsonString s;
+ jsonInit(&s, pCtx);
+ jsonRenderNode(pNode, &s, aReplace);
+ jsonResult(&s);
+ sqlite3_result_subtype(pCtx, JSON_SUBTYPE);
+}
+
+/*
+** Translate a single byte of Hex into an integer.
+** This routine only works if h really is a valid hexadecimal
+** character: 0..9a..fA..F
+*/
+static u8 jsonHexToInt(int h){
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
+#ifdef SQLITE_EBCDIC
+ h += 9*(1&~(h>>4));
+#else
+ h += 9*(1&(h>>6));
+#endif
+ return (u8)(h & 0xf);
+}
+
+/*
+** Convert a 4-byte hex string into an integer
+*/
+static u32 jsonHexToInt4(const char *z){
+ u32 v;
+ assert( sqlite3Isxdigit(z[0]) );
+ assert( sqlite3Isxdigit(z[1]) );
+ assert( sqlite3Isxdigit(z[2]) );
+ assert( sqlite3Isxdigit(z[3]) );
+ v = (jsonHexToInt(z[0])<<12)
+ + (jsonHexToInt(z[1])<<8)
+ + (jsonHexToInt(z[2])<<4)
+ + jsonHexToInt(z[3]);
+ return v;
+}
+
+/*
+** Make the JsonNode the return value of the function.
+*/
+static void jsonReturn(
+ JsonNode *pNode, /* Node to return */
+ sqlite3_context *pCtx, /* Return value for this function */
+ sqlite3_value **aReplace /* Array of replacement values */
+){
+ switch( pNode->eType ){
+ default: {
+ assert( pNode->eType==JSON_NULL );
+ sqlite3_result_null(pCtx);
+ break;
+ }
+ case JSON_TRUE: {
+ sqlite3_result_int(pCtx, 1);
+ break;
+ }
+ case JSON_FALSE: {
+ sqlite3_result_int(pCtx, 0);
+ break;
+ }
+ case JSON_INT: {
+ sqlite3_int64 i = 0;
+ const char *z;
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ if( z[0]=='-' ){ z++; }
+ while( z[0]>='0' && z[0]<='9' ){
+ unsigned v = *(z++) - '0';
+ if( i>=LARGEST_INT64/10 ){
+ if( i>LARGEST_INT64/10 ) goto int_as_real;
+ if( z[0]>='0' && z[0]<='9' ) goto int_as_real;
+ if( v==9 ) goto int_as_real;
+ if( v==8 ){
+ if( pNode->u.zJContent[0]=='-' ){
+ sqlite3_result_int64(pCtx, SMALLEST_INT64);
+ goto int_done;
+ }else{
+ goto int_as_real;
+ }
+ }
+ }
+ i = i*10 + v;
+ }
+ if( pNode->u.zJContent[0]=='-' ){ i = -i; }
+ sqlite3_result_int64(pCtx, i);
+ int_done:
+ break;
+ int_as_real: ; /* no break */ deliberate_fall_through
+ }
+ case JSON_REAL: {
+ double r;
+#ifdef SQLITE_AMALGAMATION
+ const char *z;
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8);
+#else
+ assert( pNode->eU==1 );
+ r = strtod(pNode->u.zJContent, 0);
+#endif
+ sqlite3_result_double(pCtx, r);
+ break;
+ }
+ case JSON_STRING: {
+#if 0 /* Never happens because JNODE_RAW is only set by json_set(),
+ ** json_insert() and json_replace() and those routines do not
+ ** call jsonReturn() */
+ if( pNode->jnFlags & JNODE_RAW ){
+ assert( pNode->eU==1 );
+ sqlite3_result_text(pCtx, pNode->u.zJContent, pNode->n,
+ SQLITE_TRANSIENT);
+ }else
+#endif
+ assert( (pNode->jnFlags & JNODE_RAW)==0 );
+ if( (pNode->jnFlags & JNODE_ESCAPE)==0 ){
+ /* JSON formatted without any backslash-escapes */
+ assert( pNode->eU==1 );
+ sqlite3_result_text(pCtx, pNode->u.zJContent+1, pNode->n-2,
+ SQLITE_TRANSIENT);
+ }else{
+ /* Translate JSON formatted string into raw text */
+ u32 i;
+ u32 n = pNode->n;
+ const char *z;
+ char *zOut;
+ u32 j;
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ zOut = sqlite3_malloc( n+1 );
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ break;
+ }
+ for(i=1, j=0; i<n-1; i++){
+ char c = z[i];
+ if( c!='\\' ){
+ zOut[j++] = c;
+ }else{
+ c = z[++i];
+ if( c=='u' ){
+ u32 v = jsonHexToInt4(z+i+1);
+ i += 4;
+ if( v==0 ) break;
+ if( v<=0x7f ){
+ zOut[j++] = (char)v;
+ }else if( v<=0x7ff ){
+ zOut[j++] = (char)(0xc0 | (v>>6));
+ zOut[j++] = 0x80 | (v&0x3f);
+ }else{
+ u32 vlo;
+ if( (v&0xfc00)==0xd800
+ && i<n-6
+ && z[i+1]=='\\'
+ && z[i+2]=='u'
+ && ((vlo = jsonHexToInt4(z+i+3))&0xfc00)==0xdc00
+ ){
+ /* We have a surrogate pair */
+ v = ((v&0x3ff)<<10) + (vlo&0x3ff) + 0x10000;
+ i += 6;
+ zOut[j++] = 0xf0 | (v>>18);
+ zOut[j++] = 0x80 | ((v>>12)&0x3f);
+ zOut[j++] = 0x80 | ((v>>6)&0x3f);
+ zOut[j++] = 0x80 | (v&0x3f);
+ }else{
+ zOut[j++] = 0xe0 | (v>>12);
+ zOut[j++] = 0x80 | ((v>>6)&0x3f);
+ zOut[j++] = 0x80 | (v&0x3f);
+ }
+ }
+ }else{
+ if( c=='b' ){
+ c = '\b';
+ }else if( c=='f' ){
+ c = '\f';
+ }else if( c=='n' ){
+ c = '\n';
+ }else if( c=='r' ){
+ c = '\r';
+ }else if( c=='t' ){
+ c = '\t';
+ }
+ zOut[j++] = c;
+ }
+ }
+ }
+ zOut[j] = 0;
+ sqlite3_result_text(pCtx, zOut, j, sqlite3_free);
+ }
+ break;
+ }
+ case JSON_ARRAY:
+ case JSON_OBJECT: {
+ jsonReturnJson(pNode, pCtx, aReplace);
+ break;
+ }
+ }
+}
+
+/* Forward reference */
+static int jsonParseAddNode(JsonParse*,u32,u32,const char*);
+
+/*
+** A macro to hint to the compiler that a function should not be
+** inlined.
+*/
+#if defined(__GNUC__)
+# define JSON_NOINLINE __attribute__((noinline))
+#elif defined(_MSC_VER) && _MSC_VER>=1310
+# define JSON_NOINLINE __declspec(noinline)
+#else
+# define JSON_NOINLINE
+#endif
+
+
+static JSON_NOINLINE int jsonParseAddNodeExpand(
+ JsonParse *pParse, /* Append the node to this object */
+ u32 eType, /* Node type */
+ u32 n, /* Content size or sub-node count */
+ const char *zContent /* Content */
+){
+ u32 nNew;
+ JsonNode *pNew;
+ assert( pParse->nNode>=pParse->nAlloc );
+ if( pParse->oom ) return -1;
+ nNew = pParse->nAlloc*2 + 10;
+ pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew);
+ if( pNew==0 ){
+ pParse->oom = 1;
+ return -1;
+ }
+ pParse->nAlloc = nNew;
+ pParse->aNode = pNew;
+ assert( pParse->nNode<pParse->nAlloc );
+ return jsonParseAddNode(pParse, eType, n, zContent);
+}
+
+/*
+** Create a new JsonNode instance based on the arguments and append that
+** instance to the JsonParse. Return the index in pParse->aNode[] of the
+** new node, or -1 if a memory allocation fails.
+*/
+static int jsonParseAddNode(
+ JsonParse *pParse, /* Append the node to this object */
+ u32 eType, /* Node type */
+ u32 n, /* Content size or sub-node count */
+ const char *zContent /* Content */
+){
+ JsonNode *p;
+ if( pParse->aNode==0 || pParse->nNode>=pParse->nAlloc ){
+ return jsonParseAddNodeExpand(pParse, eType, n, zContent);
+ }
+ p = &pParse->aNode[pParse->nNode];
+ p->eType = (u8)eType;
+ p->jnFlags = 0;
+ VVA( p->eU = zContent ? 1 : 0 );
+ p->n = n;
+ p->u.zJContent = zContent;
+ return pParse->nNode++;
+}
+
+/*
+** Return true if z[] begins with 4 (or more) hexadecimal digits
+*/
+static int jsonIs4Hex(const char *z){
+ int i;
+ for(i=0; i<4; i++) if( !sqlite3Isxdigit(z[i]) ) return 0;
+ return 1;
+}
+
+/*
+** Parse a single JSON value which begins at pParse->zJson[i]. Return the
+** index of the first character past the end of the value parsed.
+**
+** Return negative for a syntax error. Special cases: return -2 if the
+** first non-whitespace character is '}' and return -3 if the first
+** non-whitespace character is ']'.
+*/
+static int jsonParseValue(JsonParse *pParse, u32 i){
+ char c;
+ u32 j;
+ int iThis;
+ int x;
+ JsonNode *pNode;
+ const char *z = pParse->zJson;
+ while( fast_isspace(z[i]) ){ i++; }
+ if( (c = z[i])=='{' ){
+ /* Parse object */
+ iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
+ if( iThis<0 ) return -1;
+ for(j=i+1;;j++){
+ while( fast_isspace(z[j]) ){ j++; }
+ if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1;
+ x = jsonParseValue(pParse, j);
+ if( x<0 ){
+ pParse->iDepth--;
+ if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
+ return -1;
+ }
+ if( pParse->oom ) return -1;
+ pNode = &pParse->aNode[pParse->nNode-1];
+ if( pNode->eType!=JSON_STRING ) return -1;
+ pNode->jnFlags |= JNODE_LABEL;
+ j = x;
+ while( fast_isspace(z[j]) ){ j++; }
+ if( z[j]!=':' ) return -1;
+ j++;
+ x = jsonParseValue(pParse, j);
+ pParse->iDepth--;
+ if( x<0 ) return -1;
+ j = x;
+ while( fast_isspace(z[j]) ){ j++; }
+ c = z[j];
+ if( c==',' ) continue;
+ if( c!='}' ) return -1;
+ break;
+ }
+ pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
+ return j+1;
+ }else if( c=='[' ){
+ /* Parse array */
+ iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
+ if( iThis<0 ) return -1;
+ memset(&pParse->aNode[iThis].u, 0, sizeof(pParse->aNode[iThis].u));
+ for(j=i+1;;j++){
+ while( fast_isspace(z[j]) ){ j++; }
+ if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1;
+ x = jsonParseValue(pParse, j);
+ pParse->iDepth--;
+ if( x<0 ){
+ if( x==(-3) && pParse->nNode==(u32)iThis+1 ) return j+1;
+ return -1;
+ }
+ j = x;
+ while( fast_isspace(z[j]) ){ j++; }
+ c = z[j];
+ if( c==',' ) continue;
+ if( c!=']' ) return -1;
+ break;
+ }
+ pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
+ return j+1;
+ }else if( c=='"' ){
+ /* Parse string */
+ u8 jnFlags = 0;
+ j = i+1;
+ for(;;){
+ c = z[j];
+ if( (c & ~0x1f)==0 ){
+ /* Control characters are not allowed in strings */
+ return -1;
+ }
+ if( c=='\\' ){
+ c = z[++j];
+ if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
+ || c=='n' || c=='r' || c=='t'
+ || (c=='u' && jsonIs4Hex(z+j+1)) ){
+ jnFlags = JNODE_ESCAPE;
+ }else{
+ return -1;
+ }
+ }else if( c=='"' ){
+ break;
+ }
+ j++;
+ }
+ jsonParseAddNode(pParse, JSON_STRING, j+1-i, &z[i]);
+ if( !pParse->oom ) pParse->aNode[pParse->nNode-1].jnFlags = jnFlags;
+ return j+1;
+ }else if( c=='n'
+ && strncmp(z+i,"null",4)==0
+ && !sqlite3Isalnum(z[i+4]) ){
+ jsonParseAddNode(pParse, JSON_NULL, 0, 0);
+ return i+4;
+ }else if( c=='t'
+ && strncmp(z+i,"true",4)==0
+ && !sqlite3Isalnum(z[i+4]) ){
+ jsonParseAddNode(pParse, JSON_TRUE, 0, 0);
+ return i+4;
+ }else if( c=='f'
+ && strncmp(z+i,"false",5)==0
+ && !sqlite3Isalnum(z[i+5]) ){
+ jsonParseAddNode(pParse, JSON_FALSE, 0, 0);
+ return i+5;
+ }else if( c=='-' || (c>='0' && c<='9') ){
+ /* Parse number */
+ u8 seenDP = 0;
+ u8 seenE = 0;
+ assert( '-' < '0' );
+ if( c<='0' ){
+ j = c=='-' ? i+1 : i;
+ if( z[j]=='0' && z[j+1]>='0' && z[j+1]<='9' ) return -1;
+ }
+ j = i+1;
+ for(;; j++){
+ c = z[j];
+ if( c>='0' && c<='9' ) continue;
+ if( c=='.' ){
+ if( z[j-1]=='-' ) return -1;
+ if( seenDP ) return -1;
+ seenDP = 1;
+ continue;
+ }
+ if( c=='e' || c=='E' ){
+ if( z[j-1]<'0' ) return -1;
+ if( seenE ) return -1;
+ seenDP = seenE = 1;
+ c = z[j+1];
+ if( c=='+' || c=='-' ){
+ j++;
+ c = z[j+1];
+ }
+ if( c<'0' || c>'9' ) return -1;
+ continue;
+ }
+ break;
+ }
+ if( z[j-1]<'0' ) return -1;
+ jsonParseAddNode(pParse, seenDP ? JSON_REAL : JSON_INT,
+ j - i, &z[i]);
+ return j;
+ }else if( c=='}' ){
+ return -2; /* End of {...} */
+ }else if( c==']' ){
+ return -3; /* End of [...] */
+ }else if( c==0 ){
+ return 0; /* End of file */
+ }else{
+ return -1; /* Syntax error */
+ }
+}
+
+/*
+** Parse a complete JSON string. Return 0 on success or non-zero if there
+** are any errors. If an error occurs, free all memory associated with
+** pParse.
+**
+** pParse is uninitialized when this routine is called.
+*/
+static int jsonParse(
+ JsonParse *pParse, /* Initialize and fill this JsonParse object */
+ sqlite3_context *pCtx, /* Report errors here */
+ const char *zJson /* Input JSON text to be parsed */
+){
+ int i;
+ memset(pParse, 0, sizeof(*pParse));
+ if( zJson==0 ) return 1;
+ pParse->zJson = zJson;
+ i = jsonParseValue(pParse, 0);
+ if( pParse->oom ) i = -1;
+ if( i>0 ){
+ assert( pParse->iDepth==0 );
+ while( fast_isspace(zJson[i]) ) i++;
+ if( zJson[i] ) i = -1;
+ }
+ if( i<=0 ){
+ if( pCtx!=0 ){
+ if( pParse->oom ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ sqlite3_result_error(pCtx, "malformed JSON", -1);
+ }
+ }
+ jsonParseReset(pParse);
+ return 1;
+ }
+ return 0;
+}
+
+/* Mark node i of pParse as being a child of iParent. Call recursively
+** to fill in all the descendants of node i.
+*/
+static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){
+ JsonNode *pNode = &pParse->aNode[i];
+ u32 j;
+ pParse->aUp[i] = iParent;
+ switch( pNode->eType ){
+ case JSON_ARRAY: {
+ for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j)){
+ jsonParseFillInParentage(pParse, i+j, i);
+ }
+ break;
+ }
+ case JSON_OBJECT: {
+ for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j+1)+1){
+ pParse->aUp[i+j] = i;
+ jsonParseFillInParentage(pParse, i+j+1, i);
+ }
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+}
+
+/*
+** Compute the parentage of all nodes in a completed parse.
+*/
+static int jsonParseFindParents(JsonParse *pParse){
+ u32 *aUp;
+ assert( pParse->aUp==0 );
+ aUp = pParse->aUp = sqlite3_malloc64( sizeof(u32)*pParse->nNode );
+ if( aUp==0 ){
+ pParse->oom = 1;
+ return SQLITE_NOMEM;
+ }
+ jsonParseFillInParentage(pParse, 0, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Magic number used for the JSON parse cache in sqlite3_get_auxdata()
+*/
+#define JSON_CACHE_ID (-429938) /* First cache entry */
+#define JSON_CACHE_SZ 4 /* Max number of cache entries */
+
+/*
+** Obtain a complete parse of the JSON found in the first argument
+** of the argv array. Use the sqlite3_get_auxdata() cache for this
+** parse if it is available. If the cache is not available or if it
+** is no longer valid, parse the JSON again and return the new parse,
+** and also register the new parse so that it will be available for
+** future sqlite3_get_auxdata() calls.
+*/
+static JsonParse *jsonParseCached(
+ sqlite3_context *pCtx,
+ sqlite3_value **argv,
+ sqlite3_context *pErrCtx
+){
+ const char *zJson = (const char*)sqlite3_value_text(argv[0]);
+ int nJson = sqlite3_value_bytes(argv[0]);
+ JsonParse *p;
+ JsonParse *pMatch = 0;
+ int iKey;
+ int iMinKey = 0;
+ u32 iMinHold = 0xffffffff;
+ u32 iMaxHold = 0;
+ if( zJson==0 ) return 0;
+ for(iKey=0; iKey<JSON_CACHE_SZ; iKey++){
+ p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iKey);
+ if( p==0 ){
+ iMinKey = iKey;
+ break;
+ }
+ if( pMatch==0
+ && p->nJson==nJson
+ && memcmp(p->zJson,zJson,nJson)==0
+ ){
+ p->nErr = 0;
+ pMatch = p;
+ }else if( p->iHold<iMinHold ){
+ iMinHold = p->iHold;
+ iMinKey = iKey;
+ }
+ if( p->iHold>iMaxHold ){
+ iMaxHold = p->iHold;
+ }
+ }
+ if( pMatch ){
+ pMatch->nErr = 0;
+ pMatch->iHold = iMaxHold+1;
+ return pMatch;
+ }
+ p = sqlite3_malloc64( sizeof(*p) + nJson + 1 );
+ if( p==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return 0;
+ }
+ memset(p, 0, sizeof(*p));
+ p->zJson = (char*)&p[1];
+ memcpy((char*)p->zJson, zJson, nJson+1);
+ if( jsonParse(p, pErrCtx, p->zJson) ){
+ sqlite3_free(p);
+ return 0;
+ }
+ p->nJson = nJson;
+ p->iHold = iMaxHold+1;
+ sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p,
+ (void(*)(void*))jsonParseFree);
+ return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey);
+}
+
+/*
+** Compare the OBJECT label at pNode against zKey,nKey. Return true on
+** a match.
+*/
+static int jsonLabelCompare(JsonNode *pNode, const char *zKey, u32 nKey){
+ assert( pNode->eU==1 );
+ if( pNode->jnFlags & JNODE_RAW ){
+ if( pNode->n!=nKey ) return 0;
+ return strncmp(pNode->u.zJContent, zKey, nKey)==0;
+ }else{
+ if( pNode->n!=nKey+2 ) return 0;
+ return strncmp(pNode->u.zJContent+1, zKey, nKey)==0;
+ }
+}
+
+/* forward declaration */
+static JsonNode *jsonLookupAppend(JsonParse*,const char*,int*,const char**);
+
+/*
+** Search along zPath to find the node specified. Return a pointer
+** to that node, or NULL if zPath is malformed or if there is no such
+** node.
+**
+** If pApnd!=0, then try to append new nodes to complete zPath if it is
+** possible to do so and if no existing node corresponds to zPath. If
+** new nodes are appended *pApnd is set to 1.
+*/
+static JsonNode *jsonLookupStep(
+ JsonParse *pParse, /* The JSON to search */
+ u32 iRoot, /* Begin the search at this node */
+ const char *zPath, /* The path to search */
+ int *pApnd, /* Append nodes to complete path if not NULL */
+ const char **pzErr /* Make *pzErr point to any syntax error in zPath */
+){
+ u32 i, j, nKey;
+ const char *zKey;
+ JsonNode *pRoot = &pParse->aNode[iRoot];
+ if( zPath[0]==0 ) return pRoot;
+ if( pRoot->jnFlags & JNODE_REPLACE ) return 0;
+ if( zPath[0]=='.' ){
+ if( pRoot->eType!=JSON_OBJECT ) return 0;
+ zPath++;
+ if( zPath[0]=='"' ){
+ zKey = zPath + 1;
+ for(i=1; zPath[i] && zPath[i]!='"'; i++){}
+ nKey = i-1;
+ if( zPath[i] ){
+ i++;
+ }else{
+ *pzErr = zPath;
+ return 0;
+ }
+ testcase( nKey==0 );
+ }else{
+ zKey = zPath;
+ for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){}
+ nKey = i;
+ if( nKey==0 ){
+ *pzErr = zPath;
+ return 0;
+ }
+ }
+ j = 1;
+ for(;;){
+ while( j<=pRoot->n ){
+ if( jsonLabelCompare(pRoot+j, zKey, nKey) ){
+ return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr);
+ }
+ j++;
+ j += jsonNodeSize(&pRoot[j]);
+ }
+ if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;
+ assert( pRoot->eU==2 );
+ iRoot += pRoot->u.iAppend;
+ pRoot = &pParse->aNode[iRoot];
+ j = 1;
+ }
+ if( pApnd ){
+ u32 iStart, iLabel;
+ JsonNode *pNode;
+ iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0);
+ iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
+ zPath += i;
+ pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
+ if( pParse->oom ) return 0;
+ if( pNode ){
+ pRoot = &pParse->aNode[iRoot];
+ assert( pRoot->eU==0 );
+ pRoot->u.iAppend = iStart - iRoot;
+ pRoot->jnFlags |= JNODE_APPEND;
+ VVA( pRoot->eU = 2 );
+ pParse->aNode[iLabel].jnFlags |= JNODE_RAW;
+ }
+ return pNode;
+ }
+ }else if( zPath[0]=='[' ){
+ i = 0;
+ j = 1;
+ while( sqlite3Isdigit(zPath[j]) ){
+ i = i*10 + zPath[j] - '0';
+ j++;
+ }
+ if( j<2 || zPath[j]!=']' ){
+ if( zPath[1]=='#' ){
+ JsonNode *pBase = pRoot;
+ int iBase = iRoot;
+ if( pRoot->eType!=JSON_ARRAY ) return 0;
+ for(;;){
+ while( j<=pBase->n ){
+ if( (pBase[j].jnFlags & JNODE_REMOVE)==0 ) i++;
+ j += jsonNodeSize(&pBase[j]);
+ }
+ if( (pBase->jnFlags & JNODE_APPEND)==0 ) break;
+ assert( pBase->eU==2 );
+ iBase += pBase->u.iAppend;
+ pBase = &pParse->aNode[iBase];
+ j = 1;
+ }
+ j = 2;
+ if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){
+ unsigned int x = 0;
+ j = 3;
+ do{
+ x = x*10 + zPath[j] - '0';
+ j++;
+ }while( sqlite3Isdigit(zPath[j]) );
+ if( x>i ) return 0;
+ i -= x;
+ }
+ if( zPath[j]!=']' ){
+ *pzErr = zPath;
+ return 0;
+ }
+ }else{
+ *pzErr = zPath;
+ return 0;
+ }
+ }
+ if( pRoot->eType!=JSON_ARRAY ) return 0;
+ zPath += j + 1;
+ j = 1;
+ for(;;){
+ while( j<=pRoot->n && (i>0 || (pRoot[j].jnFlags & JNODE_REMOVE)!=0) ){
+ if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 ) i--;
+ j += jsonNodeSize(&pRoot[j]);
+ }
+ if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;
+ assert( pRoot->eU==2 );
+ iRoot += pRoot->u.iAppend;
+ pRoot = &pParse->aNode[iRoot];
+ j = 1;
+ }
+ if( j<=pRoot->n ){
+ return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr);
+ }
+ if( i==0 && pApnd ){
+ u32 iStart;
+ JsonNode *pNode;
+ iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0);
+ pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
+ if( pParse->oom ) return 0;
+ if( pNode ){
+ pRoot = &pParse->aNode[iRoot];
+ assert( pRoot->eU==0 );
+ pRoot->u.iAppend = iStart - iRoot;
+ pRoot->jnFlags |= JNODE_APPEND;
+ VVA( pRoot->eU = 2 );
+ }
+ return pNode;
+ }
+ }else{
+ *pzErr = zPath;
+ }
+ return 0;
+}
+
+/*
+** Append content to pParse that will complete zPath. Return a pointer
+** to the inserted node, or return NULL if the append fails.
+*/
+static JsonNode *jsonLookupAppend(
+ JsonParse *pParse, /* Append content to the JSON parse */
+ const char *zPath, /* Description of content to append */
+ int *pApnd, /* Set this flag to 1 */
+ const char **pzErr /* Make this point to any syntax error */
+){
+ *pApnd = 1;
+ if( zPath[0]==0 ){
+ jsonParseAddNode(pParse, JSON_NULL, 0, 0);
+ return pParse->oom ? 0 : &pParse->aNode[pParse->nNode-1];
+ }
+ if( zPath[0]=='.' ){
+ jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
+ }else if( strncmp(zPath,"[0]",3)==0 ){
+ jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
+ }else{
+ return 0;
+ }
+ if( pParse->oom ) return 0;
+ return jsonLookupStep(pParse, pParse->nNode-1, zPath, pApnd, pzErr);
+}
+
+/*
+** Return the text of a syntax error message on a JSON path. Space is
+** obtained from sqlite3_malloc().
+*/
+static char *jsonPathSyntaxError(const char *zErr){
+ return sqlite3_mprintf("JSON path error near '%q'", zErr);
+}
+
+/*
+** Do a node lookup using zPath. Return a pointer to the node on success.
+** Return NULL if not found or if there is an error.
+**
+** On an error, write an error message into pCtx and increment the
+** pParse->nErr counter.
+**
+** If pApnd!=NULL then try to append missing nodes and set *pApnd = 1 if
+** nodes are appended.
+*/
+static JsonNode *jsonLookup(
+ JsonParse *pParse, /* The JSON to search */
+ const char *zPath, /* The path to search */
+ int *pApnd, /* Append nodes to complete path if not NULL */
+ sqlite3_context *pCtx /* Report errors here, if not NULL */
+){
+ const char *zErr = 0;
+ JsonNode *pNode = 0;
+ char *zMsg;
+
+ if( zPath==0 ) return 0;
+ if( zPath[0]!='$' ){
+ zErr = zPath;
+ goto lookup_err;
+ }
+ zPath++;
+ pNode = jsonLookupStep(pParse, 0, zPath, pApnd, &zErr);
+ if( zErr==0 ) return pNode;
+
+lookup_err:
+ pParse->nErr++;
+ assert( zErr!=0 && pCtx!=0 );
+ zMsg = jsonPathSyntaxError(zErr);
+ if( zMsg ){
+ sqlite3_result_error(pCtx, zMsg, -1);
+ sqlite3_free(zMsg);
+ }else{
+ sqlite3_result_error_nomem(pCtx);
+ }
+ return 0;
+}
+
+
+/*
+** Report the wrong number of arguments for json_insert(), json_replace()
+** or json_set().
+*/
+static void jsonWrongNumArgs(
+ sqlite3_context *pCtx,
+ const char *zFuncName
+){
+ char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments",
+ zFuncName);
+ sqlite3_result_error(pCtx, zMsg, -1);
+ sqlite3_free(zMsg);
+}
+
+/*
+** Mark all NULL entries in the Object passed in as JNODE_REMOVE.
+*/
+static void jsonRemoveAllNulls(JsonNode *pNode){
+ int i, n;
+ assert( pNode->eType==JSON_OBJECT );
+ n = pNode->n;
+ for(i=2; i<=n; i += jsonNodeSize(&pNode[i])+1){
+ switch( pNode[i].eType ){
+ case JSON_NULL:
+ pNode[i].jnFlags |= JNODE_REMOVE;
+ break;
+ case JSON_OBJECT:
+ jsonRemoveAllNulls(&pNode[i]);
+ break;
+ }
+ }
+}
+
+
+/****************************************************************************
+** SQL functions used for testing and debugging
+****************************************************************************/
+
+#ifdef SQLITE_DEBUG
+/*
+** The json_parse(JSON) function returns a string which describes
+** a parse of the JSON provided. Or it returns NULL if JSON is not
+** well-formed.
+*/
+static void jsonParseFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString s; /* Output string - not real JSON */
+ JsonParse x; /* The parse */
+ u32 i;
+
+ assert( argc==1 );
+ if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
+ jsonParseFindParents(&x);
+ jsonInit(&s, ctx);
+ for(i=0; i<x.nNode; i++){
+ const char *zType;
+ if( x.aNode[i].jnFlags & JNODE_LABEL ){
+ assert( x.aNode[i].eType==JSON_STRING );
+ zType = "label";
+ }else{
+ zType = jsonType[x.aNode[i].eType];
+ }
+ jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%-4d",
+ i, zType, x.aNode[i].n, x.aUp[i]);
+ assert( x.aNode[i].eU==0 || x.aNode[i].eU==1 );
+ if( x.aNode[i].u.zJContent!=0 ){
+ assert( x.aNode[i].eU==1 );
+ jsonAppendRaw(&s, " ", 1);
+ jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n);
+ }else{
+ assert( x.aNode[i].eU==0 );
+ }
+ jsonAppendRaw(&s, "\n", 1);
+ }
+ jsonParseReset(&x);
+ jsonResult(&s);
+}
+
+/*
+** The json_test1(JSON) function return true (1) if the input is JSON
+** text generated by another json function. It returns (0) if the input
+** is not known to be JSON.
+*/
+static void jsonTest1Func(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE);
+}
+#endif /* SQLITE_DEBUG */
+
+/****************************************************************************
+** Scalar SQL function implementations
+****************************************************************************/
+
+/*
+** Implementation of the json_QUOTE(VALUE) function. Return a JSON value
+** corresponding to the SQL value input. Mostly this means putting
+** double-quotes around strings and returning the unquoted string "null"
+** when given a NULL input.
+*/
+static void jsonQuoteFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString jx;
+ UNUSED_PARAMETER(argc);
+
+ jsonInit(&jx, ctx);
+ jsonAppendValue(&jx, argv[0]);
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+
+/*
+** Implementation of the json_array(VALUE,...) function. Return a JSON
+** array that contains all values given in arguments. Or if any argument
+** is a BLOB, throw an error.
+*/
+static void jsonArrayFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ JsonString jx;
+
+ jsonInit(&jx, ctx);
+ jsonAppendChar(&jx, '[');
+ for(i=0; i<argc; i++){
+ jsonAppendSeparator(&jx);
+ jsonAppendValue(&jx, argv[i]);
+ }
+ jsonAppendChar(&jx, ']');
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+
+
+/*
+** json_array_length(JSON)
+** json_array_length(JSON, PATH)
+**
+** Return the number of elements in the top-level JSON array.
+** Return 0 if the input is not a well-formed JSON array.
+*/
+static void jsonArrayLengthFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ sqlite3_int64 n = 0;
+ u32 i;
+ JsonNode *pNode;
+
+ p = jsonParseCached(ctx, argv, ctx);
+ if( p==0 ) return;
+ assert( p->nNode );
+ if( argc==2 ){
+ const char *zPath = (const char*)sqlite3_value_text(argv[1]);
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ }else{
+ pNode = p->aNode;
+ }
+ if( pNode==0 ){
+ return;
+ }
+ if( pNode->eType==JSON_ARRAY ){
+ assert( (pNode->jnFlags & JNODE_APPEND)==0 );
+ for(i=1; i<=pNode->n; n++){
+ i += jsonNodeSize(&pNode[i]);
+ }
+ }
+ sqlite3_result_int64(ctx, n);
+}
+
+/*
+** Bit values for the flags passed into jsonExtractFunc() or
+** jsonSetFunc() via the user-data value.
+*/
+#define JSON_JSON 0x01 /* Result is always JSON */
+#define JSON_SQL 0x02 /* Result is always SQL */
+#define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */
+#define JSON_ISSET 0x04 /* json_set(), not json_insert() */
+
+/*
+** json_extract(JSON, PATH, ...)
+** "->"(JSON,PATH)
+** "->>"(JSON,PATH)
+**
+** Return the element described by PATH. Return NULL if that PATH element
+** is not found.
+**
+** If JSON_JSON is set or if more that one PATH argument is supplied then
+** always return a JSON representation of the result. If JSON_SQL is set,
+** then always return an SQL representation of the result. If neither flag
+** is present and argc==2, then return JSON for objects and arrays and SQL
+** for all other values.
+**
+** When multiple PATH arguments are supplied, the result is a JSON array
+** containing the result of each PATH.
+**
+** Abbreviated JSON path expressions are allows if JSON_ABPATH, for
+** compatibility with PG.
+*/
+static void jsonExtractFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
+ JsonString jx;
+
+ if( argc<2 ) return;
+ p = jsonParseCached(ctx, argv, ctx);
+ if( p==0 ) return;
+ if( argc==2 ){
+ /* With a single PATH argument */
+ zPath = (const char*)sqlite3_value_text(argv[1]);
+ if( zPath==0 ) return;
+ if( flags & JSON_ABPATH ){
+ if( zPath[0]!='$' ){
+ /* The -> and ->> operators accept abbreviated PATH arguments. This
+ ** is mostly for compatibility with PostgreSQL, but also for
+ ** convenience.
+ **
+ ** NUMBER ==> $[NUMBER] // PG compatible
+ ** LABEL ==> $.LABEL // PG compatible
+ ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience
+ */
+ jsonInit(&jx, ctx);
+ if( sqlite3Isdigit(zPath[0]) ){
+ jsonAppendRaw(&jx, "$[", 2);
+ jsonAppendRaw(&jx, zPath, (int)strlen(zPath));
+ jsonAppendRaw(&jx, "]", 2);
+ }else{
+ jsonAppendRaw(&jx, "$.", 1 + (zPath[0]!='['));
+ jsonAppendRaw(&jx, zPath, (int)strlen(zPath));
+ jsonAppendChar(&jx, 0);
+ }
+ pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx);
+ jsonReset(&jx);
+ }else{
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ }
+ if( pNode ){
+ if( flags & JSON_JSON ){
+ jsonReturnJson(pNode, ctx, 0);
+ }else{
+ jsonReturn(pNode, ctx, 0);
+ sqlite3_result_subtype(ctx, 0);
+ }
+ }
+ }else{
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ if( p->nErr==0 && pNode ) jsonReturn(pNode, ctx, 0);
+ }
+ }else{
+ /* Two or more PATH arguments results in a JSON array with each
+ ** element of the array being the value selected by one of the PATHs */
+ int i;
+ jsonInit(&jx, ctx);
+ jsonAppendChar(&jx, '[');
+ for(i=1; i<argc; i++){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ if( p->nErr ) break;
+ jsonAppendSeparator(&jx);
+ if( pNode ){
+ jsonRenderNode(pNode, &jx, 0);
+ }else{
+ jsonAppendRaw(&jx, "null", 4);
+ }
+ }
+ if( i==argc ){
+ jsonAppendChar(&jx, ']');
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+ }
+ jsonReset(&jx);
+ }
+}
+
+/* This is the RFC 7396 MergePatch algorithm.
+*/
+static JsonNode *jsonMergePatch(
+ JsonParse *pParse, /* The JSON parser that contains the TARGET */
+ u32 iTarget, /* Node of the TARGET in pParse */
+ JsonNode *pPatch /* The PATCH */
+){
+ u32 i, j;
+ u32 iRoot;
+ JsonNode *pTarget;
+ if( pPatch->eType!=JSON_OBJECT ){
+ return pPatch;
+ }
+ assert( iTarget<pParse->nNode );
+ pTarget = &pParse->aNode[iTarget];
+ assert( (pPatch->jnFlags & JNODE_APPEND)==0 );
+ if( pTarget->eType!=JSON_OBJECT ){
+ jsonRemoveAllNulls(pPatch);
+ return pPatch;
+ }
+ iRoot = iTarget;
+ for(i=1; i<pPatch->n; i += jsonNodeSize(&pPatch[i+1])+1){
+ u32 nKey;
+ const char *zKey;
+ assert( pPatch[i].eType==JSON_STRING );
+ assert( pPatch[i].jnFlags & JNODE_LABEL );
+ assert( pPatch[i].eU==1 );
+ nKey = pPatch[i].n;
+ zKey = pPatch[i].u.zJContent;
+ assert( (pPatch[i].jnFlags & JNODE_RAW)==0 );
+ for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){
+ assert( pTarget[j].eType==JSON_STRING );
+ assert( pTarget[j].jnFlags & JNODE_LABEL );
+ assert( (pPatch[i].jnFlags & JNODE_RAW)==0 );
+ if( pTarget[j].n==nKey && strncmp(pTarget[j].u.zJContent,zKey,nKey)==0 ){
+ if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_PATCH) ) break;
+ if( pPatch[i+1].eType==JSON_NULL ){
+ pTarget[j+1].jnFlags |= JNODE_REMOVE;
+ }else{
+ JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]);
+ if( pNew==0 ) return 0;
+ pTarget = &pParse->aNode[iTarget];
+ if( pNew!=&pTarget[j+1] ){
+ assert( pTarget[j+1].eU==0
+ || pTarget[j+1].eU==1
+ || pTarget[j+1].eU==2 );
+ testcase( pTarget[j+1].eU==1 );
+ testcase( pTarget[j+1].eU==2 );
+ VVA( pTarget[j+1].eU = 5 );
+ pTarget[j+1].u.pPatch = pNew;
+ pTarget[j+1].jnFlags |= JNODE_PATCH;
+ }
+ }
+ break;
+ }
+ }
+ if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){
+ int iStart, iPatch;
+ iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0);
+ jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
+ iPatch = jsonParseAddNode(pParse, JSON_TRUE, 0, 0);
+ if( pParse->oom ) return 0;
+ jsonRemoveAllNulls(pPatch);
+ pTarget = &pParse->aNode[iTarget];
+ assert( pParse->aNode[iRoot].eU==0 || pParse->aNode[iRoot].eU==2 );
+ testcase( pParse->aNode[iRoot].eU==2 );
+ pParse->aNode[iRoot].jnFlags |= JNODE_APPEND;
+ VVA( pParse->aNode[iRoot].eU = 2 );
+ pParse->aNode[iRoot].u.iAppend = iStart - iRoot;
+ iRoot = iStart;
+ assert( pParse->aNode[iPatch].eU==0 );
+ VVA( pParse->aNode[iPatch].eU = 5 );
+ pParse->aNode[iPatch].jnFlags |= JNODE_PATCH;
+ pParse->aNode[iPatch].u.pPatch = &pPatch[i+1];
+ }
+ }
+ return pTarget;
+}
+
+/*
+** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON
+** object that is the result of running the RFC 7396 MergePatch() algorithm
+** on the two arguments.
+*/
+static void jsonPatchFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse x; /* The JSON that is being patched */
+ JsonParse y; /* The patch */
+ JsonNode *pResult; /* The result of the merge */
+
+ UNUSED_PARAMETER(argc);
+ if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
+ if( jsonParse(&y, ctx, (const char*)sqlite3_value_text(argv[1])) ){
+ jsonParseReset(&x);
+ return;
+ }
+ pResult = jsonMergePatch(&x, 0, y.aNode);
+ assert( pResult!=0 || x.oom );
+ if( pResult ){
+ jsonReturnJson(pResult, ctx, 0);
+ }else{
+ sqlite3_result_error_nomem(ctx);
+ }
+ jsonParseReset(&x);
+ jsonParseReset(&y);
+}
+
+
+/*
+** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON
+** object that contains all name/value given in arguments. Or if any name
+** is not a string or if any value is a BLOB, throw an error.
+*/
+static void jsonObjectFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ JsonString jx;
+ const char *z;
+ u32 n;
+
+ if( argc&1 ){
+ sqlite3_result_error(ctx, "json_object() requires an even number "
+ "of arguments", -1);
+ return;
+ }
+ jsonInit(&jx, ctx);
+ jsonAppendChar(&jx, '{');
+ for(i=0; i<argc; i+=2){
+ if( sqlite3_value_type(argv[i])!=SQLITE_TEXT ){
+ sqlite3_result_error(ctx, "json_object() labels must be TEXT", -1);
+ jsonReset(&jx);
+ return;
+ }
+ jsonAppendSeparator(&jx);
+ z = (const char*)sqlite3_value_text(argv[i]);
+ n = (u32)sqlite3_value_bytes(argv[i]);
+ jsonAppendString(&jx, z, n);
+ jsonAppendChar(&jx, ':');
+ jsonAppendValue(&jx, argv[i+1]);
+ }
+ jsonAppendChar(&jx, '}');
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+
+
+/*
+** json_remove(JSON, PATH, ...)
+**
+** Remove the named elements from JSON and return the result. malformed
+** JSON or PATH arguments result in an error.
+*/
+static void jsonRemoveFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse x; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ u32 i;
+
+ if( argc<1 ) return;
+ if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
+ assert( x.nNode );
+ for(i=1; i<(u32)argc; i++){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ if( zPath==0 ) goto remove_done;
+ pNode = jsonLookup(&x, zPath, 0, ctx);
+ if( x.nErr ) goto remove_done;
+ if( pNode ) pNode->jnFlags |= JNODE_REMOVE;
+ }
+ if( (x.aNode[0].jnFlags & JNODE_REMOVE)==0 ){
+ jsonReturnJson(x.aNode, ctx, 0);
+ }
+remove_done:
+ jsonParseReset(&x);
+}
+
+/*
+** json_replace(JSON, PATH, VALUE, ...)
+**
+** Replace the value at PATH with VALUE. If PATH does not already exist,
+** this routine is a no-op. If JSON or PATH is malformed, throw an error.
+*/
+static void jsonReplaceFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse x; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ u32 i;
+
+ if( argc<1 ) return;
+ if( (argc&1)==0 ) {
+ jsonWrongNumArgs(ctx, "replace");
+ return;
+ }
+ if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
+ assert( x.nNode );
+ for(i=1; i<(u32)argc; i+=2){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ pNode = jsonLookup(&x, zPath, 0, ctx);
+ if( x.nErr ) goto replace_err;
+ if( pNode ){
+ assert( pNode->eU==0 || pNode->eU==1 || pNode->eU==4 );
+ testcase( pNode->eU!=0 && pNode->eU!=1 );
+ pNode->jnFlags |= (u8)JNODE_REPLACE;
+ VVA( pNode->eU = 4 );
+ pNode->u.iReplace = i + 1;
+ }
+ }
+ if( x.aNode[0].jnFlags & JNODE_REPLACE ){
+ assert( x.aNode[0].eU==4 );
+ sqlite3_result_value(ctx, argv[x.aNode[0].u.iReplace]);
+ }else{
+ jsonReturnJson(x.aNode, ctx, argv);
+ }
+replace_err:
+ jsonParseReset(&x);
+}
+
+
+/*
+** json_set(JSON, PATH, VALUE, ...)
+**
+** Set the value at PATH to VALUE. Create the PATH if it does not already
+** exist. Overwrite existing values that do exist.
+** If JSON or PATH is malformed, throw an error.
+**
+** json_insert(JSON, PATH, VALUE, ...)
+**
+** Create PATH and initialize it to VALUE. If PATH already exists, this
+** routine is a no-op. If JSON or PATH is malformed, throw an error.
+*/
+static void jsonSetFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse x; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ u32 i;
+ int bApnd;
+ int bIsSet = sqlite3_user_data(ctx)!=0;
+
+ if( argc<1 ) return;
+ if( (argc&1)==0 ) {
+ jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
+ return;
+ }
+ if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
+ assert( x.nNode );
+ for(i=1; i<(u32)argc; i+=2){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ bApnd = 0;
+ pNode = jsonLookup(&x, zPath, &bApnd, ctx);
+ if( x.oom ){
+ sqlite3_result_error_nomem(ctx);
+ goto jsonSetDone;
+ }else if( x.nErr ){
+ goto jsonSetDone;
+ }else if( pNode && (bApnd || bIsSet) ){
+ testcase( pNode->eU!=0 && pNode->eU!=1 );
+ assert( pNode->eU!=3 && pNode->eU!=5 );
+ VVA( pNode->eU = 4 );
+ pNode->jnFlags |= (u8)JNODE_REPLACE;
+ pNode->u.iReplace = i + 1;
+ }
+ }
+ if( x.aNode[0].jnFlags & JNODE_REPLACE ){
+ assert( x.aNode[0].eU==4 );
+ sqlite3_result_value(ctx, argv[x.aNode[0].u.iReplace]);
+ }else{
+ jsonReturnJson(x.aNode, ctx, argv);
+ }
+jsonSetDone:
+ jsonParseReset(&x);
+}
+
+/*
+** json_type(JSON)
+** json_type(JSON, PATH)
+**
+** Return the top-level "type" of a JSON string. json_type() raises an
+** error if either the JSON or PATH inputs are not well-formed.
+*/
+static void jsonTypeFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ const char *zPath;
+ JsonNode *pNode;
+
+ p = jsonParseCached(ctx, argv, ctx);
+ if( p==0 ) return;
+ if( argc==2 ){
+ zPath = (const char*)sqlite3_value_text(argv[1]);
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ }else{
+ pNode = p->aNode;
+ }
+ if( pNode ){
+ sqlite3_result_text(ctx, jsonType[pNode->eType], -1, SQLITE_STATIC);
+ }
+}
+
+/*
+** json_valid(JSON)
+**
+** Return 1 if JSON is a well-formed JSON string according to RFC-7159.
+** Return 0 otherwise.
+*/
+static void jsonValidFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ UNUSED_PARAMETER(argc);
+ p = jsonParseCached(ctx, argv, 0);
+ sqlite3_result_int(ctx, p!=0);
+}
+
+
+/****************************************************************************
+** Aggregate SQL function implementations
+****************************************************************************/
+/*
+** json_group_array(VALUE)
+**
+** Return a JSON array composed of all values in the aggregate.
+*/
+static void jsonArrayStep(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString *pStr;
+ UNUSED_PARAMETER(argc);
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
+ if( pStr ){
+ if( pStr->zBuf==0 ){
+ jsonInit(pStr, ctx);
+ jsonAppendChar(pStr, '[');
+ }else if( pStr->nUsed>1 ){
+ jsonAppendChar(pStr, ',');
+ }
+ pStr->pCtx = ctx;
+ jsonAppendValue(pStr, argv[0]);
+ }
+}
+static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){
+ JsonString *pStr;
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
+ if( pStr ){
+ pStr->pCtx = ctx;
+ jsonAppendChar(pStr, ']');
+ if( pStr->bErr ){
+ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
+ assert( pStr->bStatic );
+ }else if( isFinal ){
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
+ pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
+ pStr->bStatic = 1;
+ }else{
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
+ pStr->nUsed--;
+ }
+ }else{
+ sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC);
+ }
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+static void jsonArrayValue(sqlite3_context *ctx){
+ jsonArrayCompute(ctx, 0);
+}
+static void jsonArrayFinal(sqlite3_context *ctx){
+ jsonArrayCompute(ctx, 1);
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** This method works for both json_group_array() and json_group_object().
+** It works by removing the first element of the group by searching forward
+** to the first comma (",") that is not within a string and deleting all
+** text through that comma.
+*/
+static void jsonGroupInverse(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned int i;
+ int inStr = 0;
+ int nNest = 0;
+ char *z;
+ char c;
+ JsonString *pStr;
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
+#ifdef NEVER
+ /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will
+ ** always have been called to initalize it */
+ if( NEVER(!pStr) ) return;
+#endif
+ z = pStr->zBuf;
+ for(i=1; i<pStr->nUsed && ((c = z[i])!=',' || inStr || nNest); i++){
+ if( c=='"' ){
+ inStr = !inStr;
+ }else if( c=='\\' ){
+ i++;
+ }else if( !inStr ){
+ if( c=='{' || c=='[' ) nNest++;
+ if( c=='}' || c==']' ) nNest--;
+ }
+ }
+ if( i<pStr->nUsed ){
+ pStr->nUsed -= i;
+ memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1);
+ z[pStr->nUsed] = 0;
+ }else{
+ pStr->nUsed = 1;
+ }
+}
+#else
+# define jsonGroupInverse 0
+#endif
+
+
+/*
+** json_group_obj(NAME,VALUE)
+**
+** Return a JSON object composed of all names and values in the aggregate.
+*/
+static void jsonObjectStep(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString *pStr;
+ const char *z;
+ u32 n;
+ UNUSED_PARAMETER(argc);
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
+ if( pStr ){
+ if( pStr->zBuf==0 ){
+ jsonInit(pStr, ctx);
+ jsonAppendChar(pStr, '{');
+ }else if( pStr->nUsed>1 ){
+ jsonAppendChar(pStr, ',');
+ }
+ pStr->pCtx = ctx;
+ z = (const char*)sqlite3_value_text(argv[0]);
+ n = (u32)sqlite3_value_bytes(argv[0]);
+ jsonAppendString(pStr, z, n);
+ jsonAppendChar(pStr, ':');
+ jsonAppendValue(pStr, argv[1]);
+ }
+}
+static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){
+ JsonString *pStr;
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
+ if( pStr ){
+ jsonAppendChar(pStr, '}');
+ if( pStr->bErr ){
+ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
+ assert( pStr->bStatic );
+ }else if( isFinal ){
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
+ pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
+ pStr->bStatic = 1;
+ }else{
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
+ pStr->nUsed--;
+ }
+ }else{
+ sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC);
+ }
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+static void jsonObjectValue(sqlite3_context *ctx){
+ jsonObjectCompute(ctx, 0);
+}
+static void jsonObjectFinal(sqlite3_context *ctx){
+ jsonObjectCompute(ctx, 1);
+}
+
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/****************************************************************************
+** The json_each virtual table
+****************************************************************************/
+typedef struct JsonEachCursor JsonEachCursor;
+struct JsonEachCursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ u32 iRowid; /* The rowid */
+ u32 iBegin; /* The first node of the scan */
+ u32 i; /* Index in sParse.aNode[] of current row */
+ u32 iEnd; /* EOF when i equals or exceeds this value */
+ u8 eType; /* Type of top-level element */
+ u8 bRecursive; /* True for json_tree(). False for json_each() */
+ char *zJson; /* Input JSON */
+ char *zRoot; /* Path by which to filter zJson */
+ JsonParse sParse; /* Parse of the input JSON */
+};
+
+/* Constructor for the json_each virtual table */
+static int jsonEachConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ sqlite3_vtab *pNew;
+ int rc;
+
+/* Column numbers */
+#define JEACH_KEY 0
+#define JEACH_VALUE 1
+#define JEACH_TYPE 2
+#define JEACH_ATOM 3
+#define JEACH_ID 4
+#define JEACH_PARENT 5
+#define JEACH_FULLKEY 6
+#define JEACH_PATH 7
+/* The xBestIndex method assumes that the JSON and ROOT columns are
+** the last two columns in the table. Should this ever changes, be
+** sure to update the xBestIndex method. */
+#define JEACH_JSON 8
+#define JEACH_ROOT 9
+
+ UNUSED_PARAMETER(pzErr);
+ UNUSED_PARAMETER(argv);
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(pAux);
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path,"
+ "json HIDDEN,root HIDDEN)");
+ if( rc==SQLITE_OK ){
+ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(*pNew));
+ sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
+ }
+ return rc;
+}
+
+/* destructor for json_each virtual table */
+static int jsonEachDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/* constructor for a JsonEachCursor object for json_each(). */
+static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ JsonEachCursor *pCur;
+
+ UNUSED_PARAMETER(p);
+ pCur = sqlite3_malloc( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ *ppCursor = &pCur->base;
+ return SQLITE_OK;
+}
+
+/* constructor for a JsonEachCursor object for json_tree(). */
+static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ int rc = jsonEachOpenEach(p, ppCursor);
+ if( rc==SQLITE_OK ){
+ JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor;
+ pCur->bRecursive = 1;
+ }
+ return rc;
+}
+
+/* Reset a JsonEachCursor back to its original state. Free any memory
+** held. */
+static void jsonEachCursorReset(JsonEachCursor *p){
+ sqlite3_free(p->zJson);
+ sqlite3_free(p->zRoot);
+ jsonParseReset(&p->sParse);
+ p->iRowid = 0;
+ p->i = 0;
+ p->iEnd = 0;
+ p->eType = 0;
+ p->zJson = 0;
+ p->zRoot = 0;
+}
+
+/* Destructor for a jsonEachCursor object */
+static int jsonEachClose(sqlite3_vtab_cursor *cur){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ jsonEachCursorReset(p);
+ sqlite3_free(cur);
+ return SQLITE_OK;
+}
+
+/* Return TRUE if the jsonEachCursor object has been advanced off the end
+** of the JSON object */
+static int jsonEachEof(sqlite3_vtab_cursor *cur){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ return p->i >= p->iEnd;
+}
+
+/* Advance the cursor to the next element for json_tree() */
+static int jsonEachNext(sqlite3_vtab_cursor *cur){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ if( p->bRecursive ){
+ if( p->sParse.aNode[p->i].jnFlags & JNODE_LABEL ) p->i++;
+ p->i++;
+ p->iRowid++;
+ if( p->i<p->iEnd ){
+ u32 iUp = p->sParse.aUp[p->i];
+ JsonNode *pUp = &p->sParse.aNode[iUp];
+ p->eType = pUp->eType;
+ if( pUp->eType==JSON_ARRAY ){
+ assert( pUp->eU==0 || pUp->eU==3 );
+ testcase( pUp->eU==3 );
+ VVA( pUp->eU = 3 );
+ if( iUp==p->i-1 ){
+ pUp->u.iKey = 0;
+ }else{
+ pUp->u.iKey++;
+ }
+ }
+ }
+ }else{
+ switch( p->eType ){
+ case JSON_ARRAY: {
+ p->i += jsonNodeSize(&p->sParse.aNode[p->i]);
+ p->iRowid++;
+ break;
+ }
+ case JSON_OBJECT: {
+ p->i += 1 + jsonNodeSize(&p->sParse.aNode[p->i+1]);
+ p->iRowid++;
+ break;
+ }
+ default: {
+ p->i = p->iEnd;
+ break;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Append an object label to the JSON Path being constructed
+** in pStr.
+*/
+static void jsonAppendObjectPathElement(
+ JsonString *pStr,
+ JsonNode *pNode
+){
+ int jj, nn;
+ const char *z;
+ assert( pNode->eType==JSON_STRING );
+ assert( pNode->jnFlags & JNODE_LABEL );
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ nn = pNode->n;
+ assert( nn>=2 );
+ assert( z[0]=='"' );
+ assert( z[nn-1]=='"' );
+ if( nn>2 && sqlite3Isalpha(z[1]) ){
+ for(jj=2; jj<nn-1 && sqlite3Isalnum(z[jj]); jj++){}
+ if( jj==nn-1 ){
+ z++;
+ nn -= 2;
+ }
+ }
+ jsonPrintf(nn+2, pStr, ".%.*s", nn, z);
+}
+
+/* Append the name of the path for element i to pStr
+*/
+static void jsonEachComputePath(
+ JsonEachCursor *p, /* The cursor */
+ JsonString *pStr, /* Write the path here */
+ u32 i /* Path to this element */
+){
+ JsonNode *pNode, *pUp;
+ u32 iUp;
+ if( i==0 ){
+ jsonAppendChar(pStr, '$');
+ return;
+ }
+ iUp = p->sParse.aUp[i];
+ jsonEachComputePath(p, pStr, iUp);
+ pNode = &p->sParse.aNode[i];
+ pUp = &p->sParse.aNode[iUp];
+ if( pUp->eType==JSON_ARRAY ){
+ assert( pUp->eU==3 || (pUp->eU==0 && pUp->u.iKey==0) );
+ testcase( pUp->eU==0 );
+ jsonPrintf(30, pStr, "[%d]", pUp->u.iKey);
+ }else{
+ assert( pUp->eType==JSON_OBJECT );
+ if( (pNode->jnFlags & JNODE_LABEL)==0 ) pNode--;
+ jsonAppendObjectPathElement(pStr, pNode);
+ }
+}
+
+/* Return the value of a column */
+static int jsonEachColumn(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ JsonNode *pThis = &p->sParse.aNode[p->i];
+ switch( i ){
+ case JEACH_KEY: {
+ if( p->i==0 ) break;
+ if( p->eType==JSON_OBJECT ){
+ jsonReturn(pThis, ctx, 0);
+ }else if( p->eType==JSON_ARRAY ){
+ u32 iKey;
+ if( p->bRecursive ){
+ if( p->iRowid==0 ) break;
+ assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 );
+ iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey;
+ }else{
+ iKey = p->iRowid;
+ }
+ sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
+ }
+ break;
+ }
+ case JEACH_VALUE: {
+ if( pThis->jnFlags & JNODE_LABEL ) pThis++;
+ jsonReturn(pThis, ctx, 0);
+ break;
+ }
+ case JEACH_TYPE: {
+ if( pThis->jnFlags & JNODE_LABEL ) pThis++;
+ sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
+ break;
+ }
+ case JEACH_ATOM: {
+ if( pThis->jnFlags & JNODE_LABEL ) pThis++;
+ if( pThis->eType>=JSON_ARRAY ) break;
+ jsonReturn(pThis, ctx, 0);
+ break;
+ }
+ case JEACH_ID: {
+ sqlite3_result_int64(ctx,
+ (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0));
+ break;
+ }
+ case JEACH_PARENT: {
+ if( p->i>p->iBegin && p->bRecursive ){
+ sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
+ }
+ break;
+ }
+ case JEACH_FULLKEY: {
+ JsonString x;
+ jsonInit(&x, ctx);
+ if( p->bRecursive ){
+ jsonEachComputePath(p, &x, p->i);
+ }else{
+ if( p->zRoot ){
+ jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot));
+ }else{
+ jsonAppendChar(&x, '$');
+ }
+ if( p->eType==JSON_ARRAY ){
+ jsonPrintf(30, &x, "[%d]", p->iRowid);
+ }else if( p->eType==JSON_OBJECT ){
+ jsonAppendObjectPathElement(&x, pThis);
+ }
+ }
+ jsonResult(&x);
+ break;
+ }
+ case JEACH_PATH: {
+ if( p->bRecursive ){
+ JsonString x;
+ jsonInit(&x, ctx);
+ jsonEachComputePath(p, &x, p->sParse.aUp[p->i]);
+ jsonResult(&x);
+ break;
+ }
+ /* For json_each() path and root are the same so fall through
+ ** into the root case */
+ /* no break */ deliberate_fall_through
+ }
+ default: {
+ const char *zRoot = p->zRoot;
+ if( zRoot==0 ) zRoot = "$";
+ sqlite3_result_text(ctx, zRoot, -1, SQLITE_STATIC);
+ break;
+ }
+ case JEACH_JSON: {
+ assert( i==JEACH_JSON );
+ sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_STATIC);
+ break;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Return the current rowid value */
+static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ *pRowid = p->iRowid;
+ return SQLITE_OK;
+}
+
+/* The query strategy is to look for an equality constraint on the json
+** column. Without such a constraint, the table cannot operate. idxNum is
+** 1 if the constraint is found, 3 if the constraint and zRoot are found,
+** and 0 otherwise.
+*/
+static int jsonEachBestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ int i; /* Loop counter or computed array index */
+ int aIdx[2]; /* Index of constraints for JSON and ROOT */
+ int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */
+ int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */
+ const struct sqlite3_index_constraint *pConstraint;
+
+ /* This implementation assumes that JSON and ROOT are the last two
+ ** columns in the table */
+ assert( JEACH_ROOT == JEACH_JSON+1 );
+ UNUSED_PARAMETER(tab);
+ aIdx[0] = aIdx[1] = -1;
+ pConstraint = pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ int iCol;
+ int iMask;
+ if( pConstraint->iColumn < JEACH_JSON ) continue;
+ iCol = pConstraint->iColumn - JEACH_JSON;
+ assert( iCol==0 || iCol==1 );
+ testcase( iCol==0 );
+ iMask = 1 << iCol;
+ if( pConstraint->usable==0 ){
+ unusableMask |= iMask;
+ }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ aIdx[iCol] = i;
+ idxMask |= iMask;
+ }
+ }
+ if( (unusableMask & ~idxMask)!=0 ){
+ /* If there are any unusable constraints on JSON or ROOT, then reject
+ ** this entire plan */
+ return SQLITE_CONSTRAINT;
+ }
+ if( aIdx[0]<0 ){
+ /* No JSON input. Leave estimatedCost at the huge value that it was
+ ** initialized to to discourage the query planner from selecting this
+ ** plan. */
+ pIdxInfo->idxNum = 0;
+ }else{
+ pIdxInfo->estimatedCost = 1.0;
+ i = aIdx[0];
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ if( aIdx[1]<0 ){
+ pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */
+ }else{
+ i = aIdx[1];
+ pIdxInfo->aConstraintUsage[i].argvIndex = 2;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Start a search on a new JSON string */
+static int jsonEachFilter(
+ sqlite3_vtab_cursor *cur,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ const char *z;
+ const char *zRoot = 0;
+ sqlite3_int64 n;
+
+ UNUSED_PARAMETER(idxStr);
+ UNUSED_PARAMETER(argc);
+ jsonEachCursorReset(p);
+ if( idxNum==0 ) return SQLITE_OK;
+ z = (const char*)sqlite3_value_text(argv[0]);
+ if( z==0 ) return SQLITE_OK;
+ n = sqlite3_value_bytes(argv[0]);
+ p->zJson = sqlite3_malloc64( n+1 );
+ if( p->zJson==0 ) return SQLITE_NOMEM;
+ memcpy(p->zJson, z, (size_t)n+1);
+ if( jsonParse(&p->sParse, 0, p->zJson) ){
+ int rc = SQLITE_NOMEM;
+ if( p->sParse.oom==0 ){
+ sqlite3_free(cur->pVtab->zErrMsg);
+ cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON");
+ if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR;
+ }
+ jsonEachCursorReset(p);
+ return rc;
+ }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){
+ jsonEachCursorReset(p);
+ return SQLITE_NOMEM;
+ }else{
+ JsonNode *pNode = 0;
+ if( idxNum==3 ){
+ const char *zErr = 0;
+ zRoot = (const char*)sqlite3_value_text(argv[1]);
+ if( zRoot==0 ) return SQLITE_OK;
+ n = sqlite3_value_bytes(argv[1]);
+ p->zRoot = sqlite3_malloc64( n+1 );
+ if( p->zRoot==0 ) return SQLITE_NOMEM;
+ memcpy(p->zRoot, zRoot, (size_t)n+1);
+ if( zRoot[0]!='$' ){
+ zErr = zRoot;
+ }else{
+ pNode = jsonLookupStep(&p->sParse, 0, p->zRoot+1, 0, &zErr);
+ }
+ if( zErr ){
+ sqlite3_free(cur->pVtab->zErrMsg);
+ cur->pVtab->zErrMsg = jsonPathSyntaxError(zErr);
+ jsonEachCursorReset(p);
+ return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
+ }else if( pNode==0 ){
+ return SQLITE_OK;
+ }
+ }else{
+ pNode = p->sParse.aNode;
+ }
+ p->iBegin = p->i = (int)(pNode - p->sParse.aNode);
+ p->eType = pNode->eType;
+ if( p->eType>=JSON_ARRAY ){
+ assert( pNode->eU==0 );
+ VVA( pNode->eU = 3 );
+ pNode->u.iKey = 0;
+ p->iEnd = p->i + pNode->n + 1;
+ if( p->bRecursive ){
+ p->eType = p->sParse.aNode[p->sParse.aUp[p->i]].eType;
+ if( p->i>0 && (p->sParse.aNode[p->i-1].jnFlags & JNODE_LABEL)!=0 ){
+ p->i--;
+ }
+ }else{
+ p->i++;
+ }
+ }else{
+ p->iEnd = p->i+1;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* The methods of the json_each virtual table */
+static sqlite3_module jsonEachModule = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ jsonEachConnect, /* xConnect */
+ jsonEachBestIndex, /* xBestIndex */
+ jsonEachDisconnect, /* xDisconnect */
+ 0, /* xDestroy */
+ jsonEachOpenEach, /* xOpen - open a cursor */
+ jsonEachClose, /* xClose - close a cursor */
+ jsonEachFilter, /* xFilter - configure scan constraints */
+ jsonEachNext, /* xNext - advance a cursor */
+ jsonEachEof, /* xEof - check for end of scan */
+ jsonEachColumn, /* xColumn - read data */
+ jsonEachRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+};
+
+/* The methods of the json_tree virtual table. */
+static sqlite3_module jsonTreeModule = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ jsonEachConnect, /* xConnect */
+ jsonEachBestIndex, /* xBestIndex */
+ jsonEachDisconnect, /* xDisconnect */
+ 0, /* xDestroy */
+ jsonEachOpenTree, /* xOpen - open a cursor */
+ jsonEachClose, /* xClose - close a cursor */
+ jsonEachFilter, /* xFilter - configure scan constraints */
+ jsonEachNext, /* xNext - advance a cursor */
+ jsonEachEof, /* xEof - check for end of scan */
+ jsonEachColumn, /* xColumn - read data */
+ jsonEachRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+};
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+#endif /* !defined(SQLITE_OMIT_JSON) */
+
+/*
+** Register JSON functions.
+*/
+SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void){
+#ifndef SQLITE_OMIT_JSON
+ static FuncDef aJsonFunc[] = {
+ JFUNCTION(json, 1, 0, jsonRemoveFunc),
+ JFUNCTION(json_array, -1, 0, jsonArrayFunc),
+ JFUNCTION(json_array_length, 1, 0, jsonArrayLengthFunc),
+ JFUNCTION(json_array_length, 2, 0, jsonArrayLengthFunc),
+ JFUNCTION(json_extract, -1, 0, jsonExtractFunc),
+ JFUNCTION(->, 2, JSON_JSON, jsonExtractFunc),
+ JFUNCTION(->>, 2, JSON_SQL, jsonExtractFunc),
+ JFUNCTION(json_insert, -1, 0, jsonSetFunc),
+ JFUNCTION(json_object, -1, 0, jsonObjectFunc),
+ JFUNCTION(json_patch, 2, 0, jsonPatchFunc),
+ JFUNCTION(json_quote, 1, 0, jsonQuoteFunc),
+ JFUNCTION(json_remove, -1, 0, jsonRemoveFunc),
+ JFUNCTION(json_replace, -1, 0, jsonReplaceFunc),
+ JFUNCTION(json_set, -1, JSON_ISSET, jsonSetFunc),
+ JFUNCTION(json_type, 1, 0, jsonTypeFunc),
+ JFUNCTION(json_type, 2, 0, jsonTypeFunc),
+ JFUNCTION(json_valid, 1, 0, jsonValidFunc),
+#if SQLITE_DEBUG
+ JFUNCTION(json_parse, 1, 0, jsonParseFunc),
+ JFUNCTION(json_test1, 1, 0, jsonTest1Func),
+#endif
+ WAGGREGATE(json_group_array, 1, 0, 0,
+ jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse,
+ SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS),
+ WAGGREGATE(json_group_object, 2, 0, 0,
+ jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse,
+ SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS)
+ };
+ sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc));
+#endif
+}
+
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
+/*
+** Register the JSON table-valued functions
+*/
+SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3 *db){
+ int rc = SQLITE_OK;
+ static const struct {
+ const char *zName;
+ sqlite3_module *pModule;
+ } aMod[] = {
+ { "json_each", &jsonEachModule },
+ { "json_tree", &jsonTreeModule },
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
+ rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);
+ }
+ return rc;
+}
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) */
+
+/************** End of json.c ************************************************/
+/************** Begin file rtree.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for implementations of the r-tree and r*-tree
+** algorithms packaged as an SQLite virtual table module.
+*/
+
+/*
+** Database Format of R-Tree Tables
+** --------------------------------
+**
+** The data structure for a single virtual r-tree table is stored in three
+** native SQLite tables declared as follows. In each case, the '%' character
+** in the table name is replaced with the user-supplied name of the r-tree
+** table.
+**
+** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
+**
+** The data for each node of the r-tree structure is stored in the %_node
+** table. For each node that is not the root node of the r-tree, there is
+** an entry in the %_parent table associating the node with its parent.
+** And for each row of data in the table, there is an entry in the %_rowid
+** table that maps from the entries rowid to the id of the node that it
+** is stored on. If the r-tree contains auxiliary columns, those are stored
+** on the end of the %_rowid table.
+**
+** The root node of an r-tree always exists, even if the r-tree table is
+** empty. The nodeno of the root node is always 1. All other nodes in the
+** table must be the same size as the root node. The content of each node
+** is formatted as follows:
+**
+** 1. If the node is the root node (node 1), then the first 2 bytes
+** of the node contain the tree depth as a big-endian integer.
+** For non-root nodes, the first 2 bytes are left unused.
+**
+** 2. The next 2 bytes contain the number of entries currently
+** stored in the node.
+**
+** 3. The remainder of the node contains the node entries. Each entry
+** consists of a single 8-byte integer followed by an even number
+** of 4-byte coordinates. For leaf nodes the integer is the rowid
+** of a record. For internal nodes it is the node number of a
+** child page.
+*/
+
+#if !defined(SQLITE_CORE) \
+ || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
+
+#ifndef SQLITE_CORE
+/* #include "sqlite3ext.h" */
+ SQLITE_EXTENSION_INIT1
+#else
+/* #include "sqlite3.h" */
+#endif
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */
+
+/*
+** If building separately, we will need some setup that is normally
+** found in sqliteInt.h
+*/
+#if !defined(SQLITE_AMALGAMATION)
+#include "sqlite3rtree.h"
+typedef sqlite3_int64 i64;
+typedef sqlite3_uint64 u64;
+typedef unsigned char u8;
+typedef unsigned short u16;
+typedef unsigned int u32;
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+#endif /* !defined(SQLITE_AMALGAMATION) */
+
+/* #include <string.h> */
+/* #include <stdio.h> */
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+
+/* The following macro is used to suppress compiler warnings.
+*/
+#ifndef UNUSED_PARAMETER
+# define UNUSED_PARAMETER(x) (void)(x)
+#endif
+
+typedef struct Rtree Rtree;
+typedef struct RtreeCursor RtreeCursor;
+typedef struct RtreeNode RtreeNode;
+typedef struct RtreeCell RtreeCell;
+typedef struct RtreeConstraint RtreeConstraint;
+typedef struct RtreeMatchArg RtreeMatchArg;
+typedef struct RtreeGeomCallback RtreeGeomCallback;
+typedef union RtreeCoord RtreeCoord;
+typedef struct RtreeSearchPoint RtreeSearchPoint;
+
+/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
+#define RTREE_MAX_DIMENSIONS 5
+
+/* Maximum number of auxiliary columns */
+#define RTREE_MAX_AUX_COLUMN 100
+
+/* Size of hash table Rtree.aHash. This hash table is not expected to
+** ever contain very many entries, so a fixed number of buckets is
+** used.
+*/
+#define HASHSIZE 97
+
+/* The xBestIndex method of this virtual table requires an estimate of
+** the number of rows in the virtual table to calculate the costs of
+** various strategies. If possible, this estimate is loaded from the
+** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
+** Otherwise, if no sqlite_stat1 entry is available, use
+** RTREE_DEFAULT_ROWEST.
+*/
+#define RTREE_DEFAULT_ROWEST 1048576
+#define RTREE_MIN_ROWEST 100
+
+/*
+** An rtree virtual-table object.
+*/
+struct Rtree {
+ sqlite3_vtab base; /* Base class. Must be first */
+ sqlite3 *db; /* Host database connection */
+ int iNodeSize; /* Size in bytes of each node in the node table */
+ u8 nDim; /* Number of dimensions */
+ u8 nDim2; /* Twice the number of dimensions */
+ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
+ u8 nBytesPerCell; /* Bytes consumed per cell */
+ u8 inWrTrans; /* True if inside write transaction */
+ u8 nAux; /* # of auxiliary columns in %_rowid */
+#ifdef SQLITE_ENABLE_GEOPOLY
+ u8 nAuxNotNull; /* Number of initial not-null aux columns */
+#endif
+#ifdef SQLITE_DEBUG
+ u8 bCorrupt; /* Shadow table corruption detected */
+#endif
+ int iDepth; /* Current depth of the r-tree structure */
+ char *zDb; /* Name of database containing r-tree table */
+ char *zName; /* Name of r-tree table */
+ u32 nBusy; /* Current number of users of this structure */
+ i64 nRowEst; /* Estimated number of rows in this table */
+ u32 nCursor; /* Number of open cursors */
+ u32 nNodeRef; /* Number RtreeNodes with positive nRef */
+ char *zReadAuxSql; /* SQL for statement to read aux data */
+
+ /* List of nodes removed during a CondenseTree operation. List is
+ ** linked together via the pointer normally used for hash chains -
+ ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
+ ** headed by the node (leaf nodes have RtreeNode.iNode==0).
+ */
+ RtreeNode *pDeleted;
+ int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
+
+ /* Blob I/O on xxx_node */
+ sqlite3_blob *pNodeBlob;
+
+ /* Statements to read/write/delete a record from xxx_node */
+ sqlite3_stmt *pWriteNode;
+ sqlite3_stmt *pDeleteNode;
+
+ /* Statements to read/write/delete a record from xxx_rowid */
+ sqlite3_stmt *pReadRowid;
+ sqlite3_stmt *pWriteRowid;
+ sqlite3_stmt *pDeleteRowid;
+
+ /* Statements to read/write/delete a record from xxx_parent */
+ sqlite3_stmt *pReadParent;
+ sqlite3_stmt *pWriteParent;
+ sqlite3_stmt *pDeleteParent;
+
+ /* Statement for writing to the "aux:" fields, if there are any */
+ sqlite3_stmt *pWriteAux;
+
+ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
+};
+
+/* Possible values for Rtree.eCoordType: */
+#define RTREE_COORD_REAL32 0
+#define RTREE_COORD_INT32 1
+
+/*
+** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
+** only deal with integer coordinates. No floating point operations
+** will be done.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+ typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */
+ typedef int RtreeValue; /* Low accuracy coordinate */
+# define RTREE_ZERO 0
+#else
+ typedef double RtreeDValue; /* High accuracy coordinate */
+ typedef float RtreeValue; /* Low accuracy coordinate */
+# define RTREE_ZERO 0.0
+#endif
+
+/*
+** Set the Rtree.bCorrupt flag
+*/
+#ifdef SQLITE_DEBUG
+# define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1)
+#else
+# define RTREE_IS_CORRUPT(X)
+#endif
+
+/*
+** When doing a search of an r-tree, instances of the following structure
+** record intermediate results from the tree walk.
+**
+** The id is always a node-id. For iLevel>=1 the id is the node-id of
+** the node that the RtreeSearchPoint represents. When iLevel==0, however,
+** the id is of the parent node and the cell that RtreeSearchPoint
+** represents is the iCell-th entry in the parent node.
+*/
+struct RtreeSearchPoint {
+ RtreeDValue rScore; /* The score for this node. Smallest goes first. */
+ sqlite3_int64 id; /* Node ID */
+ u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */
+ u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */
+ u8 iCell; /* Cell index within the node */
+};
+
+/*
+** The minimum number of cells allowed for a node is a third of the
+** maximum. In Gutman's notation:
+**
+** m = M/3
+**
+** If an R*-tree "Reinsert" operation is required, the same number of
+** cells are removed from the overfull node and reinserted into the tree.
+*/
+#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
+#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
+#define RTREE_MAXCELLS 51
+
+/*
+** The smallest possible node-size is (512-64)==448 bytes. And the largest
+** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
+** Therefore all non-root nodes must contain at least 3 entries. Since
+** 3^40 is greater than 2^64, an r-tree structure always has a depth of
+** 40 or less.
+*/
+#define RTREE_MAX_DEPTH 40
+
+
+/*
+** Number of entries in the cursor RtreeNode cache. The first entry is
+** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
+** entries cache the RtreeNode for the first elements of the priority queue.
+*/
+#define RTREE_CACHE_SZ 5
+
+/*
+** An rtree cursor object.
+*/
+struct RtreeCursor {
+ sqlite3_vtab_cursor base; /* Base class. Must be first */
+ u8 atEOF; /* True if at end of search */
+ u8 bPoint; /* True if sPoint is valid */
+ u8 bAuxValid; /* True if pReadAux is valid */
+ int iStrategy; /* Copy of idxNum search parameter */
+ int nConstraint; /* Number of entries in aConstraint */
+ RtreeConstraint *aConstraint; /* Search constraints. */
+ int nPointAlloc; /* Number of slots allocated for aPoint[] */
+ int nPoint; /* Number of slots used in aPoint[] */
+ int mxLevel; /* iLevel value for root of the tree */
+ RtreeSearchPoint *aPoint; /* Priority queue for search points */
+ sqlite3_stmt *pReadAux; /* Statement to read aux-data */
+ RtreeSearchPoint sPoint; /* Cached next search point */
+ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
+ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */
+};
+
+/* Return the Rtree of a RtreeCursor */
+#define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
+
+/*
+** A coordinate can be either a floating point number or a integer. All
+** coordinates within a single R-Tree are always of the same time.
+*/
+union RtreeCoord {
+ RtreeValue f; /* Floating point value */
+ int i; /* Integer value */
+ u32 u; /* Unsigned for byte-order conversions */
+};
+
+/*
+** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
+** formatted as a RtreeDValue (double or int64). This macro assumes that local
+** variable pRtree points to the Rtree structure associated with the
+** RtreeCoord.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+# define DCOORD(coord) ((RtreeDValue)coord.i)
+#else
+# define DCOORD(coord) ( \
+ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
+ ((double)coord.f) : \
+ ((double)coord.i) \
+ )
+#endif
+
+/*
+** A search constraint.
+*/
+struct RtreeConstraint {
+ int iCoord; /* Index of constrained coordinate */
+ int op; /* Constraining operation */
+ union {
+ RtreeDValue rValue; /* Constraint value. */
+ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
+ int (*xQueryFunc)(sqlite3_rtree_query_info*);
+ } u;
+ sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */
+};
+
+/* Possible values for RtreeConstraint.op */
+#define RTREE_EQ 0x41 /* A */
+#define RTREE_LE 0x42 /* B */
+#define RTREE_LT 0x43 /* C */
+#define RTREE_GE 0x44 /* D */
+#define RTREE_GT 0x45 /* E */
+#define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
+#define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
+
+/* Special operators available only on cursors. Needs to be consecutive
+** with the normal values above, but must be less than RTREE_MATCH. These
+** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or
+** x<'xyz' (RTREE_TRUE) */
+#define RTREE_TRUE 0x3f /* ? */
+#define RTREE_FALSE 0x40 /* @ */
+
+/*
+** An rtree structure node.
+*/
+struct RtreeNode {
+ RtreeNode *pParent; /* Parent node */
+ i64 iNode; /* The node number */
+ int nRef; /* Number of references to this node */
+ int isDirty; /* True if the node needs to be written to disk */
+ u8 *zData; /* Content of the node, as should be on disk */
+ RtreeNode *pNext; /* Next node in this hash collision chain */
+};
+
+/* Return the number of cells in a node */
+#define NCELL(pNode) readInt16(&(pNode)->zData[2])
+
+/*
+** A single cell from a node, deserialized
+*/
+struct RtreeCell {
+ i64 iRowid; /* Node or entry ID */
+ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */
+};
+
+
+/*
+** This object becomes the sqlite3_user_data() for the SQL functions
+** that are created by sqlite3_rtree_geometry_callback() and
+** sqlite3_rtree_query_callback() and which appear on the right of MATCH
+** operators in order to constrain a search.
+**
+** xGeom and xQueryFunc are the callback functions. Exactly one of
+** xGeom and xQueryFunc fields is non-NULL, depending on whether the
+** SQL function was created using sqlite3_rtree_geometry_callback() or
+** sqlite3_rtree_query_callback().
+**
+** This object is deleted automatically by the destructor mechanism in
+** sqlite3_create_function_v2().
+*/
+struct RtreeGeomCallback {
+ int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
+ int (*xQueryFunc)(sqlite3_rtree_query_info*);
+ void (*xDestructor)(void*);
+ void *pContext;
+};
+
+/*
+** An instance of this structure (in the form of a BLOB) is returned by
+** the SQL functions that sqlite3_rtree_geometry_callback() and
+** sqlite3_rtree_query_callback() create, and is read as the right-hand
+** operand to the MATCH operator of an R-Tree.
+*/
+struct RtreeMatchArg {
+ u32 iSize; /* Size of this object */
+ RtreeGeomCallback cb; /* Info about the callback functions */
+ int nParam; /* Number of parameters to the SQL function */
+ sqlite3_value **apSqlParam; /* Original SQL parameter values */
+ RtreeDValue aParam[1]; /* Values for parameters to the SQL function */
+};
+
+#ifndef MAX
+# define MAX(x,y) ((x) < (y) ? (y) : (x))
+#endif
+#ifndef MIN
+# define MIN(x,y) ((x) > (y) ? (y) : (x))
+#endif
+
+/* What version of GCC is being used. 0 means GCC is not being used .
+** Note that the GCC_VERSION macro will also be set correctly when using
+** clang, since clang works hard to be gcc compatible. So the gcc
+** optimizations will also work when compiling with clang.
+*/
+#ifndef GCC_VERSION
+#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
+#else
+# define GCC_VERSION 0
+#endif
+#endif
+
+/* The testcase() macro should already be defined in the amalgamation. If
+** it is not, make it a no-op.
+*/
+#ifndef SQLITE_AMALGAMATION
+# if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+ unsigned int sqlite3RtreeTestcase = 0;
+# define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; }
+# else
+# define testcase(X)
+# endif
+#endif
+
+/*
+** Make sure that the compiler intrinsics we desire are enabled when
+** compiling with an appropriate version of MSVC unless prevented by
+** the SQLITE_DISABLE_INTRINSIC define.
+*/
+#if !defined(SQLITE_DISABLE_INTRINSIC)
+# if defined(_MSC_VER) && _MSC_VER>=1400
+# if !defined(_WIN32_WCE)
+/* # include <intrin.h> */
+# pragma intrinsic(_byteswap_ulong)
+# pragma intrinsic(_byteswap_uint64)
+# else
+/* # include <cmnintrin.h> */
+# endif
+# endif
+#endif
+
+/*
+** Macros to determine whether the machine is big or little endian,
+** and whether or not that determination is run-time or compile-time.
+**
+** For best performance, an attempt is made to guess at the byte-order
+** using C-preprocessor macros. If that is unsuccessful, or if
+** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
+** at run-time.
+*/
+#ifndef SQLITE_BYTEORDER
+#if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
+ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
+ defined(__arm__)
+# define SQLITE_BYTEORDER 1234
+#elif defined(sparc) || defined(__ppc__)
+# define SQLITE_BYTEORDER 4321
+#else
+# define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */
+#endif
+#endif
+
+
+/* What version of MSVC is being used. 0 means MSVC is not being used */
+#ifndef MSVC_VERSION
+#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define MSVC_VERSION _MSC_VER
+#else
+# define MSVC_VERSION 0
+#endif
+#endif
+
+/*
+** Functions to deserialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The deserialized value is returned.
+*/
+static int readInt16(u8 *p){
+ return (p[0]<<8) + p[1];
+}
+static void readCoord(u8 *p, RtreeCoord *pCoord){
+ assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
+#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ pCoord->u = _byteswap_ulong(*(u32*)p);
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ pCoord->u = __builtin_bswap32(*(u32*)p);
+#elif SQLITE_BYTEORDER==4321
+ pCoord->u = *(u32*)p;
+#else
+ pCoord->u = (
+ (((u32)p[0]) << 24) +
+ (((u32)p[1]) << 16) +
+ (((u32)p[2]) << 8) +
+ (((u32)p[3]) << 0)
+ );
+#endif
+}
+static i64 readInt64(u8 *p){
+#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ u64 x;
+ memcpy(&x, p, 8);
+ return (i64)_byteswap_uint64(x);
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ u64 x;
+ memcpy(&x, p, 8);
+ return (i64)__builtin_bswap64(x);
+#elif SQLITE_BYTEORDER==4321
+ i64 x;
+ memcpy(&x, p, 8);
+ return x;
+#else
+ return (i64)(
+ (((u64)p[0]) << 56) +
+ (((u64)p[1]) << 48) +
+ (((u64)p[2]) << 40) +
+ (((u64)p[3]) << 32) +
+ (((u64)p[4]) << 24) +
+ (((u64)p[5]) << 16) +
+ (((u64)p[6]) << 8) +
+ (((u64)p[7]) << 0)
+ );
+#endif
+}
+
+/*
+** Functions to serialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The value returned is the number of bytes written
+** to the argument buffer (always 2, 4 and 8 respectively).
+*/
+static void writeInt16(u8 *p, int i){
+ p[0] = (i>> 8)&0xFF;
+ p[1] = (i>> 0)&0xFF;
+}
+static int writeCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i;
+ assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
+ assert( sizeof(RtreeCoord)==4 );
+ assert( sizeof(u32)==4 );
+#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ i = __builtin_bswap32(pCoord->u);
+ memcpy(p, &i, 4);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ i = _byteswap_ulong(pCoord->u);
+ memcpy(p, &i, 4);
+#elif SQLITE_BYTEORDER==4321
+ i = pCoord->u;
+ memcpy(p, &i, 4);
+#else
+ i = pCoord->u;
+ p[0] = (i>>24)&0xFF;
+ p[1] = (i>>16)&0xFF;
+ p[2] = (i>> 8)&0xFF;
+ p[3] = (i>> 0)&0xFF;
+#endif
+ return 4;
+}
+static int writeInt64(u8 *p, i64 i){
+#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ i = (i64)__builtin_bswap64((u64)i);
+ memcpy(p, &i, 8);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ i = (i64)_byteswap_uint64((u64)i);
+ memcpy(p, &i, 8);
+#elif SQLITE_BYTEORDER==4321
+ memcpy(p, &i, 8);
+#else
+ p[0] = (i>>56)&0xFF;
+ p[1] = (i>>48)&0xFF;
+ p[2] = (i>>40)&0xFF;
+ p[3] = (i>>32)&0xFF;
+ p[4] = (i>>24)&0xFF;
+ p[5] = (i>>16)&0xFF;
+ p[6] = (i>> 8)&0xFF;
+ p[7] = (i>> 0)&0xFF;
+#endif
+ return 8;
+}
+
+/*
+** Increment the reference count of node p.
+*/
+static void nodeReference(RtreeNode *p){
+ if( p ){
+ assert( p->nRef>0 );
+ p->nRef++;
+ }
+}
+
+/*
+** Clear the content of node p (set all bytes to 0x00).
+*/
+static void nodeZero(Rtree *pRtree, RtreeNode *p){
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2);
+ p->isDirty = 1;
+}
+
+/*
+** Given a node number iNode, return the corresponding key to use
+** in the Rtree.aHash table.
+*/
+static unsigned int nodeHash(i64 iNode){
+ return ((unsigned)iNode) % HASHSIZE;
+}
+
+/*
+** Search the node hash table for node iNode. If found, return a pointer
+** to it. Otherwise, return 0.
+*/
+static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
+ RtreeNode *p;
+ for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
+ return p;
+}
+
+/*
+** Add node pNode to the node hash table.
+*/
+static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
+ int iHash;
+ assert( pNode->pNext==0 );
+ iHash = nodeHash(pNode->iNode);
+ pNode->pNext = pRtree->aHash[iHash];
+ pRtree->aHash[iHash] = pNode;
+}
+
+/*
+** Remove node pNode from the node hash table.
+*/
+static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode **pp;
+ if( pNode->iNode!=0 ){
+ pp = &pRtree->aHash[nodeHash(pNode->iNode)];
+ for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
+ *pp = pNode->pNext;
+ pNode->pNext = 0;
+ }
+}
+
+/*
+** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
+** indicating that node has not yet been assigned a node number. It is
+** assigned a node number when nodeWrite() is called to write the
+** node contents out to the database.
+*/
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
+ RtreeNode *pNode;
+ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( pNode ){
+ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pRtree->nNodeRef++;
+ pNode->pParent = pParent;
+ pNode->isDirty = 1;
+ nodeReference(pParent);
+ }
+ return pNode;
+}
+
+/*
+** Clear the Rtree.pNodeBlob object
+*/
+static void nodeBlobReset(Rtree *pRtree){
+ if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
+ sqlite3_blob *pBlob = pRtree->pNodeBlob;
+ pRtree->pNodeBlob = 0;
+ sqlite3_blob_close(pBlob);
+ }
+}
+
+/*
+** Obtain a reference to an r-tree node.
+*/
+static int nodeAcquire(
+ Rtree *pRtree, /* R-tree structure */
+ i64 iNode, /* Node number to load */
+ RtreeNode *pParent, /* Either the parent node or NULL */
+ RtreeNode **ppNode /* OUT: Acquired node */
+){
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = 0;
+
+ /* Check if the requested node is already in the hash table. If so,
+ ** increase its reference count and return it.
+ */
+ if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){
+ if( pParent && pParent!=pNode->pParent ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+ pNode->nRef++;
+ *ppNode = pNode;
+ return SQLITE_OK;
+ }
+
+ if( pRtree->pNodeBlob ){
+ sqlite3_blob *pBlob = pRtree->pNodeBlob;
+ pRtree->pNodeBlob = 0;
+ rc = sqlite3_blob_reopen(pBlob, iNode);
+ pRtree->pNodeBlob = pBlob;
+ if( rc ){
+ nodeBlobReset(pRtree);
+ if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
+ }
+ }
+ if( pRtree->pNodeBlob==0 ){
+ char *zTab = sqlite3_mprintf("%s_node", pRtree->zName);
+ if( zTab==0 ) return SQLITE_NOMEM;
+ rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0,
+ &pRtree->pNodeBlob);
+ sqlite3_free(zTab);
+ }
+ if( rc ){
+ nodeBlobReset(pRtree);
+ *ppNode = 0;
+ /* If unable to open an sqlite3_blob on the desired row, that can only
+ ** be because the shadow tables hold erroneous data. */
+ if( rc==SQLITE_ERROR ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){
+ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize);
+ if( !pNode ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pNode->pParent = pParent;
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pRtree->nNodeRef++;
+ pNode->iNode = iNode;
+ pNode->isDirty = 0;
+ pNode->pNext = 0;
+ rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
+ pRtree->iNodeSize, 0);
+ }
+ }
+
+ /* If the root node was just loaded, set pRtree->iDepth to the height
+ ** of the r-tree structure. A height of zero means all data is stored on
+ ** the root node. A height of one means the children of the root node
+ ** are the leaves, and so on. If the depth as specified on the root node
+ ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
+ */
+ if( rc==SQLITE_OK && pNode && iNode==1 ){
+ pRtree->iDepth = readInt16(pNode->zData);
+ if( pRtree->iDepth>RTREE_MAX_DEPTH ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ }
+
+ /* If no error has occurred so far, check if the "number of entries"
+ ** field on the node is too large. If so, set the return code to
+ ** SQLITE_CORRUPT_VTAB.
+ */
+ if( pNode && rc==SQLITE_OK ){
+ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pNode!=0 ){
+ nodeReference(pParent);
+ nodeHashInsert(pRtree, pNode);
+ }else{
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ *ppNode = pNode;
+ }else{
+ if( pNode ){
+ pRtree->nNodeRef--;
+ sqlite3_free(pNode);
+ }
+ *ppNode = 0;
+ }
+
+ return rc;
+}
+
+/*
+** Overwrite cell iCell of node pNode with the contents of pCell.
+*/
+static void nodeOverwriteCell(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node into which the cell is to be written */
+ RtreeCell *pCell, /* The cell to write */
+ int iCell /* Index into pNode into which pCell is written */
+){
+ int ii;
+ u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ p += writeInt64(p, pCell->iRowid);
+ for(ii=0; ii<pRtree->nDim2; ii++){
+ p += writeCoord(p, &pCell->aCoord[ii]);
+ }
+ pNode->isDirty = 1;
+}
+
+/*
+** Remove the cell with index iCell from node pNode.
+*/
+static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
+ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ u8 *pSrc = &pDst[pRtree->nBytesPerCell];
+ int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
+ memmove(pDst, pSrc, nByte);
+ writeInt16(&pNode->zData[2], NCELL(pNode)-1);
+ pNode->isDirty = 1;
+}
+
+/*
+** Insert the contents of cell pCell into node pNode. If the insert
+** is successful, return SQLITE_OK.
+**
+** If there is not enough free space in pNode, return SQLITE_FULL.
+*/
+static int nodeInsertCell(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* Write new cell into this node */
+ RtreeCell *pCell /* The cell to be inserted */
+){
+ int nCell; /* Current number of cells in pNode */
+ int nMaxCell; /* Maximum number of cells for pNode */
+
+ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
+ nCell = NCELL(pNode);
+
+ assert( nCell<=nMaxCell );
+ if( nCell<nMaxCell ){
+ nodeOverwriteCell(pRtree, pNode, pCell, nCell);
+ writeInt16(&pNode->zData[2], nCell+1);
+ pNode->isDirty = 1;
+ }
+
+ return (nCell==nMaxCell);
+}
+
+/*
+** If the node is dirty, write it out to the database.
+*/
+static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode->isDirty ){
+ sqlite3_stmt *p = pRtree->pWriteNode;
+ if( pNode->iNode ){
+ sqlite3_bind_int64(p, 1, pNode->iNode);
+ }else{
+ sqlite3_bind_null(p, 1);
+ }
+ sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
+ sqlite3_step(p);
+ pNode->isDirty = 0;
+ rc = sqlite3_reset(p);
+ sqlite3_bind_null(p, 2);
+ if( pNode->iNode==0 && rc==SQLITE_OK ){
+ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
+ nodeHashInsert(pRtree, pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a reference to a node. If the node is dirty and the reference
+** count drops to zero, the node data is written to the database.
+*/
+static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode ){
+ assert( pNode->nRef>0 );
+ assert( pRtree->nNodeRef>0 );
+ pNode->nRef--;
+ if( pNode->nRef==0 ){
+ pRtree->nNodeRef--;
+ if( pNode->iNode==1 ){
+ pRtree->iDepth = -1;
+ }
+ if( pNode->pParent ){
+ rc = nodeRelease(pRtree, pNode->pParent);
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeWrite(pRtree, pNode);
+ }
+ nodeHashDelete(pRtree, pNode);
+ sqlite3_free(pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the 64-bit integer value associated with cell iCell of
+** node pNode. If pNode is a leaf node, this is a rowid. If it is
+** an internal node, then the 64-bit integer is a child page number.
+*/
+static i64 nodeGetRowid(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node from which to extract the ID */
+ int iCell /* The cell index from which to extract the ID */
+){
+ assert( iCell<NCELL(pNode) );
+ return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
+}
+
+/*
+** Return coordinate iCoord from cell iCell in node pNode.
+*/
+static void nodeGetCoord(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node from which to extract a coordinate */
+ int iCell, /* The index of the cell within the node */
+ int iCoord, /* Which coordinate to extract */
+ RtreeCoord *pCoord /* OUT: Space to write result to */
+){
+ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
+}
+
+/*
+** Deserialize cell iCell of node pNode. Populate the structure pointed
+** to by pCell with the results.
+*/
+static void nodeGetCell(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node containing the cell to be read */
+ int iCell, /* Index of the cell within the node */
+ RtreeCell *pCell /* OUT: Write the cell contents here */
+){
+ u8 *pData;
+ RtreeCoord *pCoord;
+ int ii = 0;
+ pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
+ pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
+ pCoord = pCell->aCoord;
+ do{
+ readCoord(pData, &pCoord[ii]);
+ readCoord(pData+4, &pCoord[ii+1]);
+ pData += 8;
+ ii += 2;
+ }while( ii<pRtree->nDim2 );
+}
+
+
+/* Forward declaration for the function that does the work of
+** the virtual table module xCreate() and xConnect() methods.
+*/
+static int rtreeInit(
+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
+);
+
+/*
+** Rtree virtual table module xCreate method.
+*/
+static int rtreeCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
+}
+
+/*
+** Rtree virtual table module xConnect method.
+*/
+static int rtreeConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
+}
+
+/*
+** Increment the r-tree reference count.
+*/
+static void rtreeReference(Rtree *pRtree){
+ pRtree->nBusy++;
+}
+
+/*
+** Decrement the r-tree reference count. When the reference count reaches
+** zero the structure is deleted.
+*/
+static void rtreeRelease(Rtree *pRtree){
+ pRtree->nBusy--;
+ if( pRtree->nBusy==0 ){
+ pRtree->inWrTrans = 0;
+ assert( pRtree->nCursor==0 );
+ nodeBlobReset(pRtree);
+ assert( pRtree->nNodeRef==0 || pRtree->bCorrupt );
+ sqlite3_finalize(pRtree->pWriteNode);
+ sqlite3_finalize(pRtree->pDeleteNode);
+ sqlite3_finalize(pRtree->pReadRowid);
+ sqlite3_finalize(pRtree->pWriteRowid);
+ sqlite3_finalize(pRtree->pDeleteRowid);
+ sqlite3_finalize(pRtree->pReadParent);
+ sqlite3_finalize(pRtree->pWriteParent);
+ sqlite3_finalize(pRtree->pDeleteParent);
+ sqlite3_finalize(pRtree->pWriteAux);
+ sqlite3_free(pRtree->zReadAuxSql);
+ sqlite3_free(pRtree);
+ }
+}
+
+/*
+** Rtree virtual table module xDisconnect method.
+*/
+static int rtreeDisconnect(sqlite3_vtab *pVtab){
+ rtreeRelease((Rtree *)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xDestroy method.
+*/
+static int rtreeDestroy(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc;
+ char *zCreate = sqlite3_mprintf(
+ "DROP TABLE '%q'.'%q_node';"
+ "DROP TABLE '%q'.'%q_rowid';"
+ "DROP TABLE '%q'.'%q_parent';",
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName
+ );
+ if( !zCreate ){
+ rc = SQLITE_NOMEM;
+ }else{
+ nodeBlobReset(pRtree);
+ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ }
+ if( rc==SQLITE_OK ){
+ rtreeRelease(pRtree);
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xOpen method.
+*/
+static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ int rc = SQLITE_NOMEM;
+ Rtree *pRtree = (Rtree *)pVTab;
+ RtreeCursor *pCsr;
+
+ pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor));
+ if( pCsr ){
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = pVTab;
+ rc = SQLITE_OK;
+ pRtree->nCursor++;
+ }
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+
+ return rc;
+}
+
+
+/*
+** Reset a cursor back to its initial state.
+*/
+static void resetCursor(RtreeCursor *pCsr){
+ Rtree *pRtree = (Rtree *)(pCsr->base.pVtab);
+ int ii;
+ sqlite3_stmt *pStmt;
+ if( pCsr->aConstraint ){
+ int i; /* Used to iterate through constraint array */
+ for(i=0; i<pCsr->nConstraint; i++){
+ sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
+ if( pInfo ){
+ if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
+ sqlite3_free(pInfo);
+ }
+ }
+ sqlite3_free(pCsr->aConstraint);
+ pCsr->aConstraint = 0;
+ }
+ for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
+ sqlite3_free(pCsr->aPoint);
+ pStmt = pCsr->pReadAux;
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
+ pCsr->pReadAux = pStmt;
+
+}
+
+/*
+** Rtree virtual table module xClose method.
+*/
+static int rtreeClose(sqlite3_vtab_cursor *cur){
+ Rtree *pRtree = (Rtree *)(cur->pVtab);
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ assert( pRtree->nCursor>0 );
+ resetCursor(pCsr);
+ sqlite3_finalize(pCsr->pReadAux);
+ sqlite3_free(pCsr);
+ pRtree->nCursor--;
+ nodeBlobReset(pRtree);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xEof method.
+**
+** Return non-zero if the cursor does not currently point to a valid
+** record (i.e if the scan has finished), or zero otherwise.
+*/
+static int rtreeEof(sqlite3_vtab_cursor *cur){
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ return pCsr->atEOF;
+}
+
+/*
+** Convert raw bits from the on-disk RTree record into a coordinate value.
+** The on-disk format is big-endian and needs to be converted for little-
+** endian platforms. The on-disk record stores integer coordinates if
+** eInt is true and it stores 32-bit floating point records if eInt is
+** false. a[] is the four bytes of the on-disk record to be decoded.
+** Store the results in "r".
+**
+** There are five versions of this macro. The last one is generic. The
+** other four are various architectures-specific optimizations.
+*/
+#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ c.u = _byteswap_ulong(*(u32*)a); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ c.u = __builtin_bswap32(*(u32*)a); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#elif SQLITE_BYTEORDER==1234
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ memcpy(&c.u,a,4); \
+ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
+ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#elif SQLITE_BYTEORDER==4321
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ memcpy(&c.u,a,4); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#else
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
+ +((u32)a[2]<<8) + a[3]; \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#endif
+
+/*
+** Check the RTree node or entry given by pCellData and p against the MATCH
+** constraint pConstraint.
+*/
+static int rtreeCallbackConstraint(
+ RtreeConstraint *pConstraint, /* The constraint to test */
+ int eInt, /* True if RTree holding integer coordinates */
+ u8 *pCellData, /* Raw cell content */
+ RtreeSearchPoint *pSearch, /* Container of this cell */
+ sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */
+ int *peWithin /* OUT: visibility of the cell */
+){
+ sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
+ int nCoord = pInfo->nCoord; /* No. of coordinates */
+ int rc; /* Callback return code */
+ RtreeCoord c; /* Translator union */
+ sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */
+
+ assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
+ assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
+
+ if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
+ pInfo->iRowid = readInt64(pCellData);
+ }
+ pCellData += 8;
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( eInt==0 ){
+ switch( nCoord ){
+ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f;
+ readCoord(pCellData+32, &c); aCoord[8] = c.f;
+ case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f;
+ readCoord(pCellData+24, &c); aCoord[6] = c.f;
+ case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f;
+ readCoord(pCellData+16, &c); aCoord[4] = c.f;
+ case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f;
+ readCoord(pCellData+8, &c); aCoord[2] = c.f;
+ default: readCoord(pCellData+4, &c); aCoord[1] = c.f;
+ readCoord(pCellData, &c); aCoord[0] = c.f;
+ }
+ }else
+#endif
+ {
+ switch( nCoord ){
+ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i;
+ readCoord(pCellData+32, &c); aCoord[8] = c.i;
+ case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i;
+ readCoord(pCellData+24, &c); aCoord[6] = c.i;
+ case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i;
+ readCoord(pCellData+16, &c); aCoord[4] = c.i;
+ case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i;
+ readCoord(pCellData+8, &c); aCoord[2] = c.i;
+ default: readCoord(pCellData+4, &c); aCoord[1] = c.i;
+ readCoord(pCellData, &c); aCoord[0] = c.i;
+ }
+ }
+ if( pConstraint->op==RTREE_MATCH ){
+ int eWithin = 0;
+ rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
+ nCoord, aCoord, &eWithin);
+ if( eWithin==0 ) *peWithin = NOT_WITHIN;
+ *prScore = RTREE_ZERO;
+ }else{
+ pInfo->aCoord = aCoord;
+ pInfo->iLevel = pSearch->iLevel - 1;
+ pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
+ pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
+ rc = pConstraint->u.xQueryFunc(pInfo);
+ if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
+ if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
+ *prScore = pInfo->rScore;
+ }
+ }
+ return rc;
+}
+
+/*
+** Check the internal RTree node given by pCellData against constraint p.
+** If this constraint cannot be satisfied by any child within the node,
+** set *peWithin to NOT_WITHIN.
+*/
+static void rtreeNonleafConstraint(
+ RtreeConstraint *p, /* The constraint to test */
+ int eInt, /* True if RTree holds integer coordinates */
+ u8 *pCellData, /* Raw cell content as appears on disk */
+ int *peWithin /* Adjust downward, as appropriate */
+){
+ sqlite3_rtree_dbl val; /* Coordinate value convert to a double */
+
+ /* p->iCoord might point to either a lower or upper bound coordinate
+ ** in a coordinate pair. But make pCellData point to the lower bound.
+ */
+ pCellData += 8 + 4*(p->iCoord&0xfe);
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE
+ || p->op==RTREE_FALSE );
+ assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */
+ switch( p->op ){
+ case RTREE_TRUE: return; /* Always satisfied */
+ case RTREE_FALSE: break; /* Never satisfied */
+ case RTREE_EQ:
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the lower bound of the coordinate pair */
+ if( p->u.rValue>=val ){
+ pCellData += 4;
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the upper bound of the coordinate pair */
+ if( p->u.rValue<=val ) return;
+ }
+ break;
+ case RTREE_LE:
+ case RTREE_LT:
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the lower bound of the coordinate pair */
+ if( p->u.rValue>=val ) return;
+ break;
+
+ default:
+ pCellData += 4;
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the upper bound of the coordinate pair */
+ if( p->u.rValue<=val ) return;
+ break;
+ }
+ *peWithin = NOT_WITHIN;
+}
+
+/*
+** Check the leaf RTree cell given by pCellData against constraint p.
+** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
+** If the constraint is satisfied, leave *peWithin unchanged.
+**
+** The constraint is of the form: xN op $val
+**
+** The op is given by p->op. The xN is p->iCoord-th coordinate in
+** pCellData. $val is given by p->u.rValue.
+*/
+static void rtreeLeafConstraint(
+ RtreeConstraint *p, /* The constraint to test */
+ int eInt, /* True if RTree holds integer coordinates */
+ u8 *pCellData, /* Raw cell content as appears on disk */
+ int *peWithin /* Adjust downward, as appropriate */
+){
+ RtreeDValue xN; /* Coordinate value converted to a double */
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE
+ || p->op==RTREE_FALSE );
+ pCellData += 8 + p->iCoord*4;
+ assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */
+ RTREE_DECODE_COORD(eInt, pCellData, xN);
+ switch( p->op ){
+ case RTREE_TRUE: return; /* Always satisfied */
+ case RTREE_FALSE: break; /* Never satisfied */
+ case RTREE_LE: if( xN <= p->u.rValue ) return; break;
+ case RTREE_LT: if( xN < p->u.rValue ) return; break;
+ case RTREE_GE: if( xN >= p->u.rValue ) return; break;
+ case RTREE_GT: if( xN > p->u.rValue ) return; break;
+ default: if( xN == p->u.rValue ) return; break;
+ }
+ *peWithin = NOT_WITHIN;
+}
+
+/*
+** One of the cells in node pNode is guaranteed to have a 64-bit
+** integer value equal to iRowid. Return the index of this cell.
+*/
+static int nodeRowidIndex(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ i64 iRowid,
+ int *piIndex
+){
+ int ii;
+ int nCell = NCELL(pNode);
+ assert( nCell<200 );
+ for(ii=0; ii<nCell; ii++){
+ if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
+ *piIndex = ii;
+ return SQLITE_OK;
+ }
+ }
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+}
+
+/*
+** Return the index of the cell containing a pointer to node pNode
+** in its parent. If pNode is the root node, return -1.
+*/
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
+ RtreeNode *pParent = pNode->pParent;
+ if( ALWAYS(pParent) ){
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
+ }else{
+ *piIndex = -1;
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Compare two search points. Return negative, zero, or positive if the first
+** is less than, equal to, or greater than the second.
+**
+** The rScore is the primary key. Smaller rScore values come first.
+** If the rScore is a tie, then use iLevel as the tie breaker with smaller
+** iLevel values coming first. In this way, if rScore is the same for all
+** SearchPoints, then iLevel becomes the deciding factor and the result
+** is a depth-first search, which is the desired default behavior.
+*/
+static int rtreeSearchPointCompare(
+ const RtreeSearchPoint *pA,
+ const RtreeSearchPoint *pB
+){
+ if( pA->rScore<pB->rScore ) return -1;
+ if( pA->rScore>pB->rScore ) return +1;
+ if( pA->iLevel<pB->iLevel ) return -1;
+ if( pA->iLevel>pB->iLevel ) return +1;
+ return 0;
+}
+
+/*
+** Interchange two search points in a cursor.
+*/
+static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
+ RtreeSearchPoint t = p->aPoint[i];
+ assert( i<j );
+ p->aPoint[i] = p->aPoint[j];
+ p->aPoint[j] = t;
+ i++; j++;
+ if( i<RTREE_CACHE_SZ ){
+ if( j>=RTREE_CACHE_SZ ){
+ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
+ p->aNode[i] = 0;
+ }else{
+ RtreeNode *pTemp = p->aNode[i];
+ p->aNode[i] = p->aNode[j];
+ p->aNode[j] = pTemp;
+ }
+ }
+}
+
+/*
+** Return the search point with the lowest current score.
+*/
+static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
+ return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
+}
+
+/*
+** Get the RtreeNode for the search point with the lowest score.
+*/
+static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
+ sqlite3_int64 id;
+ int ii = 1 - pCur->bPoint;
+ assert( ii==0 || ii==1 );
+ assert( pCur->bPoint || pCur->nPoint );
+ if( pCur->aNode[ii]==0 ){
+ assert( pRC!=0 );
+ id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
+ *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
+ }
+ return pCur->aNode[ii];
+}
+
+/*
+** Push a new element onto the priority queue
+*/
+static RtreeSearchPoint *rtreeEnqueue(
+ RtreeCursor *pCur, /* The cursor */
+ RtreeDValue rScore, /* Score for the new search point */
+ u8 iLevel /* Level for the new search point */
+){
+ int i, j;
+ RtreeSearchPoint *pNew;
+ if( pCur->nPoint>=pCur->nPointAlloc ){
+ int nNew = pCur->nPointAlloc*2 + 8;
+ pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
+ if( pNew==0 ) return 0;
+ pCur->aPoint = pNew;
+ pCur->nPointAlloc = nNew;
+ }
+ i = pCur->nPoint++;
+ pNew = pCur->aPoint + i;
+ pNew->rScore = rScore;
+ pNew->iLevel = iLevel;
+ assert( iLevel<=RTREE_MAX_DEPTH );
+ while( i>0 ){
+ RtreeSearchPoint *pParent;
+ j = (i-1)/2;
+ pParent = pCur->aPoint + j;
+ if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
+ rtreeSearchPointSwap(pCur, j, i);
+ i = j;
+ pNew = pParent;
+ }
+ return pNew;
+}
+
+/*
+** Allocate a new RtreeSearchPoint and return a pointer to it. Return
+** NULL if malloc fails.
+*/
+static RtreeSearchPoint *rtreeSearchPointNew(
+ RtreeCursor *pCur, /* The cursor */
+ RtreeDValue rScore, /* Score for the new search point */
+ u8 iLevel /* Level for the new search point */
+){
+ RtreeSearchPoint *pNew, *pFirst;
+ pFirst = rtreeSearchPointFirst(pCur);
+ pCur->anQueue[iLevel]++;
+ if( pFirst==0
+ || pFirst->rScore>rScore
+ || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
+ ){
+ if( pCur->bPoint ){
+ int ii;
+ pNew = rtreeEnqueue(pCur, rScore, iLevel);
+ if( pNew==0 ) return 0;
+ ii = (int)(pNew - pCur->aPoint) + 1;
+ assert( ii==1 );
+ if( ALWAYS(ii<RTREE_CACHE_SZ) ){
+ assert( pCur->aNode[ii]==0 );
+ pCur->aNode[ii] = pCur->aNode[0];
+ }else{
+ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
+ }
+ pCur->aNode[0] = 0;
+ *pNew = pCur->sPoint;
+ }
+ pCur->sPoint.rScore = rScore;
+ pCur->sPoint.iLevel = iLevel;
+ pCur->bPoint = 1;
+ return &pCur->sPoint;
+ }else{
+ return rtreeEnqueue(pCur, rScore, iLevel);
+ }
+}
+
+#if 0
+/* Tracing routines for the RtreeSearchPoint queue */
+static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
+ if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
+ printf(" %d.%05lld.%02d %g %d",
+ p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
+ );
+ idx++;
+ if( idx<RTREE_CACHE_SZ ){
+ printf(" %p\n", pCur->aNode[idx]);
+ }else{
+ printf("\n");
+ }
+}
+static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
+ int ii;
+ printf("=== %9s ", zPrefix);
+ if( pCur->bPoint ){
+ tracePoint(&pCur->sPoint, -1, pCur);
+ }
+ for(ii=0; ii<pCur->nPoint; ii++){
+ if( ii>0 || pCur->bPoint ) printf(" ");
+ tracePoint(&pCur->aPoint[ii], ii, pCur);
+ }
+}
+# define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
+#else
+# define RTREE_QUEUE_TRACE(A,B) /* no-op */
+#endif
+
+/* Remove the search point with the lowest current score.
+*/
+static void rtreeSearchPointPop(RtreeCursor *p){
+ int i, j, k, n;
+ i = 1 - p->bPoint;
+ assert( i==0 || i==1 );
+ if( p->aNode[i] ){
+ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
+ p->aNode[i] = 0;
+ }
+ if( p->bPoint ){
+ p->anQueue[p->sPoint.iLevel]--;
+ p->bPoint = 0;
+ }else if( ALWAYS(p->nPoint) ){
+ p->anQueue[p->aPoint[0].iLevel]--;
+ n = --p->nPoint;
+ p->aPoint[0] = p->aPoint[n];
+ if( n<RTREE_CACHE_SZ-1 ){
+ p->aNode[1] = p->aNode[n+1];
+ p->aNode[n+1] = 0;
+ }
+ i = 0;
+ while( (j = i*2+1)<n ){
+ k = j+1;
+ if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
+ if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
+ rtreeSearchPointSwap(p, i, k);
+ i = k;
+ }else{
+ break;
+ }
+ }else{
+ if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
+ rtreeSearchPointSwap(p, i, j);
+ i = j;
+ }else{
+ break;
+ }
+ }
+ }
+ }
+}
+
+
+/*
+** Continue the search on cursor pCur until the front of the queue
+** contains an entry suitable for returning as a result-set row,
+** or until the RtreeSearchPoint queue is empty, indicating that the
+** query has completed.
+*/
+static int rtreeStepToLeaf(RtreeCursor *pCur){
+ RtreeSearchPoint *p;
+ Rtree *pRtree = RTREE_OF_CURSOR(pCur);
+ RtreeNode *pNode;
+ int eWithin;
+ int rc = SQLITE_OK;
+ int nCell;
+ int nConstraint = pCur->nConstraint;
+ int ii;
+ int eInt;
+ RtreeSearchPoint x;
+
+ eInt = pRtree->eCoordType==RTREE_COORD_INT32;
+ while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
+ u8 *pCellData;
+ pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
+ if( rc ) return rc;
+ nCell = NCELL(pNode);
+ assert( nCell<200 );
+ pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
+ while( p->iCell<nCell ){
+ sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
+ eWithin = FULLY_WITHIN;
+ for(ii=0; ii<nConstraint; ii++){
+ RtreeConstraint *pConstraint = pCur->aConstraint + ii;
+ if( pConstraint->op>=RTREE_MATCH ){
+ rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
+ &rScore, &eWithin);
+ if( rc ) return rc;
+ }else if( p->iLevel==1 ){
+ rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
+ }else{
+ rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
+ }
+ if( eWithin==NOT_WITHIN ){
+ p->iCell++;
+ pCellData += pRtree->nBytesPerCell;
+ break;
+ }
+ }
+ if( eWithin==NOT_WITHIN ) continue;
+ p->iCell++;
+ x.iLevel = p->iLevel - 1;
+ if( x.iLevel ){
+ x.id = readInt64(pCellData);
+ for(ii=0; ii<pCur->nPoint; ii++){
+ if( pCur->aPoint[ii].id==x.id ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+ }
+ x.iCell = 0;
+ }else{
+ x.id = p->id;
+ x.iCell = p->iCell - 1;
+ }
+ if( p->iCell>=nCell ){
+ RTREE_QUEUE_TRACE(pCur, "POP-S:");
+ rtreeSearchPointPop(pCur);
+ }
+ if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
+ p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
+ if( p==0 ) return SQLITE_NOMEM;
+ p->eWithin = (u8)eWithin;
+ p->id = x.id;
+ p->iCell = x.iCell;
+ RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
+ break;
+ }
+ if( p->iCell>=nCell ){
+ RTREE_QUEUE_TRACE(pCur, "POP-Se:");
+ rtreeSearchPointPop(pCur);
+ }
+ }
+ pCur->atEOF = p==0;
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xNext method.
+*/
+static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ /* Move to the next entry that matches the configured constraints. */
+ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
+ if( pCsr->bAuxValid ){
+ pCsr->bAuxValid = 0;
+ sqlite3_reset(pCsr->pReadAux);
+ }
+ rtreeSearchPointPop(pCsr);
+ rc = rtreeStepToLeaf(pCsr);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xRowid method.
+*/
+static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
+ if( rc==SQLITE_OK && ALWAYS(p) ){
+ *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
+ }
+ return rc;
+}
+
+/*
+** Rtree virtual table module xColumn method.
+*/
+static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
+ RtreeCoord c;
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
+
+ if( rc ) return rc;
+ if( NEVER(p==0) ) return SQLITE_OK;
+ if( i==0 ){
+ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
+ }else if( i<=pRtree->nDim2 ){
+ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ sqlite3_result_double(ctx, c.f);
+ }else
+#endif
+ {
+ assert( pRtree->eCoordType==RTREE_COORD_INT32 );
+ sqlite3_result_int(ctx, c.i);
+ }
+ }else{
+ if( !pCsr->bAuxValid ){
+ if( pCsr->pReadAux==0 ){
+ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
+ &pCsr->pReadAux, 0);
+ if( rc ) return rc;
+ }
+ sqlite3_bind_int64(pCsr->pReadAux, 1,
+ nodeGetRowid(pRtree, pNode, p->iCell));
+ rc = sqlite3_step(pCsr->pReadAux);
+ if( rc==SQLITE_ROW ){
+ pCsr->bAuxValid = 1;
+ }else{
+ sqlite3_reset(pCsr->pReadAux);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+ }
+ }
+ sqlite3_result_value(ctx,
+ sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1));
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Use nodeAcquire() to obtain the leaf node containing the record with
+** rowid iRowid. If successful, set *ppLeaf to point to the node and
+** return SQLITE_OK. If there is no such record in the table, set
+** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
+** to zero and return an SQLite error code.
+*/
+static int findLeafNode(
+ Rtree *pRtree, /* RTree to search */
+ i64 iRowid, /* The rowid searching for */
+ RtreeNode **ppLeaf, /* Write the node here */
+ sqlite3_int64 *piNode /* Write the node-id here */
+){
+ int rc;
+ *ppLeaf = 0;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
+ if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
+ if( piNode ) *piNode = iNode;
+ rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
+ sqlite3_reset(pRtree->pReadRowid);
+ }else{
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+ return rc;
+}
+
+/*
+** This function is called to configure the RtreeConstraint object passed
+** as the second argument for a MATCH constraint. The value passed as the
+** first argument to this function is the right-hand operand to the MATCH
+** operator.
+*/
+static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
+ RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */
+ sqlite3_rtree_query_info *pInfo; /* Callback information */
+
+ pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg");
+ if( pSrc==0 ) return SQLITE_ERROR;
+ pInfo = (sqlite3_rtree_query_info*)
+ sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize );
+ if( !pInfo ) return SQLITE_NOMEM;
+ memset(pInfo, 0, sizeof(*pInfo));
+ pBlob = (RtreeMatchArg*)&pInfo[1];
+ memcpy(pBlob, pSrc, pSrc->iSize);
+ pInfo->pContext = pBlob->cb.pContext;
+ pInfo->nParam = pBlob->nParam;
+ pInfo->aParam = pBlob->aParam;
+ pInfo->apSqlParam = pBlob->apSqlParam;
+
+ if( pBlob->cb.xGeom ){
+ pCons->u.xGeom = pBlob->cb.xGeom;
+ }else{
+ pCons->op = RTREE_QUERY;
+ pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
+ }
+ pCons->pInfo = pInfo;
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xFilter method.
+*/
+static int rtreeFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ RtreeNode *pRoot = 0;
+ int ii;
+ int rc = SQLITE_OK;
+ int iCell = 0;
+
+ rtreeReference(pRtree);
+
+ /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
+ resetCursor(pCsr);
+
+ pCsr->iStrategy = idxNum;
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ RtreeSearchPoint *p; /* Search point for the leaf */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ i64 iNode = 0;
+ int eType = sqlite3_value_numeric_type(argv[0]);
+ if( eType==SQLITE_INTEGER
+ || (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid)
+ ){
+ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
+ }else{
+ rc = SQLITE_OK;
+ pLeaf = 0;
+ }
+ if( rc==SQLITE_OK && pLeaf!=0 ){
+ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
+ assert( p!=0 ); /* Always returns pCsr->sPoint */
+ pCsr->aNode[0] = pLeaf;
+ p->id = iNode;
+ p->eWithin = PARTLY_WITHIN;
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
+ p->iCell = (u8)iCell;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
+ }else{
+ pCsr->atEOF = 1;
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ if( rc==SQLITE_OK && argc>0 ){
+ pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc);
+ pCsr->nConstraint = argc;
+ if( !pCsr->aConstraint ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
+ memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
+ assert( (idxStr==0 && argc==0)
+ || (idxStr && (int)strlen(idxStr)==argc*2) );
+ for(ii=0; ii<argc; ii++){
+ RtreeConstraint *p = &pCsr->aConstraint[ii];
+ int eType = sqlite3_value_numeric_type(argv[ii]);
+ p->op = idxStr[ii*2];
+ p->iCoord = idxStr[ii*2+1]-'0';
+ if( p->op>=RTREE_MATCH ){
+ /* A MATCH operator. The right-hand-side must be a blob that
+ ** can be cast into an RtreeMatchArg object. One created using
+ ** an sqlite3_rtree_geometry_callback() SQL user function.
+ */
+ rc = deserializeGeometry(argv[ii], p);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ p->pInfo->nCoord = pRtree->nDim2;
+ p->pInfo->anQueue = pCsr->anQueue;
+ p->pInfo->mxLevel = pRtree->iDepth + 1;
+ }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+#ifdef SQLITE_RTREE_INT_ONLY
+ p->u.rValue = sqlite3_value_int64(argv[ii]);
+#else
+ p->u.rValue = sqlite3_value_double(argv[ii]);
+#endif
+ }else{
+ p->u.rValue = RTREE_ZERO;
+ if( eType==SQLITE_NULL ){
+ p->op = RTREE_FALSE;
+ }else if( p->op==RTREE_LT || p->op==RTREE_LE ){
+ p->op = RTREE_TRUE;
+ }else{
+ p->op = RTREE_FALSE;
+ }
+ }
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ RtreeSearchPoint *pNew;
+ assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */
+ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
+ if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */
+ return SQLITE_NOMEM;
+ }
+ pNew->id = 1;
+ pNew->iCell = 0;
+ pNew->eWithin = PARTLY_WITHIN;
+ assert( pCsr->bPoint==1 );
+ pCsr->aNode[0] = pRoot;
+ pRoot = 0;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
+ rc = rtreeStepToLeaf(pCsr);
+ }
+ }
+
+ nodeRelease(pRtree, pRoot);
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 Unused Direct lookup by rowid.
+** 2 See below R-tree query or full-table scan.
+** ------------------------------------------------
+**
+** If strategy 1 is used, then idxStr is not meaningful. If strategy
+** 2 is used, idxStr is formatted to contain 2 bytes for each
+** constraint used. The first two bytes of idxStr correspond to
+** the constraint in sqlite3_index_info.aConstraintUsage[] with
+** (argvIndex==1) etc.
+**
+** The first of each pair of bytes in idxStr identifies the constraint
+** operator as follows:
+**
+** Operator Byte Value
+** ----------------------
+** = 0x41 ('A')
+** <= 0x42 ('B')
+** < 0x43 ('C')
+** >= 0x44 ('D')
+** > 0x45 ('E')
+** MATCH 0x46 ('F')
+** ----------------------
+**
+** The second of each pair of bytes identifies the coordinate column
+** to which the constraint applies. The leftmost coordinate column
+** is 'a', the second from the left 'b' etc.
+*/
+static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ Rtree *pRtree = (Rtree*)tab;
+ int rc = SQLITE_OK;
+ int ii;
+ int bMatch = 0; /* True if there exists a MATCH constraint */
+ i64 nRow; /* Estimated rows returned by this scan */
+
+ int iIdx = 0;
+ char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
+ memset(zIdxStr, 0, sizeof(zIdxStr));
+
+ /* Check if there exists a MATCH constraint - even an unusable one. If there
+ ** is, do not consider the lookup-by-rowid plan as using such a plan would
+ ** require the VDBE to evaluate the MATCH constraint, which is not currently
+ ** possible. */
+ for(ii=0; ii<pIdxInfo->nConstraint; ii++){
+ if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ bMatch = 1;
+ }
+ }
+
+ assert( pIdxInfo->idxStr==0 );
+ for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+
+ if( bMatch==0 && p->usable
+ && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ
+ ){
+ /* We have an equality constraint on the rowid. Use strategy 1. */
+ int jj;
+ for(jj=0; jj<ii; jj++){
+ pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
+ pIdxInfo->aConstraintUsage[jj].omit = 0;
+ }
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[jj].omit = 1;
+
+ /* This strategy involves a two rowid lookups on an B-Tree structures
+ ** and then a linear search of an R-Tree node. This should be
+ ** considered almost as quick as a direct rowid lookup (for which
+ ** sqlite uses an internal cost of 0.0). It is expected to return
+ ** a single row.
+ */
+ pIdxInfo->estimatedCost = 30.0;
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
+ return SQLITE_OK;
+ }
+
+ if( p->usable
+ && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2)
+ || p->op==SQLITE_INDEX_CONSTRAINT_MATCH)
+ ){
+ u8 op;
+ switch( p->op ){
+ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
+ case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
+ case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
+ case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
+ case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
+ case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break;
+ default: op = 0; break;
+ }
+ if( op ){
+ zIdxStr[iIdx++] = op;
+ zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0');
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
+ pIdxInfo->aConstraintUsage[ii].omit = 1;
+ }
+ }
+ }
+
+ pIdxInfo->idxNum = 2;
+ pIdxInfo->needToFreeIdxStr = 1;
+ if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
+ return SQLITE_NOMEM;
+ }
+
+ nRow = pRtree->nRowEst >> (iIdx/2);
+ pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
+ pIdxInfo->estimatedRows = nRow;
+
+ return rc;
+}
+
+/*
+** Return the N-dimensional volumn of the cell stored in *p.
+*/
+static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
+ RtreeDValue area = (RtreeDValue)1;
+ assert( pRtree->nDim>=1 && pRtree->nDim<=5 );
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ switch( pRtree->nDim ){
+ case 5: area = p->aCoord[9].f - p->aCoord[8].f;
+ case 4: area *= p->aCoord[7].f - p->aCoord[6].f;
+ case 3: area *= p->aCoord[5].f - p->aCoord[4].f;
+ case 2: area *= p->aCoord[3].f - p->aCoord[2].f;
+ default: area *= p->aCoord[1].f - p->aCoord[0].f;
+ }
+ }else
+#endif
+ {
+ switch( pRtree->nDim ){
+ case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i;
+ case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i;
+ case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i;
+ case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i;
+ default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i;
+ }
+ }
+ return area;
+}
+
+/*
+** Return the margin length of cell p. The margin length is the sum
+** of the objects size in each dimension.
+*/
+static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
+ RtreeDValue margin = 0;
+ int ii = pRtree->nDim2 - 2;
+ do{
+ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ ii -= 2;
+ }while( ii>=0 );
+ return margin;
+}
+
+/*
+** Store the union of cells p1 and p2 in p1.
+*/
+static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii = 0;
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ do{
+ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
+ p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
+ ii += 2;
+ }while( ii<pRtree->nDim2 );
+ }else{
+ do{
+ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
+ p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
+ ii += 2;
+ }while( ii<pRtree->nDim2 );
+ }
+}
+
+/*
+** Return true if the area covered by p2 is a subset of the area covered
+** by p1. False otherwise.
+*/
+static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
+ for(ii=0; ii<pRtree->nDim2; ii+=2){
+ RtreeCoord *a1 = &p1->aCoord[ii];
+ RtreeCoord *a2 = &p2->aCoord[ii];
+ if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
+ || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
+ ){
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+** Return the amount cell p would grow by if it were unioned with pCell.
+*/
+static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
+ RtreeDValue area;
+ RtreeCell cell;
+ memcpy(&cell, p, sizeof(RtreeCell));
+ area = cellArea(pRtree, &cell);
+ cellUnion(pRtree, &cell, pCell);
+ return (cellArea(pRtree, &cell)-area);
+}
+
+static RtreeDValue cellOverlap(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *aCell,
+ int nCell
+){
+ int ii;
+ RtreeDValue overlap = RTREE_ZERO;
+ for(ii=0; ii<nCell; ii++){
+ int jj;
+ RtreeDValue o = (RtreeDValue)1;
+ for(jj=0; jj<pRtree->nDim2; jj+=2){
+ RtreeDValue x1, x2;
+ x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
+ x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
+ if( x2<x1 ){
+ o = (RtreeDValue)0;
+ break;
+ }else{
+ o = o * (x2-x1);
+ }
+ }
+ overlap += o;
+ }
+ return overlap;
+}
+
+
+/*
+** This function implements the ChooseLeaf algorithm from Gutman[84].
+** ChooseSubTree in r*tree terminology.
+*/
+static int ChooseLeaf(
+ Rtree *pRtree, /* Rtree table */
+ RtreeCell *pCell, /* Cell to insert into rtree */
+ int iHeight, /* Height of sub-tree rooted at pCell */
+ RtreeNode **ppLeaf /* OUT: Selected leaf page */
+){
+ int rc;
+ int ii;
+ RtreeNode *pNode = 0;
+ rc = nodeAcquire(pRtree, 1, 0, &pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
+ int iCell;
+ sqlite3_int64 iBest = 0;
+
+ RtreeDValue fMinGrowth = RTREE_ZERO;
+ RtreeDValue fMinArea = RTREE_ZERO;
+
+ int nCell = NCELL(pNode);
+ RtreeCell cell;
+ RtreeNode *pChild = 0;
+
+ RtreeCell *aCell = 0;
+
+ /* Select the child node which will be enlarged the least if pCell
+ ** is inserted into it. Resolve ties by choosing the entry with
+ ** the smallest area.
+ */
+ for(iCell=0; iCell<nCell; iCell++){
+ int bBest = 0;
+ RtreeDValue growth;
+ RtreeDValue area;
+ nodeGetCell(pRtree, pNode, iCell, &cell);
+ growth = cellGrowth(pRtree, &cell, pCell);
+ area = cellArea(pRtree, &cell);
+ if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
+ bBest = 1;
+ }
+ if( bBest ){
+ fMinGrowth = growth;
+ fMinArea = area;
+ iBest = cell.iRowid;
+ }
+ }
+
+ sqlite3_free(aCell);
+ rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
+ nodeRelease(pRtree, pNode);
+ pNode = pChild;
+ }
+
+ *ppLeaf = pNode;
+ return rc;
+}
+
+/*
+** A cell with the same content as pCell has just been inserted into
+** the node pNode. This function updates the bounding box cells in
+** all ancestor elements.
+*/
+static int AdjustTree(
+ Rtree *pRtree, /* Rtree table */
+ RtreeNode *pNode, /* Adjust ancestry of this node. */
+ RtreeCell *pCell /* This cell was just inserted */
+){
+ RtreeNode *p = pNode;
+ int cnt = 0;
+ int rc;
+ while( p->pParent ){
+ RtreeNode *pParent = p->pParent;
+ RtreeCell cell;
+ int iCell;
+
+ cnt++;
+ if( NEVER(cnt>100) ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+ rc = nodeParentIndex(pRtree, p, &iCell);
+ if( NEVER(rc!=SQLITE_OK) ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+
+ nodeGetCell(pRtree, pParent, iCell, &cell);
+ if( !cellContains(pRtree, &cell, pCell) ){
+ cellUnion(pRtree, &cell, pCell);
+ nodeOverwriteCell(pRtree, pParent, &cell, iCell);
+ }
+
+ p = pParent;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
+*/
+static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
+ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
+ sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
+ sqlite3_step(pRtree->pWriteRowid);
+ return sqlite3_reset(pRtree->pWriteRowid);
+}
+
+/*
+** Write mapping (iNode->iPar) to the <rtree>_parent table.
+*/
+static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
+ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
+ sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
+ sqlite3_step(pRtree->pWriteParent);
+ return sqlite3_reset(pRtree->pWriteParent);
+}
+
+static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
+
+
+/*
+** Arguments aIdx, aDistance and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to the indexed values in aDistance. For
+** example, assuming the inputs:
+**
+** aIdx = { 0, 1, 2, 3 }
+** aDistance = { 5.0, 2.0, 7.0, 6.0 }
+**
+** this function sets the aIdx array to contain:
+**
+** aIdx = { 0, 1, 2, 3 }
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDistance(
+ int *aIdx,
+ int nIdx,
+ RtreeDValue *aDistance,
+ int *aSpare
+){
+ if( nIdx>1 ){
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDistance(aLeft, nLeft, aDistance, aSpare);
+ SortByDistance(aRight, nRight, aDistance, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+
+ while( iLeft<nLeft || iRight<nRight ){
+ if( iLeft==nLeft ){
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }else if( iRight==nRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ RtreeDValue fLeft = aDistance[aLeft[iLeft]];
+ RtreeDValue fRight = aDistance[aRight[iRight]];
+ if( fLeft<fRight ){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ RtreeDValue left = aDistance[aIdx[jj-1]];
+ RtreeDValue right = aDistance[aIdx[jj]];
+ assert( left<=right );
+ }
+ }
+#endif
+ }
+}
+
+/*
+** Arguments aIdx, aCell and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to dimension iDim of the cells in aCell. The
+** minimum value of dimension iDim is considered first, the
+** maximum used to break ties.
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDimension(
+ Rtree *pRtree,
+ int *aIdx,
+ int nIdx,
+ int iDim,
+ RtreeCell *aCell,
+ int *aSpare
+){
+ if( nIdx>1 ){
+
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
+ SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+ while( iLeft<nLeft || iRight<nRight ){
+ RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
+ RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
+ RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
+ RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
+ if( (iLeft!=nLeft) && ((iRight==nRight)
+ || (xleft1<xright1)
+ || (xleft1==xright1 && xleft2<xright2)
+ )){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
+ RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
+ RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
+ RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
+ assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
+ }
+ }
+#endif
+ }
+}
+
+/*
+** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
+*/
+static int splitNodeStartree(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int **aaSorted;
+ int *aSpare;
+ int ii;
+
+ int iBestDim = 0;
+ int iBestSplit = 0;
+ RtreeDValue fBestMargin = RTREE_ZERO;
+
+ sqlite3_int64 nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
+
+ aaSorted = (int **)sqlite3_malloc64(nByte);
+ if( !aaSorted ){
+ return SQLITE_NOMEM;
+ }
+
+ aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
+ memset(aaSorted, 0, nByte);
+ for(ii=0; ii<pRtree->nDim; ii++){
+ int jj;
+ aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
+ for(jj=0; jj<nCell; jj++){
+ aaSorted[ii][jj] = jj;
+ }
+ SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
+ }
+
+ for(ii=0; ii<pRtree->nDim; ii++){
+ RtreeDValue margin = RTREE_ZERO;
+ RtreeDValue fBestOverlap = RTREE_ZERO;
+ RtreeDValue fBestArea = RTREE_ZERO;
+ int iBestLeft = 0;
+ int nLeft;
+
+ for(
+ nLeft=RTREE_MINCELLS(pRtree);
+ nLeft<=(nCell-RTREE_MINCELLS(pRtree));
+ nLeft++
+ ){
+ RtreeCell left;
+ RtreeCell right;
+ int kk;
+ RtreeDValue overlap;
+ RtreeDValue area;
+
+ memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
+ memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
+ for(kk=1; kk<(nCell-1); kk++){
+ if( kk<nLeft ){
+ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
+ }else{
+ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
+ }
+ }
+ margin += cellMargin(pRtree, &left);
+ margin += cellMargin(pRtree, &right);
+ overlap = cellOverlap(pRtree, &left, &right, 1);
+ area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
+ if( (nLeft==RTREE_MINCELLS(pRtree))
+ || (overlap<fBestOverlap)
+ || (overlap==fBestOverlap && area<fBestArea)
+ ){
+ iBestLeft = nLeft;
+ fBestOverlap = overlap;
+ fBestArea = area;
+ }
+ }
+
+ if( ii==0 || margin<fBestMargin ){
+ iBestDim = ii;
+ fBestMargin = margin;
+ iBestSplit = iBestLeft;
+ }
+ }
+
+ memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
+ for(ii=0; ii<nCell; ii++){
+ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
+ RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
+ RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
+ nodeInsertCell(pRtree, pTarget, pCell);
+ cellUnion(pRtree, pBbox, pCell);
+ }
+
+ sqlite3_free(aaSorted);
+ return SQLITE_OK;
+}
+
+
+static int updateMapping(
+ Rtree *pRtree,
+ i64 iRowid,
+ RtreeNode *pNode,
+ int iHeight
+){
+ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
+ xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
+ RtreeNode *p;
+ for(p=pNode; p; p=p->pParent){
+ if( p==pChild ) return SQLITE_CORRUPT_VTAB;
+ }
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( NEVER(pNode==0) ) return SQLITE_ERROR;
+ return xSetMapping(pRtree, iRowid, pNode->iNode);
+}
+
+static int SplitNode(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int i;
+ int newCellIsRight = 0;
+
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+ RtreeCell *aCell;
+ int *aiUsed;
+
+ RtreeNode *pLeft = 0;
+ RtreeNode *pRight = 0;
+
+ RtreeCell leftbbox;
+ RtreeCell rightbbox;
+
+ /* Allocate an array and populate it with a copy of pCell and
+ ** all cells from node pLeft. Then zero the original node.
+ */
+ aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+ aiUsed = (int *)&aCell[nCell+1];
+ memset(aiUsed, 0, sizeof(int)*(nCell+1));
+ for(i=0; i<nCell; i++){
+ nodeGetCell(pRtree, pNode, i, &aCell[i]);
+ }
+ nodeZero(pRtree, pNode);
+ memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
+ nCell++;
+
+ if( pNode->iNode==1 ){
+ pRight = nodeNew(pRtree, pNode);
+ pLeft = nodeNew(pRtree, pNode);
+ pRtree->iDepth++;
+ pNode->isDirty = 1;
+ writeInt16(pNode->zData, pRtree->iDepth);
+ }else{
+ pLeft = pNode;
+ pRight = nodeNew(pRtree, pLeft->pParent);
+ pLeft->nRef++;
+ }
+
+ if( !pLeft || !pRight ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+
+ memset(pLeft->zData, 0, pRtree->iNodeSize);
+ memset(pRight->zData, 0, pRtree->iNodeSize);
+
+ rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
+ &leftbbox, &rightbbox);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+
+ /* Ensure both child nodes have node numbers assigned to them by calling
+ ** nodeWrite(). Node pRight always needs a node number, as it was created
+ ** by nodeNew() above. But node pLeft sometimes already has a node number.
+ ** In this case avoid the all to nodeWrite().
+ */
+ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
+ || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
+ ){
+ goto splitnode_out;
+ }
+
+ rightbbox.iRowid = pRight->iNode;
+ leftbbox.iRowid = pLeft->iNode;
+
+ if( pNode->iNode==1 ){
+ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }else{
+ RtreeNode *pParent = pLeft->pParent;
+ int iCell;
+ rc = nodeParentIndex(pRtree, pLeft, &iCell);
+ if( ALWAYS(rc==SQLITE_OK) ){
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
+ rc = AdjustTree(pRtree, pParent, &leftbbox);
+ assert( rc==SQLITE_OK );
+ }
+ if( NEVER(rc!=SQLITE_OK) ){
+ goto splitnode_out;
+ }
+ }
+ if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
+ goto splitnode_out;
+ }
+
+ for(i=0; i<NCELL(pRight); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pRight, i);
+ rc = updateMapping(pRtree, iRowid, pRight, iHeight);
+ if( iRowid==pCell->iRowid ){
+ newCellIsRight = 1;
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ if( pNode->iNode==1 ){
+ for(i=0; i<NCELL(pLeft); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
+ rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ }else if( newCellIsRight==0 ){
+ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRight);
+ pRight = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pLeft);
+ pLeft = 0;
+ }
+
+splitnode_out:
+ nodeRelease(pRtree, pRight);
+ nodeRelease(pRtree, pLeft);
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** If node pLeaf is not the root of the r-tree and its pParent pointer is
+** still NULL, load all ancestor nodes of pLeaf into memory and populate
+** the pLeaf->pParent chain all the way up to the root node.
+**
+** This operation is required when a row is deleted (or updated - an update
+** is implemented as a delete followed by an insert). SQLite provides the
+** rowid of the row to delete, which can be used to find the leaf on which
+** the entry resides (argument pLeaf). Once the leaf is located, this
+** function is called to determine its ancestry.
+*/
+static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
+ int rc = SQLITE_OK;
+ RtreeNode *pChild = pLeaf;
+ while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
+ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
+ rc = sqlite3_step(pRtree->pReadParent);
+ if( rc==SQLITE_ROW ){
+ RtreeNode *pTest; /* Used to test for reference loops */
+ i64 iNode; /* Node number of parent node */
+
+ /* Before setting pChild->pParent, test that we are not creating a
+ ** loop of references (as we would if, say, pChild==pParent). We don't
+ ** want to do this as it leads to a memory leak when trying to delete
+ ** the referenced counted node structures.
+ */
+ iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
+ for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
+ if( pTest==0 ){
+ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
+ }
+ }
+ rc = sqlite3_reset(pRtree->pReadParent);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK && !pChild->pParent ){
+ RTREE_IS_CORRUPT(pRtree);
+ rc = SQLITE_CORRUPT_VTAB;
+ }
+ pChild = pChild->pParent;
+ }
+ return rc;
+}
+
+static int deleteCell(Rtree *, RtreeNode *, int, int);
+
+static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
+ int rc;
+ int rc2;
+ RtreeNode *pParent = 0;
+ int iCell;
+
+ assert( pNode->nRef==1 );
+
+ /* Remove the entry in the parent cell. */
+ rc = nodeParentIndex(pRtree, pNode, &iCell);
+ if( rc==SQLITE_OK ){
+ pParent = pNode->pParent;
+ pNode->pParent = 0;
+ rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
+ testcase( rc!=SQLITE_OK );
+ }
+ rc2 = nodeRelease(pRtree, pParent);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Remove the xxx_node entry. */
+ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteNode);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
+ return rc;
+ }
+
+ /* Remove the xxx_parent entry. */
+ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteParent);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
+ return rc;
+ }
+
+ /* Remove the node from the in-memory hash table and link it into
+ ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
+ */
+ nodeHashDelete(pRtree, pNode);
+ pNode->iNode = iHeight;
+ pNode->pNext = pRtree->pDeleted;
+ pNode->nRef++;
+ pRtree->pDeleted = pNode;
+
+ return SQLITE_OK;
+}
+
+static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ int rc = SQLITE_OK;
+ if( pParent ){
+ int ii;
+ int nCell = NCELL(pNode);
+ RtreeCell box; /* Bounding box for pNode */
+ nodeGetCell(pRtree, pNode, 0, &box);
+ for(ii=1; ii<nCell; ii++){
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+ cellUnion(pRtree, &box, &cell);
+ }
+ box.iRowid = pNode->iNode;
+ rc = nodeParentIndex(pRtree, pNode, &ii);
+ if( rc==SQLITE_OK ){
+ nodeOverwriteCell(pRtree, pParent, &box, ii);
+ rc = fixBoundingBox(pRtree, pParent);
+ }
+ }
+ return rc;
+}
+
+/*
+** Delete the cell at index iCell of node pNode. After removing the
+** cell, adjust the r-tree data structure if required.
+*/
+static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
+ RtreeNode *pParent;
+ int rc;
+
+ if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
+ return rc;
+ }
+
+ /* Remove the cell from the node. This call just moves bytes around
+ ** the in-memory node image, so it cannot fail.
+ */
+ nodeDeleteCell(pRtree, pNode, iCell);
+
+ /* If the node is not the tree root and now has less than the minimum
+ ** number of cells, remove it from the tree. Otherwise, update the
+ ** cell in the parent node so that it tightly contains the updated
+ ** node.
+ */
+ pParent = pNode->pParent;
+ assert( pParent || pNode->iNode==1 );
+ if( pParent ){
+ if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
+ rc = removeNode(pRtree, pNode, iHeight);
+ }else{
+ rc = fixBoundingBox(pRtree, pNode);
+ }
+ }
+
+ return rc;
+}
+
+static int Reinsert(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int *aOrder;
+ int *aSpare;
+ RtreeCell *aCell;
+ RtreeDValue *aDistance;
+ int nCell;
+ RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
+ int iDim;
+ int ii;
+ int rc = SQLITE_OK;
+ int n;
+
+ memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
+
+ nCell = NCELL(pNode)+1;
+ n = (nCell+1)&(~1);
+
+ /* Allocate the buffers used by this operation. The allocation is
+ ** relinquished before this function returns.
+ */
+ aCell = (RtreeCell *)sqlite3_malloc64(n * (
+ sizeof(RtreeCell) + /* aCell array */
+ sizeof(int) + /* aOrder array */
+ sizeof(int) + /* aSpare array */
+ sizeof(RtreeDValue) /* aDistance array */
+ ));
+ if( !aCell ){
+ return SQLITE_NOMEM;
+ }
+ aOrder = (int *)&aCell[n];
+ aSpare = (int *)&aOrder[n];
+ aDistance = (RtreeDValue *)&aSpare[n];
+
+ for(ii=0; ii<nCell; ii++){
+ if( ii==(nCell-1) ){
+ memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
+ }else{
+ nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
+ }
+ aOrder[ii] = ii;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
+ }
+ }
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
+ }
+
+ for(ii=0; ii<nCell; ii++){
+ aDistance[ii] = RTREE_ZERO;
+ for(iDim=0; iDim<pRtree->nDim; iDim++){
+ RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) -
+ DCOORD(aCell[ii].aCoord[iDim*2]));
+ aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
+ }
+ }
+
+ SortByDistance(aOrder, nCell, aDistance, aSpare);
+ nodeZero(pRtree, pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
+ RtreeCell *p = &aCell[aOrder[ii]];
+ nodeInsertCell(pRtree, pNode, p);
+ if( p->iRowid==pCell->iRowid ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = fixBoundingBox(pRtree, pNode);
+ }
+ for(; rc==SQLITE_OK && ii<nCell; ii++){
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ RtreeNode *pInsert;
+ RtreeCell *p = &aCell[aOrder[ii]];
+ rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** Insert cell pCell into node pNode. Node pNode is the head of a
+** subtree iHeight high (leaf nodes have iHeight==0).
+*/
+static int rtreeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int rc = SQLITE_OK;
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( nodeInsertCell(pRtree, pNode, pCell) ){
+ if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+ }else{
+ pRtree->iReinsertHeight = iHeight;
+ rc = Reinsert(pRtree, pNode, pCell, iHeight);
+ }
+ }else{
+ rc = AdjustTree(pRtree, pNode, pCell);
+ if( ALWAYS(rc==SQLITE_OK) ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }
+ }
+ }
+ return rc;
+}
+
+static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
+ int ii;
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
+ RtreeNode *pInsert;
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Select a currently unused rowid for a new r-tree record.
+*/
+static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){
+ int rc;
+ sqlite3_bind_null(pRtree->pWriteRowid, 1);
+ sqlite3_bind_null(pRtree->pWriteRowid, 2);
+ sqlite3_step(pRtree->pWriteRowid);
+ rc = sqlite3_reset(pRtree->pWriteRowid);
+ *piRowid = sqlite3_last_insert_rowid(pRtree->db);
+ return rc;
+}
+
+/*
+** Remove the entry with rowid=iDelete from the r-tree structure.
+*/
+static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
+ int rc; /* Return code */
+ RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */
+ int iCell; /* Index of iDelete cell in pLeaf */
+ RtreeNode *pRoot = 0; /* Root node of rtree structure */
+
+
+ /* Obtain a reference to the root node to initialize Rtree.iDepth */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+
+ /* Obtain a reference to the leaf node that contains the entry
+ ** about to be deleted.
+ */
+ if( rc==SQLITE_OK ){
+ rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
+ }
+
+#ifdef CORRUPT_DB
+ assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB );
+#endif
+
+ /* Delete the cell in question from the leaf node. */
+ if( rc==SQLITE_OK && pLeaf ){
+ int rc2;
+ rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
+ if( rc==SQLITE_OK ){
+ rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ }
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+
+ /* Delete the corresponding entry in the <rtree>_rowid table. */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
+ sqlite3_step(pRtree->pDeleteRowid);
+ rc = sqlite3_reset(pRtree->pDeleteRowid);
+ }
+
+ /* Check if the root node now has exactly one child. If so, remove
+ ** it, schedule the contents of the child for reinsertion and
+ ** reduce the tree height by one.
+ **
+ ** This is equivalent to copying the contents of the child into
+ ** the root node (the operation that Gutman's paper says to perform
+ ** in this scenario).
+ */
+ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
+ int rc2;
+ RtreeNode *pChild = 0;
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); /* tag-20210916a */
+ if( rc==SQLITE_OK ){
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
+ }
+ rc2 = nodeRelease(pRtree, pChild);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK ){
+ pRtree->iDepth--;
+ writeInt16(pRoot->zData, pRtree->iDepth);
+ pRoot->isDirty = 1;
+ }
+ }
+
+ /* Re-insert the contents of any underfull nodes removed from the tree. */
+ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
+ if( rc==SQLITE_OK ){
+ rc = reinsertNodeContent(pRtree, pLeaf);
+ }
+ pRtree->pDeleted = pLeaf->pNext;
+ pRtree->nNodeRef--;
+ sqlite3_free(pLeaf);
+ }
+
+ /* Release the reference to the root node. */
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRoot);
+ }else{
+ nodeRelease(pRtree, pRoot);
+ }
+
+ return rc;
+}
+
+/*
+** Rounding constants for float->double conversion.
+*/
+#define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
+#define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
+
+#if !defined(SQLITE_RTREE_INT_ONLY)
+/*
+** Convert an sqlite3_value into an RtreeValue (presumably a float)
+** while taking care to round toward negative or positive, respectively.
+*/
+static RtreeValue rtreeValueDown(sqlite3_value *v){
+ double d = sqlite3_value_double(v);
+ float f = (float)d;
+ if( f>d ){
+ f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
+ }
+ return f;
+}
+static RtreeValue rtreeValueUp(sqlite3_value *v){
+ double d = sqlite3_value_double(v);
+ float f = (float)d;
+ if( f<d ){
+ f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
+ }
+ return f;
+}
+#endif /* !defined(SQLITE_RTREE_INT_ONLY) */
+
+/*
+** A constraint has failed while inserting a row into an rtree table.
+** Assuming no OOM error occurs, this function sets the error message
+** (at pRtree->base.zErrMsg) to an appropriate value and returns
+** SQLITE_CONSTRAINT.
+**
+** Parameter iCol is the index of the leftmost column involved in the
+** constraint failure. If it is 0, then the constraint that failed is
+** the unique constraint on the id column. Otherwise, it is the rtree
+** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
+**
+** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
+*/
+static int rtreeConstraintError(Rtree *pRtree, int iCol){
+ sqlite3_stmt *pStmt = 0;
+ char *zSql;
+ int rc;
+
+ assert( iCol==0 || iCol%2 );
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+
+ if( rc==SQLITE_OK ){
+ if( iCol==0 ){
+ const char *zCol = sqlite3_column_name(pStmt, 0);
+ pRtree->base.zErrMsg = sqlite3_mprintf(
+ "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol
+ );
+ }else{
+ const char *zCol1 = sqlite3_column_name(pStmt, iCol);
+ const char *zCol2 = sqlite3_column_name(pStmt, iCol+1);
+ pRtree->base.zErrMsg = sqlite3_mprintf(
+ "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2
+ );
+ }
+ }
+
+ sqlite3_finalize(pStmt);
+ return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc);
+}
+
+
+
+/*
+** The xUpdate method for rtree module virtual tables.
+*/
+static int rtreeUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **aData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+ RtreeCell cell; /* New cell to insert if nData>1 */
+ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
+
+ if( pRtree->nNodeRef ){
+ /* Unable to write to the btree while another cursor is reading from it,
+ ** since the write might do a rebalance which would disrupt the read
+ ** cursor. */
+ return SQLITE_LOCKED_VTAB;
+ }
+ rtreeReference(pRtree);
+ assert(nData>=1);
+
+ cell.iRowid = 0; /* Used only to suppress a compiler warning */
+
+ /* Constraint handling. A write operation on an r-tree table may return
+ ** SQLITE_CONSTRAINT for two reasons:
+ **
+ ** 1. A duplicate rowid value, or
+ ** 2. The supplied data violates the "x2>=x1" constraint.
+ **
+ ** In the first case, if the conflict-handling mode is REPLACE, then
+ ** the conflicting row can be removed before proceeding. In the second
+ ** case, SQLITE_CONSTRAINT must be returned regardless of the
+ ** conflict-handling mode specified by the user.
+ */
+ if( nData>1 ){
+ int ii;
+ int nn = nData - 4;
+
+ if( nn > pRtree->nDim2 ) nn = pRtree->nDim2;
+ /* Populate the cell.aCoord[] array. The first coordinate is aData[3].
+ **
+ ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
+ ** with "column" that are interpreted as table constraints.
+ ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
+ ** This problem was discovered after years of use, so we silently ignore
+ ** these kinds of misdeclared tables to avoid breaking any legacy.
+ */
+
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<nn; ii+=2){
+ cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]);
+ cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]);
+ if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
+ rc = rtreeConstraintError(pRtree, ii+1);
+ goto constraint;
+ }
+ }
+ }else
+#endif
+ {
+ for(ii=0; ii<nn; ii+=2){
+ cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]);
+ cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]);
+ if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
+ rc = rtreeConstraintError(pRtree, ii+1);
+ goto constraint;
+ }
+ }
+ }
+
+ /* If a rowid value was supplied, check if it is already present in
+ ** the table. If so, the constraint has failed. */
+ if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){
+ cell.iRowid = sqlite3_value_int64(aData[2]);
+ if( sqlite3_value_type(aData[0])==SQLITE_NULL
+ || sqlite3_value_int64(aData[0])!=cell.iRowid
+ ){
+ int steprc;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ steprc = sqlite3_step(pRtree->pReadRowid);
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ if( SQLITE_ROW==steprc ){
+ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
+ rc = rtreeDeleteRowid(pRtree, cell.iRowid);
+ }else{
+ rc = rtreeConstraintError(pRtree, 0);
+ goto constraint;
+ }
+ }
+ }
+ bHaveRowid = 1;
+ }
+ }
+
+ /* If aData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){
+ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0]));
+ }
+
+ /* If the aData[] array contains more than one element, elements
+ ** (aData[2]..aData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 ){
+ /* Insert the new record into the r-tree */
+ RtreeNode *pLeaf = 0;
+
+ /* Figure out the rowid of the new row. */
+ if( bHaveRowid==0 ){
+ rc = rtreeNewRowid(pRtree, &cell.iRowid);
+ }
+ *pRowid = cell.iRowid;
+
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ pRtree->iReinsertHeight = -1;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ if( rc==SQLITE_OK && pRtree->nAux ){
+ sqlite3_stmt *pUp = pRtree->pWriteAux;
+ int jj;
+ sqlite3_bind_int64(pUp, 1, *pRowid);
+ for(jj=0; jj<pRtree->nAux; jj++){
+ sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]);
+ }
+ sqlite3_step(pUp);
+ rc = sqlite3_reset(pUp);
+ }
+ }
+
+constraint:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Called when a transaction starts.
+*/
+static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ assert( pRtree->inWrTrans==0 );
+ pRtree->inWrTrans++;
+ return SQLITE_OK;
+}
+
+/*
+** Called when a transaction completes (either by COMMIT or ROLLBACK).
+** The sqlite3_blob object should be released at this point.
+*/
+static int rtreeEndTransaction(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ pRtree->inWrTrans = 0;
+ nodeBlobReset(pRtree);
+ return SQLITE_OK;
+}
+
+/*
+** The xRename method for rtree module virtual tables.
+*/
+static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
+ "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
+ "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ );
+ if( zSql ){
+ nodeBlobReset(pRtree);
+ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+/*
+** The xSavepoint method.
+**
+** This module does not need to do anything to support savepoints. However,
+** it uses this hook to close any open blob handle. This is done because a
+** DROP TABLE command - which fortunately always opens a savepoint - cannot
+** succeed if there are any open blob handles. i.e. if the blob handle were
+** not closed here, the following would fail:
+**
+** BEGIN;
+** INSERT INTO rtree...
+** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED
+** COMMIT;
+*/
+static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){
+ Rtree *pRtree = (Rtree *)pVtab;
+ u8 iwt = pRtree->inWrTrans;
+ UNUSED_PARAMETER(iSavepoint);
+ pRtree->inWrTrans = 0;
+ nodeBlobReset(pRtree);
+ pRtree->inWrTrans = iwt;
+ return SQLITE_OK;
+}
+
+/*
+** This function populates the pRtree->nRowEst variable with an estimate
+** of the number of rows in the virtual table. If possible, this is based
+** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
+*/
+static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
+ const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
+ char *zSql;
+ sqlite3_stmt *p;
+ int rc;
+ i64 nRow = RTREE_MIN_ROWEST;
+
+ rc = sqlite3_table_column_metadata(
+ db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0
+ );
+ if( rc!=SQLITE_OK ){
+ pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
+ return rc==SQLITE_ERROR ? SQLITE_OK : rc;
+ }
+ zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
+ if( rc==SQLITE_OK ){
+ if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
+ rc = sqlite3_finalize(p);
+ }
+ sqlite3_free(zSql);
+ }
+ pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
+ return rc;
+}
+
+
+/*
+** Return true if zName is the extension on one of the shadow tables used
+** by this module.
+*/
+static int rtreeShadowName(const char *zName){
+ static const char *azName[] = {
+ "node", "parent", "rowid"
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
+ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+static sqlite3_module rtreeModule = {
+ 3, /* iVersion */
+ rtreeCreate, /* xCreate - create a table */
+ rtreeConnect, /* xConnect - connect to an existing table */
+ rtreeBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ rtreeFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ rtreeColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ rtreeUpdate, /* xUpdate - write data */
+ rtreeBeginTransaction, /* xBegin - begin transaction */
+ rtreeEndTransaction, /* xSync - sync transaction */
+ rtreeEndTransaction, /* xCommit - commit transaction */
+ rtreeEndTransaction, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ rtreeRename, /* xRename - rename the table */
+ rtreeSavepoint, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ rtreeShadowName /* xShadowName */
+};
+
+static int rtreeSqlInit(
+ Rtree *pRtree,
+ sqlite3 *db,
+ const char *zDb,
+ const char *zPrefix,
+ int isCreate
+){
+ int rc = SQLITE_OK;
+
+ #define N_STATEMENT 8
+ static const char *azSql[N_STATEMENT] = {
+ /* Write the xxx_node table */
+ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
+ "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",
+
+ /* Read and write the xxx_rowid table */
+ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
+ "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
+ "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",
+
+ /* Read and write the xxx_parent table */
+ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
+ "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
+ "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
+ };
+ sqlite3_stmt **appStmt[N_STATEMENT];
+ int i;
+ const int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
+
+ pRtree->db = db;
+
+ if( isCreate ){
+ char *zCreate;
+ sqlite3_str *p = sqlite3_str_new(db);
+ int ii;
+ sqlite3_str_appendf(p,
+ "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
+ zDb, zPrefix);
+ for(ii=0; ii<pRtree->nAux; ii++){
+ sqlite3_str_appendf(p,",a%d",ii);
+ }
+ sqlite3_str_appendf(p,
+ ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
+ zDb, zPrefix);
+ sqlite3_str_appendf(p,
+ "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
+ zDb, zPrefix);
+ sqlite3_str_appendf(p,
+ "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
+ zDb, zPrefix, pRtree->iNodeSize);
+ zCreate = sqlite3_str_finish(p);
+ if( !zCreate ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_exec(db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ appStmt[0] = &pRtree->pWriteNode;
+ appStmt[1] = &pRtree->pDeleteNode;
+ appStmt[2] = &pRtree->pReadRowid;
+ appStmt[3] = &pRtree->pWriteRowid;
+ appStmt[4] = &pRtree->pDeleteRowid;
+ appStmt[5] = &pRtree->pReadParent;
+ appStmt[6] = &pRtree->pWriteParent;
+ appStmt[7] = &pRtree->pDeleteParent;
+
+ rc = rtreeQueryStat1(db, pRtree);
+ for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
+ char *zSql;
+ const char *zFormat;
+ if( i!=3 || pRtree->nAux==0 ){
+ zFormat = azSql[i];
+ }else {
+ /* An UPSERT is very slightly slower than REPLACE, but it is needed
+ ** if there are auxiliary columns */
+ zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
+ "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
+ }
+ zSql = sqlite3_mprintf(zFormat, zDb, zPrefix);
+ if( zSql ){
+ rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+ }
+ if( pRtree->nAux ){
+ pRtree->zReadAuxSql = sqlite3_mprintf(
+ "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
+ zDb, zPrefix);
+ if( pRtree->zReadAuxSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_str *p = sqlite3_str_new(db);
+ int ii;
+ char *zSql;
+ sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix);
+ for(ii=0; ii<pRtree->nAux; ii++){
+ if( ii ) sqlite3_str_append(p, ",", 1);
+#ifdef SQLITE_ENABLE_GEOPOLY
+ if( ii<pRtree->nAuxNotNull ){
+ sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii);
+ }else
+#endif
+ {
+ sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2);
+ }
+ }
+ sqlite3_str_appendf(p, " WHERE rowid=?1");
+ zSql = sqlite3_str_finish(p);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0);
+ sqlite3_free(zSql);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The second argument to this function contains the text of an SQL statement
+** that returns a single integer value. The statement is compiled and executed
+** using database connection db. If successful, the integer value returned
+** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
+** code is returned and the value of *piVal after returning is not defined.
+*/
+static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
+ int rc = SQLITE_NOMEM;
+ if( zSql ){
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *piVal = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is called from within the xConnect() or xCreate() method to
+** determine the node-size used by the rtree table being created or connected
+** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
+** Otherwise, an SQLite error code is returned.
+**
+** If this function is being called as part of an xConnect(), then the rtree
+** table already exists. In this case the node-size is determined by inspecting
+** the root node of the tree.
+**
+** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
+** This ensures that each node is stored on a single database page. If the
+** database page-size is so large that more than RTREE_MAXCELLS entries
+** would fit in a single node, use a smaller node-size.
+*/
+static int getNodeSize(
+ sqlite3 *db, /* Database handle */
+ Rtree *pRtree, /* Rtree handle */
+ int isCreate, /* True for xCreate, false for xConnect */
+ char **pzErr /* OUT: Error message, if any */
+){
+ int rc;
+ char *zSql;
+ if( isCreate ){
+ int iPageSize = 0;
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
+ rc = getIntFromStmt(db, zSql, &iPageSize);
+ if( rc==SQLITE_OK ){
+ pRtree->iNodeSize = iPageSize-64;
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
+ }
+ }else{
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ }else{
+ zSql = sqlite3_mprintf(
+ "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
+ pRtree->zDb, pRtree->zName
+ );
+ rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
+ if( rc!=SQLITE_OK ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }else if( pRtree->iNodeSize<(512-64) ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
+ pRtree->zName);
+ }
+ }
+
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** Return the length of a token
+*/
+static int rtreeTokenLength(const char *z){
+ int dummy = 0;
+ return sqlite3GetToken((const unsigned char*)z,&dummy);
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the r-tree virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int rtreeInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* One of the RTREE_COORD_* constants */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc = SQLITE_OK;
+ Rtree *pRtree;
+ int nDb; /* Length of string argv[1] */
+ int nName; /* Length of string argv[2] */
+ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
+ sqlite3_str *pSql;
+ char *zSql;
+ int ii = 4;
+ int iErr;
+
+ const char *aErrMsg[] = {
+ 0, /* 0 */
+ "Wrong number of columns for an rtree table", /* 1 */
+ "Too few columns for an rtree table", /* 2 */
+ "Too many columns for an rtree table", /* 3 */
+ "Auxiliary rtree columns must be last" /* 4 */
+ };
+
+ assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */
+ if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]);
+ return SQLITE_ERROR;
+ }
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = (int)strlen(argv[1]);
+ nName = (int)strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->eCoordType = (u8)eCoordType;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ pSql = sqlite3_str_new(db);
+ sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT",
+ rtreeTokenLength(argv[3]), argv[3]);
+ for(ii=4; ii<argc; ii++){
+ const char *zArg = argv[ii];
+ if( zArg[0]=='+' ){
+ pRtree->nAux++;
+ sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1);
+ }else if( pRtree->nAux>0 ){
+ break;
+ }else{
+ static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"};
+ pRtree->nDim2++;
+ sqlite3_str_appendf(pSql, azFormat[eCoordType],
+ rtreeTokenLength(zArg), zArg);
+ }
+ }
+ sqlite3_str_appendf(pSql, ");");
+ zSql = sqlite3_str_finish(pSql);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else if( ii<argc ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[4]);
+ rc = SQLITE_ERROR;
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ sqlite3_free(zSql);
+ if( rc ) goto rtreeInit_fail;
+ pRtree->nDim = pRtree->nDim2/2;
+ if( pRtree->nDim<1 ){
+ iErr = 2;
+ }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){
+ iErr = 3;
+ }else if( pRtree->nDim2 % 2 ){
+ iErr = 1;
+ }else{
+ iErr = 0;
+ }
+ if( iErr ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
+ goto rtreeInit_fail;
+ }
+ pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
+
+ /* Figure out the node size to use. */
+ rc = getNodeSize(db, pRtree, isCreate, pzErr);
+ if( rc ) goto rtreeInit_fail;
+ rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
+ if( rc ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ goto rtreeInit_fail;
+ }
+
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ return SQLITE_OK;
+
+rtreeInit_fail:
+ if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
+ assert( *ppVtab==0 );
+ assert( pRtree->nBusy==1 );
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+
+/*
+** Implementation of a scalar function that decodes r-tree nodes to
+** human readable strings. This can be used for debugging and analysis.
+**
+** The scalar function takes two arguments: (1) the number of dimensions
+** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
+** an r-tree node. For a two-dimensional r-tree structure called "rt", to
+** deserialize all nodes, a statement like:
+**
+** SELECT rtreenode(2, data) FROM rt_node;
+**
+** The human readable string takes the form of a Tcl list with one
+** entry for each cell in the r-tree node. Each entry is itself a
+** list, containing the 8-byte rowid/pageno followed by the
+** <num-dimension>*2 coordinates.
+*/
+static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ RtreeNode node;
+ Rtree tree;
+ int ii;
+ int nData;
+ int errCode;
+ sqlite3_str *pOut;
+
+ UNUSED_PARAMETER(nArg);
+ memset(&node, 0, sizeof(RtreeNode));
+ memset(&tree, 0, sizeof(Rtree));
+ tree.nDim = (u8)sqlite3_value_int(apArg[0]);
+ if( tree.nDim<1 || tree.nDim>5 ) return;
+ tree.nDim2 = tree.nDim*2;
+ tree.nBytesPerCell = 8 + 8 * tree.nDim;
+ node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
+ if( node.zData==0 ) return;
+ nData = sqlite3_value_bytes(apArg[1]);
+ if( nData<4 ) return;
+ if( nData<NCELL(&node)*tree.nBytesPerCell ) return;
+
+ pOut = sqlite3_str_new(0);
+ for(ii=0; ii<NCELL(&node); ii++){
+ RtreeCell cell;
+ int jj;
+
+ nodeGetCell(&tree, &node, ii, &cell);
+ if( ii>0 ) sqlite3_str_append(pOut, " ", 1);
+ sqlite3_str_appendf(pOut, "{%lld", cell.iRowid);
+ for(jj=0; jj<tree.nDim2; jj++){
+#ifndef SQLITE_RTREE_INT_ONLY
+ sqlite3_str_appendf(pOut, " %g", (double)cell.aCoord[jj].f);
+#else
+ sqlite3_str_appendf(pOut, " %d", cell.aCoord[jj].i);
+#endif
+ }
+ sqlite3_str_append(pOut, "}", 1);
+ }
+ errCode = sqlite3_str_errcode(pOut);
+ sqlite3_result_text(ctx, sqlite3_str_finish(pOut), -1, sqlite3_free);
+ sqlite3_result_error_code(ctx, errCode);
+}
+
+/* This routine implements an SQL function that returns the "depth" parameter
+** from the front of a blob that is an r-tree node. For example:
+**
+** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
+**
+** The depth value is 0 for all nodes other than the root node, and the root
+** node always has nodeno=1, so the example above is the primary use for this
+** routine. This routine is intended for testing and analysis only.
+*/
+static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ UNUSED_PARAMETER(nArg);
+ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
+ || sqlite3_value_bytes(apArg[0])<2
+
+ ){
+ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
+ }else{
+ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
+ if( zBlob ){
+ sqlite3_result_int(ctx, readInt16(zBlob));
+ }else{
+ sqlite3_result_error_nomem(ctx);
+ }
+ }
+}
+
+/*
+** Context object passed between the various routines that make up the
+** implementation of integrity-check function rtreecheck().
+*/
+typedef struct RtreeCheck RtreeCheck;
+struct RtreeCheck {
+ sqlite3 *db; /* Database handle */
+ const char *zDb; /* Database containing rtree table */
+ const char *zTab; /* Name of rtree table */
+ int bInt; /* True for rtree_i32 table */
+ int nDim; /* Number of dimensions for this rtree tbl */
+ sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */
+ sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */
+ int nLeaf; /* Number of leaf cells in table */
+ int nNonLeaf; /* Number of non-leaf cells in table */
+ int rc; /* Return code */
+ char *zReport; /* Message to report */
+ int nErr; /* Number of lines in zReport */
+};
+
+#define RTREE_CHECK_MAX_ERROR 100
+
+/*
+** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
+** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
+*/
+static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){
+ int rc = sqlite3_reset(pStmt);
+ if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc;
+}
+
+/*
+** The second and subsequent arguments to this function are a format string
+** and printf style arguments. This function formats the string and attempts
+** to compile it as an SQL statement.
+**
+** If successful, a pointer to the new SQL statement is returned. Otherwise,
+** NULL is returned and an error code left in RtreeCheck.rc.
+*/
+static sqlite3_stmt *rtreeCheckPrepare(
+ RtreeCheck *pCheck, /* RtreeCheck object */
+ const char *zFmt, ... /* Format string and trailing args */
+){
+ va_list ap;
+ char *z;
+ sqlite3_stmt *pRet = 0;
+
+ va_start(ap, zFmt);
+ z = sqlite3_vmprintf(zFmt, ap);
+
+ if( pCheck->rc==SQLITE_OK ){
+ if( z==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }else{
+ pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0);
+ }
+ }
+
+ sqlite3_free(z);
+ va_end(ap);
+ return pRet;
+}
+
+/*
+** The second and subsequent arguments to this function are a printf()
+** style format string and arguments. This function formats the string and
+** appends it to the report being accumuated in pCheck.
+*/
+static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){
+ va_list ap;
+ va_start(ap, zFmt);
+ if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){
+ char *z = sqlite3_vmprintf(zFmt, ap);
+ if( z==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }else{
+ pCheck->zReport = sqlite3_mprintf("%z%s%z",
+ pCheck->zReport, (pCheck->zReport ? "\n" : ""), z
+ );
+ if( pCheck->zReport==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }
+ }
+ pCheck->nErr++;
+ }
+ va_end(ap);
+}
+
+/*
+** This function is a no-op if there is already an error code stored
+** in the RtreeCheck object indicated by the first argument. NULL is
+** returned in this case.
+**
+** Otherwise, the contents of rtree table node iNode are loaded from
+** the database and copied into a buffer obtained from sqlite3_malloc().
+** If no error occurs, a pointer to the buffer is returned and (*pnNode)
+** is set to the size of the buffer in bytes.
+**
+** Or, if an error does occur, NULL is returned and an error code left
+** in the RtreeCheck object. The final value of *pnNode is undefined in
+** this case.
+*/
+static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){
+ u8 *pRet = 0; /* Return value */
+
+ if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){
+ pCheck->pGetNode = rtreeCheckPrepare(pCheck,
+ "SELECT data FROM %Q.'%q_node' WHERE nodeno=?",
+ pCheck->zDb, pCheck->zTab
+ );
+ }
+
+ if( pCheck->rc==SQLITE_OK ){
+ sqlite3_bind_int64(pCheck->pGetNode, 1, iNode);
+ if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){
+ int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0);
+ const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0);
+ pRet = sqlite3_malloc64(nNode);
+ if( pRet==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pRet, pNode, nNode);
+ *pnNode = nNode;
+ }
+ }
+ rtreeCheckReset(pCheck, pCheck->pGetNode);
+ if( pCheck->rc==SQLITE_OK && pRet==0 ){
+ rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode);
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
+** (if bLeaf==1) table contains a specified entry. The schemas of the
+** two tables are:
+**
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
+**
+** In both cases, this function checks that there exists an entry with
+** IPK value iKey and the second column set to iVal.
+**
+*/
+static void rtreeCheckMapping(
+ RtreeCheck *pCheck, /* RtreeCheck object */
+ int bLeaf, /* True for a leaf cell, false for interior */
+ i64 iKey, /* Key for mapping */
+ i64 iVal /* Expected value for mapping */
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char *azSql[2] = {
+ "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1",
+ "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1"
+ };
+
+ assert( bLeaf==0 || bLeaf==1 );
+ if( pCheck->aCheckMapping[bLeaf]==0 ){
+ pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck,
+ azSql[bLeaf], pCheck->zDb, pCheck->zTab
+ );
+ }
+ if( pCheck->rc!=SQLITE_OK ) return;
+
+ pStmt = pCheck->aCheckMapping[bLeaf];
+ sqlite3_bind_int64(pStmt, 1, iKey);
+ rc = sqlite3_step(pStmt);
+ if( rc==SQLITE_DONE ){
+ rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table",
+ iKey, iVal, (bLeaf ? "%_rowid" : "%_parent")
+ );
+ }else if( rc==SQLITE_ROW ){
+ i64 ii = sqlite3_column_int64(pStmt, 0);
+ if( ii!=iVal ){
+ rtreeCheckAppendMsg(pCheck,
+ "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
+ iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal
+ );
+ }
+ }
+ rtreeCheckReset(pCheck, pStmt);
+}
+
+/*
+** Argument pCell points to an array of coordinates stored on an rtree page.
+** This function checks that the coordinates are internally consistent (no
+** x1>x2 conditions) and adds an error message to the RtreeCheck object
+** if they are not.
+**
+** Additionally, if pParent is not NULL, then it is assumed to point to
+** the array of coordinates on the parent page that bound the page
+** containing pCell. In this case it is also verified that the two
+** sets of coordinates are mutually consistent and an error message added
+** to the RtreeCheck object if they are not.
+*/
+static void rtreeCheckCellCoord(
+ RtreeCheck *pCheck,
+ i64 iNode, /* Node id to use in error messages */
+ int iCell, /* Cell number to use in error messages */
+ u8 *pCell, /* Pointer to cell coordinates */
+ u8 *pParent /* Pointer to parent coordinates */
+){
+ RtreeCoord c1, c2;
+ RtreeCoord p1, p2;
+ int i;
+
+ for(i=0; i<pCheck->nDim; i++){
+ readCoord(&pCell[4*2*i], &c1);
+ readCoord(&pCell[4*(2*i + 1)], &c2);
+
+ /* printf("%e, %e\n", c1.u.f, c2.u.f); */
+ if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){
+ rtreeCheckAppendMsg(pCheck,
+ "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode
+ );
+ }
+
+ if( pParent ){
+ readCoord(&pParent[4*2*i], &p1);
+ readCoord(&pParent[4*(2*i + 1)], &p2);
+
+ if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f)
+ || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f)
+ ){
+ rtreeCheckAppendMsg(pCheck,
+ "Dimension %d of cell %d on node %lld is corrupt relative to parent"
+ , i, iCell, iNode
+ );
+ }
+ }
+ }
+}
+
+/*
+** Run rtreecheck() checks on node iNode, which is at depth iDepth within
+** the r-tree structure. Argument aParent points to the array of coordinates
+** that bound node iNode on the parent node.
+**
+** If any problems are discovered, an error message is appended to the
+** report accumulated in the RtreeCheck object.
+*/
+static void rtreeCheckNode(
+ RtreeCheck *pCheck,
+ int iDepth, /* Depth of iNode (0==leaf) */
+ u8 *aParent, /* Buffer containing parent coords */
+ i64 iNode /* Node to check */
+){
+ u8 *aNode = 0;
+ int nNode = 0;
+
+ assert( iNode==1 || aParent!=0 );
+ assert( pCheck->nDim>0 );
+
+ aNode = rtreeCheckGetNode(pCheck, iNode, &nNode);
+ if( aNode ){
+ if( nNode<4 ){
+ rtreeCheckAppendMsg(pCheck,
+ "Node %lld is too small (%d bytes)", iNode, nNode
+ );
+ }else{
+ int nCell; /* Number of cells on page */
+ int i; /* Used to iterate through cells */
+ if( aParent==0 ){
+ iDepth = readInt16(aNode);
+ if( iDepth>RTREE_MAX_DEPTH ){
+ rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth);
+ sqlite3_free(aNode);
+ return;
+ }
+ }
+ nCell = readInt16(&aNode[2]);
+ if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){
+ rtreeCheckAppendMsg(pCheck,
+ "Node %lld is too small for cell count of %d (%d bytes)",
+ iNode, nCell, nNode
+ );
+ }else{
+ for(i=0; i<nCell; i++){
+ u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)];
+ i64 iVal = readInt64(pCell);
+ rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent);
+
+ if( iDepth>0 ){
+ rtreeCheckMapping(pCheck, 0, iVal, iNode);
+ rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal);
+ pCheck->nNonLeaf++;
+ }else{
+ rtreeCheckMapping(pCheck, 1, iVal, iNode);
+ pCheck->nLeaf++;
+ }
+ }
+ }
+ }
+ sqlite3_free(aNode);
+ }
+}
+
+/*
+** The second argument to this function must be either "_rowid" or
+** "_parent". This function checks that the number of entries in the
+** %_rowid or %_parent table is exactly nExpect. If not, it adds
+** an error message to the report in the RtreeCheck object indicated
+** by the first argument.
+*/
+static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){
+ if( pCheck->rc==SQLITE_OK ){
+ sqlite3_stmt *pCount;
+ pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'",
+ pCheck->zDb, pCheck->zTab, zTbl
+ );
+ if( pCount ){
+ if( sqlite3_step(pCount)==SQLITE_ROW ){
+ i64 nActual = sqlite3_column_int64(pCount, 0);
+ if( nActual!=nExpect ){
+ rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table"
+ " - expected %lld, actual %lld" , zTbl, nExpect, nActual
+ );
+ }
+ }
+ pCheck->rc = sqlite3_finalize(pCount);
+ }
+ }
+}
+
+/*
+** This function does the bulk of the work for the rtree integrity-check.
+** It is called by rtreecheck(), which is the SQL function implementation.
+*/
+static int rtreeCheckTable(
+ sqlite3 *db, /* Database handle to access db through */
+ const char *zDb, /* Name of db ("main", "temp" etc.) */
+ const char *zTab, /* Name of rtree table to check */
+ char **pzReport /* OUT: sqlite3_malloc'd report text */
+){
+ RtreeCheck check; /* Common context for various routines */
+ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */
+ int bEnd = 0; /* True if transaction should be closed */
+ int nAux = 0; /* Number of extra columns. */
+
+ /* Initialize the context object */
+ memset(&check, 0, sizeof(check));
+ check.db = db;
+ check.zDb = zDb;
+ check.zTab = zTab;
+
+ /* If there is not already an open transaction, open one now. This is
+ ** to ensure that the queries run as part of this integrity-check operate
+ ** on a consistent snapshot. */
+ if( sqlite3_get_autocommit(db) ){
+ check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0);
+ bEnd = 1;
+ }
+
+ /* Find the number of auxiliary columns */
+ if( check.rc==SQLITE_OK ){
+ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab);
+ if( pStmt ){
+ nAux = sqlite3_column_count(pStmt) - 2;
+ sqlite3_finalize(pStmt);
+ }else
+ if( check.rc!=SQLITE_NOMEM ){
+ check.rc = SQLITE_OK;
+ }
+ }
+
+ /* Find number of dimensions in the rtree table. */
+ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab);
+ if( pStmt ){
+ int rc;
+ check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2;
+ if( check.nDim<1 ){
+ rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree");
+ }else if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER);
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc!=SQLITE_CORRUPT ) check.rc = rc;
+ }
+
+ /* Do the actual integrity-check */
+ if( check.nDim>=1 ){
+ if( check.rc==SQLITE_OK ){
+ rtreeCheckNode(&check, 0, 0, 1);
+ }
+ rtreeCheckCount(&check, "_rowid", check.nLeaf);
+ rtreeCheckCount(&check, "_parent", check.nNonLeaf);
+ }
+
+ /* Finalize SQL statements used by the integrity-check */
+ sqlite3_finalize(check.pGetNode);
+ sqlite3_finalize(check.aCheckMapping[0]);
+ sqlite3_finalize(check.aCheckMapping[1]);
+
+ /* If one was opened, close the transaction */
+ if( bEnd ){
+ int rc = sqlite3_exec(db, "END", 0, 0, 0);
+ if( check.rc==SQLITE_OK ) check.rc = rc;
+ }
+ *pzReport = check.zReport;
+ return check.rc;
+}
+
+/*
+** Usage:
+**
+** rtreecheck(<rtree-table>);
+** rtreecheck(<database>, <rtree-table>);
+**
+** Invoking this SQL function runs an integrity-check on the named rtree
+** table. The integrity-check verifies the following:
+**
+** 1. For each cell in the r-tree structure (%_node table), that:
+**
+** a) for each dimension, (coord1 <= coord2).
+**
+** b) unless the cell is on the root node, that the cell is bounded
+** by the parent cell on the parent node.
+**
+** c) for leaf nodes, that there is an entry in the %_rowid
+** table corresponding to the cell's rowid value that
+** points to the correct node.
+**
+** d) for cells on non-leaf nodes, that there is an entry in the
+** %_parent table mapping from the cell's child node to the
+** node that it resides on.
+**
+** 2. That there are the same number of entries in the %_rowid table
+** as there are leaf cells in the r-tree structure, and that there
+** is a leaf cell that corresponds to each entry in the %_rowid table.
+**
+** 3. That there are the same number of entries in the %_parent table
+** as there are non-leaf cells in the r-tree structure, and that
+** there is a non-leaf cell that corresponds to each entry in the
+** %_parent table.
+*/
+static void rtreecheck(
+ sqlite3_context *ctx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ if( nArg!=1 && nArg!=2 ){
+ sqlite3_result_error(ctx,
+ "wrong number of arguments to function rtreecheck()", -1
+ );
+ }else{
+ int rc;
+ char *zReport = 0;
+ const char *zDb = (const char*)sqlite3_value_text(apArg[0]);
+ const char *zTab;
+ if( nArg==1 ){
+ zTab = zDb;
+ zDb = "main";
+ }else{
+ zTab = (const char*)sqlite3_value_text(apArg[1]);
+ }
+ rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(ctx, rc);
+ }
+ sqlite3_free(zReport);
+ }
+}
+
+/* Conditionally include the geopoly code */
+#ifdef SQLITE_ENABLE_GEOPOLY
+/************** Include geopoly.c in the middle of rtree.c *******************/
+/************** Begin file geopoly.c *****************************************/
+/*
+** 2018-05-25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file implements an alternative R-Tree virtual table that
+** uses polygons to express the boundaries of 2-dimensional objects.
+**
+** This file is #include-ed onto the end of "rtree.c" so that it has
+** access to all of the R-Tree internals.
+*/
+/* #include <stdlib.h> */
+
+/* Enable -DGEOPOLY_ENABLE_DEBUG for debugging facilities */
+#ifdef GEOPOLY_ENABLE_DEBUG
+ static int geo_debug = 0;
+# define GEODEBUG(X) if(geo_debug)printf X
+#else
+# define GEODEBUG(X)
+#endif
+
+/* Character class routines */
+#ifdef sqlite3Isdigit
+ /* Use the SQLite core versions if this routine is part of the
+ ** SQLite amalgamation */
+# define safe_isdigit(x) sqlite3Isdigit(x)
+# define safe_isalnum(x) sqlite3Isalnum(x)
+# define safe_isxdigit(x) sqlite3Isxdigit(x)
+#else
+ /* Use the standard library for separate compilation */
+#include <ctype.h> /* amalgamator: keep */
+# define safe_isdigit(x) isdigit((unsigned char)(x))
+# define safe_isalnum(x) isalnum((unsigned char)(x))
+# define safe_isxdigit(x) isxdigit((unsigned char)(x))
+#endif
+
+#ifndef JSON_NULL /* The following stuff repeats things found in json1 */
+/*
+** Growing our own isspace() routine this way is twice as fast as
+** the library isspace() function.
+*/
+static const char geopolyIsSpace[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+};
+#define fast_isspace(x) (geopolyIsSpace[(unsigned char)x])
+#endif /* JSON NULL - back to original code */
+
+/* Compiler and version */
+#ifndef GCC_VERSION
+#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
+#else
+# define GCC_VERSION 0
+#endif
+#endif
+#ifndef MSVC_VERSION
+#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define MSVC_VERSION _MSC_VER
+#else
+# define MSVC_VERSION 0
+#endif
+#endif
+
+/* Datatype for coordinates
+*/
+typedef float GeoCoord;
+
+/*
+** Internal representation of a polygon.
+**
+** The polygon consists of a sequence of vertexes. There is a line
+** segment between each pair of vertexes, and one final segment from
+** the last vertex back to the first. (This differs from the GeoJSON
+** standard in which the final vertex is a repeat of the first.)
+**
+** The polygon follows the right-hand rule. The area to the right of
+** each segment is "outside" and the area to the left is "inside".
+**
+** The on-disk representation consists of a 4-byte header followed by
+** the values. The 4-byte header is:
+**
+** encoding (1 byte) 0=big-endian, 1=little-endian
+** nvertex (3 bytes) Number of vertexes as a big-endian integer
+**
+** Enough space is allocated for 4 coordinates, to work around over-zealous
+** warnings coming from some compiler (notably, clang). In reality, the size
+** of each GeoPoly memory allocate is adjusted as necessary so that the
+** GeoPoly.a[] array at the end is the appropriate size.
+*/
+typedef struct GeoPoly GeoPoly;
+struct GeoPoly {
+ int nVertex; /* Number of vertexes */
+ unsigned char hdr[4]; /* Header for on-disk representation */
+ GeoCoord a[8]; /* 2*nVertex values. X (longitude) first, then Y */
+};
+
+/* The size of a memory allocation needed for a GeoPoly object sufficient
+** to hold N coordinate pairs.
+*/
+#define GEOPOLY_SZ(N) (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4))
+
+/* Macros to access coordinates of a GeoPoly.
+** We have to use these macros, rather than just say p->a[i] in order
+** to silence (incorrect) UBSAN warnings if the array index is too large.
+*/
+#define GeoX(P,I) (((GeoCoord*)(P)->a)[(I)*2])
+#define GeoY(P,I) (((GeoCoord*)(P)->a)[(I)*2+1])
+
+
+/*
+** State of a parse of a GeoJSON input.
+*/
+typedef struct GeoParse GeoParse;
+struct GeoParse {
+ const unsigned char *z; /* Unparsed input */
+ int nVertex; /* Number of vertexes in a[] */
+ int nAlloc; /* Space allocated to a[] */
+ int nErr; /* Number of errors encountered */
+ GeoCoord *a; /* Array of vertexes. From sqlite3_malloc64() */
+};
+
+/* Do a 4-byte byte swap */
+static void geopolySwab32(unsigned char *a){
+ unsigned char t = a[0];
+ a[0] = a[3];
+ a[3] = t;
+ t = a[1];
+ a[1] = a[2];
+ a[2] = t;
+}
+
+/* Skip whitespace. Return the next non-whitespace character. */
+static char geopolySkipSpace(GeoParse *p){
+ while( fast_isspace(p->z[0]) ) p->z++;
+ return p->z[0];
+}
+
+/* Parse out a number. Write the value into *pVal if pVal!=0.
+** return non-zero on success and zero if the next token is not a number.
+*/
+static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){
+ char c = geopolySkipSpace(p);
+ const unsigned char *z = p->z;
+ int j = 0;
+ int seenDP = 0;
+ int seenE = 0;
+ if( c=='-' ){
+ j = 1;
+ c = z[j];
+ }
+ if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0;
+ for(;; j++){
+ c = z[j];
+ if( safe_isdigit(c) ) continue;
+ if( c=='.' ){
+ if( z[j-1]=='-' ) return 0;
+ if( seenDP ) return 0;
+ seenDP = 1;
+ continue;
+ }
+ if( c=='e' || c=='E' ){
+ if( z[j-1]<'0' ) return 0;
+ if( seenE ) return -1;
+ seenDP = seenE = 1;
+ c = z[j+1];
+ if( c=='+' || c=='-' ){
+ j++;
+ c = z[j+1];
+ }
+ if( c<'0' || c>'9' ) return 0;
+ continue;
+ }
+ break;
+ }
+ if( z[j-1]<'0' ) return 0;
+ if( pVal ){
+#ifdef SQLITE_AMALGAMATION
+ /* The sqlite3AtoF() routine is much much faster than atof(), if it
+ ** is available */
+ double r;
+ (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8);
+ *pVal = r;
+#else
+ *pVal = (GeoCoord)atof((const char*)p->z);
+#endif
+ }
+ p->z += j;
+ return 1;
+}
+
+/*
+** If the input is a well-formed JSON array of coordinates with at least
+** four coordinates and where each coordinate is itself a two-value array,
+** then convert the JSON into a GeoPoly object and return a pointer to
+** that object.
+**
+** If any error occurs, return NULL.
+*/
+static GeoPoly *geopolyParseJson(const unsigned char *z, int *pRc){
+ GeoParse s;
+ int rc = SQLITE_OK;
+ memset(&s, 0, sizeof(s));
+ s.z = z;
+ if( geopolySkipSpace(&s)=='[' ){
+ s.z++;
+ while( geopolySkipSpace(&s)=='[' ){
+ int ii = 0;
+ char c;
+ s.z++;
+ if( s.nVertex>=s.nAlloc ){
+ GeoCoord *aNew;
+ s.nAlloc = s.nAlloc*2 + 16;
+ aNew = sqlite3_realloc64(s.a, s.nAlloc*sizeof(GeoCoord)*2 );
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ s.nErr++;
+ break;
+ }
+ s.a = aNew;
+ }
+ while( geopolyParseNumber(&s, ii<=1 ? &s.a[s.nVertex*2+ii] : 0) ){
+ ii++;
+ if( ii==2 ) s.nVertex++;
+ c = geopolySkipSpace(&s);
+ s.z++;
+ if( c==',' ) continue;
+ if( c==']' && ii>=2 ) break;
+ s.nErr++;
+ rc = SQLITE_ERROR;
+ goto parse_json_err;
+ }
+ if( geopolySkipSpace(&s)==',' ){
+ s.z++;
+ continue;
+ }
+ break;
+ }
+ if( geopolySkipSpace(&s)==']'
+ && s.nVertex>=4
+ && s.a[0]==s.a[s.nVertex*2-2]
+ && s.a[1]==s.a[s.nVertex*2-1]
+ && (s.z++, geopolySkipSpace(&s)==0)
+ ){
+ GeoPoly *pOut;
+ int x = 1;
+ s.nVertex--; /* Remove the redundant vertex at the end */
+ pOut = sqlite3_malloc64( GEOPOLY_SZ((sqlite3_int64)s.nVertex) );
+ x = 1;
+ if( pOut==0 ) goto parse_json_err;
+ pOut->nVertex = s.nVertex;
+ memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord));
+ pOut->hdr[0] = *(unsigned char*)&x;
+ pOut->hdr[1] = (s.nVertex>>16)&0xff;
+ pOut->hdr[2] = (s.nVertex>>8)&0xff;
+ pOut->hdr[3] = s.nVertex&0xff;
+ sqlite3_free(s.a);
+ if( pRc ) *pRc = SQLITE_OK;
+ return pOut;
+ }else{
+ s.nErr++;
+ rc = SQLITE_ERROR;
+ }
+ }
+parse_json_err:
+ if( pRc ) *pRc = rc;
+ sqlite3_free(s.a);
+ return 0;
+}
+
+/*
+** Given a function parameter, try to interpret it as a polygon, either
+** in the binary format or JSON text. Compute a GeoPoly object and
+** return a pointer to that object. Or if the input is not a well-formed
+** polygon, put an error message in sqlite3_context and return NULL.
+*/
+static GeoPoly *geopolyFuncParam(
+ sqlite3_context *pCtx, /* Context for error messages */
+ sqlite3_value *pVal, /* The value to decode */
+ int *pRc /* Write error here */
+){
+ GeoPoly *p = 0;
+ int nByte;
+ testcase( pCtx==0 );
+ if( sqlite3_value_type(pVal)==SQLITE_BLOB
+ && (nByte = sqlite3_value_bytes(pVal))>=(4+6*sizeof(GeoCoord))
+ ){
+ const unsigned char *a = sqlite3_value_blob(pVal);
+ int nVertex;
+ if( a==0 ){
+ if( pCtx ) sqlite3_result_error_nomem(pCtx);
+ return 0;
+ }
+ nVertex = (a[1]<<16) + (a[2]<<8) + a[3];
+ if( (a[0]==0 || a[0]==1)
+ && (nVertex*2*sizeof(GeoCoord) + 4)==(unsigned int)nByte
+ ){
+ p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) );
+ if( p==0 ){
+ if( pRc ) *pRc = SQLITE_NOMEM;
+ if( pCtx ) sqlite3_result_error_nomem(pCtx);
+ }else{
+ int x = 1;
+ p->nVertex = nVertex;
+ memcpy(p->hdr, a, nByte);
+ if( a[0] != *(unsigned char*)&x ){
+ int ii;
+ for(ii=0; ii<nVertex; ii++){
+ geopolySwab32((unsigned char*)&GeoX(p,ii));
+ geopolySwab32((unsigned char*)&GeoY(p,ii));
+ }
+ p->hdr[0] ^= 1;
+ }
+ }
+ }
+ if( pRc ) *pRc = SQLITE_OK;
+ return p;
+ }else if( sqlite3_value_type(pVal)==SQLITE_TEXT ){
+ const unsigned char *zJson = sqlite3_value_text(pVal);
+ if( zJson==0 ){
+ if( pRc ) *pRc = SQLITE_NOMEM;
+ return 0;
+ }
+ return geopolyParseJson(zJson, pRc);
+ }else{
+ if( pRc ) *pRc = SQLITE_ERROR;
+ return 0;
+ }
+}
+
+/*
+** Implementation of the geopoly_blob(X) function.
+**
+** If the input is a well-formed Geopoly BLOB or JSON string
+** then return the BLOB representation of the polygon. Otherwise
+** return NULL.
+*/
+static void geopolyBlobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ if( p ){
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** SQL function: geopoly_json(X)
+**
+** Interpret X as a polygon and render it as a JSON array
+** of coordinates. Or, if X is not a valid polygon, return NULL.
+*/
+static void geopolyJsonFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ if( p ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_str *x = sqlite3_str_new(db);
+ int i;
+ sqlite3_str_append(x, "[", 1);
+ for(i=0; i<p->nVertex; i++){
+ sqlite3_str_appendf(x, "[%!g,%!g],", GeoX(p,i), GeoY(p,i));
+ }
+ sqlite3_str_appendf(x, "[%!g,%!g]]", GeoX(p,0), GeoY(p,0));
+ sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** SQL function: geopoly_svg(X, ....)
+**
+** Interpret X as a polygon and render it as a SVG <polyline>.
+** Additional arguments are added as attributes to the <polyline>.
+*/
+static void geopolySvgFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p;
+ if( argc<1 ) return;
+ p = geopolyFuncParam(context, argv[0], 0);
+ if( p ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_str *x = sqlite3_str_new(db);
+ int i;
+ char cSep = '\'';
+ sqlite3_str_appendf(x, "<polyline points=");
+ for(i=0; i<p->nVertex; i++){
+ sqlite3_str_appendf(x, "%c%g,%g", cSep, GeoX(p,i), GeoY(p,i));
+ cSep = ' ';
+ }
+ sqlite3_str_appendf(x, " %g,%g'", GeoX(p,0), GeoY(p,0));
+ for(i=1; i<argc; i++){
+ const char *z = (const char*)sqlite3_value_text(argv[i]);
+ if( z && z[0] ){
+ sqlite3_str_appendf(x, " %s", z);
+ }
+ }
+ sqlite3_str_appendf(x, "></polyline>");
+ sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** SQL Function: geopoly_xform(poly, A, B, C, D, E, F)
+**
+** Transform and/or translate a polygon as follows:
+**
+** x1 = A*x0 + B*y0 + E
+** y1 = C*x0 + D*y0 + F
+**
+** For a translation:
+**
+** geopoly_xform(poly, 1, 0, 0, 1, x-offset, y-offset)
+**
+** Rotate by R around the point (0,0):
+**
+** geopoly_xform(poly, cos(R), sin(R), -sin(R), cos(R), 0, 0)
+*/
+static void geopolyXformFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ double A = sqlite3_value_double(argv[1]);
+ double B = sqlite3_value_double(argv[2]);
+ double C = sqlite3_value_double(argv[3]);
+ double D = sqlite3_value_double(argv[4]);
+ double E = sqlite3_value_double(argv[5]);
+ double F = sqlite3_value_double(argv[6]);
+ GeoCoord x1, y1, x0, y0;
+ int ii;
+ if( p ){
+ for(ii=0; ii<p->nVertex; ii++){
+ x0 = GeoX(p,ii);
+ y0 = GeoY(p,ii);
+ x1 = (GeoCoord)(A*x0 + B*y0 + E);
+ y1 = (GeoCoord)(C*x0 + D*y0 + F);
+ GeoX(p,ii) = x1;
+ GeoY(p,ii) = y1;
+ }
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Compute the area enclosed by the polygon.
+**
+** This routine can also be used to detect polygons that rotate in
+** the wrong direction. Polygons are suppose to be counter-clockwise (CCW).
+** This routine returns a negative value for clockwise (CW) polygons.
+*/
+static double geopolyArea(GeoPoly *p){
+ double rArea = 0.0;
+ int ii;
+ for(ii=0; ii<p->nVertex-1; ii++){
+ rArea += (GeoX(p,ii) - GeoX(p,ii+1)) /* (x0 - x1) */
+ * (GeoY(p,ii) + GeoY(p,ii+1)) /* (y0 + y1) */
+ * 0.5;
+ }
+ rArea += (GeoX(p,ii) - GeoX(p,0)) /* (xN - x0) */
+ * (GeoY(p,ii) + GeoY(p,0)) /* (yN + y0) */
+ * 0.5;
+ return rArea;
+}
+
+/*
+** Implementation of the geopoly_area(X) function.
+**
+** If the input is a well-formed Geopoly BLOB then return the area
+** enclosed by the polygon. If the polygon circulates clockwise instead
+** of counterclockwise (as it should) then return the negative of the
+** enclosed area. Otherwise return NULL.
+*/
+static void geopolyAreaFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ if( p ){
+ sqlite3_result_double(context, geopolyArea(p));
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Implementation of the geopoly_ccw(X) function.
+**
+** If the rotation of polygon X is clockwise (incorrect) instead of
+** counter-clockwise (the correct winding order according to RFC7946)
+** then reverse the order of the vertexes in polygon X.
+**
+** In other words, this routine returns a CCW polygon regardless of the
+** winding order of its input.
+**
+** Use this routine to sanitize historical inputs that that sometimes
+** contain polygons that wind in the wrong direction.
+*/
+static void geopolyCcwFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ if( p ){
+ if( geopolyArea(p)<0.0 ){
+ int ii, jj;
+ for(ii=1, jj=p->nVertex-1; ii<jj; ii++, jj--){
+ GeoCoord t = GeoX(p,ii);
+ GeoX(p,ii) = GeoX(p,jj);
+ GeoX(p,jj) = t;
+ t = GeoY(p,ii);
+ GeoY(p,ii) = GeoY(p,jj);
+ GeoY(p,jj) = t;
+ }
+ }
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+#define GEOPOLY_PI 3.1415926535897932385
+
+/* Fast approximation for sine(X) for X between -0.5*pi and 2*pi
+*/
+static double geopolySine(double r){
+ assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI );
+ if( r>=1.5*GEOPOLY_PI ){
+ r -= 2.0*GEOPOLY_PI;
+ }
+ if( r>=0.5*GEOPOLY_PI ){
+ return -geopolySine(r-GEOPOLY_PI);
+ }else{
+ double r2 = r*r;
+ double r3 = r2*r;
+ double r5 = r3*r2;
+ return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5;
+ }
+}
+
+/*
+** Function: geopoly_regular(X,Y,R,N)
+**
+** Construct a simple, convex, regular polygon centered at X, Y
+** with circumradius R and with N sides.
+*/
+static void geopolyRegularFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ double x = sqlite3_value_double(argv[0]);
+ double y = sqlite3_value_double(argv[1]);
+ double r = sqlite3_value_double(argv[2]);
+ int n = sqlite3_value_int(argv[3]);
+ int i;
+ GeoPoly *p;
+
+ if( n<3 || r<=0.0 ) return;
+ if( n>1000 ) n = 1000;
+ p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) );
+ if( p==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ i = 1;
+ p->hdr[0] = *(unsigned char*)&i;
+ p->hdr[1] = 0;
+ p->hdr[2] = (n>>8)&0xff;
+ p->hdr[3] = n&0xff;
+ for(i=0; i<n; i++){
+ double rAngle = 2.0*GEOPOLY_PI*i/n;
+ GeoX(p,i) = x - r*geopolySine(rAngle-0.5*GEOPOLY_PI);
+ GeoY(p,i) = y + r*geopolySine(rAngle);
+ }
+ sqlite3_result_blob(context, p->hdr, 4+8*n, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+}
+
+/*
+** If pPoly is a polygon, compute its bounding box. Then:
+**
+** (1) if aCoord!=0 store the bounding box in aCoord, returning NULL
+** (2) otherwise, compute a GeoPoly for the bounding box and return the
+** new GeoPoly
+**
+** If pPoly is NULL but aCoord is not NULL, then compute a new GeoPoly from
+** the bounding box in aCoord and return a pointer to that GeoPoly.
+*/
+static GeoPoly *geopolyBBox(
+ sqlite3_context *context, /* For recording the error */
+ sqlite3_value *pPoly, /* The polygon */
+ RtreeCoord *aCoord, /* Results here */
+ int *pRc /* Error code here */
+){
+ GeoPoly *pOut = 0;
+ GeoPoly *p;
+ float mnX, mxX, mnY, mxY;
+ if( pPoly==0 && aCoord!=0 ){
+ p = 0;
+ mnX = aCoord[0].f;
+ mxX = aCoord[1].f;
+ mnY = aCoord[2].f;
+ mxY = aCoord[3].f;
+ goto geopolyBboxFill;
+ }else{
+ p = geopolyFuncParam(context, pPoly, pRc);
+ }
+ if( p ){
+ int ii;
+ mnX = mxX = GeoX(p,0);
+ mnY = mxY = GeoY(p,0);
+ for(ii=1; ii<p->nVertex; ii++){
+ double r = GeoX(p,ii);
+ if( r<mnX ) mnX = (float)r;
+ else if( r>mxX ) mxX = (float)r;
+ r = GeoY(p,ii);
+ if( r<mnY ) mnY = (float)r;
+ else if( r>mxY ) mxY = (float)r;
+ }
+ if( pRc ) *pRc = SQLITE_OK;
+ if( aCoord==0 ){
+ geopolyBboxFill:
+ pOut = sqlite3_realloc64(p, GEOPOLY_SZ(4));
+ if( pOut==0 ){
+ sqlite3_free(p);
+ if( context ) sqlite3_result_error_nomem(context);
+ if( pRc ) *pRc = SQLITE_NOMEM;
+ return 0;
+ }
+ pOut->nVertex = 4;
+ ii = 1;
+ pOut->hdr[0] = *(unsigned char*)&ii;
+ pOut->hdr[1] = 0;
+ pOut->hdr[2] = 0;
+ pOut->hdr[3] = 4;
+ GeoX(pOut,0) = mnX;
+ GeoY(pOut,0) = mnY;
+ GeoX(pOut,1) = mxX;
+ GeoY(pOut,1) = mnY;
+ GeoX(pOut,2) = mxX;
+ GeoY(pOut,2) = mxY;
+ GeoX(pOut,3) = mnX;
+ GeoY(pOut,3) = mxY;
+ }else{
+ sqlite3_free(p);
+ aCoord[0].f = mnX;
+ aCoord[1].f = mxX;
+ aCoord[2].f = mnY;
+ aCoord[3].f = mxY;
+ }
+ }else if( aCoord ){
+ memset(aCoord, 0, sizeof(RtreeCoord)*4);
+ }
+ return pOut;
+}
+
+/*
+** Implementation of the geopoly_bbox(X) SQL function.
+*/
+static void geopolyBBoxFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyBBox(context, argv[0], 0, 0);
+ if( p ){
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** State vector for the geopoly_group_bbox() aggregate function.
+*/
+typedef struct GeoBBox GeoBBox;
+struct GeoBBox {
+ int isInit;
+ RtreeCoord a[4];
+};
+
+
+/*
+** Implementation of the geopoly_group_bbox(X) aggregate SQL function.
+*/
+static void geopolyBBoxStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ RtreeCoord a[4];
+ int rc = SQLITE_OK;
+ (void)geopolyBBox(context, argv[0], a, &rc);
+ if( rc==SQLITE_OK ){
+ GeoBBox *pBBox;
+ pBBox = (GeoBBox*)sqlite3_aggregate_context(context, sizeof(*pBBox));
+ if( pBBox==0 ) return;
+ if( pBBox->isInit==0 ){
+ pBBox->isInit = 1;
+ memcpy(pBBox->a, a, sizeof(RtreeCoord)*4);
+ }else{
+ if( a[0].f < pBBox->a[0].f ) pBBox->a[0] = a[0];
+ if( a[1].f > pBBox->a[1].f ) pBBox->a[1] = a[1];
+ if( a[2].f < pBBox->a[2].f ) pBBox->a[2] = a[2];
+ if( a[3].f > pBBox->a[3].f ) pBBox->a[3] = a[3];
+ }
+ }
+}
+static void geopolyBBoxFinal(
+ sqlite3_context *context
+){
+ GeoPoly *p;
+ GeoBBox *pBBox;
+ pBBox = (GeoBBox*)sqlite3_aggregate_context(context, 0);
+ if( pBBox==0 ) return;
+ p = geopolyBBox(context, 0, pBBox->a, 0);
+ if( p ){
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+
+/*
+** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2).
+** Returns:
+**
+** +2 x0,y0 is on the line segement
+**
+** +1 x0,y0 is beneath line segment
+**
+** 0 x0,y0 is not on or beneath the line segment or the line segment
+** is vertical and x0,y0 is not on the line segment
+**
+** The left-most coordinate min(x1,x2) is not considered to be part of
+** the line segment for the purposes of this analysis.
+*/
+static int pointBeneathLine(
+ double x0, double y0,
+ double x1, double y1,
+ double x2, double y2
+){
+ double y;
+ if( x0==x1 && y0==y1 ) return 2;
+ if( x1<x2 ){
+ if( x0<=x1 || x0>x2 ) return 0;
+ }else if( x1>x2 ){
+ if( x0<=x2 || x0>x1 ) return 0;
+ }else{
+ /* Vertical line segment */
+ if( x0!=x1 ) return 0;
+ if( y0<y1 && y0<y2 ) return 0;
+ if( y0>y1 && y0>y2 ) return 0;
+ return 2;
+ }
+ y = y1 + (y2-y1)*(x0-x1)/(x2-x1);
+ if( y0==y ) return 2;
+ if( y0<y ) return 1;
+ return 0;
+}
+
+/*
+** SQL function: geopoly_contains_point(P,X,Y)
+**
+** Return +2 if point X,Y is within polygon P.
+** Return +1 if point X,Y is on the polygon boundary.
+** Return 0 if point X,Y is outside the polygon
+*/
+static void geopolyContainsPointFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
+ double x0 = sqlite3_value_double(argv[1]);
+ double y0 = sqlite3_value_double(argv[2]);
+ int v = 0;
+ int cnt = 0;
+ int ii;
+ if( p1==0 ) return;
+ for(ii=0; ii<p1->nVertex-1; ii++){
+ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii),
+ GeoX(p1,ii+1),GeoY(p1,ii+1));
+ if( v==2 ) break;
+ cnt += v;
+ }
+ if( v!=2 ){
+ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii),
+ GeoX(p1,0), GeoY(p1,0));
+ }
+ if( v==2 ){
+ sqlite3_result_int(context, 1);
+ }else if( ((v+cnt)&1)==0 ){
+ sqlite3_result_int(context, 0);
+ }else{
+ sqlite3_result_int(context, 2);
+ }
+ sqlite3_free(p1);
+}
+
+/* Forward declaration */
+static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2);
+
+/*
+** SQL function: geopoly_within(P1,P2)
+**
+** Return +2 if P1 and P2 are the same polygon
+** Return +1 if P2 is contained within P1
+** Return 0 if any part of P2 is on the outside of P1
+**
+*/
+static void geopolyWithinFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
+ GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0);
+ if( p1 && p2 ){
+ int x = geopolyOverlap(p1, p2);
+ if( x<0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_int(context, x==2 ? 1 : x==4 ? 2 : 0);
+ }
+ }
+ sqlite3_free(p1);
+ sqlite3_free(p2);
+}
+
+/* Objects used by the overlap algorihm. */
+typedef struct GeoEvent GeoEvent;
+typedef struct GeoSegment GeoSegment;
+typedef struct GeoOverlap GeoOverlap;
+struct GeoEvent {
+ double x; /* X coordinate at which event occurs */
+ int eType; /* 0 for ADD, 1 for REMOVE */
+ GeoSegment *pSeg; /* The segment to be added or removed */
+ GeoEvent *pNext; /* Next event in the sorted list */
+};
+struct GeoSegment {
+ double C, B; /* y = C*x + B */
+ double y; /* Current y value */
+ float y0; /* Initial y value */
+ unsigned char side; /* 1 for p1, 2 for p2 */
+ unsigned int idx; /* Which segment within the side */
+ GeoSegment *pNext; /* Next segment in a list sorted by y */
+};
+struct GeoOverlap {
+ GeoEvent *aEvent; /* Array of all events */
+ GeoSegment *aSegment; /* Array of all segments */
+ int nEvent; /* Number of events */
+ int nSegment; /* Number of segments */
+};
+
+/*
+** Add a single segment and its associated events.
+*/
+static void geopolyAddOneSegment(
+ GeoOverlap *p,
+ GeoCoord x0,
+ GeoCoord y0,
+ GeoCoord x1,
+ GeoCoord y1,
+ unsigned char side,
+ unsigned int idx
+){
+ GeoSegment *pSeg;
+ GeoEvent *pEvent;
+ if( x0==x1 ) return; /* Ignore vertical segments */
+ if( x0>x1 ){
+ GeoCoord t = x0;
+ x0 = x1;
+ x1 = t;
+ t = y0;
+ y0 = y1;
+ y1 = t;
+ }
+ pSeg = p->aSegment + p->nSegment;
+ p->nSegment++;
+ pSeg->C = (y1-y0)/(x1-x0);
+ pSeg->B = y1 - x1*pSeg->C;
+ pSeg->y0 = y0;
+ pSeg->side = side;
+ pSeg->idx = idx;
+ pEvent = p->aEvent + p->nEvent;
+ p->nEvent++;
+ pEvent->x = x0;
+ pEvent->eType = 0;
+ pEvent->pSeg = pSeg;
+ pEvent = p->aEvent + p->nEvent;
+ p->nEvent++;
+ pEvent->x = x1;
+ pEvent->eType = 1;
+ pEvent->pSeg = pSeg;
+}
+
+
+
+/*
+** Insert all segments and events for polygon pPoly.
+*/
+static void geopolyAddSegments(
+ GeoOverlap *p, /* Add segments to this Overlap object */
+ GeoPoly *pPoly, /* Take all segments from this polygon */
+ unsigned char side /* The side of pPoly */
+){
+ unsigned int i;
+ GeoCoord *x;
+ for(i=0; i<(unsigned)pPoly->nVertex-1; i++){
+ x = &GeoX(pPoly,i);
+ geopolyAddOneSegment(p, x[0], x[1], x[2], x[3], side, i);
+ }
+ x = &GeoX(pPoly,i);
+ geopolyAddOneSegment(p, x[0], x[1], pPoly->a[0], pPoly->a[1], side, i);
+}
+
+/*
+** Merge two lists of sorted events by X coordinate
+*/
+static GeoEvent *geopolyEventMerge(GeoEvent *pLeft, GeoEvent *pRight){
+ GeoEvent head, *pLast;
+ head.pNext = 0;
+ pLast = &head;
+ while( pRight && pLeft ){
+ if( pRight->x <= pLeft->x ){
+ pLast->pNext = pRight;
+ pLast = pRight;
+ pRight = pRight->pNext;
+ }else{
+ pLast->pNext = pLeft;
+ pLast = pLeft;
+ pLeft = pLeft->pNext;
+ }
+ }
+ pLast->pNext = pRight ? pRight : pLeft;
+ return head.pNext;
+}
+
+/*
+** Sort an array of nEvent event objects into a list.
+*/
+static GeoEvent *geopolySortEventsByX(GeoEvent *aEvent, int nEvent){
+ int mx = 0;
+ int i, j;
+ GeoEvent *p;
+ GeoEvent *a[50];
+ for(i=0; i<nEvent; i++){
+ p = &aEvent[i];
+ p->pNext = 0;
+ for(j=0; j<mx && a[j]; j++){
+ p = geopolyEventMerge(a[j], p);
+ a[j] = 0;
+ }
+ a[j] = p;
+ if( j>=mx ) mx = j+1;
+ }
+ p = 0;
+ for(i=0; i<mx; i++){
+ p = geopolyEventMerge(a[i], p);
+ }
+ return p;
+}
+
+/*
+** Merge two lists of sorted segments by Y, and then by C.
+*/
+static GeoSegment *geopolySegmentMerge(GeoSegment *pLeft, GeoSegment *pRight){
+ GeoSegment head, *pLast;
+ head.pNext = 0;
+ pLast = &head;
+ while( pRight && pLeft ){
+ double r = pRight->y - pLeft->y;
+ if( r==0.0 ) r = pRight->C - pLeft->C;
+ if( r<0.0 ){
+ pLast->pNext = pRight;
+ pLast = pRight;
+ pRight = pRight->pNext;
+ }else{
+ pLast->pNext = pLeft;
+ pLast = pLeft;
+ pLeft = pLeft->pNext;
+ }
+ }
+ pLast->pNext = pRight ? pRight : pLeft;
+ return head.pNext;
+}
+
+/*
+** Sort a list of GeoSegments in order of increasing Y and in the event of
+** a tie, increasing C (slope).
+*/
+static GeoSegment *geopolySortSegmentsByYAndC(GeoSegment *pList){
+ int mx = 0;
+ int i;
+ GeoSegment *p;
+ GeoSegment *a[50];
+ while( pList ){
+ p = pList;
+ pList = pList->pNext;
+ p->pNext = 0;
+ for(i=0; i<mx && a[i]; i++){
+ p = geopolySegmentMerge(a[i], p);
+ a[i] = 0;
+ }
+ a[i] = p;
+ if( i>=mx ) mx = i+1;
+ }
+ p = 0;
+ for(i=0; i<mx; i++){
+ p = geopolySegmentMerge(a[i], p);
+ }
+ return p;
+}
+
+/*
+** Determine the overlap between two polygons
+*/
+static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2){
+ sqlite3_int64 nVertex = p1->nVertex + p2->nVertex + 2;
+ GeoOverlap *p;
+ sqlite3_int64 nByte;
+ GeoEvent *pThisEvent;
+ double rX;
+ int rc = 0;
+ int needSort = 0;
+ GeoSegment *pActive = 0;
+ GeoSegment *pSeg;
+ unsigned char aOverlap[4];
+
+ nByte = sizeof(GeoEvent)*nVertex*2
+ + sizeof(GeoSegment)*nVertex
+ + sizeof(GeoOverlap);
+ p = sqlite3_malloc64( nByte );
+ if( p==0 ) return -1;
+ p->aEvent = (GeoEvent*)&p[1];
+ p->aSegment = (GeoSegment*)&p->aEvent[nVertex*2];
+ p->nEvent = p->nSegment = 0;
+ geopolyAddSegments(p, p1, 1);
+ geopolyAddSegments(p, p2, 2);
+ pThisEvent = geopolySortEventsByX(p->aEvent, p->nEvent);
+ rX = pThisEvent && pThisEvent->x==0.0 ? -1.0 : 0.0;
+ memset(aOverlap, 0, sizeof(aOverlap));
+ while( pThisEvent ){
+ if( pThisEvent->x!=rX ){
+ GeoSegment *pPrev = 0;
+ int iMask = 0;
+ GEODEBUG(("Distinct X: %g\n", pThisEvent->x));
+ rX = pThisEvent->x;
+ if( needSort ){
+ GEODEBUG(("SORT\n"));
+ pActive = geopolySortSegmentsByYAndC(pActive);
+ needSort = 0;
+ }
+ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
+ if( pPrev ){
+ if( pPrev->y!=pSeg->y ){
+ GEODEBUG(("MASK: %d\n", iMask));
+ aOverlap[iMask] = 1;
+ }
+ }
+ iMask ^= pSeg->side;
+ pPrev = pSeg;
+ }
+ pPrev = 0;
+ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
+ double y = pSeg->C*rX + pSeg->B;
+ GEODEBUG(("Segment %d.%d %g->%g\n", pSeg->side, pSeg->idx, pSeg->y, y));
+ pSeg->y = y;
+ if( pPrev ){
+ if( pPrev->y>pSeg->y && pPrev->side!=pSeg->side ){
+ rc = 1;
+ GEODEBUG(("Crossing: %d.%d and %d.%d\n",
+ pPrev->side, pPrev->idx,
+ pSeg->side, pSeg->idx));
+ goto geopolyOverlapDone;
+ }else if( pPrev->y!=pSeg->y ){
+ GEODEBUG(("MASK: %d\n", iMask));
+ aOverlap[iMask] = 1;
+ }
+ }
+ iMask ^= pSeg->side;
+ pPrev = pSeg;
+ }
+ }
+ GEODEBUG(("%s %d.%d C=%g B=%g\n",
+ pThisEvent->eType ? "RM " : "ADD",
+ pThisEvent->pSeg->side, pThisEvent->pSeg->idx,
+ pThisEvent->pSeg->C,
+ pThisEvent->pSeg->B));
+ if( pThisEvent->eType==0 ){
+ /* Add a segment */
+ pSeg = pThisEvent->pSeg;
+ pSeg->y = pSeg->y0;
+ pSeg->pNext = pActive;
+ pActive = pSeg;
+ needSort = 1;
+ }else{
+ /* Remove a segment */
+ if( pActive==pThisEvent->pSeg ){
+ pActive = ALWAYS(pActive) ? pActive->pNext : 0;
+ }else{
+ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
+ if( pSeg->pNext==pThisEvent->pSeg ){
+ pSeg->pNext = ALWAYS(pSeg->pNext) ? pSeg->pNext->pNext : 0;
+ break;
+ }
+ }
+ }
+ }
+ pThisEvent = pThisEvent->pNext;
+ }
+ if( aOverlap[3]==0 ){
+ rc = 0;
+ }else if( aOverlap[1]!=0 && aOverlap[2]==0 ){
+ rc = 3;
+ }else if( aOverlap[1]==0 && aOverlap[2]!=0 ){
+ rc = 2;
+ }else if( aOverlap[1]==0 && aOverlap[2]==0 ){
+ rc = 4;
+ }else{
+ rc = 1;
+ }
+
+geopolyOverlapDone:
+ sqlite3_free(p);
+ return rc;
+}
+
+/*
+** SQL function: geopoly_overlap(P1,P2)
+**
+** Determine whether or not P1 and P2 overlap. Return value:
+**
+** 0 The two polygons are disjoint
+** 1 They overlap
+** 2 P1 is completely contained within P2
+** 3 P2 is completely contained within P1
+** 4 P1 and P2 are the same polygon
+** NULL Either P1 or P2 or both are not valid polygons
+*/
+static void geopolyOverlapFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
+ GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0);
+ if( p1 && p2 ){
+ int x = geopolyOverlap(p1, p2);
+ if( x<0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_int(context, x);
+ }
+ }
+ sqlite3_free(p1);
+ sqlite3_free(p2);
+}
+
+/*
+** Enable or disable debugging output
+*/
+static void geopolyDebugFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+#ifdef GEOPOLY_ENABLE_DEBUG
+ geo_debug = sqlite3_value_int(argv[0]);
+#endif
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the geopoly virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int geopolyInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* One of the RTREE_COORD_* constants */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc = SQLITE_OK;
+ Rtree *pRtree;
+ sqlite3_int64 nDb; /* Length of string argv[1] */
+ sqlite3_int64 nName; /* Length of string argv[2] */
+ sqlite3_str *pSql;
+ char *zSql;
+ int ii;
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = strlen(argv[1]);
+ nName = strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->eCoordType = RTREE_COORD_REAL32;
+ pRtree->nDim = 2;
+ pRtree->nDim2 = 4;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ pSql = sqlite3_str_new(db);
+ sqlite3_str_appendf(pSql, "CREATE TABLE x(_shape");
+ pRtree->nAux = 1; /* Add one for _shape */
+ pRtree->nAuxNotNull = 1; /* The _shape column is always not-null */
+ for(ii=3; ii<argc; ii++){
+ pRtree->nAux++;
+ sqlite3_str_appendf(pSql, ",%s", argv[ii]);
+ }
+ sqlite3_str_appendf(pSql, ");");
+ zSql = sqlite3_str_finish(pSql);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ sqlite3_free(zSql);
+ if( rc ) goto geopolyInit_fail;
+ pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
+
+ /* Figure out the node size to use. */
+ rc = getNodeSize(db, pRtree, isCreate, pzErr);
+ if( rc ) goto geopolyInit_fail;
+ rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
+ if( rc ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ goto geopolyInit_fail;
+ }
+
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ return SQLITE_OK;
+
+geopolyInit_fail:
+ if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
+ assert( *ppVtab==0 );
+ assert( pRtree->nBusy==1 );
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+
+/*
+** GEOPOLY virtual table module xCreate method.
+*/
+static int geopolyCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
+}
+
+/*
+** GEOPOLY virtual table module xConnect method.
+*/
+static int geopolyConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
+}
+
+
+/*
+** GEOPOLY virtual table module xFilter method.
+**
+** Query plans:
+**
+** 1 rowid lookup
+** 2 search for objects overlapping the same bounding box
+** that contains polygon argv[0]
+** 3 search for objects overlapping the same bounding box
+** that contains polygon argv[0]
+** 4 full table scan
+*/
+static int geopolyFilter(
+ sqlite3_vtab_cursor *pVtabCursor, /* The cursor to initialize */
+ int idxNum, /* Query plan */
+ const char *idxStr, /* Not Used */
+ int argc, sqlite3_value **argv /* Parameters to the query plan */
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ RtreeNode *pRoot = 0;
+ int rc = SQLITE_OK;
+ int iCell = 0;
+
+ rtreeReference(pRtree);
+
+ /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
+ resetCursor(pCsr);
+
+ pCsr->iStrategy = idxNum;
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ RtreeSearchPoint *p; /* Search point for the leaf */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ i64 iNode = 0;
+ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
+ if( rc==SQLITE_OK && pLeaf!=0 ){
+ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
+ assert( p!=0 ); /* Always returns pCsr->sPoint */
+ pCsr->aNode[0] = pLeaf;
+ p->id = iNode;
+ p->eWithin = PARTLY_WITHIN;
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
+ p->iCell = (u8)iCell;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
+ }else{
+ pCsr->atEOF = 1;
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ if( rc==SQLITE_OK && idxNum<=3 ){
+ RtreeCoord bbox[4];
+ RtreeConstraint *p;
+ assert( argc==1 );
+ assert( argv[0]!=0 );
+ geopolyBBox(0, argv[0], bbox, &rc);
+ if( rc ){
+ goto geopoly_filter_end;
+ }
+ pCsr->aConstraint = p = sqlite3_malloc(sizeof(RtreeConstraint)*4);
+ pCsr->nConstraint = 4;
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*4);
+ memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
+ if( idxNum==2 ){
+ /* Overlap query */
+ p->op = 'B';
+ p->iCoord = 0;
+ p->u.rValue = bbox[1].f;
+ p++;
+ p->op = 'D';
+ p->iCoord = 1;
+ p->u.rValue = bbox[0].f;
+ p++;
+ p->op = 'B';
+ p->iCoord = 2;
+ p->u.rValue = bbox[3].f;
+ p++;
+ p->op = 'D';
+ p->iCoord = 3;
+ p->u.rValue = bbox[2].f;
+ }else{
+ /* Within query */
+ p->op = 'D';
+ p->iCoord = 0;
+ p->u.rValue = bbox[0].f;
+ p++;
+ p->op = 'B';
+ p->iCoord = 1;
+ p->u.rValue = bbox[1].f;
+ p++;
+ p->op = 'D';
+ p->iCoord = 2;
+ p->u.rValue = bbox[2].f;
+ p++;
+ p->op = 'B';
+ p->iCoord = 3;
+ p->u.rValue = bbox[3].f;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ RtreeSearchPoint *pNew;
+ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ goto geopoly_filter_end;
+ }
+ pNew->id = 1;
+ pNew->iCell = 0;
+ pNew->eWithin = PARTLY_WITHIN;
+ assert( pCsr->bPoint==1 );
+ pCsr->aNode[0] = pRoot;
+ pRoot = 0;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
+ rc = rtreeStepToLeaf(pCsr);
+ }
+ }
+
+geopoly_filter_end:
+ nodeRelease(pRtree, pRoot);
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 "rowid" Direct lookup by rowid.
+** 2 "rtree" R-tree overlap query using geopoly_overlap()
+** 3 "rtree" R-tree within query using geopoly_within()
+** 4 "fullscan" full-table scan.
+** ------------------------------------------------
+*/
+static int geopolyBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int ii;
+ int iRowidTerm = -1;
+ int iFuncTerm = -1;
+ int idxNum = 0;
+
+ for(ii=0; ii<pIdxInfo->nConstraint; ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+ if( !p->usable ) continue;
+ if( p->iColumn<0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ iRowidTerm = ii;
+ break;
+ }
+ if( p->iColumn==0 && p->op>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
+ /* p->op==SQLITE_INDEX_CONSTRAINT_FUNCTION for geopoly_overlap()
+ ** p->op==(SQLITE_INDEX_CONTRAINT_FUNCTION+1) for geopoly_within().
+ ** See geopolyFindFunction() */
+ iFuncTerm = ii;
+ idxNum = p->op - SQLITE_INDEX_CONSTRAINT_FUNCTION + 2;
+ }
+ }
+
+ if( iRowidTerm>=0 ){
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->idxStr = "rowid";
+ pIdxInfo->aConstraintUsage[iRowidTerm].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[iRowidTerm].omit = 1;
+ pIdxInfo->estimatedCost = 30.0;
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
+ return SQLITE_OK;
+ }
+ if( iFuncTerm>=0 ){
+ pIdxInfo->idxNum = idxNum;
+ pIdxInfo->idxStr = "rtree";
+ pIdxInfo->aConstraintUsage[iFuncTerm].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[iFuncTerm].omit = 0;
+ pIdxInfo->estimatedCost = 300.0;
+ pIdxInfo->estimatedRows = 10;
+ return SQLITE_OK;
+ }
+ pIdxInfo->idxNum = 4;
+ pIdxInfo->idxStr = "fullscan";
+ pIdxInfo->estimatedCost = 3000000.0;
+ pIdxInfo->estimatedRows = 100000;
+ return SQLITE_OK;
+}
+
+
+/*
+** GEOPOLY virtual table module xColumn method.
+*/
+static int geopolyColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
+
+ if( rc ) return rc;
+ if( p==0 ) return SQLITE_OK;
+ if( i==0 && sqlite3_vtab_nochange(ctx) ) return SQLITE_OK;
+ if( i<=pRtree->nAux ){
+ if( !pCsr->bAuxValid ){
+ if( pCsr->pReadAux==0 ){
+ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
+ &pCsr->pReadAux, 0);
+ if( rc ) return rc;
+ }
+ sqlite3_bind_int64(pCsr->pReadAux, 1,
+ nodeGetRowid(pRtree, pNode, p->iCell));
+ rc = sqlite3_step(pCsr->pReadAux);
+ if( rc==SQLITE_ROW ){
+ pCsr->bAuxValid = 1;
+ }else{
+ sqlite3_reset(pCsr->pReadAux);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+ }
+ }
+ sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i+2));
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** The xUpdate method for GEOPOLY module virtual tables.
+**
+** For DELETE:
+**
+** argv[0] = the rowid to be deleted
+**
+** For INSERT:
+**
+** argv[0] = SQL NULL
+** argv[1] = rowid to insert, or an SQL NULL to select automatically
+** argv[2] = _shape column
+** argv[3] = first application-defined column....
+**
+** For UPDATE:
+**
+** argv[0] = rowid to modify. Never NULL
+** argv[1] = rowid after the change. Never NULL
+** argv[2] = new value for _shape
+** argv[3] = new value for first application-defined column....
+*/
+static int geopolyUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **aData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+ RtreeCell cell; /* New cell to insert if nData>1 */
+ i64 oldRowid; /* The old rowid */
+ int oldRowidValid; /* True if oldRowid is valid */
+ i64 newRowid; /* The new rowid */
+ int newRowidValid; /* True if newRowid is valid */
+ int coordChange = 0; /* Change in coordinates */
+
+ if( pRtree->nNodeRef ){
+ /* Unable to write to the btree while another cursor is reading from it,
+ ** since the write might do a rebalance which would disrupt the read
+ ** cursor. */
+ return SQLITE_LOCKED_VTAB;
+ }
+ rtreeReference(pRtree);
+ assert(nData>=1);
+
+ oldRowidValid = sqlite3_value_type(aData[0])!=SQLITE_NULL;;
+ oldRowid = oldRowidValid ? sqlite3_value_int64(aData[0]) : 0;
+ newRowidValid = nData>1 && sqlite3_value_type(aData[1])!=SQLITE_NULL;
+ newRowid = newRowidValid ? sqlite3_value_int64(aData[1]) : 0;
+ cell.iRowid = newRowid;
+
+ if( nData>1 /* not a DELETE */
+ && (!oldRowidValid /* INSERT */
+ || !sqlite3_value_nochange(aData[2]) /* UPDATE _shape */
+ || oldRowid!=newRowid) /* Rowid change */
+ ){
+ assert( aData[2]!=0 );
+ geopolyBBox(0, aData[2], cell.aCoord, &rc);
+ if( rc ){
+ if( rc==SQLITE_ERROR ){
+ pVtab->zErrMsg =
+ sqlite3_mprintf("_shape does not contain a valid polygon");
+ }
+ goto geopoly_update_end;
+ }
+ coordChange = 1;
+
+ /* If a rowid value was supplied, check if it is already present in
+ ** the table. If so, the constraint has failed. */
+ if( newRowidValid && (!oldRowidValid || oldRowid!=newRowid) ){
+ int steprc;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ steprc = sqlite3_step(pRtree->pReadRowid);
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ if( SQLITE_ROW==steprc ){
+ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
+ rc = rtreeDeleteRowid(pRtree, cell.iRowid);
+ }else{
+ rc = rtreeConstraintError(pRtree, 0);
+ }
+ }
+ }
+ }
+
+ /* If aData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( rc==SQLITE_OK && (nData==1 || (coordChange && oldRowidValid)) ){
+ rc = rtreeDeleteRowid(pRtree, oldRowid);
+ }
+
+ /* If the aData[] array contains more than one element, elements
+ ** (aData[2]..aData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 && coordChange ){
+ /* Insert the new record into the r-tree */
+ RtreeNode *pLeaf = 0;
+ if( !newRowidValid ){
+ rc = rtreeNewRowid(pRtree, &cell.iRowid);
+ }
+ *pRowid = cell.iRowid;
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ pRtree->iReinsertHeight = -1;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ /* Change the data */
+ if( rc==SQLITE_OK && nData>1 ){
+ sqlite3_stmt *pUp = pRtree->pWriteAux;
+ int jj;
+ int nChange = 0;
+ sqlite3_bind_int64(pUp, 1, cell.iRowid);
+ assert( pRtree->nAux>=1 );
+ if( sqlite3_value_nochange(aData[2]) ){
+ sqlite3_bind_null(pUp, 2);
+ }else{
+ GeoPoly *p = 0;
+ if( sqlite3_value_type(aData[2])==SQLITE_TEXT
+ && (p = geopolyFuncParam(0, aData[2], &rc))!=0
+ && rc==SQLITE_OK
+ ){
+ sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_bind_value(pUp, 2, aData[2]);
+ }
+ sqlite3_free(p);
+ nChange = 1;
+ }
+ for(jj=1; jj<nData-2; jj++){
+ nChange++;
+ sqlite3_bind_value(pUp, jj+2, aData[jj+2]);
+ }
+ if( nChange ){
+ sqlite3_step(pUp);
+ rc = sqlite3_reset(pUp);
+ }
+ }
+
+geopoly_update_end:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Report that geopoly_overlap() is an overloaded function suitable
+** for use in xBestIndex.
+*/
+static int geopolyFindFunction(
+ sqlite3_vtab *pVtab,
+ int nArg,
+ const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg
+){
+ if( sqlite3_stricmp(zName, "geopoly_overlap")==0 ){
+ *pxFunc = geopolyOverlapFunc;
+ *ppArg = 0;
+ return SQLITE_INDEX_CONSTRAINT_FUNCTION;
+ }
+ if( sqlite3_stricmp(zName, "geopoly_within")==0 ){
+ *pxFunc = geopolyWithinFunc;
+ *ppArg = 0;
+ return SQLITE_INDEX_CONSTRAINT_FUNCTION+1;
+ }
+ return 0;
+}
+
+
+static sqlite3_module geopolyModule = {
+ 3, /* iVersion */
+ geopolyCreate, /* xCreate - create a table */
+ geopolyConnect, /* xConnect - connect to an existing table */
+ geopolyBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ geopolyFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ geopolyColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ geopolyUpdate, /* xUpdate - write data */
+ rtreeBeginTransaction, /* xBegin - begin transaction */
+ rtreeEndTransaction, /* xSync - sync transaction */
+ rtreeEndTransaction, /* xCommit - commit transaction */
+ rtreeEndTransaction, /* xRollback - rollback transaction */
+ geopolyFindFunction, /* xFindFunction - function overloading */
+ rtreeRename, /* xRename - rename the table */
+ rtreeSavepoint, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ rtreeShadowName /* xShadowName */
+};
+
+static int sqlite3_geopoly_init(sqlite3 *db){
+ int rc = SQLITE_OK;
+ static const struct {
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ signed char nArg;
+ unsigned char bPure;
+ const char *zName;
+ } aFunc[] = {
+ { geopolyAreaFunc, 1, 1, "geopoly_area" },
+ { geopolyBlobFunc, 1, 1, "geopoly_blob" },
+ { geopolyJsonFunc, 1, 1, "geopoly_json" },
+ { geopolySvgFunc, -1, 1, "geopoly_svg" },
+ { geopolyWithinFunc, 2, 1, "geopoly_within" },
+ { geopolyContainsPointFunc, 3, 1, "geopoly_contains_point" },
+ { geopolyOverlapFunc, 2, 1, "geopoly_overlap" },
+ { geopolyDebugFunc, 1, 0, "geopoly_debug" },
+ { geopolyBBoxFunc, 1, 1, "geopoly_bbox" },
+ { geopolyXformFunc, 7, 1, "geopoly_xform" },
+ { geopolyRegularFunc, 4, 1, "geopoly_regular" },
+ { geopolyCcwFunc, 1, 1, "geopoly_ccw" },
+ };
+ static const struct {
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**);
+ void (*xFinal)(sqlite3_context*);
+ const char *zName;
+ } aAgg[] = {
+ { geopolyBBoxStep, geopolyBBoxFinal, "geopoly_group_bbox" },
+ };
+ int i;
+ for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
+ int enc;
+ if( aFunc[i].bPure ){
+ enc = SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS;
+ }else{
+ enc = SQLITE_UTF8|SQLITE_DIRECTONLY;
+ }
+ rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
+ enc, 0,
+ aFunc[i].xFunc, 0, 0);
+ }
+ for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
+ rc = sqlite3_create_function(db, aAgg[i].zName, 1,
+ SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS, 0,
+ 0, aAgg[i].xStep, aAgg[i].xFinal);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_module_v2(db, "geopoly", &geopolyModule, 0, 0);
+ }
+ return rc;
+}
+
+/************** End of geopoly.c *********************************************/
+/************** Continuing where we left off in rtree.c **********************/
+#endif
+
+/*
+** Register the r-tree module with database handle db. This creates the
+** virtual table module "rtree" and the debugging/analysis scalar
+** function "rtreenode".
+*/
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
+ const int utf8 = SQLITE_UTF8;
+ int rc;
+
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0);
+ }
+ if( rc==SQLITE_OK ){
+#ifdef SQLITE_RTREE_INT_ONLY
+ void *c = (void *)RTREE_COORD_INT32;
+#else
+ void *c = (void *)RTREE_COORD_REAL32;
+#endif
+ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_INT32;
+ rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
+ }
+#ifdef SQLITE_ENABLE_GEOPOLY
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_geopoly_init(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** This routine deletes the RtreeGeomCallback object that was attached
+** one of the SQL functions create by sqlite3_rtree_geometry_callback()
+** or sqlite3_rtree_query_callback(). In other words, this routine is the
+** destructor for an RtreeGeomCallback objecct. This routine is called when
+** the corresponding SQL function is deleted.
+*/
+static void rtreeFreeCallback(void *p){
+ RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
+ if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
+ sqlite3_free(p);
+}
+
+/*
+** This routine frees the BLOB that is returned by geomCallback().
+*/
+static void rtreeMatchArgFree(void *pArg){
+ int i;
+ RtreeMatchArg *p = (RtreeMatchArg*)pArg;
+ for(i=0; i<p->nParam; i++){
+ sqlite3_value_free(p->apSqlParam[i]);
+ }
+ sqlite3_free(p);
+}
+
+/*
+** Each call to sqlite3_rtree_geometry_callback() or
+** sqlite3_rtree_query_callback() creates an ordinary SQLite
+** scalar function that is implemented by this routine.
+**
+** All this function does is construct an RtreeMatchArg object that
+** contains the geometry-checking callback routines and a list of
+** parameters to this function, then return that RtreeMatchArg object
+** as a BLOB.
+**
+** The R-Tree MATCH operator will read the returned BLOB, deserialize
+** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
+** out which elements of the R-Tree should be returned by the query.
+*/
+static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
+ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
+ RtreeMatchArg *pBlob;
+ sqlite3_int64 nBlob;
+ int memErr = 0;
+
+ nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
+ + nArg*sizeof(sqlite3_value*);
+ pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob);
+ if( !pBlob ){
+ sqlite3_result_error_nomem(ctx);
+ }else{
+ int i;
+ pBlob->iSize = nBlob;
+ pBlob->cb = pGeomCtx[0];
+ pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
+ pBlob->nParam = nArg;
+ for(i=0; i<nArg; i++){
+ pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);
+ if( pBlob->apSqlParam[i]==0 ) memErr = 1;
+#ifdef SQLITE_RTREE_INT_ONLY
+ pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
+#else
+ pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
+#endif
+ }
+ if( memErr ){
+ sqlite3_result_error_nomem(ctx);
+ rtreeMatchArgFree(pBlob);
+ }else{
+ sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree);
+ }
+ }
+}
+
+/*
+** Register a new geometry function for use with the r-tree MATCH operator.
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db, /* Register SQL function on this connection */
+ const char *zGeom, /* Name of the new SQL function */
+ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
+ void *pContext /* Extra data associated with the callback */
+){
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
+
+ /* Allocate and populate the context object. */
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
+ if( !pGeomCtx ) return SQLITE_NOMEM;
+ pGeomCtx->xGeom = xGeom;
+ pGeomCtx->xQueryFunc = 0;
+ pGeomCtx->xDestructor = 0;
+ pGeomCtx->pContext = pContext;
+ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
+ (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
+ );
+}
+
+/*
+** Register a new 2nd-generation geometry function for use with the
+** r-tree MATCH operator.
+*/
+SQLITE_API int sqlite3_rtree_query_callback(
+ sqlite3 *db, /* Register SQL function on this connection */
+ const char *zQueryFunc, /* Name of new SQL function */
+ int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
+ void *pContext, /* Extra data passed into the callback */
+ void (*xDestructor)(void*) /* Destructor for the extra data */
+){
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
+
+ /* Allocate and populate the context object. */
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
+ if( !pGeomCtx ){
+ if( xDestructor ) xDestructor(pContext);
+ return SQLITE_NOMEM;
+ }
+ pGeomCtx->xGeom = 0;
+ pGeomCtx->xQueryFunc = xQueryFunc;
+ pGeomCtx->xDestructor = xDestructor;
+ pGeomCtx->pContext = pContext;
+ return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY,
+ (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
+ );
+}
+
+#if !SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_rtree_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3RtreeInit(db);
+}
+#endif
+
+#endif
+
+/************** End of rtree.c ***********************************************/
+/************** Begin file icu.c *********************************************/
+/*
+** 2007 May 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
+**
+** This file implements an integration between the ICU library
+** ("International Components for Unicode", an open-source library
+** for handling unicode data) and SQLite. The integration uses
+** ICU to provide the following to SQLite:
+**
+** * An implementation of the SQL regexp() function (and hence REGEXP
+** operator) using the ICU uregex_XX() APIs.
+**
+** * Implementations of the SQL scalar upper() and lower() functions
+** for case mapping.
+**
+** * Integration of ICU and SQLite collation sequences.
+**
+** * An implementation of the LIKE operator that uses ICU to
+** provide case-independent matching.
+*/
+
+#if !defined(SQLITE_CORE) \
+ || defined(SQLITE_ENABLE_ICU) \
+ || defined(SQLITE_ENABLE_ICU_COLLATIONS)
+
+/* Include ICU headers */
+#include <unicode/utypes.h>
+#include <unicode/uregex.h>
+#include <unicode/ustring.h>
+#include <unicode/ucol.h>
+
+/* #include <assert.h> */
+
+#ifndef SQLITE_CORE
+/* #include "sqlite3ext.h" */
+ SQLITE_EXTENSION_INIT1
+#else
+/* #include "sqlite3.h" */
+#endif
+
+/*
+** This function is called when an ICU function called from within
+** the implementation of an SQL scalar function returns an error.
+**
+** The scalar function context passed as the first argument is
+** loaded with an error message based on the following two args.
+*/
+static void icuFunctionError(
+ sqlite3_context *pCtx, /* SQLite scalar function context */
+ const char *zName, /* Name of ICU function that failed */
+ UErrorCode e /* Error code returned by ICU function */
+){
+ char zBuf[128];
+ sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
+ zBuf[127] = '\0';
+ sqlite3_result_error(pCtx, zBuf, -1);
+}
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Version of sqlite3_free() that is always a function, never a macro.
+*/
+static void xFree(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** This lookup table is used to help decode the first byte of
+** a multi-byte UTF8 character. It is copied here from SQLite source
+** code file utf8.c.
+*/
+static const unsigned char icuUtf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define SQLITE_ICU_READ_UTF8(zIn, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = icuUtf8Trans1[c-0xc0]; \
+ while( (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ }
+
+#define SQLITE_ICU_SKIP_UTF8(zIn) \
+ assert( *zIn ); \
+ if( *(zIn++)>=0xc0 ){ \
+ while( (*zIn & 0xc0)==0x80 ){zIn++;} \
+ }
+
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a "LIKE" expression. Return true (1) if they are the same and
+** false (0) if they are different.
+*/
+static int icuLikeCompare(
+ const uint8_t *zPattern, /* LIKE pattern */
+ const uint8_t *zString, /* The UTF-8 string to compare against */
+ const UChar32 uEsc /* The escape character */
+){
+ static const uint32_t MATCH_ONE = (uint32_t)'_';
+ static const uint32_t MATCH_ALL = (uint32_t)'%';
+
+ int prevEscape = 0; /* True if the previous character was uEsc */
+
+ while( 1 ){
+
+ /* Read (and consume) the next character from the input pattern. */
+ uint32_t uPattern;
+ SQLITE_ICU_READ_UTF8(zPattern, uPattern);
+ if( uPattern==0 ) break;
+
+ /* There are now 4 possibilities:
+ **
+ ** 1. uPattern is an unescaped match-all character "%",
+ ** 2. uPattern is an unescaped match-one character "_",
+ ** 3. uPattern is an unescaped escape character, or
+ ** 4. uPattern is to be handled as an ordinary character
+ */
+ if( uPattern==MATCH_ALL && !prevEscape && uPattern!=(uint32_t)uEsc ){
+ /* Case 1. */
+ uint8_t c;
+
+ /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
+ ** MATCH_ALL. For each MATCH_ONE, skip one character in the
+ ** test string.
+ */
+ while( (c=*zPattern) == MATCH_ALL || c == MATCH_ONE ){
+ if( c==MATCH_ONE ){
+ if( *zString==0 ) return 0;
+ SQLITE_ICU_SKIP_UTF8(zString);
+ }
+ zPattern++;
+ }
+
+ if( *zPattern==0 ) return 1;
+
+ while( *zString ){
+ if( icuLikeCompare(zPattern, zString, uEsc) ){
+ return 1;
+ }
+ SQLITE_ICU_SKIP_UTF8(zString);
+ }
+ return 0;
+
+ }else if( uPattern==MATCH_ONE && !prevEscape && uPattern!=(uint32_t)uEsc ){
+ /* Case 2. */
+ if( *zString==0 ) return 0;
+ SQLITE_ICU_SKIP_UTF8(zString);
+
+ }else if( uPattern==(uint32_t)uEsc && !prevEscape ){
+ /* Case 3. */
+ prevEscape = 1;
+
+ }else{
+ /* Case 4. */
+ uint32_t uString;
+ SQLITE_ICU_READ_UTF8(zString, uString);
+ uString = (uint32_t)u_foldCase((UChar32)uString, U_FOLD_CASE_DEFAULT);
+ uPattern = (uint32_t)u_foldCase((UChar32)uPattern, U_FOLD_CASE_DEFAULT);
+ if( uString!=uPattern ){
+ return 0;
+ }
+ prevEscape = 0;
+ }
+ }
+
+ return *zString==0;
+}
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B, A). If there is an escape character E,
+**
+** A LIKE B ESCAPE E
+**
+** is mapped to like(B, A, E).
+*/
+static void icuLikeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA = sqlite3_value_text(argv[0]);
+ const unsigned char *zB = sqlite3_value_text(argv[1]);
+ UChar32 uEsc = 0;
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+
+
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ int nE= sqlite3_value_bytes(argv[2]);
+ const unsigned char *zE = sqlite3_value_text(argv[2]);
+ int i = 0;
+ if( zE==0 ) return;
+ U8_NEXT(zE, i, nE, uEsc);
+ if( i!=nE){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ }
+
+ if( zA && zB ){
+ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
+ }
+}
+
+/*
+** Function to delete compiled regexp objects. Registered as
+** a destructor function with sqlite3_set_auxdata().
+*/
+static void icuRegexpDelete(void *p){
+ URegularExpression *pExpr = (URegularExpression *)p;
+ uregex_close(pExpr);
+}
+
+/*
+** Implementation of SQLite REGEXP operator. This scalar function takes
+** two arguments. The first is a regular expression pattern to compile
+** the second is a string to match against that pattern. If either
+** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
+** is 1 if the string matches the pattern, or 0 otherwise.
+**
+** SQLite maps the regexp() function to the regexp() operator such
+** that the following two are equivalent:
+**
+** zString REGEXP zPattern
+** regexp(zPattern, zString)
+**
+** Uses the following ICU regexp APIs:
+**
+** uregex_open()
+** uregex_matches()
+** uregex_close()
+*/
+static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ UErrorCode status = U_ZERO_ERROR;
+ URegularExpression *pExpr;
+ UBool res;
+ const UChar *zString = sqlite3_value_text16(apArg[1]);
+
+ (void)nArg; /* Unused parameter */
+
+ /* If the left hand side of the regexp operator is NULL,
+ ** then the result is also NULL.
+ */
+ if( !zString ){
+ return;
+ }
+
+ pExpr = sqlite3_get_auxdata(p, 0);
+ if( !pExpr ){
+ const UChar *zPattern = sqlite3_value_text16(apArg[0]);
+ if( !zPattern ){
+ return;
+ }
+ pExpr = uregex_open(zPattern, -1, 0, 0, &status);
+
+ if( U_SUCCESS(status) ){
+ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
+ pExpr = sqlite3_get_auxdata(p, 0);
+ }
+ if( !pExpr ){
+ icuFunctionError(p, "uregex_open", status);
+ return;
+ }
+ }
+
+ /* Configure the text that the regular expression operates on. */
+ uregex_setText(pExpr, zString, -1, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_setText", status);
+ return;
+ }
+
+ /* Attempt the match */
+ res = uregex_matches(pExpr, 0, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_matches", status);
+ return;
+ }
+
+ /* Set the text that the regular expression operates on to a NULL
+ ** pointer. This is not really necessary, but it is tidier than
+ ** leaving the regular expression object configured with an invalid
+ ** pointer after this function returns.
+ */
+ uregex_setText(pExpr, 0, 0, &status);
+
+ /* Return 1 or 0. */
+ sqlite3_result_int(p, res ? 1 : 0);
+}
+
+/*
+** Implementations of scalar functions for case mapping - upper() and
+** lower(). Function upper() converts its input to upper-case (ABC).
+** Function lower() converts to lower-case (abc).
+**
+** ICU provides two types of case mapping, "general" case mapping and
+** "language specific". Refer to ICU documentation for the differences
+** between the two.
+**
+** To utilise "general" case mapping, the upper() or lower() scalar
+** functions are invoked with one argument:
+**
+** upper('ABC') -> 'abc'
+** lower('abc') -> 'ABC'
+**
+** To access ICU "language specific" case mapping, upper() or lower()
+** should be invoked with two arguments. The second argument is the name
+** of the locale to use. Passing an empty string ("") or SQL NULL value
+** as the second argument is the same as invoking the 1 argument version
+** of upper() or lower().
+**
+** lower('I', 'en_us') -> 'i'
+** lower('I', 'tr_tr') -> '\u131' (small dotless i)
+**
+** http://www.icu-project.org/userguide/posix.html#case_mappings
+*/
+static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ const UChar *zInput; /* Pointer to input string */
+ UChar *zOutput = 0; /* Pointer to output buffer */
+ int nInput; /* Size of utf-16 input string in bytes */
+ int nOut; /* Size of output buffer in bytes */
+ int cnt;
+ int bToUpper; /* True for toupper(), false for tolower() */
+ UErrorCode status;
+ const char *zLocale = 0;
+
+ assert(nArg==1 || nArg==2);
+ bToUpper = (sqlite3_user_data(p)!=0);
+ if( nArg==2 ){
+ zLocale = (const char *)sqlite3_value_text(apArg[1]);
+ }
+
+ zInput = sqlite3_value_text16(apArg[0]);
+ if( !zInput ){
+ return;
+ }
+ nOut = nInput = sqlite3_value_bytes16(apArg[0]);
+ if( nOut==0 ){
+ sqlite3_result_text16(p, "", 0, SQLITE_STATIC);
+ return;
+ }
+
+ for(cnt=0; cnt<2; cnt++){
+ UChar *zNew = sqlite3_realloc(zOutput, nOut);
+ if( zNew==0 ){
+ sqlite3_free(zOutput);
+ sqlite3_result_error_nomem(p);
+ return;
+ }
+ zOutput = zNew;
+ status = U_ZERO_ERROR;
+ if( bToUpper ){
+ nOut = 2*u_strToUpper(zOutput,nOut/2,zInput,nInput/2,zLocale,&status);
+ }else{
+ nOut = 2*u_strToLower(zOutput,nOut/2,zInput,nInput/2,zLocale,&status);
+ }
+
+ if( U_SUCCESS(status) ){
+ sqlite3_result_text16(p, zOutput, nOut, xFree);
+ }else if( status==U_BUFFER_OVERFLOW_ERROR ){
+ assert( cnt==0 );
+ continue;
+ }else{
+ icuFunctionError(p, bToUpper ? "u_strToUpper" : "u_strToLower", status);
+ }
+ return;
+ }
+ assert( 0 ); /* Unreachable */
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */
+
+/*
+** Collation sequence destructor function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static void icuCollationDel(void *pCtx){
+ UCollator *p = (UCollator *)pCtx;
+ ucol_close(p);
+}
+
+/*
+** Collation sequence comparison function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static int icuCollationColl(
+ void *pCtx,
+ int nLeft,
+ const void *zLeft,
+ int nRight,
+ const void *zRight
+){
+ UCollationResult res;
+ UCollator *p = (UCollator *)pCtx;
+ res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
+ switch( res ){
+ case UCOL_LESS: return -1;
+ case UCOL_GREATER: return +1;
+ case UCOL_EQUAL: return 0;
+ }
+ assert(!"Unexpected return value from ucol_strcoll()");
+ return 0;
+}
+
+/*
+** Implementation of the scalar function icu_load_collation().
+**
+** This scalar function is used to add ICU collation based collation
+** types to an SQLite database connection. It is intended to be called
+** as follows:
+**
+** SELECT icu_load_collation(<locale>, <collation-name>);
+**
+** Where <locale> is a string containing an ICU locale identifier (i.e.
+** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
+** collation sequence to create.
+*/
+static void icuLoadCollation(
+ sqlite3_context *p,
+ int nArg,
+ sqlite3_value **apArg
+){
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
+ UErrorCode status = U_ZERO_ERROR;
+ const char *zLocale; /* Locale identifier - (eg. "jp_JP") */
+ const char *zName; /* SQL Collation sequence name (eg. "japanese") */
+ UCollator *pUCollator; /* ICU library collation object */
+ int rc; /* Return code from sqlite3_create_collation_x() */
+
+ assert(nArg==2);
+ (void)nArg; /* Unused parameter */
+ zLocale = (const char *)sqlite3_value_text(apArg[0]);
+ zName = (const char *)sqlite3_value_text(apArg[1]);
+
+ if( !zLocale || !zName ){
+ return;
+ }
+
+ pUCollator = ucol_open(zLocale, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "ucol_open", status);
+ return;
+ }
+ assert(p);
+
+ rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
+ icuCollationColl, icuCollationDel
+ );
+ if( rc!=SQLITE_OK ){
+ ucol_close(pUCollator);
+ sqlite3_result_error(p, "Error registering collation function", -1);
+ }
+}
+
+/*
+** Register the ICU extension functions with database db.
+*/
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
+# define SQLITEICU_EXTRAFLAGS (SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS)
+ static const struct IcuScalar {
+ const char *zName; /* Function name */
+ unsigned char nArg; /* Number of arguments */
+ unsigned int enc; /* Optimal text encoding */
+ unsigned char iContext; /* sqlite3_user_data() context */
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } scalars[] = {
+ {"icu_load_collation",2,SQLITE_UTF8|SQLITE_DIRECTONLY,1, icuLoadCollation},
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
+ {"regexp", 2, SQLITE_ANY|SQLITEICU_EXTRAFLAGS, 0, icuRegexpFunc},
+ {"lower", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"lower", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"like", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc},
+ {"like", 3, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc},
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */
+ };
+ int rc = SQLITE_OK;
+ int i;
+
+ for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
+ const struct IcuScalar *p = &scalars[i];
+ rc = sqlite3_create_function(
+ db, p->zName, p->nArg, p->enc,
+ p->iContext ? (void*)db : (void*)0,
+ p->xFunc, 0, 0
+ );
+ }
+
+ return rc;
+}
+
+#if !SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_icu_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3IcuInit(db);
+}
+#endif
+
+#endif
+
+/************** End of icu.c *************************************************/
+/************** Begin file fts3_icu.c ****************************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements a tokenizer for fts3 based on the ICU library.
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+#ifdef SQLITE_ENABLE_ICU
+
+/* #include <assert.h> */
+/* #include <string.h> */
+/* #include "fts3_tokenizer.h" */
+
+#include <unicode/ubrk.h>
+/* #include <unicode/ucol.h> */
+/* #include <unicode/ustring.h> */
+#include <unicode/utf16.h>
+
+typedef struct IcuTokenizer IcuTokenizer;
+typedef struct IcuCursor IcuCursor;
+
+struct IcuTokenizer {
+ sqlite3_tokenizer base;
+ char *zLocale;
+};
+
+struct IcuCursor {
+ sqlite3_tokenizer_cursor base;
+
+ UBreakIterator *pIter; /* ICU break-iterator object */
+ int nChar; /* Number of UChar elements in pInput */
+ UChar *aChar; /* Copy of input using utf-16 encoding */
+ int *aOffset; /* Offsets of each character in utf-8 input */
+
+ int nBuffer;
+ char *zBuffer;
+
+ int iToken;
+};
+
+/*
+** Create a new tokenizer instance.
+*/
+static int icuCreate(
+ int argc, /* Number of entries in argv[] */
+ const char * const *argv, /* Tokenizer creation arguments */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+){
+ IcuTokenizer *p;
+ int n = 0;
+
+ if( argc>0 ){
+ n = strlen(argv[0])+1;
+ }
+ p = (IcuTokenizer *)sqlite3_malloc64(sizeof(IcuTokenizer)+n);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ memset(p, 0, sizeof(IcuTokenizer));
+
+ if( n ){
+ p->zLocale = (char *)&p[1];
+ memcpy(p->zLocale, argv[0], n);
+ }
+
+ *ppTokenizer = (sqlite3_tokenizer *)p;
+
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int icuDestroy(sqlite3_tokenizer *pTokenizer){
+ IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int icuOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, /* Input string */
+ int nInput, /* Length of zInput in bytes */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
+ IcuCursor *pCsr;
+
+ const int32_t opt = U_FOLD_CASE_DEFAULT;
+ UErrorCode status = U_ZERO_ERROR;
+ int nChar;
+
+ UChar32 c;
+ int iInput = 0;
+ int iOut = 0;
+
+ *ppCursor = 0;
+
+ if( zInput==0 ){
+ nInput = 0;
+ zInput = "";
+ }else if( nInput<0 ){
+ nInput = strlen(zInput);
+ }
+ nChar = nInput+1;
+ pCsr = (IcuCursor *)sqlite3_malloc64(
+ sizeof(IcuCursor) + /* IcuCursor */
+ ((nChar+3)&~3) * sizeof(UChar) + /* IcuCursor.aChar[] */
+ (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */
+ );
+ if( !pCsr ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(IcuCursor));
+ pCsr->aChar = (UChar *)&pCsr[1];
+ pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3];
+
+ pCsr->aOffset[iOut] = iInput;
+ U8_NEXT(zInput, iInput, nInput, c);
+ while( c>0 ){
+ int isError = 0;
+ c = u_foldCase(c, opt);
+ U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
+ if( isError ){
+ sqlite3_free(pCsr);
+ return SQLITE_ERROR;
+ }
+ pCsr->aOffset[iOut] = iInput;
+
+ if( iInput<nInput ){
+ U8_NEXT(zInput, iInput, nInput, c);
+ }else{
+ c = 0;
+ }
+ }
+
+ pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
+ if( !U_SUCCESS(status) ){
+ sqlite3_free(pCsr);
+ return SQLITE_ERROR;
+ }
+ pCsr->nChar = iOut;
+
+ ubrk_first(pCsr->pIter);
+ *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to icuOpen().
+*/
+static int icuClose(sqlite3_tokenizer_cursor *pCursor){
+ IcuCursor *pCsr = (IcuCursor *)pCursor;
+ ubrk_close(pCsr->pIter);
+ sqlite3_free(pCsr->zBuffer);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor.
+*/
+static int icuNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ IcuCursor *pCsr = (IcuCursor *)pCursor;
+
+ int iStart = 0;
+ int iEnd = 0;
+ int nByte = 0;
+
+ while( iStart==iEnd ){
+ UChar32 c;
+
+ iStart = ubrk_current(pCsr->pIter);
+ iEnd = ubrk_next(pCsr->pIter);
+ if( iEnd==UBRK_DONE ){
+ return SQLITE_DONE;
+ }
+
+ while( iStart<iEnd ){
+ int iWhite = iStart;
+ U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
+ if( u_isspace(c) ){
+ iStart = iWhite;
+ }else{
+ break;
+ }
+ }
+ assert(iStart<=iEnd);
+ }
+
+ do {
+ UErrorCode status = U_ZERO_ERROR;
+ if( nByte ){
+ char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pCsr->zBuffer = zNew;
+ pCsr->nBuffer = nByte;
+ }
+
+ u_strToUTF8(
+ pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */
+ &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */
+ &status /* Output success/failure */
+ );
+ } while( nByte>pCsr->nBuffer );
+
+ *ppToken = pCsr->zBuffer;
+ *pnBytes = nByte;
+ *piStartOffset = pCsr->aOffset[iStart];
+ *piEndOffset = pCsr->aOffset[iEnd];
+ *piPosition = pCsr->iToken++;
+
+ return SQLITE_OK;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module icuTokenizerModule = {
+ 0, /* iVersion */
+ icuCreate, /* xCreate */
+ icuDestroy, /* xCreate */
+ icuOpen, /* xOpen */
+ icuClose, /* xClose */
+ icuNext, /* xNext */
+ 0, /* xLanguageid */
+};
+
+/*
+** Set *ppModule to point at the implementation of the ICU tokenizer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &icuTokenizerModule;
+}
+
+#endif /* defined(SQLITE_ENABLE_ICU) */
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_icu.c ********************************************/
+/************** Begin file sqlite3rbu.c **************************************/
+/*
+** 2014 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+**
+** OVERVIEW
+**
+** The RBU extension requires that the RBU update be packaged as an
+** SQLite database. The tables it expects to find are described in
+** sqlite3rbu.h. Essentially, for each table xyz in the target database
+** that the user wishes to write to, a corresponding data_xyz table is
+** created in the RBU database and populated with one row for each row to
+** update, insert or delete from the target table.
+**
+** The update proceeds in three stages:
+**
+** 1) The database is updated. The modified database pages are written
+** to a *-oal file. A *-oal file is just like a *-wal file, except
+** that it is named "<database>-oal" instead of "<database>-wal".
+** Because regular SQLite clients do not look for file named
+** "<database>-oal", they go on using the original database in
+** rollback mode while the *-oal file is being generated.
+**
+** During this stage RBU does not update the database by writing
+** directly to the target tables. Instead it creates "imposter"
+** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses
+** to update each b-tree individually. All updates required by each
+** b-tree are completed before moving on to the next, and all
+** updates are done in sorted key order.
+**
+** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal"
+** location using a call to rename(2). Before doing this the RBU
+** module takes an EXCLUSIVE lock on the database file, ensuring
+** that there are no other active readers.
+**
+** Once the EXCLUSIVE lock is released, any other database readers
+** detect the new *-wal file and read the database in wal mode. At
+** this point they see the new version of the database - including
+** the updates made as part of the RBU update.
+**
+** 3) The new *-wal file is checkpointed. This proceeds in the same way
+** as a regular database checkpoint, except that a single frame is
+** checkpointed each time sqlite3rbu_step() is called. If the RBU
+** handle is closed before the entire *-wal file is checkpointed,
+** the checkpoint progress is saved in the RBU database and the
+** checkpoint can be resumed by another RBU client at some point in
+** the future.
+**
+** POTENTIAL PROBLEMS
+**
+** The rename() call might not be portable. And RBU is not currently
+** syncing the directory after renaming the file.
+**
+** When state is saved, any commit to the *-oal file and the commit to
+** the RBU update database are not atomic. So if the power fails at the
+** wrong moment they might get out of sync. As the main database will be
+** committed before the RBU update database this will likely either just
+** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE
+** constraint violations).
+**
+** If some client does modify the target database mid RBU update, or some
+** other error occurs, the RBU extension will keep throwing errors. It's
+** not really clear how to get out of this state. The system could just
+** by delete the RBU update database and *-oal file and have the device
+** download the update again and start over.
+**
+** At present, for an UPDATE, both the new.* and old.* records are
+** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all
+** fields are collected. This means we're probably writing a lot more
+** data to disk when saving the state of an ongoing update to the RBU
+** update database than is strictly necessary.
+**
+*/
+
+/* #include <assert.h> */
+/* #include <string.h> */
+/* #include <stdio.h> */
+
+/* #include "sqlite3.h" */
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU)
+/************** Include sqlite3rbu.h in the middle of sqlite3rbu.c ***********/
+/************** Begin file sqlite3rbu.h **************************************/
+/*
+** 2014 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the public interface for the RBU extension.
+*/
+
+/*
+** SUMMARY
+**
+** Writing a transaction containing a large number of operations on
+** b-tree indexes that are collectively larger than the available cache
+** memory can be very inefficient.
+**
+** The problem is that in order to update a b-tree, the leaf page (at least)
+** containing the entry being inserted or deleted must be modified. If the
+** working set of leaves is larger than the available cache memory, then a
+** single leaf that is modified more than once as part of the transaction
+** may be loaded from or written to the persistent media multiple times.
+** Additionally, because the index updates are likely to be applied in
+** random order, access to pages within the database is also likely to be in
+** random order, which is itself quite inefficient.
+**
+** One way to improve the situation is to sort the operations on each index
+** by index key before applying them to the b-tree. This leads to an IO
+** pattern that resembles a single linear scan through the index b-tree,
+** and all but guarantees each modified leaf page is loaded and stored
+** exactly once. SQLite uses this trick to improve the performance of
+** CREATE INDEX commands. This extension allows it to be used to improve
+** the performance of large transactions on existing databases.
+**
+** Additionally, this extension allows the work involved in writing the
+** large transaction to be broken down into sub-transactions performed
+** sequentially by separate processes. This is useful if the system cannot
+** guarantee that a single update process will run for long enough to apply
+** the entire update, for example because the update is being applied on a
+** mobile device that is frequently rebooted. Even after the writer process
+** has committed one or more sub-transactions, other database clients continue
+** to read from the original database snapshot. In other words, partially
+** applied transactions are not visible to other clients.
+**
+** "RBU" stands for "Resumable Bulk Update". As in a large database update
+** transmitted via a wireless network to a mobile device. A transaction
+** applied using this extension is hence refered to as an "RBU update".
+**
+**
+** LIMITATIONS
+**
+** An "RBU update" transaction is subject to the following limitations:
+**
+** * The transaction must consist of INSERT, UPDATE and DELETE operations
+** only.
+**
+** * INSERT statements may not use any default values.
+**
+** * UPDATE and DELETE statements must identify their target rows by
+** non-NULL PRIMARY KEY values. Rows with NULL values stored in PRIMARY
+** KEY fields may not be updated or deleted. If the table being written
+** has no PRIMARY KEY, affected rows must be identified by rowid.
+**
+** * UPDATE statements may not modify PRIMARY KEY columns.
+**
+** * No triggers will be fired.
+**
+** * No foreign key violations are detected or reported.
+**
+** * CHECK constraints are not enforced.
+**
+** * No constraint handling mode except for "OR ROLLBACK" is supported.
+**
+**
+** PREPARATION
+**
+** An "RBU update" is stored as a separate SQLite database. A database
+** containing an RBU update is an "RBU database". For each table in the
+** target database to be updated, the RBU database should contain a table
+** named "data_<target name>" containing the same set of columns as the
+** target table, and one more - "rbu_control". The data_% table should
+** have no PRIMARY KEY or UNIQUE constraints, but each column should have
+** the same type as the corresponding column in the target database.
+** The "rbu_control" column should have no type at all. For example, if
+** the target database contains:
+**
+** CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c UNIQUE);
+**
+** Then the RBU database should contain:
+**
+** CREATE TABLE data_t1(a INTEGER, b TEXT, c, rbu_control);
+**
+** The order of the columns in the data_% table does not matter.
+**
+** Instead of a regular table, the RBU database may also contain virtual
+** tables or view named using the data_<target> naming scheme.
+**
+** Instead of the plain data_<target> naming scheme, RBU database tables
+** may also be named data<integer>_<target>, where <integer> is any sequence
+** of zero or more numeric characters (0-9). This can be significant because
+** tables within the RBU database are always processed in order sorted by
+** name. By judicious selection of the <integer> portion of the names
+** of the RBU tables the user can therefore control the order in which they
+** are processed. This can be useful, for example, to ensure that "external
+** content" FTS4 tables are updated before their underlying content tables.
+**
+** If the target database table is a virtual table or a table that has no
+** PRIMARY KEY declaration, the data_% table must also contain a column
+** named "rbu_rowid". This column is mapped to the tables implicit primary
+** key column - "rowid". Virtual tables for which the "rowid" column does
+** not function like a primary key value cannot be updated using RBU. For
+** example, if the target db contains either of the following:
+**
+** CREATE VIRTUAL TABLE x1 USING fts3(a, b);
+** CREATE TABLE x1(a, b)
+**
+** then the RBU database should contain:
+**
+** CREATE TABLE data_x1(a, b, rbu_rowid, rbu_control);
+**
+** All non-hidden columns (i.e. all columns matched by "SELECT *") of the
+** target table must be present in the input table. For virtual tables,
+** hidden columns are optional - they are updated by RBU if present in
+** the input table, or not otherwise. For example, to write to an fts4
+** table with a hidden languageid column such as:
+**
+** CREATE VIRTUAL TABLE ft1 USING fts4(a, b, languageid='langid');
+**
+** Either of the following input table schemas may be used:
+**
+** CREATE TABLE data_ft1(a, b, langid, rbu_rowid, rbu_control);
+** CREATE TABLE data_ft1(a, b, rbu_rowid, rbu_control);
+**
+** For each row to INSERT into the target database as part of the RBU
+** update, the corresponding data_% table should contain a single record
+** with the "rbu_control" column set to contain integer value 0. The
+** other columns should be set to the values that make up the new record
+** to insert.
+**
+** If the target database table has an INTEGER PRIMARY KEY, it is not
+** possible to insert a NULL value into the IPK column. Attempting to
+** do so results in an SQLITE_MISMATCH error.
+**
+** For each row to DELETE from the target database as part of the RBU
+** update, the corresponding data_% table should contain a single record
+** with the "rbu_control" column set to contain integer value 1. The
+** real primary key values of the row to delete should be stored in the
+** corresponding columns of the data_% table. The values stored in the
+** other columns are not used.
+**
+** For each row to UPDATE from the target database as part of the RBU
+** update, the corresponding data_% table should contain a single record
+** with the "rbu_control" column set to contain a value of type text.
+** The real primary key values identifying the row to update should be
+** stored in the corresponding columns of the data_% table row, as should
+** the new values of all columns being update. The text value in the
+** "rbu_control" column must contain the same number of characters as
+** there are columns in the target database table, and must consist entirely
+** of 'x' and '.' characters (or in some special cases 'd' - see below). For
+** each column that is being updated, the corresponding character is set to
+** 'x'. For those that remain as they are, the corresponding character of the
+** rbu_control value should be set to '.'. For example, given the tables
+** above, the update statement:
+**
+** UPDATE t1 SET c = 'usa' WHERE a = 4;
+**
+** is represented by the data_t1 row created by:
+**
+** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..x');
+**
+** Instead of an 'x' character, characters of the rbu_control value specified
+** for UPDATEs may also be set to 'd'. In this case, instead of updating the
+** target table with the value stored in the corresponding data_% column, the
+** user-defined SQL function "rbu_delta()" is invoked and the result stored in
+** the target table column. rbu_delta() is invoked with two arguments - the
+** original value currently stored in the target table column and the
+** value specified in the data_xxx table.
+**
+** For example, this row:
+**
+** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..d');
+**
+** is similar to an UPDATE statement such as:
+**
+** UPDATE t1 SET c = rbu_delta(c, 'usa') WHERE a = 4;
+**
+** Finally, if an 'f' character appears in place of a 'd' or 's' in an
+** ota_control string, the contents of the data_xxx table column is assumed
+** to be a "fossil delta" - a patch to be applied to a blob value in the
+** format used by the fossil source-code management system. In this case
+** the existing value within the target database table must be of type BLOB.
+** It is replaced by the result of applying the specified fossil delta to
+** itself.
+**
+** If the target database table is a virtual table or a table with no PRIMARY
+** KEY, the rbu_control value should not include a character corresponding
+** to the rbu_rowid value. For example, this:
+**
+** INSERT INTO data_ft1(a, b, rbu_rowid, rbu_control)
+** VALUES(NULL, 'usa', 12, '.x');
+**
+** causes a result similar to:
+**
+** UPDATE ft1 SET b = 'usa' WHERE rowid = 12;
+**
+** The data_xxx tables themselves should have no PRIMARY KEY declarations.
+** However, RBU is more efficient if reading the rows in from each data_xxx
+** table in "rowid" order is roughly the same as reading them sorted by
+** the PRIMARY KEY of the corresponding target database table. In other
+** words, rows should be sorted using the destination table PRIMARY KEY
+** fields before they are inserted into the data_xxx tables.
+**
+** USAGE
+**
+** The API declared below allows an application to apply an RBU update
+** stored on disk to an existing target database. Essentially, the
+** application:
+**
+** 1) Opens an RBU handle using the sqlite3rbu_open() function.
+**
+** 2) Registers any required virtual table modules with the database
+** handle returned by sqlite3rbu_db(). Also, if required, register
+** the rbu_delta() implementation.
+**
+** 3) Calls the sqlite3rbu_step() function one or more times on
+** the new handle. Each call to sqlite3rbu_step() performs a single
+** b-tree operation, so thousands of calls may be required to apply
+** a complete update.
+**
+** 4) Calls sqlite3rbu_close() to close the RBU update handle. If
+** sqlite3rbu_step() has been called enough times to completely
+** apply the update to the target database, then the RBU database
+** is marked as fully applied. Otherwise, the state of the RBU
+** update application is saved in the RBU database for later
+** resumption.
+**
+** See comments below for more detail on APIs.
+**
+** If an update is only partially applied to the target database by the
+** time sqlite3rbu_close() is called, various state information is saved
+** within the RBU database. This allows subsequent processes to automatically
+** resume the RBU update from where it left off.
+**
+** To remove all RBU extension state information, returning an RBU database
+** to its original contents, it is sufficient to drop all tables that begin
+** with the prefix "rbu_"
+**
+** DATABASE LOCKING
+**
+** An RBU update may not be applied to a database in WAL mode. Attempting
+** to do so is an error (SQLITE_ERROR).
+**
+** While an RBU handle is open, a SHARED lock may be held on the target
+** database file. This means it is possible for other clients to read the
+** database, but not to write it.
+**
+** If an RBU update is started and then suspended before it is completed,
+** then an external client writes to the database, then attempting to resume
+** the suspended RBU update is also an error (SQLITE_BUSY).
+*/
+
+#ifndef _SQLITE3RBU_H
+#define _SQLITE3RBU_H
+
+/* #include "sqlite3.h" ** Required for error code definitions ** */
+
+#if 0
+extern "C" {
+#endif
+
+typedef struct sqlite3rbu sqlite3rbu;
+
+/*
+** Open an RBU handle.
+**
+** Argument zTarget is the path to the target database. Argument zRbu is
+** the path to the RBU database. Each call to this function must be matched
+** by a call to sqlite3rbu_close(). When opening the databases, RBU passes
+** the SQLITE_CONFIG_URI flag to sqlite3_open_v2(). So if either zTarget
+** or zRbu begin with "file:", it will be interpreted as an SQLite
+** database URI, not a regular file name.
+**
+** If the zState argument is passed a NULL value, the RBU extension stores
+** the current state of the update (how many rows have been updated, which
+** indexes are yet to be updated etc.) within the RBU database itself. This
+** can be convenient, as it means that the RBU application does not need to
+** organize removing a separate state file after the update is concluded.
+** Or, if zState is non-NULL, it must be a path to a database file in which
+** the RBU extension can store the state of the update.
+**
+** When resuming an RBU update, the zState argument must be passed the same
+** value as when the RBU update was started.
+**
+** Once the RBU update is finished, the RBU extension does not
+** automatically remove any zState database file, even if it created it.
+**
+** By default, RBU uses the default VFS to access the files on disk. To
+** use a VFS other than the default, an SQLite "file:" URI containing a
+** "vfs=..." option may be passed as the zTarget option.
+**
+** IMPORTANT NOTE FOR ZIPVFS USERS: The RBU extension works with all of
+** SQLite's built-in VFSs, including the multiplexor VFS. However it does
+** not work out of the box with zipvfs. Refer to the comment describing
+** the zipvfs_create_vfs() API below for details on using RBU with zipvfs.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_open(
+ const char *zTarget,
+ const char *zRbu,
+ const char *zState
+);
+
+/*
+** Open an RBU handle to perform an RBU vacuum on database file zTarget.
+** An RBU vacuum is similar to SQLite's built-in VACUUM command, except
+** that it can be suspended and resumed like an RBU update.
+**
+** The second argument to this function identifies a database in which
+** to store the state of the RBU vacuum operation if it is suspended. The
+** first time sqlite3rbu_vacuum() is called, to start an RBU vacuum
+** operation, the state database should either not exist or be empty
+** (contain no tables). If an RBU vacuum is suspended by calling
+** sqlite3rbu_close() on the RBU handle before sqlite3rbu_step() has
+** returned SQLITE_DONE, the vacuum state is stored in the state database.
+** The vacuum can be resumed by calling this function to open a new RBU
+** handle specifying the same target and state databases.
+**
+** If the second argument passed to this function is NULL, then the
+** name of the state database is "<database>-vacuum", where <database>
+** is the name of the target database file. In this case, on UNIX, if the
+** state database is not already present in the file-system, it is created
+** with the same permissions as the target db is made.
+**
+** With an RBU vacuum, it is an SQLITE_MISUSE error if the name of the
+** state database ends with "-vactmp". This name is reserved for internal
+** use.
+**
+** This function does not delete the state database after an RBU vacuum
+** is completed, even if it created it. However, if the call to
+** sqlite3rbu_close() returns any value other than SQLITE_OK, the contents
+** of the state tables within the state database are zeroed. This way,
+** the next call to sqlite3rbu_vacuum() opens a handle that starts a
+** new RBU vacuum operation.
+**
+** As with sqlite3rbu_open(), Zipvfs users should rever to the comment
+** describing the sqlite3rbu_create_vfs() API function below for
+** a description of the complications associated with using RBU with
+** zipvfs databases.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_vacuum(
+ const char *zTarget,
+ const char *zState
+);
+
+/*
+** Configure a limit for the amount of temp space that may be used by
+** the RBU handle passed as the first argument. The new limit is specified
+** in bytes by the second parameter. If it is positive, the limit is updated.
+** If the second parameter to this function is passed zero, then the limit
+** is removed entirely. If the second parameter is negative, the limit is
+** not modified (this is useful for querying the current limit).
+**
+** In all cases the returned value is the current limit in bytes (zero
+** indicates unlimited).
+**
+** If the temp space limit is exceeded during operation, an SQLITE_FULL
+** error is returned.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu*, sqlite3_int64);
+
+/*
+** Return the current amount of temp file space, in bytes, currently used by
+** the RBU handle passed as the only argument.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu*);
+
+/*
+** Internally, each RBU connection uses a separate SQLite database
+** connection to access the target and rbu update databases. This
+** API allows the application direct access to these database handles.
+**
+** The first argument passed to this function must be a valid, open, RBU
+** handle. The second argument should be passed zero to access the target
+** database handle, or non-zero to access the rbu update database handle.
+** Accessing the underlying database handles may be useful in the
+** following scenarios:
+**
+** * If any target tables are virtual tables, it may be necessary to
+** call sqlite3_create_module() on the target database handle to
+** register the required virtual table implementations.
+**
+** * If the data_xxx tables in the RBU source database are virtual
+** tables, the application may need to call sqlite3_create_module() on
+** the rbu update db handle to any required virtual table
+** implementations.
+**
+** * If the application uses the "rbu_delta()" feature described above,
+** it must use sqlite3_create_function() or similar to register the
+** rbu_delta() implementation with the target database handle.
+**
+** If an error has occurred, either while opening or stepping the RBU object,
+** this function may return NULL. The error code and message may be collected
+** when sqlite3rbu_close() is called.
+**
+** Database handles returned by this function remain valid until the next
+** call to any sqlite3rbu_xxx() function other than sqlite3rbu_db().
+*/
+SQLITE_API sqlite3 *sqlite3rbu_db(sqlite3rbu*, int bRbu);
+
+/*
+** Do some work towards applying the RBU update to the target db.
+**
+** Return SQLITE_DONE if the update has been completely applied, or
+** SQLITE_OK if no error occurs but there remains work to do to apply
+** the RBU update. If an error does occur, some other error code is
+** returned.
+**
+** Once a call to sqlite3rbu_step() has returned a value other than
+** SQLITE_OK, all subsequent calls on the same RBU handle are no-ops
+** that immediately return the same value.
+*/
+SQLITE_API int sqlite3rbu_step(sqlite3rbu *pRbu);
+
+/*
+** Force RBU to save its state to disk.
+**
+** If a power failure or application crash occurs during an update, following
+** system recovery RBU may resume the update from the point at which the state
+** was last saved. In other words, from the most recent successful call to
+** sqlite3rbu_close() or this function.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+SQLITE_API int sqlite3rbu_savestate(sqlite3rbu *pRbu);
+
+/*
+** Close an RBU handle.
+**
+** If the RBU update has been completely applied, mark the RBU database
+** as fully applied. Otherwise, assuming no error has occurred, save the
+** current state of the RBU update appliation to the RBU database.
+**
+** If an error has already occurred as part of an sqlite3rbu_step()
+** or sqlite3rbu_open() call, or if one occurs within this function, an
+** SQLite error code is returned. Additionally, if pzErrmsg is not NULL,
+** *pzErrmsg may be set to point to a buffer containing a utf-8 formatted
+** English language error message. It is the responsibility of the caller to
+** eventually free any such buffer using sqlite3_free().
+**
+** Otherwise, if no error occurs, this function returns SQLITE_OK if the
+** update has been partially applied, or SQLITE_DONE if it has been
+** completely applied.
+*/
+SQLITE_API int sqlite3rbu_close(sqlite3rbu *pRbu, char **pzErrmsg);
+
+/*
+** Return the total number of key-value operations (inserts, deletes or
+** updates) that have been performed on the target database since the
+** current RBU update was started.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu);
+
+/*
+** Obtain permyriadage (permyriadage is to 10000 as percentage is to 100)
+** progress indications for the two stages of an RBU update. This API may
+** be useful for driving GUI progress indicators and similar.
+**
+** An RBU update is divided into two stages:
+**
+** * Stage 1, in which changes are accumulated in an oal/wal file, and
+** * Stage 2, in which the contents of the wal file are copied into the
+** main database.
+**
+** The update is visible to non-RBU clients during stage 2. During stage 1
+** non-RBU reader clients may see the original database.
+**
+** If this API is called during stage 2 of the update, output variable
+** (*pnOne) is set to 10000 to indicate that stage 1 has finished and (*pnTwo)
+** to a value between 0 and 10000 to indicate the permyriadage progress of
+** stage 2. A value of 5000 indicates that stage 2 is half finished,
+** 9000 indicates that it is 90% finished, and so on.
+**
+** If this API is called during stage 1 of the update, output variable
+** (*pnTwo) is set to 0 to indicate that stage 2 has not yet started. The
+** value to which (*pnOne) is set depends on whether or not the RBU
+** database contains an "rbu_count" table. The rbu_count table, if it
+** exists, must contain the same columns as the following:
+**
+** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
+**
+** There must be one row in the table for each source (data_xxx) table within
+** the RBU database. The 'tbl' column should contain the name of the source
+** table. The 'cnt' column should contain the number of rows within the
+** source table.
+**
+** If the rbu_count table is present and populated correctly and this
+** API is called during stage 1, the *pnOne output variable is set to the
+** permyriadage progress of the same stage. If the rbu_count table does
+** not exist, then (*pnOne) is set to -1 during stage 1. If the rbu_count
+** table exists but is not correctly populated, the value of the *pnOne
+** output variable during stage 1 is undefined.
+*/
+SQLITE_API void sqlite3rbu_bp_progress(sqlite3rbu *pRbu, int *pnOne, int*pnTwo);
+
+/*
+** Obtain an indication as to the current stage of an RBU update or vacuum.
+** This function always returns one of the SQLITE_RBU_STATE_XXX constants
+** defined in this file. Return values should be interpreted as follows:
+**
+** SQLITE_RBU_STATE_OAL:
+** RBU is currently building a *-oal file. The next call to sqlite3rbu_step()
+** may either add further data to the *-oal file, or compute data that will
+** be added by a subsequent call.
+**
+** SQLITE_RBU_STATE_MOVE:
+** RBU has finished building the *-oal file. The next call to sqlite3rbu_step()
+** will move the *-oal file to the equivalent *-wal path. If the current
+** operation is an RBU update, then the updated version of the database
+** file will become visible to ordinary SQLite clients following the next
+** call to sqlite3rbu_step().
+**
+** SQLITE_RBU_STATE_CHECKPOINT:
+** RBU is currently performing an incremental checkpoint. The next call to
+** sqlite3rbu_step() will copy a page of data from the *-wal file into
+** the target database file.
+**
+** SQLITE_RBU_STATE_DONE:
+** The RBU operation has finished. Any subsequent calls to sqlite3rbu_step()
+** will immediately return SQLITE_DONE.
+**
+** SQLITE_RBU_STATE_ERROR:
+** An error has occurred. Any subsequent calls to sqlite3rbu_step() will
+** immediately return the SQLite error code associated with the error.
+*/
+#define SQLITE_RBU_STATE_OAL 1
+#define SQLITE_RBU_STATE_MOVE 2
+#define SQLITE_RBU_STATE_CHECKPOINT 3
+#define SQLITE_RBU_STATE_DONE 4
+#define SQLITE_RBU_STATE_ERROR 5
+
+SQLITE_API int sqlite3rbu_state(sqlite3rbu *pRbu);
+
+/*
+** Create an RBU VFS named zName that accesses the underlying file-system
+** via existing VFS zParent. Or, if the zParent parameter is passed NULL,
+** then the new RBU VFS uses the default system VFS to access the file-system.
+** The new object is registered as a non-default VFS with SQLite before
+** returning.
+**
+** Part of the RBU implementation uses a custom VFS object. Usually, this
+** object is created and deleted automatically by RBU.
+**
+** The exception is for applications that also use zipvfs. In this case,
+** the custom VFS must be explicitly created by the user before the RBU
+** handle is opened. The RBU VFS should be installed so that the zipvfs
+** VFS uses the RBU VFS, which in turn uses any other VFS layers in use
+** (for example multiplexor) to access the file-system. For example,
+** to assemble an RBU enabled VFS stack that uses both zipvfs and
+** multiplexor (error checking omitted):
+**
+** // Create a VFS named "multiplex" (not the default).
+** sqlite3_multiplex_initialize(0, 0);
+**
+** // Create an rbu VFS named "rbu" that uses multiplexor. If the
+** // second argument were replaced with NULL, the "rbu" VFS would
+** // access the file-system via the system default VFS, bypassing the
+** // multiplexor.
+** sqlite3rbu_create_vfs("rbu", "multiplex");
+**
+** // Create a zipvfs VFS named "zipvfs" that uses rbu.
+** zipvfs_create_vfs_v3("zipvfs", "rbu", 0, xCompressorAlgorithmDetector);
+**
+** // Make zipvfs the default VFS.
+** sqlite3_vfs_register(sqlite3_vfs_find("zipvfs"), 1);
+**
+** Because the default VFS created above includes a RBU functionality, it
+** may be used by RBU clients. Attempting to use RBU with a zipvfs VFS stack
+** that does not include the RBU layer results in an error.
+**
+** The overhead of adding the "rbu" VFS to the system is negligible for
+** non-RBU users. There is no harm in an application accessing the
+** file-system via "rbu" all the time, even if it only uses RBU functionality
+** occasionally.
+*/
+SQLITE_API int sqlite3rbu_create_vfs(const char *zName, const char *zParent);
+
+/*
+** Deregister and destroy an RBU vfs created by an earlier call to
+** sqlite3rbu_create_vfs().
+**
+** VFS objects are not reference counted. If a VFS object is destroyed
+** before all database handles that use it have been closed, the results
+** are undefined.
+*/
+SQLITE_API void sqlite3rbu_destroy_vfs(const char *zName);
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _SQLITE3RBU_H */
+
+/************** End of sqlite3rbu.h ******************************************/
+/************** Continuing where we left off in sqlite3rbu.c *****************/
+
+#if defined(_WIN32_WCE)
+/* #include "windows.h" */
+#endif
+
+/* Maximum number of prepared UPDATE statements held by this module */
+#define SQLITE_RBU_UPDATE_CACHESIZE 16
+
+/* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM
+** to enable checksum verification.
+*/
+#ifndef RBU_ENABLE_DELTA_CKSUM
+# define RBU_ENABLE_DELTA_CKSUM 0
+#endif
+
+/*
+** Swap two objects of type TYPE.
+*/
+#if !defined(SQLITE_AMALGAMATION)
+# define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+#endif
+
+/*
+** Name of the URI option that causes RBU to take an exclusive lock as
+** part of the incremental checkpoint operation.
+*/
+#define RBU_EXCLUSIVE_CHECKPOINT "rbu_exclusive_checkpoint"
+
+
+/*
+** The rbu_state table is used to save the state of a partially applied
+** update so that it can be resumed later. The table consists of integer
+** keys mapped to values as follows:
+**
+** RBU_STATE_STAGE:
+** May be set to integer values 1, 2, 4 or 5. As follows:
+** 1: the *-rbu file is currently under construction.
+** 2: the *-rbu file has been constructed, but not yet moved
+** to the *-wal path.
+** 4: the checkpoint is underway.
+** 5: the rbu update has been checkpointed.
+**
+** RBU_STATE_TBL:
+** Only valid if STAGE==1. The target database name of the table
+** currently being written.
+**
+** RBU_STATE_IDX:
+** Only valid if STAGE==1. The target database name of the index
+** currently being written, or NULL if the main table is currently being
+** updated.
+**
+** RBU_STATE_ROW:
+** Only valid if STAGE==1. Number of rows already processed for the current
+** table/index.
+**
+** RBU_STATE_PROGRESS:
+** Trbul number of sqlite3rbu_step() calls made so far as part of this
+** rbu update.
+**
+** RBU_STATE_CKPT:
+** Valid if STAGE==4. The 64-bit checksum associated with the wal-index
+** header created by recovering the *-wal file. This is used to detect
+** cases when another client appends frames to the *-wal file in the
+** middle of an incremental checkpoint (an incremental checkpoint cannot
+** be continued if this happens).
+**
+** RBU_STATE_COOKIE:
+** Valid if STAGE==1. The current change-counter cookie value in the
+** target db file.
+**
+** RBU_STATE_OALSZ:
+** Valid if STAGE==1. The size in bytes of the *-oal file.
+**
+** RBU_STATE_DATATBL:
+** Only valid if STAGE==1. The RBU database name of the table
+** currently being read.
+*/
+#define RBU_STATE_STAGE 1
+#define RBU_STATE_TBL 2
+#define RBU_STATE_IDX 3
+#define RBU_STATE_ROW 4
+#define RBU_STATE_PROGRESS 5
+#define RBU_STATE_CKPT 6
+#define RBU_STATE_COOKIE 7
+#define RBU_STATE_OALSZ 8
+#define RBU_STATE_PHASEONESTEP 9
+#define RBU_STATE_DATATBL 10
+
+#define RBU_STAGE_OAL 1
+#define RBU_STAGE_MOVE 2
+#define RBU_STAGE_CAPTURE 3
+#define RBU_STAGE_CKPT 4
+#define RBU_STAGE_DONE 5
+
+
+#define RBU_CREATE_STATE \
+ "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)"
+
+typedef struct RbuFrame RbuFrame;
+typedef struct RbuObjIter RbuObjIter;
+typedef struct RbuState RbuState;
+typedef struct RbuSpan RbuSpan;
+typedef struct rbu_vfs rbu_vfs;
+typedef struct rbu_file rbu_file;
+typedef struct RbuUpdateStmt RbuUpdateStmt;
+
+#if !defined(SQLITE_AMALGAMATION)
+typedef unsigned int u32;
+typedef unsigned short u16;
+typedef unsigned char u8;
+typedef sqlite3_int64 i64;
+#endif
+
+/*
+** These values must match the values defined in wal.c for the equivalent
+** locks. These are not magic numbers as they are part of the SQLite file
+** format.
+*/
+#define WAL_LOCK_WRITE 0
+#define WAL_LOCK_CKPT 1
+#define WAL_LOCK_READ0 3
+
+#define SQLITE_FCNTL_RBUCNT 5149216
+
+/*
+** A structure to store values read from the rbu_state table in memory.
+*/
+struct RbuState {
+ int eStage;
+ char *zTbl;
+ char *zDataTbl;
+ char *zIdx;
+ i64 iWalCksum;
+ int nRow;
+ i64 nProgress;
+ u32 iCookie;
+ i64 iOalSz;
+ i64 nPhaseOneStep;
+};
+
+struct RbuUpdateStmt {
+ char *zMask; /* Copy of update mask used with pUpdate */
+ sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */
+ RbuUpdateStmt *pNext;
+};
+
+struct RbuSpan {
+ const char *zSpan;
+ int nSpan;
+};
+
+/*
+** An iterator of this type is used to iterate through all objects in
+** the target database that require updating. For each such table, the
+** iterator visits, in order:
+**
+** * the table itself,
+** * each index of the table (zero or more points to visit), and
+** * a special "cleanup table" state.
+**
+** abIndexed:
+** If the table has no indexes on it, abIndexed is set to NULL. Otherwise,
+** it points to an array of flags nTblCol elements in size. The flag is
+** set for each column that is either a part of the PK or a part of an
+** index. Or clear otherwise.
+**
+** If there are one or more partial indexes on the table, all fields of
+** this array set set to 1. This is because in that case, the module has
+** no way to tell which fields will be required to add and remove entries
+** from the partial indexes.
+**
+*/
+struct RbuObjIter {
+ sqlite3_stmt *pTblIter; /* Iterate through tables */
+ sqlite3_stmt *pIdxIter; /* Index iterator */
+ int nTblCol; /* Size of azTblCol[] array */
+ char **azTblCol; /* Array of unquoted target column names */
+ char **azTblType; /* Array of target column types */
+ int *aiSrcOrder; /* src table col -> target table col */
+ u8 *abTblPk; /* Array of flags, set on target PK columns */
+ u8 *abNotNull; /* Array of flags, set on NOT NULL columns */
+ u8 *abIndexed; /* Array of flags, set on indexed & PK cols */
+ int eType; /* Table type - an RBU_PK_XXX value */
+
+ /* Output variables. zTbl==0 implies EOF. */
+ int bCleanup; /* True in "cleanup" state */
+ const char *zTbl; /* Name of target db table */
+ const char *zDataTbl; /* Name of rbu db table (or null) */
+ const char *zIdx; /* Name of target db index (or null) */
+ int iTnum; /* Root page of current object */
+ int iPkTnum; /* If eType==EXTERNAL, root of PK index */
+ int bUnique; /* Current index is unique */
+ int nIndex; /* Number of aux. indexes on table zTbl */
+
+ /* Statements created by rbuObjIterPrepareAll() */
+ int nCol; /* Number of columns in current object */
+ sqlite3_stmt *pSelect; /* Source data */
+ sqlite3_stmt *pInsert; /* Statement for INSERT operations */
+ sqlite3_stmt *pDelete; /* Statement for DELETE ops */
+ sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */
+ int nIdxCol;
+ RbuSpan *aIdxCol;
+ char *zIdxSql;
+
+ /* Last UPDATE used (for PK b-tree updates only), or NULL. */
+ RbuUpdateStmt *pRbuUpdate;
+};
+
+/*
+** Values for RbuObjIter.eType
+**
+** 0: Table does not exist (error)
+** 1: Table has an implicit rowid.
+** 2: Table has an explicit IPK column.
+** 3: Table has an external PK index.
+** 4: Table is WITHOUT ROWID.
+** 5: Table is a virtual table.
+*/
+#define RBU_PK_NOTABLE 0
+#define RBU_PK_NONE 1
+#define RBU_PK_IPK 2
+#define RBU_PK_EXTERNAL 3
+#define RBU_PK_WITHOUT_ROWID 4
+#define RBU_PK_VTAB 5
+
+
+/*
+** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs
+** one of the following operations.
+*/
+#define RBU_INSERT 1 /* Insert on a main table b-tree */
+#define RBU_DELETE 2 /* Delete a row from a main table b-tree */
+#define RBU_REPLACE 3 /* Delete and then insert a row */
+#define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */
+#define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */
+
+#define RBU_UPDATE 6 /* Update a row in a main table b-tree */
+
+/*
+** A single step of an incremental checkpoint - frame iWalFrame of the wal
+** file should be copied to page iDbPage of the database file.
+*/
+struct RbuFrame {
+ u32 iDbPage;
+ u32 iWalFrame;
+};
+
+/*
+** RBU handle.
+**
+** nPhaseOneStep:
+** If the RBU database contains an rbu_count table, this value is set to
+** a running estimate of the number of b-tree operations required to
+** finish populating the *-oal file. This allows the sqlite3_bp_progress()
+** API to calculate the permyriadage progress of populating the *-oal file
+** using the formula:
+**
+** permyriadage = (10000 * nProgress) / nPhaseOneStep
+**
+** nPhaseOneStep is initialized to the sum of:
+**
+** nRow * (nIndex + 1)
+**
+** for all source tables in the RBU database, where nRow is the number
+** of rows in the source table and nIndex the number of indexes on the
+** corresponding target database table.
+**
+** This estimate is accurate if the RBU update consists entirely of
+** INSERT operations. However, it is inaccurate if:
+**
+** * the RBU update contains any UPDATE operations. If the PK specified
+** for an UPDATE operation does not exist in the target table, then
+** no b-tree operations are required on index b-trees. Or if the
+** specified PK does exist, then (nIndex*2) such operations are
+** required (one delete and one insert on each index b-tree).
+**
+** * the RBU update contains any DELETE operations for which the specified
+** PK does not exist. In this case no operations are required on index
+** b-trees.
+**
+** * the RBU update contains REPLACE operations. These are similar to
+** UPDATE operations.
+**
+** nPhaseOneStep is updated to account for the conditions above during the
+** first pass of each source table. The updated nPhaseOneStep value is
+** stored in the rbu_state table if the RBU update is suspended.
+*/
+struct sqlite3rbu {
+ int eStage; /* Value of RBU_STATE_STAGE field */
+ sqlite3 *dbMain; /* target database handle */
+ sqlite3 *dbRbu; /* rbu database handle */
+ char *zTarget; /* Path to target db */
+ char *zRbu; /* Path to rbu db */
+ char *zState; /* Path to state db (or NULL if zRbu) */
+ char zStateDb[5]; /* Db name for state ("stat" or "main") */
+ int rc; /* Value returned by last rbu_step() call */
+ char *zErrmsg; /* Error message if rc!=SQLITE_OK */
+ int nStep; /* Rows processed for current object */
+ int nProgress; /* Rows processed for all objects */
+ RbuObjIter objiter; /* Iterator for skipping through tbl/idx */
+ const char *zVfsName; /* Name of automatically created rbu vfs */
+ rbu_file *pTargetFd; /* File handle open on target db */
+ int nPagePerSector; /* Pages per sector for pTargetFd */
+ i64 iOalSz;
+ i64 nPhaseOneStep;
+
+ /* The following state variables are used as part of the incremental
+ ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding
+ ** function rbuSetupCheckpoint() for details. */
+ u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */
+ u32 mLock;
+ int nFrame; /* Entries in aFrame[] array */
+ int nFrameAlloc; /* Allocated size of aFrame[] array */
+ RbuFrame *aFrame;
+ int pgsz;
+ u8 *aBuf;
+ i64 iWalCksum;
+ i64 szTemp; /* Current size of all temp files in use */
+ i64 szTempLimit; /* Total size limit for temp files */
+
+ /* Used in RBU vacuum mode only */
+ int nRbu; /* Number of RBU VFS in the stack */
+ rbu_file *pRbuFd; /* Fd for main db of dbRbu */
+};
+
+/*
+** An rbu VFS is implemented using an instance of this structure.
+**
+** Variable pRbu is only non-NULL for automatically created RBU VFS objects.
+** It is NULL for RBU VFS objects created explicitly using
+** sqlite3rbu_create_vfs(). It is used to track the total amount of temp
+** space used by the RBU handle.
+*/
+struct rbu_vfs {
+ sqlite3_vfs base; /* rbu VFS shim methods */
+ sqlite3_vfs *pRealVfs; /* Underlying VFS */
+ sqlite3_mutex *mutex; /* Mutex to protect pMain */
+ sqlite3rbu *pRbu; /* Owner RBU object */
+ rbu_file *pMain; /* List of main db files */
+ rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */
+};
+
+/*
+** Each file opened by an rbu VFS is represented by an instance of
+** the following structure.
+**
+** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable
+** "sz" is set to the current size of the database file.
+*/
+struct rbu_file {
+ sqlite3_file base; /* sqlite3_file methods */
+ sqlite3_file *pReal; /* Underlying file handle */
+ rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */
+ sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */
+ i64 sz; /* Size of file in bytes (temp only) */
+
+ int openFlags; /* Flags this file was opened with */
+ u32 iCookie; /* Cookie value for main db files */
+ u8 iWriteVer; /* "write-version" value for main db files */
+ u8 bNolock; /* True to fail EXCLUSIVE locks */
+
+ int nShm; /* Number of entries in apShm[] array */
+ char **apShm; /* Array of mmap'd *-shm regions */
+ char *zDel; /* Delete this when closing file */
+
+ const char *zWal; /* Wal filename for this main db file */
+ rbu_file *pWalFd; /* Wal file descriptor for this main db */
+ rbu_file *pMainNext; /* Next MAIN_DB file */
+ rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */
+};
+
+/*
+** True for an RBU vacuum handle, or false otherwise.
+*/
+#define rbuIsVacuum(p) ((p)->zTarget==0)
+
+
+/*************************************************************************
+** The following three functions, found below:
+**
+** rbuDeltaGetInt()
+** rbuDeltaChecksum()
+** rbuDeltaApply()
+**
+** are lifted from the fossil source code (http://fossil-scm.org). They
+** are used to implement the scalar SQL function rbu_fossil_delta().
+*/
+
+/*
+** Read bytes from *pz and convert them into a positive integer. When
+** finished, leave *pz pointing to the first character past the end of
+** the integer. The *pLen parameter holds the length of the string
+** in *pz and is decremented once for each character in the integer.
+*/
+static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){
+ static const signed char zValue[] = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
+ -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36,
+ -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1,
+ };
+ unsigned int v = 0;
+ int c;
+ unsigned char *z = (unsigned char*)*pz;
+ unsigned char *zStart = z;
+ while( (c = zValue[0x7f&*(z++)])>=0 ){
+ v = (v<<6) + c;
+ }
+ z--;
+ *pLen -= z - zStart;
+ *pz = (char*)z;
+ return v;
+}
+
+#if RBU_ENABLE_DELTA_CKSUM
+/*
+** Compute a 32-bit checksum on the N-byte buffer. Return the result.
+*/
+static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){
+ const unsigned char *z = (const unsigned char *)zIn;
+ unsigned sum0 = 0;
+ unsigned sum1 = 0;
+ unsigned sum2 = 0;
+ unsigned sum3 = 0;
+ while(N >= 16){
+ sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
+ sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
+ sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
+ sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
+ z += 16;
+ N -= 16;
+ }
+ while(N >= 4){
+ sum0 += z[0];
+ sum1 += z[1];
+ sum2 += z[2];
+ sum3 += z[3];
+ z += 4;
+ N -= 4;
+ }
+ sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
+ switch(N){
+ case 3: sum3 += (z[2] << 8);
+ case 2: sum3 += (z[1] << 16);
+ case 1: sum3 += (z[0] << 24);
+ default: ;
+ }
+ return sum3;
+}
+#endif
+
+/*
+** Apply a delta.
+**
+** The output buffer should be big enough to hold the whole output
+** file and a NUL terminator at the end. The delta_output_size()
+** routine will determine this size for you.
+**
+** The delta string should be null-terminated. But the delta string
+** may contain embedded NUL characters (if the input and output are
+** binary files) so we also have to pass in the length of the delta in
+** the lenDelta parameter.
+**
+** This function returns the size of the output file in bytes (excluding
+** the final NUL terminator character). Except, if the delta string is
+** malformed or intended for use with a source file other than zSrc,
+** then this routine returns -1.
+**
+** Refer to the delta_create() documentation above for a description
+** of the delta file format.
+*/
+static int rbuDeltaApply(
+ const char *zSrc, /* The source or pattern file */
+ int lenSrc, /* Length of the source file */
+ const char *zDelta, /* Delta to apply to the pattern */
+ int lenDelta, /* Length of the delta */
+ char *zOut /* Write the output into this preallocated buffer */
+){
+ unsigned int limit;
+ unsigned int total = 0;
+#if RBU_ENABLE_DELTA_CKSUM
+ char *zOrigOut = zOut;
+#endif
+
+ limit = rbuDeltaGetInt(&zDelta, &lenDelta);
+ if( *zDelta!='\n' ){
+ /* ERROR: size integer not terminated by "\n" */
+ return -1;
+ }
+ zDelta++; lenDelta--;
+ while( *zDelta && lenDelta>0 ){
+ unsigned int cnt, ofst;
+ cnt = rbuDeltaGetInt(&zDelta, &lenDelta);
+ switch( zDelta[0] ){
+ case '@': {
+ zDelta++; lenDelta--;
+ ofst = rbuDeltaGetInt(&zDelta, &lenDelta);
+ if( lenDelta>0 && zDelta[0]!=',' ){
+ /* ERROR: copy command not terminated by ',' */
+ return -1;
+ }
+ zDelta++; lenDelta--;
+ total += cnt;
+ if( total>limit ){
+ /* ERROR: copy exceeds output file size */
+ return -1;
+ }
+ if( (int)(ofst+cnt) > lenSrc ){
+ /* ERROR: copy extends past end of input */
+ return -1;
+ }
+ memcpy(zOut, &zSrc[ofst], cnt);
+ zOut += cnt;
+ break;
+ }
+ case ':': {
+ zDelta++; lenDelta--;
+ total += cnt;
+ if( total>limit ){
+ /* ERROR: insert command gives an output larger than predicted */
+ return -1;
+ }
+ if( (int)cnt>lenDelta ){
+ /* ERROR: insert count exceeds size of delta */
+ return -1;
+ }
+ memcpy(zOut, zDelta, cnt);
+ zOut += cnt;
+ zDelta += cnt;
+ lenDelta -= cnt;
+ break;
+ }
+ case ';': {
+ zDelta++; lenDelta--;
+ zOut[0] = 0;
+#if RBU_ENABLE_DELTA_CKSUM
+ if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){
+ /* ERROR: bad checksum */
+ return -1;
+ }
+#endif
+ if( total!=limit ){
+ /* ERROR: generated size does not match predicted size */
+ return -1;
+ }
+ return total;
+ }
+ default: {
+ /* ERROR: unknown delta operator */
+ return -1;
+ }
+ }
+ }
+ /* ERROR: unterminated delta */
+ return -1;
+}
+
+static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){
+ int size;
+ size = rbuDeltaGetInt(&zDelta, &lenDelta);
+ if( *zDelta!='\n' ){
+ /* ERROR: size integer not terminated by "\n" */
+ return -1;
+ }
+ return size;
+}
+
+/*
+** End of code taken from fossil.
+*************************************************************************/
+
+/*
+** Implementation of SQL scalar function rbu_fossil_delta().
+**
+** This function applies a fossil delta patch to a blob. Exactly two
+** arguments must be passed to this function. The first is the blob to
+** patch and the second the patch to apply. If no error occurs, this
+** function returns the patched blob.
+*/
+static void rbuFossilDeltaFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *aDelta;
+ int nDelta;
+ const char *aOrig;
+ int nOrig;
+
+ int nOut;
+ int nOut2;
+ char *aOut;
+
+ assert( argc==2 );
+
+ nOrig = sqlite3_value_bytes(argv[0]);
+ aOrig = (const char*)sqlite3_value_blob(argv[0]);
+ nDelta = sqlite3_value_bytes(argv[1]);
+ aDelta = (const char*)sqlite3_value_blob(argv[1]);
+
+ /* Figure out the size of the output */
+ nOut = rbuDeltaOutputSize(aDelta, nDelta);
+ if( nOut<0 ){
+ sqlite3_result_error(context, "corrupt fossil delta", -1);
+ return;
+ }
+
+ aOut = sqlite3_malloc(nOut+1);
+ if( aOut==0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
+ if( nOut2!=nOut ){
+ sqlite3_free(aOut);
+ sqlite3_result_error(context, "corrupt fossil delta", -1);
+ }else{
+ sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
+ }
+ }
+}
+
+
+/*
+** Prepare the SQL statement in buffer zSql against database handle db.
+** If successful, set *ppStmt to point to the new statement and return
+** SQLITE_OK.
+**
+** Otherwise, if an error does occur, set *ppStmt to NULL and return
+** an SQLite error code. Additionally, set output variable *pzErrmsg to
+** point to a buffer containing an error message. It is the responsibility
+** of the caller to (eventually) free this buffer using sqlite3_free().
+*/
+static int prepareAndCollectError(
+ sqlite3 *db,
+ sqlite3_stmt **ppStmt,
+ char **pzErrmsg,
+ const char *zSql
+){
+ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
+ if( rc!=SQLITE_OK ){
+ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ *ppStmt = 0;
+ }
+ return rc;
+}
+
+/*
+** Reset the SQL statement passed as the first argument. Return a copy
+** of the value returned by sqlite3_reset().
+**
+** If an error has occurred, then set *pzErrmsg to point to a buffer
+** containing an error message. It is the responsibility of the caller
+** to eventually free this buffer using sqlite3_free().
+*/
+static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){
+ int rc = sqlite3_reset(pStmt);
+ if( rc!=SQLITE_OK ){
+ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt)));
+ }
+ return rc;
+}
+
+/*
+** Unless it is NULL, argument zSql points to a buffer allocated using
+** sqlite3_malloc containing an SQL statement. This function prepares the SQL
+** statement against database db and frees the buffer. If statement
+** compilation is successful, *ppStmt is set to point to the new statement
+** handle and SQLITE_OK is returned.
+**
+** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code
+** returned. In this case, *pzErrmsg may also be set to point to an error
+** message. It is the responsibility of the caller to free this error message
+** buffer using sqlite3_free().
+**
+** If argument zSql is NULL, this function assumes that an OOM has occurred.
+** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL.
+*/
+static int prepareFreeAndCollectError(
+ sqlite3 *db,
+ sqlite3_stmt **ppStmt,
+ char **pzErrmsg,
+ char *zSql
+){
+ int rc;
+ assert( *pzErrmsg==0 );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ *ppStmt = 0;
+ }else{
+ rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+/*
+** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated
+** by an earlier call to rbuObjIterCacheTableInfo().
+*/
+static void rbuObjIterFreeCols(RbuObjIter *pIter){
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ sqlite3_free(pIter->azTblCol[i]);
+ sqlite3_free(pIter->azTblType[i]);
+ }
+ sqlite3_free(pIter->azTblCol);
+ pIter->azTblCol = 0;
+ pIter->azTblType = 0;
+ pIter->aiSrcOrder = 0;
+ pIter->abTblPk = 0;
+ pIter->abNotNull = 0;
+ pIter->nTblCol = 0;
+ pIter->eType = 0; /* Invalid value */
+}
+
+/*
+** Finalize all statements and free all allocations that are specific to
+** the current object (table/index pair).
+*/
+static void rbuObjIterClearStatements(RbuObjIter *pIter){
+ RbuUpdateStmt *pUp;
+
+ sqlite3_finalize(pIter->pSelect);
+ sqlite3_finalize(pIter->pInsert);
+ sqlite3_finalize(pIter->pDelete);
+ sqlite3_finalize(pIter->pTmpInsert);
+ pUp = pIter->pRbuUpdate;
+ while( pUp ){
+ RbuUpdateStmt *pTmp = pUp->pNext;
+ sqlite3_finalize(pUp->pUpdate);
+ sqlite3_free(pUp);
+ pUp = pTmp;
+ }
+ sqlite3_free(pIter->aIdxCol);
+ sqlite3_free(pIter->zIdxSql);
+
+ pIter->pSelect = 0;
+ pIter->pInsert = 0;
+ pIter->pDelete = 0;
+ pIter->pRbuUpdate = 0;
+ pIter->pTmpInsert = 0;
+ pIter->nCol = 0;
+ pIter->nIdxCol = 0;
+ pIter->aIdxCol = 0;
+ pIter->zIdxSql = 0;
+}
+
+/*
+** Clean up any resources allocated as part of the iterator object passed
+** as the only argument.
+*/
+static void rbuObjIterFinalize(RbuObjIter *pIter){
+ rbuObjIterClearStatements(pIter);
+ sqlite3_finalize(pIter->pTblIter);
+ sqlite3_finalize(pIter->pIdxIter);
+ rbuObjIterFreeCols(pIter);
+ memset(pIter, 0, sizeof(RbuObjIter));
+}
+
+/*
+** Advance the iterator to the next position.
+**
+** If no error occurs, SQLITE_OK is returned and the iterator is left
+** pointing to the next entry. Otherwise, an error code and message is
+** left in the RBU handle passed as the first argument. A copy of the
+** error code is returned.
+*/
+static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){
+ int rc = p->rc;
+ if( rc==SQLITE_OK ){
+
+ /* Free any SQLite statements used while processing the previous object */
+ rbuObjIterClearStatements(pIter);
+ if( pIter->zIdx==0 ){
+ rc = sqlite3_exec(p->dbMain,
+ "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;"
+ "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;"
+ "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;"
+ "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;"
+ , 0, 0, &p->zErrmsg
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pIter->bCleanup ){
+ rbuObjIterFreeCols(pIter);
+ pIter->bCleanup = 0;
+ rc = sqlite3_step(pIter->pTblIter);
+ if( rc!=SQLITE_ROW ){
+ rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg);
+ pIter->zTbl = 0;
+ }else{
+ pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0);
+ pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1);
+ rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM;
+ }
+ }else{
+ if( pIter->zIdx==0 ){
+ sqlite3_stmt *pIdx = pIter->pIdxIter;
+ rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(pIter->pIdxIter);
+ if( rc!=SQLITE_ROW ){
+ rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg);
+ pIter->bCleanup = 1;
+ pIter->zIdx = 0;
+ }else{
+ pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0);
+ pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1);
+ pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2);
+ rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM;
+ }
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ rbuObjIterFinalize(pIter);
+ p->rc = rc;
+ }
+ return rc;
+}
+
+
+/*
+** The implementation of the rbu_target_name() SQL function. This function
+** accepts one or two arguments. The first argument is the name of a table -
+** the name of a table in the RBU database. The second, if it is present, is 1
+** for a view or 0 for a table.
+**
+** For a non-vacuum RBU handle, if the table name matches the pattern:
+**
+** data[0-9]_<name>
+**
+** where <name> is any sequence of 1 or more characters, <name> is returned.
+** Otherwise, if the only argument does not match the above pattern, an SQL
+** NULL is returned.
+**
+** "data_t1" -> "t1"
+** "data0123_t2" -> "t2"
+** "dataAB_t3" -> NULL
+**
+** For an rbu vacuum handle, a copy of the first argument is returned if
+** the second argument is either missing or 0 (not a view).
+*/
+static void rbuTargetNameFunc(
+ sqlite3_context *pCtx,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3rbu *p = sqlite3_user_data(pCtx);
+ const char *zIn;
+ assert( argc==1 || argc==2 );
+
+ zIn = (const char*)sqlite3_value_text(argv[0]);
+ if( zIn ){
+ if( rbuIsVacuum(p) ){
+ assert( argc==2 || argc==1 );
+ if( argc==1 || 0==sqlite3_value_int(argv[1]) ){
+ sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC);
+ }
+ }else{
+ if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){
+ int i;
+ for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++);
+ if( zIn[i]=='_' && zIn[i+1] ){
+ sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC);
+ }
+ }
+ }
+ }
+}
+
+/*
+** Initialize the iterator structure passed as the second argument.
+**
+** If no error occurs, SQLITE_OK is returned and the iterator is left
+** pointing to the first entry. Otherwise, an error code and message is
+** left in the RBU handle passed as the first argument. A copy of the
+** error code is returned.
+*/
+static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){
+ int rc;
+ memset(pIter, 0, sizeof(RbuObjIter));
+
+ rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT rbu_target_name(name, type='view') AS target, name "
+ "FROM sqlite_schema "
+ "WHERE type IN ('table', 'view') AND target IS NOT NULL "
+ " %s "
+ "ORDER BY name"
+ , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : ""));
+
+ if( rc==SQLITE_OK ){
+ rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg,
+ "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' "
+ " FROM main.sqlite_schema "
+ " WHERE type='index' AND tbl_name = ?"
+ );
+ }
+
+ pIter->bCleanup = 1;
+ p->rc = rc;
+ return rbuObjIterNext(p, pIter);
+}
+
+/*
+** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs,
+** an error code is stored in the RBU handle passed as the first argument.
+**
+** If an error has already occurred (p->rc is already set to something other
+** than SQLITE_OK), then this function returns NULL without modifying the
+** stored error code. In this case it still calls sqlite3_free() on any
+** printf() parameters associated with %z conversions.
+*/
+static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){
+ char *zSql = 0;
+ va_list ap;
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( p->rc==SQLITE_OK ){
+ if( zSql==0 ) p->rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_free(zSql);
+ zSql = 0;
+ }
+ va_end(ap);
+ return zSql;
+}
+
+/*
+** Argument zFmt is a sqlite3_mprintf() style format string. The trailing
+** arguments are the usual subsitution values. This function performs
+** the printf() style substitutions and executes the result as an SQL
+** statement on the RBU handles database.
+**
+** If an error occurs, an error code and error message is stored in the
+** RBU handle. If an error has already occurred when this function is
+** called, it is a no-op.
+*/
+static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){
+ va_list ap;
+ char *zSql;
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( p->rc==SQLITE_OK ){
+ if( zSql==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg);
+ }
+ }
+ sqlite3_free(zSql);
+ va_end(ap);
+ return p->rc;
+}
+
+/*
+** Attempt to allocate and return a pointer to a zeroed block of nByte
+** bytes.
+**
+** If an error (i.e. an OOM condition) occurs, return NULL and leave an
+** error code in the rbu handle passed as the first argument. Or, if an
+** error has already occurred when this function is called, return NULL
+** immediately without attempting the allocation or modifying the stored
+** error code.
+*/
+static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){
+ void *pRet = 0;
+ if( p->rc==SQLITE_OK ){
+ assert( nByte>0 );
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, nByte);
+ }
+ }
+ return pRet;
+}
+
+
+/*
+** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
+** there is room for at least nCol elements. If an OOM occurs, store an
+** error code in the RBU handle passed as the first argument.
+*/
+static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
+ sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
+ char **azNew;
+
+ azNew = (char**)rbuMalloc(p, nByte);
+ if( azNew ){
+ pIter->azTblCol = azNew;
+ pIter->azTblType = &azNew[nCol];
+ pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
+ pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol];
+ pIter->abNotNull = (u8*)&pIter->abTblPk[nCol];
+ pIter->abIndexed = (u8*)&pIter->abNotNull[nCol];
+ }
+}
+
+/*
+** The first argument must be a nul-terminated string. This function
+** returns a copy of the string in memory obtained from sqlite3_malloc().
+** It is the responsibility of the caller to eventually free this memory
+** using sqlite3_free().
+**
+** If an OOM condition is encountered when attempting to allocate memory,
+** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise,
+** if the allocation succeeds, (*pRc) is left unchanged.
+*/
+static char *rbuStrndup(const char *zStr, int *pRc){
+ char *zRet = 0;
+
+ if( *pRc==SQLITE_OK ){
+ if( zStr ){
+ size_t nCopy = strlen(zStr) + 1;
+ zRet = (char*)sqlite3_malloc64(nCopy);
+ if( zRet ){
+ memcpy(zRet, zStr, nCopy);
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ }
+
+ return zRet;
+}
+
+/*
+** Finalize the statement passed as the second argument.
+**
+** If the sqlite3_finalize() call indicates that an error occurs, and the
+** rbu handle error code is not already set, set the error code and error
+** message accordingly.
+*/
+static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){
+ sqlite3 *db = sqlite3_db_handle(pStmt);
+ int rc = sqlite3_finalize(pStmt);
+ if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
+ p->rc = rc;
+ p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+}
+
+/* Determine the type of a table.
+**
+** peType is of type (int*), a pointer to an output parameter of type
+** (int). This call sets the output parameter as follows, depending
+** on the type of the table specified by parameters dbName and zTbl.
+**
+** RBU_PK_NOTABLE: No such table.
+** RBU_PK_NONE: Table has an implicit rowid.
+** RBU_PK_IPK: Table has an explicit IPK column.
+** RBU_PK_EXTERNAL: Table has an external PK index.
+** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID.
+** RBU_PK_VTAB: Table is a virtual table.
+**
+** Argument *piPk is also of type (int*), and also points to an output
+** parameter. Unless the table has an external primary key index
+** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or,
+** if the table does have an external primary key index, then *piPk
+** is set to the root page number of the primary key index before
+** returning.
+**
+** ALGORITHM:
+**
+** if( no entry exists in sqlite_schema ){
+** return RBU_PK_NOTABLE
+** }else if( sql for the entry starts with "CREATE VIRTUAL" ){
+** return RBU_PK_VTAB
+** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){
+** if( the index that is the pk exists in sqlite_schema ){
+** *piPK = rootpage of that index.
+** return RBU_PK_EXTERNAL
+** }else{
+** return RBU_PK_WITHOUT_ROWID
+** }
+** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){
+** return RBU_PK_IPK
+** }else{
+** return RBU_PK_NONE
+** }
+*/
+static void rbuTableType(
+ sqlite3rbu *p,
+ const char *zTab,
+ int *peType,
+ int *piTnum,
+ int *piPk
+){
+ /*
+ ** 0) SELECT count(*) FROM sqlite_schema where name=%Q AND IsVirtual(%Q)
+ ** 1) PRAGMA index_list = ?
+ ** 2) SELECT count(*) FROM sqlite_schema where name=%Q
+ ** 3) PRAGMA table_info = ?
+ */
+ sqlite3_stmt *aStmt[4] = {0, 0, 0, 0};
+
+ *peType = RBU_PK_NOTABLE;
+ *piPk = 0;
+
+ assert( p->rc==SQLITE_OK );
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT "
+ " (sql COLLATE nocase BETWEEN 'CREATE VIRTUAL' AND 'CREATE VIRTUAM'),"
+ " rootpage"
+ " FROM sqlite_schema"
+ " WHERE name=%Q", zTab
+ ));
+ if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){
+ /* Either an error, or no such table. */
+ goto rbuTableType_end;
+ }
+ if( sqlite3_column_int(aStmt[0], 0) ){
+ *peType = RBU_PK_VTAB; /* virtual table */
+ goto rbuTableType_end;
+ }
+ *piTnum = sqlite3_column_int(aStmt[0], 1);
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA index_list=%Q",zTab)
+ );
+ if( p->rc ) goto rbuTableType_end;
+ while( sqlite3_step(aStmt[1])==SQLITE_ROW ){
+ const u8 *zOrig = sqlite3_column_text(aStmt[1], 3);
+ const u8 *zIdx = sqlite3_column_text(aStmt[1], 1);
+ if( zOrig && zIdx && zOrig[0]=='p' ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT rootpage FROM sqlite_schema WHERE name = %Q", zIdx
+ ));
+ if( p->rc==SQLITE_OK ){
+ if( sqlite3_step(aStmt[2])==SQLITE_ROW ){
+ *piPk = sqlite3_column_int(aStmt[2], 0);
+ *peType = RBU_PK_EXTERNAL;
+ }else{
+ *peType = RBU_PK_WITHOUT_ROWID;
+ }
+ }
+ goto rbuTableType_end;
+ }
+ }
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA table_info=%Q",zTab)
+ );
+ if( p->rc==SQLITE_OK ){
+ while( sqlite3_step(aStmt[3])==SQLITE_ROW ){
+ if( sqlite3_column_int(aStmt[3],5)>0 ){
+ *peType = RBU_PK_IPK; /* explicit IPK column */
+ goto rbuTableType_end;
+ }
+ }
+ *peType = RBU_PK_NONE;
+ }
+
+rbuTableType_end: {
+ unsigned int i;
+ for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){
+ rbuFinalize(p, aStmt[i]);
+ }
+ }
+}
+
+/*
+** This is a helper function for rbuObjIterCacheTableInfo(). It populates
+** the pIter->abIndexed[] array.
+*/
+static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){
+ sqlite3_stmt *pList = 0;
+ int bIndex = 0;
+
+ if( p->rc==SQLITE_OK ){
+ memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol);
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
+ );
+ }
+
+ pIter->nIndex = 0;
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){
+ const char *zIdx = (const char*)sqlite3_column_text(pList, 1);
+ int bPartial = sqlite3_column_int(pList, 4);
+ sqlite3_stmt *pXInfo = 0;
+ if( zIdx==0 ) break;
+ if( bPartial ){
+ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol);
+ }
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
+ );
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ if( iCid>=0 ) pIter->abIndexed[iCid] = 1;
+ if( iCid==-2 ){
+ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol);
+ }
+ }
+ rbuFinalize(p, pXInfo);
+ bIndex = 1;
+ pIter->nIndex++;
+ }
+
+ if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
+ /* "PRAGMA index_list" includes the main PK b-tree */
+ pIter->nIndex--;
+ }
+
+ rbuFinalize(p, pList);
+ if( bIndex==0 ) pIter->abIndexed = 0;
+}
+
+
+/*
+** If they are not already populated, populate the pIter->azTblCol[],
+** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to
+** the table (not index) that the iterator currently points to.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. If
+** an error does occur, an error code and error message are also left in
+** the RBU handle.
+*/
+static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){
+ if( pIter->azTblCol==0 ){
+ sqlite3_stmt *pStmt = 0;
+ int nCol = 0;
+ int i; /* for() loop iterator variable */
+ int bRbuRowid = 0; /* If input table has column "rbu_rowid" */
+ int iOrder = 0;
+ int iTnum = 0;
+
+ /* Figure out the type of table this step will deal with. */
+ assert( pIter->eType==0 );
+ rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum);
+ if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl);
+ }
+ if( p->rc ) return p->rc;
+ if( pIter->zIdx==0 ) pIter->iTnum = iTnum;
+
+ assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK
+ || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID
+ || pIter->eType==RBU_PK_VTAB
+ );
+
+ /* Populate the azTblCol[] and nTblCol variables based on the columns
+ ** of the input table. Ignore any input table columns that begin with
+ ** "rbu_". */
+ p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl)
+ );
+ if( p->rc==SQLITE_OK ){
+ nCol = sqlite3_column_count(pStmt);
+ rbuAllocateIterArrays(p, pIter, nCol);
+ }
+ for(i=0; p->rc==SQLITE_OK && i<nCol; i++){
+ const char *zName = (const char*)sqlite3_column_name(pStmt, i);
+ if( sqlite3_strnicmp("rbu_", zName, 4) ){
+ char *zCopy = rbuStrndup(zName, &p->rc);
+ pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol;
+ pIter->azTblCol[pIter->nTblCol++] = zCopy;
+ }
+ else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){
+ bRbuRowid = 1;
+ }
+ }
+ sqlite3_finalize(pStmt);
+ pStmt = 0;
+
+ if( p->rc==SQLITE_OK
+ && rbuIsVacuum(p)==0
+ && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
+ ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf(
+ "table %q %s rbu_rowid column", pIter->zDataTbl,
+ (bRbuRowid ? "may not have" : "requires")
+ );
+ }
+
+ /* Check that all non-HIDDEN columns in the destination table are also
+ ** present in the input table. Populate the abTblPk[], azTblType[] and
+ ** aiTblOrder[] arrays at the same time. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl)
+ );
+ }
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ const char *zName = (const char*)sqlite3_column_text(pStmt, 1);
+ if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */
+ for(i=iOrder; i<pIter->nTblCol; i++){
+ if( 0==strcmp(zName, pIter->azTblCol[i]) ) break;
+ }
+ if( i==pIter->nTblCol ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("column missing from %q: %s",
+ pIter->zDataTbl, zName
+ );
+ }else{
+ int iPk = sqlite3_column_int(pStmt, 5);
+ int bNotNull = sqlite3_column_int(pStmt, 3);
+ const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
+
+ if( i!=iOrder ){
+ SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]);
+ SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]);
+ }
+
+ pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc);
+ assert( iPk>=0 );
+ pIter->abTblPk[iOrder] = (u8)iPk;
+ pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0);
+ iOrder++;
+ }
+ }
+
+ rbuFinalize(p, pStmt);
+ rbuObjIterCacheIndexedCols(p, pIter);
+ assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 );
+ assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 );
+ }
+
+ return p->rc;
+}
+
+/*
+** This function constructs and returns a pointer to a nul-terminated
+** string containing some SQL clause or list based on one or more of the
+** column names currently stored in the pIter->azTblCol[] array.
+*/
+static char *rbuObjIterGetCollist(
+ sqlite3rbu *p, /* RBU object */
+ RbuObjIter *pIter /* Object iterator for column names */
+){
+ char *zList = 0;
+ const char *zSep = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ const char *z = pIter->azTblCol[i];
+ zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z);
+ zSep = ", ";
+ }
+ return zList;
+}
+
+/*
+** Return a comma separated list of the quoted PRIMARY KEY column names,
+** in order, for the current table. Before each column name, add the text
+** zPre. After each column name, add the zPost text. Use zSeparator as
+** the separator text (usually ", ").
+*/
+static char *rbuObjIterGetPkList(
+ sqlite3rbu *p, /* RBU object */
+ RbuObjIter *pIter, /* Object iterator for column names */
+ const char *zPre, /* Before each quoted column name */
+ const char *zSeparator, /* Separator to use between columns */
+ const char *zPost /* After each quoted column name */
+){
+ int iPk = 1;
+ char *zRet = 0;
+ const char *zSep = "";
+ while( 1 ){
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( (int)pIter->abTblPk[i]==iPk ){
+ const char *zCol = pIter->azTblCol[i];
+ zRet = rbuMPrintf(p, "%z%s%s\"%w\"%s", zRet, zSep, zPre, zCol, zPost);
+ zSep = zSeparator;
+ break;
+ }
+ }
+ if( i==pIter->nTblCol ) break;
+ iPk++;
+ }
+ return zRet;
+}
+
+/*
+** This function is called as part of restarting an RBU vacuum within
+** stage 1 of the process (while the *-oal file is being built) while
+** updating a table (not an index). The table may be a rowid table or
+** a WITHOUT ROWID table. It queries the target database to find the
+** largest key that has already been written to the target table and
+** constructs a WHERE clause that can be used to extract the remaining
+** rows from the source table. For a rowid table, the WHERE clause
+** is of the form:
+**
+** "WHERE _rowid_ > ?"
+**
+** and for WITHOUT ROWID tables:
+**
+** "WHERE (key1, key2) > (?, ?)"
+**
+** Instead of "?" placeholders, the actual WHERE clauses created by
+** this function contain literal SQL values.
+*/
+static char *rbuVacuumTableStart(
+ sqlite3rbu *p, /* RBU handle */
+ RbuObjIter *pIter, /* RBU iterator object */
+ int bRowid, /* True for a rowid table */
+ const char *zWrite /* Target table name prefix */
+){
+ sqlite3_stmt *pMax = 0;
+ char *zRet = 0;
+ if( bRowid ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT max(_rowid_) FROM \"%s%w\"", zWrite, pIter->zTbl
+ )
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
+ sqlite3_int64 iMax = sqlite3_column_int64(pMax, 0);
+ zRet = rbuMPrintf(p, " WHERE _rowid_ > %lld ", iMax);
+ }
+ rbuFinalize(p, pMax);
+ }else{
+ char *zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", " DESC");
+ char *zSelect = rbuObjIterGetPkList(p, pIter, "quote(", "||','||", ")");
+ char *zList = rbuObjIterGetPkList(p, pIter, "", ", ", "");
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT %s FROM \"%s%w\" ORDER BY %s LIMIT 1",
+ zSelect, zWrite, pIter->zTbl, zOrder
+ )
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
+ const char *zVal = (const char*)sqlite3_column_text(pMax, 0);
+ zRet = rbuMPrintf(p, " WHERE (%s) > (%s) ", zList, zVal);
+ }
+ rbuFinalize(p, pMax);
+ }
+
+ sqlite3_free(zOrder);
+ sqlite3_free(zSelect);
+ sqlite3_free(zList);
+ }
+ return zRet;
+}
+
+/*
+** This function is called as part of restating an RBU vacuum when the
+** current operation is writing content to an index. If possible, it
+** queries the target index b-tree for the largest key already written to
+** it, then composes and returns an expression that can be used in a WHERE
+** clause to select the remaining required rows from the source table.
+** It is only possible to return such an expression if:
+**
+** * The index contains no DESC columns, and
+** * The last key written to the index before the operation was
+** suspended does not contain any NULL values.
+**
+** The expression is of the form:
+**
+** (index-field1, index-field2, ...) > (?, ?, ...)
+**
+** except that the "?" placeholders are replaced with literal values.
+**
+** If the expression cannot be created, NULL is returned. In this case,
+** the caller has to use an OFFSET clause to extract only the required
+** rows from the sourct table, just as it does for an RBU update operation.
+*/
+static char *rbuVacuumIndexStart(
+ sqlite3rbu *p, /* RBU handle */
+ RbuObjIter *pIter /* RBU iterator object */
+){
+ char *zOrder = 0;
+ char *zLhs = 0;
+ char *zSelect = 0;
+ char *zVector = 0;
+ char *zRet = 0;
+ int bFailed = 0;
+ const char *zSep = "";
+ int iCol = 0;
+ sqlite3_stmt *pXInfo = 0;
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
+ );
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
+ const char *zCol;
+ if( sqlite3_column_int(pXInfo, 3) ){
+ bFailed = 1;
+ break;
+ }
+
+ if( iCid<0 ){
+ if( pIter->eType==RBU_PK_IPK ){
+ int i;
+ for(i=0; pIter->abTblPk[i]==0; i++);
+ assert( i<pIter->nTblCol );
+ zCol = pIter->azTblCol[i];
+ }else{
+ zCol = "_rowid_";
+ }
+ }else{
+ zCol = pIter->azTblCol[iCid];
+ }
+
+ zLhs = rbuMPrintf(p, "%z%s \"%w\" COLLATE %Q",
+ zLhs, zSep, zCol, zCollate
+ );
+ zOrder = rbuMPrintf(p, "%z%s \"rbu_imp_%d%w\" COLLATE %Q DESC",
+ zOrder, zSep, iCol, zCol, zCollate
+ );
+ zSelect = rbuMPrintf(p, "%z%s quote(\"rbu_imp_%d%w\")",
+ zSelect, zSep, iCol, zCol
+ );
+ zSep = ", ";
+ iCol++;
+ }
+ rbuFinalize(p, pXInfo);
+ if( bFailed ) goto index_start_out;
+
+ if( p->rc==SQLITE_OK ){
+ sqlite3_stmt *pSel = 0;
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pSel, &p->zErrmsg,
+ sqlite3_mprintf("SELECT %s FROM \"rbu_imp_%w\" ORDER BY %s LIMIT 1",
+ zSelect, pIter->zTbl, zOrder
+ )
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSel) ){
+ zSep = "";
+ for(iCol=0; iCol<pIter->nCol; iCol++){
+ const char *zQuoted = (const char*)sqlite3_column_text(pSel, iCol);
+ if( zQuoted==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else if( zQuoted[0]=='N' ){
+ bFailed = 1;
+ break;
+ }
+ zVector = rbuMPrintf(p, "%z%s%s", zVector, zSep, zQuoted);
+ zSep = ", ";
+ }
+
+ if( !bFailed ){
+ zRet = rbuMPrintf(p, "(%s) > (%s)", zLhs, zVector);
+ }
+ }
+ rbuFinalize(p, pSel);
+ }
+
+ index_start_out:
+ sqlite3_free(zOrder);
+ sqlite3_free(zSelect);
+ sqlite3_free(zVector);
+ sqlite3_free(zLhs);
+ return zRet;
+}
+
+/*
+** This function is used to create a SELECT list (the list of SQL
+** expressions that follows a SELECT keyword) for a SELECT statement
+** used to read from an data_xxx or rbu_tmp_xxx table while updating the
+** index object currently indicated by the iterator object passed as the
+** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used
+** to obtain the required information.
+**
+** If the index is of the following form:
+**
+** CREATE INDEX i1 ON t1(c, b COLLATE nocase);
+**
+** and "t1" is a table with an explicit INTEGER PRIMARY KEY column
+** "ipk", the returned string is:
+**
+** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'"
+**
+** As well as the returned string, three other malloc'd strings are
+** returned via output parameters. As follows:
+**
+** pzImposterCols: ...
+** pzImposterPk: ...
+** pzWhere: ...
+*/
+static char *rbuObjIterGetIndexCols(
+ sqlite3rbu *p, /* RBU object */
+ RbuObjIter *pIter, /* Object iterator for column names */
+ char **pzImposterCols, /* OUT: Columns for imposter table */
+ char **pzImposterPk, /* OUT: Imposter PK clause */
+ char **pzWhere, /* OUT: WHERE clause */
+ int *pnBind /* OUT: Trbul number of columns */
+){
+ int rc = p->rc; /* Error code */
+ int rc2; /* sqlite3_finalize() return code */
+ char *zRet = 0; /* String to return */
+ char *zImpCols = 0; /* String to return via *pzImposterCols */
+ char *zImpPK = 0; /* String to return via *pzImposterPK */
+ char *zWhere = 0; /* String to return via *pzWhere */
+ int nBind = 0; /* Value to return via *pnBind */
+ const char *zCom = ""; /* Set to ", " later on */
+ const char *zAnd = ""; /* Set to " AND " later on */
+ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */
+
+ if( rc==SQLITE_OK ){
+ assert( p->zErrmsg==0 );
+ rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
+ );
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ int bDesc = sqlite3_column_int(pXInfo, 3);
+ const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
+ const char *zCol = 0;
+ const char *zType;
+
+ if( iCid==-2 ){
+ int iSeq = sqlite3_column_int(pXInfo, 0);
+ zRet = sqlite3_mprintf("%z%s(%.*s) COLLATE %Q", zRet, zCom,
+ pIter->aIdxCol[iSeq].nSpan, pIter->aIdxCol[iSeq].zSpan, zCollate
+ );
+ zType = "";
+ }else {
+ if( iCid<0 ){
+ /* An integer primary key. If the table has an explicit IPK, use
+ ** its name. Otherwise, use "rbu_rowid". */
+ if( pIter->eType==RBU_PK_IPK ){
+ int i;
+ for(i=0; pIter->abTblPk[i]==0; i++);
+ assert( i<pIter->nTblCol );
+ zCol = pIter->azTblCol[i];
+ }else if( rbuIsVacuum(p) ){
+ zCol = "_rowid_";
+ }else{
+ zCol = "rbu_rowid";
+ }
+ zType = "INTEGER";
+ }else{
+ zCol = pIter->azTblCol[iCid];
+ zType = pIter->azTblType[iCid];
+ }
+ zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom,zCol,zCollate);
+ }
+
+ if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){
+ const char *zOrder = (bDesc ? " DESC" : "");
+ zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s",
+ zImpPK, zCom, nBind, zCol, zOrder
+ );
+ }
+ zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q",
+ zImpCols, zCom, nBind, zCol, zType, zCollate
+ );
+ zWhere = sqlite3_mprintf(
+ "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol
+ );
+ if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM;
+ zCom = ", ";
+ zAnd = " AND ";
+ nBind++;
+ }
+
+ rc2 = sqlite3_finalize(pXInfo);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zRet);
+ sqlite3_free(zImpCols);
+ sqlite3_free(zImpPK);
+ sqlite3_free(zWhere);
+ zRet = 0;
+ zImpCols = 0;
+ zImpPK = 0;
+ zWhere = 0;
+ p->rc = rc;
+ }
+
+ *pzImposterCols = zImpCols;
+ *pzImposterPk = zImpPK;
+ *pzWhere = zWhere;
+ *pnBind = nBind;
+ return zRet;
+}
+
+/*
+** Assuming the current table columns are "a", "b" and "c", and the zObj
+** paramter is passed "old", return a string of the form:
+**
+** "old.a, old.b, old.b"
+**
+** With the column names escaped.
+**
+** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append
+** the text ", old._rowid_" to the returned value.
+*/
+static char *rbuObjIterGetOldlist(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ const char *zObj
+){
+ char *zList = 0;
+ if( p->rc==SQLITE_OK && pIter->abIndexed ){
+ const char *zS = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( pIter->abIndexed[i] ){
+ const char *zCol = pIter->azTblCol[i];
+ zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol);
+ }else{
+ zList = sqlite3_mprintf("%z%sNULL", zList, zS);
+ }
+ zS = ", ";
+ if( zList==0 ){
+ p->rc = SQLITE_NOMEM;
+ break;
+ }
+ }
+
+ /* For a table with implicit rowids, append "old._rowid_" to the list. */
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj);
+ }
+ }
+ return zList;
+}
+
+/*
+** Return an expression that can be used in a WHERE clause to match the
+** primary key of the current table. For example, if the table is:
+**
+** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c));
+**
+** Return the string:
+**
+** "b = ?1 AND c = ?2"
+*/
+static char *rbuObjIterGetWhere(
+ sqlite3rbu *p,
+ RbuObjIter *pIter
+){
+ char *zList = 0;
+ if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){
+ zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1);
+ }else if( pIter->eType==RBU_PK_EXTERNAL ){
+ const char *zSep = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( pIter->abTblPk[i] ){
+ zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1);
+ zSep = " AND ";
+ }
+ }
+ zList = rbuMPrintf(p,
+ "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList
+ );
+
+ }else{
+ const char *zSep = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( pIter->abTblPk[i] ){
+ const char *zCol = pIter->azTblCol[i];
+ zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1);
+ zSep = " AND ";
+ }
+ }
+ }
+ return zList;
+}
+
+/*
+** The SELECT statement iterating through the keys for the current object
+** (p->objiter.pSelect) currently points to a valid row. However, there
+** is something wrong with the rbu_control value in the rbu_control value
+** stored in the (p->nCol+1)'th column. Set the error code and error message
+** of the RBU handle to something reflecting this.
+*/
+static void rbuBadControlError(sqlite3rbu *p){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("invalid rbu_control value");
+}
+
+
+/*
+** Return a nul-terminated string containing the comma separated list of
+** assignments that should be included following the "SET" keyword of
+** an UPDATE statement used to update the table object that the iterator
+** passed as the second argument currently points to if the rbu_control
+** column of the data_xxx table entry is set to zMask.
+**
+** The memory for the returned string is obtained from sqlite3_malloc().
+** It is the responsibility of the caller to eventually free it using
+** sqlite3_free().
+**
+** If an OOM error is encountered when allocating space for the new
+** string, an error code is left in the rbu handle passed as the first
+** argument and NULL is returned. Or, if an error has already occurred
+** when this function is called, NULL is returned immediately, without
+** attempting the allocation or modifying the stored error code.
+*/
+static char *rbuObjIterGetSetlist(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ const char *zMask
+){
+ char *zList = 0;
+ if( p->rc==SQLITE_OK ){
+ int i;
+
+ if( (int)strlen(zMask)!=pIter->nTblCol ){
+ rbuBadControlError(p);
+ }else{
+ const char *zSep = "";
+ for(i=0; i<pIter->nTblCol; i++){
+ char c = zMask[pIter->aiSrcOrder[i]];
+ if( c=='x' ){
+ zList = rbuMPrintf(p, "%z%s\"%w\"=?%d",
+ zList, zSep, pIter->azTblCol[i], i+1
+ );
+ zSep = ", ";
+ }
+ else if( c=='d' ){
+ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)",
+ zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
+ );
+ zSep = ", ";
+ }
+ else if( c=='f' ){
+ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)",
+ zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
+ );
+ zSep = ", ";
+ }
+ }
+ }
+ }
+ return zList;
+}
+
+/*
+** Return a nul-terminated string consisting of nByte comma separated
+** "?" expressions. For example, if nByte is 3, return a pointer to
+** a buffer containing the string "?,?,?".
+**
+** The memory for the returned string is obtained from sqlite3_malloc().
+** It is the responsibility of the caller to eventually free it using
+** sqlite3_free().
+**
+** If an OOM error is encountered when allocating space for the new
+** string, an error code is left in the rbu handle passed as the first
+** argument and NULL is returned. Or, if an error has already occurred
+** when this function is called, NULL is returned immediately, without
+** attempting the allocation or modifying the stored error code.
+*/
+static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
+ char *zRet = 0;
+ sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1;
+
+ zRet = (char*)rbuMalloc(p, nByte);
+ if( zRet ){
+ int i;
+ for(i=0; i<nBind; i++){
+ zRet[i*2] = '?';
+ zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
+ }
+ }
+ return zRet;
+}
+
+/*
+** The iterator currently points to a table (not index) of type
+** RBU_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY
+** declaration for the corresponding imposter table. For example,
+** if the iterator points to a table created as:
+**
+** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID
+**
+** this function returns:
+**
+** PRIMARY KEY("b", "a" DESC)
+*/
+static char *rbuWithoutRowidPK(sqlite3rbu *p, RbuObjIter *pIter){
+ char *z = 0;
+ assert( pIter->zIdx==0 );
+ if( p->rc==SQLITE_OK ){
+ const char *zSep = "PRIMARY KEY(";
+ sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */
+ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
+ );
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){
+ const char *zOrig = (const char*)sqlite3_column_text(pXList,3);
+ if( zOrig && strcmp(zOrig, "pk")==0 ){
+ const char *zIdx = (const char*)sqlite3_column_text(pXList,1);
+ if( zIdx ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
+ );
+ }
+ break;
+ }
+ }
+ rbuFinalize(p, pXList);
+
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ if( sqlite3_column_int(pXInfo, 5) ){
+ /* int iCid = sqlite3_column_int(pXInfo, 0); */
+ const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2);
+ const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : "";
+ z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc);
+ zSep = ", ";
+ }
+ }
+ z = rbuMPrintf(p, "%z)", z);
+ rbuFinalize(p, pXInfo);
+ }
+ return z;
+}
+
+/*
+** This function creates the second imposter table used when writing to
+** a table b-tree where the table has an external primary key. If the
+** iterator passed as the second argument does not currently point to
+** a table (not index) with an external primary key, this function is a
+** no-op.
+**
+** Assuming the iterator does point to a table with an external PK, this
+** function creates a WITHOUT ROWID imposter table named "rbu_imposter2"
+** used to access that PK index. For example, if the target table is
+** declared as follows:
+**
+** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c));
+**
+** then the imposter table schema is:
+**
+** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID;
+**
+*/
+static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){
+ if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){
+ int tnum = pIter->iPkTnum; /* Root page of PK index */
+ sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */
+ const char *zIdx = 0; /* Name of PK index */
+ sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */
+ const char *zComma = "";
+ char *zCols = 0; /* Used to build up list of table cols */
+ char *zPk = 0; /* Used to build up table PK declaration */
+
+ /* Figure out the name of the primary key index for the current table.
+ ** This is needed for the argument to "PRAGMA index_xinfo". Set
+ ** zIdx to point to a nul-terminated string containing this name. */
+ p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg,
+ "SELECT name FROM sqlite_schema WHERE rootpage = ?"
+ );
+ if( p->rc==SQLITE_OK ){
+ sqlite3_bind_int(pQuery, 1, tnum);
+ if( SQLITE_ROW==sqlite3_step(pQuery) ){
+ zIdx = (const char*)sqlite3_column_text(pQuery, 0);
+ }
+ }
+ if( zIdx ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
+ );
+ }
+ rbuFinalize(p, pQuery);
+
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int bKey = sqlite3_column_int(pXInfo, 5);
+ if( bKey ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ int bDesc = sqlite3_column_int(pXInfo, 3);
+ const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
+ zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma,
+ iCid, pIter->azTblType[iCid], zCollate
+ );
+ zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
+ zComma = ", ";
+ }
+ }
+ zCols = rbuMPrintf(p, "%z, id INTEGER", zCols);
+ rbuFinalize(p, pXInfo);
+
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID",
+ zCols, zPk
+ );
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
+ }
+}
+
+/*
+** If an error has already occurred when this function is called, it
+** immediately returns zero (without doing any work). Or, if an error
+** occurs during the execution of this function, it sets the error code
+** in the sqlite3rbu object indicated by the first argument and returns
+** zero.
+**
+** The iterator passed as the second argument is guaranteed to point to
+** a table (not an index) when this function is called. This function
+** attempts to create any imposter table required to write to the main
+** table b-tree of the table before returning. Non-zero is returned if
+** an imposter table are created, or zero otherwise.
+**
+** An imposter table is required in all cases except RBU_PK_VTAB. Only
+** virtual tables are written to directly. The imposter table has the
+** same schema as the actual target table (less any UNIQUE constraints).
+** More precisely, the "same schema" means the same columns, types,
+** collation sequences. For tables that do not have an external PRIMARY
+** KEY, it also means the same PRIMARY KEY declaration.
+*/
+static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){
+ if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){
+ int tnum = pIter->iTnum;
+ const char *zComma = "";
+ char *zSql = 0;
+ int iCol;
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
+
+ for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){
+ const char *zPk = "";
+ const char *zCol = pIter->azTblCol[iCol];
+ const char *zColl = 0;
+
+ p->rc = sqlite3_table_column_metadata(
+ p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0
+ );
+
+ if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){
+ /* If the target table column is an "INTEGER PRIMARY KEY", add
+ ** "PRIMARY KEY" to the imposter table column declaration. */
+ zPk = "PRIMARY KEY ";
+ }
+ zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s",
+ zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
+ (pIter->abNotNull[iCol] ? " NOT NULL" : "")
+ );
+ zComma = ", ";
+ }
+
+ if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
+ char *zPk = rbuWithoutRowidPK(p, pIter);
+ if( zPk ){
+ zSql = rbuMPrintf(p, "%z, %z", zSql, zPk);
+ }
+ }
+
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
+ rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s",
+ pIter->zTbl, zSql,
+ (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "")
+ );
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
+ }
+}
+
+/*
+** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table.
+** Specifically a statement of the form:
+**
+** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...);
+**
+** The number of bound variables is equal to the number of columns in
+** the target table, plus one (for the rbu_control column), plus one more
+** (for the rbu_rowid column) if the target table is an implicit IPK or
+** virtual table.
+*/
+static void rbuObjIterPrepareTmpInsert(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ const char *zCollist,
+ const char *zRbuRowid
+){
+ int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE);
+ char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid);
+ if( zBind ){
+ assert( pIter->pTmpInsert==0 );
+ p->rc = prepareFreeAndCollectError(
+ p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf(
+ "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)",
+ p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind
+ ));
+ }
+}
+
+static void rbuTmpInsertFunc(
+ sqlite3_context *pCtx,
+ int nVal,
+ sqlite3_value **apVal
+){
+ sqlite3rbu *p = sqlite3_user_data(pCtx);
+ int rc = SQLITE_OK;
+ int i;
+
+ assert( sqlite3_value_int(apVal[0])!=0
+ || p->objiter.eType==RBU_PK_EXTERNAL
+ || p->objiter.eType==RBU_PK_NONE
+ );
+ if( sqlite3_value_int(apVal[0])!=0 ){
+ p->nPhaseOneStep += p->objiter.nIndex;
+ }
+
+ for(i=0; rc==SQLITE_OK && i<nVal; i++){
+ rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(p->objiter.pTmpInsert);
+ rc = sqlite3_reset(p->objiter.pTmpInsert);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+
+static char *rbuObjIterGetIndexWhere(sqlite3rbu *p, RbuObjIter *pIter){
+ sqlite3_stmt *pStmt = 0;
+ int rc = p->rc;
+ char *zRet = 0;
+
+ assert( pIter->zIdxSql==0 && pIter->nIdxCol==0 && pIter->aIdxCol==0 );
+
+ if( rc==SQLITE_OK ){
+ rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
+ "SELECT trim(sql) FROM sqlite_schema WHERE type='index' AND name=?"
+ );
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = sqlite3_bind_text(pStmt, 1, pIter->zIdx, -1, SQLITE_STATIC);
+ if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ char *zSql = (char*)sqlite3_column_text(pStmt, 0);
+ if( zSql ){
+ pIter->zIdxSql = zSql = rbuStrndup(zSql, &rc);
+ }
+ if( zSql ){
+ int nParen = 0; /* Number of open parenthesis */
+ int i;
+ int iIdxCol = 0;
+ int nIdxAlloc = 0;
+ for(i=0; zSql[i]; i++){
+ char c = zSql[i];
+
+ /* If necessary, grow the pIter->aIdxCol[] array */
+ if( iIdxCol==nIdxAlloc ){
+ RbuSpan *aIdxCol = (RbuSpan*)sqlite3_realloc(
+ pIter->aIdxCol, (nIdxAlloc+16)*sizeof(RbuSpan)
+ );
+ if( aIdxCol==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ pIter->aIdxCol = aIdxCol;
+ nIdxAlloc += 16;
+ }
+
+ if( c=='(' ){
+ if( nParen==0 ){
+ assert( iIdxCol==0 );
+ pIter->aIdxCol[0].zSpan = &zSql[i+1];
+ }
+ nParen++;
+ }
+ else if( c==')' ){
+ nParen--;
+ if( nParen==0 ){
+ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan;
+ pIter->aIdxCol[iIdxCol++].nSpan = nSpan;
+ i++;
+ break;
+ }
+ }else if( c==',' && nParen==1 ){
+ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan;
+ pIter->aIdxCol[iIdxCol++].nSpan = nSpan;
+ pIter->aIdxCol[iIdxCol].zSpan = &zSql[i+1];
+ }else if( c=='"' || c=='\'' || c=='`' ){
+ for(i++; 1; i++){
+ if( zSql[i]==c ){
+ if( zSql[i+1]!=c ) break;
+ i++;
+ }
+ }
+ }else if( c=='[' ){
+ for(i++; 1; i++){
+ if( zSql[i]==']' ) break;
+ }
+ }else if( c=='-' && zSql[i+1]=='-' ){
+ for(i=i+2; zSql[i] && zSql[i]!='\n'; i++);
+ if( zSql[i]=='\0' ) break;
+ }else if( c=='/' && zSql[i+1]=='*' ){
+ for(i=i+2; zSql[i] && (zSql[i]!='*' || zSql[i+1]!='/'); i++);
+ if( zSql[i]=='\0' ) break;
+ i++;
+ }
+ }
+ if( zSql[i] ){
+ zRet = rbuStrndup(&zSql[i], &rc);
+ }
+ pIter->nIdxCol = iIdxCol;
+ }
+ }
+
+ rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ p->rc = rc;
+ return zRet;
+}
+
+/*
+** Ensure that the SQLite statement handles required to update the
+** target database object currently indicated by the iterator passed
+** as the second argument are available.
+*/
+static int rbuObjIterPrepareAll(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */
+){
+ assert( pIter->bCleanup==0 );
+ if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){
+ const int tnum = pIter->iTnum;
+ char *zCollist = 0; /* List of indexed columns */
+ char **pz = &p->zErrmsg;
+ const char *zIdx = pIter->zIdx;
+ char *zLimit = 0;
+
+ if( nOffset ){
+ zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset);
+ if( !zLimit ) p->rc = SQLITE_NOMEM;
+ }
+
+ if( zIdx ){
+ const char *zTbl = pIter->zTbl;
+ char *zImposterCols = 0; /* Columns for imposter table */
+ char *zImposterPK = 0; /* Primary key declaration for imposter */
+ char *zWhere = 0; /* WHERE clause on PK columns */
+ char *zBind = 0;
+ char *zPart = 0;
+ int nBind = 0;
+
+ assert( pIter->eType!=RBU_PK_VTAB );
+ zPart = rbuObjIterGetIndexWhere(p, pIter);
+ zCollist = rbuObjIterGetIndexCols(
+ p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind
+ );
+ zBind = rbuObjIterGetBindlist(p, nBind);
+
+ /* Create the imposter table used to write to this index. */
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum);
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID",
+ zTbl, zImposterCols, zImposterPK
+ );
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
+
+ /* Create the statement to insert index entries */
+ pIter->nCol = nBind;
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(
+ p->dbMain, &pIter->pInsert, &p->zErrmsg,
+ sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind)
+ );
+ }
+
+ /* And to delete index entries */
+ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(
+ p->dbMain, &pIter->pDelete, &p->zErrmsg,
+ sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere)
+ );
+ }
+
+ /* Create the SELECT statement to read keys in sorted order */
+ if( p->rc==SQLITE_OK ){
+ char *zSql;
+ if( rbuIsVacuum(p) ){
+ char *zStart = 0;
+ if( nOffset ){
+ zStart = rbuVacuumIndexStart(p, pIter);
+ if( zStart ){
+ sqlite3_free(zLimit);
+ zLimit = 0;
+ }
+ }
+
+ zSql = sqlite3_mprintf(
+ "SELECT %s, 0 AS rbu_control FROM '%q' %s %s %s ORDER BY %s%s",
+ zCollist,
+ pIter->zDataTbl,
+ zPart,
+ (zStart ? (zPart ? "AND" : "WHERE") : ""), zStart,
+ zCollist, zLimit
+ );
+ sqlite3_free(zStart);
+ }else
+
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ zSql = sqlite3_mprintf(
+ "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s ORDER BY %s%s",
+ zCollist, p->zStateDb, pIter->zDataTbl,
+ zPart, zCollist, zLimit
+ );
+ }else{
+ zSql = sqlite3_mprintf(
+ "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s "
+ "UNION ALL "
+ "SELECT %s, rbu_control FROM '%q' "
+ "%s %s typeof(rbu_control)='integer' AND rbu_control!=1 "
+ "ORDER BY %s%s",
+ zCollist, p->zStateDb, pIter->zDataTbl, zPart,
+ zCollist, pIter->zDataTbl,
+ zPart,
+ (zPart ? "AND" : "WHERE"),
+ zCollist, zLimit
+ );
+ }
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbRbu,&pIter->pSelect,pz,zSql);
+ }else{
+ sqlite3_free(zSql);
+ }
+ }
+
+ sqlite3_free(zImposterCols);
+ sqlite3_free(zImposterPK);
+ sqlite3_free(zWhere);
+ sqlite3_free(zBind);
+ sqlite3_free(zPart);
+ }else{
+ int bRbuRowid = (pIter->eType==RBU_PK_VTAB)
+ ||(pIter->eType==RBU_PK_NONE)
+ ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p));
+ const char *zTbl = pIter->zTbl; /* Table this step applies to */
+ const char *zWrite; /* Imposter table name */
+
+ char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid);
+ char *zWhere = rbuObjIterGetWhere(p, pIter);
+ char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old");
+ char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new");
+
+ zCollist = rbuObjIterGetCollist(p, pIter);
+ pIter->nCol = pIter->nTblCol;
+
+ /* Create the imposter table or tables (if required). */
+ rbuCreateImposterTable(p, pIter);
+ rbuCreateImposterTable2(p, pIter);
+ zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_");
+
+ /* Create the INSERT statement to write to the target PK b-tree */
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz,
+ sqlite3_mprintf(
+ "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)",
+ zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings
+ )
+ );
+ }
+
+ /* Create the DELETE statement to write to the target PK b-tree.
+ ** Because it only performs INSERT operations, this is not required for
+ ** an rbu vacuum handle. */
+ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz,
+ sqlite3_mprintf(
+ "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere
+ )
+ );
+ }
+
+ if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
+ const char *zRbuRowid = "";
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ zRbuRowid = ", rbu_rowid";
+ }
+
+ /* Create the rbu_tmp_xxx table and the triggers to populate it. */
+ rbuMPrintfExec(p, p->dbRbu,
+ "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS "
+ "SELECT *%s FROM '%q' WHERE 0;"
+ , p->zStateDb, pIter->zDataTbl
+ , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "")
+ , pIter->zDataTbl
+ );
+
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(3, %s);"
+ "END;"
+
+ "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(3, %s);"
+ "END;"
+
+ "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(4, %s);"
+ "END;",
+ zWrite, zTbl, zOldlist,
+ zWrite, zTbl, zOldlist,
+ zWrite, zTbl, zNewlist
+ );
+
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(0, %s);"
+ "END;",
+ zWrite, zTbl, zNewlist
+ );
+ }
+
+ rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid);
+ }
+
+ /* Create the SELECT statement to read keys from data_xxx */
+ if( p->rc==SQLITE_OK ){
+ const char *zRbuRowid = "";
+ char *zStart = 0;
+ char *zOrder = 0;
+ if( bRbuRowid ){
+ zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid";
+ }
+
+ if( rbuIsVacuum(p) ){
+ if( nOffset ){
+ zStart = rbuVacuumTableStart(p, pIter, bRbuRowid, zWrite);
+ if( zStart ){
+ sqlite3_free(zLimit);
+ zLimit = 0;
+ }
+ }
+ if( bRbuRowid ){
+ zOrder = rbuMPrintf(p, "_rowid_");
+ }else{
+ zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", "");
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz,
+ sqlite3_mprintf(
+ "SELECT %s,%s rbu_control%s FROM '%q'%s %s %s %s",
+ zCollist,
+ (rbuIsVacuum(p) ? "0 AS " : ""),
+ zRbuRowid,
+ pIter->zDataTbl, (zStart ? zStart : ""),
+ (zOrder ? "ORDER BY" : ""), zOrder,
+ zLimit
+ )
+ );
+ }
+ sqlite3_free(zStart);
+ sqlite3_free(zOrder);
+ }
+
+ sqlite3_free(zWhere);
+ sqlite3_free(zOldlist);
+ sqlite3_free(zNewlist);
+ sqlite3_free(zBindings);
+ }
+ sqlite3_free(zCollist);
+ sqlite3_free(zLimit);
+ }
+
+ return p->rc;
+}
+
+/*
+** Set output variable *ppStmt to point to an UPDATE statement that may
+** be used to update the imposter table for the main table b-tree of the
+** table object that pIter currently points to, assuming that the
+** rbu_control column of the data_xyz table contains zMask.
+**
+** If the zMask string does not specify any columns to update, then this
+** is not an error. Output variable *ppStmt is set to NULL in this case.
+*/
+static int rbuGetUpdateStmt(
+ sqlite3rbu *p, /* RBU handle */
+ RbuObjIter *pIter, /* Object iterator */
+ const char *zMask, /* rbu_control value ('x.x.') */
+ sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */
+){
+ RbuUpdateStmt **pp;
+ RbuUpdateStmt *pUp = 0;
+ int nUp = 0;
+
+ /* In case an error occurs */
+ *ppStmt = 0;
+
+ /* Search for an existing statement. If one is found, shift it to the front
+ ** of the LRU queue and return immediately. Otherwise, leave nUp pointing
+ ** to the number of statements currently in the cache and pUp to the
+ ** last object in the list. */
+ for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){
+ pUp = *pp;
+ if( strcmp(pUp->zMask, zMask)==0 ){
+ *pp = pUp->pNext;
+ pUp->pNext = pIter->pRbuUpdate;
+ pIter->pRbuUpdate = pUp;
+ *ppStmt = pUp->pUpdate;
+ return SQLITE_OK;
+ }
+ nUp++;
+ }
+ assert( pUp==0 || pUp->pNext==0 );
+
+ if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){
+ for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext));
+ *pp = 0;
+ sqlite3_finalize(pUp->pUpdate);
+ pUp->pUpdate = 0;
+ }else{
+ pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1);
+ }
+
+ if( pUp ){
+ char *zWhere = rbuObjIterGetWhere(p, pIter);
+ char *zSet = rbuObjIterGetSetlist(p, pIter, zMask);
+ char *zUpdate = 0;
+
+ pUp->zMask = (char*)&pUp[1];
+ memcpy(pUp->zMask, zMask, pIter->nTblCol);
+ pUp->pNext = pIter->pRbuUpdate;
+ pIter->pRbuUpdate = pUp;
+
+ if( zSet ){
+ const char *zPrefix = "";
+
+ if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_";
+ zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s",
+ zPrefix, pIter->zTbl, zSet, zWhere
+ );
+ p->rc = prepareFreeAndCollectError(
+ p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate
+ );
+ *ppStmt = pUp->pUpdate;
+ }
+ sqlite3_free(zWhere);
+ sqlite3_free(zSet);
+ }
+
+ return p->rc;
+}
+
+static sqlite3 *rbuOpenDbhandle(
+ sqlite3rbu *p,
+ const char *zName,
+ int bUseVfs
+){
+ sqlite3 *db = 0;
+ if( p->rc==SQLITE_OK ){
+ const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI;
+ p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0);
+ if( p->rc ){
+ p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ sqlite3_close(db);
+ db = 0;
+ }
+ }
+ return db;
+}
+
+/*
+** Free an RbuState object allocated by rbuLoadState().
+*/
+static void rbuFreeState(RbuState *p){
+ if( p ){
+ sqlite3_free(p->zTbl);
+ sqlite3_free(p->zDataTbl);
+ sqlite3_free(p->zIdx);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Allocate an RbuState object and load the contents of the rbu_state
+** table into it. Return a pointer to the new object. It is the
+** responsibility of the caller to eventually free the object using
+** sqlite3_free().
+**
+** If an error occurs, leave an error code and message in the rbu handle
+** and return NULL.
+*/
+static RbuState *rbuLoadState(sqlite3rbu *p){
+ RbuState *pRet = 0;
+ sqlite3_stmt *pStmt = 0;
+ int rc;
+ int rc2;
+
+ pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState));
+ if( pRet==0 ) return 0;
+
+ rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb)
+ );
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ switch( sqlite3_column_int(pStmt, 0) ){
+ case RBU_STATE_STAGE:
+ pRet->eStage = sqlite3_column_int(pStmt, 1);
+ if( pRet->eStage!=RBU_STAGE_OAL
+ && pRet->eStage!=RBU_STAGE_MOVE
+ && pRet->eStage!=RBU_STAGE_CKPT
+ ){
+ p->rc = SQLITE_CORRUPT;
+ }
+ break;
+
+ case RBU_STATE_TBL:
+ pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
+ break;
+
+ case RBU_STATE_IDX:
+ pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
+ break;
+
+ case RBU_STATE_ROW:
+ pRet->nRow = sqlite3_column_int(pStmt, 1);
+ break;
+
+ case RBU_STATE_PROGRESS:
+ pRet->nProgress = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_CKPT:
+ pRet->iWalCksum = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_COOKIE:
+ pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_OALSZ:
+ pRet->iOalSz = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_PHASEONESTEP:
+ pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_DATATBL:
+ pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
+ break;
+
+ default:
+ rc = SQLITE_CORRUPT;
+ break;
+ }
+ }
+ rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ p->rc = rc;
+ return pRet;
+}
+
+
+/*
+** Open the database handle and attach the RBU database as "rbu". If an
+** error occurs, leave an error code and message in the RBU handle.
+**
+** If argument dbMain is not NULL, then it is a database handle already
+** open on the target database. Use this handle instead of opening a new
+** one.
+*/
+static void rbuOpenDatabase(sqlite3rbu *p, sqlite3 *dbMain, int *pbRetry){
+ assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
+ assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );
+ assert( dbMain==0 || rbuIsVacuum(p)==0 );
+
+ /* Open the RBU database */
+ p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);
+ p->dbMain = dbMain;
+
+ if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
+ sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
+ if( p->zState==0 ){
+ const char *zFile = sqlite3_db_filename(p->dbRbu, "main");
+ p->zState = rbuMPrintf(p, "file://%s-vacuum?modeof=%s", zFile, zFile);
+ }
+ }
+
+ /* If using separate RBU and state databases, attach the state database to
+ ** the RBU db handle now. */
+ if( p->zState ){
+ rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState);
+ memcpy(p->zStateDb, "stat", 4);
+ }else{
+ memcpy(p->zStateDb, "main", 4);
+ }
+
+#if 0
+ if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
+ p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0);
+ }
+#endif
+
+ /* If it has not already been created, create the rbu_state table */
+ rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb);
+
+#if 0
+ if( rbuIsVacuum(p) ){
+ if( p->rc==SQLITE_OK ){
+ int rc2;
+ int bOk = 0;
+ sqlite3_stmt *pCnt = 0;
+ p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg,
+ "SELECT count(*) FROM stat.sqlite_schema"
+ );
+ if( p->rc==SQLITE_OK
+ && sqlite3_step(pCnt)==SQLITE_ROW
+ && 1==sqlite3_column_int(pCnt, 0)
+ ){
+ bOk = 1;
+ }
+ rc2 = sqlite3_finalize(pCnt);
+ if( p->rc==SQLITE_OK ) p->rc = rc2;
+
+ if( p->rc==SQLITE_OK && bOk==0 ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("invalid state database");
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
+ }
+ }
+ }
+#endif
+
+ if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
+ int bOpen = 0;
+ int rc;
+ p->nRbu = 0;
+ p->pRbuFd = 0;
+ rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
+ if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
+ if( p->eStage>=RBU_STAGE_MOVE ){
+ bOpen = 1;
+ }else{
+ RbuState *pState = rbuLoadState(p);
+ if( pState ){
+ bOpen = (pState->eStage>=RBU_STAGE_MOVE);
+ rbuFreeState(pState);
+ }
+ }
+ if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
+ }
+
+ p->eStage = 0;
+ if( p->rc==SQLITE_OK && p->dbMain==0 ){
+ if( !rbuIsVacuum(p) ){
+ p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
+ }else if( p->pRbuFd->pWalFd ){
+ if( pbRetry ){
+ p->pRbuFd->bNolock = 0;
+ sqlite3_close(p->dbRbu);
+ sqlite3_close(p->dbMain);
+ p->dbMain = 0;
+ p->dbRbu = 0;
+ *pbRetry = 1;
+ return;
+ }
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
+ }else{
+ char *zTarget;
+ char *zExtra = 0;
+ if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
+ zExtra = &p->zRbu[5];
+ while( *zExtra ){
+ if( *zExtra++=='?' ) break;
+ }
+ if( *zExtra=='\0' ) zExtra = 0;
+ }
+
+ zTarget = sqlite3_mprintf("file:%s-vactmp?rbu_memory=1%s%s",
+ sqlite3_db_filename(p->dbRbu, "main"),
+ (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra)
+ );
+
+ if( zTarget==0 ){
+ p->rc = SQLITE_NOMEM;
+ return;
+ }
+ p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1);
+ sqlite3_free(zTarget);
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_create_function(p->dbMain,
+ "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_create_function(p->dbMain,
+ "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_create_function(p->dbRbu,
+ "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
+ }
+ rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_schema");
+
+ /* Mark the database file just opened as an RBU target database. If
+ ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use.
+ ** This is an error. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
+ }
+
+ if( p->rc==SQLITE_NOTFOUND ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("rbu vfs not found");
+ }
+}
+
+/*
+** This routine is a copy of the sqlite3FileSuffix3() routine from the core.
+** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined.
+**
+** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
+** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
+** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
+** three characters, then shorten the suffix on z[] to be the last three
+** characters of the original suffix.
+**
+** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
+** do the suffix shortening regardless of URI parameter.
+**
+** Examples:
+**
+** test.db-journal => test.nal
+** test.db-wal => test.wal
+** test.db-shm => test.shm
+** test.db-mj7f3319fa => test.9fa
+*/
+static void rbuFileSuffix3(const char *zBase, char *z){
+#ifdef SQLITE_ENABLE_8_3_NAMES
+#if SQLITE_ENABLE_8_3_NAMES<2
+ if( sqlite3_uri_boolean(zBase, "8_3_names", 0) )
+#endif
+ {
+ int i, sz;
+ sz = (int)strlen(z)&0xffffff;
+ for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
+ if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4);
+ }
+#endif
+}
+
+/*
+** Return the current wal-index header checksum for the target database
+** as a 64-bit integer.
+**
+** The checksum is store in the first page of xShmMap memory as an 8-byte
+** blob starting at byte offset 40.
+*/
+static i64 rbuShmChecksum(sqlite3rbu *p){
+ i64 iRet = 0;
+ if( p->rc==SQLITE_OK ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ u32 volatile *ptr;
+ p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr);
+ if( p->rc==SQLITE_OK ){
+ iRet = ((i64)ptr[10] << 32) + ptr[11];
+ }
+ }
+ return iRet;
+}
+
+/*
+** This function is called as part of initializing or reinitializing an
+** incremental checkpoint.
+**
+** It populates the sqlite3rbu.aFrame[] array with the set of
+** (wal frame -> db page) copy operations required to checkpoint the
+** current wal file, and obtains the set of shm locks required to safely
+** perform the copy operations directly on the file-system.
+**
+** If argument pState is not NULL, then the incremental checkpoint is
+** being resumed. In this case, if the checksum of the wal-index-header
+** following recovery is not the same as the checksum saved in the RbuState
+** object, then the rbu handle is set to DONE state. This occurs if some
+** other client appends a transaction to the wal file in the middle of
+** an incremental checkpoint.
+*/
+static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){
+
+ /* If pState is NULL, then the wal file may not have been opened and
+ ** recovered. Running a read-statement here to ensure that doing so
+ ** does not interfere with the "capture" process below. */
+ if( pState==0 ){
+ p->eStage = 0;
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_schema", 0, 0, 0);
+ }
+ }
+
+ /* Assuming no error has occurred, run a "restart" checkpoint with the
+ ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following
+ ** special behaviour in the rbu VFS:
+ **
+ ** * If the exclusive shm WRITER or READ0 lock cannot be obtained,
+ ** the checkpoint fails with SQLITE_BUSY (normally SQLite would
+ ** proceed with running a passive checkpoint instead of failing).
+ **
+ ** * Attempts to read from the *-wal file or write to the database file
+ ** do not perform any IO. Instead, the frame/page combinations that
+ ** would be read/written are recorded in the sqlite3rbu.aFrame[]
+ ** array.
+ **
+ ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER,
+ ** READ0 and CHECKPOINT locks taken as part of the checkpoint are
+ ** no-ops. These locks will not be released until the connection
+ ** is closed.
+ **
+ ** * Attempting to xSync() the database file causes an SQLITE_INTERNAL
+ ** error.
+ **
+ ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the
+ ** checkpoint below fails with SQLITE_INTERNAL, and leaves the aFrame[]
+ ** array populated with a set of (frame -> page) mappings. Because the
+ ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy
+ ** data from the wal file into the database file according to the
+ ** contents of aFrame[].
+ */
+ if( p->rc==SQLITE_OK ){
+ int rc2;
+ p->eStage = RBU_STAGE_CAPTURE;
+ rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
+ if( rc2!=SQLITE_INTERNAL ) p->rc = rc2;
+ }
+
+ if( p->rc==SQLITE_OK && p->nFrame>0 ){
+ p->eStage = RBU_STAGE_CKPT;
+ p->nStep = (pState ? pState->nRow : 0);
+ p->aBuf = rbuMalloc(p, p->pgsz);
+ p->iWalCksum = rbuShmChecksum(p);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){
+ p->rc = SQLITE_DONE;
+ p->eStage = RBU_STAGE_DONE;
+ }else{
+ int nSectorSize;
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
+ assert( p->nPagePerSector==0 );
+ nSectorSize = pDb->pMethods->xSectorSize(pDb);
+ if( nSectorSize>p->pgsz ){
+ p->nPagePerSector = nSectorSize / p->pgsz;
+ }else{
+ p->nPagePerSector = 1;
+ }
+
+ /* Call xSync() on the wal file. This causes SQLite to sync the
+ ** directory in which the target database and the wal file reside, in
+ ** case it has not been synced since the rename() call in
+ ** rbuMoveOalFile(). */
+ p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL);
+ }
+ }
+}
+
+/*
+** Called when iAmt bytes are read from offset iOff of the wal file while
+** the rbu object is in capture mode. Record the frame number of the frame
+** being read in the aFrame[] array.
+*/
+static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){
+ const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0);
+ u32 iFrame;
+
+ if( pRbu->mLock!=mReq ){
+ pRbu->rc = SQLITE_BUSY;
+ return SQLITE_INTERNAL;
+ }
+
+ pRbu->pgsz = iAmt;
+ if( pRbu->nFrame==pRbu->nFrameAlloc ){
+ int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
+ RbuFrame *aNew;
+ aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame));
+ if( aNew==0 ) return SQLITE_NOMEM;
+ pRbu->aFrame = aNew;
+ pRbu->nFrameAlloc = nNew;
+ }
+
+ iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
+ if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;
+ pRbu->aFrame[pRbu->nFrame].iWalFrame = iFrame;
+ pRbu->aFrame[pRbu->nFrame].iDbPage = 0;
+ pRbu->nFrame++;
+ return SQLITE_OK;
+}
+
+/*
+** Called when a page of data is written to offset iOff of the database
+** file while the rbu handle is in capture mode. Record the page number
+** of the page being written in the aFrame[] array.
+*/
+static int rbuCaptureDbWrite(sqlite3rbu *pRbu, i64 iOff){
+ pRbu->aFrame[pRbu->nFrame-1].iDbPage = (u32)(iOff / pRbu->pgsz) + 1;
+ return SQLITE_OK;
+}
+
+/*
+** This is called as part of an incremental checkpoint operation. Copy
+** a single frame of data from the wal file into the database file, as
+** indicated by the RbuFrame object.
+*/
+static void rbuCheckpointFrame(sqlite3rbu *p, RbuFrame *pFrame){
+ sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ i64 iOff;
+
+ assert( p->rc==SQLITE_OK );
+ iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24;
+ p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff);
+ if( p->rc ) return;
+
+ iOff = (i64)(pFrame->iDbPage-1) * p->pgsz;
+ p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff);
+}
+
+
+/*
+** Take an EXCLUSIVE lock on the database file. Return SQLITE_OK if
+** successful, or an SQLite error code otherwise.
+*/
+static int rbuLockDatabase(sqlite3 *db){
+ int rc = SQLITE_OK;
+ sqlite3_file *fd = 0;
+ sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd);
+
+ if( fd->pMethods ){
+ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED);
+ if( rc==SQLITE_OK ){
+ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_EXCLUSIVE);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return true if the database handle passed as the only argument
+** was opened with the rbu_exclusive_checkpoint=1 URI parameter
+** specified. Or false otherwise.
+*/
+static int rbuExclusiveCheckpoint(sqlite3 *db){
+ const char *zUri = sqlite3_db_filename(db, 0);
+ return sqlite3_uri_boolean(zUri, RBU_EXCLUSIVE_CHECKPOINT, 0);
+}
+
+#if defined(_WIN32_WCE)
+static LPWSTR rbuWinUtf8ToUnicode(const char *zFilename){
+ int nChar;
+ LPWSTR zWideFilename;
+
+ nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
+ if( nChar==0 ){
+ return 0;
+ }
+ zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) );
+ if( zWideFilename==0 ){
+ return 0;
+ }
+ memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
+ nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
+ nChar);
+ if( nChar==0 ){
+ sqlite3_free(zWideFilename);
+ zWideFilename = 0;
+ }
+ return zWideFilename;
+}
+#endif
+
+/*
+** The RBU handle is currently in RBU_STAGE_OAL state, with a SHARED lock
+** on the database file. This proc moves the *-oal file to the *-wal path,
+** then reopens the database file (this time in vanilla, non-oal, WAL mode).
+** If an error occurs, leave an error code and error message in the rbu
+** handle.
+*/
+static void rbuMoveOalFile(sqlite3rbu *p){
+ const char *zBase = sqlite3_db_filename(p->dbMain, "main");
+ const char *zMove = zBase;
+ char *zOal;
+ char *zWal;
+
+ if( rbuIsVacuum(p) ){
+ zMove = sqlite3_db_filename(p->dbRbu, "main");
+ }
+ zOal = sqlite3_mprintf("%s-oal", zMove);
+ zWal = sqlite3_mprintf("%s-wal", zMove);
+
+ assert( p->eStage==RBU_STAGE_MOVE );
+ assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
+ if( zWal==0 || zOal==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ /* Move the *-oal file to *-wal. At this point connection p->db is
+ ** holding a SHARED lock on the target database file (because it is
+ ** in WAL mode). So no other connection may be writing the db.
+ **
+ ** In order to ensure that there are no database readers, an EXCLUSIVE
+ ** lock is obtained here before the *-oal is moved to *-wal.
+ */
+ sqlite3 *dbMain = 0;
+ rbuFileSuffix3(zBase, zWal);
+ rbuFileSuffix3(zBase, zOal);
+
+ /* Re-open the databases. */
+ rbuObjIterFinalize(&p->objiter);
+ sqlite3_close(p->dbRbu);
+ sqlite3_close(p->dbMain);
+ p->dbMain = 0;
+ p->dbRbu = 0;
+
+ dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
+ if( dbMain ){
+ assert( p->rc==SQLITE_OK );
+ p->rc = rbuLockDatabase(dbMain);
+ }
+
+ if( p->rc==SQLITE_OK ){
+#if defined(_WIN32_WCE)
+ {
+ LPWSTR zWideOal;
+ LPWSTR zWideWal;
+
+ zWideOal = rbuWinUtf8ToUnicode(zOal);
+ if( zWideOal ){
+ zWideWal = rbuWinUtf8ToUnicode(zWal);
+ if( zWideWal ){
+ if( MoveFileW(zWideOal, zWideWal) ){
+ p->rc = SQLITE_OK;
+ }else{
+ p->rc = SQLITE_IOERR;
+ }
+ sqlite3_free(zWideWal);
+ }else{
+ p->rc = SQLITE_IOERR_NOMEM;
+ }
+ sqlite3_free(zWideOal);
+ }else{
+ p->rc = SQLITE_IOERR_NOMEM;
+ }
+ }
+#else
+ p->rc = rename(zOal, zWal) ? SQLITE_IOERR : SQLITE_OK;
+#endif
+ }
+
+ if( p->rc!=SQLITE_OK
+ || rbuIsVacuum(p)
+ || rbuExclusiveCheckpoint(dbMain)==0
+ ){
+ sqlite3_close(dbMain);
+ dbMain = 0;
+ }
+
+ if( p->rc==SQLITE_OK ){
+ rbuOpenDatabase(p, dbMain, 0);
+ rbuSetupCheckpoint(p, 0);
+ }
+ }
+
+ sqlite3_free(zWal);
+ sqlite3_free(zOal);
+}
+
+/*
+** The SELECT statement iterating through the keys for the current object
+** (p->objiter.pSelect) currently points to a valid row. This function
+** determines the type of operation requested by this row and returns
+** one of the following values to indicate the result:
+**
+** * RBU_INSERT
+** * RBU_DELETE
+** * RBU_IDX_DELETE
+** * RBU_UPDATE
+**
+** If RBU_UPDATE is returned, then output variable *pzMask is set to
+** point to the text value indicating the columns to update.
+**
+** If the rbu_control field contains an invalid value, an error code and
+** message are left in the RBU handle and zero returned.
+*/
+static int rbuStepType(sqlite3rbu *p, const char **pzMask){
+ int iCol = p->objiter.nCol; /* Index of rbu_control column */
+ int res = 0; /* Return value */
+
+ switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){
+ case SQLITE_INTEGER: {
+ int iVal = sqlite3_column_int(p->objiter.pSelect, iCol);
+ switch( iVal ){
+ case 0: res = RBU_INSERT; break;
+ case 1: res = RBU_DELETE; break;
+ case 2: res = RBU_REPLACE; break;
+ case 3: res = RBU_IDX_DELETE; break;
+ case 4: res = RBU_IDX_INSERT; break;
+ }
+ break;
+ }
+
+ case SQLITE_TEXT: {
+ const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol);
+ if( z==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ *pzMask = (const char*)z;
+ }
+ res = RBU_UPDATE;
+
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ if( res==0 ){
+ rbuBadControlError(p);
+ }
+ return res;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Assert that column iCol of statement pStmt is named zName.
+*/
+static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){
+ const char *zCol = sqlite3_column_name(pStmt, iCol);
+ assert( 0==sqlite3_stricmp(zName, zCol) );
+}
+#else
+# define assertColumnName(x,y,z)
+#endif
+
+/*
+** Argument eType must be one of RBU_INSERT, RBU_DELETE, RBU_IDX_INSERT or
+** RBU_IDX_DELETE. This function performs the work of a single
+** sqlite3rbu_step() call for the type of operation specified by eType.
+*/
+static void rbuStepOneOp(sqlite3rbu *p, int eType){
+ RbuObjIter *pIter = &p->objiter;
+ sqlite3_value *pVal;
+ sqlite3_stmt *pWriter;
+ int i;
+
+ assert( p->rc==SQLITE_OK );
+ assert( eType!=RBU_DELETE || pIter->zIdx==0 );
+ assert( eType==RBU_DELETE || eType==RBU_IDX_DELETE
+ || eType==RBU_INSERT || eType==RBU_IDX_INSERT
+ );
+
+ /* If this is a delete, decrement nPhaseOneStep by nIndex. If the DELETE
+ ** statement below does actually delete a row, nPhaseOneStep will be
+ ** incremented by the same amount when SQL function rbu_tmp_insert()
+ ** is invoked by the trigger. */
+ if( eType==RBU_DELETE ){
+ p->nPhaseOneStep -= p->objiter.nIndex;
+ }
+
+ if( eType==RBU_IDX_DELETE || eType==RBU_DELETE ){
+ pWriter = pIter->pDelete;
+ }else{
+ pWriter = pIter->pInsert;
+ }
+
+ for(i=0; i<pIter->nCol; i++){
+ /* If this is an INSERT into a table b-tree and the table has an
+ ** explicit INTEGER PRIMARY KEY, check that this is not an attempt
+ ** to write a NULL into the IPK column. That is not permitted. */
+ if( eType==RBU_INSERT
+ && pIter->zIdx==0 && pIter->eType==RBU_PK_IPK && pIter->abTblPk[i]
+ && sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL
+ ){
+ p->rc = SQLITE_MISMATCH;
+ p->zErrmsg = sqlite3_mprintf("datatype mismatch");
+ return;
+ }
+
+ if( eType==RBU_DELETE && pIter->abTblPk[i]==0 ){
+ continue;
+ }
+
+ pVal = sqlite3_column_value(pIter->pSelect, i);
+ p->rc = sqlite3_bind_value(pWriter, i+1, pVal);
+ if( p->rc ) return;
+ }
+ if( pIter->zIdx==0 ){
+ if( pIter->eType==RBU_PK_VTAB
+ || pIter->eType==RBU_PK_NONE
+ || (pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p))
+ ){
+ /* For a virtual table, or a table with no primary key, the
+ ** SELECT statement is:
+ **
+ ** SELECT <cols>, rbu_control, rbu_rowid FROM ....
+ **
+ ** Hence column_value(pIter->nCol+1).
+ */
+ assertColumnName(pIter->pSelect, pIter->nCol+1,
+ rbuIsVacuum(p) ? "rowid" : "rbu_rowid"
+ );
+ pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
+ p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal);
+ }
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_step(pWriter);
+ p->rc = resetAndCollectError(pWriter, &p->zErrmsg);
+ }
+}
+
+/*
+** This function does the work for an sqlite3rbu_step() call.
+**
+** The object-iterator (p->objiter) currently points to a valid object,
+** and the input cursor (p->objiter.pSelect) currently points to a valid
+** input row. Perform whatever processing is required and return.
+**
+** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
+** and message is left in the RBU handle and a copy of the error code
+** returned.
+*/
+static int rbuStep(sqlite3rbu *p){
+ RbuObjIter *pIter = &p->objiter;
+ const char *zMask = 0;
+ int eType = rbuStepType(p, &zMask);
+
+ if( eType ){
+ assert( eType==RBU_INSERT || eType==RBU_DELETE
+ || eType==RBU_REPLACE || eType==RBU_IDX_DELETE
+ || eType==RBU_IDX_INSERT || eType==RBU_UPDATE
+ );
+ assert( eType!=RBU_UPDATE || pIter->zIdx==0 );
+
+ if( pIter->zIdx==0 && (eType==RBU_IDX_DELETE || eType==RBU_IDX_INSERT) ){
+ rbuBadControlError(p);
+ }
+ else if( eType==RBU_REPLACE ){
+ if( pIter->zIdx==0 ){
+ p->nPhaseOneStep += p->objiter.nIndex;
+ rbuStepOneOp(p, RBU_DELETE);
+ }
+ if( p->rc==SQLITE_OK ) rbuStepOneOp(p, RBU_INSERT);
+ }
+ else if( eType!=RBU_UPDATE ){
+ rbuStepOneOp(p, eType);
+ }
+ else{
+ sqlite3_value *pVal;
+ sqlite3_stmt *pUpdate = 0;
+ assert( eType==RBU_UPDATE );
+ p->nPhaseOneStep -= p->objiter.nIndex;
+ rbuGetUpdateStmt(p, pIter, zMask, &pUpdate);
+ if( pUpdate ){
+ int i;
+ for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){
+ char c = zMask[pIter->aiSrcOrder[i]];
+ pVal = sqlite3_column_value(pIter->pSelect, i);
+ if( pIter->abTblPk[i] || c!='.' ){
+ p->rc = sqlite3_bind_value(pUpdate, i+1, pVal);
+ }
+ }
+ if( p->rc==SQLITE_OK
+ && (pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
+ ){
+ /* Bind the rbu_rowid value to column _rowid_ */
+ assertColumnName(pIter->pSelect, pIter->nCol+1, "rbu_rowid");
+ pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
+ p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal);
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_step(pUpdate);
+ p->rc = resetAndCollectError(pUpdate, &p->zErrmsg);
+ }
+ }
+ }
+ }
+ return p->rc;
+}
+
+/*
+** Increment the schema cookie of the main database opened by p->dbMain.
+**
+** Or, if this is an RBU vacuum, set the schema cookie of the main db
+** opened by p->dbMain to one more than the schema cookie of the main
+** db opened by p->dbRbu.
+*/
+static void rbuIncrSchemaCookie(sqlite3rbu *p){
+ if( p->rc==SQLITE_OK ){
+ sqlite3 *dbread = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
+ int iCookie = 1000000;
+ sqlite3_stmt *pStmt;
+
+ p->rc = prepareAndCollectError(dbread, &pStmt, &p->zErrmsg,
+ "PRAGMA schema_version"
+ );
+ if( p->rc==SQLITE_OK ){
+ /* Coverage: it may be that this sqlite3_step() cannot fail. There
+ ** is already a transaction open, so the prepared statement cannot
+ ** throw an SQLITE_SCHEMA exception. The only database page the
+ ** statement reads is page 1, which is guaranteed to be in the cache.
+ ** And no memory allocations are required. */
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ iCookie = sqlite3_column_int(pStmt, 0);
+ }
+ rbuFinalize(p, pStmt);
+ }
+ if( p->rc==SQLITE_OK ){
+ rbuMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1);
+ }
+ }
+}
+
+/*
+** Update the contents of the rbu_state table within the rbu database. The
+** value stored in the RBU_STATE_STAGE column is eStage. All other values
+** are determined by inspecting the rbu handle passed as the first argument.
+*/
+static void rbuSaveState(sqlite3rbu *p, int eStage){
+ if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){
+ sqlite3_stmt *pInsert = 0;
+ rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
+ int rc;
+
+ assert( p->zErrmsg==0 );
+ rc = prepareFreeAndCollectError(p->dbRbu, &pInsert, &p->zErrmsg,
+ sqlite3_mprintf(
+ "INSERT OR REPLACE INTO %s.rbu_state(k, v) VALUES "
+ "(%d, %d), "
+ "(%d, %Q), "
+ "(%d, %Q), "
+ "(%d, %d), "
+ "(%d, %d), "
+ "(%d, %lld), "
+ "(%d, %lld), "
+ "(%d, %lld), "
+ "(%d, %lld), "
+ "(%d, %Q) ",
+ p->zStateDb,
+ RBU_STATE_STAGE, eStage,
+ RBU_STATE_TBL, p->objiter.zTbl,
+ RBU_STATE_IDX, p->objiter.zIdx,
+ RBU_STATE_ROW, p->nStep,
+ RBU_STATE_PROGRESS, p->nProgress,
+ RBU_STATE_CKPT, p->iWalCksum,
+ RBU_STATE_COOKIE, (i64)pFd->iCookie,
+ RBU_STATE_OALSZ, p->iOalSz,
+ RBU_STATE_PHASEONESTEP, p->nPhaseOneStep,
+ RBU_STATE_DATATBL, p->objiter.zDataTbl
+ )
+ );
+ assert( pInsert==0 || rc==SQLITE_OK );
+
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pInsert);
+ rc = sqlite3_finalize(pInsert);
+ }
+ if( rc!=SQLITE_OK ) p->rc = rc;
+ }
+}
+
+
+/*
+** The second argument passed to this function is the name of a PRAGMA
+** setting - "page_size", "auto_vacuum", "user_version" or "application_id".
+** This function executes the following on sqlite3rbu.dbRbu:
+**
+** "PRAGMA main.$zPragma"
+**
+** where $zPragma is the string passed as the second argument, then
+** on sqlite3rbu.dbMain:
+**
+** "PRAGMA main.$zPragma = $val"
+**
+** where $val is the value returned by the first PRAGMA invocation.
+**
+** In short, it copies the value of the specified PRAGMA setting from
+** dbRbu to dbMain.
+*/
+static void rbuCopyPragma(sqlite3rbu *p, const char *zPragma){
+ if( p->rc==SQLITE_OK ){
+ sqlite3_stmt *pPragma = 0;
+ p->rc = prepareFreeAndCollectError(p->dbRbu, &pPragma, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.%s", zPragma)
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPragma) ){
+ p->rc = rbuMPrintfExec(p, p->dbMain, "PRAGMA main.%s = %d",
+ zPragma, sqlite3_column_int(pPragma, 0)
+ );
+ }
+ rbuFinalize(p, pPragma);
+ }
+}
+
+/*
+** The RBU handle passed as the only argument has just been opened and
+** the state database is empty. If this RBU handle was opened for an
+** RBU vacuum operation, create the schema in the target db.
+*/
+static void rbuCreateTargetSchema(sqlite3rbu *p){
+ sqlite3_stmt *pSql = 0;
+ sqlite3_stmt *pInsert = 0;
+
+ assert( rbuIsVacuum(p) );
+ p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=1", 0,0, &p->zErrmsg);
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
+ "SELECT sql FROM sqlite_schema WHERE sql!='' AND rootpage!=0"
+ " AND name!='sqlite_sequence' "
+ " ORDER BY type DESC"
+ );
+ }
+
+ while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
+ const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
+ p->rc = sqlite3_exec(p->dbMain, zSql, 0, 0, &p->zErrmsg);
+ }
+ rbuFinalize(p, pSql);
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
+ "SELECT * FROM sqlite_schema WHERE rootpage=0 OR rootpage IS NULL"
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbMain, &pInsert, &p->zErrmsg,
+ "INSERT INTO sqlite_schema VALUES(?,?,?,?,?)"
+ );
+ }
+
+ while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
+ int i;
+ for(i=0; i<5; i++){
+ sqlite3_bind_value(pInsert, i+1, sqlite3_column_value(pSql, i));
+ }
+ sqlite3_step(pInsert);
+ p->rc = sqlite3_reset(pInsert);
+ }
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=0",0,0,&p->zErrmsg);
+ }
+
+ rbuFinalize(p, pSql);
+ rbuFinalize(p, pInsert);
+}
+
+/*
+** Step the RBU object.
+*/
+SQLITE_API int sqlite3rbu_step(sqlite3rbu *p){
+ if( p ){
+ switch( p->eStage ){
+ case RBU_STAGE_OAL: {
+ RbuObjIter *pIter = &p->objiter;
+
+ /* If this is an RBU vacuum operation and the state table was empty
+ ** when this handle was opened, create the target database schema. */
+ if( rbuIsVacuum(p) && p->nProgress==0 && p->rc==SQLITE_OK ){
+ rbuCreateTargetSchema(p);
+ rbuCopyPragma(p, "user_version");
+ rbuCopyPragma(p, "application_id");
+ }
+
+ while( p->rc==SQLITE_OK && pIter->zTbl ){
+
+ if( pIter->bCleanup ){
+ /* Clean up the rbu_tmp_xxx table for the previous table. It
+ ** cannot be dropped as there are currently active SQL statements.
+ ** But the contents can be deleted. */
+ if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
+ rbuMPrintfExec(p, p->dbRbu,
+ "DELETE FROM %s.'rbu_tmp_%q'", p->zStateDb, pIter->zDataTbl
+ );
+ }
+ }else{
+ rbuObjIterPrepareAll(p, pIter, 0);
+
+ /* Advance to the next row to process. */
+ if( p->rc==SQLITE_OK ){
+ int rc = sqlite3_step(pIter->pSelect);
+ if( rc==SQLITE_ROW ){
+ p->nProgress++;
+ p->nStep++;
+ return rbuStep(p);
+ }
+ p->rc = sqlite3_reset(pIter->pSelect);
+ p->nStep = 0;
+ }
+ }
+
+ rbuObjIterNext(p, pIter);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ assert( pIter->zTbl==0 );
+ rbuSaveState(p, RBU_STAGE_MOVE);
+ rbuIncrSchemaCookie(p);
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+ p->eStage = RBU_STAGE_MOVE;
+ }
+ break;
+ }
+
+ case RBU_STAGE_MOVE: {
+ if( p->rc==SQLITE_OK ){
+ rbuMoveOalFile(p);
+ p->nProgress++;
+ }
+ break;
+ }
+
+ case RBU_STAGE_CKPT: {
+ if( p->rc==SQLITE_OK ){
+ if( p->nStep>=p->nFrame ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+
+ /* Sync the db file */
+ p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
+
+ /* Update nBackfill */
+ if( p->rc==SQLITE_OK ){
+ void volatile *ptr;
+ p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr);
+ if( p->rc==SQLITE_OK ){
+ ((u32 volatile*)ptr)[24] = p->iMaxFrame;
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->eStage = RBU_STAGE_DONE;
+ p->rc = SQLITE_DONE;
+ }
+ }else{
+ /* At one point the following block copied a single frame from the
+ ** wal file to the database file. So that one call to sqlite3rbu_step()
+ ** checkpointed a single frame.
+ **
+ ** However, if the sector-size is larger than the page-size, and the
+ ** application calls sqlite3rbu_savestate() or close() immediately
+ ** after this step, then rbu_step() again, then a power failure occurs,
+ ** then the database page written here may be damaged. Work around
+ ** this by checkpointing frames until the next page in the aFrame[]
+ ** lies on a different disk sector to the current one. */
+ u32 iSector;
+ do{
+ RbuFrame *pFrame = &p->aFrame[p->nStep];
+ iSector = (pFrame->iDbPage-1) / p->nPagePerSector;
+ rbuCheckpointFrame(p, pFrame);
+ p->nStep++;
+ }while( p->nStep<p->nFrame
+ && iSector==((p->aFrame[p->nStep].iDbPage-1) / p->nPagePerSector)
+ && p->rc==SQLITE_OK
+ );
+ }
+ p->nProgress++;
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ return p->rc;
+ }else{
+ return SQLITE_NOMEM;
+ }
+}
+
+/*
+** Compare strings z1 and z2, returning 0 if they are identical, or non-zero
+** otherwise. Either or both argument may be NULL. Two NULL values are
+** considered equal, and NULL is considered distinct from all other values.
+*/
+static int rbuStrCompare(const char *z1, const char *z2){
+ if( z1==0 && z2==0 ) return 0;
+ if( z1==0 || z2==0 ) return 1;
+ return (sqlite3_stricmp(z1, z2)!=0);
+}
+
+/*
+** This function is called as part of sqlite3rbu_open() when initializing
+** an rbu handle in OAL stage. If the rbu update has not started (i.e.
+** the rbu_state table was empty) it is a no-op. Otherwise, it arranges
+** things so that the next call to sqlite3rbu_step() continues on from
+** where the previous rbu handle left off.
+**
+** If an error occurs, an error code and error message are left in the
+** rbu handle passed as the first argument.
+*/
+static void rbuSetupOal(sqlite3rbu *p, RbuState *pState){
+ assert( p->rc==SQLITE_OK );
+ if( pState->zTbl ){
+ RbuObjIter *pIter = &p->objiter;
+ int rc = SQLITE_OK;
+
+ while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup
+ || rbuStrCompare(pIter->zIdx, pState->zIdx)
+ || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl))
+ || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl))
+ )){
+ rc = rbuObjIterNext(p, pIter);
+ }
+
+ if( rc==SQLITE_OK && !pIter->zTbl ){
+ rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");
+ }
+
+ if( rc==SQLITE_OK ){
+ p->nStep = pState->nRow;
+ rc = rbuObjIterPrepareAll(p, &p->objiter, p->nStep);
+ }
+
+ p->rc = rc;
+ }
+}
+
+/*
+** If there is a "*-oal" file in the file-system corresponding to the
+** target database in the file-system, delete it. If an error occurs,
+** leave an error code and error message in the rbu handle.
+*/
+static void rbuDeleteOalFile(sqlite3rbu *p){
+ char *zOal = rbuMPrintf(p, "%s-oal", p->zTarget);
+ if( zOal ){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
+ assert( pVfs && p->rc==SQLITE_OK && p->zErrmsg==0 );
+ pVfs->xDelete(pVfs, zOal, 0);
+ sqlite3_free(zOal);
+ }
+}
+
+/*
+** Allocate a private rbu VFS for the rbu handle passed as the only
+** argument. This VFS will be used unless the call to sqlite3rbu_open()
+** specified a URI with a vfs=? option in place of a target database
+** file name.
+*/
+static void rbuCreateVfs(sqlite3rbu *p){
+ int rnd;
+ char zRnd[64];
+
+ assert( p->rc==SQLITE_OK );
+ sqlite3_randomness(sizeof(int), (void*)&rnd);
+ sqlite3_snprintf(sizeof(zRnd), zRnd, "rbu_vfs_%d", rnd);
+ p->rc = sqlite3rbu_create_vfs(zRnd, 0);
+ if( p->rc==SQLITE_OK ){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd);
+ assert( pVfs );
+ p->zVfsName = pVfs->zName;
+ ((rbu_vfs*)pVfs)->pRbu = p;
+ }
+}
+
+/*
+** Destroy the private VFS created for the rbu handle passed as the only
+** argument by an earlier call to rbuCreateVfs().
+*/
+static void rbuDeleteVfs(sqlite3rbu *p){
+ if( p->zVfsName ){
+ sqlite3rbu_destroy_vfs(p->zVfsName);
+ p->zVfsName = 0;
+ }
+}
+
+/*
+** This user-defined SQL function is invoked with a single argument - the
+** name of a table expected to appear in the target database. It returns
+** the number of auxilliary indexes on the table.
+*/
+static void rbuIndexCntFunc(
+ sqlite3_context *pCtx,
+ int nVal,
+ sqlite3_value **apVal
+){
+ sqlite3rbu *p = (sqlite3rbu*)sqlite3_user_data(pCtx);
+ sqlite3_stmt *pStmt = 0;
+ char *zErrmsg = 0;
+ int rc;
+ sqlite3 *db = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
+
+ assert( nVal==1 );
+
+ rc = prepareFreeAndCollectError(db, &pStmt, &zErrmsg,
+ sqlite3_mprintf("SELECT count(*) FROM sqlite_schema "
+ "WHERE type='index' AND tbl_name = %Q", sqlite3_value_text(apVal[0]))
+ );
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error(pCtx, zErrmsg, -1);
+ }else{
+ int nIndex = 0;
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ nIndex = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_int(pCtx, nIndex);
+ }else{
+ sqlite3_result_error(pCtx, sqlite3_errmsg(db), -1);
+ }
+ }
+
+ sqlite3_free(zErrmsg);
+}
+
+/*
+** If the RBU database contains the rbu_count table, use it to initialize
+** the sqlite3rbu.nPhaseOneStep variable. The schema of the rbu_count table
+** is assumed to contain the same columns as:
+**
+** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
+**
+** There should be one row in the table for each data_xxx table in the
+** database. The 'tbl' column should contain the name of a data_xxx table,
+** and the cnt column the number of rows it contains.
+**
+** sqlite3rbu.nPhaseOneStep is initialized to the sum of (1 + nIndex) * cnt
+** for all rows in the rbu_count table, where nIndex is the number of
+** indexes on the corresponding target database table.
+*/
+static void rbuInitPhaseOneSteps(sqlite3rbu *p){
+ if( p->rc==SQLITE_OK ){
+ sqlite3_stmt *pStmt = 0;
+ int bExists = 0; /* True if rbu_count exists */
+
+ p->nPhaseOneStep = -1;
+
+ p->rc = sqlite3_create_function(p->dbRbu,
+ "rbu_index_cnt", 1, SQLITE_UTF8, (void*)p, rbuIndexCntFunc, 0, 0
+ );
+
+ /* Check for the rbu_count table. If it does not exist, or if an error
+ ** occurs, nPhaseOneStep will be left set to -1. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ "SELECT 1 FROM sqlite_schema WHERE tbl_name = 'rbu_count'"
+ );
+ }
+ if( p->rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ bExists = 1;
+ }
+ p->rc = sqlite3_finalize(pStmt);
+ }
+
+ if( p->rc==SQLITE_OK && bExists ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ "SELECT sum(cnt * (1 + rbu_index_cnt(rbu_target_name(tbl))))"
+ "FROM rbu_count"
+ );
+ if( p->rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ p->nPhaseOneStep = sqlite3_column_int64(pStmt, 0);
+ }
+ p->rc = sqlite3_finalize(pStmt);
+ }
+ }
+ }
+}
+
+
+static sqlite3rbu *openRbuHandle(
+ const char *zTarget,
+ const char *zRbu,
+ const char *zState
+){
+ sqlite3rbu *p;
+ size_t nTarget = zTarget ? strlen(zTarget) : 0;
+ size_t nRbu = strlen(zRbu);
+ size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1;
+
+ p = (sqlite3rbu*)sqlite3_malloc64(nByte);
+ if( p ){
+ RbuState *pState = 0;
+
+ /* Create the custom VFS. */
+ memset(p, 0, sizeof(sqlite3rbu));
+ rbuCreateVfs(p);
+
+ /* Open the target, RBU and state databases */
+ if( p->rc==SQLITE_OK ){
+ char *pCsr = (char*)&p[1];
+ int bRetry = 0;
+ if( zTarget ){
+ p->zTarget = pCsr;
+ memcpy(p->zTarget, zTarget, nTarget+1);
+ pCsr += nTarget+1;
+ }
+ p->zRbu = pCsr;
+ memcpy(p->zRbu, zRbu, nRbu+1);
+ pCsr += nRbu+1;
+ if( zState ){
+ p->zState = rbuMPrintf(p, "%s", zState);
+ }
+
+ /* If the first attempt to open the database file fails and the bRetry
+ ** flag it set, this means that the db was not opened because it seemed
+ ** to be a wal-mode db. But, this may have happened due to an earlier
+ ** RBU vacuum operation leaving an old wal file in the directory.
+ ** If this is the case, it will have been checkpointed and deleted
+ ** when the handle was closed and a second attempt to open the
+ ** database may succeed. */
+ rbuOpenDatabase(p, 0, &bRetry);
+ if( bRetry ){
+ rbuOpenDatabase(p, 0, 0);
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pState = rbuLoadState(p);
+ assert( pState || p->rc!=SQLITE_OK );
+ if( p->rc==SQLITE_OK ){
+
+ if( pState->eStage==0 ){
+ rbuDeleteOalFile(p);
+ rbuInitPhaseOneSteps(p);
+ p->eStage = RBU_STAGE_OAL;
+ }else{
+ p->eStage = pState->eStage;
+ p->nPhaseOneStep = pState->nPhaseOneStep;
+ }
+ p->nProgress = pState->nProgress;
+ p->iOalSz = pState->iOalSz;
+ }
+ }
+ assert( p->rc!=SQLITE_OK || p->eStage!=0 );
+
+ if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){
+ if( p->eStage==RBU_STAGE_OAL ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("cannot update wal mode database");
+ }else if( p->eStage==RBU_STAGE_MOVE ){
+ p->eStage = RBU_STAGE_CKPT;
+ p->nStep = 0;
+ }
+ }
+
+ if( p->rc==SQLITE_OK
+ && (p->eStage==RBU_STAGE_OAL || p->eStage==RBU_STAGE_MOVE)
+ && pState->eStage!=0
+ ){
+ rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
+ if( pFd->iCookie!=pState->iCookie ){
+ /* At this point (pTargetFd->iCookie) contains the value of the
+ ** change-counter cookie (the thing that gets incremented when a
+ ** transaction is committed in rollback mode) currently stored on
+ ** page 1 of the database file. */
+ p->rc = SQLITE_BUSY;
+ p->zErrmsg = sqlite3_mprintf("database modified during rbu %s",
+ (rbuIsVacuum(p) ? "vacuum" : "update")
+ );
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ if( p->eStage==RBU_STAGE_OAL ){
+ sqlite3 *db = p->dbMain;
+ p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, &p->zErrmsg);
+
+ /* Point the object iterator at the first object */
+ if( p->rc==SQLITE_OK ){
+ p->rc = rbuObjIterFirst(p, &p->objiter);
+ }
+
+ /* If the RBU database contains no data_xxx tables, declare the RBU
+ ** update finished. */
+ if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){
+ p->rc = SQLITE_DONE;
+ p->eStage = RBU_STAGE_DONE;
+ }else{
+ if( p->rc==SQLITE_OK && pState->eStage==0 && rbuIsVacuum(p) ){
+ rbuCopyPragma(p, "page_size");
+ rbuCopyPragma(p, "auto_vacuum");
+ }
+
+ /* Open transactions both databases. The *-oal file is opened or
+ ** created at this point. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(db, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
+ }
+
+ /* Check if the main database is a zipvfs db. If it is, set the upper
+ ** level pager to use "journal_mode=off". This prevents it from
+ ** generating a large journal using a temp file. */
+ if( p->rc==SQLITE_OK ){
+ int frc = sqlite3_file_control(db, "main", SQLITE_FCNTL_ZIPVFS, 0);
+ if( frc==SQLITE_OK ){
+ p->rc = sqlite3_exec(
+ db, "PRAGMA journal_mode=off",0,0,&p->zErrmsg);
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ rbuSetupOal(p, pState);
+ }
+ }
+ }else if( p->eStage==RBU_STAGE_MOVE ){
+ /* no-op */
+ }else if( p->eStage==RBU_STAGE_CKPT ){
+ if( !rbuIsVacuum(p) && rbuExclusiveCheckpoint(p->dbMain) ){
+ /* If the rbu_exclusive_checkpoint=1 URI parameter was specified
+ ** and an incremental checkpoint is being resumed, attempt an
+ ** exclusive lock on the db file. If this fails, so be it. */
+ p->eStage = RBU_STAGE_DONE;
+ rbuLockDatabase(p->dbMain);
+ p->eStage = RBU_STAGE_CKPT;
+ }
+ rbuSetupCheckpoint(p, pState);
+ }else if( p->eStage==RBU_STAGE_DONE ){
+ p->rc = SQLITE_DONE;
+ }else{
+ p->rc = SQLITE_CORRUPT;
+ }
+ }
+
+ rbuFreeState(pState);
+ }
+
+ return p;
+}
+
+/*
+** Allocate and return an RBU handle with all fields zeroed except for the
+** error code, which is set to SQLITE_MISUSE.
+*/
+static sqlite3rbu *rbuMisuseError(void){
+ sqlite3rbu *pRet;
+ pRet = sqlite3_malloc64(sizeof(sqlite3rbu));
+ if( pRet ){
+ memset(pRet, 0, sizeof(sqlite3rbu));
+ pRet->rc = SQLITE_MISUSE;
+ }
+ return pRet;
+}
+
+/*
+** Open and return a new RBU handle.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_open(
+ const char *zTarget,
+ const char *zRbu,
+ const char *zState
+){
+ if( zTarget==0 || zRbu==0 ){ return rbuMisuseError(); }
+ return openRbuHandle(zTarget, zRbu, zState);
+}
+
+/*
+** Open a handle to begin or resume an RBU VACUUM operation.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_vacuum(
+ const char *zTarget,
+ const char *zState
+){
+ if( zTarget==0 ){ return rbuMisuseError(); }
+ if( zState ){
+ int n = strlen(zState);
+ if( n>=7 && 0==memcmp("-vactmp", &zState[n-7], 7) ){
+ return rbuMisuseError();
+ }
+ }
+ /* TODO: Check that both arguments are non-NULL */
+ return openRbuHandle(0, zTarget, zState);
+}
+
+/*
+** Return the database handle used by pRbu.
+*/
+SQLITE_API sqlite3 *sqlite3rbu_db(sqlite3rbu *pRbu, int bRbu){
+ sqlite3 *db = 0;
+ if( pRbu ){
+ db = (bRbu ? pRbu->dbRbu : pRbu->dbMain);
+ }
+ return db;
+}
+
+
+/*
+** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
+** then edit any error message string so as to remove all occurrences of
+** the pattern "rbu_imp_[0-9]*".
+*/
+static void rbuEditErrmsg(sqlite3rbu *p){
+ if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
+ unsigned int i;
+ size_t nErrmsg = strlen(p->zErrmsg);
+ for(i=0; i<(nErrmsg-8); i++){
+ if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
+ int nDel = 8;
+ while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
+ memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
+ nErrmsg -= nDel;
+ }
+ }
+ }
+}
+
+/*
+** Close the RBU handle.
+*/
+SQLITE_API int sqlite3rbu_close(sqlite3rbu *p, char **pzErrmsg){
+ int rc;
+ if( p ){
+
+ /* Commit the transaction to the *-oal file. */
+ if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
+ p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+
+ /* Sync the db file if currently doing an incremental checkpoint */
+ if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
+ }
+
+ rbuSaveState(p, p->eStage);
+
+ if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
+ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+
+ /* Close any open statement handles. */
+ rbuObjIterFinalize(&p->objiter);
+
+ /* If this is an RBU vacuum handle and the vacuum has either finished
+ ** successfully or encountered an error, delete the contents of the
+ ** state table. This causes the next call to sqlite3rbu_vacuum()
+ ** specifying the current target and state databases to start a new
+ ** vacuum from scratch. */
+ if( rbuIsVacuum(p) && p->rc!=SQLITE_OK && p->dbRbu ){
+ int rc2 = sqlite3_exec(p->dbRbu, "DELETE FROM stat.rbu_state", 0, 0, 0);
+ if( p->rc==SQLITE_DONE && rc2!=SQLITE_OK ) p->rc = rc2;
+ }
+
+ /* Close the open database handle and VFS object. */
+ sqlite3_close(p->dbRbu);
+ sqlite3_close(p->dbMain);
+ assert( p->szTemp==0 );
+ rbuDeleteVfs(p);
+ sqlite3_free(p->aBuf);
+ sqlite3_free(p->aFrame);
+
+ rbuEditErrmsg(p);
+ rc = p->rc;
+ if( pzErrmsg ){
+ *pzErrmsg = p->zErrmsg;
+ }else{
+ sqlite3_free(p->zErrmsg);
+ }
+ sqlite3_free(p->zState);
+ sqlite3_free(p);
+ }else{
+ rc = SQLITE_NOMEM;
+ *pzErrmsg = 0;
+ }
+ return rc;
+}
+
+/*
+** Return the total number of key-value operations (inserts, deletes or
+** updates) that have been performed on the target database since the
+** current RBU update was started.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu){
+ return pRbu->nProgress;
+}
+
+/*
+** Return permyriadage progress indications for the two main stages of
+** an RBU update.
+*/
+SQLITE_API void sqlite3rbu_bp_progress(sqlite3rbu *p, int *pnOne, int *pnTwo){
+ const int MAX_PROGRESS = 10000;
+ switch( p->eStage ){
+ case RBU_STAGE_OAL:
+ if( p->nPhaseOneStep>0 ){
+ *pnOne = (int)(MAX_PROGRESS * (i64)p->nProgress/(i64)p->nPhaseOneStep);
+ }else{
+ *pnOne = -1;
+ }
+ *pnTwo = 0;
+ break;
+
+ case RBU_STAGE_MOVE:
+ *pnOne = MAX_PROGRESS;
+ *pnTwo = 0;
+ break;
+
+ case RBU_STAGE_CKPT:
+ *pnOne = MAX_PROGRESS;
+ *pnTwo = (int)(MAX_PROGRESS * (i64)p->nStep / (i64)p->nFrame);
+ break;
+
+ case RBU_STAGE_DONE:
+ *pnOne = MAX_PROGRESS;
+ *pnTwo = MAX_PROGRESS;
+ break;
+
+ default:
+ assert( 0 );
+ }
+}
+
+/*
+** Return the current state of the RBU vacuum or update operation.
+*/
+SQLITE_API int sqlite3rbu_state(sqlite3rbu *p){
+ int aRes[] = {
+ 0, SQLITE_RBU_STATE_OAL, SQLITE_RBU_STATE_MOVE,
+ 0, SQLITE_RBU_STATE_CHECKPOINT, SQLITE_RBU_STATE_DONE
+ };
+
+ assert( RBU_STAGE_OAL==1 );
+ assert( RBU_STAGE_MOVE==2 );
+ assert( RBU_STAGE_CKPT==4 );
+ assert( RBU_STAGE_DONE==5 );
+ assert( aRes[RBU_STAGE_OAL]==SQLITE_RBU_STATE_OAL );
+ assert( aRes[RBU_STAGE_MOVE]==SQLITE_RBU_STATE_MOVE );
+ assert( aRes[RBU_STAGE_CKPT]==SQLITE_RBU_STATE_CHECKPOINT );
+ assert( aRes[RBU_STAGE_DONE]==SQLITE_RBU_STATE_DONE );
+
+ if( p->rc!=SQLITE_OK && p->rc!=SQLITE_DONE ){
+ return SQLITE_RBU_STATE_ERROR;
+ }else{
+ assert( p->rc!=SQLITE_DONE || p->eStage==RBU_STAGE_DONE );
+ assert( p->eStage==RBU_STAGE_OAL
+ || p->eStage==RBU_STAGE_MOVE
+ || p->eStage==RBU_STAGE_CKPT
+ || p->eStage==RBU_STAGE_DONE
+ );
+ return aRes[p->eStage];
+ }
+}
+
+SQLITE_API int sqlite3rbu_savestate(sqlite3rbu *p){
+ int rc = p->rc;
+ if( rc==SQLITE_DONE ) return SQLITE_OK;
+
+ assert( p->eStage>=RBU_STAGE_OAL && p->eStage<=RBU_STAGE_DONE );
+ if( p->eStage==RBU_STAGE_OAL ){
+ assert( rc!=SQLITE_DONE );
+ if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, 0);
+ }
+
+ /* Sync the db file */
+ if( rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
+ }
+
+ p->rc = rc;
+ rbuSaveState(p, p->eStage);
+ rc = p->rc;
+
+ if( p->eStage==RBU_STAGE_OAL ){
+ assert( rc!=SQLITE_DONE );
+ if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ const char *zBegin = rbuIsVacuum(p) ? "BEGIN" : "BEGIN IMMEDIATE";
+ rc = sqlite3_exec(p->dbRbu, zBegin, 0, 0, 0);
+ }
+ if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0,0);
+ }
+
+ p->rc = rc;
+ return rc;
+}
+
+/**************************************************************************
+** Beginning of RBU VFS shim methods. The VFS shim modifies the behaviour
+** of a standard VFS in the following ways:
+**
+** 1. Whenever the first page of a main database file is read or
+** written, the value of the change-counter cookie is stored in
+** rbu_file.iCookie. Similarly, the value of the "write-version"
+** database header field is stored in rbu_file.iWriteVer. This ensures
+** that the values are always trustworthy within an open transaction.
+**
+** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (rbu_file.pWalFd)
+** member variable of the associated database file descriptor is set
+** to point to the new file. A mutex protected linked list of all main
+** db fds opened using a particular RBU VFS is maintained at
+** rbu_vfs.pMain to facilitate this.
+**
+** 3. Using a new file-control "SQLITE_FCNTL_RBU", a main db rbu_file
+** object can be marked as the target database of an RBU update. This
+** turns on the following extra special behaviour:
+**
+** 3a. If xAccess() is called to check if there exists a *-wal file
+** associated with an RBU target database currently in RBU_STAGE_OAL
+** stage (preparing the *-oal file), the following special handling
+** applies:
+**
+** * if the *-wal file does exist, return SQLITE_CANTOPEN. An RBU
+** target database may not be in wal mode already.
+**
+** * if the *-wal file does not exist, set the output parameter to
+** non-zero (to tell SQLite that it does exist) anyway.
+**
+** Then, when xOpen() is called to open the *-wal file associated with
+** the RBU target in RBU_STAGE_OAL stage, instead of opening the *-wal
+** file, the rbu vfs opens the corresponding *-oal file instead.
+**
+** 3b. The *-shm pages returned by xShmMap() for a target db file in
+** RBU_STAGE_OAL mode are actually stored in heap memory. This is to
+** avoid creating a *-shm file on disk. Additionally, xShmLock() calls
+** are no-ops on target database files in RBU_STAGE_OAL mode. This is
+** because assert() statements in some VFS implementations fail if
+** xShmLock() is called before xShmMap().
+**
+** 3c. If an EXCLUSIVE lock is attempted on a target database file in any
+** mode except RBU_STAGE_DONE (all work completed and checkpointed), it
+** fails with an SQLITE_BUSY error. This is to stop RBU connections
+** from automatically checkpointing a *-wal (or *-oal) file from within
+** sqlite3_close().
+**
+** 3d. In RBU_STAGE_CAPTURE mode, all xRead() calls on the wal file, and
+** all xWrite() calls on the target database file perform no IO.
+** Instead the frame and page numbers that would be read and written
+** are recorded. Additionally, successful attempts to obtain exclusive
+** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target
+** database file are recorded. xShmLock() calls to unlock the same
+** locks are no-ops (so that once obtained, these locks are never
+** relinquished). Finally, calls to xSync() on the target database
+** file fail with SQLITE_INTERNAL errors.
+*/
+
+static void rbuUnlockShm(rbu_file *p){
+ assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
+ if( p->pRbu ){
+ int (*xShmLock)(sqlite3_file*,int,int,int) = p->pReal->pMethods->xShmLock;
+ int i;
+ for(i=0; i<SQLITE_SHM_NLOCK;i++){
+ if( (1<<i) & p->pRbu->mLock ){
+ xShmLock(p->pReal, i, 1, SQLITE_SHM_UNLOCK|SQLITE_SHM_EXCLUSIVE);
+ }
+ }
+ p->pRbu->mLock = 0;
+ }
+}
+
+/*
+*/
+static int rbuUpdateTempSize(rbu_file *pFd, sqlite3_int64 nNew){
+ sqlite3rbu *pRbu = pFd->pRbu;
+ i64 nDiff = nNew - pFd->sz;
+ pRbu->szTemp += nDiff;
+ pFd->sz = nNew;
+ assert( pRbu->szTemp>=0 );
+ if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
+ return SQLITE_OK;
+}
+
+/*
+** Add an item to the main-db lists, if it is not already present.
+**
+** There are two main-db lists. One for all file descriptors, and one
+** for all file descriptors with rbu_file.pDb!=0. If the argument has
+** rbu_file.pDb!=0, then it is assumed to already be present on the
+** main list and is only added to the pDb!=0 list.
+*/
+static void rbuMainlistAdd(rbu_file *p){
+ rbu_vfs *pRbuVfs = p->pRbuVfs;
+ rbu_file *pIter;
+ assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) );
+ sqlite3_mutex_enter(pRbuVfs->mutex);
+ if( p->pRbu==0 ){
+ for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext);
+ p->pMainNext = pRbuVfs->pMain;
+ pRbuVfs->pMain = p;
+ }else{
+ for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){}
+ if( pIter==0 ){
+ p->pMainRbuNext = pRbuVfs->pMainRbu;
+ pRbuVfs->pMainRbu = p;
+ }
+ }
+ sqlite3_mutex_leave(pRbuVfs->mutex);
+}
+
+/*
+** Remove an item from the main-db lists.
+*/
+static void rbuMainlistRemove(rbu_file *p){
+ rbu_file **pp;
+ sqlite3_mutex_enter(p->pRbuVfs->mutex);
+ for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){}
+ if( *pp ) *pp = p->pMainNext;
+ p->pMainNext = 0;
+ for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){}
+ if( *pp ) *pp = p->pMainRbuNext;
+ p->pMainRbuNext = 0;
+ sqlite3_mutex_leave(p->pRbuVfs->mutex);
+}
+
+/*
+** Given that zWal points to a buffer containing a wal file name passed to
+** either the xOpen() or xAccess() VFS method, search the main-db list for
+** a file-handle opened by the same database connection on the corresponding
+** database file.
+**
+** If parameter bRbu is true, only search for file-descriptors with
+** rbu_file.pDb!=0.
+*/
+static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){
+ rbu_file *pDb;
+ sqlite3_mutex_enter(pRbuVfs->mutex);
+ if( bRbu ){
+ for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){}
+ }else{
+ for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
+ }
+ sqlite3_mutex_leave(pRbuVfs->mutex);
+ return pDb;
+}
+
+/*
+** Close an rbu file.
+*/
+static int rbuVfsClose(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file*)pFile;
+ int rc;
+ int i;
+
+ /* Free the contents of the apShm[] array. And the array itself. */
+ for(i=0; i<p->nShm; i++){
+ sqlite3_free(p->apShm[i]);
+ }
+ sqlite3_free(p->apShm);
+ p->apShm = 0;
+ sqlite3_free(p->zDel);
+
+ if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
+ rbuMainlistRemove(p);
+ rbuUnlockShm(p);
+ p->pReal->pMethods->xShmUnmap(p->pReal, 0);
+ }
+ else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
+ rbuUpdateTempSize(p, 0);
+ }
+ assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p );
+
+ /* Close the underlying file handle */
+ rc = p->pReal->pMethods->xClose(p->pReal);
+ return rc;
+}
+
+
+/*
+** Read and return an unsigned 32-bit big-endian integer from the buffer
+** passed as the only argument.
+*/
+static u32 rbuGetU32(u8 *aBuf){
+ return ((u32)aBuf[0] << 24)
+ + ((u32)aBuf[1] << 16)
+ + ((u32)aBuf[2] << 8)
+ + ((u32)aBuf[3]);
+}
+
+/*
+** Write an unsigned 32-bit value in big-endian format to the supplied
+** buffer.
+*/
+static void rbuPutU32(u8 *aBuf, u32 iVal){
+ aBuf[0] = (iVal >> 24) & 0xFF;
+ aBuf[1] = (iVal >> 16) & 0xFF;
+ aBuf[2] = (iVal >> 8) & 0xFF;
+ aBuf[3] = (iVal >> 0) & 0xFF;
+}
+
+static void rbuPutU16(u8 *aBuf, u16 iVal){
+ aBuf[0] = (iVal >> 8) & 0xFF;
+ aBuf[1] = (iVal >> 0) & 0xFF;
+}
+
+/*
+** Read data from an rbuVfs-file.
+*/
+static int rbuVfsRead(
+ sqlite3_file *pFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc;
+
+ if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
+ assert( p->openFlags & SQLITE_OPEN_WAL );
+ rc = rbuCaptureWalRead(p->pRbu, iOfst, iAmt);
+ }else{
+ if( pRbu && pRbu->eStage==RBU_STAGE_OAL
+ && (p->openFlags & SQLITE_OPEN_WAL)
+ && iOfst>=pRbu->iOalSz
+ ){
+ rc = SQLITE_OK;
+ memset(zBuf, 0, iAmt);
+ }else{
+ rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
+#if 1
+ /* If this is being called to read the first page of the target
+ ** database as part of an rbu vacuum operation, synthesize the
+ ** contents of the first page if it does not yet exist. Otherwise,
+ ** SQLite will not check for a *-wal file. */
+ if( pRbu && rbuIsVacuum(pRbu)
+ && rc==SQLITE_IOERR_SHORT_READ && iOfst==0
+ && (p->openFlags & SQLITE_OPEN_MAIN_DB)
+ && pRbu->rc==SQLITE_OK
+ ){
+ sqlite3_file *pFd = (sqlite3_file*)pRbu->pRbuFd;
+ rc = pFd->pMethods->xRead(pFd, zBuf, iAmt, iOfst);
+ if( rc==SQLITE_OK ){
+ u8 *aBuf = (u8*)zBuf;
+ u32 iRoot = rbuGetU32(&aBuf[52]) ? 1 : 0;
+ rbuPutU32(&aBuf[52], iRoot); /* largest root page number */
+ rbuPutU32(&aBuf[36], 0); /* number of free pages */
+ rbuPutU32(&aBuf[32], 0); /* first page on free list trunk */
+ rbuPutU32(&aBuf[28], 1); /* size of db file in pages */
+ rbuPutU32(&aBuf[24], pRbu->pRbuFd->iCookie+1); /* Change counter */
+
+ if( iAmt>100 ){
+ memset(&aBuf[100], 0, iAmt-100);
+ rbuPutU16(&aBuf[105], iAmt & 0xFFFF);
+ aBuf[100] = 0x0D;
+ }
+ }
+ }
+#endif
+ }
+ if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
+ /* These look like magic numbers. But they are stable, as they are part
+ ** of the definition of the SQLite file format, which may not change. */
+ u8 *pBuf = (u8*)zBuf;
+ p->iCookie = rbuGetU32(&pBuf[24]);
+ p->iWriteVer = pBuf[19];
+ }
+ }
+ return rc;
+}
+
+/*
+** Write data to an rbuVfs-file.
+*/
+static int rbuVfsWrite(
+ sqlite3_file *pFile,
+ const void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc;
+
+ if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
+ assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
+ rc = rbuCaptureDbWrite(p->pRbu, iOfst);
+ }else{
+ if( pRbu ){
+ if( pRbu->eStage==RBU_STAGE_OAL
+ && (p->openFlags & SQLITE_OPEN_WAL)
+ && iOfst>=pRbu->iOalSz
+ ){
+ pRbu->iOalSz = iAmt + iOfst;
+ }else if( p->openFlags & SQLITE_OPEN_DELETEONCLOSE ){
+ i64 szNew = iAmt+iOfst;
+ if( szNew>p->sz ){
+ rc = rbuUpdateTempSize(p, szNew);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }
+ }
+ rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
+ if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
+ /* These look like magic numbers. But they are stable, as they are part
+ ** of the definition of the SQLite file format, which may not change. */
+ u8 *pBuf = (u8*)zBuf;
+ p->iCookie = rbuGetU32(&pBuf[24]);
+ p->iWriteVer = pBuf[19];
+ }
+ }
+ return rc;
+}
+
+/*
+** Truncate an rbuVfs-file.
+*/
+static int rbuVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
+ rbu_file *p = (rbu_file*)pFile;
+ if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
+ int rc = rbuUpdateTempSize(p, size);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ return p->pReal->pMethods->xTruncate(p->pReal, size);
+}
+
+/*
+** Sync an rbuVfs-file.
+*/
+static int rbuVfsSync(sqlite3_file *pFile, int flags){
+ rbu_file *p = (rbu_file *)pFile;
+ if( p->pRbu && p->pRbu->eStage==RBU_STAGE_CAPTURE ){
+ if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
+ return SQLITE_INTERNAL;
+ }
+ return SQLITE_OK;
+ }
+ return p->pReal->pMethods->xSync(p->pReal, flags);
+}
+
+/*
+** Return the current file-size of an rbuVfs-file.
+*/
+static int rbuVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
+ rbu_file *p = (rbu_file *)pFile;
+ int rc;
+ rc = p->pReal->pMethods->xFileSize(p->pReal, pSize);
+
+ /* If this is an RBU vacuum operation and this is the target database,
+ ** pretend that it has at least one page. Otherwise, SQLite will not
+ ** check for the existance of a *-wal file. rbuVfsRead() contains
+ ** similar logic. */
+ if( rc==SQLITE_OK && *pSize==0
+ && p->pRbu && rbuIsVacuum(p->pRbu)
+ && (p->openFlags & SQLITE_OPEN_MAIN_DB)
+ ){
+ *pSize = 1024;
+ }
+ return rc;
+}
+
+/*
+** Lock an rbuVfs-file.
+*/
+static int rbuVfsLock(sqlite3_file *pFile, int eLock){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc = SQLITE_OK;
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( eLock==SQLITE_LOCK_EXCLUSIVE
+ && (p->bNolock || (pRbu && pRbu->eStage!=RBU_STAGE_DONE))
+ ){
+ /* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this
+ ** prevents it from checkpointing the database from sqlite3_close(). */
+ rc = SQLITE_BUSY;
+ }else{
+ rc = p->pReal->pMethods->xLock(p->pReal, eLock);
+ }
+
+ return rc;
+}
+
+/*
+** Unlock an rbuVfs-file.
+*/
+static int rbuVfsUnlock(sqlite3_file *pFile, int eLock){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xUnlock(p->pReal, eLock);
+}
+
+/*
+** Check if another file-handle holds a RESERVED lock on an rbuVfs-file.
+*/
+static int rbuVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
+}
+
+/*
+** File control method. For custom operations on an rbuVfs-file.
+*/
+static int rbuVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
+ rbu_file *p = (rbu_file *)pFile;
+ int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
+ int rc;
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB)
+ || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL)
+ );
+ if( op==SQLITE_FCNTL_RBU ){
+ sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
+
+ /* First try to find another RBU vfs lower down in the vfs stack. If
+ ** one is found, this vfs will operate in pass-through mode. The lower
+ ** level vfs will do the special RBU handling. */
+ rc = xControl(p->pReal, op, pArg);
+
+ if( rc==SQLITE_NOTFOUND ){
+ /* Now search for a zipvfs instance lower down in the VFS stack. If
+ ** one is found, this is an error. */
+ void *dummy = 0;
+ rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_ERROR;
+ pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
+ }else if( rc==SQLITE_NOTFOUND ){
+ pRbu->pTargetFd = p;
+ p->pRbu = pRbu;
+ rbuMainlistAdd(p);
+ if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+ }
+ else if( op==SQLITE_FCNTL_RBUCNT ){
+ sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
+ pRbu->nRbu++;
+ pRbu->pRbuFd = p;
+ p->bNolock = 1;
+ }
+
+ rc = xControl(p->pReal, op, pArg);
+ if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
+ rbu_vfs *pRbuVfs = p->pRbuVfs;
+ char *zIn = *(char**)pArg;
+ char *zOut = sqlite3_mprintf("rbu(%s)/%z", pRbuVfs->base.zName, zIn);
+ *(char**)pArg = zOut;
+ if( zOut==0 ) rc = SQLITE_NOMEM;
+ }
+
+ return rc;
+}
+
+/*
+** Return the sector-size in bytes for an rbuVfs-file.
+*/
+static int rbuVfsSectorSize(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xSectorSize(p->pReal);
+}
+
+/*
+** Return the device characteristic flags supported by an rbuVfs-file.
+*/
+static int rbuVfsDeviceCharacteristics(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
+}
+
+/*
+** Take or release a shared-memory lock.
+*/
+static int rbuVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_AMALGAMATION
+ assert( WAL_CKPT_LOCK==1 );
+#endif
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( pRbu && (
+ pRbu->eStage==RBU_STAGE_OAL
+ || pRbu->eStage==RBU_STAGE_MOVE
+ || pRbu->eStage==RBU_STAGE_DONE
+ )){
+ /* Prevent SQLite from taking a shm-lock on the target file when it
+ ** is supplying heap memory to the upper layer in place of *-shm
+ ** segments. */
+ if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY;
+ }else{
+ int bCapture = 0;
+ if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
+ bCapture = 1;
+ }
+ if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){
+ rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
+ if( bCapture && rc==SQLITE_OK ){
+ pRbu->mLock |= ((1<<n) - 1) << ofst;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file.
+*/
+static int rbuVfsShmMap(
+ sqlite3_file *pFile,
+ int iRegion,
+ int szRegion,
+ int isWrite,
+ void volatile **pp
+){
+ rbu_file *p = (rbu_file*)pFile;
+ int rc = SQLITE_OK;
+ int eStage = (p->pRbu ? p->pRbu->eStage : 0);
+
+ /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
+ ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space
+ ** instead of a file on disk. */
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( eStage==RBU_STAGE_OAL ){
+ sqlite3_int64 nByte = (iRegion+1) * sizeof(char*);
+ char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
+
+ /* This is an RBU connection that uses its own heap memory for the
+ ** pages of the *-shm file. Since no other process can have run
+ ** recovery, the connection must request *-shm pages in order
+ ** from start to finish. */
+ assert( iRegion==p->nShm );
+ if( apNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
+ p->apShm = apNew;
+ p->nShm = iRegion+1;
+ }
+
+ if( rc==SQLITE_OK ){
+ char *pNew = (char*)sqlite3_malloc64(szRegion);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew, 0, szRegion);
+ p->apShm[iRegion] = pNew;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ *pp = p->apShm[iRegion];
+ }else{
+ *pp = 0;
+ }
+ }else{
+ assert( p->apShm==0 );
+ rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
+ }
+
+ return rc;
+}
+
+/*
+** Memory barrier.
+*/
+static void rbuVfsShmBarrier(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file *)pFile;
+ p->pReal->pMethods->xShmBarrier(p->pReal);
+}
+
+/*
+** The xShmUnmap method.
+*/
+static int rbuVfsShmUnmap(sqlite3_file *pFile, int delFlag){
+ rbu_file *p = (rbu_file*)pFile;
+ int rc = SQLITE_OK;
+ int eStage = (p->pRbu ? p->pRbu->eStage : 0);
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
+ /* no-op */
+ }else{
+ /* Release the checkpointer and writer locks */
+ rbuUnlockShm(p);
+ rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
+ }
+ return rc;
+}
+
+/*
+** Open an rbu file handle.
+*/
+static int rbuVfsOpen(
+ sqlite3_vfs *pVfs,
+ const char *zName,
+ sqlite3_file *pFile,
+ int flags,
+ int *pOutFlags
+){
+ static sqlite3_io_methods rbuvfs_io_methods = {
+ 2, /* iVersion */
+ rbuVfsClose, /* xClose */
+ rbuVfsRead, /* xRead */
+ rbuVfsWrite, /* xWrite */
+ rbuVfsTruncate, /* xTruncate */
+ rbuVfsSync, /* xSync */
+ rbuVfsFileSize, /* xFileSize */
+ rbuVfsLock, /* xLock */
+ rbuVfsUnlock, /* xUnlock */
+ rbuVfsCheckReservedLock, /* xCheckReservedLock */
+ rbuVfsFileControl, /* xFileControl */
+ rbuVfsSectorSize, /* xSectorSize */
+ rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
+ rbuVfsShmMap, /* xShmMap */
+ rbuVfsShmLock, /* xShmLock */
+ rbuVfsShmBarrier, /* xShmBarrier */
+ rbuVfsShmUnmap, /* xShmUnmap */
+ 0, 0 /* xFetch, xUnfetch */
+ };
+ rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
+ sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
+ rbu_file *pFd = (rbu_file *)pFile;
+ int rc = SQLITE_OK;
+ const char *zOpen = zName;
+ int oflags = flags;
+
+ memset(pFd, 0, sizeof(rbu_file));
+ pFd->pReal = (sqlite3_file*)&pFd[1];
+ pFd->pRbuVfs = pRbuVfs;
+ pFd->openFlags = flags;
+ if( zName ){
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ /* A main database has just been opened. The following block sets
+ ** (pFd->zWal) to point to a buffer owned by SQLite that contains
+ ** the name of the *-wal file this db connection will use. SQLite
+ ** happens to pass a pointer to this buffer when using xAccess()
+ ** or xOpen() to operate on the *-wal file. */
+ pFd->zWal = sqlite3_filename_wal(zName);
+ }
+ else if( flags & SQLITE_OPEN_WAL ){
+ rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0);
+ if( pDb ){
+ if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
+ /* This call is to open a *-wal file. Intead, open the *-oal. */
+ size_t nOpen;
+ if( rbuIsVacuum(pDb->pRbu) ){
+ zOpen = sqlite3_db_filename(pDb->pRbu->dbRbu, "main");
+ zOpen = sqlite3_filename_wal(zOpen);
+ }
+ nOpen = strlen(zOpen);
+ ((char*)zOpen)[nOpen-3] = 'o';
+ pFd->pRbu = pDb->pRbu;
+ }
+ pDb->pWalFd = pFd;
+ }
+ }
+ }else{
+ pFd->pRbu = pRbuVfs->pRbu;
+ }
+
+ if( oflags & SQLITE_OPEN_MAIN_DB
+ && sqlite3_uri_boolean(zName, "rbu_memory", 0)
+ ){
+ assert( oflags & SQLITE_OPEN_MAIN_DB );
+ oflags = SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ zOpen = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, oflags, pOutFlags);
+ }
+ if( pFd->pReal->pMethods ){
+ /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
+ ** pointer and, if the file is a main database file, link it into the
+ ** mutex protected linked list of all such files. */
+ pFile->pMethods = &rbuvfs_io_methods;
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ rbuMainlistAdd(pFd);
+ }
+ }else{
+ sqlite3_free(pFd->zDel);
+ }
+
+ return rc;
+}
+
+/*
+** Delete the file located at zPath.
+*/
+static int rbuVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xDelete(pRealVfs, zPath, dirSync);
+}
+
+/*
+** Test for access permissions. Return true if the requested permission
+** is available, or false otherwise.
+*/
+static int rbuVfsAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
+ sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
+ int rc;
+
+ rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut);
+
+ /* If this call is to check if a *-wal file associated with an RBU target
+ ** database connection exists, and the RBU update is in RBU_STAGE_OAL,
+ ** the following special handling is activated:
+ **
+ ** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This
+ ** ensures that the RBU extension never tries to update a database
+ ** in wal mode, even if the first page of the database file has
+ ** been damaged.
+ **
+ ** b) if the *-wal file does not exist, claim that it does anyway,
+ ** causing SQLite to call xOpen() to open it. This call will also
+ ** be intercepted (see the rbuVfsOpen() function) and the *-oal
+ ** file opened instead.
+ */
+ if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
+ rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1);
+ if( pDb && pDb->pRbu->eStage==RBU_STAGE_OAL ){
+ assert( pDb->pRbu );
+ if( *pResOut ){
+ rc = SQLITE_CANTOPEN;
+ }else{
+ sqlite3_int64 sz = 0;
+ rc = rbuVfsFileSize(&pDb->base, &sz);
+ *pResOut = (sz>0);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Populate buffer zOut with the full canonical pathname corresponding
+** to the pathname in zPath. zOut is guaranteed to point to a buffer
+** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
+*/
+static int rbuVfsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nOut,
+ char *zOut
+){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut);
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Open the dynamic library located at zPath and return a handle.
+*/
+static void *rbuVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xDlOpen(pRealVfs, zPath);
+}
+
+/*
+** Populate the buffer zErrMsg (size nByte bytes) with a human readable
+** utf-8 string describing the most recent error encountered associated
+** with dynamic libraries.
+*/
+static void rbuVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ pRealVfs->xDlError(pRealVfs, nByte, zErrMsg);
+}
+
+/*
+** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
+*/
+static void (*rbuVfsDlSym(
+ sqlite3_vfs *pVfs,
+ void *pArg,
+ const char *zSym
+))(void){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xDlSym(pRealVfs, pArg, zSym);
+}
+
+/*
+** Close the dynamic library handle pHandle.
+*/
+static void rbuVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ pRealVfs->xDlClose(pRealVfs, pHandle);
+}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+
+/*
+** Populate the buffer pointed to by zBufOut with nByte bytes of
+** random data.
+*/
+static int rbuVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut);
+}
+
+/*
+** Sleep for nMicro microseconds. Return the number of microseconds
+** actually slept.
+*/
+static int rbuVfsSleep(sqlite3_vfs *pVfs, int nMicro){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xSleep(pRealVfs, nMicro);
+}
+
+/*
+** Return the current time as a Julian Day number in *pTimeOut.
+*/
+static int rbuVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xCurrentTime(pRealVfs, pTimeOut);
+}
+
+/*
+** No-op.
+*/
+static int rbuVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){
+ return 0;
+}
+
+/*
+** Deregister and destroy an RBU vfs created by an earlier call to
+** sqlite3rbu_create_vfs().
+*/
+SQLITE_API void sqlite3rbu_destroy_vfs(const char *zName){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(zName);
+ if( pVfs && pVfs->xOpen==rbuVfsOpen ){
+ sqlite3_mutex_free(((rbu_vfs*)pVfs)->mutex);
+ sqlite3_vfs_unregister(pVfs);
+ sqlite3_free(pVfs);
+ }
+}
+
+/*
+** Create an RBU VFS named zName that accesses the underlying file-system
+** via existing VFS zParent. The new object is registered as a non-default
+** VFS with SQLite before returning.
+*/
+SQLITE_API int sqlite3rbu_create_vfs(const char *zName, const char *zParent){
+
+ /* Template for VFS */
+ static sqlite3_vfs vfs_template = {
+ 1, /* iVersion */
+ 0, /* szOsFile */
+ 0, /* mxPathname */
+ 0, /* pNext */
+ 0, /* zName */
+ 0, /* pAppData */
+ rbuVfsOpen, /* xOpen */
+ rbuVfsDelete, /* xDelete */
+ rbuVfsAccess, /* xAccess */
+ rbuVfsFullPathname, /* xFullPathname */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+ rbuVfsDlOpen, /* xDlOpen */
+ rbuVfsDlError, /* xDlError */
+ rbuVfsDlSym, /* xDlSym */
+ rbuVfsDlClose, /* xDlClose */
+#else
+ 0, 0, 0, 0,
+#endif
+
+ rbuVfsRandomness, /* xRandomness */
+ rbuVfsSleep, /* xSleep */
+ rbuVfsCurrentTime, /* xCurrentTime */
+ rbuVfsGetLastError, /* xGetLastError */
+ 0, /* xCurrentTimeInt64 (version 2) */
+ 0, 0, 0 /* Unimplemented version 3 methods */
+ };
+
+ rbu_vfs *pNew = 0; /* Newly allocated VFS */
+ int rc = SQLITE_OK;
+ size_t nName;
+ size_t nByte;
+
+ nName = strlen(zName);
+ nByte = sizeof(rbu_vfs) + nName + 1;
+ pNew = (rbu_vfs*)sqlite3_malloc64(nByte);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_vfs *pParent; /* Parent VFS */
+ memset(pNew, 0, nByte);
+ pParent = sqlite3_vfs_find(zParent);
+ if( pParent==0 ){
+ rc = SQLITE_NOTFOUND;
+ }else{
+ char *zSpace;
+ memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs));
+ pNew->base.mxPathname = pParent->mxPathname;
+ pNew->base.szOsFile = sizeof(rbu_file) + pParent->szOsFile;
+ pNew->pRealVfs = pParent;
+ pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]);
+ memcpy(zSpace, zName, nName);
+
+ /* Allocate the mutex and register the new VFS (not as the default) */
+ pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
+ if( pNew->mutex==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_vfs_register(&pNew->base, 0);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_mutex_free(pNew->mutex);
+ sqlite3_free(pNew);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Configure the aggregate temp file size limit for this RBU handle.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu *pRbu, sqlite3_int64 n){
+ if( n>=0 ){
+ pRbu->szTempLimit = n;
+ }
+ return pRbu->szTempLimit;
+}
+
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu *pRbu){
+ return pRbu->szTemp;
+}
+
+
+/**************************************************************************/
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) */
+
+/************** End of sqlite3rbu.c ******************************************/
+/************** Begin file dbstat.c ******************************************/
+/*
+** 2010 July 12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains an implementation of the "dbstat" virtual table.
+**
+** The dbstat virtual table is used to extract low-level storage
+** information from an SQLite database in order to implement the
+** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script
+** for an example implementation.
+**
+** Additional information is available on the "dbstat.html" page of the
+** official SQLite documentation.
+*/
+
+/* #include "sqliteInt.h" ** Requires access to internal data structures ** */
+#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
+ && !defined(SQLITE_OMIT_VIRTUALTABLE)
+
+/*
+** The pager and btree modules arrange objects in memory so that there are
+** always approximately 200 bytes of addressable memory following each page
+** buffer. This way small buffer overreads caused by corrupt database pages
+** do not cause undefined behaviour. This module pads each page buffer
+** by the following number of bytes for the same purpose.
+*/
+#define DBSTAT_PAGE_PADDING_BYTES 256
+
+/*
+** Page paths:
+**
+** The value of the 'path' column describes the path taken from the
+** root-node of the b-tree structure to each page. The value of the
+** root-node path is '/'.
+**
+** The value of the path for the left-most child page of the root of
+** a b-tree is '/000/'. (Btrees store content ordered from left to right
+** so the pages to the left have smaller keys than the pages to the right.)
+** The next to left-most child of the root page is
+** '/001', and so on, each sibling page identified by a 3-digit hex
+** value. The children of the 451st left-most sibling have paths such
+** as '/1c2/000/, '/1c2/001/' etc.
+**
+** Overflow pages are specified by appending a '+' character and a
+** six-digit hexadecimal value to the path to the cell they are linked
+** from. For example, the three overflow pages in a chain linked from
+** the left-most cell of the 450th child of the root page are identified
+** by the paths:
+**
+** '/1c2/000+000000' // First page in overflow chain
+** '/1c2/000+000001' // Second page in overflow chain
+** '/1c2/000+000002' // Third page in overflow chain
+**
+** If the paths are sorted using the BINARY collation sequence, then
+** the overflow pages associated with a cell will appear earlier in the
+** sort-order than its child page:
+**
+** '/1c2/000/' // Left-most child of 451st child of root
+*/
+static const char zDbstatSchema[] =
+ "CREATE TABLE x("
+ " name TEXT," /* 0 Name of table or index */
+ " path TEXT," /* 1 Path to page from root (NULL for agg) */
+ " pageno INTEGER," /* 2 Page number (page count for aggregates) */
+ " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */
+ " ncell INTEGER," /* 4 Cells on page (0 for overflow) */
+ " payload INTEGER," /* 5 Bytes of payload on this page */
+ " unused INTEGER," /* 6 Bytes of unused space on this page */
+ " mx_payload INTEGER," /* 7 Largest payload size of all cells */
+ " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */
+ " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */
+ " schema TEXT HIDDEN," /* 10 Database schema being analyzed */
+ " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */
+ ")"
+;
+
+/* Forward reference to data structured used in this module */
+typedef struct StatTable StatTable;
+typedef struct StatCursor StatCursor;
+typedef struct StatPage StatPage;
+typedef struct StatCell StatCell;
+
+/* Size information for a single cell within a btree page */
+struct StatCell {
+ int nLocal; /* Bytes of local payload */
+ u32 iChildPg; /* Child node (or 0 if this is a leaf) */
+ int nOvfl; /* Entries in aOvfl[] */
+ u32 *aOvfl; /* Array of overflow page numbers */
+ int nLastOvfl; /* Bytes of payload on final overflow page */
+ int iOvfl; /* Iterates through aOvfl[] */
+};
+
+/* Size information for a single btree page */
+struct StatPage {
+ u32 iPgno; /* Page number */
+ u8 *aPg; /* Page buffer from sqlite3_malloc() */
+ int iCell; /* Current cell */
+ char *zPath; /* Path to this page */
+
+ /* Variables populated by statDecodePage(): */
+ u8 flags; /* Copy of flags byte */
+ int nCell; /* Number of cells on page */
+ int nUnused; /* Number of unused bytes on page */
+ StatCell *aCell; /* Array of parsed cells */
+ u32 iRightChildPg; /* Right-child page number (or 0) */
+ int nMxPayload; /* Largest payload of any cell on the page */
+};
+
+/* The cursor for scanning the dbstat virtual table */
+struct StatCursor {
+ sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */
+ sqlite3_stmt *pStmt; /* Iterates through set of root pages */
+ u8 isEof; /* After pStmt has returned SQLITE_DONE */
+ u8 isAgg; /* Aggregate results for each table */
+ int iDb; /* Schema used for this query */
+
+ StatPage aPage[32]; /* Pages in path to current page */
+ int iPage; /* Current entry in aPage[] */
+
+ /* Values to return. */
+ u32 iPageno; /* Value of 'pageno' column */
+ char *zName; /* Value of 'name' column */
+ char *zPath; /* Value of 'path' column */
+ char *zPagetype; /* Value of 'pagetype' column */
+ int nPage; /* Number of pages in current btree */
+ int nCell; /* Value of 'ncell' column */
+ int nMxPayload; /* Value of 'mx_payload' column */
+ i64 nUnused; /* Value of 'unused' column */
+ i64 nPayload; /* Value of 'payload' column */
+ i64 iOffset; /* Value of 'pgOffset' column */
+ i64 szPage; /* Value of 'pgSize' column */
+};
+
+/* An instance of the DBSTAT virtual table */
+struct StatTable {
+ sqlite3_vtab base; /* base class. MUST BE FIRST! */
+ sqlite3 *db; /* Database connection that owns this vtab */
+ int iDb; /* Index of database to analyze */
+};
+
+#ifndef get2byte
+# define get2byte(x) ((x)[0]<<8 | (x)[1])
+#endif
+
+/*
+** Connect to or create a new DBSTAT virtual table.
+*/
+static int statConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ StatTable *pTab = 0;
+ int rc = SQLITE_OK;
+ int iDb;
+
+ if( argc>=4 ){
+ Token nm;
+ sqlite3TokenInit(&nm, (char*)argv[3]);
+ iDb = sqlite3FindDb(db, &nm);
+ if( iDb<0 ){
+ *pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
+ return SQLITE_ERROR;
+ }
+ }else{
+ iDb = 0;
+ }
+ sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
+ rc = sqlite3_declare_vtab(db, zDbstatSchema);
+ if( rc==SQLITE_OK ){
+ pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable));
+ if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+
+ assert( rc==SQLITE_OK || pTab==0 );
+ if( rc==SQLITE_OK ){
+ memset(pTab, 0, sizeof(StatTable));
+ pTab->db = db;
+ pTab->iDb = iDb;
+ }
+
+ *ppVtab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** Disconnect from or destroy the DBSTAT virtual table.
+*/
+static int statDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Compute the best query strategy and return the result in idxNum.
+**
+** idxNum-Bit Meaning
+** ---------- ----------------------------------------------
+** 0x01 There is a schema=? term in the WHERE clause
+** 0x02 There is a name=? term in the WHERE clause
+** 0x04 There is an aggregate=? term in the WHERE clause
+** 0x08 Output should be ordered by name and path
+*/
+static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int i;
+ int iSchema = -1;
+ int iName = -1;
+ int iAgg = -1;
+
+ /* Look for a valid schema=? constraint. If found, change the idxNum to
+ ** 1 and request the value of that constraint be sent to xFilter. And
+ ** lower the cost estimate to encourage the constrained version to be
+ ** used.
+ */
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
+ if( pIdxInfo->aConstraint[i].usable==0 ){
+ /* Force DBSTAT table should always be the right-most table in a join */
+ return SQLITE_CONSTRAINT;
+ }
+ switch( pIdxInfo->aConstraint[i].iColumn ){
+ case 0: { /* name */
+ iName = i;
+ break;
+ }
+ case 10: { /* schema */
+ iSchema = i;
+ break;
+ }
+ case 11: { /* aggregate */
+ iAgg = i;
+ break;
+ }
+ }
+ }
+ i = 0;
+ if( iSchema>=0 ){
+ pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i;
+ pIdxInfo->aConstraintUsage[iSchema].omit = 1;
+ pIdxInfo->idxNum |= 0x01;
+ }
+ if( iName>=0 ){
+ pIdxInfo->aConstraintUsage[iName].argvIndex = ++i;
+ pIdxInfo->idxNum |= 0x02;
+ }
+ if( iAgg>=0 ){
+ pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i;
+ pIdxInfo->idxNum |= 0x04;
+ }
+ pIdxInfo->estimatedCost = 1.0;
+
+ /* Records are always returned in ascending order of (name, path).
+ ** If this will satisfy the client, set the orderByConsumed flag so that
+ ** SQLite does not do an external sort.
+ */
+ if( ( pIdxInfo->nOrderBy==1
+ && pIdxInfo->aOrderBy[0].iColumn==0
+ && pIdxInfo->aOrderBy[0].desc==0
+ ) ||
+ ( pIdxInfo->nOrderBy==2
+ && pIdxInfo->aOrderBy[0].iColumn==0
+ && pIdxInfo->aOrderBy[0].desc==0
+ && pIdxInfo->aOrderBy[1].iColumn==1
+ && pIdxInfo->aOrderBy[1].desc==0
+ )
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ pIdxInfo->idxNum |= 0x08;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Open a new DBSTAT cursor.
+*/
+static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ StatTable *pTab = (StatTable *)pVTab;
+ StatCursor *pCsr;
+
+ pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ memset(pCsr, 0, sizeof(StatCursor));
+ pCsr->base.pVtab = pVTab;
+ pCsr->iDb = pTab->iDb;
+ }
+
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+static void statClearCells(StatPage *p){
+ int i;
+ if( p->aCell ){
+ for(i=0; i<p->nCell; i++){
+ sqlite3_free(p->aCell[i].aOvfl);
+ }
+ sqlite3_free(p->aCell);
+ }
+ p->nCell = 0;
+ p->aCell = 0;
+}
+
+static void statClearPage(StatPage *p){
+ u8 *aPg = p->aPg;
+ statClearCells(p);
+ sqlite3_free(p->zPath);
+ memset(p, 0, sizeof(StatPage));
+ p->aPg = aPg;
+}
+
+static void statResetCsr(StatCursor *pCsr){
+ int i;
+ /* In some circumstances, specifically if an OOM has occurred, the call
+ ** to sqlite3_reset() may cause the pager to be reset (emptied). It is
+ ** important that statClearPage() is called to free any page refs before
+ ** this happens. dbsqlfuzz 9ed3e4e3816219d3509d711636c38542bf3f40b1. */
+ for(i=0; i<ArraySize(pCsr->aPage); i++){
+ statClearPage(&pCsr->aPage[i]);
+ sqlite3_free(pCsr->aPage[i].aPg);
+ pCsr->aPage[i].aPg = 0;
+ }
+ sqlite3_reset(pCsr->pStmt);
+ pCsr->iPage = 0;
+ sqlite3_free(pCsr->zPath);
+ pCsr->zPath = 0;
+ pCsr->isEof = 0;
+}
+
+/* Resize the space-used counters inside of the cursor */
+static void statResetCounts(StatCursor *pCsr){
+ pCsr->nCell = 0;
+ pCsr->nMxPayload = 0;
+ pCsr->nUnused = 0;
+ pCsr->nPayload = 0;
+ pCsr->szPage = 0;
+ pCsr->nPage = 0;
+}
+
+/*
+** Close a DBSTAT cursor.
+*/
+static int statClose(sqlite3_vtab_cursor *pCursor){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ statResetCsr(pCsr);
+ sqlite3_finalize(pCsr->pStmt);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** For a single cell on a btree page, compute the number of bytes of
+** content (payload) stored on that page. That is to say, compute the
+** number of bytes of content not found on overflow pages.
+*/
+static int getLocalPayload(
+ int nUsable, /* Usable bytes per page */
+ u8 flags, /* Page flags */
+ int nTotal /* Total record (payload) size */
+){
+ int nLocal;
+ int nMinLocal;
+ int nMaxLocal;
+
+ if( flags==0x0D ){ /* Table leaf node */
+ nMinLocal = (nUsable - 12) * 32 / 255 - 23;
+ nMaxLocal = nUsable - 35;
+ }else{ /* Index interior and leaf nodes */
+ nMinLocal = (nUsable - 12) * 32 / 255 - 23;
+ nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
+ }
+
+ nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
+ if( nLocal>nMaxLocal ) nLocal = nMinLocal;
+ return nLocal;
+}
+
+/* Populate the StatPage object with information about the all
+** cells found on the page currently under analysis.
+*/
+static int statDecodePage(Btree *pBt, StatPage *p){
+ int nUnused;
+ int iOff;
+ int nHdr;
+ int isLeaf;
+ int szPage;
+
+ u8 *aData = p->aPg;
+ u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];
+
+ p->flags = aHdr[0];
+ if( p->flags==0x0A || p->flags==0x0D ){
+ isLeaf = 1;
+ nHdr = 8;
+ }else if( p->flags==0x05 || p->flags==0x02 ){
+ isLeaf = 0;
+ nHdr = 12;
+ }else{
+ goto statPageIsCorrupt;
+ }
+ if( p->iPgno==1 ) nHdr += 100;
+ p->nCell = get2byte(&aHdr[3]);
+ p->nMxPayload = 0;
+ szPage = sqlite3BtreeGetPageSize(pBt);
+
+ nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
+ nUnused += (int)aHdr[7];
+ iOff = get2byte(&aHdr[1]);
+ while( iOff ){
+ int iNext;
+ if( iOff>=szPage ) goto statPageIsCorrupt;
+ nUnused += get2byte(&aData[iOff+2]);
+ iNext = get2byte(&aData[iOff]);
+ if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt;
+ iOff = iNext;
+ }
+ p->nUnused = nUnused;
+ p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);
+
+ if( p->nCell ){
+ int i; /* Used to iterate through cells */
+ int nUsable; /* Usable bytes per page */
+
+ sqlite3BtreeEnter(pBt);
+ nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
+ sqlite3BtreeLeave(pBt);
+ p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
+ if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
+ memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));
+
+ for(i=0; i<p->nCell; i++){
+ StatCell *pCell = &p->aCell[i];
+
+ iOff = get2byte(&aData[nHdr+i*2]);
+ if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt;
+ if( !isLeaf ){
+ pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
+ iOff += 4;
+ }
+ if( p->flags==0x05 ){
+ /* A table interior node. nPayload==0. */
+ }else{
+ u32 nPayload; /* Bytes of payload total (local+overflow) */
+ int nLocal; /* Bytes of payload stored locally */
+ iOff += getVarint32(&aData[iOff], nPayload);
+ if( p->flags==0x0D ){
+ u64 dummy;
+ iOff += sqlite3GetVarint(&aData[iOff], &dummy);
+ }
+ if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
+ nLocal = getLocalPayload(nUsable, p->flags, nPayload);
+ if( nLocal<0 ) goto statPageIsCorrupt;
+ pCell->nLocal = nLocal;
+ assert( nPayload>=(u32)nLocal );
+ assert( nLocal<=(nUsable-35) );
+ if( nPayload>(u32)nLocal ){
+ int j;
+ int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);
+ if( iOff+nLocal+4>nUsable || nPayload>0x7fffffff ){
+ goto statPageIsCorrupt;
+ }
+ pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
+ pCell->nOvfl = nOvfl;
+ pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
+ if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
+ pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
+ for(j=1; j<nOvfl; j++){
+ int rc;
+ u32 iPrev = pCell->aOvfl[j-1];
+ DbPage *pPg = 0;
+ rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0);
+ if( rc!=SQLITE_OK ){
+ assert( pPg==0 );
+ return rc;
+ }
+ pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
+ sqlite3PagerUnref(pPg);
+ }
+ }
+ }
+ }
+ }
+
+ return SQLITE_OK;
+
+statPageIsCorrupt:
+ p->flags = 0;
+ statClearCells(p);
+ return SQLITE_OK;
+}
+
+/*
+** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
+** the current value of pCsr->iPageno.
+*/
+static void statSizeAndOffset(StatCursor *pCsr){
+ StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab;
+ Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
+ Pager *pPager = sqlite3BtreePager(pBt);
+ sqlite3_file *fd;
+ sqlite3_int64 x[2];
+
+ /* If connected to a ZIPVFS backend, find the page size and
+ ** offset from ZIPVFS.
+ */
+ fd = sqlite3PagerFile(pPager);
+ x[0] = pCsr->iPageno;
+ if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){
+ pCsr->iOffset = x[0];
+ pCsr->szPage += x[1];
+ }else{
+ /* Not ZIPVFS: The default page size and offset */
+ pCsr->szPage += sqlite3BtreeGetPageSize(pBt);
+ pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1);
+ }
+}
+
+/*
+** Load a copy of the page data for page iPg into the buffer belonging
+** to page object pPg. Allocate the buffer if necessary. Return SQLITE_OK
+** if successful, or an SQLite error code otherwise.
+*/
+static int statGetPage(
+ Btree *pBt, /* Load page from this b-tree */
+ u32 iPg, /* Page number to load */
+ StatPage *pPg /* Load page into this object */
+){
+ int pgsz = sqlite3BtreeGetPageSize(pBt);
+ DbPage *pDbPage = 0;
+ int rc;
+
+ if( pPg->aPg==0 ){
+ pPg->aPg = (u8*)sqlite3_malloc(pgsz + DBSTAT_PAGE_PADDING_BYTES);
+ if( pPg->aPg==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&pPg->aPg[pgsz], 0, DBSTAT_PAGE_PADDING_BYTES);
+ }
+
+ rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPg, &pDbPage, 0);
+ if( rc==SQLITE_OK ){
+ const u8 *a = sqlite3PagerGetData(pDbPage);
+ memcpy(pPg->aPg, a, pgsz);
+ sqlite3PagerUnref(pDbPage);
+ }
+
+ return rc;
+}
+
+/*
+** Move a DBSTAT cursor to the next entry. Normally, the next
+** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0),
+** the next entry is the next btree.
+*/
+static int statNext(sqlite3_vtab_cursor *pCursor){
+ int rc;
+ int nPayload;
+ char *z;
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ StatTable *pTab = (StatTable *)pCursor->pVtab;
+ Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
+ Pager *pPager = sqlite3BtreePager(pBt);
+
+ sqlite3_free(pCsr->zPath);
+ pCsr->zPath = 0;
+
+statNextRestart:
+ if( pCsr->iPage<0 ){
+ /* Start measuring space on the next btree */
+ statResetCounts(pCsr);
+ rc = sqlite3_step(pCsr->pStmt);
+ if( rc==SQLITE_ROW ){
+ int nPage;
+ u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
+ sqlite3PagerPagecount(pPager, &nPage);
+ if( nPage==0 ){
+ pCsr->isEof = 1;
+ return sqlite3_reset(pCsr->pStmt);
+ }
+ rc = statGetPage(pBt, iRoot, &pCsr->aPage[0]);
+ pCsr->aPage[0].iPgno = iRoot;
+ pCsr->aPage[0].iCell = 0;
+ if( !pCsr->isAgg ){
+ pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
+ if( z==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ pCsr->iPage = 0;
+ pCsr->nPage = 1;
+ }else{
+ pCsr->isEof = 1;
+ return sqlite3_reset(pCsr->pStmt);
+ }
+ }else{
+ /* Continue analyzing the btree previously started */
+ StatPage *p = &pCsr->aPage[pCsr->iPage];
+ if( !pCsr->isAgg ) statResetCounts(pCsr);
+ while( p->iCell<p->nCell ){
+ StatCell *pCell = &p->aCell[p->iCell];
+ while( pCell->iOvfl<pCell->nOvfl ){
+ int nUsable, iOvfl;
+ sqlite3BtreeEnter(pBt);
+ nUsable = sqlite3BtreeGetPageSize(pBt) -
+ sqlite3BtreeGetReserveNoMutex(pBt);
+ sqlite3BtreeLeave(pBt);
+ pCsr->nPage++;
+ statSizeAndOffset(pCsr);
+ if( pCell->iOvfl<pCell->nOvfl-1 ){
+ pCsr->nPayload += nUsable - 4;
+ }else{
+ pCsr->nPayload += pCell->nLastOvfl;
+ pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl;
+ }
+ iOvfl = pCell->iOvfl;
+ pCell->iOvfl++;
+ if( !pCsr->isAgg ){
+ pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
+ pCsr->iPageno = pCell->aOvfl[iOvfl];
+ pCsr->zPagetype = "overflow";
+ pCsr->zPath = z = sqlite3_mprintf(
+ "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl
+ );
+ return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
+ }
+ }
+ if( p->iRightChildPg ) break;
+ p->iCell++;
+ }
+
+ if( !p->iRightChildPg || p->iCell>p->nCell ){
+ statClearPage(p);
+ pCsr->iPage--;
+ if( pCsr->isAgg && pCsr->iPage<0 ){
+ /* label-statNext-done: When computing aggregate space usage over
+ ** an entire btree, this is the exit point from this function */
+ return SQLITE_OK;
+ }
+ goto statNextRestart; /* Tail recursion */
+ }
+ pCsr->iPage++;
+ if( pCsr->iPage>=ArraySize(pCsr->aPage) ){
+ statResetCsr(pCsr);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( p==&pCsr->aPage[pCsr->iPage-1] );
+
+ if( p->iCell==p->nCell ){
+ p[1].iPgno = p->iRightChildPg;
+ }else{
+ p[1].iPgno = p->aCell[p->iCell].iChildPg;
+ }
+ rc = statGetPage(pBt, p[1].iPgno, &p[1]);
+ pCsr->nPage++;
+ p[1].iCell = 0;
+ if( !pCsr->isAgg ){
+ p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
+ if( z==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ p->iCell++;
+ }
+
+
+ /* Populate the StatCursor fields with the values to be returned
+ ** by the xColumn() and xRowid() methods.
+ */
+ if( rc==SQLITE_OK ){
+ int i;
+ StatPage *p = &pCsr->aPage[pCsr->iPage];
+ pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
+ pCsr->iPageno = p->iPgno;
+
+ rc = statDecodePage(pBt, p);
+ if( rc==SQLITE_OK ){
+ statSizeAndOffset(pCsr);
+
+ switch( p->flags ){
+ case 0x05: /* table internal */
+ case 0x02: /* index internal */
+ pCsr->zPagetype = "internal";
+ break;
+ case 0x0D: /* table leaf */
+ case 0x0A: /* index leaf */
+ pCsr->zPagetype = "leaf";
+ break;
+ default:
+ pCsr->zPagetype = "corrupted";
+ break;
+ }
+ pCsr->nCell += p->nCell;
+ pCsr->nUnused += p->nUnused;
+ if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload;
+ if( !pCsr->isAgg ){
+ pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath);
+ if( z==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ nPayload = 0;
+ for(i=0; i<p->nCell; i++){
+ nPayload += p->aCell[i].nLocal;
+ }
+ pCsr->nPayload += nPayload;
+
+ /* If computing aggregate space usage by btree, continue with the
+ ** next page. The loop will exit via the return at label-statNext-done
+ */
+ if( pCsr->isAgg ) goto statNextRestart;
+ }
+ }
+
+ return rc;
+}
+
+static int statEof(sqlite3_vtab_cursor *pCursor){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ return pCsr->isEof;
+}
+
+/* Initialize a cursor according to the query plan idxNum using the
+** arguments in argv[0]. See statBestIndex() for a description of the
+** meaning of the bits in idxNum.
+*/
+static int statFilter(
+ sqlite3_vtab_cursor *pCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ StatTable *pTab = (StatTable*)(pCursor->pVtab);
+ sqlite3_str *pSql; /* Query of btrees to analyze */
+ char *zSql; /* String value of pSql */
+ int iArg = 0; /* Count of argv[] parameters used so far */
+ int rc = SQLITE_OK; /* Result of this operation */
+ const char *zName = 0; /* Only provide analysis of this table */
+
+ statResetCsr(pCsr);
+ sqlite3_finalize(pCsr->pStmt);
+ pCsr->pStmt = 0;
+ if( idxNum & 0x01 ){
+ /* schema=? constraint is present. Get its value */
+ const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]);
+ pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
+ if( pCsr->iDb<0 ){
+ pCsr->iDb = 0;
+ pCsr->isEof = 1;
+ return SQLITE_OK;
+ }
+ }else{
+ pCsr->iDb = pTab->iDb;
+ }
+ if( idxNum & 0x02 ){
+ /* name=? constraint is present */
+ zName = (const char*)sqlite3_value_text(argv[iArg++]);
+ }
+ if( idxNum & 0x04 ){
+ /* aggregate=? constraint is present */
+ pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0;
+ }else{
+ pCsr->isAgg = 0;
+ }
+ pSql = sqlite3_str_new(pTab->db);
+ sqlite3_str_appendf(pSql,
+ "SELECT * FROM ("
+ "SELECT 'sqlite_schema' AS name,1 AS rootpage,'table' AS type"
+ " UNION ALL "
+ "SELECT name,rootpage,type"
+ " FROM \"%w\".sqlite_schema WHERE rootpage!=0)",
+ pTab->db->aDb[pCsr->iDb].zDbSName);
+ if( zName ){
+ sqlite3_str_appendf(pSql, "WHERE name=%Q", zName);
+ }
+ if( idxNum & 0x08 ){
+ sqlite3_str_appendf(pSql, " ORDER BY name");
+ }
+ zSql = sqlite3_str_finish(pSql);
+ if( zSql==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
+ sqlite3_free(zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ pCsr->iPage = -1;
+ rc = statNext(pCursor);
+ }
+ return rc;
+}
+
+static int statColumn(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite3_context *ctx,
+ int i
+){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ switch( i ){
+ case 0: /* name */
+ sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT);
+ break;
+ case 1: /* path */
+ if( !pCsr->isAgg ){
+ sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT);
+ }
+ break;
+ case 2: /* pageno */
+ if( pCsr->isAgg ){
+ sqlite3_result_int64(ctx, pCsr->nPage);
+ }else{
+ sqlite3_result_int64(ctx, pCsr->iPageno);
+ }
+ break;
+ case 3: /* pagetype */
+ if( !pCsr->isAgg ){
+ sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC);
+ }
+ break;
+ case 4: /* ncell */
+ sqlite3_result_int(ctx, pCsr->nCell);
+ break;
+ case 5: /* payload */
+ sqlite3_result_int(ctx, pCsr->nPayload);
+ break;
+ case 6: /* unused */
+ sqlite3_result_int(ctx, pCsr->nUnused);
+ break;
+ case 7: /* mx_payload */
+ sqlite3_result_int(ctx, pCsr->nMxPayload);
+ break;
+ case 8: /* pgoffset */
+ if( !pCsr->isAgg ){
+ sqlite3_result_int64(ctx, pCsr->iOffset);
+ }
+ break;
+ case 9: /* pgsize */
+ sqlite3_result_int(ctx, pCsr->szPage);
+ break;
+ case 10: { /* schema */
+ sqlite3 *db = sqlite3_context_db_handle(ctx);
+ int iDb = pCsr->iDb;
+ sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC);
+ break;
+ }
+ default: { /* aggregate */
+ sqlite3_result_int(ctx, pCsr->isAgg);
+ break;
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ *pRowid = pCsr->iPageno;
+ return SQLITE_OK;
+}
+
+/*
+** Invoke this routine to register the "dbstat" virtual table module
+*/
+SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){
+ static sqlite3_module dbstat_module = {
+ 0, /* iVersion */
+ statConnect, /* xCreate */
+ statConnect, /* xConnect */
+ statBestIndex, /* xBestIndex */
+ statDisconnect, /* xDisconnect */
+ statDisconnect, /* xDestroy */
+ statOpen, /* xOpen - open a cursor */
+ statClose, /* xClose - close a cursor */
+ statFilter, /* xFilter - configure scan constraints */
+ statNext, /* xNext - advance a cursor */
+ statEof, /* xEof - check for end of scan */
+ statColumn, /* xColumn - read data */
+ statRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+ };
+ return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
+}
+#elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
+SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
+#endif /* SQLITE_ENABLE_DBSTAT_VTAB */
+
+/************** End of dbstat.c **********************************************/
+/************** Begin file dbpage.c ******************************************/
+/*
+** 2017-10-11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains an implementation of the "sqlite_dbpage" virtual table.
+**
+** The sqlite_dbpage virtual table is used to read or write whole raw
+** pages of the database file. The pager interface is used so that
+** uncommitted changes and changes recorded in the WAL file are correctly
+** retrieved.
+**
+** Usage example:
+**
+** SELECT data FROM sqlite_dbpage('aux1') WHERE pgno=123;
+**
+** This is an eponymous virtual table so it does not need to be created before
+** use. The optional argument to the sqlite_dbpage() table name is the
+** schema for the database file that is to be read. The default schema is
+** "main".
+**
+** The data field of sqlite_dbpage table can be updated. The new
+** value must be a BLOB which is the correct page size, otherwise the
+** update fails. Rows may not be deleted or inserted.
+*/
+
+/* #include "sqliteInt.h" ** Requires access to internal data structures ** */
+#if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
+ && !defined(SQLITE_OMIT_VIRTUALTABLE)
+
+typedef struct DbpageTable DbpageTable;
+typedef struct DbpageCursor DbpageCursor;
+
+struct DbpageCursor {
+ sqlite3_vtab_cursor base; /* Base class. Must be first */
+ int pgno; /* Current page number */
+ int mxPgno; /* Last page to visit on this scan */
+ Pager *pPager; /* Pager being read/written */
+ DbPage *pPage1; /* Page 1 of the database */
+ int iDb; /* Index of database to analyze */
+ int szPage; /* Size of each page in bytes */
+};
+
+struct DbpageTable {
+ sqlite3_vtab base; /* Base class. Must be first */
+ sqlite3 *db; /* The database */
+};
+
+/* Columns */
+#define DBPAGE_COLUMN_PGNO 0
+#define DBPAGE_COLUMN_DATA 1
+#define DBPAGE_COLUMN_SCHEMA 2
+
+
+
+/*
+** Connect to or create a dbpagevfs virtual table.
+*/
+static int dbpageConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ DbpageTable *pTab = 0;
+ int rc = SQLITE_OK;
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE x(pgno INTEGER PRIMARY KEY, data BLOB, schema HIDDEN)");
+ if( rc==SQLITE_OK ){
+ pTab = (DbpageTable *)sqlite3_malloc64(sizeof(DbpageTable));
+ if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+
+ assert( rc==SQLITE_OK || pTab==0 );
+ if( rc==SQLITE_OK ){
+ memset(pTab, 0, sizeof(DbpageTable));
+ pTab->db = db;
+ }
+
+ *ppVtab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** Disconnect from or destroy a dbpagevfs virtual table.
+*/
+static int dbpageDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** idxNum:
+**
+** 0 schema=main, full table scan
+** 1 schema=main, pgno=?1
+** 2 schema=?1, full table scan
+** 3 schema=?1, pgno=?2
+*/
+static int dbpageBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int i;
+ int iPlan = 0;
+
+ /* If there is a schema= constraint, it must be honored. Report a
+ ** ridiculously large estimated cost if the schema= constraint is
+ ** unavailable
+ */
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i];
+ if( p->iColumn!=DBPAGE_COLUMN_SCHEMA ) continue;
+ if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
+ if( !p->usable ){
+ /* No solution. */
+ return SQLITE_CONSTRAINT;
+ }
+ iPlan = 2;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ break;
+ }
+
+ /* If we reach this point, it means that either there is no schema=
+ ** constraint (in which case we use the "main" schema) or else the
+ ** schema constraint was accepted. Lower the estimated cost accordingly
+ */
+ pIdxInfo->estimatedCost = 1.0e6;
+
+ /* Check for constraints against pgno */
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i];
+ if( p->usable && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
+ pIdxInfo->estimatedCost = 1.0;
+ pIdxInfo->aConstraintUsage[i].argvIndex = iPlan ? 2 : 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ iPlan |= 1;
+ break;
+ }
+ }
+ pIdxInfo->idxNum = iPlan;
+
+ if( pIdxInfo->nOrderBy>=1
+ && pIdxInfo->aOrderBy[0].iColumn<=0
+ && pIdxInfo->aOrderBy[0].desc==0
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ }
+ sqlite3VtabUsesAllSchemas(pIdxInfo);
+ return SQLITE_OK;
+}
+
+/*
+** Open a new dbpagevfs cursor.
+*/
+static int dbpageOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ DbpageCursor *pCsr;
+
+ pCsr = (DbpageCursor *)sqlite3_malloc64(sizeof(DbpageCursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ memset(pCsr, 0, sizeof(DbpageCursor));
+ pCsr->base.pVtab = pVTab;
+ pCsr->pgno = -1;
+ }
+
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Close a dbpagevfs cursor.
+*/
+static int dbpageClose(sqlite3_vtab_cursor *pCursor){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ if( pCsr->pPage1 ) sqlite3PagerUnrefPageOne(pCsr->pPage1);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Move a dbpagevfs cursor to the next entry in the file.
+*/
+static int dbpageNext(sqlite3_vtab_cursor *pCursor){
+ int rc = SQLITE_OK;
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ pCsr->pgno++;
+ return rc;
+}
+
+static int dbpageEof(sqlite3_vtab_cursor *pCursor){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ return pCsr->pgno > pCsr->mxPgno;
+}
+
+/*
+** idxNum:
+**
+** 0 schema=main, full table scan
+** 1 schema=main, pgno=?1
+** 2 schema=?1, full table scan
+** 3 schema=?1, pgno=?2
+**
+** idxStr is not used
+*/
+static int dbpageFilter(
+ sqlite3_vtab_cursor *pCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ DbpageTable *pTab = (DbpageTable *)pCursor->pVtab;
+ int rc;
+ sqlite3 *db = pTab->db;
+ Btree *pBt;
+
+ /* Default setting is no rows of result */
+ pCsr->pgno = 1;
+ pCsr->mxPgno = 0;
+
+ if( idxNum & 2 ){
+ const char *zSchema;
+ assert( argc>=1 );
+ zSchema = (const char*)sqlite3_value_text(argv[0]);
+ pCsr->iDb = sqlite3FindDbName(db, zSchema);
+ if( pCsr->iDb<0 ) return SQLITE_OK;
+ }else{
+ pCsr->iDb = 0;
+ }
+ pBt = db->aDb[pCsr->iDb].pBt;
+ if( pBt==0 ) return SQLITE_OK;
+ pCsr->pPager = sqlite3BtreePager(pBt);
+ pCsr->szPage = sqlite3BtreeGetPageSize(pBt);
+ pCsr->mxPgno = sqlite3BtreeLastPage(pBt);
+ if( idxNum & 1 ){
+ assert( argc>(idxNum>>1) );
+ pCsr->pgno = sqlite3_value_int(argv[idxNum>>1]);
+ if( pCsr->pgno<1 || pCsr->pgno>pCsr->mxPgno ){
+ pCsr->pgno = 1;
+ pCsr->mxPgno = 0;
+ }else{
+ pCsr->mxPgno = pCsr->pgno;
+ }
+ }else{
+ assert( pCsr->pgno==1 );
+ }
+ if( pCsr->pPage1 ) sqlite3PagerUnrefPageOne(pCsr->pPage1);
+ rc = sqlite3PagerGet(pCsr->pPager, 1, &pCsr->pPage1, 0);
+ return rc;
+}
+
+static int dbpageColumn(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite3_context *ctx,
+ int i
+){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ int rc = SQLITE_OK;
+ switch( i ){
+ case 0: { /* pgno */
+ sqlite3_result_int(ctx, pCsr->pgno);
+ break;
+ }
+ case 1: { /* data */
+ DbPage *pDbPage = 0;
+ rc = sqlite3PagerGet(pCsr->pPager, pCsr->pgno, (DbPage**)&pDbPage, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_blob(ctx, sqlite3PagerGetData(pDbPage), pCsr->szPage,
+ SQLITE_TRANSIENT);
+ }
+ sqlite3PagerUnref(pDbPage);
+ break;
+ }
+ default: { /* schema */
+ sqlite3 *db = sqlite3_context_db_handle(ctx);
+ sqlite3_result_text(ctx, db->aDb[pCsr->iDb].zDbSName, -1, SQLITE_STATIC);
+ break;
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int dbpageRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ *pRowid = pCsr->pgno;
+ return SQLITE_OK;
+}
+
+static int dbpageUpdate(
+ sqlite3_vtab *pVtab,
+ int argc,
+ sqlite3_value **argv,
+ sqlite_int64 *pRowid
+){
+ DbpageTable *pTab = (DbpageTable *)pVtab;
+ Pgno pgno;
+ DbPage *pDbPage = 0;
+ int rc = SQLITE_OK;
+ char *zErr = 0;
+ const char *zSchema;
+ int iDb;
+ Btree *pBt;
+ Pager *pPager;
+ int szPage;
+
+ if( pTab->db->flags & SQLITE_Defensive ){
+ zErr = "read-only";
+ goto update_fail;
+ }
+ if( argc==1 ){
+ zErr = "cannot delete";
+ goto update_fail;
+ }
+ pgno = sqlite3_value_int(argv[0]);
+ if( (Pgno)sqlite3_value_int(argv[1])!=pgno ){
+ zErr = "cannot insert";
+ goto update_fail;
+ }
+ zSchema = (const char*)sqlite3_value_text(argv[4]);
+ iDb = zSchema ? sqlite3FindDbName(pTab->db, zSchema) : -1;
+ if( iDb<0 ){
+ zErr = "no such schema";
+ goto update_fail;
+ }
+ pBt = pTab->db->aDb[iDb].pBt;
+ if( pgno<1 || pBt==0 || pgno>sqlite3BtreeLastPage(pBt) ){
+ zErr = "bad page number";
+ goto update_fail;
+ }
+ szPage = sqlite3BtreeGetPageSize(pBt);
+ if( sqlite3_value_type(argv[3])!=SQLITE_BLOB
+ || sqlite3_value_bytes(argv[3])!=szPage
+ ){
+ zErr = "bad page value";
+ goto update_fail;
+ }
+ pPager = sqlite3BtreePager(pBt);
+ rc = sqlite3PagerGet(pPager, pgno, (DbPage**)&pDbPage, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pDbPage);
+ if( rc==SQLITE_OK ){
+ memcpy(sqlite3PagerGetData(pDbPage),
+ sqlite3_value_blob(argv[3]),
+ szPage);
+ }
+ }
+ sqlite3PagerUnref(pDbPage);
+ return rc;
+
+update_fail:
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = sqlite3_mprintf("%s", zErr);
+ return SQLITE_ERROR;
+}
+
+/* Since we do not know in advance which database files will be
+** written by the sqlite_dbpage virtual table, start a write transaction
+** on them all.
+*/
+static int dbpageBegin(sqlite3_vtab *pVtab){
+ DbpageTable *pTab = (DbpageTable *)pVtab;
+ sqlite3 *db = pTab->db;
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ) sqlite3BtreeBeginTrans(pBt, 1, 0);
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Invoke this routine to register the "dbpage" virtual table module
+*/
+SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){
+ static sqlite3_module dbpage_module = {
+ 0, /* iVersion */
+ dbpageConnect, /* xCreate */
+ dbpageConnect, /* xConnect */
+ dbpageBestIndex, /* xBestIndex */
+ dbpageDisconnect, /* xDisconnect */
+ dbpageDisconnect, /* xDestroy */
+ dbpageOpen, /* xOpen - open a cursor */
+ dbpageClose, /* xClose - close a cursor */
+ dbpageFilter, /* xFilter - configure scan constraints */
+ dbpageNext, /* xNext - advance a cursor */
+ dbpageEof, /* xEof - check for end of scan */
+ dbpageColumn, /* xColumn - read data */
+ dbpageRowid, /* xRowid - read data */
+ dbpageUpdate, /* xUpdate */
+ dbpageBegin, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0 /* xShadowName */
+ };
+ return sqlite3_create_module(db, "sqlite_dbpage", &dbpage_module, 0);
+}
+#elif defined(SQLITE_ENABLE_DBPAGE_VTAB)
+SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){ return SQLITE_OK; }
+#endif /* SQLITE_ENABLE_DBSTAT_VTAB */
+
+/************** End of dbpage.c **********************************************/
+/************** Begin file sqlite3session.c **********************************/
+
+#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
+/* #include "sqlite3session.h" */
+/* #include <assert.h> */
+/* #include <string.h> */
+
+#ifndef SQLITE_AMALGAMATION
+/* # include "sqliteInt.h" */
+/* # include "vdbeInt.h" */
+#endif
+
+typedef struct SessionTable SessionTable;
+typedef struct SessionChange SessionChange;
+typedef struct SessionBuffer SessionBuffer;
+typedef struct SessionInput SessionInput;
+
+/*
+** Minimum chunk size used by streaming versions of functions.
+*/
+#ifndef SESSIONS_STRM_CHUNK_SIZE
+# ifdef SQLITE_TEST
+# define SESSIONS_STRM_CHUNK_SIZE 64
+# else
+# define SESSIONS_STRM_CHUNK_SIZE 1024
+# endif
+#endif
+
+static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE;
+
+typedef struct SessionHook SessionHook;
+struct SessionHook {
+ void *pCtx;
+ int (*xOld)(void*,int,sqlite3_value**);
+ int (*xNew)(void*,int,sqlite3_value**);
+ int (*xCount)(void*);
+ int (*xDepth)(void*);
+};
+
+/*
+** Session handle structure.
+*/
+struct sqlite3_session {
+ sqlite3 *db; /* Database handle session is attached to */
+ char *zDb; /* Name of database session is attached to */
+ int bEnableSize; /* True if changeset_size() enabled */
+ int bEnable; /* True if currently recording */
+ int bIndirect; /* True if all changes are indirect */
+ int bAutoAttach; /* True to auto-attach tables */
+ int rc; /* Non-zero if an error has occurred */
+ void *pFilterCtx; /* First argument to pass to xTableFilter */
+ int (*xTableFilter)(void *pCtx, const char *zTab);
+ i64 nMalloc; /* Number of bytes of data allocated */
+ i64 nMaxChangesetSize;
+ sqlite3_value *pZeroBlob; /* Value containing X'' */
+ sqlite3_session *pNext; /* Next session object on same db. */
+ SessionTable *pTable; /* List of attached tables */
+ SessionHook hook; /* APIs to grab new and old data with */
+};
+
+/*
+** Instances of this structure are used to build strings or binary records.
+*/
+struct SessionBuffer {
+ u8 *aBuf; /* Pointer to changeset buffer */
+ int nBuf; /* Size of buffer aBuf */
+ int nAlloc; /* Size of allocation containing aBuf */
+};
+
+/*
+** An object of this type is used internally as an abstraction for
+** input data. Input data may be supplied either as a single large buffer
+** (e.g. sqlite3changeset_start()) or using a stream function (e.g.
+** sqlite3changeset_start_strm()).
+*/
+struct SessionInput {
+ int bNoDiscard; /* If true, do not discard in InputBuffer() */
+ int iCurrent; /* Offset in aData[] of current change */
+ int iNext; /* Offset in aData[] of next change */
+ u8 *aData; /* Pointer to buffer containing changeset */
+ int nData; /* Number of bytes in aData */
+
+ SessionBuffer buf; /* Current read buffer */
+ int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */
+ void *pIn; /* First argument to xInput */
+ int bEof; /* Set to true after xInput finished */
+};
+
+/*
+** Structure for changeset iterators.
+*/
+struct sqlite3_changeset_iter {
+ SessionInput in; /* Input buffer or stream */
+ SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */
+ int bPatchset; /* True if this is a patchset */
+ int bInvert; /* True to invert changeset */
+ int bSkipEmpty; /* Skip noop UPDATE changes */
+ int rc; /* Iterator error code */
+ sqlite3_stmt *pConflict; /* Points to conflicting row, if any */
+ char *zTab; /* Current table */
+ int nCol; /* Number of columns in zTab */
+ int op; /* Current operation */
+ int bIndirect; /* True if current change was indirect */
+ u8 *abPK; /* Primary key array */
+ sqlite3_value **apValue; /* old.* and new.* values */
+};
+
+/*
+** Each session object maintains a set of the following structures, one
+** for each table the session object is monitoring. The structures are
+** stored in a linked list starting at sqlite3_session.pTable.
+**
+** The keys of the SessionTable.aChange[] hash table are all rows that have
+** been modified in any way since the session object was attached to the
+** table.
+**
+** The data associated with each hash-table entry is a structure containing
+** a subset of the initial values that the modified row contained at the
+** start of the session. Or no initial values if the row was inserted.
+*/
+struct SessionTable {
+ SessionTable *pNext;
+ char *zName; /* Local name of table */
+ int nCol; /* Number of columns in table zName */
+ int bStat1; /* True if this is sqlite_stat1 */
+ const char **azCol; /* Column names */
+ u8 *abPK; /* Array of primary key flags */
+ int nEntry; /* Total number of entries in hash table */
+ int nChange; /* Size of apChange[] array */
+ SessionChange **apChange; /* Hash table buckets */
+};
+
+/*
+** RECORD FORMAT:
+**
+** The following record format is similar to (but not compatible with) that
+** used in SQLite database files. This format is used as part of the
+** change-set binary format, and so must be architecture independent.
+**
+** Unlike the SQLite database record format, each field is self-contained -
+** there is no separation of header and data. Each field begins with a
+** single byte describing its type, as follows:
+**
+** 0x00: Undefined value.
+** 0x01: Integer value.
+** 0x02: Real value.
+** 0x03: Text value.
+** 0x04: Blob value.
+** 0x05: SQL NULL value.
+**
+** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT
+** and so on in sqlite3.h. For undefined and NULL values, the field consists
+** only of the single type byte. For other types of values, the type byte
+** is followed by:
+**
+** Text values:
+** A varint containing the number of bytes in the value (encoded using
+** UTF-8). Followed by a buffer containing the UTF-8 representation
+** of the text value. There is no nul terminator.
+**
+** Blob values:
+** A varint containing the number of bytes in the value, followed by
+** a buffer containing the value itself.
+**
+** Integer values:
+** An 8-byte big-endian integer value.
+**
+** Real values:
+** An 8-byte big-endian IEEE 754-2008 real value.
+**
+** Varint values are encoded in the same way as varints in the SQLite
+** record format.
+**
+** CHANGESET FORMAT:
+**
+** A changeset is a collection of DELETE, UPDATE and INSERT operations on
+** one or more tables. Operations on a single table are grouped together,
+** but may occur in any order (i.e. deletes, updates and inserts are all
+** mixed together).
+**
+** Each group of changes begins with a table header:
+**
+** 1 byte: Constant 0x54 (capital 'T')
+** Varint: Number of columns in the table.
+** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
+** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
+**
+** Followed by one or more changes to the table.
+**
+** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
+** 1 byte: The "indirect-change" flag.
+** old.* record: (delete and update only)
+** new.* record: (insert and update only)
+**
+** The "old.*" and "new.*" records, if present, are N field records in the
+** format described above under "RECORD FORMAT", where N is the number of
+** columns in the table. The i'th field of each record is associated with
+** the i'th column of the table, counting from left to right in the order
+** in which columns were declared in the CREATE TABLE statement.
+**
+** The new.* record that is part of each INSERT change contains the values
+** that make up the new row. Similarly, the old.* record that is part of each
+** DELETE change contains the values that made up the row that was deleted
+** from the database. In the changeset format, the records that are part
+** of INSERT or DELETE changes never contain any undefined (type byte 0x00)
+** fields.
+**
+** Within the old.* record associated with an UPDATE change, all fields
+** associated with table columns that are not PRIMARY KEY columns and are
+** not modified by the UPDATE change are set to "undefined". Other fields
+** are set to the values that made up the row before the UPDATE that the
+** change records took place. Within the new.* record, fields associated
+** with table columns modified by the UPDATE change contain the new
+** values. Fields associated with table columns that are not modified
+** are set to "undefined".
+**
+** PATCHSET FORMAT:
+**
+** A patchset is also a collection of changes. It is similar to a changeset,
+** but leaves undefined those fields that are not useful if no conflict
+** resolution is required when applying the changeset.
+**
+** Each group of changes begins with a table header:
+**
+** 1 byte: Constant 0x50 (capital 'P')
+** Varint: Number of columns in the table.
+** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
+** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
+**
+** Followed by one or more changes to the table.
+**
+** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
+** 1 byte: The "indirect-change" flag.
+** single record: (PK fields for DELETE, PK and modified fields for UPDATE,
+** full record for INSERT).
+**
+** As in the changeset format, each field of the single record that is part
+** of a patchset change is associated with the correspondingly positioned
+** table column, counting from left to right within the CREATE TABLE
+** statement.
+**
+** For a DELETE change, all fields within the record except those associated
+** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the
+** values identifying the row to delete.
+**
+** For an UPDATE change, all fields except those associated with PRIMARY KEY
+** columns and columns that are modified by the UPDATE are set to "undefined".
+** PRIMARY KEY fields contain the values identifying the table row to update,
+** and fields associated with modified columns contain the new column values.
+**
+** The records associated with INSERT changes are in the same format as for
+** changesets. It is not possible for a record associated with an INSERT
+** change to contain a field set to "undefined".
+**
+** REBASE BLOB FORMAT:
+**
+** A rebase blob may be output by sqlite3changeset_apply_v2() and its
+** streaming equivalent for use with the sqlite3_rebaser APIs to rebase
+** existing changesets. A rebase blob contains one entry for each conflict
+** resolved using either the OMIT or REPLACE strategies within the apply_v2()
+** call.
+**
+** The format used for a rebase blob is very similar to that used for
+** changesets. All entries related to a single table are grouped together.
+**
+** Each group of entries begins with a table header in changeset format:
+**
+** 1 byte: Constant 0x54 (capital 'T')
+** Varint: Number of columns in the table.
+** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
+** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
+**
+** Followed by one or more entries associated with the table.
+**
+** 1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09).
+** 1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT.
+** record: (in the record format defined above).
+**
+** In a rebase blob, the first field is set to SQLITE_INSERT if the change
+** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if
+** it was a DELETE. The second field is set to 0x01 if the conflict
+** resolution strategy was REPLACE, or 0x00 if it was OMIT.
+**
+** If the change that caused the conflict was a DELETE, then the single
+** record is a copy of the old.* record from the original changeset. If it
+** was an INSERT, then the single record is a copy of the new.* record. If
+** the conflicting change was an UPDATE, then the single record is a copy
+** of the new.* record with the PK fields filled in based on the original
+** old.* record.
+*/
+
+/*
+** For each row modified during a session, there exists a single instance of
+** this structure stored in a SessionTable.aChange[] hash table.
+*/
+struct SessionChange {
+ u8 op; /* One of UPDATE, DELETE, INSERT */
+ u8 bIndirect; /* True if this change is "indirect" */
+ int nMaxSize; /* Max size of eventual changeset record */
+ int nRecord; /* Number of bytes in buffer aRecord[] */
+ u8 *aRecord; /* Buffer containing old.* record */
+ SessionChange *pNext; /* For hash-table collisions */
+};
+
+/*
+** Write a varint with value iVal into the buffer at aBuf. Return the
+** number of bytes written.
+*/
+static int sessionVarintPut(u8 *aBuf, int iVal){
+ return putVarint32(aBuf, iVal);
+}
+
+/*
+** Return the number of bytes required to store value iVal as a varint.
+*/
+static int sessionVarintLen(int iVal){
+ return sqlite3VarintLen(iVal);
+}
+
+/*
+** Read a varint value from aBuf[] into *piVal. Return the number of
+** bytes read.
+*/
+static int sessionVarintGet(u8 *aBuf, int *piVal){
+ return getVarint32(aBuf, *piVal);
+}
+
+/* Load an unaligned and unsigned 32-bit integer */
+#define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
+
+/*
+** Read a 64-bit big-endian integer value from buffer aRec[]. Return
+** the value read.
+*/
+static sqlite3_int64 sessionGetI64(u8 *aRec){
+ u64 x = SESSION_UINT32(aRec);
+ u32 y = SESSION_UINT32(aRec+4);
+ x = (x<<32) + y;
+ return (sqlite3_int64)x;
+}
+
+/*
+** Write a 64-bit big-endian integer value to the buffer aBuf[].
+*/
+static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){
+ aBuf[0] = (i>>56) & 0xFF;
+ aBuf[1] = (i>>48) & 0xFF;
+ aBuf[2] = (i>>40) & 0xFF;
+ aBuf[3] = (i>>32) & 0xFF;
+ aBuf[4] = (i>>24) & 0xFF;
+ aBuf[5] = (i>>16) & 0xFF;
+ aBuf[6] = (i>> 8) & 0xFF;
+ aBuf[7] = (i>> 0) & 0xFF;
+}
+
+/*
+** This function is used to serialize the contents of value pValue (see
+** comment titled "RECORD FORMAT" above).
+**
+** If it is non-NULL, the serialized form of the value is written to
+** buffer aBuf. *pnWrite is set to the number of bytes written before
+** returning. Or, if aBuf is NULL, the only thing this function does is
+** set *pnWrite.
+**
+** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs
+** within a call to sqlite3_value_text() (may fail if the db is utf-16))
+** SQLITE_NOMEM is returned.
+*/
+static int sessionSerializeValue(
+ u8 *aBuf, /* If non-NULL, write serialized value here */
+ sqlite3_value *pValue, /* Value to serialize */
+ sqlite3_int64 *pnWrite /* IN/OUT: Increment by bytes written */
+){
+ int nByte; /* Size of serialized value in bytes */
+
+ if( pValue ){
+ int eType; /* Value type (SQLITE_NULL, TEXT etc.) */
+
+ eType = sqlite3_value_type(pValue);
+ if( aBuf ) aBuf[0] = eType;
+
+ switch( eType ){
+ case SQLITE_NULL:
+ nByte = 1;
+ break;
+
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ if( aBuf ){
+ /* TODO: SQLite does something special to deal with mixed-endian
+ ** floating point values (e.g. ARM7). This code probably should
+ ** too. */
+ u64 i;
+ if( eType==SQLITE_INTEGER ){
+ i = (u64)sqlite3_value_int64(pValue);
+ }else{
+ double r;
+ assert( sizeof(double)==8 && sizeof(u64)==8 );
+ r = sqlite3_value_double(pValue);
+ memcpy(&i, &r, 8);
+ }
+ sessionPutI64(&aBuf[1], i);
+ }
+ nByte = 9;
+ break;
+
+ default: {
+ u8 *z;
+ int n;
+ int nVarint;
+
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ if( eType==SQLITE_TEXT ){
+ z = (u8 *)sqlite3_value_text(pValue);
+ }else{
+ z = (u8 *)sqlite3_value_blob(pValue);
+ }
+ n = sqlite3_value_bytes(pValue);
+ if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
+ nVarint = sessionVarintLen(n);
+
+ if( aBuf ){
+ sessionVarintPut(&aBuf[1], n);
+ if( n>0 ) memcpy(&aBuf[nVarint + 1], z, n);
+ }
+
+ nByte = 1 + nVarint + n;
+ break;
+ }
+ }
+ }else{
+ nByte = 1;
+ if( aBuf ) aBuf[0] = '\0';
+ }
+
+ if( pnWrite ) *pnWrite += nByte;
+ return SQLITE_OK;
+}
+
+/*
+** Allocate and return a pointer to a buffer nByte bytes in size. If
+** pSession is not NULL, increase the sqlite3_session.nMalloc variable
+** by the number of bytes allocated.
+*/
+static void *sessionMalloc64(sqlite3_session *pSession, i64 nByte){
+ void *pRet = sqlite3_malloc64(nByte);
+ if( pSession ) pSession->nMalloc += sqlite3_msize(pRet);
+ return pRet;
+}
+
+/*
+** Free buffer pFree, which must have been allocated by an earlier
+** call to sessionMalloc64(). If pSession is not NULL, decrease the
+** sqlite3_session.nMalloc counter by the number of bytes freed.
+*/
+static void sessionFree(sqlite3_session *pSession, void *pFree){
+ if( pSession ) pSession->nMalloc -= sqlite3_msize(pFree);
+ sqlite3_free(pFree);
+}
+
+/*
+** This macro is used to calculate hash key values for data structures. In
+** order to use this macro, the entire data structure must be represented
+** as a series of unsigned integers. In order to calculate a hash-key value
+** for a data structure represented as three such integers, the macro may
+** then be used as follows:
+**
+** int hash_key_value;
+** hash_key_value = HASH_APPEND(0, <value 1>);
+** hash_key_value = HASH_APPEND(hash_key_value, <value 2>);
+** hash_key_value = HASH_APPEND(hash_key_value, <value 3>);
+**
+** In practice, the data structures this macro is used for are the primary
+** key values of modified rows.
+*/
+#define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add)
+
+/*
+** Append the hash of the 64-bit integer passed as the second argument to the
+** hash-key value passed as the first. Return the new hash-key value.
+*/
+static unsigned int sessionHashAppendI64(unsigned int h, i64 i){
+ h = HASH_APPEND(h, i & 0xFFFFFFFF);
+ return HASH_APPEND(h, (i>>32)&0xFFFFFFFF);
+}
+
+/*
+** Append the hash of the blob passed via the second and third arguments to
+** the hash-key value passed as the first. Return the new hash-key value.
+*/
+static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){
+ int i;
+ for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]);
+ return h;
+}
+
+/*
+** Append the hash of the data type passed as the second argument to the
+** hash-key value passed as the first. Return the new hash-key value.
+*/
+static unsigned int sessionHashAppendType(unsigned int h, int eType){
+ return HASH_APPEND(h, eType);
+}
+
+/*
+** This function may only be called from within a pre-update callback.
+** It calculates a hash based on the primary key values of the old.* or
+** new.* row currently available and, assuming no error occurs, writes it to
+** *piHash before returning. If the primary key contains one or more NULL
+** values, *pbNullPK is set to true before returning.
+**
+** If an error occurs, an SQLite error code is returned and the final values
+** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned
+** and the output variables are set as described above.
+*/
+static int sessionPreupdateHash(
+ sqlite3_session *pSession, /* Session object that owns pTab */
+ SessionTable *pTab, /* Session table handle */
+ int bNew, /* True to hash the new.* PK */
+ int *piHash, /* OUT: Hash value */
+ int *pbNullPK /* OUT: True if there are NULL values in PK */
+){
+ unsigned int h = 0; /* Hash value to return */
+ int i; /* Used to iterate through columns */
+
+ assert( *pbNullPK==0 );
+ assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) );
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->abPK[i] ){
+ int rc;
+ int eType;
+ sqlite3_value *pVal;
+
+ if( bNew ){
+ rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal);
+ }else{
+ rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ eType = sqlite3_value_type(pVal);
+ h = sessionHashAppendType(h, eType);
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ i64 iVal;
+ if( eType==SQLITE_INTEGER ){
+ iVal = sqlite3_value_int64(pVal);
+ }else{
+ double rVal = sqlite3_value_double(pVal);
+ assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
+ memcpy(&iVal, &rVal, 8);
+ }
+ h = sessionHashAppendI64(h, iVal);
+ }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ const u8 *z;
+ int n;
+ if( eType==SQLITE_TEXT ){
+ z = (const u8 *)sqlite3_value_text(pVal);
+ }else{
+ z = (const u8 *)sqlite3_value_blob(pVal);
+ }
+ n = sqlite3_value_bytes(pVal);
+ if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
+ h = sessionHashAppendBlob(h, n, z);
+ }else{
+ assert( eType==SQLITE_NULL );
+ assert( pTab->bStat1==0 || i!=1 );
+ *pbNullPK = 1;
+ }
+ }
+ }
+
+ *piHash = (h % pTab->nChange);
+ return SQLITE_OK;
+}
+
+/*
+** The buffer that the argument points to contains a serialized SQL value.
+** Return the number of bytes of space occupied by the value (including
+** the type byte).
+*/
+static int sessionSerialLen(u8 *a){
+ int e = *a;
+ int n;
+ if( e==0 || e==0xFF ) return 1;
+ if( e==SQLITE_NULL ) return 1;
+ if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9;
+ return sessionVarintGet(&a[1], &n) + 1 + n;
+}
+
+/*
+** Based on the primary key values stored in change aRecord, calculate a
+** hash key. Assume the has table has nBucket buckets. The hash keys
+** calculated by this function are compatible with those calculated by
+** sessionPreupdateHash().
+**
+** The bPkOnly argument is non-zero if the record at aRecord[] is from
+** a patchset DELETE. In this case the non-PK fields are omitted entirely.
+*/
+static unsigned int sessionChangeHash(
+ SessionTable *pTab, /* Table handle */
+ int bPkOnly, /* Record consists of PK fields only */
+ u8 *aRecord, /* Change record */
+ int nBucket /* Assume this many buckets in hash table */
+){
+ unsigned int h = 0; /* Value to return */
+ int i; /* Used to iterate through columns */
+ u8 *a = aRecord; /* Used to iterate through change record */
+
+ for(i=0; i<pTab->nCol; i++){
+ int eType = *a;
+ int isPK = pTab->abPK[i];
+ if( bPkOnly && isPK==0 ) continue;
+
+ /* It is not possible for eType to be SQLITE_NULL here. The session
+ ** module does not record changes for rows with NULL values stored in
+ ** primary key columns. */
+ assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
+ || eType==SQLITE_TEXT || eType==SQLITE_BLOB
+ || eType==SQLITE_NULL || eType==0
+ );
+ assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) );
+
+ if( isPK ){
+ a++;
+ h = sessionHashAppendType(h, eType);
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ h = sessionHashAppendI64(h, sessionGetI64(a));
+ a += 8;
+ }else{
+ int n;
+ a += sessionVarintGet(a, &n);
+ h = sessionHashAppendBlob(h, n, a);
+ a += n;
+ }
+ }else{
+ a += sessionSerialLen(a);
+ }
+ }
+ return (h % nBucket);
+}
+
+/*
+** Arguments aLeft and aRight are pointers to change records for table pTab.
+** This function returns true if the two records apply to the same row (i.e.
+** have the same values stored in the primary key columns), or false
+** otherwise.
+*/
+static int sessionChangeEqual(
+ SessionTable *pTab, /* Table used for PK definition */
+ int bLeftPkOnly, /* True if aLeft[] contains PK fields only */
+ u8 *aLeft, /* Change record */
+ int bRightPkOnly, /* True if aRight[] contains PK fields only */
+ u8 *aRight /* Change record */
+){
+ u8 *a1 = aLeft; /* Cursor to iterate through aLeft */
+ u8 *a2 = aRight; /* Cursor to iterate through aRight */
+ int iCol; /* Used to iterate through table columns */
+
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( pTab->abPK[iCol] ){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+
+ if( n1!=n2 || memcmp(a1, a2, n1) ){
+ return 0;
+ }
+ a1 += n1;
+ a2 += n2;
+ }else{
+ if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1);
+ if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2);
+ }
+ }
+
+ return 1;
+}
+
+/*
+** Arguments aLeft and aRight both point to buffers containing change
+** records with nCol columns. This function "merges" the two records into
+** a single records which is written to the buffer at *paOut. *paOut is
+** then set to point to one byte after the last byte written before
+** returning.
+**
+** The merging of records is done as follows: For each column, if the
+** aRight record contains a value for the column, copy the value from
+** their. Otherwise, if aLeft contains a value, copy it. If neither
+** record contains a value for a given column, then neither does the
+** output record.
+*/
+static void sessionMergeRecord(
+ u8 **paOut,
+ int nCol,
+ u8 *aLeft,
+ u8 *aRight
+){
+ u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */
+ u8 *a2 = aRight; /* Cursor used to iterate through aRight */
+ u8 *aOut = *paOut; /* Output cursor */
+ int iCol; /* Used to iterate from 0 to nCol */
+
+ for(iCol=0; iCol<nCol; iCol++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( *a2 ){
+ memcpy(aOut, a2, n2);
+ aOut += n2;
+ }else{
+ memcpy(aOut, a1, n1);
+ aOut += n1;
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+
+ *paOut = aOut;
+}
+
+/*
+** This is a helper function used by sessionMergeUpdate().
+**
+** When this function is called, both *paOne and *paTwo point to a value
+** within a change record. Before it returns, both have been advanced so
+** as to point to the next value in the record.
+**
+** If, when this function is called, *paTwo points to a valid value (i.e.
+** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo
+** pointer is returned and *pnVal is set to the number of bytes in the
+** serialized value. Otherwise, a copy of *paOne is returned and *pnVal
+** set to the number of bytes in the value at *paOne. If *paOne points
+** to the "no value" placeholder, *pnVal is set to 1. In other words:
+**
+** if( *paTwo is valid ) return *paTwo;
+** return *paOne;
+**
+*/
+static u8 *sessionMergeValue(
+ u8 **paOne, /* IN/OUT: Left-hand buffer pointer */
+ u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */
+ int *pnVal /* OUT: Bytes in returned value */
+){
+ u8 *a1 = *paOne;
+ u8 *a2 = *paTwo;
+ u8 *pRet = 0;
+ int n1;
+
+ assert( a1 );
+ if( a2 ){
+ int n2 = sessionSerialLen(a2);
+ if( *a2 ){
+ *pnVal = n2;
+ pRet = a2;
+ }
+ *paTwo = &a2[n2];
+ }
+
+ n1 = sessionSerialLen(a1);
+ if( pRet==0 ){
+ *pnVal = n1;
+ pRet = a1;
+ }
+ *paOne = &a1[n1];
+
+ return pRet;
+}
+
+/*
+** This function is used by changeset_concat() to merge two UPDATE changes
+** on the same row.
+*/
+static int sessionMergeUpdate(
+ u8 **paOut, /* IN/OUT: Pointer to output buffer */
+ SessionTable *pTab, /* Table change pertains to */
+ int bPatchset, /* True if records are patchset records */
+ u8 *aOldRecord1, /* old.* record for first change */
+ u8 *aOldRecord2, /* old.* record for second change */
+ u8 *aNewRecord1, /* new.* record for first change */
+ u8 *aNewRecord2 /* new.* record for second change */
+){
+ u8 *aOld1 = aOldRecord1;
+ u8 *aOld2 = aOldRecord2;
+ u8 *aNew1 = aNewRecord1;
+ u8 *aNew2 = aNewRecord2;
+
+ u8 *aOut = *paOut;
+ int i;
+
+ if( bPatchset==0 ){
+ int bRequired = 0;
+
+ assert( aOldRecord1 && aNewRecord1 );
+
+ /* Write the old.* vector first. */
+ for(i=0; i<pTab->nCol; i++){
+ int nOld;
+ u8 *aOld;
+ int nNew;
+ u8 *aNew;
+
+ aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
+ aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
+ if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){
+ if( pTab->abPK[i]==0 ) bRequired = 1;
+ memcpy(aOut, aOld, nOld);
+ aOut += nOld;
+ }else{
+ *(aOut++) = '\0';
+ }
+ }
+
+ if( !bRequired ) return 0;
+ }
+
+ /* Write the new.* vector */
+ aOld1 = aOldRecord1;
+ aOld2 = aOldRecord2;
+ aNew1 = aNewRecord1;
+ aNew2 = aNewRecord2;
+ for(i=0; i<pTab->nCol; i++){
+ int nOld;
+ u8 *aOld;
+ int nNew;
+ u8 *aNew;
+
+ aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
+ aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
+ if( bPatchset==0
+ && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew)))
+ ){
+ *(aOut++) = '\0';
+ }else{
+ memcpy(aOut, aNew, nNew);
+ aOut += nNew;
+ }
+ }
+
+ *paOut = aOut;
+ return 1;
+}
+
+/*
+** This function is only called from within a pre-update-hook callback.
+** It determines if the current pre-update-hook change affects the same row
+** as the change stored in argument pChange. If so, it returns true. Otherwise
+** if the pre-update-hook does not affect the same row as pChange, it returns
+** false.
+*/
+static int sessionPreupdateEqual(
+ sqlite3_session *pSession, /* Session object that owns SessionTable */
+ SessionTable *pTab, /* Table associated with change */
+ SessionChange *pChange, /* Change to compare to */
+ int op /* Current pre-update operation */
+){
+ int iCol; /* Used to iterate through columns */
+ u8 *a = pChange->aRecord; /* Cursor used to scan change record */
+
+ assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE );
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( !pTab->abPK[iCol] ){
+ a += sessionSerialLen(a);
+ }else{
+ sqlite3_value *pVal; /* Value returned by preupdate_new/old */
+ int rc; /* Error code from preupdate_new/old */
+ int eType = *a++; /* Type of value from change record */
+
+ /* The following calls to preupdate_new() and preupdate_old() can not
+ ** fail. This is because they cache their return values, and by the
+ ** time control flows to here they have already been called once from
+ ** within sessionPreupdateHash(). The first two asserts below verify
+ ** this (that the method has already been called). */
+ if( op==SQLITE_INSERT ){
+ /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */
+ rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal);
+ }else{
+ /* assert( db->pPreUpdate->pUnpacked ); */
+ rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal);
+ }
+ assert( rc==SQLITE_OK );
+ if( sqlite3_value_type(pVal)!=eType ) return 0;
+
+ /* A SessionChange object never has a NULL value in a PK column */
+ assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
+ || eType==SQLITE_BLOB || eType==SQLITE_TEXT
+ );
+
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ i64 iVal = sessionGetI64(a);
+ a += 8;
+ if( eType==SQLITE_INTEGER ){
+ if( sqlite3_value_int64(pVal)!=iVal ) return 0;
+ }else{
+ double rVal;
+ assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
+ memcpy(&rVal, &iVal, 8);
+ if( sqlite3_value_double(pVal)!=rVal ) return 0;
+ }
+ }else{
+ int n;
+ const u8 *z;
+ a += sessionVarintGet(a, &n);
+ if( sqlite3_value_bytes(pVal)!=n ) return 0;
+ if( eType==SQLITE_TEXT ){
+ z = sqlite3_value_text(pVal);
+ }else{
+ z = sqlite3_value_blob(pVal);
+ }
+ if( n>0 && memcmp(a, z, n) ) return 0;
+ a += n;
+ }
+ }
+ }
+
+ return 1;
+}
+
+/*
+** If required, grow the hash table used to store changes on table pTab
+** (part of the session pSession). If a fatal OOM error occurs, set the
+** session object to failed and return SQLITE_ERROR. Otherwise, return
+** SQLITE_OK.
+**
+** It is possible that a non-fatal OOM error occurs in this function. In
+** that case the hash-table does not grow, but SQLITE_OK is returned anyway.
+** Growing the hash table in this case is a performance optimization only,
+** it is not required for correct operation.
+*/
+static int sessionGrowHash(
+ sqlite3_session *pSession, /* For memory accounting. May be NULL */
+ int bPatchset,
+ SessionTable *pTab
+){
+ if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
+ int i;
+ SessionChange **apNew;
+ sqlite3_int64 nNew = 2*(sqlite3_int64)(pTab->nChange ? pTab->nChange : 128);
+
+ apNew = (SessionChange**)sessionMalloc64(
+ pSession, sizeof(SessionChange*) * nNew
+ );
+ if( apNew==0 ){
+ if( pTab->nChange==0 ){
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+ }
+ memset(apNew, 0, sizeof(SessionChange *) * nNew);
+
+ for(i=0; i<pTab->nChange; i++){
+ SessionChange *p;
+ SessionChange *pNext;
+ for(p=pTab->apChange[i]; p; p=pNext){
+ int bPkOnly = (p->op==SQLITE_DELETE && bPatchset);
+ int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew);
+ pNext = p->pNext;
+ p->pNext = apNew[iHash];
+ apNew[iHash] = p;
+ }
+ }
+
+ sessionFree(pSession, pTab->apChange);
+ pTab->nChange = nNew;
+ pTab->apChange = apNew;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** This function queries the database for the names of the columns of table
+** zThis, in schema zDb.
+**
+** Otherwise, if they are not NULL, variable *pnCol is set to the number
+** of columns in the database table and variable *pzTab is set to point to a
+** nul-terminated copy of the table name. *pazCol (if not NULL) is set to
+** point to an array of pointers to column names. And *pabPK (again, if not
+** NULL) is set to point to an array of booleans - true if the corresponding
+** column is part of the primary key.
+**
+** For example, if the table is declared as:
+**
+** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z));
+**
+** Then the four output variables are populated as follows:
+**
+** *pnCol = 4
+** *pzTab = "tbl1"
+** *pazCol = {"w", "x", "y", "z"}
+** *pabPK = {1, 0, 0, 1}
+**
+** All returned buffers are part of the same single allocation, which must
+** be freed using sqlite3_free() by the caller
+*/
+static int sessionTableInfo(
+ sqlite3_session *pSession, /* For memory accounting. May be NULL */
+ sqlite3 *db, /* Database connection */
+ const char *zDb, /* Name of attached database (e.g. "main") */
+ const char *zThis, /* Table name */
+ int *pnCol, /* OUT: number of columns */
+ const char **pzTab, /* OUT: Copy of zThis */
+ const char ***pazCol, /* OUT: Array of column names for table */
+ u8 **pabPK /* OUT: Array of booleans - true for PK col */
+){
+ char *zPragma;
+ sqlite3_stmt *pStmt;
+ int rc;
+ sqlite3_int64 nByte;
+ int nDbCol = 0;
+ int nThis;
+ int i;
+ u8 *pAlloc = 0;
+ char **azCol = 0;
+ u8 *abPK = 0;
+
+ assert( pazCol && pabPK );
+
+ nThis = sqlite3Strlen30(zThis);
+ if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){
+ rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ /* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */
+ zPragma = sqlite3_mprintf(
+ "SELECT 0, 'tbl', '', 0, '', 1 UNION ALL "
+ "SELECT 1, 'idx', '', 0, '', 2 UNION ALL "
+ "SELECT 2, 'stat', '', 0, '', 0"
+ );
+ }else if( rc==SQLITE_ERROR ){
+ zPragma = sqlite3_mprintf("");
+ }else{
+ *pazCol = 0;
+ *pabPK = 0;
+ *pnCol = 0;
+ if( pzTab ) *pzTab = 0;
+ return rc;
+ }
+ }else{
+ zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis);
+ }
+ if( !zPragma ){
+ *pazCol = 0;
+ *pabPK = 0;
+ *pnCol = 0;
+ if( pzTab ) *pzTab = 0;
+ return SQLITE_NOMEM;
+ }
+
+ rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0);
+ sqlite3_free(zPragma);
+ if( rc!=SQLITE_OK ){
+ *pazCol = 0;
+ *pabPK = 0;
+ *pnCol = 0;
+ if( pzTab ) *pzTab = 0;
+ return rc;
+ }
+
+ nByte = nThis + 1;
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ nByte += sqlite3_column_bytes(pStmt, 1);
+ nDbCol++;
+ }
+ rc = sqlite3_reset(pStmt);
+
+ if( rc==SQLITE_OK ){
+ nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1);
+ pAlloc = sessionMalloc64(pSession, nByte);
+ if( pAlloc==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ azCol = (char **)pAlloc;
+ pAlloc = (u8 *)&azCol[nDbCol];
+ abPK = (u8 *)pAlloc;
+ pAlloc = &abPK[nDbCol];
+ if( pzTab ){
+ memcpy(pAlloc, zThis, nThis+1);
+ *pzTab = (char *)pAlloc;
+ pAlloc += nThis+1;
+ }
+
+ i = 0;
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ int nName = sqlite3_column_bytes(pStmt, 1);
+ const unsigned char *zName = sqlite3_column_text(pStmt, 1);
+ if( zName==0 ) break;
+ memcpy(pAlloc, zName, nName+1);
+ azCol[i] = (char *)pAlloc;
+ pAlloc += nName+1;
+ abPK[i] = sqlite3_column_int(pStmt, 5);
+ i++;
+ }
+ rc = sqlite3_reset(pStmt);
+
+ }
+
+ /* If successful, populate the output variables. Otherwise, zero them and
+ ** free any allocation made. An error code will be returned in this case.
+ */
+ if( rc==SQLITE_OK ){
+ *pazCol = (const char **)azCol;
+ *pabPK = abPK;
+ *pnCol = nDbCol;
+ }else{
+ *pazCol = 0;
+ *pabPK = 0;
+ *pnCol = 0;
+ if( pzTab ) *pzTab = 0;
+ sessionFree(pSession, azCol);
+ }
+ sqlite3_finalize(pStmt);
+ return rc;
+}
+
+/*
+** This function is only called from within a pre-update handler for a
+** write to table pTab, part of session pSession. If this is the first
+** write to this table, initalize the SessionTable.nCol, azCol[] and
+** abPK[] arrays accordingly.
+**
+** If an error occurs, an error code is stored in sqlite3_session.rc and
+** non-zero returned. Or, if no error occurs but the table has no primary
+** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to
+** indicate that updates on this table should be ignored. SessionTable.abPK
+** is set to NULL in this case.
+*/
+static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){
+ if( pTab->nCol==0 ){
+ u8 *abPK;
+ assert( pTab->azCol==0 || pTab->abPK==0 );
+ pSession->rc = sessionTableInfo(pSession, pSession->db, pSession->zDb,
+ pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK
+ );
+ if( pSession->rc==SQLITE_OK ){
+ int i;
+ for(i=0; i<pTab->nCol; i++){
+ if( abPK[i] ){
+ pTab->abPK = abPK;
+ break;
+ }
+ }
+ if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){
+ pTab->bStat1 = 1;
+ }
+
+ if( pSession->bEnableSize ){
+ pSession->nMaxChangesetSize += (
+ 1 + sessionVarintLen(pTab->nCol) + pTab->nCol + strlen(pTab->zName)+1
+ );
+ }
+ }
+ }
+ return (pSession->rc || pTab->abPK==0);
+}
+
+/*
+** Versions of the four methods in object SessionHook for use with the
+** sqlite_stat1 table. The purpose of this is to substitute a zero-length
+** blob each time a NULL value is read from the "idx" column of the
+** sqlite_stat1 table.
+*/
+typedef struct SessionStat1Ctx SessionStat1Ctx;
+struct SessionStat1Ctx {
+ SessionHook hook;
+ sqlite3_session *pSession;
+};
+static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ sqlite3_value *pVal = 0;
+ int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal);
+ if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
+ pVal = p->pSession->pZeroBlob;
+ }
+ *ppVal = pVal;
+ return rc;
+}
+static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ sqlite3_value *pVal = 0;
+ int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal);
+ if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
+ pVal = p->pSession->pZeroBlob;
+ }
+ *ppVal = pVal;
+ return rc;
+}
+static int sessionStat1Count(void *pCtx){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ return p->hook.xCount(p->hook.pCtx);
+}
+static int sessionStat1Depth(void *pCtx){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ return p->hook.xDepth(p->hook.pCtx);
+}
+
+static int sessionUpdateMaxSize(
+ int op,
+ sqlite3_session *pSession, /* Session object pTab is attached to */
+ SessionTable *pTab, /* Table that change applies to */
+ SessionChange *pC /* Update pC->nMaxSize */
+){
+ i64 nNew = 2;
+ if( pC->op==SQLITE_INSERT ){
+ if( op!=SQLITE_DELETE ){
+ int ii;
+ for(ii=0; ii<pTab->nCol; ii++){
+ sqlite3_value *p = 0;
+ pSession->hook.xNew(pSession->hook.pCtx, ii, &p);
+ sessionSerializeValue(0, p, &nNew);
+ }
+ }
+ }else if( op==SQLITE_DELETE ){
+ nNew += pC->nRecord;
+ if( sqlite3_preupdate_blobwrite(pSession->db)>=0 ){
+ nNew += pC->nRecord;
+ }
+ }else{
+ int ii;
+ u8 *pCsr = pC->aRecord;
+ for(ii=0; ii<pTab->nCol; ii++){
+ int bChanged = 1;
+ int nOld = 0;
+ int eType;
+ sqlite3_value *p = 0;
+ pSession->hook.xNew(pSession->hook.pCtx, ii, &p);
+ if( p==0 ){
+ return SQLITE_NOMEM;
+ }
+
+ eType = *pCsr++;
+ switch( eType ){
+ case SQLITE_NULL:
+ bChanged = sqlite3_value_type(p)!=SQLITE_NULL;
+ break;
+
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER: {
+ if( eType==sqlite3_value_type(p) ){
+ sqlite3_int64 iVal = sessionGetI64(pCsr);
+ if( eType==SQLITE_INTEGER ){
+ bChanged = (iVal!=sqlite3_value_int64(p));
+ }else{
+ double dVal;
+ memcpy(&dVal, &iVal, 8);
+ bChanged = (dVal!=sqlite3_value_double(p));
+ }
+ }
+ nOld = 8;
+ pCsr += 8;
+ break;
+ }
+
+ default: {
+ int nByte;
+ nOld = sessionVarintGet(pCsr, &nByte);
+ pCsr += nOld;
+ nOld += nByte;
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ if( eType==sqlite3_value_type(p)
+ && nByte==sqlite3_value_bytes(p)
+ && (nByte==0 || 0==memcmp(pCsr, sqlite3_value_blob(p), nByte))
+ ){
+ bChanged = 0;
+ }
+ pCsr += nByte;
+ break;
+ }
+ }
+
+ if( bChanged && pTab->abPK[ii] ){
+ nNew = pC->nRecord + 2;
+ break;
+ }
+
+ if( bChanged ){
+ nNew += 1 + nOld;
+ sessionSerializeValue(0, p, &nNew);
+ }else if( pTab->abPK[ii] ){
+ nNew += 2 + nOld;
+ }else{
+ nNew += 2;
+ }
+ }
+ }
+
+ if( nNew>pC->nMaxSize ){
+ int nIncr = nNew - pC->nMaxSize;
+ pC->nMaxSize = nNew;
+ pSession->nMaxChangesetSize += nIncr;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is only called from with a pre-update-hook reporting a
+** change on table pTab (attached to session pSession). The type of change
+** (UPDATE, INSERT, DELETE) is specified by the first argument.
+**
+** Unless one is already present or an error occurs, an entry is added
+** to the changed-rows hash table associated with table pTab.
+*/
+static void sessionPreupdateOneChange(
+ int op, /* One of SQLITE_UPDATE, INSERT, DELETE */
+ sqlite3_session *pSession, /* Session object pTab is attached to */
+ SessionTable *pTab /* Table that change applies to */
+){
+ int iHash;
+ int bNull = 0;
+ int rc = SQLITE_OK;
+ SessionStat1Ctx stat1 = {{0,0,0,0,0},0};
+
+ if( pSession->rc ) return;
+
+ /* Load table details if required */
+ if( sessionInitTable(pSession, pTab) ) return;
+
+ /* Check the number of columns in this xPreUpdate call matches the
+ ** number of columns in the table. */
+ if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){
+ pSession->rc = SQLITE_SCHEMA;
+ return;
+ }
+
+ /* Grow the hash table if required */
+ if( sessionGrowHash(pSession, 0, pTab) ){
+ pSession->rc = SQLITE_NOMEM;
+ return;
+ }
+
+ if( pTab->bStat1 ){
+ stat1.hook = pSession->hook;
+ stat1.pSession = pSession;
+ pSession->hook.pCtx = (void*)&stat1;
+ pSession->hook.xNew = sessionStat1New;
+ pSession->hook.xOld = sessionStat1Old;
+ pSession->hook.xCount = sessionStat1Count;
+ pSession->hook.xDepth = sessionStat1Depth;
+ if( pSession->pZeroBlob==0 ){
+ sqlite3_value *p = sqlite3ValueNew(0);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ goto error_out;
+ }
+ sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC);
+ pSession->pZeroBlob = p;
+ }
+ }
+
+ /* Calculate the hash-key for this change. If the primary key of the row
+ ** includes a NULL value, exit early. Such changes are ignored by the
+ ** session module. */
+ rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull);
+ if( rc!=SQLITE_OK ) goto error_out;
+
+ if( bNull==0 ){
+ /* Search the hash table for an existing record for this row. */
+ SessionChange *pC;
+ for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){
+ if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break;
+ }
+
+ if( pC==0 ){
+ /* Create a new change object containing all the old values (if
+ ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK
+ ** values (if this is an INSERT). */
+ sqlite3_int64 nByte; /* Number of bytes to allocate */
+ int i; /* Used to iterate through columns */
+
+ assert( rc==SQLITE_OK );
+ pTab->nEntry++;
+
+ /* Figure out how large an allocation is required */
+ nByte = sizeof(SessionChange);
+ for(i=0; i<pTab->nCol; i++){
+ sqlite3_value *p = 0;
+ if( op!=SQLITE_INSERT ){
+ TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p);
+ assert( trc==SQLITE_OK );
+ }else if( pTab->abPK[i] ){
+ TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p);
+ assert( trc==SQLITE_OK );
+ }
+
+ /* This may fail if SQLite value p contains a utf-16 string that must
+ ** be converted to utf-8 and an OOM error occurs while doing so. */
+ rc = sessionSerializeValue(0, p, &nByte);
+ if( rc!=SQLITE_OK ) goto error_out;
+ }
+
+ /* Allocate the change object */
+ pC = (SessionChange *)sessionMalloc64(pSession, nByte);
+ if( !pC ){
+ rc = SQLITE_NOMEM;
+ goto error_out;
+ }else{
+ memset(pC, 0, sizeof(SessionChange));
+ pC->aRecord = (u8 *)&pC[1];
+ }
+
+ /* Populate the change object. None of the preupdate_old(),
+ ** preupdate_new() or SerializeValue() calls below may fail as all
+ ** required values and encodings have already been cached in memory.
+ ** It is not possible for an OOM to occur in this block. */
+ nByte = 0;
+ for(i=0; i<pTab->nCol; i++){
+ sqlite3_value *p = 0;
+ if( op!=SQLITE_INSERT ){
+ pSession->hook.xOld(pSession->hook.pCtx, i, &p);
+ }else if( pTab->abPK[i] ){
+ pSession->hook.xNew(pSession->hook.pCtx, i, &p);
+ }
+ sessionSerializeValue(&pC->aRecord[nByte], p, &nByte);
+ }
+
+ /* Add the change to the hash-table */
+ if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){
+ pC->bIndirect = 1;
+ }
+ pC->nRecord = nByte;
+ pC->op = op;
+ pC->pNext = pTab->apChange[iHash];
+ pTab->apChange[iHash] = pC;
+
+ }else if( pC->bIndirect ){
+ /* If the existing change is considered "indirect", but this current
+ ** change is "direct", mark the change object as direct. */
+ if( pSession->hook.xDepth(pSession->hook.pCtx)==0
+ && pSession->bIndirect==0
+ ){
+ pC->bIndirect = 0;
+ }
+ }
+
+ assert( rc==SQLITE_OK );
+ if( pSession->bEnableSize ){
+ rc = sessionUpdateMaxSize(op, pSession, pTab, pC);
+ }
+ }
+
+
+ /* If an error has occurred, mark the session object as failed. */
+ error_out:
+ if( pTab->bStat1 ){
+ pSession->hook = stat1.hook;
+ }
+ if( rc!=SQLITE_OK ){
+ pSession->rc = rc;
+ }
+}
+
+static int sessionFindTable(
+ sqlite3_session *pSession,
+ const char *zName,
+ SessionTable **ppTab
+){
+ int rc = SQLITE_OK;
+ int nName = sqlite3Strlen30(zName);
+ SessionTable *pRet;
+
+ /* Search for an existing table */
+ for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){
+ if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break;
+ }
+
+ if( pRet==0 && pSession->bAutoAttach ){
+ /* If there is a table-filter configured, invoke it. If it returns 0,
+ ** do not automatically add the new table. */
+ if( pSession->xTableFilter==0
+ || pSession->xTableFilter(pSession->pFilterCtx, zName)
+ ){
+ rc = sqlite3session_attach(pSession, zName);
+ if( rc==SQLITE_OK ){
+ pRet = pSession->pTable;
+ while( ALWAYS(pRet) && pRet->pNext ){
+ pRet = pRet->pNext;
+ }
+ assert( pRet!=0 );
+ assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) );
+ }
+ }
+ }
+
+ assert( rc==SQLITE_OK || pRet==0 );
+ *ppTab = pRet;
+ return rc;
+}
+
+/*
+** The 'pre-update' hook registered by this module with SQLite databases.
+*/
+static void xPreUpdate(
+ void *pCtx, /* Copy of third arg to preupdate_hook() */
+ sqlite3 *db, /* Database handle */
+ int op, /* SQLITE_UPDATE, DELETE or INSERT */
+ char const *zDb, /* Database name */
+ char const *zName, /* Table name */
+ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
+ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
+){
+ sqlite3_session *pSession;
+ int nDb = sqlite3Strlen30(zDb);
+
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){
+ SessionTable *pTab;
+
+ /* If this session is attached to a different database ("main", "temp"
+ ** etc.), or if it is not currently enabled, there is nothing to do. Skip
+ ** to the next session object attached to this database. */
+ if( pSession->bEnable==0 ) continue;
+ if( pSession->rc ) continue;
+ if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue;
+
+ pSession->rc = sessionFindTable(pSession, zName, &pTab);
+ if( pTab ){
+ assert( pSession->rc==SQLITE_OK );
+ sessionPreupdateOneChange(op, pSession, pTab);
+ if( op==SQLITE_UPDATE ){
+ sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab);
+ }
+ }
+ }
+}
+
+/*
+** The pre-update hook implementations.
+*/
+static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){
+ return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal);
+}
+static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){
+ return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal);
+}
+static int sessionPreupdateCount(void *pCtx){
+ return sqlite3_preupdate_count((sqlite3*)pCtx);
+}
+static int sessionPreupdateDepth(void *pCtx){
+ return sqlite3_preupdate_depth((sqlite3*)pCtx);
+}
+
+/*
+** Install the pre-update hooks on the session object passed as the only
+** argument.
+*/
+static void sessionPreupdateHooks(
+ sqlite3_session *pSession
+){
+ pSession->hook.pCtx = (void*)pSession->db;
+ pSession->hook.xOld = sessionPreupdateOld;
+ pSession->hook.xNew = sessionPreupdateNew;
+ pSession->hook.xCount = sessionPreupdateCount;
+ pSession->hook.xDepth = sessionPreupdateDepth;
+}
+
+typedef struct SessionDiffCtx SessionDiffCtx;
+struct SessionDiffCtx {
+ sqlite3_stmt *pStmt;
+ int nOldOff;
+};
+
+/*
+** The diff hook implementations.
+*/
+static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){
+ SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
+ *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff);
+ return SQLITE_OK;
+}
+static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){
+ SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
+ *ppVal = sqlite3_column_value(p->pStmt, iVal);
+ return SQLITE_OK;
+}
+static int sessionDiffCount(void *pCtx){
+ SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
+ return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt);
+}
+static int sessionDiffDepth(void *pCtx){
+ return 0;
+}
+
+/*
+** Install the diff hooks on the session object passed as the only
+** argument.
+*/
+static void sessionDiffHooks(
+ sqlite3_session *pSession,
+ SessionDiffCtx *pDiffCtx
+){
+ pSession->hook.pCtx = (void*)pDiffCtx;
+ pSession->hook.xOld = sessionDiffOld;
+ pSession->hook.xNew = sessionDiffNew;
+ pSession->hook.xCount = sessionDiffCount;
+ pSession->hook.xDepth = sessionDiffDepth;
+}
+
+static char *sessionExprComparePK(
+ int nCol,
+ const char *zDb1, const char *zDb2,
+ const char *zTab,
+ const char **azCol, u8 *abPK
+){
+ int i;
+ const char *zSep = "";
+ char *zRet = 0;
+
+ for(i=0; i<nCol; i++){
+ if( abPK[i] ){
+ zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"",
+ zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
+ );
+ zSep = " AND ";
+ if( zRet==0 ) break;
+ }
+ }
+
+ return zRet;
+}
+
+static char *sessionExprCompareOther(
+ int nCol,
+ const char *zDb1, const char *zDb2,
+ const char *zTab,
+ const char **azCol, u8 *abPK
+){
+ int i;
+ const char *zSep = "";
+ char *zRet = 0;
+ int bHave = 0;
+
+ for(i=0; i<nCol; i++){
+ if( abPK[i]==0 ){
+ bHave = 1;
+ zRet = sqlite3_mprintf(
+ "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"",
+ zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
+ );
+ zSep = " OR ";
+ if( zRet==0 ) break;
+ }
+ }
+
+ if( bHave==0 ){
+ assert( zRet==0 );
+ zRet = sqlite3_mprintf("0");
+ }
+
+ return zRet;
+}
+
+static char *sessionSelectFindNew(
+ int nCol,
+ const char *zDb1, /* Pick rows in this db only */
+ const char *zDb2, /* But not in this one */
+ const char *zTbl, /* Table name */
+ const char *zExpr
+){
+ char *zRet = sqlite3_mprintf(
+ "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS ("
+ " SELECT 1 FROM \"%w\".\"%w\" WHERE %s"
+ ")",
+ zDb1, zTbl, zDb2, zTbl, zExpr
+ );
+ return zRet;
+}
+
+static int sessionDiffFindNew(
+ int op,
+ sqlite3_session *pSession,
+ SessionTable *pTab,
+ const char *zDb1,
+ const char *zDb2,
+ char *zExpr
+){
+ int rc = SQLITE_OK;
+ char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr);
+
+ if( zStmt==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pStmt;
+ rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
+ pDiffCtx->pStmt = pStmt;
+ pDiffCtx->nOldOff = 0;
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ sessionPreupdateOneChange(op, pSession, pTab);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ sqlite3_free(zStmt);
+ }
+
+ return rc;
+}
+
+static int sessionDiffFindModified(
+ sqlite3_session *pSession,
+ SessionTable *pTab,
+ const char *zFrom,
+ const char *zExpr
+){
+ int rc = SQLITE_OK;
+
+ char *zExpr2 = sessionExprCompareOther(pTab->nCol,
+ pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK
+ );
+ if( zExpr2==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *zStmt = sqlite3_mprintf(
+ "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)",
+ pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2
+ );
+ if( zStmt==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pStmt;
+ rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
+
+ if( rc==SQLITE_OK ){
+ SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
+ pDiffCtx->pStmt = pStmt;
+ pDiffCtx->nOldOff = pTab->nCol;
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ sqlite3_free(zStmt);
+ }
+ }
+
+ return rc;
+}
+
+SQLITE_API int sqlite3session_diff(
+ sqlite3_session *pSession,
+ const char *zFrom,
+ const char *zTbl,
+ char **pzErrMsg
+){
+ const char *zDb = pSession->zDb;
+ int rc = pSession->rc;
+ SessionDiffCtx d;
+
+ memset(&d, 0, sizeof(d));
+ sessionDiffHooks(pSession, &d);
+
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ if( pzErrMsg ) *pzErrMsg = 0;
+ if( rc==SQLITE_OK ){
+ char *zExpr = 0;
+ sqlite3 *db = pSession->db;
+ SessionTable *pTo; /* Table zTbl */
+
+ /* Locate and if necessary initialize the target table object */
+ rc = sessionFindTable(pSession, zTbl, &pTo);
+ if( pTo==0 ) goto diff_out;
+ if( sessionInitTable(pSession, pTo) ){
+ rc = pSession->rc;
+ goto diff_out;
+ }
+
+ /* Check the table schemas match */
+ if( rc==SQLITE_OK ){
+ int bHasPk = 0;
+ int bMismatch = 0;
+ int nCol; /* Columns in zFrom.zTbl */
+ u8 *abPK;
+ const char **azCol = 0;
+ rc = sessionTableInfo(0, db, zFrom, zTbl, &nCol, 0, &azCol, &abPK);
+ if( rc==SQLITE_OK ){
+ if( pTo->nCol!=nCol ){
+ bMismatch = 1;
+ }else{
+ int i;
+ for(i=0; i<nCol; i++){
+ if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1;
+ if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1;
+ if( abPK[i] ) bHasPk = 1;
+ }
+ }
+ }
+ sqlite3_free((char*)azCol);
+ if( bMismatch ){
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("table schemas do not match");
+ }
+ rc = SQLITE_SCHEMA;
+ }
+ if( bHasPk==0 ){
+ /* Ignore tables with no primary keys */
+ goto diff_out;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ zExpr = sessionExprComparePK(pTo->nCol,
+ zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK
+ );
+ }
+
+ /* Find new rows */
+ if( rc==SQLITE_OK ){
+ rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr);
+ }
+
+ /* Find old rows */
+ if( rc==SQLITE_OK ){
+ rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr);
+ }
+
+ /* Find modified rows */
+ if( rc==SQLITE_OK ){
+ rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr);
+ }
+
+ sqlite3_free(zExpr);
+ }
+
+ diff_out:
+ sessionPreupdateHooks(pSession);
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return rc;
+}
+
+/*
+** Create a session object. This session object will record changes to
+** database zDb attached to connection db.
+*/
+SQLITE_API int sqlite3session_create(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (e.g. "main") */
+ sqlite3_session **ppSession /* OUT: New session object */
+){
+ sqlite3_session *pNew; /* Newly allocated session object */
+ sqlite3_session *pOld; /* Session object already attached to db */
+ int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */
+
+ /* Zero the output value in case an error occurs. */
+ *ppSession = 0;
+
+ /* Allocate and populate the new session object. */
+ pNew = (sqlite3_session *)sqlite3_malloc64(sizeof(sqlite3_session) + nDb + 1);
+ if( !pNew ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(sqlite3_session));
+ pNew->db = db;
+ pNew->zDb = (char *)&pNew[1];
+ pNew->bEnable = 1;
+ memcpy(pNew->zDb, zDb, nDb+1);
+ sessionPreupdateHooks(pNew);
+
+ /* Add the new session object to the linked list of session objects
+ ** attached to database handle $db. Do this under the cover of the db
+ ** handle mutex. */
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+ pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew);
+ pNew->pNext = pOld;
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+
+ *ppSession = pNew;
+ return SQLITE_OK;
+}
+
+/*
+** Free the list of table objects passed as the first argument. The contents
+** of the changed-rows hash tables are also deleted.
+*/
+static void sessionDeleteTable(sqlite3_session *pSession, SessionTable *pList){
+ SessionTable *pNext;
+ SessionTable *pTab;
+
+ for(pTab=pList; pTab; pTab=pNext){
+ int i;
+ pNext = pTab->pNext;
+ for(i=0; i<pTab->nChange; i++){
+ SessionChange *p;
+ SessionChange *pNextChange;
+ for(p=pTab->apChange[i]; p; p=pNextChange){
+ pNextChange = p->pNext;
+ sessionFree(pSession, p);
+ }
+ }
+ sessionFree(pSession, (char*)pTab->azCol); /* cast works around VC++ bug */
+ sessionFree(pSession, pTab->apChange);
+ sessionFree(pSession, pTab);
+ }
+}
+
+/*
+** Delete a session object previously allocated using sqlite3session_create().
+*/
+SQLITE_API void sqlite3session_delete(sqlite3_session *pSession){
+ sqlite3 *db = pSession->db;
+ sqlite3_session *pHead;
+ sqlite3_session **pp;
+
+ /* Unlink the session from the linked list of sessions attached to the
+ ** database handle. Hold the db mutex while doing so. */
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+ pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0);
+ for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){
+ if( (*pp)==pSession ){
+ *pp = (*pp)->pNext;
+ if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead);
+ break;
+ }
+ }
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+ sqlite3ValueFree(pSession->pZeroBlob);
+
+ /* Delete all attached table objects. And the contents of their
+ ** associated hash-tables. */
+ sessionDeleteTable(pSession, pSession->pTable);
+
+ /* Assert that all allocations have been freed and then free the
+ ** session object itself. */
+ assert( pSession->nMalloc==0 );
+ sqlite3_free(pSession);
+}
+
+/*
+** Set a table filter on a Session Object.
+*/
+SQLITE_API void sqlite3session_table_filter(
+ sqlite3_session *pSession,
+ int(*xFilter)(void*, const char*),
+ void *pCtx /* First argument passed to xFilter */
+){
+ pSession->bAutoAttach = 1;
+ pSession->pFilterCtx = pCtx;
+ pSession->xTableFilter = xFilter;
+}
+
+/*
+** Attach a table to a session. All subsequent changes made to the table
+** while the session object is enabled will be recorded.
+**
+** Only tables that have a PRIMARY KEY defined may be attached. It does
+** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias)
+** or not.
+*/
+SQLITE_API int sqlite3session_attach(
+ sqlite3_session *pSession, /* Session object */
+ const char *zName /* Table name */
+){
+ int rc = SQLITE_OK;
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+
+ if( !zName ){
+ pSession->bAutoAttach = 1;
+ }else{
+ SessionTable *pTab; /* New table object (if required) */
+ int nName; /* Number of bytes in string zName */
+
+ /* First search for an existing entry. If one is found, this call is
+ ** a no-op. Return early. */
+ nName = sqlite3Strlen30(zName);
+ for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){
+ if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break;
+ }
+
+ if( !pTab ){
+ /* Allocate new SessionTable object. */
+ int nByte = sizeof(SessionTable) + nName + 1;
+ pTab = (SessionTable*)sessionMalloc64(pSession, nByte);
+ if( !pTab ){
+ rc = SQLITE_NOMEM;
+ }else{
+ /* Populate the new SessionTable object and link it into the list.
+ ** The new object must be linked onto the end of the list, not
+ ** simply added to the start of it in order to ensure that tables
+ ** appear in the correct order when a changeset or patchset is
+ ** eventually generated. */
+ SessionTable **ppTab;
+ memset(pTab, 0, sizeof(SessionTable));
+ pTab->zName = (char *)&pTab[1];
+ memcpy(pTab->zName, zName, nName+1);
+ for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext);
+ *ppTab = pTab;
+ }
+ }
+ }
+
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return rc;
+}
+
+/*
+** Ensure that there is room in the buffer to append nByte bytes of data.
+** If not, use sqlite3_realloc() to grow the buffer so that there is.
+**
+** If successful, return zero. Otherwise, if an OOM condition is encountered,
+** set *pRc to SQLITE_NOMEM and return non-zero.
+*/
+static int sessionBufferGrow(SessionBuffer *p, i64 nByte, int *pRc){
+#define SESSION_MAX_BUFFER_SZ (0x7FFFFF00 - 1)
+ i64 nReq = p->nBuf + nByte;
+ if( *pRc==SQLITE_OK && nReq>p->nAlloc ){
+ u8 *aNew;
+ i64 nNew = p->nAlloc ? p->nAlloc : 128;
+
+ do {
+ nNew = nNew*2;
+ }while( nNew<nReq );
+
+ /* The value of SESSION_MAX_BUFFER_SZ is copied from the implementation
+ ** of sqlite3_realloc64(). Allocations greater than this size in bytes
+ ** always fail. It is used here to ensure that this routine can always
+ ** allocate up to this limit - instead of up to the largest power of
+ ** two smaller than the limit. */
+ if( nNew>SESSION_MAX_BUFFER_SZ ){
+ nNew = SESSION_MAX_BUFFER_SZ;
+ if( nNew<nReq ){
+ *pRc = SQLITE_NOMEM;
+ return 1;
+ }
+ }
+
+ aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew);
+ if( 0==aNew ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ p->aBuf = aNew;
+ p->nAlloc = nNew;
+ }
+ }
+ return (*pRc!=SQLITE_OK);
+}
+
+/*
+** Append the value passed as the second argument to the buffer passed
+** as the first.
+**
+** This function is a no-op if *pRc is non-zero when it is called.
+** Otherwise, if an error occurs, *pRc is set to an SQLite error code
+** before returning.
+*/
+static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){
+ int rc = *pRc;
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 nByte = 0;
+ rc = sessionSerializeValue(0, pVal, &nByte);
+ sessionBufferGrow(p, nByte, &rc);
+ if( rc==SQLITE_OK ){
+ rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0);
+ p->nBuf += nByte;
+ }else{
+ *pRc = rc;
+ }
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a single byte to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){
+ if( 0==sessionBufferGrow(p, 1, pRc) ){
+ p->aBuf[p->nBuf++] = v;
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a single varint to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){
+ if( 0==sessionBufferGrow(p, 9, pRc) ){
+ p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v);
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a blob of data to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendBlob(
+ SessionBuffer *p,
+ const u8 *aBlob,
+ int nBlob,
+ int *pRc
+){
+ if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){
+ memcpy(&p->aBuf[p->nBuf], aBlob, nBlob);
+ p->nBuf += nBlob;
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a string to the buffer. All bytes in the string
+** up to (but not including) the nul-terminator are written to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendStr(
+ SessionBuffer *p,
+ const char *zStr,
+ int *pRc
+){
+ int nStr = sqlite3Strlen30(zStr);
+ if( 0==sessionBufferGrow(p, nStr, pRc) ){
+ memcpy(&p->aBuf[p->nBuf], zStr, nStr);
+ p->nBuf += nStr;
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append the string representation of integer iVal
+** to the buffer. No nul-terminator is written.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendInteger(
+ SessionBuffer *p, /* Buffer to append to */
+ int iVal, /* Value to write the string rep. of */
+ int *pRc /* IN/OUT: Error code */
+){
+ char aBuf[24];
+ sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal);
+ sessionAppendStr(p, aBuf, pRc);
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append the string zStr enclosed in quotes (") and
+** with any embedded quote characters escaped to the buffer. No
+** nul-terminator byte is written.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendIdent(
+ SessionBuffer *p, /* Buffer to a append to */
+ const char *zStr, /* String to quote, escape and append */
+ int *pRc /* IN/OUT: Error code */
+){
+ int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1;
+ if( 0==sessionBufferGrow(p, nStr, pRc) ){
+ char *zOut = (char *)&p->aBuf[p->nBuf];
+ const char *zIn = zStr;
+ *zOut++ = '"';
+ while( *zIn ){
+ if( *zIn=='"' ) *zOut++ = '"';
+ *zOut++ = *(zIn++);
+ }
+ *zOut++ = '"';
+ p->nBuf = (int)((u8 *)zOut - p->aBuf);
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwse, it appends the serialized version of the value stored
+** in column iCol of the row that SQL statement pStmt currently points
+** to to the buffer.
+*/
+static void sessionAppendCol(
+ SessionBuffer *p, /* Buffer to append to */
+ sqlite3_stmt *pStmt, /* Handle pointing to row containing value */
+ int iCol, /* Column to read value from */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==SQLITE_OK ){
+ int eType = sqlite3_column_type(pStmt, iCol);
+ sessionAppendByte(p, (u8)eType, pRc);
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ sqlite3_int64 i;
+ u8 aBuf[8];
+ if( eType==SQLITE_INTEGER ){
+ i = sqlite3_column_int64(pStmt, iCol);
+ }else{
+ double r = sqlite3_column_double(pStmt, iCol);
+ memcpy(&i, &r, 8);
+ }
+ sessionPutI64(aBuf, i);
+ sessionAppendBlob(p, aBuf, 8, pRc);
+ }
+ if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){
+ u8 *z;
+ int nByte;
+ if( eType==SQLITE_BLOB ){
+ z = (u8 *)sqlite3_column_blob(pStmt, iCol);
+ }else{
+ z = (u8 *)sqlite3_column_text(pStmt, iCol);
+ }
+ nByte = sqlite3_column_bytes(pStmt, iCol);
+ if( z || (eType==SQLITE_BLOB && nByte==0) ){
+ sessionAppendVarint(p, nByte, pRc);
+ sessionAppendBlob(p, z, nByte, pRc);
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ }
+}
+
+/*
+**
+** This function appends an update change to the buffer (see the comments
+** under "CHANGESET FORMAT" at the top of the file). An update change
+** consists of:
+**
+** 1 byte: SQLITE_UPDATE (0x17)
+** n bytes: old.* record (see RECORD FORMAT)
+** m bytes: new.* record (see RECORD FORMAT)
+**
+** The SessionChange object passed as the third argument contains the
+** values that were stored in the row when the session began (the old.*
+** values). The statement handle passed as the second argument points
+** at the current version of the row (the new.* values).
+**
+** If all of the old.* values are equal to their corresponding new.* value
+** (i.e. nothing has changed), then no data at all is appended to the buffer.
+**
+** Otherwise, the old.* record contains all primary key values and the
+** original values of any fields that have been modified. The new.* record
+** contains the new values of only those fields that have been modified.
+*/
+static int sessionAppendUpdate(
+ SessionBuffer *pBuf, /* Buffer to append to */
+ int bPatchset, /* True for "patchset", 0 for "changeset" */
+ sqlite3_stmt *pStmt, /* Statement handle pointing at new row */
+ SessionChange *p, /* Object containing old values */
+ u8 *abPK /* Boolean array - true for PK columns */
+){
+ int rc = SQLITE_OK;
+ SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */
+ int bNoop = 1; /* Set to zero if any values are modified */
+ int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */
+ int i; /* Used to iterate through columns */
+ u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */
+
+ assert( abPK!=0 );
+ sessionAppendByte(pBuf, SQLITE_UPDATE, &rc);
+ sessionAppendByte(pBuf, p->bIndirect, &rc);
+ for(i=0; i<sqlite3_column_count(pStmt); i++){
+ int bChanged = 0;
+ int nAdvance;
+ int eType = *pCsr;
+ switch( eType ){
+ case SQLITE_NULL:
+ nAdvance = 1;
+ if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
+ bChanged = 1;
+ }
+ break;
+
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER: {
+ nAdvance = 9;
+ if( eType==sqlite3_column_type(pStmt, i) ){
+ sqlite3_int64 iVal = sessionGetI64(&pCsr[1]);
+ if( eType==SQLITE_INTEGER ){
+ if( iVal==sqlite3_column_int64(pStmt, i) ) break;
+ }else{
+ double dVal;
+ memcpy(&dVal, &iVal, 8);
+ if( dVal==sqlite3_column_double(pStmt, i) ) break;
+ }
+ }
+ bChanged = 1;
+ break;
+ }
+
+ default: {
+ int n;
+ int nHdr = 1 + sessionVarintGet(&pCsr[1], &n);
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ nAdvance = nHdr + n;
+ if( eType==sqlite3_column_type(pStmt, i)
+ && n==sqlite3_column_bytes(pStmt, i)
+ && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n))
+ ){
+ break;
+ }
+ bChanged = 1;
+ }
+ }
+
+ /* If at least one field has been modified, this is not a no-op. */
+ if( bChanged ) bNoop = 0;
+
+ /* Add a field to the old.* record. This is omitted if this modules is
+ ** currently generating a patchset. */
+ if( bPatchset==0 ){
+ if( bChanged || abPK[i] ){
+ sessionAppendBlob(pBuf, pCsr, nAdvance, &rc);
+ }else{
+ sessionAppendByte(pBuf, 0, &rc);
+ }
+ }
+
+ /* Add a field to the new.* record. Or the only record if currently
+ ** generating a patchset. */
+ if( bChanged || (bPatchset && abPK[i]) ){
+ sessionAppendCol(&buf2, pStmt, i, &rc);
+ }else{
+ sessionAppendByte(&buf2, 0, &rc);
+ }
+
+ pCsr += nAdvance;
+ }
+
+ if( bNoop ){
+ pBuf->nBuf = nRewind;
+ }else{
+ sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc);
+ }
+ sqlite3_free(buf2.aBuf);
+
+ return rc;
+}
+
+/*
+** Append a DELETE change to the buffer passed as the first argument. Use
+** the changeset format if argument bPatchset is zero, or the patchset
+** format otherwise.
+*/
+static int sessionAppendDelete(
+ SessionBuffer *pBuf, /* Buffer to append to */
+ int bPatchset, /* True for "patchset", 0 for "changeset" */
+ SessionChange *p, /* Object containing old values */
+ int nCol, /* Number of columns in table */
+ u8 *abPK /* Boolean array - true for PK columns */
+){
+ int rc = SQLITE_OK;
+
+ sessionAppendByte(pBuf, SQLITE_DELETE, &rc);
+ sessionAppendByte(pBuf, p->bIndirect, &rc);
+
+ if( bPatchset==0 ){
+ sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc);
+ }else{
+ int i;
+ u8 *a = p->aRecord;
+ for(i=0; i<nCol; i++){
+ u8 *pStart = a;
+ int eType = *a++;
+
+ switch( eType ){
+ case 0:
+ case SQLITE_NULL:
+ assert( abPK[i]==0 );
+ break;
+
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER:
+ a += 8;
+ break;
+
+ default: {
+ int n;
+ a += sessionVarintGet(a, &n);
+ a += n;
+ break;
+ }
+ }
+ if( abPK[i] ){
+ sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc);
+ }
+ }
+ assert( (a - p->aRecord)==p->nRecord );
+ }
+
+ return rc;
+}
+
+/*
+** Formulate and prepare a SELECT statement to retrieve a row from table
+** zTab in database zDb based on its primary key. i.e.
+**
+** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ...
+*/
+static int sessionSelectStmt(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Database name */
+ const char *zTab, /* Table name */
+ int nCol, /* Number of columns in table */
+ const char **azCol, /* Names of table columns */
+ u8 *abPK, /* PRIMARY KEY array */
+ sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */
+){
+ int rc = SQLITE_OK;
+ char *zSql = 0;
+ int nSql = -1;
+
+ if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){
+ zSql = sqlite3_mprintf(
+ "SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND "
+ "idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb
+ );
+ if( zSql==0 ) rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ const char *zSep = "";
+ SessionBuffer buf = {0, 0, 0};
+
+ sessionAppendStr(&buf, "SELECT * FROM ", &rc);
+ sessionAppendIdent(&buf, zDb, &rc);
+ sessionAppendStr(&buf, ".", &rc);
+ sessionAppendIdent(&buf, zTab, &rc);
+ sessionAppendStr(&buf, " WHERE ", &rc);
+ for(i=0; i<nCol; i++){
+ if( abPK[i] ){
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, azCol[i], &rc);
+ sessionAppendStr(&buf, " IS ?", &rc);
+ sessionAppendInteger(&buf, i+1, &rc);
+ zSep = " AND ";
+ }
+ }
+ zSql = (char*)buf.aBuf;
+ nSql = buf.nBuf;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0);
+ }
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** Bind the PRIMARY KEY values from the change passed in argument pChange
+** to the SELECT statement passed as the first argument. The SELECT statement
+** is as prepared by function sessionSelectStmt().
+**
+** Return SQLITE_OK if all PK values are successfully bound, or an SQLite
+** error code (e.g. SQLITE_NOMEM) otherwise.
+*/
+static int sessionSelectBind(
+ sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */
+ int nCol, /* Number of columns in table */
+ u8 *abPK, /* PRIMARY KEY array */
+ SessionChange *pChange /* Change structure */
+){
+ int i;
+ int rc = SQLITE_OK;
+ u8 *a = pChange->aRecord;
+
+ for(i=0; i<nCol && rc==SQLITE_OK; i++){
+ int eType = *a++;
+
+ switch( eType ){
+ case 0:
+ case SQLITE_NULL:
+ assert( abPK[i]==0 );
+ break;
+
+ case SQLITE_INTEGER: {
+ if( abPK[i] ){
+ i64 iVal = sessionGetI64(a);
+ rc = sqlite3_bind_int64(pSelect, i+1, iVal);
+ }
+ a += 8;
+ break;
+ }
+
+ case SQLITE_FLOAT: {
+ if( abPK[i] ){
+ double rVal;
+ i64 iVal = sessionGetI64(a);
+ memcpy(&rVal, &iVal, 8);
+ rc = sqlite3_bind_double(pSelect, i+1, rVal);
+ }
+ a += 8;
+ break;
+ }
+
+ case SQLITE_TEXT: {
+ int n;
+ a += sessionVarintGet(a, &n);
+ if( abPK[i] ){
+ rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT);
+ }
+ a += n;
+ break;
+ }
+
+ default: {
+ int n;
+ assert( eType==SQLITE_BLOB );
+ a += sessionVarintGet(a, &n);
+ if( abPK[i] ){
+ rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT);
+ }
+ a += n;
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is a no-op if *pRc is set to other than SQLITE_OK when it
+** is called. Otherwise, append a serialized table header (part of the binary
+** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an
+** SQLite error code before returning.
+*/
+static void sessionAppendTableHdr(
+ SessionBuffer *pBuf, /* Append header to this buffer */
+ int bPatchset, /* Use the patchset format if true */
+ SessionTable *pTab, /* Table object to append header for */
+ int *pRc /* IN/OUT: Error code */
+){
+ /* Write a table header */
+ sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc);
+ sessionAppendVarint(pBuf, pTab->nCol, pRc);
+ sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc);
+ sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc);
+}
+
+/*
+** Generate either a changeset (if argument bPatchset is zero) or a patchset
+** (if it is non-zero) based on the current contents of the session object
+** passed as the first argument.
+**
+** If no error occurs, SQLITE_OK is returned and the new changeset/patchset
+** stored in output variables *pnChangeset and *ppChangeset. Or, if an error
+** occurs, an SQLite error code is returned and both output variables set
+** to 0.
+*/
+static int sessionGenerateChangeset(
+ sqlite3_session *pSession, /* Session object */
+ int bPatchset, /* True for patchset, false for changeset */
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut, /* First argument for xOutput */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+){
+ sqlite3 *db = pSession->db; /* Source database handle */
+ SessionTable *pTab; /* Used to iterate through attached tables */
+ SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */
+ int rc; /* Return code */
+
+ assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0) );
+ assert( xOutput!=0 || (pnChangeset!=0 && ppChangeset!=0) );
+
+ /* Zero the output variables in case an error occurs. If this session
+ ** object is already in the error state (sqlite3_session.rc != SQLITE_OK),
+ ** this call will be a no-op. */
+ if( xOutput==0 ){
+ assert( pnChangeset!=0 && ppChangeset!=0 );
+ *pnChangeset = 0;
+ *ppChangeset = 0;
+ }
+
+ if( pSession->rc ) return pSession->rc;
+ rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+
+ for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
+ if( pTab->nEntry ){
+ const char *zName = pTab->zName;
+ int nCol = 0; /* Number of columns in table */
+ u8 *abPK = 0; /* Primary key array */
+ const char **azCol = 0; /* Table columns */
+ int i; /* Used to iterate through hash buckets */
+ sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */
+ int nRewind = buf.nBuf; /* Initial size of write buffer */
+ int nNoop; /* Size of buffer after writing tbl header */
+
+ /* Check the table schema is still Ok. */
+ rc = sessionTableInfo(0, db, pSession->zDb, zName, &nCol, 0,&azCol,&abPK);
+ if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){
+ rc = SQLITE_SCHEMA;
+ }
+
+ /* Write a table header */
+ sessionAppendTableHdr(&buf, bPatchset, pTab, &rc);
+
+ /* Build and compile a statement to execute: */
+ if( rc==SQLITE_OK ){
+ rc = sessionSelectStmt(
+ db, pSession->zDb, zName, nCol, azCol, abPK, &pSel);
+ }
+
+ nNoop = buf.nBuf;
+ for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){
+ SessionChange *p; /* Used to iterate through changes */
+
+ for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){
+ rc = sessionSelectBind(pSel, nCol, abPK, p);
+ if( rc!=SQLITE_OK ) continue;
+ if( sqlite3_step(pSel)==SQLITE_ROW ){
+ if( p->op==SQLITE_INSERT ){
+ int iCol;
+ sessionAppendByte(&buf, SQLITE_INSERT, &rc);
+ sessionAppendByte(&buf, p->bIndirect, &rc);
+ for(iCol=0; iCol<nCol; iCol++){
+ sessionAppendCol(&buf, pSel, iCol, &rc);
+ }
+ }else{
+ assert( abPK!=0 ); /* Because sessionSelectStmt() returned ok */
+ rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK);
+ }
+ }else if( p->op!=SQLITE_INSERT ){
+ rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_reset(pSel);
+ }
+
+ /* If the buffer is now larger than sessions_strm_chunk_size, pass
+ ** its contents to the xOutput() callback. */
+ if( xOutput
+ && rc==SQLITE_OK
+ && buf.nBuf>nNoop
+ && buf.nBuf>sessions_strm_chunk_size
+ ){
+ rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
+ nNoop = -1;
+ buf.nBuf = 0;
+ }
+
+ }
+ }
+
+ sqlite3_finalize(pSel);
+ if( buf.nBuf==nNoop ){
+ buf.nBuf = nRewind;
+ }
+ sqlite3_free((char*)azCol); /* cast works around VC++ bug */
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( xOutput==0 ){
+ *pnChangeset = buf.nBuf;
+ *ppChangeset = buf.aBuf;
+ buf.aBuf = 0;
+ }else if( buf.nBuf>0 ){
+ rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
+ }
+ }
+
+ sqlite3_free(buf.aBuf);
+ sqlite3_exec(db, "RELEASE changeset", 0, 0, 0);
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+ return rc;
+}
+
+/*
+** Obtain a changeset object containing all changes recorded by the
+** session object passed as the first argument.
+**
+** It is the responsibility of the caller to eventually free the buffer
+** using sqlite3_free().
+*/
+SQLITE_API int sqlite3session_changeset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+){
+ int rc;
+
+ if( pnChangeset==0 || ppChangeset==0 ) return SQLITE_MISUSE;
+ rc = sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset,ppChangeset);
+ assert( rc || pnChangeset==0
+ || pSession->bEnableSize==0 || *pnChangeset<=pSession->nMaxChangesetSize
+ );
+ return rc;
+}
+
+/*
+** Streaming version of sqlite3session_changeset().
+*/
+SQLITE_API int sqlite3session_changeset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ if( xOutput==0 ) return SQLITE_MISUSE;
+ return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0);
+}
+
+/*
+** Streaming version of sqlite3session_patchset().
+*/
+SQLITE_API int sqlite3session_patchset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ if( xOutput==0 ) return SQLITE_MISUSE;
+ return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0);
+}
+
+/*
+** Obtain a patchset object containing all changes recorded by the
+** session object passed as the first argument.
+**
+** It is the responsibility of the caller to eventually free the buffer
+** using sqlite3_free().
+*/
+SQLITE_API int sqlite3session_patchset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppPatchset /* OUT: Buffer containing changeset */
+){
+ if( pnPatchset==0 || ppPatchset==0 ) return SQLITE_MISUSE;
+ return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset);
+}
+
+/*
+** Enable or disable the session object passed as the first argument.
+*/
+SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable){
+ int ret;
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ if( bEnable>=0 ){
+ pSession->bEnable = bEnable;
+ }
+ ret = pSession->bEnable;
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return ret;
+}
+
+/*
+** Enable or disable the session object passed as the first argument.
+*/
+SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){
+ int ret;
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ if( bIndirect>=0 ){
+ pSession->bIndirect = bIndirect;
+ }
+ ret = pSession->bIndirect;
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return ret;
+}
+
+/*
+** Return true if there have been no changes to monitored tables recorded
+** by the session object passed as the only argument.
+*/
+SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession){
+ int ret = 0;
+ SessionTable *pTab;
+
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){
+ ret = (pTab->nEntry>0);
+ }
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+
+ return (ret==0);
+}
+
+/*
+** Return the amount of heap memory in use.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession){
+ return pSession->nMalloc;
+}
+
+/*
+** Configure the session object passed as the first argument.
+*/
+SQLITE_API int sqlite3session_object_config(sqlite3_session *pSession, int op, void *pArg){
+ int rc = SQLITE_OK;
+ switch( op ){
+ case SQLITE_SESSION_OBJCONFIG_SIZE: {
+ int iArg = *(int*)pArg;
+ if( iArg>=0 ){
+ if( pSession->pTable ){
+ rc = SQLITE_MISUSE;
+ }else{
+ pSession->bEnableSize = (iArg!=0);
+ }
+ }
+ *(int*)pArg = pSession->bEnableSize;
+ break;
+ }
+
+ default:
+ rc = SQLITE_MISUSE;
+ }
+
+ return rc;
+}
+
+/*
+** Return the maximum size of sqlite3session_changeset() output.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession){
+ return pSession->nMaxChangesetSize;
+}
+
+/*
+** Do the work for either sqlite3changeset_start() or start_strm().
+*/
+static int sessionChangesetStart(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int nChangeset, /* Size of buffer pChangeset in bytes */
+ void *pChangeset, /* Pointer to buffer containing changeset */
+ int bInvert, /* True to invert changeset */
+ int bSkipEmpty /* True to skip empty UPDATE changes */
+){
+ sqlite3_changeset_iter *pRet; /* Iterator to return */
+ int nByte; /* Number of bytes to allocate for iterator */
+
+ assert( xInput==0 || (pChangeset==0 && nChangeset==0) );
+
+ /* Zero the output variable in case an error occurs. */
+ *pp = 0;
+
+ /* Allocate and initialize the iterator structure. */
+ nByte = sizeof(sqlite3_changeset_iter);
+ pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
+ if( !pRet ) return SQLITE_NOMEM;
+ memset(pRet, 0, sizeof(sqlite3_changeset_iter));
+ pRet->in.aData = (u8 *)pChangeset;
+ pRet->in.nData = nChangeset;
+ pRet->in.xInput = xInput;
+ pRet->in.pIn = pIn;
+ pRet->in.bEof = (xInput ? 0 : 1);
+ pRet->bInvert = bInvert;
+ pRet->bSkipEmpty = bSkipEmpty;
+
+ /* Populate the output variable and return success. */
+ *pp = pRet;
+ return SQLITE_OK;
+}
+
+/*
+** Create an iterator used to iterate through the contents of a changeset.
+*/
+SQLITE_API int sqlite3changeset_start(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int nChangeset, /* Size of buffer pChangeset in bytes */
+ void *pChangeset /* Pointer to buffer containing changeset */
+){
+ return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0, 0);
+}
+SQLITE_API int sqlite3changeset_start_v2(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int nChangeset, /* Size of buffer pChangeset in bytes */
+ void *pChangeset, /* Pointer to buffer containing changeset */
+ int flags
+){
+ int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
+ return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert, 0);
+}
+
+/*
+** Streaming version of sqlite3changeset_start().
+*/
+SQLITE_API int sqlite3changeset_start_strm(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+){
+ return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0, 0);
+}
+SQLITE_API int sqlite3changeset_start_v2_strm(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int flags
+){
+ int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
+ return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert, 0);
+}
+
+/*
+** If the SessionInput object passed as the only argument is a streaming
+** object and the buffer is full, discard some data to free up space.
+*/
+static void sessionDiscardData(SessionInput *pIn){
+ if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){
+ int nMove = pIn->buf.nBuf - pIn->iNext;
+ assert( nMove>=0 );
+ if( nMove>0 ){
+ memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove);
+ }
+ pIn->buf.nBuf -= pIn->iNext;
+ pIn->iNext = 0;
+ pIn->nData = pIn->buf.nBuf;
+ }
+}
+
+/*
+** Ensure that there are at least nByte bytes available in the buffer. Or,
+** if there are not nByte bytes remaining in the input, that all available
+** data is in the buffer.
+**
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+static int sessionInputBuffer(SessionInput *pIn, int nByte){
+ int rc = SQLITE_OK;
+ if( pIn->xInput ){
+ while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){
+ int nNew = sessions_strm_chunk_size;
+
+ if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn);
+ if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){
+ rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew);
+ if( nNew==0 ){
+ pIn->bEof = 1;
+ }else{
+ pIn->buf.nBuf += nNew;
+ }
+ }
+
+ pIn->aData = pIn->buf.aBuf;
+ pIn->nData = pIn->buf.nBuf;
+ }
+ }
+ return rc;
+}
+
+/*
+** When this function is called, *ppRec points to the start of a record
+** that contains nCol values. This function advances the pointer *ppRec
+** until it points to the byte immediately following that record.
+*/
+static void sessionSkipRecord(
+ u8 **ppRec, /* IN/OUT: Record pointer */
+ int nCol /* Number of values in record */
+){
+ u8 *aRec = *ppRec;
+ int i;
+ for(i=0; i<nCol; i++){
+ int eType = *aRec++;
+ if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ int nByte;
+ aRec += sessionVarintGet((u8*)aRec, &nByte);
+ aRec += nByte;
+ }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ aRec += 8;
+ }
+ }
+
+ *ppRec = aRec;
+}
+
+/*
+** This function sets the value of the sqlite3_value object passed as the
+** first argument to a copy of the string or blob held in the aData[]
+** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM
+** error occurs.
+*/
+static int sessionValueSetStr(
+ sqlite3_value *pVal, /* Set the value of this object */
+ u8 *aData, /* Buffer containing string or blob data */
+ int nData, /* Size of buffer aData[] in bytes */
+ u8 enc /* String encoding (0 for blobs) */
+){
+ /* In theory this code could just pass SQLITE_TRANSIENT as the final
+ ** argument to sqlite3ValueSetStr() and have the copy created
+ ** automatically. But doing so makes it difficult to detect any OOM
+ ** error. Hence the code to create the copy externally. */
+ u8 *aCopy = sqlite3_malloc64((sqlite3_int64)nData+1);
+ if( aCopy==0 ) return SQLITE_NOMEM;
+ memcpy(aCopy, aData, nData);
+ sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free);
+ return SQLITE_OK;
+}
+
+/*
+** Deserialize a single record from a buffer in memory. See "RECORD FORMAT"
+** for details.
+**
+** When this function is called, *paChange points to the start of the record
+** to deserialize. Assuming no error occurs, *paChange is set to point to
+** one byte after the end of the same record before this function returns.
+** If the argument abPK is NULL, then the record contains nCol values. Or,
+** if abPK is other than NULL, then the record contains only the PK fields
+** (in other words, it is a patchset DELETE record).
+**
+** If successful, each element of the apOut[] array (allocated by the caller)
+** is set to point to an sqlite3_value object containing the value read
+** from the corresponding position in the record. If that value is not
+** included in the record (i.e. because the record is part of an UPDATE change
+** and the field was not modified), the corresponding element of apOut[] is
+** set to NULL.
+**
+** It is the responsibility of the caller to free all sqlite_value structures
+** using sqlite3_free().
+**
+** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
+** The apOut[] array may have been partially populated in this case.
+*/
+static int sessionReadRecord(
+ SessionInput *pIn, /* Input data */
+ int nCol, /* Number of values in record */
+ u8 *abPK, /* Array of primary key flags, or NULL */
+ sqlite3_value **apOut, /* Write values to this array */
+ int *pbEmpty
+){
+ int i; /* Used to iterate through columns */
+ int rc = SQLITE_OK;
+
+ assert( pbEmpty==0 || *pbEmpty==0 );
+ if( pbEmpty ) *pbEmpty = 1;
+ for(i=0; i<nCol && rc==SQLITE_OK; i++){
+ int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */
+ if( abPK && abPK[i]==0 ) continue;
+ rc = sessionInputBuffer(pIn, 9);
+ if( rc==SQLITE_OK ){
+ if( pIn->iNext>=pIn->nData ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ eType = pIn->aData[pIn->iNext++];
+ assert( apOut[i]==0 );
+ if( eType ){
+ if( pbEmpty ) *pbEmpty = 0;
+ apOut[i] = sqlite3ValueNew(0);
+ if( !apOut[i] ) rc = SQLITE_NOMEM;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ u8 *aVal = &pIn->aData[pIn->iNext];
+ if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ int nByte;
+ pIn->iNext += sessionVarintGet(aVal, &nByte);
+ rc = sessionInputBuffer(pIn, nByte);
+ if( rc==SQLITE_OK ){
+ if( nByte<0 || nByte>pIn->nData-pIn->iNext ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0);
+ rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc);
+ pIn->iNext += nByte;
+ }
+ }
+ }
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ sqlite3_int64 v = sessionGetI64(aVal);
+ if( eType==SQLITE_INTEGER ){
+ sqlite3VdbeMemSetInt64(apOut[i], v);
+ }else{
+ double d;
+ memcpy(&d, &v, 8);
+ sqlite3VdbeMemSetDouble(apOut[i], d);
+ }
+ pIn->iNext += 8;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The input pointer currently points to the second byte of a table-header.
+** Specifically, to the following:
+**
+** + number of columns in table (varint)
+** + array of PK flags (1 byte per column),
+** + table name (nul terminated).
+**
+** This function ensures that all of the above is present in the input
+** buffer (i.e. that it can be accessed without any calls to xInput()).
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
+** The input pointer is not moved.
+*/
+static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){
+ int rc = SQLITE_OK;
+ int nCol = 0;
+ int nRead = 0;
+
+ rc = sessionInputBuffer(pIn, 9);
+ if( rc==SQLITE_OK ){
+ nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol);
+ /* The hard upper limit for the number of columns in an SQLite
+ ** database table is, according to sqliteLimit.h, 32676. So
+ ** consider any table-header that purports to have more than 65536
+ ** columns to be corrupt. This is convenient because otherwise,
+ ** if the (nCol>65536) condition below were omitted, a sufficiently
+ ** large value for nCol may cause nRead to wrap around and become
+ ** negative. Leading to a crash. */
+ if( nCol<0 || nCol>65536 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = sessionInputBuffer(pIn, nRead+nCol+100);
+ nRead += nCol;
+ }
+ }
+
+ while( rc==SQLITE_OK ){
+ while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){
+ nRead++;
+ }
+ if( (pIn->iNext + nRead)<pIn->nData ) break;
+ rc = sessionInputBuffer(pIn, nRead + 100);
+ }
+ *pnByte = nRead+1;
+ return rc;
+}
+
+/*
+** The input pointer currently points to the first byte of the first field
+** of a record consisting of nCol columns. This function ensures the entire
+** record is buffered. It does not move the input pointer.
+**
+** If successful, SQLITE_OK is returned and *pnByte is set to the size of
+** the record in bytes. Otherwise, an SQLite error code is returned. The
+** final value of *pnByte is undefined in this case.
+*/
+static int sessionChangesetBufferRecord(
+ SessionInput *pIn, /* Input data */
+ int nCol, /* Number of columns in record */
+ int *pnByte /* OUT: Size of record in bytes */
+){
+ int rc = SQLITE_OK;
+ int nByte = 0;
+ int i;
+ for(i=0; rc==SQLITE_OK && i<nCol; i++){
+ int eType;
+ rc = sessionInputBuffer(pIn, nByte + 10);
+ if( rc==SQLITE_OK ){
+ eType = pIn->aData[pIn->iNext + nByte++];
+ if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ int n;
+ nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n);
+ nByte += n;
+ rc = sessionInputBuffer(pIn, nByte);
+ }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ nByte += 8;
+ }
+ }
+ }
+ *pnByte = nByte;
+ return rc;
+}
+
+/*
+** The input pointer currently points to the second byte of a table-header.
+** Specifically, to the following:
+**
+** + number of columns in table (varint)
+** + array of PK flags (1 byte per column),
+** + table name (nul terminated).
+**
+** This function decodes the table-header and populates the p->nCol,
+** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is
+** also allocated or resized according to the new value of p->nCol. The
+** input pointer is left pointing to the byte following the table header.
+**
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code
+** is returned and the final values of the various fields enumerated above
+** are undefined.
+*/
+static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){
+ int rc;
+ int nCopy;
+ assert( p->rc==SQLITE_OK );
+
+ rc = sessionChangesetBufferTblhdr(&p->in, &nCopy);
+ if( rc==SQLITE_OK ){
+ int nByte;
+ int nVarint;
+ nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol);
+ if( p->nCol>0 ){
+ nCopy -= nVarint;
+ p->in.iNext += nVarint;
+ nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy;
+ p->tblhdr.nBuf = 0;
+ sessionBufferGrow(&p->tblhdr, nByte, &rc);
+ }else{
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ size_t iPK = sizeof(sqlite3_value*)*p->nCol*2;
+ memset(p->tblhdr.aBuf, 0, iPK);
+ memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy);
+ p->in.iNext += nCopy;
+ }
+
+ p->apValue = (sqlite3_value**)p->tblhdr.aBuf;
+ if( p->apValue==0 ){
+ p->abPK = 0;
+ p->zTab = 0;
+ }else{
+ p->abPK = (u8*)&p->apValue[p->nCol*2];
+ p->zTab = p->abPK ? (char*)&p->abPK[p->nCol] : 0;
+ }
+ return (p->rc = rc);
+}
+
+/*
+** Advance the changeset iterator to the next change. The differences between
+** this function and sessionChangesetNext() are that
+**
+** * If pbEmpty is not NULL and the change is a no-op UPDATE (an UPDATE
+** that modifies no columns), this function sets (*pbEmpty) to 1.
+**
+** * If the iterator is configured to skip no-op UPDATEs,
+** sessionChangesetNext() does that. This function does not.
+*/
+static int sessionChangesetNextOne(
+ sqlite3_changeset_iter *p, /* Changeset iterator */
+ u8 **paRec, /* If non-NULL, store record pointer here */
+ int *pnRec, /* If non-NULL, store size of record here */
+ int *pbNew, /* If non-NULL, true if new table */
+ int *pbEmpty
+){
+ int i;
+ u8 op;
+
+ assert( (paRec==0 && pnRec==0) || (paRec && pnRec) );
+ assert( pbEmpty==0 || *pbEmpty==0 );
+
+ /* If the iterator is in the error-state, return immediately. */
+ if( p->rc!=SQLITE_OK ) return p->rc;
+
+ /* Free the current contents of p->apValue[], if any. */
+ if( p->apValue ){
+ for(i=0; i<p->nCol*2; i++){
+ sqlite3ValueFree(p->apValue[i]);
+ }
+ memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2);
+ }
+
+ /* Make sure the buffer contains at least 10 bytes of input data, or all
+ ** remaining data if there are less than 10 bytes available. This is
+ ** sufficient either for the 'T' or 'P' byte and the varint that follows
+ ** it, or for the two single byte values otherwise. */
+ p->rc = sessionInputBuffer(&p->in, 2);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+
+ /* If the iterator is already at the end of the changeset, return DONE. */
+ if( p->in.iNext>=p->in.nData ){
+ return SQLITE_DONE;
+ }
+
+ sessionDiscardData(&p->in);
+ p->in.iCurrent = p->in.iNext;
+
+ op = p->in.aData[p->in.iNext++];
+ while( op=='T' || op=='P' ){
+ if( pbNew ) *pbNew = 1;
+ p->bPatchset = (op=='P');
+ if( sessionChangesetReadTblhdr(p) ) return p->rc;
+ if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc;
+ p->in.iCurrent = p->in.iNext;
+ if( p->in.iNext>=p->in.nData ) return SQLITE_DONE;
+ op = p->in.aData[p->in.iNext++];
+ }
+
+ if( p->zTab==0 || (p->bPatchset && p->bInvert) ){
+ /* The first record in the changeset is not a table header. Must be a
+ ** corrupt changeset. */
+ assert( p->in.iNext==1 || p->zTab );
+ return (p->rc = SQLITE_CORRUPT_BKPT);
+ }
+
+ p->op = op;
+ p->bIndirect = p->in.aData[p->in.iNext++];
+ if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
+ return (p->rc = SQLITE_CORRUPT_BKPT);
+ }
+
+ if( paRec ){
+ int nVal; /* Number of values to buffer */
+ if( p->bPatchset==0 && op==SQLITE_UPDATE ){
+ nVal = p->nCol * 2;
+ }else if( p->bPatchset && op==SQLITE_DELETE ){
+ nVal = 0;
+ for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++;
+ }else{
+ nVal = p->nCol;
+ }
+ p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+ *paRec = &p->in.aData[p->in.iNext];
+ p->in.iNext += *pnRec;
+ }else{
+ sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue);
+ sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]);
+
+ /* If this is an UPDATE or DELETE, read the old.* record. */
+ if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){
+ u8 *abPK = p->bPatchset ? p->abPK : 0;
+ p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld, 0);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+ }
+
+ /* If this is an INSERT or UPDATE, read the new.* record. */
+ if( p->op!=SQLITE_DELETE ){
+ p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew, pbEmpty);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+ }
+
+ if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){
+ /* If this is an UPDATE that is part of a patchset, then all PK and
+ ** modified fields are present in the new.* record. The old.* record
+ ** is currently completely empty. This block shifts the PK fields from
+ ** new.* to old.*, to accommodate the code that reads these arrays. */
+ for(i=0; i<p->nCol; i++){
+ assert( p->bPatchset==0 || p->apValue[i]==0 );
+ if( p->abPK[i] ){
+ assert( p->apValue[i]==0 );
+ p->apValue[i] = p->apValue[i+p->nCol];
+ if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT);
+ p->apValue[i+p->nCol] = 0;
+ }
+ }
+ }else if( p->bInvert ){
+ if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE;
+ else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT;
+ }
+ }
+
+ return SQLITE_ROW;
+}
+
+/*
+** Advance the changeset iterator to the next change.
+**
+** If both paRec and pnRec are NULL, then this function works like the public
+** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the
+** sqlite3changeset_new() and old() APIs may be used to query for values.
+**
+** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change
+** record is written to *paRec before returning and the number of bytes in
+** the record to *pnRec.
+**
+** Either way, this function returns SQLITE_ROW if the iterator is
+** successfully advanced to the next change in the changeset, an SQLite
+** error code if an error occurs, or SQLITE_DONE if there are no further
+** changes in the changeset.
+*/
+static int sessionChangesetNext(
+ sqlite3_changeset_iter *p, /* Changeset iterator */
+ u8 **paRec, /* If non-NULL, store record pointer here */
+ int *pnRec, /* If non-NULL, store size of record here */
+ int *pbNew /* If non-NULL, true if new table */
+){
+ int bEmpty;
+ int rc;
+ do {
+ bEmpty = 0;
+ rc = sessionChangesetNextOne(p, paRec, pnRec, pbNew, &bEmpty);
+ }while( rc==SQLITE_ROW && p->bSkipEmpty && bEmpty);
+ return rc;
+}
+
+/*
+** Advance an iterator created by sqlite3changeset_start() to the next
+** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE
+** or SQLITE_CORRUPT.
+**
+** This function may not be called on iterators passed to a conflict handler
+** callback by changeset_apply().
+*/
+SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *p){
+ return sessionChangesetNext(p, 0, 0, 0);
+}
+
+/*
+** The following function extracts information on the current change
+** from a changeset iterator. It may only be called after changeset_next()
+** has returned SQLITE_ROW.
+*/
+SQLITE_API int sqlite3changeset_op(
+ sqlite3_changeset_iter *pIter, /* Iterator handle */
+ const char **pzTab, /* OUT: Pointer to table name */
+ int *pnCol, /* OUT: Number of columns in table */
+ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
+ int *pbIndirect /* OUT: True if change is indirect */
+){
+ *pOp = pIter->op;
+ *pnCol = pIter->nCol;
+ *pzTab = pIter->zTab;
+ if( pbIndirect ) *pbIndirect = pIter->bIndirect;
+ return SQLITE_OK;
+}
+
+/*
+** Return information regarding the PRIMARY KEY and number of columns in
+** the database table affected by the change that pIter currently points
+** to. This function may only be called after changeset_next() returns
+** SQLITE_ROW.
+*/
+SQLITE_API int sqlite3changeset_pk(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
+ int *pnCol /* OUT: Number of entries in output array */
+){
+ *pabPK = pIter->abPK;
+ if( pnCol ) *pnCol = pIter->nCol;
+ return SQLITE_OK;
+}
+
+/*
+** This function may only be called while the iterator is pointing to an
+** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()).
+** Otherwise, SQLITE_MISUSE is returned.
+**
+** It sets *ppValue to point to an sqlite3_value structure containing the
+** iVal'th value in the old.* record. Or, if that particular value is not
+** included in the record (because the change is an UPDATE and the field
+** was not modified and is not a PK column), set *ppValue to NULL.
+**
+** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
+** not modified. Otherwise, SQLITE_OK.
+*/
+SQLITE_API int sqlite3changeset_old(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Index of old.* value to retrieve */
+ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
+){
+ if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){
+ return SQLITE_MISUSE;
+ }
+ if( iVal<0 || iVal>=pIter->nCol ){
+ return SQLITE_RANGE;
+ }
+ *ppValue = pIter->apValue[iVal];
+ return SQLITE_OK;
+}
+
+/*
+** This function may only be called while the iterator is pointing to an
+** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()).
+** Otherwise, SQLITE_MISUSE is returned.
+**
+** It sets *ppValue to point to an sqlite3_value structure containing the
+** iVal'th value in the new.* record. Or, if that particular value is not
+** included in the record (because the change is an UPDATE and the field
+** was not modified), set *ppValue to NULL.
+**
+** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
+** not modified. Otherwise, SQLITE_OK.
+*/
+SQLITE_API int sqlite3changeset_new(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Index of new.* value to retrieve */
+ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
+){
+ if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){
+ return SQLITE_MISUSE;
+ }
+ if( iVal<0 || iVal>=pIter->nCol ){
+ return SQLITE_RANGE;
+ }
+ *ppValue = pIter->apValue[pIter->nCol+iVal];
+ return SQLITE_OK;
+}
+
+/*
+** The following two macros are used internally. They are similar to the
+** sqlite3changeset_new() and sqlite3changeset_old() functions, except that
+** they omit all error checking and return a pointer to the requested value.
+*/
+#define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)]
+#define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)]
+
+/*
+** This function may only be called with a changeset iterator that has been
+** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT
+** conflict-handler function. Otherwise, SQLITE_MISUSE is returned.
+**
+** If successful, *ppValue is set to point to an sqlite3_value structure
+** containing the iVal'th value of the conflicting record.
+**
+** If value iVal is out-of-range or some other error occurs, an SQLite error
+** code is returned. Otherwise, SQLITE_OK.
+*/
+SQLITE_API int sqlite3changeset_conflict(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Index of conflict record value to fetch */
+ sqlite3_value **ppValue /* OUT: Value from conflicting row */
+){
+ if( !pIter->pConflict ){
+ return SQLITE_MISUSE;
+ }
+ if( iVal<0 || iVal>=pIter->nCol ){
+ return SQLITE_RANGE;
+ }
+ *ppValue = sqlite3_column_value(pIter->pConflict, iVal);
+ return SQLITE_OK;
+}
+
+/*
+** This function may only be called with an iterator passed to an
+** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
+** it sets the output variable to the total number of known foreign key
+** violations in the destination database and returns SQLITE_OK.
+**
+** In all other cases this function returns SQLITE_MISUSE.
+*/
+SQLITE_API int sqlite3changeset_fk_conflicts(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int *pnOut /* OUT: Number of FK violations */
+){
+ if( pIter->pConflict || pIter->apValue ){
+ return SQLITE_MISUSE;
+ }
+ *pnOut = pIter->nCol;
+ return SQLITE_OK;
+}
+
+
+/*
+** Finalize an iterator allocated with sqlite3changeset_start().
+**
+** This function may not be called on iterators passed to a conflict handler
+** callback by changeset_apply().
+*/
+SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ int i; /* Used to iterate through p->apValue[] */
+ rc = p->rc;
+ if( p->apValue ){
+ for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]);
+ }
+ sqlite3_free(p->tblhdr.aBuf);
+ sqlite3_free(p->in.buf.aBuf);
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+static int sessionChangesetInvert(
+ SessionInput *pInput, /* Input changeset */
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut,
+ int *pnInverted, /* OUT: Number of bytes in output changeset */
+ void **ppInverted /* OUT: Inverse of pChangeset */
+){
+ int rc = SQLITE_OK; /* Return value */
+ SessionBuffer sOut; /* Output buffer */
+ int nCol = 0; /* Number of cols in current table */
+ u8 *abPK = 0; /* PK array for current table */
+ sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */
+ SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */
+
+ /* Initialize the output buffer */
+ memset(&sOut, 0, sizeof(SessionBuffer));
+
+ /* Zero the output variables in case an error occurs. */
+ if( ppInverted ){
+ *ppInverted = 0;
+ *pnInverted = 0;
+ }
+
+ while( 1 ){
+ u8 eType;
+
+ /* Test for EOF. */
+ if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert;
+ if( pInput->iNext>=pInput->nData ) break;
+ eType = pInput->aData[pInput->iNext];
+
+ switch( eType ){
+ case 'T': {
+ /* A 'table' record consists of:
+ **
+ ** * A constant 'T' character,
+ ** * Number of columns in said table (a varint),
+ ** * An array of nCol bytes (sPK),
+ ** * A nul-terminated table name.
+ */
+ int nByte;
+ int nVar;
+ pInput->iNext++;
+ if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){
+ goto finished_invert;
+ }
+ nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol);
+ sPK.nBuf = 0;
+ sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc);
+ sessionAppendByte(&sOut, eType, &rc);
+ sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
+ if( rc ) goto finished_invert;
+
+ pInput->iNext += nByte;
+ sqlite3_free(apVal);
+ apVal = 0;
+ abPK = sPK.aBuf;
+ break;
+ }
+
+ case SQLITE_INSERT:
+ case SQLITE_DELETE: {
+ int nByte;
+ int bIndirect = pInput->aData[pInput->iNext+1];
+ int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE);
+ pInput->iNext += 2;
+ assert( rc==SQLITE_OK );
+ rc = sessionChangesetBufferRecord(pInput, nCol, &nByte);
+ sessionAppendByte(&sOut, eType2, &rc);
+ sessionAppendByte(&sOut, bIndirect, &rc);
+ sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
+ pInput->iNext += nByte;
+ if( rc ) goto finished_invert;
+ break;
+ }
+
+ case SQLITE_UPDATE: {
+ int iCol;
+
+ if( 0==apVal ){
+ apVal = (sqlite3_value **)sqlite3_malloc64(sizeof(apVal[0])*nCol*2);
+ if( 0==apVal ){
+ rc = SQLITE_NOMEM;
+ goto finished_invert;
+ }
+ memset(apVal, 0, sizeof(apVal[0])*nCol*2);
+ }
+
+ /* Write the header for the new UPDATE change. Same as the original. */
+ sessionAppendByte(&sOut, eType, &rc);
+ sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc);
+
+ /* Read the old.* and new.* records for the update change. */
+ pInput->iNext += 2;
+ rc = sessionReadRecord(pInput, nCol, 0, &apVal[0], 0);
+ if( rc==SQLITE_OK ){
+ rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol], 0);
+ }
+
+ /* Write the new old.* record. Consists of the PK columns from the
+ ** original old.* record, and the other values from the original
+ ** new.* record. */
+ for(iCol=0; iCol<nCol; iCol++){
+ sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)];
+ sessionAppendValue(&sOut, pVal, &rc);
+ }
+
+ /* Write the new new.* record. Consists of a copy of all values
+ ** from the original old.* record, except for the PK columns, which
+ ** are set to "undefined". */
+ for(iCol=0; iCol<nCol; iCol++){
+ sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]);
+ sessionAppendValue(&sOut, pVal, &rc);
+ }
+
+ for(iCol=0; iCol<nCol*2; iCol++){
+ sqlite3ValueFree(apVal[iCol]);
+ }
+ memset(apVal, 0, sizeof(apVal[0])*nCol*2);
+ if( rc!=SQLITE_OK ){
+ goto finished_invert;
+ }
+
+ break;
+ }
+
+ default:
+ rc = SQLITE_CORRUPT_BKPT;
+ goto finished_invert;
+ }
+
+ assert( rc==SQLITE_OK );
+ if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ sOut.nBuf = 0;
+ if( rc!=SQLITE_OK ) goto finished_invert;
+ }
+ }
+
+ assert( rc==SQLITE_OK );
+ if( pnInverted && ALWAYS(ppInverted) ){
+ *pnInverted = sOut.nBuf;
+ *ppInverted = sOut.aBuf;
+ sOut.aBuf = 0;
+ }else if( sOut.nBuf>0 && ALWAYS(xOutput!=0) ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ }
+
+ finished_invert:
+ sqlite3_free(sOut.aBuf);
+ sqlite3_free(apVal);
+ sqlite3_free(sPK.aBuf);
+ return rc;
+}
+
+
+/*
+** Invert a changeset object.
+*/
+SQLITE_API int sqlite3changeset_invert(
+ int nChangeset, /* Number of bytes in input */
+ const void *pChangeset, /* Input changeset */
+ int *pnInverted, /* OUT: Number of bytes in output changeset */
+ void **ppInverted /* OUT: Inverse of pChangeset */
+){
+ SessionInput sInput;
+
+ /* Set up the input stream */
+ memset(&sInput, 0, sizeof(SessionInput));
+ sInput.nData = nChangeset;
+ sInput.aData = (u8*)pChangeset;
+
+ return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted);
+}
+
+/*
+** Streaming version of sqlite3changeset_invert().
+*/
+SQLITE_API int sqlite3changeset_invert_strm(
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ SessionInput sInput;
+ int rc;
+
+ /* Set up the input stream */
+ memset(&sInput, 0, sizeof(SessionInput));
+ sInput.xInput = xInput;
+ sInput.pIn = pIn;
+
+ rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0);
+ sqlite3_free(sInput.buf.aBuf);
+ return rc;
+}
+
+
+typedef struct SessionUpdate SessionUpdate;
+struct SessionUpdate {
+ sqlite3_stmt *pStmt;
+ u32 *aMask;
+ SessionUpdate *pNext;
+};
+
+typedef struct SessionApplyCtx SessionApplyCtx;
+struct SessionApplyCtx {
+ sqlite3 *db;
+ sqlite3_stmt *pDelete; /* DELETE statement */
+ sqlite3_stmt *pInsert; /* INSERT statement */
+ sqlite3_stmt *pSelect; /* SELECT statement */
+ int nCol; /* Size of azCol[] and abPK[] arrays */
+ const char **azCol; /* Array of column names */
+ u8 *abPK; /* Boolean array - true if column is in PK */
+ u32 *aUpdateMask; /* Used by sessionUpdateFind */
+ SessionUpdate *pUp;
+ int bStat1; /* True if table is sqlite_stat1 */
+ int bDeferConstraints; /* True to defer constraints */
+ int bInvertConstraints; /* Invert when iterating constraints buffer */
+ SessionBuffer constraints; /* Deferred constraints are stored here */
+ SessionBuffer rebase; /* Rebase information (if any) here */
+ u8 bRebaseStarted; /* If table header is already in rebase */
+ u8 bRebase; /* True to collect rebase information */
+};
+
+/* Number of prepared UPDATE statements to cache. */
+#define SESSION_UPDATE_CACHE_SZ 12
+
+/*
+** Find a prepared UPDATE statement suitable for the UPDATE step currently
+** being visited by the iterator. The UPDATE is of the form:
+**
+** UPDATE tbl SET col = ?, col2 = ? WHERE pk1 IS ? AND pk2 IS ?
+*/
+static int sessionUpdateFind(
+ sqlite3_changeset_iter *pIter,
+ SessionApplyCtx *p,
+ int bPatchset,
+ sqlite3_stmt **ppStmt
+){
+ int rc = SQLITE_OK;
+ SessionUpdate *pUp = 0;
+ int nCol = pIter->nCol;
+ int nU32 = (pIter->nCol+33)/32;
+ int ii;
+
+ if( p->aUpdateMask==0 ){
+ p->aUpdateMask = sqlite3_malloc(nU32*sizeof(u32));
+ if( p->aUpdateMask==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ memset(p->aUpdateMask, 0, nU32*sizeof(u32));
+ rc = SQLITE_CORRUPT;
+ for(ii=0; ii<pIter->nCol; ii++){
+ if( sessionChangesetNew(pIter, ii) ){
+ p->aUpdateMask[ii/32] |= (1<<(ii%32));
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( bPatchset ) p->aUpdateMask[nCol/32] |= (1<<(nCol%32));
+
+ if( p->pUp ){
+ int nUp = 0;
+ SessionUpdate **pp = &p->pUp;
+ while( 1 ){
+ nUp++;
+ if( 0==memcmp(p->aUpdateMask, (*pp)->aMask, nU32*sizeof(u32)) ){
+ pUp = *pp;
+ *pp = pUp->pNext;
+ pUp->pNext = p->pUp;
+ p->pUp = pUp;
+ break;
+ }
+
+ if( (*pp)->pNext ){
+ pp = &(*pp)->pNext;
+ }else{
+ if( nUp>=SESSION_UPDATE_CACHE_SZ ){
+ sqlite3_finalize((*pp)->pStmt);
+ sqlite3_free(*pp);
+ *pp = 0;
+ }
+ break;
+ }
+ }
+ }
+
+ if( pUp==0 ){
+ int nByte = sizeof(SessionUpdate) * nU32*sizeof(u32);
+ int bStat1 = (sqlite3_stricmp(pIter->zTab, "sqlite_stat1")==0);
+ pUp = (SessionUpdate*)sqlite3_malloc(nByte);
+ if( pUp==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ const char *zSep = "";
+ SessionBuffer buf;
+
+ memset(&buf, 0, sizeof(buf));
+ pUp->aMask = (u32*)&pUp[1];
+ memcpy(pUp->aMask, p->aUpdateMask, nU32*sizeof(u32));
+
+ sessionAppendStr(&buf, "UPDATE main.", &rc);
+ sessionAppendIdent(&buf, pIter->zTab, &rc);
+ sessionAppendStr(&buf, " SET ", &rc);
+
+ /* Create the assignments part of the UPDATE */
+ for(ii=0; ii<pIter->nCol; ii++){
+ if( p->abPK[ii]==0 && sessionChangesetNew(pIter, ii) ){
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, p->azCol[ii], &rc);
+ sessionAppendStr(&buf, " = ?", &rc);
+ sessionAppendInteger(&buf, ii*2+1, &rc);
+ zSep = ", ";
+ }
+ }
+
+ /* Create the WHERE clause part of the UPDATE */
+ zSep = "";
+ sessionAppendStr(&buf, " WHERE ", &rc);
+ for(ii=0; ii<pIter->nCol; ii++){
+ if( p->abPK[ii] || (bPatchset==0 && sessionChangesetOld(pIter, ii)) ){
+ sessionAppendStr(&buf, zSep, &rc);
+ if( bStat1 && ii==1 ){
+ assert( sqlite3_stricmp(p->azCol[ii], "idx")==0 );
+ sessionAppendStr(&buf,
+ "idx IS CASE "
+ "WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL "
+ "ELSE ?4 END ", &rc
+ );
+ }else{
+ sessionAppendIdent(&buf, p->azCol[ii], &rc);
+ sessionAppendStr(&buf, " IS ?", &rc);
+ sessionAppendInteger(&buf, ii*2+2, &rc);
+ }
+ zSep = " AND ";
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ char *zSql = (char*)buf.aBuf;
+ rc = sqlite3_prepare_v2(p->db, zSql, buf.nBuf, &pUp->pStmt, 0);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pUp);
+ pUp = 0;
+ }else{
+ pUp->pNext = p->pUp;
+ p->pUp = pUp;
+ }
+ sqlite3_free(buf.aBuf);
+ }
+ }
+ }
+
+ assert( (rc==SQLITE_OK)==(pUp!=0) );
+ if( pUp ){
+ *ppStmt = pUp->pStmt;
+ }else{
+ *ppStmt = 0;
+ }
+ return rc;
+}
+
+/*
+** Free all cached UPDATE statements.
+*/
+static void sessionUpdateFree(SessionApplyCtx *p){
+ SessionUpdate *pUp;
+ SessionUpdate *pNext;
+ for(pUp=p->pUp; pUp; pUp=pNext){
+ pNext = pUp->pNext;
+ sqlite3_finalize(pUp->pStmt);
+ sqlite3_free(pUp);
+ }
+ p->pUp = 0;
+ sqlite3_free(p->aUpdateMask);
+ p->aUpdateMask = 0;
+}
+
+/*
+** Formulate a statement to DELETE a row from database db. Assuming a table
+** structure like this:
+**
+** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
+**
+** The DELETE statement looks like this:
+**
+** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4)
+**
+** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require
+** matching b and d values, or 1 otherwise. The second case comes up if the
+** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE.
+**
+** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left
+** pointing to the prepared version of the SQL statement.
+*/
+static int sessionDeleteRow(
+ sqlite3 *db, /* Database handle */
+ const char *zTab, /* Table name */
+ SessionApplyCtx *p /* Session changeset-apply context */
+){
+ int i;
+ const char *zSep = "";
+ int rc = SQLITE_OK;
+ SessionBuffer buf = {0, 0, 0};
+ int nPk = 0;
+
+ sessionAppendStr(&buf, "DELETE FROM main.", &rc);
+ sessionAppendIdent(&buf, zTab, &rc);
+ sessionAppendStr(&buf, " WHERE ", &rc);
+
+ for(i=0; i<p->nCol; i++){
+ if( p->abPK[i] ){
+ nPk++;
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, p->azCol[i], &rc);
+ sessionAppendStr(&buf, " = ?", &rc);
+ sessionAppendInteger(&buf, i+1, &rc);
+ zSep = " AND ";
+ }
+ }
+
+ if( nPk<p->nCol ){
+ sessionAppendStr(&buf, " AND (?", &rc);
+ sessionAppendInteger(&buf, p->nCol+1, &rc);
+ sessionAppendStr(&buf, " OR ", &rc);
+
+ zSep = "";
+ for(i=0; i<p->nCol; i++){
+ if( !p->abPK[i] ){
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, p->azCol[i], &rc);
+ sessionAppendStr(&buf, " IS ?", &rc);
+ sessionAppendInteger(&buf, i+1, &rc);
+ zSep = "AND ";
+ }
+ }
+ sessionAppendStr(&buf, ")", &rc);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0);
+ }
+ sqlite3_free(buf.aBuf);
+
+ return rc;
+}
+
+/*
+** Formulate and prepare an SQL statement to query table zTab by primary
+** key. Assuming the following table structure:
+**
+** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
+**
+** The SELECT statement looks like this:
+**
+** SELECT * FROM x WHERE a = ?1 AND c = ?3
+**
+** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left
+** pointing to the prepared version of the SQL statement.
+*/
+static int sessionSelectRow(
+ sqlite3 *db, /* Database handle */
+ const char *zTab, /* Table name */
+ SessionApplyCtx *p /* Session changeset-apply context */
+){
+ return sessionSelectStmt(
+ db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect);
+}
+
+/*
+** Formulate and prepare an INSERT statement to add a record to table zTab.
+** For example:
+**
+** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...);
+**
+** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left
+** pointing to the prepared version of the SQL statement.
+*/
+static int sessionInsertRow(
+ sqlite3 *db, /* Database handle */
+ const char *zTab, /* Table name */
+ SessionApplyCtx *p /* Session changeset-apply context */
+){
+ int rc = SQLITE_OK;
+ int i;
+ SessionBuffer buf = {0, 0, 0};
+
+ sessionAppendStr(&buf, "INSERT INTO main.", &rc);
+ sessionAppendIdent(&buf, zTab, &rc);
+ sessionAppendStr(&buf, "(", &rc);
+ for(i=0; i<p->nCol; i++){
+ if( i!=0 ) sessionAppendStr(&buf, ", ", &rc);
+ sessionAppendIdent(&buf, p->azCol[i], &rc);
+ }
+
+ sessionAppendStr(&buf, ") VALUES(?", &rc);
+ for(i=1; i<p->nCol; i++){
+ sessionAppendStr(&buf, ", ?", &rc);
+ }
+ sessionAppendStr(&buf, ")", &rc);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
+ }
+ sqlite3_free(buf.aBuf);
+ return rc;
+}
+
+static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){
+ return sqlite3_prepare_v2(db, zSql, -1, pp, 0);
+}
+
+/*
+** Prepare statements for applying changes to the sqlite_stat1 table.
+** These are similar to those created by sessionSelectRow(),
+** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for
+** other tables.
+*/
+static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){
+ int rc = sessionSelectRow(db, "sqlite_stat1", p);
+ if( rc==SQLITE_OK ){
+ rc = sessionPrepare(db, &p->pInsert,
+ "INSERT INTO main.sqlite_stat1 VALUES(?1, "
+ "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, "
+ "?3)"
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sessionPrepare(db, &p->pDelete,
+ "DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS "
+ "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END "
+ "AND (?4 OR stat IS ?3)"
+ );
+ }
+ return rc;
+}
+
+/*
+** A wrapper around sqlite3_bind_value() that detects an extra problem.
+** See comments in the body of this function for details.
+*/
+static int sessionBindValue(
+ sqlite3_stmt *pStmt, /* Statement to bind value to */
+ int i, /* Parameter number to bind to */
+ sqlite3_value *pVal /* Value to bind */
+){
+ int eType = sqlite3_value_type(pVal);
+ /* COVERAGE: The (pVal->z==0) branch is never true using current versions
+ ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either
+ ** the (pVal->z) variable remains as it was or the type of the value is
+ ** set to SQLITE_NULL. */
+ if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){
+ /* This condition occurs when an earlier OOM in a call to
+ ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within
+ ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */
+ return SQLITE_NOMEM;
+ }
+ return sqlite3_bind_value(pStmt, i, pVal);
+}
+
+/*
+** Iterator pIter must point to an SQLITE_INSERT entry. This function
+** transfers new.* values from the current iterator entry to statement
+** pStmt. The table being inserted into has nCol columns.
+**
+** New.* value $i from the iterator is bound to variable ($i+1) of
+** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1)
+** are transfered to the statement. Otherwise, if abPK is not NULL, it points
+** to an array nCol elements in size. In this case only those values for
+** which abPK[$i] is true are read from the iterator and bound to the
+** statement.
+**
+** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK.
+*/
+static int sessionBindRow(
+ sqlite3_changeset_iter *pIter, /* Iterator to read values from */
+ int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **),
+ int nCol, /* Number of columns */
+ u8 *abPK, /* If not NULL, bind only if true */
+ sqlite3_stmt *pStmt /* Bind values to this statement */
+){
+ int i;
+ int rc = SQLITE_OK;
+
+ /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the
+ ** argument iterator points to a suitable entry. Make sure that xValue
+ ** is one of these to guarantee that it is safe to ignore the return
+ ** in the code below. */
+ assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new );
+
+ for(i=0; rc==SQLITE_OK && i<nCol; i++){
+ if( !abPK || abPK[i] ){
+ sqlite3_value *pVal = 0;
+ (void)xValue(pIter, i, &pVal);
+ if( pVal==0 ){
+ /* The value in the changeset was "undefined". This indicates a
+ ** corrupt changeset blob. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = sessionBindValue(pStmt, i+1, pVal);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** SQL statement pSelect is as generated by the sessionSelectRow() function.
+** This function binds the primary key values from the change that changeset
+** iterator pIter points to to the SELECT and attempts to seek to the table
+** entry. If a row is found, the SELECT statement left pointing at the row
+** and SQLITE_ROW is returned. Otherwise, if no row is found and no error
+** has occured, the statement is reset and SQLITE_OK is returned. If an
+** error occurs, the statement is reset and an SQLite error code is returned.
+**
+** If this function returns SQLITE_ROW, the caller must eventually reset()
+** statement pSelect. If any other value is returned, the statement does
+** not require a reset().
+**
+** If the iterator currently points to an INSERT record, bind values from the
+** new.* record to the SELECT statement. Or, if it points to a DELETE or
+** UPDATE, bind values from the old.* record.
+*/
+static int sessionSeekToRow(
+ sqlite3 *db, /* Database handle */
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ u8 *abPK, /* Primary key flags array */
+ sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */
+){
+ int rc; /* Return code */
+ int nCol; /* Number of columns in table */
+ int op; /* Changset operation (SQLITE_UPDATE etc.) */
+ const char *zDummy; /* Unused */
+
+ sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
+ rc = sessionBindRow(pIter,
+ op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old,
+ nCol, abPK, pSelect
+ );
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(pSelect);
+ if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called from within sqlite3changeset_apply_v2() when
+** a conflict is encountered and resolved using conflict resolution
+** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE)..
+** It adds a conflict resolution record to the buffer in
+** SessionApplyCtx.rebase, which will eventually be returned to the caller
+** of apply_v2() as the "rebase" buffer.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int sessionRebaseAdd(
+ SessionApplyCtx *p, /* Apply context */
+ int eType, /* Conflict resolution (OMIT or REPLACE) */
+ sqlite3_changeset_iter *pIter /* Iterator pointing at current change */
+){
+ int rc = SQLITE_OK;
+ if( p->bRebase ){
+ int i;
+ int eOp = pIter->op;
+ if( p->bRebaseStarted==0 ){
+ /* Append a table-header to the rebase buffer */
+ const char *zTab = pIter->zTab;
+ sessionAppendByte(&p->rebase, 'T', &rc);
+ sessionAppendVarint(&p->rebase, p->nCol, &rc);
+ sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc);
+ sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc);
+ p->bRebaseStarted = 1;
+ }
+
+ assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT );
+ assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE );
+
+ sessionAppendByte(&p->rebase,
+ (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc
+ );
+ sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc);
+ for(i=0; i<p->nCol; i++){
+ sqlite3_value *pVal = 0;
+ if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){
+ sqlite3changeset_old(pIter, i, &pVal);
+ }else{
+ sqlite3changeset_new(pIter, i, &pVal);
+ }
+ sessionAppendValue(&p->rebase, pVal, &rc);
+ }
+ }
+ return rc;
+}
+
+/*
+** Invoke the conflict handler for the change that the changeset iterator
+** currently points to.
+**
+** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT.
+** If argument pbReplace is NULL, then the type of conflict handler invoked
+** depends solely on eType, as follows:
+**
+** eType value Value passed to xConflict
+** -------------------------------------------------
+** CHANGESET_DATA CHANGESET_NOTFOUND
+** CHANGESET_CONFLICT CHANGESET_CONSTRAINT
+**
+** Or, if pbReplace is not NULL, then an attempt is made to find an existing
+** record with the same primary key as the record about to be deleted, updated
+** or inserted. If such a record can be found, it is available to the conflict
+** handler as the "conflicting" record. In this case the type of conflict
+** handler invoked is as follows:
+**
+** eType value PK Record found? Value passed to xConflict
+** ----------------------------------------------------------------
+** CHANGESET_DATA Yes CHANGESET_DATA
+** CHANGESET_DATA No CHANGESET_NOTFOUND
+** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT
+** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT
+**
+** If pbReplace is not NULL, and a record with a matching PK is found, and
+** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace
+** is set to non-zero before returning SQLITE_OK.
+**
+** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is
+** returned. Or, if the conflict handler returns an invalid value,
+** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT,
+** this function returns SQLITE_OK.
+*/
+static int sessionConflictHandler(
+ int eType, /* Either CHANGESET_DATA or CONFLICT */
+ SessionApplyCtx *p, /* changeset_apply() context */
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int(*xConflict)(void *, int, sqlite3_changeset_iter*),
+ void *pCtx, /* First argument for conflict handler */
+ int *pbReplace /* OUT: Set to true if PK row is found */
+){
+ int res = 0; /* Value returned by conflict handler */
+ int rc;
+ int nCol;
+ int op;
+ const char *zDummy;
+
+ sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
+
+ assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA );
+ assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT );
+ assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND );
+
+ /* Bind the new.* PRIMARY KEY values to the SELECT statement. */
+ if( pbReplace ){
+ rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect);
+ }else{
+ rc = SQLITE_OK;
+ }
+
+ if( rc==SQLITE_ROW ){
+ /* There exists another row with the new.* primary key. */
+ pIter->pConflict = p->pSelect;
+ res = xConflict(pCtx, eType, pIter);
+ pIter->pConflict = 0;
+ rc = sqlite3_reset(p->pSelect);
+ }else if( rc==SQLITE_OK ){
+ if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){
+ /* Instead of invoking the conflict handler, append the change blob
+ ** to the SessionApplyCtx.constraints buffer. */
+ u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent];
+ int nBlob = pIter->in.iNext - pIter->in.iCurrent;
+ sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc);
+ return SQLITE_OK;
+ }else{
+ /* No other row with the new.* primary key. */
+ res = xConflict(pCtx, eType+1, pIter);
+ if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ switch( res ){
+ case SQLITE_CHANGESET_REPLACE:
+ assert( pbReplace );
+ *pbReplace = 1;
+ break;
+
+ case SQLITE_CHANGESET_OMIT:
+ break;
+
+ case SQLITE_CHANGESET_ABORT:
+ rc = SQLITE_ABORT;
+ break;
+
+ default:
+ rc = SQLITE_MISUSE;
+ break;
+ }
+ if( rc==SQLITE_OK ){
+ rc = sessionRebaseAdd(p, res, pIter);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Attempt to apply the change that the iterator passed as the first argument
+** currently points to to the database. If a conflict is encountered, invoke
+** the conflict handler callback.
+**
+** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If
+** one is encountered, update or delete the row with the matching primary key
+** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs,
+** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry
+** to true before returning. In this case the caller will invoke this function
+** again, this time with pbRetry set to NULL.
+**
+** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is
+** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead.
+** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such
+** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true
+** before retrying. In this case the caller attempts to remove the conflicting
+** row before invoking this function again, this time with pbReplace set
+** to NULL.
+**
+** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function
+** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is
+** returned.
+*/
+static int sessionApplyOneOp(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ SessionApplyCtx *p, /* changeset_apply() context */
+ int(*xConflict)(void *, int, sqlite3_changeset_iter *),
+ void *pCtx, /* First argument for the conflict handler */
+ int *pbReplace, /* OUT: True to remove PK row and retry */
+ int *pbRetry /* OUT: True to retry. */
+){
+ const char *zDummy;
+ int op;
+ int nCol;
+ int rc = SQLITE_OK;
+
+ assert( p->pDelete && p->pInsert && p->pSelect );
+ assert( p->azCol && p->abPK );
+ assert( !pbReplace || *pbReplace==0 );
+
+ sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
+
+ if( op==SQLITE_DELETE ){
+
+ /* Bind values to the DELETE statement. If conflict handling is required,
+ ** bind values for all columns and set bound variable (nCol+1) to true.
+ ** Or, if conflict handling is not required, bind just the PK column
+ ** values and, if it exists, set (nCol+1) to false. Conflict handling
+ ** is not required if:
+ **
+ ** * this is a patchset, or
+ ** * (pbRetry==0), or
+ ** * all columns of the table are PK columns (in this case there is
+ ** no (nCol+1) variable to bind to).
+ */
+ u8 *abPK = (pIter->bPatchset ? p->abPK : 0);
+ rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete);
+ if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){
+ rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK));
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3_step(p->pDelete);
+ rc = sqlite3_reset(p->pDelete);
+ if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
+ );
+ }else if( (rc&0xff)==SQLITE_CONSTRAINT ){
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
+ );
+ }
+
+ }else if( op==SQLITE_UPDATE ){
+ int i;
+ sqlite3_stmt *pUp = 0;
+ int bPatchset = (pbRetry==0 || pIter->bPatchset);
+
+ rc = sessionUpdateFind(pIter, p, bPatchset, &pUp);
+
+ /* Bind values to the UPDATE statement. */
+ for(i=0; rc==SQLITE_OK && i<nCol; i++){
+ sqlite3_value *pOld = sessionChangesetOld(pIter, i);
+ sqlite3_value *pNew = sessionChangesetNew(pIter, i);
+ if( p->abPK[i] || (bPatchset==0 && pOld) ){
+ rc = sessionBindValue(pUp, i*2+2, pOld);
+ }
+ if( rc==SQLITE_OK && pNew ){
+ rc = sessionBindValue(pUp, i*2+1, pNew);
+ }
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict,
+ ** the result will be SQLITE_OK with 0 rows modified. */
+ sqlite3_step(pUp);
+ rc = sqlite3_reset(pUp);
+
+ if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
+ /* A NOTFOUND or DATA error. Search the table to see if it contains
+ ** a row with a matching primary key. If so, this is a DATA conflict.
+ ** Otherwise, if there is no primary key match, it is a NOTFOUND. */
+
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
+ );
+
+ }else if( (rc&0xff)==SQLITE_CONSTRAINT ){
+ /* This is always a CONSTRAINT conflict. */
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
+ );
+ }
+
+ }else{
+ assert( op==SQLITE_INSERT );
+ if( p->bStat1 ){
+ /* Check if there is a conflicting row. For sqlite_stat1, this needs
+ ** to be done using a SELECT, as there is no PRIMARY KEY in the
+ ** database schema to throw an exception if a duplicate is inserted. */
+ rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect);
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_CONSTRAINT;
+ sqlite3_reset(p->pSelect);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert);
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3_step(p->pInsert);
+ rc = sqlite3_reset(p->pInsert);
+ }
+
+ if( (rc&0xff)==SQLITE_CONSTRAINT ){
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Attempt to apply the change that the iterator passed as the first argument
+** currently points to to the database. If a conflict is encountered, invoke
+** the conflict handler callback.
+**
+** The difference between this function and sessionApplyOne() is that this
+** function handles the case where the conflict-handler is invoked and
+** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be
+** retried in some manner.
+*/
+static int sessionApplyOneWithRetry(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */
+ SessionApplyCtx *pApply, /* Apply context */
+ int(*xConflict)(void*, int, sqlite3_changeset_iter*),
+ void *pCtx /* First argument passed to xConflict */
+){
+ int bReplace = 0;
+ int bRetry = 0;
+ int rc;
+
+ rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry);
+ if( rc==SQLITE_OK ){
+ /* If the bRetry flag is set, the change has not been applied due to an
+ ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and
+ ** a row with the correct PK is present in the db, but one or more other
+ ** fields do not contain the expected values) and the conflict handler
+ ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation,
+ ** but pass NULL as the final argument so that sessionApplyOneOp() ignores
+ ** the SQLITE_CHANGESET_DATA problem. */
+ if( bRetry ){
+ assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE );
+ rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
+ }
+
+ /* If the bReplace flag is set, the change is an INSERT that has not
+ ** been performed because the database already contains a row with the
+ ** specified primary key and the conflict handler returned
+ ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row
+ ** before reattempting the INSERT. */
+ else if( bReplace ){
+ assert( pIter->op==SQLITE_INSERT );
+ rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sessionBindRow(pIter,
+ sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete);
+ sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pApply->pDelete);
+ rc = sqlite3_reset(pApply->pDelete);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Retry the changes accumulated in the pApply->constraints buffer.
+*/
+static int sessionRetryConstraints(
+ sqlite3 *db,
+ int bPatchset,
+ const char *zTab,
+ SessionApplyCtx *pApply,
+ int(*xConflict)(void*, int, sqlite3_changeset_iter*),
+ void *pCtx /* First argument passed to xConflict */
+){
+ int rc = SQLITE_OK;
+
+ while( pApply->constraints.nBuf ){
+ sqlite3_changeset_iter *pIter2 = 0;
+ SessionBuffer cons = pApply->constraints;
+ memset(&pApply->constraints, 0, sizeof(SessionBuffer));
+
+ rc = sessionChangesetStart(
+ &pIter2, 0, 0, cons.nBuf, cons.aBuf, pApply->bInvertConstraints, 1
+ );
+ if( rc==SQLITE_OK ){
+ size_t nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
+ int rc2;
+ pIter2->bPatchset = bPatchset;
+ pIter2->zTab = (char*)zTab;
+ pIter2->nCol = pApply->nCol;
+ pIter2->abPK = pApply->abPK;
+ sessionBufferGrow(&pIter2->tblhdr, nByte, &rc);
+ pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf;
+ if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte);
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){
+ rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx);
+ }
+
+ rc2 = sqlite3changeset_finalize(pIter2);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+ assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 );
+
+ sqlite3_free(cons.aBuf);
+ if( rc!=SQLITE_OK ) break;
+ if( pApply->constraints.nBuf>=cons.nBuf ){
+ /* No progress was made on the last round. */
+ pApply->bDeferConstraints = 0;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Argument pIter is a changeset iterator that has been initialized, but
+** not yet passed to sqlite3changeset_next(). This function applies the
+** changeset to the main database attached to handle "db". The supplied
+** conflict handler callback is invoked to resolve any conflicts encountered
+** while applying the change.
+*/
+static int sessionChangesetApply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ sqlite3_changeset_iter *pIter, /* Changeset to apply */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of fifth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase, /* OUT: Rebase information */
+ int flags /* SESSION_APPLY_XXX flags */
+){
+ int schemaMismatch = 0;
+ int rc = SQLITE_OK; /* Return code */
+ const char *zTab = 0; /* Name of current table */
+ int nTab = 0; /* Result of sqlite3Strlen30(zTab) */
+ SessionApplyCtx sApply; /* changeset_apply() context object */
+ int bPatchset;
+
+ assert( xConflict!=0 );
+
+ pIter->in.bNoDiscard = 1;
+ memset(&sApply, 0, sizeof(sApply));
+ sApply.bRebase = (ppRebase && pnRebase);
+ sApply.bInvertConstraints = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+ if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
+ rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0);
+ }
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){
+ int nCol;
+ int op;
+ const char *zNew;
+
+ sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0);
+
+ if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){
+ u8 *abPK;
+
+ rc = sessionRetryConstraints(
+ db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx
+ );
+ if( rc!=SQLITE_OK ) break;
+
+ sessionUpdateFree(&sApply);
+ sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
+ sqlite3_finalize(sApply.pDelete);
+ sqlite3_finalize(sApply.pInsert);
+ sqlite3_finalize(sApply.pSelect);
+ sApply.db = db;
+ sApply.pDelete = 0;
+ sApply.pInsert = 0;
+ sApply.pSelect = 0;
+ sApply.nCol = 0;
+ sApply.azCol = 0;
+ sApply.abPK = 0;
+ sApply.bStat1 = 0;
+ sApply.bDeferConstraints = 1;
+ sApply.bRebaseStarted = 0;
+ memset(&sApply.constraints, 0, sizeof(SessionBuffer));
+
+ /* If an xFilter() callback was specified, invoke it now. If the
+ ** xFilter callback returns zero, skip this table. If it returns
+ ** non-zero, proceed. */
+ schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew)));
+ if( schemaMismatch ){
+ zTab = sqlite3_mprintf("%s", zNew);
+ if( zTab==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ nTab = (int)strlen(zTab);
+ sApply.azCol = (const char **)zTab;
+ }else{
+ int nMinCol = 0;
+ int i;
+
+ sqlite3changeset_pk(pIter, &abPK, 0);
+ rc = sessionTableInfo(0,
+ db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK
+ );
+ if( rc!=SQLITE_OK ) break;
+ for(i=0; i<sApply.nCol; i++){
+ if( sApply.abPK[i] ) nMinCol = i+1;
+ }
+
+ if( sApply.nCol==0 ){
+ schemaMismatch = 1;
+ sqlite3_log(SQLITE_SCHEMA,
+ "sqlite3changeset_apply(): no such table: %s", zTab
+ );
+ }
+ else if( sApply.nCol<nCol ){
+ schemaMismatch = 1;
+ sqlite3_log(SQLITE_SCHEMA,
+ "sqlite3changeset_apply(): table %s has %d columns, "
+ "expected %d or more",
+ zTab, sApply.nCol, nCol
+ );
+ }
+ else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){
+ schemaMismatch = 1;
+ sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): "
+ "primary key mismatch for table %s", zTab
+ );
+ }
+ else{
+ sApply.nCol = nCol;
+ if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){
+ if( (rc = sessionStat1Sql(db, &sApply) ) ){
+ break;
+ }
+ sApply.bStat1 = 1;
+ }else{
+ if( (rc = sessionSelectRow(db, zTab, &sApply))
+ || (rc = sessionDeleteRow(db, zTab, &sApply))
+ || (rc = sessionInsertRow(db, zTab, &sApply))
+ ){
+ break;
+ }
+ sApply.bStat1 = 0;
+ }
+ }
+ nTab = sqlite3Strlen30(zTab);
+ }
+ }
+
+ /* If there is a schema mismatch on the current table, proceed to the
+ ** next change. A log message has already been issued. */
+ if( schemaMismatch ) continue;
+
+ rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx);
+ }
+
+ bPatchset = pIter->bPatchset;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changeset_finalize(pIter);
+ }else{
+ sqlite3changeset_finalize(pIter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx);
+ }
+
+ if( rc==SQLITE_OK ){
+ int nFk, notUsed;
+ sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, &notUsed, 0);
+ if( nFk!=0 ){
+ int res = SQLITE_CHANGESET_ABORT;
+ sqlite3_changeset_iter sIter;
+ memset(&sIter, 0, sizeof(sIter));
+ sIter.nCol = nFk;
+ res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter);
+ if( res!=SQLITE_CHANGESET_OMIT ){
+ rc = SQLITE_CONSTRAINT;
+ }
+ }
+ }
+ sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0);
+
+ if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
+ }else{
+ sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
+ sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
+ }
+ }
+
+ assert( sApply.bRebase || sApply.rebase.nBuf==0 );
+ if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){
+ *ppRebase = (void*)sApply.rebase.aBuf;
+ *pnRebase = sApply.rebase.nBuf;
+ sApply.rebase.aBuf = 0;
+ }
+ sessionUpdateFree(&sApply);
+ sqlite3_finalize(sApply.pInsert);
+ sqlite3_finalize(sApply.pDelete);
+ sqlite3_finalize(sApply.pSelect);
+ sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
+ sqlite3_free((char*)sApply.constraints.aBuf);
+ sqlite3_free((char*)sApply.rebase.aBuf);
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+ return rc;
+}
+
+/*
+** Apply the changeset passed via pChangeset/nChangeset to the main
+** database attached to handle "db".
+*/
+SQLITE_API int sqlite3changeset_apply_v2(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+){
+ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
+ int bInv = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
+ int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset, bInv, 1);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetApply(
+ db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
+ );
+ }
+ return rc;
+}
+
+/*
+** Apply the changeset passed via pChangeset/nChangeset to the main database
+** attached to handle "db". Invoke the supplied conflict handler callback
+** to resolve any conflicts encountered while applying the change.
+*/
+SQLITE_API int sqlite3changeset_apply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of fifth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+){
+ return sqlite3changeset_apply_v2(
+ db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0
+ );
+}
+
+/*
+** Apply the changeset passed via xInput/pIn to the main database
+** attached to handle "db". Invoke the supplied conflict handler callback
+** to resolve any conflicts encountered while applying the change.
+*/
+SQLITE_API int sqlite3changeset_apply_v2_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+){
+ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
+ int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
+ int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse, 1);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetApply(
+ db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
+ );
+ }
+ return rc;
+}
+SQLITE_API int sqlite3changeset_apply_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+){
+ return sqlite3changeset_apply_v2_strm(
+ db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0
+ );
+}
+
+/*
+** sqlite3_changegroup handle.
+*/
+struct sqlite3_changegroup {
+ int rc; /* Error code */
+ int bPatch; /* True to accumulate patchsets */
+ SessionTable *pList; /* List of tables in current patch */
+};
+
+/*
+** This function is called to merge two changes to the same row together as
+** part of an sqlite3changeset_concat() operation. A new change object is
+** allocated and a pointer to it stored in *ppNew.
+*/
+static int sessionChangeMerge(
+ SessionTable *pTab, /* Table structure */
+ int bRebase, /* True for a rebase hash-table */
+ int bPatchset, /* True for patchsets */
+ SessionChange *pExist, /* Existing change */
+ int op2, /* Second change operation */
+ int bIndirect, /* True if second change is indirect */
+ u8 *aRec, /* Second change record */
+ int nRec, /* Number of bytes in aRec */
+ SessionChange **ppNew /* OUT: Merged change */
+){
+ SessionChange *pNew = 0;
+ int rc = SQLITE_OK;
+
+ if( !pExist ){
+ pNew = (SessionChange *)sqlite3_malloc64(sizeof(SessionChange) + nRec);
+ if( !pNew ){
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(SessionChange));
+ pNew->op = op2;
+ pNew->bIndirect = bIndirect;
+ pNew->aRecord = (u8*)&pNew[1];
+ if( bIndirect==0 || bRebase==0 ){
+ pNew->nRecord = nRec;
+ memcpy(pNew->aRecord, aRec, nRec);
+ }else{
+ int i;
+ u8 *pIn = aRec;
+ u8 *pOut = pNew->aRecord;
+ for(i=0; i<pTab->nCol; i++){
+ int nIn = sessionSerialLen(pIn);
+ if( *pIn==0 ){
+ *pOut++ = 0;
+ }else if( pTab->abPK[i]==0 ){
+ *pOut++ = 0xFF;
+ }else{
+ memcpy(pOut, pIn, nIn);
+ pOut += nIn;
+ }
+ pIn += nIn;
+ }
+ pNew->nRecord = pOut - pNew->aRecord;
+ }
+ }else if( bRebase ){
+ if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){
+ *ppNew = pExist;
+ }else{
+ sqlite3_int64 nByte = nRec + pExist->nRecord + sizeof(SessionChange);
+ pNew = (SessionChange*)sqlite3_malloc64(nByte);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ u8 *a1 = pExist->aRecord;
+ u8 *a2 = aRec;
+ u8 *pOut;
+
+ memset(pNew, 0, nByte);
+ pNew->bIndirect = bIndirect || pExist->bIndirect;
+ pNew->op = op2;
+ pOut = pNew->aRecord = (u8*)&pNew[1];
+
+ for(i=0; i<pTab->nCol; i++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){
+ *pOut++ = 0xFF;
+ }else if( *a2==0 ){
+ memcpy(pOut, a1, n1);
+ pOut += n1;
+ }else{
+ memcpy(pOut, a2, n2);
+ pOut += n2;
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+ pNew->nRecord = pOut - pNew->aRecord;
+ }
+ sqlite3_free(pExist);
+ }
+ }else{
+ int op1 = pExist->op;
+
+ /*
+ ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2.
+ ** op1=INSERT, op2=UPDATE -> INSERT.
+ ** op1=INSERT, op2=DELETE -> (none)
+ **
+ ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2.
+ ** op1=UPDATE, op2=UPDATE -> UPDATE.
+ ** op1=UPDATE, op2=DELETE -> DELETE.
+ **
+ ** op1=DELETE, op2=INSERT -> UPDATE.
+ ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2.
+ ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2.
+ */
+ if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT)
+ || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT)
+ || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE)
+ || (op1==SQLITE_DELETE && op2==SQLITE_DELETE)
+ ){
+ pNew = pExist;
+ }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){
+ sqlite3_free(pExist);
+ assert( pNew==0 );
+ }else{
+ u8 *aExist = pExist->aRecord;
+ sqlite3_int64 nByte;
+ u8 *aCsr;
+
+ /* Allocate a new SessionChange object. Ensure that the aRecord[]
+ ** buffer of the new object is large enough to hold any record that
+ ** may be generated by combining the input records. */
+ nByte = sizeof(SessionChange) + pExist->nRecord + nRec;
+ pNew = (SessionChange *)sqlite3_malloc64(nByte);
+ if( !pNew ){
+ sqlite3_free(pExist);
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(SessionChange));
+ pNew->bIndirect = (bIndirect && pExist->bIndirect);
+ aCsr = pNew->aRecord = (u8 *)&pNew[1];
+
+ if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */
+ u8 *a1 = aRec;
+ assert( op2==SQLITE_UPDATE );
+ pNew->op = SQLITE_INSERT;
+ if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol);
+ sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1);
+ }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */
+ assert( op2==SQLITE_INSERT );
+ pNew->op = SQLITE_UPDATE;
+ if( bPatchset ){
+ memcpy(aCsr, aRec, nRec);
+ aCsr += nRec;
+ }else{
+ if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }
+ }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */
+ u8 *a1 = aExist;
+ u8 *a2 = aRec;
+ assert( op1==SQLITE_UPDATE );
+ if( bPatchset==0 ){
+ sessionSkipRecord(&a1, pTab->nCol);
+ sessionSkipRecord(&a2, pTab->nCol);
+ }
+ pNew->op = SQLITE_UPDATE;
+ if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }else{ /* UPDATE + DELETE */
+ assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE );
+ pNew->op = SQLITE_DELETE;
+ if( bPatchset ){
+ memcpy(aCsr, aRec, nRec);
+ aCsr += nRec;
+ }else{
+ sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist);
+ }
+ }
+
+ if( pNew ){
+ pNew->nRecord = (int)(aCsr - pNew->aRecord);
+ }
+ sqlite3_free(pExist);
+ }
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+/*
+** Add all changes in the changeset traversed by the iterator passed as
+** the first argument to the changegroup hash tables.
+*/
+static int sessionChangesetToHash(
+ sqlite3_changeset_iter *pIter, /* Iterator to read from */
+ sqlite3_changegroup *pGrp, /* Changegroup object to add changeset to */
+ int bRebase /* True if hash table is for rebasing */
+){
+ u8 *aRec;
+ int nRec;
+ int rc = SQLITE_OK;
+ SessionTable *pTab = 0;
+
+ while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){
+ const char *zNew;
+ int nCol;
+ int op;
+ int iHash;
+ int bIndirect;
+ SessionChange *pChange;
+ SessionChange *pExist = 0;
+ SessionChange **pp;
+
+ if( pGrp->pList==0 ){
+ pGrp->bPatch = pIter->bPatchset;
+ }else if( pIter->bPatchset!=pGrp->bPatch ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect);
+ if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){
+ /* Search the list for a matching table */
+ int nNew = (int)strlen(zNew);
+ u8 *abPK;
+
+ sqlite3changeset_pk(pIter, &abPK, 0);
+ for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){
+ if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break;
+ }
+ if( !pTab ){
+ SessionTable **ppTab;
+
+ pTab = sqlite3_malloc64(sizeof(SessionTable) + nCol + nNew+1);
+ if( !pTab ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ memset(pTab, 0, sizeof(SessionTable));
+ pTab->nCol = nCol;
+ pTab->abPK = (u8*)&pTab[1];
+ memcpy(pTab->abPK, abPK, nCol);
+ pTab->zName = (char*)&pTab->abPK[nCol];
+ memcpy(pTab->zName, zNew, nNew+1);
+
+ /* The new object must be linked on to the end of the list, not
+ ** simply added to the start of it. This is to ensure that the
+ ** tables within the output of sqlite3changegroup_output() are in
+ ** the right order. */
+ for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext);
+ *ppTab = pTab;
+ }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){
+ rc = SQLITE_SCHEMA;
+ break;
+ }
+ }
+
+ if( sessionGrowHash(0, pIter->bPatchset, pTab) ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ iHash = sessionChangeHash(
+ pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange
+ );
+
+ /* Search for existing entry. If found, remove it from the hash table.
+ ** Code below may link it back in.
+ */
+ for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){
+ int bPkOnly1 = 0;
+ int bPkOnly2 = 0;
+ if( pIter->bPatchset ){
+ bPkOnly1 = (*pp)->op==SQLITE_DELETE;
+ bPkOnly2 = op==SQLITE_DELETE;
+ }
+ if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){
+ pExist = *pp;
+ *pp = (*pp)->pNext;
+ pTab->nEntry--;
+ break;
+ }
+ }
+
+ rc = sessionChangeMerge(pTab, bRebase,
+ pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange
+ );
+ if( rc ) break;
+ if( pChange ){
+ pChange->pNext = pTab->apChange[iHash];
+ pTab->apChange[iHash] = pChange;
+ pTab->nEntry++;
+ }
+ }
+
+ if( rc==SQLITE_OK ) rc = pIter->rc;
+ return rc;
+}
+
+/*
+** Serialize a changeset (or patchset) based on all changesets (or patchsets)
+** added to the changegroup object passed as the first argument.
+**
+** If xOutput is not NULL, then the changeset/patchset is returned to the
+** user via one or more calls to xOutput, as with the other streaming
+** interfaces.
+**
+** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a
+** buffer containing the output changeset before this function returns. In
+** this case (*pnOut) is set to the size of the output buffer in bytes. It
+** is the responsibility of the caller to free the output buffer using
+** sqlite3_free() when it is no longer required.
+**
+** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite
+** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut)
+** are both set to 0 before returning.
+*/
+static int sessionChangegroupOutput(
+ sqlite3_changegroup *pGrp,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut,
+ int *pnOut,
+ void **ppOut
+){
+ int rc = SQLITE_OK;
+ SessionBuffer buf = {0, 0, 0};
+ SessionTable *pTab;
+ assert( xOutput==0 || (ppOut==0 && pnOut==0) );
+
+ /* Create the serialized output changeset based on the contents of the
+ ** hash tables attached to the SessionTable objects in list p->pList.
+ */
+ for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
+ int i;
+ if( pTab->nEntry==0 ) continue;
+
+ sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc);
+ for(i=0; i<pTab->nChange; i++){
+ SessionChange *p;
+ for(p=pTab->apChange[i]; p; p=p->pNext){
+ sessionAppendByte(&buf, p->op, &rc);
+ sessionAppendByte(&buf, p->bIndirect, &rc);
+ sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
+ if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){
+ rc = xOutput(pOut, buf.aBuf, buf.nBuf);
+ buf.nBuf = 0;
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( xOutput ){
+ if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf);
+ }else if( ppOut ){
+ *ppOut = buf.aBuf;
+ if( pnOut ) *pnOut = buf.nBuf;
+ buf.aBuf = 0;
+ }
+ }
+ sqlite3_free(buf.aBuf);
+
+ return rc;
+}
+
+/*
+** Allocate a new, empty, sqlite3_changegroup.
+*/
+SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp){
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_changegroup *p; /* New object */
+ p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup));
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(p, 0, sizeof(sqlite3_changegroup));
+ }
+ *pp = p;
+ return rc;
+}
+
+/*
+** Add the changeset currently stored in buffer pData, size nData bytes,
+** to changeset-group p.
+*/
+SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){
+ sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */
+ int rc; /* Return code */
+
+ rc = sqlite3changeset_start(&pIter, nData, pData);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetToHash(pIter, pGrp, 0);
+ }
+ sqlite3changeset_finalize(pIter);
+ return rc;
+}
+
+/*
+** Obtain a buffer containing a changeset representing the concatenation
+** of all changesets added to the group so far.
+*/
+SQLITE_API int sqlite3changegroup_output(
+ sqlite3_changegroup *pGrp,
+ int *pnData,
+ void **ppData
+){
+ return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData);
+}
+
+/*
+** Streaming versions of changegroup_add().
+*/
+SQLITE_API int sqlite3changegroup_add_strm(
+ sqlite3_changegroup *pGrp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+){
+ sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */
+ int rc; /* Return code */
+
+ rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetToHash(pIter, pGrp, 0);
+ }
+ sqlite3changeset_finalize(pIter);
+ return rc;
+}
+
+/*
+** Streaming versions of changegroup_output().
+*/
+SQLITE_API int sqlite3changegroup_output_strm(
+ sqlite3_changegroup *pGrp,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0);
+}
+
+/*
+** Delete a changegroup object.
+*/
+SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){
+ if( pGrp ){
+ sessionDeleteTable(0, pGrp->pList);
+ sqlite3_free(pGrp);
+ }
+}
+
+/*
+** Combine two changesets together.
+*/
+SQLITE_API int sqlite3changeset_concat(
+ int nLeft, /* Number of bytes in lhs input */
+ void *pLeft, /* Lhs input changeset */
+ int nRight /* Number of bytes in rhs input */,
+ void *pRight, /* Rhs input changeset */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: changeset (left <concat> right) */
+){
+ sqlite3_changegroup *pGrp;
+ int rc;
+
+ rc = sqlite3changegroup_new(&pGrp);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add(pGrp, nLeft, pLeft);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add(pGrp, nRight, pRight);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
+ }
+ sqlite3changegroup_delete(pGrp);
+
+ return rc;
+}
+
+/*
+** Streaming version of sqlite3changeset_concat().
+*/
+SQLITE_API int sqlite3changeset_concat_strm(
+ int (*xInputA)(void *pIn, void *pData, int *pnData),
+ void *pInA,
+ int (*xInputB)(void *pIn, void *pData, int *pnData),
+ void *pInB,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ sqlite3_changegroup *pGrp;
+ int rc;
+
+ rc = sqlite3changegroup_new(&pGrp);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut);
+ }
+ sqlite3changegroup_delete(pGrp);
+
+ return rc;
+}
+
+/*
+** Changeset rebaser handle.
+*/
+struct sqlite3_rebaser {
+ sqlite3_changegroup grp; /* Hash table */
+};
+
+/*
+** Buffers a1 and a2 must both contain a sessions module record nCol
+** fields in size. This function appends an nCol sessions module
+** record to buffer pBuf that is a copy of a1, except that for
+** each field that is undefined in a1[], swap in the field from a2[].
+*/
+static void sessionAppendRecordMerge(
+ SessionBuffer *pBuf, /* Buffer to append to */
+ int nCol, /* Number of columns in each record */
+ u8 *a1, int n1, /* Record 1 */
+ u8 *a2, int n2, /* Record 2 */
+ int *pRc /* IN/OUT: error code */
+){
+ sessionBufferGrow(pBuf, n1+n2, pRc);
+ if( *pRc==SQLITE_OK ){
+ int i;
+ u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
+ for(i=0; i<nCol; i++){
+ int nn1 = sessionSerialLen(a1);
+ int nn2 = sessionSerialLen(a2);
+ if( *a1==0 || *a1==0xFF ){
+ memcpy(pOut, a2, nn2);
+ pOut += nn2;
+ }else{
+ memcpy(pOut, a1, nn1);
+ pOut += nn1;
+ }
+ a1 += nn1;
+ a2 += nn2;
+ }
+
+ pBuf->nBuf = pOut-pBuf->aBuf;
+ assert( pBuf->nBuf<=pBuf->nAlloc );
+ }
+}
+
+/*
+** This function is called when rebasing a local UPDATE change against one
+** or more remote UPDATE changes. The aRec/nRec buffer contains the current
+** old.* and new.* records for the change. The rebase buffer (a single
+** record) is in aChange/nChange. The rebased change is appended to buffer
+** pBuf.
+**
+** Rebasing the UPDATE involves:
+**
+** * Removing any changes to fields for which the corresponding field
+** in the rebase buffer is set to "replaced" (type 0xFF). If this
+** means the UPDATE change updates no fields, nothing is appended
+** to the output buffer.
+**
+** * For each field modified by the local change for which the
+** corresponding field in the rebase buffer is not "undefined" (0x00)
+** or "replaced" (0xFF), the old.* value is replaced by the value
+** in the rebase buffer.
+*/
+static void sessionAppendPartialUpdate(
+ SessionBuffer *pBuf, /* Append record here */
+ sqlite3_changeset_iter *pIter, /* Iterator pointed at local change */
+ u8 *aRec, int nRec, /* Local change */
+ u8 *aChange, int nChange, /* Record to rebase against */
+ int *pRc /* IN/OUT: Return Code */
+){
+ sessionBufferGrow(pBuf, 2+nRec+nChange, pRc);
+ if( *pRc==SQLITE_OK ){
+ int bData = 0;
+ u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
+ int i;
+ u8 *a1 = aRec;
+ u8 *a2 = aChange;
+
+ *pOut++ = SQLITE_UPDATE;
+ *pOut++ = pIter->bIndirect;
+ for(i=0; i<pIter->nCol; i++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( pIter->abPK[i] || a2[0]==0 ){
+ if( !pIter->abPK[i] && a1[0] ) bData = 1;
+ memcpy(pOut, a1, n1);
+ pOut += n1;
+ }else if( a2[0]!=0xFF ){
+ bData = 1;
+ memcpy(pOut, a2, n2);
+ pOut += n2;
+ }else{
+ *pOut++ = '\0';
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+ if( bData ){
+ a2 = aChange;
+ for(i=0; i<pIter->nCol; i++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( pIter->abPK[i] || a2[0]!=0xFF ){
+ memcpy(pOut, a1, n1);
+ pOut += n1;
+ }else{
+ *pOut++ = '\0';
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+ pBuf->nBuf = (pOut - pBuf->aBuf);
+ }
+ }
+}
+
+/*
+** pIter is configured to iterate through a changeset. This function rebases
+** that changeset according to the current configuration of the rebaser
+** object passed as the first argument. If no error occurs and argument xOutput
+** is not NULL, then the changeset is returned to the caller by invoking
+** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL,
+** then (*ppOut) is set to point to a buffer containing the rebased changeset
+** before this function returns. In this case (*pnOut) is set to the size of
+** the buffer in bytes. It is the responsibility of the caller to eventually
+** free the (*ppOut) buffer using sqlite3_free().
+**
+** If an error occurs, an SQLite error code is returned. If ppOut and
+** pnOut are not NULL, then the two output parameters are set to 0 before
+** returning.
+*/
+static int sessionRebase(
+ sqlite3_rebaser *p, /* Rebaser hash table */
+ sqlite3_changeset_iter *pIter, /* Input data */
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut, /* Context for xOutput callback */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: Inverse of pChangeset */
+){
+ int rc = SQLITE_OK;
+ u8 *aRec = 0;
+ int nRec = 0;
+ int bNew = 0;
+ SessionTable *pTab = 0;
+ SessionBuffer sOut = {0,0,0};
+
+ while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){
+ SessionChange *pChange = 0;
+ int bDone = 0;
+
+ if( bNew ){
+ const char *zTab = pIter->zTab;
+ for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){
+ if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break;
+ }
+ bNew = 0;
+
+ /* A patchset may not be rebased */
+ if( pIter->bPatchset ){
+ rc = SQLITE_ERROR;
+ }
+
+ /* Append a table header to the output for this new table */
+ sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc);
+ sessionAppendVarint(&sOut, pIter->nCol, &rc);
+ sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc);
+ sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc);
+ }
+
+ if( pTab && rc==SQLITE_OK ){
+ int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange);
+
+ for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){
+ if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){
+ break;
+ }
+ }
+ }
+
+ if( pChange ){
+ assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT );
+ switch( pIter->op ){
+ case SQLITE_INSERT:
+ if( pChange->op==SQLITE_INSERT ){
+ bDone = 1;
+ if( pChange->bIndirect==0 ){
+ sessionAppendByte(&sOut, SQLITE_UPDATE, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc);
+ sessionAppendBlob(&sOut, aRec, nRec, &rc);
+ }
+ }
+ break;
+
+ case SQLITE_UPDATE:
+ bDone = 1;
+ if( pChange->op==SQLITE_DELETE ){
+ if( pChange->bIndirect==0 ){
+ u8 *pCsr = aRec;
+ sessionSkipRecord(&pCsr, pIter->nCol);
+ sessionAppendByte(&sOut, SQLITE_INSERT, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendRecordMerge(&sOut, pIter->nCol,
+ pCsr, nRec-(pCsr-aRec),
+ pChange->aRecord, pChange->nRecord, &rc
+ );
+ }
+ }else{
+ sessionAppendPartialUpdate(&sOut, pIter,
+ aRec, nRec, pChange->aRecord, pChange->nRecord, &rc
+ );
+ }
+ break;
+
+ default:
+ assert( pIter->op==SQLITE_DELETE );
+ bDone = 1;
+ if( pChange->op==SQLITE_INSERT ){
+ sessionAppendByte(&sOut, SQLITE_DELETE, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendRecordMerge(&sOut, pIter->nCol,
+ pChange->aRecord, pChange->nRecord, aRec, nRec, &rc
+ );
+ }
+ break;
+ }
+ }
+
+ if( bDone==0 ){
+ sessionAppendByte(&sOut, pIter->op, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendBlob(&sOut, aRec, nRec, &rc);
+ }
+ if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ sOut.nBuf = 0;
+ }
+ if( rc ) break;
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(sOut.aBuf);
+ memset(&sOut, 0, sizeof(sOut));
+ }
+
+ if( rc==SQLITE_OK ){
+ if( xOutput ){
+ if( sOut.nBuf>0 ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ }
+ }else if( ppOut ){
+ *ppOut = (void*)sOut.aBuf;
+ *pnOut = sOut.nBuf;
+ sOut.aBuf = 0;
+ }
+ }
+ sqlite3_free(sOut.aBuf);
+ return rc;
+}
+
+/*
+** Create a new rebaser object.
+*/
+SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew){
+ int rc = SQLITE_OK;
+ sqlite3_rebaser *pNew;
+
+ pNew = sqlite3_malloc(sizeof(sqlite3_rebaser));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew, 0, sizeof(sqlite3_rebaser));
+ }
+ *ppNew = pNew;
+ return rc;
+}
+
+/*
+** Call this one or more times to configure a rebaser.
+*/
+SQLITE_API int sqlite3rebaser_configure(
+ sqlite3_rebaser *p,
+ int nRebase, const void *pRebase
+){
+ sqlite3_changeset_iter *pIter = 0; /* Iterator opened on pData/nData */
+ int rc; /* Return code */
+ rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetToHash(pIter, &p->grp, 1);
+ }
+ sqlite3changeset_finalize(pIter);
+ return rc;
+}
+
+/*
+** Rebase a changeset according to current rebaser configuration
+*/
+SQLITE_API int sqlite3rebaser_rebase(
+ sqlite3_rebaser *p,
+ int nIn, const void *pIn,
+ int *pnOut, void **ppOut
+){
+ sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */
+ int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn);
+
+ if( rc==SQLITE_OK ){
+ rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut);
+ sqlite3changeset_finalize(pIter);
+ }
+
+ return rc;
+}
+
+/*
+** Rebase a changeset according to current rebaser configuration
+*/
+SQLITE_API int sqlite3rebaser_rebase_strm(
+ sqlite3_rebaser *p,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */
+ int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
+
+ if( rc==SQLITE_OK ){
+ rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0);
+ sqlite3changeset_finalize(pIter);
+ }
+
+ return rc;
+}
+
+/*
+** Destroy a rebaser object
+*/
+SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p){
+ if( p ){
+ sessionDeleteTable(0, p->grp.pList);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Global configuration
+*/
+SQLITE_API int sqlite3session_config(int op, void *pArg){
+ int rc = SQLITE_OK;
+ switch( op ){
+ case SQLITE_SESSION_CONFIG_STRMSIZE: {
+ int *pInt = (int*)pArg;
+ if( *pInt>0 ){
+ sessions_strm_chunk_size = *pInt;
+ }
+ *pInt = sessions_strm_chunk_size;
+ break;
+ }
+ default:
+ rc = SQLITE_MISUSE;
+ break;
+ }
+ return rc;
+}
+
+#endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */
+
+/************** End of sqlite3session.c **************************************/
+/************** Begin file fts5.c ********************************************/
+
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5)
+
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+/* #include "sqlite3.h" */
+
+#if 0
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. Returns SQLITE_OK if successful, or an error
+** code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. Any column filter that applies to
+** phrase iPhrase of the current query is included in $p. For each
+** row visited, the callback function passed as the fourth argument
+** is invoked. The context and API objects passed to the callback
+** function may be used to access the properties of each matched row.
+** Invoking Api.xUserData() returns a copy of the pointer passed as
+** the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension function's
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function,
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 3 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and initialize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, using
+** the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By querying the index for all synonyms of each query term
+** separately. In this case, when tokenizing query text, the
+** tokenizer may provide multiple synonyms for a single term
+** within the document. FTS5 then queries the index for each
+** synonym individually. For example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do so would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entries in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is substituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (2)) or query
+** text (method (3)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppContext,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+#ifndef _FTS5INT_H
+#define _FTS5INT_H
+
+/* #include "fts5.h" */
+/* #include "sqlite3ext.h" */
+SQLITE_EXTENSION_INIT1
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+#ifndef SQLITE_AMALGAMATION
+
+typedef unsigned char u8;
+typedef unsigned int u32;
+typedef unsigned short u16;
+typedef short i16;
+typedef sqlite3_int64 i64;
+typedef sqlite3_uint64 u64;
+
+#ifndef ArraySize
+# define ArraySize(x) ((int)(sizeof(x) / sizeof(x[0])))
+#endif
+
+#define testcase(x)
+
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+#define MIN(x,y) (((x) < (y)) ? (x) : (y))
+#define MAX(x,y) (((x) > (y)) ? (x) : (y))
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+*/
+# define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+# define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+#endif
+
+/* Truncate very long tokens to this many bytes. Hard limit is
+** (65536-1-1-4-9)==65521 bytes. The limiting factor is the 16-bit offset
+** field that occurs at the start of each leaf page (see fts5_index.c). */
+#define FTS5_MAX_TOKEN_SIZE 32768
+
+/*
+** Maximum number of prefix indexes on single FTS5 table. This must be
+** less than 32. If it is set to anything large than that, an #error
+** directive in fts5_index.c will cause the build to fail.
+*/
+#define FTS5_MAX_PREFIX_INDEXES 31
+
+/*
+** Maximum segments permitted in a single index
+*/
+#define FTS5_MAX_SEGMENT 2000
+
+#define FTS5_DEFAULT_NEARDIST 10
+#define FTS5_DEFAULT_RANK "bm25"
+
+/* Name of rank and rowid columns */
+#define FTS5_RANK_NAME "rank"
+#define FTS5_ROWID_NAME "rowid"
+
+#ifdef SQLITE_DEBUG
+# define FTS5_CORRUPT sqlite3Fts5Corrupt()
+static int sqlite3Fts5Corrupt(void);
+#else
+# define FTS5_CORRUPT SQLITE_CORRUPT_VTAB
+#endif
+
+/*
+** The assert_nc() macro is similar to the assert() macro, except that it
+** is used for assert() conditions that are true only if it can be
+** guranteed that the database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API extern int sqlite3_fts5_may_be_corrupt;
+# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
+#else
+# define assert_nc(x) assert(x)
+#endif
+
+/*
+** A version of memcmp() that does not cause asan errors if one of the pointer
+** parameters is NULL and the number of bytes to compare is zero.
+*/
+#define fts5Memcmp(s1, s2, n) ((n)<=0 ? 0 : memcmp((s1), (s2), (n)))
+
+/* Mark a function parameter as unused, to suppress nuisance compiler
+** warnings. */
+#ifndef UNUSED_PARAM
+# define UNUSED_PARAM(X) (void)(X)
+#endif
+
+#ifndef UNUSED_PARAM2
+# define UNUSED_PARAM2(X, Y) (void)(X), (void)(Y)
+#endif
+
+typedef struct Fts5Global Fts5Global;
+typedef struct Fts5Colset Fts5Colset;
+
+/* If a NEAR() clump or phrase may only match a specific set of columns,
+** then an object of the following type is used to record the set of columns.
+** Each entry in the aiCol[] array is a column that may be matched.
+**
+** This object is used by fts5_expr.c and fts5_index.c.
+*/
+struct Fts5Colset {
+ int nCol;
+ int aiCol[1];
+};
+
+
+
+/**************************************************************************
+** Interface to code in fts5_config.c. fts5_config.c contains contains code
+** to parse the arguments passed to the CREATE VIRTUAL TABLE statement.
+*/
+
+typedef struct Fts5Config Fts5Config;
+
+/*
+** An instance of the following structure encodes all information that can
+** be gleaned from the CREATE VIRTUAL TABLE statement.
+**
+** And all information loaded from the %_config table.
+**
+** nAutomerge:
+** The minimum number of segments that an auto-merge operation should
+** attempt to merge together. A value of 1 sets the object to use the
+** compile time default. Zero disables auto-merge altogether.
+**
+** zContent:
+**
+** zContentRowid:
+** The value of the content_rowid= option, if one was specified. Or
+** the string "rowid" otherwise. This text is not quoted - if it is
+** used as part of an SQL statement it needs to be quoted appropriately.
+**
+** zContentExprlist:
+**
+** pzErrmsg:
+** This exists in order to allow the fts5_index.c module to return a
+** decent error message if it encounters a file-format version it does
+** not understand.
+**
+** bColumnsize:
+** True if the %_docsize table is created.
+**
+** bPrefixIndex:
+** This is only used for debugging. If set to false, any prefix indexes
+** are ignored. This value is configured using:
+**
+** INSERT INTO tbl(tbl, rank) VALUES('prefix-index', $bPrefixIndex);
+**
+*/
+struct Fts5Config {
+ sqlite3 *db; /* Database handle */
+ char *zDb; /* Database holding FTS index (e.g. "main") */
+ char *zName; /* Name of FTS index */
+ int nCol; /* Number of columns */
+ char **azCol; /* Column names */
+ u8 *abUnindexed; /* True for unindexed columns */
+ int nPrefix; /* Number of prefix indexes */
+ int *aPrefix; /* Sizes in bytes of nPrefix prefix indexes */
+ int eContent; /* An FTS5_CONTENT value */
+ char *zContent; /* content table */
+ char *zContentRowid; /* "content_rowid=" option value */
+ int bColumnsize; /* "columnsize=" option value (dflt==1) */
+ int eDetail; /* FTS5_DETAIL_XXX value */
+ char *zContentExprlist;
+ Fts5Tokenizer *pTok;
+ fts5_tokenizer *pTokApi;
+ int bLock; /* True when table is preparing statement */
+ int ePattern; /* FTS_PATTERN_XXX constant */
+
+ /* Values loaded from the %_config table */
+ int iCookie; /* Incremented when %_config is modified */
+ int pgsz; /* Approximate page size used in %_data */
+ int nAutomerge; /* 'automerge' setting */
+ int nCrisisMerge; /* Maximum allowed segments per level */
+ int nUsermerge; /* 'usermerge' setting */
+ int nHashSize; /* Bytes of memory for in-memory hash */
+ char *zRank; /* Name of rank function */
+ char *zRankArgs; /* Arguments to rank function */
+
+ /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
+ char **pzErrmsg;
+
+#ifdef SQLITE_DEBUG
+ int bPrefixIndex; /* True to use prefix-indexes */
+#endif
+};
+
+/* Current expected value of %_config table 'version' field */
+#define FTS5_CURRENT_VERSION 4
+
+#define FTS5_CONTENT_NORMAL 0
+#define FTS5_CONTENT_NONE 1
+#define FTS5_CONTENT_EXTERNAL 2
+
+#define FTS5_DETAIL_FULL 0
+#define FTS5_DETAIL_NONE 1
+#define FTS5_DETAIL_COLUMNS 2
+
+#define FTS5_PATTERN_NONE 0
+#define FTS5_PATTERN_LIKE 65 /* matches SQLITE_INDEX_CONSTRAINT_LIKE */
+#define FTS5_PATTERN_GLOB 66 /* matches SQLITE_INDEX_CONSTRAINT_GLOB */
+
+static int sqlite3Fts5ConfigParse(
+ Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
+);
+static void sqlite3Fts5ConfigFree(Fts5Config*);
+
+static int sqlite3Fts5ConfigDeclareVtab(Fts5Config *pConfig);
+
+static int sqlite3Fts5Tokenize(
+ Fts5Config *pConfig, /* FTS5 Configuration object */
+ int flags, /* FTS5_TOKENIZE_* flags */
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+);
+
+static void sqlite3Fts5Dequote(char *z);
+
+/* Load the contents of the %_config table */
+static int sqlite3Fts5ConfigLoad(Fts5Config*, int);
+
+/* Set the value of a single config attribute */
+static int sqlite3Fts5ConfigSetValue(Fts5Config*, const char*, sqlite3_value*, int*);
+
+static int sqlite3Fts5ConfigParseRank(const char*, char**, char**);
+
+/*
+** End of interface to code in fts5_config.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_buffer.c.
+*/
+
+/*
+** Buffer object for the incremental building of string data.
+*/
+typedef struct Fts5Buffer Fts5Buffer;
+struct Fts5Buffer {
+ u8 *p;
+ int n;
+ int nSpace;
+};
+
+static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, u32);
+static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
+static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, u32, const u8*);
+static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
+static void sqlite3Fts5BufferFree(Fts5Buffer*);
+static void sqlite3Fts5BufferZero(Fts5Buffer*);
+static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
+static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);
+
+static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);
+
+#define fts5BufferZero(x) sqlite3Fts5BufferZero(x)
+#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
+#define fts5BufferFree(a) sqlite3Fts5BufferFree(a)
+#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
+#define fts5BufferSet(a,b,c,d) sqlite3Fts5BufferSet(a,b,c,d)
+
+#define fts5BufferGrow(pRc,pBuf,nn) ( \
+ (u32)((pBuf)->n) + (u32)(nn) <= (u32)((pBuf)->nSpace) ? 0 : \
+ sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
+)
+
+/* Write and decode big-endian 32-bit integer values */
+static void sqlite3Fts5Put32(u8*, int);
+static int sqlite3Fts5Get32(const u8*);
+
+#define FTS5_POS2COLUMN(iPos) (int)(iPos >> 32)
+#define FTS5_POS2OFFSET(iPos) (int)(iPos & 0x7FFFFFFF)
+
+typedef struct Fts5PoslistReader Fts5PoslistReader;
+struct Fts5PoslistReader {
+ /* Variables used only by sqlite3Fts5PoslistIterXXX() functions. */
+ const u8 *a; /* Position list to iterate through */
+ int n; /* Size of buffer at a[] in bytes */
+ int i; /* Current offset in a[] */
+
+ u8 bFlag; /* For client use (any custom purpose) */
+
+ /* Output variables */
+ u8 bEof; /* Set to true at EOF */
+ i64 iPos; /* (iCol<<32) + iPos */
+};
+static int sqlite3Fts5PoslistReaderInit(
+ const u8 *a, int n, /* Poslist buffer to iterate through */
+ Fts5PoslistReader *pIter /* Iterator object to initialize */
+);
+static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);
+
+typedef struct Fts5PoslistWriter Fts5PoslistWriter;
+struct Fts5PoslistWriter {
+ i64 iPrev;
+};
+static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);
+static void sqlite3Fts5PoslistSafeAppend(Fts5Buffer*, i64*, i64);
+
+static int sqlite3Fts5PoslistNext64(
+ const u8 *a, int n, /* Buffer containing poslist */
+ int *pi, /* IN/OUT: Offset within a[] */
+ i64 *piOff /* IN/OUT: Current offset */
+);
+
+/* Malloc utility */
+static void *sqlite3Fts5MallocZero(int *pRc, sqlite3_int64 nByte);
+static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);
+
+/* Character set tests (like isspace(), isalpha() etc.) */
+static int sqlite3Fts5IsBareword(char t);
+
+
+/* Bucket of terms object used by the integrity-check in offsets=0 mode. */
+typedef struct Fts5Termset Fts5Termset;
+static int sqlite3Fts5TermsetNew(Fts5Termset**);
+static int sqlite3Fts5TermsetAdd(Fts5Termset*, int, const char*, int, int *pbPresent);
+static void sqlite3Fts5TermsetFree(Fts5Termset*);
+
+/*
+** End of interface to code in fts5_buffer.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_index.c. fts5_index.c contains contains code
+** to access the data stored in the %_data table.
+*/
+
+typedef struct Fts5Index Fts5Index;
+typedef struct Fts5IndexIter Fts5IndexIter;
+
+struct Fts5IndexIter {
+ i64 iRowid;
+ const u8 *pData;
+ int nData;
+ u8 bEof;
+};
+
+#define sqlite3Fts5IterEof(x) ((x)->bEof)
+
+/*
+** Values used as part of the flags argument passed to IndexQuery().
+*/
+#define FTS5INDEX_QUERY_PREFIX 0x0001 /* Prefix query */
+#define FTS5INDEX_QUERY_DESC 0x0002 /* Docs in descending rowid order */
+#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004 /* Do not use prefix index */
+#define FTS5INDEX_QUERY_SCAN 0x0008 /* Scan query (fts5vocab) */
+
+/* The following are used internally by the fts5_index.c module. They are
+** defined here only to make it easier to avoid clashes with the flags
+** above. */
+#define FTS5INDEX_QUERY_SKIPEMPTY 0x0010
+#define FTS5INDEX_QUERY_NOOUTPUT 0x0020
+
+/*
+** Create/destroy an Fts5Index object.
+*/
+static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
+static int sqlite3Fts5IndexClose(Fts5Index *p);
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 sqlite3Fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ int iIdx,
+ const char *pTerm,
+ int nTerm
+);
+
+/*
+** Argument p points to a buffer containing utf-8 text that is n bytes in
+** size. Return the number of bytes in the nChar character prefix of the
+** buffer, or 0 if there are less than nChar characters in total.
+*/
+static int sqlite3Fts5IndexCharlenToBytelen(
+ const char *p,
+ int nByte,
+ int nChar
+);
+
+/*
+** Open a new iterator to iterate though all rowids that match the
+** specified token or token prefix.
+*/
+static int sqlite3Fts5IndexQuery(
+ Fts5Index *p, /* FTS index to query */
+ const char *pToken, int nToken, /* Token (or prefix) to query for */
+ int flags, /* Mask of FTS5INDEX_QUERY_X flags */
+ Fts5Colset *pColset, /* Match these columns only */
+ Fts5IndexIter **ppIter /* OUT: New iterator object */
+);
+
+/*
+** The various operations on open token or token prefix iterators opened
+** using sqlite3Fts5IndexQuery().
+*/
+static int sqlite3Fts5IterNext(Fts5IndexIter*);
+static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
+
+/*
+** Close an iterator opened by sqlite3Fts5IndexQuery().
+*/
+static void sqlite3Fts5IterClose(Fts5IndexIter*);
+
+/*
+** Close the reader blob handle, if it is open.
+*/
+static void sqlite3Fts5IndexCloseReader(Fts5Index*);
+
+/*
+** This interface is used by the fts5vocab module.
+*/
+static const char *sqlite3Fts5IterTerm(Fts5IndexIter*, int*);
+static int sqlite3Fts5IterNextScan(Fts5IndexIter*);
+static void *sqlite3Fts5StructureRef(Fts5Index*);
+static void sqlite3Fts5StructureRelease(void*);
+static int sqlite3Fts5StructureTest(Fts5Index*, void*);
+
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+static int sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+);
+
+/*
+** Indicate that subsequent calls to sqlite3Fts5IndexWrite() pertain to
+** document iDocid.
+*/
+static int sqlite3Fts5IndexBeginWrite(
+ Fts5Index *p, /* Index to write to */
+ int bDelete, /* True if current operation is a delete */
+ i64 iDocid /* Docid to add or remove data from */
+);
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+** Also close any open blob handles.
+*/
+static int sqlite3Fts5IndexSync(Fts5Index *p);
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+static int sqlite3Fts5IndexRollback(Fts5Index *p);
+
+/*
+** Get or set the "averages" values.
+*/
+static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
+static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);
+
+/*
+** Functions called by the storage module as part of integrity-check.
+*/
+static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum, int bUseCksum);
+
+/*
+** Called during virtual module initialization to register UDF
+** fts5_decode() with SQLite
+*/
+static int sqlite3Fts5IndexInit(sqlite3*);
+
+static int sqlite3Fts5IndexSetCookie(Fts5Index*, int);
+
+/*
+** Return the total number of entries read from the %_data table by
+** this connection since it was created.
+*/
+static int sqlite3Fts5IndexReads(Fts5Index *p);
+
+static int sqlite3Fts5IndexReinit(Fts5Index *p);
+static int sqlite3Fts5IndexOptimize(Fts5Index *p);
+static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge);
+static int sqlite3Fts5IndexReset(Fts5Index *p);
+
+static int sqlite3Fts5IndexLoadConfig(Fts5Index *p);
+
+/*
+** End of interface to code in fts5_index.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_varint.c.
+*/
+static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v);
+static int sqlite3Fts5GetVarintLen(u32 iVal);
+static u8 sqlite3Fts5GetVarint(const unsigned char*, u64*);
+static int sqlite3Fts5PutVarint(unsigned char *p, u64 v);
+
+#define fts5GetVarint32(a,b) sqlite3Fts5GetVarint32(a,(u32*)&b)
+#define fts5GetVarint sqlite3Fts5GetVarint
+
+#define fts5FastGetVarint32(a, iOff, nVal) { \
+ nVal = (a)[iOff++]; \
+ if( nVal & 0x80 ){ \
+ iOff--; \
+ iOff += fts5GetVarint32(&(a)[iOff], nVal); \
+ } \
+}
+
+
+/*
+** End of interface to code in fts5_varint.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to code in fts5_main.c.
+*/
+
+/*
+** Virtual-table object.
+*/
+typedef struct Fts5Table Fts5Table;
+struct Fts5Table {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ Fts5Config *pConfig; /* Virtual table configuration */
+ Fts5Index *pIndex; /* Full-text index */
+};
+
+static int sqlite3Fts5GetTokenizer(
+ Fts5Global*,
+ const char **azArg,
+ int nArg,
+ Fts5Config*,
+ char **pzErr
+);
+
+static Fts5Table *sqlite3Fts5TableFromCsrid(Fts5Global*, i64);
+
+static int sqlite3Fts5FlushToDisk(Fts5Table*);
+
+/*
+** End of interface to code in fts5.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_hash.c.
+*/
+typedef struct Fts5Hash Fts5Hash;
+
+/*
+** Create a hash table, free a hash table.
+*/
+static int sqlite3Fts5HashNew(Fts5Config*, Fts5Hash**, int *pnSize);
+static void sqlite3Fts5HashFree(Fts5Hash*);
+
+static int sqlite3Fts5HashWrite(
+ Fts5Hash*,
+ i64 iRowid, /* Rowid for this entry */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ char bByte,
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+);
+
+/*
+** Empty (but do not delete) a hash table.
+*/
+static void sqlite3Fts5HashClear(Fts5Hash*);
+
+static int sqlite3Fts5HashQuery(
+ Fts5Hash*, /* Hash table to query */
+ int nPre,
+ const char *pTerm, int nTerm, /* Query term */
+ void **ppObj, /* OUT: Pointer to doclist for pTerm */
+ int *pnDoclist /* OUT: Size of doclist in bytes */
+);
+
+static int sqlite3Fts5HashScanInit(
+ Fts5Hash*, /* Hash table to query */
+ const char *pTerm, int nTerm /* Query prefix */
+);
+static void sqlite3Fts5HashScanNext(Fts5Hash*);
+static int sqlite3Fts5HashScanEof(Fts5Hash*);
+static void sqlite3Fts5HashScanEntry(Fts5Hash *,
+ const char **pzTerm, /* OUT: term (nul-terminated) */
+ const u8 **ppDoclist, /* OUT: pointer to doclist */
+ int *pnDoclist /* OUT: size of doclist in bytes */
+);
+
+
+/*
+** End of interface to code in fts5_hash.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_storage.c. fts5_storage.c contains contains
+** code to access the data stored in the %_content and %_docsize tables.
+*/
+
+#define FTS5_STMT_SCAN_ASC 0 /* SELECT rowid, * FROM ... ORDER BY 1 ASC */
+#define FTS5_STMT_SCAN_DESC 1 /* SELECT rowid, * FROM ... ORDER BY 1 DESC */
+#define FTS5_STMT_LOOKUP 2 /* SELECT rowid, * FROM ... WHERE rowid=? */
+
+typedef struct Fts5Storage Fts5Storage;
+
+static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
+static int sqlite3Fts5StorageClose(Fts5Storage *p);
+static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);
+
+static int sqlite3Fts5DropAll(Fts5Config*);
+static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);
+
+static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64, sqlite3_value**);
+static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
+static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);
+
+static int sqlite3Fts5StorageIntegrity(Fts5Storage *p, int iArg);
+
+static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
+static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);
+
+static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
+static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
+static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);
+
+static int sqlite3Fts5StorageSync(Fts5Storage *p);
+static int sqlite3Fts5StorageRollback(Fts5Storage *p);
+
+static int sqlite3Fts5StorageConfigValue(
+ Fts5Storage *p, const char*, sqlite3_value*, int
+);
+
+static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
+static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
+static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
+static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);
+static int sqlite3Fts5StorageReset(Fts5Storage *p);
+
+/*
+** End of interface to code in fts5_storage.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to code in fts5_expr.c.
+*/
+typedef struct Fts5Expr Fts5Expr;
+typedef struct Fts5ExprNode Fts5ExprNode;
+typedef struct Fts5Parse Fts5Parse;
+typedef struct Fts5Token Fts5Token;
+typedef struct Fts5ExprPhrase Fts5ExprPhrase;
+typedef struct Fts5ExprNearset Fts5ExprNearset;
+
+struct Fts5Token {
+ const char *p; /* Token text (not NULL terminated) */
+ int n; /* Size of buffer p in bytes */
+};
+
+/* Parse a MATCH expression. */
+static int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig,
+ int bPhraseToAnd,
+ int iCol, /* Column on LHS of MATCH operator */
+ const char *zExpr,
+ Fts5Expr **ppNew,
+ char **pzErr
+);
+static int sqlite3Fts5ExprPattern(
+ Fts5Config *pConfig,
+ int bGlob,
+ int iCol,
+ const char *zText,
+ Fts5Expr **pp
+);
+
+/*
+** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);
+** rc==SQLITE_OK && 0==sqlite3Fts5ExprEof(pExpr);
+** rc = sqlite3Fts5ExprNext(pExpr)
+** ){
+** // The document with rowid iRowid matches the expression!
+** i64 iRowid = sqlite3Fts5ExprRowid(pExpr);
+** }
+*/
+static int sqlite3Fts5ExprFirst(Fts5Expr*, Fts5Index *pIdx, i64 iMin, int bDesc);
+static int sqlite3Fts5ExprNext(Fts5Expr*, i64 iMax);
+static int sqlite3Fts5ExprEof(Fts5Expr*);
+static i64 sqlite3Fts5ExprRowid(Fts5Expr*);
+
+static void sqlite3Fts5ExprFree(Fts5Expr*);
+static int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2);
+
+/* Called during startup to register a UDF with SQLite */
+static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);
+
+static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
+static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
+static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);
+
+typedef struct Fts5PoslistPopulator Fts5PoslistPopulator;
+static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr*, int);
+static int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config*, Fts5Expr*, Fts5PoslistPopulator*, int, const char*, int
+);
+static void sqlite3Fts5ExprCheckPoslists(Fts5Expr*, i64);
+
+static int sqlite3Fts5ExprClonePhrase(Fts5Expr*, int, Fts5Expr**);
+
+static int sqlite3Fts5ExprPhraseCollist(Fts5Expr *, int, const u8 **, int *);
+
+/*******************************************
+** The fts5_expr.c API above this point is used by the other hand-written
+** C code in this module. The interfaces below this point are called by
+** the parser code in fts5parse.y. */
+
+static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);
+
+static Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse,
+ int eType,
+ Fts5ExprNode *pLeft,
+ Fts5ExprNode *pRight,
+ Fts5ExprNearset *pNear
+);
+
+static Fts5ExprNode *sqlite3Fts5ParseImplicitAnd(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pLeft,
+ Fts5ExprNode *pRight
+);
+
+static Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse,
+ Fts5ExprPhrase *pPhrase,
+ Fts5Token *pToken,
+ int bPrefix
+);
+
+static void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase*);
+
+static Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse*,
+ Fts5ExprNearset*,
+ Fts5ExprPhrase*
+);
+
+static Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse*,
+ Fts5Colset*,
+ Fts5Token *
+);
+
+static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
+static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
+static void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);
+
+static void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
+static void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNode*, Fts5Colset*);
+static Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse*, Fts5Colset*);
+static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
+static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);
+
+/*
+** End of interface to code in fts5_expr.c.
+**************************************************************************/
+
+
+
+/**************************************************************************
+** Interface to code in fts5_aux.c.
+*/
+
+static int sqlite3Fts5AuxInit(fts5_api*);
+/*
+** End of interface to code in fts5_aux.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_tokenizer.c.
+*/
+
+static int sqlite3Fts5TokenizerInit(fts5_api*);
+static int sqlite3Fts5TokenizerPattern(
+ int (*xCreate)(void*, const char**, int, Fts5Tokenizer**),
+ Fts5Tokenizer *pTok
+);
+/*
+** End of interface to code in fts5_tokenizer.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_vocab.c.
+*/
+
+static int sqlite3Fts5VocabInit(Fts5Global*, sqlite3*);
+
+/*
+** End of interface to code in fts5_vocab.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to automatically generated code in fts5_unicode2.c.
+*/
+static int sqlite3Fts5UnicodeIsdiacritic(int c);
+static int sqlite3Fts5UnicodeFold(int c, int bRemoveDiacritic);
+
+static int sqlite3Fts5UnicodeCatParse(const char*, u8*);
+static int sqlite3Fts5UnicodeCategory(u32 iCode);
+static void sqlite3Fts5UnicodeAscii(u8*, u8*);
+/*
+** End of interface to code in fts5_unicode2.c.
+**************************************************************************/
+
+#endif
+
+#define FTS5_OR 1
+#define FTS5_AND 2
+#define FTS5_NOT 3
+#define FTS5_TERM 4
+#define FTS5_COLON 5
+#define FTS5_MINUS 6
+#define FTS5_LCP 7
+#define FTS5_RCP 8
+#define FTS5_STRING 9
+#define FTS5_LP 10
+#define FTS5_RP 11
+#define FTS5_CARET 12
+#define FTS5_COMMA 13
+#define FTS5_PLUS 14
+#define FTS5_STAR 15
+
+/* This file is automatically generated by Lemon from input grammar
+** source file "fts5parse.y". */
+/*
+** 2000-05-29
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Driver template for the LEMON parser generator.
+**
+** The "lemon" program processes an LALR(1) input grammar file, then uses
+** this template to construct a parser. The "lemon" program inserts text
+** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
+** interstitial "-" characters) contained in this template is changed into
+** the value of the %name directive from the grammar. Otherwise, the content
+** of this template is copied straight through into the generate parser
+** source file.
+**
+** The following is the concatenation of all %include directives from the
+** input grammar file:
+*/
+/************ Begin %include sections from the grammar ************************/
+
+/* #include "fts5Int.h" */
+/* #include "fts5parse.h" */
+
+/*
+** Disable all error recovery processing in the parser push-down
+** automaton.
+*/
+#define fts5YYNOERRORRECOVERY 1
+
+/*
+** Make fts5yytestcase() the same as testcase()
+*/
+#define fts5yytestcase(X) testcase(X)
+
+/*
+** Indicate that sqlite3ParserFree() will never be called with a null
+** pointer.
+*/
+#define fts5YYPARSEFREENOTNULL 1
+
+/*
+** Alternative datatype for the argument to the malloc() routine passed
+** into sqlite3ParserAlloc(). The default is size_t.
+*/
+#define fts5YYMALLOCARGTYPE u64
+
+/**************** End of %include directives **********************************/
+/* These constants specify the various numeric values for terminal symbols.
+***************** Begin token definitions *************************************/
+#ifndef FTS5_OR
+#define FTS5_OR 1
+#define FTS5_AND 2
+#define FTS5_NOT 3
+#define FTS5_TERM 4
+#define FTS5_COLON 5
+#define FTS5_MINUS 6
+#define FTS5_LCP 7
+#define FTS5_RCP 8
+#define FTS5_STRING 9
+#define FTS5_LP 10
+#define FTS5_RP 11
+#define FTS5_CARET 12
+#define FTS5_COMMA 13
+#define FTS5_PLUS 14
+#define FTS5_STAR 15
+#endif
+/**************** End token definitions ***************************************/
+
+/* The next sections is a series of control #defines.
+** various aspects of the generated parser.
+** fts5YYCODETYPE is the data type used to store the integer codes
+** that represent terminal and non-terminal symbols.
+** "unsigned char" is used if there are fewer than
+** 256 symbols. Larger types otherwise.
+** fts5YYNOCODE is a number of type fts5YYCODETYPE that is not used for
+** any terminal or nonterminal symbol.
+** fts5YYFALLBACK If defined, this indicates that one or more tokens
+** (also known as: "terminal symbols") have fall-back
+** values which should be used if the original symbol
+** would not parse. This permits keywords to sometimes
+** be used as identifiers, for example.
+** fts5YYACTIONTYPE is the data type used for "action codes" - numbers
+** that indicate what to do in response to the next
+** token.
+** sqlite3Fts5ParserFTS5TOKENTYPE is the data type used for minor type for terminal
+** symbols. Background: A "minor type" is a semantic
+** value associated with a terminal or non-terminal
+** symbols. For example, for an "ID" terminal symbol,
+** the minor type might be the name of the identifier.
+** Each non-terminal can have a different minor type.
+** Terminal symbols all have the same minor type, though.
+** This macros defines the minor type for terminal
+** symbols.
+** fts5YYMINORTYPE is the data type used for all minor types.
+** This is typically a union of many types, one of
+** which is sqlite3Fts5ParserFTS5TOKENTYPE. The entry in the union
+** for terminal symbols is called "fts5yy0".
+** fts5YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** sqlite3Fts5ParserARG_SDECL A static variable declaration for the %extra_argument
+** sqlite3Fts5ParserARG_PDECL A parameter declaration for the %extra_argument
+** sqlite3Fts5ParserARG_PARAM Code to pass %extra_argument as a subroutine parameter
+** sqlite3Fts5ParserARG_STORE Code to store %extra_argument into fts5yypParser
+** sqlite3Fts5ParserARG_FETCH Code to extract %extra_argument from fts5yypParser
+** sqlite3Fts5ParserCTX_* As sqlite3Fts5ParserARG_ except for %extra_context
+** fts5YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+** fts5YYNSTATE the combined number of states.
+** fts5YYNRULE the number of rules in the grammar
+** fts5YYNFTS5TOKEN Number of terminal symbols
+** fts5YY_MAX_SHIFT Maximum value for shift actions
+** fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
+** fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
+** fts5YY_ERROR_ACTION The fts5yy_action[] code for syntax error
+** fts5YY_ACCEPT_ACTION The fts5yy_action[] code for accept
+** fts5YY_NO_ACTION The fts5yy_action[] code for no-op
+** fts5YY_MIN_REDUCE Minimum value for reduce actions
+** fts5YY_MAX_REDUCE Maximum value for reduce actions
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/************* Begin control #defines *****************************************/
+#define fts5YYCODETYPE unsigned char
+#define fts5YYNOCODE 27
+#define fts5YYACTIONTYPE unsigned char
+#define sqlite3Fts5ParserFTS5TOKENTYPE Fts5Token
+typedef union {
+ int fts5yyinit;
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yy0;
+ int fts5yy4;
+ Fts5Colset* fts5yy11;
+ Fts5ExprNode* fts5yy24;
+ Fts5ExprNearset* fts5yy46;
+ Fts5ExprPhrase* fts5yy53;
+} fts5YYMINORTYPE;
+#ifndef fts5YYSTACKDEPTH
+#define fts5YYSTACKDEPTH 100
+#endif
+#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
+#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
+#define sqlite3Fts5ParserARG_PARAM ,pParse
+#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse=fts5yypParser->pParse;
+#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse=pParse;
+#define sqlite3Fts5ParserCTX_SDECL
+#define sqlite3Fts5ParserCTX_PDECL
+#define sqlite3Fts5ParserCTX_PARAM
+#define sqlite3Fts5ParserCTX_FETCH
+#define sqlite3Fts5ParserCTX_STORE
+#define fts5YYNSTATE 35
+#define fts5YYNRULE 28
+#define fts5YYNRULE_WITH_ACTION 28
+#define fts5YYNFTS5TOKEN 16
+#define fts5YY_MAX_SHIFT 34
+#define fts5YY_MIN_SHIFTREDUCE 52
+#define fts5YY_MAX_SHIFTREDUCE 79
+#define fts5YY_ERROR_ACTION 80
+#define fts5YY_ACCEPT_ACTION 81
+#define fts5YY_NO_ACTION 82
+#define fts5YY_MIN_REDUCE 83
+#define fts5YY_MAX_REDUCE 110
+/************* End control #defines *******************************************/
+#define fts5YY_NLOOKAHEAD ((int)(sizeof(fts5yy_lookahead)/sizeof(fts5yy_lookahead[0])))
+
+/* Define the fts5yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define fts5yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the fts5yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef fts5yytestcase
+# define fts5yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N <= fts5YY_MAX_SHIFT Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** N between fts5YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
+** and fts5YY_MAX_SHIFTREDUCE reduce by rule N-fts5YY_MIN_SHIFTREDUCE.
+**
+** N == fts5YY_ERROR_ACTION A syntax error has occurred.
+**
+** N == fts5YY_ACCEPT_ACTION The parser accepts its input.
+**
+** N == fts5YY_NO_ACTION No such action. Denotes unused
+** slots in the fts5yy_action[] table.
+**
+** N between fts5YY_MIN_REDUCE Reduce by rule N-fts5YY_MIN_REDUCE
+** and fts5YY_MAX_REDUCE
+**
+** The action table is constructed as a single large table named fts5yy_action[].
+** Given state S and lookahead X, the action is computed as either:
+**
+** (A) N = fts5yy_action[ fts5yy_shift_ofst[S] + X ]
+** (B) N = fts5yy_default[S]
+**
+** The (A) formula is preferred. The B formula is used instead if
+** fts5yy_lookahead[fts5yy_shift_ofst[S]+X] is not equal to X.
+**
+** The formulas above are for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the fts5yy_reduce_ofst[] array is used in place of
+** the fts5yy_shift_ofst[] array.
+**
+** The following are the tables generated in this section:
+**
+** fts5yy_action[] A single table containing all actions.
+** fts5yy_lookahead[] A table containing the lookahead for each entry in
+** fts5yy_action. Used to detect hash collisions.
+** fts5yy_shift_ofst[] For each state, the offset into fts5yy_action for
+** shifting terminals.
+** fts5yy_reduce_ofst[] For each state, the offset into fts5yy_action for
+** shifting non-terminals after a reduce.
+** fts5yy_default[] Default action for each state.
+**
+*********** Begin parsing tables **********************************************/
+#define fts5YY_ACTTAB_COUNT (105)
+static const fts5YYACTIONTYPE fts5yy_action[] = {
+ /* 0 */ 81, 20, 96, 6, 28, 99, 98, 26, 26, 18,
+ /* 10 */ 96, 6, 28, 17, 98, 56, 26, 19, 96, 6,
+ /* 20 */ 28, 14, 98, 14, 26, 31, 92, 96, 6, 28,
+ /* 30 */ 108, 98, 25, 26, 21, 96, 6, 28, 78, 98,
+ /* 40 */ 58, 26, 29, 96, 6, 28, 107, 98, 22, 26,
+ /* 50 */ 24, 16, 12, 11, 1, 13, 13, 24, 16, 23,
+ /* 60 */ 11, 33, 34, 13, 97, 8, 27, 32, 98, 7,
+ /* 70 */ 26, 3, 4, 5, 3, 4, 5, 3, 83, 4,
+ /* 80 */ 5, 3, 63, 5, 3, 62, 12, 2, 86, 13,
+ /* 90 */ 9, 30, 10, 10, 54, 57, 75, 78, 78, 53,
+ /* 100 */ 57, 15, 82, 82, 71,
+};
+static const fts5YYCODETYPE fts5yy_lookahead[] = {
+ /* 0 */ 16, 17, 18, 19, 20, 22, 22, 24, 24, 17,
+ /* 10 */ 18, 19, 20, 7, 22, 9, 24, 17, 18, 19,
+ /* 20 */ 20, 9, 22, 9, 24, 13, 17, 18, 19, 20,
+ /* 30 */ 26, 22, 24, 24, 17, 18, 19, 20, 15, 22,
+ /* 40 */ 9, 24, 17, 18, 19, 20, 26, 22, 21, 24,
+ /* 50 */ 6, 7, 9, 9, 10, 12, 12, 6, 7, 21,
+ /* 60 */ 9, 24, 25, 12, 18, 5, 20, 14, 22, 5,
+ /* 70 */ 24, 3, 1, 2, 3, 1, 2, 3, 0, 1,
+ /* 80 */ 2, 3, 11, 2, 3, 11, 9, 10, 5, 12,
+ /* 90 */ 23, 24, 10, 10, 8, 9, 9, 15, 15, 8,
+ /* 100 */ 9, 9, 27, 27, 11, 27, 27, 27, 27, 27,
+ /* 110 */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ /* 120 */ 27,
+};
+#define fts5YY_SHIFT_COUNT (34)
+#define fts5YY_SHIFT_MIN (0)
+#define fts5YY_SHIFT_MAX (93)
+static const unsigned char fts5yy_shift_ofst[] = {
+ /* 0 */ 44, 44, 44, 44, 44, 44, 51, 77, 43, 12,
+ /* 10 */ 14, 83, 82, 14, 23, 23, 31, 31, 71, 74,
+ /* 20 */ 78, 81, 86, 91, 6, 53, 53, 60, 64, 68,
+ /* 30 */ 53, 87, 92, 53, 93,
+};
+#define fts5YY_REDUCE_COUNT (17)
+#define fts5YY_REDUCE_MIN (-17)
+#define fts5YY_REDUCE_MAX (67)
+static const signed char fts5yy_reduce_ofst[] = {
+ /* 0 */ -16, -8, 0, 9, 17, 25, 46, -17, -17, 37,
+ /* 10 */ 67, 4, 4, 8, 4, 20, 27, 38,
+};
+static const fts5YYACTIONTYPE fts5yy_default[] = {
+ /* 0 */ 80, 80, 80, 80, 80, 80, 95, 80, 80, 105,
+ /* 10 */ 80, 110, 110, 80, 110, 110, 80, 80, 80, 80,
+ /* 20 */ 80, 91, 80, 80, 80, 101, 100, 80, 80, 90,
+ /* 30 */ 103, 80, 80, 104, 80,
+};
+/********** End of lemon-generated parsing tables *****************************/
+
+/* The next table maps tokens (terminal symbols) into fallback tokens.
+** If a construct like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammar, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+**
+** This feature can be used, for example, to cause some keywords in a language
+** to revert to identifiers if they keyword does not apply in the context where
+** it appears.
+*/
+#ifdef fts5YYFALLBACK
+static const fts5YYCODETYPE fts5yyFallback[] = {
+};
+#endif /* fts5YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+**
+** After the "shift" half of a SHIFTREDUCE action, the stateno field
+** actually contains the reduce action for the second half of the
+** SHIFTREDUCE.
+*/
+struct fts5yyStackEntry {
+ fts5YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
+ fts5YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ fts5YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct fts5yyStackEntry fts5yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct fts5yyParser {
+ fts5yyStackEntry *fts5yytos; /* Pointer to top element of the stack */
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ int fts5yyhwm; /* High-water mark of the stack */
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ int fts5yyerrcnt; /* Shifts left before out of the error */
+#endif
+ sqlite3Fts5ParserARG_SDECL /* A place to hold %extra_argument */
+ sqlite3Fts5ParserCTX_SDECL /* A place to hold %extra_context */
+#if fts5YYSTACKDEPTH<=0
+ int fts5yystksz; /* Current side of the stack */
+ fts5yyStackEntry *fts5yystack; /* The parser's stack */
+ fts5yyStackEntry fts5yystk0; /* First stack entry */
+#else
+ fts5yyStackEntry fts5yystack[fts5YYSTACKDEPTH]; /* The parser's stack */
+ fts5yyStackEntry *fts5yystackEnd; /* Last entry in the stack */
+#endif
+};
+typedef struct fts5yyParser fts5yyParser;
+
+/* #include <assert.h> */
+#ifndef NDEBUG
+/* #include <stdio.h> */
+static FILE *fts5yyTraceFILE = 0;
+static char *fts5yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+static void sqlite3Fts5ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ fts5yyTraceFILE = TraceFILE;
+ fts5yyTracePrompt = zTracePrompt;
+ if( fts5yyTraceFILE==0 ) fts5yyTracePrompt = 0;
+ else if( fts5yyTracePrompt==0 ) fts5yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#if defined(fts5YYCOVERAGE) || !defined(NDEBUG)
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const fts5yyTokenName[] = {
+ /* 0 */ "$",
+ /* 1 */ "OR",
+ /* 2 */ "AND",
+ /* 3 */ "NOT",
+ /* 4 */ "TERM",
+ /* 5 */ "COLON",
+ /* 6 */ "MINUS",
+ /* 7 */ "LCP",
+ /* 8 */ "RCP",
+ /* 9 */ "STRING",
+ /* 10 */ "LP",
+ /* 11 */ "RP",
+ /* 12 */ "CARET",
+ /* 13 */ "COMMA",
+ /* 14 */ "PLUS",
+ /* 15 */ "STAR",
+ /* 16 */ "input",
+ /* 17 */ "expr",
+ /* 18 */ "cnearset",
+ /* 19 */ "exprlist",
+ /* 20 */ "colset",
+ /* 21 */ "colsetlist",
+ /* 22 */ "nearset",
+ /* 23 */ "nearphrases",
+ /* 24 */ "phrase",
+ /* 25 */ "neardist_opt",
+ /* 26 */ "star_opt",
+};
+#endif /* defined(fts5YYCOVERAGE) || !defined(NDEBUG) */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const fts5yyRuleName[] = {
+ /* 0 */ "input ::= expr",
+ /* 1 */ "colset ::= MINUS LCP colsetlist RCP",
+ /* 2 */ "colset ::= LCP colsetlist RCP",
+ /* 3 */ "colset ::= STRING",
+ /* 4 */ "colset ::= MINUS STRING",
+ /* 5 */ "colsetlist ::= colsetlist STRING",
+ /* 6 */ "colsetlist ::= STRING",
+ /* 7 */ "expr ::= expr AND expr",
+ /* 8 */ "expr ::= expr OR expr",
+ /* 9 */ "expr ::= expr NOT expr",
+ /* 10 */ "expr ::= colset COLON LP expr RP",
+ /* 11 */ "expr ::= LP expr RP",
+ /* 12 */ "expr ::= exprlist",
+ /* 13 */ "exprlist ::= cnearset",
+ /* 14 */ "exprlist ::= exprlist cnearset",
+ /* 15 */ "cnearset ::= nearset",
+ /* 16 */ "cnearset ::= colset COLON nearset",
+ /* 17 */ "nearset ::= phrase",
+ /* 18 */ "nearset ::= CARET phrase",
+ /* 19 */ "nearset ::= STRING LP nearphrases neardist_opt RP",
+ /* 20 */ "nearphrases ::= phrase",
+ /* 21 */ "nearphrases ::= nearphrases phrase",
+ /* 22 */ "neardist_opt ::=",
+ /* 23 */ "neardist_opt ::= COMMA STRING",
+ /* 24 */ "phrase ::= phrase PLUS STRING star_opt",
+ /* 25 */ "phrase ::= STRING star_opt",
+ /* 26 */ "star_opt ::= STAR",
+ /* 27 */ "star_opt ::=",
+};
+#endif /* NDEBUG */
+
+
+#if fts5YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack. Return the number
+** of errors. Return 0 on success.
+*/
+static int fts5yyGrowStack(fts5yyParser *p){
+ int newSize;
+ int idx;
+ fts5yyStackEntry *pNew;
+
+ newSize = p->fts5yystksz*2 + 100;
+ idx = p->fts5yytos ? (int)(p->fts5yytos - p->fts5yystack) : 0;
+ if( p->fts5yystack==&p->fts5yystk0 ){
+ pNew = malloc(newSize*sizeof(pNew[0]));
+ if( pNew ) pNew[0] = p->fts5yystk0;
+ }else{
+ pNew = realloc(p->fts5yystack, newSize*sizeof(pNew[0]));
+ }
+ if( pNew ){
+ p->fts5yystack = pNew;
+ p->fts5yytos = &p->fts5yystack[idx];
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sStack grows from %d to %d entries.\n",
+ fts5yyTracePrompt, p->fts5yystksz, newSize);
+ }
+#endif
+ p->fts5yystksz = newSize;
+ }
+ return pNew==0;
+}
+#endif
+
+/* Datatype of the argument to the memory allocated passed as the
+** second argument to sqlite3Fts5ParserAlloc() below. This can be changed by
+** putting an appropriate #define in the %include section of the input
+** grammar.
+*/
+#ifndef fts5YYMALLOCARGTYPE
+# define fts5YYMALLOCARGTYPE size_t
+#endif
+
+/* Initialize a new parser that has already been allocated.
+*/
+static void sqlite3Fts5ParserInit(void *fts5yypRawParser sqlite3Fts5ParserCTX_PDECL){
+ fts5yyParser *fts5yypParser = (fts5yyParser*)fts5yypRawParser;
+ sqlite3Fts5ParserCTX_STORE
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ fts5yypParser->fts5yyhwm = 0;
+#endif
+#if fts5YYSTACKDEPTH<=0
+ fts5yypParser->fts5yytos = NULL;
+ fts5yypParser->fts5yystack = NULL;
+ fts5yypParser->fts5yystksz = 0;
+ if( fts5yyGrowStack(fts5yypParser) ){
+ fts5yypParser->fts5yystack = &fts5yypParser->fts5yystk0;
+ fts5yypParser->fts5yystksz = 1;
+ }
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ fts5yypParser->fts5yytos = fts5yypParser->fts5yystack;
+ fts5yypParser->fts5yystack[0].stateno = 0;
+ fts5yypParser->fts5yystack[0].major = 0;
+#if fts5YYSTACKDEPTH>0
+ fts5yypParser->fts5yystackEnd = &fts5yypParser->fts5yystack[fts5YYSTACKDEPTH-1];
+#endif
+}
+
+#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
+*/
+static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(fts5YYMALLOCARGTYPE) sqlite3Fts5ParserCTX_PDECL){
+ fts5yyParser *fts5yypParser;
+ fts5yypParser = (fts5yyParser*)(*mallocProc)( (fts5YYMALLOCARGTYPE)sizeof(fts5yyParser) );
+ if( fts5yypParser ){
+ sqlite3Fts5ParserCTX_STORE
+ sqlite3Fts5ParserInit(fts5yypParser sqlite3Fts5ParserCTX_PARAM);
+ }
+ return (void*)fts5yypParser;
+}
+#endif /* sqlite3Fts5Parser_ENGINEALWAYSONSTACK */
+
+
+/* The following function deletes the "minor type" or semantic value
+** associated with a symbol. The symbol can be either a terminal
+** or nonterminal. "fts5yymajor" is the symbol code, and "fts5yypminor" is
+** a pointer to the value to be deleted. The code used to do the
+** deletions is derived from the %destructor and/or %token_destructor
+** directives of the input grammar.
+*/
+static void fts5yy_destructor(
+ fts5yyParser *fts5yypParser, /* The parser */
+ fts5YYCODETYPE fts5yymajor, /* Type code for object to destroy */
+ fts5YYMINORTYPE *fts5yypminor /* The object to be destroyed */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+ switch( fts5yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are *not* used
+ ** inside the C code.
+ */
+/********* Begin destructor definitions ***************************************/
+ case 16: /* input */
+{
+ (void)pParse;
+}
+ break;
+ case 17: /* expr */
+ case 18: /* cnearset */
+ case 19: /* exprlist */
+{
+ sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy24));
+}
+ break;
+ case 20: /* colset */
+ case 21: /* colsetlist */
+{
+ sqlite3_free((fts5yypminor->fts5yy11));
+}
+ break;
+ case 22: /* nearset */
+ case 23: /* nearphrases */
+{
+ sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy46));
+}
+ break;
+ case 24: /* phrase */
+{
+ sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy53));
+}
+ break;
+/********* End destructor definitions *****************************************/
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+*/
+static void fts5yy_pop_parser_stack(fts5yyParser *pParser){
+ fts5yyStackEntry *fts5yytos;
+ assert( pParser->fts5yytos!=0 );
+ assert( pParser->fts5yytos > pParser->fts5yystack );
+ fts5yytos = pParser->fts5yytos--;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sPopping %s\n",
+ fts5yyTracePrompt,
+ fts5yyTokenName[fts5yytos->major]);
+ }
+#endif
+ fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);
+}
+
+/*
+** Clear all secondary memory allocations from the parser
+*/
+static void sqlite3Fts5ParserFinalize(void *p){
+ fts5yyParser *pParser = (fts5yyParser*)p;
+ while( pParser->fts5yytos>pParser->fts5yystack ) fts5yy_pop_parser_stack(pParser);
+#if fts5YYSTACKDEPTH<=0
+ if( pParser->fts5yystack!=&pParser->fts5yystk0 ) free(pParser->fts5yystack);
+#endif
+}
+
+#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
+/*
+** Deallocate and destroy a parser. Destructors are called for
+** all stack elements before shutting the parser down.
+**
+** If the fts5YYPARSEFREENEVERNULL macro exists (for example because it
+** is defined in a %include section of the input grammar) then it is
+** assumed that the input pointer is never NULL.
+*/
+static void sqlite3Fts5ParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+#ifndef fts5YYPARSEFREENEVERNULL
+ if( p==0 ) return;
+#endif
+ sqlite3Fts5ParserFinalize(p);
+ (*freeProc)(p);
+}
+#endif /* sqlite3Fts5Parser_ENGINEALWAYSONSTACK */
+
+/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+static int sqlite3Fts5ParserStackPeak(void *p){
+ fts5yyParser *pParser = (fts5yyParser*)p;
+ return pParser->fts5yyhwm;
+}
+#endif
+
+/* This array of booleans keeps track of the parser statement
+** coverage. The element fts5yycoverage[X][Y] is set when the parser
+** is in state X and has a lookahead token Y. In a well-tested
+** systems, every element of this matrix should end up being set.
+*/
+#if defined(fts5YYCOVERAGE)
+static unsigned char fts5yycoverage[fts5YYNSTATE][fts5YYNFTS5TOKEN];
+#endif
+
+/*
+** Write into out a description of every state/lookahead combination that
+**
+** (1) has not been used by the parser, and
+** (2) is not a syntax error.
+**
+** Return the number of missed state/lookahead combinations.
+*/
+#if defined(fts5YYCOVERAGE)
+static int sqlite3Fts5ParserCoverage(FILE *out){
+ int stateno, iLookAhead, i;
+ int nMissed = 0;
+ for(stateno=0; stateno<fts5YYNSTATE; stateno++){
+ i = fts5yy_shift_ofst[stateno];
+ for(iLookAhead=0; iLookAhead<fts5YYNFTS5TOKEN; iLookAhead++){
+ if( fts5yy_lookahead[i+iLookAhead]!=iLookAhead ) continue;
+ if( fts5yycoverage[stateno][iLookAhead]==0 ) nMissed++;
+ if( out ){
+ fprintf(out,"State %d lookahead %s %s\n", stateno,
+ fts5yyTokenName[iLookAhead],
+ fts5yycoverage[stateno][iLookAhead] ? "ok" : "missed");
+ }
+ }
+ }
+ return nMissed;
+}
+#endif
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+*/
+static fts5YYACTIONTYPE fts5yy_find_shift_action(
+ fts5YYCODETYPE iLookAhead, /* The look-ahead token */
+ fts5YYACTIONTYPE stateno /* Current state number */
+){
+ int i;
+
+ if( stateno>fts5YY_MAX_SHIFT ) return stateno;
+ assert( stateno <= fts5YY_SHIFT_COUNT );
+#if defined(fts5YYCOVERAGE)
+ fts5yycoverage[stateno][iLookAhead] = 1;
+#endif
+ do{
+ i = fts5yy_shift_ofst[stateno];
+ assert( i>=0 );
+ assert( i<=fts5YY_ACTTAB_COUNT );
+ assert( i+fts5YYNFTS5TOKEN<=(int)fts5YY_NLOOKAHEAD );
+ assert( iLookAhead!=fts5YYNOCODE );
+ assert( iLookAhead < fts5YYNFTS5TOKEN );
+ i += iLookAhead;
+ assert( i<(int)fts5YY_NLOOKAHEAD );
+ if( fts5yy_lookahead[i]!=iLookAhead ){
+#ifdef fts5YYFALLBACK
+ fts5YYCODETYPE iFallback; /* Fallback token */
+ assert( iLookAhead<sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0]) );
+ iFallback = fts5yyFallback[iLookAhead];
+ if( iFallback!=0 ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE, "%sFALLBACK %s => %s\n",
+ fts5yyTracePrompt, fts5yyTokenName[iLookAhead], fts5yyTokenName[iFallback]);
+ }
+#endif
+ assert( fts5yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
+ iLookAhead = iFallback;
+ continue;
+ }
+#endif
+#ifdef fts5YYWILDCARD
+ {
+ int j = i - iLookAhead + fts5YYWILDCARD;
+ assert( j<(int)(sizeof(fts5yy_lookahead)/sizeof(fts5yy_lookahead[0])) );
+ if( fts5yy_lookahead[j]==fts5YYWILDCARD && iLookAhead>0 ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE, "%sWILDCARD %s => %s\n",
+ fts5yyTracePrompt, fts5yyTokenName[iLookAhead],
+ fts5yyTokenName[fts5YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return fts5yy_action[j];
+ }
+ }
+#endif /* fts5YYWILDCARD */
+ return fts5yy_default[stateno];
+ }else{
+ assert( i>=0 && i<(int)(sizeof(fts5yy_action)/sizeof(fts5yy_action[0])) );
+ return fts5yy_action[i];
+ }
+ }while(1);
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+*/
+static fts5YYACTIONTYPE fts5yy_find_reduce_action(
+ fts5YYACTIONTYPE stateno, /* Current state number */
+ fts5YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef fts5YYERRORSYMBOL
+ if( stateno>fts5YY_REDUCE_COUNT ){
+ return fts5yy_default[stateno];
+ }
+#else
+ assert( stateno<=fts5YY_REDUCE_COUNT );
+#endif
+ i = fts5yy_reduce_ofst[stateno];
+ assert( iLookAhead!=fts5YYNOCODE );
+ i += iLookAhead;
+#ifdef fts5YYERRORSYMBOL
+ if( i<0 || i>=fts5YY_ACTTAB_COUNT || fts5yy_lookahead[i]!=iLookAhead ){
+ return fts5yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<fts5YY_ACTTAB_COUNT );
+ assert( fts5yy_lookahead[i]==iLookAhead );
+#endif
+ return fts5yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void fts5yyStackOverflow(fts5yyParser *fts5yypParser){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yytos>fts5yypParser->fts5yystack ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+/******** Begin %stack_overflow code ******************************************/
+
+ sqlite3Fts5ParseError(pParse, "fts5: parser stack overflow");
+/******** End %stack_overflow code ********************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument var */
+ sqlite3Fts5ParserCTX_STORE
+}
+
+/*
+** Print tracing information for a SHIFT action
+*/
+#ifndef NDEBUG
+static void fts5yyTraceShift(fts5yyParser *fts5yypParser, int fts5yyNewState, const char *zTag){
+ if( fts5yyTraceFILE ){
+ if( fts5yyNewState<fts5YYNSTATE ){
+ fprintf(fts5yyTraceFILE,"%s%s '%s', go to state %d\n",
+ fts5yyTracePrompt, zTag, fts5yyTokenName[fts5yypParser->fts5yytos->major],
+ fts5yyNewState);
+ }else{
+ fprintf(fts5yyTraceFILE,"%s%s '%s', pending reduce %d\n",
+ fts5yyTracePrompt, zTag, fts5yyTokenName[fts5yypParser->fts5yytos->major],
+ fts5yyNewState - fts5YY_MIN_REDUCE);
+ }
+ }
+}
+#else
+# define fts5yyTraceShift(X,Y,Z)
+#endif
+
+/*
+** Perform a shift action.
+*/
+static void fts5yy_shift(
+ fts5yyParser *fts5yypParser, /* The parser to be shifted */
+ fts5YYACTIONTYPE fts5yyNewState, /* The new state to shift in */
+ fts5YYCODETYPE fts5yyMajor, /* The major token to shift in */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyMinor /* The minor token to shift in */
+){
+ fts5yyStackEntry *fts5yytos;
+ fts5yypParser->fts5yytos++;
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
+ fts5yypParser->fts5yyhwm++;
+ assert( fts5yypParser->fts5yyhwm == (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack) );
+ }
+#endif
+#if fts5YYSTACKDEPTH>0
+ if( fts5yypParser->fts5yytos>fts5yypParser->fts5yystackEnd ){
+ fts5yypParser->fts5yytos--;
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+#else
+ if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz] ){
+ if( fts5yyGrowStack(fts5yypParser) ){
+ fts5yypParser->fts5yytos--;
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+ }
+#endif
+ if( fts5yyNewState > fts5YY_MAX_SHIFT ){
+ fts5yyNewState += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
+ }
+ fts5yytos = fts5yypParser->fts5yytos;
+ fts5yytos->stateno = fts5yyNewState;
+ fts5yytos->major = fts5yyMajor;
+ fts5yytos->minor.fts5yy0 = fts5yyMinor;
+ fts5yyTraceShift(fts5yypParser, fts5yyNewState, "Shift");
+}
+
+/* For rule J, fts5yyRuleInfoLhs[J] contains the symbol on the left-hand side
+** of that rule */
+static const fts5YYCODETYPE fts5yyRuleInfoLhs[] = {
+ 16, /* (0) input ::= expr */
+ 20, /* (1) colset ::= MINUS LCP colsetlist RCP */
+ 20, /* (2) colset ::= LCP colsetlist RCP */
+ 20, /* (3) colset ::= STRING */
+ 20, /* (4) colset ::= MINUS STRING */
+ 21, /* (5) colsetlist ::= colsetlist STRING */
+ 21, /* (6) colsetlist ::= STRING */
+ 17, /* (7) expr ::= expr AND expr */
+ 17, /* (8) expr ::= expr OR expr */
+ 17, /* (9) expr ::= expr NOT expr */
+ 17, /* (10) expr ::= colset COLON LP expr RP */
+ 17, /* (11) expr ::= LP expr RP */
+ 17, /* (12) expr ::= exprlist */
+ 19, /* (13) exprlist ::= cnearset */
+ 19, /* (14) exprlist ::= exprlist cnearset */
+ 18, /* (15) cnearset ::= nearset */
+ 18, /* (16) cnearset ::= colset COLON nearset */
+ 22, /* (17) nearset ::= phrase */
+ 22, /* (18) nearset ::= CARET phrase */
+ 22, /* (19) nearset ::= STRING LP nearphrases neardist_opt RP */
+ 23, /* (20) nearphrases ::= phrase */
+ 23, /* (21) nearphrases ::= nearphrases phrase */
+ 25, /* (22) neardist_opt ::= */
+ 25, /* (23) neardist_opt ::= COMMA STRING */
+ 24, /* (24) phrase ::= phrase PLUS STRING star_opt */
+ 24, /* (25) phrase ::= STRING star_opt */
+ 26, /* (26) star_opt ::= STAR */
+ 26, /* (27) star_opt ::= */
+};
+
+/* For rule J, fts5yyRuleInfoNRhs[J] contains the negative of the number
+** of symbols on the right-hand side of that rule. */
+static const signed char fts5yyRuleInfoNRhs[] = {
+ -1, /* (0) input ::= expr */
+ -4, /* (1) colset ::= MINUS LCP colsetlist RCP */
+ -3, /* (2) colset ::= LCP colsetlist RCP */
+ -1, /* (3) colset ::= STRING */
+ -2, /* (4) colset ::= MINUS STRING */
+ -2, /* (5) colsetlist ::= colsetlist STRING */
+ -1, /* (6) colsetlist ::= STRING */
+ -3, /* (7) expr ::= expr AND expr */
+ -3, /* (8) expr ::= expr OR expr */
+ -3, /* (9) expr ::= expr NOT expr */
+ -5, /* (10) expr ::= colset COLON LP expr RP */
+ -3, /* (11) expr ::= LP expr RP */
+ -1, /* (12) expr ::= exprlist */
+ -1, /* (13) exprlist ::= cnearset */
+ -2, /* (14) exprlist ::= exprlist cnearset */
+ -1, /* (15) cnearset ::= nearset */
+ -3, /* (16) cnearset ::= colset COLON nearset */
+ -1, /* (17) nearset ::= phrase */
+ -2, /* (18) nearset ::= CARET phrase */
+ -5, /* (19) nearset ::= STRING LP nearphrases neardist_opt RP */
+ -1, /* (20) nearphrases ::= phrase */
+ -2, /* (21) nearphrases ::= nearphrases phrase */
+ 0, /* (22) neardist_opt ::= */
+ -2, /* (23) neardist_opt ::= COMMA STRING */
+ -4, /* (24) phrase ::= phrase PLUS STRING star_opt */
+ -2, /* (25) phrase ::= STRING star_opt */
+ -1, /* (26) star_opt ::= STAR */
+ 0, /* (27) star_opt ::= */
+};
+
+static void fts5yy_accept(fts5yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+**
+** The fts5yyLookahead and fts5yyLookaheadToken parameters provide reduce actions
+** access to the lookahead token (if any). The fts5yyLookahead will be fts5YYNOCODE
+** if the lookahead token has already been consumed. As this procedure is
+** only called from one place, optimizing compilers will in-line it, which
+** means that the extra parameters have no performance impact.
+*/
+static fts5YYACTIONTYPE fts5yy_reduce(
+ fts5yyParser *fts5yypParser, /* The parser */
+ unsigned int fts5yyruleno, /* Number of the rule by which to reduce */
+ int fts5yyLookahead, /* Lookahead token, or fts5YYNOCODE if none */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyLookaheadToken /* Value of the lookahead token */
+ sqlite3Fts5ParserCTX_PDECL /* %extra_context */
+){
+ int fts5yygoto; /* The next state */
+ fts5YYACTIONTYPE fts5yyact; /* The next action */
+ fts5yyStackEntry *fts5yymsp; /* The top of the parser's stack */
+ int fts5yysize; /* Amount to pop the stack */
+ sqlite3Fts5ParserARG_FETCH
+ (void)fts5yyLookahead;
+ (void)fts5yyLookaheadToken;
+ fts5yymsp = fts5yypParser->fts5yytos;
+
+ switch( fts5yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+/********** Begin reduce actions **********************************************/
+ fts5YYMINORTYPE fts5yylhsminor;
+ case 0: /* input ::= expr */
+{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy24); }
+ break;
+ case 1: /* colset ::= MINUS LCP colsetlist RCP */
+{
+ fts5yymsp[-3].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
+}
+ break;
+ case 2: /* colset ::= LCP colsetlist RCP */
+{ fts5yymsp[-2].minor.fts5yy11 = fts5yymsp[-1].minor.fts5yy11; }
+ break;
+ case 3: /* colset ::= STRING */
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+}
+ fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 4: /* colset ::= MINUS STRING */
+{
+ fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+ fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
+}
+ break;
+ case 5: /* colsetlist ::= colsetlist STRING */
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy11, &fts5yymsp[0].minor.fts5yy0); }
+ fts5yymsp[-1].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 6: /* colsetlist ::= STRING */
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+}
+ fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 7: /* expr ::= expr AND expr */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 8: /* expr ::= expr OR expr */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 9: /* expr ::= expr NOT expr */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 10: /* expr ::= colset COLON LP expr RP */
+{
+ sqlite3Fts5ParseSetColset(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[-4].minor.fts5yy11);
+ fts5yylhsminor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;
+}
+ fts5yymsp[-4].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 11: /* expr ::= LP expr RP */
+{fts5yymsp[-2].minor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;}
+ break;
+ case 12: /* expr ::= exprlist */
+ case 13: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==13);
+{fts5yylhsminor.fts5yy24 = fts5yymsp[0].minor.fts5yy24;}
+ fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 14: /* exprlist ::= exprlist cnearset */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseImplicitAnd(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24);
+}
+ fts5yymsp[-1].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 15: /* cnearset ::= nearset */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46);
+}
+ fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 16: /* cnearset ::= colset COLON nearset */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46);
+ sqlite3Fts5ParseSetColset(pParse, fts5yylhsminor.fts5yy24, fts5yymsp[-2].minor.fts5yy11);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 17: /* nearset ::= phrase */
+{ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53); }
+ fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 18: /* nearset ::= CARET phrase */
+{
+ sqlite3Fts5ParseSetCaret(fts5yymsp[0].minor.fts5yy53);
+ fts5yymsp[-1].minor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53);
+}
+ break;
+ case 19: /* nearset ::= STRING LP nearphrases neardist_opt RP */
+{
+ sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
+ sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy46, &fts5yymsp[-1].minor.fts5yy0);
+ fts5yylhsminor.fts5yy46 = fts5yymsp[-2].minor.fts5yy46;
+}
+ fts5yymsp[-4].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 20: /* nearphrases ::= phrase */
+{
+ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53);
+}
+ fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 21: /* nearphrases ::= nearphrases phrase */
+{
+ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy46, fts5yymsp[0].minor.fts5yy53);
+}
+ fts5yymsp[-1].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 22: /* neardist_opt ::= */
+{ fts5yymsp[1].minor.fts5yy0.p = 0; fts5yymsp[1].minor.fts5yy0.n = 0; }
+ break;
+ case 23: /* neardist_opt ::= COMMA STRING */
+{ fts5yymsp[-1].minor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
+ break;
+ case 24: /* phrase ::= phrase PLUS STRING star_opt */
+{
+ fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy53, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
+}
+ fts5yymsp[-3].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
+ break;
+ case 25: /* phrase ::= STRING star_opt */
+{
+ fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
+}
+ fts5yymsp[-1].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
+ break;
+ case 26: /* star_opt ::= STAR */
+{ fts5yymsp[0].minor.fts5yy4 = 1; }
+ break;
+ case 27: /* star_opt ::= */
+{ fts5yymsp[1].minor.fts5yy4 = 0; }
+ break;
+ default:
+ break;
+/********** End reduce actions ************************************************/
+ };
+ assert( fts5yyruleno<sizeof(fts5yyRuleInfoLhs)/sizeof(fts5yyRuleInfoLhs[0]) );
+ fts5yygoto = fts5yyRuleInfoLhs[fts5yyruleno];
+ fts5yysize = fts5yyRuleInfoNRhs[fts5yyruleno];
+ fts5yyact = fts5yy_find_reduce_action(fts5yymsp[fts5yysize].stateno,(fts5YYCODETYPE)fts5yygoto);
+
+ /* There are no SHIFTREDUCE actions on nonterminals because the table
+ ** generator has simplified them to pure REDUCE actions. */
+ assert( !(fts5yyact>fts5YY_MAX_SHIFT && fts5yyact<=fts5YY_MAX_SHIFTREDUCE) );
+
+ /* It is not possible for a REDUCE to be followed by an error */
+ assert( fts5yyact!=fts5YY_ERROR_ACTION );
+
+ fts5yymsp += fts5yysize+1;
+ fts5yypParser->fts5yytos = fts5yymsp;
+ fts5yymsp->stateno = (fts5YYACTIONTYPE)fts5yyact;
+ fts5yymsp->major = (fts5YYCODETYPE)fts5yygoto;
+ fts5yyTraceShift(fts5yypParser, fts5yyact, "... then shift");
+ return fts5yyact;
+}
+
+/*
+** The following code executes when the parse fails
+*/
+#ifndef fts5YYNOERRORRECOVERY
+static void fts5yy_parse_failed(
+ fts5yyParser *fts5yypParser /* The parser */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sFail!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yytos>fts5yypParser->fts5yystack ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+/************ Begin %parse_failure code ***************************************/
+/************ End %parse_failure code *****************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3Fts5ParserCTX_STORE
+}
+#endif /* fts5YYNOERRORRECOVERY */
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void fts5yy_syntax_error(
+ fts5yyParser *fts5yypParser, /* The parser */
+ int fts5yymajor, /* The major type of the error token */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyminor /* The minor type of the error token */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#define FTS5TOKEN fts5yyminor
+/************ Begin %syntax_error code ****************************************/
+
+ UNUSED_PARAM(fts5yymajor); /* Silence a compiler warning */
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
+ );
+/************ End %syntax_error code ******************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3Fts5ParserCTX_STORE
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void fts5yy_accept(
+ fts5yyParser *fts5yypParser /* The parser */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sAccept!\n",fts5yyTracePrompt);
+ }
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ assert( fts5yypParser->fts5yytos==fts5yypParser->fts5yystack );
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+/*********** Begin %parse_accept code *****************************************/
+/*********** End %parse_accept code *******************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3Fts5ParserCTX_STORE
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqlite3Fts5ParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+static void sqlite3Fts5Parser(
+ void *fts5yyp, /* The parser */
+ int fts5yymajor, /* The major token code number */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyminor /* The value for the token */
+ sqlite3Fts5ParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ fts5YYMINORTYPE fts5yyminorunion;
+ fts5YYACTIONTYPE fts5yyact; /* The parser action. */
+#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
+ int fts5yyendofinput; /* True if we are at the end of input */
+#endif
+#ifdef fts5YYERRORSYMBOL
+ int fts5yyerrorhit = 0; /* True if fts5yymajor has invoked an error */
+#endif
+ fts5yyParser *fts5yypParser = (fts5yyParser*)fts5yyp; /* The parser */
+ sqlite3Fts5ParserCTX_FETCH
+ sqlite3Fts5ParserARG_STORE
+
+ assert( fts5yypParser->fts5yytos!=0 );
+#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
+ fts5yyendofinput = (fts5yymajor==0);
+#endif
+
+ fts5yyact = fts5yypParser->fts5yytos->stateno;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ if( fts5yyact < fts5YY_MIN_REDUCE ){
+ fprintf(fts5yyTraceFILE,"%sInput '%s' in state %d\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor],fts5yyact);
+ }else{
+ fprintf(fts5yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor],fts5yyact-fts5YY_MIN_REDUCE);
+ }
+ }
+#endif
+
+ while(1){ /* Exit by "break" */
+ assert( fts5yypParser->fts5yytos>=fts5yypParser->fts5yystack );
+ assert( fts5yyact==fts5yypParser->fts5yytos->stateno );
+ fts5yyact = fts5yy_find_shift_action((fts5YYCODETYPE)fts5yymajor,fts5yyact);
+ if( fts5yyact >= fts5YY_MIN_REDUCE ){
+ unsigned int fts5yyruleno = fts5yyact - fts5YY_MIN_REDUCE; /* Reduce by this rule */
+#ifndef NDEBUG
+ assert( fts5yyruleno<(int)(sizeof(fts5yyRuleName)/sizeof(fts5yyRuleName[0])) );
+ if( fts5yyTraceFILE ){
+ int fts5yysize = fts5yyRuleInfoNRhs[fts5yyruleno];
+ if( fts5yysize ){
+ fprintf(fts5yyTraceFILE, "%sReduce %d [%s]%s, pop back to state %d.\n",
+ fts5yyTracePrompt,
+ fts5yyruleno, fts5yyRuleName[fts5yyruleno],
+ fts5yyruleno<fts5YYNRULE_WITH_ACTION ? "" : " without external action",
+ fts5yypParser->fts5yytos[fts5yysize].stateno);
+ }else{
+ fprintf(fts5yyTraceFILE, "%sReduce %d [%s]%s.\n",
+ fts5yyTracePrompt, fts5yyruleno, fts5yyRuleName[fts5yyruleno],
+ fts5yyruleno<fts5YYNRULE_WITH_ACTION ? "" : " without external action");
+ }
+ }
+#endif /* NDEBUG */
+
+ /* Check that the stack is large enough to grow by a single entry
+ ** if the RHS of the rule is empty. This ensures that there is room
+ ** enough on the stack to push the LHS value */
+ if( fts5yyRuleInfoNRhs[fts5yyruleno]==0 ){
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
+ fts5yypParser->fts5yyhwm++;
+ assert( fts5yypParser->fts5yyhwm ==
+ (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack));
+ }
+#endif
+#if fts5YYSTACKDEPTH>0
+ if( fts5yypParser->fts5yytos>=fts5yypParser->fts5yystackEnd ){
+ fts5yyStackOverflow(fts5yypParser);
+ break;
+ }
+#else
+ if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz-1] ){
+ if( fts5yyGrowStack(fts5yypParser) ){
+ fts5yyStackOverflow(fts5yypParser);
+ break;
+ }
+ }
+#endif
+ }
+ fts5yyact = fts5yy_reduce(fts5yypParser,fts5yyruleno,fts5yymajor,fts5yyminor sqlite3Fts5ParserCTX_PARAM);
+ }else if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
+ fts5yy_shift(fts5yypParser,fts5yyact,(fts5YYCODETYPE)fts5yymajor,fts5yyminor);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt--;
+#endif
+ break;
+ }else if( fts5yyact==fts5YY_ACCEPT_ACTION ){
+ fts5yypParser->fts5yytos--;
+ fts5yy_accept(fts5yypParser);
+ return;
+ }else{
+ assert( fts5yyact == fts5YY_ERROR_ACTION );
+ fts5yyminorunion.fts5yy0 = fts5yyminor;
+#ifdef fts5YYERRORSYMBOL
+ int fts5yymx;
+#endif
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sSyntax Error!\n",fts5yyTracePrompt);
+ }
+#endif
+#ifdef fts5YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( fts5yypParser->fts5yyerrcnt<0 ){
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor,fts5yyminor);
+ }
+ fts5yymx = fts5yypParser->fts5yytos->major;
+ if( fts5yymx==fts5YYERRORSYMBOL || fts5yyerrorhit ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sDiscard input token %s\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
+ }
+#endif
+ fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion);
+ fts5yymajor = fts5YYNOCODE;
+ }else{
+ while( fts5yypParser->fts5yytos > fts5yypParser->fts5yystack ){
+ fts5yyact = fts5yy_find_reduce_action(fts5yypParser->fts5yytos->stateno,
+ fts5YYERRORSYMBOL);
+ if( fts5yyact<=fts5YY_MAX_SHIFTREDUCE ) break;
+ fts5yy_pop_parser_stack(fts5yypParser);
+ }
+ if( fts5yypParser->fts5yytos <= fts5yypParser->fts5yystack || fts5yymajor==0 ){
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ fts5yy_parse_failed(fts5yypParser);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ fts5yymajor = fts5YYNOCODE;
+ }else if( fts5yymx!=fts5YYERRORSYMBOL ){
+ fts5yy_shift(fts5yypParser,fts5yyact,fts5YYERRORSYMBOL,fts5yyminor);
+ }
+ }
+ fts5yypParser->fts5yyerrcnt = 3;
+ fts5yyerrorhit = 1;
+ if( fts5yymajor==fts5YYNOCODE ) break;
+ fts5yyact = fts5yypParser->fts5yytos->stateno;
+#elif defined(fts5YYNOERRORRECOVERY)
+ /* If the fts5YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor, fts5yyminor);
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ break;
+#else /* fts5YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( fts5yypParser->fts5yyerrcnt<=0 ){
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor, fts5yyminor);
+ }
+ fts5yypParser->fts5yyerrcnt = 3;
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ if( fts5yyendofinput ){
+ fts5yy_parse_failed(fts5yypParser);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ }
+ break;
+#endif
+ }
+ }
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fts5yyStackEntry *i;
+ char cDiv = '[';
+ fprintf(fts5yyTraceFILE,"%sReturn. Stack=",fts5yyTracePrompt);
+ for(i=&fts5yypParser->fts5yystack[1]; i<=fts5yypParser->fts5yytos; i++){
+ fprintf(fts5yyTraceFILE,"%c%s", cDiv, fts5yyTokenName[i->major]);
+ cDiv = ' ';
+ }
+ fprintf(fts5yyTraceFILE,"]\n");
+ }
+#endif
+ return;
+}
+
+/*
+** Return the fallback token corresponding to canonical token iToken, or
+** 0 if iToken has no fallback.
+*/
+static int sqlite3Fts5ParserFallback(int iToken){
+#ifdef fts5YYFALLBACK
+ assert( iToken<(int)(sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0])) );
+ return fts5yyFallback[iToken];
+#else
+ (void)iToken;
+ return 0;
+#endif
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+/* #include "fts5Int.h" */
+#include <math.h> /* amalgamator: keep */
+
+/*
+** Object used to iterate through all "coalesced phrase instances" in
+** a single column of the current row. If the phrase instances in the
+** column being considered do not overlap, this object simply iterates
+** through them. Or, if they do overlap (share one or more tokens in
+** common), each set of overlapping instances is treated as a single
+** match. See documentation for the highlight() auxiliary function for
+** details.
+**
+** Usage is:
+**
+** for(rc = fts5CInstIterNext(pApi, pFts, iCol, &iter);
+** (rc==SQLITE_OK && 0==fts5CInstIterEof(&iter);
+** rc = fts5CInstIterNext(&iter)
+** ){
+** printf("instance starts at %d, ends at %d\n", iter.iStart, iter.iEnd);
+** }
+**
+*/
+typedef struct CInstIter CInstIter;
+struct CInstIter {
+ const Fts5ExtensionApi *pApi; /* API offered by current FTS version */
+ Fts5Context *pFts; /* First arg to pass to pApi functions */
+ int iCol; /* Column to search */
+ int iInst; /* Next phrase instance index */
+ int nInst; /* Total number of phrase instances */
+
+ /* Output variables */
+ int iStart; /* First token in coalesced phrase instance */
+ int iEnd; /* Last token in coalesced phrase instance */
+};
+
+/*
+** Advance the iterator to the next coalesced phrase instance. Return
+** an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+static int fts5CInstIterNext(CInstIter *pIter){
+ int rc = SQLITE_OK;
+ pIter->iStart = -1;
+ pIter->iEnd = -1;
+
+ while( rc==SQLITE_OK && pIter->iInst<pIter->nInst ){
+ int ip; int ic; int io;
+ rc = pIter->pApi->xInst(pIter->pFts, pIter->iInst, &ip, &ic, &io);
+ if( rc==SQLITE_OK ){
+ if( ic==pIter->iCol ){
+ int iEnd = io - 1 + pIter->pApi->xPhraseSize(pIter->pFts, ip);
+ if( pIter->iStart<0 ){
+ pIter->iStart = io;
+ pIter->iEnd = iEnd;
+ }else if( io<=pIter->iEnd ){
+ if( iEnd>pIter->iEnd ) pIter->iEnd = iEnd;
+ }else{
+ break;
+ }
+ }
+ pIter->iInst++;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Initialize the iterator object indicated by the final parameter to
+** iterate through coalesced phrase instances in column iCol.
+*/
+static int fts5CInstIterInit(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ int iCol,
+ CInstIter *pIter
+){
+ int rc;
+
+ memset(pIter, 0, sizeof(CInstIter));
+ pIter->pApi = pApi;
+ pIter->pFts = pFts;
+ pIter->iCol = iCol;
+ rc = pApi->xInstCount(pFts, &pIter->nInst);
+
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(pIter);
+ }
+
+ return rc;
+}
+
+
+
+/*************************************************************************
+** Start of highlight() implementation.
+*/
+typedef struct HighlightContext HighlightContext;
+struct HighlightContext {
+ CInstIter iter; /* Coalesced Instance Iterator */
+ int iPos; /* Current token offset in zIn[] */
+ int iRangeStart; /* First token to include */
+ int iRangeEnd; /* If non-zero, last token to include */
+ const char *zOpen; /* Opening highlight */
+ const char *zClose; /* Closing highlight */
+ const char *zIn; /* Input text */
+ int nIn; /* Size of input text in bytes */
+ int iOff; /* Current offset within zIn[] */
+ char *zOut; /* Output value */
+};
+
+/*
+** Append text to the HighlightContext output string - p->zOut. Argument
+** z points to a buffer containing n bytes of text to append. If n is
+** negative, everything up until the first '\0' is appended to the output.
+**
+** If *pRc is set to any value other than SQLITE_OK when this function is
+** called, it is a no-op. If an error (i.e. an OOM condition) is encountered,
+** *pRc is set to an error code before returning.
+*/
+static void fts5HighlightAppend(
+ int *pRc,
+ HighlightContext *p,
+ const char *z, int n
+){
+ if( *pRc==SQLITE_OK && z ){
+ if( n<0 ) n = (int)strlen(z);
+ p->zOut = sqlite3_mprintf("%z%.*s", p->zOut, n, z);
+ if( p->zOut==0 ) *pRc = SQLITE_NOMEM;
+ }
+}
+
+/*
+** Tokenizer callback used by implementation of highlight() function.
+*/
+static int fts5HighlightCb(
+ void *pContext, /* Pointer to HighlightContext object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStartOff, /* Start offset of token */
+ int iEndOff /* End offset of token */
+){
+ HighlightContext *p = (HighlightContext*)pContext;
+ int rc = SQLITE_OK;
+ int iPos;
+
+ UNUSED_PARAM2(pToken, nToken);
+
+ if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
+ iPos = p->iPos++;
+
+ if( p->iRangeEnd>0 ){
+ if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
+ if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;
+ }
+
+ if( iPos==p->iter.iStart ){
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iStartOff - p->iOff);
+ fts5HighlightAppend(&rc, p, p->zOpen, -1);
+ p->iOff = iStartOff;
+ }
+
+ if( iPos==p->iter.iEnd ){
+ if( p->iRangeEnd && p->iter.iStart<p->iRangeStart ){
+ fts5HighlightAppend(&rc, p, p->zOpen, -1);
+ }
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iEndOff - p->iOff);
+ fts5HighlightAppend(&rc, p, p->zClose, -1);
+ p->iOff = iEndOff;
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(&p->iter);
+ }
+ }
+
+ if( p->iRangeEnd>0 && iPos==p->iRangeEnd ){
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iEndOff - p->iOff);
+ p->iOff = iEndOff;
+ if( iPos>=p->iter.iStart && iPos<p->iter.iEnd ){
+ fts5HighlightAppend(&rc, p, p->zClose, -1);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Implementation of highlight() function.
+*/
+static void fts5HighlightFunction(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ HighlightContext ctx;
+ int rc;
+ int iCol;
+
+ if( nVal!=3 ){
+ const char *zErr = "wrong number of arguments to function highlight()";
+ sqlite3_result_error(pCtx, zErr, -1);
+ return;
+ }
+
+ iCol = sqlite3_value_int(apVal[0]);
+ memset(&ctx, 0, sizeof(HighlightContext));
+ ctx.zOpen = (const char*)sqlite3_value_text(apVal[1]);
+ ctx.zClose = (const char*)sqlite3_value_text(apVal[2]);
+ rc = pApi->xColumnText(pFts, iCol, &ctx.zIn, &ctx.nIn);
+
+ if( ctx.zIn ){
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterInit(pApi, pFts, iCol, &ctx.iter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xTokenize(pFts, ctx.zIn, ctx.nIn, (void*)&ctx,fts5HighlightCb);
+ }
+ fts5HighlightAppend(&rc, &ctx, &ctx.zIn[ctx.iOff], ctx.nIn - ctx.iOff);
+
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)ctx.zOut, -1, SQLITE_TRANSIENT);
+ }
+ sqlite3_free(ctx.zOut);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+/*
+** End of highlight() implementation.
+**************************************************************************/
+
+/*
+** Context object passed to the fts5SentenceFinderCb() function.
+*/
+typedef struct Fts5SFinder Fts5SFinder;
+struct Fts5SFinder {
+ int iPos; /* Current token position */
+ int nFirstAlloc; /* Allocated size of aFirst[] */
+ int nFirst; /* Number of entries in aFirst[] */
+ int *aFirst; /* Array of first token in each sentence */
+ const char *zDoc; /* Document being tokenized */
+};
+
+/*
+** Add an entry to the Fts5SFinder.aFirst[] array. Grow the array if
+** necessary. Return SQLITE_OK if successful, or SQLITE_NOMEM if an
+** error occurs.
+*/
+static int fts5SentenceFinderAdd(Fts5SFinder *p, int iAdd){
+ if( p->nFirstAlloc==p->nFirst ){
+ int nNew = p->nFirstAlloc ? p->nFirstAlloc*2 : 64;
+ int *aNew;
+
+ aNew = (int*)sqlite3_realloc64(p->aFirst, nNew*sizeof(int));
+ if( aNew==0 ) return SQLITE_NOMEM;
+ p->aFirst = aNew;
+ p->nFirstAlloc = nNew;
+ }
+ p->aFirst[p->nFirst++] = iAdd;
+ return SQLITE_OK;
+}
+
+/*
+** This function is an xTokenize() callback used by the auxiliary snippet()
+** function. Its job is to identify tokens that are the first in a sentence.
+** For each such token, an entry is added to the SFinder.aFirst[] array.
+*/
+static int fts5SentenceFinderCb(
+ void *pContext, /* Pointer to HighlightContext object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStartOff, /* Start offset of token */
+ int iEndOff /* End offset of token */
+){
+ int rc = SQLITE_OK;
+
+ UNUSED_PARAM2(pToken, nToken);
+ UNUSED_PARAM(iEndOff);
+
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
+ Fts5SFinder *p = (Fts5SFinder*)pContext;
+ if( p->iPos>0 ){
+ int i;
+ char c = 0;
+ for(i=iStartOff-1; i>=0; i--){
+ c = p->zDoc[i];
+ if( c!=' ' && c!='\t' && c!='\n' && c!='\r' ) break;
+ }
+ if( i!=iStartOff-1 && (c=='.' || c==':') ){
+ rc = fts5SentenceFinderAdd(p, p->iPos);
+ }
+ }else{
+ rc = fts5SentenceFinderAdd(p, 0);
+ }
+ p->iPos++;
+ }
+ return rc;
+}
+
+static int fts5SnippetScore(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ int nDocsize, /* Size of column in tokens */
+ unsigned char *aSeen, /* Array with one element per query phrase */
+ int iCol, /* Column to score */
+ int iPos, /* Starting offset to score */
+ int nToken, /* Max tokens per snippet */
+ int *pnScore, /* OUT: Score */
+ int *piPos /* OUT: Adjusted offset */
+){
+ int rc;
+ int i;
+ int ip = 0;
+ int ic = 0;
+ int iOff = 0;
+ int iFirst = -1;
+ int nInst;
+ int nScore = 0;
+ int iLast = 0;
+ sqlite3_int64 iEnd = (sqlite3_int64)iPos + nToken;
+
+ rc = pApi->xInstCount(pFts, &nInst);
+ for(i=0; i<nInst && rc==SQLITE_OK; i++){
+ rc = pApi->xInst(pFts, i, &ip, &ic, &iOff);
+ if( rc==SQLITE_OK && ic==iCol && iOff>=iPos && iOff<iEnd ){
+ nScore += (aSeen[ip] ? 1 : 1000);
+ aSeen[ip] = 1;
+ if( iFirst<0 ) iFirst = iOff;
+ iLast = iOff + pApi->xPhraseSize(pFts, ip);
+ }
+ }
+
+ *pnScore = nScore;
+ if( piPos ){
+ sqlite3_int64 iAdj = iFirst - (nToken - (iLast-iFirst)) / 2;
+ if( (iAdj+nToken)>nDocsize ) iAdj = nDocsize - nToken;
+ if( iAdj<0 ) iAdj = 0;
+ *piPos = (int)iAdj;
+ }
+
+ return rc;
+}
+
+/*
+** Return the value in pVal interpreted as utf-8 text. Except, if pVal
+** contains a NULL value, return a pointer to a static string zero
+** bytes in length instead of a NULL pointer.
+*/
+static const char *fts5ValueToText(sqlite3_value *pVal){
+ const char *zRet = (const char*)sqlite3_value_text(pVal);
+ return zRet ? zRet : "";
+}
+
+/*
+** Implementation of snippet() function.
+*/
+static void fts5SnippetFunction(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ HighlightContext ctx;
+ int rc = SQLITE_OK; /* Return code */
+ int iCol; /* 1st argument to snippet() */
+ const char *zEllips; /* 4th argument to snippet() */
+ int nToken; /* 5th argument to snippet() */
+ int nInst = 0; /* Number of instance matches this row */
+ int i; /* Used to iterate through instances */
+ int nPhrase; /* Number of phrases in query */
+ unsigned char *aSeen; /* Array of "seen instance" flags */
+ int iBestCol; /* Column containing best snippet */
+ int iBestStart = 0; /* First token of best snippet */
+ int nBestScore = 0; /* Score of best snippet */
+ int nColSize = 0; /* Total size of iBestCol in tokens */
+ Fts5SFinder sFinder; /* Used to find the beginnings of sentences */
+ int nCol;
+
+ if( nVal!=5 ){
+ const char *zErr = "wrong number of arguments to function snippet()";
+ sqlite3_result_error(pCtx, zErr, -1);
+ return;
+ }
+
+ nCol = pApi->xColumnCount(pFts);
+ memset(&ctx, 0, sizeof(HighlightContext));
+ iCol = sqlite3_value_int(apVal[0]);
+ ctx.zOpen = fts5ValueToText(apVal[1]);
+ ctx.zClose = fts5ValueToText(apVal[2]);
+ zEllips = fts5ValueToText(apVal[3]);
+ nToken = sqlite3_value_int(apVal[4]);
+
+ iBestCol = (iCol>=0 ? iCol : 0);
+ nPhrase = pApi->xPhraseCount(pFts);
+ aSeen = sqlite3_malloc(nPhrase);
+ if( aSeen==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ rc = pApi->xInstCount(pFts, &nInst);
+ }
+
+ memset(&sFinder, 0, sizeof(Fts5SFinder));
+ for(i=0; i<nCol; i++){
+ if( iCol<0 || iCol==i ){
+ int nDoc;
+ int nDocsize;
+ int ii;
+ sFinder.iPos = 0;
+ sFinder.nFirst = 0;
+ rc = pApi->xColumnText(pFts, i, &sFinder.zDoc, &nDoc);
+ if( rc!=SQLITE_OK ) break;
+ rc = pApi->xTokenize(pFts,
+ sFinder.zDoc, nDoc, (void*)&sFinder,fts5SentenceFinderCb
+ );
+ if( rc!=SQLITE_OK ) break;
+ rc = pApi->xColumnSize(pFts, i, &nDocsize);
+ if( rc!=SQLITE_OK ) break;
+
+ for(ii=0; rc==SQLITE_OK && ii<nInst; ii++){
+ int ip, ic, io;
+ int iAdj;
+ int nScore;
+ int jj;
+
+ rc = pApi->xInst(pFts, ii, &ip, &ic, &io);
+ if( ic!=i ) continue;
+ if( io>nDocsize ) rc = FTS5_CORRUPT;
+ if( rc!=SQLITE_OK ) continue;
+ memset(aSeen, 0, nPhrase);
+ rc = fts5SnippetScore(pApi, pFts, nDocsize, aSeen, i,
+ io, nToken, &nScore, &iAdj
+ );
+ if( rc==SQLITE_OK && nScore>nBestScore ){
+ nBestScore = nScore;
+ iBestCol = i;
+ iBestStart = iAdj;
+ nColSize = nDocsize;
+ }
+
+ if( rc==SQLITE_OK && sFinder.nFirst && nDocsize>nToken ){
+ for(jj=0; jj<(sFinder.nFirst-1); jj++){
+ if( sFinder.aFirst[jj+1]>io ) break;
+ }
+
+ if( sFinder.aFirst[jj]<io ){
+ memset(aSeen, 0, nPhrase);
+ rc = fts5SnippetScore(pApi, pFts, nDocsize, aSeen, i,
+ sFinder.aFirst[jj], nToken, &nScore, 0
+ );
+
+ nScore += (sFinder.aFirst[jj]==0 ? 120 : 100);
+ if( rc==SQLITE_OK && nScore>nBestScore ){
+ nBestScore = nScore;
+ iBestCol = i;
+ iBestStart = sFinder.aFirst[jj];
+ nColSize = nDocsize;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xColumnText(pFts, iBestCol, &ctx.zIn, &ctx.nIn);
+ }
+ if( rc==SQLITE_OK && nColSize==0 ){
+ rc = pApi->xColumnSize(pFts, iBestCol, &nColSize);
+ }
+ if( ctx.zIn ){
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterInit(pApi, pFts, iBestCol, &ctx.iter);
+ }
+
+ ctx.iRangeStart = iBestStart;
+ ctx.iRangeEnd = iBestStart + nToken - 1;
+
+ if( iBestStart>0 ){
+ fts5HighlightAppend(&rc, &ctx, zEllips, -1);
+ }
+
+ /* Advance iterator ctx.iter so that it points to the first coalesced
+ ** phrase instance at or following position iBestStart. */
+ while( ctx.iter.iStart>=0 && ctx.iter.iStart<iBestStart && rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(&ctx.iter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xTokenize(pFts, ctx.zIn, ctx.nIn, (void*)&ctx,fts5HighlightCb);
+ }
+ if( ctx.iRangeEnd>=(nColSize-1) ){
+ fts5HighlightAppend(&rc, &ctx, &ctx.zIn[ctx.iOff], ctx.nIn - ctx.iOff);
+ }else{
+ fts5HighlightAppend(&rc, &ctx, zEllips, -1);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)ctx.zOut, -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ sqlite3_free(ctx.zOut);
+ sqlite3_free(aSeen);
+ sqlite3_free(sFinder.aFirst);
+}
+
+/************************************************************************/
+
+/*
+** The first time the bm25() function is called for a query, an instance
+** of the following structure is allocated and populated.
+*/
+typedef struct Fts5Bm25Data Fts5Bm25Data;
+struct Fts5Bm25Data {
+ int nPhrase; /* Number of phrases in query */
+ double avgdl; /* Average number of tokens in each row */
+ double *aIDF; /* IDF for each phrase */
+ double *aFreq; /* Array used to calculate phrase freq. */
+};
+
+/*
+** Callback used by fts5Bm25GetData() to count the number of rows in the
+** table matched by each individual phrase within the query.
+*/
+static int fts5CountCb(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ void *pUserData /* Pointer to sqlite3_int64 variable */
+){
+ sqlite3_int64 *pn = (sqlite3_int64*)pUserData;
+ UNUSED_PARAM2(pApi, pFts);
+ (*pn)++;
+ return SQLITE_OK;
+}
+
+/*
+** Set *ppData to point to the Fts5Bm25Data object for the current query.
+** If the object has not already been allocated, allocate and populate it
+** now.
+*/
+static int fts5Bm25GetData(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ Fts5Bm25Data **ppData /* OUT: bm25-data object for this query */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Bm25Data *p; /* Object to return */
+
+ p = (Fts5Bm25Data*)pApi->xGetAuxdata(pFts, 0);
+ if( p==0 ){
+ int nPhrase; /* Number of phrases in query */
+ sqlite3_int64 nRow = 0; /* Number of rows in table */
+ sqlite3_int64 nToken = 0; /* Number of tokens in table */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+ int i;
+
+ /* Allocate the Fts5Bm25Data object */
+ nPhrase = pApi->xPhraseCount(pFts);
+ nByte = sizeof(Fts5Bm25Data) + nPhrase*2*sizeof(double);
+ p = (Fts5Bm25Data*)sqlite3_malloc64(nByte);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(p, 0, (size_t)nByte);
+ p->nPhrase = nPhrase;
+ p->aIDF = (double*)&p[1];
+ p->aFreq = &p->aIDF[nPhrase];
+ }
+
+ /* Calculate the average document length for this FTS5 table */
+ if( rc==SQLITE_OK ) rc = pApi->xRowCount(pFts, &nRow);
+ assert( rc!=SQLITE_OK || nRow>0 );
+ if( rc==SQLITE_OK ) rc = pApi->xColumnTotalSize(pFts, -1, &nToken);
+ if( rc==SQLITE_OK ) p->avgdl = (double)nToken / (double)nRow;
+
+ /* Calculate an IDF for each phrase in the query */
+ for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
+ sqlite3_int64 nHit = 0;
+ rc = pApi->xQueryPhrase(pFts, i, (void*)&nHit, fts5CountCb);
+ if( rc==SQLITE_OK ){
+ /* Calculate the IDF (Inverse Document Frequency) for phrase i.
+ ** This is done using the standard BM25 formula as found on wikipedia:
+ **
+ ** IDF = log( (N - nHit + 0.5) / (nHit + 0.5) )
+ **
+ ** where "N" is the total number of documents in the set and nHit
+ ** is the number that contain at least one instance of the phrase
+ ** under consideration.
+ **
+ ** The problem with this is that if (N < 2*nHit), the IDF is
+ ** negative. Which is undesirable. So the mimimum allowable IDF is
+ ** (1e-6) - roughly the same as a term that appears in just over
+ ** half of set of 5,000,000 documents. */
+ double idf = log( (nRow - nHit + 0.5) / (nHit + 0.5) );
+ if( idf<=0.0 ) idf = 1e-6;
+ p->aIDF[i] = idf;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(p);
+ }else{
+ rc = pApi->xSetAuxdata(pFts, p, sqlite3_free);
+ }
+ if( rc!=SQLITE_OK ) p = 0;
+ }
+ *ppData = p;
+ return rc;
+}
+
+/*
+** Implementation of bm25() function.
+*/
+static void fts5Bm25Function(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ const double k1 = 1.2; /* Constant "k1" from BM25 formula */
+ const double b = 0.75; /* Constant "b" from BM25 formula */
+ int rc; /* Error code */
+ double score = 0.0; /* SQL function return value */
+ Fts5Bm25Data *pData; /* Values allocated/calculated once only */
+ int i; /* Iterator variable */
+ int nInst = 0; /* Value returned by xInstCount() */
+ double D = 0.0; /* Total number of tokens in row */
+ double *aFreq = 0; /* Array of phrase freq. for current row */
+
+ /* Calculate the phrase frequency (symbol "f(qi,D)" in the documentation)
+ ** for each phrase in the query for the current row. */
+ rc = fts5Bm25GetData(pApi, pFts, &pData);
+ if( rc==SQLITE_OK ){
+ aFreq = pData->aFreq;
+ memset(aFreq, 0, sizeof(double) * pData->nPhrase);
+ rc = pApi->xInstCount(pFts, &nInst);
+ }
+ for(i=0; rc==SQLITE_OK && i<nInst; i++){
+ int ip; int ic; int io;
+ rc = pApi->xInst(pFts, i, &ip, &ic, &io);
+ if( rc==SQLITE_OK ){
+ double w = (nVal > ic) ? sqlite3_value_double(apVal[ic]) : 1.0;
+ aFreq[ip] += w;
+ }
+ }
+
+ /* Figure out the total size of the current row in tokens. */
+ if( rc==SQLITE_OK ){
+ int nTok;
+ rc = pApi->xColumnSize(pFts, -1, &nTok);
+ D = (double)nTok;
+ }
+
+ /* Determine and return the BM25 score for the current row. Or, if an
+ ** error has occurred, throw an exception. */
+ if( rc==SQLITE_OK ){
+ for(i=0; i<pData->nPhrase; i++){
+ score += pData->aIDF[i] * (
+ ( aFreq[i] * (k1 + 1.0) ) /
+ ( aFreq[i] + k1 * (1 - b + b * D / pData->avgdl) )
+ );
+ }
+ sqlite3_result_double(pCtx, -1.0 * score);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+
+static int sqlite3Fts5AuxInit(fts5_api *pApi){
+ struct Builtin {
+ const char *zFunc; /* Function name (nul-terminated) */
+ void *pUserData; /* User-data pointer */
+ fts5_extension_function xFunc;/* Callback function */
+ void (*xDestroy)(void*); /* Destructor function */
+ } aBuiltin [] = {
+ { "snippet", 0, fts5SnippetFunction, 0 },
+ { "highlight", 0, fts5HighlightFunction, 0 },
+ { "bm25", 0, fts5Bm25Function, 0 },
+ };
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* To iterate through builtin functions */
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
+ rc = pApi->xCreateFunction(pApi,
+ aBuiltin[i].zFunc,
+ aBuiltin[i].pUserData,
+ aBuiltin[i].xFunc,
+ aBuiltin[i].xDestroy
+ );
+ }
+
+ return rc;
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, u32 nByte){
+ if( (u32)pBuf->nSpace<nByte ){
+ u64 nNew = pBuf->nSpace ? pBuf->nSpace : 64;
+ u8 *pNew;
+ while( nNew<nByte ){
+ nNew = nNew * 2;
+ }
+ pNew = sqlite3_realloc64(pBuf->p, nNew);
+ if( pNew==0 ){
+ *pRc = SQLITE_NOMEM;
+ return 1;
+ }else{
+ pBuf->nSpace = (int)nNew;
+ pBuf->p = pNew;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Encode value iVal as an SQLite varint and append it to the buffer object
+** pBuf. If an OOM error occurs, set the error code in p.
+*/
+static void sqlite3Fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
+ if( fts5BufferGrow(pRc, pBuf, 9) ) return;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iVal);
+}
+
+static void sqlite3Fts5Put32(u8 *aBuf, int iVal){
+ aBuf[0] = (iVal>>24) & 0x00FF;
+ aBuf[1] = (iVal>>16) & 0x00FF;
+ aBuf[2] = (iVal>> 8) & 0x00FF;
+ aBuf[3] = (iVal>> 0) & 0x00FF;
+}
+
+static int sqlite3Fts5Get32(const u8 *aBuf){
+ return (int)((((u32)aBuf[0])<<24) + (aBuf[1]<<16) + (aBuf[2]<<8) + aBuf[3]);
+}
+
+/*
+** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void sqlite3Fts5BufferAppendBlob(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ u32 nData,
+ const u8 *pData
+){
+ if( nData ){
+ if( fts5BufferGrow(pRc, pBuf, nData) ) return;
+ memcpy(&pBuf->p[pBuf->n], pData, nData);
+ pBuf->n += nData;
+ }
+}
+
+/*
+** Append the nul-terminated string zStr to the buffer pBuf. This function
+** ensures that the byte following the buffer data is set to 0x00, even
+** though this byte is not included in the pBuf->n count.
+*/
+static void sqlite3Fts5BufferAppendString(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ const char *zStr
+){
+ int nStr = (int)strlen(zStr);
+ sqlite3Fts5BufferAppendBlob(pRc, pBuf, nStr+1, (const u8*)zStr);
+ pBuf->n--;
+}
+
+/*
+** Argument zFmt is a printf() style format string. This function performs
+** the printf() style processing, then appends the results to buffer pBuf.
+**
+** Like sqlite3Fts5BufferAppendString(), this function ensures that the byte
+** following the buffer data is set to 0x00, even though this byte is not
+** included in the pBuf->n count.
+*/
+static void sqlite3Fts5BufferAppendPrintf(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ char *zFmt, ...
+){
+ if( *pRc==SQLITE_OK ){
+ char *zTmp;
+ va_list ap;
+ va_start(ap, zFmt);
+ zTmp = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+
+ if( zTmp==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts5BufferAppendString(pRc, pBuf, zTmp);
+ sqlite3_free(zTmp);
+ }
+ }
+}
+
+static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...){
+ char *zRet = 0;
+ if( *pRc==SQLITE_OK ){
+ va_list ap;
+ va_start(ap, zFmt);
+ zRet = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zRet==0 ){
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ return zRet;
+}
+
+
+/*
+** Free any buffer allocated by pBuf. Zero the structure before returning.
+*/
+static void sqlite3Fts5BufferFree(Fts5Buffer *pBuf){
+ sqlite3_free(pBuf->p);
+ memset(pBuf, 0, sizeof(Fts5Buffer));
+}
+
+/*
+** Zero the contents of the buffer object. But do not free the associated
+** memory allocation.
+*/
+static void sqlite3Fts5BufferZero(Fts5Buffer *pBuf){
+ pBuf->n = 0;
+}
+
+/*
+** Set the buffer to contain nData/pData. If an OOM error occurs, leave an
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void sqlite3Fts5BufferSet(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ int nData,
+ const u8 *pData
+){
+ pBuf->n = 0;
+ sqlite3Fts5BufferAppendBlob(pRc, pBuf, nData, pData);
+}
+
+static int sqlite3Fts5PoslistNext64(
+ const u8 *a, int n, /* Buffer containing poslist */
+ int *pi, /* IN/OUT: Offset within a[] */
+ i64 *piOff /* IN/OUT: Current offset */
+){
+ int i = *pi;
+ if( i>=n ){
+ /* EOF */
+ *piOff = -1;
+ return 1;
+ }else{
+ i64 iOff = *piOff;
+ u32 iVal;
+ fts5FastGetVarint32(a, i, iVal);
+ if( iVal<=1 ){
+ if( iVal==0 ){
+ *pi = i;
+ return 0;
+ }
+ fts5FastGetVarint32(a, i, iVal);
+ iOff = ((i64)iVal) << 32;
+ assert( iOff>=0 );
+ fts5FastGetVarint32(a, i, iVal);
+ if( iVal<2 ){
+ /* This is a corrupt record. So stop parsing it here. */
+ *piOff = -1;
+ return 1;
+ }
+ *piOff = iOff + ((iVal-2) & 0x7FFFFFFF);
+ }else{
+ *piOff = (iOff & (i64)0x7FFFFFFF<<32)+((iOff + (iVal-2)) & 0x7FFFFFFF);
+ }
+ *pi = i;
+ assert_nc( *piOff>=iOff );
+ return 0;
+ }
+}
+
+
+/*
+** Advance the iterator object passed as the only argument. Return true
+** if the iterator reaches EOF, or false otherwise.
+*/
+static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader *pIter){
+ if( sqlite3Fts5PoslistNext64(pIter->a, pIter->n, &pIter->i, &pIter->iPos) ){
+ pIter->bEof = 1;
+ }
+ return pIter->bEof;
+}
+
+static int sqlite3Fts5PoslistReaderInit(
+ const u8 *a, int n, /* Poslist buffer to iterate through */
+ Fts5PoslistReader *pIter /* Iterator object to initialize */
+){
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->a = a;
+ pIter->n = n;
+ sqlite3Fts5PoslistReaderNext(pIter);
+ return pIter->bEof;
+}
+
+/*
+** Append position iPos to the position list being accumulated in buffer
+** pBuf, which must be already be large enough to hold the new data.
+** The previous position written to this list is *piPrev. *piPrev is set
+** to iPos before returning.
+*/
+static void sqlite3Fts5PoslistSafeAppend(
+ Fts5Buffer *pBuf,
+ i64 *piPrev,
+ i64 iPos
+){
+ if( iPos>=*piPrev ){
+ static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
+ if( (iPos & colmask) != (*piPrev & colmask) ){
+ pBuf->p[pBuf->n++] = 1;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
+ *piPrev = (iPos & colmask);
+ }
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-*piPrev)+2);
+ *piPrev = iPos;
+ }
+}
+
+static int sqlite3Fts5PoslistWriterAppend(
+ Fts5Buffer *pBuf,
+ Fts5PoslistWriter *pWriter,
+ i64 iPos
+){
+ int rc = 0; /* Initialized only to suppress erroneous warning from Clang */
+ if( fts5BufferGrow(&rc, pBuf, 5+5+5) ) return rc;
+ sqlite3Fts5PoslistSafeAppend(pBuf, &pWriter->iPrev, iPos);
+ return SQLITE_OK;
+}
+
+static void *sqlite3Fts5MallocZero(int *pRc, sqlite3_int64 nByte){
+ void *pRet = 0;
+ if( *pRc==SQLITE_OK ){
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ if( nByte>0 ) *pRc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, (size_t)nByte);
+ }
+ }
+ return pRet;
+}
+
+/*
+** Return a nul-terminated copy of the string indicated by pIn. If nIn
+** is non-negative, then it is the length of the string in bytes. Otherwise,
+** the length of the string is determined using strlen().
+**
+** It is the responsibility of the caller to eventually free the returned
+** buffer using sqlite3_free(). If an OOM error occurs, NULL is returned.
+*/
+static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn){
+ char *zRet = 0;
+ if( *pRc==SQLITE_OK ){
+ if( nIn<0 ){
+ nIn = (int)strlen(pIn);
+ }
+ zRet = (char*)sqlite3_malloc(nIn+1);
+ if( zRet ){
+ memcpy(zRet, pIn, nIn);
+ zRet[nIn] = '\0';
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ return zRet;
+}
+
+
+/*
+** Return true if character 't' may be part of an FTS5 bareword, or false
+** otherwise. Characters that may be part of barewords:
+**
+** * All non-ASCII characters,
+** * The 52 upper and lower case ASCII characters, and
+** * The 10 integer ASCII characters.
+** * The underscore character "_" (0x5F).
+** * The unicode "subsitute" character (0x1A).
+*/
+static int sqlite3Fts5IsBareword(char t){
+ u8 aBareword[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 .. 0x0F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* 0x10 .. 0x1F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 .. 0x2F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30 .. 0x3F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 .. 0x4F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 0x50 .. 0x5F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 .. 0x6F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 /* 0x70 .. 0x7F */
+ };
+
+ return (t & 0x80) || aBareword[(int)t];
+}
+
+
+/*************************************************************************
+*/
+typedef struct Fts5TermsetEntry Fts5TermsetEntry;
+struct Fts5TermsetEntry {
+ char *pTerm;
+ int nTerm;
+ int iIdx; /* Index (main or aPrefix[] entry) */
+ Fts5TermsetEntry *pNext;
+};
+
+struct Fts5Termset {
+ Fts5TermsetEntry *apHash[512];
+};
+
+static int sqlite3Fts5TermsetNew(Fts5Termset **pp){
+ int rc = SQLITE_OK;
+ *pp = sqlite3Fts5MallocZero(&rc, sizeof(Fts5Termset));
+ return rc;
+}
+
+static int sqlite3Fts5TermsetAdd(
+ Fts5Termset *p,
+ int iIdx,
+ const char *pTerm, int nTerm,
+ int *pbPresent
+){
+ int rc = SQLITE_OK;
+ *pbPresent = 0;
+ if( p ){
+ int i;
+ u32 hash = 13;
+ Fts5TermsetEntry *pEntry;
+
+ /* Calculate a hash value for this term. This is the same hash checksum
+ ** used by the fts5_hash.c module. This is not important for correct
+ ** operation of the module, but is necessary to ensure that some tests
+ ** designed to produce hash table collisions really do work. */
+ for(i=nTerm-1; i>=0; i--){
+ hash = (hash << 3) ^ hash ^ pTerm[i];
+ }
+ hash = (hash << 3) ^ hash ^ iIdx;
+ hash = hash % ArraySize(p->apHash);
+
+ for(pEntry=p->apHash[hash]; pEntry; pEntry=pEntry->pNext){
+ if( pEntry->iIdx==iIdx
+ && pEntry->nTerm==nTerm
+ && memcmp(pEntry->pTerm, pTerm, nTerm)==0
+ ){
+ *pbPresent = 1;
+ break;
+ }
+ }
+
+ if( pEntry==0 ){
+ pEntry = sqlite3Fts5MallocZero(&rc, sizeof(Fts5TermsetEntry) + nTerm);
+ if( pEntry ){
+ pEntry->pTerm = (char*)&pEntry[1];
+ pEntry->nTerm = nTerm;
+ pEntry->iIdx = iIdx;
+ memcpy(pEntry->pTerm, pTerm, nTerm);
+ pEntry->pNext = p->apHash[hash];
+ p->apHash[hash] = pEntry;
+ }
+ }
+ }
+
+ return rc;
+}
+
+static void sqlite3Fts5TermsetFree(Fts5Termset *p){
+ if( p ){
+ u32 i;
+ for(i=0; i<ArraySize(p->apHash); i++){
+ Fts5TermsetEntry *pEntry = p->apHash[i];
+ while( pEntry ){
+ Fts5TermsetEntry *pDel = pEntry;
+ pEntry = pEntry->pNext;
+ sqlite3_free(pDel);
+ }
+ }
+ sqlite3_free(p);
+ }
+}
+
+/*
+** 2014 Jun 09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+
+/* #include "fts5Int.h" */
+
+#define FTS5_DEFAULT_PAGE_SIZE 4050
+#define FTS5_DEFAULT_AUTOMERGE 4
+#define FTS5_DEFAULT_USERMERGE 4
+#define FTS5_DEFAULT_CRISISMERGE 16
+#define FTS5_DEFAULT_HASHSIZE (1024*1024)
+
+/* Maximum allowed page size */
+#define FTS5_MAX_PAGE_SIZE (64*1024)
+
+static int fts5_iswhitespace(char x){
+ return (x==' ');
+}
+
+static int fts5_isopenquote(char x){
+ return (x=='"' || x=='\'' || x=='[' || x=='`');
+}
+
+/*
+** Argument pIn points to a character that is part of a nul-terminated
+** string. Return a pointer to the first character following *pIn in
+** the string that is not a white-space character.
+*/
+static const char *fts5ConfigSkipWhitespace(const char *pIn){
+ const char *p = pIn;
+ if( p ){
+ while( fts5_iswhitespace(*p) ){ p++; }
+ }
+ return p;
+}
+
+/*
+** Argument pIn points to a character that is part of a nul-terminated
+** string. Return a pointer to the first character following *pIn in
+** the string that is not a "bareword" character.
+*/
+static const char *fts5ConfigSkipBareword(const char *pIn){
+ const char *p = pIn;
+ while ( sqlite3Fts5IsBareword(*p) ) p++;
+ if( p==pIn ) p = 0;
+ return p;
+}
+
+static int fts5_isdigit(char a){
+ return (a>='0' && a<='9');
+}
+
+
+
+static const char *fts5ConfigSkipLiteral(const char *pIn){
+ const char *p = pIn;
+ switch( *p ){
+ case 'n': case 'N':
+ if( sqlite3_strnicmp("null", p, 4)==0 ){
+ p = &p[4];
+ }else{
+ p = 0;
+ }
+ break;
+
+ case 'x': case 'X':
+ p++;
+ if( *p=='\'' ){
+ p++;
+ while( (*p>='a' && *p<='f')
+ || (*p>='A' && *p<='F')
+ || (*p>='0' && *p<='9')
+ ){
+ p++;
+ }
+ if( *p=='\'' && 0==((p-pIn)%2) ){
+ p++;
+ }else{
+ p = 0;
+ }
+ }else{
+ p = 0;
+ }
+ break;
+
+ case '\'':
+ p++;
+ while( p ){
+ if( *p=='\'' ){
+ p++;
+ if( *p!='\'' ) break;
+ }
+ p++;
+ if( *p==0 ) p = 0;
+ }
+ break;
+
+ default:
+ /* maybe a number */
+ if( *p=='+' || *p=='-' ) p++;
+ while( fts5_isdigit(*p) ) p++;
+
+ /* At this point, if the literal was an integer, the parse is
+ ** finished. Or, if it is a floating point value, it may continue
+ ** with either a decimal point or an 'E' character. */
+ if( *p=='.' && fts5_isdigit(p[1]) ){
+ p += 2;
+ while( fts5_isdigit(*p) ) p++;
+ }
+ if( p==pIn ) p = 0;
+
+ break;
+ }
+
+ return p;
+}
+
+/*
+** The first character of the string pointed to by argument z is guaranteed
+** to be an open-quote character (see function fts5_isopenquote()).
+**
+** This function searches for the corresponding close-quote character within
+** the string and, if found, dequotes the string in place and adds a new
+** nul-terminator byte.
+**
+** If the close-quote is found, the value returned is the byte offset of
+** the character immediately following it. Or, if the close-quote is not
+** found, -1 is returned. If -1 is returned, the buffer is left in an
+** undefined state.
+*/
+static int fts5Dequote(char *z){
+ char q;
+ int iIn = 1;
+ int iOut = 0;
+ q = z[0];
+
+ /* Set stack variable q to the close-quote character */
+ assert( q=='[' || q=='\'' || q=='"' || q=='`' );
+ if( q=='[' ) q = ']';
+
+ while( z[iIn] ){
+ if( z[iIn]==q ){
+ if( z[iIn+1]!=q ){
+ /* Character iIn was the close quote. */
+ iIn++;
+ break;
+ }else{
+ /* Character iIn and iIn+1 form an escaped quote character. Skip
+ ** the input cursor past both and copy a single quote character
+ ** to the output buffer. */
+ iIn += 2;
+ z[iOut++] = q;
+ }
+ }else{
+ z[iOut++] = z[iIn++];
+ }
+ }
+
+ z[iOut] = '\0';
+ return iIn;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+*/
+static void sqlite3Fts5Dequote(char *z){
+ char quote; /* Quote character (if any ) */
+
+ assert( 0==fts5_iswhitespace(z[0]) );
+ quote = z[0];
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
+ fts5Dequote(z);
+ }
+}
+
+
+struct Fts5Enum {
+ const char *zName;
+ int eVal;
+};
+typedef struct Fts5Enum Fts5Enum;
+
+static int fts5ConfigSetEnum(
+ const Fts5Enum *aEnum,
+ const char *zEnum,
+ int *peVal
+){
+ int nEnum = (int)strlen(zEnum);
+ int i;
+ int iVal = -1;
+
+ for(i=0; aEnum[i].zName; i++){
+ if( sqlite3_strnicmp(aEnum[i].zName, zEnum, nEnum)==0 ){
+ if( iVal>=0 ) return SQLITE_ERROR;
+ iVal = aEnum[i].eVal;
+ }
+ }
+
+ *peVal = iVal;
+ return iVal<0 ? SQLITE_ERROR : SQLITE_OK;
+}
+
+/*
+** Parse a "special" CREATE VIRTUAL TABLE directive and update
+** configuration object pConfig as appropriate.
+**
+** If successful, object pConfig is updated and SQLITE_OK returned. If
+** an error occurs, an SQLite error code is returned and an error message
+** may be left in *pzErr. It is the responsibility of the caller to
+** eventually free any such error message using sqlite3_free().
+*/
+static int fts5ConfigParseSpecial(
+ Fts5Global *pGlobal,
+ Fts5Config *pConfig, /* Configuration object to update */
+ const char *zCmd, /* Special command to parse */
+ const char *zArg, /* Argument to parse */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK;
+ int nCmd = (int)strlen(zCmd);
+ if( sqlite3_strnicmp("prefix", zCmd, nCmd)==0 ){
+ const int nByte = sizeof(int) * FTS5_MAX_PREFIX_INDEXES;
+ const char *p;
+ int bFirst = 1;
+ if( pConfig->aPrefix==0 ){
+ pConfig->aPrefix = sqlite3Fts5MallocZero(&rc, nByte);
+ if( rc ) return rc;
+ }
+
+ p = zArg;
+ while( 1 ){
+ int nPre = 0;
+
+ while( p[0]==' ' ) p++;
+ if( bFirst==0 && p[0]==',' ){
+ p++;
+ while( p[0]==' ' ) p++;
+ }else if( p[0]=='\0' ){
+ break;
+ }
+ if( p[0]<'0' || p[0]>'9' ){
+ *pzErr = sqlite3_mprintf("malformed prefix=... directive");
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ if( pConfig->nPrefix==FTS5_MAX_PREFIX_INDEXES ){
+ *pzErr = sqlite3_mprintf(
+ "too many prefix indexes (max %d)", FTS5_MAX_PREFIX_INDEXES
+ );
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
+ nPre = nPre*10 + (p[0] - '0');
+ p++;
+ }
+
+ if( nPre<=0 || nPre>=1000 ){
+ *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ pConfig->aPrefix[pConfig->nPrefix] = nPre;
+ pConfig->nPrefix++;
+ bFirst = 0;
+ }
+ assert( pConfig->nPrefix<=FTS5_MAX_PREFIX_INDEXES );
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("tokenize", zCmd, nCmd)==0 ){
+ const char *p = (const char*)zArg;
+ sqlite3_int64 nArg = strlen(zArg) + 1;
+ char **azArg = sqlite3Fts5MallocZero(&rc, sizeof(char*) * nArg);
+ char *pDel = sqlite3Fts5MallocZero(&rc, nArg * 2);
+ char *pSpace = pDel;
+
+ if( azArg && pSpace ){
+ if( pConfig->pTok ){
+ *pzErr = sqlite3_mprintf("multiple tokenize=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ for(nArg=0; p && *p; nArg++){
+ const char *p2 = fts5ConfigSkipWhitespace(p);
+ if( *p2=='\'' ){
+ p = fts5ConfigSkipLiteral(p2);
+ }else{
+ p = fts5ConfigSkipBareword(p2);
+ }
+ if( p ){
+ memcpy(pSpace, p2, p-p2);
+ azArg[nArg] = pSpace;
+ sqlite3Fts5Dequote(pSpace);
+ pSpace += (p - p2) + 1;
+ p = fts5ConfigSkipWhitespace(p);
+ }
+ }
+ if( p==0 ){
+ *pzErr = sqlite3_mprintf("parse error in tokenize directive");
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5GetTokenizer(pGlobal,
+ (const char**)azArg, (int)nArg, pConfig,
+ pzErr
+ );
+ }
+ }
+ }
+
+ sqlite3_free(azArg);
+ sqlite3_free(pDel);
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("content", zCmd, nCmd)==0 ){
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){
+ *pzErr = sqlite3_mprintf("multiple content=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ if( zArg[0] ){
+ pConfig->eContent = FTS5_CONTENT_EXTERNAL;
+ pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg);
+ }else{
+ pConfig->eContent = FTS5_CONTENT_NONE;
+ }
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){
+ if( pConfig->zContentRowid ){
+ *pzErr = sqlite3_mprintf("multiple content_rowid=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1);
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("columnsize", zCmd, nCmd)==0 ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1]!='\0' ){
+ *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->bColumnsize = (zArg[0]=='1');
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("detail", zCmd, nCmd)==0 ){
+ const Fts5Enum aDetail[] = {
+ { "none", FTS5_DETAIL_NONE },
+ { "full", FTS5_DETAIL_FULL },
+ { "columns", FTS5_DETAIL_COLUMNS },
+ { 0, 0 }
+ };
+
+ if( (rc = fts5ConfigSetEnum(aDetail, zArg, &pConfig->eDetail)) ){
+ *pzErr = sqlite3_mprintf("malformed detail=... directive");
+ }
+ return rc;
+ }
+
+ *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
+ return SQLITE_ERROR;
+}
+
+/*
+** Allocate an instance of the default tokenizer ("simple") at
+** Fts5Config.pTokenizer. Return SQLITE_OK if successful, or an SQLite error
+** code if an error occurs.
+*/
+static int fts5ConfigDefaultTokenizer(Fts5Global *pGlobal, Fts5Config *pConfig){
+ assert( pConfig->pTok==0 && pConfig->pTokApi==0 );
+ return sqlite3Fts5GetTokenizer(pGlobal, 0, 0, pConfig, 0);
+}
+
+/*
+** Gobble up the first bareword or quoted word from the input buffer zIn.
+** Return a pointer to the character immediately following the last in
+** the gobbled word if successful, or a NULL pointer otherwise (failed
+** to find close-quote character).
+**
+** Before returning, set pzOut to point to a new buffer containing a
+** nul-terminated, dequoted copy of the gobbled word. If the word was
+** quoted, *pbQuoted is also set to 1 before returning.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is
+** a no-op (NULL is returned). Otherwise, if an OOM occurs within this
+** function, *pRc is set to SQLITE_NOMEM before returning. *pRc is *not*
+** set if a parse error (failed to find close quote) occurs.
+*/
+static const char *fts5ConfigGobbleWord(
+ int *pRc, /* IN/OUT: Error code */
+ const char *zIn, /* Buffer to gobble string/bareword from */
+ char **pzOut, /* OUT: malloc'd buffer containing str/bw */
+ int *pbQuoted /* OUT: Set to true if dequoting required */
+){
+ const char *zRet = 0;
+
+ sqlite3_int64 nIn = strlen(zIn);
+ char *zOut = sqlite3_malloc64(nIn+1);
+
+ assert( *pRc==SQLITE_OK );
+ *pbQuoted = 0;
+ *pzOut = 0;
+
+ if( zOut==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ memcpy(zOut, zIn, (size_t)(nIn+1));
+ if( fts5_isopenquote(zOut[0]) ){
+ int ii = fts5Dequote(zOut);
+ zRet = &zIn[ii];
+ *pbQuoted = 1;
+ }else{
+ zRet = fts5ConfigSkipBareword(zIn);
+ if( zRet ){
+ zOut[zRet-zIn] = '\0';
+ }
+ }
+ }
+
+ if( zRet==0 ){
+ sqlite3_free(zOut);
+ }else{
+ *pzOut = zOut;
+ }
+
+ return zRet;
+}
+
+static int fts5ConfigParseColumn(
+ Fts5Config *p,
+ char *zCol,
+ char *zArg,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ if( 0==sqlite3_stricmp(zCol, FTS5_RANK_NAME)
+ || 0==sqlite3_stricmp(zCol, FTS5_ROWID_NAME)
+ ){
+ *pzErr = sqlite3_mprintf("reserved fts5 column name: %s", zCol);
+ rc = SQLITE_ERROR;
+ }else if( zArg ){
+ if( 0==sqlite3_stricmp(zArg, "unindexed") ){
+ p->abUnindexed[p->nCol] = 1;
+ }else{
+ *pzErr = sqlite3_mprintf("unrecognized column option: %s", zArg);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ p->azCol[p->nCol++] = zCol;
+ return rc;
+}
+
+/*
+** Populate the Fts5Config.zContentExprlist string.
+*/
+static int fts5ConfigMakeExprlist(Fts5Config *p){
+ int i;
+ int rc = SQLITE_OK;
+ Fts5Buffer buf = {0, 0, 0};
+
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, "T.%Q", p->zContentRowid);
+ if( p->eContent!=FTS5_CONTENT_NONE ){
+ for(i=0; i<p->nCol; i++){
+ if( p->eContent==FTS5_CONTENT_EXTERNAL ){
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, ", T.%Q", p->azCol[i]);
+ }else{
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, ", T.c%d", i);
+ }
+ }
+ }
+
+ assert( p->zContentExprlist==0 );
+ p->zContentExprlist = (char*)buf.p;
+ return rc;
+}
+
+/*
+** Arguments nArg/azArg contain the string arguments passed to the xCreate
+** or xConnect method of the virtual table. This function attempts to
+** allocate an instance of Fts5Config containing the results of parsing
+** those arguments.
+**
+** If successful, SQLITE_OK is returned and *ppOut is set to point to the
+** new Fts5Config object. If an error occurs, an SQLite error code is
+** returned, *ppOut is set to NULL and an error message may be left in
+** *pzErr. It is the responsibility of the caller to eventually free any
+** such error message using sqlite3_free().
+*/
+static int sqlite3Fts5ConfigParse(
+ Fts5Global *pGlobal,
+ sqlite3 *db,
+ int nArg, /* Number of arguments */
+ const char **azArg, /* Array of nArg CREATE VIRTUAL TABLE args */
+ Fts5Config **ppOut, /* OUT: Results of parse */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pRet; /* New object to return */
+ int i;
+ sqlite3_int64 nByte;
+
+ *ppOut = pRet = (Fts5Config*)sqlite3_malloc(sizeof(Fts5Config));
+ if( pRet==0 ) return SQLITE_NOMEM;
+ memset(pRet, 0, sizeof(Fts5Config));
+ pRet->db = db;
+ pRet->iCookie = -1;
+
+ nByte = nArg * (sizeof(char*) + sizeof(u8));
+ pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
+ pRet->abUnindexed = pRet->azCol ? (u8*)&pRet->azCol[nArg] : 0;
+ pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
+ pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
+ pRet->bColumnsize = 1;
+ pRet->eDetail = FTS5_DETAIL_FULL;
+#ifdef SQLITE_DEBUG
+ pRet->bPrefixIndex = 1;
+#endif
+ if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
+ *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
+ rc = SQLITE_ERROR;
+ }
+
+ for(i=3; rc==SQLITE_OK && i<nArg; i++){
+ const char *zOrig = azArg[i];
+ const char *z;
+ char *zOne = 0;
+ char *zTwo = 0;
+ int bOption = 0;
+ int bMustBeCol = 0;
+
+ z = fts5ConfigGobbleWord(&rc, zOrig, &zOne, &bMustBeCol);
+ z = fts5ConfigSkipWhitespace(z);
+ if( z && *z=='=' ){
+ bOption = 1;
+ assert( zOne!=0 );
+ z++;
+ if( bMustBeCol ) z = 0;
+ }
+ z = fts5ConfigSkipWhitespace(z);
+ if( z && z[0] ){
+ int bDummy;
+ z = fts5ConfigGobbleWord(&rc, z, &zTwo, &bDummy);
+ if( z && z[0] ) z = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( z==0 ){
+ *pzErr = sqlite3_mprintf("parse error in \"%s\"", zOrig);
+ rc = SQLITE_ERROR;
+ }else{
+ if( bOption ){
+ rc = fts5ConfigParseSpecial(pGlobal, pRet,
+ ALWAYS(zOne)?zOne:"",
+ zTwo?zTwo:"",
+ pzErr
+ );
+ }else{
+ rc = fts5ConfigParseColumn(pRet, zOne, zTwo, pzErr);
+ zOne = 0;
+ }
+ }
+ }
+
+ sqlite3_free(zOne);
+ sqlite3_free(zTwo);
+ }
+
+ /* If a tokenizer= option was successfully parsed, the tokenizer has
+ ** already been allocated. Otherwise, allocate an instance of the default
+ ** tokenizer (unicode61) now. */
+ if( rc==SQLITE_OK && pRet->pTok==0 ){
+ rc = fts5ConfigDefaultTokenizer(pGlobal, pRet);
+ }
+
+ /* If no zContent option was specified, fill in the default values. */
+ if( rc==SQLITE_OK && pRet->zContent==0 ){
+ const char *zTail = 0;
+ assert( pRet->eContent==FTS5_CONTENT_NORMAL
+ || pRet->eContent==FTS5_CONTENT_NONE
+ );
+ if( pRet->eContent==FTS5_CONTENT_NORMAL ){
+ zTail = "content";
+ }else if( pRet->bColumnsize ){
+ zTail = "docsize";
+ }
+
+ if( zTail ){
+ pRet->zContent = sqlite3Fts5Mprintf(
+ &rc, "%Q.'%q_%s'", pRet->zDb, pRet->zName, zTail
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK && pRet->zContentRowid==0 ){
+ pRet->zContentRowid = sqlite3Fts5Strndup(&rc, "rowid", -1);
+ }
+
+ /* Formulate the zContentExprlist text */
+ if( rc==SQLITE_OK ){
+ rc = fts5ConfigMakeExprlist(pRet);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts5ConfigFree(pRet);
+ *ppOut = 0;
+ }
+ return rc;
+}
+
+/*
+** Free the configuration object passed as the only argument.
+*/
+static void sqlite3Fts5ConfigFree(Fts5Config *pConfig){
+ if( pConfig ){
+ int i;
+ if( pConfig->pTok ){
+ pConfig->pTokApi->xDelete(pConfig->pTok);
+ }
+ sqlite3_free(pConfig->zDb);
+ sqlite3_free(pConfig->zName);
+ for(i=0; i<pConfig->nCol; i++){
+ sqlite3_free(pConfig->azCol[i]);
+ }
+ sqlite3_free(pConfig->azCol);
+ sqlite3_free(pConfig->aPrefix);
+ sqlite3_free(pConfig->zRank);
+ sqlite3_free(pConfig->zRankArgs);
+ sqlite3_free(pConfig->zContent);
+ sqlite3_free(pConfig->zContentRowid);
+ sqlite3_free(pConfig->zContentExprlist);
+ sqlite3_free(pConfig);
+ }
+}
+
+/*
+** Call sqlite3_declare_vtab() based on the contents of the configuration
+** object passed as the only argument. Return SQLITE_OK if successful, or
+** an SQLite error code if an error occurs.
+*/
+static int sqlite3Fts5ConfigDeclareVtab(Fts5Config *pConfig){
+ int i;
+ int rc = SQLITE_OK;
+ char *zSql;
+
+ zSql = sqlite3Fts5Mprintf(&rc, "CREATE TABLE x(");
+ for(i=0; zSql && i<pConfig->nCol; i++){
+ const char *zSep = (i==0?"":", ");
+ zSql = sqlite3Fts5Mprintf(&rc, "%z%s%Q", zSql, zSep, pConfig->azCol[i]);
+ }
+ zSql = sqlite3Fts5Mprintf(&rc, "%z, %Q HIDDEN, %s HIDDEN)",
+ zSql, pConfig->zName, FTS5_RANK_NAME
+ );
+
+ assert( zSql || rc==SQLITE_NOMEM );
+ if( zSql ){
+ rc = sqlite3_declare_vtab(pConfig->db, zSql);
+ sqlite3_free(zSql);
+ }
+
+ return rc;
+}
+
+/*
+** Tokenize the text passed via the second and third arguments.
+**
+** The callback is invoked once for each token in the input text. The
+** arguments passed to it are, in order:
+**
+** void *pCtx // Copy of 4th argument to sqlite3Fts5Tokenize()
+** const char *pToken // Pointer to buffer containing token
+** int nToken // Size of token in bytes
+** int iStart // Byte offset of start of token within input text
+** int iEnd // Byte offset of end of token within input text
+** int iPos // Position of token in input (first token is 0)
+**
+** If the callback returns a non-zero value the tokenization is abandoned
+** and no further callbacks are issued.
+**
+** This function returns SQLITE_OK if successful or an SQLite error code
+** if an error occurs. If the tokenization was abandoned early because
+** the callback returned SQLITE_DONE, this is not an error and this function
+** still returns SQLITE_OK. Or, if the tokenization was abandoned early
+** because the callback returned another non-zero value, it is assumed
+** to be an SQLite error code and returned to the caller.
+*/
+static int sqlite3Fts5Tokenize(
+ Fts5Config *pConfig, /* FTS5 Configuration object */
+ int flags, /* FTS5_TOKENIZE_* flags */
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+){
+ if( pText==0 ) return SQLITE_OK;
+ return pConfig->pTokApi->xTokenize(
+ pConfig->pTok, pCtx, flags, pText, nText, xToken
+ );
+}
+
+/*
+** Argument pIn points to the first character in what is expected to be
+** a comma-separated list of SQL literals followed by a ')' character.
+** If it actually is this, return a pointer to the ')'. Otherwise, return
+** NULL to indicate a parse error.
+*/
+static const char *fts5ConfigSkipArgs(const char *pIn){
+ const char *p = pIn;
+
+ while( 1 ){
+ p = fts5ConfigSkipWhitespace(p);
+ p = fts5ConfigSkipLiteral(p);
+ p = fts5ConfigSkipWhitespace(p);
+ if( p==0 || *p==')' ) break;
+ if( *p!=',' ){
+ p = 0;
+ break;
+ }
+ p++;
+ }
+
+ return p;
+}
+
+/*
+** Parameter zIn contains a rank() function specification. The format of
+** this is:
+**
+** + Bareword (function name)
+** + Open parenthesis - "("
+** + Zero or more SQL literals in a comma separated list
+** + Close parenthesis - ")"
+*/
+static int sqlite3Fts5ConfigParseRank(
+ const char *zIn, /* Input string */
+ char **pzRank, /* OUT: Rank function name */
+ char **pzRankArgs /* OUT: Rank function arguments */
+){
+ const char *p = zIn;
+ const char *pRank;
+ char *zRank = 0;
+ char *zRankArgs = 0;
+ int rc = SQLITE_OK;
+
+ *pzRank = 0;
+ *pzRankArgs = 0;
+
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = fts5ConfigSkipWhitespace(p);
+ pRank = p;
+ p = fts5ConfigSkipBareword(p);
+
+ if( p ){
+ zRank = sqlite3Fts5MallocZero(&rc, 1 + p - pRank);
+ if( zRank ) memcpy(zRank, pRank, p-pRank);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_OK ){
+ p = fts5ConfigSkipWhitespace(p);
+ if( *p!='(' ) rc = SQLITE_ERROR;
+ p++;
+ }
+ if( rc==SQLITE_OK ){
+ const char *pArgs;
+ p = fts5ConfigSkipWhitespace(p);
+ pArgs = p;
+ if( *p!=')' ){
+ p = fts5ConfigSkipArgs(p);
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ zRankArgs = sqlite3Fts5MallocZero(&rc, 1 + p - pArgs);
+ if( zRankArgs ) memcpy(zRankArgs, pArgs, p-pArgs);
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zRank);
+ assert( zRankArgs==0 );
+ }else{
+ *pzRank = zRank;
+ *pzRankArgs = zRankArgs;
+ }
+ return rc;
+}
+
+static int sqlite3Fts5ConfigSetValue(
+ Fts5Config *pConfig,
+ const char *zKey,
+ sqlite3_value *pVal,
+ int *pbBadkey
+){
+ int rc = SQLITE_OK;
+
+ if( 0==sqlite3_stricmp(zKey, "pgsz") ){
+ int pgsz = 0;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ pgsz = sqlite3_value_int(pVal);
+ }
+ if( pgsz<32 || pgsz>FTS5_MAX_PAGE_SIZE ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->pgsz = pgsz;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "hashsize") ){
+ int nHashSize = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nHashSize = sqlite3_value_int(pVal);
+ }
+ if( nHashSize<=0 ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->nHashSize = nHashSize;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "automerge") ){
+ int nAutomerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nAutomerge = sqlite3_value_int(pVal);
+ }
+ if( nAutomerge<0 || nAutomerge>64 ){
+ *pbBadkey = 1;
+ }else{
+ if( nAutomerge==1 ) nAutomerge = FTS5_DEFAULT_AUTOMERGE;
+ pConfig->nAutomerge = nAutomerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "usermerge") ){
+ int nUsermerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nUsermerge = sqlite3_value_int(pVal);
+ }
+ if( nUsermerge<2 || nUsermerge>16 ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->nUsermerge = nUsermerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "crisismerge") ){
+ int nCrisisMerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nCrisisMerge = sqlite3_value_int(pVal);
+ }
+ if( nCrisisMerge<0 ){
+ *pbBadkey = 1;
+ }else{
+ if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
+ if( nCrisisMerge>=FTS5_MAX_SEGMENT ) nCrisisMerge = FTS5_MAX_SEGMENT-1;
+ pConfig->nCrisisMerge = nCrisisMerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "rank") ){
+ const char *zIn = (const char*)sqlite3_value_text(pVal);
+ char *zRank;
+ char *zRankArgs;
+ rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs);
+ if( rc==SQLITE_OK ){
+ sqlite3_free(pConfig->zRank);
+ sqlite3_free(pConfig->zRankArgs);
+ pConfig->zRank = zRank;
+ pConfig->zRankArgs = zRankArgs;
+ }else if( rc==SQLITE_ERROR ){
+ rc = SQLITE_OK;
+ *pbBadkey = 1;
+ }
+ }else{
+ *pbBadkey = 1;
+ }
+ return rc;
+}
+
+/*
+** Load the contents of the %_config table into memory.
+*/
+static int sqlite3Fts5ConfigLoad(Fts5Config *pConfig, int iCookie){
+ const char *zSelect = "SELECT k, v FROM %Q.'%q_config'";
+ char *zSql;
+ sqlite3_stmt *p = 0;
+ int rc = SQLITE_OK;
+ int iVersion = 0;
+
+ /* Set default values */
+ pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
+ pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
+ pConfig->nUsermerge = FTS5_DEFAULT_USERMERGE;
+ pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
+ pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE;
+
+ zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
+ sqlite3_free(zSql);
+ }
+
+ assert( rc==SQLITE_OK || p==0 );
+ if( rc==SQLITE_OK ){
+ while( SQLITE_ROW==sqlite3_step(p) ){
+ const char *zK = (const char*)sqlite3_column_text(p, 0);
+ sqlite3_value *pVal = sqlite3_column_value(p, 1);
+ if( 0==sqlite3_stricmp(zK, "version") ){
+ iVersion = sqlite3_value_int(pVal);
+ }else{
+ int bDummy = 0;
+ sqlite3Fts5ConfigSetValue(pConfig, zK, pVal, &bDummy);
+ }
+ }
+ rc = sqlite3_finalize(p);
+ }
+
+ if( rc==SQLITE_OK && iVersion!=FTS5_CURRENT_VERSION ){
+ rc = SQLITE_ERROR;
+ if( pConfig->pzErrmsg ){
+ assert( 0==*pConfig->pzErrmsg );
+ *pConfig->pzErrmsg = sqlite3_mprintf(
+ "invalid fts5 file format (found %d, expected %d) - run 'rebuild'",
+ iVersion, FTS5_CURRENT_VERSION
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pConfig->iCookie = iCookie;
+ }
+ return rc;
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+/* #include "fts5parse.h" */
+
+/*
+** All token types in the generated fts5parse.h file are greater than 0.
+*/
+#define FTS5_EOF 0
+
+#define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+
+typedef struct Fts5ExprTerm Fts5ExprTerm;
+
+/*
+** Functions generated by lemon from fts5parse.y.
+*/
+static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64));
+static void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*));
+static void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*);
+#ifndef NDEBUG
+/* #include <stdio.h> */
+static void sqlite3Fts5ParserTrace(FILE*, char*);
+#endif
+static int sqlite3Fts5ParserFallback(int);
+
+
+struct Fts5Expr {
+ Fts5Index *pIndex;
+ Fts5Config *pConfig;
+ Fts5ExprNode *pRoot;
+ int bDesc; /* Iterate in descending rowid order */
+ int nPhrase; /* Number of phrases in expression */
+ Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */
+};
+
+/*
+** eType:
+** Expression node type. Always one of:
+**
+** FTS5_AND (nChild, apChild valid)
+** FTS5_OR (nChild, apChild valid)
+** FTS5_NOT (nChild, apChild valid)
+** FTS5_STRING (pNear valid)
+** FTS5_TERM (pNear valid)
+*/
+struct Fts5ExprNode {
+ int eType; /* Node type */
+ int bEof; /* True at EOF */
+ int bNomatch; /* True if entry is not a match */
+
+ /* Next method for this node. */
+ int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);
+
+ i64 iRowid; /* Current rowid */
+ Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */
+
+ /* Child nodes. For a NOT node, this array always contains 2 entries. For
+ ** AND or OR nodes, it contains 2 or more entries. */
+ int nChild; /* Number of child nodes */
+ Fts5ExprNode *apChild[1]; /* Array of child nodes */
+};
+
+#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)
+
+/*
+** Invoke the xNext method of an Fts5ExprNode object. This macro should be
+** used as if it has the same signature as the xNext() methods themselves.
+*/
+#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))
+
+/*
+** An instance of the following structure represents a single search term
+** or term prefix.
+*/
+struct Fts5ExprTerm {
+ u8 bPrefix; /* True for a prefix term */
+ u8 bFirst; /* True if token must be first in column */
+ char *zTerm; /* nul-terminated term */
+ Fts5IndexIter *pIter; /* Iterator for this term */
+ Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */
+};
+
+/*
+** A phrase. One or more terms that must appear in a contiguous sequence
+** within a document for it to match.
+*/
+struct Fts5ExprPhrase {
+ Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */
+ Fts5Buffer poslist; /* Current position list */
+ int nTerm; /* Number of entries in aTerm[] */
+ Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */
+};
+
+/*
+** One or more phrases that must appear within a certain token distance of
+** each other within each matching document.
+*/
+struct Fts5ExprNearset {
+ int nNear; /* NEAR parameter */
+ Fts5Colset *pColset; /* Columns to search (NULL -> all columns) */
+ int nPhrase; /* Number of entries in aPhrase[] array */
+ Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */
+};
+
+
+/*
+** Parse context.
+*/
+struct Fts5Parse {
+ Fts5Config *pConfig;
+ char *zErr;
+ int rc;
+ int nPhrase; /* Size of apPhrase array */
+ Fts5ExprPhrase **apPhrase; /* Array of all phrases */
+ Fts5ExprNode *pExpr; /* Result of a successful parse */
+ int bPhraseToAnd; /* Convert "a+b" to "a AND b" */
+};
+
+static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){
+ va_list ap;
+ va_start(ap, zFmt);
+ if( pParse->rc==SQLITE_OK ){
+ assert( pParse->zErr==0 );
+ pParse->zErr = sqlite3_vmprintf(zFmt, ap);
+ pParse->rc = SQLITE_ERROR;
+ }
+ va_end(ap);
+}
+
+static int fts5ExprIsspace(char t){
+ return t==' ' || t=='\t' || t=='\n' || t=='\r';
+}
+
+/*
+** Read the first token from the nul-terminated string at *pz.
+*/
+static int fts5ExprGetToken(
+ Fts5Parse *pParse,
+ const char **pz, /* IN/OUT: Pointer into buffer */
+ Fts5Token *pToken
+){
+ const char *z = *pz;
+ int tok;
+
+ /* Skip past any whitespace */
+ while( fts5ExprIsspace(*z) ) z++;
+
+ pToken->p = z;
+ pToken->n = 1;
+ switch( *z ){
+ case '(': tok = FTS5_LP; break;
+ case ')': tok = FTS5_RP; break;
+ case '{': tok = FTS5_LCP; break;
+ case '}': tok = FTS5_RCP; break;
+ case ':': tok = FTS5_COLON; break;
+ case ',': tok = FTS5_COMMA; break;
+ case '+': tok = FTS5_PLUS; break;
+ case '*': tok = FTS5_STAR; break;
+ case '-': tok = FTS5_MINUS; break;
+ case '^': tok = FTS5_CARET; break;
+ case '\0': tok = FTS5_EOF; break;
+
+ case '"': {
+ const char *z2;
+ tok = FTS5_STRING;
+
+ for(z2=&z[1]; 1; z2++){
+ if( z2[0]=='"' ){
+ z2++;
+ if( z2[0]!='"' ) break;
+ }
+ if( z2[0]=='\0' ){
+ sqlite3Fts5ParseError(pParse, "unterminated string");
+ return FTS5_EOF;
+ }
+ }
+ pToken->n = (z2 - z);
+ break;
+ }
+
+ default: {
+ const char *z2;
+ if( sqlite3Fts5IsBareword(z[0])==0 ){
+ sqlite3Fts5ParseError(pParse, "fts5: syntax error near \"%.1s\"", z);
+ return FTS5_EOF;
+ }
+ tok = FTS5_STRING;
+ for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++);
+ pToken->n = (z2 - z);
+ if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR;
+ if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT;
+ if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND;
+ break;
+ }
+ }
+
+ *pz = &pToken->p[pToken->n];
+ return tok;
+}
+
+static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc64((sqlite3_int64)t);}
+static void fts5ParseFree(void *p){ sqlite3_free(p); }
+
+static int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig, /* FTS5 Configuration */
+ int bPhraseToAnd,
+ int iCol,
+ const char *zExpr, /* Expression text */
+ Fts5Expr **ppNew,
+ char **pzErr
+){
+ Fts5Parse sParse;
+ Fts5Token token;
+ const char *z = zExpr;
+ int t; /* Next token type */
+ void *pEngine;
+ Fts5Expr *pNew;
+
+ *ppNew = 0;
+ *pzErr = 0;
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.bPhraseToAnd = bPhraseToAnd;
+ pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc);
+ if( pEngine==0 ){ return SQLITE_NOMEM; }
+ sParse.pConfig = pConfig;
+
+ do {
+ t = fts5ExprGetToken(&sParse, &z, &token);
+ sqlite3Fts5Parser(pEngine, t, token, &sParse);
+ }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
+ sqlite3Fts5ParserFree(pEngine, fts5ParseFree);
+
+ /* If the LHS of the MATCH expression was a user column, apply the
+ ** implicit column-filter. */
+ if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){
+ int n = sizeof(Fts5Colset);
+ Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n);
+ if( pColset ){
+ pColset->nCol = 1;
+ pColset->aiCol[0] = iCol;
+ sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset);
+ }
+ }
+
+ assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
+ if( sParse.rc==SQLITE_OK ){
+ *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
+ if( pNew==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }else{
+ if( !sParse.pExpr ){
+ const int nByte = sizeof(Fts5ExprNode);
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
+ if( pNew->pRoot ){
+ pNew->pRoot->bEof = 1;
+ }
+ }else{
+ pNew->pRoot = sParse.pExpr;
+ }
+ pNew->pIndex = 0;
+ pNew->pConfig = pConfig;
+ pNew->apExprPhrase = sParse.apPhrase;
+ pNew->nPhrase = sParse.nPhrase;
+ pNew->bDesc = 0;
+ sParse.apPhrase = 0;
+ }
+ }else{
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }
+
+ sqlite3_free(sParse.apPhrase);
+ *pzErr = sParse.zErr;
+ return sParse.rc;
+}
+
+/*
+** This function is only called when using the special 'trigram' tokenizer.
+** Argument zText contains the text of a LIKE or GLOB pattern matched
+** against column iCol. This function creates and compiles an FTS5 MATCH
+** expression that will match a superset of the rows matched by the LIKE or
+** GLOB. If successful, SQLITE_OK is returned. Otherwise, an SQLite error
+** code.
+*/
+static int sqlite3Fts5ExprPattern(
+ Fts5Config *pConfig, int bGlob, int iCol, const char *zText, Fts5Expr **pp
+){
+ i64 nText = strlen(zText);
+ char *zExpr = (char*)sqlite3_malloc64(nText*4 + 1);
+ int rc = SQLITE_OK;
+
+ if( zExpr==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char aSpec[3];
+ int iOut = 0;
+ int i = 0;
+ int iFirst = 0;
+
+ if( bGlob==0 ){
+ aSpec[0] = '_';
+ aSpec[1] = '%';
+ aSpec[2] = 0;
+ }else{
+ aSpec[0] = '*';
+ aSpec[1] = '?';
+ aSpec[2] = '[';
+ }
+
+ while( i<=nText ){
+ if( i==nText
+ || zText[i]==aSpec[0] || zText[i]==aSpec[1] || zText[i]==aSpec[2]
+ ){
+ if( i-iFirst>=3 ){
+ int jj;
+ zExpr[iOut++] = '"';
+ for(jj=iFirst; jj<i; jj++){
+ zExpr[iOut++] = zText[jj];
+ if( zText[jj]=='"' ) zExpr[iOut++] = '"';
+ }
+ zExpr[iOut++] = '"';
+ zExpr[iOut++] = ' ';
+ }
+ if( zText[i]==aSpec[2] ){
+ i += 2;
+ if( zText[i-1]=='^' ) i++;
+ while( i<nText && zText[i]!=']' ) i++;
+ }
+ iFirst = i+1;
+ }
+ i++;
+ }
+ if( iOut>0 ){
+ int bAnd = 0;
+ if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ bAnd = 1;
+ if( pConfig->eDetail==FTS5_DETAIL_NONE ){
+ iCol = pConfig->nCol;
+ }
+ }
+ zExpr[iOut] = '\0';
+ rc = sqlite3Fts5ExprNew(pConfig, bAnd, iCol, zExpr, pp,pConfig->pzErrmsg);
+ }else{
+ *pp = 0;
+ }
+ sqlite3_free(zExpr);
+ }
+
+ return rc;
+}
+
+/*
+** Free the expression node object passed as the only argument.
+*/
+static void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){
+ if( p ){
+ int i;
+ for(i=0; i<p->nChild; i++){
+ sqlite3Fts5ParseNodeFree(p->apChild[i]);
+ }
+ sqlite3Fts5ParseNearsetFree(p->pNear);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Free the expression object passed as the only argument.
+*/
+static void sqlite3Fts5ExprFree(Fts5Expr *p){
+ if( p ){
+ sqlite3Fts5ParseNodeFree(p->pRoot);
+ sqlite3_free(p->apExprPhrase);
+ sqlite3_free(p);
+ }
+}
+
+static int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2){
+ Fts5Parse sParse;
+ memset(&sParse, 0, sizeof(sParse));
+
+ if( *pp1 ){
+ Fts5Expr *p1 = *pp1;
+ int nPhrase = p1->nPhrase + p2->nPhrase;
+
+ p1->pRoot = sqlite3Fts5ParseNode(&sParse, FTS5_AND, p1->pRoot, p2->pRoot,0);
+ p2->pRoot = 0;
+
+ if( sParse.rc==SQLITE_OK ){
+ Fts5ExprPhrase **ap = (Fts5ExprPhrase**)sqlite3_realloc(
+ p1->apExprPhrase, nPhrase * sizeof(Fts5ExprPhrase*)
+ );
+ if( ap==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ memmove(&ap[p2->nPhrase], ap, p1->nPhrase*sizeof(Fts5ExprPhrase*));
+ for(i=0; i<p2->nPhrase; i++){
+ ap[i] = p2->apExprPhrase[i];
+ }
+ p1->nPhrase = nPhrase;
+ p1->apExprPhrase = ap;
+ }
+ }
+ sqlite3_free(p2->apExprPhrase);
+ sqlite3_free(p2);
+ }else{
+ *pp1 = p2;
+ }
+
+ return sParse.rc;
+}
+
+/*
+** Argument pTerm must be a synonym iterator. Return the current rowid
+** that it points to.
+*/
+static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
+ i64 iRet = 0;
+ int bRetValid = 0;
+ Fts5ExprTerm *p;
+
+ assert( pTerm );
+ assert( pTerm->pSynonym );
+ assert( bDesc==0 || bDesc==1 );
+ for(p=pTerm; p; p=p->pSynonym){
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ i64 iRowid = p->pIter->iRowid;
+ if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
+ iRet = iRowid;
+ bRetValid = 1;
+ }
+ }
+ }
+
+ if( pbEof && bRetValid==0 ) *pbEof = 1;
+ return iRet;
+}
+
+/*
+** Argument pTerm must be a synonym iterator.
+*/
+static int fts5ExprSynonymList(
+ Fts5ExprTerm *pTerm,
+ i64 iRowid,
+ Fts5Buffer *pBuf, /* Use this buffer for space if required */
+ u8 **pa, int *pn
+){
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int nIter = 0;
+ int nAlloc = 4;
+ int rc = SQLITE_OK;
+ Fts5ExprTerm *p;
+
+ assert( pTerm->pSynonym );
+ for(p=pTerm; p; p=p->pSynonym){
+ Fts5IndexIter *pIter = p->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
+ if( pIter->nData==0 ) continue;
+ if( nIter==nAlloc ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
+ Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ goto synonym_poslist_out;
+ }
+ memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
+ nAlloc = nAlloc*2;
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ aIter = aNew;
+ }
+ sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
+ assert( aIter[nIter].bEof==0 );
+ nIter++;
+ }
+ }
+
+ if( nIter==1 ){
+ *pa = (u8*)aIter[0].a;
+ *pn = aIter[0].n;
+ }else{
+ Fts5PoslistWriter writer = {0};
+ i64 iPrev = -1;
+ fts5BufferZero(pBuf);
+ while( 1 ){
+ int i;
+ i64 iMin = FTS5_LARGEST_INT64;
+ for(i=0; i<nIter; i++){
+ if( aIter[i].bEof==0 ){
+ if( aIter[i].iPos==iPrev ){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
+ }
+ if( aIter[i].iPos<iMin ){
+ iMin = aIter[i].iPos;
+ }
+ }
+ }
+ if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
+ rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
+ iPrev = iMin;
+ }
+ if( rc==SQLITE_OK ){
+ *pa = pBuf->p;
+ *pn = pBuf->n;
+ }
+ }
+
+ synonym_poslist_out:
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+
+/*
+** All individual term iterators in pPhrase are guaranteed to be valid and
+** pointing to the same rowid when this function is called. This function
+** checks if the current rowid really is a match, and if so populates
+** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch
+** is set to true if this is really a match, or false otherwise.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if the current rowid is
+** not a match.
+*/
+static int fts5ExprPhraseIsMatch(
+ Fts5ExprNode *pNode, /* Node pPhrase belongs to */
+ Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */
+ int *pbMatch /* OUT: Set to true if really a match */
+){
+ Fts5PoslistWriter writer = {0};
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int i;
+ int rc = SQLITE_OK;
+ int bFirst = pPhrase->aTerm[0].bFirst;
+
+ fts5BufferZero(&pPhrase->poslist);
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pPhrase->nTerm>ArraySize(aStatic) ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
+ aIter = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
+ if( !aIter ) return SQLITE_NOMEM;
+ }
+ memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);
+
+ /* Initialize a term iterator for each term in the phrase */
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ int n = 0;
+ int bFlag = 0;
+ u8 *a = 0;
+ if( pTerm->pSynonym ){
+ Fts5Buffer buf = {0, 0, 0};
+ rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
+ if( rc ){
+ sqlite3_free(a);
+ goto ismatch_out;
+ }
+ if( a==buf.p ) bFlag = 1;
+ }else{
+ a = (u8*)pTerm->pIter->pData;
+ n = pTerm->pIter->nData;
+ }
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ aIter[i].bFlag = (u8)bFlag;
+ if( aIter[i].bEof ) goto ismatch_out;
+ }
+
+ while( 1 ){
+ int bMatch;
+ i64 iPos = aIter[0].iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5PoslistReader *pPos = &aIter[i];
+ i64 iAdj = iPos + i;
+ if( pPos->iPos!=iAdj ){
+ bMatch = 0;
+ while( pPos->iPos<iAdj ){
+ if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Append position iPos to the output */
+ if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){
+ rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
+ if( rc!=SQLITE_OK ) goto ismatch_out;
+ }
+
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
+ }
+ }
+
+ ismatch_out:
+ *pbMatch = (pPhrase->poslist.n>0);
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( aIter[i].bFlag ) sqlite3_free((u8*)aIter[i].a);
+ }
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+typedef struct Fts5LookaheadReader Fts5LookaheadReader;
+struct Fts5LookaheadReader {
+ const u8 *a; /* Buffer containing position list */
+ int n; /* Size of buffer a[] in bytes */
+ int i; /* Current offset in position list */
+ i64 iPos; /* Current position */
+ i64 iLookahead; /* Next position */
+};
+
+#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62)
+
+static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){
+ p->iPos = p->iLookahead;
+ if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){
+ p->iLookahead = FTS5_LOOKAHEAD_EOF;
+ }
+ return (p->iPos==FTS5_LOOKAHEAD_EOF);
+}
+
+static int fts5LookaheadReaderInit(
+ const u8 *a, int n, /* Buffer to read position list from */
+ Fts5LookaheadReader *p /* Iterator object to initialize */
+){
+ memset(p, 0, sizeof(Fts5LookaheadReader));
+ p->a = a;
+ p->n = n;
+ fts5LookaheadReaderNext(p);
+ return fts5LookaheadReaderNext(p);
+}
+
+typedef struct Fts5NearTrimmer Fts5NearTrimmer;
+struct Fts5NearTrimmer {
+ Fts5LookaheadReader reader; /* Input iterator */
+ Fts5PoslistWriter writer; /* Writer context */
+ Fts5Buffer *pOut; /* Output poslist */
+};
+
+/*
+** The near-set object passed as the first argument contains more than
+** one phrase. All phrases currently point to the same row. The
+** Fts5ExprPhrase.poslist buffers are populated accordingly. This function
+** tests if the current row contains instances of each phrase sufficiently
+** close together to meet the NEAR constraint. Non-zero is returned if it
+** does, or zero otherwise.
+**
+** If in/out parameter (*pRc) is set to other than SQLITE_OK when this
+** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM)
+** occurs within this function (*pRc) is set accordingly before returning.
+** The return value is undefined in both these cases.
+**
+** If no error occurs and non-zero (a match) is returned, the position-list
+** of each phrase object is edited to contain only those entries that
+** meet the constraint before returning.
+*/
+static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){
+ Fts5NearTrimmer aStatic[4];
+ Fts5NearTrimmer *a = aStatic;
+ Fts5ExprPhrase **apPhrase = pNear->apPhrase;
+
+ int i;
+ int rc = *pRc;
+ int bMatch;
+
+ assert( pNear->nPhrase>1 );
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pNear->nPhrase>ArraySize(aStatic) ){
+ sqlite3_int64 nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
+ a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
+ }else{
+ memset(aStatic, 0, sizeof(aStatic));
+ }
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return 0;
+ }
+
+ /* Initialize a lookahead iterator for each phrase. After passing the
+ ** buffer and buffer size to the lookaside-reader init function, zero
+ ** the phrase poslist buffer. The new poslist for the phrase (containing
+ ** the same entries as the original with some entries removed on account
+ ** of the NEAR constraint) is written over the original even as it is
+ ** being read. This is safe as the entries for the new poslist are a
+ ** subset of the old, so it is not possible for data yet to be read to
+ ** be overwritten. */
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5Buffer *pPoslist = &apPhrase[i]->poslist;
+ fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader);
+ pPoslist->n = 0;
+ a[i].pOut = pPoslist;
+ }
+
+ while( 1 ){
+ int iAdv;
+ i64 iMin;
+ i64 iMax;
+
+ /* This block advances the phrase iterators until they point to a set of
+ ** entries that together comprise a match. */
+ iMax = a[0].reader.iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5LookaheadReader *pPos = &a[i].reader;
+ iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear;
+ if( pPos->iPos<iMin || pPos->iPos>iMax ){
+ bMatch = 0;
+ while( pPos->iPos<iMin ){
+ if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iMax ) iMax = pPos->iPos;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Add an entry to each output position list */
+ for(i=0; i<pNear->nPhrase; i++){
+ i64 iPos = a[i].reader.iPos;
+ Fts5PoslistWriter *pWriter = &a[i].writer;
+ if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){
+ sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos);
+ }
+ }
+
+ iAdv = 0;
+ iMin = a[0].reader.iLookahead;
+ for(i=0; i<pNear->nPhrase; i++){
+ if( a[i].reader.iLookahead < iMin ){
+ iMin = a[i].reader.iLookahead;
+ iAdv = i;
+ }
+ }
+ if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out;
+ }
+
+ ismatch_out: {
+ int bRet = a[0].pOut->n>0;
+ *pRc = rc;
+ if( a!=aStatic ) sqlite3_free(a);
+ return bRet;
+ }
+}
+
+/*
+** Advance iterator pIter until it points to a value equal to or laster
+** than the initial value of *piLast. If this means the iterator points
+** to a value laster than *piLast, update *piLast to the new lastest value.
+**
+** If the iterator reaches EOF, set *pbEof to true before returning. If
+** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
+** are set, return a non-zero value. Otherwise, return zero.
+*/
+static int fts5ExprAdvanceto(
+ Fts5IndexIter *pIter, /* Iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc, /* OUT: Error code */
+ int *pbEof /* OUT: Set to true if EOF */
+){
+ i64 iLast = *piLast;
+ i64 iRowid;
+
+ iRowid = pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
+ if( rc || sqlite3Fts5IterEof(pIter) ){
+ *pRc = rc;
+ *pbEof = 1;
+ return 1;
+ }
+ iRowid = pIter->iRowid;
+ assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
+ }
+ *piLast = iRowid;
+
+ return 0;
+}
+
+static int fts5ExprSynonymAdvanceto(
+ Fts5ExprTerm *pTerm, /* Term iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc /* OUT: Error code */
+){
+ int rc = SQLITE_OK;
+ i64 iLast = *piLast;
+ Fts5ExprTerm *p;
+ int bEof = 0;
+
+ for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 iRowid = p->pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ bEof = 1;
+ }else{
+ *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
+ }
+ return bEof;
+}
+
+
+static int fts5ExprNearTest(
+ int *pRc,
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int rc = *pRc;
+
+ if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprTerm *pTerm;
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ pPhrase->poslist.n = 0;
+ for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ Fts5IndexIter *pIter = pTerm->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 ){
+ if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
+ pPhrase->poslist.n = 1;
+ }
+ }
+ }
+ return pPhrase->poslist.n;
+ }else{
+ int i;
+
+ /* Check that each phrase in the nearset matches the current row.
+ ** Populate the pPhrase->poslist buffers at the same time. If any
+ ** phrase is not a match, break out of the loop early. */
+ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym
+ || pNear->pColset || pPhrase->aTerm[0].bFirst
+ ){
+ int bMatch = 0;
+ rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
+ if( bMatch==0 ) break;
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+ fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
+ }
+ }
+
+ *pRc = rc;
+ if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
+ return 1;
+ }
+ return 0;
+ }
+}
+
+
+/*
+** Initialize all term iterators in the pNear object. If any term is found
+** to match no documents at all, return immediately without initializing any
+** further iterators.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK. It is not considered an error if some term matches zero
+** documents.
+*/
+static int fts5ExprNearInitAll(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+
+ assert( pNode->bNomatch==0 );
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm==0 ){
+ pNode->bEof = 1;
+ return SQLITE_OK;
+ }else{
+ int j;
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ Fts5ExprTerm *p;
+ int bHit = 0;
+
+ for(p=pTerm; p; p=p->pSynonym){
+ int rc;
+ if( p->pIter ){
+ sqlite3Fts5IterClose(p->pIter);
+ p->pIter = 0;
+ }
+ rc = sqlite3Fts5IndexQuery(
+ pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm),
+ (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
+ (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
+ pNear->pColset,
+ &p->pIter
+ );
+ assert( (rc==SQLITE_OK)==(p->pIter!=0) );
+ if( rc!=SQLITE_OK ) return rc;
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ bHit = 1;
+ }
+ }
+
+ if( bHit==0 ){
+ pNode->bEof = 1;
+ return SQLITE_OK;
+ }
+ }
+ }
+ }
+
+ pNode->bEof = 0;
+ return SQLITE_OK;
+}
+
+/*
+** If pExpr is an ASC iterator, this function returns a value with the
+** same sign as:
+**
+** (iLhs - iRhs)
+**
+** Otherwise, if this is a DESC iterator, the opposite is returned:
+**
+** (iRhs - iLhs)
+*/
+static int fts5RowidCmp(
+ Fts5Expr *pExpr,
+ i64 iLhs,
+ i64 iRhs
+){
+ assert( pExpr->bDesc==0 || pExpr->bDesc==1 );
+ if( pExpr->bDesc==0 ){
+ if( iLhs<iRhs ) return -1;
+ return (iLhs > iRhs);
+ }else{
+ if( iLhs>iRhs ) return -1;
+ return (iLhs < iRhs);
+ }
+}
+
+static void fts5ExprSetEof(Fts5ExprNode *pNode){
+ int i;
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprSetEof(pNode->apChild[i]);
+ }
+}
+
+static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ pPhrase->poslist.n = 0;
+ }
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprNodeZeroPoslist(pNode->apChild[i]);
+ }
+ }
+}
+
+
+
+/*
+** Compare the values currently indicated by the two nodes as follows:
+**
+** res = (*p1) - (*p2)
+**
+** Nodes that point to values that come later in the iteration order are
+** considered to be larger. Nodes at EOF are the largest of all.
+**
+** This means that if the iteration order is ASC, then numerically larger
+** rowids are considered larger. Or if it is the default DESC, numerically
+** smaller rowids are larger.
+*/
+static int fts5NodeCompare(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *p1,
+ Fts5ExprNode *p2
+){
+ if( p2->bEof ) return -1;
+ if( p1->bEof ) return +1;
+ return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
+}
+
+/*
+** All individual term iterators in pNear are guaranteed to be valid when
+** this function is called. This function checks if all term iterators
+** point to the same rowid, and if not, advances them until they do.
+** If an EOF is reached before this happens, *pbEof is set to true before
+** returning.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if an iterator reaches
+** EOF.
+*/
+static int fts5ExprNodeTest_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
+ int rc = SQLITE_OK;
+ i64 iLast; /* Lastest rowid any iterator points to */
+ int i, j; /* Phrase and token index, respectively */
+ int bMatch; /* True if all terms are at the same rowid */
+ const int bDesc = pExpr->bDesc;
+
+ /* Check that this node should not be FTS5_TERM */
+ assert( pNear->nPhrase>1
+ || pNear->apPhrase[0]->nTerm>1
+ || pNear->apPhrase[0]->aTerm[0].pSynonym
+ || pNear->apPhrase[0]->aTerm[0].bFirst
+ );
+
+ /* Initialize iLast, the "lastest" rowid any iterator points to. If the
+ ** iterator skips through rowids in the default ascending order, this means
+ ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
+ ** means the minimum rowid. */
+ if( pLeft->aTerm[0].pSynonym ){
+ iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
+ }else{
+ iLast = pLeft->aTerm[0].pIter->iRowid;
+ }
+
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ if( pTerm->pSynonym ){
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
+ if( iRowid==iLast ) continue;
+ bMatch = 0;
+ if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
+ pNode->bNomatch = 0;
+ pNode->bEof = 1;
+ return rc;
+ }
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
+ if( pIter->iRowid==iLast || pIter->bEof ) continue;
+ bMatch = 0;
+ if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
+ return rc;
+ }
+ }
+ }
+ }
+ }while( bMatch==0 );
+
+ pNode->iRowid = iLast;
+ pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
+ assert( pNode->bEof==0 || pNode->bNomatch==0 );
+
+ return rc;
+}
+
+/*
+** Advance the first term iterator in the first phrase of pNear. Set output
+** variable *pbEof to true if it reaches EOF or if an error occurs.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5ExprNodeNext_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */
+ int bFromValid,
+ i64 iFrom
+){
+ Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
+ int rc = SQLITE_OK;
+
+ pNode->bNomatch = 0;
+ if( pTerm->pSynonym ){
+ int bEof = 1;
+ Fts5ExprTerm *p;
+
+ /* Find the firstest rowid any synonym points to. */
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
+
+ /* Advance each iterator that currently points to iRowid. Or, if iFrom
+ ** is valid - each iterator that points to a rowid before iFrom. */
+ for(p=pTerm; p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 ii = p->pIter->iRowid;
+ if( ii==iRowid
+ || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc)
+ ){
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(p->pIter);
+ }
+ if( rc!=SQLITE_OK ) break;
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ bEof = 0;
+ }
+ }else{
+ bEof = 0;
+ }
+ }
+ }
+
+ /* Set the EOF flag if either all synonym iterators are at EOF or an
+ ** error has occurred. */
+ pNode->bEof = (rc || bEof);
+ }else{
+ Fts5IndexIter *pIter = pTerm->pIter;
+
+ assert( Fts5NodeIsString(pNode) );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+
+ pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
+ }
+
+ if( pNode->bEof==0 ){
+ assert( rc==SQLITE_OK );
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ }
+
+ return rc;
+}
+
+
+static int fts5ExprNodeTest_TERM(
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */
+){
+ /* As this "NEAR" object is actually a single phrase that consists
+ ** of a single term only, grab pointers into the poslist managed by the
+ ** fts5_index.c iterator object. This is much faster than synthesizing
+ ** a new poslist the way we have to for more complicated phrase or NEAR
+ ** expressions. */
+ Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+
+ assert( pNode->eType==FTS5_TERM );
+ assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
+ assert( pPhrase->aTerm[0].pSynonym==0 );
+
+ pPhrase->poslist.n = pIter->nData;
+ if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pPhrase->poslist.p = (u8*)pIter->pData;
+ }
+ pNode->iRowid = pIter->iRowid;
+ pNode->bNomatch = (pPhrase->poslist.n==0);
+ return SQLITE_OK;
+}
+
+/*
+** xNext() method for a node of type FTS5_TERM.
+*/
+static int fts5ExprNodeNext_TERM(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc;
+ Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
+
+ assert( pNode->bEof==0 );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ }else{
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static void fts5ExprNodeTest_OR(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ Fts5ExprNode *pNext = pNode->apChild[0];
+ int i;
+
+ for(i=1; i<pNode->nChild; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ int cmp = fts5NodeCompare(pExpr, pNext, pChild);
+ if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
+ pNext = pChild;
+ }
+ }
+ pNode->iRowid = pNext->iRowid;
+ pNode->bEof = pNext->bEof;
+ pNode->bNomatch = pNext->bNomatch;
+}
+
+static int fts5ExprNodeNext_OR(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int i;
+ i64 iLast = pNode->iRowid;
+
+ for(i=0; i<pNode->nChild; i++){
+ Fts5ExprNode *p1 = pNode->apChild[i];
+ assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
+ if( p1->bEof==0 ){
+ if( (p1->iRowid==iLast)
+ || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
+ ){
+ int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
+ if( rc!=SQLITE_OK ){
+ pNode->bNomatch = 0;
+ return rc;
+ }
+ }
+ }
+ }
+
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ return SQLITE_OK;
+}
+
+/*
+** Argument pNode is an FTS5_AND node.
+*/
+static int fts5ExprNodeTest_AND(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pAnd /* FTS5_AND node to advance */
+){
+ int iChild;
+ i64 iLast = pAnd->iRowid;
+ int rc = SQLITE_OK;
+ int bMatch;
+
+ assert( pAnd->bEof==0 );
+ do {
+ pAnd->bNomatch = 0;
+ bMatch = 1;
+ for(iChild=0; iChild<pAnd->nChild; iChild++){
+ Fts5ExprNode *pChild = pAnd->apChild[iChild];
+ int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
+ if( cmp>0 ){
+ /* Advance pChild until it points to iLast or laster */
+ rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
+ if( rc!=SQLITE_OK ){
+ pAnd->bNomatch = 0;
+ return rc;
+ }
+ }
+
+ /* If the child node is now at EOF, so is the parent AND node. Otherwise,
+ ** the child node is guaranteed to have advanced at least as far as
+ ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
+ ** new lastest rowid seen so far. */
+ assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
+ if( pChild->bEof ){
+ fts5ExprSetEof(pAnd);
+ bMatch = 1;
+ break;
+ }else if( iLast!=pChild->iRowid ){
+ bMatch = 0;
+ iLast = pChild->iRowid;
+ }
+
+ if( pChild->bNomatch ){
+ pAnd->bNomatch = 1;
+ }
+ }
+ }while( bMatch==0 );
+
+ if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
+ fts5ExprNodeZeroPoslist(pAnd);
+ }
+ pAnd->iRowid = iLast;
+ return SQLITE_OK;
+}
+
+static int fts5ExprNodeNext_AND(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ }else{
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static int fts5ExprNodeTest_NOT(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode /* FTS5_NOT node to advance */
+){
+ int rc = SQLITE_OK;
+ Fts5ExprNode *p1 = pNode->apChild[0];
+ Fts5ExprNode *p2 = pNode->apChild[1];
+ assert( pNode->nChild==2 );
+
+ while( rc==SQLITE_OK && p1->bEof==0 ){
+ int cmp = fts5NodeCompare(pExpr, p1, p2);
+ if( cmp>0 ){
+ rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
+ cmp = fts5NodeCompare(pExpr, p1, p2);
+ }
+ assert( rc!=SQLITE_OK || cmp<=0 );
+ if( cmp || p2->bNomatch ) break;
+ rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
+ }
+ pNode->bEof = p1->bEof;
+ pNode->bNomatch = p1->bNomatch;
+ pNode->iRowid = p1->iRowid;
+ if( p1->bEof ){
+ fts5ExprNodeZeroPoslist(p2);
+ }
+ return rc;
+}
+
+static int fts5ExprNodeNext_NOT(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ }
+ if( rc!=SQLITE_OK ){
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+/*
+** If pNode currently points to a match, this function returns SQLITE_OK
+** without modifying it. Otherwise, pNode is advanced until it does point
+** to a match or EOF is reached.
+*/
+static int fts5ExprNodeTest(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ int rc = SQLITE_OK;
+ if( pNode->bEof==0 ){
+ switch( pNode->eType ){
+
+ case FTS5_STRING: {
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_TERM: {
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_AND: {
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_OR: {
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ break;
+ }
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Set node pNode, which is part of expression pExpr, to point to the first
+** match. If there are no matches, set the Node.bEof flag to indicate EOF.
+**
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+** It is not an error if there are no matches.
+*/
+static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
+ int rc = SQLITE_OK;
+ pNode->bEof = 0;
+ pNode->bNomatch = 0;
+
+ if( Fts5NodeIsString(pNode) ){
+ /* Initialize all term iterators in the NEAR object. */
+ rc = fts5ExprNearInitAll(pExpr, pNode);
+ }else if( pNode->xNext==0 ){
+ pNode->bEof = 1;
+ }else{
+ int i;
+ int nEof = 0;
+ for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
+ assert( pChild->bEof==0 || pChild->bEof==1 );
+ nEof += pChild->bEof;
+ }
+ pNode->iRowid = pNode->apChild[0]->iRowid;
+
+ switch( pNode->eType ){
+ case FTS5_AND:
+ if( nEof>0 ) fts5ExprSetEof(pNode);
+ break;
+
+ case FTS5_OR:
+ if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
+ break;
+
+ default:
+ assert( pNode->eType==FTS5_NOT );
+ pNode->bEof = pNode->apChild[0]->bEof;
+ break;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest(pExpr, pNode);
+ }
+ return rc;
+}
+
+
+/*
+** Begin iterating through the set of documents in index pIdx matched by
+** the MATCH expression passed as the first argument. If the "bDesc"
+** parameter is passed a non-zero value, iteration is in descending rowid
+** order. Or, if it is zero, in ascending order.
+**
+** If iterating in ascending rowid order (bDesc==0), the first document
+** visited is that with the smallest rowid that is larger than or equal
+** to parameter iFirst. Or, if iterating in ascending order (bDesc==1),
+** then the first document visited must have a rowid smaller than or
+** equal to iFirst.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
+ Fts5ExprNode *pRoot = p->pRoot;
+ int rc; /* Return code */
+
+ p->pIndex = pIdx;
+ p->bDesc = bDesc;
+ rc = fts5ExprNodeFirst(p, pRoot);
+
+ /* If not at EOF but the current rowid occurs earlier than iFirst in
+ ** the iteration order, move to document iFirst or later. */
+ if( rc==SQLITE_OK
+ && 0==pRoot->bEof
+ && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0
+ ){
+ rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
+ }
+
+ /* If the iterator is not at a real match, skip forward until it is. */
+ while( pRoot->bNomatch && rc==SQLITE_OK ){
+ assert( pRoot->bEof==0 );
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ }
+ return rc;
+}
+
+/*
+** Move to the next document
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
+ int rc;
+ Fts5ExprNode *pRoot = p->pRoot;
+ assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
+ do {
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
+ }while( pRoot->bNomatch );
+ if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
+ pRoot->bEof = 1;
+ }
+ return rc;
+}
+
+static int sqlite3Fts5ExprEof(Fts5Expr *p){
+ return p->pRoot->bEof;
+}
+
+static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
+ return p->pRoot->iRowid;
+}
+
+static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
+ int rc = SQLITE_OK;
+ *pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n);
+ return rc;
+}
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){
+ if( pPhrase ){
+ int i;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pSyn;
+ Fts5ExprTerm *pNext;
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ sqlite3_free(pTerm->zTerm);
+ sqlite3Fts5IterClose(pTerm->pIter);
+ for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
+ pNext = pSyn->pSynonym;
+ sqlite3Fts5IterClose(pSyn->pIter);
+ fts5BufferFree((Fts5Buffer*)&pSyn[1]);
+ sqlite3_free(pSyn);
+ }
+ }
+ if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
+ sqlite3_free(pPhrase);
+ }
+}
+
+/*
+** Set the "bFirst" flag on the first token of the phrase passed as the
+** only argument.
+*/
+static void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){
+ if( pPhrase && pPhrase->nTerm ){
+ pPhrase->aTerm[0].bFirst = 1;
+ }
+}
+
+/*
+** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
+** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
+** appended to it and the results returned.
+**
+** If an OOM error occurs, both the pNear and pPhrase objects are freed and
+** NULL returned.
+*/
+static Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNearset *pNear, /* Existing nearset, or NULL */
+ Fts5ExprPhrase *pPhrase /* Recently parsed phrase */
+){
+ const int SZALLOC = 8;
+ Fts5ExprNearset *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ if( pPhrase==0 ){
+ return pNear;
+ }
+ if( pNear==0 ){
+ sqlite3_int64 nByte;
+ nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*);
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, (size_t)nByte);
+ }
+ }else if( (pNear->nPhrase % SZALLOC)==0 ){
+ int nNew = pNear->nPhrase + SZALLOC;
+ sqlite3_int64 nByte;
+
+ nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*);
+ pRet = (Fts5ExprNearset*)sqlite3_realloc64(pNear, nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }else{
+ pRet = pNear;
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNearsetFree(pNear);
+ sqlite3Fts5ParsePhraseFree(pPhrase);
+ }else{
+ if( pRet->nPhrase>0 ){
+ Fts5ExprPhrase *pLast = pRet->apPhrase[pRet->nPhrase-1];
+ assert( pParse!=0 );
+ assert( pParse->apPhrase!=0 );
+ assert( pParse->nPhrase>=2 );
+ assert( pLast==pParse->apPhrase[pParse->nPhrase-2] );
+ if( pPhrase->nTerm==0 ){
+ fts5ExprPhraseFree(pPhrase);
+ pRet->nPhrase--;
+ pParse->nPhrase--;
+ pPhrase = pLast;
+ }else if( pLast->nTerm==0 ){
+ fts5ExprPhraseFree(pLast);
+ pParse->apPhrase[pParse->nPhrase-2] = pPhrase;
+ pParse->nPhrase--;
+ pRet->nPhrase--;
+ }
+ }
+ pRet->apPhrase[pRet->nPhrase++] = pPhrase;
+ }
+ return pRet;
+}
+
+typedef struct TokenCtx TokenCtx;
+struct TokenCtx {
+ Fts5ExprPhrase *pPhrase;
+ int rc;
+};
+
+/*
+** Callback for tokenizing terms used by ParseTerm().
+*/
+static int fts5ParseTokenize(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int rc = SQLITE_OK;
+ const int SZALLOC = 8;
+ TokenCtx *pCtx = (TokenCtx*)pContext;
+ Fts5ExprPhrase *pPhrase = pCtx->pPhrase;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ /* If an error has already occurred, this is a no-op */
+ if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+
+ if( pPhrase && pPhrase->nTerm>0 && (tflags & FTS5_TOKEN_COLOCATED) ){
+ Fts5ExprTerm *pSyn;
+ sqlite3_int64 nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
+ pSyn = (Fts5ExprTerm*)sqlite3_malloc64(nByte);
+ if( pSyn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pSyn, 0, (size_t)nByte);
+ pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
+ memcpy(pSyn->zTerm, pToken, nToken);
+ pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
+ pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
+ }
+ }else{
+ Fts5ExprTerm *pTerm;
+ if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
+ Fts5ExprPhrase *pNew;
+ int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0);
+
+ pNew = (Fts5ExprPhrase*)sqlite3_realloc64(pPhrase,
+ sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew
+ );
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase));
+ pCtx->pPhrase = pPhrase = pNew;
+ pNew->nTerm = nNew - SZALLOC;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pTerm = &pPhrase->aTerm[pPhrase->nTerm++];
+ memset(pTerm, 0, sizeof(Fts5ExprTerm));
+ pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken);
+ }
+ }
+
+ pCtx->rc = rc;
+ return rc;
+}
+
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){
+ fts5ExprPhraseFree(pPhrase);
+}
+
+/*
+** Free the phrase object passed as the second argument.
+*/
+static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){
+ if( pNear ){
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ fts5ExprPhraseFree(pNear->apPhrase[i]);
+ }
+ sqlite3_free(pNear->pColset);
+ sqlite3_free(pNear);
+ }
+}
+
+static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){
+ assert( pParse->pExpr==0 );
+ pParse->pExpr = p;
+}
+
+static int parseGrowPhraseArray(Fts5Parse *pParse){
+ if( (pParse->nPhrase % 8)==0 ){
+ sqlite3_int64 nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8);
+ Fts5ExprPhrase **apNew;
+ apNew = (Fts5ExprPhrase**)sqlite3_realloc64(pParse->apPhrase, nByte);
+ if( apNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ return SQLITE_NOMEM;
+ }
+ pParse->apPhrase = apNew;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is called by the parser to process a string token. The
+** string may or may not be quoted. In any case it is tokenized and a
+** phrase object consisting of all tokens returned.
+*/
+static Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprPhrase *pAppend, /* Phrase to append to */
+ Fts5Token *pToken, /* String to tokenize */
+ int bPrefix /* True if there is a trailing "*" */
+){
+ Fts5Config *pConfig = pParse->pConfig;
+ TokenCtx sCtx; /* Context object passed to callback */
+ int rc; /* Tokenize return code */
+ char *z = 0;
+
+ memset(&sCtx, 0, sizeof(TokenCtx));
+ sCtx.pPhrase = pAppend;
+
+ rc = fts5ParseStringFromToken(pToken, &z);
+ if( rc==SQLITE_OK ){
+ int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_PREFIX : 0);
+ int n;
+ sqlite3Fts5Dequote(z);
+ n = (int)strlen(z);
+ rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
+ }
+ sqlite3_free(z);
+ if( rc || (rc = sCtx.rc) ){
+ pParse->rc = rc;
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ sCtx.pPhrase = 0;
+ }else{
+
+ if( pAppend==0 ){
+ if( parseGrowPhraseArray(pParse) ){
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ return 0;
+ }
+ pParse->nPhrase++;
+ }
+
+ if( sCtx.pPhrase==0 ){
+ /* This happens when parsing a token or quoted phrase that contains
+ ** no token characters at all. (e.g ... MATCH '""'). */
+ sCtx.pPhrase = sqlite3Fts5MallocZero(&pParse->rc, sizeof(Fts5ExprPhrase));
+ }else if( sCtx.pPhrase->nTerm ){
+ sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = (u8)bPrefix;
+ }
+ pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase;
+ }
+
+ return sCtx.pPhrase;
+}
+
+/*
+** Create a new FTS5 expression by cloning phrase iPhrase of the
+** expression passed as the second argument.
+*/
+static int sqlite3Fts5ExprClonePhrase(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ Fts5Expr **ppNew
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */
+ Fts5Expr *pNew = 0; /* Expression to return via *ppNew */
+ TokenCtx sCtx = {0,0}; /* Context object for fts5ParseTokenize */
+
+ pOrig = pExpr->apExprPhrase[iPhrase];
+ pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
+ if( rc==SQLITE_OK ){
+ pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNode));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot->pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ Fts5Colset *pColsetOrig = pOrig->pNode->pNear->pColset;
+ if( pColsetOrig ){
+ sqlite3_int64 nByte;
+ Fts5Colset *pColset;
+ nByte = sizeof(Fts5Colset) + (pColsetOrig->nCol-1) * sizeof(int);
+ pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&rc, nByte);
+ if( pColset ){
+ memcpy(pColset, pColsetOrig, (size_t)nByte);
+ }
+ pNew->pRoot->pNear->pColset = pColset;
+ }
+ }
+
+ if( pOrig->nTerm ){
+ int i; /* Used to iterate through phrase terms */
+ for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
+ int tflags = 0;
+ Fts5ExprTerm *p;
+ for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
+ const char *zTerm = p->zTerm;
+ rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
+ 0, 0);
+ tflags = FTS5_TOKEN_COLOCATED;
+ }
+ if( rc==SQLITE_OK ){
+ sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
+ sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst;
+ }
+ }
+ }else{
+ /* This happens when parsing a token or quoted phrase that contains
+ ** no token characters at all. (e.g ... MATCH '""'). */
+ sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase));
+ }
+
+ if( rc==SQLITE_OK && ALWAYS(sCtx.pPhrase) ){
+ /* All the allocations succeeded. Put the expression object together. */
+ pNew->pIndex = pExpr->pIndex;
+ pNew->pConfig = pExpr->pConfig;
+ pNew->nPhrase = 1;
+ pNew->apExprPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->nPhrase = 1;
+ sCtx.pPhrase->pNode = pNew->pRoot;
+
+ if( pOrig->nTerm==1
+ && pOrig->aTerm[0].pSynonym==0
+ && pOrig->aTerm[0].bFirst==0
+ ){
+ pNew->pRoot->eType = FTS5_TERM;
+ pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNew->pRoot->eType = FTS5_STRING;
+ pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
+ }
+ }else{
+ sqlite3Fts5ExprFree(pNew);
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ pNew = 0;
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+
+/*
+** Token pTok has appeared in a MATCH expression where the NEAR operator
+** is expected. If token pTok does not contain "NEAR", store an error
+** in the pParse object.
+*/
+static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){
+ if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p
+ );
+ }
+}
+
+static void sqlite3Fts5ParseSetDistance(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear,
+ Fts5Token *p
+){
+ if( pNear ){
+ int nNear = 0;
+ int i;
+ if( p->n ){
+ for(i=0; i<p->n; i++){
+ char c = (char)p->p[i];
+ if( c<'0' || c>'9' ){
+ sqlite3Fts5ParseError(
+ pParse, "expected integer, got \"%.*s\"", p->n, p->p
+ );
+ return;
+ }
+ nNear = nNear * 10 + (p->p[i] - '0');
+ }
+ }else{
+ nNear = FTS5_DEFAULT_NEARDIST;
+ }
+ pNear->nNear = nNear;
+ }
+}
+
+/*
+** The second argument passed to this function may be NULL, or it may be
+** an existing Fts5Colset object. This function returns a pointer to
+** a new colset object containing the contents of (p) with new value column
+** number iCol appended.
+**
+** If an OOM error occurs, store an error code in pParse and return NULL.
+** The old colset object (if any) is not freed in this case.
+*/
+static Fts5Colset *fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *p, /* Existing colset object */
+ int iCol /* New column to add to colset object */
+){
+ int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */
+ Fts5Colset *pNew; /* New colset object to return */
+
+ assert( pParse->rc==SQLITE_OK );
+ assert( iCol>=0 && iCol<pParse->pConfig->nCol );
+
+ pNew = sqlite3_realloc64(p, sizeof(Fts5Colset) + sizeof(int)*nCol);
+ if( pNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ int *aiCol = pNew->aiCol;
+ int i, j;
+ for(i=0; i<nCol; i++){
+ if( aiCol[i]==iCol ) return pNew;
+ if( aiCol[i]>iCol ) break;
+ }
+ for(j=nCol; j>i; j--){
+ aiCol[j] = aiCol[j-1];
+ }
+ aiCol[i] = iCol;
+ pNew->nCol = nCol+1;
+
+#ifndef NDEBUG
+ /* Check that the array is in order and contains no duplicate entries. */
+ for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] );
+#endif
+ }
+
+ return pNew;
+}
+
+/*
+** Allocate and return an Fts5Colset object specifying the inverse of
+** the colset passed as the second argument. Free the colset passed
+** as the second argument before returning.
+*/
+static Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse *pParse, Fts5Colset *p){
+ Fts5Colset *pRet;
+ int nCol = pParse->pConfig->nCol;
+
+ pRet = (Fts5Colset*)sqlite3Fts5MallocZero(&pParse->rc,
+ sizeof(Fts5Colset) + sizeof(int)*nCol
+ );
+ if( pRet ){
+ int i;
+ int iOld = 0;
+ for(i=0; i<nCol; i++){
+ if( iOld>=p->nCol || p->aiCol[iOld]!=i ){
+ pRet->aiCol[pRet->nCol++] = i;
+ }else{
+ iOld++;
+ }
+ }
+ }
+
+ sqlite3_free(p);
+ return pRet;
+}
+
+static Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *pColset, /* Existing colset object */
+ Fts5Token *p
+){
+ Fts5Colset *pRet = 0;
+ int iCol;
+ char *z; /* Dequoted copy of token p */
+
+ z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n);
+ if( pParse->rc==SQLITE_OK ){
+ Fts5Config *pConfig = pParse->pConfig;
+ sqlite3Fts5Dequote(z);
+ for(iCol=0; iCol<pConfig->nCol; iCol++){
+ if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break;
+ }
+ if( iCol==pConfig->nCol ){
+ sqlite3Fts5ParseError(pParse, "no such column: %s", z);
+ }else{
+ pRet = fts5ParseColset(pParse, pColset, iCol);
+ }
+ sqlite3_free(z);
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3_free(pColset);
+ }
+
+ return pRet;
+}
+
+/*
+** If argument pOrig is NULL, or if (*pRc) is set to anything other than
+** SQLITE_OK when this function is called, NULL is returned.
+**
+** Otherwise, a copy of (*pOrig) is made into memory obtained from
+** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation
+** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned.
+*/
+static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){
+ Fts5Colset *pRet;
+ if( pOrig ){
+ sqlite3_int64 nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int);
+ pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pRet ){
+ memcpy(pRet, pOrig, (size_t)nByte);
+ }
+ }else{
+ pRet = 0;
+ }
+ return pRet;
+}
+
+/*
+** Remove from colset pColset any columns that are not also in colset pMerge.
+*/
+static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){
+ int iIn = 0; /* Next input in pColset */
+ int iMerge = 0; /* Next input in pMerge */
+ int iOut = 0; /* Next output slot in pColset */
+
+ while( iIn<pColset->nCol && iMerge<pMerge->nCol ){
+ int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge];
+ if( iDiff==0 ){
+ pColset->aiCol[iOut++] = pMerge->aiCol[iMerge];
+ iMerge++;
+ iIn++;
+ }else if( iDiff>0 ){
+ iMerge++;
+ }else{
+ iIn++;
+ }
+ }
+ pColset->nCol = iOut;
+}
+
+/*
+** Recursively apply colset pColset to expression node pNode and all of
+** its decendents. If (*ppFree) is not NULL, it contains a spare copy
+** of pColset. This function may use the spare copy and set (*ppFree) to
+** zero, or it may create copies of pColset using fts5CloneColset().
+*/
+static void fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pNode,
+ Fts5Colset *pColset,
+ Fts5Colset **ppFree
+){
+ if( pParse->rc==SQLITE_OK ){
+ assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING
+ || pNode->eType==FTS5_AND || pNode->eType==FTS5_OR
+ || pNode->eType==FTS5_NOT || pNode->eType==FTS5_EOF
+ );
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->pColset ){
+ fts5MergeColset(pNear->pColset, pColset);
+ if( pNear->pColset->nCol==0 ){
+ pNode->eType = FTS5_EOF;
+ pNode->xNext = 0;
+ }
+ }else if( *ppFree ){
+ pNear->pColset = pColset;
+ *ppFree = 0;
+ }else{
+ pNear->pColset = fts5CloneColset(&pParse->rc, pColset);
+ }
+ }else{
+ int i;
+ assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 );
+ for(i=0; i<pNode->nChild; i++){
+ fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree);
+ }
+ }
+ }
+}
+
+/*
+** Apply colset pColset to expression node pExpr and all of its descendents.
+*/
+static void sqlite3Fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pExpr,
+ Fts5Colset *pColset
+){
+ Fts5Colset *pFree = pColset;
+ if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5: column queries are not supported (detail=none)"
+ );
+ }else{
+ fts5ParseSetColset(pParse, pExpr, pColset, &pFree);
+ }
+ sqlite3_free(pFree);
+}
+
+static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
+ switch( pNode->eType ){
+ case FTS5_STRING: {
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1
+ && pNear->apPhrase[0]->aTerm[0].pSynonym==0
+ && pNear->apPhrase[0]->aTerm[0].bFirst==0
+ ){
+ pNode->eType = FTS5_TERM;
+ pNode->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNode->xNext = fts5ExprNodeNext_STRING;
+ }
+ break;
+ };
+
+ case FTS5_OR: {
+ pNode->xNext = fts5ExprNodeNext_OR;
+ break;
+ };
+
+ case FTS5_AND: {
+ pNode->xNext = fts5ExprNodeNext_AND;
+ break;
+ };
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ pNode->xNext = fts5ExprNodeNext_NOT;
+ break;
+ };
+ }
+}
+
+static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
+ if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
+ int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
+ memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
+ p->nChild += pSub->nChild;
+ sqlite3_free(pSub);
+ }else{
+ p->apChild[p->nChild++] = pSub;
+ }
+}
+
+/*
+** This function is used when parsing LIKE or GLOB patterns against
+** trigram indexes that specify either detail=column or detail=none.
+** It converts a phrase:
+**
+** abc + def + ghi
+**
+** into an AND tree:
+**
+** abc AND def AND ghi
+*/
+static Fts5ExprNode *fts5ParsePhraseToAnd(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear
+){
+ int nTerm = pNear->apPhrase[0]->nTerm;
+ int ii;
+ int nByte;
+ Fts5ExprNode *pRet;
+
+ assert( pNear->nPhrase==1 );
+ assert( pParse->bPhraseToAnd );
+
+ nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+ if( pRet ){
+ pRet->eType = FTS5_AND;
+ pRet->nChild = nTerm;
+ fts5ExprAssignXNext(pRet);
+ pParse->nPhrase--;
+ for(ii=0; ii<nTerm; ii++){
+ Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero(
+ &pParse->rc, sizeof(Fts5ExprPhrase)
+ );
+ if( pPhrase ){
+ if( parseGrowPhraseArray(pParse) ){
+ fts5ExprPhraseFree(pPhrase);
+ }else{
+ pParse->apPhrase[pParse->nPhrase++] = pPhrase;
+ pPhrase->nTerm = 1;
+ pPhrase->aTerm[0].zTerm = sqlite3Fts5Strndup(
+ &pParse->rc, pNear->apPhrase[0]->aTerm[ii].zTerm, -1
+ );
+ pRet->apChild[ii] = sqlite3Fts5ParseNode(pParse, FTS5_STRING,
+ 0, 0, sqlite3Fts5ParseNearset(pParse, 0, pPhrase)
+ );
+ }
+ }
+ }
+
+ if( pParse->rc ){
+ sqlite3Fts5ParseNodeFree(pRet);
+ pRet = 0;
+ }else{
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Allocate and return a new expression object. If anything goes wrong (i.e.
+** OOM error), leave an error code in pParse and return NULL.
+*/
+static Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse, /* Parse context */
+ int eType, /* FTS5_STRING, AND, OR or NOT */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight, /* Right hand child expression */
+ Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */
+){
+ Fts5ExprNode *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ int nChild = 0; /* Number of children of returned node */
+ sqlite3_int64 nByte; /* Bytes of space to allocate for this node */
+
+ assert( (eType!=FTS5_STRING && !pNear)
+ || (eType==FTS5_STRING && !pLeft && !pRight)
+ );
+ if( eType==FTS5_STRING && pNear==0 ) return 0;
+ if( eType!=FTS5_STRING && pLeft==0 ) return pRight;
+ if( eType!=FTS5_STRING && pRight==0 ) return pLeft;
+
+ if( eType==FTS5_STRING
+ && pParse->bPhraseToAnd
+ && pNear->apPhrase[0]->nTerm>1
+ ){
+ pRet = fts5ParsePhraseToAnd(pParse, pNear);
+ }else{
+ if( eType==FTS5_NOT ){
+ nChild = 2;
+ }else if( eType==FTS5_AND || eType==FTS5_OR ){
+ nChild = 2;
+ if( pLeft->eType==eType ) nChild += pLeft->nChild-1;
+ if( pRight->eType==eType ) nChild += pRight->nChild-1;
+ }
+
+ nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+
+ if( pRet ){
+ pRet->eType = eType;
+ pRet->pNear = pNear;
+ fts5ExprAssignXNext(pRet);
+ if( eType==FTS5_STRING ){
+ int iPhrase;
+ for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
+ pNear->apPhrase[iPhrase]->pNode = pRet;
+ if( pNear->apPhrase[iPhrase]->nTerm==0 ){
+ pRet->xNext = 0;
+ pRet->eType = FTS5_EOF;
+ }
+ }
+
+ if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ if( pNear->nPhrase!=1
+ || pPhrase->nTerm>1
+ || (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst)
+ ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5: %s queries are not supported (detail!=full)",
+ pNear->nPhrase==1 ? "phrase": "NEAR"
+ );
+ sqlite3_free(pRet);
+ pRet = 0;
+ }
+ }
+ }else{
+ fts5ExprAddChildren(pRet, pLeft);
+ fts5ExprAddChildren(pRet, pRight);
+ }
+ }
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ return pRet;
+}
+
+static Fts5ExprNode *sqlite3Fts5ParseImplicitAnd(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight /* Right hand child expression */
+){
+ Fts5ExprNode *pRet = 0;
+ Fts5ExprNode *pPrev;
+
+ if( pParse->rc ){
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ }else{
+
+ assert( pLeft->eType==FTS5_STRING
+ || pLeft->eType==FTS5_TERM
+ || pLeft->eType==FTS5_EOF
+ || pLeft->eType==FTS5_AND
+ );
+ assert( pRight->eType==FTS5_STRING
+ || pRight->eType==FTS5_TERM
+ || pRight->eType==FTS5_EOF
+ );
+
+ if( pLeft->eType==FTS5_AND ){
+ pPrev = pLeft->apChild[pLeft->nChild-1];
+ }else{
+ pPrev = pLeft;
+ }
+ assert( pPrev->eType==FTS5_STRING
+ || pPrev->eType==FTS5_TERM
+ || pPrev->eType==FTS5_EOF
+ );
+
+ if( pRight->eType==FTS5_EOF ){
+ assert( pParse->apPhrase[pParse->nPhrase-1]==pRight->pNear->apPhrase[0] );
+ sqlite3Fts5ParseNodeFree(pRight);
+ pRet = pLeft;
+ pParse->nPhrase--;
+ }
+ else if( pPrev->eType==FTS5_EOF ){
+ Fts5ExprPhrase **ap;
+
+ if( pPrev==pLeft ){
+ pRet = pRight;
+ }else{
+ pLeft->apChild[pLeft->nChild-1] = pRight;
+ pRet = pLeft;
+ }
+
+ ap = &pParse->apPhrase[pParse->nPhrase-1-pRight->pNear->nPhrase];
+ assert( ap[0]==pPrev->pNear->apPhrase[0] );
+ memmove(ap, &ap[1], sizeof(Fts5ExprPhrase*)*pRight->pNear->nPhrase);
+ pParse->nPhrase--;
+
+ sqlite3Fts5ParseNodeFree(pPrev);
+ }
+ else{
+ pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0);
+ }
+ }
+
+ return pRet;
+}
+
+#ifdef SQLITE_TEST
+static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
+ sqlite3_int64 nByte = 0;
+ Fts5ExprTerm *p;
+ char *zQuoted;
+
+ /* Determine the maximum amount of space required. */
+ for(p=pTerm; p; p=p->pSynonym){
+ nByte += (int)strlen(pTerm->zTerm) * 2 + 3 + 2;
+ }
+ zQuoted = sqlite3_malloc64(nByte);
+
+ if( zQuoted ){
+ int i = 0;
+ for(p=pTerm; p; p=p->pSynonym){
+ char *zIn = p->zTerm;
+ zQuoted[i++] = '"';
+ while( *zIn ){
+ if( *zIn=='"' ) zQuoted[i++] = '"';
+ zQuoted[i++] = *zIn++;
+ }
+ zQuoted[i++] = '"';
+ if( p->pSynonym ) zQuoted[i++] = '|';
+ }
+ if( pTerm->bPrefix ){
+ zQuoted[i++] = ' ';
+ zQuoted[i++] = '*';
+ }
+ zQuoted[i++] = '\0';
+ }
+ return zQuoted;
+}
+
+static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){
+ char *zNew;
+ va_list ap;
+ va_start(ap, zFmt);
+ zNew = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zApp && zNew ){
+ char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew);
+ sqlite3_free(zNew);
+ zNew = zNew2;
+ }
+ sqlite3_free(zApp);
+ return zNew;
+}
+
+/*
+** Compose a tcl-readable representation of expression pExpr. Return a
+** pointer to a buffer containing that representation. It is the
+** responsibility of the caller to at some point free the buffer using
+** sqlite3_free().
+*/
+static char *fts5ExprPrintTcl(
+ Fts5Config *pConfig,
+ const char *zNearsetCmd,
+ Fts5ExprNode *pExpr
+){
+ char *zRet = 0;
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd);
+ if( zRet==0 ) return 0;
+ if( pNear->pColset ){
+ int *aiCol = pNear->pColset->aiCol;
+ int nCol = pNear->pColset->nCol;
+ if( nCol==1 ){
+ zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]);
+ }else{
+ zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]);
+ for(i=1; i<pNear->pColset->nCol; i++){
+ zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]);
+ }
+ zRet = fts5PrintfAppend(zRet, "} ");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ zRet = fts5PrintfAppend(zRet, "--");
+ if( zRet==0 ) return 0;
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+
+ zRet = fts5PrintfAppend(zRet, " {");
+ for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = pPhrase->aTerm[iTerm].zTerm;
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
+ if( pPhrase->aTerm[iTerm].bPrefix ){
+ zRet = fts5PrintfAppend(zRet, "*");
+ }
+ }
+
+ if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = "AND"; break;
+ case FTS5_NOT: zOp = "NOT"; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = "OR";
+ break;
+ }
+
+ zRet = sqlite3_mprintf("%s", zOp);
+ for(i=0; zRet && i<pExpr->nChild; i++){
+ char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]);
+ if( !z ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ zRet = fts5PrintfAppend(zRet, " [%z]", z);
+ }
+ }
+ }
+
+ return zRet;
+}
+
+static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){
+ char *zRet = 0;
+ if( pExpr->eType==0 ){
+ return sqlite3_mprintf("\"\"");
+ }else
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ if( pNear->pColset ){
+ int ii;
+ Fts5Colset *pColset = pNear->pColset;
+ if( pColset->nCol>1 ) zRet = fts5PrintfAppend(zRet, "{");
+ for(ii=0; ii<pColset->nCol; ii++){
+ zRet = fts5PrintfAppend(zRet, "%s%s",
+ pConfig->azCol[pColset->aiCol[ii]], ii==pColset->nCol-1 ? "" : " "
+ );
+ }
+ if( zRet ){
+ zRet = fts5PrintfAppend(zRet, "%s : ", pColset->nCol>1 ? "}" : "");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "NEAR(");
+ if( zRet==0 ) return 0;
+ }
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( i!=0 ){
+ zRet = fts5PrintfAppend(zRet, " ");
+ if( zRet==0 ) return 0;
+ }
+ for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]);
+ if( zTerm ){
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm);
+ sqlite3_free(zTerm);
+ }
+ if( zTerm==0 || zRet==0 ){
+ sqlite3_free(zRet);
+ return 0;
+ }
+ }
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = " AND "; break;
+ case FTS5_NOT: zOp = " NOT "; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = " OR ";
+ break;
+ }
+
+ for(i=0; i<pExpr->nChild; i++){
+ char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]);
+ if( z==0 ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ int e = pExpr->apChild[i]->eType;
+ int b = (e!=FTS5_STRING && e!=FTS5_TERM && e!=FTS5_EOF);
+ zRet = fts5PrintfAppend(zRet, "%s%s%z%s",
+ (i==0 ? "" : zOp),
+ (b?"(":""), z, (b?")":"")
+ );
+ }
+ if( zRet==0 ) break;
+ }
+ }
+
+ return zRet;
+}
+
+/*
+** The implementation of user-defined scalar functions fts5_expr() (bTcl==0)
+** and fts5_expr_tcl() (bTcl!=0).
+*/
+static void fts5ExprFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal, /* Function arguments */
+ int bTcl
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ const char *zExpr = 0;
+ char *zErr = 0;
+ Fts5Expr *pExpr = 0;
+ int rc;
+ int i;
+
+ const char **azConfig; /* Array of arguments for Fts5Config */
+ const char *zNearsetCmd = "nearset";
+ int nConfig; /* Size of azConfig[] */
+ Fts5Config *pConfig = 0;
+ int iArg = 1;
+
+ if( nArg<1 ){
+ zErr = sqlite3_mprintf("wrong number of arguments to function %s",
+ bTcl ? "fts5_expr_tcl" : "fts5_expr"
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+
+ if( bTcl && nArg>1 ){
+ zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]);
+ iArg = 2;
+ }
+
+ nConfig = 3 + (nArg-iArg);
+ azConfig = (const char**)sqlite3_malloc64(sizeof(char*) * nConfig);
+ if( azConfig==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return;
+ }
+ azConfig[0] = 0;
+ azConfig[1] = "main";
+ azConfig[2] = "tbl";
+ for(i=3; iArg<nArg; iArg++){
+ const char *z = (const char*)sqlite3_value_text(apVal[iArg]);
+ azConfig[i++] = (z ? z : "");
+ }
+
+ zExpr = (const char*)sqlite3_value_text(apVal[0]);
+ if( zExpr==0 ) zExpr = "";
+
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprNew(pConfig, 0, pConfig->nCol, zExpr, &pExpr, &zErr);
+ }
+ if( rc==SQLITE_OK ){
+ char *zText;
+ if( pExpr->pRoot->xNext==0 ){
+ zText = sqlite3_mprintf("");
+ }else if( bTcl ){
+ zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
+ }else{
+ zText = fts5ExprPrint(pConfig, pExpr->pRoot);
+ }
+ if( zText==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zText);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ if( zErr ){
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ }
+ sqlite3_free((void *)azConfig);
+ sqlite3Fts5ConfigFree(pConfig);
+ sqlite3Fts5ExprFree(pExpr);
+}
+
+static void fts5ExprFunctionHr(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 0);
+}
+static void fts5ExprFunctionTcl(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 1);
+}
+
+/*
+** The implementation of an SQLite user-defined-function that accepts a
+** single integer as an argument. If the integer is an alpha-numeric
+** unicode code point, 1 is returned. Otherwise 0.
+*/
+static void fts5ExprIsAlnum(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ int iCode;
+ u8 aArr[32];
+ if( nArg!=1 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_isalnum", -1
+ );
+ return;
+ }
+ memset(aArr, 0, sizeof(aArr));
+ sqlite3Fts5UnicodeCatParse("L*", aArr);
+ sqlite3Fts5UnicodeCatParse("N*", aArr);
+ sqlite3Fts5UnicodeCatParse("Co", aArr);
+ iCode = sqlite3_value_int(apVal[0]);
+ sqlite3_result_int(pCtx, aArr[sqlite3Fts5UnicodeCategory((u32)iCode)]);
+}
+
+static void fts5ExprFold(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ if( nArg!=1 && nArg!=2 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_fold", -1
+ );
+ }else{
+ int iCode;
+ int bRemoveDiacritics = 0;
+ iCode = sqlite3_value_int(apVal[0]);
+ if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
+ sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
+ }
+}
+#endif /* ifdef SQLITE_TEST */
+
+/*
+** This is called during initialization to register the fts5_expr() scalar
+** UDF with the SQLite handle passed as the only argument.
+*/
+static int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
+#ifdef SQLITE_TEST
+ struct Fts5ExprFunc {
+ const char *z;
+ void (*x)(sqlite3_context*,int,sqlite3_value**);
+ } aFunc[] = {
+ { "fts5_expr", fts5ExprFunctionHr },
+ { "fts5_expr_tcl", fts5ExprFunctionTcl },
+ { "fts5_isalnum", fts5ExprIsAlnum },
+ { "fts5_fold", fts5ExprFold },
+ };
+ int i;
+ int rc = SQLITE_OK;
+ void *pCtx = (void*)pGlobal;
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
+ struct Fts5ExprFunc *p = &aFunc[i];
+ rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
+ }
+#else
+ int rc = SQLITE_OK;
+ UNUSED_PARAM2(pGlobal,db);
+#endif
+
+ /* Avoid warnings indicating that sqlite3Fts5ParserTrace() and
+ ** sqlite3Fts5ParserFallback() are unused */
+#ifndef NDEBUG
+ (void)sqlite3Fts5ParserTrace;
+#endif
+ (void)sqlite3Fts5ParserFallback;
+
+ return rc;
+}
+
+/*
+** Return the number of phrases in expression pExpr.
+*/
+static int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){
+ return (pExpr ? pExpr->nPhrase : 0);
+}
+
+/*
+** Return the number of terms in the iPhrase'th phrase in pExpr.
+*/
+static int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){
+ if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0;
+ return pExpr->apExprPhrase[iPhrase]->nTerm;
+}
+
+/*
+** This function is used to access the current position list for phrase
+** iPhrase.
+*/
+static int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){
+ int nRet;
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){
+ *pa = pPhrase->poslist.p;
+ nRet = pPhrase->poslist.n;
+ }else{
+ *pa = 0;
+ nRet = 0;
+ }
+ return nRet;
+}
+
+struct Fts5PoslistPopulator {
+ Fts5PoslistWriter writer;
+ int bOk; /* True if ok to populate */
+ int bMiss;
+};
+
+/*
+** Clear the position lists associated with all phrases in the expression
+** passed as the first argument. Argument bLive is true if the expression
+** might be pointing to a real entry, otherwise it has just been reset.
+**
+** At present this function is only used for detail=col and detail=none
+** fts5 tables. This implies that all phrases must be at most 1 token
+** in size, as phrase matches are not supported without detail=full.
+*/
+static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
+ Fts5PoslistPopulator *pRet;
+ pRet = sqlite3_malloc64(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ if( pRet ){
+ int i;
+ memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ assert( pExpr->apExprPhrase[i]->nTerm<=1 );
+ if( bLive &&
+ (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
+ ){
+ pRet[i].bMiss = 1;
+ }else{
+ pBuf->n = 0;
+ }
+ }
+ }
+ return pRet;
+}
+
+struct Fts5ExprCtx {
+ Fts5Expr *pExpr;
+ Fts5PoslistPopulator *aPopulator;
+ i64 iOff;
+};
+typedef struct Fts5ExprCtx Fts5ExprCtx;
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static int fts5ExprPopulatePoslistsCb(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Byte offset of token within input text */
+ int iUnused2 /* Byte offset of end of token within input text */
+){
+ Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
+ Fts5Expr *pExpr = p->pExpr;
+ int i;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprTerm *pTerm;
+ if( p->aPopulator[i].bOk==0 ) continue;
+ for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ int nTerm = (int)strlen(pTerm->zTerm);
+ if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix))
+ && memcmp(pTerm->zTerm, pToken, nTerm)==0
+ ){
+ int rc = sqlite3Fts5PoslistWriterAppend(
+ &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
+ );
+ if( rc ) return rc;
+ break;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config *pConfig,
+ Fts5Expr *pExpr,
+ Fts5PoslistPopulator *aPopulator,
+ int iCol,
+ const char *z, int n
+){
+ int i;
+ Fts5ExprCtx sCtx;
+ sCtx.pExpr = pExpr;
+ sCtx.aPopulator = aPopulator;
+ sCtx.iOff = (((i64)iCol) << 32) - 1;
+
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ Fts5Colset *pColset = pNode->pNear->pColset;
+ if( (pColset && 0==fts5ExprColsetTest(pColset, iCol))
+ || aPopulator[i].bMiss
+ ){
+ aPopulator[i].bOk = 0;
+ }else{
+ aPopulator[i].bOk = 1;
+ }
+ }
+
+ return sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
+ );
+}
+
+static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
+ pNode->pNear->apPhrase[0]->poslist.n = 0;
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprClearPoslists(pNode->apChild[i]);
+ }
+ }
+}
+
+static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
+ pNode->iRowid = iRowid;
+ pNode->bEof = 0;
+ switch( pNode->eType ){
+ case FTS5_TERM:
+ case FTS5_STRING:
+ return (pNode->pNear->apPhrase[0]->poslist.n>0);
+
+ case FTS5_AND: {
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ }
+ break;
+ }
+
+ case FTS5_OR: {
+ int i;
+ int bRet = 0;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
+ bRet = 1;
+ }
+ }
+ return bRet;
+ }
+
+ default: {
+ assert( pNode->eType==FTS5_NOT );
+ if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
+ || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
+ ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ break;
+ }
+ }
+ return 1;
+}
+
+static void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
+ fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
+}
+
+/*
+** This function is only called for detail=columns tables.
+*/
+static int sqlite3Fts5ExprPhraseCollist(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ const u8 **ppCollist,
+ int *pnCollist
+){
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ int rc = SQLITE_OK;
+
+ assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
+ assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+
+ if( pNode->bEof==0
+ && pNode->iRowid==pExpr->pRoot->iRowid
+ && pPhrase->poslist.n>0
+ ){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
+ if( pTerm->pSynonym ){
+ Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
+ rc = fts5ExprSynonymList(
+ pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
+ );
+ }else{
+ *ppCollist = pPhrase->aTerm[0].pIter->pData;
+ *pnCollist = pPhrase->aTerm[0].pIter->nData;
+ }
+ }else{
+ *ppCollist = 0;
+ *pnCollist = 0;
+ }
+
+ return rc;
+}
+
+/*
+** 2014 August 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+typedef struct Fts5HashEntry Fts5HashEntry;
+
+/*
+** This file contains the implementation of an in-memory hash table used
+** to accumuluate "term -> doclist" content before it is flused to a level-0
+** segment.
+*/
+
+
+struct Fts5Hash {
+ int eDetail; /* Copy of Fts5Config.eDetail */
+ int *pnByte; /* Pointer to bytes counter */
+ int nEntry; /* Number of entries currently in hash */
+ int nSlot; /* Size of aSlot[] array */
+ Fts5HashEntry *pScan; /* Current ordered scan item */
+ Fts5HashEntry **aSlot; /* Array of hash slots */
+};
+
+/*
+** Each entry in the hash table is represented by an object of the
+** following type. Each object, its key (a nul-terminated string) and
+** its current data are stored in a single memory allocation. The
+** key immediately follows the object in memory. The position list
+** data immediately follows the key data in memory.
+**
+** The data that follows the key is in a similar, but not identical format
+** to the doclist data stored in the database. It is:
+**
+** * Rowid, as a varint
+** * Position list, without 0x00 terminator.
+** * Size of previous position list and rowid, as a 4 byte
+** big-endian integer.
+**
+** iRowidOff:
+** Offset of last rowid written to data area. Relative to first byte of
+** structure.
+**
+** nData:
+** Bytes of data written since iRowidOff.
+*/
+struct Fts5HashEntry {
+ Fts5HashEntry *pHashNext; /* Next hash entry with same hash-key */
+ Fts5HashEntry *pScanNext; /* Next entry in sorted order */
+
+ int nAlloc; /* Total size of allocation */
+ int iSzPoslist; /* Offset of space for 4-byte poslist size */
+ int nData; /* Total bytes of data (incl. structure) */
+ int nKey; /* Length of key in bytes */
+ u8 bDel; /* Set delete-flag @ iSzPoslist */
+ u8 bContent; /* Set content-flag (detail=none mode) */
+ i16 iCol; /* Column of last value written */
+ int iPos; /* Position of last value written */
+ i64 iRowid; /* Rowid of last value written */
+};
+
+/*
+** Eqivalent to:
+**
+** char *fts5EntryKey(Fts5HashEntry *pEntry){ return zKey; }
+*/
+#define fts5EntryKey(p) ( ((char *)(&(p)[1])) )
+
+
+/*
+** Allocate a new hash table.
+*/
+static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
+ int rc = SQLITE_OK;
+ Fts5Hash *pNew;
+
+ *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_int64 nByte;
+ memset(pNew, 0, sizeof(Fts5Hash));
+ pNew->pnByte = pnByte;
+ pNew->eDetail = pConfig->eDetail;
+
+ pNew->nSlot = 1024;
+ nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
+ pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc64(nByte);
+ if( pNew->aSlot==0 ){
+ sqlite3_free(pNew);
+ *ppNew = 0;
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew->aSlot, 0, (size_t)nByte);
+ }
+ }
+ return rc;
+}
+
+/*
+** Free a hash table object.
+*/
+static void sqlite3Fts5HashFree(Fts5Hash *pHash){
+ if( pHash ){
+ sqlite3Fts5HashClear(pHash);
+ sqlite3_free(pHash->aSlot);
+ sqlite3_free(pHash);
+ }
+}
+
+/*
+** Empty (but do not delete) a hash table.
+*/
+static void sqlite3Fts5HashClear(Fts5Hash *pHash){
+ int i;
+ for(i=0; i<pHash->nSlot; i++){
+ Fts5HashEntry *pNext;
+ Fts5HashEntry *pSlot;
+ for(pSlot=pHash->aSlot[i]; pSlot; pSlot=pNext){
+ pNext = pSlot->pHashNext;
+ sqlite3_free(pSlot);
+ }
+ }
+ memset(pHash->aSlot, 0, pHash->nSlot * sizeof(Fts5HashEntry*));
+ pHash->nEntry = 0;
+}
+
+static unsigned int fts5HashKey(int nSlot, const u8 *p, int n){
+ int i;
+ unsigned int h = 13;
+ for(i=n-1; i>=0; i--){
+ h = (h << 3) ^ h ^ p[i];
+ }
+ return (h % nSlot);
+}
+
+static unsigned int fts5HashKey2(int nSlot, u8 b, const u8 *p, int n){
+ int i;
+ unsigned int h = 13;
+ for(i=n-1; i>=0; i--){
+ h = (h << 3) ^ h ^ p[i];
+ }
+ h = (h << 3) ^ h ^ b;
+ return (h % nSlot);
+}
+
+/*
+** Resize the hash table by doubling the number of slots.
+*/
+static int fts5HashResize(Fts5Hash *pHash){
+ int nNew = pHash->nSlot*2;
+ int i;
+ Fts5HashEntry **apNew;
+ Fts5HashEntry **apOld = pHash->aSlot;
+
+ apNew = (Fts5HashEntry**)sqlite3_malloc64(nNew*sizeof(Fts5HashEntry*));
+ if( !apNew ) return SQLITE_NOMEM;
+ memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));
+
+ for(i=0; i<pHash->nSlot; i++){
+ while( apOld[i] ){
+ unsigned int iHash;
+ Fts5HashEntry *p = apOld[i];
+ apOld[i] = p->pHashNext;
+ iHash = fts5HashKey(nNew, (u8*)fts5EntryKey(p),
+ (int)strlen(fts5EntryKey(p)));
+ p->pHashNext = apNew[iHash];
+ apNew[iHash] = p;
+ }
+ }
+
+ sqlite3_free(apOld);
+ pHash->nSlot = nNew;
+ pHash->aSlot = apNew;
+ return SQLITE_OK;
+}
+
+static int fts5HashAddPoslistSize(
+ Fts5Hash *pHash,
+ Fts5HashEntry *p,
+ Fts5HashEntry *p2
+){
+ int nRet = 0;
+ if( p->iSzPoslist ){
+ u8 *pPtr = p2 ? (u8*)p2 : (u8*)p;
+ int nData = p->nData;
+ if( pHash->eDetail==FTS5_DETAIL_NONE ){
+ assert( nData==p->iSzPoslist );
+ if( p->bDel ){
+ pPtr[nData++] = 0x00;
+ if( p->bContent ){
+ pPtr[nData++] = 0x00;
+ }
+ }
+ }else{
+ int nSz = (nData - p->iSzPoslist - 1); /* Size in bytes */
+ int nPos = nSz*2 + p->bDel; /* Value of nPos field */
+
+ assert( p->bDel==0 || p->bDel==1 );
+ if( nPos<=127 ){
+ pPtr[p->iSzPoslist] = (u8)nPos;
+ }else{
+ int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
+ memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
+ sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
+ nData += (nByte-1);
+ }
+ }
+
+ nRet = nData - p->nData;
+ if( p2==0 ){
+ p->iSzPoslist = 0;
+ p->bDel = 0;
+ p->bContent = 0;
+ p->nData = nData;
+ }
+ }
+ return nRet;
+}
+
+/*
+** Add an entry to the in-memory hash table. The key is the concatenation
+** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos).
+**
+** (bByte || pToken) -> (iRowid,iCol,iPos)
+**
+** Or, if iCol is negative, then the value is a delete marker.
+*/
+static int sqlite3Fts5HashWrite(
+ Fts5Hash *pHash,
+ i64 iRowid, /* Rowid for this entry */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ char bByte, /* First byte of token */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ unsigned int iHash;
+ Fts5HashEntry *p;
+ u8 *pPtr;
+ int nIncr = 0; /* Amount to increment (*pHash->pnByte) by */
+ int bNew; /* If non-delete entry should be written */
+
+ bNew = (pHash->eDetail==FTS5_DETAIL_FULL);
+
+ /* Attempt to locate an existing hash entry */
+ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
+ for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
+ char *zKey = fts5EntryKey(p);
+ if( zKey[0]==bByte
+ && p->nKey==nToken
+ && memcmp(&zKey[1], pToken, nToken)==0
+ ){
+ break;
+ }
+ }
+
+ /* If an existing hash entry cannot be found, create a new one. */
+ if( p==0 ){
+ /* Figure out how much space to allocate */
+ char *zKey;
+ sqlite3_int64 nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64;
+ if( nByte<128 ) nByte = 128;
+
+ /* Grow the Fts5Hash.aSlot[] array if necessary. */
+ if( (pHash->nEntry*2)>=pHash->nSlot ){
+ int rc = fts5HashResize(pHash);
+ if( rc!=SQLITE_OK ) return rc;
+ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
+ }
+
+ /* Allocate new Fts5HashEntry and add it to the hash table. */
+ p = (Fts5HashEntry*)sqlite3_malloc64(nByte);
+ if( !p ) return SQLITE_NOMEM;
+ memset(p, 0, sizeof(Fts5HashEntry));
+ p->nAlloc = (int)nByte;
+ zKey = fts5EntryKey(p);
+ zKey[0] = bByte;
+ memcpy(&zKey[1], pToken, nToken);
+ assert( iHash==fts5HashKey(pHash->nSlot, (u8*)zKey, nToken+1) );
+ p->nKey = nToken;
+ zKey[nToken+1] = '\0';
+ p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry);
+ p->pHashNext = pHash->aSlot[iHash];
+ pHash->aSlot[iHash] = p;
+ pHash->nEntry++;
+
+ /* Add the first rowid field to the hash-entry */
+ p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
+ p->iRowid = iRowid;
+
+ p->iSzPoslist = p->nData;
+ if( pHash->eDetail!=FTS5_DETAIL_NONE ){
+ p->nData += 1;
+ p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
+ }
+
+ }else{
+
+ /* Appending to an existing hash-entry. Check that there is enough
+ ** space to append the largest possible new entry. Worst case scenario
+ ** is:
+ **
+ ** + 9 bytes for a new rowid,
+ ** + 4 byte reserved for the "poslist size" varint.
+ ** + 1 byte for a "new column" byte,
+ ** + 3 bytes for a new column number (16-bit max) as a varint,
+ ** + 5 bytes for the new position offset (32-bit max).
+ */
+ if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
+ sqlite3_int64 nNew = p->nAlloc * 2;
+ Fts5HashEntry *pNew;
+ Fts5HashEntry **pp;
+ pNew = (Fts5HashEntry*)sqlite3_realloc64(p, nNew);
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->nAlloc = (int)nNew;
+ for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
+ *pp = pNew;
+ p = pNew;
+ }
+ nIncr -= p->nData;
+ }
+ assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) );
+
+ pPtr = (u8*)p;
+
+ /* If this is a new rowid, append the 4-byte size field for the previous
+ ** entry, and the new rowid for this entry. */
+ if( iRowid!=p->iRowid ){
+ u64 iDiff = (u64)iRowid - (u64)p->iRowid;
+ fts5HashAddPoslistSize(pHash, p, 0);
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iDiff);
+ p->iRowid = iRowid;
+ bNew = 1;
+ p->iSzPoslist = p->nData;
+ if( pHash->eDetail!=FTS5_DETAIL_NONE ){
+ p->nData += 1;
+ p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
+ p->iPos = 0;
+ }
+ }
+
+ if( iCol>=0 ){
+ if( pHash->eDetail==FTS5_DETAIL_NONE ){
+ p->bContent = 1;
+ }else{
+ /* Append a new column value, if necessary */
+ assert_nc( iCol>=p->iCol );
+ if( iCol!=p->iCol ){
+ if( pHash->eDetail==FTS5_DETAIL_FULL ){
+ pPtr[p->nData++] = 0x01;
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
+ p->iCol = (i16)iCol;
+ p->iPos = 0;
+ }else{
+ bNew = 1;
+ p->iCol = (i16)(iPos = iCol);
+ }
+ }
+
+ /* Append the new position offset, if necessary */
+ if( bNew ){
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
+ p->iPos = iPos;
+ }
+ }
+ }else{
+ /* This is a delete. Set the delete flag. */
+ p->bDel = 1;
+ }
+
+ nIncr += p->nData;
+ *pHash->pnByte += nIncr;
+ return SQLITE_OK;
+}
+
+
+/*
+** Arguments pLeft and pRight point to linked-lists of hash-entry objects,
+** each sorted in key order. This function merges the two lists into a
+** single list and returns a pointer to its first element.
+*/
+static Fts5HashEntry *fts5HashEntryMerge(
+ Fts5HashEntry *pLeft,
+ Fts5HashEntry *pRight
+){
+ Fts5HashEntry *p1 = pLeft;
+ Fts5HashEntry *p2 = pRight;
+ Fts5HashEntry *pRet = 0;
+ Fts5HashEntry **ppOut = &pRet;
+
+ while( p1 || p2 ){
+ if( p1==0 ){
+ *ppOut = p2;
+ p2 = 0;
+ }else if( p2==0 ){
+ *ppOut = p1;
+ p1 = 0;
+ }else{
+ int i = 0;
+ char *zKey1 = fts5EntryKey(p1);
+ char *zKey2 = fts5EntryKey(p2);
+ while( zKey1[i]==zKey2[i] ) i++;
+
+ if( ((u8)zKey1[i])>((u8)zKey2[i]) ){
+ /* p2 is smaller */
+ *ppOut = p2;
+ ppOut = &p2->pScanNext;
+ p2 = p2->pScanNext;
+ }else{
+ /* p1 is smaller */
+ *ppOut = p1;
+ ppOut = &p1->pScanNext;
+ p1 = p1->pScanNext;
+ }
+ *ppOut = 0;
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Extract all tokens from hash table iHash and link them into a list
+** in sorted order. The hash table is cleared before returning. It is
+** the responsibility of the caller to free the elements of the returned
+** list.
+*/
+static int fts5HashEntrySort(
+ Fts5Hash *pHash,
+ const char *pTerm, int nTerm, /* Query prefix, if any */
+ Fts5HashEntry **ppSorted
+){
+ const int nMergeSlot = 32;
+ Fts5HashEntry **ap;
+ Fts5HashEntry *pList;
+ int iSlot;
+ int i;
+
+ *ppSorted = 0;
+ ap = sqlite3_malloc64(sizeof(Fts5HashEntry*) * nMergeSlot);
+ if( !ap ) return SQLITE_NOMEM;
+ memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);
+
+ for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
+ Fts5HashEntry *pIter;
+ for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
+ if( pTerm==0
+ || (pIter->nKey+1>=nTerm && 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm))
+ ){
+ Fts5HashEntry *pEntry = pIter;
+ pEntry->pScanNext = 0;
+ for(i=0; ap[i]; i++){
+ pEntry = fts5HashEntryMerge(pEntry, ap[i]);
+ ap[i] = 0;
+ }
+ ap[i] = pEntry;
+ }
+ }
+ }
+
+ pList = 0;
+ for(i=0; i<nMergeSlot; i++){
+ pList = fts5HashEntryMerge(pList, ap[i]);
+ }
+
+ pHash->nEntry = 0;
+ sqlite3_free(ap);
+ *ppSorted = pList;
+ return SQLITE_OK;
+}
+
+/*
+** Query the hash table for a doclist associated with term pTerm/nTerm.
+*/
+static int sqlite3Fts5HashQuery(
+ Fts5Hash *pHash, /* Hash table to query */
+ int nPre,
+ const char *pTerm, int nTerm, /* Query term */
+ void **ppOut, /* OUT: Pointer to new object */
+ int *pnDoclist /* OUT: Size of doclist in bytes */
+){
+ unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm);
+ char *zKey = 0;
+ Fts5HashEntry *p;
+
+ for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
+ zKey = fts5EntryKey(p);
+ assert( p->nKey+1==(int)strlen(zKey) );
+ if( nTerm==p->nKey+1 && memcmp(zKey, pTerm, nTerm)==0 ) break;
+ }
+
+ if( p ){
+ int nHashPre = sizeof(Fts5HashEntry) + nTerm + 1;
+ int nList = p->nData - nHashPre;
+ u8 *pRet = (u8*)(*ppOut = sqlite3_malloc64(nPre + nList + 10));
+ if( pRet ){
+ Fts5HashEntry *pFaux = (Fts5HashEntry*)&pRet[nPre-nHashPre];
+ memcpy(&pRet[nPre], &((u8*)p)[nHashPre], nList);
+ nList += fts5HashAddPoslistSize(pHash, p, pFaux);
+ *pnDoclist = nList;
+ }else{
+ *pnDoclist = 0;
+ return SQLITE_NOMEM;
+ }
+ }else{
+ *ppOut = 0;
+ *pnDoclist = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5HashScanInit(
+ Fts5Hash *p, /* Hash table to query */
+ const char *pTerm, int nTerm /* Query prefix */
+){
+ return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan);
+}
+
+static void sqlite3Fts5HashScanNext(Fts5Hash *p){
+ assert( !sqlite3Fts5HashScanEof(p) );
+ p->pScan = p->pScan->pScanNext;
+}
+
+static int sqlite3Fts5HashScanEof(Fts5Hash *p){
+ return (p->pScan==0);
+}
+
+static void sqlite3Fts5HashScanEntry(
+ Fts5Hash *pHash,
+ const char **pzTerm, /* OUT: term (nul-terminated) */
+ const u8 **ppDoclist, /* OUT: pointer to doclist */
+ int *pnDoclist /* OUT: size of doclist in bytes */
+){
+ Fts5HashEntry *p;
+ if( (p = pHash->pScan) ){
+ char *zKey = fts5EntryKey(p);
+ int nTerm = (int)strlen(zKey);
+ fts5HashAddPoslistSize(pHash, p, 0);
+ *pzTerm = zKey;
+ *ppDoclist = (const u8*)&zKey[nTerm+1];
+ *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1);
+ }else{
+ *pzTerm = 0;
+ *ppDoclist = 0;
+ *pnDoclist = 0;
+ }
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Low level access to the FTS index stored in the database file. The
+** routines in this file file implement all read and write access to the
+** %_data table. Other parts of the system access this functionality via
+** the interface defined in fts5Int.h.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** Overview:
+**
+** The %_data table contains all the FTS indexes for an FTS5 virtual table.
+** As well as the main term index, there may be up to 31 prefix indexes.
+** The format is similar to FTS3/4, except that:
+**
+** * all segment b-tree leaf data is stored in fixed size page records
+** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
+** taken to ensure it is possible to iterate in either direction through
+** the entries in a doclist, or to seek to a specific entry within a
+** doclist, without loading it into memory.
+**
+** * large doclists that span many pages have associated "doclist index"
+** records that contain a copy of the first rowid on each page spanned by
+** the doclist. This is used to speed up seek operations, and merges of
+** large doclists with very small doclists.
+**
+** * extra fields in the "structure record" record the state of ongoing
+** incremental merge operations.
+**
+*/
+
+
+#define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
+#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
+
+#define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
+
+#define FTS5_MAIN_PREFIX '0'
+
+#if FTS5_MAX_PREFIX_INDEXES > 31
+# error "FTS5_MAX_PREFIX_INDEXES is too large"
+#endif
+
+/*
+** Details:
+**
+** The %_data table managed by this module,
+**
+** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
+**
+** , contains the following 5 types of records. See the comments surrounding
+** the FTS5_*_ROWID macros below for a description of how %_data rowids are
+** assigned to each fo them.
+**
+** 1. Structure Records:
+**
+** The set of segments that make up an index - the index structure - are
+** recorded in a single record within the %_data table. The record consists
+** of a single 32-bit configuration cookie value followed by a list of
+** SQLite varints. If the FTS table features more than one index (because
+** there are one or more prefix indexes), it is guaranteed that all share
+** the same cookie value.
+**
+** Immediately following the configuration cookie, the record begins with
+** three varints:
+**
+** + number of levels,
+** + total number of segments on all levels,
+** + value of write counter.
+**
+** Then, for each level from 0 to nMax:
+**
+** + number of input segments in ongoing merge.
+** + total number of segments in level.
+** + for each segment from oldest to newest:
+** + segment id (always > 0)
+** + first leaf page number (often 1, always greater than 0)
+** + final leaf page number
+**
+** 2. The Averages Record:
+**
+** A single record within the %_data table. The data is a list of varints.
+** The first value is the number of rows in the index. Then, for each column
+** from left to right, the total number of tokens in the column for all
+** rows of the table.
+**
+** 3. Segment leaves:
+**
+** TERM/DOCLIST FORMAT:
+**
+** Most of each segment leaf is taken up by term/doclist data. The
+** general format of term/doclist, starting with the first term
+** on the leaf page, is:
+**
+** varint : size of first term
+** blob: first term data
+** doclist: first doclist
+** zero-or-more {
+** varint: number of bytes in common with previous term
+** varint: number of bytes of new term data (nNew)
+** blob: nNew bytes of new term data
+** doclist: next doclist
+** }
+**
+** doclist format:
+**
+** varint: first rowid
+** poslist: first poslist
+** zero-or-more {
+** varint: rowid delta (always > 0)
+** poslist: next poslist
+** }
+**
+** poslist format:
+**
+** varint: size of poslist in bytes multiplied by 2, not including
+** this field. Plus 1 if this entry carries the "delete" flag.
+** collist: collist for column 0
+** zero-or-more {
+** 0x01 byte
+** varint: column number (I)
+** collist: collist for column I
+** }
+**
+** collist format:
+**
+** varint: first offset + 2
+** zero-or-more {
+** varint: offset delta + 2
+** }
+**
+** PAGE FORMAT
+**
+** Each leaf page begins with a 4-byte header containing 2 16-bit
+** unsigned integer fields in big-endian format. They are:
+**
+** * The byte offset of the first rowid on the page, if it exists
+** and occurs before the first term (otherwise 0).
+**
+** * The byte offset of the start of the page footer. If the page
+** footer is 0 bytes in size, then this field is the same as the
+** size of the leaf page in bytes.
+**
+** The page footer consists of a single varint for each term located
+** on the page. Each varint is the byte offset of the current term
+** within the page, delta-compressed against the previous value. In
+** other words, the first varint in the footer is the byte offset of
+** the first term, the second is the byte offset of the second less that
+** of the first, and so on.
+**
+** The term/doclist format described above is accurate if the entire
+** term/doclist data fits on a single leaf page. If this is not the case,
+** the format is changed in two ways:
+**
+** + if the first rowid on a page occurs before the first term, it
+** is stored as a literal value:
+**
+** varint: first rowid
+**
+** + the first term on each page is stored in the same way as the
+** very first term of the segment:
+**
+** varint : size of first term
+** blob: first term data
+**
+** 5. Segment doclist indexes:
+**
+** Doclist indexes are themselves b-trees, however they usually consist of
+** a single leaf record only. The format of each doclist index leaf page
+** is:
+**
+** * Flags byte. Bits are:
+** 0x01: Clear if leaf is also the root page, otherwise set.
+**
+** * Page number of fts index leaf page. As a varint.
+**
+** * First rowid on page indicated by previous field. As a varint.
+**
+** * A list of varints, one for each subsequent termless page. A
+** positive delta if the termless page contains at least one rowid,
+** or an 0x00 byte otherwise.
+**
+** Internal doclist index nodes are:
+**
+** * Flags byte. Bits are:
+** 0x01: Clear for root page, otherwise set.
+**
+** * Page number of first child page. As a varint.
+**
+** * Copy of first rowid on page indicated by previous field. As a varint.
+**
+** * A list of delta-encoded varints - the first rowid on each subsequent
+** child page.
+**
+*/
+
+/*
+** Rowids for the averages and structure records in the %_data table.
+*/
+#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
+#define FTS5_STRUCTURE_ROWID 10 /* The structure record */
+
+/*
+** Macros determining the rowids used by segment leaves and dlidx leaves
+** and nodes. All nodes and leaves are stored in the %_data table with large
+** positive rowids.
+**
+** Each segment has a unique non-zero 16-bit id.
+**
+** The rowid for each segment leaf is found by passing the segment id and
+** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered
+** sequentially starting from 1.
+*/
+#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
+#define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
+#define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */
+#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
+
+#define fts5_dri(segid, dlidx, height, pgno) ( \
+ ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
+ ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
+ ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
+ ((i64)(pgno)) \
+)
+
+#define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno)
+#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
+
+#ifdef SQLITE_DEBUG
+static int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
+#endif
+
+
+/*
+** Each time a blob is read from the %_data table, it is padded with this
+** many zero bytes. This makes it easier to decode the various record formats
+** without overreading if the records are corrupt.
+*/
+#define FTS5_DATA_ZERO_PADDING 8
+#define FTS5_DATA_PADDING 20
+
+typedef struct Fts5Data Fts5Data;
+typedef struct Fts5DlidxIter Fts5DlidxIter;
+typedef struct Fts5DlidxLvl Fts5DlidxLvl;
+typedef struct Fts5DlidxWriter Fts5DlidxWriter;
+typedef struct Fts5Iter Fts5Iter;
+typedef struct Fts5PageWriter Fts5PageWriter;
+typedef struct Fts5SegIter Fts5SegIter;
+typedef struct Fts5DoclistIter Fts5DoclistIter;
+typedef struct Fts5SegWriter Fts5SegWriter;
+typedef struct Fts5Structure Fts5Structure;
+typedef struct Fts5StructureLevel Fts5StructureLevel;
+typedef struct Fts5StructureSegment Fts5StructureSegment;
+
+struct Fts5Data {
+ u8 *p; /* Pointer to buffer containing record */
+ int nn; /* Size of record in bytes */
+ int szLeaf; /* Size of leaf without page-index */
+};
+
+/*
+** One object per %_data table.
+*/
+struct Fts5Index {
+ Fts5Config *pConfig; /* Virtual table configuration */
+ char *zDataTbl; /* Name of %_data table */
+ int nWorkUnit; /* Leaf pages in a "unit" of work */
+
+ /*
+ ** Variables related to the accumulation of tokens and doclists within the
+ ** in-memory hash tables before they are flushed to disk.
+ */
+ Fts5Hash *pHash; /* Hash table for in-memory data */
+ int nPendingData; /* Current bytes of pending data */
+ i64 iWriteRowid; /* Rowid for current doc being written */
+ int bDelete; /* Current write is a delete */
+
+ /* Error state. */
+ int rc; /* Current error code */
+
+ /* State used by the fts5DataXXX() functions. */
+ sqlite3_blob *pReader; /* RO incr-blob open on %_data table */
+ sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */
+ sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */
+ sqlite3_stmt *pIdxWriter; /* "INSERT ... %_idx VALUES(?,?,?,?)" */
+ sqlite3_stmt *pIdxDeleter; /* "DELETE FROM %_idx WHERE segid=?" */
+ sqlite3_stmt *pIdxSelect;
+ int nRead; /* Total number of blocks read */
+
+ sqlite3_stmt *pDataVersion;
+ i64 iStructVersion; /* data_version when pStruct read */
+ Fts5Structure *pStruct; /* Current db structure (or NULL) */
+};
+
+struct Fts5DoclistIter {
+ u8 *aEof; /* Pointer to 1 byte past end of doclist */
+
+ /* Output variables. aPoslist==0 at EOF */
+ i64 iRowid;
+ u8 *aPoslist;
+ int nPoslist;
+ int nSize;
+};
+
+/*
+** The contents of the "structure" record for each index are represented
+** using an Fts5Structure record in memory. Which uses instances of the
+** other Fts5StructureXXX types as components.
+*/
+struct Fts5StructureSegment {
+ int iSegid; /* Segment id */
+ int pgnoFirst; /* First leaf page number in segment */
+ int pgnoLast; /* Last leaf page number in segment */
+};
+struct Fts5StructureLevel {
+ int nMerge; /* Number of segments in incr-merge */
+ int nSeg; /* Total number of segments on level */
+ Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */
+};
+struct Fts5Structure {
+ int nRef; /* Object reference count */
+ u64 nWriteCounter; /* Total leaves written to level 0 */
+ int nSegment; /* Total segments in this structure */
+ int nLevel; /* Number of levels in this index */
+ Fts5StructureLevel aLevel[1]; /* Array of nLevel level objects */
+};
+
+/*
+** An object of type Fts5SegWriter is used to write to segments.
+*/
+struct Fts5PageWriter {
+ int pgno; /* Page number for this page */
+ int iPrevPgidx; /* Previous value written into pgidx */
+ Fts5Buffer buf; /* Buffer containing leaf data */
+ Fts5Buffer pgidx; /* Buffer containing page-index */
+ Fts5Buffer term; /* Buffer containing previous term on page */
+};
+struct Fts5DlidxWriter {
+ int pgno; /* Page number for this page */
+ int bPrevValid; /* True if iPrev is valid */
+ i64 iPrev; /* Previous rowid value written to page */
+ Fts5Buffer buf; /* Buffer containing page data */
+};
+struct Fts5SegWriter {
+ int iSegid; /* Segid to write to */
+ Fts5PageWriter writer; /* PageWriter object */
+ i64 iPrevRowid; /* Previous rowid written to current leaf */
+ u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */
+ u8 bFirstRowidInPage; /* True if next rowid is first in page */
+ /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
+ u8 bFirstTermInPage; /* True if next term will be first in leaf */
+ int nLeafWritten; /* Number of leaf pages written */
+ int nEmpty; /* Number of contiguous term-less nodes */
+
+ int nDlidx; /* Allocated size of aDlidx[] array */
+ Fts5DlidxWriter *aDlidx; /* Array of Fts5DlidxWriter objects */
+
+ /* Values to insert into the %_idx table */
+ Fts5Buffer btterm; /* Next term to insert into %_idx table */
+ int iBtPage; /* Page number corresponding to btterm */
+};
+
+typedef struct Fts5CResult Fts5CResult;
+struct Fts5CResult {
+ u16 iFirst; /* aSeg[] index of firstest iterator */
+ u8 bTermEq; /* True if the terms are equal */
+};
+
+/*
+** Object for iterating through a single segment, visiting each term/rowid
+** pair in the segment.
+**
+** pSeg:
+** The segment to iterate through.
+**
+** iLeafPgno:
+** Current leaf page number within segment.
+**
+** iLeafOffset:
+** Byte offset within the current leaf that is the first byte of the
+** position list data (one byte passed the position-list size field).
+** rowid field of the current entry. Usually this is the size field of the
+** position list data. The exception is if the rowid for the current entry
+** is the last thing on the leaf page.
+**
+** pLeaf:
+** Buffer containing current leaf page data. Set to NULL at EOF.
+**
+** iTermLeafPgno, iTermLeafOffset:
+** Leaf page number containing the last term read from the segment. And
+** the offset immediately following the term data.
+**
+** flags:
+** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
+**
+** FTS5_SEGITER_ONETERM:
+** If set, set the iterator to point to EOF after the current doclist
+** has been exhausted. Do not proceed to the next term in the segment.
+**
+** FTS5_SEGITER_REVERSE:
+** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
+** it is set, iterate through rowid in descending order instead of the
+** default ascending order.
+**
+** iRowidOffset/nRowidOffset/aRowidOffset:
+** These are used if the FTS5_SEGITER_REVERSE flag is set.
+**
+** For each rowid on the page corresponding to the current term, the
+** corresponding aRowidOffset[] entry is set to the byte offset of the
+** start of the "position-list-size" field within the page.
+**
+** iTermIdx:
+** Index of current term on iTermLeafPgno.
+*/
+struct Fts5SegIter {
+ Fts5StructureSegment *pSeg; /* Segment to iterate through */
+ int flags; /* Mask of configuration flags */
+ int iLeafPgno; /* Current leaf page number */
+ Fts5Data *pLeaf; /* Current leaf data */
+ Fts5Data *pNextLeaf; /* Leaf page (iLeafPgno+1) */
+ i64 iLeafOffset; /* Byte offset within current leaf */
+
+ /* Next method */
+ void (*xNext)(Fts5Index*, Fts5SegIter*, int*);
+
+ /* The page and offset from which the current term was read. The offset
+ ** is the offset of the first rowid in the current doclist. */
+ int iTermLeafPgno;
+ int iTermLeafOffset;
+
+ int iPgidxOff; /* Next offset in pgidx */
+ int iEndofDoclist;
+
+ /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
+ int iRowidOffset; /* Current entry in aRowidOffset[] */
+ int nRowidOffset; /* Allocated size of aRowidOffset[] array */
+ int *aRowidOffset; /* Array of offset to rowid fields */
+
+ Fts5DlidxIter *pDlidx; /* If there is a doclist-index */
+
+ /* Variables populated based on current entry. */
+ Fts5Buffer term; /* Current term */
+ i64 iRowid; /* Current rowid */
+ int nPos; /* Number of bytes in current position list */
+ u8 bDel; /* True if the delete flag is set */
+};
+
+/*
+** Argument is a pointer to an Fts5Data structure that contains a
+** leaf page.
+*/
+#define ASSERT_SZLEAF_OK(x) assert( \
+ (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
+)
+
+#define FTS5_SEGITER_ONETERM 0x01
+#define FTS5_SEGITER_REVERSE 0x02
+
+/*
+** Argument is a pointer to an Fts5Data structure that contains a leaf
+** page. This macro evaluates to true if the leaf contains no terms, or
+** false if it contains at least one term.
+*/
+#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
+
+#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))
+
+#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))
+
+/*
+** Object for iterating through the merged results of one or more segments,
+** visiting each term/rowid pair in the merged data.
+**
+** nSeg is always a power of two greater than or equal to the number of
+** segments that this object is merging data from. Both the aSeg[] and
+** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
+** with zeroed objects - these are handled as if they were iterators opened
+** on empty segments.
+**
+** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
+** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
+** comparison in this context is the index of the iterator that currently
+** points to the smaller term/rowid combination. Iterators at EOF are
+** considered to be greater than all other iterators.
+**
+** aFirst[1] contains the index in aSeg[] of the iterator that points to
+** the smallest key overall. aFirst[0] is unused.
+**
+** poslist:
+** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
+** There is no way to tell if this is populated or not.
+*/
+struct Fts5Iter {
+ Fts5IndexIter base; /* Base class containing output vars */
+
+ Fts5Index *pIndex; /* Index that owns this iterator */
+ Fts5Buffer poslist; /* Buffer containing current poslist */
+ Fts5Colset *pColset; /* Restrict matches to these columns */
+
+ /* Invoked to set output variables. */
+ void (*xSetOutputs)(Fts5Iter*, Fts5SegIter*);
+
+ int nSeg; /* Size of aSeg[] array */
+ int bRev; /* True to iterate in reverse order */
+ u8 bSkipEmpty; /* True to skip deleted entries */
+
+ i64 iSwitchRowid; /* Firstest rowid of other than aFirst[1] */
+ Fts5CResult *aFirst; /* Current merge state (see above) */
+ Fts5SegIter aSeg[1]; /* Array of segment iterators */
+};
+
+
+/*
+** An instance of the following type is used to iterate through the contents
+** of a doclist-index record.
+**
+** pData:
+** Record containing the doclist-index data.
+**
+** bEof:
+** Set to true once iterator has reached EOF.
+**
+** iOff:
+** Set to the current offset within record pData.
+*/
+struct Fts5DlidxLvl {
+ Fts5Data *pData; /* Data for current page of this level */
+ int iOff; /* Current offset into pData */
+ int bEof; /* At EOF already */
+ int iFirstOff; /* Used by reverse iterators */
+
+ /* Output variables */
+ int iLeafPgno; /* Page number of current leaf page */
+ i64 iRowid; /* First rowid on leaf iLeafPgno */
+};
+struct Fts5DlidxIter {
+ int nLvl;
+ int iSegid;
+ Fts5DlidxLvl aLvl[1];
+};
+
+static void fts5PutU16(u8 *aOut, u16 iVal){
+ aOut[0] = (iVal>>8);
+ aOut[1] = (iVal&0xFF);
+}
+
+static u16 fts5GetU16(const u8 *aIn){
+ return ((u16)aIn[0] << 8) + aIn[1];
+}
+
+/*
+** Allocate and return a buffer at least nByte bytes in size.
+**
+** If an OOM error is encountered, return NULL and set the error code in
+** the Fts5Index handle passed as the first argument.
+*/
+static void *fts5IdxMalloc(Fts5Index *p, sqlite3_int64 nByte){
+ return sqlite3Fts5MallocZero(&p->rc, nByte);
+}
+
+/*
+** Compare the contents of the pLeft buffer with the pRight/nRight blob.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+#ifdef SQLITE_DEBUG
+static int fts5BufferCompareBlob(
+ Fts5Buffer *pLeft, /* Left hand side of comparison */
+ const u8 *pRight, int nRight /* Right hand side of comparison */
+){
+ int nCmp = MIN(pLeft->n, nRight);
+ int res = memcmp(pLeft->p, pRight, nCmp);
+ return (res==0 ? (pLeft->n - nRight) : res);
+}
+#endif
+
+/*
+** Compare the contents of the two buffers using memcmp(). If one buffer
+** is a prefix of the other, it is considered the lesser.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
+ int nCmp, res;
+ nCmp = MIN(pLeft->n, pRight->n);
+ assert( nCmp<=0 || pLeft->p!=0 );
+ assert( nCmp<=0 || pRight->p!=0 );
+ res = fts5Memcmp(pLeft->p, pRight->p, nCmp);
+ return (res==0 ? (pLeft->n - pRight->n) : res);
+}
+
+static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
+ int ret;
+ fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
+ return ret;
+}
+
+/*
+** Close the read-only blob handle, if it is open.
+*/
+static void sqlite3Fts5IndexCloseReader(Fts5Index *p){
+ if( p->pReader ){
+ sqlite3_blob *pReader = p->pReader;
+ p->pReader = 0;
+ sqlite3_blob_close(pReader);
+ }
+}
+
+/*
+** Retrieve a record from the %_data table.
+**
+** If an error occurs, NULL is returned and an error left in the
+** Fts5Index object.
+*/
+static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){
+ Fts5Data *pRet = 0;
+ if( p->rc==SQLITE_OK ){
+ int rc = SQLITE_OK;
+
+ if( p->pReader ){
+ /* This call may return SQLITE_ABORT if there has been a savepoint
+ ** rollback since it was last used. In this case a new blob handle
+ ** is required. */
+ sqlite3_blob *pBlob = p->pReader;
+ p->pReader = 0;
+ rc = sqlite3_blob_reopen(pBlob, iRowid);
+ assert( p->pReader==0 );
+ p->pReader = pBlob;
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts5IndexCloseReader(p);
+ }
+ if( rc==SQLITE_ABORT ) rc = SQLITE_OK;
+ }
+
+ /* If the blob handle is not open at this point, open it and seek
+ ** to the requested entry. */
+ if( p->pReader==0 && rc==SQLITE_OK ){
+ Fts5Config *pConfig = p->pConfig;
+ rc = sqlite3_blob_open(pConfig->db,
+ pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader
+ );
+ }
+
+ /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
+ ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
+ ** All the reasons those functions might return SQLITE_ERROR - missing
+ ** table, missing row, non-blob/text in block column - indicate
+ ** backing store corruption. */
+ if( rc==SQLITE_ERROR ) rc = FTS5_CORRUPT;
+
+ if( rc==SQLITE_OK ){
+ u8 *aOut = 0; /* Read blob data into this buffer */
+ int nByte = sqlite3_blob_bytes(p->pReader);
+ sqlite3_int64 nAlloc = sizeof(Fts5Data) + nByte + FTS5_DATA_PADDING;
+ pRet = (Fts5Data*)sqlite3_malloc64(nAlloc);
+ if( pRet ){
+ pRet->nn = nByte;
+ aOut = pRet->p = (u8*)&pRet[1];
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pRet);
+ pRet = 0;
+ }else{
+ /* TODO1: Fix this */
+ pRet->p[nByte] = 0x00;
+ pRet->p[nByte+1] = 0x00;
+ pRet->szLeaf = fts5GetU16(&pRet->p[2]);
+ }
+ }
+ p->rc = rc;
+ p->nRead++;
+ }
+
+ assert( (pRet==0)==(p->rc!=SQLITE_OK) );
+ return pRet;
+}
+
+
+/*
+** Release a reference to data record returned by an earlier call to
+** fts5DataRead().
+*/
+static void fts5DataRelease(Fts5Data *pData){
+ sqlite3_free(pData);
+}
+
+static Fts5Data *fts5LeafRead(Fts5Index *p, i64 iRowid){
+ Fts5Data *pRet = fts5DataRead(p, iRowid);
+ if( pRet ){
+ if( pRet->nn<4 || pRet->szLeaf>pRet->nn ){
+ p->rc = FTS5_CORRUPT;
+ fts5DataRelease(pRet);
+ pRet = 0;
+ }
+ }
+ return pRet;
+}
+
+static int fts5IndexPrepareStmt(
+ Fts5Index *p,
+ sqlite3_stmt **ppStmt,
+ char *zSql
+){
+ if( p->rc==SQLITE_OK ){
+ if( zSql ){
+ p->rc = sqlite3_prepare_v3(p->pConfig->db, zSql, -1,
+ SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB,
+ ppStmt, 0);
+ }else{
+ p->rc = SQLITE_NOMEM;
+ }
+ }
+ sqlite3_free(zSql);
+ return p->rc;
+}
+
+
+/*
+** INSERT OR REPLACE a record into the %_data table.
+*/
+static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pWriter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pWriter, sqlite3_mprintf(
+ "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)",
+ pConfig->zDb, pConfig->zName
+ ));
+ if( p->rc ) return;
+ }
+
+ sqlite3_bind_int64(p->pWriter, 1, iRowid);
+ sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC);
+ sqlite3_step(p->pWriter);
+ p->rc = sqlite3_reset(p->pWriter);
+ sqlite3_bind_null(p->pWriter, 2);
+}
+
+/*
+** Execute the following SQL:
+**
+** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
+*/
+static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pDeleter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql = sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?",
+ pConfig->zDb, pConfig->zName
+ );
+ if( fts5IndexPrepareStmt(p, &p->pDeleter, zSql) ) return;
+ }
+
+ sqlite3_bind_int64(p->pDeleter, 1, iFirst);
+ sqlite3_bind_int64(p->pDeleter, 2, iLast);
+ sqlite3_step(p->pDeleter);
+ p->rc = sqlite3_reset(p->pDeleter);
+}
+
+/*
+** Remove all records associated with segment iSegid.
+*/
+static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){
+ i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0);
+ i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1;
+ fts5DataDelete(p, iFirst, iLast);
+ if( p->pIdxDeleter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_bind_int(p->pIdxDeleter, 1, iSegid);
+ sqlite3_step(p->pIdxDeleter);
+ p->rc = sqlite3_reset(p->pIdxDeleter);
+ }
+}
+
+/*
+** Release a reference to an Fts5Structure object returned by an earlier
+** call to fts5StructureRead() or fts5StructureDecode().
+*/
+static void fts5StructureRelease(Fts5Structure *pStruct){
+ if( pStruct && 0>=(--pStruct->nRef) ){
+ int i;
+ assert( pStruct->nRef==0 );
+ for(i=0; i<pStruct->nLevel; i++){
+ sqlite3_free(pStruct->aLevel[i].aSeg);
+ }
+ sqlite3_free(pStruct);
+ }
+}
+
+static void fts5StructureRef(Fts5Structure *pStruct){
+ pStruct->nRef++;
+}
+
+static void *sqlite3Fts5StructureRef(Fts5Index *p){
+ fts5StructureRef(p->pStruct);
+ return (void*)p->pStruct;
+}
+static void sqlite3Fts5StructureRelease(void *p){
+ if( p ){
+ fts5StructureRelease((Fts5Structure*)p);
+ }
+}
+static int sqlite3Fts5StructureTest(Fts5Index *p, void *pStruct){
+ if( p->pStruct!=(Fts5Structure*)pStruct ){
+ return SQLITE_ABORT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Ensure that structure object (*pp) is writable.
+**
+** This function is a no-op if (*pRc) is not SQLITE_OK when it is called. If
+** an error occurs, (*pRc) is set to an SQLite error code before returning.
+*/
+static void fts5StructureMakeWritable(int *pRc, Fts5Structure **pp){
+ Fts5Structure *p = *pp;
+ if( *pRc==SQLITE_OK && p->nRef>1 ){
+ i64 nByte = sizeof(Fts5Structure)+(p->nLevel-1)*sizeof(Fts5StructureLevel);
+ Fts5Structure *pNew;
+ pNew = (Fts5Structure*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pNew ){
+ int i;
+ memcpy(pNew, p, nByte);
+ for(i=0; i<p->nLevel; i++) pNew->aLevel[i].aSeg = 0;
+ for(i=0; i<p->nLevel; i++){
+ Fts5StructureLevel *pLvl = &pNew->aLevel[i];
+ nByte = sizeof(Fts5StructureSegment) * pNew->aLevel[i].nSeg;
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pLvl->aSeg==0 ){
+ for(i=0; i<p->nLevel; i++){
+ sqlite3_free(pNew->aLevel[i].aSeg);
+ }
+ sqlite3_free(pNew);
+ return;
+ }
+ memcpy(pLvl->aSeg, p->aLevel[i].aSeg, nByte);
+ }
+ p->nRef--;
+ pNew->nRef = 1;
+ }
+ *pp = pNew;
+ }
+}
+
+/*
+** Deserialize and return the structure record currently stored in serialized
+** form within buffer pData/nData.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated by one slot. This allows the structure contents
+** to be more easily edited.
+**
+** If an error occurs, *ppOut is set to NULL and an SQLite error code
+** returned. Otherwise, *ppOut is set to point to the new object and
+** SQLITE_OK returned.
+*/
+static int fts5StructureDecode(
+ const u8 *pData, /* Buffer containing serialized structure */
+ int nData, /* Size of buffer pData in bytes */
+ int *piCookie, /* Configuration cookie value */
+ Fts5Structure **ppOut /* OUT: Deserialized object */
+){
+ int rc = SQLITE_OK;
+ int i = 0;
+ int iLvl;
+ int nLevel = 0;
+ int nSegment = 0;
+ sqlite3_int64 nByte; /* Bytes of space to allocate at pRet */
+ Fts5Structure *pRet = 0; /* Structure object to return */
+
+ /* Grab the cookie value */
+ if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
+ i = 4;
+
+ /* Read the total number of levels and segments from the start of the
+ ** structure record. */
+ i += fts5GetVarint32(&pData[i], nLevel);
+ i += fts5GetVarint32(&pData[i], nSegment);
+ if( nLevel>FTS5_MAX_SEGMENT || nLevel<0
+ || nSegment>FTS5_MAX_SEGMENT || nSegment<0
+ ){
+ return FTS5_CORRUPT;
+ }
+ nByte = (
+ sizeof(Fts5Structure) + /* Main structure */
+ sizeof(Fts5StructureLevel) * (nLevel-1) /* aLevel[] array */
+ );
+ pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);
+
+ if( pRet ){
+ pRet->nRef = 1;
+ pRet->nLevel = nLevel;
+ pRet->nSegment = nSegment;
+ i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);
+
+ for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
+ int nTotal = 0;
+ int iSeg;
+
+ if( i>=nData ){
+ rc = FTS5_CORRUPT;
+ }else{
+ i += fts5GetVarint32(&pData[i], pLvl->nMerge);
+ i += fts5GetVarint32(&pData[i], nTotal);
+ if( nTotal<pLvl->nMerge ) rc = FTS5_CORRUPT;
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc,
+ nTotal * sizeof(Fts5StructureSegment)
+ );
+ nSegment -= nTotal;
+ }
+
+ if( rc==SQLITE_OK ){
+ pLvl->nSeg = nTotal;
+ for(iSeg=0; iSeg<nTotal; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ if( i>=nData ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ i += fts5GetVarint32(&pData[i], pSeg->iSegid);
+ i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst);
+ i += fts5GetVarint32(&pData[i], pSeg->pgnoLast);
+ if( pSeg->pgnoLast<pSeg->pgnoFirst ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ }
+ if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT;
+ if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT;
+ }
+ }
+ if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT;
+
+ if( rc!=SQLITE_OK ){
+ fts5StructureRelease(pRet);
+ pRet = 0;
+ }
+ }
+
+ *ppOut = pRet;
+ return rc;
+}
+
+/*
+** Add a level to the Fts5Structure.aLevel[] array of structure object
+** (*ppStruct).
+*/
+static void fts5StructureAddLevel(int *pRc, Fts5Structure **ppStruct){
+ fts5StructureMakeWritable(pRc, ppStruct);
+ if( *pRc==SQLITE_OK ){
+ Fts5Structure *pStruct = *ppStruct;
+ int nLevel = pStruct->nLevel;
+ sqlite3_int64 nByte = (
+ sizeof(Fts5Structure) + /* Main structure */
+ sizeof(Fts5StructureLevel) * (nLevel+1) /* aLevel[] array */
+ );
+
+ pStruct = sqlite3_realloc64(pStruct, nByte);
+ if( pStruct ){
+ memset(&pStruct->aLevel[nLevel], 0, sizeof(Fts5StructureLevel));
+ pStruct->nLevel++;
+ *ppStruct = pStruct;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+/*
+** Extend level iLvl so that there is room for at least nExtra more
+** segments.
+*/
+static void fts5StructureExtendLevel(
+ int *pRc,
+ Fts5Structure *pStruct,
+ int iLvl,
+ int nExtra,
+ int bInsert
+){
+ if( *pRc==SQLITE_OK ){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureSegment *aNew;
+ sqlite3_int64 nByte;
+
+ nByte = (pLvl->nSeg + nExtra) * sizeof(Fts5StructureSegment);
+ aNew = sqlite3_realloc64(pLvl->aSeg, nByte);
+ if( aNew ){
+ if( bInsert==0 ){
+ memset(&aNew[pLvl->nSeg], 0, sizeof(Fts5StructureSegment) * nExtra);
+ }else{
+ int nMove = pLvl->nSeg * sizeof(Fts5StructureSegment);
+ memmove(&aNew[nExtra], aNew, nMove);
+ memset(aNew, 0, sizeof(Fts5StructureSegment) * nExtra);
+ }
+ pLvl->aSeg = aNew;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+static Fts5Structure *fts5StructureReadUncached(Fts5Index *p){
+ Fts5Structure *pRet = 0;
+ Fts5Config *pConfig = p->pConfig;
+ int iCookie; /* Configuration cookie */
+ Fts5Data *pData;
+
+ pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID);
+ if( p->rc==SQLITE_OK ){
+ /* TODO: Do we need this if the leaf-index is appended? Probably... */
+ memset(&pData->p[pData->nn], 0, FTS5_DATA_PADDING);
+ p->rc = fts5StructureDecode(pData->p, pData->nn, &iCookie, &pRet);
+ if( p->rc==SQLITE_OK && (pConfig->pgsz==0 || pConfig->iCookie!=iCookie) ){
+ p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
+ }
+ fts5DataRelease(pData);
+ if( p->rc!=SQLITE_OK ){
+ fts5StructureRelease(pRet);
+ pRet = 0;
+ }
+ }
+
+ return pRet;
+}
+
+static i64 fts5IndexDataVersion(Fts5Index *p){
+ i64 iVersion = 0;
+
+ if( p->rc==SQLITE_OK ){
+ if( p->pDataVersion==0 ){
+ p->rc = fts5IndexPrepareStmt(p, &p->pDataVersion,
+ sqlite3_mprintf("PRAGMA %Q.data_version", p->pConfig->zDb)
+ );
+ if( p->rc ) return 0;
+ }
+
+ if( SQLITE_ROW==sqlite3_step(p->pDataVersion) ){
+ iVersion = sqlite3_column_int64(p->pDataVersion, 0);
+ }
+ p->rc = sqlite3_reset(p->pDataVersion);
+ }
+
+ return iVersion;
+}
+
+/*
+** Read, deserialize and return the structure record.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated as described for function fts5StructureDecode()
+** above.
+**
+** If an error occurs, NULL is returned and an error code left in the
+** Fts5Index handle. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static Fts5Structure *fts5StructureRead(Fts5Index *p){
+
+ if( p->pStruct==0 ){
+ p->iStructVersion = fts5IndexDataVersion(p);
+ if( p->rc==SQLITE_OK ){
+ p->pStruct = fts5StructureReadUncached(p);
+ }
+ }
+
+#if 0
+ else{
+ Fts5Structure *pTest = fts5StructureReadUncached(p);
+ if( pTest ){
+ int i, j;
+ assert_nc( p->pStruct->nSegment==pTest->nSegment );
+ assert_nc( p->pStruct->nLevel==pTest->nLevel );
+ for(i=0; i<pTest->nLevel; i++){
+ assert_nc( p->pStruct->aLevel[i].nMerge==pTest->aLevel[i].nMerge );
+ assert_nc( p->pStruct->aLevel[i].nSeg==pTest->aLevel[i].nSeg );
+ for(j=0; j<pTest->aLevel[i].nSeg; j++){
+ Fts5StructureSegment *p1 = &pTest->aLevel[i].aSeg[j];
+ Fts5StructureSegment *p2 = &p->pStruct->aLevel[i].aSeg[j];
+ assert_nc( p1->iSegid==p2->iSegid );
+ assert_nc( p1->pgnoFirst==p2->pgnoFirst );
+ assert_nc( p1->pgnoLast==p2->pgnoLast );
+ }
+ }
+ fts5StructureRelease(pTest);
+ }
+ }
+#endif
+
+ if( p->rc!=SQLITE_OK ) return 0;
+ assert( p->iStructVersion!=0 );
+ assert( p->pStruct!=0 );
+ fts5StructureRef(p->pStruct);
+ return p->pStruct;
+}
+
+static void fts5StructureInvalidate(Fts5Index *p){
+ if( p->pStruct ){
+ fts5StructureRelease(p->pStruct);
+ p->pStruct = 0;
+ }
+}
+
+/*
+** Return the total number of segments in index structure pStruct. This
+** function is only ever used as part of assert() conditions.
+*/
+#ifdef SQLITE_DEBUG
+static int fts5StructureCountSegments(Fts5Structure *pStruct){
+ int nSegment = 0; /* Total number of segments */
+ if( pStruct ){
+ int iLvl; /* Used to iterate through levels */
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ nSegment += pStruct->aLevel[iLvl].nSeg;
+ }
+ }
+
+ return nSegment;
+}
+#endif
+
+#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
+ assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \
+ memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \
+ (pBuf)->n += nBlob; \
+}
+
+#define fts5BufferSafeAppendVarint(pBuf, iVal) { \
+ (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \
+ assert( (pBuf)->nSpace>=(pBuf)->n ); \
+}
+
+
+/*
+** Serialize and store the "structure" record.
+**
+** If an error occurs, leave an error code in the Fts5Index object. If an
+** error has already occurred, this function is a no-op.
+*/
+static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
+ if( p->rc==SQLITE_OK ){
+ Fts5Buffer buf; /* Buffer to serialize record into */
+ int iLvl; /* Used to iterate through levels */
+ int iCookie; /* Cookie value to store */
+
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ memset(&buf, 0, sizeof(Fts5Buffer));
+
+ /* Append the current configuration cookie */
+ iCookie = p->pConfig->iCookie;
+ if( iCookie<0 ) iCookie = 0;
+
+ if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, 4+9+9+9) ){
+ sqlite3Fts5Put32(buf.p, iCookie);
+ buf.n = 4;
+ fts5BufferSafeAppendVarint(&buf, pStruct->nLevel);
+ fts5BufferSafeAppendVarint(&buf, pStruct->nSegment);
+ fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter);
+ }
+
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
+ }
+ }
+
+ fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
+ fts5BufferFree(&buf);
+ }
+}
+
+#if 0
+static void fts5DebugStructure(int*,Fts5Buffer*,Fts5Structure*);
+static void fts5PrintStructure(const char *zCaption, Fts5Structure *pStruct){
+ int rc = SQLITE_OK;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(buf));
+ fts5DebugStructure(&rc, &buf, pStruct);
+ fprintf(stdout, "%s: %s\n", zCaption, buf.p);
+ fflush(stdout);
+ fts5BufferFree(&buf);
+}
+#else
+# define fts5PrintStructure(x,y)
+#endif
+
+static int fts5SegmentSize(Fts5StructureSegment *pSeg){
+ return 1 + pSeg->pgnoLast - pSeg->pgnoFirst;
+}
+
+/*
+** Return a copy of index structure pStruct. Except, promote as many
+** segments as possible to level iPromote. If an OOM occurs, NULL is
+** returned.
+*/
+static void fts5StructurePromoteTo(
+ Fts5Index *p,
+ int iPromote,
+ int szPromote,
+ Fts5Structure *pStruct
+){
+ int il, is;
+ Fts5StructureLevel *pOut = &pStruct->aLevel[iPromote];
+
+ if( pOut->nMerge==0 ){
+ for(il=iPromote+1; il<pStruct->nLevel; il++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[il];
+ if( pLvl->nMerge ) return;
+ for(is=pLvl->nSeg-1; is>=0; is--){
+ int sz = fts5SegmentSize(&pLvl->aSeg[is]);
+ if( sz>szPromote ) return;
+ fts5StructureExtendLevel(&p->rc, pStruct, iPromote, 1, 1);
+ if( p->rc ) return;
+ memcpy(pOut->aSeg, &pLvl->aSeg[is], sizeof(Fts5StructureSegment));
+ pOut->nSeg++;
+ pLvl->nSeg--;
+ }
+ }
+ }
+}
+
+/*
+** A new segment has just been written to level iLvl of index structure
+** pStruct. This function determines if any segments should be promoted
+** as a result. Segments are promoted in two scenarios:
+**
+** a) If the segment just written is smaller than one or more segments
+** within the previous populated level, it is promoted to the previous
+** populated level.
+**
+** b) If the segment just written is larger than the newest segment on
+** the next populated level, then that segment, and any other adjacent
+** segments that are also smaller than the one just written, are
+** promoted.
+**
+** If one or more segments are promoted, the structure object is updated
+** to reflect this.
+*/
+static void fts5StructurePromote(
+ Fts5Index *p, /* FTS5 backend object */
+ int iLvl, /* Index level just updated */
+ Fts5Structure *pStruct /* Index structure */
+){
+ if( p->rc==SQLITE_OK ){
+ int iTst;
+ int iPromote = -1;
+ int szPromote = 0; /* Promote anything this size or smaller */
+ Fts5StructureSegment *pSeg; /* Segment just written */
+ int szSeg; /* Size of segment just written */
+ int nSeg = pStruct->aLevel[iLvl].nSeg;
+
+ if( nSeg==0 ) return;
+ pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
+ szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);
+
+ /* Check for condition (a) */
+ for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
+ if( iTst>=0 ){
+ int i;
+ int szMax = 0;
+ Fts5StructureLevel *pTst = &pStruct->aLevel[iTst];
+ assert( pTst->nMerge==0 );
+ for(i=0; i<pTst->nSeg; i++){
+ int sz = pTst->aSeg[i].pgnoLast - pTst->aSeg[i].pgnoFirst + 1;
+ if( sz>szMax ) szMax = sz;
+ }
+ if( szMax>=szSeg ){
+ /* Condition (a) is true. Promote the newest segment on level
+ ** iLvl to level iTst. */
+ iPromote = iTst;
+ szPromote = szMax;
+ }
+ }
+
+ /* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
+ ** is a no-op if it is not. */
+ if( iPromote<0 ){
+ iPromote = iLvl;
+ szPromote = szSeg;
+ }
+ fts5StructurePromoteTo(p, iPromote, szPromote, pStruct);
+ }
+}
+
+
+/*
+** Advance the iterator passed as the only argument. If the end of the
+** doclist-index page is reached, return non-zero.
+*/
+static int fts5DlidxLvlNext(Fts5DlidxLvl *pLvl){
+ Fts5Data *pData = pLvl->pData;
+
+ if( pLvl->iOff==0 ){
+ assert( pLvl->bEof==0 );
+ pLvl->iOff = 1;
+ pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno);
+ pLvl->iOff += fts5GetVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid);
+ pLvl->iFirstOff = pLvl->iOff;
+ }else{
+ int iOff;
+ for(iOff=pLvl->iOff; iOff<pData->nn; iOff++){
+ if( pData->p[iOff] ) break;
+ }
+
+ if( iOff<pData->nn ){
+ i64 iVal;
+ pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1;
+ iOff += fts5GetVarint(&pData->p[iOff], (u64*)&iVal);
+ pLvl->iRowid += iVal;
+ pLvl->iOff = iOff;
+ }else{
+ pLvl->bEof = 1;
+ }
+ }
+
+ return pLvl->bEof;
+}
+
+/*
+** Advance the iterator passed as the only argument.
+*/
+static int fts5DlidxIterNextR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
+
+ assert( iLvl<pIter->nLvl );
+ if( fts5DlidxLvlNext(pLvl) ){
+ if( (iLvl+1) < pIter->nLvl ){
+ fts5DlidxIterNextR(p, pIter, iLvl+1);
+ if( pLvl[1].bEof==0 ){
+ fts5DataRelease(pLvl->pData);
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
+ );
+ if( pLvl->pData ) fts5DlidxLvlNext(pLvl);
+ }
+ }
+ }
+
+ return pIter->aLvl[0].bEof;
+}
+static int fts5DlidxIterNext(Fts5Index *p, Fts5DlidxIter *pIter){
+ return fts5DlidxIterNextR(p, pIter, 0);
+}
+
+/*
+** The iterator passed as the first argument has the following fields set
+** as follows. This function sets up the rest of the iterator so that it
+** points to the first rowid in the doclist-index.
+**
+** pData:
+** pointer to doclist-index record,
+**
+** When this function is called pIter->iLeafPgno is the page number the
+** doclist is associated with (the one featuring the term).
+*/
+static int fts5DlidxIterFirst(Fts5DlidxIter *pIter){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ fts5DlidxLvlNext(&pIter->aLvl[i]);
+ }
+ return pIter->aLvl[0].bEof;
+}
+
+
+static int fts5DlidxIterEof(Fts5Index *p, Fts5DlidxIter *pIter){
+ return p->rc!=SQLITE_OK || pIter->aLvl[0].bEof;
+}
+
+static void fts5DlidxIterLast(Fts5Index *p, Fts5DlidxIter *pIter){
+ int i;
+
+ /* Advance each level to the last entry on the last page */
+ for(i=pIter->nLvl-1; p->rc==SQLITE_OK && i>=0; i--){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[i];
+ while( fts5DlidxLvlNext(pLvl)==0 );
+ pLvl->bEof = 0;
+
+ if( i>0 ){
+ Fts5DlidxLvl *pChild = &pLvl[-1];
+ fts5DataRelease(pChild->pData);
+ memset(pChild, 0, sizeof(Fts5DlidxLvl));
+ pChild->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, i-1, pLvl->iLeafPgno)
+ );
+ }
+ }
+}
+
+/*
+** Move the iterator passed as the only argument to the previous entry.
+*/
+static int fts5DlidxLvlPrev(Fts5DlidxLvl *pLvl){
+ int iOff = pLvl->iOff;
+
+ assert( pLvl->bEof==0 );
+ if( iOff<=pLvl->iFirstOff ){
+ pLvl->bEof = 1;
+ }else{
+ u8 *a = pLvl->pData->p;
+ i64 iVal;
+ int iLimit;
+ int ii;
+ int nZero = 0;
+
+ /* Currently iOff points to the first byte of a varint. This block
+ ** decrements iOff until it points to the first byte of the previous
+ ** varint. Taking care not to read any memory locations that occur
+ ** before the buffer in memory. */
+ iLimit = (iOff>9 ? iOff-9 : 0);
+ for(iOff--; iOff>iLimit; iOff--){
+ if( (a[iOff-1] & 0x80)==0 ) break;
+ }
+
+ fts5GetVarint(&a[iOff], (u64*)&iVal);
+ pLvl->iRowid -= iVal;
+ pLvl->iLeafPgno--;
+
+ /* Skip backwards past any 0x00 varints. */
+ for(ii=iOff-1; ii>=pLvl->iFirstOff && a[ii]==0x00; ii--){
+ nZero++;
+ }
+ if( ii>=pLvl->iFirstOff && (a[ii] & 0x80) ){
+ /* The byte immediately before the last 0x00 byte has the 0x80 bit
+ ** set. So the last 0x00 is only a varint 0 if there are 8 more 0x80
+ ** bytes before a[ii]. */
+ int bZero = 0; /* True if last 0x00 counts */
+ if( (ii-8)>=pLvl->iFirstOff ){
+ int j;
+ for(j=1; j<=8 && (a[ii-j] & 0x80); j++);
+ bZero = (j>8);
+ }
+ if( bZero==0 ) nZero--;
+ }
+ pLvl->iLeafPgno -= nZero;
+ pLvl->iOff = iOff - nZero;
+ }
+
+ return pLvl->bEof;
+}
+
+static int fts5DlidxIterPrevR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
+
+ assert( iLvl<pIter->nLvl );
+ if( fts5DlidxLvlPrev(pLvl) ){
+ if( (iLvl+1) < pIter->nLvl ){
+ fts5DlidxIterPrevR(p, pIter, iLvl+1);
+ if( pLvl[1].bEof==0 ){
+ fts5DataRelease(pLvl->pData);
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
+ );
+ if( pLvl->pData ){
+ while( fts5DlidxLvlNext(pLvl)==0 );
+ pLvl->bEof = 0;
+ }
+ }
+ }
+ }
+
+ return pIter->aLvl[0].bEof;
+}
+static int fts5DlidxIterPrev(Fts5Index *p, Fts5DlidxIter *pIter){
+ return fts5DlidxIterPrevR(p, pIter, 0);
+}
+
+/*
+** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
+*/
+static void fts5DlidxIterFree(Fts5DlidxIter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ fts5DataRelease(pIter->aLvl[i].pData);
+ }
+ sqlite3_free(pIter);
+ }
+}
+
+static Fts5DlidxIter *fts5DlidxIterInit(
+ Fts5Index *p, /* Fts5 Backend to iterate within */
+ int bRev, /* True for ORDER BY ASC */
+ int iSegid, /* Segment id */
+ int iLeafPg /* Leaf page number to load dlidx for */
+){
+ Fts5DlidxIter *pIter = 0;
+ int i;
+ int bDone = 0;
+
+ for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
+ sqlite3_int64 nByte = sizeof(Fts5DlidxIter) + i * sizeof(Fts5DlidxLvl);
+ Fts5DlidxIter *pNew;
+
+ pNew = (Fts5DlidxIter*)sqlite3_realloc64(pIter, nByte);
+ if( pNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ i64 iRowid = FTS5_DLIDX_ROWID(iSegid, i, iLeafPg);
+ Fts5DlidxLvl *pLvl = &pNew->aLvl[i];
+ pIter = pNew;
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p, iRowid);
+ if( pLvl->pData && (pLvl->pData->p[0] & 0x0001)==0 ){
+ bDone = 1;
+ }
+ pIter->nLvl = i+1;
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pIter->iSegid = iSegid;
+ if( bRev==0 ){
+ fts5DlidxIterFirst(pIter);
+ }else{
+ fts5DlidxIterLast(p, pIter);
+ }
+ }
+
+ if( p->rc!=SQLITE_OK ){
+ fts5DlidxIterFree(pIter);
+ pIter = 0;
+ }
+
+ return pIter;
+}
+
+static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){
+ return pIter->aLvl[0].iRowid;
+}
+static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){
+ return pIter->aLvl[0].iLeafPgno;
+}
+
+/*
+** Load the next leaf page into the segment iterator.
+*/
+static void fts5SegIterNextPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter /* Iterator to advance to next page */
+){
+ Fts5Data *pLeaf;
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+ fts5DataRelease(pIter->pLeaf);
+ pIter->iLeafPgno++;
+ if( pIter->pNextLeaf ){
+ pIter->pLeaf = pIter->pNextLeaf;
+ pIter->pNextLeaf = 0;
+ }else if( pIter->iLeafPgno<=pSeg->pgnoLast ){
+ pIter->pLeaf = fts5LeafRead(p,
+ FTS5_SEGMENT_ROWID(pSeg->iSegid, pIter->iLeafPgno)
+ );
+ }else{
+ pIter->pLeaf = 0;
+ }
+ pLeaf = pIter->pLeaf;
+
+ if( pLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf;
+ if( fts5LeafIsTermless(pLeaf) ){
+ pIter->iEndofDoclist = pLeaf->nn+1;
+ }else{
+ pIter->iPgidxOff += fts5GetVarint32(&pLeaf->p[pIter->iPgidxOff],
+ pIter->iEndofDoclist
+ );
+ }
+ }
+}
+
+/*
+** Argument p points to a buffer containing a varint to be interpreted as a
+** position list size field. Read the varint and return the number of bytes
+** read. Before returning, set *pnSz to the number of bytes in the position
+** list, and *pbDel to true if the delete flag is set, or false otherwise.
+*/
+static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
+ int nSz;
+ int n = 0;
+ fts5FastGetVarint32(p, n, nSz);
+ assert_nc( nSz>=0 );
+ *pnSz = nSz/2;
+ *pbDel = nSz & 0x0001;
+ return n;
+}
+
+/*
+** Fts5SegIter.iLeafOffset currently points to the first byte of a
+** position-list size field. Read the value of the field and store it
+** in the following variables:
+**
+** Fts5SegIter.nPos
+** Fts5SegIter.bDel
+**
+** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
+** position list content (if any).
+*/
+static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
+ if( p->rc==SQLITE_OK ){
+ int iOff = pIter->iLeafOffset; /* Offset to read at */
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ int iEod = MIN(pIter->iEndofDoclist, pIter->pLeaf->szLeaf);
+ pIter->bDel = 0;
+ pIter->nPos = 1;
+ if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
+ pIter->bDel = 1;
+ iOff++;
+ if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
+ pIter->nPos = 1;
+ iOff++;
+ }else{
+ pIter->nPos = 0;
+ }
+ }
+ }else{
+ int nSz;
+ fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
+ pIter->bDel = (nSz & 0x0001);
+ pIter->nPos = nSz>>1;
+ assert_nc( pIter->nPos>=0 );
+ }
+ pIter->iLeafOffset = iOff;
+ }
+}
+
+static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ i64 iOff = pIter->iLeafOffset;
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ if( iOff>=pIter->pLeaf->szLeaf ){
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ){
+ if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
+ return;
+ }
+ iOff = 4;
+ a = pIter->pLeaf->p;
+ }
+ iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+}
+
+/*
+** Fts5SegIter.iLeafOffset currently points to the first byte of the
+** "nSuffix" field of a term. Function parameter nKeep contains the value
+** of the "nPrefix" field (if there was one - it is passed 0 if this is
+** the first term in the segment).
+**
+** This function populates:
+**
+** Fts5SegIter.term
+** Fts5SegIter.rowid
+**
+** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
+** the first position list. The position list belonging to document
+** (Fts5SegIter.iRowid).
+*/
+static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ i64 iOff = pIter->iLeafOffset; /* Offset to read at */
+ int nNew; /* Bytes of new data */
+
+ iOff += fts5GetVarint32(&a[iOff], nNew);
+ if( iOff+nNew>pIter->pLeaf->szLeaf || nKeep>pIter->term.n || nNew==0 ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ pIter->term.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+ assert( pIter->term.n<=pIter->term.nSpace );
+ iOff += nNew;
+ pIter->iTermLeafOffset = iOff;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+ pIter->iLeafOffset = iOff;
+
+ if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ }else{
+ int nExtra;
+ pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
+ pIter->iEndofDoclist += nExtra;
+ }
+
+ fts5SegIterLoadRowid(p, pIter);
+}
+
+static void fts5SegIterNext(Fts5Index*, Fts5SegIter*, int*);
+static void fts5SegIterNext_Reverse(Fts5Index*, Fts5SegIter*, int*);
+static void fts5SegIterNext_None(Fts5Index*, Fts5SegIter*, int*);
+
+static void fts5SegIterSetNext(Fts5Index *p, Fts5SegIter *pIter){
+ if( pIter->flags & FTS5_SEGITER_REVERSE ){
+ pIter->xNext = fts5SegIterNext_Reverse;
+ }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pIter->xNext = fts5SegIterNext_None;
+ }else{
+ pIter->xNext = fts5SegIterNext;
+ }
+}
+
+/*
+** Initialize the iterator object pIter to iterate through the entries in
+** segment pSeg. The iterator is left pointing to the first entry when
+** this function returns.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterInit(
+ Fts5Index *p, /* FTS index object */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ if( pSeg->pgnoFirst==0 ){
+ /* This happens if the segment is being used as an input to an incremental
+ ** merge and all data has already been "trimmed". See function
+ ** fts5TrimSegments() for details. In this case leave the iterator empty.
+ ** The caller will see the (pIter->pLeaf==0) and assume the iterator is
+ ** at EOF already. */
+ assert( pIter->pLeaf==0 );
+ return;
+ }
+
+ if( p->rc==SQLITE_OK ){
+ memset(pIter, 0, sizeof(*pIter));
+ fts5SegIterSetNext(p, pIter);
+ pIter->pSeg = pSeg;
+ pIter->iLeafPgno = pSeg->pgnoFirst-1;
+ fts5SegIterNextPage(p, pIter);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pIter->iLeafOffset = 4;
+ assert( pIter->pLeaf!=0 );
+ assert_nc( pIter->pLeaf->nn>4 );
+ assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 );
+ pIter->iPgidxOff = pIter->pLeaf->szLeaf+1;
+ fts5SegIterLoadTerm(p, pIter, 0);
+ fts5SegIterLoadNPos(p, pIter);
+ }
+}
+
+/*
+** This function is only ever called on iterators created by calls to
+** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
+**
+** The iterator is in an unusual state when this function is called: the
+** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
+** the position-list size field for the first relevant rowid on the page.
+** Fts5SegIter.rowid is set, but nPos and bDel are not.
+**
+** This function advances the iterator so that it points to the last
+** relevant rowid on the page and, if necessary, initializes the
+** aRowidOffset[] and iRowidOffset variables. At this point the iterator
+** is in its regular state - Fts5SegIter.iLeafOffset points to the first
+** byte of the position list content associated with said rowid.
+*/
+static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
+ int eDetail = p->pConfig->eDetail;
+ int n = pIter->pLeaf->szLeaf;
+ int i = pIter->iLeafOffset;
+ u8 *a = pIter->pLeaf->p;
+ int iRowidOffset = 0;
+
+ if( n>pIter->iEndofDoclist ){
+ n = pIter->iEndofDoclist;
+ }
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ while( 1 ){
+ u64 iDelta = 0;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ /* todo */
+ if( i<n && a[i]==0 ){
+ i++;
+ if( i<n && a[i]==0 ) i++;
+ }
+ }else{
+ int nPos;
+ int bDummy;
+ i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
+ i += nPos;
+ }
+ if( i>=n ) break;
+ i += fts5GetVarint(&a[i], &iDelta);
+ pIter->iRowid += iDelta;
+
+ /* If necessary, grow the pIter->aRowidOffset[] array. */
+ if( iRowidOffset>=pIter->nRowidOffset ){
+ int nNew = pIter->nRowidOffset + 8;
+ int *aNew = (int*)sqlite3_realloc64(pIter->aRowidOffset,nNew*sizeof(int));
+ if( aNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ break;
+ }
+ pIter->aRowidOffset = aNew;
+ pIter->nRowidOffset = nNew;
+ }
+
+ pIter->aRowidOffset[iRowidOffset++] = pIter->iLeafOffset;
+ pIter->iLeafOffset = i;
+ }
+ pIter->iRowidOffset = iRowidOffset;
+ fts5SegIterLoadNPos(p, pIter);
+}
+
+/*
+**
+*/
+static void fts5SegIterReverseNewPage(Fts5Index *p, Fts5SegIter *pIter){
+ assert( pIter->flags & FTS5_SEGITER_REVERSE );
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
+ Fts5Data *pNew;
+ pIter->iLeafPgno--;
+ pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
+ pIter->pSeg->iSegid, pIter->iLeafPgno
+ ));
+ if( pNew ){
+ /* iTermLeafOffset may be equal to szLeaf if the term is the last
+ ** thing on the page - i.e. the first rowid is on the following page.
+ ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
+ if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
+ assert( pIter->pLeaf==0 );
+ if( pIter->iTermLeafOffset<pNew->szLeaf ){
+ pIter->pLeaf = pNew;
+ pIter->iLeafOffset = pIter->iTermLeafOffset;
+ }
+ }else{
+ int iRowidOff;
+ iRowidOff = fts5LeafFirstRowidOff(pNew);
+ if( iRowidOff ){
+ if( iRowidOff>=pNew->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ pIter->pLeaf = pNew;
+ pIter->iLeafOffset = iRowidOff;
+ }
+ }
+ }
+
+ if( pIter->pLeaf ){
+ u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
+ pIter->iLeafOffset += fts5GetVarint(a, (u64*)&pIter->iRowid);
+ break;
+ }else{
+ fts5DataRelease(pNew);
+ }
+ }
+ }
+
+ if( pIter->pLeaf ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ fts5SegIterReverseInitPage(p, pIter);
+ }
+}
+
+/*
+** Return true if the iterator passed as the second argument currently
+** points to a delete marker. A delete marker is an entry with a 0 byte
+** position-list.
+*/
+static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5Iter *pIter){
+ Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** This version of fts5SegIterNext() is only used by reverse iterators.
+*/
+static void fts5SegIterNext_Reverse(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbUnused /* Unused */
+){
+ assert( pIter->flags & FTS5_SEGITER_REVERSE );
+ assert( pIter->pNextLeaf==0 );
+ UNUSED_PARAM(pbUnused);
+
+ if( pIter->iRowidOffset>0 ){
+ u8 *a = pIter->pLeaf->p;
+ int iOff;
+ u64 iDelta;
+
+ pIter->iRowidOffset--;
+ pIter->iLeafOffset = pIter->aRowidOffset[pIter->iRowidOffset];
+ fts5SegIterLoadNPos(p, pIter);
+ iOff = pIter->iLeafOffset;
+ if( p->pConfig->eDetail!=FTS5_DETAIL_NONE ){
+ iOff += pIter->nPos;
+ }
+ fts5GetVarint(&a[iOff], &iDelta);
+ pIter->iRowid -= iDelta;
+ }else{
+ fts5SegIterReverseNewPage(p, pIter);
+ }
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** This version of fts5SegIterNext() is only used if detail=none and the
+** iterator is not a reverse direction iterator.
+*/
+static void fts5SegIterNext_None(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbNewTerm /* OUT: Set for new term */
+){
+ int iOff;
+
+ assert( p->rc==SQLITE_OK );
+ assert( (pIter->flags & FTS5_SEGITER_REVERSE)==0 );
+ assert( p->pConfig->eDetail==FTS5_DETAIL_NONE );
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ iOff = pIter->iLeafOffset;
+
+ /* Next entry is on the next page */
+ if( pIter->pSeg && iOff>=pIter->pLeaf->szLeaf ){
+ fts5SegIterNextPage(p, pIter);
+ if( p->rc || pIter->pLeaf==0 ) return;
+ pIter->iRowid = 0;
+ iOff = 4;
+ }
+
+ if( iOff<pIter->iEndofDoclist ){
+ /* Next entry is on the current page */
+ i64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&pIter->pLeaf->p[iOff], (u64*)&iDelta);
+ pIter->iLeafOffset = iOff;
+ pIter->iRowid += iDelta;
+ }else if( (pIter->flags & FTS5_SEGITER_ONETERM)==0 ){
+ if( pIter->pSeg ){
+ int nKeep = 0;
+ if( iOff!=fts5LeafFirstTermOff(pIter->pLeaf) ){
+ iOff += fts5GetVarint32(&pIter->pLeaf->p[iOff], nKeep);
+ }
+ pIter->iLeafOffset = iOff;
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ }else{
+ const u8 *pList = 0;
+ const char *zTerm = 0;
+ int nList;
+ sqlite3Fts5HashScanNext(p->pHash);
+ sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
+ if( pList==0 ) goto next_none_eof;
+ pIter->pLeaf->p = (u8*)pList;
+ pIter->pLeaf->nn = nList;
+ pIter->pLeaf->szLeaf = nList;
+ pIter->iEndofDoclist = nList;
+ sqlite3Fts5BufferSet(&p->rc,&pIter->term, (int)strlen(zTerm), (u8*)zTerm);
+ pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
+ }
+
+ if( pbNewTerm ) *pbNewTerm = 1;
+ }else{
+ goto next_none_eof;
+ }
+
+ fts5SegIterLoadNPos(p, pIter);
+
+ return;
+ next_none_eof:
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+}
+
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
+** is not considered an error if the iterator reaches EOF. If an error has
+** already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterNext(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbNewTerm /* OUT: Set for new term */
+){
+ Fts5Data *pLeaf = pIter->pLeaf;
+ int iOff;
+ int bNewTerm = 0;
+ int nKeep = 0;
+ u8 *a;
+ int n;
+
+ assert( pbNewTerm==0 || *pbNewTerm==0 );
+ assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );
+
+ /* Search for the end of the position list within the current page. */
+ a = pLeaf->p;
+ n = pLeaf->szLeaf;
+
+ ASSERT_SZLEAF_OK(pLeaf);
+ iOff = pIter->iLeafOffset + pIter->nPos;
+
+ if( iOff<n ){
+ /* The next entry is on the current page. */
+ assert_nc( iOff<=pIter->iEndofDoclist );
+ if( iOff>=pIter->iEndofDoclist ){
+ bNewTerm = 1;
+ if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
+ iOff += fts5GetVarint32(&a[iOff], nKeep);
+ }
+ }else{
+ u64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
+ pIter->iRowid += iDelta;
+ assert_nc( iDelta>0 );
+ }
+ pIter->iLeafOffset = iOff;
+
+ }else if( pIter->pSeg==0 ){
+ const u8 *pList = 0;
+ const char *zTerm = 0;
+ int nList = 0;
+ assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
+ if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
+ sqlite3Fts5HashScanNext(p->pHash);
+ sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
+ }
+ if( pList==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }else{
+ pIter->pLeaf->p = (u8*)pList;
+ pIter->pLeaf->nn = nList;
+ pIter->pLeaf->szLeaf = nList;
+ pIter->iEndofDoclist = nList+1;
+ sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
+ (u8*)zTerm);
+ pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
+ *pbNewTerm = 1;
+ }
+ }else{
+ iOff = 0;
+ /* Next entry is not on the current page */
+ while( iOff==0 ){
+ fts5SegIterNextPage(p, pIter);
+ pLeaf = pIter->pLeaf;
+ if( pLeaf==0 ) break;
+ ASSERT_SZLEAF_OK(pLeaf);
+ if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
+ iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+
+ if( pLeaf->nn>pLeaf->szLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
+ &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
+ );
+ }
+ }
+ else if( pLeaf->nn>pLeaf->szLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
+ &pLeaf->p[pLeaf->szLeaf], iOff
+ );
+ pIter->iLeafOffset = iOff;
+ pIter->iEndofDoclist = iOff;
+ bNewTerm = 1;
+ }
+ assert_nc( iOff<pLeaf->szLeaf );
+ if( iOff>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ }
+ }
+
+ /* Check if the iterator is now at EOF. If so, return early. */
+ if( pIter->pLeaf ){
+ if( bNewTerm ){
+ if( pIter->flags & FTS5_SEGITER_ONETERM ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }else{
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ fts5SegIterLoadNPos(p, pIter);
+ if( pbNewTerm ) *pbNewTerm = 1;
+ }
+ }else{
+ /* The following could be done by calling fts5SegIterLoadNPos(). But
+ ** this block is particularly performance critical, so equivalent
+ ** code is inlined. */
+ int nSz;
+ assert_nc( pIter->iLeafOffset<=pIter->pLeaf->nn );
+ fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
+ pIter->bDel = (nSz & 0x0001);
+ pIter->nPos = nSz>>1;
+ assert_nc( pIter->nPos>=0 );
+ }
+ }
+}
+
+#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
+
+#define fts5IndexSkipVarint(a, iOff) { \
+ int iEnd = iOff+9; \
+ while( (a[iOff++] & 0x80) && iOff<iEnd ); \
+}
+
+/*
+** Iterator pIter currently points to the first rowid in a doclist. This
+** function sets the iterator up so that iterates in reverse order through
+** the doclist.
+*/
+static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){
+ Fts5DlidxIter *pDlidx = pIter->pDlidx;
+ Fts5Data *pLast = 0;
+ int pgnoLast = 0;
+
+ if( pDlidx ){
+ int iSegid = pIter->pSeg->iSegid;
+ pgnoLast = fts5DlidxIterPgno(pDlidx);
+ pLast = fts5LeafRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
+ }else{
+ Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
+
+ /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
+ ** position-list content for the current rowid. Back it up so that it
+ ** points to the start of the position-list size field. */
+ int iPoslist;
+ if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
+ iPoslist = pIter->iTermLeafOffset;
+ }else{
+ iPoslist = 4;
+ }
+ fts5IndexSkipVarint(pLeaf->p, iPoslist);
+ pIter->iLeafOffset = iPoslist;
+
+ /* If this condition is true then the largest rowid for the current
+ ** term may not be stored on the current page. So search forward to
+ ** see where said rowid really is. */
+ if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
+ int pgno;
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+
+ /* The last rowid in the doclist may not be on the current page. Search
+ ** forward to find the page containing the last rowid. */
+ for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
+ i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, pgno);
+ Fts5Data *pNew = fts5LeafRead(p, iAbs);
+ if( pNew ){
+ int iRowid, bTermless;
+ iRowid = fts5LeafFirstRowidOff(pNew);
+ bTermless = fts5LeafIsTermless(pNew);
+ if( iRowid ){
+ SWAPVAL(Fts5Data*, pNew, pLast);
+ pgnoLast = pgno;
+ }
+ fts5DataRelease(pNew);
+ if( bTermless==0 ) break;
+ }
+ }
+ }
+ }
+
+ /* If pLast is NULL at this point, then the last rowid for this doclist
+ ** lies on the page currently indicated by the iterator. In this case
+ ** pIter->iLeafOffset is already set to point to the position-list size
+ ** field associated with the first relevant rowid on the page.
+ **
+ ** Or, if pLast is non-NULL, then it is the page that contains the last
+ ** rowid. In this case configure the iterator so that it points to the
+ ** first rowid on this page.
+ */
+ if( pLast ){
+ int iOff;
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = pLast;
+ pIter->iLeafPgno = pgnoLast;
+ iOff = fts5LeafFirstRowidOff(pLast);
+ if( iOff>pLast->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ iOff += fts5GetVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+
+ if( fts5LeafIsTermless(pLast) ){
+ pIter->iEndofDoclist = pLast->nn+1;
+ }else{
+ pIter->iEndofDoclist = fts5LeafFirstTermOff(pLast);
+ }
+ }
+
+ fts5SegIterReverseInitPage(p, pIter);
+}
+
+/*
+** Iterator pIter currently points to the first rowid of a doclist.
+** There is a doclist-index associated with the final term on the current
+** page. If the current term is the last term on the page, load the
+** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
+*/
+static void fts5SegIterLoadDlidx(Fts5Index *p, Fts5SegIter *pIter){
+ int iSeg = pIter->pSeg->iSegid;
+ int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
+ Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
+
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+ assert( pIter->pDlidx==0 );
+
+ /* Check if the current doclist ends on this page. If it does, return
+ ** early without loading the doclist-index (as it belongs to a different
+ ** term. */
+ if( pIter->iTermLeafPgno==pIter->iLeafPgno
+ && pIter->iEndofDoclist<pLeaf->szLeaf
+ ){
+ return;
+ }
+
+ pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
+}
+
+/*
+** The iterator object passed as the second argument currently contains
+** no valid values except for the Fts5SegIter.pLeaf member variable. This
+** function searches the leaf page for a term matching (pTerm/nTerm).
+**
+** If the specified term is found on the page, then the iterator is left
+** pointing to it. If argument bGe is zero and the term is not found,
+** the iterator is left pointing at EOF.
+**
+** If bGe is non-zero and the specified term is not found, then the
+** iterator is left pointing to the smallest term in the segment that
+** is larger than the specified term, even if this term is not on the
+** current page.
+*/
+static void fts5LeafSeek(
+ Fts5Index *p, /* Leave any error code here */
+ int bGe, /* True for a >= search */
+ Fts5SegIter *pIter, /* Iterator to seek */
+ const u8 *pTerm, int nTerm /* Term to search for */
+){
+ u32 iOff;
+ const u8 *a = pIter->pLeaf->p;
+ u32 n = (u32)pIter->pLeaf->nn;
+
+ u32 nMatch = 0;
+ u32 nKeep = 0;
+ u32 nNew = 0;
+ u32 iTermOff;
+ u32 iPgidx; /* Current offset in pgidx */
+ int bEndOfPage = 0;
+
+ assert( p->rc==SQLITE_OK );
+
+ iPgidx = (u32)pIter->pLeaf->szLeaf;
+ iPgidx += fts5GetVarint32(&a[iPgidx], iTermOff);
+ iOff = iTermOff;
+ if( iOff>n ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+
+ while( 1 ){
+
+ /* Figure out how many new bytes are in this term */
+ fts5FastGetVarint32(a, iOff, nNew);
+ if( nKeep<nMatch ){
+ goto search_failed;
+ }
+
+ assert( nKeep>=nMatch );
+ if( nKeep==nMatch ){
+ u32 nCmp;
+ u32 i;
+ nCmp = (u32)MIN(nNew, nTerm-nMatch);
+ for(i=0; i<nCmp; i++){
+ if( a[iOff+i]!=pTerm[nMatch+i] ) break;
+ }
+ nMatch += i;
+
+ if( (u32)nTerm==nMatch ){
+ if( i==nNew ){
+ goto search_success;
+ }else{
+ goto search_failed;
+ }
+ }else if( i<nNew && a[iOff+i]>pTerm[nMatch] ){
+ goto search_failed;
+ }
+ }
+
+ if( iPgidx>=n ){
+ bEndOfPage = 1;
+ break;
+ }
+
+ iPgidx += fts5GetVarint32(&a[iPgidx], nKeep);
+ iTermOff += nKeep;
+ iOff = iTermOff;
+
+ if( iOff>=n ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+
+ /* Read the nKeep field of the next term. */
+ fts5FastGetVarint32(a, iOff, nKeep);
+ }
+
+ search_failed:
+ if( bGe==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ return;
+ }else if( bEndOfPage ){
+ do {
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ) return;
+ a = pIter->pLeaf->p;
+ if( fts5LeafIsTermless(pIter->pLeaf)==0 ){
+ iPgidx = (u32)pIter->pLeaf->szLeaf;
+ iPgidx += fts5GetVarint32(&pIter->pLeaf->p[iPgidx], iOff);
+ if( iOff<4 || (i64)iOff>=pIter->pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }else{
+ nKeep = 0;
+ iTermOff = iOff;
+ n = (u32)pIter->pLeaf->nn;
+ iOff += fts5GetVarint32(&a[iOff], nNew);
+ break;
+ }
+ }
+ }while( 1 );
+ }
+
+ search_success:
+ if( (i64)iOff+nNew>n || nNew<1 ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ pIter->iLeafOffset = iOff + nNew;
+ pIter->iTermLeafOffset = pIter->iLeafOffset;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+
+ fts5BufferSet(&p->rc, &pIter->term, nKeep, pTerm);
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+
+ if( iPgidx>=n ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ }else{
+ int nExtra;
+ iPgidx += fts5GetVarint32(&a[iPgidx], nExtra);
+ pIter->iEndofDoclist = iTermOff + nExtra;
+ }
+ pIter->iPgidxOff = iPgidx;
+
+ fts5SegIterLoadRowid(p, pIter);
+ fts5SegIterLoadNPos(p, pIter);
+}
+
+static sqlite3_stmt *fts5IdxSelectStmt(Fts5Index *p){
+ if( p->pIdxSelect==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxSelect, sqlite3_mprintf(
+ "SELECT pgno FROM '%q'.'%q_idx' WHERE "
+ "segid=? AND term<=? ORDER BY term DESC LIMIT 1",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+ return p->pIdxSelect;
+}
+
+/*
+** Initialize the object pIter to point to term pTerm/nTerm within segment
+** pSeg. If there is no such term in the index, the iterator is set to EOF.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterSeekInit(
+ Fts5Index *p, /* FTS5 backend */
+ const u8 *pTerm, int nTerm, /* Term to seek to */
+ int flags, /* Mask of FTS5INDEX_XXX flags */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ int iPg = 1;
+ int bGe = (flags & FTS5INDEX_QUERY_SCAN);
+ int bDlidx = 0; /* True if there is a doclist-index */
+ sqlite3_stmt *pIdxSelect = 0;
+
+ assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
+ assert( pTerm && nTerm );
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->pSeg = pSeg;
+
+ /* This block sets stack variable iPg to the leaf page number that may
+ ** contain term (pTerm/nTerm), if it is present in the segment. */
+ pIdxSelect = fts5IdxSelectStmt(p);
+ if( p->rc ) return;
+ sqlite3_bind_int(pIdxSelect, 1, pSeg->iSegid);
+ sqlite3_bind_blob(pIdxSelect, 2, pTerm, nTerm, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pIdxSelect) ){
+ i64 val = sqlite3_column_int(pIdxSelect, 0);
+ iPg = (int)(val>>1);
+ bDlidx = (val & 0x0001);
+ }
+ p->rc = sqlite3_reset(pIdxSelect);
+ sqlite3_bind_null(pIdxSelect, 2);
+
+ if( iPg<pSeg->pgnoFirst ){
+ iPg = pSeg->pgnoFirst;
+ bDlidx = 0;
+ }
+
+ pIter->iLeafPgno = iPg - 1;
+ fts5SegIterNextPage(p, pIter);
+
+ if( pIter->pLeaf ){
+ fts5LeafSeek(p, bGe, pIter, pTerm, nTerm);
+ }
+
+ if( p->rc==SQLITE_OK && bGe==0 ){
+ pIter->flags |= FTS5_SEGITER_ONETERM;
+ if( pIter->pLeaf ){
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ }
+ if( bDlidx ){
+ fts5SegIterLoadDlidx(p, pIter);
+ }
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ fts5SegIterReverse(p, pIter);
+ }
+ }
+ }
+
+ fts5SegIterSetNext(p, pIter);
+
+ /* Either:
+ **
+ ** 1) an error has occurred, or
+ ** 2) the iterator points to EOF, or
+ ** 3) the iterator points to an entry with term (pTerm/nTerm), or
+ ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
+ ** to an entry with a term greater than or equal to (pTerm/nTerm).
+ */
+ assert_nc( p->rc!=SQLITE_OK /* 1 */
+ || pIter->pLeaf==0 /* 2 */
+ || fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)==0 /* 3 */
+ || (bGe && fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)>0) /* 4 */
+ );
+}
+
+/*
+** Initialize the object pIter to point to term pTerm/nTerm within the
+** in-memory hash table. If there is no such term in the hash-table, the
+** iterator is set to EOF.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterHashInit(
+ Fts5Index *p, /* FTS5 backend */
+ const u8 *pTerm, int nTerm, /* Term to seek to */
+ int flags, /* Mask of FTS5INDEX_XXX flags */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ int nList = 0;
+ const u8 *z = 0;
+ int n = 0;
+ Fts5Data *pLeaf = 0;
+
+ assert( p->pHash );
+ assert( p->rc==SQLITE_OK );
+
+ if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){
+ const u8 *pList = 0;
+
+ p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm);
+ sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList);
+ n = (z ? (int)strlen((const char*)z) : 0);
+ if( pList ){
+ pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
+ if( pLeaf ){
+ pLeaf->p = (u8*)pList;
+ }
+ }
+ }else{
+ p->rc = sqlite3Fts5HashQuery(p->pHash, sizeof(Fts5Data),
+ (const char*)pTerm, nTerm, (void**)&pLeaf, &nList
+ );
+ if( pLeaf ){
+ pLeaf->p = (u8*)&pLeaf[1];
+ }
+ z = pTerm;
+ n = nTerm;
+ pIter->flags |= FTS5_SEGITER_ONETERM;
+ }
+
+ if( pLeaf ){
+ sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
+ pLeaf->nn = pLeaf->szLeaf = nList;
+ pIter->pLeaf = pLeaf;
+ pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
+ pIter->iEndofDoclist = pLeaf->nn;
+
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ fts5SegIterReverseInitPage(p, pIter);
+ }else{
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ }
+
+ fts5SegIterSetNext(p, pIter);
+}
+
+/*
+** Zero the iterator passed as the only argument.
+*/
+static void fts5SegIterClear(Fts5SegIter *pIter){
+ fts5BufferFree(&pIter->term);
+ fts5DataRelease(pIter->pLeaf);
+ fts5DataRelease(pIter->pNextLeaf);
+ fts5DlidxIterFree(pIter->pDlidx);
+ sqlite3_free(pIter->aRowidOffset);
+ memset(pIter, 0, sizeof(Fts5SegIter));
+}
+
+#ifdef SQLITE_DEBUG
+
+/*
+** This function is used as part of the big assert() procedure implemented by
+** fts5AssertMultiIterSetup(). It ensures that the result currently stored
+** in *pRes is the correct result of comparing the current positions of the
+** two iterators.
+*/
+static void fts5AssertComparisonResult(
+ Fts5Iter *pIter,
+ Fts5SegIter *p1,
+ Fts5SegIter *p2,
+ Fts5CResult *pRes
+){
+ int i1 = p1 - pIter->aSeg;
+ int i2 = p2 - pIter->aSeg;
+
+ if( p1->pLeaf || p2->pLeaf ){
+ if( p1->pLeaf==0 ){
+ assert( pRes->iFirst==i2 );
+ }else if( p2->pLeaf==0 ){
+ assert( pRes->iFirst==i1 );
+ }else{
+ int nMin = MIN(p1->term.n, p2->term.n);
+ int res = fts5Memcmp(p1->term.p, p2->term.p, nMin);
+ if( res==0 ) res = p1->term.n - p2->term.n;
+
+ if( res==0 ){
+ assert( pRes->bTermEq==1 );
+ assert( p1->iRowid!=p2->iRowid );
+ res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : 1;
+ }else{
+ assert( pRes->bTermEq==0 );
+ }
+
+ if( res<0 ){
+ assert( pRes->iFirst==i1 );
+ }else{
+ assert( pRes->iFirst==i2 );
+ }
+ }
+ }
+}
+
+/*
+** This function is a no-op unless SQLITE_DEBUG is defined when this module
+** is compiled. In that case, this function is essentially an assert()
+** statement used to verify that the contents of the pIter->aFirst[] array
+** are correct.
+*/
+static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5Iter *pIter){
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ int i;
+
+ assert( (pFirst->pLeaf==0)==pIter->base.bEof );
+
+ /* Check that pIter->iSwitchRowid is set correctly. */
+ for(i=0; i<pIter->nSeg; i++){
+ Fts5SegIter *p1 = &pIter->aSeg[i];
+ assert( p1==pFirst
+ || p1->pLeaf==0
+ || fts5BufferCompare(&pFirst->term, &p1->term)
+ || p1->iRowid==pIter->iSwitchRowid
+ || (p1->iRowid<pIter->iSwitchRowid)==pIter->bRev
+ );
+ }
+
+ for(i=0; i<pIter->nSeg; i+=2){
+ Fts5SegIter *p1 = &pIter->aSeg[i];
+ Fts5SegIter *p2 = &pIter->aSeg[i+1];
+ Fts5CResult *pRes = &pIter->aFirst[(pIter->nSeg + i) / 2];
+ fts5AssertComparisonResult(pIter, p1, p2, pRes);
+ }
+
+ for(i=1; i<(pIter->nSeg / 2); i+=2){
+ Fts5SegIter *p1 = &pIter->aSeg[ pIter->aFirst[i*2].iFirst ];
+ Fts5SegIter *p2 = &pIter->aSeg[ pIter->aFirst[i*2+1].iFirst ];
+ Fts5CResult *pRes = &pIter->aFirst[i];
+ fts5AssertComparisonResult(pIter, p1, p2, pRes);
+ }
+ }
+}
+#else
+# define fts5AssertMultiIterSetup(x,y)
+#endif
+
+/*
+** Do the comparison necessary to populate pIter->aFirst[iOut].
+**
+** If the returned value is non-zero, then it is the index of an entry
+** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
+** to a key that is a duplicate of another, higher priority,
+** segment-iterator in the pSeg->aSeg[] array.
+*/
+static int fts5MultiIterDoCompare(Fts5Iter *pIter, int iOut){
+ int i1; /* Index of left-hand Fts5SegIter */
+ int i2; /* Index of right-hand Fts5SegIter */
+ int iRes;
+ Fts5SegIter *p1; /* Left-hand Fts5SegIter */
+ Fts5SegIter *p2; /* Right-hand Fts5SegIter */
+ Fts5CResult *pRes = &pIter->aFirst[iOut];
+
+ assert( iOut<pIter->nSeg && iOut>0 );
+ assert( pIter->bRev==0 || pIter->bRev==1 );
+
+ if( iOut>=(pIter->nSeg/2) ){
+ i1 = (iOut - pIter->nSeg/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pIter->aFirst[iOut*2].iFirst;
+ i2 = pIter->aFirst[iOut*2+1].iFirst;
+ }
+ p1 = &pIter->aSeg[i1];
+ p2 = &pIter->aSeg[i2];
+
+ pRes->bTermEq = 0;
+ if( p1->pLeaf==0 ){ /* If p1 is at EOF */
+ iRes = i2;
+ }else if( p2->pLeaf==0 ){ /* If p2 is at EOF */
+ iRes = i1;
+ }else{
+ int res = fts5BufferCompare(&p1->term, &p2->term);
+ if( res==0 ){
+ assert_nc( i2>i1 );
+ assert_nc( i2!=0 );
+ pRes->bTermEq = 1;
+ if( p1->iRowid==p2->iRowid ){
+ p1->bDel = p2->bDel;
+ return i2;
+ }
+ res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : +1;
+ }
+ assert( res!=0 );
+ if( res<0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pRes->iFirst = (u16)iRes;
+ return 0;
+}
+
+/*
+** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
+** It is an error if leaf iLeafPgno does not exist or contains no rowids.
+*/
+static void fts5SegIterGotoPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int iLeafPgno
+){
+ assert( iLeafPgno>pIter->iLeafPgno );
+
+ if( iLeafPgno>pIter->pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5DataRelease(pIter->pNextLeaf);
+ pIter->pNextLeaf = 0;
+ pIter->iLeafPgno = iLeafPgno-1;
+ fts5SegIterNextPage(p, pIter);
+ assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno );
+
+ if( p->rc==SQLITE_OK && ALWAYS(pIter->pLeaf!=0) ){
+ int iOff;
+ u8 *a = pIter->pLeaf->p;
+ int n = pIter->pLeaf->szLeaf;
+
+ iOff = fts5LeafFirstRowidOff(pIter->pLeaf);
+ if( iOff<4 || iOff>=n ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ iOff += fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ }
+ }
+}
+
+/*
+** Advance the iterator passed as the second argument until it is at or
+** past rowid iFrom. Regardless of the value of iFrom, the iterator is
+** always advanced at least once.
+*/
+static void fts5SegIterNextFrom(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ i64 iMatch /* Advance iterator at least this far */
+){
+ int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
+ Fts5DlidxIter *pDlidx = pIter->pDlidx;
+ int iLeafPgno = pIter->iLeafPgno;
+ int bMove = 1;
+
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+ assert( pIter->pDlidx );
+ assert( pIter->pLeaf );
+
+ if( bRev==0 ){
+ while( !fts5DlidxIterEof(p, pDlidx) && iMatch>fts5DlidxIterRowid(pDlidx) ){
+ iLeafPgno = fts5DlidxIterPgno(pDlidx);
+ fts5DlidxIterNext(p, pDlidx);
+ }
+ assert_nc( iLeafPgno>=pIter->iLeafPgno || p->rc );
+ if( iLeafPgno>pIter->iLeafPgno ){
+ fts5SegIterGotoPage(p, pIter, iLeafPgno);
+ bMove = 0;
+ }
+ }else{
+ assert( pIter->pNextLeaf==0 );
+ assert( iMatch<pIter->iRowid );
+ while( !fts5DlidxIterEof(p, pDlidx) && iMatch<fts5DlidxIterRowid(pDlidx) ){
+ fts5DlidxIterPrev(p, pDlidx);
+ }
+ iLeafPgno = fts5DlidxIterPgno(pDlidx);
+
+ assert( fts5DlidxIterEof(p, pDlidx) || iLeafPgno<=pIter->iLeafPgno );
+
+ if( iLeafPgno<pIter->iLeafPgno ){
+ pIter->iLeafPgno = iLeafPgno+1;
+ fts5SegIterReverseNewPage(p, pIter);
+ bMove = 0;
+ }
+ }
+
+ do{
+ if( bMove && p->rc==SQLITE_OK ) pIter->xNext(p, pIter, 0);
+ if( pIter->pLeaf==0 ) break;
+ if( bRev==0 && pIter->iRowid>=iMatch ) break;
+ if( bRev!=0 && pIter->iRowid<=iMatch ) break;
+ bMove = 1;
+ }while( p->rc==SQLITE_OK );
+}
+
+
+/*
+** Free the iterator object passed as the second argument.
+*/
+static void fts5MultiIterFree(Fts5Iter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nSeg; i++){
+ fts5SegIterClear(&pIter->aSeg[i]);
+ }
+ fts5BufferFree(&pIter->poslist);
+ sqlite3_free(pIter);
+ }
+}
+
+static void fts5MultiIterAdvanced(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Iter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ int iMinset /* Minimum entry in aFirst[] to set */
+){
+ int i;
+ for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
+ Fts5SegIter *pSeg = &pIter->aSeg[iEq];
+ assert( p->rc==SQLITE_OK );
+ pSeg->xNext(p, pSeg, 0);
+ i = pIter->nSeg + iEq;
+ }
+ }
+}
+
+/*
+** Sub-iterator iChanged of iterator pIter has just been advanced. It still
+** points to the same term though - just a different rowid. This function
+** attempts to update the contents of the pIter->aFirst[] accordingly.
+** If it does so successfully, 0 is returned. Otherwise 1.
+**
+** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
+** on the iterator instead. That function does the same as this one, except
+** that it deals with more complicated cases as well.
+*/
+static int fts5MultiIterAdvanceRowid(
+ Fts5Iter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ Fts5SegIter **ppFirst
+){
+ Fts5SegIter *pNew = &pIter->aSeg[iChanged];
+
+ if( pNew->iRowid==pIter->iSwitchRowid
+ || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
+ ){
+ int i;
+ Fts5SegIter *pOther = &pIter->aSeg[iChanged ^ 0x0001];
+ pIter->iSwitchRowid = pIter->bRev ? SMALLEST_INT64 : LARGEST_INT64;
+ for(i=(pIter->nSeg+iChanged)/2; 1; i=i/2){
+ Fts5CResult *pRes = &pIter->aFirst[i];
+
+ assert( pNew->pLeaf );
+ assert( pRes->bTermEq==0 || pOther->pLeaf );
+
+ if( pRes->bTermEq ){
+ if( pNew->iRowid==pOther->iRowid ){
+ return 1;
+ }else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
+ pIter->iSwitchRowid = pOther->iRowid;
+ pNew = pOther;
+ }else if( (pOther->iRowid>pIter->iSwitchRowid)==pIter->bRev ){
+ pIter->iSwitchRowid = pOther->iRowid;
+ }
+ }
+ pRes->iFirst = (u16)(pNew - pIter->aSeg);
+ if( i==1 ) break;
+
+ pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
+ }
+ }
+
+ *ppFirst = pNew;
+ return 0;
+}
+
+/*
+** Set the pIter->bEof variable based on the state of the sub-iterators.
+*/
+static void fts5MultiIterSetEof(Fts5Iter *pIter){
+ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ pIter->base.bEof = pSeg->pLeaf==0;
+ pIter->iSwitchRowid = pSeg->iRowid;
+}
+
+/*
+** Move the iterator to the next entry.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. It is not
+** considered an error if the iterator reaches EOF, or if it is already at
+** EOF when this function is called.
+*/
+static void fts5MultiIterNext(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ int bFrom, /* True if argument iFrom is valid */
+ i64 iFrom /* Advance at least as far as this */
+){
+ int bUseFrom = bFrom;
+ assert( pIter->base.bEof==0 );
+ while( p->rc==SQLITE_OK ){
+ int iFirst = pIter->aFirst[1].iFirst;
+ int bNewTerm = 0;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+ assert( p->rc==SQLITE_OK );
+ if( bUseFrom && pSeg->pDlidx ){
+ fts5SegIterNextFrom(p, pSeg, iFrom);
+ }else{
+ pSeg->xNext(p, pSeg, &bNewTerm);
+ }
+
+ if( pSeg->pLeaf==0 || bNewTerm
+ || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
+ ){
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ fts5MultiIterSetEof(pIter);
+ pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ if( pSeg->pLeaf==0 ) return;
+ }
+
+ fts5AssertMultiIterSetup(p, pIter);
+ assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
+ if( pIter->bSkipEmpty==0 || pSeg->nPos ){
+ pIter->xSetOutputs(pIter, pSeg);
+ return;
+ }
+ bUseFrom = 0;
+ }
+}
+
+static void fts5MultiIterNext2(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ int *pbNewTerm /* OUT: True if *might* be new term */
+){
+ assert( pIter->bSkipEmpty );
+ if( p->rc==SQLITE_OK ){
+ *pbNewTerm = 0;
+ do{
+ int iFirst = pIter->aFirst[1].iFirst;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+ int bNewTerm = 0;
+
+ assert( p->rc==SQLITE_OK );
+ pSeg->xNext(p, pSeg, &bNewTerm);
+ if( pSeg->pLeaf==0 || bNewTerm
+ || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
+ ){
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ fts5MultiIterSetEof(pIter);
+ *pbNewTerm = 1;
+ }
+ fts5AssertMultiIterSetup(p, pIter);
+
+ }while( fts5MultiIterIsEmpty(p, pIter) );
+ }
+}
+
+static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
+ UNUSED_PARAM2(pUnused1, pUnused2);
+}
+
+static Fts5Iter *fts5MultiIterAlloc(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ int nSeg
+){
+ Fts5Iter *pNew;
+ int nSlot; /* Power of two >= nSeg */
+
+ for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
+ pNew = fts5IdxMalloc(p,
+ sizeof(Fts5Iter) + /* pNew */
+ sizeof(Fts5SegIter) * (nSlot-1) + /* pNew->aSeg[] */
+ sizeof(Fts5CResult) * nSlot /* pNew->aFirst[] */
+ );
+ if( pNew ){
+ pNew->nSeg = nSlot;
+ pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
+ pNew->pIndex = p;
+ pNew->xSetOutputs = fts5IterSetOutputs_Noop;
+ }
+ return pNew;
+}
+
+static void fts5PoslistCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);
+ }
+}
+
+typedef struct PoslistCallbackCtx PoslistCallbackCtx;
+struct PoslistCallbackCtx {
+ Fts5Buffer *pBuf; /* Append to this buffer */
+ Fts5Colset *pColset; /* Restrict matches to this column */
+ int eState; /* See above */
+};
+
+typedef struct PoslistOffsetsCtx PoslistOffsetsCtx;
+struct PoslistOffsetsCtx {
+ Fts5Buffer *pBuf; /* Append to this buffer */
+ Fts5Colset *pColset; /* Restrict matches to this column */
+ int iRead;
+ int iWrite;
+};
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static void fts5PoslistOffsetsCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ PoslistOffsetsCtx *pCtx = (PoslistOffsetsCtx*)pContext;
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ int i = 0;
+ while( i<nChunk ){
+ int iVal;
+ i += fts5GetVarint32(&pChunk[i], iVal);
+ iVal += pCtx->iRead - 2;
+ pCtx->iRead = iVal;
+ if( fts5IndexColsetTest(pCtx->pColset, iVal) ){
+ fts5BufferSafeAppendVarint(pCtx->pBuf, iVal + 2 - pCtx->iWrite);
+ pCtx->iWrite = iVal;
+ }
+ }
+ }
+}
+
+static void fts5PoslistFilterCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ /* Search through to find the first varint with value 1. This is the
+ ** start of the next columns hits. */
+ int i = 0;
+ int iStart = 0;
+
+ if( pCtx->eState==2 ){
+ int iCol;
+ fts5FastGetVarint32(pChunk, i, iCol);
+ if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
+ pCtx->eState = 1;
+ fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
+ }else{
+ pCtx->eState = 0;
+ }
+ }
+
+ do {
+ while( i<nChunk && pChunk[i]!=0x01 ){
+ while( pChunk[i] & 0x80 ) i++;
+ i++;
+ }
+ if( pCtx->eState ){
+ fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
+ }
+ if( i<nChunk ){
+ int iCol;
+ iStart = i;
+ i++;
+ if( i>=nChunk ){
+ pCtx->eState = 2;
+ }else{
+ fts5FastGetVarint32(pChunk, i, iCol);
+ pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
+ if( pCtx->eState ){
+ fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
+ iStart = i;
+ }
+ }
+ }
+ }while( i<nChunk );
+ }
+}
+
+static void fts5ChunkIterate(
+ Fts5Index *p, /* Index object */
+ Fts5SegIter *pSeg, /* Poslist of this iterator */
+ void *pCtx, /* Context pointer for xChunk callback */
+ void (*xChunk)(Fts5Index*, void*, const u8*, int)
+){
+ int nRem = pSeg->nPos; /* Number of bytes still to come */
+ Fts5Data *pData = 0;
+ u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
+ int pgno = pSeg->iLeafPgno;
+ int pgnoSave = 0;
+
+ /* This function does not work with detail=none databases. */
+ assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );
+
+ if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
+ pgnoSave = pgno+1;
+ }
+
+ while( 1 ){
+ xChunk(p, pCtx, pChunk, nChunk);
+ nRem -= nChunk;
+ fts5DataRelease(pData);
+ if( nRem<=0 ){
+ break;
+ }else if( pSeg->pSeg==0 ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }else{
+ pgno++;
+ pData = fts5LeafRead(p, FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, pgno));
+ if( pData==0 ) break;
+ pChunk = &pData->p[4];
+ nChunk = MIN(nRem, pData->szLeaf - 4);
+ if( pgno==pgnoSave ){
+ assert( pSeg->pNextLeaf==0 );
+ pSeg->pNextLeaf = pData;
+ pData = 0;
+ }
+ }
+ }
+}
+
+/*
+** Iterator pIter currently points to a valid entry (not EOF). This
+** function appends the position list data for the current entry to
+** buffer pBuf. It does not make a copy of the position-list size
+** field.
+*/
+static void fts5SegiterPoslist(
+ Fts5Index *p,
+ Fts5SegIter *pSeg,
+ Fts5Colset *pColset,
+ Fts5Buffer *pBuf
+){
+ assert( pBuf!=0 );
+ assert( pSeg!=0 );
+ if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos+FTS5_DATA_ZERO_PADDING) ){
+ assert( pBuf->p!=0 );
+ assert( pBuf->nSpace >= pBuf->n+pSeg->nPos+FTS5_DATA_ZERO_PADDING );
+ memset(&pBuf->p[pBuf->n+pSeg->nPos], 0, FTS5_DATA_ZERO_PADDING);
+ if( pColset==0 ){
+ fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
+ }else{
+ if( p->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ PoslistCallbackCtx sCtx;
+ sCtx.pBuf = pBuf;
+ sCtx.pColset = pColset;
+ sCtx.eState = fts5IndexColsetTest(pColset, 0);
+ assert( sCtx.eState==0 || sCtx.eState==1 );
+ fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
+ }else{
+ PoslistOffsetsCtx sCtx;
+ memset(&sCtx, 0, sizeof(sCtx));
+ sCtx.pBuf = pBuf;
+ sCtx.pColset = pColset;
+ fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistOffsetsCallback);
+ }
+ }
+ }
+}
+
+/*
+** Parameter pPos points to a buffer containing a position list, size nPos.
+** This function filters it according to pColset (which must be non-NULL)
+** and sets pIter->base.pData/nData to point to the new position list.
+** If memory is required for the new position list, use buffer pIter->poslist.
+** Or, if the new position list is a contiguous subset of the input, set
+** pIter->base.pData/nData to point directly to it.
+**
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. If an OOM error is encountered, *pRc is set to SQLITE_NOMEM
+** before returning.
+*/
+static void fts5IndexExtractColset(
+ int *pRc,
+ Fts5Colset *pColset, /* Colset to filter on */
+ const u8 *pPos, int nPos, /* Position list */
+ Fts5Iter *pIter
+){
+ if( *pRc==SQLITE_OK ){
+ const u8 *p = pPos;
+ const u8 *aCopy = p;
+ const u8 *pEnd = &p[nPos]; /* One byte past end of position list */
+ int i = 0;
+ int iCurrent = 0;
+
+ if( pColset->nCol>1 && sqlite3Fts5BufferSize(pRc, &pIter->poslist, nPos) ){
+ return;
+ }
+
+ while( 1 ){
+ while( pColset->aiCol[i]<iCurrent ){
+ i++;
+ if( i==pColset->nCol ){
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ return;
+ }
+ }
+
+ /* Advance pointer p until it points to pEnd or an 0x01 byte that is
+ ** not part of a varint */
+ while( p<pEnd && *p!=0x01 ){
+ while( *p++ & 0x80 );
+ }
+
+ if( pColset->aiCol[i]==iCurrent ){
+ if( pColset->nCol==1 ){
+ pIter->base.pData = aCopy;
+ pIter->base.nData = p-aCopy;
+ return;
+ }
+ fts5BufferSafeAppendBlob(&pIter->poslist, aCopy, p-aCopy);
+ }
+ if( p>=pEnd ){
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ return;
+ }
+ aCopy = p++;
+ iCurrent = *p++;
+ if( iCurrent & 0x80 ){
+ p--;
+ p += fts5GetVarint32(p, iCurrent);
+ }
+ }
+ }
+
+}
+
+/*
+** xSetOutputs callback used by detail=none tables.
+*/
+static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.nData = pSeg->nPos;
+}
+
+/*
+** xSetOutputs callback used by detail=full and detail=col tables when no
+** column filters are specified.
+*/
+static void fts5IterSetOutputs_Nocolset(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.nData = pSeg->nPos;
+
+ assert( pIter->pIndex->pConfig->eDetail!=FTS5_DETAIL_NONE );
+ assert( pIter->pColset==0 );
+
+ if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
+ /* All data is stored on the current page. Populate the output
+ ** variables to point into the body of the page object. */
+ pIter->base.pData = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ }else{
+ /* The data is distributed over two or more pages. Copy it into the
+ ** Fts5Iter.poslist buffer and then set the output pointer to point
+ ** to this buffer. */
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ }
+}
+
+/*
+** xSetOutputs callback used when the Fts5Colset object has nCol==0 (match
+** against no columns at all).
+*/
+static void fts5IterSetOutputs_ZeroColset(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ UNUSED_PARAM(pSeg);
+ pIter->base.nData = 0;
+}
+
+/*
+** xSetOutputs callback used by detail=col when there is a column filter
+** and there are 100 or more columns. Also called as a fallback from
+** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
+*/
+static void fts5IterSetOutputs_Col(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, pIter->pColset, &pIter->poslist);
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+}
+
+/*
+** xSetOutputs callback used when:
+**
+** * detail=col,
+** * there is a column filter, and
+** * the table contains 100 or fewer columns.
+**
+** The last point is to ensure all column numbers are stored as
+** single-byte varints.
+*/
+static void fts5IterSetOutputs_Col100(Fts5Iter *pIter, Fts5SegIter *pSeg){
+
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+ assert( pIter->pColset );
+
+ if( pSeg->iLeafOffset+pSeg->nPos>pSeg->pLeaf->szLeaf ){
+ fts5IterSetOutputs_Col(pIter, pSeg);
+ }else{
+ u8 *a = (u8*)&pSeg->pLeaf->p[pSeg->iLeafOffset];
+ u8 *pEnd = (u8*)&a[pSeg->nPos];
+ int iPrev = 0;
+ int *aiCol = pIter->pColset->aiCol;
+ int *aiColEnd = &aiCol[pIter->pColset->nCol];
+
+ u8 *aOut = pIter->poslist.p;
+ int iPrevOut = 0;
+
+ pIter->base.iRowid = pSeg->iRowid;
+
+ while( a<pEnd ){
+ iPrev += (int)a++[0] - 2;
+ while( *aiCol<iPrev ){
+ aiCol++;
+ if( aiCol==aiColEnd ) goto setoutputs_col_out;
+ }
+ if( *aiCol==iPrev ){
+ *aOut++ = (u8)((iPrev - iPrevOut) + 2);
+ iPrevOut = iPrev;
+ }
+ }
+
+setoutputs_col_out:
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = aOut - pIter->poslist.p;
+ }
+}
+
+/*
+** xSetOutputs callback used by detail=full when there is a column filter.
+*/
+static void fts5IterSetOutputs_Full(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ Fts5Colset *pColset = pIter->pColset;
+ pIter->base.iRowid = pSeg->iRowid;
+
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_FULL );
+ assert( pColset );
+
+ if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
+ /* All data is stored on the current page. Populate the output
+ ** variables to point into the body of the page object. */
+ const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ int *pRc = &pIter->pIndex->rc;
+ fts5BufferZero(&pIter->poslist);
+ fts5IndexExtractColset(pRc, pColset, a, pSeg->nPos, pIter);
+ }else{
+ /* The data is distributed over two or more pages. Copy it into the
+ ** Fts5Iter.poslist buffer and then set the output pointer to point
+ ** to this buffer. */
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ }
+}
+
+static void fts5IterSetOutputCb(int *pRc, Fts5Iter *pIter){
+ assert( pIter!=0 || (*pRc)!=SQLITE_OK );
+ if( *pRc==SQLITE_OK ){
+ Fts5Config *pConfig = pIter->pIndex->pConfig;
+ if( pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pIter->xSetOutputs = fts5IterSetOutputs_None;
+ }
+
+ else if( pIter->pColset==0 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Nocolset;
+ }
+
+ else if( pIter->pColset->nCol==0 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_ZeroColset;
+ }
+
+ else if( pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Full;
+ }
+
+ else{
+ assert( pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+ if( pConfig->nCol<=100 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Col100;
+ sqlite3Fts5BufferSize(pRc, &pIter->poslist, pConfig->nCol);
+ }else{
+ pIter->xSetOutputs = fts5IterSetOutputs_Col;
+ }
+ }
+ }
+}
+
+
+/*
+** Allocate a new Fts5Iter object.
+**
+** The new object will be used to iterate through data in structure pStruct.
+** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
+** is zero or greater, data from the first nSegment segments on level iLevel
+** is merged.
+**
+** The iterator initially points to the first term/rowid entry in the
+** iterated data.
+*/
+static void fts5MultiIterNew(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Structure *pStruct, /* Structure of specific index */
+ int flags, /* FTS5INDEX_QUERY_XXX flags */
+ Fts5Colset *pColset, /* Colset to filter on (or NULL) */
+ const u8 *pTerm, int nTerm, /* Term to seek to (or NULL/0) */
+ int iLevel, /* Level to iterate (-1 for all) */
+ int nSegment, /* Number of segments to merge (iLevel>=0) */
+ Fts5Iter **ppOut /* New object */
+){
+ int nSeg = 0; /* Number of segment-iters in use */
+ int iIter = 0; /* */
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl;
+ Fts5Iter *pNew;
+
+ assert( (pTerm==0 && nTerm==0) || iLevel<0 );
+
+ /* Allocate space for the new multi-seg-iterator. */
+ if( p->rc==SQLITE_OK ){
+ if( iLevel<0 ){
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ nSeg = pStruct->nSegment;
+ nSeg += (p->pHash ? 1 : 0);
+ }else{
+ nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
+ }
+ }
+ *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
+ if( pNew==0 ){
+ assert( p->rc!=SQLITE_OK );
+ goto fts5MultiIterNew_post_check;
+ }
+ pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
+ pNew->bSkipEmpty = (0!=(flags & FTS5INDEX_QUERY_SKIPEMPTY));
+ pNew->pColset = pColset;
+ if( (flags & FTS5INDEX_QUERY_NOOUTPUT)==0 ){
+ fts5IterSetOutputCb(&p->rc, pNew);
+ }
+
+ /* Initialize each of the component segment iterators. */
+ if( p->rc==SQLITE_OK ){
+ if( iLevel<0 ){
+ Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
+ if( p->pHash ){
+ /* Add a segment iterator for the current contents of the hash table. */
+ Fts5SegIter *pIter = &pNew->aSeg[iIter++];
+ fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
+ }
+ for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
+ for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ Fts5SegIter *pIter = &pNew->aSeg[iIter++];
+ if( pTerm==0 ){
+ fts5SegIterInit(p, pSeg, pIter);
+ }else{
+ fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter);
+ }
+ }
+ }
+ }else{
+ pLvl = &pStruct->aLevel[iLevel];
+ for(iSeg=nSeg-1; iSeg>=0; iSeg--){
+ fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
+ }
+ }
+ assert( iIter==nSeg );
+ }
+
+ /* If the above was successful, each component iterators now points
+ ** to the first entry in its segment. In this case initialize the
+ ** aFirst[] array. Or, if an error has occurred, free the iterator
+ ** object and set the output variable to NULL. */
+ if( p->rc==SQLITE_OK ){
+ for(iIter=pNew->nSeg-1; iIter>0; iIter--){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
+ Fts5SegIter *pSeg = &pNew->aSeg[iEq];
+ if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
+ fts5MultiIterAdvanced(p, pNew, iEq, iIter);
+ }
+ }
+ fts5MultiIterSetEof(pNew);
+ fts5AssertMultiIterSetup(p, pNew);
+
+ if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
+ fts5MultiIterNext(p, pNew, 0, 0);
+ }else if( pNew->base.bEof==0 ){
+ Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
+ pNew->xSetOutputs(pNew, pSeg);
+ }
+
+ }else{
+ fts5MultiIterFree(pNew);
+ *ppOut = 0;
+ }
+
+fts5MultiIterNew_post_check:
+ assert( (*ppOut)!=0 || p->rc!=SQLITE_OK );
+ return;
+}
+
+/*
+** Create an Fts5Iter that iterates through the doclist provided
+** as the second argument.
+*/
+static void fts5MultiIterNew2(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Data *pData, /* Doclist to iterate through */
+ int bDesc, /* True for descending rowid order */
+ Fts5Iter **ppOut /* New object */
+){
+ Fts5Iter *pNew;
+ pNew = fts5MultiIterAlloc(p, 2);
+ if( pNew ){
+ Fts5SegIter *pIter = &pNew->aSeg[1];
+
+ pIter->flags = FTS5_SEGITER_ONETERM;
+ if( pData->szLeaf>0 ){
+ pIter->pLeaf = pData;
+ pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
+ pIter->iEndofDoclist = pData->nn;
+ pNew->aFirst[1].iFirst = 1;
+ if( bDesc ){
+ pNew->bRev = 1;
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ fts5SegIterReverseInitPage(p, pIter);
+ }else{
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ pData = 0;
+ }else{
+ pNew->base.bEof = 1;
+ }
+ fts5SegIterSetNext(p, pIter);
+
+ *ppOut = pNew;
+ }
+
+ fts5DataRelease(pData);
+}
+
+/*
+** Return true if the iterator is at EOF or if an error has occurred.
+** False otherwise.
+*/
+static int fts5MultiIterEof(Fts5Index *p, Fts5Iter *pIter){
+ assert( pIter!=0 || p->rc!=SQLITE_OK );
+ assert( p->rc!=SQLITE_OK
+ || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->base.bEof
+ );
+ return (p->rc || pIter->base.bEof);
+}
+
+/*
+** Return the rowid of the entry that the iterator currently points
+** to. If the iterator points to EOF when this function is called the
+** results are undefined.
+*/
+static i64 fts5MultiIterRowid(Fts5Iter *pIter){
+ assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
+ return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
+}
+
+/*
+** Move the iterator to the next entry at or following iMatch.
+*/
+static void fts5MultiIterNextFrom(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ i64 iMatch
+){
+ while( 1 ){
+ i64 iRowid;
+ fts5MultiIterNext(p, pIter, 1, iMatch);
+ if( fts5MultiIterEof(p, pIter) ) break;
+ iRowid = fts5MultiIterRowid(pIter);
+ if( pIter->bRev==0 && iRowid>=iMatch ) break;
+ if( pIter->bRev!=0 && iRowid<=iMatch ) break;
+ }
+}
+
+/*
+** Return a pointer to a buffer containing the term associated with the
+** entry that the iterator currently points to.
+*/
+static const u8 *fts5MultiIterTerm(Fts5Iter *pIter, int *pn){
+ Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ *pn = p->term.n;
+ return p->term.p;
+}
+
+/*
+** Allocate a new segment-id for the structure pStruct. The new segment
+** id must be between 1 and 65335 inclusive, and must not be used by
+** any currently existing segment. If a free segment id cannot be found,
+** SQLITE_FULL is returned.
+**
+** If an error has already occurred, this function is a no-op. 0 is
+** returned in this case.
+*/
+static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
+ int iSegid = 0;
+
+ if( p->rc==SQLITE_OK ){
+ if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
+ p->rc = SQLITE_FULL;
+ }else{
+ /* FTS5_MAX_SEGMENT is currently defined as 2000. So the following
+ ** array is 63 elements, or 252 bytes, in size. */
+ u32 aUsed[(FTS5_MAX_SEGMENT+31) / 32];
+ int iLvl, iSeg;
+ int i;
+ u32 mask;
+ memset(aUsed, 0, sizeof(aUsed));
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ int iId = pStruct->aLevel[iLvl].aSeg[iSeg].iSegid;
+ if( iId<=FTS5_MAX_SEGMENT && iId>0 ){
+ aUsed[(iId-1) / 32] |= (u32)1 << ((iId-1) % 32);
+ }
+ }
+ }
+
+ for(i=0; aUsed[i]==0xFFFFFFFF; i++);
+ mask = aUsed[i];
+ for(iSegid=0; mask & ((u32)1 << iSegid); iSegid++);
+ iSegid += 1 + i*32;
+
+#ifdef SQLITE_DEBUG
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ assert_nc( iSegid!=pStruct->aLevel[iLvl].aSeg[iSeg].iSegid );
+ }
+ }
+ assert_nc( iSegid>0 && iSegid<=FTS5_MAX_SEGMENT );
+
+ {
+ sqlite3_stmt *pIdxSelect = fts5IdxSelectStmt(p);
+ if( p->rc==SQLITE_OK ){
+ u8 aBlob[2] = {0xff, 0xff};
+ sqlite3_bind_int(pIdxSelect, 1, iSegid);
+ sqlite3_bind_blob(pIdxSelect, 2, aBlob, 2, SQLITE_STATIC);
+ assert_nc( sqlite3_step(pIdxSelect)!=SQLITE_ROW );
+ p->rc = sqlite3_reset(pIdxSelect);
+ sqlite3_bind_null(pIdxSelect, 2);
+ }
+ }
+#endif
+ }
+ }
+
+ return iSegid;
+}
+
+/*
+** Discard all data currently cached in the hash-tables.
+*/
+static void fts5IndexDiscardData(Fts5Index *p){
+ assert( p->pHash || p->nPendingData==0 );
+ if( p->pHash ){
+ sqlite3Fts5HashClear(p->pHash);
+ p->nPendingData = 0;
+ }
+}
+
+/*
+** Return the size of the prefix, in bytes, that buffer
+** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
+**
+** Buffer (pNew/<length-unknown>) is guaranteed to be greater
+** than buffer (pOld/nOld).
+*/
+static int fts5PrefixCompress(int nOld, const u8 *pOld, const u8 *pNew){
+ int i;
+ for(i=0; i<nOld; i++){
+ if( pOld[i]!=pNew[i] ) break;
+ }
+ return i;
+}
+
+static void fts5WriteDlidxClear(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int bFlush /* If true, write dlidx to disk */
+){
+ int i;
+ assert( bFlush==0 || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n>0) );
+ for(i=0; i<pWriter->nDlidx; i++){
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
+ if( pDlidx->buf.n==0 ) break;
+ if( bFlush ){
+ assert( pDlidx->pgno!=0 );
+ fts5DataWrite(p,
+ FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
+ pDlidx->buf.p, pDlidx->buf.n
+ );
+ }
+ sqlite3Fts5BufferZero(&pDlidx->buf);
+ pDlidx->bPrevValid = 0;
+ }
+}
+
+/*
+** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
+** Any new array elements are zeroed before returning.
+*/
+static int fts5WriteDlidxGrow(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nLvl
+){
+ if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){
+ Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc64(
+ pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl
+ );
+ if( aDlidx==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ size_t nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx);
+ memset(&aDlidx[pWriter->nDlidx], 0, nByte);
+ pWriter->aDlidx = aDlidx;
+ pWriter->nDlidx = nLvl;
+ }
+ }
+ return p->rc;
+}
+
+/*
+** If the current doclist-index accumulating in pWriter->aDlidx[] is large
+** enough, flush it to disk and return 1. Otherwise discard it and return
+** zero.
+*/
+static int fts5WriteFlushDlidx(Fts5Index *p, Fts5SegWriter *pWriter){
+ int bFlag = 0;
+
+ /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
+ ** to the database, also write the doclist-index to disk. */
+ if( pWriter->aDlidx[0].buf.n>0 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){
+ bFlag = 1;
+ }
+ fts5WriteDlidxClear(p, pWriter, bFlag);
+ pWriter->nEmpty = 0;
+ return bFlag;
+}
+
+/*
+** This function is called whenever processing of the doclist for the
+** last term on leaf page (pWriter->iBtPage) is completed.
+**
+** The doclist-index for that term is currently stored in-memory within the
+** Fts5SegWriter.aDlidx[] array. If it is large enough, this function
+** writes it out to disk. Or, if it is too small to bother with, discards
+** it.
+**
+** Fts5SegWriter.btterm currently contains the first term on page iBtPage.
+*/
+static void fts5WriteFlushBtree(Fts5Index *p, Fts5SegWriter *pWriter){
+ int bFlag;
+
+ assert( pWriter->iBtPage || pWriter->nEmpty==0 );
+ if( pWriter->iBtPage==0 ) return;
+ bFlag = fts5WriteFlushDlidx(p, pWriter);
+
+ if( p->rc==SQLITE_OK ){
+ const char *z = (pWriter->btterm.n>0?(const char*)pWriter->btterm.p:"");
+ /* The following was already done in fts5WriteInit(): */
+ /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */
+ sqlite3_bind_blob(p->pIdxWriter, 2, z, pWriter->btterm.n, SQLITE_STATIC);
+ sqlite3_bind_int64(p->pIdxWriter, 3, bFlag + ((i64)pWriter->iBtPage<<1));
+ sqlite3_step(p->pIdxWriter);
+ p->rc = sqlite3_reset(p->pIdxWriter);
+ sqlite3_bind_null(p->pIdxWriter, 2);
+ }
+ pWriter->iBtPage = 0;
+}
+
+/*
+** This is called once for each leaf page except the first that contains
+** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
+** is larger than all terms written to earlier leaves, and equal to or
+** smaller than the first term on the new leaf.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. If an error
+** has already occurred when this function is called, it is a no-op.
+*/
+static void fts5WriteBtreeTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter, /* Writer object */
+ int nTerm, const u8 *pTerm /* First term on new page */
+){
+ fts5WriteFlushBtree(p, pWriter);
+ if( p->rc==SQLITE_OK ){
+ fts5BufferSet(&p->rc, &pWriter->btterm, nTerm, pTerm);
+ pWriter->iBtPage = pWriter->writer.pgno;
+ }
+}
+
+/*
+** This function is called when flushing a leaf page that contains no
+** terms at all to disk.
+*/
+static void fts5WriteBtreeNoTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter /* Writer object */
+){
+ /* If there were no rowids on the leaf page either and the doclist-index
+ ** has already been started, append an 0x00 byte to it. */
+ if( pWriter->bFirstRowidInPage && pWriter->aDlidx[0].buf.n>0 ){
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[0];
+ assert( pDlidx->bPrevValid );
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, 0);
+ }
+
+ /* Increment the "number of sequential leaves without a term" counter. */
+ pWriter->nEmpty++;
+}
+
+static i64 fts5DlidxExtractFirstRowid(Fts5Buffer *pBuf){
+ i64 iRowid;
+ int iOff;
+
+ iOff = 1 + fts5GetVarint(&pBuf->p[1], (u64*)&iRowid);
+ fts5GetVarint(&pBuf->p[iOff], (u64*)&iRowid);
+ return iRowid;
+}
+
+/*
+** Rowid iRowid has just been appended to the current leaf page. It is the
+** first on the page. This function appends an appropriate entry to the current
+** doclist-index.
+*/
+static void fts5WriteDlidxAppend(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ int i;
+ int bDone = 0;
+
+ for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
+ i64 iVal;
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
+
+ if( pDlidx->buf.n>=p->pConfig->pgsz ){
+ /* The current doclist-index page is full. Write it to disk and push
+ ** a copy of iRowid (which will become the first rowid on the next
+ ** doclist-index leaf page) up into the next level of the b-tree
+ ** hierarchy. If the node being flushed is currently the root node,
+ ** also push its first rowid upwards. */
+ pDlidx->buf.p[0] = 0x01; /* Not the root node */
+ fts5DataWrite(p,
+ FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
+ pDlidx->buf.p, pDlidx->buf.n
+ );
+ fts5WriteDlidxGrow(p, pWriter, i+2);
+ pDlidx = &pWriter->aDlidx[i];
+ if( p->rc==SQLITE_OK && pDlidx[1].buf.n==0 ){
+ i64 iFirst = fts5DlidxExtractFirstRowid(&pDlidx->buf);
+
+ /* This was the root node. Push its first rowid up to the new root. */
+ pDlidx[1].pgno = pDlidx->pgno;
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, 0);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, pDlidx->pgno);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, iFirst);
+ pDlidx[1].bPrevValid = 1;
+ pDlidx[1].iPrev = iFirst;
+ }
+
+ sqlite3Fts5BufferZero(&pDlidx->buf);
+ pDlidx->bPrevValid = 0;
+ pDlidx->pgno++;
+ }else{
+ bDone = 1;
+ }
+
+ if( pDlidx->bPrevValid ){
+ iVal = iRowid - pDlidx->iPrev;
+ }else{
+ i64 iPgno = (i==0 ? pWriter->writer.pgno : pDlidx[-1].pgno);
+ assert( pDlidx->buf.n==0 );
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, !bDone);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iPgno);
+ iVal = iRowid;
+ }
+
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iVal);
+ pDlidx->bPrevValid = 1;
+ pDlidx->iPrev = iRowid;
+ }
+}
+
+static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
+ static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
+ Fts5PageWriter *pPage = &pWriter->writer;
+ i64 iRowid;
+
+ assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );
+
+ /* Set the szLeaf header field. */
+ assert( 0==fts5GetU16(&pPage->buf.p[2]) );
+ fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);
+
+ if( pWriter->bFirstTermInPage ){
+ /* No term was written to this page. */
+ assert( pPage->pgidx.n==0 );
+ fts5WriteBtreeNoTerm(p, pWriter);
+ }else{
+ /* Append the pgidx to the page buffer. Set the szLeaf header field. */
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, pPage->pgidx.n, pPage->pgidx.p);
+ }
+
+ /* Write the page out to disk */
+ iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, pPage->pgno);
+ fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
+
+ /* Initialize the next page. */
+ fts5BufferZero(&pPage->buf);
+ fts5BufferZero(&pPage->pgidx);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
+ pPage->iPrevPgidx = 0;
+ pPage->pgno++;
+
+ /* Increase the leaves written counter */
+ pWriter->nLeafWritten++;
+
+ /* The new leaf holds no terms or rowids */
+ pWriter->bFirstTermInPage = 1;
+ pWriter->bFirstRowidInPage = 1;
+}
+
+/*
+** Append term pTerm/nTerm to the segment being written by the writer passed
+** as the second argument.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5WriteAppendTerm(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nTerm, const u8 *pTerm
+){
+ int nPrefix; /* Bytes of prefix compression for term */
+ Fts5PageWriter *pPage = &pWriter->writer;
+ Fts5Buffer *pPgidx = &pWriter->writer.pgidx;
+ int nMin = MIN(pPage->term.n, nTerm);
+
+ assert( p->rc==SQLITE_OK );
+ assert( pPage->buf.n>=4 );
+ assert( pPage->buf.n>4 || pWriter->bFirstTermInPage );
+
+ /* If the current leaf page is full, flush it to disk. */
+ if( (pPage->buf.n + pPgidx->n + nTerm + 2)>=p->pConfig->pgsz ){
+ if( pPage->buf.n>4 ){
+ fts5WriteFlushLeaf(p, pWriter);
+ if( p->rc!=SQLITE_OK ) return;
+ }
+ fts5BufferGrow(&p->rc, &pPage->buf, nTerm+FTS5_DATA_PADDING);
+ }
+
+ /* TODO1: Updating pgidx here. */
+ pPgidx->n += sqlite3Fts5PutVarint(
+ &pPgidx->p[pPgidx->n], pPage->buf.n - pPage->iPrevPgidx
+ );
+ pPage->iPrevPgidx = pPage->buf.n;
+#if 0
+ fts5PutU16(&pPgidx->p[pPgidx->n], pPage->buf.n);
+ pPgidx->n += 2;
+#endif
+
+ if( pWriter->bFirstTermInPage ){
+ nPrefix = 0;
+ if( pPage->pgno!=1 ){
+ /* This is the first term on a leaf that is not the leftmost leaf in
+ ** the segment b-tree. In this case it is necessary to add a term to
+ ** the b-tree hierarchy that is (a) larger than the largest term
+ ** already written to the segment and (b) smaller than or equal to
+ ** this term. In other words, a prefix of (pTerm/nTerm) that is one
+ ** byte longer than the longest prefix (pTerm/nTerm) shares with the
+ ** previous term.
+ **
+ ** Usually, the previous term is available in pPage->term. The exception
+ ** is if this is the first term written in an incremental-merge step.
+ ** In this case the previous term is not available, so just write a
+ ** copy of (pTerm/nTerm) into the parent node. This is slightly
+ ** inefficient, but still correct. */
+ int n = nTerm;
+ if( pPage->term.n ){
+ n = 1 + fts5PrefixCompress(nMin, pPage->term.p, pTerm);
+ }
+ fts5WriteBtreeTerm(p, pWriter, n, pTerm);
+ if( p->rc!=SQLITE_OK ) return;
+ pPage = &pWriter->writer;
+ }
+ }else{
+ nPrefix = fts5PrefixCompress(nMin, pPage->term.p, pTerm);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
+ }
+
+ /* Append the number of bytes of new data, then the term data itself
+ ** to the page. */
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
+
+ /* Update the Fts5PageWriter.term field. */
+ fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
+ pWriter->bFirstTermInPage = 0;
+
+ pWriter->bFirstRowidInPage = 0;
+ pWriter->bFirstRowidInDoclist = 1;
+
+ assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) );
+ pWriter->aDlidx[0].pgno = pPage->pgno;
+}
+
+/*
+** Append a rowid and position-list size field to the writers output.
+*/
+static void fts5WriteAppendRowid(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ if( p->rc==SQLITE_OK ){
+ Fts5PageWriter *pPage = &pWriter->writer;
+
+ if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+
+ /* If this is to be the first rowid written to the page, set the
+ ** rowid-pointer in the page-header. Also append a value to the dlidx
+ ** buffer, in case a doclist-index is required. */
+ if( pWriter->bFirstRowidInPage ){
+ fts5PutU16(pPage->buf.p, (u16)pPage->buf.n);
+ fts5WriteDlidxAppend(p, pWriter, iRowid);
+ }
+
+ /* Write the rowid. */
+ if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
+ }else{
+ assert_nc( p->rc || iRowid>pWriter->iPrevRowid );
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
+ }
+ pWriter->iPrevRowid = iRowid;
+ pWriter->bFirstRowidInDoclist = 0;
+ pWriter->bFirstRowidInPage = 0;
+ }
+}
+
+static void fts5WriteAppendPoslistData(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ const u8 *aData,
+ int nData
+){
+ Fts5PageWriter *pPage = &pWriter->writer;
+ const u8 *a = aData;
+ int n = nData;
+
+ assert( p->pConfig->pgsz>0 );
+ while( p->rc==SQLITE_OK
+ && (pPage->buf.n + pPage->pgidx.n + n)>=p->pConfig->pgsz
+ ){
+ int nReq = p->pConfig->pgsz - pPage->buf.n - pPage->pgidx.n;
+ int nCopy = 0;
+ while( nCopy<nReq ){
+ i64 dummy;
+ nCopy += fts5GetVarint(&a[nCopy], (u64*)&dummy);
+ }
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
+ a += nCopy;
+ n -= nCopy;
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ if( n>0 ){
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
+ }
+}
+
+/*
+** Flush any data cached by the writer object to the database. Free any
+** allocations associated with the writer.
+*/
+static void fts5WriteFinish(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter, /* Writer object */
+ int *pnLeaf /* OUT: Number of leaf pages in b-tree */
+){
+ int i;
+ Fts5PageWriter *pLeaf = &pWriter->writer;
+ if( p->rc==SQLITE_OK ){
+ assert( pLeaf->pgno>=1 );
+ if( pLeaf->buf.n>4 ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ *pnLeaf = pLeaf->pgno-1;
+ if( pLeaf->pgno>1 ){
+ fts5WriteFlushBtree(p, pWriter);
+ }
+ }
+ fts5BufferFree(&pLeaf->term);
+ fts5BufferFree(&pLeaf->buf);
+ fts5BufferFree(&pLeaf->pgidx);
+ fts5BufferFree(&pWriter->btterm);
+
+ for(i=0; i<pWriter->nDlidx; i++){
+ sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf);
+ }
+ sqlite3_free(pWriter->aDlidx);
+}
+
+static void fts5WriteInit(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int iSegid
+){
+ const int nBuffer = p->pConfig->pgsz + FTS5_DATA_PADDING;
+
+ memset(pWriter, 0, sizeof(Fts5SegWriter));
+ pWriter->iSegid = iSegid;
+
+ fts5WriteDlidxGrow(p, pWriter, 1);
+ pWriter->writer.pgno = 1;
+ pWriter->bFirstTermInPage = 1;
+ pWriter->iBtPage = 1;
+
+ assert( pWriter->writer.buf.n==0 );
+ assert( pWriter->writer.pgidx.n==0 );
+
+ /* Grow the two buffers to pgsz + padding bytes in size. */
+ sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.pgidx, nBuffer);
+ sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.buf, nBuffer);
+
+ if( p->pIdxWriter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
+ "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+
+ if( p->rc==SQLITE_OK ){
+ /* Initialize the 4-byte leaf-page header to 0x00. */
+ memset(pWriter->writer.buf.p, 0, 4);
+ pWriter->writer.buf.n = 4;
+
+ /* Bind the current output segment id to the index-writer. This is an
+ ** optimization over binding the same value over and over as rows are
+ ** inserted into %_idx by the current writer. */
+ sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid);
+ }
+}
+
+/*
+** Iterator pIter was used to iterate through the input segments of on an
+** incremental merge operation. This function is called if the incremental
+** merge step has finished but the input has not been completely exhausted.
+*/
+static void fts5TrimSegments(Fts5Index *p, Fts5Iter *pIter){
+ int i;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ for(i=0; i<pIter->nSeg && p->rc==SQLITE_OK; i++){
+ Fts5SegIter *pSeg = &pIter->aSeg[i];
+ if( pSeg->pSeg==0 ){
+ /* no-op */
+ }else if( pSeg->pLeaf==0 ){
+ /* All keys from this input segment have been transfered to the output.
+ ** Set both the first and last page-numbers to 0 to indicate that the
+ ** segment is now empty. */
+ pSeg->pSeg->pgnoLast = 0;
+ pSeg->pSeg->pgnoFirst = 0;
+ }else{
+ int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */
+ i64 iLeafRowid;
+ Fts5Data *pData;
+ int iId = pSeg->pSeg->iSegid;
+ u8 aHdr[4] = {0x00, 0x00, 0x00, 0x00};
+
+ iLeafRowid = FTS5_SEGMENT_ROWID(iId, pSeg->iTermLeafPgno);
+ pData = fts5LeafRead(p, iLeafRowid);
+ if( pData ){
+ if( iOff>pData->szLeaf ){
+ /* This can occur if the pages that the segments occupy overlap - if
+ ** a single page has been assigned to more than one segment. In
+ ** this case a prior iteration of this loop may have corrupted the
+ ** segment currently being trimmed. */
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5BufferZero(&buf);
+ fts5BufferGrow(&p->rc, &buf, pData->nn);
+ fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
+ fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
+ fts5BufferAppendBlob(&p->rc, &buf, pData->szLeaf-iOff,&pData->p[iOff]);
+ if( p->rc==SQLITE_OK ){
+ /* Set the szLeaf field */
+ fts5PutU16(&buf.p[2], (u16)buf.n);
+ }
+
+ /* Set up the new page-index array */
+ fts5BufferAppendVarint(&p->rc, &buf, 4);
+ if( pSeg->iLeafPgno==pSeg->iTermLeafPgno
+ && pSeg->iEndofDoclist<pData->szLeaf
+ && pSeg->iPgidxOff<=pData->nn
+ ){
+ int nDiff = pData->szLeaf - pSeg->iEndofDoclist;
+ fts5BufferAppendVarint(&p->rc, &buf, buf.n - 1 - nDiff - 4);
+ fts5BufferAppendBlob(&p->rc, &buf,
+ pData->nn - pSeg->iPgidxOff, &pData->p[pSeg->iPgidxOff]
+ );
+ }
+
+ pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
+ fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 1), iLeafRowid);
+ fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
+ }
+ fts5DataRelease(pData);
+ }
+ }
+ }
+ fts5BufferFree(&buf);
+}
+
+static void fts5MergeChunkCallback(
+ Fts5Index *p,
+ void *pCtx,
+ const u8 *pChunk, int nChunk
+){
+ Fts5SegWriter *pWriter = (Fts5SegWriter*)pCtx;
+ fts5WriteAppendPoslistData(p, pWriter, pChunk, nChunk);
+}
+
+/*
+**
+*/
+static void fts5IndexMergeLevel(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Stucture of index */
+ int iLvl, /* Level to read input from */
+ int *pnRem /* Write up to this many output leaves */
+){
+ Fts5Structure *pStruct = *ppStruct;
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureLevel *pLvlOut;
+ Fts5Iter *pIter = 0; /* Iterator to read input data */
+ int nRem = pnRem ? *pnRem : 0; /* Output leaf pages left to write */
+ int nInput; /* Number of input segments */
+ Fts5SegWriter writer; /* Writer object */
+ Fts5StructureSegment *pSeg; /* Output segment */
+ Fts5Buffer term;
+ int bOldest; /* True if the output segment is the oldest */
+ int eDetail = p->pConfig->eDetail;
+ const int flags = FTS5INDEX_QUERY_NOOUTPUT;
+ int bTermWritten = 0; /* True if current term already output */
+
+ assert( iLvl<pStruct->nLevel );
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ memset(&writer, 0, sizeof(Fts5SegWriter));
+ memset(&term, 0, sizeof(Fts5Buffer));
+ if( pLvl->nMerge ){
+ pLvlOut = &pStruct->aLevel[iLvl+1];
+ assert( pLvlOut->nSeg>0 );
+ nInput = pLvl->nMerge;
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1];
+
+ fts5WriteInit(p, &writer, pSeg->iSegid);
+ writer.writer.pgno = pSeg->pgnoLast+1;
+ writer.iBtPage = 0;
+ }else{
+ int iSegid = fts5AllocateSegid(p, pStruct);
+
+ /* Extend the Fts5Structure object as required to ensure the output
+ ** segment exists. */
+ if( iLvl==pStruct->nLevel-1 ){
+ fts5StructureAddLevel(&p->rc, ppStruct);
+ pStruct = *ppStruct;
+ }
+ fts5StructureExtendLevel(&p->rc, pStruct, iLvl+1, 1, 0);
+ if( p->rc ) return;
+ pLvl = &pStruct->aLevel[iLvl];
+ pLvlOut = &pStruct->aLevel[iLvl+1];
+
+ fts5WriteInit(p, &writer, iSegid);
+
+ /* Add the new segment to the output level */
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg];
+ pLvlOut->nSeg++;
+ pSeg->pgnoFirst = 1;
+ pSeg->iSegid = iSegid;
+ pStruct->nSegment++;
+
+ /* Read input from all segments in the input level */
+ nInput = pLvl->nSeg;
+ }
+ bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);
+
+ assert( iLvl>=0 );
+ for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter, 0, 0)
+ ){
+ Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ int nPos; /* position-list size field value */
+ int nTerm;
+ const u8 *pTerm;
+
+ pTerm = fts5MultiIterTerm(pIter, &nTerm);
+ if( nTerm!=term.n || fts5Memcmp(pTerm, term.p, nTerm) ){
+ if( pnRem && writer.nLeafWritten>nRem ){
+ break;
+ }
+ fts5BufferSet(&p->rc, &term, nTerm, pTerm);
+ bTermWritten =0;
+ }
+
+ /* Check for key annihilation. */
+ if( pSegIter->nPos==0 && (bOldest || pSegIter->bDel==0) ) continue;
+
+ if( p->rc==SQLITE_OK && bTermWritten==0 ){
+ /* This is a new term. Append a term to the output segment. */
+ fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
+ bTermWritten = 1;
+ }
+
+ /* Append the rowid to the output */
+ /* WRITEPOSLISTSIZE */
+ fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( pSegIter->bDel ){
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
+ if( pSegIter->nPos>0 ){
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
+ }
+ }
+ }else{
+ /* Append the position-list data to the output */
+ nPos = pSegIter->nPos*2 + pSegIter->bDel;
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, nPos);
+ fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
+ }
+ }
+
+ /* Flush the last leaf page to disk. Set the output segment b-tree height
+ ** and last leaf page number at the same time. */
+ fts5WriteFinish(p, &writer, &pSeg->pgnoLast);
+
+ assert( pIter!=0 || p->rc!=SQLITE_OK );
+ if( fts5MultiIterEof(p, pIter) ){
+ int i;
+
+ /* Remove the redundant segments from the %_data table */
+ for(i=0; i<nInput; i++){
+ fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid);
+ }
+
+ /* Remove the redundant segments from the input level */
+ if( pLvl->nSeg!=nInput ){
+ int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
+ memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
+ }
+ pStruct->nSegment -= nInput;
+ pLvl->nSeg -= nInput;
+ pLvl->nMerge = 0;
+ if( pSeg->pgnoLast==0 ){
+ pLvlOut->nSeg--;
+ pStruct->nSegment--;
+ }
+ }else{
+ assert( pSeg->pgnoLast>0 );
+ fts5TrimSegments(p, pIter);
+ pLvl->nMerge = nInput;
+ }
+
+ fts5MultiIterFree(pIter);
+ fts5BufferFree(&term);
+ if( pnRem ) *pnRem -= writer.nLeafWritten;
+}
+
+/*
+** Do up to nPg pages of automerge work on the index.
+**
+** Return true if any changes were actually made, or false otherwise.
+*/
+static int fts5IndexMerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
+ int nPg, /* Pages of work to do */
+ int nMin /* Minimum number of segments to merge */
+){
+ int nRem = nPg;
+ int bRet = 0;
+ Fts5Structure *pStruct = *ppStruct;
+ while( nRem>0 && p->rc==SQLITE_OK ){
+ int iLvl; /* To iterate through levels */
+ int iBestLvl = 0; /* Level offering the most input segments */
+ int nBest = 0; /* Number of input segments on best level */
+
+ /* Set iBestLvl to the level to read input segments from. */
+ assert( pStruct->nLevel>0 );
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ if( pLvl->nMerge ){
+ if( pLvl->nMerge>nBest ){
+ iBestLvl = iLvl;
+ nBest = pLvl->nMerge;
+ }
+ break;
+ }
+ if( pLvl->nSeg>nBest ){
+ nBest = pLvl->nSeg;
+ iBestLvl = iLvl;
+ }
+ }
+
+ /* If nBest is still 0, then the index must be empty. */
+#ifdef SQLITE_DEBUG
+ for(iLvl=0; nBest==0 && iLvl<pStruct->nLevel; iLvl++){
+ assert( pStruct->aLevel[iLvl].nSeg==0 );
+ }
+#endif
+
+ if( nBest<nMin && pStruct->aLevel[iBestLvl].nMerge==0 ){
+ break;
+ }
+ bRet = 1;
+ fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem);
+ if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
+ fts5StructurePromote(p, iBestLvl+1, pStruct);
+ }
+ }
+ *ppStruct = pStruct;
+ return bRet;
+}
+
+/*
+** A total of nLeaf leaf pages of data has just been flushed to a level-0
+** segment. This function updates the write-counter accordingly and, if
+** necessary, performs incremental merge work.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5IndexAutomerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
+ int nLeaf /* Number of output leaves just written */
+){
+ if( p->rc==SQLITE_OK && p->pConfig->nAutomerge>0 && ALWAYS((*ppStruct)!=0) ){
+ Fts5Structure *pStruct = *ppStruct;
+ u64 nWrite; /* Initial value of write-counter */
+ int nWork; /* Number of work-quanta to perform */
+ int nRem; /* Number of leaf pages left to write */
+
+ /* Update the write-counter. While doing so, set nWork. */
+ nWrite = pStruct->nWriteCounter;
+ nWork = (int)(((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit));
+ pStruct->nWriteCounter += nLeaf;
+ nRem = (int)(p->nWorkUnit * nWork * pStruct->nLevel);
+
+ fts5IndexMerge(p, ppStruct, nRem, p->pConfig->nAutomerge);
+ }
+}
+
+static void fts5IndexCrisismerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct /* IN/OUT: Current structure of index */
+){
+ const int nCrisis = p->pConfig->nCrisisMerge;
+ Fts5Structure *pStruct = *ppStruct;
+ int iLvl = 0;
+
+ assert( p->rc!=SQLITE_OK || pStruct->nLevel>0 );
+ while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){
+ fts5IndexMergeLevel(p, &pStruct, iLvl, 0);
+ assert( p->rc!=SQLITE_OK || pStruct->nLevel>(iLvl+1) );
+ fts5StructurePromote(p, iLvl+1, pStruct);
+ iLvl++;
+ }
+ *ppStruct = pStruct;
+}
+
+static int fts5IndexReturn(Fts5Index *p){
+ int rc = p->rc;
+ p->rc = SQLITE_OK;
+ return rc;
+}
+
+typedef struct Fts5FlushCtx Fts5FlushCtx;
+struct Fts5FlushCtx {
+ Fts5Index *pIdx;
+ Fts5SegWriter writer;
+};
+
+/*
+** Buffer aBuf[] contains a list of varints, all small enough to fit
+** in a 32-bit integer. Return the size of the largest prefix of this
+** list nMax bytes or less in size.
+*/
+static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
+ int ret;
+ u32 dummy;
+ ret = fts5GetVarint32(aBuf, dummy);
+ if( ret<nMax ){
+ while( 1 ){
+ int i = fts5GetVarint32(&aBuf[ret], dummy);
+ if( (ret + i) > nMax ) break;
+ ret += i;
+ }
+ }
+ return ret;
+}
+
+/*
+** Flush the contents of in-memory hash table iHash to a new level-0
+** segment on disk. Also update the corresponding structure record.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5FlushOneHash(Fts5Index *p){
+ Fts5Hash *pHash = p->pHash;
+ Fts5Structure *pStruct;
+ int iSegid;
+ int pgnoLast = 0; /* Last leaf page number in segment */
+
+ /* Obtain a reference to the index structure and allocate a new segment-id
+ ** for the new level-0 segment. */
+ pStruct = fts5StructureRead(p);
+ iSegid = fts5AllocateSegid(p, pStruct);
+ fts5StructureInvalidate(p);
+
+ if( iSegid ){
+ const int pgsz = p->pConfig->pgsz;
+ int eDetail = p->pConfig->eDetail;
+ Fts5StructureSegment *pSeg; /* New segment within pStruct */
+ Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */
+ Fts5Buffer *pPgidx; /* Buffer in which to assemble pgidx */
+
+ Fts5SegWriter writer;
+ fts5WriteInit(p, &writer, iSegid);
+
+ pBuf = &writer.writer.buf;
+ pPgidx = &writer.writer.pgidx;
+
+ /* fts5WriteInit() should have initialized the buffers to (most likely)
+ ** the maximum space required. */
+ assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) );
+ assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) );
+
+ /* Begin scanning through hash table entries. This loop runs once for each
+ ** term/doclist currently stored within the hash table. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
+ }
+ while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
+ const char *zTerm; /* Buffer containing term */
+ const u8 *pDoclist; /* Pointer to doclist for this term */
+ int nDoclist; /* Size of doclist in bytes */
+
+ /* Write the term for this entry to disk. */
+ sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
+ fts5WriteAppendTerm(p, &writer, (int)strlen(zTerm), (const u8*)zTerm);
+ if( p->rc!=SQLITE_OK ) break;
+
+ assert( writer.bFirstRowidInPage==0 );
+ if( pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
+ /* The entire doclist will fit on the current leaf. */
+ fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
+ }else{
+ i64 iRowid = 0;
+ u64 iDelta = 0;
+ int iOff = 0;
+
+ /* The entire doclist will not fit on this leaf. The following
+ ** loop iterates through the poslists that make up the current
+ ** doclist. */
+ while( p->rc==SQLITE_OK && iOff<nDoclist ){
+ iOff += fts5GetVarint(&pDoclist[iOff], &iDelta);
+ iRowid += iDelta;
+
+ if( writer.bFirstRowidInPage ){
+ fts5PutU16(&pBuf->p[0], (u16)pBuf->n); /* first rowid on page */
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
+ writer.bFirstRowidInPage = 0;
+ fts5WriteDlidxAppend(p, &writer, iRowid);
+ if( p->rc!=SQLITE_OK ) break;
+ }else{
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
+ }
+ assert( pBuf->n<=pBuf->nSpace );
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( iOff<nDoclist && pDoclist[iOff]==0 ){
+ pBuf->p[pBuf->n++] = 0;
+ iOff++;
+ if( iOff<nDoclist && pDoclist[iOff]==0 ){
+ pBuf->p[pBuf->n++] = 0;
+ iOff++;
+ }
+ }
+ if( (pBuf->n + pPgidx->n)>=pgsz ){
+ fts5WriteFlushLeaf(p, &writer);
+ }
+ }else{
+ int bDummy;
+ int nPos;
+ int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
+ nCopy += nPos;
+ if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
+ /* The entire poslist will fit on the current leaf. So copy
+ ** it in one go. */
+ fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
+ }else{
+ /* The entire poslist will not fit on this leaf. So it needs
+ ** to be broken into sections. The only qualification being
+ ** that each varint must be stored contiguously. */
+ const u8 *pPoslist = &pDoclist[iOff];
+ int iPos = 0;
+ while( p->rc==SQLITE_OK ){
+ int nSpace = pgsz - pBuf->n - pPgidx->n;
+ int n = 0;
+ if( (nCopy - iPos)<=nSpace ){
+ n = nCopy - iPos;
+ }else{
+ n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
+ }
+ assert( n>0 );
+ fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
+ iPos += n;
+ if( (pBuf->n + pPgidx->n)>=pgsz ){
+ fts5WriteFlushLeaf(p, &writer);
+ }
+ if( iPos>=nCopy ) break;
+ }
+ }
+ iOff += nCopy;
+ }
+ }
+ }
+
+ /* TODO2: Doclist terminator written here. */
+ /* pBuf->p[pBuf->n++] = '\0'; */
+ assert( pBuf->n<=pBuf->nSpace );
+ if( p->rc==SQLITE_OK ) sqlite3Fts5HashScanNext(pHash);
+ }
+ sqlite3Fts5HashClear(pHash);
+ fts5WriteFinish(p, &writer, &pgnoLast);
+
+ /* Update the Fts5Structure. It is written back to the database by the
+ ** fts5StructureRelease() call below. */
+ if( pStruct->nLevel==0 ){
+ fts5StructureAddLevel(&p->rc, &pStruct);
+ }
+ fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
+ if( p->rc==SQLITE_OK ){
+ pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
+ pSeg->iSegid = iSegid;
+ pSeg->pgnoFirst = 1;
+ pSeg->pgnoLast = pgnoLast;
+ pStruct->nSegment++;
+ }
+ fts5StructurePromote(p, 0, pStruct);
+ }
+
+ fts5IndexAutomerge(p, &pStruct, pgnoLast);
+ fts5IndexCrisismerge(p, &pStruct);
+ fts5StructureWrite(p, pStruct);
+ fts5StructureRelease(pStruct);
+}
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+*/
+static void fts5IndexFlush(Fts5Index *p){
+ /* Unless it is empty, flush the hash table to disk */
+ if( p->nPendingData ){
+ assert( p->pHash );
+ p->nPendingData = 0;
+ fts5FlushOneHash(p);
+ }
+}
+
+static Fts5Structure *fts5IndexOptimizeStruct(
+ Fts5Index *p,
+ Fts5Structure *pStruct
+){
+ Fts5Structure *pNew = 0;
+ sqlite3_int64 nByte = sizeof(Fts5Structure);
+ int nSeg = pStruct->nSegment;
+ int i;
+
+ /* Figure out if this structure requires optimization. A structure does
+ ** not require optimization if either:
+ **
+ ** + it consists of fewer than two segments, or
+ ** + all segments are on the same level, or
+ ** + all segments except one are currently inputs to a merge operation.
+ **
+ ** In the first case, return NULL. In the second, increment the ref-count
+ ** on *pStruct and return a copy of the pointer to it.
+ */
+ if( nSeg<2 ) return 0;
+ for(i=0; i<pStruct->nLevel; i++){
+ int nThis = pStruct->aLevel[i].nSeg;
+ if( nThis==nSeg || (nThis==nSeg-1 && pStruct->aLevel[i].nMerge==nThis) ){
+ fts5StructureRef(pStruct);
+ return pStruct;
+ }
+ assert( pStruct->aLevel[i].nMerge<=nThis );
+ }
+
+ nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
+ pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);
+
+ if( pNew ){
+ Fts5StructureLevel *pLvl;
+ nByte = nSeg * sizeof(Fts5StructureSegment);
+ pNew->nLevel = pStruct->nLevel+1;
+ pNew->nRef = 1;
+ pNew->nWriteCounter = pStruct->nWriteCounter;
+ pLvl = &pNew->aLevel[pStruct->nLevel];
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
+ if( pLvl->aSeg ){
+ int iLvl, iSeg;
+ int iSegOut = 0;
+ /* Iterate through all segments, from oldest to newest. Add them to
+ ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest
+ ** segment in the data structure. */
+ for(iLvl=pStruct->nLevel-1; iLvl>=0; iLvl--){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ pLvl->aSeg[iSegOut] = pStruct->aLevel[iLvl].aSeg[iSeg];
+ iSegOut++;
+ }
+ }
+ pNew->nSegment = pLvl->nSeg = nSeg;
+ }else{
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }
+
+ return pNew;
+}
+
+static int sqlite3Fts5IndexOptimize(Fts5Index *p){
+ Fts5Structure *pStruct;
+ Fts5Structure *pNew = 0;
+
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFlush(p);
+ pStruct = fts5StructureRead(p);
+ fts5StructureInvalidate(p);
+
+ if( pStruct ){
+ pNew = fts5IndexOptimizeStruct(p, pStruct);
+ }
+ fts5StructureRelease(pStruct);
+
+ assert( pNew==0 || pNew->nSegment>0 );
+ if( pNew ){
+ int iLvl;
+ for(iLvl=0; pNew->aLevel[iLvl].nSeg==0; iLvl++){}
+ while( p->rc==SQLITE_OK && pNew->aLevel[iLvl].nSeg>0 ){
+ int nRem = FTS5_OPT_WORK_UNIT;
+ fts5IndexMergeLevel(p, &pNew, iLvl, &nRem);
+ }
+
+ fts5StructureWrite(p, pNew);
+ fts5StructureRelease(pNew);
+ }
+
+ return fts5IndexReturn(p);
+}
+
+/*
+** This is called to implement the special "VALUES('merge', $nMerge)"
+** INSERT command.
+*/
+static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){
+ Fts5Structure *pStruct = fts5StructureRead(p);
+ if( pStruct ){
+ int nMin = p->pConfig->nUsermerge;
+ fts5StructureInvalidate(p);
+ if( nMerge<0 ){
+ Fts5Structure *pNew = fts5IndexOptimizeStruct(p, pStruct);
+ fts5StructureRelease(pStruct);
+ pStruct = pNew;
+ nMin = 2;
+ nMerge = nMerge*-1;
+ }
+ if( pStruct && pStruct->nLevel ){
+ if( fts5IndexMerge(p, &pStruct, nMerge, nMin) ){
+ fts5StructureWrite(p, pStruct);
+ }
+ }
+ fts5StructureRelease(pStruct);
+ }
+ return fts5IndexReturn(p);
+}
+
+static void fts5AppendRowid(
+ Fts5Index *p,
+ i64 iDelta,
+ Fts5Iter *pUnused,
+ Fts5Buffer *pBuf
+){
+ UNUSED_PARAM(pUnused);
+ fts5BufferAppendVarint(&p->rc, pBuf, iDelta);
+}
+
+static void fts5AppendPoslist(
+ Fts5Index *p,
+ i64 iDelta,
+ Fts5Iter *pMulti,
+ Fts5Buffer *pBuf
+){
+ int nData = pMulti->base.nData;
+ int nByte = nData + 9 + 9 + FTS5_DATA_ZERO_PADDING;
+ assert( nData>0 );
+ if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nByte) ){
+ fts5BufferSafeAppendVarint(pBuf, iDelta);
+ fts5BufferSafeAppendVarint(pBuf, nData*2);
+ fts5BufferSafeAppendBlob(pBuf, pMulti->base.pData, nData);
+ memset(&pBuf->p[pBuf->n], 0, FTS5_DATA_ZERO_PADDING);
+ }
+}
+
+
+static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
+ u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;
+
+ assert( pIter->aPoslist || (p==0 && pIter->aPoslist==0) );
+ if( p>=pIter->aEof ){
+ pIter->aPoslist = 0;
+ }else{
+ i64 iDelta;
+
+ p += fts5GetVarint(p, (u64*)&iDelta);
+ pIter->iRowid += iDelta;
+
+ /* Read position list size */
+ if( p[0] & 0x80 ){
+ int nPos;
+ pIter->nSize = fts5GetVarint32(p, nPos);
+ pIter->nPoslist = (nPos>>1);
+ }else{
+ pIter->nPoslist = ((int)(p[0])) >> 1;
+ pIter->nSize = 1;
+ }
+
+ pIter->aPoslist = p;
+ if( &pIter->aPoslist[pIter->nPoslist]>pIter->aEof ){
+ pIter->aPoslist = 0;
+ }
+ }
+}
+
+static void fts5DoclistIterInit(
+ Fts5Buffer *pBuf,
+ Fts5DoclistIter *pIter
+){
+ memset(pIter, 0, sizeof(*pIter));
+ if( pBuf->n>0 ){
+ pIter->aPoslist = pBuf->p;
+ pIter->aEof = &pBuf->p[pBuf->n];
+ fts5DoclistIterNext(pIter);
+ }
+}
+
+#if 0
+/*
+** Append a doclist to buffer pBuf.
+**
+** This function assumes that space within the buffer has already been
+** allocated.
+*/
+static void fts5MergeAppendDocid(
+ Fts5Buffer *pBuf, /* Buffer to write to */
+ i64 *piLastRowid, /* IN/OUT: Previous rowid written (if any) */
+ i64 iRowid /* Rowid to append */
+){
+ assert( pBuf->n!=0 || (*piLastRowid)==0 );
+ fts5BufferSafeAppendVarint(pBuf, iRowid - *piLastRowid);
+ *piLastRowid = iRowid;
+}
+#endif
+
+#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \
+ assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \
+ fts5BufferSafeAppendVarint((pBuf), (iRowid) - (iLastRowid)); \
+ (iLastRowid) = (iRowid); \
+}
+
+/*
+** Swap the contents of buffer *p1 with that of *p2.
+*/
+static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
+ Fts5Buffer tmp = *p1;
+ *p1 = *p2;
+ *p2 = tmp;
+}
+
+static void fts5NextRowid(Fts5Buffer *pBuf, int *piOff, i64 *piRowid){
+ int i = *piOff;
+ if( i>=pBuf->n ){
+ *piOff = -1;
+ }else{
+ u64 iVal;
+ *piOff = i + sqlite3Fts5GetVarint(&pBuf->p[i], &iVal);
+ *piRowid += iVal;
+ }
+}
+
+/*
+** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
+** In this case the buffers consist of a delta-encoded list of rowids only.
+*/
+static void fts5MergeRowidLists(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Buffer *p1, /* First list to merge */
+ int nBuf, /* Number of entries in apBuf[] */
+ Fts5Buffer *aBuf /* Array of other lists to merge into p1 */
+){
+ int i1 = 0;
+ int i2 = 0;
+ i64 iRowid1 = 0;
+ i64 iRowid2 = 0;
+ i64 iOut = 0;
+ Fts5Buffer *p2 = &aBuf[0];
+ Fts5Buffer out;
+
+ (void)nBuf;
+ memset(&out, 0, sizeof(out));
+ assert( nBuf==1 );
+ sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
+ if( p->rc ) return;
+
+ fts5NextRowid(p1, &i1, &iRowid1);
+ fts5NextRowid(p2, &i2, &iRowid2);
+ while( i1>=0 || i2>=0 ){
+ if( i1>=0 && (i2<0 || iRowid1<iRowid2) ){
+ assert( iOut==0 || iRowid1>iOut );
+ fts5BufferSafeAppendVarint(&out, iRowid1 - iOut);
+ iOut = iRowid1;
+ fts5NextRowid(p1, &i1, &iRowid1);
+ }else{
+ assert( iOut==0 || iRowid2>iOut );
+ fts5BufferSafeAppendVarint(&out, iRowid2 - iOut);
+ iOut = iRowid2;
+ if( i1>=0 && iRowid1==iRowid2 ){
+ fts5NextRowid(p1, &i1, &iRowid1);
+ }
+ fts5NextRowid(p2, &i2, &iRowid2);
+ }
+ }
+
+ fts5BufferSwap(&out, p1);
+ fts5BufferFree(&out);
+}
+
+typedef struct PrefixMerger PrefixMerger;
+struct PrefixMerger {
+ Fts5DoclistIter iter; /* Doclist iterator */
+ i64 iPos; /* For iterating through a position list */
+ int iOff;
+ u8 *aPos;
+ PrefixMerger *pNext; /* Next in docid/poslist order */
+};
+
+static void fts5PrefixMergerInsertByRowid(
+ PrefixMerger **ppHead,
+ PrefixMerger *p
+){
+ if( p->iter.aPoslist ){
+ PrefixMerger **pp = ppHead;
+ while( *pp && p->iter.iRowid>(*pp)->iter.iRowid ){
+ pp = &(*pp)->pNext;
+ }
+ p->pNext = *pp;
+ *pp = p;
+ }
+}
+
+static void fts5PrefixMergerInsertByPosition(
+ PrefixMerger **ppHead,
+ PrefixMerger *p
+){
+ if( p->iPos>=0 ){
+ PrefixMerger **pp = ppHead;
+ while( *pp && p->iPos>(*pp)->iPos ){
+ pp = &(*pp)->pNext;
+ }
+ p->pNext = *pp;
+ *pp = p;
+ }
+}
+
+
+/*
+** Array aBuf[] contains nBuf doclists. These are all merged in with the
+** doclist in buffer p1.
+*/
+static void fts5MergePrefixLists(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Buffer *p1, /* First list to merge */
+ int nBuf, /* Number of buffers in array aBuf[] */
+ Fts5Buffer *aBuf /* Other lists to merge in */
+){
+#define fts5PrefixMergerNextPosition(p) \
+ sqlite3Fts5PoslistNext64((p)->aPos,(p)->iter.nPoslist,&(p)->iOff,&(p)->iPos)
+#define FTS5_MERGE_NLIST 16
+ PrefixMerger aMerger[FTS5_MERGE_NLIST];
+ PrefixMerger *pHead = 0;
+ int i;
+ int nOut = 0;
+ Fts5Buffer out = {0, 0, 0};
+ Fts5Buffer tmp = {0, 0, 0};
+ i64 iLastRowid = 0;
+
+ /* Initialize a doclist-iterator for each input buffer. Arrange them in
+ ** a linked-list starting at pHead in ascending order of rowid. Avoid
+ ** linking any iterators already at EOF into the linked list at all. */
+ assert( nBuf+1<=sizeof(aMerger)/sizeof(aMerger[0]) );
+ memset(aMerger, 0, sizeof(PrefixMerger)*(nBuf+1));
+ pHead = &aMerger[nBuf];
+ fts5DoclistIterInit(p1, &pHead->iter);
+ for(i=0; i<nBuf; i++){
+ fts5DoclistIterInit(&aBuf[i], &aMerger[i].iter);
+ fts5PrefixMergerInsertByRowid(&pHead, &aMerger[i]);
+ nOut += aBuf[i].n;
+ }
+ if( nOut==0 ) return;
+ nOut += p1->n + 9 + 10*nBuf;
+
+ /* The maximum size of the output is equal to the sum of the
+ ** input sizes + 1 varint (9 bytes). The extra varint is because if the
+ ** first rowid in one input is a large negative number, and the first in
+ ** the other a non-negative number, the delta for the non-negative
+ ** number will be larger on disk than the literal integer value
+ ** was.
+ **
+ ** Or, if the input position-lists are corrupt, then the output might
+ ** include up to (nBuf+1) extra 10-byte positions created by interpreting -1
+ ** (the value PoslistNext64() uses for EOF) as a position and appending
+ ** it to the output. This can happen at most once for each input
+ ** position-list, hence (nBuf+1) 10 byte paddings. */
+ if( sqlite3Fts5BufferSize(&p->rc, &out, nOut) ) return;
+
+ while( pHead ){
+ fts5MergeAppendDocid(&out, iLastRowid, pHead->iter.iRowid);
+
+ if( pHead->pNext && iLastRowid==pHead->pNext->iter.iRowid ){
+ /* Merge data from two or more poslists */
+ i64 iPrev = 0;
+ int nTmp = FTS5_DATA_ZERO_PADDING;
+ int nMerge = 0;
+ PrefixMerger *pSave = pHead;
+ PrefixMerger *pThis = 0;
+ int nTail = 0;
+
+ pHead = 0;
+ while( pSave && pSave->iter.iRowid==iLastRowid ){
+ PrefixMerger *pNext = pSave->pNext;
+ pSave->iOff = 0;
+ pSave->iPos = 0;
+ pSave->aPos = &pSave->iter.aPoslist[pSave->iter.nSize];
+ fts5PrefixMergerNextPosition(pSave);
+ nTmp += pSave->iter.nPoslist + 10;
+ nMerge++;
+ fts5PrefixMergerInsertByPosition(&pHead, pSave);
+ pSave = pNext;
+ }
+
+ if( pHead==0 || pHead->pNext==0 ){
+ p->rc = FTS5_CORRUPT;
+ break;
+ }
+
+ /* See the earlier comment in this function for an explanation of why
+ ** corrupt input position lists might cause the output to consume
+ ** at most nMerge*10 bytes of unexpected space. */
+ if( sqlite3Fts5BufferSize(&p->rc, &tmp, nTmp+nMerge*10) ){
+ break;
+ }
+ fts5BufferZero(&tmp);
+
+ pThis = pHead;
+ pHead = pThis->pNext;
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pThis->iPos);
+ fts5PrefixMergerNextPosition(pThis);
+ fts5PrefixMergerInsertByPosition(&pHead, pThis);
+
+ while( pHead->pNext ){
+ pThis = pHead;
+ if( pThis->iPos!=iPrev ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pThis->iPos);
+ }
+ fts5PrefixMergerNextPosition(pThis);
+ pHead = pThis->pNext;
+ fts5PrefixMergerInsertByPosition(&pHead, pThis);
+ }
+
+ if( pHead->iPos!=iPrev ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pHead->iPos);
+ }
+ nTail = pHead->iter.nPoslist - pHead->iOff;
+
+ /* WRITEPOSLISTSIZE */
+ assert_nc( tmp.n+nTail<=nTmp );
+ assert( tmp.n+nTail<=nTmp+nMerge*10 );
+ if( tmp.n+nTail>nTmp-FTS5_DATA_ZERO_PADDING ){
+ if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
+ break;
+ }
+ fts5BufferSafeAppendVarint(&out, (tmp.n+nTail) * 2);
+ fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
+ if( nTail>0 ){
+ fts5BufferSafeAppendBlob(&out, &pHead->aPos[pHead->iOff], nTail);
+ }
+
+ pHead = pSave;
+ for(i=0; i<nBuf+1; i++){
+ PrefixMerger *pX = &aMerger[i];
+ if( pX->iter.aPoslist && pX->iter.iRowid==iLastRowid ){
+ fts5DoclistIterNext(&pX->iter);
+ fts5PrefixMergerInsertByRowid(&pHead, pX);
+ }
+ }
+
+ }else{
+ /* Copy poslist from pHead to output */
+ PrefixMerger *pThis = pHead;
+ Fts5DoclistIter *pI = &pThis->iter;
+ fts5BufferSafeAppendBlob(&out, pI->aPoslist, pI->nPoslist+pI->nSize);
+ fts5DoclistIterNext(pI);
+ pHead = pThis->pNext;
+ fts5PrefixMergerInsertByRowid(&pHead, pThis);
+ }
+ }
+
+ fts5BufferFree(p1);
+ fts5BufferFree(&tmp);
+ memset(&out.p[out.n], 0, FTS5_DATA_ZERO_PADDING);
+ *p1 = out;
+}
+
+static void fts5SetupPrefixIter(
+ Fts5Index *p, /* Index to read from */
+ int bDesc, /* True for "ORDER BY rowid DESC" */
+ int iIdx, /* Index to scan for data */
+ u8 *pToken, /* Buffer containing prefix to match */
+ int nToken, /* Size of buffer pToken in bytes */
+ Fts5Colset *pColset, /* Restrict matches to these columns */
+ Fts5Iter **ppIter /* OUT: New iterator */
+){
+ Fts5Structure *pStruct;
+ Fts5Buffer *aBuf;
+ int nBuf = 32;
+ int nMerge = 1;
+
+ void (*xMerge)(Fts5Index*, Fts5Buffer*, int, Fts5Buffer*);
+ void (*xAppend)(Fts5Index*, i64, Fts5Iter*, Fts5Buffer*);
+ if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ xMerge = fts5MergeRowidLists;
+ xAppend = fts5AppendRowid;
+ }else{
+ nMerge = FTS5_MERGE_NLIST-1;
+ nBuf = nMerge*8; /* Sufficient to merge (16^8)==(2^32) lists */
+ xMerge = fts5MergePrefixLists;
+ xAppend = fts5AppendPoslist;
+ }
+
+ aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
+ pStruct = fts5StructureRead(p);
+
+ if( aBuf && pStruct ){
+ const int flags = FTS5INDEX_QUERY_SCAN
+ | FTS5INDEX_QUERY_SKIPEMPTY
+ | FTS5INDEX_QUERY_NOOUTPUT;
+ int i;
+ i64 iLastRowid = 0;
+ Fts5Iter *p1 = 0; /* Iterator used to gather data from index */
+ Fts5Data *pData;
+ Fts5Buffer doclist;
+ int bNewTerm = 1;
+
+ memset(&doclist, 0, sizeof(doclist));
+ if( iIdx!=0 ){
+ int dummy = 0;
+ const int f2 = FTS5INDEX_QUERY_SKIPEMPTY|FTS5INDEX_QUERY_NOOUTPUT;
+ pToken[0] = FTS5_MAIN_PREFIX;
+ fts5MultiIterNew(p, pStruct, f2, pColset, pToken, nToken, -1, 0, &p1);
+ fts5IterSetOutputCb(&p->rc, p1);
+ for(;
+ fts5MultiIterEof(p, p1)==0;
+ fts5MultiIterNext2(p, p1, &dummy)
+ ){
+ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
+ p1->xSetOutputs(p1, pSeg);
+ if( p1->base.nData ){
+ xAppend(p, p1->base.iRowid-iLastRowid, p1, &doclist);
+ iLastRowid = p1->base.iRowid;
+ }
+ }
+ fts5MultiIterFree(p1);
+ }
+
+ pToken[0] = FTS5_MAIN_PREFIX + iIdx;
+ fts5MultiIterNew(p, pStruct, flags, pColset, pToken, nToken, -1, 0, &p1);
+ fts5IterSetOutputCb(&p->rc, p1);
+ for( /* no-op */ ;
+ fts5MultiIterEof(p, p1)==0;
+ fts5MultiIterNext2(p, p1, &bNewTerm)
+ ){
+ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
+ int nTerm = pSeg->term.n;
+ const u8 *pTerm = pSeg->term.p;
+ p1->xSetOutputs(p1, pSeg);
+
+ assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
+ if( bNewTerm ){
+ if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
+ }
+
+ if( p1->base.nData==0 ) continue;
+
+ if( p1->base.iRowid<=iLastRowid && doclist.n>0 ){
+ for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
+ int i1 = i*nMerge;
+ int iStore;
+ assert( i1+nMerge<=nBuf );
+ for(iStore=i1; iStore<i1+nMerge; iStore++){
+ if( aBuf[iStore].n==0 ){
+ fts5BufferSwap(&doclist, &aBuf[iStore]);
+ fts5BufferZero(&doclist);
+ break;
+ }
+ }
+ if( iStore==i1+nMerge ){
+ xMerge(p, &doclist, nMerge, &aBuf[i1]);
+ for(iStore=i1; iStore<i1+nMerge; iStore++){
+ fts5BufferZero(&aBuf[iStore]);
+ }
+ }
+ }
+ iLastRowid = 0;
+ }
+
+ xAppend(p, p1->base.iRowid-iLastRowid, p1, &doclist);
+ iLastRowid = p1->base.iRowid;
+ }
+
+ assert( (nBuf%nMerge)==0 );
+ for(i=0; i<nBuf; i+=nMerge){
+ int iFree;
+ if( p->rc==SQLITE_OK ){
+ xMerge(p, &doclist, nMerge, &aBuf[i]);
+ }
+ for(iFree=i; iFree<i+nMerge; iFree++){
+ fts5BufferFree(&aBuf[iFree]);
+ }
+ }
+ fts5MultiIterFree(p1);
+
+ pData = fts5IdxMalloc(p, sizeof(Fts5Data)+doclist.n+FTS5_DATA_ZERO_PADDING);
+ if( pData ){
+ pData->p = (u8*)&pData[1];
+ pData->nn = pData->szLeaf = doclist.n;
+ if( doclist.n ) memcpy(pData->p, doclist.p, doclist.n);
+ fts5MultiIterNew2(p, pData, bDesc, ppIter);
+ }
+ fts5BufferFree(&doclist);
+ }
+
+ fts5StructureRelease(pStruct);
+ sqlite3_free(aBuf);
+}
+
+
+/*
+** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
+** to the document with rowid iRowid.
+*/
+static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
+ assert( p->rc==SQLITE_OK );
+
+ /* Allocate the hash table if it has not already been allocated */
+ if( p->pHash==0 ){
+ p->rc = sqlite3Fts5HashNew(p->pConfig, &p->pHash, &p->nPendingData);
+ }
+
+ /* Flush the hash table to disk if required */
+ if( iRowid<p->iWriteRowid
+ || (iRowid==p->iWriteRowid && p->bDelete==0)
+ || (p->nPendingData > p->pConfig->nHashSize)
+ ){
+ fts5IndexFlush(p);
+ }
+
+ p->iWriteRowid = iRowid;
+ p->bDelete = bDelete;
+ return fts5IndexReturn(p);
+}
+
+/*
+** Commit data to disk.
+*/
+static int sqlite3Fts5IndexSync(Fts5Index *p){
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFlush(p);
+ sqlite3Fts5IndexCloseReader(p);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+static int sqlite3Fts5IndexRollback(Fts5Index *p){
+ sqlite3Fts5IndexCloseReader(p);
+ fts5IndexDiscardData(p);
+ fts5StructureInvalidate(p);
+ /* assert( p->rc==SQLITE_OK ); */
+ return SQLITE_OK;
+}
+
+/*
+** The %_data table is completely empty when this function is called. This
+** function populates it with the initial structure objects for each index,
+** and the initial version of the "averages" record (a zero-byte blob).
+*/
+static int sqlite3Fts5IndexReinit(Fts5Index *p){
+ Fts5Structure s;
+ fts5StructureInvalidate(p);
+ fts5IndexDiscardData(p);
+ memset(&s, 0, sizeof(Fts5Structure));
+ fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0);
+ fts5StructureWrite(p, &s);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying %_data table.
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+static int sqlite3Fts5IndexOpen(
+ Fts5Config *pConfig,
+ int bCreate,
+ Fts5Index **pp,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ Fts5Index *p; /* New object */
+
+ *pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index));
+ if( rc==SQLITE_OK ){
+ p->pConfig = pConfig;
+ p->nWorkUnit = FTS5_WORK_UNIT;
+ p->zDataTbl = sqlite3Fts5Mprintf(&rc, "%s_data", pConfig->zName);
+ if( p->zDataTbl && bCreate ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5CreateTable(pConfig, "idx",
+ "segid, term, pgno, PRIMARY KEY(segid, term)",
+ 1, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexReinit(p);
+ }
+ }
+ }
+
+ assert( rc!=SQLITE_OK || p->rc==SQLITE_OK );
+ if( rc ){
+ sqlite3Fts5IndexClose(p);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
+*/
+static int sqlite3Fts5IndexClose(Fts5Index *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ assert( p->pReader==0 );
+ fts5StructureInvalidate(p);
+ sqlite3_finalize(p->pWriter);
+ sqlite3_finalize(p->pDeleter);
+ sqlite3_finalize(p->pIdxWriter);
+ sqlite3_finalize(p->pIdxDeleter);
+ sqlite3_finalize(p->pIdxSelect);
+ sqlite3_finalize(p->pDataVersion);
+ sqlite3Fts5HashFree(p->pHash);
+ sqlite3_free(p->zDataTbl);
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+/*
+** Argument p points to a buffer containing utf-8 text that is n bytes in
+** size. Return the number of bytes in the nChar character prefix of the
+** buffer, or 0 if there are less than nChar characters in total.
+*/
+static int sqlite3Fts5IndexCharlenToBytelen(
+ const char *p,
+ int nByte,
+ int nChar
+){
+ int n = 0;
+ int i;
+ for(i=0; i<nChar; i++){
+ if( n>=nByte ) return 0; /* Input contains fewer than nChar chars */
+ if( (unsigned char)p[n++]>=0xc0 ){
+ if( n>=nByte ) return 0;
+ while( (p[n] & 0xc0)==0x80 ){
+ n++;
+ if( n>=nByte ){
+ if( i+1==nChar ) break;
+ return 0;
+ }
+ }
+ }
+ }
+ return n;
+}
+
+/*
+** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
+** unicode characters in the string.
+*/
+static int fts5IndexCharlen(const char *pIn, int nIn){
+ int nChar = 0;
+ int i = 0;
+ while( i<nIn ){
+ if( (unsigned char)pIn[i++]>=0xc0 ){
+ while( i<nIn && (pIn[i] & 0xc0)==0x80 ) i++;
+ }
+ nChar++;
+ }
+ return nChar;
+}
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+static int sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ int i; /* Used to iterate through indexes */
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pConfig = p->pConfig;
+
+ assert( p->rc==SQLITE_OK );
+ assert( (iCol<0)==p->bDelete );
+
+ /* Add the entry to the main terms index. */
+ rc = sqlite3Fts5HashWrite(
+ p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
+ );
+
+ for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
+ const int nChar = pConfig->aPrefix[i];
+ int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
+ if( nByte ){
+ rc = sqlite3Fts5HashWrite(p->pHash,
+ p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
+ nByte
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Open a new iterator to iterate though all rowid that match the
+** specified token or token prefix.
+*/
+static int sqlite3Fts5IndexQuery(
+ Fts5Index *p, /* FTS index to query */
+ const char *pToken, int nToken, /* Token (or prefix) to query for */
+ int flags, /* Mask of FTS5INDEX_QUERY_X flags */
+ Fts5Colset *pColset, /* Match these columns only */
+ Fts5IndexIter **ppIter /* OUT: New iterator object */
+){
+ Fts5Config *pConfig = p->pConfig;
+ Fts5Iter *pRet = 0;
+ Fts5Buffer buf = {0, 0, 0};
+
+ /* If the QUERY_SCAN flag is set, all other flags must be clear. */
+ assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );
+
+ if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
+ int iIdx = 0; /* Index to search */
+ int iPrefixIdx = 0; /* +1 prefix index */
+ if( nToken>0 ) memcpy(&buf.p[1], pToken, nToken);
+
+ /* Figure out which index to search and set iIdx accordingly. If this
+ ** is a prefix query for which there is no prefix index, set iIdx to
+ ** greater than pConfig->nPrefix to indicate that the query will be
+ ** satisfied by scanning multiple terms in the main index.
+ **
+ ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
+ ** prefix-query. Instead of using a prefix-index (if one exists),
+ ** evaluate the prefix query using the main FTS index. This is used
+ ** for internal sanity checking by the integrity-check in debug
+ ** mode only. */
+#ifdef SQLITE_DEBUG
+ if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
+ assert( flags & FTS5INDEX_QUERY_PREFIX );
+ iIdx = 1+pConfig->nPrefix;
+ }else
+#endif
+ if( flags & FTS5INDEX_QUERY_PREFIX ){
+ int nChar = fts5IndexCharlen(pToken, nToken);
+ for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
+ int nIdxChar = pConfig->aPrefix[iIdx-1];
+ if( nIdxChar==nChar ) break;
+ if( nIdxChar==nChar+1 ) iPrefixIdx = iIdx;
+ }
+ }
+
+ if( iIdx<=pConfig->nPrefix ){
+ /* Straight index lookup */
+ Fts5Structure *pStruct = fts5StructureRead(p);
+ buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
+ if( pStruct ){
+ fts5MultiIterNew(p, pStruct, flags | FTS5INDEX_QUERY_SKIPEMPTY,
+ pColset, buf.p, nToken+1, -1, 0, &pRet
+ );
+ fts5StructureRelease(pStruct);
+ }
+ }else{
+ /* Scan multiple terms in the main index */
+ int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
+ fts5SetupPrefixIter(p, bDesc, iPrefixIdx, buf.p, nToken+1, pColset,&pRet);
+ if( pRet==0 ){
+ assert( p->rc!=SQLITE_OK );
+ }else{
+ assert( pRet->pColset==0 );
+ fts5IterSetOutputCb(&p->rc, pRet);
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
+ if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
+ }
+ }
+ }
+
+ if( p->rc ){
+ sqlite3Fts5IterClose((Fts5IndexIter*)pRet);
+ pRet = 0;
+ sqlite3Fts5IndexCloseReader(p);
+ }
+
+ *ppIter = (Fts5IndexIter*)pRet;
+ sqlite3Fts5BufferFree(&buf);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** Return true if the iterator passed as the only argument is at EOF.
+*/
+/*
+** Move to the next matching rowid.
+*/
+static int sqlite3Fts5IterNext(Fts5IndexIter *pIndexIter){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ assert( pIter->pIndex->rc==SQLITE_OK );
+ fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Move to the next matching term/rowid. Used by the fts5vocab module.
+*/
+static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIndexIter){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ Fts5Index *p = pIter->pIndex;
+
+ assert( pIter->pIndex->rc==SQLITE_OK );
+
+ fts5MultiIterNext(p, pIter, 0, 0);
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
+ fts5DataRelease(pSeg->pLeaf);
+ pSeg->pLeaf = 0;
+ pIter->base.bEof = 1;
+ }
+ }
+
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Move to the next matching rowid that occurs at or after iMatch. The
+** definition of "at or after" depends on whether this iterator iterates
+** in ascending or descending rowid order.
+*/
+static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIndexIter, i64 iMatch){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Return the current term.
+*/
+static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIndexIter, int *pn){
+ int n;
+ const char *z = (const char*)fts5MultiIterTerm((Fts5Iter*)pIndexIter, &n);
+ assert_nc( z || n<=1 );
+ *pn = n-1;
+ return (z ? &z[1] : 0);
+}
+
+/*
+** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
+*/
+static void sqlite3Fts5IterClose(Fts5IndexIter *pIndexIter){
+ if( pIndexIter ){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ Fts5Index *pIndex = pIter->pIndex;
+ fts5MultiIterFree(pIter);
+ sqlite3Fts5IndexCloseReader(pIndex);
+ }
+}
+
+/*
+** Read and decode the "averages" record from the database.
+**
+** Parameter anSize must point to an array of size nCol, where nCol is
+** the number of user defined columns in the FTS table.
+*/
+static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize){
+ int nCol = p->pConfig->nCol;
+ Fts5Data *pData;
+
+ *pnRow = 0;
+ memset(anSize, 0, sizeof(i64) * nCol);
+ pData = fts5DataRead(p, FTS5_AVERAGES_ROWID);
+ if( p->rc==SQLITE_OK && pData->nn ){
+ int i = 0;
+ int iCol;
+ i += fts5GetVarint(&pData->p[i], (u64*)pnRow);
+ for(iCol=0; i<pData->nn && iCol<nCol; iCol++){
+ i += fts5GetVarint(&pData->p[i], (u64*)&anSize[iCol]);
+ }
+ }
+
+ fts5DataRelease(pData);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Replace the current "averages" record with the contents of the buffer
+** supplied as the second argument.
+*/
+static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8 *pData, int nData){
+ assert( p->rc==SQLITE_OK );
+ fts5DataWrite(p, FTS5_AVERAGES_ROWID, pData, nData);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Return the total number of blocks this module has read from the %_data
+** table since it was created.
+*/
+static int sqlite3Fts5IndexReads(Fts5Index *p){
+ return p->nRead;
+}
+
+/*
+** Set the 32-bit cookie value stored at the start of all structure
+** records to the value passed as the second argument.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int sqlite3Fts5IndexSetCookie(Fts5Index *p, int iNew){
+ int rc; /* Return code */
+ Fts5Config *pConfig = p->pConfig; /* Configuration object */
+ u8 aCookie[4]; /* Binary representation of iNew */
+ sqlite3_blob *pBlob = 0;
+
+ assert( p->rc==SQLITE_OK );
+ sqlite3Fts5Put32(aCookie, iNew);
+
+ rc = sqlite3_blob_open(pConfig->db, pConfig->zDb, p->zDataTbl,
+ "block", FTS5_STRUCTURE_ROWID, 1, &pBlob
+ );
+ if( rc==SQLITE_OK ){
+ sqlite3_blob_write(pBlob, aCookie, 4, 0);
+ rc = sqlite3_blob_close(pBlob);
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
+ Fts5Structure *pStruct;
+ pStruct = fts5StructureRead(p);
+ fts5StructureRelease(pStruct);
+ return fts5IndexReturn(p);
+}
+
+
+/*************************************************************************
+**************************************************************************
+** Below this point is the implementation of the integrity-check
+** functionality.
+*/
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 sqlite3Fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ int iIdx,
+ const char *pTerm,
+ int nTerm
+){
+ int i;
+ u64 ret = iRowid;
+ ret += (ret<<3) + iCol;
+ ret += (ret<<3) + iPos;
+ if( iIdx>=0 ) ret += (ret<<3) + (FTS5_MAIN_PREFIX + iIdx);
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i];
+ return ret;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This function is purely an internal test. It does not contribute to
+** FTS functionality, or even the integrity-check, in any way.
+**
+** Instead, it tests that the same set of pgno/rowid combinations are
+** visited regardless of whether the doclist-index identified by parameters
+** iSegid/iLeaf is iterated in forwards or reverse order.
+*/
+static void fts5TestDlidxReverse(
+ Fts5Index *p,
+ int iSegid, /* Segment id to load from */
+ int iLeaf /* Load doclist-index for this leaf */
+){
+ Fts5DlidxIter *pDlidx = 0;
+ u64 cksum1 = 13;
+ u64 cksum2 = 13;
+
+ for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterNext(p, pDlidx)
+ ){
+ i64 iRowid = fts5DlidxIterRowid(pDlidx);
+ int pgno = fts5DlidxIterPgno(pDlidx);
+ assert( pgno>iLeaf );
+ cksum1 += iRowid + ((i64)pgno<<32);
+ }
+ fts5DlidxIterFree(pDlidx);
+ pDlidx = 0;
+
+ for(pDlidx=fts5DlidxIterInit(p, 1, iSegid, iLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterPrev(p, pDlidx)
+ ){
+ i64 iRowid = fts5DlidxIterRowid(pDlidx);
+ int pgno = fts5DlidxIterPgno(pDlidx);
+ assert( fts5DlidxIterPgno(pDlidx)>iLeaf );
+ cksum2 += iRowid + ((i64)pgno<<32);
+ }
+ fts5DlidxIterFree(pDlidx);
+ pDlidx = 0;
+
+ if( p->rc==SQLITE_OK && cksum1!=cksum2 ) p->rc = FTS5_CORRUPT;
+}
+
+static int fts5QueryCksum(
+ Fts5Index *p, /* Fts5 index object */
+ int iIdx,
+ const char *z, /* Index key to query for */
+ int n, /* Size of index key in bytes */
+ int flags, /* Flags for Fts5IndexQuery */
+ u64 *pCksum /* IN/OUT: Checksum value */
+){
+ int eDetail = p->pConfig->eDetail;
+ u64 cksum = *pCksum;
+ Fts5IndexIter *pIter = 0;
+ int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIter);
+
+ while( rc==SQLITE_OK && ALWAYS(pIter!=0) && 0==sqlite3Fts5IterEof(pIter) ){
+ i64 rowid = pIter->iRowid;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ cksum ^= sqlite3Fts5IndexEntryCksum(rowid, 0, 0, iIdx, z, n);
+ }else{
+ Fts5PoslistReader sReader;
+ for(sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &sReader);
+ sReader.bEof==0;
+ sqlite3Fts5PoslistReaderNext(&sReader)
+ ){
+ int iCol = FTS5_POS2COLUMN(sReader.iPos);
+ int iOff = FTS5_POS2OFFSET(sReader.iPos);
+ cksum ^= sqlite3Fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ }
+ sqlite3Fts5IterClose(pIter);
+
+ *pCksum = cksum;
+ return rc;
+}
+
+/*
+** Check if buffer z[], size n bytes, contains as series of valid utf-8
+** encoded codepoints. If so, return 0. Otherwise, if the buffer does not
+** contain valid utf-8, return non-zero.
+*/
+static int fts5TestUtf8(const char *z, int n){
+ int i = 0;
+ assert_nc( n>0 );
+ while( i<n ){
+ if( (z[i] & 0x80)==0x00 ){
+ i++;
+ }else
+ if( (z[i] & 0xE0)==0xC0 ){
+ if( i+1>=n || (z[i+1] & 0xC0)!=0x80 ) return 1;
+ i += 2;
+ }else
+ if( (z[i] & 0xF0)==0xE0 ){
+ if( i+2>=n || (z[i+1] & 0xC0)!=0x80 || (z[i+2] & 0xC0)!=0x80 ) return 1;
+ i += 3;
+ }else
+ if( (z[i] & 0xF8)==0xF0 ){
+ if( i+3>=n || (z[i+1] & 0xC0)!=0x80 || (z[i+2] & 0xC0)!=0x80 ) return 1;
+ if( (z[i+2] & 0xC0)!=0x80 ) return 1;
+ i += 3;
+ }else{
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+** This function is also purely an internal test. It does not contribute to
+** FTS functionality, or even the integrity-check, in any way.
+*/
+static void fts5TestTerm(
+ Fts5Index *p,
+ Fts5Buffer *pPrev, /* Previous term */
+ const char *z, int n, /* Possibly new term to test */
+ u64 expected,
+ u64 *pCksum
+){
+ int rc = p->rc;
+ if( pPrev->n==0 ){
+ fts5BufferSet(&rc, pPrev, n, (const u8*)z);
+ }else
+ if( rc==SQLITE_OK && (pPrev->n!=n || memcmp(pPrev->p, z, n)) ){
+ u64 cksum3 = *pCksum;
+ const char *zTerm = (const char*)&pPrev->p[1]; /* term sans prefix-byte */
+ int nTerm = pPrev->n-1; /* Size of zTerm in bytes */
+ int iIdx = (pPrev->p[0] - FTS5_MAIN_PREFIX);
+ int flags = (iIdx==0 ? 0 : FTS5INDEX_QUERY_PREFIX);
+ u64 ck1 = 0;
+ u64 ck2 = 0;
+
+ /* Check that the results returned for ASC and DESC queries are
+ ** the same. If not, call this corruption. */
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, flags, &ck1);
+ if( rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_DESC;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ }
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+
+ /* If this is a prefix query, check that the results returned if the
+ ** the index is disabled are the same. In both ASC and DESC order.
+ **
+ ** This check may only be performed if the hash table is empty. This
+ ** is because the hash table only supports a single scan query at
+ ** a time, and the multi-iter loop from which this function is called
+ ** is already performing such a scan.
+ **
+ ** Also only do this if buffer zTerm contains nTerm bytes of valid
+ ** utf-8. Otherwise, the last part of the buffer contents might contain
+ ** a non-utf-8 sequence that happens to be a prefix of a valid utf-8
+ ** character stored in the main fts index, which will cause the
+ ** test to fail. */
+ if( p->nPendingData==0 && 0==fts5TestUtf8(zTerm, nTerm) ){
+ if( iIdx>0 && rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
+ ck2 = 0;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+ }
+ if( iIdx>0 && rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
+ ck2 = 0;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ cksum3 ^= ck1;
+ fts5BufferSet(&rc, pPrev, n, (const u8*)z);
+
+ if( rc==SQLITE_OK && cksum3!=expected ){
+ rc = FTS5_CORRUPT;
+ }
+ *pCksum = cksum3;
+ }
+ p->rc = rc;
+}
+
+#else
+# define fts5TestDlidxReverse(x,y,z)
+# define fts5TestTerm(u,v,w,x,y,z)
+#endif
+
+/*
+** Check that:
+**
+** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and
+** contain zero terms.
+** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and
+** contain zero rowids.
+*/
+static void fts5IndexIntegrityCheckEmpty(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg, /* Segment to check internal consistency */
+ int iFirst,
+ int iNoRowid,
+ int iLast
+){
+ int i;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ for(i=iFirst; p->rc==SQLITE_OK && i<=iLast; i++){
+ Fts5Data *pLeaf = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->iSegid, i));
+ if( pLeaf ){
+ if( !fts5LeafIsTermless(pLeaf) ) p->rc = FTS5_CORRUPT;
+ if( i>=iNoRowid && 0!=fts5LeafFirstRowidOff(pLeaf) ) p->rc = FTS5_CORRUPT;
+ }
+ fts5DataRelease(pLeaf);
+ }
+}
+
+static void fts5IntegrityCheckPgidx(Fts5Index *p, Fts5Data *pLeaf){
+ int iTermOff = 0;
+ int ii;
+
+ Fts5Buffer buf1 = {0,0,0};
+ Fts5Buffer buf2 = {0,0,0};
+
+ ii = pLeaf->szLeaf;
+ while( ii<pLeaf->nn && p->rc==SQLITE_OK ){
+ int res;
+ int iOff;
+ int nIncr;
+
+ ii += fts5GetVarint32(&pLeaf->p[ii], nIncr);
+ iTermOff += nIncr;
+ iOff = iTermOff;
+
+ if( iOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else if( iTermOff==nIncr ){
+ int nByte;
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
+ if( (iOff+nByte)>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5BufferSet(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
+ }
+ }else{
+ int nKeep, nByte;
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nKeep);
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
+ if( nKeep>buf1.n || (iOff+nByte)>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ buf1.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ res = fts5BufferCompare(&buf1, &buf2);
+ if( res<=0 ) p->rc = FTS5_CORRUPT;
+ }
+ }
+ fts5BufferSet(&p->rc, &buf2, buf1.n, buf1.p);
+ }
+
+ fts5BufferFree(&buf1);
+ fts5BufferFree(&buf2);
+}
+
+static void fts5IndexIntegrityCheckSegment(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5StructureSegment *pSeg /* Segment to check internal consistency */
+){
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pStmt = 0;
+ int rc2;
+ int iIdxPrevLeaf = pSeg->pgnoFirst-1;
+ int iDlidxPrevLeaf = pSeg->pgnoLast;
+
+ if( pSeg->pgnoFirst==0 ) return;
+
+ fts5IndexPrepareStmt(p, &pStmt, sqlite3_mprintf(
+ "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d "
+ "ORDER BY 1, 2",
+ pConfig->zDb, pConfig->zName, pSeg->iSegid
+ ));
+
+ /* Iterate through the b-tree hierarchy. */
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iRow; /* Rowid for this leaf */
+ Fts5Data *pLeaf; /* Data for this leaf */
+
+ const char *zIdxTerm = (const char*)sqlite3_column_blob(pStmt, 1);
+ int nIdxTerm = sqlite3_column_bytes(pStmt, 1);
+ int iIdxLeaf = sqlite3_column_int(pStmt, 2);
+ int bIdxDlidx = sqlite3_column_int(pStmt, 3);
+
+ /* If the leaf in question has already been trimmed from the segment,
+ ** ignore this b-tree entry. Otherwise, load it into memory. */
+ if( iIdxLeaf<pSeg->pgnoFirst ) continue;
+ iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, iIdxLeaf);
+ pLeaf = fts5LeafRead(p, iRow);
+ if( pLeaf==0 ) break;
+
+ /* Check that the leaf contains at least one term, and that it is equal
+ ** to or larger than the split-key in zIdxTerm. Also check that if there
+ ** is also a rowid pointer within the leaf page header, it points to a
+ ** location before the term. */
+ if( pLeaf->nn<=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ int iOff; /* Offset of first term on leaf */
+ int iRowidOff; /* Offset of first rowid on leaf */
+ int nTerm; /* Size of term on leaf in bytes */
+ int res; /* Comparison of term and split-key */
+
+ iOff = fts5LeafFirstTermOff(pLeaf);
+ iRowidOff = fts5LeafFirstRowidOff(pLeaf);
+ if( iRowidOff>=iOff || iOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
+ res = fts5Memcmp(&pLeaf->p[iOff], zIdxTerm, MIN(nTerm, nIdxTerm));
+ if( res==0 ) res = nTerm - nIdxTerm;
+ if( res<0 ) p->rc = FTS5_CORRUPT;
+ }
+
+ fts5IntegrityCheckPgidx(p, pLeaf);
+ }
+ fts5DataRelease(pLeaf);
+ if( p->rc ) break;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ fts5IndexIntegrityCheckEmpty(
+ p, pSeg, iIdxPrevLeaf+1, iDlidxPrevLeaf+1, iIdxLeaf-1
+ );
+ if( p->rc ) break;
+
+ /* If there is a doclist-index, check that it looks right. */
+ if( bIdxDlidx ){
+ Fts5DlidxIter *pDlidx = 0; /* For iterating through doclist index */
+ int iPrevLeaf = iIdxLeaf;
+ int iSegid = pSeg->iSegid;
+ int iPg = 0;
+ i64 iKey;
+
+ for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iIdxLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterNext(p, pDlidx)
+ ){
+
+ /* Check any rowid-less pages that occur before the current leaf. */
+ for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){
+ iKey = FTS5_SEGMENT_ROWID(iSegid, iPg);
+ pLeaf = fts5DataRead(p, iKey);
+ if( pLeaf ){
+ if( fts5LeafFirstRowidOff(pLeaf)!=0 ) p->rc = FTS5_CORRUPT;
+ fts5DataRelease(pLeaf);
+ }
+ }
+ iPrevLeaf = fts5DlidxIterPgno(pDlidx);
+
+ /* Check that the leaf page indicated by the iterator really does
+ ** contain the rowid suggested by the same. */
+ iKey = FTS5_SEGMENT_ROWID(iSegid, iPrevLeaf);
+ pLeaf = fts5DataRead(p, iKey);
+ if( pLeaf ){
+ i64 iRowid;
+ int iRowidOff = fts5LeafFirstRowidOff(pLeaf);
+ ASSERT_SZLEAF_OK(pLeaf);
+ if( iRowidOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5GetVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
+ if( iRowid!=fts5DlidxIterRowid(pDlidx) ) p->rc = FTS5_CORRUPT;
+ }
+ fts5DataRelease(pLeaf);
+ }
+ }
+
+ iDlidxPrevLeaf = iPg;
+ fts5DlidxIterFree(pDlidx);
+ fts5TestDlidxReverse(p, iSegid, iIdxLeaf);
+ }else{
+ iDlidxPrevLeaf = pSeg->pgnoLast;
+ /* TODO: Check there is no doclist index */
+ }
+
+ iIdxPrevLeaf = iIdxLeaf;
+ }
+
+ rc2 = sqlite3_finalize(pStmt);
+ if( p->rc==SQLITE_OK ) p->rc = rc2;
+
+ /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
+#if 0
+ if( p->rc==SQLITE_OK && iter.iLeaf!=pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }
+#endif
+}
+
+
+/*
+** Run internal checks to ensure that the FTS index (a) is internally
+** consistent and (b) contains entries for which the XOR of the checksums
+** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
+**
+** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
+** checksum does not match. Return SQLITE_OK if all checks pass without
+** error, or some other SQLite error code if another error (e.g. OOM)
+** occurs.
+*/
+static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum, int bUseCksum){
+ int eDetail = p->pConfig->eDetail;
+ u64 cksum2 = 0; /* Checksum based on contents of indexes */
+ Fts5Buffer poslist = {0,0,0}; /* Buffer used to hold a poslist */
+ Fts5Iter *pIter; /* Used to iterate through entire index */
+ Fts5Structure *pStruct; /* Index structure */
+ int iLvl, iSeg;
+
+#ifdef SQLITE_DEBUG
+ /* Used by extra internal tests only run if NDEBUG is not defined */
+ u64 cksum3 = 0; /* Checksum based on contents of indexes */
+ Fts5Buffer term = {0,0,0}; /* Buffer used to hold most recent term */
+#endif
+ const int flags = FTS5INDEX_QUERY_NOOUTPUT;
+
+ /* Load the FTS index structure */
+ pStruct = fts5StructureRead(p);
+ if( pStruct==0 ){
+ assert( p->rc!=SQLITE_OK );
+ return fts5IndexReturn(p);
+ }
+
+ /* Check that the internal nodes of each segment match the leaves */
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
+ fts5IndexIntegrityCheckSegment(p, pSeg);
+ }
+ }
+
+ /* The cksum argument passed to this function is a checksum calculated
+ ** based on all expected entries in the FTS index (including prefix index
+ ** entries). This block checks that a checksum calculated based on the
+ ** actual contents of FTS index is identical.
+ **
+ ** Two versions of the same checksum are calculated. The first (stack
+ ** variable cksum2) based on entries extracted from the full-text index
+ ** while doing a linear scan of each individual index in turn.
+ **
+ ** As each term visited by the linear scans, a separate query for the
+ ** same term is performed. cksum3 is calculated based on the entries
+ ** extracted by these queries.
+ */
+ for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, -1, 0, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter, 0, 0)
+ ){
+ int n; /* Size of term in bytes */
+ i64 iPos = 0; /* Position read from poslist */
+ int iOff = 0; /* Offset within poslist */
+ i64 iRowid = fts5MultiIterRowid(pIter);
+ char *z = (char*)fts5MultiIterTerm(pIter, &n);
+
+ /* If this is a new term, query for it. Update cksum3 with the results. */
+ fts5TestTerm(p, &term, z, n, cksum2, &cksum3);
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( 0==fts5MultiIterIsEmpty(p, pIter) ){
+ cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, 0, 0, -1, z, n);
+ }
+ }else{
+ poslist.n = 0;
+ fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst], 0, &poslist);
+ fts5BufferAppendBlob(&p->rc, &poslist, 4, (const u8*)"\0\0\0\0");
+ while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
+ int iCol = FTS5_POS2COLUMN(iPos);
+ int iTokOff = FTS5_POS2OFFSET(iPos);
+ cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);
+ }
+ }
+ }
+ fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);
+
+ fts5MultiIterFree(pIter);
+ if( p->rc==SQLITE_OK && bUseCksum && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;
+
+ fts5StructureRelease(pStruct);
+#ifdef SQLITE_DEBUG
+ fts5BufferFree(&term);
+#endif
+ fts5BufferFree(&poslist);
+ return fts5IndexReturn(p);
+}
+
+/*************************************************************************
+**************************************************************************
+** Below this point is the implementation of the fts5_decode() scalar
+** function only.
+*/
+
+#ifdef SQLITE_TEST
+/*
+** Decode a segment-data rowid from the %_data table. This function is
+** the opposite of macro FTS5_SEGMENT_ROWID().
+*/
+static void fts5DecodeRowid(
+ i64 iRowid, /* Rowid from %_data table */
+ int *piSegid, /* OUT: Segment id */
+ int *pbDlidx, /* OUT: Dlidx flag */
+ int *piHeight, /* OUT: Height */
+ int *piPgno /* OUT: Page number */
+){
+ *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
+ iRowid >>= FTS5_DATA_PAGE_B;
+
+ *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
+ iRowid >>= FTS5_DATA_HEIGHT_B;
+
+ *pbDlidx = (int)(iRowid & 0x0001);
+ iRowid >>= FTS5_DATA_DLI_B;
+
+ *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
+ int iSegid, iHeight, iPgno, bDlidx; /* Rowid compenents */
+ fts5DecodeRowid(iKey, &iSegid, &bDlidx, &iHeight, &iPgno);
+
+ if( iSegid==0 ){
+ if( iKey==FTS5_AVERAGES_ROWID ){
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} ");
+ }else{
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}");
+ }
+ }
+ else{
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%ssegid=%d h=%d pgno=%d}",
+ bDlidx ? "dlidx " : "", iSegid, iHeight, iPgno
+ );
+ }
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+static void fts5DebugStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ Fts5Structure *p
+){
+ int iLvl, iSeg; /* Iterate through levels, segments */
+
+ for(iLvl=0; iLvl<p->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
+ " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
+ );
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d}",
+ pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast
+ );
+ }
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
+ }
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** This is part of the fts5_decode() debugging aid.
+**
+** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
+** function appends a human-readable representation of the same object
+** to the buffer passed as the second argument.
+*/
+static void fts5DecodeStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int rc; /* Return code */
+ Fts5Structure *p = 0; /* Decoded structure object */
+
+ rc = fts5StructureDecode(pBlob, nBlob, 0, &p);
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return;
+ }
+
+ fts5DebugStructure(pRc, pBuf, p);
+ fts5StructureRelease(p);
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** This is part of the fts5_decode() debugging aid.
+**
+** Arguments pBlob/nBlob contain an "averages" record. This function
+** appends a human-readable representation of record to the buffer passed
+** as the second argument.
+*/
+static void fts5DecodeAverages(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int i = 0;
+ const char *zSpace = "";
+
+ while( i<nBlob ){
+ u64 iVal;
+ i += sqlite3Fts5GetVarint(&pBlob[i], &iVal);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal);
+ zSpace = " ";
+ }
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** Buffer (a/n) is assumed to contain a list of serialized varints. Read
+** each varint and append its string representation to buffer pBuf. Return
+** after either the input buffer is exhausted or a 0 value is read.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ int iOff = 0;
+ while( iOff<n ){
+ int iVal;
+ iOff += fts5GetVarint32(&a[iOff], iVal);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
+ }
+ return iOff;
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** The start of buffer (a/n) contains the start of a doclist. The doclist
+** may or may not finish within the buffer. This function appends a text
+** representation of the part of the doclist that is present to buffer
+** pBuf.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ i64 iDocid = 0;
+ int iOff = 0;
+
+ if( n>0 ){
+ iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
+ }
+ while( iOff<n ){
+ int nPos;
+ int bDel;
+ iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDel);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " nPos=%d%s", nPos, bDel?"*":"");
+ iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
+ if( iOff<n ){
+ i64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);
+ iDocid += iDelta;
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
+ }
+ }
+
+ return iOff;
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** This function is part of the fts5_decode() debugging function. It is
+** only ever used with detail=none tables.
+**
+** Buffer (pData/nData) contains a doclist in the format used by detail=none
+** tables. This function appends a human-readable version of that list to
+** buffer pBuf.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is a
+** no-op. If an OOM or other error occurs within this function, *pRc is
+** set to an SQLite error code before returning. The final state of buffer
+** pBuf is undefined in this case.
+*/
+static void fts5DecodeRowidList(
+ int *pRc, /* IN/OUT: Error code */
+ Fts5Buffer *pBuf, /* Buffer to append text to */
+ const u8 *pData, int nData /* Data to decode list-of-rowids from */
+){
+ int i = 0;
+ i64 iRowid = 0;
+
+ while( i<nData ){
+ const char *zApp = "";
+ u64 iVal;
+ i += sqlite3Fts5GetVarint(&pData[i], &iVal);
+ iRowid += iVal;
+
+ if( i<nData && pData[i]==0x00 ){
+ i++;
+ if( i<nData && pData[i]==0x00 ){
+ i++;
+ zApp = "+";
+ }else{
+ zApp = "*";
+ }
+ }
+
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
+ }
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** The implementation of user-defined scalar function fts5_decode().
+*/
+static void fts5DecodeFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ i64 iRowid; /* Rowid for record being decoded */
+ int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
+ const u8 *aBlob; int n; /* Record to decode */
+ u8 *a = 0;
+ Fts5Buffer s; /* Build up text to return here */
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_int64 nSpace = 0;
+ int eDetailNone = (sqlite3_user_data(pCtx)!=0);
+
+ assert( nArg==2 );
+ UNUSED_PARAM(nArg);
+ memset(&s, 0, sizeof(Fts5Buffer));
+ iRowid = sqlite3_value_int64(apVal[0]);
+
+ /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
+ ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
+ ** buffer overreads even if the record is corrupt. */
+ n = sqlite3_value_bytes(apVal[1]);
+ aBlob = sqlite3_value_blob(apVal[1]);
+ nSpace = n + FTS5_DATA_ZERO_PADDING;
+ a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
+ if( a==0 ) goto decode_out;
+ if( n>0 ) memcpy(a, aBlob, n);
+
+ fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno);
+
+ fts5DebugRowid(&rc, &s, iRowid);
+ if( bDlidx ){
+ Fts5Data dlidx;
+ Fts5DlidxLvl lvl;
+
+ dlidx.p = a;
+ dlidx.nn = n;
+
+ memset(&lvl, 0, sizeof(Fts5DlidxLvl));
+ lvl.pData = &dlidx;
+ lvl.iLeafPgno = iPgno;
+
+ for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
+ sqlite3Fts5BufferAppendPrintf(&rc, &s,
+ " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
+ );
+ }
+ }else if( iSegid==0 ){
+ if( iRowid==FTS5_AVERAGES_ROWID ){
+ fts5DecodeAverages(&rc, &s, a, n);
+ }else{
+ fts5DecodeStructure(&rc, &s, a, n);
+ }
+ }else if( eDetailNone ){
+ Fts5Buffer term; /* Current term read from page */
+ int szLeaf;
+ int iPgidxOff = szLeaf = fts5GetU16(&a[2]);
+ int iTermOff;
+ int nKeep = 0;
+ int iOff;
+
+ memset(&term, 0, sizeof(Fts5Buffer));
+
+ /* Decode any entries that occur before the first term. */
+ if( szLeaf<n ){
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff);
+ }else{
+ iTermOff = szLeaf;
+ }
+ fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4);
+
+ iOff = iTermOff;
+ while( iOff<szLeaf ){
+ int nAppend;
+
+ /* Read the term data for the next term*/
+ iOff += fts5GetVarint32(&a[iOff], nAppend);
+ term.n = nKeep;
+ fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]);
+ sqlite3Fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += nAppend;
+
+ /* Figure out where the doclist for this term ends */
+ if( iPgidxOff<n ){
+ int nIncr;
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr);
+ iTermOff += nIncr;
+ }else{
+ iTermOff = szLeaf;
+ }
+
+ fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff);
+ iOff = iTermOff;
+ if( iOff<szLeaf ){
+ iOff += fts5GetVarint32(&a[iOff], nKeep);
+ }
+ }
+
+ fts5BufferFree(&term);
+ }else{
+ Fts5Buffer term; /* Current term read from page */
+ int szLeaf; /* Offset of pgidx in a[] */
+ int iPgidxOff;
+ int iPgidxPrev = 0; /* Previous value read from pgidx */
+ int iTermOff = 0;
+ int iRowidOff = 0;
+ int iOff;
+ int nDoclist;
+
+ memset(&term, 0, sizeof(Fts5Buffer));
+
+ if( n<4 ){
+ sqlite3Fts5BufferSet(&rc, &s, 7, (const u8*)"corrupt");
+ goto decode_out;
+ }else{
+ iRowidOff = fts5GetU16(&a[0]);
+ iPgidxOff = szLeaf = fts5GetU16(&a[2]);
+ if( iPgidxOff<n ){
+ fts5GetVarint32(&a[iPgidxOff], iTermOff);
+ }else if( iPgidxOff>n ){
+ rc = FTS5_CORRUPT;
+ goto decode_out;
+ }
+ }
+
+ /* Decode the position list tail at the start of the page */
+ if( iRowidOff!=0 ){
+ iOff = iRowidOff;
+ }else if( iTermOff!=0 ){
+ iOff = iTermOff;
+ }else{
+ iOff = szLeaf;
+ }
+ if( iOff>n ){
+ rc = FTS5_CORRUPT;
+ goto decode_out;
+ }
+ fts5DecodePoslist(&rc, &s, &a[4], iOff-4);
+
+ /* Decode any more doclist data that appears on the page before the
+ ** first term. */
+ nDoclist = (iTermOff ? iTermOff : szLeaf) - iOff;
+ if( nDoclist+iOff>n ){
+ rc = FTS5_CORRUPT;
+ goto decode_out;
+ }
+ fts5DecodeDoclist(&rc, &s, &a[iOff], nDoclist);
+
+ while( iPgidxOff<n && rc==SQLITE_OK ){
+ int bFirst = (iPgidxOff==szLeaf); /* True for first term on page */
+ int nByte; /* Bytes of data */
+ int iEnd;
+
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nByte);
+ iPgidxPrev += nByte;
+ iOff = iPgidxPrev;
+
+ if( iPgidxOff<n ){
+ fts5GetVarint32(&a[iPgidxOff], nByte);
+ iEnd = iPgidxPrev + nByte;
+ }else{
+ iEnd = szLeaf;
+ }
+ if( iEnd>szLeaf ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+
+ if( bFirst==0 ){
+ iOff += fts5GetVarint32(&a[iOff], nByte);
+ if( nByte>term.n ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ term.n = nByte;
+ }
+ iOff += fts5GetVarint32(&a[iOff], nByte);
+ if( iOff+nByte>n ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
+ iOff += nByte;
+
+ sqlite3Fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], iEnd-iOff);
+ }
+
+ fts5BufferFree(&term);
+ }
+
+ decode_out:
+ sqlite3_free(a);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ fts5BufferFree(&s);
+}
+#endif /* SQLITE_TEST */
+
+#ifdef SQLITE_TEST
+/*
+** The implementation of user-defined scalar function fts5_rowid().
+*/
+static void fts5RowidFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ const char *zArg;
+ if( nArg==0 ){
+ sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
+ }else{
+ zArg = (const char*)sqlite3_value_text(apVal[0]);
+ if( 0==sqlite3_stricmp(zArg, "segment") ){
+ i64 iRowid;
+ int segid, pgno;
+ if( nArg!=3 ){
+ sqlite3_result_error(pCtx,
+ "should be: fts5_rowid('segment', segid, pgno))", -1
+ );
+ }else{
+ segid = sqlite3_value_int(apVal[1]);
+ pgno = sqlite3_value_int(apVal[2]);
+ iRowid = FTS5_SEGMENT_ROWID(segid, pgno);
+ sqlite3_result_int64(pCtx, iRowid);
+ }
+ }else{
+ sqlite3_result_error(pCtx,
+ "first arg to fts5_rowid() must be 'segment'" , -1
+ );
+ }
+ }
+}
+#endif /* SQLITE_TEST */
+
+/*
+** This is called as part of registering the FTS5 module with database
+** connection db. It registers several user-defined scalar functions useful
+** with FTS5.
+**
+** If successful, SQLITE_OK is returned. If an error occurs, some other
+** SQLite error code is returned instead.
+*/
+static int sqlite3Fts5IndexInit(sqlite3 *db){
+#ifdef SQLITE_TEST
+ int rc = sqlite3_create_function(
+ db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
+ );
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_decode_none", 2,
+ SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
+ );
+ }
+ return rc;
+#else
+ return SQLITE_OK;
+ UNUSED_PARAM(db);
+#endif
+}
+
+
+static int sqlite3Fts5IndexReset(Fts5Index *p){
+ assert( p->pStruct==0 || p->iStructVersion!=0 );
+ if( fts5IndexDataVersion(p)!=p->iStructVersion ){
+ fts5StructureInvalidate(p);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** 2014 Jun 09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** This variable is set to false when running tests for which the on disk
+** structures should not be corrupt. Otherwise, true. If it is false, extra
+** assert() conditions in the fts5 code are activated - conditions that are
+** only true if it is guaranteed that the fts5 database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API int sqlite3_fts5_may_be_corrupt = 1;
+#endif
+
+
+typedef struct Fts5Auxdata Fts5Auxdata;
+typedef struct Fts5Auxiliary Fts5Auxiliary;
+typedef struct Fts5Cursor Fts5Cursor;
+typedef struct Fts5FullTable Fts5FullTable;
+typedef struct Fts5Sorter Fts5Sorter;
+typedef struct Fts5TokenizerModule Fts5TokenizerModule;
+
+/*
+** NOTES ON TRANSACTIONS:
+**
+** SQLite invokes the following virtual table methods as transactions are
+** opened and closed by the user:
+**
+** xBegin(): Start of a new transaction.
+** xSync(): Initial part of two-phase commit.
+** xCommit(): Final part of two-phase commit.
+** xRollback(): Rollback the transaction.
+**
+** Anything that is required as part of a commit that may fail is performed
+** in the xSync() callback. Current versions of SQLite ignore any errors
+** returned by xCommit().
+**
+** And as sub-transactions are opened/closed:
+**
+** xSavepoint(int S): Open savepoint S.
+** xRelease(int S): Commit and close savepoint S.
+** xRollbackTo(int S): Rollback to start of savepoint S.
+**
+** During a write-transaction the fts5_index.c module may cache some data
+** in-memory. It is flushed to disk whenever xSync(), xRelease() or
+** xSavepoint() is called. And discarded whenever xRollback() or xRollbackTo()
+** is called.
+**
+** Additionally, if SQLITE_DEBUG is defined, an instance of the following
+** structure is used to record the current transaction state. This information
+** is not required, but it is used in the assert() statements executed by
+** function fts5CheckTransactionState() (see below).
+*/
+struct Fts5TransactionState {
+ int eState; /* 0==closed, 1==open, 2==synced */
+ int iSavepoint; /* Number of open savepoints (0 -> none) */
+};
+
+/*
+** A single object of this type is allocated when the FTS5 module is
+** registered with a database handle. It is used to store pointers to
+** all registered FTS5 extensions - tokenizers and auxiliary functions.
+*/
+struct Fts5Global {
+ fts5_api api; /* User visible part of object (see fts5.h) */
+ sqlite3 *db; /* Associated database connection */
+ i64 iNextId; /* Used to allocate unique cursor ids */
+ Fts5Auxiliary *pAux; /* First in list of all aux. functions */
+ Fts5TokenizerModule *pTok; /* First in list of all tokenizer modules */
+ Fts5TokenizerModule *pDfltTok; /* Default tokenizer module */
+ Fts5Cursor *pCsr; /* First in list of all open cursors */
+};
+
+/*
+** Each auxiliary function registered with the FTS5 module is represented
+** by an object of the following type. All such objects are stored as part
+** of the Fts5Global.pAux list.
+*/
+struct Fts5Auxiliary {
+ Fts5Global *pGlobal; /* Global context for this function */
+ char *zFunc; /* Function name (nul-terminated) */
+ void *pUserData; /* User-data pointer */
+ fts5_extension_function xFunc; /* Callback function */
+ void (*xDestroy)(void*); /* Destructor function */
+ Fts5Auxiliary *pNext; /* Next registered auxiliary function */
+};
+
+/*
+** Each tokenizer module registered with the FTS5 module is represented
+** by an object of the following type. All such objects are stored as part
+** of the Fts5Global.pTok list.
+*/
+struct Fts5TokenizerModule {
+ char *zName; /* Name of tokenizer */
+ void *pUserData; /* User pointer passed to xCreate() */
+ fts5_tokenizer x; /* Tokenizer functions */
+ void (*xDestroy)(void*); /* Destructor function */
+ Fts5TokenizerModule *pNext; /* Next registered tokenizer module */
+};
+
+struct Fts5FullTable {
+ Fts5Table p; /* Public class members from fts5Int.h */
+ Fts5Storage *pStorage; /* Document store */
+ Fts5Global *pGlobal; /* Global (connection wide) data */
+ Fts5Cursor *pSortCsr; /* Sort data from this cursor */
+#ifdef SQLITE_DEBUG
+ struct Fts5TransactionState ts;
+#endif
+};
+
+struct Fts5MatchPhrase {
+ Fts5Buffer *pPoslist; /* Pointer to current poslist */
+ int nTerm; /* Size of phrase in terms */
+};
+
+/*
+** pStmt:
+** SELECT rowid, <fts> FROM <fts> ORDER BY +rank;
+**
+** aIdx[]:
+** There is one entry in the aIdx[] array for each phrase in the query,
+** the value of which is the offset within aPoslist[] following the last
+** byte of the position list for the corresponding phrase.
+*/
+struct Fts5Sorter {
+ sqlite3_stmt *pStmt;
+ i64 iRowid; /* Current rowid */
+ const u8 *aPoslist; /* Position lists for current row */
+ int nIdx; /* Number of entries in aIdx[] */
+ int aIdx[1]; /* Offsets into aPoslist for current row */
+};
+
+
+/*
+** Virtual-table cursor object.
+**
+** iSpecial:
+** If this is a 'special' query (refer to function fts5SpecialMatch()),
+** then this variable contains the result of the query.
+**
+** iFirstRowid, iLastRowid:
+** These variables are only used for FTS5_PLAN_MATCH cursors. Assuming the
+** cursor iterates in ascending order of rowids, iFirstRowid is the lower
+** limit of rowids to return, and iLastRowid the upper. In other words, the
+** WHERE clause in the user's query might have been:
+**
+** <tbl> MATCH <expr> AND rowid BETWEEN $iFirstRowid AND $iLastRowid
+**
+** If the cursor iterates in descending order of rowid, iFirstRowid
+** is the upper limit (i.e. the "first" rowid visited) and iLastRowid
+** the lower.
+*/
+struct Fts5Cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ Fts5Cursor *pNext; /* Next cursor in Fts5Cursor.pCsr list */
+ int *aColumnSize; /* Values for xColumnSize() */
+ i64 iCsrId; /* Cursor id */
+
+ /* Zero from this point onwards on cursor reset */
+ int ePlan; /* FTS5_PLAN_XXX value */
+ int bDesc; /* True for "ORDER BY rowid DESC" queries */
+ i64 iFirstRowid; /* Return no rowids earlier than this */
+ i64 iLastRowid; /* Return no rowids later than this */
+ sqlite3_stmt *pStmt; /* Statement used to read %_content */
+ Fts5Expr *pExpr; /* Expression for MATCH queries */
+ Fts5Sorter *pSorter; /* Sorter for "ORDER BY rank" queries */
+ int csrflags; /* Mask of cursor flags (see below) */
+ i64 iSpecial; /* Result of special query */
+
+ /* "rank" function. Populated on demand from vtab.xColumn(). */
+ char *zRank; /* Custom rank function */
+ char *zRankArgs; /* Custom rank function args */
+ Fts5Auxiliary *pRank; /* Rank callback (or NULL) */
+ int nRankArg; /* Number of trailing arguments for rank() */
+ sqlite3_value **apRankArg; /* Array of trailing arguments */
+ sqlite3_stmt *pRankArgStmt; /* Origin of objects in apRankArg[] */
+
+ /* Auxiliary data storage */
+ Fts5Auxiliary *pAux; /* Currently executing extension function */
+ Fts5Auxdata *pAuxdata; /* First in linked list of saved aux-data */
+
+ /* Cache used by auxiliary functions xInst() and xInstCount() */
+ Fts5PoslistReader *aInstIter; /* One for each phrase */
+ int nInstAlloc; /* Size of aInst[] array (entries / 3) */
+ int nInstCount; /* Number of phrase instances */
+ int *aInst; /* 3 integers per phrase instance */
+};
+
+/*
+** Bits that make up the "idxNum" parameter passed indirectly by
+** xBestIndex() to xFilter().
+*/
+#define FTS5_BI_MATCH 0x0001 /* <tbl> MATCH ? */
+#define FTS5_BI_RANK 0x0002 /* rank MATCH ? */
+#define FTS5_BI_ROWID_EQ 0x0004 /* rowid == ? */
+#define FTS5_BI_ROWID_LE 0x0008 /* rowid <= ? */
+#define FTS5_BI_ROWID_GE 0x0010 /* rowid >= ? */
+
+#define FTS5_BI_ORDER_RANK 0x0020
+#define FTS5_BI_ORDER_ROWID 0x0040
+#define FTS5_BI_ORDER_DESC 0x0080
+
+/*
+** Values for Fts5Cursor.csrflags
+*/
+#define FTS5CSR_EOF 0x01
+#define FTS5CSR_REQUIRE_CONTENT 0x02
+#define FTS5CSR_REQUIRE_DOCSIZE 0x04
+#define FTS5CSR_REQUIRE_INST 0x08
+#define FTS5CSR_FREE_ZRANK 0x10
+#define FTS5CSR_REQUIRE_RESEEK 0x20
+#define FTS5CSR_REQUIRE_POSLIST 0x40
+
+#define BitFlagAllTest(x,y) (((x) & (y))==(y))
+#define BitFlagTest(x,y) (((x) & (y))!=0)
+
+
+/*
+** Macros to Set(), Clear() and Test() cursor flags.
+*/
+#define CsrFlagSet(pCsr, flag) ((pCsr)->csrflags |= (flag))
+#define CsrFlagClear(pCsr, flag) ((pCsr)->csrflags &= ~(flag))
+#define CsrFlagTest(pCsr, flag) ((pCsr)->csrflags & (flag))
+
+struct Fts5Auxdata {
+ Fts5Auxiliary *pAux; /* Extension to which this belongs */
+ void *pPtr; /* Pointer value */
+ void(*xDelete)(void*); /* Destructor */
+ Fts5Auxdata *pNext; /* Next object in linked list */
+};
+
+#ifdef SQLITE_DEBUG
+#define FTS5_BEGIN 1
+#define FTS5_SYNC 2
+#define FTS5_COMMIT 3
+#define FTS5_ROLLBACK 4
+#define FTS5_SAVEPOINT 5
+#define FTS5_RELEASE 6
+#define FTS5_ROLLBACKTO 7
+static void fts5CheckTransactionState(Fts5FullTable *p, int op, int iSavepoint){
+ switch( op ){
+ case FTS5_BEGIN:
+ assert( p->ts.eState==0 );
+ p->ts.eState = 1;
+ p->ts.iSavepoint = -1;
+ break;
+
+ case FTS5_SYNC:
+ assert( p->ts.eState==1 );
+ p->ts.eState = 2;
+ break;
+
+ case FTS5_COMMIT:
+ assert( p->ts.eState==2 );
+ p->ts.eState = 0;
+ break;
+
+ case FTS5_ROLLBACK:
+ assert( p->ts.eState==1 || p->ts.eState==2 || p->ts.eState==0 );
+ p->ts.eState = 0;
+ break;
+
+ case FTS5_SAVEPOINT:
+ assert( p->ts.eState==1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint>=p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint;
+ break;
+
+ case FTS5_RELEASE:
+ assert( p->ts.eState==1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint<=p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint-1;
+ break;
+
+ case FTS5_ROLLBACKTO:
+ assert( p->ts.eState==1 );
+ assert( iSavepoint>=-1 );
+ /* The following assert() can fail if another vtab strikes an error
+ ** within an xSavepoint() call then SQLite calls xRollbackTo() - without
+ ** having called xSavepoint() on this vtab. */
+ /* assert( iSavepoint<=p->ts.iSavepoint ); */
+ p->ts.iSavepoint = iSavepoint;
+ break;
+ }
+}
+#else
+# define fts5CheckTransactionState(x,y,z)
+#endif
+
+/*
+** Return true if pTab is a contentless table.
+*/
+static int fts5IsContentless(Fts5FullTable *pTab){
+ return pTab->p.pConfig->eContent==FTS5_CONTENT_NONE;
+}
+
+/*
+** Delete a virtual table handle allocated by fts5InitVtab().
+*/
+static void fts5FreeVtab(Fts5FullTable *pTab){
+ if( pTab ){
+ sqlite3Fts5IndexClose(pTab->p.pIndex);
+ sqlite3Fts5StorageClose(pTab->pStorage);
+ sqlite3Fts5ConfigFree(pTab->p.pConfig);
+ sqlite3_free(pTab);
+ }
+}
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts5DisconnectMethod(sqlite3_vtab *pVtab){
+ fts5FreeVtab((Fts5FullTable*)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts5DestroyMethod(sqlite3_vtab *pVtab){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ int rc = sqlite3Fts5DropAll(pTab->pConfig);
+ if( rc==SQLITE_OK ){
+ fts5FreeVtab((Fts5FullTable*)pVtab);
+ }
+ return rc;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts5")
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> "column name" and other module argument fields.
+*/
+static int fts5InitVtab(
+ int bCreate, /* True for xCreate, false for xConnect */
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Hash table containing tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pAux;
+ const char **azConfig = (const char**)argv;
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pConfig = 0; /* Results of parsing argc/argv */
+ Fts5FullTable *pTab = 0; /* New virtual table object */
+
+ /* Allocate the new vtab object and parse the configuration */
+ pTab = (Fts5FullTable*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5FullTable));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, argc, azConfig, &pConfig, pzErr);
+ assert( (rc==SQLITE_OK && *pzErr==0) || pConfig==0 );
+ }
+ if( rc==SQLITE_OK ){
+ pTab->p.pConfig = pConfig;
+ pTab->pGlobal = pGlobal;
+ }
+
+ /* Open the index sub-system */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexOpen(pConfig, bCreate, &pTab->p.pIndex, pzErr);
+ }
+
+ /* Open the storage sub-system */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageOpen(
+ pConfig, pTab->p.pIndex, bCreate, &pTab->pStorage, pzErr
+ );
+ }
+
+ /* Call sqlite3_declare_vtab() */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigDeclareVtab(pConfig);
+ }
+
+ /* Load the initial configuration */
+ if( rc==SQLITE_OK ){
+ assert( pConfig->pzErrmsg==0 );
+ pConfig->pzErrmsg = pzErr;
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ sqlite3Fts5IndexRollback(pTab->p.pIndex);
+ pConfig->pzErrmsg = 0;
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5FreeVtab(pTab);
+ pTab = 0;
+ }else if( bCreate ){
+ fts5CheckTransactionState(pTab, FTS5_BEGIN, 0);
+ }
+ *ppVTab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts5InitVtab().
+*/
+static int fts5ConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts5CreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** The different query plans.
+*/
+#define FTS5_PLAN_MATCH 1 /* (<tbl> MATCH ?) */
+#define FTS5_PLAN_SOURCE 2 /* A source cursor for SORTED_MATCH */
+#define FTS5_PLAN_SPECIAL 3 /* An internal query */
+#define FTS5_PLAN_SORTED_MATCH 4 /* (<tbl> MATCH ? ORDER BY rank) */
+#define FTS5_PLAN_SCAN 5 /* No usable constraint */
+#define FTS5_PLAN_ROWID 6 /* (rowid = ?) */
+
+/*
+** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support index-info flags. In that case this function is a no-op.
+*/
+static void fts5SetUniqueFlag(sqlite3_index_info *pIdxInfo){
+#if SQLITE_VERSION_NUMBER>=3008012
+#ifndef SQLITE_CORE
+ if( sqlite3_libversion_number()>=3008012 )
+#endif
+ {
+ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
+ }
+#endif
+}
+
+static int fts5UsePatternMatch(
+ Fts5Config *pConfig,
+ struct sqlite3_index_constraint *p
+){
+ assert( FTS5_PATTERN_GLOB==SQLITE_INDEX_CONSTRAINT_GLOB );
+ assert( FTS5_PATTERN_LIKE==SQLITE_INDEX_CONSTRAINT_LIKE );
+ if( pConfig->ePattern==FTS5_PATTERN_GLOB && p->op==FTS5_PATTERN_GLOB ){
+ return 1;
+ }
+ if( pConfig->ePattern==FTS5_PATTERN_LIKE
+ && (p->op==FTS5_PATTERN_LIKE || p->op==FTS5_PATTERN_GLOB)
+ ){
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Implementation of the xBestIndex method for FTS5 tables. Within the
+** WHERE constraint, it searches for the following:
+**
+** 1. A MATCH constraint against the table column.
+** 2. A MATCH constraint against the "rank" column.
+** 3. A MATCH constraint against some other column.
+** 4. An == constraint against the rowid column.
+** 5. A < or <= constraint against the rowid column.
+** 6. A > or >= constraint against the rowid column.
+**
+** Within the ORDER BY, the following are supported:
+**
+** 5. ORDER BY rank [ASC|DESC]
+** 6. ORDER BY rowid [ASC|DESC]
+**
+** Information for the xFilter call is passed via both the idxNum and
+** idxStr variables. Specifically, idxNum is a bitmask of the following
+** flags used to encode the ORDER BY clause:
+**
+** FTS5_BI_ORDER_RANK
+** FTS5_BI_ORDER_ROWID
+** FTS5_BI_ORDER_DESC
+**
+** idxStr is used to encode data from the WHERE clause. For each argument
+** passed to the xFilter method, the following is appended to idxStr:
+**
+** Match against table column: "m"
+** Match against rank column: "r"
+** Match against other column: "M<column-number>"
+** LIKE against other column: "L<column-number>"
+** GLOB against other column: "G<column-number>"
+** Equality constraint against the rowid: "="
+** A < or <= against the rowid: "<"
+** A > or >= against the rowid: ">"
+**
+** This function ensures that there is at most one "r" or "=". And that if
+** there exists an "=" then there is no "<" or ">".
+**
+** Costs are assigned as follows:
+**
+** a) If an unusable MATCH operator is present in the WHERE clause, the
+** cost is unconditionally set to 1e50 (a really big number).
+**
+** a) If a MATCH operator is present, the cost depends on the other
+** constraints also present. As follows:
+**
+** * No other constraints: cost=1000.0
+** * One rowid range constraint: cost=750.0
+** * Both rowid range constraints: cost=500.0
+** * An == rowid constraint: cost=100.0
+**
+** b) Otherwise, if there is no MATCH:
+**
+** * No other constraints: cost=1000000.0
+** * One rowid range constraint: cost=750000.0
+** * Both rowid range constraints: cost=250000.0
+** * An == rowid constraint: cost=10.0
+**
+** Costs are not modified by the ORDER BY clause.
+*/
+static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ Fts5Table *pTab = (Fts5Table*)pVTab;
+ Fts5Config *pConfig = pTab->pConfig;
+ const int nCol = pConfig->nCol;
+ int idxFlags = 0; /* Parameter passed through to xFilter() */
+ int i;
+
+ char *idxStr;
+ int iIdxStr = 0;
+ int iCons = 0;
+
+ int bSeenEq = 0;
+ int bSeenGt = 0;
+ int bSeenLt = 0;
+ int bSeenMatch = 0;
+ int bSeenRank = 0;
+
+
+ assert( SQLITE_INDEX_CONSTRAINT_EQ<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_GT<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_GE<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );
+
+ if( pConfig->bLock ){
+ pTab->base.zErrMsg = sqlite3_mprintf(
+ "recursively defined fts5 content table"
+ );
+ return SQLITE_ERROR;
+ }
+
+ idxStr = (char*)sqlite3_malloc(pInfo->nConstraint * 8 + 1);
+ if( idxStr==0 ) return SQLITE_NOMEM;
+ pInfo->idxStr = idxStr;
+ pInfo->needToFreeIdxStr = 1;
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ int iCol = p->iColumn;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_MATCH
+ || (p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol>=nCol)
+ ){
+ /* A MATCH operator or equivalent */
+ if( p->usable==0 || iCol<0 ){
+ /* As there exists an unusable MATCH constraint this is an
+ ** unusable plan. Set a prohibitively high cost. */
+ pInfo->estimatedCost = 1e50;
+ assert( iIdxStr < pInfo->nConstraint*6 + 1 );
+ idxStr[iIdxStr] = 0;
+ return SQLITE_OK;
+ }else{
+ if( iCol==nCol+1 ){
+ if( bSeenRank ) continue;
+ idxStr[iIdxStr++] = 'r';
+ bSeenRank = 1;
+ }else if( iCol>=0 ){
+ bSeenMatch = 1;
+ idxStr[iIdxStr++] = 'M';
+ sqlite3_snprintf(6, &idxStr[iIdxStr], "%d", iCol);
+ idxStr += strlen(&idxStr[iIdxStr]);
+ assert( idxStr[iIdxStr]=='\0' );
+ }
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ pInfo->aConstraintUsage[i].omit = 1;
+ }
+ }else if( p->usable ){
+ if( iCol>=0 && iCol<nCol && fts5UsePatternMatch(pConfig, p) ){
+ assert( p->op==FTS5_PATTERN_LIKE || p->op==FTS5_PATTERN_GLOB );
+ idxStr[iIdxStr++] = p->op==FTS5_PATTERN_LIKE ? 'L' : 'G';
+ sqlite3_snprintf(6, &idxStr[iIdxStr], "%d", iCol);
+ idxStr += strlen(&idxStr[iIdxStr]);
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ assert( idxStr[iIdxStr]=='\0' );
+ }else if( bSeenEq==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol<0 ){
+ idxStr[iIdxStr++] = '=';
+ bSeenEq = 1;
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ }
+ }
+ }
+
+ if( bSeenEq==0 ){
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ if( p->iColumn<0 && p->usable ){
+ int op = p->op;
+ if( op==SQLITE_INDEX_CONSTRAINT_LT || op==SQLITE_INDEX_CONSTRAINT_LE ){
+ if( bSeenLt ) continue;
+ idxStr[iIdxStr++] = '<';
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ bSeenLt = 1;
+ }else
+ if( op==SQLITE_INDEX_CONSTRAINT_GT || op==SQLITE_INDEX_CONSTRAINT_GE ){
+ if( bSeenGt ) continue;
+ idxStr[iIdxStr++] = '>';
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ bSeenGt = 1;
+ }
+ }
+ }
+ }
+ idxStr[iIdxStr] = '\0';
+
+ /* Set idxFlags flags for the ORDER BY clause */
+ if( pInfo->nOrderBy==1 ){
+ int iSort = pInfo->aOrderBy[0].iColumn;
+ if( iSort==(pConfig->nCol+1) && bSeenMatch ){
+ idxFlags |= FTS5_BI_ORDER_RANK;
+ }else if( iSort==-1 ){
+ idxFlags |= FTS5_BI_ORDER_ROWID;
+ }
+ if( BitFlagTest(idxFlags, FTS5_BI_ORDER_RANK|FTS5_BI_ORDER_ROWID) ){
+ pInfo->orderByConsumed = 1;
+ if( pInfo->aOrderBy[0].desc ){
+ idxFlags |= FTS5_BI_ORDER_DESC;
+ }
+ }
+ }
+
+ /* Calculate the estimated cost based on the flags set in idxFlags. */
+ if( bSeenEq ){
+ pInfo->estimatedCost = bSeenMatch ? 100.0 : 10.0;
+ if( bSeenMatch==0 ) fts5SetUniqueFlag(pInfo);
+ }else if( bSeenLt && bSeenGt ){
+ pInfo->estimatedCost = bSeenMatch ? 500.0 : 250000.0;
+ }else if( bSeenLt || bSeenGt ){
+ pInfo->estimatedCost = bSeenMatch ? 750.0 : 750000.0;
+ }else{
+ pInfo->estimatedCost = bSeenMatch ? 1000.0 : 1000000.0;
+ }
+
+ pInfo->idxNum = idxFlags;
+ return SQLITE_OK;
+}
+
+static int fts5NewTransaction(Fts5FullTable *pTab){
+ Fts5Cursor *pCsr;
+ for(pCsr=pTab->pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->base.pVtab==(sqlite3_vtab*)pTab ) return SQLITE_OK;
+ }
+ return sqlite3Fts5StorageReset(pTab->pStorage);
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts5OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVTab;
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Cursor *pCsr = 0; /* New cursor object */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+ int rc; /* Return code */
+
+ rc = fts5NewTransaction(pTab);
+ if( rc==SQLITE_OK ){
+ nByte = sizeof(Fts5Cursor) + pConfig->nCol * sizeof(int);
+ pCsr = (Fts5Cursor*)sqlite3_malloc64(nByte);
+ if( pCsr ){
+ Fts5Global *pGlobal = pTab->pGlobal;
+ memset(pCsr, 0, (size_t)nByte);
+ pCsr->aColumnSize = (int*)&pCsr[1];
+ pCsr->pNext = pGlobal->pCsr;
+ pGlobal->pCsr = pCsr;
+ pCsr->iCsrId = ++pGlobal->iNextId;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ *ppCsr = (sqlite3_vtab_cursor*)pCsr;
+ return rc;
+}
+
+static int fts5StmtType(Fts5Cursor *pCsr){
+ if( pCsr->ePlan==FTS5_PLAN_SCAN ){
+ return (pCsr->bDesc) ? FTS5_STMT_SCAN_DESC : FTS5_STMT_SCAN_ASC;
+ }
+ return FTS5_STMT_LOOKUP;
+}
+
+/*
+** This function is called after the cursor passed as the only argument
+** is moved to point at a different row. It clears all cached data
+** specific to the previous row stored by the cursor object.
+*/
+static void fts5CsrNewrow(Fts5Cursor *pCsr){
+ CsrFlagSet(pCsr,
+ FTS5CSR_REQUIRE_CONTENT
+ | FTS5CSR_REQUIRE_DOCSIZE
+ | FTS5CSR_REQUIRE_INST
+ | FTS5CSR_REQUIRE_POSLIST
+ );
+}
+
+static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ Fts5Auxdata *pData;
+ Fts5Auxdata *pNext;
+
+ sqlite3_free(pCsr->aInstIter);
+ sqlite3_free(pCsr->aInst);
+ if( pCsr->pStmt ){
+ int eStmt = fts5StmtType(pCsr);
+ sqlite3Fts5StorageStmtRelease(pTab->pStorage, eStmt, pCsr->pStmt);
+ }
+ if( pCsr->pSorter ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ sqlite3_finalize(pSorter->pStmt);
+ sqlite3_free(pSorter);
+ }
+
+ if( pCsr->ePlan!=FTS5_PLAN_SOURCE ){
+ sqlite3Fts5ExprFree(pCsr->pExpr);
+ }
+
+ for(pData=pCsr->pAuxdata; pData; pData=pNext){
+ pNext = pData->pNext;
+ if( pData->xDelete ) pData->xDelete(pData->pPtr);
+ sqlite3_free(pData);
+ }
+
+ sqlite3_finalize(pCsr->pRankArgStmt);
+ sqlite3_free(pCsr->apRankArg);
+
+ if( CsrFlagTest(pCsr, FTS5CSR_FREE_ZRANK) ){
+ sqlite3_free(pCsr->zRank);
+ sqlite3_free(pCsr->zRankArgs);
+ }
+
+ sqlite3Fts5IndexCloseReader(pTab->p.pIndex);
+ memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan - (u8*)pCsr));
+}
+
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts5CloseMethod(sqlite3_vtab_cursor *pCursor){
+ if( pCursor ){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ Fts5Cursor **pp;
+
+ fts5FreeCursorComponents(pCsr);
+ /* Remove the cursor from the Fts5Global.pCsr list */
+ for(pp=&pTab->pGlobal->pCsr; (*pp)!=pCsr; pp=&(*pp)->pNext);
+ *pp = pCsr->pNext;
+
+ sqlite3_free(pCsr);
+ }
+ return SQLITE_OK;
+}
+
+static int fts5SorterNext(Fts5Cursor *pCsr){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int rc;
+
+ rc = sqlite3_step(pSorter->pStmt);
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ CsrFlagSet(pCsr, FTS5CSR_EOF|FTS5CSR_REQUIRE_CONTENT);
+ }else if( rc==SQLITE_ROW ){
+ const u8 *a;
+ const u8 *aBlob;
+ int nBlob;
+ int i;
+ int iOff = 0;
+ rc = SQLITE_OK;
+
+ pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
+ nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
+ aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);
+
+ /* nBlob==0 in detail=none mode. */
+ if( nBlob>0 ){
+ for(i=0; i<(pSorter->nIdx-1); i++){
+ int iVal;
+ a += fts5GetVarint32(a, iVal);
+ iOff += iVal;
+ pSorter->aIdx[i] = iOff;
+ }
+ pSorter->aIdx[i] = &aBlob[nBlob] - a;
+ pSorter->aPoslist = a;
+ }
+
+ fts5CsrNewrow(pCsr);
+ }
+
+ return rc;
+}
+
+
+/*
+** Set the FTS5CSR_REQUIRE_RESEEK flag on all FTS5_PLAN_MATCH cursors
+** open on table pTab.
+*/
+static void fts5TripCursors(Fts5FullTable *pTab){
+ Fts5Cursor *pCsr;
+ for(pCsr=pTab->pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->ePlan==FTS5_PLAN_MATCH
+ && pCsr->base.pVtab==(sqlite3_vtab*)pTab
+ ){
+ CsrFlagSet(pCsr, FTS5CSR_REQUIRE_RESEEK);
+ }
+ }
+}
+
+/*
+** If the REQUIRE_RESEEK flag is set on the cursor passed as the first
+** argument, close and reopen all Fts5IndexIter iterators that the cursor
+** is using. Then attempt to move the cursor to a rowid equal to or laster
+** (in the cursors sort order - ASC or DESC) than the current rowid.
+**
+** If the new rowid is not equal to the old, set output parameter *pbSkip
+** to 1 before returning. Otherwise, leave it unchanged.
+**
+** Return SQLITE_OK if successful or if no reseek was required, or an
+** error code if an error occurred.
+*/
+static int fts5CursorReseek(Fts5Cursor *pCsr, int *pbSkip){
+ int rc = SQLITE_OK;
+ assert( *pbSkip==0 );
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ int bDesc = pCsr->bDesc;
+ i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);
+
+ rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->p.pIndex, iRowid, bDesc);
+ if( rc==SQLITE_OK && iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
+ *pbSkip = 1;
+ }
+
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
+ fts5CsrNewrow(pCsr);
+ if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ *pbSkip = 1;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Advance the cursor to the next row in the table that matches the
+** search criteria.
+**
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
+** even if we reach end-of-file. The fts5EofMethod() will be called
+** subsequently to determine whether or not an EOF was hit.
+*/
+static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc;
+
+ assert( (pCsr->ePlan<3)==
+ (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE)
+ );
+ assert( !CsrFlagTest(pCsr, FTS5CSR_EOF) );
+
+ if( pCsr->ePlan<3 ){
+ int bSkip = 0;
+ if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
+ rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
+ CsrFlagSet(pCsr, sqlite3Fts5ExprEof(pCsr->pExpr));
+ fts5CsrNewrow(pCsr);
+ }else{
+ switch( pCsr->ePlan ){
+ case FTS5_PLAN_SPECIAL: {
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ rc = SQLITE_OK;
+ break;
+ }
+
+ case FTS5_PLAN_SORTED_MATCH: {
+ rc = fts5SorterNext(pCsr);
+ break;
+ }
+
+ default: {
+ Fts5Config *pConfig = ((Fts5Table*)pCursor->pVtab)->pConfig;
+ pConfig->bLock++;
+ rc = sqlite3_step(pCsr->pStmt);
+ pConfig->bLock--;
+ if( rc!=SQLITE_ROW ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc!=SQLITE_OK ){
+ pCursor->pVtab->zErrMsg = sqlite3_mprintf(
+ "%s", sqlite3_errmsg(pConfig->db)
+ );
+ }
+ }else{
+ rc = SQLITE_OK;
+ }
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+static int fts5PrepareStatement(
+ sqlite3_stmt **ppStmt,
+ Fts5Config *pConfig,
+ const char *zFmt,
+ ...
+){
+ sqlite3_stmt *pRet = 0;
+ int rc;
+ char *zSql;
+ va_list ap;
+
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v3(pConfig->db, zSql, -1,
+ SQLITE_PREPARE_PERSISTENT, &pRet, 0);
+ if( rc!=SQLITE_OK ){
+ *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
+ }
+ sqlite3_free(zSql);
+ }
+
+ va_end(ap);
+ *ppStmt = pRet;
+ return rc;
+}
+
+static int fts5CursorFirstSorted(
+ Fts5FullTable *pTab,
+ Fts5Cursor *pCsr,
+ int bDesc
+){
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Sorter *pSorter;
+ int nPhrase;
+ sqlite3_int64 nByte;
+ int rc;
+ const char *zRank = pCsr->zRank;
+ const char *zRankArgs = pCsr->zRankArgs;
+
+ nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
+ pSorter = (Fts5Sorter*)sqlite3_malloc64(nByte);
+ if( pSorter==0 ) return SQLITE_NOMEM;
+ memset(pSorter, 0, (size_t)nByte);
+ pSorter->nIdx = nPhrase;
+
+ /* TODO: It would be better to have some system for reusing statement
+ ** handles here, rather than preparing a new one for each query. But that
+ ** is not possible as SQLite reference counts the virtual table objects.
+ ** And since the statement required here reads from this very virtual
+ ** table, saving it creates a circular reference.
+ **
+ ** If SQLite a built-in statement cache, this wouldn't be a problem. */
+ rc = fts5PrepareStatement(&pSorter->pStmt, pConfig,
+ "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(\"%w\"%s%s) %s",
+ pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
+ (zRankArgs ? ", " : ""),
+ (zRankArgs ? zRankArgs : ""),
+ bDesc ? "DESC" : "ASC"
+ );
+
+ pCsr->pSorter = pSorter;
+ if( rc==SQLITE_OK ){
+ assert( pTab->pSortCsr==0 );
+ pTab->pSortCsr = pCsr;
+ rc = fts5SorterNext(pCsr);
+ pTab->pSortCsr = 0;
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_finalize(pSorter->pStmt);
+ sqlite3_free(pSorter);
+ pCsr->pSorter = 0;
+ }
+
+ return rc;
+}
+
+static int fts5CursorFirst(Fts5FullTable *pTab, Fts5Cursor *pCsr, int bDesc){
+ int rc;
+ Fts5Expr *pExpr = pCsr->pExpr;
+ rc = sqlite3Fts5ExprFirst(pExpr, pTab->p.pIndex, pCsr->iFirstRowid, bDesc);
+ if( sqlite3Fts5ExprEof(pExpr) ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ }
+ fts5CsrNewrow(pCsr);
+ return rc;
+}
+
+/*
+** Process a "special" query. A special query is identified as one with a
+** MATCH expression that begins with a '*' character. The remainder of
+** the text passed to the MATCH operator are used as the special query
+** parameters.
+*/
+static int fts5SpecialMatch(
+ Fts5FullTable *pTab,
+ Fts5Cursor *pCsr,
+ const char *zQuery
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *z = zQuery; /* Special query text */
+ int n; /* Number of bytes in text at z */
+
+ while( z[0]==' ' ) z++;
+ for(n=0; z[n] && z[n]!=' '; n++);
+
+ assert( pTab->p.base.zErrMsg==0 );
+ pCsr->ePlan = FTS5_PLAN_SPECIAL;
+
+ if( n==5 && 0==sqlite3_strnicmp("reads", z, n) ){
+ pCsr->iSpecial = sqlite3Fts5IndexReads(pTab->p.pIndex);
+ }
+ else if( n==2 && 0==sqlite3_strnicmp("id", z, n) ){
+ pCsr->iSpecial = pCsr->iCsrId;
+ }
+ else{
+ /* An unrecognized directive. Return an error message. */
+ pTab->p.base.zErrMsg = sqlite3_mprintf("unknown special query: %.*s", n, z);
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+/*
+** Search for an auxiliary function named zName that can be used with table
+** pTab. If one is found, return a pointer to the corresponding Fts5Auxiliary
+** structure. Otherwise, if no such function exists, return NULL.
+*/
+static Fts5Auxiliary *fts5FindAuxiliary(Fts5FullTable *pTab, const char *zName){
+ Fts5Auxiliary *pAux;
+
+ for(pAux=pTab->pGlobal->pAux; pAux; pAux=pAux->pNext){
+ if( sqlite3_stricmp(zName, pAux->zFunc)==0 ) return pAux;
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+
+static int fts5FindRankFunction(Fts5Cursor *pCsr){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int rc = SQLITE_OK;
+ Fts5Auxiliary *pAux = 0;
+ const char *zRank = pCsr->zRank;
+ const char *zRankArgs = pCsr->zRankArgs;
+
+ if( zRankArgs ){
+ char *zSql = sqlite3Fts5Mprintf(&rc, "SELECT %s", zRankArgs);
+ if( zSql ){
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v3(pConfig->db, zSql, -1,
+ SQLITE_PREPARE_PERSISTENT, &pStmt, 0);
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pCsr->pRankArgStmt==0 );
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ sqlite3_int64 nByte;
+ pCsr->nRankArg = sqlite3_column_count(pStmt);
+ nByte = sizeof(sqlite3_value*)*pCsr->nRankArg;
+ pCsr->apRankArg = (sqlite3_value**)sqlite3Fts5MallocZero(&rc, nByte);
+ if( rc==SQLITE_OK ){
+ int i;
+ for(i=0; i<pCsr->nRankArg; i++){
+ pCsr->apRankArg[i] = sqlite3_column_value(pStmt, i);
+ }
+ }
+ pCsr->pRankArgStmt = pStmt;
+ }else{
+ rc = sqlite3_finalize(pStmt);
+ assert( rc!=SQLITE_OK );
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pAux = fts5FindAuxiliary(pTab, zRank);
+ if( pAux==0 ){
+ assert( pTab->p.base.zErrMsg==0 );
+ pTab->p.base.zErrMsg = sqlite3_mprintf("no such function: %s", zRank);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ pCsr->pRank = pAux;
+ return rc;
+}
+
+
+static int fts5CursorParseRank(
+ Fts5Config *pConfig,
+ Fts5Cursor *pCsr,
+ sqlite3_value *pRank
+){
+ int rc = SQLITE_OK;
+ if( pRank ){
+ const char *z = (const char*)sqlite3_value_text(pRank);
+ char *zRank = 0;
+ char *zRankArgs = 0;
+
+ if( z==0 ){
+ if( sqlite3_value_type(pRank)==SQLITE_NULL ) rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5ConfigParseRank(z, &zRank, &zRankArgs);
+ }
+ if( rc==SQLITE_OK ){
+ pCsr->zRank = zRank;
+ pCsr->zRankArgs = zRankArgs;
+ CsrFlagSet(pCsr, FTS5CSR_FREE_ZRANK);
+ }else if( rc==SQLITE_ERROR ){
+ pCsr->base.pVtab->zErrMsg = sqlite3_mprintf(
+ "parse error in rank function: %s", z
+ );
+ }
+ }else{
+ if( pConfig->zRank ){
+ pCsr->zRank = (char*)pConfig->zRank;
+ pCsr->zRankArgs = (char*)pConfig->zRankArgs;
+ }else{
+ pCsr->zRank = (char*)FTS5_DEFAULT_RANK;
+ pCsr->zRankArgs = 0;
+ }
+ }
+ return rc;
+}
+
+static i64 fts5GetRowidLimit(sqlite3_value *pVal, i64 iDefault){
+ if( pVal ){
+ int eType = sqlite3_value_numeric_type(pVal);
+ if( eType==SQLITE_INTEGER ){
+ return sqlite3_value_int64(pVal);
+ }
+ }
+ return iDefault;
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** There are three possible query strategies:
+**
+** 1. Full-text search using a MATCH operator.
+** 2. A by-rowid lookup.
+** 3. A full-table scan.
+*/
+static int fts5FilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc = SQLITE_OK; /* Error code */
+ int bDesc; /* True if ORDER BY [rank|rowid] DESC */
+ int bOrderByRank; /* True if ORDER BY rank */
+ sqlite3_value *pRank = 0; /* rank MATCH ? expression (or NULL) */
+ sqlite3_value *pRowidEq = 0; /* rowid = ? expression (or NULL) */
+ sqlite3_value *pRowidLe = 0; /* rowid <= ? expression (or NULL) */
+ sqlite3_value *pRowidGe = 0; /* rowid >= ? expression (or NULL) */
+ int iCol; /* Column on LHS of MATCH operator */
+ char **pzErrmsg = pConfig->pzErrmsg;
+ int i;
+ int iIdxStr = 0;
+ Fts5Expr *pExpr = 0;
+
+ if( pConfig->bLock ){
+ pTab->p.base.zErrMsg = sqlite3_mprintf(
+ "recursively defined fts5 content table"
+ );
+ return SQLITE_ERROR;
+ }
+
+ if( pCsr->ePlan ){
+ fts5FreeCursorComponents(pCsr);
+ memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
+ }
+
+ assert( pCsr->pStmt==0 );
+ assert( pCsr->pExpr==0 );
+ assert( pCsr->csrflags==0 );
+ assert( pCsr->pRank==0 );
+ assert( pCsr->zRank==0 );
+ assert( pCsr->zRankArgs==0 );
+ assert( pTab->pSortCsr==0 || nVal==0 );
+
+ assert( pzErrmsg==0 || pzErrmsg==&pTab->p.base.zErrMsg );
+ pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+
+ /* Decode the arguments passed through to this function. */
+ for(i=0; i<nVal; i++){
+ switch( idxStr[iIdxStr++] ){
+ case 'r':
+ pRank = apVal[i];
+ break;
+ case 'M': {
+ const char *zText = (const char*)sqlite3_value_text(apVal[i]);
+ if( zText==0 ) zText = "";
+ iCol = 0;
+ do{
+ iCol = iCol*10 + (idxStr[iIdxStr]-'0');
+ iIdxStr++;
+ }while( idxStr[iIdxStr]>='0' && idxStr[iIdxStr]<='9' );
+
+ if( zText[0]=='*' ){
+ /* The user has issued a query of the form "MATCH '*...'". This
+ ** indicates that the MATCH expression is not a full text query,
+ ** but a request for an internal parameter. */
+ rc = fts5SpecialMatch(pTab, pCsr, &zText[1]);
+ goto filter_out;
+ }else{
+ char **pzErr = &pTab->p.base.zErrMsg;
+ rc = sqlite3Fts5ExprNew(pConfig, 0, iCol, zText, &pExpr, pzErr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprAnd(&pCsr->pExpr, pExpr);
+ pExpr = 0;
+ }
+ if( rc!=SQLITE_OK ) goto filter_out;
+ }
+
+ break;
+ }
+ case 'L':
+ case 'G': {
+ int bGlob = (idxStr[iIdxStr-1]=='G');
+ const char *zText = (const char*)sqlite3_value_text(apVal[i]);
+ iCol = 0;
+ do{
+ iCol = iCol*10 + (idxStr[iIdxStr]-'0');
+ iIdxStr++;
+ }while( idxStr[iIdxStr]>='0' && idxStr[iIdxStr]<='9' );
+ if( zText ){
+ rc = sqlite3Fts5ExprPattern(pConfig, bGlob, iCol, zText, &pExpr);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprAnd(&pCsr->pExpr, pExpr);
+ pExpr = 0;
+ }
+ if( rc!=SQLITE_OK ) goto filter_out;
+ break;
+ }
+ case '=':
+ pRowidEq = apVal[i];
+ break;
+ case '<':
+ pRowidLe = apVal[i];
+ break;
+ default: assert( idxStr[iIdxStr-1]=='>' );
+ pRowidGe = apVal[i];
+ break;
+ }
+ }
+ bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
+ pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);
+
+ /* Set the cursor upper and lower rowid limits. Only some strategies
+ ** actually use them. This is ok, as the xBestIndex() method leaves the
+ ** sqlite3_index_constraint.omit flag clear for range constraints
+ ** on the rowid field. */
+ if( pRowidEq ){
+ pRowidLe = pRowidGe = pRowidEq;
+ }
+ if( bDesc ){
+ pCsr->iFirstRowid = fts5GetRowidLimit(pRowidLe, LARGEST_INT64);
+ pCsr->iLastRowid = fts5GetRowidLimit(pRowidGe, SMALLEST_INT64);
+ }else{
+ pCsr->iLastRowid = fts5GetRowidLimit(pRowidLe, LARGEST_INT64);
+ pCsr->iFirstRowid = fts5GetRowidLimit(pRowidGe, SMALLEST_INT64);
+ }
+
+ if( pTab->pSortCsr ){
+ /* If pSortCsr is non-NULL, then this call is being made as part of
+ ** processing for a "... MATCH <expr> ORDER BY rank" query (ePlan is
+ ** set to FTS5_PLAN_SORTED_MATCH). pSortCsr is the cursor that will
+ ** return results to the user for this query. The current cursor
+ ** (pCursor) is used to execute the query issued by function
+ ** fts5CursorFirstSorted() above. */
+ assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
+ assert( nVal==0 && bOrderByRank==0 && bDesc==0 );
+ assert( pCsr->iLastRowid==LARGEST_INT64 );
+ assert( pCsr->iFirstRowid==SMALLEST_INT64 );
+ if( pTab->pSortCsr->bDesc ){
+ pCsr->iLastRowid = pTab->pSortCsr->iFirstRowid;
+ pCsr->iFirstRowid = pTab->pSortCsr->iLastRowid;
+ }else{
+ pCsr->iLastRowid = pTab->pSortCsr->iLastRowid;
+ pCsr->iFirstRowid = pTab->pSortCsr->iFirstRowid;
+ }
+ pCsr->ePlan = FTS5_PLAN_SOURCE;
+ pCsr->pExpr = pTab->pSortCsr->pExpr;
+ rc = fts5CursorFirst(pTab, pCsr, bDesc);
+ }else if( pCsr->pExpr ){
+ rc = fts5CursorParseRank(pConfig, pCsr, pRank);
+ if( rc==SQLITE_OK ){
+ if( bOrderByRank ){
+ pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
+ rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
+ }else{
+ pCsr->ePlan = FTS5_PLAN_MATCH;
+ rc = fts5CursorFirst(pTab, pCsr, bDesc);
+ }
+ }
+ }else if( pConfig->zContent==0 ){
+ *pConfig->pzErrmsg = sqlite3_mprintf(
+ "%s: table does not support scanning", pConfig->zName
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ /* This is either a full-table scan (ePlan==FTS5_PLAN_SCAN) or a lookup
+ ** by rowid (ePlan==FTS5_PLAN_ROWID). */
+ pCsr->ePlan = (pRowidEq ? FTS5_PLAN_ROWID : FTS5_PLAN_SCAN);
+ rc = sqlite3Fts5StorageStmt(
+ pTab->pStorage, fts5StmtType(pCsr), &pCsr->pStmt, &pTab->p.base.zErrMsg
+ );
+ if( rc==SQLITE_OK ){
+ if( pRowidEq!=0 ){
+ assert( pCsr->ePlan==FTS5_PLAN_ROWID );
+ sqlite3_bind_value(pCsr->pStmt, 1, pRowidEq);
+ }else{
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iFirstRowid);
+ sqlite3_bind_int64(pCsr->pStmt, 2, pCsr->iLastRowid);
+ }
+ rc = fts5NextMethod(pCursor);
+ }
+ }
+
+ filter_out:
+ sqlite3Fts5ExprFree(pExpr);
+ pConfig->pzErrmsg = pzErrmsg;
+ return rc;
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts5EofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ return (CsrFlagTest(pCsr, FTS5CSR_EOF) ? 1 : 0);
+}
+
+/*
+** Return the rowid that the cursor currently points to.
+*/
+static i64 fts5CursorRowid(Fts5Cursor *pCsr){
+ assert( pCsr->ePlan==FTS5_PLAN_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SORTED_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SOURCE
+ );
+ if( pCsr->pSorter ){
+ return pCsr->pSorter->iRowid;
+ }else{
+ return sqlite3Fts5ExprRowid(pCsr->pExpr);
+ }
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts5
+** exposes %_content.rowid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fts5RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int ePlan = pCsr->ePlan;
+
+ assert( CsrFlagTest(pCsr, FTS5CSR_EOF)==0 );
+ switch( ePlan ){
+ case FTS5_PLAN_SPECIAL:
+ *pRowid = 0;
+ break;
+
+ case FTS5_PLAN_SOURCE:
+ case FTS5_PLAN_MATCH:
+ case FTS5_PLAN_SORTED_MATCH:
+ *pRowid = fts5CursorRowid(pCsr);
+ break;
+
+ default:
+ *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
+ break;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** If the cursor requires seeking (bSeekRequired flag is set), seek it.
+** Return SQLITE_OK if no error occurs, or an SQLite error code otherwise.
+**
+** If argument bErrormsg is true and an error occurs, an error message may
+** be left in sqlite3_vtab.zErrMsg.
+*/
+static int fts5SeekCursor(Fts5Cursor *pCsr, int bErrormsg){
+ int rc = SQLITE_OK;
+
+ /* If the cursor does not yet have a statement handle, obtain one now. */
+ if( pCsr->pStmt==0 ){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ int eStmt = fts5StmtType(pCsr);
+ rc = sqlite3Fts5StorageStmt(
+ pTab->pStorage, eStmt, &pCsr->pStmt, (bErrormsg?&pTab->p.base.zErrMsg:0)
+ );
+ assert( rc!=SQLITE_OK || pTab->p.base.zErrMsg==0 );
+ assert( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_CONTENT) );
+ }
+
+ if( rc==SQLITE_OK && CsrFlagTest(pCsr, FTS5CSR_REQUIRE_CONTENT) ){
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ assert( pCsr->pExpr );
+ sqlite3_reset(pCsr->pStmt);
+ sqlite3_bind_int64(pCsr->pStmt, 1, fts5CursorRowid(pCsr));
+ pTab->pConfig->bLock++;
+ rc = sqlite3_step(pCsr->pStmt);
+ pTab->pConfig->bLock--;
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_CONTENT);
+ }else{
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc==SQLITE_OK ){
+ rc = FTS5_CORRUPT;
+ }else if( pTab->pConfig->pzErrmsg ){
+ *pTab->pConfig->pzErrmsg = sqlite3_mprintf(
+ "%s", sqlite3_errmsg(pTab->pConfig->db)
+ );
+ }
+ }
+ }
+ return rc;
+}
+
+static void fts5SetVtabError(Fts5FullTable *p, const char *zFormat, ...){
+ va_list ap; /* ... printf arguments */
+ va_start(ap, zFormat);
+ assert( p->p.base.zErrMsg==0 );
+ p->p.base.zErrMsg = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** This function is called to handle an FTS INSERT command. In other words,
+** an INSERT statement of the form:
+**
+** INSERT INTO fts(fts) VALUES($pCmd)
+** INSERT INTO fts(fts, rank) VALUES($pCmd, $pVal)
+**
+** Argument pVal is the value assigned to column "fts" by the INSERT
+** statement. This function returns SQLITE_OK if successful, or an SQLite
+** error code if an error occurs.
+**
+** The commands implemented by this function are documented in the "Special
+** INSERT Directives" section of the documentation. It should be updated if
+** more commands are added to this function.
+*/
+static int fts5SpecialInsert(
+ Fts5FullTable *pTab, /* Fts5 table object */
+ const char *zCmd, /* Text inserted into table-name column */
+ sqlite3_value *pVal /* Value inserted into rank column */
+){
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int rc = SQLITE_OK;
+ int bError = 0;
+
+ if( 0==sqlite3_stricmp("delete-all", zCmd) ){
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ fts5SetVtabError(pTab,
+ "'delete-all' may only be used with a "
+ "contentless or external content fts5 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageDeleteAll(pTab->pStorage);
+ }
+ }else if( 0==sqlite3_stricmp("rebuild", zCmd) ){
+ if( pConfig->eContent==FTS5_CONTENT_NONE ){
+ fts5SetVtabError(pTab,
+ "'rebuild' may not be used with a contentless fts5 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageRebuild(pTab->pStorage);
+ }
+ }else if( 0==sqlite3_stricmp("optimize", zCmd) ){
+ rc = sqlite3Fts5StorageOptimize(pTab->pStorage);
+ }else if( 0==sqlite3_stricmp("merge", zCmd) ){
+ int nMerge = sqlite3_value_int(pVal);
+ rc = sqlite3Fts5StorageMerge(pTab->pStorage, nMerge);
+ }else if( 0==sqlite3_stricmp("integrity-check", zCmd) ){
+ int iArg = sqlite3_value_int(pVal);
+ rc = sqlite3Fts5StorageIntegrity(pTab->pStorage, iArg);
+#ifdef SQLITE_DEBUG
+ }else if( 0==sqlite3_stricmp("prefix-index", zCmd) ){
+ pConfig->bPrefixIndex = sqlite3_value_int(pVal);
+#endif
+ }else{
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigSetValue(pTab->p.pConfig, zCmd, pVal, &bError);
+ }
+ if( rc==SQLITE_OK ){
+ if( bError ){
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageConfigValue(pTab->pStorage, zCmd, pVal, 0);
+ }
+ }
+ }
+ return rc;
+}
+
+static int fts5SpecialDelete(
+ Fts5FullTable *pTab,
+ sqlite3_value **apVal
+){
+ int rc = SQLITE_OK;
+ int eType1 = sqlite3_value_type(apVal[1]);
+ if( eType1==SQLITE_INTEGER ){
+ sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, &apVal[2]);
+ }
+ return rc;
+}
+
+static void fts5StorageInsert(
+ int *pRc,
+ Fts5FullTable *pTab,
+ sqlite3_value **apVal,
+ i64 *piRowid
+){
+ int rc = *pRc;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, piRowid);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *piRowid);
+ }
+ *pRc = rc;
+}
+
+/*
+** This function is the implementation of the xUpdate callback used by
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
+** inserted, updated or deleted.
+**
+** A delete specifies a single argument - the rowid of the row to remove.
+**
+** Update and insert operations pass:
+**
+** 1. The "old" rowid, or NULL.
+** 2. The "new" rowid.
+** 3. Values for each of the nCol matchable columns.
+** 4. Values for the two hidden columns (<tablename> and "rank").
+*/
+static int fts5UpdateMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int eType0; /* value_type() of apVal[0] */
+ int rc = SQLITE_OK; /* Return code */
+
+ /* A transaction must be open when this is called. */
+ assert( pTab->ts.eState==1 );
+
+ assert( pVtab->zErrMsg==0 );
+ assert( nArg==1 || nArg==(2+pConfig->nCol+2) );
+ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER
+ || sqlite3_value_type(apVal[0])==SQLITE_NULL
+ );
+ assert( pTab->p.pConfig->pzErrmsg==0 );
+ pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+
+ /* Put any active cursors into REQUIRE_SEEK state. */
+ fts5TripCursors(pTab);
+
+ eType0 = sqlite3_value_type(apVal[0]);
+ if( eType0==SQLITE_NULL
+ && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL
+ ){
+ /* A "special" INSERT op. These are handled separately. */
+ const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL
+ && 0==sqlite3_stricmp("delete", z)
+ ){
+ rc = fts5SpecialDelete(pTab, apVal);
+ }else{
+ rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
+ }
+ }else{
+ /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
+ ** any conflict on the rowid value must be detected before any
+ ** modifications are made to the database file. There are 4 cases:
+ **
+ ** 1) DELETE
+ ** 2) UPDATE (rowid not modified)
+ ** 3) UPDATE (rowid modified)
+ ** 4) INSERT
+ **
+ ** Cases 3 and 4 may violate the rowid constraint.
+ */
+ int eConflict = SQLITE_ABORT;
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ eConflict = sqlite3_vtab_on_conflict(pConfig->db);
+ }
+
+ assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
+ assert( nArg!=1 || eType0==SQLITE_INTEGER );
+
+ /* Filter out attempts to run UPDATE or DELETE on contentless tables.
+ ** This is not suported. */
+ if( eType0==SQLITE_INTEGER && fts5IsContentless(pTab) ){
+ pTab->p.base.zErrMsg = sqlite3_mprintf(
+ "cannot %s contentless fts5 table: %s",
+ (nArg>1 ? "UPDATE" : "DELETE from"), pConfig->zName
+ );
+ rc = SQLITE_ERROR;
+ }
+
+ /* DELETE */
+ else if( nArg==1 ){
+ i64 iDel = sqlite3_value_int64(apVal[0]); /* Rowid to delete */
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, 0);
+ }
+
+ /* INSERT or UPDATE */
+ else{
+ int eType1 = sqlite3_value_numeric_type(apVal[1]);
+
+ if( eType1!=SQLITE_INTEGER && eType1!=SQLITE_NULL ){
+ rc = SQLITE_MISMATCH;
+ }
+
+ else if( eType0!=SQLITE_INTEGER ){
+ /* If this is a REPLACE, first remove the current entry (if any) */
+ if( eConflict==SQLITE_REPLACE && eType1==SQLITE_INTEGER ){
+ i64 iNew = sqlite3_value_int64(apVal[1]); /* Rowid to delete */
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
+ }
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }
+
+ /* UPDATE */
+ else{
+ i64 iOld = sqlite3_value_int64(apVal[0]); /* Old rowid */
+ i64 iNew = sqlite3_value_int64(apVal[1]); /* New rowid */
+ if( eType1==SQLITE_INTEGER && iOld!=iNew ){
+ if( eConflict==SQLITE_REPLACE ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
+ }
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }else{
+ rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal,*pRowid);
+ }
+ }
+ }else{
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }
+ }
+ }
+ }
+
+ pTab->p.pConfig->pzErrmsg = 0;
+ return rc;
+}
+
+/*
+** Implementation of xSync() method.
+*/
+static int fts5SyncMethod(sqlite3_vtab *pVtab){
+ int rc;
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
+ pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+ fts5TripCursors(pTab);
+ rc = sqlite3Fts5StorageSync(pTab->pStorage);
+ pTab->p.pConfig->pzErrmsg = 0;
+ return rc;
+}
+
+/*
+** Implementation of xBegin() method.
+*/
+static int fts5BeginMethod(sqlite3_vtab *pVtab){
+ fts5CheckTransactionState((Fts5FullTable*)pVtab, FTS5_BEGIN, 0);
+ fts5NewTransaction((Fts5FullTable*)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xCommit() method. This is a no-op. The contents of
+** the pending-terms hash-table have already been flushed into the database
+** by fts5SyncMethod().
+*/
+static int fts5CommitMethod(sqlite3_vtab *pVtab){
+ UNUSED_PARAM(pVtab); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState((Fts5FullTable*)pVtab, FTS5_COMMIT, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xRollback(). Discard the contents of the pending-terms
+** hash-table. Any changes made to the database are reverted by SQLite.
+*/
+static int fts5RollbackMethod(sqlite3_vtab *pVtab){
+ int rc;
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
+ rc = sqlite3Fts5StorageRollback(pTab->pStorage);
+ return rc;
+}
+
+static int fts5CsrPoslist(Fts5Cursor*, int, const u8**, int*);
+
+static void *fts5ApiUserData(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return pCsr->pAux->pUserData;
+}
+
+static int fts5ApiColumnCount(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return ((Fts5Table*)(pCsr->base.pVtab))->pConfig->nCol;
+}
+
+static int fts5ApiColumnTotalSize(
+ Fts5Context *pCtx,
+ int iCol,
+ sqlite3_int64 *pnToken
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ return sqlite3Fts5StorageSize(pTab->pStorage, iCol, pnToken);
+}
+
+static int fts5ApiRowCount(Fts5Context *pCtx, i64 *pnRow){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ return sqlite3Fts5StorageRowCount(pTab->pStorage, pnRow);
+}
+
+static int fts5ApiTokenize(
+ Fts5Context *pCtx,
+ const char *pText, int nText,
+ void *pUserData,
+ int (*xToken)(void*, int, const char*, int, int, int)
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ return sqlite3Fts5Tokenize(
+ pTab->pConfig, FTS5_TOKENIZE_AUX, pText, nText, pUserData, xToken
+ );
+}
+
+static int fts5ApiPhraseCount(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+}
+
+static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
+}
+
+static int fts5ApiColumnText(
+ Fts5Context *pCtx,
+ int iCol,
+ const char **pz,
+ int *pn
+){
+ int rc = SQLITE_OK;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ if( fts5IsContentless((Fts5FullTable*)(pCsr->base.pVtab))
+ || pCsr->ePlan==FTS5_PLAN_SPECIAL
+ ){
+ *pz = 0;
+ *pn = 0;
+ }else{
+ rc = fts5SeekCursor(pCsr, 0);
+ if( rc==SQLITE_OK ){
+ *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
+ *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
+ }
+ }
+ return rc;
+}
+
+static int fts5CsrPoslist(
+ Fts5Cursor *pCsr,
+ int iPhrase,
+ const u8 **pa,
+ int *pn
+){
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+ int rc = SQLITE_OK;
+ int bLive = (pCsr->pSorter==0);
+
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_POSLIST) ){
+
+ if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5PoslistPopulator *aPopulator;
+ int i;
+ aPopulator = sqlite3Fts5ExprClearPoslists(pCsr->pExpr, bLive);
+ if( aPopulator==0 ) rc = SQLITE_NOMEM;
+ for(i=0; i<pConfig->nCol && rc==SQLITE_OK; i++){
+ int n; const char *z;
+ rc = fts5ApiColumnText((Fts5Context*)pCsr, i, &z, &n);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprPopulatePoslists(
+ pConfig, pCsr->pExpr, aPopulator, i, z, n
+ );
+ }
+ }
+ sqlite3_free(aPopulator);
+
+ if( pCsr->pSorter ){
+ sqlite3Fts5ExprCheckPoslists(pCsr->pExpr, pCsr->pSorter->iRowid);
+ }
+ }
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_POSLIST);
+ }
+
+ if( pCsr->pSorter && pConfig->eDetail==FTS5_DETAIL_FULL ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
+ *pn = pSorter->aIdx[iPhrase] - i1;
+ *pa = &pSorter->aPoslist[i1];
+ }else{
+ *pn = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
+ }
+
+ return rc;
+}
+
+/*
+** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
+** correctly for the current view. Return SQLITE_OK if successful, or an
+** SQLite error code otherwise.
+*/
+static int fts5CacheInstArray(Fts5Cursor *pCsr){
+ int rc = SQLITE_OK;
+ Fts5PoslistReader *aIter; /* One iterator for each phrase */
+ int nIter; /* Number of iterators/phrases */
+ int nCol = ((Fts5Table*)pCsr->base.pVtab)->pConfig->nCol;
+
+ nIter = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ if( pCsr->aInstIter==0 ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nIter;
+ pCsr->aInstIter = (Fts5PoslistReader*)sqlite3Fts5MallocZero(&rc, nByte);
+ }
+ aIter = pCsr->aInstIter;
+
+ if( aIter ){
+ int nInst = 0; /* Number instances seen so far */
+ int i;
+
+ /* Initialize all iterators */
+ for(i=0; i<nIter && rc==SQLITE_OK; i++){
+ const u8 *a;
+ int n;
+ rc = fts5CsrPoslist(pCsr, i, &a, &n);
+ if( rc==SQLITE_OK ){
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ while( 1 ){
+ int *aInst;
+ int iBest = -1;
+ for(i=0; i<nIter; i++){
+ if( (aIter[i].bEof==0)
+ && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos)
+ ){
+ iBest = i;
+ }
+ }
+ if( iBest<0 ) break;
+
+ nInst++;
+ if( nInst>=pCsr->nInstAlloc ){
+ int nNewSize = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
+ aInst = (int*)sqlite3_realloc64(
+ pCsr->aInst, nNewSize*sizeof(int)*3
+ );
+ if( aInst ){
+ pCsr->aInst = aInst;
+ pCsr->nInstAlloc = nNewSize;
+ }else{
+ nInst--;
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ }
+
+ aInst = &pCsr->aInst[3 * (nInst-1)];
+ aInst[0] = iBest;
+ aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
+ aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
+ if( aInst[1]<0 || aInst[1]>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ sqlite3Fts5PoslistReaderNext(&aIter[iBest]);
+ }
+ }
+
+ pCsr->nInstCount = nInst;
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
+ }
+ return rc;
+}
+
+static int fts5ApiInstCount(Fts5Context *pCtx, int *pnInst){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int rc = SQLITE_OK;
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0
+ || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) ){
+ *pnInst = pCsr->nInstCount;
+ }
+ return rc;
+}
+
+static int fts5ApiInst(
+ Fts5Context *pCtx,
+ int iIdx,
+ int *piPhrase,
+ int *piCol,
+ int *piOff
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int rc = SQLITE_OK;
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0
+ || SQLITE_OK==(rc = fts5CacheInstArray(pCsr))
+ ){
+ if( iIdx<0 || iIdx>=pCsr->nInstCount ){
+ rc = SQLITE_RANGE;
+#if 0
+ }else if( fts5IsOffsetless((Fts5Table*)pCsr->base.pVtab) ){
+ *piPhrase = pCsr->aInst[iIdx*3];
+ *piCol = pCsr->aInst[iIdx*3 + 2];
+ *piOff = -1;
+#endif
+ }else{
+ *piPhrase = pCsr->aInst[iIdx*3];
+ *piCol = pCsr->aInst[iIdx*3 + 1];
+ *piOff = pCsr->aInst[iIdx*3 + 2];
+ }
+ }
+ return rc;
+}
+
+static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
+ return fts5CursorRowid((Fts5Cursor*)pCtx);
+}
+
+static int fts5ColumnSizeCb(
+ void *pContext, /* Pointer to int */
+ int tflags,
+ const char *pUnused, /* Buffer containing token */
+ int nUnused, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int *pCnt = (int*)pContext;
+ UNUSED_PARAM2(pUnused, nUnused);
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
+ (*pCnt)++;
+ }
+ return SQLITE_OK;
+}
+
+static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int rc = SQLITE_OK;
+
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_DOCSIZE) ){
+ if( pConfig->bColumnsize ){
+ i64 iRowid = fts5CursorRowid(pCsr);
+ rc = sqlite3Fts5StorageDocsize(pTab->pStorage, iRowid, pCsr->aColumnSize);
+ }else if( pConfig->zContent==0 ){
+ int i;
+ for(i=0; i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i]==0 ){
+ pCsr->aColumnSize[i] = -1;
+ }
+ }
+ }else{
+ int i;
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i]==0 ){
+ const char *z; int n;
+ void *p = (void*)(&pCsr->aColumnSize[i]);
+ pCsr->aColumnSize[i] = 0;
+ rc = fts5ApiColumnText(pCtx, i, &z, &n);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5Tokenize(
+ pConfig, FTS5_TOKENIZE_AUX, z, n, p, fts5ColumnSizeCb
+ );
+ }
+ }
+ }
+ }
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_DOCSIZE);
+ }
+ if( iCol<0 ){
+ int i;
+ *pnToken = 0;
+ for(i=0; i<pConfig->nCol; i++){
+ *pnToken += pCsr->aColumnSize[i];
+ }
+ }else if( iCol<pConfig->nCol ){
+ *pnToken = pCsr->aColumnSize[iCol];
+ }else{
+ *pnToken = 0;
+ rc = SQLITE_RANGE;
+ }
+ return rc;
+}
+
+/*
+** Implementation of the xSetAuxdata() method.
+*/
+static int fts5ApiSetAuxdata(
+ Fts5Context *pCtx, /* Fts5 context */
+ void *pPtr, /* Pointer to save as auxdata */
+ void(*xDelete)(void*) /* Destructor for pPtr (or NULL) */
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Auxdata *pData;
+
+ /* Search through the cursors list of Fts5Auxdata objects for one that
+ ** corresponds to the currently executing auxiliary function. */
+ for(pData=pCsr->pAuxdata; pData; pData=pData->pNext){
+ if( pData->pAux==pCsr->pAux ) break;
+ }
+
+ if( pData ){
+ if( pData->xDelete ){
+ pData->xDelete(pData->pPtr);
+ }
+ }else{
+ int rc = SQLITE_OK;
+ pData = (Fts5Auxdata*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Auxdata));
+ if( pData==0 ){
+ if( xDelete ) xDelete(pPtr);
+ return rc;
+ }
+ pData->pAux = pCsr->pAux;
+ pData->pNext = pCsr->pAuxdata;
+ pCsr->pAuxdata = pData;
+ }
+
+ pData->xDelete = xDelete;
+ pData->pPtr = pPtr;
+ return SQLITE_OK;
+}
+
+static void *fts5ApiGetAuxdata(Fts5Context *pCtx, int bClear){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Auxdata *pData;
+ void *pRet = 0;
+
+ for(pData=pCsr->pAuxdata; pData; pData=pData->pNext){
+ if( pData->pAux==pCsr->pAux ) break;
+ }
+
+ if( pData ){
+ pRet = pData->pPtr;
+ if( bClear ){
+ pData->pPtr = 0;
+ pData->xDelete = 0;
+ }
+ }
+
+ return pRet;
+}
+
+static void fts5ApiPhraseNext(
+ Fts5Context *pUnused,
+ Fts5PhraseIter *pIter,
+ int *piCol, int *piOff
+){
+ UNUSED_PARAM(pUnused);
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ *piOff = -1;
+ }else{
+ int iVal;
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ if( iVal==1 ){
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ *piCol = iVal;
+ *piOff = 0;
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ }
+ *piOff += (iVal-2);
+ }
+}
+
+static int fts5ApiPhraseFirst(
+ Fts5Context *pCtx,
+ int iPhrase,
+ Fts5PhraseIter *pIter,
+ int *piCol, int *piOff
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int n;
+ int rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
+ if( rc==SQLITE_OK ){
+ assert( pIter->a || n==0 );
+ pIter->b = (pIter->a ? &pIter->a[n] : 0);
+ *piCol = 0;
+ *piOff = 0;
+ fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
+ }
+ return rc;
+}
+
+static void fts5ApiPhraseNextColumn(
+ Fts5Context *pCtx,
+ Fts5PhraseIter *pIter,
+ int *piCol
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ }else{
+ int iIncr;
+ pIter->a += fts5GetVarint32(&pIter->a[0], iIncr);
+ *piCol += (iIncr-2);
+ }
+ }else{
+ while( 1 ){
+ int dummy;
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ return;
+ }
+ if( pIter->a[0]==0x01 ) break;
+ pIter->a += fts5GetVarint32(pIter->a, dummy);
+ }
+ pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
+ }
+}
+
+static int fts5ApiPhraseFirstColumn(
+ Fts5Context *pCtx,
+ int iPhrase,
+ Fts5PhraseIter *pIter,
+ int *piCol
+){
+ int rc = SQLITE_OK;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int n;
+ if( pSorter ){
+ int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
+ n = pSorter->aIdx[iPhrase] - i1;
+ pIter->a = &pSorter->aPoslist[i1];
+ }else{
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, iPhrase, &pIter->a, &n);
+ }
+ if( rc==SQLITE_OK ){
+ assert( pIter->a || n==0 );
+ pIter->b = (pIter->a ? &pIter->a[n] : 0);
+ *piCol = 0;
+ fts5ApiPhraseNextColumn(pCtx, pIter, piCol);
+ }
+ }else{
+ int n;
+ rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
+ if( rc==SQLITE_OK ){
+ assert( pIter->a || n==0 );
+ pIter->b = (pIter->a ? &pIter->a[n] : 0);
+ if( n<=0 ){
+ *piCol = -1;
+ }else if( pIter->a[0]==0x01 ){
+ pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
+ }else{
+ *piCol = 0;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+static int fts5ApiQueryPhrase(Fts5Context*, int, void*,
+ int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
+);
+
+static const Fts5ExtensionApi sFts5Api = {
+ 2, /* iVersion */
+ fts5ApiUserData,
+ fts5ApiColumnCount,
+ fts5ApiRowCount,
+ fts5ApiColumnTotalSize,
+ fts5ApiTokenize,
+ fts5ApiPhraseCount,
+ fts5ApiPhraseSize,
+ fts5ApiInstCount,
+ fts5ApiInst,
+ fts5ApiRowid,
+ fts5ApiColumnText,
+ fts5ApiColumnSize,
+ fts5ApiQueryPhrase,
+ fts5ApiSetAuxdata,
+ fts5ApiGetAuxdata,
+ fts5ApiPhraseFirst,
+ fts5ApiPhraseNext,
+ fts5ApiPhraseFirstColumn,
+ fts5ApiPhraseNextColumn,
+};
+
+/*
+** Implementation of API function xQueryPhrase().
+*/
+static int fts5ApiQueryPhrase(
+ Fts5Context *pCtx,
+ int iPhrase,
+ void *pUserData,
+ int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ int rc;
+ Fts5Cursor *pNew = 0;
+
+ rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
+ if( rc==SQLITE_OK ){
+ pNew->ePlan = FTS5_PLAN_MATCH;
+ pNew->iFirstRowid = SMALLEST_INT64;
+ pNew->iLastRowid = LARGEST_INT64;
+ pNew->base.pVtab = (sqlite3_vtab*)pTab;
+ rc = sqlite3Fts5ExprClonePhrase(pCsr->pExpr, iPhrase, &pNew->pExpr);
+ }
+
+ if( rc==SQLITE_OK ){
+ for(rc = fts5CursorFirst(pTab, pNew, 0);
+ rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
+ rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
+ ){
+ rc = xCallback(&sFts5Api, (Fts5Context*)pNew, pUserData);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ break;
+ }
+ }
+ }
+
+ fts5CloseMethod((sqlite3_vtab_cursor*)pNew);
+ return rc;
+}
+
+static void fts5ApiInvoke(
+ Fts5Auxiliary *pAux,
+ Fts5Cursor *pCsr,
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( pCsr->pAux==0 );
+ pCsr->pAux = pAux;
+ pAux->xFunc(&sFts5Api, (Fts5Context*)pCsr, context, argc, argv);
+ pCsr->pAux = 0;
+}
+
+static Fts5Cursor *fts5CursorFromCsrid(Fts5Global *pGlobal, i64 iCsrId){
+ Fts5Cursor *pCsr;
+ for(pCsr=pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->iCsrId==iCsrId ) break;
+ }
+ return pCsr;
+}
+
+static void fts5ApiCallback(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+
+ Fts5Auxiliary *pAux;
+ Fts5Cursor *pCsr;
+ i64 iCsrId;
+
+ assert( argc>=1 );
+ pAux = (Fts5Auxiliary*)sqlite3_user_data(context);
+ iCsrId = sqlite3_value_int64(argv[0]);
+
+ pCsr = fts5CursorFromCsrid(pAux->pGlobal, iCsrId);
+ if( pCsr==0 || pCsr->ePlan==0 ){
+ char *zErr = sqlite3_mprintf("no such cursor: %lld", iCsrId);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ fts5ApiInvoke(pAux, pCsr, context, argc-1, &argv[1]);
+ }
+}
+
+
+/*
+** Given cursor id iId, return a pointer to the corresponding Fts5Table
+** object. Or NULL If the cursor id does not exist.
+*/
+static Fts5Table *sqlite3Fts5TableFromCsrid(
+ Fts5Global *pGlobal, /* FTS5 global context for db handle */
+ i64 iCsrId /* Id of cursor to find */
+){
+ Fts5Cursor *pCsr;
+ pCsr = fts5CursorFromCsrid(pGlobal, iCsrId);
+ if( pCsr ){
+ return (Fts5Table*)pCsr->base.pVtab;
+ }
+ return 0;
+}
+
+/*
+** Return a "position-list blob" corresponding to the current position of
+** cursor pCsr via sqlite3_result_blob(). A position-list blob contains
+** the current position-list for each phrase in the query associated with
+** cursor pCsr.
+**
+** A position-list blob begins with (nPhrase-1) varints, where nPhrase is
+** the number of phrases in the query. Following the varints are the
+** concatenated position lists for each phrase, in order.
+**
+** The first varint (if it exists) contains the size of the position list
+** for phrase 0. The second (same disclaimer) contains the size of position
+** list 1. And so on. There is no size field for the final position list,
+** as it can be derived from the total size of the blob.
+*/
+static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
+ int i;
+ int rc = SQLITE_OK;
+ int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ Fts5Buffer val;
+
+ memset(&val, 0, sizeof(Fts5Buffer));
+ switch( ((Fts5Table*)(pCsr->base.pVtab))->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+
+ /* Append the varints */
+ for(i=0; i<(nPhrase-1); i++){
+ const u8 *dummy;
+ int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
+ sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
+ }
+
+ /* Append the position lists */
+ for(i=0; i<nPhrase; i++){
+ const u8 *pPoslist;
+ int nPoslist;
+ nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
+ sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
+ }
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+
+ /* Append the varints */
+ for(i=0; rc==SQLITE_OK && i<(nPhrase-1); i++){
+ const u8 *dummy;
+ int nByte;
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &dummy, &nByte);
+ sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
+ }
+
+ /* Append the position lists */
+ for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
+ const u8 *pPoslist;
+ int nPoslist;
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &pPoslist, &nPoslist);
+ sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
+ return rc;
+}
+
+/*
+** This is the xColumn method, called by SQLite to request a value from
+** the row that the supplied cursor currently points to.
+*/
+static int fts5ColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc = SQLITE_OK;
+
+ assert( CsrFlagTest(pCsr, FTS5CSR_EOF)==0 );
+
+ if( pCsr->ePlan==FTS5_PLAN_SPECIAL ){
+ if( iCol==pConfig->nCol ){
+ sqlite3_result_int64(pCtx, pCsr->iSpecial);
+ }
+ }else
+
+ if( iCol==pConfig->nCol ){
+ /* User is requesting the value of the special column with the same name
+ ** as the table. Return the cursor integer id number. This value is only
+ ** useful in that it may be passed as the first argument to an FTS5
+ ** auxiliary function. */
+ sqlite3_result_int64(pCtx, pCsr->iCsrId);
+ }else if( iCol==pConfig->nCol+1 ){
+
+ /* The value of the "rank" column. */
+ if( pCsr->ePlan==FTS5_PLAN_SOURCE ){
+ fts5PoslistBlob(pCtx, pCsr);
+ }else if(
+ pCsr->ePlan==FTS5_PLAN_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SORTED_MATCH
+ ){
+ if( pCsr->pRank || SQLITE_OK==(rc = fts5FindRankFunction(pCsr)) ){
+ fts5ApiInvoke(pCsr->pRank, pCsr, pCtx, pCsr->nRankArg, pCsr->apRankArg);
+ }
+ }
+ }else if( !fts5IsContentless(pTab) ){
+ pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+ rc = fts5SeekCursor(pCsr, 1);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
+ }
+ pConfig->pzErrmsg = 0;
+ }
+ return rc;
+}
+
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fts5FindFunctionMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nUnused, /* Number of SQL function arguments */
+ const char *zName, /* Name of SQL function */
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
+ void **ppArg /* OUT: User data for *pxFunc */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ Fts5Auxiliary *pAux;
+
+ UNUSED_PARAM(nUnused);
+ pAux = fts5FindAuxiliary(pTab, zName);
+ if( pAux ){
+ *pxFunc = fts5ApiCallback;
+ *ppArg = (void*)pAux;
+ return 1;
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+/*
+** Implementation of FTS5 xRename method. Rename an fts5 table.
+*/
+static int fts5RenameMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ const char *zName /* New name of table */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ return sqlite3Fts5StorageRename(pTab->pStorage, zName);
+}
+
+static int sqlite3Fts5FlushToDisk(Fts5Table *pTab){
+ fts5TripCursors((Fts5FullTable*)pTab);
+ return sqlite3Fts5StorageSync(((Fts5FullTable*)pTab)->pStorage);
+}
+
+/*
+** The xSavepoint() method.
+**
+** Flush the contents of the pending-terms table to disk.
+*/
+static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ UNUSED_PARAM(iSavepoint); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState((Fts5FullTable*)pVtab, FTS5_SAVEPOINT, iSavepoint);
+ return sqlite3Fts5FlushToDisk((Fts5Table*)pVtab);
+}
+
+/*
+** The xRelease() method.
+**
+** This is a no-op.
+*/
+static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ UNUSED_PARAM(iSavepoint); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState((Fts5FullTable*)pVtab, FTS5_RELEASE, iSavepoint);
+ return sqlite3Fts5FlushToDisk((Fts5Table*)pVtab);
+}
+
+/*
+** The xRollbackTo() method.
+**
+** Discard the contents of the pending terms table.
+*/
+static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ UNUSED_PARAM(iSavepoint); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
+ fts5TripCursors(pTab);
+ return sqlite3Fts5StorageRollback(pTab->pStorage);
+}
+
+/*
+** Register a new auxiliary function with global context pGlobal.
+*/
+static int fts5CreateAux(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void *pUserData, /* User data for aux. function */
+ fts5_extension_function xFunc, /* Aux. function implementation */
+ void(*xDestroy)(void*) /* Destructor for pUserData */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pApi;
+ int rc = sqlite3_overload_function(pGlobal->db, zName, -1);
+ if( rc==SQLITE_OK ){
+ Fts5Auxiliary *pAux;
+ sqlite3_int64 nName; /* Size of zName in bytes, including \0 */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+
+ nName = strlen(zName) + 1;
+ nByte = sizeof(Fts5Auxiliary) + nName;
+ pAux = (Fts5Auxiliary*)sqlite3_malloc64(nByte);
+ if( pAux ){
+ memset(pAux, 0, (size_t)nByte);
+ pAux->zFunc = (char*)&pAux[1];
+ memcpy(pAux->zFunc, zName, nName);
+ pAux->pGlobal = pGlobal;
+ pAux->pUserData = pUserData;
+ pAux->xFunc = xFunc;
+ pAux->xDestroy = xDestroy;
+ pAux->pNext = pGlobal->pAux;
+ pGlobal->pAux = pAux;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Register a new tokenizer. This is the implementation of the
+** fts5_api.xCreateTokenizer() method.
+*/
+static int fts5CreateTokenizer(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void *pUserData, /* User data for aux. function */
+ fts5_tokenizer *pTokenizer, /* Tokenizer implementation */
+ void(*xDestroy)(void*) /* Destructor for pUserData */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pApi;
+ Fts5TokenizerModule *pNew;
+ sqlite3_int64 nName; /* Size of zName and its \0 terminator */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+ int rc = SQLITE_OK;
+
+ nName = strlen(zName) + 1;
+ nByte = sizeof(Fts5TokenizerModule) + nName;
+ pNew = (Fts5TokenizerModule*)sqlite3_malloc64(nByte);
+ if( pNew ){
+ memset(pNew, 0, (size_t)nByte);
+ pNew->zName = (char*)&pNew[1];
+ memcpy(pNew->zName, zName, nName);
+ pNew->pUserData = pUserData;
+ pNew->x = *pTokenizer;
+ pNew->xDestroy = xDestroy;
+ pNew->pNext = pGlobal->pTok;
+ pGlobal->pTok = pNew;
+ if( pNew->pNext==0 ){
+ pGlobal->pDfltTok = pNew;
+ }
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ return rc;
+}
+
+static Fts5TokenizerModule *fts5LocateTokenizer(
+ Fts5Global *pGlobal,
+ const char *zName
+){
+ Fts5TokenizerModule *pMod = 0;
+
+ if( zName==0 ){
+ pMod = pGlobal->pDfltTok;
+ }else{
+ for(pMod=pGlobal->pTok; pMod; pMod=pMod->pNext){
+ if( sqlite3_stricmp(zName, pMod->zName)==0 ) break;
+ }
+ }
+
+ return pMod;
+}
+
+/*
+** Find a tokenizer. This is the implementation of the
+** fts5_api.xFindTokenizer() method.
+*/
+static int fts5FindTokenizer(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void **ppUserData,
+ fts5_tokenizer *pTokenizer /* Populate this object */
+){
+ int rc = SQLITE_OK;
+ Fts5TokenizerModule *pMod;
+
+ pMod = fts5LocateTokenizer((Fts5Global*)pApi, zName);
+ if( pMod ){
+ *pTokenizer = pMod->x;
+ *ppUserData = pMod->pUserData;
+ }else{
+ memset(pTokenizer, 0, sizeof(fts5_tokenizer));
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5GetTokenizer(
+ Fts5Global *pGlobal,
+ const char **azArg,
+ int nArg,
+ Fts5Config *pConfig,
+ char **pzErr
+){
+ Fts5TokenizerModule *pMod;
+ int rc = SQLITE_OK;
+
+ pMod = fts5LocateTokenizer(pGlobal, nArg==0 ? 0 : azArg[0]);
+ if( pMod==0 ){
+ assert( nArg>0 );
+ rc = SQLITE_ERROR;
+ *pzErr = sqlite3_mprintf("no such tokenizer: %s", azArg[0]);
+ }else{
+ rc = pMod->x.xCreate(
+ pMod->pUserData, (azArg?&azArg[1]:0), (nArg?nArg-1:0), &pConfig->pTok
+ );
+ pConfig->pTokApi = &pMod->x;
+ if( rc!=SQLITE_OK ){
+ if( pzErr ) *pzErr = sqlite3_mprintf("error in tokenizer constructor");
+ }else{
+ pConfig->ePattern = sqlite3Fts5TokenizerPattern(
+ pMod->x.xCreate, pConfig->pTok
+ );
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ pConfig->pTokApi = 0;
+ pConfig->pTok = 0;
+ }
+
+ return rc;
+}
+
+static void fts5ModuleDestroy(void *pCtx){
+ Fts5TokenizerModule *pTok, *pNextTok;
+ Fts5Auxiliary *pAux, *pNextAux;
+ Fts5Global *pGlobal = (Fts5Global*)pCtx;
+
+ for(pAux=pGlobal->pAux; pAux; pAux=pNextAux){
+ pNextAux = pAux->pNext;
+ if( pAux->xDestroy ) pAux->xDestroy(pAux->pUserData);
+ sqlite3_free(pAux);
+ }
+
+ for(pTok=pGlobal->pTok; pTok; pTok=pNextTok){
+ pNextTok = pTok->pNext;
+ if( pTok->xDestroy ) pTok->xDestroy(pTok->pUserData);
+ sqlite3_free(pTok);
+ }
+
+ sqlite3_free(pGlobal);
+}
+
+static void fts5Fts5Func(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apArg /* Function arguments */
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ fts5_api **ppApi;
+ UNUSED_PARAM(nArg);
+ assert( nArg==1 );
+ ppApi = (fts5_api**)sqlite3_value_pointer(apArg[0], "fts5_api_ptr");
+ if( ppApi ) *ppApi = &pGlobal->api;
+}
+
+/*
+** Implementation of fts5_source_id() function.
+*/
+static void fts5SourceIdFunc(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apUnused /* Function arguments */
+){
+ assert( nArg==0 );
+ UNUSED_PARAM2(nArg, apUnused);
+ sqlite3_result_text(pCtx, "fts5: 2022-09-29 15:55:41 a29f9949895322123f7c38fbe94c649a9d6e6c9cd0c3b41c96d694552f26b309", -1, SQLITE_TRANSIENT);
+}
+
+/*
+** Return true if zName is the extension on one of the shadow tables used
+** by this module.
+*/
+static int fts5ShadowName(const char *zName){
+ static const char *azName[] = {
+ "config", "content", "data", "docsize", "idx"
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
+ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+static int fts5Init(sqlite3 *db){
+ static const sqlite3_module fts5Mod = {
+ /* iVersion */ 3,
+ /* xCreate */ fts5CreateMethod,
+ /* xConnect */ fts5ConnectMethod,
+ /* xBestIndex */ fts5BestIndexMethod,
+ /* xDisconnect */ fts5DisconnectMethod,
+ /* xDestroy */ fts5DestroyMethod,
+ /* xOpen */ fts5OpenMethod,
+ /* xClose */ fts5CloseMethod,
+ /* xFilter */ fts5FilterMethod,
+ /* xNext */ fts5NextMethod,
+ /* xEof */ fts5EofMethod,
+ /* xColumn */ fts5ColumnMethod,
+ /* xRowid */ fts5RowidMethod,
+ /* xUpdate */ fts5UpdateMethod,
+ /* xBegin */ fts5BeginMethod,
+ /* xSync */ fts5SyncMethod,
+ /* xCommit */ fts5CommitMethod,
+ /* xRollback */ fts5RollbackMethod,
+ /* xFindFunction */ fts5FindFunctionMethod,
+ /* xRename */ fts5RenameMethod,
+ /* xSavepoint */ fts5SavepointMethod,
+ /* xRelease */ fts5ReleaseMethod,
+ /* xRollbackTo */ fts5RollbackToMethod,
+ /* xShadowName */ fts5ShadowName
+ };
+
+ int rc;
+ Fts5Global *pGlobal = 0;
+
+ pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global));
+ if( pGlobal==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ void *p = (void*)pGlobal;
+ memset(pGlobal, 0, sizeof(Fts5Global));
+ pGlobal->db = db;
+ pGlobal->api.iVersion = 2;
+ pGlobal->api.xCreateFunction = fts5CreateAux;
+ pGlobal->api.xCreateTokenizer = fts5CreateTokenizer;
+ pGlobal->api.xFindTokenizer = fts5FindTokenizer;
+ rc = sqlite3_create_module_v2(db, "fts5", &fts5Mod, p, fts5ModuleDestroy);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5IndexInit(db);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5ExprInit(pGlobal, db);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5AuxInit(&pGlobal->api);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5TokenizerInit(&pGlobal->api);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5VocabInit(pGlobal, db);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5", 1, SQLITE_UTF8, p, fts5Fts5Func, 0, 0
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_source_id", 0, SQLITE_UTF8, p, fts5SourceIdFunc, 0, 0
+ );
+ }
+ }
+
+ /* If SQLITE_FTS5_ENABLE_TEST_MI is defined, assume that the file
+ ** fts5_test_mi.c is compiled and linked into the executable. And call
+ ** its entry point to enable the matchinfo() demo. */
+#ifdef SQLITE_FTS5_ENABLE_TEST_MI
+ if( rc==SQLITE_OK ){
+ extern int sqlite3Fts5TestRegisterMatchinfo(sqlite3*);
+ rc = sqlite3Fts5TestRegisterMatchinfo(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** The following functions are used to register the module with SQLite. If
+** this module is being built as part of the SQLite core (SQLITE_CORE is
+** defined), then sqlite3_open() will call sqlite3Fts5Init() directly.
+**
+** Or, if this module is being built as a loadable extension,
+** sqlite3Fts5Init() is omitted and the two standard entry points
+** sqlite3_fts_init() and sqlite3_fts5_init() defined instead.
+*/
+#ifndef SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_fts_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ return fts5Init(db);
+}
+
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_fts5_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ return fts5Init(db);
+}
+#else
+SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3 *db){
+ return fts5Init(db);
+}
+#endif
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+struct Fts5Storage {
+ Fts5Config *pConfig;
+ Fts5Index *pIndex;
+ int bTotalsValid; /* True if nTotalRow/aTotalSize[] are valid */
+ i64 nTotalRow; /* Total number of rows in FTS table */
+ i64 *aTotalSize; /* Total sizes of each column */
+ sqlite3_stmt *aStmt[11];
+};
+
+
+#if FTS5_STMT_SCAN_ASC!=0
+# error "FTS5_STMT_SCAN_ASC mismatch"
+#endif
+#if FTS5_STMT_SCAN_DESC!=1
+# error "FTS5_STMT_SCAN_DESC mismatch"
+#endif
+#if FTS5_STMT_LOOKUP!=2
+# error "FTS5_STMT_LOOKUP mismatch"
+#endif
+
+#define FTS5_STMT_INSERT_CONTENT 3
+#define FTS5_STMT_REPLACE_CONTENT 4
+#define FTS5_STMT_DELETE_CONTENT 5
+#define FTS5_STMT_REPLACE_DOCSIZE 6
+#define FTS5_STMT_DELETE_DOCSIZE 7
+#define FTS5_STMT_LOOKUP_DOCSIZE 8
+#define FTS5_STMT_REPLACE_CONFIG 9
+#define FTS5_STMT_SCAN 10
+
+/*
+** Prepare the two insert statements - Fts5Storage.pInsertContent and
+** Fts5Storage.pInsertDocsize - if they have not already been prepared.
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageGetStmt(
+ Fts5Storage *p, /* Storage handle */
+ int eStmt, /* FTS5_STMT_XXX constant */
+ sqlite3_stmt **ppStmt, /* OUT: Prepared statement handle */
+ char **pzErrMsg /* OUT: Error message (if any) */
+){
+ int rc = SQLITE_OK;
+
+ /* If there is no %_docsize table, there should be no requests for
+ ** statements to operate on it. */
+ assert( p->pConfig->bColumnsize || (
+ eStmt!=FTS5_STMT_REPLACE_DOCSIZE
+ && eStmt!=FTS5_STMT_DELETE_DOCSIZE
+ && eStmt!=FTS5_STMT_LOOKUP_DOCSIZE
+ ));
+
+ assert( eStmt>=0 && eStmt<ArraySize(p->aStmt) );
+ if( p->aStmt[eStmt]==0 ){
+ const char *azStmt[] = {
+ "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC",
+ "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC",
+ "SELECT %s FROM %s T WHERE T.%Q=?", /* LOOKUP */
+
+ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* INSERT_CONTENT */
+ "REPLACE INTO %Q.'%q_content' VALUES(%s)", /* REPLACE_CONTENT */
+ "DELETE FROM %Q.'%q_content' WHERE id=?", /* DELETE_CONTENT */
+ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", /* REPLACE_DOCSIZE */
+ "DELETE FROM %Q.'%q_docsize' WHERE id=?", /* DELETE_DOCSIZE */
+
+ "SELECT sz FROM %Q.'%q_docsize' WHERE id=?", /* LOOKUP_DOCSIZE */
+
+ "REPLACE INTO %Q.'%q_config' VALUES(?,?)", /* REPLACE_CONFIG */
+ "SELECT %s FROM %s AS T", /* SCAN */
+ };
+ Fts5Config *pC = p->pConfig;
+ char *zSql = 0;
+
+ switch( eStmt ){
+ case FTS5_STMT_SCAN:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ pC->zContentExprlist, pC->zContent
+ );
+ break;
+
+ case FTS5_STMT_SCAN_ASC:
+ case FTS5_STMT_SCAN_DESC:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zContentExprlist,
+ pC->zContent, pC->zContentRowid, pC->zContentRowid,
+ pC->zContentRowid
+ );
+ break;
+
+ case FTS5_STMT_LOOKUP:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ pC->zContentExprlist, pC->zContent, pC->zContentRowid
+ );
+ break;
+
+ case FTS5_STMT_INSERT_CONTENT:
+ case FTS5_STMT_REPLACE_CONTENT: {
+ int nCol = pC->nCol + 1;
+ char *zBind;
+ int i;
+
+ zBind = sqlite3_malloc64(1 + nCol*2);
+ if( zBind ){
+ for(i=0; i<nCol; i++){
+ zBind[i*2] = '?';
+ zBind[i*2 + 1] = ',';
+ }
+ zBind[i*2-1] = '\0';
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind);
+ sqlite3_free(zBind);
+ }
+ break;
+ }
+
+ default:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName);
+ break;
+ }
+
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int f = SQLITE_PREPARE_PERSISTENT;
+ if( eStmt>FTS5_STMT_LOOKUP ) f |= SQLITE_PREPARE_NO_VTAB;
+ p->pConfig->bLock++;
+ rc = sqlite3_prepare_v3(pC->db, zSql, -1, f, &p->aStmt[eStmt], 0);
+ p->pConfig->bLock--;
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK && pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pC->db));
+ }
+ }
+ }
+
+ *ppStmt = p->aStmt[eStmt];
+ sqlite3_reset(*ppStmt);
+ return rc;
+}
+
+
+static int fts5ExecPrintf(
+ sqlite3 *db,
+ char **pzErr,
+ const char *zFormat,
+ ...
+){
+ int rc;
+ va_list ap; /* ... printf arguments */
+ char *zSql;
+
+ va_start(ap, zFormat);
+ zSql = sqlite3_vmprintf(zFormat, ap);
+
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_exec(db, zSql, 0, 0, pzErr);
+ sqlite3_free(zSql);
+ }
+
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Drop all shadow tables. Return SQLITE_OK if successful or an SQLite error
+** code otherwise.
+*/
+static int sqlite3Fts5DropAll(Fts5Config *pConfig){
+ int rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_data';"
+ "DROP TABLE IF EXISTS %Q.'%q_idx';"
+ "DROP TABLE IF EXISTS %Q.'%q_config';",
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName
+ );
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_docsize';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_content';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+ return rc;
+}
+
+static void fts5StorageRenameOne(
+ Fts5Config *pConfig, /* Current FTS5 configuration */
+ int *pRc, /* IN/OUT: Error code */
+ const char *zTail, /* Tail of table name e.g. "data", "config" */
+ const char *zName /* New name of FTS5 table */
+){
+ if( *pRc==SQLITE_OK ){
+ *pRc = fts5ExecPrintf(pConfig->db, 0,
+ "ALTER TABLE %Q.'%q_%s' RENAME TO '%q_%s';",
+ pConfig->zDb, pConfig->zName, zTail, zName, zTail
+ );
+ }
+}
+
+static int sqlite3Fts5StorageRename(Fts5Storage *pStorage, const char *zName){
+ Fts5Config *pConfig = pStorage->pConfig;
+ int rc = sqlite3Fts5StorageSync(pStorage);
+
+ fts5StorageRenameOne(pConfig, &rc, "data", zName);
+ fts5StorageRenameOne(pConfig, &rc, "idx", zName);
+ fts5StorageRenameOne(pConfig, &rc, "config", zName);
+ if( pConfig->bColumnsize ){
+ fts5StorageRenameOne(pConfig, &rc, "docsize", zName);
+ }
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ fts5StorageRenameOne(pConfig, &rc, "content", zName);
+ }
+ return rc;
+}
+
+/*
+** Create the shadow table named zPost, with definition zDefn. Return
+** SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int sqlite3Fts5CreateTable(
+ Fts5Config *pConfig, /* FTS5 configuration */
+ const char *zPost, /* Shadow table to create (e.g. "content") */
+ const char *zDefn, /* Columns etc. for shadow table */
+ int bWithout, /* True for without rowid */
+ char **pzErr /* OUT: Error message */
+){
+ int rc;
+ char *zErr = 0;
+
+ rc = fts5ExecPrintf(pConfig->db, &zErr, "CREATE TABLE %Q.'%q_%q'(%s)%s",
+ pConfig->zDb, pConfig->zName, zPost, zDefn,
+#ifndef SQLITE_FTS5_NO_WITHOUT_ROWID
+ bWithout?" WITHOUT ROWID":
+#endif
+ ""
+ );
+ if( zErr ){
+ *pzErr = sqlite3_mprintf(
+ "fts5: error creating shadow table %q_%s: %s",
+ pConfig->zName, zPost, zErr
+ );
+ sqlite3_free(zErr);
+ }
+
+ return rc;
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying tables
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+static int sqlite3Fts5StorageOpen(
+ Fts5Config *pConfig,
+ Fts5Index *pIndex,
+ int bCreate,
+ Fts5Storage **pp,
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK;
+ Fts5Storage *p; /* New object */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+
+ nByte = sizeof(Fts5Storage) /* Fts5Storage object */
+ + pConfig->nCol * sizeof(i64); /* Fts5Storage.aTotalSize[] */
+ *pp = p = (Fts5Storage*)sqlite3_malloc64(nByte);
+ if( !p ) return SQLITE_NOMEM;
+
+ memset(p, 0, (size_t)nByte);
+ p->aTotalSize = (i64*)&p[1];
+ p->pConfig = pConfig;
+ p->pIndex = pIndex;
+
+ if( bCreate ){
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ int nDefn = 32 + pConfig->nCol*10;
+ char *zDefn = sqlite3_malloc64(32 + (sqlite3_int64)pConfig->nCol * 10);
+ if( zDefn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ int iOff;
+ sqlite3_snprintf(nDefn, zDefn, "id INTEGER PRIMARY KEY");
+ iOff = (int)strlen(zDefn);
+ for(i=0; i<pConfig->nCol; i++){
+ sqlite3_snprintf(nDefn-iOff, &zDefn[iOff], ", c%d", i);
+ iOff += (int)strlen(&zDefn[iOff]);
+ }
+ rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
+ }
+ sqlite3_free(zDefn);
+ }
+
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "docsize", "id INTEGER PRIMARY KEY, sz BLOB", 0, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "config", "k PRIMARY KEY, v", 1, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageConfigValue(p, "version", 0, FTS5_CURRENT_VERSION);
+ }
+ }
+
+ if( rc ){
+ sqlite3Fts5StorageClose(p);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5StorageOpen().
+*/
+static int sqlite3Fts5StorageClose(Fts5Storage *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ int i;
+
+ /* Finalize all SQL statements */
+ for(i=0; i<ArraySize(p->aStmt); i++){
+ sqlite3_finalize(p->aStmt[i]);
+ }
+
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+typedef struct Fts5InsertCtx Fts5InsertCtx;
+struct Fts5InsertCtx {
+ Fts5Storage *pStorage;
+ int iCol;
+ int szCol; /* Size of column value in tokens */
+};
+
+/*
+** Tokenization callback used when inserting tokens into the FTS index.
+*/
+static int fts5StorageInsertCallback(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags,
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
+ Fts5Index *pIdx = pCtx->pStorage->pIndex;
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
+ pCtx->szCol++;
+ }
+ return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
+}
+
+/*
+** If a row with rowid iDel is present in the %_content table, add the
+** delete-markers to the FTS index necessary to delete it. Do not actually
+** remove the %_content row at this time though.
+*/
+static int fts5StorageDeleteFromIndex(
+ Fts5Storage *p,
+ i64 iDel,
+ sqlite3_value **apVal
+){
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pSeek = 0; /* SELECT to read row iDel from %_data */
+ int rc; /* Return code */
+ int rc2; /* sqlite3_reset() return code */
+ int iCol;
+ Fts5InsertCtx ctx;
+
+ if( apVal==0 ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pSeek, 1, iDel);
+ if( sqlite3_step(pSeek)!=SQLITE_ROW ){
+ return sqlite3_reset(pSeek);
+ }
+ }
+
+ ctx.pStorage = p;
+ ctx.iCol = -1;
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
+ for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
+ if( pConfig->abUnindexed[iCol-1]==0 ){
+ const char *zText;
+ int nText;
+ assert( pSeek==0 || apVal==0 );
+ assert( pSeek!=0 || apVal!=0 );
+ if( pSeek ){
+ zText = (const char*)sqlite3_column_text(pSeek, iCol);
+ nText = sqlite3_column_bytes(pSeek, iCol);
+ }else if( ALWAYS(apVal) ){
+ zText = (const char*)sqlite3_value_text(apVal[iCol-1]);
+ nText = sqlite3_value_bytes(apVal[iCol-1]);
+ }else{
+ continue;
+ }
+ ctx.szCol = 0;
+ rc = sqlite3Fts5Tokenize(pConfig, FTS5_TOKENIZE_DOCUMENT,
+ zText, nText, (void*)&ctx, fts5StorageInsertCallback
+ );
+ p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
+ if( p->aTotalSize[iCol-1]<0 ){
+ rc = FTS5_CORRUPT;
+ }
+ }
+ }
+ if( rc==SQLITE_OK && p->nTotalRow<1 ){
+ rc = FTS5_CORRUPT;
+ }else{
+ p->nTotalRow--;
+ }
+
+ rc2 = sqlite3_reset(pSeek);
+ if( rc==SQLITE_OK ) rc = rc2;
+ return rc;
+}
+
+
+/*
+** Insert a record into the %_docsize table. Specifically, do:
+**
+** INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf);
+**
+** If there is no %_docsize table (as happens if the columnsize=0 option
+** is specified when the FTS5 table is created), this function is a no-op.
+*/
+static int fts5StorageInsertDocsize(
+ Fts5Storage *p, /* Storage module to write to */
+ i64 iRowid, /* id value */
+ Fts5Buffer *pBuf /* sz value */
+){
+ int rc = SQLITE_OK;
+ if( p->pConfig->bColumnsize ){
+ sqlite3_stmt *pReplace = 0;
+ rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pReplace, 1, iRowid);
+ sqlite3_bind_blob(pReplace, 2, pBuf->p, pBuf->n, SQLITE_STATIC);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ sqlite3_bind_null(pReplace, 2);
+ }
+ }
+ return rc;
+}
+
+/*
+** Load the contents of the "averages" record from disk into the
+** p->nTotalRow and p->aTotalSize[] variables. If successful, and if
+** argument bCache is true, set the p->bTotalsValid flag to indicate
+** that the contents of aTotalSize[] and nTotalRow are valid until
+** further notice.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageLoadTotals(Fts5Storage *p, int bCache){
+ int rc = SQLITE_OK;
+ if( p->bTotalsValid==0 ){
+ rc = sqlite3Fts5IndexGetAverages(p->pIndex, &p->nTotalRow, p->aTotalSize);
+ p->bTotalsValid = bCache;
+ }
+ return rc;
+}
+
+/*
+** Store the current contents of the p->nTotalRow and p->aTotalSize[]
+** variables in the "averages" record on disk.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageSaveTotals(Fts5Storage *p){
+ int nCol = p->pConfig->nCol;
+ int i;
+ Fts5Buffer buf;
+ int rc = SQLITE_OK;
+ memset(&buf, 0, sizeof(buf));
+
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, p->nTotalRow);
+ for(i=0; i<nCol; i++){
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, p->aTotalSize[i]);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexSetAverages(p->pIndex, buf.p, buf.n);
+ }
+ sqlite3_free(buf.p);
+
+ return rc;
+}
+
+/*
+** Remove a row from the FTS table.
+*/
+static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel, sqlite3_value **apVal){
+ Fts5Config *pConfig = p->pConfig;
+ int rc;
+ sqlite3_stmt *pDel = 0;
+
+ assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
+ rc = fts5StorageLoadTotals(p, 1);
+
+ /* Delete the index records */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageDeleteFromIndex(p, iDel, apVal);
+ }
+
+ /* Delete the %_docsize record */
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iDel);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ /* Delete the %_content record */
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iDel);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Delete all entries in the FTS5 index.
+*/
+static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p){
+ Fts5Config *pConfig = p->pConfig;
+ int rc;
+
+ p->bTotalsValid = 0;
+
+ /* Delete the contents of the %_data and %_docsize tables. */
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DELETE FROM %Q.'%q_data';"
+ "DELETE FROM %Q.'%q_idx';",
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName
+ );
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DELETE FROM %Q.'%q_docsize';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+
+ /* Reinitialize the %_data table. This call creates the initial structure
+ ** and averages records. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexReinit(p->pIndex);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageConfigValue(p, "version", 0, FTS5_CURRENT_VERSION);
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageRebuild(Fts5Storage *p){
+ Fts5Buffer buf = {0,0,0};
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pScan = 0;
+ Fts5InsertCtx ctx;
+ int rc, rc2;
+
+ memset(&ctx, 0, sizeof(Fts5InsertCtx));
+ ctx.pStorage = p;
+ rc = sqlite3Fts5StorageDeleteAll(p);
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageLoadTotals(p, 1);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_SCAN, &pScan, 0);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pScan) ){
+ i64 iRowid = sqlite3_column_int64(pScan, 0);
+
+ sqlite3Fts5BufferZero(&buf);
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 0, iRowid);
+ for(ctx.iCol=0; rc==SQLITE_OK && ctx.iCol<pConfig->nCol; ctx.iCol++){
+ ctx.szCol = 0;
+ if( pConfig->abUnindexed[ctx.iCol]==0 ){
+ const char *zText = (const char*)sqlite3_column_text(pScan, ctx.iCol+1);
+ int nText = sqlite3_column_bytes(pScan, ctx.iCol+1);
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ zText, nText,
+ (void*)&ctx,
+ fts5StorageInsertCallback
+ );
+ }
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, ctx.szCol);
+ p->aTotalSize[ctx.iCol] += (i64)ctx.szCol;
+ }
+ p->nTotalRow++;
+
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageInsertDocsize(p, iRowid, &buf);
+ }
+ }
+ sqlite3_free(buf.p);
+ rc2 = sqlite3_reset(pScan);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ /* Write the averages record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageSaveTotals(p);
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageOptimize(Fts5Storage *p){
+ return sqlite3Fts5IndexOptimize(p->pIndex);
+}
+
+static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge){
+ return sqlite3Fts5IndexMerge(p->pIndex, nMerge);
+}
+
+static int sqlite3Fts5StorageReset(Fts5Storage *p){
+ return sqlite3Fts5IndexReset(p->pIndex);
+}
+
+/*
+** Allocate a new rowid. This is used for "external content" tables when
+** a NULL value is inserted into the rowid column. The new rowid is allocated
+** by inserting a dummy row into the %_docsize table. The dummy will be
+** overwritten later.
+**
+** If the %_docsize table does not exist, SQLITE_MISMATCH is returned. In
+** this case the user is required to provide a rowid explicitly.
+*/
+static int fts5StorageNewRowid(Fts5Storage *p, i64 *piRowid){
+ int rc = SQLITE_MISMATCH;
+ if( p->pConfig->bColumnsize ){
+ sqlite3_stmt *pReplace = 0;
+ rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_null(pReplace, 1);
+ sqlite3_bind_null(pReplace, 2);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ }
+ if( rc==SQLITE_OK ){
+ *piRowid = sqlite3_last_insert_rowid(p->pConfig->db);
+ }
+ }
+ return rc;
+}
+
+/*
+** Insert a new row into the FTS content table.
+*/
+static int sqlite3Fts5StorageContentInsert(
+ Fts5Storage *p,
+ sqlite3_value **apVal,
+ i64 *piRowid
+){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK;
+
+ /* Insert the new row into the %_content table. */
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){
+ if( sqlite3_value_type(apVal[1])==SQLITE_INTEGER ){
+ *piRowid = sqlite3_value_int64(apVal[1]);
+ }else{
+ rc = fts5StorageNewRowid(p, piRowid);
+ }
+ }else{
+ sqlite3_stmt *pInsert = 0; /* Statement to write %_content table */
+ int i; /* Counter variable */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_INSERT_CONTENT, &pInsert, 0);
+ for(i=1; rc==SQLITE_OK && i<=pConfig->nCol+1; i++){
+ rc = sqlite3_bind_value(pInsert, i, apVal[i]);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pInsert);
+ rc = sqlite3_reset(pInsert);
+ }
+ *piRowid = sqlite3_last_insert_rowid(pConfig->db);
+ }
+
+ return rc;
+}
+
+/*
+** Insert new entries into the FTS index and %_docsize table.
+*/
+static int sqlite3Fts5StorageIndexInsert(
+ Fts5Storage *p,
+ sqlite3_value **apVal,
+ i64 iRowid
+){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK; /* Return code */
+ Fts5InsertCtx ctx; /* Tokenization callback context object */
+ Fts5Buffer buf; /* Buffer used to build up %_docsize blob */
+
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ ctx.pStorage = p;
+ rc = fts5StorageLoadTotals(p, 1);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 0, iRowid);
+ }
+ for(ctx.iCol=0; rc==SQLITE_OK && ctx.iCol<pConfig->nCol; ctx.iCol++){
+ ctx.szCol = 0;
+ if( pConfig->abUnindexed[ctx.iCol]==0 ){
+ const char *zText = (const char*)sqlite3_value_text(apVal[ctx.iCol+2]);
+ int nText = sqlite3_value_bytes(apVal[ctx.iCol+2]);
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ zText, nText,
+ (void*)&ctx,
+ fts5StorageInsertCallback
+ );
+ }
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, ctx.szCol);
+ p->aTotalSize[ctx.iCol] += (i64)ctx.szCol;
+ }
+ p->nTotalRow++;
+
+ /* Write the %_docsize record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageInsertDocsize(p, iRowid, &buf);
+ }
+ sqlite3_free(buf.p);
+
+ return rc;
+}
+
+static int fts5StorageCount(Fts5Storage *p, const char *zSuffix, i64 *pnRow){
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql;
+ int rc;
+
+ zSql = sqlite3_mprintf("SELECT count(*) FROM %Q.'%q_%s'",
+ pConfig->zDb, pConfig->zName, zSuffix
+ );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pCnt = 0;
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pCnt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pCnt) ){
+ *pnRow = sqlite3_column_int64(pCnt, 0);
+ }
+ rc = sqlite3_finalize(pCnt);
+ }
+ }
+
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** Context object used by sqlite3Fts5StorageIntegrity().
+*/
+typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
+struct Fts5IntegrityCtx {
+ i64 iRowid;
+ int iCol;
+ int szCol;
+ u64 cksum;
+ Fts5Termset *pTermset;
+ Fts5Config *pConfig;
+};
+
+
+/*
+** Tokenization callback used by integrity check.
+*/
+static int fts5StorageIntegrityCallback(
+ void *pContext, /* Pointer to Fts5IntegrityCtx object */
+ int tflags,
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;
+ Fts5Termset *pTermset = pCtx->pTermset;
+ int bPresent;
+ int ii;
+ int rc = SQLITE_OK;
+ int iPos;
+ int iCol;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
+ pCtx->szCol++;
+ }
+
+ switch( pCtx->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+ iPos = pCtx->szCol-1;
+ iCol = pCtx->iCol;
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+ iPos = pCtx->iCol;
+ iCol = 0;
+ break;
+
+ default:
+ assert( pCtx->pConfig->eDetail==FTS5_DETAIL_NONE );
+ iPos = 0;
+ iCol = 0;
+ break;
+ }
+
+ rc = sqlite3Fts5TermsetAdd(pTermset, 0, pToken, nToken, &bPresent);
+ if( rc==SQLITE_OK && bPresent==0 ){
+ pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
+ pCtx->iRowid, iCol, iPos, 0, pToken, nToken
+ );
+ }
+
+ for(ii=0; rc==SQLITE_OK && ii<pCtx->pConfig->nPrefix; ii++){
+ const int nChar = pCtx->pConfig->aPrefix[ii];
+ int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
+ if( nByte ){
+ rc = sqlite3Fts5TermsetAdd(pTermset, ii+1, pToken, nByte, &bPresent);
+ if( bPresent==0 ){
+ pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
+ pCtx->iRowid, iCol, iPos, ii+1, pToken, nByte
+ );
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Check that the contents of the FTS index match that of the %_content
+** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
+** some other SQLite error code if an error occurs while attempting to
+** determine this.
+*/
+static int sqlite3Fts5StorageIntegrity(Fts5Storage *p, int iArg){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK; /* Return code */
+ int *aColSize; /* Array of size pConfig->nCol */
+ i64 *aTotalSize; /* Array of size pConfig->nCol */
+ Fts5IntegrityCtx ctx;
+ sqlite3_stmt *pScan;
+ int bUseCksum;
+
+ memset(&ctx, 0, sizeof(Fts5IntegrityCtx));
+ ctx.pConfig = p->pConfig;
+ aTotalSize = (i64*)sqlite3_malloc64(pConfig->nCol*(sizeof(int)+sizeof(i64)));
+ if( !aTotalSize ) return SQLITE_NOMEM;
+ aColSize = (int*)&aTotalSize[pConfig->nCol];
+ memset(aTotalSize, 0, sizeof(i64) * pConfig->nCol);
+
+ bUseCksum = (pConfig->eContent==FTS5_CONTENT_NORMAL
+ || (pConfig->eContent==FTS5_CONTENT_EXTERNAL && iArg)
+ );
+ if( bUseCksum ){
+ /* Generate the expected index checksum based on the contents of the
+ ** %_content table. This block stores the checksum in ctx.cksum. */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_SCAN, &pScan, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ while( SQLITE_ROW==sqlite3_step(pScan) ){
+ int i;
+ ctx.iRowid = sqlite3_column_int64(pScan, 0);
+ ctx.szCol = 0;
+ if( pConfig->bColumnsize ){
+ rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);
+ }
+ if( rc==SQLITE_OK && pConfig->eDetail==FTS5_DETAIL_NONE ){
+ rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
+ }
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i] ) continue;
+ ctx.iCol = i;
+ ctx.szCol = 0;
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
+ }
+ if( rc==SQLITE_OK ){
+ const char *zText = (const char*)sqlite3_column_text(pScan, i+1);
+ int nText = sqlite3_column_bytes(pScan, i+1);
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ zText, nText,
+ (void*)&ctx,
+ fts5StorageIntegrityCallback
+ );
+ }
+ if( rc==SQLITE_OK && pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
+ rc = FTS5_CORRUPT;
+ }
+ aTotalSize[i] += ctx.szCol;
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ sqlite3Fts5TermsetFree(ctx.pTermset);
+ ctx.pTermset = 0;
+ }
+ }
+ sqlite3Fts5TermsetFree(ctx.pTermset);
+ ctx.pTermset = 0;
+
+ if( rc!=SQLITE_OK ) break;
+ }
+ rc2 = sqlite3_reset(pScan);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ /* Test that the "totals" (sometimes called "averages") record looks Ok */
+ if( rc==SQLITE_OK ){
+ int i;
+ rc = fts5StorageLoadTotals(p, 0);
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( p->aTotalSize[i]!=aTotalSize[i] ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ /* Check that the %_docsize and %_content tables contain the expected
+ ** number of rows. */
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ i64 nRow = 0;
+ rc = fts5StorageCount(p, "content", &nRow);
+ if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
+ }
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ i64 nRow = 0;
+ rc = fts5StorageCount(p, "docsize", &nRow);
+ if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ /* Pass the expected checksum down to the FTS index module. It will
+ ** verify, amongst other things, that it matches the checksum generated by
+ ** inspecting the index itself. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexIntegrityCheck(p->pIndex, ctx.cksum, bUseCksum);
+ }
+
+ sqlite3_free(aTotalSize);
+ return rc;
+}
+
+/*
+** Obtain an SQLite statement handle that may be used to read data from the
+** %_content table.
+*/
+static int sqlite3Fts5StorageStmt(
+ Fts5Storage *p,
+ int eStmt,
+ sqlite3_stmt **pp,
+ char **pzErrMsg
+){
+ int rc;
+ assert( eStmt==FTS5_STMT_SCAN_ASC
+ || eStmt==FTS5_STMT_SCAN_DESC
+ || eStmt==FTS5_STMT_LOOKUP
+ );
+ rc = fts5StorageGetStmt(p, eStmt, pp, pzErrMsg);
+ if( rc==SQLITE_OK ){
+ assert( p->aStmt[eStmt]==*pp );
+ p->aStmt[eStmt] = 0;
+ }
+ return rc;
+}
+
+/*
+** Release an SQLite statement handle obtained via an earlier call to
+** sqlite3Fts5StorageStmt(). The eStmt parameter passed to this function
+** must match that passed to the sqlite3Fts5StorageStmt() call.
+*/
+static void sqlite3Fts5StorageStmtRelease(
+ Fts5Storage *p,
+ int eStmt,
+ sqlite3_stmt *pStmt
+){
+ assert( eStmt==FTS5_STMT_SCAN_ASC
+ || eStmt==FTS5_STMT_SCAN_DESC
+ || eStmt==FTS5_STMT_LOOKUP
+ );
+ if( p->aStmt[eStmt]==0 ){
+ sqlite3_reset(pStmt);
+ p->aStmt[eStmt] = pStmt;
+ }else{
+ sqlite3_finalize(pStmt);
+ }
+}
+
+static int fts5StorageDecodeSizeArray(
+ int *aCol, int nCol, /* Array to populate */
+ const u8 *aBlob, int nBlob /* Record to read varints from */
+){
+ int i;
+ int iOff = 0;
+ for(i=0; i<nCol; i++){
+ if( iOff>=nBlob ) return 1;
+ iOff += fts5GetVarint32(&aBlob[iOff], aCol[i]);
+ }
+ return (iOff!=nBlob);
+}
+
+/*
+** Argument aCol points to an array of integers containing one entry for
+** each table column. This function reads the %_docsize record for the
+** specified rowid and populates aCol[] with the results.
+**
+** An SQLite error code is returned if an error occurs, or SQLITE_OK
+** otherwise.
+*/
+static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol){
+ int nCol = p->pConfig->nCol; /* Number of user columns in table */
+ sqlite3_stmt *pLookup = 0; /* Statement to query %_docsize */
+ int rc; /* Return Code */
+
+ assert( p->pConfig->bColumnsize );
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP_DOCSIZE, &pLookup, 0);
+ if( pLookup ){
+ int bCorrupt = 1;
+ assert( rc==SQLITE_OK );
+ sqlite3_bind_int64(pLookup, 1, iRowid);
+ if( SQLITE_ROW==sqlite3_step(pLookup) ){
+ const u8 *aBlob = sqlite3_column_blob(pLookup, 0);
+ int nBlob = sqlite3_column_bytes(pLookup, 0);
+ if( 0==fts5StorageDecodeSizeArray(aCol, nCol, aBlob, nBlob) ){
+ bCorrupt = 0;
+ }
+ }
+ rc = sqlite3_reset(pLookup);
+ if( bCorrupt && rc==SQLITE_OK ){
+ rc = FTS5_CORRUPT;
+ }
+ }else{
+ assert( rc!=SQLITE_OK );
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnToken){
+ int rc = fts5StorageLoadTotals(p, 0);
+ if( rc==SQLITE_OK ){
+ *pnToken = 0;
+ if( iCol<0 ){
+ int i;
+ for(i=0; i<p->pConfig->nCol; i++){
+ *pnToken += p->aTotalSize[i];
+ }
+ }else if( iCol<p->pConfig->nCol ){
+ *pnToken = p->aTotalSize[iCol];
+ }else{
+ rc = SQLITE_RANGE;
+ }
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow){
+ int rc = fts5StorageLoadTotals(p, 0);
+ if( rc==SQLITE_OK ){
+ /* nTotalRow being zero does not necessarily indicate a corrupt
+ ** database - it might be that the FTS5 table really does contain zero
+ ** rows. However this function is only called from the xRowCount() API,
+ ** and there is no way for that API to be invoked if the table contains
+ ** no rows. Hence the FTS5_CORRUPT return. */
+ *pnRow = p->nTotalRow;
+ if( p->nTotalRow<=0 ) rc = FTS5_CORRUPT;
+ }
+ return rc;
+}
+
+/*
+** Flush any data currently held in-memory to disk.
+*/
+static int sqlite3Fts5StorageSync(Fts5Storage *p){
+ int rc = SQLITE_OK;
+ i64 iLastRowid = sqlite3_last_insert_rowid(p->pConfig->db);
+ if( p->bTotalsValid ){
+ rc = fts5StorageSaveTotals(p);
+ p->bTotalsValid = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexSync(p->pIndex);
+ }
+ sqlite3_set_last_insert_rowid(p->pConfig->db, iLastRowid);
+ return rc;
+}
+
+static int sqlite3Fts5StorageRollback(Fts5Storage *p){
+ p->bTotalsValid = 0;
+ return sqlite3Fts5IndexRollback(p->pIndex);
+}
+
+static int sqlite3Fts5StorageConfigValue(
+ Fts5Storage *p,
+ const char *z,
+ sqlite3_value *pVal,
+ int iVal
+){
+ sqlite3_stmt *pReplace = 0;
+ int rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_CONFIG, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_text(pReplace, 1, z, -1, SQLITE_STATIC);
+ if( pVal ){
+ sqlite3_bind_value(pReplace, 2, pVal);
+ }else{
+ sqlite3_bind_int(pReplace, 2, iVal);
+ }
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ sqlite3_bind_null(pReplace, 1);
+ }
+ if( rc==SQLITE_OK && pVal ){
+ int iNew = p->pConfig->iCookie + 1;
+ rc = sqlite3Fts5IndexSetCookie(p->pIndex, iNew);
+ if( rc==SQLITE_OK ){
+ p->pConfig->iCookie = iNew;
+ }
+ }
+ return rc;
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+/* #include "fts5Int.h" */
+
+/**************************************************************************
+** Start of ascii tokenizer implementation.
+*/
+
+/*
+** For tokenizers with no "unicode" modifier, the set of token characters
+** is the same as the set of ASCII range alphanumeric characters.
+*/
+static unsigned char aAsciiTokenChar[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00..0x0F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10..0x1F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20..0x2F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30..0x3F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40..0x4F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 0x50..0x5F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60..0x6F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 0x70..0x7F */
+};
+
+typedef struct AsciiTokenizer AsciiTokenizer;
+struct AsciiTokenizer {
+ unsigned char aTokenChar[128];
+};
+
+static void fts5AsciiAddExceptions(
+ AsciiTokenizer *p,
+ const char *zArg,
+ int bTokenChars
+){
+ int i;
+ for(i=0; zArg[i]; i++){
+ if( (zArg[i] & 0x80)==0 ){
+ p->aTokenChar[(int)zArg[i]] = (unsigned char)bTokenChars;
+ }
+ }
+}
+
+/*
+** Delete a "ascii" tokenizer.
+*/
+static void fts5AsciiDelete(Fts5Tokenizer *p){
+ sqlite3_free(p);
+}
+
+/*
+** Create an "ascii" tokenizer.
+*/
+static int fts5AsciiCreate(
+ void *pUnused,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK;
+ AsciiTokenizer *p = 0;
+ UNUSED_PARAM(pUnused);
+ if( nArg%2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = sqlite3_malloc(sizeof(AsciiTokenizer));
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ memset(p, 0, sizeof(AsciiTokenizer));
+ memcpy(p->aTokenChar, aAsciiTokenChar, sizeof(aAsciiTokenChar));
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "tokenchars") ){
+ fts5AsciiAddExceptions(p, zArg, 1);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "separators") ){
+ fts5AsciiAddExceptions(p, zArg, 0);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ fts5AsciiDelete((Fts5Tokenizer*)p);
+ p = 0;
+ }
+ }
+ }
+
+ *ppOut = (Fts5Tokenizer*)p;
+ return rc;
+}
+
+
+static void asciiFold(char *aOut, const char *aIn, int nByte){
+ int i;
+ for(i=0; i<nByte; i++){
+ char c = aIn[i];
+ if( c>='A' && c<='Z' ) c += 32;
+ aOut[i] = c;
+ }
+}
+
+/*
+** Tokenize some text using the ascii tokenizer.
+*/
+static int fts5AsciiTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int iUnused,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
+ int rc = SQLITE_OK;
+ int ie;
+ int is = 0;
+
+ char aFold[64];
+ int nFold = sizeof(aFold);
+ char *pFold = aFold;
+ unsigned char *a = p->aTokenChar;
+
+ UNUSED_PARAM(iUnused);
+
+ while( is<nText && rc==SQLITE_OK ){
+ int nByte;
+
+ /* Skip any leading divider characters. */
+ while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
+ is++;
+ }
+ if( is==nText ) break;
+
+ /* Count the token characters */
+ ie = is+1;
+ while( ie<nText && ((pText[ie]&0x80) || a[(int)pText[ie]] ) ){
+ ie++;
+ }
+
+ /* Fold to lower case */
+ nByte = ie-is;
+ if( nByte>nFold ){
+ if( pFold!=aFold ) sqlite3_free(pFold);
+ pFold = sqlite3_malloc64((sqlite3_int64)nByte*2);
+ if( pFold==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ nFold = nByte*2;
+ }
+ asciiFold(pFold, &pText[is], nByte);
+
+ /* Invoke the token callback */
+ rc = xToken(pCtx, 0, pFold, nByte, is, ie);
+ is = ie+1;
+ }
+
+ if( pFold!=aFold ) sqlite3_free(pFold);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+}
+
+/**************************************************************************
+** Start of unicode61 tokenizer implementation.
+*/
+
+
+/*
+** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
+** from the sqlite3 source file utf.c. If this file is compiled as part
+** of the amalgamation, they are not required.
+*/
+#ifndef SQLITE_AMALGAMATION
+
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (unsigned char)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (unsigned char)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (unsigned char)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (unsigned char)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (unsigned char)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (unsigned char)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ } \
+}
+
+#endif /* ifndef SQLITE_AMALGAMATION */
+
+typedef struct Unicode61Tokenizer Unicode61Tokenizer;
+struct Unicode61Tokenizer {
+ unsigned char aTokenChar[128]; /* ASCII range token characters */
+ char *aFold; /* Buffer to fold text into */
+ int nFold; /* Size of aFold[] in bytes */
+ int eRemoveDiacritic; /* True if remove_diacritics=1 is set */
+ int nException;
+ int *aiException;
+
+ unsigned char aCategory[32]; /* True for token char categories */
+};
+
+/* Values for eRemoveDiacritic (must match internals of fts5_unicode2.c) */
+#define FTS5_REMOVE_DIACRITICS_NONE 0
+#define FTS5_REMOVE_DIACRITICS_SIMPLE 1
+#define FTS5_REMOVE_DIACRITICS_COMPLEX 2
+
+static int fts5UnicodeAddExceptions(
+ Unicode61Tokenizer *p, /* Tokenizer object */
+ const char *z, /* Characters to treat as exceptions */
+ int bTokenChars /* 1 for 'tokenchars', 0 for 'separators' */
+){
+ int rc = SQLITE_OK;
+ int n = (int)strlen(z);
+ int *aNew;
+
+ if( n>0 ){
+ aNew = (int*)sqlite3_realloc64(p->aiException,
+ (n+p->nException)*sizeof(int));
+ if( aNew ){
+ int nNew = p->nException;
+ const unsigned char *zCsr = (const unsigned char*)z;
+ const unsigned char *zTerm = (const unsigned char*)&z[n];
+ while( zCsr<zTerm ){
+ u32 iCode;
+ int bToken;
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( iCode<128 ){
+ p->aTokenChar[iCode] = (unsigned char)bTokenChars;
+ }else{
+ bToken = p->aCategory[sqlite3Fts5UnicodeCategory(iCode)];
+ assert( (bToken==0 || bToken==1) );
+ assert( (bTokenChars==0 || bTokenChars==1) );
+ if( bToken!=bTokenChars && sqlite3Fts5UnicodeIsdiacritic(iCode)==0 ){
+ int i;
+ for(i=0; i<nNew; i++){
+ if( (u32)aNew[i]>iCode ) break;
+ }
+ memmove(&aNew[i+1], &aNew[i], (nNew-i)*sizeof(int));
+ aNew[i] = iCode;
+ nNew++;
+ }
+ }
+ }
+ p->aiException = aNew;
+ p->nException = nNew;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Return true if the p->aiException[] array contains the value iCode.
+*/
+static int fts5UnicodeIsException(Unicode61Tokenizer *p, int iCode){
+ if( p->nException>0 ){
+ int *a = p->aiException;
+ int iLo = 0;
+ int iHi = p->nException-1;
+
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( iCode==a[iTest] ){
+ return 1;
+ }else if( iCode>a[iTest] ){
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Delete a "unicode61" tokenizer.
+*/
+static void fts5UnicodeDelete(Fts5Tokenizer *pTok){
+ if( pTok ){
+ Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTok;
+ sqlite3_free(p->aiException);
+ sqlite3_free(p->aFold);
+ sqlite3_free(p);
+ }
+ return;
+}
+
+static int unicodeSetCategories(Unicode61Tokenizer *p, const char *zCat){
+ const char *z = zCat;
+
+ while( *z ){
+ while( *z==' ' || *z=='\t' ) z++;
+ if( *z && sqlite3Fts5UnicodeCatParse(z, p->aCategory) ){
+ return SQLITE_ERROR;
+ }
+ while( *z!=' ' && *z!='\t' && *z!='\0' ) z++;
+ }
+
+ sqlite3Fts5UnicodeAscii(p->aCategory, p->aTokenChar);
+ return SQLITE_OK;
+}
+
+/*
+** Create a "unicode61" tokenizer.
+*/
+static int fts5UnicodeCreate(
+ void *pUnused,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK; /* Return code */
+ Unicode61Tokenizer *p = 0; /* New tokenizer object */
+
+ UNUSED_PARAM(pUnused);
+
+ if( nArg%2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
+ if( p ){
+ const char *zCat = "L* N* Co";
+ int i;
+ memset(p, 0, sizeof(Unicode61Tokenizer));
+
+ p->eRemoveDiacritic = FTS5_REMOVE_DIACRITICS_SIMPLE;
+ p->nFold = 64;
+ p->aFold = sqlite3_malloc64(p->nFold * sizeof(char));
+ if( p->aFold==0 ){
+ rc = SQLITE_NOMEM;
+ }
+
+ /* Search for a "categories" argument */
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ if( 0==sqlite3_stricmp(azArg[i], "categories") ){
+ zCat = azArg[i+1];
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = unicodeSetCategories(p, zCat);
+ }
+
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "remove_diacritics") ){
+ if( (zArg[0]!='0' && zArg[0]!='1' && zArg[0]!='2') || zArg[1] ){
+ rc = SQLITE_ERROR;
+ }else{
+ p->eRemoveDiacritic = (zArg[0] - '0');
+ assert( p->eRemoveDiacritic==FTS5_REMOVE_DIACRITICS_NONE
+ || p->eRemoveDiacritic==FTS5_REMOVE_DIACRITICS_SIMPLE
+ || p->eRemoveDiacritic==FTS5_REMOVE_DIACRITICS_COMPLEX
+ );
+ }
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "tokenchars") ){
+ rc = fts5UnicodeAddExceptions(p, zArg, 1);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "separators") ){
+ rc = fts5UnicodeAddExceptions(p, zArg, 0);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "categories") ){
+ /* no-op */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ fts5UnicodeDelete((Fts5Tokenizer*)p);
+ p = 0;
+ }
+ *ppOut = (Fts5Tokenizer*)p;
+ }
+ return rc;
+}
+
+/*
+** Return true if, for the purposes of tokenizing with the tokenizer
+** passed as the first argument, codepoint iCode is considered a token
+** character (not a separator).
+*/
+static int fts5UnicodeIsAlnum(Unicode61Tokenizer *p, int iCode){
+ return (
+ p->aCategory[sqlite3Fts5UnicodeCategory((u32)iCode)]
+ ^ fts5UnicodeIsException(p, iCode)
+ );
+}
+
+static int fts5UnicodeTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int iUnused,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
+ int rc = SQLITE_OK;
+ unsigned char *a = p->aTokenChar;
+
+ unsigned char *zTerm = (unsigned char*)&pText[nText];
+ unsigned char *zCsr = (unsigned char *)pText;
+
+ /* Output buffer */
+ char *aFold = p->aFold;
+ int nFold = p->nFold;
+ const char *pEnd = &aFold[nFold-6];
+
+ UNUSED_PARAM(iUnused);
+
+ /* Each iteration of this loop gobbles up a contiguous run of separators,
+ ** then the next token. */
+ while( rc==SQLITE_OK ){
+ u32 iCode; /* non-ASCII codepoint read from input */
+ char *zOut = aFold;
+ int is;
+ int ie;
+
+ /* Skip any separator characters. */
+ while( 1 ){
+ if( zCsr>=zTerm ) goto tokenize_done;
+ if( *zCsr & 0x80 ) {
+ /* A character outside of the ascii range. Skip past it if it is
+ ** a separator character. Or break out of the loop if it is not. */
+ is = zCsr - (unsigned char*)pText;
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( fts5UnicodeIsAlnum(p, iCode) ){
+ goto non_ascii_tokenchar;
+ }
+ }else{
+ if( a[*zCsr] ){
+ is = zCsr - (unsigned char*)pText;
+ goto ascii_tokenchar;
+ }
+ zCsr++;
+ }
+ }
+
+ /* Run through the tokenchars. Fold them into the output buffer along
+ ** the way. */
+ while( zCsr<zTerm ){
+
+ /* Grow the output buffer so that there is sufficient space to fit the
+ ** largest possible utf-8 character. */
+ if( zOut>pEnd ){
+ aFold = sqlite3_malloc64((sqlite3_int64)nFold*2);
+ if( aFold==0 ){
+ rc = SQLITE_NOMEM;
+ goto tokenize_done;
+ }
+ zOut = &aFold[zOut - p->aFold];
+ memcpy(aFold, p->aFold, nFold);
+ sqlite3_free(p->aFold);
+ p->aFold = aFold;
+ p->nFold = nFold = nFold*2;
+ pEnd = &aFold[nFold-6];
+ }
+
+ if( *zCsr & 0x80 ){
+ /* An non-ascii-range character. Fold it into the output buffer if
+ ** it is a token character, or break out of the loop if it is not. */
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( fts5UnicodeIsAlnum(p,iCode)||sqlite3Fts5UnicodeIsdiacritic(iCode) ){
+ non_ascii_tokenchar:
+ iCode = sqlite3Fts5UnicodeFold(iCode, p->eRemoveDiacritic);
+ if( iCode ) WRITE_UTF8(zOut, iCode);
+ }else{
+ break;
+ }
+ }else if( a[*zCsr]==0 ){
+ /* An ascii-range separator character. End of token. */
+ break;
+ }else{
+ ascii_tokenchar:
+ if( *zCsr>='A' && *zCsr<='Z' ){
+ *zOut++ = *zCsr + 32;
+ }else{
+ *zOut++ = *zCsr;
+ }
+ zCsr++;
+ }
+ ie = zCsr - (unsigned char*)pText;
+ }
+
+ /* Invoke the token callback */
+ rc = xToken(pCtx, 0, aFold, zOut-aFold, is, ie);
+ }
+
+ tokenize_done:
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+}
+
+/**************************************************************************
+** Start of porter stemmer implementation.
+*/
+
+/* Any tokens larger than this (in bytes) are passed through without
+** stemming. */
+#define FTS5_PORTER_MAX_TOKEN 64
+
+typedef struct PorterTokenizer PorterTokenizer;
+struct PorterTokenizer {
+ fts5_tokenizer tokenizer; /* Parent tokenizer module */
+ Fts5Tokenizer *pTokenizer; /* Parent tokenizer instance */
+ char aBuf[FTS5_PORTER_MAX_TOKEN + 64];
+};
+
+/*
+** Delete a "porter" tokenizer.
+*/
+static void fts5PorterDelete(Fts5Tokenizer *pTok){
+ if( pTok ){
+ PorterTokenizer *p = (PorterTokenizer*)pTok;
+ if( p->pTokenizer ){
+ p->tokenizer.xDelete(p->pTokenizer);
+ }
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Create a "porter" tokenizer.
+*/
+static int fts5PorterCreate(
+ void *pCtx,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ fts5_api *pApi = (fts5_api*)pCtx;
+ int rc = SQLITE_OK;
+ PorterTokenizer *pRet;
+ void *pUserdata = 0;
+ const char *zBase = "unicode61";
+
+ if( nArg>0 ){
+ zBase = azArg[0];
+ }
+
+ pRet = (PorterTokenizer*)sqlite3_malloc(sizeof(PorterTokenizer));
+ if( pRet ){
+ memset(pRet, 0, sizeof(PorterTokenizer));
+ rc = pApi->xFindTokenizer(pApi, zBase, &pUserdata, &pRet->tokenizer);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ int nArg2 = (nArg>0 ? nArg-1 : 0);
+ const char **azArg2 = (nArg2 ? &azArg[1] : 0);
+ rc = pRet->tokenizer.xCreate(pUserdata, azArg2, nArg2, &pRet->pTokenizer);
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5PorterDelete((Fts5Tokenizer*)pRet);
+ pRet = 0;
+ }
+ *ppOut = (Fts5Tokenizer*)pRet;
+ return rc;
+}
+
+typedef struct PorterContext PorterContext;
+struct PorterContext {
+ void *pCtx;
+ int (*xToken)(void*, int, const char*, int, int, int);
+ char *aBuf;
+};
+
+typedef struct PorterRule PorterRule;
+struct PorterRule {
+ const char *zSuffix;
+ int nSuffix;
+ int (*xCond)(char *zStem, int nStem);
+ const char *zOutput;
+ int nOutput;
+};
+
+#if 0
+static int fts5PorterApply(char *aBuf, int *pnBuf, PorterRule *aRule){
+ int ret = -1;
+ int nBuf = *pnBuf;
+ PorterRule *p;
+
+ for(p=aRule; p->zSuffix; p++){
+ assert( strlen(p->zSuffix)==p->nSuffix );
+ assert( strlen(p->zOutput)==p->nOutput );
+ if( nBuf<p->nSuffix ) continue;
+ if( 0==memcmp(&aBuf[nBuf - p->nSuffix], p->zSuffix, p->nSuffix) ) break;
+ }
+
+ if( p->zSuffix ){
+ int nStem = nBuf - p->nSuffix;
+ if( p->xCond==0 || p->xCond(aBuf, nStem) ){
+ memcpy(&aBuf[nStem], p->zOutput, p->nOutput);
+ *pnBuf = nStem + p->nOutput;
+ ret = p - aRule;
+ }
+ }
+
+ return ret;
+}
+#endif
+
+static int fts5PorterIsVowel(char c, int bYIsVowel){
+ return (
+ c=='a' || c=='e' || c=='i' || c=='o' || c=='u' || (bYIsVowel && c=='y')
+ );
+}
+
+static int fts5PorterGobbleVC(char *zStem, int nStem, int bPrevCons){
+ int i;
+ int bCons = bPrevCons;
+
+ /* Scan for a vowel */
+ for(i=0; i<nStem; i++){
+ if( 0==(bCons = !fts5PorterIsVowel(zStem[i], bCons)) ) break;
+ }
+
+ /* Scan for a consonent */
+ for(i++; i<nStem; i++){
+ if( (bCons = !fts5PorterIsVowel(zStem[i], bCons)) ) return i+1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (m > 0) */
+static int fts5Porter_MGt0(char *zStem, int nStem){
+ return !!fts5PorterGobbleVC(zStem, nStem, 0);
+}
+
+/* porter rule condition: (m > 1) */
+static int fts5Porter_MGt1(char *zStem, int nStem){
+ int n;
+ n = fts5PorterGobbleVC(zStem, nStem, 0);
+ if( n && fts5PorterGobbleVC(&zStem[n], nStem-n, 1) ){
+ return 1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (m = 1) */
+static int fts5Porter_MEq1(char *zStem, int nStem){
+ int n;
+ n = fts5PorterGobbleVC(zStem, nStem, 0);
+ if( n && 0==fts5PorterGobbleVC(&zStem[n], nStem-n, 1) ){
+ return 1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (*o) */
+static int fts5Porter_Ostar(char *zStem, int nStem){
+ if( zStem[nStem-1]=='w' || zStem[nStem-1]=='x' || zStem[nStem-1]=='y' ){
+ return 0;
+ }else{
+ int i;
+ int mask = 0;
+ int bCons = 0;
+ for(i=0; i<nStem; i++){
+ bCons = !fts5PorterIsVowel(zStem[i], bCons);
+ assert( bCons==0 || bCons==1 );
+ mask = (mask << 1) + bCons;
+ }
+ return ((mask & 0x0007)==0x0005);
+ }
+}
+
+/* porter rule condition: (m > 1 and (*S or *T)) */
+static int fts5Porter_MGt1_and_S_or_T(char *zStem, int nStem){
+ assert( nStem>0 );
+ return (zStem[nStem-1]=='s' || zStem[nStem-1]=='t')
+ && fts5Porter_MGt1(zStem, nStem);
+}
+
+/* porter rule condition: (*v*) */
+static int fts5Porter_Vowel(char *zStem, int nStem){
+ int i;
+ for(i=0; i<nStem; i++){
+ if( fts5PorterIsVowel(zStem[i], i>0) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/**************************************************************************
+***************************************************************************
+** GENERATED CODE STARTS HERE (mkportersteps.tcl)
+*/
+
+static int fts5PorterStep4(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>2 && 0==memcmp("al", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'c':
+ if( nBuf>4 && 0==memcmp("ance", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("ence", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 'e':
+ if( nBuf>2 && 0==memcmp("er", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'i':
+ if( nBuf>2 && 0==memcmp("ic", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'l':
+ if( nBuf>4 && 0==memcmp("able", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("ible", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 'n':
+ if( nBuf>3 && 0==memcmp("ant", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>5 && 0==memcmp("ement", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-5) ){
+ *pnBuf = nBuf - 5;
+ }
+ }else if( nBuf>4 && 0==memcmp("ment", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>3 && 0==memcmp("ent", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'o':
+ if( nBuf>3 && 0==memcmp("ion", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1_and_S_or_T(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>2 && 0==memcmp("ou", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>3 && 0==memcmp("ism", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>3 && 0==memcmp("ate", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>3 && 0==memcmp("iti", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'u':
+ if( nBuf>3 && 0==memcmp("ous", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'v':
+ if( nBuf>3 && 0==memcmp("ive", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'z':
+ if( nBuf>3 && 0==memcmp("ize", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep1B2(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>2 && 0==memcmp("at", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ate", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ case 'b':
+ if( nBuf>2 && 0==memcmp("bl", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ble", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ case 'i':
+ if( nBuf>2 && 0==memcmp("iz", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ize", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep2(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>7 && 0==memcmp("ational", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ate", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>6 && 0==memcmp("tional", &aBuf[nBuf-6], 6) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-6) ){
+ memcpy(&aBuf[nBuf-6], "tion", 4);
+ *pnBuf = nBuf - 6 + 4;
+ }
+ }
+ break;
+
+ case 'c':
+ if( nBuf>4 && 0==memcmp("enci", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ence", 4);
+ *pnBuf = nBuf - 4 + 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("anci", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ance", 4);
+ *pnBuf = nBuf - 4 + 4;
+ }
+ }
+ break;
+
+ case 'e':
+ if( nBuf>4 && 0==memcmp("izer", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ize", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 'g':
+ if( nBuf>4 && 0==memcmp("logi", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "log", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 'l':
+ if( nBuf>3 && 0==memcmp("bli", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "ble", 3);
+ *pnBuf = nBuf - 3 + 3;
+ }
+ }else if( nBuf>4 && 0==memcmp("alli", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "al", 2);
+ *pnBuf = nBuf - 4 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("entli", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ent", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>3 && 0==memcmp("eli", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "e", 1);
+ *pnBuf = nBuf - 3 + 1;
+ }
+ }else if( nBuf>5 && 0==memcmp("ousli", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ous", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }
+ break;
+
+ case 'o':
+ if( nBuf>7 && 0==memcmp("ization", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ize", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>5 && 0==memcmp("ation", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ate", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>4 && 0==memcmp("ator", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ate", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>5 && 0==memcmp("alism", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>7 && 0==memcmp("iveness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ive", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>7 && 0==memcmp("fulness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ful", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>7 && 0==memcmp("ousness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ous", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>5 && 0==memcmp("aliti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("iviti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ive", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>6 && 0==memcmp("biliti", &aBuf[nBuf-6], 6) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-6) ){
+ memcpy(&aBuf[nBuf-6], "ble", 3);
+ *pnBuf = nBuf - 6 + 3;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep3(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>4 && 0==memcmp("ical", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ic", 2);
+ *pnBuf = nBuf - 4 + 2;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>4 && 0==memcmp("ness", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>5 && 0==memcmp("icate", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ic", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("iciti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ic", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }
+ break;
+
+ case 'u':
+ if( nBuf>3 && 0==memcmp("ful", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'v':
+ if( nBuf>5 && 0==memcmp("ative", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ *pnBuf = nBuf - 5;
+ }
+ }
+ break;
+
+ case 'z':
+ if( nBuf>5 && 0==memcmp("alize", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep1B(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'e':
+ if( nBuf>3 && 0==memcmp("eed", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "ee", 2);
+ *pnBuf = nBuf - 3 + 2;
+ }
+ }else if( nBuf>2 && 0==memcmp("ed", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_Vowel(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ ret = 1;
+ }
+ }
+ break;
+
+ case 'n':
+ if( nBuf>3 && 0==memcmp("ing", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_Vowel(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ ret = 1;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+/*
+** GENERATED CODE ENDS HERE (mkportersteps.tcl)
+***************************************************************************
+**************************************************************************/
+
+static void fts5PorterStep1A(char *aBuf, int *pnBuf){
+ int nBuf = *pnBuf;
+ if( aBuf[nBuf-1]=='s' ){
+ if( aBuf[nBuf-2]=='e' ){
+ if( (nBuf>4 && aBuf[nBuf-4]=='s' && aBuf[nBuf-3]=='s')
+ || (nBuf>3 && aBuf[nBuf-3]=='i' )
+ ){
+ *pnBuf = nBuf-2;
+ }else{
+ *pnBuf = nBuf-1;
+ }
+ }
+ else if( aBuf[nBuf-2]!='s' ){
+ *pnBuf = nBuf-1;
+ }
+ }
+}
+
+static int fts5PorterCb(
+ void *pCtx,
+ int tflags,
+ const char *pToken,
+ int nToken,
+ int iStart,
+ int iEnd
+){
+ PorterContext *p = (PorterContext*)pCtx;
+
+ char *aBuf;
+ int nBuf;
+
+ if( nToken>FTS5_PORTER_MAX_TOKEN || nToken<3 ) goto pass_through;
+ aBuf = p->aBuf;
+ nBuf = nToken;
+ memcpy(aBuf, pToken, nBuf);
+
+ /* Step 1. */
+ fts5PorterStep1A(aBuf, &nBuf);
+ if( fts5PorterStep1B(aBuf, &nBuf) ){
+ if( fts5PorterStep1B2(aBuf, &nBuf)==0 ){
+ char c = aBuf[nBuf-1];
+ if( fts5PorterIsVowel(c, 0)==0
+ && c!='l' && c!='s' && c!='z' && c==aBuf[nBuf-2]
+ ){
+ nBuf--;
+ }else if( fts5Porter_MEq1(aBuf, nBuf) && fts5Porter_Ostar(aBuf, nBuf) ){
+ aBuf[nBuf++] = 'e';
+ }
+ }
+ }
+
+ /* Step 1C. */
+ if( aBuf[nBuf-1]=='y' && fts5Porter_Vowel(aBuf, nBuf-1) ){
+ aBuf[nBuf-1] = 'i';
+ }
+
+ /* Steps 2 through 4. */
+ fts5PorterStep2(aBuf, &nBuf);
+ fts5PorterStep3(aBuf, &nBuf);
+ fts5PorterStep4(aBuf, &nBuf);
+
+ /* Step 5a. */
+ assert( nBuf>0 );
+ if( aBuf[nBuf-1]=='e' ){
+ if( fts5Porter_MGt1(aBuf, nBuf-1)
+ || (fts5Porter_MEq1(aBuf, nBuf-1) && !fts5Porter_Ostar(aBuf, nBuf-1))
+ ){
+ nBuf--;
+ }
+ }
+
+ /* Step 5b. */
+ if( nBuf>1 && aBuf[nBuf-1]=='l'
+ && aBuf[nBuf-2]=='l' && fts5Porter_MGt1(aBuf, nBuf-1)
+ ){
+ nBuf--;
+ }
+
+ return p->xToken(p->pCtx, tflags, aBuf, nBuf, iStart, iEnd);
+
+ pass_through:
+ return p->xToken(p->pCtx, tflags, pToken, nToken, iStart, iEnd);
+}
+
+/*
+** Tokenize using the porter tokenizer.
+*/
+static int fts5PorterTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int flags,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ PorterTokenizer *p = (PorterTokenizer*)pTokenizer;
+ PorterContext sCtx;
+ sCtx.xToken = xToken;
+ sCtx.pCtx = pCtx;
+ sCtx.aBuf = p->aBuf;
+ return p->tokenizer.xTokenize(
+ p->pTokenizer, (void*)&sCtx, flags, pText, nText, fts5PorterCb
+ );
+}
+
+/**************************************************************************
+** Start of trigram implementation.
+*/
+typedef struct TrigramTokenizer TrigramTokenizer;
+struct TrigramTokenizer {
+ int bFold; /* True to fold to lower-case */
+};
+
+/*
+** Free a trigram tokenizer.
+*/
+static void fts5TriDelete(Fts5Tokenizer *p){
+ sqlite3_free(p);
+}
+
+/*
+** Allocate a trigram tokenizer.
+*/
+static int fts5TriCreate(
+ void *pUnused,
+ const char **azArg,
+ int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK;
+ TrigramTokenizer *pNew = (TrigramTokenizer*)sqlite3_malloc(sizeof(*pNew));
+ UNUSED_PARAM(pUnused);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ pNew->bFold = 1;
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "case_sensitive") ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1] ){
+ rc = SQLITE_ERROR;
+ }else{
+ pNew->bFold = (zArg[0]=='0');
+ }
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ fts5TriDelete((Fts5Tokenizer*)pNew);
+ pNew = 0;
+ }
+ }
+ *ppOut = (Fts5Tokenizer*)pNew;
+ return rc;
+}
+
+/*
+** Trigram tokenizer tokenize routine.
+*/
+static int fts5TriTokenize(
+ Fts5Tokenizer *pTok,
+ void *pCtx,
+ int unusedFlags,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int, int, int)
+){
+ TrigramTokenizer *p = (TrigramTokenizer*)pTok;
+ int rc = SQLITE_OK;
+ char aBuf[32];
+ const unsigned char *zIn = (const unsigned char*)pText;
+ const unsigned char *zEof = &zIn[nText];
+ u32 iCode;
+
+ UNUSED_PARAM(unusedFlags);
+ while( 1 ){
+ char *zOut = aBuf;
+ int iStart = zIn - (const unsigned char*)pText;
+ const unsigned char *zNext;
+
+ READ_UTF8(zIn, zEof, iCode);
+ if( iCode==0 ) break;
+ zNext = zIn;
+ if( zIn<zEof ){
+ if( p->bFold ) iCode = sqlite3Fts5UnicodeFold(iCode, 0);
+ WRITE_UTF8(zOut, iCode);
+ READ_UTF8(zIn, zEof, iCode);
+ if( iCode==0 ) break;
+ }else{
+ break;
+ }
+ if( zIn<zEof ){
+ if( p->bFold ) iCode = sqlite3Fts5UnicodeFold(iCode, 0);
+ WRITE_UTF8(zOut, iCode);
+ READ_UTF8(zIn, zEof, iCode);
+ if( iCode==0 ) break;
+ if( p->bFold ) iCode = sqlite3Fts5UnicodeFold(iCode, 0);
+ WRITE_UTF8(zOut, iCode);
+ }else{
+ break;
+ }
+ rc = xToken(pCtx, 0, aBuf, zOut-aBuf, iStart, iStart + zOut-aBuf);
+ if( rc!=SQLITE_OK ) break;
+ zIn = zNext;
+ }
+
+ return rc;
+}
+
+/*
+** Argument xCreate is a pointer to a constructor function for a tokenizer.
+** pTok is a tokenizer previously created using the same method. This function
+** returns one of FTS5_PATTERN_NONE, FTS5_PATTERN_LIKE or FTS5_PATTERN_GLOB
+** indicating the style of pattern matching that the tokenizer can support.
+** In practice, this is:
+**
+** "trigram" tokenizer, case_sensitive=1 - FTS5_PATTERN_GLOB
+** "trigram" tokenizer, case_sensitive=0 (the default) - FTS5_PATTERN_LIKE
+** all other tokenizers - FTS5_PATTERN_NONE
+*/
+static int sqlite3Fts5TokenizerPattern(
+ int (*xCreate)(void*, const char**, int, Fts5Tokenizer**),
+ Fts5Tokenizer *pTok
+){
+ if( xCreate==fts5TriCreate ){
+ TrigramTokenizer *p = (TrigramTokenizer*)pTok;
+ return p->bFold ? FTS5_PATTERN_LIKE : FTS5_PATTERN_GLOB;
+ }
+ return FTS5_PATTERN_NONE;
+}
+
+/*
+** Register all built-in tokenizers with FTS5.
+*/
+static int sqlite3Fts5TokenizerInit(fts5_api *pApi){
+ struct BuiltinTokenizer {
+ const char *zName;
+ fts5_tokenizer x;
+ } aBuiltin[] = {
+ { "unicode61", {fts5UnicodeCreate, fts5UnicodeDelete, fts5UnicodeTokenize}},
+ { "ascii", {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
+ { "porter", {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
+ { "trigram", {fts5TriCreate, fts5TriDelete, fts5TriTokenize}},
+ };
+
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* To iterate through builtin functions */
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
+ rc = pApi->xCreateTokenizer(pApi,
+ aBuiltin[i].zName,
+ (void*)pApi,
+ &aBuiltin[i].x,
+ 0
+ );
+ }
+
+ return rc;
+}
+
+/*
+** 2012-05-25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/*
+** DO NOT EDIT THIS MACHINE GENERATED FILE.
+*/
+
+
+/* #include <assert.h> */
+
+
+
+/*
+** If the argument is a codepoint corresponding to a lowercase letter
+** in the ASCII range with a diacritic added, return the codepoint
+** of the ASCII letter only. For example, if passed 235 - "LATIN
+** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
+** E"). The resuls of passing a codepoint that corresponds to an
+** uppercase letter are undefined.
+*/
+static int fts5_remove_diacritic(int c, int bComplex){
+ unsigned short aDia[] = {
+ 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995,
+ 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286,
+ 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732,
+ 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336,
+ 3456, 3696, 3712, 3728, 3744, 3766, 3832, 3896,
+ 3912, 3928, 3944, 3968, 4008, 4040, 4056, 4106,
+ 4138, 4170, 4202, 4234, 4266, 4296, 4312, 4344,
+ 4408, 4424, 4442, 4472, 4488, 4504, 6148, 6198,
+ 6264, 6280, 6360, 6429, 6505, 6529, 61448, 61468,
+ 61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704,
+ 61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914,
+ 61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218,
+ 62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554,
+ 62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766,
+ 62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118,
+ 63182, 63242, 63274, 63310, 63368, 63390,
+ };
+#define HIBIT ((unsigned char)0x80)
+ unsigned char aChar[] = {
+ '\0', 'a', 'c', 'e', 'i', 'n',
+ 'o', 'u', 'y', 'y', 'a', 'c',
+ 'd', 'e', 'e', 'g', 'h', 'i',
+ 'j', 'k', 'l', 'n', 'o', 'r',
+ 's', 't', 'u', 'u', 'w', 'y',
+ 'z', 'o', 'u', 'a', 'i', 'o',
+ 'u', 'u'|HIBIT, 'a'|HIBIT, 'g', 'k', 'o',
+ 'o'|HIBIT, 'j', 'g', 'n', 'a'|HIBIT, 'a',
+ 'e', 'i', 'o', 'r', 'u', 's',
+ 't', 'h', 'a', 'e', 'o'|HIBIT, 'o',
+ 'o'|HIBIT, 'y', '\0', '\0', '\0', '\0',
+ '\0', '\0', '\0', '\0', 'a', 'b',
+ 'c'|HIBIT, 'd', 'd', 'e'|HIBIT, 'e', 'e'|HIBIT,
+ 'f', 'g', 'h', 'h', 'i', 'i'|HIBIT,
+ 'k', 'l', 'l'|HIBIT, 'l', 'm', 'n',
+ 'o'|HIBIT, 'p', 'r', 'r'|HIBIT, 'r', 's',
+ 's'|HIBIT, 't', 'u', 'u'|HIBIT, 'v', 'w',
+ 'w', 'x', 'y', 'z', 'h', 't',
+ 'w', 'y', 'a', 'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT,
+ 'e', 'e'|HIBIT, 'e'|HIBIT, 'i', 'o', 'o'|HIBIT,
+ 'o'|HIBIT, 'o'|HIBIT, 'u', 'u'|HIBIT, 'u'|HIBIT, 'y',
+ };
+
+ unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
+ int iRes = 0;
+ int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aDia[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( key>=aDia[iRes] );
+ if( bComplex==0 && (aChar[iRes] & 0x80) ) return c;
+ return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F);
+}
+
+
+/*
+** Return true if the argument interpreted as a unicode codepoint
+** is a diacritical modifier character.
+*/
+static int sqlite3Fts5UnicodeIsdiacritic(int c){
+ unsigned int mask0 = 0x08029FDF;
+ unsigned int mask1 = 0x000361F8;
+ if( c<768 || c>817 ) return 0;
+ return (c < 768+32) ?
+ (mask0 & ((unsigned int)1 << (c-768))) :
+ (mask1 & ((unsigned int)1 << (c-768-32)));
+}
+
+
+/*
+** Interpret the argument as a unicode codepoint. If the codepoint
+** is an upper case character that has a lower case equivalent,
+** return the codepoint corresponding to the lower case version.
+** Otherwise, return a copy of the argument.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+static int sqlite3Fts5UnicodeFold(int c, int eRemoveDiacritic){
+ /* Each entry in the following array defines a rule for folding a range
+ ** of codepoints to lower case. The rule applies to a range of nRange
+ ** codepoints starting at codepoint iCode.
+ **
+ ** If the least significant bit in flags is clear, then the rule applies
+ ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
+ ** need to be folded). Or, if it is set, then the rule only applies to
+ ** every second codepoint in the range, starting with codepoint C.
+ **
+ ** The 7 most significant bits in flags are an index into the aiOff[]
+ ** array. If a specific codepoint C does require folding, then its lower
+ ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
+ **
+ ** The contents of this array are generated by parsing the CaseFolding.txt
+ ** file distributed as part of the "Unicode Character Database". See
+ ** http://www.unicode.org for details.
+ */
+ static const struct TableEntry {
+ unsigned short iCode;
+ unsigned char flags;
+ unsigned char nRange;
+ } aEntry[] = {
+ {65, 14, 26}, {181, 64, 1}, {192, 14, 23},
+ {216, 14, 7}, {256, 1, 48}, {306, 1, 6},
+ {313, 1, 16}, {330, 1, 46}, {376, 116, 1},
+ {377, 1, 6}, {383, 104, 1}, {385, 50, 1},
+ {386, 1, 4}, {390, 44, 1}, {391, 0, 1},
+ {393, 42, 2}, {395, 0, 1}, {398, 32, 1},
+ {399, 38, 1}, {400, 40, 1}, {401, 0, 1},
+ {403, 42, 1}, {404, 46, 1}, {406, 52, 1},
+ {407, 48, 1}, {408, 0, 1}, {412, 52, 1},
+ {413, 54, 1}, {415, 56, 1}, {416, 1, 6},
+ {422, 60, 1}, {423, 0, 1}, {425, 60, 1},
+ {428, 0, 1}, {430, 60, 1}, {431, 0, 1},
+ {433, 58, 2}, {435, 1, 4}, {439, 62, 1},
+ {440, 0, 1}, {444, 0, 1}, {452, 2, 1},
+ {453, 0, 1}, {455, 2, 1}, {456, 0, 1},
+ {458, 2, 1}, {459, 1, 18}, {478, 1, 18},
+ {497, 2, 1}, {498, 1, 4}, {502, 122, 1},
+ {503, 134, 1}, {504, 1, 40}, {544, 110, 1},
+ {546, 1, 18}, {570, 70, 1}, {571, 0, 1},
+ {573, 108, 1}, {574, 68, 1}, {577, 0, 1},
+ {579, 106, 1}, {580, 28, 1}, {581, 30, 1},
+ {582, 1, 10}, {837, 36, 1}, {880, 1, 4},
+ {886, 0, 1}, {902, 18, 1}, {904, 16, 3},
+ {908, 26, 1}, {910, 24, 2}, {913, 14, 17},
+ {931, 14, 9}, {962, 0, 1}, {975, 4, 1},
+ {976, 140, 1}, {977, 142, 1}, {981, 146, 1},
+ {982, 144, 1}, {984, 1, 24}, {1008, 136, 1},
+ {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1},
+ {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1},
+ {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32},
+ {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1},
+ {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38},
+ {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1},
+ {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1},
+ {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6},
+ {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6},
+ {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8},
+ {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2},
+ {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1},
+ {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2},
+ {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2},
+ {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2},
+ {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1},
+ {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16},
+ {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47},
+ {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1},
+ {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1},
+ {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1},
+ {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2},
+ {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1},
+ {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14},
+ {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1},
+ {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1},
+ {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1},
+ {65313, 14, 26},
+ };
+ static const unsigned short aiOff[] = {
+ 1, 2, 8, 15, 16, 26, 28, 32,
+ 37, 38, 40, 48, 63, 64, 69, 71,
+ 79, 80, 116, 202, 203, 205, 206, 207,
+ 209, 210, 211, 213, 214, 217, 218, 219,
+ 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721,
+ 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
+ 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
+ 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
+ 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
+ 65514, 65521, 65527, 65528, 65529,
+ };
+
+ int ret = c;
+
+ assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
+
+ if( c<128 ){
+ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
+ }else if( c<65536 ){
+ const struct TableEntry *p;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ int iRes = -1;
+
+ assert( c>aEntry[0].iCode );
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ int cmp = (c - aEntry[iTest].iCode);
+ if( cmp>=0 ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+
+ assert( iRes>=0 && c>=aEntry[iRes].iCode );
+ p = &aEntry[iRes];
+ if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
+ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
+ assert( ret>0 );
+ }
+
+ if( eRemoveDiacritic ){
+ ret = fts5_remove_diacritic(ret, eRemoveDiacritic==2);
+ }
+ }
+
+ else if( c>=66560 && c<66600 ){
+ ret = c + 40;
+ }
+
+ return ret;
+}
+
+
+static int sqlite3Fts5UnicodeCatParse(const char *zCat, u8 *aArray){
+ aArray[0] = 1;
+ switch( zCat[0] ){
+ case 'C':
+ switch( zCat[1] ){
+ case 'c': aArray[1] = 1; break;
+ case 'f': aArray[2] = 1; break;
+ case 'n': aArray[3] = 1; break;
+ case 's': aArray[4] = 1; break;
+ case 'o': aArray[31] = 1; break;
+ case '*':
+ aArray[1] = 1;
+ aArray[2] = 1;
+ aArray[3] = 1;
+ aArray[4] = 1;
+ aArray[31] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'L':
+ switch( zCat[1] ){
+ case 'l': aArray[5] = 1; break;
+ case 'm': aArray[6] = 1; break;
+ case 'o': aArray[7] = 1; break;
+ case 't': aArray[8] = 1; break;
+ case 'u': aArray[9] = 1; break;
+ case 'C': aArray[30] = 1; break;
+ case '*':
+ aArray[5] = 1;
+ aArray[6] = 1;
+ aArray[7] = 1;
+ aArray[8] = 1;
+ aArray[9] = 1;
+ aArray[30] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'M':
+ switch( zCat[1] ){
+ case 'c': aArray[10] = 1; break;
+ case 'e': aArray[11] = 1; break;
+ case 'n': aArray[12] = 1; break;
+ case '*':
+ aArray[10] = 1;
+ aArray[11] = 1;
+ aArray[12] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'N':
+ switch( zCat[1] ){
+ case 'd': aArray[13] = 1; break;
+ case 'l': aArray[14] = 1; break;
+ case 'o': aArray[15] = 1; break;
+ case '*':
+ aArray[13] = 1;
+ aArray[14] = 1;
+ aArray[15] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'P':
+ switch( zCat[1] ){
+ case 'c': aArray[16] = 1; break;
+ case 'd': aArray[17] = 1; break;
+ case 'e': aArray[18] = 1; break;
+ case 'f': aArray[19] = 1; break;
+ case 'i': aArray[20] = 1; break;
+ case 'o': aArray[21] = 1; break;
+ case 's': aArray[22] = 1; break;
+ case '*':
+ aArray[16] = 1;
+ aArray[17] = 1;
+ aArray[18] = 1;
+ aArray[19] = 1;
+ aArray[20] = 1;
+ aArray[21] = 1;
+ aArray[22] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'S':
+ switch( zCat[1] ){
+ case 'c': aArray[23] = 1; break;
+ case 'k': aArray[24] = 1; break;
+ case 'm': aArray[25] = 1; break;
+ case 'o': aArray[26] = 1; break;
+ case '*':
+ aArray[23] = 1;
+ aArray[24] = 1;
+ aArray[25] = 1;
+ aArray[26] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'Z':
+ switch( zCat[1] ){
+ case 'l': aArray[27] = 1; break;
+ case 'p': aArray[28] = 1; break;
+ case 's': aArray[29] = 1; break;
+ case '*':
+ aArray[27] = 1;
+ aArray[28] = 1;
+ aArray[29] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ }
+ return 0;
+}
+
+static u16 aFts5UnicodeBlock[] = {
+ 0, 1471, 1753, 1760, 1760, 1760, 1760, 1760, 1760, 1760,
+ 1760, 1760, 1760, 1760, 1760, 1763, 1765,
+ };
+static u16 aFts5UnicodeMap[] = {
+ 0, 32, 33, 36, 37, 40, 41, 42, 43, 44,
+ 45, 46, 48, 58, 60, 63, 65, 91, 92, 93,
+ 94, 95, 96, 97, 123, 124, 125, 126, 127, 160,
+ 161, 162, 166, 167, 168, 169, 170, 171, 172, 173,
+ 174, 175, 176, 177, 178, 180, 181, 182, 184, 185,
+ 186, 187, 188, 191, 192, 215, 216, 223, 247, 248,
+ 256, 312, 313, 329, 330, 377, 383, 385, 387, 388,
+ 391, 394, 396, 398, 402, 403, 405, 406, 409, 412,
+ 414, 415, 417, 418, 423, 427, 428, 431, 434, 436,
+ 437, 440, 442, 443, 444, 446, 448, 452, 453, 454,
+ 455, 456, 457, 458, 459, 460, 461, 477, 478, 496,
+ 497, 498, 499, 500, 503, 505, 506, 564, 570, 572,
+ 573, 575, 577, 580, 583, 584, 592, 660, 661, 688,
+ 706, 710, 722, 736, 741, 748, 749, 750, 751, 768,
+ 880, 884, 885, 886, 890, 891, 894, 900, 902, 903,
+ 904, 908, 910, 912, 913, 931, 940, 975, 977, 978,
+ 981, 984, 1008, 1012, 1014, 1015, 1018, 1020, 1021, 1072,
+ 1120, 1154, 1155, 1160, 1162, 1217, 1231, 1232, 1329, 1369,
+ 1370, 1377, 1417, 1418, 1423, 1425, 1470, 1471, 1472, 1473,
+ 1475, 1476, 1478, 1479, 1488, 1520, 1523, 1536, 1542, 1545,
+ 1547, 1548, 1550, 1552, 1563, 1566, 1568, 1600, 1601, 1611,
+ 1632, 1642, 1646, 1648, 1649, 1748, 1749, 1750, 1757, 1758,
+ 1759, 1765, 1767, 1769, 1770, 1774, 1776, 1786, 1789, 1791,
+ 1792, 1807, 1808, 1809, 1810, 1840, 1869, 1958, 1969, 1984,
+ 1994, 2027, 2036, 2038, 2039, 2042, 2048, 2070, 2074, 2075,
+ 2084, 2085, 2088, 2089, 2096, 2112, 2137, 2142, 2208, 2210,
+ 2276, 2304, 2307, 2308, 2362, 2363, 2364, 2365, 2366, 2369,
+ 2377, 2381, 2382, 2384, 2385, 2392, 2402, 2404, 2406, 2416,
+ 2417, 2418, 2425, 2433, 2434, 2437, 2447, 2451, 2474, 2482,
+ 2486, 2492, 2493, 2494, 2497, 2503, 2507, 2509, 2510, 2519,
+ 2524, 2527, 2530, 2534, 2544, 2546, 2548, 2554, 2555, 2561,
+ 2563, 2565, 2575, 2579, 2602, 2610, 2613, 2616, 2620, 2622,
+ 2625, 2631, 2635, 2641, 2649, 2654, 2662, 2672, 2674, 2677,
+ 2689, 2691, 2693, 2703, 2707, 2730, 2738, 2741, 2748, 2749,
+ 2750, 2753, 2759, 2761, 2763, 2765, 2768, 2784, 2786, 2790,
+ 2800, 2801, 2817, 2818, 2821, 2831, 2835, 2858, 2866, 2869,
+ 2876, 2877, 2878, 2879, 2880, 2881, 2887, 2891, 2893, 2902,
+ 2903, 2908, 2911, 2914, 2918, 2928, 2929, 2930, 2946, 2947,
+ 2949, 2958, 2962, 2969, 2972, 2974, 2979, 2984, 2990, 3006,
+ 3008, 3009, 3014, 3018, 3021, 3024, 3031, 3046, 3056, 3059,
+ 3065, 3066, 3073, 3077, 3086, 3090, 3114, 3125, 3133, 3134,
+ 3137, 3142, 3146, 3157, 3160, 3168, 3170, 3174, 3192, 3199,
+ 3202, 3205, 3214, 3218, 3242, 3253, 3260, 3261, 3262, 3263,
+ 3264, 3270, 3271, 3274, 3276, 3285, 3294, 3296, 3298, 3302,
+ 3313, 3330, 3333, 3342, 3346, 3389, 3390, 3393, 3398, 3402,
+ 3405, 3406, 3415, 3424, 3426, 3430, 3440, 3449, 3450, 3458,
+ 3461, 3482, 3507, 3517, 3520, 3530, 3535, 3538, 3542, 3544,
+ 3570, 3572, 3585, 3633, 3634, 3636, 3647, 3648, 3654, 3655,
+ 3663, 3664, 3674, 3713, 3716, 3719, 3722, 3725, 3732, 3737,
+ 3745, 3749, 3751, 3754, 3757, 3761, 3762, 3764, 3771, 3773,
+ 3776, 3782, 3784, 3792, 3804, 3840, 3841, 3844, 3859, 3860,
+ 3861, 3864, 3866, 3872, 3882, 3892, 3893, 3894, 3895, 3896,
+ 3897, 3898, 3899, 3900, 3901, 3902, 3904, 3913, 3953, 3967,
+ 3968, 3973, 3974, 3976, 3981, 3993, 4030, 4038, 4039, 4046,
+ 4048, 4053, 4057, 4096, 4139, 4141, 4145, 4146, 4152, 4153,
+ 4155, 4157, 4159, 4160, 4170, 4176, 4182, 4184, 4186, 4190,
+ 4193, 4194, 4197, 4199, 4206, 4209, 4213, 4226, 4227, 4229,
+ 4231, 4237, 4238, 4239, 4240, 4250, 4253, 4254, 4256, 4295,
+ 4301, 4304, 4347, 4348, 4349, 4682, 4688, 4696, 4698, 4704,
+ 4746, 4752, 4786, 4792, 4800, 4802, 4808, 4824, 4882, 4888,
+ 4957, 4960, 4969, 4992, 5008, 5024, 5120, 5121, 5741, 5743,
+ 5760, 5761, 5787, 5788, 5792, 5867, 5870, 5888, 5902, 5906,
+ 5920, 5938, 5941, 5952, 5970, 5984, 5998, 6002, 6016, 6068,
+ 6070, 6071, 6078, 6086, 6087, 6089, 6100, 6103, 6104, 6107,
+ 6108, 6109, 6112, 6128, 6144, 6150, 6151, 6155, 6158, 6160,
+ 6176, 6211, 6212, 6272, 6313, 6314, 6320, 6400, 6432, 6435,
+ 6439, 6441, 6448, 6450, 6451, 6457, 6464, 6468, 6470, 6480,
+ 6512, 6528, 6576, 6593, 6600, 6608, 6618, 6622, 6656, 6679,
+ 6681, 6686, 6688, 6741, 6742, 6743, 6744, 6752, 6753, 6754,
+ 6755, 6757, 6765, 6771, 6783, 6784, 6800, 6816, 6823, 6824,
+ 6912, 6916, 6917, 6964, 6965, 6966, 6971, 6972, 6973, 6978,
+ 6979, 6981, 6992, 7002, 7009, 7019, 7028, 7040, 7042, 7043,
+ 7073, 7074, 7078, 7080, 7082, 7083, 7084, 7086, 7088, 7098,
+ 7142, 7143, 7144, 7146, 7149, 7150, 7151, 7154, 7164, 7168,
+ 7204, 7212, 7220, 7222, 7227, 7232, 7245, 7248, 7258, 7288,
+ 7294, 7360, 7376, 7379, 7380, 7393, 7394, 7401, 7405, 7406,
+ 7410, 7412, 7413, 7424, 7468, 7531, 7544, 7545, 7579, 7616,
+ 7676, 7680, 7830, 7838, 7936, 7944, 7952, 7960, 7968, 7976,
+ 7984, 7992, 8000, 8008, 8016, 8025, 8027, 8029, 8031, 8033,
+ 8040, 8048, 8064, 8072, 8080, 8088, 8096, 8104, 8112, 8118,
+ 8120, 8124, 8125, 8126, 8127, 8130, 8134, 8136, 8140, 8141,
+ 8144, 8150, 8152, 8157, 8160, 8168, 8173, 8178, 8182, 8184,
+ 8188, 8189, 8192, 8203, 8208, 8214, 8216, 8217, 8218, 8219,
+ 8221, 8222, 8223, 8224, 8232, 8233, 8234, 8239, 8240, 8249,
+ 8250, 8251, 8255, 8257, 8260, 8261, 8262, 8263, 8274, 8275,
+ 8276, 8277, 8287, 8288, 8298, 8304, 8305, 8308, 8314, 8317,
+ 8318, 8319, 8320, 8330, 8333, 8334, 8336, 8352, 8400, 8413,
+ 8417, 8418, 8421, 8448, 8450, 8451, 8455, 8456, 8458, 8459,
+ 8462, 8464, 8467, 8468, 8469, 8470, 8472, 8473, 8478, 8484,
+ 8485, 8486, 8487, 8488, 8489, 8490, 8494, 8495, 8496, 8500,
+ 8501, 8505, 8506, 8508, 8510, 8512, 8517, 8519, 8522, 8523,
+ 8524, 8526, 8527, 8528, 8544, 8579, 8581, 8585, 8592, 8597,
+ 8602, 8604, 8608, 8609, 8611, 8612, 8614, 8615, 8622, 8623,
+ 8654, 8656, 8658, 8659, 8660, 8661, 8692, 8960, 8968, 8972,
+ 8992, 8994, 9001, 9002, 9003, 9084, 9085, 9115, 9140, 9180,
+ 9186, 9216, 9280, 9312, 9372, 9450, 9472, 9655, 9656, 9665,
+ 9666, 9720, 9728, 9839, 9840, 9985, 10088, 10089, 10090, 10091,
+ 10092, 10093, 10094, 10095, 10096, 10097, 10098, 10099, 10100, 10101,
+ 10102, 10132, 10176, 10181, 10182, 10183, 10214, 10215, 10216, 10217,
+ 10218, 10219, 10220, 10221, 10222, 10223, 10224, 10240, 10496, 10627,
+ 10628, 10629, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637,
+ 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647,
+ 10648, 10649, 10712, 10713, 10714, 10715, 10716, 10748, 10749, 10750,
+ 11008, 11056, 11077, 11079, 11088, 11264, 11312, 11360, 11363, 11365,
+ 11367, 11374, 11377, 11378, 11380, 11381, 11383, 11388, 11390, 11393,
+ 11394, 11492, 11493, 11499, 11503, 11506, 11513, 11517, 11518, 11520,
+ 11559, 11565, 11568, 11631, 11632, 11647, 11648, 11680, 11688, 11696,
+ 11704, 11712, 11720, 11728, 11736, 11744, 11776, 11778, 11779, 11780,
+ 11781, 11782, 11785, 11786, 11787, 11788, 11789, 11790, 11799, 11800,
+ 11802, 11803, 11804, 11805, 11806, 11808, 11809, 11810, 11811, 11812,
+ 11813, 11814, 11815, 11816, 11817, 11818, 11823, 11824, 11834, 11904,
+ 11931, 12032, 12272, 12288, 12289, 12292, 12293, 12294, 12295, 12296,
+ 12297, 12298, 12299, 12300, 12301, 12302, 12303, 12304, 12305, 12306,
+ 12308, 12309, 12310, 12311, 12312, 12313, 12314, 12315, 12316, 12317,
+ 12318, 12320, 12321, 12330, 12334, 12336, 12337, 12342, 12344, 12347,
+ 12348, 12349, 12350, 12353, 12441, 12443, 12445, 12447, 12448, 12449,
+ 12539, 12540, 12543, 12549, 12593, 12688, 12690, 12694, 12704, 12736,
+ 12784, 12800, 12832, 12842, 12872, 12880, 12881, 12896, 12928, 12938,
+ 12977, 12992, 13056, 13312, 19893, 19904, 19968, 40908, 40960, 40981,
+ 40982, 42128, 42192, 42232, 42238, 42240, 42508, 42509, 42512, 42528,
+ 42538, 42560, 42606, 42607, 42608, 42611, 42612, 42622, 42623, 42624,
+ 42655, 42656, 42726, 42736, 42738, 42752, 42775, 42784, 42786, 42800,
+ 42802, 42864, 42865, 42873, 42878, 42888, 42889, 42891, 42896, 42912,
+ 43000, 43002, 43003, 43010, 43011, 43014, 43015, 43019, 43020, 43043,
+ 43045, 43047, 43048, 43056, 43062, 43064, 43065, 43072, 43124, 43136,
+ 43138, 43188, 43204, 43214, 43216, 43232, 43250, 43256, 43259, 43264,
+ 43274, 43302, 43310, 43312, 43335, 43346, 43359, 43360, 43392, 43395,
+ 43396, 43443, 43444, 43446, 43450, 43452, 43453, 43457, 43471, 43472,
+ 43486, 43520, 43561, 43567, 43569, 43571, 43573, 43584, 43587, 43588,
+ 43596, 43597, 43600, 43612, 43616, 43632, 43633, 43639, 43642, 43643,
+ 43648, 43696, 43697, 43698, 43701, 43703, 43705, 43710, 43712, 43713,
+ 43714, 43739, 43741, 43742, 43744, 43755, 43756, 43758, 43760, 43762,
+ 43763, 43765, 43766, 43777, 43785, 43793, 43808, 43816, 43968, 44003,
+ 44005, 44006, 44008, 44009, 44011, 44012, 44013, 44016, 44032, 55203,
+ 55216, 55243, 55296, 56191, 56319, 57343, 57344, 63743, 63744, 64112,
+ 64256, 64275, 64285, 64286, 64287, 64297, 64298, 64312, 64318, 64320,
+ 64323, 64326, 64434, 64467, 64830, 64831, 64848, 64914, 65008, 65020,
+ 65021, 65024, 65040, 65047, 65048, 65049, 65056, 65072, 65073, 65075,
+ 65077, 65078, 65079, 65080, 65081, 65082, 65083, 65084, 65085, 65086,
+ 65087, 65088, 65089, 65090, 65091, 65092, 65093, 65095, 65096, 65097,
+ 65101, 65104, 65108, 65112, 65113, 65114, 65115, 65116, 65117, 65118,
+ 65119, 65122, 65123, 65124, 65128, 65129, 65130, 65136, 65142, 65279,
+ 65281, 65284, 65285, 65288, 65289, 65290, 65291, 65292, 65293, 65294,
+ 65296, 65306, 65308, 65311, 65313, 65339, 65340, 65341, 65342, 65343,
+ 65344, 65345, 65371, 65372, 65373, 65374, 65375, 65376, 65377, 65378,
+ 65379, 65380, 65382, 65392, 65393, 65438, 65440, 65474, 65482, 65490,
+ 65498, 65504, 65506, 65507, 65508, 65509, 65512, 65513, 65517, 65529,
+ 65532, 0, 13, 40, 60, 63, 80, 128, 256, 263,
+ 311, 320, 373, 377, 394, 400, 464, 509, 640, 672,
+ 768, 800, 816, 833, 834, 842, 896, 927, 928, 968,
+ 976, 977, 1024, 1064, 1104, 1184, 2048, 2056, 2058, 2103,
+ 2108, 2111, 2135, 2136, 2304, 2326, 2335, 2336, 2367, 2432,
+ 2494, 2560, 2561, 2565, 2572, 2576, 2581, 2585, 2616, 2623,
+ 2624, 2640, 2656, 2685, 2687, 2816, 2873, 2880, 2904, 2912,
+ 2936, 3072, 3680, 4096, 4097, 4098, 4099, 4152, 4167, 4178,
+ 4198, 4224, 4226, 4227, 4272, 4275, 4279, 4281, 4283, 4285,
+ 4286, 4304, 4336, 4352, 4355, 4391, 4396, 4397, 4406, 4416,
+ 4480, 4482, 4483, 4531, 4534, 4543, 4545, 4549, 4560, 5760,
+ 5803, 5804, 5805, 5806, 5808, 5814, 5815, 5824, 8192, 9216,
+ 9328, 12288, 26624, 28416, 28496, 28497, 28559, 28563, 45056, 53248,
+ 53504, 53545, 53605, 53607, 53610, 53613, 53619, 53627, 53635, 53637,
+ 53644, 53674, 53678, 53760, 53826, 53829, 54016, 54112, 54272, 54298,
+ 54324, 54350, 54358, 54376, 54402, 54428, 54430, 54434, 54437, 54441,
+ 54446, 54454, 54459, 54461, 54469, 54480, 54506, 54532, 54535, 54541,
+ 54550, 54558, 54584, 54587, 54592, 54598, 54602, 54610, 54636, 54662,
+ 54688, 54714, 54740, 54766, 54792, 54818, 54844, 54870, 54896, 54922,
+ 54952, 54977, 54978, 55003, 55004, 55010, 55035, 55036, 55061, 55062,
+ 55068, 55093, 55094, 55119, 55120, 55126, 55151, 55152, 55177, 55178,
+ 55184, 55209, 55210, 55235, 55236, 55242, 55246, 60928, 60933, 60961,
+ 60964, 60967, 60969, 60980, 60985, 60987, 60994, 60999, 61001, 61003,
+ 61005, 61009, 61012, 61015, 61017, 61019, 61021, 61023, 61025, 61028,
+ 61031, 61036, 61044, 61049, 61054, 61056, 61067, 61089, 61093, 61099,
+ 61168, 61440, 61488, 61600, 61617, 61633, 61649, 61696, 61712, 61744,
+ 61808, 61926, 61968, 62016, 62032, 62208, 62256, 62263, 62336, 62368,
+ 62406, 62432, 62464, 62528, 62530, 62713, 62720, 62784, 62800, 62971,
+ 63045, 63104, 63232, 0, 42710, 42752, 46900, 46912, 47133, 63488,
+ 1, 32, 256, 0, 65533,
+ };
+static u16 aFts5UnicodeData[] = {
+ 1025, 61, 117, 55, 117, 54, 50, 53, 57, 53,
+ 49, 85, 333, 85, 121, 85, 841, 54, 53, 50,
+ 56, 48, 56, 837, 54, 57, 50, 57, 1057, 61,
+ 53, 151, 58, 53, 56, 58, 39, 52, 57, 34,
+ 58, 56, 58, 57, 79, 56, 37, 85, 56, 47,
+ 39, 51, 111, 53, 745, 57, 233, 773, 57, 261,
+ 1822, 37, 542, 37, 1534, 222, 69, 73, 37, 126,
+ 126, 73, 69, 137, 37, 73, 37, 105, 101, 73,
+ 37, 73, 37, 190, 158, 37, 126, 126, 73, 37,
+ 126, 94, 37, 39, 94, 69, 135, 41, 40, 37,
+ 41, 40, 37, 41, 40, 37, 542, 37, 606, 37,
+ 41, 40, 37, 126, 73, 37, 1886, 197, 73, 37,
+ 73, 69, 126, 105, 37, 286, 2181, 39, 869, 582,
+ 152, 390, 472, 166, 248, 38, 56, 38, 568, 3596,
+ 158, 38, 56, 94, 38, 101, 53, 88, 41, 53,
+ 105, 41, 73, 37, 553, 297, 1125, 94, 37, 105,
+ 101, 798, 133, 94, 57, 126, 94, 37, 1641, 1541,
+ 1118, 58, 172, 75, 1790, 478, 37, 2846, 1225, 38,
+ 213, 1253, 53, 49, 55, 1452, 49, 44, 53, 76,
+ 53, 76, 53, 44, 871, 103, 85, 162, 121, 85,
+ 55, 85, 90, 364, 53, 85, 1031, 38, 327, 684,
+ 333, 149, 71, 44, 3175, 53, 39, 236, 34, 58,
+ 204, 70, 76, 58, 140, 71, 333, 103, 90, 39,
+ 469, 34, 39, 44, 967, 876, 2855, 364, 39, 333,
+ 1063, 300, 70, 58, 117, 38, 711, 140, 38, 300,
+ 38, 108, 38, 172, 501, 807, 108, 53, 39, 359,
+ 876, 108, 42, 1735, 44, 42, 44, 39, 106, 268,
+ 138, 44, 74, 39, 236, 327, 76, 85, 333, 53,
+ 38, 199, 231, 44, 74, 263, 71, 711, 231, 39,
+ 135, 44, 39, 106, 140, 74, 74, 44, 39, 42,
+ 71, 103, 76, 333, 71, 87, 207, 58, 55, 76,
+ 42, 199, 71, 711, 231, 71, 71, 71, 44, 106,
+ 76, 76, 108, 44, 135, 39, 333, 76, 103, 44,
+ 76, 42, 295, 103, 711, 231, 71, 167, 44, 39,
+ 106, 172, 76, 42, 74, 44, 39, 71, 76, 333,
+ 53, 55, 44, 74, 263, 71, 711, 231, 71, 167,
+ 44, 39, 42, 44, 42, 140, 74, 74, 44, 44,
+ 42, 71, 103, 76, 333, 58, 39, 207, 44, 39,
+ 199, 103, 135, 71, 39, 71, 71, 103, 391, 74,
+ 44, 74, 106, 106, 44, 39, 42, 333, 111, 218,
+ 55, 58, 106, 263, 103, 743, 327, 167, 39, 108,
+ 138, 108, 140, 76, 71, 71, 76, 333, 239, 58,
+ 74, 263, 103, 743, 327, 167, 44, 39, 42, 44,
+ 170, 44, 74, 74, 76, 74, 39, 71, 76, 333,
+ 71, 74, 263, 103, 1319, 39, 106, 140, 106, 106,
+ 44, 39, 42, 71, 76, 333, 207, 58, 199, 74,
+ 583, 775, 295, 39, 231, 44, 106, 108, 44, 266,
+ 74, 53, 1543, 44, 71, 236, 55, 199, 38, 268,
+ 53, 333, 85, 71, 39, 71, 39, 39, 135, 231,
+ 103, 39, 39, 71, 135, 44, 71, 204, 76, 39,
+ 167, 38, 204, 333, 135, 39, 122, 501, 58, 53,
+ 122, 76, 218, 333, 335, 58, 44, 58, 44, 58,
+ 44, 54, 50, 54, 50, 74, 263, 1159, 460, 42,
+ 172, 53, 76, 167, 364, 1164, 282, 44, 218, 90,
+ 181, 154, 85, 1383, 74, 140, 42, 204, 42, 76,
+ 74, 76, 39, 333, 213, 199, 74, 76, 135, 108,
+ 39, 106, 71, 234, 103, 140, 423, 44, 74, 76,
+ 202, 44, 39, 42, 333, 106, 44, 90, 1225, 41,
+ 41, 1383, 53, 38, 10631, 135, 231, 39, 135, 1319,
+ 135, 1063, 135, 231, 39, 135, 487, 1831, 135, 2151,
+ 108, 309, 655, 519, 346, 2727, 49, 19847, 85, 551,
+ 61, 839, 54, 50, 2407, 117, 110, 423, 135, 108,
+ 583, 108, 85, 583, 76, 423, 103, 76, 1671, 76,
+ 42, 236, 266, 44, 74, 364, 117, 38, 117, 55,
+ 39, 44, 333, 335, 213, 49, 149, 108, 61, 333,
+ 1127, 38, 1671, 1319, 44, 39, 2247, 935, 108, 138,
+ 76, 106, 74, 44, 202, 108, 58, 85, 333, 967,
+ 167, 1415, 554, 231, 74, 333, 47, 1114, 743, 76,
+ 106, 85, 1703, 42, 44, 42, 236, 44, 42, 44,
+ 74, 268, 202, 332, 44, 333, 333, 245, 38, 213,
+ 140, 42, 1511, 44, 42, 172, 42, 44, 170, 44,
+ 74, 231, 333, 245, 346, 300, 314, 76, 42, 967,
+ 42, 140, 74, 76, 42, 44, 74, 71, 333, 1415,
+ 44, 42, 76, 106, 44, 42, 108, 74, 149, 1159,
+ 266, 268, 74, 76, 181, 333, 103, 333, 967, 198,
+ 85, 277, 108, 53, 428, 42, 236, 135, 44, 135,
+ 74, 44, 71, 1413, 2022, 421, 38, 1093, 1190, 1260,
+ 140, 4830, 261, 3166, 261, 265, 197, 201, 261, 265,
+ 261, 265, 197, 201, 261, 41, 41, 41, 94, 229,
+ 265, 453, 261, 264, 261, 264, 261, 264, 165, 69,
+ 137, 40, 56, 37, 120, 101, 69, 137, 40, 120,
+ 133, 69, 137, 120, 261, 169, 120, 101, 69, 137,
+ 40, 88, 381, 162, 209, 85, 52, 51, 54, 84,
+ 51, 54, 52, 277, 59, 60, 162, 61, 309, 52,
+ 51, 149, 80, 117, 57, 54, 50, 373, 57, 53,
+ 48, 341, 61, 162, 194, 47, 38, 207, 121, 54,
+ 50, 38, 335, 121, 54, 50, 422, 855, 428, 139,
+ 44, 107, 396, 90, 41, 154, 41, 90, 37, 105,
+ 69, 105, 37, 58, 41, 90, 57, 169, 218, 41,
+ 58, 41, 58, 41, 58, 137, 58, 37, 137, 37,
+ 135, 37, 90, 69, 73, 185, 94, 101, 58, 57,
+ 90, 37, 58, 527, 1134, 94, 142, 47, 185, 186,
+ 89, 154, 57, 90, 57, 90, 57, 250, 57, 1018,
+ 89, 90, 57, 58, 57, 1018, 8601, 282, 153, 666,
+ 89, 250, 54, 50, 2618, 57, 986, 825, 1306, 217,
+ 602, 1274, 378, 1935, 2522, 719, 5882, 57, 314, 57,
+ 1754, 281, 3578, 57, 4634, 3322, 54, 50, 54, 50,
+ 54, 50, 54, 50, 54, 50, 54, 50, 54, 50,
+ 975, 1434, 185, 54, 50, 1017, 54, 50, 54, 50,
+ 54, 50, 54, 50, 54, 50, 537, 8218, 4217, 54,
+ 50, 54, 50, 54, 50, 54, 50, 54, 50, 54,
+ 50, 54, 50, 54, 50, 54, 50, 54, 50, 54,
+ 50, 2041, 54, 50, 54, 50, 1049, 54, 50, 8281,
+ 1562, 697, 90, 217, 346, 1513, 1509, 126, 73, 69,
+ 254, 105, 37, 94, 37, 94, 165, 70, 105, 37,
+ 3166, 37, 218, 158, 108, 94, 149, 47, 85, 1221,
+ 37, 37, 1799, 38, 53, 44, 743, 231, 231, 231,
+ 231, 231, 231, 231, 231, 1036, 85, 52, 51, 52,
+ 51, 117, 52, 51, 53, 52, 51, 309, 49, 85,
+ 49, 53, 52, 51, 85, 52, 51, 54, 50, 54,
+ 50, 54, 50, 54, 50, 181, 38, 341, 81, 858,
+ 2874, 6874, 410, 61, 117, 58, 38, 39, 46, 54,
+ 50, 54, 50, 54, 50, 54, 50, 54, 50, 90,
+ 54, 50, 54, 50, 54, 50, 54, 50, 49, 54,
+ 82, 58, 302, 140, 74, 49, 166, 90, 110, 38,
+ 39, 53, 90, 2759, 76, 88, 70, 39, 49, 2887,
+ 53, 102, 39, 1319, 3015, 90, 143, 346, 871, 1178,
+ 519, 1018, 335, 986, 271, 58, 495, 1050, 335, 1274,
+ 495, 2042, 8218, 39, 39, 2074, 39, 39, 679, 38,
+ 36583, 1786, 1287, 198, 85, 8583, 38, 117, 519, 333,
+ 71, 1502, 39, 44, 107, 53, 332, 53, 38, 798,
+ 44, 2247, 334, 76, 213, 760, 294, 88, 478, 69,
+ 2014, 38, 261, 190, 350, 38, 88, 158, 158, 382,
+ 70, 37, 231, 44, 103, 44, 135, 44, 743, 74,
+ 76, 42, 154, 207, 90, 55, 58, 1671, 149, 74,
+ 1607, 522, 44, 85, 333, 588, 199, 117, 39, 333,
+ 903, 268, 85, 743, 364, 74, 53, 935, 108, 42,
+ 1511, 44, 74, 140, 74, 44, 138, 437, 38, 333,
+ 85, 1319, 204, 74, 76, 74, 76, 103, 44, 263,
+ 44, 42, 333, 149, 519, 38, 199, 122, 39, 42,
+ 1543, 44, 39, 108, 71, 76, 167, 76, 39, 44,
+ 39, 71, 38, 85, 359, 42, 76, 74, 85, 39,
+ 70, 42, 44, 199, 199, 199, 231, 231, 1127, 74,
+ 44, 74, 44, 74, 53, 42, 44, 333, 39, 39,
+ 743, 1575, 36, 68, 68, 36, 63, 63, 11719, 3399,
+ 229, 165, 39, 44, 327, 57, 423, 167, 39, 71,
+ 71, 3463, 536, 11623, 54, 50, 2055, 1735, 391, 55,
+ 58, 524, 245, 54, 50, 53, 236, 53, 81, 80,
+ 54, 50, 54, 50, 54, 50, 54, 50, 54, 50,
+ 54, 50, 54, 50, 54, 50, 85, 54, 50, 149,
+ 112, 117, 149, 49, 54, 50, 54, 50, 54, 50,
+ 117, 57, 49, 121, 53, 55, 85, 167, 4327, 34,
+ 117, 55, 117, 54, 50, 53, 57, 53, 49, 85,
+ 333, 85, 121, 85, 841, 54, 53, 50, 56, 48,
+ 56, 837, 54, 57, 50, 57, 54, 50, 53, 54,
+ 50, 85, 327, 38, 1447, 70, 999, 199, 199, 199,
+ 103, 87, 57, 56, 58, 87, 58, 153, 90, 98,
+ 90, 391, 839, 615, 71, 487, 455, 3943, 117, 1455,
+ 314, 1710, 143, 570, 47, 410, 1466, 44, 935, 1575,
+ 999, 143, 551, 46, 263, 46, 967, 53, 1159, 263,
+ 53, 174, 1289, 1285, 2503, 333, 199, 39, 1415, 71,
+ 39, 743, 53, 271, 711, 207, 53, 839, 53, 1799,
+ 71, 39, 108, 76, 140, 135, 103, 871, 108, 44,
+ 271, 309, 935, 79, 53, 1735, 245, 711, 271, 615,
+ 271, 2343, 1007, 42, 44, 42, 1703, 492, 245, 655,
+ 333, 76, 42, 1447, 106, 140, 74, 76, 85, 34,
+ 149, 807, 333, 108, 1159, 172, 42, 268, 333, 149,
+ 76, 42, 1543, 106, 300, 74, 135, 149, 333, 1383,
+ 44, 42, 44, 74, 204, 42, 44, 333, 28135, 3182,
+ 149, 34279, 18215, 2215, 39, 1482, 140, 422, 71, 7898,
+ 1274, 1946, 74, 108, 122, 202, 258, 268, 90, 236,
+ 986, 140, 1562, 2138, 108, 58, 2810, 591, 841, 837,
+ 841, 229, 581, 841, 837, 41, 73, 41, 73, 137,
+ 265, 133, 37, 229, 357, 841, 837, 73, 137, 265,
+ 233, 837, 73, 137, 169, 41, 233, 837, 841, 837,
+ 841, 837, 841, 837, 841, 837, 841, 837, 841, 901,
+ 809, 57, 805, 57, 197, 809, 57, 805, 57, 197,
+ 809, 57, 805, 57, 197, 809, 57, 805, 57, 197,
+ 809, 57, 805, 57, 197, 94, 1613, 135, 871, 71,
+ 39, 39, 327, 135, 39, 39, 39, 39, 39, 39,
+ 103, 71, 39, 39, 39, 39, 39, 39, 71, 39,
+ 135, 231, 135, 135, 39, 327, 551, 103, 167, 551,
+ 89, 1434, 3226, 506, 474, 506, 506, 367, 1018, 1946,
+ 1402, 954, 1402, 314, 90, 1082, 218, 2266, 666, 1210,
+ 186, 570, 2042, 58, 5850, 154, 2010, 154, 794, 2266,
+ 378, 2266, 3738, 39, 39, 39, 39, 39, 39, 17351,
+ 34, 3074, 7692, 63, 63,
+ };
+
+static int sqlite3Fts5UnicodeCategory(u32 iCode) {
+ int iRes = -1;
+ int iHi;
+ int iLo;
+ int ret;
+ u16 iKey;
+
+ if( iCode>=(1<<20) ){
+ return 0;
+ }
+ iLo = aFts5UnicodeBlock[(iCode>>16)];
+ iHi = aFts5UnicodeBlock[1+(iCode>>16)];
+ iKey = (iCode & 0xFFFF);
+ while( iHi>iLo ){
+ int iTest = (iHi + iLo) / 2;
+ assert( iTest>=iLo && iTest<iHi );
+ if( iKey>=aFts5UnicodeMap[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest;
+ }
+ }
+
+ if( iRes<0 ) return 0;
+ if( iKey>=(aFts5UnicodeMap[iRes]+(aFts5UnicodeData[iRes]>>5)) ) return 0;
+ ret = aFts5UnicodeData[iRes] & 0x1F;
+ if( ret!=30 ) return ret;
+ return ((iKey - aFts5UnicodeMap[iRes]) & 0x01) ? 5 : 9;
+}
+
+static void sqlite3Fts5UnicodeAscii(u8 *aArray, u8 *aAscii){
+ int i = 0;
+ int iTbl = 0;
+ while( i<128 ){
+ int bToken = aArray[ aFts5UnicodeData[iTbl] & 0x1F ];
+ int n = (aFts5UnicodeData[iTbl] >> 5) + i;
+ for(; i<128 && i<n; i++){
+ aAscii[i] = (u8)bToken;
+ }
+ iTbl++;
+ }
+ aAscii[0] = 0; /* 0x00 is never a token character */
+}
+
+
+/*
+** 2015 May 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Routines for varint serialization and deserialization.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
+** Except, this version does handle the single byte case that the core
+** version depends on being handled before its function is called.
+*/
+static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){
+ u32 a,b;
+
+ /* The 1-byte case. Overwhelmingly the most common. */
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 0 and 127 */
+ *v = a;
+ return 1;
+ }
+
+ /* The 2-byte case */
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 128 and 16383 */
+ a &= 0x7f;
+ a = a<<7;
+ *v = a | b;
+ return 2;
+ }
+
+ /* The 3-byte case */
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 16384 and 2097151 */
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ *v = a | b;
+ return 3;
+ }
+
+ /* A 32-bit varint is used to store size information in btrees.
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
+ ** A 3-byte varint is sufficient, for example, to record the size
+ ** of a 1048569-byte BLOB or string.
+ **
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very
+ ** rare larger cases can be handled by the slower 64-bit varint
+ ** routine.
+ */
+ {
+ u64 v64;
+ u8 n;
+ p -= 2;
+ n = sqlite3Fts5GetVarint(p, &v64);
+ *v = ((u32)v64) & 0x7FFFFFFF;
+ assert( n>3 && n<=9 );
+ return n;
+ }
+}
+
+
+/*
+** Bitmasks used by sqlite3GetVarint(). These precomputed constants
+** are defined here rather than simply putting the constant expressions
+** inline in order to work around bugs in the RVT compiler.
+**
+** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
+**
+** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
+*/
+#define SLOT_2_0 0x001fc07f
+#define SLOT_4_2_0 0xf01fc07f
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+*/
+static u8 sqlite3Fts5GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ *v = a;
+ return 1;
+ }
+
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ a &= 0x7f;
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 2;
+ }
+
+ /* Verify that constants are precomputed correctly */
+ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
+ assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_2_0;
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
+ return 3;
+ }
+
+ /* CSE1 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_2_0;
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 4;
+ }
+
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ b &= SLOT_2_0;
+ s = a;
+ /* s: p0<<14 | p2 (masked) */
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above in calc'ing s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ a &= SLOT_2_0;
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_4_2_0;
+ b &= SLOT_2_0;
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_4_2_0;
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
+
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
+ b &= SLOT_2_0;
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
+}
+
+/*
+** The variable-length integer encoding is as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+** C = xxxxxxxx 8 bits of data
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** 28 bits - BBBA
+** 35 bits - BBBBA
+** 42 bits - BBBBBA
+** 49 bits - BBBBBBA
+** 56 bits - BBBBBBBA
+** 64 bits - BBBBBBBBC
+*/
+
+#ifdef SQLITE_NOINLINE
+# define FTS5_NOINLINE SQLITE_NOINLINE
+#else
+# define FTS5_NOINLINE
+#endif
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data write will be between 1 and 9 bytes. The number
+** of bytes written is returned.
+**
+** A variable-length integer consists of the lower 7 bits of each byte
+** for all bytes that have the 8th bit set and one byte with the 8th
+** bit clear. Except, if we get to the 9th byte, it stores the full
+** 8 bits and is the last byte.
+*/
+static int FTS5_NOINLINE fts5PutVarint64(unsigned char *p, u64 v){
+ int i, j, n;
+ u8 buf[10];
+ if( v & (((u64)0xff000000)<<32) ){
+ p[8] = (u8)v;
+ v >>= 8;
+ for(i=7; i>=0; i--){
+ p[i] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }
+ return 9;
+ }
+ n = 0;
+ do{
+ buf[n++] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }while( v!=0 );
+ buf[0] &= 0x7f;
+ assert( n<=9 );
+ for(i=0, j=n-1; j>=0; j--, i++){
+ p[i] = buf[j];
+ }
+ return n;
+}
+
+static int sqlite3Fts5PutVarint(unsigned char *p, u64 v){
+ if( v<=0x7f ){
+ p[0] = v&0x7f;
+ return 1;
+ }
+ if( v<=0x3fff ){
+ p[0] = ((v>>7)&0x7f)|0x80;
+ p[1] = v&0x7f;
+ return 2;
+ }
+ return fts5PutVarint64(p,v);
+}
+
+
+static int sqlite3Fts5GetVarintLen(u32 iVal){
+#if 0
+ if( iVal<(1 << 7 ) ) return 1;
+#endif
+ assert( iVal>=(1 << 7) );
+ if( iVal<(1 << 14) ) return 2;
+ if( iVal<(1 << 21) ) return 3;
+ if( iVal<(1 << 28) ) return 4;
+ return 5;
+}
+
+/*
+** 2015 May 08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite virtual table module implementing direct access to an
+** existing FTS5 index. The module may create several different types of
+** tables:
+**
+** col:
+** CREATE TABLE vocab(term, col, doc, cnt, PRIMARY KEY(term, col));
+**
+** One row for each term/column combination. The value of $doc is set to
+** the number of fts5 rows that contain at least one instance of term
+** $term within column $col. Field $cnt is set to the total number of
+** instances of term $term in column $col (in any row of the fts5 table).
+**
+** row:
+** CREATE TABLE vocab(term, doc, cnt, PRIMARY KEY(term));
+**
+** One row for each term in the database. The value of $doc is set to
+** the number of fts5 rows that contain at least one instance of term
+** $term. Field $cnt is set to the total number of instances of term
+** $term in the database.
+**
+** instance:
+** CREATE TABLE vocab(term, doc, col, offset, PRIMARY KEY(<all-fields>));
+**
+** One row for each term instance in the database.
+*/
+
+
+/* #include "fts5Int.h" */
+
+
+typedef struct Fts5VocabTable Fts5VocabTable;
+typedef struct Fts5VocabCursor Fts5VocabCursor;
+
+struct Fts5VocabTable {
+ sqlite3_vtab base;
+ char *zFts5Tbl; /* Name of fts5 table */
+ char *zFts5Db; /* Db containing fts5 table */
+ sqlite3 *db; /* Database handle */
+ Fts5Global *pGlobal; /* FTS5 global object for this database */
+ int eType; /* FTS5_VOCAB_COL, ROW or INSTANCE */
+ unsigned bBusy; /* True if busy */
+};
+
+struct Fts5VocabCursor {
+ sqlite3_vtab_cursor base;
+ sqlite3_stmt *pStmt; /* Statement holding lock on pIndex */
+ Fts5Table *pFts5; /* Associated FTS5 table */
+
+ int bEof; /* True if this cursor is at EOF */
+ Fts5IndexIter *pIter; /* Term/rowid iterator object */
+ void *pStruct; /* From sqlite3Fts5StructureRef() */
+
+ int nLeTerm; /* Size of zLeTerm in bytes */
+ char *zLeTerm; /* (term <= $zLeTerm) paramater, or NULL */
+
+ /* These are used by 'col' tables only */
+ int iCol;
+ i64 *aCnt;
+ i64 *aDoc;
+
+ /* Output values used by all tables. */
+ i64 rowid; /* This table's current rowid value */
+ Fts5Buffer term; /* Current value of 'term' column */
+
+ /* Output values Used by 'instance' tables only */
+ i64 iInstPos;
+ int iInstOff;
+};
+
+#define FTS5_VOCAB_COL 0
+#define FTS5_VOCAB_ROW 1
+#define FTS5_VOCAB_INSTANCE 2
+
+#define FTS5_VOCAB_COL_SCHEMA "term, col, doc, cnt"
+#define FTS5_VOCAB_ROW_SCHEMA "term, doc, cnt"
+#define FTS5_VOCAB_INST_SCHEMA "term, doc, col, offset"
+
+/*
+** Bits for the mask used as the idxNum value by xBestIndex/xFilter.
+*/
+#define FTS5_VOCAB_TERM_EQ 0x01
+#define FTS5_VOCAB_TERM_GE 0x02
+#define FTS5_VOCAB_TERM_LE 0x04
+
+
+/*
+** Translate a string containing an fts5vocab table type to an
+** FTS5_VOCAB_XXX constant. If successful, set *peType to the output
+** value and return SQLITE_OK. Otherwise, set *pzErr to an error message
+** and return SQLITE_ERROR.
+*/
+static int fts5VocabTableType(const char *zType, char **pzErr, int *peType){
+ int rc = SQLITE_OK;
+ char *zCopy = sqlite3Fts5Strndup(&rc, zType, -1);
+ if( rc==SQLITE_OK ){
+ sqlite3Fts5Dequote(zCopy);
+ if( sqlite3_stricmp(zCopy, "col")==0 ){
+ *peType = FTS5_VOCAB_COL;
+ }else
+
+ if( sqlite3_stricmp(zCopy, "row")==0 ){
+ *peType = FTS5_VOCAB_ROW;
+ }else
+ if( sqlite3_stricmp(zCopy, "instance")==0 ){
+ *peType = FTS5_VOCAB_INSTANCE;
+ }else
+ {
+ *pzErr = sqlite3_mprintf("fts5vocab: unknown table type: %Q", zCopy);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3_free(zCopy);
+ }
+
+ return rc;
+}
+
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts5VocabDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts5VocabDestroyMethod(sqlite3_vtab *pVtab){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts5vocab")
+** argv[1] -> database name
+** argv[2] -> table name
+**
+** then:
+**
+** argv[3] -> name of fts5 table
+** argv[4] -> type of fts5vocab table
+**
+** or, for tables in the TEMP schema only.
+**
+** argv[3] -> name of fts5 tables database
+** argv[4] -> name of fts5 table
+** argv[5] -> type of fts5vocab table
+*/
+static int fts5VocabInitVtab(
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Pointer to Fts5Global object */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ const char *azSchema[] = {
+ "CREATE TABlE vocab(" FTS5_VOCAB_COL_SCHEMA ")",
+ "CREATE TABlE vocab(" FTS5_VOCAB_ROW_SCHEMA ")",
+ "CREATE TABlE vocab(" FTS5_VOCAB_INST_SCHEMA ")"
+ };
+
+ Fts5VocabTable *pRet = 0;
+ int rc = SQLITE_OK; /* Return code */
+ int bDb;
+
+ bDb = (argc==6 && strlen(argv[1])==4 && memcmp("temp", argv[1], 4)==0);
+
+ if( argc!=5 && bDb==0 ){
+ *pzErr = sqlite3_mprintf("wrong number of vtable arguments");
+ rc = SQLITE_ERROR;
+ }else{
+ int nByte; /* Bytes of space to allocate */
+ const char *zDb = bDb ? argv[3] : argv[1];
+ const char *zTab = bDb ? argv[4] : argv[3];
+ const char *zType = bDb ? argv[5] : argv[4];
+ int nDb = (int)strlen(zDb)+1;
+ int nTab = (int)strlen(zTab)+1;
+ int eType = 0;
+
+ rc = fts5VocabTableType(zType, pzErr, &eType);
+ if( rc==SQLITE_OK ){
+ assert( eType>=0 && eType<ArraySize(azSchema) );
+ rc = sqlite3_declare_vtab(db, azSchema[eType]);
+ }
+
+ nByte = sizeof(Fts5VocabTable) + nDb + nTab;
+ pRet = sqlite3Fts5MallocZero(&rc, nByte);
+ if( pRet ){
+ pRet->pGlobal = (Fts5Global*)pAux;
+ pRet->eType = eType;
+ pRet->db = db;
+ pRet->zFts5Tbl = (char*)&pRet[1];
+ pRet->zFts5Db = &pRet->zFts5Tbl[nTab];
+ memcpy(pRet->zFts5Tbl, zTab, nTab);
+ memcpy(pRet->zFts5Db, zDb, nDb);
+ sqlite3Fts5Dequote(pRet->zFts5Tbl);
+ sqlite3Fts5Dequote(pRet->zFts5Db);
+ }
+ }
+
+ *ppVTab = (sqlite3_vtab*)pRet;
+ return rc;
+}
+
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts5VocabInitVtab().
+*/
+static int fts5VocabConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts5VocabCreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** Implementation of the xBestIndex method.
+**
+** Only constraints of the form:
+**
+** term <= ?
+** term == ?
+** term >= ?
+**
+** are interpreted. Less-than and less-than-or-equal are treated
+** identically, as are greater-than and greater-than-or-equal.
+*/
+static int fts5VocabBestIndexMethod(
+ sqlite3_vtab *pUnused,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ int iTermEq = -1;
+ int iTermGe = -1;
+ int iTermLe = -1;
+ int idxNum = 0;
+ int nArg = 0;
+
+ UNUSED_PARAM(pUnused);
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ if( p->usable==0 ) continue;
+ if( p->iColumn==0 ){ /* term column */
+ if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_LT ) iTermLe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_GE ) iTermGe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_GT ) iTermGe = i;
+ }
+ }
+
+ if( iTermEq>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_EQ;
+ pInfo->aConstraintUsage[iTermEq].argvIndex = ++nArg;
+ pInfo->estimatedCost = 100;
+ }else{
+ pInfo->estimatedCost = 1000000;
+ if( iTermGe>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_GE;
+ pInfo->aConstraintUsage[iTermGe].argvIndex = ++nArg;
+ pInfo->estimatedCost = pInfo->estimatedCost / 2;
+ }
+ if( iTermLe>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_LE;
+ pInfo->aConstraintUsage[iTermLe].argvIndex = ++nArg;
+ pInfo->estimatedCost = pInfo->estimatedCost / 2;
+ }
+ }
+
+ /* This virtual table always delivers results in ascending order of
+ ** the "term" column (column 0). So if the user has requested this
+ ** specifically - "ORDER BY term" or "ORDER BY term ASC" - set the
+ ** sqlite3_index_info.orderByConsumed flag to tell the core the results
+ ** are already in sorted order. */
+ if( pInfo->nOrderBy==1
+ && pInfo->aOrderBy[0].iColumn==0
+ && pInfo->aOrderBy[0].desc==0
+ ){
+ pInfo->orderByConsumed = 1;
+ }
+
+ pInfo->idxNum = idxNum;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts5VocabOpenMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_vtab_cursor **ppCsr
+){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVTab;
+ Fts5Table *pFts5 = 0;
+ Fts5VocabCursor *pCsr = 0;
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt = 0;
+ char *zSql = 0;
+
+ if( pTab->bBusy ){
+ pVTab->zErrMsg = sqlite3_mprintf(
+ "recursive definition for %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
+ );
+ return SQLITE_ERROR;
+ }
+ zSql = sqlite3Fts5Mprintf(&rc,
+ "SELECT t.%Q FROM %Q.%Q AS t WHERE t.%Q MATCH '*id'",
+ pTab->zFts5Tbl, pTab->zFts5Db, pTab->zFts5Tbl, pTab->zFts5Tbl
+ );
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
+ }
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ if( rc==SQLITE_ERROR ) rc = SQLITE_OK;
+
+ pTab->bBusy = 1;
+ if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
+ i64 iId = sqlite3_column_int64(pStmt, 0);
+ pFts5 = sqlite3Fts5TableFromCsrid(pTab->pGlobal, iId);
+ }
+ pTab->bBusy = 0;
+
+ if( rc==SQLITE_OK ){
+ if( pFts5==0 ){
+ rc = sqlite3_finalize(pStmt);
+ pStmt = 0;
+ if( rc==SQLITE_OK ){
+ pVTab->zErrMsg = sqlite3_mprintf(
+ "no such fts5 table: %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
+ );
+ rc = SQLITE_ERROR;
+ }
+ }else{
+ rc = sqlite3Fts5FlushToDisk(pFts5);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ i64 nByte = pFts5->pConfig->nCol * sizeof(i64)*2 + sizeof(Fts5VocabCursor);
+ pCsr = (Fts5VocabCursor*)sqlite3Fts5MallocZero(&rc, nByte);
+ }
+
+ if( pCsr ){
+ pCsr->pFts5 = pFts5;
+ pCsr->pStmt = pStmt;
+ pCsr->aCnt = (i64*)&pCsr[1];
+ pCsr->aDoc = &pCsr->aCnt[pFts5->pConfig->nCol];
+ }else{
+ sqlite3_finalize(pStmt);
+ }
+
+ *ppCsr = (sqlite3_vtab_cursor*)pCsr;
+ return rc;
+}
+
+static void fts5VocabResetCursor(Fts5VocabCursor *pCsr){
+ pCsr->rowid = 0;
+ sqlite3Fts5IterClose(pCsr->pIter);
+ sqlite3Fts5StructureRelease(pCsr->pStruct);
+ pCsr->pStruct = 0;
+ pCsr->pIter = 0;
+ sqlite3_free(pCsr->zLeTerm);
+ pCsr->nLeTerm = -1;
+ pCsr->zLeTerm = 0;
+ pCsr->bEof = 0;
+}
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts5VocabCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ fts5VocabResetCursor(pCsr);
+ sqlite3Fts5BufferFree(&pCsr->term);
+ sqlite3_finalize(pCsr->pStmt);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+static int fts5VocabInstanceNewTerm(Fts5VocabCursor *pCsr){
+ int rc = SQLITE_OK;
+
+ if( sqlite3Fts5IterEof(pCsr->pIter) ){
+ pCsr->bEof = 1;
+ }else{
+ const char *zTerm;
+ int nTerm;
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ if( pCsr->nLeTerm>=0 ){
+ int nCmp = MIN(nTerm, pCsr->nLeTerm);
+ int bCmp = memcmp(pCsr->zLeTerm, zTerm, nCmp);
+ if( bCmp<0 || (bCmp==0 && pCsr->nLeTerm<nTerm) ){
+ pCsr->bEof = 1;
+ }
+ }
+
+ sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
+ }
+ return rc;
+}
+
+static int fts5VocabInstanceNext(Fts5VocabCursor *pCsr){
+ int eDetail = pCsr->pFts5->pConfig->eDetail;
+ int rc = SQLITE_OK;
+ Fts5IndexIter *pIter = pCsr->pIter;
+ i64 *pp = &pCsr->iInstPos;
+ int *po = &pCsr->iInstOff;
+
+ assert( sqlite3Fts5IterEof(pIter)==0 );
+ assert( pCsr->bEof==0 );
+ while( eDetail==FTS5_DETAIL_NONE
+ || sqlite3Fts5PoslistNext64(pIter->pData, pIter->nData, po, pp)
+ ){
+ pCsr->iInstPos = 0;
+ pCsr->iInstOff = 0;
+
+ rc = sqlite3Fts5IterNextScan(pCsr->pIter);
+ if( rc==SQLITE_OK ){
+ rc = fts5VocabInstanceNewTerm(pCsr);
+ if( pCsr->bEof || eDetail==FTS5_DETAIL_NONE ) break;
+ }
+ if( rc ){
+ pCsr->bEof = 1;
+ break;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Advance the cursor to the next row in the table.
+*/
+static int fts5VocabNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
+ int nCol = pCsr->pFts5->pConfig->nCol;
+ int rc;
+
+ rc = sqlite3Fts5StructureTest(pCsr->pFts5->pIndex, pCsr->pStruct);
+ if( rc!=SQLITE_OK ) return rc;
+ pCsr->rowid++;
+
+ if( pTab->eType==FTS5_VOCAB_INSTANCE ){
+ return fts5VocabInstanceNext(pCsr);
+ }
+
+ if( pTab->eType==FTS5_VOCAB_COL ){
+ for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
+ if( pCsr->aDoc[pCsr->iCol] ) break;
+ }
+ }
+
+ if( pTab->eType!=FTS5_VOCAB_COL || pCsr->iCol>=nCol ){
+ if( sqlite3Fts5IterEof(pCsr->pIter) ){
+ pCsr->bEof = 1;
+ }else{
+ const char *zTerm;
+ int nTerm;
+
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ assert( nTerm>=0 );
+ if( pCsr->nLeTerm>=0 ){
+ int nCmp = MIN(nTerm, pCsr->nLeTerm);
+ int bCmp = memcmp(pCsr->zLeTerm, zTerm, nCmp);
+ if( bCmp<0 || (bCmp==0 && pCsr->nLeTerm<nTerm) ){
+ pCsr->bEof = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
+ memset(pCsr->aCnt, 0, nCol * sizeof(i64));
+ memset(pCsr->aDoc, 0, nCol * sizeof(i64));
+ pCsr->iCol = 0;
+
+ assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
+ while( rc==SQLITE_OK ){
+ int eDetail = pCsr->pFts5->pConfig->eDetail;
+ const u8 *pPos; int nPos; /* Position list */
+ i64 iPos = 0; /* 64-bit position read from poslist */
+ int iOff = 0; /* Current offset within position list */
+
+ pPos = pCsr->pIter->pData;
+ nPos = pCsr->pIter->nData;
+
+ switch( pTab->eType ){
+ case FTS5_VOCAB_ROW:
+ if( eDetail==FTS5_DETAIL_FULL ){
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
+ pCsr->aCnt[0]++;
+ }
+ }
+ pCsr->aDoc[0]++;
+ break;
+
+ case FTS5_VOCAB_COL:
+ if( eDetail==FTS5_DETAIL_FULL ){
+ int iCol = -1;
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
+ int ii = FTS5_POS2COLUMN(iPos);
+ if( iCol!=ii ){
+ if( ii>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ pCsr->aDoc[ii]++;
+ iCol = ii;
+ }
+ pCsr->aCnt[ii]++;
+ }
+ }else if( eDetail==FTS5_DETAIL_COLUMNS ){
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff,&iPos) ){
+ assert_nc( iPos>=0 && iPos<nCol );
+ if( iPos>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ pCsr->aDoc[iPos]++;
+ }
+ }else{
+ assert( eDetail==FTS5_DETAIL_NONE );
+ pCsr->aDoc[0]++;
+ }
+ break;
+
+ default:
+ assert( pTab->eType==FTS5_VOCAB_INSTANCE );
+ break;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IterNextScan(pCsr->pIter);
+ }
+ if( pTab->eType==FTS5_VOCAB_INSTANCE ) break;
+
+ if( rc==SQLITE_OK ){
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ if( nTerm!=pCsr->term.n
+ || (nTerm>0 && memcmp(zTerm, pCsr->term.p, nTerm))
+ ){
+ break;
+ }
+ if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK && pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
+ for(/* noop */; pCsr->iCol<nCol && pCsr->aDoc[pCsr->iCol]==0; pCsr->iCol++);
+ if( pCsr->iCol==nCol ){
+ rc = FTS5_CORRUPT;
+ }
+ }
+ return rc;
+}
+
+/*
+** This is the xFilter implementation for the virtual table.
+*/
+static int fts5VocabFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *zUnused, /* Unused */
+ int nUnused, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ int eType = pTab->eType;
+ int rc = SQLITE_OK;
+
+ int iVal = 0;
+ int f = FTS5INDEX_QUERY_SCAN;
+ const char *zTerm = 0;
+ int nTerm = 0;
+
+ sqlite3_value *pEq = 0;
+ sqlite3_value *pGe = 0;
+ sqlite3_value *pLe = 0;
+
+ UNUSED_PARAM2(zUnused, nUnused);
+
+ fts5VocabResetCursor(pCsr);
+ if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
+ if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
+ if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];
+
+ if( pEq ){
+ zTerm = (const char *)sqlite3_value_text(pEq);
+ nTerm = sqlite3_value_bytes(pEq);
+ f = 0;
+ }else{
+ if( pGe ){
+ zTerm = (const char *)sqlite3_value_text(pGe);
+ nTerm = sqlite3_value_bytes(pGe);
+ }
+ if( pLe ){
+ const char *zCopy = (const char *)sqlite3_value_text(pLe);
+ if( zCopy==0 ) zCopy = "";
+ pCsr->nLeTerm = sqlite3_value_bytes(pLe);
+ pCsr->zLeTerm = sqlite3_malloc(pCsr->nLeTerm+1);
+ if( pCsr->zLeTerm==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pCsr->zLeTerm, zCopy, pCsr->nLeTerm+1);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ Fts5Index *pIndex = pCsr->pFts5->pIndex;
+ rc = sqlite3Fts5IndexQuery(pIndex, zTerm, nTerm, f, 0, &pCsr->pIter);
+ if( rc==SQLITE_OK ){
+ pCsr->pStruct = sqlite3Fts5StructureRef(pIndex);
+ }
+ }
+ if( rc==SQLITE_OK && eType==FTS5_VOCAB_INSTANCE ){
+ rc = fts5VocabInstanceNewTerm(pCsr);
+ }
+ if( rc==SQLITE_OK && !pCsr->bEof
+ && (eType!=FTS5_VOCAB_INSTANCE
+ || pCsr->pFts5->pConfig->eDetail!=FTS5_DETAIL_NONE)
+ ){
+ rc = fts5VocabNextMethod(pCursor);
+ }
+
+ return rc;
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts5VocabEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ return pCsr->bEof;
+}
+
+static int fts5VocabColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ int eDetail = pCsr->pFts5->pConfig->eDetail;
+ int eType = ((Fts5VocabTable*)(pCursor->pVtab))->eType;
+ i64 iVal = 0;
+
+ if( iCol==0 ){
+ sqlite3_result_text(
+ pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
+ );
+ }else if( eType==FTS5_VOCAB_COL ){
+ assert( iCol==1 || iCol==2 || iCol==3 );
+ if( iCol==1 ){
+ if( eDetail!=FTS5_DETAIL_NONE ){
+ const char *z = pCsr->pFts5->pConfig->azCol[pCsr->iCol];
+ sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
+ }
+ }else if( iCol==2 ){
+ iVal = pCsr->aDoc[pCsr->iCol];
+ }else{
+ iVal = pCsr->aCnt[pCsr->iCol];
+ }
+ }else if( eType==FTS5_VOCAB_ROW ){
+ assert( iCol==1 || iCol==2 );
+ if( iCol==1 ){
+ iVal = pCsr->aDoc[0];
+ }else{
+ iVal = pCsr->aCnt[0];
+ }
+ }else{
+ assert( eType==FTS5_VOCAB_INSTANCE );
+ switch( iCol ){
+ case 1:
+ sqlite3_result_int64(pCtx, pCsr->pIter->iRowid);
+ break;
+ case 2: {
+ int ii = -1;
+ if( eDetail==FTS5_DETAIL_FULL ){
+ ii = FTS5_POS2COLUMN(pCsr->iInstPos);
+ }else if( eDetail==FTS5_DETAIL_COLUMNS ){
+ ii = (int)pCsr->iInstPos;
+ }
+ if( ii>=0 && ii<pCsr->pFts5->pConfig->nCol ){
+ const char *z = pCsr->pFts5->pConfig->azCol[ii];
+ sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
+ }
+ break;
+ }
+ default: {
+ assert( iCol==3 );
+ if( eDetail==FTS5_DETAIL_FULL ){
+ int ii = FTS5_POS2OFFSET(pCsr->iInstPos);
+ sqlite3_result_int(pCtx, ii);
+ }
+ break;
+ }
+ }
+ }
+
+ if( iVal>0 ) sqlite3_result_int64(pCtx, iVal);
+ return SQLITE_OK;
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. The
+** rowid should be written to *pRowid.
+*/
+static int fts5VocabRowidMethod(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite_int64 *pRowid
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ *pRowid = pCsr->rowid;
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5VocabInit(Fts5Global *pGlobal, sqlite3 *db){
+ static const sqlite3_module fts5Vocab = {
+ /* iVersion */ 2,
+ /* xCreate */ fts5VocabCreateMethod,
+ /* xConnect */ fts5VocabConnectMethod,
+ /* xBestIndex */ fts5VocabBestIndexMethod,
+ /* xDisconnect */ fts5VocabDisconnectMethod,
+ /* xDestroy */ fts5VocabDestroyMethod,
+ /* xOpen */ fts5VocabOpenMethod,
+ /* xClose */ fts5VocabCloseMethod,
+ /* xFilter */ fts5VocabFilterMethod,
+ /* xNext */ fts5VocabNextMethod,
+ /* xEof */ fts5VocabEofMethod,
+ /* xColumn */ fts5VocabColumnMethod,
+ /* xRowid */ fts5VocabRowidMethod,
+ /* xUpdate */ 0,
+ /* xBegin */ 0,
+ /* xSync */ 0,
+ /* xCommit */ 0,
+ /* xRollback */ 0,
+ /* xFindFunction */ 0,
+ /* xRename */ 0,
+ /* xSavepoint */ 0,
+ /* xRelease */ 0,
+ /* xRollbackTo */ 0,
+ /* xShadowName */ 0
+ };
+ void *p = (void*)pGlobal;
+
+ return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0);
+}
+
+
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) */
+
+/************** End of fts5.c ************************************************/
+/************** Begin file stmt.c ********************************************/
+/*
+** 2017-05-31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file demonstrates an eponymous virtual table that returns information
+** about all prepared statements for the database connection.
+**
+** Usage example:
+**
+** .load ./stmt
+** .mode line
+** .header on
+** SELECT * FROM stmt;
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB)
+#if !defined(SQLITEINT_H)
+/* #include "sqlite3ext.h" */
+#endif
+SQLITE_EXTENSION_INIT1
+/* #include <assert.h> */
+/* #include <string.h> */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+
+#define STMT_NUM_INTEGER_COLUMN 10
+typedef struct StmtRow StmtRow;
+struct StmtRow {
+ sqlite3_int64 iRowid; /* Rowid value */
+ char *zSql; /* column "sql" */
+ int aCol[STMT_NUM_INTEGER_COLUMN+1]; /* all other column values */
+ StmtRow *pNext; /* Next row to return */
+};
+
+/* stmt_vtab is a subclass of sqlite3_vtab which will
+** serve as the underlying representation of a stmt virtual table
+*/
+typedef struct stmt_vtab stmt_vtab;
+struct stmt_vtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ sqlite3 *db; /* Database connection for this stmt vtab */
+};
+
+/* stmt_cursor is a subclass of sqlite3_vtab_cursor which will
+** serve as the underlying representation of a cursor that scans
+** over rows of the result
+*/
+typedef struct stmt_cursor stmt_cursor;
+struct stmt_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ sqlite3 *db; /* Database connection for this cursor */
+ StmtRow *pRow; /* Current row */
+};
+
+/*
+** The stmtConnect() method is invoked to create a new
+** stmt_vtab that describes the stmt virtual table.
+**
+** Think of this routine as the constructor for stmt_vtab objects.
+**
+** All this routine needs to do is:
+**
+** (1) Allocate the stmt_vtab object and initialize all fields.
+**
+** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
+** result set of queries against stmt will look like.
+*/
+static int stmtConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ stmt_vtab *pNew;
+ int rc;
+
+/* Column numbers */
+#define STMT_COLUMN_SQL 0 /* SQL for the statement */
+#define STMT_COLUMN_NCOL 1 /* Number of result columns */
+#define STMT_COLUMN_RO 2 /* True if read-only */
+#define STMT_COLUMN_BUSY 3 /* True if currently busy */
+#define STMT_COLUMN_NSCAN 4 /* SQLITE_STMTSTATUS_FULLSCAN_STEP */
+#define STMT_COLUMN_NSORT 5 /* SQLITE_STMTSTATUS_SORT */
+#define STMT_COLUMN_NAIDX 6 /* SQLITE_STMTSTATUS_AUTOINDEX */
+#define STMT_COLUMN_NSTEP 7 /* SQLITE_STMTSTATUS_VM_STEP */
+#define STMT_COLUMN_REPREP 8 /* SQLITE_STMTSTATUS_REPREPARE */
+#define STMT_COLUMN_RUN 9 /* SQLITE_STMTSTATUS_RUN */
+#define STMT_COLUMN_MEM 10 /* SQLITE_STMTSTATUS_MEMUSED */
+
+
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE x(sql,ncol,ro,busy,nscan,nsort,naidx,nstep,"
+ "reprep,run,mem)");
+ if( rc==SQLITE_OK ){
+ pNew = sqlite3_malloc64( sizeof(*pNew) );
+ *ppVtab = (sqlite3_vtab*)pNew;
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->db = db;
+ }
+ return rc;
+}
+
+/*
+** This method is the destructor for stmt_cursor objects.
+*/
+static int stmtDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Constructor for a new stmt_cursor object.
+*/
+static int stmtOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ stmt_cursor *pCur;
+ pCur = sqlite3_malloc64( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ pCur->db = ((stmt_vtab*)p)->db;
+ *ppCursor = &pCur->base;
+ return SQLITE_OK;
+}
+
+static void stmtCsrReset(stmt_cursor *pCur){
+ StmtRow *pRow = 0;
+ StmtRow *pNext = 0;
+ for(pRow=pCur->pRow; pRow; pRow=pNext){
+ pNext = pRow->pNext;
+ sqlite3_free(pRow);
+ }
+ pCur->pRow = 0;
+}
+
+/*
+** Destructor for a stmt_cursor.
+*/
+static int stmtClose(sqlite3_vtab_cursor *cur){
+ stmtCsrReset((stmt_cursor*)cur);
+ sqlite3_free(cur);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance a stmt_cursor to its next row of output.
+*/
+static int stmtNext(sqlite3_vtab_cursor *cur){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ StmtRow *pNext = pCur->pRow->pNext;
+ sqlite3_free(pCur->pRow);
+ pCur->pRow = pNext;
+ return SQLITE_OK;
+}
+
+/*
+** Return values of columns for the row at which the stmt_cursor
+** is currently pointing.
+*/
+static int stmtColumn(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ StmtRow *pRow = pCur->pRow;
+ if( i==STMT_COLUMN_SQL ){
+ sqlite3_result_text(ctx, pRow->zSql, -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_int(ctx, pRow->aCol[i]);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the rowid for the current row. In this implementation, the
+** rowid is the same as the output value.
+*/
+static int stmtRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ *pRowid = pCur->pRow->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the cursor has been moved off of the last
+** row of output.
+*/
+static int stmtEof(sqlite3_vtab_cursor *cur){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ return pCur->pRow==0;
+}
+
+/*
+** This method is called to "rewind" the stmt_cursor object back
+** to the first row of output. This method is always called at least
+** once prior to any call to stmtColumn() or stmtRowid() or
+** stmtEof().
+*/
+static int stmtFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ stmt_cursor *pCur = (stmt_cursor *)pVtabCursor;
+ sqlite3_stmt *p = 0;
+ sqlite3_int64 iRowid = 1;
+ StmtRow **ppRow = 0;
+
+ stmtCsrReset(pCur);
+ ppRow = &pCur->pRow;
+ for(p=sqlite3_next_stmt(pCur->db, 0); p; p=sqlite3_next_stmt(pCur->db, p)){
+ const char *zSql = sqlite3_sql(p);
+ sqlite3_int64 nSql = zSql ? strlen(zSql)+1 : 0;
+ StmtRow *pNew = (StmtRow*)sqlite3_malloc64(sizeof(StmtRow) + nSql);
+
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(StmtRow));
+ if( zSql ){
+ pNew->zSql = (char*)&pNew[1];
+ memcpy(pNew->zSql, zSql, nSql);
+ }
+ pNew->aCol[STMT_COLUMN_NCOL] = sqlite3_column_count(p);
+ pNew->aCol[STMT_COLUMN_RO] = sqlite3_stmt_readonly(p);
+ pNew->aCol[STMT_COLUMN_BUSY] = sqlite3_stmt_busy(p);
+ pNew->aCol[STMT_COLUMN_NSCAN] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_FULLSCAN_STEP, 0
+ );
+ pNew->aCol[STMT_COLUMN_NSORT] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_SORT, 0
+ );
+ pNew->aCol[STMT_COLUMN_NAIDX] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_AUTOINDEX, 0
+ );
+ pNew->aCol[STMT_COLUMN_NSTEP] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_VM_STEP, 0
+ );
+ pNew->aCol[STMT_COLUMN_REPREP] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_REPREPARE, 0
+ );
+ pNew->aCol[STMT_COLUMN_RUN] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_RUN, 0
+ );
+ pNew->aCol[STMT_COLUMN_MEM] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_MEMUSED, 0
+ );
+ pNew->iRowid = iRowid++;
+ *ppRow = pNew;
+ ppRow = &pNew->pNext;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** SQLite will invoke this method one or more times while planning a query
+** that uses the stmt virtual table. This routine needs to create
+** a query plan for each invocation and compute an estimated cost for that
+** plan.
+*/
+static int stmtBestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ pIdxInfo->estimatedCost = (double)500;
+ pIdxInfo->estimatedRows = 500;
+ return SQLITE_OK;
+}
+
+/*
+** This following structure defines all the methods for the
+** stmt virtual table.
+*/
+static sqlite3_module stmtModule = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ stmtConnect, /* xConnect */
+ stmtBestIndex, /* xBestIndex */
+ stmtDisconnect, /* xDisconnect */
+ 0, /* xDestroy */
+ stmtOpen, /* xOpen - open a cursor */
+ stmtClose, /* xClose - close a cursor */
+ stmtFilter, /* xFilter - configure scan constraints */
+ stmtNext, /* xNext - advance a cursor */
+ stmtEof, /* xEof - check for end of scan */
+ stmtColumn, /* xColumn - read data */
+ stmtRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+};
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3 *db){
+ int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ rc = sqlite3_create_module(db, "sqlite_stmt", &stmtModule, 0);
+#endif
+ return rc;
+}
+
+#ifndef SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_stmt_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ int rc = SQLITE_OK;
+ SQLITE_EXTENSION_INIT2(pApi);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ rc = sqlite3StmtVtabInit(db);
+#endif
+ return rc;
+}
+#endif /* SQLITE_CORE */
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */
+
+/************** End of stmt.c ************************************************/
+/* Return the source-id for this library */
+SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
+/************************** End of sqlite3.c ******************************/
diff --git a/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.h b/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.h
new file mode 100644
index 0000000000..f8aa7b3456
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3.h
@@ -0,0 +1,12896 @@
+/*
+** 2001-09-15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve the right to make minor changes
+** if experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are supposed to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
+*/
+#ifndef SQLITE3_H
+#define SQLITE3_H
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/*
+** Facilitate override of interface linkage and calling conventions.
+** Be aware that these macros may not be used within this particular
+** translation of the amalgamation and its associated header file.
+**
+** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the
+** compiler that the target identifier should have external linkage.
+**
+** The SQLITE_CDECL macro is used to set the calling convention for
+** public functions that accept a variable number of arguments.
+**
+** The SQLITE_APICALL macro is used to set the calling convention for
+** public functions that accept a fixed number of arguments.
+**
+** The SQLITE_STDCALL macro is no longer used and is now deprecated.
+**
+** The SQLITE_CALLBACK macro is used to set the calling convention for
+** function pointers.
+**
+** The SQLITE_SYSAPI macro is used to set the calling convention for
+** functions provided by the operating system.
+**
+** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and
+** SQLITE_SYSAPI macros are used only when building for environments
+** that require non-default calling conventions.
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+#ifndef SQLITE_CDECL
+# define SQLITE_CDECL
+#endif
+#ifndef SQLITE_APICALL
+# define SQLITE_APICALL
+#endif
+#ifndef SQLITE_STDCALL
+# define SQLITE_STDCALL SQLITE_APICALL
+#endif
+#ifndef SQLITE_CALLBACK
+# define SQLITE_CALLBACK
+#endif
+#ifndef SQLITE_SYSAPI
+# define SQLITE_SYSAPI
+#endif
+
+/*
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are supported for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
+**
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
+*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers
+**
+** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
+** evaluates to a string literal that is the SQLite version in the
+** format "X.Y.Z" where X is the major version number (always 3 for
+** SQLite3) and Y is the minor version number and Z is the release number.)^
+** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
+** numbers used in [SQLITE_VERSION].)^
+** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
+** be larger than the release from which it is derived. Either Y will
+** be held constant and Z will be incremented or else Y will be incremented
+** and Z will be reset to zero.
+**
+** Since [version 3.6.18] ([dateof:3.6.18]),
+** SQLite source code has been stored in the
+** <a href="http://www.fossil-scm.org/">Fossil configuration management
+** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
+** a string which identifies a particular check-in of SQLite
+** within its configuration management system. ^The SQLITE_SOURCE_ID
+** string contains the date and time of the check-in (UTC) and a SHA1
+** or SHA3-256 hash of the entire source tree. If the source code has
+** been edited in any way since it was last checked in, then the last
+** four hexadecimal digits of the hash may be modified.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+*/
+#define SQLITE_VERSION "3.39.4"
+#define SQLITE_VERSION_NUMBER 3039004
+#define SQLITE_SOURCE_ID "2022-09-29 15:55:41 a29f9949895322123f7c38fbe94c649a9d6e6c9cd0c3b41c96d694552f26alt1"
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers
+** KEYWORDS: sqlite3_version sqlite3_sourceid
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
+** but are associated with the library instead of the header file. ^(Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus ensure that the application is
+** compiled with matching library and header files.
+**
+** <blockquote><pre>
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+** </pre></blockquote>)^
+**
+** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
+** macro. ^The sqlite3_libversion() function returns a pointer to the
+** to the sqlite3_version[] string constant. The sqlite3_libversion()
+** function is provided for use in DLLs since DLL users usually do not have
+** direct access to string constants within the DLL. ^The
+** sqlite3_libversion_number() function returns an integer equal to
+** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns
+** a pointer to a string constant whose value is the same as the
+** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built
+** using an edited copy of [the amalgamation], then the last four characters
+** of the hash might be different from [SQLITE_SOURCE_ID].)^
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+*/
+SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
+
+/*
+** CAPI3REF: Run-Time Library Compilation Options Diagnostics
+**
+** ^The sqlite3_compileoption_used() function returns 0 or 1
+** indicating whether the specified option was defined at
+** compile time. ^The SQLITE_ prefix may be omitted from the
+** option name passed to sqlite3_compileoption_used().
+**
+** ^The sqlite3_compileoption_get() function allows iterating
+** over the list of options that were defined at compile time by
+** returning the N-th compile time option string. ^If N is out of range,
+** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
+** prefix is omitted from any strings returned by
+** sqlite3_compileoption_get().
+**
+** ^Support for the diagnostic functions sqlite3_compileoption_used()
+** and sqlite3_compileoption_get() may be omitted by specifying the
+** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
+**
+** See also: SQL functions [sqlite_compileoption_used()] and
+** [sqlite_compileoption_get()] and the [compile_options pragma].
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
+SQLITE_API const char *sqlite3_compileoption_get(int N);
+#else
+# define sqlite3_compileoption_used(X) 0
+# define sqlite3_compileoption_get(X) ((void*)0)
+#endif
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe
+**
+** ^The sqlite3_threadsafe() function returns zero if and only if
+** SQLite was compiled with mutexing code omitted due to the
+** [SQLITE_THREADSAFE] compile-time option being set to 0.
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** ^The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
+** sqlite3_threadsafe() function shows only the compile-time setting of
+** thread safety, not any run-time changes to that setting made by
+** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
+** is unchanged by calls to sqlite3_config().)^
+**
+** See the [threading mode] documentation for additional information.
+*/
+SQLITE_API int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** and [sqlite3_close_v2()] are its destructors. There are many other
+** interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
+
+/*
+** CAPI3REF: 64-Bit Integer Types
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** ^The sqlite3_int64 and sqlite_int64 types can store integer values
+** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
+** sqlite3_uint64 and sqlite_uint64 types can store integer values
+** between 0 and +18446744073709551615 inclusive.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+# ifdef SQLITE_UINT64_TYPE
+ typedef SQLITE_UINT64_TYPE sqlite_uint64;
+# else
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+# endif
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection
+** DESTRUCTOR: sqlite3
+**
+** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
+** for the [sqlite3] object.
+** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
+** the [sqlite3] object is successfully destroyed and all associated
+** resources are deallocated.
+**
+** Ideally, applications should [sqlite3_finalize | finalize] all
+** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and
+** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
+** with the [sqlite3] object prior to attempting to close the object.
+** ^If the database connection is associated with unfinalized prepared
+** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
+** sqlite3_close() will leave the database connection open and return
+** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
+** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
+** it returns [SQLITE_OK] regardless, but instead of deallocating the database
+** connection immediately, it marks the database connection as an unusable
+** "zombie" and makes arrangements to automatically deallocate the database
+** connection after all prepared statements are finalized, all BLOB handles
+** are closed, and all backups have finished. The sqlite3_close_v2() interface
+** is intended for use with host languages that are garbage collected, and
+** where the order in which destructors are called is arbitrary.
+**
+** ^If an [sqlite3] object is destroyed while a transaction is open,
+** the transaction is automatically rolled back.
+**
+** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
+** must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
+** argument is a harmless no-op.
+*/
+SQLITE_API int sqlite3_close(sqlite3*);
+SQLITE_API int sqlite3_close_v2(sqlite3*);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface
+** METHOD: sqlite3
+**
+** The sqlite3_exec() interface is a convenience wrapper around
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
+** that allows an application to run multiple statements of SQL
+** without having to use a lot of C code.
+**
+** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
+** semicolon-separate SQL statements passed into its 2nd argument,
+** in the context of the [database connection] passed in as its 1st
+** argument. ^If the callback function of the 3rd argument to
+** sqlite3_exec() is not NULL, then it is invoked for each result row
+** coming out of the evaluated SQL statements. ^The 4th argument to
+** sqlite3_exec() is relayed through to the 1st argument of each
+** callback invocation. ^If the callback pointer to sqlite3_exec()
+** is NULL, then no callback is ever invoked and result rows are
+** ignored.
+**
+** ^If an error occurs while evaluating the SQL statements passed into
+** sqlite3_exec(), then execution of the current statement stops and
+** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
+** is not NULL then any error message is written into memory obtained
+** from [sqlite3_malloc()] and passed back through the 5th parameter.
+** To avoid memory leaks, the application should invoke [sqlite3_free()]
+** on error message strings returned through the 5th parameter of
+** sqlite3_exec() after the error message string is no longer needed.
+** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
+** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
+** NULL before returning.
+**
+** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
+** routine returns SQLITE_ABORT without invoking the callback again and
+** without running any subsequent SQL statements.
+**
+** ^The 2nd argument to the sqlite3_exec() callback function is the
+** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
+** callback is an array of pointers to strings obtained as if from
+** [sqlite3_column_text()], one for each column. ^If an element of a
+** result row is NULL then the corresponding string pointer for the
+** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
+** sqlite3_exec() callback is an array of pointers to strings where each
+** entry represents the name of corresponding result column as obtained
+** from [sqlite3_column_name()].
+**
+** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
+** to an empty string, or a pointer that contains only whitespace and/or
+** SQL comments, then no SQL statements are evaluated and the database
+** is not changed.
+**
+** Restrictions:
+**
+** <ul>
+** <li> The application must ensure that the 1st parameter to sqlite3_exec()
+** is a valid and open [database connection].
+** <li> The application must not close the [database connection] specified by
+** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
+** <li> The application must not modify the SQL statement text passed into
+** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
+** </ul>
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes
+** KEYWORDS: {result code definitions}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicate success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [extended result code definitions]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* Generic error */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Internal use only */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Not used */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */
+#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes
+** KEYWORDS: {extended result code definitions}
+**
+** In its default configuration, SQLite API routines return one of 30 integer
+** [result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8]
+** and later) include
+** support for additional result codes that provide more detailed information
+** about errors. These [extended result codes] are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API. Or, the extended code for
+** the most recent error can be obtained using
+** [sqlite3_extended_errcode()].
+*/
+#define SQLITE_ERROR_MISSING_COLLSEQ (SQLITE_ERROR | (1<<8))
+#define SQLITE_ERROR_RETRY (SQLITE_ERROR | (2<<8))
+#define SQLITE_ERROR_SNAPSHOT (SQLITE_ERROR | (3<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8))
+#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8))
+#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8))
+#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8))
+#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8))
+#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8))
+#define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8))
+#define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8))
+#define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8))
+#define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8))
+#define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8))
+#define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8))
+#define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8))
+#define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8))
+#define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8))
+#define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8))
+#define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8))
+#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8))
+#define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8))
+#define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8))
+#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8))
+#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8))
+#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8))
+#define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8))
+#define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) /* Not Used */
+#define SQLITE_CANTOPEN_SYMLINK (SQLITE_CANTOPEN | (6<<8))
+#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8))
+#define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8))
+#define SQLITE_CORRUPT_INDEX (SQLITE_CORRUPT | (3<<8))
+#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8))
+#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8))
+#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8))
+#define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8))
+#define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8))
+#define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8))
+#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8))
+#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8))
+#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8))
+#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8))
+#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8))
+#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8))
+#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8))
+#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8))
+#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8))
+#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8))
+#define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8))
+#define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8))
+#define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8))
+#define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8))
+#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
+#define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8))
+#define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8))
+#define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8))
+#define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */
+
+/*
+** CAPI3REF: Flags For File Open Operations
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
+**
+** Only those flags marked as "Ok for sqlite3_open_v2()" may be
+** used as the third argument to the [sqlite3_open_v2()] interface.
+** The other flags have historically been ignored by sqlite3_open_v2(),
+** though future versions of SQLite might change so that an error is
+** raised if any of the disallowed bits are passed into sqlite3_open_v2().
+** Applications should not depend on the historical behavior.
+**
+** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into
+** [sqlite3_open_v2()] does *not* cause the underlying database file
+** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into
+** [sqlite3_open_v2()] has historically be a no-op and might become an
+** error in future versions of SQLite.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
+#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_SUPER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */
+#define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */
+
+/* Reserved: 0x00F00000 */
+/* Legacy compatibility: */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+
+
+/*
+** CAPI3REF: Device Characteristics
+**
+** The xDeviceCharacteristics method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
+** after reboot following a crash or power loss, the only bytes in a
+** file that were written at the application level might have changed
+** and that adjacent bytes, even bytes within the same sector are
+** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+** flag indicates that a file cannot be deleted when open. The
+** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
+** read-only media and cannot be changed even by processes with
+** elevated privileges.
+**
+** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying
+** filesystem supports doing multiple write operations atomically when those
+** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and
+** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800
+#define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000
+#define SQLITE_IOCAP_IMMUTABLE 0x00002000
+#define SQLITE_IOCAP_BATCH_ATOMIC 0x00004000
+
+/*
+** CAPI3REF: File Locking Levels
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+**
+** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
+** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
+** settings. The [synchronous pragma] determines when calls to the
+** xSync VFS method occur and applies uniformly across all platforms.
+** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
+** energetic or rigorous or forceful the sync operations are and
+** only make a difference on Mac OSX for the default SQLite code.
+** (Third-party VFS implementations might also make the distinction
+** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
+** operating systems natively supported by SQLite, only Mac OSX
+** cares about the difference.)
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object
+**
+** Every file opened by the [sqlite3_vfs.xOpen] method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The
+** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
+** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
+** to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [file control opcodes | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts. VFS implementations should
+** return [SQLITE_NOTFOUND] for file control opcodes that they do not
+** recognize.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
+** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
+** <li> [SQLITE_IOCAP_IMMUTABLE]
+** <li> [SQLITE_IOCAP_BATCH_ATOMIC]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Methods above are valid for version 1 */
+ int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
+ int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
+ void (*xShmBarrier)(sqlite3_file*);
+ int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
+ /* Methods above are valid for version 2 */
+ int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
+ int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
+ /* Methods above are valid for version 3 */
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes
+** KEYWORDS: {file control opcodes} {file control opcode}
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** <ul>
+** <li>[[SQLITE_FCNTL_LOCKSTATE]]
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and is only available when the SQLITE_TEST
+** compile-time option is used.
+**
+** <li>[[SQLITE_FCNTL_SIZE_HINT]]
+** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
+** layer a hint of how large the database file will grow to be during the
+** current transaction. This hint is not guaranteed to be accurate but it
+** is often close. The underlying VFS might choose to preallocate database
+** file space based on this hint in order to help writes to the database
+** file run faster.
+**
+** <li>[[SQLITE_FCNTL_SIZE_LIMIT]]
+** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that
+** implements [sqlite3_deserialize()] to set an upper bound on the size
+** of the in-memory database. The argument is a pointer to a [sqlite3_int64].
+** If the integer pointed to is negative, then it is filled in with the
+** current limit. Otherwise the limit is set to the larger of the value
+** of the integer pointed to and the current database size. The integer
+** pointed to is set to the new limit.
+**
+** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
+** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
+** extends and truncates the database file in chunks of a size specified
+** by the user. The fourth argument to [sqlite3_file_control()] should
+** point to an integer (type int) containing the new chunk-size to use
+** for the nominated database. Allocating database file space in large
+** chunks (say 1MB at a time), may reduce file-system fragmentation and
+** improve performance on some systems.
+**
+** <li>[[SQLITE_FCNTL_FILE_POINTER]]
+** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with a particular database
+** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER].
+**
+** <li>[[SQLITE_FCNTL_JOURNAL_POINTER]]
+** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with the journal file (either
+** the [rollback journal] or the [write-ahead log]) for a particular database
+** connection. See also [SQLITE_FCNTL_FILE_POINTER].
+**
+** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
+** No longer in use.
+**
+** <li>[[SQLITE_FCNTL_SYNC]]
+** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
+** sent to the VFS immediately before the xSync method is invoked on a
+** database file descriptor. Or, if the xSync method is not invoked
+** because the user has configured SQLite with
+** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
+** of the xSync method. In most cases, the pointer argument passed with
+** this file-control is NULL. However, if the database file is being synced
+** as part of a multi-database commit, the argument points to a nul-terminated
+** string containing the transactions super-journal file name. VFSes that
+** do not need this signal should silently ignore this opcode. Applications
+** should not call [sqlite3_file_control()] with this opcode as doing so may
+** disrupt the operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
+** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
+** and sent to the VFS after a transaction has been committed immediately
+** but before the database is unlocked. VFSes that do not need this signal
+** should silently ignore this opcode. Applications should not call
+** [sqlite3_file_control()] with this opcode as doing so may disrupt the
+** operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
+** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
+** retry counts and intervals for certain disk I/O operations for the
+** windows [VFS] in order to provide robustness in the presence of
+** anti-virus programs. By default, the windows VFS will retry file read,
+** file write, and file delete operations up to 10 times, with a delay
+** of 25 milliseconds before the first retry and with the delay increasing
+** by an additional 25 milliseconds with each subsequent retry. This
+** opcode allows these two values (10 retries and 25 milliseconds of delay)
+** to be adjusted. The values are changed for all database connections
+** within the same process. The argument is a pointer to an array of two
+** integers where the first integer is the new retry count and the second
+** integer is the delay. If either integer is negative, then the setting
+** is not changed but instead the prior value of that setting is written
+** into the array entry, allowing the current retry settings to be
+** interrogated. The zDbName parameter is ignored.
+**
+** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
+** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
+** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary
+** write ahead log ([WAL file]) and shared memory
+** files used for transaction control
+** are automatically deleted when the latest connection to the database
+** closes. Setting persistent WAL mode causes those files to persist after
+** close. Persisting the files is useful when other processes that do not
+** have write permission on the directory containing the database file want
+** to read the database file, as the WAL and shared memory files must exist
+** in order for the database to be readable. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
+** WAL mode. If the integer is -1, then it is overwritten with the current
+** WAL persistence setting.
+**
+** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
+** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
+** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting
+** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
+** xDeviceCharacteristics methods. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
+** mode. If the integer is -1, then it is overwritten with the current
+** zero-damage mode setting.
+**
+** <li>[[SQLITE_FCNTL_OVERWRITE]]
+** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
+** a write transaction to indicate that, unless it is rolled back for some
+** reason, the entire database file will be overwritten by the current
+** transaction. This is used by VACUUM operations.
+**
+** <li>[[SQLITE_FCNTL_VFSNAME]]
+** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
+** all [VFSes] in the VFS stack. The names are of all VFS shims and the
+** final bottom-level VFS are written into memory obtained from
+** [sqlite3_malloc()] and the result is stored in the char* variable
+** that the fourth parameter of [sqlite3_file_control()] points to.
+** The caller is responsible for freeing the memory when done. As with
+** all file-control actions, there is no guarantee that this will actually
+** do anything. Callers should initialize the char* variable to a NULL
+** pointer in case this file-control is not implemented. This file-control
+** is intended for diagnostic use only.
+**
+** <li>[[SQLITE_FCNTL_VFS_POINTER]]
+** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
+** [VFSes] currently in use. ^(The argument X in
+** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
+** of type "[sqlite3_vfs] **". This opcodes will set *X
+** to a pointer to the top-level VFS.)^
+** ^When there are multiple VFS shims in the stack, this opcode finds the
+** upper-most shim only.
+**
+** <li>[[SQLITE_FCNTL_PRAGMA]]
+** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
+** file control is sent to the open [sqlite3_file] object corresponding
+** to the database file to which the pragma statement refers. ^The argument
+** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
+** pointers to strings (char**) in which the second element of the array
+** is the name of the pragma and the third element is the argument to the
+** pragma or NULL if the pragma has no argument. ^The handler for an
+** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
+** of the char** argument point to a string obtained from [sqlite3_mprintf()]
+** or the equivalent and that string will become the result of the pragma or
+** the error message if the pragma fails. ^If the
+** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
+** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA]
+** file control returns [SQLITE_OK], then the parser assumes that the
+** VFS has handled the PRAGMA itself and the parser generates a no-op
+** prepared statement if result string is NULL, or that returns a copy
+** of the result string if the string is non-NULL.
+** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
+** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
+** that the VFS encountered an error while handling the [PRAGMA] and the
+** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA]
+** file control occurs at the beginning of pragma statement analysis and so
+** it is able to override built-in [PRAGMA] statements.
+**
+** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
+** ^The [SQLITE_FCNTL_BUSYHANDLER]
+** file-control may be invoked by SQLite on the database file handle
+** shortly after it is opened in order to provide a custom VFS with access
+** to the connection's busy-handler callback. The argument is of type (void**)
+** - an array of two (void *) values. The first (void *) actually points
+** to a function of type (int (*)(void *)). In order to invoke the connection's
+** busy-handler, this function should be invoked with the second (void *) in
+** the array as the only argument. If it returns non-zero, then the operation
+** should be retried. If it returns zero, the custom VFS should abandon the
+** current operation.
+**
+** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
+** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
+** to have SQLite generate a
+** temporary filename using the same algorithm that is followed to generate
+** temporary filenames for TEMP tables and other internal uses. The
+** argument should be a char** which will be filled with the filename
+** written into memory obtained from [sqlite3_malloc()]. The caller should
+** invoke [sqlite3_free()] on the result to avoid a memory leak.
+**
+** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
+** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
+** maximum number of bytes that will be used for memory-mapped I/O.
+** The argument is a pointer to a value of type sqlite3_int64 that
+** is an advisory maximum number of bytes in the file to memory map. The
+** pointer is overwritten with the old value. The limit is not changed if
+** the value originally pointed to is negative, and so the current limit
+** can be queried by passing in a pointer to a negative number. This
+** file-control is used internally to implement [PRAGMA mmap_size].
+**
+** <li>[[SQLITE_FCNTL_TRACE]]
+** The [SQLITE_FCNTL_TRACE] file control provides advisory information
+** to the VFS about what the higher layers of the SQLite stack are doing.
+** This file control is used by some VFS activity tracing [shims].
+** The argument is a zero-terminated string. Higher layers in the
+** SQLite stack may generate instances of this file control if
+** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
+**
+** <li>[[SQLITE_FCNTL_HAS_MOVED]]
+** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
+** pointer to an integer and it writes a boolean into that integer depending
+** on whether or not the file has been renamed, moved, or deleted since it
+** was first opened.
+**
+** <li>[[SQLITE_FCNTL_WIN32_GET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the
+** underlying native file handle associated with a file handle. This file
+** control interprets its argument as a pointer to a native file handle and
+** writes the resulting value there.
+**
+** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This
+** opcode causes the xFileControl method to swap the file handle with the one
+** pointed to by the pArg argument. This capability is used during testing
+** and only needs to be supported when SQLITE_TEST is defined.
+**
+** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
+** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
+** be advantageous to block on the next WAL lock if the lock is not immediately
+** available. The WAL subsystem issues this signal during rare
+** circumstances in order to fix a problem with priority inversion.
+** Applications should <em>not</em> use this file-control.
+**
+** <li>[[SQLITE_FCNTL_ZIPVFS]]
+** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
+** VFS should return SQLITE_NOTFOUND for this opcode.
+**
+** <li>[[SQLITE_FCNTL_RBU]]
+** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
+** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for
+** this opcode.
+**
+** <li>[[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]]
+** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then
+** the file descriptor is placed in "batch write mode", which
+** means all subsequent write operations will be deferred and done
+** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems
+** that do not support batch atomic writes will return SQLITE_NOTFOUND.
+** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to
+** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or
+** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make
+** no VFS interface calls on the same [sqlite3_file] file descriptor
+** except for calls to the xWrite method and the xFileControl method
+** with [SQLITE_FCNTL_SIZE_HINT].
+**
+** <li>[[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically.
+** This file control returns [SQLITE_OK] if and only if the writes were
+** all performed successfully and have been committed to persistent storage.
+** ^Regardless of whether or not it is successful, this file control takes
+** the file descriptor out of batch write mode so that all subsequent
+** write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back.
+** ^This file control takes the file descriptor out of batch write mode
+** so that all subsequent write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_LOCK_TIMEOUT]]
+** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS
+** to block for up to M milliseconds before failing when attempting to
+** obtain a file lock using the xLock or xShmLock methods of the VFS.
+** The parameter is a pointer to a 32-bit signed integer that contains
+** the value that M is to be set to. Before returning, the 32-bit signed
+** integer is overwritten with the previous value of M.
+**
+** <li>[[SQLITE_FCNTL_DATA_VERSION]]
+** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
+** a database file. The argument is a pointer to a 32-bit unsigned integer.
+** The "data version" for the pager is written into the pointer. The
+** "data version" changes whenever any change occurs to the corresponding
+** database file, either through SQL statements on the same database
+** connection or through transactions committed by separate database
+** connections possibly in other processes. The [sqlite3_total_changes()]
+** interface can be used to find if any database on the connection has changed,
+** but that interface responds to changes on TEMP as well as MAIN and does
+** not provide a mechanism to detect changes to MAIN only. Also, the
+** [sqlite3_total_changes()] interface responds to internal changes only and
+** omits changes made by other database connections. The
+** [PRAGMA data_version] command provides a mechanism to detect changes to
+** a single attached database that occur due to other database connections,
+** but omits changes implemented by the database connection on which it is
+** called. This file control is the only mechanism to detect changes that
+** happen either internally or externally and that are associated with
+** a particular attached database.
+**
+** <li>[[SQLITE_FCNTL_CKPT_START]]
+** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint
+** in wal mode before the client starts to copy pages from the wal
+** file to the database file.
+**
+** <li>[[SQLITE_FCNTL_CKPT_DONE]]
+** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint
+** in wal mode after the client has finished copying pages from the wal
+** file to the database file, but before the *-shm file is updated to
+** record the fact that the pages have been checkpointed.
+** </ul>
+**
+** <li>[[SQLITE_FCNTL_EXTERNAL_READER]]
+** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect
+** whether or not there is a database client in another process with a wal-mode
+** transaction open on the database or not. It is only available on unix.The
+** (void*) argument passed with this file-control should be a pointer to a
+** value of type (int). The integer value is set to 1 if the database is a wal
+** mode database and there exists at least one client in another process that
+** currently has an SQL transaction open on the database. It is set to 0 if
+** the database is not a wal-mode db, or if there is no such connection in any
+** other process. This opcode cannot be used to detect transactions opened
+** by clients within the current process, only within other processes.
+** </ul>
+**
+** <li>[[SQLITE_FCNTL_CKSM_FILE]]
+** Used by the cksmvfs VFS module only.
+** </ul>
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_FCNTL_GET_LOCKPROXYFILE 2
+#define SQLITE_FCNTL_SET_LOCKPROXYFILE 3
+#define SQLITE_FCNTL_LAST_ERRNO 4
+#define SQLITE_FCNTL_SIZE_HINT 5
+#define SQLITE_FCNTL_CHUNK_SIZE 6
+#define SQLITE_FCNTL_FILE_POINTER 7
+#define SQLITE_FCNTL_SYNC_OMITTED 8
+#define SQLITE_FCNTL_WIN32_AV_RETRY 9
+#define SQLITE_FCNTL_PERSIST_WAL 10
+#define SQLITE_FCNTL_OVERWRITE 11
+#define SQLITE_FCNTL_VFSNAME 12
+#define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13
+#define SQLITE_FCNTL_PRAGMA 14
+#define SQLITE_FCNTL_BUSYHANDLER 15
+#define SQLITE_FCNTL_TEMPFILENAME 16
+#define SQLITE_FCNTL_MMAP_SIZE 18
+#define SQLITE_FCNTL_TRACE 19
+#define SQLITE_FCNTL_HAS_MOVED 20
+#define SQLITE_FCNTL_SYNC 21
+#define SQLITE_FCNTL_COMMIT_PHASETWO 22
+#define SQLITE_FCNTL_WIN32_SET_HANDLE 23
+#define SQLITE_FCNTL_WAL_BLOCK 24
+#define SQLITE_FCNTL_ZIPVFS 25
+#define SQLITE_FCNTL_RBU 26
+#define SQLITE_FCNTL_VFS_POINTER 27
+#define SQLITE_FCNTL_JOURNAL_POINTER 28
+#define SQLITE_FCNTL_WIN32_GET_HANDLE 29
+#define SQLITE_FCNTL_PDB 30
+#define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE 31
+#define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE 32
+#define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE 33
+#define SQLITE_FCNTL_LOCK_TIMEOUT 34
+#define SQLITE_FCNTL_DATA_VERSION 35
+#define SQLITE_FCNTL_SIZE_LIMIT 36
+#define SQLITE_FCNTL_CKPT_DONE 37
+#define SQLITE_FCNTL_RESERVE_BYTES 38
+#define SQLITE_FCNTL_CKPT_START 39
+#define SQLITE_FCNTL_EXTERNAL_READER 40
+#define SQLITE_FCNTL_CKSM_FILE 41
+
+/* deprecated names */
+#define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE
+#define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE
+#define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO
+
+
+/*
+** CAPI3REF: Mutex Handle
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: Loadable Extension Thunk
+**
+** A pointer to the opaque sqlite3_api_routines structure is passed as
+** the third parameter to entry points of [loadable extensions]. This
+** structure must be typedefed in order to work around compiler warnings
+** on some platforms.
+*/
+typedef struct sqlite3_api_routines sqlite3_api_routines;
+
+/*
+** CAPI3REF: OS Interface Object
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system". See
+** the [VFS | VFS documentation] for further information.
+**
+** The VFS interface is sometimes extended by adding new methods onto
+** the end. Each time such an extension occurs, the iVersion field
+** is incremented. The iVersion value started out as 1 in
+** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2
+** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased
+** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields
+** may be appended to the sqlite3_vfs object and the iVersion value
+** may increase again in future versions of SQLite.
+** Note that due to an oversight, the structure
+** of the sqlite3_vfs object changed in the transition from
+** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0]
+** and yet the iVersion field was not increased.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** [[sqlite3_vfs.xOpen]]
+** ^SQLite guarantees that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname() with an optional suffix added.
+** ^If a suffix is added to the zFilename parameter, it will
+** consist of a single "-" character followed by no more than
+** 11 alphanumeric and/or "-" characters.
+** ^SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter to xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. ^Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** ^(SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_SUPER_JOURNAL]
+** <li> [SQLITE_OPEN_WAL]
+** </ul>)^
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases and their journals, transient
+** databases, and subjournals.
+**
+** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is <i>not</i> used to indicate the file should be opened
+** for exclusive access.
+**
+** ^At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** [[sqlite3_vfs.xAccess]]
+** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The SQLITE_ACCESS_READ
+** flag is never actually used and is not implemented in the built-in
+** VFSes of SQLite. The file is named by the second argument and can be a
+** directory. The xAccess method returns [SQLITE_OK] on success or some
+** non-zero error code if there is an I/O error or if the name of
+** the file given in the second argument is illegal. If SQLITE_OK
+** is returned, then non-zero or zero is written into *pResOut to indicate
+** whether or not the file is accessible.
+**
+** ^SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
+** interfaces are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. ^The xCurrentTime()
+** method returns a Julian Day Number for the current date and time as
+** a floating point value.
+** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
+** Day Number multiplied by 86400000 (the number of milliseconds in
+** a 24-hour day).
+** ^SQLite will use the xCurrentTimeInt64() method to get the current
+** date and time if that method is available (if iVersion is 2 or
+** greater and the function pointer is not NULL) and will fall back
+** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
+**
+** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
+** are not used by the SQLite core. These optional interfaces are provided
+** by some VFSes to facilitate testing of the VFS code. By overriding
+** system calls with functions under its control, a test program can
+** simulate faults and error conditions that would otherwise be difficult
+** or impossible to induce. The set of system calls that can be overridden
+** varies from one VFS to another, and from one version of the same VFS to the
+** next. Applications that use these interfaces must be prepared for any
+** or all of these interfaces to be NULL or for their behavior to change
+** from one release to the next. Applications must not attempt to access
+** any of these methods if the iVersion of the VFS is less than 3.
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+typedef void (*sqlite3_syscall_ptr)(void);
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number (currently 3) */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /*
+ ** The methods above are in version 1 of the sqlite_vfs object
+ ** definition. Those that follow are added in version 2 or later
+ */
+ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
+ /*
+ ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
+ ** Those below are for version 3 and greater.
+ */
+ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
+ sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
+ const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
+ /*
+ ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
+ ** New fields may be appended in future versions. The iVersion
+ ** value will increment whenever this happens.
+ */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the named directory is both readable and writable
+** (in other words, if files can be added, removed, and renamed within
+** the directory).
+** The SQLITE_ACCESS_READWRITE constant is currently used only by the
+** [temp_store_directory pragma], though this could change in a future
+** release of SQLite.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
+** currently unused, though it might be used in a future release of
+** SQLite.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */
+#define SQLITE_ACCESS_READ 2 /* Unused */
+
+/*
+** CAPI3REF: Flags for the xShmLock VFS method
+**
+** These integer constants define the various locking operations
+** allowed by the xShmLock method of [sqlite3_io_methods]. The
+** following are the only legal combinations of flags to the
+** xShmLock method:
+**
+** <ul>
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
+** </ul>
+**
+** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
+** was given on the corresponding lock.
+**
+** The xShmLock method can transition between unlocked and SHARED or
+** between unlocked and EXCLUSIVE. It cannot transition between SHARED
+** and EXCLUSIVE.
+*/
+#define SQLITE_SHM_UNLOCK 1
+#define SQLITE_SHM_LOCK 2
+#define SQLITE_SHM_SHARED 4
+#define SQLITE_SHM_EXCLUSIVE 8
+
+/*
+** CAPI3REF: Maximum xShmLock index
+**
+** The xShmLock method on [sqlite3_io_methods] may use values
+** between 0 and this upper bound as its "offset" argument.
+** The SQLite core will never attempt to acquire or release a
+** lock outside of this range
+*/
+#define SQLITE_SHM_NLOCK 8
+
+
+/*
+** CAPI3REF: Initialize The SQLite Library
+**
+** ^The sqlite3_initialize() routine initializes the
+** SQLite library. ^The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+** These routines are designed to aid in process initialization and
+** shutdown on embedded systems. Workstation applications using
+** SQLite normally do not need to invoke either of these routines.
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). ^(Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.)^
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
+**
+** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
+** is not. The sqlite3_shutdown() interface must only be called from a
+** single thread. All open [database connections] must be closed and all
+** other SQLite resources must be deallocated prior to invoking
+** sqlite3_shutdown().
+**
+** Among other things, ^sqlite3_initialize() will invoke
+** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
+** will invoke sqlite3_os_end().
+**
+** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** ^If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** ^The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** <b>The sqlite3_config() interface is not threadsafe. The application
+** must ensure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running.</b>
+**
+** The sqlite3_config() interface
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
+** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
+** Note, however, that ^sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [configuration option]
+** in the first argument.
+**
+** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** ^If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+SQLITE_API int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections
+** METHOD: sqlite3
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument).
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
+** that indicates what aspect of the [database connection] is being configured.
+** Subsequent arguments vary depending on the configuration verb.
+**
+** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
+** the call is considered successful.
+*/
+SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc, xRealloc, and xFree methods must work like the
+** malloc(), realloc() and free() functions from the standard C library.
+** ^SQLite guarantees that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. For example,
+** it might allocate any required mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options
+** KEYWORDS: {configuration option}
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Single-thread. In other words, it disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to change the [threading mode] from its default
+** value of Single-thread and so [sqlite3_config()] will return
+** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
+** configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Multi-thread. In other words, it disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Multi-thread [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
+**
+** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Serialized. In other words, this option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Serialized [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is
+** a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.)^ ^SQLite makes
+** its own private copy of the content of the [sqlite3_mem_methods] structure
+** before the [sqlite3_config()] call returns.</dd>
+**
+** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.)^
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example. </dd>
+**
+** [[SQLITE_CONFIG_SMALL_MALLOC]] <dt>SQLITE_CONFIG_SMALL_MALLOC</dt>
+** <dd> ^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of
+** type int, interpreted as a boolean, which if true provides a hint to
+** SQLite that it should avoid large memory allocations if possible.
+** SQLite will run faster if it is free to make large memory allocations,
+** but some application might prefer to run slower in exchange for
+** guarantees about memory fragmentation that are possible if large
+** allocations are avoided. This hint is normally off.
+** </dd>
+**
+** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
+** interpreted as a boolean, which enables or disables the collection of
+** memory allocation statistics. ^(When memory allocation statistics are
+** disabled, the following SQLite interfaces become non-operational:
+** <ul>
+** <li> [sqlite3_hard_heap_limit64()]
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit64()]
+** <li> [sqlite3_status64()]
+** </ul>)^
+** ^Memory allocation statistics are enabled by default unless SQLite is
+** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
+** allocation statistics are disabled by default.
+** </dd>
+**
+** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd> The SQLITE_CONFIG_SCRATCH option is no longer used.
+** </dd>
+**
+** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
+** that SQLite can use for the database page cache with the default page
+** cache implementation.
+** This configuration option is a no-op if an application-defined page
+** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].
+** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
+** 8-byte aligned memory (pMem), the size of each page cache line (sz),
+** and the number of cache lines (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 65536) plus some extra bytes for each
+** page header. ^The number of extra bytes needed by the page header
+** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].
+** ^It is harmless, apart from the wasted memory,
+** for the sz parameter to be larger than necessary. The pMem
+** argument must be either a NULL pointer or a pointer to an 8-byte
+** aligned block of memory of at least sz*N bytes, otherwise
+** subsequent behavior is undefined.
+** ^When pMem is not NULL, SQLite will strive to use the memory provided
+** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
+** a page cache line is larger than sz bytes or if all of the pMem buffer
+** is exhausted.
+** ^If pMem is NULL and N is non-zero, then each database connection
+** does an initial bulk allocation for page cache memory
+** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
+** of -1024*N bytes if N is negative, . ^If additional
+** page cache memory is needed beyond what is provided by the initial
+** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
+** additional cache line. </dd>
+**
+** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer
+** that SQLite will use for all of its dynamic memory allocation needs
+** beyond those provided for by [SQLITE_CONFIG_PAGECACHE].
+** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
+** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
+** [SQLITE_ERROR] if invoked otherwise.
+** ^There are three arguments to SQLITE_CONFIG_HEAP:
+** An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
+** memory pointer is not NULL then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.
+** The minimum allocation size is capped at 2**12. Reasonable values
+** for the minimum allocation size are 2**5 through 2**8.</dd>
+**
+** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
+** pointer to an instance of the [sqlite3_mutex_methods] structure.
+** The argument specifies alternative low-level mutex routines to be used
+** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of
+** the content of the [sqlite3_mutex_methods] structure before the call to
+** [sqlite3_config()] returns. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.)^
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
+** the default size of lookaside memory on each [database connection].
+** The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE
+** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** option to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.)^ </dd>
+**
+** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is
+** a pointer to an [sqlite3_pcache_methods2] object. This object specifies
+** the interface to a custom page cache implementation.)^
+** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
+**
+** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
+** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of
+** the current page cache implementation into that object.)^ </dd>
+**
+** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
+** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
+** global [error log].
+** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
+** function with a call signature of void(*)(void*,int,const char*),
+** and a pointer to void. ^If the function pointer is not NULL, it is
+** invoked by [sqlite3_log()] to process each logging event. ^If the
+** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
+** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
+** passed through as the first parameter to the application-defined logger
+** function whenever that function is invoked. ^The second parameter to
+** the logger function is a copy of the first parameter to the corresponding
+** [sqlite3_log()] call and is intended to be a [result code] or an
+** [extended result code]. ^The third parameter passed to the logger is
+** log message after formatting via [sqlite3_snprintf()].
+** The SQLite logging interface is not reentrant; the logger function
+** supplied by the application must not invoke any SQLite interface.
+** In a multi-threaded application, the application-defined logger
+** function must be threadsafe. </dd>
+**
+** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
+** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
+** If non-zero, then URI handling is globally enabled. If the parameter is zero,
+** then URI handling is globally disabled.)^ ^If URI handling is globally
+** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
+** [sqlite3_open16()] or
+** specified as part of [ATTACH] commands are interpreted as URIs, regardless
+** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
+** connection is opened. ^If it is globally disabled, filenames are
+** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
+** database connection is opened. ^(By default, URI handling is globally
+** disabled. The default value may be changed by compiling with the
+** [SQLITE_USE_URI] symbol defined.)^
+**
+** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
+** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
+** argument which is interpreted as a boolean in order to enable or disable
+** the use of covering indices for full table scans in the query optimizer.
+** ^The default setting is determined
+** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
+** if that compile-time option is omitted.
+** The ability to disable the use of covering indices for full table scans
+** is because some incorrectly coded legacy applications might malfunction
+** when the optimization is enabled. Providing the ability to
+** disable the optimization allows the older, buggy application code to work
+** without change even with newer versions of SQLite.
+**
+** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
+** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
+** <dd> These options are obsolete and should not be used by new code.
+** They are retained for backwards compatibility but are now no-ops.
+** </dd>
+**
+** [[SQLITE_CONFIG_SQLLOG]]
+** <dt>SQLITE_CONFIG_SQLLOG
+** <dd>This option is only available if sqlite is compiled with the
+** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
+** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
+** The second should be of type (void*). The callback is invoked by the library
+** in three separate circumstances, identified by the value passed as the
+** fourth parameter. If the fourth parameter is 0, then the database connection
+** passed as the second argument has just been opened. The third argument
+** points to a buffer containing the name of the main database file. If the
+** fourth parameter is 1, then the SQL statement that the third parameter
+** points to has just been executed. Or, if the fourth parameter is 2, then
+** the connection being passed as the second parameter is being closed. The
+** third parameter is passed NULL In this case. An example of using this
+** configuration option can be seen in the "test_sqllog.c" source file in
+** the canonical SQLite source tree.</dd>
+**
+** [[SQLITE_CONFIG_MMAP_SIZE]]
+** <dt>SQLITE_CONFIG_MMAP_SIZE
+** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
+** that are the default mmap size limit (the default setting for
+** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
+** ^The default setting can be overridden by each database connection using
+** either the [PRAGMA mmap_size] command, or by using the
+** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size
+** will be silently truncated if necessary so that it does not exceed the
+** compile-time maximum mmap size set by the
+** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
+** ^If either argument to this option is negative, then that argument is
+** changed to its compile-time default.
+**
+** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
+** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
+** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
+** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
+** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
+** that specifies the maximum size of the created heap.
+**
+** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
+** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
+** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
+** is a pointer to an integer and writes into that integer the number of extra
+** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
+** The amount of extra space required can change depending on the compiler,
+** target platform, and SQLite version.
+**
+** [[SQLITE_CONFIG_PMASZ]]
+** <dt>SQLITE_CONFIG_PMASZ
+** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
+** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
+** sorter to that integer. The default minimum PMA Size is set by the
+** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched
+** to help with sort operations when multithreaded sorting
+** is enabled (using the [PRAGMA threads] command) and the amount of content
+** to be sorted exceeds the page size times the minimum of the
+** [PRAGMA cache_size] setting and this value.
+**
+** [[SQLITE_CONFIG_STMTJRNL_SPILL]]
+** <dt>SQLITE_CONFIG_STMTJRNL_SPILL
+** <dd>^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which
+** becomes the [statement journal] spill-to-disk threshold.
+** [Statement journals] are held in memory until their size (in bytes)
+** exceeds this threshold, at which point they are written to disk.
+** Or if the threshold is -1, statement journals are always held
+** exclusively in memory.
+** Since many statement journals never become large, setting the spill
+** threshold to a value such as 64KiB can greatly reduce the amount of
+** I/O required to support statement rollback.
+** The default value for this setting is controlled by the
+** [SQLITE_STMTJRNL_SPILL] compile-time option.
+**
+** [[SQLITE_CONFIG_SORTERREF_SIZE]]
+** <dt>SQLITE_CONFIG_SORTERREF_SIZE
+** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
+** of type (int) - the new value of the sorter-reference size threshold.
+** Usually, when SQLite uses an external sort to order records according
+** to an ORDER BY clause, all fields required by the caller are present in the
+** sorted records. However, if SQLite determines based on the declared type
+** of a table column that its values are likely to be very large - larger
+** than the configured sorter-reference size threshold - then a reference
+** is stored in each sorted record and the required column values loaded
+** from the database as records are returned in sorted order. The default
+** value for this option is to never use this optimization. Specifying a
+** negative value for this option restores the default behaviour.
+** This option is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
+**
+** [[SQLITE_CONFIG_MEMDB_MAXSIZE]]
+** <dt>SQLITE_CONFIG_MEMDB_MAXSIZE
+** <dd>The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter
+** [sqlite3_int64] parameter which is the default maximum size for an in-memory
+** database created using [sqlite3_deserialize()]. This default maximum
+** size can be adjusted up or down for individual databases using the
+** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this
+** configuration setting is never used, then the default maximum is determined
+** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that
+** compile-time option is not set, then the default maximum is 1073741824.
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* No longer used */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* no-op */
+#define SQLITE_CONFIG_GETPCACHE 15 /* no-op */
+#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
+#define SQLITE_CONFIG_URI 17 /* int */
+#define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */
+#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */
+#define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */
+#define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */
+#define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */
+#define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */
+#define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */
+#define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */
+#define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */
+#define SQLITE_CONFIG_MEMDB_MAXSIZE 29 /* sqlite3_int64 */
+
+/*
+** CAPI3REF: Database Connection Configuration Options
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. ^The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_DBCONFIG_LOOKASIDE]]
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd> ^This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** ^The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to a memory buffer to use for lookaside memory.
+** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
+** may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
+** size of each lookaside buffer slot. ^The third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. ^If the second argument to
+** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
+** rounded down to the next smaller multiple of 8. ^(The lookaside memory
+** configuration for a database connection can only be changed when that
+** connection is not currently using lookaside memory, or in other words
+** when the "current value" returned by
+** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
+** Any attempt to change the lookaside memory configuration when lookaside
+** memory is in use leaves the configuration unchanged and returns
+** [SQLITE_BUSY].)^</dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
+** <dd> ^This option is used to enable or disable the enforcement of
+** [foreign key constraints]. There should be two additional arguments.
+** The first argument is an integer which is 0 to disable FK enforcement,
+** positive to enable FK enforcement or negative to leave FK enforcement
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether FK enforcement is off or on
+** following this call. The second parameter may be a NULL pointer, in
+** which case the FK enforcement setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
+** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable triggers,
+** positive to enable triggers or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether triggers are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the trigger setting is not reported back.
+**
+** <p>Originally this option disabled all triggers. ^(However, since
+** SQLite version 3.35.0, TEMP triggers are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** triggers in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_VIEW]]
+** <dt>SQLITE_DBCONFIG_ENABLE_VIEW</dt>
+** <dd> ^This option is used to enable or disable [CREATE VIEW | views].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable views,
+** positive to enable views or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether views are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the view setting is not reported back.
+**
+** <p>Originally this option disabled all views. ^(However, since
+** SQLite version 3.35.0, TEMP views are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** views in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
+** <dd> ^This option is used to enable or disable the
+** [fts3_tokenizer()] function which is part of the
+** [FTS3] full-text search engine extension.
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable fts3_tokenizer() or
+** positive to enable fts3_tokenizer() or negative to leave the setting
+** unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the new setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
+** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
+** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
+** interface independently of the [load_extension()] SQL function.
+** The [sqlite3_enable_load_extension()] API enables or disables both the
+** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
+** There should be two additional arguments.
+** When the first argument to this interface is 1, then only the C-API is
+** enabled and the SQL function remains disabled. If the first argument to
+** this interface is 0, then both the C-API and the SQL function are disabled.
+** If the first argument is -1, then no changes are made to state of either the
+** C-API or the SQL function.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
+** is disabled or enabled following this call. The second parameter may
+** be a NULL pointer, in which case the new setting is not reported back.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
+** <dd> ^This option is used to change the name of the "main" database
+** schema. ^The sole argument is a pointer to a constant UTF8 string
+** which will become the new schema name in place of "main". ^SQLite
+** does not make a copy of the new main schema name string, so the application
+** must ensure that the argument passed into this DBCONFIG option is unchanged
+** until after the database connection closes.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]]
+** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
+** <dd> Usually, when a database in wal mode is closed or detached from a
+** database handle, SQLite checks if this will mean that there are now no
+** connections at all to the database. If so, it performs a checkpoint
+** operation before closing the connection. This option may be used to
+** override this behaviour. The first parameter passed to this operation
+** is an integer - positive to disable checkpoints-on-close, or zero (the
+** default) to enable them, and negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer
+** into which is written 0 or 1 to indicate whether checkpoints-on-close
+** have been disabled - 0 if they are not disabled, 1 if they are.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
+** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
+** the [query planner stability guarantee] (QPSG). When the QPSG is active,
+** a single SQL query statement will always use the same algorithm regardless
+** of values of [bound parameters].)^ The QPSG disables some query optimizations
+** that look at the values of bound parameters, which can make some queries
+** slower. But the QPSG has the advantage of more predictable behavior. With
+** the QPSG active, SQLite will always use the same query plan in the field as
+** was used during testing in the lab.
+** The first argument to this setting is an integer which is 0 to disable
+** the QPSG, positive to enable QPSG, or negative to leave the setting
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
+** following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
+** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not
+** include output for any operations performed by trigger programs. This
+** option is used to set or clear (the default) a flag that governs this
+** behavior. The first parameter passed to this operation is an integer -
+** positive to enable output for trigger programs, or zero to disable it,
+** or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which is written
+** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if
+** it is not disabled, 1 if it is.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
+** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
+** [VACUUM] in order to reset a database back to an empty database
+** with no schema and no content. The following process works even for
+** a badly corrupted database file:
+** <ol>
+** <li> If the database connection is newly opened, make sure it has read the
+** database schema by preparing then discarding some query against the
+** database, or calling sqlite3_table_column_metadata(), ignoring any
+** errors. This step is only necessary if the application desires to keep
+** the database in WAL mode after the reset if it was in WAL mode before
+** the reset.
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
+** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
+** </ol>
+** Because resetting a database is destructive and irreversible, the
+** process requires the use of this obscure API and multiple steps to help
+** ensure that it does not happen by accident.
+**
+** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
+** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
+** "defensive" flag for a database connection. When the defensive
+** flag is enabled, language features that allow ordinary SQL to
+** deliberately corrupt the database file are disabled. The disabled
+** features include but are not limited to the following:
+** <ul>
+** <li> The [PRAGMA writable_schema=ON] statement.
+** <li> The [PRAGMA journal_mode=OFF] statement.
+** <li> Writes to the [sqlite_dbpage] virtual table.
+** <li> Direct writes to [shadow tables].
+** </ul>
+** </dd>
+**
+** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]] <dt>SQLITE_DBCONFIG_WRITABLE_SCHEMA</dt>
+** <dd>The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the
+** "writable_schema" flag. This has the same effect and is logically equivalent
+** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF].
+** The first argument to this setting is an integer which is 0 to disable
+** the writable_schema, positive to enable writable_schema, or negative to
+** leave the setting unchanged. The second parameter is a pointer to an
+** integer into which is written 0 or 1 to indicate whether the writable_schema
+** is enabled or disabled following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]]
+** <dt>SQLITE_DBCONFIG_LEGACY_ALTER_TABLE</dt>
+** <dd>The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates
+** the legacy behavior of the [ALTER TABLE RENAME] command such it
+** behaves as it did prior to [version 3.24.0] (2018-06-04). See the
+** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for
+** additional information. This feature can also be turned on and off
+** using the [PRAGMA legacy_alter_table] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DML]]
+** <dt>SQLITE_DBCONFIG_DQS_DML</td>
+** <dd>The SQLITE_DBCONFIG_DQS_DML option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DML statements
+** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DDL]]
+** <dt>SQLITE_DBCONFIG_DQS_DDL</td>
+** <dd>The SQLITE_DBCONFIG_DQS option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DDL statements,
+** such as CREATE TABLE and CREATE INDEX. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]]
+** <dt>SQLITE_DBCONFIG_TRUSTED_SCHEMA</td>
+** <dd>The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to
+** assume that database schemas are untainted by malicious content.
+** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite
+** takes additional defensive steps to protect the application from harm
+** including:
+** <ul>
+** <li> Prohibit the use of SQL functions inside triggers, views,
+** CHECK constraints, DEFAULT clauses, expression indexes,
+** partial indexes, or generated columns
+** unless those functions are tagged with [SQLITE_INNOCUOUS].
+** <li> Prohibit the use of virtual tables inside of triggers or views
+** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS].
+** </ul>
+** This setting defaults to "on" for legacy compatibility, however
+** all applications are advised to turn it off if possible. This setting
+** can also be controlled using the [PRAGMA trusted_schema] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]]
+** <dt>SQLITE_DBCONFIG_LEGACY_FILE_FORMAT</td>
+** <dd>The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates
+** the legacy file format flag. When activated, this flag causes all newly
+** created database file to have a schema format version number (the 4-byte
+** integer found at offset 44 into the database header) of 1. This in turn
+** means that the resulting database file will be readable and writable by
+** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting,
+** newly created databases are generally not understandable by SQLite versions
+** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there
+** is now scarcely any need to generated database files that are compatible
+** all the way back to version 3.0.0, and so this setting is of little
+** practical use, but is provided so that SQLite can continue to claim the
+** ability to generate new database files that are compatible with version
+** 3.0.0.
+** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on,
+** the [VACUUM] command will fail with an obscure error when attempting to
+** process a table with generated columns and a descending index. This is
+** not considered a bug since SQLite versions 3.3.0 and earlier do not support
+** either generated columns or decending indexes.
+** </dd>
+** </dl>
+*/
+#define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
+#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */
+#define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */
+#define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */
+#define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */
+#define SQLITE_DBCONFIG_WRITABLE_SCHEMA 1011 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE 1012 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DML 1013 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DDL 1014 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_VIEW 1015 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT 1016 /* int int* */
+#define SQLITE_DBCONFIG_TRUSTED_SCHEMA 1017 /* int int* */
+#define SQLITE_DBCONFIG_MAX 1017 /* Largest DBCONFIG */
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes
+** METHOD: sqlite3
+**
+** ^The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. ^The extended result
+** codes are disabled by default for historical compatibility.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid
+** METHOD: sqlite3
+**
+** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
+** has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. ^The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. ^If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
+** the most recent successful [INSERT] into a rowid table or [virtual table]
+** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
+** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred
+** on the database connection D, then sqlite3_last_insert_rowid(D) returns
+** zero.
+**
+** As well as being set automatically as rows are inserted into database
+** tables, the value returned by this function may be set explicitly by
+** [sqlite3_set_last_insert_rowid()]
+**
+** Some virtual table implementations may INSERT rows into rowid tables as
+** part of committing a transaction (e.g. to flush data accumulated in memory
+** to disk). In this case subsequent calls to this function return the rowid
+** associated with these internal INSERT operations, which leads to
+** unintuitive results. Virtual table implementations that do write to rowid
+** tables in this way can avoid this problem by restoring the original
+** rowid value using [sqlite3_set_last_insert_rowid()] before returning
+** control to the user.
+**
+** ^(If an [INSERT] occurs within a trigger then this routine will
+** return the [rowid] of the inserted row as long as the trigger is
+** running. Once the trigger program ends, the value returned
+** by this routine reverts to what it was before the trigger was fired.)^
+**
+** ^An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. ^(When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.)^
+**
+** ^For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** This function is accessible to SQL statements via the
+** [last_insert_rowid() SQL function].
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Set the Last Insert Rowid value.
+** METHOD: sqlite3
+**
+** The sqlite3_set_last_insert_rowid(D, R) method allows the application to
+** set the value returned by calling sqlite3_last_insert_rowid(D) to R
+** without inserting a row into the database.
+*/
+SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the number of rows modified, inserted or
+** deleted by the most recently completed INSERT, UPDATE or DELETE
+** statement on the database connection specified by the only parameter.
+** The two functions are identical except for the type of the return value
+** and that if the number of rows modified by the most recent INSERT, UPDATE
+** or DELETE is greater than the maximum value supported by type "int", then
+** the return value of sqlite3_changes() is undefined. ^Executing any other
+** type of SQL statement does not modify the value returned by these functions.
+**
+** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
+** considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
+** [foreign key actions] or [REPLACE] constraint resolution are not counted.
+**
+** Changes to a view that are intercepted by
+** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
+** returned by sqlite3_changes() immediately after an INSERT, UPDATE or
+** DELETE statement run on a view is always zero. Only changes made to real
+** tables are counted.
+**
+** Things are more complicated if the sqlite3_changes() function is
+** executed while a trigger program is running. This may happen if the
+** program uses the [changes() SQL function], or if some other callback
+** function invokes sqlite3_changes() directly. Essentially:
+**
+** <ul>
+** <li> ^(Before entering a trigger program the value returned by
+** sqlite3_changes() function is saved. After the trigger program
+** has finished, the original value is restored.)^
+**
+** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
+** statement sets the value returned by sqlite3_changes()
+** upon completion as normal. Of course, this value will not include
+** any changes performed by sub-triggers, as the sqlite3_changes()
+** value will be saved and restored after each sub-trigger has run.)^
+** </ul>
+**
+** ^This means that if the changes() SQL function (or similar) is used
+** by the first INSERT, UPDATE or DELETE statement within a trigger, it
+** returns the value as set when the calling statement began executing.
+** ^If it is used by the second or subsequent such statement within a trigger
+** program, the value returned reflects the number of rows modified by the
+** previous INSERT, UPDATE or DELETE statement within the same trigger.
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_total_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** </ul>
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the total number of rows inserted, modified or
+** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
+** since the database connection was opened, including those executed as
+** part of trigger programs. The two functions are identical except for the
+** type of the return value and that if the number of rows modified by the
+** connection exceeds the maximum value supported by type "int", then
+** the return value of sqlite3_total_changes() is undefined. ^Executing
+** any other type of SQL statement does not affect the value returned by
+** sqlite3_total_changes().
+**
+** ^Changes made as part of [foreign key actions] are included in the
+** count, but those made as part of REPLACE constraint resolution are
+** not. ^Changes to a view that are intercepted by INSTEAD OF triggers
+** are not counted.
+**
+** The [sqlite3_total_changes(D)] interface only reports the number
+** of rows that changed due to SQL statement run against database
+** connection D. Any changes by other database connections are ignored.
+** To detect changes against a database file from other database
+** connections use the [PRAGMA data_version] command or the
+** [SQLITE_FCNTL_DATA_VERSION] [file control].
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
+** </ul>
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query
+** METHOD: sqlite3
+**
+** ^This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** ^It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** ^If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** ^The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. ^Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statement count reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. ^New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** ^A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. ^These routines return 1 if the input string
+** appears to be a complete SQL statement. ^A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. ^Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** ^These routines return 0 if the statement is incomplete. ^If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** ^These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.)^
+**
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
+** KEYWORDS: {busy-handler callback} {busy handler}
+** METHOD: sqlite3
+**
+** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
+** that might be invoked with argument P whenever
+** an attempt is made to access a database table associated with
+** [database connection] D when another thread
+** or process has the table locked.
+** The sqlite3_busy_handler() interface is used to implement
+** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
+**
+** ^If the busy callback is NULL, then [SQLITE_BUSY]
+** is returned immediately upon encountering the lock. ^If the busy callback
+** is not NULL, then the callback might be invoked with two arguments.
+**
+** ^The first argument to the busy handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). ^The second argument to
+** the busy handler callback is the number of times that the busy handler has
+** been invoked previously for the same locking event. ^If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] is returned
+** to the application.
+** ^If the callback returns non-zero, then another attempt
+** is made to access the database and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. ^If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** to the application instead of invoking the
+** busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** ^The default busy callback is NULL.
+**
+** ^(There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
+** or evaluating [PRAGMA busy_timeout=N] will change the
+** busy handler and thus clear any previously set busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. In other words,
+** the busy handler is not reentrant. Any such actions
+** result in undefined behavior.
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
+*/
+SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout
+** METHOD: sqlite3
+**
+** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. ^The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. ^After at least "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY].
+**
+** ^Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** ^(There can only be a single busy handler for a particular
+** [database connection] at any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.)^
+**
+** See also: [PRAGMA busy_timeout]
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries
+** METHOD: sqlite3
+**
+** This is a legacy interface that is preserved for backwards compatibility.
+** Use of this interface is not recommended.
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
+**
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** ^(As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+** </pre></blockquote>
+**
+** There are two columns (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array named azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>)^
+**
+** ^The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter and returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the application has finished with the result from sqlite3_get_table(),
+** it must pass the result table pointer to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+** These routines understand most of the common formatting options from
+** the standard library printf()
+** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
+** See the [built-in printf()] documentation for details.
+**
+** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc64()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. ^Both routines return a
+** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf().)^ This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. ^(Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer.)^ We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. ^The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
+**
+** See also: [built-in printf()], [printf() SQL function]
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific [VFS] implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** ^The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** ^If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. ^If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** ^The sqlite3_malloc64(N) routine works just like
+** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
+** of a signed 32-bit integer.
+**
+** ^Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. ^The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** ^The sqlite3_realloc(X,N) interface attempts to resize a
+** prior memory allocation X to be at least N bytes.
+** ^If the X parameter to sqlite3_realloc(X,N)
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N).
+** ^If the N parameter to sqlite3_realloc(X,N) is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(X).
+** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if insufficient memory is available.
+** ^If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc(X,N) and the prior allocation is freed.
+** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
+** prior allocation is not freed.
+**
+** ^The sqlite3_realloc64(X,N) interfaces works the same as
+** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
+** of a 32-bit signed integer.
+**
+** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
+** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
+** sqlite3_msize(X) returns the size of that memory allocation in bytes.
+** ^The value returned by sqlite3_msize(X) might be larger than the number
+** of bytes requested when X was allocated. ^If X is a NULL pointer then
+** sqlite3_msize(X) returns zero. If X points to something that is not
+** the beginning of memory allocation, or if it points to a formerly
+** valid memory allocation that has now been freed, then the behavior
+** of sqlite3_msize(X) is undefined and possibly harmful.
+**
+** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
+** sqlite3_malloc64(), and sqlite3_realloc64()
+** is always aligned to at least an 8 byte boundary, or to a
+** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
+** option is used.
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
+SQLITE_API void sqlite3_free(void*);
+SQLITE_API sqlite3_uint64 sqlite3_msize(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** ^The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
+** ^The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset. ^The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** ^The memory high-water mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. ^The value returned
+** by [sqlite3_memory_highwater(1)] is the high-water mark
+** prior to the reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the built-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** ^A call to this routine stores N bytes of randomness into buffer P.
+** ^The P parameter can be a NULL pointer.
+**
+** ^If this routine has not been previously called or if the previous
+** call had N less than one or a NULL pointer for P, then the PRNG is
+** seeded using randomness obtained from the xRandomness method of
+** the default [sqlite3_vfs] object.
+** ^If the previous call to this routine had an N of 1 or more and a
+** non-NULL P then the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks
+** METHOD: sqlite3
+** KEYWORDS: {authorizer callback}
+**
+** ^This routine registers an authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** ^The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
+** and [sqlite3_prepare16_v3()]. ^At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. ^The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. ^If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. ^When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** ^The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. ^The third through sixth parameters
+** to the callback are either NULL pointers or zero-terminated strings
+** that contain additional details about the action to be authorized.
+** Applications must always be prepared to encounter a NULL pointer in any
+** of the third through the sixth parameters of the authorization callback.
+**
+** ^If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** ^When a table is referenced by a [SELECT] but no column values are
+** extracted from that table (for example in a query like
+** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
+** is invoked once for that table with a column name that is an empty string.
+** ^If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** ^(Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call.)^ ^Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** ^Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+**
+** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
+** returned from the [sqlite3_vtab_on_conflict()] interface.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. ^(The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
+#define SQLITE_RECURSIVE 33 /* NULL NULL */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions
+** METHOD: sqlite3
+**
+** These routines are deprecated. Use the [sqlite3_trace_v2()] interface
+** instead of the routines described here.
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** ^The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
+** SQL statement text as the statement first begins executing.
+** ^(Additional sqlite3_trace() callbacks might occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.)^
+**
+** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
+** the length of [bound parameter] expansion in the output of sqlite3_trace().
+**
+** ^The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. ^The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run. ^The profile callback
+** time is in units of nanoseconds, however the current implementation
+** is only capable of millisecond resolution so the six least significant
+** digits in the time are meaningless. Future versions of SQLite
+** might provide greater resolution on the profiler callback. Invoking
+** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
+** profile callback.
+*/
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*,
+ void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: SQL Trace Event Codes
+** KEYWORDS: SQLITE_TRACE
+**
+** These constants identify classes of events that can be monitored
+** using the [sqlite3_trace_v2()] tracing logic. The M argument
+** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of
+** the following constants. ^The first argument to the trace callback
+** is one of the following constants.
+**
+** New tracing constants may be added in future releases.
+**
+** ^A trace callback has four arguments: xCallback(T,C,P,X).
+** ^The T argument is one of the integer type codes above.
+** ^The C argument is a copy of the context pointer passed in as the
+** fourth argument to [sqlite3_trace_v2()].
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** <dl>
+** [[SQLITE_TRACE_STMT]] <dt>SQLITE_TRACE_STMT</dt>
+** <dd>^An SQLITE_TRACE_STMT callback is invoked when a prepared statement
+** first begins running and possibly at other times during the
+** execution of the prepared statement, such as at the start of each
+** trigger subprogram. ^The P argument is a pointer to the
+** [prepared statement]. ^The X argument is a pointer to a string which
+** is the unexpanded SQL text of the prepared statement or an SQL comment
+** that indicates the invocation of a trigger. ^The callback can compute
+** the same text that would have been returned by the legacy [sqlite3_trace()]
+** interface by using the X argument when X begins with "--" and invoking
+** [sqlite3_expanded_sql(P)] otherwise.
+**
+** [[SQLITE_TRACE_PROFILE]] <dt>SQLITE_TRACE_PROFILE</dt>
+** <dd>^An SQLITE_TRACE_PROFILE callback provides approximately the same
+** information as is provided by the [sqlite3_profile()] callback.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument points to a 64-bit integer which is the estimated of
+** the number of nanosecond that the prepared statement took to run.
+** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes.
+**
+** [[SQLITE_TRACE_ROW]] <dt>SQLITE_TRACE_ROW</dt>
+** <dd>^An SQLITE_TRACE_ROW callback is invoked whenever a prepared
+** statement generates a single row of result.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument is unused.
+**
+** [[SQLITE_TRACE_CLOSE]] <dt>SQLITE_TRACE_CLOSE</dt>
+** <dd>^An SQLITE_TRACE_CLOSE callback is invoked when a database
+** connection closes.
+** ^The P argument is a pointer to the [database connection] object
+** and the X argument is unused.
+** </dl>
+*/
+#define SQLITE_TRACE_STMT 0x01
+#define SQLITE_TRACE_PROFILE 0x02
+#define SQLITE_TRACE_ROW 0x04
+#define SQLITE_TRACE_CLOSE 0x08
+
+/*
+** CAPI3REF: SQL Trace Hook
+** METHOD: sqlite3
+**
+** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
+** function X against [database connection] D, using property mask M
+** and context pointer P. ^If the X callback is
+** NULL or if the M mask is zero, then tracing is disabled. The
+** M argument should be the bitwise OR-ed combination of
+** zero or more [SQLITE_TRACE] constants.
+**
+** ^Each call to either sqlite3_trace() or sqlite3_trace_v2() overrides
+** (cancels) any prior calls to sqlite3_trace() or sqlite3_trace_v2().
+**
+** ^The X callback is invoked whenever any of the events identified by
+** mask M occur. ^The integer return value from the callback is currently
+** ignored, though this may change in future releases. Callback
+** implementations should return zero to ensure future compatibility.
+**
+** ^A trace callback is invoked with four arguments: callback(T,C,P,X).
+** ^The T argument is one of the [SQLITE_TRACE]
+** constants to indicate why the callback was invoked.
+** ^The C argument is a copy of the context pointer.
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** The sqlite3_trace_v2() interface is intended to replace the legacy
+** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
+** are deprecated.
+*/
+SQLITE_API int sqlite3_trace_v2(
+ sqlite3*,
+ unsigned uMask,
+ int(*xCallback)(unsigned,void*,void*,void*),
+ void *pCtx
+);
+
+/*
+** CAPI3REF: Query Progress Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
+** function X to be invoked periodically during long running calls to
+** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
+** database connection D. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** ^The parameter P is passed through as the only parameter to the
+** callback function X. ^The parameter N is the approximate number of
+** [virtual machine instructions] that are evaluated between successive
+** invocations of the callback X. ^If N is less than one then the progress
+** handler is disabled.
+**
+** ^Only a single progress handler may be defined at one time per
+** [database connection]; setting a new progress handler cancels the
+** old one. ^Setting parameter X to NULL disables the progress handler.
+** ^The progress handler is also disabled by setting N to a value less
+** than 1.
+**
+** ^If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
+**
+** The progress handler callback must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+*/
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection
+** CONSTRUCTOR: sqlite3
+**
+** ^These routines open an SQLite database file as specified by the
+** filename argument. ^The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). ^(A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object.)^ ^(If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error following a failure of any
+** of the sqlite3_open() routines.
+**
+** ^The default encoding will be UTF-8 for databases created using
+** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
+** created using sqlite3_open16() will be UTF-16 in the native byte order.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. ^(The flags parameter to
+** sqlite3_open_v2() must include, at a minimum, one of the following
+** three flag combinations:)^
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is created if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>)^
+** </dl>
+**
+** In addition to the required flags, the following optional flags are
+** also supported:
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_URI]</dt>
+** <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
+** <dd>The database will be opened as an in-memory database. The database
+** is named by the "filename" argument for the purposes of cache-sharing,
+** if shared cache mode is enabled, but the "filename" is otherwise ignored.
+** </dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
+** <dd>The new database connection will use the "multi-thread"
+** [threading mode].)^ This means that separate threads are allowed
+** to use SQLite at the same time, as long as each thread is using
+** a different [database connection].
+**
+** ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
+** <dd>The new database connection will use the "serialized"
+** [threading mode].)^ This means the multiple threads can safely
+** attempt to use the same database connection at the same time.
+** (Mutexes will block any actual concurrency, but in this mode
+** there is no harm in trying.)
+**
+** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
+** <dd>The database is opened [shared cache] enabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+**
+** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
+** <dd>The database is opened [shared cache] disabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+**
+** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt>
+** <dd>The database connection comes up in "extended result code mode".
+** In other words, the database behaves has if
+** [sqlite3_extended_result_codes(db,1)] where called on the database
+** connection as soon as the connection is created. In addition to setting
+** the extended result code mode, this flag also causes [sqlite3_open_v2()]
+** to return an extended result code.</dd>
+**
+** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
+** <dd>The database filename is not allowed to be a symbolic link</dd>
+** </dl>)^
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** required combinations shown above optionally combined with other
+** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
+** then the behavior is undefined. Historic versions of SQLite
+** have silently ignored surplus bits in the flags parameter to
+** sqlite3_open_v2(), however that behavior might not be carried through
+** into future versions of SQLite and so applications should not rely
+** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op
+** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause
+** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE
+** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not
+** by sqlite3_open_v2().
+**
+** ^The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. ^If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** ^If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. ^This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** ^If the filename is an empty string, then a private, temporary
+** on-disk database will be created. ^This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
+**
+** ^If [URI filename] interpretation is enabled, and the filename argument
+** begins with "file:", then the filename is interpreted as a URI. ^URI
+** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
+** set in the third argument to sqlite3_open_v2(), or if it has
+** been enabled globally using the [SQLITE_CONFIG_URI] option with the
+** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
+** URI filename interpretation is turned off
+** by default, but future releases of SQLite might enable URI filename
+** interpretation by default. See "[URI filenames]" for additional
+** information.
+**
+** URI filenames are parsed according to RFC 3986. ^If the URI contains an
+** authority, then it must be either an empty string or the string
+** "localhost". ^If the authority is not an empty string or "localhost", an
+** error is returned to the caller. ^The fragment component of a URI, if
+** present, is ignored.
+**
+** ^SQLite uses the path component of the URI as the name of the disk file
+** which contains the database. ^If the path begins with a '/' character,
+** then it is interpreted as an absolute path. ^If the path does not begin
+** with a '/' (meaning that the authority section is omitted from the URI)
+** then the path is interpreted as a relative path.
+** ^(On windows, the first component of an absolute path
+** is a drive specification (e.g. "C:").)^
+**
+** [[core URI query parameters]]
+** The query component of a URI may contain parameters that are interpreted
+** either by SQLite itself, or by a [VFS | custom VFS implementation].
+** SQLite and its built-in [VFSes] interpret the
+** following query parameters:
+**
+** <ul>
+** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
+** a VFS object that provides the operating system interface that should
+** be used to access the database file on disk. ^If this option is set to
+** an empty string the default VFS object is used. ^Specifying an unknown
+** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
+** present, then the VFS specified by the option takes precedence over
+** the value passed as the fourth parameter to sqlite3_open_v2().
+**
+** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
+** "rwc", or "memory". Attempting to set it to any other value is
+** an error)^.
+** ^If "ro" is specified, then the database is opened for read-only
+** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
+** third argument to sqlite3_open_v2(). ^If the mode option is set to
+** "rw", then the database is opened for read-write (but not create)
+** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
+** been set. ^Value "rwc" is equivalent to setting both
+** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
+** set to "memory" then a pure [in-memory database] that never reads
+** or writes from disk is used. ^It is an error to specify a value for
+** the mode parameter that is less restrictive than that specified by
+** the flags passed in the third parameter to sqlite3_open_v2().
+**
+** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
+** "private". ^Setting it to "shared" is equivalent to setting the
+** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
+** sqlite3_open_v2(). ^Setting the cache parameter to "private" is
+** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
+** ^If sqlite3_open_v2() is used and the "cache" parameter is present in
+** a URI filename, its value overrides any behavior requested by setting
+** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
+**
+** <li> <b>psow</b>: ^The psow parameter indicates whether or not the
+** [powersafe overwrite] property does or does not apply to the
+** storage media on which the database file resides.
+**
+** <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
+** which if set disables file locking in rollback journal modes. This
+** is useful for accessing a database on a filesystem that does not
+** support locking. Caution: Database corruption might result if two
+** or more processes write to the same database and any one of those
+** processes uses nolock=1.
+**
+** <li> <b>immutable</b>: ^The immutable parameter is a boolean query
+** parameter that indicates that the database file is stored on
+** read-only media. ^When immutable is set, SQLite assumes that the
+** database file cannot be changed, even by a process with higher
+** privilege, and so the database is opened read-only and all locking
+** and change detection is disabled. Caution: Setting the immutable
+** property on a database file that does in fact change can result
+** in incorrect query results and/or [SQLITE_CORRUPT] errors.
+** See also: [SQLITE_IOCAP_IMMUTABLE].
+**
+** </ul>
+**
+** ^Specifying an unknown parameter in the query component of a URI is not an
+** error. Future versions of SQLite might understand additional query
+** parameters. See "[query parameters with special meaning to SQLite]" for
+** additional information.
+**
+** [[URI filename examples]] <h3>URI filename examples</h3>
+**
+** <table border="1" align=center cellpadding=5>
+** <tr><th> URI filenames <th> Results
+** <tr><td> file:data.db <td>
+** Open the file "data.db" in the current directory.
+** <tr><td> file:/home/fred/data.db<br>
+** file:///home/fred/data.db <br>
+** file://localhost/home/fred/data.db <br> <td>
+** Open the database file "/home/fred/data.db".
+** <tr><td> file://darkstar/home/fred/data.db <td>
+** An error. "darkstar" is not a recognized authority.
+** <tr><td style="white-space:nowrap">
+** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
+** <td> Windows only: Open the file "data.db" on fred's desktop on drive
+** C:. Note that the %20 escaping in this example is not strictly
+** necessary - space characters can be used literally
+** in URI filenames.
+** <tr><td> file:data.db?mode=ro&cache=private <td>
+** Open file "data.db" in the current directory for read-only access.
+** Regardless of whether or not shared-cache mode is enabled by
+** default, use a private cache.
+** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
+** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
+** that uses dot-files in place of posix advisory locking.
+** <tr><td> file:data.db?mode=readonly <td>
+** An error. "readonly" is not a valid option for the "mode" parameter.
+** Use "ro" instead: "file:data.db?mode=ro".
+** </table>
+**
+** ^URI hexadecimal escape sequences (%HH) are supported within the path and
+** query components of a URI. A hexadecimal escape sequence consists of a
+** percent sign - "%" - followed by exactly two hexadecimal digits
+** specifying an octet value. ^Before the path or query components of a
+** URI filename are interpreted, they are encoded using UTF-8 and all
+** hexadecimal escape sequences replaced by a single byte containing the
+** corresponding octet. If this process generates an invalid UTF-8 encoding,
+** the results are undefined.
+**
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
+** features that require the use of temporary files may fail.
+**
+** See also: [sqlite3_temp_directory]
+*/
+SQLITE_API int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Obtain Values For URI Parameters
+**
+** These are utility routines, useful to [VFS|custom VFS implementations],
+** that check if a database file was a URI that contained a specific query
+** parameter, and if so obtains the value of that query parameter.
+**
+** The first parameter to these interfaces (hereafter referred to
+** as F) must be one of:
+** <ul>
+** <li> A database filename pointer created by the SQLite core and
+** passed into the xOpen() method of a VFS implemention, or
+** <li> A filename obtained from [sqlite3_db_filename()], or
+** <li> A new filename constructed using [sqlite3_create_filename()].
+** </ul>
+** If the F parameter is not one of the above, then the behavior is
+** undefined and probably undesirable. Older versions of SQLite were
+** more tolerant of invalid F parameters than newer versions.
+**
+** If F is a suitable filename (as described in the previous paragraph)
+** and if P is the name of the query parameter, then
+** sqlite3_uri_parameter(F,P) returns the value of the P
+** parameter if it exists or a NULL pointer if P does not appear as a
+** query parameter on F. If P is a query parameter of F and it
+** has no explicit value, then sqlite3_uri_parameter(F,P) returns
+** a pointer to an empty string.
+**
+** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
+** parameter and returns true (1) or false (0) according to the value
+** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
+** value of query parameter P is one of "yes", "true", or "on" in any
+** case or if the value begins with a non-zero number. The
+** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
+** query parameter P is one of "no", "false", or "off" in any case or
+** if the value begins with a numeric zero. If P is not a query
+** parameter on F or if the value of P does not match any of the
+** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
+**
+** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
+** 64-bit signed integer and returns that integer, or D if P does not
+** exist. If the value of P is something other than an integer, then
+** zero is returned.
+**
+** The sqlite3_uri_key(F,N) returns a pointer to the name (not
+** the value) of the N-th query parameter for filename F, or a NULL
+** pointer if N is less than zero or greater than the number of query
+** parameters minus 1. The N value is zero-based so N should be 0 to obtain
+** the name of the first query parameter, 1 for the second parameter, and
+** so forth.
+**
+** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
+** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
+** is not a database file pathname pointer that the SQLite core passed
+** into the xOpen VFS method, then the behavior of this routine is undefined
+** and probably undesirable.
+**
+** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
+** parameter can also be the name of a rollback journal file or WAL file
+** in addition to the main database file. Prior to version 3.31.0, these
+** routines would only work if F was the name of the main database file.
+** When the F parameter is the name of the rollback journal or WAL file,
+** it has access to all the same query parameters as were found on the
+** main database file.
+**
+** See the [URI filename] documentation for additional information.
+*/
+SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
+SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
+SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);
+SQLITE_API const char *sqlite3_uri_key(const char *zFilename, int N);
+
+/*
+** CAPI3REF: Translate filenames
+**
+** These routines are available to [VFS|custom VFS implementations] for
+** translating filenames between the main database file, the journal file,
+** and the WAL file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
+** returns the name of the corresponding database file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, or if F is a database filename
+** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
+** returns the name of the corresponding rollback journal file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** that was passed by the SQLite core into the VFS, or if F is a database
+** filename obtained from [sqlite3_db_filename()], then
+** sqlite3_filename_wal(F) returns the name of the corresponding
+** WAL file.
+**
+** In all of the above, if F is not the name of a database, journal or WAL
+** filename passed into the VFS from the SQLite core and F is not the
+** return value from [sqlite3_db_filename()], then the result is
+** undefined and is likely a memory access violation.
+*/
+SQLITE_API const char *sqlite3_filename_database(const char*);
+SQLITE_API const char *sqlite3_filename_journal(const char*);
+SQLITE_API const char *sqlite3_filename_wal(const char*);
+
+/*
+** CAPI3REF: Database File Corresponding To A Journal
+**
+** ^If X is the name of a rollback or WAL-mode journal file that is
+** passed into the xOpen method of [sqlite3_vfs], then
+** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
+** object that represents the main database file.
+**
+** This routine is intended for use in custom [VFS] implementations
+** only. It is not a general-purpose interface.
+** The argument sqlite3_file_object(X) must be a filename pointer that
+** has been passed into [sqlite3_vfs].xOpen method where the
+** flags parameter to xOpen contains one of the bits
+** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use
+** of this routine results in undefined and probably undesirable
+** behavior.
+*/
+SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*);
+
+/*
+** CAPI3REF: Create and Destroy VFS Filenames
+**
+** These interfces are provided for use by [VFS shim] implementations and
+** are not useful outside of that context.
+**
+** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
+** database filename D with corresponding journal file J and WAL file W and
+** with N URI parameters key/values pairs in the array P. The result from
+** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
+** is safe to pass to routines like:
+** <ul>
+** <li> [sqlite3_uri_parameter()],
+** <li> [sqlite3_uri_boolean()],
+** <li> [sqlite3_uri_int64()],
+** <li> [sqlite3_uri_key()],
+** <li> [sqlite3_filename_database()],
+** <li> [sqlite3_filename_journal()], or
+** <li> [sqlite3_filename_wal()].
+** </ul>
+** If a memory allocation error occurs, sqlite3_create_filename() might
+** return a NULL pointer. The memory obtained from sqlite3_create_filename(X)
+** must be released by a corresponding call to sqlite3_free_filename(Y).
+**
+** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
+** of 2*N pointers to strings. Each pair of pointers in this array corresponds
+** to a key and value for a query parameter. The P parameter may be a NULL
+** pointer if N is zero. None of the 2*N pointers in the P array may be
+** NULL pointers and key pointers should not be empty strings.
+** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
+** be NULL pointers, though they can be empty strings.
+**
+** The sqlite3_free_filename(Y) routine releases a memory allocation
+** previously obtained from sqlite3_create_filename(). Invoking
+** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
+**
+** If the Y parameter to sqlite3_free_filename(Y) is anything other
+** than a NULL pointer or a pointer previously acquired from
+** sqlite3_create_filename(), then bad things such as heap
+** corruption or segfaults may occur. The value Y should not be
+** used again after sqlite3_free_filename(Y) has been called. This means
+** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
+** then the corresponding [sqlite3_module.xClose() method should also be
+** invoked prior to calling sqlite3_free_filename(Y).
+*/
+SQLITE_API char *sqlite3_create_filename(
+ const char *zDatabase,
+ const char *zJournal,
+ const char *zWal,
+ int nParam,
+ const char **azParam
+);
+SQLITE_API void sqlite3_free_filename(char*);
+
+/*
+** CAPI3REF: Error Codes And Messages
+** METHOD: sqlite3
+**
+** ^If the most recent sqlite3_* API call associated with
+** [database connection] D failed, then the sqlite3_errcode(D) interface
+** returns the numeric [result code] or [extended result code] for that
+** API call.
+** ^The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** The values returned by sqlite3_errcode() and/or
+** sqlite3_extended_errcode() might change with each API call.
+** Except, there are some interfaces that are guaranteed to never
+** change the value of the error code. The error-code preserving
+** interfaces include the following:
+**
+** <ul>
+** <li> sqlite3_errcode()
+** <li> sqlite3_extended_errcode()
+** <li> sqlite3_errmsg()
+** <li> sqlite3_errmsg16()
+** <li> sqlite3_error_offset()
+** </ul>
+**
+** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** ^(Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.)^
+**
+** ^The sqlite3_errstr() interface returns the English-language text
+** that describes the [result code], as UTF-8.
+** ^(Memory to hold the error message string is managed internally
+** and must not be freed by the application)^.
+**
+** ^If the most recent error references a specific token in the input
+** SQL, the sqlite3_error_offset() interface returns the byte offset
+** of the start of that token. ^The byte offset returned by
+** sqlite3_error_offset() assumes that the input SQL is UTF8.
+** ^If the most recent error does not reference a specific token in the input
+** SQL, then the sqlite3_error_offset() function returns -1.
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+SQLITE_API const char *sqlite3_errstr(int);
+SQLITE_API int sqlite3_error_offset(sqlite3 *db);
+
+/*
+** CAPI3REF: Prepared Statement Object
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement that
+** has been compiled into binary form and is ready to be evaluated.
+**
+** Think of each SQL statement as a separate computer program. The
+** original SQL text is source code. A prepared statement object
+** is the compiled object code. All SQL must be converted into a
+** prepared statement before it can be run.
+**
+** The life-cycle of a prepared statement object usually goes like this:
+**
+** <ol>
+** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
+** <li> Bind values to [parameters] using the sqlite3_bind_*()
+** interfaces.
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the prepared statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits
+** METHOD: sqlite3
+**
+** ^(This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct.)^
+**
+** ^If the new limit is a negative number, the limit is unchanged.
+** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
+** [limits | hard upper bound]
+** set at compile-time by a C preprocessor macro called
+** [limits | SQLITE_MAX_<i>NAME</i>].
+** (The "_LIMIT_" in the name is changed to "_MAX_".))^
+** ^Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper bound.
+**
+** ^Regardless of whether or not the limit was changed, the
+** [sqlite3_limit()] interface returns the prior value of the limit.
+** ^Hence, to find the current value of a limit without changing it,
+** simply invoke this interface with the third parameter set to -1.
+**
+** Run-time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+*/
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories
+** KEYWORDS: {limit category} {*limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+** <dl>
+** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
+**
+** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
+**
+** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>)^
+**
+** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>)^
+**
+** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
+**
+** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement. If [sqlite3_prepare_v2()] or
+** the equivalent tries to allocate space for more than this many opcodes
+** in a single prepared statement, an SQLITE_NOMEM error is returned.</dd>)^
+**
+** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>)^
+**
+** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
+**
+** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
+** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.</dd>)^
+**
+** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
+** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum index number of any [parameter] in an SQL statement.)^
+**
+** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
+** <dd>The maximum depth of recursion for triggers.</dd>)^
+**
+** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
+** <dd>The maximum number of auxiliary worker threads that a single
+** [prepared statement] may start.</dd>)^
+** </dl>
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
+#define SQLITE_LIMIT_WORKER_THREADS 11
+
+/*
+** CAPI3REF: Prepare Flags
+**
+** These constants define various flags that can be passed into
+** "prepFlags" parameter of the [sqlite3_prepare_v3()] and
+** [sqlite3_prepare16_v3()] interfaces.
+**
+** New flags may be added in future releases of SQLite.
+**
+** <dl>
+** [[SQLITE_PREPARE_PERSISTENT]] ^(<dt>SQLITE_PREPARE_PERSISTENT</dt>
+** <dd>The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner
+** that the prepared statement will be retained for a long time and
+** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
+** and [sqlite3_prepare16_v3()] assume that the prepared statement will
+** be used just once or at most a few times and then destroyed using
+** [sqlite3_finalize()] relatively soon. The current implementation acts
+** on this hint by avoiding the use of [lookaside memory] so as not to
+** deplete the limited store of lookaside memory. Future versions of
+** SQLite may act on this hint differently.
+**
+** [[SQLITE_PREPARE_NORMALIZE]] <dt>SQLITE_PREPARE_NORMALIZE</dt>
+** <dd>The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used
+** to be required for any prepared statement that wanted to use the
+** [sqlite3_normalized_sql()] interface. However, the
+** [sqlite3_normalized_sql()] interface is now available to all
+** prepared statements, regardless of whether or not they use this
+** flag.
+**
+** [[SQLITE_PREPARE_NO_VTAB]] <dt>SQLITE_PREPARE_NO_VTAB</dt>
+** <dd>The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler
+** to return an error (error code SQLITE_ERROR) if the statement uses
+** any virtual tables.
+** </dl>
+*/
+#define SQLITE_PREPARE_PERSISTENT 0x01
+#define SQLITE_PREPARE_NORMALIZE 0x02
+#define SQLITE_PREPARE_NO_VTAB 0x04
+
+/*
+** CAPI3REF: Compiling An SQL Statement
+** KEYWORDS: {SQL statement compiler}
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_stmt
+**
+** To execute an SQL statement, it must first be compiled into a byte-code
+** program using one of these routines. Or, in other words, these routines
+** are constructors for the [prepared statement] object.
+**
+** The preferred routine to use is [sqlite3_prepare_v2()]. The
+** [sqlite3_prepare()] interface is legacy and should be avoided.
+** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
+** for special purposes.
+**
+** The use of the UTF-8 interfaces is preferred, as SQLite currently
+** does all parsing using UTF-8. The UTF-16 interfaces are provided
+** as a convenience. The UTF-16 interfaces work by converting the
+** input text into UTF-8, then invoking the corresponding UTF-8 interface.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(),
+** and sqlite3_prepare_v3()
+** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() use UTF-16.
+**
+** ^If the nByte argument is negative, then zSql is read up to the
+** first zero terminator. ^If nByte is positive, then it is the
+** number of bytes read from zSql. ^If nByte is zero, then no prepared
+** statement is generated.
+** If the caller knows that the supplied string is nul-terminated, then
+** there is a small performance advantage to passing an nByte parameter that
+** is the number of bytes in the input string <i>including</i>
+** the nul-terminator.
+**
+** ^If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
+** to NULL. ^If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
+** otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
+** The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
+** are retained for backwards compatibility, but their use is discouraged.
+** ^In the "vX" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave differently in three ways:
+**
+** <ol>
+** <li>
+** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
+** retries will occur before sqlite3_step() gives up and returns an error.
+** </li>
+**
+** <li>
+** ^When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. ^The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and the application would have to make a second call to [sqlite3_reset()]
+** in order to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+** </li>
+**
+** <li>
+** ^If the specific value bound to a [parameter | host parameter] in the
+** WHERE clause might influence the choice of query plan for a statement,
+** then the statement will be automatically recompiled, as if there had been
+** a schema change, on the first [sqlite3_step()] call following any change
+** to the [sqlite3_bind_text | bindings] of that [parameter].
+** ^The specific value of a WHERE-clause [parameter] might influence the
+** choice of query plan if the parameter is the left-hand side of a [LIKE]
+** or [GLOB] operator or if the parameter is compared to an indexed column
+** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
+** </li>
+** </ol>
+**
+** <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
+** the extra prepFlags parameter, which is a bit array consisting of zero or
+** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The
+** sqlite3_prepare_v2() interface works exactly the same as
+** sqlite3_prepare_v3() with a zero prepFlags parameter.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v3(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v3(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPI3REF: Retrieving Statement SQL
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
+** SQL text used to create [prepared statement] P if P was
+** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
+** string containing the SQL text of prepared statement P with
+** [bound parameters] expanded.
+** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
+** string containing the normalized SQL text of prepared statement P. The
+** semantics used to normalize a SQL statement are unspecified and subject
+** to change. At a minimum, literal values will be replaced with suitable
+** placeholders.
+**
+** ^(For example, if a prepared statement is created using the SQL
+** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
+** and parameter :xyz is unbound, then sqlite3_sql() will return
+** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
+** will return "SELECT 2345,NULL".)^
+**
+** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
+** is available to hold the result, or if the result would exceed the
+** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
+**
+** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
+** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time
+** option causes sqlite3_expanded_sql() to always return NULL.
+**
+** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
+** are managed by SQLite and are automatically freed when the prepared
+** statement is finalized.
+** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
+** is obtained from [sqlite3_malloc()] and must be freed by the application
+** by passing it to [sqlite3_free()].
+**
+** ^The sqlite3_normalized_sql() interface is only available if
+** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined.
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);
+#endif
+
+/*
+** CAPI3REF: Determine If An SQL Statement Writes The Database
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
+** and only if the [prepared statement] X makes no direct changes to
+** the content of the database file.
+**
+** Note that [application-defined SQL functions] or
+** [virtual tables] might change the database indirectly as a side effect.
+** ^(For example, if an application defines a function "eval()" that
+** calls [sqlite3_exec()], then the following SQL statement would
+** change the database file through side-effects:
+**
+** <blockquote><pre>
+** SELECT eval('DELETE FROM t1') FROM t2;
+** </pre></blockquote>
+**
+** But because the [SELECT] statement does not change the database file
+** directly, sqlite3_stmt_readonly() would still return true.)^
+**
+** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
+** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
+** since the statements themselves do not actually modify the database but
+** rather they control the timing of when other statements modify the
+** database. ^The [ATTACH] and [DETACH] statements also cause
+** sqlite3_stmt_readonly() to return true since, while those statements
+** change the configuration of a database connection, they do not make
+** changes to the content of the database files on disk.
+** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
+** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
+** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
+** sqlite3_stmt_readonly() returns false for those commands.
+**
+** ^This routine returns false if there is any possibility that the
+** statement might change the database file. ^A false return does
+** not guarantee that the statement will change the database file.
+** ^For example, an UPDATE statement might have a WHERE clause that
+** makes it a no-op, but the sqlite3_stmt_readonly() result would still
+** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a
+** read-only no-op if the table already exists, but
+** sqlite3_stmt_readonly() still returns false for such a statement.
+**
+** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN]
+** statement, then sqlite3_stmt_readonly(X) returns the same value as
+** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted.
+*/
+SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
+** prepared statement S is an EXPLAIN statement, or 2 if the
+** statement S is an EXPLAIN QUERY PLAN.
+** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
+** an ordinary statement or a NULL pointer.
+*/
+SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Determine If A Prepared Statement Has Been Reset
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
+** [prepared statement] S has been stepped at least once using
+** [sqlite3_step(S)] but has neither run to completion (returned
+** [SQLITE_DONE] from [sqlite3_step(S)]) nor
+** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
+** interface returns false if S is a NULL pointer. If S is not a
+** NULL pointer and is not a pointer to a valid [prepared statement]
+** object, then the behavior is undefined and probably undesirable.
+**
+** This interface can be used in combination [sqlite3_next_stmt()]
+** to locate all prepared statements associated with a database
+** connection that are in need of being reset. This can be used,
+** for example, in diagnostic routines to search for prepared
+** statements that are holding a transaction open.
+*/
+SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. ^Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value. The
+** [sqlite3_value_dup()] interface can be used to construct a new
+** protected sqlite3_value from an unprotected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. An internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** ^The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()]
+** are protected.
+** ^The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used as arguments
+** to [sqlite3_result_value()], [sqlite3_bind_value()], and
+** [sqlite3_value_dup()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
+*/
+typedef struct sqlite3_value sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. ^A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
+** METHOD: sqlite3_stmt
+**
+** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifier.)^ ^The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** ^The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** ^The second argument is the index of the SQL parameter to be set.
+** ^The leftmost SQL parameter has an index of 1. ^When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** ^The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. ^The index
+** for "?NNN" parameters is the value of NNN.
+** ^The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
+**
+** ^The third argument is the value to bind to the parameter.
+** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
+** is ignored and the end result is the same as sqlite3_bind_null().
+** ^If the third parameter to sqlite3_bind_text() is not NULL, then
+** it should be a pointer to well-formed UTF8 text.
+** ^If the third parameter to sqlite3_bind_text16() is not NULL, then
+** it should be a pointer to well-formed UTF16 text.
+** ^If the third parameter to sqlite3_bind_text64() is not NULL, then
+** it should be a pointer to a well-formed unicode string that is
+** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
+** otherwise.
+**
+** [[byte-order determination rules]] ^The byte-order of
+** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
+** found in first character, which is removed, or in the absence of a BOM
+** the byte order is the native byte order of the host
+** machine for sqlite3_bind_text16() or the byte order specified in
+** the 6th parameter for sqlite3_bind_text64().)^
+** ^If UTF16 input text contains invalid unicode
+** characters, then SQLite might change those invalid characters
+** into the unicode replacement character: U+FFFD.
+**
+** ^(In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.)^
+** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** is negative, then the length of the string is
+** the number of bytes up to the first zero terminator.
+** If the fourth parameter to sqlite3_bind_blob() is negative, then
+** the behavior is undefined.
+** If a non-negative fourth parameter is provided to sqlite3_bind_text()
+** or sqlite3_bind_text16() or sqlite3_bind_text64() then
+** that parameter must be the byte offset
+** where the NUL terminator would occur assuming the string were NUL
+** terminated. If any NUL characters occurs at byte offsets less than
+** the value of the fourth parameter then the resulting string value will
+** contain embedded NULs. The result of expressions involving strings
+** with embedded NULs is undefined.
+**
+** ^The fifth argument to the BLOB and string binding interfaces controls
+** or indicates the lifetime of the object referenced by the third parameter.
+** These three options exist:
+** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished
+** with it may be passed. ^It is called to dispose of the BLOB or string even
+** if the call to the bind API fails, except the destructor is not called if
+** the third parameter is a NULL pointer or the fourth parameter is negative.
+** ^ (2) The special constant, [SQLITE_STATIC], may be passsed to indicate that
+** the application remains responsible for disposing of the object. ^In this
+** case, the object and the provided pointer to it must remain valid until
+** either the prepared statement is finalized or the same SQL parameter is
+** bound to something else, whichever occurs sooner.
+** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the
+** object is to be copied prior to the return from sqlite3_bind_*(). ^The
+** object and pointer to it must remain valid until then. ^SQLite will then
+** manage the lifetime of its private copy.
+**
+** ^The sixth argument to sqlite3_bind_text64() must be one of
+** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
+** to specify the encoding of the text in the third parameter. If
+** the sixth argument to sqlite3_bind_text64() is not one of the
+** allowed values shown above, or if the text encoding is different
+** from the encoding specified by the sixth parameter, then the behavior
+** is undefined.
+**
+** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** ^A negative value for the zeroblob results in a zero-length BLOB.
+**
+** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
+** [prepared statement] S to have an SQL value of NULL, but to also be
+** associated with the pointer P of type T. ^D is either a NULL pointer or
+** a pointer to a destructor function for P. ^SQLite will invoke the
+** destructor D with a single argument of P when it is finished using
+** P. The T parameter should be a static string, preferably a string
+** literal. The sqlite3_bind_pointer() routine is part of the
+** [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
+** for the [prepared statement] or with a prepared statement for which
+** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
+** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
+** routine is passed a [prepared statement] that has been finalized, the
+** result is undefined and probably harmful.
+**
+** ^Bindings are not cleared by the [sqlite3_reset()] routine.
+** ^Unbound parameters are interpreted as NULL.
+**
+** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
+** [error code] if anything goes wrong.
+** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
+** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
+** [SQLITE_MAX_LENGTH].
+** ^[SQLITE_RANGE] is returned if the parameter
+** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
+ void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*));
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
+
+/*
+** CAPI3REF: Number Of SQL Parameters
+** METHOD: sqlite3_stmt
+**
+** ^This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** ^(This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN form are used,
+** there may be gaps in the list.)^
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_bind_parameter_name(P,N) interface returns
+** the name of the N-th [SQL parameter] in the [prepared statement] P.
+** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.)^
+** ^Parameters of the form "?" without a following integer have no name
+** and are referred to as "nameless" or "anonymous parameters".
+**
+** ^The first host parameter has an index of 1, not 0.
+**
+** ^If the value N is out of range or if the N-th parameter is
+** nameless, then NULL is returned. ^The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name
+** METHOD: sqlite3_stmt
+**
+** ^Return the index of an SQL parameter given its name. ^The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
+** is returned if no matching parameter is found. ^The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
+** [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_name()].
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** ^Use this routine to reset all host parameters to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^Return the number of columns in the result set returned by the
+** [prepared statement]. ^If this routine returns 0, that means the
+** [prepared statement] returns no data (for example an [UPDATE]).
+** ^However, just because this routine returns a positive number does not
+** mean that one or more rows of data will be returned. ^A SELECT statement
+** will always have a positive sqlite3_column_count() but depending on the
+** WHERE clause constraints and the table content, it might return no rows.
+**
+** See also: [sqlite3_data_count()]
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. ^The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. ^The second parameter is the
+** column number. ^The leftmost column is number 0.
+**
+** ^The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** ^If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** ^The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^These routines provide a means to determine the database, table, and
+** table column that is the origin of a particular result column in
+** [SELECT] statement.
+** ^The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. ^The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** ^The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the same information is requested
+** again in a different encoding.
+**
+** ^The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** ^The first argument to these interfaces is a [prepared statement].
+** ^These functions return information about the Nth result column returned by
+** the statement, where N is the second function argument.
+** ^The left-most column is column 0 for these routines.
+**
+** ^If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. ^These routines might also return NULL if a memory allocation error
+** occurs. ^Otherwise, they return the name of the attached database, table,
+** or column that query result column was extracted from.
+**
+** ^As with all other SQLite APIs, those whose names end with "16" return
+** UTF-16 encoded strings and the other functions return UTF-8.
+**
+** ^These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
+**
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^(The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned.)^ ^If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** ^The returned string is always UTF-8 encoded.
+**
+** ^(For example, given the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** and the following statement to be compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).)^
+**
+** ^SQLite uses dynamic run-time typing. ^So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. ^Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement
+** METHOD: sqlite3_stmt
+**
+** After a [prepared statement] has been prepared using any of
+** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
+** or [sqlite3_prepare16_v3()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
+**
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "vX" interfaces
+** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
+** [sqlite3_prepare16_v2()] or the older legacy
+** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "vX" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** ^With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
+**
+** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. ^If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within an
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** ^[SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** ^With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. ^In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** For all versions of SQLite up to and including 3.6.23.1, a call to
+** [sqlite3_reset()] was required after sqlite3_step() returned anything
+** other than [SQLITE_ROW] before any subsequent invocation of
+** sqlite3_step(). Failure to reset the prepared statement using
+** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
+** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1],
+** sqlite3_step() began
+** calling [sqlite3_reset()] automatically in this circumstance rather
+** than returning [SQLITE_MISUSE]. This is not considered a compatibility
+** break because any application that ever receives an SQLITE_MISUSE error
+** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
+** can be used to restore the legacy behavior.
+**
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
+** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "vX" interfaces is recommended.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_data_count(P) interface returns the number of columns in the
+** current row of the result set of [prepared statement] P.
+** ^If prepared statement P does not have results ready to return
+** (via calls to the [sqlite3_column_int | sqlite3_column()] family of
+** interfaces) then sqlite3_data_count(P) returns 0.
+** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
+** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
+** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
+** will return non-zero if previous call to [sqlite3_step](P) returned
+** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
+** where it always returns zero since each step of that multi-step
+** pragma returns 0 columns of data.
+**
+** See also: [sqlite3_column_count()]
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes
+** KEYWORDS: SQLITE_TEXT
+**
+** ^(Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul>)^
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Result Values From A Query
+** KEYWORDS: {column access functions}
+** METHOD: sqlite3_stmt
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
+** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
+** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
+** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
+** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
+** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
+** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an
+** [sqlite3_value|unprotected sqlite3_value] object.
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT result in bytes
+** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
+** datatype of the result
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** ^These routines return information about a single column of the current
+** result row of a query. ^In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. ^The leftmost column of the result set has the index 0.
+** ^The number of columns in the result can be determined using
+** [sqlite3_column_count()].
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
+** each return the value of a result column in a specific data format. If
+** the result column is not initially in the requested format (for example,
+** if the query returns an integer but the sqlite3_column_text() interface
+** is used to extract the value) then an automatic type conversion is performed.
+**
+** ^The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. ^The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
+** The return value of sqlite3_column_type() can be used to decide which
+** of the first six interface should be used to extract the column value.
+** The value returned by sqlite3_column_type() is only meaningful if no
+** automatic type conversions have occurred for the value in question.
+** After a type conversion, the result of calling sqlite3_column_type()
+** is undefined, though harmless. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
+** or sqlite3_column_bytes16() interfaces can be used to determine the size
+** of that BLOB or string.
+**
+** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
+**
+** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
+** the string to UTF-16 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes16() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
+**
+** ^The values returned by [sqlite3_column_bytes()] and
+** [sqlite3_column_bytes16()] do not include the zero terminators at the end
+** of the string. ^For clarity: the values returned by
+** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
+** bytes in the string, not the number of characters.
+**
+** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero-terminated. ^The return
+** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
+**
+** ^Strings returned by sqlite3_column_text16() always have the endianness
+** which is native to the platform, regardless of the text encoding set
+** for the database.
+**
+** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. In a multithreaded environment,
+** an unprotected sqlite3_value object may only be used safely with
+** [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], the behavior is not threadsafe.
+** Hence, the sqlite3_column_value() interface
+** is normally only useful within the implementation of
+** [application-defined SQL functions] or [virtual tables], not within
+** top-level application code.
+**
+** These routines may attempt to convert the datatype of the result.
+** ^For example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. ^(The following table details the conversions
+** that are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is a NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is a NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> [CAST] to BLOB
+** <tr><td> TEXT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> TEXT <td> FLOAT <td> [CAST] to REAL
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL
+** <tr><td> BLOB <td> TEXT <td> [CAST] to TEXT, ensure zero terminator
+** </table>
+** </blockquote>)^
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
+** </ul>
+**
+** ^Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer references will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** The safest policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** ^The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. ^The memory space used to hold strings
+** and BLOBs is freed automatically. Do not pass the pointers returned
+** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** As long as the input parameters are correct, these routines will only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_column_blob()
+** <li> sqlite3_column_text()
+** <li> sqlite3_column_text16()
+** <li> sqlite3_column_bytes()
+** <li> sqlite3_column_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object
+** DESTRUCTOR: sqlite3_stmt
+**
+** ^The sqlite3_finalize() function is called to delete a [prepared statement].
+** ^If the most recent evaluation of the statement encountered no errors
+** or if the statement is never been evaluated, then sqlite3_finalize() returns
+** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
+** sqlite3_finalize(S) returns the appropriate [error code] or
+** [extended error code].
+**
+** ^The sqlite3_finalize(S) routine can be called at any point during
+** the life cycle of [prepared statement] S:
+** before statement S is ever evaluated, after
+** one or more calls to [sqlite3_reset()], or after any call
+** to [sqlite3_step()] regardless of whether or not the statement has
+** completed execution.
+**
+** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
+**
+** The application must finalize every [prepared statement] in order to avoid
+** resource leaks. It is a grievous error for the application to try to use
+** a prepared statement after it has been finalized. Any use of a prepared
+** statement after it has been finalized can result in undefined and
+** undesirable behavior such as segfaults and heap corruption.
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object
+** METHOD: sqlite3_stmt
+**
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** ^Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+**
+** ^The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions
+** KEYWORDS: {function creation routines}
+** METHOD: sqlite3
+**
+** ^These functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only differences between
+** the three "sqlite3_create_function*" routines are the text encoding
+** expected for the second parameter (the name of the function being
+** created) and the presence or absence of a destructor callback for
+** the application data pointer. Function sqlite3_create_window_function()
+** is similar, but allows the user to supply the extra callback functions
+** needed by [aggregate window functions].
+**
+** ^The first parameter is the [database connection] to which the SQL
+** function is to be added. ^If an application uses more than one database
+** connection then application-defined SQL functions must be added
+** to each database connection separately.
+**
+** ^The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
+** representation, exclusive of the zero-terminator. ^Note that the name
+** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
+** ^Any attempt to create a function with a longer name
+** will result in [SQLITE_MISUSE] being returned.
+**
+** ^The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. ^If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
+**
+** ^The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. The application should set this parameter to
+** [SQLITE_UTF16LE] if the function implementation invokes
+** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
+** implementation invokes [sqlite3_value_text16be()] on an input, or
+** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
+** otherwise. ^The same SQL function may be registered multiple times using
+** different preferred text encodings, with different implementations for
+** each encoding.
+** ^When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+**
+** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
+** to signal that the function will always return the same result given
+** the same inputs within a single SQL statement. Most SQL functions are
+** deterministic. The built-in [random()] SQL function is an example of a
+** function that is not deterministic. The SQLite query planner is able to
+** perform additional optimizations on deterministic functions, so use
+** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
+**
+** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
+** flag, which if present prevents the function from being invoked from
+** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions,
+** index expressions, or the WHERE clause of partial indexes.
+**
+** For best security, the [SQLITE_DIRECTONLY] flag is recommended for
+** all application-defined SQL functions that do not need to be
+** used inside of triggers, view, CHECK constraints, or other elements of
+** the database schema. This flags is especially recommended for SQL
+** functions that have side effects or reveal internal application state.
+** Without this flag, an attacker might be able to modify the schema of
+** a database file to include invocations of the function with parameters
+** chosen by the attacker, which the application will then execute when
+** the database file is opened and read.
+**
+** ^(The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].)^
+**
+** ^The sixth, seventh and eighth parameters passed to the three
+** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL function or
+** aggregate. ^A scalar SQL function requires an implementation of the xFunc
+** callback only; NULL pointers must be passed as the xStep and xFinal
+** parameters. ^An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL pointers for all three function
+** callbacks.
+**
+** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue
+** and xInverse) passed to sqlite3_create_window_function are pointers to
+** C-language callbacks that implement the new function. xStep and xFinal
+** must both be non-NULL. xValue and xInverse may either both be NULL, in
+** which case a regular aggregate function is created, or must both be
+** non-NULL, in which case the new function may be used as either an aggregate
+** or aggregate window function. More details regarding the implementation
+** of aggregate window functions are
+** [user-defined window functions|available here].
+**
+** ^(If the final parameter to sqlite3_create_function_v2() or
+** sqlite3_create_window_function() is not NULL, then it is destructor for
+** the application data pointer. The destructor is invoked when the function
+** is deleted, either by being overloaded or when the database connection
+** closes.)^ ^The destructor is also invoked if the call to
+** sqlite3_create_function_v2() fails. ^When the destructor callback is
+** invoked, it is passed a single argument which is a copy of the application
+** data pointer which was the fifth parameter to sqlite3_create_function_v2().
+**
+** ^It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. ^SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. ^A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. ^A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** ^A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** ^Built-in functions may be overloaded by new application-defined functions.
+**
+** ^An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_window_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*)
+);
+
+/*
+** CAPI3REF: Text Encodings
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1 /* IMP: R-37514-35566 */
+#define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */
+#define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* Deprecated */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Function Flags
+**
+** These constants may be ORed together with the
+** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
+** to [sqlite3_create_function()], [sqlite3_create_function16()], or
+** [sqlite3_create_function_v2()].
+**
+** <dl>
+** [[SQLITE_DETERMINISTIC]] <dt>SQLITE_DETERMINISTIC</dt><dd>
+** The SQLITE_DETERMINISTIC flag means that the new function always gives
+** the same output when the input parameters are the same.
+** The [abs|abs() function] is deterministic, for example, but
+** [randomblob|randomblob()] is not. Functions must
+** be deterministic in order to be used in certain contexts such as
+** with the WHERE clause of [partial indexes] or in [generated columns].
+** SQLite might also optimize deterministic functions by factoring them
+** out of inner loops.
+** </dd>
+**
+** [[SQLITE_DIRECTONLY]] <dt>SQLITE_DIRECTONLY</dt><dd>
+** The SQLITE_DIRECTONLY flag means that the function may only be invoked
+** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], or [generated columns].
+** The SQLITE_DIRECTONLY flags is a security feature which is recommended
+** for all [application-defined SQL functions], and especially for functions
+** that have side-effects or that could potentially leak sensitive
+** information.
+** </dd>
+**
+** [[SQLITE_INNOCUOUS]] <dt>SQLITE_INNOCUOUS</dt><dd>
+** The SQLITE_INNOCUOUS flag means that the function is unlikely
+** to cause problems even if misused. An innocuous function should have
+** no side effects and should not depend on any values other than its
+** input parameters. The [abs|abs() function] is an example of an
+** innocuous function.
+** The [load_extension() SQL function] is not innocuous because of its
+** side effects.
+** <p> SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not
+** exactly the same. The [random|random() function] is an example of a
+** function that is innocuous but not deterministic.
+** <p>Some heightened security settings
+** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF])
+** disable the use of SQL functions inside views and triggers and in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], and [generated columns] unless
+** the function is tagged with SQLITE_INNOCUOUS. Most built-in functions
+** are innocuous. Developers are advised to avoid using the
+** SQLITE_INNOCUOUS flag for application-defined functions unless the
+** function has been carefully audited and found to be free of potentially
+** security-adverse side-effects and information-leaks.
+** </dd>
+**
+** [[SQLITE_SUBTYPE]] <dt>SQLITE_SUBTYPE</dt><dd>
+** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
+** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
+** Specifying this flag makes no difference for scalar or aggregate user
+** functions. However, if it is not specified for a user-defined window
+** function, then any sub-types belonging to arguments passed to the window
+** function may be discarded before the window function is called (i.e.
+** sqlite3_value_subtype() will always return 0).
+** </dd>
+** </dl>
+*/
+#define SQLITE_DETERMINISTIC 0x000000800
+#define SQLITE_DIRECTONLY 0x000080000
+#define SQLITE_SUBTYPE 0x000100000
+#define SQLITE_INNOCUOUS 0x000200000
+
+/*
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To encourage programmers to avoid
+** these functions, we will not explain what they do.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
+ void*,sqlite3_int64);
+#endif
+
+/*
+** CAPI3REF: Obtaining SQL Values
+** METHOD: sqlite3_value
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
+** <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
+** <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
+** <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
+** <tr><td><b>sqlite3_value_pointer</b><td>&rarr;<td>Pointer value
+** <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
+** <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
+** the native byteorder
+** <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
+** <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT in bytes
+** <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
+** datatype of the value
+** <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
+** <tr><td><b>sqlite3_value_nochange&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if the column is unchanged in an UPDATE
+** against a virtual table.
+** <tr><td><b>sqlite3_value_frombind&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if value originated from a [bound parameter]
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** These routines extract type, size, and content information from
+** [protected sqlite3_value] objects. Protected sqlite3_value objects
+** are used to pass parameter information into the functions that
+** implement [application-defined SQL functions] and [virtual tables].
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** is not threadsafe.
+**
+** ^These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** ^The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. ^The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
+**
+** ^If [sqlite3_value] object V was initialized
+** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)]
+** and if X and Y are strings that compare equal according to strcmp(X,Y),
+** then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise,
+** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^(The sqlite3_value_type(V) interface returns the
+** [SQLITE_INTEGER | datatype code] for the initial datatype of the
+** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^
+** Other interfaces might change the datatype for an sqlite3_value object.
+** For example, if the datatype is initially SQLITE_INTEGER and
+** sqlite3_value_text(V) is called to extract a text value for that
+** integer, then subsequent calls to sqlite3_value_type(V) might return
+** SQLITE_TEXT. Whether or not a persistent internal datatype conversion
+** occurs is undefined and may change from one release of SQLite to the next.
+**
+** ^(The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
+**
+** ^Within the [xUpdate] method of a [virtual table], the
+** sqlite3_value_nochange(X) interface returns true if and only if
+** the column corresponding to X is unchanged by the UPDATE operation
+** that the xUpdate method call was invoked to implement and if
+** and the prior [xColumn] method call that was invoked to extracted
+** the value for that column returned without setting a result (probably
+** because it queried [sqlite3_vtab_nochange()] and found that the column
+** was unchanging). ^Within an [xUpdate] method, any value for which
+** sqlite3_value_nochange(X) is true will in all other respects appear
+** to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other
+** than within an [xUpdate] method call for an UPDATE statement, then
+** the return value is arbitrary and meaningless.
+**
+** ^The sqlite3_value_frombind(X) interface returns non-zero if the
+** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()]
+** interfaces. ^If X comes from an SQL literal value, or a table column,
+** or an expression, then sqlite3_value_frombind(X) returns zero.
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+** As long as the input parameter is correct, these routines can only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_value_blob()
+** <li> sqlite3_value_text()
+** <li> sqlite3_value_text16()
+** <li> sqlite3_value_text16le()
+** <li> sqlite3_value_text16be()
+** <li> sqlite3_value_bytes()
+** <li> sqlite3_value_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_nochange(sqlite3_value*);
+SQLITE_API int sqlite3_value_frombind(sqlite3_value*);
+
+/*
+** CAPI3REF: Finding The Subtype Of SQL Values
+** METHOD: sqlite3_value
+**
+** The sqlite3_value_subtype(V) function returns the subtype for
+** an [application-defined SQL function] argument V. The subtype
+** information can be used to pass a limited amount of context from
+** one SQL function to another. Use the [sqlite3_result_subtype()]
+** routine to set the subtype for the return value of an SQL function.
+*/
+SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*);
+
+/*
+** CAPI3REF: Copy And Free SQL Values
+** METHOD: sqlite3_value
+**
+** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
+** object D and returns a pointer to that copy. ^The [sqlite3_value] returned
+** is a [protected sqlite3_value] object even if the input is not.
+** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
+** memory allocation fails. ^If V is a [pointer value], then the result
+** of sqlite3_value_dup(V) is a NULL value.
+**
+** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
+** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer
+** then sqlite3_value_free(V) is a harmless no-op.
+*/
+SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*);
+SQLITE_API void sqlite3_value_free(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context
+** METHOD: sqlite3_context
+**
+** Implementations of aggregate SQL functions use this
+** routine to allocate memory for storing their state.
+**
+** ^The first time the sqlite3_aggregate_context(C,N) routine is called
+** for a particular aggregate function, SQLite allocates
+** N bytes of memory, zeroes out that memory, and returns a pointer
+** to the new memory. ^On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function instance,
+** the same buffer is returned. Sqlite3_aggregate_context() is normally
+** called once for each invocation of the xStep callback and then one
+** last time when the xFinal callback is invoked. ^(When no rows match
+** an aggregate query, the xStep() callback of the aggregate function
+** implementation is never called and xFinal() is called exactly once.
+** In those cases, sqlite3_aggregate_context() might be called for the
+** first time from within xFinal().)^
+**
+** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
+** when first called if N is less than or equal to zero or if a memory
+** allocate error occurs.
+**
+** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
+** determined by the N parameter on first successful call. Changing the
+** value of N in any subsequent call to sqlite3_aggregate_context() within
+** the same aggregate function instance will not resize the memory
+** allocation.)^ Within the xFinal callback, it is customary to set
+** N=0 in calls to sqlite3_aggregate_context(C,N) so that no
+** pointless memory allocations occur.
+**
+** ^SQLite automatically frees the memory allocated by
+** sqlite3_aggregate_context() when the aggregate query concludes.
+**
+** The first parameter must be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the xStep or xFinal callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data
+** METHOD: sqlite3_context
+**
+** These functions may be used by (non-aggregate) SQL functions to
+** associate metadata with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated metadata may be preserved. An example
+** of where this might be useful is in a regular-expression matching
+** function. The compiled version of the regular expression can be stored as
+** metadata associated with the pattern string.
+** Then as long as the pattern string remains the same,
+** the compiled regular expression can be reused on multiple
+** invocations of the same function.
+**
+** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata
+** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
+** value to the application-defined function. ^N is zero for the left-most
+** function argument. ^If there is no metadata
+** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
+** returns a NULL pointer.
+**
+** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
+** argument of the application-defined function. ^Subsequent
+** calls to sqlite3_get_auxdata(C,N) return P from the most recent
+** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
+** NULL if the metadata has been discarded.
+** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
+** SQLite will invoke the destructor function X with parameter P exactly
+** once, when the metadata is discarded.
+** SQLite is free to discard the metadata at any time, including: <ul>
+** <li> ^(when the corresponding function parameter changes)^, or
+** <li> ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
+** SQL statement)^, or
+** <li> ^(when sqlite3_set_auxdata() is invoked again on the same
+** parameter)^, or
+** <li> ^(during the original sqlite3_set_auxdata() call when a memory
+** allocation error occurs.)^ </ul>
+**
+** Note the last bullet in particular. The destructor X in
+** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
+** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata()
+** should be called near the end of the function implementation and the
+** function implementation should not make any use of P after
+** sqlite3_set_auxdata() has been called.
+**
+** ^(In practice, metadata is preserved between function calls for
+** function parameters that are compile-time constants, including literal
+** values and [parameters] and expressions composed from the same.)^
+**
+** The value of the N parameter to these interfaces should be non-negative.
+** Future enhancements may make use of negative N values to define new
+** kinds of function caching behavior.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. ^The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function
+** METHOD: sqlite3_context
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** ^The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
+** interfaces set the result of the application-defined function to be
+** a BLOB containing all zero bytes and N bytes in size.
+**
+** ^The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** ^The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** ^SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. ^SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. ^SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 using
+** the same [byte-order determination rules] as [sqlite3_bind_text16()].
+** ^If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** ^If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** ^The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** ^The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. ^By default,
+** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
+** error indicating that a string or BLOB is too long to represent.
+**
+** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
+** error indicating that a memory allocation failed.
+**
+** ^The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** ^The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** ^The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** ^The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** ^The sqlite3_result_text64() interface sets the return value of an
+** application-defined function to be a text string in an encoding
+** specified by the fifth (and last) parameter, which must be one
+** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
+** ^SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result. If the 3rd parameter is non-negative, then it
+** must be the byte offset into the string where the NUL terminator would
+** appear if the string where NUL terminated. If any NUL characters occur
+** in the string at a byte offset that is less than the value of the 3rd
+** parameter, then the resulting string will contain embedded NULs and the
+** result of expressions operating on strings with embedded NULs is undefined.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained
+** from [sqlite3_malloc()] before it returns.
+**
+** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and
+** sqlite3_result_text16be() routines, and for sqlite3_result_text64()
+** when the encoding is not UTF8, if the input UTF16 begins with a
+** byte-order mark (BOM, U+FEFF) then the BOM is removed from the
+** string and the rest of the string is interpreted according to the
+** byte-order specified by the BOM. ^The byte-order specified by
+** the BOM at the beginning of the text overrides the byte-order
+** specified by the interface procedure. ^So, for example, if
+** sqlite3_result_text16le() is invoked with text that begins
+** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the
+** first two bytes of input are skipped and the remaining input
+** is interpreted as UTF16BE text.
+**
+** ^For UTF16 input text to the sqlite3_result_text16(),
+** sqlite3_result_text16be(), sqlite3_result_text16le(), and
+** sqlite3_result_text64() routines, if the text contains invalid
+** UTF16 characters, the invalid characters might be converted
+** into the unicode replacement character, U+FFFD.
+**
+** ^The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy of the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** ^A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an
+** SQL NULL value, just like [sqlite3_result_null(C)], except that it
+** also associates the host-language pointer P or type T with that
+** NULL value such that the pointer can be retrieved within an
+** [application-defined SQL function] using [sqlite3_value_pointer()].
+** ^If the D parameter is not NULL, then it is a pointer to a destructor
+** for the P parameter. ^SQLite invokes D with P as its only argument
+** when SQLite is finished with P. The T parameter should be a static
+** string and preferably a string literal. The sqlite3_result_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
+ sqlite3_uint64,void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*));
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
+
+
+/*
+** CAPI3REF: Setting The Subtype Of An SQL Function
+** METHOD: sqlite3_context
+**
+** The sqlite3_result_subtype(C,T) function causes the subtype of
+** the result from the [application-defined SQL function] with
+** [sqlite3_context] C to be the value T. Only the lower 8 bits
+** of the subtype T are preserved in current versions of SQLite;
+** higher order bits are discarded.
+** The number of subtype bytes preserved by SQLite might increase
+** in future releases of SQLite.
+*/
+SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int);
+
+/*
+** CAPI3REF: Define New Collating Sequences
+** METHOD: sqlite3
+**
+** ^These functions add, remove, or modify a [collation] associated
+** with the [database connection] specified as the first argument.
+**
+** ^The name of the collation is a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string in native byte order for sqlite3_create_collation16().
+** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
+** considered to be the same name.
+**
+** ^(The third argument (eTextRep) must be one of the constants:
+** <ul>
+** <li> [SQLITE_UTF8],
+** <li> [SQLITE_UTF16LE],
+** <li> [SQLITE_UTF16BE],
+** <li> [SQLITE_UTF16], or
+** <li> [SQLITE_UTF16_ALIGNED].
+** </ul>)^
+** ^The eTextRep argument determines the encoding of strings passed
+** to the collating function callback, xCompare.
+** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
+** force strings to be UTF16 with native byte order.
+** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
+** on an even byte address.
+**
+** ^The fourth argument, pArg, is an application data pointer that is passed
+** through as the first argument to the collating function callback.
+**
+** ^The fifth argument, xCompare, is a pointer to the collating function.
+** ^Multiple collating functions can be registered using the same name but
+** with different eTextRep parameters and SQLite will use whichever
+** function requires the least amount of data transformation.
+** ^If the xCompare argument is NULL then the collating function is
+** deleted. ^When all collating functions having the same name are deleted,
+** that collation is no longer usable.
+**
+** ^The collating function callback is invoked with a copy of the pArg
+** application data pointer and with two strings in the encoding specified
+** by the eTextRep argument. The two integer parameters to the collating
+** function callback are the length of the two strings, in bytes. The collating
+** function must return an integer that is negative, zero, or positive
+** if the first string is less than, equal to, or greater than the second,
+** respectively. A collating function must always return the same answer
+** given the same inputs. If two or more collating functions are registered
+** to the same collation name (using different eTextRep values) then all
+** must give an equivalent answer when invoked with equivalent strings.
+** The collating function must obey the following properties for all
+** strings A, B, and C:
+**
+** <ol>
+** <li> If A==B then B==A.
+** <li> If A==B and B==C then A==C.
+** <li> If A&lt;B THEN B&gt;A.
+** <li> If A&lt;B and B&lt;C then A&lt;C.
+** </ol>
+**
+** If a collating function fails any of the above constraints and that
+** collating function is registered and used, then the behavior of SQLite
+** is undefined.
+**
+** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** with the addition that the xDestroy callback is invoked on pArg when
+** the collating function is deleted.
+** ^Collating functions are deleted when they are overridden by later
+** calls to the collation creation functions or when the
+** [database connection] is closed using [sqlite3_close()].
+**
+** ^The xDestroy callback is <u>not</u> called if the
+** sqlite3_create_collation_v2() function fails. Applications that invoke
+** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
+** check the return code and dispose of the application data pointer
+** themselves rather than expecting SQLite to deal with it for them.
+** This is different from every other SQLite interface. The inconsistency
+** is unfortunate but cannot be changed without breaking backwards
+** compatibility.
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks
+** METHOD: sqlite3
+**
+** ^To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** [database connection] to be invoked whenever an undefined collation
+** sequence is required.
+**
+** ^If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** ^A call to either function replaces the existing collation-needed callback.
+**
+** ^(When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
+** required collation sequence.)^
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+/* BEGIN SQLCIPHER */
+#ifdef SQLITE_HAS_CODEC
+/*
+** Specify the key for an encrypted database. This routine should be
+** called right after sqlite3_open().
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+SQLITE_API int sqlite3_key(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The key */
+);
+SQLITE_API int sqlite3_key_v2(
+ sqlite3 *db, /* Database to be rekeyed */
+ const char *zDbName, /* Name of the database */
+ const void *pKey, int nKey /* The key */
+);
+
+/*
+** Change the key on an open database. If the current database is not
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
+** database is decrypted.
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+/* SQLCipher usage note:
+
+ If the current database is plaintext SQLCipher will NOT encrypt it.
+ If the current database is encrypted and pNew==0 or nNew==0, SQLCipher
+ will NOT decrypt it.
+
+ This routine will ONLY work on an already encrypted database in order
+ to change the key.
+
+ Conversion from plaintext-to-encrypted or encrypted-to-plaintext should
+ use an ATTACHed database and the sqlcipher_export() convenience function
+ as per the SQLCipher Documentation.
+*/
+SQLITE_API int sqlite3_rekey(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The new key */
+);
+SQLITE_API int sqlite3_rekey_v2(
+ sqlite3 *db, /* Database to be rekeyed */
+ const char *zDbName, /* Name of the database */
+ const void *pKey, int nKey /* The new key */
+);
+
+/*
+** Specify the activation key for a SEE database. Unless
+** activated, none of the SEE routines will work.
+*/
+SQLITE_API void sqlite3_activate_see(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+/* END SQLCIPHER */
+
+#ifdef SQLITE_ENABLE_CEROD
+/*
+** Specify the activation key for a CEROD database. Unless
+** activated, none of the CEROD routines will work.
+*/
+SQLITE_API void sqlite3_activate_cerod(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time
+**
+** The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** ^SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object. If the xSleep() method
+** of the default VFS is not implemented correctly, or not implemented at
+** all, then the behavior of sqlite3_sleep() may deviate from the description
+** in the previous paragraphs.
+*/
+SQLITE_API int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
+** created by SQLite when using a built-in [sqlite3_vfs | VFS]
+** will be placed in that directory.)^ ^If this variable
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** Applications are strongly discouraged from using this global variable.
+** It is required to set a temporary folder on Windows Runtime (WinRT).
+** But for all other platforms, it is highly recommended that applications
+** neither read nor write this variable. This global variable is a relic
+** that exists for backwards compatibility of legacy applications and should
+** be avoided in new projects.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
+** Except when requested by the [temp_store_directory pragma], SQLite
+** does not free the memory that sqlite3_temp_directory points to. If
+** the application wants that memory to be freed, it must do
+** so itself, taking care to only do so after all [database connection]
+** objects have been destroyed.
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various
+** features that require the use of temporary files may fail. Here is an
+** example of how to do this using C++ with the Windows Runtime:
+**
+** <blockquote><pre>
+** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
+** &nbsp; TemporaryFolder->Path->Data();
+** char zPathBuf&#91;MAX_PATH + 1&#93;;
+** memset(zPathBuf, 0, sizeof(zPathBuf));
+** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
+** &nbsp; NULL, NULL);
+** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
+** </pre></blockquote>
+*/
+SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Name Of The Folder Holding Database Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all database files
+** specified with a relative pathname and created or accessed by
+** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
+** to be relative to that directory.)^ ^If this variable is a NULL
+** pointer, then SQLite assumes that all database files specified
+** with a relative pathname are relative to the current directory
+** for the process. Only the windows VFS makes use of this global
+** variable; it is ignored by the unix VFS.
+**
+** Changing the value of this variable while a database connection is
+** open can result in a corrupt database.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [data_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [data_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [data_store_directory pragma] should be avoided.
+*/
+SQLITE_API SQLITE_EXTERN char *sqlite3_data_directory;
+
+/*
+** CAPI3REF: Win32 Specific Interface
+**
+** These interfaces are available only on Windows. The
+** [sqlite3_win32_set_directory] interface is used to set the value associated
+** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
+** zValue, depending on the value of the type parameter. The zValue parameter
+** should be NULL to cause the previous value to be freed via [sqlite3_free];
+** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
+** prior to being used. The [sqlite3_win32_set_directory] interface returns
+** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
+** or [SQLITE_NOMEM] if memory could not be allocated. The value of the
+** [sqlite3_data_directory] variable is intended to act as a replacement for
+** the current directory on the sub-platforms of Win32 where that concept is
+** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and
+** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
+** sqlite3_win32_set_directory interface except the string parameter must be
+** UTF-8 or UTF-16, respectively.
+*/
+SQLITE_API int sqlite3_win32_set_directory(
+ unsigned long type, /* Identifier for directory being set or reset */
+ void *zValue /* New value for directory being set or reset */
+);
+SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
+SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);
+
+/*
+** CAPI3REF: Win32 Directory Types
+**
+** These macros are only available on Windows. They define the allowed values
+** for the type argument to the [sqlite3_win32_set_directory] interface.
+*/
+#define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1
+#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2
+
+/*
+** CAPI3REF: Test For Auto-Commit Mode
+** KEYWORDS: {autocommit mode}
+** METHOD: sqlite3
+**
+** ^The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. ^Autocommit mode is on by default.
+** ^Autocommit mode is disabled by a [BEGIN] statement.
+** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. ^The [database connection]
+** returned by sqlite3_db_handle is the same [database connection]
+** that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Return The Schema Name For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_name(D,N) interface returns a pointer to the schema name
+** for the N-th database on database connection D, or a NULL pointer of N is
+** out of range. An N value of 0 means the main database file. An N of 1 is
+** the "temp" schema. Larger values of N correspond to various ATTACH-ed
+** databases.
+**
+** Space to hold the string that is returned by sqlite3_db_name() is managed
+** by SQLite itself. The string might be deallocated by any operation that
+** changes the schema, including [ATTACH] or [DETACH] or calls to
+** [sqlite3_serialize()] or [sqlite3_deserialize()], even operations that
+** occur on a different thread. Applications that need to
+** remember the string long-term should make their own copy. Applications that
+** are accessing the same database connection simultaneously on multiple
+** threads should mutex-protect calls to this API and should make their own
+** private copy of the result prior to releasing the mutex.
+*/
+SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Return The Filename For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename
+** associated with database N of connection D.
+** ^If there is no attached database N on the database
+** connection D, or if database N is a temporary or in-memory database, then
+** this function will return either a NULL pointer or an empty string.
+**
+** ^The string value returned by this routine is owned and managed by
+** the database connection. ^The value will be valid until the database N
+** is [DETACH]-ed or until the database connection closes.
+**
+** ^The filename returned by this function is the output of the
+** xFullPathname method of the [VFS]. ^In other words, the filename
+** will be an absolute pathname, even if the filename used
+** to open the database originally was a URI or relative pathname.
+**
+** If the filename pointer returned by this routine is not NULL, then it
+** can be used as the filename input parameter to these routines:
+** <ul>
+** <li> [sqlite3_uri_parameter()]
+** <li> [sqlite3_uri_boolean()]
+** <li> [sqlite3_uri_int64()]
+** <li> [sqlite3_filename_database()]
+** <li> [sqlite3_filename_journal()]
+** <li> [sqlite3_filename_wal()]
+** </ul>
+*/
+SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine if a database is read-only
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
+** of connection D is read-only, 0 if it is read/write, or -1 if N is not
+** the name of a database on connection D.
+*/
+SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine the transaction state of a database
+** METHOD: sqlite3
+**
+** ^The sqlite3_txn_state(D,S) interface returns the current
+** [transaction state] of schema S in database connection D. ^If S is NULL,
+** then the highest transaction state of any schema on database connection D
+** is returned. Transaction states are (in order of lowest to highest):
+** <ol>
+** <li value="0"> SQLITE_TXN_NONE
+** <li value="1"> SQLITE_TXN_READ
+** <li value="2"> SQLITE_TXN_WRITE
+** </ol>
+** ^If the S argument to sqlite3_txn_state(D,S) is not the name of
+** a valid schema, then -1 is returned.
+*/
+SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema);
+
+/*
+** CAPI3REF: Allowed return values from [sqlite3_txn_state()]
+** KEYWORDS: {transaction state}
+**
+** These constants define the current transaction state of a database file.
+** ^The [sqlite3_txn_state(D,S)] interface returns one of these
+** constants in order to describe the transaction state of schema S
+** in [database connection] D.
+**
+** <dl>
+** [[SQLITE_TXN_NONE]] <dt>SQLITE_TXN_NONE</dt>
+** <dd>The SQLITE_TXN_NONE state means that no transaction is currently
+** pending.</dd>
+**
+** [[SQLITE_TXN_READ]] <dt>SQLITE_TXN_READ</dt>
+** <dd>The SQLITE_TXN_READ state means that the database is currently
+** in a read transaction. Content has been read from the database file
+** but nothing in the database file has changed. The transaction state
+** will advanced to SQLITE_TXN_WRITE if any changes occur and there are
+** no other conflicting concurrent write transactions. The transaction
+** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or
+** [COMMIT].</dd>
+**
+** [[SQLITE_TXN_WRITE]] <dt>SQLITE_TXN_WRITE</dt>
+** <dd>The SQLITE_TXN_WRITE state means that the database is currently
+** in a write transaction. Content has been written to the database file
+** but has not yet committed. The transaction state will change to
+** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].</dd>
+*/
+#define SQLITE_TXN_NONE 0
+#define SQLITE_TXN_READ 1
+#define SQLITE_TXN_WRITE 2
+
+/*
+** CAPI3REF: Find the next prepared statement
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. ^If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** ^Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** ^The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** ^Any callback set by a previous call to sqlite3_rollback_hook()
+** for the same database connection is overridden.
+** ^The pArg argument is passed through to the callback.
+** ^If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
+** return the P argument from the previous call of the same function
+** on the same [database connection] D, or NULL for
+** the first call for each function on D.
+**
+** The commit and rollback hook callbacks are not reentrant.
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that running any other SQL statements, including SELECT statements,
+** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
+** the database connections for the meaning of "modify" in this paragraph.
+**
+** ^Registering a NULL function disables the callback.
+**
+** ^When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. ^If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** ^The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
+**
+** ^For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** ^The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+**
+** See also the [sqlite3_update_hook()] interface.
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Autovacuum Compaction Amount Callback
+** METHOD: sqlite3
+**
+** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback
+** function C that is invoked prior to each autovacuum of the database
+** file. ^The callback is passed a copy of the generic data pointer (P),
+** the schema-name of the attached database that is being autovacuumed,
+** the the size of the database file in pages, the number of free pages,
+** and the number of bytes per page, respectively. The callback should
+** return the number of free pages that should be removed by the
+** autovacuum. ^If the callback returns zero, then no autovacuum happens.
+** ^If the value returned is greater than or equal to the number of
+** free pages, then a complete autovacuum happens.
+**
+** <p>^If there are multiple ATTACH-ed database files that are being
+** modified as part of a transaction commit, then the autovacuum pages
+** callback is invoked separately for each file.
+**
+** <p><b>The callback is not reentrant.</b> The callback function should
+** not attempt to invoke any other SQLite interface. If it does, bad
+** things may happen, including segmentation faults and corrupt database
+** files. The callback function should be a simple function that
+** does some arithmetic on its input parameters and returns a result.
+**
+** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional
+** destructor for the P parameter. ^If X is not NULL, then X(P) is
+** invoked whenever the database connection closes or when the callback
+** is overwritten by another invocation of sqlite3_autovacuum_pages().
+**
+** <p>^There is only one autovacuum pages callback per database connection.
+** ^Each call to the sqlite3_autovacuum_pages() interface overrides all
+** previous invocations for that database connection. ^If the callback
+** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer,
+** then the autovacuum steps callback is cancelled. The return value
+** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might
+** be some other error code if something goes wrong. The current
+** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other
+** return codes might be added in future releases.
+**
+** <p>If no autovacuum pages callback is specified (the usual case) or
+** a NULL pointer is provided for the callback,
+** then the default behavior is to vacuum all free pages. So, in other
+** words, the default behavior is the same as if the callback function
+** were something like this:
+**
+** <blockquote><pre>
+** &nbsp; unsigned int demonstration_autovac_pages_callback(
+** &nbsp; void *pClientData,
+** &nbsp; const char *zSchema,
+** &nbsp; unsigned int nDbPage,
+** &nbsp; unsigned int nFreePage,
+** &nbsp; unsigned int nBytePerPage
+** &nbsp; ){
+** &nbsp; return nFreePage;
+** &nbsp; }
+** </pre></blockquote>
+*/
+SQLITE_API int sqlite3_autovacuum_pages(
+ sqlite3 *db,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*,
+ void(*)(void*)
+);
+
+
+/*
+** CAPI3REF: Data Change Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted in
+** a [rowid table].
+** ^Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** ^The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted in a rowid table.
+** ^The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** ^The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** ^The final callback parameter is the [rowid] of the row.
+** ^In the case of an update, this is the [rowid] after the update takes place.
+**
+** ^(The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_sequence).)^
+** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
+**
+** ^In the current implementation, the update hook
+** is not invoked when conflicting rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^The sqlite3_update_hook(D,C,P) function
+** returns the P argument from the previous call
+** on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()],
+** and [sqlite3_preupdate_hook()] interfaces.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache
+**
+** ^(This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.)^
+**
+** ^Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]).
+** In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
+**
+** ^(The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue to use the sharing mode
+** that was in effect at the time they were opened.)^
+**
+** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.)^
+**
+** ^Shared cache is disabled by default. It is recommended that it stay
+** that way. In other words, do not use this routine. This interface
+** continues to be provided for historical compatibility, but its use is
+** discouraged. Any use of shared cache is discouraged. If shared cache
+** must be used, it is recommended that shared cache only be enabled for
+** individual database connections using the [sqlite3_open_v2()] interface
+** with the [SQLITE_OPEN_SHAREDCACHE] flag.
+**
+** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
+** and will always return SQLITE_MISUSE. On those systems,
+** shared cache mode should be enabled per-database connection via
+** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
+**
+** This interface is threadsafe on processors where writing a
+** 32-bit integer is atomic.
+**
+** See Also: [SQLite Shared-Cache Mode]
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory
+**
+** ^The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** ^sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
+** ^The sqlite3_release_memory() routine is a no-op returning zero
+** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
+**
+** See also: [sqlite3_db_release_memory()]
+*/
+SQLITE_API int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Free Memory Used By A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
+** memory as possible from database connection D. Unlike the
+** [sqlite3_release_memory()] interface, this interface is in effect even
+** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
+** omitted.
+**
+** See also: [sqlite3_release_memory()]
+*/
+SQLITE_API int sqlite3_db_release_memory(sqlite3*);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size
+**
+** These interfaces impose limits on the amount of heap memory that will be
+** by all database connections within a single process.
+**
+** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
+** soft limit on the amount of heap memory that may be allocated by SQLite.
+** ^SQLite strives to keep heap memory utilization below the soft heap
+** limit by reducing the number of pages held in the page cache
+** as heap memory usages approaches the limit.
+** ^The soft heap limit is "soft" because even though SQLite strives to stay
+** below the limit, it will exceed the limit rather than generate
+** an [SQLITE_NOMEM] error. In other words, the soft heap limit
+** is advisory only.
+**
+** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of
+** N bytes on the amount of memory that will be allocated. ^The
+** sqlite3_hard_heap_limit64(N) interface is similar to
+** sqlite3_soft_heap_limit64(N) except that memory allocations will fail
+** when the hard heap limit is reached.
+**
+** ^The return value from both sqlite3_soft_heap_limit64() and
+** sqlite3_hard_heap_limit64() is the size of
+** the heap limit prior to the call, or negative in the case of an
+** error. ^If the argument N is negative
+** then no change is made to the heap limit. Hence, the current
+** size of heap limits can be determined by invoking
+** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1).
+**
+** ^Setting the heap limits to zero disables the heap limiter mechanism.
+**
+** ^The soft heap limit may not be greater than the hard heap limit.
+** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N)
+** is invoked with a value of N that is greater than the hard heap limit,
+** the the soft heap limit is set to the value of the hard heap limit.
+** ^The soft heap limit is automatically enabled whenever the hard heap
+** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and
+** the soft heap limit is outside the range of 1..N, then the soft heap
+** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the
+** hard heap limit is enabled makes the soft heap limit equal to the
+** hard heap limit.
+**
+** The memory allocation limits can also be adjusted using
+** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit].
+**
+** ^(The heap limits are not enforced in the current implementation
+** if one or more of following conditions are true:
+**
+** <ul>
+** <li> The limit value is set to zero.
+** <li> Memory accounting is disabled using a combination of the
+** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
+** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
+** <li> An alternative page cache implementation is specified using
+** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
+** <li> The page cache allocates from its own memory pool supplied
+** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
+** from the heap.
+** </ul>)^
+**
+** The circumstances under which SQLite will enforce the heap limits may
+** changes in future releases of SQLite.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
+SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N);
+
+/*
+** CAPI3REF: Deprecated Soft Heap Limit Interface
+** DEPRECATED
+**
+** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
+** interface. This routine is provided for historical compatibility
+** only. All new applications should use the
+** [sqlite3_soft_heap_limit64()] interface rather than this one.
+*/
+SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
+
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table
+** METHOD: sqlite3
+**
+** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
+** information about column C of table T in database D
+** on [database connection] X.)^ ^The sqlite3_table_column_metadata()
+** interface returns SQLITE_OK and fills in the non-NULL pointers in
+** the final five arguments with appropriate values if the specified
+** column exists. ^The sqlite3_table_column_metadata() interface returns
+** SQLITE_ERROR if the specified column does not exist.
+** ^If the column-name parameter to sqlite3_table_column_metadata() is a
+** NULL pointer, then this routine simply checks for the existence of the
+** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
+** does not. If the table name parameter T in a call to
+** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is
+** undefined behavior.
+**
+** ^The column is identified by the second, third and fourth parameters to
+** this function. ^(The second parameter is either the name of the database
+** (i.e. "main", "temp", or an attached database) containing the specified
+** table or NULL.)^ ^If it is NULL, then all attached databases are searched
+** for the table using the same algorithm used by the database engine to
+** resolve unqualified table references.
+**
+** ^The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively.
+**
+** ^Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. ^Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
+**
+** ^(<blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
+**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
+** </table>
+** </blockquote>)^
+**
+** ^The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid until the next
+** call to any SQLite API function.
+**
+** ^If the specified table is actually a view, an [error code] is returned.
+**
+** ^If the specified column is "rowid", "oid" or "_rowid_" and the table
+** is not a [WITHOUT ROWID] table and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. ^(If there is no
+** [INTEGER PRIMARY KEY] column, then the outputs
+** for the [rowid] are set as follows:
+**
+** <pre>
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+** </pre>)^
+**
+** ^This function causes all database schemas to be read from disk and
+** parsed, if that has not already been done, and returns an error if
+** any errors are encountered while loading the schema.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension
+** METHOD: sqlite3
+**
+** ^This interface loads an SQLite extension library from the named file.
+**
+** ^The sqlite3_load_extension() interface attempts to load an
+** [SQLite extension] library contained in the file zFile. If
+** the file cannot be loaded directly, attempts are made to load
+** with various operating-system specific extensions added.
+** So for example, if "samplelib" cannot be loaded, then names like
+** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
+** be tried also.
+**
+** ^The entry point is zProc.
+** ^(zProc may be 0, in which case SQLite will try to come up with an
+** entry point name on its own. It first tries "sqlite3_extension_init".
+** If that does not work, it constructs a name "sqlite3_X_init" where the
+** X is consists of the lower-case equivalent of all ASCII alphabetic
+** characters in the filename from the last "/" to the first following
+** "." and omitting any initial "lib".)^
+** ^The sqlite3_load_extension() interface returns
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** ^If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** ^Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] or
+** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL)
+** prior to calling this API,
+** otherwise an error will be returned.
+**
+** <b>Security warning:</b> It is recommended that the
+** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this
+** interface. The use of the [sqlite3_enable_load_extension()] interface
+** should be avoided. This will keep the SQL function [load_extension()]
+** disabled and prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+**
+** See also the [load_extension() SQL function].
+*/
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading
+** METHOD: sqlite3
+**
+** ^So as not to open security holes in older applications that are
+** unprepared to deal with [extension loading], and as a means of disabling
+** [extension loading] while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** ^Extension loading is off by default.
+** ^Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** ^This interface enables or disables both the C-API
+** [sqlite3_load_extension()] and the SQL function [load_extension()].
+** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..)
+** to enable or disable only the C-API.)^
+**
+** <b>Security warning:</b> It is recommended that extension loading
+** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method
+** rather than this interface, so the [load_extension()] SQL function
+** remains disabled. This will prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Automatically Load Statically Linked Extensions
+**
+** ^This interface causes the xEntryPoint() function to be invoked for
+** each new [database connection] that is created. The idea here is that
+** xEntryPoint() is the entry point for a statically linked [SQLite extension]
+** that is to be automatically loaded into all new database connections.
+**
+** ^(Even though the function prototype shows that xEntryPoint() takes
+** no arguments and returns void, SQLite invokes xEntryPoint() with three
+** arguments and expects an integer result as if the signature of the
+** entry point where as follows:
+**
+** <blockquote><pre>
+** &nbsp; int xEntryPoint(
+** &nbsp; sqlite3 *db,
+** &nbsp; const char **pzErrMsg,
+** &nbsp; const struct sqlite3_api_routines *pThunk
+** &nbsp; );
+** </pre></blockquote>)^
+**
+** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
+** point to an appropriate error message (obtained from [sqlite3_mprintf()])
+** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
+** is NULL before calling the xEntryPoint(). ^SQLite will invoke
+** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
+** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
+**
+** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
+** on the list of automatic extensions is a harmless no-op. ^No entry point
+** will be called more than once for each database connection that is opened.
+**
+** See also: [sqlite3_reset_auto_extension()]
+** and [sqlite3_cancel_auto_extension()]
+*/
+SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Cancel Automatic Extension Loading
+**
+** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
+** initialization routine X that was registered using a prior call to
+** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)]
+** routine returns 1 if initialization routine X was successfully
+** unregistered and it returns 0 if X was not on the list of initialization
+** routines.
+*/
+SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading
+**
+** ^This interface disables all automatic extensions previously
+** registered using [sqlite3_auto_extension()].
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void);
+
+/*
+** The interface to the virtual-table mechanism is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object
+** KEYWORDS: sqlite3_module {virtual table module}
+**
+** This structure, sometimes called a "virtual table module",
+** defines the implementation of a [virtual table].
+** This structure consists mostly of methods for the module.
+**
+** ^A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** ^The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+ /* The methods above are in version 1 of the sqlite_module object. Those
+ ** below are for version 2 and greater. */
+ int (*xSavepoint)(sqlite3_vtab *pVTab, int);
+ int (*xRelease)(sqlite3_vtab *pVTab, int);
+ int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
+ /* The methods above are in versions 1 and 2 of the sqlite_module object.
+ ** Those below are for version 3 and greater. */
+ int (*xShadowName)(const char*);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information
+** KEYWORDS: sqlite3_index_info
+**
+** The sqlite3_index_info structure and its substructures is used as part
+** of the [virtual table] interface to
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** ^(The aConstraint[] array records WHERE clause constraints of the form:
+**
+** <blockquote>column OP expr</blockquote>
+**
+** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
+** stored in aConstraint[].op using one of the
+** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
+** ^(The index of the column is stored in
+** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.)^
+**
+** ^The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** ^The aConstraint[] array only reports WHERE clause terms that are
+** relevant to the particular virtual table being queried.
+**
+** ^Information about the ORDER BY clause is stored in aOrderBy[].
+** ^Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The colUsed field indicates which columns of the virtual table may be
+** required by the current scan. Virtual table columns are numbered from
+** zero in the order in which they appear within the CREATE TABLE statement
+** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
+** the corresponding bit is set within the colUsed mask if the column may be
+** required by SQLite. If the table has at least 64 columns and any column
+** to the right of the first 63 is required, then bit 63 of colUsed is also
+** set. In other words, column iCol may be required if the expression
+** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to
+** non-zero.
+**
+** The [xBestIndex] method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. ^If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and might not be checked again by the byte code.)^ ^(The
+** aConstraintUsage[].omit flag is an optimization hint. When the omit flag
+** is left in its default setting of false, the constraint will always be
+** checked separately in byte code. If the omit flag is change to true, then
+** the constraint may or may not be checked in byte code. In other words,
+** when the omit flag is true there is no guarantee that the constraint will
+** not be checked again using byte code.)^
+**
+** ^The idxNum and idxPtr values are recorded and passed into the
+** [xFilter] method.
+** ^[sqlite3_free()] is used to free idxPtr if and only if
+** needToFreeIdxPtr is true.
+**
+** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** ^The estimatedCost value is an estimate of the cost of a particular
+** strategy. A cost of N indicates that the cost of the strategy is similar
+** to a linear scan of an SQLite table with N rows. A cost of log(N)
+** indicates that the expense of the operation is similar to that of a
+** binary search on a unique indexed field of an SQLite table with N rows.
+**
+** ^The estimatedRows value is an estimate of the number of rows that
+** will be returned by the strategy.
+**
+** The xBestIndex method may optionally populate the idxFlags field with a
+** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag -
+** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite
+** assumes that the strategy may visit at most one row.
+**
+** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then
+** SQLite also assumes that if a call to the xUpdate() method is made as
+** part of the same statement to delete or update a virtual table row and the
+** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback
+** any database changes. In other words, if the xUpdate() returns
+** SQLITE_CONSTRAINT, the database contents must be exactly as they were
+** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not
+** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by
+** the xUpdate method are automatically rolled back by SQLite.
+**
+** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
+** structure for SQLite [version 3.8.2] ([dateof:3.8.2]).
+** If a virtual table extension is
+** used with an SQLite version earlier than 3.8.2, the results of attempting
+** to read or write the estimatedRows field are undefined (but are likely
+** to include crashing the application). The estimatedRows field should
+** therefore only be used if [sqlite3_libversion_number()] returns a
+** value greater than or equal to 3008002. Similarly, the idxFlags field
+** was added for [version 3.9.0] ([dateof:3.9.0]).
+** It may therefore only be used if
+** sqlite3_libversion_number() returns a value greater than or equal to
+** 3009000.
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column constrained. -1 for ROWID */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+ /* Fields below are only available in SQLite 3.8.2 and later */
+ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */
+ /* Fields below are only available in SQLite 3.9.0 and later */
+ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */
+ /* Fields below are only available in SQLite 3.10.0 and later */
+ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */
+};
+
+/*
+** CAPI3REF: Virtual Table Scan Flags
+**
+** Virtual table implementations are allowed to set the
+** [sqlite3_index_info].idxFlags field to some combination of
+** these bits.
+*/
+#define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */
+
+/*
+** CAPI3REF: Virtual Table Constraint Operator Codes
+**
+** These macros define the allowed values for the
+** [sqlite3_index_info].aConstraint[].op field. Each value represents
+** an operator that is part of a constraint term in the WHERE clause of
+** a query that uses a [virtual table].
+**
+** ^The left-hand operand of the operator is given by the corresponding
+** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand
+** operand is the rowid.
+** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET
+** operators have no left-hand operand, and so for those operators the
+** corresponding aConstraint[].iColumn is meaningless and should not be
+** used.
+**
+** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through
+** value 255 are reserved to represent functions that are overloaded
+** by the [xFindFunction|xFindFunction method] of the virtual table
+** implementation.
+**
+** The right-hand operands for each constraint might be accessible using
+** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand
+** operand is only available if it appears as a single constant literal
+** in the input SQL. If the right-hand operand is another column or an
+** expression (even a constant expression) or a parameter, then the
+** sqlite3_vtab_rhs_value() probably will not be able to extract it.
+** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and
+** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand
+** and hence calls to sqlite3_vtab_rhs_value() for those operators will
+** always return SQLITE_NOTFOUND.
+**
+** The collating sequence to be used for comparison can be found using
+** the [sqlite3_vtab_collation()] interface. For most real-world virtual
+** tables, the collating sequence of constraints does not matter (for example
+** because the constraints are numeric) and so the sqlite3_vtab_collation()
+** interface is no commonly needed.
+*/
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+#define SQLITE_INDEX_CONSTRAINT_LIKE 65
+#define SQLITE_INDEX_CONSTRAINT_GLOB 66
+#define SQLITE_INDEX_CONSTRAINT_REGEXP 67
+#define SQLITE_INDEX_CONSTRAINT_NE 68
+#define SQLITE_INDEX_CONSTRAINT_ISNOT 69
+#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70
+#define SQLITE_INDEX_CONSTRAINT_ISNULL 71
+#define SQLITE_INDEX_CONSTRAINT_IS 72
+#define SQLITE_INDEX_CONSTRAINT_LIMIT 73
+#define SQLITE_INDEX_CONSTRAINT_OFFSET 74
+#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation
+** METHOD: sqlite3
+**
+** ^These routines are used to register a new [virtual table module] name.
+** ^Module names must be registered before
+** creating a new [virtual table] using the module and before using a
+** preexisting [virtual table] for the module.
+**
+** ^The module name is registered on the [database connection] specified
+** by the first parameter. ^The name of the module is given by the
+** second parameter. ^The third parameter is a pointer to
+** the implementation of the [virtual table module]. ^The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** ^The sqlite3_create_module_v2() interface has a fifth parameter which
+** is a pointer to a destructor for the pClientData. ^SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer. ^The destructor will also
+** be invoked if the call to sqlite3_create_module_v2() fails.
+** ^The sqlite3_create_module()
+** interface is equivalent to sqlite3_create_module_v2() with a NULL
+** destructor.
+**
+** ^If the third parameter (the pointer to the sqlite3_module object) is
+** NULL then no new module is created and any existing modules with the
+** same name are dropped.
+**
+** See also: [sqlite3_drop_modules()]
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
+);
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Remove Unnecessary Virtual Table Implementations
+** METHOD: sqlite3
+**
+** ^The sqlite3_drop_modules(D,L) interface removes all virtual
+** table modules from database connection D except those named on list L.
+** The L parameter must be either NULL or a pointer to an array of pointers
+** to strings where the array is terminated by a single NULL pointer.
+** ^If the L parameter is NULL, then all virtual table modules are removed.
+**
+** See also: [sqlite3_create_module()]
+*/
+SQLITE_API int sqlite3_drop_modules(
+ sqlite3 *db, /* Remove modules from this connection */
+ const char **azKeep /* Except, do not remove the ones named here */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object
+** KEYWORDS: sqlite3_vtab
+**
+** Every [virtual table module] implementation uses a subclass
+** of this object to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
+**
+** ^Virtual tables methods can set an error message by assigning a
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
+** prior to assigning a new string to zErrMsg. ^After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* Number of open cursors */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
+** to loop through the virtual table. Cursors are created using the
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cursors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table
+**
+** ^The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table
+** METHOD: sqlite3
+**
+** ^(Virtual tables can provide alternative implementations of functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
+** must exist in order to be overloaded.)^
+**
+** ^(This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created.)^ ^The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
+*/
+SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** The interface to the virtual-table mechanism defined above (back up
+** to a comment remarkably similar to this one) is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** CAPI3REF: A Handle To An Open BLOB
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** ^Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_blob
+**
+** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** </pre>)^
+**
+** ^(Parameter zDb is not the filename that contains the database, but
+** rather the symbolic name of the database. For attached databases, this is
+** the name that appears after the AS keyword in the [ATTACH] statement.
+** For the main database file, the database name is "main". For TEMP
+** tables, the database name is "temp".)^
+**
+** ^If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. ^If the flags parameter is zero, the BLOB is opened for
+** read-only access.
+**
+** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
+** in *ppBlob. Otherwise an [error code] is returned and, unless the error
+** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
+** the API is not misused, it is always safe to call [sqlite3_blob_close()]
+** on *ppBlob after this function it returns.
+**
+** This function fails with SQLITE_ERROR if any of the following are true:
+** <ul>
+** <li> ^(Database zDb does not exist)^,
+** <li> ^(Table zTable does not exist within database zDb)^,
+** <li> ^(Table zTable is a WITHOUT ROWID table)^,
+** <li> ^(Column zColumn does not exist)^,
+** <li> ^(Row iRow is not present in the table)^,
+** <li> ^(The specified column of row iRow contains a value that is not
+** a TEXT or BLOB value)^,
+** <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
+** constraint and the blob is being opened for read/write access)^,
+** <li> ^([foreign key constraints | Foreign key constraints] are enabled,
+** column zColumn is part of a [child key] definition and the blob is
+** being opened for read/write access)^.
+** </ul>
+**
+** ^Unless it returns SQLITE_MISUSE, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** A BLOB referenced by sqlite3_blob_open() may be read using the
+** [sqlite3_blob_read()] interface and modified by using
+** [sqlite3_blob_write()]. The [BLOB handle] can be moved to a
+** different row of the same table using the [sqlite3_blob_reopen()]
+** interface. However, the column, table, or database of a [BLOB handle]
+** cannot be changed after the [BLOB handle] is opened.
+**
+** ^(If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.)^
+** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
+** ^(Changes written into a BLOB prior to the BLOB expiring are not
+** rolled back by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.)^
+**
+** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. ^The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function may be used to create a
+** zero-filled blob to read or write using the incremental-blob interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+**
+** See also: [sqlite3_blob_close()],
+** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
+** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Move a BLOB Handle to a New Row
+** METHOD: sqlite3_blob
+**
+** ^This function is used to move an existing [BLOB handle] so that it points
+** to a different row of the same database table. ^The new row is identified
+** by the rowid value passed as the second argument. Only the row can be
+** changed. ^The database, table and column on which the blob handle is open
+** remain the same. Moving an existing [BLOB handle] to a new row is
+** faster than closing the existing handle and opening a new one.
+**
+** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
+** it must exist and there must be either a blob or text value stored in
+** the nominated column.)^ ^If the new row is not present in the table, or if
+** it does not contain a blob or text value, or if another error occurs, an
+** SQLite error code is returned and the blob handle is considered aborted.
+** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
+** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
+** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
+** always returns zero.
+**
+** ^This function sets the database handle error code and message.
+*/
+SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
+
+/*
+** CAPI3REF: Close A BLOB Handle
+** DESTRUCTOR: sqlite3_blob
+**
+** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
+** unconditionally. Even if this routine returns an error code, the
+** handle is still closed.)^
+**
+** ^If the blob handle being closed was opened for read-write access, and if
+** the database is in auto-commit mode and there are no other open read-write
+** blob handles or active write statements, the current transaction is
+** committed. ^If an error occurs while committing the transaction, an error
+** code is returned and the transaction rolled back.
+**
+** Calling this function with an argument that is not a NULL pointer or an
+** open blob handle results in undefined behaviour. ^Calling this routine
+** with a null pointer (such as would be returned by a failed call to
+** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
+** is passed a valid open blob handle, the values returned by the
+** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB
+** METHOD: sqlite3_blob
+**
+** ^Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. ^The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.)^
+**
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** ^The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** ^An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.)^
+**
+** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+** ^Unless SQLITE_MISUSE is returned, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** ^If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. The size of the
+** BLOB (and hence the maximum value of N+iOffset) can be determined
+** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
+** than zero [SQLITE_ERROR] is returned and no data is written.
+**
+** ^An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** ^Names are case sensitive.
+** ^Names are zero-terminated UTF-8 strings.
+** ^If there is no match, a NULL pointer is returned.
+** ^If zVfsName is NULL then the default VFS is returned.
+**
+** ^New VFSes are registered with sqlite3_vfs_register().
+** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
+** ^The same VFS can be registered multiple times without injury.
+** ^To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** ^(If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.)^
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_PTHREADS
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_PTHREADS and
+** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
+** and Windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** ^The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
+** routine returns NULL if it is unable to allocate the requested
+** mutex. The argument to sqlite3_mutex_alloc() must one of these
+** integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
+** cause sqlite3_mutex_alloc() to create
+** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
+** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
+** a pointer to a static preexisting mutex. ^Nine static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. ^For the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** ^The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. Attempting to deallocate a static
+** mutex results in undefined behavior.
+**
+** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. ^If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. ^(Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** In such cases, the
+** mutex must be exited an equal number of times before another thread
+** can enter.)^ If the same thread tries to enter any mutex other
+** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
+**
+** ^(Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable
+** behavior.)^
+**
+** ^The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated.
+**
+** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the application has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the application
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** ^The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** ^The xMutexInit routine is called by SQLite exactly once for each
+** effective call to [sqlite3_initialize()].
+**
+** ^The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. ^The xMutexEnd()
+** interface is invoked exactly once for each call to [sqlite3_shutdown()].
+**
+** ^(The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>)^
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case. The results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. It must be harmless to
+** invoke xMutexInit() multiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. The SQLite core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** The implementation is not required to provide versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+#ifndef NDEBUG
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+#endif
+
+/*
+** CAPI3REF: Mutex Types
+**
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MAIN 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_randomness() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */
+#define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */
+#define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */
+#define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */
+#define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */
+
+/* Legacy compatibility: */
+#define SQLITE_MUTEX_STATIC_MASTER 2
+
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** ^If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files
+** METHOD: sqlite3
+** KEYWORDS: {file control}
+**
+** ^The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. ^The
+** name of the database is "main" for the main database or "temp" for the
+** TEMP database, or the name that appears after the AS keyword for
+** databases that are added using the [ATTACH] SQL command.
+** ^A NULL pointer can be used in place of "main" to refer to the
+** main database file.
+** ^The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. ^The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** A few opcodes for [sqlite3_file_control()] are handled directly
+** by the SQLite core and never invoke the
+** sqlite3_io_methods.xFileControl method.
+** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes
+** a pointer to the underlying [sqlite3_file] object to be written into
+** the space pointed to by the 4th parameter. The
+** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns
+** the [sqlite3_file] object associated with the journal file instead of
+** the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns
+** a pointer to the underlying [sqlite3_vfs] object for the file.
+** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter
+** from the pager.
+**
+** ^If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. ^This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. The underlying xFileControl method might
+** also return SQLITE_ERROR. There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method.
+**
+** See also: [file control opcodes]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface
+**
+** ^The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. ^The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FIRST 5
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7 /* NOT USED */
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14 /* NOT USED */
+#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
+#define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */
+#define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */
+#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17
+#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18
+#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */
+#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19
+#define SQLITE_TESTCTRL_NEVER_CORRUPT 20
+#define SQLITE_TESTCTRL_VDBE_COVERAGE 21
+#define SQLITE_TESTCTRL_BYTEORDER 22
+#define SQLITE_TESTCTRL_ISINIT 23
+#define SQLITE_TESTCTRL_SORTER_MMAP 24
+#define SQLITE_TESTCTRL_IMPOSTER 25
+#define SQLITE_TESTCTRL_PARSER_COVERAGE 26
+#define SQLITE_TESTCTRL_RESULT_INTREAL 27
+#define SQLITE_TESTCTRL_PRNG_SEED 28
+#define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29
+#define SQLITE_TESTCTRL_SEEK_COUNT 30
+#define SQLITE_TESTCTRL_TRACEFLAGS 31
+#define SQLITE_TESTCTRL_TUNE 32
+#define SQLITE_TESTCTRL_LOGEST 33
+#define SQLITE_TESTCTRL_LAST 33 /* Largest TESTCTRL */
+
+/*
+** CAPI3REF: SQL Keyword Checking
+**
+** These routines provide access to the set of SQL language keywords
+** recognized by SQLite. Applications can uses these routines to determine
+** whether or not a specific identifier needs to be escaped (for example,
+** by enclosing in double-quotes) so as not to confuse the parser.
+**
+** The sqlite3_keyword_count() interface returns the number of distinct
+** keywords understood by SQLite.
+**
+** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
+** makes *Z point to that keyword expressed as UTF8 and writes the number
+** of bytes in the keyword into *L. The string that *Z points to is not
+** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns
+** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
+** or L are NULL or invalid pointers then calls to
+** sqlite3_keyword_name(N,Z,L) result in undefined behavior.
+**
+** The sqlite3_keyword_check(Z,L) interface checks to see whether or not
+** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
+** if it is and zero if not.
+**
+** The parser used by SQLite is forgiving. It is often possible to use
+** a keyword as an identifier as long as such use does not result in a
+** parsing ambiguity. For example, the statement
+** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
+** creates a new table named "BEGIN" with three columns named
+** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid
+** using keywords as identifiers. Common techniques used to avoid keyword
+** name collisions include:
+** <ul>
+** <li> Put all identifier names inside double-quotes. This is the official
+** SQL way to escape identifier names.
+** <li> Put identifier names inside &#91;...&#93;. This is not standard SQL,
+** but it is what SQL Server does and so lots of programmers use this
+** technique.
+** <li> Begin every identifier with the letter "Z" as no SQL keywords start
+** with "Z".
+** <li> Include a digit somewhere in every identifier name.
+** </ul>
+**
+** Note that the number of keywords understood by SQLite can depend on
+** compile-time options. For example, "VACUUM" is not a keyword if
+** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also,
+** new keywords may be added to future releases of SQLite.
+*/
+SQLITE_API int sqlite3_keyword_count(void);
+SQLITE_API int sqlite3_keyword_name(int,const char**,int*);
+SQLITE_API int sqlite3_keyword_check(const char*,int);
+
+/*
+** CAPI3REF: Dynamic String Object
+** KEYWORDS: {dynamic string}
+**
+** An instance of the sqlite3_str object contains a dynamically-sized
+** string under construction.
+**
+** The lifecycle of an sqlite3_str object is as follows:
+** <ol>
+** <li> ^The sqlite3_str object is created using [sqlite3_str_new()].
+** <li> ^Text is appended to the sqlite3_str object using various
+** methods, such as [sqlite3_str_appendf()].
+** <li> ^The sqlite3_str object is destroyed and the string it created
+** is returned using the [sqlite3_str_finish()] interface.
+** </ol>
+*/
+typedef struct sqlite3_str sqlite3_str;
+
+/*
+** CAPI3REF: Create A New Dynamic String Object
+** CONSTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_new(D)] interface allocates and initializes
+** a new [sqlite3_str] object. To avoid memory leaks, the object returned by
+** [sqlite3_str_new()] must be freed by a subsequent call to
+** [sqlite3_str_finish(X)].
+**
+** ^The [sqlite3_str_new(D)] interface always returns a pointer to a
+** valid [sqlite3_str] object, though in the event of an out-of-memory
+** error the returned object might be a special singleton that will
+** silently reject new text, always return SQLITE_NOMEM from
+** [sqlite3_str_errcode()], always return 0 for
+** [sqlite3_str_length()], and always return NULL from
+** [sqlite3_str_finish(X)]. It is always safe to use the value
+** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter
+** to any of the other [sqlite3_str] methods.
+**
+** The D parameter to [sqlite3_str_new(D)] may be NULL. If the
+** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
+** length of the string contained in the [sqlite3_str] object will be
+** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
+** of [SQLITE_MAX_LENGTH].
+*/
+SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*);
+
+/*
+** CAPI3REF: Finalize A Dynamic String
+** DESTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
+** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
+** that contains the constructed string. The calling application should
+** pass the returned value to [sqlite3_free()] to avoid a memory leak.
+** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
+** errors were encountered during construction of the string. ^The
+** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
+** string in [sqlite3_str] object X is zero bytes long.
+*/
+SQLITE_API char *sqlite3_str_finish(sqlite3_str*);
+
+/*
+** CAPI3REF: Add Content To A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces add content to an sqlite3_str object previously obtained
+** from [sqlite3_str_new()].
+**
+** ^The [sqlite3_str_appendf(X,F,...)] and
+** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
+** functionality of SQLite to append formatted text onto the end of
+** [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
+** onto the end of the [sqlite3_str] object X. N must be non-negative.
+** S must contain at least N non-zero bytes of content. To append a
+** zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
+** method instead.
+**
+** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
+** zero-terminated string S onto the end of [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
+** single-byte character C onto the end of [sqlite3_str] object X.
+** ^This method can be used, for example, to add whitespace indentation.
+**
+** ^The [sqlite3_str_reset(X)] method resets the string under construction
+** inside [sqlite3_str] object X back to zero bytes in length.
+**
+** These methods do not return a result code. ^If an error occurs, that fact
+** is recorded in the [sqlite3_str] object and can be recovered by a
+** subsequent call to [sqlite3_str_errcode(X)].
+*/
+SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...);
+SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list);
+SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N);
+SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn);
+SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C);
+SQLITE_API void sqlite3_str_reset(sqlite3_str*);
+
+/*
+** CAPI3REF: Status Of A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces return the current status of an [sqlite3_str] object.
+**
+** ^If any prior errors have occurred while constructing the dynamic string
+** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
+** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns
+** [SQLITE_NOMEM] following any out-of-memory error, or
+** [SQLITE_TOOBIG] if the size of the dynamic string exceeds
+** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
+**
+** ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
+** of the dynamic string under construction in [sqlite3_str] object X.
+** ^The length returned by [sqlite3_str_length(X)] does not include the
+** zero-termination byte.
+**
+** ^The [sqlite3_str_value(X)] method returns a pointer to the current
+** content of the dynamic string under construction in X. The value
+** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
+** and might be freed or altered by any subsequent method on the same
+** [sqlite3_str] object. Applications must not used the pointer returned
+** [sqlite3_str_value(X)] after any subsequent method call on the same
+** object. ^Applications may change the content of the string returned
+** by [sqlite3_str_value(X)] as long as they do not write into any bytes
+** outside the range of 0 to [sqlite3_str_length(X)] and do not read or
+** write any byte after any subsequent sqlite3_str method call.
+*/
+SQLITE_API int sqlite3_str_errcode(sqlite3_str*);
+SQLITE_API int sqlite3_str_length(sqlite3_str*);
+SQLITE_API char *sqlite3_str_value(sqlite3_str*);
+
+/*
+** CAPI3REF: SQLite Runtime Status
+**
+** ^These interfaces are used to retrieve runtime status information
+** about the performance of SQLite, and optionally to reset various
+** highwater marks. ^The first argument is an integer code for
+** the specific parameter to measure. ^(Recognized integer codes
+** are of the form [status parameters | SQLITE_STATUS_...].)^
+** ^The current value of the parameter is returned into *pCurrent.
+** ^The highest recorded value is returned in *pHighwater. ^If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. ^(Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.)^
+** ^(Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.)^
+**
+** ^The sqlite3_status() and sqlite3_status64() routines return
+** SQLITE_OK on success and a non-zero [error code] on failure.
+**
+** If either the current value or the highwater mark is too large to
+** be represented by a 32-bit integer, then the values returned by
+** sqlite3_status() are undefined.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+SQLITE_API int sqlite3_status64(
+ int op,
+ sqlite3_int64 *pCurrent,
+ sqlite3_int64 *pHighwater,
+ int resetFlag
+);
+
+
+/*
+** CAPI3REF: Status Parameters
+** KEYWORDS: {status parameters}
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
+** <dd>This parameter records the number of separate memory allocations
+** currently checked out.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
+** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to the [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_SCRATCH_USED]] <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_SIZE]] <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>The *pHighwater parameter records the deepest parser stack.
+** The *pCurrent value is undefined. The *pHighwater value is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3 /* NOT USED */
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_COUNT 9
+
+/*
+** CAPI3REF: Database Connection Status
+** METHOD: sqlite3
+**
+** ^This interface is used to retrieve runtime status information
+** about a single [database connection]. ^The first argument is the
+** database connection object to be interrogated. ^The second argument
+** is an integer constant, taken from the set of
+** [SQLITE_DBSTATUS options], that
+** determines the parameter to interrogate. The set of
+** [SQLITE_DBSTATUS options] is likely
+** to grow in future releases of SQLite.
+**
+** ^The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. ^If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections
+** KEYWORDS: {SQLITE_DBSTATUS options}
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+** <dl>
+** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
+** <dd>This parameter returns the number of malloc attempts that were
+** satisfied using lookaside memory. Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to the amount of
+** memory requested being larger than the lookaside slot size.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to all lookaside
+** memory already being in use.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used by all pager caches associated with the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]]
+** ^(<dt>SQLITE_DBSTATUS_CACHE_USED_SHARED</dt>
+** <dd>This parameter is similar to DBSTATUS_CACHE_USED, except that if a
+** pager cache is shared between two or more connections the bytes of heap
+** memory used by that pager cache is divided evenly between the attached
+** connections.)^ In other words, if none of the pager caches associated
+** with the database connection are shared, this request returns the same
+** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are
+** shared, the value returned by this call will be smaller than that returned
+** by DBSTATUS_CACHE_USED. ^The highwater mark associated with
+** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0.
+**
+** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used to store the schema for all databases associated
+** with the connection - main, temp, and any [ATTACH]-ed databases.)^
+** ^The full amount of memory used by the schemas is reported, even if the
+** schema memory is shared with other database connections due to
+** [shared cache mode] being enabled.
+** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** and lookaside memory used by all prepared statements associated with
+** the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
+** <dd>This parameter returns the number of pager cache hits that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
+** <dd>This parameter returns the number of pager cache misses that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk. Specifically, the number of pages written to the
+** wal file in wal mode databases, or the number of pages written to the
+** database file in rollback mode databases. Any pages written as part of
+** transaction rollback or database recovery operations are not included.
+** If an IO or other error occurs while writing a page to disk, the effect
+** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
+** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(<dt>SQLITE_DBSTATUS_CACHE_SPILL</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk in the middle of a transaction due to the page
+** cache overflowing. Transactions are more efficient if they are written
+** to disk all at once. When pages spill mid-transaction, that introduces
+** additional overhead. This parameter can be used help identify
+** inefficiencies that can be resolved by increasing the cache size.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
+** <dd>This parameter returns zero for the current value if and only if
+** all foreign key constraints (deferred or immediate) have been
+** resolved.)^ ^The highwater mark is always 0.
+** </dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+#define SQLITE_DBSTATUS_CACHE_USED 1
+#define SQLITE_DBSTATUS_SCHEMA_USED 2
+#define SQLITE_DBSTATUS_STMT_USED 3
+#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6
+#define SQLITE_DBSTATUS_CACHE_HIT 7
+#define SQLITE_DBSTATUS_CACHE_MISS 8
+#define SQLITE_DBSTATUS_CACHE_WRITE 9
+#define SQLITE_DBSTATUS_DEFERRED_FKS 10
+#define SQLITE_DBSTATUS_CACHE_USED_SHARED 11
+#define SQLITE_DBSTATUS_CACHE_SPILL 12
+#define SQLITE_DBSTATUS_MAX 12 /* Largest defined DBSTATUS */
+
+
+/*
+** CAPI3REF: Prepared Statement Status
+** METHOD: sqlite3_stmt
+**
+** ^(Each prepared statement maintains various
+** [SQLITE_STMTSTATUS counters] that measure the number
+** of times it has performed specific operations.)^ These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** ^(This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS counter]
+** to be interrogated.)^
+** ^The current value of the requested counter is returned.
+** ^If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements
+** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+** <dl>
+** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
+** <dd>^This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
+** <dd>^This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
+** <dd>^This is the number of rows inserted into transient indices that
+** were created automatically in order to help joins run faster.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance by adding permanent indices that do not
+** need to be reinitialized each time the statement is run.</dd>
+**
+** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
+** <dd>^This is the number of virtual machine operations executed
+** by the prepared statement if that number is less than or equal
+** to 2147483647. The number of virtual machine operations can be
+** used as a proxy for the total work done by the prepared statement.
+** If the number of virtual machine operations exceeds 2147483647
+** then the value returned by this statement status code is undefined.
+**
+** [[SQLITE_STMTSTATUS_REPREPARE]] <dt>SQLITE_STMTSTATUS_REPREPARE</dt>
+** <dd>^This is the number of times that the prepare statement has been
+** automatically regenerated due to schema changes or changes to
+** [bound parameters] that might affect the query plan.
+**
+** [[SQLITE_STMTSTATUS_RUN]] <dt>SQLITE_STMTSTATUS_RUN</dt>
+** <dd>^This is the number of times that the prepared statement has
+** been run. A single "run" for the purposes of this counter is one
+** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()].
+** The counter is incremented on the first [sqlite3_step()] call of each
+** cycle.
+**
+** [[SQLITE_STMTSTATUS_FILTER_MISS]]
+** [[SQLITE_STMTSTATUS_FILTER HIT]]
+** <dt>SQLITE_STMTSTATUS_FILTER_HIT<br>
+** SQLITE_STMTSTATUS_FILTER_MISS</dt>
+** <dd>^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join
+** step was bypassed because a Bloom filter returned not-found. The
+** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of
+** times that the Bloom filter returned a find, and thus the join step
+** had to be processed as normal.
+**
+** [[SQLITE_STMTSTATUS_MEMUSED]] <dt>SQLITE_STMTSTATUS_MEMUSED</dt>
+** <dd>^This is the approximate number of bytes of heap memory
+** used to store the prepared statement. ^This value is not actually
+** a counter, and so the resetFlg parameter to sqlite3_stmt_status()
+** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED.
+** </dd>
+** </dl>
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+#define SQLITE_STMTSTATUS_AUTOINDEX 3
+#define SQLITE_STMTSTATUS_VM_STEP 4
+#define SQLITE_STMTSTATUS_REPREPARE 5
+#define SQLITE_STMTSTATUS_RUN 6
+#define SQLITE_STMTSTATUS_FILTER_MISS 7
+#define SQLITE_STMTSTATUS_FILTER_HIT 8
+#define SQLITE_STMTSTATUS_MEMUSED 99
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache_page object represents a single page in the
+** page cache. The page cache will allocate instances of this
+** object. Various methods of the page cache use pointers to instances
+** of this object as parameters or as their return value.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache_page sqlite3_pcache_page;
+struct sqlite3_pcache_page {
+ void *pBuf; /* The content of the page */
+ void *pExtra; /* Extra information associated with the page */
+};
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+**
+** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods2 structure.)^
+** In many applications, most of the heap memory allocated by
+** SQLite is used for the page cache.
+** By implementing a
+** custom page cache using this API, an application can better control
+** the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** The alternative page cache mechanism is an
+** extreme measure that is only needed by the most demanding applications.
+** The built-in page cache is recommended for most uses.
+**
+** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.)^
+**
+** [[the xInit() page cache method]]
+** ^(The xInit() method is called once for each effective
+** call to [sqlite3_initialize()])^
+** (usually only once during the lifetime of the process). ^(The xInit()
+** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
+** The intent of the xInit() method is to set up global data structures
+** required by the custom page cache implementation.
+** ^(If the xInit() method is NULL, then the
+** built-in default page cache is used instead of the application defined
+** page cache.)^
+**
+** [[the xShutdown() page cache method]]
+** ^The xShutdown() method is called by [sqlite3_shutdown()].
+** It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+** ^The xShutdown() method may be NULL.
+**
+** ^SQLite automatically serializes calls to the xInit method,
+** so the xInit method need not be threadsafe. ^The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** ^SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** [[the xCreate() page cache methods]]
+** ^SQLite invokes the xCreate() method to construct a new cache instance.
+** SQLite will typically create one cache instance for each open database file,
+** though this is not guaranteed. ^The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. ^szPage will always a power of two. ^The
+** second parameter szExtra is a number of bytes of extra storage
+** associated with each page cache entry. ^The szExtra parameter will
+** a number less than 250. SQLite will use the
+** extra szExtra bytes on each page to store metadata about the underlying
+** database page on disk. The value passed into szExtra depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** ^The third argument to xCreate(), bPurgeable, is true if the cache being
+** created will be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
+** false will always have the "discard" flag set to true.
+** ^Hence, a cache created with bPurgeable false will
+** never contain any unpinned pages.
+**
+** [[the xCachesize() page cache method]]
+** ^(The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
+** parameter, the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** [[the xPagecount() page cache methods]]
+** The xPagecount() method must return the number of pages currently
+** stored in the cache, both pinned and unpinned.
+**
+** [[the xFetch() page cache methods]]
+** The xFetch() method locates a page in the cache and returns a pointer to
+** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
+** The pBuf element of the returned sqlite3_pcache_page object will be a
+** pointer to a buffer of szPage bytes used to store the content of a
+** single database page. The pExtra element of sqlite3_pcache_page will be
+** a pointer to the szExtra bytes of extra storage that SQLite has requested
+** for each entry in the page cache.
+**
+** The page to be fetched is determined by the key. ^The minimum key value
+** is 1. After it has been retrieved using xFetch, the page is considered
+** to be "pinned".
+**
+** If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. If the requested page is not already in the cache, then the
+** cache implementation should use the value of the createFlag
+** parameter to help it determined what action to take:
+**
+** <table border=1 width=85% align=center>
+** <tr><th> createFlag <th> Behavior when page is not already in cache
+** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
+** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** </table>
+**
+** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
+** will only use a createFlag of 2 after a prior call with a createFlag of 1
+** failed.)^ In between the xFetch() calls, SQLite may
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache.
+**
+** [[the xUnpin() page cache method]]
+** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page must be evicted from the cache.
+** ^If the discard parameter is
+** zero, then the page may be discarded or retained at the discretion of
+** page cache implementation. ^The page cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** The cache must not perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().
+**
+** [[the xRekey() page cache methods]]
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument. If the cache
+** previously contains an entry associated with newKey, it must be
+** discarded. ^Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** [[the xDestroy() page cache method]]
+** ^The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. ^After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods2
+** functions.
+**
+** [[the xShrink() page cache method]]
+** ^SQLite invokes the xShrink() method when it wants the page cache to
+** free up as much of heap memory as possible. The page cache implementation
+** is not obligated to free any memory, but well-behaved implementations should
+** do their best.
+*/
+typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
+struct sqlite3_pcache_methods2 {
+ int iVersion;
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
+ void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
+ unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+ void (*xShrink)(sqlite3_pcache*);
+};
+
+/*
+** This is the obsolete pcache_methods object that has now been replaced
+** by sqlite3_pcache_methods2. This object is not used by SQLite. It is
+** retained in the header file for backwards compatibility only.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+
+/*
+** CAPI3REF: Online Backup Object
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. ^The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+**
+** The backup API copies the content of one database into another.
+** It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** ^SQLite holds a write transaction open on the destination database file
+** for the duration of the backup operation.
+** ^The source database is read-locked only while it is being read;
+** it is not locked continuously for the entire backup operation.
+** ^Thus, the backup may be performed on a live source database without
+** preventing other database connections from
+** reading or writing to the source database while the backup is underway.
+**
+** ^(To perform a backup operation:
+** <ol>
+** <li><b>sqlite3_backup_init()</b> is called once to initialize the
+** backup,
+** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
+** the data between the two databases, and finally
+** <li><b>sqlite3_backup_finish()</b> is called to release all resources
+** associated with the backup operation.
+** </ol>)^
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
+**
+** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
+** [database connection] associated with the destination database
+** and the database name, respectively.
+** ^The database name is "main" for the main database, "temp" for the
+** temporary database, or the name specified after the AS keyword in
+** an [ATTACH] statement for an attached database.
+** ^The S and M arguments passed to
+** sqlite3_backup_init(D,N,S,M) identify the [database connection]
+** and database name of the source database, respectively.
+** ^The source and destination [database connections] (parameters S and D)
+** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
+** an error.
+**
+** ^A call to sqlite3_backup_init() will fail, returning NULL, if
+** there is already a read or read-write transaction open on the
+** destination database.
+**
+** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
+** returned and an error code and error message are stored in the
+** destination [database connection] D.
+** ^The error code and message for the failed call to sqlite3_backup_init()
+** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
+** [sqlite3_errmsg16()] functions.
+** ^A successful call to sqlite3_backup_init() returns a pointer to an
+** [sqlite3_backup] object.
+** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
+**
+** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
+** the source and destination databases specified by [sqlite3_backup] object B.
+** ^If N is negative, all remaining source pages are copied.
+** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
+** are still more pages to be copied, then the function returns [SQLITE_OK].
+** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
+** from source to destination, then it returns [SQLITE_DONE].
+** ^If an error occurs while running sqlite3_backup_step(B,N),
+** then an [error code] is returned. ^As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
+** <ol>
+** <li> the destination database was opened read-only, or
+** <li> the destination database is using write-ahead-log journaling
+** and the destination and source page sizes differ, or
+** <li> the destination database is an in-memory database and the
+** destination and source page sizes differ.
+** </ol>)^
+**
+** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). ^If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
+** sqlite3_backup_step() can be retried later. ^If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. ^(If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal.)^ The application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** ^The first call to sqlite3_backup_step() obtains an exclusive lock
+** on the destination file. ^The exclusive lock is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
+** sqlite3_backup_step() obtains a [shared lock] on the source database that
+** lasts for the duration of the sqlite3_backup_step() call.
+** ^Because the source database is not locked between calls to
+** sqlite3_backup_step(), the source database may be modified mid-way
+** through the backup process. ^If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be automatically
+** restarted by the next call to sqlite3_backup_step(). ^If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is automatically
+** updated at the same time.
+**
+** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
+**
+** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the application
+** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
+** ^The sqlite3_backup_finish() interfaces releases all
+** resources associated with the [sqlite3_backup] object.
+** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
+** active write-transaction on the destination database is rolled back.
+** The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
+** sqlite3_backup_step() errors occurred, regardless or whether or not
+** sqlite3_backup_step() completed.
+** ^If an out-of-memory condition or IO error occurred during any prior
+** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
+** sqlite3_backup_finish() returns the corresponding [error code].
+**
+** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
+** is not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
+** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
+**
+** ^The sqlite3_backup_remaining() routine returns the number of pages still
+** to be backed up at the conclusion of the most recent sqlite3_backup_step().
+** ^The sqlite3_backup_pagecount() routine returns the total number of pages
+** in the source database at the conclusion of the most recent
+** sqlite3_backup_step().
+** ^(The values returned by these functions are only updated by
+** sqlite3_backup_step(). If the source database is modified in a way that
+** changes the size of the source database or the number of pages remaining,
+** those changes are not reflected in the output of sqlite3_backup_pagecount()
+** and sqlite3_backup_remaining() until after the next
+** sqlite3_backup_step().)^
+**
+** <b>Concurrent Usage of Database Handles</b>
+**
+** ^The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** ^If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination
+** [database connection] is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). SQLite does not currently check to see
+** if the application incorrectly accesses the destination [database connection]
+** and so no error code is reported, but the operations may malfunction
+** nevertheless. Use of the destination database connection while a
+** backup is in progress might also also cause a mutex deadlock.
+**
+** If running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the disk file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** METHOD: sqlite3
+**
+** ^When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** ^This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** ^This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** ^Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** ^When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. ^After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. ^The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connection's transaction.
+**
+** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().)^
+**
+** ^If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** ^(There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is canceled. ^The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** <b>Callback Invocation Details</b>
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connection's transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. ^If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** <b>Deadlock Detection</b>
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. ^If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. ^Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. ^Any
+** number of levels of indirection are allowed.
+**
+** <b>The "DROP TABLE" Exception</b>
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. ^(If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.)^
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+**
+** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
+** and extensions to compare the contents of two buffers containing UTF-8
+** strings in a case-independent fashion, using the same definition of "case
+** independence" that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_stricmp(const char *, const char *);
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
+** CAPI3REF: String Globbing
+*
+** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
+** string X matches the [GLOB] pattern P.
+** ^The definition of [GLOB] pattern matching used in
+** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
+** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function
+** is case sensitive.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strlike()].
+*/
+SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);
+
+/*
+** CAPI3REF: String LIKE Matching
+*
+** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
+** string X matches the [LIKE] pattern P with escape character E.
+** ^The definition of [LIKE] pattern matching used in
+** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
+** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without
+** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
+** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
+** insensitive - equivalent upper and lower case ASCII characters match
+** one another.
+**
+** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
+** only ASCII characters are case folded.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strglob()].
+*/
+SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);
+
+/*
+** CAPI3REF: Error Logging Interface
+**
+** ^The [sqlite3_log()] interface writes a message into the [error log]
+** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
+** ^If logging is enabled, the zFormat string and subsequent arguments are
+** used with [sqlite3_snprintf()] to generate the final output string.
+**
+** The sqlite3_log() interface is intended for use by extensions such as
+** virtual tables, collating functions, and SQL functions. While there is
+** nothing to prevent an application from calling sqlite3_log(), doing so
+** is considered bad form.
+**
+** The zFormat string must not be NULL.
+**
+** To avoid deadlocks and other threading problems, the sqlite3_log() routine
+** will not use dynamically allocated memory. The log message is stored in
+** a fixed-length buffer on the stack. If the log message is longer than
+** a few hundred characters, it will be truncated to the length of the
+** buffer.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
+
+/*
+** CAPI3REF: Write-Ahead Log Commit Hook
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_hook()] function is used to register a callback that
+** is invoked each time data is committed to a database in wal mode.
+**
+** ^(The callback is invoked by SQLite after the commit has taken place and
+** the associated write-lock on the database released)^, so the implementation
+** may read, write or [checkpoint] the database as required.
+**
+** ^The first parameter passed to the callback function when it is invoked
+** is a copy of the third parameter passed to sqlite3_wal_hook() when
+** registering the callback. ^The second is a copy of the database handle.
+** ^The third parameter is the name of the database that was written to -
+** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
+** is the number of pages currently in the write-ahead log file,
+** including those that were just committed.
+**
+** The callback function should normally return [SQLITE_OK]. ^If an error
+** code is returned, that error will propagate back up through the
+** SQLite code base to cause the statement that provoked the callback
+** to report an error, though the commit will have still occurred. If the
+** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
+** that does not correspond to any valid SQLite error code, the results
+** are undefined.
+**
+** A single database handle may have at most a single write-ahead log callback
+** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
+** previously registered write-ahead log callback. ^The return value is
+** a copy of the third parameter from the previous call, if any, or 0.
+** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the
+** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
+** overwrite any prior [sqlite3_wal_hook()] settings.
+*/
+SQLITE_API void *sqlite3_wal_hook(
+ sqlite3*,
+ int(*)(void *,sqlite3*,const char*,int),
+ void*
+);
+
+/*
+** CAPI3REF: Configure an auto-checkpoint
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
+** [sqlite3_wal_hook()] that causes any database on [database connection] D
+** to automatically [checkpoint]
+** after committing a transaction if there are N or
+** more frames in the [write-ahead log] file. ^Passing zero or
+** a negative value as the nFrame parameter disables automatic
+** checkpoints entirely.
+**
+** ^The callback registered by this function replaces any existing callback
+** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
+** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
+** configured by this function.
+**
+** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
+** from SQL.
+**
+** ^Checkpoints initiated by this mechanism are
+** [sqlite3_wal_checkpoint_v2|PASSIVE].
+**
+** ^Every new [database connection] defaults to having the auto-checkpoint
+** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
+** pages. The use of this interface
+** is only necessary if the default setting is found to be suboptimal
+** for a particular application.
+*/
+SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
+** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
+**
+** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
+** [write-ahead log] for database X on [database connection] D to be
+** transferred into the database file and for the write-ahead log to
+** be reset. See the [checkpointing] documentation for addition
+** information.
+**
+** This interface used to be the only way to cause a checkpoint to
+** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
+** interface was added. This interface is retained for backwards
+** compatibility and as a convenience for applications that need to manually
+** start a callback but which do not need the full power (and corresponding
+** complication) of [sqlite3_wal_checkpoint_v2()].
+*/
+SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
+** operation on database X of [database connection] D in mode M. Status
+** information is written back into integers pointed to by L and C.)^
+** ^(The M parameter must be a valid [checkpoint mode]:)^
+**
+** <dl>
+** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
+** ^Checkpoint as many frames as possible without waiting for any database
+** readers or writers to finish, then sync the database file if all frames
+** in the log were checkpointed. ^The [busy-handler callback]
+** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
+** ^On the other hand, passive mode might leave the checkpoint unfinished
+** if there are concurrent readers or writers.
+**
+** <dt>SQLITE_CHECKPOINT_FULL<dd>
+** ^This mode blocks (it invokes the
+** [sqlite3_busy_handler|busy-handler callback]) until there is no
+** database writer and all readers are reading from the most recent database
+** snapshot. ^It then checkpoints all frames in the log file and syncs the
+** database file. ^This mode blocks new database writers while it is pending,
+** but new database readers are allowed to continue unimpeded.
+**
+** <dt>SQLITE_CHECKPOINT_RESTART<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
+** that after checkpointing the log file it blocks (calls the
+** [busy-handler callback])
+** until all readers are reading from the database file only. ^This ensures
+** that the next writer will restart the log file from the beginning.
+** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
+** database writer attempts while it is pending, but does not impede readers.
+**
+** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
+** addition that it also truncates the log file to zero bytes just prior
+** to a successful return.
+** </dl>
+**
+** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
+** the log file or to -1 if the checkpoint could not run because
+** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
+** NULL,then *pnCkpt is set to the total number of checkpointed frames in the
+** log file (including any that were already checkpointed before the function
+** was called) or to -1 if the checkpoint could not run due to an error or
+** because the database is not in WAL mode. ^Note that upon successful
+** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
+** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
+**
+** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
+** any other process is running a checkpoint operation at the same time, the
+** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
+** busy-handler configured, it will not be invoked in this case.
+**
+** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
+** exclusive "writer" lock on the database file. ^If the writer lock cannot be
+** obtained immediately, and a busy-handler is configured, it is invoked and
+** the writer lock retried until either the busy-handler returns 0 or the lock
+** is successfully obtained. ^The busy-handler is also invoked while waiting for
+** database readers as described above. ^If the busy-handler returns 0 before
+** the writer lock is obtained or while waiting for database readers, the
+** checkpoint operation proceeds from that point in the same way as
+** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
+** without blocking any further. ^SQLITE_BUSY is returned in this case.
+**
+** ^If parameter zDb is NULL or points to a zero length string, then the
+** specified operation is attempted on all WAL databases [attached] to
+** [database connection] db. In this case the
+** values written to output parameters *pnLog and *pnCkpt are undefined. ^If
+** an SQLITE_BUSY error is encountered when processing one or more of the
+** attached WAL databases, the operation is still attempted on any remaining
+** attached databases and SQLITE_BUSY is returned at the end. ^If any other
+** error occurs while processing an attached database, processing is abandoned
+** and the error code is returned to the caller immediately. ^If no error
+** (SQLITE_BUSY or otherwise) is encountered while processing the attached
+** databases, SQLITE_OK is returned.
+**
+** ^If database zDb is the name of an attached database that is not in WAL
+** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
+** zDb is not NULL (or a zero length string) and is not the name of any
+** attached database, SQLITE_ERROR is returned to the caller.
+**
+** ^Unless it returns SQLITE_MISUSE,
+** the sqlite3_wal_checkpoint_v2() interface
+** sets the error information that is queried by
+** [sqlite3_errcode()] and [sqlite3_errmsg()].
+**
+** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
+** from SQL.
+*/
+SQLITE_API int sqlite3_wal_checkpoint_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of attached database (or NULL) */
+ int eMode, /* SQLITE_CHECKPOINT_* value */
+ int *pnLog, /* OUT: Size of WAL log in frames */
+ int *pnCkpt /* OUT: Total number of frames checkpointed */
+);
+
+/*
+** CAPI3REF: Checkpoint Mode Values
+** KEYWORDS: {checkpoint mode}
+**
+** These constants define all valid values for the "checkpoint mode" passed
+** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
+** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the
+** meaning of each of these checkpoint modes.
+*/
+#define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */
+#define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */
+#define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for for readers */
+#define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */
+
+/*
+** CAPI3REF: Virtual Table Interface Configuration
+**
+** This function may be called by either the [xConnect] or [xCreate] method
+** of a [virtual table] implementation to configure
+** various facets of the virtual table interface.
+**
+** If this interface is invoked outside the context of an xConnect or
+** xCreate virtual table method then the behavior is undefined.
+**
+** In the call sqlite3_vtab_config(D,C,...) the D parameter is the
+** [database connection] in which the virtual table is being created and
+** which is passed in as the first argument to the [xConnect] or [xCreate]
+** method that is invoking sqlite3_vtab_config(). The C parameter is one
+** of the [virtual table configuration options]. The presence and meaning
+** of parameters after C depend on which [virtual table configuration option]
+** is used.
+*/
+SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Virtual Table Configuration Options
+** KEYWORDS: {virtual table configuration options}
+** KEYWORDS: {virtual table configuration option}
+**
+** These macros define the various options to the
+** [sqlite3_vtab_config()] interface that [virtual table] implementations
+** can use to customize and optimize their behavior.
+**
+** <dl>
+** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
+** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
+** where X is an integer. If X is zero, then the [virtual table] whose
+** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
+** support constraints. In this configuration (which is the default) if
+** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
+** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
+** specified as part of the users SQL statement, regardless of the actual
+** ON CONFLICT mode specified.
+**
+** If X is non-zero, then the virtual table implementation guarantees
+** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
+** any modifications to internal or persistent data structures have been made.
+** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
+** is able to roll back a statement or database transaction, and abandon
+** or continue processing the current SQL statement as appropriate.
+** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
+** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
+** had been ABORT.
+**
+** Virtual table implementations that are required to handle OR REPLACE
+** must do so within the [xUpdate] method. If a call to the
+** [sqlite3_vtab_on_conflict()] function indicates that the current ON
+** CONFLICT policy is REPLACE, the virtual table implementation should
+** silently replace the appropriate rows within the xUpdate callback and
+** return SQLITE_OK. Or, if this is not possible, it may return
+** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
+** constraint handling.
+** </dd>
+**
+** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implmentation
+** prohibits that virtual table from being used from within triggers and
+** views.
+** </dd>
+**
+** [[SQLITE_VTAB_INNOCUOUS]]<dt>SQLITE_VTAB_INNOCUOUS</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implmentation
+** identify that virtual table as being safe to use from within triggers
+** and views. Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the
+** virtual table can do no serious harm even if it is controlled by a
+** malicious hacker. Developers should avoid setting the SQLITE_VTAB_INNOCUOUS
+** flag unless absolutely necessary.
+** </dd>
+** </dl>
+*/
+#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
+#define SQLITE_VTAB_INNOCUOUS 2
+#define SQLITE_VTAB_DIRECTONLY 3
+
+/*
+** CAPI3REF: Determine The Virtual Table Conflict Policy
+**
+** This function may only be called from within a call to the [xUpdate] method
+** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
+** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
+** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
+** of the SQL statement that triggered the call to the [xUpdate] method of the
+** [virtual table].
+*/
+SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);
+
+/*
+** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
+**
+** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
+** method of a [virtual table], then it might return true if the
+** column is being fetched as part of an UPDATE operation during which the
+** column value will not change. The virtual table implementation can use
+** this hint as permission to substitute a return value that is less
+** expensive to compute and that the corresponding
+** [xUpdate] method understands as a "no-change" value.
+**
+** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
+** the column is not changed by the UPDATE statement, then the xColumn
+** method can optionally return without setting a result, without calling
+** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
+** In that case, [sqlite3_value_nochange(X)] will return true for the
+** same column in the [xUpdate] method.
+**
+** The sqlite3_vtab_nochange() routine is an optimization. Virtual table
+** implementations should continue to give a correct answer even if the
+** sqlite3_vtab_nochange() interface were to always return false. In the
+** current implementation, the sqlite3_vtab_nochange() interface does always
+** returns false for the enhanced [UPDATE FROM] statement.
+*/
+SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*);
+
+/*
+** CAPI3REF: Determine The Collation For a Virtual Table Constraint
+** METHOD: sqlite3_index_info
+**
+** This function may only be called from within a call to the [xBestIndex]
+** method of a [virtual table]. This function returns a pointer to a string
+** that is the name of the appropriate collation sequence to use for text
+** comparisons on the constraint identified by its arguments.
+**
+** The first argument must be the pointer to the [sqlite3_index_info] object
+** that is the first parameter to the xBestIndex() method. The second argument
+** must be an index into the aConstraint[] array belonging to the
+** sqlite3_index_info structure passed to xBestIndex.
+**
+** Important:
+** The first parameter must be the same pointer that is passed into the
+** xBestMethod() method. The first parameter may not be a pointer to a
+** different [sqlite3_index_info] object, even an exact copy.
+**
+** The return value is computed as follows:
+**
+** <ol>
+** <li><p> If the constraint comes from a WHERE clause expression that contains
+** a [COLLATE operator], then the name of the collation specified by
+** that COLLATE operator is returned.
+** <li><p> If there is no COLLATE operator, but the column that is the subject
+** of the constraint specifies an alternative collating sequence via
+** a [COLLATE clause] on the column definition within the CREATE TABLE
+** statement that was passed into [sqlite3_declare_vtab()], then the
+** name of that alternative collating sequence is returned.
+** <li><p> Otherwise, "BINARY" is returned.
+** </ol>
+*/
+SQLITE_API SQLITE_EXPERIMENTAL const char *sqlite3_vtab_collation(sqlite3_index_info*,int);
+
+/*
+** CAPI3REF: Determine if a virtual table query is DISTINCT
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within an [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this
+** interface from outside of xBestIndex() is undefined and probably harmful.
+**
+** ^The sqlite3_vtab_distinct() interface returns an integer between 0 and
+** 3. The integer returned by sqlite3_vtab_distinct()
+** gives the virtual table additional information about how the query
+** planner wants the output to be ordered. As long as the virtual table
+** can meet the ordering requirements of the query planner, it may set
+** the "orderByConsumed" flag.
+**
+** <ol><li value="0"><p>
+** ^If the sqlite3_vtab_distinct() interface returns 0, that means
+** that the query planner needs the virtual table to return all rows in the
+** sort order defined by the "nOrderBy" and "aOrderBy" fields of the
+** [sqlite3_index_info] object. This is the default expectation. If the
+** virtual table outputs all rows in sorted order, then it is always safe for
+** the xBestIndex method to set the "orderByConsumed" flag, regardless of
+** the return value from sqlite3_vtab_distinct().
+** <li value="1"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 1, that means
+** that the query planner does not need the rows to be returned in sorted order
+** as long as all rows with the same values in all columns identified by the
+** "aOrderBy" field are adjacent.)^ This mode is used when the query planner
+** is doing a GROUP BY.
+** <li value="2"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 2, that means
+** that the query planner does not need the rows returned in any particular
+** order, as long as rows with the same values in all "aOrderBy" columns
+** are adjacent.)^ ^(Furthermore, only a single row for each particular
+** combination of values in the columns identified by the "aOrderBy" field
+** needs to be returned.)^ ^It is always ok for two or more rows with the same
+** values in all "aOrderBy" columns to be returned, as long as all such rows
+** are adjacent. ^The virtual table may, if it chooses, omit extra rows
+** that have the same value for all columns identified by "aOrderBy".
+** ^However omitting the extra rows is optional.
+** This mode is used for a DISTINCT query.
+** <li value="3"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 3, that means
+** that the query planner needs only distinct rows but it does need the
+** rows to be sorted.)^ ^The virtual table implementation is free to omit
+** rows that are identical in all aOrderBy columns, if it wants to, but
+** it is not required to omit any rows. This mode is used for queries
+** that have both DISTINCT and ORDER BY clauses.
+** </ol>
+**
+** ^For the purposes of comparing virtual table output values to see if the
+** values are same value for sorting purposes, two NULL values are considered
+** to be the same. In other words, the comparison operator is "IS"
+** (or "IS NOT DISTINCT FROM") and not "==".
+**
+** If a virtual table implementation is unable to meet the requirements
+** specified above, then it must not set the "orderByConsumed" flag in the
+** [sqlite3_index_info] object or an incorrect answer may result.
+**
+** ^A virtual table implementation is always free to return rows in any order
+** it wants, as long as the "orderByConsumed" flag is not set. ^When the
+** the "orderByConsumed" flag is unset, the query planner will add extra
+** [bytecode] to ensure that the final results returned by the SQL query are
+** ordered correctly. The use of the "orderByConsumed" flag and the
+** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful
+** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed"
+** flag might help queries against a virtual table to run faster. Being
+** overly aggressive and setting the "orderByConsumed" flag when it is not
+** valid to do so, on the other hand, might cause SQLite to return incorrect
+** results.
+*/
+SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*);
+
+/*
+** CAPI3REF: Identify and handle IN constraints in xBestIndex
+**
+** This interface may only be used from within an
+** [xBestIndex|xBestIndex() method] of a [virtual table] implementation.
+** The result of invoking this interface from any other context is
+** undefined and probably harmful.
+**
+** ^(A constraint on a virtual table of the form
+** "[IN operator|column IN (...)]" is
+** communicated to the xBestIndex method as a
+** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use
+** this constraint, it must set the corresponding
+** aConstraintUsage[].argvIndex to a postive integer. ^(Then, under
+** the usual mode of handling IN operators, SQLite generates [bytecode]
+** that invokes the [xFilter|xFilter() method] once for each value
+** on the right-hand side of the IN operator.)^ Thus the virtual table
+** only sees a single value from the right-hand side of the IN operator
+** at a time.
+**
+** In some cases, however, it would be advantageous for the virtual
+** table to see all values on the right-hand of the IN operator all at
+** once. The sqlite3_vtab_in() interfaces facilitates this in two ways:
+**
+** <ol>
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero)
+** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint
+** is an [IN operator] that can be processed all at once. ^In other words,
+** sqlite3_vtab_in() with -1 in the third argument is a mechanism
+** by which the virtual table can ask SQLite if all-at-once processing
+** of the IN operator is even possible.
+**
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates
+** to SQLite that the virtual table does or does not want to process
+** the IN operator all-at-once, respectively. ^Thus when the third
+** parameter (F) is non-negative, this interface is the mechanism by
+** which the virtual table tells SQLite how it wants to process the
+** IN operator.
+** </ol>
+**
+** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times
+** within the same xBestIndex method call. ^For any given P,N pair,
+** the return value from sqlite3_vtab_in(P,N,F) will always be the same
+** within the same xBestIndex call. ^If the interface returns true
+** (non-zero), that means that the constraint is an IN operator
+** that can be processed all-at-once. ^If the constraint is not an IN
+** operator or cannot be processed all-at-once, then the interface returns
+** false.
+**
+** ^(All-at-once processing of the IN operator is selected if both of the
+** following conditions are met:
+**
+** <ol>
+** <li><p> The P->aConstraintUsage[N].argvIndex value is set to a positive
+** integer. This is how the virtual table tells SQLite that it wants to
+** use the N-th constraint.
+**
+** <li><p> The last call to sqlite3_vtab_in(P,N,F) for which F was
+** non-negative had F>=1.
+** </ol>)^
+**
+** ^If either or both of the conditions above are false, then SQLite uses
+** the traditional one-at-a-time processing strategy for the IN constraint.
+** ^If both conditions are true, then the argvIndex-th parameter to the
+** xFilter method will be an [sqlite3_value] that appears to be NULL,
+** but which can be passed to [sqlite3_vtab_in_first()] and
+** [sqlite3_vtab_in_next()] to find all values on the right-hand side
+** of the IN constraint.
+*/
+SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle);
+
+/*
+** CAPI3REF: Find all elements on the right-hand side of an IN constraint.
+**
+** These interfaces are only useful from within the
+** [xFilter|xFilter() method] of a [virtual table] implementation.
+** The result of invoking these interfaces from any other context
+** is undefined and probably harmful.
+**
+** The X parameter in a call to sqlite3_vtab_in_first(X,P) or
+** sqlite3_vtab_in_next(X,P) must be one of the parameters to the
+** xFilter method which invokes these routines, and specifically
+** a parameter that was previously selected for all-at-once IN constraint
+** processing use the [sqlite3_vtab_in()] interface in the
+** [xBestIndex|xBestIndex method]. ^(If the X parameter is not
+** an xFilter argument that was selected for all-at-once IN constraint
+** processing, then these routines return [SQLITE_MISUSE])^ or perhaps
+** exhibit some other undefined or harmful behavior.
+**
+** ^(Use these routines to access all values on the right-hand side
+** of the IN constraint using code like the following:
+**
+** <blockquote><pre>
+** &nbsp; for(rc=sqlite3_vtab_in_first(pList, &pVal);
+** &nbsp; rc==SQLITE_OK && pVal
+** &nbsp; rc=sqlite3_vtab_in_next(pList, &pVal)
+** &nbsp; ){
+** &nbsp; // do something with pVal
+** &nbsp; }
+** &nbsp; if( rc!=SQLITE_OK ){
+** &nbsp; // an error has occurred
+** &nbsp; }
+** </pre></blockquote>)^
+**
+** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P)
+** routines return SQLITE_OK and set *P to point to the first or next value
+** on the RHS of the IN constraint. ^If there are no more values on the
+** right hand side of the IN constraint, then *P is set to NULL and these
+** routines return [SQLITE_DONE]. ^The return value might be
+** some other value, such as SQLITE_NOMEM, in the event of a malfunction.
+**
+** The *ppOut values returned by these routines are only valid until the
+** next call to either of these routines or until the end of the xFilter
+** method from which these routines were called. If the virtual table
+** implementation needs to retain the *ppOut values for longer, it must make
+** copies. The *ppOut values are [protected sqlite3_value|protected].
+*/
+SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut);
+SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut);
+
+/*
+** CAPI3REF: Constraint values in xBestIndex()
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within the [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this interface
+** from outside of an xBestIndex method are undefined and probably harmful.
+**
+** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within
+** the [xBestIndex] method of a [virtual table] implementation, with P being
+** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and
+** J being a 0-based index into P->aConstraint[], then this routine
+** attempts to set *V to the value of the right-hand operand of
+** that constraint if the right-hand operand is known. ^If the
+** right-hand operand is not known, then *V is set to a NULL pointer.
+** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if
+** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V)
+** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th
+** constraint is not available. ^The sqlite3_vtab_rhs_value() interface
+** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if
+** something goes wrong.
+**
+** The sqlite3_vtab_rhs_value() interface is usually only successful if
+** the right-hand operand of a constraint is a literal value in the original
+** SQL statement. If the right-hand operand is an expression or a reference
+** to some other column or a [host parameter], then sqlite3_vtab_rhs_value()
+** will probably return [SQLITE_NOTFOUND].
+**
+** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and
+** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such
+** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^
+**
+** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value
+** and remains valid for the duration of the xBestIndex method call.
+** ^When xBestIndex returns, the sqlite3_value object returned by
+** sqlite3_vtab_rhs_value() is automatically deallocated.
+**
+** The "_rhs_" in the name of this routine is an abbreviation for
+** "Right-Hand Side".
+*/
+SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal);
+
+/*
+** CAPI3REF: Conflict resolution modes
+** KEYWORDS: {conflict resolution mode}
+**
+** These constants are returned by [sqlite3_vtab_on_conflict()] to
+** inform a [virtual table] implementation what the [ON CONFLICT] mode
+** is for the SQL statement being evaluated.
+**
+** Note that the [SQLITE_IGNORE] constant is also used as a potential
+** return value from the [sqlite3_set_authorizer()] callback and that
+** [SQLITE_ABORT] is also a [result code].
+*/
+#define SQLITE_ROLLBACK 1
+/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
+#define SQLITE_FAIL 3
+/* #define SQLITE_ABORT 4 // Also an error code */
+#define SQLITE_REPLACE 5
+
+/*
+** CAPI3REF: Prepared Statement Scan Status Opcodes
+** KEYWORDS: {scanstatus options}
+**
+** The following constants can be used for the T parameter to the
+** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a
+** different metric for sqlite3_stmt_scanstatus() to return.
+**
+** When the value returned to V is a string, space to hold that string is
+** managed by the prepared statement S and will be automatically freed when
+** S is finalized.
+**
+** <dl>
+** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be
+** set to the total number of times that the X-th loop has run.</dd>
+**
+** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be set
+** to the total number of rows examined by all iterations of the X-th loop.</dd>
+**
+** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
+** <dd>^The "double" variable pointed to by the V parameter will be set to the
+** query planner's estimate for the average number of rows output from each
+** iteration of the X-th loop. If the query planner's estimates was accurate,
+** then this value will approximate the quotient NVISIT/NLOOP and the
+** product of this value for all prior loops with the same SELECTID will
+** be the NLOOP value for the current loop.
+**
+** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the name of the index or table
+** used for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
+** description for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt>
+** <dd>^The "int" variable pointed to by the V parameter will be set to the
+** "select-id" for the X-th loop. The select-id identifies which query or
+** subquery the loop is part of. The main query has a select-id of zero.
+** The select-id is the same value as is output in the first column
+** of an [EXPLAIN QUERY PLAN] query.
+** </dl>
+*/
+#define SQLITE_SCANSTAT_NLOOP 0
+#define SQLITE_SCANSTAT_NVISIT 1
+#define SQLITE_SCANSTAT_EST 2
+#define SQLITE_SCANSTAT_NAME 3
+#define SQLITE_SCANSTAT_EXPLAIN 4
+#define SQLITE_SCANSTAT_SELECTID 5
+
+/*
+** CAPI3REF: Prepared Statement Scan Status
+** METHOD: sqlite3_stmt
+**
+** This interface returns information about the predicted and measured
+** performance for pStmt. Advanced applications can use this
+** interface to compare the predicted and the measured performance and
+** issue warnings and/or rerun [ANALYZE] if discrepancies are found.
+**
+** Since this interface is expected to be rarely used, it is only
+** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
+** compile-time option.
+**
+** The "iScanStatusOp" parameter determines which status information to return.
+** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
+** of this interface is undefined.
+** ^The requested measurement is written into a variable pointed to by
+** the "pOut" parameter.
+** Parameter "idx" identifies the specific loop to retrieve statistics for.
+** Loops are numbered starting from zero. ^If idx is out of range - less than
+** zero or greater than or equal to the total number of loops used to implement
+** the statement - a non-zero value is returned and the variable that pOut
+** points to is unchanged.
+**
+** ^Statistics might not be available for all loops in all statements. ^In cases
+** where there exist loops with no available statistics, this function behaves
+** as if the loop did not exist - it returns non-zero and leave the variable
+** that pOut points to unchanged.
+**
+** See also: [sqlite3_stmt_scanstatus_reset()]
+*/
+SQLITE_API int sqlite3_stmt_scanstatus(
+ sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
+ void *pOut /* Result written here */
+);
+
+/*
+** CAPI3REF: Zero Scan-Status Counters
+** METHOD: sqlite3_stmt
+**
+** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
+**
+** This API is only available if the library is built with pre-processor
+** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
+*/
+SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Flush caches to disk mid-transaction
+** METHOD: sqlite3
+**
+** ^If a write-transaction is open on [database connection] D when the
+** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
+** pages in the pager-cache that are not currently in use are written out
+** to disk. A dirty page may be in use if a database cursor created by an
+** active SQL statement is reading from it, or if it is page 1 of a database
+** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)]
+** interface flushes caches for all schemas - "main", "temp", and
+** any [attached] databases.
+**
+** ^If this function needs to obtain extra database locks before dirty pages
+** can be flushed to disk, it does so. ^If those locks cannot be obtained
+** immediately and there is a busy-handler callback configured, it is invoked
+** in the usual manner. ^If the required lock still cannot be obtained, then
+** the database is skipped and an attempt made to flush any dirty pages
+** belonging to the next (if any) database. ^If any databases are skipped
+** because locks cannot be obtained, but no other error occurs, this
+** function returns SQLITE_BUSY.
+**
+** ^If any other error occurs while flushing dirty pages to disk (for
+** example an IO error or out-of-memory condition), then processing is
+** abandoned and an SQLite [error code] is returned to the caller immediately.
+**
+** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
+**
+** ^This function does not set the database handle error code or message
+** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
+*/
+SQLITE_API int sqlite3_db_cacheflush(sqlite3*);
+
+/*
+** CAPI3REF: The pre-update hook.
+** METHOD: sqlite3
+**
+** ^These interfaces are only available if SQLite is compiled using the
+** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
+**
+** ^The [sqlite3_preupdate_hook()] interface registers a callback function
+** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
+** on a database table.
+** ^At most one preupdate hook may be registered at a time on a single
+** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
+** the previous setting.
+** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
+** with a NULL pointer as the second parameter.
+** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
+** the first parameter to callbacks.
+**
+** ^The preupdate hook only fires for changes to real database tables; the
+** preupdate hook is not invoked for changes to [virtual tables] or to
+** system tables like sqlite_sequence or sqlite_stat1.
+**
+** ^The second parameter to the preupdate callback is a pointer to
+** the [database connection] that registered the preupdate hook.
+** ^The third parameter to the preupdate callback is one of the constants
+** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
+** kind of update operation that is about to occur.
+** ^(The fourth parameter to the preupdate callback is the name of the
+** database within the database connection that is being modified. This
+** will be "main" for the main database or "temp" for TEMP tables or
+** the name given after the AS keyword in the [ATTACH] statement for attached
+** databases.)^
+** ^The fifth parameter to the preupdate callback is the name of the
+** table that is being modified.
+**
+** For an UPDATE or DELETE operation on a [rowid table], the sixth
+** parameter passed to the preupdate callback is the initial [rowid] of the
+** row being modified or deleted. For an INSERT operation on a rowid table,
+** or any operation on a WITHOUT ROWID table, the value of the sixth
+** parameter is undefined. For an INSERT or UPDATE on a rowid table the
+** seventh parameter is the final rowid value of the row being inserted
+** or updated. The value of the seventh parameter passed to the callback
+** function is not defined for operations on WITHOUT ROWID tables, or for
+** DELETE operations on rowid tables.
+**
+** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
+** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
+** provide additional information about a preupdate event. These routines
+** may only be called from within a preupdate callback. Invoking any of
+** these routines from outside of a preupdate callback or with a
+** [database connection] pointer that is different from the one supplied
+** to the preupdate callback results in undefined and probably undesirable
+** behavior.
+**
+** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns
+** in the row that is being inserted, updated, or deleted.
+**
+** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row before it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE
+** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row after it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE
+** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate
+** callback was invoked as a result of a direct insert, update, or delete
+** operation; or 1 for inserts, updates, or deletes invoked by top-level
+** triggers; or 2 for changes resulting from triggers called by top-level
+** triggers; and so forth.
+**
+** When the [sqlite3_blob_write()] API is used to update a blob column,
+** the pre-update hook is invoked with SQLITE_DELETE. This is because the
+** in this case the new values are not available. In this case, when a
+** callback made with op==SQLITE_DELETE is actuall a write using the
+** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns
+** the index of the column being written. In other cases, where the
+** pre-update hook is being invoked for some other reason, including a
+** regular DELETE, sqlite3_preupdate_blobwrite() returns -1.
+**
+** See also: [sqlite3_update_hook()]
+*/
+#if defined(SQLITE_ENABLE_PREUPDATE_HOOK)
+SQLITE_API void *sqlite3_preupdate_hook(
+ sqlite3 *db,
+ void(*xPreUpdate)(
+ void *pCtx, /* Copy of third arg to preupdate_hook() */
+ sqlite3 *db, /* Database handle */
+ int op, /* SQLITE_UPDATE, DELETE or INSERT */
+ char const *zDb, /* Database name */
+ char const *zName, /* Table name */
+ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
+ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
+ ),
+ void*
+);
+SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_count(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_depth(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *);
+#endif
+
+/*
+** CAPI3REF: Low-level system error code
+** METHOD: sqlite3
+**
+** ^Attempt to return the underlying operating system error code or error
+** number that caused the most recent I/O error or failure to open a file.
+** The return value is OS-dependent. For example, on unix systems, after
+** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be
+** called to get back the underlying "errno" that caused the problem, such
+** as ENOSPC, EAUTH, EISDIR, and so forth.
+*/
+SQLITE_API int sqlite3_system_errno(sqlite3*);
+
+/*
+** CAPI3REF: Database Snapshot
+** KEYWORDS: {snapshot} {sqlite3_snapshot}
+**
+** An instance of the snapshot object records the state of a [WAL mode]
+** database for some specific point in history.
+**
+** In [WAL mode], multiple [database connections] that are open on the
+** same database file can each be reading a different historical version
+** of the database file. When a [database connection] begins a read
+** transaction, that connection sees an unchanging copy of the database
+** as it existed for the point in time when the transaction first started.
+** Subsequent changes to the database from other connections are not seen
+** by the reader until a new read transaction is started.
+**
+** The sqlite3_snapshot object records state information about an historical
+** version of the database file so that it is possible to later open a new read
+** transaction that sees that historical version of the database rather than
+** the most recent version.
+*/
+typedef struct sqlite3_snapshot {
+ unsigned char hidden[48];
+} sqlite3_snapshot;
+
+/*
+** CAPI3REF: Record A Database Snapshot
+** CONSTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
+** new [sqlite3_snapshot] object that records the current state of
+** schema S in database connection D. ^On success, the
+** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
+** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
+** If there is not already a read-transaction open on schema S when
+** this function is called, one is opened automatically.
+**
+** The following must be true for this function to succeed. If any of
+** the following statements are false when sqlite3_snapshot_get() is
+** called, SQLITE_ERROR is returned. The final value of *P is undefined
+** in this case.
+**
+** <ul>
+** <li> The database handle must not be in [autocommit mode].
+**
+** <li> Schema S of [database connection] D must be a [WAL mode] database.
+**
+** <li> There must not be a write transaction open on schema S of database
+** connection D.
+**
+** <li> One or more transactions must have been written to the current wal
+** file since it was created on disk (by any connection). This means
+** that a snapshot cannot be taken on a wal mode database with no wal
+** file immediately after it is first opened. At least one transaction
+** must be written to it first.
+** </ul>
+**
+** This function may also return SQLITE_NOMEM. If it is called with the
+** database handle in autocommit mode but fails for some other reason,
+** whether or not a read transaction is opened on schema S is undefined.
+**
+** The [sqlite3_snapshot] object returned from a successful call to
+** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
+** to avoid a memory leak.
+**
+** The [sqlite3_snapshot_get()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot **ppSnapshot
+);
+
+/*
+** CAPI3REF: Start a read transaction on an historical snapshot
+** METHOD: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read
+** transaction or upgrades an existing one for schema S of
+** [database connection] D such that the read transaction refers to
+** historical [snapshot] P, rather than the most recent change to the
+** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK
+** on success or an appropriate [error code] if it fails.
+**
+** ^In order to succeed, the database connection must not be in
+** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there
+** is already a read transaction open on schema S, then the database handle
+** must have no active statements (SELECT statements that have been passed
+** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()).
+** SQLITE_ERROR is returned if either of these conditions is violated, or
+** if schema S does not exist, or if the snapshot object is invalid.
+**
+** ^A call to sqlite3_snapshot_open() will fail to open if the specified
+** snapshot has been overwritten by a [checkpoint]. In this case
+** SQLITE_ERROR_SNAPSHOT is returned.
+**
+** If there is already a read transaction open when this function is
+** invoked, then the same read transaction remains open (on the same
+** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT
+** is returned. If another error code - for example SQLITE_PROTOCOL or an
+** SQLITE_IOERR error code - is returned, then the final state of the
+** read transaction is undefined. If SQLITE_OK is returned, then the
+** read transaction is now open on database snapshot P.
+**
+** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
+** database connection D does not know that the database file for
+** schema S is in [WAL mode]. A database connection might not know
+** that the database file is in [WAL mode] if there has been no prior
+** I/O on that database connection, or if the database entered [WAL mode]
+** after the most recent I/O on the database connection.)^
+** (Hint: Run "[PRAGMA application_id]" against a newly opened
+** database connection in order to make it ready to use snapshots.)
+**
+** The [sqlite3_snapshot_open()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot *pSnapshot
+);
+
+/*
+** CAPI3REF: Destroy a snapshot
+** DESTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
+** The application must eventually free every [sqlite3_snapshot] object
+** using this routine to avoid a memory leak.
+**
+** The [sqlite3_snapshot_free()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*);
+
+/*
+** CAPI3REF: Compare the ages of two snapshot handles.
+** METHOD: sqlite3_snapshot
+**
+** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages
+** of two valid snapshot handles.
+**
+** If the two snapshot handles are not associated with the same database
+** file, the result of the comparison is undefined.
+**
+** Additionally, the result of the comparison is only valid if both of the
+** snapshot handles were obtained by calling sqlite3_snapshot_get() since the
+** last time the wal file was deleted. The wal file is deleted when the
+** database is changed back to rollback mode or when the number of database
+** clients drops to zero. If either snapshot handle was obtained before the
+** wal file was last deleted, the value returned by this function
+** is undefined.
+**
+** Otherwise, this API returns a negative value if P1 refers to an older
+** snapshot than P2, zero if the two handles refer to the same database
+** snapshot, and a positive value if P1 is a newer snapshot than P2.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp(
+ sqlite3_snapshot *p1,
+ sqlite3_snapshot *p2
+);
+
+/*
+** CAPI3REF: Recover snapshots from a wal file
+** METHOD: sqlite3_snapshot
+**
+** If a [WAL file] remains on disk after all database connections close
+** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control]
+** or because the last process to have the database opened exited without
+** calling [sqlite3_close()]) and a new connection is subsequently opened
+** on that database and [WAL file], the [sqlite3_snapshot_open()] interface
+** will only be able to open the last transaction added to the WAL file
+** even though the WAL file contains other valid transactions.
+**
+** This function attempts to scan the WAL file associated with database zDb
+** of database handle db and make all valid snapshots available to
+** sqlite3_snapshot_open(). It is an error if there is already a read
+** transaction open on the database, or if the database is not a WAL mode
+** database.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Serialize a database
+**
+** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory
+** that is a serialization of the S database on [database connection] D.
+** If P is not a NULL pointer, then the size of the database in bytes
+** is written into *P.
+**
+** For an ordinary on-disk database file, the serialization is just a
+** copy of the disk file. For an in-memory database or a "TEMP" database,
+** the serialization is the same sequence of bytes which would be written
+** to disk if that database where backed up to disk.
+**
+** The usual case is that sqlite3_serialize() copies the serialization of
+** the database into memory obtained from [sqlite3_malloc64()] and returns
+** a pointer to that memory. The caller is responsible for freeing the
+** returned value to avoid a memory leak. However, if the F argument
+** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations
+** are made, and the sqlite3_serialize() function will return a pointer
+** to the contiguous memory representation of the database that SQLite
+** is currently using for that database, or NULL if the no such contiguous
+** memory representation of the database exists. A contiguous memory
+** representation of the database will usually only exist if there has
+** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
+** values of D and S.
+** The size of the database is written into *P even if the
+** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
+** of the database exists.
+**
+** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
+** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
+** allocation error occurs.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API unsigned char *sqlite3_serialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to serialize. ex: "main", "temp", ... */
+ sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */
+ unsigned int mFlags /* Zero or more SQLITE_SERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_serialize
+**
+** Zero or more of the following constants can be OR-ed together for
+** the F argument to [sqlite3_serialize(D,S,P,F)].
+**
+** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return
+** a pointer to contiguous in-memory database that it is currently using,
+** without making a copy of the database. If SQLite is not currently using
+** a contiguous in-memory database, then this option causes
+** [sqlite3_serialize()] to return a NULL pointer. SQLite will only be
+** using a contiguous in-memory database if it has been initialized by a
+** prior call to [sqlite3_deserialize()].
+*/
+#define SQLITE_SERIALIZE_NOCOPY 0x001 /* Do no memory allocations */
+
+/*
+** CAPI3REF: Deserialize a database
+**
+** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the
+** [database connection] D to disconnect from database S and then
+** reopen S as an in-memory database based on the serialization contained
+** in P. The serialized database P is N bytes in size. M is the size of
+** the buffer P, which might be larger than N. If M is larger than N, and
+** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is
+** permitted to add content to the in-memory database as long as the total
+** size does not exceed M bytes.
+**
+** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will
+** invoke sqlite3_free() on the serialization buffer when the database
+** connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then
+** SQLite will try to increase the buffer size using sqlite3_realloc64()
+** if writes on the database cause it to grow larger than M bytes.
+**
+** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the
+** database is currently in a read transaction or is involved in a backup
+** operation.
+**
+** It is not possible to deserialized into the TEMP database. If the
+** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the
+** function returns SQLITE_ERROR.
+**
+** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the
+** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then
+** [sqlite3_free()] is invoked on argument P prior to returning.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API int sqlite3_deserialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to reopen with the deserialization */
+ unsigned char *pData, /* The serialized database content */
+ sqlite3_int64 szDb, /* Number bytes in the deserialization */
+ sqlite3_int64 szBuf, /* Total size of buffer pData[] */
+ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_deserialize()
+**
+** The following are allowed values for 6th argument (the F argument) to
+** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
+**
+** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
+** in the P argument is held in memory obtained from [sqlite3_malloc64()]
+** and that SQLite should take ownership of this memory and automatically
+** free it when it has finished using it. Without this flag, the caller
+** is responsible for freeing any dynamically allocated memory.
+**
+** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
+** grow the size of the database using calls to [sqlite3_realloc64()]. This
+** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
+** Without this flag, the deserialized database cannot increase in size beyond
+** the number of bytes specified by the M parameter.
+**
+** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database
+** should be treated as read-only.
+*/
+#define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */
+#define SQLITE_DESERIALIZE_RESIZEABLE 2 /* Resize using sqlite3_realloc64() */
+#define SQLITE_DESERIALIZE_READONLY 4 /* Database is read-only */
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#ifdef __cplusplus
+} /* End of the 'extern "C"' block */
+#endif
+#endif /* SQLITE3_H */
+
+/******** Begin file sqlite3rtree.h *********/
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info;
+
+/* The double-precision datatype used by RTree depends on the
+** SQLITE_RTREE_INT_ONLY compile-time option.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+ typedef sqlite3_int64 sqlite3_rtree_dbl;
+#else
+ typedef double sqlite3_rtree_dbl;
+#endif
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+/*
+** Register a 2nd-generation geometry callback named zScore that can be
+** used as part of an R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_query_callback(
+ sqlite3 *db,
+ const char *zQueryFunc,
+ int (*xQueryFunc)(sqlite3_rtree_query_info*),
+ void *pContext,
+ void (*xDestructor)(void*)
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the
+** argument to scored geometry callback registered using
+** sqlite3_rtree_query_callback().
+**
+** Note that the first 5 fields of this structure are identical to
+** sqlite3_rtree_geometry. This structure is a subclass of
+** sqlite3_rtree_geometry.
+*/
+struct sqlite3_rtree_query_info {
+ void *pContext; /* pContext from when function registered */
+ int nParam; /* Number of function parameters */
+ sqlite3_rtree_dbl *aParam; /* value of function parameters */
+ void *pUser; /* callback can use this, if desired */
+ void (*xDelUser)(void*); /* function to free pUser */
+ sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */
+ unsigned int *anQueue; /* Number of pending entries in the queue */
+ int nCoord; /* Number of coordinates */
+ int iLevel; /* Level of current node or entry */
+ int mxLevel; /* The largest iLevel value in the tree */
+ sqlite3_int64 iRowid; /* Rowid for current entry */
+ sqlite3_rtree_dbl rParentScore; /* Score of parent node */
+ int eParentWithin; /* Visibility of parent node */
+ int eWithin; /* OUT: Visibility */
+ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */
+ /* The following fields are only available in 3.8.11 and later */
+ sqlite3_value **apSqlParam; /* Original SQL values of parameters */
+};
+
+/*
+** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
+*/
+#define NOT_WITHIN 0 /* Object completely outside of query region */
+#define PARTLY_WITHIN 1 /* Object partially overlaps query region */
+#define FULLY_WITHIN 2 /* Object fully contained within query region */
+
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
+
+/******** End of sqlite3rtree.h *********/
+/******** Begin file sqlite3session.h *********/
+
+#if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION)
+#define __SQLITESESSION_H_ 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/*
+** CAPI3REF: Session Object Handle
+**
+** An instance of this object is a [session] that can be used to
+** record changes to a database.
+*/
+typedef struct sqlite3_session sqlite3_session;
+
+/*
+** CAPI3REF: Changeset Iterator Handle
+**
+** An instance of this object acts as a cursor for iterating
+** over the elements of a [changeset] or [patchset].
+*/
+typedef struct sqlite3_changeset_iter sqlite3_changeset_iter;
+
+/*
+** CAPI3REF: Create A New Session Object
+** CONSTRUCTOR: sqlite3_session
+**
+** Create a new session object attached to database handle db. If successful,
+** a pointer to the new object is written to *ppSession and SQLITE_OK is
+** returned. If an error occurs, *ppSession is set to NULL and an SQLite
+** error code (e.g. SQLITE_NOMEM) is returned.
+**
+** It is possible to create multiple session objects attached to a single
+** database handle.
+**
+** Session objects created using this function should be deleted using the
+** [sqlite3session_delete()] function before the database handle that they
+** are attached to is itself closed. If the database handle is closed before
+** the session object is deleted, then the results of calling any session
+** module function, including [sqlite3session_delete()] on the session object
+** are undefined.
+**
+** Because the session module uses the [sqlite3_preupdate_hook()] API, it
+** is not possible for an application to register a pre-update hook on a
+** database handle that has one or more session objects attached. Nor is
+** it possible to create a session object attached to a database handle for
+** which a pre-update hook is already defined. The results of attempting
+** either of these things are undefined.
+**
+** The session object will be used to create changesets for tables in
+** database zDb, where zDb is either "main", or "temp", or the name of an
+** attached database. It is not an error if database zDb is not attached
+** to the database when the session object is created.
+*/
+SQLITE_API int sqlite3session_create(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (e.g. "main") */
+ sqlite3_session **ppSession /* OUT: New session object */
+);
+
+/*
+** CAPI3REF: Delete A Session Object
+** DESTRUCTOR: sqlite3_session
+**
+** Delete a session object previously allocated using
+** [sqlite3session_create()]. Once a session object has been deleted, the
+** results of attempting to use pSession with any other session module
+** function are undefined.
+**
+** Session objects must be deleted before the database handle to which they
+** are attached is closed. Refer to the documentation for
+** [sqlite3session_create()] for details.
+*/
+SQLITE_API void sqlite3session_delete(sqlite3_session *pSession);
+
+/*
+** CAPIREF: Conigure a Session Object
+** METHOD: sqlite3_session
+**
+** This method is used to configure a session object after it has been
+** created. At present the only valid value for the second parameter is
+** [SQLITE_SESSION_OBJCONFIG_SIZE].
+**
+** Arguments for sqlite3session_object_config()
+**
+** The following values may passed as the the 4th parameter to
+** sqlite3session_object_config().
+**
+** <dt>SQLITE_SESSION_OBJCONFIG_SIZE <dd>
+** This option is used to set, clear or query the flag that enables
+** the [sqlite3session_changeset_size()] API. Because it imposes some
+** computational overhead, this API is disabled by default. Argument
+** pArg must point to a value of type (int). If the value is initially
+** 0, then the sqlite3session_changeset_size() API is disabled. If it
+** is greater than 0, then the same API is enabled. Or, if the initial
+** value is less than zero, no change is made. In all cases the (int)
+** variable is set to 1 if the sqlite3session_changeset_size() API is
+** enabled following the current call, or 0 otherwise.
+**
+** It is an error (SQLITE_MISUSE) to attempt to modify this setting after
+** the first table has been attached to the session object.
+*/
+SQLITE_API int sqlite3session_object_config(sqlite3_session*, int op, void *pArg);
+
+/*
+*/
+#define SQLITE_SESSION_OBJCONFIG_SIZE 1
+
+/*
+** CAPI3REF: Enable Or Disable A Session Object
+** METHOD: sqlite3_session
+**
+** Enable or disable the recording of changes by a session object. When
+** enabled, a session object records changes made to the database. When
+** disabled - it does not. A newly created session object is enabled.
+** Refer to the documentation for [sqlite3session_changeset()] for further
+** details regarding how enabling and disabling a session object affects
+** the eventual changesets.
+**
+** Passing zero to this function disables the session. Passing a value
+** greater than zero enables it. Passing a value less than zero is a
+** no-op, and may be used to query the current state of the session.
+**
+** The return value indicates the final state of the session object: 0 if
+** the session is disabled, or 1 if it is enabled.
+*/
+SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable);
+
+/*
+** CAPI3REF: Set Or Clear the Indirect Change Flag
+** METHOD: sqlite3_session
+**
+** Each change recorded by a session object is marked as either direct or
+** indirect. A change is marked as indirect if either:
+**
+** <ul>
+** <li> The session object "indirect" flag is set when the change is
+** made, or
+** <li> The change is made by an SQL trigger or foreign key action
+** instead of directly as a result of a users SQL statement.
+** </ul>
+**
+** If a single row is affected by more than one operation within a session,
+** then the change is considered indirect if all operations meet the criteria
+** for an indirect change above, or direct otherwise.
+**
+** This function is used to set, clear or query the session object indirect
+** flag. If the second argument passed to this function is zero, then the
+** indirect flag is cleared. If it is greater than zero, the indirect flag
+** is set. Passing a value less than zero does not modify the current value
+** of the indirect flag, and may be used to query the current state of the
+** indirect flag for the specified session object.
+**
+** The return value indicates the final state of the indirect flag: 0 if
+** it is clear, or 1 if it is set.
+*/
+SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect);
+
+/*
+** CAPI3REF: Attach A Table To A Session Object
+** METHOD: sqlite3_session
+**
+** If argument zTab is not NULL, then it is the name of a table to attach
+** to the session object passed as the first argument. All subsequent changes
+** made to the table while the session object is enabled will be recorded. See
+** documentation for [sqlite3session_changeset()] for further details.
+**
+** Or, if argument zTab is NULL, then changes are recorded for all tables
+** in the database. If additional tables are added to the database (by
+** executing "CREATE TABLE" statements) after this call is made, changes for
+** the new tables are also recorded.
+**
+** Changes can only be recorded for tables that have a PRIMARY KEY explicitly
+** defined as part of their CREATE TABLE statement. It does not matter if the
+** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY
+** KEY may consist of a single column, or may be a composite key.
+**
+** It is not an error if the named table does not exist in the database. Nor
+** is it an error if the named table does not have a PRIMARY KEY. However,
+** no changes will be recorded in either of these scenarios.
+**
+** Changes are not recorded for individual rows that have NULL values stored
+** in one or more of their PRIMARY KEY columns.
+**
+** SQLITE_OK is returned if the call completes without error. Or, if an error
+** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
+**
+** <h3>Special sqlite_stat1 Handling</h3>
+**
+** As of SQLite version 3.22.0, the "sqlite_stat1" table is an exception to
+** some of the rules above. In SQLite, the schema of sqlite_stat1 is:
+** <pre>
+** &nbsp; CREATE TABLE sqlite_stat1(tbl,idx,stat)
+** </pre>
+**
+** Even though sqlite_stat1 does not have a PRIMARY KEY, changes are
+** recorded for it as if the PRIMARY KEY is (tbl,idx). Additionally, changes
+** are recorded for rows for which (idx IS NULL) is true. However, for such
+** rows a zero-length blob (SQL value X'') is stored in the changeset or
+** patchset instead of a NULL value. This allows such changesets to be
+** manipulated by legacy implementations of sqlite3changeset_invert(),
+** concat() and similar.
+**
+** The sqlite3changeset_apply() function automatically converts the
+** zero-length blob back to a NULL value when updating the sqlite_stat1
+** table. However, if the application calls sqlite3changeset_new(),
+** sqlite3changeset_old() or sqlite3changeset_conflict on a changeset
+** iterator directly (including on a changeset iterator passed to a
+** conflict-handler callback) then the X'' value is returned. The application
+** must translate X'' to NULL itself if required.
+**
+** Legacy (older than 3.22.0) versions of the sessions module cannot capture
+** changes made to the sqlite_stat1 table. Legacy versions of the
+** sqlite3changeset_apply() function silently ignore any modifications to the
+** sqlite_stat1 table that are part of a changeset or patchset.
+*/
+SQLITE_API int sqlite3session_attach(
+ sqlite3_session *pSession, /* Session object */
+ const char *zTab /* Table name */
+);
+
+/*
+** CAPI3REF: Set a table filter on a Session Object.
+** METHOD: sqlite3_session
+**
+** The second argument (xFilter) is the "filter callback". For changes to rows
+** in tables that are not attached to the Session object, the filter is called
+** to determine whether changes to the table's rows should be tracked or not.
+** If xFilter returns 0, changes are not tracked. Note that once a table is
+** attached, xFilter will not be called again.
+*/
+SQLITE_API void sqlite3session_table_filter(
+ sqlite3_session *pSession, /* Session object */
+ int(*xFilter)(
+ void *pCtx, /* Copy of third arg to _filter_table() */
+ const char *zTab /* Table name */
+ ),
+ void *pCtx /* First argument passed to xFilter */
+);
+
+/*
+** CAPI3REF: Generate A Changeset From A Session Object
+** METHOD: sqlite3_session
+**
+** Obtain a changeset containing changes to the tables attached to the
+** session object passed as the first argument. If successful,
+** set *ppChangeset to point to a buffer containing the changeset
+** and *pnChangeset to the size of the changeset in bytes before returning
+** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to
+** zero and return an SQLite error code.
+**
+** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes,
+** each representing a change to a single row of an attached table. An INSERT
+** change contains the values of each field of a new database row. A DELETE
+** contains the original values of each field of a deleted database row. An
+** UPDATE change contains the original values of each field of an updated
+** database row along with the updated values for each updated non-primary-key
+** column. It is not possible for an UPDATE change to represent a change that
+** modifies the values of primary key columns. If such a change is made, it
+** is represented in a changeset as a DELETE followed by an INSERT.
+**
+** Changes are not recorded for rows that have NULL values stored in one or
+** more of their PRIMARY KEY columns. If such a row is inserted or deleted,
+** no corresponding change is present in the changesets returned by this
+** function. If an existing row with one or more NULL values stored in
+** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL,
+** only an INSERT is appears in the changeset. Similarly, if an existing row
+** with non-NULL PRIMARY KEY values is updated so that one or more of its
+** PRIMARY KEY columns are set to NULL, the resulting changeset contains a
+** DELETE change only.
+**
+** The contents of a changeset may be traversed using an iterator created
+** using the [sqlite3changeset_start()] API. A changeset may be applied to
+** a database with a compatible schema using the [sqlite3changeset_apply()]
+** API.
+**
+** Within a changeset generated by this function, all changes related to a
+** single table are grouped together. In other words, when iterating through
+** a changeset or when applying a changeset to a database, all changes related
+** to a single table are processed before moving on to the next table. Tables
+** are sorted in the same order in which they were attached (or auto-attached)
+** to the sqlite3_session object. The order in which the changes related to
+** a single table are stored is undefined.
+**
+** Following a successful call to this function, it is the responsibility of
+** the caller to eventually free the buffer that *ppChangeset points to using
+** [sqlite3_free()].
+**
+** <h3>Changeset Generation</h3>
+**
+** Once a table has been attached to a session object, the session object
+** records the primary key values of all new rows inserted into the table.
+** It also records the original primary key and other column values of any
+** deleted or updated rows. For each unique primary key value, data is only
+** recorded once - the first time a row with said primary key is inserted,
+** updated or deleted in the lifetime of the session.
+**
+** There is one exception to the previous paragraph: when a row is inserted,
+** updated or deleted, if one or more of its primary key columns contain a
+** NULL value, no record of the change is made.
+**
+** The session object therefore accumulates two types of records - those
+** that consist of primary key values only (created when the user inserts
+** a new record) and those that consist of the primary key values and the
+** original values of other table columns (created when the users deletes
+** or updates a record).
+**
+** When this function is called, the requested changeset is created using
+** both the accumulated records and the current contents of the database
+** file. Specifically:
+**
+** <ul>
+** <li> For each record generated by an insert, the database is queried
+** for a row with a matching primary key. If one is found, an INSERT
+** change is added to the changeset. If no such row is found, no change
+** is added to the changeset.
+**
+** <li> For each record generated by an update or delete, the database is
+** queried for a row with a matching primary key. If such a row is
+** found and one or more of the non-primary key fields have been
+** modified from their original values, an UPDATE change is added to
+** the changeset. Or, if no such row is found in the table, a DELETE
+** change is added to the changeset. If there is a row with a matching
+** primary key in the database, but all fields contain their original
+** values, no change is added to the changeset.
+** </ul>
+**
+** This means, amongst other things, that if a row is inserted and then later
+** deleted while a session object is active, neither the insert nor the delete
+** will be present in the changeset. Or if a row is deleted and then later a
+** row with the same primary key values inserted while a session object is
+** active, the resulting changeset will contain an UPDATE change instead of
+** a DELETE and an INSERT.
+**
+** When a session object is disabled (see the [sqlite3session_enable()] API),
+** it does not accumulate records when rows are inserted, updated or deleted.
+** This may appear to have some counter-intuitive effects if a single row
+** is written to more than once during a session. For example, if a row
+** is inserted while a session object is enabled, then later deleted while
+** the same session object is disabled, no INSERT record will appear in the
+** changeset, even though the delete took place while the session was disabled.
+** Or, if one field of a row is updated while a session is disabled, and
+** another field of the same row is updated while the session is enabled, the
+** resulting changeset will contain an UPDATE change that updates both fields.
+*/
+SQLITE_API int sqlite3session_changeset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+);
+
+/*
+** CAPI3REF: Return An Upper-limit For The Size Of The Changeset
+** METHOD: sqlite3_session
+**
+** By default, this function always returns 0. For it to return
+** a useful result, the sqlite3_session object must have been configured
+** to enable this API using sqlite3session_object_config() with the
+** SQLITE_SESSION_OBJCONFIG_SIZE verb.
+**
+** When enabled, this function returns an upper limit, in bytes, for the size
+** of the changeset that might be produced if sqlite3session_changeset() were
+** called. The final changeset size might be equal to or smaller than the
+** size in bytes returned by this function.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Load The Difference Between Tables Into A Session
+** METHOD: sqlite3_session
+**
+** If it is not already attached to the session object passed as the first
+** argument, this function attaches table zTbl in the same manner as the
+** [sqlite3session_attach()] function. If zTbl does not exist, or if it
+** does not have a primary key, this function is a no-op (but does not return
+** an error).
+**
+** Argument zFromDb must be the name of a database ("main", "temp" etc.)
+** attached to the same database handle as the session object that contains
+** a table compatible with the table attached to the session by this function.
+** A table is considered compatible if it:
+**
+** <ul>
+** <li> Has the same name,
+** <li> Has the same set of columns declared in the same order, and
+** <li> Has the same PRIMARY KEY definition.
+** </ul>
+**
+** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables
+** are compatible but do not have any PRIMARY KEY columns, it is not an error
+** but no changes are added to the session object. As with other session
+** APIs, tables without PRIMARY KEYs are simply ignored.
+**
+** This function adds a set of changes to the session object that could be
+** used to update the table in database zFrom (call this the "from-table")
+** so that its content is the same as the table attached to the session
+** object (call this the "to-table"). Specifically:
+**
+** <ul>
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, an INSERT record is added to the session object.
+**
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, a DELETE record is added to the session object.
+**
+** <li> For each row (primary key) that exists in both tables, but features
+** different non-PK values in each, an UPDATE record is added to the
+** session.
+** </ul>
+**
+** To clarify, if this function is called and then a changeset constructed
+** using [sqlite3session_changeset()], then after applying that changeset to
+** database zFrom the contents of the two compatible tables would be
+** identical.
+**
+** It an error if database zFrom does not exist or does not contain the
+** required compatible table.
+**
+** If the operation is successful, SQLITE_OK is returned. Otherwise, an SQLite
+** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg
+** may be set to point to a buffer containing an English language error
+** message. It is the responsibility of the caller to free this buffer using
+** sqlite3_free().
+*/
+SQLITE_API int sqlite3session_diff(
+ sqlite3_session *pSession,
+ const char *zFromDb,
+ const char *zTbl,
+ char **pzErrMsg
+);
+
+
+/*
+** CAPI3REF: Generate A Patchset From A Session Object
+** METHOD: sqlite3_session
+**
+** The differences between a patchset and a changeset are that:
+**
+** <ul>
+** <li> DELETE records consist of the primary key fields only. The
+** original values of other fields are omitted.
+** <li> The original values of any modified fields are omitted from
+** UPDATE records.
+** </ul>
+**
+** A patchset blob may be used with up to date versions of all
+** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(),
+** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly,
+** attempting to use a patchset blob with old versions of the
+** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error.
+**
+** Because the non-primary key "old.*" fields are omitted, no
+** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset
+** is passed to the sqlite3changeset_apply() API. Other conflict types work
+** in the same way as for changesets.
+**
+** Changes within a patchset are ordered in the same way as for changesets
+** generated by the sqlite3session_changeset() function (i.e. all changes for
+** a single table are grouped together, tables appear in the order in which
+** they were attached to the session object).
+*/
+SQLITE_API int sqlite3session_patchset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnPatchset, /* OUT: Size of buffer at *ppPatchset */
+ void **ppPatchset /* OUT: Buffer containing patchset */
+);
+
+/*
+** CAPI3REF: Test if a changeset has recorded any changes.
+**
+** Return non-zero if no changes to attached tables have been recorded by
+** the session object passed as the first argument. Otherwise, if one or
+** more changes have been recorded, return zero.
+**
+** Even if this function returns zero, it is possible that calling
+** [sqlite3session_changeset()] on the session handle may still return a
+** changeset that contains no changes. This can happen when a row in
+** an attached table is modified and then later on the original values
+** are restored. However, if this function returns non-zero, then it is
+** guaranteed that a call to sqlite3session_changeset() will return a
+** changeset containing zero changes.
+*/
+SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Query for the amount of heap memory used by a session object.
+**
+** This API returns the total amount of heap memory in bytes currently
+** used by the session object passed as the only argument.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Create An Iterator To Traverse A Changeset
+** CONSTRUCTOR: sqlite3_changeset_iter
+**
+** Create an iterator used to iterate through the contents of a changeset.
+** If successful, *pp is set to point to the iterator handle and SQLITE_OK
+** is returned. Otherwise, if an error occurs, *pp is set to zero and an
+** SQLite error code is returned.
+**
+** The following functions can be used to advance and query a changeset
+** iterator created by this function:
+**
+** <ul>
+** <li> [sqlite3changeset_next()]
+** <li> [sqlite3changeset_op()]
+** <li> [sqlite3changeset_new()]
+** <li> [sqlite3changeset_old()]
+** </ul>
+**
+** It is the responsibility of the caller to eventually destroy the iterator
+** by passing it to [sqlite3changeset_finalize()]. The buffer containing the
+** changeset (pChangeset) must remain valid until after the iterator is
+** destroyed.
+**
+** Assuming the changeset blob was created by one of the
+** [sqlite3session_changeset()], [sqlite3changeset_concat()] or
+** [sqlite3changeset_invert()] functions, all changes within the changeset
+** that apply to a single table are grouped together. This means that when
+** an application iterates through a changeset using an iterator created by
+** this function, all changes that relate to a single table are visited
+** consecutively. There is no chance that the iterator will visit a change
+** the applies to table X, then one for table Y, and then later on visit
+** another change for table X.
+**
+** The behavior of sqlite3changeset_start_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter.
+**
+** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_start(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset /* Pointer to blob containing changeset */
+);
+SQLITE_API int sqlite3changeset_start_v2(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset, /* Pointer to blob containing changeset */
+ int flags /* SESSION_CHANGESETSTART_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_start_v2
+**
+** The following flags may passed via the 4th parameter to
+** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]:
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset while iterating through it. This is equivalent to
+** inverting a changeset using sqlite3changeset_invert() before applying it.
+** It is an error to specify this flag with a patchset.
+*/
+#define SQLITE_CHANGESETSTART_INVERT 0x0002
+
+
+/*
+** CAPI3REF: Advance A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be used with iterators created by the function
+** [sqlite3changeset_start()]. If it is called on an iterator passed to
+** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE
+** is returned and the call has no effect.
+**
+** Immediately after an iterator is created by sqlite3changeset_start(), it
+** does not point to any change in the changeset. Assuming the changeset
+** is not empty, the first call to this function advances the iterator to
+** point to the first change in the changeset. Each subsequent call advances
+** the iterator to point to the next change in the changeset (if any). If
+** no error occurs and the iterator points to a valid change after a call
+** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned.
+** Otherwise, if all changes in the changeset have already been visited,
+** SQLITE_DONE is returned.
+**
+** If an error occurs, an SQLite error code is returned. Possible error
+** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or
+** SQLITE_NOMEM.
+*/
+SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Obtain The Current Operation From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this
+** is not the case, this function returns [SQLITE_MISUSE].
+**
+** Arguments pOp, pnCol and pzTab may not be NULL. Upon return, three
+** outputs are set through these pointers:
+**
+** *pOp is set to one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the type of change that the iterator currently points to;
+**
+** *pnCol is set to the number of columns in the table affected by the change; and
+**
+** *pzTab is set to point to a nul-terminated utf-8 encoded string containing
+** the name of the table affected by the current change. The buffer remains
+** valid until either sqlite3changeset_next() is called on the iterator
+** or until the conflict-handler function returns.
+**
+** If pbIndirect is not NULL, then *pbIndirect is set to true (1) if the change
+** is an indirect change, or false (0) otherwise. See the documentation for
+** [sqlite3session_indirect()] for a description of direct and indirect
+** changes.
+**
+** If no error occurs, SQLITE_OK is returned. If an error does occur, an
+** SQLite error code is returned. The values of the output variables may not
+** be trusted in this case.
+*/
+SQLITE_API int sqlite3changeset_op(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ const char **pzTab, /* OUT: Pointer to table name */
+ int *pnCol, /* OUT: Number of columns in table */
+ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
+ int *pbIndirect /* OUT: True for an 'indirect' change */
+);
+
+/*
+** CAPI3REF: Obtain The Primary Key Definition Of A Table
+** METHOD: sqlite3_changeset_iter
+**
+** For each modified table, a changeset includes the following:
+**
+** <ul>
+** <li> The number of columns in the table, and
+** <li> Which of those columns make up the tables PRIMARY KEY.
+** </ul>
+**
+** This function is used to find which columns comprise the PRIMARY KEY of
+** the table modified by the change that iterator pIter currently points to.
+** If successful, *pabPK is set to point to an array of nCol entries, where
+** nCol is the number of columns in the table. Elements of *pabPK are set to
+** 0x01 if the corresponding column is part of the tables primary key, or
+** 0x00 if it is not.
+**
+** If argument pnCol is not NULL, then *pnCol is set to the number of columns
+** in the table.
+**
+** If this function is called when the iterator does not point to a valid
+** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise,
+** SQLITE_OK is returned and the output variables populated as described
+** above.
+*/
+SQLITE_API int sqlite3changeset_pk(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
+ int *pnCol /* OUT: Number of entries in output array */
+);
+
+/*
+** CAPI3REF: Obtain old.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** original row values stored as part of the UPDATE or DELETE change and
+** returns SQLITE_OK. The name of the function comes from the fact that this
+** is similar to the "old.*" columns available to update or delete triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_old(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain new.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** new row values stored as part of the UPDATE or INSERT change and
+** returns SQLITE_OK. If the change is an UPDATE and does not include
+** a new value for the requested column, *ppValue is set to NULL and
+** SQLITE_OK returned. The name of the function comes from the fact that
+** this is similar to the "new.*" columns available to update or delete
+** triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_new(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function should only be used with iterator objects passed to a
+** conflict-handler callback by [sqlite3changeset_apply()] with either
+** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function
+** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue
+** is set to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the
+** "conflicting row" associated with the current conflict-handler callback
+** and returns SQLITE_OK.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_conflict(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Value from conflicting row */
+);
+
+/*
+** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be called with an iterator passed to an
+** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
+** it sets the output variable to the total number of known foreign key
+** violations in the destination database and returns SQLITE_OK.
+**
+** In all other cases this function returns SQLITE_MISUSE.
+*/
+SQLITE_API int sqlite3changeset_fk_conflicts(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int *pnOut /* OUT: Number of FK violations */
+);
+
+
+/*
+** CAPI3REF: Finalize A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function is used to finalize an iterator allocated with
+** [sqlite3changeset_start()].
+**
+** This function should only be called on iterators created using the
+** [sqlite3changeset_start()] function. If an application calls this
+** function with an iterator passed to a conflict-handler by
+** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the
+** call has no effect.
+**
+** If an error was encountered within a call to an sqlite3changeset_xxx()
+** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an
+** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding
+** to that error is returned by this function. Otherwise, SQLITE_OK is
+** returned. This is to allow the following pattern (pseudo-code):
+**
+** <pre>
+** sqlite3changeset_start();
+** while( SQLITE_ROW==sqlite3changeset_next() ){
+** // Do something with change.
+** }
+** rc = sqlite3changeset_finalize();
+** if( rc!=SQLITE_OK ){
+** // An error has occurred
+** }
+** </pre>
+*/
+SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Invert A Changeset
+**
+** This function is used to "invert" a changeset object. Applying an inverted
+** changeset to a database reverses the effects of applying the uninverted
+** changeset. Specifically:
+**
+** <ul>
+** <li> Each DELETE change is changed to an INSERT, and
+** <li> Each INSERT change is changed to a DELETE, and
+** <li> For each UPDATE change, the old.* and new.* values are exchanged.
+** </ul>
+**
+** This function does not change the order in which changes appear within
+** the changeset. It merely reverses the sense of each individual change.
+**
+** If successful, a pointer to a buffer containing the inverted changeset
+** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and
+** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are
+** zeroed and an SQLite error code returned.
+**
+** It is the responsibility of the caller to eventually call sqlite3_free()
+** on the *ppOut pointer to free the buffer allocation following a successful
+** call to this function.
+**
+** WARNING/TODO: This function currently assumes that the input is a valid
+** changeset. If it is not, the results are undefined.
+*/
+SQLITE_API int sqlite3changeset_invert(
+ int nIn, const void *pIn, /* Input changeset */
+ int *pnOut, void **ppOut /* OUT: Inverse of input */
+);
+
+/*
+** CAPI3REF: Concatenate Two Changeset Objects
+**
+** This function is used to concatenate two changesets, A and B, into a
+** single changeset. The result is a changeset equivalent to applying
+** changeset A followed by changeset B.
+**
+** This function combines the two input changesets using an
+** sqlite3_changegroup object. Calling it produces similar results as the
+** following code fragment:
+**
+** <pre>
+** sqlite3_changegroup *pGrp;
+** rc = sqlite3_changegroup_new(&pGrp);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB);
+** if( rc==SQLITE_OK ){
+** rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
+** }else{
+** *ppOut = 0;
+** *pnOut = 0;
+** }
+** </pre>
+**
+** Refer to the sqlite3_changegroup documentation below for details.
+*/
+SQLITE_API int sqlite3changeset_concat(
+ int nA, /* Number of bytes in buffer pA */
+ void *pA, /* Pointer to buffer containing changeset A */
+ int nB, /* Number of bytes in buffer pB */
+ void *pB, /* Pointer to buffer containing changeset B */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: Buffer containing output changeset */
+);
+
+
+/*
+** CAPI3REF: Changegroup Handle
+**
+** A changegroup is an object used to combine two or more
+** [changesets] or [patchsets]
+*/
+typedef struct sqlite3_changegroup sqlite3_changegroup;
+
+/*
+** CAPI3REF: Create A New Changegroup Object
+** CONSTRUCTOR: sqlite3_changegroup
+**
+** An sqlite3_changegroup object is used to combine two or more changesets
+** (or patchsets) into a single changeset (or patchset). A single changegroup
+** object may combine changesets or patchsets, but not both. The output is
+** always in the same format as the input.
+**
+** If successful, this function returns SQLITE_OK and populates (*pp) with
+** a pointer to a new sqlite3_changegroup object before returning. The caller
+** should eventually free the returned object using a call to
+** sqlite3changegroup_delete(). If an error occurs, an SQLite error code
+** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL.
+**
+** The usual usage pattern for an sqlite3_changegroup object is as follows:
+**
+** <ul>
+** <li> It is created using a call to sqlite3changegroup_new().
+**
+** <li> Zero or more changesets (or patchsets) are added to the object
+** by calling sqlite3changegroup_add().
+**
+** <li> The result of combining all input changesets together is obtained
+** by the application via a call to sqlite3changegroup_output().
+**
+** <li> The object is deleted using a call to sqlite3changegroup_delete().
+** </ul>
+**
+** Any number of calls to add() and output() may be made between the calls to
+** new() and delete(), and in any order.
+**
+** As well as the regular sqlite3changegroup_add() and
+** sqlite3changegroup_output() functions, also available are the streaming
+** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
+*/
+SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp);
+
+/*
+** CAPI3REF: Add A Changeset To A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Add all changes within the changeset (or patchset) in buffer pData (size
+** nData bytes) to the changegroup.
+**
+** If the buffer contains a patchset, then all prior calls to this function
+** on the same changegroup object must also have specified patchsets. Or, if
+** the buffer contains a changeset, so must have the earlier calls to this
+** function. Otherwise, SQLITE_ERROR is returned and no changes are added
+** to the changegroup.
+**
+** Rows within the changeset and changegroup are identified by the values in
+** their PRIMARY KEY columns. A change in the changeset is considered to
+** apply to the same row as a change already present in the changegroup if
+** the two rows have the same primary key.
+**
+** Changes to rows that do not already appear in the changegroup are
+** simply copied into it. Or, if both the new changeset and the changegroup
+** contain changes that apply to a single row, the final contents of the
+** changegroup depends on the type of each change, as follows:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th style="white-space:pre">Existing Change </th>
+** <th style="white-space:pre">New Change </th>
+** <th>Output Change
+** <tr><td>INSERT <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>INSERT <td>UPDATE <td>
+** The INSERT change remains in the changegroup. The values in the
+** INSERT change are modified as if the row was inserted by the
+** existing change and then updated according to the new change.
+** <tr><td>INSERT <td>DELETE <td>
+** The existing INSERT is removed from the changegroup. The DELETE is
+** not added.
+** <tr><td>UPDATE <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>UPDATE <td>UPDATE <td>
+** The existing UPDATE remains within the changegroup. It is amended
+** so that the accompanying values are as if the row was updated once
+** by the existing change and then again by the new change.
+** <tr><td>UPDATE <td>DELETE <td>
+** The existing UPDATE is replaced by the new DELETE within the
+** changegroup.
+** <tr><td>DELETE <td>INSERT <td>
+** If one or more of the column values in the row inserted by the
+** new change differ from those in the row deleted by the existing
+** change, the existing DELETE is replaced by an UPDATE within the
+** changegroup. Otherwise, if the inserted row is exactly the same
+** as the deleted row, the existing DELETE is simply discarded.
+** <tr><td>DELETE <td>UPDATE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>DELETE <td>DELETE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** </table>
+**
+** If the new changeset contains changes to a table that is already present
+** in the changegroup, then the number of columns and the position of the
+** primary key columns for the table must be consistent. If this is not the
+** case, this function fails with SQLITE_SCHEMA. If the input changeset
+** appears to be corrupt and the corruption is detected, SQLITE_CORRUPT is
+** returned. Or, if an out-of-memory condition occurs during processing, this
+** function returns SQLITE_NOMEM. In all cases, if an error occurs the state
+** of the final contents of the changegroup is undefined.
+**
+** If no error occurs, SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);
+
+/*
+** CAPI3REF: Obtain A Composite Changeset From A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Obtain a buffer containing a changeset (or patchset) representing the
+** current contents of the changegroup. If the inputs to the changegroup
+** were themselves changesets, the output is a changeset. Or, if the
+** inputs were patchsets, the output is also a patchset.
+**
+** As with the output of the sqlite3session_changeset() and
+** sqlite3session_patchset() functions, all changes related to a single
+** table are grouped together in the output of this function. Tables appear
+** in the same order as for the very first changeset added to the changegroup.
+** If the second or subsequent changesets added to the changegroup contain
+** changes for tables that do not appear in the first changeset, they are
+** appended onto the end of the output changeset, again in the order in
+** which they are first encountered.
+**
+** If an error occurs, an SQLite error code is returned and the output
+** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
+** is returned and the output variables are set to the size of and a
+** pointer to the output buffer, respectively. In this case it is the
+** responsibility of the caller to eventually free the buffer using a
+** call to sqlite3_free().
+*/
+SQLITE_API int sqlite3changegroup_output(
+ sqlite3_changegroup*,
+ int *pnData, /* OUT: Size of output buffer in bytes */
+ void **ppData /* OUT: Pointer to output buffer */
+);
+
+/*
+** CAPI3REF: Delete A Changegroup Object
+** DESTRUCTOR: sqlite3_changegroup
+*/
+SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*);
+
+/*
+** CAPI3REF: Apply A Changeset To A Database
+**
+** Apply a changeset or patchset to a database. These functions attempt to
+** update the "main" database attached to handle db with the changes found in
+** the changeset passed via the second and third arguments.
+**
+** The fourth argument (xFilter) passed to these functions is the "filter
+** callback". If it is not NULL, then for each table affected by at least one
+** change in the changeset, the filter callback is invoked with
+** the table name as the second argument, and a copy of the context pointer
+** passed as the sixth argument as the first. If the "filter callback"
+** returns zero, then no attempt is made to apply any changes to the table.
+** Otherwise, if the return value is non-zero or the xFilter argument to
+** is NULL, all changes related to the table are attempted.
+**
+** For each table that is not excluded by the filter callback, this function
+** tests that the target database contains a compatible table. A table is
+** considered compatible if all of the following are true:
+**
+** <ul>
+** <li> The table has the same name as the name recorded in the
+** changeset, and
+** <li> The table has at least as many columns as recorded in the
+** changeset, and
+** <li> The table has primary key columns in the same position as
+** recorded in the changeset.
+** </ul>
+**
+** If there is no compatible table, it is not an error, but none of the
+** changes associated with the table are applied. A warning message is issued
+** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most
+** one such warning is issued for each table in the changeset.
+**
+** For each change for which there is a compatible table, an attempt is made
+** to modify the table contents according to the UPDATE, INSERT or DELETE
+** change. If a change cannot be applied cleanly, the conflict handler
+** function passed as the fifth argument to sqlite3changeset_apply() may be
+** invoked. A description of exactly when the conflict handler is invoked for
+** each type of change is below.
+**
+** Unlike the xFilter argument, xConflict may not be passed NULL. The results
+** of passing anything other than a valid function pointer as the xConflict
+** argument are undefined.
+**
+** Each time the conflict handler function is invoked, it must return one
+** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or
+** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned
+** if the second argument passed to the conflict handler is either
+** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler
+** returns an illegal value, any changes already made are rolled back and
+** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different
+** actions are taken by sqlite3changeset_apply() depending on the value
+** returned by each invocation of the conflict-handler function. Refer to
+** the documentation for the three
+** [SQLITE_CHANGESET_OMIT|available return values] for details.
+**
+** <dl>
+** <dt>DELETE Changes<dd>
+** For each DELETE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all non-primary key columns also match the values stored in
+** the changeset the row is deleted from the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the non-primary key fields contains a value different from the original
+** row value stored in the changeset, the conflict-handler function is
+** invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the
+** database table has more columns than are recorded in the changeset,
+** only the values of those non-primary key fields are compared against
+** the current database contents - any trailing database table columns
+** are ignored.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
+** (which can only happen if a foreign key constraint is violated), the
+** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
+** passed as the second argument. This includes the case where the DELETE
+** operation is attempted because an earlier call to the conflict handler
+** function returned [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>INSERT Changes<dd>
+** For each INSERT change, an attempt is made to insert the new row into
+** the database. If the changeset row contains fewer fields than the
+** database table, the trailing fields are populated with their default
+** values.
+**
+** If the attempt to insert the row fails because the database already
+** contains a row with the same primary key values, the conflict handler
+** function is invoked with the second argument set to
+** [SQLITE_CHANGESET_CONFLICT].
+**
+** If the attempt to insert the row fails because of some other constraint
+** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is
+** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT].
+** This includes the case where the INSERT operation is re-attempted because
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>UPDATE Changes<dd>
+** For each UPDATE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all modified non-primary key columns also match the values
+** stored in the changeset the row is updated within the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the modified non-primary key fields contains a value different from an
+** original row value stored in the changeset, the conflict-handler function
+** is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
+** UPDATE changes only contain values for non-primary key fields that are
+** to be modified, only those fields need to match the original values to
+** avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the UPDATE operation is attempted, but SQLite returns
+** SQLITE_CONSTRAINT, the conflict-handler function is invoked with
+** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument.
+** This includes the case where the UPDATE operation is attempted after
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+** </dl>
+**
+** It is safe to execute SQL statements, including those that write to the
+** table that the callback related to, from within the xConflict callback.
+** This can be used to further customize the application's conflict
+** resolution strategy.
+**
+** All changes made by these functions are enclosed in a savepoint transaction.
+** If any other error (aside from a constraint failure when attempting to
+** write to the target database) occurs, then the savepoint transaction is
+** rolled back, restoring the target database to its original state, and an
+** SQLite error code returned.
+**
+** If the output parameters (ppRebase) and (pnRebase) are non-NULL and
+** the input is a changeset (not a patchset), then sqlite3changeset_apply_v2()
+** may set (*ppRebase) to point to a "rebase" that may be used with the
+** sqlite3_rebaser APIs buffer before returning. In this case (*pnRebase)
+** is set to the size of the buffer in bytes. It is the responsibility of the
+** caller to eventually free any such buffer using sqlite3_free(). The buffer
+** is only allocated and populated if one or more conflicts were encountered
+** while applying the patchset. See comments surrounding the sqlite3_rebaser
+** APIs for further details.
+**
+** The behavior of sqlite3changeset_apply_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETAPPLY_NOSAVEPOINT | supported flags] as the 9th parameter.
+**
+** Note that the sqlite3changeset_apply_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_apply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase, /* OUT: Rebase data */
+ int flags /* SESSION_CHANGESETAPPLY_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_apply_v2
+**
+** The following flags may passed via the 9th parameter to
+** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
+**
+** <dl>
+** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
+** Usually, the sessions module encloses all operations performed by
+** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
+** SAVEPOINT is committed if the changeset or patchset is successfully
+** applied, or rolled back if an error occurs. Specifying this flag
+** causes the sessions module to omit this savepoint. In this case, if the
+** caller has an open transaction or savepoint when apply_v2() is called,
+** it may revert the partially applied changeset by rolling it back.
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset before applying it. This is equivalent to inverting
+** a changeset using sqlite3changeset_invert() before applying it. It is
+** an error to specify this flag with a patchset.
+*/
+#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001
+#define SQLITE_CHANGESETAPPLY_INVERT 0x0002
+
+/*
+** CAPI3REF: Constants Passed To The Conflict Handler
+**
+** Values that may be passed as the second argument to a conflict-handler.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_DATA<dd>
+** The conflict handler is invoked with CHANGESET_DATA as the second argument
+** when processing a DELETE or UPDATE change if a row with the required
+** PRIMARY KEY fields is present in the database, but one or more other
+** (non primary-key) fields modified by the update do not contain the
+** expected "before" values.
+**
+** The conflicting row, in this case, is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_NOTFOUND<dd>
+** The conflict handler is invoked with CHANGESET_NOTFOUND as the second
+** argument when processing a DELETE or UPDATE change if a row with the
+** required PRIMARY KEY fields is not present in the database.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** <dt>SQLITE_CHANGESET_CONFLICT<dd>
+** CHANGESET_CONFLICT is passed as the second argument to the conflict
+** handler while processing an INSERT change if the operation would result
+** in duplicate primary key values.
+**
+** The conflicting row in this case is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_FOREIGN_KEY<dd>
+** If foreign key handling is enabled, and applying a changeset leaves the
+** database in a state containing foreign key violations, the conflict
+** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument
+** exactly once before the changeset is committed. If the conflict handler
+** returns CHANGESET_OMIT, the changes, including those that caused the
+** foreign key constraint violation, are committed. Or, if it returns
+** CHANGESET_ABORT, the changeset is rolled back.
+**
+** No current or conflicting row information is provided. The only function
+** it is possible to call on the supplied sqlite3_changeset_iter handle
+** is sqlite3changeset_fk_conflicts().
+**
+** <dt>SQLITE_CHANGESET_CONSTRAINT<dd>
+** If any other constraint violation occurs while applying a change (i.e.
+** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is
+** invoked with CHANGESET_CONSTRAINT as the second argument.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** </dl>
+*/
+#define SQLITE_CHANGESET_DATA 1
+#define SQLITE_CHANGESET_NOTFOUND 2
+#define SQLITE_CHANGESET_CONFLICT 3
+#define SQLITE_CHANGESET_CONSTRAINT 4
+#define SQLITE_CHANGESET_FOREIGN_KEY 5
+
+/*
+** CAPI3REF: Constants Returned By The Conflict Handler
+**
+** A conflict handler callback must return one of the following three values.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_OMIT<dd>
+** If a conflict handler returns this value no special action is taken. The
+** change that caused the conflict is not applied. The session module
+** continues to the next change in the changeset.
+**
+** <dt>SQLITE_CHANGESET_REPLACE<dd>
+** This value may only be returned if the second argument to the conflict
+** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this
+** is not the case, any changes applied so far are rolled back and the
+** call to sqlite3changeset_apply() returns SQLITE_MISUSE.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict
+** handler, then the conflicting row is either updated or deleted, depending
+** on the type of change.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict
+** handler, then the conflicting row is removed from the database and a
+** second attempt to apply the change is made. If this second attempt fails,
+** the original row is restored to the database before continuing.
+**
+** <dt>SQLITE_CHANGESET_ABORT<dd>
+** If this value is returned, any changes applied so far are rolled back
+** and the call to sqlite3changeset_apply() returns SQLITE_ABORT.
+** </dl>
+*/
+#define SQLITE_CHANGESET_OMIT 0
+#define SQLITE_CHANGESET_REPLACE 1
+#define SQLITE_CHANGESET_ABORT 2
+
+/*
+** CAPI3REF: Rebasing changesets
+** EXPERIMENTAL
+**
+** Suppose there is a site hosting a database in state S0. And that
+** modifications are made that move that database to state S1 and a
+** changeset recorded (the "local" changeset). Then, a changeset based
+** on S0 is received from another site (the "remote" changeset) and
+** applied to the database. The database is then in state
+** (S1+"remote"), where the exact state depends on any conflict
+** resolution decisions (OMIT or REPLACE) made while applying "remote".
+** Rebasing a changeset is to update it to take those conflict
+** resolution decisions into account, so that the same conflicts
+** do not have to be resolved elsewhere in the network.
+**
+** For example, if both the local and remote changesets contain an
+** INSERT of the same key on "CREATE TABLE t1(a PRIMARY KEY, b)":
+**
+** local: INSERT INTO t1 VALUES(1, 'v1');
+** remote: INSERT INTO t1 VALUES(1, 'v2');
+**
+** and the conflict resolution is REPLACE, then the INSERT change is
+** removed from the local changeset (it was overridden). Or, if the
+** conflict resolution was "OMIT", then the local changeset is modified
+** to instead contain:
+**
+** UPDATE t1 SET b = 'v2' WHERE a=1;
+**
+** Changes within the local changeset are rebased as follows:
+**
+** <dl>
+** <dt>Local INSERT<dd>
+** This may only conflict with a remote INSERT. If the conflict
+** resolution was OMIT, then add an UPDATE change to the rebased
+** changeset. Or, if the conflict resolution was REPLACE, add
+** nothing to the rebased changeset.
+**
+** <dt>Local DELETE<dd>
+** This may conflict with a remote UPDATE or DELETE. In both cases the
+** only possible resolution is OMIT. If the remote operation was a
+** DELETE, then add no change to the rebased changeset. If the remote
+** operation was an UPDATE, then the old.* fields of change are updated
+** to reflect the new.* values in the UPDATE.
+**
+** <dt>Local UPDATE<dd>
+** This may conflict with a remote UPDATE or DELETE. If it conflicts
+** with a DELETE, and the conflict resolution was OMIT, then the update
+** is changed into an INSERT. Any undefined values in the new.* record
+** from the update change are filled in using the old.* values from
+** the conflicting DELETE. Or, if the conflict resolution was REPLACE,
+** the UPDATE change is simply omitted from the rebased changeset.
+**
+** If conflict is with a remote UPDATE and the resolution is OMIT, then
+** the old.* values are rebased using the new.* values in the remote
+** change. Or, if the resolution is REPLACE, then the change is copied
+** into the rebased changeset with updates to columns also updated by
+** the conflicting remote UPDATE removed. If this means no columns would
+** be updated, the change is omitted.
+** </dl>
+**
+** A local change may be rebased against multiple remote changes
+** simultaneously. If a single key is modified by multiple remote
+** changesets, they are combined as follows before the local changeset
+** is rebased:
+**
+** <ul>
+** <li> If there has been one or more REPLACE resolutions on a
+** key, it is rebased according to a REPLACE.
+**
+** <li> If there have been no REPLACE resolutions on a key, then
+** the local changeset is rebased according to the most recent
+** of the OMIT resolutions.
+** </ul>
+**
+** Note that conflict resolutions from multiple remote changesets are
+** combined on a per-field basis, not per-row. This means that in the
+** case of multiple remote UPDATE operations, some fields of a single
+** local change may be rebased for REPLACE while others are rebased for
+** OMIT.
+**
+** In order to rebase a local changeset, the remote changeset must first
+** be applied to the local database using sqlite3changeset_apply_v2() and
+** the buffer of rebase information captured. Then:
+**
+** <ol>
+** <li> An sqlite3_rebaser object is created by calling
+** sqlite3rebaser_create().
+** <li> The new object is configured with the rebase buffer obtained from
+** sqlite3changeset_apply_v2() by calling sqlite3rebaser_configure().
+** If the local changeset is to be rebased against multiple remote
+** changesets, then sqlite3rebaser_configure() should be called
+** multiple times, in the same order that the multiple
+** sqlite3changeset_apply_v2() calls were made.
+** <li> Each local changeset is rebased by calling sqlite3rebaser_rebase().
+** <li> The sqlite3_rebaser object is deleted by calling
+** sqlite3rebaser_delete().
+** </ol>
+*/
+typedef struct sqlite3_rebaser sqlite3_rebaser;
+
+/*
+** CAPI3REF: Create a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Allocate a new changeset rebaser object. If successful, set (*ppNew) to
+** point to the new object and return SQLITE_OK. Otherwise, if an error
+** occurs, return an SQLite error code (e.g. SQLITE_NOMEM) and set (*ppNew)
+** to NULL.
+*/
+SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew);
+
+/*
+** CAPI3REF: Configure a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Configure the changeset rebaser object to rebase changesets according
+** to the conflict resolutions described by buffer pRebase (size nRebase
+** bytes), which must have been obtained from a previous call to
+** sqlite3changeset_apply_v2().
+*/
+SQLITE_API int sqlite3rebaser_configure(
+ sqlite3_rebaser*,
+ int nRebase, const void *pRebase
+);
+
+/*
+** CAPI3REF: Rebase a changeset
+** EXPERIMENTAL
+**
+** Argument pIn must point to a buffer containing a changeset nIn bytes
+** in size. This function allocates and populates a buffer with a copy
+** of the changeset rebased according to the configuration of the
+** rebaser object passed as the first argument. If successful, (*ppOut)
+** is set to point to the new buffer containing the rebased changeset and
+** (*pnOut) to its size in bytes and SQLITE_OK returned. It is the
+** responsibility of the caller to eventually free the new buffer using
+** sqlite3_free(). Otherwise, if an error occurs, (*ppOut) and (*pnOut)
+** are set to zero and an SQLite error code returned.
+*/
+SQLITE_API int sqlite3rebaser_rebase(
+ sqlite3_rebaser*,
+ int nIn, const void *pIn,
+ int *pnOut, void **ppOut
+);
+
+/*
+** CAPI3REF: Delete a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Delete the changeset rebaser object and all associated resources. There
+** should be one call to this function for each successful invocation
+** of sqlite3rebaser_create().
+*/
+SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p);
+
+/*
+** CAPI3REF: Streaming Versions of API functions.
+**
+** The six streaming API xxx_strm() functions serve similar purposes to the
+** corresponding non-streaming API functions:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th>Streaming function<th>Non-streaming equivalent</th>
+** <tr><td>sqlite3changeset_apply_strm<td>[sqlite3changeset_apply]
+** <tr><td>sqlite3changeset_apply_strm_v2<td>[sqlite3changeset_apply_v2]
+** <tr><td>sqlite3changeset_concat_strm<td>[sqlite3changeset_concat]
+** <tr><td>sqlite3changeset_invert_strm<td>[sqlite3changeset_invert]
+** <tr><td>sqlite3changeset_start_strm<td>[sqlite3changeset_start]
+** <tr><td>sqlite3session_changeset_strm<td>[sqlite3session_changeset]
+** <tr><td>sqlite3session_patchset_strm<td>[sqlite3session_patchset]
+** </table>
+**
+** Non-streaming functions that accept changesets (or patchsets) as input
+** require that the entire changeset be stored in a single buffer in memory.
+** Similarly, those that return a changeset or patchset do so by returning
+** a pointer to a single large buffer allocated using sqlite3_malloc().
+** Normally this is convenient. However, if an application running in a
+** low-memory environment is required to handle very large changesets, the
+** large contiguous memory allocations required can become onerous.
+**
+** In order to avoid this problem, instead of a single large buffer, input
+** is passed to a streaming API functions by way of a callback function that
+** the sessions module invokes to incrementally request input data as it is
+** required. In all cases, a pair of API function parameters such as
+**
+** <pre>
+** &nbsp; int nChangeset,
+** &nbsp; void *pChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xInput)(void *pIn, void *pData, int *pnData),
+** &nbsp; void *pIn,
+** </pre>
+**
+** Each time the xInput callback is invoked by the sessions module, the first
+** argument passed is a copy of the supplied pIn context pointer. The second
+** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no
+** error occurs the xInput method should copy up to (*pnData) bytes of data
+** into the buffer and set (*pnData) to the actual number of bytes copied
+** before returning SQLITE_OK. If the input is completely exhausted, (*pnData)
+** should be set to zero to indicate this. Or, if an error occurs, an SQLite
+** error code should be returned. In all cases, if an xInput callback returns
+** an error, all processing is abandoned and the streaming API function
+** returns a copy of the error code to the caller.
+**
+** In the case of sqlite3changeset_start_strm(), the xInput callback may be
+** invoked by the sessions module at any point during the lifetime of the
+** iterator. If such an xInput callback returns an error, the iterator enters
+** an error state, whereby all subsequent calls to iterator functions
+** immediately fail with the same error code as returned by xInput.
+**
+** Similarly, streaming API functions that return changesets (or patchsets)
+** return them in chunks by way of a callback function instead of via a
+** pointer to a single large buffer. In this case, a pair of parameters such
+** as:
+**
+** <pre>
+** &nbsp; int *pnChangeset,
+** &nbsp; void **ppChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xOutput)(void *pOut, const void *pData, int nData),
+** &nbsp; void *pOut
+** </pre>
+**
+** The xOutput callback is invoked zero or more times to return data to
+** the application. The first parameter passed to each call is a copy of the
+** pOut pointer supplied by the application. The second parameter, pData,
+** points to a buffer nData bytes in size containing the chunk of output
+** data being returned. If the xOutput callback successfully processes the
+** supplied data, it should return SQLITE_OK to indicate success. Otherwise,
+** it should return some other SQLite error code. In this case processing
+** is immediately abandoned and the streaming API function returns a copy
+** of the xOutput error code to the application.
+**
+** The sessions module never invokes an xOutput callback with the third
+** parameter set to a value less than or equal to zero. Other than this,
+** no guarantees are made as to the size of the chunks of data returned.
+*/
+SQLITE_API int sqlite3changeset_apply_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+);
+SQLITE_API int sqlite3changeset_concat_strm(
+ int (*xInputA)(void *pIn, void *pData, int *pnData),
+ void *pInA,
+ int (*xInputB)(void *pIn, void *pData, int *pnData),
+ void *pInB,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_invert_strm(
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_start_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changeset_start_v2_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int flags
+);
+SQLITE_API int sqlite3session_changeset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3session_patchset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3rebaser_rebase_strm(
+ sqlite3_rebaser *pRebaser,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+
+/*
+** CAPI3REF: Configure global parameters
+**
+** The sqlite3session_config() interface is used to make global configuration
+** changes to the sessions module in order to tune it to the specific needs
+** of the application.
+**
+** The sqlite3session_config() interface is not threadsafe. If it is invoked
+** while any other thread is inside any other sessions method then the
+** results are undefined. Furthermore, if it is invoked after any sessions
+** related objects have been created, the results are also undefined.
+**
+** The first argument to the sqlite3session_config() function must be one
+** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The
+** interpretation of the (void*) value passed as the second parameter and
+** the effect of calling this function depends on the value of the first
+** parameter.
+**
+** <dl>
+** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd>
+** By default, the sessions module streaming interfaces attempt to input
+** and output data in approximately 1 KiB chunks. This operand may be used
+** to set and query the value of this configuration setting. The pointer
+** passed as the second argument must point to a value of type (int).
+** If this value is greater than 0, it is used as the new streaming data
+** chunk size for both input and output. Before returning, the (int) value
+** pointed to by pArg is set to the final value of the streaming interface
+** chunk size.
+** </dl>
+**
+** This function returns SQLITE_OK if successful, or an SQLite error code
+** otherwise.
+*/
+SQLITE_API int sqlite3session_config(int op, void *pArg);
+
+/*
+** CAPI3REF: Values for sqlite3session_config().
+*/
+#define SQLITE_SESSION_CONFIG_STRMSIZE 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */
+
+/******** End of sqlite3session.h *********/
+/******** Begin file fts5.h *********/
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. Returns SQLITE_OK if successful, or an error
+** code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. Any column filter that applies to
+** phrase iPhrase of the current query is included in $p. For each
+** row visited, the callback function passed as the fourth argument
+** is invoked. The context and API objects passed to the callback
+** function may be used to access the properties of each matched row.
+** Invoking Api.xUserData() returns a copy of the pointer passed as
+** the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension function's
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function,
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 3 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and initialize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, using
+** the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By querying the index for all synonyms of each query term
+** separately. In this case, when tokenizing query text, the
+** tokenizer may provide multiple synonyms for a single term
+** within the document. FTS5 then queries the index for each
+** synonym individually. For example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do so would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entries in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is substituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (2)) or query
+** text (method (3)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppContext,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+/******** End of fts5.h *********/
diff --git a/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3ext.h b/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3ext.h
new file mode 100644
index 0000000000..2cdd0e429b
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlcipher/sqlite3ext.h
@@ -0,0 +1,701 @@
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the SQLite interface for use by
+** shared libraries that want to be imported as extensions into
+** an SQLite instance. Shared libraries that intend to be loaded
+** as extensions by SQLite should #include this file instead of
+** sqlite3.h.
+*/
+#ifndef SQLITE3EXT_H
+#define SQLITE3EXT_H
+#include "sqlite3.h"
+
+/*
+** The following structure holds pointers to all of the SQLite API
+** routines.
+**
+** WARNING: In order to maintain backwards compatibility, add new
+** interfaces to the end of this structure only. If you insert new
+** interfaces in the middle of this structure, then older different
+** versions of SQLite will not be able to load each other's shared
+** libraries!
+*/
+struct sqlite3_api_routines {
+ void * (*aggregate_context)(sqlite3_context*,int nBytes);
+ int (*aggregate_count)(sqlite3_context*);
+ int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
+ int (*bind_double)(sqlite3_stmt*,int,double);
+ int (*bind_int)(sqlite3_stmt*,int,int);
+ int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
+ int (*bind_null)(sqlite3_stmt*,int);
+ int (*bind_parameter_count)(sqlite3_stmt*);
+ int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
+ const char * (*bind_parameter_name)(sqlite3_stmt*,int);
+ int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
+ int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
+ int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
+ int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
+ int (*busy_timeout)(sqlite3*,int ms);
+ int (*changes)(sqlite3*);
+ int (*close)(sqlite3*);
+ int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const char*));
+ int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const void*));
+ const void * (*column_blob)(sqlite3_stmt*,int iCol);
+ int (*column_bytes)(sqlite3_stmt*,int iCol);
+ int (*column_bytes16)(sqlite3_stmt*,int iCol);
+ int (*column_count)(sqlite3_stmt*pStmt);
+ const char * (*column_database_name)(sqlite3_stmt*,int);
+ const void * (*column_database_name16)(sqlite3_stmt*,int);
+ const char * (*column_decltype)(sqlite3_stmt*,int i);
+ const void * (*column_decltype16)(sqlite3_stmt*,int);
+ double (*column_double)(sqlite3_stmt*,int iCol);
+ int (*column_int)(sqlite3_stmt*,int iCol);
+ sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
+ const char * (*column_name)(sqlite3_stmt*,int);
+ const void * (*column_name16)(sqlite3_stmt*,int);
+ const char * (*column_origin_name)(sqlite3_stmt*,int);
+ const void * (*column_origin_name16)(sqlite3_stmt*,int);
+ const char * (*column_table_name)(sqlite3_stmt*,int);
+ const void * (*column_table_name16)(sqlite3_stmt*,int);
+ const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
+ const void * (*column_text16)(sqlite3_stmt*,int iCol);
+ int (*column_type)(sqlite3_stmt*,int iCol);
+ sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
+ void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
+ int (*complete)(const char*sql);
+ int (*complete16)(const void*sql);
+ int (*create_collation)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const void*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_function)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_function16)(sqlite3*,const void*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
+ int (*data_count)(sqlite3_stmt*pStmt);
+ sqlite3 * (*db_handle)(sqlite3_stmt*);
+ int (*declare_vtab)(sqlite3*,const char*);
+ int (*enable_shared_cache)(int);
+ int (*errcode)(sqlite3*db);
+ const char * (*errmsg)(sqlite3*);
+ const void * (*errmsg16)(sqlite3*);
+ int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
+ int (*expired)(sqlite3_stmt*);
+ int (*finalize)(sqlite3_stmt*pStmt);
+ void (*free)(void*);
+ void (*free_table)(char**result);
+ int (*get_autocommit)(sqlite3*);
+ void * (*get_auxdata)(sqlite3_context*,int);
+ int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
+ int (*global_recover)(void);
+ void (*interruptx)(sqlite3*);
+ sqlite_int64 (*last_insert_rowid)(sqlite3*);
+ const char * (*libversion)(void);
+ int (*libversion_number)(void);
+ void *(*malloc)(int);
+ char * (*mprintf)(const char*,...);
+ int (*open)(const char*,sqlite3**);
+ int (*open16)(const void*,sqlite3**);
+ int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
+ void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
+ void *(*realloc)(void*,int);
+ int (*reset)(sqlite3_stmt*pStmt);
+ void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_double)(sqlite3_context*,double);
+ void (*result_error)(sqlite3_context*,const char*,int);
+ void (*result_error16)(sqlite3_context*,const void*,int);
+ void (*result_int)(sqlite3_context*,int);
+ void (*result_int64)(sqlite3_context*,sqlite_int64);
+ void (*result_null)(sqlite3_context*);
+ void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
+ void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_value)(sqlite3_context*,sqlite3_value*);
+ void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
+ int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,
+ const char*,const char*),void*);
+ void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
+ char * (*xsnprintf)(int,char*,const char*,...);
+ int (*step)(sqlite3_stmt*);
+ int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,
+ char const**,char const**,int*,int*,int*);
+ void (*thread_cleanup)(void);
+ int (*total_changes)(sqlite3*);
+ void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
+ int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
+ void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,
+ sqlite_int64),void*);
+ void * (*user_data)(sqlite3_context*);
+ const void * (*value_blob)(sqlite3_value*);
+ int (*value_bytes)(sqlite3_value*);
+ int (*value_bytes16)(sqlite3_value*);
+ double (*value_double)(sqlite3_value*);
+ int (*value_int)(sqlite3_value*);
+ sqlite_int64 (*value_int64)(sqlite3_value*);
+ int (*value_numeric_type)(sqlite3_value*);
+ const unsigned char * (*value_text)(sqlite3_value*);
+ const void * (*value_text16)(sqlite3_value*);
+ const void * (*value_text16be)(sqlite3_value*);
+ const void * (*value_text16le)(sqlite3_value*);
+ int (*value_type)(sqlite3_value*);
+ char *(*vmprintf)(const char*,va_list);
+ /* Added ??? */
+ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
+ /* Added by 3.3.13 */
+ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ int (*clear_bindings)(sqlite3_stmt*);
+ /* Added by 3.4.1 */
+ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,
+ void (*xDestroy)(void *));
+ /* Added by 3.5.0 */
+ int (*bind_zeroblob)(sqlite3_stmt*,int,int);
+ int (*blob_bytes)(sqlite3_blob*);
+ int (*blob_close)(sqlite3_blob*);
+ int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,
+ int,sqlite3_blob**);
+ int (*blob_read)(sqlite3_blob*,void*,int,int);
+ int (*blob_write)(sqlite3_blob*,const void*,int,int);
+ int (*create_collation_v2)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*),
+ void(*)(void*));
+ int (*file_control)(sqlite3*,const char*,int,void*);
+ sqlite3_int64 (*memory_highwater)(int);
+ sqlite3_int64 (*memory_used)(void);
+ sqlite3_mutex *(*mutex_alloc)(int);
+ void (*mutex_enter)(sqlite3_mutex*);
+ void (*mutex_free)(sqlite3_mutex*);
+ void (*mutex_leave)(sqlite3_mutex*);
+ int (*mutex_try)(sqlite3_mutex*);
+ int (*open_v2)(const char*,sqlite3**,int,const char*);
+ int (*release_memory)(int);
+ void (*result_error_nomem)(sqlite3_context*);
+ void (*result_error_toobig)(sqlite3_context*);
+ int (*sleep)(int);
+ void (*soft_heap_limit)(int);
+ sqlite3_vfs *(*vfs_find)(const char*);
+ int (*vfs_register)(sqlite3_vfs*,int);
+ int (*vfs_unregister)(sqlite3_vfs*);
+ int (*xthreadsafe)(void);
+ void (*result_zeroblob)(sqlite3_context*,int);
+ void (*result_error_code)(sqlite3_context*,int);
+ int (*test_control)(int, ...);
+ void (*randomness)(int,void*);
+ sqlite3 *(*context_db_handle)(sqlite3_context*);
+ int (*extended_result_codes)(sqlite3*,int);
+ int (*limit)(sqlite3*,int,int);
+ sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
+ const char *(*sql)(sqlite3_stmt*);
+ int (*status)(int,int*,int*,int);
+ int (*backup_finish)(sqlite3_backup*);
+ sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*);
+ int (*backup_pagecount)(sqlite3_backup*);
+ int (*backup_remaining)(sqlite3_backup*);
+ int (*backup_step)(sqlite3_backup*,int);
+ const char *(*compileoption_get)(int);
+ int (*compileoption_used)(const char*);
+ int (*create_function_v2)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*));
+ int (*db_config)(sqlite3*,int,...);
+ sqlite3_mutex *(*db_mutex)(sqlite3*);
+ int (*db_status)(sqlite3*,int,int*,int*,int);
+ int (*extended_errcode)(sqlite3*);
+ void (*log)(int,const char*,...);
+ sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64);
+ const char *(*sourceid)(void);
+ int (*stmt_status)(sqlite3_stmt*,int,int);
+ int (*strnicmp)(const char*,const char*,int);
+ int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
+ int (*wal_autocheckpoint)(sqlite3*,int);
+ int (*wal_checkpoint)(sqlite3*,const char*);
+ void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
+ int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
+ int (*vtab_config)(sqlite3*,int op,...);
+ int (*vtab_on_conflict)(sqlite3*);
+ /* Version 3.7.16 and later */
+ int (*close_v2)(sqlite3*);
+ const char *(*db_filename)(sqlite3*,const char*);
+ int (*db_readonly)(sqlite3*,const char*);
+ int (*db_release_memory)(sqlite3*);
+ const char *(*errstr)(int);
+ int (*stmt_busy)(sqlite3_stmt*);
+ int (*stmt_readonly)(sqlite3_stmt*);
+ int (*stricmp)(const char*,const char*);
+ int (*uri_boolean)(const char*,const char*,int);
+ sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
+ const char *(*uri_parameter)(const char*,const char*);
+ char *(*xvsnprintf)(int,char*,const char*,va_list);
+ int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
+ /* Version 3.8.7 and later */
+ int (*auto_extension)(void(*)(void));
+ int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64,
+ void(*)(void*));
+ int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64,
+ void(*)(void*),unsigned char);
+ int (*cancel_auto_extension)(void(*)(void));
+ int (*load_extension)(sqlite3*,const char*,const char*,char**);
+ void *(*malloc64)(sqlite3_uint64);
+ sqlite3_uint64 (*msize)(void*);
+ void *(*realloc64)(void*,sqlite3_uint64);
+ void (*reset_auto_extension)(void);
+ void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
+ void(*)(void*));
+ void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char);
+ int (*strglob)(const char*,const char*);
+ /* Version 3.8.11 and later */
+ sqlite3_value *(*value_dup)(const sqlite3_value*);
+ void (*value_free)(sqlite3_value*);
+ int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
+ int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
+ /* Version 3.9.0 and later */
+ unsigned int (*value_subtype)(sqlite3_value*);
+ void (*result_subtype)(sqlite3_context*,unsigned int);
+ /* Version 3.10.0 and later */
+ int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int);
+ int (*strlike)(const char*,const char*,unsigned int);
+ int (*db_cacheflush)(sqlite3*);
+ /* Version 3.12.0 and later */
+ int (*system_errno)(sqlite3*);
+ /* Version 3.14.0 and later */
+ int (*trace_v2)(sqlite3*,unsigned,int(*)(unsigned,void*,void*,void*),void*);
+ char *(*expanded_sql)(sqlite3_stmt*);
+ /* Version 3.18.0 and later */
+ void (*set_last_insert_rowid)(sqlite3*,sqlite3_int64);
+ /* Version 3.20.0 and later */
+ int (*prepare_v3)(sqlite3*,const char*,int,unsigned int,
+ sqlite3_stmt**,const char**);
+ int (*prepare16_v3)(sqlite3*,const void*,int,unsigned int,
+ sqlite3_stmt**,const void**);
+ int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*));
+ void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*));
+ void *(*value_pointer)(sqlite3_value*,const char*);
+ int (*vtab_nochange)(sqlite3_context*);
+ int (*value_nochange)(sqlite3_value*);
+ const char *(*vtab_collation)(sqlite3_index_info*,int);
+ /* Version 3.24.0 and later */
+ int (*keyword_count)(void);
+ int (*keyword_name)(int,const char**,int*);
+ int (*keyword_check)(const char*,int);
+ sqlite3_str *(*str_new)(sqlite3*);
+ char *(*str_finish)(sqlite3_str*);
+ void (*str_appendf)(sqlite3_str*, const char *zFormat, ...);
+ void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list);
+ void (*str_append)(sqlite3_str*, const char *zIn, int N);
+ void (*str_appendall)(sqlite3_str*, const char *zIn);
+ void (*str_appendchar)(sqlite3_str*, int N, char C);
+ void (*str_reset)(sqlite3_str*);
+ int (*str_errcode)(sqlite3_str*);
+ int (*str_length)(sqlite3_str*);
+ char *(*str_value)(sqlite3_str*);
+ /* Version 3.25.0 and later */
+ int (*create_window_function)(sqlite3*,const char*,int,int,void*,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInv)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*));
+ /* Version 3.26.0 and later */
+ const char *(*normalized_sql)(sqlite3_stmt*);
+ /* Version 3.28.0 and later */
+ int (*stmt_isexplain)(sqlite3_stmt*);
+ int (*value_frombind)(sqlite3_value*);
+ /* Version 3.30.0 and later */
+ int (*drop_modules)(sqlite3*,const char**);
+ /* Version 3.31.0 and later */
+ sqlite3_int64 (*hard_heap_limit64)(sqlite3_int64);
+ const char *(*uri_key)(const char*,int);
+ const char *(*filename_database)(const char*);
+ const char *(*filename_journal)(const char*);
+ const char *(*filename_wal)(const char*);
+ /* Version 3.32.0 and later */
+ char *(*create_filename)(const char*,const char*,const char*,
+ int,const char**);
+ void (*free_filename)(char*);
+ sqlite3_file *(*database_file_object)(const char*);
+ /* Version 3.34.0 and later */
+ int (*txn_state)(sqlite3*,const char*);
+ /* Version 3.36.1 and later */
+ sqlite3_int64 (*changes64)(sqlite3*);
+ sqlite3_int64 (*total_changes64)(sqlite3*);
+ /* Version 3.37.0 and later */
+ int (*autovacuum_pages)(sqlite3*,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*, void(*)(void*));
+ /* Version 3.38.0 and later */
+ int (*error_offset)(sqlite3*);
+ int (*vtab_rhs_value)(sqlite3_index_info*,int,sqlite3_value**);
+ int (*vtab_distinct)(sqlite3_index_info*);
+ int (*vtab_in)(sqlite3_index_info*,int,int);
+ int (*vtab_in_first)(sqlite3_value*,sqlite3_value**);
+ int (*vtab_in_next)(sqlite3_value*,sqlite3_value**);
+ /* Version 3.39.0 and later */
+ int (*deserialize)(sqlite3*,const char*,unsigned char*,
+ sqlite3_int64,sqlite3_int64,unsigned);
+ unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*,
+ unsigned int);
+ const char *(*db_name)(sqlite3*,int);
+};
+
+/*
+** This is the function signature used for all extension entry points. It
+** is also defined in the file "loadext.c".
+*/
+typedef int (*sqlite3_loadext_entry)(
+ sqlite3 *db, /* Handle to the database. */
+ char **pzErrMsg, /* Used to set error string on failure. */
+ const sqlite3_api_routines *pThunk /* Extension API function pointers. */
+);
+
+/*
+** The following macros redefine the API routines so that they are
+** redirected through the global sqlite3_api structure.
+**
+** This header file is also used by the loadext.c source file
+** (part of the main SQLite library - not an extension) so that
+** it can get access to the sqlite3_api_routines structure
+** definition. But the main library does not want to redefine
+** the API. So the redefinition macros are only valid if the
+** SQLITE_CORE macros is undefined.
+*/
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+#define sqlite3_aggregate_context sqlite3_api->aggregate_context
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_aggregate_count sqlite3_api->aggregate_count
+#endif
+#define sqlite3_bind_blob sqlite3_api->bind_blob
+#define sqlite3_bind_double sqlite3_api->bind_double
+#define sqlite3_bind_int sqlite3_api->bind_int
+#define sqlite3_bind_int64 sqlite3_api->bind_int64
+#define sqlite3_bind_null sqlite3_api->bind_null
+#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
+#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
+#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
+#define sqlite3_bind_text sqlite3_api->bind_text
+#define sqlite3_bind_text16 sqlite3_api->bind_text16
+#define sqlite3_bind_value sqlite3_api->bind_value
+#define sqlite3_busy_handler sqlite3_api->busy_handler
+#define sqlite3_busy_timeout sqlite3_api->busy_timeout
+#define sqlite3_changes sqlite3_api->changes
+#define sqlite3_close sqlite3_api->close
+#define sqlite3_collation_needed sqlite3_api->collation_needed
+#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
+#define sqlite3_column_blob sqlite3_api->column_blob
+#define sqlite3_column_bytes sqlite3_api->column_bytes
+#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
+#define sqlite3_column_count sqlite3_api->column_count
+#define sqlite3_column_database_name sqlite3_api->column_database_name
+#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
+#define sqlite3_column_decltype sqlite3_api->column_decltype
+#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
+#define sqlite3_column_double sqlite3_api->column_double
+#define sqlite3_column_int sqlite3_api->column_int
+#define sqlite3_column_int64 sqlite3_api->column_int64
+#define sqlite3_column_name sqlite3_api->column_name
+#define sqlite3_column_name16 sqlite3_api->column_name16
+#define sqlite3_column_origin_name sqlite3_api->column_origin_name
+#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
+#define sqlite3_column_table_name sqlite3_api->column_table_name
+#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
+#define sqlite3_column_text sqlite3_api->column_text
+#define sqlite3_column_text16 sqlite3_api->column_text16
+#define sqlite3_column_type sqlite3_api->column_type
+#define sqlite3_column_value sqlite3_api->column_value
+#define sqlite3_commit_hook sqlite3_api->commit_hook
+#define sqlite3_complete sqlite3_api->complete
+#define sqlite3_complete16 sqlite3_api->complete16
+#define sqlite3_create_collation sqlite3_api->create_collation
+#define sqlite3_create_collation16 sqlite3_api->create_collation16
+#define sqlite3_create_function sqlite3_api->create_function
+#define sqlite3_create_function16 sqlite3_api->create_function16
+#define sqlite3_create_module sqlite3_api->create_module
+#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
+#define sqlite3_data_count sqlite3_api->data_count
+#define sqlite3_db_handle sqlite3_api->db_handle
+#define sqlite3_declare_vtab sqlite3_api->declare_vtab
+#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
+#define sqlite3_errcode sqlite3_api->errcode
+#define sqlite3_errmsg sqlite3_api->errmsg
+#define sqlite3_errmsg16 sqlite3_api->errmsg16
+#define sqlite3_exec sqlite3_api->exec
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_expired sqlite3_api->expired
+#endif
+#define sqlite3_finalize sqlite3_api->finalize
+#define sqlite3_free sqlite3_api->free
+#define sqlite3_free_table sqlite3_api->free_table
+#define sqlite3_get_autocommit sqlite3_api->get_autocommit
+#define sqlite3_get_auxdata sqlite3_api->get_auxdata
+#define sqlite3_get_table sqlite3_api->get_table
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_global_recover sqlite3_api->global_recover
+#endif
+#define sqlite3_interrupt sqlite3_api->interruptx
+#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
+#define sqlite3_libversion sqlite3_api->libversion
+#define sqlite3_libversion_number sqlite3_api->libversion_number
+#define sqlite3_malloc sqlite3_api->malloc
+#define sqlite3_mprintf sqlite3_api->mprintf
+#define sqlite3_open sqlite3_api->open
+#define sqlite3_open16 sqlite3_api->open16
+#define sqlite3_prepare sqlite3_api->prepare
+#define sqlite3_prepare16 sqlite3_api->prepare16
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_profile sqlite3_api->profile
+#define sqlite3_progress_handler sqlite3_api->progress_handler
+#define sqlite3_realloc sqlite3_api->realloc
+#define sqlite3_reset sqlite3_api->reset
+#define sqlite3_result_blob sqlite3_api->result_blob
+#define sqlite3_result_double sqlite3_api->result_double
+#define sqlite3_result_error sqlite3_api->result_error
+#define sqlite3_result_error16 sqlite3_api->result_error16
+#define sqlite3_result_int sqlite3_api->result_int
+#define sqlite3_result_int64 sqlite3_api->result_int64
+#define sqlite3_result_null sqlite3_api->result_null
+#define sqlite3_result_text sqlite3_api->result_text
+#define sqlite3_result_text16 sqlite3_api->result_text16
+#define sqlite3_result_text16be sqlite3_api->result_text16be
+#define sqlite3_result_text16le sqlite3_api->result_text16le
+#define sqlite3_result_value sqlite3_api->result_value
+#define sqlite3_rollback_hook sqlite3_api->rollback_hook
+#define sqlite3_set_authorizer sqlite3_api->set_authorizer
+#define sqlite3_set_auxdata sqlite3_api->set_auxdata
+#define sqlite3_snprintf sqlite3_api->xsnprintf
+#define sqlite3_step sqlite3_api->step
+#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
+#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
+#define sqlite3_total_changes sqlite3_api->total_changes
+#define sqlite3_trace sqlite3_api->trace
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
+#endif
+#define sqlite3_update_hook sqlite3_api->update_hook
+#define sqlite3_user_data sqlite3_api->user_data
+#define sqlite3_value_blob sqlite3_api->value_blob
+#define sqlite3_value_bytes sqlite3_api->value_bytes
+#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
+#define sqlite3_value_double sqlite3_api->value_double
+#define sqlite3_value_int sqlite3_api->value_int
+#define sqlite3_value_int64 sqlite3_api->value_int64
+#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
+#define sqlite3_value_text sqlite3_api->value_text
+#define sqlite3_value_text16 sqlite3_api->value_text16
+#define sqlite3_value_text16be sqlite3_api->value_text16be
+#define sqlite3_value_text16le sqlite3_api->value_text16le
+#define sqlite3_value_type sqlite3_api->value_type
+#define sqlite3_vmprintf sqlite3_api->vmprintf
+#define sqlite3_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_overload_function sqlite3_api->overload_function
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_clear_bindings sqlite3_api->clear_bindings
+#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
+#define sqlite3_blob_bytes sqlite3_api->blob_bytes
+#define sqlite3_blob_close sqlite3_api->blob_close
+#define sqlite3_blob_open sqlite3_api->blob_open
+#define sqlite3_blob_read sqlite3_api->blob_read
+#define sqlite3_blob_write sqlite3_api->blob_write
+#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
+#define sqlite3_file_control sqlite3_api->file_control
+#define sqlite3_memory_highwater sqlite3_api->memory_highwater
+#define sqlite3_memory_used sqlite3_api->memory_used
+#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
+#define sqlite3_mutex_enter sqlite3_api->mutex_enter
+#define sqlite3_mutex_free sqlite3_api->mutex_free
+#define sqlite3_mutex_leave sqlite3_api->mutex_leave
+#define sqlite3_mutex_try sqlite3_api->mutex_try
+#define sqlite3_open_v2 sqlite3_api->open_v2
+#define sqlite3_release_memory sqlite3_api->release_memory
+#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
+#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
+#define sqlite3_sleep sqlite3_api->sleep
+#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
+#define sqlite3_vfs_find sqlite3_api->vfs_find
+#define sqlite3_vfs_register sqlite3_api->vfs_register
+#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
+#define sqlite3_threadsafe sqlite3_api->xthreadsafe
+#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
+#define sqlite3_result_error_code sqlite3_api->result_error_code
+#define sqlite3_test_control sqlite3_api->test_control
+#define sqlite3_randomness sqlite3_api->randomness
+#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
+#define sqlite3_limit sqlite3_api->limit
+#define sqlite3_next_stmt sqlite3_api->next_stmt
+#define sqlite3_sql sqlite3_api->sql
+#define sqlite3_status sqlite3_api->status
+#define sqlite3_backup_finish sqlite3_api->backup_finish
+#define sqlite3_backup_init sqlite3_api->backup_init
+#define sqlite3_backup_pagecount sqlite3_api->backup_pagecount
+#define sqlite3_backup_remaining sqlite3_api->backup_remaining
+#define sqlite3_backup_step sqlite3_api->backup_step
+#define sqlite3_compileoption_get sqlite3_api->compileoption_get
+#define sqlite3_compileoption_used sqlite3_api->compileoption_used
+#define sqlite3_create_function_v2 sqlite3_api->create_function_v2
+#define sqlite3_db_config sqlite3_api->db_config
+#define sqlite3_db_mutex sqlite3_api->db_mutex
+#define sqlite3_db_status sqlite3_api->db_status
+#define sqlite3_extended_errcode sqlite3_api->extended_errcode
+#define sqlite3_log sqlite3_api->log
+#define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64
+#define sqlite3_sourceid sqlite3_api->sourceid
+#define sqlite3_stmt_status sqlite3_api->stmt_status
+#define sqlite3_strnicmp sqlite3_api->strnicmp
+#define sqlite3_unlock_notify sqlite3_api->unlock_notify
+#define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint
+#define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint
+#define sqlite3_wal_hook sqlite3_api->wal_hook
+#define sqlite3_blob_reopen sqlite3_api->blob_reopen
+#define sqlite3_vtab_config sqlite3_api->vtab_config
+#define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict
+/* Version 3.7.16 and later */
+#define sqlite3_close_v2 sqlite3_api->close_v2
+#define sqlite3_db_filename sqlite3_api->db_filename
+#define sqlite3_db_readonly sqlite3_api->db_readonly
+#define sqlite3_db_release_memory sqlite3_api->db_release_memory
+#define sqlite3_errstr sqlite3_api->errstr
+#define sqlite3_stmt_busy sqlite3_api->stmt_busy
+#define sqlite3_stmt_readonly sqlite3_api->stmt_readonly
+#define sqlite3_stricmp sqlite3_api->stricmp
+#define sqlite3_uri_boolean sqlite3_api->uri_boolean
+#define sqlite3_uri_int64 sqlite3_api->uri_int64
+#define sqlite3_uri_parameter sqlite3_api->uri_parameter
+#define sqlite3_uri_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2
+/* Version 3.8.7 and later */
+#define sqlite3_auto_extension sqlite3_api->auto_extension
+#define sqlite3_bind_blob64 sqlite3_api->bind_blob64
+#define sqlite3_bind_text64 sqlite3_api->bind_text64
+#define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension
+#define sqlite3_load_extension sqlite3_api->load_extension
+#define sqlite3_malloc64 sqlite3_api->malloc64
+#define sqlite3_msize sqlite3_api->msize
+#define sqlite3_realloc64 sqlite3_api->realloc64
+#define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension
+#define sqlite3_result_blob64 sqlite3_api->result_blob64
+#define sqlite3_result_text64 sqlite3_api->result_text64
+#define sqlite3_strglob sqlite3_api->strglob
+/* Version 3.8.11 and later */
+#define sqlite3_value_dup sqlite3_api->value_dup
+#define sqlite3_value_free sqlite3_api->value_free
+#define sqlite3_result_zeroblob64 sqlite3_api->result_zeroblob64
+#define sqlite3_bind_zeroblob64 sqlite3_api->bind_zeroblob64
+/* Version 3.9.0 and later */
+#define sqlite3_value_subtype sqlite3_api->value_subtype
+#define sqlite3_result_subtype sqlite3_api->result_subtype
+/* Version 3.10.0 and later */
+#define sqlite3_status64 sqlite3_api->status64
+#define sqlite3_strlike sqlite3_api->strlike
+#define sqlite3_db_cacheflush sqlite3_api->db_cacheflush
+/* Version 3.12.0 and later */
+#define sqlite3_system_errno sqlite3_api->system_errno
+/* Version 3.14.0 and later */
+#define sqlite3_trace_v2 sqlite3_api->trace_v2
+#define sqlite3_expanded_sql sqlite3_api->expanded_sql
+/* Version 3.18.0 and later */
+#define sqlite3_set_last_insert_rowid sqlite3_api->set_last_insert_rowid
+/* Version 3.20.0 and later */
+#define sqlite3_prepare_v3 sqlite3_api->prepare_v3
+#define sqlite3_prepare16_v3 sqlite3_api->prepare16_v3
+#define sqlite3_bind_pointer sqlite3_api->bind_pointer
+#define sqlite3_result_pointer sqlite3_api->result_pointer
+#define sqlite3_value_pointer sqlite3_api->value_pointer
+/* Version 3.22.0 and later */
+#define sqlite3_vtab_nochange sqlite3_api->vtab_nochange
+#define sqlite3_value_nochange sqlite3_api->value_nochange
+#define sqlite3_vtab_collation sqlite3_api->vtab_collation
+/* Version 3.24.0 and later */
+#define sqlite3_keyword_count sqlite3_api->keyword_count
+#define sqlite3_keyword_name sqlite3_api->keyword_name
+#define sqlite3_keyword_check sqlite3_api->keyword_check
+#define sqlite3_str_new sqlite3_api->str_new
+#define sqlite3_str_finish sqlite3_api->str_finish
+#define sqlite3_str_appendf sqlite3_api->str_appendf
+#define sqlite3_str_vappendf sqlite3_api->str_vappendf
+#define sqlite3_str_append sqlite3_api->str_append
+#define sqlite3_str_appendall sqlite3_api->str_appendall
+#define sqlite3_str_appendchar sqlite3_api->str_appendchar
+#define sqlite3_str_reset sqlite3_api->str_reset
+#define sqlite3_str_errcode sqlite3_api->str_errcode
+#define sqlite3_str_length sqlite3_api->str_length
+#define sqlite3_str_value sqlite3_api->str_value
+/* Version 3.25.0 and later */
+#define sqlite3_create_window_function sqlite3_api->create_window_function
+/* Version 3.26.0 and later */
+#define sqlite3_normalized_sql sqlite3_api->normalized_sql
+/* Version 3.28.0 and later */
+#define sqlite3_stmt_isexplain sqlite3_api->stmt_isexplain
+#define sqlite3_value_frombind sqlite3_api->value_frombind
+/* Version 3.30.0 and later */
+#define sqlite3_drop_modules sqlite3_api->drop_modules
+/* Version 3.31.0 and later */
+#define sqlite3_hard_heap_limit64 sqlite3_api->hard_heap_limit64
+#define sqlite3_uri_key sqlite3_api->uri_key
+#define sqlite3_filename_database sqlite3_api->filename_database
+#define sqlite3_filename_journal sqlite3_api->filename_journal
+#define sqlite3_filename_wal sqlite3_api->filename_wal
+/* Version 3.32.0 and later */
+#define sqlite3_create_filename sqlite3_api->create_filename
+#define sqlite3_free_filename sqlite3_api->free_filename
+#define sqlite3_database_file_object sqlite3_api->database_file_object
+/* Version 3.34.0 and later */
+#define sqlite3_txn_state sqlite3_api->txn_state
+/* Version 3.36.1 and later */
+#define sqlite3_changes64 sqlite3_api->changes64
+#define sqlite3_total_changes64 sqlite3_api->total_changes64
+/* Version 3.37.0 and later */
+#define sqlite3_autovacuum_pages sqlite3_api->autovacuum_pages
+/* Version 3.38.0 and later */
+#define sqlite3_error_offset sqlite3_api->error_offset
+#define sqlite3_vtab_rhs_value sqlite3_api->vtab_rhs_value
+#define sqlite3_vtab_distinct sqlite3_api->vtab_distinct
+#define sqlite3_vtab_in sqlite3_api->vtab_in
+#define sqlite3_vtab_in_first sqlite3_api->vtab_in_first
+#define sqlite3_vtab_in_next sqlite3_api->vtab_in_next
+/* Version 3.39.0 and later */
+#ifndef SQLITE_OMIT_DESERIALIZE
+#define sqlite3_deserialize sqlite3_api->deserialize
+#define sqlite3_serialize sqlite3_api->serialize
+#endif
+#define sqlite3_db_name sqlite3_api->db_name
+#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */
+
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ /* This case when the file really is being compiled as a loadable
+ ** extension */
+# define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0;
+# define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v;
+# define SQLITE_EXTENSION_INIT3 \
+ extern const sqlite3_api_routines *sqlite3_api;
+#else
+ /* This case when the file is being statically linked into the
+ ** application */
+# define SQLITE_EXTENSION_INIT1 /*no-op*/
+# define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */
+# define SQLITE_EXTENSION_INIT3 /*no-op*/
+#endif
+
+#endif /* SQLITE3EXT_H */
diff --git a/third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version.rs b/third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version.rs
new file mode 100644
index 0000000000..ef59419e37
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version.rs
@@ -0,0 +1,3661 @@
+/* automatically generated by rust-bindgen 0.69.1 */
+
+extern "C" {
+ pub fn sqlite3_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_cancel_auto_extension(
+ xEntryPoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *const ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+
+pub const SQLITE_VERSION: &[u8; 7] = b"3.44.0\0";
+pub const SQLITE_VERSION_NUMBER: i32 = 3044000;
+pub const SQLITE_SOURCE_ID: &[u8; 85] =
+ b"2023-11-01 11:23:50 17129ba1ff7f0daf37100ee82d507aef7827cf38de1866e2633096ae6ad81301\0";
+pub const SQLITE_OK: i32 = 0;
+pub const SQLITE_ERROR: i32 = 1;
+pub const SQLITE_INTERNAL: i32 = 2;
+pub const SQLITE_PERM: i32 = 3;
+pub const SQLITE_ABORT: i32 = 4;
+pub const SQLITE_BUSY: i32 = 5;
+pub const SQLITE_LOCKED: i32 = 6;
+pub const SQLITE_NOMEM: i32 = 7;
+pub const SQLITE_READONLY: i32 = 8;
+pub const SQLITE_INTERRUPT: i32 = 9;
+pub const SQLITE_IOERR: i32 = 10;
+pub const SQLITE_CORRUPT: i32 = 11;
+pub const SQLITE_NOTFOUND: i32 = 12;
+pub const SQLITE_FULL: i32 = 13;
+pub const SQLITE_CANTOPEN: i32 = 14;
+pub const SQLITE_PROTOCOL: i32 = 15;
+pub const SQLITE_EMPTY: i32 = 16;
+pub const SQLITE_SCHEMA: i32 = 17;
+pub const SQLITE_TOOBIG: i32 = 18;
+pub const SQLITE_CONSTRAINT: i32 = 19;
+pub const SQLITE_MISMATCH: i32 = 20;
+pub const SQLITE_MISUSE: i32 = 21;
+pub const SQLITE_NOLFS: i32 = 22;
+pub const SQLITE_AUTH: i32 = 23;
+pub const SQLITE_FORMAT: i32 = 24;
+pub const SQLITE_RANGE: i32 = 25;
+pub const SQLITE_NOTADB: i32 = 26;
+pub const SQLITE_NOTICE: i32 = 27;
+pub const SQLITE_WARNING: i32 = 28;
+pub const SQLITE_ROW: i32 = 100;
+pub const SQLITE_DONE: i32 = 101;
+pub const SQLITE_ERROR_MISSING_COLLSEQ: i32 = 257;
+pub const SQLITE_ERROR_RETRY: i32 = 513;
+pub const SQLITE_ERROR_SNAPSHOT: i32 = 769;
+pub const SQLITE_IOERR_READ: i32 = 266;
+pub const SQLITE_IOERR_SHORT_READ: i32 = 522;
+pub const SQLITE_IOERR_WRITE: i32 = 778;
+pub const SQLITE_IOERR_FSYNC: i32 = 1034;
+pub const SQLITE_IOERR_DIR_FSYNC: i32 = 1290;
+pub const SQLITE_IOERR_TRUNCATE: i32 = 1546;
+pub const SQLITE_IOERR_FSTAT: i32 = 1802;
+pub const SQLITE_IOERR_UNLOCK: i32 = 2058;
+pub const SQLITE_IOERR_RDLOCK: i32 = 2314;
+pub const SQLITE_IOERR_DELETE: i32 = 2570;
+pub const SQLITE_IOERR_BLOCKED: i32 = 2826;
+pub const SQLITE_IOERR_NOMEM: i32 = 3082;
+pub const SQLITE_IOERR_ACCESS: i32 = 3338;
+pub const SQLITE_IOERR_CHECKRESERVEDLOCK: i32 = 3594;
+pub const SQLITE_IOERR_LOCK: i32 = 3850;
+pub const SQLITE_IOERR_CLOSE: i32 = 4106;
+pub const SQLITE_IOERR_DIR_CLOSE: i32 = 4362;
+pub const SQLITE_IOERR_SHMOPEN: i32 = 4618;
+pub const SQLITE_IOERR_SHMSIZE: i32 = 4874;
+pub const SQLITE_IOERR_SHMLOCK: i32 = 5130;
+pub const SQLITE_IOERR_SHMMAP: i32 = 5386;
+pub const SQLITE_IOERR_SEEK: i32 = 5642;
+pub const SQLITE_IOERR_DELETE_NOENT: i32 = 5898;
+pub const SQLITE_IOERR_MMAP: i32 = 6154;
+pub const SQLITE_IOERR_GETTEMPPATH: i32 = 6410;
+pub const SQLITE_IOERR_CONVPATH: i32 = 6666;
+pub const SQLITE_IOERR_VNODE: i32 = 6922;
+pub const SQLITE_IOERR_AUTH: i32 = 7178;
+pub const SQLITE_IOERR_BEGIN_ATOMIC: i32 = 7434;
+pub const SQLITE_IOERR_COMMIT_ATOMIC: i32 = 7690;
+pub const SQLITE_IOERR_ROLLBACK_ATOMIC: i32 = 7946;
+pub const SQLITE_IOERR_DATA: i32 = 8202;
+pub const SQLITE_IOERR_CORRUPTFS: i32 = 8458;
+pub const SQLITE_IOERR_IN_PAGE: i32 = 8714;
+pub const SQLITE_LOCKED_SHAREDCACHE: i32 = 262;
+pub const SQLITE_LOCKED_VTAB: i32 = 518;
+pub const SQLITE_BUSY_RECOVERY: i32 = 261;
+pub const SQLITE_BUSY_SNAPSHOT: i32 = 517;
+pub const SQLITE_BUSY_TIMEOUT: i32 = 773;
+pub const SQLITE_CANTOPEN_NOTEMPDIR: i32 = 270;
+pub const SQLITE_CANTOPEN_ISDIR: i32 = 526;
+pub const SQLITE_CANTOPEN_FULLPATH: i32 = 782;
+pub const SQLITE_CANTOPEN_CONVPATH: i32 = 1038;
+pub const SQLITE_CANTOPEN_DIRTYWAL: i32 = 1294;
+pub const SQLITE_CANTOPEN_SYMLINK: i32 = 1550;
+pub const SQLITE_CORRUPT_VTAB: i32 = 267;
+pub const SQLITE_CORRUPT_SEQUENCE: i32 = 523;
+pub const SQLITE_CORRUPT_INDEX: i32 = 779;
+pub const SQLITE_READONLY_RECOVERY: i32 = 264;
+pub const SQLITE_READONLY_CANTLOCK: i32 = 520;
+pub const SQLITE_READONLY_ROLLBACK: i32 = 776;
+pub const SQLITE_READONLY_DBMOVED: i32 = 1032;
+pub const SQLITE_READONLY_CANTINIT: i32 = 1288;
+pub const SQLITE_READONLY_DIRECTORY: i32 = 1544;
+pub const SQLITE_ABORT_ROLLBACK: i32 = 516;
+pub const SQLITE_CONSTRAINT_CHECK: i32 = 275;
+pub const SQLITE_CONSTRAINT_COMMITHOOK: i32 = 531;
+pub const SQLITE_CONSTRAINT_FOREIGNKEY: i32 = 787;
+pub const SQLITE_CONSTRAINT_FUNCTION: i32 = 1043;
+pub const SQLITE_CONSTRAINT_NOTNULL: i32 = 1299;
+pub const SQLITE_CONSTRAINT_PRIMARYKEY: i32 = 1555;
+pub const SQLITE_CONSTRAINT_TRIGGER: i32 = 1811;
+pub const SQLITE_CONSTRAINT_UNIQUE: i32 = 2067;
+pub const SQLITE_CONSTRAINT_VTAB: i32 = 2323;
+pub const SQLITE_CONSTRAINT_ROWID: i32 = 2579;
+pub const SQLITE_CONSTRAINT_PINNED: i32 = 2835;
+pub const SQLITE_CONSTRAINT_DATATYPE: i32 = 3091;
+pub const SQLITE_NOTICE_RECOVER_WAL: i32 = 283;
+pub const SQLITE_NOTICE_RECOVER_ROLLBACK: i32 = 539;
+pub const SQLITE_NOTICE_RBU: i32 = 795;
+pub const SQLITE_WARNING_AUTOINDEX: i32 = 284;
+pub const SQLITE_AUTH_USER: i32 = 279;
+pub const SQLITE_OK_LOAD_PERMANENTLY: i32 = 256;
+pub const SQLITE_OK_SYMLINK: i32 = 512;
+pub const SQLITE_OPEN_READONLY: i32 = 1;
+pub const SQLITE_OPEN_READWRITE: i32 = 2;
+pub const SQLITE_OPEN_CREATE: i32 = 4;
+pub const SQLITE_OPEN_DELETEONCLOSE: i32 = 8;
+pub const SQLITE_OPEN_EXCLUSIVE: i32 = 16;
+pub const SQLITE_OPEN_AUTOPROXY: i32 = 32;
+pub const SQLITE_OPEN_URI: i32 = 64;
+pub const SQLITE_OPEN_MEMORY: i32 = 128;
+pub const SQLITE_OPEN_MAIN_DB: i32 = 256;
+pub const SQLITE_OPEN_TEMP_DB: i32 = 512;
+pub const SQLITE_OPEN_TRANSIENT_DB: i32 = 1024;
+pub const SQLITE_OPEN_MAIN_JOURNAL: i32 = 2048;
+pub const SQLITE_OPEN_TEMP_JOURNAL: i32 = 4096;
+pub const SQLITE_OPEN_SUBJOURNAL: i32 = 8192;
+pub const SQLITE_OPEN_SUPER_JOURNAL: i32 = 16384;
+pub const SQLITE_OPEN_NOMUTEX: i32 = 32768;
+pub const SQLITE_OPEN_FULLMUTEX: i32 = 65536;
+pub const SQLITE_OPEN_SHAREDCACHE: i32 = 131072;
+pub const SQLITE_OPEN_PRIVATECACHE: i32 = 262144;
+pub const SQLITE_OPEN_WAL: i32 = 524288;
+pub const SQLITE_OPEN_NOFOLLOW: i32 = 16777216;
+pub const SQLITE_OPEN_EXRESCODE: i32 = 33554432;
+pub const SQLITE_OPEN_MASTER_JOURNAL: i32 = 16384;
+pub const SQLITE_IOCAP_ATOMIC: i32 = 1;
+pub const SQLITE_IOCAP_ATOMIC512: i32 = 2;
+pub const SQLITE_IOCAP_ATOMIC1K: i32 = 4;
+pub const SQLITE_IOCAP_ATOMIC2K: i32 = 8;
+pub const SQLITE_IOCAP_ATOMIC4K: i32 = 16;
+pub const SQLITE_IOCAP_ATOMIC8K: i32 = 32;
+pub const SQLITE_IOCAP_ATOMIC16K: i32 = 64;
+pub const SQLITE_IOCAP_ATOMIC32K: i32 = 128;
+pub const SQLITE_IOCAP_ATOMIC64K: i32 = 256;
+pub const SQLITE_IOCAP_SAFE_APPEND: i32 = 512;
+pub const SQLITE_IOCAP_SEQUENTIAL: i32 = 1024;
+pub const SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN: i32 = 2048;
+pub const SQLITE_IOCAP_POWERSAFE_OVERWRITE: i32 = 4096;
+pub const SQLITE_IOCAP_IMMUTABLE: i32 = 8192;
+pub const SQLITE_IOCAP_BATCH_ATOMIC: i32 = 16384;
+pub const SQLITE_LOCK_NONE: i32 = 0;
+pub const SQLITE_LOCK_SHARED: i32 = 1;
+pub const SQLITE_LOCK_RESERVED: i32 = 2;
+pub const SQLITE_LOCK_PENDING: i32 = 3;
+pub const SQLITE_LOCK_EXCLUSIVE: i32 = 4;
+pub const SQLITE_SYNC_NORMAL: i32 = 2;
+pub const SQLITE_SYNC_FULL: i32 = 3;
+pub const SQLITE_SYNC_DATAONLY: i32 = 16;
+pub const SQLITE_FCNTL_LOCKSTATE: i32 = 1;
+pub const SQLITE_FCNTL_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_FCNTL_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_FCNTL_LAST_ERRNO: i32 = 4;
+pub const SQLITE_FCNTL_SIZE_HINT: i32 = 5;
+pub const SQLITE_FCNTL_CHUNK_SIZE: i32 = 6;
+pub const SQLITE_FCNTL_FILE_POINTER: i32 = 7;
+pub const SQLITE_FCNTL_SYNC_OMITTED: i32 = 8;
+pub const SQLITE_FCNTL_WIN32_AV_RETRY: i32 = 9;
+pub const SQLITE_FCNTL_PERSIST_WAL: i32 = 10;
+pub const SQLITE_FCNTL_OVERWRITE: i32 = 11;
+pub const SQLITE_FCNTL_VFSNAME: i32 = 12;
+pub const SQLITE_FCNTL_POWERSAFE_OVERWRITE: i32 = 13;
+pub const SQLITE_FCNTL_PRAGMA: i32 = 14;
+pub const SQLITE_FCNTL_BUSYHANDLER: i32 = 15;
+pub const SQLITE_FCNTL_TEMPFILENAME: i32 = 16;
+pub const SQLITE_FCNTL_MMAP_SIZE: i32 = 18;
+pub const SQLITE_FCNTL_TRACE: i32 = 19;
+pub const SQLITE_FCNTL_HAS_MOVED: i32 = 20;
+pub const SQLITE_FCNTL_SYNC: i32 = 21;
+pub const SQLITE_FCNTL_COMMIT_PHASETWO: i32 = 22;
+pub const SQLITE_FCNTL_WIN32_SET_HANDLE: i32 = 23;
+pub const SQLITE_FCNTL_WAL_BLOCK: i32 = 24;
+pub const SQLITE_FCNTL_ZIPVFS: i32 = 25;
+pub const SQLITE_FCNTL_RBU: i32 = 26;
+pub const SQLITE_FCNTL_VFS_POINTER: i32 = 27;
+pub const SQLITE_FCNTL_JOURNAL_POINTER: i32 = 28;
+pub const SQLITE_FCNTL_WIN32_GET_HANDLE: i32 = 29;
+pub const SQLITE_FCNTL_PDB: i32 = 30;
+pub const SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: i32 = 31;
+pub const SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: i32 = 32;
+pub const SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: i32 = 33;
+pub const SQLITE_FCNTL_LOCK_TIMEOUT: i32 = 34;
+pub const SQLITE_FCNTL_DATA_VERSION: i32 = 35;
+pub const SQLITE_FCNTL_SIZE_LIMIT: i32 = 36;
+pub const SQLITE_FCNTL_CKPT_DONE: i32 = 37;
+pub const SQLITE_FCNTL_RESERVE_BYTES: i32 = 38;
+pub const SQLITE_FCNTL_CKPT_START: i32 = 39;
+pub const SQLITE_FCNTL_EXTERNAL_READER: i32 = 40;
+pub const SQLITE_FCNTL_CKSM_FILE: i32 = 41;
+pub const SQLITE_FCNTL_RESET_CACHE: i32 = 42;
+pub const SQLITE_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_LAST_ERRNO: i32 = 4;
+pub const SQLITE_ACCESS_EXISTS: i32 = 0;
+pub const SQLITE_ACCESS_READWRITE: i32 = 1;
+pub const SQLITE_ACCESS_READ: i32 = 2;
+pub const SQLITE_SHM_UNLOCK: i32 = 1;
+pub const SQLITE_SHM_LOCK: i32 = 2;
+pub const SQLITE_SHM_SHARED: i32 = 4;
+pub const SQLITE_SHM_EXCLUSIVE: i32 = 8;
+pub const SQLITE_SHM_NLOCK: i32 = 8;
+pub const SQLITE_CONFIG_SINGLETHREAD: i32 = 1;
+pub const SQLITE_CONFIG_MULTITHREAD: i32 = 2;
+pub const SQLITE_CONFIG_SERIALIZED: i32 = 3;
+pub const SQLITE_CONFIG_MALLOC: i32 = 4;
+pub const SQLITE_CONFIG_GETMALLOC: i32 = 5;
+pub const SQLITE_CONFIG_SCRATCH: i32 = 6;
+pub const SQLITE_CONFIG_PAGECACHE: i32 = 7;
+pub const SQLITE_CONFIG_HEAP: i32 = 8;
+pub const SQLITE_CONFIG_MEMSTATUS: i32 = 9;
+pub const SQLITE_CONFIG_MUTEX: i32 = 10;
+pub const SQLITE_CONFIG_GETMUTEX: i32 = 11;
+pub const SQLITE_CONFIG_LOOKASIDE: i32 = 13;
+pub const SQLITE_CONFIG_PCACHE: i32 = 14;
+pub const SQLITE_CONFIG_GETPCACHE: i32 = 15;
+pub const SQLITE_CONFIG_LOG: i32 = 16;
+pub const SQLITE_CONFIG_URI: i32 = 17;
+pub const SQLITE_CONFIG_PCACHE2: i32 = 18;
+pub const SQLITE_CONFIG_GETPCACHE2: i32 = 19;
+pub const SQLITE_CONFIG_COVERING_INDEX_SCAN: i32 = 20;
+pub const SQLITE_CONFIG_SQLLOG: i32 = 21;
+pub const SQLITE_CONFIG_MMAP_SIZE: i32 = 22;
+pub const SQLITE_CONFIG_WIN32_HEAPSIZE: i32 = 23;
+pub const SQLITE_CONFIG_PCACHE_HDRSZ: i32 = 24;
+pub const SQLITE_CONFIG_PMASZ: i32 = 25;
+pub const SQLITE_CONFIG_STMTJRNL_SPILL: i32 = 26;
+pub const SQLITE_CONFIG_SMALL_MALLOC: i32 = 27;
+pub const SQLITE_CONFIG_SORTERREF_SIZE: i32 = 28;
+pub const SQLITE_CONFIG_MEMDB_MAXSIZE: i32 = 29;
+pub const SQLITE_DBCONFIG_MAINDBNAME: i32 = 1000;
+pub const SQLITE_DBCONFIG_LOOKASIDE: i32 = 1001;
+pub const SQLITE_DBCONFIG_ENABLE_FKEY: i32 = 1002;
+pub const SQLITE_DBCONFIG_ENABLE_TRIGGER: i32 = 1003;
+pub const SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER: i32 = 1004;
+pub const SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION: i32 = 1005;
+pub const SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE: i32 = 1006;
+pub const SQLITE_DBCONFIG_ENABLE_QPSG: i32 = 1007;
+pub const SQLITE_DBCONFIG_TRIGGER_EQP: i32 = 1008;
+pub const SQLITE_DBCONFIG_RESET_DATABASE: i32 = 1009;
+pub const SQLITE_DBCONFIG_DEFENSIVE: i32 = 1010;
+pub const SQLITE_DBCONFIG_WRITABLE_SCHEMA: i32 = 1011;
+pub const SQLITE_DBCONFIG_LEGACY_ALTER_TABLE: i32 = 1012;
+pub const SQLITE_DBCONFIG_DQS_DML: i32 = 1013;
+pub const SQLITE_DBCONFIG_DQS_DDL: i32 = 1014;
+pub const SQLITE_DBCONFIG_ENABLE_VIEW: i32 = 1015;
+pub const SQLITE_DBCONFIG_LEGACY_FILE_FORMAT: i32 = 1016;
+pub const SQLITE_DBCONFIG_TRUSTED_SCHEMA: i32 = 1017;
+pub const SQLITE_DBCONFIG_STMT_SCANSTATUS: i32 = 1018;
+pub const SQLITE_DBCONFIG_REVERSE_SCANORDER: i32 = 1019;
+pub const SQLITE_DBCONFIG_MAX: i32 = 1019;
+pub const SQLITE_DENY: i32 = 1;
+pub const SQLITE_IGNORE: i32 = 2;
+pub const SQLITE_CREATE_INDEX: i32 = 1;
+pub const SQLITE_CREATE_TABLE: i32 = 2;
+pub const SQLITE_CREATE_TEMP_INDEX: i32 = 3;
+pub const SQLITE_CREATE_TEMP_TABLE: i32 = 4;
+pub const SQLITE_CREATE_TEMP_TRIGGER: i32 = 5;
+pub const SQLITE_CREATE_TEMP_VIEW: i32 = 6;
+pub const SQLITE_CREATE_TRIGGER: i32 = 7;
+pub const SQLITE_CREATE_VIEW: i32 = 8;
+pub const SQLITE_DELETE: i32 = 9;
+pub const SQLITE_DROP_INDEX: i32 = 10;
+pub const SQLITE_DROP_TABLE: i32 = 11;
+pub const SQLITE_DROP_TEMP_INDEX: i32 = 12;
+pub const SQLITE_DROP_TEMP_TABLE: i32 = 13;
+pub const SQLITE_DROP_TEMP_TRIGGER: i32 = 14;
+pub const SQLITE_DROP_TEMP_VIEW: i32 = 15;
+pub const SQLITE_DROP_TRIGGER: i32 = 16;
+pub const SQLITE_DROP_VIEW: i32 = 17;
+pub const SQLITE_INSERT: i32 = 18;
+pub const SQLITE_PRAGMA: i32 = 19;
+pub const SQLITE_READ: i32 = 20;
+pub const SQLITE_SELECT: i32 = 21;
+pub const SQLITE_TRANSACTION: i32 = 22;
+pub const SQLITE_UPDATE: i32 = 23;
+pub const SQLITE_ATTACH: i32 = 24;
+pub const SQLITE_DETACH: i32 = 25;
+pub const SQLITE_ALTER_TABLE: i32 = 26;
+pub const SQLITE_REINDEX: i32 = 27;
+pub const SQLITE_ANALYZE: i32 = 28;
+pub const SQLITE_CREATE_VTABLE: i32 = 29;
+pub const SQLITE_DROP_VTABLE: i32 = 30;
+pub const SQLITE_FUNCTION: i32 = 31;
+pub const SQLITE_SAVEPOINT: i32 = 32;
+pub const SQLITE_COPY: i32 = 0;
+pub const SQLITE_RECURSIVE: i32 = 33;
+pub const SQLITE_TRACE_STMT: i32 = 1;
+pub const SQLITE_TRACE_PROFILE: i32 = 2;
+pub const SQLITE_TRACE_ROW: i32 = 4;
+pub const SQLITE_TRACE_CLOSE: i32 = 8;
+pub const SQLITE_LIMIT_LENGTH: i32 = 0;
+pub const SQLITE_LIMIT_SQL_LENGTH: i32 = 1;
+pub const SQLITE_LIMIT_COLUMN: i32 = 2;
+pub const SQLITE_LIMIT_EXPR_DEPTH: i32 = 3;
+pub const SQLITE_LIMIT_COMPOUND_SELECT: i32 = 4;
+pub const SQLITE_LIMIT_VDBE_OP: i32 = 5;
+pub const SQLITE_LIMIT_FUNCTION_ARG: i32 = 6;
+pub const SQLITE_LIMIT_ATTACHED: i32 = 7;
+pub const SQLITE_LIMIT_LIKE_PATTERN_LENGTH: i32 = 8;
+pub const SQLITE_LIMIT_VARIABLE_NUMBER: i32 = 9;
+pub const SQLITE_LIMIT_TRIGGER_DEPTH: i32 = 10;
+pub const SQLITE_LIMIT_WORKER_THREADS: i32 = 11;
+pub const SQLITE_PREPARE_PERSISTENT: ::std::os::raw::c_uint = 1;
+pub const SQLITE_PREPARE_NORMALIZE: ::std::os::raw::c_uint = 2;
+pub const SQLITE_PREPARE_NO_VTAB: ::std::os::raw::c_uint = 4;
+pub const SQLITE_INTEGER: i32 = 1;
+pub const SQLITE_FLOAT: i32 = 2;
+pub const SQLITE_BLOB: i32 = 4;
+pub const SQLITE_NULL: i32 = 5;
+pub const SQLITE_TEXT: i32 = 3;
+pub const SQLITE3_TEXT: i32 = 3;
+pub const SQLITE_UTF8: i32 = 1;
+pub const SQLITE_UTF16LE: i32 = 2;
+pub const SQLITE_UTF16BE: i32 = 3;
+pub const SQLITE_UTF16: i32 = 4;
+pub const SQLITE_ANY: i32 = 5;
+pub const SQLITE_UTF16_ALIGNED: i32 = 8;
+pub const SQLITE_DETERMINISTIC: i32 = 2048;
+pub const SQLITE_DIRECTONLY: i32 = 524288;
+pub const SQLITE_SUBTYPE: i32 = 1048576;
+pub const SQLITE_INNOCUOUS: i32 = 2097152;
+pub const SQLITE_WIN32_DATA_DIRECTORY_TYPE: i32 = 1;
+pub const SQLITE_WIN32_TEMP_DIRECTORY_TYPE: i32 = 2;
+pub const SQLITE_TXN_NONE: i32 = 0;
+pub const SQLITE_TXN_READ: i32 = 1;
+pub const SQLITE_TXN_WRITE: i32 = 2;
+pub const SQLITE_INDEX_SCAN_UNIQUE: i32 = 1;
+pub const SQLITE_INDEX_CONSTRAINT_EQ: i32 = 2;
+pub const SQLITE_INDEX_CONSTRAINT_GT: i32 = 4;
+pub const SQLITE_INDEX_CONSTRAINT_LE: i32 = 8;
+pub const SQLITE_INDEX_CONSTRAINT_LT: i32 = 16;
+pub const SQLITE_INDEX_CONSTRAINT_GE: i32 = 32;
+pub const SQLITE_INDEX_CONSTRAINT_MATCH: i32 = 64;
+pub const SQLITE_INDEX_CONSTRAINT_LIKE: i32 = 65;
+pub const SQLITE_INDEX_CONSTRAINT_GLOB: i32 = 66;
+pub const SQLITE_INDEX_CONSTRAINT_REGEXP: i32 = 67;
+pub const SQLITE_INDEX_CONSTRAINT_NE: i32 = 68;
+pub const SQLITE_INDEX_CONSTRAINT_ISNOT: i32 = 69;
+pub const SQLITE_INDEX_CONSTRAINT_ISNOTNULL: i32 = 70;
+pub const SQLITE_INDEX_CONSTRAINT_ISNULL: i32 = 71;
+pub const SQLITE_INDEX_CONSTRAINT_IS: i32 = 72;
+pub const SQLITE_INDEX_CONSTRAINT_LIMIT: i32 = 73;
+pub const SQLITE_INDEX_CONSTRAINT_OFFSET: i32 = 74;
+pub const SQLITE_INDEX_CONSTRAINT_FUNCTION: i32 = 150;
+pub const SQLITE_MUTEX_FAST: i32 = 0;
+pub const SQLITE_MUTEX_RECURSIVE: i32 = 1;
+pub const SQLITE_MUTEX_STATIC_MAIN: i32 = 2;
+pub const SQLITE_MUTEX_STATIC_MEM: i32 = 3;
+pub const SQLITE_MUTEX_STATIC_MEM2: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_OPEN: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_PRNG: i32 = 5;
+pub const SQLITE_MUTEX_STATIC_LRU: i32 = 6;
+pub const SQLITE_MUTEX_STATIC_LRU2: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_PMEM: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_APP1: i32 = 8;
+pub const SQLITE_MUTEX_STATIC_APP2: i32 = 9;
+pub const SQLITE_MUTEX_STATIC_APP3: i32 = 10;
+pub const SQLITE_MUTEX_STATIC_VFS1: i32 = 11;
+pub const SQLITE_MUTEX_STATIC_VFS2: i32 = 12;
+pub const SQLITE_MUTEX_STATIC_VFS3: i32 = 13;
+pub const SQLITE_MUTEX_STATIC_MASTER: i32 = 2;
+pub const SQLITE_TESTCTRL_FIRST: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_SAVE: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_RESTORE: i32 = 6;
+pub const SQLITE_TESTCTRL_PRNG_RESET: i32 = 7;
+pub const SQLITE_TESTCTRL_FK_NO_ACTION: i32 = 7;
+pub const SQLITE_TESTCTRL_BITVEC_TEST: i32 = 8;
+pub const SQLITE_TESTCTRL_FAULT_INSTALL: i32 = 9;
+pub const SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: i32 = 10;
+pub const SQLITE_TESTCTRL_PENDING_BYTE: i32 = 11;
+pub const SQLITE_TESTCTRL_ASSERT: i32 = 12;
+pub const SQLITE_TESTCTRL_ALWAYS: i32 = 13;
+pub const SQLITE_TESTCTRL_RESERVE: i32 = 14;
+pub const SQLITE_TESTCTRL_OPTIMIZATIONS: i32 = 15;
+pub const SQLITE_TESTCTRL_ISKEYWORD: i32 = 16;
+pub const SQLITE_TESTCTRL_SCRATCHMALLOC: i32 = 17;
+pub const SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: i32 = 17;
+pub const SQLITE_TESTCTRL_LOCALTIME_FAULT: i32 = 18;
+pub const SQLITE_TESTCTRL_EXPLAIN_STMT: i32 = 19;
+pub const SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: i32 = 19;
+pub const SQLITE_TESTCTRL_NEVER_CORRUPT: i32 = 20;
+pub const SQLITE_TESTCTRL_VDBE_COVERAGE: i32 = 21;
+pub const SQLITE_TESTCTRL_BYTEORDER: i32 = 22;
+pub const SQLITE_TESTCTRL_ISINIT: i32 = 23;
+pub const SQLITE_TESTCTRL_SORTER_MMAP: i32 = 24;
+pub const SQLITE_TESTCTRL_IMPOSTER: i32 = 25;
+pub const SQLITE_TESTCTRL_PARSER_COVERAGE: i32 = 26;
+pub const SQLITE_TESTCTRL_RESULT_INTREAL: i32 = 27;
+pub const SQLITE_TESTCTRL_PRNG_SEED: i32 = 28;
+pub const SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: i32 = 29;
+pub const SQLITE_TESTCTRL_SEEK_COUNT: i32 = 30;
+pub const SQLITE_TESTCTRL_TRACEFLAGS: i32 = 31;
+pub const SQLITE_TESTCTRL_TUNE: i32 = 32;
+pub const SQLITE_TESTCTRL_LOGEST: i32 = 33;
+pub const SQLITE_TESTCTRL_USELONGDOUBLE: i32 = 34;
+pub const SQLITE_TESTCTRL_LAST: i32 = 34;
+pub const SQLITE_STATUS_MEMORY_USED: i32 = 0;
+pub const SQLITE_STATUS_PAGECACHE_USED: i32 = 1;
+pub const SQLITE_STATUS_PAGECACHE_OVERFLOW: i32 = 2;
+pub const SQLITE_STATUS_SCRATCH_USED: i32 = 3;
+pub const SQLITE_STATUS_SCRATCH_OVERFLOW: i32 = 4;
+pub const SQLITE_STATUS_MALLOC_SIZE: i32 = 5;
+pub const SQLITE_STATUS_PARSER_STACK: i32 = 6;
+pub const SQLITE_STATUS_PAGECACHE_SIZE: i32 = 7;
+pub const SQLITE_STATUS_SCRATCH_SIZE: i32 = 8;
+pub const SQLITE_STATUS_MALLOC_COUNT: i32 = 9;
+pub const SQLITE_DBSTATUS_LOOKASIDE_USED: i32 = 0;
+pub const SQLITE_DBSTATUS_CACHE_USED: i32 = 1;
+pub const SQLITE_DBSTATUS_SCHEMA_USED: i32 = 2;
+pub const SQLITE_DBSTATUS_STMT_USED: i32 = 3;
+pub const SQLITE_DBSTATUS_LOOKASIDE_HIT: i32 = 4;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: i32 = 5;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: i32 = 6;
+pub const SQLITE_DBSTATUS_CACHE_HIT: i32 = 7;
+pub const SQLITE_DBSTATUS_CACHE_MISS: i32 = 8;
+pub const SQLITE_DBSTATUS_CACHE_WRITE: i32 = 9;
+pub const SQLITE_DBSTATUS_DEFERRED_FKS: i32 = 10;
+pub const SQLITE_DBSTATUS_CACHE_USED_SHARED: i32 = 11;
+pub const SQLITE_DBSTATUS_CACHE_SPILL: i32 = 12;
+pub const SQLITE_DBSTATUS_MAX: i32 = 12;
+pub const SQLITE_STMTSTATUS_FULLSCAN_STEP: i32 = 1;
+pub const SQLITE_STMTSTATUS_SORT: i32 = 2;
+pub const SQLITE_STMTSTATUS_AUTOINDEX: i32 = 3;
+pub const SQLITE_STMTSTATUS_VM_STEP: i32 = 4;
+pub const SQLITE_STMTSTATUS_REPREPARE: i32 = 5;
+pub const SQLITE_STMTSTATUS_RUN: i32 = 6;
+pub const SQLITE_STMTSTATUS_FILTER_MISS: i32 = 7;
+pub const SQLITE_STMTSTATUS_FILTER_HIT: i32 = 8;
+pub const SQLITE_STMTSTATUS_MEMUSED: i32 = 99;
+pub const SQLITE_CHECKPOINT_PASSIVE: i32 = 0;
+pub const SQLITE_CHECKPOINT_FULL: i32 = 1;
+pub const SQLITE_CHECKPOINT_RESTART: i32 = 2;
+pub const SQLITE_CHECKPOINT_TRUNCATE: i32 = 3;
+pub const SQLITE_VTAB_CONSTRAINT_SUPPORT: i32 = 1;
+pub const SQLITE_VTAB_INNOCUOUS: i32 = 2;
+pub const SQLITE_VTAB_DIRECTONLY: i32 = 3;
+pub const SQLITE_VTAB_USES_ALL_SCHEMAS: i32 = 4;
+pub const SQLITE_ROLLBACK: i32 = 1;
+pub const SQLITE_FAIL: i32 = 3;
+pub const SQLITE_REPLACE: i32 = 5;
+pub const SQLITE_SCANSTAT_NLOOP: i32 = 0;
+pub const SQLITE_SCANSTAT_NVISIT: i32 = 1;
+pub const SQLITE_SCANSTAT_EST: i32 = 2;
+pub const SQLITE_SCANSTAT_NAME: i32 = 3;
+pub const SQLITE_SCANSTAT_EXPLAIN: i32 = 4;
+pub const SQLITE_SCANSTAT_SELECTID: i32 = 5;
+pub const SQLITE_SCANSTAT_PARENTID: i32 = 6;
+pub const SQLITE_SCANSTAT_NCYCLE: i32 = 7;
+pub const SQLITE_SCANSTAT_COMPLEX: i32 = 1;
+pub const SQLITE_SERIALIZE_NOCOPY: ::std::os::raw::c_uint = 1;
+pub const SQLITE_DESERIALIZE_FREEONCLOSE: ::std::os::raw::c_uint = 1;
+pub const SQLITE_DESERIALIZE_RESIZEABLE: ::std::os::raw::c_uint = 2;
+pub const SQLITE_DESERIALIZE_READONLY: ::std::os::raw::c_uint = 4;
+pub const NOT_WITHIN: i32 = 0;
+pub const PARTLY_WITHIN: i32 = 1;
+pub const FULLY_WITHIN: i32 = 2;
+pub const SQLITE_SESSION_OBJCONFIG_SIZE: i32 = 1;
+pub const SQLITE_SESSION_OBJCONFIG_ROWID: i32 = 2;
+pub const SQLITE_CHANGESETSTART_INVERT: i32 = 2;
+pub const SQLITE_CHANGESETAPPLY_NOSAVEPOINT: i32 = 1;
+pub const SQLITE_CHANGESETAPPLY_INVERT: i32 = 2;
+pub const SQLITE_CHANGESETAPPLY_IGNORENOOP: i32 = 4;
+pub const SQLITE_CHANGESETAPPLY_FKNOACTION: i32 = 8;
+pub const SQLITE_CHANGESET_DATA: i32 = 1;
+pub const SQLITE_CHANGESET_NOTFOUND: i32 = 2;
+pub const SQLITE_CHANGESET_CONFLICT: i32 = 3;
+pub const SQLITE_CHANGESET_CONSTRAINT: i32 = 4;
+pub const SQLITE_CHANGESET_FOREIGN_KEY: i32 = 5;
+pub const SQLITE_CHANGESET_OMIT: i32 = 0;
+pub const SQLITE_CHANGESET_REPLACE: i32 = 1;
+pub const SQLITE_CHANGESET_ABORT: i32 = 2;
+pub const SQLITE_SESSION_CONFIG_STRMSIZE: i32 = 1;
+pub const FTS5_TOKENIZE_QUERY: i32 = 1;
+pub const FTS5_TOKENIZE_PREFIX: i32 = 2;
+pub const FTS5_TOKENIZE_DOCUMENT: i32 = 4;
+pub const FTS5_TOKENIZE_AUX: i32 = 8;
+pub const FTS5_TOKEN_COLOCATED: i32 = 1;
+extern "C" {
+ pub static sqlite3_version: [::std::os::raw::c_char; 0usize];
+}
+extern "C" {
+ pub fn sqlite3_libversion() -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_sourceid() -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_libversion_number() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_compileoption_used(
+ zOptName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_compileoption_get(N: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_threadsafe() -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3 {
+ _unused: [u8; 0],
+}
+pub type sqlite_int64 = ::std::os::raw::c_longlong;
+pub type sqlite_uint64 = ::std::os::raw::c_ulonglong;
+pub type sqlite3_int64 = sqlite_int64;
+pub type sqlite3_uint64 = sqlite_uint64;
+extern "C" {
+ pub fn sqlite3_close(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_close_v2(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_callback = ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+>;
+extern "C" {
+ pub fn sqlite3_exec(
+ arg1: *mut sqlite3,
+ sql: *const ::std::os::raw::c_char,
+ callback: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ errmsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_file {
+ pub pMethods: *const sqlite3_io_methods,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_io_methods {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xRead: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *mut ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xWrite: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *const ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file, size: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pSize: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnlock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCheckReservedLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileControl: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSectorSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xDeviceCharacteristics: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xShmMap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iPg: ::std::os::raw::c_int,
+ pgsz: ::std::os::raw::c_int,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ offset: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmBarrier: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_file)>,
+ pub xShmUnmap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ deleteFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ iAmt: ::std::os::raw::c_int,
+ pp: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnfetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ p: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_api_routines {
+ _unused: [u8; 0],
+}
+pub type sqlite3_filename = *const ::std::os::raw::c_char;
+pub type sqlite3_syscall_ptr = ::std::option::Option<unsafe extern "C" fn()>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vfs {
+ pub iVersion: ::std::os::raw::c_int,
+ pub szOsFile: ::std::os::raw::c_int,
+ pub mxPathname: ::std::os::raw::c_int,
+ pub pNext: *mut sqlite3_vfs,
+ pub zName: *const ::std::os::raw::c_char,
+ pub pAppData: *mut ::std::os::raw::c_void,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: sqlite3_filename,
+ arg2: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ pOutFlags: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ syncDir: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xAccess: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ flags: ::std::os::raw::c_int,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFullPathname: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ nOut: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDlOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zFilename: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xDlError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zErrMsg: *mut ::std::os::raw::c_char,
+ ),
+ >,
+ pub xDlSym: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ) -> ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ),
+ >,
+ >,
+ pub xDlClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub xRandomness: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSleep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ microseconds: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTime: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut f64) -> ::std::os::raw::c_int,
+ >,
+ pub xGetLastError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTimeInt64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: sqlite3_syscall_ptr,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> sqlite3_syscall_ptr,
+ >,
+ pub xNextSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+}
+extern "C" {
+ pub fn sqlite3_initialize() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_shutdown() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_os_init() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_os_end() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_config(arg1: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mem_methods {
+ pub xMalloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xRealloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xRoundup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub pAppData: *mut ::std::os::raw::c_void,
+}
+extern "C" {
+ pub fn sqlite3_extended_result_codes(
+ arg1: *mut sqlite3,
+ onoff: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_last_insert_rowid(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_set_last_insert_rowid(arg1: *mut sqlite3, arg2: sqlite3_int64);
+}
+extern "C" {
+ pub fn sqlite3_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_changes64(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_total_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_total_changes64(arg1: *mut sqlite3) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_interrupt(arg1: *mut sqlite3);
+}
+extern "C" {
+ pub fn sqlite3_is_interrupted(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_complete(sql: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_complete16(sql: *const ::std::os::raw::c_void) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_busy_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_busy_timeout(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_get_table(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ pazResult: *mut *mut *mut ::std::os::raw::c_char,
+ pnRow: *mut ::std::os::raw::c_int,
+ pnColumn: *mut ::std::os::raw::c_int,
+ pzErrmsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_free_table(result: *mut *mut ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_mprintf(arg1: *const ::std::os::raw::c_char, ...)
+ -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_snprintf(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_malloc(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_malloc64(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_realloc(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_realloc64(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_free(arg1: *mut ::std::os::raw::c_void);
+}
+extern "C" {
+ pub fn sqlite3_msize(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64;
+}
+extern "C" {
+ pub fn sqlite3_memory_used() -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_memory_highwater(resetFlag: ::std::os::raw::c_int) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_randomness(N: ::std::os::raw::c_int, P: *mut ::std::os::raw::c_void);
+}
+extern "C" {
+ pub fn sqlite3_set_authorizer(
+ arg1: *mut sqlite3,
+ xAuth: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pUserData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_trace(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_profile(
+ arg1: *mut sqlite3,
+ xProfile: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_trace_v2(
+ arg1: *mut sqlite3,
+ uMask: ::std::os::raw::c_uint,
+ xCallback: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_progress_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ );
+}
+extern "C" {
+ pub fn sqlite3_open(
+ filename: *const ::std::os::raw::c_char,
+ ppDb: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_open16(
+ filename: *const ::std::os::raw::c_void,
+ ppDb: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_open_v2(
+ filename: *const ::std::os::raw::c_char,
+ ppDb: *mut *mut sqlite3,
+ flags: ::std::os::raw::c_int,
+ zVfs: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_uri_parameter(
+ z: sqlite3_filename,
+ zParam: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_uri_boolean(
+ z: sqlite3_filename,
+ zParam: *const ::std::os::raw::c_char,
+ bDefault: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_uri_int64(
+ arg1: sqlite3_filename,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_uri_key(
+ z: sqlite3_filename,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_filename_database(arg1: sqlite3_filename) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_filename_journal(arg1: sqlite3_filename) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_filename_wal(arg1: sqlite3_filename) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_database_file_object(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_file;
+}
+extern "C" {
+ pub fn sqlite3_create_filename(
+ zDatabase: *const ::std::os::raw::c_char,
+ zJournal: *const ::std::os::raw::c_char,
+ zWal: *const ::std::os::raw::c_char,
+ nParam: ::std::os::raw::c_int,
+ azParam: *mut *const ::std::os::raw::c_char,
+ ) -> sqlite3_filename;
+}
+extern "C" {
+ pub fn sqlite3_free_filename(arg1: sqlite3_filename);
+}
+extern "C" {
+ pub fn sqlite3_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_extended_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_errmsg(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_errmsg16(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_errstr(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_error_offset(db: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_stmt {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_limit(
+ arg1: *mut sqlite3,
+ id: ::std::os::raw::c_int,
+ newVal: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare_v2(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare_v3(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_char,
+ nByte: ::std::os::raw::c_int,
+ prepFlags: ::std::os::raw::c_uint,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16_v2(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_prepare16_v3(
+ db: *mut sqlite3,
+ zSql: *const ::std::os::raw::c_void,
+ nByte: ::std::os::raw::c_int,
+ prepFlags: ::std::os::raw::c_uint,
+ ppStmt: *mut *mut sqlite3_stmt,
+ pzTail: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_sql(pStmt: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_expanded_sql(pStmt: *mut sqlite3_stmt) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_stmt_readonly(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_isexplain(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_explain(
+ pStmt: *mut sqlite3_stmt,
+ eMode: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_busy(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_value {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_context {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_bind_blob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_blob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_double(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_int(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_int64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_null(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_text64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ encoding: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_value(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_pointer(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_zeroblob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_zeroblob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_count(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_bind_parameter_index(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_clear_bindings(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_name(
+ arg1: *mut sqlite3_stmt,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_name16(
+ arg1: *mut sqlite3_stmt,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_database_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_database_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_table_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_table_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_origin_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_origin_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_decltype(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_column_decltype16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_step(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_data_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_blob(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_double(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> f64;
+}
+extern "C" {
+ pub fn sqlite3_column_int(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_int64(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_column_text(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_column_text16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_column_value(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value;
+}
+extern "C" {
+ pub fn sqlite3_column_bytes(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_bytes16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_column_type(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_finalize(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_reset(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function16(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_void,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_function_v2(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_window_function(
+ db: *mut sqlite3,
+ zFunctionName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ eTextRep: ::std::os::raw::c_int,
+ pApp: *mut ::std::os::raw::c_void,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xValue: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xInverse: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_aggregate_count(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_expired(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_transfer_bindings(
+ arg1: *mut sqlite3_stmt,
+ arg2: *mut sqlite3_stmt,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_global_recover() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_thread_cleanup();
+}
+extern "C" {
+ pub fn sqlite3_memory_alarm(
+ arg1: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_int64,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_blob(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_double(arg1: *mut sqlite3_value) -> f64;
+}
+extern "C" {
+ pub fn sqlite3_value_int(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_int64(arg1: *mut sqlite3_value) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_value_pointer(
+ arg1: *mut sqlite3_value,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_value_text16(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text16le(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_text16be(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_value_bytes(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_bytes16(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_numeric_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_nochange(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_frombind(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_encoding(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_value_subtype(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint;
+}
+extern "C" {
+ pub fn sqlite3_value_dup(arg1: *const sqlite3_value) -> *mut sqlite3_value;
+}
+extern "C" {
+ pub fn sqlite3_value_free(arg1: *mut sqlite3_value);
+}
+extern "C" {
+ pub fn sqlite3_aggregate_context(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_user_data(arg1: *mut sqlite3_context) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_context_db_handle(arg1: *mut sqlite3_context) -> *mut sqlite3;
+}
+extern "C" {
+ pub fn sqlite3_get_auxdata(
+ arg1: *mut sqlite3_context,
+ N: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_set_auxdata(
+ arg1: *mut sqlite3_context,
+ N: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_get_clientdata(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_set_clientdata(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_destructor_type =
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>;
+extern "C" {
+ pub fn sqlite3_result_blob(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_blob64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_double(arg1: *mut sqlite3_context, arg2: f64);
+}
+extern "C" {
+ pub fn sqlite3_result_error(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_error16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_error_toobig(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_error_nomem(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_error_code(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_int(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_int64(arg1: *mut sqlite3_context, arg2: sqlite3_int64);
+}
+extern "C" {
+ pub fn sqlite3_result_null(arg1: *mut sqlite3_context);
+}
+extern "C" {
+ pub fn sqlite3_result_text(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ encoding: ::std::os::raw::c_uchar,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16le(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_text16be(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_value(arg1: *mut sqlite3_context, arg2: *mut sqlite3_value);
+}
+extern "C" {
+ pub fn sqlite3_result_pointer(
+ arg1: *mut sqlite3_context,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ );
+}
+extern "C" {
+ pub fn sqlite3_result_zeroblob(arg1: *mut sqlite3_context, n: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_result_zeroblob64(
+ arg1: *mut sqlite3_context,
+ n: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_result_subtype(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_uint);
+}
+extern "C" {
+ pub fn sqlite3_create_collation(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_collation_v2(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_collation16(
+ arg1: *mut sqlite3,
+ zName: *const ::std::os::raw::c_void,
+ eTextRep: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ xCompare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_collation_needed(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_collation_needed16(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_sleep(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub static mut sqlite3_temp_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub static mut sqlite3_data_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_win32_set_directory(
+ type_: ::std::os::raw::c_ulong,
+ zValue: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_win32_set_directory8(
+ type_: ::std::os::raw::c_ulong,
+ zValue: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_win32_set_directory16(
+ type_: ::std::os::raw::c_ulong,
+ zValue: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_get_autocommit(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_handle(arg1: *mut sqlite3_stmt) -> *mut sqlite3;
+}
+extern "C" {
+ pub fn sqlite3_db_name(
+ db: *mut sqlite3,
+ N: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_db_filename(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ ) -> sqlite3_filename;
+}
+extern "C" {
+ pub fn sqlite3_db_readonly(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_txn_state(
+ arg1: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_next_stmt(pDb: *mut sqlite3, pStmt: *mut sqlite3_stmt) -> *mut sqlite3_stmt;
+}
+extern "C" {
+ pub fn sqlite3_commit_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_rollback_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_autovacuum_pages(
+ db: *mut sqlite3,
+ arg1: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ arg4: ::std::os::raw::c_uint,
+ arg5: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_uint,
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_update_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_enable_shared_cache(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_release_memory(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_release_memory(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_soft_heap_limit64(N: sqlite3_int64) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_hard_heap_limit64(N: sqlite3_int64) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3_soft_heap_limit(N: ::std::os::raw::c_int);
+}
+extern "C" {
+ pub fn sqlite3_table_column_metadata(
+ db: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ zTableName: *const ::std::os::raw::c_char,
+ zColumnName: *const ::std::os::raw::c_char,
+ pzDataType: *mut *const ::std::os::raw::c_char,
+ pzCollSeq: *mut *const ::std::os::raw::c_char,
+ pNotNull: *mut ::std::os::raw::c_int,
+ pPrimaryKey: *mut ::std::os::raw::c_int,
+ pAutoinc: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_load_extension(
+ db: *mut sqlite3,
+ zFile: *const ::std::os::raw::c_char,
+ zProc: *const ::std::os::raw::c_char,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_enable_load_extension(
+ db: *mut sqlite3,
+ onoff: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_reset_auto_extension();
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_module {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xConnect: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBestIndex: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: *mut sqlite3_index_info,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDisconnect: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ ppCursor: *mut *mut sqlite3_vtab_cursor,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ idxNum: ::std::os::raw::c_int,
+ idxStr: *const ::std::os::raw::c_char,
+ argc: ::std::os::raw::c_int,
+ argv: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xNext: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xEof: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ arg2: *mut sqlite3_context,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ pRowid: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ arg4: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBegin: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xCommit: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xRollback: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xFindFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ nArg: ::std::os::raw::c_int,
+ zName: *const ::std::os::raw::c_char,
+ pxFunc: *mut ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ ppArg: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRename: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ zNew: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSavepoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRelease: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRollbackTo: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShadowName: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+ pub xIntegrity: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ zSchema: *const ::std::os::raw::c_char,
+ zTabName: *const ::std::os::raw::c_char,
+ mFlags: ::std::os::raw::c_int,
+ pzErr: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_info {
+ pub nConstraint: ::std::os::raw::c_int,
+ pub aConstraint: *mut sqlite3_index_constraint,
+ pub nOrderBy: ::std::os::raw::c_int,
+ pub aOrderBy: *mut sqlite3_index_orderby,
+ pub aConstraintUsage: *mut sqlite3_index_constraint_usage,
+ pub idxNum: ::std::os::raw::c_int,
+ pub idxStr: *mut ::std::os::raw::c_char,
+ pub needToFreeIdxStr: ::std::os::raw::c_int,
+ pub orderByConsumed: ::std::os::raw::c_int,
+ pub estimatedCost: f64,
+ pub estimatedRows: sqlite3_int64,
+ pub idxFlags: ::std::os::raw::c_int,
+ pub colUsed: sqlite3_uint64,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint {
+ pub iColumn: ::std::os::raw::c_int,
+ pub op: ::std::os::raw::c_uchar,
+ pub usable: ::std::os::raw::c_uchar,
+ pub iTermOffset: ::std::os::raw::c_int,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_orderby {
+ pub iColumn: ::std::os::raw::c_int,
+ pub desc: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint_usage {
+ pub argvIndex: ::std::os::raw::c_int,
+ pub omit: ::std::os::raw::c_uchar,
+}
+extern "C" {
+ pub fn sqlite3_create_module(
+ db: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ p: *const sqlite3_module,
+ pClientData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_create_module_v2(
+ db: *mut sqlite3,
+ zName: *const ::std::os::raw::c_char,
+ p: *const sqlite3_module,
+ pClientData: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_drop_modules(
+ db: *mut sqlite3,
+ azKeep: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab {
+ pub pModule: *const sqlite3_module,
+ pub nRef: ::std::os::raw::c_int,
+ pub zErrMsg: *mut ::std::os::raw::c_char,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab_cursor {
+ pub pVtab: *mut sqlite3_vtab,
+}
+extern "C" {
+ pub fn sqlite3_declare_vtab(
+ arg1: *mut sqlite3,
+ zSQL: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_overload_function(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_blob {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_blob_open(
+ arg1: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ zTable: *const ::std::os::raw::c_char,
+ zColumn: *const ::std::os::raw::c_char,
+ iRow: sqlite3_int64,
+ flags: ::std::os::raw::c_int,
+ ppBlob: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_reopen(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_close(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_bytes(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_read(
+ arg1: *mut sqlite3_blob,
+ Z: *mut ::std::os::raw::c_void,
+ N: ::std::os::raw::c_int,
+ iOffset: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_blob_write(
+ arg1: *mut sqlite3_blob,
+ z: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ iOffset: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vfs_find(zVfsName: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs;
+}
+extern "C" {
+ pub fn sqlite3_vfs_register(
+ arg1: *mut sqlite3_vfs,
+ makeDflt: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vfs_unregister(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_alloc(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex;
+}
+extern "C" {
+ pub fn sqlite3_mutex_free(arg1: *mut sqlite3_mutex);
+}
+extern "C" {
+ pub fn sqlite3_mutex_enter(arg1: *mut sqlite3_mutex);
+}
+extern "C" {
+ pub fn sqlite3_mutex_try(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_leave(arg1: *mut sqlite3_mutex);
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex_methods {
+ pub xMutexInit: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexEnd: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexAlloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub xMutexFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexEnter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexTry: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexLeave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexHeld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexNotheld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+}
+extern "C" {
+ pub fn sqlite3_mutex_held(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_mutex_notheld(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_mutex(arg1: *mut sqlite3) -> *mut sqlite3_mutex;
+}
+extern "C" {
+ pub fn sqlite3_file_control(
+ arg1: *mut sqlite3,
+ zDbName: *const ::std::os::raw::c_char,
+ op: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_test_control(op: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_keyword_count() -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_keyword_name(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_keyword_check(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_str {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_str_new(arg1: *mut sqlite3) -> *mut sqlite3_str;
+}
+extern "C" {
+ pub fn sqlite3_str_finish(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_str_appendf(arg1: *mut sqlite3_str, zFormat: *const ::std::os::raw::c_char, ...);
+}
+extern "C" {
+ pub fn sqlite3_str_append(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+ N: ::std::os::raw::c_int,
+ );
+}
+extern "C" {
+ pub fn sqlite3_str_appendall(arg1: *mut sqlite3_str, zIn: *const ::std::os::raw::c_char);
+}
+extern "C" {
+ pub fn sqlite3_str_appendchar(
+ arg1: *mut sqlite3_str,
+ N: ::std::os::raw::c_int,
+ C: ::std::os::raw::c_char,
+ );
+}
+extern "C" {
+ pub fn sqlite3_str_reset(arg1: *mut sqlite3_str);
+}
+extern "C" {
+ pub fn sqlite3_str_errcode(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_str_length(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_str_value(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_status(
+ op: ::std::os::raw::c_int,
+ pCurrent: *mut ::std::os::raw::c_int,
+ pHighwater: *mut ::std::os::raw::c_int,
+ resetFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_status64(
+ op: ::std::os::raw::c_int,
+ pCurrent: *mut sqlite3_int64,
+ pHighwater: *mut sqlite3_int64,
+ resetFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_db_status(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ pCur: *mut ::std::os::raw::c_int,
+ pHiwtr: *mut ::std::os::raw::c_int,
+ resetFlg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_status(
+ arg1: *mut sqlite3_stmt,
+ op: ::std::os::raw::c_int,
+ resetFlg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_page {
+ pub pBuf: *mut ::std::os::raw::c_void,
+ pub pExtra: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods2 {
+ pub iVersion: ::std::os::raw::c_int,
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ szExtra: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache_page,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+ pub xShrink: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods {
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_backup {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3_backup_init(
+ pDest: *mut sqlite3,
+ zDestName: *const ::std::os::raw::c_char,
+ pSource: *mut sqlite3,
+ zSourceName: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup;
+}
+extern "C" {
+ pub fn sqlite3_backup_step(
+ p: *mut sqlite3_backup,
+ nPage: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_finish(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_remaining(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_backup_pagecount(p: *mut sqlite3_backup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_unlock_notify(
+ pBlocked: *mut sqlite3,
+ xNotify: ::std::option::Option<
+ unsafe extern "C" fn(
+ apArg: *mut *mut ::std::os::raw::c_void,
+ nArg: ::std::os::raw::c_int,
+ ),
+ >,
+ pNotifyArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stricmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strnicmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strglob(
+ zGlob: *const ::std::os::raw::c_char,
+ zStr: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_strlike(
+ zGlob: *const ::std::os::raw::c_char,
+ zStr: *const ::std::os::raw::c_char,
+ cEsc: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_log(
+ iErrCode: ::std::os::raw::c_int,
+ zFormat: *const ::std::os::raw::c_char,
+ ...
+ );
+}
+extern "C" {
+ pub fn sqlite3_wal_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_wal_autocheckpoint(
+ db: *mut sqlite3,
+ N: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_wal_checkpoint(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_wal_checkpoint_v2(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ eMode: ::std::os::raw::c_int,
+ pnLog: *mut ::std::os::raw::c_int,
+ pnCkpt: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_on_conflict(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_nochange(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_collation(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char;
+}
+extern "C" {
+ pub fn sqlite3_vtab_distinct(arg1: *mut sqlite3_index_info) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_in(
+ arg1: *mut sqlite3_index_info,
+ iCons: ::std::os::raw::c_int,
+ bHandle: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_in_first(
+ pVal: *mut sqlite3_value,
+ ppOut: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_in_next(
+ pVal: *mut sqlite3_value,
+ ppOut: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_vtab_rhs_value(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ ppVal: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus(
+ pStmt: *mut sqlite3_stmt,
+ idx: ::std::os::raw::c_int,
+ iScanStatusOp: ::std::os::raw::c_int,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus_v2(
+ pStmt: *mut sqlite3_stmt,
+ idx: ::std::os::raw::c_int,
+ iScanStatusOp: ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_stmt_scanstatus_reset(arg1: *mut sqlite3_stmt);
+}
+extern "C" {
+ pub fn sqlite3_db_cacheflush(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_hook(
+ db: *mut sqlite3,
+ xPreUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ db: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ zDb: *const ::std::os::raw::c_char,
+ zName: *const ::std::os::raw::c_char,
+ iKey1: sqlite3_int64,
+ iKey2: sqlite3_int64,
+ ),
+ >,
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_old(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_count(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_depth(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_new(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_preupdate_blobwrite(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_system_errno(arg1: *mut sqlite3) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_snapshot {
+ pub hidden: [::std::os::raw::c_uchar; 48usize],
+}
+extern "C" {
+ pub fn sqlite3_snapshot_get(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ ppSnapshot: *mut *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_open(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ pSnapshot: *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_free(arg1: *mut sqlite3_snapshot);
+}
+extern "C" {
+ pub fn sqlite3_snapshot_cmp(
+ p1: *mut sqlite3_snapshot,
+ p2: *mut sqlite3_snapshot,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_snapshot_recover(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3_serialize(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ piSize: *mut sqlite3_int64,
+ mFlags: ::std::os::raw::c_uint,
+ ) -> *mut ::std::os::raw::c_uchar;
+}
+extern "C" {
+ pub fn sqlite3_deserialize(
+ db: *mut sqlite3,
+ zSchema: *const ::std::os::raw::c_char,
+ pData: *mut ::std::os::raw::c_uchar,
+ szDb: sqlite3_int64,
+ szBuf: sqlite3_int64,
+ mFlags: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int;
+}
+pub type sqlite3_rtree_dbl = f64;
+extern "C" {
+ pub fn sqlite3_rtree_geometry_callback(
+ db: *mut sqlite3,
+ zGeom: *const ::std::os::raw::c_char,
+ xGeom: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_rtree_geometry,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut sqlite3_rtree_dbl,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pContext: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_geometry {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+}
+extern "C" {
+ pub fn sqlite3_rtree_query_callback(
+ db: *mut sqlite3,
+ zQueryFunc: *const ::std::os::raw::c_char,
+ xQueryFunc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_rtree_query_info) -> ::std::os::raw::c_int,
+ >,
+ pContext: *mut ::std::os::raw::c_void,
+ xDestructor: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_query_info {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub aCoord: *mut sqlite3_rtree_dbl,
+ pub anQueue: *mut ::std::os::raw::c_uint,
+ pub nCoord: ::std::os::raw::c_int,
+ pub iLevel: ::std::os::raw::c_int,
+ pub mxLevel: ::std::os::raw::c_int,
+ pub iRowid: sqlite3_int64,
+ pub rParentScore: sqlite3_rtree_dbl,
+ pub eParentWithin: ::std::os::raw::c_int,
+ pub eWithin: ::std::os::raw::c_int,
+ pub rScore: sqlite3_rtree_dbl,
+ pub apSqlParam: *mut *mut sqlite3_value,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_session {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_changeset_iter {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3session_create(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ppSession: *mut *mut sqlite3_session,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_delete(pSession: *mut sqlite3_session);
+}
+extern "C" {
+ pub fn sqlite3session_object_config(
+ arg1: *mut sqlite3_session,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_enable(
+ pSession: *mut sqlite3_session,
+ bEnable: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_indirect(
+ pSession: *mut sqlite3_session,
+ bIndirect: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_attach(
+ pSession: *mut sqlite3_session,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_table_filter(
+ pSession: *mut sqlite3_session,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ );
+}
+extern "C" {
+ pub fn sqlite3session_changeset(
+ pSession: *mut sqlite3_session,
+ pnChangeset: *mut ::std::os::raw::c_int,
+ ppChangeset: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_changeset_size(pSession: *mut sqlite3_session) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3session_diff(
+ pSession: *mut sqlite3_session,
+ zFromDb: *const ::std::os::raw::c_char,
+ zTbl: *const ::std::os::raw::c_char,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_patchset(
+ pSession: *mut sqlite3_session,
+ pnPatchset: *mut ::std::os::raw::c_int,
+ ppPatchset: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_isempty(pSession: *mut sqlite3_session) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_memory_used(pSession: *mut sqlite3_session) -> sqlite3_int64;
+}
+extern "C" {
+ pub fn sqlite3changeset_start(
+ pp: *mut *mut sqlite3_changeset_iter,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_v2(
+ pp: *mut *mut sqlite3_changeset_iter,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_next(pIter: *mut sqlite3_changeset_iter) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_op(
+ pIter: *mut sqlite3_changeset_iter,
+ pzTab: *mut *const ::std::os::raw::c_char,
+ pnCol: *mut ::std::os::raw::c_int,
+ pOp: *mut ::std::os::raw::c_int,
+ pbIndirect: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_pk(
+ pIter: *mut sqlite3_changeset_iter,
+ pabPK: *mut *mut ::std::os::raw::c_uchar,
+ pnCol: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_old(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_new(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_conflict(
+ pIter: *mut sqlite3_changeset_iter,
+ iVal: ::std::os::raw::c_int,
+ ppValue: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_fk_conflicts(
+ pIter: *mut sqlite3_changeset_iter,
+ pnOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_finalize(pIter: *mut sqlite3_changeset_iter) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_invert(
+ nIn: ::std::os::raw::c_int,
+ pIn: *const ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_concat(
+ nA: ::std::os::raw::c_int,
+ pA: *mut ::std::os::raw::c_void,
+ nB: ::std::os::raw::c_int,
+ pB: *mut ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_upgrade(
+ db: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ nIn: ::std::os::raw::c_int,
+ pIn: *const ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_changegroup {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3changegroup_new(pp: *mut *mut sqlite3_changegroup) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_schema(
+ arg1: *mut sqlite3_changegroup,
+ arg2: *mut sqlite3,
+ zDb: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_add(
+ arg1: *mut sqlite3_changegroup,
+ nData: ::std::os::raw::c_int,
+ pData: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_output(
+ arg1: *mut sqlite3_changegroup,
+ pnData: *mut ::std::os::raw::c_int,
+ ppData: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_delete(arg1: *mut sqlite3_changegroup);
+}
+extern "C" {
+ pub fn sqlite3changeset_apply(
+ db: *mut sqlite3,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_v2(
+ db: *mut sqlite3,
+ nChangeset: ::std::os::raw::c_int,
+ pChangeset: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ppRebase: *mut *mut ::std::os::raw::c_void,
+ pnRebase: *mut ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rebaser {
+ _unused: [u8; 0],
+}
+extern "C" {
+ pub fn sqlite3rebaser_create(ppNew: *mut *mut sqlite3_rebaser) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_configure(
+ arg1: *mut sqlite3_rebaser,
+ nRebase: ::std::os::raw::c_int,
+ pRebase: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_rebase(
+ arg1: *mut sqlite3_rebaser,
+ nIn: ::std::os::raw::c_int,
+ pIn: *const ::std::os::raw::c_void,
+ pnOut: *mut ::std::os::raw::c_int,
+ ppOut: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_delete(p: *mut sqlite3_rebaser);
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_strm(
+ db: *mut sqlite3,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_apply_v2_strm(
+ db: *mut sqlite3,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ zTab: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ xConflict: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ eConflict: ::std::os::raw::c_int,
+ p: *mut sqlite3_changeset_iter,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pCtx: *mut ::std::os::raw::c_void,
+ ppRebase: *mut *mut ::std::os::raw::c_void,
+ pnRebase: *mut ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_concat_strm(
+ xInputA: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pInA: *mut ::std::os::raw::c_void,
+ xInputB: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pInB: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_invert_strm(
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_strm(
+ pp: *mut *mut sqlite3_changeset_iter,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changeset_start_v2_strm(
+ pp: *mut *mut sqlite3_changeset_iter,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_changeset_strm(
+ pSession: *mut sqlite3_session,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_patchset_strm(
+ pSession: *mut sqlite3_session,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_add_strm(
+ arg1: *mut sqlite3_changegroup,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3changegroup_output_strm(
+ arg1: *mut sqlite3_changegroup,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3rebaser_rebase_strm(
+ pRebaser: *mut sqlite3_rebaser,
+ xInput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pIn: *mut ::std::os::raw::c_void,
+ pData: *mut ::std::os::raw::c_void,
+ pnData: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pIn: *mut ::std::os::raw::c_void,
+ xOutput: ::std::option::Option<
+ unsafe extern "C" fn(
+ pOut: *mut ::std::os::raw::c_void,
+ pData: *const ::std::os::raw::c_void,
+ nData: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pOut: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+extern "C" {
+ pub fn sqlite3session_config(
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Context {
+ _unused: [u8; 0],
+}
+pub type fts5_extension_function = ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *const Fts5ExtensionApi,
+ pFts: *mut Fts5Context,
+ pCtx: *mut sqlite3_context,
+ nVal: ::std::os::raw::c_int,
+ apVal: *mut *mut sqlite3_value,
+ ),
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5PhraseIter {
+ pub a: *const ::std::os::raw::c_uchar,
+ pub b: *const ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5ExtensionApi {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xUserData: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xColumnCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xRowCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnRow: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnTotalSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ pCtx: *mut ::std::os::raw::c_void,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ arg6: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInstCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnInst: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iIdx: ::std::os::raw::c_int,
+ piPhrase: *mut ::std::os::raw::c_int,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Context) -> sqlite3_int64>,
+ pub xColumnText: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pz: *mut *const ::std::os::raw::c_char,
+ pn: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xQueryPhrase: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ pUserData: *mut ::std::os::raw::c_void,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const Fts5ExtensionApi,
+ arg2: *mut Fts5Context,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pAux: *mut ::std::os::raw::c_void,
+ xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ bClear: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xPhraseFirst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNext: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ),
+ >,
+ pub xPhraseFirstColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNextColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ ),
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Tokenizer {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_tokenizer {
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ azArg: *mut *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ppOut: *mut *mut Fts5Tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Tokenizer)>,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Tokenizer,
+ pCtx: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ tflags: ::std::os::raw::c_int,
+ pToken: *const ::std::os::raw::c_char,
+ nToken: ::std::os::raw::c_int,
+ iStart: ::std::os::raw::c_int,
+ iEnd: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_api {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreateTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pUserData: *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFindTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ ppUserData: *mut *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCreateFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pUserData: *mut ::std::os::raw::c_void,
+ xFunction: fts5_extension_function,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
diff --git a/third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version_ext.rs b/third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version_ext.rs
new file mode 100644
index 0000000000..fdd6d5edac
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlite3/bindgen_bundled_version_ext.rs
@@ -0,0 +1,8430 @@
+/* automatically generated by rust-bindgen 0.69.1 */
+
+pub const SQLITE_VERSION: &[u8; 7] = b"3.44.0\0";
+pub const SQLITE_VERSION_NUMBER: i32 = 3044000;
+pub const SQLITE_SOURCE_ID: &[u8; 85] =
+ b"2023-11-01 11:23:50 17129ba1ff7f0daf37100ee82d507aef7827cf38de1866e2633096ae6ad81301\0";
+pub const SQLITE_OK: i32 = 0;
+pub const SQLITE_ERROR: i32 = 1;
+pub const SQLITE_INTERNAL: i32 = 2;
+pub const SQLITE_PERM: i32 = 3;
+pub const SQLITE_ABORT: i32 = 4;
+pub const SQLITE_BUSY: i32 = 5;
+pub const SQLITE_LOCKED: i32 = 6;
+pub const SQLITE_NOMEM: i32 = 7;
+pub const SQLITE_READONLY: i32 = 8;
+pub const SQLITE_INTERRUPT: i32 = 9;
+pub const SQLITE_IOERR: i32 = 10;
+pub const SQLITE_CORRUPT: i32 = 11;
+pub const SQLITE_NOTFOUND: i32 = 12;
+pub const SQLITE_FULL: i32 = 13;
+pub const SQLITE_CANTOPEN: i32 = 14;
+pub const SQLITE_PROTOCOL: i32 = 15;
+pub const SQLITE_EMPTY: i32 = 16;
+pub const SQLITE_SCHEMA: i32 = 17;
+pub const SQLITE_TOOBIG: i32 = 18;
+pub const SQLITE_CONSTRAINT: i32 = 19;
+pub const SQLITE_MISMATCH: i32 = 20;
+pub const SQLITE_MISUSE: i32 = 21;
+pub const SQLITE_NOLFS: i32 = 22;
+pub const SQLITE_AUTH: i32 = 23;
+pub const SQLITE_FORMAT: i32 = 24;
+pub const SQLITE_RANGE: i32 = 25;
+pub const SQLITE_NOTADB: i32 = 26;
+pub const SQLITE_NOTICE: i32 = 27;
+pub const SQLITE_WARNING: i32 = 28;
+pub const SQLITE_ROW: i32 = 100;
+pub const SQLITE_DONE: i32 = 101;
+pub const SQLITE_ERROR_MISSING_COLLSEQ: i32 = 257;
+pub const SQLITE_ERROR_RETRY: i32 = 513;
+pub const SQLITE_ERROR_SNAPSHOT: i32 = 769;
+pub const SQLITE_IOERR_READ: i32 = 266;
+pub const SQLITE_IOERR_SHORT_READ: i32 = 522;
+pub const SQLITE_IOERR_WRITE: i32 = 778;
+pub const SQLITE_IOERR_FSYNC: i32 = 1034;
+pub const SQLITE_IOERR_DIR_FSYNC: i32 = 1290;
+pub const SQLITE_IOERR_TRUNCATE: i32 = 1546;
+pub const SQLITE_IOERR_FSTAT: i32 = 1802;
+pub const SQLITE_IOERR_UNLOCK: i32 = 2058;
+pub const SQLITE_IOERR_RDLOCK: i32 = 2314;
+pub const SQLITE_IOERR_DELETE: i32 = 2570;
+pub const SQLITE_IOERR_BLOCKED: i32 = 2826;
+pub const SQLITE_IOERR_NOMEM: i32 = 3082;
+pub const SQLITE_IOERR_ACCESS: i32 = 3338;
+pub const SQLITE_IOERR_CHECKRESERVEDLOCK: i32 = 3594;
+pub const SQLITE_IOERR_LOCK: i32 = 3850;
+pub const SQLITE_IOERR_CLOSE: i32 = 4106;
+pub const SQLITE_IOERR_DIR_CLOSE: i32 = 4362;
+pub const SQLITE_IOERR_SHMOPEN: i32 = 4618;
+pub const SQLITE_IOERR_SHMSIZE: i32 = 4874;
+pub const SQLITE_IOERR_SHMLOCK: i32 = 5130;
+pub const SQLITE_IOERR_SHMMAP: i32 = 5386;
+pub const SQLITE_IOERR_SEEK: i32 = 5642;
+pub const SQLITE_IOERR_DELETE_NOENT: i32 = 5898;
+pub const SQLITE_IOERR_MMAP: i32 = 6154;
+pub const SQLITE_IOERR_GETTEMPPATH: i32 = 6410;
+pub const SQLITE_IOERR_CONVPATH: i32 = 6666;
+pub const SQLITE_IOERR_VNODE: i32 = 6922;
+pub const SQLITE_IOERR_AUTH: i32 = 7178;
+pub const SQLITE_IOERR_BEGIN_ATOMIC: i32 = 7434;
+pub const SQLITE_IOERR_COMMIT_ATOMIC: i32 = 7690;
+pub const SQLITE_IOERR_ROLLBACK_ATOMIC: i32 = 7946;
+pub const SQLITE_IOERR_DATA: i32 = 8202;
+pub const SQLITE_IOERR_CORRUPTFS: i32 = 8458;
+pub const SQLITE_IOERR_IN_PAGE: i32 = 8714;
+pub const SQLITE_LOCKED_SHAREDCACHE: i32 = 262;
+pub const SQLITE_LOCKED_VTAB: i32 = 518;
+pub const SQLITE_BUSY_RECOVERY: i32 = 261;
+pub const SQLITE_BUSY_SNAPSHOT: i32 = 517;
+pub const SQLITE_BUSY_TIMEOUT: i32 = 773;
+pub const SQLITE_CANTOPEN_NOTEMPDIR: i32 = 270;
+pub const SQLITE_CANTOPEN_ISDIR: i32 = 526;
+pub const SQLITE_CANTOPEN_FULLPATH: i32 = 782;
+pub const SQLITE_CANTOPEN_CONVPATH: i32 = 1038;
+pub const SQLITE_CANTOPEN_DIRTYWAL: i32 = 1294;
+pub const SQLITE_CANTOPEN_SYMLINK: i32 = 1550;
+pub const SQLITE_CORRUPT_VTAB: i32 = 267;
+pub const SQLITE_CORRUPT_SEQUENCE: i32 = 523;
+pub const SQLITE_CORRUPT_INDEX: i32 = 779;
+pub const SQLITE_READONLY_RECOVERY: i32 = 264;
+pub const SQLITE_READONLY_CANTLOCK: i32 = 520;
+pub const SQLITE_READONLY_ROLLBACK: i32 = 776;
+pub const SQLITE_READONLY_DBMOVED: i32 = 1032;
+pub const SQLITE_READONLY_CANTINIT: i32 = 1288;
+pub const SQLITE_READONLY_DIRECTORY: i32 = 1544;
+pub const SQLITE_ABORT_ROLLBACK: i32 = 516;
+pub const SQLITE_CONSTRAINT_CHECK: i32 = 275;
+pub const SQLITE_CONSTRAINT_COMMITHOOK: i32 = 531;
+pub const SQLITE_CONSTRAINT_FOREIGNKEY: i32 = 787;
+pub const SQLITE_CONSTRAINT_FUNCTION: i32 = 1043;
+pub const SQLITE_CONSTRAINT_NOTNULL: i32 = 1299;
+pub const SQLITE_CONSTRAINT_PRIMARYKEY: i32 = 1555;
+pub const SQLITE_CONSTRAINT_TRIGGER: i32 = 1811;
+pub const SQLITE_CONSTRAINT_UNIQUE: i32 = 2067;
+pub const SQLITE_CONSTRAINT_VTAB: i32 = 2323;
+pub const SQLITE_CONSTRAINT_ROWID: i32 = 2579;
+pub const SQLITE_CONSTRAINT_PINNED: i32 = 2835;
+pub const SQLITE_CONSTRAINT_DATATYPE: i32 = 3091;
+pub const SQLITE_NOTICE_RECOVER_WAL: i32 = 283;
+pub const SQLITE_NOTICE_RECOVER_ROLLBACK: i32 = 539;
+pub const SQLITE_NOTICE_RBU: i32 = 795;
+pub const SQLITE_WARNING_AUTOINDEX: i32 = 284;
+pub const SQLITE_AUTH_USER: i32 = 279;
+pub const SQLITE_OK_LOAD_PERMANENTLY: i32 = 256;
+pub const SQLITE_OK_SYMLINK: i32 = 512;
+pub const SQLITE_OPEN_READONLY: i32 = 1;
+pub const SQLITE_OPEN_READWRITE: i32 = 2;
+pub const SQLITE_OPEN_CREATE: i32 = 4;
+pub const SQLITE_OPEN_DELETEONCLOSE: i32 = 8;
+pub const SQLITE_OPEN_EXCLUSIVE: i32 = 16;
+pub const SQLITE_OPEN_AUTOPROXY: i32 = 32;
+pub const SQLITE_OPEN_URI: i32 = 64;
+pub const SQLITE_OPEN_MEMORY: i32 = 128;
+pub const SQLITE_OPEN_MAIN_DB: i32 = 256;
+pub const SQLITE_OPEN_TEMP_DB: i32 = 512;
+pub const SQLITE_OPEN_TRANSIENT_DB: i32 = 1024;
+pub const SQLITE_OPEN_MAIN_JOURNAL: i32 = 2048;
+pub const SQLITE_OPEN_TEMP_JOURNAL: i32 = 4096;
+pub const SQLITE_OPEN_SUBJOURNAL: i32 = 8192;
+pub const SQLITE_OPEN_SUPER_JOURNAL: i32 = 16384;
+pub const SQLITE_OPEN_NOMUTEX: i32 = 32768;
+pub const SQLITE_OPEN_FULLMUTEX: i32 = 65536;
+pub const SQLITE_OPEN_SHAREDCACHE: i32 = 131072;
+pub const SQLITE_OPEN_PRIVATECACHE: i32 = 262144;
+pub const SQLITE_OPEN_WAL: i32 = 524288;
+pub const SQLITE_OPEN_NOFOLLOW: i32 = 16777216;
+pub const SQLITE_OPEN_EXRESCODE: i32 = 33554432;
+pub const SQLITE_OPEN_MASTER_JOURNAL: i32 = 16384;
+pub const SQLITE_IOCAP_ATOMIC: i32 = 1;
+pub const SQLITE_IOCAP_ATOMIC512: i32 = 2;
+pub const SQLITE_IOCAP_ATOMIC1K: i32 = 4;
+pub const SQLITE_IOCAP_ATOMIC2K: i32 = 8;
+pub const SQLITE_IOCAP_ATOMIC4K: i32 = 16;
+pub const SQLITE_IOCAP_ATOMIC8K: i32 = 32;
+pub const SQLITE_IOCAP_ATOMIC16K: i32 = 64;
+pub const SQLITE_IOCAP_ATOMIC32K: i32 = 128;
+pub const SQLITE_IOCAP_ATOMIC64K: i32 = 256;
+pub const SQLITE_IOCAP_SAFE_APPEND: i32 = 512;
+pub const SQLITE_IOCAP_SEQUENTIAL: i32 = 1024;
+pub const SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN: i32 = 2048;
+pub const SQLITE_IOCAP_POWERSAFE_OVERWRITE: i32 = 4096;
+pub const SQLITE_IOCAP_IMMUTABLE: i32 = 8192;
+pub const SQLITE_IOCAP_BATCH_ATOMIC: i32 = 16384;
+pub const SQLITE_LOCK_NONE: i32 = 0;
+pub const SQLITE_LOCK_SHARED: i32 = 1;
+pub const SQLITE_LOCK_RESERVED: i32 = 2;
+pub const SQLITE_LOCK_PENDING: i32 = 3;
+pub const SQLITE_LOCK_EXCLUSIVE: i32 = 4;
+pub const SQLITE_SYNC_NORMAL: i32 = 2;
+pub const SQLITE_SYNC_FULL: i32 = 3;
+pub const SQLITE_SYNC_DATAONLY: i32 = 16;
+pub const SQLITE_FCNTL_LOCKSTATE: i32 = 1;
+pub const SQLITE_FCNTL_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_FCNTL_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_FCNTL_LAST_ERRNO: i32 = 4;
+pub const SQLITE_FCNTL_SIZE_HINT: i32 = 5;
+pub const SQLITE_FCNTL_CHUNK_SIZE: i32 = 6;
+pub const SQLITE_FCNTL_FILE_POINTER: i32 = 7;
+pub const SQLITE_FCNTL_SYNC_OMITTED: i32 = 8;
+pub const SQLITE_FCNTL_WIN32_AV_RETRY: i32 = 9;
+pub const SQLITE_FCNTL_PERSIST_WAL: i32 = 10;
+pub const SQLITE_FCNTL_OVERWRITE: i32 = 11;
+pub const SQLITE_FCNTL_VFSNAME: i32 = 12;
+pub const SQLITE_FCNTL_POWERSAFE_OVERWRITE: i32 = 13;
+pub const SQLITE_FCNTL_PRAGMA: i32 = 14;
+pub const SQLITE_FCNTL_BUSYHANDLER: i32 = 15;
+pub const SQLITE_FCNTL_TEMPFILENAME: i32 = 16;
+pub const SQLITE_FCNTL_MMAP_SIZE: i32 = 18;
+pub const SQLITE_FCNTL_TRACE: i32 = 19;
+pub const SQLITE_FCNTL_HAS_MOVED: i32 = 20;
+pub const SQLITE_FCNTL_SYNC: i32 = 21;
+pub const SQLITE_FCNTL_COMMIT_PHASETWO: i32 = 22;
+pub const SQLITE_FCNTL_WIN32_SET_HANDLE: i32 = 23;
+pub const SQLITE_FCNTL_WAL_BLOCK: i32 = 24;
+pub const SQLITE_FCNTL_ZIPVFS: i32 = 25;
+pub const SQLITE_FCNTL_RBU: i32 = 26;
+pub const SQLITE_FCNTL_VFS_POINTER: i32 = 27;
+pub const SQLITE_FCNTL_JOURNAL_POINTER: i32 = 28;
+pub const SQLITE_FCNTL_WIN32_GET_HANDLE: i32 = 29;
+pub const SQLITE_FCNTL_PDB: i32 = 30;
+pub const SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: i32 = 31;
+pub const SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: i32 = 32;
+pub const SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: i32 = 33;
+pub const SQLITE_FCNTL_LOCK_TIMEOUT: i32 = 34;
+pub const SQLITE_FCNTL_DATA_VERSION: i32 = 35;
+pub const SQLITE_FCNTL_SIZE_LIMIT: i32 = 36;
+pub const SQLITE_FCNTL_CKPT_DONE: i32 = 37;
+pub const SQLITE_FCNTL_RESERVE_BYTES: i32 = 38;
+pub const SQLITE_FCNTL_CKPT_START: i32 = 39;
+pub const SQLITE_FCNTL_EXTERNAL_READER: i32 = 40;
+pub const SQLITE_FCNTL_CKSM_FILE: i32 = 41;
+pub const SQLITE_FCNTL_RESET_CACHE: i32 = 42;
+pub const SQLITE_GET_LOCKPROXYFILE: i32 = 2;
+pub const SQLITE_SET_LOCKPROXYFILE: i32 = 3;
+pub const SQLITE_LAST_ERRNO: i32 = 4;
+pub const SQLITE_ACCESS_EXISTS: i32 = 0;
+pub const SQLITE_ACCESS_READWRITE: i32 = 1;
+pub const SQLITE_ACCESS_READ: i32 = 2;
+pub const SQLITE_SHM_UNLOCK: i32 = 1;
+pub const SQLITE_SHM_LOCK: i32 = 2;
+pub const SQLITE_SHM_SHARED: i32 = 4;
+pub const SQLITE_SHM_EXCLUSIVE: i32 = 8;
+pub const SQLITE_SHM_NLOCK: i32 = 8;
+pub const SQLITE_CONFIG_SINGLETHREAD: i32 = 1;
+pub const SQLITE_CONFIG_MULTITHREAD: i32 = 2;
+pub const SQLITE_CONFIG_SERIALIZED: i32 = 3;
+pub const SQLITE_CONFIG_MALLOC: i32 = 4;
+pub const SQLITE_CONFIG_GETMALLOC: i32 = 5;
+pub const SQLITE_CONFIG_SCRATCH: i32 = 6;
+pub const SQLITE_CONFIG_PAGECACHE: i32 = 7;
+pub const SQLITE_CONFIG_HEAP: i32 = 8;
+pub const SQLITE_CONFIG_MEMSTATUS: i32 = 9;
+pub const SQLITE_CONFIG_MUTEX: i32 = 10;
+pub const SQLITE_CONFIG_GETMUTEX: i32 = 11;
+pub const SQLITE_CONFIG_LOOKASIDE: i32 = 13;
+pub const SQLITE_CONFIG_PCACHE: i32 = 14;
+pub const SQLITE_CONFIG_GETPCACHE: i32 = 15;
+pub const SQLITE_CONFIG_LOG: i32 = 16;
+pub const SQLITE_CONFIG_URI: i32 = 17;
+pub const SQLITE_CONFIG_PCACHE2: i32 = 18;
+pub const SQLITE_CONFIG_GETPCACHE2: i32 = 19;
+pub const SQLITE_CONFIG_COVERING_INDEX_SCAN: i32 = 20;
+pub const SQLITE_CONFIG_SQLLOG: i32 = 21;
+pub const SQLITE_CONFIG_MMAP_SIZE: i32 = 22;
+pub const SQLITE_CONFIG_WIN32_HEAPSIZE: i32 = 23;
+pub const SQLITE_CONFIG_PCACHE_HDRSZ: i32 = 24;
+pub const SQLITE_CONFIG_PMASZ: i32 = 25;
+pub const SQLITE_CONFIG_STMTJRNL_SPILL: i32 = 26;
+pub const SQLITE_CONFIG_SMALL_MALLOC: i32 = 27;
+pub const SQLITE_CONFIG_SORTERREF_SIZE: i32 = 28;
+pub const SQLITE_CONFIG_MEMDB_MAXSIZE: i32 = 29;
+pub const SQLITE_DBCONFIG_MAINDBNAME: i32 = 1000;
+pub const SQLITE_DBCONFIG_LOOKASIDE: i32 = 1001;
+pub const SQLITE_DBCONFIG_ENABLE_FKEY: i32 = 1002;
+pub const SQLITE_DBCONFIG_ENABLE_TRIGGER: i32 = 1003;
+pub const SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER: i32 = 1004;
+pub const SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION: i32 = 1005;
+pub const SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE: i32 = 1006;
+pub const SQLITE_DBCONFIG_ENABLE_QPSG: i32 = 1007;
+pub const SQLITE_DBCONFIG_TRIGGER_EQP: i32 = 1008;
+pub const SQLITE_DBCONFIG_RESET_DATABASE: i32 = 1009;
+pub const SQLITE_DBCONFIG_DEFENSIVE: i32 = 1010;
+pub const SQLITE_DBCONFIG_WRITABLE_SCHEMA: i32 = 1011;
+pub const SQLITE_DBCONFIG_LEGACY_ALTER_TABLE: i32 = 1012;
+pub const SQLITE_DBCONFIG_DQS_DML: i32 = 1013;
+pub const SQLITE_DBCONFIG_DQS_DDL: i32 = 1014;
+pub const SQLITE_DBCONFIG_ENABLE_VIEW: i32 = 1015;
+pub const SQLITE_DBCONFIG_LEGACY_FILE_FORMAT: i32 = 1016;
+pub const SQLITE_DBCONFIG_TRUSTED_SCHEMA: i32 = 1017;
+pub const SQLITE_DBCONFIG_STMT_SCANSTATUS: i32 = 1018;
+pub const SQLITE_DBCONFIG_REVERSE_SCANORDER: i32 = 1019;
+pub const SQLITE_DBCONFIG_MAX: i32 = 1019;
+pub const SQLITE_DENY: i32 = 1;
+pub const SQLITE_IGNORE: i32 = 2;
+pub const SQLITE_CREATE_INDEX: i32 = 1;
+pub const SQLITE_CREATE_TABLE: i32 = 2;
+pub const SQLITE_CREATE_TEMP_INDEX: i32 = 3;
+pub const SQLITE_CREATE_TEMP_TABLE: i32 = 4;
+pub const SQLITE_CREATE_TEMP_TRIGGER: i32 = 5;
+pub const SQLITE_CREATE_TEMP_VIEW: i32 = 6;
+pub const SQLITE_CREATE_TRIGGER: i32 = 7;
+pub const SQLITE_CREATE_VIEW: i32 = 8;
+pub const SQLITE_DELETE: i32 = 9;
+pub const SQLITE_DROP_INDEX: i32 = 10;
+pub const SQLITE_DROP_TABLE: i32 = 11;
+pub const SQLITE_DROP_TEMP_INDEX: i32 = 12;
+pub const SQLITE_DROP_TEMP_TABLE: i32 = 13;
+pub const SQLITE_DROP_TEMP_TRIGGER: i32 = 14;
+pub const SQLITE_DROP_TEMP_VIEW: i32 = 15;
+pub const SQLITE_DROP_TRIGGER: i32 = 16;
+pub const SQLITE_DROP_VIEW: i32 = 17;
+pub const SQLITE_INSERT: i32 = 18;
+pub const SQLITE_PRAGMA: i32 = 19;
+pub const SQLITE_READ: i32 = 20;
+pub const SQLITE_SELECT: i32 = 21;
+pub const SQLITE_TRANSACTION: i32 = 22;
+pub const SQLITE_UPDATE: i32 = 23;
+pub const SQLITE_ATTACH: i32 = 24;
+pub const SQLITE_DETACH: i32 = 25;
+pub const SQLITE_ALTER_TABLE: i32 = 26;
+pub const SQLITE_REINDEX: i32 = 27;
+pub const SQLITE_ANALYZE: i32 = 28;
+pub const SQLITE_CREATE_VTABLE: i32 = 29;
+pub const SQLITE_DROP_VTABLE: i32 = 30;
+pub const SQLITE_FUNCTION: i32 = 31;
+pub const SQLITE_SAVEPOINT: i32 = 32;
+pub const SQLITE_COPY: i32 = 0;
+pub const SQLITE_RECURSIVE: i32 = 33;
+pub const SQLITE_TRACE_STMT: i32 = 1;
+pub const SQLITE_TRACE_PROFILE: i32 = 2;
+pub const SQLITE_TRACE_ROW: i32 = 4;
+pub const SQLITE_TRACE_CLOSE: i32 = 8;
+pub const SQLITE_LIMIT_LENGTH: i32 = 0;
+pub const SQLITE_LIMIT_SQL_LENGTH: i32 = 1;
+pub const SQLITE_LIMIT_COLUMN: i32 = 2;
+pub const SQLITE_LIMIT_EXPR_DEPTH: i32 = 3;
+pub const SQLITE_LIMIT_COMPOUND_SELECT: i32 = 4;
+pub const SQLITE_LIMIT_VDBE_OP: i32 = 5;
+pub const SQLITE_LIMIT_FUNCTION_ARG: i32 = 6;
+pub const SQLITE_LIMIT_ATTACHED: i32 = 7;
+pub const SQLITE_LIMIT_LIKE_PATTERN_LENGTH: i32 = 8;
+pub const SQLITE_LIMIT_VARIABLE_NUMBER: i32 = 9;
+pub const SQLITE_LIMIT_TRIGGER_DEPTH: i32 = 10;
+pub const SQLITE_LIMIT_WORKER_THREADS: i32 = 11;
+pub const SQLITE_PREPARE_PERSISTENT: ::std::os::raw::c_uint = 1;
+pub const SQLITE_PREPARE_NORMALIZE: ::std::os::raw::c_uint = 2;
+pub const SQLITE_PREPARE_NO_VTAB: ::std::os::raw::c_uint = 4;
+pub const SQLITE_INTEGER: i32 = 1;
+pub const SQLITE_FLOAT: i32 = 2;
+pub const SQLITE_BLOB: i32 = 4;
+pub const SQLITE_NULL: i32 = 5;
+pub const SQLITE_TEXT: i32 = 3;
+pub const SQLITE3_TEXT: i32 = 3;
+pub const SQLITE_UTF8: i32 = 1;
+pub const SQLITE_UTF16LE: i32 = 2;
+pub const SQLITE_UTF16BE: i32 = 3;
+pub const SQLITE_UTF16: i32 = 4;
+pub const SQLITE_ANY: i32 = 5;
+pub const SQLITE_UTF16_ALIGNED: i32 = 8;
+pub const SQLITE_DETERMINISTIC: i32 = 2048;
+pub const SQLITE_DIRECTONLY: i32 = 524288;
+pub const SQLITE_SUBTYPE: i32 = 1048576;
+pub const SQLITE_INNOCUOUS: i32 = 2097152;
+pub const SQLITE_WIN32_DATA_DIRECTORY_TYPE: i32 = 1;
+pub const SQLITE_WIN32_TEMP_DIRECTORY_TYPE: i32 = 2;
+pub const SQLITE_TXN_NONE: i32 = 0;
+pub const SQLITE_TXN_READ: i32 = 1;
+pub const SQLITE_TXN_WRITE: i32 = 2;
+pub const SQLITE_INDEX_SCAN_UNIQUE: i32 = 1;
+pub const SQLITE_INDEX_CONSTRAINT_EQ: i32 = 2;
+pub const SQLITE_INDEX_CONSTRAINT_GT: i32 = 4;
+pub const SQLITE_INDEX_CONSTRAINT_LE: i32 = 8;
+pub const SQLITE_INDEX_CONSTRAINT_LT: i32 = 16;
+pub const SQLITE_INDEX_CONSTRAINT_GE: i32 = 32;
+pub const SQLITE_INDEX_CONSTRAINT_MATCH: i32 = 64;
+pub const SQLITE_INDEX_CONSTRAINT_LIKE: i32 = 65;
+pub const SQLITE_INDEX_CONSTRAINT_GLOB: i32 = 66;
+pub const SQLITE_INDEX_CONSTRAINT_REGEXP: i32 = 67;
+pub const SQLITE_INDEX_CONSTRAINT_NE: i32 = 68;
+pub const SQLITE_INDEX_CONSTRAINT_ISNOT: i32 = 69;
+pub const SQLITE_INDEX_CONSTRAINT_ISNOTNULL: i32 = 70;
+pub const SQLITE_INDEX_CONSTRAINT_ISNULL: i32 = 71;
+pub const SQLITE_INDEX_CONSTRAINT_IS: i32 = 72;
+pub const SQLITE_INDEX_CONSTRAINT_LIMIT: i32 = 73;
+pub const SQLITE_INDEX_CONSTRAINT_OFFSET: i32 = 74;
+pub const SQLITE_INDEX_CONSTRAINT_FUNCTION: i32 = 150;
+pub const SQLITE_MUTEX_FAST: i32 = 0;
+pub const SQLITE_MUTEX_RECURSIVE: i32 = 1;
+pub const SQLITE_MUTEX_STATIC_MAIN: i32 = 2;
+pub const SQLITE_MUTEX_STATIC_MEM: i32 = 3;
+pub const SQLITE_MUTEX_STATIC_MEM2: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_OPEN: i32 = 4;
+pub const SQLITE_MUTEX_STATIC_PRNG: i32 = 5;
+pub const SQLITE_MUTEX_STATIC_LRU: i32 = 6;
+pub const SQLITE_MUTEX_STATIC_LRU2: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_PMEM: i32 = 7;
+pub const SQLITE_MUTEX_STATIC_APP1: i32 = 8;
+pub const SQLITE_MUTEX_STATIC_APP2: i32 = 9;
+pub const SQLITE_MUTEX_STATIC_APP3: i32 = 10;
+pub const SQLITE_MUTEX_STATIC_VFS1: i32 = 11;
+pub const SQLITE_MUTEX_STATIC_VFS2: i32 = 12;
+pub const SQLITE_MUTEX_STATIC_VFS3: i32 = 13;
+pub const SQLITE_MUTEX_STATIC_MASTER: i32 = 2;
+pub const SQLITE_TESTCTRL_FIRST: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_SAVE: i32 = 5;
+pub const SQLITE_TESTCTRL_PRNG_RESTORE: i32 = 6;
+pub const SQLITE_TESTCTRL_PRNG_RESET: i32 = 7;
+pub const SQLITE_TESTCTRL_FK_NO_ACTION: i32 = 7;
+pub const SQLITE_TESTCTRL_BITVEC_TEST: i32 = 8;
+pub const SQLITE_TESTCTRL_FAULT_INSTALL: i32 = 9;
+pub const SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: i32 = 10;
+pub const SQLITE_TESTCTRL_PENDING_BYTE: i32 = 11;
+pub const SQLITE_TESTCTRL_ASSERT: i32 = 12;
+pub const SQLITE_TESTCTRL_ALWAYS: i32 = 13;
+pub const SQLITE_TESTCTRL_RESERVE: i32 = 14;
+pub const SQLITE_TESTCTRL_OPTIMIZATIONS: i32 = 15;
+pub const SQLITE_TESTCTRL_ISKEYWORD: i32 = 16;
+pub const SQLITE_TESTCTRL_SCRATCHMALLOC: i32 = 17;
+pub const SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: i32 = 17;
+pub const SQLITE_TESTCTRL_LOCALTIME_FAULT: i32 = 18;
+pub const SQLITE_TESTCTRL_EXPLAIN_STMT: i32 = 19;
+pub const SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: i32 = 19;
+pub const SQLITE_TESTCTRL_NEVER_CORRUPT: i32 = 20;
+pub const SQLITE_TESTCTRL_VDBE_COVERAGE: i32 = 21;
+pub const SQLITE_TESTCTRL_BYTEORDER: i32 = 22;
+pub const SQLITE_TESTCTRL_ISINIT: i32 = 23;
+pub const SQLITE_TESTCTRL_SORTER_MMAP: i32 = 24;
+pub const SQLITE_TESTCTRL_IMPOSTER: i32 = 25;
+pub const SQLITE_TESTCTRL_PARSER_COVERAGE: i32 = 26;
+pub const SQLITE_TESTCTRL_RESULT_INTREAL: i32 = 27;
+pub const SQLITE_TESTCTRL_PRNG_SEED: i32 = 28;
+pub const SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: i32 = 29;
+pub const SQLITE_TESTCTRL_SEEK_COUNT: i32 = 30;
+pub const SQLITE_TESTCTRL_TRACEFLAGS: i32 = 31;
+pub const SQLITE_TESTCTRL_TUNE: i32 = 32;
+pub const SQLITE_TESTCTRL_LOGEST: i32 = 33;
+pub const SQLITE_TESTCTRL_USELONGDOUBLE: i32 = 34;
+pub const SQLITE_TESTCTRL_LAST: i32 = 34;
+pub const SQLITE_STATUS_MEMORY_USED: i32 = 0;
+pub const SQLITE_STATUS_PAGECACHE_USED: i32 = 1;
+pub const SQLITE_STATUS_PAGECACHE_OVERFLOW: i32 = 2;
+pub const SQLITE_STATUS_SCRATCH_USED: i32 = 3;
+pub const SQLITE_STATUS_SCRATCH_OVERFLOW: i32 = 4;
+pub const SQLITE_STATUS_MALLOC_SIZE: i32 = 5;
+pub const SQLITE_STATUS_PARSER_STACK: i32 = 6;
+pub const SQLITE_STATUS_PAGECACHE_SIZE: i32 = 7;
+pub const SQLITE_STATUS_SCRATCH_SIZE: i32 = 8;
+pub const SQLITE_STATUS_MALLOC_COUNT: i32 = 9;
+pub const SQLITE_DBSTATUS_LOOKASIDE_USED: i32 = 0;
+pub const SQLITE_DBSTATUS_CACHE_USED: i32 = 1;
+pub const SQLITE_DBSTATUS_SCHEMA_USED: i32 = 2;
+pub const SQLITE_DBSTATUS_STMT_USED: i32 = 3;
+pub const SQLITE_DBSTATUS_LOOKASIDE_HIT: i32 = 4;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: i32 = 5;
+pub const SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: i32 = 6;
+pub const SQLITE_DBSTATUS_CACHE_HIT: i32 = 7;
+pub const SQLITE_DBSTATUS_CACHE_MISS: i32 = 8;
+pub const SQLITE_DBSTATUS_CACHE_WRITE: i32 = 9;
+pub const SQLITE_DBSTATUS_DEFERRED_FKS: i32 = 10;
+pub const SQLITE_DBSTATUS_CACHE_USED_SHARED: i32 = 11;
+pub const SQLITE_DBSTATUS_CACHE_SPILL: i32 = 12;
+pub const SQLITE_DBSTATUS_MAX: i32 = 12;
+pub const SQLITE_STMTSTATUS_FULLSCAN_STEP: i32 = 1;
+pub const SQLITE_STMTSTATUS_SORT: i32 = 2;
+pub const SQLITE_STMTSTATUS_AUTOINDEX: i32 = 3;
+pub const SQLITE_STMTSTATUS_VM_STEP: i32 = 4;
+pub const SQLITE_STMTSTATUS_REPREPARE: i32 = 5;
+pub const SQLITE_STMTSTATUS_RUN: i32 = 6;
+pub const SQLITE_STMTSTATUS_FILTER_MISS: i32 = 7;
+pub const SQLITE_STMTSTATUS_FILTER_HIT: i32 = 8;
+pub const SQLITE_STMTSTATUS_MEMUSED: i32 = 99;
+pub const SQLITE_CHECKPOINT_PASSIVE: i32 = 0;
+pub const SQLITE_CHECKPOINT_FULL: i32 = 1;
+pub const SQLITE_CHECKPOINT_RESTART: i32 = 2;
+pub const SQLITE_CHECKPOINT_TRUNCATE: i32 = 3;
+pub const SQLITE_VTAB_CONSTRAINT_SUPPORT: i32 = 1;
+pub const SQLITE_VTAB_INNOCUOUS: i32 = 2;
+pub const SQLITE_VTAB_DIRECTONLY: i32 = 3;
+pub const SQLITE_VTAB_USES_ALL_SCHEMAS: i32 = 4;
+pub const SQLITE_ROLLBACK: i32 = 1;
+pub const SQLITE_FAIL: i32 = 3;
+pub const SQLITE_REPLACE: i32 = 5;
+pub const SQLITE_SCANSTAT_NLOOP: i32 = 0;
+pub const SQLITE_SCANSTAT_NVISIT: i32 = 1;
+pub const SQLITE_SCANSTAT_EST: i32 = 2;
+pub const SQLITE_SCANSTAT_NAME: i32 = 3;
+pub const SQLITE_SCANSTAT_EXPLAIN: i32 = 4;
+pub const SQLITE_SCANSTAT_SELECTID: i32 = 5;
+pub const SQLITE_SCANSTAT_PARENTID: i32 = 6;
+pub const SQLITE_SCANSTAT_NCYCLE: i32 = 7;
+pub const SQLITE_SCANSTAT_COMPLEX: i32 = 1;
+pub const SQLITE_SERIALIZE_NOCOPY: ::std::os::raw::c_uint = 1;
+pub const SQLITE_DESERIALIZE_FREEONCLOSE: ::std::os::raw::c_uint = 1;
+pub const SQLITE_DESERIALIZE_RESIZEABLE: ::std::os::raw::c_uint = 2;
+pub const SQLITE_DESERIALIZE_READONLY: ::std::os::raw::c_uint = 4;
+pub const NOT_WITHIN: i32 = 0;
+pub const PARTLY_WITHIN: i32 = 1;
+pub const FULLY_WITHIN: i32 = 2;
+pub const FTS5_TOKENIZE_QUERY: i32 = 1;
+pub const FTS5_TOKENIZE_PREFIX: i32 = 2;
+pub const FTS5_TOKENIZE_DOCUMENT: i32 = 4;
+pub const FTS5_TOKENIZE_AUX: i32 = 8;
+pub const FTS5_TOKEN_COLOCATED: i32 = 1;
+extern "C" {
+ pub static sqlite3_version: [::std::os::raw::c_char; 0usize];
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3 {
+ _unused: [u8; 0],
+}
+pub type sqlite_int64 = ::std::os::raw::c_longlong;
+pub type sqlite_uint64 = ::std::os::raw::c_ulonglong;
+pub type sqlite3_int64 = sqlite_int64;
+pub type sqlite3_uint64 = sqlite_uint64;
+pub type sqlite3_callback = ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_file {
+ pub pMethods: *const sqlite3_io_methods,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_io_methods {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xRead: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *mut ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xWrite: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: *const ::std::os::raw::c_void,
+ iAmt: ::std::os::raw::c_int,
+ iOfst: sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file, size: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pSize: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnlock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCheckReservedLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFileControl: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ op: ::std::os::raw::c_int,
+ pArg: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSectorSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xDeviceCharacteristics: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_file) -> ::std::os::raw::c_int,
+ >,
+ pub xShmMap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iPg: ::std::os::raw::c_int,
+ pgsz: ::std::os::raw::c_int,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmLock: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ offset: ::std::os::raw::c_int,
+ n: ::std::os::raw::c_int,
+ flags: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShmBarrier: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_file)>,
+ pub xShmUnmap: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ deleteFlag: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ iAmt: ::std::os::raw::c_int,
+ pp: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUnfetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_file,
+ iOfst: sqlite3_int64,
+ p: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex {
+ _unused: [u8; 0],
+}
+pub type sqlite3_filename = *const ::std::os::raw::c_char;
+pub type sqlite3_syscall_ptr = ::std::option::Option<unsafe extern "C" fn()>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vfs {
+ pub iVersion: ::std::os::raw::c_int,
+ pub szOsFile: ::std::os::raw::c_int,
+ pub mxPathname: ::std::os::raw::c_int,
+ pub pNext: *mut sqlite3_vfs,
+ pub zName: *const ::std::os::raw::c_char,
+ pub pAppData: *mut ::std::os::raw::c_void,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: sqlite3_filename,
+ arg2: *mut sqlite3_file,
+ flags: ::std::os::raw::c_int,
+ pOutFlags: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ syncDir: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xAccess: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ flags: ::std::os::raw::c_int,
+ pResOut: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFullPathname: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ nOut: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDlOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zFilename: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xDlError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zErrMsg: *mut ::std::os::raw::c_char,
+ ),
+ >,
+ pub xDlSym: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ) -> ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut ::std::os::raw::c_void,
+ zSymbol: *const ::std::os::raw::c_char,
+ ),
+ >,
+ >,
+ pub xDlClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub xRandomness: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ nByte: ::std::os::raw::c_int,
+ zOut: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSleep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ microseconds: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTime: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs, arg2: *mut f64) -> ::std::os::raw::c_int,
+ >,
+ pub xGetLastError: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCurrentTimeInt64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ arg2: sqlite3_syscall_ptr,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> sqlite3_syscall_ptr,
+ >,
+ pub xNextSystemCall: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ zName: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mem_methods {
+ pub xMalloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xRealloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xSize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xRoundup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub pAppData: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_stmt {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_value {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_context {
+ _unused: [u8; 0],
+}
+pub type sqlite3_destructor_type =
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>;
+extern "C" {
+ pub static mut sqlite3_temp_directory: *mut ::std::os::raw::c_char;
+}
+extern "C" {
+ pub static mut sqlite3_data_directory: *mut ::std::os::raw::c_char;
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_module {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xConnect: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ pAux: *mut ::std::os::raw::c_void,
+ argc: ::std::os::raw::c_int,
+ argv: *const *const ::std::os::raw::c_char,
+ ppVTab: *mut *mut sqlite3_vtab,
+ arg2: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBestIndex: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: *mut sqlite3_index_info,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDisconnect: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xOpen: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ ppCursor: *mut *mut sqlite3_vtab_cursor,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xClose: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xFilter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ idxNum: ::std::os::raw::c_int,
+ idxStr: *const ::std::os::raw::c_char,
+ argc: ::std::os::raw::c_int,
+ argv: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xNext: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xEof: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vtab_cursor) -> ::std::os::raw::c_int,
+ >,
+ pub xColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ arg2: *mut sqlite3_context,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab_cursor,
+ pRowid: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xUpdate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vtab,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ arg4: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xBegin: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xSync: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xCommit: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xRollback: ::std::option::Option<
+ unsafe extern "C" fn(pVTab: *mut sqlite3_vtab) -> ::std::os::raw::c_int,
+ >,
+ pub xFindFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ nArg: ::std::os::raw::c_int,
+ zName: *const ::std::os::raw::c_char,
+ pxFunc: *mut ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ ppArg: *mut *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRename: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVtab: *mut sqlite3_vtab,
+ zNew: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSavepoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRelease: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRollbackTo: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xShadowName: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+ pub xIntegrity: ::std::option::Option<
+ unsafe extern "C" fn(
+ pVTab: *mut sqlite3_vtab,
+ zSchema: *const ::std::os::raw::c_char,
+ zTabName: *const ::std::os::raw::c_char,
+ mFlags: ::std::os::raw::c_int,
+ pzErr: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_info {
+ pub nConstraint: ::std::os::raw::c_int,
+ pub aConstraint: *mut sqlite3_index_constraint,
+ pub nOrderBy: ::std::os::raw::c_int,
+ pub aOrderBy: *mut sqlite3_index_orderby,
+ pub aConstraintUsage: *mut sqlite3_index_constraint_usage,
+ pub idxNum: ::std::os::raw::c_int,
+ pub idxStr: *mut ::std::os::raw::c_char,
+ pub needToFreeIdxStr: ::std::os::raw::c_int,
+ pub orderByConsumed: ::std::os::raw::c_int,
+ pub estimatedCost: f64,
+ pub estimatedRows: sqlite3_int64,
+ pub idxFlags: ::std::os::raw::c_int,
+ pub colUsed: sqlite3_uint64,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint {
+ pub iColumn: ::std::os::raw::c_int,
+ pub op: ::std::os::raw::c_uchar,
+ pub usable: ::std::os::raw::c_uchar,
+ pub iTermOffset: ::std::os::raw::c_int,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_orderby {
+ pub iColumn: ::std::os::raw::c_int,
+ pub desc: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_index_constraint_usage {
+ pub argvIndex: ::std::os::raw::c_int,
+ pub omit: ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab {
+ pub pModule: *const sqlite3_module,
+ pub nRef: ::std::os::raw::c_int,
+ pub zErrMsg: *mut ::std::os::raw::c_char,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_vtab_cursor {
+ pub pVtab: *mut sqlite3_vtab,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_blob {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_mutex_methods {
+ pub xMutexInit: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexEnd: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub xMutexAlloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub xMutexFree: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexEnter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexTry: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexLeave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub xMutexHeld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub xMutexNotheld: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_str {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_page {
+ pub pBuf: *mut ::std::os::raw::c_void,
+ pub pExtra: *mut ::std::os::raw::c_void,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods2 {
+ pub iVersion: ::std::os::raw::c_int,
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ szExtra: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache_page,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut sqlite3_pcache_page,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+ pub xShrink: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_pcache_methods {
+ pub pArg: *mut ::std::os::raw::c_void,
+ pub xInit: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub xShutdown: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ szPage: ::std::os::raw::c_int,
+ bPurgeable: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_pcache,
+ >,
+ pub xCachesize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, nCachesize: ::std::os::raw::c_int),
+ >,
+ pub xPagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache) -> ::std::os::raw::c_int,
+ >,
+ pub xFetch: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ key: ::std::os::raw::c_uint,
+ createFlag: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xUnpin: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ discard: ::std::os::raw::c_int,
+ ),
+ >,
+ pub xRekey: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_pcache,
+ arg2: *mut ::std::os::raw::c_void,
+ oldKey: ::std::os::raw::c_uint,
+ newKey: ::std::os::raw::c_uint,
+ ),
+ >,
+ pub xTruncate: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_pcache, iLimit: ::std::os::raw::c_uint),
+ >,
+ pub xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_pcache)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_backup {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_snapshot {
+ pub hidden: [::std::os::raw::c_uchar; 48usize],
+}
+pub type sqlite3_rtree_dbl = f64;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_geometry {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_rtree_query_info {
+ pub pContext: *mut ::std::os::raw::c_void,
+ pub nParam: ::std::os::raw::c_int,
+ pub aParam: *mut sqlite3_rtree_dbl,
+ pub pUser: *mut ::std::os::raw::c_void,
+ pub xDelUser: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub aCoord: *mut sqlite3_rtree_dbl,
+ pub anQueue: *mut ::std::os::raw::c_uint,
+ pub nCoord: ::std::os::raw::c_int,
+ pub iLevel: ::std::os::raw::c_int,
+ pub mxLevel: ::std::os::raw::c_int,
+ pub iRowid: sqlite3_int64,
+ pub rParentScore: sqlite3_rtree_dbl,
+ pub eParentWithin: ::std::os::raw::c_int,
+ pub eWithin: ::std::os::raw::c_int,
+ pub rScore: sqlite3_rtree_dbl,
+ pub apSqlParam: *mut *mut sqlite3_value,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Context {
+ _unused: [u8; 0],
+}
+pub type fts5_extension_function = ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *const Fts5ExtensionApi,
+ pFts: *mut Fts5Context,
+ pCtx: *mut sqlite3_context,
+ nVal: ::std::os::raw::c_int,
+ apVal: *mut *mut sqlite3_value,
+ ),
+>;
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5PhraseIter {
+ pub a: *const ::std::os::raw::c_uchar,
+ pub b: *const ::std::os::raw::c_uchar,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5ExtensionApi {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xUserData: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xColumnCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xRowCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnRow: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnTotalSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut sqlite3_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ pCtx: *mut ::std::os::raw::c_void,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ arg6: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseCount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut Fts5Context) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInstCount: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pnInst: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xInst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iIdx: ::std::os::raw::c_int,
+ piPhrase: *mut ::std::os::raw::c_int,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xRowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Context) -> sqlite3_int64>,
+ pub xColumnText: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pz: *mut *const ::std::os::raw::c_char,
+ pn: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xColumnSize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iCol: ::std::os::raw::c_int,
+ pnToken: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xQueryPhrase: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ pUserData: *mut ::std::os::raw::c_void,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const Fts5ExtensionApi,
+ arg2: *mut Fts5Context,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xSetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ pAux: *mut ::std::os::raw::c_void,
+ xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xGetAuxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ bClear: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub xPhraseFirst: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNext: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ piOff: *mut ::std::os::raw::c_int,
+ ),
+ >,
+ pub xPhraseFirstColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ iPhrase: ::std::os::raw::c_int,
+ arg2: *mut Fts5PhraseIter,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xPhraseNextColumn: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Context,
+ arg2: *mut Fts5PhraseIter,
+ piCol: *mut ::std::os::raw::c_int,
+ ),
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct Fts5Tokenizer {
+ _unused: [u8; 0],
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_tokenizer {
+ pub xCreate: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ azArg: *mut *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ppOut: *mut *mut Fts5Tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xDelete: ::std::option::Option<unsafe extern "C" fn(arg1: *mut Fts5Tokenizer)>,
+ pub xTokenize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut Fts5Tokenizer,
+ pCtx: *mut ::std::os::raw::c_void,
+ flags: ::std::os::raw::c_int,
+ pText: *const ::std::os::raw::c_char,
+ nText: ::std::os::raw::c_int,
+ xToken: ::std::option::Option<
+ unsafe extern "C" fn(
+ pCtx: *mut ::std::os::raw::c_void,
+ tflags: ::std::os::raw::c_int,
+ pToken: *const ::std::os::raw::c_char,
+ nToken: ::std::os::raw::c_int,
+ iStart: ::std::os::raw::c_int,
+ iEnd: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct fts5_api {
+ pub iVersion: ::std::os::raw::c_int,
+ pub xCreateTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pUserData: *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xFindTokenizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ ppUserData: *mut *mut ::std::os::raw::c_void,
+ pTokenizer: *mut fts5_tokenizer,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub xCreateFunction: ::std::option::Option<
+ unsafe extern "C" fn(
+ pApi: *mut fts5_api,
+ zName: *const ::std::os::raw::c_char,
+ pUserData: *mut ::std::os::raw::c_void,
+ xFunction: fts5_extension_function,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+#[repr(C)]
+#[derive(Debug, Copy, Clone)]
+pub struct sqlite3_api_routines {
+ pub aggregate_context: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub aggregate_count: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int,
+ >,
+ pub bind_blob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_double: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_int: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_int64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite_int64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_null: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_parameter_count: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub bind_parameter_index: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_parameter_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub bind_text: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_text16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_value: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub busy_handler: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub busy_timeout: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub changes:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub close:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub collation_needed: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub collation_needed16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_blob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_bytes: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_bytes16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_count: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub column_database_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_database_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_decltype: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ i: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_decltype16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_double: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> f64,
+ >,
+ pub column_int: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_int64: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt, iCol: ::std::os::raw::c_int) -> sqlite_int64,
+ >,
+ pub column_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_origin_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_origin_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_table_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub column_table_name16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_text: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar,
+ >,
+ pub column_text16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void,
+ >,
+ pub column_type: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub column_value: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value,
+ >,
+ pub commit_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub complete: ::std::option::Option<
+ unsafe extern "C" fn(sql: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+ pub complete16: ::std::option::Option<
+ unsafe extern "C" fn(sql: *const ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ pub create_collation: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_collation16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_function: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_function16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_module: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub data_count: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub db_handle:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *mut sqlite3>,
+ pub declare_vtab: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub enable_shared_cache: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub errcode:
+ ::std::option::Option<unsafe extern "C" fn(db: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub errmsg: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char,
+ >,
+ pub errmsg16: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void,
+ >,
+ pub exec: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_callback,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub expired: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub finalize: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub free: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ pub free_table:
+ ::std::option::Option<unsafe extern "C" fn(result: *mut *mut ::std::os::raw::c_char)>,
+ pub get_autocommit:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub get_auxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub get_table: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut *mut *mut ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ arg6: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub global_recover: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub interruptx: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3)>,
+ pub last_insert_rowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite_int64>,
+ pub libversion: ::std::option::Option<unsafe extern "C" fn() -> *const ::std::os::raw::c_char>,
+ pub libversion_number: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub malloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut ::std::os::raw::c_void,
+ >,
+ pub mprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub open: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub open16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_void,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub profile: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite_uint64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub progress_handler: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ),
+ >,
+ pub realloc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub reset: ::std::option::Option<
+ unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub result_blob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_double:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: f64)>,
+ pub result_error: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ pub result_error16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ ),
+ >,
+ pub result_int: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int),
+ >,
+ pub result_int64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: sqlite_int64)>,
+ pub result_null: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ pub result_text: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text16: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text16be: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text16le: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_value: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: *mut sqlite3_value),
+ >,
+ pub rollback_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub set_authorizer: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub set_auxdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub xsnprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ ...
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub step: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub table_column_metadata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *mut *const ::std::os::raw::c_char,
+ arg6: *mut *const ::std::os::raw::c_char,
+ arg7: *mut ::std::os::raw::c_int,
+ arg8: *mut ::std::os::raw::c_int,
+ arg9: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub thread_cleanup: ::std::option::Option<unsafe extern "C" fn()>,
+ pub total_changes:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub trace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub transfer_bindings: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: *mut sqlite3_stmt,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub update_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub user_data: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context) -> *mut ::std::os::raw::c_void,
+ >,
+ pub value_blob: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_bytes: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_bytes16: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_double: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_value) -> f64>,
+ pub value_int: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_int64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_value) -> sqlite_int64>,
+ pub value_numeric_type: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub value_text: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_uchar,
+ >,
+ pub value_text16: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_text16be: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_text16le: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> *const ::std::os::raw::c_void,
+ >,
+ pub value_type: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub vmprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub overload_function: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare16_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub clear_bindings: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub create_module_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_zeroblob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub blob_bytes: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int,
+ >,
+ pub blob_close: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int,
+ >,
+ pub blob_open: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_int,
+ arg7: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub blob_read: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub blob_write: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub create_collation_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg6: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub file_control: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub memory_highwater:
+ ::std::option::Option<unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> sqlite3_int64>,
+ pub memory_used: ::std::option::Option<unsafe extern "C" fn() -> sqlite3_int64>,
+ pub mutex_alloc: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex,
+ >,
+ pub mutex_enter: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub mutex_free: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub mutex_leave: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_mutex)>,
+ pub mutex_try: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int,
+ >,
+ pub open_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ arg3: ::std::os::raw::c_int,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub release_memory: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub result_error_nomem: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ pub result_error_toobig:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ pub sleep: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int,
+ >,
+ pub soft_heap_limit: ::std::option::Option<unsafe extern "C" fn(arg1: ::std::os::raw::c_int)>,
+ pub vfs_find: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs,
+ >,
+ pub vfs_register: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vfs_unregister: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int,
+ >,
+ pub xthreadsafe: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub result_zeroblob: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int),
+ >,
+ pub result_error_code: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_int),
+ >,
+ pub test_control: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int, ...) -> ::std::os::raw::c_int,
+ >,
+ pub randomness: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int, arg2: *mut ::std::os::raw::c_void),
+ >,
+ pub context_db_handle:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context) -> *mut sqlite3>,
+ pub extended_result_codes: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub limit: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub next_stmt: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3, arg2: *mut sqlite3_stmt) -> *mut sqlite3_stmt,
+ >,
+ pub sql: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char,
+ >,
+ pub status: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub backup_finish: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int,
+ >,
+ pub backup_init: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup,
+ >,
+ pub backup_pagecount: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int,
+ >,
+ pub backup_remaining: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int,
+ >,
+ pub backup_step: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_backup,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub compileoption_get: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char,
+ >,
+ pub compileoption_used: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> ::std::os::raw::c_int,
+ >,
+ pub create_function_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_config: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_mutex:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> *mut sqlite3_mutex>,
+ pub db_status: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub extended_errcode:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub log: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int, arg2: *const ::std::os::raw::c_char, ...),
+ >,
+ pub soft_heap_limit64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: sqlite3_int64) -> sqlite3_int64>,
+ pub sourceid: ::std::option::Option<unsafe extern "C" fn() -> *const ::std::os::raw::c_char>,
+ pub stmt_status: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub strnicmp: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub unlock_notify: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub wal_autocheckpoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub wal_checkpoint: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub wal_hook: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub blob_reopen: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_blob, arg2: sqlite3_int64) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_config: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_on_conflict:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub close_v2:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub db_filename: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub db_readonly: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_release_memory:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub errstr: ::std::option::Option<
+ unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *const ::std::os::raw::c_char,
+ >,
+ pub stmt_busy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub stmt_readonly: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub stricmp: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub uri_boolean: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub uri_int64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64,
+ >,
+ pub uri_parameter: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub xvsnprintf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_char,
+ >,
+ pub wal_checkpoint_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub auto_extension: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_blob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_text64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg6: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub cancel_auto_extension: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub load_extension: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub malloc64: ::std::option::Option<
+ unsafe extern "C" fn(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void,
+ >,
+ pub msize: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64,
+ >,
+ pub realloc64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub reset_auto_extension: ::std::option::Option<unsafe extern "C" fn()>,
+ pub result_blob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub result_text64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg5: ::std::os::raw::c_uchar,
+ ),
+ >,
+ pub strglob: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub value_dup: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const sqlite3_value) -> *mut sqlite3_value,
+ >,
+ pub value_free: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_value)>,
+ pub result_zeroblob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_zeroblob64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub value_subtype: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint,
+ >,
+ pub result_subtype: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: ::std::os::raw::c_uint),
+ >,
+ pub status64: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut sqlite3_int64,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub strlike: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub db_cacheflush:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub system_errno:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub trace_v2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_uint,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub expanded_sql: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *mut ::std::os::raw::c_char,
+ >,
+ pub set_last_insert_rowid:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3, arg2: sqlite3_int64)>,
+ pub prepare_v3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_uint,
+ arg5: *mut *mut sqlite3_stmt,
+ arg6: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub prepare16_v3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_uint,
+ arg5: *mut *mut sqlite3_stmt,
+ arg6: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub bind_pointer: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub result_pointer: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ),
+ >,
+ pub value_pointer: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub vtab_nochange: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int,
+ >,
+ pub value_nochange: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_collation: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub keyword_count: ::std::option::Option<unsafe extern "C" fn() -> ::std::os::raw::c_int>,
+ pub keyword_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub keyword_check: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub str_new:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> *mut sqlite3_str>,
+ pub str_finish: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char,
+ >,
+ pub str_appendf: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_str, zFormat: *const ::std::os::raw::c_char, ...),
+ >,
+ pub str_vappendf: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ zFormat: *const ::std::os::raw::c_char,
+ arg2: *mut ::std::os::raw::c_void,
+ ),
+ >,
+ pub str_append: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+ N: ::std::os::raw::c_int,
+ ),
+ >,
+ pub str_appendall: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_str, zIn: *const ::std::os::raw::c_char),
+ >,
+ pub str_appendchar: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ N: ::std::os::raw::c_int,
+ C: ::std::os::raw::c_char,
+ ),
+ >,
+ pub str_reset: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_str)>,
+ pub str_errcode: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int,
+ >,
+ pub str_length: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int,
+ >,
+ pub str_value: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char,
+ >,
+ pub create_window_function: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xValue: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xInv: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xDestroy: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub normalized_sql: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char,
+ >,
+ pub stmt_isexplain: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int,
+ >,
+ pub value_frombind: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub drop_modules: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub hard_heap_limit64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: sqlite3_int64) -> sqlite3_int64>,
+ pub uri_key: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub filename_database: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> *const ::std::os::raw::c_char,
+ >,
+ pub filename_journal: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> *const ::std::os::raw::c_char,
+ >,
+ pub filename_wal: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> *const ::std::os::raw::c_char,
+ >,
+ pub create_filename: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub free_filename:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char)>,
+ pub database_file_object: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_file,
+ >,
+ pub txn_state: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub changes64: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite3_int64>,
+ pub total_changes64:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite3_int64>,
+ pub autovacuum_pages: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ arg4: ::std::os::raw::c_uint,
+ arg5: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_uint,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub error_offset:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub vtab_rhs_value: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_distinct: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_index_info) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_in: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_in_first: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ arg2: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub vtab_in_next: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ arg2: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub deserialize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_uchar,
+ arg4: sqlite3_int64,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub serialize: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_uint,
+ ) -> *mut ::std::os::raw::c_uchar,
+ >,
+ pub db_name: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char,
+ >,
+ pub value_encoding: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int,
+ >,
+ pub is_interrupted:
+ ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int>,
+ pub stmt_explain: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ pub get_clientdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void,
+ >,
+ pub set_clientdata: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ ) -> ::std::os::raw::c_int,
+ >,
+}
+pub type sqlite3_loadext_entry = ::std::option::Option<
+ unsafe extern "C" fn(
+ db: *mut sqlite3,
+ pzErrMsg: *mut *mut ::std::os::raw::c_char,
+ pThunk: *const sqlite3_api_routines,
+ ) -> ::std::os::raw::c_int,
+>;
+static __SQLITE3_AGGREGATE_CONTEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_aggregate_context(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_AGGREGATE_CONTEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ nBytes: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, nBytes)
+}
+
+static __SQLITE3_BIND_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_blob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, n, arg4)
+}
+
+static __SQLITE3_BIND_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_double(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: f64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BIND_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_int(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BIND_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_int64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite_int64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite_int64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BIND_NULL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_null(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_NULL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_BIND_PARAMETER_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_parameter_count(
+ arg1: *mut sqlite3_stmt,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_PARAMETER_COUNT
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BIND_PARAMETER_INDEX: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_parameter_index(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_PARAMETER_INDEX
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ zName: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, zName)
+}
+
+static __SQLITE3_BIND_PARAMETER_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_parameter_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_BIND_PARAMETER_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_BIND_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_text(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ n: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, n, arg4)
+}
+
+static __SQLITE3_BIND_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_text16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_BIND_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_value(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const sqlite3_value,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BUSY_HANDLER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_busy_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BUSY_HANDLER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BUSY_TIMEOUT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_busy_timeout(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BUSY_TIMEOUT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ ms: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, ms)
+}
+
+static __SQLITE3_CHANGES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CHANGES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_CLOSE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_close(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CLOSE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_COLLATION_NEEDED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_collation_needed(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLLATION_NEEDED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_COLLATION_NEEDED16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_collation_needed16(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLLATION_NEEDED16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ eTextRep: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ ),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_COLUMN_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_blob(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_BYTES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_bytes(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_BYTES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_BYTES16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_bytes16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_BYTES16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_COUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_COLUMN_DATABASE_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_database_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_DATABASE_NAME
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_DATABASE_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_database_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_DATABASE_NAME16
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_DECLTYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_decltype(
+ arg1: *mut sqlite3_stmt,
+ i: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_DECLTYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ i: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, i)
+}
+
+static __SQLITE3_COLUMN_DECLTYPE16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_decltype16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_DECLTYPE16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_double(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> f64 {
+ let ptr = __SQLITE3_COLUMN_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> f64 = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_int(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_int64(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> sqlite_int64 {
+ let ptr = __SQLITE3_COLUMN_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> sqlite_int64 = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_NAME16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_ORIGIN_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_origin_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_ORIGIN_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_ORIGIN_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_origin_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_ORIGIN_NAME16
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_TABLE_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_table_name(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COLUMN_TABLE_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_TABLE_NAME16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_table_name16(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_TABLE_NAME16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COLUMN_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_text(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_uchar {
+ let ptr = __SQLITE3_COLUMN_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_uchar = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_text16(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COLUMN_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_TYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_type(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COLUMN_TYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COLUMN_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_column_value(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+) -> *mut sqlite3_value {
+ let ptr = __SQLITE3_COLUMN_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ iCol: ::std::os::raw::c_int,
+ ) -> *mut sqlite3_value = ::std::mem::transmute(ptr);
+ (fun)(arg1, iCol)
+}
+
+static __SQLITE3_COMMIT_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_commit_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_COMMIT_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_COMPLETE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_complete(
+ sql: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COMPLETE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ sql: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(sql)
+}
+
+static __SQLITE3_COMPLETE16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_complete16(
+ sql: *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COMPLETE16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ sql: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(sql)
+}
+
+static __SQLITE3_CREATE_COLLATION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_collation(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_COLLATION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_CREATE_COLLATION16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_collation16(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_COLLATION16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_CREATE_FUNCTION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_function(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_FUNCTION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xFunc, xStep, xFinal)
+}
+
+static __SQLITE3_CREATE_FUNCTION16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_function16(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_FUNCTION16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xFunc, xStep, xFinal)
+}
+
+static __SQLITE3_CREATE_MODULE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_module(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_MODULE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_DATA_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_data_count(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DATA_COUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_DB_HANDLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_handle(arg1: *mut sqlite3_stmt) -> *mut sqlite3 {
+ let ptr = __SQLITE3_DB_HANDLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> *mut sqlite3 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DECLARE_VTAB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_declare_vtab(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DECLARE_VTAB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_ENABLE_SHARED_CACHE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_enable_shared_cache(
+ arg1: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_ENABLE_SHARED_CACHE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_ERRCODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errcode(db: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_ERRCODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(db: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(db)
+}
+
+static __SQLITE3_ERRMSG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errmsg(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_ERRMSG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_char = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_ERRMSG16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errmsg16(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_ERRMSG16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *const ::std::os::raw::c_void = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_EXEC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_exec(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_callback,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: *mut *mut ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_EXEC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_callback,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_FINALIZE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_finalize(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_FINALIZE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_FREE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_free(arg1: *mut ::std::os::raw::c_void) {
+ let ptr = __SQLITE3_FREE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_FREE_TABLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_free_table(result: *mut *mut ::std::os::raw::c_char) {
+ let ptr = __SQLITE3_FREE_TABLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(result: *mut *mut ::std::os::raw::c_char) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(result)
+}
+
+static __SQLITE3_GET_AUTOCOMMIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_autocommit(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_GET_AUTOCOMMIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_GET_AUXDATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_auxdata(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_GET_AUXDATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_GET_TABLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_table(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut *mut *mut ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ arg6: *mut *mut ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_GET_TABLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut *mut *mut ::std::os::raw::c_char,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ arg6: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_INTERRUPT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_interrupt(arg1: *mut sqlite3) {
+ let ptr = __SQLITE3_INTERRUPT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_LAST_INSERT_ROWID: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_last_insert_rowid(arg1: *mut sqlite3) -> sqlite_int64 {
+ let ptr = __SQLITE3_LAST_INSERT_ROWID.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_LIBVERSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_libversion() -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_LIBVERSION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> *const ::std::os::raw::c_char = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_LIBVERSION_NUMBER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_libversion_number() -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_LIBVERSION_NUMBER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_MALLOC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_malloc(
+ arg1: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_MALLOC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_OPEN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_open(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OPEN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_OPEN16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_open16(
+ arg1: *const ::std::os::raw::c_void,
+ arg2: *mut *mut sqlite3,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OPEN16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_void,
+ arg2: *mut *mut sqlite3,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_PREPARE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_PREPARE16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare16(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_PROFILE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_profile(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite_uint64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_PROFILE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite_uint64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_PROGRESS_HANDLER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_progress_handler(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+) {
+ let ptr = __SQLITE3_PROGRESS_HANDLER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_REALLOC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_realloc(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_REALLOC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESET: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_reset(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_RESET.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(pStmt: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(pStmt)
+}
+
+static __SQLITE3_RESULT_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_blob(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_double(arg1: *mut sqlite3_context, arg2: f64) {
+ let ptr = __SQLITE3_RESULT_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: f64) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_ERROR: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ERROR.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_RESULT_ERROR16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ERROR16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_RESULT_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_int(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_int64(arg1: *mut sqlite3_context, arg2: sqlite_int64) {
+ let ptr = __SQLITE3_RESULT_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context, arg2: sqlite_int64) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_NULL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_null(arg1: *mut sqlite3_context) {
+ let ptr = __SQLITE3_RESULT_NULL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text16(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT16BE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text16be(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT16BE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT16LE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text16le(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT16LE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_value(
+ arg1: *mut sqlite3_context,
+ arg2: *mut sqlite3_value,
+) {
+ let ptr = __SQLITE3_RESULT_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *mut sqlite3_value,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_ROLLBACK_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_rollback_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_ROLLBACK_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_SET_AUTHORIZER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_set_authorizer(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SET_AUTHORIZER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *const ::std::os::raw::c_char,
+ arg6: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_SET_AUXDATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_set_auxdata(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_SET_AUXDATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_STEP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_step(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STEP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TABLE_COLUMN_METADATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_table_column_metadata(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *mut *const ::std::os::raw::c_char,
+ arg6: *mut *const ::std::os::raw::c_char,
+ arg7: *mut ::std::os::raw::c_int,
+ arg8: *mut ::std::os::raw::c_int,
+ arg9: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TABLE_COLUMN_METADATA
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: *mut *const ::std::os::raw::c_char,
+ arg6: *mut *const ::std::os::raw::c_char,
+ arg7: *mut ::std::os::raw::c_int,
+ arg8: *mut ::std::os::raw::c_int,
+ arg9: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9)
+}
+
+static __SQLITE3_TOTAL_CHANGES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_total_changes(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TOTAL_CHANGES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TRACE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_trace(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_TRACE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ xTrace: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ ),
+ >,
+ arg2: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, xTrace, arg2)
+}
+
+static __SQLITE3_UPDATE_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_update_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_UPDATE_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite_int64,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_USER_DATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_user_data(
+ arg1: *mut sqlite3_context,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_USER_DATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_BLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_blob(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_BLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_BYTES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_bytes(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_BYTES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_BYTES16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_bytes16(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_BYTES16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_DOUBLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_double(arg1: *mut sqlite3_value) -> f64 {
+ let ptr = __SQLITE3_VALUE_DOUBLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> f64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_INT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_int(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_INT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_int64(arg1: *mut sqlite3_value) -> sqlite_int64 {
+ let ptr = __SQLITE3_VALUE_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> sqlite_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_NUMERIC_TYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_numeric_type(
+ arg1: *mut sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_NUMERIC_TYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_uchar {
+ let ptr = __SQLITE3_VALUE_TEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_uchar = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT16: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text16(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_TEXT16.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT16BE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text16be(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_TEXT16BE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TEXT16LE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_text16le(
+ arg1: *mut sqlite3_value,
+) -> *const ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_TEXT16LE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ ) -> *const ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_TYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_type(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_TYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_OVERLOAD_FUNCTION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_overload_function(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OVERLOAD_FUNCTION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ zFuncName: *const ::std::os::raw::c_char,
+ nArg: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, zFuncName, nArg)
+}
+
+static __SQLITE3_PREPARE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_PREPARE16_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare16_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE16_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut *mut sqlite3_stmt,
+ arg5: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_CLEAR_BINDINGS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_clear_bindings(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CLEAR_BINDINGS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_CREATE_MODULE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_module_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_MODULE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const sqlite3_module,
+ arg4: *mut ::std::os::raw::c_void,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, xDestroy)
+}
+
+static __SQLITE3_BIND_ZEROBLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_zeroblob(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_ZEROBLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BLOB_BYTES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_bytes(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_BYTES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BLOB_CLOSE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_close(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_CLOSE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_blob) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BLOB_OPEN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_open(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_int,
+ arg7: *mut *mut sqlite3_blob,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_OPEN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_int,
+ arg7: *mut *mut sqlite3_blob,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6, arg7)
+}
+
+static __SQLITE3_BLOB_READ: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_read(
+ arg1: *mut sqlite3_blob,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_READ.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_BLOB_WRITE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_write(
+ arg1: *mut sqlite3_blob,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_WRITE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_CREATE_COLLATION_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_collation_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg6: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_COLLATION_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: ::std::os::raw::c_int,
+ arg5: *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg6: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_FILE_CONTROL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_file_control(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_FILE_CONTROL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_MEMORY_HIGHWATER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_memory_highwater(arg1: ::std::os::raw::c_int) -> sqlite3_int64 {
+ let ptr = __SQLITE3_MEMORY_HIGHWATER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_MEMORY_USED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_memory_used() -> sqlite3_int64 {
+ let ptr = __SQLITE3_MEMORY_USED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> sqlite3_int64 = ::std::mem::transmute(ptr);
+ (fun)()
+}
+
+static __SQLITE3_MUTEX_ALLOC: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_alloc(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex {
+ let ptr = __SQLITE3_MUTEX_ALLOC.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: ::std::os::raw::c_int) -> *mut sqlite3_mutex = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_ENTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_enter(arg1: *mut sqlite3_mutex) {
+ let ptr = __SQLITE3_MUTEX_ENTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_FREE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_free(arg1: *mut sqlite3_mutex) {
+ let ptr = __SQLITE3_MUTEX_FREE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_LEAVE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_leave(arg1: *mut sqlite3_mutex) {
+ let ptr = __SQLITE3_MUTEX_LEAVE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_MUTEX_TRY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_mutex_try(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_MUTEX_TRY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_mutex) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_OPEN_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_open_v2(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ arg3: ::std::os::raw::c_int,
+ arg4: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_OPEN_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *mut *mut sqlite3,
+ arg3: ::std::os::raw::c_int,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RELEASE_MEMORY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_release_memory(
+ arg1: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_RELEASE_MEMORY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_ERROR_NOMEM: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error_nomem(arg1: *mut sqlite3_context) {
+ let ptr = __SQLITE3_RESULT_ERROR_NOMEM.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_ERROR_TOOBIG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error_toobig(arg1: *mut sqlite3_context) {
+ let ptr = __SQLITE3_RESULT_ERROR_TOOBIG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_SLEEP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_sleep(arg1: ::std::os::raw::c_int) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SLEEP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_SOFT_HEAP_LIMIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_soft_heap_limit(arg1: ::std::os::raw::c_int) {
+ let ptr = __SQLITE3_SOFT_HEAP_LIMIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: ::std::os::raw::c_int) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VFS_FIND: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vfs_find(arg1: *const ::std::os::raw::c_char) -> *mut sqlite3_vfs {
+ let ptr = __SQLITE3_VFS_FIND.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_vfs = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VFS_REGISTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vfs_register(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VFS_REGISTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_vfs,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VFS_UNREGISTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vfs_unregister(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VFS_UNREGISTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_vfs) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_THREADSAFE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_threadsafe() -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_THREADSAFE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_RESULT_ZEROBLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_zeroblob(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ZEROBLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESULT_ERROR_CODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_error_code(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_RESULT_ERROR_CODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RANDOMNESS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_randomness(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+) {
+ let ptr = __SQLITE3_RANDOMNESS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_void,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_CONTEXT_DB_HANDLE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_context_db_handle(arg1: *mut sqlite3_context) -> *mut sqlite3 {
+ let ptr = __SQLITE3_CONTEXT_DB_HANDLE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) -> *mut sqlite3 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_EXTENDED_RESULT_CODES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_extended_result_codes(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_EXTENDED_RESULT_CODES
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_LIMIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_limit(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_LIMIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_NEXT_STMT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_next_stmt(
+ arg1: *mut sqlite3,
+ arg2: *mut sqlite3_stmt,
+) -> *mut sqlite3_stmt {
+ let ptr = __SQLITE3_NEXT_STMT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut sqlite3_stmt,
+ ) -> *mut sqlite3_stmt = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_SQL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_sql(arg1: *mut sqlite3_stmt) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_SQL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STATUS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_status(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STATUS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_BACKUP_FINISH: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_finish(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_FINISH.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BACKUP_INIT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_init(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3,
+ arg4: *const ::std::os::raw::c_char,
+) -> *mut sqlite3_backup {
+ let ptr = __SQLITE3_BACKUP_INIT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3,
+ arg4: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_backup = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_BACKUP_PAGECOUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_pagecount(
+ arg1: *mut sqlite3_backup,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_PAGECOUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BACKUP_REMAINING: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_remaining(
+ arg1: *mut sqlite3_backup,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_REMAINING.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_backup) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_BACKUP_STEP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_backup_step(
+ arg1: *mut sqlite3_backup,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BACKUP_STEP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_backup,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_COMPILEOPTION_GET: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_compileoption_get(
+ arg1: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_COMPILEOPTION_GET.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_COMPILEOPTION_USED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_compileoption_used(
+ arg1: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_COMPILEOPTION_USED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_CREATE_FUNCTION_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_function_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_FUNCTION_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xFunc: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xFunc, xStep, xFinal, xDestroy)
+}
+
+static __SQLITE3_DB_CONFIG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_config(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_CONFIG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_DB_MUTEX: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_mutex(arg1: *mut sqlite3) -> *mut sqlite3_mutex {
+ let ptr = __SQLITE3_DB_MUTEX.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *mut sqlite3_mutex = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DB_STATUS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_status(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_STATUS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_EXTENDED_ERRCODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_extended_errcode(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_EXTENDED_ERRCODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_LOG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_log(
+ arg1: ::std::os::raw::c_int,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+) {
+ let ptr = __SQLITE3_LOG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *const ::std::os::raw::c_char,
+ ...
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_SOFT_HEAP_LIMIT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_soft_heap_limit64(arg1: sqlite3_int64) -> sqlite3_int64 {
+ let ptr = __SQLITE3_SOFT_HEAP_LIMIT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: sqlite3_int64) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_SOURCEID: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_sourceid() -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_SOURCEID.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> *const ::std::os::raw::c_char = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_STMT_STATUS: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_status(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_STATUS.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_STRNICMP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_strnicmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRNICMP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_UNLOCK_NOTIFY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_unlock_notify(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_UNLOCK_NOTIFY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut *mut ::std::os::raw::c_void,
+ arg2: ::std::os::raw::c_int,
+ ),
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_WAL_AUTOCHECKPOINT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_autocheckpoint(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_WAL_AUTOCHECKPOINT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_WAL_CHECKPOINT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_checkpoint(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_WAL_CHECKPOINT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_WAL_HOOK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_hook(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_WAL_HOOK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *mut sqlite3,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_BLOB_REOPEN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_blob_reopen(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BLOB_REOPEN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_blob,
+ arg2: sqlite3_int64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VTAB_CONFIG: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_config(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_CONFIG.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ op: ::std::os::raw::c_int,
+ ...
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, op)
+}
+
+static __SQLITE3_VTAB_ON_CONFLICT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_on_conflict(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_ON_CONFLICT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_CLOSE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_close_v2(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CLOSE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DB_FILENAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_filename(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_DB_FILENAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_DB_READONLY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_readonly(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_READONLY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_DB_RELEASE_MEMORY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_release_memory(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_RELEASE_MEMORY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_ERRSTR: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_errstr(
+ arg1: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_ERRSTR.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STMT_BUSY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_busy(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_BUSY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STMT_READONLY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_readonly(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_READONLY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STRICMP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stricmp(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRICMP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_URI_BOOLEAN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_boolean(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_URI_BOOLEAN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_URI_INT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_int64(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+) -> sqlite3_int64 {
+ let ptr = __SQLITE3_URI_INT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_int64,
+ ) -> sqlite3_int64 = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_URI_PARAMETER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_parameter(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_URI_PARAMETER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_WAL_CHECKPOINT_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_wal_checkpoint_v2(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_WAL_CHECKPOINT_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: *mut ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_AUTO_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_auto_extension(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_AUTO_EXTENSION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_BIND_BLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_blob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_BLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_void,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_BIND_TEXT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_text64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg6: ::std::os::raw::c_uchar,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_TEXT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: sqlite3_uint64,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ arg6: ::std::os::raw::c_uchar,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_CANCEL_AUTO_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_cancel_auto_extension(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CANCEL_AUTO_EXTENSION
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::option::Option<unsafe extern "C" fn()>,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_LOAD_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_load_extension(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_LOAD_EXTENSION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: *mut *mut ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_MALLOC64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_malloc64(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_MALLOC64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: sqlite3_uint64) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_MSIZE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_msize(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64 {
+ let ptr = __SQLITE3_MSIZE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void) -> sqlite3_uint64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_REALLOC64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_realloc64(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_REALLOC64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: sqlite3_uint64,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_RESET_AUTO_EXTENSION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_reset_auto_extension() {
+ let ptr = __SQLITE3_RESET_AUTO_EXTENSION
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() = ::std::mem::transmute(ptr);
+ (fun)()
+}
+
+static __SQLITE3_RESULT_BLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_blob64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_BLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_RESULT_TEXT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_text64(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+ arg5: ::std::os::raw::c_uchar,
+) {
+ let ptr = __SQLITE3_RESULT_TEXT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: sqlite3_uint64,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ arg5: ::std::os::raw::c_uchar,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_STRGLOB: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_strglob(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRGLOB.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VALUE_DUP: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_dup(arg1: *const sqlite3_value) -> *mut sqlite3_value {
+ let ptr = __SQLITE3_VALUE_DUP.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *const sqlite3_value) -> *mut sqlite3_value = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_FREE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_free(arg1: *mut sqlite3_value) {
+ let ptr = __SQLITE3_VALUE_FREE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_ZEROBLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_zeroblob64(
+ arg1: *mut sqlite3_context,
+ arg2: sqlite3_uint64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_RESULT_ZEROBLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_BIND_ZEROBLOB64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_zeroblob64(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_ZEROBLOB64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: sqlite3_uint64,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_VALUE_SUBTYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_subtype(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint {
+ let ptr = __SQLITE3_VALUE_SUBTYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_uint = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_RESULT_SUBTYPE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_subtype(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_uint,
+) {
+ let ptr = __SQLITE3_RESULT_SUBTYPE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_uint,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_STATUS64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_status64(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut sqlite3_int64,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STATUS64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut sqlite3_int64,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_STRLIKE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_strlike(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STRLIKE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_DB_CACHEFLUSH: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_cacheflush(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DB_CACHEFLUSH.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_SYSTEM_ERRNO: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_system_errno(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SYSTEM_ERRNO.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TRACE_V2: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_trace_v2(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_uint,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TRACE_V2.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_uint,
+ arg3: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_uint,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int,
+ >,
+ arg4: *mut ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_EXPANDED_SQL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_expanded_sql(
+ arg1: *mut sqlite3_stmt,
+) -> *mut ::std::os::raw::c_char {
+ let ptr = __SQLITE3_EXPANDED_SQL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ ) -> *mut ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_SET_LAST_INSERT_ROWID: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_set_last_insert_rowid(arg1: *mut sqlite3, arg2: sqlite3_int64) {
+ let ptr = __SQLITE3_SET_LAST_INSERT_ROWID
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3, arg2: sqlite3_int64) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_PREPARE_V3: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare_v3(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_uint,
+ arg5: *mut *mut sqlite3_stmt,
+ arg6: *mut *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE_V3.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_uint,
+ arg5: *mut *mut sqlite3_stmt,
+ arg6: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_PREPARE16_V3: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_prepare16_v3(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_uint,
+ arg5: *mut *mut sqlite3_stmt,
+ arg6: *mut *const ::std::os::raw::c_void,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_PREPARE16_V3.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_void,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_uint,
+ arg5: *mut *mut sqlite3_stmt,
+ arg6: *mut *const ::std::os::raw::c_void,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_BIND_POINTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_bind_pointer(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_BIND_POINTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: *const ::std::os::raw::c_char,
+ arg5: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_RESULT_POINTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_result_pointer(
+ arg1: *mut sqlite3_context,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) {
+ let ptr = __SQLITE3_RESULT_POINTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: *mut ::std::os::raw::c_void,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_VALUE_POINTER: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_pointer(
+ arg1: *mut sqlite3_value,
+ arg2: *const ::std::os::raw::c_char,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_VALUE_POINTER.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VTAB_NOCHANGE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_nochange(
+ arg1: *mut sqlite3_context,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_NOCHANGE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_context) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_NOCHANGE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_nochange(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_NOCHANGE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VTAB_COLLATION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_collation(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_VTAB_COLLATION.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_KEYWORD_COUNT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_keyword_count() -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_KEYWORD_COUNT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn() -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)()
+}
+
+static __SQLITE3_KEYWORD_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_keyword_name(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_KEYWORD_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: ::std::os::raw::c_int,
+ arg2: *mut *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_KEYWORD_CHECK: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_keyword_check(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_KEYWORD_CHECK.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_STR_NEW: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_new(arg1: *mut sqlite3) -> *mut sqlite3_str {
+ let ptr = __SQLITE3_STR_NEW.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> *mut sqlite3_str = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STR_FINISH: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_finish(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char {
+ let ptr = __SQLITE3_STR_FINISH.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ ) -> *mut ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STR_APPEND: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_append(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+ N: ::std::os::raw::c_int,
+) {
+ let ptr = __SQLITE3_STR_APPEND.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+ N: ::std::os::raw::c_int,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, zIn, N)
+}
+
+static __SQLITE3_STR_APPENDALL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_appendall(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+) {
+ let ptr = __SQLITE3_STR_APPENDALL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ zIn: *const ::std::os::raw::c_char,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, zIn)
+}
+
+static __SQLITE3_STR_APPENDCHAR: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_appendchar(
+ arg1: *mut sqlite3_str,
+ N: ::std::os::raw::c_int,
+ C: ::std::os::raw::c_char,
+) {
+ let ptr = __SQLITE3_STR_APPENDCHAR.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ N: ::std::os::raw::c_int,
+ C: ::std::os::raw::c_char,
+ ) = ::std::mem::transmute(ptr);
+ (fun)(arg1, N, C)
+}
+
+static __SQLITE3_STR_RESET: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_reset(arg1: *mut sqlite3_str) {
+ let ptr = __SQLITE3_STR_RESET.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_str) = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STR_ERRCODE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_errcode(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STR_ERRCODE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STR_LENGTH: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_length(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STR_LENGTH.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_str) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STR_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_str_value(arg1: *mut sqlite3_str) -> *mut ::std::os::raw::c_char {
+ let ptr = __SQLITE3_STR_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_str,
+ ) -> *mut ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_CREATE_WINDOW_FUNCTION: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_window_function(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xValue: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xInv: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_CREATE_WINDOW_FUNCTION
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_int,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut ::std::os::raw::c_void,
+ xStep: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xFinal: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xValue: ::std::option::Option<unsafe extern "C" fn(arg1: *mut sqlite3_context)>,
+ xInv: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut sqlite3_context,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ),
+ >,
+ xDestroy: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, xStep, xFinal, xValue, xInv, xDestroy)
+}
+
+static __SQLITE3_NORMALIZED_SQL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_normalized_sql(
+ arg1: *mut sqlite3_stmt,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_NORMALIZED_SQL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_STMT_ISEXPLAIN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_isexplain(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_ISEXPLAIN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_stmt) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VALUE_FROMBIND: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_frombind(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_FROMBIND.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DROP_MODULES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_drop_modules(
+ arg1: *mut sqlite3,
+ arg2: *mut *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DROP_MODULES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *mut *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_HARD_HEAP_LIMIT64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_hard_heap_limit64(arg1: sqlite3_int64) -> sqlite3_int64 {
+ let ptr = __SQLITE3_HARD_HEAP_LIMIT64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: sqlite3_int64) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_URI_KEY: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_uri_key(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_URI_KEY.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_FILENAME_DATABASE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_filename_database(
+ arg1: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_FILENAME_DATABASE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_FILENAME_JOURNAL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_filename_journal(
+ arg1: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_FILENAME_JOURNAL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_FILENAME_WAL: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_filename_wal(
+ arg1: *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_FILENAME_WAL.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_CREATE_FILENAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_create_filename(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut *const ::std::os::raw::c_char,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_CREATE_FILENAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *const ::std::os::raw::c_char,
+ arg4: ::std::os::raw::c_int,
+ arg5: *mut *const ::std::os::raw::c_char,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5)
+}
+
+static __SQLITE3_FREE_FILENAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_free_filename(arg1: *const ::std::os::raw::c_char) {
+ let ptr = __SQLITE3_FREE_FILENAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *const ::std::os::raw::c_char) = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_DATABASE_FILE_OBJECT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_database_file_object(
+ arg1: *const ::std::os::raw::c_char,
+) -> *mut sqlite3_file {
+ let ptr = __SQLITE3_DATABASE_FILE_OBJECT
+ .load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *const ::std::os::raw::c_char,
+ ) -> *mut sqlite3_file = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_TXN_STATE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_txn_state(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_TXN_STATE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_CHANGES64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_changes64(arg1: *mut sqlite3) -> sqlite3_int64 {
+ let ptr = __SQLITE3_CHANGES64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_TOTAL_CHANGES64: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_total_changes64(arg1: *mut sqlite3) -> sqlite3_int64 {
+ let ptr = __SQLITE3_TOTAL_CHANGES64.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> sqlite3_int64 = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_AUTOVACUUM_PAGES: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_autovacuum_pages(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ arg4: ::std::os::raw::c_uint,
+ arg5: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_uint,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_AUTOVACUUM_PAGES.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::option::Option<
+ unsafe extern "C" fn(
+ arg1: *mut ::std::os::raw::c_void,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: ::std::os::raw::c_uint,
+ arg4: ::std::os::raw::c_uint,
+ arg5: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_uint,
+ >,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_ERROR_OFFSET: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_error_offset(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_ERROR_OFFSET.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_VTAB_RHS_VALUE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_rhs_value(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_RHS_VALUE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ arg3: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_VTAB_DISTINCT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_distinct(
+ arg1: *mut sqlite3_index_info,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_DISTINCT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1)
+}
+
+static __SQLITE3_VTAB_IN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_in(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_IN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_index_info,
+ arg2: ::std::os::raw::c_int,
+ arg3: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3)
+}
+
+static __SQLITE3_VTAB_IN_FIRST: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_in_first(
+ arg1: *mut sqlite3_value,
+ arg2: *mut *mut sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_IN_FIRST.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ arg2: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VTAB_IN_NEXT: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_vtab_in_next(
+ arg1: *mut sqlite3_value,
+ arg2: *mut *mut sqlite3_value,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VTAB_IN_NEXT.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_value,
+ arg2: *mut *mut sqlite3_value,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_DESERIALIZE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_deserialize(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_uchar,
+ arg4: sqlite3_int64,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_uint,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_DESERIALIZE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_uchar,
+ arg4: sqlite3_int64,
+ arg5: sqlite3_int64,
+ arg6: ::std::os::raw::c_uint,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4, arg5, arg6)
+}
+
+static __SQLITE3_SERIALIZE: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_serialize(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_uint,
+) -> *mut ::std::os::raw::c_uchar {
+ let ptr = __SQLITE3_SERIALIZE.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut sqlite3_int64,
+ arg4: ::std::os::raw::c_uint,
+ ) -> *mut ::std::os::raw::c_uchar = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+static __SQLITE3_DB_NAME: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_db_name(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+) -> *const ::std::os::raw::c_char {
+ let ptr = __SQLITE3_DB_NAME.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: ::std::os::raw::c_int,
+ ) -> *const ::std::os::raw::c_char = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_VALUE_ENCODING: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_value_encoding(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_VALUE_ENCODING.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3_value) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_IS_INTERRUPTED: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_is_interrupted(arg1: *mut sqlite3) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_IS_INTERRUPTED.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(arg1: *mut sqlite3) -> ::std::os::raw::c_int = ::std::mem::transmute(
+ ptr,
+ );
+ (fun)(arg1)
+}
+
+static __SQLITE3_STMT_EXPLAIN: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_stmt_explain(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_STMT_EXPLAIN.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3_stmt,
+ arg2: ::std::os::raw::c_int,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_GET_CLIENTDATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_get_clientdata(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+) -> *mut ::std::os::raw::c_void {
+ let ptr = __SQLITE3_GET_CLIENTDATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ ) -> *mut ::std::os::raw::c_void = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2)
+}
+
+static __SQLITE3_SET_CLIENTDATA: ::std::sync::atomic::AtomicPtr<()> = ::std::sync::atomic::AtomicPtr::new(
+ ::std::ptr::null_mut(),
+);
+pub unsafe fn sqlite3_set_clientdata(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void)>,
+) -> ::std::os::raw::c_int {
+ let ptr = __SQLITE3_SET_CLIENTDATA.load(::std::sync::atomic::Ordering::Acquire);
+ assert!(! ptr.is_null(), "SQLite API not initialized or SQLite feature omitted");
+ let fun: unsafe extern "C" fn(
+ arg1: *mut sqlite3,
+ arg2: *const ::std::os::raw::c_char,
+ arg3: *mut ::std::os::raw::c_void,
+ arg4: ::std::option::Option<
+ unsafe extern "C" fn(arg1: *mut ::std::os::raw::c_void),
+ >,
+ ) -> ::std::os::raw::c_int = ::std::mem::transmute(ptr);
+ (fun)(arg1, arg2, arg3, arg4)
+}
+
+/// Like SQLITE_EXTENSION_INIT2 macro
+pub unsafe fn rusqlite_extension_init2(
+ p_api: *mut sqlite3_api_routines,
+) -> ::std::result::Result<(), crate::InitError> {
+ if let Some(fun) = (*p_api).malloc {
+ __SQLITE3_MALLOC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).libversion_number {
+ let version = fun();
+ if SQLITE_VERSION_NUMBER > version {
+ return Err(crate::InitError::VersionMismatch {
+ compile_time: SQLITE_VERSION_NUMBER,
+ runtime: version,
+ });
+ }
+ } else {
+ return Err(crate::InitError::NullFunctionPointer);
+ }
+ if let Some(fun) = (*p_api).aggregate_context {
+ __SQLITE3_AGGREGATE_CONTEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_blob {
+ __SQLITE3_BIND_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_double {
+ __SQLITE3_BIND_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_int {
+ __SQLITE3_BIND_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_int64 {
+ __SQLITE3_BIND_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_null {
+ __SQLITE3_BIND_NULL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_parameter_count {
+ __SQLITE3_BIND_PARAMETER_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_parameter_index {
+ __SQLITE3_BIND_PARAMETER_INDEX
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_parameter_name {
+ __SQLITE3_BIND_PARAMETER_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_text {
+ __SQLITE3_BIND_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_text16 {
+ __SQLITE3_BIND_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_value {
+ __SQLITE3_BIND_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).busy_handler {
+ __SQLITE3_BUSY_HANDLER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).busy_timeout {
+ __SQLITE3_BUSY_TIMEOUT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).changes {
+ __SQLITE3_CHANGES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).close {
+ __SQLITE3_CLOSE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).collation_needed {
+ __SQLITE3_COLLATION_NEEDED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).collation_needed16 {
+ __SQLITE3_COLLATION_NEEDED16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_blob {
+ __SQLITE3_COLUMN_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_bytes {
+ __SQLITE3_COLUMN_BYTES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_bytes16 {
+ __SQLITE3_COLUMN_BYTES16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_count {
+ __SQLITE3_COLUMN_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_database_name {
+ __SQLITE3_COLUMN_DATABASE_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_database_name16 {
+ __SQLITE3_COLUMN_DATABASE_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_decltype {
+ __SQLITE3_COLUMN_DECLTYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_decltype16 {
+ __SQLITE3_COLUMN_DECLTYPE16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_double {
+ __SQLITE3_COLUMN_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_int {
+ __SQLITE3_COLUMN_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_int64 {
+ __SQLITE3_COLUMN_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_name {
+ __SQLITE3_COLUMN_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_name16 {
+ __SQLITE3_COLUMN_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_origin_name {
+ __SQLITE3_COLUMN_ORIGIN_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_origin_name16 {
+ __SQLITE3_COLUMN_ORIGIN_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_table_name {
+ __SQLITE3_COLUMN_TABLE_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_table_name16 {
+ __SQLITE3_COLUMN_TABLE_NAME16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_text {
+ __SQLITE3_COLUMN_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_text16 {
+ __SQLITE3_COLUMN_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_type {
+ __SQLITE3_COLUMN_TYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).column_value {
+ __SQLITE3_COLUMN_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).commit_hook {
+ __SQLITE3_COMMIT_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).complete {
+ __SQLITE3_COMPLETE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).complete16 {
+ __SQLITE3_COMPLETE16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_collation {
+ __SQLITE3_CREATE_COLLATION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_collation16 {
+ __SQLITE3_CREATE_COLLATION16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_function {
+ __SQLITE3_CREATE_FUNCTION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_function16 {
+ __SQLITE3_CREATE_FUNCTION16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_module {
+ __SQLITE3_CREATE_MODULE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).data_count {
+ __SQLITE3_DATA_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_handle {
+ __SQLITE3_DB_HANDLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).declare_vtab {
+ __SQLITE3_DECLARE_VTAB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).enable_shared_cache {
+ __SQLITE3_ENABLE_SHARED_CACHE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errcode {
+ __SQLITE3_ERRCODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errmsg {
+ __SQLITE3_ERRMSG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errmsg16 {
+ __SQLITE3_ERRMSG16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).exec {
+ __SQLITE3_EXEC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).finalize {
+ __SQLITE3_FINALIZE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).free {
+ __SQLITE3_FREE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).free_table {
+ __SQLITE3_FREE_TABLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_autocommit {
+ __SQLITE3_GET_AUTOCOMMIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_auxdata {
+ __SQLITE3_GET_AUXDATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_table {
+ __SQLITE3_GET_TABLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).interruptx {
+ __SQLITE3_INTERRUPT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).last_insert_rowid {
+ __SQLITE3_LAST_INSERT_ROWID
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).libversion {
+ __SQLITE3_LIBVERSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).libversion_number {
+ __SQLITE3_LIBVERSION_NUMBER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).open {
+ __SQLITE3_OPEN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).open16 {
+ __SQLITE3_OPEN16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare {
+ __SQLITE3_PREPARE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare16 {
+ __SQLITE3_PREPARE16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).profile {
+ __SQLITE3_PROFILE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).progress_handler {
+ __SQLITE3_PROGRESS_HANDLER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).realloc {
+ __SQLITE3_REALLOC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).reset {
+ __SQLITE3_RESET
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_blob {
+ __SQLITE3_RESULT_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_double {
+ __SQLITE3_RESULT_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error {
+ __SQLITE3_RESULT_ERROR
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error16 {
+ __SQLITE3_RESULT_ERROR16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_int {
+ __SQLITE3_RESULT_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_int64 {
+ __SQLITE3_RESULT_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_null {
+ __SQLITE3_RESULT_NULL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text {
+ __SQLITE3_RESULT_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text16 {
+ __SQLITE3_RESULT_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text16be {
+ __SQLITE3_RESULT_TEXT16BE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text16le {
+ __SQLITE3_RESULT_TEXT16LE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_value {
+ __SQLITE3_RESULT_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).rollback_hook {
+ __SQLITE3_ROLLBACK_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).set_authorizer {
+ __SQLITE3_SET_AUTHORIZER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).set_auxdata {
+ __SQLITE3_SET_AUXDATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).step {
+ __SQLITE3_STEP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).table_column_metadata {
+ __SQLITE3_TABLE_COLUMN_METADATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).total_changes {
+ __SQLITE3_TOTAL_CHANGES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).trace {
+ __SQLITE3_TRACE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).update_hook {
+ __SQLITE3_UPDATE_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).user_data {
+ __SQLITE3_USER_DATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_blob {
+ __SQLITE3_VALUE_BLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_bytes {
+ __SQLITE3_VALUE_BYTES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_bytes16 {
+ __SQLITE3_VALUE_BYTES16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_double {
+ __SQLITE3_VALUE_DOUBLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_int {
+ __SQLITE3_VALUE_INT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_int64 {
+ __SQLITE3_VALUE_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_numeric_type {
+ __SQLITE3_VALUE_NUMERIC_TYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text {
+ __SQLITE3_VALUE_TEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text16 {
+ __SQLITE3_VALUE_TEXT16
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text16be {
+ __SQLITE3_VALUE_TEXT16BE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_text16le {
+ __SQLITE3_VALUE_TEXT16LE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_type {
+ __SQLITE3_VALUE_TYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).overload_function {
+ __SQLITE3_OVERLOAD_FUNCTION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare_v2 {
+ __SQLITE3_PREPARE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare16_v2 {
+ __SQLITE3_PREPARE16_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).clear_bindings {
+ __SQLITE3_CLEAR_BINDINGS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_module_v2 {
+ __SQLITE3_CREATE_MODULE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_zeroblob {
+ __SQLITE3_BIND_ZEROBLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_bytes {
+ __SQLITE3_BLOB_BYTES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_close {
+ __SQLITE3_BLOB_CLOSE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_open {
+ __SQLITE3_BLOB_OPEN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_read {
+ __SQLITE3_BLOB_READ
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_write {
+ __SQLITE3_BLOB_WRITE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_collation_v2 {
+ __SQLITE3_CREATE_COLLATION_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).file_control {
+ __SQLITE3_FILE_CONTROL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).memory_highwater {
+ __SQLITE3_MEMORY_HIGHWATER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).memory_used {
+ __SQLITE3_MEMORY_USED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_alloc {
+ __SQLITE3_MUTEX_ALLOC
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_enter {
+ __SQLITE3_MUTEX_ENTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_free {
+ __SQLITE3_MUTEX_FREE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_leave {
+ __SQLITE3_MUTEX_LEAVE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).mutex_try {
+ __SQLITE3_MUTEX_TRY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).open_v2 {
+ __SQLITE3_OPEN_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).release_memory {
+ __SQLITE3_RELEASE_MEMORY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error_nomem {
+ __SQLITE3_RESULT_ERROR_NOMEM
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error_toobig {
+ __SQLITE3_RESULT_ERROR_TOOBIG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).sleep {
+ __SQLITE3_SLEEP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).soft_heap_limit {
+ __SQLITE3_SOFT_HEAP_LIMIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vfs_find {
+ __SQLITE3_VFS_FIND
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vfs_register {
+ __SQLITE3_VFS_REGISTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vfs_unregister {
+ __SQLITE3_VFS_UNREGISTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).xthreadsafe {
+ __SQLITE3_THREADSAFE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_zeroblob {
+ __SQLITE3_RESULT_ZEROBLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_error_code {
+ __SQLITE3_RESULT_ERROR_CODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).randomness {
+ __SQLITE3_RANDOMNESS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).context_db_handle {
+ __SQLITE3_CONTEXT_DB_HANDLE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).extended_result_codes {
+ __SQLITE3_EXTENDED_RESULT_CODES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).limit {
+ __SQLITE3_LIMIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).next_stmt {
+ __SQLITE3_NEXT_STMT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).sql {
+ __SQLITE3_SQL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).status {
+ __SQLITE3_STATUS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_finish {
+ __SQLITE3_BACKUP_FINISH
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_init {
+ __SQLITE3_BACKUP_INIT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_pagecount {
+ __SQLITE3_BACKUP_PAGECOUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_remaining {
+ __SQLITE3_BACKUP_REMAINING
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).backup_step {
+ __SQLITE3_BACKUP_STEP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).compileoption_get {
+ __SQLITE3_COMPILEOPTION_GET
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).compileoption_used {
+ __SQLITE3_COMPILEOPTION_USED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_function_v2 {
+ __SQLITE3_CREATE_FUNCTION_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_config {
+ __SQLITE3_DB_CONFIG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_mutex {
+ __SQLITE3_DB_MUTEX
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_status {
+ __SQLITE3_DB_STATUS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).extended_errcode {
+ __SQLITE3_EXTENDED_ERRCODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).log {
+ __SQLITE3_LOG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).soft_heap_limit64 {
+ __SQLITE3_SOFT_HEAP_LIMIT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).sourceid {
+ __SQLITE3_SOURCEID
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_status {
+ __SQLITE3_STMT_STATUS
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).strnicmp {
+ __SQLITE3_STRNICMP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).unlock_notify {
+ __SQLITE3_UNLOCK_NOTIFY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_autocheckpoint {
+ __SQLITE3_WAL_AUTOCHECKPOINT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_checkpoint {
+ __SQLITE3_WAL_CHECKPOINT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_hook {
+ __SQLITE3_WAL_HOOK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).blob_reopen {
+ __SQLITE3_BLOB_REOPEN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_config {
+ __SQLITE3_VTAB_CONFIG
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_on_conflict {
+ __SQLITE3_VTAB_ON_CONFLICT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).close_v2 {
+ __SQLITE3_CLOSE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_filename {
+ __SQLITE3_DB_FILENAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_readonly {
+ __SQLITE3_DB_READONLY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_release_memory {
+ __SQLITE3_DB_RELEASE_MEMORY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).errstr {
+ __SQLITE3_ERRSTR
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_busy {
+ __SQLITE3_STMT_BUSY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_readonly {
+ __SQLITE3_STMT_READONLY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stricmp {
+ __SQLITE3_STRICMP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_boolean {
+ __SQLITE3_URI_BOOLEAN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_int64 {
+ __SQLITE3_URI_INT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_parameter {
+ __SQLITE3_URI_PARAMETER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).wal_checkpoint_v2 {
+ __SQLITE3_WAL_CHECKPOINT_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).auto_extension {
+ __SQLITE3_AUTO_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_blob64 {
+ __SQLITE3_BIND_BLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_text64 {
+ __SQLITE3_BIND_TEXT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).cancel_auto_extension {
+ __SQLITE3_CANCEL_AUTO_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).load_extension {
+ __SQLITE3_LOAD_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).malloc64 {
+ __SQLITE3_MALLOC64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).msize {
+ __SQLITE3_MSIZE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).realloc64 {
+ __SQLITE3_REALLOC64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).reset_auto_extension {
+ __SQLITE3_RESET_AUTO_EXTENSION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_blob64 {
+ __SQLITE3_RESULT_BLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_text64 {
+ __SQLITE3_RESULT_TEXT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).strglob {
+ __SQLITE3_STRGLOB
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_dup {
+ __SQLITE3_VALUE_DUP
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_free {
+ __SQLITE3_VALUE_FREE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_zeroblob64 {
+ __SQLITE3_RESULT_ZEROBLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_zeroblob64 {
+ __SQLITE3_BIND_ZEROBLOB64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_subtype {
+ __SQLITE3_VALUE_SUBTYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_subtype {
+ __SQLITE3_RESULT_SUBTYPE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).status64 {
+ __SQLITE3_STATUS64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).strlike {
+ __SQLITE3_STRLIKE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_cacheflush {
+ __SQLITE3_DB_CACHEFLUSH
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).system_errno {
+ __SQLITE3_SYSTEM_ERRNO
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).trace_v2 {
+ __SQLITE3_TRACE_V2
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).expanded_sql {
+ __SQLITE3_EXPANDED_SQL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).set_last_insert_rowid {
+ __SQLITE3_SET_LAST_INSERT_ROWID
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare_v3 {
+ __SQLITE3_PREPARE_V3
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).prepare16_v3 {
+ __SQLITE3_PREPARE16_V3
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).bind_pointer {
+ __SQLITE3_BIND_POINTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).result_pointer {
+ __SQLITE3_RESULT_POINTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_pointer {
+ __SQLITE3_VALUE_POINTER
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_nochange {
+ __SQLITE3_VTAB_NOCHANGE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_nochange {
+ __SQLITE3_VALUE_NOCHANGE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_collation {
+ __SQLITE3_VTAB_COLLATION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).keyword_count {
+ __SQLITE3_KEYWORD_COUNT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).keyword_name {
+ __SQLITE3_KEYWORD_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).keyword_check {
+ __SQLITE3_KEYWORD_CHECK
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_new {
+ __SQLITE3_STR_NEW
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_finish {
+ __SQLITE3_STR_FINISH
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_append {
+ __SQLITE3_STR_APPEND
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_appendall {
+ __SQLITE3_STR_APPENDALL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_appendchar {
+ __SQLITE3_STR_APPENDCHAR
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_reset {
+ __SQLITE3_STR_RESET
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_errcode {
+ __SQLITE3_STR_ERRCODE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_length {
+ __SQLITE3_STR_LENGTH
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).str_value {
+ __SQLITE3_STR_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_window_function {
+ __SQLITE3_CREATE_WINDOW_FUNCTION
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).normalized_sql {
+ __SQLITE3_NORMALIZED_SQL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_isexplain {
+ __SQLITE3_STMT_ISEXPLAIN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_frombind {
+ __SQLITE3_VALUE_FROMBIND
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).drop_modules {
+ __SQLITE3_DROP_MODULES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).hard_heap_limit64 {
+ __SQLITE3_HARD_HEAP_LIMIT64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).uri_key {
+ __SQLITE3_URI_KEY
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).filename_database {
+ __SQLITE3_FILENAME_DATABASE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).filename_journal {
+ __SQLITE3_FILENAME_JOURNAL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).filename_wal {
+ __SQLITE3_FILENAME_WAL
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).create_filename {
+ __SQLITE3_CREATE_FILENAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).free_filename {
+ __SQLITE3_FREE_FILENAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).database_file_object {
+ __SQLITE3_DATABASE_FILE_OBJECT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).txn_state {
+ __SQLITE3_TXN_STATE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).changes64 {
+ __SQLITE3_CHANGES64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).total_changes64 {
+ __SQLITE3_TOTAL_CHANGES64
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).autovacuum_pages {
+ __SQLITE3_AUTOVACUUM_PAGES
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).error_offset {
+ __SQLITE3_ERROR_OFFSET
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_rhs_value {
+ __SQLITE3_VTAB_RHS_VALUE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_distinct {
+ __SQLITE3_VTAB_DISTINCT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_in {
+ __SQLITE3_VTAB_IN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_in_first {
+ __SQLITE3_VTAB_IN_FIRST
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).vtab_in_next {
+ __SQLITE3_VTAB_IN_NEXT
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).deserialize {
+ __SQLITE3_DESERIALIZE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).serialize {
+ __SQLITE3_SERIALIZE
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).db_name {
+ __SQLITE3_DB_NAME
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).value_encoding {
+ __SQLITE3_VALUE_ENCODING
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).is_interrupted {
+ __SQLITE3_IS_INTERRUPTED
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).stmt_explain {
+ __SQLITE3_STMT_EXPLAIN
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).get_clientdata {
+ __SQLITE3_GET_CLIENTDATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ if let Some(fun) = (*p_api).set_clientdata {
+ __SQLITE3_SET_CLIENTDATA
+ .store(fun as usize as *mut (), ::std::sync::atomic::Ordering::Release);
+ }
+ Ok(())
+}
+
diff --git a/third_party/rust/libsqlite3-sys/sqlite3/sqlite3.c b/third_party/rust/libsqlite3-sys/sqlite3/sqlite3.c
new file mode 100644
index 0000000000..8f9309a8ba
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlite3/sqlite3.c
@@ -0,0 +1,252611 @@
+/******************************************************************************
+** This file is an amalgamation of many separate C source files from SQLite
+** version 3.44.0. By combining all the individual C code files into this
+** single large file, the entire code can be compiled as a single translation
+** unit. This allows many compilers to do optimizations that would not be
+** possible if the files were compiled separately. Performance improvements
+** of 5% or more are commonly seen when SQLite is compiled as a single
+** translation unit.
+**
+** This file is all you need to compile SQLite. To use SQLite in other
+** programs, you need this file and the "sqlite3.h" header file that defines
+** the programming interface to the SQLite library. (If you do not have
+** the "sqlite3.h" header file at hand, you will find a copy embedded within
+** the text of this file. Search for "Begin file sqlite3.h" to find the start
+** of the embedded sqlite3.h header file.) Additional code files may be needed
+** if you want a wrapper to interface SQLite with your choice of programming
+** language. The code for the "sqlite3" command-line shell is also in a
+** separate file. This file contains only code for the core SQLite library.
+**
+** The content in this amalgamation comes from Fossil check-in
+** 17129ba1ff7f0daf37100ee82d507aef7827.
+*/
+#define SQLITE_CORE 1
+#define SQLITE_AMALGAMATION 1
+#ifndef SQLITE_PRIVATE
+# define SQLITE_PRIVATE static
+#endif
+/************** Begin file sqliteInt.h ***************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal interface definitions for SQLite.
+**
+*/
+#ifndef SQLITEINT_H
+#define SQLITEINT_H
+
+/* Special Comments:
+**
+** Some comments have special meaning to the tools that measure test
+** coverage:
+**
+** NO_TEST - The branches on this line are not
+** measured by branch coverage. This is
+** used on lines of code that actually
+** implement parts of coverage testing.
+**
+** OPTIMIZATION-IF-TRUE - This branch is allowed to always be false
+** and the correct answer is still obtained,
+** though perhaps more slowly.
+**
+** OPTIMIZATION-IF-FALSE - This branch is allowed to always be true
+** and the correct answer is still obtained,
+** though perhaps more slowly.
+**
+** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread
+** that would be harmless and undetectable
+** if it did occur.
+**
+** In all cases, the special comment must be enclosed in the usual
+** slash-asterisk...asterisk-slash comment marks, with no spaces between the
+** asterisks and the comment text.
+*/
+
+/*
+** Make sure the Tcl calling convention macro is defined. This macro is
+** only used by test code and Tcl integration code.
+*/
+#ifndef SQLITE_TCLAPI
+# define SQLITE_TCLAPI
+#endif
+
+/*
+** Include the header file used to customize the compiler options for MSVC.
+** This should be done first so that it can successfully prevent spurious
+** compiler warnings due to subsequent content in this file and other files
+** that are included by this file.
+*/
+/************** Include msvc.h in the middle of sqliteInt.h ******************/
+/************** Begin file msvc.h ********************************************/
+/*
+** 2015 January 12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to MSVC.
+*/
+#ifndef SQLITE_MSVC_H
+#define SQLITE_MSVC_H
+
+#if defined(_MSC_VER)
+#pragma warning(disable : 4054)
+#pragma warning(disable : 4055)
+#pragma warning(disable : 4100)
+#pragma warning(disable : 4127)
+#pragma warning(disable : 4130)
+#pragma warning(disable : 4152)
+#pragma warning(disable : 4189)
+#pragma warning(disable : 4206)
+#pragma warning(disable : 4210)
+#pragma warning(disable : 4232)
+#pragma warning(disable : 4244)
+#pragma warning(disable : 4305)
+#pragma warning(disable : 4306)
+#pragma warning(disable : 4702)
+#pragma warning(disable : 4706)
+#endif /* defined(_MSC_VER) */
+
+#if defined(_MSC_VER) && !defined(_WIN64)
+#undef SQLITE_4_BYTE_ALIGNED_MALLOC
+#define SQLITE_4_BYTE_ALIGNED_MALLOC
+#endif /* defined(_MSC_VER) && !defined(_WIN64) */
+
+#if !defined(HAVE_LOG2) && defined(_MSC_VER) && _MSC_VER<1800
+#define HAVE_LOG2 0
+#endif /* !defined(HAVE_LOG2) && defined(_MSC_VER) && _MSC_VER<1800 */
+
+#endif /* SQLITE_MSVC_H */
+
+/************** End of msvc.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/*
+** Special setup for VxWorks
+*/
+/************** Include vxworks.h in the middle of sqliteInt.h ***************/
+/************** Begin file vxworks.h *****************************************/
+/*
+** 2015-03-02
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Wind River's VxWorks
+*/
+#if defined(__RTP__) || defined(_WRS_KERNEL)
+/* This is VxWorks. Set up things specially for that OS
+*/
+#include <vxWorks.h>
+#include <pthread.h> /* amalgamator: dontcache */
+#define OS_VXWORKS 1
+#define SQLITE_OS_OTHER 0
+#define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1
+#define SQLITE_OMIT_LOAD_EXTENSION 1
+#define SQLITE_ENABLE_LOCKING_STYLE 0
+#define HAVE_UTIME 1
+#else
+/* This is not VxWorks. */
+#define OS_VXWORKS 0
+#define HAVE_FCHOWN 1
+#define HAVE_READLINK 1
+#define HAVE_LSTAT 1
+#endif /* defined(_WRS_KERNEL) */
+
+/************** End of vxworks.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/*
+** These #defines should enable >2GB file support on POSIX if the
+** underlying operating system supports it. If the OS lacks
+** large file support, or if the OS is windows, these should be no-ops.
+**
+** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
+** system #includes. Hence, this block of code must be the very first
+** code in all source files.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: Red Hat 7.2) but you want your code to work
+** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+**
+** The previous paragraph was written in 2005. (This paragraph is written
+** on 2008-11-28.) These days, all Linux kernels support large files, so
+** you should probably leave LFS enabled. But some embedded platforms might
+** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
+**
+** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# ifndef _FILE_OFFSET_BITS
+# define _FILE_OFFSET_BITS 64
+# endif
+# define _LARGEFILE_SOURCE 1
+#endif
+
+/* The GCC_VERSION and MSVC_VERSION macros are used to
+** conditionally include optimizations for each of these compilers. A
+** value of 0 means that compiler is not being used. The
+** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific
+** optimizations, and hence set all compiler macros to 0
+**
+** There was once also a CLANG_VERSION macro. However, we learn that the
+** version numbers in clang are for "marketing" only and are inconsistent
+** and unreliable. Fortunately, all versions of clang also recognize the
+** gcc version numbers and have reasonable settings for gcc version numbers,
+** so the GCC_VERSION macro will be set to a correct non-zero value even
+** when compiling with clang.
+*/
+#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
+#else
+# define GCC_VERSION 0
+#endif
+#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define MSVC_VERSION _MSC_VER
+#else
+# define MSVC_VERSION 0
+#endif
+
+/*
+** Some C99 functions in "math.h" are only present for MSVC when its version
+** is associated with Visual Studio 2013 or higher.
+*/
+#ifndef SQLITE_HAVE_C99_MATH_FUNCS
+# if MSVC_VERSION==0 || MSVC_VERSION>=1800
+# define SQLITE_HAVE_C99_MATH_FUNCS (1)
+# else
+# define SQLITE_HAVE_C99_MATH_FUNCS (0)
+# endif
+#endif
+
+/* Needed for various definitions... */
+#if defined(__GNUC__) && !defined(_GNU_SOURCE)
+# define _GNU_SOURCE
+#endif
+
+#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
+# define _BSD_SOURCE
+#endif
+
+/*
+** Macro to disable warnings about missing "break" at the end of a "case".
+*/
+#if GCC_VERSION>=7000000
+# define deliberate_fall_through __attribute__((fallthrough));
+#else
+# define deliberate_fall_through
+#endif
+
+/*
+** For MinGW, check to see if we can include the header file containing its
+** version information, among other things. Normally, this internal MinGW
+** header file would [only] be included automatically by other MinGW header
+** files; however, the contained version information is now required by this
+** header file to work around binary compatibility issues (see below) and
+** this is the only known way to reliably obtain it. This entire #if block
+** would be completely unnecessary if there was any other way of detecting
+** MinGW via their preprocessor (e.g. if they customized their GCC to define
+** some MinGW-specific macros). When compiling for MinGW, either the
+** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
+** defined; otherwise, detection of conditions specific to MinGW will be
+** disabled.
+*/
+#if defined(_HAVE_MINGW_H)
+# include "mingw.h"
+#elif defined(_HAVE__MINGW_H)
+# include "_mingw.h"
+#endif
+
+/*
+** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
+** define is required to maintain binary compatibility with the MSVC runtime
+** library in use (e.g. for Windows XP).
+*/
+#if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
+ defined(_WIN32) && !defined(_WIN64) && \
+ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
+ defined(__MSVCRT__)
+# define _USE_32BIT_TIME_T
+#endif
+
+/* Optionally #include a user-defined header, whereby compilation options
+** may be set prior to where they take effect, but after platform setup.
+** If SQLITE_CUSTOM_INCLUDE=? is defined, its value names the #include
+** file.
+*/
+#ifdef SQLITE_CUSTOM_INCLUDE
+# define INC_STRINGIFY_(f) #f
+# define INC_STRINGIFY(f) INC_STRINGIFY_(f)
+# include INC_STRINGIFY(SQLITE_CUSTOM_INCLUDE)
+#endif
+
+/* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear
+** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for
+** MinGW.
+*/
+/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
+/************** Begin file sqlite3.h *****************************************/
+/*
+** 2001-09-15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve the right to make minor changes
+** if experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are supposed to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
+*/
+#ifndef SQLITE3_H
+#define SQLITE3_H
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+extern "C" {
+#endif
+
+
+/*
+** Facilitate override of interface linkage and calling conventions.
+** Be aware that these macros may not be used within this particular
+** translation of the amalgamation and its associated header file.
+**
+** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the
+** compiler that the target identifier should have external linkage.
+**
+** The SQLITE_CDECL macro is used to set the calling convention for
+** public functions that accept a variable number of arguments.
+**
+** The SQLITE_APICALL macro is used to set the calling convention for
+** public functions that accept a fixed number of arguments.
+**
+** The SQLITE_STDCALL macro is no longer used and is now deprecated.
+**
+** The SQLITE_CALLBACK macro is used to set the calling convention for
+** function pointers.
+**
+** The SQLITE_SYSAPI macro is used to set the calling convention for
+** functions provided by the operating system.
+**
+** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and
+** SQLITE_SYSAPI macros are used only when building for environments
+** that require non-default calling conventions.
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+#ifndef SQLITE_CDECL
+# define SQLITE_CDECL
+#endif
+#ifndef SQLITE_APICALL
+# define SQLITE_APICALL
+#endif
+#ifndef SQLITE_STDCALL
+# define SQLITE_STDCALL SQLITE_APICALL
+#endif
+#ifndef SQLITE_CALLBACK
+# define SQLITE_CALLBACK
+#endif
+#ifndef SQLITE_SYSAPI
+# define SQLITE_SYSAPI
+#endif
+
+/*
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are supported for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
+**
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
+*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers
+**
+** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
+** evaluates to a string literal that is the SQLite version in the
+** format "X.Y.Z" where X is the major version number (always 3 for
+** SQLite3) and Y is the minor version number and Z is the release number.)^
+** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
+** numbers used in [SQLITE_VERSION].)^
+** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
+** be larger than the release from which it is derived. Either Y will
+** be held constant and Z will be incremented or else Y will be incremented
+** and Z will be reset to zero.
+**
+** Since [version 3.6.18] ([dateof:3.6.18]),
+** SQLite source code has been stored in the
+** <a href="http://www.fossil-scm.org/">Fossil configuration management
+** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
+** a string which identifies a particular check-in of SQLite
+** within its configuration management system. ^The SQLITE_SOURCE_ID
+** string contains the date and time of the check-in (UTC) and a SHA1
+** or SHA3-256 hash of the entire source tree. If the source code has
+** been edited in any way since it was last checked in, then the last
+** four hexadecimal digits of the hash may be modified.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+*/
+#define SQLITE_VERSION "3.44.0"
+#define SQLITE_VERSION_NUMBER 3044000
+#define SQLITE_SOURCE_ID "2023-11-01 11:23:50 17129ba1ff7f0daf37100ee82d507aef7827cf38de1866e2633096ae6ad81301"
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers
+** KEYWORDS: sqlite3_version sqlite3_sourceid
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
+** but are associated with the library instead of the header file. ^(Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus ensure that the application is
+** compiled with matching library and header files.
+**
+** <blockquote><pre>
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+** </pre></blockquote>)^
+**
+** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
+** macro. ^The sqlite3_libversion() function returns a pointer to the
+** to the sqlite3_version[] string constant. The sqlite3_libversion()
+** function is provided for use in DLLs since DLL users usually do not have
+** direct access to string constants within the DLL. ^The
+** sqlite3_libversion_number() function returns an integer equal to
+** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns
+** a pointer to a string constant whose value is the same as the
+** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built
+** using an edited copy of [the amalgamation], then the last four characters
+** of the hash might be different from [SQLITE_SOURCE_ID].)^
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+*/
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
+
+/*
+** CAPI3REF: Run-Time Library Compilation Options Diagnostics
+**
+** ^The sqlite3_compileoption_used() function returns 0 or 1
+** indicating whether the specified option was defined at
+** compile time. ^The SQLITE_ prefix may be omitted from the
+** option name passed to sqlite3_compileoption_used().
+**
+** ^The sqlite3_compileoption_get() function allows iterating
+** over the list of options that were defined at compile time by
+** returning the N-th compile time option string. ^If N is out of range,
+** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
+** prefix is omitted from any strings returned by
+** sqlite3_compileoption_get().
+**
+** ^Support for the diagnostic functions sqlite3_compileoption_used()
+** and sqlite3_compileoption_get() may be omitted by specifying the
+** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
+**
+** See also: SQL functions [sqlite_compileoption_used()] and
+** [sqlite_compileoption_get()] and the [compile_options pragma].
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
+SQLITE_API const char *sqlite3_compileoption_get(int N);
+#else
+# define sqlite3_compileoption_used(X) 0
+# define sqlite3_compileoption_get(X) ((void*)0)
+#endif
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe
+**
+** ^The sqlite3_threadsafe() function returns zero if and only if
+** SQLite was compiled with mutexing code omitted due to the
+** [SQLITE_THREADSAFE] compile-time option being set to 0.
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** ^The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
+** sqlite3_threadsafe() function shows only the compile-time setting of
+** thread safety, not any run-time changes to that setting made by
+** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
+** is unchanged by calls to sqlite3_config().)^
+**
+** See the [threading mode] documentation for additional information.
+*/
+SQLITE_API int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** and [sqlite3_close_v2()] are its destructors. There are many other
+** interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
+
+/*
+** CAPI3REF: 64-Bit Integer Types
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** ^The sqlite3_int64 and sqlite_int64 types can store integer values
+** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
+** sqlite3_uint64 and sqlite_uint64 types can store integer values
+** between 0 and +18446744073709551615 inclusive.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+# ifdef SQLITE_UINT64_TYPE
+ typedef SQLITE_UINT64_TYPE sqlite_uint64;
+# else
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+# endif
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection
+** DESTRUCTOR: sqlite3
+**
+** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
+** for the [sqlite3] object.
+** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
+** the [sqlite3] object is successfully destroyed and all associated
+** resources are deallocated.
+**
+** Ideally, applications should [sqlite3_finalize | finalize] all
+** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and
+** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
+** with the [sqlite3] object prior to attempting to close the object.
+** ^If the database connection is associated with unfinalized prepared
+** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
+** sqlite3_close() will leave the database connection open and return
+** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
+** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
+** it returns [SQLITE_OK] regardless, but instead of deallocating the database
+** connection immediately, it marks the database connection as an unusable
+** "zombie" and makes arrangements to automatically deallocate the database
+** connection after all prepared statements are finalized, all BLOB handles
+** are closed, and all backups have finished. The sqlite3_close_v2() interface
+** is intended for use with host languages that are garbage collected, and
+** where the order in which destructors are called is arbitrary.
+**
+** ^If an [sqlite3] object is destroyed while a transaction is open,
+** the transaction is automatically rolled back.
+**
+** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
+** must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
+** argument is a harmless no-op.
+*/
+SQLITE_API int sqlite3_close(sqlite3*);
+SQLITE_API int sqlite3_close_v2(sqlite3*);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface
+** METHOD: sqlite3
+**
+** The sqlite3_exec() interface is a convenience wrapper around
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
+** that allows an application to run multiple statements of SQL
+** without having to use a lot of C code.
+**
+** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
+** semicolon-separate SQL statements passed into its 2nd argument,
+** in the context of the [database connection] passed in as its 1st
+** argument. ^If the callback function of the 3rd argument to
+** sqlite3_exec() is not NULL, then it is invoked for each result row
+** coming out of the evaluated SQL statements. ^The 4th argument to
+** sqlite3_exec() is relayed through to the 1st argument of each
+** callback invocation. ^If the callback pointer to sqlite3_exec()
+** is NULL, then no callback is ever invoked and result rows are
+** ignored.
+**
+** ^If an error occurs while evaluating the SQL statements passed into
+** sqlite3_exec(), then execution of the current statement stops and
+** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
+** is not NULL then any error message is written into memory obtained
+** from [sqlite3_malloc()] and passed back through the 5th parameter.
+** To avoid memory leaks, the application should invoke [sqlite3_free()]
+** on error message strings returned through the 5th parameter of
+** sqlite3_exec() after the error message string is no longer needed.
+** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
+** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
+** NULL before returning.
+**
+** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
+** routine returns SQLITE_ABORT without invoking the callback again and
+** without running any subsequent SQL statements.
+**
+** ^The 2nd argument to the sqlite3_exec() callback function is the
+** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
+** callback is an array of pointers to strings obtained as if from
+** [sqlite3_column_text()], one for each column. ^If an element of a
+** result row is NULL then the corresponding string pointer for the
+** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
+** sqlite3_exec() callback is an array of pointers to strings where each
+** entry represents the name of corresponding result column as obtained
+** from [sqlite3_column_name()].
+**
+** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
+** to an empty string, or a pointer that contains only whitespace and/or
+** SQL comments, then no SQL statements are evaluated and the database
+** is not changed.
+**
+** Restrictions:
+**
+** <ul>
+** <li> The application must ensure that the 1st parameter to sqlite3_exec()
+** is a valid and open [database connection].
+** <li> The application must not close the [database connection] specified by
+** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
+** <li> The application must not modify the SQL statement text passed into
+** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
+** </ul>
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes
+** KEYWORDS: {result code definitions}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicate success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [extended result code definitions]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* Generic error */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Internal use only */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Not used */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */
+#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes
+** KEYWORDS: {extended result code definitions}
+**
+** In its default configuration, SQLite API routines return one of 30 integer
+** [result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8]
+** and later) include
+** support for additional result codes that provide more detailed information
+** about errors. These [extended result codes] are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API. Or, the extended code for
+** the most recent error can be obtained using
+** [sqlite3_extended_errcode()].
+*/
+#define SQLITE_ERROR_MISSING_COLLSEQ (SQLITE_ERROR | (1<<8))
+#define SQLITE_ERROR_RETRY (SQLITE_ERROR | (2<<8))
+#define SQLITE_ERROR_SNAPSHOT (SQLITE_ERROR | (3<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8))
+#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8))
+#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8))
+#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8))
+#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8))
+#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8))
+#define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8))
+#define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8))
+#define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8))
+#define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8))
+#define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8))
+#define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8))
+#define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8))
+#define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8))
+#define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8))
+#define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8))
+#define SQLITE_IOERR_IN_PAGE (SQLITE_IOERR | (34<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8))
+#define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8))
+#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8))
+#define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8))
+#define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8))
+#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8))
+#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8))
+#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8))
+#define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8))
+#define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) /* Not Used */
+#define SQLITE_CANTOPEN_SYMLINK (SQLITE_CANTOPEN | (6<<8))
+#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8))
+#define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8))
+#define SQLITE_CORRUPT_INDEX (SQLITE_CORRUPT | (3<<8))
+#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8))
+#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8))
+#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8))
+#define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8))
+#define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8))
+#define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8))
+#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8))
+#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8))
+#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8))
+#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8))
+#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8))
+#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8))
+#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8))
+#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8))
+#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8))
+#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8))
+#define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8))
+#define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8))
+#define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8))
+#define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8))
+#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
+#define SQLITE_NOTICE_RBU (SQLITE_NOTICE | (3<<8))
+#define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8))
+#define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8))
+#define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8))
+#define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */
+
+/*
+** CAPI3REF: Flags For File Open Operations
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
+**
+** Only those flags marked as "Ok for sqlite3_open_v2()" may be
+** used as the third argument to the [sqlite3_open_v2()] interface.
+** The other flags have historically been ignored by sqlite3_open_v2(),
+** though future versions of SQLite might change so that an error is
+** raised if any of the disallowed bits are passed into sqlite3_open_v2().
+** Applications should not depend on the historical behavior.
+**
+** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into
+** [sqlite3_open_v2()] does *not* cause the underlying database file
+** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into
+** [sqlite3_open_v2()] has historically be a no-op and might become an
+** error in future versions of SQLite.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
+#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_SUPER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */
+#define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */
+
+/* Reserved: 0x00F00000 */
+/* Legacy compatibility: */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+
+
+/*
+** CAPI3REF: Device Characteristics
+**
+** The xDeviceCharacteristics method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
+** after reboot following a crash or power loss, the only bytes in a
+** file that were written at the application level might have changed
+** and that adjacent bytes, even bytes within the same sector are
+** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+** flag indicates that a file cannot be deleted when open. The
+** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
+** read-only media and cannot be changed even by processes with
+** elevated privileges.
+**
+** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying
+** filesystem supports doing multiple write operations atomically when those
+** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and
+** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800
+#define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000
+#define SQLITE_IOCAP_IMMUTABLE 0x00002000
+#define SQLITE_IOCAP_BATCH_ATOMIC 0x00004000
+
+/*
+** CAPI3REF: File Locking Levels
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object. These values are ordered from
+** lest restrictive to most restrictive.
+**
+** The argument to xLock() is always SHARED or higher. The argument to
+** xUnlock is either SHARED or NONE.
+*/
+#define SQLITE_LOCK_NONE 0 /* xUnlock() only */
+#define SQLITE_LOCK_SHARED 1 /* xLock() or xUnlock() */
+#define SQLITE_LOCK_RESERVED 2 /* xLock() only */
+#define SQLITE_LOCK_PENDING 3 /* xLock() only */
+#define SQLITE_LOCK_EXCLUSIVE 4 /* xLock() only */
+
+/*
+** CAPI3REF: Synchronization Type Flags
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+**
+** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
+** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
+** settings. The [synchronous pragma] determines when calls to the
+** xSync VFS method occur and applies uniformly across all platforms.
+** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
+** energetic or rigorous or forceful the sync operations are and
+** only make a difference on Mac OSX for the default SQLite code.
+** (Third-party VFS implementations might also make the distinction
+** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
+** operating systems natively supported by SQLite, only Mac OSX
+** cares about the difference.)
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object
+**
+** Every file opened by the [sqlite3_vfs.xOpen] method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The
+** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
+** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
+** to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() upgrades the database file lock. In other words, xLock() moves the
+** database file lock in the direction NONE toward EXCLUSIVE. The argument to
+** xLock() is always on of SHARED, RESERVED, PENDING, or EXCLUSIVE, never
+** SQLITE_LOCK_NONE. If the database file lock is already at or above the
+** requested lock, then the call to xLock() is a no-op.
+** xUnlock() downgrades the database file lock to either SHARED or NONE.
+* If the lock is already at or below the requested lock state, then the call
+** to xUnlock() is a no-op.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [file control opcodes | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts. VFS implementations should
+** return [SQLITE_NOTFOUND] for file control opcodes that they do not
+** recognize.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
+** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
+** <li> [SQLITE_IOCAP_IMMUTABLE]
+** <li> [SQLITE_IOCAP_BATCH_ATOMIC]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Methods above are valid for version 1 */
+ int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
+ int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
+ void (*xShmBarrier)(sqlite3_file*);
+ int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
+ /* Methods above are valid for version 2 */
+ int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
+ int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
+ /* Methods above are valid for version 3 */
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes
+** KEYWORDS: {file control opcodes} {file control opcode}
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** <ul>
+** <li>[[SQLITE_FCNTL_LOCKSTATE]]
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to.
+** This capability is only available if SQLite is compiled with [SQLITE_DEBUG].
+**
+** <li>[[SQLITE_FCNTL_SIZE_HINT]]
+** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
+** layer a hint of how large the database file will grow to be during the
+** current transaction. This hint is not guaranteed to be accurate but it
+** is often close. The underlying VFS might choose to preallocate database
+** file space based on this hint in order to help writes to the database
+** file run faster.
+**
+** <li>[[SQLITE_FCNTL_SIZE_LIMIT]]
+** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that
+** implements [sqlite3_deserialize()] to set an upper bound on the size
+** of the in-memory database. The argument is a pointer to a [sqlite3_int64].
+** If the integer pointed to is negative, then it is filled in with the
+** current limit. Otherwise the limit is set to the larger of the value
+** of the integer pointed to and the current database size. The integer
+** pointed to is set to the new limit.
+**
+** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
+** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
+** extends and truncates the database file in chunks of a size specified
+** by the user. The fourth argument to [sqlite3_file_control()] should
+** point to an integer (type int) containing the new chunk-size to use
+** for the nominated database. Allocating database file space in large
+** chunks (say 1MB at a time), may reduce file-system fragmentation and
+** improve performance on some systems.
+**
+** <li>[[SQLITE_FCNTL_FILE_POINTER]]
+** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with a particular database
+** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER].
+**
+** <li>[[SQLITE_FCNTL_JOURNAL_POINTER]]
+** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with the journal file (either
+** the [rollback journal] or the [write-ahead log]) for a particular database
+** connection. See also [SQLITE_FCNTL_FILE_POINTER].
+**
+** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
+** No longer in use.
+**
+** <li>[[SQLITE_FCNTL_SYNC]]
+** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
+** sent to the VFS immediately before the xSync method is invoked on a
+** database file descriptor. Or, if the xSync method is not invoked
+** because the user has configured SQLite with
+** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
+** of the xSync method. In most cases, the pointer argument passed with
+** this file-control is NULL. However, if the database file is being synced
+** as part of a multi-database commit, the argument points to a nul-terminated
+** string containing the transactions super-journal file name. VFSes that
+** do not need this signal should silently ignore this opcode. Applications
+** should not call [sqlite3_file_control()] with this opcode as doing so may
+** disrupt the operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
+** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
+** and sent to the VFS after a transaction has been committed immediately
+** but before the database is unlocked. VFSes that do not need this signal
+** should silently ignore this opcode. Applications should not call
+** [sqlite3_file_control()] with this opcode as doing so may disrupt the
+** operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
+** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
+** retry counts and intervals for certain disk I/O operations for the
+** windows [VFS] in order to provide robustness in the presence of
+** anti-virus programs. By default, the windows VFS will retry file read,
+** file write, and file delete operations up to 10 times, with a delay
+** of 25 milliseconds before the first retry and with the delay increasing
+** by an additional 25 milliseconds with each subsequent retry. This
+** opcode allows these two values (10 retries and 25 milliseconds of delay)
+** to be adjusted. The values are changed for all database connections
+** within the same process. The argument is a pointer to an array of two
+** integers where the first integer is the new retry count and the second
+** integer is the delay. If either integer is negative, then the setting
+** is not changed but instead the prior value of that setting is written
+** into the array entry, allowing the current retry settings to be
+** interrogated. The zDbName parameter is ignored.
+**
+** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
+** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
+** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary
+** write ahead log ([WAL file]) and shared memory
+** files used for transaction control
+** are automatically deleted when the latest connection to the database
+** closes. Setting persistent WAL mode causes those files to persist after
+** close. Persisting the files is useful when other processes that do not
+** have write permission on the directory containing the database file want
+** to read the database file, as the WAL and shared memory files must exist
+** in order for the database to be readable. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
+** WAL mode. If the integer is -1, then it is overwritten with the current
+** WAL persistence setting.
+**
+** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
+** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
+** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting
+** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
+** xDeviceCharacteristics methods. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
+** mode. If the integer is -1, then it is overwritten with the current
+** zero-damage mode setting.
+**
+** <li>[[SQLITE_FCNTL_OVERWRITE]]
+** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
+** a write transaction to indicate that, unless it is rolled back for some
+** reason, the entire database file will be overwritten by the current
+** transaction. This is used by VACUUM operations.
+**
+** <li>[[SQLITE_FCNTL_VFSNAME]]
+** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
+** all [VFSes] in the VFS stack. The names are of all VFS shims and the
+** final bottom-level VFS are written into memory obtained from
+** [sqlite3_malloc()] and the result is stored in the char* variable
+** that the fourth parameter of [sqlite3_file_control()] points to.
+** The caller is responsible for freeing the memory when done. As with
+** all file-control actions, there is no guarantee that this will actually
+** do anything. Callers should initialize the char* variable to a NULL
+** pointer in case this file-control is not implemented. This file-control
+** is intended for diagnostic use only.
+**
+** <li>[[SQLITE_FCNTL_VFS_POINTER]]
+** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
+** [VFSes] currently in use. ^(The argument X in
+** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
+** of type "[sqlite3_vfs] **". This opcodes will set *X
+** to a pointer to the top-level VFS.)^
+** ^When there are multiple VFS shims in the stack, this opcode finds the
+** upper-most shim only.
+**
+** <li>[[SQLITE_FCNTL_PRAGMA]]
+** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
+** file control is sent to the open [sqlite3_file] object corresponding
+** to the database file to which the pragma statement refers. ^The argument
+** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
+** pointers to strings (char**) in which the second element of the array
+** is the name of the pragma and the third element is the argument to the
+** pragma or NULL if the pragma has no argument. ^The handler for an
+** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
+** of the char** argument point to a string obtained from [sqlite3_mprintf()]
+** or the equivalent and that string will become the result of the pragma or
+** the error message if the pragma fails. ^If the
+** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
+** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA]
+** file control returns [SQLITE_OK], then the parser assumes that the
+** VFS has handled the PRAGMA itself and the parser generates a no-op
+** prepared statement if result string is NULL, or that returns a copy
+** of the result string if the string is non-NULL.
+** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
+** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
+** that the VFS encountered an error while handling the [PRAGMA] and the
+** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA]
+** file control occurs at the beginning of pragma statement analysis and so
+** it is able to override built-in [PRAGMA] statements.
+**
+** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
+** ^The [SQLITE_FCNTL_BUSYHANDLER]
+** file-control may be invoked by SQLite on the database file handle
+** shortly after it is opened in order to provide a custom VFS with access
+** to the connection's busy-handler callback. The argument is of type (void**)
+** - an array of two (void *) values. The first (void *) actually points
+** to a function of type (int (*)(void *)). In order to invoke the connection's
+** busy-handler, this function should be invoked with the second (void *) in
+** the array as the only argument. If it returns non-zero, then the operation
+** should be retried. If it returns zero, the custom VFS should abandon the
+** current operation.
+**
+** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
+** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
+** to have SQLite generate a
+** temporary filename using the same algorithm that is followed to generate
+** temporary filenames for TEMP tables and other internal uses. The
+** argument should be a char** which will be filled with the filename
+** written into memory obtained from [sqlite3_malloc()]. The caller should
+** invoke [sqlite3_free()] on the result to avoid a memory leak.
+**
+** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
+** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
+** maximum number of bytes that will be used for memory-mapped I/O.
+** The argument is a pointer to a value of type sqlite3_int64 that
+** is an advisory maximum number of bytes in the file to memory map. The
+** pointer is overwritten with the old value. The limit is not changed if
+** the value originally pointed to is negative, and so the current limit
+** can be queried by passing in a pointer to a negative number. This
+** file-control is used internally to implement [PRAGMA mmap_size].
+**
+** <li>[[SQLITE_FCNTL_TRACE]]
+** The [SQLITE_FCNTL_TRACE] file control provides advisory information
+** to the VFS about what the higher layers of the SQLite stack are doing.
+** This file control is used by some VFS activity tracing [shims].
+** The argument is a zero-terminated string. Higher layers in the
+** SQLite stack may generate instances of this file control if
+** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
+**
+** <li>[[SQLITE_FCNTL_HAS_MOVED]]
+** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
+** pointer to an integer and it writes a boolean into that integer depending
+** on whether or not the file has been renamed, moved, or deleted since it
+** was first opened.
+**
+** <li>[[SQLITE_FCNTL_WIN32_GET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the
+** underlying native file handle associated with a file handle. This file
+** control interprets its argument as a pointer to a native file handle and
+** writes the resulting value there.
+**
+** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This
+** opcode causes the xFileControl method to swap the file handle with the one
+** pointed to by the pArg argument. This capability is used during testing
+** and only needs to be supported when SQLITE_TEST is defined.
+**
+** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
+** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
+** be advantageous to block on the next WAL lock if the lock is not immediately
+** available. The WAL subsystem issues this signal during rare
+** circumstances in order to fix a problem with priority inversion.
+** Applications should <em>not</em> use this file-control.
+**
+** <li>[[SQLITE_FCNTL_ZIPVFS]]
+** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
+** VFS should return SQLITE_NOTFOUND for this opcode.
+**
+** <li>[[SQLITE_FCNTL_RBU]]
+** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
+** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for
+** this opcode.
+**
+** <li>[[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]]
+** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then
+** the file descriptor is placed in "batch write mode", which
+** means all subsequent write operations will be deferred and done
+** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems
+** that do not support batch atomic writes will return SQLITE_NOTFOUND.
+** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to
+** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or
+** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make
+** no VFS interface calls on the same [sqlite3_file] file descriptor
+** except for calls to the xWrite method and the xFileControl method
+** with [SQLITE_FCNTL_SIZE_HINT].
+**
+** <li>[[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically.
+** This file control returns [SQLITE_OK] if and only if the writes were
+** all performed successfully and have been committed to persistent storage.
+** ^Regardless of whether or not it is successful, this file control takes
+** the file descriptor out of batch write mode so that all subsequent
+** write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back.
+** ^This file control takes the file descriptor out of batch write mode
+** so that all subsequent write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_LOCK_TIMEOUT]]
+** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS
+** to block for up to M milliseconds before failing when attempting to
+** obtain a file lock using the xLock or xShmLock methods of the VFS.
+** The parameter is a pointer to a 32-bit signed integer that contains
+** the value that M is to be set to. Before returning, the 32-bit signed
+** integer is overwritten with the previous value of M.
+**
+** <li>[[SQLITE_FCNTL_DATA_VERSION]]
+** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
+** a database file. The argument is a pointer to a 32-bit unsigned integer.
+** The "data version" for the pager is written into the pointer. The
+** "data version" changes whenever any change occurs to the corresponding
+** database file, either through SQL statements on the same database
+** connection or through transactions committed by separate database
+** connections possibly in other processes. The [sqlite3_total_changes()]
+** interface can be used to find if any database on the connection has changed,
+** but that interface responds to changes on TEMP as well as MAIN and does
+** not provide a mechanism to detect changes to MAIN only. Also, the
+** [sqlite3_total_changes()] interface responds to internal changes only and
+** omits changes made by other database connections. The
+** [PRAGMA data_version] command provides a mechanism to detect changes to
+** a single attached database that occur due to other database connections,
+** but omits changes implemented by the database connection on which it is
+** called. This file control is the only mechanism to detect changes that
+** happen either internally or externally and that are associated with
+** a particular attached database.
+**
+** <li>[[SQLITE_FCNTL_CKPT_START]]
+** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint
+** in wal mode before the client starts to copy pages from the wal
+** file to the database file.
+**
+** <li>[[SQLITE_FCNTL_CKPT_DONE]]
+** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint
+** in wal mode after the client has finished copying pages from the wal
+** file to the database file, but before the *-shm file is updated to
+** record the fact that the pages have been checkpointed.
+**
+** <li>[[SQLITE_FCNTL_EXTERNAL_READER]]
+** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect
+** whether or not there is a database client in another process with a wal-mode
+** transaction open on the database or not. It is only available on unix.The
+** (void*) argument passed with this file-control should be a pointer to a
+** value of type (int). The integer value is set to 1 if the database is a wal
+** mode database and there exists at least one client in another process that
+** currently has an SQL transaction open on the database. It is set to 0 if
+** the database is not a wal-mode db, or if there is no such connection in any
+** other process. This opcode cannot be used to detect transactions opened
+** by clients within the current process, only within other processes.
+**
+** <li>[[SQLITE_FCNTL_CKSM_FILE]]
+** The [SQLITE_FCNTL_CKSM_FILE] opcode is for use internally by the
+** [checksum VFS shim] only.
+**
+** <li>[[SQLITE_FCNTL_RESET_CACHE]]
+** If there is currently no transaction open on the database, and the
+** database is not a temp db, then the [SQLITE_FCNTL_RESET_CACHE] file-control
+** purges the contents of the in-memory page cache. If there is an open
+** transaction, or if the db is a temp-db, this opcode is a no-op, not an error.
+** </ul>
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_FCNTL_GET_LOCKPROXYFILE 2
+#define SQLITE_FCNTL_SET_LOCKPROXYFILE 3
+#define SQLITE_FCNTL_LAST_ERRNO 4
+#define SQLITE_FCNTL_SIZE_HINT 5
+#define SQLITE_FCNTL_CHUNK_SIZE 6
+#define SQLITE_FCNTL_FILE_POINTER 7
+#define SQLITE_FCNTL_SYNC_OMITTED 8
+#define SQLITE_FCNTL_WIN32_AV_RETRY 9
+#define SQLITE_FCNTL_PERSIST_WAL 10
+#define SQLITE_FCNTL_OVERWRITE 11
+#define SQLITE_FCNTL_VFSNAME 12
+#define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13
+#define SQLITE_FCNTL_PRAGMA 14
+#define SQLITE_FCNTL_BUSYHANDLER 15
+#define SQLITE_FCNTL_TEMPFILENAME 16
+#define SQLITE_FCNTL_MMAP_SIZE 18
+#define SQLITE_FCNTL_TRACE 19
+#define SQLITE_FCNTL_HAS_MOVED 20
+#define SQLITE_FCNTL_SYNC 21
+#define SQLITE_FCNTL_COMMIT_PHASETWO 22
+#define SQLITE_FCNTL_WIN32_SET_HANDLE 23
+#define SQLITE_FCNTL_WAL_BLOCK 24
+#define SQLITE_FCNTL_ZIPVFS 25
+#define SQLITE_FCNTL_RBU 26
+#define SQLITE_FCNTL_VFS_POINTER 27
+#define SQLITE_FCNTL_JOURNAL_POINTER 28
+#define SQLITE_FCNTL_WIN32_GET_HANDLE 29
+#define SQLITE_FCNTL_PDB 30
+#define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE 31
+#define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE 32
+#define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE 33
+#define SQLITE_FCNTL_LOCK_TIMEOUT 34
+#define SQLITE_FCNTL_DATA_VERSION 35
+#define SQLITE_FCNTL_SIZE_LIMIT 36
+#define SQLITE_FCNTL_CKPT_DONE 37
+#define SQLITE_FCNTL_RESERVE_BYTES 38
+#define SQLITE_FCNTL_CKPT_START 39
+#define SQLITE_FCNTL_EXTERNAL_READER 40
+#define SQLITE_FCNTL_CKSM_FILE 41
+#define SQLITE_FCNTL_RESET_CACHE 42
+
+/* deprecated names */
+#define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE
+#define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE
+#define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO
+
+
+/*
+** CAPI3REF: Mutex Handle
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: Loadable Extension Thunk
+**
+** A pointer to the opaque sqlite3_api_routines structure is passed as
+** the third parameter to entry points of [loadable extensions]. This
+** structure must be typedefed in order to work around compiler warnings
+** on some platforms.
+*/
+typedef struct sqlite3_api_routines sqlite3_api_routines;
+
+/*
+** CAPI3REF: File Name
+**
+** Type [sqlite3_filename] is used by SQLite to pass filenames to the
+** xOpen method of a [VFS]. It may be cast to (const char*) and treated
+** as a normal, nul-terminated, UTF-8 buffer containing the filename, but
+** may also be passed to special APIs such as:
+**
+** <ul>
+** <li> sqlite3_filename_database()
+** <li> sqlite3_filename_journal()
+** <li> sqlite3_filename_wal()
+** <li> sqlite3_uri_parameter()
+** <li> sqlite3_uri_boolean()
+** <li> sqlite3_uri_int64()
+** <li> sqlite3_uri_key()
+** </ul>
+*/
+typedef const char *sqlite3_filename;
+
+/*
+** CAPI3REF: OS Interface Object
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system". See
+** the [VFS | VFS documentation] for further information.
+**
+** The VFS interface is sometimes extended by adding new methods onto
+** the end. Each time such an extension occurs, the iVersion field
+** is incremented. The iVersion value started out as 1 in
+** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2
+** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased
+** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields
+** may be appended to the sqlite3_vfs object and the iVersion value
+** may increase again in future versions of SQLite.
+** Note that due to an oversight, the structure
+** of the sqlite3_vfs object changed in the transition from
+** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0]
+** and yet the iVersion field was not increased.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** [[sqlite3_vfs.xOpen]]
+** ^SQLite guarantees that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname() with an optional suffix added.
+** ^If a suffix is added to the zFilename parameter, it will
+** consist of a single "-" character followed by no more than
+** 11 alphanumeric and/or "-" characters.
+** ^SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter to xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. ^Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** ^(SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_SUPER_JOURNAL]
+** <li> [SQLITE_OPEN_WAL]
+** </ul>)^
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases and their journals, transient
+** databases, and subjournals.
+**
+** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is <i>not</i> used to indicate the file should be opened
+** for exclusive access.
+**
+** ^At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** [[sqlite3_vfs.xAccess]]
+** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The SQLITE_ACCESS_READ
+** flag is never actually used and is not implemented in the built-in
+** VFSes of SQLite. The file is named by the second argument and can be a
+** directory. The xAccess method returns [SQLITE_OK] on success or some
+** non-zero error code if there is an I/O error or if the name of
+** the file given in the second argument is illegal. If SQLITE_OK
+** is returned, then non-zero or zero is written into *pResOut to indicate
+** whether or not the file is accessible.
+**
+** ^SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
+** interfaces are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. ^The xCurrentTime()
+** method returns a Julian Day Number for the current date and time as
+** a floating point value.
+** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
+** Day Number multiplied by 86400000 (the number of milliseconds in
+** a 24-hour day).
+** ^SQLite will use the xCurrentTimeInt64() method to get the current
+** date and time if that method is available (if iVersion is 2 or
+** greater and the function pointer is not NULL) and will fall back
+** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
+**
+** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
+** are not used by the SQLite core. These optional interfaces are provided
+** by some VFSes to facilitate testing of the VFS code. By overriding
+** system calls with functions under its control, a test program can
+** simulate faults and error conditions that would otherwise be difficult
+** or impossible to induce. The set of system calls that can be overridden
+** varies from one VFS to another, and from one version of the same VFS to the
+** next. Applications that use these interfaces must be prepared for any
+** or all of these interfaces to be NULL or for their behavior to change
+** from one release to the next. Applications must not attempt to access
+** any of these methods if the iVersion of the VFS is less than 3.
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+typedef void (*sqlite3_syscall_ptr)(void);
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number (currently 3) */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, sqlite3_filename zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /*
+ ** The methods above are in version 1 of the sqlite_vfs object
+ ** definition. Those that follow are added in version 2 or later
+ */
+ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
+ /*
+ ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
+ ** Those below are for version 3 and greater.
+ */
+ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
+ sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
+ const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
+ /*
+ ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
+ ** New fields may be appended in future versions. The iVersion
+ ** value will increment whenever this happens.
+ */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the named directory is both readable and writable
+** (in other words, if files can be added, removed, and renamed within
+** the directory).
+** The SQLITE_ACCESS_READWRITE constant is currently used only by the
+** [temp_store_directory pragma], though this could change in a future
+** release of SQLite.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
+** currently unused, though it might be used in a future release of
+** SQLite.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */
+#define SQLITE_ACCESS_READ 2 /* Unused */
+
+/*
+** CAPI3REF: Flags for the xShmLock VFS method
+**
+** These integer constants define the various locking operations
+** allowed by the xShmLock method of [sqlite3_io_methods]. The
+** following are the only legal combinations of flags to the
+** xShmLock method:
+**
+** <ul>
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
+** </ul>
+**
+** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
+** was given on the corresponding lock.
+**
+** The xShmLock method can transition between unlocked and SHARED or
+** between unlocked and EXCLUSIVE. It cannot transition between SHARED
+** and EXCLUSIVE.
+*/
+#define SQLITE_SHM_UNLOCK 1
+#define SQLITE_SHM_LOCK 2
+#define SQLITE_SHM_SHARED 4
+#define SQLITE_SHM_EXCLUSIVE 8
+
+/*
+** CAPI3REF: Maximum xShmLock index
+**
+** The xShmLock method on [sqlite3_io_methods] may use values
+** between 0 and this upper bound as its "offset" argument.
+** The SQLite core will never attempt to acquire or release a
+** lock outside of this range
+*/
+#define SQLITE_SHM_NLOCK 8
+
+
+/*
+** CAPI3REF: Initialize The SQLite Library
+**
+** ^The sqlite3_initialize() routine initializes the
+** SQLite library. ^The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+** These routines are designed to aid in process initialization and
+** shutdown on embedded systems. Workstation applications using
+** SQLite normally do not need to invoke either of these routines.
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). ^(Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.)^
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
+**
+** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
+** is not. The sqlite3_shutdown() interface must only be called from a
+** single thread. All open [database connections] must be closed and all
+** other SQLite resources must be deallocated prior to invoking
+** sqlite3_shutdown().
+**
+** Among other things, ^sqlite3_initialize() will invoke
+** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
+** will invoke sqlite3_os_end().
+**
+** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** ^If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** ^The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** <b>The sqlite3_config() interface is not threadsafe. The application
+** must ensure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running.</b>
+**
+** The first argument to sqlite3_config() is an integer
+** [configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [configuration option]
+** in the first argument.
+**
+** For most configuration options, the sqlite3_config() interface
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** The exceptional configuration options that may be invoked at any time
+** are called "anytime configuration options".
+** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
+** [sqlite3_shutdown()] with a first argument that is not an anytime
+** configuration option, then the sqlite3_config() call will return SQLITE_MISUSE.
+** Note, however, that ^sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** ^If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+SQLITE_API int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections
+** METHOD: sqlite3
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument).
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
+** that indicates what aspect of the [database connection] is being configured.
+** Subsequent arguments vary depending on the configuration verb.
+**
+** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
+** the call is considered successful.
+*/
+SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc, xRealloc, and xFree methods must work like the
+** malloc(), realloc() and free() functions from the standard C library.
+** ^SQLite guarantees that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. For example,
+** it might allocate any required mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options
+** KEYWORDS: {configuration option}
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** Most of the configuration options for sqlite3_config()
+** will only work if invoked prior to [sqlite3_initialize()] or after
+** [sqlite3_shutdown()]. The few exceptions to this rule are called
+** "anytime configuration options".
+** ^Calling [sqlite3_config()] with a first argument that is not an
+** anytime configuration option in between calls to [sqlite3_initialize()] and
+** [sqlite3_shutdown()] is a no-op that returns SQLITE_MISUSE.
+**
+** The set of anytime configuration options can change (by insertions
+** and/or deletions) from one release of SQLite to the next.
+** As of SQLite version 3.42.0, the complete set of anytime configuration
+** options is:
+** <ul>
+** <li> SQLITE_CONFIG_LOG
+** <li> SQLITE_CONFIG_PCACHE_HDRSZ
+** </ul>
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Single-thread. In other words, it disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to change the [threading mode] from its default
+** value of Single-thread and so [sqlite3_config()] will return
+** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
+** configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Multi-thread. In other words, it disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Multi-thread [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
+**
+** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Serialized. In other words, this option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Serialized [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is
+** a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.)^ ^SQLite makes
+** its own private copy of the content of the [sqlite3_mem_methods] structure
+** before the [sqlite3_config()] call returns.</dd>
+**
+** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.)^
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example. </dd>
+**
+** [[SQLITE_CONFIG_SMALL_MALLOC]] <dt>SQLITE_CONFIG_SMALL_MALLOC</dt>
+** <dd> ^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of
+** type int, interpreted as a boolean, which if true provides a hint to
+** SQLite that it should avoid large memory allocations if possible.
+** SQLite will run faster if it is free to make large memory allocations,
+** but some application might prefer to run slower in exchange for
+** guarantees about memory fragmentation that are possible if large
+** allocations are avoided. This hint is normally off.
+** </dd>
+**
+** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
+** interpreted as a boolean, which enables or disables the collection of
+** memory allocation statistics. ^(When memory allocation statistics are
+** disabled, the following SQLite interfaces become non-operational:
+** <ul>
+** <li> [sqlite3_hard_heap_limit64()]
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit64()]
+** <li> [sqlite3_status64()]
+** </ul>)^
+** ^Memory allocation statistics are enabled by default unless SQLite is
+** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
+** allocation statistics are disabled by default.
+** </dd>
+**
+** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd> The SQLITE_CONFIG_SCRATCH option is no longer used.
+** </dd>
+**
+** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
+** that SQLite can use for the database page cache with the default page
+** cache implementation.
+** This configuration option is a no-op if an application-defined page
+** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].
+** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
+** 8-byte aligned memory (pMem), the size of each page cache line (sz),
+** and the number of cache lines (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 65536) plus some extra bytes for each
+** page header. ^The number of extra bytes needed by the page header
+** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].
+** ^It is harmless, apart from the wasted memory,
+** for the sz parameter to be larger than necessary. The pMem
+** argument must be either a NULL pointer or a pointer to an 8-byte
+** aligned block of memory of at least sz*N bytes, otherwise
+** subsequent behavior is undefined.
+** ^When pMem is not NULL, SQLite will strive to use the memory provided
+** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
+** a page cache line is larger than sz bytes or if all of the pMem buffer
+** is exhausted.
+** ^If pMem is NULL and N is non-zero, then each database connection
+** does an initial bulk allocation for page cache memory
+** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
+** of -1024*N bytes if N is negative, . ^If additional
+** page cache memory is needed beyond what is provided by the initial
+** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
+** additional cache line. </dd>
+**
+** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer
+** that SQLite will use for all of its dynamic memory allocation needs
+** beyond those provided for by [SQLITE_CONFIG_PAGECACHE].
+** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
+** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
+** [SQLITE_ERROR] if invoked otherwise.
+** ^There are three arguments to SQLITE_CONFIG_HEAP:
+** An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
+** memory pointer is not NULL then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.
+** The minimum allocation size is capped at 2**12. Reasonable values
+** for the minimum allocation size are 2**5 through 2**8.</dd>
+**
+** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
+** pointer to an instance of the [sqlite3_mutex_methods] structure.
+** The argument specifies alternative low-level mutex routines to be used
+** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of
+** the content of the [sqlite3_mutex_methods] structure before the call to
+** [sqlite3_config()] returns. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.)^
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
+** the default size of lookaside memory on each [database connection].
+** The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE
+** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** option to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.)^ </dd>
+**
+** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is
+** a pointer to an [sqlite3_pcache_methods2] object. This object specifies
+** the interface to a custom page cache implementation.)^
+** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
+**
+** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
+** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of
+** the current page cache implementation into that object.)^ </dd>
+**
+** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
+** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
+** global [error log].
+** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
+** function with a call signature of void(*)(void*,int,const char*),
+** and a pointer to void. ^If the function pointer is not NULL, it is
+** invoked by [sqlite3_log()] to process each logging event. ^If the
+** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
+** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
+** passed through as the first parameter to the application-defined logger
+** function whenever that function is invoked. ^The second parameter to
+** the logger function is a copy of the first parameter to the corresponding
+** [sqlite3_log()] call and is intended to be a [result code] or an
+** [extended result code]. ^The third parameter passed to the logger is
+** log message after formatting via [sqlite3_snprintf()].
+** The SQLite logging interface is not reentrant; the logger function
+** supplied by the application must not invoke any SQLite interface.
+** In a multi-threaded application, the application-defined logger
+** function must be threadsafe. </dd>
+**
+** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
+** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
+** If non-zero, then URI handling is globally enabled. If the parameter is zero,
+** then URI handling is globally disabled.)^ ^If URI handling is globally
+** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
+** [sqlite3_open16()] or
+** specified as part of [ATTACH] commands are interpreted as URIs, regardless
+** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
+** connection is opened. ^If it is globally disabled, filenames are
+** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
+** database connection is opened. ^(By default, URI handling is globally
+** disabled. The default value may be changed by compiling with the
+** [SQLITE_USE_URI] symbol defined.)^
+**
+** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
+** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
+** argument which is interpreted as a boolean in order to enable or disable
+** the use of covering indices for full table scans in the query optimizer.
+** ^The default setting is determined
+** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
+** if that compile-time option is omitted.
+** The ability to disable the use of covering indices for full table scans
+** is because some incorrectly coded legacy applications might malfunction
+** when the optimization is enabled. Providing the ability to
+** disable the optimization allows the older, buggy application code to work
+** without change even with newer versions of SQLite.
+**
+** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
+** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
+** <dd> These options are obsolete and should not be used by new code.
+** They are retained for backwards compatibility but are now no-ops.
+** </dd>
+**
+** [[SQLITE_CONFIG_SQLLOG]]
+** <dt>SQLITE_CONFIG_SQLLOG
+** <dd>This option is only available if sqlite is compiled with the
+** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
+** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
+** The second should be of type (void*). The callback is invoked by the library
+** in three separate circumstances, identified by the value passed as the
+** fourth parameter. If the fourth parameter is 0, then the database connection
+** passed as the second argument has just been opened. The third argument
+** points to a buffer containing the name of the main database file. If the
+** fourth parameter is 1, then the SQL statement that the third parameter
+** points to has just been executed. Or, if the fourth parameter is 2, then
+** the connection being passed as the second parameter is being closed. The
+** third parameter is passed NULL In this case. An example of using this
+** configuration option can be seen in the "test_sqllog.c" source file in
+** the canonical SQLite source tree.</dd>
+**
+** [[SQLITE_CONFIG_MMAP_SIZE]]
+** <dt>SQLITE_CONFIG_MMAP_SIZE
+** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
+** that are the default mmap size limit (the default setting for
+** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
+** ^The default setting can be overridden by each database connection using
+** either the [PRAGMA mmap_size] command, or by using the
+** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size
+** will be silently truncated if necessary so that it does not exceed the
+** compile-time maximum mmap size set by the
+** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
+** ^If either argument to this option is negative, then that argument is
+** changed to its compile-time default.
+**
+** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
+** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
+** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
+** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
+** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
+** that specifies the maximum size of the created heap.
+**
+** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
+** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
+** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
+** is a pointer to an integer and writes into that integer the number of extra
+** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
+** The amount of extra space required can change depending on the compiler,
+** target platform, and SQLite version.
+**
+** [[SQLITE_CONFIG_PMASZ]]
+** <dt>SQLITE_CONFIG_PMASZ
+** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
+** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
+** sorter to that integer. The default minimum PMA Size is set by the
+** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched
+** to help with sort operations when multithreaded sorting
+** is enabled (using the [PRAGMA threads] command) and the amount of content
+** to be sorted exceeds the page size times the minimum of the
+** [PRAGMA cache_size] setting and this value.
+**
+** [[SQLITE_CONFIG_STMTJRNL_SPILL]]
+** <dt>SQLITE_CONFIG_STMTJRNL_SPILL
+** <dd>^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which
+** becomes the [statement journal] spill-to-disk threshold.
+** [Statement journals] are held in memory until their size (in bytes)
+** exceeds this threshold, at which point they are written to disk.
+** Or if the threshold is -1, statement journals are always held
+** exclusively in memory.
+** Since many statement journals never become large, setting the spill
+** threshold to a value such as 64KiB can greatly reduce the amount of
+** I/O required to support statement rollback.
+** The default value for this setting is controlled by the
+** [SQLITE_STMTJRNL_SPILL] compile-time option.
+**
+** [[SQLITE_CONFIG_SORTERREF_SIZE]]
+** <dt>SQLITE_CONFIG_SORTERREF_SIZE
+** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
+** of type (int) - the new value of the sorter-reference size threshold.
+** Usually, when SQLite uses an external sort to order records according
+** to an ORDER BY clause, all fields required by the caller are present in the
+** sorted records. However, if SQLite determines based on the declared type
+** of a table column that its values are likely to be very large - larger
+** than the configured sorter-reference size threshold - then a reference
+** is stored in each sorted record and the required column values loaded
+** from the database as records are returned in sorted order. The default
+** value for this option is to never use this optimization. Specifying a
+** negative value for this option restores the default behavior.
+** This option is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
+**
+** [[SQLITE_CONFIG_MEMDB_MAXSIZE]]
+** <dt>SQLITE_CONFIG_MEMDB_MAXSIZE
+** <dd>The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter
+** [sqlite3_int64] parameter which is the default maximum size for an in-memory
+** database created using [sqlite3_deserialize()]. This default maximum
+** size can be adjusted up or down for individual databases using the
+** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this
+** configuration setting is never used, then the default maximum is determined
+** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that
+** compile-time option is not set, then the default maximum is 1073741824.
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* No longer used */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* no-op */
+#define SQLITE_CONFIG_GETPCACHE 15 /* no-op */
+#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
+#define SQLITE_CONFIG_URI 17 /* int */
+#define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */
+#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */
+#define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */
+#define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */
+#define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */
+#define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */
+#define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */
+#define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */
+#define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */
+#define SQLITE_CONFIG_MEMDB_MAXSIZE 29 /* sqlite3_int64 */
+
+/*
+** CAPI3REF: Database Connection Configuration Options
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. ^The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_DBCONFIG_LOOKASIDE]]
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd> ^This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** ^The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to a memory buffer to use for lookaside memory.
+** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
+** may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
+** size of each lookaside buffer slot. ^The third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. ^If the second argument to
+** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
+** rounded down to the next smaller multiple of 8. ^(The lookaside memory
+** configuration for a database connection can only be changed when that
+** connection is not currently using lookaside memory, or in other words
+** when the "current value" returned by
+** [sqlite3_db_status](D,[SQLITE_DBSTATUS_LOOKASIDE_USED],...) is zero.
+** Any attempt to change the lookaside memory configuration when lookaside
+** memory is in use leaves the configuration unchanged and returns
+** [SQLITE_BUSY].)^</dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
+** <dd> ^This option is used to enable or disable the enforcement of
+** [foreign key constraints]. There should be two additional arguments.
+** The first argument is an integer which is 0 to disable FK enforcement,
+** positive to enable FK enforcement or negative to leave FK enforcement
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether FK enforcement is off or on
+** following this call. The second parameter may be a NULL pointer, in
+** which case the FK enforcement setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
+** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable triggers,
+** positive to enable triggers or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether triggers are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the trigger setting is not reported back.
+**
+** <p>Originally this option disabled all triggers. ^(However, since
+** SQLite version 3.35.0, TEMP triggers are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** triggers in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_VIEW]]
+** <dt>SQLITE_DBCONFIG_ENABLE_VIEW</dt>
+** <dd> ^This option is used to enable or disable [CREATE VIEW | views].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable views,
+** positive to enable views or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether views are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the view setting is not reported back.
+**
+** <p>Originally this option disabled all views. ^(However, since
+** SQLite version 3.35.0, TEMP views are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** views in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
+** <dd> ^This option is used to enable or disable the
+** [fts3_tokenizer()] function which is part of the
+** [FTS3] full-text search engine extension.
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable fts3_tokenizer() or
+** positive to enable fts3_tokenizer() or negative to leave the setting
+** unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the new setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
+** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
+** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
+** interface independently of the [load_extension()] SQL function.
+** The [sqlite3_enable_load_extension()] API enables or disables both the
+** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
+** There should be two additional arguments.
+** When the first argument to this interface is 1, then only the C-API is
+** enabled and the SQL function remains disabled. If the first argument to
+** this interface is 0, then both the C-API and the SQL function are disabled.
+** If the first argument is -1, then no changes are made to state of either the
+** C-API or the SQL function.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
+** is disabled or enabled following this call. The second parameter may
+** be a NULL pointer, in which case the new setting is not reported back.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
+** <dd> ^This option is used to change the name of the "main" database
+** schema. ^The sole argument is a pointer to a constant UTF8 string
+** which will become the new schema name in place of "main". ^SQLite
+** does not make a copy of the new main schema name string, so the application
+** must ensure that the argument passed into this DBCONFIG option is unchanged
+** until after the database connection closes.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]]
+** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
+** <dd> Usually, when a database in wal mode is closed or detached from a
+** database handle, SQLite checks if this will mean that there are now no
+** connections at all to the database. If so, it performs a checkpoint
+** operation before closing the connection. This option may be used to
+** override this behavior. The first parameter passed to this operation
+** is an integer - positive to disable checkpoints-on-close, or zero (the
+** default) to enable them, and negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer
+** into which is written 0 or 1 to indicate whether checkpoints-on-close
+** have been disabled - 0 if they are not disabled, 1 if they are.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
+** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
+** the [query planner stability guarantee] (QPSG). When the QPSG is active,
+** a single SQL query statement will always use the same algorithm regardless
+** of values of [bound parameters].)^ The QPSG disables some query optimizations
+** that look at the values of bound parameters, which can make some queries
+** slower. But the QPSG has the advantage of more predictable behavior. With
+** the QPSG active, SQLite will always use the same query plan in the field as
+** was used during testing in the lab.
+** The first argument to this setting is an integer which is 0 to disable
+** the QPSG, positive to enable QPSG, or negative to leave the setting
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
+** following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
+** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not
+** include output for any operations performed by trigger programs. This
+** option is used to set or clear (the default) a flag that governs this
+** behavior. The first parameter passed to this operation is an integer -
+** positive to enable output for trigger programs, or zero to disable it,
+** or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which is written
+** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if
+** it is not disabled, 1 if it is.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
+** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
+** [VACUUM] in order to reset a database back to an empty database
+** with no schema and no content. The following process works even for
+** a badly corrupted database file:
+** <ol>
+** <li> If the database connection is newly opened, make sure it has read the
+** database schema by preparing then discarding some query against the
+** database, or calling sqlite3_table_column_metadata(), ignoring any
+** errors. This step is only necessary if the application desires to keep
+** the database in WAL mode after the reset if it was in WAL mode before
+** the reset.
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
+** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
+** </ol>
+** Because resetting a database is destructive and irreversible, the
+** process requires the use of this obscure API and multiple steps to
+** help ensure that it does not happen by accident. Because this
+** feature must be capable of resetting corrupt databases, and
+** shutting down virtual tables may require access to that corrupt
+** storage, the library must abandon any installed virtual tables
+** without calling their xDestroy() methods.
+**
+** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
+** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
+** "defensive" flag for a database connection. When the defensive
+** flag is enabled, language features that allow ordinary SQL to
+** deliberately corrupt the database file are disabled. The disabled
+** features include but are not limited to the following:
+** <ul>
+** <li> The [PRAGMA writable_schema=ON] statement.
+** <li> The [PRAGMA journal_mode=OFF] statement.
+** <li> The [PRAGMA schema_version=N] statement.
+** <li> Writes to the [sqlite_dbpage] virtual table.
+** <li> Direct writes to [shadow tables].
+** </ul>
+** </dd>
+**
+** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]] <dt>SQLITE_DBCONFIG_WRITABLE_SCHEMA</dt>
+** <dd>The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the
+** "writable_schema" flag. This has the same effect and is logically equivalent
+** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF].
+** The first argument to this setting is an integer which is 0 to disable
+** the writable_schema, positive to enable writable_schema, or negative to
+** leave the setting unchanged. The second parameter is a pointer to an
+** integer into which is written 0 or 1 to indicate whether the writable_schema
+** is enabled or disabled following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]]
+** <dt>SQLITE_DBCONFIG_LEGACY_ALTER_TABLE</dt>
+** <dd>The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates
+** the legacy behavior of the [ALTER TABLE RENAME] command such it
+** behaves as it did prior to [version 3.24.0] (2018-06-04). See the
+** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for
+** additional information. This feature can also be turned on and off
+** using the [PRAGMA legacy_alter_table] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DML]]
+** <dt>SQLITE_DBCONFIG_DQS_DML</dt>
+** <dd>The SQLITE_DBCONFIG_DQS_DML option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DML statements
+** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DDL]]
+** <dt>SQLITE_DBCONFIG_DQS_DDL</dt>
+** <dd>The SQLITE_DBCONFIG_DQS option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DDL statements,
+** such as CREATE TABLE and CREATE INDEX. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]]
+** <dt>SQLITE_DBCONFIG_TRUSTED_SCHEMA</dt>
+** <dd>The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to
+** assume that database schemas are untainted by malicious content.
+** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite
+** takes additional defensive steps to protect the application from harm
+** including:
+** <ul>
+** <li> Prohibit the use of SQL functions inside triggers, views,
+** CHECK constraints, DEFAULT clauses, expression indexes,
+** partial indexes, or generated columns
+** unless those functions are tagged with [SQLITE_INNOCUOUS].
+** <li> Prohibit the use of virtual tables inside of triggers or views
+** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS].
+** </ul>
+** This setting defaults to "on" for legacy compatibility, however
+** all applications are advised to turn it off if possible. This setting
+** can also be controlled using the [PRAGMA trusted_schema] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]]
+** <dt>SQLITE_DBCONFIG_LEGACY_FILE_FORMAT</dt>
+** <dd>The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates
+** the legacy file format flag. When activated, this flag causes all newly
+** created database file to have a schema format version number (the 4-byte
+** integer found at offset 44 into the database header) of 1. This in turn
+** means that the resulting database file will be readable and writable by
+** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting,
+** newly created databases are generally not understandable by SQLite versions
+** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there
+** is now scarcely any need to generate database files that are compatible
+** all the way back to version 3.0.0, and so this setting is of little
+** practical use, but is provided so that SQLite can continue to claim the
+** ability to generate new database files that are compatible with version
+** 3.0.0.
+** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on,
+** the [VACUUM] command will fail with an obscure error when attempting to
+** process a table with generated columns and a descending index. This is
+** not considered a bug since SQLite versions 3.3.0 and earlier do not support
+** either generated columns or descending indexes.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_STMT_SCANSTATUS]]
+** <dt>SQLITE_DBCONFIG_STMT_SCANSTATUS</dt>
+** <dd>The SQLITE_DBCONFIG_STMT_SCANSTATUS option is only useful in
+** SQLITE_ENABLE_STMT_SCANSTATUS builds. In this case, it sets or clears
+** a flag that enables collection of the sqlite3_stmt_scanstatus_v2()
+** statistics. For statistics to be collected, the flag must be set on
+** the database handle both when the SQL statement is prepared and when it
+** is stepped. The flag is set (collection of statistics is enabled)
+** by default. This option takes two arguments: an integer and a pointer to
+** an integer.. The first argument is 1, 0, or -1 to enable, disable, or
+** leave unchanged the statement scanstatus option. If the second argument
+** is not NULL, then the value of the statement scanstatus setting after
+** processing the first argument is written into the integer that the second
+** argument points to.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_REVERSE_SCANORDER]]
+** <dt>SQLITE_DBCONFIG_REVERSE_SCANORDER</dt>
+** <dd>The SQLITE_DBCONFIG_REVERSE_SCANORDER option changes the default order
+** in which tables and indexes are scanned so that the scans start at the end
+** and work toward the beginning rather than starting at the beginning and
+** working toward the end. Setting SQLITE_DBCONFIG_REVERSE_SCANORDER is the
+** same as setting [PRAGMA reverse_unordered_selects]. This option takes
+** two arguments which are an integer and a pointer to an integer. The first
+** argument is 1, 0, or -1 to enable, disable, or leave unchanged the
+** reverse scan order flag, respectively. If the second argument is not NULL,
+** then 0 or 1 is written into the integer that the second argument points to
+** depending on if the reverse scan order flag is set after processing the
+** first argument.
+** </dd>
+**
+** </dl>
+*/
+#define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
+#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */
+#define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */
+#define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */
+#define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */
+#define SQLITE_DBCONFIG_WRITABLE_SCHEMA 1011 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE 1012 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DML 1013 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DDL 1014 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_VIEW 1015 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT 1016 /* int int* */
+#define SQLITE_DBCONFIG_TRUSTED_SCHEMA 1017 /* int int* */
+#define SQLITE_DBCONFIG_STMT_SCANSTATUS 1018 /* int int* */
+#define SQLITE_DBCONFIG_REVERSE_SCANORDER 1019 /* int int* */
+#define SQLITE_DBCONFIG_MAX 1019 /* Largest DBCONFIG */
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes
+** METHOD: sqlite3
+**
+** ^The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. ^The extended result
+** codes are disabled by default for historical compatibility.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid
+** METHOD: sqlite3
+**
+** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
+** has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. ^The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. ^If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
+** the most recent successful [INSERT] into a rowid table or [virtual table]
+** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
+** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred
+** on the database connection D, then sqlite3_last_insert_rowid(D) returns
+** zero.
+**
+** As well as being set automatically as rows are inserted into database
+** tables, the value returned by this function may be set explicitly by
+** [sqlite3_set_last_insert_rowid()]
+**
+** Some virtual table implementations may INSERT rows into rowid tables as
+** part of committing a transaction (e.g. to flush data accumulated in memory
+** to disk). In this case subsequent calls to this function return the rowid
+** associated with these internal INSERT operations, which leads to
+** unintuitive results. Virtual table implementations that do write to rowid
+** tables in this way can avoid this problem by restoring the original
+** rowid value using [sqlite3_set_last_insert_rowid()] before returning
+** control to the user.
+**
+** ^(If an [INSERT] occurs within a trigger then this routine will
+** return the [rowid] of the inserted row as long as the trigger is
+** running. Once the trigger program ends, the value returned
+** by this routine reverts to what it was before the trigger was fired.)^
+**
+** ^An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. ^(When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.)^
+**
+** ^For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** This function is accessible to SQL statements via the
+** [last_insert_rowid() SQL function].
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Set the Last Insert Rowid value.
+** METHOD: sqlite3
+**
+** The sqlite3_set_last_insert_rowid(D, R) method allows the application to
+** set the value returned by calling sqlite3_last_insert_rowid(D) to R
+** without inserting a row into the database.
+*/
+SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the number of rows modified, inserted or
+** deleted by the most recently completed INSERT, UPDATE or DELETE
+** statement on the database connection specified by the only parameter.
+** The two functions are identical except for the type of the return value
+** and that if the number of rows modified by the most recent INSERT, UPDATE
+** or DELETE is greater than the maximum value supported by type "int", then
+** the return value of sqlite3_changes() is undefined. ^Executing any other
+** type of SQL statement does not modify the value returned by these functions.
+**
+** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
+** considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
+** [foreign key actions] or [REPLACE] constraint resolution are not counted.
+**
+** Changes to a view that are intercepted by
+** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
+** returned by sqlite3_changes() immediately after an INSERT, UPDATE or
+** DELETE statement run on a view is always zero. Only changes made to real
+** tables are counted.
+**
+** Things are more complicated if the sqlite3_changes() function is
+** executed while a trigger program is running. This may happen if the
+** program uses the [changes() SQL function], or if some other callback
+** function invokes sqlite3_changes() directly. Essentially:
+**
+** <ul>
+** <li> ^(Before entering a trigger program the value returned by
+** sqlite3_changes() function is saved. After the trigger program
+** has finished, the original value is restored.)^
+**
+** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
+** statement sets the value returned by sqlite3_changes()
+** upon completion as normal. Of course, this value will not include
+** any changes performed by sub-triggers, as the sqlite3_changes()
+** value will be saved and restored after each sub-trigger has run.)^
+** </ul>
+**
+** ^This means that if the changes() SQL function (or similar) is used
+** by the first INSERT, UPDATE or DELETE statement within a trigger, it
+** returns the value as set when the calling statement began executing.
+** ^If it is used by the second or subsequent such statement within a trigger
+** program, the value returned reflects the number of rows modified by the
+** previous INSERT, UPDATE or DELETE statement within the same trigger.
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_total_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** </ul>
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the total number of rows inserted, modified or
+** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
+** since the database connection was opened, including those executed as
+** part of trigger programs. The two functions are identical except for the
+** type of the return value and that if the number of rows modified by the
+** connection exceeds the maximum value supported by type "int", then
+** the return value of sqlite3_total_changes() is undefined. ^Executing
+** any other type of SQL statement does not affect the value returned by
+** sqlite3_total_changes().
+**
+** ^Changes made as part of [foreign key actions] are included in the
+** count, but those made as part of REPLACE constraint resolution are
+** not. ^Changes to a view that are intercepted by INSTEAD OF triggers
+** are not counted.
+**
+** The [sqlite3_total_changes(D)] interface only reports the number
+** of rows that changed due to SQL statement run against database
+** connection D. Any changes by other database connections are ignored.
+** To detect changes against a database file from other database
+** connections use the [PRAGMA data_version] command or the
+** [SQLITE_FCNTL_DATA_VERSION] [file control].
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
+** </ul>
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query
+** METHOD: sqlite3
+**
+** ^This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** ^It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** ^If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** ^The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. ^Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statement count reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. ^New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** ^A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+**
+** ^The [sqlite3_is_interrupted(D)] interface can be used to determine whether
+** or not an interrupt is currently in effect for [database connection] D.
+** It returns 1 if an interrupt is currently in effect, or 0 otherwise.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3*);
+SQLITE_API int sqlite3_is_interrupted(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. ^These routines return 1 if the input string
+** appears to be a complete SQL statement. ^A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. ^Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** ^These routines return 0 if the statement is incomplete. ^If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** ^These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.)^
+**
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
+** KEYWORDS: {busy-handler callback} {busy handler}
+** METHOD: sqlite3
+**
+** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
+** that might be invoked with argument P whenever
+** an attempt is made to access a database table associated with
+** [database connection] D when another thread
+** or process has the table locked.
+** The sqlite3_busy_handler() interface is used to implement
+** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
+**
+** ^If the busy callback is NULL, then [SQLITE_BUSY]
+** is returned immediately upon encountering the lock. ^If the busy callback
+** is not NULL, then the callback might be invoked with two arguments.
+**
+** ^The first argument to the busy handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). ^The second argument to
+** the busy handler callback is the number of times that the busy handler has
+** been invoked previously for the same locking event. ^If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] is returned
+** to the application.
+** ^If the callback returns non-zero, then another attempt
+** is made to access the database and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. ^If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** to the application instead of invoking the
+** busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** ^The default busy callback is NULL.
+**
+** ^(There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
+** or evaluating [PRAGMA busy_timeout=N] will change the
+** busy handler and thus clear any previously set busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. In other words,
+** the busy handler is not reentrant. Any such actions
+** result in undefined behavior.
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
+*/
+SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout
+** METHOD: sqlite3
+**
+** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. ^The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. ^After at least "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY].
+**
+** ^Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** ^(There can only be a single busy handler for a particular
+** [database connection] at any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.)^
+**
+** See also: [PRAGMA busy_timeout]
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries
+** METHOD: sqlite3
+**
+** This is a legacy interface that is preserved for backwards compatibility.
+** Use of this interface is not recommended.
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
+**
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** ^(As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+** </pre></blockquote>
+**
+** There are two columns (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array named azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>)^
+**
+** ^The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter and returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the application has finished with the result from sqlite3_get_table(),
+** it must pass the result table pointer to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+** These routines understand most of the common formatting options from
+** the standard library printf()
+** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
+** See the [built-in printf()] documentation for details.
+**
+** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc64()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. ^Both routines return a
+** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf().)^ This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. ^(Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer.)^ We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. ^The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
+**
+** See also: [built-in printf()], [printf() SQL function]
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific [VFS] implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** ^The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** ^If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. ^If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** ^The sqlite3_malloc64(N) routine works just like
+** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
+** of a signed 32-bit integer.
+**
+** ^Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. ^The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** ^The sqlite3_realloc(X,N) interface attempts to resize a
+** prior memory allocation X to be at least N bytes.
+** ^If the X parameter to sqlite3_realloc(X,N)
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N).
+** ^If the N parameter to sqlite3_realloc(X,N) is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(X).
+** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if insufficient memory is available.
+** ^If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc(X,N) and the prior allocation is freed.
+** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
+** prior allocation is not freed.
+**
+** ^The sqlite3_realloc64(X,N) interfaces works the same as
+** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
+** of a 32-bit signed integer.
+**
+** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
+** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
+** sqlite3_msize(X) returns the size of that memory allocation in bytes.
+** ^The value returned by sqlite3_msize(X) might be larger than the number
+** of bytes requested when X was allocated. ^If X is a NULL pointer then
+** sqlite3_msize(X) returns zero. If X points to something that is not
+** the beginning of memory allocation, or if it points to a formerly
+** valid memory allocation that has now been freed, then the behavior
+** of sqlite3_msize(X) is undefined and possibly harmful.
+**
+** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
+** sqlite3_malloc64(), and sqlite3_realloc64()
+** is always aligned to at least an 8 byte boundary, or to a
+** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
+** option is used.
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
+SQLITE_API void sqlite3_free(void*);
+SQLITE_API sqlite3_uint64 sqlite3_msize(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** ^The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
+** ^The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset. ^The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** ^The memory high-water mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. ^The value returned
+** by [sqlite3_memory_highwater(1)] is the high-water mark
+** prior to the reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the built-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** ^A call to this routine stores N bytes of randomness into buffer P.
+** ^The P parameter can be a NULL pointer.
+**
+** ^If this routine has not been previously called or if the previous
+** call had N less than one or a NULL pointer for P, then the PRNG is
+** seeded using randomness obtained from the xRandomness method of
+** the default [sqlite3_vfs] object.
+** ^If the previous call to this routine had an N of 1 or more and a
+** non-NULL P then the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks
+** METHOD: sqlite3
+** KEYWORDS: {authorizer callback}
+**
+** ^This routine registers an authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** ^The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
+** and [sqlite3_prepare16_v3()]. ^At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. ^The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. ^If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. ^When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** ^The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. ^The third through sixth parameters
+** to the callback are either NULL pointers or zero-terminated strings
+** that contain additional details about the action to be authorized.
+** Applications must always be prepared to encounter a NULL pointer in any
+** of the third through the sixth parameters of the authorization callback.
+**
+** ^If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** ^When a table is referenced by a [SELECT] but no column values are
+** extracted from that table (for example in a query like
+** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
+** is invoked once for that table with a column name that is an empty string.
+** ^If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** ^(Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call.)^ ^Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** ^Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+**
+** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
+** returned from the [sqlite3_vtab_on_conflict()] interface.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. ^(The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
+#define SQLITE_RECURSIVE 33 /* NULL NULL */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions
+** METHOD: sqlite3
+**
+** These routines are deprecated. Use the [sqlite3_trace_v2()] interface
+** instead of the routines described here.
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** ^The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
+** SQL statement text as the statement first begins executing.
+** ^(Additional sqlite3_trace() callbacks might occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.)^
+**
+** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
+** the length of [bound parameter] expansion in the output of sqlite3_trace().
+**
+** ^The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. ^The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run. ^The profile callback
+** time is in units of nanoseconds, however the current implementation
+** is only capable of millisecond resolution so the six least significant
+** digits in the time are meaningless. Future versions of SQLite
+** might provide greater resolution on the profiler callback. Invoking
+** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
+** profile callback.
+*/
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*,
+ void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: SQL Trace Event Codes
+** KEYWORDS: SQLITE_TRACE
+**
+** These constants identify classes of events that can be monitored
+** using the [sqlite3_trace_v2()] tracing logic. The M argument
+** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of
+** the following constants. ^The first argument to the trace callback
+** is one of the following constants.
+**
+** New tracing constants may be added in future releases.
+**
+** ^A trace callback has four arguments: xCallback(T,C,P,X).
+** ^The T argument is one of the integer type codes above.
+** ^The C argument is a copy of the context pointer passed in as the
+** fourth argument to [sqlite3_trace_v2()].
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** <dl>
+** [[SQLITE_TRACE_STMT]] <dt>SQLITE_TRACE_STMT</dt>
+** <dd>^An SQLITE_TRACE_STMT callback is invoked when a prepared statement
+** first begins running and possibly at other times during the
+** execution of the prepared statement, such as at the start of each
+** trigger subprogram. ^The P argument is a pointer to the
+** [prepared statement]. ^The X argument is a pointer to a string which
+** is the unexpanded SQL text of the prepared statement or an SQL comment
+** that indicates the invocation of a trigger. ^The callback can compute
+** the same text that would have been returned by the legacy [sqlite3_trace()]
+** interface by using the X argument when X begins with "--" and invoking
+** [sqlite3_expanded_sql(P)] otherwise.
+**
+** [[SQLITE_TRACE_PROFILE]] <dt>SQLITE_TRACE_PROFILE</dt>
+** <dd>^An SQLITE_TRACE_PROFILE callback provides approximately the same
+** information as is provided by the [sqlite3_profile()] callback.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument points to a 64-bit integer which is approximately
+** the number of nanoseconds that the prepared statement took to run.
+** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes.
+**
+** [[SQLITE_TRACE_ROW]] <dt>SQLITE_TRACE_ROW</dt>
+** <dd>^An SQLITE_TRACE_ROW callback is invoked whenever a prepared
+** statement generates a single row of result.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument is unused.
+**
+** [[SQLITE_TRACE_CLOSE]] <dt>SQLITE_TRACE_CLOSE</dt>
+** <dd>^An SQLITE_TRACE_CLOSE callback is invoked when a database
+** connection closes.
+** ^The P argument is a pointer to the [database connection] object
+** and the X argument is unused.
+** </dl>
+*/
+#define SQLITE_TRACE_STMT 0x01
+#define SQLITE_TRACE_PROFILE 0x02
+#define SQLITE_TRACE_ROW 0x04
+#define SQLITE_TRACE_CLOSE 0x08
+
+/*
+** CAPI3REF: SQL Trace Hook
+** METHOD: sqlite3
+**
+** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
+** function X against [database connection] D, using property mask M
+** and context pointer P. ^If the X callback is
+** NULL or if the M mask is zero, then tracing is disabled. The
+** M argument should be the bitwise OR-ed combination of
+** zero or more [SQLITE_TRACE] constants.
+**
+** ^Each call to either sqlite3_trace(D,X,P) or sqlite3_trace_v2(D,M,X,P)
+** overrides (cancels) all prior calls to sqlite3_trace(D,X,P) or
+** sqlite3_trace_v2(D,M,X,P) for the [database connection] D. Each
+** database connection may have at most one trace callback.
+**
+** ^The X callback is invoked whenever any of the events identified by
+** mask M occur. ^The integer return value from the callback is currently
+** ignored, though this may change in future releases. Callback
+** implementations should return zero to ensure future compatibility.
+**
+** ^A trace callback is invoked with four arguments: callback(T,C,P,X).
+** ^The T argument is one of the [SQLITE_TRACE]
+** constants to indicate why the callback was invoked.
+** ^The C argument is a copy of the context pointer.
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** The sqlite3_trace_v2() interface is intended to replace the legacy
+** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
+** are deprecated.
+*/
+SQLITE_API int sqlite3_trace_v2(
+ sqlite3*,
+ unsigned uMask,
+ int(*xCallback)(unsigned,void*,void*,void*),
+ void *pCtx
+);
+
+/*
+** CAPI3REF: Query Progress Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
+** function X to be invoked periodically during long running calls to
+** [sqlite3_step()] and [sqlite3_prepare()] and similar for
+** database connection D. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** ^The parameter P is passed through as the only parameter to the
+** callback function X. ^The parameter N is the approximate number of
+** [virtual machine instructions] that are evaluated between successive
+** invocations of the callback X. ^If N is less than one then the progress
+** handler is disabled.
+**
+** ^Only a single progress handler may be defined at one time per
+** [database connection]; setting a new progress handler cancels the
+** old one. ^Setting parameter X to NULL disables the progress handler.
+** ^The progress handler is also disabled by setting N to a value less
+** than 1.
+**
+** ^If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
+**
+** The progress handler callback must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** The progress handler callback would originally only be invoked from the
+** bytecode engine. It still might be invoked during [sqlite3_prepare()]
+** and similar because those routines might force a reparse of the schema
+** which involves running the bytecode engine. However, beginning with
+** SQLite version 3.41.0, the progress handler callback might also be
+** invoked directly from [sqlite3_prepare()] while analyzing and generating
+** code for complex queries.
+*/
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection
+** CONSTRUCTOR: sqlite3
+**
+** ^These routines open an SQLite database file as specified by the
+** filename argument. ^The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). ^(A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object.)^ ^(If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error following a failure of any
+** of the sqlite3_open() routines.
+**
+** ^The default encoding will be UTF-8 for databases created using
+** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
+** created using sqlite3_open16() will be UTF-16 in the native byte order.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. ^(The flags parameter to
+** sqlite3_open_v2() must include, at a minimum, one of the following
+** three flag combinations:)^
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does
+** not already exist, an error is returned.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or
+** reading only if the file is write protected by the operating
+** system. In either case the database must already exist, otherwise
+** an error is returned. For historical reasons, if opening in
+** read-write mode fails due to OS-level permissions, an attempt is
+** made to open it in read-only mode. [sqlite3_db_readonly()] can be
+** used to determine whether the database is actually
+** read-write.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is created if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>)^
+** </dl>
+**
+** In addition to the required flags, the following optional flags are
+** also supported:
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_URI]</dt>
+** <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
+** <dd>The database will be opened as an in-memory database. The database
+** is named by the "filename" argument for the purposes of cache-sharing,
+** if shared cache mode is enabled, but the "filename" is otherwise ignored.
+** </dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
+** <dd>The new database connection will use the "multi-thread"
+** [threading mode].)^ This means that separate threads are allowed
+** to use SQLite at the same time, as long as each thread is using
+** a different [database connection].
+**
+** ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
+** <dd>The new database connection will use the "serialized"
+** [threading mode].)^ This means the multiple threads can safely
+** attempt to use the same database connection at the same time.
+** (Mutexes will block any actual concurrency, but in this mode
+** there is no harm in trying.)
+**
+** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
+** <dd>The database is opened [shared cache] enabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+** The [use of shared cache mode is discouraged] and hence shared cache
+** capabilities may be omitted from many builds of SQLite. In such cases,
+** this option is a no-op.
+**
+** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
+** <dd>The database is opened [shared cache] disabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+**
+** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt>
+** <dd>The database connection comes up in "extended result code mode".
+** In other words, the database behaves has if
+** [sqlite3_extended_result_codes(db,1)] where called on the database
+** connection as soon as the connection is created. In addition to setting
+** the extended result code mode, this flag also causes [sqlite3_open_v2()]
+** to return an extended result code.</dd>
+**
+** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
+** <dd>The database filename is not allowed to contain a symbolic link</dd>
+** </dl>)^
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** required combinations shown above optionally combined with other
+** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
+** then the behavior is undefined. Historic versions of SQLite
+** have silently ignored surplus bits in the flags parameter to
+** sqlite3_open_v2(), however that behavior might not be carried through
+** into future versions of SQLite and so applications should not rely
+** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op
+** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause
+** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE
+** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not
+** by sqlite3_open_v2().
+**
+** ^The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. ^If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** ^If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. ^This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** ^If the filename is an empty string, then a private, temporary
+** on-disk database will be created. ^This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
+**
+** ^If [URI filename] interpretation is enabled, and the filename argument
+** begins with "file:", then the filename is interpreted as a URI. ^URI
+** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
+** set in the third argument to sqlite3_open_v2(), or if it has
+** been enabled globally using the [SQLITE_CONFIG_URI] option with the
+** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
+** URI filename interpretation is turned off
+** by default, but future releases of SQLite might enable URI filename
+** interpretation by default. See "[URI filenames]" for additional
+** information.
+**
+** URI filenames are parsed according to RFC 3986. ^If the URI contains an
+** authority, then it must be either an empty string or the string
+** "localhost". ^If the authority is not an empty string or "localhost", an
+** error is returned to the caller. ^The fragment component of a URI, if
+** present, is ignored.
+**
+** ^SQLite uses the path component of the URI as the name of the disk file
+** which contains the database. ^If the path begins with a '/' character,
+** then it is interpreted as an absolute path. ^If the path does not begin
+** with a '/' (meaning that the authority section is omitted from the URI)
+** then the path is interpreted as a relative path.
+** ^(On windows, the first component of an absolute path
+** is a drive specification (e.g. "C:").)^
+**
+** [[core URI query parameters]]
+** The query component of a URI may contain parameters that are interpreted
+** either by SQLite itself, or by a [VFS | custom VFS implementation].
+** SQLite and its built-in [VFSes] interpret the
+** following query parameters:
+**
+** <ul>
+** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
+** a VFS object that provides the operating system interface that should
+** be used to access the database file on disk. ^If this option is set to
+** an empty string the default VFS object is used. ^Specifying an unknown
+** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
+** present, then the VFS specified by the option takes precedence over
+** the value passed as the fourth parameter to sqlite3_open_v2().
+**
+** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
+** "rwc", or "memory". Attempting to set it to any other value is
+** an error)^.
+** ^If "ro" is specified, then the database is opened for read-only
+** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
+** third argument to sqlite3_open_v2(). ^If the mode option is set to
+** "rw", then the database is opened for read-write (but not create)
+** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
+** been set. ^Value "rwc" is equivalent to setting both
+** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
+** set to "memory" then a pure [in-memory database] that never reads
+** or writes from disk is used. ^It is an error to specify a value for
+** the mode parameter that is less restrictive than that specified by
+** the flags passed in the third parameter to sqlite3_open_v2().
+**
+** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
+** "private". ^Setting it to "shared" is equivalent to setting the
+** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
+** sqlite3_open_v2(). ^Setting the cache parameter to "private" is
+** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
+** ^If sqlite3_open_v2() is used and the "cache" parameter is present in
+** a URI filename, its value overrides any behavior requested by setting
+** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
+**
+** <li> <b>psow</b>: ^The psow parameter indicates whether or not the
+** [powersafe overwrite] property does or does not apply to the
+** storage media on which the database file resides.
+**
+** <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
+** which if set disables file locking in rollback journal modes. This
+** is useful for accessing a database on a filesystem that does not
+** support locking. Caution: Database corruption might result if two
+** or more processes write to the same database and any one of those
+** processes uses nolock=1.
+**
+** <li> <b>immutable</b>: ^The immutable parameter is a boolean query
+** parameter that indicates that the database file is stored on
+** read-only media. ^When immutable is set, SQLite assumes that the
+** database file cannot be changed, even by a process with higher
+** privilege, and so the database is opened read-only and all locking
+** and change detection is disabled. Caution: Setting the immutable
+** property on a database file that does in fact change can result
+** in incorrect query results and/or [SQLITE_CORRUPT] errors.
+** See also: [SQLITE_IOCAP_IMMUTABLE].
+**
+** </ul>
+**
+** ^Specifying an unknown parameter in the query component of a URI is not an
+** error. Future versions of SQLite might understand additional query
+** parameters. See "[query parameters with special meaning to SQLite]" for
+** additional information.
+**
+** [[URI filename examples]] <h3>URI filename examples</h3>
+**
+** <table border="1" align=center cellpadding=5>
+** <tr><th> URI filenames <th> Results
+** <tr><td> file:data.db <td>
+** Open the file "data.db" in the current directory.
+** <tr><td> file:/home/fred/data.db<br>
+** file:///home/fred/data.db <br>
+** file://localhost/home/fred/data.db <br> <td>
+** Open the database file "/home/fred/data.db".
+** <tr><td> file://darkstar/home/fred/data.db <td>
+** An error. "darkstar" is not a recognized authority.
+** <tr><td style="white-space:nowrap">
+** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
+** <td> Windows only: Open the file "data.db" on fred's desktop on drive
+** C:. Note that the %20 escaping in this example is not strictly
+** necessary - space characters can be used literally
+** in URI filenames.
+** <tr><td> file:data.db?mode=ro&cache=private <td>
+** Open file "data.db" in the current directory for read-only access.
+** Regardless of whether or not shared-cache mode is enabled by
+** default, use a private cache.
+** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
+** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
+** that uses dot-files in place of posix advisory locking.
+** <tr><td> file:data.db?mode=readonly <td>
+** An error. "readonly" is not a valid option for the "mode" parameter.
+** Use "ro" instead: "file:data.db?mode=ro".
+** </table>
+**
+** ^URI hexadecimal escape sequences (%HH) are supported within the path and
+** query components of a URI. A hexadecimal escape sequence consists of a
+** percent sign - "%" - followed by exactly two hexadecimal digits
+** specifying an octet value. ^Before the path or query components of a
+** URI filename are interpreted, they are encoded using UTF-8 and all
+** hexadecimal escape sequences replaced by a single byte containing the
+** corresponding octet. If this process generates an invalid UTF-8 encoding,
+** the results are undefined.
+**
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
+** features that require the use of temporary files may fail.
+**
+** See also: [sqlite3_temp_directory]
+*/
+SQLITE_API int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Obtain Values For URI Parameters
+**
+** These are utility routines, useful to [VFS|custom VFS implementations],
+** that check if a database file was a URI that contained a specific query
+** parameter, and if so obtains the value of that query parameter.
+**
+** The first parameter to these interfaces (hereafter referred to
+** as F) must be one of:
+** <ul>
+** <li> A database filename pointer created by the SQLite core and
+** passed into the xOpen() method of a VFS implementation, or
+** <li> A filename obtained from [sqlite3_db_filename()], or
+** <li> A new filename constructed using [sqlite3_create_filename()].
+** </ul>
+** If the F parameter is not one of the above, then the behavior is
+** undefined and probably undesirable. Older versions of SQLite were
+** more tolerant of invalid F parameters than newer versions.
+**
+** If F is a suitable filename (as described in the previous paragraph)
+** and if P is the name of the query parameter, then
+** sqlite3_uri_parameter(F,P) returns the value of the P
+** parameter if it exists or a NULL pointer if P does not appear as a
+** query parameter on F. If P is a query parameter of F and it
+** has no explicit value, then sqlite3_uri_parameter(F,P) returns
+** a pointer to an empty string.
+**
+** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
+** parameter and returns true (1) or false (0) according to the value
+** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
+** value of query parameter P is one of "yes", "true", or "on" in any
+** case or if the value begins with a non-zero number. The
+** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
+** query parameter P is one of "no", "false", or "off" in any case or
+** if the value begins with a numeric zero. If P is not a query
+** parameter on F or if the value of P does not match any of the
+** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
+**
+** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
+** 64-bit signed integer and returns that integer, or D if P does not
+** exist. If the value of P is something other than an integer, then
+** zero is returned.
+**
+** The sqlite3_uri_key(F,N) returns a pointer to the name (not
+** the value) of the N-th query parameter for filename F, or a NULL
+** pointer if N is less than zero or greater than the number of query
+** parameters minus 1. The N value is zero-based so N should be 0 to obtain
+** the name of the first query parameter, 1 for the second parameter, and
+** so forth.
+**
+** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
+** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
+** is not a database file pathname pointer that the SQLite core passed
+** into the xOpen VFS method, then the behavior of this routine is undefined
+** and probably undesirable.
+**
+** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
+** parameter can also be the name of a rollback journal file or WAL file
+** in addition to the main database file. Prior to version 3.31.0, these
+** routines would only work if F was the name of the main database file.
+** When the F parameter is the name of the rollback journal or WAL file,
+** it has access to all the same query parameters as were found on the
+** main database file.
+**
+** See the [URI filename] documentation for additional information.
+*/
+SQLITE_API const char *sqlite3_uri_parameter(sqlite3_filename z, const char *zParam);
+SQLITE_API int sqlite3_uri_boolean(sqlite3_filename z, const char *zParam, int bDefault);
+SQLITE_API sqlite3_int64 sqlite3_uri_int64(sqlite3_filename, const char*, sqlite3_int64);
+SQLITE_API const char *sqlite3_uri_key(sqlite3_filename z, int N);
+
+/*
+** CAPI3REF: Translate filenames
+**
+** These routines are available to [VFS|custom VFS implementations] for
+** translating filenames between the main database file, the journal file,
+** and the WAL file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
+** returns the name of the corresponding database file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, or if F is a database filename
+** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
+** returns the name of the corresponding rollback journal file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** that was passed by the SQLite core into the VFS, or if F is a database
+** filename obtained from [sqlite3_db_filename()], then
+** sqlite3_filename_wal(F) returns the name of the corresponding
+** WAL file.
+**
+** In all of the above, if F is not the name of a database, journal or WAL
+** filename passed into the VFS from the SQLite core and F is not the
+** return value from [sqlite3_db_filename()], then the result is
+** undefined and is likely a memory access violation.
+*/
+SQLITE_API const char *sqlite3_filename_database(sqlite3_filename);
+SQLITE_API const char *sqlite3_filename_journal(sqlite3_filename);
+SQLITE_API const char *sqlite3_filename_wal(sqlite3_filename);
+
+/*
+** CAPI3REF: Database File Corresponding To A Journal
+**
+** ^If X is the name of a rollback or WAL-mode journal file that is
+** passed into the xOpen method of [sqlite3_vfs], then
+** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
+** object that represents the main database file.
+**
+** This routine is intended for use in custom [VFS] implementations
+** only. It is not a general-purpose interface.
+** The argument sqlite3_file_object(X) must be a filename pointer that
+** has been passed into [sqlite3_vfs].xOpen method where the
+** flags parameter to xOpen contains one of the bits
+** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use
+** of this routine results in undefined and probably undesirable
+** behavior.
+*/
+SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*);
+
+/*
+** CAPI3REF: Create and Destroy VFS Filenames
+**
+** These interfaces are provided for use by [VFS shim] implementations and
+** are not useful outside of that context.
+**
+** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
+** database filename D with corresponding journal file J and WAL file W and
+** with N URI parameters key/values pairs in the array P. The result from
+** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
+** is safe to pass to routines like:
+** <ul>
+** <li> [sqlite3_uri_parameter()],
+** <li> [sqlite3_uri_boolean()],
+** <li> [sqlite3_uri_int64()],
+** <li> [sqlite3_uri_key()],
+** <li> [sqlite3_filename_database()],
+** <li> [sqlite3_filename_journal()], or
+** <li> [sqlite3_filename_wal()].
+** </ul>
+** If a memory allocation error occurs, sqlite3_create_filename() might
+** return a NULL pointer. The memory obtained from sqlite3_create_filename(X)
+** must be released by a corresponding call to sqlite3_free_filename(Y).
+**
+** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
+** of 2*N pointers to strings. Each pair of pointers in this array corresponds
+** to a key and value for a query parameter. The P parameter may be a NULL
+** pointer if N is zero. None of the 2*N pointers in the P array may be
+** NULL pointers and key pointers should not be empty strings.
+** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
+** be NULL pointers, though they can be empty strings.
+**
+** The sqlite3_free_filename(Y) routine releases a memory allocation
+** previously obtained from sqlite3_create_filename(). Invoking
+** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
+**
+** If the Y parameter to sqlite3_free_filename(Y) is anything other
+** than a NULL pointer or a pointer previously acquired from
+** sqlite3_create_filename(), then bad things such as heap
+** corruption or segfaults may occur. The value Y should not be
+** used again after sqlite3_free_filename(Y) has been called. This means
+** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
+** then the corresponding [sqlite3_module.xClose() method should also be
+** invoked prior to calling sqlite3_free_filename(Y).
+*/
+SQLITE_API sqlite3_filename sqlite3_create_filename(
+ const char *zDatabase,
+ const char *zJournal,
+ const char *zWal,
+ int nParam,
+ const char **azParam
+);
+SQLITE_API void sqlite3_free_filename(sqlite3_filename);
+
+/*
+** CAPI3REF: Error Codes And Messages
+** METHOD: sqlite3
+**
+** ^If the most recent sqlite3_* API call associated with
+** [database connection] D failed, then the sqlite3_errcode(D) interface
+** returns the numeric [result code] or [extended result code] for that
+** API call.
+** ^The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** The values returned by sqlite3_errcode() and/or
+** sqlite3_extended_errcode() might change with each API call.
+** Except, there are some interfaces that are guaranteed to never
+** change the value of the error code. The error-code preserving
+** interfaces include the following:
+**
+** <ul>
+** <li> sqlite3_errcode()
+** <li> sqlite3_extended_errcode()
+** <li> sqlite3_errmsg()
+** <li> sqlite3_errmsg16()
+** <li> sqlite3_error_offset()
+** </ul>
+**
+** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** (See how SQLite handles [invalid UTF] for exceptions to this rule.)
+** ^(Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.)^
+**
+** ^The sqlite3_errstr() interface returns the English-language text
+** that describes the [result code], as UTF-8.
+** ^(Memory to hold the error message string is managed internally
+** and must not be freed by the application)^.
+**
+** ^If the most recent error references a specific token in the input
+** SQL, the sqlite3_error_offset() interface returns the byte offset
+** of the start of that token. ^The byte offset returned by
+** sqlite3_error_offset() assumes that the input SQL is UTF8.
+** ^If the most recent error does not reference a specific token in the input
+** SQL, then the sqlite3_error_offset() function returns -1.
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+SQLITE_API const char *sqlite3_errstr(int);
+SQLITE_API int sqlite3_error_offset(sqlite3 *db);
+
+/*
+** CAPI3REF: Prepared Statement Object
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement that
+** has been compiled into binary form and is ready to be evaluated.
+**
+** Think of each SQL statement as a separate computer program. The
+** original SQL text is source code. A prepared statement object
+** is the compiled object code. All SQL must be converted into a
+** prepared statement before it can be run.
+**
+** The life-cycle of a prepared statement object usually goes like this:
+**
+** <ol>
+** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
+** <li> Bind values to [parameters] using the sqlite3_bind_*()
+** interfaces.
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the prepared statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits
+** METHOD: sqlite3
+**
+** ^(This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct.)^
+**
+** ^If the new limit is a negative number, the limit is unchanged.
+** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
+** [limits | hard upper bound]
+** set at compile-time by a C preprocessor macro called
+** [limits | SQLITE_MAX_<i>NAME</i>].
+** (The "_LIMIT_" in the name is changed to "_MAX_".))^
+** ^Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper bound.
+**
+** ^Regardless of whether or not the limit was changed, the
+** [sqlite3_limit()] interface returns the prior value of the limit.
+** ^Hence, to find the current value of a limit without changing it,
+** simply invoke this interface with the third parameter set to -1.
+**
+** Run-time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+*/
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories
+** KEYWORDS: {limit category} {*limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+** <dl>
+** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
+**
+** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
+**
+** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>)^
+**
+** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>)^
+**
+** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
+**
+** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement. If [sqlite3_prepare_v2()] or
+** the equivalent tries to allocate space for more than this many opcodes
+** in a single prepared statement, an SQLITE_NOMEM error is returned.</dd>)^
+**
+** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>)^
+**
+** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
+**
+** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
+** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.</dd>)^
+**
+** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
+** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum index number of any [parameter] in an SQL statement.)^
+**
+** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
+** <dd>The maximum depth of recursion for triggers.</dd>)^
+**
+** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
+** <dd>The maximum number of auxiliary worker threads that a single
+** [prepared statement] may start.</dd>)^
+** </dl>
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
+#define SQLITE_LIMIT_WORKER_THREADS 11
+
+/*
+** CAPI3REF: Prepare Flags
+**
+** These constants define various flags that can be passed into
+** "prepFlags" parameter of the [sqlite3_prepare_v3()] and
+** [sqlite3_prepare16_v3()] interfaces.
+**
+** New flags may be added in future releases of SQLite.
+**
+** <dl>
+** [[SQLITE_PREPARE_PERSISTENT]] ^(<dt>SQLITE_PREPARE_PERSISTENT</dt>
+** <dd>The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner
+** that the prepared statement will be retained for a long time and
+** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
+** and [sqlite3_prepare16_v3()] assume that the prepared statement will
+** be used just once or at most a few times and then destroyed using
+** [sqlite3_finalize()] relatively soon. The current implementation acts
+** on this hint by avoiding the use of [lookaside memory] so as not to
+** deplete the limited store of lookaside memory. Future versions of
+** SQLite may act on this hint differently.
+**
+** [[SQLITE_PREPARE_NORMALIZE]] <dt>SQLITE_PREPARE_NORMALIZE</dt>
+** <dd>The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used
+** to be required for any prepared statement that wanted to use the
+** [sqlite3_normalized_sql()] interface. However, the
+** [sqlite3_normalized_sql()] interface is now available to all
+** prepared statements, regardless of whether or not they use this
+** flag.
+**
+** [[SQLITE_PREPARE_NO_VTAB]] <dt>SQLITE_PREPARE_NO_VTAB</dt>
+** <dd>The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler
+** to return an error (error code SQLITE_ERROR) if the statement uses
+** any virtual tables.
+** </dl>
+*/
+#define SQLITE_PREPARE_PERSISTENT 0x01
+#define SQLITE_PREPARE_NORMALIZE 0x02
+#define SQLITE_PREPARE_NO_VTAB 0x04
+
+/*
+** CAPI3REF: Compiling An SQL Statement
+** KEYWORDS: {SQL statement compiler}
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_stmt
+**
+** To execute an SQL statement, it must first be compiled into a byte-code
+** program using one of these routines. Or, in other words, these routines
+** are constructors for the [prepared statement] object.
+**
+** The preferred routine to use is [sqlite3_prepare_v2()]. The
+** [sqlite3_prepare()] interface is legacy and should be avoided.
+** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
+** for special purposes.
+**
+** The use of the UTF-8 interfaces is preferred, as SQLite currently
+** does all parsing using UTF-8. The UTF-16 interfaces are provided
+** as a convenience. The UTF-16 interfaces work by converting the
+** input text into UTF-8, then invoking the corresponding UTF-8 interface.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(),
+** and sqlite3_prepare_v3()
+** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() use UTF-16.
+**
+** ^If the nByte argument is negative, then zSql is read up to the
+** first zero terminator. ^If nByte is positive, then it is the
+** number of bytes read from zSql. ^If nByte is zero, then no prepared
+** statement is generated.
+** If the caller knows that the supplied string is nul-terminated, then
+** there is a small performance advantage to passing an nByte parameter that
+** is the number of bytes in the input string <i>including</i>
+** the nul-terminator.
+**
+** ^If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
+** to NULL. ^If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
+** otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
+** The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
+** are retained for backwards compatibility, but their use is discouraged.
+** ^In the "vX" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave differently in three ways:
+**
+** <ol>
+** <li>
+** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
+** retries will occur before sqlite3_step() gives up and returns an error.
+** </li>
+**
+** <li>
+** ^When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. ^The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and the application would have to make a second call to [sqlite3_reset()]
+** in order to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+** </li>
+**
+** <li>
+** ^If the specific value bound to a [parameter | host parameter] in the
+** WHERE clause might influence the choice of query plan for a statement,
+** then the statement will be automatically recompiled, as if there had been
+** a schema change, on the first [sqlite3_step()] call following any change
+** to the [sqlite3_bind_text | bindings] of that [parameter].
+** ^The specific value of a WHERE-clause [parameter] might influence the
+** choice of query plan if the parameter is the left-hand side of a [LIKE]
+** or [GLOB] operator or if the parameter is compared to an indexed column
+** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
+** </li>
+** </ol>
+**
+** <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
+** the extra prepFlags parameter, which is a bit array consisting of zero or
+** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The
+** sqlite3_prepare_v2() interface works exactly the same as
+** sqlite3_prepare_v3() with a zero prepFlags parameter.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v3(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v3(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPI3REF: Retrieving Statement SQL
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
+** SQL text used to create [prepared statement] P if P was
+** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
+** string containing the SQL text of prepared statement P with
+** [bound parameters] expanded.
+** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
+** string containing the normalized SQL text of prepared statement P. The
+** semantics used to normalize a SQL statement are unspecified and subject
+** to change. At a minimum, literal values will be replaced with suitable
+** placeholders.
+**
+** ^(For example, if a prepared statement is created using the SQL
+** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
+** and parameter :xyz is unbound, then sqlite3_sql() will return
+** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
+** will return "SELECT 2345,NULL".)^
+**
+** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
+** is available to hold the result, or if the result would exceed the
+** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
+**
+** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
+** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time
+** option causes sqlite3_expanded_sql() to always return NULL.
+**
+** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
+** are managed by SQLite and are automatically freed when the prepared
+** statement is finalized.
+** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
+** is obtained from [sqlite3_malloc()] and must be freed by the application
+** by passing it to [sqlite3_free()].
+**
+** ^The sqlite3_normalized_sql() interface is only available if
+** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined.
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);
+#endif
+
+/*
+** CAPI3REF: Determine If An SQL Statement Writes The Database
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
+** and only if the [prepared statement] X makes no direct changes to
+** the content of the database file.
+**
+** Note that [application-defined SQL functions] or
+** [virtual tables] might change the database indirectly as a side effect.
+** ^(For example, if an application defines a function "eval()" that
+** calls [sqlite3_exec()], then the following SQL statement would
+** change the database file through side-effects:
+**
+** <blockquote><pre>
+** SELECT eval('DELETE FROM t1') FROM t2;
+** </pre></blockquote>
+**
+** But because the [SELECT] statement does not change the database file
+** directly, sqlite3_stmt_readonly() would still return true.)^
+**
+** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
+** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
+** since the statements themselves do not actually modify the database but
+** rather they control the timing of when other statements modify the
+** database. ^The [ATTACH] and [DETACH] statements also cause
+** sqlite3_stmt_readonly() to return true since, while those statements
+** change the configuration of a database connection, they do not make
+** changes to the content of the database files on disk.
+** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
+** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
+** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
+** sqlite3_stmt_readonly() returns false for those commands.
+**
+** ^This routine returns false if there is any possibility that the
+** statement might change the database file. ^A false return does
+** not guarantee that the statement will change the database file.
+** ^For example, an UPDATE statement might have a WHERE clause that
+** makes it a no-op, but the sqlite3_stmt_readonly() result would still
+** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a
+** read-only no-op if the table already exists, but
+** sqlite3_stmt_readonly() still returns false for such a statement.
+**
+** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN]
+** statement, then sqlite3_stmt_readonly(X) returns the same value as
+** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted.
+*/
+SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
+** prepared statement S is an EXPLAIN statement, or 2 if the
+** statement S is an EXPLAIN QUERY PLAN.
+** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
+** an ordinary statement or a NULL pointer.
+*/
+SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Change The EXPLAIN Setting For A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** The sqlite3_stmt_explain(S,E) interface changes the EXPLAIN
+** setting for [prepared statement] S. If E is zero, then S becomes
+** a normal prepared statement. If E is 1, then S behaves as if
+** its SQL text began with "[EXPLAIN]". If E is 2, then S behaves as if
+** its SQL text began with "[EXPLAIN QUERY PLAN]".
+**
+** Calling sqlite3_stmt_explain(S,E) might cause S to be reprepared.
+** SQLite tries to avoid a reprepare, but a reprepare might be necessary
+** on the first transition into EXPLAIN or EXPLAIN QUERY PLAN mode.
+**
+** Because of the potential need to reprepare, a call to
+** sqlite3_stmt_explain(S,E) will fail with SQLITE_ERROR if S cannot be
+** reprepared because it was created using [sqlite3_prepare()] instead of
+** the newer [sqlite3_prepare_v2()] or [sqlite3_prepare_v3()] interfaces and
+** hence has no saved SQL text with which to reprepare.
+**
+** Changing the explain setting for a prepared statement does not change
+** the original SQL text for the statement. Hence, if the SQL text originally
+** began with EXPLAIN or EXPLAIN QUERY PLAN, but sqlite3_stmt_explain(S,0)
+** is called to convert the statement into an ordinary statement, the EXPLAIN
+** or EXPLAIN QUERY PLAN keywords will still appear in the sqlite3_sql(S)
+** output, even though the statement now acts like a normal SQL statement.
+**
+** This routine returns SQLITE_OK if the explain mode is successfully
+** changed, or an error code if the explain mode could not be changed.
+** The explain mode cannot be changed while a statement is active.
+** Hence, it is good practice to call [sqlite3_reset(S)]
+** immediately prior to calling sqlite3_stmt_explain(S,E).
+*/
+SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode);
+
+/*
+** CAPI3REF: Determine If A Prepared Statement Has Been Reset
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
+** [prepared statement] S has been stepped at least once using
+** [sqlite3_step(S)] but has neither run to completion (returned
+** [SQLITE_DONE] from [sqlite3_step(S)]) nor
+** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
+** interface returns false if S is a NULL pointer. If S is not a
+** NULL pointer and is not a pointer to a valid [prepared statement]
+** object, then the behavior is undefined and probably undesirable.
+**
+** This interface can be used in combination [sqlite3_next_stmt()]
+** to locate all prepared statements associated with a database
+** connection that are in need of being reset. This can be used,
+** for example, in diagnostic routines to search for prepared
+** statements that are holding a transaction open.
+*/
+SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. ^Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value. The
+** [sqlite3_value_dup()] interface can be used to construct a new
+** protected sqlite3_value from an unprotected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. An internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** ^The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()]
+** are protected.
+** ^The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used as arguments
+** to [sqlite3_result_value()], [sqlite3_bind_value()], and
+** [sqlite3_value_dup()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
+*/
+typedef struct sqlite3_value sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. ^A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
+** METHOD: sqlite3_stmt
+**
+** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifier.)^ ^The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** ^The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** ^The second argument is the index of the SQL parameter to be set.
+** ^The leftmost SQL parameter has an index of 1. ^When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** ^The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. ^The index
+** for "?NNN" parameters is the value of NNN.
+** ^The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
+**
+** ^The third argument is the value to bind to the parameter.
+** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
+** is ignored and the end result is the same as sqlite3_bind_null().
+** ^If the third parameter to sqlite3_bind_text() is not NULL, then
+** it should be a pointer to well-formed UTF8 text.
+** ^If the third parameter to sqlite3_bind_text16() is not NULL, then
+** it should be a pointer to well-formed UTF16 text.
+** ^If the third parameter to sqlite3_bind_text64() is not NULL, then
+** it should be a pointer to a well-formed unicode string that is
+** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
+** otherwise.
+**
+** [[byte-order determination rules]] ^The byte-order of
+** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
+** found in first character, which is removed, or in the absence of a BOM
+** the byte order is the native byte order of the host
+** machine for sqlite3_bind_text16() or the byte order specified in
+** the 6th parameter for sqlite3_bind_text64().)^
+** ^If UTF16 input text contains invalid unicode
+** characters, then SQLite might change those invalid characters
+** into the unicode replacement character: U+FFFD.
+**
+** ^(In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.)^
+** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** is negative, then the length of the string is
+** the number of bytes up to the first zero terminator.
+** If the fourth parameter to sqlite3_bind_blob() is negative, then
+** the behavior is undefined.
+** If a non-negative fourth parameter is provided to sqlite3_bind_text()
+** or sqlite3_bind_text16() or sqlite3_bind_text64() then
+** that parameter must be the byte offset
+** where the NUL terminator would occur assuming the string were NUL
+** terminated. If any NUL characters occurs at byte offsets less than
+** the value of the fourth parameter then the resulting string value will
+** contain embedded NULs. The result of expressions involving strings
+** with embedded NULs is undefined.
+**
+** ^The fifth argument to the BLOB and string binding interfaces controls
+** or indicates the lifetime of the object referenced by the third parameter.
+** These three options exist:
+** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished
+** with it may be passed. ^It is called to dispose of the BLOB or string even
+** if the call to the bind API fails, except the destructor is not called if
+** the third parameter is a NULL pointer or the fourth parameter is negative.
+** ^ (2) The special constant, [SQLITE_STATIC], may be passed to indicate that
+** the application remains responsible for disposing of the object. ^In this
+** case, the object and the provided pointer to it must remain valid until
+** either the prepared statement is finalized or the same SQL parameter is
+** bound to something else, whichever occurs sooner.
+** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the
+** object is to be copied prior to the return from sqlite3_bind_*(). ^The
+** object and pointer to it must remain valid until then. ^SQLite will then
+** manage the lifetime of its private copy.
+**
+** ^The sixth argument to sqlite3_bind_text64() must be one of
+** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
+** to specify the encoding of the text in the third parameter. If
+** the sixth argument to sqlite3_bind_text64() is not one of the
+** allowed values shown above, or if the text encoding is different
+** from the encoding specified by the sixth parameter, then the behavior
+** is undefined.
+**
+** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** ^A negative value for the zeroblob results in a zero-length BLOB.
+**
+** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
+** [prepared statement] S to have an SQL value of NULL, but to also be
+** associated with the pointer P of type T. ^D is either a NULL pointer or
+** a pointer to a destructor function for P. ^SQLite will invoke the
+** destructor D with a single argument of P when it is finished using
+** P. The T parameter should be a static string, preferably a string
+** literal. The sqlite3_bind_pointer() routine is part of the
+** [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
+** for the [prepared statement] or with a prepared statement for which
+** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
+** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
+** routine is passed a [prepared statement] that has been finalized, the
+** result is undefined and probably harmful.
+**
+** ^Bindings are not cleared by the [sqlite3_reset()] routine.
+** ^Unbound parameters are interpreted as NULL.
+**
+** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
+** [error code] if anything goes wrong.
+** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
+** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
+** [SQLITE_MAX_LENGTH].
+** ^[SQLITE_RANGE] is returned if the parameter
+** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
+ void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*));
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
+
+/*
+** CAPI3REF: Number Of SQL Parameters
+** METHOD: sqlite3_stmt
+**
+** ^This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** ^(This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN form are used,
+** there may be gaps in the list.)^
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_bind_parameter_name(P,N) interface returns
+** the name of the N-th [SQL parameter] in the [prepared statement] P.
+** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.)^
+** ^Parameters of the form "?" without a following integer have no name
+** and are referred to as "nameless" or "anonymous parameters".
+**
+** ^The first host parameter has an index of 1, not 0.
+**
+** ^If the value N is out of range or if the N-th parameter is
+** nameless, then NULL is returned. ^The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name
+** METHOD: sqlite3_stmt
+**
+** ^Return the index of an SQL parameter given its name. ^The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
+** is returned if no matching parameter is found. ^The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
+** [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_name()].
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** ^Use this routine to reset all host parameters to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^Return the number of columns in the result set returned by the
+** [prepared statement]. ^If this routine returns 0, that means the
+** [prepared statement] returns no data (for example an [UPDATE]).
+** ^However, just because this routine returns a positive number does not
+** mean that one or more rows of data will be returned. ^A SELECT statement
+** will always have a positive sqlite3_column_count() but depending on the
+** WHERE clause constraints and the table content, it might return no rows.
+**
+** See also: [sqlite3_data_count()]
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. ^The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. ^The second parameter is the
+** column number. ^The leftmost column is number 0.
+**
+** ^The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** ^If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** ^The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^These routines provide a means to determine the database, table, and
+** table column that is the origin of a particular result column in
+** [SELECT] statement.
+** ^The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. ^The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** ^The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the same information is requested
+** again in a different encoding.
+**
+** ^The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** ^The first argument to these interfaces is a [prepared statement].
+** ^These functions return information about the Nth result column returned by
+** the statement, where N is the second function argument.
+** ^The left-most column is column 0 for these routines.
+**
+** ^If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. ^These routines might also return NULL if a memory allocation error
+** occurs. ^Otherwise, they return the name of the attached database, table,
+** or column that query result column was extracted from.
+**
+** ^As with all other SQLite APIs, those whose names end with "16" return
+** UTF-16 encoded strings and the other functions return UTF-8.
+**
+** ^These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
+**
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^(The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned.)^ ^If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** ^The returned string is always UTF-8 encoded.
+**
+** ^(For example, given the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** and the following statement to be compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).)^
+**
+** ^SQLite uses dynamic run-time typing. ^So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. ^Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement
+** METHOD: sqlite3_stmt
+**
+** After a [prepared statement] has been prepared using any of
+** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
+** or [sqlite3_prepare16_v3()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
+**
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "vX" interfaces
+** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
+** [sqlite3_prepare16_v2()] or the older legacy
+** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "vX" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** ^With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
+**
+** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. ^If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within an
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** ^[SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** ^With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. ^In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** For all versions of SQLite up to and including 3.6.23.1, a call to
+** [sqlite3_reset()] was required after sqlite3_step() returned anything
+** other than [SQLITE_ROW] before any subsequent invocation of
+** sqlite3_step(). Failure to reset the prepared statement using
+** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
+** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1],
+** sqlite3_step() began
+** calling [sqlite3_reset()] automatically in this circumstance rather
+** than returning [SQLITE_MISUSE]. This is not considered a compatibility
+** break because any application that ever receives an SQLITE_MISUSE error
+** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
+** can be used to restore the legacy behavior.
+**
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
+** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "vX" interfaces is recommended.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_data_count(P) interface returns the number of columns in the
+** current row of the result set of [prepared statement] P.
+** ^If prepared statement P does not have results ready to return
+** (via calls to the [sqlite3_column_int | sqlite3_column()] family of
+** interfaces) then sqlite3_data_count(P) returns 0.
+** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
+** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
+** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
+** will return non-zero if previous call to [sqlite3_step](P) returned
+** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
+** where it always returns zero since each step of that multi-step
+** pragma returns 0 columns of data.
+**
+** See also: [sqlite3_column_count()]
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes
+** KEYWORDS: SQLITE_TEXT
+**
+** ^(Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul>)^
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Result Values From A Query
+** KEYWORDS: {column access functions}
+** METHOD: sqlite3_stmt
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
+** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
+** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
+** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
+** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
+** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
+** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an
+** [sqlite3_value|unprotected sqlite3_value] object.
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT result in bytes
+** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
+** datatype of the result
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** ^These routines return information about a single column of the current
+** result row of a query. ^In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. ^The leftmost column of the result set has the index 0.
+** ^The number of columns in the result can be determined using
+** [sqlite3_column_count()].
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
+** each return the value of a result column in a specific data format. If
+** the result column is not initially in the requested format (for example,
+** if the query returns an integer but the sqlite3_column_text() interface
+** is used to extract the value) then an automatic type conversion is performed.
+**
+** ^The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. ^The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
+** The return value of sqlite3_column_type() can be used to decide which
+** of the first six interface should be used to extract the column value.
+** The value returned by sqlite3_column_type() is only meaningful if no
+** automatic type conversions have occurred for the value in question.
+** After a type conversion, the result of calling sqlite3_column_type()
+** is undefined, though harmless. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
+** or sqlite3_column_bytes16() interfaces can be used to determine the size
+** of that BLOB or string.
+**
+** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
+**
+** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
+** the string to UTF-16 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes16() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
+**
+** ^The values returned by [sqlite3_column_bytes()] and
+** [sqlite3_column_bytes16()] do not include the zero terminators at the end
+** of the string. ^For clarity: the values returned by
+** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
+** bytes in the string, not the number of characters.
+**
+** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero-terminated. ^The return
+** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
+**
+** ^Strings returned by sqlite3_column_text16() always have the endianness
+** which is native to the platform, regardless of the text encoding set
+** for the database.
+**
+** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. In a multithreaded environment,
+** an unprotected sqlite3_value object may only be used safely with
+** [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], the behavior is not threadsafe.
+** Hence, the sqlite3_column_value() interface
+** is normally only useful within the implementation of
+** [application-defined SQL functions] or [virtual tables], not within
+** top-level application code.
+**
+** These routines may attempt to convert the datatype of the result.
+** ^For example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. ^(The following table details the conversions
+** that are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is a NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is a NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> [CAST] to BLOB
+** <tr><td> TEXT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> TEXT <td> FLOAT <td> [CAST] to REAL
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL
+** <tr><td> BLOB <td> TEXT <td> [CAST] to TEXT, ensure zero terminator
+** </table>
+** </blockquote>)^
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
+** </ul>
+**
+** ^Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer references will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** The safest policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** ^The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. ^The memory space used to hold strings
+** and BLOBs is freed automatically. Do not pass the pointers returned
+** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** As long as the input parameters are correct, these routines will only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_column_blob()
+** <li> sqlite3_column_text()
+** <li> sqlite3_column_text16()
+** <li> sqlite3_column_bytes()
+** <li> sqlite3_column_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object
+** DESTRUCTOR: sqlite3_stmt
+**
+** ^The sqlite3_finalize() function is called to delete a [prepared statement].
+** ^If the most recent evaluation of the statement encountered no errors
+** or if the statement is never been evaluated, then sqlite3_finalize() returns
+** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
+** sqlite3_finalize(S) returns the appropriate [error code] or
+** [extended error code].
+**
+** ^The sqlite3_finalize(S) routine can be called at any point during
+** the life cycle of [prepared statement] S:
+** before statement S is ever evaluated, after
+** one or more calls to [sqlite3_reset()], or after any call
+** to [sqlite3_step()] regardless of whether or not the statement has
+** completed execution.
+**
+** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
+**
+** The application must finalize every [prepared statement] in order to avoid
+** resource leaks. It is a grievous error for the application to try to use
+** a prepared statement after it has been finalized. Any use of a prepared
+** statement after it has been finalized can result in undefined and
+** undesirable behavior such as segfaults and heap corruption.
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object
+** METHOD: sqlite3_stmt
+**
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** ^Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** ^The return code from [sqlite3_reset(S)] indicates whether or not
+** the previous evaluation of prepared statement S completed successfully.
+** ^If [sqlite3_step(S)] has never before been called on S or if
+** [sqlite3_step(S)] has not been called since the previous call
+** to [sqlite3_reset(S)], then [sqlite3_reset(S)] will return
+** [SQLITE_OK].
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+** ^The [sqlite3_reset(S)] interface might also return an [error code]
+** if there were no prior errors but the process of resetting
+** the prepared statement caused a new error. ^For example, if an
+** [INSERT] statement with a [RETURNING] clause is only stepped one time,
+** that one call to [sqlite3_step(S)] might return SQLITE_ROW but
+** the overall statement might still fail and the [sqlite3_reset(S)] call
+** might return SQLITE_BUSY if locking constraints prevent the
+** database change from committing. Therefore, it is important that
+** applications check the return code from [sqlite3_reset(S)] even if
+** no prior call to [sqlite3_step(S)] indicated a problem.
+**
+** ^The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions
+** KEYWORDS: {function creation routines}
+** METHOD: sqlite3
+**
+** ^These functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only differences between
+** the three "sqlite3_create_function*" routines are the text encoding
+** expected for the second parameter (the name of the function being
+** created) and the presence or absence of a destructor callback for
+** the application data pointer. Function sqlite3_create_window_function()
+** is similar, but allows the user to supply the extra callback functions
+** needed by [aggregate window functions].
+**
+** ^The first parameter is the [database connection] to which the SQL
+** function is to be added. ^If an application uses more than one database
+** connection then application-defined SQL functions must be added
+** to each database connection separately.
+**
+** ^The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
+** representation, exclusive of the zero-terminator. ^Note that the name
+** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
+** ^Any attempt to create a function with a longer name
+** will result in [SQLITE_MISUSE] being returned.
+**
+** ^The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. ^If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
+**
+** ^The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. The application should set this parameter to
+** [SQLITE_UTF16LE] if the function implementation invokes
+** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
+** implementation invokes [sqlite3_value_text16be()] on an input, or
+** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
+** otherwise. ^The same SQL function may be registered multiple times using
+** different preferred text encodings, with different implementations for
+** each encoding.
+** ^When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+**
+** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
+** to signal that the function will always return the same result given
+** the same inputs within a single SQL statement. Most SQL functions are
+** deterministic. The built-in [random()] SQL function is an example of a
+** function that is not deterministic. The SQLite query planner is able to
+** perform additional optimizations on deterministic functions, so use
+** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
+**
+** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
+** flag, which if present prevents the function from being invoked from
+** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions,
+** index expressions, or the WHERE clause of partial indexes.
+**
+** For best security, the [SQLITE_DIRECTONLY] flag is recommended for
+** all application-defined SQL functions that do not need to be
+** used inside of triggers, view, CHECK constraints, or other elements of
+** the database schema. This flags is especially recommended for SQL
+** functions that have side effects or reveal internal application state.
+** Without this flag, an attacker might be able to modify the schema of
+** a database file to include invocations of the function with parameters
+** chosen by the attacker, which the application will then execute when
+** the database file is opened and read.
+**
+** ^(The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].)^
+**
+** ^The sixth, seventh and eighth parameters passed to the three
+** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL function or
+** aggregate. ^A scalar SQL function requires an implementation of the xFunc
+** callback only; NULL pointers must be passed as the xStep and xFinal
+** parameters. ^An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL pointers for all three function
+** callbacks.
+**
+** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue
+** and xInverse) passed to sqlite3_create_window_function are pointers to
+** C-language callbacks that implement the new function. xStep and xFinal
+** must both be non-NULL. xValue and xInverse may either both be NULL, in
+** which case a regular aggregate function is created, or must both be
+** non-NULL, in which case the new function may be used as either an aggregate
+** or aggregate window function. More details regarding the implementation
+** of aggregate window functions are
+** [user-defined window functions|available here].
+**
+** ^(If the final parameter to sqlite3_create_function_v2() or
+** sqlite3_create_window_function() is not NULL, then it is destructor for
+** the application data pointer. The destructor is invoked when the function
+** is deleted, either by being overloaded or when the database connection
+** closes.)^ ^The destructor is also invoked if the call to
+** sqlite3_create_function_v2() fails. ^When the destructor callback is
+** invoked, it is passed a single argument which is a copy of the application
+** data pointer which was the fifth parameter to sqlite3_create_function_v2().
+**
+** ^It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. ^SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. ^A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. ^A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** ^A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** ^Built-in functions may be overloaded by new application-defined functions.
+**
+** ^An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_window_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*)
+);
+
+/*
+** CAPI3REF: Text Encodings
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1 /* IMP: R-37514-35566 */
+#define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */
+#define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* Deprecated */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Function Flags
+**
+** These constants may be ORed together with the
+** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
+** to [sqlite3_create_function()], [sqlite3_create_function16()], or
+** [sqlite3_create_function_v2()].
+**
+** <dl>
+** [[SQLITE_DETERMINISTIC]] <dt>SQLITE_DETERMINISTIC</dt><dd>
+** The SQLITE_DETERMINISTIC flag means that the new function always gives
+** the same output when the input parameters are the same.
+** The [abs|abs() function] is deterministic, for example, but
+** [randomblob|randomblob()] is not. Functions must
+** be deterministic in order to be used in certain contexts such as
+** with the WHERE clause of [partial indexes] or in [generated columns].
+** SQLite might also optimize deterministic functions by factoring them
+** out of inner loops.
+** </dd>
+**
+** [[SQLITE_DIRECTONLY]] <dt>SQLITE_DIRECTONLY</dt><dd>
+** The SQLITE_DIRECTONLY flag means that the function may only be invoked
+** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], or [generated columns].
+** <p>
+** The SQLITE_DIRECTONLY flag is recommended for any
+** [application-defined SQL function]
+** that has side-effects or that could potentially leak sensitive information.
+** This will prevent attacks in which an application is tricked
+** into using a database file that has had its schema surreptitiously
+** modified to invoke the application-defined function in ways that are
+** harmful.
+** <p>
+** Some people say it is good practice to set SQLITE_DIRECTONLY on all
+** [application-defined SQL functions], regardless of whether or not they
+** are security sensitive, as doing so prevents those functions from being used
+** inside of the database schema, and thus ensures that the database
+** can be inspected and modified using generic tools (such as the [CLI])
+** that do not have access to the application-defined functions.
+** </dd>
+**
+** [[SQLITE_INNOCUOUS]] <dt>SQLITE_INNOCUOUS</dt><dd>
+** The SQLITE_INNOCUOUS flag means that the function is unlikely
+** to cause problems even if misused. An innocuous function should have
+** no side effects and should not depend on any values other than its
+** input parameters. The [abs|abs() function] is an example of an
+** innocuous function.
+** The [load_extension() SQL function] is not innocuous because of its
+** side effects.
+** <p> SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not
+** exactly the same. The [random|random() function] is an example of a
+** function that is innocuous but not deterministic.
+** <p>Some heightened security settings
+** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF])
+** disable the use of SQL functions inside views and triggers and in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], and [generated columns] unless
+** the function is tagged with SQLITE_INNOCUOUS. Most built-in functions
+** are innocuous. Developers are advised to avoid using the
+** SQLITE_INNOCUOUS flag for application-defined functions unless the
+** function has been carefully audited and found to be free of potentially
+** security-adverse side-effects and information-leaks.
+** </dd>
+**
+** [[SQLITE_SUBTYPE]] <dt>SQLITE_SUBTYPE</dt><dd>
+** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
+** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
+** Specifying this flag makes no difference for scalar or aggregate user
+** functions. However, if it is not specified for a user-defined window
+** function, then any sub-types belonging to arguments passed to the window
+** function may be discarded before the window function is called (i.e.
+** sqlite3_value_subtype() will always return 0).
+** </dd>
+** </dl>
+*/
+#define SQLITE_DETERMINISTIC 0x000000800
+#define SQLITE_DIRECTONLY 0x000080000
+#define SQLITE_SUBTYPE 0x000100000
+#define SQLITE_INNOCUOUS 0x000200000
+
+/*
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To encourage programmers to avoid
+** these functions, we will not explain what they do.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
+ void*,sqlite3_int64);
+#endif
+
+/*
+** CAPI3REF: Obtaining SQL Values
+** METHOD: sqlite3_value
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
+** <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
+** <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
+** <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
+** <tr><td><b>sqlite3_value_pointer</b><td>&rarr;<td>Pointer value
+** <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
+** <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
+** the native byteorder
+** <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
+** <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT in bytes
+** <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
+** datatype of the value
+** <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
+** <tr><td><b>sqlite3_value_nochange&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if the column is unchanged in an UPDATE
+** against a virtual table.
+** <tr><td><b>sqlite3_value_frombind&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if value originated from a [bound parameter]
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** These routines extract type, size, and content information from
+** [protected sqlite3_value] objects. Protected sqlite3_value objects
+** are used to pass parameter information into the functions that
+** implement [application-defined SQL functions] and [virtual tables].
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** is not threadsafe.
+**
+** ^These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** ^The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. ^The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
+**
+** ^If [sqlite3_value] object V was initialized
+** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)]
+** and if X and Y are strings that compare equal according to strcmp(X,Y),
+** then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise,
+** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^(The sqlite3_value_type(V) interface returns the
+** [SQLITE_INTEGER | datatype code] for the initial datatype of the
+** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^
+** Other interfaces might change the datatype for an sqlite3_value object.
+** For example, if the datatype is initially SQLITE_INTEGER and
+** sqlite3_value_text(V) is called to extract a text value for that
+** integer, then subsequent calls to sqlite3_value_type(V) might return
+** SQLITE_TEXT. Whether or not a persistent internal datatype conversion
+** occurs is undefined and may change from one release of SQLite to the next.
+**
+** ^(The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
+**
+** ^Within the [xUpdate] method of a [virtual table], the
+** sqlite3_value_nochange(X) interface returns true if and only if
+** the column corresponding to X is unchanged by the UPDATE operation
+** that the xUpdate method call was invoked to implement and if
+** and the prior [xColumn] method call that was invoked to extracted
+** the value for that column returned without setting a result (probably
+** because it queried [sqlite3_vtab_nochange()] and found that the column
+** was unchanging). ^Within an [xUpdate] method, any value for which
+** sqlite3_value_nochange(X) is true will in all other respects appear
+** to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other
+** than within an [xUpdate] method call for an UPDATE statement, then
+** the return value is arbitrary and meaningless.
+**
+** ^The sqlite3_value_frombind(X) interface returns non-zero if the
+** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()]
+** interfaces. ^If X comes from an SQL literal value, or a table column,
+** or an expression, then sqlite3_value_frombind(X) returns zero.
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+** As long as the input parameter is correct, these routines can only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_value_blob()
+** <li> sqlite3_value_text()
+** <li> sqlite3_value_text16()
+** <li> sqlite3_value_text16le()
+** <li> sqlite3_value_text16be()
+** <li> sqlite3_value_bytes()
+** <li> sqlite3_value_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_nochange(sqlite3_value*);
+SQLITE_API int sqlite3_value_frombind(sqlite3_value*);
+
+/*
+** CAPI3REF: Report the internal text encoding state of an sqlite3_value object
+** METHOD: sqlite3_value
+**
+** ^(The sqlite3_value_encoding(X) interface returns one of [SQLITE_UTF8],
+** [SQLITE_UTF16BE], or [SQLITE_UTF16LE] according to the current text encoding
+** of the value X, assuming that X has type TEXT.)^ If sqlite3_value_type(X)
+** returns something other than SQLITE_TEXT, then the return value from
+** sqlite3_value_encoding(X) is meaningless. ^Calls to
+** [sqlite3_value_text(X)], [sqlite3_value_text16(X)], [sqlite3_value_text16be(X)],
+** [sqlite3_value_text16le(X)], [sqlite3_value_bytes(X)], or
+** [sqlite3_value_bytes16(X)] might change the encoding of the value X and
+** thus change the return from subsequent calls to sqlite3_value_encoding(X).
+**
+** This routine is intended for used by applications that test and validate
+** the SQLite implementation. This routine is inquiring about the opaque
+** internal state of an [sqlite3_value] object. Ordinary applications should
+** not need to know what the internal state of an sqlite3_value object is and
+** hence should not need to use this interface.
+*/
+SQLITE_API int sqlite3_value_encoding(sqlite3_value*);
+
+/*
+** CAPI3REF: Finding The Subtype Of SQL Values
+** METHOD: sqlite3_value
+**
+** The sqlite3_value_subtype(V) function returns the subtype for
+** an [application-defined SQL function] argument V. The subtype
+** information can be used to pass a limited amount of context from
+** one SQL function to another. Use the [sqlite3_result_subtype()]
+** routine to set the subtype for the return value of an SQL function.
+*/
+SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*);
+
+/*
+** CAPI3REF: Copy And Free SQL Values
+** METHOD: sqlite3_value
+**
+** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
+** object D and returns a pointer to that copy. ^The [sqlite3_value] returned
+** is a [protected sqlite3_value] object even if the input is not.
+** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
+** memory allocation fails. ^If V is a [pointer value], then the result
+** of sqlite3_value_dup(V) is a NULL value.
+**
+** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
+** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer
+** then sqlite3_value_free(V) is a harmless no-op.
+*/
+SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*);
+SQLITE_API void sqlite3_value_free(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context
+** METHOD: sqlite3_context
+**
+** Implementations of aggregate SQL functions use this
+** routine to allocate memory for storing their state.
+**
+** ^The first time the sqlite3_aggregate_context(C,N) routine is called
+** for a particular aggregate function, SQLite allocates
+** N bytes of memory, zeroes out that memory, and returns a pointer
+** to the new memory. ^On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function instance,
+** the same buffer is returned. Sqlite3_aggregate_context() is normally
+** called once for each invocation of the xStep callback and then one
+** last time when the xFinal callback is invoked. ^(When no rows match
+** an aggregate query, the xStep() callback of the aggregate function
+** implementation is never called and xFinal() is called exactly once.
+** In those cases, sqlite3_aggregate_context() might be called for the
+** first time from within xFinal().)^
+**
+** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
+** when first called if N is less than or equal to zero or if a memory
+** allocation error occurs.
+**
+** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
+** determined by the N parameter on first successful call. Changing the
+** value of N in any subsequent call to sqlite3_aggregate_context() within
+** the same aggregate function instance will not resize the memory
+** allocation.)^ Within the xFinal callback, it is customary to set
+** N=0 in calls to sqlite3_aggregate_context(C,N) so that no
+** pointless memory allocations occur.
+**
+** ^SQLite automatically frees the memory allocated by
+** sqlite3_aggregate_context() when the aggregate query concludes.
+**
+** The first parameter must be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the xStep or xFinal callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data
+** METHOD: sqlite3_context
+**
+** These functions may be used by (non-aggregate) SQL functions to
+** associate auxiliary data with argument values. If the same argument
+** value is passed to multiple invocations of the same SQL function during
+** query execution, under some circumstances the associated auxiliary data
+** might be preserved. An example of where this might be useful is in a
+** regular-expression matching function. The compiled version of the regular
+** expression can be stored as auxiliary data associated with the pattern string.
+** Then as long as the pattern string remains the same,
+** the compiled regular expression can be reused on multiple
+** invocations of the same function.
+**
+** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the auxiliary data
+** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
+** value to the application-defined function. ^N is zero for the left-most
+** function argument. ^If there is no auxiliary data
+** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
+** returns a NULL pointer.
+**
+** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as auxiliary data for the
+** N-th argument of the application-defined function. ^Subsequent
+** calls to sqlite3_get_auxdata(C,N) return P from the most recent
+** sqlite3_set_auxdata(C,N,P,X) call if the auxiliary data is still valid or
+** NULL if the auxiliary data has been discarded.
+** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
+** SQLite will invoke the destructor function X with parameter P exactly
+** once, when the auxiliary data is discarded.
+** SQLite is free to discard the auxiliary data at any time, including: <ul>
+** <li> ^(when the corresponding function parameter changes)^, or
+** <li> ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
+** SQL statement)^, or
+** <li> ^(when sqlite3_set_auxdata() is invoked again on the same
+** parameter)^, or
+** <li> ^(during the original sqlite3_set_auxdata() call when a memory
+** allocation error occurs.)^ </ul>
+**
+** Note the last bullet in particular. The destructor X in
+** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
+** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata()
+** should be called near the end of the function implementation and the
+** function implementation should not make any use of P after
+** sqlite3_set_auxdata() has been called.
+**
+** ^(In practice, auxiliary data is preserved between function calls for
+** function parameters that are compile-time constants, including literal
+** values and [parameters] and expressions composed from the same.)^
+**
+** The value of the N parameter to these interfaces should be non-negative.
+** Future enhancements may make use of negative N values to define new
+** kinds of function caching behavior.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+**
+** See also: [sqlite3_get_clientdata()] and [sqlite3_set_clientdata()].
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+/*
+** CAPI3REF: Database Connection Client Data
+** METHOD: sqlite3
+**
+** These functions are used to associate one or more named pointers
+** with a [database connection].
+** A call to sqlite3_set_clientdata(D,N,P,X) causes the pointer P
+** to be attached to [database connection] D using name N. Subsequent
+** calls to sqlite3_get_clientdata(D,N) will return a copy of pointer P
+** or a NULL pointer if there were no prior calls to
+** sqlite3_set_clientdata() with the same values of D and N.
+** Names are compared using strcmp() and are thus case sensitive.
+**
+** If P and X are both non-NULL, then the destructor X is invoked with
+** argument P on the first of the following occurrences:
+** <ul>
+** <li> An out-of-memory error occurs during the call to
+** sqlite3_set_clientdata() which attempts to register pointer P.
+** <li> A subsequent call to sqlite3_set_clientdata(D,N,P,X) is made
+** with the same D and N parameters.
+** <li> The database connection closes. SQLite does not make any guarantees
+** about the order in which destructors are called, only that all
+** destructors will be called exactly once at some point during the
+** database connection closing process.
+** </ul>
+**
+** SQLite does not do anything with client data other than invoke
+** destructors on the client data at the appropriate time. The intended
+** use for client data is to provide a mechanism for wrapper libraries
+** to store additional information about an SQLite database connection.
+**
+** There is no limit (other than available memory) on the number of different
+** client data pointers (with different names) that can be attached to a
+** single database connection. However, the implementation is optimized
+** for the case of having only one or two different client data names.
+** Applications and wrapper libraries are discouraged from using more than
+** one client data name each.
+**
+** There is no way to enumerate the client data pointers
+** associated with a database connection. The N parameter can be thought
+** of as a secret key such that only code that knows the secret key is able
+** to access the associated data.
+**
+** Security Warning: These interfaces should not be exposed in scripting
+** languages or in other circumstances where it might be possible for an
+** an attacker to invoke them. Any agent that can invoke these interfaces
+** can probably also take control of the process.
+**
+** Database connection client data is only available for SQLite
+** version 3.44.0 ([dateof:3.44.0]) and later.
+**
+** See also: [sqlite3_set_auxdata()] and [sqlite3_get_auxdata()].
+*/
+SQLITE_API void *sqlite3_get_clientdata(sqlite3*,const char*);
+SQLITE_API int sqlite3_set_clientdata(sqlite3*, const char*, void*, void(*)(void*));
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. ^The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function
+** METHOD: sqlite3_context
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** ^The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
+** interfaces set the result of the application-defined function to be
+** a BLOB containing all zero bytes and N bytes in size.
+**
+** ^The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** ^The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** ^SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. ^SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. ^SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 using
+** the same [byte-order determination rules] as [sqlite3_bind_text16()].
+** ^If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** ^If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** ^The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** ^The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. ^By default,
+** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
+** error indicating that a string or BLOB is too long to represent.
+**
+** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
+** error indicating that a memory allocation failed.
+**
+** ^The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** ^The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** ^The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** ^The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** ^The sqlite3_result_text64() interface sets the return value of an
+** application-defined function to be a text string in an encoding
+** specified by the fifth (and last) parameter, which must be one
+** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
+** ^SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** ^If the 3rd parameter to any of the sqlite3_result_text* interfaces
+** other than sqlite3_result_text64() is negative, then SQLite computes
+** the string length itself by searching the 2nd parameter for the first
+** zero character.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result. If the 3rd parameter is non-negative, then it
+** must be the byte offset into the string where the NUL terminator would
+** appear if the string where NUL terminated. If any NUL characters occur
+** in the string at a byte offset that is less than the value of the 3rd
+** parameter, then the resulting string will contain embedded NULs and the
+** result of expressions operating on strings with embedded NULs is undefined.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained
+** from [sqlite3_malloc()] before it returns.
+**
+** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and
+** sqlite3_result_text16be() routines, and for sqlite3_result_text64()
+** when the encoding is not UTF8, if the input UTF16 begins with a
+** byte-order mark (BOM, U+FEFF) then the BOM is removed from the
+** string and the rest of the string is interpreted according to the
+** byte-order specified by the BOM. ^The byte-order specified by
+** the BOM at the beginning of the text overrides the byte-order
+** specified by the interface procedure. ^So, for example, if
+** sqlite3_result_text16le() is invoked with text that begins
+** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the
+** first two bytes of input are skipped and the remaining input
+** is interpreted as UTF16BE text.
+**
+** ^For UTF16 input text to the sqlite3_result_text16(),
+** sqlite3_result_text16be(), sqlite3_result_text16le(), and
+** sqlite3_result_text64() routines, if the text contains invalid
+** UTF16 characters, the invalid characters might be converted
+** into the unicode replacement character, U+FFFD.
+**
+** ^The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy of the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** ^A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an
+** SQL NULL value, just like [sqlite3_result_null(C)], except that it
+** also associates the host-language pointer P or type T with that
+** NULL value such that the pointer can be retrieved within an
+** [application-defined SQL function] using [sqlite3_value_pointer()].
+** ^If the D parameter is not NULL, then it is a pointer to a destructor
+** for the P parameter. ^SQLite invokes D with P as its only argument
+** when SQLite is finished with P. The T parameter should be a static
+** string and preferably a string literal. The sqlite3_result_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
+ sqlite3_uint64,void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*));
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
+
+
+/*
+** CAPI3REF: Setting The Subtype Of An SQL Function
+** METHOD: sqlite3_context
+**
+** The sqlite3_result_subtype(C,T) function causes the subtype of
+** the result from the [application-defined SQL function] with
+** [sqlite3_context] C to be the value T. Only the lower 8 bits
+** of the subtype T are preserved in current versions of SQLite;
+** higher order bits are discarded.
+** The number of subtype bytes preserved by SQLite might increase
+** in future releases of SQLite.
+*/
+SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int);
+
+/*
+** CAPI3REF: Define New Collating Sequences
+** METHOD: sqlite3
+**
+** ^These functions add, remove, or modify a [collation] associated
+** with the [database connection] specified as the first argument.
+**
+** ^The name of the collation is a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string in native byte order for sqlite3_create_collation16().
+** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
+** considered to be the same name.
+**
+** ^(The third argument (eTextRep) must be one of the constants:
+** <ul>
+** <li> [SQLITE_UTF8],
+** <li> [SQLITE_UTF16LE],
+** <li> [SQLITE_UTF16BE],
+** <li> [SQLITE_UTF16], or
+** <li> [SQLITE_UTF16_ALIGNED].
+** </ul>)^
+** ^The eTextRep argument determines the encoding of strings passed
+** to the collating function callback, xCompare.
+** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
+** force strings to be UTF16 with native byte order.
+** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
+** on an even byte address.
+**
+** ^The fourth argument, pArg, is an application data pointer that is passed
+** through as the first argument to the collating function callback.
+**
+** ^The fifth argument, xCompare, is a pointer to the collating function.
+** ^Multiple collating functions can be registered using the same name but
+** with different eTextRep parameters and SQLite will use whichever
+** function requires the least amount of data transformation.
+** ^If the xCompare argument is NULL then the collating function is
+** deleted. ^When all collating functions having the same name are deleted,
+** that collation is no longer usable.
+**
+** ^The collating function callback is invoked with a copy of the pArg
+** application data pointer and with two strings in the encoding specified
+** by the eTextRep argument. The two integer parameters to the collating
+** function callback are the length of the two strings, in bytes. The collating
+** function must return an integer that is negative, zero, or positive
+** if the first string is less than, equal to, or greater than the second,
+** respectively. A collating function must always return the same answer
+** given the same inputs. If two or more collating functions are registered
+** to the same collation name (using different eTextRep values) then all
+** must give an equivalent answer when invoked with equivalent strings.
+** The collating function must obey the following properties for all
+** strings A, B, and C:
+**
+** <ol>
+** <li> If A==B then B==A.
+** <li> If A==B and B==C then A==C.
+** <li> If A&lt;B THEN B&gt;A.
+** <li> If A&lt;B and B&lt;C then A&lt;C.
+** </ol>
+**
+** If a collating function fails any of the above constraints and that
+** collating function is registered and used, then the behavior of SQLite
+** is undefined.
+**
+** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** with the addition that the xDestroy callback is invoked on pArg when
+** the collating function is deleted.
+** ^Collating functions are deleted when they are overridden by later
+** calls to the collation creation functions or when the
+** [database connection] is closed using [sqlite3_close()].
+**
+** ^The xDestroy callback is <u>not</u> called if the
+** sqlite3_create_collation_v2() function fails. Applications that invoke
+** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
+** check the return code and dispose of the application data pointer
+** themselves rather than expecting SQLite to deal with it for them.
+** This is different from every other SQLite interface. The inconsistency
+** is unfortunate but cannot be changed without breaking backwards
+** compatibility.
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks
+** METHOD: sqlite3
+**
+** ^To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** [database connection] to be invoked whenever an undefined collation
+** sequence is required.
+**
+** ^If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** ^A call to either function replaces the existing collation-needed callback.
+**
+** ^(When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
+** required collation sequence.)^
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+#ifdef SQLITE_ENABLE_CEROD
+/*
+** Specify the activation key for a CEROD database. Unless
+** activated, none of the CEROD routines will work.
+*/
+SQLITE_API void sqlite3_activate_cerod(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time
+**
+** The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** ^SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object. If the xSleep() method
+** of the default VFS is not implemented correctly, or not implemented at
+** all, then the behavior of sqlite3_sleep() may deviate from the description
+** in the previous paragraphs.
+**
+** If a negative argument is passed to sqlite3_sleep() the results vary by
+** VFS and operating system. Some system treat a negative argument as an
+** instruction to sleep forever. Others understand it to mean do not sleep
+** at all. ^In SQLite version 3.42.0 and later, a negative
+** argument passed into sqlite3_sleep() is changed to zero before it is relayed
+** down into the xSleep method of the VFS.
+*/
+SQLITE_API int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
+** created by SQLite when using a built-in [sqlite3_vfs | VFS]
+** will be placed in that directory.)^ ^If this variable
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** Applications are strongly discouraged from using this global variable.
+** It is required to set a temporary folder on Windows Runtime (WinRT).
+** But for all other platforms, it is highly recommended that applications
+** neither read nor write this variable. This global variable is a relic
+** that exists for backwards compatibility of legacy applications and should
+** be avoided in new projects.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
+** Except when requested by the [temp_store_directory pragma], SQLite
+** does not free the memory that sqlite3_temp_directory points to. If
+** the application wants that memory to be freed, it must do
+** so itself, taking care to only do so after all [database connection]
+** objects have been destroyed.
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various
+** features that require the use of temporary files may fail. Here is an
+** example of how to do this using C++ with the Windows Runtime:
+**
+** <blockquote><pre>
+** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
+** &nbsp; TemporaryFolder->Path->Data();
+** char zPathBuf&#91;MAX_PATH + 1&#93;;
+** memset(zPathBuf, 0, sizeof(zPathBuf));
+** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
+** &nbsp; NULL, NULL);
+** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
+** </pre></blockquote>
+*/
+SQLITE_API char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Name Of The Folder Holding Database Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all database files
+** specified with a relative pathname and created or accessed by
+** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
+** to be relative to that directory.)^ ^If this variable is a NULL
+** pointer, then SQLite assumes that all database files specified
+** with a relative pathname are relative to the current directory
+** for the process. Only the windows VFS makes use of this global
+** variable; it is ignored by the unix VFS.
+**
+** Changing the value of this variable while a database connection is
+** open can result in a corrupt database.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [data_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [data_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [data_store_directory pragma] should be avoided.
+*/
+SQLITE_API char *sqlite3_data_directory;
+
+/*
+** CAPI3REF: Win32 Specific Interface
+**
+** These interfaces are available only on Windows. The
+** [sqlite3_win32_set_directory] interface is used to set the value associated
+** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
+** zValue, depending on the value of the type parameter. The zValue parameter
+** should be NULL to cause the previous value to be freed via [sqlite3_free];
+** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
+** prior to being used. The [sqlite3_win32_set_directory] interface returns
+** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
+** or [SQLITE_NOMEM] if memory could not be allocated. The value of the
+** [sqlite3_data_directory] variable is intended to act as a replacement for
+** the current directory on the sub-platforms of Win32 where that concept is
+** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and
+** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
+** sqlite3_win32_set_directory interface except the string parameter must be
+** UTF-8 or UTF-16, respectively.
+*/
+SQLITE_API int sqlite3_win32_set_directory(
+ unsigned long type, /* Identifier for directory being set or reset */
+ void *zValue /* New value for directory being set or reset */
+);
+SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
+SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);
+
+/*
+** CAPI3REF: Win32 Directory Types
+**
+** These macros are only available on Windows. They define the allowed values
+** for the type argument to the [sqlite3_win32_set_directory] interface.
+*/
+#define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1
+#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2
+
+/*
+** CAPI3REF: Test For Auto-Commit Mode
+** KEYWORDS: {autocommit mode}
+** METHOD: sqlite3
+**
+** ^The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. ^Autocommit mode is on by default.
+** ^Autocommit mode is disabled by a [BEGIN] statement.
+** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. ^The [database connection]
+** returned by sqlite3_db_handle is the same [database connection]
+** that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Return The Schema Name For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_name(D,N) interface returns a pointer to the schema name
+** for the N-th database on database connection D, or a NULL pointer of N is
+** out of range. An N value of 0 means the main database file. An N of 1 is
+** the "temp" schema. Larger values of N correspond to various ATTACH-ed
+** databases.
+**
+** Space to hold the string that is returned by sqlite3_db_name() is managed
+** by SQLite itself. The string might be deallocated by any operation that
+** changes the schema, including [ATTACH] or [DETACH] or calls to
+** [sqlite3_serialize()] or [sqlite3_deserialize()], even operations that
+** occur on a different thread. Applications that need to
+** remember the string long-term should make their own copy. Applications that
+** are accessing the same database connection simultaneously on multiple
+** threads should mutex-protect calls to this API and should make their own
+** private copy of the result prior to releasing the mutex.
+*/
+SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Return The Filename For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename
+** associated with database N of connection D.
+** ^If there is no attached database N on the database
+** connection D, or if database N is a temporary or in-memory database, then
+** this function will return either a NULL pointer or an empty string.
+**
+** ^The string value returned by this routine is owned and managed by
+** the database connection. ^The value will be valid until the database N
+** is [DETACH]-ed or until the database connection closes.
+**
+** ^The filename returned by this function is the output of the
+** xFullPathname method of the [VFS]. ^In other words, the filename
+** will be an absolute pathname, even if the filename used
+** to open the database originally was a URI or relative pathname.
+**
+** If the filename pointer returned by this routine is not NULL, then it
+** can be used as the filename input parameter to these routines:
+** <ul>
+** <li> [sqlite3_uri_parameter()]
+** <li> [sqlite3_uri_boolean()]
+** <li> [sqlite3_uri_int64()]
+** <li> [sqlite3_filename_database()]
+** <li> [sqlite3_filename_journal()]
+** <li> [sqlite3_filename_wal()]
+** </ul>
+*/
+SQLITE_API sqlite3_filename sqlite3_db_filename(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine if a database is read-only
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
+** of connection D is read-only, 0 if it is read/write, or -1 if N is not
+** the name of a database on connection D.
+*/
+SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine the transaction state of a database
+** METHOD: sqlite3
+**
+** ^The sqlite3_txn_state(D,S) interface returns the current
+** [transaction state] of schema S in database connection D. ^If S is NULL,
+** then the highest transaction state of any schema on database connection D
+** is returned. Transaction states are (in order of lowest to highest):
+** <ol>
+** <li value="0"> SQLITE_TXN_NONE
+** <li value="1"> SQLITE_TXN_READ
+** <li value="2"> SQLITE_TXN_WRITE
+** </ol>
+** ^If the S argument to sqlite3_txn_state(D,S) is not the name of
+** a valid schema, then -1 is returned.
+*/
+SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema);
+
+/*
+** CAPI3REF: Allowed return values from sqlite3_txn_state()
+** KEYWORDS: {transaction state}
+**
+** These constants define the current transaction state of a database file.
+** ^The [sqlite3_txn_state(D,S)] interface returns one of these
+** constants in order to describe the transaction state of schema S
+** in [database connection] D.
+**
+** <dl>
+** [[SQLITE_TXN_NONE]] <dt>SQLITE_TXN_NONE</dt>
+** <dd>The SQLITE_TXN_NONE state means that no transaction is currently
+** pending.</dd>
+**
+** [[SQLITE_TXN_READ]] <dt>SQLITE_TXN_READ</dt>
+** <dd>The SQLITE_TXN_READ state means that the database is currently
+** in a read transaction. Content has been read from the database file
+** but nothing in the database file has changed. The transaction state
+** will advanced to SQLITE_TXN_WRITE if any changes occur and there are
+** no other conflicting concurrent write transactions. The transaction
+** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or
+** [COMMIT].</dd>
+**
+** [[SQLITE_TXN_WRITE]] <dt>SQLITE_TXN_WRITE</dt>
+** <dd>The SQLITE_TXN_WRITE state means that the database is currently
+** in a write transaction. Content has been written to the database file
+** but has not yet committed. The transaction state will change to
+** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].</dd>
+*/
+#define SQLITE_TXN_NONE 0
+#define SQLITE_TXN_READ 1
+#define SQLITE_TXN_WRITE 2
+
+/*
+** CAPI3REF: Find the next prepared statement
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. ^If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** ^Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** ^The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** ^Any callback set by a previous call to sqlite3_rollback_hook()
+** for the same database connection is overridden.
+** ^The pArg argument is passed through to the callback.
+** ^If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
+** return the P argument from the previous call of the same function
+** on the same [database connection] D, or NULL for
+** the first call for each function on D.
+**
+** The commit and rollback hook callbacks are not reentrant.
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that running any other SQL statements, including SELECT statements,
+** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
+** the database connections for the meaning of "modify" in this paragraph.
+**
+** ^Registering a NULL function disables the callback.
+**
+** ^When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. ^If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** ^The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
+**
+** ^For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** ^The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+**
+** See also the [sqlite3_update_hook()] interface.
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Autovacuum Compaction Amount Callback
+** METHOD: sqlite3
+**
+** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback
+** function C that is invoked prior to each autovacuum of the database
+** file. ^The callback is passed a copy of the generic data pointer (P),
+** the schema-name of the attached database that is being autovacuumed,
+** the size of the database file in pages, the number of free pages,
+** and the number of bytes per page, respectively. The callback should
+** return the number of free pages that should be removed by the
+** autovacuum. ^If the callback returns zero, then no autovacuum happens.
+** ^If the value returned is greater than or equal to the number of
+** free pages, then a complete autovacuum happens.
+**
+** <p>^If there are multiple ATTACH-ed database files that are being
+** modified as part of a transaction commit, then the autovacuum pages
+** callback is invoked separately for each file.
+**
+** <p><b>The callback is not reentrant.</b> The callback function should
+** not attempt to invoke any other SQLite interface. If it does, bad
+** things may happen, including segmentation faults and corrupt database
+** files. The callback function should be a simple function that
+** does some arithmetic on its input parameters and returns a result.
+**
+** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional
+** destructor for the P parameter. ^If X is not NULL, then X(P) is
+** invoked whenever the database connection closes or when the callback
+** is overwritten by another invocation of sqlite3_autovacuum_pages().
+**
+** <p>^There is only one autovacuum pages callback per database connection.
+** ^Each call to the sqlite3_autovacuum_pages() interface overrides all
+** previous invocations for that database connection. ^If the callback
+** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer,
+** then the autovacuum steps callback is canceled. The return value
+** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might
+** be some other error code if something goes wrong. The current
+** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other
+** return codes might be added in future releases.
+**
+** <p>If no autovacuum pages callback is specified (the usual case) or
+** a NULL pointer is provided for the callback,
+** then the default behavior is to vacuum all free pages. So, in other
+** words, the default behavior is the same as if the callback function
+** were something like this:
+**
+** <blockquote><pre>
+** &nbsp; unsigned int demonstration_autovac_pages_callback(
+** &nbsp; void *pClientData,
+** &nbsp; const char *zSchema,
+** &nbsp; unsigned int nDbPage,
+** &nbsp; unsigned int nFreePage,
+** &nbsp; unsigned int nBytePerPage
+** &nbsp; ){
+** &nbsp; return nFreePage;
+** &nbsp; }
+** </pre></blockquote>
+*/
+SQLITE_API int sqlite3_autovacuum_pages(
+ sqlite3 *db,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*,
+ void(*)(void*)
+);
+
+
+/*
+** CAPI3REF: Data Change Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted in
+** a [rowid table].
+** ^Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** ^The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted in a rowid table.
+** ^The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** ^The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** ^The final callback parameter is the [rowid] of the row.
+** ^In the case of an update, this is the [rowid] after the update takes place.
+**
+** ^(The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_sequence).)^
+** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
+**
+** ^In the current implementation, the update hook
+** is not invoked when conflicting rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^The sqlite3_update_hook(D,C,P) function
+** returns the P argument from the previous call
+** on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()],
+** and [sqlite3_preupdate_hook()] interfaces.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache
+**
+** ^(This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.)^
+**
+** This interface is omitted if SQLite is compiled with
+** [-DSQLITE_OMIT_SHARED_CACHE]. The [-DSQLITE_OMIT_SHARED_CACHE]
+** compile-time option is recommended because the
+** [use of shared cache mode is discouraged].
+**
+** ^Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]).
+** In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
+**
+** ^(The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue to use the sharing mode
+** that was in effect at the time they were opened.)^
+**
+** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.)^
+**
+** ^Shared cache is disabled by default. It is recommended that it stay
+** that way. In other words, do not use this routine. This interface
+** continues to be provided for historical compatibility, but its use is
+** discouraged. Any use of shared cache is discouraged. If shared cache
+** must be used, it is recommended that shared cache only be enabled for
+** individual database connections using the [sqlite3_open_v2()] interface
+** with the [SQLITE_OPEN_SHAREDCACHE] flag.
+**
+** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
+** and will always return SQLITE_MISUSE. On those systems,
+** shared cache mode should be enabled per-database connection via
+** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
+**
+** This interface is threadsafe on processors where writing a
+** 32-bit integer is atomic.
+**
+** See Also: [SQLite Shared-Cache Mode]
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory
+**
+** ^The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** ^sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
+** ^The sqlite3_release_memory() routine is a no-op returning zero
+** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
+**
+** See also: [sqlite3_db_release_memory()]
+*/
+SQLITE_API int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Free Memory Used By A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
+** memory as possible from database connection D. Unlike the
+** [sqlite3_release_memory()] interface, this interface is in effect even
+** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
+** omitted.
+**
+** See also: [sqlite3_release_memory()]
+*/
+SQLITE_API int sqlite3_db_release_memory(sqlite3*);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size
+**
+** These interfaces impose limits on the amount of heap memory that will be
+** by all database connections within a single process.
+**
+** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
+** soft limit on the amount of heap memory that may be allocated by SQLite.
+** ^SQLite strives to keep heap memory utilization below the soft heap
+** limit by reducing the number of pages held in the page cache
+** as heap memory usages approaches the limit.
+** ^The soft heap limit is "soft" because even though SQLite strives to stay
+** below the limit, it will exceed the limit rather than generate
+** an [SQLITE_NOMEM] error. In other words, the soft heap limit
+** is advisory only.
+**
+** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of
+** N bytes on the amount of memory that will be allocated. ^The
+** sqlite3_hard_heap_limit64(N) interface is similar to
+** sqlite3_soft_heap_limit64(N) except that memory allocations will fail
+** when the hard heap limit is reached.
+**
+** ^The return value from both sqlite3_soft_heap_limit64() and
+** sqlite3_hard_heap_limit64() is the size of
+** the heap limit prior to the call, or negative in the case of an
+** error. ^If the argument N is negative
+** then no change is made to the heap limit. Hence, the current
+** size of heap limits can be determined by invoking
+** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1).
+**
+** ^Setting the heap limits to zero disables the heap limiter mechanism.
+**
+** ^The soft heap limit may not be greater than the hard heap limit.
+** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N)
+** is invoked with a value of N that is greater than the hard heap limit,
+** the soft heap limit is set to the value of the hard heap limit.
+** ^The soft heap limit is automatically enabled whenever the hard heap
+** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and
+** the soft heap limit is outside the range of 1..N, then the soft heap
+** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the
+** hard heap limit is enabled makes the soft heap limit equal to the
+** hard heap limit.
+**
+** The memory allocation limits can also be adjusted using
+** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit].
+**
+** ^(The heap limits are not enforced in the current implementation
+** if one or more of following conditions are true:
+**
+** <ul>
+** <li> The limit value is set to zero.
+** <li> Memory accounting is disabled using a combination of the
+** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
+** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
+** <li> An alternative page cache implementation is specified using
+** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
+** <li> The page cache allocates from its own memory pool supplied
+** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
+** from the heap.
+** </ul>)^
+**
+** The circumstances under which SQLite will enforce the heap limits may
+** changes in future releases of SQLite.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
+SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N);
+
+/*
+** CAPI3REF: Deprecated Soft Heap Limit Interface
+** DEPRECATED
+**
+** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
+** interface. This routine is provided for historical compatibility
+** only. All new applications should use the
+** [sqlite3_soft_heap_limit64()] interface rather than this one.
+*/
+SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
+
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table
+** METHOD: sqlite3
+**
+** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
+** information about column C of table T in database D
+** on [database connection] X.)^ ^The sqlite3_table_column_metadata()
+** interface returns SQLITE_OK and fills in the non-NULL pointers in
+** the final five arguments with appropriate values if the specified
+** column exists. ^The sqlite3_table_column_metadata() interface returns
+** SQLITE_ERROR if the specified column does not exist.
+** ^If the column-name parameter to sqlite3_table_column_metadata() is a
+** NULL pointer, then this routine simply checks for the existence of the
+** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
+** does not. If the table name parameter T in a call to
+** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is
+** undefined behavior.
+**
+** ^The column is identified by the second, third and fourth parameters to
+** this function. ^(The second parameter is either the name of the database
+** (i.e. "main", "temp", or an attached database) containing the specified
+** table or NULL.)^ ^If it is NULL, then all attached databases are searched
+** for the table using the same algorithm used by the database engine to
+** resolve unqualified table references.
+**
+** ^The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively.
+**
+** ^Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. ^Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
+**
+** ^(<blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
+**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
+** </table>
+** </blockquote>)^
+**
+** ^The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid until the next
+** call to any SQLite API function.
+**
+** ^If the specified table is actually a view, an [error code] is returned.
+**
+** ^If the specified column is "rowid", "oid" or "_rowid_" and the table
+** is not a [WITHOUT ROWID] table and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. ^(If there is no
+** [INTEGER PRIMARY KEY] column, then the outputs
+** for the [rowid] are set as follows:
+**
+** <pre>
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+** </pre>)^
+**
+** ^This function causes all database schemas to be read from disk and
+** parsed, if that has not already been done, and returns an error if
+** any errors are encountered while loading the schema.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension
+** METHOD: sqlite3
+**
+** ^This interface loads an SQLite extension library from the named file.
+**
+** ^The sqlite3_load_extension() interface attempts to load an
+** [SQLite extension] library contained in the file zFile. If
+** the file cannot be loaded directly, attempts are made to load
+** with various operating-system specific extensions added.
+** So for example, if "samplelib" cannot be loaded, then names like
+** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
+** be tried also.
+**
+** ^The entry point is zProc.
+** ^(zProc may be 0, in which case SQLite will try to come up with an
+** entry point name on its own. It first tries "sqlite3_extension_init".
+** If that does not work, it constructs a name "sqlite3_X_init" where the
+** X is consists of the lower-case equivalent of all ASCII alphabetic
+** characters in the filename from the last "/" to the first following
+** "." and omitting any initial "lib".)^
+** ^The sqlite3_load_extension() interface returns
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** ^If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** ^Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] or
+** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL)
+** prior to calling this API,
+** otherwise an error will be returned.
+**
+** <b>Security warning:</b> It is recommended that the
+** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this
+** interface. The use of the [sqlite3_enable_load_extension()] interface
+** should be avoided. This will keep the SQL function [load_extension()]
+** disabled and prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+**
+** See also the [load_extension() SQL function].
+*/
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading
+** METHOD: sqlite3
+**
+** ^So as not to open security holes in older applications that are
+** unprepared to deal with [extension loading], and as a means of disabling
+** [extension loading] while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** ^Extension loading is off by default.
+** ^Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** ^This interface enables or disables both the C-API
+** [sqlite3_load_extension()] and the SQL function [load_extension()].
+** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..)
+** to enable or disable only the C-API.)^
+**
+** <b>Security warning:</b> It is recommended that extension loading
+** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method
+** rather than this interface, so the [load_extension()] SQL function
+** remains disabled. This will prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Automatically Load Statically Linked Extensions
+**
+** ^This interface causes the xEntryPoint() function to be invoked for
+** each new [database connection] that is created. The idea here is that
+** xEntryPoint() is the entry point for a statically linked [SQLite extension]
+** that is to be automatically loaded into all new database connections.
+**
+** ^(Even though the function prototype shows that xEntryPoint() takes
+** no arguments and returns void, SQLite invokes xEntryPoint() with three
+** arguments and expects an integer result as if the signature of the
+** entry point where as follows:
+**
+** <blockquote><pre>
+** &nbsp; int xEntryPoint(
+** &nbsp; sqlite3 *db,
+** &nbsp; const char **pzErrMsg,
+** &nbsp; const struct sqlite3_api_routines *pThunk
+** &nbsp; );
+** </pre></blockquote>)^
+**
+** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
+** point to an appropriate error message (obtained from [sqlite3_mprintf()])
+** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
+** is NULL before calling the xEntryPoint(). ^SQLite will invoke
+** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
+** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
+**
+** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
+** on the list of automatic extensions is a harmless no-op. ^No entry point
+** will be called more than once for each database connection that is opened.
+**
+** See also: [sqlite3_reset_auto_extension()]
+** and [sqlite3_cancel_auto_extension()]
+*/
+SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Cancel Automatic Extension Loading
+**
+** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
+** initialization routine X that was registered using a prior call to
+** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)]
+** routine returns 1 if initialization routine X was successfully
+** unregistered and it returns 0 if X was not on the list of initialization
+** routines.
+*/
+SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading
+**
+** ^This interface disables all automatic extensions previously
+** registered using [sqlite3_auto_extension()].
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void);
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object
+** KEYWORDS: sqlite3_module {virtual table module}
+**
+** This structure, sometimes called a "virtual table module",
+** defines the implementation of a [virtual table].
+** This structure consists mostly of methods for the module.
+**
+** ^A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** ^The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+ /* The methods above are in version 1 of the sqlite_module object. Those
+ ** below are for version 2 and greater. */
+ int (*xSavepoint)(sqlite3_vtab *pVTab, int);
+ int (*xRelease)(sqlite3_vtab *pVTab, int);
+ int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
+ /* The methods above are in versions 1 and 2 of the sqlite_module object.
+ ** Those below are for version 3 and greater. */
+ int (*xShadowName)(const char*);
+ /* The methods above are in versions 1 through 3 of the sqlite_module object.
+ ** Those below are for version 4 and greater. */
+ int (*xIntegrity)(sqlite3_vtab *pVTab, const char *zSchema,
+ const char *zTabName, int mFlags, char **pzErr);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information
+** KEYWORDS: sqlite3_index_info
+**
+** The sqlite3_index_info structure and its substructures is used as part
+** of the [virtual table] interface to
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** ^(The aConstraint[] array records WHERE clause constraints of the form:
+**
+** <blockquote>column OP expr</blockquote>
+**
+** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
+** stored in aConstraint[].op using one of the
+** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
+** ^(The index of the column is stored in
+** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.)^
+**
+** ^The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** ^The aConstraint[] array only reports WHERE clause terms that are
+** relevant to the particular virtual table being queried.
+**
+** ^Information about the ORDER BY clause is stored in aOrderBy[].
+** ^Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The colUsed field indicates which columns of the virtual table may be
+** required by the current scan. Virtual table columns are numbered from
+** zero in the order in which they appear within the CREATE TABLE statement
+** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
+** the corresponding bit is set within the colUsed mask if the column may be
+** required by SQLite. If the table has at least 64 columns and any column
+** to the right of the first 63 is required, then bit 63 of colUsed is also
+** set. In other words, column iCol may be required if the expression
+** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to
+** non-zero.
+**
+** The [xBestIndex] method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. ^If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and might not be checked again by the byte code.)^ ^(The
+** aConstraintUsage[].omit flag is an optimization hint. When the omit flag
+** is left in its default setting of false, the constraint will always be
+** checked separately in byte code. If the omit flag is change to true, then
+** the constraint may or may not be checked in byte code. In other words,
+** when the omit flag is true there is no guarantee that the constraint will
+** not be checked again using byte code.)^
+**
+** ^The idxNum and idxStr values are recorded and passed into the
+** [xFilter] method.
+** ^[sqlite3_free()] is used to free idxStr if and only if
+** needToFreeIdxStr is true.
+**
+** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** ^The estimatedCost value is an estimate of the cost of a particular
+** strategy. A cost of N indicates that the cost of the strategy is similar
+** to a linear scan of an SQLite table with N rows. A cost of log(N)
+** indicates that the expense of the operation is similar to that of a
+** binary search on a unique indexed field of an SQLite table with N rows.
+**
+** ^The estimatedRows value is an estimate of the number of rows that
+** will be returned by the strategy.
+**
+** The xBestIndex method may optionally populate the idxFlags field with a
+** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag -
+** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite
+** assumes that the strategy may visit at most one row.
+**
+** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then
+** SQLite also assumes that if a call to the xUpdate() method is made as
+** part of the same statement to delete or update a virtual table row and the
+** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback
+** any database changes. In other words, if the xUpdate() returns
+** SQLITE_CONSTRAINT, the database contents must be exactly as they were
+** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not
+** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by
+** the xUpdate method are automatically rolled back by SQLite.
+**
+** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
+** structure for SQLite [version 3.8.2] ([dateof:3.8.2]).
+** If a virtual table extension is
+** used with an SQLite version earlier than 3.8.2, the results of attempting
+** to read or write the estimatedRows field are undefined (but are likely
+** to include crashing the application). The estimatedRows field should
+** therefore only be used if [sqlite3_libversion_number()] returns a
+** value greater than or equal to 3008002. Similarly, the idxFlags field
+** was added for [version 3.9.0] ([dateof:3.9.0]).
+** It may therefore only be used if
+** sqlite3_libversion_number() returns a value greater than or equal to
+** 3009000.
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column constrained. -1 for ROWID */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+ /* Fields below are only available in SQLite 3.8.2 and later */
+ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */
+ /* Fields below are only available in SQLite 3.9.0 and later */
+ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */
+ /* Fields below are only available in SQLite 3.10.0 and later */
+ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */
+};
+
+/*
+** CAPI3REF: Virtual Table Scan Flags
+**
+** Virtual table implementations are allowed to set the
+** [sqlite3_index_info].idxFlags field to some combination of
+** these bits.
+*/
+#define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */
+
+/*
+** CAPI3REF: Virtual Table Constraint Operator Codes
+**
+** These macros define the allowed values for the
+** [sqlite3_index_info].aConstraint[].op field. Each value represents
+** an operator that is part of a constraint term in the WHERE clause of
+** a query that uses a [virtual table].
+**
+** ^The left-hand operand of the operator is given by the corresponding
+** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand
+** operand is the rowid.
+** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET
+** operators have no left-hand operand, and so for those operators the
+** corresponding aConstraint[].iColumn is meaningless and should not be
+** used.
+**
+** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through
+** value 255 are reserved to represent functions that are overloaded
+** by the [xFindFunction|xFindFunction method] of the virtual table
+** implementation.
+**
+** The right-hand operands for each constraint might be accessible using
+** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand
+** operand is only available if it appears as a single constant literal
+** in the input SQL. If the right-hand operand is another column or an
+** expression (even a constant expression) or a parameter, then the
+** sqlite3_vtab_rhs_value() probably will not be able to extract it.
+** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and
+** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand
+** and hence calls to sqlite3_vtab_rhs_value() for those operators will
+** always return SQLITE_NOTFOUND.
+**
+** The collating sequence to be used for comparison can be found using
+** the [sqlite3_vtab_collation()] interface. For most real-world virtual
+** tables, the collating sequence of constraints does not matter (for example
+** because the constraints are numeric) and so the sqlite3_vtab_collation()
+** interface is not commonly needed.
+*/
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+#define SQLITE_INDEX_CONSTRAINT_LIKE 65
+#define SQLITE_INDEX_CONSTRAINT_GLOB 66
+#define SQLITE_INDEX_CONSTRAINT_REGEXP 67
+#define SQLITE_INDEX_CONSTRAINT_NE 68
+#define SQLITE_INDEX_CONSTRAINT_ISNOT 69
+#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70
+#define SQLITE_INDEX_CONSTRAINT_ISNULL 71
+#define SQLITE_INDEX_CONSTRAINT_IS 72
+#define SQLITE_INDEX_CONSTRAINT_LIMIT 73
+#define SQLITE_INDEX_CONSTRAINT_OFFSET 74
+#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation
+** METHOD: sqlite3
+**
+** ^These routines are used to register a new [virtual table module] name.
+** ^Module names must be registered before
+** creating a new [virtual table] using the module and before using a
+** preexisting [virtual table] for the module.
+**
+** ^The module name is registered on the [database connection] specified
+** by the first parameter. ^The name of the module is given by the
+** second parameter. ^The third parameter is a pointer to
+** the implementation of the [virtual table module]. ^The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** ^The sqlite3_create_module_v2() interface has a fifth parameter which
+** is a pointer to a destructor for the pClientData. ^SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer. ^The destructor will also
+** be invoked if the call to sqlite3_create_module_v2() fails.
+** ^The sqlite3_create_module()
+** interface is equivalent to sqlite3_create_module_v2() with a NULL
+** destructor.
+**
+** ^If the third parameter (the pointer to the sqlite3_module object) is
+** NULL then no new module is created and any existing modules with the
+** same name are dropped.
+**
+** See also: [sqlite3_drop_modules()]
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
+);
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Remove Unnecessary Virtual Table Implementations
+** METHOD: sqlite3
+**
+** ^The sqlite3_drop_modules(D,L) interface removes all virtual
+** table modules from database connection D except those named on list L.
+** The L parameter must be either NULL or a pointer to an array of pointers
+** to strings where the array is terminated by a single NULL pointer.
+** ^If the L parameter is NULL, then all virtual table modules are removed.
+**
+** See also: [sqlite3_create_module()]
+*/
+SQLITE_API int sqlite3_drop_modules(
+ sqlite3 *db, /* Remove modules from this connection */
+ const char **azKeep /* Except, do not remove the ones named here */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object
+** KEYWORDS: sqlite3_vtab
+**
+** Every [virtual table module] implementation uses a subclass
+** of this object to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
+**
+** ^Virtual tables methods can set an error message by assigning a
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
+** prior to assigning a new string to zErrMsg. ^After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* Number of open cursors */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
+** to loop through the virtual table. Cursors are created using the
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cursors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table
+**
+** ^The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table
+** METHOD: sqlite3
+**
+** ^(Virtual tables can provide alternative implementations of functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
+** must exist in order to be overloaded.)^
+**
+** ^(This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created.)^ ^The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
+*/
+SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** CAPI3REF: A Handle To An Open BLOB
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** ^Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_blob
+**
+** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** </pre>)^
+**
+** ^(Parameter zDb is not the filename that contains the database, but
+** rather the symbolic name of the database. For attached databases, this is
+** the name that appears after the AS keyword in the [ATTACH] statement.
+** For the main database file, the database name is "main". For TEMP
+** tables, the database name is "temp".)^
+**
+** ^If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. ^If the flags parameter is zero, the BLOB is opened for
+** read-only access.
+**
+** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
+** in *ppBlob. Otherwise an [error code] is returned and, unless the error
+** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
+** the API is not misused, it is always safe to call [sqlite3_blob_close()]
+** on *ppBlob after this function it returns.
+**
+** This function fails with SQLITE_ERROR if any of the following are true:
+** <ul>
+** <li> ^(Database zDb does not exist)^,
+** <li> ^(Table zTable does not exist within database zDb)^,
+** <li> ^(Table zTable is a WITHOUT ROWID table)^,
+** <li> ^(Column zColumn does not exist)^,
+** <li> ^(Row iRow is not present in the table)^,
+** <li> ^(The specified column of row iRow contains a value that is not
+** a TEXT or BLOB value)^,
+** <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
+** constraint and the blob is being opened for read/write access)^,
+** <li> ^([foreign key constraints | Foreign key constraints] are enabled,
+** column zColumn is part of a [child key] definition and the blob is
+** being opened for read/write access)^.
+** </ul>
+**
+** ^Unless it returns SQLITE_MISUSE, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** A BLOB referenced by sqlite3_blob_open() may be read using the
+** [sqlite3_blob_read()] interface and modified by using
+** [sqlite3_blob_write()]. The [BLOB handle] can be moved to a
+** different row of the same table using the [sqlite3_blob_reopen()]
+** interface. However, the column, table, or database of a [BLOB handle]
+** cannot be changed after the [BLOB handle] is opened.
+**
+** ^(If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.)^
+** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
+** ^(Changes written into a BLOB prior to the BLOB expiring are not
+** rolled back by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.)^
+**
+** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. ^The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function may be used to create a
+** zero-filled blob to read or write using the incremental-blob interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+**
+** See also: [sqlite3_blob_close()],
+** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
+** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Move a BLOB Handle to a New Row
+** METHOD: sqlite3_blob
+**
+** ^This function is used to move an existing [BLOB handle] so that it points
+** to a different row of the same database table. ^The new row is identified
+** by the rowid value passed as the second argument. Only the row can be
+** changed. ^The database, table and column on which the blob handle is open
+** remain the same. Moving an existing [BLOB handle] to a new row is
+** faster than closing the existing handle and opening a new one.
+**
+** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
+** it must exist and there must be either a blob or text value stored in
+** the nominated column.)^ ^If the new row is not present in the table, or if
+** it does not contain a blob or text value, or if another error occurs, an
+** SQLite error code is returned and the blob handle is considered aborted.
+** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
+** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
+** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
+** always returns zero.
+**
+** ^This function sets the database handle error code and message.
+*/
+SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
+
+/*
+** CAPI3REF: Close A BLOB Handle
+** DESTRUCTOR: sqlite3_blob
+**
+** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
+** unconditionally. Even if this routine returns an error code, the
+** handle is still closed.)^
+**
+** ^If the blob handle being closed was opened for read-write access, and if
+** the database is in auto-commit mode and there are no other open read-write
+** blob handles or active write statements, the current transaction is
+** committed. ^If an error occurs while committing the transaction, an error
+** code is returned and the transaction rolled back.
+**
+** Calling this function with an argument that is not a NULL pointer or an
+** open blob handle results in undefined behavior. ^Calling this routine
+** with a null pointer (such as would be returned by a failed call to
+** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
+** is passed a valid open blob handle, the values returned by the
+** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB
+** METHOD: sqlite3_blob
+**
+** ^Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. ^The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.)^
+**
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** ^The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** ^An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.)^
+**
+** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+** ^Unless SQLITE_MISUSE is returned, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** ^If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. The size of the
+** BLOB (and hence the maximum value of N+iOffset) can be determined
+** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
+** than zero [SQLITE_ERROR] is returned and no data is written.
+**
+** ^An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** ^Names are case sensitive.
+** ^Names are zero-terminated UTF-8 strings.
+** ^If there is no match, a NULL pointer is returned.
+** ^If zVfsName is NULL then the default VFS is returned.
+**
+** ^New VFSes are registered with sqlite3_vfs_register().
+** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
+** ^The same VFS can be registered multiple times without injury.
+** ^To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** ^(If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.)^
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_PTHREADS
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_PTHREADS and
+** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
+** and Windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** ^The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
+** routine returns NULL if it is unable to allocate the requested
+** mutex. The argument to sqlite3_mutex_alloc() must one of these
+** integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
+** cause sqlite3_mutex_alloc() to create
+** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
+** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
+** a pointer to a static preexisting mutex. ^Nine static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. ^For the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** ^The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. Attempting to deallocate a static
+** mutex results in undefined behavior.
+**
+** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. ^If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. ^(Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** In such cases, the
+** mutex must be exited an equal number of times before another thread
+** can enter.)^ If the same thread tries to enter any mutex other
+** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
+**
+** ^(Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable
+** behavior.)^
+**
+** ^The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated.
+**
+** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(),
+** sqlite3_mutex_leave(), or sqlite3_mutex_free() is a NULL pointer,
+** then any of the four routines behaves as a no-op.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the application has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the application
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** ^The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** ^The xMutexInit routine is called by SQLite exactly once for each
+** effective call to [sqlite3_initialize()].
+**
+** ^The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. ^The xMutexEnd()
+** interface is invoked exactly once for each call to [sqlite3_shutdown()].
+**
+** ^(The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>)^
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case. The results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. It must be harmless to
+** invoke xMutexInit() multiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. The SQLite core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** The implementation is not required to provide versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+#ifndef NDEBUG
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+#endif
+
+/*
+** CAPI3REF: Mutex Types
+**
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MAIN 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_randomness() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */
+#define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */
+#define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */
+#define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */
+#define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */
+
+/* Legacy compatibility: */
+#define SQLITE_MUTEX_STATIC_MASTER 2
+
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** ^If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files
+** METHOD: sqlite3
+** KEYWORDS: {file control}
+**
+** ^The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. ^The
+** name of the database is "main" for the main database or "temp" for the
+** TEMP database, or the name that appears after the AS keyword for
+** databases that are added using the [ATTACH] SQL command.
+** ^A NULL pointer can be used in place of "main" to refer to the
+** main database file.
+** ^The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. ^The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** A few opcodes for [sqlite3_file_control()] are handled directly
+** by the SQLite core and never invoke the
+** sqlite3_io_methods.xFileControl method.
+** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes
+** a pointer to the underlying [sqlite3_file] object to be written into
+** the space pointed to by the 4th parameter. The
+** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns
+** the [sqlite3_file] object associated with the journal file instead of
+** the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns
+** a pointer to the underlying [sqlite3_vfs] object for the file.
+** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter
+** from the pager.
+**
+** ^If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. ^This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. The underlying xFileControl method might
+** also return SQLITE_ERROR. There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method.
+**
+** See also: [file control opcodes]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface
+**
+** ^The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. ^The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FIRST 5
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7 /* NOT USED */
+#define SQLITE_TESTCTRL_FK_NO_ACTION 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14 /* NOT USED */
+#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
+#define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */
+#define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */
+#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17
+#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18
+#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */
+#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19
+#define SQLITE_TESTCTRL_NEVER_CORRUPT 20
+#define SQLITE_TESTCTRL_VDBE_COVERAGE 21
+#define SQLITE_TESTCTRL_BYTEORDER 22
+#define SQLITE_TESTCTRL_ISINIT 23
+#define SQLITE_TESTCTRL_SORTER_MMAP 24
+#define SQLITE_TESTCTRL_IMPOSTER 25
+#define SQLITE_TESTCTRL_PARSER_COVERAGE 26
+#define SQLITE_TESTCTRL_RESULT_INTREAL 27
+#define SQLITE_TESTCTRL_PRNG_SEED 28
+#define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29
+#define SQLITE_TESTCTRL_SEEK_COUNT 30
+#define SQLITE_TESTCTRL_TRACEFLAGS 31
+#define SQLITE_TESTCTRL_TUNE 32
+#define SQLITE_TESTCTRL_LOGEST 33
+#define SQLITE_TESTCTRL_USELONGDOUBLE 34
+#define SQLITE_TESTCTRL_LAST 34 /* Largest TESTCTRL */
+
+/*
+** CAPI3REF: SQL Keyword Checking
+**
+** These routines provide access to the set of SQL language keywords
+** recognized by SQLite. Applications can uses these routines to determine
+** whether or not a specific identifier needs to be escaped (for example,
+** by enclosing in double-quotes) so as not to confuse the parser.
+**
+** The sqlite3_keyword_count() interface returns the number of distinct
+** keywords understood by SQLite.
+**
+** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
+** makes *Z point to that keyword expressed as UTF8 and writes the number
+** of bytes in the keyword into *L. The string that *Z points to is not
+** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns
+** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
+** or L are NULL or invalid pointers then calls to
+** sqlite3_keyword_name(N,Z,L) result in undefined behavior.
+**
+** The sqlite3_keyword_check(Z,L) interface checks to see whether or not
+** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
+** if it is and zero if not.
+**
+** The parser used by SQLite is forgiving. It is often possible to use
+** a keyword as an identifier as long as such use does not result in a
+** parsing ambiguity. For example, the statement
+** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
+** creates a new table named "BEGIN" with three columns named
+** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid
+** using keywords as identifiers. Common techniques used to avoid keyword
+** name collisions include:
+** <ul>
+** <li> Put all identifier names inside double-quotes. This is the official
+** SQL way to escape identifier names.
+** <li> Put identifier names inside &#91;...&#93;. This is not standard SQL,
+** but it is what SQL Server does and so lots of programmers use this
+** technique.
+** <li> Begin every identifier with the letter "Z" as no SQL keywords start
+** with "Z".
+** <li> Include a digit somewhere in every identifier name.
+** </ul>
+**
+** Note that the number of keywords understood by SQLite can depend on
+** compile-time options. For example, "VACUUM" is not a keyword if
+** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also,
+** new keywords may be added to future releases of SQLite.
+*/
+SQLITE_API int sqlite3_keyword_count(void);
+SQLITE_API int sqlite3_keyword_name(int,const char**,int*);
+SQLITE_API int sqlite3_keyword_check(const char*,int);
+
+/*
+** CAPI3REF: Dynamic String Object
+** KEYWORDS: {dynamic string}
+**
+** An instance of the sqlite3_str object contains a dynamically-sized
+** string under construction.
+**
+** The lifecycle of an sqlite3_str object is as follows:
+** <ol>
+** <li> ^The sqlite3_str object is created using [sqlite3_str_new()].
+** <li> ^Text is appended to the sqlite3_str object using various
+** methods, such as [sqlite3_str_appendf()].
+** <li> ^The sqlite3_str object is destroyed and the string it created
+** is returned using the [sqlite3_str_finish()] interface.
+** </ol>
+*/
+typedef struct sqlite3_str sqlite3_str;
+
+/*
+** CAPI3REF: Create A New Dynamic String Object
+** CONSTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_new(D)] interface allocates and initializes
+** a new [sqlite3_str] object. To avoid memory leaks, the object returned by
+** [sqlite3_str_new()] must be freed by a subsequent call to
+** [sqlite3_str_finish(X)].
+**
+** ^The [sqlite3_str_new(D)] interface always returns a pointer to a
+** valid [sqlite3_str] object, though in the event of an out-of-memory
+** error the returned object might be a special singleton that will
+** silently reject new text, always return SQLITE_NOMEM from
+** [sqlite3_str_errcode()], always return 0 for
+** [sqlite3_str_length()], and always return NULL from
+** [sqlite3_str_finish(X)]. It is always safe to use the value
+** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter
+** to any of the other [sqlite3_str] methods.
+**
+** The D parameter to [sqlite3_str_new(D)] may be NULL. If the
+** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
+** length of the string contained in the [sqlite3_str] object will be
+** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
+** of [SQLITE_MAX_LENGTH].
+*/
+SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*);
+
+/*
+** CAPI3REF: Finalize A Dynamic String
+** DESTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
+** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
+** that contains the constructed string. The calling application should
+** pass the returned value to [sqlite3_free()] to avoid a memory leak.
+** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
+** errors were encountered during construction of the string. ^The
+** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
+** string in [sqlite3_str] object X is zero bytes long.
+*/
+SQLITE_API char *sqlite3_str_finish(sqlite3_str*);
+
+/*
+** CAPI3REF: Add Content To A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces add content to an sqlite3_str object previously obtained
+** from [sqlite3_str_new()].
+**
+** ^The [sqlite3_str_appendf(X,F,...)] and
+** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
+** functionality of SQLite to append formatted text onto the end of
+** [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
+** onto the end of the [sqlite3_str] object X. N must be non-negative.
+** S must contain at least N non-zero bytes of content. To append a
+** zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
+** method instead.
+**
+** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
+** zero-terminated string S onto the end of [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
+** single-byte character C onto the end of [sqlite3_str] object X.
+** ^This method can be used, for example, to add whitespace indentation.
+**
+** ^The [sqlite3_str_reset(X)] method resets the string under construction
+** inside [sqlite3_str] object X back to zero bytes in length.
+**
+** These methods do not return a result code. ^If an error occurs, that fact
+** is recorded in the [sqlite3_str] object and can be recovered by a
+** subsequent call to [sqlite3_str_errcode(X)].
+*/
+SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...);
+SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list);
+SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N);
+SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn);
+SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C);
+SQLITE_API void sqlite3_str_reset(sqlite3_str*);
+
+/*
+** CAPI3REF: Status Of A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces return the current status of an [sqlite3_str] object.
+**
+** ^If any prior errors have occurred while constructing the dynamic string
+** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
+** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns
+** [SQLITE_NOMEM] following any out-of-memory error, or
+** [SQLITE_TOOBIG] if the size of the dynamic string exceeds
+** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
+**
+** ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
+** of the dynamic string under construction in [sqlite3_str] object X.
+** ^The length returned by [sqlite3_str_length(X)] does not include the
+** zero-termination byte.
+**
+** ^The [sqlite3_str_value(X)] method returns a pointer to the current
+** content of the dynamic string under construction in X. The value
+** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
+** and might be freed or altered by any subsequent method on the same
+** [sqlite3_str] object. Applications must not used the pointer returned
+** [sqlite3_str_value(X)] after any subsequent method call on the same
+** object. ^Applications may change the content of the string returned
+** by [sqlite3_str_value(X)] as long as they do not write into any bytes
+** outside the range of 0 to [sqlite3_str_length(X)] and do not read or
+** write any byte after any subsequent sqlite3_str method call.
+*/
+SQLITE_API int sqlite3_str_errcode(sqlite3_str*);
+SQLITE_API int sqlite3_str_length(sqlite3_str*);
+SQLITE_API char *sqlite3_str_value(sqlite3_str*);
+
+/*
+** CAPI3REF: SQLite Runtime Status
+**
+** ^These interfaces are used to retrieve runtime status information
+** about the performance of SQLite, and optionally to reset various
+** highwater marks. ^The first argument is an integer code for
+** the specific parameter to measure. ^(Recognized integer codes
+** are of the form [status parameters | SQLITE_STATUS_...].)^
+** ^The current value of the parameter is returned into *pCurrent.
+** ^The highest recorded value is returned in *pHighwater. ^If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. ^(Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.)^
+** ^(Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.)^
+**
+** ^The sqlite3_status() and sqlite3_status64() routines return
+** SQLITE_OK on success and a non-zero [error code] on failure.
+**
+** If either the current value or the highwater mark is too large to
+** be represented by a 32-bit integer, then the values returned by
+** sqlite3_status() are undefined.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+SQLITE_API int sqlite3_status64(
+ int op,
+ sqlite3_int64 *pCurrent,
+ sqlite3_int64 *pHighwater,
+ int resetFlag
+);
+
+
+/*
+** CAPI3REF: Status Parameters
+** KEYWORDS: {status parameters}
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
+** <dd>This parameter records the number of separate memory allocations
+** currently checked out.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
+** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to the [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_SCRATCH_USED]] <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_SIZE]] <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>The *pHighwater parameter records the deepest parser stack.
+** The *pCurrent value is undefined. The *pHighwater value is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3 /* NOT USED */
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_COUNT 9
+
+/*
+** CAPI3REF: Database Connection Status
+** METHOD: sqlite3
+**
+** ^This interface is used to retrieve runtime status information
+** about a single [database connection]. ^The first argument is the
+** database connection object to be interrogated. ^The second argument
+** is an integer constant, taken from the set of
+** [SQLITE_DBSTATUS options], that
+** determines the parameter to interrogate. The set of
+** [SQLITE_DBSTATUS options] is likely
+** to grow in future releases of SQLite.
+**
+** ^The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. ^If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections
+** KEYWORDS: {SQLITE_DBSTATUS options}
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+** <dl>
+** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
+** <dd>This parameter returns the number of malloc attempts that were
+** satisfied using lookaside memory. Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to the amount of
+** memory requested being larger than the lookaside slot size.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to all lookaside
+** memory already being in use.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used by all pager caches associated with the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]]
+** ^(<dt>SQLITE_DBSTATUS_CACHE_USED_SHARED</dt>
+** <dd>This parameter is similar to DBSTATUS_CACHE_USED, except that if a
+** pager cache is shared between two or more connections the bytes of heap
+** memory used by that pager cache is divided evenly between the attached
+** connections.)^ In other words, if none of the pager caches associated
+** with the database connection are shared, this request returns the same
+** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are
+** shared, the value returned by this call will be smaller than that returned
+** by DBSTATUS_CACHE_USED. ^The highwater mark associated with
+** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0.
+**
+** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used to store the schema for all databases associated
+** with the connection - main, temp, and any [ATTACH]-ed databases.)^
+** ^The full amount of memory used by the schemas is reported, even if the
+** schema memory is shared with other database connections due to
+** [shared cache mode] being enabled.
+** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** and lookaside memory used by all prepared statements associated with
+** the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
+** <dd>This parameter returns the number of pager cache hits that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
+** <dd>This parameter returns the number of pager cache misses that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk. Specifically, the number of pages written to the
+** wal file in wal mode databases, or the number of pages written to the
+** database file in rollback mode databases. Any pages written as part of
+** transaction rollback or database recovery operations are not included.
+** If an IO or other error occurs while writing a page to disk, the effect
+** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
+** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(<dt>SQLITE_DBSTATUS_CACHE_SPILL</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk in the middle of a transaction due to the page
+** cache overflowing. Transactions are more efficient if they are written
+** to disk all at once. When pages spill mid-transaction, that introduces
+** additional overhead. This parameter can be used help identify
+** inefficiencies that can be resolved by increasing the cache size.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
+** <dd>This parameter returns zero for the current value if and only if
+** all foreign key constraints (deferred or immediate) have been
+** resolved.)^ ^The highwater mark is always 0.
+** </dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+#define SQLITE_DBSTATUS_CACHE_USED 1
+#define SQLITE_DBSTATUS_SCHEMA_USED 2
+#define SQLITE_DBSTATUS_STMT_USED 3
+#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6
+#define SQLITE_DBSTATUS_CACHE_HIT 7
+#define SQLITE_DBSTATUS_CACHE_MISS 8
+#define SQLITE_DBSTATUS_CACHE_WRITE 9
+#define SQLITE_DBSTATUS_DEFERRED_FKS 10
+#define SQLITE_DBSTATUS_CACHE_USED_SHARED 11
+#define SQLITE_DBSTATUS_CACHE_SPILL 12
+#define SQLITE_DBSTATUS_MAX 12 /* Largest defined DBSTATUS */
+
+
+/*
+** CAPI3REF: Prepared Statement Status
+** METHOD: sqlite3_stmt
+**
+** ^(Each prepared statement maintains various
+** [SQLITE_STMTSTATUS counters] that measure the number
+** of times it has performed specific operations.)^ These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** ^(This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS counter]
+** to be interrogated.)^
+** ^The current value of the requested counter is returned.
+** ^If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements
+** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+** <dl>
+** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
+** <dd>^This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
+** <dd>^This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
+** <dd>^This is the number of rows inserted into transient indices that
+** were created automatically in order to help joins run faster.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance by adding permanent indices that do not
+** need to be reinitialized each time the statement is run.</dd>
+**
+** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
+** <dd>^This is the number of virtual machine operations executed
+** by the prepared statement if that number is less than or equal
+** to 2147483647. The number of virtual machine operations can be
+** used as a proxy for the total work done by the prepared statement.
+** If the number of virtual machine operations exceeds 2147483647
+** then the value returned by this statement status code is undefined.
+**
+** [[SQLITE_STMTSTATUS_REPREPARE]] <dt>SQLITE_STMTSTATUS_REPREPARE</dt>
+** <dd>^This is the number of times that the prepare statement has been
+** automatically regenerated due to schema changes or changes to
+** [bound parameters] that might affect the query plan.
+**
+** [[SQLITE_STMTSTATUS_RUN]] <dt>SQLITE_STMTSTATUS_RUN</dt>
+** <dd>^This is the number of times that the prepared statement has
+** been run. A single "run" for the purposes of this counter is one
+** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()].
+** The counter is incremented on the first [sqlite3_step()] call of each
+** cycle.
+**
+** [[SQLITE_STMTSTATUS_FILTER_MISS]]
+** [[SQLITE_STMTSTATUS_FILTER HIT]]
+** <dt>SQLITE_STMTSTATUS_FILTER_HIT<br>
+** SQLITE_STMTSTATUS_FILTER_MISS</dt>
+** <dd>^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join
+** step was bypassed because a Bloom filter returned not-found. The
+** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of
+** times that the Bloom filter returned a find, and thus the join step
+** had to be processed as normal.
+**
+** [[SQLITE_STMTSTATUS_MEMUSED]] <dt>SQLITE_STMTSTATUS_MEMUSED</dt>
+** <dd>^This is the approximate number of bytes of heap memory
+** used to store the prepared statement. ^This value is not actually
+** a counter, and so the resetFlg parameter to sqlite3_stmt_status()
+** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED.
+** </dd>
+** </dl>
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+#define SQLITE_STMTSTATUS_AUTOINDEX 3
+#define SQLITE_STMTSTATUS_VM_STEP 4
+#define SQLITE_STMTSTATUS_REPREPARE 5
+#define SQLITE_STMTSTATUS_RUN 6
+#define SQLITE_STMTSTATUS_FILTER_MISS 7
+#define SQLITE_STMTSTATUS_FILTER_HIT 8
+#define SQLITE_STMTSTATUS_MEMUSED 99
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache_page object represents a single page in the
+** page cache. The page cache will allocate instances of this
+** object. Various methods of the page cache use pointers to instances
+** of this object as parameters or as their return value.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache_page sqlite3_pcache_page;
+struct sqlite3_pcache_page {
+ void *pBuf; /* The content of the page */
+ void *pExtra; /* Extra information associated with the page */
+};
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+**
+** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods2 structure.)^
+** In many applications, most of the heap memory allocated by
+** SQLite is used for the page cache.
+** By implementing a
+** custom page cache using this API, an application can better control
+** the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** The alternative page cache mechanism is an
+** extreme measure that is only needed by the most demanding applications.
+** The built-in page cache is recommended for most uses.
+**
+** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.)^
+**
+** [[the xInit() page cache method]]
+** ^(The xInit() method is called once for each effective
+** call to [sqlite3_initialize()])^
+** (usually only once during the lifetime of the process). ^(The xInit()
+** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
+** The intent of the xInit() method is to set up global data structures
+** required by the custom page cache implementation.
+** ^(If the xInit() method is NULL, then the
+** built-in default page cache is used instead of the application defined
+** page cache.)^
+**
+** [[the xShutdown() page cache method]]
+** ^The xShutdown() method is called by [sqlite3_shutdown()].
+** It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+** ^The xShutdown() method may be NULL.
+**
+** ^SQLite automatically serializes calls to the xInit method,
+** so the xInit method need not be threadsafe. ^The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** ^SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** [[the xCreate() page cache methods]]
+** ^SQLite invokes the xCreate() method to construct a new cache instance.
+** SQLite will typically create one cache instance for each open database file,
+** though this is not guaranteed. ^The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. ^szPage will always a power of two. ^The
+** second parameter szExtra is a number of bytes of extra storage
+** associated with each page cache entry. ^The szExtra parameter will
+** a number less than 250. SQLite will use the
+** extra szExtra bytes on each page to store metadata about the underlying
+** database page on disk. The value passed into szExtra depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** ^The third argument to xCreate(), bPurgeable, is true if the cache being
+** created will be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
+** false will always have the "discard" flag set to true.
+** ^Hence, a cache created with bPurgeable false will
+** never contain any unpinned pages.
+**
+** [[the xCachesize() page cache method]]
+** ^(The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
+** parameter, the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** [[the xPagecount() page cache methods]]
+** The xPagecount() method must return the number of pages currently
+** stored in the cache, both pinned and unpinned.
+**
+** [[the xFetch() page cache methods]]
+** The xFetch() method locates a page in the cache and returns a pointer to
+** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
+** The pBuf element of the returned sqlite3_pcache_page object will be a
+** pointer to a buffer of szPage bytes used to store the content of a
+** single database page. The pExtra element of sqlite3_pcache_page will be
+** a pointer to the szExtra bytes of extra storage that SQLite has requested
+** for each entry in the page cache.
+**
+** The page to be fetched is determined by the key. ^The minimum key value
+** is 1. After it has been retrieved using xFetch, the page is considered
+** to be "pinned".
+**
+** If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. If the requested page is not already in the cache, then the
+** cache implementation should use the value of the createFlag
+** parameter to help it determined what action to take:
+**
+** <table border=1 width=85% align=center>
+** <tr><th> createFlag <th> Behavior when page is not already in cache
+** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
+** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** </table>
+**
+** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
+** will only use a createFlag of 2 after a prior call with a createFlag of 1
+** failed.)^ In between the xFetch() calls, SQLite may
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache.
+**
+** [[the xUnpin() page cache method]]
+** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page must be evicted from the cache.
+** ^If the discard parameter is
+** zero, then the page may be discarded or retained at the discretion of
+** page cache implementation. ^The page cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** The cache must not perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().
+**
+** [[the xRekey() page cache methods]]
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument. If the cache
+** previously contains an entry associated with newKey, it must be
+** discarded. ^Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** [[the xDestroy() page cache method]]
+** ^The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. ^After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods2
+** functions.
+**
+** [[the xShrink() page cache method]]
+** ^SQLite invokes the xShrink() method when it wants the page cache to
+** free up as much of heap memory as possible. The page cache implementation
+** is not obligated to free any memory, but well-behaved implementations should
+** do their best.
+*/
+typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
+struct sqlite3_pcache_methods2 {
+ int iVersion;
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
+ void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
+ unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+ void (*xShrink)(sqlite3_pcache*);
+};
+
+/*
+** This is the obsolete pcache_methods object that has now been replaced
+** by sqlite3_pcache_methods2. This object is not used by SQLite. It is
+** retained in the header file for backwards compatibility only.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+
+/*
+** CAPI3REF: Online Backup Object
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. ^The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+**
+** The backup API copies the content of one database into another.
+** It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** ^SQLite holds a write transaction open on the destination database file
+** for the duration of the backup operation.
+** ^The source database is read-locked only while it is being read;
+** it is not locked continuously for the entire backup operation.
+** ^Thus, the backup may be performed on a live source database without
+** preventing other database connections from
+** reading or writing to the source database while the backup is underway.
+**
+** ^(To perform a backup operation:
+** <ol>
+** <li><b>sqlite3_backup_init()</b> is called once to initialize the
+** backup,
+** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
+** the data between the two databases, and finally
+** <li><b>sqlite3_backup_finish()</b> is called to release all resources
+** associated with the backup operation.
+** </ol>)^
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
+**
+** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
+** [database connection] associated with the destination database
+** and the database name, respectively.
+** ^The database name is "main" for the main database, "temp" for the
+** temporary database, or the name specified after the AS keyword in
+** an [ATTACH] statement for an attached database.
+** ^The S and M arguments passed to
+** sqlite3_backup_init(D,N,S,M) identify the [database connection]
+** and database name of the source database, respectively.
+** ^The source and destination [database connections] (parameters S and D)
+** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
+** an error.
+**
+** ^A call to sqlite3_backup_init() will fail, returning NULL, if
+** there is already a read or read-write transaction open on the
+** destination database.
+**
+** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
+** returned and an error code and error message are stored in the
+** destination [database connection] D.
+** ^The error code and message for the failed call to sqlite3_backup_init()
+** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
+** [sqlite3_errmsg16()] functions.
+** ^A successful call to sqlite3_backup_init() returns a pointer to an
+** [sqlite3_backup] object.
+** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
+**
+** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
+** the source and destination databases specified by [sqlite3_backup] object B.
+** ^If N is negative, all remaining source pages are copied.
+** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
+** are still more pages to be copied, then the function returns [SQLITE_OK].
+** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
+** from source to destination, then it returns [SQLITE_DONE].
+** ^If an error occurs while running sqlite3_backup_step(B,N),
+** then an [error code] is returned. ^As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
+** <ol>
+** <li> the destination database was opened read-only, or
+** <li> the destination database is using write-ahead-log journaling
+** and the destination and source page sizes differ, or
+** <li> the destination database is an in-memory database and the
+** destination and source page sizes differ.
+** </ol>)^
+**
+** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). ^If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
+** sqlite3_backup_step() can be retried later. ^If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. ^(If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal.)^ The application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** ^The first call to sqlite3_backup_step() obtains an exclusive lock
+** on the destination file. ^The exclusive lock is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
+** sqlite3_backup_step() obtains a [shared lock] on the source database that
+** lasts for the duration of the sqlite3_backup_step() call.
+** ^Because the source database is not locked between calls to
+** sqlite3_backup_step(), the source database may be modified mid-way
+** through the backup process. ^If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be automatically
+** restarted by the next call to sqlite3_backup_step(). ^If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is automatically
+** updated at the same time.
+**
+** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
+**
+** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the application
+** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
+** ^The sqlite3_backup_finish() interfaces releases all
+** resources associated with the [sqlite3_backup] object.
+** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
+** active write-transaction on the destination database is rolled back.
+** The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
+** sqlite3_backup_step() errors occurred, regardless or whether or not
+** sqlite3_backup_step() completed.
+** ^If an out-of-memory condition or IO error occurred during any prior
+** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
+** sqlite3_backup_finish() returns the corresponding [error code].
+**
+** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
+** is not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
+** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
+**
+** ^The sqlite3_backup_remaining() routine returns the number of pages still
+** to be backed up at the conclusion of the most recent sqlite3_backup_step().
+** ^The sqlite3_backup_pagecount() routine returns the total number of pages
+** in the source database at the conclusion of the most recent
+** sqlite3_backup_step().
+** ^(The values returned by these functions are only updated by
+** sqlite3_backup_step(). If the source database is modified in a way that
+** changes the size of the source database or the number of pages remaining,
+** those changes are not reflected in the output of sqlite3_backup_pagecount()
+** and sqlite3_backup_remaining() until after the next
+** sqlite3_backup_step().)^
+**
+** <b>Concurrent Usage of Database Handles</b>
+**
+** ^The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** ^If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination
+** [database connection] is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). SQLite does not currently check to see
+** if the application incorrectly accesses the destination [database connection]
+** and so no error code is reported, but the operations may malfunction
+** nevertheless. Use of the destination database connection while a
+** backup is in progress might also cause a mutex deadlock.
+**
+** If running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the disk file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** METHOD: sqlite3
+**
+** ^When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** ^This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** ^This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** ^Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** ^When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. ^After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. ^The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connection's transaction.
+**
+** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().)^
+**
+** ^If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** ^(There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is canceled. ^The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** <b>Callback Invocation Details</b>
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connection's transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. ^If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** <b>Deadlock Detection</b>
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. ^If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. ^Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. ^Any
+** number of levels of indirection are allowed.
+**
+** <b>The "DROP TABLE" Exception</b>
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. ^(If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.)^
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+**
+** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
+** and extensions to compare the contents of two buffers containing UTF-8
+** strings in a case-independent fashion, using the same definition of "case
+** independence" that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_stricmp(const char *, const char *);
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
+** CAPI3REF: String Globbing
+*
+** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
+** string X matches the [GLOB] pattern P.
+** ^The definition of [GLOB] pattern matching used in
+** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
+** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function
+** is case sensitive.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strlike()].
+*/
+SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);
+
+/*
+** CAPI3REF: String LIKE Matching
+*
+** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
+** string X matches the [LIKE] pattern P with escape character E.
+** ^The definition of [LIKE] pattern matching used in
+** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
+** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without
+** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
+** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
+** insensitive - equivalent upper and lower case ASCII characters match
+** one another.
+**
+** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
+** only ASCII characters are case folded.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strglob()].
+*/
+SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);
+
+/*
+** CAPI3REF: Error Logging Interface
+**
+** ^The [sqlite3_log()] interface writes a message into the [error log]
+** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
+** ^If logging is enabled, the zFormat string and subsequent arguments are
+** used with [sqlite3_snprintf()] to generate the final output string.
+**
+** The sqlite3_log() interface is intended for use by extensions such as
+** virtual tables, collating functions, and SQL functions. While there is
+** nothing to prevent an application from calling sqlite3_log(), doing so
+** is considered bad form.
+**
+** The zFormat string must not be NULL.
+**
+** To avoid deadlocks and other threading problems, the sqlite3_log() routine
+** will not use dynamically allocated memory. The log message is stored in
+** a fixed-length buffer on the stack. If the log message is longer than
+** a few hundred characters, it will be truncated to the length of the
+** buffer.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
+
+/*
+** CAPI3REF: Write-Ahead Log Commit Hook
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_hook()] function is used to register a callback that
+** is invoked each time data is committed to a database in wal mode.
+**
+** ^(The callback is invoked by SQLite after the commit has taken place and
+** the associated write-lock on the database released)^, so the implementation
+** may read, write or [checkpoint] the database as required.
+**
+** ^The first parameter passed to the callback function when it is invoked
+** is a copy of the third parameter passed to sqlite3_wal_hook() when
+** registering the callback. ^The second is a copy of the database handle.
+** ^The third parameter is the name of the database that was written to -
+** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
+** is the number of pages currently in the write-ahead log file,
+** including those that were just committed.
+**
+** The callback function should normally return [SQLITE_OK]. ^If an error
+** code is returned, that error will propagate back up through the
+** SQLite code base to cause the statement that provoked the callback
+** to report an error, though the commit will have still occurred. If the
+** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
+** that does not correspond to any valid SQLite error code, the results
+** are undefined.
+**
+** A single database handle may have at most a single write-ahead log callback
+** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
+** previously registered write-ahead log callback. ^The return value is
+** a copy of the third parameter from the previous call, if any, or 0.
+** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the
+** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
+** overwrite any prior [sqlite3_wal_hook()] settings.
+*/
+SQLITE_API void *sqlite3_wal_hook(
+ sqlite3*,
+ int(*)(void *,sqlite3*,const char*,int),
+ void*
+);
+
+/*
+** CAPI3REF: Configure an auto-checkpoint
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
+** [sqlite3_wal_hook()] that causes any database on [database connection] D
+** to automatically [checkpoint]
+** after committing a transaction if there are N or
+** more frames in the [write-ahead log] file. ^Passing zero or
+** a negative value as the nFrame parameter disables automatic
+** checkpoints entirely.
+**
+** ^The callback registered by this function replaces any existing callback
+** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
+** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
+** configured by this function.
+**
+** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
+** from SQL.
+**
+** ^Checkpoints initiated by this mechanism are
+** [sqlite3_wal_checkpoint_v2|PASSIVE].
+**
+** ^Every new [database connection] defaults to having the auto-checkpoint
+** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
+** pages. The use of this interface
+** is only necessary if the default setting is found to be suboptimal
+** for a particular application.
+*/
+SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
+** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
+**
+** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
+** [write-ahead log] for database X on [database connection] D to be
+** transferred into the database file and for the write-ahead log to
+** be reset. See the [checkpointing] documentation for addition
+** information.
+**
+** This interface used to be the only way to cause a checkpoint to
+** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
+** interface was added. This interface is retained for backwards
+** compatibility and as a convenience for applications that need to manually
+** start a callback but which do not need the full power (and corresponding
+** complication) of [sqlite3_wal_checkpoint_v2()].
+*/
+SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
+** operation on database X of [database connection] D in mode M. Status
+** information is written back into integers pointed to by L and C.)^
+** ^(The M parameter must be a valid [checkpoint mode]:)^
+**
+** <dl>
+** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
+** ^Checkpoint as many frames as possible without waiting for any database
+** readers or writers to finish, then sync the database file if all frames
+** in the log were checkpointed. ^The [busy-handler callback]
+** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
+** ^On the other hand, passive mode might leave the checkpoint unfinished
+** if there are concurrent readers or writers.
+**
+** <dt>SQLITE_CHECKPOINT_FULL<dd>
+** ^This mode blocks (it invokes the
+** [sqlite3_busy_handler|busy-handler callback]) until there is no
+** database writer and all readers are reading from the most recent database
+** snapshot. ^It then checkpoints all frames in the log file and syncs the
+** database file. ^This mode blocks new database writers while it is pending,
+** but new database readers are allowed to continue unimpeded.
+**
+** <dt>SQLITE_CHECKPOINT_RESTART<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
+** that after checkpointing the log file it blocks (calls the
+** [busy-handler callback])
+** until all readers are reading from the database file only. ^This ensures
+** that the next writer will restart the log file from the beginning.
+** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
+** database writer attempts while it is pending, but does not impede readers.
+**
+** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
+** addition that it also truncates the log file to zero bytes just prior
+** to a successful return.
+** </dl>
+**
+** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
+** the log file or to -1 if the checkpoint could not run because
+** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
+** NULL,then *pnCkpt is set to the total number of checkpointed frames in the
+** log file (including any that were already checkpointed before the function
+** was called) or to -1 if the checkpoint could not run due to an error or
+** because the database is not in WAL mode. ^Note that upon successful
+** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
+** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
+**
+** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
+** any other process is running a checkpoint operation at the same time, the
+** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
+** busy-handler configured, it will not be invoked in this case.
+**
+** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
+** exclusive "writer" lock on the database file. ^If the writer lock cannot be
+** obtained immediately, and a busy-handler is configured, it is invoked and
+** the writer lock retried until either the busy-handler returns 0 or the lock
+** is successfully obtained. ^The busy-handler is also invoked while waiting for
+** database readers as described above. ^If the busy-handler returns 0 before
+** the writer lock is obtained or while waiting for database readers, the
+** checkpoint operation proceeds from that point in the same way as
+** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
+** without blocking any further. ^SQLITE_BUSY is returned in this case.
+**
+** ^If parameter zDb is NULL or points to a zero length string, then the
+** specified operation is attempted on all WAL databases [attached] to
+** [database connection] db. In this case the
+** values written to output parameters *pnLog and *pnCkpt are undefined. ^If
+** an SQLITE_BUSY error is encountered when processing one or more of the
+** attached WAL databases, the operation is still attempted on any remaining
+** attached databases and SQLITE_BUSY is returned at the end. ^If any other
+** error occurs while processing an attached database, processing is abandoned
+** and the error code is returned to the caller immediately. ^If no error
+** (SQLITE_BUSY or otherwise) is encountered while processing the attached
+** databases, SQLITE_OK is returned.
+**
+** ^If database zDb is the name of an attached database that is not in WAL
+** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
+** zDb is not NULL (or a zero length string) and is not the name of any
+** attached database, SQLITE_ERROR is returned to the caller.
+**
+** ^Unless it returns SQLITE_MISUSE,
+** the sqlite3_wal_checkpoint_v2() interface
+** sets the error information that is queried by
+** [sqlite3_errcode()] and [sqlite3_errmsg()].
+**
+** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
+** from SQL.
+*/
+SQLITE_API int sqlite3_wal_checkpoint_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of attached database (or NULL) */
+ int eMode, /* SQLITE_CHECKPOINT_* value */
+ int *pnLog, /* OUT: Size of WAL log in frames */
+ int *pnCkpt /* OUT: Total number of frames checkpointed */
+);
+
+/*
+** CAPI3REF: Checkpoint Mode Values
+** KEYWORDS: {checkpoint mode}
+**
+** These constants define all valid values for the "checkpoint mode" passed
+** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
+** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the
+** meaning of each of these checkpoint modes.
+*/
+#define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */
+#define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */
+#define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for readers */
+#define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */
+
+/*
+** CAPI3REF: Virtual Table Interface Configuration
+**
+** This function may be called by either the [xConnect] or [xCreate] method
+** of a [virtual table] implementation to configure
+** various facets of the virtual table interface.
+**
+** If this interface is invoked outside the context of an xConnect or
+** xCreate virtual table method then the behavior is undefined.
+**
+** In the call sqlite3_vtab_config(D,C,...) the D parameter is the
+** [database connection] in which the virtual table is being created and
+** which is passed in as the first argument to the [xConnect] or [xCreate]
+** method that is invoking sqlite3_vtab_config(). The C parameter is one
+** of the [virtual table configuration options]. The presence and meaning
+** of parameters after C depend on which [virtual table configuration option]
+** is used.
+*/
+SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Virtual Table Configuration Options
+** KEYWORDS: {virtual table configuration options}
+** KEYWORDS: {virtual table configuration option}
+**
+** These macros define the various options to the
+** [sqlite3_vtab_config()] interface that [virtual table] implementations
+** can use to customize and optimize their behavior.
+**
+** <dl>
+** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
+** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
+** where X is an integer. If X is zero, then the [virtual table] whose
+** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
+** support constraints. In this configuration (which is the default) if
+** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
+** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
+** specified as part of the users SQL statement, regardless of the actual
+** ON CONFLICT mode specified.
+**
+** If X is non-zero, then the virtual table implementation guarantees
+** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
+** any modifications to internal or persistent data structures have been made.
+** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
+** is able to roll back a statement or database transaction, and abandon
+** or continue processing the current SQL statement as appropriate.
+** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
+** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
+** had been ABORT.
+**
+** Virtual table implementations that are required to handle OR REPLACE
+** must do so within the [xUpdate] method. If a call to the
+** [sqlite3_vtab_on_conflict()] function indicates that the current ON
+** CONFLICT policy is REPLACE, the virtual table implementation should
+** silently replace the appropriate rows within the xUpdate callback and
+** return SQLITE_OK. Or, if this is not possible, it may return
+** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
+** constraint handling.
+** </dd>
+**
+** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implementation
+** prohibits that virtual table from being used from within triggers and
+** views.
+** </dd>
+**
+** [[SQLITE_VTAB_INNOCUOUS]]<dt>SQLITE_VTAB_INNOCUOUS</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implementation
+** identify that virtual table as being safe to use from within triggers
+** and views. Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the
+** virtual table can do no serious harm even if it is controlled by a
+** malicious hacker. Developers should avoid setting the SQLITE_VTAB_INNOCUOUS
+** flag unless absolutely necessary.
+** </dd>
+**
+** [[SQLITE_VTAB_USES_ALL_SCHEMAS]]<dt>SQLITE_VTAB_USES_ALL_SCHEMAS</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_USES_ALL_SCHEMA) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implementation
+** instruct the query planner to begin at least a read transaction on
+** all schemas ("main", "temp", and any ATTACH-ed databases) whenever the
+** virtual table is used.
+** </dd>
+** </dl>
+*/
+#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
+#define SQLITE_VTAB_INNOCUOUS 2
+#define SQLITE_VTAB_DIRECTONLY 3
+#define SQLITE_VTAB_USES_ALL_SCHEMAS 4
+
+/*
+** CAPI3REF: Determine The Virtual Table Conflict Policy
+**
+** This function may only be called from within a call to the [xUpdate] method
+** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
+** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
+** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
+** of the SQL statement that triggered the call to the [xUpdate] method of the
+** [virtual table].
+*/
+SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);
+
+/*
+** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
+**
+** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
+** method of a [virtual table], then it might return true if the
+** column is being fetched as part of an UPDATE operation during which the
+** column value will not change. The virtual table implementation can use
+** this hint as permission to substitute a return value that is less
+** expensive to compute and that the corresponding
+** [xUpdate] method understands as a "no-change" value.
+**
+** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
+** the column is not changed by the UPDATE statement, then the xColumn
+** method can optionally return without setting a result, without calling
+** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
+** In that case, [sqlite3_value_nochange(X)] will return true for the
+** same column in the [xUpdate] method.
+**
+** The sqlite3_vtab_nochange() routine is an optimization. Virtual table
+** implementations should continue to give a correct answer even if the
+** sqlite3_vtab_nochange() interface were to always return false. In the
+** current implementation, the sqlite3_vtab_nochange() interface does always
+** returns false for the enhanced [UPDATE FROM] statement.
+*/
+SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*);
+
+/*
+** CAPI3REF: Determine The Collation For a Virtual Table Constraint
+** METHOD: sqlite3_index_info
+**
+** This function may only be called from within a call to the [xBestIndex]
+** method of a [virtual table]. This function returns a pointer to a string
+** that is the name of the appropriate collation sequence to use for text
+** comparisons on the constraint identified by its arguments.
+**
+** The first argument must be the pointer to the [sqlite3_index_info] object
+** that is the first parameter to the xBestIndex() method. The second argument
+** must be an index into the aConstraint[] array belonging to the
+** sqlite3_index_info structure passed to xBestIndex.
+**
+** Important:
+** The first parameter must be the same pointer that is passed into the
+** xBestMethod() method. The first parameter may not be a pointer to a
+** different [sqlite3_index_info] object, even an exact copy.
+**
+** The return value is computed as follows:
+**
+** <ol>
+** <li><p> If the constraint comes from a WHERE clause expression that contains
+** a [COLLATE operator], then the name of the collation specified by
+** that COLLATE operator is returned.
+** <li><p> If there is no COLLATE operator, but the column that is the subject
+** of the constraint specifies an alternative collating sequence via
+** a [COLLATE clause] on the column definition within the CREATE TABLE
+** statement that was passed into [sqlite3_declare_vtab()], then the
+** name of that alternative collating sequence is returned.
+** <li><p> Otherwise, "BINARY" is returned.
+** </ol>
+*/
+SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info*,int);
+
+/*
+** CAPI3REF: Determine if a virtual table query is DISTINCT
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within an [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this
+** interface from outside of xBestIndex() is undefined and probably harmful.
+**
+** ^The sqlite3_vtab_distinct() interface returns an integer between 0 and
+** 3. The integer returned by sqlite3_vtab_distinct()
+** gives the virtual table additional information about how the query
+** planner wants the output to be ordered. As long as the virtual table
+** can meet the ordering requirements of the query planner, it may set
+** the "orderByConsumed" flag.
+**
+** <ol><li value="0"><p>
+** ^If the sqlite3_vtab_distinct() interface returns 0, that means
+** that the query planner needs the virtual table to return all rows in the
+** sort order defined by the "nOrderBy" and "aOrderBy" fields of the
+** [sqlite3_index_info] object. This is the default expectation. If the
+** virtual table outputs all rows in sorted order, then it is always safe for
+** the xBestIndex method to set the "orderByConsumed" flag, regardless of
+** the return value from sqlite3_vtab_distinct().
+** <li value="1"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 1, that means
+** that the query planner does not need the rows to be returned in sorted order
+** as long as all rows with the same values in all columns identified by the
+** "aOrderBy" field are adjacent.)^ This mode is used when the query planner
+** is doing a GROUP BY.
+** <li value="2"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 2, that means
+** that the query planner does not need the rows returned in any particular
+** order, as long as rows with the same values in all "aOrderBy" columns
+** are adjacent.)^ ^(Furthermore, only a single row for each particular
+** combination of values in the columns identified by the "aOrderBy" field
+** needs to be returned.)^ ^It is always ok for two or more rows with the same
+** values in all "aOrderBy" columns to be returned, as long as all such rows
+** are adjacent. ^The virtual table may, if it chooses, omit extra rows
+** that have the same value for all columns identified by "aOrderBy".
+** ^However omitting the extra rows is optional.
+** This mode is used for a DISTINCT query.
+** <li value="3"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 3, that means
+** that the query planner needs only distinct rows but it does need the
+** rows to be sorted.)^ ^The virtual table implementation is free to omit
+** rows that are identical in all aOrderBy columns, if it wants to, but
+** it is not required to omit any rows. This mode is used for queries
+** that have both DISTINCT and ORDER BY clauses.
+** </ol>
+**
+** ^For the purposes of comparing virtual table output values to see if the
+** values are same value for sorting purposes, two NULL values are considered
+** to be the same. In other words, the comparison operator is "IS"
+** (or "IS NOT DISTINCT FROM") and not "==".
+**
+** If a virtual table implementation is unable to meet the requirements
+** specified above, then it must not set the "orderByConsumed" flag in the
+** [sqlite3_index_info] object or an incorrect answer may result.
+**
+** ^A virtual table implementation is always free to return rows in any order
+** it wants, as long as the "orderByConsumed" flag is not set. ^When the
+** the "orderByConsumed" flag is unset, the query planner will add extra
+** [bytecode] to ensure that the final results returned by the SQL query are
+** ordered correctly. The use of the "orderByConsumed" flag and the
+** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful
+** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed"
+** flag might help queries against a virtual table to run faster. Being
+** overly aggressive and setting the "orderByConsumed" flag when it is not
+** valid to do so, on the other hand, might cause SQLite to return incorrect
+** results.
+*/
+SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*);
+
+/*
+** CAPI3REF: Identify and handle IN constraints in xBestIndex
+**
+** This interface may only be used from within an
+** [xBestIndex|xBestIndex() method] of a [virtual table] implementation.
+** The result of invoking this interface from any other context is
+** undefined and probably harmful.
+**
+** ^(A constraint on a virtual table of the form
+** "[IN operator|column IN (...)]" is
+** communicated to the xBestIndex method as a
+** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use
+** this constraint, it must set the corresponding
+** aConstraintUsage[].argvIndex to a positive integer. ^(Then, under
+** the usual mode of handling IN operators, SQLite generates [bytecode]
+** that invokes the [xFilter|xFilter() method] once for each value
+** on the right-hand side of the IN operator.)^ Thus the virtual table
+** only sees a single value from the right-hand side of the IN operator
+** at a time.
+**
+** In some cases, however, it would be advantageous for the virtual
+** table to see all values on the right-hand of the IN operator all at
+** once. The sqlite3_vtab_in() interfaces facilitates this in two ways:
+**
+** <ol>
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero)
+** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint
+** is an [IN operator] that can be processed all at once. ^In other words,
+** sqlite3_vtab_in() with -1 in the third argument is a mechanism
+** by which the virtual table can ask SQLite if all-at-once processing
+** of the IN operator is even possible.
+**
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates
+** to SQLite that the virtual table does or does not want to process
+** the IN operator all-at-once, respectively. ^Thus when the third
+** parameter (F) is non-negative, this interface is the mechanism by
+** which the virtual table tells SQLite how it wants to process the
+** IN operator.
+** </ol>
+**
+** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times
+** within the same xBestIndex method call. ^For any given P,N pair,
+** the return value from sqlite3_vtab_in(P,N,F) will always be the same
+** within the same xBestIndex call. ^If the interface returns true
+** (non-zero), that means that the constraint is an IN operator
+** that can be processed all-at-once. ^If the constraint is not an IN
+** operator or cannot be processed all-at-once, then the interface returns
+** false.
+**
+** ^(All-at-once processing of the IN operator is selected if both of the
+** following conditions are met:
+**
+** <ol>
+** <li><p> The P->aConstraintUsage[N].argvIndex value is set to a positive
+** integer. This is how the virtual table tells SQLite that it wants to
+** use the N-th constraint.
+**
+** <li><p> The last call to sqlite3_vtab_in(P,N,F) for which F was
+** non-negative had F>=1.
+** </ol>)^
+**
+** ^If either or both of the conditions above are false, then SQLite uses
+** the traditional one-at-a-time processing strategy for the IN constraint.
+** ^If both conditions are true, then the argvIndex-th parameter to the
+** xFilter method will be an [sqlite3_value] that appears to be NULL,
+** but which can be passed to [sqlite3_vtab_in_first()] and
+** [sqlite3_vtab_in_next()] to find all values on the right-hand side
+** of the IN constraint.
+*/
+SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle);
+
+/*
+** CAPI3REF: Find all elements on the right-hand side of an IN constraint.
+**
+** These interfaces are only useful from within the
+** [xFilter|xFilter() method] of a [virtual table] implementation.
+** The result of invoking these interfaces from any other context
+** is undefined and probably harmful.
+**
+** The X parameter in a call to sqlite3_vtab_in_first(X,P) or
+** sqlite3_vtab_in_next(X,P) should be one of the parameters to the
+** xFilter method which invokes these routines, and specifically
+** a parameter that was previously selected for all-at-once IN constraint
+** processing use the [sqlite3_vtab_in()] interface in the
+** [xBestIndex|xBestIndex method]. ^(If the X parameter is not
+** an xFilter argument that was selected for all-at-once IN constraint
+** processing, then these routines return [SQLITE_ERROR].)^
+**
+** ^(Use these routines to access all values on the right-hand side
+** of the IN constraint using code like the following:
+**
+** <blockquote><pre>
+** &nbsp; for(rc=sqlite3_vtab_in_first(pList, &pVal);
+** &nbsp; rc==SQLITE_OK && pVal;
+** &nbsp; rc=sqlite3_vtab_in_next(pList, &pVal)
+** &nbsp; ){
+** &nbsp; // do something with pVal
+** &nbsp; }
+** &nbsp; if( rc!=SQLITE_OK ){
+** &nbsp; // an error has occurred
+** &nbsp; }
+** </pre></blockquote>)^
+**
+** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P)
+** routines return SQLITE_OK and set *P to point to the first or next value
+** on the RHS of the IN constraint. ^If there are no more values on the
+** right hand side of the IN constraint, then *P is set to NULL and these
+** routines return [SQLITE_DONE]. ^The return value might be
+** some other value, such as SQLITE_NOMEM, in the event of a malfunction.
+**
+** The *ppOut values returned by these routines are only valid until the
+** next call to either of these routines or until the end of the xFilter
+** method from which these routines were called. If the virtual table
+** implementation needs to retain the *ppOut values for longer, it must make
+** copies. The *ppOut values are [protected sqlite3_value|protected].
+*/
+SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut);
+SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut);
+
+/*
+** CAPI3REF: Constraint values in xBestIndex()
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within the [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this interface
+** from outside of an xBestIndex method are undefined and probably harmful.
+**
+** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within
+** the [xBestIndex] method of a [virtual table] implementation, with P being
+** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and
+** J being a 0-based index into P->aConstraint[], then this routine
+** attempts to set *V to the value of the right-hand operand of
+** that constraint if the right-hand operand is known. ^If the
+** right-hand operand is not known, then *V is set to a NULL pointer.
+** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if
+** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V)
+** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th
+** constraint is not available. ^The sqlite3_vtab_rhs_value() interface
+** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if
+** something goes wrong.
+**
+** The sqlite3_vtab_rhs_value() interface is usually only successful if
+** the right-hand operand of a constraint is a literal value in the original
+** SQL statement. If the right-hand operand is an expression or a reference
+** to some other column or a [host parameter], then sqlite3_vtab_rhs_value()
+** will probably return [SQLITE_NOTFOUND].
+**
+** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and
+** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such
+** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^
+**
+** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value
+** and remains valid for the duration of the xBestIndex method call.
+** ^When xBestIndex returns, the sqlite3_value object returned by
+** sqlite3_vtab_rhs_value() is automatically deallocated.
+**
+** The "_rhs_" in the name of this routine is an abbreviation for
+** "Right-Hand Side".
+*/
+SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal);
+
+/*
+** CAPI3REF: Conflict resolution modes
+** KEYWORDS: {conflict resolution mode}
+**
+** These constants are returned by [sqlite3_vtab_on_conflict()] to
+** inform a [virtual table] implementation what the [ON CONFLICT] mode
+** is for the SQL statement being evaluated.
+**
+** Note that the [SQLITE_IGNORE] constant is also used as a potential
+** return value from the [sqlite3_set_authorizer()] callback and that
+** [SQLITE_ABORT] is also a [result code].
+*/
+#define SQLITE_ROLLBACK 1
+/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
+#define SQLITE_FAIL 3
+/* #define SQLITE_ABORT 4 // Also an error code */
+#define SQLITE_REPLACE 5
+
+/*
+** CAPI3REF: Prepared Statement Scan Status Opcodes
+** KEYWORDS: {scanstatus options}
+**
+** The following constants can be used for the T parameter to the
+** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a
+** different metric for sqlite3_stmt_scanstatus() to return.
+**
+** When the value returned to V is a string, space to hold that string is
+** managed by the prepared statement S and will be automatically freed when
+** S is finalized.
+**
+** Not all values are available for all query elements. When a value is
+** not available, the output variable is set to -1 if the value is numeric,
+** or to NULL if it is a string (SQLITE_SCANSTAT_NAME).
+**
+** <dl>
+** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be
+** set to the total number of times that the X-th loop has run.</dd>
+**
+** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be set
+** to the total number of rows examined by all iterations of the X-th loop.</dd>
+**
+** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
+** <dd>^The "double" variable pointed to by the V parameter will be set to the
+** query planner's estimate for the average number of rows output from each
+** iteration of the X-th loop. If the query planner's estimates was accurate,
+** then this value will approximate the quotient NVISIT/NLOOP and the
+** product of this value for all prior loops with the same SELECTID will
+** be the NLOOP value for the current loop.
+**
+** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the name of the index or table
+** used for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
+** description for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECTID</dt>
+** <dd>^The "int" variable pointed to by the V parameter will be set to the
+** id for the X-th query plan element. The id value is unique within the
+** statement. The select-id is the same value as is output in the first
+** column of an [EXPLAIN QUERY PLAN] query.
+**
+** [[SQLITE_SCANSTAT_PARENTID]] <dt>SQLITE_SCANSTAT_PARENTID</dt>
+** <dd>The "int" variable pointed to by the V parameter will be set to the
+** the id of the parent of the current query element, if applicable, or
+** to zero if the query element has no parent. This is the same value as
+** returned in the second column of an [EXPLAIN QUERY PLAN] query.
+**
+** [[SQLITE_SCANSTAT_NCYCLE]] <dt>SQLITE_SCANSTAT_NCYCLE</dt>
+** <dd>The sqlite3_int64 output value is set to the number of cycles,
+** according to the processor time-stamp counter, that elapsed while the
+** query element was being processed. This value is not available for
+** all query elements - if it is unavailable the output variable is
+** set to -1.
+** </dl>
+*/
+#define SQLITE_SCANSTAT_NLOOP 0
+#define SQLITE_SCANSTAT_NVISIT 1
+#define SQLITE_SCANSTAT_EST 2
+#define SQLITE_SCANSTAT_NAME 3
+#define SQLITE_SCANSTAT_EXPLAIN 4
+#define SQLITE_SCANSTAT_SELECTID 5
+#define SQLITE_SCANSTAT_PARENTID 6
+#define SQLITE_SCANSTAT_NCYCLE 7
+
+/*
+** CAPI3REF: Prepared Statement Scan Status
+** METHOD: sqlite3_stmt
+**
+** These interfaces return information about the predicted and measured
+** performance for pStmt. Advanced applications can use this
+** interface to compare the predicted and the measured performance and
+** issue warnings and/or rerun [ANALYZE] if discrepancies are found.
+**
+** Since this interface is expected to be rarely used, it is only
+** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
+** compile-time option.
+**
+** The "iScanStatusOp" parameter determines which status information to return.
+** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
+** of this interface is undefined. ^The requested measurement is written into
+** a variable pointed to by the "pOut" parameter.
+**
+** The "flags" parameter must be passed a mask of flags. At present only
+** one flag is defined - SQLITE_SCANSTAT_COMPLEX. If SQLITE_SCANSTAT_COMPLEX
+** is specified, then status information is available for all elements
+** of a query plan that are reported by "EXPLAIN QUERY PLAN" output. If
+** SQLITE_SCANSTAT_COMPLEX is not specified, then only query plan elements
+** that correspond to query loops (the "SCAN..." and "SEARCH..." elements of
+** the EXPLAIN QUERY PLAN output) are available. Invoking API
+** sqlite3_stmt_scanstatus() is equivalent to calling
+** sqlite3_stmt_scanstatus_v2() with a zeroed flags parameter.
+**
+** Parameter "idx" identifies the specific query element to retrieve statistics
+** for. Query elements are numbered starting from zero. A value of -1 may be
+** to query for statistics regarding the entire query. ^If idx is out of range
+** - less than -1 or greater than or equal to the total number of query
+** elements used to implement the statement - a non-zero value is returned and
+** the variable that pOut points to is unchanged.
+**
+** See also: [sqlite3_stmt_scanstatus_reset()]
+*/
+SQLITE_API int sqlite3_stmt_scanstatus(
+ sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
+ void *pOut /* Result written here */
+);
+SQLITE_API int sqlite3_stmt_scanstatus_v2(
+ sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
+ int flags, /* Mask of flags defined below */
+ void *pOut /* Result written here */
+);
+
+/*
+** CAPI3REF: Prepared Statement Scan Status
+** KEYWORDS: {scan status flags}
+*/
+#define SQLITE_SCANSTAT_COMPLEX 0x0001
+
+/*
+** CAPI3REF: Zero Scan-Status Counters
+** METHOD: sqlite3_stmt
+**
+** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
+**
+** This API is only available if the library is built with pre-processor
+** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
+*/
+SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Flush caches to disk mid-transaction
+** METHOD: sqlite3
+**
+** ^If a write-transaction is open on [database connection] D when the
+** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
+** pages in the pager-cache that are not currently in use are written out
+** to disk. A dirty page may be in use if a database cursor created by an
+** active SQL statement is reading from it, or if it is page 1 of a database
+** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)]
+** interface flushes caches for all schemas - "main", "temp", and
+** any [attached] databases.
+**
+** ^If this function needs to obtain extra database locks before dirty pages
+** can be flushed to disk, it does so. ^If those locks cannot be obtained
+** immediately and there is a busy-handler callback configured, it is invoked
+** in the usual manner. ^If the required lock still cannot be obtained, then
+** the database is skipped and an attempt made to flush any dirty pages
+** belonging to the next (if any) database. ^If any databases are skipped
+** because locks cannot be obtained, but no other error occurs, this
+** function returns SQLITE_BUSY.
+**
+** ^If any other error occurs while flushing dirty pages to disk (for
+** example an IO error or out-of-memory condition), then processing is
+** abandoned and an SQLite [error code] is returned to the caller immediately.
+**
+** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
+**
+** ^This function does not set the database handle error code or message
+** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
+*/
+SQLITE_API int sqlite3_db_cacheflush(sqlite3*);
+
+/*
+** CAPI3REF: The pre-update hook.
+** METHOD: sqlite3
+**
+** ^These interfaces are only available if SQLite is compiled using the
+** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
+**
+** ^The [sqlite3_preupdate_hook()] interface registers a callback function
+** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
+** on a database table.
+** ^At most one preupdate hook may be registered at a time on a single
+** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
+** the previous setting.
+** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
+** with a NULL pointer as the second parameter.
+** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
+** the first parameter to callbacks.
+**
+** ^The preupdate hook only fires for changes to real database tables; the
+** preupdate hook is not invoked for changes to [virtual tables] or to
+** system tables like sqlite_sequence or sqlite_stat1.
+**
+** ^The second parameter to the preupdate callback is a pointer to
+** the [database connection] that registered the preupdate hook.
+** ^The third parameter to the preupdate callback is one of the constants
+** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
+** kind of update operation that is about to occur.
+** ^(The fourth parameter to the preupdate callback is the name of the
+** database within the database connection that is being modified. This
+** will be "main" for the main database or "temp" for TEMP tables or
+** the name given after the AS keyword in the [ATTACH] statement for attached
+** databases.)^
+** ^The fifth parameter to the preupdate callback is the name of the
+** table that is being modified.
+**
+** For an UPDATE or DELETE operation on a [rowid table], the sixth
+** parameter passed to the preupdate callback is the initial [rowid] of the
+** row being modified or deleted. For an INSERT operation on a rowid table,
+** or any operation on a WITHOUT ROWID table, the value of the sixth
+** parameter is undefined. For an INSERT or UPDATE on a rowid table the
+** seventh parameter is the final rowid value of the row being inserted
+** or updated. The value of the seventh parameter passed to the callback
+** function is not defined for operations on WITHOUT ROWID tables, or for
+** DELETE operations on rowid tables.
+**
+** ^The sqlite3_preupdate_hook(D,C,P) function returns the P argument from
+** the previous call on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
+** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
+** provide additional information about a preupdate event. These routines
+** may only be called from within a preupdate callback. Invoking any of
+** these routines from outside of a preupdate callback or with a
+** [database connection] pointer that is different from the one supplied
+** to the preupdate callback results in undefined and probably undesirable
+** behavior.
+**
+** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns
+** in the row that is being inserted, updated, or deleted.
+**
+** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row before it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE
+** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row after it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE
+** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate
+** callback was invoked as a result of a direct insert, update, or delete
+** operation; or 1 for inserts, updates, or deletes invoked by top-level
+** triggers; or 2 for changes resulting from triggers called by top-level
+** triggers; and so forth.
+**
+** When the [sqlite3_blob_write()] API is used to update a blob column,
+** the pre-update hook is invoked with SQLITE_DELETE. This is because the
+** in this case the new values are not available. In this case, when a
+** callback made with op==SQLITE_DELETE is actually a write using the
+** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns
+** the index of the column being written. In other cases, where the
+** pre-update hook is being invoked for some other reason, including a
+** regular DELETE, sqlite3_preupdate_blobwrite() returns -1.
+**
+** See also: [sqlite3_update_hook()]
+*/
+#if defined(SQLITE_ENABLE_PREUPDATE_HOOK)
+SQLITE_API void *sqlite3_preupdate_hook(
+ sqlite3 *db,
+ void(*xPreUpdate)(
+ void *pCtx, /* Copy of third arg to preupdate_hook() */
+ sqlite3 *db, /* Database handle */
+ int op, /* SQLITE_UPDATE, DELETE or INSERT */
+ char const *zDb, /* Database name */
+ char const *zName, /* Table name */
+ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
+ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
+ ),
+ void*
+);
+SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_count(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_depth(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *);
+#endif
+
+/*
+** CAPI3REF: Low-level system error code
+** METHOD: sqlite3
+**
+** ^Attempt to return the underlying operating system error code or error
+** number that caused the most recent I/O error or failure to open a file.
+** The return value is OS-dependent. For example, on unix systems, after
+** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be
+** called to get back the underlying "errno" that caused the problem, such
+** as ENOSPC, EAUTH, EISDIR, and so forth.
+*/
+SQLITE_API int sqlite3_system_errno(sqlite3*);
+
+/*
+** CAPI3REF: Database Snapshot
+** KEYWORDS: {snapshot} {sqlite3_snapshot}
+**
+** An instance of the snapshot object records the state of a [WAL mode]
+** database for some specific point in history.
+**
+** In [WAL mode], multiple [database connections] that are open on the
+** same database file can each be reading a different historical version
+** of the database file. When a [database connection] begins a read
+** transaction, that connection sees an unchanging copy of the database
+** as it existed for the point in time when the transaction first started.
+** Subsequent changes to the database from other connections are not seen
+** by the reader until a new read transaction is started.
+**
+** The sqlite3_snapshot object records state information about an historical
+** version of the database file so that it is possible to later open a new read
+** transaction that sees that historical version of the database rather than
+** the most recent version.
+*/
+typedef struct sqlite3_snapshot {
+ unsigned char hidden[48];
+} sqlite3_snapshot;
+
+/*
+** CAPI3REF: Record A Database Snapshot
+** CONSTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
+** new [sqlite3_snapshot] object that records the current state of
+** schema S in database connection D. ^On success, the
+** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
+** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
+** If there is not already a read-transaction open on schema S when
+** this function is called, one is opened automatically.
+**
+** The following must be true for this function to succeed. If any of
+** the following statements are false when sqlite3_snapshot_get() is
+** called, SQLITE_ERROR is returned. The final value of *P is undefined
+** in this case.
+**
+** <ul>
+** <li> The database handle must not be in [autocommit mode].
+**
+** <li> Schema S of [database connection] D must be a [WAL mode] database.
+**
+** <li> There must not be a write transaction open on schema S of database
+** connection D.
+**
+** <li> One or more transactions must have been written to the current wal
+** file since it was created on disk (by any connection). This means
+** that a snapshot cannot be taken on a wal mode database with no wal
+** file immediately after it is first opened. At least one transaction
+** must be written to it first.
+** </ul>
+**
+** This function may also return SQLITE_NOMEM. If it is called with the
+** database handle in autocommit mode but fails for some other reason,
+** whether or not a read transaction is opened on schema S is undefined.
+**
+** The [sqlite3_snapshot] object returned from a successful call to
+** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
+** to avoid a memory leak.
+**
+** The [sqlite3_snapshot_get()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot **ppSnapshot
+);
+
+/*
+** CAPI3REF: Start a read transaction on an historical snapshot
+** METHOD: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read
+** transaction or upgrades an existing one for schema S of
+** [database connection] D such that the read transaction refers to
+** historical [snapshot] P, rather than the most recent change to the
+** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK
+** on success or an appropriate [error code] if it fails.
+**
+** ^In order to succeed, the database connection must not be in
+** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there
+** is already a read transaction open on schema S, then the database handle
+** must have no active statements (SELECT statements that have been passed
+** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()).
+** SQLITE_ERROR is returned if either of these conditions is violated, or
+** if schema S does not exist, or if the snapshot object is invalid.
+**
+** ^A call to sqlite3_snapshot_open() will fail to open if the specified
+** snapshot has been overwritten by a [checkpoint]. In this case
+** SQLITE_ERROR_SNAPSHOT is returned.
+**
+** If there is already a read transaction open when this function is
+** invoked, then the same read transaction remains open (on the same
+** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT
+** is returned. If another error code - for example SQLITE_PROTOCOL or an
+** SQLITE_IOERR error code - is returned, then the final state of the
+** read transaction is undefined. If SQLITE_OK is returned, then the
+** read transaction is now open on database snapshot P.
+**
+** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
+** database connection D does not know that the database file for
+** schema S is in [WAL mode]. A database connection might not know
+** that the database file is in [WAL mode] if there has been no prior
+** I/O on that database connection, or if the database entered [WAL mode]
+** after the most recent I/O on the database connection.)^
+** (Hint: Run "[PRAGMA application_id]" against a newly opened
+** database connection in order to make it ready to use snapshots.)
+**
+** The [sqlite3_snapshot_open()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot *pSnapshot
+);
+
+/*
+** CAPI3REF: Destroy a snapshot
+** DESTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
+** The application must eventually free every [sqlite3_snapshot] object
+** using this routine to avoid a memory leak.
+**
+** The [sqlite3_snapshot_free()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*);
+
+/*
+** CAPI3REF: Compare the ages of two snapshot handles.
+** METHOD: sqlite3_snapshot
+**
+** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages
+** of two valid snapshot handles.
+**
+** If the two snapshot handles are not associated with the same database
+** file, the result of the comparison is undefined.
+**
+** Additionally, the result of the comparison is only valid if both of the
+** snapshot handles were obtained by calling sqlite3_snapshot_get() since the
+** last time the wal file was deleted. The wal file is deleted when the
+** database is changed back to rollback mode or when the number of database
+** clients drops to zero. If either snapshot handle was obtained before the
+** wal file was last deleted, the value returned by this function
+** is undefined.
+**
+** Otherwise, this API returns a negative value if P1 refers to an older
+** snapshot than P2, zero if the two handles refer to the same database
+** snapshot, and a positive value if P1 is a newer snapshot than P2.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp(
+ sqlite3_snapshot *p1,
+ sqlite3_snapshot *p2
+);
+
+/*
+** CAPI3REF: Recover snapshots from a wal file
+** METHOD: sqlite3_snapshot
+**
+** If a [WAL file] remains on disk after all database connections close
+** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control]
+** or because the last process to have the database opened exited without
+** calling [sqlite3_close()]) and a new connection is subsequently opened
+** on that database and [WAL file], the [sqlite3_snapshot_open()] interface
+** will only be able to open the last transaction added to the WAL file
+** even though the WAL file contains other valid transactions.
+**
+** This function attempts to scan the WAL file associated with database zDb
+** of database handle db and make all valid snapshots available to
+** sqlite3_snapshot_open(). It is an error if there is already a read
+** transaction open on the database, or if the database is not a WAL mode
+** database.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Serialize a database
+**
+** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory
+** that is a serialization of the S database on [database connection] D.
+** If P is not a NULL pointer, then the size of the database in bytes
+** is written into *P.
+**
+** For an ordinary on-disk database file, the serialization is just a
+** copy of the disk file. For an in-memory database or a "TEMP" database,
+** the serialization is the same sequence of bytes which would be written
+** to disk if that database where backed up to disk.
+**
+** The usual case is that sqlite3_serialize() copies the serialization of
+** the database into memory obtained from [sqlite3_malloc64()] and returns
+** a pointer to that memory. The caller is responsible for freeing the
+** returned value to avoid a memory leak. However, if the F argument
+** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations
+** are made, and the sqlite3_serialize() function will return a pointer
+** to the contiguous memory representation of the database that SQLite
+** is currently using for that database, or NULL if the no such contiguous
+** memory representation of the database exists. A contiguous memory
+** representation of the database will usually only exist if there has
+** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
+** values of D and S.
+** The size of the database is written into *P even if the
+** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
+** of the database exists.
+**
+** After the call, if the SQLITE_SERIALIZE_NOCOPY bit had been set,
+** the returned buffer content will remain accessible and unchanged
+** until either the next write operation on the connection or when
+** the connection is closed, and applications must not modify the
+** buffer. If the bit had been clear, the returned buffer will not
+** be accessed by SQLite after the call.
+**
+** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
+** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
+** allocation error occurs.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API unsigned char *sqlite3_serialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to serialize. ex: "main", "temp", ... */
+ sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */
+ unsigned int mFlags /* Zero or more SQLITE_SERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_serialize
+**
+** Zero or more of the following constants can be OR-ed together for
+** the F argument to [sqlite3_serialize(D,S,P,F)].
+**
+** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return
+** a pointer to contiguous in-memory database that it is currently using,
+** without making a copy of the database. If SQLite is not currently using
+** a contiguous in-memory database, then this option causes
+** [sqlite3_serialize()] to return a NULL pointer. SQLite will only be
+** using a contiguous in-memory database if it has been initialized by a
+** prior call to [sqlite3_deserialize()].
+*/
+#define SQLITE_SERIALIZE_NOCOPY 0x001 /* Do no memory allocations */
+
+/*
+** CAPI3REF: Deserialize a database
+**
+** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the
+** [database connection] D to disconnect from database S and then
+** reopen S as an in-memory database based on the serialization contained
+** in P. The serialized database P is N bytes in size. M is the size of
+** the buffer P, which might be larger than N. If M is larger than N, and
+** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is
+** permitted to add content to the in-memory database as long as the total
+** size does not exceed M bytes.
+**
+** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will
+** invoke sqlite3_free() on the serialization buffer when the database
+** connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then
+** SQLite will try to increase the buffer size using sqlite3_realloc64()
+** if writes on the database cause it to grow larger than M bytes.
+**
+** Applications must not modify the buffer P or invalidate it before
+** the database connection D is closed.
+**
+** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the
+** database is currently in a read transaction or is involved in a backup
+** operation.
+**
+** It is not possible to deserialized into the TEMP database. If the
+** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the
+** function returns SQLITE_ERROR.
+**
+** The deserialized database should not be in [WAL mode]. If the database
+** is in WAL mode, then any attempt to use the database file will result
+** in an [SQLITE_CANTOPEN] error. The application can set the
+** [file format version numbers] (bytes 18 and 19) of the input database P
+** to 0x01 prior to invoking sqlite3_deserialize(D,S,P,N,M,F) to force the
+** database file into rollback mode and work around this limitation.
+**
+** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the
+** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then
+** [sqlite3_free()] is invoked on argument P prior to returning.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API int sqlite3_deserialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to reopen with the deserialization */
+ unsigned char *pData, /* The serialized database content */
+ sqlite3_int64 szDb, /* Number bytes in the deserialization */
+ sqlite3_int64 szBuf, /* Total size of buffer pData[] */
+ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_deserialize()
+**
+** The following are allowed values for 6th argument (the F argument) to
+** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
+**
+** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
+** in the P argument is held in memory obtained from [sqlite3_malloc64()]
+** and that SQLite should take ownership of this memory and automatically
+** free it when it has finished using it. Without this flag, the caller
+** is responsible for freeing any dynamically allocated memory.
+**
+** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
+** grow the size of the database using calls to [sqlite3_realloc64()]. This
+** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
+** Without this flag, the deserialized database cannot increase in size beyond
+** the number of bytes specified by the M parameter.
+**
+** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database
+** should be treated as read-only.
+*/
+#define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */
+#define SQLITE_DESERIALIZE_RESIZEABLE 2 /* Resize using sqlite3_realloc64() */
+#define SQLITE_DESERIALIZE_READONLY 4 /* Database is read-only */
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#if defined(__wasi__)
+# undef SQLITE_WASI
+# define SQLITE_WASI 1
+# undef SQLITE_OMIT_WAL
+# define SQLITE_OMIT_WAL 1/* because it requires shared memory APIs */
+# ifndef SQLITE_OMIT_LOAD_EXTENSION
+# define SQLITE_OMIT_LOAD_EXTENSION
+# endif
+# ifndef SQLITE_THREADSAFE
+# define SQLITE_THREADSAFE 0
+# endif
+#endif
+
+#if 0
+} /* End of the 'extern "C"' block */
+#endif
+#endif /* SQLITE3_H */
+
+/******** Begin file sqlite3rtree.h *********/
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+
+#if 0
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info;
+
+/* The double-precision datatype used by RTree depends on the
+** SQLITE_RTREE_INT_ONLY compile-time option.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+ typedef sqlite3_int64 sqlite3_rtree_dbl;
+#else
+ typedef double sqlite3_rtree_dbl;
+#endif
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+/*
+** Register a 2nd-generation geometry callback named zScore that can be
+** used as part of an R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_query_callback(
+ sqlite3 *db,
+ const char *zQueryFunc,
+ int (*xQueryFunc)(sqlite3_rtree_query_info*),
+ void *pContext,
+ void (*xDestructor)(void*)
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the
+** argument to scored geometry callback registered using
+** sqlite3_rtree_query_callback().
+**
+** Note that the first 5 fields of this structure are identical to
+** sqlite3_rtree_geometry. This structure is a subclass of
+** sqlite3_rtree_geometry.
+*/
+struct sqlite3_rtree_query_info {
+ void *pContext; /* pContext from when function registered */
+ int nParam; /* Number of function parameters */
+ sqlite3_rtree_dbl *aParam; /* value of function parameters */
+ void *pUser; /* callback can use this, if desired */
+ void (*xDelUser)(void*); /* function to free pUser */
+ sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */
+ unsigned int *anQueue; /* Number of pending entries in the queue */
+ int nCoord; /* Number of coordinates */
+ int iLevel; /* Level of current node or entry */
+ int mxLevel; /* The largest iLevel value in the tree */
+ sqlite3_int64 iRowid; /* Rowid for current entry */
+ sqlite3_rtree_dbl rParentScore; /* Score of parent node */
+ int eParentWithin; /* Visibility of parent node */
+ int eWithin; /* OUT: Visibility */
+ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */
+ /* The following fields are only available in 3.8.11 and later */
+ sqlite3_value **apSqlParam; /* Original SQL values of parameters */
+};
+
+/*
+** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
+*/
+#define NOT_WITHIN 0 /* Object completely outside of query region */
+#define PARTLY_WITHIN 1 /* Object partially overlaps query region */
+#define FULLY_WITHIN 2 /* Object fully contained within query region */
+
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
+
+/******** End of sqlite3rtree.h *********/
+/******** Begin file sqlite3session.h *********/
+
+#if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION)
+#define __SQLITESESSION_H_ 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+extern "C" {
+#endif
+
+
+/*
+** CAPI3REF: Session Object Handle
+**
+** An instance of this object is a [session] that can be used to
+** record changes to a database.
+*/
+typedef struct sqlite3_session sqlite3_session;
+
+/*
+** CAPI3REF: Changeset Iterator Handle
+**
+** An instance of this object acts as a cursor for iterating
+** over the elements of a [changeset] or [patchset].
+*/
+typedef struct sqlite3_changeset_iter sqlite3_changeset_iter;
+
+/*
+** CAPI3REF: Create A New Session Object
+** CONSTRUCTOR: sqlite3_session
+**
+** Create a new session object attached to database handle db. If successful,
+** a pointer to the new object is written to *ppSession and SQLITE_OK is
+** returned. If an error occurs, *ppSession is set to NULL and an SQLite
+** error code (e.g. SQLITE_NOMEM) is returned.
+**
+** It is possible to create multiple session objects attached to a single
+** database handle.
+**
+** Session objects created using this function should be deleted using the
+** [sqlite3session_delete()] function before the database handle that they
+** are attached to is itself closed. If the database handle is closed before
+** the session object is deleted, then the results of calling any session
+** module function, including [sqlite3session_delete()] on the session object
+** are undefined.
+**
+** Because the session module uses the [sqlite3_preupdate_hook()] API, it
+** is not possible for an application to register a pre-update hook on a
+** database handle that has one or more session objects attached. Nor is
+** it possible to create a session object attached to a database handle for
+** which a pre-update hook is already defined. The results of attempting
+** either of these things are undefined.
+**
+** The session object will be used to create changesets for tables in
+** database zDb, where zDb is either "main", or "temp", or the name of an
+** attached database. It is not an error if database zDb is not attached
+** to the database when the session object is created.
+*/
+SQLITE_API int sqlite3session_create(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (e.g. "main") */
+ sqlite3_session **ppSession /* OUT: New session object */
+);
+
+/*
+** CAPI3REF: Delete A Session Object
+** DESTRUCTOR: sqlite3_session
+**
+** Delete a session object previously allocated using
+** [sqlite3session_create()]. Once a session object has been deleted, the
+** results of attempting to use pSession with any other session module
+** function are undefined.
+**
+** Session objects must be deleted before the database handle to which they
+** are attached is closed. Refer to the documentation for
+** [sqlite3session_create()] for details.
+*/
+SQLITE_API void sqlite3session_delete(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Configure a Session Object
+** METHOD: sqlite3_session
+**
+** This method is used to configure a session object after it has been
+** created. At present the only valid values for the second parameter are
+** [SQLITE_SESSION_OBJCONFIG_SIZE] and [SQLITE_SESSION_OBJCONFIG_ROWID].
+**
+*/
+SQLITE_API int sqlite3session_object_config(sqlite3_session*, int op, void *pArg);
+
+/*
+** CAPI3REF: Options for sqlite3session_object_config
+**
+** The following values may passed as the the 2nd parameter to
+** sqlite3session_object_config().
+**
+** <dt>SQLITE_SESSION_OBJCONFIG_SIZE <dd>
+** This option is used to set, clear or query the flag that enables
+** the [sqlite3session_changeset_size()] API. Because it imposes some
+** computational overhead, this API is disabled by default. Argument
+** pArg must point to a value of type (int). If the value is initially
+** 0, then the sqlite3session_changeset_size() API is disabled. If it
+** is greater than 0, then the same API is enabled. Or, if the initial
+** value is less than zero, no change is made. In all cases the (int)
+** variable is set to 1 if the sqlite3session_changeset_size() API is
+** enabled following the current call, or 0 otherwise.
+**
+** It is an error (SQLITE_MISUSE) to attempt to modify this setting after
+** the first table has been attached to the session object.
+**
+** <dt>SQLITE_SESSION_OBJCONFIG_ROWID <dd>
+** This option is used to set, clear or query the flag that enables
+** collection of data for tables with no explicit PRIMARY KEY.
+**
+** Normally, tables with no explicit PRIMARY KEY are simply ignored
+** by the sessions module. However, if this flag is set, it behaves
+** as if such tables have a column "_rowid_ INTEGER PRIMARY KEY" inserted
+** as their leftmost columns.
+**
+** It is an error (SQLITE_MISUSE) to attempt to modify this setting after
+** the first table has been attached to the session object.
+*/
+#define SQLITE_SESSION_OBJCONFIG_SIZE 1
+#define SQLITE_SESSION_OBJCONFIG_ROWID 2
+
+/*
+** CAPI3REF: Enable Or Disable A Session Object
+** METHOD: sqlite3_session
+**
+** Enable or disable the recording of changes by a session object. When
+** enabled, a session object records changes made to the database. When
+** disabled - it does not. A newly created session object is enabled.
+** Refer to the documentation for [sqlite3session_changeset()] for further
+** details regarding how enabling and disabling a session object affects
+** the eventual changesets.
+**
+** Passing zero to this function disables the session. Passing a value
+** greater than zero enables it. Passing a value less than zero is a
+** no-op, and may be used to query the current state of the session.
+**
+** The return value indicates the final state of the session object: 0 if
+** the session is disabled, or 1 if it is enabled.
+*/
+SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable);
+
+/*
+** CAPI3REF: Set Or Clear the Indirect Change Flag
+** METHOD: sqlite3_session
+**
+** Each change recorded by a session object is marked as either direct or
+** indirect. A change is marked as indirect if either:
+**
+** <ul>
+** <li> The session object "indirect" flag is set when the change is
+** made, or
+** <li> The change is made by an SQL trigger or foreign key action
+** instead of directly as a result of a users SQL statement.
+** </ul>
+**
+** If a single row is affected by more than one operation within a session,
+** then the change is considered indirect if all operations meet the criteria
+** for an indirect change above, or direct otherwise.
+**
+** This function is used to set, clear or query the session object indirect
+** flag. If the second argument passed to this function is zero, then the
+** indirect flag is cleared. If it is greater than zero, the indirect flag
+** is set. Passing a value less than zero does not modify the current value
+** of the indirect flag, and may be used to query the current state of the
+** indirect flag for the specified session object.
+**
+** The return value indicates the final state of the indirect flag: 0 if
+** it is clear, or 1 if it is set.
+*/
+SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect);
+
+/*
+** CAPI3REF: Attach A Table To A Session Object
+** METHOD: sqlite3_session
+**
+** If argument zTab is not NULL, then it is the name of a table to attach
+** to the session object passed as the first argument. All subsequent changes
+** made to the table while the session object is enabled will be recorded. See
+** documentation for [sqlite3session_changeset()] for further details.
+**
+** Or, if argument zTab is NULL, then changes are recorded for all tables
+** in the database. If additional tables are added to the database (by
+** executing "CREATE TABLE" statements) after this call is made, changes for
+** the new tables are also recorded.
+**
+** Changes can only be recorded for tables that have a PRIMARY KEY explicitly
+** defined as part of their CREATE TABLE statement. It does not matter if the
+** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY
+** KEY may consist of a single column, or may be a composite key.
+**
+** It is not an error if the named table does not exist in the database. Nor
+** is it an error if the named table does not have a PRIMARY KEY. However,
+** no changes will be recorded in either of these scenarios.
+**
+** Changes are not recorded for individual rows that have NULL values stored
+** in one or more of their PRIMARY KEY columns.
+**
+** SQLITE_OK is returned if the call completes without error. Or, if an error
+** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
+**
+** <h3>Special sqlite_stat1 Handling</h3>
+**
+** As of SQLite version 3.22.0, the "sqlite_stat1" table is an exception to
+** some of the rules above. In SQLite, the schema of sqlite_stat1 is:
+** <pre>
+** &nbsp; CREATE TABLE sqlite_stat1(tbl,idx,stat)
+** </pre>
+**
+** Even though sqlite_stat1 does not have a PRIMARY KEY, changes are
+** recorded for it as if the PRIMARY KEY is (tbl,idx). Additionally, changes
+** are recorded for rows for which (idx IS NULL) is true. However, for such
+** rows a zero-length blob (SQL value X'') is stored in the changeset or
+** patchset instead of a NULL value. This allows such changesets to be
+** manipulated by legacy implementations of sqlite3changeset_invert(),
+** concat() and similar.
+**
+** The sqlite3changeset_apply() function automatically converts the
+** zero-length blob back to a NULL value when updating the sqlite_stat1
+** table. However, if the application calls sqlite3changeset_new(),
+** sqlite3changeset_old() or sqlite3changeset_conflict on a changeset
+** iterator directly (including on a changeset iterator passed to a
+** conflict-handler callback) then the X'' value is returned. The application
+** must translate X'' to NULL itself if required.
+**
+** Legacy (older than 3.22.0) versions of the sessions module cannot capture
+** changes made to the sqlite_stat1 table. Legacy versions of the
+** sqlite3changeset_apply() function silently ignore any modifications to the
+** sqlite_stat1 table that are part of a changeset or patchset.
+*/
+SQLITE_API int sqlite3session_attach(
+ sqlite3_session *pSession, /* Session object */
+ const char *zTab /* Table name */
+);
+
+/*
+** CAPI3REF: Set a table filter on a Session Object.
+** METHOD: sqlite3_session
+**
+** The second argument (xFilter) is the "filter callback". For changes to rows
+** in tables that are not attached to the Session object, the filter is called
+** to determine whether changes to the table's rows should be tracked or not.
+** If xFilter returns 0, changes are not tracked. Note that once a table is
+** attached, xFilter will not be called again.
+*/
+SQLITE_API void sqlite3session_table_filter(
+ sqlite3_session *pSession, /* Session object */
+ int(*xFilter)(
+ void *pCtx, /* Copy of third arg to _filter_table() */
+ const char *zTab /* Table name */
+ ),
+ void *pCtx /* First argument passed to xFilter */
+);
+
+/*
+** CAPI3REF: Generate A Changeset From A Session Object
+** METHOD: sqlite3_session
+**
+** Obtain a changeset containing changes to the tables attached to the
+** session object passed as the first argument. If successful,
+** set *ppChangeset to point to a buffer containing the changeset
+** and *pnChangeset to the size of the changeset in bytes before returning
+** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to
+** zero and return an SQLite error code.
+**
+** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes,
+** each representing a change to a single row of an attached table. An INSERT
+** change contains the values of each field of a new database row. A DELETE
+** contains the original values of each field of a deleted database row. An
+** UPDATE change contains the original values of each field of an updated
+** database row along with the updated values for each updated non-primary-key
+** column. It is not possible for an UPDATE change to represent a change that
+** modifies the values of primary key columns. If such a change is made, it
+** is represented in a changeset as a DELETE followed by an INSERT.
+**
+** Changes are not recorded for rows that have NULL values stored in one or
+** more of their PRIMARY KEY columns. If such a row is inserted or deleted,
+** no corresponding change is present in the changesets returned by this
+** function. If an existing row with one or more NULL values stored in
+** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL,
+** only an INSERT is appears in the changeset. Similarly, if an existing row
+** with non-NULL PRIMARY KEY values is updated so that one or more of its
+** PRIMARY KEY columns are set to NULL, the resulting changeset contains a
+** DELETE change only.
+**
+** The contents of a changeset may be traversed using an iterator created
+** using the [sqlite3changeset_start()] API. A changeset may be applied to
+** a database with a compatible schema using the [sqlite3changeset_apply()]
+** API.
+**
+** Within a changeset generated by this function, all changes related to a
+** single table are grouped together. In other words, when iterating through
+** a changeset or when applying a changeset to a database, all changes related
+** to a single table are processed before moving on to the next table. Tables
+** are sorted in the same order in which they were attached (or auto-attached)
+** to the sqlite3_session object. The order in which the changes related to
+** a single table are stored is undefined.
+**
+** Following a successful call to this function, it is the responsibility of
+** the caller to eventually free the buffer that *ppChangeset points to using
+** [sqlite3_free()].
+**
+** <h3>Changeset Generation</h3>
+**
+** Once a table has been attached to a session object, the session object
+** records the primary key values of all new rows inserted into the table.
+** It also records the original primary key and other column values of any
+** deleted or updated rows. For each unique primary key value, data is only
+** recorded once - the first time a row with said primary key is inserted,
+** updated or deleted in the lifetime of the session.
+**
+** There is one exception to the previous paragraph: when a row is inserted,
+** updated or deleted, if one or more of its primary key columns contain a
+** NULL value, no record of the change is made.
+**
+** The session object therefore accumulates two types of records - those
+** that consist of primary key values only (created when the user inserts
+** a new record) and those that consist of the primary key values and the
+** original values of other table columns (created when the users deletes
+** or updates a record).
+**
+** When this function is called, the requested changeset is created using
+** both the accumulated records and the current contents of the database
+** file. Specifically:
+**
+** <ul>
+** <li> For each record generated by an insert, the database is queried
+** for a row with a matching primary key. If one is found, an INSERT
+** change is added to the changeset. If no such row is found, no change
+** is added to the changeset.
+**
+** <li> For each record generated by an update or delete, the database is
+** queried for a row with a matching primary key. If such a row is
+** found and one or more of the non-primary key fields have been
+** modified from their original values, an UPDATE change is added to
+** the changeset. Or, if no such row is found in the table, a DELETE
+** change is added to the changeset. If there is a row with a matching
+** primary key in the database, but all fields contain their original
+** values, no change is added to the changeset.
+** </ul>
+**
+** This means, amongst other things, that if a row is inserted and then later
+** deleted while a session object is active, neither the insert nor the delete
+** will be present in the changeset. Or if a row is deleted and then later a
+** row with the same primary key values inserted while a session object is
+** active, the resulting changeset will contain an UPDATE change instead of
+** a DELETE and an INSERT.
+**
+** When a session object is disabled (see the [sqlite3session_enable()] API),
+** it does not accumulate records when rows are inserted, updated or deleted.
+** This may appear to have some counter-intuitive effects if a single row
+** is written to more than once during a session. For example, if a row
+** is inserted while a session object is enabled, then later deleted while
+** the same session object is disabled, no INSERT record will appear in the
+** changeset, even though the delete took place while the session was disabled.
+** Or, if one field of a row is updated while a session is disabled, and
+** another field of the same row is updated while the session is enabled, the
+** resulting changeset will contain an UPDATE change that updates both fields.
+*/
+SQLITE_API int sqlite3session_changeset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+);
+
+/*
+** CAPI3REF: Return An Upper-limit For The Size Of The Changeset
+** METHOD: sqlite3_session
+**
+** By default, this function always returns 0. For it to return
+** a useful result, the sqlite3_session object must have been configured
+** to enable this API using sqlite3session_object_config() with the
+** SQLITE_SESSION_OBJCONFIG_SIZE verb.
+**
+** When enabled, this function returns an upper limit, in bytes, for the size
+** of the changeset that might be produced if sqlite3session_changeset() were
+** called. The final changeset size might be equal to or smaller than the
+** size in bytes returned by this function.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Load The Difference Between Tables Into A Session
+** METHOD: sqlite3_session
+**
+** If it is not already attached to the session object passed as the first
+** argument, this function attaches table zTbl in the same manner as the
+** [sqlite3session_attach()] function. If zTbl does not exist, or if it
+** does not have a primary key, this function is a no-op (but does not return
+** an error).
+**
+** Argument zFromDb must be the name of a database ("main", "temp" etc.)
+** attached to the same database handle as the session object that contains
+** a table compatible with the table attached to the session by this function.
+** A table is considered compatible if it:
+**
+** <ul>
+** <li> Has the same name,
+** <li> Has the same set of columns declared in the same order, and
+** <li> Has the same PRIMARY KEY definition.
+** </ul>
+**
+** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables
+** are compatible but do not have any PRIMARY KEY columns, it is not an error
+** but no changes are added to the session object. As with other session
+** APIs, tables without PRIMARY KEYs are simply ignored.
+**
+** This function adds a set of changes to the session object that could be
+** used to update the table in database zFrom (call this the "from-table")
+** so that its content is the same as the table attached to the session
+** object (call this the "to-table"). Specifically:
+**
+** <ul>
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, an INSERT record is added to the session object.
+**
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, a DELETE record is added to the session object.
+**
+** <li> For each row (primary key) that exists in both tables, but features
+** different non-PK values in each, an UPDATE record is added to the
+** session.
+** </ul>
+**
+** To clarify, if this function is called and then a changeset constructed
+** using [sqlite3session_changeset()], then after applying that changeset to
+** database zFrom the contents of the two compatible tables would be
+** identical.
+**
+** It an error if database zFrom does not exist or does not contain the
+** required compatible table.
+**
+** If the operation is successful, SQLITE_OK is returned. Otherwise, an SQLite
+** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg
+** may be set to point to a buffer containing an English language error
+** message. It is the responsibility of the caller to free this buffer using
+** sqlite3_free().
+*/
+SQLITE_API int sqlite3session_diff(
+ sqlite3_session *pSession,
+ const char *zFromDb,
+ const char *zTbl,
+ char **pzErrMsg
+);
+
+
+/*
+** CAPI3REF: Generate A Patchset From A Session Object
+** METHOD: sqlite3_session
+**
+** The differences between a patchset and a changeset are that:
+**
+** <ul>
+** <li> DELETE records consist of the primary key fields only. The
+** original values of other fields are omitted.
+** <li> The original values of any modified fields are omitted from
+** UPDATE records.
+** </ul>
+**
+** A patchset blob may be used with up to date versions of all
+** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(),
+** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly,
+** attempting to use a patchset blob with old versions of the
+** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error.
+**
+** Because the non-primary key "old.*" fields are omitted, no
+** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset
+** is passed to the sqlite3changeset_apply() API. Other conflict types work
+** in the same way as for changesets.
+**
+** Changes within a patchset are ordered in the same way as for changesets
+** generated by the sqlite3session_changeset() function (i.e. all changes for
+** a single table are grouped together, tables appear in the order in which
+** they were attached to the session object).
+*/
+SQLITE_API int sqlite3session_patchset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnPatchset, /* OUT: Size of buffer at *ppPatchset */
+ void **ppPatchset /* OUT: Buffer containing patchset */
+);
+
+/*
+** CAPI3REF: Test if a changeset has recorded any changes.
+**
+** Return non-zero if no changes to attached tables have been recorded by
+** the session object passed as the first argument. Otherwise, if one or
+** more changes have been recorded, return zero.
+**
+** Even if this function returns zero, it is possible that calling
+** [sqlite3session_changeset()] on the session handle may still return a
+** changeset that contains no changes. This can happen when a row in
+** an attached table is modified and then later on the original values
+** are restored. However, if this function returns non-zero, then it is
+** guaranteed that a call to sqlite3session_changeset() will return a
+** changeset containing zero changes.
+*/
+SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Query for the amount of heap memory used by a session object.
+**
+** This API returns the total amount of heap memory in bytes currently
+** used by the session object passed as the only argument.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Create An Iterator To Traverse A Changeset
+** CONSTRUCTOR: sqlite3_changeset_iter
+**
+** Create an iterator used to iterate through the contents of a changeset.
+** If successful, *pp is set to point to the iterator handle and SQLITE_OK
+** is returned. Otherwise, if an error occurs, *pp is set to zero and an
+** SQLite error code is returned.
+**
+** The following functions can be used to advance and query a changeset
+** iterator created by this function:
+**
+** <ul>
+** <li> [sqlite3changeset_next()]
+** <li> [sqlite3changeset_op()]
+** <li> [sqlite3changeset_new()]
+** <li> [sqlite3changeset_old()]
+** </ul>
+**
+** It is the responsibility of the caller to eventually destroy the iterator
+** by passing it to [sqlite3changeset_finalize()]. The buffer containing the
+** changeset (pChangeset) must remain valid until after the iterator is
+** destroyed.
+**
+** Assuming the changeset blob was created by one of the
+** [sqlite3session_changeset()], [sqlite3changeset_concat()] or
+** [sqlite3changeset_invert()] functions, all changes within the changeset
+** that apply to a single table are grouped together. This means that when
+** an application iterates through a changeset using an iterator created by
+** this function, all changes that relate to a single table are visited
+** consecutively. There is no chance that the iterator will visit a change
+** the applies to table X, then one for table Y, and then later on visit
+** another change for table X.
+**
+** The behavior of sqlite3changeset_start_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter.
+**
+** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_start(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset /* Pointer to blob containing changeset */
+);
+SQLITE_API int sqlite3changeset_start_v2(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset, /* Pointer to blob containing changeset */
+ int flags /* SESSION_CHANGESETSTART_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_start_v2
+**
+** The following flags may passed via the 4th parameter to
+** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]:
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset while iterating through it. This is equivalent to
+** inverting a changeset using sqlite3changeset_invert() before applying it.
+** It is an error to specify this flag with a patchset.
+*/
+#define SQLITE_CHANGESETSTART_INVERT 0x0002
+
+
+/*
+** CAPI3REF: Advance A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be used with iterators created by the function
+** [sqlite3changeset_start()]. If it is called on an iterator passed to
+** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE
+** is returned and the call has no effect.
+**
+** Immediately after an iterator is created by sqlite3changeset_start(), it
+** does not point to any change in the changeset. Assuming the changeset
+** is not empty, the first call to this function advances the iterator to
+** point to the first change in the changeset. Each subsequent call advances
+** the iterator to point to the next change in the changeset (if any). If
+** no error occurs and the iterator points to a valid change after a call
+** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned.
+** Otherwise, if all changes in the changeset have already been visited,
+** SQLITE_DONE is returned.
+**
+** If an error occurs, an SQLite error code is returned. Possible error
+** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or
+** SQLITE_NOMEM.
+*/
+SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Obtain The Current Operation From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this
+** is not the case, this function returns [SQLITE_MISUSE].
+**
+** Arguments pOp, pnCol and pzTab may not be NULL. Upon return, three
+** outputs are set through these pointers:
+**
+** *pOp is set to one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the type of change that the iterator currently points to;
+**
+** *pnCol is set to the number of columns in the table affected by the change; and
+**
+** *pzTab is set to point to a nul-terminated utf-8 encoded string containing
+** the name of the table affected by the current change. The buffer remains
+** valid until either sqlite3changeset_next() is called on the iterator
+** or until the conflict-handler function returns.
+**
+** If pbIndirect is not NULL, then *pbIndirect is set to true (1) if the change
+** is an indirect change, or false (0) otherwise. See the documentation for
+** [sqlite3session_indirect()] for a description of direct and indirect
+** changes.
+**
+** If no error occurs, SQLITE_OK is returned. If an error does occur, an
+** SQLite error code is returned. The values of the output variables may not
+** be trusted in this case.
+*/
+SQLITE_API int sqlite3changeset_op(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ const char **pzTab, /* OUT: Pointer to table name */
+ int *pnCol, /* OUT: Number of columns in table */
+ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
+ int *pbIndirect /* OUT: True for an 'indirect' change */
+);
+
+/*
+** CAPI3REF: Obtain The Primary Key Definition Of A Table
+** METHOD: sqlite3_changeset_iter
+**
+** For each modified table, a changeset includes the following:
+**
+** <ul>
+** <li> The number of columns in the table, and
+** <li> Which of those columns make up the tables PRIMARY KEY.
+** </ul>
+**
+** This function is used to find which columns comprise the PRIMARY KEY of
+** the table modified by the change that iterator pIter currently points to.
+** If successful, *pabPK is set to point to an array of nCol entries, where
+** nCol is the number of columns in the table. Elements of *pabPK are set to
+** 0x01 if the corresponding column is part of the tables primary key, or
+** 0x00 if it is not.
+**
+** If argument pnCol is not NULL, then *pnCol is set to the number of columns
+** in the table.
+**
+** If this function is called when the iterator does not point to a valid
+** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise,
+** SQLITE_OK is returned and the output variables populated as described
+** above.
+*/
+SQLITE_API int sqlite3changeset_pk(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
+ int *pnCol /* OUT: Number of entries in output array */
+);
+
+/*
+** CAPI3REF: Obtain old.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** original row values stored as part of the UPDATE or DELETE change and
+** returns SQLITE_OK. The name of the function comes from the fact that this
+** is similar to the "old.*" columns available to update or delete triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_old(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain new.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** new row values stored as part of the UPDATE or INSERT change and
+** returns SQLITE_OK. If the change is an UPDATE and does not include
+** a new value for the requested column, *ppValue is set to NULL and
+** SQLITE_OK returned. The name of the function comes from the fact that
+** this is similar to the "new.*" columns available to update or delete
+** triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_new(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function should only be used with iterator objects passed to a
+** conflict-handler callback by [sqlite3changeset_apply()] with either
+** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function
+** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue
+** is set to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the
+** "conflicting row" associated with the current conflict-handler callback
+** and returns SQLITE_OK.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_conflict(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Value from conflicting row */
+);
+
+/*
+** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be called with an iterator passed to an
+** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
+** it sets the output variable to the total number of known foreign key
+** violations in the destination database and returns SQLITE_OK.
+**
+** In all other cases this function returns SQLITE_MISUSE.
+*/
+SQLITE_API int sqlite3changeset_fk_conflicts(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int *pnOut /* OUT: Number of FK violations */
+);
+
+
+/*
+** CAPI3REF: Finalize A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function is used to finalize an iterator allocated with
+** [sqlite3changeset_start()].
+**
+** This function should only be called on iterators created using the
+** [sqlite3changeset_start()] function. If an application calls this
+** function with an iterator passed to a conflict-handler by
+** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the
+** call has no effect.
+**
+** If an error was encountered within a call to an sqlite3changeset_xxx()
+** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an
+** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding
+** to that error is returned by this function. Otherwise, SQLITE_OK is
+** returned. This is to allow the following pattern (pseudo-code):
+**
+** <pre>
+** sqlite3changeset_start();
+** while( SQLITE_ROW==sqlite3changeset_next() ){
+** // Do something with change.
+** }
+** rc = sqlite3changeset_finalize();
+** if( rc!=SQLITE_OK ){
+** // An error has occurred
+** }
+** </pre>
+*/
+SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Invert A Changeset
+**
+** This function is used to "invert" a changeset object. Applying an inverted
+** changeset to a database reverses the effects of applying the uninverted
+** changeset. Specifically:
+**
+** <ul>
+** <li> Each DELETE change is changed to an INSERT, and
+** <li> Each INSERT change is changed to a DELETE, and
+** <li> For each UPDATE change, the old.* and new.* values are exchanged.
+** </ul>
+**
+** This function does not change the order in which changes appear within
+** the changeset. It merely reverses the sense of each individual change.
+**
+** If successful, a pointer to a buffer containing the inverted changeset
+** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and
+** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are
+** zeroed and an SQLite error code returned.
+**
+** It is the responsibility of the caller to eventually call sqlite3_free()
+** on the *ppOut pointer to free the buffer allocation following a successful
+** call to this function.
+**
+** WARNING/TODO: This function currently assumes that the input is a valid
+** changeset. If it is not, the results are undefined.
+*/
+SQLITE_API int sqlite3changeset_invert(
+ int nIn, const void *pIn, /* Input changeset */
+ int *pnOut, void **ppOut /* OUT: Inverse of input */
+);
+
+/*
+** CAPI3REF: Concatenate Two Changeset Objects
+**
+** This function is used to concatenate two changesets, A and B, into a
+** single changeset. The result is a changeset equivalent to applying
+** changeset A followed by changeset B.
+**
+** This function combines the two input changesets using an
+** sqlite3_changegroup object. Calling it produces similar results as the
+** following code fragment:
+**
+** <pre>
+** sqlite3_changegroup *pGrp;
+** rc = sqlite3_changegroup_new(&pGrp);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB);
+** if( rc==SQLITE_OK ){
+** rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
+** }else{
+** *ppOut = 0;
+** *pnOut = 0;
+** }
+** </pre>
+**
+** Refer to the sqlite3_changegroup documentation below for details.
+*/
+SQLITE_API int sqlite3changeset_concat(
+ int nA, /* Number of bytes in buffer pA */
+ void *pA, /* Pointer to buffer containing changeset A */
+ int nB, /* Number of bytes in buffer pB */
+ void *pB, /* Pointer to buffer containing changeset B */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: Buffer containing output changeset */
+);
+
+
+/*
+** CAPI3REF: Upgrade the Schema of a Changeset/Patchset
+*/
+SQLITE_API int sqlite3changeset_upgrade(
+ sqlite3 *db,
+ const char *zDb,
+ int nIn, const void *pIn, /* Input changeset */
+ int *pnOut, void **ppOut /* OUT: Inverse of input */
+);
+
+
+
+/*
+** CAPI3REF: Changegroup Handle
+**
+** A changegroup is an object used to combine two or more
+** [changesets] or [patchsets]
+*/
+typedef struct sqlite3_changegroup sqlite3_changegroup;
+
+/*
+** CAPI3REF: Create A New Changegroup Object
+** CONSTRUCTOR: sqlite3_changegroup
+**
+** An sqlite3_changegroup object is used to combine two or more changesets
+** (or patchsets) into a single changeset (or patchset). A single changegroup
+** object may combine changesets or patchsets, but not both. The output is
+** always in the same format as the input.
+**
+** If successful, this function returns SQLITE_OK and populates (*pp) with
+** a pointer to a new sqlite3_changegroup object before returning. The caller
+** should eventually free the returned object using a call to
+** sqlite3changegroup_delete(). If an error occurs, an SQLite error code
+** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL.
+**
+** The usual usage pattern for an sqlite3_changegroup object is as follows:
+**
+** <ul>
+** <li> It is created using a call to sqlite3changegroup_new().
+**
+** <li> Zero or more changesets (or patchsets) are added to the object
+** by calling sqlite3changegroup_add().
+**
+** <li> The result of combining all input changesets together is obtained
+** by the application via a call to sqlite3changegroup_output().
+**
+** <li> The object is deleted using a call to sqlite3changegroup_delete().
+** </ul>
+**
+** Any number of calls to add() and output() may be made between the calls to
+** new() and delete(), and in any order.
+**
+** As well as the regular sqlite3changegroup_add() and
+** sqlite3changegroup_output() functions, also available are the streaming
+** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
+*/
+SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp);
+
+/*
+** CAPI3REF: Add a Schema to a Changegroup
+** METHOD: sqlite3_changegroup_schema
+**
+** This method may be used to optionally enforce the rule that the changesets
+** added to the changegroup handle must match the schema of database zDb
+** ("main", "temp", or the name of an attached database). If
+** sqlite3changegroup_add() is called to add a changeset that is not compatible
+** with the configured schema, SQLITE_SCHEMA is returned and the changegroup
+** object is left in an undefined state.
+**
+** A changeset schema is considered compatible with the database schema in
+** the same way as for sqlite3changeset_apply(). Specifically, for each
+** table in the changeset, there exists a database table with:
+**
+** <ul>
+** <li> The name identified by the changeset, and
+** <li> at least as many columns as recorded in the changeset, and
+** <li> the primary key columns in the same position as recorded in
+** the changeset.
+** </ul>
+**
+** The output of the changegroup object always has the same schema as the
+** database nominated using this function. In cases where changesets passed
+** to sqlite3changegroup_add() have fewer columns than the corresponding table
+** in the database schema, these are filled in using the default column
+** values from the database schema. This makes it possible to combined
+** changesets that have different numbers of columns for a single table
+** within a changegroup, provided that they are otherwise compatible.
+*/
+SQLITE_API int sqlite3changegroup_schema(sqlite3_changegroup*, sqlite3*, const char *zDb);
+
+/*
+** CAPI3REF: Add A Changeset To A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Add all changes within the changeset (or patchset) in buffer pData (size
+** nData bytes) to the changegroup.
+**
+** If the buffer contains a patchset, then all prior calls to this function
+** on the same changegroup object must also have specified patchsets. Or, if
+** the buffer contains a changeset, so must have the earlier calls to this
+** function. Otherwise, SQLITE_ERROR is returned and no changes are added
+** to the changegroup.
+**
+** Rows within the changeset and changegroup are identified by the values in
+** their PRIMARY KEY columns. A change in the changeset is considered to
+** apply to the same row as a change already present in the changegroup if
+** the two rows have the same primary key.
+**
+** Changes to rows that do not already appear in the changegroup are
+** simply copied into it. Or, if both the new changeset and the changegroup
+** contain changes that apply to a single row, the final contents of the
+** changegroup depends on the type of each change, as follows:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th style="white-space:pre">Existing Change </th>
+** <th style="white-space:pre">New Change </th>
+** <th>Output Change
+** <tr><td>INSERT <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>INSERT <td>UPDATE <td>
+** The INSERT change remains in the changegroup. The values in the
+** INSERT change are modified as if the row was inserted by the
+** existing change and then updated according to the new change.
+** <tr><td>INSERT <td>DELETE <td>
+** The existing INSERT is removed from the changegroup. The DELETE is
+** not added.
+** <tr><td>UPDATE <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>UPDATE <td>UPDATE <td>
+** The existing UPDATE remains within the changegroup. It is amended
+** so that the accompanying values are as if the row was updated once
+** by the existing change and then again by the new change.
+** <tr><td>UPDATE <td>DELETE <td>
+** The existing UPDATE is replaced by the new DELETE within the
+** changegroup.
+** <tr><td>DELETE <td>INSERT <td>
+** If one or more of the column values in the row inserted by the
+** new change differ from those in the row deleted by the existing
+** change, the existing DELETE is replaced by an UPDATE within the
+** changegroup. Otherwise, if the inserted row is exactly the same
+** as the deleted row, the existing DELETE is simply discarded.
+** <tr><td>DELETE <td>UPDATE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>DELETE <td>DELETE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** </table>
+**
+** If the new changeset contains changes to a table that is already present
+** in the changegroup, then the number of columns and the position of the
+** primary key columns for the table must be consistent. If this is not the
+** case, this function fails with SQLITE_SCHEMA. Except, if the changegroup
+** object has been configured with a database schema using the
+** sqlite3changegroup_schema() API, then it is possible to combine changesets
+** with different numbers of columns for a single table, provided that
+** they are otherwise compatible.
+**
+** If the input changeset appears to be corrupt and the corruption is
+** detected, SQLITE_CORRUPT is returned. Or, if an out-of-memory condition
+** occurs during processing, this function returns SQLITE_NOMEM.
+**
+** In all cases, if an error occurs the state of the final contents of the
+** changegroup is undefined. If no error occurs, SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);
+
+/*
+** CAPI3REF: Obtain A Composite Changeset From A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Obtain a buffer containing a changeset (or patchset) representing the
+** current contents of the changegroup. If the inputs to the changegroup
+** were themselves changesets, the output is a changeset. Or, if the
+** inputs were patchsets, the output is also a patchset.
+**
+** As with the output of the sqlite3session_changeset() and
+** sqlite3session_patchset() functions, all changes related to a single
+** table are grouped together in the output of this function. Tables appear
+** in the same order as for the very first changeset added to the changegroup.
+** If the second or subsequent changesets added to the changegroup contain
+** changes for tables that do not appear in the first changeset, they are
+** appended onto the end of the output changeset, again in the order in
+** which they are first encountered.
+**
+** If an error occurs, an SQLite error code is returned and the output
+** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
+** is returned and the output variables are set to the size of and a
+** pointer to the output buffer, respectively. In this case it is the
+** responsibility of the caller to eventually free the buffer using a
+** call to sqlite3_free().
+*/
+SQLITE_API int sqlite3changegroup_output(
+ sqlite3_changegroup*,
+ int *pnData, /* OUT: Size of output buffer in bytes */
+ void **ppData /* OUT: Pointer to output buffer */
+);
+
+/*
+** CAPI3REF: Delete A Changegroup Object
+** DESTRUCTOR: sqlite3_changegroup
+*/
+SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*);
+
+/*
+** CAPI3REF: Apply A Changeset To A Database
+**
+** Apply a changeset or patchset to a database. These functions attempt to
+** update the "main" database attached to handle db with the changes found in
+** the changeset passed via the second and third arguments.
+**
+** The fourth argument (xFilter) passed to these functions is the "filter
+** callback". If it is not NULL, then for each table affected by at least one
+** change in the changeset, the filter callback is invoked with
+** the table name as the second argument, and a copy of the context pointer
+** passed as the sixth argument as the first. If the "filter callback"
+** returns zero, then no attempt is made to apply any changes to the table.
+** Otherwise, if the return value is non-zero or the xFilter argument to
+** is NULL, all changes related to the table are attempted.
+**
+** For each table that is not excluded by the filter callback, this function
+** tests that the target database contains a compatible table. A table is
+** considered compatible if all of the following are true:
+**
+** <ul>
+** <li> The table has the same name as the name recorded in the
+** changeset, and
+** <li> The table has at least as many columns as recorded in the
+** changeset, and
+** <li> The table has primary key columns in the same position as
+** recorded in the changeset.
+** </ul>
+**
+** If there is no compatible table, it is not an error, but none of the
+** changes associated with the table are applied. A warning message is issued
+** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most
+** one such warning is issued for each table in the changeset.
+**
+** For each change for which there is a compatible table, an attempt is made
+** to modify the table contents according to the UPDATE, INSERT or DELETE
+** change. If a change cannot be applied cleanly, the conflict handler
+** function passed as the fifth argument to sqlite3changeset_apply() may be
+** invoked. A description of exactly when the conflict handler is invoked for
+** each type of change is below.
+**
+** Unlike the xFilter argument, xConflict may not be passed NULL. The results
+** of passing anything other than a valid function pointer as the xConflict
+** argument are undefined.
+**
+** Each time the conflict handler function is invoked, it must return one
+** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or
+** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned
+** if the second argument passed to the conflict handler is either
+** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler
+** returns an illegal value, any changes already made are rolled back and
+** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different
+** actions are taken by sqlite3changeset_apply() depending on the value
+** returned by each invocation of the conflict-handler function. Refer to
+** the documentation for the three
+** [SQLITE_CHANGESET_OMIT|available return values] for details.
+**
+** <dl>
+** <dt>DELETE Changes<dd>
+** For each DELETE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all non-primary key columns also match the values stored in
+** the changeset the row is deleted from the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the non-primary key fields contains a value different from the original
+** row value stored in the changeset, the conflict-handler function is
+** invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the
+** database table has more columns than are recorded in the changeset,
+** only the values of those non-primary key fields are compared against
+** the current database contents - any trailing database table columns
+** are ignored.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
+** (which can only happen if a foreign key constraint is violated), the
+** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
+** passed as the second argument. This includes the case where the DELETE
+** operation is attempted because an earlier call to the conflict handler
+** function returned [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>INSERT Changes<dd>
+** For each INSERT change, an attempt is made to insert the new row into
+** the database. If the changeset row contains fewer fields than the
+** database table, the trailing fields are populated with their default
+** values.
+**
+** If the attempt to insert the row fails because the database already
+** contains a row with the same primary key values, the conflict handler
+** function is invoked with the second argument set to
+** [SQLITE_CHANGESET_CONFLICT].
+**
+** If the attempt to insert the row fails because of some other constraint
+** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is
+** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT].
+** This includes the case where the INSERT operation is re-attempted because
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>UPDATE Changes<dd>
+** For each UPDATE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all modified non-primary key columns also match the values
+** stored in the changeset the row is updated within the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the modified non-primary key fields contains a value different from an
+** original row value stored in the changeset, the conflict-handler function
+** is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
+** UPDATE changes only contain values for non-primary key fields that are
+** to be modified, only those fields need to match the original values to
+** avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the UPDATE operation is attempted, but SQLite returns
+** SQLITE_CONSTRAINT, the conflict-handler function is invoked with
+** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument.
+** This includes the case where the UPDATE operation is attempted after
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+** </dl>
+**
+** It is safe to execute SQL statements, including those that write to the
+** table that the callback related to, from within the xConflict callback.
+** This can be used to further customize the application's conflict
+** resolution strategy.
+**
+** All changes made by these functions are enclosed in a savepoint transaction.
+** If any other error (aside from a constraint failure when attempting to
+** write to the target database) occurs, then the savepoint transaction is
+** rolled back, restoring the target database to its original state, and an
+** SQLite error code returned.
+**
+** If the output parameters (ppRebase) and (pnRebase) are non-NULL and
+** the input is a changeset (not a patchset), then sqlite3changeset_apply_v2()
+** may set (*ppRebase) to point to a "rebase" that may be used with the
+** sqlite3_rebaser APIs buffer before returning. In this case (*pnRebase)
+** is set to the size of the buffer in bytes. It is the responsibility of the
+** caller to eventually free any such buffer using sqlite3_free(). The buffer
+** is only allocated and populated if one or more conflicts were encountered
+** while applying the patchset. See comments surrounding the sqlite3_rebaser
+** APIs for further details.
+**
+** The behavior of sqlite3changeset_apply_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETAPPLY_NOSAVEPOINT | supported flags] as the 9th parameter.
+**
+** Note that the sqlite3changeset_apply_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_apply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase, /* OUT: Rebase data */
+ int flags /* SESSION_CHANGESETAPPLY_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_apply_v2
+**
+** The following flags may passed via the 9th parameter to
+** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
+**
+** <dl>
+** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
+** Usually, the sessions module encloses all operations performed by
+** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
+** SAVEPOINT is committed if the changeset or patchset is successfully
+** applied, or rolled back if an error occurs. Specifying this flag
+** causes the sessions module to omit this savepoint. In this case, if the
+** caller has an open transaction or savepoint when apply_v2() is called,
+** it may revert the partially applied changeset by rolling it back.
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset before applying it. This is equivalent to inverting
+** a changeset using sqlite3changeset_invert() before applying it. It is
+** an error to specify this flag with a patchset.
+**
+** <dt>SQLITE_CHANGESETAPPLY_IGNORENOOP <dd>
+** Do not invoke the conflict handler callback for any changes that
+** would not actually modify the database even if they were applied.
+** Specifically, this means that the conflict handler is not invoked
+** for:
+** <ul>
+** <li>a delete change if the row being deleted cannot be found,
+** <li>an update change if the modified fields are already set to
+** their new values in the conflicting row, or
+** <li>an insert change if all fields of the conflicting row match
+** the row being inserted.
+** </ul>
+**
+** <dt>SQLITE_CHANGESETAPPLY_FKNOACTION <dd>
+** If this flag it set, then all foreign key constraints in the target
+** database behave as if they were declared with "ON UPDATE NO ACTION ON
+** DELETE NO ACTION", even if they are actually CASCADE, RESTRICT, SET NULL
+** or SET DEFAULT.
+*/
+#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001
+#define SQLITE_CHANGESETAPPLY_INVERT 0x0002
+#define SQLITE_CHANGESETAPPLY_IGNORENOOP 0x0004
+#define SQLITE_CHANGESETAPPLY_FKNOACTION 0x0008
+
+/*
+** CAPI3REF: Constants Passed To The Conflict Handler
+**
+** Values that may be passed as the second argument to a conflict-handler.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_DATA<dd>
+** The conflict handler is invoked with CHANGESET_DATA as the second argument
+** when processing a DELETE or UPDATE change if a row with the required
+** PRIMARY KEY fields is present in the database, but one or more other
+** (non primary-key) fields modified by the update do not contain the
+** expected "before" values.
+**
+** The conflicting row, in this case, is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_NOTFOUND<dd>
+** The conflict handler is invoked with CHANGESET_NOTFOUND as the second
+** argument when processing a DELETE or UPDATE change if a row with the
+** required PRIMARY KEY fields is not present in the database.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** <dt>SQLITE_CHANGESET_CONFLICT<dd>
+** CHANGESET_CONFLICT is passed as the second argument to the conflict
+** handler while processing an INSERT change if the operation would result
+** in duplicate primary key values.
+**
+** The conflicting row in this case is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_FOREIGN_KEY<dd>
+** If foreign key handling is enabled, and applying a changeset leaves the
+** database in a state containing foreign key violations, the conflict
+** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument
+** exactly once before the changeset is committed. If the conflict handler
+** returns CHANGESET_OMIT, the changes, including those that caused the
+** foreign key constraint violation, are committed. Or, if it returns
+** CHANGESET_ABORT, the changeset is rolled back.
+**
+** No current or conflicting row information is provided. The only function
+** it is possible to call on the supplied sqlite3_changeset_iter handle
+** is sqlite3changeset_fk_conflicts().
+**
+** <dt>SQLITE_CHANGESET_CONSTRAINT<dd>
+** If any other constraint violation occurs while applying a change (i.e.
+** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is
+** invoked with CHANGESET_CONSTRAINT as the second argument.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** </dl>
+*/
+#define SQLITE_CHANGESET_DATA 1
+#define SQLITE_CHANGESET_NOTFOUND 2
+#define SQLITE_CHANGESET_CONFLICT 3
+#define SQLITE_CHANGESET_CONSTRAINT 4
+#define SQLITE_CHANGESET_FOREIGN_KEY 5
+
+/*
+** CAPI3REF: Constants Returned By The Conflict Handler
+**
+** A conflict handler callback must return one of the following three values.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_OMIT<dd>
+** If a conflict handler returns this value no special action is taken. The
+** change that caused the conflict is not applied. The session module
+** continues to the next change in the changeset.
+**
+** <dt>SQLITE_CHANGESET_REPLACE<dd>
+** This value may only be returned if the second argument to the conflict
+** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this
+** is not the case, any changes applied so far are rolled back and the
+** call to sqlite3changeset_apply() returns SQLITE_MISUSE.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict
+** handler, then the conflicting row is either updated or deleted, depending
+** on the type of change.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict
+** handler, then the conflicting row is removed from the database and a
+** second attempt to apply the change is made. If this second attempt fails,
+** the original row is restored to the database before continuing.
+**
+** <dt>SQLITE_CHANGESET_ABORT<dd>
+** If this value is returned, any changes applied so far are rolled back
+** and the call to sqlite3changeset_apply() returns SQLITE_ABORT.
+** </dl>
+*/
+#define SQLITE_CHANGESET_OMIT 0
+#define SQLITE_CHANGESET_REPLACE 1
+#define SQLITE_CHANGESET_ABORT 2
+
+/*
+** CAPI3REF: Rebasing changesets
+** EXPERIMENTAL
+**
+** Suppose there is a site hosting a database in state S0. And that
+** modifications are made that move that database to state S1 and a
+** changeset recorded (the "local" changeset). Then, a changeset based
+** on S0 is received from another site (the "remote" changeset) and
+** applied to the database. The database is then in state
+** (S1+"remote"), where the exact state depends on any conflict
+** resolution decisions (OMIT or REPLACE) made while applying "remote".
+** Rebasing a changeset is to update it to take those conflict
+** resolution decisions into account, so that the same conflicts
+** do not have to be resolved elsewhere in the network.
+**
+** For example, if both the local and remote changesets contain an
+** INSERT of the same key on "CREATE TABLE t1(a PRIMARY KEY, b)":
+**
+** local: INSERT INTO t1 VALUES(1, 'v1');
+** remote: INSERT INTO t1 VALUES(1, 'v2');
+**
+** and the conflict resolution is REPLACE, then the INSERT change is
+** removed from the local changeset (it was overridden). Or, if the
+** conflict resolution was "OMIT", then the local changeset is modified
+** to instead contain:
+**
+** UPDATE t1 SET b = 'v2' WHERE a=1;
+**
+** Changes within the local changeset are rebased as follows:
+**
+** <dl>
+** <dt>Local INSERT<dd>
+** This may only conflict with a remote INSERT. If the conflict
+** resolution was OMIT, then add an UPDATE change to the rebased
+** changeset. Or, if the conflict resolution was REPLACE, add
+** nothing to the rebased changeset.
+**
+** <dt>Local DELETE<dd>
+** This may conflict with a remote UPDATE or DELETE. In both cases the
+** only possible resolution is OMIT. If the remote operation was a
+** DELETE, then add no change to the rebased changeset. If the remote
+** operation was an UPDATE, then the old.* fields of change are updated
+** to reflect the new.* values in the UPDATE.
+**
+** <dt>Local UPDATE<dd>
+** This may conflict with a remote UPDATE or DELETE. If it conflicts
+** with a DELETE, and the conflict resolution was OMIT, then the update
+** is changed into an INSERT. Any undefined values in the new.* record
+** from the update change are filled in using the old.* values from
+** the conflicting DELETE. Or, if the conflict resolution was REPLACE,
+** the UPDATE change is simply omitted from the rebased changeset.
+**
+** If conflict is with a remote UPDATE and the resolution is OMIT, then
+** the old.* values are rebased using the new.* values in the remote
+** change. Or, if the resolution is REPLACE, then the change is copied
+** into the rebased changeset with updates to columns also updated by
+** the conflicting remote UPDATE removed. If this means no columns would
+** be updated, the change is omitted.
+** </dl>
+**
+** A local change may be rebased against multiple remote changes
+** simultaneously. If a single key is modified by multiple remote
+** changesets, they are combined as follows before the local changeset
+** is rebased:
+**
+** <ul>
+** <li> If there has been one or more REPLACE resolutions on a
+** key, it is rebased according to a REPLACE.
+**
+** <li> If there have been no REPLACE resolutions on a key, then
+** the local changeset is rebased according to the most recent
+** of the OMIT resolutions.
+** </ul>
+**
+** Note that conflict resolutions from multiple remote changesets are
+** combined on a per-field basis, not per-row. This means that in the
+** case of multiple remote UPDATE operations, some fields of a single
+** local change may be rebased for REPLACE while others are rebased for
+** OMIT.
+**
+** In order to rebase a local changeset, the remote changeset must first
+** be applied to the local database using sqlite3changeset_apply_v2() and
+** the buffer of rebase information captured. Then:
+**
+** <ol>
+** <li> An sqlite3_rebaser object is created by calling
+** sqlite3rebaser_create().
+** <li> The new object is configured with the rebase buffer obtained from
+** sqlite3changeset_apply_v2() by calling sqlite3rebaser_configure().
+** If the local changeset is to be rebased against multiple remote
+** changesets, then sqlite3rebaser_configure() should be called
+** multiple times, in the same order that the multiple
+** sqlite3changeset_apply_v2() calls were made.
+** <li> Each local changeset is rebased by calling sqlite3rebaser_rebase().
+** <li> The sqlite3_rebaser object is deleted by calling
+** sqlite3rebaser_delete().
+** </ol>
+*/
+typedef struct sqlite3_rebaser sqlite3_rebaser;
+
+/*
+** CAPI3REF: Create a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Allocate a new changeset rebaser object. If successful, set (*ppNew) to
+** point to the new object and return SQLITE_OK. Otherwise, if an error
+** occurs, return an SQLite error code (e.g. SQLITE_NOMEM) and set (*ppNew)
+** to NULL.
+*/
+SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew);
+
+/*
+** CAPI3REF: Configure a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Configure the changeset rebaser object to rebase changesets according
+** to the conflict resolutions described by buffer pRebase (size nRebase
+** bytes), which must have been obtained from a previous call to
+** sqlite3changeset_apply_v2().
+*/
+SQLITE_API int sqlite3rebaser_configure(
+ sqlite3_rebaser*,
+ int nRebase, const void *pRebase
+);
+
+/*
+** CAPI3REF: Rebase a changeset
+** EXPERIMENTAL
+**
+** Argument pIn must point to a buffer containing a changeset nIn bytes
+** in size. This function allocates and populates a buffer with a copy
+** of the changeset rebased according to the configuration of the
+** rebaser object passed as the first argument. If successful, (*ppOut)
+** is set to point to the new buffer containing the rebased changeset and
+** (*pnOut) to its size in bytes and SQLITE_OK returned. It is the
+** responsibility of the caller to eventually free the new buffer using
+** sqlite3_free(). Otherwise, if an error occurs, (*ppOut) and (*pnOut)
+** are set to zero and an SQLite error code returned.
+*/
+SQLITE_API int sqlite3rebaser_rebase(
+ sqlite3_rebaser*,
+ int nIn, const void *pIn,
+ int *pnOut, void **ppOut
+);
+
+/*
+** CAPI3REF: Delete a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Delete the changeset rebaser object and all associated resources. There
+** should be one call to this function for each successful invocation
+** of sqlite3rebaser_create().
+*/
+SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p);
+
+/*
+** CAPI3REF: Streaming Versions of API functions.
+**
+** The six streaming API xxx_strm() functions serve similar purposes to the
+** corresponding non-streaming API functions:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th>Streaming function<th>Non-streaming equivalent</th>
+** <tr><td>sqlite3changeset_apply_strm<td>[sqlite3changeset_apply]
+** <tr><td>sqlite3changeset_apply_strm_v2<td>[sqlite3changeset_apply_v2]
+** <tr><td>sqlite3changeset_concat_strm<td>[sqlite3changeset_concat]
+** <tr><td>sqlite3changeset_invert_strm<td>[sqlite3changeset_invert]
+** <tr><td>sqlite3changeset_start_strm<td>[sqlite3changeset_start]
+** <tr><td>sqlite3session_changeset_strm<td>[sqlite3session_changeset]
+** <tr><td>sqlite3session_patchset_strm<td>[sqlite3session_patchset]
+** </table>
+**
+** Non-streaming functions that accept changesets (or patchsets) as input
+** require that the entire changeset be stored in a single buffer in memory.
+** Similarly, those that return a changeset or patchset do so by returning
+** a pointer to a single large buffer allocated using sqlite3_malloc().
+** Normally this is convenient. However, if an application running in a
+** low-memory environment is required to handle very large changesets, the
+** large contiguous memory allocations required can become onerous.
+**
+** In order to avoid this problem, instead of a single large buffer, input
+** is passed to a streaming API functions by way of a callback function that
+** the sessions module invokes to incrementally request input data as it is
+** required. In all cases, a pair of API function parameters such as
+**
+** <pre>
+** &nbsp; int nChangeset,
+** &nbsp; void *pChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xInput)(void *pIn, void *pData, int *pnData),
+** &nbsp; void *pIn,
+** </pre>
+**
+** Each time the xInput callback is invoked by the sessions module, the first
+** argument passed is a copy of the supplied pIn context pointer. The second
+** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no
+** error occurs the xInput method should copy up to (*pnData) bytes of data
+** into the buffer and set (*pnData) to the actual number of bytes copied
+** before returning SQLITE_OK. If the input is completely exhausted, (*pnData)
+** should be set to zero to indicate this. Or, if an error occurs, an SQLite
+** error code should be returned. In all cases, if an xInput callback returns
+** an error, all processing is abandoned and the streaming API function
+** returns a copy of the error code to the caller.
+**
+** In the case of sqlite3changeset_start_strm(), the xInput callback may be
+** invoked by the sessions module at any point during the lifetime of the
+** iterator. If such an xInput callback returns an error, the iterator enters
+** an error state, whereby all subsequent calls to iterator functions
+** immediately fail with the same error code as returned by xInput.
+**
+** Similarly, streaming API functions that return changesets (or patchsets)
+** return them in chunks by way of a callback function instead of via a
+** pointer to a single large buffer. In this case, a pair of parameters such
+** as:
+**
+** <pre>
+** &nbsp; int *pnChangeset,
+** &nbsp; void **ppChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xOutput)(void *pOut, const void *pData, int nData),
+** &nbsp; void *pOut
+** </pre>
+**
+** The xOutput callback is invoked zero or more times to return data to
+** the application. The first parameter passed to each call is a copy of the
+** pOut pointer supplied by the application. The second parameter, pData,
+** points to a buffer nData bytes in size containing the chunk of output
+** data being returned. If the xOutput callback successfully processes the
+** supplied data, it should return SQLITE_OK to indicate success. Otherwise,
+** it should return some other SQLite error code. In this case processing
+** is immediately abandoned and the streaming API function returns a copy
+** of the xOutput error code to the application.
+**
+** The sessions module never invokes an xOutput callback with the third
+** parameter set to a value less than or equal to zero. Other than this,
+** no guarantees are made as to the size of the chunks of data returned.
+*/
+SQLITE_API int sqlite3changeset_apply_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+);
+SQLITE_API int sqlite3changeset_concat_strm(
+ int (*xInputA)(void *pIn, void *pData, int *pnData),
+ void *pInA,
+ int (*xInputB)(void *pIn, void *pData, int *pnData),
+ void *pInB,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_invert_strm(
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_start_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changeset_start_v2_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int flags
+);
+SQLITE_API int sqlite3session_changeset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3session_patchset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3rebaser_rebase_strm(
+ sqlite3_rebaser *pRebaser,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+
+/*
+** CAPI3REF: Configure global parameters
+**
+** The sqlite3session_config() interface is used to make global configuration
+** changes to the sessions module in order to tune it to the specific needs
+** of the application.
+**
+** The sqlite3session_config() interface is not threadsafe. If it is invoked
+** while any other thread is inside any other sessions method then the
+** results are undefined. Furthermore, if it is invoked after any sessions
+** related objects have been created, the results are also undefined.
+**
+** The first argument to the sqlite3session_config() function must be one
+** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The
+** interpretation of the (void*) value passed as the second parameter and
+** the effect of calling this function depends on the value of the first
+** parameter.
+**
+** <dl>
+** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd>
+** By default, the sessions module streaming interfaces attempt to input
+** and output data in approximately 1 KiB chunks. This operand may be used
+** to set and query the value of this configuration setting. The pointer
+** passed as the second argument must point to a value of type (int).
+** If this value is greater than 0, it is used as the new streaming data
+** chunk size for both input and output. Before returning, the (int) value
+** pointed to by pArg is set to the final value of the streaming interface
+** chunk size.
+** </dl>
+**
+** This function returns SQLITE_OK if successful, or an SQLite error code
+** otherwise.
+*/
+SQLITE_API int sqlite3session_config(int op, void *pArg);
+
+/*
+** CAPI3REF: Values for sqlite3session_config().
+*/
+#define SQLITE_SESSION_CONFIG_STRMSIZE 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+}
+#endif
+
+#endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */
+
+/******** End of sqlite3session.h *********/
+/******** Begin file fts5.h *********/
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+
+#if 0
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. Returns SQLITE_OK if successful, or an error
+** code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. Any column filter that applies to
+** phrase iPhrase of the current query is included in $p. For each
+** row visited, the callback function passed as the fourth argument
+** is invoked. The context and API objects passed to the callback
+** function may be used to access the properties of each matched row.
+** Invoking Api.xUserData() returns a copy of the pointer passed as
+** the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension function's
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function,
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 2 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and initialize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, using
+** the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By querying the index for all synonyms of each query term
+** separately. In this case, when tokenizing query text, the
+** tokenizer may provide multiple synonyms for a single term
+** within the document. FTS5 then queries the index for each
+** synonym individually. For example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do so would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entries in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is substituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (3)) or query
+** text (method (2)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pUserData,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppUserData,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pUserData,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+/******** End of fts5.h *********/
+
+/************** End of sqlite3.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/*
+** Reuse the STATIC_LRU for mutex access to sqlite3_temp_directory.
+*/
+#define SQLITE_MUTEX_STATIC_TEMPDIR SQLITE_MUTEX_STATIC_VFS1
+
+/*
+** Include the configuration header output by 'configure' if we're using the
+** autoconf-based build
+*/
+#if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
+#include "sqlite_cfg.h"
+#define SQLITECONFIG_H 1
+#endif
+
+/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
+/************** Begin file sqliteLimit.h *************************************/
+/*
+** 2007 May 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file defines various limits of what SQLite can process.
+*/
+
+/*
+** The maximum length of a TEXT or BLOB in bytes. This also
+** limits the size of a row in a table or index.
+**
+** The hard limit is the ability of a 32-bit signed integer
+** to count the size: 2^31-1 or 2147483647.
+*/
+#ifndef SQLITE_MAX_LENGTH
+# define SQLITE_MAX_LENGTH 1000000000
+#endif
+
+/*
+** This is the maximum number of
+**
+** * Columns in a table
+** * Columns in an index
+** * Columns in a view
+** * Terms in the SET clause of an UPDATE statement
+** * Terms in the result set of a SELECT statement
+** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
+** * Terms in the VALUES clause of an INSERT statement
+**
+** The hard upper limit here is 32676. Most database people will
+** tell you that in a well-normalized database, you usually should
+** not have more than a dozen or so columns in any table. And if
+** that is the case, there is no point in having more than a few
+** dozen values in any of the other situations described above.
+*/
+#ifndef SQLITE_MAX_COLUMN
+# define SQLITE_MAX_COLUMN 2000
+#endif
+
+/*
+** The maximum length of a single SQL statement in bytes.
+**
+** It used to be the case that setting this value to zero would
+** turn the limit off. That is no longer true. It is not possible
+** to turn this limit off.
+*/
+#ifndef SQLITE_MAX_SQL_LENGTH
+# define SQLITE_MAX_SQL_LENGTH 1000000000
+#endif
+
+/*
+** The maximum depth of an expression tree. This is limited to
+** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
+** want to place more severe limits on the complexity of an
+** expression. A value of 0 means that there is no limit.
+*/
+#ifndef SQLITE_MAX_EXPR_DEPTH
+# define SQLITE_MAX_EXPR_DEPTH 1000
+#endif
+
+/*
+** The maximum number of terms in a compound SELECT statement.
+** The code generator for compound SELECT statements does one
+** level of recursion for each term. A stack overflow can result
+** if the number of terms is too large. In practice, most SQL
+** never has more than 3 or 4 terms. Use a value of 0 to disable
+** any limit on the number of terms in a compound SELECT.
+*/
+#ifndef SQLITE_MAX_COMPOUND_SELECT
+# define SQLITE_MAX_COMPOUND_SELECT 500
+#endif
+
+/*
+** The maximum number of opcodes in a VDBE program.
+** Not currently enforced.
+*/
+#ifndef SQLITE_MAX_VDBE_OP
+# define SQLITE_MAX_VDBE_OP 250000000
+#endif
+
+/*
+** The maximum number of arguments to an SQL function.
+*/
+#ifndef SQLITE_MAX_FUNCTION_ARG
+# define SQLITE_MAX_FUNCTION_ARG 127
+#endif
+
+/*
+** The suggested maximum number of in-memory pages to use for
+** the main database table and for temporary tables.
+**
+** IMPLEMENTATION-OF: R-30185-15359 The default suggested cache size is -2000,
+** which means the cache size is limited to 2048000 bytes of memory.
+** IMPLEMENTATION-OF: R-48205-43578 The default suggested cache size can be
+** altered using the SQLITE_DEFAULT_CACHE_SIZE compile-time options.
+*/
+#ifndef SQLITE_DEFAULT_CACHE_SIZE
+# define SQLITE_DEFAULT_CACHE_SIZE -2000
+#endif
+
+/*
+** The default number of frames to accumulate in the log file before
+** checkpointing the database in WAL mode.
+*/
+#ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
+# define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000
+#endif
+
+/*
+** The maximum number of attached databases. This must be between 0
+** and 125. The upper bound of 125 is because the attached databases are
+** counted using a signed 8-bit integer which has a maximum value of 127
+** and we have to allow 2 extra counts for the "main" and "temp" databases.
+*/
+#ifndef SQLITE_MAX_ATTACHED
+# define SQLITE_MAX_ATTACHED 10
+#endif
+
+
+/*
+** The maximum value of a ?nnn wildcard that the parser will accept.
+** If the value exceeds 32767 then extra space is required for the Expr
+** structure. But otherwise, we believe that the number can be as large
+** as a signed 32-bit integer can hold.
+*/
+#ifndef SQLITE_MAX_VARIABLE_NUMBER
+# define SQLITE_MAX_VARIABLE_NUMBER 32766
+#endif
+
+/* Maximum page size. The upper bound on this value is 65536. This a limit
+** imposed by the use of 16-bit offsets within each page.
+**
+** Earlier versions of SQLite allowed the user to change this value at
+** compile time. This is no longer permitted, on the grounds that it creates
+** a library that is technically incompatible with an SQLite library
+** compiled with a different limit. If a process operating on a database
+** with a page-size of 65536 bytes crashes, then an instance of SQLite
+** compiled with the default page-size limit will not be able to rollback
+** the aborted transaction. This could lead to database corruption.
+*/
+#ifdef SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_PAGE_SIZE
+#endif
+#define SQLITE_MAX_PAGE_SIZE 65536
+
+
+/*
+** The default size of a database page.
+*/
+#ifndef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE 4096
+#endif
+#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+/*
+** Ordinarily, if no value is explicitly provided, SQLite creates databases
+** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
+** device characteristics (sector-size and atomic write() support),
+** SQLite may choose a larger value. This constant is the maximum value
+** SQLite will choose on its own.
+*/
+#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
+#endif
+#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+
+/*
+** Maximum number of pages in one database file.
+**
+** This is really just the default value for the max_page_count pragma.
+** This value can be lowered (or raised) at run-time using that the
+** max_page_count macro.
+*/
+#ifndef SQLITE_MAX_PAGE_COUNT
+# define SQLITE_MAX_PAGE_COUNT 1073741823
+#endif
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Maximum depth of recursion for triggers.
+**
+** A value of 1 means that a trigger program will not be able to itself
+** fire any triggers. A value of 0 means that no trigger programs at all
+** may be executed.
+*/
+#ifndef SQLITE_MAX_TRIGGER_DEPTH
+# define SQLITE_MAX_TRIGGER_DEPTH 1000
+#endif
+
+/************** End of sqliteLimit.h *****************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/* Disable nuisance warnings on Borland compilers */
+#if defined(__BORLANDC__)
+#pragma warn -rch /* unreachable code */
+#pragma warn -ccc /* Condition is always true or false */
+#pragma warn -aus /* Assigned value is never used */
+#pragma warn -csu /* Comparing signed and unsigned */
+#pragma warn -spa /* Suspicious pointer arithmetic */
+#endif
+
+/*
+** A few places in the code require atomic load/store of aligned
+** integer values.
+*/
+#ifndef __has_extension
+# define __has_extension(x) 0 /* compatibility with non-clang compilers */
+#endif
+#if GCC_VERSION>=4007000 || __has_extension(c_atomic)
+# define SQLITE_ATOMIC_INTRINSICS 1
+# define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED)
+# define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
+#else
+# define SQLITE_ATOMIC_INTRINSICS 0
+# define AtomicLoad(PTR) (*(PTR))
+# define AtomicStore(PTR,VAL) (*(PTR) = (VAL))
+#endif
+
+/*
+** Include standard header files as necessary
+*/
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#endif
+#ifdef HAVE_INTTYPES_H
+#include <inttypes.h>
+#endif
+
+/*
+** The following macros are used to cast pointers to integers and
+** integers to pointers. The way you do this varies from one compiler
+** to the next, so we have developed the following set of #if statements
+** to generate appropriate macros for a wide range of compilers.
+**
+** The correct "ANSI" way to do this is to use the intptr_t type.
+** Unfortunately, that typedef is not available on all compilers, or
+** if it is available, it requires an #include of specific headers
+** that vary from one machine to the next.
+**
+** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
+** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
+** So we have to define the macros in different ways depending on the
+** compiler.
+*/
+#if defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
+# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
+#elif defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
+# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
+#elif !defined(__GNUC__) /* Works for compilers other than LLVM */
+# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
+# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
+#else /* Generates a warning - but it always works */
+# define SQLITE_INT_TO_PTR(X) ((void*)(X))
+# define SQLITE_PTR_TO_INT(X) ((int)(X))
+#endif
+
+/*
+** Macros to hint to the compiler that a function should or should not be
+** inlined.
+*/
+#if defined(__GNUC__)
+# define SQLITE_NOINLINE __attribute__((noinline))
+# define SQLITE_INLINE __attribute__((always_inline)) inline
+#elif defined(_MSC_VER) && _MSC_VER>=1310
+# define SQLITE_NOINLINE __declspec(noinline)
+# define SQLITE_INLINE __forceinline
+#else
+# define SQLITE_NOINLINE
+# define SQLITE_INLINE
+#endif
+#if defined(SQLITE_COVERAGE_TEST) || defined(__STRICT_ANSI__)
+# undef SQLITE_INLINE
+# define SQLITE_INLINE
+#endif
+
+/*
+** Make sure that the compiler intrinsics we desire are enabled when
+** compiling with an appropriate version of MSVC unless prevented by
+** the SQLITE_DISABLE_INTRINSIC define.
+*/
+#if !defined(SQLITE_DISABLE_INTRINSIC)
+# if defined(_MSC_VER) && _MSC_VER>=1400
+# if !defined(_WIN32_WCE)
+# include <intrin.h>
+# pragma intrinsic(_byteswap_ushort)
+# pragma intrinsic(_byteswap_ulong)
+# pragma intrinsic(_byteswap_uint64)
+# pragma intrinsic(_ReadWriteBarrier)
+# else
+# include <cmnintrin.h>
+# endif
+# endif
+#endif
+
+/*
+** Enable SQLITE_USE_SEH by default on MSVC builds. Only omit
+** SEH support if the -DSQLITE_OMIT_SEH option is given.
+*/
+#if defined(_MSC_VER) && !defined(SQLITE_OMIT_SEH)
+# define SQLITE_USE_SEH 1
+#else
+# undef SQLITE_USE_SEH
+#endif
+
+/*
+** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
+** 0 means mutexes are permanently disable and the library is never
+** threadsafe. 1 means the library is serialized which is the highest
+** level of threadsafety. 2 means the library is multithreaded - multiple
+** threads can use SQLite as long as no two threads try to use the same
+** database connection at the same time.
+**
+** Older versions of SQLite used an optional THREADSAFE macro.
+** We support that for legacy.
+**
+** To ensure that the correct value of "THREADSAFE" is reported when querying
+** for compile-time options at runtime (e.g. "PRAGMA compile_options"), this
+** logic is partially replicated in ctime.c. If it is updated here, it should
+** also be updated there.
+*/
+#if !defined(SQLITE_THREADSAFE)
+# if defined(THREADSAFE)
+# define SQLITE_THREADSAFE THREADSAFE
+# else
+# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
+# endif
+#endif
+
+/*
+** Powersafe overwrite is on by default. But can be turned off using
+** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
+*/
+#ifndef SQLITE_POWERSAFE_OVERWRITE
+# define SQLITE_POWERSAFE_OVERWRITE 1
+#endif
+
+/*
+** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
+** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
+** which case memory allocation statistics are disabled by default.
+*/
+#if !defined(SQLITE_DEFAULT_MEMSTATUS)
+# define SQLITE_DEFAULT_MEMSTATUS 1
+#endif
+
+/*
+** Exactly one of the following macros must be defined in order to
+** specify which memory allocation subsystem to use.
+**
+** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
+** SQLITE_WIN32_MALLOC // Use Win32 native heap API
+** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails
+** SQLITE_MEMDEBUG // Debugging version of system malloc()
+**
+** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
+** assert() macro is enabled, each call into the Win32 native heap subsystem
+** will cause HeapValidate to be called. If heap validation should fail, an
+** assertion will be triggered.
+**
+** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
+** the default.
+*/
+#if defined(SQLITE_SYSTEM_MALLOC) \
+ + defined(SQLITE_WIN32_MALLOC) \
+ + defined(SQLITE_ZERO_MALLOC) \
+ + defined(SQLITE_MEMDEBUG)>1
+# error "Two or more of the following compile-time configuration options\
+ are defined but at most one is allowed:\
+ SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
+ SQLITE_ZERO_MALLOC"
+#endif
+#if defined(SQLITE_SYSTEM_MALLOC) \
+ + defined(SQLITE_WIN32_MALLOC) \
+ + defined(SQLITE_ZERO_MALLOC) \
+ + defined(SQLITE_MEMDEBUG)==0
+# define SQLITE_SYSTEM_MALLOC 1
+#endif
+
+/*
+** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
+** sizes of memory allocations below this value where possible.
+*/
+#if !defined(SQLITE_MALLOC_SOFT_LIMIT)
+# define SQLITE_MALLOC_SOFT_LIMIT 1024
+#endif
+
+/*
+** We need to define _XOPEN_SOURCE as follows in order to enable
+** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
+** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
+** it.
+*/
+#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
+# define _XOPEN_SOURCE 600
+#endif
+
+/*
+** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that
+** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true,
+** make it true by defining or undefining NDEBUG.
+**
+** Setting NDEBUG makes the code smaller and faster by disabling the
+** assert() statements in the code. So we want the default action
+** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
+** is set. Thus NDEBUG becomes an opt-in rather than an opt-out
+** feature.
+*/
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+
+/*
+** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
+*/
+#if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
+# define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
+#endif
+
+/*
+** The testcase() macro is used to aid in coverage testing. When
+** doing coverage testing, the condition inside the argument to
+** testcase() must be evaluated both true and false in order to
+** get full branch coverage. The testcase() macro is inserted
+** to help ensure adequate test coverage in places where simple
+** condition/decision coverage is inadequate. For example, testcase()
+** can be used to make sure boundary values are tested. For
+** bitmask tests, testcase() can be used to make sure each bit
+** is significant and used at least once. On switch statements
+** where multiple cases go to the same block of code, testcase()
+** can insure that all cases are evaluated.
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+# ifndef SQLITE_AMALGAMATION
+ extern unsigned int sqlite3CoverageCounter;
+# endif
+# define testcase(X) if( X ){ sqlite3CoverageCounter += (unsigned)__LINE__; }
+#else
+# define testcase(X)
+#endif
+
+/*
+** The TESTONLY macro is used to enclose variable declarations or
+** other bits of code that are needed to support the arguments
+** within testcase() and assert() macros.
+*/
+#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
+# define TESTONLY(X) X
+#else
+# define TESTONLY(X)
+#endif
+
+/*
+** Sometimes we need a small amount of code such as a variable initialization
+** to setup for a later assert() statement. We do not want this code to
+** appear when assert() is disabled. The following macro is therefore
+** used to contain that setup code. The "VVA" acronym stands for
+** "Verification, Validation, and Accreditation". In other words, the
+** code within VVA_ONLY() will only run during verification processes.
+*/
+#ifndef NDEBUG
+# define VVA_ONLY(X) X
+#else
+# define VVA_ONLY(X)
+#endif
+
+/*
+** Disable ALWAYS() and NEVER() (make them pass-throughs) for coverage
+** and mutation testing
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+
+/*
+** The ALWAYS and NEVER macros surround boolean expressions which
+** are intended to always be true or false, respectively. Such
+** expressions could be omitted from the code completely. But they
+** are included in a few cases in order to enhance the resilience
+** of SQLite to unexpected behavior - to make the code "self-healing"
+** or "ductile" rather than being "brittle" and crashing at the first
+** hint of unplanned behavior.
+**
+** In other words, ALWAYS and NEVER are added for defensive code.
+**
+** When doing coverage testing ALWAYS and NEVER are hard-coded to
+** be true and false so that the unreachable code they specify will
+** not be counted as untested code.
+*/
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+/*
+** Some conditionals are optimizations only. In other words, if the
+** conditionals are replaced with a constant 1 (true) or 0 (false) then
+** the correct answer is still obtained, though perhaps not as quickly.
+**
+** The following macros mark these optimizations conditionals.
+*/
+#if defined(SQLITE_MUTATION_TEST)
+# define OK_IF_ALWAYS_TRUE(X) (1)
+# define OK_IF_ALWAYS_FALSE(X) (0)
+#else
+# define OK_IF_ALWAYS_TRUE(X) (X)
+# define OK_IF_ALWAYS_FALSE(X) (X)
+#endif
+
+/*
+** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is
+** defined. We need to defend against those failures when testing with
+** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches
+** during a normal build. The following macro can be used to disable tests
+** that are always false except when SQLITE_TEST_REALLOC_STRESS is set.
+*/
+#if defined(SQLITE_TEST_REALLOC_STRESS)
+# define ONLY_IF_REALLOC_STRESS(X) (X)
+#elif !defined(NDEBUG)
+# define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0)
+#else
+# define ONLY_IF_REALLOC_STRESS(X) (0)
+#endif
+
+/*
+** Declarations used for tracing the operating system interfaces.
+*/
+#if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
+ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
+ extern int sqlite3OSTrace;
+# define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X
+# define SQLITE_HAVE_OS_TRACE
+#else
+# define OSTRACE(X)
+# undef SQLITE_HAVE_OS_TRACE
+#endif
+
+/*
+** Is the sqlite3ErrName() function needed in the build? Currently,
+** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
+** OSTRACE is enabled), and by several "test*.c" files (which are
+** compiled using SQLITE_TEST).
+*/
+#if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
+ (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
+# define SQLITE_NEED_ERR_NAME
+#else
+# undef SQLITE_NEED_ERR_NAME
+#endif
+
+/*
+** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN
+*/
+#ifdef SQLITE_OMIT_EXPLAIN
+# undef SQLITE_ENABLE_EXPLAIN_COMMENTS
+#endif
+
+/*
+** SQLITE_OMIT_VIRTUALTABLE implies SQLITE_OMIT_ALTERTABLE
+*/
+#if defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_ALTERTABLE)
+# define SQLITE_OMIT_ALTERTABLE
+#endif
+
+/*
+** Return true (non-zero) if the input is an integer that is too large
+** to fit in 32-bits. This macro is used inside of various testcase()
+** macros to verify that we have tested SQLite for large-file support.
+*/
+#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0)
+
+/*
+** The macro unlikely() is a hint that surrounds a boolean
+** expression that is usually false. Macro likely() surrounds
+** a boolean expression that is usually true. These hints could,
+** in theory, be used by the compiler to generate better code, but
+** currently they are just comments for human readers.
+*/
+#define likely(X) (X)
+#define unlikely(X) (X)
+
+/************** Include hash.h in the middle of sqliteInt.h ******************/
+/************** Begin file hash.h ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implementation
+** used in SQLite.
+*/
+#ifndef SQLITE_HASH_H
+#define SQLITE_HASH_H
+
+/* Forward declarations of structures. */
+typedef struct Hash Hash;
+typedef struct HashElem HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, some of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+**
+** All elements of the hash table are on a single doubly-linked list.
+** Hash.first points to the head of this list.
+**
+** There are Hash.htsize buckets. Each bucket points to a spot in
+** the global doubly-linked list. The contents of the bucket are the
+** element pointed to plus the next _ht.count-1 elements in the list.
+**
+** Hash.htsize and Hash.ht may be zero. In that case lookup is done
+** by a linear search of the global list. For small tables, the
+** Hash.ht table is never allocated because if there are few elements
+** in the table, it is faster to do a linear search than to manage
+** the hash table.
+*/
+struct Hash {
+ unsigned int htsize; /* Number of buckets in the hash table */
+ unsigned int count; /* Number of entries in this table */
+ HashElem *first; /* The first element of the array */
+ struct _ht { /* the hash table */
+ unsigned int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct HashElem {
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ const char *pKey; /* Key associated with this element */
+};
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash*);
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, void *pData);
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey);
+SQLITE_PRIVATE void sqlite3HashClear(Hash*);
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Hash h;
+** HashElem *p;
+** ...
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
+** SomeStructure *pData = sqliteHashData(p);
+** // do something with pData
+** }
+*/
+#define sqliteHashFirst(H) ((H)->first)
+#define sqliteHashNext(E) ((E)->next)
+#define sqliteHashData(E) ((E)->data)
+/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */
+/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */
+
+/*
+** Number of entries in a hash table
+*/
+#define sqliteHashCount(H) ((H)->count)
+
+#endif /* SQLITE_HASH_H */
+
+/************** End of hash.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include parse.h in the middle of sqliteInt.h *****************/
+/************** Begin file parse.h *******************************************/
+#define TK_SEMI 1
+#define TK_EXPLAIN 2
+#define TK_QUERY 3
+#define TK_PLAN 4
+#define TK_BEGIN 5
+#define TK_TRANSACTION 6
+#define TK_DEFERRED 7
+#define TK_IMMEDIATE 8
+#define TK_EXCLUSIVE 9
+#define TK_COMMIT 10
+#define TK_END 11
+#define TK_ROLLBACK 12
+#define TK_SAVEPOINT 13
+#define TK_RELEASE 14
+#define TK_TO 15
+#define TK_TABLE 16
+#define TK_CREATE 17
+#define TK_IF 18
+#define TK_NOT 19
+#define TK_EXISTS 20
+#define TK_TEMP 21
+#define TK_LP 22
+#define TK_RP 23
+#define TK_AS 24
+#define TK_COMMA 25
+#define TK_WITHOUT 26
+#define TK_ABORT 27
+#define TK_ACTION 28
+#define TK_AFTER 29
+#define TK_ANALYZE 30
+#define TK_ASC 31
+#define TK_ATTACH 32
+#define TK_BEFORE 33
+#define TK_BY 34
+#define TK_CASCADE 35
+#define TK_CAST 36
+#define TK_CONFLICT 37
+#define TK_DATABASE 38
+#define TK_DESC 39
+#define TK_DETACH 40
+#define TK_EACH 41
+#define TK_FAIL 42
+#define TK_OR 43
+#define TK_AND 44
+#define TK_IS 45
+#define TK_MATCH 46
+#define TK_LIKE_KW 47
+#define TK_BETWEEN 48
+#define TK_IN 49
+#define TK_ISNULL 50
+#define TK_NOTNULL 51
+#define TK_NE 52
+#define TK_EQ 53
+#define TK_GT 54
+#define TK_LE 55
+#define TK_LT 56
+#define TK_GE 57
+#define TK_ESCAPE 58
+#define TK_ID 59
+#define TK_COLUMNKW 60
+#define TK_DO 61
+#define TK_FOR 62
+#define TK_IGNORE 63
+#define TK_INITIALLY 64
+#define TK_INSTEAD 65
+#define TK_NO 66
+#define TK_KEY 67
+#define TK_OF 68
+#define TK_OFFSET 69
+#define TK_PRAGMA 70
+#define TK_RAISE 71
+#define TK_RECURSIVE 72
+#define TK_REPLACE 73
+#define TK_RESTRICT 74
+#define TK_ROW 75
+#define TK_ROWS 76
+#define TK_TRIGGER 77
+#define TK_VACUUM 78
+#define TK_VIEW 79
+#define TK_VIRTUAL 80
+#define TK_WITH 81
+#define TK_NULLS 82
+#define TK_FIRST 83
+#define TK_LAST 84
+#define TK_CURRENT 85
+#define TK_FOLLOWING 86
+#define TK_PARTITION 87
+#define TK_PRECEDING 88
+#define TK_RANGE 89
+#define TK_UNBOUNDED 90
+#define TK_EXCLUDE 91
+#define TK_GROUPS 92
+#define TK_OTHERS 93
+#define TK_TIES 94
+#define TK_GENERATED 95
+#define TK_ALWAYS 96
+#define TK_MATERIALIZED 97
+#define TK_REINDEX 98
+#define TK_RENAME 99
+#define TK_CTIME_KW 100
+#define TK_ANY 101
+#define TK_BITAND 102
+#define TK_BITOR 103
+#define TK_LSHIFT 104
+#define TK_RSHIFT 105
+#define TK_PLUS 106
+#define TK_MINUS 107
+#define TK_STAR 108
+#define TK_SLASH 109
+#define TK_REM 110
+#define TK_CONCAT 111
+#define TK_PTR 112
+#define TK_COLLATE 113
+#define TK_BITNOT 114
+#define TK_ON 115
+#define TK_INDEXED 116
+#define TK_STRING 117
+#define TK_JOIN_KW 118
+#define TK_CONSTRAINT 119
+#define TK_DEFAULT 120
+#define TK_NULL 121
+#define TK_PRIMARY 122
+#define TK_UNIQUE 123
+#define TK_CHECK 124
+#define TK_REFERENCES 125
+#define TK_AUTOINCR 126
+#define TK_INSERT 127
+#define TK_DELETE 128
+#define TK_UPDATE 129
+#define TK_SET 130
+#define TK_DEFERRABLE 131
+#define TK_FOREIGN 132
+#define TK_DROP 133
+#define TK_UNION 134
+#define TK_ALL 135
+#define TK_EXCEPT 136
+#define TK_INTERSECT 137
+#define TK_SELECT 138
+#define TK_VALUES 139
+#define TK_DISTINCT 140
+#define TK_DOT 141
+#define TK_FROM 142
+#define TK_JOIN 143
+#define TK_USING 144
+#define TK_ORDER 145
+#define TK_GROUP 146
+#define TK_HAVING 147
+#define TK_LIMIT 148
+#define TK_WHERE 149
+#define TK_RETURNING 150
+#define TK_INTO 151
+#define TK_NOTHING 152
+#define TK_FLOAT 153
+#define TK_BLOB 154
+#define TK_INTEGER 155
+#define TK_VARIABLE 156
+#define TK_CASE 157
+#define TK_WHEN 158
+#define TK_THEN 159
+#define TK_ELSE 160
+#define TK_INDEX 161
+#define TK_ALTER 162
+#define TK_ADD 163
+#define TK_WINDOW 164
+#define TK_OVER 165
+#define TK_FILTER 166
+#define TK_COLUMN 167
+#define TK_AGG_FUNCTION 168
+#define TK_AGG_COLUMN 169
+#define TK_TRUEFALSE 170
+#define TK_ISNOT 171
+#define TK_FUNCTION 172
+#define TK_UMINUS 173
+#define TK_UPLUS 174
+#define TK_TRUTH 175
+#define TK_REGISTER 176
+#define TK_VECTOR 177
+#define TK_SELECT_COLUMN 178
+#define TK_IF_NULL_ROW 179
+#define TK_ASTERISK 180
+#define TK_SPAN 181
+#define TK_ERROR 182
+#define TK_SPACE 183
+#define TK_ILLEGAL 184
+
+/************** End of parse.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <stddef.h>
+
+/*
+** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY.
+** This allows better measurements of where memcpy() is used when running
+** cachegrind. But this macro version of memcpy() is very slow so it
+** should not be used in production. This is a performance measurement
+** hack only.
+*/
+#ifdef SQLITE_INLINE_MEMCPY
+# define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\
+ int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);}
+#endif
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite_int64
+# define float sqlite_int64
+# define LONGDOUBLE_TYPE sqlite_int64
+# ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
+# endif
+# define SQLITE_OMIT_DATETIME_FUNCS 1
+# define SQLITE_OMIT_TRACE 1
+# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+# undef SQLITE_HAVE_ISNAN
+#endif
+#ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (1e99)
+#endif
+
+/*
+** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
+** afterward. Having this macro allows us to cause the C compiler
+** to omit code used by TEMP tables without messy #ifndef statements.
+*/
+#ifdef SQLITE_OMIT_TEMPDB
+#define OMIT_TEMPDB 1
+#else
+#define OMIT_TEMPDB 0
+#endif
+
+/*
+** The "file format" number is an integer that is incremented whenever
+** the VDBE-level file format changes. The following macros define the
+** the default file format for new databases and the maximum file format
+** that the library can read.
+*/
+#define SQLITE_MAX_FILE_FORMAT 4
+#ifndef SQLITE_DEFAULT_FILE_FORMAT
+# define SQLITE_DEFAULT_FILE_FORMAT 4
+#endif
+
+/*
+** Determine whether triggers are recursive by default. This can be
+** changed at run-time using a pragma.
+*/
+#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
+#endif
+
+/*
+** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
+** on the command-line
+*/
+#ifndef SQLITE_TEMP_STORE
+# define SQLITE_TEMP_STORE 1
+#endif
+
+/*
+** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
+** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
+** to zero.
+*/
+#if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
+# undef SQLITE_MAX_WORKER_THREADS
+# define SQLITE_MAX_WORKER_THREADS 0
+#endif
+#ifndef SQLITE_MAX_WORKER_THREADS
+# define SQLITE_MAX_WORKER_THREADS 8
+#endif
+#ifndef SQLITE_DEFAULT_WORKER_THREADS
+# define SQLITE_DEFAULT_WORKER_THREADS 0
+#endif
+#if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
+# undef SQLITE_MAX_WORKER_THREADS
+# define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
+#endif
+
+/*
+** The default initial allocation for the pagecache when using separate
+** pagecaches for each database connection. A positive number is the
+** number of pages. A negative number N translations means that a buffer
+** of -1024*N bytes is allocated and used for as many pages as it will hold.
+**
+** The default value of "20" was chosen to minimize the run-time of the
+** speedtest1 test program with options: --shrink-memory --reprepare
+*/
+#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
+# define SQLITE_DEFAULT_PCACHE_INITSZ 20
+#endif
+
+/*
+** Default value for the SQLITE_CONFIG_SORTERREF_SIZE option.
+*/
+#ifndef SQLITE_DEFAULT_SORTERREF_SIZE
+# define SQLITE_DEFAULT_SORTERREF_SIZE 0x7fffffff
+#endif
+
+/*
+** The compile-time options SQLITE_MMAP_READWRITE and
+** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another.
+** You must choose one or the other (or neither) but not both.
+*/
+#if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+#error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+#endif
+
+/*
+** GCC does not define the offsetof() macro so we'll have to do it
+** ourselves.
+*/
+#ifndef offsetof
+#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
+#endif
+
+/*
+** Macros to compute minimum and maximum of two numbers.
+*/
+#ifndef MIN
+# define MIN(A,B) ((A)<(B)?(A):(B))
+#endif
+#ifndef MAX
+# define MAX(A,B) ((A)>(B)?(A):(B))
+#endif
+
+/*
+** Swap two objects of type TYPE.
+*/
+#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+
+/*
+** Check to see if this machine uses EBCDIC. (Yes, believe it or
+** not, there are still machines out there that use EBCDIC.)
+*/
+#if 'A' == '\301'
+# define SQLITE_EBCDIC 1
+#else
+# define SQLITE_ASCII 1
+#endif
+
+/*
+** Integers of known sizes. These typedefs might change for architectures
+** where the sizes very. Preprocessor macros are available so that the
+** types can be conveniently redefined at compile-type. Like this:
+**
+** cc '-DUINTPTR_TYPE=long long int' ...
+*/
+#ifndef UINT32_TYPE
+# ifdef HAVE_UINT32_T
+# define UINT32_TYPE uint32_t
+# else
+# define UINT32_TYPE unsigned int
+# endif
+#endif
+#ifndef UINT16_TYPE
+# ifdef HAVE_UINT16_T
+# define UINT16_TYPE uint16_t
+# else
+# define UINT16_TYPE unsigned short int
+# endif
+#endif
+#ifndef INT16_TYPE
+# ifdef HAVE_INT16_T
+# define INT16_TYPE int16_t
+# else
+# define INT16_TYPE short int
+# endif
+#endif
+#ifndef UINT8_TYPE
+# ifdef HAVE_UINT8_T
+# define UINT8_TYPE uint8_t
+# else
+# define UINT8_TYPE unsigned char
+# endif
+#endif
+#ifndef INT8_TYPE
+# ifdef HAVE_INT8_T
+# define INT8_TYPE int8_t
+# else
+# define INT8_TYPE signed char
+# endif
+#endif
+#ifndef LONGDOUBLE_TYPE
+# define LONGDOUBLE_TYPE long double
+#endif
+typedef sqlite_int64 i64; /* 8-byte signed integer */
+typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
+typedef INT16_TYPE i16; /* 2-byte signed integer */
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
+typedef INT8_TYPE i8; /* 1-byte signed integer */
+
+/*
+** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
+** that can be stored in a u32 without loss of data. The value
+** is 0x00000000ffffffff. But because of quirks of some compilers, we
+** have to specify the value in the less intuitive manner shown:
+*/
+#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
+
+/*
+** The datatype used to store estimates of the number of rows in a
+** table or index.
+*/
+typedef u64 tRowcnt;
+
+/*
+** Estimated quantities used for query planning are stored as 16-bit
+** logarithms. For quantity X, the value stored is 10*log2(X). This
+** gives a possible range of values of approximately 1.0e986 to 1e-986.
+** But the allowed values are "grainy". Not every value is representable.
+** For example, quantities 16 and 17 are both represented by a LogEst
+** of 40. However, since LogEst quantities are suppose to be estimates,
+** not exact values, this imprecision is not a problem.
+**
+** "LogEst" is short for "Logarithmic Estimate".
+**
+** Examples:
+** 1 -> 0 20 -> 43 10000 -> 132
+** 2 -> 10 25 -> 46 25000 -> 146
+** 3 -> 16 100 -> 66 1000000 -> 199
+** 4 -> 20 1000 -> 99 1048576 -> 200
+** 10 -> 33 1024 -> 100 4294967296 -> 320
+**
+** The LogEst can be negative to indicate fractional values.
+** Examples:
+**
+** 0.5 -> -10 0.1 -> -33 0.0625 -> -40
+*/
+typedef INT16_TYPE LogEst;
+
+/*
+** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
+*/
+#ifndef SQLITE_PTRSIZE
+# if defined(__SIZEOF_POINTER__)
+# define SQLITE_PTRSIZE __SIZEOF_POINTER__
+# elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(_M_ARM) || defined(__arm__) || defined(__x86) || \
+ (defined(__APPLE__) && defined(__POWERPC__)) || \
+ (defined(__TOS_AIX__) && !defined(__64BIT__))
+# define SQLITE_PTRSIZE 4
+# else
+# define SQLITE_PTRSIZE 8
+# endif
+#endif
+
+/* The uptr type is an unsigned integer large enough to hold a pointer
+*/
+#if defined(HAVE_STDINT_H)
+ typedef uintptr_t uptr;
+#elif SQLITE_PTRSIZE==4
+ typedef u32 uptr;
+#else
+ typedef u64 uptr;
+#endif
+
+/*
+** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to
+** something between S (inclusive) and E (exclusive).
+**
+** In other words, S is a buffer and E is a pointer to the first byte after
+** the end of buffer S. This macro returns true if P points to something
+** contained within the buffer S.
+*/
+#define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E)))
+
+/*
+** P is one byte past the end of a large buffer. Return true if a span of bytes
+** between S..E crosses the end of that buffer. In other words, return true
+** if the sub-buffer S..E-1 overflows the buffer whose last byte is P-1.
+**
+** S is the start of the span. E is one byte past the end of end of span.
+**
+** P
+** |-----------------| FALSE
+** |-------|
+** S E
+**
+** P
+** |-----------------|
+** |-------| TRUE
+** S E
+**
+** P
+** |-----------------|
+** |-------| FALSE
+** S E
+*/
+#define SQLITE_OVERFLOW(P,S,E) (((uptr)(S)<(uptr)(P))&&((uptr)(E)>(uptr)(P)))
+
+/*
+** Macros to determine whether the machine is big or little endian,
+** and whether or not that determination is run-time or compile-time.
+**
+** For best performance, an attempt is made to guess at the byte-order
+** using C-preprocessor macros. If that is unsuccessful, or if
+** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined
+** at run-time.
+**
+** If you are building SQLite on some obscure platform for which the
+** following ifdef magic does not work, you can always include either:
+**
+** -DSQLITE_BYTEORDER=1234
+**
+** or
+**
+** -DSQLITE_BYTEORDER=4321
+**
+** to cause the build to work for little-endian or big-endian processors,
+** respectively.
+*/
+#ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */
+# if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__
+# define SQLITE_BYTEORDER 4321
+# elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
+# define SQLITE_BYTEORDER 1234
+# elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1
+# define SQLITE_BYTEORDER 4321
+# elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
+ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
+ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
+# define SQLITE_BYTEORDER 1234
+# elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__)
+# define SQLITE_BYTEORDER 4321
+# else
+# define SQLITE_BYTEORDER 0
+# endif
+#endif
+#if SQLITE_BYTEORDER==4321
+# define SQLITE_BIGENDIAN 1
+# define SQLITE_LITTLEENDIAN 0
+# define SQLITE_UTF16NATIVE SQLITE_UTF16BE
+#elif SQLITE_BYTEORDER==1234
+# define SQLITE_BIGENDIAN 0
+# define SQLITE_LITTLEENDIAN 1
+# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
+#else
+# ifdef SQLITE_AMALGAMATION
+ const int sqlite3one = 1;
+# else
+ extern const int sqlite3one;
+# endif
+# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
+# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
+# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
+#endif
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+** These macros are designed to work correctly on both 32-bit and 64-bit
+** compilers.
+*/
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define LARGEST_UINT64 (0xffffffff|(((u64)0xffffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+/*
+** Round up a number to the next larger multiple of 8. This is used
+** to force 8-byte alignment on 64-bit architectures.
+**
+** ROUND8() always does the rounding, for any argument.
+**
+** ROUND8P() assumes that the argument is already an integer number of
+** pointers in size, and so it is a no-op on systems where the pointer
+** size is 8.
+*/
+#define ROUND8(x) (((x)+7)&~7)
+#if SQLITE_PTRSIZE==8
+# define ROUND8P(x) (x)
+#else
+# define ROUND8P(x) (((x)+7)&~7)
+#endif
+
+/*
+** Round down to the nearest multiple of 8
+*/
+#define ROUNDDOWN8(x) ((x)&~7)
+
+/*
+** Assert that the pointer X is aligned to an 8-byte boundary. This
+** macro is used only within assert() to verify that the code gets
+** all alignment restrictions correct.
+**
+** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
+** underlying malloc() implementation might return us 4-byte aligned
+** pointers. In that case, only verify 4-byte alignment.
+*/
+#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
+# define EIGHT_BYTE_ALIGNMENT(X) ((((uptr)(X) - (uptr)0)&3)==0)
+#else
+# define EIGHT_BYTE_ALIGNMENT(X) ((((uptr)(X) - (uptr)0)&7)==0)
+#endif
+
+/*
+** Disable MMAP on platforms where it is known to not work
+*/
+#if defined(__OpenBSD__) || defined(__QNXNTO__)
+# undef SQLITE_MAX_MMAP_SIZE
+# define SQLITE_MAX_MMAP_SIZE 0
+#endif
+
+/*
+** Default maximum size of memory used by memory-mapped I/O in the VFS
+*/
+#ifdef __APPLE__
+# include <TargetConditionals.h>
+#endif
+#ifndef SQLITE_MAX_MMAP_SIZE
+# if defined(__linux__) \
+ || defined(_WIN32) \
+ || (defined(__APPLE__) && defined(__MACH__)) \
+ || defined(__sun) \
+ || defined(__FreeBSD__) \
+ || defined(__DragonFly__)
+# define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */
+# else
+# define SQLITE_MAX_MMAP_SIZE 0
+# endif
+#endif
+
+/*
+** The default MMAP_SIZE is zero on all platforms. Or, even if a larger
+** default MMAP_SIZE is specified at compile-time, make sure that it does
+** not exceed the maximum mmap size.
+*/
+#ifndef SQLITE_DEFAULT_MMAP_SIZE
+# define SQLITE_DEFAULT_MMAP_SIZE 0
+#endif
+#if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
+# undef SQLITE_DEFAULT_MMAP_SIZE
+# define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
+#endif
+
+/*
+** TREETRACE_ENABLED will be either 1 or 0 depending on whether or not
+** the Abstract Syntax Tree tracing logic is turned on.
+*/
+#if !defined(SQLITE_AMALGAMATION)
+SQLITE_PRIVATE u32 sqlite3TreeTrace;
+#endif
+#if defined(SQLITE_DEBUG) \
+ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_SELECTTRACE) \
+ || defined(SQLITE_ENABLE_TREETRACE))
+# define TREETRACE_ENABLED 1
+# define TREETRACE(K,P,S,X) \
+ if(sqlite3TreeTrace&(K)) \
+ sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
+ sqlite3DebugPrintf X
+#else
+# define TREETRACE(K,P,S,X)
+# define TREETRACE_ENABLED 0
+#endif
+
+/* TREETRACE flag meanings:
+**
+** 0x00000001 Beginning and end of SELECT processing
+** 0x00000002 WHERE clause processing
+** 0x00000004 Query flattener
+** 0x00000008 Result-set wildcard expansion
+** 0x00000010 Query name resolution
+** 0x00000020 Aggregate analysis
+** 0x00000040 Window functions
+** 0x00000080 Generated column names
+** 0x00000100 Move HAVING terms into WHERE
+** 0x00000200 Count-of-view optimization
+** 0x00000400 Compound SELECT processing
+** 0x00000800 Drop superfluous ORDER BY
+** 0x00001000 LEFT JOIN simplifies to JOIN
+** 0x00002000 Constant propagation
+** 0x00004000 Push-down optimization
+** 0x00008000 After all FROM-clause analysis
+** 0x00010000 Beginning of DELETE/INSERT/UPDATE processing
+** 0x00020000 Transform DISTINCT into GROUP BY
+** 0x00040000 SELECT tree dump after all code has been generated
+*/
+
+/*
+** Macros for "wheretrace"
+*/
+SQLITE_PRIVATE u32 sqlite3WhereTrace;
+#if defined(SQLITE_DEBUG) \
+ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
+# define WHERETRACE(K,X) if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
+# define WHERETRACE_ENABLED 1
+#else
+# define WHERETRACE(K,X)
+#endif
+
+/*
+** Bits for the sqlite3WhereTrace mask:
+**
+** (---any--) Top-level block structure
+** 0x-------F High-level debug messages
+** 0x----FFF- More detail
+** 0xFFFF---- Low-level debug messages
+**
+** 0x00000001 Code generation
+** 0x00000002 Solver
+** 0x00000004 Solver costs
+** 0x00000008 WhereLoop inserts
+**
+** 0x00000010 Display sqlite3_index_info xBestIndex calls
+** 0x00000020 Range an equality scan metrics
+** 0x00000040 IN operator decisions
+** 0x00000080 WhereLoop cost adjustements
+** 0x00000100
+** 0x00000200 Covering index decisions
+** 0x00000400 OR optimization
+** 0x00000800 Index scanner
+** 0x00001000 More details associated with code generation
+** 0x00002000
+** 0x00004000 Show all WHERE terms at key points
+** 0x00008000 Show the full SELECT statement at key places
+**
+** 0x00010000 Show more detail when printing WHERE terms
+** 0x00020000 Show WHERE terms returned from whereScanNext()
+*/
+
+
+/*
+** An instance of the following structure is used to store the busy-handler
+** callback for a given sqlite handle.
+**
+** The sqlite.busyHandler member of the sqlite struct contains the busy
+** callback for the database handle. Each pager opened via the sqlite
+** handle is passed a pointer to sqlite.busyHandler. The busy-handler
+** callback is currently invoked only from within pager.c.
+*/
+typedef struct BusyHandler BusyHandler;
+struct BusyHandler {
+ int (*xBusyHandler)(void *,int); /* The busy callback */
+ void *pBusyArg; /* First arg to busy callback */
+ int nBusy; /* Incremented with each busy call */
+};
+
+/*
+** Name of table that holds the database schema.
+**
+** The PREFERRED names are used wherever possible. But LEGACY is also
+** used for backwards compatibility.
+**
+** 1. Queries can use either the PREFERRED or the LEGACY names
+** 2. The sqlite3_set_authorizer() callback uses the LEGACY name
+** 3. The PRAGMA table_list statement uses the PREFERRED name
+**
+** The LEGACY names are stored in the internal symbol hash table
+** in support of (2). Names are translated using sqlite3PreferredTableName()
+** for (3). The sqlite3FindTable() function takes care of translating
+** names for (1).
+**
+** Note that "sqlite_temp_schema" can also be called "temp.sqlite_schema".
+*/
+#define LEGACY_SCHEMA_TABLE "sqlite_master"
+#define LEGACY_TEMP_SCHEMA_TABLE "sqlite_temp_master"
+#define PREFERRED_SCHEMA_TABLE "sqlite_schema"
+#define PREFERRED_TEMP_SCHEMA_TABLE "sqlite_temp_schema"
+
+
+/*
+** The root-page of the schema table.
+*/
+#define SCHEMA_ROOT 1
+
+/*
+** The name of the schema table. The name is different for TEMP.
+*/
+#define SCHEMA_TABLE(x) \
+ ((!OMIT_TEMPDB)&&(x==1)?LEGACY_TEMP_SCHEMA_TABLE:LEGACY_SCHEMA_TABLE)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
+
+/*
+** Determine if the argument is a power of two
+*/
+#define IsPowerOfTwo(X) (((X)&((X)-1))==0)
+
+/*
+** The following value as a destructor means to use sqlite3DbFree().
+** The sqlite3DbFree() routine requires two parameters instead of the
+** one parameter that destructors normally want. So we have to introduce
+** this magic value that the code knows to handle differently. Any
+** pointer will work here as long as it is distinct from SQLITE_STATIC
+** and SQLITE_TRANSIENT.
+*/
+#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3OomClear)
+
+/*
+** When SQLITE_OMIT_WSD is defined, it means that the target platform does
+** not support Writable Static Data (WSD) such as global and static variables.
+** All variables must either be on the stack or dynamically allocated from
+** the heap. When WSD is unsupported, the variable declarations scattered
+** throughout the SQLite code must become constants instead. The SQLITE_WSD
+** macro is used for this purpose. And instead of referencing the variable
+** directly, we use its constant as a key to lookup the run-time allocated
+** buffer that holds real variable. The constant is also the initializer
+** for the run-time allocated buffer.
+**
+** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
+** macros become no-ops and have zero performance impact.
+*/
+#ifdef SQLITE_OMIT_WSD
+ #define SQLITE_WSD const
+ #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
+ #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
+SQLITE_API int sqlite3_wsd_init(int N, int J);
+SQLITE_API void *sqlite3_wsd_find(void *K, int L);
+#else
+ #define SQLITE_WSD
+ #define GLOBAL(t,v) v
+ #define sqlite3GlobalConfig sqlite3Config
+#endif
+
+/*
+** The following macros are used to suppress compiler warnings and to
+** make it clear to human readers when a function parameter is deliberately
+** left unused within the body of a function. This usually happens when
+** a function is called via a function pointer. For example the
+** implementation of an SQL aggregate step callback may not use the
+** parameter indicating the number of arguments passed to the aggregate,
+** if it knows that this is enforced elsewhere.
+**
+** When a function parameter is not used at all within the body of a function,
+** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
+** However, these macros may also be used to suppress warnings related to
+** parameters that may or may not be used depending on compilation options.
+** For example those parameters only used in assert() statements. In these
+** cases the parameters are named as per the usual conventions.
+*/
+#define UNUSED_PARAMETER(x) (void)(x)
+#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
+
+/*
+** Forward references to structures
+*/
+typedef struct AggInfo AggInfo;
+typedef struct AuthContext AuthContext;
+typedef struct AutoincInfo AutoincInfo;
+typedef struct Bitvec Bitvec;
+typedef struct CollSeq CollSeq;
+typedef struct Column Column;
+typedef struct Cte Cte;
+typedef struct CteUse CteUse;
+typedef struct Db Db;
+typedef struct DbClientData DbClientData;
+typedef struct DbFixer DbFixer;
+typedef struct Schema Schema;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct FKey FKey;
+typedef struct FpDecode FpDecode;
+typedef struct FuncDestructor FuncDestructor;
+typedef struct FuncDef FuncDef;
+typedef struct FuncDefHash FuncDefHash;
+typedef struct IdList IdList;
+typedef struct Index Index;
+typedef struct IndexedExpr IndexedExpr;
+typedef struct IndexSample IndexSample;
+typedef struct KeyClass KeyClass;
+typedef struct KeyInfo KeyInfo;
+typedef struct Lookaside Lookaside;
+typedef struct LookasideSlot LookasideSlot;
+typedef struct Module Module;
+typedef struct NameContext NameContext;
+typedef struct OnOrUsing OnOrUsing;
+typedef struct Parse Parse;
+typedef struct ParseCleanup ParseCleanup;
+typedef struct PreUpdate PreUpdate;
+typedef struct PrintfArguments PrintfArguments;
+typedef struct RCStr RCStr;
+typedef struct RenameToken RenameToken;
+typedef struct Returning Returning;
+typedef struct RowSet RowSet;
+typedef struct Savepoint Savepoint;
+typedef struct Select Select;
+typedef struct SQLiteThread SQLiteThread;
+typedef struct SelectDest SelectDest;
+typedef struct SrcItem SrcItem;
+typedef struct SrcList SrcList;
+typedef struct sqlite3_str StrAccum; /* Internal alias for sqlite3_str */
+typedef struct Table Table;
+typedef struct TableLock TableLock;
+typedef struct Token Token;
+typedef struct TreeView TreeView;
+typedef struct Trigger Trigger;
+typedef struct TriggerPrg TriggerPrg;
+typedef struct TriggerStep TriggerStep;
+typedef struct UnpackedRecord UnpackedRecord;
+typedef struct Upsert Upsert;
+typedef struct VTable VTable;
+typedef struct VtabCtx VtabCtx;
+typedef struct Walker Walker;
+typedef struct WhereInfo WhereInfo;
+typedef struct Window Window;
+typedef struct With With;
+
+
+/*
+** The bitmask datatype defined below is used for various optimizations.
+**
+** Changing this from a 64-bit to a 32-bit type limits the number of
+** tables in a join to 32 instead of 64. But it also reduces the size
+** of the library by 738 bytes on ix86.
+*/
+#ifdef SQLITE_BITMASK_TYPE
+ typedef SQLITE_BITMASK_TYPE Bitmask;
+#else
+ typedef u64 Bitmask;
+#endif
+
+/*
+** The number of bits in a Bitmask. "BMS" means "BitMask Size".
+*/
+#define BMS ((int)(sizeof(Bitmask)*8))
+
+/*
+** A bit in a Bitmask
+*/
+#define MASKBIT(n) (((Bitmask)1)<<(n))
+#define MASKBIT64(n) (((u64)1)<<(n))
+#define MASKBIT32(n) (((unsigned int)1)<<(n))
+#define SMASKBIT32(n) ((n)<=31?((unsigned int)1)<<(n):0)
+#define ALLBITS ((Bitmask)-1)
+#define TOPBIT (((Bitmask)1)<<(BMS-1))
+
+/* A VList object records a mapping between parameters/variables/wildcards
+** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer
+** variable number associated with that parameter. See the format description
+** on the sqlite3VListAdd() routine for more information. A VList is really
+** just an array of integers.
+*/
+typedef int VList;
+
+/*
+** Defer sourcing vdbe.h and btree.h until after the "u8" and
+** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
+** pointer types (i.e. FuncDef) defined above.
+*/
+/************** Include os.h in the middle of sqliteInt.h ********************/
+/************** Begin file os.h **********************************************/
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+**
+** This header file is #include-ed by sqliteInt.h and thus ends up
+** being included by every source file.
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+
+/*
+** Attempt to automatically detect the operating system and setup the
+** necessary pre-processor macros for it.
+*/
+/************** Include os_setup.h in the middle of os.h *********************/
+/************** Begin file os_setup.h ****************************************/
+/*
+** 2013 November 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains pre-processor directives related to operating system
+** detection and/or setup.
+*/
+#ifndef SQLITE_OS_SETUP_H
+#define SQLITE_OS_SETUP_H
+
+/*
+** Figure out if we are dealing with Unix, Windows, or some other operating
+** system.
+**
+** After the following block of preprocess macros, all of
+**
+** SQLITE_OS_KV
+** SQLITE_OS_OTHER
+** SQLITE_OS_UNIX
+** SQLITE_OS_WIN
+**
+** will defined to either 1 or 0. One of them will be 1. The others will be 0.
+** If none of the macros are initially defined, then select either
+** SQLITE_OS_UNIX or SQLITE_OS_WIN depending on the target platform.
+**
+** If SQLITE_OS_OTHER=1 is specified at compile-time, then the application
+** must provide its own VFS implementation together with sqlite3_os_init()
+** and sqlite3_os_end() routines.
+*/
+#if !defined(SQLITE_OS_KV) && !defined(SQLITE_OS_OTHER) && \
+ !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_WIN)
+# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \
+ defined(__MINGW32__) || defined(__BORLANDC__)
+# define SQLITE_OS_WIN 1
+# define SQLITE_OS_UNIX 0
+# else
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 1
+# endif
+#endif
+#if SQLITE_OS_OTHER+1>1
+# undef SQLITE_OS_KV
+# define SQLITE_OS_KV 0
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+#endif
+#if SQLITE_OS_KV+1>1
+# undef SQLITE_OS_OTHER
+# define SQLITE_OS_OTHER 0
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# define SQLITE_OMIT_LOAD_EXTENSION 1
+# define SQLITE_OMIT_WAL 1
+# define SQLITE_OMIT_DEPRECATED 1
+# undef SQLITE_TEMP_STORE
+# define SQLITE_TEMP_STORE 3 /* Always use memory for temporary storage */
+# define SQLITE_DQS 0
+# define SQLITE_OMIT_SHARED_CACHE 1
+# define SQLITE_OMIT_AUTOINIT 1
+#endif
+#if SQLITE_OS_UNIX+1>1
+# undef SQLITE_OS_KV
+# define SQLITE_OS_KV 0
+# undef SQLITE_OS_OTHER
+# define SQLITE_OS_OTHER 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+#endif
+#if SQLITE_OS_WIN+1>1
+# undef SQLITE_OS_KV
+# define SQLITE_OS_KV 0
+# undef SQLITE_OS_OTHER
+# define SQLITE_OS_OTHER 0
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+#endif
+
+
+#endif /* SQLITE_OS_SETUP_H */
+
+/************** End of os_setup.h ********************************************/
+/************** Continuing where we left off in os.h *************************/
+
+/* If the SET_FULLSYNC macro is not defined above, then make it
+** a no-op
+*/
+#ifndef SET_FULLSYNC
+# define SET_FULLSYNC(x,y)
+#endif
+
+/* Maximum pathname length. Note: FILENAME_MAX defined by stdio.h
+*/
+#ifndef SQLITE_MAX_PATHLEN
+# define SQLITE_MAX_PATHLEN FILENAME_MAX
+#endif
+
+/* Maximum number of symlinks that will be resolved while trying to
+** expand a filename in xFullPathname() in the VFS.
+*/
+#ifndef SQLITE_MAX_SYMLINK
+# define SQLITE_MAX_SYMLINK 200
+#endif
+
+/*
+** The default size of a disk sector
+*/
+#ifndef SQLITE_DEFAULT_SECTOR_SIZE
+# define SQLITE_DEFAULT_SECTOR_SIZE 4096
+#endif
+
+/*
+** Temporary files are named starting with this prefix followed by 16 random
+** alphanumeric characters, and no file extension. They are stored in the
+** OS's standard temporary file directory, and are deleted prior to exit.
+** If sqlite is being embedded in another program, you may wish to change the
+** prefix to reflect your program's name, so that if your program exits
+** prematurely, old temporary files can be easily identified. This can be done
+** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
+**
+** 2006-10-31: The default prefix used to be "sqlite_". But then
+** Mcafee started using SQLite in their anti-virus product and it
+** started putting files with the "sqlite" name in the c:/temp folder.
+** This annoyed many windows users. Those users would then do a
+** Google search for "sqlite", find the telephone numbers of the
+** developers and call to wake them up at night and complain.
+** For this reason, the default name prefix is changed to be "sqlite"
+** spelled backwards. So the temp files are still identified, but
+** anybody smart enough to figure out the code is also likely smart
+** enough to know that calling the developer will not help get rid
+** of the file.
+*/
+#ifndef SQLITE_TEMP_FILE_PREFIX
+# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
+#endif
+
+/*
+** The following values may be passed as the second argument to
+** sqlite3OsLock(). The various locks exhibit the following semantics:
+**
+** SHARED: Any number of processes may hold a SHARED lock simultaneously.
+** RESERVED: A single process may hold a RESERVED lock on a file at
+** any time. Other processes may hold and obtain new SHARED locks.
+** PENDING: A single process may hold a PENDING lock on a file at
+** any one time. Existing SHARED locks may persist, but no new
+** SHARED locks may be obtained by other processes.
+** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
+**
+** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
+** process that requests an EXCLUSIVE lock may actually obtain a PENDING
+** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
+** sqlite3OsLock().
+*/
+#define NO_LOCK 0
+#define SHARED_LOCK 1
+#define RESERVED_LOCK 2
+#define PENDING_LOCK 3
+#define EXCLUSIVE_LOCK 4
+
+/*
+** File Locking Notes: (Mostly about windows but also some info for Unix)
+**
+** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
+** those functions are not available. So we use only LockFile() and
+** UnlockFile().
+**
+** LockFile() prevents not just writing but also reading by other processes.
+** A SHARED_LOCK is obtained by locking a single randomly-chosen
+** byte out of a specific range of bytes. The lock byte is obtained at
+** random so two separate readers can probably access the file at the
+** same time, unless they are unlucky and choose the same lock byte.
+** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
+** There can only be one writer. A RESERVED_LOCK is obtained by locking
+** a single byte of the file that is designated as the reserved lock byte.
+** A PENDING_LOCK is obtained by locking a designated byte different from
+** the RESERVED_LOCK byte.
+**
+** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
+** which means we can use reader/writer locks. When reader/writer locks
+** are used, the lock is placed on the same range of bytes that is used
+** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
+** will support two or more Win95 readers or two or more WinNT readers.
+** But a single Win95 reader will lock out all WinNT readers and a single
+** WinNT reader will lock out all other Win95 readers.
+**
+** The following #defines specify the range of bytes used for locking.
+** SHARED_SIZE is the number of bytes available in the pool from which
+** a random byte is selected for a shared lock. The pool of bytes for
+** shared locks begins at SHARED_FIRST.
+**
+** The same locking strategy and
+** byte ranges are used for Unix. This leaves open the possibility of having
+** clients on win95, winNT, and unix all talking to the same shared file
+** and all locking correctly. To do so would require that samba (or whatever
+** tool is being used for file sharing) implements locks correctly between
+** windows and unix. I'm guessing that isn't likely to happen, but by
+** using the same locking range we are at least open to the possibility.
+**
+** Locking in windows is manditory. For this reason, we cannot store
+** actual data in the bytes used for locking. The pager never allocates
+** the pages involved in locking therefore. SHARED_SIZE is selected so
+** that all locks will fit on a single page even at the minimum page size.
+** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
+** is set high so that we don't have to allocate an unused page except
+** for very large databases. But one should test the page skipping logic
+** by setting PENDING_BYTE low and running the entire regression suite.
+**
+** Changing the value of PENDING_BYTE results in a subtly incompatible
+** file format. Depending on how it is changed, you might not notice
+** the incompatibility right away, even running a full regression test.
+** The default location of PENDING_BYTE is the first byte past the
+** 1GB boundary.
+**
+*/
+#ifdef SQLITE_OMIT_WSD
+# define PENDING_BYTE (0x40000000)
+#else
+# define PENDING_BYTE sqlite3PendingByte
+#endif
+#define RESERVED_BYTE (PENDING_BYTE+1)
+#define SHARED_FIRST (PENDING_BYTE+2)
+#define SHARED_SIZE 510
+
+/*
+** Wrapper around OS specific sqlite3_os_init() function.
+*/
+SQLITE_PRIVATE int sqlite3OsInit(void);
+
+/*
+** Functions for accessing sqlite3_file methods
+*/
+SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file*);
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
+SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file*,int,void*);
+#define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **);
+SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int);
+SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int);
+#endif /* SQLITE_OMIT_WAL */
+SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64, int, void **);
+SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *, i64, void *);
+
+
+/*
+** Functions for accessing sqlite3_vfs methods
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
+SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
+SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
+SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs*);
+SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*);
+
+/*
+** Convenience functions for opening and closing files using
+** sqlite3_malloc() to obtain space for the file-handle structure.
+*/
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
+SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *);
+
+#endif /* _SQLITE_OS_H_ */
+
+/************** End of os.h **************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include pager.h in the middle of sqliteInt.h *****************/
+/************** Begin file pager.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
+*/
+
+#ifndef SQLITE_PAGER_H
+#define SQLITE_PAGER_H
+
+/*
+** Default maximum size for persistent journal files. A negative
+** value means no limit. This value may be overridden using the
+** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
+*/
+#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
+#endif
+
+/*
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
+*/
+typedef u32 Pgno;
+
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
+
+/*
+** Handle type for pages.
+*/
+typedef struct PgHdr DbPage;
+
+/*
+** Page number PAGER_SJ_PGNO is never used in an SQLite database (it is
+** reserved for working around a windows/posix incompatibility). It is
+** used in the journal to signify that the remainder of the journal file
+** is devoted to storing a super-journal name - there are no more pages to
+** roll back. See comments for function writeSuperJournal() in pager.c
+** for details.
+*/
+#define PAGER_SJ_PGNO_COMPUTED(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
+#define PAGER_SJ_PGNO(x) ((x)->lckPgno)
+
+/*
+** Allowed values for the flags parameter to sqlite3PagerOpen().
+**
+** NOTE: These values must match the corresponding BTREE_ values in btree.h.
+*/
+#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
+#define PAGER_MEMORY 0x0002 /* In-memory database */
+
+/*
+** Valid values for the second argument to sqlite3PagerLockingMode().
+*/
+#define PAGER_LOCKINGMODE_QUERY -1
+#define PAGER_LOCKINGMODE_NORMAL 0
+#define PAGER_LOCKINGMODE_EXCLUSIVE 1
+
+/*
+** Numeric constants that encode the journalmode.
+**
+** The numeric values encoded here (other than PAGER_JOURNALMODE_QUERY)
+** are exposed in the API via the "PRAGMA journal_mode" command and
+** therefore cannot be changed without a compatibility break.
+*/
+#define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */
+#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
+#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
+#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
+#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
+#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
+#define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */
+
+/*
+** Flags that make up the mask passed to sqlite3PagerGet().
+*/
+#define PAGER_GET_NOCONTENT 0x01 /* Do not load data from disk */
+#define PAGER_GET_READONLY 0x02 /* Read-only page is acceptable */
+
+/*
+** Flags for sqlite3PagerSetFlags()
+**
+** Value constraints (enforced via assert()):
+** PAGER_FULLFSYNC == SQLITE_FullFSync
+** PAGER_CKPT_FULLFSYNC == SQLITE_CkptFullFSync
+** PAGER_CACHE_SPILL == SQLITE_CacheSpill
+*/
+#define PAGER_SYNCHRONOUS_OFF 0x01 /* PRAGMA synchronous=OFF */
+#define PAGER_SYNCHRONOUS_NORMAL 0x02 /* PRAGMA synchronous=NORMAL */
+#define PAGER_SYNCHRONOUS_FULL 0x03 /* PRAGMA synchronous=FULL */
+#define PAGER_SYNCHRONOUS_EXTRA 0x04 /* PRAGMA synchronous=EXTRA */
+#define PAGER_SYNCHRONOUS_MASK 0x07 /* Mask for four values above */
+#define PAGER_FULLFSYNC 0x08 /* PRAGMA fullfsync=ON */
+#define PAGER_CKPT_FULLFSYNC 0x10 /* PRAGMA checkpoint_fullfsync=ON */
+#define PAGER_CACHESPILL 0x20 /* PRAGMA cache_spill=ON */
+#define PAGER_FLAGS_MASK 0x38 /* All above except SYNCHRONOUS */
+
+/*
+** The remainder of this file contains the declarations of the functions
+** that make up the Pager sub-system API. See source code comments for
+** a detailed description of each routine.
+*/
+
+/* Open and close a Pager connection. */
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs*,
+ Pager **ppPager,
+ const char*,
+ int,
+ int,
+ int,
+ void(*)(DbPage*)
+);
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3*);
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
+
+/* Functions used to configure a Pager object. */
+SQLITE_PRIVATE void sqlite3PagerSetBusyHandler(Pager*, int(*)(void *), void *);
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
+SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager*, Pgno);
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
+SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
+SQLITE_PRIVATE void sqlite3PagerShrink(Pager*);
+SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned);
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*);
+SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
+SQLITE_PRIVATE int sqlite3PagerFlush(Pager*);
+
+/* Functions used to obtain and release page references. */
+SQLITE_PRIVATE int sqlite3PagerGet(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage*);
+
+/* Operations on page references. */
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*);
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
+
+/* Functions used to manage pager transactions and savepoints. */
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*);
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zSuper, int);
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*);
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager);
+
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*);
+SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
+SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*);
+# ifdef SQLITE_ENABLE_SNAPSHOT
+SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager*, sqlite3_snapshot **ppSnapshot);
+SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager*, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager);
+# endif
+#endif
+
+#if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_ENABLE_SETLK_TIMEOUT)
+SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerWalDb(Pager*, sqlite3*);
+#else
+# define sqlite3PagerWalWriteLock(y,z) SQLITE_OK
+# define sqlite3PagerWalDb(x,y)
+#endif
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno);
+#endif
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager);
+#endif
+
+/* Functions used to query pager state and configuration. */
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
+SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
+#endif
+SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager*, int);
+SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
+SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
+SQLITE_PRIVATE void sqlite3PagerClearCache(Pager*);
+SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *);
+
+/* Functions used to truncate the database file. */
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);
+
+SQLITE_PRIVATE void sqlite3PagerRekey(DbPage*, Pgno, u16);
+
+/* Functions to support testing and debugging. */
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
+#endif
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
+SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
+ void disable_simulated_io_errors(void);
+ void enable_simulated_io_errors(void);
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+#if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
+SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager*);
+#endif
+
+#endif /* SQLITE_PAGER_H */
+
+/************** End of pager.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include btree.h in the middle of sqliteInt.h *****************/
+/************** Begin file btree.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+*/
+#ifndef SQLITE_BTREE_H
+#define SQLITE_BTREE_H
+
+/* TODO: This definition is just included so other modules compile. It
+** needs to be revisited.
+*/
+#define SQLITE_N_BTREE_META 16
+
+/*
+** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
+** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+*/
+#ifndef SQLITE_DEFAULT_AUTOVACUUM
+ #define SQLITE_DEFAULT_AUTOVACUUM 0
+#endif
+
+#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
+#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
+#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
+
+/*
+** Forward declarations of structure
+*/
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+typedef struct BtShared BtShared;
+typedef struct BtreePayload BtreePayload;
+
+
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ sqlite3_vfs *pVfs, /* VFS to use with this b-tree */
+ const char *zFilename, /* Name of database file to open */
+ sqlite3 *db, /* Associated database connection */
+ Btree **ppBtree, /* Return open Btree* here */
+ int flags, /* Flags */
+ int vfsFlags /* Flags passed through to VFS open */
+);
+
+/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
+** following values.
+**
+** NOTE: These values must match the corresponding PAGER_ values in
+** pager.h.
+*/
+#define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */
+#define BTREE_MEMORY 2 /* This is an in-memory DB */
+#define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */
+#define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */
+
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int);
+#if SQLITE_MAX_MMAP_SIZE>0
+SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
+#endif
+SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
+SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno);
+SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p);
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int,int*);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char*);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int);
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*);
+
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
+#endif
+
+/* Savepoints are named, nestable SQL transactions mostly implemented */
+/* in vdbe.c and pager.c See https://sqlite.org/lang_savepoint.html */
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int);
+
+/* "Checkpoint" only refers to WAL. See https://sqlite.org/wal.html#ckpt */
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
+#endif
+
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
+
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
+
+/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
+** of the flags shown below.
+**
+** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
+** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
+** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With
+** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
+** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL
+** indices.)
+*/
+#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
+#define BTREE_BLOBKEY 2 /* Table has keys only - no data */
+
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, i64*);
+SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree*, int, int);
+
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
+
+SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p);
+
+/*
+** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
+** should be one of the following values. The integer values are assigned
+** to constants so that the offset of the corresponding field in an
+** SQLite database header may be found using the following formula:
+**
+** offset = 36 + (idx * 4)
+**
+** For example, the free-page-count field is located at byte offset 36 of
+** the database file header. The incr-vacuum-flag field is located at
+** byte offset 64 (== 36+4*7).
+**
+** The BTREE_DATA_VERSION value is not really a value stored in the header.
+** It is a read-only number computed by the pager. But we merge it with
+** the header value access routines since its access pattern is the same.
+** Call it a "virtual meta value".
+*/
+#define BTREE_FREE_PAGE_COUNT 0
+#define BTREE_SCHEMA_VERSION 1
+#define BTREE_FILE_FORMAT 2
+#define BTREE_DEFAULT_CACHE_SIZE 3
+#define BTREE_LARGEST_ROOT_PAGE 4
+#define BTREE_TEXT_ENCODING 5
+#define BTREE_USER_VERSION 6
+#define BTREE_INCR_VACUUM 7
+#define BTREE_APPLICATION_ID 8
+#define BTREE_DATA_VERSION 15 /* A virtual meta-value */
+
+/*
+** Kinds of hints that can be passed into the sqlite3BtreeCursorHint()
+** interface.
+**
+** BTREE_HINT_RANGE (arguments: Expr*, Mem*)
+**
+** The first argument is an Expr* (which is guaranteed to be constant for
+** the lifetime of the cursor) that defines constraints on which rows
+** might be fetched with this cursor. The Expr* tree may contain
+** TK_REGISTER nodes that refer to values stored in the array of registers
+** passed as the second parameter. In other words, if Expr.op==TK_REGISTER
+** then the value of the node is the value in Mem[pExpr.iTable]. Any
+** TK_COLUMN node in the expression tree refers to the Expr.iColumn-th
+** column of the b-tree of the cursor. The Expr tree will not contain
+** any function calls nor subqueries nor references to b-trees other than
+** the cursor being hinted.
+**
+** The design of the _RANGE hint is aid b-tree implementations that try
+** to prefetch content from remote machines - to provide those
+** implementations with limits on what needs to be prefetched and thereby
+** reduce network bandwidth.
+**
+** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by
+** standard SQLite. The other hints are provided for extensions that use
+** the SQLite parser and code generator but substitute their own storage
+** engine.
+*/
+#define BTREE_HINT_RANGE 0 /* Range constraints on queries */
+
+/*
+** Values that may be OR'd together to form the argument to the
+** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint():
+**
+** The BTREE_BULKLOAD flag is set on index cursors when the index is going
+** to be filled with content that is already in sorted order.
+**
+** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or
+** OP_SeekLE opcodes for a range search, but where the range of entries
+** selected will all have the same key. In other words, the cursor will
+** be used only for equality key searches.
+**
+*/
+#define BTREE_BULKLOAD 0x00000001 /* Used to full index in sorted order */
+#define BTREE_SEEK_EQ 0x00000002 /* EQ seeks only - no range seeks */
+
+/*
+** Flags passed as the third argument to sqlite3BtreeCursor().
+**
+** For read-only cursors the wrFlag argument is always zero. For read-write
+** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just
+** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will
+** only be used by SQLite for the following:
+**
+** * to seek to and then delete specific entries, and/or
+**
+** * to read values that will be used to create keys that other
+** BTREE_FORDELETE cursors will seek to and delete.
+**
+** The BTREE_FORDELETE flag is an optimization hint. It is not used by
+** by this, the native b-tree engine of SQLite, but it is available to
+** alternative storage engines that might be substituted in place of this
+** b-tree system. For alternative storage engines in which a delete of
+** the main table row automatically deletes corresponding index rows,
+** the FORDELETE flag hint allows those alternative storage engines to
+** skip a lot of work. Namely: FORDELETE cursors may treat all SEEK
+** and DELETE operations as no-ops, and any READ operation against a
+** FORDELETE cursor may return a null row: 0x01 0x00.
+*/
+#define BTREE_WRCSR 0x00000004 /* read-write cursor */
+#define BTREE_FORDELETE 0x00000008 /* Cursor is for seek/delete only */
+
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree*, /* BTree containing table to open */
+ Pgno iTable, /* Index of root page */
+ int wrFlag, /* 1 for writing. 0 for read-only */
+ struct KeyInfo*, /* First argument to compare function */
+ BtCursor *pCursor /* Space to write cursor structure */
+);
+SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void);
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
+SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned);
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...);
+#endif
+
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeTableMoveto(
+ BtCursor*,
+ i64 intKey,
+ int bias,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeIndexMoveto(
+ BtCursor*,
+ UnpackedRecord *pUnKey,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags);
+
+/* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */
+#define BTREE_SAVEPOSITION 0x02 /* Leave cursor pointing at NEXT or PREV */
+#define BTREE_AUXDELETE 0x04 /* not the primary delete operation */
+#define BTREE_APPEND 0x08 /* Insert is likely an append */
+#define BTREE_PREFORMAT 0x80 /* Inserted data is a preformated cell */
+
+/* An instance of the BtreePayload object describes the content of a single
+** entry in either an index or table btree.
+**
+** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
+** an arbitrary key and no data. These btrees have pKey,nKey set to the
+** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem
+** fields give an array of Mem objects that are a decomposition of the key.
+** The nMem field might be zero, indicating that no decomposition is available.
+**
+** Table btrees (used for rowid tables) contain an integer rowid used as
+** the key and passed in the nKey field. The pKey field is zero.
+** pData,nData hold the content of the new entry. nZero extra zero bytes
+** are appended to the end of the content when constructing the entry.
+** The aMem,nMem fields are uninitialized for table btrees.
+**
+** Field usage summary:
+**
+** Table BTrees Index Btrees
+**
+** pKey always NULL encoded key
+** nKey the ROWID length of pKey
+** pData data not used
+** aMem not used decomposed key value
+** nMem not used entries in aMem
+** nData length of pData not used
+** nZero extra zeros after pData not used
+**
+** This object is used to pass information into sqlite3BtreeInsert(). The
+** same information used to be passed as five separate parameters. But placing
+** the information into this object helps to keep the interface more
+** organized and understandable, and it also helps the resulting code to
+** run a little faster by using fewer registers for parameter passing.
+*/
+struct BtreePayload {
+ const void *pKey; /* Key content for indexes. NULL for tables */
+ sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */
+ const void *pData; /* Data for tables. */
+ sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */
+ u16 nMem; /* Number of aMem[] value. Might be zero */
+ int nData; /* Size of pData. 0 if none. */
+ int nZero; /* Extra zero data appended after pData,nData */
+};
+
+SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
+ int flags, int seekResult);
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags);
+SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*);
+SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
+SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*);
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*);
+
+SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck(
+ sqlite3 *db, /* Database connection that is running the check */
+ Btree *p, /* The btree to be checked */
+ Pgno *aRoot, /* An array of root pages numbers for individual trees */
+ int nRoot, /* Number of entries in aRoot[] */
+ int mxErr, /* Stop reporting errors after this many */
+ int *pnErr, /* OUT: Write number of errors seen to this variable */
+ char **pzOut /* OUT: Write the error message string here */
+);
+SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
+SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor*);
+
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
+#endif
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
+SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
+SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
+SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree*);
+#else
+# define sqlite3BtreeSeekCount(X) 0
+#endif
+
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
+#endif
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor*);
+
+SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3*, BtCursor*, i64*);
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
+SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
+#endif
+
+SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor*, BtCursor*, i64);
+
+SQLITE_PRIVATE void sqlite3BtreeClearCache(Btree*);
+
+/*
+** If we are not using shared cache, then there is no need to
+** use mutexes to access the BtShared structures. So make the
+** Enter and Leave procedures no-ops.
+*/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
+SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree*);
+#else
+# define sqlite3BtreeEnter(X)
+# define sqlite3BtreeEnterAll(X)
+# define sqlite3BtreeSharable(X) 0
+# define sqlite3BtreeEnterCursor(X)
+# define sqlite3BtreeConnectionCount(X) 1
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
+#ifndef NDEBUG
+ /* These routines are used inside assert() statements only. */
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
+SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
+#endif
+#else
+
+# define sqlite3BtreeLeave(X)
+# define sqlite3BtreeLeaveCursor(X)
+# define sqlite3BtreeLeaveAll(X)
+
+# define sqlite3BtreeHoldsMutex(X) 1
+# define sqlite3BtreeHoldsAllMutexes(X) 1
+# define sqlite3SchemaMutexHeld(X,Y,Z) 1
+#endif
+
+
+#endif /* SQLITE_BTREE_H */
+
+/************** End of btree.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include vdbe.h in the middle of sqliteInt.h ******************/
+/************** Begin file vdbe.h ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Header file for the Virtual DataBase Engine (VDBE)
+**
+** This header defines the interface to the virtual database engine
+** or VDBE. The VDBE implements an abstract machine that runs a
+** simple program to access and modify the underlying database.
+*/
+#ifndef SQLITE_VDBE_H
+#define SQLITE_VDBE_H
+/* #include <stdio.h> */
+
+/*
+** A single VDBE is an opaque structure named "Vdbe". Only routines
+** in the source file sqliteVdbe.c are allowed to see the insides
+** of this structure.
+*/
+typedef struct Vdbe Vdbe;
+
+/*
+** The names of the following types declared in vdbeInt.h are required
+** for the VdbeOp definition.
+*/
+typedef struct sqlite3_value Mem;
+typedef struct SubProgram SubProgram;
+
+/*
+** A single instruction of the virtual machine has an opcode
+** and as many as three operands. The instruction is recorded
+** as an instance of the following structure:
+*/
+struct VdbeOp {
+ u8 opcode; /* What operation to perform */
+ signed char p4type; /* One of the P4_xxx constants for p4 */
+ u16 p5; /* Fifth parameter is an unsigned 16-bit integer */
+ int p1; /* First operand */
+ int p2; /* Second parameter (often the jump destination) */
+ int p3; /* The third parameter */
+ union p4union { /* fourth parameter */
+ int i; /* Integer value if p4type==P4_INT32 */
+ void *p; /* Generic pointer */
+ char *z; /* Pointer to data for string (char array) types */
+ i64 *pI64; /* Used when p4type is P4_INT64 */
+ double *pReal; /* Used when p4type is P4_REAL */
+ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
+ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
+ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
+ Mem *pMem; /* Used when p4type is P4_MEM */
+ VTable *pVtab; /* Used when p4type is P4_VTAB */
+ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
+ u32 *ai; /* Used when p4type is P4_INTARRAY */
+ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */
+ Table *pTab; /* Used when p4type is P4_TABLE */
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ Expr *pExpr; /* Used when p4type is P4_EXPR */
+#endif
+ } p4;
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ char *zComment; /* Comment to improve readability */
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ u32 iSrcLine; /* Source-code line that generated this opcode
+ ** with flags in the upper 8 bits */
+#endif
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
+ u64 nExec;
+ u64 nCycle;
+#endif
+};
+typedef struct VdbeOp VdbeOp;
+
+
+/*
+** A sub-routine used to implement a trigger program.
+*/
+struct SubProgram {
+ VdbeOp *aOp; /* Array of opcodes for sub-program */
+ int nOp; /* Elements in aOp[] */
+ int nMem; /* Number of memory cells required */
+ int nCsr; /* Number of cursors required */
+ u8 *aOnce; /* Array of OP_Once flags */
+ void *token; /* id that may be used to recursive triggers */
+ SubProgram *pNext; /* Next sub-program already visited */
+};
+
+/*
+** A smaller version of VdbeOp used for the VdbeAddOpList() function because
+** it takes up less space.
+*/
+struct VdbeOpList {
+ u8 opcode; /* What operation to perform */
+ signed char p1; /* First operand */
+ signed char p2; /* Second parameter (often the jump destination) */
+ signed char p3; /* Third parameter */
+};
+typedef struct VdbeOpList VdbeOpList;
+
+/*
+** Allowed values of VdbeOp.p4type
+*/
+#define P4_NOTUSED 0 /* The P4 parameter is not used */
+#define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */
+#define P4_STATIC (-1) /* Pointer to a static string */
+#define P4_COLLSEQ (-2) /* P4 is a pointer to a CollSeq structure */
+#define P4_INT32 (-3) /* P4 is a 32-bit signed integer */
+#define P4_SUBPROGRAM (-4) /* P4 is a pointer to a SubProgram structure */
+#define P4_TABLE (-5) /* P4 is a pointer to a Table structure */
+/* Above do not own any resources. Must free those below */
+#define P4_FREE_IF_LE (-6)
+#define P4_DYNAMIC (-6) /* Pointer to memory from sqliteMalloc() */
+#define P4_FUNCDEF (-7) /* P4 is a pointer to a FuncDef structure */
+#define P4_KEYINFO (-8) /* P4 is a pointer to a KeyInfo structure */
+#define P4_EXPR (-9) /* P4 is a pointer to an Expr tree */
+#define P4_MEM (-10) /* P4 is a pointer to a Mem* structure */
+#define P4_VTAB (-11) /* P4 is a pointer to an sqlite3_vtab structure */
+#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
+#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
+#define P4_INTARRAY (-14) /* P4 is a vector of 32-bit integers */
+#define P4_FUNCCTX (-15) /* P4 is a pointer to an sqlite3_context object */
+
+/* Error message codes for OP_Halt */
+#define P5_ConstraintNotNull 1
+#define P5_ConstraintUnique 2
+#define P5_ConstraintCheck 3
+#define P5_ConstraintFK 4
+
+/*
+** The Vdbe.aColName array contains 5n Mem structures, where n is the
+** number of columns of data returned by the statement.
+*/
+#define COLNAME_NAME 0
+#define COLNAME_DECLTYPE 1
+#define COLNAME_DATABASE 2
+#define COLNAME_TABLE 3
+#define COLNAME_COLUMN 4
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
+#else
+# ifdef SQLITE_OMIT_DECLTYPE
+# define COLNAME_N 1 /* Store only the name */
+# else
+# define COLNAME_N 2 /* Store the name and decltype */
+# endif
+#endif
+
+/*
+** The following macro converts a label returned by sqlite3VdbeMakeLabel()
+** into an index into the Parse.aLabel[] array that contains the resolved
+** address of that label.
+*/
+#define ADDR(X) (~(X))
+
+/*
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
+** header file that defines a number for each opcode used by the VDBE.
+*/
+/************** Include opcodes.h in the middle of vdbe.h ********************/
+/************** Begin file opcodes.h *****************************************/
+/* Automatically generated. Do not edit */
+/* See the tool/mkopcodeh.tcl script for details */
+#define OP_Savepoint 0
+#define OP_AutoCommit 1
+#define OP_Transaction 2
+#define OP_Checkpoint 3
+#define OP_JournalMode 4
+#define OP_Vacuum 5
+#define OP_VFilter 6 /* jump, synopsis: iplan=r[P3] zplan='P4' */
+#define OP_VUpdate 7 /* synopsis: data=r[P3@P2] */
+#define OP_Init 8 /* jump, synopsis: Start at P2 */
+#define OP_Goto 9 /* jump */
+#define OP_Gosub 10 /* jump */
+#define OP_InitCoroutine 11 /* jump */
+#define OP_Yield 12 /* jump */
+#define OP_MustBeInt 13 /* jump */
+#define OP_Jump 14 /* jump */
+#define OP_Once 15 /* jump */
+#define OP_If 16 /* jump */
+#define OP_IfNot 17 /* jump */
+#define OP_IsType 18 /* jump, synopsis: if typeof(P1.P3) in P5 goto P2 */
+#define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */
+#define OP_IfNullRow 20 /* jump, synopsis: if P1.nullRow then r[P3]=NULL, goto P2 */
+#define OP_SeekLT 21 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekLE 22 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekGE 23 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekGT 24 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IfNotOpen 25 /* jump, synopsis: if( !csr[P1] ) goto P2 */
+#define OP_IfNoHope 26 /* jump, synopsis: key=r[P3@P4] */
+#define OP_NoConflict 27 /* jump, synopsis: key=r[P3@P4] */
+#define OP_NotFound 28 /* jump, synopsis: key=r[P3@P4] */
+#define OP_Found 29 /* jump, synopsis: key=r[P3@P4] */
+#define OP_SeekRowid 30 /* jump, synopsis: intkey=r[P3] */
+#define OP_NotExists 31 /* jump, synopsis: intkey=r[P3] */
+#define OP_Last 32 /* jump */
+#define OP_IfSmaller 33 /* jump */
+#define OP_SorterSort 34 /* jump */
+#define OP_Sort 35 /* jump */
+#define OP_Rewind 36 /* jump */
+#define OP_SorterNext 37 /* jump */
+#define OP_Prev 38 /* jump */
+#define OP_Next 39 /* jump */
+#define OP_IdxLE 40 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IdxGT 41 /* jump, synopsis: key=r[P3@P4] */
+#define OP_IdxLT 42 /* jump, synopsis: key=r[P3@P4] */
+#define OP_Or 43 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
+#define OP_And 44 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
+#define OP_IdxGE 45 /* jump, synopsis: key=r[P3@P4] */
+#define OP_RowSetRead 46 /* jump, synopsis: r[P3]=rowset(P1) */
+#define OP_RowSetTest 47 /* jump, synopsis: if r[P3] in rowset(P1) goto P2 */
+#define OP_Program 48 /* jump */
+#define OP_FkIfZero 49 /* jump, synopsis: if fkctr[P1]==0 goto P2 */
+#define OP_IsNull 50 /* jump, same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
+#define OP_NotNull 51 /* jump, same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
+#define OP_Ne 52 /* jump, same as TK_NE, synopsis: IF r[P3]!=r[P1] */
+#define OP_Eq 53 /* jump, same as TK_EQ, synopsis: IF r[P3]==r[P1] */
+#define OP_Gt 54 /* jump, same as TK_GT, synopsis: IF r[P3]>r[P1] */
+#define OP_Le 55 /* jump, same as TK_LE, synopsis: IF r[P3]<=r[P1] */
+#define OP_Lt 56 /* jump, same as TK_LT, synopsis: IF r[P3]<r[P1] */
+#define OP_Ge 57 /* jump, same as TK_GE, synopsis: IF r[P3]>=r[P1] */
+#define OP_ElseEq 58 /* jump, same as TK_ESCAPE */
+#define OP_IfPos 59 /* jump, synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
+#define OP_IfNotZero 60 /* jump, synopsis: if r[P1]!=0 then r[P1]--, goto P2 */
+#define OP_DecrJumpZero 61 /* jump, synopsis: if (--r[P1])==0 goto P2 */
+#define OP_IncrVacuum 62 /* jump */
+#define OP_VNext 63 /* jump */
+#define OP_Filter 64 /* jump, synopsis: if key(P3@P4) not in filter(P1) goto P2 */
+#define OP_PureFunc 65 /* synopsis: r[P3]=func(r[P2@NP]) */
+#define OP_Function 66 /* synopsis: r[P3]=func(r[P2@NP]) */
+#define OP_Return 67
+#define OP_EndCoroutine 68
+#define OP_HaltIfNull 69 /* synopsis: if r[P3]=null halt */
+#define OP_Halt 70
+#define OP_Integer 71 /* synopsis: r[P2]=P1 */
+#define OP_Int64 72 /* synopsis: r[P2]=P4 */
+#define OP_String 73 /* synopsis: r[P2]='P4' (len=P1) */
+#define OP_BeginSubrtn 74 /* synopsis: r[P2]=NULL */
+#define OP_Null 75 /* synopsis: r[P2..P3]=NULL */
+#define OP_SoftNull 76 /* synopsis: r[P1]=NULL */
+#define OP_Blob 77 /* synopsis: r[P2]=P4 (len=P1) */
+#define OP_Variable 78 /* synopsis: r[P2]=parameter(P1,P4) */
+#define OP_Move 79 /* synopsis: r[P2@P3]=r[P1@P3] */
+#define OP_Copy 80 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */
+#define OP_SCopy 81 /* synopsis: r[P2]=r[P1] */
+#define OP_IntCopy 82 /* synopsis: r[P2]=r[P1] */
+#define OP_FkCheck 83
+#define OP_ResultRow 84 /* synopsis: output=r[P1@P2] */
+#define OP_CollSeq 85
+#define OP_AddImm 86 /* synopsis: r[P1]=r[P1]+P2 */
+#define OP_RealAffinity 87
+#define OP_Cast 88 /* synopsis: affinity(r[P1]) */
+#define OP_Permutation 89
+#define OP_Compare 90 /* synopsis: r[P1@P3] <-> r[P2@P3] */
+#define OP_IsTrue 91 /* synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 */
+#define OP_ZeroOrNull 92 /* synopsis: r[P2] = 0 OR NULL */
+#define OP_Offset 93 /* synopsis: r[P3] = sqlite_offset(P1) */
+#define OP_Column 94 /* synopsis: r[P3]=PX cursor P1 column P2 */
+#define OP_TypeCheck 95 /* synopsis: typecheck(r[P1@P2]) */
+#define OP_Affinity 96 /* synopsis: affinity(r[P1@P2]) */
+#define OP_MakeRecord 97 /* synopsis: r[P3]=mkrec(r[P1@P2]) */
+#define OP_Count 98 /* synopsis: r[P2]=count() */
+#define OP_ReadCookie 99
+#define OP_SetCookie 100
+#define OP_ReopenIdx 101 /* synopsis: root=P2 iDb=P3 */
+#define OP_BitAnd 102 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
+#define OP_BitOr 103 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
+#define OP_ShiftLeft 104 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
+#define OP_ShiftRight 105 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
+#define OP_Add 106 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
+#define OP_Subtract 107 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
+#define OP_Multiply 108 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
+#define OP_Divide 109 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
+#define OP_Remainder 110 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
+#define OP_Concat 111 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
+#define OP_OpenRead 112 /* synopsis: root=P2 iDb=P3 */
+#define OP_OpenWrite 113 /* synopsis: root=P2 iDb=P3 */
+#define OP_BitNot 114 /* same as TK_BITNOT, synopsis: r[P2]= ~r[P1] */
+#define OP_OpenDup 115
+#define OP_OpenAutoindex 116 /* synopsis: nColumn=P2 */
+#define OP_String8 117 /* same as TK_STRING, synopsis: r[P2]='P4' */
+#define OP_OpenEphemeral 118 /* synopsis: nColumn=P2 */
+#define OP_SorterOpen 119
+#define OP_SequenceTest 120 /* synopsis: if( cursor[P1].ctr++ ) pc = P2 */
+#define OP_OpenPseudo 121 /* synopsis: P3 columns in r[P2] */
+#define OP_Close 122
+#define OP_ColumnsUsed 123
+#define OP_SeekScan 124 /* synopsis: Scan-ahead up to P1 rows */
+#define OP_SeekHit 125 /* synopsis: set P2<=seekHit<=P3 */
+#define OP_Sequence 126 /* synopsis: r[P2]=cursor[P1].ctr++ */
+#define OP_NewRowid 127 /* synopsis: r[P2]=rowid */
+#define OP_Insert 128 /* synopsis: intkey=r[P3] data=r[P2] */
+#define OP_RowCell 129
+#define OP_Delete 130
+#define OP_ResetCount 131
+#define OP_SorterCompare 132 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
+#define OP_SorterData 133 /* synopsis: r[P2]=data */
+#define OP_RowData 134 /* synopsis: r[P2]=data */
+#define OP_Rowid 135 /* synopsis: r[P2]=PX rowid of P1 */
+#define OP_NullRow 136
+#define OP_SeekEnd 137
+#define OP_IdxInsert 138 /* synopsis: key=r[P2] */
+#define OP_SorterInsert 139 /* synopsis: key=r[P2] */
+#define OP_IdxDelete 140 /* synopsis: key=r[P2@P3] */
+#define OP_DeferredSeek 141 /* synopsis: Move P3 to P1.rowid if needed */
+#define OP_IdxRowid 142 /* synopsis: r[P2]=rowid */
+#define OP_FinishSeek 143
+#define OP_Destroy 144
+#define OP_Clear 145
+#define OP_ResetSorter 146
+#define OP_CreateBtree 147 /* synopsis: r[P2]=root iDb=P1 flags=P3 */
+#define OP_SqlExec 148
+#define OP_ParseSchema 149
+#define OP_LoadAnalysis 150
+#define OP_DropTable 151
+#define OP_DropIndex 152
+#define OP_Real 153 /* same as TK_FLOAT, synopsis: r[P2]=P4 */
+#define OP_DropTrigger 154
+#define OP_IntegrityCk 155
+#define OP_RowSetAdd 156 /* synopsis: rowset(P1)=r[P2] */
+#define OP_Param 157
+#define OP_FkCounter 158 /* synopsis: fkctr[P1]+=P2 */
+#define OP_MemMax 159 /* synopsis: r[P1]=max(r[P1],r[P2]) */
+#define OP_OffsetLimit 160 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */
+#define OP_AggInverse 161 /* synopsis: accum=r[P3] inverse(r[P2@P5]) */
+#define OP_AggStep 162 /* synopsis: accum=r[P3] step(r[P2@P5]) */
+#define OP_AggStep1 163 /* synopsis: accum=r[P3] step(r[P2@P5]) */
+#define OP_AggValue 164 /* synopsis: r[P3]=value N=P2 */
+#define OP_AggFinal 165 /* synopsis: accum=r[P1] N=P2 */
+#define OP_Expire 166
+#define OP_CursorLock 167
+#define OP_CursorUnlock 168
+#define OP_TableLock 169 /* synopsis: iDb=P1 root=P2 write=P3 */
+#define OP_VBegin 170
+#define OP_VCreate 171
+#define OP_VDestroy 172
+#define OP_VOpen 173
+#define OP_VCheck 174
+#define OP_VInitIn 175 /* synopsis: r[P2]=ValueList(P1,P3) */
+#define OP_VColumn 176 /* synopsis: r[P3]=vcolumn(P2) */
+#define OP_VRename 177
+#define OP_Pagecount 178
+#define OP_MaxPgcnt 179
+#define OP_ClrSubtype 180 /* synopsis: r[P1].subtype = 0 */
+#define OP_FilterAdd 181 /* synopsis: filter(P1) += key(P3@P4) */
+#define OP_Trace 182
+#define OP_CursorHint 183
+#define OP_ReleaseReg 184 /* synopsis: release r[P1@P2] mask P3 */
+#define OP_Noop 185
+#define OP_Explain 186
+#define OP_Abortable 187
+
+/* Properties such as "out2" or "jump" that are specified in
+** comments following the "case" for each opcode in the vdbe.c
+** are encoded into bitvectors as follows:
+*/
+#define OPFLG_JUMP 0x01 /* jump: P2 holds jmp target */
+#define OPFLG_IN1 0x02 /* in1: P1 is an input */
+#define OPFLG_IN2 0x04 /* in2: P2 is an input */
+#define OPFLG_IN3 0x08 /* in3: P3 is an input */
+#define OPFLG_OUT2 0x10 /* out2: P2 is an output */
+#define OPFLG_OUT3 0x20 /* out3: P3 is an output */
+#define OPFLG_NCYCLE 0x40 /* ncycle:Cycles count against P1 */
+#define OPFLG_INITIALIZER {\
+/* 0 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x41, 0x00,\
+/* 8 */ 0x01, 0x01, 0x01, 0x01, 0x03, 0x03, 0x01, 0x01,\
+/* 16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x49, 0x49, 0x49,\
+/* 24 */ 0x49, 0x01, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49,\
+/* 32 */ 0x41, 0x01, 0x41, 0x41, 0x41, 0x01, 0x41, 0x41,\
+/* 40 */ 0x41, 0x41, 0x41, 0x26, 0x26, 0x41, 0x23, 0x0b,\
+/* 48 */ 0x01, 0x01, 0x03, 0x03, 0x0b, 0x0b, 0x0b, 0x0b,\
+/* 56 */ 0x0b, 0x0b, 0x01, 0x03, 0x03, 0x03, 0x01, 0x41,\
+/* 64 */ 0x01, 0x00, 0x00, 0x02, 0x02, 0x08, 0x00, 0x10,\
+/* 72 */ 0x10, 0x10, 0x00, 0x10, 0x00, 0x10, 0x10, 0x00,\
+/* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x02, 0x02,\
+/* 88 */ 0x02, 0x00, 0x00, 0x12, 0x1e, 0x20, 0x40, 0x00,\
+/* 96 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x40, 0x26, 0x26,\
+/* 104 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26,\
+/* 112 */ 0x40, 0x00, 0x12, 0x40, 0x40, 0x10, 0x40, 0x00,\
+/* 120 */ 0x00, 0x00, 0x40, 0x00, 0x40, 0x40, 0x10, 0x10,\
+/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x50,\
+/* 136 */ 0x00, 0x40, 0x04, 0x04, 0x00, 0x40, 0x50, 0x40,\
+/* 144 */ 0x10, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,\
+/* 152 */ 0x00, 0x10, 0x00, 0x00, 0x06, 0x10, 0x00, 0x04,\
+/* 160 */ 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
+/* 168 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x10, 0x50,\
+/* 176 */ 0x40, 0x00, 0x10, 0x10, 0x02, 0x00, 0x00, 0x00,\
+/* 184 */ 0x00, 0x00, 0x00, 0x00,}
+
+/* The resolve3P2Values() routine is able to run faster if it knows
+** the value of the largest JUMP opcode. The smaller the maximum
+** JUMP opcode the better, so the mkopcodeh.tcl script that
+** generated this include file strives to group all JUMP opcodes
+** together near the beginning of the list.
+*/
+#define SQLITE_MX_JUMP_OPCODE 64 /* Maximum JUMP opcode */
+
+/************** End of opcodes.h *********************************************/
+/************** Continuing where we left off in vdbe.h ***********************/
+
+/*
+** Additional non-public SQLITE_PREPARE_* flags
+*/
+#define SQLITE_PREPARE_SAVESQL 0x80 /* Preserve SQL text */
+#define SQLITE_PREPARE_MASK 0x0f /* Mask of public flags */
+
+/*
+** Prototypes for the VDBE interface. See comments on the implementation
+** for a description of what each of these routines does.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*);
+SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe*,int,const char*);
+SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe*,int,const char*,...);
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall(Parse*,int,int,int,int,const FuncDef*,int);
+SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe*,int);
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
+#else
+# define sqlite3VdbeVerifyNoMallocRequired(A,B)
+# define sqlite3VdbeVerifyNoResultRow(A)
+#endif
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int);
+SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn(Vdbe*,int,int,int);
+#else
+# define sqlite3VdbeVerifyAbortable(A,B)
+# define sqlite3VdbeNoJumpsOutsideSubrtn(A,B,C,D)
+#endif
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno);
+#ifndef SQLITE_OMIT_EXPLAIN
+SQLITE_PRIVATE int sqlite3VdbeExplain(Parse*,u8,const char*,...);
+SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse*);
+SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse*);
+# define ExplainQueryPlan(P) sqlite3VdbeExplain P
+# ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+# define ExplainQueryPlan2(V,P) (V = sqlite3VdbeExplain P)
+# else
+# define ExplainQueryPlan2(V,P) ExplainQueryPlan(P)
+# endif
+# define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P)
+# define ExplainQueryPlanParent(P) sqlite3VdbeExplainParent(P)
+#else
+# define ExplainQueryPlan(P)
+# define ExplainQueryPlan2(V,P)
+# define ExplainQueryPlanPop(P)
+# define ExplainQueryPlanParent(P) 0
+# define sqlite3ExplainBreakpoint(A,B) /*no-op*/
+#endif
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_EXPLAIN)
+SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char*,const char*);
+#else
+# define sqlite3ExplainBreakpoint(A,B) /*no-op*/
+#endif
+SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*, int, char*, u16);
+SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, int addr, u8);
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
+SQLITE_PRIVATE void sqlite3VdbeTypeofColumn(Vdbe*, int);
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
+SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe*, int addr);
+SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
+SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters(Parse*,int addr, int n, u32 mask, int);
+#else
+# define sqlite3VdbeReleaseRegisters(P,A,N,M,F)
+#endif
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
+SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type);
+SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetLastOp(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse*);
+SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*);
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
+SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, u8);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3*,Vdbe*,const char*);
+SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString(Vdbe*,const char*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
+SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
+SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
+#ifndef SQLITE_OMIT_TRACE
+SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*);
+#endif
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
+SQLITE_PRIVATE int sqlite3BlobCompare(const Mem*, const Mem*);
+
+SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip(int, const void *, UnpackedRecord *, int);
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo*);
+
+typedef int (*RecordCompare)(int,const void*,UnpackedRecord*);
+SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);
+
+SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
+SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe*);
+
+SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context*);
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3*);
+#endif
+
+/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
+** each VDBE opcode.
+**
+** Use the SQLITE_ENABLE_MODULE_COMMENTS macro to see some extra no-op
+** comments in VDBE programs that show key decision points in the code
+** generator.
+*/
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
+# define VdbeComment(X) sqlite3VdbeComment X
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
+# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
+# ifdef SQLITE_ENABLE_MODULE_COMMENTS
+# define VdbeModuleComment(X) sqlite3VdbeNoopComment X
+# else
+# define VdbeModuleComment(X)
+# endif
+#else
+# define VdbeComment(X)
+# define VdbeNoopComment(X)
+# define VdbeModuleComment(X)
+#endif
+
+/*
+** The VdbeCoverage macros are used to set a coverage testing point
+** for VDBE branch instructions. The coverage testing points are line
+** numbers in the sqlite3.c source file. VDBE branch coverage testing
+** only works with an amalgamation build. That's ok since a VDBE branch
+** coverage build designed for testing the test suite only. No application
+** should ever ship with VDBE branch coverage measuring turned on.
+**
+** VdbeCoverage(v) // Mark the previously coded instruction
+** // as a branch
+**
+** VdbeCoverageIf(v, conditional) // Mark previous if conditional true
+**
+** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken
+**
+** VdbeCoverageNeverTaken(v) // Previous branch is never taken
+**
+** VdbeCoverageNeverNull(v) // Previous three-way branch is only
+** // taken on the first two ways. The
+** // NULL option is not possible
+**
+** VdbeCoverageEqNe(v) // Previous OP_Jump is only interested
+** // in distinguishing equal and not-equal.
+**
+** Every VDBE branch operation must be tagged with one of the macros above.
+** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and
+** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch()
+** routine in vdbe.c, alerting the developer to the missed tag.
+**
+** During testing, the test application will invoke
+** sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE,...) to set a callback
+** routine that is invoked as each bytecode branch is taken. The callback
+** contains the sqlite3.c source line number of the VdbeCoverage macro and
+** flags to indicate whether or not the branch was taken. The test application
+** is responsible for keeping track of this and reporting byte-code branches
+** that are never taken.
+**
+** See the VdbeBranchTaken() macro and vdbeTakeBranch() function in the
+** vdbe.c source file for additional information.
+*/
+#ifdef SQLITE_VDBE_COVERAGE
+SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe*,int);
+# define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__)
+# define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__)
+# define VdbeCoverageAlwaysTaken(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x5000000);
+# define VdbeCoverageNeverTaken(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x6000000);
+# define VdbeCoverageNeverNull(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000);
+# define VdbeCoverageNeverNullIf(v,x) \
+ if(x)sqlite3VdbeSetLineNumber(v,__LINE__|0x4000000);
+# define VdbeCoverageEqNe(v) \
+ sqlite3VdbeSetLineNumber(v,__LINE__|0x8000000);
+# define VDBE_OFFSET_LINENO(x) (__LINE__+x)
+#else
+# define VdbeCoverage(v)
+# define VdbeCoverageIf(v,x)
+# define VdbeCoverageAlwaysTaken(v)
+# define VdbeCoverageNeverTaken(v)
+# define VdbeCoverageNeverNull(v)
+# define VdbeCoverageNeverNullIf(v,x)
+# define VdbeCoverageEqNe(v)
+# define VDBE_OFFSET_LINENO(x) 0
+#endif
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+SQLITE_PRIVATE void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*);
+SQLITE_PRIVATE void sqlite3VdbeScanStatusRange(Vdbe*, int, int, int);
+SQLITE_PRIVATE void sqlite3VdbeScanStatusCounters(Vdbe*, int, int, int);
+#else
+# define sqlite3VdbeScanStatus(a,b,c,d,e,f)
+# define sqlite3VdbeScanStatusRange(a,b,c,d)
+# define sqlite3VdbeScanStatusCounters(a,b,c,d)
+#endif
+
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, VdbeOp*);
+#endif
+
+#if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
+SQLITE_PRIVATE int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr);
+#endif
+
+#endif /* SQLITE_VDBE_H */
+
+/************** End of vdbe.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include pcache.h in the middle of sqliteInt.h ****************/
+/************** Begin file pcache.h ******************************************/
+/*
+** 2008 August 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem.
+*/
+
+#ifndef _PCACHE_H_
+
+typedef struct PgHdr PgHdr;
+typedef struct PCache PCache;
+
+/*
+** Every page in the cache is controlled by an instance of the following
+** structure.
+*/
+struct PgHdr {
+ sqlite3_pcache_page *pPage; /* Pcache object page handle */
+ void *pData; /* Page data */
+ void *pExtra; /* Extra content */
+ PCache *pCache; /* PRIVATE: Cache that owns this page */
+ PgHdr *pDirty; /* Transient list of dirty sorted by pgno */
+ Pager *pPager; /* The pager this page is part of */
+ Pgno pgno; /* Page number for this page */
+#ifdef SQLITE_CHECK_PAGES
+ u32 pageHash; /* Hash of page content */
+#endif
+ u16 flags; /* PGHDR flags defined below */
+
+ /**********************************************************************
+ ** Elements above, except pCache, are public. All that follow are
+ ** private to pcache.c and should not be accessed by other modules.
+ ** pCache is grouped with the public elements for efficiency.
+ */
+ i64 nRef; /* Number of users of this page */
+ PgHdr *pDirtyNext; /* Next element in list of dirty pages */
+ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
+ /* NB: pDirtyNext and pDirtyPrev are undefined if the
+ ** PgHdr object is not dirty */
+};
+
+/* Bit values for PgHdr.flags */
+#define PGHDR_CLEAN 0x001 /* Page not on the PCache.pDirty list */
+#define PGHDR_DIRTY 0x002 /* Page is on the PCache.pDirty list */
+#define PGHDR_WRITEABLE 0x004 /* Journaled and ready to modify */
+#define PGHDR_NEED_SYNC 0x008 /* Fsync the rollback journal before
+ ** writing this page to the database */
+#define PGHDR_DONT_WRITE 0x010 /* Do not write content to disk */
+#define PGHDR_MMAP 0x020 /* This is an mmap page object */
+
+#define PGHDR_WAL_APPEND 0x040 /* Appended to wal file */
+
+/* Initialize and shutdown the page cache subsystem */
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void);
+
+/* Page cache buffer management:
+** These routines implement SQLITE_CONFIG_PAGECACHE.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n);
+
+/* Create a new pager cache.
+** Under memory stress, invoke xStress to try to make pages clean.
+** Only clean and unpinned pages can be reclaimed.
+*/
+SQLITE_PRIVATE int sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *pToInit /* Preallocated space for the PCache */
+);
+
+/* Modify the page-size after the cache has been created. */
+SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *, int);
+
+/* Return the size in bytes of a PCache object. Used to preallocate
+** storage space.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSize(void);
+
+/* One release per successful fetch. Page is pinned until released.
+** Reference counted.
+*/
+SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch(PCache*, Pgno, int createFlag);
+SQLITE_PRIVATE int sqlite3PcacheFetchStress(PCache*, Pgno, sqlite3_pcache_page**);
+SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(PCache*, Pgno, sqlite3_pcache_page *pPage);
+SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*);
+
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
+SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache*);
+
+/* Change a page number. Used by incr-vacuum. */
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno);
+
+/* Remove all pages with pgno>x. Reset the cache if x==0 */
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x);
+
+/* Get a list of all dirty pages in the cache, sorted by page number */
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*);
+
+/* Reset and close the cache object */
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache*);
+
+/* Clear flags from pages of the page cache */
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *);
+
+/* Discard the contents of the cache */
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache*);
+
+/* Return the total number of outstanding page references */
+SQLITE_PRIVATE i64 sqlite3PcacheRefCount(PCache*);
+
+/* Increment the reference count of an existing page */
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*);
+
+SQLITE_PRIVATE i64 sqlite3PcachePageRefcount(PgHdr*);
+
+/* Return the total number of pages stored in the cache */
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*);
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/* Iterate through all dirty pages currently stored in the cache. This
+** interface is only available if SQLITE_CHECK_PAGES is defined when the
+** library is built.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
+#endif
+
+#if defined(SQLITE_DEBUG)
+/* Check invariants on a PgHdr object */
+SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr*);
+#endif
+
+/* Set and get the suggested cache-size for the specified pager-cache.
+**
+** If no global maximum is configured, then the system attempts to limit
+** the total number of pages cached by purgeable pager-caches to the sum
+** of the suggested cache-sizes.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
+#endif
+
+/* Set or get the suggested spill-size for the specified pager-cache.
+**
+** The spill-size is the minimum number of pages in cache before the cache
+** will attempt to spill dirty pages by calling xStress.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *, int);
+
+/* Free up as much memory as possible from the page cache */
+SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*);
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/* Try to return memory used by the pcache module to the main memory heap */
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
+#endif
+
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);
+
+/* Return the header size */
+SQLITE_PRIVATE int sqlite3HeaderSizePcache(void);
+SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void);
+
+/* Number of dirty pages as a percentage of the configured cache size */
+SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*);
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache);
+#endif
+
+#endif /* _PCACHE_H_ */
+
+/************** End of pcache.h **********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include mutex.h in the middle of sqliteInt.h *****************/
+/************** Begin file mutex.h *******************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the common header for all mutex implementations.
+** The sqliteInt.h header #includes this file so that it is available
+** to all source files. We break it out in an effort to keep the code
+** better organized.
+**
+** NOTE: source files should *not* #include this header file directly.
+** Source files should #include the sqliteInt.h file and let that file
+** include this one indirectly.
+*/
+
+
+/*
+** Figure out what version of the code to use. The choices are
+**
+** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The
+** mutexes implementation cannot be overridden
+** at start-time.
+**
+** SQLITE_MUTEX_NOOP For single-threaded applications. No
+** mutual exclusion is provided. But this
+** implementation can be overridden at
+** start-time.
+**
+** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
+**
+** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
+*/
+#if !SQLITE_THREADSAFE
+# define SQLITE_MUTEX_OMIT
+#endif
+#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
+# if SQLITE_OS_UNIX
+# define SQLITE_MUTEX_PTHREADS
+# elif SQLITE_OS_WIN
+# define SQLITE_MUTEX_W32
+# else
+# define SQLITE_MUTEX_NOOP
+# endif
+#endif
+
+#ifdef SQLITE_MUTEX_OMIT
+/*
+** If this is a no-op implementation, implement everything as macros.
+*/
+#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
+#define sqlite3_mutex_free(X)
+#define sqlite3_mutex_enter(X)
+#define sqlite3_mutex_try(X) SQLITE_OK
+#define sqlite3_mutex_leave(X)
+#define sqlite3_mutex_held(X) ((void)(X),1)
+#define sqlite3_mutex_notheld(X) ((void)(X),1)
+#define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
+#define sqlite3MutexInit() SQLITE_OK
+#define sqlite3MutexEnd()
+#define MUTEX_LOGIC(X)
+#else
+#define MUTEX_LOGIC(X) X
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+#endif /* defined(SQLITE_MUTEX_OMIT) */
+
+/************** End of mutex.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/* The SQLITE_EXTRA_DURABLE compile-time option used to set the default
+** synchronous setting to EXTRA. It is no longer supported.
+*/
+#ifdef SQLITE_EXTRA_DURABLE
+# warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE
+# define SQLITE_DEFAULT_SYNCHRONOUS 3
+#endif
+
+/*
+** Default synchronous levels.
+**
+** Note that (for historical reasons) the PAGER_SYNCHRONOUS_* macros differ
+** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1.
+**
+** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS
+** OFF 1 0
+** NORMAL 2 1
+** FULL 3 2
+** EXTRA 4 3
+**
+** The "PRAGMA synchronous" statement also uses the zero-based numbers.
+** In other words, the zero-based numbers are used for all external interfaces
+** and the one-based values are used internally.
+*/
+#ifndef SQLITE_DEFAULT_SYNCHRONOUS
+# define SQLITE_DEFAULT_SYNCHRONOUS 2
+#endif
+#ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS
+# define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS
+#endif
+
+/*
+** Each database file to be accessed by the system is an instance
+** of the following structure. There are normally two of these structures
+** in the sqlite.aDb[] array. aDb[0] is the main database file and
+** aDb[1] is the database file used to hold temporary tables. Additional
+** databases may be attached.
+*/
+struct Db {
+ char *zDbSName; /* Name of this database. (schema name, not filename) */
+ Btree *pBt; /* The B*Tree structure for this database file */
+ u8 safety_level; /* How aggressive at syncing data to disk */
+ u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */
+ Schema *pSchema; /* Pointer to database schema (possibly shared) */
+};
+
+/*
+** An instance of the following structure stores a database schema.
+**
+** Most Schema objects are associated with a Btree. The exception is
+** the Schema for the TEMP database (sqlite3.aDb[1]) which is free-standing.
+** In shared cache mode, a single Schema object can be shared by multiple
+** Btrees that refer to the same underlying BtShared object.
+**
+** Schema objects are automatically deallocated when the last Btree that
+** references them is destroyed. The TEMP Schema is manually freed by
+** sqlite3_close().
+*
+** A thread must be holding a mutex on the corresponding Btree in order
+** to access Schema content. This implies that the thread must also be
+** holding a mutex on the sqlite3 connection pointer that owns the Btree.
+** For a TEMP Schema, only the connection mutex is required.
+*/
+struct Schema {
+ int schema_cookie; /* Database schema version number for this file */
+ int iGeneration; /* Generation counter. Incremented with each change */
+ Hash tblHash; /* All tables indexed by name */
+ Hash idxHash; /* All (named) indices indexed by name */
+ Hash trigHash; /* All triggers indexed by name */
+ Hash fkeyHash; /* All foreign keys by referenced table name */
+ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
+ u8 file_format; /* Schema format version for this file */
+ u8 enc; /* Text encoding used by this database */
+ u16 schemaFlags; /* Flags associated with this schema */
+ int cache_size; /* Number of pages to use in the cache */
+};
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Db.pSchema->flags field.
+*/
+#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
+#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
+#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P)
+#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P)
+
+/*
+** Allowed values for the DB.pSchema->flags field.
+**
+** The DB_SchemaLoaded flag is set after the database schema has been
+** read into internal hash tables.
+**
+** DB_UnresetViews means that one or more views have column names that
+** have been filled out. If the schema changes, these column names might
+** changes and so the view will need to be reset.
+*/
+#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
+#define DB_UnresetViews 0x0002 /* Some views have defined column names */
+#define DB_ResetWanted 0x0008 /* Reset the schema when nSchemaLock==0 */
+
+/*
+** The number of different kinds of things that can be limited
+** using the sqlite3_limit() interface.
+*/
+#define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
+
+/*
+** Lookaside malloc is a set of fixed-size buffers that can be used
+** to satisfy small transient memory allocation requests for objects
+** associated with a particular database connection. The use of
+** lookaside malloc provides a significant performance enhancement
+** (approx 10%) by avoiding numerous malloc/free requests while parsing
+** SQL statements.
+**
+** The Lookaside structure holds configuration information about the
+** lookaside malloc subsystem. Each available memory allocation in
+** the lookaside subsystem is stored on a linked list of LookasideSlot
+** objects.
+**
+** Lookaside allocations are only allowed for objects that are associated
+** with a particular database connection. Hence, schema information cannot
+** be stored in lookaside because in shared cache mode the schema information
+** is shared by multiple database connections. Therefore, while parsing
+** schema information, the Lookaside.bEnabled flag is cleared so that
+** lookaside allocations are not used to construct the schema objects.
+**
+** New lookaside allocations are only allowed if bDisable==0. When
+** bDisable is greater than zero, sz is set to zero which effectively
+** disables lookaside without adding a new test for the bDisable flag
+** in a performance-critical path. sz should be set by to szTrue whenever
+** bDisable changes back to zero.
+**
+** Lookaside buffers are initially held on the pInit list. As they are
+** used and freed, they are added back to the pFree list. New allocations
+** come off of pFree first, then pInit as a fallback. This dual-list
+** allows use to compute a high-water mark - the maximum number of allocations
+** outstanding at any point in the past - by subtracting the number of
+** allocations on the pInit list from the total number of allocations.
+**
+** Enhancement on 2019-12-12: Two-size-lookaside
+** The default lookaside configuration is 100 slots of 1200 bytes each.
+** The larger slot sizes are important for performance, but they waste
+** a lot of space, as most lookaside allocations are less than 128 bytes.
+** The two-size-lookaside enhancement breaks up the lookaside allocation
+** into two pools: One of 128-byte slots and the other of the default size
+** (1200-byte) slots. Allocations are filled from the small-pool first,
+** failing over to the full-size pool if that does not work. Thus more
+** lookaside slots are available while also using less memory.
+** This enhancement can be omitted by compiling with
+** SQLITE_OMIT_TWOSIZE_LOOKASIDE.
+*/
+struct Lookaside {
+ u32 bDisable; /* Only operate the lookaside when zero */
+ u16 sz; /* Size of each buffer in bytes */
+ u16 szTrue; /* True value of sz, even if disabled */
+ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
+ u32 nSlot; /* Number of lookaside slots allocated */
+ u32 anStat[3]; /* 0: hits. 1: size misses. 2: full misses */
+ LookasideSlot *pInit; /* List of buffers not previously used */
+ LookasideSlot *pFree; /* List of available buffers */
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ LookasideSlot *pSmallInit; /* List of small buffers not previously used */
+ LookasideSlot *pSmallFree; /* List of available small buffers */
+ void *pMiddle; /* First byte past end of full-size buffers and
+ ** the first byte of LOOKASIDE_SMALL buffers */
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ void *pStart; /* First byte of available memory space */
+ void *pEnd; /* First byte past end of available space */
+ void *pTrueEnd; /* True value of pEnd, when db->pnBytesFreed!=0 */
+};
+struct LookasideSlot {
+ LookasideSlot *pNext; /* Next buffer in the list of free buffers */
+};
+
+#define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0
+#define EnableLookaside db->lookaside.bDisable--;\
+ db->lookaside.sz=db->lookaside.bDisable?0:db->lookaside.szTrue
+
+/* Size of the smaller allocations in two-size lookaside */
+#ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+# define LOOKASIDE_SMALL 0
+#else
+# define LOOKASIDE_SMALL 128
+#endif
+
+/*
+** A hash table for built-in function definitions. (Application-defined
+** functions use a regular table table from hash.h.)
+**
+** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
+** Collisions are on the FuncDef.u.pHash chain. Use the SQLITE_FUNC_HASH()
+** macro to compute a hash on the function name.
+*/
+#define SQLITE_FUNC_HASH_SZ 23
+struct FuncDefHash {
+ FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */
+};
+#define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ)
+
+#ifdef SQLITE_USER_AUTHENTICATION
+/*
+** Information held in the "sqlite3" database connection object and used
+** to manage user authentication.
+*/
+typedef struct sqlite3_userauth sqlite3_userauth;
+struct sqlite3_userauth {
+ u8 authLevel; /* Current authentication level */
+ int nAuthPW; /* Size of the zAuthPW in bytes */
+ char *zAuthPW; /* Password used to authenticate */
+ char *zAuthUser; /* User name used to authenticate */
+};
+
+/* Allowed values for sqlite3_userauth.authLevel */
+#define UAUTH_Unknown 0 /* Authentication not yet checked */
+#define UAUTH_Fail 1 /* User authentication failed */
+#define UAUTH_User 2 /* Authenticated as a normal user */
+#define UAUTH_Admin 3 /* Authenticated as an administrator */
+
+/* Functions used only by user authorization logic */
+SQLITE_PRIVATE int sqlite3UserAuthTable(const char*);
+SQLITE_PRIVATE int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
+SQLITE_PRIVATE void sqlite3UserAuthInit(sqlite3*);
+SQLITE_PRIVATE void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
+
+#endif /* SQLITE_USER_AUTHENTICATION */
+
+/*
+** typedef for the authorization callback function.
+*/
+#ifdef SQLITE_USER_AUTHENTICATION
+ typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
+ const char*, const char*);
+#else
+ typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
+ const char*);
+#endif
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing
+** in the style of sqlite3_trace()
+*/
+#define SQLITE_TRACE_LEGACY 0x40 /* Use the legacy xTrace */
+#define SQLITE_TRACE_XPROFILE 0x80 /* Use the legacy xProfile */
+#else
+#define SQLITE_TRACE_LEGACY 0
+#define SQLITE_TRACE_XPROFILE 0
+#endif /* SQLITE_OMIT_DEPRECATED */
+#define SQLITE_TRACE_NONLEGACY_MASK 0x0f /* Normal flags */
+
+/*
+** Maximum number of sqlite3.aDb[] entries. This is the number of attached
+** databases plus 2 for "main" and "temp".
+*/
+#define SQLITE_MAX_DB (SQLITE_MAX_ATTACHED+2)
+
+/*
+** Each database connection is an instance of the following structure.
+*/
+struct sqlite3 {
+ sqlite3_vfs *pVfs; /* OS Interface */
+ struct Vdbe *pVdbe; /* List of active virtual machines */
+ CollSeq *pDfltColl; /* BINARY collseq for the database encoding */
+ sqlite3_mutex *mutex; /* Connection mutex */
+ Db *aDb; /* All backends */
+ int nDb; /* Number of backends currently in use */
+ u32 mDbFlags; /* flags recording internal state */
+ u64 flags; /* flags settable by pragmas. See below */
+ i64 lastRowid; /* ROWID of most recent insert (see above) */
+ i64 szMmap; /* Default mmap_size setting */
+ u32 nSchemaLock; /* Do not reset the schema when non-zero */
+ unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
+ int errCode; /* Most recent error code (SQLITE_*) */
+ int errByteOffset; /* Byte offset of error in SQL statement */
+ int errMask; /* & result codes with this before returning */
+ int iSysErrno; /* Errno value from last system error */
+ u32 dbOptFlags; /* Flags to enable/disable optimizations */
+ u8 enc; /* Text encoding */
+ u8 autoCommit; /* The auto-commit flag. */
+ u8 temp_store; /* 1: file 2: memory 0: default */
+ u8 mallocFailed; /* True if we have seen a malloc failure */
+ u8 bBenignMalloc; /* Do not require OOMs if true */
+ u8 dfltLockMode; /* Default locking-mode for attached dbs */
+ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
+ u8 suppressErr; /* Do not issue error messages if true */
+ u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */
+ u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
+ u8 mTrace; /* zero or more SQLITE_TRACE flags */
+ u8 noSharedCache; /* True if no shared-cache backends */
+ u8 nSqlExec; /* Number of pending OP_SqlExec opcodes */
+ u8 eOpenState; /* Current condition of the connection */
+ int nextPagesize; /* Pagesize after VACUUM if >0 */
+ i64 nChange; /* Value returned by sqlite3_changes() */
+ i64 nTotalChange; /* Value returned by sqlite3_total_changes() */
+ int aLimit[SQLITE_N_LIMIT]; /* Limits */
+ int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */
+ struct sqlite3InitInfo { /* Information used during initialization */
+ Pgno newTnum; /* Rootpage of table being initialized */
+ u8 iDb; /* Which db file is being initialized */
+ u8 busy; /* TRUE if currently initializing */
+ unsigned orphanTrigger : 1; /* Last statement is orphaned TEMP trigger */
+ unsigned imposterTable : 1; /* Building an imposter table */
+ unsigned reopenMemdb : 1; /* ATTACH is really a reopen using MemDB */
+ const char **azInit; /* "type", "name", and "tbl_name" columns */
+ } init;
+ int nVdbeActive; /* Number of VDBEs currently running */
+ int nVdbeRead; /* Number of active VDBEs that read or write */
+ int nVdbeWrite; /* Number of active VDBEs that read and write */
+ int nVdbeExec; /* Number of nested calls to VdbeExec() */
+ int nVDestroy; /* Number of active OP_VDestroy operations */
+ int nExtension; /* Number of loaded extensions */
+ void **aExtension; /* Array of shared library handles */
+ union {
+ void (*xLegacy)(void*,const char*); /* mTrace==SQLITE_TRACE_LEGACY */
+ int (*xV2)(u32,void*,void*,void*); /* All other mTrace values */
+ } trace;
+ void *pTraceArg; /* Argument to the trace function */
+#ifndef SQLITE_OMIT_DEPRECATED
+ void (*xProfile)(void*,const char*,u64); /* Profiling function */
+ void *pProfileArg; /* Argument to profile function */
+#endif
+ void *pCommitArg; /* Argument to xCommitCallback() */
+ int (*xCommitCallback)(void*); /* Invoked at every commit. */
+ void *pRollbackArg; /* Argument to xRollbackCallback() */
+ void (*xRollbackCallback)(void*); /* Invoked at every commit. */
+ void *pUpdateArg;
+ void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
+ void *pAutovacPagesArg; /* Client argument to autovac_pages */
+ void (*xAutovacDestr)(void*); /* Destructor for pAutovacPAgesArg */
+ unsigned int (*xAutovacPages)(void*,const char*,u32,u32,u32);
+ Parse *pParse; /* Current parse */
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ void *pPreUpdateArg; /* First argument to xPreUpdateCallback */
+ void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */
+ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64
+ );
+ PreUpdate *pPreUpdate; /* Context for active pre-update callback */
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+#ifndef SQLITE_OMIT_WAL
+ int (*xWalCallback)(void *, sqlite3 *, const char *, int);
+ void *pWalArg;
+#endif
+ void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
+ void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
+ void *pCollNeededArg;
+ sqlite3_value *pErr; /* Most recent error message */
+ union {
+ volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
+ double notUsed1; /* Spacer */
+ } u1;
+ Lookaside lookaside; /* Lookaside malloc configuration */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth; /* Access authorization function */
+ void *pAuthArg; /* 1st argument to the access auth function */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int (*xProgress)(void *); /* The progress callback */
+ void *pProgressArg; /* Argument to the progress callback */
+ unsigned nProgressOps; /* Number of opcodes for progress callback */
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int nVTrans; /* Allocated size of aVTrans */
+ Hash aModule; /* populated by sqlite3_create_module() */
+ VtabCtx *pVtabCtx; /* Context for active vtab connect/create */
+ VTable **aVTrans; /* Virtual tables with open transactions */
+ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
+#endif
+ Hash aFunc; /* Hash table of connection functions */
+ Hash aCollSeq; /* All collating sequences */
+ BusyHandler busyHandler; /* Busy callback */
+ Db aDbStatic[2]; /* Static space for the 2 default backends */
+ Savepoint *pSavepoint; /* List of active savepoints */
+ int nAnalysisLimit; /* Number of index rows to ANALYZE */
+ int busyTimeout; /* Busy handler timeout, in msec */
+ int nSavepoint; /* Number of non-transaction savepoints */
+ int nStatement; /* Number of nested statement-transactions */
+ i64 nDeferredCons; /* Net deferred constraints this transaction. */
+ i64 nDeferredImmCons; /* Net deferred immediate constraints */
+ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
+ DbClientData *pDbData; /* sqlite3_set_clientdata() content */
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ /* The following variables are all protected by the STATIC_MAIN
+ ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
+ **
+ ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
+ ** unlock so that it can proceed.
+ **
+ ** When X.pBlockingConnection==Y, that means that something that X tried
+ ** tried to do recently failed with an SQLITE_LOCKED error due to locks
+ ** held by Y.
+ */
+ sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
+ sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
+ void *pUnlockArg; /* Argument to xUnlockNotify */
+ void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
+ sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
+#endif
+#ifdef SQLITE_USER_AUTHENTICATION
+ sqlite3_userauth auth; /* User authentication information */
+#endif
+};
+
+/*
+** A macro to discover the encoding of a database.
+*/
+#define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
+#define ENC(db) ((db)->enc)
+
+/*
+** A u64 constant where the lower 32 bits are all zeros. Only the
+** upper 32 bits are included in the argument. Necessary because some
+** C-compilers still do not accept LL integer literals.
+*/
+#define HI(X) ((u64)(X)<<32)
+
+/*
+** Possible values for the sqlite3.flags.
+**
+** Value constraints (enforced via assert()):
+** SQLITE_FullFSync == PAGER_FULLFSYNC
+** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC
+** SQLITE_CacheSpill == PAGER_CACHE_SPILL
+*/
+#define SQLITE_WriteSchema 0x00000001 /* OK to update SQLITE_SCHEMA */
+#define SQLITE_LegacyFileFmt 0x00000002 /* Create new databases in format 1 */
+#define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */
+#define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */
+#define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */
+#define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */
+#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
+#define SQLITE_TrustedSchema 0x00000080 /* Allow unsafe functions and
+ ** vtabs in the schema definition */
+#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
+ /* result set is empty */
+#define SQLITE_IgnoreChecks 0x00000200 /* Do not enforce check constraints */
+#define SQLITE_StmtScanStatus 0x00000400 /* Enable stmt_scanstats() counters */
+#define SQLITE_NoCkptOnClose 0x00000800 /* No checkpoint on close()/DETACH */
+#define SQLITE_ReverseOrder 0x00001000 /* Reverse unordered SELECTs */
+#define SQLITE_RecTriggers 0x00002000 /* Enable recursive triggers */
+#define SQLITE_ForeignKeys 0x00004000 /* Enforce foreign key constraints */
+#define SQLITE_AutoIndex 0x00008000 /* Enable automatic indexes */
+#define SQLITE_LoadExtension 0x00010000 /* Enable load_extension */
+#define SQLITE_LoadExtFunc 0x00020000 /* Enable load_extension() SQL func */
+#define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */
+#define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */
+#define SQLITE_QueryOnly 0x00100000 /* Disable database changes */
+#define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */
+#define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */
+#define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/
+#define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */
+#define SQLITE_ResetDatabase 0x02000000 /* Reset the database */
+#define SQLITE_LegacyAlter 0x04000000 /* Legacy ALTER TABLE behaviour */
+#define SQLITE_NoSchemaError 0x08000000 /* Do not report schema parse errors*/
+#define SQLITE_Defensive 0x10000000 /* Input SQL is likely hostile */
+#define SQLITE_DqsDDL 0x20000000 /* dbl-quoted strings allowed in DDL*/
+#define SQLITE_DqsDML 0x40000000 /* dbl-quoted strings allowed in DML*/
+#define SQLITE_EnableView 0x80000000 /* Enable the use of views */
+#define SQLITE_CountRows HI(0x00001) /* Count rows changed by INSERT, */
+ /* DELETE, or UPDATE and return */
+ /* the count using a callback. */
+#define SQLITE_CorruptRdOnly HI(0x00002) /* Prohibit writes due to error */
+#define SQLITE_ReadUncommit HI(0x00004) /* READ UNCOMMITTED in shared-cache */
+#define SQLITE_FkNoAction HI(0x00008) /* Treat all FK as NO ACTION */
+
+/* Flags used only if debugging */
+#ifdef SQLITE_DEBUG
+#define SQLITE_SqlTrace HI(0x0100000) /* Debug print SQL as it executes */
+#define SQLITE_VdbeListing HI(0x0200000) /* Debug listings of VDBE progs */
+#define SQLITE_VdbeTrace HI(0x0400000) /* True to trace VDBE execution */
+#define SQLITE_VdbeAddopTrace HI(0x0800000) /* Trace sqlite3VdbeAddOp() calls */
+#define SQLITE_VdbeEQP HI(0x1000000) /* Debug EXPLAIN QUERY PLAN */
+#define SQLITE_ParserTrace HI(0x2000000) /* PRAGMA parser_trace=ON */
+#endif
+
+/*
+** Allowed values for sqlite3.mDbFlags
+*/
+#define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */
+#define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */
+#define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */
+#define DBFLAG_VacuumInto 0x0008 /* Currently running VACUUM INTO */
+#define DBFLAG_SchemaKnownOk 0x0010 /* Schema is known to be valid */
+#define DBFLAG_InternalFunc 0x0020 /* Allow use of internal functions */
+#define DBFLAG_EncodingFixed 0x0040 /* No longer possible to change enc. */
+
+/*
+** Bits of the sqlite3.dbOptFlags field that are used by the
+** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
+** selectively disable various optimizations.
+*/
+#define SQLITE_QueryFlattener 0x00000001 /* Query flattening */
+#define SQLITE_WindowFunc 0x00000002 /* Use xInverse for window functions */
+#define SQLITE_GroupByOrder 0x00000004 /* GROUPBY cover of ORDERBY */
+#define SQLITE_FactorOutConst 0x00000008 /* Constant factoring */
+#define SQLITE_DistinctOpt 0x00000010 /* DISTINCT using indexes */
+#define SQLITE_CoverIdxScan 0x00000020 /* Covering index scans */
+#define SQLITE_OrderByIdxJoin 0x00000040 /* ORDER BY of joins via index */
+#define SQLITE_Transitive 0x00000080 /* Transitive constraints */
+#define SQLITE_OmitNoopJoin 0x00000100 /* Omit unused tables in joins */
+#define SQLITE_CountOfView 0x00000200 /* The count-of-view optimization */
+#define SQLITE_CursorHints 0x00000400 /* Add OP_CursorHint opcodes */
+#define SQLITE_Stat4 0x00000800 /* Use STAT4 data */
+ /* TH3 expects this value ^^^^^^^^^^ to be 0x0000800. Don't change it */
+#define SQLITE_PushDown 0x00001000 /* The push-down optimization */
+#define SQLITE_SimplifyJoin 0x00002000 /* Convert LEFT JOIN to JOIN */
+#define SQLITE_SkipScan 0x00004000 /* Skip-scans */
+#define SQLITE_PropagateConst 0x00008000 /* The constant propagation opt */
+#define SQLITE_MinMaxOpt 0x00010000 /* The min/max optimization */
+#define SQLITE_SeekScan 0x00020000 /* The OP_SeekScan optimization */
+#define SQLITE_OmitOrderBy 0x00040000 /* Omit pointless ORDER BY */
+ /* TH3 expects this value ^^^^^^^^^^ to be 0x40000. Coordinate any change */
+#define SQLITE_BloomFilter 0x00080000 /* Use a Bloom filter on searches */
+#define SQLITE_BloomPulldown 0x00100000 /* Run Bloom filters early */
+#define SQLITE_BalancedMerge 0x00200000 /* Balance multi-way merges */
+#define SQLITE_ReleaseReg 0x00400000 /* Use OP_ReleaseReg for testing */
+#define SQLITE_FlttnUnionAll 0x00800000 /* Disable the UNION ALL flattener */
+ /* TH3 expects this value ^^^^^^^^^^ See flatten04.test */
+#define SQLITE_IndexedExpr 0x01000000 /* Pull exprs from index when able */
+#define SQLITE_Coroutines 0x02000000 /* Co-routines for subqueries */
+#define SQLITE_NullUnusedCols 0x04000000 /* NULL unused columns in subqueries */
+#define SQLITE_OnePass 0x08000000 /* Single-pass DELETE and UPDATE */
+#define SQLITE_AllOpts 0xffffffff /* All optimizations */
+
+/*
+** Macros for testing whether or not optimizations are enabled or disabled.
+*/
+#define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0)
+#define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0)
+
+/*
+** Return true if it OK to factor constant expressions into the initialization
+** code. The argument is a Parse object for the code generator.
+*/
+#define ConstFactorOk(P) ((P)->okConstFactor)
+
+/* Possible values for the sqlite3.eOpenState field.
+** The numbers are randomly selected such that a minimum of three bits must
+** change to convert any number to another or to zero
+*/
+#define SQLITE_STATE_OPEN 0x76 /* Database is open */
+#define SQLITE_STATE_CLOSED 0xce /* Database is closed */
+#define SQLITE_STATE_SICK 0xba /* Error and awaiting close */
+#define SQLITE_STATE_BUSY 0x6d /* Database currently in use */
+#define SQLITE_STATE_ERROR 0xd5 /* An SQLITE_MISUSE error occurred */
+#define SQLITE_STATE_ZOMBIE 0xa7 /* Close with last statement close */
+
+/*
+** Each SQL function is defined by an instance of the following
+** structure. For global built-in functions (ex: substr(), max(), count())
+** a pointer to this structure is held in the sqlite3BuiltinFunctions object.
+** For per-connection application-defined functions, a pointer to this
+** structure is held in the db->aHash hash table.
+**
+** The u.pHash field is used by the global built-ins. The u.pDestructor
+** field is used by per-connection app-def functions.
+*/
+struct FuncDef {
+ i8 nArg; /* Number of arguments. -1 means unlimited */
+ u32 funcFlags; /* Some combination of SQLITE_FUNC_* */
+ void *pUserData; /* User data parameter */
+ FuncDef *pNext; /* Next function with same name */
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */
+ void (*xFinalize)(sqlite3_context*); /* Agg finalizer */
+ void (*xValue)(sqlite3_context*); /* Current agg value */
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**); /* inverse agg-step */
+ const char *zName; /* SQL name of the function. */
+ union {
+ FuncDef *pHash; /* Next with a different name but the same hash */
+ FuncDestructor *pDestructor; /* Reference counted destructor function */
+ } u; /* pHash if SQLITE_FUNC_BUILTIN, pDestructor otherwise */
+};
+
+/*
+** This structure encapsulates a user-function destructor callback (as
+** configured using create_function_v2()) and a reference counter. When
+** create_function_v2() is called to create a function with a destructor,
+** a single object of this type is allocated. FuncDestructor.nRef is set to
+** the number of FuncDef objects created (either 1 or 3, depending on whether
+** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
+** member of each of the new FuncDef objects is set to point to the allocated
+** FuncDestructor.
+**
+** Thereafter, when one of the FuncDef objects is deleted, the reference
+** count on this object is decremented. When it reaches 0, the destructor
+** is invoked and the FuncDestructor structure freed.
+*/
+struct FuncDestructor {
+ int nRef;
+ void (*xDestroy)(void *);
+ void *pUserData;
+};
+
+/*
+** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF
+** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And
+** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There
+** are assert() statements in the code to verify this.
+**
+** Value constraints (enforced via assert()):
+** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg
+** SQLITE_FUNC_ANYORDER == NC_OrderAgg == SF_OrderByReqd
+** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG
+** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG
+** SQLITE_FUNC_BYTELEN == OPFLAG_BYTELENARG
+** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API
+** SQLITE_FUNC_DIRECT == SQLITE_DIRECTONLY from the API
+** SQLITE_FUNC_UNSAFE == SQLITE_INNOCUOUS -- opposite meanings!!!
+** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API
+**
+** Note that even though SQLITE_FUNC_UNSAFE and SQLITE_INNOCUOUS have the
+** same bit value, their meanings are inverted. SQLITE_FUNC_UNSAFE is
+** used internally and if set means that the function has side effects.
+** SQLITE_INNOCUOUS is used by application code and means "not unsafe".
+** See multiple instances of tag-20230109-1.
+*/
+#define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
+#define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */
+#define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */
+#define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */
+#define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/
+#define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */
+#define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */
+#define SQLITE_FUNC_BYTELEN 0x00c0 /* Built-in octet_length() function */
+#define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */
+/* 0x0200 -- available for reuse */
+#define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
+#define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
+#define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */
+#define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a
+ ** single query - might change over time */
+#define SQLITE_FUNC_TEST 0x4000 /* Built-in testing functions */
+/* 0x8000 -- available for reuse */
+#define SQLITE_FUNC_WINDOW 0x00010000 /* Built-in window-only function */
+#define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */
+#define SQLITE_FUNC_DIRECT 0x00080000 /* Not for use in TRIGGERs or VIEWs */
+#define SQLITE_FUNC_SUBTYPE 0x00100000 /* Result likely to have sub-type */
+#define SQLITE_FUNC_UNSAFE 0x00200000 /* Function has side effects */
+#define SQLITE_FUNC_INLINE 0x00400000 /* Functions implemented in-line */
+#define SQLITE_FUNC_BUILTIN 0x00800000 /* This is a built-in function */
+#define SQLITE_FUNC_ANYORDER 0x08000000 /* count/min/max aggregate */
+
+/* Identifier numbers for each in-line function */
+#define INLINEFUNC_coalesce 0
+#define INLINEFUNC_implies_nonnull_row 1
+#define INLINEFUNC_expr_implies_expr 2
+#define INLINEFUNC_expr_compare 3
+#define INLINEFUNC_affinity 4
+#define INLINEFUNC_iif 5
+#define INLINEFUNC_sqlite_offset 6
+#define INLINEFUNC_unlikely 99 /* Default case */
+
+/*
+** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
+** used to create the initializers for the FuncDef structures.
+**
+** FUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Used to create a scalar function definition of a function zName
+** implemented by C function xFunc that accepts nArg arguments. The
+** value passed as iArg is cast to a (void*) and made available
+** as the user-data (sqlite3_user_data()) for the function. If
+** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
+**
+** VFUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
+**
+** SFUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and
+** adds the SQLITE_DIRECTONLY flag.
+**
+** INLINE_FUNC(zName, nArg, iFuncId, mFlags)
+** zName is the name of a function that is implemented by in-line
+** byte code rather than by the usual callbacks. The iFuncId
+** parameter determines the function id. The mFlags parameter is
+** optional SQLITE_FUNC_ flags for this function.
+**
+** TEST_FUNC(zName, nArg, iFuncId, mFlags)
+** zName is the name of a test-only function implemented by in-line
+** byte code rather than by the usual callbacks. The iFuncId
+** parameter determines the function id. The mFlags parameter is
+** optional SQLITE_FUNC_ flags for this function.
+**
+** DFUNCTION(zName, nArg, iArg, bNC, xFunc)
+** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and
+** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions
+** and functions like sqlite_version() that can change, but not during
+** a single query. The iArg is ignored. The user-data is always set
+** to a NULL pointer. The bNC parameter is not used.
+**
+** MFUNCTION(zName, nArg, xPtr, xFunc)
+** For math-library functions. xPtr is an arbitrary pointer.
+**
+** PURE_DATE(zName, nArg, iArg, bNC, xFunc)
+** Used for "pure" date/time functions, this macro is like DFUNCTION
+** except that it does set the SQLITE_FUNC_CONSTANT flags. iArg is
+** ignored and the user-data for these functions is set to an
+** arbitrary non-NULL pointer. The bNC parameter is not used.
+**
+** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
+** Used to create an aggregate function definition implemented by
+** the C functions xStep and xFinal. The first four parameters
+** are interpreted in the same way as the first 4 parameters to
+** FUNCTION().
+**
+** WAGGREGATE(zName, nArg, iArg, xStep, xFinal, xValue, xInverse)
+** Used to create an aggregate function definition implemented by
+** the C functions xStep and xFinal. The first four parameters
+** are interpreted in the same way as the first 4 parameters to
+** FUNCTION().
+**
+** LIKEFUNC(zName, nArg, pArg, flags)
+** Used to create a scalar function definition of a function zName
+** that accepts nArg arguments and is implemented by a call to C
+** function likeFunc. Argument pArg is cast to a (void *) and made
+** available as the function user-data (sqlite3_user_data()). The
+** FuncDef.flags variable is set to the value passed as the flags
+** parameter.
+*/
+#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define SFUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_DIRECTONLY|SQLITE_FUNC_UNSAFE, \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define MFUNCTION(zName, nArg, xPtr, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \
+ xPtr, 0, xFunc, 0, 0, 0, #zName, {0} }
+#define JFUNCTION(zName, nArg, iArg, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_DETERMINISTIC|\
+ SQLITE_FUNC_CONSTANT|SQLITE_UTF8, \
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define INLINE_FUNC(zName, nArg, iArg, mFlags) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_UTF8|SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \
+ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} }
+#define TEST_FUNC(zName, nArg, iArg, mFlags) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_UTF8|SQLITE_FUNC_INTERNAL|SQLITE_FUNC_TEST| \
+ SQLITE_FUNC_INLINE|SQLITE_FUNC_CONSTANT|(mFlags), \
+ SQLITE_INT_TO_PTR(iArg), 0, noopFunc, 0, 0, 0, #zName, {0} }
+#define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_SLOCHNG|SQLITE_UTF8, \
+ 0, 0, xFunc, 0, 0, 0, #zName, {0} }
+#define PURE_DATE(zName, nArg, iArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \
+ (void*)&sqlite3Config, 0, xFunc, 0, 0, 0, #zName, {0} }
+#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
+ SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, 0, #zName, {0} }
+#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
+ pArg, 0, xFunc, 0, 0, 0, #zName, }
+#define LIKEFUNC(zName, nArg, arg, flags) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
+ (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} }
+#define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \
+ {nArg, SQLITE_FUNC_BUILTIN|SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \
+ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}}
+#define INTERNAL_FUNCTION(zName, nArg, xFunc) \
+ {nArg, SQLITE_FUNC_BUILTIN|\
+ SQLITE_FUNC_INTERNAL|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \
+ 0, 0, xFunc, 0, 0, 0, #zName, {0} }
+
+
+/*
+** All current savepoints are stored in a linked list starting at
+** sqlite3.pSavepoint. The first element in the list is the most recently
+** opened savepoint. Savepoints are added to the list by the vdbe
+** OP_Savepoint instruction.
+*/
+struct Savepoint {
+ char *zName; /* Savepoint name (nul-terminated) */
+ i64 nDeferredCons; /* Number of deferred fk violations */
+ i64 nDeferredImmCons; /* Number of deferred imm fk. */
+ Savepoint *pNext; /* Parent savepoint (if any) */
+};
+
+/*
+** The following are used as the second parameter to sqlite3Savepoint(),
+** and as the P1 argument to the OP_Savepoint instruction.
+*/
+#define SAVEPOINT_BEGIN 0
+#define SAVEPOINT_RELEASE 1
+#define SAVEPOINT_ROLLBACK 2
+
+
+/*
+** Each SQLite module (virtual table definition) is defined by an
+** instance of the following structure, stored in the sqlite3.aModule
+** hash table.
+*/
+struct Module {
+ const sqlite3_module *pModule; /* Callback pointers */
+ const char *zName; /* Name passed to create_module() */
+ int nRefModule; /* Number of pointers to this object */
+ void *pAux; /* pAux passed to create_module() */
+ void (*xDestroy)(void *); /* Module destructor function */
+ Table *pEpoTab; /* Eponymous table for this module */
+};
+
+/*
+** Information about each column of an SQL table is held in an instance
+** of the Column structure, in the Table.aCol[] array.
+**
+** Definitions:
+**
+** "table column index" This is the index of the column in the
+** Table.aCol[] array, and also the index of
+** the column in the original CREATE TABLE stmt.
+**
+** "storage column index" This is the index of the column in the
+** record BLOB generated by the OP_MakeRecord
+** opcode. The storage column index is less than
+** or equal to the table column index. It is
+** equal if and only if there are no VIRTUAL
+** columns to the left.
+**
+** Notes on zCnName:
+** The zCnName field stores the name of the column, the datatype of the
+** column, and the collating sequence for the column, in that order, all in
+** a single allocation. Each string is 0x00 terminated. The datatype
+** is only included if the COLFLAG_HASTYPE bit of colFlags is set and the
+** collating sequence name is only included if the COLFLAG_HASCOLL bit is
+** set.
+*/
+struct Column {
+ char *zCnName; /* Name of this column */
+ unsigned notNull :4; /* An OE_ code for handling a NOT NULL constraint */
+ unsigned eCType :4; /* One of the standard types */
+ char affinity; /* One of the SQLITE_AFF_... values */
+ u8 szEst; /* Est size of value in this column. sizeof(INT)==1 */
+ u8 hName; /* Column name hash for faster lookup */
+ u16 iDflt; /* 1-based index of DEFAULT. 0 means "none" */
+ u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */
+};
+
+/* Allowed values for Column.eCType.
+**
+** Values must match entries in the global constant arrays
+** sqlite3StdTypeLen[] and sqlite3StdType[]. Each value is one more
+** than the offset into these arrays for the corresponding name.
+** Adjust the SQLITE_N_STDTYPE value if adding or removing entries.
+*/
+#define COLTYPE_CUSTOM 0 /* Type appended to zName */
+#define COLTYPE_ANY 1
+#define COLTYPE_BLOB 2
+#define COLTYPE_INT 3
+#define COLTYPE_INTEGER 4
+#define COLTYPE_REAL 5
+#define COLTYPE_TEXT 6
+#define SQLITE_N_STDTYPE 6 /* Number of standard types */
+
+/* Allowed values for Column.colFlags.
+**
+** Constraints:
+** TF_HasVirtual == COLFLAG_VIRTUAL
+** TF_HasStored == COLFLAG_STORED
+** TF_HasHidden == COLFLAG_HIDDEN
+*/
+#define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */
+#define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */
+#define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */
+#define COLFLAG_UNIQUE 0x0008 /* Column def contains "UNIQUE" or "PK" */
+#define COLFLAG_SORTERREF 0x0010 /* Use sorter-refs with this column */
+#define COLFLAG_VIRTUAL 0x0020 /* GENERATED ALWAYS AS ... VIRTUAL */
+#define COLFLAG_STORED 0x0040 /* GENERATED ALWAYS AS ... STORED */
+#define COLFLAG_NOTAVAIL 0x0080 /* STORED column not yet calculated */
+#define COLFLAG_BUSY 0x0100 /* Blocks recursion on GENERATED columns */
+#define COLFLAG_HASCOLL 0x0200 /* Has collating sequence name in zCnName */
+#define COLFLAG_NOEXPAND 0x0400 /* Omit this column when expanding "*" */
+#define COLFLAG_GENERATED 0x0060 /* Combo: _STORED, _VIRTUAL */
+#define COLFLAG_NOINSERT 0x0062 /* Combo: _HIDDEN, _STORED, _VIRTUAL */
+
+/*
+** A "Collating Sequence" is defined by an instance of the following
+** structure. Conceptually, a collating sequence consists of a name and
+** a comparison routine that defines the order of that sequence.
+**
+** If CollSeq.xCmp is NULL, it means that the
+** collating sequence is undefined. Indices built on an undefined
+** collating sequence may not be read or written.
+*/
+struct CollSeq {
+ char *zName; /* Name of the collating sequence, UTF-8 encoded */
+ u8 enc; /* Text encoding handled by xCmp() */
+ void *pUser; /* First argument to xCmp() */
+ int (*xCmp)(void*,int, const void*, int, const void*);
+ void (*xDel)(void*); /* Destructor for pUser */
+};
+
+/*
+** A sort order can be either ASC or DESC.
+*/
+#define SQLITE_SO_ASC 0 /* Sort in ascending order */
+#define SQLITE_SO_DESC 1 /* Sort in ascending order */
+#define SQLITE_SO_UNDEFINED -1 /* No sort order specified */
+
+/*
+** Column affinity types.
+**
+** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
+** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
+** the speed a little by numbering the values consecutively.
+**
+** But rather than start with 0 or 1, we begin with 'A'. That way,
+** when multiple affinity types are concatenated into a string and
+** used as the P4 operand, they will be more readable.
+**
+** Note also that the numeric types are grouped together so that testing
+** for a numeric type is a single comparison. And the BLOB type is first.
+*/
+#define SQLITE_AFF_NONE 0x40 /* '@' */
+#define SQLITE_AFF_BLOB 0x41 /* 'A' */
+#define SQLITE_AFF_TEXT 0x42 /* 'B' */
+#define SQLITE_AFF_NUMERIC 0x43 /* 'C' */
+#define SQLITE_AFF_INTEGER 0x44 /* 'D' */
+#define SQLITE_AFF_REAL 0x45 /* 'E' */
+#define SQLITE_AFF_FLEXNUM 0x46 /* 'F' */
+
+#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
+
+/*
+** The SQLITE_AFF_MASK values masks off the significant bits of an
+** affinity value.
+*/
+#define SQLITE_AFF_MASK 0x47
+
+/*
+** Additional bit values that can be ORed with an affinity without
+** changing the affinity.
+**
+** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
+** It causes an assert() to fire if either operand to a comparison
+** operator is NULL. It is added to certain comparison operators to
+** prove that the operands are always NOT NULL.
+*/
+#define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */
+#define SQLITE_NULLEQ 0x80 /* NULL=NULL */
+#define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */
+
+/*
+** An object of this type is created for each virtual table present in
+** the database schema.
+**
+** If the database schema is shared, then there is one instance of this
+** structure for each database connection (sqlite3*) that uses the shared
+** schema. This is because each database connection requires its own unique
+** instance of the sqlite3_vtab* handle used to access the virtual table
+** implementation. sqlite3_vtab* handles can not be shared between
+** database connections, even when the rest of the in-memory database
+** schema is shared, as the implementation often stores the database
+** connection handle passed to it via the xConnect() or xCreate() method
+** during initialization internally. This database connection handle may
+** then be used by the virtual table implementation to access real tables
+** within the database. So that they appear as part of the callers
+** transaction, these accesses need to be made via the same database
+** connection as that used to execute SQL operations on the virtual table.
+**
+** All VTable objects that correspond to a single table in a shared
+** database schema are initially stored in a linked-list pointed to by
+** the Table.pVTable member variable of the corresponding Table object.
+** When an sqlite3_prepare() operation is required to access the virtual
+** table, it searches the list for the VTable that corresponds to the
+** database connection doing the preparing so as to use the correct
+** sqlite3_vtab* handle in the compiled query.
+**
+** When an in-memory Table object is deleted (for example when the
+** schema is being reloaded for some reason), the VTable objects are not
+** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
+** immediately. Instead, they are moved from the Table.pVTable list to
+** another linked list headed by the sqlite3.pDisconnect member of the
+** corresponding sqlite3 structure. They are then deleted/xDisconnected
+** next time a statement is prepared using said sqlite3*. This is done
+** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
+** Refer to comments above function sqlite3VtabUnlockList() for an
+** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
+** list without holding the corresponding sqlite3.mutex mutex.
+**
+** The memory for objects of this type is always allocated by
+** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
+** the first argument.
+*/
+struct VTable {
+ sqlite3 *db; /* Database connection associated with this table */
+ Module *pMod; /* Pointer to module implementation */
+ sqlite3_vtab *pVtab; /* Pointer to vtab instance */
+ int nRef; /* Number of pointers to this structure */
+ u8 bConstraint; /* True if constraints are supported */
+ u8 bAllSchemas; /* True if might use any attached schema */
+ u8 eVtabRisk; /* Riskiness of allowing hacker access */
+ int iSavepoint; /* Depth of the SAVEPOINT stack */
+ VTable *pNext; /* Next in linked list (see above) */
+};
+
+/* Allowed values for VTable.eVtabRisk
+*/
+#define SQLITE_VTABRISK_Low 0
+#define SQLITE_VTABRISK_Normal 1
+#define SQLITE_VTABRISK_High 2
+
+/*
+** The schema for each SQL table, virtual table, and view is represented
+** in memory by an instance of the following structure.
+*/
+struct Table {
+ char *zName; /* Name of the table or view */
+ Column *aCol; /* Information about each column */
+ Index *pIndex; /* List of SQL indexes on this table. */
+ char *zColAff; /* String defining the affinity of each column */
+ ExprList *pCheck; /* All CHECK constraints */
+ /* ... also used as column name list in a VIEW */
+ Pgno tnum; /* Root BTree page for this table */
+ u32 nTabRef; /* Number of pointers to this Table */
+ u32 tabFlags; /* Mask of TF_* values */
+ i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */
+ i16 nCol; /* Number of columns in this table */
+ i16 nNVCol; /* Number of columns that are not VIRTUAL */
+ LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */
+ LogEst szTabRow; /* Estimated size of each table row in bytes */
+#ifdef SQLITE_ENABLE_COSTMULT
+ LogEst costMult; /* Cost multiplier for using this table */
+#endif
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
+ u8 eTabType; /* 0: normal, 1: virtual, 2: view */
+ union {
+ struct { /* Used by ordinary tables: */
+ int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
+ ExprList *pDfltList; /* DEFAULT clauses on various columns.
+ ** Or the AS clause for generated columns. */
+ } tab;
+ struct { /* Used by views: */
+ Select *pSelect; /* View definition */
+ } view;
+ struct { /* Used by virtual tables only: */
+ int nArg; /* Number of arguments to the module */
+ char **azArg; /* 0: module 1: schema 2: vtab name 3...: args */
+ VTable *p; /* List of VTable objects. */
+ } vtab;
+ } u;
+ Trigger *pTrigger; /* List of triggers on this object */
+ Schema *pSchema; /* Schema that contains this table */
+};
+
+/*
+** Allowed values for Table.tabFlags.
+**
+** TF_OOOHidden applies to tables or view that have hidden columns that are
+** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING
+** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden,
+** the TF_OOOHidden attribute would apply in this case. Such tables require
+** special handling during INSERT processing. The "OOO" means "Out Of Order".
+**
+** Constraints:
+**
+** TF_HasVirtual == COLFLAG_VIRTUAL
+** TF_HasStored == COLFLAG_STORED
+** TF_HasHidden == COLFLAG_HIDDEN
+*/
+#define TF_Readonly 0x00000001 /* Read-only system table */
+#define TF_HasHidden 0x00000002 /* Has one or more hidden columns */
+#define TF_HasPrimaryKey 0x00000004 /* Table has a primary key */
+#define TF_Autoincrement 0x00000008 /* Integer primary key is autoincrement */
+#define TF_HasStat1 0x00000010 /* nRowLogEst set from sqlite_stat1 */
+#define TF_HasVirtual 0x00000020 /* Has one or more VIRTUAL columns */
+#define TF_HasStored 0x00000040 /* Has one or more STORED columns */
+#define TF_HasGenerated 0x00000060 /* Combo: HasVirtual + HasStored */
+#define TF_WithoutRowid 0x00000080 /* No rowid. PRIMARY KEY is the key */
+#define TF_StatsUsed 0x00000100 /* Query planner decisions affected by
+ ** Index.aiRowLogEst[] values */
+#define TF_NoVisibleRowid 0x00000200 /* No user-visible "rowid" column */
+#define TF_OOOHidden 0x00000400 /* Out-of-Order hidden columns */
+#define TF_HasNotNull 0x00000800 /* Contains NOT NULL constraints */
+#define TF_Shadow 0x00001000 /* True for a shadow table */
+#define TF_HasStat4 0x00002000 /* STAT4 info available for this table */
+#define TF_Ephemeral 0x00004000 /* An ephemeral table */
+#define TF_Eponymous 0x00008000 /* An eponymous virtual table */
+#define TF_Strict 0x00010000 /* STRICT mode */
+
+/*
+** Allowed values for Table.eTabType
+*/
+#define TABTYP_NORM 0 /* Ordinary table */
+#define TABTYP_VTAB 1 /* Virtual table */
+#define TABTYP_VIEW 2 /* A view */
+
+#define IsView(X) ((X)->eTabType==TABTYP_VIEW)
+#define IsOrdinaryTable(X) ((X)->eTabType==TABTYP_NORM)
+
+/*
+** Test to see whether or not a table is a virtual table. This is
+** done as a macro so that it will be optimized out when virtual
+** table support is omitted from the build.
+*/
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+# define IsVirtual(X) ((X)->eTabType==TABTYP_VTAB)
+# define ExprIsVtab(X) \
+ ((X)->op==TK_COLUMN && (X)->y.pTab->eTabType==TABTYP_VTAB)
+#else
+# define IsVirtual(X) 0
+# define ExprIsVtab(X) 0
+#endif
+
+/*
+** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn()
+** only works for non-virtual tables (ordinary tables and views) and is
+** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The
+** IsHiddenColumn() macro is general purpose.
+*/
+#if defined(SQLITE_ENABLE_HIDDEN_COLUMNS)
+# define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
+# define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
+#elif !defined(SQLITE_OMIT_VIRTUALTABLE)
+# define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
+# define IsOrdinaryHiddenColumn(X) 0
+#else
+# define IsHiddenColumn(X) 0
+# define IsOrdinaryHiddenColumn(X) 0
+#endif
+
+
+/* Does the table have a rowid */
+#define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0)
+#define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
+
+/*
+** Each foreign key constraint is an instance of the following structure.
+**
+** A foreign key is associated with two tables. The "from" table is
+** the table that contains the REFERENCES clause that creates the foreign
+** key. The "to" table is the table that is named in the REFERENCES clause.
+** Consider this example:
+**
+** CREATE TABLE ex1(
+** a INTEGER PRIMARY KEY,
+** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
+** );
+**
+** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
+** Equivalent names:
+**
+** from-table == child-table
+** to-table == parent-table
+**
+** Each REFERENCES clause generates an instance of the following structure
+** which is attached to the from-table. The to-table need not exist when
+** the from-table is created. The existence of the to-table is not checked.
+**
+** The list of all parents for child Table X is held at X.pFKey.
+**
+** A list of all children for a table named Z (which might not even exist)
+** is held in Schema.fkeyHash with a hash key of Z.
+*/
+struct FKey {
+ Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */
+ FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */
+ char *zTo; /* Name of table that the key points to (aka: Parent) */
+ FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */
+ FKey *pPrevTo; /* Previous with the same zTo */
+ int nCol; /* Number of columns in this key */
+ /* EV: R-30323-21917 */
+ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
+ u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */
+ Trigger *apTrigger[2];/* Triggers for aAction[] actions */
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
+ int iFrom; /* Index of column in pFrom */
+ char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */
+ } aCol[1]; /* One entry for each of nCol columns */
+};
+
+/*
+** SQLite supports many different ways to resolve a constraint
+** error. ROLLBACK processing means that a constraint violation
+** causes the operation in process to fail and for the current transaction
+** to be rolled back. ABORT processing means the operation in process
+** fails and any prior changes from that one operation are backed out,
+** but the transaction is not rolled back. FAIL processing means that
+** the operation in progress stops and returns an error code. But prior
+** changes due to the same operation are not backed out and no rollback
+** occurs. IGNORE means that the particular row that caused the constraint
+** error is not inserted or updated. Processing continues and no error
+** is returned. REPLACE means that preexisting database rows that caused
+** a UNIQUE constraint violation are removed so that the new insert or
+** update can proceed. Processing continues and no error is reported.
+** UPDATE applies to insert operations only and means that the insert
+** is omitted and the DO UPDATE clause of an upsert is run instead.
+**
+** RESTRICT, SETNULL, SETDFLT, and CASCADE actions apply only to foreign keys.
+** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
+** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
+** key is set to NULL. SETDFLT means that the foreign key is set
+** to its default value. CASCADE means that a DELETE or UPDATE of the
+** referenced table row is propagated into the row that holds the
+** foreign key.
+**
+** The OE_Default value is a place holder that means to use whatever
+** conflict resolution algorithm is required from context.
+**
+** The following symbolic values are used to record which type
+** of conflict resolution action to take.
+*/
+#define OE_None 0 /* There is no constraint to check */
+#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
+#define OE_Abort 2 /* Back out changes but do no rollback transaction */
+#define OE_Fail 3 /* Stop the operation but leave all prior changes */
+#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
+#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
+#define OE_Update 6 /* Process as a DO UPDATE in an upsert */
+#define OE_Restrict 7 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
+#define OE_SetNull 8 /* Set the foreign key value to NULL */
+#define OE_SetDflt 9 /* Set the foreign key value to its default */
+#define OE_Cascade 10 /* Cascade the changes */
+#define OE_Default 11 /* Do whatever the default action is */
+
+
+/*
+** An instance of the following structure is passed as the first
+** argument to sqlite3VdbeKeyCompare and is used to control the
+** comparison of the two index keys.
+**
+** Note that aSortOrder[] and aColl[] have nField+1 slots. There
+** are nField slots for the columns of an index then one extra slot
+** for the rowid at the end.
+*/
+struct KeyInfo {
+ u32 nRef; /* Number of references to this KeyInfo object */
+ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
+ u16 nKeyField; /* Number of key columns in the index */
+ u16 nAllField; /* Total columns, including key plus others */
+ sqlite3 *db; /* The database connection */
+ u8 *aSortFlags; /* Sort order for each column. */
+ CollSeq *aColl[1]; /* Collating sequence for each term of the key */
+};
+
+/*
+** Allowed bit values for entries in the KeyInfo.aSortFlags[] array.
+*/
+#define KEYINFO_ORDER_DESC 0x01 /* DESC sort order */
+#define KEYINFO_ORDER_BIGNULL 0x02 /* NULL is larger than any other value */
+
+/*
+** This object holds a record which has been parsed out into individual
+** fields, for the purposes of doing a comparison.
+**
+** A record is an object that contains one or more fields of data.
+** Records are used to store the content of a table row and to store
+** the key of an index. A blob encoding of a record is created by
+** the OP_MakeRecord opcode of the VDBE and is disassembled by the
+** OP_Column opcode.
+**
+** An instance of this object serves as a "key" for doing a search on
+** an index b+tree. The goal of the search is to find the entry that
+** is closed to the key described by this object. This object might hold
+** just a prefix of the key. The number of fields is given by
+** pKeyInfo->nField.
+**
+** The r1 and r2 fields are the values to return if this key is less than
+** or greater than a key in the btree, respectively. These are normally
+** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree
+** is in DESC order.
+**
+** The key comparison functions actually return default_rc when they find
+** an equals comparison. default_rc can be -1, 0, or +1. If there are
+** multiple entries in the b-tree with the same key (when only looking
+** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to
+** cause the search to find the last match, or +1 to cause the search to
+** find the first match.
+**
+** The key comparison functions will set eqSeen to true if they ever
+** get and equal results when comparing this structure to a b-tree record.
+** When default_rc!=0, the search might end up on the record immediately
+** before the first match or immediately after the last match. The
+** eqSeen field will indicate whether or not an exact match exists in the
+** b-tree.
+*/
+struct UnpackedRecord {
+ KeyInfo *pKeyInfo; /* Collation and sort-order information */
+ Mem *aMem; /* Values */
+ union {
+ char *z; /* Cache of aMem[0].z for vdbeRecordCompareString() */
+ i64 i; /* Cache of aMem[0].u.i for vdbeRecordCompareInt() */
+ } u;
+ int n; /* Cache of aMem[0].n used by vdbeRecordCompareString() */
+ u16 nField; /* Number of entries in apMem[] */
+ i8 default_rc; /* Comparison result if keys are equal */
+ u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
+ i8 r1; /* Value to return if (lhs < rhs) */
+ i8 r2; /* Value to return if (lhs > rhs) */
+ u8 eqSeen; /* True if an equality comparison has been seen */
+};
+
+
+/*
+** Each SQL index is represented in memory by an
+** instance of the following structure.
+**
+** The columns of the table that are to be indexed are described
+** by the aiColumn[] field of this structure. For example, suppose
+** we have the following table and index:
+**
+** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
+** CREATE INDEX Ex2 ON Ex1(c3,c1);
+**
+** In the Table structure describing Ex1, nCol==3 because there are
+** three columns in the table. In the Index structure describing
+** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
+** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
+** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
+** The second column to be indexed (c1) has an index of 0 in
+** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
+**
+** The Index.onError field determines whether or not the indexed columns
+** must be unique and what to do if they are not. When Index.onError=OE_None,
+** it means this is not a unique index. Otherwise it is a unique index
+** and the value of Index.onError indicates which conflict resolution
+** algorithm to employ when an attempt is made to insert a non-unique
+** element.
+**
+** The colNotIdxed bitmask is used in combination with SrcItem.colUsed
+** for a fast test to see if an index can serve as a covering index.
+** colNotIdxed has a 1 bit for every column of the original table that
+** is *not* available in the index. Thus the expression
+** "colUsed & colNotIdxed" will be non-zero if the index is not a
+** covering index. The most significant bit of of colNotIdxed will always
+** be true (note-20221022-a). If a column beyond the 63rd column of the
+** table is used, the "colUsed & colNotIdxed" test will always be non-zero
+** and we have to assume either that the index is not covering, or use
+** an alternative (slower) algorithm to determine whether or not
+** the index is covering.
+**
+** While parsing a CREATE TABLE or CREATE INDEX statement in order to
+** generate VDBE code (as opposed to parsing one read from an sqlite_schema
+** table as part of parsing an existing database schema), transient instances
+** of this structure may be created. In this case the Index.tnum variable is
+** used to store the address of a VDBE instruction, not a database page
+** number (it cannot - the database page is not allocated until the VDBE
+** program is executed). See convertToWithoutRowidTable() for details.
+*/
+struct Index {
+ char *zName; /* Name of this index */
+ i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */
+ LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */
+ Table *pTable; /* The SQL table being indexed */
+ char *zColAff; /* String defining the affinity of each column */
+ Index *pNext; /* The next index associated with the same table */
+ Schema *pSchema; /* Schema containing this index */
+ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */
+ const char **azColl; /* Array of collation sequence names for index */
+ Expr *pPartIdxWhere; /* WHERE clause for partial indices */
+ ExprList *aColExpr; /* Column expressions */
+ Pgno tnum; /* DB Page containing root of this index */
+ LogEst szIdxRow; /* Estimated average row size in bytes */
+ u16 nKeyCol; /* Number of columns forming the key */
+ u16 nColumn; /* Number of columns stored in the index */
+ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ unsigned idxType:2; /* 0:Normal 1:UNIQUE, 2:PRIMARY KEY, 3:IPK */
+ unsigned bUnordered:1; /* Use this index for == or IN queries only */
+ unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */
+ unsigned isResized:1; /* True if resizeIndexObject() has been called */
+ unsigned isCovering:1; /* True if this is a covering index */
+ unsigned noSkipScan:1; /* Do not try to use skip-scan if true */
+ unsigned hasStat1:1; /* aiRowLogEst values come from sqlite_stat1 */
+ unsigned bNoQuery:1; /* Do not use this index to optimize queries */
+ unsigned bAscKeyBug:1; /* True if the bba7b69f9849b5bf bug applies */
+ unsigned bHasVCol:1; /* Index references one or more VIRTUAL columns */
+ unsigned bHasExpr:1; /* Index contains an expression, either a literal
+ ** expression, or a reference to a VIRTUAL column */
+#ifdef SQLITE_ENABLE_STAT4
+ int nSample; /* Number of elements in aSample[] */
+ int mxSample; /* Number of slots allocated to aSample[] */
+ int nSampleCol; /* Size of IndexSample.anEq[] and so on */
+ tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */
+ IndexSample *aSample; /* Samples of the left-most key */
+ tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */
+ tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */
+#endif
+ Bitmask colNotIdxed; /* Unindexed columns in pTab */
+};
+
+/*
+** Allowed values for Index.idxType
+*/
+#define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */
+#define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */
+#define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */
+#define SQLITE_IDXTYPE_IPK 3 /* INTEGER PRIMARY KEY index */
+
+/* Return true if index X is a PRIMARY KEY index */
+#define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
+
+/* Return true if index X is a UNIQUE index */
+#define IsUniqueIndex(X) ((X)->onError!=OE_None)
+
+/* The Index.aiColumn[] values are normally positive integer. But
+** there are some negative values that have special meaning:
+*/
+#define XN_ROWID (-1) /* Indexed column is the rowid */
+#define XN_EXPR (-2) /* Indexed column is an expression */
+
+/*
+** Each sample stored in the sqlite_stat4 table is represented in memory
+** using a structure of this type. See documentation at the top of the
+** analyze.c source file for additional information.
+*/
+struct IndexSample {
+ void *p; /* Pointer to sampled record */
+ int n; /* Size of record in bytes */
+ tRowcnt *anEq; /* Est. number of rows where the key equals this sample */
+ tRowcnt *anLt; /* Est. number of rows where key is less than this sample */
+ tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */
+};
+
+/*
+** Possible values to use within the flags argument to sqlite3GetToken().
+*/
+#define SQLITE_TOKEN_QUOTED 0x1 /* Token is a quoted identifier. */
+#define SQLITE_TOKEN_KEYWORD 0x2 /* Token is a keyword. */
+
+/*
+** Each token coming out of the lexer is an instance of
+** this structure. Tokens are also used as part of an expression.
+**
+** The memory that "z" points to is owned by other objects. Take care
+** that the owner of the "z" string does not deallocate the string before
+** the Token goes out of scope! Very often, the "z" points to some place
+** in the middle of the Parse.zSql text. But it might also point to a
+** static string.
+*/
+struct Token {
+ const char *z; /* Text of the token. Not NULL-terminated! */
+ unsigned int n; /* Number of characters in this token */
+};
+
+/*
+** An instance of this structure contains information needed to generate
+** code for a SELECT that contains aggregate functions.
+**
+** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
+** pointer to this structure. The Expr.iAgg field is the index in
+** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
+** code for that node.
+**
+** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
+** original Select structure that describes the SELECT statement. These
+** fields do not need to be freed when deallocating the AggInfo structure.
+*/
+struct AggInfo {
+ u8 directMode; /* Direct rendering mode means take data directly
+ ** from source tables rather than from accumulators */
+ u8 useSortingIdx; /* In direct mode, reference the sorting index rather
+ ** than the source table */
+ u16 nSortingColumn; /* Number of columns in the sorting index */
+ int sortingIdx; /* Cursor number of the sorting index */
+ int sortingIdxPTab; /* Cursor number of pseudo-table */
+ int iFirstReg; /* First register in range for aCol[] and aFunc[] */
+ ExprList *pGroupBy; /* The group by clause */
+ struct AggInfo_col { /* For each column used in source tables */
+ Table *pTab; /* Source table */
+ Expr *pCExpr; /* The original expression */
+ int iTable; /* Cursor number of the source table */
+ i16 iColumn; /* Column number within the source table */
+ i16 iSorterColumn; /* Column number in the sorting index */
+ } *aCol;
+ int nColumn; /* Number of used entries in aCol[] */
+ int nAccumulator; /* Number of columns that show through to the output.
+ ** Additional columns are used only as parameters to
+ ** aggregate functions */
+ struct AggInfo_func { /* For each aggregate function */
+ Expr *pFExpr; /* Expression encoding the function */
+ FuncDef *pFunc; /* The aggregate function implementation */
+ int iDistinct; /* Ephemeral table used to enforce DISTINCT */
+ int iDistAddr; /* Address of OP_OpenEphemeral */
+ int iOBTab; /* Ephemeral table to implement ORDER BY */
+ u8 bOBPayload; /* iOBTab has payload columns separate from key */
+ u8 bOBUnique; /* Enforce uniqueness on iOBTab keys */
+ } *aFunc;
+ int nFunc; /* Number of entries in aFunc[] */
+ u32 selId; /* Select to which this AggInfo belongs */
+#ifdef SQLITE_DEBUG
+ Select *pSelect; /* SELECT statement that this AggInfo supports */
+#endif
+};
+
+/*
+** Macros to compute aCol[] and aFunc[] register numbers.
+**
+** These macros should not be used prior to the call to
+** assignAggregateRegisters() that computes the value of pAggInfo->iFirstReg.
+** The assert()s that are part of this macro verify that constraint.
+*/
+#define AggInfoColumnReg(A,I) (assert((A)->iFirstReg),(A)->iFirstReg+(I))
+#define AggInfoFuncReg(A,I) \
+ (assert((A)->iFirstReg),(A)->iFirstReg+(A)->nColumn+(I))
+
+/*
+** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
+** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
+** than 32767 we have to make it 32-bit. 16-bit is preferred because
+** it uses less memory in the Expr object, which is a big memory user
+** in systems with lots of prepared statements. And few applications
+** need more than about 10 or 20 variables. But some extreme users want
+** to have prepared statements with over 32766 variables, and for them
+** the option is available (at compile-time).
+*/
+#if SQLITE_MAX_VARIABLE_NUMBER<32767
+typedef i16 ynVar;
+#else
+typedef int ynVar;
+#endif
+
+/*
+** Each node of an expression in the parse tree is an instance
+** of this structure.
+**
+** Expr.op is the opcode. The integer parser token codes are reused
+** as opcodes here. For example, the parser defines TK_GE to be an integer
+** code representing the ">=" operator. This same integer code is reused
+** to represent the greater-than-or-equal-to operator in the expression
+** tree.
+**
+** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
+** or TK_STRING), then Expr.u.zToken contains the text of the SQL literal. If
+** the expression is a variable (TK_VARIABLE), then Expr.u.zToken contains the
+** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
+** then Expr.u.zToken contains the name of the function.
+**
+** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
+** binary operator. Either or both may be NULL.
+**
+** Expr.x.pList is a list of arguments if the expression is an SQL function,
+** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
+** Expr.x.pSelect is used if the expression is a sub-select or an expression of
+** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
+** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
+** valid.
+**
+** An expression of the form ID or ID.ID refers to a column in a table.
+** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
+** the integer cursor number of a VDBE cursor pointing to that table and
+** Expr.iColumn is the column number for the specific column. If the
+** expression is used as a result in an aggregate SELECT, then the
+** value is also stored in the Expr.iAgg column in the aggregate so that
+** it can be accessed after all aggregates are computed.
+**
+** If the expression is an unbound variable marker (a question mark
+** character '?' in the original SQL) then the Expr.iTable holds the index
+** number for that variable.
+**
+** If the expression is a subquery then Expr.iColumn holds an integer
+** register number containing the result of the subquery. If the
+** subquery gives a constant result, then iTable is -1. If the subquery
+** gives a different answer at different times during statement processing
+** then iTable is the address of a subroutine that computes the subquery.
+**
+** If the Expr is of type OP_Column, and the table it is selecting from
+** is a disk table or the "old.*" pseudo-table, then pTab points to the
+** corresponding table definition.
+**
+** ALLOCATION NOTES:
+**
+** Expr objects can use a lot of memory space in database schema. To
+** help reduce memory requirements, sometimes an Expr object will be
+** truncated. And to reduce the number of memory allocations, sometimes
+** two or more Expr objects will be stored in a single memory allocation,
+** together with Expr.u.zToken strings.
+**
+** If the EP_Reduced and EP_TokenOnly flags are set when
+** an Expr object is truncated. When EP_Reduced is set, then all
+** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
+** are contained within the same memory allocation. Note, however, that
+** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
+** allocated, regardless of whether or not EP_Reduced is set.
+*/
+struct Expr {
+ u8 op; /* Operation performed by this node */
+ char affExpr; /* affinity, or RAISE type */
+ u8 op2; /* TK_REGISTER/TK_TRUTH: original value of Expr.op
+ ** TK_COLUMN: the value of p5 for OP_Column
+ ** TK_AGG_FUNCTION: nesting depth
+ ** TK_FUNCTION: NC_SelfRef flag if needs OP_PureFunc */
+#ifdef SQLITE_DEBUG
+ u8 vvaFlags; /* Verification flags. */
+#endif
+ u32 flags; /* Various flags. EP_* See below */
+ union {
+ char *zToken; /* Token value. Zero terminated and dequoted */
+ int iValue; /* Non-negative integer value if EP_IntValue */
+ } u;
+
+ /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
+ ** space is allocated for the fields below this point. An attempt to
+ ** access them will result in a segfault or malfunction.
+ *********************************************************************/
+
+ Expr *pLeft; /* Left subnode */
+ Expr *pRight; /* Right subnode */
+ union {
+ ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
+ Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */
+ } x;
+
+ /* If the EP_Reduced flag is set in the Expr.flags mask, then no
+ ** space is allocated for the fields below this point. An attempt to
+ ** access them will result in a segfault or malfunction.
+ *********************************************************************/
+
+#if SQLITE_MAX_EXPR_DEPTH>0
+ int nHeight; /* Height of the tree headed by this node */
+#endif
+ int iTable; /* TK_COLUMN: cursor number of table holding column
+ ** TK_REGISTER: register number
+ ** TK_TRIGGER: 1 -> new, 0 -> old
+ ** EP_Unlikely: 134217728 times likelihood
+ ** TK_IN: ephemeral table holding RHS
+ ** TK_SELECT_COLUMN: Number of columns on the LHS
+ ** TK_SELECT: 1st register of result vector */
+ ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid.
+ ** TK_VARIABLE: variable number (always >= 1).
+ ** TK_SELECT_COLUMN: column of the result vector */
+ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
+ union {
+ int iJoin; /* If EP_OuterON or EP_InnerON, the right table */
+ int iOfst; /* else: start of token from start of statement */
+ } w;
+ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
+ union {
+ Table *pTab; /* TK_COLUMN: Table containing column. Can be NULL
+ ** for a column of an index on an expression */
+ Window *pWin; /* EP_WinFunc: Window/Filter defn for a function */
+ struct { /* TK_IN, TK_SELECT, and TK_EXISTS */
+ int iAddr; /* Subroutine entry address */
+ int regReturn; /* Register used to hold return address */
+ } sub;
+ } y;
+};
+
+/* The following are the meanings of bits in the Expr.flags field.
+** Value restrictions:
+**
+** EP_Agg == NC_HasAgg == SF_HasAgg
+** EP_Win == NC_HasWin
+*/
+#define EP_OuterON 0x000001 /* Originates in ON/USING clause of outer join */
+#define EP_InnerON 0x000002 /* Originates in ON/USING of an inner join */
+#define EP_Distinct 0x000004 /* Aggregate function with DISTINCT keyword */
+#define EP_HasFunc 0x000008 /* Contains one or more functions of any kind */
+#define EP_Agg 0x000010 /* Contains one or more aggregate functions */
+#define EP_FixedCol 0x000020 /* TK_Column with a known fixed value */
+#define EP_VarSelect 0x000040 /* pSelect is correlated, not constant */
+#define EP_DblQuoted 0x000080 /* token.z was originally in "..." */
+#define EP_InfixFunc 0x000100 /* True for an infix function: LIKE, GLOB, etc */
+#define EP_Collate 0x000200 /* Tree contains a TK_COLLATE operator */
+#define EP_Commuted 0x000400 /* Comparison operator has been commuted */
+#define EP_IntValue 0x000800 /* Integer value contained in u.iValue */
+#define EP_xIsSelect 0x001000 /* x.pSelect is valid (otherwise x.pList is) */
+#define EP_Skip 0x002000 /* Operator does not contribute to affinity */
+#define EP_Reduced 0x004000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
+#define EP_Win 0x008000 /* Contains window functions */
+#define EP_TokenOnly 0x010000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
+#define EP_FullSize 0x020000 /* Expr structure must remain full sized */
+#define EP_IfNullRow 0x040000 /* The TK_IF_NULL_ROW opcode */
+#define EP_Unlikely 0x080000 /* unlikely() or likelihood() function */
+#define EP_ConstFunc 0x100000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
+#define EP_CanBeNull 0x200000 /* Can be null despite NOT NULL constraint */
+#define EP_Subquery 0x400000 /* Tree contains a TK_SELECT operator */
+#define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */
+#define EP_WinFunc 0x1000000 /* TK_FUNCTION with Expr.y.pWin set */
+#define EP_Subrtn 0x2000000 /* Uses Expr.y.sub. TK_IN, _SELECT, or _EXISTS */
+#define EP_Quoted 0x4000000 /* TK_ID was originally quoted */
+#define EP_Static 0x8000000 /* Held in memory not obtained from malloc() */
+#define EP_IsTrue 0x10000000 /* Always has boolean value of TRUE */
+#define EP_IsFalse 0x20000000 /* Always has boolean value of FALSE */
+#define EP_FromDDL 0x40000000 /* Originates from sqlite_schema */
+ /* 0x80000000 // Available */
+
+/* The EP_Propagate mask is a set of properties that automatically propagate
+** upwards into parent nodes.
+*/
+#define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc)
+
+/* Macros can be used to test, set, or clear bits in the
+** Expr.flags field.
+*/
+#define ExprHasProperty(E,P) (((E)->flags&(P))!=0)
+#define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P))
+#define ExprSetProperty(E,P) (E)->flags|=(P)
+#define ExprClearProperty(E,P) (E)->flags&=~(P)
+#define ExprAlwaysTrue(E) (((E)->flags&(EP_OuterON|EP_IsTrue))==EP_IsTrue)
+#define ExprAlwaysFalse(E) (((E)->flags&(EP_OuterON|EP_IsFalse))==EP_IsFalse)
+#define ExprIsFullSize(E) (((E)->flags&(EP_Reduced|EP_TokenOnly))==0)
+
+/* Macros used to ensure that the correct members of unions are accessed
+** in Expr.
+*/
+#define ExprUseUToken(E) (((E)->flags&EP_IntValue)==0)
+#define ExprUseUValue(E) (((E)->flags&EP_IntValue)!=0)
+#define ExprUseWOfst(E) (((E)->flags&(EP_InnerON|EP_OuterON))==0)
+#define ExprUseWJoin(E) (((E)->flags&(EP_InnerON|EP_OuterON))!=0)
+#define ExprUseXList(E) (((E)->flags&EP_xIsSelect)==0)
+#define ExprUseXSelect(E) (((E)->flags&EP_xIsSelect)!=0)
+#define ExprUseYTab(E) (((E)->flags&(EP_WinFunc|EP_Subrtn))==0)
+#define ExprUseYWin(E) (((E)->flags&EP_WinFunc)!=0)
+#define ExprUseYSub(E) (((E)->flags&EP_Subrtn)!=0)
+
+/* Flags for use with Expr.vvaFlags
+*/
+#define EP_NoReduce 0x01 /* Cannot EXPRDUP_REDUCE this Expr */
+#define EP_Immutable 0x02 /* Do not change this Expr node */
+
+/* The ExprSetVVAProperty() macro is used for Verification, Validation,
+** and Accreditation only. It works like ExprSetProperty() during VVA
+** processes but is a no-op for delivery.
+*/
+#ifdef SQLITE_DEBUG
+# define ExprSetVVAProperty(E,P) (E)->vvaFlags|=(P)
+# define ExprHasVVAProperty(E,P) (((E)->vvaFlags&(P))!=0)
+# define ExprClearVVAProperties(E) (E)->vvaFlags = 0
+#else
+# define ExprSetVVAProperty(E,P)
+# define ExprHasVVAProperty(E,P) 0
+# define ExprClearVVAProperties(E)
+#endif
+
+/*
+** Macros to determine the number of bytes required by a normal Expr
+** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
+** and an Expr struct with the EP_TokenOnly flag set.
+*/
+#define EXPR_FULLSIZE sizeof(Expr) /* Full size */
+#define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
+#define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
+
+/*
+** Flags passed to the sqlite3ExprDup() function. See the header comment
+** above sqlite3ExprDup() for details.
+*/
+#define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
+
+/*
+** True if the expression passed as an argument was a function with
+** an OVER() clause (a window function).
+*/
+#ifdef SQLITE_OMIT_WINDOWFUNC
+# define IsWindowFunc(p) 0
+#else
+# define IsWindowFunc(p) ( \
+ ExprHasProperty((p), EP_WinFunc) && p->y.pWin->eFrmType!=TK_FILTER \
+ )
+#endif
+
+/*
+** A list of expressions. Each expression may optionally have a
+** name. An expr/name combination can be used in several ways, such
+** as the list of "expr AS ID" fields following a "SELECT" or in the
+** list of "ID = expr" items in an UPDATE. A list of expressions can
+** also be used as the argument to a function, in which case the a.zName
+** field is not used.
+**
+** In order to try to keep memory usage down, the Expr.a.zEName field
+** is used for multiple purposes:
+**
+** eEName Usage
+** ---------- -------------------------
+** ENAME_NAME (1) the AS of result set column
+** (2) COLUMN= of an UPDATE
+**
+** ENAME_TAB DB.TABLE.NAME used to resolve names
+** of subqueries
+**
+** ENAME_SPAN Text of the original result set
+** expression.
+*/
+struct ExprList {
+ int nExpr; /* Number of expressions on the list */
+ int nAlloc; /* Number of a[] slots allocated */
+ struct ExprList_item { /* For each expression in the list */
+ Expr *pExpr; /* The parse tree for this expression */
+ char *zEName; /* Token associated with this expression */
+ struct {
+ u8 sortFlags; /* Mask of KEYINFO_ORDER_* flags */
+ unsigned eEName :2; /* Meaning of zEName */
+ unsigned done :1; /* Indicates when processing is finished */
+ unsigned reusable :1; /* Constant expression is reusable */
+ unsigned bSorterRef :1; /* Defer evaluation until after sorting */
+ unsigned bNulls :1; /* True if explicit "NULLS FIRST/LAST" */
+ unsigned bUsed :1; /* This column used in a SF_NestedFrom subquery */
+ unsigned bUsingTerm:1; /* Term from the USING clause of a NestedFrom */
+ unsigned bNoExpand: 1; /* Term is an auxiliary in NestedFrom and should
+ ** not be expanded by "*" in parent queries */
+ } fg;
+ union {
+ struct { /* Used by any ExprList other than Parse.pConsExpr */
+ u16 iOrderByCol; /* For ORDER BY, column number in result set */
+ u16 iAlias; /* Index into Parse.aAlias[] for zName */
+ } x;
+ int iConstExprReg; /* Register in which Expr value is cached. Used only
+ ** by Parse.pConstExpr */
+ } u;
+ } a[1]; /* One slot for each expression in the list */
+};
+
+/*
+** Allowed values for Expr.a.eEName
+*/
+#define ENAME_NAME 0 /* The AS clause of a result set */
+#define ENAME_SPAN 1 /* Complete text of the result set expression */
+#define ENAME_TAB 2 /* "DB.TABLE.NAME" for the result set */
+#define ENAME_ROWID 3 /* "DB.TABLE._rowid_" for * expansion of rowid */
+
+/*
+** An instance of this structure can hold a simple list of identifiers,
+** such as the list "a,b,c" in the following statements:
+**
+** INSERT INTO t(a,b,c) VALUES ...;
+** CREATE INDEX idx ON t(a,b,c);
+** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
+**
+** The IdList.a.idx field is used when the IdList represents the list of
+** column names after a table name in an INSERT statement. In the statement
+**
+** INSERT INTO t(a,b,c) ...
+**
+** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
+*/
+struct IdList {
+ int nId; /* Number of identifiers on the list */
+ u8 eU4; /* Which element of a.u4 is valid */
+ struct IdList_item {
+ char *zName; /* Name of the identifier */
+ union {
+ int idx; /* Index in some Table.aCol[] of a column named zName */
+ Expr *pExpr; /* Expr to implement a USING variable -- NOT USED */
+ } u4;
+ } a[1];
+};
+
+/*
+** Allowed values for IdList.eType, which determines which value of the a.u4
+** is valid.
+*/
+#define EU4_NONE 0 /* Does not use IdList.a.u4 */
+#define EU4_IDX 1 /* Uses IdList.a.u4.idx */
+#define EU4_EXPR 2 /* Uses IdList.a.u4.pExpr -- NOT CURRENTLY USED */
+
+/*
+** The SrcItem object represents a single term in the FROM clause of a query.
+** The SrcList object is mostly an array of SrcItems.
+**
+** The jointype starts out showing the join type between the current table
+** and the next table on the list. The parser builds the list this way.
+** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
+** jointype expresses the join between the table and the previous table.
+**
+** In the colUsed field, the high-order bit (bit 63) is set if the table
+** contains more than 63 columns and the 64-th or later column is used.
+**
+** Union member validity:
+**
+** u1.zIndexedBy fg.isIndexedBy && !fg.isTabFunc
+** u1.pFuncArg fg.isTabFunc && !fg.isIndexedBy
+** u2.pIBIndex fg.isIndexedBy && !fg.isCte
+** u2.pCteUse fg.isCte && !fg.isIndexedBy
+*/
+struct SrcItem {
+ Schema *pSchema; /* Schema to which this item is fixed */
+ char *zDatabase; /* Name of database holding this table */
+ char *zName; /* Name of the table */
+ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
+ Table *pTab; /* An SQL table corresponding to zName */
+ Select *pSelect; /* A SELECT statement used in place of a table name */
+ int addrFillSub; /* Address of subroutine to manifest a subquery */
+ int regReturn; /* Register holding return address of addrFillSub */
+ int regResult; /* Registers holding results of a co-routine */
+ struct {
+ u8 jointype; /* Type of join between this table and the previous */
+ unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */
+ unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */
+ unsigned isTabFunc :1; /* True if table-valued-function syntax */
+ unsigned isCorrelated :1; /* True if sub-query is correlated */
+ unsigned isMaterialized:1; /* This is a materialized view */
+ unsigned viaCoroutine :1; /* Implemented as a co-routine */
+ unsigned isRecursive :1; /* True for recursive reference in WITH */
+ unsigned fromDDL :1; /* Comes from sqlite_schema */
+ unsigned isCte :1; /* This is a CTE */
+ unsigned notCte :1; /* This item may not match a CTE */
+ unsigned isUsing :1; /* u3.pUsing is valid */
+ unsigned isOn :1; /* u3.pOn was once valid and non-NULL */
+ unsigned isSynthUsing :1; /* u3.pUsing is synthesized from NATURAL */
+ unsigned isNestedFrom :1; /* pSelect is a SF_NestedFrom subquery */
+ } fg;
+ int iCursor; /* The VDBE cursor number used to access this table */
+ union {
+ Expr *pOn; /* fg.isUsing==0 => The ON clause of a join */
+ IdList *pUsing; /* fg.isUsing==1 => The USING clause of a join */
+ } u3;
+ Bitmask colUsed; /* Bit N set if column N used. Details above for N>62 */
+ union {
+ char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */
+ ExprList *pFuncArg; /* Arguments to table-valued-function */
+ } u1;
+ union {
+ Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */
+ CteUse *pCteUse; /* CTE Usage info when fg.isCte is true */
+ } u2;
+};
+
+/*
+** The OnOrUsing object represents either an ON clause or a USING clause.
+** It can never be both at the same time, but it can be neither.
+*/
+struct OnOrUsing {
+ Expr *pOn; /* The ON clause of a join */
+ IdList *pUsing; /* The USING clause of a join */
+};
+
+/*
+** This object represents one or more tables that are the source of
+** content for an SQL statement. For example, a single SrcList object
+** is used to hold the FROM clause of a SELECT statement. SrcList also
+** represents the target tables for DELETE, INSERT, and UPDATE statements.
+**
+*/
+struct SrcList {
+ int nSrc; /* Number of tables or subqueries in the FROM clause */
+ u32 nAlloc; /* Number of entries allocated in a[] below */
+ SrcItem a[1]; /* One entry for each identifier on the list */
+};
+
+/*
+** Permitted values of the SrcList.a.jointype field
+*/
+#define JT_INNER 0x01 /* Any kind of inner or cross join */
+#define JT_CROSS 0x02 /* Explicit use of the CROSS keyword */
+#define JT_NATURAL 0x04 /* True for a "natural" join */
+#define JT_LEFT 0x08 /* Left outer join */
+#define JT_RIGHT 0x10 /* Right outer join */
+#define JT_OUTER 0x20 /* The "OUTER" keyword is present */
+#define JT_LTORJ 0x40 /* One of the LEFT operands of a RIGHT JOIN
+ ** Mnemonic: Left Table Of Right Join */
+#define JT_ERROR 0x80 /* unknown or unsupported join type */
+
+/*
+** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
+** and the WhereInfo.wctrlFlags member.
+**
+** Value constraints (enforced via assert()):
+** WHERE_USE_LIMIT == SF_FixedLimit
+*/
+#define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
+#define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
+#define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
+#define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
+#define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */
+#define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */
+#define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of
+ ** the OR optimization */
+#define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */
+#define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */
+#define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */
+#define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */
+#define WHERE_AGG_DISTINCT 0x0400 /* Query is "SELECT agg(DISTINCT ...)" */
+#define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */
+#define WHERE_RIGHT_JOIN 0x1000 /* Processing a RIGHT JOIN */
+ /* 0x2000 not currently used */
+#define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */
+ /* 0x8000 not currently used */
+
+/* Allowed return values from sqlite3WhereIsDistinct()
+*/
+#define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */
+#define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */
+#define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */
+#define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */
+
+/*
+** A NameContext defines a context in which to resolve table and column
+** names. The context consists of a list of tables (the pSrcList) field and
+** a list of named expression (pEList). The named expression list may
+** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
+** to the table being operated on by INSERT, UPDATE, or DELETE. The
+** pEList corresponds to the result set of a SELECT and is NULL for
+** other statements.
+**
+** NameContexts can be nested. When resolving names, the inner-most
+** context is searched first. If no match is found, the next outer
+** context is checked. If there is still no match, the next context
+** is checked. This process continues until either a match is found
+** or all contexts are check. When a match is found, the nRef member of
+** the context containing the match is incremented.
+**
+** Each subquery gets a new NameContext. The pNext field points to the
+** NameContext in the parent query. Thus the process of scanning the
+** NameContext list corresponds to searching through successively outer
+** subqueries looking for a match.
+*/
+struct NameContext {
+ Parse *pParse; /* The parser */
+ SrcList *pSrcList; /* One or more tables used to resolve names */
+ union {
+ ExprList *pEList; /* Optional list of result-set columns */
+ AggInfo *pAggInfo; /* Information about aggregates at this level */
+ Upsert *pUpsert; /* ON CONFLICT clause information from an upsert */
+ int iBaseReg; /* For TK_REGISTER when parsing RETURNING */
+ } uNC;
+ NameContext *pNext; /* Next outer name context. NULL for outermost */
+ int nRef; /* Number of names resolved by this context */
+ int nNcErr; /* Number of errors encountered while resolving names */
+ int ncFlags; /* Zero or more NC_* flags defined below */
+ Select *pWinSelect; /* SELECT statement for any window functions */
+};
+
+/*
+** Allowed values for the NameContext, ncFlags field.
+**
+** Value constraints (all checked via assert()):
+** NC_HasAgg == SF_HasAgg == EP_Agg
+** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX
+** NC_OrderAgg == SF_OrderByReqd == SQLITE_FUNC_ANYORDER
+** NC_HasWin == EP_Win
+**
+*/
+#define NC_AllowAgg 0x000001 /* Aggregate functions are allowed here */
+#define NC_PartIdx 0x000002 /* True if resolving a partial index WHERE */
+#define NC_IsCheck 0x000004 /* True if resolving a CHECK constraint */
+#define NC_GenCol 0x000008 /* True for a GENERATED ALWAYS AS clause */
+#define NC_HasAgg 0x000010 /* One or more aggregate functions seen */
+#define NC_IdxExpr 0x000020 /* True if resolving columns of CREATE INDEX */
+#define NC_SelfRef 0x00002e /* Combo: PartIdx, isCheck, GenCol, and IdxExpr */
+#define NC_Subquery 0x000040 /* A subquery has been seen */
+#define NC_UEList 0x000080 /* True if uNC.pEList is used */
+#define NC_UAggInfo 0x000100 /* True if uNC.pAggInfo is used */
+#define NC_UUpsert 0x000200 /* True if uNC.pUpsert is used */
+#define NC_UBaseReg 0x000400 /* True if uNC.iBaseReg is used */
+#define NC_MinMaxAgg 0x001000 /* min/max aggregates seen. See note above */
+#define NC_Complex 0x002000 /* True if a function or subquery seen */
+#define NC_AllowWin 0x004000 /* Window functions are allowed here */
+#define NC_HasWin 0x008000 /* One or more window functions seen */
+#define NC_IsDDL 0x010000 /* Resolving names in a CREATE statement */
+#define NC_InAggFunc 0x020000 /* True if analyzing arguments to an agg func */
+#define NC_FromDDL 0x040000 /* SQL text comes from sqlite_schema */
+#define NC_NoSelect 0x080000 /* Do not descend into sub-selects */
+#define NC_OrderAgg 0x8000000 /* Has an aggregate other than count/min/max */
+
+/*
+** An instance of the following object describes a single ON CONFLICT
+** clause in an upsert.
+**
+** The pUpsertTarget field is only set if the ON CONFLICT clause includes
+** conflict-target clause. (In "ON CONFLICT(a,b)" the "(a,b)" is the
+** conflict-target clause.) The pUpsertTargetWhere is the optional
+** WHERE clause used to identify partial unique indexes.
+**
+** pUpsertSet is the list of column=expr terms of the UPDATE statement.
+** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING. The
+** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the
+** WHERE clause is omitted.
+*/
+struct Upsert {
+ ExprList *pUpsertTarget; /* Optional description of conflict target */
+ Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */
+ ExprList *pUpsertSet; /* The SET clause from an ON CONFLICT UPDATE */
+ Expr *pUpsertWhere; /* WHERE clause for the ON CONFLICT UPDATE */
+ Upsert *pNextUpsert; /* Next ON CONFLICT clause in the list */
+ u8 isDoUpdate; /* True for DO UPDATE. False for DO NOTHING */
+ /* Above this point is the parse tree for the ON CONFLICT clauses.
+ ** The next group of fields stores intermediate data. */
+ void *pToFree; /* Free memory when deleting the Upsert object */
+ /* All fields above are owned by the Upsert object and must be freed
+ ** when the Upsert is destroyed. The fields below are used to transfer
+ ** information from the INSERT processing down into the UPDATE processing
+ ** while generating code. The fields below are owned by the INSERT
+ ** statement and will be freed by INSERT processing. */
+ Index *pUpsertIdx; /* UNIQUE constraint specified by pUpsertTarget */
+ SrcList *pUpsertSrc; /* Table to be updated */
+ int regData; /* First register holding array of VALUES */
+ int iDataCur; /* Index of the data cursor */
+ int iIdxCur; /* Index of the first index cursor */
+};
+
+/*
+** An instance of the following structure contains all information
+** needed to generate code for a single SELECT statement.
+**
+** See the header comment on the computeLimitRegisters() routine for a
+** detailed description of the meaning of the iLimit and iOffset fields.
+**
+** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
+** These addresses must be stored so that we can go back and fill in
+** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
+** the number of columns in P2 can be computed at the same time
+** as the OP_OpenEphm instruction is coded because not
+** enough information about the compound query is known at that point.
+** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
+** for the result set. The KeyInfo for addrOpenEphm[2] contains collating
+** sequences for the ORDER BY clause.
+*/
+struct Select {
+ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
+ LogEst nSelectRow; /* Estimated number of result rows */
+ u32 selFlags; /* Various SF_* values */
+ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
+ u32 selId; /* Unique identifier number for this SELECT */
+ int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */
+ ExprList *pEList; /* The fields of the result */
+ SrcList *pSrc; /* The FROM clause */
+ Expr *pWhere; /* The WHERE clause */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Expr *pHaving; /* The HAVING clause */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Select *pPrior; /* Prior select in a compound select statement */
+ Select *pNext; /* Next select to the left in a compound */
+ Expr *pLimit; /* LIMIT expression. NULL means not used. */
+ With *pWith; /* WITH clause attached to this select. Or NULL. */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin; /* List of window functions */
+ Window *pWinDefn; /* List of named window definitions */
+#endif
+};
+
+/*
+** Allowed values for Select.selFlags. The "SF" prefix stands for
+** "Select Flag".
+**
+** Value constraints (all checked via assert())
+** SF_HasAgg == NC_HasAgg
+** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX
+** SF_OrderByReqd == NC_OrderAgg == SQLITE_FUNC_ANYORDER
+** SF_FixedLimit == WHERE_USE_LIMIT
+*/
+#define SF_Distinct 0x0000001 /* Output should be DISTINCT */
+#define SF_All 0x0000002 /* Includes the ALL keyword */
+#define SF_Resolved 0x0000004 /* Identifiers have been resolved */
+#define SF_Aggregate 0x0000008 /* Contains agg functions or a GROUP BY */
+#define SF_HasAgg 0x0000010 /* Contains aggregate functions */
+#define SF_UsesEphemeral 0x0000020 /* Uses the OpenEphemeral opcode */
+#define SF_Expanded 0x0000040 /* sqlite3SelectExpand() called on this */
+#define SF_HasTypeInfo 0x0000080 /* FROM subqueries have Table metadata */
+#define SF_Compound 0x0000100 /* Part of a compound query */
+#define SF_Values 0x0000200 /* Synthesized from VALUES clause */
+#define SF_MultiValue 0x0000400 /* Single VALUES term with multiple rows */
+#define SF_NestedFrom 0x0000800 /* Part of a parenthesized FROM clause */
+#define SF_MinMaxAgg 0x0001000 /* Aggregate containing min() or max() */
+#define SF_Recursive 0x0002000 /* The recursive part of a recursive CTE */
+#define SF_FixedLimit 0x0004000 /* nSelectRow set by a constant LIMIT */
+#define SF_MaybeConvert 0x0008000 /* Need convertCompoundSelectToSubquery() */
+#define SF_Converted 0x0010000 /* By convertCompoundSelectToSubquery() */
+#define SF_IncludeHidden 0x0020000 /* Include hidden columns in output */
+#define SF_ComplexResult 0x0040000 /* Result contains subquery or function */
+#define SF_WhereBegin 0x0080000 /* Really a WhereBegin() call. Debug Only */
+#define SF_WinRewrite 0x0100000 /* Window function rewrite accomplished */
+#define SF_View 0x0200000 /* SELECT statement is a view */
+#define SF_NoopOrderBy 0x0400000 /* ORDER BY is ignored for this query */
+#define SF_UFSrcCheck 0x0800000 /* Check pSrc as required by UPDATE...FROM */
+#define SF_PushDown 0x1000000 /* SELECT has be modified by push-down opt */
+#define SF_MultiPart 0x2000000 /* Has multiple incompatible PARTITIONs */
+#define SF_CopyCte 0x4000000 /* SELECT statement is a copy of a CTE */
+#define SF_OrderByReqd 0x8000000 /* The ORDER BY clause may not be omitted */
+#define SF_UpdateFrom 0x10000000 /* Query originates with UPDATE FROM */
+
+/* True if S exists and has SF_NestedFrom */
+#define IsNestedFrom(S) ((S)!=0 && ((S)->selFlags&SF_NestedFrom)!=0)
+
+/*
+** The results of a SELECT can be distributed in several ways, as defined
+** by one of the following macros. The "SRT" prefix means "SELECT Result
+** Type".
+**
+** SRT_Union Store results as a key in a temporary index
+** identified by pDest->iSDParm.
+**
+** SRT_Except Remove results from the temporary index pDest->iSDParm.
+**
+** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result
+** set is not empty.
+**
+** SRT_Discard Throw the results away. This is used by SELECT
+** statements within triggers whose only purpose is
+** the side-effects of functions.
+**
+** SRT_Output Generate a row of output (using the OP_ResultRow
+** opcode) for each row in the result set.
+**
+** SRT_Mem Only valid if the result is a single column.
+** Store the first column of the first result row
+** in register pDest->iSDParm then abandon the rest
+** of the query. This destination implies "LIMIT 1".
+**
+** SRT_Set The result must be a single column. Store each
+** row of result as the key in table pDest->iSDParm.
+** Apply the affinity pDest->affSdst before storing
+** results. Used to implement "IN (SELECT ...)".
+**
+** SRT_EphemTab Create an temporary table pDest->iSDParm and store
+** the result there. The cursor is left open after
+** returning. This is like SRT_Table except that
+** this destination uses OP_OpenEphemeral to create
+** the table first.
+**
+** SRT_Coroutine Generate a co-routine that returns a new row of
+** results each time it is invoked. The entry point
+** of the co-routine is stored in register pDest->iSDParm
+** and the result row is stored in pDest->nDest registers
+** starting with pDest->iSdst.
+**
+** SRT_Table Store results in temporary table pDest->iSDParm.
+** SRT_Fifo This is like SRT_EphemTab except that the table
+** is assumed to already be open. SRT_Fifo has
+** the additional property of being able to ignore
+** the ORDER BY clause.
+**
+** SRT_DistFifo Store results in a temporary table pDest->iSDParm.
+** But also use temporary table pDest->iSDParm+1 as
+** a record of all prior results and ignore any duplicate
+** rows. Name means: "Distinct Fifo".
+**
+** SRT_Queue Store results in priority queue pDest->iSDParm (really
+** an index). Append a sequence number so that all entries
+** are distinct.
+**
+** SRT_DistQueue Store results in priority queue pDest->iSDParm only if
+** the same record has never been stored before. The
+** index at pDest->iSDParm+1 hold all prior stores.
+**
+** SRT_Upfrom Store results in the temporary table already opened by
+** pDest->iSDParm. If (pDest->iSDParm<0), then the temp
+** table is an intkey table - in this case the first
+** column returned by the SELECT is used as the integer
+** key. If (pDest->iSDParm>0), then the table is an index
+** table. (pDest->iSDParm) is the number of key columns in
+** each index record in this case.
+*/
+#define SRT_Union 1 /* Store result as keys in an index */
+#define SRT_Except 2 /* Remove result from a UNION index */
+#define SRT_Exists 3 /* Store 1 if the result is not empty */
+#define SRT_Discard 4 /* Do not save the results anywhere */
+#define SRT_DistFifo 5 /* Like SRT_Fifo, but unique results only */
+#define SRT_DistQueue 6 /* Like SRT_Queue, but unique results only */
+
+/* The DISTINCT clause is ignored for all of the above. Not that
+** IgnorableDistinct() implies IgnorableOrderby() */
+#define IgnorableDistinct(X) ((X->eDest)<=SRT_DistQueue)
+
+#define SRT_Queue 7 /* Store result in an queue */
+#define SRT_Fifo 8 /* Store result as data with an automatic rowid */
+
+/* The ORDER BY clause is ignored for all of the above */
+#define IgnorableOrderby(X) ((X->eDest)<=SRT_Fifo)
+
+#define SRT_Output 9 /* Output each row of result */
+#define SRT_Mem 10 /* Store result in a memory cell */
+#define SRT_Set 11 /* Store results as keys in an index */
+#define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */
+#define SRT_Coroutine 13 /* Generate a single row of result */
+#define SRT_Table 14 /* Store result as data with an automatic rowid */
+#define SRT_Upfrom 15 /* Store result as data with rowid */
+
+/*
+** An instance of this object describes where to put of the results of
+** a SELECT statement.
+*/
+struct SelectDest {
+ u8 eDest; /* How to dispose of the results. One of SRT_* above. */
+ int iSDParm; /* A parameter used by the eDest disposal method */
+ int iSDParm2; /* A second parameter for the eDest disposal method */
+ int iSdst; /* Base register where results are written */
+ int nSdst; /* Number of registers allocated */
+ char *zAffSdst; /* Affinity used for SRT_Set */
+ ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */
+};
+
+/*
+** During code generation of statements that do inserts into AUTOINCREMENT
+** tables, the following information is attached to the Table.u.autoInc.p
+** pointer of each autoincrement table to record some side information that
+** the code generator needs. We have to keep per-table autoincrement
+** information in case inserts are done within triggers. Triggers do not
+** normally coordinate their activities, but we do need to coordinate the
+** loading and saving of autoincrement information.
+*/
+struct AutoincInfo {
+ AutoincInfo *pNext; /* Next info block in a list of them all */
+ Table *pTab; /* Table this info block refers to */
+ int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
+ int regCtr; /* Memory register holding the rowid counter */
+};
+
+/*
+** At least one instance of the following structure is created for each
+** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
+** statement. All such objects are stored in the linked list headed at
+** Parse.pTriggerPrg and deleted once statement compilation has been
+** completed.
+**
+** A Vdbe sub-program that implements the body and WHEN clause of trigger
+** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
+** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
+** The Parse.pTriggerPrg list never contains two entries with the same
+** values for both pTrigger and orconf.
+**
+** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
+** accessed (or set to 0 for triggers fired as a result of INSERT
+** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
+** a mask of new.* columns used by the program.
+*/
+struct TriggerPrg {
+ Trigger *pTrigger; /* Trigger this program was coded from */
+ TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
+ SubProgram *pProgram; /* Program implementing pTrigger/orconf */
+ int orconf; /* Default ON CONFLICT policy */
+ u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */
+};
+
+/*
+** The yDbMask datatype for the bitmask of all attached databases.
+*/
+#if SQLITE_MAX_ATTACHED>30
+ typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
+# define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0)
+# define DbMaskZero(M) memset((M),0,sizeof(M))
+# define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7))
+# define DbMaskAllZero(M) sqlite3DbMaskAllZero(M)
+# define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0)
+#else
+ typedef unsigned int yDbMask;
+# define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0)
+# define DbMaskZero(M) ((M)=0)
+# define DbMaskSet(M,I) ((M)|=(((yDbMask)1)<<(I)))
+# define DbMaskAllZero(M) ((M)==0)
+# define DbMaskNonZero(M) ((M)!=0)
+#endif
+
+/*
+** For each index X that has as one of its arguments either an expression
+** or the name of a virtual generated column, and if X is in scope such that
+** the value of the expression can simply be read from the index, then
+** there is an instance of this object on the Parse.pIdxExpr list.
+**
+** During code generation, while generating code to evaluate expressions,
+** this list is consulted and if a matching expression is found, the value
+** is read from the index rather than being recomputed.
+*/
+struct IndexedExpr {
+ Expr *pExpr; /* The expression contained in the index */
+ int iDataCur; /* The data cursor associated with the index */
+ int iIdxCur; /* The index cursor */
+ int iIdxCol; /* The index column that contains value of pExpr */
+ u8 bMaybeNullRow; /* True if we need an OP_IfNullRow check */
+ u8 aff; /* Affinity of the pExpr expression */
+ IndexedExpr *pIENext; /* Next in a list of all indexed expressions */
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ const char *zIdxName; /* Name of index, used only for bytecode comments */
+#endif
+};
+
+/*
+** An instance of the ParseCleanup object specifies an operation that
+** should be performed after parsing to deallocation resources obtained
+** during the parse and which are no longer needed.
+*/
+struct ParseCleanup {
+ ParseCleanup *pNext; /* Next cleanup task */
+ void *pPtr; /* Pointer to object to deallocate */
+ void (*xCleanup)(sqlite3*,void*); /* Deallocation routine */
+};
+
+/*
+** An SQL parser context. A copy of this structure is passed through
+** the parser and down into all the parser action routine in order to
+** carry around information that is global to the entire parse.
+**
+** The structure is divided into two parts. When the parser and code
+** generate call themselves recursively, the first part of the structure
+** is constant but the second part is reset at the beginning and end of
+** each recursion.
+**
+** The nTableLock and aTableLock variables are only used if the shared-cache
+** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
+** used to store the set of table-locks required by the statement being
+** compiled. Function sqlite3TableLock() is used to add entries to the
+** list.
+*/
+struct Parse {
+ sqlite3 *db; /* The main database structure */
+ char *zErrMsg; /* An error message */
+ Vdbe *pVdbe; /* An engine for executing database bytecode */
+ int rc; /* Return code from execution */
+ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
+ u8 checkSchema; /* Causes schema cookie check after an error */
+ u8 nested; /* Number of nested calls to the parser/code generator */
+ u8 nTempReg; /* Number of temporary registers in aTempReg[] */
+ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */
+ u8 mayAbort; /* True if statement may throw an ABORT exception */
+ u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */
+ u8 okConstFactor; /* OK to factor out constants */
+ u8 disableLookaside; /* Number of times lookaside has been disabled */
+ u8 prepFlags; /* SQLITE_PREPARE_* flags */
+ u8 withinRJSubrtn; /* Nesting level for RIGHT JOIN body subroutines */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+ u8 earlyCleanup; /* OOM inside sqlite3ParserAddCleanup() */
+#endif
+#ifdef SQLITE_DEBUG
+ u8 ifNotExists; /* Might be true if IF NOT EXISTS. Assert()s only */
+#endif
+ int nRangeReg; /* Size of the temporary register block */
+ int iRangeReg; /* First register in temporary register block */
+ int nErr; /* Number of errors seen */
+ int nTab; /* Number of previously allocated VDBE cursors */
+ int nMem; /* Number of memory cells used so far */
+ int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */
+ int iSelfTab; /* Table associated with an index on expr, or negative
+ ** of the base register during check-constraint eval */
+ int nLabel; /* The *negative* of the number of labels used */
+ int nLabelAlloc; /* Number of slots in aLabel */
+ int *aLabel; /* Space to hold the labels */
+ ExprList *pConstExpr;/* Constant expressions */
+ IndexedExpr *pIdxEpr;/* List of expressions used by active indexes */
+ IndexedExpr *pIdxPartExpr; /* Exprs constrained by index WHERE clauses */
+ Token constraintName;/* Name of the constraint currently being parsed */
+ yDbMask writeMask; /* Start a write transaction on these databases */
+ yDbMask cookieMask; /* Bitmask of schema verified databases */
+ int regRowid; /* Register holding rowid of CREATE TABLE entry */
+ int regRoot; /* Register holding root page number for new objects */
+ int nMaxArg; /* Max args passed to user function by sub-program */
+ int nSelect; /* Number of SELECT stmts. Counter for Select.selId */
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ u32 nProgressSteps; /* xProgress steps taken during sqlite3_prepare() */
+#endif
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nTableLock; /* Number of locks in aTableLock */
+ TableLock *aTableLock; /* Required table locks for shared-cache mode */
+#endif
+ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
+ Parse *pToplevel; /* Parse structure for main program (or NULL) */
+ Table *pTriggerTab; /* Table triggers are being coded for */
+ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
+ ParseCleanup *pCleanup; /* List of cleanup operations to run after parse */
+ union {
+ int addrCrTab; /* Address of OP_CreateBtree on CREATE TABLE */
+ Returning *pReturning; /* The RETURNING clause */
+ } u1;
+ u32 oldmask; /* Mask of old.* columns referenced */
+ u32 newmask; /* Mask of new.* columns referenced */
+ LogEst nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */
+ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
+ u8 bReturning; /* Coding a RETURNING trigger */
+ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
+ u8 disableTriggers; /* True to disable triggers */
+
+ /**************************************************************************
+ ** Fields above must be initialized to zero. The fields that follow,
+ ** down to the beginning of the recursive section, do not need to be
+ ** initialized as they will be set before being used. The boundary is
+ ** determined by offsetof(Parse,aTempReg).
+ **************************************************************************/
+
+ int aTempReg[8]; /* Holding area for temporary registers */
+ Parse *pOuterParse; /* Outer Parse object when nested */
+ Token sNameToken; /* Token with unqualified schema object name */
+
+ /************************************************************************
+ ** Above is constant between recursions. Below is reset before and after
+ ** each recursion. The boundary between these two regions is determined
+ ** using offsetof(Parse,sLastToken) so the sLastToken field must be the
+ ** first field in the recursive region.
+ ************************************************************************/
+
+ Token sLastToken; /* The last token parsed */
+ ynVar nVar; /* Number of '?' variables seen in the SQL so far */
+ u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */
+ u8 explain; /* True if the EXPLAIN flag is found on the query */
+ u8 eParseMode; /* PARSE_MODE_XXX constant */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int nVtabLock; /* Number of virtual tables to lock */
+#endif
+ int nHeight; /* Expression tree height of current sub-select */
+#ifndef SQLITE_OMIT_EXPLAIN
+ int addrExplain; /* Address of current OP_Explain opcode */
+#endif
+ VList *pVList; /* Mapping between variable names and numbers */
+ Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */
+ const char *zTail; /* All SQL text past the last semicolon parsed */
+ Table *pNewTable; /* A table being constructed by CREATE TABLE */
+ Index *pNewIndex; /* An index being constructed by CREATE INDEX.
+ ** Also used to hold redundant UNIQUE constraints
+ ** during a RENAME COLUMN */
+ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
+ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ Token sArg; /* Complete text of a module argument */
+ Table **apVtabLock; /* Pointer to virtual tables needing locking */
+#endif
+ With *pWith; /* Current WITH clause, or NULL */
+#ifndef SQLITE_OMIT_ALTERTABLE
+ RenameToken *pRename; /* Tokens subject to renaming by ALTER TABLE */
+#endif
+};
+
+/* Allowed values for Parse.eParseMode
+*/
+#define PARSE_MODE_NORMAL 0
+#define PARSE_MODE_DECLARE_VTAB 1
+#define PARSE_MODE_RENAME 2
+#define PARSE_MODE_UNMAP 3
+
+/*
+** Sizes and pointers of various parts of the Parse object.
+*/
+#define PARSE_HDR(X) (((char*)(X))+offsetof(Parse,zErrMsg))
+#define PARSE_HDR_SZ (offsetof(Parse,aTempReg)-offsetof(Parse,zErrMsg)) /* Recursive part w/o aColCache*/
+#define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */
+#define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */
+#define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */
+
+/*
+** Return true if currently inside an sqlite3_declare_vtab() call.
+*/
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ #define IN_DECLARE_VTAB 0
+#else
+ #define IN_DECLARE_VTAB (pParse->eParseMode==PARSE_MODE_DECLARE_VTAB)
+#endif
+
+#if defined(SQLITE_OMIT_ALTERTABLE)
+ #define IN_RENAME_OBJECT 0
+#else
+ #define IN_RENAME_OBJECT (pParse->eParseMode>=PARSE_MODE_RENAME)
+#endif
+
+#if defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_OMIT_ALTERTABLE)
+ #define IN_SPECIAL_PARSE 0
+#else
+ #define IN_SPECIAL_PARSE (pParse->eParseMode!=PARSE_MODE_NORMAL)
+#endif
+
+/*
+** An instance of the following structure can be declared on a stack and used
+** to save the Parse.zAuthContext value so that it can be restored later.
+*/
+struct AuthContext {
+ const char *zAuthContext; /* Put saved Parse.zAuthContext here */
+ Parse *pParse; /* The Parse structure */
+};
+
+/*
+** Bitfield flags for P5 value in various opcodes.
+**
+** Value constraints (enforced via assert()):
+** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH
+** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF
+** OPFLAG_BULKCSR == BTREE_BULKLOAD
+** OPFLAG_SEEKEQ == BTREE_SEEK_EQ
+** OPFLAG_FORDELETE == BTREE_FORDELETE
+** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
+** OPFLAG_AUXDELETE == BTREE_AUXDELETE
+*/
+#define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */
+ /* Also used in P2 (not P5) of OP_Delete */
+#define OPFLAG_NOCHNG 0x01 /* OP_VColumn nochange for UPDATE */
+#define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */
+#define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */
+#define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
+#define OPFLAG_APPEND 0x08 /* This is likely to be an append */
+#define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
+#define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */
+#define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */
+#define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */
+#define OPFLAG_BYTELENARG 0xc0 /* OP_Column only for octet_length() */
+#define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */
+#define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */
+#define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */
+#define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */
+#define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */
+#define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */
+#define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */
+#define OPFLAG_NOCHNG_MAGIC 0x6d /* OP_MakeRecord: serialtype 10 is ok */
+#define OPFLAG_PREFORMAT 0x80 /* OP_Insert uses preformatted cell */
+
+/*
+** Each trigger present in the database schema is stored as an instance of
+** struct Trigger.
+**
+** Pointers to instances of struct Trigger are stored in two ways.
+** 1. In the "trigHash" hash table (part of the sqlite3* that represents the
+** database). This allows Trigger structures to be retrieved by name.
+** 2. All triggers associated with a single table form a linked list, using the
+** pNext member of struct Trigger. A pointer to the first element of the
+** linked list is stored as the "pTrigger" member of the associated
+** struct Table.
+**
+** The "step_list" member points to the first element of a linked list
+** containing the SQL statements specified as the trigger program.
+*/
+struct Trigger {
+ char *zName; /* The name of the trigger */
+ char *table; /* The table or view to which the trigger applies */
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
+ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
+ u8 bReturning; /* This trigger implements a RETURNING clause */
+ Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
+ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
+ the <column-list> is stored here */
+ Schema *pSchema; /* Schema containing the trigger */
+ Schema *pTabSchema; /* Schema containing the table */
+ TriggerStep *step_list; /* Link list of trigger program steps */
+ Trigger *pNext; /* Next trigger associated with the table */
+};
+
+/*
+** A trigger is either a BEFORE or an AFTER trigger. The following constants
+** determine which.
+**
+** If there are multiple triggers, you might of some BEFORE and some AFTER.
+** In that cases, the constants below can be ORed together.
+*/
+#define TRIGGER_BEFORE 1
+#define TRIGGER_AFTER 2
+
+/*
+** An instance of struct TriggerStep is used to store a single SQL statement
+** that is a part of a trigger-program.
+**
+** Instances of struct TriggerStep are stored in a singly linked list (linked
+** using the "pNext" member) referenced by the "step_list" member of the
+** associated struct Trigger instance. The first element of the linked list is
+** the first step of the trigger-program.
+**
+** The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
+** "SELECT" statement. The meanings of the other members is determined by the
+** value of "op" as follows:
+**
+** (op == TK_INSERT)
+** orconf -> stores the ON CONFLICT algorithm
+** pSelect -> The content to be inserted - either a SELECT statement or
+** a VALUES clause.
+** zTarget -> Dequoted name of the table to insert into.
+** pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
+** statement, then this stores the column-names to be
+** inserted into.
+** pUpsert -> The ON CONFLICT clauses for an Upsert
+**
+** (op == TK_DELETE)
+** zTarget -> Dequoted name of the table to delete from.
+** pWhere -> The WHERE clause of the DELETE statement if one is specified.
+** Otherwise NULL.
+**
+** (op == TK_UPDATE)
+** zTarget -> Dequoted name of the table to update.
+** pWhere -> The WHERE clause of the UPDATE statement if one is specified.
+** Otherwise NULL.
+** pExprList -> A list of the columns to update and the expressions to update
+** them to. See sqlite3Update() documentation of "pChanges"
+** argument.
+**
+** (op == TK_SELECT)
+** pSelect -> The SELECT statement
+**
+** (op == TK_RETURNING)
+** pExprList -> The list of expressions that follow the RETURNING keyword.
+**
+*/
+struct TriggerStep {
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT,
+ ** or TK_RETURNING */
+ u8 orconf; /* OE_Rollback etc. */
+ Trigger *pTrig; /* The trigger that this step is a part of */
+ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */
+ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */
+ SrcList *pFrom; /* FROM clause for UPDATE statement (if any) */
+ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
+ ExprList *pExprList; /* SET clause for UPDATE, or RETURNING clause */
+ IdList *pIdList; /* Column names for INSERT */
+ Upsert *pUpsert; /* Upsert clauses on an INSERT */
+ char *zSpan; /* Original SQL text of this command */
+ TriggerStep *pNext; /* Next in the link-list */
+ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
+};
+
+/*
+** Information about a RETURNING clause
+*/
+struct Returning {
+ Parse *pParse; /* The parse that includes the RETURNING clause */
+ ExprList *pReturnEL; /* List of expressions to return */
+ Trigger retTrig; /* The transient trigger that implements RETURNING */
+ TriggerStep retTStep; /* The trigger step */
+ int iRetCur; /* Transient table holding RETURNING results */
+ int nRetCol; /* Number of in pReturnEL after expansion */
+ int iRetReg; /* Register array for holding a row of RETURNING */
+ char zName[40]; /* Name of trigger: "sqlite_returning_%p" */
+};
+
+/*
+** An objected used to accumulate the text of a string where we
+** do not necessarily know how big the string will be in the end.
+*/
+struct sqlite3_str {
+ sqlite3 *db; /* Optional database for lookaside. Can be NULL */
+ char *zText; /* The string collected so far */
+ u32 nAlloc; /* Amount of space allocated in zText */
+ u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */
+ u32 nChar; /* Length of the string so far */
+ u8 accError; /* SQLITE_NOMEM or SQLITE_TOOBIG */
+ u8 printfFlags; /* SQLITE_PRINTF flags below */
+};
+#define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */
+#define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */
+#define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */
+
+#define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)
+
+/*
+** The following object is the header for an "RCStr" or "reference-counted
+** string". An RCStr is passed around and used like any other char*
+** that has been dynamically allocated. The important interface
+** differences:
+**
+** 1. RCStr strings are reference counted. They are deallocated
+** when the reference count reaches zero.
+**
+** 2. Use sqlite3RCStrUnref() to free an RCStr string rather than
+** sqlite3_free()
+**
+** 3. Make a (read-only) copy of a read-only RCStr string using
+** sqlite3RCStrRef().
+*/
+struct RCStr {
+ u64 nRCRef; /* Number of references */
+ /* Total structure size should be a multiple of 8 bytes for alignment */
+};
+
+/*
+** A pointer to this structure is used to communicate information
+** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
+*/
+typedef struct {
+ sqlite3 *db; /* The database being initialized */
+ char **pzErrMsg; /* Error message stored here */
+ int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
+ int rc; /* Result code stored here */
+ u32 mInitFlags; /* Flags controlling error messages */
+ u32 nInitRow; /* Number of rows processed */
+ Pgno mxPage; /* Maximum page number. 0 for no limit. */
+} InitData;
+
+/*
+** Allowed values for mInitFlags
+*/
+#define INITFLAG_AlterMask 0x0003 /* Types of ALTER */
+#define INITFLAG_AlterRename 0x0001 /* Reparse after a RENAME */
+#define INITFLAG_AlterDrop 0x0002 /* Reparse after a DROP COLUMN */
+#define INITFLAG_AlterAdd 0x0003 /* Reparse after an ADD COLUMN */
+
+/* Tuning parameters are set using SQLITE_TESTCTRL_TUNE and are controlled
+** on debug-builds of the CLI using ".testctrl tune ID VALUE". Tuning
+** parameters are for temporary use during development, to help find
+** optimal values for parameters in the query planner. The should not
+** be used on trunk check-ins. They are a temporary mechanism available
+** for transient development builds only.
+**
+** Tuning parameters are numbered starting with 1.
+*/
+#define SQLITE_NTUNE 6 /* Should be zero for all trunk check-ins */
+#ifdef SQLITE_DEBUG
+# define Tuning(X) (sqlite3Config.aTune[(X)-1])
+#else
+# define Tuning(X) 0
+#endif
+
+/*
+** Structure containing global configuration data for the SQLite library.
+**
+** This structure also contains some state information.
+*/
+struct Sqlite3Config {
+ int bMemstat; /* True to enable memory status */
+ u8 bCoreMutex; /* True to enable core mutexing */
+ u8 bFullMutex; /* True to enable full mutexing */
+ u8 bOpenUri; /* True to interpret filenames as URIs */
+ u8 bUseCis; /* Use covering indices for full-scans */
+ u8 bSmallMalloc; /* Avoid large memory allocations if true */
+ u8 bExtraSchemaChecks; /* Verify type,name,tbl_name in schema */
+ u8 bUseLongDouble; /* Make use of long double */
+ int mxStrlen; /* Maximum string length */
+ int neverCorrupt; /* Database is always well-formed */
+ int szLookaside; /* Default lookaside buffer size */
+ int nLookaside; /* Default lookaside buffer count */
+ int nStmtSpill; /* Stmt-journal spill-to-disk threshold */
+ sqlite3_mem_methods m; /* Low-level memory allocation interface */
+ sqlite3_mutex_methods mutex; /* Low-level mutex interface */
+ sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */
+ void *pHeap; /* Heap storage space */
+ int nHeap; /* Size of pHeap[] */
+ int mnReq, mxReq; /* Min and max heap requests sizes */
+ sqlite3_int64 szMmap; /* mmap() space per open file */
+ sqlite3_int64 mxMmap; /* Maximum value for szMmap */
+ void *pPage; /* Page cache memory */
+ int szPage; /* Size of each page in pPage[] */
+ int nPage; /* Number of pages in pPage[] */
+ int mxParserStack; /* maximum depth of the parser stack */
+ int sharedCacheEnabled; /* true if shared-cache mode enabled */
+ u32 szPma; /* Maximum Sorter PMA size */
+ /* The above might be initialized to non-zero. The following need to always
+ ** initially be zero, however. */
+ int isInit; /* True after initialization has finished */
+ int inProgress; /* True while initialization in progress */
+ int isMutexInit; /* True after mutexes are initialized */
+ int isMallocInit; /* True after malloc is initialized */
+ int isPCacheInit; /* True after malloc is initialized */
+ int nRefInitMutex; /* Number of users of pInitMutex */
+ sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
+ void (*xLog)(void*,int,const char*); /* Function for logging */
+ void *pLogArg; /* First argument to xLog() */
+#ifdef SQLITE_ENABLE_SQLLOG
+ void(*xSqllog)(void*,sqlite3*,const char*, int);
+ void *pSqllogArg;
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ /* The following callback (if not NULL) is invoked on every VDBE branch
+ ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
+ */
+ void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx); /* Callback */
+ void *pVdbeBranchArg; /* 1st argument */
+#endif
+#ifndef SQLITE_OMIT_DESERIALIZE
+ sqlite3_int64 mxMemdbSize; /* Default max memdb size */
+#endif
+#ifndef SQLITE_UNTESTABLE
+ int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */
+#endif
+ int bLocaltimeFault; /* True to fail localtime() calls */
+ int (*xAltLocaltime)(const void*,void*); /* Alternative localtime() routine */
+ int iOnceResetThreshold; /* When to reset OP_Once counters */
+ u32 szSorterRef; /* Min size in bytes to use sorter-refs */
+ unsigned int iPrngSeed; /* Alternative fixed seed for the PRNG */
+ /* vvvv--- must be last ---vvv */
+#ifdef SQLITE_DEBUG
+ sqlite3_int64 aTune[SQLITE_NTUNE]; /* Tuning parameters */
+#endif
+};
+
+/*
+** This macro is used inside of assert() statements to indicate that
+** the assert is only valid on a well-formed database. Instead of:
+**
+** assert( X );
+**
+** One writes:
+**
+** assert( X || CORRUPT_DB );
+**
+** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate
+** that the database is definitely corrupt, only that it might be corrupt.
+** For most test cases, CORRUPT_DB is set to false using a special
+** sqlite3_test_control(). This enables assert() statements to prove
+** things that are always true for well-formed databases.
+*/
+#define CORRUPT_DB (sqlite3Config.neverCorrupt==0)
+
+/*
+** Context pointer passed down through the tree-walk.
+*/
+struct Walker {
+ Parse *pParse; /* Parser context. */
+ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
+ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
+ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
+ int walkerDepth; /* Number of subqueries */
+ u16 eCode; /* A small processing code */
+ u16 mWFlags; /* Use-dependent flags */
+ union { /* Extra data for callback */
+ NameContext *pNC; /* Naming context */
+ int n; /* A counter */
+ int iCur; /* A cursor number */
+ SrcList *pSrcList; /* FROM clause */
+ struct CCurHint *pCCurHint; /* Used by codeCursorHint() */
+ struct RefSrcList *pRefSrcList; /* sqlite3ReferencesSrcList() */
+ int *aiCol; /* array of column indexes */
+ struct IdxCover *pIdxCover; /* Check for index coverage */
+ ExprList *pGroupBy; /* GROUP BY clause */
+ Select *pSelect; /* HAVING to WHERE clause ctx */
+ struct WindowRewrite *pRewrite; /* Window rewrite context */
+ struct WhereConst *pConst; /* WHERE clause constants */
+ struct RenameCtx *pRename; /* RENAME COLUMN context */
+ struct Table *pTab; /* Table of generated column */
+ struct CoveringIndexCheck *pCovIdxCk; /* Check for covering index */
+ SrcItem *pSrcItem; /* A single FROM clause item */
+ DbFixer *pFix; /* See sqlite3FixSelect() */
+ Mem *aMem; /* See sqlite3BtreeCursorHint() */
+ } u;
+};
+
+/*
+** The following structure contains information used by the sqliteFix...
+** routines as they walk the parse tree to make database references
+** explicit.
+*/
+struct DbFixer {
+ Parse *pParse; /* The parsing context. Error messages written here */
+ Walker w; /* Walker object */
+ Schema *pSchema; /* Fix items to this schema */
+ u8 bTemp; /* True for TEMP schema entries */
+ const char *zDb; /* Make sure all objects are contained in this database */
+ const char *zType; /* Type of the container - used for error messages */
+ const Token *pName; /* Name of the container - used for error messages */
+};
+
+/* Forward declarations */
+SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
+SQLITE_PRIVATE int sqlite3WalkExprNN(Walker*, Expr*);
+SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
+SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*);
+SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker*, Select*);
+SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker*,Select*);
+SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker*,Select*);
+SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker*,Select*);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker*, Select*);
+#endif
+
+#ifndef SQLITE_OMIT_CTE
+SQLITE_PRIVATE void sqlite3SelectPopWith(Walker*, Select*);
+#else
+# define sqlite3SelectPopWith 0
+#endif
+
+/*
+** Return code from the parse-tree walking primitives and their
+** callbacks.
+*/
+#define WRC_Continue 0 /* Continue down into children */
+#define WRC_Prune 1 /* Omit children but continue walking siblings */
+#define WRC_Abort 2 /* Abandon the tree walk */
+
+/*
+** A single common table expression
+*/
+struct Cte {
+ char *zName; /* Name of this CTE */
+ ExprList *pCols; /* List of explicit column names, or NULL */
+ Select *pSelect; /* The definition of this CTE */
+ const char *zCteErr; /* Error message for circular references */
+ CteUse *pUse; /* Usage information for this CTE */
+ u8 eM10d; /* The MATERIALIZED flag */
+};
+
+/*
+** Allowed values for the materialized flag (eM10d):
+*/
+#define M10d_Yes 0 /* AS MATERIALIZED */
+#define M10d_Any 1 /* Not specified. Query planner's choice */
+#define M10d_No 2 /* AS NOT MATERIALIZED */
+
+/*
+** An instance of the With object represents a WITH clause containing
+** one or more CTEs (common table expressions).
+*/
+struct With {
+ int nCte; /* Number of CTEs in the WITH clause */
+ int bView; /* Belongs to the outermost Select of a view */
+ With *pOuter; /* Containing WITH clause, or NULL */
+ Cte a[1]; /* For each CTE in the WITH clause.... */
+};
+
+/*
+** The Cte object is not guaranteed to persist for the entire duration
+** of code generation. (The query flattener or other parser tree
+** edits might delete it.) The following object records information
+** about each Common Table Expression that must be preserved for the
+** duration of the parse.
+**
+** The CteUse objects are freed using sqlite3ParserAddCleanup() rather
+** than sqlite3SelectDelete(), which is what enables them to persist
+** until the end of code generation.
+*/
+struct CteUse {
+ int nUse; /* Number of users of this CTE */
+ int addrM9e; /* Start of subroutine to compute materialization */
+ int regRtn; /* Return address register for addrM9e subroutine */
+ int iCur; /* Ephemeral table holding the materialization */
+ LogEst nRowEst; /* Estimated number of rows in the table */
+ u8 eM10d; /* The MATERIALIZED flag */
+};
+
+
+/* Client data associated with sqlite3_set_clientdata() and
+** sqlite3_get_clientdata().
+*/
+struct DbClientData {
+ DbClientData *pNext; /* Next in a linked list */
+ void *pData; /* The data */
+ void (*xDestructor)(void*); /* Destructor. Might be NULL */
+ char zName[1]; /* Name of this client data. MUST BE LAST */
+};
+
+#ifdef SQLITE_DEBUG
+/*
+** An instance of the TreeView object is used for printing the content of
+** data structures on sqlite3DebugPrintf() using a tree-like view.
+*/
+struct TreeView {
+ int iLevel; /* Which level of the tree we are on */
+ u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */
+};
+#endif /* SQLITE_DEBUG */
+
+/*
+** This object is used in various ways, most (but not all) related to window
+** functions.
+**
+** (1) A single instance of this structure is attached to the
+** the Expr.y.pWin field for each window function in an expression tree.
+** This object holds the information contained in the OVER clause,
+** plus additional fields used during code generation.
+**
+** (2) All window functions in a single SELECT form a linked-list
+** attached to Select.pWin. The Window.pFunc and Window.pExpr
+** fields point back to the expression that is the window function.
+**
+** (3) The terms of the WINDOW clause of a SELECT are instances of this
+** object on a linked list attached to Select.pWinDefn.
+**
+** (4) For an aggregate function with a FILTER clause, an instance
+** of this object is stored in Expr.y.pWin with eFrmType set to
+** TK_FILTER. In this case the only field used is Window.pFilter.
+**
+** The uses (1) and (2) are really the same Window object that just happens
+** to be accessible in two different ways. Use case (3) are separate objects.
+*/
+struct Window {
+ char *zName; /* Name of window (may be NULL) */
+ char *zBase; /* Name of base window for chaining (may be NULL) */
+ ExprList *pPartition; /* PARTITION BY clause */
+ ExprList *pOrderBy; /* ORDER BY clause */
+ u8 eFrmType; /* TK_RANGE, TK_GROUPS, TK_ROWS, or 0 */
+ u8 eStart; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */
+ u8 eEnd; /* UNBOUNDED, CURRENT, PRECEDING or FOLLOWING */
+ u8 bImplicitFrame; /* True if frame was implicitly specified */
+ u8 eExclude; /* TK_NO, TK_CURRENT, TK_TIES, TK_GROUP, or 0 */
+ Expr *pStart; /* Expression for "<expr> PRECEDING" */
+ Expr *pEnd; /* Expression for "<expr> FOLLOWING" */
+ Window **ppThis; /* Pointer to this object in Select.pWin list */
+ Window *pNextWin; /* Next window function belonging to this SELECT */
+ Expr *pFilter; /* The FILTER expression */
+ FuncDef *pWFunc; /* The function */
+ int iEphCsr; /* Partition buffer or Peer buffer */
+ int regAccum; /* Accumulator */
+ int regResult; /* Interim result */
+ int csrApp; /* Function cursor (used by min/max) */
+ int regApp; /* Function register (also used by min/max) */
+ int regPart; /* Array of registers for PARTITION BY values */
+ Expr *pOwner; /* Expression object this window is attached to */
+ int nBufferCol; /* Number of columns in buffer table */
+ int iArgCol; /* Offset of first argument for this function */
+ int regOne; /* Register containing constant value 1 */
+ int regStartRowid;
+ int regEndRowid;
+ u8 bExprArgs; /* Defer evaluation of window function arguments
+ ** due to the SQLITE_SUBTYPE flag */
+};
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3*, Window*);
+SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window*);
+SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p);
+SQLITE_PRIVATE Window *sqlite3WindowAlloc(Parse*, int, int, Expr*, int , Expr*, u8);
+SQLITE_PRIVATE void sqlite3WindowAttach(Parse*, Expr*, Window*);
+SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin);
+SQLITE_PRIVATE int sqlite3WindowCompare(const Parse*, const Window*, const Window*, int);
+SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse*, Select*);
+SQLITE_PRIVATE void sqlite3WindowCodeStep(Parse*, Select*, WhereInfo*, int, int);
+SQLITE_PRIVATE int sqlite3WindowRewrite(Parse*, Select*);
+SQLITE_PRIVATE void sqlite3WindowUpdate(Parse*, Window*, Window*, FuncDef*);
+SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p);
+SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p);
+SQLITE_PRIVATE void sqlite3WindowFunctions(void);
+SQLITE_PRIVATE void sqlite3WindowChain(Parse*, Window*, Window*);
+SQLITE_PRIVATE Window *sqlite3WindowAssemble(Parse*, Window*, ExprList*, ExprList*, Token*);
+#else
+# define sqlite3WindowDelete(a,b)
+# define sqlite3WindowFunctions()
+# define sqlite3WindowAttach(a,b,c)
+#endif
+
+/*
+** Assuming zIn points to the first byte of a UTF-8 character,
+** advance zIn to point to the first byte of the next UTF-8 character.
+*/
+#define SQLITE_SKIP_UTF8(zIn) { \
+ if( (*(zIn++))>=0xc0 ){ \
+ while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
+ } \
+}
+
+/*
+** The SQLITE_*_BKPT macros are substitutes for the error codes with
+** the same name but without the _BKPT suffix. These macros invoke
+** routines that report the line-number on which the error originated
+** using sqlite3_log(). The routines also provide a convenient place
+** to set a debugger breakpoint.
+*/
+SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType);
+SQLITE_PRIVATE int sqlite3CorruptError(int);
+SQLITE_PRIVATE int sqlite3MisuseError(int);
+SQLITE_PRIVATE int sqlite3CantopenError(int);
+#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
+#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
+#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NomemError(int);
+SQLITE_PRIVATE int sqlite3IoerrnomemError(int);
+# define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__)
+# define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__)
+#else
+# define SQLITE_NOMEM_BKPT SQLITE_NOMEM
+# define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM
+#endif
+#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO)
+SQLITE_PRIVATE int sqlite3CorruptPgnoError(int,Pgno);
+# define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptPgnoError(__LINE__,(P))
+#else
+# define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptError(__LINE__)
+#endif
+
+/*
+** FTS3 and FTS4 both require virtual table support
+*/
+#if defined(SQLITE_OMIT_VIRTUALTABLE)
+# undef SQLITE_ENABLE_FTS3
+# undef SQLITE_ENABLE_FTS4
+#endif
+
+/*
+** FTS4 is really an extension for FTS3. It is enabled using the
+** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call
+** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
+*/
+#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
+# define SQLITE_ENABLE_FTS3 1
+#endif
+
+/*
+** The ctype.h header is needed for non-ASCII systems. It is also
+** needed by FTS3 when FTS3 is included in the amalgamation.
+*/
+#if !defined(SQLITE_ASCII) || \
+ (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
+# include <ctype.h>
+#endif
+
+/*
+** The following macros mimic the standard library functions toupper(),
+** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
+** sqlite versions only work for ASCII characters, regardless of locale.
+*/
+#ifdef SQLITE_ASCII
+# define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
+# define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
+# define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
+# define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
+# define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
+# define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
+# define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
+# define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80)
+# define sqlite3JsonId1(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x42)
+# define sqlite3JsonId2(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x46)
+#else
+# define sqlite3Toupper(x) toupper((unsigned char)(x))
+# define sqlite3Isspace(x) isspace((unsigned char)(x))
+# define sqlite3Isalnum(x) isalnum((unsigned char)(x))
+# define sqlite3Isalpha(x) isalpha((unsigned char)(x))
+# define sqlite3Isdigit(x) isdigit((unsigned char)(x))
+# define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
+# define sqlite3Tolower(x) tolower((unsigned char)(x))
+# define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`')
+# define sqlite3JsonId1(x) (sqlite3IsIdChar(x)&&(x)<'0')
+# define sqlite3JsonId2(x) sqlite3IsIdChar(x)
+#endif
+SQLITE_PRIVATE int sqlite3IsIdChar(u8);
+
+/*
+** Internal function prototypes
+*/
+SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*);
+SQLITE_PRIVATE int sqlite3Strlen30(const char*);
+#define sqlite3Strlen30NN(C) (strlen(C)&0x3fffffff)
+SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*);
+#define sqlite3StrNICmp sqlite3_strnicmp
+
+SQLITE_PRIVATE int sqlite3MallocInit(void);
+SQLITE_PRIVATE void sqlite3MallocEnd(void);
+SQLITE_PRIVATE void *sqlite3Malloc(u64);
+SQLITE_PRIVATE void *sqlite3MallocZero(u64);
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, u64);
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, u64);
+SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3*, u64);
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
+SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3*,const char*,const char*);
+SQLITE_PRIVATE void *sqlite3Realloc(void*, u64);
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64);
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
+SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*);
+SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3*, void*);
+SQLITE_PRIVATE int sqlite3MallocSize(const void*);
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, const void*);
+SQLITE_PRIVATE void *sqlite3PageMalloc(int);
+SQLITE_PRIVATE void sqlite3PageFree(void*);
+SQLITE_PRIVATE void sqlite3MemSetDefault(void);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
+#endif
+SQLITE_PRIVATE int sqlite3HeapNearlyFull(void);
+
+/*
+** On systems with ample stack space and that support alloca(), make
+** use of alloca() to obtain space for large automatic objects. By default,
+** obtain space from malloc().
+**
+** The alloca() routine never returns NULL. This will cause code paths
+** that deal with sqlite3StackAlloc() failures to be unreachable.
+*/
+#ifdef SQLITE_USE_ALLOCA
+# define sqlite3StackAllocRaw(D,N) alloca(N)
+# define sqlite3StackAllocRawNN(D,N) alloca(N)
+# define sqlite3StackFree(D,P)
+# define sqlite3StackFreeNN(D,P)
+#else
+# define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
+# define sqlite3StackAllocRawNN(D,N) sqlite3DbMallocRawNN(D,N)
+# define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
+# define sqlite3StackFreeNN(D,P) sqlite3DbFreeNN(D,P)
+#endif
+
+/* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they
+** are, disable MEMSYS3
+*/
+#ifdef SQLITE_ENABLE_MEMSYS5
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
+#undef SQLITE_ENABLE_MEMSYS3
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS3
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
+#endif
+
+
+#ifndef SQLITE_MUTEX_OMIT
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void);
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int);
+SQLITE_PRIVATE int sqlite3MutexInit(void);
+SQLITE_PRIVATE int sqlite3MutexEnd(void);
+#endif
+#if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP)
+SQLITE_PRIVATE void sqlite3MemoryBarrier(void);
+#else
+# define sqlite3MemoryBarrier()
+#endif
+
+SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int);
+SQLITE_PRIVATE void sqlite3StatusUp(int, int);
+SQLITE_PRIVATE void sqlite3StatusDown(int, int);
+SQLITE_PRIVATE void sqlite3StatusHighwater(int, int);
+SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3*,int*);
+
+/* Access to mutexes used by sqlite3_status() */
+SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void);
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void);
+
+#if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT)
+SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex*);
+#else
+# define sqlite3MutexWarnOnContention(x)
+#endif
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+# define EXP754 (((u64)0x7ff)<<52)
+# define MAN754 ((((u64)1)<<52)-1)
+# define IsNaN(X) (((X)&EXP754)==EXP754 && ((X)&MAN754)!=0)
+SQLITE_PRIVATE int sqlite3IsNaN(double);
+#else
+# define IsNaN(X) 0
+# define sqlite3IsNaN(X) 0
+#endif
+
+/*
+** An instance of the following structure holds information about SQL
+** functions arguments that are the parameters to the printf() function.
+*/
+struct PrintfArguments {
+ int nArg; /* Total number of arguments */
+ int nUsed; /* Number of arguments used so far */
+ sqlite3_value **apArg; /* The argument values */
+};
+
+/*
+** An instance of this object receives the decoding of a floating point
+** value into an approximate decimal representation.
+*/
+struct FpDecode {
+ char sign; /* '+' or '-' */
+ char isSpecial; /* 1: Infinity 2: NaN */
+ int n; /* Significant digits in the decode */
+ int iDP; /* Location of the decimal point */
+ char *z; /* Start of significant digits */
+ char zBuf[24]; /* Storage for significant digits */
+};
+
+SQLITE_PRIVATE void sqlite3FpDecode(FpDecode*,double,int,int);
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
+#endif
+#if defined(SQLITE_TEST)
+SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*);
+#endif
+
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView*, const char *zFormat, ...);
+SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewBareIdList(TreeView*, const IdList*, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewIdList(TreeView*, const IdList*, u8, const char*);
+SQLITE_PRIVATE void sqlite3TreeViewColumnList(TreeView*, const Column*, int, u8);
+SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView*, const SrcList*);
+SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView*, const With*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewUpsert(TreeView*, const Upsert*, u8);
+#if TREETRACE_ENABLED
+SQLITE_PRIVATE void sqlite3TreeViewDelete(const With*, const SrcList*, const Expr*,
+ const ExprList*,const Expr*, const Trigger*);
+SQLITE_PRIVATE void sqlite3TreeViewInsert(const With*, const SrcList*,
+ const IdList*, const Select*, const ExprList*,
+ int, const Upsert*, const Trigger*);
+SQLITE_PRIVATE void sqlite3TreeViewUpdate(const With*, const SrcList*, const ExprList*,
+ const Expr*, int, const ExprList*, const Expr*,
+ const Upsert*, const Trigger*);
+#endif
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3TreeViewTriggerStep(TreeView*, const TriggerStep*, u8, u8);
+SQLITE_PRIVATE void sqlite3TreeViewTrigger(TreeView*, const Trigger*, u8, u8);
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView*, const Window*, u8);
+SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8);
+#endif
+SQLITE_PRIVATE void sqlite3ShowExpr(const Expr*);
+SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList*);
+SQLITE_PRIVATE void sqlite3ShowIdList(const IdList*);
+SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList*);
+SQLITE_PRIVATE void sqlite3ShowSelect(const Select*);
+SQLITE_PRIVATE void sqlite3ShowWith(const With*);
+SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert*);
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep*);
+SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep*);
+SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger*);
+SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger*);
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3ShowWindow(const Window*);
+SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window*);
+#endif
+#endif
+
+SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*);
+SQLITE_PRIVATE void sqlite3ProgressCheck(Parse*);
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
+SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3Dequote(char*);
+SQLITE_PRIVATE void sqlite3DequoteExpr(Expr*);
+SQLITE_PRIVATE void sqlite3DequoteToken(Token*);
+SQLITE_PRIVATE void sqlite3TokenInit(Token*,char*);
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
+SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*);
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
+SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*);
+SQLITE_PRIVATE void sqlite3TouchRegister(Parse*,int);
+#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
+SQLITE_PRIVATE int sqlite3FirstAvailableRegister(Parse*,int);
+#endif
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse*,int,int);
+#endif
+SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
+SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
+SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse*, Expr*, Select*);
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse*,Expr*, Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, const Token*, int);
+SQLITE_PRIVATE void sqlite3ExprAddFunctionOrderBy(Parse*,Expr*,ExprList*);
+SQLITE_PRIVATE void sqlite3ExprOrderByAggregateError(Parse*,Expr*);
+SQLITE_PRIVATE void sqlite3ExprFunctionUsable(Parse*,const Expr*,const FuncDef*);
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32);
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse*, Expr*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*);
+SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse*, int, ExprList*);
+SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList*,int,int);
+SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,const Token*,int);
+SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,const char*,const char*);
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
+SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*);
+SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index*);
+SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
+SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
+SQLITE_PRIVATE int sqlite3InitOne(sqlite3*, int, char**, u32);
+SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName);
+#endif
+SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
+SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
+SQLITE_PRIVATE void sqlite3ColumnSetExpr(Parse*,Table*,Column*,Expr*);
+SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table*,Column*);
+SQLITE_PRIVATE void sqlite3ColumnSetColl(sqlite3*,Column*,const char*zColl);
+SQLITE_PRIVATE const char *sqlite3ColumnColl(Column*);
+SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*);
+SQLITE_PRIVATE void sqlite3GenerateColumnNames(Parse *pParse, Select *pSelect);
+SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
+SQLITE_PRIVATE void sqlite3SubqueryColumnTypes(Parse*,Table*,Select*,char);
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*,char);
+SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *, int);
+SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
+SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index*, i16);
+#ifdef SQLITE_OMIT_GENERATED_COLUMNS
+# define sqlite3TableColumnToStorage(T,X) (X) /* No-op pass-through */
+# define sqlite3StorageColumnToTable(T,X) (X) /* No-op pass-through */
+#else
+SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table*, i16);
+SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table*, i16);
+#endif
+SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
+#if SQLITE_ENABLE_HIDDEN_COLUMNS
+SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table*, Column*);
+#else
+# define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
+#endif
+SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token,Token);
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*, const char*, const char*);
+SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*,const char*,const char*);
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3AddGenerated(Parse*,Expr*,Token*);
+SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u32,Select*);
+SQLITE_PRIVATE void sqlite3AddReturning(Parse*,ExprList*);
+SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*,
+ sqlite3_vfs**,char**,char **);
+#define sqlite3CodecQueryParameters(A,B,C) 0
+SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
+
+#ifdef SQLITE_UNTESTABLE
+# define sqlite3FaultSim(X) SQLITE_OK
+#else
+SQLITE_PRIVATE int sqlite3FaultSim(int);
+#endif
+
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
+SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32);
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
+SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
+#endif
+
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*);
+SQLITE_PRIVATE void sqlite3RowSetDelete(void*);
+SQLITE_PRIVATE void sqlite3RowSetClear(void*);
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64);
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64);
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*);
+
+SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int);
+
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
+#else
+# define sqlite3ViewGetColumnNames(A,B) 0
+#endif
+
+#if SQLITE_MAX_ATTACHED>30
+SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask);
+#endif
+SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
+SQLITE_PRIVATE void sqlite3CodeDropTable(Parse*, Table*, int, int);
+SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*);
+SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3*, Index*);
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse);
+SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse);
+#else
+# define sqlite3AutoincrementBegin(X)
+# define sqlite3AutoincrementEnd(X)
+#endif
+SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int, Upsert*);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns(Parse*, int, Table*);
+#endif
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse*, IdList*, Token*);
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(Parse*, SrcList*, int, int);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(Parse*, SrcList*, Token*, Token*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
+ Token*, Select*, OnOrUsing*);
+SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
+SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*);
+SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, SrcItem *);
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse*,SrcList*);
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
+SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3*, OnOrUsing*);
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
+SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
+SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
+ Expr*, int, int, u8);
+SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
+SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
+SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
+ Expr*,ExprList*,u32,Expr*);
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, Trigger*);
+SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,char*);
+#endif
+SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe*,int,const char*);
+SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*, ExprList*, Expr*);
+SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*,Expr*,int,ExprList*,Expr*,
+ Upsert*);
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,
+ ExprList*,Select*,u16,int);
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
+SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo*);
+SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe*,WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*);
+SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*);
+#define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */
+#define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */
+#define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */
+SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo*);
+SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
+SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn(Parse*, Table*, Column*, int);
+#endif
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int);
+SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
+#define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */
+#define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */
+#define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */
+#define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
+#define LOCATE_VIEW 0x01
+#define LOCATE_NOERR 0x02
+SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*);
+SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char*);
+SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,u32 flags,SrcItem *);
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3Vacuum(Parse*,Token*,Expr*);
+SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*, int, sqlite3_value*);
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, const Token*);
+SQLITE_PRIVATE int sqlite3ExprCompare(const Parse*,const Expr*,const Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr*,Expr*,int);
+SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList*,const ExprList*, int);
+SQLITE_PRIVATE int sqlite3ExprImpliesExpr(const Parse*,const Expr*,const Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr*,int,int);
+SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker*,Parse*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
+SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx);
+SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse*, Expr*, SrcList*);
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3PrngSaveState(void);
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
+#endif
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
+SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
+SQLITE_PRIVATE void sqlite3EndTransaction(Parse*,int);
+SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
+SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
+SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
+SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char*);
+SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr*);
+SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);
+SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);
+SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint(Expr*,const SrcList*,int);
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
+#endif
+SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr*, int*);
+SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
+SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
+SQLITE_PRIVATE int sqlite3IsRowid(const char*);
+SQLITE_PRIVATE const char *sqlite3RowidAlias(Table *pTab);
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(
+ Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
+SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
+SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(Expr*,int*,int);
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
+ u8,u8,int,int*,int*,Upsert*);
+#ifdef SQLITE_ENABLE_NULL_TRIM
+SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe*,Table*);
+#else
+# define sqlite3SetMakeRecordP5(A,B)
+#endif
+SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
+SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
+SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
+SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
+SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,const Expr*,int);
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,const ExprList*,int);
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,const SrcList*,int);
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,const IdList*);
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,const Select*,int);
+SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch(int,const char*);
+SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int);
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8);
+SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum*,sqlite3_value*);
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void);
+SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*);
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
+SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3*);
+#endif
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
+SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p);
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, ExprList*,Expr*,int);
+#endif
+
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
+ Expr*,int, int);
+SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
+SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
+SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *);
+SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
+ int, int, int);
+SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
+ void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*,
+ const char*,const char*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(Parse*,Token*, IdList*,
+ Select*,u8,Upsert*,
+ const char*,const char*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(Parse*,Token*,SrcList*,ExprList*,
+ Expr*, u8, const char*,const char*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(Parse*,Token*, Expr*,
+ const char*,const char*);
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
+SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
+SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc(Parse*, TriggerStep*);
+# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
+# define sqlite3IsToplevel(p) ((p)->pToplevel==0)
+#else
+# define sqlite3TriggersExist(B,C,D,E,F) 0
+# define sqlite3DeleteTrigger(A,B)
+# define sqlite3DropTriggerPtr(A,B)
+# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
+# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
+# define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
+# define sqlite3TriggerList(X, Y) 0
+# define sqlite3ParseToplevel(p) p
+# define sqlite3IsToplevel(p) 1
+# define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
+# define sqlite3TriggerStepSrc(A,B) 0
+#endif
+
+SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol);
+SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem*,int);
+SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr*,int,u32);
+SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
+SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
+SQLITE_PRIVATE int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
+#else
+# define sqlite3AuthRead(a,b,c,d)
+# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
+# define sqlite3AuthContextPush(a,b,c)
+# define sqlite3AuthContextPop(a) ((void)(a))
+#endif
+SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName);
+SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
+SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
+SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
+SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
+SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
+
+SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64);
+SQLITE_PRIVATE i64 sqlite3RealToI64(double);
+SQLITE_PRIVATE int sqlite3Int64ToText(i64,char*);
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8);
+SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
+SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*);
+SQLITE_PRIVATE int sqlite3Atoi(const char*);
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
+#endif
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
+SQLITE_PRIVATE u32 sqlite3Utf8Read(const u8**);
+SQLITE_PRIVATE LogEst sqlite3LogEst(u64);
+SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst,LogEst);
+SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double);
+SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst);
+SQLITE_PRIVATE VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int);
+SQLITE_PRIVATE const char *sqlite3VListNumToName(VList*,int);
+SQLITE_PRIVATE int sqlite3VListNameToNum(VList*,const char*,int);
+
+/*
+** Routines to read and write variable-length integers. These used to
+** be defined locally, but now we use the varint routines in the util.c
+** file.
+*/
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
+SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *);
+SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *);
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
+
+/*
+** The common case is for a varint to be a single byte. They following
+** macros handle the common case without a procedure call, but then call
+** the procedure for larger varints.
+*/
+#define getVarint32(A,B) \
+ (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
+#define getVarint32NR(A,B) \
+ B=(u32)*(A);if(B>=0x80)sqlite3GetVarint32((A),(u32*)&(B))
+#define putVarint32(A,B) \
+ (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
+ sqlite3PutVarint((A),(B)))
+#define getVarint sqlite3GetVarint
+#define putVarint sqlite3PutVarint
+
+
+SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3*, Index*);
+SQLITE_PRIVATE char *sqlite3TableAffinityStr(sqlite3*,const Table*);
+SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int);
+SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2);
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity);
+SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table*,int);
+SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3ExprDataType(const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8);
+SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char*, i64*);
+SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
+SQLITE_PRIVATE void sqlite3Error(sqlite3*,int);
+SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3*);
+SQLITE_PRIVATE void sqlite3SystemError(sqlite3*,int);
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
+SQLITE_PRIVATE u8 sqlite3HexToInt(int h);
+SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
+
+#if defined(SQLITE_NEED_ERR_NAME)
+SQLITE_PRIVATE const char *sqlite3ErrName(int);
+#endif
+
+#ifndef SQLITE_OMIT_DESERIALIZE
+SQLITE_PRIVATE int sqlite3MemdbInit(void);
+SQLITE_PRIVATE int sqlite3IsMemdb(const sqlite3_vfs*);
+#else
+# define sqlite3IsMemdb(X) 0
+#endif
+
+SQLITE_PRIVATE const char *sqlite3ErrStr(int);
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
+SQLITE_PRIVATE int sqlite3IsBinary(const CollSeq*);
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
+SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8);
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr);
+SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,const Expr*,const Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(const Parse *pParse, Expr*, const Token*, int);
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(const Parse*,Expr*,const char*);
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr*);
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
+SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3*);
+SQLITE_PRIVATE int sqlite3CheckObjectName(Parse*, const char*,const char*,const char*);
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, i64);
+SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
+SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
+SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64);
+SQLITE_PRIVATE int sqlite3AbsInt32(int);
+#ifdef SQLITE_ENABLE_8_3_NAMES
+SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*);
+#else
+# define sqlite3FileSuffix3(X,Y)
+#endif
+SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,u8);
+
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
+SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value*, void(*)(void*));
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
+SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
+ void(*)(void*));
+SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*);
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context*);
+#endif
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
+#endif
+SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, const Expr *, u8, u8, sqlite3_value **);
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[];
+SQLITE_PRIVATE const char sqlite3StrBINARY[];
+SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[];
+SQLITE_PRIVATE const char sqlite3StdTypeAffinity[];
+SQLITE_PRIVATE const char *sqlite3StdType[];
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
+SQLITE_PRIVATE const unsigned char *sqlite3aLTb;
+SQLITE_PRIVATE const unsigned char *sqlite3aEQb;
+SQLITE_PRIVATE const unsigned char *sqlite3aGTb;
+SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
+SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
+SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions;
+#ifndef SQLITE_OMIT_WSD
+SQLITE_PRIVATE int sqlite3PendingByte;
+#endif
+#endif /* SQLITE_AMALGAMATION */
+#ifdef VDBE_PROFILE
+SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt;
+#endif
+SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, Pgno, Pgno);
+SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3AlterFunctions(void);
+SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
+SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
+SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int);
+SQLITE_PRIVATE void sqlite3CodeRhsOfIN(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
+SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse*, SrcItem*);
+SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
+SQLITE_PRIVATE int sqlite3MatchEName(
+ const struct ExprList_item*,
+ const char*,
+ const char*,
+ const char*,
+ int*
+);
+SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr*);
+SQLITE_PRIVATE u8 sqlite3StrIHash(const char*);
+SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
+SQLITE_PRIVATE int sqlite3ResolveExprListNames(NameContext*, ExprList*);
+SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
+SQLITE_PRIVATE int sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
+SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
+SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse*, SrcList*, const Token*);
+SQLITE_PRIVATE const void *sqlite3RenameTokenMap(Parse*, const void*, const Token*);
+SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse*, const void *pTo, const void *pFrom);
+SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse*, ExprList*);
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
+SQLITE_PRIVATE char sqlite3AffinityType(const char*, Column*);
+SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
+SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
+SQLITE_PRIVATE void sqlite3SchemaClear(void *);
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
+SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList(Parse*, ExprList*, int, int);
+SQLITE_PRIVATE const char *sqlite3SelectOpName(int);
+SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse*, ExprList*);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*);
+#endif
+SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ void (*)(sqlite3_context*),
+ void (*)(sqlite3_context*),
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ FuncDestructor *pDestructor
+);
+SQLITE_PRIVATE void sqlite3NoopDestructor(void*);
+SQLITE_PRIVATE void *sqlite3OomFault(sqlite3*);
+SQLITE_PRIVATE void sqlite3OomClear(sqlite3*);
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
+
+SQLITE_PRIVATE char *sqlite3RCStrRef(char*);
+SQLITE_PRIVATE void sqlite3RCStrUnref(void*);
+SQLITE_PRIVATE char *sqlite3RCStrNew(u64);
+SQLITE_PRIVATE char *sqlite3RCStrResize(char*,u64);
+
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
+SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum*, i64);
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
+SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum*, u8);
+SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*);
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
+SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
+SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3*,const char*);
+SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3*,const Expr*);
+
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *);
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
+
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse*, Expr*);
+#else
+# define sqlite3ExprCheckIN(x,y) SQLITE_OK
+#endif
+
+#ifdef SQLITE_ENABLE_STAT4
+SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue(
+ Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*);
+SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
+SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
+SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
+#endif
+
+/*
+** The interface to the LEMON-generated parser
+*/
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(u64), Parse*);
+SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
+#endif
+SQLITE_PRIVATE void sqlite3Parser(void*, int, Token);
+SQLITE_PRIVATE int sqlite3ParserFallback(int);
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void*);
+#endif
+
+SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
+#else
+# define sqlite3CloseExtensions(X)
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, Pgno, u8, const char *);
+#else
+ #define sqlite3TableLock(v,w,x,y,z)
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3VtabClear(D,T)
+# define sqlite3VtabSync(X,Y) SQLITE_OK
+# define sqlite3VtabRollback(X)
+# define sqlite3VtabCommit(X)
+# define sqlite3VtabInSync(db) 0
+# define sqlite3VtabLock(X)
+# define sqlite3VtabUnlock(X)
+# define sqlite3VtabModuleUnref(D,X)
+# define sqlite3VtabUnlockList(X)
+# define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
+# define sqlite3GetVTable(X,Y) ((VTable*)0)
+#else
+SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*);
+SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe*);
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
+SQLITE_PRIVATE void sqlite3VtabLock(VTable *);
+SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *);
+SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3*,Module*);
+SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*);
+SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *, int, int);
+SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
+SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*);
+SQLITE_PRIVATE Module *sqlite3VtabCreateModule(
+ sqlite3*,
+ const char*,
+ const sqlite3_module*,
+ void*,
+ void(*)(void*)
+ );
+# define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
+#endif
+SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName);
+SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3*,Table*,const char*);
+SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3*, Table*);
+#else
+# define sqlite3ShadowTableName(A,B) 0
+# define sqlite3IsShadowTableOf(A,B,C) 0
+# define sqlite3MarkAllShadowTablesOf(A,B)
+#endif
+SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse*,Module*);
+SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3*,Module*);
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
+SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
+
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
+SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(Parse*);
+SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
+SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
+SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
+SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse*,sqlite3*);
+SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse*);
+SQLITE_PRIVATE void *sqlite3ParserAddCleanup(Parse*,void(*)(sqlite3*,void*),void*);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_PRIVATE char *sqlite3Normalize(Vdbe*, const char*);
+#endif
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
+SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse*,const Expr*);
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, const Expr*, const Expr*);
+SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
+SQLITE_PRIVATE const char *sqlite3JournalModename(int);
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
+SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
+#endif
+#ifndef SQLITE_OMIT_CTE
+SQLITE_PRIVATE Cte *sqlite3CteNew(Parse*,Token*,ExprList*,Select*,u8);
+SQLITE_PRIVATE void sqlite3CteDelete(sqlite3*,Cte*);
+SQLITE_PRIVATE With *sqlite3WithAdd(Parse*,With*,Cte*);
+SQLITE_PRIVATE void sqlite3WithDelete(sqlite3*,With*);
+SQLITE_PRIVATE With *sqlite3WithPush(Parse*, With*, u8);
+#else
+# define sqlite3CteNew(P,T,E,S) ((void*)0)
+# define sqlite3CteDelete(D,C)
+# define sqlite3CteWithAdd(P,W,C) ((void*)0)
+# define sqlite3WithDelete(x,y)
+# define sqlite3WithPush(x,y,z) ((void*)0)
+#endif
+#ifndef SQLITE_OMIT_UPSERT
+SQLITE_PRIVATE Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*,Upsert*);
+SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3*,Upsert*);
+SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3*,Upsert*);
+SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*);
+SQLITE_PRIVATE void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int);
+SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert*,Index*);
+SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert*);
+#else
+#define sqlite3UpsertNew(u,v,w,x,y,z) ((Upsert*)0)
+#define sqlite3UpsertDelete(x,y)
+#define sqlite3UpsertDup(x,y) ((Upsert*)0)
+#define sqlite3UpsertOfIndex(x,y) ((Upsert*)0)
+#define sqlite3UpsertNextIsIPK(x) 0
+#endif
+
+
+/* Declarations for functions in fkey.c. All of these are replaced by
+** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
+** key functionality is available. If OMIT_TRIGGER is defined but
+** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
+** this case foreign keys are parsed, but no other functionality is
+** provided (enforcement of FK constraints requires the triggers sub-system).
+*/
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
+SQLITE_PRIVATE void sqlite3FkDropTable(Parse*, SrcList *, Table*);
+SQLITE_PRIVATE void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
+SQLITE_PRIVATE int sqlite3FkRequired(Parse*, Table*, int*, int);
+SQLITE_PRIVATE u32 sqlite3FkOldmask(Parse*, Table*);
+SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *);
+SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3*,int);
+#else
+ #define sqlite3FkActions(a,b,c,d,e,f)
+ #define sqlite3FkCheck(a,b,c,d,e,f)
+ #define sqlite3FkDropTable(a,b,c)
+ #define sqlite3FkOldmask(a,b) 0
+ #define sqlite3FkRequired(a,b,c,d) 0
+ #define sqlite3FkReferences(a) 0
+ #define sqlite3FkClearTriggerCache(a,b)
+#endif
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*);
+SQLITE_PRIVATE int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
+#else
+ #define sqlite3FkDelete(a,b)
+ #define sqlite3FkLocateIndex(a,b,c,d,e)
+#endif
+
+
+/*
+** Available fault injectors. Should be numbered beginning with 0.
+*/
+#define SQLITE_FAULTINJECTOR_MALLOC 0
+#define SQLITE_FAULTINJECTOR_COUNT 1
+
+/*
+** The interface to the code in fault.c used for identifying "benign"
+** malloc failures. This is only present if SQLITE_UNTESTABLE
+** is not defined.
+*/
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void);
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void);
+#else
+ #define sqlite3BeginBenignMalloc()
+ #define sqlite3EndBenignMalloc()
+#endif
+
+/*
+** Allowed return values from sqlite3FindInIndex()
+*/
+#define IN_INDEX_ROWID 1 /* Search the rowid of the table */
+#define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */
+#define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */
+#define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */
+#define IN_INDEX_NOOP 5 /* No table available. Use comparisons */
+/*
+** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
+*/
+#define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */
+#define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */
+#define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*, int*);
+
+SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
+#if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
+ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
+#endif
+
+SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p);
+SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
+
+SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
+#if SQLITE_MAX_EXPR_DEPTH>0
+SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *);
+SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int);
+#else
+ #define sqlite3SelectExprHeight(x) 0
+ #define sqlite3ExprCheckHeight(x,y)
+#endif
+SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr*,int);
+
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
+SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
+
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
+SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db);
+SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db);
+#else
+ #define sqlite3ConnectionBlocked(x,y)
+ #define sqlite3ConnectionUnlocked(x)
+ #define sqlite3ConnectionClosed(x)
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
+#endif
+#if defined(YYCOVERAGE)
+SQLITE_PRIVATE int sqlite3ParserCoverage(FILE*);
+#endif
+
+/*
+** If the SQLITE_ENABLE IOTRACE exists then the global variable
+** sqlite3IoTrace is a pointer to a printf-like routine used to
+** print I/O tracing messages.
+*/
+#ifdef SQLITE_ENABLE_IOTRACE
+# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
+SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
+#else
+# define IOTRACE(A)
+# define sqlite3VdbeIOTraceSql(X)
+#endif
+
+/*
+** These routines are available for the mem2.c debugging memory allocator
+** only. They are used to verify that different "types" of memory
+** allocations are properly tracked by the system.
+**
+** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
+** the MEMTYPE_* macros defined below. The type must be a bitmask with
+** a single bit set.
+**
+** sqlite3MemdebugHasType() returns true if any of the bits in its second
+** argument match the type set by the previous sqlite3MemdebugSetType().
+** sqlite3MemdebugHasType() is intended for use inside assert() statements.
+**
+** sqlite3MemdebugNoType() returns true if none of the bits in its second
+** argument match the type set by the previous sqlite3MemdebugSetType().
+**
+** Perhaps the most important point is the difference between MEMTYPE_HEAP
+** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
+** it might have been allocated by lookaside, except the allocation was
+** too large or lookaside was already full. It is important to verify
+** that allocations that might have been satisfied by lookaside are not
+** passed back to non-lookaside free() routines. Asserts such as the
+** example above are placed on the non-lookaside free() routines to verify
+** this constraint.
+**
+** All of this is no-op for a production build. It only comes into
+** play when the SQLITE_MEMDEBUG compile-time option is used.
+*/
+#ifdef SQLITE_MEMDEBUG
+SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8);
+SQLITE_PRIVATE int sqlite3MemdebugHasType(const void*,u8);
+SQLITE_PRIVATE int sqlite3MemdebugNoType(const void*,u8);
+#else
+# define sqlite3MemdebugSetType(X,Y) /* no-op */
+# define sqlite3MemdebugHasType(X,Y) 1
+# define sqlite3MemdebugNoType(X,Y) 1
+#endif
+#define MEMTYPE_HEAP 0x01 /* General heap allocations */
+#define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */
+#define MEMTYPE_PCACHE 0x04 /* Page cache allocations */
+
+/*
+** Threading interface
+*/
+#if SQLITE_MAX_WORKER_THREADS>0
+SQLITE_PRIVATE int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread*, void**);
+#endif
+
+#if defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)
+SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3*);
+#endif
+#if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
+SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3*);
+#endif
+
+SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr);
+SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr);
+SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr*, int);
+SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(Parse*,Expr*,int,int);
+SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse*, Expr*);
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt);
+#endif
+
+#if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL)
+SQLITE_PRIVATE int sqlite3KvvfsInit(void);
+#endif
+
+#if defined(VDBE_PROFILE) \
+ || defined(SQLITE_PERFORMANCE_TRACE) \
+ || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+SQLITE_PRIVATE sqlite3_uint64 sqlite3Hwtime(void);
+#endif
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+# define IS_STMT_SCANSTATUS(db) (db->flags & SQLITE_StmtScanStatus)
+#else
+# define IS_STMT_SCANSTATUS(db) 0
+#endif
+
+#endif /* SQLITEINT_H */
+
+/************** End of sqliteInt.h *******************************************/
+/************** Begin file os_common.h ***************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains macros and a little bit of code that is common to
+** all of the platform-specific files (os_*.c) and is #included into those
+** files.
+**
+** This file should be #included by the os_*.c files only. It is not a
+** general purpose header file.
+*/
+#ifndef _OS_COMMON_H_
+#define _OS_COMMON_H_
+
+/*
+** At least two bugs have slipped in because we changed the MEMORY_DEBUG
+** macro to SQLITE_DEBUG and some older makefiles have not yet made the
+** switch. The following code should catch this problem at compile-time.
+*/
+#ifdef MEMORY_DEBUG
+# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off. Only works
+** on i486 hardware.
+*/
+#ifdef SQLITE_PERFORMANCE_TRACE
+
+static sqlite_uint64 g_start;
+static sqlite_uint64 g_elapsed;
+#define TIMER_START g_start=sqlite3Hwtime()
+#define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
+#define TIMER_ELAPSED g_elapsed
+#else
+#define TIMER_START
+#define TIMER_END
+#define TIMER_ELAPSED ((sqlite_uint64)0)
+#endif
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API extern int sqlite3_io_error_hit;
+SQLITE_API extern int sqlite3_io_error_hardhit;
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_persist;
+SQLITE_API extern int sqlite3_io_error_benign;
+SQLITE_API extern int sqlite3_diskfull_pending;
+SQLITE_API extern int sqlite3_diskfull;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
+#define SimulateIOError(CODE) \
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
+static void local_ioerr(){
+ IOTRACE(("IOERR\n"));
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
+}
+#define SimulateDiskfullError(CODE) \
+ if( sqlite3_diskfull_pending ){ \
+ if( sqlite3_diskfull_pending == 1 ){ \
+ local_ioerr(); \
+ sqlite3_diskfull = 1; \
+ sqlite3_io_error_hit = 1; \
+ CODE; \
+ }else{ \
+ sqlite3_diskfull_pending--; \
+ } \
+ }
+#else
+#define SimulateIOErrorBenign(X)
+#define SimulateIOError(A)
+#define SimulateDiskfullError(A)
+#endif /* defined(SQLITE_TEST) */
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API extern int sqlite3_open_file_count;
+#define OpenCounter(X) sqlite3_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif /* defined(SQLITE_TEST) */
+
+#endif /* !defined(_OS_COMMON_H_) */
+
+/************** End of os_common.h *******************************************/
+/************** Begin file ctime.c *******************************************/
+/* DO NOT EDIT!
+** This file is automatically generated by the script in the canonical
+** SQLite source tree at tool/mkctimec.tcl.
+**
+** To modify this header, edit any of the various lists in that script
+** which specify categories of generated conditionals in this file.
+*/
+
+/*
+** 2010 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements routines used to report what compile-time options
+** SQLite was built with.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS /* IMP: R-16824-07538 */
+
+/*
+** Include the configuration header output by 'configure' if we're using the
+** autoconf-based build
+*/
+#if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
+/* #include "sqlite_cfg.h" */
+#define SQLITECONFIG_H 1
+#endif
+
+/* These macros are provided to "stringify" the value of the define
+** for those options in which the value is meaningful. */
+#define CTIMEOPT_VAL_(opt) #opt
+#define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt)
+
+/* Like CTIMEOPT_VAL, but especially for SQLITE_DEFAULT_LOOKASIDE. This
+** option requires a separate macro because legal values contain a single
+** comma. e.g. (-DSQLITE_DEFAULT_LOOKASIDE="100,100") */
+#define CTIMEOPT_VAL2_(opt1,opt2) #opt1 "," #opt2
+#define CTIMEOPT_VAL2(opt) CTIMEOPT_VAL2_(opt)
+/* #include "sqliteInt.h" */
+
+/*
+** An array of names of all compile-time options. This array should
+** be sorted A-Z.
+**
+** This array looks large, but in a typical installation actually uses
+** only a handful of compile-time options, so most times this array is usually
+** rather short and uses little memory space.
+*/
+static const char * const sqlite3azCompileOpt[] = {
+
+#ifdef SQLITE_32BIT_ROWID
+ "32BIT_ROWID",
+#endif
+#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
+ "4_BYTE_ALIGNED_MALLOC",
+#endif
+#ifdef SQLITE_ALLOW_COVERING_INDEX_SCAN
+# if SQLITE_ALLOW_COVERING_INDEX_SCAN != 1
+ "ALLOW_COVERING_INDEX_SCAN=" CTIMEOPT_VAL(SQLITE_ALLOW_COVERING_INDEX_SCAN),
+# endif
+#endif
+#ifdef SQLITE_ALLOW_URI_AUTHORITY
+ "ALLOW_URI_AUTHORITY",
+#endif
+#ifdef SQLITE_ATOMIC_INTRINSICS
+ "ATOMIC_INTRINSICS=" CTIMEOPT_VAL(SQLITE_ATOMIC_INTRINSICS),
+#endif
+#ifdef SQLITE_BITMASK_TYPE
+ "BITMASK_TYPE=" CTIMEOPT_VAL(SQLITE_BITMASK_TYPE),
+#endif
+#ifdef SQLITE_BUG_COMPATIBLE_20160819
+ "BUG_COMPATIBLE_20160819",
+#endif
+#ifdef SQLITE_CASE_SENSITIVE_LIKE
+ "CASE_SENSITIVE_LIKE",
+#endif
+#ifdef SQLITE_CHECK_PAGES
+ "CHECK_PAGES",
+#endif
+#if defined(__clang__) && defined(__clang_major__)
+ "COMPILER=clang-" CTIMEOPT_VAL(__clang_major__) "."
+ CTIMEOPT_VAL(__clang_minor__) "."
+ CTIMEOPT_VAL(__clang_patchlevel__),
+#elif defined(_MSC_VER)
+ "COMPILER=msvc-" CTIMEOPT_VAL(_MSC_VER),
+#elif defined(__GNUC__) && defined(__VERSION__)
+ "COMPILER=gcc-" __VERSION__,
+#endif
+#ifdef SQLITE_COVERAGE_TEST
+ "COVERAGE_TEST",
+#endif
+#ifdef SQLITE_DEBUG
+ "DEBUG",
+#endif
+#ifdef SQLITE_DEFAULT_AUTOMATIC_INDEX
+ "DEFAULT_AUTOMATIC_INDEX",
+#endif
+#ifdef SQLITE_DEFAULT_AUTOVACUUM
+ "DEFAULT_AUTOVACUUM",
+#endif
+#ifdef SQLITE_DEFAULT_CACHE_SIZE
+ "DEFAULT_CACHE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_CACHE_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_CKPTFULLFSYNC
+ "DEFAULT_CKPTFULLFSYNC",
+#endif
+#ifdef SQLITE_DEFAULT_FILE_FORMAT
+ "DEFAULT_FILE_FORMAT=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_FORMAT),
+#endif
+#ifdef SQLITE_DEFAULT_FILE_PERMISSIONS
+ "DEFAULT_FILE_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_FILE_PERMISSIONS),
+#endif
+#ifdef SQLITE_DEFAULT_FOREIGN_KEYS
+ "DEFAULT_FOREIGN_KEYS",
+#endif
+#ifdef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ "DEFAULT_JOURNAL_SIZE_LIMIT=" CTIMEOPT_VAL(SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT),
+#endif
+#ifdef SQLITE_DEFAULT_LOCKING_MODE
+ "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE),
+#endif
+#ifdef SQLITE_DEFAULT_LOOKASIDE
+ "DEFAULT_LOOKASIDE=" CTIMEOPT_VAL2(SQLITE_DEFAULT_LOOKASIDE),
+#endif
+#ifdef SQLITE_DEFAULT_MEMSTATUS
+# if SQLITE_DEFAULT_MEMSTATUS != 1
+ "DEFAULT_MEMSTATUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_MEMSTATUS),
+# endif
+#endif
+#ifdef SQLITE_DEFAULT_MMAP_SIZE
+ "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_PAGE_SIZE
+ "DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_PAGE_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_PCACHE_INITSZ
+ "DEFAULT_PCACHE_INITSZ=" CTIMEOPT_VAL(SQLITE_DEFAULT_PCACHE_INITSZ),
+#endif
+#ifdef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+ "DEFAULT_PROXYDIR_PERMISSIONS=" CTIMEOPT_VAL(SQLITE_DEFAULT_PROXYDIR_PERMISSIONS),
+#endif
+#ifdef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+ "DEFAULT_RECURSIVE_TRIGGERS",
+#endif
+#ifdef SQLITE_DEFAULT_ROWEST
+ "DEFAULT_ROWEST=" CTIMEOPT_VAL(SQLITE_DEFAULT_ROWEST),
+#endif
+#ifdef SQLITE_DEFAULT_SECTOR_SIZE
+ "DEFAULT_SECTOR_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_SECTOR_SIZE),
+#endif
+#ifdef SQLITE_DEFAULT_SYNCHRONOUS
+ "DEFAULT_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_SYNCHRONOUS),
+#endif
+#ifdef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
+ "DEFAULT_WAL_AUTOCHECKPOINT=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_AUTOCHECKPOINT),
+#endif
+#ifdef SQLITE_DEFAULT_WAL_SYNCHRONOUS
+ "DEFAULT_WAL_SYNCHRONOUS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WAL_SYNCHRONOUS),
+#endif
+#ifdef SQLITE_DEFAULT_WORKER_THREADS
+ "DEFAULT_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_DEFAULT_WORKER_THREADS),
+#endif
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+ "DIRECT_OVERFLOW_READ",
+#endif
+#ifdef SQLITE_DISABLE_DIRSYNC
+ "DISABLE_DIRSYNC",
+#endif
+#ifdef SQLITE_DISABLE_FTS3_UNICODE
+ "DISABLE_FTS3_UNICODE",
+#endif
+#ifdef SQLITE_DISABLE_FTS4_DEFERRED
+ "DISABLE_FTS4_DEFERRED",
+#endif
+#ifdef SQLITE_DISABLE_INTRINSIC
+ "DISABLE_INTRINSIC",
+#endif
+#ifdef SQLITE_DISABLE_LFS
+ "DISABLE_LFS",
+#endif
+#ifdef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ "DISABLE_PAGECACHE_OVERFLOW_STATS",
+#endif
+#ifdef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ "DISABLE_SKIPAHEAD_DISTINCT",
+#endif
+#ifdef SQLITE_DQS
+ "DQS=" CTIMEOPT_VAL(SQLITE_DQS),
+#endif
+#ifdef SQLITE_ENABLE_8_3_NAMES
+ "ENABLE_8_3_NAMES=" CTIMEOPT_VAL(SQLITE_ENABLE_8_3_NAMES),
+#endif
+#ifdef SQLITE_ENABLE_API_ARMOR
+ "ENABLE_API_ARMOR",
+#endif
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ "ENABLE_ATOMIC_WRITE",
+#endif
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ "ENABLE_BATCH_ATOMIC_WRITE",
+#endif
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+ "ENABLE_BYTECODE_VTAB",
+#endif
+#ifdef SQLITE_ENABLE_CEROD
+ "ENABLE_CEROD=" CTIMEOPT_VAL(SQLITE_ENABLE_CEROD),
+#endif
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ "ENABLE_COLUMN_METADATA",
+#endif
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ "ENABLE_COLUMN_USED_MASK",
+#endif
+#ifdef SQLITE_ENABLE_COSTMULT
+ "ENABLE_COSTMULT",
+#endif
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ "ENABLE_CURSOR_HINTS",
+#endif
+#ifdef SQLITE_ENABLE_DBPAGE_VTAB
+ "ENABLE_DBPAGE_VTAB",
+#endif
+#ifdef SQLITE_ENABLE_DBSTAT_VTAB
+ "ENABLE_DBSTAT_VTAB",
+#endif
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ "ENABLE_EXPENSIVE_ASSERT",
+#endif
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ "ENABLE_EXPLAIN_COMMENTS",
+#endif
+#ifdef SQLITE_ENABLE_FTS3
+ "ENABLE_FTS3",
+#endif
+#ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
+ "ENABLE_FTS3_PARENTHESIS",
+#endif
+#ifdef SQLITE_ENABLE_FTS3_TOKENIZER
+ "ENABLE_FTS3_TOKENIZER",
+#endif
+#ifdef SQLITE_ENABLE_FTS4
+ "ENABLE_FTS4",
+#endif
+#ifdef SQLITE_ENABLE_FTS5
+ "ENABLE_FTS5",
+#endif
+#ifdef SQLITE_ENABLE_GEOPOLY
+ "ENABLE_GEOPOLY",
+#endif
+#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
+ "ENABLE_HIDDEN_COLUMNS",
+#endif
+#ifdef SQLITE_ENABLE_ICU
+ "ENABLE_ICU",
+#endif
+#ifdef SQLITE_ENABLE_IOTRACE
+ "ENABLE_IOTRACE",
+#endif
+#ifdef SQLITE_ENABLE_LOAD_EXTENSION
+ "ENABLE_LOAD_EXTENSION",
+#endif
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+ "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE),
+#endif
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+ "ENABLE_MATH_FUNCTIONS",
+#endif
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ "ENABLE_MEMORY_MANAGEMENT",
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS3
+ "ENABLE_MEMSYS3",
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+ "ENABLE_MEMSYS5",
+#endif
+#ifdef SQLITE_ENABLE_MULTIPLEX
+ "ENABLE_MULTIPLEX",
+#endif
+#ifdef SQLITE_ENABLE_NORMALIZE
+ "ENABLE_NORMALIZE",
+#endif
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ "ENABLE_NULL_TRIM",
+#endif
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ "ENABLE_OFFSET_SQL_FUNC",
+#endif
+#ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
+ "ENABLE_OVERSIZE_CELL_CHECK",
+#endif
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ "ENABLE_PREUPDATE_HOOK",
+#endif
+#ifdef SQLITE_ENABLE_QPSG
+ "ENABLE_QPSG",
+#endif
+#ifdef SQLITE_ENABLE_RBU
+ "ENABLE_RBU",
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+ "ENABLE_RTREE",
+#endif
+#ifdef SQLITE_ENABLE_SESSION
+ "ENABLE_SESSION",
+#endif
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ "ENABLE_SNAPSHOT",
+#endif
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ "ENABLE_SORTER_REFERENCES",
+#endif
+#ifdef SQLITE_ENABLE_SQLLOG
+ "ENABLE_SQLLOG",
+#endif
+#ifdef SQLITE_ENABLE_STAT4
+ "ENABLE_STAT4",
+#endif
+#ifdef SQLITE_ENABLE_STMTVTAB
+ "ENABLE_STMTVTAB",
+#endif
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ "ENABLE_STMT_SCANSTATUS",
+#endif
+#ifdef SQLITE_ENABLE_TREETRACE
+ "ENABLE_TREETRACE",
+#endif
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ "ENABLE_UNKNOWN_SQL_FUNCTION",
+#endif
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ "ENABLE_UNLOCK_NOTIFY",
+#endif
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ "ENABLE_UPDATE_DELETE_LIMIT",
+#endif
+#ifdef SQLITE_ENABLE_URI_00_ERROR
+ "ENABLE_URI_00_ERROR",
+#endif
+#ifdef SQLITE_ENABLE_VFSTRACE
+ "ENABLE_VFSTRACE",
+#endif
+#ifdef SQLITE_ENABLE_WHERETRACE
+ "ENABLE_WHERETRACE",
+#endif
+#ifdef SQLITE_ENABLE_ZIPVFS
+ "ENABLE_ZIPVFS",
+#endif
+#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
+ "EXPLAIN_ESTIMATED_ROWS",
+#endif
+#ifdef SQLITE_EXTRA_AUTOEXT
+ "EXTRA_AUTOEXT=" CTIMEOPT_VAL(SQLITE_EXTRA_AUTOEXT),
+#endif
+#ifdef SQLITE_EXTRA_IFNULLROW
+ "EXTRA_IFNULLROW",
+#endif
+#ifdef SQLITE_EXTRA_INIT
+ "EXTRA_INIT=" CTIMEOPT_VAL(SQLITE_EXTRA_INIT),
+#endif
+#ifdef SQLITE_EXTRA_SHUTDOWN
+ "EXTRA_SHUTDOWN=" CTIMEOPT_VAL(SQLITE_EXTRA_SHUTDOWN),
+#endif
+#ifdef SQLITE_FTS3_MAX_EXPR_DEPTH
+ "FTS3_MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_FTS3_MAX_EXPR_DEPTH),
+#endif
+#ifdef SQLITE_FTS5_ENABLE_TEST_MI
+ "FTS5_ENABLE_TEST_MI",
+#endif
+#ifdef SQLITE_FTS5_NO_WITHOUT_ROWID
+ "FTS5_NO_WITHOUT_ROWID",
+#endif
+#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
+ "HAVE_ISNAN",
+#endif
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+# if SQLITE_HOMEGROWN_RECURSIVE_MUTEX != 1
+ "HOMEGROWN_RECURSIVE_MUTEX=" CTIMEOPT_VAL(SQLITE_HOMEGROWN_RECURSIVE_MUTEX),
+# endif
+#endif
+#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
+ "IGNORE_AFP_LOCK_ERRORS",
+#endif
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ "IGNORE_FLOCK_LOCK_ERRORS",
+#endif
+#ifdef SQLITE_INLINE_MEMCPY
+ "INLINE_MEMCPY",
+#endif
+#ifdef SQLITE_INT64_TYPE
+ "INT64_TYPE",
+#endif
+#ifdef SQLITE_INTEGRITY_CHECK_ERROR_MAX
+ "INTEGRITY_CHECK_ERROR_MAX=" CTIMEOPT_VAL(SQLITE_INTEGRITY_CHECK_ERROR_MAX),
+#endif
+#ifdef SQLITE_LEGACY_JSON_VALID
+ "LEGACY_JSON_VALID",
+#endif
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ "LIKE_DOESNT_MATCH_BLOBS",
+#endif
+#ifdef SQLITE_LOCK_TRACE
+ "LOCK_TRACE",
+#endif
+#ifdef SQLITE_LOG_CACHE_SPILL
+ "LOG_CACHE_SPILL",
+#endif
+#ifdef SQLITE_MALLOC_SOFT_LIMIT
+ "MALLOC_SOFT_LIMIT=" CTIMEOPT_VAL(SQLITE_MALLOC_SOFT_LIMIT),
+#endif
+#ifdef SQLITE_MAX_ATTACHED
+ "MAX_ATTACHED=" CTIMEOPT_VAL(SQLITE_MAX_ATTACHED),
+#endif
+#ifdef SQLITE_MAX_COLUMN
+ "MAX_COLUMN=" CTIMEOPT_VAL(SQLITE_MAX_COLUMN),
+#endif
+#ifdef SQLITE_MAX_COMPOUND_SELECT
+ "MAX_COMPOUND_SELECT=" CTIMEOPT_VAL(SQLITE_MAX_COMPOUND_SELECT),
+#endif
+#ifdef SQLITE_MAX_DEFAULT_PAGE_SIZE
+ "MAX_DEFAULT_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_DEFAULT_PAGE_SIZE),
+#endif
+#ifdef SQLITE_MAX_EXPR_DEPTH
+ "MAX_EXPR_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_EXPR_DEPTH),
+#endif
+#ifdef SQLITE_MAX_FUNCTION_ARG
+ "MAX_FUNCTION_ARG=" CTIMEOPT_VAL(SQLITE_MAX_FUNCTION_ARG),
+#endif
+#ifdef SQLITE_MAX_LENGTH
+ "MAX_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LENGTH),
+#endif
+#ifdef SQLITE_MAX_LIKE_PATTERN_LENGTH
+ "MAX_LIKE_PATTERN_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_LIKE_PATTERN_LENGTH),
+#endif
+#ifdef SQLITE_MAX_MEMORY
+ "MAX_MEMORY=" CTIMEOPT_VAL(SQLITE_MAX_MEMORY),
+#endif
+#ifdef SQLITE_MAX_MMAP_SIZE
+ "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE),
+#endif
+#ifdef SQLITE_MAX_MMAP_SIZE_
+ "MAX_MMAP_SIZE_=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE_),
+#endif
+#ifdef SQLITE_MAX_PAGE_COUNT
+ "MAX_PAGE_COUNT=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_COUNT),
+#endif
+#ifdef SQLITE_MAX_PAGE_SIZE
+ "MAX_PAGE_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_PAGE_SIZE),
+#endif
+#ifdef SQLITE_MAX_SCHEMA_RETRY
+ "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY),
+#endif
+#ifdef SQLITE_MAX_SQL_LENGTH
+ "MAX_SQL_LENGTH=" CTIMEOPT_VAL(SQLITE_MAX_SQL_LENGTH),
+#endif
+#ifdef SQLITE_MAX_TRIGGER_DEPTH
+ "MAX_TRIGGER_DEPTH=" CTIMEOPT_VAL(SQLITE_MAX_TRIGGER_DEPTH),
+#endif
+#ifdef SQLITE_MAX_VARIABLE_NUMBER
+ "MAX_VARIABLE_NUMBER=" CTIMEOPT_VAL(SQLITE_MAX_VARIABLE_NUMBER),
+#endif
+#ifdef SQLITE_MAX_VDBE_OP
+ "MAX_VDBE_OP=" CTIMEOPT_VAL(SQLITE_MAX_VDBE_OP),
+#endif
+#ifdef SQLITE_MAX_WORKER_THREADS
+ "MAX_WORKER_THREADS=" CTIMEOPT_VAL(SQLITE_MAX_WORKER_THREADS),
+#endif
+#ifdef SQLITE_MEMDEBUG
+ "MEMDEBUG",
+#endif
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+ "MIXED_ENDIAN_64BIT_FLOAT",
+#endif
+#ifdef SQLITE_MMAP_READWRITE
+ "MMAP_READWRITE",
+#endif
+#ifdef SQLITE_MUTEX_NOOP
+ "MUTEX_NOOP",
+#endif
+#ifdef SQLITE_MUTEX_OMIT
+ "MUTEX_OMIT",
+#endif
+#ifdef SQLITE_MUTEX_PTHREADS
+ "MUTEX_PTHREADS",
+#endif
+#ifdef SQLITE_MUTEX_W32
+ "MUTEX_W32",
+#endif
+#ifdef SQLITE_NEED_ERR_NAME
+ "NEED_ERR_NAME",
+#endif
+#ifdef SQLITE_NO_SYNC
+ "NO_SYNC",
+#endif
+#ifdef SQLITE_OMIT_ALTERTABLE
+ "OMIT_ALTERTABLE",
+#endif
+#ifdef SQLITE_OMIT_ANALYZE
+ "OMIT_ANALYZE",
+#endif
+#ifdef SQLITE_OMIT_ATTACH
+ "OMIT_ATTACH",
+#endif
+#ifdef SQLITE_OMIT_AUTHORIZATION
+ "OMIT_AUTHORIZATION",
+#endif
+#ifdef SQLITE_OMIT_AUTOINCREMENT
+ "OMIT_AUTOINCREMENT",
+#endif
+#ifdef SQLITE_OMIT_AUTOINIT
+ "OMIT_AUTOINIT",
+#endif
+#ifdef SQLITE_OMIT_AUTOMATIC_INDEX
+ "OMIT_AUTOMATIC_INDEX",
+#endif
+#ifdef SQLITE_OMIT_AUTORESET
+ "OMIT_AUTORESET",
+#endif
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ "OMIT_AUTOVACUUM",
+#endif
+#ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ "OMIT_BETWEEN_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_BLOB_LITERAL
+ "OMIT_BLOB_LITERAL",
+#endif
+#ifdef SQLITE_OMIT_CAST
+ "OMIT_CAST",
+#endif
+#ifdef SQLITE_OMIT_CHECK
+ "OMIT_CHECK",
+#endif
+#ifdef SQLITE_OMIT_COMPLETE
+ "OMIT_COMPLETE",
+#endif
+#ifdef SQLITE_OMIT_COMPOUND_SELECT
+ "OMIT_COMPOUND_SELECT",
+#endif
+#ifdef SQLITE_OMIT_CONFLICT_CLAUSE
+ "OMIT_CONFLICT_CLAUSE",
+#endif
+#ifdef SQLITE_OMIT_CTE
+ "OMIT_CTE",
+#endif
+#if defined(SQLITE_OMIT_DATETIME_FUNCS) || defined(SQLITE_OMIT_FLOATING_POINT)
+ "OMIT_DATETIME_FUNCS",
+#endif
+#ifdef SQLITE_OMIT_DECLTYPE
+ "OMIT_DECLTYPE",
+#endif
+#ifdef SQLITE_OMIT_DEPRECATED
+ "OMIT_DEPRECATED",
+#endif
+#ifdef SQLITE_OMIT_DESERIALIZE
+ "OMIT_DESERIALIZE",
+#endif
+#ifdef SQLITE_OMIT_DISKIO
+ "OMIT_DISKIO",
+#endif
+#ifdef SQLITE_OMIT_EXPLAIN
+ "OMIT_EXPLAIN",
+#endif
+#ifdef SQLITE_OMIT_FLAG_PRAGMAS
+ "OMIT_FLAG_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ "OMIT_FLOATING_POINT",
+#endif
+#ifdef SQLITE_OMIT_FOREIGN_KEY
+ "OMIT_FOREIGN_KEY",
+#endif
+#ifdef SQLITE_OMIT_GET_TABLE
+ "OMIT_GET_TABLE",
+#endif
+#ifdef SQLITE_OMIT_HEX_INTEGER
+ "OMIT_HEX_INTEGER",
+#endif
+#ifdef SQLITE_OMIT_INCRBLOB
+ "OMIT_INCRBLOB",
+#endif
+#ifdef SQLITE_OMIT_INTEGRITY_CHECK
+ "OMIT_INTEGRITY_CHECK",
+#endif
+#ifdef SQLITE_OMIT_INTROSPECTION_PRAGMAS
+ "OMIT_INTROSPECTION_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_JSON
+ "OMIT_JSON",
+#endif
+#ifdef SQLITE_OMIT_LIKE_OPTIMIZATION
+ "OMIT_LIKE_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_LOAD_EXTENSION
+ "OMIT_LOAD_EXTENSION",
+#endif
+#ifdef SQLITE_OMIT_LOCALTIME
+ "OMIT_LOCALTIME",
+#endif
+#ifdef SQLITE_OMIT_LOOKASIDE
+ "OMIT_LOOKASIDE",
+#endif
+#ifdef SQLITE_OMIT_MEMORYDB
+ "OMIT_MEMORYDB",
+#endif
+#ifdef SQLITE_OMIT_OR_OPTIMIZATION
+ "OMIT_OR_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_PAGER_PRAGMAS
+ "OMIT_PAGER_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_PARSER_TRACE
+ "OMIT_PARSER_TRACE",
+#endif
+#ifdef SQLITE_OMIT_POPEN
+ "OMIT_POPEN",
+#endif
+#ifdef SQLITE_OMIT_PRAGMA
+ "OMIT_PRAGMA",
+#endif
+#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
+ "OMIT_PROGRESS_CALLBACK",
+#endif
+#ifdef SQLITE_OMIT_QUICKBALANCE
+ "OMIT_QUICKBALANCE",
+#endif
+#ifdef SQLITE_OMIT_REINDEX
+ "OMIT_REINDEX",
+#endif
+#ifdef SQLITE_OMIT_SCHEMA_PRAGMAS
+ "OMIT_SCHEMA_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
+ "OMIT_SCHEMA_VERSION_PRAGMAS",
+#endif
+#ifdef SQLITE_OMIT_SEH
+ "OMIT_SEH",
+#endif
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ "OMIT_SHARED_CACHE",
+#endif
+#ifdef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
+ "OMIT_SHUTDOWN_DIRECTORIES",
+#endif
+#ifdef SQLITE_OMIT_SUBQUERY
+ "OMIT_SUBQUERY",
+#endif
+#ifdef SQLITE_OMIT_TCL_VARIABLE
+ "OMIT_TCL_VARIABLE",
+#endif
+#ifdef SQLITE_OMIT_TEMPDB
+ "OMIT_TEMPDB",
+#endif
+#ifdef SQLITE_OMIT_TEST_CONTROL
+ "OMIT_TEST_CONTROL",
+#endif
+#ifdef SQLITE_OMIT_TRACE
+# if SQLITE_OMIT_TRACE != 1
+ "OMIT_TRACE=" CTIMEOPT_VAL(SQLITE_OMIT_TRACE),
+# endif
+#endif
+#ifdef SQLITE_OMIT_TRIGGER
+ "OMIT_TRIGGER",
+#endif
+#ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
+ "OMIT_TRUNCATE_OPTIMIZATION",
+#endif
+#ifdef SQLITE_OMIT_UTF16
+ "OMIT_UTF16",
+#endif
+#ifdef SQLITE_OMIT_VACUUM
+ "OMIT_VACUUM",
+#endif
+#ifdef SQLITE_OMIT_VIEW
+ "OMIT_VIEW",
+#endif
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ "OMIT_VIRTUALTABLE",
+#endif
+#ifdef SQLITE_OMIT_WAL
+ "OMIT_WAL",
+#endif
+#ifdef SQLITE_OMIT_WSD
+ "OMIT_WSD",
+#endif
+#ifdef SQLITE_OMIT_XFER_OPT
+ "OMIT_XFER_OPT",
+#endif
+#ifdef SQLITE_PERFORMANCE_TRACE
+ "PERFORMANCE_TRACE",
+#endif
+#ifdef SQLITE_POWERSAFE_OVERWRITE
+# if SQLITE_POWERSAFE_OVERWRITE != 1
+ "POWERSAFE_OVERWRITE=" CTIMEOPT_VAL(SQLITE_POWERSAFE_OVERWRITE),
+# endif
+#endif
+#ifdef SQLITE_PREFER_PROXY_LOCKING
+ "PREFER_PROXY_LOCKING",
+#endif
+#ifdef SQLITE_PROXY_DEBUG
+ "PROXY_DEBUG",
+#endif
+#ifdef SQLITE_REVERSE_UNORDERED_SELECTS
+ "REVERSE_UNORDERED_SELECTS",
+#endif
+#ifdef SQLITE_RTREE_INT_ONLY
+ "RTREE_INT_ONLY",
+#endif
+#ifdef SQLITE_SECURE_DELETE
+ "SECURE_DELETE",
+#endif
+#ifdef SQLITE_SMALL_STACK
+ "SMALL_STACK",
+#endif
+#ifdef SQLITE_SORTER_PMASZ
+ "SORTER_PMASZ=" CTIMEOPT_VAL(SQLITE_SORTER_PMASZ),
+#endif
+#ifdef SQLITE_SOUNDEX
+ "SOUNDEX",
+#endif
+#ifdef SQLITE_STAT4_SAMPLES
+ "STAT4_SAMPLES=" CTIMEOPT_VAL(SQLITE_STAT4_SAMPLES),
+#endif
+#ifdef SQLITE_STMTJRNL_SPILL
+ "STMTJRNL_SPILL=" CTIMEOPT_VAL(SQLITE_STMTJRNL_SPILL),
+#endif
+#ifdef SQLITE_SUBSTR_COMPATIBILITY
+ "SUBSTR_COMPATIBILITY",
+#endif
+#if (!defined(SQLITE_WIN32_MALLOC) \
+ && !defined(SQLITE_ZERO_MALLOC) \
+ && !defined(SQLITE_MEMDEBUG) \
+ ) || defined(SQLITE_SYSTEM_MALLOC)
+ "SYSTEM_MALLOC",
+#endif
+#ifdef SQLITE_TCL
+ "TCL",
+#endif
+#ifdef SQLITE_TEMP_STORE
+ "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE),
+#endif
+#ifdef SQLITE_TEST
+ "TEST",
+#endif
+#if defined(SQLITE_THREADSAFE)
+ "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE),
+#elif defined(THREADSAFE)
+ "THREADSAFE=" CTIMEOPT_VAL(THREADSAFE),
+#else
+ "THREADSAFE=1",
+#endif
+#ifdef SQLITE_UNLINK_AFTER_CLOSE
+ "UNLINK_AFTER_CLOSE",
+#endif
+#ifdef SQLITE_UNTESTABLE
+ "UNTESTABLE",
+#endif
+#ifdef SQLITE_USER_AUTHENTICATION
+ "USER_AUTHENTICATION",
+#endif
+#ifdef SQLITE_USE_ALLOCA
+ "USE_ALLOCA",
+#endif
+#ifdef SQLITE_USE_FCNTL_TRACE
+ "USE_FCNTL_TRACE",
+#endif
+#ifdef SQLITE_USE_URI
+ "USE_URI",
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ "VDBE_COVERAGE",
+#endif
+#ifdef SQLITE_WIN32_MALLOC
+ "WIN32_MALLOC",
+#endif
+#ifdef SQLITE_ZERO_MALLOC
+ "ZERO_MALLOC",
+#endif
+
+} ;
+
+SQLITE_PRIVATE const char **sqlite3CompileOptions(int *pnOpt){
+ *pnOpt = sizeof(sqlite3azCompileOpt) / sizeof(sqlite3azCompileOpt[0]);
+ return (const char**)sqlite3azCompileOpt;
+}
+
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/************** End of ctime.c ***********************************************/
+/************** Begin file global.c ******************************************/
+/*
+** 2008 June 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains definitions of global variables and constants.
+*/
+/* #include "sqliteInt.h" */
+
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+**
+** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
+** handle case conversions for the UTF character set since the tables
+** involved are nearly as big or bigger than SQLite itself.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
+#ifdef SQLITE_ASCII
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255,
+#endif
+#ifdef SQLITE_EBCDIC
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
+ 96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111, /* 6x */
+ 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, /* 7x */
+ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, /* 9x */
+ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
+ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
+ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
+ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
+ 224,225,162,163,164,165,166,167,168,169,234,235,236,237,238,239, /* Ex */
+ 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, /* Fx */
+#endif
+/* All of the upper-to-lower conversion data is above. The following
+** 18 integers are completely unrelated. They are appended to the
+** sqlite3UpperToLower[] array to avoid UBSAN warnings. Here's what is
+** going on:
+**
+** The SQL comparison operators (<>, =, >, <=, <, and >=) are implemented
+** by invoking sqlite3MemCompare(A,B) which compares values A and B and
+** returns negative, zero, or positive if A is less then, equal to, or
+** greater than B, respectively. Then the true false results is found by
+** consulting sqlite3aLTb[opcode], sqlite3aEQb[opcode], or
+** sqlite3aGTb[opcode] depending on whether the result of compare(A,B)
+** is negative, zero, or positive, where opcode is the specific opcode.
+** The only works because the comparison opcodes are consecutive and in
+** this order: NE EQ GT LE LT GE. Various assert()s throughout the code
+** ensure that is the case.
+**
+** These elements must be appended to another array. Otherwise the
+** index (here shown as [256-OP_Ne]) would be out-of-bounds and thus
+** be undefined behavior. That's goofy, but the C-standards people thought
+** it was a good idea, so here we are.
+*/
+/* NE EQ GT LE LT GE */
+ 1, 0, 0, 1, 1, 0, /* aLTb[]: Use when compare(A,B) less than zero */
+ 0, 1, 0, 1, 0, 1, /* aEQb[]: Use when compare(A,B) equals zero */
+ 1, 0, 1, 0, 0, 1 /* aGTb[]: Use when compare(A,B) greater than zero*/
+};
+SQLITE_PRIVATE const unsigned char *sqlite3aLTb = &sqlite3UpperToLower[256-OP_Ne];
+SQLITE_PRIVATE const unsigned char *sqlite3aEQb = &sqlite3UpperToLower[256+6-OP_Ne];
+SQLITE_PRIVATE const unsigned char *sqlite3aGTb = &sqlite3UpperToLower[256+12-OP_Ne];
+
+/*
+** The following 256 byte lookup table is used to support SQLites built-in
+** equivalents to the following standard library functions:
+**
+** isspace() 0x01
+** isalpha() 0x02
+** isdigit() 0x04
+** isalnum() 0x06
+** isxdigit() 0x08
+** toupper() 0x20
+** SQLite identifier character 0x40 $, _, or non-ascii
+** Quote character 0x80
+**
+** Bit 0x20 is set if the mapped character requires translation to upper
+** case. i.e. if the character is a lower-case ASCII character.
+** If x is a lower-case ASCII character, then its upper-case equivalent
+** is (x - 0x20). Therefore toupper() can be implemented as:
+**
+** (x & ~(map[x]&0x20))
+**
+** The equivalent of tolower() is implemented using the sqlite3UpperToLower[]
+** array. tolower() is used more often than toupper() by SQLite.
+**
+** Bit 0x40 is set if the character is non-alphanumeric and can be used in an
+** SQLite identifier. Identifiers are alphanumerics, "_", "$", and any
+** non-ASCII UTF character. Hence the test for whether or not a character is
+** part of an identifier is 0x46.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */
+ 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */
+ 0x01, 0x00, 0x80, 0x00, 0x40, 0x00, 0x00, 0x80, /* 20..27 !"#$%&' */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */
+ 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */
+ 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */
+
+ 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */
+ 0x02, 0x02, 0x02, 0x80, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */
+ 0x80, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */
+ 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */
+
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */
+
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */
+};
+
+/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
+** compatibility for legacy applications, the URI filename capability is
+** disabled by default.
+**
+** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
+** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
+**
+** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally
+** disabled. The default value may be changed by compiling with the
+** SQLITE_USE_URI symbol defined.
+*/
+#ifndef SQLITE_USE_URI
+# define SQLITE_USE_URI 0
+#endif
+
+/* EVIDENCE-OF: R-38720-18127 The default setting is determined by the
+** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if
+** that compile-time option is omitted.
+*/
+#if !defined(SQLITE_ALLOW_COVERING_INDEX_SCAN)
+# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
+#else
+# if !SQLITE_ALLOW_COVERING_INDEX_SCAN
+# error "Compile-time disabling of covering index scan using the\
+ -DSQLITE_ALLOW_COVERING_INDEX_SCAN=0 option is deprecated.\
+ Contact SQLite developers if this is a problem for you, and\
+ delete this #error macro to continue with your build."
+# endif
+#endif
+
+/* The minimum PMA size is set to this value multiplied by the database
+** page size in bytes.
+*/
+#ifndef SQLITE_SORTER_PMASZ
+# define SQLITE_SORTER_PMASZ 250
+#endif
+
+/* Statement journals spill to disk when their size exceeds the following
+** threshold (in bytes). 0 means that statement journals are created and
+** written to disk immediately (the default behavior for SQLite versions
+** before 3.12.0). -1 means always keep the entire statement journal in
+** memory. (The statement journal is also always held entirely in memory
+** if journal_mode=MEMORY or if temp_store=MEMORY, regardless of this
+** setting.)
+*/
+#ifndef SQLITE_STMTJRNL_SPILL
+# define SQLITE_STMTJRNL_SPILL (64*1024)
+#endif
+
+/*
+** The default lookaside-configuration, the format "SZ,N". SZ is the
+** number of bytes in each lookaside slot (should be a multiple of 8)
+** and N is the number of slots. The lookaside-configuration can be
+** changed as start-time using sqlite3_config(SQLITE_CONFIG_LOOKASIDE)
+** or at run-time for an individual database connection using
+** sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE);
+**
+** With the two-size-lookaside enhancement, less lookaside is required.
+** The default configuration of 1200,40 actually provides 30 1200-byte slots
+** and 93 128-byte slots, which is more lookaside than is available
+** using the older 1200,100 configuration without two-size-lookaside.
+*/
+#ifndef SQLITE_DEFAULT_LOOKASIDE
+# ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+# define SQLITE_DEFAULT_LOOKASIDE 1200,100 /* 120KB of memory */
+# else
+# define SQLITE_DEFAULT_LOOKASIDE 1200,40 /* 48KB of memory */
+# endif
+#endif
+
+
+/* The default maximum size of an in-memory database created using
+** sqlite3_deserialize()
+*/
+#ifndef SQLITE_MEMDB_DEFAULT_MAXSIZE
+# define SQLITE_MEMDB_DEFAULT_MAXSIZE 1073741824
+#endif
+
+/*
+** The following singleton contains the global configuration for
+** the SQLite library.
+*/
+SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
+ SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */
+ 1, /* bCoreMutex */
+ SQLITE_THREADSAFE==1, /* bFullMutex */
+ SQLITE_USE_URI, /* bOpenUri */
+ SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */
+ 0, /* bSmallMalloc */
+ 1, /* bExtraSchemaChecks */
+ sizeof(LONGDOUBLE_TYPE)>8, /* bUseLongDouble */
+ 0x7ffffffe, /* mxStrlen */
+ 0, /* neverCorrupt */
+ SQLITE_DEFAULT_LOOKASIDE, /* szLookaside, nLookaside */
+ SQLITE_STMTJRNL_SPILL, /* nStmtSpill */
+ {0,0,0,0,0,0,0,0}, /* m */
+ {0,0,0,0,0,0,0,0,0}, /* mutex */
+ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */
+ (void*)0, /* pHeap */
+ 0, /* nHeap */
+ 0, 0, /* mnHeap, mxHeap */
+ SQLITE_DEFAULT_MMAP_SIZE, /* szMmap */
+ SQLITE_MAX_MMAP_SIZE, /* mxMmap */
+ (void*)0, /* pPage */
+ 0, /* szPage */
+ SQLITE_DEFAULT_PCACHE_INITSZ, /* nPage */
+ 0, /* mxParserStack */
+ 0, /* sharedCacheEnabled */
+ SQLITE_SORTER_PMASZ, /* szPma */
+ /* All the rest should always be initialized to zero */
+ 0, /* isInit */
+ 0, /* inProgress */
+ 0, /* isMutexInit */
+ 0, /* isMallocInit */
+ 0, /* isPCacheInit */
+ 0, /* nRefInitMutex */
+ 0, /* pInitMutex */
+ 0, /* xLog */
+ 0, /* pLogArg */
+#ifdef SQLITE_ENABLE_SQLLOG
+ 0, /* xSqllog */
+ 0, /* pSqllogArg */
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ 0, /* xVdbeBranch */
+ 0, /* pVbeBranchArg */
+#endif
+#ifndef SQLITE_OMIT_DESERIALIZE
+ SQLITE_MEMDB_DEFAULT_MAXSIZE, /* mxMemdbSize */
+#endif
+#ifndef SQLITE_UNTESTABLE
+ 0, /* xTestCallback */
+#endif
+ 0, /* bLocaltimeFault */
+ 0, /* xAltLocaltime */
+ 0x7ffffffe, /* iOnceResetThreshold */
+ SQLITE_DEFAULT_SORTERREF_SIZE, /* szSorterRef */
+ 0, /* iPrngSeed */
+#ifdef SQLITE_DEBUG
+ {0,0,0,0,0,0}, /* aTune */
+#endif
+};
+
+/*
+** Hash table for global functions - functions common to all
+** database connections. After initialization, this table is
+** read-only.
+*/
+SQLITE_PRIVATE FuncDefHash sqlite3BuiltinFunctions;
+
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+/*
+** Counter used for coverage testing. Does not come into play for
+** release builds.
+**
+** Access to this global variable is not mutex protected. This might
+** result in TSAN warnings. But as the variable does not exist in
+** release builds, that should not be a concern.
+*/
+SQLITE_PRIVATE unsigned int sqlite3CoverageCounter;
+#endif /* SQLITE_COVERAGE_TEST || SQLITE_DEBUG */
+
+#ifdef VDBE_PROFILE
+/*
+** The following performance counter can be used in place of
+** sqlite3Hwtime() for profiling. This is a no-op on standard builds.
+*/
+SQLITE_PRIVATE sqlite3_uint64 sqlite3NProfileCnt = 0;
+#endif
+
+/*
+** The value of the "pending" byte must be 0x40000000 (1 byte past the
+** 1-gibabyte boundary) in a compatible database. SQLite never uses
+** the database page that contains the pending byte. It never attempts
+** to read or write that page. The pending byte page is set aside
+** for use by the VFS layers as space for managing file locks.
+**
+** During testing, it is often desirable to move the pending byte to
+** a different position in the file. This allows code that has to
+** deal with the pending byte to run on files that are much smaller
+** than 1 GiB. The sqlite3_test_control() interface can be used to
+** move the pending byte.
+**
+** IMPORTANT: Changing the pending byte to any value other than
+** 0x40000000 results in an incompatible database file format!
+** Changing the pending byte during operation will result in undefined
+** and incorrect behavior.
+*/
+#ifndef SQLITE_OMIT_WSD
+SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
+#endif
+
+/*
+** Tracing flags set by SQLITE_TESTCTRL_TRACEFLAGS.
+*/
+SQLITE_PRIVATE u32 sqlite3TreeTrace = 0;
+SQLITE_PRIVATE u32 sqlite3WhereTrace = 0;
+
+/* #include "opcodes.h" */
+/*
+** Properties of opcodes. The OPFLG_INITIALIZER macro is
+** created by mkopcodeh.awk during compilation. Data is obtained
+** from the comments following the "case OP_xxxx:" statements in
+** the vdbe.c file.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;
+
+/*
+** Name of the default collating sequence
+*/
+SQLITE_PRIVATE const char sqlite3StrBINARY[] = "BINARY";
+
+/*
+** Standard typenames. These names must match the COLTYPE_* definitions.
+** Adjust the SQLITE_N_STDTYPE value if adding or removing entries.
+**
+** sqlite3StdType[] The actual names of the datatypes.
+**
+** sqlite3StdTypeLen[] The length (in bytes) of each entry
+** in sqlite3StdType[].
+**
+** sqlite3StdTypeAffinity[] The affinity associated with each entry
+** in sqlite3StdType[].
+*/
+SQLITE_PRIVATE const unsigned char sqlite3StdTypeLen[] = { 3, 4, 3, 7, 4, 4 };
+SQLITE_PRIVATE const char sqlite3StdTypeAffinity[] = {
+ SQLITE_AFF_NUMERIC,
+ SQLITE_AFF_BLOB,
+ SQLITE_AFF_INTEGER,
+ SQLITE_AFF_INTEGER,
+ SQLITE_AFF_REAL,
+ SQLITE_AFF_TEXT
+};
+SQLITE_PRIVATE const char *sqlite3StdType[] = {
+ "ANY",
+ "BLOB",
+ "INT",
+ "INTEGER",
+ "REAL",
+ "TEXT"
+};
+
+/************** End of global.c **********************************************/
+/************** Begin file status.c ******************************************/
+/*
+** 2008 June 18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements the sqlite3_status() interface and related
+** functionality.
+*/
+/* #include "sqliteInt.h" */
+/************** Include vdbeInt.h in the middle of status.c ******************/
+/************** Begin file vdbeInt.h *****************************************/
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for information that is private to the
+** VDBE. This information used to all be at the top of the single
+** source code file "vdbe.c". When that file became too big (over
+** 6000 lines long) it was split up into several smaller files and
+** this header information was factored out.
+*/
+#ifndef SQLITE_VDBEINT_H
+#define SQLITE_VDBEINT_H
+
+/*
+** The maximum number of times that a statement will try to reparse
+** itself before giving up and returning SQLITE_SCHEMA.
+*/
+#ifndef SQLITE_MAX_SCHEMA_RETRY
+# define SQLITE_MAX_SCHEMA_RETRY 50
+#endif
+
+/*
+** VDBE_DISPLAY_P4 is true or false depending on whether or not the
+** "explain" P4 display logic is enabled.
+*/
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) \
+ || defined(SQLITE_ENABLE_BYTECODE_VTAB)
+# define VDBE_DISPLAY_P4 1
+#else
+# define VDBE_DISPLAY_P4 0
+#endif
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned Bool;
+
+/* Opaque type used by code in vdbesort.c */
+typedef struct VdbeSorter VdbeSorter;
+
+/* Elements of the linked list at Vdbe.pAuxData */
+typedef struct AuxData AuxData;
+
+/* A cache of large TEXT or BLOB values in a VdbeCursor */
+typedef struct VdbeTxtBlbCache VdbeTxtBlbCache;
+
+/* Types of VDBE cursors */
+#define CURTYPE_BTREE 0
+#define CURTYPE_SORTER 1
+#define CURTYPE_VTAB 2
+#define CURTYPE_PSEUDO 3
+
+/*
+** A VdbeCursor is an superclass (a wrapper) for various cursor objects:
+**
+** * A b-tree cursor
+** - In the main database or in an ephemeral database
+** - On either an index or a table
+** * A sorter
+** * A virtual table
+** * A one-row "pseudotable" stored in a single register
+*/
+typedef struct VdbeCursor VdbeCursor;
+struct VdbeCursor {
+ u8 eCurType; /* One of the CURTYPE_* values above */
+ i8 iDb; /* Index of cursor database in db->aDb[] */
+ u8 nullRow; /* True if pointing to a row with no data */
+ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
+ u8 isTable; /* True for rowid tables. False for indexes */
+#ifdef SQLITE_DEBUG
+ u8 seekOp; /* Most recent seek operation on this cursor */
+ u8 wrFlag; /* The wrFlag argument to sqlite3BtreeCursor() */
+#endif
+ Bool isEphemeral:1; /* True for an ephemeral table */
+ Bool useRandomRowid:1; /* Generate new record numbers semi-randomly */
+ Bool isOrdered:1; /* True if the table is not BTREE_UNORDERED */
+ Bool noReuse:1; /* OpenEphemeral may not reuse this cursor */
+ Bool colCache:1; /* pCache pointer is initialized and non-NULL */
+ u16 seekHit; /* See the OP_SeekHit and OP_IfNoHope opcodes */
+ union { /* pBtx for isEphermeral. pAltMap otherwise */
+ Btree *pBtx; /* Separate file holding temporary table */
+ u32 *aAltMap; /* Mapping from table to index column numbers */
+ } ub;
+ i64 seqCount; /* Sequence counter */
+
+ /* Cached OP_Column parse information is only valid if cacheStatus matches
+ ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of
+ ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that
+ ** the cache is out of date. */
+ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
+ int seekResult; /* Result of previous sqlite3BtreeMoveto() or 0
+ ** if there have been no prior seeks on the cursor. */
+ /* seekResult does not distinguish between "no seeks have ever occurred
+ ** on this cursor" and "the most recent seek was an exact match".
+ ** For CURTYPE_PSEUDO, seekResult is the register holding the record */
+
+ /* When a new VdbeCursor is allocated, only the fields above are zeroed.
+ ** The fields that follow are uninitialized, and must be individually
+ ** initialized prior to first use. */
+ VdbeCursor *pAltCursor; /* Associated index cursor from which to read */
+ union {
+ BtCursor *pCursor; /* CURTYPE_BTREE or _PSEUDO. Btree cursor */
+ sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB. Vtab cursor */
+ VdbeSorter *pSorter; /* CURTYPE_SORTER. Sorter object */
+ } uc;
+ KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
+ u32 iHdrOffset; /* Offset to next unparsed byte of the header */
+ Pgno pgnoRoot; /* Root page of the open btree cursor */
+ i16 nField; /* Number of fields in the header */
+ u16 nHdrParsed; /* Number of header fields parsed so far */
+ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
+ u32 *aOffset; /* Pointer to aType[nField] */
+ const u8 *aRow; /* Data for the current row, if all on one page */
+ u32 payloadSize; /* Total number of bytes in the record */
+ u32 szRow; /* Byte available in aRow */
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ u64 maskUsed; /* Mask of columns used by this cursor */
+#endif
+ VdbeTxtBlbCache *pCache; /* Cache of large TEXT or BLOB values */
+
+ /* 2*nField extra array elements allocated for aType[], beyond the one
+ ** static element declared in the structure. nField total array slots for
+ ** aType[] and nField+1 array slots for aOffset[] */
+ u32 aType[1]; /* Type values record decode. MUST BE LAST */
+};
+
+/* Return true if P is a null-only cursor
+*/
+#define IsNullCursor(P) \
+ ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0)
+
+/*
+** A value for VdbeCursor.cacheStatus that means the cache is always invalid.
+*/
+#define CACHE_STALE 0
+
+/*
+** Large TEXT or BLOB values can be slow to load, so we want to avoid
+** loading them more than once. For that reason, large TEXT and BLOB values
+** can be stored in a cache defined by this object, and attached to the
+** VdbeCursor using the pCache field.
+*/
+struct VdbeTxtBlbCache {
+ char *pCValue; /* A RCStr buffer to hold the value */
+ i64 iOffset; /* File offset of the row being cached */
+ int iCol; /* Column for which the cache is valid */
+ u32 cacheStatus; /* Vdbe.cacheCtr value */
+ u32 colCacheCtr; /* Column cache counter */
+};
+
+/*
+** When a sub-program is executed (OP_Program), a structure of this type
+** is allocated to store the current value of the program counter, as
+** well as the current memory cell array and various other frame specific
+** values stored in the Vdbe struct. When the sub-program is finished,
+** these values are copied back to the Vdbe from the VdbeFrame structure,
+** restoring the state of the VM to as it was before the sub-program
+** began executing.
+**
+** The memory for a VdbeFrame object is allocated and managed by a memory
+** cell in the parent (calling) frame. When the memory cell is deleted or
+** overwritten, the VdbeFrame object is not freed immediately. Instead, it
+** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame
+** list is deleted when the VM is reset in VdbeHalt(). The reason for doing
+** this instead of deleting the VdbeFrame immediately is to avoid recursive
+** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the
+** child frame are released.
+**
+** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is
+** set to NULL if the currently executing frame is the main program.
+*/
+typedef struct VdbeFrame VdbeFrame;
+struct VdbeFrame {
+ Vdbe *v; /* VM this frame belongs to */
+ VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */
+ Op *aOp; /* Program instructions for parent frame */
+ Mem *aMem; /* Array of memory cells for parent frame */
+ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */
+ u8 *aOnce; /* Bitmask used by OP_Once */
+ void *token; /* Copy of SubProgram.token */
+ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
+ AuxData *pAuxData; /* Linked list of auxdata allocations */
+#if SQLITE_DEBUG
+ u32 iFrameMagic; /* magic number for sanity checking */
+#endif
+ int nCursor; /* Number of entries in apCsr */
+ int pc; /* Program Counter in parent (calling) frame */
+ int nOp; /* Size of aOp array */
+ int nMem; /* Number of entries in aMem */
+ int nChildMem; /* Number of memory cells for child frame */
+ int nChildCsr; /* Number of cursors for child frame */
+ i64 nChange; /* Statement changes (Vdbe.nChange) */
+ i64 nDbChange; /* Value of db->nChange */
+};
+
+/* Magic number for sanity checking on VdbeFrame objects */
+#define SQLITE_FRAME_MAGIC 0x879fb71e
+
+/*
+** Return a pointer to the array of registers allocated for use
+** by a VdbeFrame.
+*/
+#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
+
+/*
+** Internally, the vdbe manipulates nearly all SQL values as Mem
+** structures. Each Mem struct may cache multiple representations (string,
+** integer etc.) of the same value.
+*/
+struct sqlite3_value {
+ union MemValue {
+ double r; /* Real value used when MEM_Real is set in flags */
+ i64 i; /* Integer value used when MEM_Int is set in flags */
+ int nZero; /* Extra zero bytes when MEM_Zero and MEM_Blob set */
+ const char *zPType; /* Pointer type when MEM_Term|MEM_Subtype|MEM_Null */
+ FuncDef *pDef; /* Used only when flags==MEM_Agg */
+ } u;
+ char *z; /* String or BLOB value */
+ int n; /* Number of characters in string value, excluding '\0' */
+ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
+ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
+ u8 eSubtype; /* Subtype for this value */
+ /* ShallowCopy only needs to copy the information above */
+ sqlite3 *db; /* The associated database connection */
+ int szMalloc; /* Size of the zMalloc allocation */
+ u32 uTemp; /* Transient storage for serial_type in OP_MakeRecord */
+ char *zMalloc; /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
+ void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
+#ifdef SQLITE_DEBUG
+ Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */
+ u16 mScopyFlags; /* flags value immediately after the shallow copy */
+#endif
+};
+
+/*
+** Size of struct Mem not including the Mem.zMalloc member or anything that
+** follows.
+*/
+#define MEMCELLSIZE offsetof(Mem,db)
+
+/* One or more of the following flags are set to indicate the
+** representations of the value stored in the Mem struct.
+**
+** * MEM_Null An SQL NULL value
+**
+** * MEM_Null|MEM_Zero An SQL NULL with the virtual table
+** UPDATE no-change flag set
+**
+** * MEM_Null|MEM_Term| An SQL NULL, but also contains a
+** MEM_Subtype pointer accessible using
+** sqlite3_value_pointer().
+**
+** * MEM_Null|MEM_Cleared Special SQL NULL that compares non-equal
+** to other NULLs even using the IS operator.
+**
+** * MEM_Str A string, stored in Mem.z with
+** length Mem.n. Zero-terminated if
+** MEM_Term is set. This flag is
+** incompatible with MEM_Blob and
+** MEM_Null, but can appear with MEM_Int,
+** MEM_Real, and MEM_IntReal.
+**
+** * MEM_Blob A blob, stored in Mem.z length Mem.n.
+** Incompatible with MEM_Str, MEM_Null,
+** MEM_Int, MEM_Real, and MEM_IntReal.
+**
+** * MEM_Blob|MEM_Zero A blob in Mem.z of length Mem.n plus
+** MEM.u.i extra 0x00 bytes at the end.
+**
+** * MEM_Int Integer stored in Mem.u.i.
+**
+** * MEM_Real Real stored in Mem.u.r.
+**
+** * MEM_IntReal Real stored as an integer in Mem.u.i.
+**
+** If the MEM_Null flag is set, then the value is an SQL NULL value.
+** For a pointer type created using sqlite3_bind_pointer() or
+** sqlite3_result_pointer() the MEM_Term and MEM_Subtype flags are also set.
+**
+** If the MEM_Str flag is set then Mem.z points at a string representation.
+** Usually this is encoded in the same unicode encoding as the main
+** database (see below for exceptions). If the MEM_Term flag is also
+** set, then the string is nul terminated. The MEM_Int and MEM_Real
+** flags may coexist with the MEM_Str flag.
+*/
+#define MEM_Undefined 0x0000 /* Value is undefined */
+#define MEM_Null 0x0001 /* Value is NULL (or a pointer) */
+#define MEM_Str 0x0002 /* Value is a string */
+#define MEM_Int 0x0004 /* Value is an integer */
+#define MEM_Real 0x0008 /* Value is a real number */
+#define MEM_Blob 0x0010 /* Value is a BLOB */
+#define MEM_IntReal 0x0020 /* MEM_Int that stringifies like MEM_Real */
+#define MEM_AffMask 0x003f /* Mask of affinity bits */
+
+/* Extra bits that modify the meanings of the core datatypes above
+*/
+#define MEM_FromBind 0x0040 /* Value originates from sqlite3_bind() */
+ /* 0x0080 // Available */
+#define MEM_Cleared 0x0100 /* NULL set by OP_Null, not from data */
+#define MEM_Term 0x0200 /* String in Mem.z is zero terminated */
+#define MEM_Zero 0x0400 /* Mem.i contains count of 0s appended to blob */
+#define MEM_Subtype 0x0800 /* Mem.eSubtype is valid */
+#define MEM_TypeMask 0x0dbf /* Mask of type bits */
+
+/* Bits that determine the storage for Mem.z for a string or blob or
+** aggregate accumulator.
+*/
+#define MEM_Dyn 0x1000 /* Need to call Mem.xDel() on Mem.z */
+#define MEM_Static 0x2000 /* Mem.z points to a static string */
+#define MEM_Ephem 0x4000 /* Mem.z points to an ephemeral string */
+#define MEM_Agg 0x8000 /* Mem.z points to an agg function context */
+
+/* Return TRUE if Mem X contains dynamically allocated content - anything
+** that needs to be deallocated to avoid a leak.
+*/
+#define VdbeMemDynamic(X) \
+ (((X)->flags&(MEM_Agg|MEM_Dyn))!=0)
+
+/*
+** Clear any existing type flags from a Mem and replace them with f
+*/
+#define MemSetTypeFlag(p, f) \
+ ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
+
+/*
+** True if Mem X is a NULL-nochng type.
+*/
+#define MemNullNochng(X) \
+ (((X)->flags&MEM_TypeMask)==(MEM_Null|MEM_Zero) \
+ && (X)->n==0 && (X)->u.nZero==0)
+
+/*
+** Return true if a memory cell has been initialized and is valid.
+** is for use inside assert() statements only.
+**
+** A Memory cell is initialized if at least one of the
+** MEM_Null, MEM_Str, MEM_Int, MEM_Real, MEM_Blob, or MEM_IntReal bits
+** is set. It is "undefined" if all those bits are zero.
+*/
+#ifdef SQLITE_DEBUG
+#define memIsValid(M) ((M)->flags & MEM_AffMask)!=0
+#endif
+
+/*
+** Each auxiliary data pointer stored by a user defined function
+** implementation calling sqlite3_set_auxdata() is stored in an instance
+** of this structure. All such structures associated with a single VM
+** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
+** when the VM is halted (if not before).
+*/
+struct AuxData {
+ int iAuxOp; /* Instruction number of OP_Function opcode */
+ int iAuxArg; /* Index of function argument. */
+ void *pAux; /* Aux data pointer */
+ void (*xDeleteAux)(void*); /* Destructor for the aux data */
+ AuxData *pNextAux; /* Next element in list */
+};
+
+/*
+** The "context" argument for an installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbeInt.h because it uses substructures
+** (Mem) which are only defined there.
+*/
+struct sqlite3_context {
+ Mem *pOut; /* The return value is stored here */
+ FuncDef *pFunc; /* Pointer to function information */
+ Mem *pMem; /* Memory cell used to store aggregate context */
+ Vdbe *pVdbe; /* The VM that owns this context */
+ int iOp; /* Instruction number of OP_Function */
+ int isError; /* Error code returned by the function. */
+ u8 enc; /* Encoding to use for results */
+ u8 skipFlag; /* Skip accumulator loading if true */
+ u8 argc; /* Number of arguments */
+ sqlite3_value *argv[1]; /* Argument set */
+};
+
+/* A bitfield type for use inside of structures. Always follow with :N where
+** N is the number of bits.
+*/
+typedef unsigned bft; /* Bit Field Type */
+
+/* The ScanStatus object holds a single value for the
+** sqlite3_stmt_scanstatus() interface.
+**
+** aAddrRange[]:
+** This array is used by ScanStatus elements associated with EQP
+** notes that make an SQLITE_SCANSTAT_NCYCLE value available. It is
+** an array of up to 3 ranges of VM addresses for which the Vdbe.anCycle[]
+** values should be summed to calculate the NCYCLE value. Each pair of
+** integer addresses is a start and end address (both inclusive) for a range
+** instructions. A start value of 0 indicates an empty range.
+*/
+typedef struct ScanStatus ScanStatus;
+struct ScanStatus {
+ int addrExplain; /* OP_Explain for loop */
+ int aAddrRange[6];
+ int addrLoop; /* Address of "loops" counter */
+ int addrVisit; /* Address of "rows visited" counter */
+ int iSelectID; /* The "Select-ID" for this loop */
+ LogEst nEst; /* Estimated output rows per loop */
+ char *zName; /* Name of table or index */
+};
+
+/* The DblquoteStr object holds the text of a double-quoted
+** string for a prepared statement. A linked list of these objects
+** is constructed during statement parsing and is held on Vdbe.pDblStr.
+** When computing a normalized SQL statement for an SQL statement, that
+** list is consulted for each double-quoted identifier to see if the
+** identifier should really be a string literal.
+*/
+typedef struct DblquoteStr DblquoteStr;
+struct DblquoteStr {
+ DblquoteStr *pNextStr; /* Next string literal in the list */
+ char z[8]; /* Dequoted value for the string */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
+** is really a pointer to an instance of this structure.
+*/
+struct Vdbe {
+ sqlite3 *db; /* The database connection that owns this statement */
+ Vdbe **ppVPrev,*pVNext; /* Linked list of VDBEs with the same Vdbe.db */
+ Parse *pParse; /* Parsing context used to create this Vdbe */
+ ynVar nVar; /* Number of entries in aVar[] */
+ int nMem; /* Number of memory locations currently allocated */
+ int nCursor; /* Number of slots in apCsr[] */
+ u32 cacheCtr; /* VdbeCursor row cache generation counter */
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ i64 nChange; /* Number of db changes made since last reset */
+ int iStatement; /* Statement number (or 0 if has no opened stmt) */
+ i64 iCurrentTime; /* Value of julianday('now') for this statement */
+ i64 nFkConstraint; /* Number of imm. FK constraints this VM */
+ i64 nStmtDefCons; /* Number of def. constraints when stmt started */
+ i64 nStmtDefImmCons; /* Number of def. imm constraints when stmt started */
+ Mem *aMem; /* The memory locations */
+ Mem **apArg; /* Arguments to currently executing user function */
+ VdbeCursor **apCsr; /* One element of this array for each open cursor */
+ Mem *aVar; /* Values for the OP_Variable opcode. */
+
+ /* When allocating a new Vdbe object, all of the fields below should be
+ ** initialized to zero or NULL */
+
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Slots allocated for aOp[] */
+ Mem *aColName; /* Column names to return */
+ Mem *pResultRow; /* Current output row */
+ char *zErrMsg; /* Error message written here */
+ VList *pVList; /* Name of variables */
+#ifndef SQLITE_OMIT_TRACE
+ i64 startTime; /* Time when query started - used for profiling */
+#endif
+#ifdef SQLITE_DEBUG
+ int rcApp; /* errcode set by sqlite3_result_error_code() */
+ u32 nWrite; /* Number of write operations that have occurred */
+#endif
+ u16 nResColumn; /* Number of columns in one row of the result set */
+ u16 nResAlloc; /* Column slots allocated to aColName[] */
+ u8 errorAction; /* Recovery action to do in case of an error */
+ u8 minWriteFileFormat; /* Minimum file format for writable database files */
+ u8 prepFlags; /* SQLITE_PREPARE_* flags */
+ u8 eVdbeState; /* On of the VDBE_*_STATE values */
+ bft expired:2; /* 1: recompile VM immediately 2: when convenient */
+ bft explain:2; /* 0: normal, 1: EXPLAIN, 2: EXPLAIN QUERY PLAN */
+ bft changeCntOn:1; /* True to update the change-counter */
+ bft usesStmtJournal:1; /* True if uses a statement journal */
+ bft readOnly:1; /* True for statements that do not write */
+ bft bIsReader:1; /* True for statements that read */
+ bft haveEqpOps:1; /* Bytecode supports EXPLAIN QUERY PLAN */
+ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */
+ yDbMask lockMask; /* Subset of btreeMask that requires a lock */
+ u32 aCounter[9]; /* Counters used by sqlite3_stmt_status() */
+ char *zSql; /* Text of the SQL statement that generated this */
+#ifdef SQLITE_ENABLE_NORMALIZE
+ char *zNormSql; /* Normalization of the associated SQL statement */
+ DblquoteStr *pDblStr; /* List of double-quoted string literals */
+#endif
+ void *pFree; /* Free this when deleting the vdbe */
+ VdbeFrame *pFrame; /* Parent frame */
+ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */
+ int nFrame; /* Number of frames in pFrame list */
+ u32 expmask; /* Binding to these vars invalidates VM */
+ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */
+ AuxData *pAuxData; /* Linked list of auxdata allocations */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int nScan; /* Entries in aScan[] */
+ ScanStatus *aScan; /* Scan definitions for sqlite3_stmt_scanstatus() */
+#endif
+};
+
+/*
+** The following are allowed values for Vdbe.eVdbeState
+*/
+#define VDBE_INIT_STATE 0 /* Prepared statement under construction */
+#define VDBE_READY_STATE 1 /* Ready to run but not yet started */
+#define VDBE_RUN_STATE 2 /* Run in progress */
+#define VDBE_HALT_STATE 3 /* Finished. Need reset() or finalize() */
+
+/*
+** Structure used to store the context required by the
+** sqlite3_preupdate_*() API functions.
+*/
+struct PreUpdate {
+ Vdbe *v;
+ VdbeCursor *pCsr; /* Cursor to read old values from */
+ int op; /* One of SQLITE_INSERT, UPDATE, DELETE */
+ u8 *aRecord; /* old.* database record */
+ KeyInfo keyinfo;
+ UnpackedRecord *pUnpacked; /* Unpacked version of aRecord[] */
+ UnpackedRecord *pNewUnpacked; /* Unpacked version of new.* record */
+ int iNewReg; /* Register for new.* values */
+ int iBlobWrite; /* Value returned by preupdate_blobwrite() */
+ i64 iKey1; /* First key value passed to hook */
+ i64 iKey2; /* Second key value passed to hook */
+ Mem *aNew; /* Array of new.* values */
+ Table *pTab; /* Schema object being updated */
+ Index *pPk; /* PK index if pTab is WITHOUT ROWID */
+};
+
+/*
+** An instance of this object is used to pass an vector of values into
+** OP_VFilter, the xFilter method of a virtual table. The vector is the
+** set of values on the right-hand side of an IN constraint.
+**
+** The value as passed into xFilter is an sqlite3_value with a "pointer"
+** type, such as is generated by sqlite3_result_pointer() and read by
+** sqlite3_value_pointer. Such values have MEM_Term|MEM_Subtype|MEM_Null
+** and a subtype of 'p'. The sqlite3_vtab_in_first() and _next() interfaces
+** know how to use this object to step through all the values in the
+** right operand of the IN constraint.
+*/
+typedef struct ValueList ValueList;
+struct ValueList {
+ BtCursor *pCsr; /* An ephemeral table holding all values */
+ sqlite3_value *pOut; /* Register to hold each decoded output value */
+};
+
+/* Size of content associated with serial types that fit into a
+** single-byte varint.
+*/
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[];
+#endif
+
+/*
+** Function prototypes
+*/
+SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...);
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
+SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe*,VdbeCursor*);
+void sqliteVdbePopStack(Vdbe*,int);
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p);
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor*);
+SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
+SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8);
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in);
+# define swapMixedEndianFloat(X) X = sqlite3FloatSwap(X)
+#else
+# define swapMixedEndianFloat(X)
+#endif
+SQLITE_PRIVATE void sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int);
+
+int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
+SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
+#if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB)
+SQLITE_PRIVATE int sqlite3VdbeNextOpcode(Vdbe*,Mem*,int,int*,int*,Op**);
+SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3*,Op*);
+#endif
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
+SQLITE_PRIVATE char *sqlite3VdbeDisplayComment(sqlite3*,const Op*,const char*);
+#endif
+#if !defined(SQLITE_OMIT_EXPLAIN)
+SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, i64, u8, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
+#else
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeMemSetPointer(Mem*, void*, const char*, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem*,sqlite3*,u16);
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
+#else
+SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem*,int);
+#endif
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem*);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, u8, u8);
+SQLITE_PRIVATE int sqlite3IntFloatCompare(i64,double);
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem*, int ifNull);
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem*,u8,u8);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset(BtCursor*,u32,Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem*p);
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*);
+#endif
+#if !defined(SQLITE_OMIT_EXPLAIN) || defined(SQLITE_ENABLE_BYTECODE_VTAB)
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
+SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*); /* Destructor on Mem */
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); /* Actually deletes the Frame */
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+SQLITE_PRIVATE void sqlite3VdbePreUpdateHook(
+ Vdbe*,VdbeCursor*,int,const char*,Table*,i64,int,int);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p);
+
+SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
+SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
+SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
+SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
+SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *);
+SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
+SQLITE_PRIVATE int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
+SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);
+
+SQLITE_PRIVATE void sqlite3VdbeValueListFree(void*);
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe*, VdbeCursor*);
+SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe*);
+#else
+# define sqlite3VdbeIncrWriteCounter(V,C)
+# define sqlite3VdbeAssertAbortable(V)
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE)
+SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*);
+#else
+# define sqlite3VdbeEnter(X)
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
+SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*);
+#else
+# define sqlite3VdbeLeave(X)
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
+SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*);
+#endif
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
+#else
+# define sqlite3VdbeCheckFk(p,i) 0
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr);
+#endif
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
+#endif
+
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
+ #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+#else
+ #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
+ #define ExpandBlob(P) SQLITE_OK
+#endif
+
+#endif /* !defined(SQLITE_VDBEINT_H) */
+
+/************** End of vdbeInt.h *********************************************/
+/************** Continuing where we left off in status.c *********************/
+
+/*
+** Variables in which to record status information.
+*/
+#if SQLITE_PTRSIZE>4
+typedef sqlite3_int64 sqlite3StatValueType;
+#else
+typedef u32 sqlite3StatValueType;
+#endif
+typedef struct sqlite3StatType sqlite3StatType;
+static SQLITE_WSD struct sqlite3StatType {
+ sqlite3StatValueType nowValue[10]; /* Current value */
+ sqlite3StatValueType mxValue[10]; /* Maximum value */
+} sqlite3Stat = { {0,}, {0,} };
+
+/*
+** Elements of sqlite3Stat[] are protected by either the memory allocator
+** mutex, or by the pcache1 mutex. The following array determines which.
+*/
+static const char statMutex[] = {
+ 0, /* SQLITE_STATUS_MEMORY_USED */
+ 1, /* SQLITE_STATUS_PAGECACHE_USED */
+ 1, /* SQLITE_STATUS_PAGECACHE_OVERFLOW */
+ 0, /* SQLITE_STATUS_SCRATCH_USED */
+ 0, /* SQLITE_STATUS_SCRATCH_OVERFLOW */
+ 0, /* SQLITE_STATUS_MALLOC_SIZE */
+ 0, /* SQLITE_STATUS_PARSER_STACK */
+ 1, /* SQLITE_STATUS_PAGECACHE_SIZE */
+ 0, /* SQLITE_STATUS_SCRATCH_SIZE */
+ 0, /* SQLITE_STATUS_MALLOC_COUNT */
+};
+
+
+/* The "wsdStat" macro will resolve to the status information
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Stat" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
+# define wsdStat x[0]
+#else
+# define wsdStatInit
+# define wsdStat sqlite3Stat
+#endif
+
+/*
+** Return the current value of a status parameter. The caller must
+** be holding the appropriate mutex.
+*/
+SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int op){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ return wsdStat.nowValue[op];
+}
+
+/*
+** Add N to the value of a status record. The caller must hold the
+** appropriate mutex. (Locking is checked by assert()).
+**
+** The StatusUp() routine can accept positive or negative values for N.
+** The value of N is added to the current status value and the high-water
+** mark is adjusted if necessary.
+**
+** The StatusDown() routine lowers the current value by N. The highwater
+** mark is unchanged. N must be non-negative for StatusDown().
+*/
+SQLITE_PRIVATE void sqlite3StatusUp(int op, int N){
+ wsdStatInit;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ wsdStat.nowValue[op] += N;
+ if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+}
+SQLITE_PRIVATE void sqlite3StatusDown(int op, int N){
+ wsdStatInit;
+ assert( N>=0 );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ wsdStat.nowValue[op] -= N;
+}
+
+/*
+** Adjust the highwater mark if necessary.
+** The caller must hold the appropriate mutex.
+*/
+SQLITE_PRIVATE void sqlite3StatusHighwater(int op, int X){
+ sqlite3StatValueType newValue;
+ wsdStatInit;
+ assert( X>=0 );
+ newValue = (sqlite3StatValueType)X;
+ assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
+ assert( op>=0 && op<ArraySize(statMutex) );
+ assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
+ : sqlite3MallocMutex()) );
+ assert( op==SQLITE_STATUS_MALLOC_SIZE
+ || op==SQLITE_STATUS_PAGECACHE_SIZE
+ || op==SQLITE_STATUS_PARSER_STACK );
+ if( newValue>wsdStat.mxValue[op] ){
+ wsdStat.mxValue[op] = newValue;
+ }
+}
+
+/*
+** Query status information.
+*/
+SQLITE_API int sqlite3_status64(
+ int op,
+ sqlite3_int64 *pCurrent,
+ sqlite3_int64 *pHighwater,
+ int resetFlag
+){
+ sqlite3_mutex *pMutex;
+ wsdStatInit;
+ if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex();
+ sqlite3_mutex_enter(pMutex);
+ *pCurrent = wsdStat.nowValue[op];
+ *pHighwater = wsdStat.mxValue[op];
+ if( resetFlag ){
+ wsdStat.mxValue[op] = wsdStat.nowValue[op];
+ }
+ sqlite3_mutex_leave(pMutex);
+ (void)pMutex; /* Prevent warning when SQLITE_THREADSAFE=0 */
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
+ sqlite3_int64 iCur = 0, iHwtr = 0;
+ int rc;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag);
+ if( rc==0 ){
+ *pCurrent = (int)iCur;
+ *pHighwater = (int)iHwtr;
+ }
+ return rc;
+}
+
+/*
+** Return the number of LookasideSlot elements on the linked list
+*/
+static u32 countLookasideSlots(LookasideSlot *p){
+ u32 cnt = 0;
+ while( p ){
+ p = p->pNext;
+ cnt++;
+ }
+ return cnt;
+}
+
+/*
+** Count the number of slots of lookaside memory that are outstanding
+*/
+SQLITE_PRIVATE int sqlite3LookasideUsed(sqlite3 *db, int *pHighwater){
+ u32 nInit = countLookasideSlots(db->lookaside.pInit);
+ u32 nFree = countLookasideSlots(db->lookaside.pFree);
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ nInit += countLookasideSlots(db->lookaside.pSmallInit);
+ nFree += countLookasideSlots(db->lookaside.pSmallFree);
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( pHighwater ) *pHighwater = db->lookaside.nSlot - nInit;
+ return db->lookaside.nSlot - (nInit+nFree);
+}
+
+/*
+** Query status information for a single database connection
+*/
+SQLITE_API int sqlite3_db_status(
+ sqlite3 *db, /* The database connection whose status is desired */
+ int op, /* Status verb */
+ int *pCurrent, /* Write current value here */
+ int *pHighwater, /* Write high-water mark here */
+ int resetFlag /* Reset high-water mark if true */
+){
+ int rc = SQLITE_OK; /* Return code */
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || pCurrent==0|| pHighwater==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ switch( op ){
+ case SQLITE_DBSTATUS_LOOKASIDE_USED: {
+ *pCurrent = sqlite3LookasideUsed(db, pHighwater);
+ if( resetFlag ){
+ LookasideSlot *p = db->lookaside.pFree;
+ if( p ){
+ while( p->pNext ) p = p->pNext;
+ p->pNext = db->lookaside.pInit;
+ db->lookaside.pInit = db->lookaside.pFree;
+ db->lookaside.pFree = 0;
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ p = db->lookaside.pSmallFree;
+ if( p ){
+ while( p->pNext ) p = p->pNext;
+ p->pNext = db->lookaside.pSmallInit;
+ db->lookaside.pSmallInit = db->lookaside.pSmallFree;
+ db->lookaside.pSmallFree = 0;
+ }
+#endif
+ }
+ break;
+ }
+
+ case SQLITE_DBSTATUS_LOOKASIDE_HIT:
+ case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE:
+ case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: {
+ testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT );
+ testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE );
+ testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL );
+ assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 );
+ assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 );
+ *pCurrent = 0;
+ *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT];
+ if( resetFlag ){
+ db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0;
+ }
+ break;
+ }
+
+ /*
+ ** Return an approximation for the amount of memory currently used
+ ** by all pagers associated with the given database connection. The
+ ** highwater mark is meaningless and is returned as zero.
+ */
+ case SQLITE_DBSTATUS_CACHE_USED_SHARED:
+ case SQLITE_DBSTATUS_CACHE_USED: {
+ int totalUsed = 0;
+ int i;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ int nByte = sqlite3PagerMemUsed(pPager);
+ if( op==SQLITE_DBSTATUS_CACHE_USED_SHARED ){
+ nByte = nByte / sqlite3BtreeConnectionCount(pBt);
+ }
+ totalUsed += nByte;
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ *pCurrent = totalUsed;
+ *pHighwater = 0;
+ break;
+ }
+
+ /*
+ ** *pCurrent gets an accurate estimate of the amount of memory used
+ ** to store the schema for all databases (main, temp, and any ATTACHed
+ ** databases. *pHighwater is set to zero.
+ */
+ case SQLITE_DBSTATUS_SCHEMA_USED: {
+ int i; /* Used to iterate through schemas */
+ int nByte = 0; /* Used to accumulate return value */
+
+ sqlite3BtreeEnterAll(db);
+ db->pnBytesFreed = &nByte;
+ assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
+ db->lookaside.pEnd = db->lookaside.pStart;
+ for(i=0; i<db->nDb; i++){
+ Schema *pSchema = db->aDb[i].pSchema;
+ if( ALWAYS(pSchema!=0) ){
+ HashElem *p;
+
+ nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
+ pSchema->tblHash.count
+ + pSchema->trigHash.count
+ + pSchema->idxHash.count
+ + pSchema->fkeyHash.count
+ );
+ nByte += sqlite3_msize(pSchema->tblHash.ht);
+ nByte += sqlite3_msize(pSchema->trigHash.ht);
+ nByte += sqlite3_msize(pSchema->idxHash.ht);
+ nByte += sqlite3_msize(pSchema->fkeyHash.ht);
+
+ for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
+ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
+ }
+ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
+ sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
+ }
+ }
+ }
+ db->pnBytesFreed = 0;
+ db->lookaside.pEnd = db->lookaside.pTrueEnd;
+ sqlite3BtreeLeaveAll(db);
+
+ *pHighwater = 0;
+ *pCurrent = nByte;
+ break;
+ }
+
+ /*
+ ** *pCurrent gets an accurate estimate of the amount of memory used
+ ** to store all prepared statements.
+ ** *pHighwater is set to zero.
+ */
+ case SQLITE_DBSTATUS_STMT_USED: {
+ struct Vdbe *pVdbe; /* Used to iterate through VMs */
+ int nByte = 0; /* Used to accumulate return value */
+
+ db->pnBytesFreed = &nByte;
+ assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
+ db->lookaside.pEnd = db->lookaside.pStart;
+ for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pVNext){
+ sqlite3VdbeDelete(pVdbe);
+ }
+ db->lookaside.pEnd = db->lookaside.pTrueEnd;
+ db->pnBytesFreed = 0;
+
+ *pHighwater = 0; /* IMP: R-64479-57858 */
+ *pCurrent = nByte;
+
+ break;
+ }
+
+ /*
+ ** Set *pCurrent to the total cache hits or misses encountered by all
+ ** pagers the database handle is connected to. *pHighwater is always set
+ ** to zero.
+ */
+ case SQLITE_DBSTATUS_CACHE_SPILL:
+ op = SQLITE_DBSTATUS_CACHE_WRITE+1;
+ /* no break */ deliberate_fall_through
+ case SQLITE_DBSTATUS_CACHE_HIT:
+ case SQLITE_DBSTATUS_CACHE_MISS:
+ case SQLITE_DBSTATUS_CACHE_WRITE:{
+ int i;
+ int nRet = 0;
+ assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 );
+ assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 );
+
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt ){
+ Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt);
+ sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
+ }
+ }
+ *pHighwater = 0; /* IMP: R-42420-56072 */
+ /* IMP: R-54100-20147 */
+ /* IMP: R-29431-39229 */
+ *pCurrent = nRet;
+ break;
+ }
+
+ /* Set *pCurrent to non-zero if there are unresolved deferred foreign
+ ** key constraints. Set *pCurrent to zero if all foreign key constraints
+ ** have been satisfied. The *pHighwater is always set to zero.
+ */
+ case SQLITE_DBSTATUS_DEFERRED_FKS: {
+ *pHighwater = 0; /* IMP: R-11967-56545 */
+ *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
+ break;
+ }
+
+ default: {
+ rc = SQLITE_ERROR;
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/************** End of status.c **********************************************/
+/************** Begin file date.c ********************************************/
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** SQLite processes all times and dates as julian day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implementation requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBN 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+/* #include <assert.h> */
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** The MSVC CRT on Windows CE may not have a localtime() function.
+** So declare a substitute. The substitute function itself is
+** defined in "os_win.c".
+*/
+#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
+ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
+struct tm *__cdecl localtime(const time_t *);
+#endif
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validJD; /* True (1) if iJD is valid */
+ char rawS; /* Raw numeric value stored in s */
+ char validYMD; /* True (1) if Y,M,D are valid */
+ char validHMS; /* True (1) if h,m,s are valid */
+ char validTZ; /* True (1) if tz is valid */
+ char tzSet; /* Timezone was set explicitly */
+ char isError; /* An overflow has occurred */
+ char useSubsec; /* Display subsecond precision */
+};
+
+
+/*
+** Convert zDate into one or more integers according to the conversion
+** specifier zFormat.
+**
+** zFormat[] contains 4 characters for each integer converted, except for
+** the last integer which is specified by three characters. The meaning
+** of a four-character format specifiers ABCD is:
+**
+** A: number of digits to convert. Always "2" or "4".
+** B: minimum value. Always "0" or "1".
+** C: maximum value, decoded as:
+** a: 12
+** b: 14
+** c: 24
+** d: 31
+** e: 59
+** f: 9999
+** D: the separator character, or \000 to indicate this is the
+** last number to convert.
+**
+** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
+** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
+** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
+** the 2-digit day which is the last integer in the set.
+**
+** The function returns the number of successful conversions.
+*/
+static int getDigits(const char *zDate, const char *zFormat, ...){
+ /* The aMx[] array translates the 3rd character of each format
+ ** spec into a max size: a b c d e f */
+ static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 };
+ va_list ap;
+ int cnt = 0;
+ char nextC;
+ va_start(ap, zFormat);
+ do{
+ char N = zFormat[0] - '0';
+ char min = zFormat[1] - '0';
+ int val = 0;
+ u16 max;
+
+ assert( zFormat[2]>='a' && zFormat[2]<='f' );
+ max = aMx[zFormat[2] - 'a'];
+ nextC = zFormat[3];
+ val = 0;
+ while( N-- ){
+ if( !sqlite3Isdigit(*zDate) ){
+ goto end_getDigits;
+ }
+ val = val*10 + *zDate - '0';
+ zDate++;
+ }
+ if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
+ goto end_getDigits;
+ }
+ *va_arg(ap,int*) = val;
+ zDate++;
+ cnt++;
+ zFormat += 4;
+ }while( nextC );
+end_getDigits:
+ va_end(ap);
+ return cnt;
+}
+
+/*
+** Parse a timezone extension on the end of a date-time.
+** The extension is of the form:
+**
+** (+/-)HH:MM
+**
+** Or the "zulu" notation:
+**
+** Z
+**
+** If the parse is successful, write the number of minutes
+** of change in p->tz and return 0. If a parser error occurs,
+** return non-zero.
+**
+** A missing specifier is not considered an error.
+*/
+static int parseTimezone(const char *zDate, DateTime *p){
+ int sgn = 0;
+ int nHr, nMn;
+ int c;
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
+ p->tz = 0;
+ c = *zDate;
+ if( c=='-' ){
+ sgn = -1;
+ }else if( c=='+' ){
+ sgn = +1;
+ }else if( c=='Z' || c=='z' ){
+ zDate++;
+ goto zulu_time;
+ }else{
+ return c!=0;
+ }
+ zDate++;
+ if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ p->tz = sgn*(nMn + nHr*60);
+zulu_time:
+ while( sqlite3Isspace(*zDate) ){ zDate++; }
+ p->tzSet = 1;
+ return *zDate!=0;
+}
+
+/*
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
+** The HH, MM, and SS must each be exactly 2 digits. The
+** fractional seconds FFFF can be one or more digits.
+**
+** Return 1 if there is a parsing error and 0 on success.
+*/
+static int parseHhMmSs(const char *zDate, DateTime *p){
+ int h, m, s;
+ double ms = 0.0;
+ if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ if( *zDate==':' ){
+ zDate++;
+ if( getDigits(zDate, "20e", &s)!=1 ){
+ return 1;
+ }
+ zDate += 2;
+ if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
+ double rScale = 1.0;
+ zDate++;
+ while( sqlite3Isdigit(*zDate) ){
+ ms = ms*10.0 + *zDate - '0';
+ rScale *= 10.0;
+ zDate++;
+ }
+ ms /= rScale;
+ }
+ }else{
+ s = 0;
+ }
+ p->validJD = 0;
+ p->rawS = 0;
+ p->validHMS = 1;
+ p->h = h;
+ p->m = m;
+ p->s = s + ms;
+ if( parseTimezone(zDate, p) ) return 1;
+ p->validTZ = (p->tz!=0)?1:0;
+ return 0;
+}
+
+/*
+** Put the DateTime object into its error state.
+*/
+static void datetimeError(DateTime *p){
+ memset(p, 0, sizeof(*p));
+ p->isError = 1;
+}
+
+/*
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
+** that the YYYY-MM-DD is according to the Gregorian calendar.
+**
+** Reference: Meeus page 61
+*/
+static void computeJD(DateTime *p){
+ int Y, M, D, A, B, X1, X2;
+
+ if( p->validJD ) return;
+ if( p->validYMD ){
+ Y = p->Y;
+ M = p->M;
+ D = p->D;
+ }else{
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
+ M = 1;
+ D = 1;
+ }
+ if( Y<-4713 || Y>9999 || p->rawS ){
+ datetimeError(p);
+ return;
+ }
+ if( M<=2 ){
+ Y--;
+ M += 12;
+ }
+ A = Y/100;
+ B = 2 - A + (A/4);
+ X1 = 36525*(Y+4716)/100;
+ X2 = 306001*(M+1)/10000;
+ p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
+ p->validJD = 1;
+ if( p->validHMS ){
+ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5);
+ if( p->validTZ ){
+ p->iJD -= p->tz*60000;
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+ }
+ }
+}
+
+/*
+** Parse dates of the form
+**
+** YYYY-MM-DD HH:MM:SS.FFF
+** YYYY-MM-DD HH:MM:SS
+** YYYY-MM-DD HH:MM
+** YYYY-MM-DD
+**
+** Write the result into the DateTime structure and return 0
+** on success and 1 if the input string is not a well-formed
+** date.
+*/
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
+ int Y, M, D, neg;
+
+ if( zDate[0]=='-' ){
+ zDate++;
+ neg = 1;
+ }else{
+ neg = 0;
+ }
+ if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
+ return 1;
+ }
+ zDate += 10;
+ while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
+ if( parseHhMmSs(zDate, p)==0 ){
+ /* We got the time */
+ }else if( *zDate==0 ){
+ p->validHMS = 0;
+ }else{
+ return 1;
+ }
+ p->validJD = 0;
+ p->validYMD = 1;
+ p->Y = neg ? -Y : Y;
+ p->M = M;
+ p->D = D;
+ if( p->validTZ ){
+ computeJD(p);
+ }
+ return 0;
+}
+
+/*
+** Set the time to the current time reported by the VFS.
+**
+** Return the number of errors.
+*/
+static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
+ p->iJD = sqlite3StmtCurrentTime(context);
+ if( p->iJD>0 ){
+ p->validJD = 1;
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Input "r" is a numeric quantity which might be a julian day number,
+** or the number of seconds since 1970. If the value if r is within
+** range of a julian day number, install it as such and set validJD.
+** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
+*/
+static void setRawDateNumber(DateTime *p, double r){
+ p->s = r;
+ p->rawS = 1;
+ if( r>=0.0 && r<5373484.5 ){
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
+ p->validJD = 1;
+ }
+}
+
+/*
+** Attempt to parse the given string into a julian day number. Return
+** the number of errors.
+**
+** The following are acceptable forms for the input string:
+**
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
+** DDDD.DD
+** now
+**
+** In the first form, the +/-HH:MM is always optional. The fractional
+** seconds extension (the ".FFF") is optional. The seconds portion
+** (":SS.FFF") is option. The year and date can be omitted as long
+** as there is a time string. The time string can be omitted as long
+** as there is a year and date.
+*/
+static int parseDateOrTime(
+ sqlite3_context *context,
+ const char *zDate,
+ DateTime *p
+){
+ double r;
+ if( parseYyyyMmDd(zDate,p)==0 ){
+ return 0;
+ }else if( parseHhMmSs(zDate, p)==0 ){
+ return 0;
+ }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
+ return setDateTimeToCurrent(context, p);
+ }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
+ setRawDateNumber(p, r);
+ return 0;
+ }else if( (sqlite3StrICmp(zDate,"subsec")==0
+ || sqlite3StrICmp(zDate,"subsecond")==0)
+ && sqlite3NotPureFunc(context) ){
+ p->useSubsec = 1;
+ return setDateTimeToCurrent(context, p);
+ }
+ return 1;
+}
+
+/* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
+** Multiplying this by 86400000 gives 464269060799999 as the maximum value
+** for DateTime.iJD.
+**
+** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
+** such a large integer literal, so we have to encode it.
+*/
+#define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
+
+/*
+** Return TRUE if the given julian day number is within range.
+**
+** The input is the JulianDay times 86400000.
+*/
+static int validJulianDay(sqlite3_int64 iJD){
+ return iJD>=0 && iJD<=INT_464269060799999;
+}
+
+/*
+** Compute the Year, Month, and Day from the julian day number.
+*/
+static void computeYMD(DateTime *p){
+ int Z, A, B, C, D, E, X1;
+ if( p->validYMD ) return;
+ if( !p->validJD ){
+ p->Y = 2000;
+ p->M = 1;
+ p->D = 1;
+ }else if( !validJulianDay(p->iJD) ){
+ datetimeError(p);
+ return;
+ }else{
+ Z = (int)((p->iJD + 43200000)/86400000);
+ A = (int)((Z - 1867216.25)/36524.25);
+ A = Z + 1 + A - (A/4);
+ B = A + 1524;
+ C = (int)((B - 122.1)/365.25);
+ D = (36525*(C&32767))/100;
+ E = (int)((B-D)/30.6001);
+ X1 = (int)(30.6001*E);
+ p->D = B - D - X1;
+ p->M = E<14 ? E-1 : E-13;
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
+ }
+ p->validYMD = 1;
+}
+
+/*
+** Compute the Hour, Minute, and Seconds from the julian day number.
+*/
+static void computeHMS(DateTime *p){
+ int day_ms, day_min; /* milliseconds, minutes into the day */
+ if( p->validHMS ) return;
+ computeJD(p);
+ day_ms = (int)((p->iJD + 43200000) % 86400000);
+ p->s = (day_ms % 60000)/1000.0;
+ day_min = day_ms/60000;
+ p->m = day_min % 60;
+ p->h = day_min / 60;
+ p->rawS = 0;
+ p->validHMS = 1;
+}
+
+/*
+** Compute both YMD and HMS
+*/
+static void computeYMD_HMS(DateTime *p){
+ computeYMD(p);
+ computeHMS(p);
+}
+
+/*
+** Clear the YMD and HMS and the TZ
+*/
+static void clearYMD_HMS_TZ(DateTime *p){
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+}
+
+#ifndef SQLITE_OMIT_LOCALTIME
+/*
+** On recent Windows platforms, the localtime_s() function is available
+** as part of the "Secure CRT". It is essentially equivalent to
+** localtime_r() available under most POSIX platforms, except that the
+** order of the parameters is reversed.
+**
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
+**
+** If the user has not indicated to use localtime_r() or localtime_s()
+** already, check for an MSVC build environment that provides
+** localtime_s().
+*/
+#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
+ && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
+#undef HAVE_LOCALTIME_S
+#define HAVE_LOCALTIME_S 1
+#endif
+
+/*
+** The following routine implements the rough equivalent of localtime_r()
+** using whatever operating-system specific localtime facility that
+** is available. This routine returns 0 on success and
+** non-zero on any kind of error.
+**
+** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
+** routine will always fail. If bLocaltimeFault is nonzero and
+** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
+** invoked in place of the OS-defined localtime() function.
+**
+** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
+** library function localtime_r() is used to assist in the calculation of
+** local time.
+*/
+static int osLocaltime(time_t *t, struct tm *pTm){
+ int rc;
+#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
+ struct tm *pX;
+#if SQLITE_THREADSAFE>0
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ sqlite3_mutex_enter(mutex);
+ pX = localtime(t);
+#ifndef SQLITE_UNTESTABLE
+ if( sqlite3GlobalConfig.bLocaltimeFault ){
+ if( sqlite3GlobalConfig.xAltLocaltime!=0
+ && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm)
+ ){
+ pX = pTm;
+ }else{
+ pX = 0;
+ }
+ }
+#endif
+ if( pX ) *pTm = *pX;
+#if SQLITE_THREADSAFE>0
+ sqlite3_mutex_leave(mutex);
+#endif
+ rc = pX==0;
+#else
+#ifndef SQLITE_UNTESTABLE
+ if( sqlite3GlobalConfig.bLocaltimeFault ){
+ if( sqlite3GlobalConfig.xAltLocaltime!=0 ){
+ return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm);
+ }else{
+ return 1;
+ }
+ }
+#endif
+#if HAVE_LOCALTIME_R
+ rc = localtime_r(t, pTm)==0;
+#else
+ rc = localtime_s(pTm, t);
+#endif /* HAVE_LOCALTIME_R */
+#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
+ return rc;
+}
+#endif /* SQLITE_OMIT_LOCALTIME */
+
+
+#ifndef SQLITE_OMIT_LOCALTIME
+/*
+** Assuming the input DateTime is UTC, move it to its localtime equivalent.
+*/
+static int toLocaltime(
+ DateTime *p, /* Date at which to calculate offset */
+ sqlite3_context *pCtx /* Write error here if one occurs */
+){
+ time_t t;
+ struct tm sLocal;
+ int iYearDiff;
+
+ /* Initialize the contents of sLocal to avoid a compiler warning. */
+ memset(&sLocal, 0, sizeof(sLocal));
+
+ computeJD(p);
+ if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */
+ || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */
+ ){
+ /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
+ ** works for years between 1970 and 2037. For dates outside this range,
+ ** SQLite attempts to map the year into an equivalent year within this
+ ** range, do the calculation, then map the year back.
+ */
+ DateTime x = *p;
+ computeYMD_HMS(&x);
+ iYearDiff = (2000 + x.Y%4) - x.Y;
+ x.Y += iYearDiff;
+ x.validJD = 0;
+ computeJD(&x);
+ t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
+ }else{
+ iYearDiff = 0;
+ t = (time_t)(p->iJD/1000 - 21086676*(i64)10000);
+ }
+ if( osLocaltime(&t, &sLocal) ){
+ sqlite3_result_error(pCtx, "local time unavailable", -1);
+ return SQLITE_ERROR;
+ }
+ p->Y = sLocal.tm_year + 1900 - iYearDiff;
+ p->M = sLocal.tm_mon + 1;
+ p->D = sLocal.tm_mday;
+ p->h = sLocal.tm_hour;
+ p->m = sLocal.tm_min;
+ p->s = sLocal.tm_sec + (p->iJD%1000)*0.001;
+ p->validYMD = 1;
+ p->validHMS = 1;
+ p->validJD = 0;
+ p->rawS = 0;
+ p->validTZ = 0;
+ p->isError = 0;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_LOCALTIME */
+
+/*
+** The following table defines various date transformations of the form
+**
+** 'NNN days'
+**
+** Where NNN is an arbitrary floating-point number and "days" can be one
+** of several units of time.
+*/
+static const struct {
+ u8 nName; /* Length of the name */
+ char zName[7]; /* Name of the transformation */
+ float rLimit; /* Maximum NNN value for this transform */
+ float rXform; /* Constant used for this transform */
+} aXformType[] = {
+ { 6, "second", 4.6427e+14, 1.0 },
+ { 6, "minute", 7.7379e+12, 60.0 },
+ { 4, "hour", 1.2897e+11, 3600.0 },
+ { 3, "day", 5373485.0, 86400.0 },
+ { 5, "month", 176546.0, 2592000.0 },
+ { 4, "year", 14713.0, 31536000.0 },
+};
+
+/*
+** If the DateTime p is raw number, try to figure out if it is
+** a julian day number of a unix timestamp. Set the p value
+** appropriately.
+*/
+static void autoAdjustDate(DateTime *p){
+ if( !p->rawS || p->validJD ){
+ p->rawS = 0;
+ }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */
+ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */
+ ){
+ double r = p->s*1000.0 + 210866760000000.0;
+ clearYMD_HMS_TZ(p);
+ p->iJD = (sqlite3_int64)(r + 0.5);
+ p->validJD = 1;
+ p->rawS = 0;
+ }
+}
+
+/*
+** Process a modifier to a date-time stamp. The modifiers are
+** as follows:
+**
+** NNN days
+** NNN hours
+** NNN minutes
+** NNN.NNNN seconds
+** NNN months
+** NNN years
+** start of month
+** start of year
+** start of week
+** start of day
+** weekday N
+** unixepoch
+** localtime
+** utc
+**
+** Return 0 on success and 1 if there is any kind of error. If the error
+** is in a system call (i.e. localtime()), then an error message is written
+** to context pCtx. If the error is an unrecognized modifier, no error is
+** written to pCtx.
+*/
+static int parseModifier(
+ sqlite3_context *pCtx, /* Function context */
+ const char *z, /* The text of the modifier */
+ int n, /* Length of zMod in bytes */
+ DateTime *p, /* The date/time value to be modified */
+ int idx /* Parameter index of the modifier */
+){
+ int rc = 1;
+ double r;
+ switch(sqlite3UpperToLower[(u8)z[0]] ){
+ case 'a': {
+ /*
+ ** auto
+ **
+ ** If rawS is available, then interpret as a julian day number, or
+ ** a unix timestamp, depending on its magnitude.
+ */
+ if( sqlite3_stricmp(z, "auto")==0 ){
+ if( idx>1 ) return 1; /* IMP: R-33611-57934 */
+ autoAdjustDate(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'j': {
+ /*
+ ** julianday
+ **
+ ** Always interpret the prior number as a julian-day value. If this
+ ** is not the first modifier, or if the prior argument is not a numeric
+ ** value in the allowed range of julian day numbers understood by
+ ** SQLite (0..5373484.5) then the result will be NULL.
+ */
+ if( sqlite3_stricmp(z, "julianday")==0 ){
+ if( idx>1 ) return 1; /* IMP: R-31176-64601 */
+ if( p->validJD && p->rawS ){
+ rc = 0;
+ p->rawS = 0;
+ }
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ case 'l': {
+ /* localtime
+ **
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
+ ** show local time.
+ */
+ if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
+ rc = toLocaltime(p, pCtx);
+ }
+ break;
+ }
+#endif
+ case 'u': {
+ /*
+ ** unixepoch
+ **
+ ** Treat the current value of p->s as the number of
+ ** seconds since 1970. Convert to a real julian day number.
+ */
+ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
+ if( idx>1 ) return 1; /* IMP: R-49255-55373 */
+ r = p->s*1000.0 + 210866760000000.0;
+ if( r>=0.0 && r<464269060800000.0 ){
+ clearYMD_HMS_TZ(p);
+ p->iJD = (sqlite3_int64)(r + 0.5);
+ p->validJD = 1;
+ p->rawS = 0;
+ rc = 0;
+ }
+ }
+#ifndef SQLITE_OMIT_LOCALTIME
+ else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
+ if( p->tzSet==0 ){
+ i64 iOrigJD; /* Original localtime */
+ i64 iGuess; /* Guess at the corresponding utc time */
+ int cnt = 0; /* Safety to prevent infinite loop */
+ i64 iErr; /* Guess is off by this much */
+
+ computeJD(p);
+ iGuess = iOrigJD = p->iJD;
+ iErr = 0;
+ do{
+ DateTime new;
+ memset(&new, 0, sizeof(new));
+ iGuess -= iErr;
+ new.iJD = iGuess;
+ new.validJD = 1;
+ rc = toLocaltime(&new, pCtx);
+ if( rc ) return rc;
+ computeJD(&new);
+ iErr = new.iJD - iOrigJD;
+ }while( iErr && cnt++<3 );
+ memset(p, 0, sizeof(*p));
+ p->iJD = iGuess;
+ p->validJD = 1;
+ p->tzSet = 1;
+ }
+ rc = SQLITE_OK;
+ }
+#endif
+ break;
+ }
+ case 'w': {
+ /*
+ ** weekday N
+ **
+ ** Move the date to the same time on the next occurrence of
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
+ ** date is already on the appropriate weekday, this is a no-op.
+ */
+ if( sqlite3_strnicmp(z, "weekday ", 8)==0
+ && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
+ && r>=0.0 && r<7.0 && (n=(int)r)==r ){
+ sqlite3_int64 Z;
+ computeYMD_HMS(p);
+ p->validTZ = 0;
+ p->validJD = 0;
+ computeJD(p);
+ Z = ((p->iJD + 129600000)/86400000) % 7;
+ if( Z>n ) Z -= 7;
+ p->iJD += (n - Z)*86400000;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 's': {
+ /*
+ ** start of TTTTT
+ **
+ ** Move the date backwards to the beginning of the current day,
+ ** or month or year.
+ **
+ ** subsecond
+ ** subsec
+ **
+ ** Show subsecond precision in the output of datetime() and
+ ** unixepoch() and strftime('%s').
+ */
+ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ){
+ if( sqlite3_stricmp(z, "subsec")==0
+ || sqlite3_stricmp(z, "subsecond")==0
+ ){
+ p->useSubsec = 1;
+ rc = 0;
+ }
+ break;
+ }
+ if( !p->validJD && !p->validYMD && !p->validHMS ) break;
+ z += 9;
+ computeYMD(p);
+ p->validHMS = 1;
+ p->h = p->m = 0;
+ p->s = 0.0;
+ p->rawS = 0;
+ p->validTZ = 0;
+ p->validJD = 0;
+ if( sqlite3_stricmp(z,"month")==0 ){
+ p->D = 1;
+ rc = 0;
+ }else if( sqlite3_stricmp(z,"year")==0 ){
+ p->M = 1;
+ p->D = 1;
+ rc = 0;
+ }else if( sqlite3_stricmp(z,"day")==0 ){
+ rc = 0;
+ }
+ break;
+ }
+ case '+':
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ double rRounder;
+ int i;
+ int Y,M,D,h,m,x;
+ const char *z2 = z;
+ char z0 = z[0];
+ for(n=1; z[n]; n++){
+ if( z[n]==':' ) break;
+ if( sqlite3Isspace(z[n]) ) break;
+ if( z[n]=='-' ){
+ if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break;
+ if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break;
+ }
+ }
+ if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
+ assert( rc==1 );
+ break;
+ }
+ if( z[n]=='-' ){
+ /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the
+ ** specified number of years, months, and days. MM is limited to
+ ** the range 0-11 and DD is limited to 0-30.
+ */
+ if( z0!='+' && z0!='-' ) break; /* Must start with +/- */
+ if( n==5 ){
+ if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break;
+ }else{
+ assert( n==6 );
+ if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break;
+ z++;
+ }
+ if( M>=12 ) break; /* M range 0..11 */
+ if( D>=31 ) break; /* D range 0..30 */
+ computeYMD_HMS(p);
+ p->validJD = 0;
+ if( z0=='-' ){
+ p->Y -= Y;
+ p->M -= M;
+ D = -D;
+ }else{
+ p->Y += Y;
+ p->M += M;
+ }
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ computeJD(p);
+ p->validHMS = 0;
+ p->validYMD = 0;
+ p->iJD += (i64)D*86400000;
+ if( z[11]==0 ){
+ rc = 0;
+ break;
+ }
+ if( sqlite3Isspace(z[11])
+ && getDigits(&z[12], "20c:20e", &h, &m)==2
+ ){
+ z2 = &z[12];
+ n = 2;
+ }else{
+ break;
+ }
+ }
+ if( z2[n]==':' ){
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
+ ** specified number of hours, minutes, seconds, and fractional seconds
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
+ ** omitted.
+ */
+
+ DateTime tx;
+ sqlite3_int64 day;
+ if( !sqlite3Isdigit(*z2) ) z2++;
+ memset(&tx, 0, sizeof(tx));
+ if( parseHhMmSs(z2, &tx) ) break;
+ computeJD(&tx);
+ tx.iJD -= 43200000;
+ day = tx.iJD/86400000;
+ tx.iJD -= day*86400000;
+ if( z0=='-' ) tx.iJD = -tx.iJD;
+ computeJD(p);
+ clearYMD_HMS_TZ(p);
+ p->iJD += tx.iJD;
+ rc = 0;
+ break;
+ }
+
+ /* If control reaches this point, it means the transformation is
+ ** one of the forms like "+NNN days". */
+ z += n;
+ while( sqlite3Isspace(*z) ) z++;
+ n = sqlite3Strlen30(z);
+ if( n>10 || n<3 ) break;
+ if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
+ computeJD(p);
+ assert( rc==1 );
+ rRounder = r<0 ? -0.5 : +0.5;
+ for(i=0; i<ArraySize(aXformType); i++){
+ if( aXformType[i].nName==n
+ && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
+ && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
+ ){
+ switch( i ){
+ case 4: { /* Special processing to add months */
+ assert( strcmp(aXformType[i].zName,"month")==0 );
+ computeYMD_HMS(p);
+ p->M += (int)r;
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ p->validJD = 0;
+ r -= (int)r;
+ break;
+ }
+ case 5: { /* Special processing to add years */
+ int y = (int)r;
+ assert( strcmp(aXformType[i].zName,"year")==0 );
+ computeYMD_HMS(p);
+ p->Y += y;
+ p->validJD = 0;
+ r -= (int)r;
+ break;
+ }
+ }
+ computeJD(p);
+ p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder);
+ rc = 0;
+ break;
+ }
+ }
+ clearYMD_HMS_TZ(p);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** Process time function arguments. argv[0] is a date-time stamp.
+** argv[1] and following are modifiers. Parse them all and write
+** the resulting time into the DateTime structure p. Return 0
+** on success and 1 if there are any errors.
+**
+** If there are zero parameters (if even argv[0] is undefined)
+** then assume a default value of "now" for argv[0].
+*/
+static int isDate(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ DateTime *p
+){
+ int i, n;
+ const unsigned char *z;
+ int eType;
+ memset(p, 0, sizeof(*p));
+ if( argc==0 ){
+ if( !sqlite3NotPureFunc(context) ) return 1;
+ return setDateTimeToCurrent(context, p);
+ }
+ if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
+ || eType==SQLITE_INTEGER ){
+ setRawDateNumber(p, sqlite3_value_double(argv[0]));
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( !z || parseDateOrTime(context, (char*)z, p) ){
+ return 1;
+ }
+ }
+ for(i=1; i<argc; i++){
+ z = sqlite3_value_text(argv[i]);
+ n = sqlite3_value_bytes(argv[i]);
+ if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1;
+ }
+ computeJD(p);
+ if( p->isError || !validJulianDay(p->iJD) ) return 1;
+ return 0;
+}
+
+
+/*
+** The following routines implement the various date and time functions
+** of SQLite.
+*/
+
+/*
+** julianday( TIMESTRING, MOD, MOD, ...)
+**
+** Return the julian day number of the date specified in the arguments
+*/
+static void juliandayFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite3_result_double(context, x.iJD/86400000.0);
+ }
+}
+
+/*
+** unixepoch( TIMESTRING, MOD, MOD, ...)
+**
+** Return the number of seconds (including fractional seconds) since
+** the unix epoch of 1970-01-01 00:00:00 GMT.
+*/
+static void unixepochFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ if( x.useSubsec ){
+ sqlite3_result_double(context, (x.iJD - 21086676*(i64)10000000)/1000.0);
+ }else{
+ sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000);
+ }
+ }
+}
+
+/*
+** datetime( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD HH:MM:SS
+*/
+static void datetimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int Y, s, n;
+ char zBuf[32];
+ computeYMD_HMS(&x);
+ Y = x.Y;
+ if( Y<0 ) Y = -Y;
+ zBuf[1] = '0' + (Y/1000)%10;
+ zBuf[2] = '0' + (Y/100)%10;
+ zBuf[3] = '0' + (Y/10)%10;
+ zBuf[4] = '0' + (Y)%10;
+ zBuf[5] = '-';
+ zBuf[6] = '0' + (x.M/10)%10;
+ zBuf[7] = '0' + (x.M)%10;
+ zBuf[8] = '-';
+ zBuf[9] = '0' + (x.D/10)%10;
+ zBuf[10] = '0' + (x.D)%10;
+ zBuf[11] = ' ';
+ zBuf[12] = '0' + (x.h/10)%10;
+ zBuf[13] = '0' + (x.h)%10;
+ zBuf[14] = ':';
+ zBuf[15] = '0' + (x.m/10)%10;
+ zBuf[16] = '0' + (x.m)%10;
+ zBuf[17] = ':';
+ if( x.useSubsec ){
+ s = (int)(1000.0*x.s + 0.5);
+ zBuf[18] = '0' + (s/10000)%10;
+ zBuf[19] = '0' + (s/1000)%10;
+ zBuf[20] = '.';
+ zBuf[21] = '0' + (s/100)%10;
+ zBuf[22] = '0' + (s/10)%10;
+ zBuf[23] = '0' + (s)%10;
+ zBuf[24] = 0;
+ n = 24;
+ }else{
+ s = (int)x.s;
+ zBuf[18] = '0' + (s/10)%10;
+ zBuf[19] = '0' + (s)%10;
+ zBuf[20] = 0;
+ n = 20;
+ }
+ if( x.Y<0 ){
+ zBuf[0] = '-';
+ sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, &zBuf[1], n-1, SQLITE_TRANSIENT);
+ }
+ }
+}
+
+/*
+** time( TIMESTRING, MOD, MOD, ...)
+**
+** Return HH:MM:SS
+*/
+static void timeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int s, n;
+ char zBuf[16];
+ computeHMS(&x);
+ zBuf[0] = '0' + (x.h/10)%10;
+ zBuf[1] = '0' + (x.h)%10;
+ zBuf[2] = ':';
+ zBuf[3] = '0' + (x.m/10)%10;
+ zBuf[4] = '0' + (x.m)%10;
+ zBuf[5] = ':';
+ if( x.useSubsec ){
+ s = (int)(1000.0*x.s + 0.5);
+ zBuf[6] = '0' + (s/10000)%10;
+ zBuf[7] = '0' + (s/1000)%10;
+ zBuf[8] = '.';
+ zBuf[9] = '0' + (s/100)%10;
+ zBuf[10] = '0' + (s/10)%10;
+ zBuf[11] = '0' + (s)%10;
+ zBuf[12] = 0;
+ n = 12;
+ }else{
+ s = (int)x.s;
+ zBuf[6] = '0' + (s/10)%10;
+ zBuf[7] = '0' + (s)%10;
+ zBuf[8] = 0;
+ n = 8;
+ }
+ sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** date( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD
+*/
+static void dateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ int Y;
+ char zBuf[16];
+ computeYMD(&x);
+ Y = x.Y;
+ if( Y<0 ) Y = -Y;
+ zBuf[1] = '0' + (Y/1000)%10;
+ zBuf[2] = '0' + (Y/100)%10;
+ zBuf[3] = '0' + (Y/10)%10;
+ zBuf[4] = '0' + (Y)%10;
+ zBuf[5] = '-';
+ zBuf[6] = '0' + (x.M/10)%10;
+ zBuf[7] = '0' + (x.M)%10;
+ zBuf[8] = '-';
+ zBuf[9] = '0' + (x.D/10)%10;
+ zBuf[10] = '0' + (x.D)%10;
+ zBuf[11] = 0;
+ if( x.Y<0 ){
+ zBuf[0] = '-';
+ sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
+ }
+ }
+}
+
+/*
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
+**
+** Return a string described by FORMAT. Conversions as follows:
+**
+** %d day of month
+** %f ** fractional seconds SS.SSS
+** %H hour 00-24
+** %j day of year 000-366
+** %J ** julian day number
+** %m month 01-12
+** %M minute 00-59
+** %s seconds since 1970-01-01
+** %S seconds 00-59
+** %w day of week 0-6 Sunday==0
+** %W week of year 00-53
+** %Y year 0000-9999
+** %% %
+*/
+static void strftimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ size_t i,j;
+ sqlite3 *db;
+ const char *zFmt;
+ sqlite3_str sRes;
+
+
+ if( argc==0 ) return;
+ zFmt = (const char*)sqlite3_value_text(argv[0]);
+ if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
+ db = sqlite3_context_db_handle(context);
+ sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+
+ computeJD(&x);
+ computeYMD_HMS(&x);
+ for(i=j=0; zFmt[i]; i++){
+ char cf;
+ if( zFmt[i]!='%' ) continue;
+ if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
+ i++;
+ j = i + 1;
+ cf = zFmt[i];
+ switch( cf ){
+ case 'd': /* Fall thru */
+ case 'e': {
+ sqlite3_str_appendf(&sRes, cf=='d' ? "%02d" : "%2d", x.D);
+ break;
+ }
+ case 'f': {
+ double s = x.s;
+ if( s>59.999 ) s = 59.999;
+ sqlite3_str_appendf(&sRes, "%06.3f", s);
+ break;
+ }
+ case 'F': {
+ sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D);
+ break;
+ }
+ case 'H':
+ case 'k': {
+ sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h);
+ break;
+ }
+ case 'I': /* Fall thru */
+ case 'l': {
+ int h = x.h;
+ if( h>12 ) h -= 12;
+ if( h==0 ) h = 12;
+ sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h);
+ break;
+ }
+ case 'W': /* Fall thru */
+ case 'j': {
+ int nDay; /* Number of days since 1st day of year */
+ DateTime y = x;
+ y.validJD = 0;
+ y.M = 1;
+ y.D = 1;
+ computeJD(&y);
+ nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
+ if( cf=='W' ){
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
+ wd = (int)(((x.iJD+43200000)/86400000)%7);
+ sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
+ }else{
+ sqlite3_str_appendf(&sRes,"%03d",nDay+1);
+ }
+ break;
+ }
+ case 'J': {
+ sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
+ break;
+ }
+ case 'm': {
+ sqlite3_str_appendf(&sRes,"%02d",x.M);
+ break;
+ }
+ case 'M': {
+ sqlite3_str_appendf(&sRes,"%02d",x.m);
+ break;
+ }
+ case 'p': /* Fall thru */
+ case 'P': {
+ if( x.h>=12 ){
+ sqlite3_str_append(&sRes, cf=='p' ? "PM" : "pm", 2);
+ }else{
+ sqlite3_str_append(&sRes, cf=='p' ? "AM" : "am", 2);
+ }
+ break;
+ }
+ case 'R': {
+ sqlite3_str_appendf(&sRes, "%02d:%02d", x.h, x.m);
+ break;
+ }
+ case 's': {
+ if( x.useSubsec ){
+ sqlite3_str_appendf(&sRes,"%.3f",
+ (x.iJD - 21086676*(i64)10000000)/1000.0);
+ }else{
+ i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
+ sqlite3_str_appendf(&sRes,"%lld",iS);
+ }
+ break;
+ }
+ case 'S': {
+ sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
+ break;
+ }
+ case 'T': {
+ sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s);
+ break;
+ }
+ case 'u': /* Fall thru */
+ case 'w': {
+ char c = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
+ if( c=='0' && cf=='u' ) c = '7';
+ sqlite3_str_appendchar(&sRes, 1, c);
+ break;
+ }
+ case 'Y': {
+ sqlite3_str_appendf(&sRes,"%04d",x.Y);
+ break;
+ }
+ case '%': {
+ sqlite3_str_appendchar(&sRes, 1, '%');
+ break;
+ }
+ default: {
+ sqlite3_str_reset(&sRes);
+ return;
+ }
+ }
+ }
+ if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
+ sqlite3ResultStrAccum(context, &sRes);
+}
+
+/*
+** current_time()
+**
+** This function returns the same value as time('now').
+*/
+static void ctimeFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ timeFunc(context, 0, 0);
+}
+
+/*
+** current_date()
+**
+** This function returns the same value as date('now').
+*/
+static void cdateFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ dateFunc(context, 0, 0);
+}
+
+/*
+** timediff(DATE1, DATE2)
+**
+** Return the amount of time that must be added to DATE2 in order to
+** convert it into DATE2. The time difference format is:
+**
+** +YYYY-MM-DD HH:MM:SS.SSS
+**
+** The initial "+" becomes "-" if DATE1 occurs before DATE2. For
+** date/time values A and B, the following invariant should hold:
+**
+** datetime(A) == (datetime(B, timediff(A,B))
+**
+** Both DATE arguments must be either a julian day number, or an
+** ISO-8601 string. The unix timestamps are not supported by this
+** routine.
+*/
+static void timediffFunc(
+ sqlite3_context *context,
+ int NotUsed1,
+ sqlite3_value **argv
+){
+ char sign;
+ int Y, M;
+ DateTime d1, d2;
+ sqlite3_str sRes;
+ UNUSED_PARAMETER(NotUsed1);
+ if( isDate(context, 1, &argv[0], &d1) ) return;
+ if( isDate(context, 1, &argv[1], &d2) ) return;
+ computeYMD_HMS(&d1);
+ computeYMD_HMS(&d2);
+ if( d1.iJD>=d2.iJD ){
+ sign = '+';
+ Y = d1.Y - d2.Y;
+ if( Y ){
+ d2.Y = d1.Y;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ M = d1.M - d2.M;
+ if( M<0 ){
+ Y--;
+ M += 12;
+ }
+ if( M!=0 ){
+ d2.M = d1.M;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ while( d1.iJD<d2.iJD ){
+ M--;
+ if( M<0 ){
+ M = 11;
+ Y--;
+ }
+ d2.M--;
+ if( d2.M<1 ){
+ d2.M = 12;
+ d2.Y--;
+ }
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ d1.iJD -= d2.iJD;
+ d1.iJD += (u64)1486995408 * (u64)100000;
+ }else /* d1<d2 */{
+ sign = '-';
+ Y = d2.Y - d1.Y;
+ if( Y ){
+ d2.Y = d1.Y;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ M = d2.M - d1.M;
+ if( M<0 ){
+ Y--;
+ M += 12;
+ }
+ if( M!=0 ){
+ d2.M = d1.M;
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ while( d1.iJD>d2.iJD ){
+ M--;
+ if( M<0 ){
+ M = 11;
+ Y--;
+ }
+ d2.M++;
+ if( d2.M>12 ){
+ d2.M = 1;
+ d2.Y++;
+ }
+ d2.validJD = 0;
+ computeJD(&d2);
+ }
+ d1.iJD = d2.iJD - d1.iJD;
+ d1.iJD += (u64)1486995408 * (u64)100000;
+ }
+ d1.validYMD = 0;
+ d1.validHMS = 0;
+ d1.validTZ = 0;
+ computeYMD_HMS(&d1);
+ sqlite3StrAccumInit(&sRes, 0, 0, 0, 100);
+ sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f",
+ sign, Y, M, d1.D-1, d1.h, d1.m, d1.s);
+ sqlite3ResultStrAccum(context, &sRes);
+}
+
+
+/*
+** current_timestamp()
+**
+** This function returns the same value as datetime('now').
+*/
+static void ctimestampFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ datetimeFunc(context, 0, 0);
+}
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
+
+#ifdef SQLITE_OMIT_DATETIME_FUNCS
+/*
+** If the library is compiled to omit the full-scale date and time
+** handling (to get a smaller binary), the following minimal version
+** of the functions current_time(), current_date() and current_timestamp()
+** are included instead. This is to support column declarations that
+** include "DEFAULT CURRENT_TIME" etc.
+**
+** This function uses the C-library functions time(), gmtime()
+** and strftime(). The format string to pass to strftime() is supplied
+** as the user-data for the function.
+*/
+static void currentTimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ time_t t;
+ char *zFormat = (char *)sqlite3_user_data(context);
+ sqlite3_int64 iT;
+ struct tm *pTm;
+ struct tm sNow;
+ char zBuf[20];
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ iT = sqlite3StmtCurrentTime(context);
+ if( iT<=0 ) return;
+ t = iT/1000 - 10000*(sqlite3_int64)21086676;
+#if HAVE_GMTIME_R
+ pTm = gmtime_r(&t, &sNow);
+#else
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+ pTm = gmtime(&t);
+ if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+#endif
+ if( pTm ){
+ strftime(zBuf, 20, zFormat, &sNow);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+#endif
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){
+ static FuncDef aDateTimeFuncs[] = {
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+ PURE_DATE(julianday, -1, 0, 0, juliandayFunc ),
+ PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ),
+ PURE_DATE(date, -1, 0, 0, dateFunc ),
+ PURE_DATE(time, -1, 0, 0, timeFunc ),
+ PURE_DATE(datetime, -1, 0, 0, datetimeFunc ),
+ PURE_DATE(strftime, -1, 0, 0, strftimeFunc ),
+ PURE_DATE(timediff, 2, 0, 0, timediffFunc ),
+ DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
+ DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
+ DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
+#else
+ STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
+ STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
+ STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
+#endif
+ };
+ sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
+}
+
+/************** End of date.c ************************************************/
+/************** Begin file os.c **********************************************/
+/*
+** 2005 November 29
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains OS interface code that is common to all
+** architectures.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#endif /* defined(SQLITE_TEST) */
+
+/*
+** When testing, also keep a count of the number of open files.
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API int sqlite3_open_file_count = 0;
+#endif /* defined(SQLITE_TEST) */
+
+/*
+** The default SQLite sqlite3_vfs implementations do not allocate
+** memory (actually, os_unix.c allocates a small amount of memory
+** from within OsOpen()), but some third-party implementations may.
+** So we test the effects of a malloc() failing and the sqlite3OsXXX()
+** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
+**
+** The following functions are instrumented for malloc() failure
+** testing:
+**
+** sqlite3OsRead()
+** sqlite3OsWrite()
+** sqlite3OsSync()
+** sqlite3OsFileSize()
+** sqlite3OsLock()
+** sqlite3OsCheckReservedLock()
+** sqlite3OsFileControl()
+** sqlite3OsShmMap()
+** sqlite3OsOpen()
+** sqlite3OsDelete()
+** sqlite3OsAccess()
+** sqlite3OsFullPathname()
+**
+*/
+#if defined(SQLITE_TEST)
+SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1;
+ #define DO_OS_MALLOC_TEST(x) \
+ if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \
+ void *pTstAlloc = sqlite3Malloc(10); \
+ if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT; \
+ sqlite3_free(pTstAlloc); \
+ }
+#else
+ #define DO_OS_MALLOC_TEST(x)
+#endif
+
+/*
+** The following routines are convenience wrappers around methods
+** of the sqlite3_file object. This is mostly just syntactic sugar. All
+** of this would be completely automatic if SQLite were coded using
+** C++ instead of plain old C.
+*/
+SQLITE_PRIVATE void sqlite3OsClose(sqlite3_file *pId){
+ if( pId->pMethods ){
+ pId->pMethods->xClose(pId);
+ pId->pMethods = 0;
+ }
+}
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xRead(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xWrite(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
+ return id->pMethods->xTruncate(id, size);
+}
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
+ DO_OS_MALLOC_TEST(id);
+ return flags ? id->pMethods->xSync(id, flags) : SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xFileSize(id, pSize);
+}
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
+ DO_OS_MALLOC_TEST(id);
+ assert( lockType>=SQLITE_LOCK_SHARED && lockType<=SQLITE_LOCK_EXCLUSIVE );
+ return id->pMethods->xLock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
+ assert( lockType==SQLITE_LOCK_NONE || lockType==SQLITE_LOCK_SHARED );
+ return id->pMethods->xUnlock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xCheckReservedLock(id, pResOut);
+}
+
+/*
+** Use sqlite3OsFileControl() when we are doing something that might fail
+** and we need to know about the failures. Use sqlite3OsFileControlHint()
+** when simply tossing information over the wall to the VFS and we do not
+** really care if the VFS receives and understands the information since it
+** is only a hint and can be safely ignored. The sqlite3OsFileControlHint()
+** routine has no return value since the return value would be meaningless.
+*/
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
+ if( id->pMethods==0 ) return SQLITE_NOTFOUND;
+#ifdef SQLITE_TEST
+ if( op!=SQLITE_FCNTL_COMMIT_PHASETWO
+ && op!=SQLITE_FCNTL_LOCK_TIMEOUT
+ && op!=SQLITE_FCNTL_CKPT_DONE
+ && op!=SQLITE_FCNTL_CKPT_START
+ ){
+ /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite
+ ** is using a regular VFS, it is called after the corresponding
+ ** transaction has been committed. Injecting a fault at this point
+ ** confuses the test scripts - the COMMIT command returns SQLITE_NOMEM
+ ** but the transaction is committed anyway.
+ **
+ ** The core must call OsFileControl() though, not OsFileControlHint(),
+ ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably
+ ** means the commit really has failed and an error should be returned
+ ** to the user.
+ **
+ ** The CKPT_DONE and CKPT_START file-controls are write-only signals
+ ** to the cksumvfs. Their return code is meaningless and is ignored
+ ** by the SQLite core, so there is no point in simulating OOMs for them.
+ */
+ DO_OS_MALLOC_TEST(id);
+ }
+#endif
+ return id->pMethods->xFileControl(id, op, pArg);
+}
+SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){
+ if( id->pMethods ) (void)id->pMethods->xFileControl(id, op, pArg);
+}
+
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
+ int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
+ return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
+}
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
+ if( NEVER(id->pMethods==0) ) return 0;
+ return id->pMethods->xDeviceCharacteristics(id);
+}
+#ifndef SQLITE_OMIT_WAL
+SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){
+ return id->pMethods->xShmLock(id, offset, n, flags);
+}
+SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){
+ id->pMethods->xShmBarrier(id);
+}
+SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){
+ return id->pMethods->xShmUnmap(id, deleteFlag);
+}
+SQLITE_PRIVATE int sqlite3OsShmMap(
+ sqlite3_file *id, /* Database file handle */
+ int iPage,
+ int pgsz,
+ int bExtend, /* True to extend file if necessary */
+ void volatile **pp /* OUT: Pointer to mapping */
+){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
+}
+#endif /* SQLITE_OMIT_WAL */
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* The real implementation of xFetch and xUnfetch */
+SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
+ DO_OS_MALLOC_TEST(id);
+ return id->pMethods->xFetch(id, iOff, iAmt, pp);
+}
+SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
+ return id->pMethods->xUnfetch(id, iOff, p);
+}
+#else
+/* No-op stubs to use when memory-mapped I/O is disabled */
+SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
+ *pp = 0;
+ return SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The next group of routines are convenience wrappers around the
+** VFS methods.
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ sqlite3_file *pFile,
+ int flags,
+ int *pFlagsOut
+){
+ int rc;
+ DO_OS_MALLOC_TEST(0);
+ /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
+ ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example,
+ ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
+ ** reaching the VFS. */
+ assert( zPath || (flags & SQLITE_OPEN_EXCLUSIVE) );
+ rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut);
+ assert( rc==SQLITE_OK || pFile->pMethods==0 );
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ DO_OS_MALLOC_TEST(0);
+ assert( dirSync==0 || dirSync==1 );
+ return pVfs->xDelete!=0 ? pVfs->xDelete(pVfs, zPath, dirSync) : SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3OsAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ DO_OS_MALLOC_TEST(0);
+ return pVfs->xAccess(pVfs, zPath, flags, pResOut);
+}
+SQLITE_PRIVATE int sqlite3OsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nPathOut,
+ char *zPathOut
+){
+ DO_OS_MALLOC_TEST(0);
+ zPathOut[0] = 0;
+ return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
+}
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ assert( zPath!=0 );
+ assert( strlen(zPath)<=SQLITE_MAX_PATHLEN ); /* tag-20210611-1 */
+ return pVfs->xDlOpen(pVfs, zPath);
+}
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ pVfs->xDlError(pVfs, nByte, zBufOut);
+}
+SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
+ return pVfs->xDlSym(pVfs, pHdle, zSym);
+}
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ pVfs->xDlClose(pVfs, pHandle);
+}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ if( sqlite3Config.iPrngSeed ){
+ memset(zBufOut, 0, nByte);
+ if( ALWAYS(nByte>(signed)sizeof(unsigned)) ) nByte = sizeof(unsigned int);
+ memcpy(zBufOut, &sqlite3Config.iPrngSeed, nByte);
+ return SQLITE_OK;
+ }else{
+ return pVfs->xRandomness(pVfs, nByte, zBufOut);
+ }
+
+}
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
+ return pVfs->xSleep(pVfs, nMicro);
+}
+SQLITE_PRIVATE int sqlite3OsGetLastError(sqlite3_vfs *pVfs){
+ return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0;
+}
+SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
+ int rc;
+ /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64()
+ ** method to get the current date and time if that method is available
+ ** (if iVersion is 2 or greater and the function pointer is not NULL) and
+ ** will fall back to xCurrentTime() if xCurrentTimeInt64() is
+ ** unavailable.
+ */
+ if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
+ rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut);
+ }else{
+ double r;
+ rc = pVfs->xCurrentTime(pVfs, &r);
+ *pTimeOut = (sqlite3_int64)(r*86400000.0);
+ }
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(
+ sqlite3_vfs *pVfs,
+ const char *zFile,
+ sqlite3_file **ppFile,
+ int flags,
+ int *pOutFlags
+){
+ int rc;
+ sqlite3_file *pFile;
+ pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
+ if( pFile ){
+ rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pFile);
+ *ppFile = 0;
+ }else{
+ *ppFile = pFile;
+ }
+ }else{
+ *ppFile = 0;
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ assert( *ppFile!=0 || rc!=SQLITE_OK );
+ return rc;
+}
+SQLITE_PRIVATE void sqlite3OsCloseFree(sqlite3_file *pFile){
+ assert( pFile );
+ sqlite3OsClose(pFile);
+ sqlite3_free(pFile);
+}
+
+/*
+** This function is a wrapper around the OS specific implementation of
+** sqlite3_os_init(). The purpose of the wrapper is to provide the
+** ability to simulate a malloc failure, so that the handling of an
+** error in sqlite3_os_init() by the upper layers can be tested.
+*/
+SQLITE_PRIVATE int sqlite3OsInit(void){
+ void *p = sqlite3_malloc(10);
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ sqlite3_free(p);
+ return sqlite3_os_init();
+}
+
+/*
+** The list of all registered VFS implementations.
+*/
+static sqlite3_vfs * SQLITE_WSD vfsList = 0;
+#define vfsList GLOBAL(sqlite3_vfs *, vfsList)
+
+/*
+** Locate a VFS by name. If no name is given, simply return the
+** first VFS on the list.
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
+ sqlite3_vfs *pVfs = 0;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex;
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return 0;
+#endif
+#if SQLITE_THREADSAFE
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
+ if( zVfs==0 ) break;
+ if( strcmp(zVfs, pVfs->zName)==0 ) break;
+ }
+ sqlite3_mutex_leave(mutex);
+ return pVfs;
+}
+
+/*
+** Unlink a VFS from the linked list
+*/
+static void vfsUnlink(sqlite3_vfs *pVfs){
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) );
+ if( pVfs==0 ){
+ /* No-op */
+ }else if( vfsList==pVfs ){
+ vfsList = pVfs->pNext;
+ }else if( vfsList ){
+ sqlite3_vfs *p = vfsList;
+ while( p->pNext && p->pNext!=pVfs ){
+ p = p->pNext;
+ }
+ if( p->pNext==pVfs ){
+ p->pNext = pVfs->pNext;
+ }
+ }
+}
+
+/*
+** Register a VFS with the system. It is harmless to register the same
+** VFS multiple times. The new VFS becomes the default if makeDflt is
+** true.
+*/
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
+ MUTEX_LOGIC(sqlite3_mutex *mutex;)
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pVfs==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+
+ MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ if( makeDflt || vfsList==0 ){
+ pVfs->pNext = vfsList;
+ vfsList = pVfs;
+ }else{
+ pVfs->pNext = vfsList->pNext;
+ vfsList->pNext = pVfs;
+ }
+ assert(vfsList);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Unregister a VFS so that it is no longer accessible.
+*/
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
+ MUTEX_LOGIC(sqlite3_mutex *mutex;)
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/************** End of os.c **************************************************/
+/************** Begin file fault.c *******************************************/
+/*
+** 2008 Jan 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code to support the concept of "benign"
+** malloc failures (when the xMalloc() or xRealloc() method of the
+** sqlite3_mem_methods structure fails to allocate a block of memory
+** and returns 0).
+**
+** Most malloc failures are non-benign. After they occur, SQLite
+** abandons the current operation and returns an error code (usually
+** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
+** fatal. For example, if a malloc fails while resizing a hash table, this
+** is completely recoverable simply by not carrying out the resize. The
+** hash table will continue to function normally. So a malloc failure
+** during a hash table resize is a benign fault.
+*/
+
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_UNTESTABLE
+
+/*
+** Global variables.
+*/
+typedef struct BenignMallocHooks BenignMallocHooks;
+static SQLITE_WSD struct BenignMallocHooks {
+ void (*xBenignBegin)(void);
+ void (*xBenignEnd)(void);
+} sqlite3Hooks = { 0, 0 };
+
+/* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
+** structure. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdHooks can refer directly
+** to the "sqlite3Hooks" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdHooksInit \
+ BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
+# define wsdHooks x[0]
+#else
+# define wsdHooksInit
+# define wsdHooks sqlite3Hooks
+#endif
+
+
+/*
+** Register hooks to call when sqlite3BeginBenignMalloc() and
+** sqlite3EndBenignMalloc() are called, respectively.
+*/
+SQLITE_PRIVATE void sqlite3BenignMallocHooks(
+ void (*xBenignBegin)(void),
+ void (*xBenignEnd)(void)
+){
+ wsdHooksInit;
+ wsdHooks.xBenignBegin = xBenignBegin;
+ wsdHooks.xBenignEnd = xBenignEnd;
+}
+
+/*
+** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
+** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
+** indicates that subsequent malloc failures are non-benign.
+*/
+SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){
+ wsdHooksInit;
+ if( wsdHooks.xBenignBegin ){
+ wsdHooks.xBenignBegin();
+ }
+}
+SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){
+ wsdHooksInit;
+ if( wsdHooks.xBenignEnd ){
+ wsdHooks.xBenignEnd();
+ }
+}
+
+#endif /* #ifndef SQLITE_UNTESTABLE */
+
+/************** End of fault.c ***********************************************/
+/************** Begin file mem0.c ********************************************/
+/*
+** 2008 October 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains a no-op memory allocation drivers for use when
+** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented
+** here always fail. SQLite will not operate with these drivers. These
+** are merely placeholders. Real drivers must be substituted using
+** sqlite3_config() before SQLite will operate.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_ZERO_MALLOC
+
+/*
+** No-op versions of all memory allocation routines
+*/
+static void *sqlite3MemMalloc(int nByte){ return 0; }
+static void sqlite3MemFree(void *pPrior){ return; }
+static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
+static int sqlite3MemSize(void *pPrior){ return 0; }
+static int sqlite3MemRoundup(int n){ return n; }
+static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
+static void sqlite3MemShutdown(void *NotUsed){ return; }
+
+/*
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
+}
+
+#endif /* SQLITE_ZERO_MALLOC */
+
+/************** End of mem0.c ************************************************/
+/************** Begin file mem1.c ********************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object. The content of
+** this file is only used if SQLITE_SYSTEM_MALLOC is defined. The
+** SQLITE_SYSTEM_MALLOC macro is defined automatically if neither the
+** SQLITE_MEMDEBUG nor the SQLITE_WIN32_MALLOC macros are defined. The
+** default configuration is to use memory allocation routines in this
+** file.
+**
+** C-preprocessor macro summary:
+**
+** HAVE_MALLOC_USABLE_SIZE The configure script sets this symbol if
+** the malloc_usable_size() interface exists
+** on the target platform. Or, this symbol
+** can be set manually, if desired.
+** If an equivalent interface exists by
+** a different name, using a separate -D
+** option to rename it.
+**
+** SQLITE_WITHOUT_ZONEMALLOC Some older macs lack support for the zone
+** memory allocator. Set this symbol to enable
+** building on older macs.
+**
+** SQLITE_WITHOUT_MSIZE Set this symbol to disable the use of
+** _msize() on windows systems. This might
+** be necessary when compiling for Delphi,
+** for example.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_SYSTEM_MALLOC
+#if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC)
+
+/*
+** Use the zone allocator available on apple products unless the
+** SQLITE_WITHOUT_ZONEMALLOC symbol is defined.
+*/
+#include <sys/sysctl.h>
+#include <malloc/malloc.h>
+#ifdef SQLITE_MIGHT_BE_SINGLE_CORE
+#include <libkern/OSAtomic.h>
+#endif /* SQLITE_MIGHT_BE_SINGLE_CORE */
+static malloc_zone_t* _sqliteZone_;
+#define SQLITE_MALLOC(x) malloc_zone_malloc(_sqliteZone_, (x))
+#define SQLITE_FREE(x) malloc_zone_free(_sqliteZone_, (x));
+#define SQLITE_REALLOC(x,y) malloc_zone_realloc(_sqliteZone_, (x), (y))
+#define SQLITE_MALLOCSIZE(x) \
+ (_sqliteZone_ ? _sqliteZone_->size(_sqliteZone_,x) : malloc_size(x))
+
+#else /* if not __APPLE__ */
+
+/*
+** Use standard C library malloc and free on non-Apple systems.
+** Also used by Apple systems if SQLITE_WITHOUT_ZONEMALLOC is defined.
+*/
+#define SQLITE_MALLOC(x) malloc(x)
+#define SQLITE_FREE(x) free(x)
+#define SQLITE_REALLOC(x,y) realloc((x),(y))
+
+/*
+** The malloc.h header file is needed for malloc_usable_size() function
+** on some systems (e.g. Linux).
+*/
+#if HAVE_MALLOC_H && HAVE_MALLOC_USABLE_SIZE
+# define SQLITE_USE_MALLOC_H 1
+# define SQLITE_USE_MALLOC_USABLE_SIZE 1
+/*
+** The MSVCRT has malloc_usable_size(), but it is called _msize(). The
+** use of _msize() is automatic, but can be disabled by compiling with
+** -DSQLITE_WITHOUT_MSIZE. Using the _msize() function also requires
+** the malloc.h header file.
+*/
+#elif defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE)
+# define SQLITE_USE_MALLOC_H
+# define SQLITE_USE_MSIZE
+#endif
+
+/*
+** Include the malloc.h header file, if necessary. Also set define macro
+** SQLITE_MALLOCSIZE to the appropriate function name, which is _msize()
+** for MSVC and malloc_usable_size() for most other systems (e.g. Linux).
+** The memory size function can always be overridden manually by defining
+** the macro SQLITE_MALLOCSIZE to the desired function name.
+*/
+#if defined(SQLITE_USE_MALLOC_H)
+# include <malloc.h>
+# if defined(SQLITE_USE_MALLOC_USABLE_SIZE)
+# if !defined(SQLITE_MALLOCSIZE)
+# define SQLITE_MALLOCSIZE(x) malloc_usable_size(x)
+# endif
+# elif defined(SQLITE_USE_MSIZE)
+# if !defined(SQLITE_MALLOCSIZE)
+# define SQLITE_MALLOCSIZE _msize
+# endif
+# endif
+#endif /* defined(SQLITE_USE_MALLOC_H) */
+
+#endif /* __APPLE__ or not __APPLE__ */
+
+/*
+** Like malloc(), but remember the size of the allocation
+** so that we can find it later using sqlite3MemSize().
+**
+** For this low-level routine, we are guaranteed that nByte>0 because
+** cases of nByte<=0 will be intercepted and dealt with by higher level
+** routines.
+*/
+static void *sqlite3MemMalloc(int nByte){
+#ifdef SQLITE_MALLOCSIZE
+ void *p;
+ testcase( ROUND8(nByte)==nByte );
+ p = SQLITE_MALLOC( nByte );
+ if( p==0 ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
+ }
+ return p;
+#else
+ sqlite3_int64 *p;
+ assert( nByte>0 );
+ testcase( ROUND8(nByte)!=nByte );
+ p = SQLITE_MALLOC( nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
+ }else{
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
+ }
+ return (void *)p;
+#endif
+}
+
+/*
+** Like free() but works for allocations obtained from sqlite3MemMalloc()
+** or sqlite3MemRealloc().
+**
+** For this low-level routine, we already know that pPrior!=0 since
+** cases where pPrior==0 will have been intercepted and dealt with
+** by higher-level routines.
+*/
+static void sqlite3MemFree(void *pPrior){
+#ifdef SQLITE_MALLOCSIZE
+ SQLITE_FREE(pPrior);
+#else
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 );
+ p--;
+ SQLITE_FREE(p);
+#endif
+}
+
+/*
+** Report the allocated size of a prior return from xMalloc()
+** or xRealloc().
+*/
+static int sqlite3MemSize(void *pPrior){
+#ifdef SQLITE_MALLOCSIZE
+ assert( pPrior!=0 );
+ return (int)SQLITE_MALLOCSIZE(pPrior);
+#else
+ sqlite3_int64 *p;
+ assert( pPrior!=0 );
+ p = (sqlite3_int64*)pPrior;
+ p--;
+ return (int)p[0];
+#endif
+}
+
+/*
+** Like realloc(). Resize an allocation previously obtained from
+** sqlite3MemMalloc().
+**
+** For this low-level interface, we know that pPrior!=0. Cases where
+** pPrior==0 while have been intercepted by higher-level routine and
+** redirected to xMalloc. Similarly, we know that nByte>0 because
+** cases where nByte<=0 will have been intercepted by higher-level
+** routines and redirected to xFree.
+*/
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+#ifdef SQLITE_MALLOCSIZE
+ void *p = SQLITE_REALLOC(pPrior, nByte);
+ if( p==0 ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM,
+ "failed memory resize %u to %u bytes",
+ SQLITE_MALLOCSIZE(pPrior), nByte);
+ }
+ return p;
+#else
+ sqlite3_int64 *p = (sqlite3_int64*)pPrior;
+ assert( pPrior!=0 && nByte>0 );
+ assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */
+ p--;
+ p = SQLITE_REALLOC(p, nByte+8 );
+ if( p ){
+ p[0] = nByte;
+ p++;
+ }else{
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM,
+ "failed memory resize %u to %u bytes",
+ sqlite3MemSize(pPrior), nByte);
+ }
+ return (void*)p;
+#endif
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return ROUND8(n);
+}
+
+/*
+** Initialize this module.
+*/
+static int sqlite3MemInit(void *NotUsed){
+#if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC)
+ int cpuCount;
+ size_t len;
+ if( _sqliteZone_ ){
+ return SQLITE_OK;
+ }
+ len = sizeof(cpuCount);
+ /* One usually wants to use hw.activecpu for MT decisions, but not here */
+ sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0);
+ if( cpuCount>1 ){
+ /* defer MT decisions to system malloc */
+ _sqliteZone_ = malloc_default_zone();
+ }else{
+ /* only 1 core, use our own zone to contention over global locks,
+ ** e.g. we have our own dedicated locks */
+ _sqliteZone_ = malloc_create_zone(4096, 0);
+ malloc_set_zone_name(_sqliteZone_, "Sqlite_Heap");
+ }
+#endif /* defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) */
+ UNUSED_PARAMETER(NotUsed);
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ return;
+}
+
+/*
+** This routine is the only routine in this file with external linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
+}
+
+#endif /* SQLITE_SYSTEM_MALLOC */
+
+/************** End of mem1.c ************************************************/
+/************** Begin file mem2.c ********************************************/
+/*
+** 2007 August 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains low-level memory allocation drivers for when
+** SQLite will use the standard C-library malloc/realloc/free interface
+** to obtain the memory it needs while adding lots of additional debugging
+** information to each allocation in order to help detect and fix memory
+** leaks and memory usage errors.
+**
+** This file contains implementations of the low-level memory allocation
+** routines specified in the sqlite3_mem_methods object.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is used only if the
+** SQLITE_MEMDEBUG macro is defined
+*/
+#ifdef SQLITE_MEMDEBUG
+
+/*
+** The backtrace functionality is only available with GLIBC
+*/
+#ifdef __GLIBC__
+ extern int backtrace(void**,int);
+ extern void backtrace_symbols_fd(void*const*,int,int);
+#else
+# define backtrace(A,B) 1
+# define backtrace_symbols_fd(A,B,C)
+#endif
+/* #include <stdio.h> */
+
+/*
+** Each memory allocation looks like this:
+**
+** ------------------------------------------------------------------------
+** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
+** ------------------------------------------------------------------------
+**
+** The application code sees only a pointer to the allocation. We have
+** to back up from the allocation pointer to find the MemBlockHdr. The
+** MemBlockHdr tells us the size of the allocation and the number of
+** backtrace pointers. There is also a guard word at the end of the
+** MemBlockHdr.
+*/
+struct MemBlockHdr {
+ i64 iSize; /* Size of this allocation */
+ struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
+ char nBacktrace; /* Number of backtraces on this alloc */
+ char nBacktraceSlots; /* Available backtrace slots */
+ u8 nTitle; /* Bytes of title; includes '\0' */
+ u8 eType; /* Allocation type code */
+ int iForeGuard; /* Guard word for sanity */
+};
+
+/*
+** Guard words
+*/
+#define FOREGUARD 0x80F5E153
+#define REARGUARD 0xE4676B53
+
+/*
+** Number of malloc size increments to track.
+*/
+#define NCSIZE 1000
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Head and tail of a linked list of all outstanding allocations
+ */
+ struct MemBlockHdr *pFirst;
+ struct MemBlockHdr *pLast;
+
+ /*
+ ** The number of levels of backtrace to save in new allocations.
+ */
+ int nBacktrace;
+ void (*xBacktrace)(int, int, void **);
+
+ /*
+ ** Title text to insert in front of each block
+ */
+ int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
+ char zTitle[100]; /* The title text */
+
+ /*
+ ** sqlite3MallocDisallow() increments the following counter.
+ ** sqlite3MallocAllow() decrements it.
+ */
+ int disallow; /* Do not allow memory allocation */
+
+ /*
+ ** Gather statistics on the sizes of memory allocations.
+ ** nAlloc[i] is the number of allocation attempts of i*8
+ ** bytes. i==NCSIZE is the number of allocation attempts for
+ ** sizes more than NCSIZE*8 bytes.
+ */
+ int nAlloc[NCSIZE]; /* Total number of allocations */
+ int nCurrent[NCSIZE]; /* Current number of allocations */
+ int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
+
+} mem;
+
+
+/*
+** Adjust memory usage statistics
+*/
+static void adjustStats(int iSize, int increment){
+ int i = ROUND8(iSize)/8;
+ if( i>NCSIZE-1 ){
+ i = NCSIZE - 1;
+ }
+ if( increment>0 ){
+ mem.nAlloc[i]++;
+ mem.nCurrent[i]++;
+ if( mem.nCurrent[i]>mem.mxCurrent[i] ){
+ mem.mxCurrent[i] = mem.nCurrent[i];
+ }
+ }else{
+ mem.nCurrent[i]--;
+ assert( mem.nCurrent[i]>=0 );
+ }
+}
+
+/*
+** Given an allocation, find the MemBlockHdr for that allocation.
+**
+** This routine checks the guards at either end of the allocation and
+** if they are incorrect it asserts.
+*/
+static struct MemBlockHdr *sqlite3MemsysGetHeader(const void *pAllocation){
+ struct MemBlockHdr *p;
+ int *pInt;
+ u8 *pU8;
+ int nReserve;
+
+ p = (struct MemBlockHdr*)pAllocation;
+ p--;
+ assert( p->iForeGuard==(int)FOREGUARD );
+ nReserve = ROUND8(p->iSize);
+ pInt = (int*)pAllocation;
+ pU8 = (u8*)pAllocation;
+ assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
+ /* This checks any of the "extra" bytes allocated due
+ ** to rounding up to an 8 byte boundary to ensure
+ ** they haven't been overwritten.
+ */
+ while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 );
+ return p;
+}
+
+/*
+** Return the number of bytes currently allocated at address p.
+*/
+static int sqlite3MemSize(void *p){
+ struct MemBlockHdr *pHdr;
+ if( !p ){
+ return 0;
+ }
+ pHdr = sqlite3MemsysGetHeader(p);
+ return (int)pHdr->iSize;
+}
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+static int sqlite3MemInit(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( (sizeof(struct MemBlockHdr)&7) == 0 );
+ if( !sqlite3GlobalConfig.bMemstat ){
+ /* If memory status is enabled, then the malloc.c wrapper will already
+ ** hold the STATIC_MEM mutex when the routines here are invoked. */
+ mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+static void sqlite3MemShutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem.mutex = 0;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int sqlite3MemRoundup(int n){
+ return ROUND8(n);
+}
+
+/*
+** Fill a buffer with pseudo-random bytes. This is used to preset
+** the content of a new memory allocation to unpredictable values and
+** to clear the content of a freed allocation to unpredictable values.
+*/
+static void randomFill(char *pBuf, int nByte){
+ unsigned int x, y, r;
+ x = SQLITE_PTR_TO_INT(pBuf);
+ y = nByte | 1;
+ while( nByte >= 4 ){
+ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
+ y = y*1103515245 + 12345;
+ r = x ^ y;
+ *(int*)pBuf = r;
+ pBuf += 4;
+ nByte -= 4;
+ }
+ while( nByte-- > 0 ){
+ x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
+ y = y*1103515245 + 12345;
+ r = x ^ y;
+ *(pBuf++) = r & 0xff;
+ }
+}
+
+/*
+** Allocate nByte bytes of memory.
+*/
+static void *sqlite3MemMalloc(int nByte){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ int *pInt;
+ void *p = 0;
+ int totalSize;
+ int nReserve;
+ sqlite3_mutex_enter(mem.mutex);
+ assert( mem.disallow==0 );
+ nReserve = ROUND8(nByte);
+ totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
+ mem.nBacktrace*sizeof(void*) + mem.nTitle;
+ p = malloc(totalSize);
+ if( p ){
+ z = p;
+ pBt = (void**)&z[mem.nTitle];
+ pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
+ pHdr->pNext = 0;
+ pHdr->pPrev = mem.pLast;
+ if( mem.pLast ){
+ mem.pLast->pNext = pHdr;
+ }else{
+ mem.pFirst = pHdr;
+ }
+ mem.pLast = pHdr;
+ pHdr->iForeGuard = FOREGUARD;
+ pHdr->eType = MEMTYPE_HEAP;
+ pHdr->nBacktraceSlots = mem.nBacktrace;
+ pHdr->nTitle = mem.nTitle;
+ if( mem.nBacktrace ){
+ void *aAddr[40];
+ pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
+ memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
+ assert(pBt[0]);
+ if( mem.xBacktrace ){
+ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
+ }
+ }else{
+ pHdr->nBacktrace = 0;
+ }
+ if( mem.nTitle ){
+ memcpy(z, mem.zTitle, mem.nTitle);
+ }
+ pHdr->iSize = nByte;
+ adjustStats(nByte, +1);
+ pInt = (int*)&pHdr[1];
+ pInt[nReserve/sizeof(int)] = REARGUARD;
+ randomFill((char*)pInt, nByte);
+ memset(((char*)pInt)+nByte, 0x65, nReserve-nByte);
+ p = (void*)pInt;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return p;
+}
+
+/*
+** Free memory.
+*/
+static void sqlite3MemFree(void *pPrior){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0
+ || mem.mutex!=0 );
+ pHdr = sqlite3MemsysGetHeader(pPrior);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ sqlite3_mutex_enter(mem.mutex);
+ if( pHdr->pPrev ){
+ assert( pHdr->pPrev->pNext==pHdr );
+ pHdr->pPrev->pNext = pHdr->pNext;
+ }else{
+ assert( mem.pFirst==pHdr );
+ mem.pFirst = pHdr->pNext;
+ }
+ if( pHdr->pNext ){
+ assert( pHdr->pNext->pPrev==pHdr );
+ pHdr->pNext->pPrev = pHdr->pPrev;
+ }else{
+ assert( mem.pLast==pHdr );
+ mem.pLast = pHdr->pPrev;
+ }
+ z = (char*)pBt;
+ z -= pHdr->nTitle;
+ adjustStats((int)pHdr->iSize, -1);
+ randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
+ (int)pHdr->iSize + sizeof(int) + pHdr->nTitle);
+ free(z);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** For this debugging implementation, we *always* make a copy of the
+** allocation into a new place in memory. In this way, if the
+** higher level code is using pointer to the old allocation, it is
+** much more likely to break and we are much more liking to find
+** the error.
+*/
+static void *sqlite3MemRealloc(void *pPrior, int nByte){
+ struct MemBlockHdr *pOldHdr;
+ void *pNew;
+ assert( mem.disallow==0 );
+ assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */
+ pOldHdr = sqlite3MemsysGetHeader(pPrior);
+ pNew = sqlite3MemMalloc(nByte);
+ if( pNew ){
+ memcpy(pNew, pPrior, (int)(nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize));
+ if( nByte>pOldHdr->iSize ){
+ randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - (int)pOldHdr->iSize);
+ }
+ sqlite3MemFree(pPrior);
+ }
+ return pNew;
+}
+
+/*
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file.
+*/
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ static const sqlite3_mem_methods defaultMethods = {
+ sqlite3MemMalloc,
+ sqlite3MemFree,
+ sqlite3MemRealloc,
+ sqlite3MemSize,
+ sqlite3MemRoundup,
+ sqlite3MemInit,
+ sqlite3MemShutdown,
+ 0
+ };
+ sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
+}
+
+/*
+** Set the "type" of an allocation.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){
+ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD );
+ pHdr->eType = eType;
+ }
+}
+
+/*
+** Return TRUE if the mask of type in eType matches the type of the
+** allocation p. Also return true if p==NULL.
+**
+** This routine is designed for use within an assert() statement, to
+** verify the type of an allocation. For example:
+**
+** assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+*/
+SQLITE_PRIVATE int sqlite3MemdebugHasType(const void *p, u8 eType){
+ int rc = 1;
+ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
+ if( (pHdr->eType&eType)==0 ){
+ rc = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Return TRUE if the mask of type in eType matches no bits of the type of the
+** allocation p. Also return true if p==NULL.
+**
+** This routine is designed for use within an assert() statement, to
+** verify the type of an allocation. For example:
+**
+** assert( sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
+*/
+SQLITE_PRIVATE int sqlite3MemdebugNoType(const void *p, u8 eType){
+ int rc = 1;
+ if( p && sqlite3GlobalConfig.m.xFree==sqlite3MemFree ){
+ struct MemBlockHdr *pHdr;
+ pHdr = sqlite3MemsysGetHeader(p);
+ assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
+ if( (pHdr->eType&eType)!=0 ){
+ rc = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Set the number of backtrace levels kept for each allocation.
+** A value of zero turns off backtracing. The number is always rounded
+** up to a multiple of 2.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
+ if( depth<0 ){ depth = 0; }
+ if( depth>20 ){ depth = 20; }
+ depth = (depth+1)&0xfe;
+ mem.nBacktrace = depth;
+}
+
+SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
+ mem.xBacktrace = xBacktrace;
+}
+
+/*
+** Set the title string for subsequent allocations.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
+ unsigned int n = sqlite3Strlen30(zTitle) + 1;
+ sqlite3_mutex_enter(mem.mutex);
+ if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
+ memcpy(mem.zTitle, zTitle, n);
+ mem.zTitle[n] = 0;
+ mem.nTitle = ROUND8(n);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+SQLITE_PRIVATE void sqlite3MemdebugSync(){
+ struct MemBlockHdr *pHdr;
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ void **pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ mem.xBacktrace((int)pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
+ }
+}
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+ FILE *out;
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ int i;
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ char *z = (char*)pHdr;
+ z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
+ fprintf(out, "**** %lld bytes at %p from %s ****\n",
+ pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
+ if( pHdr->nBacktrace ){
+ fflush(out);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
+ fprintf(out, "\n");
+ }
+ }
+ fprintf(out, "COUNTS:\n");
+ for(i=0; i<NCSIZE-1; i++){
+ if( mem.nAlloc[i] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
+ }
+ }
+ if( mem.nAlloc[NCSIZE-1] ){
+ fprintf(out, " %5d: %10d %10d %10d\n",
+ NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
+ mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
+ }
+ fclose(out);
+}
+
+/*
+** Return the number of times sqlite3MemMalloc() has been called.
+*/
+SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
+ int i;
+ int nTotal = 0;
+ for(i=0; i<NCSIZE; i++){
+ nTotal += mem.nAlloc[i];
+ }
+ return nTotal;
+}
+
+
+#endif /* SQLITE_MEMDEBUG */
+
+/************** End of mem2.c ************************************************/
+/************** Begin file mem3.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The SQLite user supplies a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is only built into the library
+** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
+** mean that the library will use a memory-pool by default, just that
+** it is available. The mempool allocator is activated by calling
+** sqlite3_config().
+*/
+#ifdef SQLITE_ENABLE_MEMSYS3
+
+/*
+** Maximum size (in Mem3Blocks) of a "small" chunk.
+*/
+#define MX_SMALL 10
+
+
+/*
+** Number of freelist hash slots
+*/
+#define N_HASH 61
+
+/*
+** A memory allocation (also called a "chunk") consists of two or
+** more blocks where each block is 8 bytes. The first 8 bytes are
+** a header that is not returned to the user.
+**
+** A chunk is two or more blocks that is either checked out or
+** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
+** size of the allocation in blocks if the allocation is free.
+** The u.hdr.size4x&1 bit is true if the chunk is checked out and
+** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
+** is true if the previous chunk is checked out and false if the
+** previous chunk is free. The u.hdr.prevSize field is the size of
+** the previous chunk in blocks if the previous chunk is on the
+** freelist. If the previous chunk is checked out, then
+** u.hdr.prevSize can be part of the data for that chunk and should
+** not be read or written.
+**
+** We often identify a chunk by its index in mem3.aPool[]. When
+** this is done, the chunk index refers to the second block of
+** the chunk. In this way, the first chunk has an index of 1.
+** A chunk index of 0 means "no such chunk" and is the equivalent
+** of a NULL pointer.
+**
+** The second block of free chunks is of the form u.list. The
+** two fields form a double-linked list of chunks of related sizes.
+** Pointers to the head of the list are stored in mem3.aiSmall[]
+** for smaller chunks and mem3.aiHash[] for larger chunks.
+**
+** The second block of a chunk is user data if the chunk is checked
+** out. If a chunk is checked out, the user data may extend into
+** the u.hdr.prevSize value of the following chunk.
+*/
+typedef struct Mem3Block Mem3Block;
+struct Mem3Block {
+ union {
+ struct {
+ u32 prevSize; /* Size of previous chunk in Mem3Block elements */
+ u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
+ } hdr;
+ struct {
+ u32 next; /* Index in mem3.aPool[] of next free chunk */
+ u32 prev; /* Index in mem3.aPool[] of previous free chunk */
+ } list;
+ } u;
+};
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem3". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static SQLITE_WSD struct Mem3Global {
+ /*
+ ** Memory available for allocation. nPool is the size of the array
+ ** (in Mem3Blocks) pointed to by aPool less 2.
+ */
+ u32 nPool;
+ Mem3Block *aPool;
+
+ /*
+ ** True if we are evaluating an out-of-memory callback.
+ */
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** The minimum amount of free space that we have seen.
+ */
+ u32 mnKeyBlk;
+
+ /*
+ ** iKeyBlk is the index of the key chunk. Most new allocations
+ ** occur off of this chunk. szKeyBlk is the size (in Mem3Blocks)
+ ** of the current key chunk. iKeyBlk is 0 if there is no key chunk.
+ ** The key chunk is not in either the aiHash[] or aiSmall[].
+ */
+ u32 iKeyBlk;
+ u32 szKeyBlk;
+
+ /*
+ ** Array of lists of free blocks according to the block size
+ ** for smaller chunks, or a hash on the block size for larger
+ ** chunks.
+ */
+ u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
+ u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
+} mem3 = { 97535575 };
+
+#define mem3 GLOBAL(struct Mem3Global, mem3)
+
+/*
+** Unlink the chunk at mem3.aPool[i] from list it is currently
+** on. *pRoot is the list that i is a member of.
+*/
+static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
+ u32 next = mem3.aPool[i].u.list.next;
+ u32 prev = mem3.aPool[i].u.list.prev;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ if( prev==0 ){
+ *pRoot = next;
+ }else{
+ mem3.aPool[prev].u.list.next = next;
+ }
+ if( next ){
+ mem3.aPool[next].u.list.prev = prev;
+ }
+ mem3.aPool[i].u.list.next = 0;
+ mem3.aPool[i].u.list.prev = 0;
+}
+
+/*
+** Unlink the chunk at index i from
+** whatever list is currently a member of.
+*/
+static void memsys3Unlink(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ assert( i>=1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+ }
+}
+
+/*
+** Link the chunk at mem3.aPool[i] so that is on the list rooted
+** at *pRoot.
+*/
+static void memsys3LinkIntoList(u32 i, u32 *pRoot){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ mem3.aPool[i].u.list.next = *pRoot;
+ mem3.aPool[i].u.list.prev = 0;
+ if( *pRoot ){
+ mem3.aPool[*pRoot].u.list.prev = i;
+ }
+ *pRoot = i;
+}
+
+/*
+** Link the chunk at index i into either the appropriate
+** small chunk list, or into the large chunk hash table.
+*/
+static void memsys3Link(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( i>=1 );
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3LinkIntoList(i, &mem3.aiHash[hash]);
+ }
+}
+
+/*
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3GlobalConfig.bMemStat is true.
+*/
+static void memsys3Enter(void){
+ if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
+ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ sqlite3_mutex_enter(mem3.mutex);
+}
+static void memsys3Leave(void){
+ sqlite3_mutex_leave(mem3.mutex);
+}
+
+/*
+** Called when we are unable to satisfy an allocation of nBytes.
+*/
+static void memsys3OutOfMemory(int nByte){
+ if( !mem3.alarmBusy ){
+ mem3.alarmBusy = 1;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ sqlite3_mutex_leave(mem3.mutex);
+ sqlite3_release_memory(nByte);
+ sqlite3_mutex_enter(mem3.mutex);
+ mem3.alarmBusy = 0;
+ }
+}
+
+
+/*
+** Chunk i is a free chunk that has been unlinked. Adjust its
+** size parameters for check-out and return a pointer to the
+** user portion of the chunk.
+*/
+static void *memsys3Checkout(u32 i, u32 nBlock){
+ u32 x;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( i>=1 );
+ assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
+ assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
+ x = mem3.aPool[i-1].u.hdr.size4x;
+ mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
+ mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
+ return &mem3.aPool[i];
+}
+
+/*
+** Carve a piece off of the end of the mem3.iKeyBlk free chunk.
+** Return a pointer to the new allocation. Or, if the key chunk
+** is not large enough, return 0.
+*/
+static void *memsys3FromKeyBlk(u32 nBlock){
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( mem3.szKeyBlk>=nBlock );
+ if( nBlock>=mem3.szKeyBlk-1 ){
+ /* Use the entire key chunk */
+ void *p = memsys3Checkout(mem3.iKeyBlk, mem3.szKeyBlk);
+ mem3.iKeyBlk = 0;
+ mem3.szKeyBlk = 0;
+ mem3.mnKeyBlk = 0;
+ return p;
+ }else{
+ /* Split the key block. Return the tail. */
+ u32 newi, x;
+ newi = mem3.iKeyBlk + mem3.szKeyBlk - nBlock;
+ assert( newi > mem3.iKeyBlk+1 );
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = nBlock;
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x |= 2;
+ mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
+ mem3.szKeyBlk -= nBlock;
+ mem3.aPool[newi-1].u.hdr.prevSize = mem3.szKeyBlk;
+ x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
+ if( mem3.szKeyBlk < mem3.mnKeyBlk ){
+ mem3.mnKeyBlk = mem3.szKeyBlk;
+ }
+ return (void*)&mem3.aPool[newi];
+ }
+}
+
+/*
+** *pRoot is the head of a list of free chunks of the same size
+** or same size hash. In other words, *pRoot is an entry in either
+** mem3.aiSmall[] or mem3.aiHash[].
+**
+** This routine examines all entries on the given list and tries
+** to coalesce each entries with adjacent free chunks.
+**
+** If it sees a chunk that is larger than mem3.iKeyBlk, it replaces
+** the current mem3.iKeyBlk with the new larger chunk. In order for
+** this mem3.iKeyBlk replacement to work, the key chunk must be
+** linked into the hash tables. That is not the normal state of
+** affairs, of course. The calling routine must link the key
+** chunk before invoking this routine, then must unlink the (possibly
+** changed) key chunk once this routine has finished.
+*/
+static void memsys3Merge(u32 *pRoot){
+ u32 iNext, prev, size, i, x;
+
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ for(i=*pRoot; i>0; i=iNext){
+ iNext = mem3.aPool[i].u.list.next;
+ size = mem3.aPool[i-1].u.hdr.size4x;
+ assert( (size&1)==0 );
+ if( (size&2)==0 ){
+ memsys3UnlinkFromList(i, pRoot);
+ assert( i > mem3.aPool[i-1].u.hdr.prevSize );
+ prev = i - mem3.aPool[i-1].u.hdr.prevSize;
+ if( prev==iNext ){
+ iNext = mem3.aPool[prev].u.list.next;
+ }
+ memsys3Unlink(prev);
+ size = i + size/4 - prev;
+ x = mem3.aPool[prev-1].u.hdr.size4x & 2;
+ mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
+ mem3.aPool[prev+size-1].u.hdr.prevSize = size;
+ memsys3Link(prev);
+ i = prev;
+ }else{
+ size /= 4;
+ }
+ if( size>mem3.szKeyBlk ){
+ mem3.iKeyBlk = i;
+ mem3.szKeyBlk = size;
+ }
+ }
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+static void *memsys3MallocUnsafe(int nByte){
+ u32 i;
+ u32 nBlock;
+ u32 toFree;
+
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( sizeof(Mem3Block)==8 );
+ if( nByte<=12 ){
+ nBlock = 2;
+ }else{
+ nBlock = (nByte + 11)/8;
+ }
+ assert( nBlock>=2 );
+
+ /* STEP 1:
+ ** Look for an entry of the correct size in either the small
+ ** chunk table or in the large chunk hash table. This is
+ ** successful most of the time (about 9 times out of 10).
+ */
+ if( nBlock <= MX_SMALL ){
+ i = mem3.aiSmall[nBlock-2];
+ if( i>0 ){
+ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }else{
+ int hash = nBlock % N_HASH;
+ for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
+ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }
+ }
+
+ /* STEP 2:
+ ** Try to satisfy the allocation by carving a piece off of the end
+ ** of the key chunk. This step usually works if step 1 fails.
+ */
+ if( mem3.szKeyBlk>=nBlock ){
+ return memsys3FromKeyBlk(nBlock);
+ }
+
+
+ /* STEP 3:
+ ** Loop through the entire memory pool. Coalesce adjacent free
+ ** chunks. Recompute the key chunk as the largest free chunk.
+ ** Then try again to satisfy the allocation by carving a piece off
+ ** of the end of the key chunk. This step happens very
+ ** rarely (we hope!)
+ */
+ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
+ memsys3OutOfMemory(toFree);
+ if( mem3.iKeyBlk ){
+ memsys3Link(mem3.iKeyBlk);
+ mem3.iKeyBlk = 0;
+ mem3.szKeyBlk = 0;
+ }
+ for(i=0; i<N_HASH; i++){
+ memsys3Merge(&mem3.aiHash[i]);
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ memsys3Merge(&mem3.aiSmall[i]);
+ }
+ if( mem3.szKeyBlk ){
+ memsys3Unlink(mem3.iKeyBlk);
+ if( mem3.szKeyBlk>=nBlock ){
+ return memsys3FromKeyBlk(nBlock);
+ }
+ }
+ }
+
+ /* If none of the above worked, then we fail. */
+ return 0;
+}
+
+/*
+** Free an outstanding memory allocation.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+static void memsys3FreeUnsafe(void *pOld){
+ Mem3Block *p = (Mem3Block*)pOld;
+ int i;
+ u32 size, x;
+ assert( sqlite3_mutex_held(mem3.mutex) );
+ assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
+ i = p - mem3.aPool;
+ assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
+ size = mem3.aPool[i-1].u.hdr.size4x/4;
+ assert( i+size<=mem3.nPool+1 );
+ mem3.aPool[i-1].u.hdr.size4x &= ~1;
+ mem3.aPool[i+size-1].u.hdr.prevSize = size;
+ mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
+ memsys3Link(i);
+
+ /* Try to expand the key using the newly freed chunk */
+ if( mem3.iKeyBlk ){
+ while( (mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x&2)==0 ){
+ size = mem3.aPool[mem3.iKeyBlk-1].u.hdr.prevSize;
+ mem3.iKeyBlk -= size;
+ mem3.szKeyBlk += size;
+ memsys3Unlink(mem3.iKeyBlk);
+ x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
+ mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk;
+ }
+ x = mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x & 2;
+ while( (mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x&1)==0 ){
+ memsys3Unlink(mem3.iKeyBlk+mem3.szKeyBlk);
+ mem3.szKeyBlk += mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.size4x/4;
+ mem3.aPool[mem3.iKeyBlk-1].u.hdr.size4x = mem3.szKeyBlk*4 | x;
+ mem3.aPool[mem3.iKeyBlk+mem3.szKeyBlk-1].u.hdr.prevSize = mem3.szKeyBlk;
+ }
+ }
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
+*/
+static int memsys3Size(void *p){
+ Mem3Block *pBlock;
+ assert( p!=0 );
+ pBlock = (Mem3Block*)p;
+ assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
+ return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int memsys3Roundup(int n){
+ if( n<=12 ){
+ return 12;
+ }else{
+ return ((n+11)&~7) - 4;
+ }
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys3Malloc(int nBytes){
+ sqlite3_int64 *p;
+ assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ memsys3Leave();
+ return (void*)p;
+}
+
+/*
+** Free memory.
+*/
+static void memsys3Free(void *pPrior){
+ assert( pPrior );
+ memsys3Enter();
+ memsys3FreeUnsafe(pPrior);
+ memsys3Leave();
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+static void *memsys3Realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ nOld = memsys3Size(pPrior);
+ if( nBytes<=nOld && nBytes>=nOld-128 ){
+ return pPrior;
+ }
+ memsys3Enter();
+ p = memsys3MallocUnsafe(nBytes);
+ if( p ){
+ if( nOld<nBytes ){
+ memcpy(p, pPrior, nOld);
+ }else{
+ memcpy(p, pPrior, nBytes);
+ }
+ memsys3FreeUnsafe(pPrior);
+ }
+ memsys3Leave();
+ return p;
+}
+
+/*
+** Initialize this module.
+*/
+static int memsys3Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ if( !sqlite3GlobalConfig.pHeap ){
+ return SQLITE_ERROR;
+ }
+
+ /* Store a pointer to the memory block in global structure mem3. */
+ assert( sizeof(Mem3Block)==8 );
+ mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
+ mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
+
+ /* Initialize the key block. */
+ mem3.szKeyBlk = mem3.nPool;
+ mem3.mnKeyBlk = mem3.szKeyBlk;
+ mem3.iKeyBlk = 1;
+ mem3.aPool[0].u.hdr.size4x = (mem3.szKeyBlk<<2) + 2;
+ mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
+ mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys3Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem3.mutex = 0;
+ return;
+}
+
+
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){
+#ifdef SQLITE_DEBUG
+ FILE *out;
+ u32 i, j;
+ u32 size;
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys3Enter();
+ fprintf(out, "CHUNKS:\n");
+ for(i=1; i<=mem3.nPool; i+=size/4){
+ size = mem3.aPool[i-1].u.hdr.size4x;
+ if( size/4<=1 ){
+ fprintf(out, "%p size error\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
+ fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
+ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( size&1 ){
+ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
+ }else{
+ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
+ i==mem3.iKeyBlk ? " **key**" : "");
+ }
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ if( mem3.aiSmall[i]==0 ) continue;
+ fprintf(out, "small(%2d):", i);
+ for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ for(i=0; i<N_HASH; i++){
+ if( mem3.aiHash[i]==0 ) continue;
+ fprintf(out, "hash(%2d):", i);
+ for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem3.aPool[j],
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ fprintf(out, "key=%d\n", mem3.iKeyBlk);
+ fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szKeyBlk*8);
+ fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnKeyBlk*8);
+ sqlite3_mutex_leave(mem3.mutex);
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+#else
+ UNUSED_PARAMETER(zFilename);
+#endif
+}
+
+/*
+** This routine is the only routine in this file with external
+** linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
+ static const sqlite3_mem_methods mempoolMethods = {
+ memsys3Malloc,
+ memsys3Free,
+ memsys3Realloc,
+ memsys3Size,
+ memsys3Roundup,
+ memsys3Init,
+ memsys3Shutdown,
+ 0
+ };
+ return &mempoolMethods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS3 */
+
+/************** End of mem3.c ************************************************/
+/************** Begin file mem5.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The application gives SQLite a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc()
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
+**
+** This memory allocator uses the following algorithm:
+**
+** 1. All memory allocation sizes are rounded up to a power of 2.
+**
+** 2. If two adjacent free blocks are the halves of a larger block,
+** then the two blocks are coalesced into the single larger block.
+**
+** 3. New memory is allocated from the first available free block.
+**
+** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
+** Concerning Dynamic Storage Allocation". Journal of the Association for
+** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
+**
+** Let n be the size of the largest allocation divided by the minimum
+** allocation size (after rounding all sizes up to a power of 2.) Let M
+** be the maximum amount of memory ever outstanding at one time. Let
+** N be the total amount of memory available for allocation. Robson
+** proved that this memory allocator will never breakdown due to
+** fragmentation as long as the following constraint holds:
+**
+** N >= M*(1 + log2(n)/2) - n + 1
+**
+** The sqlite3_status() logic tracks the maximum values of n and M so
+** that an application can, at any time, verify this constraint.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** This version of the memory allocator is used only when
+** SQLITE_ENABLE_MEMSYS5 is defined.
+*/
+#ifdef SQLITE_ENABLE_MEMSYS5
+
+/*
+** A minimum allocation is an instance of the following structure.
+** Larger allocations are an array of these structures where the
+** size of the array is a power of 2.
+**
+** The size of this object must be a power of two. That fact is
+** verified in memsys5Init().
+*/
+typedef struct Mem5Link Mem5Link;
+struct Mem5Link {
+ int next; /* Index of next free chunk */
+ int prev; /* Index of previous free chunk */
+};
+
+/*
+** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
+** mem5.szAtom is always at least 8 and 32-bit integers are used,
+** it is not actually possible to reach this limit.
+*/
+#define LOGMAX 30
+
+/*
+** Masks used for mem5.aCtrl[] elements.
+*/
+#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
+#define CTRL_FREE 0x20 /* True if not checked out */
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem5". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static SQLITE_WSD struct Mem5Global {
+ /*
+ ** Memory available for allocation
+ */
+ int szAtom; /* Smallest possible allocation in bytes */
+ int nBlock; /* Number of szAtom sized blocks in zPool */
+ u8 *zPool; /* Memory available to be allocated */
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /*
+ ** Performance statistics
+ */
+ u64 nAlloc; /* Total number of calls to malloc */
+ u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
+ u64 totalExcess; /* Total internal fragmentation */
+ u32 currentOut; /* Current checkout, including internal fragmentation */
+ u32 currentCount; /* Current number of distinct checkouts */
+ u32 maxOut; /* Maximum instantaneous currentOut */
+ u32 maxCount; /* Maximum instantaneous currentCount */
+ u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
+#endif
+
+ /*
+ ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
+ ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
+ ** aiFreelist[2] holds free blocks of size szAtom*4. And so forth.
+ */
+ int aiFreelist[LOGMAX+1];
+
+ /*
+ ** Space for tracking which blocks are checked out and the size
+ ** of each block. One byte per block.
+ */
+ u8 *aCtrl;
+
+} mem5;
+
+/*
+** Access the static variable through a macro for SQLITE_OMIT_WSD.
+*/
+#define mem5 GLOBAL(struct Mem5Global, mem5)
+
+/*
+** Assuming mem5.zPool is divided up into an array of Mem5Link
+** structures, return a pointer to the idx-th such link.
+*/
+#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
+
+/*
+** Unlink the chunk at mem5.aPool[i] from list it is currently
+** on. It should be found on mem5.aiFreelist[iLogsize].
+*/
+static void memsys5Unlink(int i, int iLogsize){
+ int next, prev;
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ next = MEM5LINK(i)->next;
+ prev = MEM5LINK(i)->prev;
+ if( prev<0 ){
+ mem5.aiFreelist[iLogsize] = next;
+ }else{
+ MEM5LINK(prev)->next = next;
+ }
+ if( next>=0 ){
+ MEM5LINK(next)->prev = prev;
+ }
+}
+
+/*
+** Link the chunk at mem5.aPool[i] so that is on the iLogsize
+** free list.
+*/
+static void memsys5Link(int i, int iLogsize){
+ int x;
+ assert( sqlite3_mutex_held(mem5.mutex) );
+ assert( i>=0 && i<mem5.nBlock );
+ assert( iLogsize>=0 && iLogsize<=LOGMAX );
+ assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
+ MEM5LINK(i)->prev = -1;
+ if( x>=0 ){
+ assert( x<mem5.nBlock );
+ MEM5LINK(x)->prev = i;
+ }
+ mem5.aiFreelist[iLogsize] = i;
+}
+
+/*
+** Obtain or release the mutex needed to access global data structures.
+*/
+static void memsys5Enter(void){
+ sqlite3_mutex_enter(mem5.mutex);
+}
+static void memsys5Leave(void){
+ sqlite3_mutex_leave(mem5.mutex);
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes.
+** This only works for chunks that are currently checked out.
+*/
+static int memsys5Size(void *p){
+ int iSize, i;
+ assert( p!=0 );
+ i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
+ assert( i>=0 && i<mem5.nBlock );
+ iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
+ return iSize;
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable. Return NULL if nBytes==0.
+**
+** The caller guarantees that nByte is positive.
+**
+** The caller has obtained a mutex prior to invoking this
+** routine so there is never any chance that two or more
+** threads can be in this routine at the same time.
+*/
+static void *memsys5MallocUnsafe(int nByte){
+ int i; /* Index of a mem5.aPool[] slot */
+ int iBin; /* Index into mem5.aiFreelist[] */
+ int iFullSz; /* Size of allocation rounded up to power of 2 */
+ int iLogsize; /* Log2 of iFullSz/POW2_MIN */
+
+ /* nByte must be a positive */
+ assert( nByte>0 );
+
+ /* No more than 1GiB per allocation */
+ if( nByte > 0x40000000 ) return 0;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /* Keep track of the maximum allocation request. Even unfulfilled
+ ** requests are counted */
+ if( (u32)nByte>mem5.maxRequest ){
+ mem5.maxRequest = nByte;
+ }
+#endif
+
+
+ /* Round nByte up to the next valid power of two */
+ for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}
+
+ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
+ ** block. If not, then split a block of the next larger power of
+ ** two in order to create a new free block of size iLogsize.
+ */
+ for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
+ if( iBin>LOGMAX ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
+ return 0;
+ }
+ i = mem5.aiFreelist[iBin];
+ memsys5Unlink(i, iBin);
+ while( iBin>iLogsize ){
+ int newSize;
+
+ iBin--;
+ newSize = 1 << iBin;
+ mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
+ memsys5Link(i+newSize, iBin);
+ }
+ mem5.aCtrl[i] = iLogsize;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /* Update allocator performance statistics. */
+ mem5.nAlloc++;
+ mem5.totalAlloc += iFullSz;
+ mem5.totalExcess += iFullSz - nByte;
+ mem5.currentCount++;
+ mem5.currentOut += iFullSz;
+ if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
+ if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
+#endif
+
+#ifdef SQLITE_DEBUG
+ /* Make sure the allocated memory does not assume that it is set to zero
+ ** or retains a value from a previous allocation */
+ memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
+#endif
+
+ /* Return a pointer to the allocated memory. */
+ return (void*)&mem5.zPool[i*mem5.szAtom];
+}
+
+/*
+** Free an outstanding memory allocation.
+*/
+static void memsys5FreeUnsafe(void *pOld){
+ u32 size, iLogsize;
+ int iBlock;
+
+ /* Set iBlock to the index of the block pointed to by pOld in
+ ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
+ */
+ iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
+
+ /* Check that the pointer pOld points to a valid, non-free block. */
+ assert( iBlock>=0 && iBlock<mem5.nBlock );
+ assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
+ assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
+
+ iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
+ size = 1<<iLogsize;
+ assert( iBlock+size-1<(u32)mem5.nBlock );
+
+ mem5.aCtrl[iBlock] |= CTRL_FREE;
+ mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ assert( mem5.currentCount>0 );
+ assert( mem5.currentOut>=(size*mem5.szAtom) );
+ mem5.currentCount--;
+ mem5.currentOut -= size*mem5.szAtom;
+ assert( mem5.currentOut>0 || mem5.currentCount==0 );
+ assert( mem5.currentCount>0 || mem5.currentOut==0 );
+#endif
+
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ while( ALWAYS(iLogsize<LOGMAX) ){
+ int iBuddy;
+ if( (iBlock>>iLogsize) & 1 ){
+ iBuddy = iBlock - size;
+ assert( iBuddy>=0 );
+ }else{
+ iBuddy = iBlock + size;
+ if( iBuddy>=mem5.nBlock ) break;
+ }
+ if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
+ memsys5Unlink(iBuddy, iLogsize);
+ iLogsize++;
+ if( iBuddy<iBlock ){
+ mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBlock] = 0;
+ iBlock = iBuddy;
+ }else{
+ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
+ mem5.aCtrl[iBuddy] = 0;
+ }
+ size *= 2;
+ }
+
+#ifdef SQLITE_DEBUG
+ /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
+ ** not used after being freed */
+ memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
+#endif
+
+ memsys5Link(iBlock, iLogsize);
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys5Malloc(int nBytes){
+ sqlite3_int64 *p = 0;
+ if( nBytes>0 ){
+ memsys5Enter();
+ p = memsys5MallocUnsafe(nBytes);
+ memsys5Leave();
+ }
+ return (void*)p;
+}
+
+/*
+** Free memory.
+**
+** The outer layer memory allocator prevents this routine from
+** being called with pPrior==0.
+*/
+static void memsys5Free(void *pPrior){
+ assert( pPrior!=0 );
+ memsys5Enter();
+ memsys5FreeUnsafe(pPrior);
+ memsys5Leave();
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** The outer layer memory allocator prevents this routine from
+** being called with pPrior==0.
+**
+** nBytes is always a value obtained from a prior call to
+** memsys5Round(). Hence nBytes is always a non-negative power
+** of two. If nBytes==0 that means that an oversize allocation
+** (an allocation larger than 0x40000000) was requested and this
+** routine should return 0 without freeing pPrior.
+*/
+static void *memsys5Realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ assert( pPrior!=0 );
+ assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
+ assert( nBytes>=0 );
+ if( nBytes==0 ){
+ return 0;
+ }
+ nOld = memsys5Size(pPrior);
+ if( nBytes<=nOld ){
+ return pPrior;
+ }
+ p = memsys5Malloc(nBytes);
+ if( p ){
+ memcpy(p, pPrior, nOld);
+ memsys5Free(pPrior);
+ }
+ return p;
+}
+
+/*
+** Round up a request size to the next valid allocation size. If
+** the allocation is too large to be handled by this allocation system,
+** return 0.
+**
+** All allocations must be a power of two and must be expressed by a
+** 32-bit signed integer. Hence the largest allocation is 0x40000000
+** or 1073741824 bytes.
+*/
+static int memsys5Roundup(int n){
+ int iFullSz;
+ if( n<=mem5.szAtom*2 ){
+ if( n<=mem5.szAtom ) return mem5.szAtom;
+ return mem5.szAtom*2;
+ }
+ if( n>0x10000000 ){
+ if( n>0x40000000 ) return 0;
+ if( n>0x20000000 ) return 0x40000000;
+ return 0x20000000;
+ }
+ for(iFullSz=mem5.szAtom*8; iFullSz<n; iFullSz *= 4);
+ if( (iFullSz/2)>=(i64)n ) return iFullSz/2;
+ return iFullSz;
+}
+
+/*
+** Return the ceiling of the logarithm base 2 of iValue.
+**
+** Examples: memsys5Log(1) -> 0
+** memsys5Log(2) -> 1
+** memsys5Log(4) -> 2
+** memsys5Log(5) -> 3
+** memsys5Log(8) -> 3
+** memsys5Log(9) -> 4
+*/
+static int memsys5Log(int iValue){
+ int iLog;
+ for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
+ return iLog;
+}
+
+/*
+** Initialize the memory allocator.
+**
+** This routine is not threadsafe. The caller must be holding a mutex
+** to prevent multiple threads from entering at the same time.
+*/
+static int memsys5Init(void *NotUsed){
+ int ii; /* Loop counter */
+ int nByte; /* Number of bytes of memory available to this allocator */
+ u8 *zByte; /* Memory usable by this allocator */
+ int nMinLog; /* Log base 2 of minimum allocation size in bytes */
+ int iOffset; /* An offset into mem5.aCtrl[] */
+
+ UNUSED_PARAMETER(NotUsed);
+
+ /* For the purposes of this routine, disable the mutex */
+ mem5.mutex = 0;
+
+ /* The size of a Mem5Link object must be a power of two. Verify that
+ ** this is case.
+ */
+ assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
+
+ nByte = sqlite3GlobalConfig.nHeap;
+ zByte = (u8*)sqlite3GlobalConfig.pHeap;
+ assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
+
+ /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
+ nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
+ mem5.szAtom = (1<<nMinLog);
+ while( (int)sizeof(Mem5Link)>mem5.szAtom ){
+ mem5.szAtom = mem5.szAtom << 1;
+ }
+
+ mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
+ mem5.zPool = zByte;
+ mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
+
+ for(ii=0; ii<=LOGMAX; ii++){
+ mem5.aiFreelist[ii] = -1;
+ }
+
+ iOffset = 0;
+ for(ii=LOGMAX; ii>=0; ii--){
+ int nAlloc = (1<<ii);
+ if( (iOffset+nAlloc)<=mem5.nBlock ){
+ mem5.aCtrl[iOffset] = ii | CTRL_FREE;
+ memsys5Link(iOffset, ii);
+ iOffset += nAlloc;
+ }
+ assert((iOffset+nAlloc)>mem5.nBlock);
+ }
+
+ /* If a mutex is required for normal operation, allocate one */
+ if( sqlite3GlobalConfig.bMemstat==0 ){
+ mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys5Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ mem5.mutex = 0;
+ return;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
+ FILE *out;
+ int i, j, n;
+ int nMinLog;
+
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys5Enter();
+ nMinLog = memsys5Log(mem5.szAtom);
+ for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
+ for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
+ fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
+ }
+ fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
+ fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
+ fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
+ fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
+ fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
+ fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
+ fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
+ fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
+ memsys5Leave();
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+}
+#endif
+
+/*
+** This routine is the only routine in this file with external
+** linkage. It returns a pointer to a static sqlite3_mem_methods
+** struct populated with the memsys5 methods.
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
+ static const sqlite3_mem_methods memsys5Methods = {
+ memsys5Malloc,
+ memsys5Free,
+ memsys5Realloc,
+ memsys5Size,
+ memsys5Roundup,
+ memsys5Init,
+ memsys5Shutdown,
+ 0
+ };
+ return &memsys5Methods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS5 */
+
+/************** End of mem5.c ************************************************/
+/************** Begin file mutex.c *******************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** This file contains code that is common across all mutex implementations.
+*/
+/* #include "sqliteInt.h" */
+
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
+/*
+** For debugging purposes, record when the mutex subsystem is initialized
+** and uninitialized so that we can assert() if there is an attempt to
+** allocate a mutex while the system is uninitialized.
+*/
+static SQLITE_WSD int mutexIsInit = 0;
+#endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */
+
+
+#ifndef SQLITE_MUTEX_OMIT
+
+#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
+/*
+** This block (enclosed by SQLITE_ENABLE_MULTITHREADED_CHECKS) contains
+** the implementation of a wrapper around the system default mutex
+** implementation (sqlite3DefaultMutex()).
+**
+** Most calls are passed directly through to the underlying default
+** mutex implementation. Except, if a mutex is configured by calling
+** sqlite3MutexWarnOnContention() on it, then if contention is ever
+** encountered within xMutexEnter() a warning is emitted via sqlite3_log().
+**
+** This type of mutex is used as the database handle mutex when testing
+** apps that usually use SQLITE_CONFIG_MULTITHREAD mode.
+*/
+
+/*
+** Type for all mutexes used when SQLITE_ENABLE_MULTITHREADED_CHECKS
+** is defined. Variable CheckMutex.mutex is a pointer to the real mutex
+** allocated by the system mutex implementation. Variable iType is usually set
+** to the type of mutex requested - SQLITE_MUTEX_RECURSIVE, SQLITE_MUTEX_FAST
+** or one of the static mutex identifiers. Or, if this is a recursive mutex
+** that has been configured using sqlite3MutexWarnOnContention(), it is
+** set to SQLITE_MUTEX_WARNONCONTENTION.
+*/
+typedef struct CheckMutex CheckMutex;
+struct CheckMutex {
+ int iType;
+ sqlite3_mutex *mutex;
+};
+
+#define SQLITE_MUTEX_WARNONCONTENTION (-1)
+
+/*
+** Pointer to real mutex methods object used by the CheckMutex
+** implementation. Set by checkMutexInit().
+*/
+static SQLITE_WSD const sqlite3_mutex_methods *pGlobalMutexMethods;
+
+#ifdef SQLITE_DEBUG
+static int checkMutexHeld(sqlite3_mutex *p){
+ return pGlobalMutexMethods->xMutexHeld(((CheckMutex*)p)->mutex);
+}
+static int checkMutexNotheld(sqlite3_mutex *p){
+ return pGlobalMutexMethods->xMutexNotheld(((CheckMutex*)p)->mutex);
+}
+#endif
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int checkMutexInit(void){
+ pGlobalMutexMethods = sqlite3DefaultMutex();
+ return SQLITE_OK;
+}
+static int checkMutexEnd(void){
+ pGlobalMutexMethods = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Allocate a mutex.
+*/
+static sqlite3_mutex *checkMutexAlloc(int iType){
+ static CheckMutex staticMutexes[] = {
+ {2, 0}, {3, 0}, {4, 0}, {5, 0},
+ {6, 0}, {7, 0}, {8, 0}, {9, 0},
+ {10, 0}, {11, 0}, {12, 0}, {13, 0}
+ };
+ CheckMutex *p = 0;
+
+ assert( SQLITE_MUTEX_RECURSIVE==1 && SQLITE_MUTEX_FAST==0 );
+ if( iType<2 ){
+ p = sqlite3MallocZero(sizeof(CheckMutex));
+ if( p==0 ) return 0;
+ p->iType = iType;
+ }else{
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( iType-2>=ArraySize(staticMutexes) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ p = &staticMutexes[iType-2];
+ }
+
+ if( p->mutex==0 ){
+ p->mutex = pGlobalMutexMethods->xMutexAlloc(iType);
+ if( p->mutex==0 ){
+ if( iType<2 ){
+ sqlite3_free(p);
+ }
+ p = 0;
+ }
+ }
+
+ return (sqlite3_mutex*)p;
+}
+
+/*
+** Free a mutex.
+*/
+static void checkMutexFree(sqlite3_mutex *p){
+ assert( SQLITE_MUTEX_RECURSIVE<2 );
+ assert( SQLITE_MUTEX_FAST<2 );
+ assert( SQLITE_MUTEX_WARNONCONTENTION<2 );
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ((CheckMutex*)p)->iType<2 )
+#endif
+ {
+ CheckMutex *pCheck = (CheckMutex*)p;
+ pGlobalMutexMethods->xMutexFree(pCheck->mutex);
+ sqlite3_free(pCheck);
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ else{
+ (void)SQLITE_MISUSE_BKPT;
+ }
+#endif
+}
+
+/*
+** Enter the mutex.
+*/
+static void checkMutexEnter(sqlite3_mutex *p){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ if( pCheck->iType==SQLITE_MUTEX_WARNONCONTENTION ){
+ if( SQLITE_OK==pGlobalMutexMethods->xMutexTry(pCheck->mutex) ){
+ return;
+ }
+ sqlite3_log(SQLITE_MISUSE,
+ "illegal multi-threaded access to database connection"
+ );
+ }
+ pGlobalMutexMethods->xMutexEnter(pCheck->mutex);
+}
+
+/*
+** Enter the mutex (do not block).
+*/
+static int checkMutexTry(sqlite3_mutex *p){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ return pGlobalMutexMethods->xMutexTry(pCheck->mutex);
+}
+
+/*
+** Leave the mutex.
+*/
+static void checkMutexLeave(sqlite3_mutex *p){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ pGlobalMutexMethods->xMutexLeave(pCheck->mutex);
+}
+
+sqlite3_mutex_methods const *multiThreadedCheckMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ checkMutexInit,
+ checkMutexEnd,
+ checkMutexAlloc,
+ checkMutexFree,
+ checkMutexEnter,
+ checkMutexTry,
+ checkMutexLeave,
+#ifdef SQLITE_DEBUG
+ checkMutexHeld,
+ checkMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+ return &sMutex;
+}
+
+/*
+** Mark the SQLITE_MUTEX_RECURSIVE mutex passed as the only argument as
+** one on which there should be no contention.
+*/
+SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex *p){
+ if( sqlite3GlobalConfig.mutex.xMutexAlloc==checkMutexAlloc ){
+ CheckMutex *pCheck = (CheckMutex*)p;
+ assert( pCheck->iType==SQLITE_MUTEX_RECURSIVE );
+ pCheck->iType = SQLITE_MUTEX_WARNONCONTENTION;
+ }
+}
+#endif /* ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS */
+
+/*
+** Initialize the mutex system.
+*/
+SQLITE_PRIVATE int sqlite3MutexInit(void){
+ int rc = SQLITE_OK;
+ if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
+ /* If the xMutexAlloc method has not been set, then the user did not
+ ** install a mutex implementation via sqlite3_config() prior to
+ ** sqlite3_initialize() being called. This block copies pointers to
+ ** the default implementation into the sqlite3GlobalConfig structure.
+ */
+ sqlite3_mutex_methods const *pFrom;
+ sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;
+
+ if( sqlite3GlobalConfig.bCoreMutex ){
+#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
+ pFrom = multiThreadedCheckMutex();
+#else
+ pFrom = sqlite3DefaultMutex();
+#endif
+ }else{
+ pFrom = sqlite3NoopMutex();
+ }
+ pTo->xMutexInit = pFrom->xMutexInit;
+ pTo->xMutexEnd = pFrom->xMutexEnd;
+ pTo->xMutexFree = pFrom->xMutexFree;
+ pTo->xMutexEnter = pFrom->xMutexEnter;
+ pTo->xMutexTry = pFrom->xMutexTry;
+ pTo->xMutexLeave = pFrom->xMutexLeave;
+ pTo->xMutexHeld = pFrom->xMutexHeld;
+ pTo->xMutexNotheld = pFrom->xMutexNotheld;
+ sqlite3MemoryBarrier();
+ pTo->xMutexAlloc = pFrom->xMutexAlloc;
+ }
+ assert( sqlite3GlobalConfig.mutex.xMutexInit );
+ rc = sqlite3GlobalConfig.mutex.xMutexInit();
+
+#ifdef SQLITE_DEBUG
+ GLOBAL(int, mutexIsInit) = 1;
+#endif
+
+ sqlite3MemoryBarrier();
+ return rc;
+}
+
+/*
+** Shutdown the mutex system. This call frees resources allocated by
+** sqlite3MutexInit().
+*/
+SQLITE_PRIVATE int sqlite3MutexEnd(void){
+ int rc = SQLITE_OK;
+ if( sqlite3GlobalConfig.mutex.xMutexEnd ){
+ rc = sqlite3GlobalConfig.mutex.xMutexEnd();
+ }
+
+#ifdef SQLITE_DEBUG
+ GLOBAL(int, mutexIsInit) = 0;
+#endif
+
+ return rc;
+}
+
+/*
+** Retrieve a pointer to a static mutex or allocate a new dynamic one.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
+ if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
+#endif
+ assert( sqlite3GlobalConfig.mutex.xMutexAlloc );
+ return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
+}
+
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
+ if( !sqlite3GlobalConfig.bCoreMutex ){
+ return 0;
+ }
+ assert( GLOBAL(int, mutexIsInit) );
+ assert( sqlite3GlobalConfig.mutex.xMutexAlloc );
+ return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
+}
+
+/*
+** Free a dynamic mutex.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexFree );
+ sqlite3GlobalConfig.mutex.xMutexFree(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If some other thread already has the mutex, block
+** until it can be obtained.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexEnter );
+ sqlite3GlobalConfig.mutex.xMutexEnter(p);
+ }
+}
+
+/*
+** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
+** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
+*/
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexTry );
+ return sqlite3GlobalConfig.mutex.xMutexTry(p);
+ }
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was previously
+** entered by the same thread. The behavior is undefined if the mutex
+** is not currently entered. If a NULL pointer is passed as an argument
+** this function is a no-op.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ if( p ){
+ assert( sqlite3GlobalConfig.mutex.xMutexLeave );
+ sqlite3GlobalConfig.mutex.xMutexLeave(p);
+ }
+}
+
+#ifndef NDEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexHeld );
+ return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
+ return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
+}
+#endif
+
+#endif /* !defined(SQLITE_MUTEX_OMIT) */
+
+/************** End of mutex.c ***********************************************/
+/************** Begin file mutex_noop.c **************************************/
+/*
+** 2008 October 07
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** This implementation in this file does not provide any mutual
+** exclusion and is thus suitable for use only in applications
+** that use SQLite in a single thread. The routines defined
+** here are place-holders. Applications can substitute working
+** mutex routines at start-time using the
+**
+** sqlite3_config(SQLITE_CONFIG_MUTEX,...)
+**
+** interface.
+**
+** If compiled with SQLITE_DEBUG, then additional logic is inserted
+** that does error checking on mutexes to make sure they are being
+** called correctly.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_MUTEX_OMIT
+
+#ifndef SQLITE_DEBUG
+/*
+** Stub routines for all mutex methods.
+**
+** This routines provide no mutual exclusion or error checking.
+*/
+static int noopMutexInit(void){ return SQLITE_OK; }
+static int noopMutexEnd(void){ return SQLITE_OK; }
+static sqlite3_mutex *noopMutexAlloc(int id){
+ UNUSED_PARAMETER(id);
+ return (sqlite3_mutex*)8;
+}
+static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
+static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
+static int noopMutexTry(sqlite3_mutex *p){
+ UNUSED_PARAMETER(p);
+ return SQLITE_OK;
+}
+static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ noopMutexInit,
+ noopMutexEnd,
+ noopMutexAlloc,
+ noopMutexFree,
+ noopMutexEnter,
+ noopMutexTry,
+ noopMutexLeave,
+
+ 0,
+ 0,
+ };
+
+ return &sMutex;
+}
+#endif /* !SQLITE_DEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+** In this implementation, error checking is provided for testing
+** and debugging purposes. The mutexes still do not provide any
+** mutual exclusion.
+*/
+
+/*
+** The mutex object
+*/
+typedef struct sqlite3_debug_mutex {
+ int id; /* The mutex type */
+ int cnt; /* Number of entries without a matching leave */
+} sqlite3_debug_mutex;
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+static int debugMutexHeld(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ return p==0 || p->cnt>0;
+}
+static int debugMutexNotheld(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ return p==0 || p->cnt==0;
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int debugMutexInit(void){ return SQLITE_OK; }
+static int debugMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+*/
+static sqlite3_mutex *debugMutexAlloc(int id){
+ static sqlite3_debug_mutex aStatic[SQLITE_MUTEX_STATIC_VFS3 - 1];
+ sqlite3_debug_mutex *pNew = 0;
+ switch( id ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ pNew = sqlite3Malloc(sizeof(*pNew));
+ if( pNew ){
+ pNew->id = id;
+ pNew->cnt = 0;
+ }
+ break;
+ }
+ default: {
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( id-2<0 || id-2>=ArraySize(aStatic) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ pNew = &aStatic[id-2];
+ pNew->id = id;
+ break;
+ }
+ }
+ return (sqlite3_mutex*)pNew;
+}
+
+/*
+** This routine deallocates a previously allocated mutex.
+*/
+static void debugMutexFree(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( p->cnt==0 );
+ if( p->id==SQLITE_MUTEX_RECURSIVE || p->id==SQLITE_MUTEX_FAST ){
+ sqlite3_free(p);
+ }else{
+#ifdef SQLITE_ENABLE_API_ARMOR
+ (void)SQLITE_MISUSE_BKPT;
+#endif
+ }
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void debugMutexEnter(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
+ p->cnt++;
+}
+static int debugMutexTry(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
+ p->cnt++;
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void debugMutexLeave(sqlite3_mutex *pX){
+ sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
+ assert( debugMutexHeld(pX) );
+ p->cnt--;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ debugMutexInit,
+ debugMutexEnd,
+ debugMutexAlloc,
+ debugMutexFree,
+ debugMutexEnter,
+ debugMutexTry,
+ debugMutexLeave,
+
+ debugMutexHeld,
+ debugMutexNotheld
+ };
+
+ return &sMutex;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation
+** is used regardless of the run-time threadsafety setting.
+*/
+#ifdef SQLITE_MUTEX_NOOP
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
+ return sqlite3NoopMutex();
+}
+#endif /* defined(SQLITE_MUTEX_NOOP) */
+#endif /* !defined(SQLITE_MUTEX_OMIT) */
+
+/************** End of mutex_noop.c ******************************************/
+/************** Begin file mutex_unix.c **************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for pthreads
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** The code in this file is only used if we are compiling threadsafe
+** under unix with pthreads.
+**
+** Note that this implementation requires a version of pthreads that
+** supports recursive mutexes.
+*/
+#ifdef SQLITE_MUTEX_PTHREADS
+
+#include <pthread.h>
+
+/*
+** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
+** are necessary under two conditions: (1) Debug builds and (2) using
+** home-grown mutexes. Encapsulate these conditions into a single #define.
+*/
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
+# define SQLITE_MUTEX_NREF 1
+#else
+# define SQLITE_MUTEX_NREF 0
+#endif
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ pthread_mutex_t mutex; /* Mutex controlling the lock */
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ int id; /* Mutex type */
+#endif
+#if SQLITE_MUTEX_NREF
+ volatile int nRef; /* Number of entrances */
+ volatile pthread_t owner; /* Thread that is within this mutex */
+ int trace; /* True to trace changes */
+#endif
+};
+#if SQLITE_MUTEX_NREF
+# define SQLITE3_MUTEX_INITIALIZER(id) \
+ {PTHREAD_MUTEX_INITIALIZER,id,0,(pthread_t)0,0}
+#elif defined(SQLITE_ENABLE_API_ARMOR)
+# define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER, id }
+#else
+#define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER }
+#endif
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements. On some platforms,
+** there might be race conditions that can cause these routines to
+** deliver incorrect results. In particular, if pthread_equal() is
+** not an atomic operation, then these routines might delivery
+** incorrect results. On most platforms, pthread_equal() is a
+** comparison of two integers and is therefore atomic. But we are
+** told that HPUX is not such a platform. If so, then these routines
+** will not always work correctly on HPUX.
+**
+** On those platforms where pthread_equal() is not atomic, SQLite
+** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
+** make sure no assert() statements are evaluated and hence these
+** routines are never called.
+*/
+#if !defined(NDEBUG) || defined(SQLITE_DEBUG)
+static int pthreadMutexHeld(sqlite3_mutex *p){
+ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
+}
+static int pthreadMutexNotheld(sqlite3_mutex *p){
+ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
+}
+#endif
+
+/*
+** Try to provide a memory barrier operation, needed for initialization
+** and also for the implementation of xShmBarrier in the VFS in cases
+** where SQLite is compiled without mutexes.
+*/
+SQLITE_PRIVATE void sqlite3MemoryBarrier(void){
+#if defined(SQLITE_MEMORY_BARRIER)
+ SQLITE_MEMORY_BARRIER;
+#elif defined(__GNUC__) && GCC_VERSION>=4001000
+ __sync_synchronize();
+#endif
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static int pthreadMutexInit(void){ return SQLITE_OK; }
+static int pthreadMutexEnd(void){ return SQLITE_OK; }
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *pthreadMutexAlloc(int iType){
+ static sqlite3_mutex staticMutexes[] = {
+ SQLITE3_MUTEX_INITIALIZER(2),
+ SQLITE3_MUTEX_INITIALIZER(3),
+ SQLITE3_MUTEX_INITIALIZER(4),
+ SQLITE3_MUTEX_INITIALIZER(5),
+ SQLITE3_MUTEX_INITIALIZER(6),
+ SQLITE3_MUTEX_INITIALIZER(7),
+ SQLITE3_MUTEX_INITIALIZER(8),
+ SQLITE3_MUTEX_INITIALIZER(9),
+ SQLITE3_MUTEX_INITIALIZER(10),
+ SQLITE3_MUTEX_INITIALIZER(11),
+ SQLITE3_MUTEX_INITIALIZER(12),
+ SQLITE3_MUTEX_INITIALIZER(13)
+ };
+ sqlite3_mutex *p;
+ switch( iType ){
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, we will have to
+ ** build our own. See below. */
+ pthread_mutex_init(&p->mutex, 0);
+#else
+ /* Use a recursive mutex if it is available */
+ pthread_mutexattr_t recursiveAttr;
+ pthread_mutexattr_init(&recursiveAttr);
+ pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
+ pthread_mutex_init(&p->mutex, &recursiveAttr);
+ pthread_mutexattr_destroy(&recursiveAttr);
+#endif
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ p->id = SQLITE_MUTEX_RECURSIVE;
+#endif
+ }
+ break;
+ }
+ case SQLITE_MUTEX_FAST: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ pthread_mutex_init(&p->mutex, 0);
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ p->id = SQLITE_MUTEX_FAST;
+#endif
+ }
+ break;
+ }
+ default: {
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ p = &staticMutexes[iType-2];
+ break;
+ }
+ }
+#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
+ assert( p==0 || p->id==iType );
+#endif
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+static void pthreadMutexFree(sqlite3_mutex *p){
+ assert( p->nRef==0 );
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE )
+#endif
+ {
+ pthread_mutex_destroy(&p->mutex);
+ sqlite3_free(p);
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ else{
+ (void)SQLITE_MISUSE_BKPT;
+ }
+#endif
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void pthreadMutexEnter(sqlite3_mutex *p){
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ }else{
+ pthread_mutex_lock(&p->mutex);
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ pthread_mutex_lock(&p->mutex);
+#if SQLITE_MUTEX_NREF
+ assert( p->nRef>0 || p->owner==0 );
+ p->owner = pthread_self();
+ p->nRef++;
+#endif
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+static int pthreadMutexTry(sqlite3_mutex *p){
+ int rc;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ rc = SQLITE_OK;
+ }else if( pthread_mutex_trylock(&p->mutex)==0 ){
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ if( pthread_mutex_trylock(&p->mutex)==0 ){
+#if SQLITE_MUTEX_NREF
+ p->owner = pthread_self();
+ p->nRef++;
+#endif
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( rc==SQLITE_OK && p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void pthreadMutexLeave(sqlite3_mutex *p){
+ assert( pthreadMutexHeld(p) );
+#if SQLITE_MUTEX_NREF
+ p->nRef--;
+ if( p->nRef==0 ) p->owner = 0;
+#endif
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ if( p->nRef==0 ){
+ pthread_mutex_unlock(&p->mutex);
+ }
+#else
+ pthread_mutex_unlock(&p->mutex);
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ pthreadMutexInit,
+ pthreadMutexEnd,
+ pthreadMutexAlloc,
+ pthreadMutexFree,
+ pthreadMutexEnter,
+ pthreadMutexTry,
+ pthreadMutexLeave,
+#ifdef SQLITE_DEBUG
+ pthreadMutexHeld,
+ pthreadMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+
+ return &sMutex;
+}
+
+#endif /* SQLITE_MUTEX_PTHREADS */
+
+/************** End of mutex_unix.c ******************************************/
+/************** Begin file mutex_w32.c ***************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for Win32.
+*/
+/* #include "sqliteInt.h" */
+
+#if SQLITE_OS_WIN
+/*
+** Include code that is common to all os_*.c files
+*/
+/* #include "os_common.h" */
+
+/*
+** Include the header file for the Windows VFS.
+*/
+/************** Include os_win.h in the middle of mutex_w32.c ****************/
+/************** Begin file os_win.h ******************************************/
+/*
+** 2013 November 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Windows.
+*/
+#ifndef SQLITE_OS_WIN_H
+#define SQLITE_OS_WIN_H
+
+/*
+** Include the primary Windows SDK header file.
+*/
+#include "windows.h"
+
+#ifdef __CYGWIN__
+# include <sys/cygwin.h>
+# include <errno.h> /* amalgamator: dontcache */
+#endif
+
+/*
+** Determine if we are dealing with Windows NT.
+**
+** We ought to be able to determine if we are compiling for Windows 9x or
+** Windows NT using the _WIN32_WINNT macro as follows:
+**
+** #if defined(_WIN32_WINNT)
+** # define SQLITE_OS_WINNT 1
+** #else
+** # define SQLITE_OS_WINNT 0
+** #endif
+**
+** However, Visual Studio 2005 does not set _WIN32_WINNT by default, as
+** it ought to, so the above test does not work. We'll just assume that
+** everything is Windows NT unless the programmer explicitly says otherwise
+** by setting SQLITE_OS_WINNT to 0.
+*/
+#if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT)
+# define SQLITE_OS_WINNT 1
+#endif
+
+/*
+** Determine if we are dealing with Windows CE - which has a much reduced
+** API.
+*/
+#if defined(_WIN32_WCE)
+# define SQLITE_OS_WINCE 1
+#else
+# define SQLITE_OS_WINCE 0
+#endif
+
+/*
+** Determine if we are dealing with WinRT, which provides only a subset of
+** the full Win32 API.
+*/
+#if !defined(SQLITE_OS_WINRT)
+# define SQLITE_OS_WINRT 0
+#endif
+
+/*
+** For WinCE, some API function parameters do not appear to be declared as
+** volatile.
+*/
+#if SQLITE_OS_WINCE
+# define SQLITE_WIN32_VOLATILE
+#else
+# define SQLITE_WIN32_VOLATILE volatile
+#endif
+
+/*
+** For some Windows sub-platforms, the _beginthreadex() / _endthreadex()
+** functions are not available (e.g. those not using MSVC, Cygwin, etc).
+*/
+#if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
+ SQLITE_THREADSAFE>0 && !defined(__CYGWIN__)
+# define SQLITE_OS_WIN_THREADS 1
+#else
+# define SQLITE_OS_WIN_THREADS 0
+#endif
+
+#endif /* SQLITE_OS_WIN_H */
+
+/************** End of os_win.h **********************************************/
+/************** Continuing where we left off in mutex_w32.c ******************/
+#endif
+
+/*
+** The code in this file is only used if we are compiling multithreaded
+** on a Win32 system.
+*/
+#ifdef SQLITE_MUTEX_W32
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ CRITICAL_SECTION mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+#ifdef SQLITE_DEBUG
+ volatile int nRef; /* Number of entrances */
+ volatile DWORD owner; /* Thread holding this mutex */
+ volatile LONG trace; /* True to trace changes */
+#endif
+};
+
+/*
+** These are the initializer values used when declaring a "static" mutex
+** on Win32. It should be noted that all mutexes require initialization
+** on the Win32 platform.
+*/
+#define SQLITE_W32_MUTEX_INITIALIZER { 0 }
+
+#ifdef SQLITE_DEBUG
+#define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id, \
+ 0L, (DWORD)0, 0 }
+#else
+#define SQLITE3_MUTEX_INITIALIZER(id) { SQLITE_W32_MUTEX_INITIALIZER, id }
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements.
+*/
+static int winMutexHeld(sqlite3_mutex *p){
+ return p->nRef!=0 && p->owner==GetCurrentThreadId();
+}
+
+static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){
+ return p->nRef==0 || p->owner!=tid;
+}
+
+static int winMutexNotheld(sqlite3_mutex *p){
+ DWORD tid = GetCurrentThreadId();
+ return winMutexNotheld2(p, tid);
+}
+#endif
+
+/*
+** Try to provide a memory barrier operation, needed for initialization
+** and also for the xShmBarrier method of the VFS in cases when SQLite is
+** compiled without mutexes (SQLITE_THREADSAFE=0).
+*/
+SQLITE_PRIVATE void sqlite3MemoryBarrier(void){
+#if defined(SQLITE_MEMORY_BARRIER)
+ SQLITE_MEMORY_BARRIER;
+#elif defined(__GNUC__)
+ __sync_synchronize();
+#elif MSVC_VERSION>=1300
+ _ReadWriteBarrier();
+#elif defined(MemoryBarrier)
+ MemoryBarrier();
+#endif
+}
+
+/*
+** Initialize and deinitialize the mutex subsystem.
+*/
+static sqlite3_mutex winMutex_staticMutexes[] = {
+ SQLITE3_MUTEX_INITIALIZER(2),
+ SQLITE3_MUTEX_INITIALIZER(3),
+ SQLITE3_MUTEX_INITIALIZER(4),
+ SQLITE3_MUTEX_INITIALIZER(5),
+ SQLITE3_MUTEX_INITIALIZER(6),
+ SQLITE3_MUTEX_INITIALIZER(7),
+ SQLITE3_MUTEX_INITIALIZER(8),
+ SQLITE3_MUTEX_INITIALIZER(9),
+ SQLITE3_MUTEX_INITIALIZER(10),
+ SQLITE3_MUTEX_INITIALIZER(11),
+ SQLITE3_MUTEX_INITIALIZER(12),
+ SQLITE3_MUTEX_INITIALIZER(13)
+};
+
+static int winMutex_isInit = 0;
+static int winMutex_isNt = -1; /* <0 means "need to query" */
+
+/* As the winMutexInit() and winMutexEnd() functions are called as part
+** of the sqlite3_initialize() and sqlite3_shutdown() processing, the
+** "interlocked" magic used here is probably not strictly necessary.
+*/
+static LONG SQLITE_WIN32_VOLATILE winMutex_lock = 0;
+
+SQLITE_API int sqlite3_win32_is_nt(void); /* os_win.c */
+SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */
+
+static int winMutexInit(void){
+ /* The first to increment to 1 does actual initialization */
+ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
+ int i;
+ for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
+#if SQLITE_OS_WINRT
+ InitializeCriticalSectionEx(&winMutex_staticMutexes[i].mutex, 0, 0);
+#else
+ InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
+#endif
+ }
+ winMutex_isInit = 1;
+ }else{
+ /* Another thread is (in the process of) initializing the static
+ ** mutexes */
+ while( !winMutex_isInit ){
+ sqlite3_win32_sleep(1);
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int winMutexEnd(void){
+ /* The first to decrement to 0 does actual shutdown
+ ** (which should be the last to shutdown.) */
+ if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
+ if( winMutex_isInit==1 ){
+ int i;
+ for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
+ DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
+ }
+ winMutex_isInit = 0;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+static sqlite3_mutex *winMutexAlloc(int iType){
+ sqlite3_mutex *p;
+
+ switch( iType ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+#ifdef SQLITE_DEBUG
+#ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC
+ p->trace = 1;
+#endif
+#endif
+#if SQLITE_OS_WINRT
+ InitializeCriticalSectionEx(&p->mutex, 0, 0);
+#else
+ InitializeCriticalSection(&p->mutex);
+#endif
+ }
+ break;
+ }
+ default: {
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ p = &winMutex_staticMutexes[iType-2];
+#ifdef SQLITE_DEBUG
+#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
+ InterlockedCompareExchange(&p->trace, 1, 0);
+#endif
+#endif
+ break;
+ }
+ }
+ assert( p==0 || p->id==iType );
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+static void winMutexFree(sqlite3_mutex *p){
+ assert( p );
+ assert( p->nRef==0 && p->owner==0 );
+ if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ){
+ DeleteCriticalSection(&p->mutex);
+ sqlite3_free(p);
+ }else{
+#ifdef SQLITE_ENABLE_API_ARMOR
+ (void)SQLITE_MISUSE_BKPT;
+#endif
+ }
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+static void winMutexEnter(sqlite3_mutex *p){
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ DWORD tid = GetCurrentThreadId();
+#endif
+#ifdef SQLITE_DEBUG
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
+#else
+ assert( p );
+#endif
+ assert( winMutex_isInit==1 );
+ EnterCriticalSection(&p->mutex);
+#ifdef SQLITE_DEBUG
+ assert( p->nRef>0 || p->owner==0 );
+ p->owner = tid;
+ p->nRef++;
+ if( p->trace ){
+ OSTRACE(("ENTER-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n",
+ tid, p->id, p, p->trace, p->nRef));
+ }
+#endif
+}
+
+static int winMutexTry(sqlite3_mutex *p){
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ DWORD tid = GetCurrentThreadId();
+#endif
+ int rc = SQLITE_BUSY;
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
+ /*
+ ** The sqlite3_mutex_try() routine is very rarely used, and when it
+ ** is used it is merely an optimization. So it is OK for it to always
+ ** fail.
+ **
+ ** The TryEnterCriticalSection() interface is only available on WinNT.
+ ** And some windows compilers complain if you try to use it without
+ ** first doing some #defines that prevent SQLite from building on Win98.
+ ** For that reason, we will omit this optimization for now. See
+ ** ticket #2685.
+ */
+#if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400
+ assert( winMutex_isInit==1 );
+ assert( winMutex_isNt>=-1 && winMutex_isNt<=1 );
+ if( winMutex_isNt<0 ){
+ winMutex_isNt = sqlite3_win32_is_nt();
+ }
+ assert( winMutex_isNt==0 || winMutex_isNt==1 );
+ if( winMutex_isNt && TryEnterCriticalSection(&p->mutex) ){
+#ifdef SQLITE_DEBUG
+ p->owner = tid;
+ p->nRef++;
+#endif
+ rc = SQLITE_OK;
+ }
+#else
+ UNUSED_PARAMETER(p);
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ OSTRACE(("TRY-MUTEX tid=%lu, mutex(%d)=%p (%d), owner=%lu, nRef=%d, rc=%s\n",
+ tid, p->id, p, p->trace, p->owner, p->nRef, sqlite3ErrName(rc)));
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+static void winMutexLeave(sqlite3_mutex *p){
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ DWORD tid = GetCurrentThreadId();
+#endif
+ assert( p );
+#ifdef SQLITE_DEBUG
+ assert( p->nRef>0 );
+ assert( p->owner==tid );
+ p->nRef--;
+ if( p->nRef==0 ) p->owner = 0;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+#endif
+ assert( winMutex_isInit==1 );
+ LeaveCriticalSection(&p->mutex);
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ OSTRACE(("LEAVE-MUTEX tid=%lu, mutex(%d)=%p (%d), nRef=%d\n",
+ tid, p->id, p, p->trace, p->nRef));
+ }
+#endif
+}
+
+SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
+ static const sqlite3_mutex_methods sMutex = {
+ winMutexInit,
+ winMutexEnd,
+ winMutexAlloc,
+ winMutexFree,
+ winMutexEnter,
+ winMutexTry,
+ winMutexLeave,
+#ifdef SQLITE_DEBUG
+ winMutexHeld,
+ winMutexNotheld
+#else
+ 0,
+ 0
+#endif
+ };
+ return &sMutex;
+}
+
+#endif /* SQLITE_MUTEX_W32 */
+
+/************** End of mutex_w32.c *******************************************/
+/************** Begin file malloc.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Memory allocation functions used throughout sqlite.
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdarg.h> */
+
+/*
+** Attempt to release up to n bytes of non-essential memory currently
+** held by SQLite. An example of non-essential memory is memory used to
+** cache database pages that are not currently in use.
+*/
+SQLITE_API int sqlite3_release_memory(int n){
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ return sqlite3PcacheReleaseMemory(n);
+#else
+ /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
+ ** is a no-op returning zero if SQLite is not compiled with
+ ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
+ UNUSED_PARAMETER(n);
+ return 0;
+#endif
+}
+
+/*
+** Default value of the hard heap limit. 0 means "no limit".
+*/
+#ifndef SQLITE_MAX_MEMORY
+# define SQLITE_MAX_MEMORY 0
+#endif
+
+/*
+** State information local to the memory allocation subsystem.
+*/
+static SQLITE_WSD struct Mem0Global {
+ sqlite3_mutex *mutex; /* Mutex to serialize access */
+ sqlite3_int64 alarmThreshold; /* The soft heap limit */
+ sqlite3_int64 hardLimit; /* The hard upper bound on memory */
+
+ /*
+ ** True if heap is nearly "full" where "full" is defined by the
+ ** sqlite3_soft_heap_limit() setting.
+ */
+ int nearlyFull;
+} mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
+
+#define mem0 GLOBAL(struct Mem0Global, mem0)
+
+/*
+** Return the memory allocator mutex. sqlite3_status() needs it.
+*/
+SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void){
+ return mem0.mutex;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. It used to set an alarm callback
+** that was invoked when memory usage grew too large. Now it is a
+** no-op.
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ (void)xCallback;
+ (void)pArg;
+ (void)iThreshold;
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Set the soft heap-size limit for the library. An argument of
+** zero disables the limit. A negative argument is a no-op used to
+** obtain the return value.
+**
+** The return value is the value of the heap limit just before this
+** interface was called.
+**
+** If the hard heap limit is enabled, then the soft heap limit cannot
+** be disabled nor raised above the hard heap limit.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
+ sqlite3_int64 priorLimit;
+ sqlite3_int64 excess;
+ sqlite3_int64 nUsed;
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return -1;
+#endif
+ sqlite3_mutex_enter(mem0.mutex);
+ priorLimit = mem0.alarmThreshold;
+ if( n<0 ){
+ sqlite3_mutex_leave(mem0.mutex);
+ return priorLimit;
+ }
+ if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
+ n = mem0.hardLimit;
+ }
+ mem0.alarmThreshold = n;
+ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
+ sqlite3_mutex_leave(mem0.mutex);
+ excess = sqlite3_memory_used() - n;
+ if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
+ return priorLimit;
+}
+SQLITE_API void sqlite3_soft_heap_limit(int n){
+ if( n<0 ) n = 0;
+ sqlite3_soft_heap_limit64(n);
+}
+
+/*
+** Set the hard heap-size limit for the library. An argument of zero
+** disables the hard heap limit. A negative argument is a no-op used
+** to obtain the return value without affecting the hard heap limit.
+**
+** The return value is the value of the hard heap limit just prior to
+** calling this interface.
+**
+** Setting the hard heap limit will also activate the soft heap limit
+** and constrain the soft heap limit to be no more than the hard heap
+** limit.
+*/
+SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
+ sqlite3_int64 priorLimit;
+#ifndef SQLITE_OMIT_AUTOINIT
+ int rc = sqlite3_initialize();
+ if( rc ) return -1;
+#endif
+ sqlite3_mutex_enter(mem0.mutex);
+ priorLimit = mem0.hardLimit;
+ if( n>=0 ){
+ mem0.hardLimit = n;
+ if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
+ mem0.alarmThreshold = n;
+ }
+ }
+ sqlite3_mutex_leave(mem0.mutex);
+ return priorLimit;
+}
+
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE int sqlite3MallocInit(void){
+ int rc;
+ if( sqlite3GlobalConfig.m.xMalloc==0 ){
+ sqlite3MemSetDefault();
+ }
+ mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+ if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
+ || sqlite3GlobalConfig.nPage<=0 ){
+ sqlite3GlobalConfig.pPage = 0;
+ sqlite3GlobalConfig.szPage = 0;
+ }
+ rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
+ if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
+ return rc;
+}
+
+/*
+** Return true if the heap is currently under memory pressure - in other
+** words if the amount of heap used is close to the limit set by
+** sqlite3_soft_heap_limit().
+*/
+SQLITE_PRIVATE int sqlite3HeapNearlyFull(void){
+ return AtomicLoad(&mem0.nearlyFull);
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+SQLITE_PRIVATE void sqlite3MallocEnd(void){
+ if( sqlite3GlobalConfig.m.xShutdown ){
+ sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
+ }
+ memset(&mem0, 0, sizeof(mem0));
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ sqlite3_int64 res, mx;
+ sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
+ return res;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ sqlite3_int64 res, mx;
+ sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
+ return mx;
+}
+
+/*
+** Trigger the alarm
+*/
+static void sqlite3MallocAlarm(int nByte){
+ if( mem0.alarmThreshold<=0 ) return;
+ sqlite3_mutex_leave(mem0.mutex);
+ sqlite3_release_memory(nByte);
+ sqlite3_mutex_enter(mem0.mutex);
+}
+
+/*
+** Do a memory allocation with statistics and alarms. Assume the
+** lock is already held.
+*/
+static void mallocWithAlarm(int n, void **pp){
+ void *p;
+ int nFull;
+ assert( sqlite3_mutex_held(mem0.mutex) );
+ assert( n>0 );
+
+ /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
+ ** implementation of malloc_good_size(), which must be called in debug
+ ** mode and specifically when the DMD "Dark Matter Detector" is enabled
+ ** or else a crash results. Hence, do not attempt to optimize out the
+ ** following xRoundup() call. */
+ nFull = sqlite3GlobalConfig.m.xRoundup(n);
+
+ sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
+ if( mem0.alarmThreshold>0 ){
+ sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ if( nUsed >= mem0.alarmThreshold - nFull ){
+ AtomicStore(&mem0.nearlyFull, 1);
+ sqlite3MallocAlarm(nFull);
+ if( mem0.hardLimit ){
+ nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+ if( nUsed >= mem0.hardLimit - nFull ){
+ *pp = 0;
+ return;
+ }
+ }
+ }else{
+ AtomicStore(&mem0.nearlyFull, 0);
+ }
+ }
+ p = sqlite3GlobalConfig.m.xMalloc(nFull);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( p==0 && mem0.alarmThreshold>0 ){
+ sqlite3MallocAlarm(nFull);
+ p = sqlite3GlobalConfig.m.xMalloc(nFull);
+ }
+#endif
+ if( p ){
+ nFull = sqlite3MallocSize(p);
+ sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
+ sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
+ }
+ *pp = p;
+}
+
+/*
+** Maximum size of any single memory allocation.
+**
+** This is not a limit on the total amount of memory used. This is
+** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc().
+**
+** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391
+** This provides a 256-byte safety margin for defense against 32-bit
+** signed integer overflow bugs when computing memory allocation sizes.
+** Paranoid applications might want to reduce the maximum allocation size
+** further for an even larger safety margin. 0x3fffffff or 0x0fffffff
+** or even smaller would be reasonable upper bounds on the size of a memory
+** allocations for most applications.
+*/
+#ifndef SQLITE_MAX_ALLOCATION_SIZE
+# define SQLITE_MAX_ALLOCATION_SIZE 2147483391
+#endif
+#if SQLITE_MAX_ALLOCATION_SIZE>2147483391
+# error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391
+#endif
+
+/*
+** Allocate memory. This routine is like sqlite3_malloc() except that it
+** assumes the memory subsystem has already been initialized.
+*/
+SQLITE_PRIVATE void *sqlite3Malloc(u64 n){
+ void *p;
+ if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){
+ p = 0;
+ }else if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ mallocWithAlarm((int)n, &p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ p = sqlite3GlobalConfig.m.xMalloc((int)n);
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
+ return p;
+}
+
+/*
+** This version of the memory allocation is for use by the application.
+** First make sure the memory subsystem is initialized, then do the
+** allocation.
+*/
+SQLITE_API void *sqlite3_malloc(int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return n<=0 ? 0 : sqlite3Malloc(n);
+}
+SQLITE_API void *sqlite3_malloc64(sqlite3_uint64 n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Malloc(n);
+}
+
+/*
+** TRUE if p is a lookaside memory allocation from db
+*/
+#ifndef SQLITE_OMIT_LOOKASIDE
+static int isLookaside(sqlite3 *db, const void *p){
+ return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd);
+}
+#else
+#define isLookaside(A,B) 0
+#endif
+
+/*
+** Return the size of a memory allocation previously obtained from
+** sqlite3Malloc() or sqlite3_malloc().
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(const void *p){
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ return sqlite3GlobalConfig.m.xSize((void*)p);
+}
+static int lookasideMallocSize(sqlite3 *db, const void *p){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
+#else
+ return db->lookaside.szTrue;
+#endif
+}
+SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, const void *p){
+ assert( p!=0 );
+#ifdef SQLITE_DEBUG
+ if( db==0 ){
+ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ }else if( !isLookaside(db,p) ){
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ }
+#endif
+ if( db ){
+ if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
+ assert( sqlite3_mutex_held(db->mutex) );
+ return LOOKASIDE_SMALL;
+ }
+#endif
+ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
+ assert( sqlite3_mutex_held(db->mutex) );
+ return db->lookaside.szTrue;
+ }
+ }
+ }
+ return sqlite3GlobalConfig.m.xSize((void*)p);
+}
+SQLITE_API sqlite3_uint64 sqlite3_msize(void *p){
+ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
+}
+
+/*
+** Free memory previously obtained from sqlite3Malloc().
+*/
+SQLITE_API void sqlite3_free(void *p){
+ if( p==0 ) return; /* IMP: R-49053-54554 */
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
+ if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
+ sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
+ sqlite3GlobalConfig.m.xFree(p);
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ sqlite3GlobalConfig.m.xFree(p);
+ }
+}
+
+/*
+** Add the size of memory allocation "p" to the count in
+** *db->pnBytesFreed.
+*/
+static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
+ *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
+}
+
+/*
+** Free memory that might be associated with a particular database
+** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
+** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
+*/
+SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ assert( p!=0 );
+ if( db ){
+ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ assert( db->pnBytesFreed==0 );
+#ifdef SQLITE_DEBUG
+ memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
+#endif
+ pBuf->pNext = db->lookaside.pSmallFree;
+ db->lookaside.pSmallFree = pBuf;
+ return;
+ }
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ assert( db->pnBytesFreed==0 );
+#ifdef SQLITE_DEBUG
+ memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
+#endif
+ pBuf->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = pBuf;
+ return;
+ }
+ }
+ if( db->pnBytesFreed ){
+ measureAllocationSize(db, p);
+ return;
+ }
+ }
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ sqlite3_free(p);
+}
+SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3 *db, void *p){
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( p!=0 );
+ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ assert( db->pnBytesFreed==0 );
+#ifdef SQLITE_DEBUG
+ memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
+#endif
+ pBuf->pNext = db->lookaside.pSmallFree;
+ db->lookaside.pSmallFree = pBuf;
+ return;
+ }
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
+ LookasideSlot *pBuf = (LookasideSlot*)p;
+ assert( db->pnBytesFreed==0 );
+#ifdef SQLITE_DEBUG
+ memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
+#endif
+ pBuf->pNext = db->lookaside.pFree;
+ db->lookaside.pFree = pBuf;
+ return;
+ }
+ }
+ if( db->pnBytesFreed ){
+ measureAllocationSize(db, p);
+ return;
+ }
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ sqlite3_free(p);
+}
+SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
+ assert( db==0 || sqlite3_mutex_held(db->mutex) );
+ if( p ) sqlite3DbFreeNN(db, p);
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){
+ int nOld, nNew, nDiff;
+ void *pNew;
+ assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
+ assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
+ if( pOld==0 ){
+ return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
+ }
+ if( nBytes==0 ){
+ sqlite3_free(pOld); /* IMP: R-26507-47431 */
+ return 0;
+ }
+ if( nBytes>=0x7fffff00 ){
+ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
+ return 0;
+ }
+ nOld = sqlite3MallocSize(pOld);
+ /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
+ ** argument to xRealloc is always a value returned by a prior call to
+ ** xRoundup. */
+ nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
+ if( nOld==nNew ){
+ pNew = pOld;
+ }else if( sqlite3GlobalConfig.bMemstat ){
+ sqlite3_int64 nUsed;
+ sqlite3_mutex_enter(mem0.mutex);
+ sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
+ nDiff = nNew - nOld;
+ if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
+ mem0.alarmThreshold-nDiff ){
+ sqlite3MallocAlarm(nDiff);
+ if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
+ sqlite3_mutex_leave(mem0.mutex);
+ return 0;
+ }
+ }
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( pNew==0 && mem0.alarmThreshold>0 ){
+ sqlite3MallocAlarm((int)nBytes);
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ }
+#endif
+ if( pNew ){
+ nNew = sqlite3MallocSize(pNew);
+ sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
+ }
+ sqlite3_mutex_leave(mem0.mutex);
+ }else{
+ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
+ return pNew;
+}
+
+/*
+** The public interface to sqlite3Realloc. Make sure that the memory
+** subsystem is initialized prior to invoking sqliteRealloc.
+*/
+SQLITE_API void *sqlite3_realloc(void *pOld, int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ if( n<0 ) n = 0; /* IMP: R-26507-47431 */
+ return sqlite3Realloc(pOld, n);
+}
+SQLITE_API void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return sqlite3Realloc(pOld, n);
+}
+
+
+/*
+** Allocate and zero memory.
+*/
+SQLITE_PRIVATE void *sqlite3MallocZero(u64 n){
+ void *p = sqlite3Malloc(n);
+ if( p ){
+ memset(p, 0, (size_t)n);
+ }
+ return p;
+}
+
+/*
+** Allocate and zero memory. If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
+ void *p;
+ testcase( db==0 );
+ p = sqlite3DbMallocRaw(db, n);
+ if( p ) memset(p, 0, (size_t)n);
+ return p;
+}
+
+
+/* Finish the work of sqlite3DbMallocRawNN for the unusual and
+** slower case when the allocation cannot be fulfilled using lookaside.
+*/
+static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
+ void *p;
+ assert( db!=0 );
+ p = sqlite3Malloc(n);
+ if( !p ) sqlite3OomFault(db);
+ sqlite3MemdebugSetType(p,
+ (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
+ return p;
+}
+
+/*
+** Allocate memory, either lookaside (if possible) or heap.
+** If the allocation fails, set the mallocFailed flag in
+** the connection pointer.
+**
+** If db!=0 and db->mallocFailed is true (indicating a prior malloc
+** failure on the same database connection) then always return 0.
+** Hence for a particular database connection, once malloc starts
+** failing, it fails consistently until mallocFailed is reset.
+** This is an important assumption. There are many places in the
+** code that do things like this:
+**
+** int *a = (int*)sqlite3DbMallocRaw(db, 100);
+** int *b = (int*)sqlite3DbMallocRaw(db, 200);
+** if( b ) a[10] = 9;
+**
+** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
+** that all prior mallocs (ex: "a") worked too.
+**
+** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
+** not a NULL pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
+ void *p;
+ if( db ) return sqlite3DbMallocRawNN(db, n);
+ p = sqlite3Malloc(n);
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ return p;
+}
+SQLITE_PRIVATE void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
+#ifndef SQLITE_OMIT_LOOKASIDE
+ LookasideSlot *pBuf;
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( db->pnBytesFreed==0 );
+ if( n>db->lookaside.sz ){
+ if( !db->lookaside.bDisable ){
+ db->lookaside.anStat[1]++;
+ }else if( db->mallocFailed ){
+ return 0;
+ }
+ return dbMallocRawFinish(db, n);
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( n<=LOOKASIDE_SMALL ){
+ if( (pBuf = db->lookaside.pSmallFree)!=0 ){
+ db->lookaside.pSmallFree = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
+ db->lookaside.pSmallInit = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }
+ }
+#endif
+ if( (pBuf = db->lookaside.pFree)!=0 ){
+ db->lookaside.pFree = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }else if( (pBuf = db->lookaside.pInit)!=0 ){
+ db->lookaside.pInit = pBuf->pNext;
+ db->lookaside.anStat[0]++;
+ return (void*)pBuf;
+ }else{
+ db->lookaside.anStat[2]++;
+ }
+#else
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( db->pnBytesFreed==0 );
+ if( db->mallocFailed ){
+ return 0;
+ }
+#endif
+ return dbMallocRawFinish(db, n);
+}
+
+/* Forward declaration */
+static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
+
+/*
+** Resize the block of memory pointed to by p to n bytes. If the
+** resize fails, set the mallocFailed flag in the connection object.
+*/
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
+ assert( db!=0 );
+ if( p==0 ) return sqlite3DbMallocRawNN(db, n);
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
+ if( n<=LOOKASIDE_SMALL ) return p;
+ }else
+#endif
+ if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
+ if( n<=db->lookaside.szTrue ) return p;
+ }
+ }
+ return dbReallocFinish(db, p, n);
+}
+static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
+ void *pNew = 0;
+ assert( db!=0 );
+ assert( p!=0 );
+ if( db->mallocFailed==0 ){
+ if( isLookaside(db, p) ){
+ pNew = sqlite3DbMallocRawNN(db, n);
+ if( pNew ){
+ memcpy(pNew, p, lookasideMallocSize(db, p));
+ sqlite3DbFree(db, p);
+ }
+ }else{
+ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ pNew = sqlite3Realloc(p, n);
+ if( !pNew ){
+ sqlite3OomFault(db);
+ }
+ sqlite3MemdebugSetType(pNew,
+ (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
+ }
+ }
+ return pNew;
+}
+
+/*
+** Attempt to reallocate p. If the reallocation fails, then free p
+** and set the mallocFailed flag in the database connection.
+*/
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
+ void *pNew;
+ pNew = sqlite3DbRealloc(db, p, n);
+ if( !pNew ){
+ sqlite3DbFree(db, p);
+ }
+ return pNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc(). These
+** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
+** is because when memory debugging is turned on, these two functions are
+** called via macros that record the current file and line number in the
+** ThreadData structure.
+*/
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
+ char *zNew;
+ size_t n;
+ if( z==0 ){
+ return 0;
+ }
+ n = strlen(z) + 1;
+ zNew = sqlite3DbMallocRaw(db, n);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ }
+ return zNew;
+}
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
+ char *zNew;
+ assert( db!=0 );
+ assert( z!=0 || n==0 );
+ assert( (n&0x7fffffff)==n );
+ zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
+ if( zNew ){
+ memcpy(zNew, z, (size_t)n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+
+/*
+** The text between zStart and zEnd represents a phrase within a larger
+** SQL statement. Make a copy of this phrase in space obtained form
+** sqlite3DbMalloc(). Omit leading and trailing whitespace.
+*/
+SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
+ int n;
+#ifdef SQLITE_DEBUG
+ /* Because of the way the parser works, the span is guaranteed to contain
+ ** at least one non-space character */
+ for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]<zEnd ); }
+#endif
+ while( sqlite3Isspace(zStart[0]) ) zStart++;
+ n = (int)(zEnd - zStart);
+ while( sqlite3Isspace(zStart[n-1]) ) n--;
+ return sqlite3DbStrNDup(db, zStart, n);
+}
+
+/*
+** Free any prior content in *pz and replace it with a copy of zNew.
+*/
+SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
+ char *z = sqlite3DbStrDup(db, zNew);
+ sqlite3DbFree(db, *pz);
+ *pz = z;
+}
+
+/*
+** Call this routine to record the fact that an OOM (out-of-memory) error
+** has happened. This routine will set db->mallocFailed, and also
+** temporarily disable the lookaside memory allocator and interrupt
+** any running VDBEs.
+**
+** Always return a NULL pointer so that this routine can be invoked using
+**
+** return sqlite3OomFault(db);
+**
+** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
+** common case where no OOM occurs.
+*/
+SQLITE_PRIVATE void *sqlite3OomFault(sqlite3 *db){
+ if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
+ db->mallocFailed = 1;
+ if( db->nVdbeExec>0 ){
+ AtomicStore(&db->u1.isInterrupted, 1);
+ }
+ DisableLookaside;
+ if( db->pParse ){
+ Parse *pParse;
+ sqlite3ErrorMsg(db->pParse, "out of memory");
+ db->pParse->rc = SQLITE_NOMEM_BKPT;
+ for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){
+ pParse->nErr++;
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** This routine reactivates the memory allocator and clears the
+** db->mallocFailed flag as necessary.
+**
+** The memory allocator is not restarted if there are running
+** VDBEs.
+*/
+SQLITE_PRIVATE void sqlite3OomClear(sqlite3 *db){
+ if( db->mallocFailed && db->nVdbeExec==0 ){
+ db->mallocFailed = 0;
+ AtomicStore(&db->u1.isInterrupted, 0);
+ assert( db->lookaside.bDisable>0 );
+ EnableLookaside;
+ }
+}
+
+/*
+** Take actions at the end of an API call to deal with error codes.
+*/
+static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
+ if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomClear(db);
+ sqlite3Error(db, SQLITE_NOMEM);
+ return SQLITE_NOMEM_BKPT;
+ }
+ return rc & db->errMask;
+}
+
+/*
+** This function must be called before exiting any API function (i.e.
+** returning control to the user) that has called sqlite3_malloc or
+** sqlite3_realloc.
+**
+** The returned value is normally a copy of the second argument to this
+** function. However, if a malloc() failure has occurred since the previous
+** invocation SQLITE_NOMEM is returned instead.
+**
+** If an OOM as occurred, then the connection error-code (the value
+** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
+*/
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
+ /* If the db handle must hold the connection handle mutex here.
+ ** Otherwise the read (and possible write) of db->mallocFailed
+ ** is unsafe, as is the call to sqlite3Error().
+ */
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( db->mallocFailed || rc ){
+ return apiHandleError(db, rc);
+ }
+ return 0;
+}
+
+/************** End of malloc.c **********************************************/
+/************** Begin file printf.c ******************************************/
+/*
+** The "printf" code that follows dates from the 1980's. It is in
+** the public domain.
+**
+**************************************************************************
+**
+** This file contains code for a set of "printf"-like routines. These
+** routines format strings much like the printf() from the standard C
+** library, though the implementation here has enhancements to support
+** SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Conversion types fall into various categories as defined by the
+** following enumeration.
+*/
+#define etRADIX 0 /* non-decimal integer types. %x %o */
+#define etFLOAT 1 /* Floating point. %f */
+#define etEXP 2 /* Exponentional notation. %e and %E */
+#define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */
+#define etSIZE 4 /* Return number of characters processed so far. %n */
+#define etSTRING 5 /* Strings. %s */
+#define etDYNSTRING 6 /* Dynamically allocated strings. %z */
+#define etPERCENT 7 /* Percent symbol. %% */
+#define etCHARX 8 /* Characters. %c */
+/* The rest are extensions, not normally found in printf() */
+#define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */
+#define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '',
+ NULL pointers replaced by SQL NULL. %Q */
+#define etTOKEN 11 /* a pointer to a Token structure */
+#define etSRCITEM 12 /* a pointer to a SrcItem */
+#define etPOINTER 13 /* The %p conversion */
+#define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */
+#define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
+#define etDECIMAL 16 /* %d or %u, but not %x, %o */
+
+#define etINVALID 17 /* Any unrecognized conversion type */
+
+
+/*
+** An "etByte" is an 8-bit unsigned value.
+*/
+typedef unsigned char etByte;
+
+/*
+** Each builtin conversion character (ex: the 'd' in "%d") is described
+** by an instance of the following structure
+*/
+typedef struct et_info { /* Information about each format field */
+ char fmttype; /* The format field code letter */
+ etByte base; /* The base for radix conversion */
+ etByte flags; /* One or more of FLAG_ constants below */
+ etByte type; /* Conversion paradigm */
+ etByte charset; /* Offset into aDigits[] of the digits string */
+ etByte prefix; /* Offset into aPrefix[] of the prefix string */
+} et_info;
+
+/*
+** Allowed values for et_info.flags
+*/
+#define FLAG_SIGNED 1 /* True if the value to convert is signed */
+#define FLAG_STRING 4 /* Allow infinite precision */
+
+
+/*
+** The following table is searched linearly, so it is good to put the
+** most frequently used conversion types first.
+*/
+static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
+static const char aPrefix[] = "-x0\000X0";
+static const et_info fmtinfo[] = {
+ { 'd', 10, 1, etDECIMAL, 0, 0 },
+ { 's', 0, 4, etSTRING, 0, 0 },
+ { 'g', 0, 1, etGENERIC, 30, 0 },
+ { 'z', 0, 4, etDYNSTRING, 0, 0 },
+ { 'q', 0, 4, etSQLESCAPE, 0, 0 },
+ { 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
+ { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
+ { 'c', 0, 0, etCHARX, 0, 0 },
+ { 'o', 8, 0, etRADIX, 0, 2 },
+ { 'u', 10, 0, etDECIMAL, 0, 0 },
+ { 'x', 16, 0, etRADIX, 16, 1 },
+ { 'X', 16, 0, etRADIX, 0, 4 },
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ { 'f', 0, 1, etFLOAT, 0, 0 },
+ { 'e', 0, 1, etEXP, 30, 0 },
+ { 'E', 0, 1, etEXP, 14, 0 },
+ { 'G', 0, 1, etGENERIC, 14, 0 },
+#endif
+ { 'i', 10, 1, etDECIMAL, 0, 0 },
+ { 'n', 0, 0, etSIZE, 0, 0 },
+ { '%', 0, 0, etPERCENT, 0, 0 },
+ { 'p', 16, 0, etPOINTER, 0, 1 },
+
+ /* All the rest are undocumented and are for internal use only */
+ { 'T', 0, 0, etTOKEN, 0, 0 },
+ { 'S', 0, 0, etSRCITEM, 0, 0 },
+ { 'r', 10, 1, etORDINAL, 0, 0 },
+};
+
+/* Notes:
+**
+** %S Takes a pointer to SrcItem. Shows name or database.name
+** %!S Like %S but prefer the zName over the zAlias
+*/
+
+/*
+** Set the StrAccum object to an error mode.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum *p, u8 eError){
+ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
+ p->accError = eError;
+ if( p->mxAlloc ) sqlite3_str_reset(p);
+ if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError);
+}
+
+/*
+** Extra argument values from a PrintfArguments object
+*/
+static sqlite3_int64 getIntArg(PrintfArguments *p){
+ if( p->nArg<=p->nUsed ) return 0;
+ return sqlite3_value_int64(p->apArg[p->nUsed++]);
+}
+static double getDoubleArg(PrintfArguments *p){
+ if( p->nArg<=p->nUsed ) return 0.0;
+ return sqlite3_value_double(p->apArg[p->nUsed++]);
+}
+static char *getTextArg(PrintfArguments *p){
+ if( p->nArg<=p->nUsed ) return 0;
+ return (char*)sqlite3_value_text(p->apArg[p->nUsed++]);
+}
+
+/*
+** Allocate memory for a temporary buffer needed for printf rendering.
+**
+** If the requested size of the temp buffer is larger than the size
+** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error.
+** Do the size check before the memory allocation to prevent rogue
+** SQL from requesting large allocations using the precision or width
+** field of the printf() function.
+*/
+static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){
+ char *z;
+ if( pAccum->accError ) return 0;
+ if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){
+ sqlite3StrAccumSetError(pAccum, SQLITE_TOOBIG);
+ return 0;
+ }
+ z = sqlite3DbMallocRaw(pAccum->db, n);
+ if( z==0 ){
+ sqlite3StrAccumSetError(pAccum, SQLITE_NOMEM);
+ }
+ return z;
+}
+
+/*
+** On machines with a small stack size, you can redefine the
+** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
+*/
+#ifndef SQLITE_PRINT_BUF_SIZE
+# define SQLITE_PRINT_BUF_SIZE 70
+#endif
+#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
+
+/*
+** Hard limit on the precision of floating-point conversions.
+*/
+#ifndef SQLITE_PRINTF_PRECISION_LIMIT
+# define SQLITE_FP_PRECISION_LIMIT 100000000
+#endif
+
+/*
+** Render a string given by "fmt" into the StrAccum object.
+*/
+SQLITE_API void sqlite3_str_vappendf(
+ sqlite3_str *pAccum, /* Accumulate results here */
+ const char *fmt, /* Format string */
+ va_list ap /* arguments */
+){
+ int c; /* Next character in the format string */
+ char *bufpt; /* Pointer to the conversion buffer */
+ int precision; /* Precision of the current field */
+ int length; /* Length of the field */
+ int idx; /* A general purpose loop counter */
+ int width; /* Width of the current field */
+ etByte flag_leftjustify; /* True if "-" flag is present */
+ etByte flag_prefix; /* '+' or ' ' or 0 for prefix */
+ etByte flag_alternateform; /* True if "#" flag is present */
+ etByte flag_altform2; /* True if "!" flag is present */
+ etByte flag_zeropad; /* True if field width constant starts with zero */
+ etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */
+ etByte done; /* Loop termination flag */
+ etByte cThousand; /* Thousands separator for %d and %u */
+ etByte xtype = etINVALID; /* Conversion paradigm */
+ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */
+ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
+ sqlite_uint64 longvalue; /* Value for integer types */
+ double realvalue; /* Value for real types */
+ const et_info *infop; /* Pointer to the appropriate info structure */
+ char *zOut; /* Rendering buffer */
+ int nOut; /* Size of the rendering buffer */
+ char *zExtra = 0; /* Malloced memory used by some conversion */
+ int exp, e2; /* exponent of real numbers */
+ etByte flag_dp; /* True if decimal point should be shown */
+ etByte flag_rtz; /* True if trailing zeros should be removed */
+
+ PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
+ char buf[etBUFSIZE]; /* Conversion buffer */
+
+ /* pAccum never starts out with an empty buffer that was obtained from
+ ** malloc(). This precondition is required by the mprintf("%z...")
+ ** optimization. */
+ assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
+
+ bufpt = 0;
+ if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){
+ pArgList = va_arg(ap, PrintfArguments*);
+ bArgList = 1;
+ }else{
+ bArgList = 0;
+ }
+ for(; (c=(*fmt))!=0; ++fmt){
+ if( c!='%' ){
+ bufpt = (char *)fmt;
+#if HAVE_STRCHRNUL
+ fmt = strchrnul(fmt, '%');
+#else
+ do{ fmt++; }while( *fmt && *fmt != '%' );
+#endif
+ sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt));
+ if( *fmt==0 ) break;
+ }
+ if( (c=(*++fmt))==0 ){
+ sqlite3_str_append(pAccum, "%", 1);
+ break;
+ }
+ /* Find out what flags are present */
+ flag_leftjustify = flag_prefix = cThousand =
+ flag_alternateform = flag_altform2 = flag_zeropad = 0;
+ done = 0;
+ width = 0;
+ flag_long = 0;
+ precision = -1;
+ do{
+ switch( c ){
+ case '-': flag_leftjustify = 1; break;
+ case '+': flag_prefix = '+'; break;
+ case ' ': flag_prefix = ' '; break;
+ case '#': flag_alternateform = 1; break;
+ case '!': flag_altform2 = 1; break;
+ case '0': flag_zeropad = 1; break;
+ case ',': cThousand = ','; break;
+ default: done = 1; break;
+ case 'l': {
+ flag_long = 1;
+ c = *++fmt;
+ if( c=='l' ){
+ c = *++fmt;
+ flag_long = 2;
+ }
+ done = 1;
+ break;
+ }
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9': {
+ unsigned wx = c - '0';
+ while( (c = *++fmt)>='0' && c<='9' ){
+ wx = wx*10 + c - '0';
+ }
+ testcase( wx>0x7fffffff );
+ width = wx & 0x7fffffff;
+#ifdef SQLITE_PRINTF_PRECISION_LIMIT
+ if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
+ width = SQLITE_PRINTF_PRECISION_LIMIT;
+ }
+#endif
+ if( c!='.' && c!='l' ){
+ done = 1;
+ }else{
+ fmt--;
+ }
+ break;
+ }
+ case '*': {
+ if( bArgList ){
+ width = (int)getIntArg(pArgList);
+ }else{
+ width = va_arg(ap,int);
+ }
+ if( width<0 ){
+ flag_leftjustify = 1;
+ width = width >= -2147483647 ? -width : 0;
+ }
+#ifdef SQLITE_PRINTF_PRECISION_LIMIT
+ if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
+ width = SQLITE_PRINTF_PRECISION_LIMIT;
+ }
+#endif
+ if( (c = fmt[1])!='.' && c!='l' ){
+ c = *++fmt;
+ done = 1;
+ }
+ break;
+ }
+ case '.': {
+ c = *++fmt;
+ if( c=='*' ){
+ if( bArgList ){
+ precision = (int)getIntArg(pArgList);
+ }else{
+ precision = va_arg(ap,int);
+ }
+ if( precision<0 ){
+ precision = precision >= -2147483647 ? -precision : -1;
+ }
+ c = *++fmt;
+ }else{
+ unsigned px = 0;
+ while( c>='0' && c<='9' ){
+ px = px*10 + c - '0';
+ c = *++fmt;
+ }
+ testcase( px>0x7fffffff );
+ precision = px & 0x7fffffff;
+ }
+#ifdef SQLITE_PRINTF_PRECISION_LIMIT
+ if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){
+ precision = SQLITE_PRINTF_PRECISION_LIMIT;
+ }
+#endif
+ if( c=='l' ){
+ --fmt;
+ }else{
+ done = 1;
+ }
+ break;
+ }
+ }
+ }while( !done && (c=(*++fmt))!=0 );
+
+ /* Fetch the info entry for the field */
+ infop = &fmtinfo[0];
+ xtype = etINVALID;
+ for(idx=0; idx<ArraySize(fmtinfo); idx++){
+ if( c==fmtinfo[idx].fmttype ){
+ infop = &fmtinfo[idx];
+ xtype = infop->type;
+ break;
+ }
+ }
+
+ /*
+ ** At this point, variables are initialized as follows:
+ **
+ ** flag_alternateform TRUE if a '#' is present.
+ ** flag_altform2 TRUE if a '!' is present.
+ ** flag_prefix '+' or ' ' or zero
+ ** flag_leftjustify TRUE if a '-' is present or if the
+ ** field width was negative.
+ ** flag_zeropad TRUE if the width began with 0.
+ ** flag_long 1 for "l", 2 for "ll"
+ ** width The specified field width. This is
+ ** always non-negative. Zero is the default.
+ ** precision The specified precision. The default
+ ** is -1.
+ ** xtype The class of the conversion.
+ ** infop Pointer to the appropriate info struct.
+ */
+ assert( width>=0 );
+ assert( precision>=(-1) );
+ switch( xtype ){
+ case etPOINTER:
+ flag_long = sizeof(char*)==sizeof(i64) ? 2 :
+ sizeof(char*)==sizeof(long int) ? 1 : 0;
+ /* no break */ deliberate_fall_through
+ case etORDINAL:
+ case etRADIX:
+ cThousand = 0;
+ /* no break */ deliberate_fall_through
+ case etDECIMAL:
+ if( infop->flags & FLAG_SIGNED ){
+ i64 v;
+ if( bArgList ){
+ v = getIntArg(pArgList);
+ }else if( flag_long ){
+ if( flag_long==2 ){
+ v = va_arg(ap,i64) ;
+ }else{
+ v = va_arg(ap,long int);
+ }
+ }else{
+ v = va_arg(ap,int);
+ }
+ if( v<0 ){
+ testcase( v==SMALLEST_INT64 );
+ testcase( v==(-1) );
+ longvalue = ~v;
+ longvalue++;
+ prefix = '-';
+ }else{
+ longvalue = v;
+ prefix = flag_prefix;
+ }
+ }else{
+ if( bArgList ){
+ longvalue = (u64)getIntArg(pArgList);
+ }else if( flag_long ){
+ if( flag_long==2 ){
+ longvalue = va_arg(ap,u64);
+ }else{
+ longvalue = va_arg(ap,unsigned long int);
+ }
+ }else{
+ longvalue = va_arg(ap,unsigned int);
+ }
+ prefix = 0;
+ }
+ if( longvalue==0 ) flag_alternateform = 0;
+ if( flag_zeropad && precision<width-(prefix!=0) ){
+ precision = width-(prefix!=0);
+ }
+ if( precision<etBUFSIZE-10-etBUFSIZE/3 ){
+ nOut = etBUFSIZE;
+ zOut = buf;
+ }else{
+ u64 n;
+ n = (u64)precision + 10;
+ if( cThousand ) n += precision/3;
+ zOut = zExtra = printfTempBuf(pAccum, n);
+ if( zOut==0 ) return;
+ nOut = (int)n;
+ }
+ bufpt = &zOut[nOut-1];
+ if( xtype==etORDINAL ){
+ static const char zOrd[] = "thstndrd";
+ int x = (int)(longvalue % 10);
+ if( x>=4 || (longvalue/10)%10==1 ){
+ x = 0;
+ }
+ *(--bufpt) = zOrd[x*2+1];
+ *(--bufpt) = zOrd[x*2];
+ }
+ {
+ const char *cset = &aDigits[infop->charset];
+ u8 base = infop->base;
+ do{ /* Convert to ascii */
+ *(--bufpt) = cset[longvalue%base];
+ longvalue = longvalue/base;
+ }while( longvalue>0 );
+ }
+ length = (int)(&zOut[nOut-1]-bufpt);
+ while( precision>length ){
+ *(--bufpt) = '0'; /* Zero pad */
+ length++;
+ }
+ if( cThousand ){
+ int nn = (length - 1)/3; /* Number of "," to insert */
+ int ix = (length - 1)%3 + 1;
+ bufpt -= nn;
+ for(idx=0; nn>0; idx++){
+ bufpt[idx] = bufpt[idx+nn];
+ ix--;
+ if( ix==0 ){
+ bufpt[++idx] = cThousand;
+ nn--;
+ ix = 3;
+ }
+ }
+ }
+ if( prefix ) *(--bufpt) = prefix; /* Add sign */
+ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
+ const char *pre;
+ char x;
+ pre = &aPrefix[infop->prefix];
+ for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
+ }
+ length = (int)(&zOut[nOut-1]-bufpt);
+ break;
+ case etFLOAT:
+ case etEXP:
+ case etGENERIC: {
+ FpDecode s;
+ int iRound;
+ int j;
+
+ if( bArgList ){
+ realvalue = getDoubleArg(pArgList);
+ }else{
+ realvalue = va_arg(ap,double);
+ }
+ if( precision<0 ) precision = 6; /* Set default precision */
+#ifdef SQLITE_FP_PRECISION_LIMIT
+ if( precision>SQLITE_FP_PRECISION_LIMIT ){
+ precision = SQLITE_FP_PRECISION_LIMIT;
+ }
+#endif
+ if( xtype==etFLOAT ){
+ iRound = -precision;
+ }else if( xtype==etGENERIC ){
+ iRound = precision;
+ }else{
+ iRound = precision+1;
+ }
+ sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16);
+ if( s.isSpecial ){
+ if( s.isSpecial==2 ){
+ bufpt = flag_zeropad ? "null" : "NaN";
+ length = sqlite3Strlen30(bufpt);
+ break;
+ }else if( flag_zeropad ){
+ s.z[0] = '9';
+ s.iDP = 1000;
+ s.n = 1;
+ }else{
+ memcpy(buf, "-Inf", 5);
+ bufpt = buf;
+ if( s.sign=='-' ){
+ /* no-op */
+ }else if( flag_prefix ){
+ buf[0] = flag_prefix;
+ }else{
+ bufpt++;
+ }
+ length = sqlite3Strlen30(bufpt);
+ break;
+ }
+ }
+ if( s.sign=='-' ){
+ prefix = '-';
+ }else{
+ prefix = flag_prefix;
+ }
+
+ exp = s.iDP-1;
+ if( xtype==etGENERIC && precision>0 ) precision--;
+
+ /*
+ ** If the field type is etGENERIC, then convert to either etEXP
+ ** or etFLOAT, as appropriate.
+ */
+ if( xtype==etGENERIC ){
+ flag_rtz = !flag_alternateform;
+ if( exp<-4 || exp>precision ){
+ xtype = etEXP;
+ }else{
+ precision = precision - exp;
+ xtype = etFLOAT;
+ }
+ }else{
+ flag_rtz = flag_altform2;
+ }
+ if( xtype==etEXP ){
+ e2 = 0;
+ }else{
+ e2 = s.iDP - 1;
+ }
+ bufpt = buf;
+ {
+ i64 szBufNeeded; /* Size of a temporary buffer needed */
+ szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15;
+ if( cThousand && e2>0 ) szBufNeeded += (e2+2)/3;
+ if( szBufNeeded > etBUFSIZE ){
+ bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded);
+ if( bufpt==0 ) return;
+ }
+ }
+ zOut = bufpt;
+ flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
+ /* The sign in front of the number */
+ if( prefix ){
+ *(bufpt++) = prefix;
+ }
+ /* Digits prior to the decimal point */
+ j = 0;
+ if( e2<0 ){
+ *(bufpt++) = '0';
+ }else{
+ for(; e2>=0; e2--){
+ *(bufpt++) = j<s.n ? s.z[j++] : '0';
+ if( cThousand && (e2%3)==0 && e2>1 ) *(bufpt++) = ',';
+ }
+ }
+ /* The decimal point */
+ if( flag_dp ){
+ *(bufpt++) = '.';
+ }
+ /* "0" digits after the decimal point but before the first
+ ** significant digit of the number */
+ for(e2++; e2<0 && precision>0; precision--, e2++){
+ *(bufpt++) = '0';
+ }
+ /* Significant digits after the decimal point */
+ while( (precision--)>0 ){
+ *(bufpt++) = j<s.n ? s.z[j++] : '0';
+ }
+ /* Remove trailing zeros and the "." if no digits follow the "." */
+ if( flag_rtz && flag_dp ){
+ while( bufpt[-1]=='0' ) *(--bufpt) = 0;
+ assert( bufpt>zOut );
+ if( bufpt[-1]=='.' ){
+ if( flag_altform2 ){
+ *(bufpt++) = '0';
+ }else{
+ *(--bufpt) = 0;
+ }
+ }
+ }
+ /* Add the "eNNN" suffix */
+ if( xtype==etEXP ){
+ exp = s.iDP - 1;
+ *(bufpt++) = aDigits[infop->charset];
+ if( exp<0 ){
+ *(bufpt++) = '-'; exp = -exp;
+ }else{
+ *(bufpt++) = '+';
+ }
+ if( exp>=100 ){
+ *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
+ exp %= 100;
+ }
+ *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
+ *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
+ }
+ *bufpt = 0;
+
+ /* The converted number is in buf[] and zero terminated. Output it.
+ ** Note that the number is in the usual order, not reversed as with
+ ** integer conversions. */
+ length = (int)(bufpt-zOut);
+ bufpt = zOut;
+
+ /* Special case: Add leading zeros if the flag_zeropad flag is
+ ** set and we are not left justified */
+ if( flag_zeropad && !flag_leftjustify && length < width){
+ int i;
+ int nPad = width - length;
+ for(i=width; i>=nPad; i--){
+ bufpt[i] = bufpt[i-nPad];
+ }
+ i = prefix!=0;
+ while( nPad-- ) bufpt[i++] = '0';
+ length = width;
+ }
+ break;
+ }
+ case etSIZE:
+ if( !bArgList ){
+ *(va_arg(ap,int*)) = pAccum->nChar;
+ }
+ length = width = 0;
+ break;
+ case etPERCENT:
+ buf[0] = '%';
+ bufpt = buf;
+ length = 1;
+ break;
+ case etCHARX:
+ if( bArgList ){
+ bufpt = getTextArg(pArgList);
+ length = 1;
+ if( bufpt ){
+ buf[0] = c = *(bufpt++);
+ if( (c&0xc0)==0xc0 ){
+ while( length<4 && (bufpt[0]&0xc0)==0x80 ){
+ buf[length++] = *(bufpt++);
+ }
+ }
+ }else{
+ buf[0] = 0;
+ }
+ }else{
+ unsigned int ch = va_arg(ap,unsigned int);
+ if( ch<0x00080 ){
+ buf[0] = ch & 0xff;
+ length = 1;
+ }else if( ch<0x00800 ){
+ buf[0] = 0xc0 + (u8)((ch>>6)&0x1f);
+ buf[1] = 0x80 + (u8)(ch & 0x3f);
+ length = 2;
+ }else if( ch<0x10000 ){
+ buf[0] = 0xe0 + (u8)((ch>>12)&0x0f);
+ buf[1] = 0x80 + (u8)((ch>>6) & 0x3f);
+ buf[2] = 0x80 + (u8)(ch & 0x3f);
+ length = 3;
+ }else{
+ buf[0] = 0xf0 + (u8)((ch>>18) & 0x07);
+ buf[1] = 0x80 + (u8)((ch>>12) & 0x3f);
+ buf[2] = 0x80 + (u8)((ch>>6) & 0x3f);
+ buf[3] = 0x80 + (u8)(ch & 0x3f);
+ length = 4;
+ }
+ }
+ if( precision>1 ){
+ i64 nPrior = 1;
+ width -= precision-1;
+ if( width>1 && !flag_leftjustify ){
+ sqlite3_str_appendchar(pAccum, width-1, ' ');
+ width = 0;
+ }
+ sqlite3_str_append(pAccum, buf, length);
+ precision--;
+ while( precision > 1 ){
+ i64 nCopyBytes;
+ if( nPrior > precision-1 ) nPrior = precision - 1;
+ nCopyBytes = length*nPrior;
+ if( nCopyBytes + pAccum->nChar >= pAccum->nAlloc ){
+ sqlite3StrAccumEnlarge(pAccum, nCopyBytes);
+ }
+ if( pAccum->accError ) break;
+ sqlite3_str_append(pAccum,
+ &pAccum->zText[pAccum->nChar-nCopyBytes], nCopyBytes);
+ precision -= nPrior;
+ nPrior *= 2;
+ }
+ }
+ bufpt = buf;
+ flag_altform2 = 1;
+ goto adjust_width_for_utf8;
+ case etSTRING:
+ case etDYNSTRING:
+ if( bArgList ){
+ bufpt = getTextArg(pArgList);
+ xtype = etSTRING;
+ }else{
+ bufpt = va_arg(ap,char*);
+ }
+ if( bufpt==0 ){
+ bufpt = "";
+ }else if( xtype==etDYNSTRING ){
+ if( pAccum->nChar==0
+ && pAccum->mxAlloc
+ && width==0
+ && precision<0
+ && pAccum->accError==0
+ ){
+ /* Special optimization for sqlite3_mprintf("%z..."):
+ ** Extend an existing memory allocation rather than creating
+ ** a new one. */
+ assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
+ pAccum->zText = bufpt;
+ pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
+ pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);
+ pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED;
+ length = 0;
+ break;
+ }
+ zExtra = bufpt;
+ }
+ if( precision>=0 ){
+ if( flag_altform2 ){
+ /* Set length to the number of bytes needed in order to display
+ ** precision characters */
+ unsigned char *z = (unsigned char*)bufpt;
+ while( precision-- > 0 && z[0] ){
+ SQLITE_SKIP_UTF8(z);
+ }
+ length = (int)(z - (unsigned char*)bufpt);
+ }else{
+ for(length=0; length<precision && bufpt[length]; length++){}
+ }
+ }else{
+ length = 0x7fffffff & (int)strlen(bufpt);
+ }
+ adjust_width_for_utf8:
+ if( flag_altform2 && width>0 ){
+ /* Adjust width to account for extra bytes in UTF-8 characters */
+ int ii = length - 1;
+ while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++;
+ }
+ break;
+ case etSQLESCAPE: /* %q: Escape ' characters */
+ case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */
+ case etSQLESCAPE3: { /* %w: Escape " characters */
+ i64 i, j, k, n;
+ int needQuote, isnull;
+ char ch;
+ char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
+ char *escarg;
+
+ if( bArgList ){
+ escarg = getTextArg(pArgList);
+ }else{
+ escarg = va_arg(ap,char*);
+ }
+ isnull = escarg==0;
+ if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
+ /* For %q, %Q, and %w, the precision is the number of bytes (or
+ ** characters if the ! flags is present) to use from the input.
+ ** Because of the extra quoting characters inserted, the number
+ ** of output characters may be larger than the precision.
+ */
+ k = precision;
+ for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){
+ if( ch==q ) n++;
+ if( flag_altform2 && (ch&0xc0)==0xc0 ){
+ while( (escarg[i+1]&0xc0)==0x80 ){ i++; }
+ }
+ }
+ needQuote = !isnull && xtype==etSQLESCAPE2;
+ n += i + 3;
+ if( n>etBUFSIZE ){
+ bufpt = zExtra = printfTempBuf(pAccum, n);
+ if( bufpt==0 ) return;
+ }else{
+ bufpt = buf;
+ }
+ j = 0;
+ if( needQuote ) bufpt[j++] = q;
+ k = i;
+ for(i=0; i<k; i++){
+ bufpt[j++] = ch = escarg[i];
+ if( ch==q ) bufpt[j++] = ch;
+ }
+ if( needQuote ) bufpt[j++] = q;
+ bufpt[j] = 0;
+ length = j;
+ goto adjust_width_for_utf8;
+ }
+ case etTOKEN: {
+ if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
+ if( flag_alternateform ){
+ /* %#T means an Expr pointer that uses Expr.u.zToken */
+ Expr *pExpr = va_arg(ap,Expr*);
+ if( ALWAYS(pExpr) && ALWAYS(!ExprHasProperty(pExpr,EP_IntValue)) ){
+ sqlite3_str_appendall(pAccum, (const char*)pExpr->u.zToken);
+ sqlite3RecordErrorOffsetOfExpr(pAccum->db, pExpr);
+ }
+ }else{
+ /* %T means a Token pointer */
+ Token *pToken = va_arg(ap, Token*);
+ assert( bArgList==0 );
+ if( pToken && pToken->n ){
+ sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n);
+ sqlite3RecordErrorByteOffset(pAccum->db, pToken->z);
+ }
+ }
+ length = width = 0;
+ break;
+ }
+ case etSRCITEM: {
+ SrcItem *pItem;
+ if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
+ pItem = va_arg(ap, SrcItem*);
+ assert( bArgList==0 );
+ if( pItem->zAlias && !flag_altform2 ){
+ sqlite3_str_appendall(pAccum, pItem->zAlias);
+ }else if( pItem->zName ){
+ if( pItem->zDatabase ){
+ sqlite3_str_appendall(pAccum, pItem->zDatabase);
+ sqlite3_str_append(pAccum, ".", 1);
+ }
+ sqlite3_str_appendall(pAccum, pItem->zName);
+ }else if( pItem->zAlias ){
+ sqlite3_str_appendall(pAccum, pItem->zAlias);
+ }else{
+ Select *pSel = pItem->pSelect;
+ assert( pSel!=0 );
+ if( pSel->selFlags & SF_NestedFrom ){
+ sqlite3_str_appendf(pAccum, "(join-%u)", pSel->selId);
+ }else{
+ sqlite3_str_appendf(pAccum, "(subquery-%u)", pSel->selId);
+ }
+ }
+ length = width = 0;
+ break;
+ }
+ default: {
+ assert( xtype==etINVALID );
+ return;
+ }
+ }/* End switch over the format type */
+ /*
+ ** The text of the conversion is pointed to by "bufpt" and is
+ ** "length" characters long. The field width is "width". Do
+ ** the output. Both length and width are in bytes, not characters,
+ ** at this point. If the "!" flag was present on string conversions
+ ** indicating that width and precision should be expressed in characters,
+ ** then the values have been translated prior to reaching this point.
+ */
+ width -= length;
+ if( width>0 ){
+ if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
+ sqlite3_str_append(pAccum, bufpt, length);
+ if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
+ }else{
+ sqlite3_str_append(pAccum, bufpt, length);
+ }
+
+ if( zExtra ){
+ sqlite3DbFree(pAccum->db, zExtra);
+ zExtra = 0;
+ }
+ }/* End for loop over the format string */
+} /* End of function */
+
+
+/*
+** The z string points to the first character of a token that is
+** associated with an error. If db does not already have an error
+** byte offset recorded, try to compute the error byte offset for
+** z and set the error byte offset in db.
+*/
+SQLITE_PRIVATE void sqlite3RecordErrorByteOffset(sqlite3 *db, const char *z){
+ const Parse *pParse;
+ const char *zText;
+ const char *zEnd;
+ assert( z!=0 );
+ if( NEVER(db==0) ) return;
+ if( db->errByteOffset!=(-2) ) return;
+ pParse = db->pParse;
+ if( NEVER(pParse==0) ) return;
+ zText =pParse->zTail;
+ if( NEVER(zText==0) ) return;
+ zEnd = &zText[strlen(zText)];
+ if( SQLITE_WITHIN(z,zText,zEnd) ){
+ db->errByteOffset = (int)(z-zText);
+ }
+}
+
+/*
+** If pExpr has a byte offset for the start of a token, record that as
+** as the error offset.
+*/
+SQLITE_PRIVATE void sqlite3RecordErrorOffsetOfExpr(sqlite3 *db, const Expr *pExpr){
+ while( pExpr
+ && (ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) || pExpr->w.iOfst<=0)
+ ){
+ pExpr = pExpr->pLeft;
+ }
+ if( pExpr==0 ) return;
+ db->errByteOffset = pExpr->w.iOfst;
+}
+
+/*
+** Enlarge the memory allocation on a StrAccum object so that it is
+** able to accept at least N more bytes of text.
+**
+** Return the number of bytes of text that StrAccum is able to accept
+** after the attempted enlargement. The value returned might be zero.
+*/
+SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum *p, i64 N){
+ char *zNew;
+ assert( p->nChar+N >= p->nAlloc ); /* Only called if really needed */
+ if( p->accError ){
+ testcase(p->accError==SQLITE_TOOBIG);
+ testcase(p->accError==SQLITE_NOMEM);
+ return 0;
+ }
+ if( p->mxAlloc==0 ){
+ sqlite3StrAccumSetError(p, SQLITE_TOOBIG);
+ return p->nAlloc - p->nChar - 1;
+ }else{
+ char *zOld = isMalloced(p) ? p->zText : 0;
+ i64 szNew = p->nChar + N + 1;
+ if( szNew+p->nChar<=p->mxAlloc ){
+ /* Force exponential buffer size growth as long as it does not overflow,
+ ** to avoid having to call this routine too often */
+ szNew += p->nChar;
+ }
+ if( szNew > p->mxAlloc ){
+ sqlite3_str_reset(p);
+ sqlite3StrAccumSetError(p, SQLITE_TOOBIG);
+ return 0;
+ }else{
+ p->nAlloc = (int)szNew;
+ }
+ if( p->db ){
+ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
+ }else{
+ zNew = sqlite3Realloc(zOld, p->nAlloc);
+ }
+ if( zNew ){
+ assert( p->zText!=0 || p->nChar==0 );
+ if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
+ p->zText = zNew;
+ p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
+ p->printfFlags |= SQLITE_PRINTF_MALLOCED;
+ }else{
+ sqlite3_str_reset(p);
+ sqlite3StrAccumSetError(p, SQLITE_NOMEM);
+ return 0;
+ }
+ }
+ assert( N>=0 && N<=0x7fffffff );
+ return (int)N;
+}
+
+/*
+** Append N copies of character c to the given string buffer.
+*/
+SQLITE_API void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){
+ testcase( p->nChar + (i64)N > 0x7fffffff );
+ if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
+ return;
+ }
+ while( (N--)>0 ) p->zText[p->nChar++] = c;
+}
+
+/*
+** The StrAccum "p" is not large enough to accept N new bytes of z[].
+** So enlarge if first, then do the append.
+**
+** This is a helper routine to sqlite3_str_append() that does special-case
+** work (enlarging the buffer) using tail recursion, so that the
+** sqlite3_str_append() routine can use fast calling semantics.
+*/
+static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
+ N = sqlite3StrAccumEnlarge(p, N);
+ if( N>0 ){
+ memcpy(&p->zText[p->nChar], z, N);
+ p->nChar += N;
+ }
+}
+
+/*
+** Append N bytes of text from z to the StrAccum object. Increase the
+** size of the memory allocation for StrAccum if necessary.
+*/
+SQLITE_API void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
+ assert( z!=0 || N==0 );
+ assert( p->zText!=0 || p->nChar==0 || p->accError );
+ assert( N>=0 );
+ assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 );
+ if( p->nChar+N >= p->nAlloc ){
+ enlargeAndAppend(p,z,N);
+ }else if( N ){
+ assert( p->zText );
+ p->nChar += N;
+ memcpy(&p->zText[p->nChar-N], z, N);
+ }
+}
+
+/*
+** Append the complete text of zero-terminated string z[] to the p string.
+*/
+SQLITE_API void sqlite3_str_appendall(sqlite3_str *p, const char *z){
+ sqlite3_str_append(p, z, sqlite3Strlen30(z));
+}
+
+
+/*
+** Finish off a string by making sure it is zero-terminated.
+** Return a pointer to the resulting string. Return a NULL
+** pointer if any kind of error was encountered.
+*/
+static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){
+ char *zText;
+ assert( p->mxAlloc>0 && !isMalloced(p) );
+ zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
+ if( zText ){
+ memcpy(zText, p->zText, p->nChar+1);
+ p->printfFlags |= SQLITE_PRINTF_MALLOCED;
+ }else{
+ sqlite3StrAccumSetError(p, SQLITE_NOMEM);
+ }
+ p->zText = zText;
+ return zText;
+}
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
+ if( p->zText ){
+ p->zText[p->nChar] = 0;
+ if( p->mxAlloc>0 && !isMalloced(p) ){
+ return strAccumFinishRealloc(p);
+ }
+ }
+ return p->zText;
+}
+
+/*
+** Use the content of the StrAccum passed as the second argument
+** as the result of an SQL function.
+*/
+SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context *pCtx, StrAccum *p){
+ if( p->accError ){
+ sqlite3_result_error_code(pCtx, p->accError);
+ sqlite3_str_reset(p);
+ }else if( isMalloced(p) ){
+ sqlite3_result_text(pCtx, p->zText, p->nChar, SQLITE_DYNAMIC);
+ }else{
+ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
+ sqlite3_str_reset(p);
+ }
+}
+
+/*
+** This singleton is an sqlite3_str object that is returned if
+** sqlite3_malloc() fails to provide space for a real one. This
+** sqlite3_str object accepts no new text and always returns
+** an SQLITE_NOMEM error.
+*/
+static sqlite3_str sqlite3OomStr = {
+ 0, 0, 0, 0, 0, SQLITE_NOMEM, 0
+};
+
+/* Finalize a string created using sqlite3_str_new().
+*/
+SQLITE_API char *sqlite3_str_finish(sqlite3_str *p){
+ char *z;
+ if( p!=0 && p!=&sqlite3OomStr ){
+ z = sqlite3StrAccumFinish(p);
+ sqlite3_free(p);
+ }else{
+ z = 0;
+ }
+ return z;
+}
+
+/* Return any error code associated with p */
+SQLITE_API int sqlite3_str_errcode(sqlite3_str *p){
+ return p ? p->accError : SQLITE_NOMEM;
+}
+
+/* Return the current length of p in bytes */
+SQLITE_API int sqlite3_str_length(sqlite3_str *p){
+ return p ? p->nChar : 0;
+}
+
+/* Return the current value for p */
+SQLITE_API char *sqlite3_str_value(sqlite3_str *p){
+ if( p==0 || p->nChar==0 ) return 0;
+ p->zText[p->nChar] = 0;
+ return p->zText;
+}
+
+/*
+** Reset an StrAccum string. Reclaim all malloced memory.
+*/
+SQLITE_API void sqlite3_str_reset(StrAccum *p){
+ if( isMalloced(p) ){
+ sqlite3DbFree(p->db, p->zText);
+ p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
+ }
+ p->nAlloc = 0;
+ p->nChar = 0;
+ p->zText = 0;
+}
+
+/*
+** Initialize a string accumulator.
+**
+** p: The accumulator to be initialized.
+** db: Pointer to a database connection. May be NULL. Lookaside
+** memory is used if not NULL. db->mallocFailed is set appropriately
+** when not NULL.
+** zBase: An initial buffer. May be NULL in which case the initial buffer
+** is malloced.
+** n: Size of zBase in bytes. If total space requirements never exceed
+** n then no memory allocations ever occur.
+** mx: Maximum number of bytes to accumulate. If mx==0 then no memory
+** allocations will ever occur.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
+ p->zText = zBase;
+ p->db = db;
+ p->nAlloc = n;
+ p->mxAlloc = mx;
+ p->nChar = 0;
+ p->accError = 0;
+ p->printfFlags = 0;
+}
+
+/* Allocate and initialize a new dynamic string object */
+SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3 *db){
+ sqlite3_str *p = sqlite3_malloc64(sizeof(*p));
+ if( p ){
+ sqlite3StrAccumInit(p, 0, 0, 0,
+ db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
+ }else{
+ p = &sqlite3OomStr;
+ }
+ return p;
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
+ char *z;
+ char zBase[SQLITE_PRINT_BUF_SIZE];
+ StrAccum acc;
+ assert( db!=0 );
+ sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
+ db->aLimit[SQLITE_LIMIT_LENGTH]);
+ acc.printfFlags = SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ if( acc.accError==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ return z;
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** Print into memory obtained from sqlite3_malloc(). Omit the internal
+** %-conversion extensions.
+*/
+SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
+ char *z;
+ char zBase[SQLITE_PRINT_BUF_SIZE];
+ StrAccum acc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zFormat==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ return z;
+}
+
+/*
+** Print into memory obtained from sqlite3_malloc()(). Omit the internal
+** %-conversion extensions.
+*/
+SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
+ va_list ap;
+ char *z;
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ va_start(ap, zFormat);
+ z = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** sqlite3_snprintf() works like snprintf() except that it ignores the
+** current locale settings. This is important for SQLite because we
+** are not able to use a "," as the decimal point in place of "." as
+** specified by some locales.
+**
+** Oops: The first two arguments of sqlite3_snprintf() are backwards
+** from the snprintf() standard. Unfortunately, it is too late to change
+** this without breaking compatibility, so we just have to live with the
+** mistake.
+**
+** sqlite3_vsnprintf() is the varargs version.
+*/
+SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
+ StrAccum acc;
+ if( n<=0 ) return zBuf;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zBuf==0 || zFormat==0 ) {
+ (void)SQLITE_MISUSE_BKPT;
+ if( zBuf ) zBuf[0] = 0;
+ return zBuf;
+ }
+#endif
+ sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ zBuf[acc.nChar] = 0;
+ return zBuf;
+}
+SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
+ StrAccum acc;
+ va_list ap;
+ if( n<=0 ) return zBuf;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zBuf==0 || zFormat==0 ) {
+ (void)SQLITE_MISUSE_BKPT;
+ if( zBuf ) zBuf[0] = 0;
+ return zBuf;
+ }
+#endif
+ sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
+ va_start(ap,zFormat);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ va_end(ap);
+ zBuf[acc.nChar] = 0;
+ return zBuf;
+}
+
+/*
+** This is the routine that actually formats the sqlite3_log() message.
+** We house it in a separate routine from sqlite3_log() to avoid using
+** stack space on small-stack systems when logging is disabled.
+**
+** sqlite3_log() must render into a static buffer. It cannot dynamically
+** allocate memory because it might be called while the memory allocator
+** mutex is held.
+**
+** sqlite3_str_vappendf() might ask for *temporary* memory allocations for
+** certain format characters (%q) or for very large precisions or widths.
+** Care must be taken that any sqlite3_log() calls that occur while the
+** memory mutex is held do not use these mechanisms.
+*/
+static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
+ StrAccum acc; /* String accumulator */
+ char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */
+
+ sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
+ sqlite3StrAccumFinish(&acc));
+}
+
+/*
+** Format and write a message to the log if logging is enabled.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){
+ va_list ap; /* Vararg list */
+ if( sqlite3GlobalConfig.xLog ){
+ va_start(ap, zFormat);
+ renderLogMsg(iErrCode, zFormat, ap);
+ va_end(ap);
+ }
+}
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+/*
+** A version of printf() that understands %lld. Used for debugging.
+** The printf() built into some versions of windows does not understand %lld
+** and segfaults if you give it a long long int.
+*/
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
+ va_list ap;
+ StrAccum acc;
+ char zBuf[SQLITE_PRINT_BUF_SIZE*10];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ va_start(ap,zFormat);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ va_end(ap);
+ sqlite3StrAccumFinish(&acc);
+#ifdef SQLITE_OS_TRACE_PROC
+ {
+ extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf);
+ SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf));
+ }
+#else
+ fprintf(stdout,"%s", zBuf);
+ fflush(stdout);
+#endif
+}
+#endif
+
+
+/*
+** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument
+** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
+*/
+SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
+ va_list ap;
+ va_start(ap,zFormat);
+ sqlite3_str_vappendf(p, zFormat, ap);
+ va_end(ap);
+}
+
+
+/*****************************************************************************
+** Reference counted string storage
+*****************************************************************************/
+
+/*
+** Increase the reference count of the string by one.
+**
+** The input parameter is returned.
+*/
+SQLITE_PRIVATE char *sqlite3RCStrRef(char *z){
+ RCStr *p = (RCStr*)z;
+ assert( p!=0 );
+ p--;
+ p->nRCRef++;
+ return z;
+}
+
+/*
+** Decrease the reference count by one. Free the string when the
+** reference count reaches zero.
+*/
+SQLITE_PRIVATE void sqlite3RCStrUnref(void *z){
+ RCStr *p = (RCStr*)z;
+ assert( p!=0 );
+ p--;
+ assert( p->nRCRef>0 );
+ if( p->nRCRef>=2 ){
+ p->nRCRef--;
+ }else{
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Create a new string that is capable of holding N bytes of text, not counting
+** the zero byte at the end. The string is uninitialized.
+**
+** The reference count is initially 1. Call sqlite3RCStrUnref() to free the
+** newly allocated string.
+**
+** This routine returns 0 on an OOM.
+*/
+SQLITE_PRIVATE char *sqlite3RCStrNew(u64 N){
+ RCStr *p = sqlite3_malloc64( N + sizeof(*p) + 1 );
+ if( p==0 ) return 0;
+ p->nRCRef = 1;
+ return (char*)&p[1];
+}
+
+/*
+** Change the size of the string so that it is able to hold N bytes.
+** The string might be reallocated, so return the new allocation.
+*/
+SQLITE_PRIVATE char *sqlite3RCStrResize(char *z, u64 N){
+ RCStr *p = (RCStr*)z;
+ RCStr *pNew;
+ assert( p!=0 );
+ p--;
+ assert( p->nRCRef==1 );
+ pNew = sqlite3_realloc64(p, N+sizeof(RCStr)+1);
+ if( pNew==0 ){
+ sqlite3_free(p);
+ return 0;
+ }else{
+ return (char*)&pNew[1];
+ }
+}
+
+/************** End of printf.c **********************************************/
+/************** Begin file treeview.c ****************************************/
+/*
+** 2015-06-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains C code to implement the TreeView debugging routines.
+** These routines print a parse tree to standard output for debugging and
+** analysis.
+**
+** The interfaces in this file is only available when compiling
+** with SQLITE_DEBUG.
+*/
+/* #include "sqliteInt.h" */
+#ifdef SQLITE_DEBUG
+
+/*
+** Add a new subitem to the tree. The moreToFollow flag indicates that this
+** is not the last item in the tree.
+*/
+static void sqlite3TreeViewPush(TreeView **pp, u8 moreToFollow){
+ TreeView *p = *pp;
+ if( p==0 ){
+ *pp = p = sqlite3_malloc64( sizeof(*p) );
+ if( p==0 ) return;
+ memset(p, 0, sizeof(*p));
+ }else{
+ p->iLevel++;
+ }
+ assert( moreToFollow==0 || moreToFollow==1 );
+ if( p->iLevel<(int)sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow;
+}
+
+/*
+** Finished with one layer of the tree
+*/
+static void sqlite3TreeViewPop(TreeView **pp){
+ TreeView *p = *pp;
+ if( p==0 ) return;
+ p->iLevel--;
+ if( p->iLevel<0 ){
+ sqlite3_free(p);
+ *pp = 0;
+ }
+}
+
+/*
+** Generate a single line of output for the tree, with a prefix that contains
+** all the appropriate tree lines
+*/
+SQLITE_PRIVATE void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){
+ va_list ap;
+ int i;
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ if( p ){
+ for(i=0; i<p->iLevel && i<(int)sizeof(p->bLine)-1; i++){
+ sqlite3_str_append(&acc, p->bLine[i] ? "| " : " ", 4);
+ }
+ sqlite3_str_append(&acc, p->bLine[i] ? "|-- " : "'-- ", 4);
+ }
+ if( zFormat!=0 ){
+ va_start(ap, zFormat);
+ sqlite3_str_vappendf(&acc, zFormat, ap);
+ va_end(ap);
+ assert( acc.nChar>0 || acc.accError );
+ sqlite3_str_append(&acc, "\n", 1);
+ }
+ sqlite3StrAccumFinish(&acc);
+ fprintf(stdout,"%s", zBuf);
+ fflush(stdout);
+}
+
+/*
+** Shorthand for starting a new tree item that consists of a single label
+*/
+static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){
+ sqlite3TreeViewPush(&p, moreFollows);
+ sqlite3TreeViewLine(p, "%s", zLabel);
+}
+
+/*
+** Show a list of Column objects in tree format.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewColumnList(
+ TreeView *pView,
+ const Column *aCol,
+ int nCol,
+ u8 moreToFollow
+){
+ int i;
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewLine(pView, "COLUMNS");
+ for(i=0; i<nCol; i++){
+ u16 flg = aCol[i].colFlags;
+ int colMoreToFollow = i<(nCol - 1);
+ sqlite3TreeViewPush(&pView, colMoreToFollow);
+ sqlite3TreeViewLine(pView, 0);
+ printf(" %s", aCol[i].zCnName);
+ switch( aCol[i].eCType ){
+ case COLTYPE_ANY: printf(" ANY"); break;
+ case COLTYPE_BLOB: printf(" BLOB"); break;
+ case COLTYPE_INT: printf(" INT"); break;
+ case COLTYPE_INTEGER: printf(" INTEGER"); break;
+ case COLTYPE_REAL: printf(" REAL"); break;
+ case COLTYPE_TEXT: printf(" TEXT"); break;
+ case COLTYPE_CUSTOM: {
+ if( flg & COLFLAG_HASTYPE ){
+ const char *z = aCol[i].zCnName;
+ z += strlen(z)+1;
+ printf(" X-%s", z);
+ break;
+ }
+ }
+ }
+ if( flg & COLFLAG_PRIMKEY ) printf(" PRIMARY KEY");
+ if( flg & COLFLAG_HIDDEN ) printf(" HIDDEN");
+#ifdef COLFLAG_NOEXPAND
+ if( flg & COLFLAG_NOEXPAND ) printf(" NO-EXPAND");
+#endif
+ if( flg ) printf(" flags=%04x", flg);
+ printf("\n");
+ fflush(stdout);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Generate a human-readable description of a WITH clause.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView *pView, const With *pWith, u8 moreToFollow){
+ int i;
+ if( pWith==0 ) return;
+ if( pWith->nCte==0 ) return;
+ if( pWith->pOuter ){
+ sqlite3TreeViewLine(pView, "WITH (0x%p, pOuter=0x%p)",pWith,pWith->pOuter);
+ }else{
+ sqlite3TreeViewLine(pView, "WITH (0x%p)", pWith);
+ }
+ if( pWith->nCte>0 ){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ for(i=0; i<pWith->nCte; i++){
+ StrAccum x;
+ char zLine[1000];
+ const struct Cte *pCte = &pWith->a[i];
+ sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
+ sqlite3_str_appendf(&x, "%s", pCte->zName);
+ if( pCte->pCols && pCte->pCols->nExpr>0 ){
+ char cSep = '(';
+ int j;
+ for(j=0; j<pCte->pCols->nExpr; j++){
+ sqlite3_str_appendf(&x, "%c%s", cSep, pCte->pCols->a[j].zEName);
+ cSep = ',';
+ }
+ sqlite3_str_appendf(&x, ")");
+ }
+ if( pCte->eM10d!=M10d_Any ){
+ sqlite3_str_appendf(&x, " %sMATERIALIZED",
+ pCte->eM10d==M10d_No ? "NOT " : "");
+ }
+ if( pCte->pUse ){
+ sqlite3_str_appendf(&x, " (pUse=0x%p, nUse=%d)", pCte->pUse,
+ pCte->pUse->nUse);
+ }
+ sqlite3StrAccumFinish(&x);
+ sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
+ sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+}
+
+/*
+** Generate a human-readable description of a SrcList object.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView *pView, const SrcList *pSrc){
+ int i;
+ if( pSrc==0 ) return;
+ for(i=0; i<pSrc->nSrc; i++){
+ const SrcItem *pItem = &pSrc->a[i];
+ StrAccum x;
+ int n = 0;
+ char zLine[1000];
+ sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
+ x.printfFlags |= SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_appendf(&x, "{%d:*} %!S", pItem->iCursor, pItem);
+ if( pItem->pTab ){
+ sqlite3_str_appendf(&x, " tab=%Q nCol=%d ptr=%p used=%llx",
+ pItem->pTab->zName, pItem->pTab->nCol, pItem->pTab, pItem->colUsed);
+ }
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==(JT_LEFT|JT_RIGHT) ){
+ sqlite3_str_appendf(&x, " FULL-OUTER-JOIN");
+ }else if( pItem->fg.jointype & JT_LEFT ){
+ sqlite3_str_appendf(&x, " LEFT-JOIN");
+ }else if( pItem->fg.jointype & JT_RIGHT ){
+ sqlite3_str_appendf(&x, " RIGHT-JOIN");
+ }else if( pItem->fg.jointype & JT_CROSS ){
+ sqlite3_str_appendf(&x, " CROSS-JOIN");
+ }
+ if( pItem->fg.jointype & JT_LTORJ ){
+ sqlite3_str_appendf(&x, " LTORJ");
+ }
+ if( pItem->fg.fromDDL ){
+ sqlite3_str_appendf(&x, " DDL");
+ }
+ if( pItem->fg.isCte ){
+ sqlite3_str_appendf(&x, " CteUse=0x%p", pItem->u2.pCteUse);
+ }
+ if( pItem->fg.isOn || (pItem->fg.isUsing==0 && pItem->u3.pOn!=0) ){
+ sqlite3_str_appendf(&x, " ON");
+ }
+ if( pItem->fg.isTabFunc ) sqlite3_str_appendf(&x, " isTabFunc");
+ if( pItem->fg.isCorrelated ) sqlite3_str_appendf(&x, " isCorrelated");
+ if( pItem->fg.isMaterialized ) sqlite3_str_appendf(&x, " isMaterialized");
+ if( pItem->fg.viaCoroutine ) sqlite3_str_appendf(&x, " viaCoroutine");
+ if( pItem->fg.notCte ) sqlite3_str_appendf(&x, " notCte");
+ if( pItem->fg.isNestedFrom ) sqlite3_str_appendf(&x, " isNestedFrom");
+
+ sqlite3StrAccumFinish(&x);
+ sqlite3TreeViewItem(pView, zLine, i<pSrc->nSrc-1);
+ n = 0;
+ if( pItem->pSelect ) n++;
+ if( pItem->fg.isTabFunc ) n++;
+ if( pItem->fg.isUsing ) n++;
+ if( pItem->fg.isUsing ){
+ sqlite3TreeViewIdList(pView, pItem->u3.pUsing, (--n)>0, "USING");
+ }
+ if( pItem->pSelect ){
+ if( pItem->pTab ){
+ Table *pTab = pItem->pTab;
+ sqlite3TreeViewColumnList(pView, pTab->aCol, pTab->nCol, 1);
+ }
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ sqlite3TreeViewSelect(pView, pItem->pSelect, (--n)>0);
+ }
+ if( pItem->fg.isTabFunc ){
+ sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:");
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+}
+
+/*
+** Generate a human-readable description of a Select object.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
+ int n = 0;
+ int cnt = 0;
+ if( p==0 ){
+ sqlite3TreeViewLine(pView, "nil-SELECT");
+ return;
+ }
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ if( p->pWith ){
+ sqlite3TreeViewWith(pView, p->pWith, 1);
+ cnt = 1;
+ sqlite3TreeViewPush(&pView, 1);
+ }
+ do{
+ if( p->selFlags & SF_WhereBegin ){
+ sqlite3TreeViewLine(pView, "sqlite3WhereBegin()");
+ }else{
+ sqlite3TreeViewLine(pView,
+ "SELECT%s%s (%u/%p) selFlags=0x%x nSelectRow=%d",
+ ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
+ ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""),
+ p->selId, p, p->selFlags,
+ (int)p->nSelectRow
+ );
+ }
+ if( cnt++ ) sqlite3TreeViewPop(&pView);
+ if( p->pPrior ){
+ n = 1000;
+ }else{
+ n = 0;
+ if( p->pSrc && p->pSrc->nSrc ) n++;
+ if( p->pWhere ) n++;
+ if( p->pGroupBy ) n++;
+ if( p->pHaving ) n++;
+ if( p->pOrderBy ) n++;
+ if( p->pLimit ) n++;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ) n++;
+ if( p->pWinDefn ) n++;
+#endif
+ }
+ if( p->pEList ){
+ sqlite3TreeViewExprList(pView, p->pEList, n>0, "result-set");
+ }
+ n--;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ){
+ Window *pX;
+ sqlite3TreeViewPush(&pView, (n--)>0);
+ sqlite3TreeViewLine(pView, "window-functions");
+ for(pX=p->pWin; pX; pX=pX->pNextWin){
+ sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+#endif
+ if( p->pSrc && p->pSrc->nSrc ){
+ sqlite3TreeViewPush(&pView, (n--)>0);
+ sqlite3TreeViewLine(pView, "FROM");
+ sqlite3TreeViewSrcList(pView, p->pSrc);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( p->pWhere ){
+ sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( p->pGroupBy ){
+ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
+ }
+ if( p->pHaving ){
+ sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pHaving, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWinDefn ){
+ Window *pX;
+ sqlite3TreeViewItem(pView, "WINDOW", (n--)>0);
+ for(pX=p->pWinDefn; pX; pX=pX->pNextWin){
+ sqlite3TreeViewWindow(pView, pX, pX->pNextWin!=0);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+#endif
+ if( p->pOrderBy ){
+ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
+ }
+ if( p->pLimit ){
+ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pLimit->pLeft, p->pLimit->pRight!=0);
+ if( p->pLimit->pRight ){
+ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
+ sqlite3TreeViewExpr(pView, p->pLimit->pRight, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+ if( p->pPrior ){
+ const char *zOp = "UNION";
+ switch( p->op ){
+ case TK_ALL: zOp = "UNION ALL"; break;
+ case TK_INTERSECT: zOp = "INTERSECT"; break;
+ case TK_EXCEPT: zOp = "EXCEPT"; break;
+ }
+ sqlite3TreeViewItem(pView, zOp, 1);
+ }
+ p = p->pPrior;
+ }while( p!=0 );
+ sqlite3TreeViewPop(&pView);
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Generate a description of starting or stopping bounds
+*/
+SQLITE_PRIVATE void sqlite3TreeViewBound(
+ TreeView *pView, /* View context */
+ u8 eBound, /* UNBOUNDED, CURRENT, PRECEDING, FOLLOWING */
+ Expr *pExpr, /* Value for PRECEDING or FOLLOWING */
+ u8 moreToFollow /* True if more to follow */
+){
+ switch( eBound ){
+ case TK_UNBOUNDED: {
+ sqlite3TreeViewItem(pView, "UNBOUNDED", moreToFollow);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ case TK_CURRENT: {
+ sqlite3TreeViewItem(pView, "CURRENT", moreToFollow);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ case TK_PRECEDING: {
+ sqlite3TreeViewItem(pView, "PRECEDING", moreToFollow);
+ sqlite3TreeViewExpr(pView, pExpr, 0);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ case TK_FOLLOWING: {
+ sqlite3TreeViewItem(pView, "FOLLOWING", moreToFollow);
+ sqlite3TreeViewExpr(pView, pExpr, 0);
+ sqlite3TreeViewPop(&pView);
+ break;
+ }
+ }
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Generate a human-readable explanation for a Window object
+*/
+SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView *pView, const Window *pWin, u8 more){
+ int nElement = 0;
+ if( pWin==0 ) return;
+ if( pWin->pFilter ){
+ sqlite3TreeViewItem(pView, "FILTER", 1);
+ sqlite3TreeViewExpr(pView, pWin->pFilter, 0);
+ sqlite3TreeViewPop(&pView);
+ if( pWin->eFrmType==TK_FILTER ) return;
+ }
+ sqlite3TreeViewPush(&pView, more);
+ if( pWin->zName ){
+ sqlite3TreeViewLine(pView, "OVER %s (%p)", pWin->zName, pWin);
+ }else{
+ sqlite3TreeViewLine(pView, "OVER (%p)", pWin);
+ }
+ if( pWin->zBase ) nElement++;
+ if( pWin->pOrderBy ) nElement++;
+ if( pWin->eFrmType!=0 && pWin->eFrmType!=TK_FILTER ) nElement++;
+ if( pWin->eExclude ) nElement++;
+ if( pWin->zBase ){
+ sqlite3TreeViewPush(&pView, (--nElement)>0);
+ sqlite3TreeViewLine(pView, "window: %s", pWin->zBase);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pWin->pPartition ){
+ sqlite3TreeViewExprList(pView, pWin->pPartition, nElement>0,"PARTITION-BY");
+ }
+ if( pWin->pOrderBy ){
+ sqlite3TreeViewExprList(pView, pWin->pOrderBy, (--nElement)>0, "ORDER-BY");
+ }
+ if( pWin->eFrmType!=0 && pWin->eFrmType!=TK_FILTER ){
+ char zBuf[30];
+ const char *zFrmType = "ROWS";
+ if( pWin->eFrmType==TK_RANGE ) zFrmType = "RANGE";
+ if( pWin->eFrmType==TK_GROUPS ) zFrmType = "GROUPS";
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"%s%s",zFrmType,
+ pWin->bImplicitFrame ? " (implied)" : "");
+ sqlite3TreeViewItem(pView, zBuf, (--nElement)>0);
+ sqlite3TreeViewBound(pView, pWin->eStart, pWin->pStart, 1);
+ sqlite3TreeViewBound(pView, pWin->eEnd, pWin->pEnd, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pWin->eExclude ){
+ char zBuf[30];
+ const char *zExclude;
+ switch( pWin->eExclude ){
+ case TK_NO: zExclude = "NO OTHERS"; break;
+ case TK_CURRENT: zExclude = "CURRENT ROW"; break;
+ case TK_GROUP: zExclude = "GROUP"; break;
+ case TK_TIES: zExclude = "TIES"; break;
+ default:
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"invalid(%d)", pWin->eExclude);
+ zExclude = zBuf;
+ break;
+ }
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, "EXCLUDE %s", zExclude);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Generate a human-readable explanation for a Window Function object
+*/
+SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView *pView, const Window *pWin, u8 more){
+ if( pWin==0 ) return;
+ sqlite3TreeViewPush(&pView, more);
+ sqlite3TreeViewLine(pView, "WINFUNC %s(%d)",
+ pWin->pWFunc->zName, pWin->pWFunc->nArg);
+ sqlite3TreeViewWindow(pView, pWin, 0);
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Generate a human-readable explanation of an expression tree.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
+ const char *zBinOp = 0; /* Binary operator */
+ const char *zUniOp = 0; /* Unary operator */
+ char zFlgs[200];
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ if( pExpr==0 ){
+ sqlite3TreeViewLine(pView, "nil");
+ sqlite3TreeViewPop(&pView);
+ return;
+ }
+ if( pExpr->flags || pExpr->affExpr || pExpr->vvaFlags || pExpr->pAggInfo ){
+ StrAccum x;
+ sqlite3StrAccumInit(&x, 0, zFlgs, sizeof(zFlgs), 0);
+ sqlite3_str_appendf(&x, " fg.af=%x.%c",
+ pExpr->flags, pExpr->affExpr ? pExpr->affExpr : 'n');
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ sqlite3_str_appendf(&x, " outer.iJoin=%d", pExpr->w.iJoin);
+ }
+ if( ExprHasProperty(pExpr, EP_InnerON) ){
+ sqlite3_str_appendf(&x, " inner.iJoin=%d", pExpr->w.iJoin);
+ }
+ if( ExprHasProperty(pExpr, EP_FromDDL) ){
+ sqlite3_str_appendf(&x, " DDL");
+ }
+ if( ExprHasVVAProperty(pExpr, EP_Immutable) ){
+ sqlite3_str_appendf(&x, " IMMUTABLE");
+ }
+ if( pExpr->pAggInfo!=0 ){
+ sqlite3_str_appendf(&x, " agg-column[%d]", pExpr->iAgg);
+ }
+ sqlite3StrAccumFinish(&x);
+ }else{
+ zFlgs[0] = 0;
+ }
+ switch( pExpr->op ){
+ case TK_AGG_COLUMN: {
+ sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
+ pExpr->iTable, pExpr->iColumn, zFlgs);
+ break;
+ }
+ case TK_COLUMN: {
+ if( pExpr->iTable<0 ){
+ /* This only happens when coding check constraints */
+ char zOp2[16];
+ if( pExpr->op2 ){
+ sqlite3_snprintf(sizeof(zOp2),zOp2," op2=0x%02x",pExpr->op2);
+ }else{
+ zOp2[0] = 0;
+ }
+ sqlite3TreeViewLine(pView, "COLUMN(%d)%s%s",
+ pExpr->iColumn, zFlgs, zOp2);
+ }else{
+ assert( ExprUseYTab(pExpr) );
+ sqlite3TreeViewLine(pView, "{%d:%d} pTab=%p%s",
+ pExpr->iTable, pExpr->iColumn,
+ pExpr->y.pTab, zFlgs);
+ }
+ if( ExprHasProperty(pExpr, EP_FixedCol) ){
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ }
+ break;
+ }
+ case TK_INTEGER: {
+ if( pExpr->flags & EP_IntValue ){
+ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
+ }else{
+ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ case TK_FLOAT: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
+ break;
+ }
+#endif
+ case TK_STRING: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
+ break;
+ }
+ case TK_NULL: {
+ sqlite3TreeViewLine(pView,"NULL");
+ break;
+ }
+ case TK_TRUEFALSE: {
+ sqlite3TreeViewLine(pView,"%s%s",
+ sqlite3ExprTruthValue(pExpr) ? "TRUE" : "FALSE", zFlgs);
+ break;
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
+ break;
+ }
+#endif
+ case TK_VARIABLE: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
+ pExpr->u.zToken, pExpr->iColumn);
+ break;
+ }
+ case TK_REGISTER: {
+ sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
+ break;
+ }
+ case TK_ID: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken);
+ break;
+ }
+#ifndef SQLITE_OMIT_CAST
+ case TK_CAST: {
+ /* Expressions of the form: CAST(pLeft AS token) */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+#endif /* SQLITE_OMIT_CAST */
+ case TK_LT: zBinOp = "LT"; break;
+ case TK_LE: zBinOp = "LE"; break;
+ case TK_GT: zBinOp = "GT"; break;
+ case TK_GE: zBinOp = "GE"; break;
+ case TK_NE: zBinOp = "NE"; break;
+ case TK_EQ: zBinOp = "EQ"; break;
+ case TK_IS: zBinOp = "IS"; break;
+ case TK_ISNOT: zBinOp = "ISNOT"; break;
+ case TK_AND: zBinOp = "AND"; break;
+ case TK_OR: zBinOp = "OR"; break;
+ case TK_PLUS: zBinOp = "ADD"; break;
+ case TK_STAR: zBinOp = "MUL"; break;
+ case TK_MINUS: zBinOp = "SUB"; break;
+ case TK_REM: zBinOp = "REM"; break;
+ case TK_BITAND: zBinOp = "BITAND"; break;
+ case TK_BITOR: zBinOp = "BITOR"; break;
+ case TK_SLASH: zBinOp = "DIV"; break;
+ case TK_LSHIFT: zBinOp = "LSHIFT"; break;
+ case TK_RSHIFT: zBinOp = "RSHIFT"; break;
+ case TK_CONCAT: zBinOp = "CONCAT"; break;
+ case TK_DOT: zBinOp = "DOT"; break;
+ case TK_LIMIT: zBinOp = "LIMIT"; break;
+
+ case TK_UMINUS: zUniOp = "UMINUS"; break;
+ case TK_UPLUS: zUniOp = "UPLUS"; break;
+ case TK_BITNOT: zUniOp = "BITNOT"; break;
+ case TK_NOT: zUniOp = "NOT"; break;
+ case TK_ISNULL: zUniOp = "ISNULL"; break;
+ case TK_NOTNULL: zUniOp = "NOTNULL"; break;
+
+ case TK_TRUTH: {
+ int x;
+ const char *azOp[] = {
+ "IS-FALSE", "IS-TRUE", "IS-NOT-FALSE", "IS-NOT-TRUE"
+ };
+ assert( pExpr->op2==TK_IS || pExpr->op2==TK_ISNOT );
+ assert( pExpr->pRight );
+ assert( sqlite3ExprSkipCollateAndLikely(pExpr->pRight)->op
+ == TK_TRUEFALSE );
+ x = (pExpr->op2==TK_ISNOT)*2 + sqlite3ExprTruthValue(pExpr->pRight);
+ zUniOp = azOp[x];
+ break;
+ }
+
+ case TK_SPAN: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView, "SPAN %Q", pExpr->u.zToken);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+
+ case TK_COLLATE: {
+ /* COLLATE operators without the EP_Collate flag are intended to
+ ** emulate collation associated with a table column. These show
+ ** up in the treeview output as "SOFT-COLLATE". Explicit COLLATE
+ ** operators that appear in the original SQL always have the
+ ** EP_Collate bit set and appear in treeview output as just "COLLATE" */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView, "%sCOLLATE %Q%s",
+ !ExprHasProperty(pExpr, EP_Collate) ? "SOFT-" : "",
+ pExpr->u.zToken, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+
+ case TK_AGG_FUNCTION:
+ case TK_FUNCTION: {
+ ExprList *pFarg; /* List of function arguments */
+ Window *pWin;
+ if( ExprHasProperty(pExpr, EP_TokenOnly) ){
+ pFarg = 0;
+ pWin = 0;
+ }else{
+ assert( ExprUseXList(pExpr) );
+ pFarg = pExpr->x.pList;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pWin = IsWindowFunc(pExpr) ? pExpr->y.pWin : 0;
+#else
+ pWin = 0;
+#endif
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( pExpr->op==TK_AGG_FUNCTION ){
+ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q%s agg=%d[%d]/%p",
+ pExpr->op2, pExpr->u.zToken, zFlgs,
+ pExpr->pAggInfo ? pExpr->pAggInfo->selId : 0,
+ pExpr->iAgg, pExpr->pAggInfo);
+ }else if( pExpr->op2!=0 ){
+ const char *zOp2;
+ char zBuf[8];
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"0x%02x",pExpr->op2);
+ zOp2 = zBuf;
+ if( pExpr->op2==NC_IsCheck ) zOp2 = "NC_IsCheck";
+ if( pExpr->op2==NC_IdxExpr ) zOp2 = "NC_IdxExpr";
+ if( pExpr->op2==NC_PartIdx ) zOp2 = "NC_PartIdx";
+ if( pExpr->op2==NC_GenCol ) zOp2 = "NC_GenCol";
+ sqlite3TreeViewLine(pView, "FUNCTION %Q%s op2=%s",
+ pExpr->u.zToken, zFlgs, zOp2);
+ }else{
+ sqlite3TreeViewLine(pView, "FUNCTION %Q%s", pExpr->u.zToken, zFlgs);
+ }
+ if( pFarg ){
+ sqlite3TreeViewExprList(pView, pFarg, pWin!=0 || pExpr->pLeft, 0);
+ if( pExpr->pLeft ){
+ Expr *pOB = pExpr->pLeft;
+ assert( pOB->op==TK_ORDER );
+ assert( ExprUseXList(pOB) );
+ sqlite3TreeViewExprList(pView, pOB->x.pList, pWin!=0, "ORDERBY");
+ }
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ sqlite3TreeViewWindow(pView, pWin, 0);
+ }
+#endif
+ break;
+ }
+ case TK_ORDER: {
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, "ORDERBY");
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_EXISTS: {
+ assert( ExprUseXSelect(pExpr) );
+ sqlite3TreeViewLine(pView, "EXISTS-expr flags=0x%x", pExpr->flags);
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
+ break;
+ }
+ case TK_SELECT: {
+ assert( ExprUseXSelect(pExpr) );
+ sqlite3TreeViewLine(pView, "subquery-expr flags=0x%x", pExpr->flags);
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
+ break;
+ }
+ case TK_IN: {
+ sqlite3_str *pStr = sqlite3_str_new(0);
+ char *z;
+ sqlite3_str_appendf(pStr, "IN flags=0x%x", pExpr->flags);
+ if( pExpr->iTable ) sqlite3_str_appendf(pStr, " iTable=%d",pExpr->iTable);
+ if( ExprHasProperty(pExpr, EP_Subrtn) ){
+ sqlite3_str_appendf(pStr, " subrtn(%d,%d)",
+ pExpr->y.sub.regReturn, pExpr->y.sub.iAddr);
+ }
+ z = sqlite3_str_finish(pStr);
+ sqlite3TreeViewLine(pView, z);
+ sqlite3_free(z);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
+ if( ExprUseXSelect(pExpr) ){
+ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
+ }else{
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
+ }
+ break;
+ }
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+ /*
+ ** x BETWEEN y AND z
+ **
+ ** This is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** X is stored in pExpr->pLeft.
+ ** Y is stored in pExpr->pList->a[0].pExpr.
+ ** Z is stored in pExpr->pList->a[1].pExpr.
+ */
+ case TK_BETWEEN: {
+ const Expr *pX, *pY, *pZ;
+ pX = pExpr->pLeft;
+ assert( ExprUseXList(pExpr) );
+ assert( pExpr->x.pList->nExpr==2 );
+ pY = pExpr->x.pList->a[0].pExpr;
+ pZ = pExpr->x.pList->a[1].pExpr;
+ sqlite3TreeViewLine(pView, "BETWEEN");
+ sqlite3TreeViewExpr(pView, pX, 1);
+ sqlite3TreeViewExpr(pView, pY, 1);
+ sqlite3TreeViewExpr(pView, pZ, 0);
+ break;
+ }
+ case TK_TRIGGER: {
+ /* If the opcode is TK_TRIGGER, then the expression is a reference
+ ** to a column in the new.* or old.* pseudo-tables available to
+ ** trigger programs. In this case Expr.iTable is set to 1 for the
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
+ ** is set to the column of the pseudo-table to read, or to -1 to
+ ** read the rowid field.
+ */
+ sqlite3TreeViewLine(pView, "%s(%d)",
+ pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
+ break;
+ }
+ case TK_CASE: {
+ sqlite3TreeViewLine(pView, "CASE");
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
+ assert( ExprUseXList(pExpr) );
+ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
+ break;
+ }
+#ifndef SQLITE_OMIT_TRIGGER
+ case TK_RAISE: {
+ const char *zType = "unk";
+ switch( pExpr->affExpr ){
+ case OE_Rollback: zType = "rollback"; break;
+ case OE_Abort: zType = "abort"; break;
+ case OE_Fail: zType = "fail"; break;
+ case OE_Ignore: zType = "ignore"; break;
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
+ break;
+ }
+#endif
+ case TK_MATCH: {
+ sqlite3TreeViewLine(pView, "MATCH {%d:%d}%s",
+ pExpr->iTable, pExpr->iColumn, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
+ break;
+ }
+ case TK_VECTOR: {
+ char *z = sqlite3_mprintf("VECTOR%s",zFlgs);
+ assert( ExprUseXList(pExpr) );
+ sqlite3TreeViewBareExprList(pView, pExpr->x.pList, z);
+ sqlite3_free(z);
+ break;
+ }
+ case TK_SELECT_COLUMN: {
+ sqlite3TreeViewLine(pView, "SELECT-COLUMN %d of [0..%d]%s",
+ pExpr->iColumn, pExpr->iTable-1,
+ pExpr->pRight==pExpr->pLeft ? " (SELECT-owner)" : "");
+ assert( ExprUseXSelect(pExpr->pLeft) );
+ sqlite3TreeViewSelect(pView, pExpr->pLeft->x.pSelect, 0);
+ break;
+ }
+ case TK_IF_NULL_ROW: {
+ sqlite3TreeViewLine(pView, "IF-NULL-ROW %d", pExpr->iTable);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ break;
+ }
+ case TK_ERROR: {
+ Expr tmp;
+ sqlite3TreeViewLine(pView, "ERROR");
+ tmp = *pExpr;
+ tmp.op = pExpr->op2;
+ sqlite3TreeViewExpr(pView, &tmp, 0);
+ break;
+ }
+ case TK_ROW: {
+ if( pExpr->iColumn<=0 ){
+ sqlite3TreeViewLine(pView, "First FROM table rowid");
+ }else{
+ sqlite3TreeViewLine(pView, "First FROM table column %d",
+ pExpr->iColumn-1);
+ }
+ break;
+ }
+ default: {
+ sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
+ break;
+ }
+ }
+ if( zBinOp ){
+ sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
+ sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
+ }else if( zUniOp ){
+ sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs);
+ sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+
+
+/*
+** Generate a human-readable explanation of an expression list.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewBareExprList(
+ TreeView *pView,
+ const ExprList *pList,
+ const char *zLabel
+){
+ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
+ if( pList==0 ){
+ sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
+ }else{
+ int i;
+ sqlite3TreeViewLine(pView, "%s", zLabel);
+ for(i=0; i<pList->nExpr; i++){
+ int j = pList->a[i].u.x.iOrderByCol;
+ char *zName = pList->a[i].zEName;
+ int moreToFollow = i<pList->nExpr - 1;
+ if( j || zName ){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ moreToFollow = 0;
+ sqlite3TreeViewLine(pView, 0);
+ if( zName ){
+ switch( pList->a[i].fg.eEName ){
+ default:
+ fprintf(stdout, "AS %s ", zName);
+ break;
+ case ENAME_TAB:
+ fprintf(stdout, "TABLE-ALIAS-NAME(\"%s\") ", zName);
+ if( pList->a[i].fg.bUsed ) fprintf(stdout, "(used) ");
+ if( pList->a[i].fg.bUsingTerm ) fprintf(stdout, "(USING-term) ");
+ if( pList->a[i].fg.bNoExpand ) fprintf(stdout, "(NoExpand) ");
+ break;
+ case ENAME_SPAN:
+ fprintf(stdout, "SPAN(\"%s\") ", zName);
+ break;
+ }
+ }
+ if( j ){
+ fprintf(stdout, "iOrderByCol=%d", j);
+ }
+ fprintf(stdout, "\n");
+ fflush(stdout);
+ }
+ sqlite3TreeViewExpr(pView, pList->a[i].pExpr, moreToFollow);
+ if( j || zName ){
+ sqlite3TreeViewPop(&pView);
+ }
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3TreeViewExprList(
+ TreeView *pView,
+ const ExprList *pList,
+ u8 moreToFollow,
+ const char *zLabel
+){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewBareExprList(pView, pList, zLabel);
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Generate a human-readable explanation of an id-list.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewBareIdList(
+ TreeView *pView,
+ const IdList *pList,
+ const char *zLabel
+){
+ if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
+ if( pList==0 ){
+ sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
+ }else{
+ int i;
+ sqlite3TreeViewLine(pView, "%s", zLabel);
+ for(i=0; i<pList->nId; i++){
+ char *zName = pList->a[i].zName;
+ int moreToFollow = i<pList->nId - 1;
+ if( zName==0 ) zName = "(null)";
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewLine(pView, 0);
+ if( pList->eU4==EU4_NONE ){
+ fprintf(stdout, "%s\n", zName);
+ }else if( pList->eU4==EU4_IDX ){
+ fprintf(stdout, "%s (%d)\n", zName, pList->a[i].u4.idx);
+ }else{
+ assert( pList->eU4==EU4_EXPR );
+ if( pList->a[i].u4.pExpr==0 ){
+ fprintf(stdout, "%s (pExpr=NULL)\n", zName);
+ }else{
+ fprintf(stdout, "%s\n", zName);
+ sqlite3TreeViewPush(&pView, i<pList->nId-1);
+ sqlite3TreeViewExpr(pView, pList->a[i].u4.pExpr, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ }
+ sqlite3TreeViewPop(&pView);
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3TreeViewIdList(
+ TreeView *pView,
+ const IdList *pList,
+ u8 moreToFollow,
+ const char *zLabel
+){
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ sqlite3TreeViewBareIdList(pView, pList, zLabel);
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Generate a human-readable explanation of a list of Upsert objects
+*/
+SQLITE_PRIVATE void sqlite3TreeViewUpsert(
+ TreeView *pView,
+ const Upsert *pUpsert,
+ u8 moreToFollow
+){
+ if( pUpsert==0 ) return;
+ sqlite3TreeViewPush(&pView, moreToFollow);
+ while( pUpsert ){
+ int n;
+ sqlite3TreeViewPush(&pView, pUpsert->pNextUpsert!=0 || moreToFollow);
+ sqlite3TreeViewLine(pView, "ON CONFLICT DO %s",
+ pUpsert->isDoUpdate ? "UPDATE" : "NOTHING");
+ n = (pUpsert->pUpsertSet!=0) + (pUpsert->pUpsertWhere!=0);
+ sqlite3TreeViewExprList(pView, pUpsert->pUpsertTarget, (n--)>0, "TARGET");
+ sqlite3TreeViewExprList(pView, pUpsert->pUpsertSet, (n--)>0, "SET");
+ if( pUpsert->pUpsertWhere ){
+ sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
+ sqlite3TreeViewExpr(pView, pUpsert->pUpsertWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ sqlite3TreeViewPop(&pView);
+ pUpsert = pUpsert->pNextUpsert;
+ }
+ sqlite3TreeViewPop(&pView);
+}
+
+#if TREETRACE_ENABLED
+/*
+** Generate a human-readable diagram of the data structure that go
+** into generating an DELETE statement.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewDelete(
+ const With *pWith,
+ const SrcList *pTabList,
+ const Expr *pWhere,
+ const ExprList *pOrderBy,
+ const Expr *pLimit,
+ const Trigger *pTrigger
+){
+ int n = 0;
+ TreeView *pView = 0;
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, "DELETE");
+ if( pWith ) n++;
+ if( pTabList ) n++;
+ if( pWhere ) n++;
+ if( pOrderBy ) n++;
+ if( pLimit ) n++;
+ if( pTrigger ) n++;
+ if( pWith ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewWith(pView, pWith, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTabList ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "FROM");
+ sqlite3TreeViewSrcList(pView, pTabList);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pWhere ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "WHERE");
+ sqlite3TreeViewExpr(pView, pWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pOrderBy ){
+ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY");
+ }
+ if( pLimit ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "LIMIT");
+ sqlite3TreeViewExpr(pView, pLimit, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTrigger ){
+ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* TREETRACE_ENABLED */
+
+#if TREETRACE_ENABLED
+/*
+** Generate a human-readable diagram of the data structure that go
+** into generating an INSERT statement.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewInsert(
+ const With *pWith,
+ const SrcList *pTabList,
+ const IdList *pColumnList,
+ const Select *pSelect,
+ const ExprList *pExprList,
+ int onError,
+ const Upsert *pUpsert,
+ const Trigger *pTrigger
+){
+ TreeView *pView = 0;
+ int n = 0;
+ const char *zLabel = "INSERT";
+ switch( onError ){
+ case OE_Replace: zLabel = "REPLACE"; break;
+ case OE_Ignore: zLabel = "INSERT OR IGNORE"; break;
+ case OE_Rollback: zLabel = "INSERT OR ROLLBACK"; break;
+ case OE_Abort: zLabel = "INSERT OR ABORT"; break;
+ case OE_Fail: zLabel = "INSERT OR FAIL"; break;
+ }
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, zLabel);
+ if( pWith ) n++;
+ if( pTabList ) n++;
+ if( pColumnList ) n++;
+ if( pSelect ) n++;
+ if( pExprList ) n++;
+ if( pUpsert ) n++;
+ if( pTrigger ) n++;
+ if( pWith ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewWith(pView, pWith, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTabList ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "INTO");
+ sqlite3TreeViewSrcList(pView, pTabList);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pColumnList ){
+ sqlite3TreeViewIdList(pView, pColumnList, (--n)>0, "COLUMNS");
+ }
+ if( pSelect ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "DATA-SOURCE");
+ sqlite3TreeViewSelect(pView, pSelect, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pExprList ){
+ sqlite3TreeViewExprList(pView, pExprList, (--n)>0, "VALUES");
+ }
+ if( pUpsert ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "UPSERT");
+ sqlite3TreeViewUpsert(pView, pUpsert, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTrigger ){
+ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* TREETRACE_ENABLED */
+
+#if TREETRACE_ENABLED
+/*
+** Generate a human-readable diagram of the data structure that go
+** into generating an UPDATE statement.
+*/
+SQLITE_PRIVATE void sqlite3TreeViewUpdate(
+ const With *pWith,
+ const SrcList *pTabList,
+ const ExprList *pChanges,
+ const Expr *pWhere,
+ int onError,
+ const ExprList *pOrderBy,
+ const Expr *pLimit,
+ const Upsert *pUpsert,
+ const Trigger *pTrigger
+){
+ int n = 0;
+ TreeView *pView = 0;
+ const char *zLabel = "UPDATE";
+ switch( onError ){
+ case OE_Replace: zLabel = "UPDATE OR REPLACE"; break;
+ case OE_Ignore: zLabel = "UPDATE OR IGNORE"; break;
+ case OE_Rollback: zLabel = "UPDATE OR ROLLBACK"; break;
+ case OE_Abort: zLabel = "UPDATE OR ABORT"; break;
+ case OE_Fail: zLabel = "UPDATE OR FAIL"; break;
+ }
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewLine(pView, zLabel);
+ if( pWith ) n++;
+ if( pTabList ) n++;
+ if( pChanges ) n++;
+ if( pWhere ) n++;
+ if( pOrderBy ) n++;
+ if( pLimit ) n++;
+ if( pUpsert ) n++;
+ if( pTrigger ) n++;
+ if( pWith ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewWith(pView, pWith, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTabList ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "FROM");
+ sqlite3TreeViewSrcList(pView, pTabList);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pChanges ){
+ sqlite3TreeViewExprList(pView, pChanges, (--n)>0, "SET");
+ }
+ if( pWhere ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "WHERE");
+ sqlite3TreeViewExpr(pView, pWhere, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pOrderBy ){
+ sqlite3TreeViewExprList(pView, pOrderBy, (--n)>0, "ORDER-BY");
+ }
+ if( pLimit ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "LIMIT");
+ sqlite3TreeViewExpr(pView, pLimit, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pUpsert ){
+ sqlite3TreeViewPush(&pView, (--n)>0);
+ sqlite3TreeViewLine(pView, "UPSERT");
+ sqlite3TreeViewUpsert(pView, pUpsert, 0);
+ sqlite3TreeViewPop(&pView);
+ }
+ if( pTrigger ){
+ sqlite3TreeViewTrigger(pView, pTrigger, (--n)>0, 1);
+ }
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* TREETRACE_ENABLED */
+
+#ifndef SQLITE_OMIT_TRIGGER
+/*
+** Show a human-readable graph of a TriggerStep
+*/
+SQLITE_PRIVATE void sqlite3TreeViewTriggerStep(
+ TreeView *pView,
+ const TriggerStep *pStep,
+ u8 moreToFollow,
+ u8 showFullList
+){
+ int cnt = 0;
+ if( pStep==0 ) return;
+ sqlite3TreeViewPush(&pView,
+ moreToFollow || (showFullList && pStep->pNext!=0));
+ do{
+ if( cnt++ && pStep->pNext==0 ){
+ sqlite3TreeViewPop(&pView);
+ sqlite3TreeViewPush(&pView, 0);
+ }
+ sqlite3TreeViewLine(pView, "%s", pStep->zSpan ? pStep->zSpan : "RETURNING");
+ }while( showFullList && (pStep = pStep->pNext)!=0 );
+ sqlite3TreeViewPop(&pView);
+}
+
+/*
+** Show a human-readable graph of a Trigger
+*/
+SQLITE_PRIVATE void sqlite3TreeViewTrigger(
+ TreeView *pView,
+ const Trigger *pTrigger,
+ u8 moreToFollow,
+ u8 showFullList
+){
+ int cnt = 0;
+ if( pTrigger==0 ) return;
+ sqlite3TreeViewPush(&pView,
+ moreToFollow || (showFullList && pTrigger->pNext!=0));
+ do{
+ if( cnt++ && pTrigger->pNext==0 ){
+ sqlite3TreeViewPop(&pView);
+ sqlite3TreeViewPush(&pView, 0);
+ }
+ sqlite3TreeViewLine(pView, "TRIGGER %s", pTrigger->zName);
+ sqlite3TreeViewPush(&pView, 0);
+ sqlite3TreeViewTriggerStep(pView, pTrigger->step_list, 0, 1);
+ sqlite3TreeViewPop(&pView);
+ }while( showFullList && (pTrigger = pTrigger->pNext)!=0 );
+ sqlite3TreeViewPop(&pView);
+}
+#endif /* SQLITE_OMIT_TRIGGER */
+
+
+/*
+** These simplified versions of the tree-view routines omit unnecessary
+** parameters. These variants are intended to be used from a symbolic
+** debugger, such as "gdb", during interactive debugging sessions.
+**
+** This routines are given external linkage so that they will always be
+** accessible to the debugging, and to avoid warnings about unused
+** functions. But these routines only exist in debugging builds, so they
+** do not contaminate the interface.
+*/
+SQLITE_PRIVATE void sqlite3ShowExpr(const Expr *p){ sqlite3TreeViewExpr(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowExprList(const ExprList *p){ sqlite3TreeViewExprList(0,p,0,0);}
+SQLITE_PRIVATE void sqlite3ShowIdList(const IdList *p){ sqlite3TreeViewIdList(0,p,0,0); }
+SQLITE_PRIVATE void sqlite3ShowSrcList(const SrcList *p){ sqlite3TreeViewSrcList(0,p); }
+SQLITE_PRIVATE void sqlite3ShowSelect(const Select *p){ sqlite3TreeViewSelect(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowWith(const With *p){ sqlite3TreeViewWith(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowUpsert(const Upsert *p){ sqlite3TreeViewUpsert(0,p,0); }
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3ShowTriggerStep(const TriggerStep *p){
+ sqlite3TreeViewTriggerStep(0,p,0,0);
+}
+SQLITE_PRIVATE void sqlite3ShowTriggerStepList(const TriggerStep *p){
+ sqlite3TreeViewTriggerStep(0,p,0,1);
+}
+SQLITE_PRIVATE void sqlite3ShowTrigger(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,0); }
+SQLITE_PRIVATE void sqlite3ShowTriggerList(const Trigger *p){ sqlite3TreeViewTrigger(0,p,0,1);}
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE void sqlite3ShowWindow(const Window *p){ sqlite3TreeViewWindow(0,p,0); }
+SQLITE_PRIVATE void sqlite3ShowWinFunc(const Window *p){ sqlite3TreeViewWinFunc(0,p,0); }
+#endif
+
+#endif /* SQLITE_DEBUG */
+
+/************** End of treeview.c ********************************************/
+/************** Begin file random.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement a pseudo-random number
+** generator (PRNG) for SQLite.
+**
+** Random numbers are used by some of the database backends in order
+** to generate random integer keys for tables or random filenames.
+*/
+/* #include "sqliteInt.h" */
+
+
+/* All threads share a single random number generator.
+** This structure is the current state of the generator.
+*/
+static SQLITE_WSD struct sqlite3PrngType {
+ u32 s[16]; /* 64 bytes of chacha20 state */
+ u8 out[64]; /* Output bytes */
+ u8 n; /* Output bytes remaining */
+} sqlite3Prng;
+
+
+/* The RFC-7539 ChaCha20 block function
+*/
+#define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
+#define QR(a, b, c, d) ( \
+ a += b, d ^= a, d = ROTL(d,16), \
+ c += d, b ^= c, b = ROTL(b,12), \
+ a += b, d ^= a, d = ROTL(d, 8), \
+ c += d, b ^= c, b = ROTL(b, 7))
+static void chacha_block(u32 *out, const u32 *in){
+ int i;
+ u32 x[16];
+ memcpy(x, in, 64);
+ for(i=0; i<10; i++){
+ QR(x[0], x[4], x[ 8], x[12]);
+ QR(x[1], x[5], x[ 9], x[13]);
+ QR(x[2], x[6], x[10], x[14]);
+ QR(x[3], x[7], x[11], x[15]);
+ QR(x[0], x[5], x[10], x[15]);
+ QR(x[1], x[6], x[11], x[12]);
+ QR(x[2], x[7], x[ 8], x[13]);
+ QR(x[3], x[4], x[ 9], x[14]);
+ }
+ for(i=0; i<16; i++) out[i] = x[i]+in[i];
+}
+
+/*
+** Return N random bytes.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *pBuf){
+ unsigned char *zBuf = pBuf;
+
+ /* The "wsdPrng" macro will resolve to the pseudo-random number generator
+ ** state vector. If writable static data is unsupported on the target,
+ ** we have to locate the state vector at run-time. In the more common
+ ** case where writable static data is supported, wsdPrng can refer directly
+ ** to the "sqlite3Prng" state vector declared above.
+ */
+#ifdef SQLITE_OMIT_WSD
+ struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
+# define wsdPrng p[0]
+#else
+# define wsdPrng sqlite3Prng
+#endif
+
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex;
+#endif
+
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return;
+#endif
+
+#if SQLITE_THREADSAFE
+ mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
+#endif
+
+ sqlite3_mutex_enter(mutex);
+ if( N<=0 || pBuf==0 ){
+ wsdPrng.s[0] = 0;
+ sqlite3_mutex_leave(mutex);
+ return;
+ }
+
+ /* Initialize the state of the random number generator once,
+ ** the first time this routine is called.
+ */
+ if( wsdPrng.s[0]==0 ){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
+ static const u32 chacha20_init[] = {
+ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
+ };
+ memcpy(&wsdPrng.s[0], chacha20_init, 16);
+ if( NEVER(pVfs==0) ){
+ memset(&wsdPrng.s[4], 0, 44);
+ }else{
+ sqlite3OsRandomness(pVfs, 44, (char*)&wsdPrng.s[4]);
+ }
+ wsdPrng.s[15] = wsdPrng.s[12];
+ wsdPrng.s[12] = 0;
+ wsdPrng.n = 0;
+ }
+
+ assert( N>0 );
+ while( 1 /* exit by break */ ){
+ if( N<=wsdPrng.n ){
+ memcpy(zBuf, &wsdPrng.out[wsdPrng.n-N], N);
+ wsdPrng.n -= N;
+ break;
+ }
+ if( wsdPrng.n>0 ){
+ memcpy(zBuf, wsdPrng.out, wsdPrng.n);
+ N -= wsdPrng.n;
+ zBuf += wsdPrng.n;
+ }
+ wsdPrng.s[12]++;
+ chacha_block((u32*)wsdPrng.out, wsdPrng.s);
+ wsdPrng.n = 64;
+ }
+ sqlite3_mutex_leave(mutex);
+}
+
+#ifndef SQLITE_UNTESTABLE
+/*
+** For testing purposes, we sometimes want to preserve the state of
+** PRNG and restore the PRNG to its saved state at a later time, or
+** to reset the PRNG to its initial state. These routines accomplish
+** those tasks.
+**
+** The sqlite3_test_control() interface calls these routines to
+** control the PRNG.
+*/
+static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
+SQLITE_PRIVATE void sqlite3PrngSaveState(void){
+ memcpy(
+ &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
+ &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
+ sizeof(sqlite3Prng)
+ );
+}
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
+ memcpy(
+ &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
+ &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
+ sizeof(sqlite3Prng)
+ );
+}
+#endif /* SQLITE_UNTESTABLE */
+
+/************** End of random.c **********************************************/
+/************** Begin file threads.c *****************************************/
+/*
+** 2012 July 21
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file presents a simple cross-platform threading interface for
+** use internally by SQLite.
+**
+** A "thread" can be created using sqlite3ThreadCreate(). This thread
+** runs independently of its creator until it is joined using
+** sqlite3ThreadJoin(), at which point it terminates.
+**
+** Threads do not have to be real. It could be that the work of the
+** "thread" is done by the main thread at either the sqlite3ThreadCreate()
+** or sqlite3ThreadJoin() call. This is, in fact, what happens in
+** single threaded systems. Nothing in SQLite requires multiple threads.
+** This interface exists so that applications that want to take advantage
+** of multiple cores can do so, while also allowing applications to stay
+** single-threaded if desired.
+*/
+/* #include "sqliteInt.h" */
+#if SQLITE_OS_WIN
+/* # include "os_win.h" */
+#endif
+
+#if SQLITE_MAX_WORKER_THREADS>0
+
+/********************************* Unix Pthreads ****************************/
+#if SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) && SQLITE_THREADSAFE>0
+
+#define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */
+/* #include <pthread.h> */
+
+/* A running thread */
+struct SQLiteThread {
+ pthread_t tid; /* Thread ID */
+ int done; /* Set to true when thread finishes */
+ void *pOut; /* Result returned by the thread */
+ void *(*xTask)(void*); /* The thread routine */
+ void *pIn; /* Argument to the thread */
+};
+
+/* Create a new thread */
+SQLITE_PRIVATE int sqlite3ThreadCreate(
+ SQLiteThread **ppThread, /* OUT: Write the thread object here */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ SQLiteThread *p;
+ int rc;
+
+ assert( ppThread!=0 );
+ assert( xTask!=0 );
+ /* This routine is never used in single-threaded mode */
+ assert( sqlite3GlobalConfig.bCoreMutex!=0 );
+
+ *ppThread = 0;
+ p = sqlite3Malloc(sizeof(*p));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ memset(p, 0, sizeof(*p));
+ p->xTask = xTask;
+ p->pIn = pIn;
+ /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a
+ ** function that returns SQLITE_ERROR when passed the argument 200, that
+ ** forces worker threads to run sequentially and deterministically
+ ** for testing purposes. */
+ if( sqlite3FaultSim(200) ){
+ rc = 1;
+ }else{
+ rc = pthread_create(&p->tid, 0, xTask, pIn);
+ }
+ if( rc ){
+ p->done = 1;
+ p->pOut = xTask(pIn);
+ }
+ *ppThread = p;
+ return SQLITE_OK;
+}
+
+/* Get the results of the thread */
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){
+ int rc;
+
+ assert( ppOut!=0 );
+ if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT;
+ if( p->done ){
+ *ppOut = p->pOut;
+ rc = SQLITE_OK;
+ }else{
+ rc = pthread_join(p->tid, ppOut) ? SQLITE_ERROR : SQLITE_OK;
+ }
+ sqlite3_free(p);
+ return rc;
+}
+
+#endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */
+/******************************** End Unix Pthreads *************************/
+
+
+/********************************* Win32 Threads ****************************/
+#if SQLITE_OS_WIN_THREADS
+
+#define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */
+#include <process.h>
+
+/* A running thread */
+struct SQLiteThread {
+ void *tid; /* The thread handle */
+ unsigned id; /* The thread identifier */
+ void *(*xTask)(void*); /* The routine to run as a thread */
+ void *pIn; /* Argument to xTask */
+ void *pResult; /* Result of xTask */
+};
+
+/* Thread procedure Win32 compatibility shim */
+static unsigned __stdcall sqlite3ThreadProc(
+ void *pArg /* IN: Pointer to the SQLiteThread structure */
+){
+ SQLiteThread *p = (SQLiteThread *)pArg;
+
+ assert( p!=0 );
+#if 0
+ /*
+ ** This assert appears to trigger spuriously on certain
+ ** versions of Windows, possibly due to _beginthreadex()
+ ** and/or CreateThread() not fully setting their thread
+ ** ID parameter before starting the thread.
+ */
+ assert( p->id==GetCurrentThreadId() );
+#endif
+ assert( p->xTask!=0 );
+ p->pResult = p->xTask(p->pIn);
+
+ _endthreadex(0);
+ return 0; /* NOT REACHED */
+}
+
+/* Create a new thread */
+SQLITE_PRIVATE int sqlite3ThreadCreate(
+ SQLiteThread **ppThread, /* OUT: Write the thread object here */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ SQLiteThread *p;
+
+ assert( ppThread!=0 );
+ assert( xTask!=0 );
+ *ppThread = 0;
+ p = sqlite3Malloc(sizeof(*p));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ /* If the SQLITE_TESTCTRL_FAULT_INSTALL callback is registered to a
+ ** function that returns SQLITE_ERROR when passed the argument 200, that
+ ** forces worker threads to run sequentially and deterministically
+ ** (via the sqlite3FaultSim() term of the conditional) for testing
+ ** purposes. */
+ if( sqlite3GlobalConfig.bCoreMutex==0 || sqlite3FaultSim(200) ){
+ memset(p, 0, sizeof(*p));
+ }else{
+ p->xTask = xTask;
+ p->pIn = pIn;
+ p->tid = (void*)_beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id);
+ if( p->tid==0 ){
+ memset(p, 0, sizeof(*p));
+ }
+ }
+ if( p->xTask==0 ){
+ p->id = GetCurrentThreadId();
+ p->pResult = xTask(pIn);
+ }
+ *ppThread = p;
+ return SQLITE_OK;
+}
+
+SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject); /* os_win.c */
+
+/* Get the results of the thread */
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){
+ DWORD rc;
+ BOOL bRc;
+
+ assert( ppOut!=0 );
+ if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT;
+ if( p->xTask==0 ){
+ /* assert( p->id==GetCurrentThreadId() ); */
+ rc = WAIT_OBJECT_0;
+ assert( p->tid==0 );
+ }else{
+ assert( p->id!=0 && p->id!=GetCurrentThreadId() );
+ rc = sqlite3Win32Wait((HANDLE)p->tid);
+ assert( rc!=WAIT_IO_COMPLETION );
+ bRc = CloseHandle((HANDLE)p->tid);
+ assert( bRc );
+ }
+ if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult;
+ sqlite3_free(p);
+ return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR;
+}
+
+#endif /* SQLITE_OS_WIN_THREADS */
+/******************************** End Win32 Threads *************************/
+
+
+/********************************* Single-Threaded **************************/
+#ifndef SQLITE_THREADS_IMPLEMENTED
+/*
+** This implementation does not actually create a new thread. It does the
+** work of the thread in the main thread, when either the thread is created
+** or when it is joined
+*/
+
+/* A running thread */
+struct SQLiteThread {
+ void *(*xTask)(void*); /* The routine to run as a thread */
+ void *pIn; /* Argument to xTask */
+ void *pResult; /* Result of xTask */
+};
+
+/* Create a new thread */
+SQLITE_PRIVATE int sqlite3ThreadCreate(
+ SQLiteThread **ppThread, /* OUT: Write the thread object here */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ SQLiteThread *p;
+
+ assert( ppThread!=0 );
+ assert( xTask!=0 );
+ *ppThread = 0;
+ p = sqlite3Malloc(sizeof(*p));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ if( (SQLITE_PTR_TO_INT(p)/17)&1 ){
+ p->xTask = xTask;
+ p->pIn = pIn;
+ }else{
+ p->xTask = 0;
+ p->pResult = xTask(pIn);
+ }
+ *ppThread = p;
+ return SQLITE_OK;
+}
+
+/* Get the results of the thread */
+SQLITE_PRIVATE int sqlite3ThreadJoin(SQLiteThread *p, void **ppOut){
+
+ assert( ppOut!=0 );
+ if( NEVER(p==0) ) return SQLITE_NOMEM_BKPT;
+ if( p->xTask ){
+ *ppOut = p->xTask(p->pIn);
+ }else{
+ *ppOut = p->pResult;
+ }
+ sqlite3_free(p);
+
+#if defined(SQLITE_TEST)
+ {
+ void *pTstAlloc = sqlite3Malloc(10);
+ if (!pTstAlloc) return SQLITE_NOMEM_BKPT;
+ sqlite3_free(pTstAlloc);
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+#endif /* !defined(SQLITE_THREADS_IMPLEMENTED) */
+/****************************** End Single-Threaded *************************/
+#endif /* SQLITE_MAX_WORKER_THREADS>0 */
+
+/************** End of threads.c *********************************************/
+/************** Begin file utf.c *********************************************/
+/*
+** 2004 April 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used to translate between UTF-8,
+** UTF-16, UTF-16BE, and UTF-16LE.
+**
+** Notes on UTF-8:
+**
+** Byte-0 Byte-1 Byte-2 Byte-3 Value
+** 0xxxxxxx 00000000 00000000 0xxxxxxx
+** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
+** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
+** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+**
+**
+** Notes on UTF-16: (with wwww+1==uuuuu)
+**
+** Word-0 Word-1 Value
+** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
+**
+**
+** BOM or Byte Order Mark:
+** 0xff 0xfe little-endian utf-16 follows
+** 0xfe 0xff big-endian utf-16 follows
+**
+*/
+/* #include "sqliteInt.h" */
+/* #include <assert.h> */
+/* #include "vdbeInt.h" */
+
+#if !defined(SQLITE_AMALGAMATION) && SQLITE_BYTEORDER==0
+/*
+** The following constant value is used by the SQLITE_BIGENDIAN and
+** SQLITE_LITTLEENDIAN macros.
+*/
+SQLITE_PRIVATE const int sqlite3one = 1;
+#endif /* SQLITE_AMALGAMATION && SQLITE_BYTEORDER==0 */
+
+/*
+** This lookup table is used to help decode the first byte of
+** a multi-byte UTF8 character.
+*/
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (u8)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+}
+
+#define WRITE_UTF16LE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (u8)(c&0x00FF); \
+ *zOut++ = (u8)((c>>8)&0x00FF); \
+ }else{ \
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (u8)(c&0x00FF); \
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
+ } \
+}
+
+#define WRITE_UTF16BE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (u8)((c>>8)&0x00FF); \
+ *zOut++ = (u8)(c&0x00FF); \
+ }else{ \
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
+ *zOut++ = (u8)(c&0x00FF); \
+ } \
+}
+
+/*
+** Translate a single UTF-8 character. Return the unicode value.
+**
+** During translation, assume that the byte that zTerm points
+** is a 0x00.
+**
+** Write a pointer to the next unread byte back into *pzNext.
+**
+** Notes On Invalid UTF-8:
+**
+** * This routine never allows a 7-bit character (0x00 through 0x7f) to
+** be encoded as a multi-byte character. Any multi-byte character that
+** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
+**
+** * This routine never allows a UTF16 surrogate value to be encoded.
+** If a multi-byte character attempts to encode a value between
+** 0xd800 and 0xe000 then it is rendered as 0xfffd.
+**
+** * Bytes in the range of 0x80 through 0xbf which occur as the first
+** byte of a character are interpreted as single-byte characters
+** and rendered as themselves even though they are technically
+** invalid characters.
+**
+** * This routine accepts over-length UTF8 encodings
+** for unicode values 0x80 and greater. It does not change over-length
+** encodings to 0xfffd as some systems recommend.
+*/
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+SQLITE_PRIVATE u32 sqlite3Utf8Read(
+ const unsigned char **pz /* Pointer to string from which to read char */
+){
+ unsigned int c;
+
+ /* Same as READ_UTF8() above but without the zTerm parameter.
+ ** For this routine, we assume the UTF8 string is always zero-terminated.
+ */
+ c = *((*pz)++);
+ if( c>=0xc0 ){
+ c = sqlite3Utf8Trans1[c-0xc0];
+ while( (*(*pz) & 0xc0)==0x80 ){
+ c = (c<<6) + (0x3f & *((*pz)++));
+ }
+ if( c<0x80
+ || (c&0xFFFFF800)==0xD800
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
+ }
+ return c;
+}
+
+
+
+
+/*
+** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
+** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
+*/
+/* #define TRANSLATE_TRACE 1 */
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine transforms the internal text encoding used by pMem to
+** desiredEnc. It is an error if the string is already of the desired
+** encoding, or if *pMem does not contain a string value.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
+ sqlite3_int64 len; /* Maximum length of output string in bytes */
+ unsigned char *zOut; /* Output buffer */
+ unsigned char *zIn; /* Input iterator */
+ unsigned char *zTerm; /* End of input */
+ unsigned char *z; /* Output iterator */
+ unsigned int c;
+
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( pMem->flags&MEM_Str );
+ assert( pMem->enc!=desiredEnc );
+ assert( pMem->enc!=0 );
+ assert( pMem->n>=0 );
+
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
+ {
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(pMem, &acc);
+ fprintf(stderr, "INPUT: %s\n", sqlite3StrAccumFinish(&acc));
+ }
+#endif
+
+ /* If the translation is between UTF-16 little and big endian, then
+ ** all that is required is to swap the byte order. This case is handled
+ ** differently from the others.
+ */
+ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
+ u8 temp;
+ int rc;
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc!=SQLITE_OK ){
+ assert( rc==SQLITE_NOMEM );
+ return SQLITE_NOMEM_BKPT;
+ }
+ zIn = (u8*)pMem->z;
+ zTerm = &zIn[pMem->n&~1];
+ while( zIn<zTerm ){
+ temp = *zIn;
+ *zIn = *(zIn+1);
+ zIn++;
+ *zIn++ = temp;
+ }
+ pMem->enc = desiredEnc;
+ goto translate_out;
+ }
+
+ /* Set len to the maximum number of bytes required in the output buffer. */
+ if( desiredEnc==SQLITE_UTF8 ){
+ /* When converting from UTF-16, the maximum growth results from
+ ** translating a 2-byte character to a 4-byte UTF-8 character.
+ ** A single byte is required for the output string
+ ** nul-terminator.
+ */
+ pMem->n &= ~1;
+ len = 2 * (sqlite3_int64)pMem->n + 1;
+ }else{
+ /* When converting from UTF-8 to UTF-16 the maximum growth is caused
+ ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
+ ** character. Two bytes are required in the output buffer for the
+ ** nul-terminator.
+ */
+ len = 2 * (sqlite3_int64)pMem->n + 2;
+ }
+
+ /* Set zIn to point at the start of the input buffer and zTerm to point 1
+ ** byte past the end.
+ **
+ ** Variable zOut is set to point at the output buffer, space obtained
+ ** from sqlite3_malloc().
+ */
+ zIn = (u8*)pMem->z;
+ zTerm = &zIn[pMem->n];
+ zOut = sqlite3DbMallocRaw(pMem->db, len);
+ if( !zOut ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ z = zOut;
+
+ if( pMem->enc==SQLITE_UTF8 ){
+ if( desiredEnc==SQLITE_UTF16LE ){
+ /* UTF-8 -> UTF-16 Little-endian */
+ while( zIn<zTerm ){
+ READ_UTF8(zIn, zTerm, c);
+ WRITE_UTF16LE(z, c);
+ }
+ }else{
+ assert( desiredEnc==SQLITE_UTF16BE );
+ /* UTF-8 -> UTF-16 Big-endian */
+ while( zIn<zTerm ){
+ READ_UTF8(zIn, zTerm, c);
+ WRITE_UTF16BE(z, c);
+ }
+ }
+ pMem->n = (int)(z - zOut);
+ *z++ = 0;
+ }else{
+ assert( desiredEnc==SQLITE_UTF8 );
+ if( pMem->enc==SQLITE_UTF16LE ){
+ /* UTF-16 Little-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ c = *(zIn++);
+ c += (*(zIn++))<<8;
+ if( c>=0xd800 && c<0xe000 ){
+#ifdef SQLITE_REPLACE_INVALID_UTF
+ if( c>=0xdc00 || zIn>=zTerm ){
+ c = 0xfffd;
+ }else{
+ int c2 = *(zIn++);
+ c2 += (*(zIn++))<<8;
+ if( c2<0xdc00 || c2>=0xe000 ){
+ zIn -= 2;
+ c = 0xfffd;
+ }else{
+ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
+ }
+ }
+#else
+ if( zIn<zTerm ){
+ int c2 = (*zIn++);
+ c2 += ((*zIn++)<<8);
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);
+ }
+#endif
+ }
+ WRITE_UTF8(z, c);
+ }
+ }else{
+ /* UTF-16 Big-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ c = (*(zIn++))<<8;
+ c += *(zIn++);
+ if( c>=0xd800 && c<0xe000 ){
+#ifdef SQLITE_REPLACE_INVALID_UTF
+ if( c>=0xdc00 || zIn>=zTerm ){
+ c = 0xfffd;
+ }else{
+ int c2 = (*(zIn++))<<8;
+ c2 += *(zIn++);
+ if( c2<0xdc00 || c2>=0xe000 ){
+ zIn -= 2;
+ c = 0xfffd;
+ }else{
+ c = ((c&0x3ff)<<10) + (c2&0x3ff) + 0x10000;
+ }
+ }
+#else
+ if( zIn<zTerm ){
+ int c2 = ((*zIn++)<<8);
+ c2 += (*zIn++);
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);
+ }
+#endif
+ }
+ WRITE_UTF8(z, c);
+ }
+ }
+ pMem->n = (int)(z - zOut);
+ }
+ *z = 0;
+ assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
+
+ c = MEM_Str|MEM_Term|(pMem->flags&(MEM_AffMask|MEM_Subtype));
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags = c;
+ pMem->enc = desiredEnc;
+ pMem->z = (char*)zOut;
+ pMem->zMalloc = pMem->z;
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);
+
+translate_out:
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
+ {
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(pMem, &acc);
+ fprintf(stderr, "OUTPUT: %s\n", sqlite3StrAccumFinish(&acc));
+ }
+#endif
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine checks for a byte-order mark at the beginning of the
+** UTF-16 string stored in *pMem. If one is present, it is removed and
+** the encoding of the Mem adjusted. This routine does not do any
+** byte-swapping, it just sets Mem.enc appropriately.
+**
+** The allocation (static, dynamic etc.) and encoding of the Mem may be
+** changed by this function.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
+ int rc = SQLITE_OK;
+ u8 bom = 0;
+
+ assert( pMem->n>=0 );
+ if( pMem->n>1 ){
+ u8 b1 = *(u8 *)pMem->z;
+ u8 b2 = *(((u8 *)pMem->z) + 1);
+ if( b1==0xFE && b2==0xFF ){
+ bom = SQLITE_UTF16BE;
+ }
+ if( b1==0xFF && b2==0xFE ){
+ bom = SQLITE_UTF16LE;
+ }
+ }
+
+ if( bom ){
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc==SQLITE_OK ){
+ pMem->n -= 2;
+ memmove(pMem->z, &pMem->z[2], pMem->n);
+ pMem->z[pMem->n] = '\0';
+ pMem->z[pMem->n+1] = '\0';
+ pMem->flags |= MEM_Term;
+ pMem->enc = bom;
+ }
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
+** return the number of unicode characters in pZ up to (but not including)
+** the first 0x00 byte. If nByte is not less than zero, return the
+** number of unicode characters in the first nByte of pZ (or up to
+** the first 0x00, whichever comes first).
+*/
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
+ int r = 0;
+ const u8 *z = (const u8*)zIn;
+ const u8 *zTerm;
+ if( nByte>=0 ){
+ zTerm = &z[nByte];
+ }else{
+ zTerm = (const u8*)(-1);
+ }
+ assert( z<=zTerm );
+ while( *z!=0 && z<zTerm ){
+ SQLITE_SKIP_UTF8(z);
+ r++;
+ }
+ return r;
+}
+
+/* This test function is not currently used by the automated test-suite.
+** Hence it is only available in debug builds.
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Translate UTF-8 to UTF-8.
+**
+** This has the effect of making sure that the string is well-formed
+** UTF-8. Miscoded characters are removed.
+**
+** The translation is done in-place and aborted if the output
+** overruns the input.
+*/
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
+ unsigned char *zOut = zIn;
+ unsigned char *zStart = zIn;
+ u32 c;
+
+ while( zIn[0] && zOut<=zIn ){
+ c = sqlite3Utf8Read((const u8**)&zIn);
+ if( c!=0xfffd ){
+ WRITE_UTF8(zOut, c);
+ }
+ }
+ *zOut = 0;
+ return (int)(zOut - zStart);
+}
+#endif
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Convert a UTF-16 string in the native encoding into a UTF-8 string.
+** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
+** be freed by the calling function.
+**
+** NULL is returned if there is an allocation error.
+*/
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){
+ Mem m;
+ memset(&m, 0, sizeof(m));
+ m.db = db;
+ sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC);
+ sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
+ if( db->mallocFailed ){
+ sqlite3VdbeMemRelease(&m);
+ m.z = 0;
+ }
+ assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
+ assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
+ assert( m.z || db->mallocFailed );
+ return m.z;
+}
+
+/*
+** zIn is a UTF-16 encoded unicode string at least nChar characters long.
+** Return the number of bytes in the first nChar unicode characters
+** in pZ. nChar must be non-negative.
+*/
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
+ int c;
+ unsigned char const *z = zIn;
+ int n = 0;
+
+ if( SQLITE_UTF16NATIVE==SQLITE_UTF16LE ) z++;
+ while( n<nChar ){
+ c = z[0];
+ z += 2;
+ if( c>=0xd8 && c<0xdc && z[0]>=0xdc && z[0]<0xe0 ) z += 2;
+ n++;
+ }
+ return (int)(z-(unsigned char const *)zIn)
+ - (SQLITE_UTF16NATIVE==SQLITE_UTF16LE);
+}
+
+#if defined(SQLITE_TEST)
+/*
+** This routine is called from the TCL test function "translate_selftest".
+** It checks that the primitives for serializing and deserializing
+** characters in each encoding are inverses of each other.
+*/
+SQLITE_PRIVATE void sqlite3UtfSelfTest(void){
+ unsigned int i, t;
+ unsigned char zBuf[20];
+ unsigned char *z;
+ int n;
+ unsigned int c;
+
+ for(i=0; i<0x00110000; i++){
+ z = zBuf;
+ WRITE_UTF8(z, i);
+ n = (int)(z-zBuf);
+ assert( n>0 && n<=4 );
+ z[0] = 0;
+ z = zBuf;
+ c = sqlite3Utf8Read((const u8**)&z);
+ t = i;
+ if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
+ if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
+ assert( c==t );
+ assert( (z-zBuf)==n );
+ }
+}
+#endif /* SQLITE_TEST */
+#endif /* SQLITE_OMIT_UTF16 */
+
+/************** End of utf.c *************************************************/
+/************** Begin file util.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Utility functions used throughout sqlite.
+**
+** This file contains functions for allocating memory, comparing
+** strings, and stuff like that.
+**
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdarg.h> */
+#ifndef SQLITE_OMIT_FLOATING_POINT
+#include <math.h>
+#endif
+
+/*
+** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
+** or to bypass normal error detection during testing in order to let
+** execute proceed further downstream.
+**
+** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
+** sqlite3FaultSim() function only returns non-zero during testing.
+**
+** During testing, if the test harness has set a fault-sim callback using
+** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
+** each call to sqlite3FaultSim() is relayed to that application-supplied
+** callback and the integer return value form the application-supplied
+** callback is returned by sqlite3FaultSim().
+**
+** The integer argument to sqlite3FaultSim() is a code to identify which
+** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
+** should have a unique code. To prevent legacy testing applications from
+** breaking, the codes should not be changed or reused.
+*/
+#ifndef SQLITE_UNTESTABLE
+SQLITE_PRIVATE int sqlite3FaultSim(int iTest){
+ int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
+ return xCallback ? xCallback(iTest) : SQLITE_OK;
+}
+#endif
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** Return true if the floating point value is Not a Number (NaN).
+**
+** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
+** Otherwise, we have our own implementation that works on most systems.
+*/
+SQLITE_PRIVATE int sqlite3IsNaN(double x){
+ int rc; /* The value return */
+#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
+ u64 y;
+ memcpy(&y,&x,sizeof(y));
+ rc = IsNaN(y);
+#else
+ rc = isnan(x);
+#endif /* HAVE_ISNAN */
+ testcase( rc );
+ return rc;
+}
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+
+/*
+** Compute a string length that is limited to what can be stored in
+** lower 30 bits of a 32-bit signed integer.
+**
+** The value returned will never be negative. Nor will it ever be greater
+** than the actual length of the string. For very long strings (greater
+** than 1GiB) the value returned might be less than the true string length.
+*/
+SQLITE_PRIVATE int sqlite3Strlen30(const char *z){
+ if( z==0 ) return 0;
+ return 0x3fffffff & (int)strlen(z);
+}
+
+/*
+** Return the declared type of a column. Or return zDflt if the column
+** has no declared type.
+**
+** The column type is an extra string stored after the zero-terminator on
+** the column name if and only if the COLFLAG_HASTYPE flag is set.
+*/
+SQLITE_PRIVATE char *sqlite3ColumnType(Column *pCol, char *zDflt){
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ return pCol->zCnName + strlen(pCol->zCnName) + 1;
+ }else if( pCol->eCType ){
+ assert( pCol->eCType<=SQLITE_N_STDTYPE );
+ return (char*)sqlite3StdType[pCol->eCType-1];
+ }else{
+ return zDflt;
+ }
+}
+
+/*
+** Helper function for sqlite3Error() - called rarely. Broken out into
+** a separate routine to avoid unnecessary register saves on entry to
+** sqlite3Error().
+*/
+static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
+ if( db->pErr ) sqlite3ValueSetNull(db->pErr);
+ sqlite3SystemError(db, err_code);
+}
+
+/*
+** Set the current error code to err_code and clear any prior error message.
+** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
+** that would be appropriate.
+*/
+SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){
+ assert( db!=0 );
+ db->errCode = err_code;
+ if( err_code || db->pErr ){
+ sqlite3ErrorFinish(db, err_code);
+ }else{
+ db->errByteOffset = -1;
+ }
+}
+
+/*
+** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
+** and error message.
+*/
+SQLITE_PRIVATE void sqlite3ErrorClear(sqlite3 *db){
+ assert( db!=0 );
+ db->errCode = SQLITE_OK;
+ db->errByteOffset = -1;
+ if( db->pErr ) sqlite3ValueSetNull(db->pErr);
+}
+
+/*
+** Load the sqlite3.iSysErrno field if that is an appropriate thing
+** to do based on the SQLite error code in rc.
+*/
+SQLITE_PRIVATE void sqlite3SystemError(sqlite3 *db, int rc){
+ if( rc==SQLITE_IOERR_NOMEM ) return;
+#ifdef SQLITE_USE_SEH
+ if( rc==SQLITE_IOERR_IN_PAGE ){
+ int ii;
+ int iErr;
+ sqlite3BtreeEnterAll(db);
+ for(ii=0; ii<db->nDb; ii++){
+ if( db->aDb[ii].pBt ){
+ iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt));
+ if( iErr ){
+ db->iSysErrno = iErr;
+ }
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ return;
+ }
+#endif
+ rc &= 0xff;
+ if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
+ db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
+ }
+}
+
+/*
+** Set the most recent error code and error string for the sqlite
+** handle "db". The error code is set to "err_code".
+**
+** If it is not NULL, string zFormat specifies the format of the
+** error string. zFormat and any string tokens that follow it are
+** assumed to be encoded in UTF-8.
+**
+** To clear the most recent error for sqlite handle "db", sqlite3Error
+** should be called with err_code set to SQLITE_OK and zFormat set
+** to NULL.
+*/
+SQLITE_PRIVATE void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
+ assert( db!=0 );
+ db->errCode = err_code;
+ sqlite3SystemError(db, err_code);
+ if( zFormat==0 ){
+ sqlite3Error(db, err_code);
+ }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
+ char *z;
+ va_list ap;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
+ }
+}
+
+/*
+** Check for interrupts and invoke progress callback.
+*/
+SQLITE_PRIVATE void sqlite3ProgressCheck(Parse *p){
+ sqlite3 *db = p->db;
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ p->nErr++;
+ p->rc = SQLITE_INTERRUPT;
+ }
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ if( db->xProgress ){
+ if( p->rc==SQLITE_INTERRUPT ){
+ p->nProgressSteps = 0;
+ }else if( (++p->nProgressSteps)>=db->nProgressOps ){
+ if( db->xProgress(db->pProgressArg) ){
+ p->nErr++;
+ p->rc = SQLITE_INTERRUPT;
+ }
+ p->nProgressSteps = 0;
+ }
+ }
+#endif
+}
+
+/*
+** Add an error message to pParse->zErrMsg and increment pParse->nErr.
+**
+** This function should be used to report any error that occurs while
+** compiling an SQL statement (i.e. within sqlite3_prepare()). The
+** last thing the sqlite3_prepare() function does is copy the error
+** stored by this function into the database handle using sqlite3Error().
+** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
+** during statement execution (sqlite3_step() etc.).
+*/
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
+ char *zMsg;
+ va_list ap;
+ sqlite3 *db = pParse->db;
+ assert( db!=0 );
+ assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
+ db->errByteOffset = -2;
+ va_start(ap, zFormat);
+ zMsg = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ if( db->errByteOffset<-1 ) db->errByteOffset = -1;
+ if( db->suppressErr ){
+ sqlite3DbFree(db, zMsg);
+ if( db->mallocFailed ){
+ pParse->nErr++;
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }else{
+ pParse->nErr++;
+ sqlite3DbFree(db, pParse->zErrMsg);
+ pParse->zErrMsg = zMsg;
+ pParse->rc = SQLITE_ERROR;
+ pParse->pWith = 0;
+ }
+}
+
+/*
+** If database connection db is currently parsing SQL, then transfer
+** error code errCode to that parser if the parser has not already
+** encountered some other kind of error.
+*/
+SQLITE_PRIVATE int sqlite3ErrorToParser(sqlite3 *db, int errCode){
+ Parse *pParse;
+ if( db==0 || (pParse = db->pParse)==0 ) return errCode;
+ pParse->rc = errCode;
+ pParse->nErr++;
+ return errCode;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** The input string must be zero-terminated. A new zero-terminator
+** is added to the dequoted string.
+**
+** The return value is -1 if no dequoting occurs or the length of the
+** dequoted string, exclusive of the zero terminator, if dequoting does
+** occur.
+**
+** 2002-02-14: This routine is extended to remove MS-Access style
+** brackets from around identifiers. For example: "[a-b-c]" becomes
+** "a-b-c".
+*/
+SQLITE_PRIVATE void sqlite3Dequote(char *z){
+ char quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ if( !sqlite3Isquote(quote) ) return;
+ if( quote=='[' ) quote = ']';
+ for(i=1, j=0;; i++){
+ assert( z[i] );
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+ z[j] = 0;
+}
+SQLITE_PRIVATE void sqlite3DequoteExpr(Expr *p){
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ assert( sqlite3Isquote(p->u.zToken[0]) );
+ p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
+ sqlite3Dequote(p->u.zToken);
+}
+
+/*
+** If the input token p is quoted, try to adjust the token to remove
+** the quotes. This is not always possible:
+**
+** "abc" -> abc
+** "ab""cd" -> (not possible because of the interior "")
+**
+** Remove the quotes if possible. This is a optimization. The overall
+** system should still return the correct answer even if this routine
+** is always a no-op.
+*/
+SQLITE_PRIVATE void sqlite3DequoteToken(Token *p){
+ unsigned int i;
+ if( p->n<2 ) return;
+ if( !sqlite3Isquote(p->z[0]) ) return;
+ for(i=1; i<p->n-1; i++){
+ if( sqlite3Isquote(p->z[i]) ) return;
+ }
+ p->n -= 2;
+ p->z++;
+}
+
+/*
+** Generate a Token object from a string
+*/
+SQLITE_PRIVATE void sqlite3TokenInit(Token *p, char *z){
+ p->z = z;
+ p->n = sqlite3Strlen30(z);
+}
+
+/* Convenient short-hand */
+#define UpperToLower sqlite3UpperToLower
+
+/*
+** Some systems have stricmp(). Others have strcasecmp(). Because
+** there is no consistency, we will define our own.
+**
+** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
+** sqlite3_strnicmp() APIs allow applications and extensions to compare
+** the contents of two buffers containing UTF-8 strings in a
+** case-independent fashion, using the same definition of "case
+** independence" that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){
+ if( zLeft==0 ){
+ return zRight ? -1 : 0;
+ }else if( zRight==0 ){
+ return 1;
+ }
+ return sqlite3StrICmp(zLeft, zRight);
+}
+SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
+ unsigned char *a, *b;
+ int c, x;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ for(;;){
+ c = *a;
+ x = *b;
+ if( c==x ){
+ if( c==0 ) break;
+ }else{
+ c = (int)UpperToLower[c] - (int)UpperToLower[x];
+ if( c ) break;
+ }
+ a++;
+ b++;
+ }
+ return c;
+}
+SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
+ register unsigned char *a, *b;
+ if( zLeft==0 ){
+ return zRight ? -1 : 0;
+ }else if( zRight==0 ){
+ return 1;
+ }
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
+}
+
+/*
+** Compute an 8-bit hash on a string that is insensitive to case differences
+*/
+SQLITE_PRIVATE u8 sqlite3StrIHash(const char *z){
+ u8 h = 0;
+ if( z==0 ) return 0;
+ while( z[0] ){
+ h += UpperToLower[(unsigned char)z[0]];
+ z++;
+ }
+ return h;
+}
+
+/* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
+**
+** Reference:
+** T. J. Dekker, "A Floating-Point Technique for Extending the
+** Available Precision". 1971-07-26.
+*/
+static void dekkerMul2(volatile double *x, double y, double yy){
+ /*
+ ** The "volatile" keywords on parameter x[] and on local variables
+ ** below are needed force intermediate results to be truncated to
+ ** binary64 rather than be carried around in an extended-precision
+ ** format. The truncation is necessary for the Dekker algorithm to
+ ** work. Intel x86 floating point might omit the truncation without
+ ** the use of volatile.
+ */
+ volatile double tx, ty, p, q, c, cc;
+ double hx, hy;
+ u64 m;
+ memcpy(&m, (void*)&x[0], 8);
+ m &= 0xfffffffffc000000LL;
+ memcpy(&hx, &m, 8);
+ tx = x[0] - hx;
+ memcpy(&m, &y, 8);
+ m &= 0xfffffffffc000000LL;
+ memcpy(&hy, &m, 8);
+ ty = y - hy;
+ p = hx*hy;
+ q = hx*ty + tx*hy;
+ c = p+q;
+ cc = p - c + q + tx*ty;
+ cc = x[0]*yy + x[1]*y + cc;
+ x[0] = c + cc;
+ x[1] = c - x[0];
+ x[1] += cc;
+}
+
+/*
+** The string z[] is an text representation of a real number.
+** Convert this string to a double and write it into *pResult.
+**
+** The string z[] is length bytes in length (bytes, not characters) and
+** uses the encoding enc. The string is not necessarily zero-terminated.
+**
+** Return TRUE if the result is a valid real number (or integer) and FALSE
+** if the string is empty or contains extraneous text. More specifically
+** return
+** 1 => The input string is a pure integer
+** 2 or more => The input has a decimal point or eNNN clause
+** 0 or less => The input string is not a valid number
+** -1 => Not a valid number, but has a valid prefix which
+** includes a decimal point and/or an eNNN clause
+**
+** Valid numbers are in one of these formats:
+**
+** [+-]digits[E[+-]digits]
+** [+-]digits.[digits][E[+-]digits]
+** [+-].digits[E[+-]digits]
+**
+** Leading and trailing whitespace is ignored for the purpose of determining
+** validity.
+**
+** If some prefix of the input string is a valid number, this routine
+** returns FALSE but it still converts the prefix and writes the result
+** into *pResult.
+*/
+#if defined(_MSC_VER)
+#pragma warning(disable : 4756)
+#endif
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ int incr;
+ const char *zEnd;
+ /* sign * significand * (10 ^ (esign * exponent)) */
+ int sign = 1; /* sign of significand */
+ u64 s = 0; /* significand */
+ int d = 0; /* adjust exponent for shifting decimal point */
+ int esign = 1; /* sign of exponent */
+ int e = 0; /* exponent */
+ int eValid = 1; /* True exponent is either not used or is well-formed */
+ int nDigit = 0; /* Number of digits processed */
+ int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
+
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ *pResult = 0.0; /* Default return value, in case of an error */
+ if( length==0 ) return 0;
+
+ if( enc==SQLITE_UTF8 ){
+ incr = 1;
+ zEnd = z + length;
+ }else{
+ int i;
+ incr = 2;
+ length &= ~1;
+ assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ testcase( enc==SQLITE_UTF16LE );
+ testcase( enc==SQLITE_UTF16BE );
+ for(i=3-enc; i<length && z[i]==0; i+=2){}
+ if( i<length ) eType = -100;
+ zEnd = &z[i^1];
+ z += (enc&1);
+ }
+
+ /* skip leading spaces */
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
+ if( z>=zEnd ) return 0;
+
+ /* get sign of significand */
+ if( *z=='-' ){
+ sign = -1;
+ z+=incr;
+ }else if( *z=='+' ){
+ z+=incr;
+ }
+
+ /* copy max significant digits to significand */
+ while( z<zEnd && sqlite3Isdigit(*z) ){
+ s = s*10 + (*z - '0');
+ z+=incr; nDigit++;
+ if( s>=((LARGEST_UINT64-9)/10) ){
+ /* skip non-significant significand digits
+ ** (increase exponent by d to shift decimal left) */
+ while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
+ }
+ }
+ if( z>=zEnd ) goto do_atof_calc;
+
+ /* if decimal point is present */
+ if( *z=='.' ){
+ z+=incr;
+ eType++;
+ /* copy digits from after decimal to significand
+ ** (decrease exponent by d to shift decimal right) */
+ while( z<zEnd && sqlite3Isdigit(*z) ){
+ if( s<((LARGEST_UINT64-9)/10) ){
+ s = s*10 + (*z - '0');
+ d--;
+ nDigit++;
+ }
+ z+=incr;
+ }
+ }
+ if( z>=zEnd ) goto do_atof_calc;
+
+ /* if exponent is present */
+ if( *z=='e' || *z=='E' ){
+ z+=incr;
+ eValid = 0;
+ eType++;
+
+ /* This branch is needed to avoid a (harmless) buffer overread. The
+ ** special comment alerts the mutation tester that the correct answer
+ ** is obtained even if the branch is omitted */
+ if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
+
+ /* get sign of exponent */
+ if( *z=='-' ){
+ esign = -1;
+ z+=incr;
+ }else if( *z=='+' ){
+ z+=incr;
+ }
+ /* copy digits to exponent */
+ while( z<zEnd && sqlite3Isdigit(*z) ){
+ e = e<10000 ? (e*10 + (*z - '0')) : 10000;
+ z+=incr;
+ eValid = 1;
+ }
+ }
+
+ /* skip trailing spaces */
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
+
+do_atof_calc:
+ /* Zero is a special case */
+ if( s==0 ){
+ *pResult = sign<0 ? -0.0 : +0.0;
+ goto atof_return;
+ }
+
+ /* adjust exponent by d, and update sign */
+ e = (e*esign) + d;
+
+ /* Try to adjust the exponent to make it smaller */
+ while( e>0 && s<(LARGEST_UINT64/10) ){
+ s *= 10;
+ e--;
+ }
+ while( e<0 && (s%10)==0 ){
+ s /= 10;
+ e++;
+ }
+
+ if( e==0 ){
+ *pResult = s;
+ }else if( sqlite3Config.bUseLongDouble ){
+ LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s;
+ if( e>0 ){
+ while( e>=100 ){ e-=100; r *= 1.0e+100L; }
+ while( e>=10 ){ e-=10; r *= 1.0e+10L; }
+ while( e>=1 ){ e-=1; r *= 1.0e+01L; }
+ }else{
+ while( e<=-100 ){ e+=100; r *= 1.0e-100L; }
+ while( e<=-10 ){ e+=10; r *= 1.0e-10L; }
+ while( e<=-1 ){ e+=1; r *= 1.0e-01L; }
+ }
+ assert( r>=0.0 );
+ if( r>+1.7976931348623157081452742373e+308L ){
+#ifdef INFINITY
+ *pResult = +INFINITY;
+#else
+ *pResult = 1.0e308*10.0;
+#endif
+ }else{
+ *pResult = (double)r;
+ }
+ }else{
+ double rr[2];
+ u64 s2;
+ rr[0] = (double)s;
+ s2 = (u64)rr[0];
+ rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
+ if( e>0 ){
+ while( e>=100 ){
+ e -= 100;
+ dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
+ }
+ while( e>=10 ){
+ e -= 10;
+ dekkerMul2(rr, 1.0e+10, 0.0);
+ }
+ while( e>=1 ){
+ e -= 1;
+ dekkerMul2(rr, 1.0e+01, 0.0);
+ }
+ }else{
+ while( e<=-100 ){
+ e += 100;
+ dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
+ }
+ while( e<=-10 ){
+ e += 10;
+ dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
+ }
+ while( e<=-1 ){
+ e += 1;
+ dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
+ }
+ }
+ *pResult = rr[0]+rr[1];
+ if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
+ }
+ if( sign<0 ) *pResult = -*pResult;
+ assert( !sqlite3IsNaN(*pResult) );
+
+atof_return:
+ /* return true if number and no extra non-whitespace characters after */
+ if( z==zEnd && nDigit>0 && eValid && eType>0 ){
+ return eType;
+ }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
+ return -1;
+ }else{
+ return 0;
+ }
+#else
+ return !sqlite3Atoi64(z, pResult, length, enc);
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+}
+#if defined(_MSC_VER)
+#pragma warning(default : 4756)
+#endif
+
+/*
+** Render an signed 64-bit integer as text. Store the result in zOut[] and
+** return the length of the string that was stored, in bytes. The value
+** returned does not include the zero terminator at the end of the output
+** string.
+**
+** The caller must ensure that zOut[] is at least 21 bytes in size.
+*/
+SQLITE_PRIVATE int sqlite3Int64ToText(i64 v, char *zOut){
+ int i;
+ u64 x;
+ char zTemp[22];
+ if( v<0 ){
+ x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
+ }else{
+ x = v;
+ }
+ i = sizeof(zTemp)-2;
+ zTemp[sizeof(zTemp)-1] = 0;
+ while( 1 /*exit-by-break*/ ){
+ zTemp[i] = (x%10) + '0';
+ x = x/10;
+ if( x==0 ) break;
+ i--;
+ };
+ if( v<0 ) zTemp[--i] = '-';
+ memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
+ return sizeof(zTemp)-1-i;
+}
+
+/*
+** Compare the 19-character string zNum against the text representation
+** value 2^63: 9223372036854775808. Return negative, zero, or positive
+** if zNum is less than, equal to, or greater than the string.
+** Note that zNum must contain exactly 19 characters.
+**
+** Unlike memcmp() this routine is guaranteed to return the difference
+** in the values of the last digit if the only difference is in the
+** last digit. So, for example,
+**
+** compare2pow63("9223372036854775800", 1)
+**
+** will return -8.
+*/
+static int compare2pow63(const char *zNum, int incr){
+ int c = 0;
+ int i;
+ /* 012345678901234567 */
+ const char *pow63 = "922337203685477580";
+ for(i=0; c==0 && i<18; i++){
+ c = (zNum[i*incr]-pow63[i])*10;
+ }
+ if( c==0 ){
+ c = zNum[18*incr] - '8';
+ testcase( c==(-1) );
+ testcase( c==0 );
+ testcase( c==(+1) );
+ }
+ return c;
+}
+
+/*
+** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
+** routine does *not* accept hexadecimal notation.
+**
+** Returns:
+**
+** -1 Not even a prefix of the input text looks like an integer
+** 0 Successful transformation. Fits in a 64-bit signed integer.
+** 1 Excess non-space text after the integer value
+** 2 Integer too large for a 64-bit signed integer or is malformed
+** 3 Special case of 9223372036854775808
+**
+** length is the number of bytes in the string (bytes, not characters).
+** The string is not necessarily zero-terminated. The encoding is
+** given by enc.
+*/
+SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
+ int incr;
+ u64 u = 0;
+ int neg = 0; /* assume positive */
+ int i;
+ int c = 0;
+ int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
+ int rc; /* Baseline return code */
+ const char *zStart;
+ const char *zEnd = zNum + length;
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ if( enc==SQLITE_UTF8 ){
+ incr = 1;
+ }else{
+ incr = 2;
+ length &= ~1;
+ assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ for(i=3-enc; i<length && zNum[i]==0; i+=2){}
+ nonNum = i<length;
+ zEnd = &zNum[i^1];
+ zNum += (enc&1);
+ }
+ while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
+ if( zNum<zEnd ){
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum+=incr;
+ }else if( *zNum=='+' ){
+ zNum+=incr;
+ }
+ }
+ zStart = zNum;
+ while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
+ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
+ u = u*10 + c - '0';
+ }
+ testcase( i==18*incr );
+ testcase( i==19*incr );
+ testcase( i==20*incr );
+ if( u>LARGEST_INT64 ){
+ /* This test and assignment is needed only to suppress UB warnings
+ ** from clang and -fsanitize=undefined. This test and assignment make
+ ** the code a little larger and slower, and no harm comes from omitting
+ ** them, but we must appease the undefined-behavior pharisees. */
+ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
+ }else if( neg ){
+ *pNum = -(i64)u;
+ }else{
+ *pNum = (i64)u;
+ }
+ rc = 0;
+ if( i==0 && zStart==zNum ){ /* No digits */
+ rc = -1;
+ }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
+ rc = 1;
+ }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
+ int jj = i;
+ do{
+ if( !sqlite3Isspace(zNum[jj]) ){
+ rc = 1; /* Extra non-space text after the integer */
+ break;
+ }
+ jj += incr;
+ }while( &zNum[jj]<zEnd );
+ }
+ if( i<19*incr ){
+ /* Less than 19 digits, so we know that it fits in 64 bits */
+ assert( u<=LARGEST_INT64 );
+ return rc;
+ }else{
+ /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
+ c = i>19*incr ? 1 : compare2pow63(zNum, incr);
+ if( c<0 ){
+ /* zNum is less than 9223372036854775808 so it fits */
+ assert( u<=LARGEST_INT64 );
+ return rc;
+ }else{
+ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
+ if( c>0 ){
+ /* zNum is greater than 9223372036854775808 so it overflows */
+ return 2;
+ }else{
+ /* zNum is exactly 9223372036854775808. Fits if negative. The
+ ** special case 2 overflow if positive */
+ assert( u-1==LARGEST_INT64 );
+ return neg ? rc : 3;
+ }
+ }
+ }
+}
+
+/*
+** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
+** into a 64-bit signed integer. This routine accepts hexadecimal literals,
+** whereas sqlite3Atoi64() does not.
+**
+** Returns:
+**
+** 0 Successful transformation. Fits in a 64-bit signed integer.
+** 1 Excess text after the integer value
+** 2 Integer too large for a 64-bit signed integer or is malformed
+** 3 Special case of 9223372036854775808
+*/
+SQLITE_PRIVATE int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( z[0]=='0'
+ && (z[1]=='x' || z[1]=='X')
+ ){
+ u64 u = 0;
+ int i, k;
+ for(i=2; z[i]=='0'; i++){}
+ for(k=i; sqlite3Isxdigit(z[k]); k++){
+ u = u*16 + sqlite3HexToInt(z[k]);
+ }
+ memcpy(pOut, &u, 8);
+ if( k-i>16 ) return 2;
+ if( z[k]!=0 ) return 1;
+ return 0;
+ }else
+#endif /* SQLITE_OMIT_HEX_INTEGER */
+ {
+ int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
+ if( z[n] ) n++;
+ return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
+ }
+}
+
+/*
+** If zNum represents an integer that will fit in 32-bits, then set
+** *pValue to that integer and return true. Otherwise return false.
+**
+** This routine accepts both decimal and hexadecimal notation for integers.
+**
+** Any non-numeric characters that following zNum are ignored.
+** This is different from sqlite3Atoi64() which requires the
+** input number to be zero-terminated.
+*/
+SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
+ sqlite_int64 v = 0;
+ int i, c;
+ int neg = 0;
+ if( zNum[0]=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( zNum[0]=='+' ){
+ zNum++;
+ }
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ else if( zNum[0]=='0'
+ && (zNum[1]=='x' || zNum[1]=='X')
+ && sqlite3Isxdigit(zNum[2])
+ ){
+ u32 u = 0;
+ zNum += 2;
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
+ u = u*16 + sqlite3HexToInt(zNum[i]);
+ }
+ if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
+ memcpy(pValue, &u, 4);
+ return 1;
+ }else{
+ return 0;
+ }
+ }
+#endif
+ if( !sqlite3Isdigit(zNum[0]) ) return 0;
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
+ v = v*10 + c;
+ }
+
+ /* The longest decimal representation of a 32 bit integer is 10 digits:
+ **
+ ** 1234567890
+ ** 2^31 -> 2147483648
+ */
+ testcase( i==10 );
+ if( i>10 ){
+ return 0;
+ }
+ testcase( v-neg==2147483647 );
+ if( v-neg>2147483647 ){
+ return 0;
+ }
+ if( neg ){
+ v = -v;
+ }
+ *pValue = (int)v;
+ return 1;
+}
+
+/*
+** Return a 32-bit integer value extracted from a string. If the
+** string is not an integer, just return 0.
+*/
+SQLITE_PRIVATE int sqlite3Atoi(const char *z){
+ int x = 0;
+ sqlite3GetInt32(z, &x);
+ return x;
+}
+
+/*
+** Decode a floating-point value into an approximate decimal
+** representation.
+**
+** Round the decimal representation to n significant digits if
+** n is positive. Or round to -n signficant digits after the
+** decimal point if n is negative. No rounding is performed if
+** n is zero.
+**
+** The significant digits of the decimal representation are
+** stored in p->z[] which is a often (but not always) a pointer
+** into the middle of p->zBuf[]. There are p->n significant digits.
+** The p->z[] array is *not* zero-terminated.
+*/
+SQLITE_PRIVATE void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
+ int i;
+ u64 v;
+ int e, exp = 0;
+ p->isSpecial = 0;
+ p->z = p->zBuf;
+
+ /* Convert negative numbers to positive. Deal with Infinity, 0.0, and
+ ** NaN. */
+ if( r<0.0 ){
+ p->sign = '-';
+ r = -r;
+ }else if( r==0.0 ){
+ p->sign = '+';
+ p->n = 1;
+ p->iDP = 1;
+ p->z = "0";
+ return;
+ }else{
+ p->sign = '+';
+ }
+ memcpy(&v,&r,8);
+ e = v>>52;
+ if( (e&0x7ff)==0x7ff ){
+ p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
+ p->n = 0;
+ p->iDP = 0;
+ return;
+ }
+
+ /* Multiply r by powers of ten until it lands somewhere in between
+ ** 1.0e+19 and 1.0e+17.
+ */
+ if( sqlite3Config.bUseLongDouble ){
+ LONGDOUBLE_TYPE rr = r;
+ if( rr>=1.0e+19 ){
+ while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; }
+ while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; }
+ while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; }
+ }else{
+ while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; }
+ while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; }
+ while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; }
+ }
+ v = (u64)rr;
+ }else{
+ /* If high-precision floating point is not available using "long double",
+ ** then use Dekker-style double-double computation to increase the
+ ** precision.
+ **
+ ** The error terms on constants like 1.0e+100 computed using the
+ ** decimal extension, for example as follows:
+ **
+ ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
+ */
+ double rr[2];
+ rr[0] = r;
+ rr[1] = 0.0;
+ if( rr[0]>9.223372036854774784e+18 ){
+ while( rr[0]>9.223372036854774784e+118 ){
+ exp += 100;
+ dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
+ }
+ while( rr[0]>9.223372036854774784e+28 ){
+ exp += 10;
+ dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
+ }
+ while( rr[0]>9.223372036854774784e+18 ){
+ exp += 1;
+ dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
+ }
+ }else{
+ while( rr[0]<9.223372036854774784e-83 ){
+ exp -= 100;
+ dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
+ }
+ while( rr[0]<9.223372036854774784e+07 ){
+ exp -= 10;
+ dekkerMul2(rr, 1.0e+10, 0.0);
+ }
+ while( rr[0]<9.22337203685477478e+17 ){
+ exp -= 1;
+ dekkerMul2(rr, 1.0e+01, 0.0);
+ }
+ }
+ v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];
+ }
+
+
+ /* Extract significant digits. */
+ i = sizeof(p->zBuf)-1;
+ assert( v>0 );
+ while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; }
+ assert( i>=0 && i<sizeof(p->zBuf)-1 );
+ p->n = sizeof(p->zBuf) - 1 - i;
+ assert( p->n>0 );
+ assert( p->n<sizeof(p->zBuf) );
+ p->iDP = p->n + exp;
+ if( iRound<0 ){
+ iRound = p->iDP - iRound;
+ if( iRound==0 && p->zBuf[i+1]>='5' ){
+ iRound = 1;
+ p->zBuf[i--] = '0';
+ p->n++;
+ p->iDP++;
+ }
+ }
+ if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
+ char *z = &p->zBuf[i+1];
+ if( iRound>mxRound ) iRound = mxRound;
+ p->n = iRound;
+ if( z[iRound]>='5' ){
+ int j = iRound-1;
+ while( 1 /*exit-by-break*/ ){
+ z[j]++;
+ if( z[j]<='9' ) break;
+ z[j] = '0';
+ if( j==0 ){
+ p->z[i--] = '1';
+ p->n++;
+ p->iDP++;
+ break;
+ }else{
+ j--;
+ }
+ }
+ }
+ }
+ p->z = &p->zBuf[i+1];
+ assert( i+p->n < sizeof(p->zBuf) );
+ while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
+}
+
+/*
+** Try to convert z into an unsigned 32-bit integer. Return true on
+** success and false if there is an error.
+**
+** Only decimal notation is accepted.
+*/
+SQLITE_PRIVATE int sqlite3GetUInt32(const char *z, u32 *pI){
+ u64 v = 0;
+ int i;
+ for(i=0; sqlite3Isdigit(z[i]); i++){
+ v = v*10 + z[i] - '0';
+ if( v>4294967296LL ){ *pI = 0; return 0; }
+ }
+ if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
+ *pI = (u32)v;
+ return 1;
+}
+
+/*
+** The variable-length integer encoding is as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+** C = xxxxxxxx 8 bits of data
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** 28 bits - BBBA
+** 35 bits - BBBBA
+** 42 bits - BBBBBA
+** 49 bits - BBBBBBA
+** 56 bits - BBBBBBBA
+** 64 bits - BBBBBBBBC
+*/
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data write will be between 1 and 9 bytes. The number
+** of bytes written is returned.
+**
+** A variable-length integer consists of the lower 7 bits of each byte
+** for all bytes that have the 8th bit set and one byte with the 8th
+** bit clear. Except, if we get to the 9th byte, it stores the full
+** 8 bits and is the last byte.
+*/
+static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
+ int i, j, n;
+ u8 buf[10];
+ if( v & (((u64)0xff000000)<<32) ){
+ p[8] = (u8)v;
+ v >>= 8;
+ for(i=7; i>=0; i--){
+ p[i] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }
+ return 9;
+ }
+ n = 0;
+ do{
+ buf[n++] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }while( v!=0 );
+ buf[0] &= 0x7f;
+ assert( n<=9 );
+ for(i=0, j=n-1; j>=0; j--, i++){
+ p[i] = buf[j];
+ }
+ return n;
+}
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
+ if( v<=0x7f ){
+ p[0] = v&0x7f;
+ return 1;
+ }
+ if( v<=0x3fff ){
+ p[0] = ((v>>7)&0x7f)|0x80;
+ p[1] = v&0x7f;
+ return 2;
+ }
+ return putVarint64(p,v);
+}
+
+/*
+** Bitmasks used by sqlite3GetVarint(). These precomputed constants
+** are defined here rather than simply putting the constant expressions
+** inline in order to work around bugs in the RVT compiler.
+**
+** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
+**
+** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
+*/
+#define SLOT_2_0 0x001fc07f
+#define SLOT_4_2_0 0xf01fc07f
+
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+*/
+SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ if( ((signed char*)p)[0]>=0 ){
+ *v = *p;
+ return 1;
+ }
+ if( ((signed char*)p)[1]>=0 ){
+ *v = ((u32)(p[0]&0x7f)<<7) | p[1];
+ return 2;
+ }
+
+ /* Verify that constants are precomputed correctly */
+ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
+ assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
+
+ a = ((u32)p[0])<<14;
+ b = p[1];
+ p += 2;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_2_0;
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
+ return 3;
+ }
+
+ /* CSE1 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_2_0;
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 4;
+ }
+
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ b &= SLOT_2_0;
+ s = a;
+ /* s: p0<<14 | p2 (masked) */
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above
+ ** while calculating s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ a &= SLOT_2_0;
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_4_2_0;
+ b &= SLOT_2_0;
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_4_2_0;
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
+
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
+ b &= SLOT_2_0;
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
+}
+
+/*
+** Read a 32-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+**
+** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
+** integer, then set *v to 0xffffffff.
+**
+** A MACRO version, getVarint32, is provided which inlines the
+** single-byte case. All code should use the MACRO version as
+** this function assumes the single-byte case has already been handled.
+*/
+SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
+ u64 v64;
+ u8 n;
+
+ /* Assume that the single-byte case has already been handled by
+ ** the getVarint32() macro */
+ assert( (p[0] & 0x80)!=0 );
+
+ if( (p[1] & 0x80)==0 ){
+ /* This is the two-byte case */
+ *v = ((p[0]&0x7f)<<7) | p[1];
+ return 2;
+ }
+ if( (p[2] & 0x80)==0 ){
+ /* This is the three-byte case */
+ *v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2];
+ return 3;
+ }
+ /* four or more bytes */
+ n = sqlite3GetVarint(p, &v64);
+ assert( n>3 && n<=9 );
+ if( (v64 & SQLITE_MAX_U32)!=v64 ){
+ *v = 0xffffffff;
+ }else{
+ *v = (u32)v64;
+ }
+ return n;
+}
+
+/*
+** Return the number of bytes that will be needed to store the given
+** 64-bit integer.
+*/
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
+ int i;
+ for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
+ return i;
+}
+
+
+/*
+** Read or write a four-byte big-endian integer value.
+*/
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
+#if SQLITE_BYTEORDER==4321
+ u32 x;
+ memcpy(&x,p,4);
+ return x;
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ u32 x;
+ memcpy(&x,p,4);
+ return __builtin_bswap32(x);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ u32 x;
+ memcpy(&x,p,4);
+ return _byteswap_ulong(x);
+#else
+ testcase( p[0]&0x80 );
+ return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
+#endif
+}
+SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
+#if SQLITE_BYTEORDER==4321
+ memcpy(p,&v,4);
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ u32 x = __builtin_bswap32(v);
+ memcpy(p,&x,4);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ u32 x = _byteswap_ulong(v);
+ memcpy(p,&x,4);
+#else
+ p[0] = (u8)(v>>24);
+ p[1] = (u8)(v>>16);
+ p[2] = (u8)(v>>8);
+ p[3] = (u8)v;
+#endif
+}
+
+
+
+/*
+** Translate a single byte of Hex into an integer.
+** This routine only works if h really is a valid hexadecimal
+** character: 0..9a..fA..F
+*/
+SQLITE_PRIVATE u8 sqlite3HexToInt(int h){
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
+#ifdef SQLITE_ASCII
+ h += 9*(1&(h>>6));
+#endif
+#ifdef SQLITE_EBCDIC
+ h += 9*(1&~(h>>4));
+#endif
+ return (u8)(h & 0xf);
+}
+
+#if !defined(SQLITE_OMIT_BLOB_LITERAL)
+/*
+** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
+** value. Return a pointer to its binary value. Space to hold the
+** binary value has been obtained from malloc and must be freed by
+** the calling routine.
+*/
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
+ char *zBlob;
+ int i;
+
+ zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
+ n--;
+ if( zBlob ){
+ for(i=0; i<n; i+=2){
+ zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
+ }
+ zBlob[i/2] = 0;
+ }
+ return zBlob;
+}
+#endif /* !SQLITE_OMIT_BLOB_LITERAL */
+
+/*
+** Log an error that is an API call on a connection pointer that should
+** not have been used. The "type" of connection pointer is given as the
+** argument. The zType is a word like "NULL" or "closed" or "invalid".
+*/
+static void logBadConnection(const char *zType){
+ sqlite3_log(SQLITE_MISUSE,
+ "API call with %s database connection pointer",
+ zType
+ );
+}
+
+/*
+** Check to make sure we have a valid db pointer. This test is not
+** foolproof but it does provide some measure of protection against
+** misuse of the interface such as passing in db pointers that are
+** NULL or which have been previously closed. If this routine returns
+** 1 it means that the db pointer is valid and 0 if it should not be
+** dereferenced for any reason. The calling function should invoke
+** SQLITE_MISUSE immediately.
+**
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
+** open properly and is not fit for general use but which can be
+** used as an argument to sqlite3_errmsg() or sqlite3_close().
+*/
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
+ u8 eOpenState;
+ if( db==0 ){
+ logBadConnection("NULL");
+ return 0;
+ }
+ eOpenState = db->eOpenState;
+ if( eOpenState!=SQLITE_STATE_OPEN ){
+ if( sqlite3SafetyCheckSickOrOk(db) ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ logBadConnection("unopened");
+ }
+ return 0;
+ }else{
+ return 1;
+ }
+}
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
+ u8 eOpenState;
+ eOpenState = db->eOpenState;
+ if( eOpenState!=SQLITE_STATE_SICK &&
+ eOpenState!=SQLITE_STATE_OPEN &&
+ eOpenState!=SQLITE_STATE_BUSY ){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ logBadConnection("invalid");
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Attempt to add, subtract, or multiply the 64-bit signed value iB against
+** the other 64-bit signed integer at *pA and store the result in *pA.
+** Return 0 on success. Or if the operation would have resulted in an
+** overflow, leave *pA unchanged and return 1.
+*/
+SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){
+#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
+ return __builtin_add_overflow(*pA, iB, pA);
+#else
+ i64 iA = *pA;
+ testcase( iA==0 ); testcase( iA==1 );
+ testcase( iB==-1 ); testcase( iB==0 );
+ if( iB>=0 ){
+ testcase( iA>0 && LARGEST_INT64 - iA == iB );
+ testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
+ if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
+ }else{
+ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
+ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
+ if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
+ }
+ *pA += iB;
+ return 0;
+#endif
+}
+SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){
+#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
+ return __builtin_sub_overflow(*pA, iB, pA);
+#else
+ testcase( iB==SMALLEST_INT64+1 );
+ if( iB==SMALLEST_INT64 ){
+ testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
+ if( (*pA)>=0 ) return 1;
+ *pA -= iB;
+ return 0;
+ }else{
+ return sqlite3AddInt64(pA, -iB);
+ }
+#endif
+}
+SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){
+#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
+ return __builtin_mul_overflow(*pA, iB, pA);
+#else
+ i64 iA = *pA;
+ if( iB>0 ){
+ if( iA>LARGEST_INT64/iB ) return 1;
+ if( iA<SMALLEST_INT64/iB ) return 1;
+ }else if( iB<0 ){
+ if( iA>0 ){
+ if( iB<SMALLEST_INT64/iA ) return 1;
+ }else if( iA<0 ){
+ if( iB==SMALLEST_INT64 ) return 1;
+ if( iA==SMALLEST_INT64 ) return 1;
+ if( -iA>LARGEST_INT64/-iB ) return 1;
+ }
+ }
+ *pA = iA*iB;
+ return 0;
+#endif
+}
+
+/*
+** Compute the absolute value of a 32-bit signed integer, of possible. Or
+** if the integer has a value of -2147483648, return +2147483647
+*/
+SQLITE_PRIVATE int sqlite3AbsInt32(int x){
+ if( x>=0 ) return x;
+ if( x==(int)0x80000000 ) return 0x7fffffff;
+ return -x;
+}
+
+#ifdef SQLITE_ENABLE_8_3_NAMES
+/*
+** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
+** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
+** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
+** three characters, then shorten the suffix on z[] to be the last three
+** characters of the original suffix.
+**
+** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
+** do the suffix shortening regardless of URI parameter.
+**
+** Examples:
+**
+** test.db-journal => test.nal
+** test.db-wal => test.wal
+** test.db-shm => test.shm
+** test.db-mj7f3319fa => test.9fa
+*/
+SQLITE_PRIVATE void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
+#if SQLITE_ENABLE_8_3_NAMES<2
+ if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
+#endif
+ {
+ int i, sz;
+ sz = sqlite3Strlen30(z);
+ for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
+ if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
+ }
+}
+#endif
+
+/*
+** Find (an approximate) sum of two LogEst values. This computation is
+** not a simple "+" operator because LogEst is stored as a logarithmic
+** value.
+**
+*/
+SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
+ static const unsigned char x[] = {
+ 10, 10, /* 0,1 */
+ 9, 9, /* 2,3 */
+ 8, 8, /* 4,5 */
+ 7, 7, 7, /* 6,7,8 */
+ 6, 6, 6, /* 9,10,11 */
+ 5, 5, 5, /* 12-14 */
+ 4, 4, 4, 4, /* 15-18 */
+ 3, 3, 3, 3, 3, 3, /* 19-24 */
+ 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
+ };
+ if( a>=b ){
+ if( a>b+49 ) return a;
+ if( a>b+31 ) return a+1;
+ return a+x[a-b];
+ }else{
+ if( b>a+49 ) return b;
+ if( b>a+31 ) return b+1;
+ return b+x[b-a];
+ }
+}
+
+/*
+** Convert an integer into a LogEst. In other words, compute an
+** approximation for 10*log2(x).
+*/
+SQLITE_PRIVATE LogEst sqlite3LogEst(u64 x){
+ static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
+ LogEst y = 40;
+ if( x<8 ){
+ if( x<2 ) return 0;
+ while( x<8 ){ y -= 10; x <<= 1; }
+ }else{
+#if GCC_VERSION>=5004000
+ int i = 60 - __builtin_clzll(x);
+ y += i*10;
+ x >>= i;
+#else
+ while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
+ while( x>15 ){ y += 10; x >>= 1; }
+#endif
+ }
+ return a[x&7] + y - 10;
+}
+
+/*
+** Convert a double into a LogEst
+** In other words, compute an approximation for 10*log2(x).
+*/
+SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double x){
+ u64 a;
+ LogEst e;
+ assert( sizeof(x)==8 && sizeof(a)==8 );
+ if( x<=1 ) return 0;
+ if( x<=2000000000 ) return sqlite3LogEst((u64)x);
+ memcpy(&a, &x, 8);
+ e = (a>>52) - 1022;
+ return e*10;
+}
+
+/*
+** Convert a LogEst into an integer.
+*/
+SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst x){
+ u64 n;
+ n = x%10;
+ x /= 10;
+ if( n>=5 ) n -= 2;
+ else if( n>=1 ) n -= 1;
+ if( x>60 ) return (u64)LARGEST_INT64;
+ return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
+}
+
+/*
+** Add a new name/number pair to a VList. This might require that the
+** VList object be reallocated, so return the new VList. If an OOM
+** error occurs, the original VList returned and the
+** db->mallocFailed flag is set.
+**
+** A VList is really just an array of integers. To destroy a VList,
+** simply pass it to sqlite3DbFree().
+**
+** The first integer is the number of integers allocated for the whole
+** VList. The second integer is the number of integers actually used.
+** Each name/number pair is encoded by subsequent groups of 3 or more
+** integers.
+**
+** Each name/number pair starts with two integers which are the numeric
+** value for the pair and the size of the name/number pair, respectively.
+** The text name overlays one or more following integers. The text name
+** is always zero-terminated.
+**
+** Conceptually:
+**
+** struct VList {
+** int nAlloc; // Number of allocated slots
+** int nUsed; // Number of used slots
+** struct VListEntry {
+** int iValue; // Value for this entry
+** int nSlot; // Slots used by this entry
+** // ... variable name goes here
+** } a[0];
+** }
+**
+** During code generation, pointers to the variable names within the
+** VList are taken. When that happens, nAlloc is set to zero as an
+** indication that the VList may never again be enlarged, since the
+** accompanying realloc() would invalidate the pointers.
+*/
+SQLITE_PRIVATE VList *sqlite3VListAdd(
+ sqlite3 *db, /* The database connection used for malloc() */
+ VList *pIn, /* The input VList. Might be NULL */
+ const char *zName, /* Name of symbol to add */
+ int nName, /* Bytes of text in zName */
+ int iVal /* Value to associate with zName */
+){
+ int nInt; /* number of sizeof(int) objects needed for zName */
+ char *z; /* Pointer to where zName will be stored */
+ int i; /* Index in pIn[] where zName is stored */
+
+ nInt = nName/4 + 3;
+ assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
+ if( pIn==0 || pIn[1]+nInt > pIn[0] ){
+ /* Enlarge the allocation */
+ sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
+ VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
+ if( pOut==0 ) return pIn;
+ if( pIn==0 ) pOut[1] = 2;
+ pIn = pOut;
+ pIn[0] = nAlloc;
+ }
+ i = pIn[1];
+ pIn[i] = iVal;
+ pIn[i+1] = nInt;
+ z = (char*)&pIn[i+2];
+ pIn[1] = i+nInt;
+ assert( pIn[1]<=pIn[0] );
+ memcpy(z, zName, nName);
+ z[nName] = 0;
+ return pIn;
+}
+
+/*
+** Return a pointer to the name of a variable in the given VList that
+** has the value iVal. Or return a NULL if there is no such variable in
+** the list
+*/
+SQLITE_PRIVATE const char *sqlite3VListNumToName(VList *pIn, int iVal){
+ int i, mx;
+ if( pIn==0 ) return 0;
+ mx = pIn[1];
+ i = 2;
+ do{
+ if( pIn[i]==iVal ) return (char*)&pIn[i+2];
+ i += pIn[i+1];
+ }while( i<mx );
+ return 0;
+}
+
+/*
+** Return the number of the variable named zName, if it is in VList.
+** or return 0 if there is no such variable.
+*/
+SQLITE_PRIVATE int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
+ int i, mx;
+ if( pIn==0 ) return 0;
+ mx = pIn[1];
+ i = 2;
+ do{
+ const char *z = (const char*)&pIn[i+2];
+ if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
+ i += pIn[i+1];
+ }while( i<mx );
+ return 0;
+}
+
+/*
+** High-resolution hardware timer used for debugging and testing only.
+*/
+#if defined(VDBE_PROFILE) \
+ || defined(SQLITE_PERFORMANCE_TRACE) \
+ || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+/************** Include hwtime.h in the middle of util.c *********************/
+/************** Begin file hwtime.h ******************************************/
+/*
+** 2008 May 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains inline asm code for retrieving "high-performance"
+** counters for x86 and x86_64 class CPUs.
+*/
+#ifndef SQLITE_HWTIME_H
+#define SQLITE_HWTIME_H
+
+/*
+** The following routine only works on Pentium-class (or newer) processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+#if !defined(__STRICT_ANSI__) && \
+ (defined(__GNUC__) || defined(_MSC_VER)) && \
+ (defined(i386) || defined(__i386__) || defined(_M_IX86))
+
+ #if defined(__GNUC__)
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+ #elif defined(_MSC_VER)
+
+ __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
+ __asm {
+ rdtsc
+ ret ; return value at EDX:EAX
+ }
+ }
+
+ #endif
+
+#elif !defined(__STRICT_ANSI__) && (defined(__GNUC__) && defined(__x86_64__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned int lo, hi;
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (sqlite_uint64)hi << 32 | lo;
+ }
+
+#elif !defined(__STRICT_ANSI__) && (defined(__GNUC__) && defined(__ppc__))
+
+ __inline__ sqlite_uint64 sqlite3Hwtime(void){
+ unsigned long long retval;
+ unsigned long junk;
+ __asm__ __volatile__ ("\n\
+ 1: mftbu %1\n\
+ mftb %L0\n\
+ mftbu %0\n\
+ cmpw %0,%1\n\
+ bne 1b"
+ : "=r" (retval), "=r" (junk));
+ return retval;
+ }
+
+#else
+
+ /*
+ ** asm() is needed for hardware timing support. Without asm(),
+ ** disable the sqlite3Hwtime() routine.
+ **
+ ** sqlite3Hwtime() is only used for some obscure debugging
+ ** and analysis configurations, not in any deliverable, so this
+ ** should not be a great loss.
+ */
+SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
+
+#endif
+
+#endif /* !defined(SQLITE_HWTIME_H) */
+
+/************** End of hwtime.h **********************************************/
+/************** Continuing where we left off in util.c ***********************/
+#endif
+
+/************** End of util.c ************************************************/
+/************** Begin file hash.c ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables
+** used in SQLite.
+*/
+/* #include "sqliteInt.h" */
+/* #include <assert.h> */
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){
+ assert( pNew!=0 );
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
+ HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ sqlite3_free(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ HashElem *next_elem = elem->next;
+ sqlite3_free(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** The hashing function.
+*/
+static unsigned int strHash(const char *z){
+ unsigned int h = 0;
+ unsigned char c;
+ while( (c = (unsigned char)*z++)!=0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Knuth multiplicative hashing. (Sorting & Searching, p. 510).
+ ** 0x9e3779b1 is 2654435761 which is the closest prime number to
+ ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */
+ h += sqlite3UpperToLower[c];
+ h *= 0x9e3779b1;
+ }
+ return h;
+}
+
+
+/* Link pNew element into the hash table pH. If pEntry!=0 then also
+** insert pNew into the pEntry hash bucket.
+*/
+static void insertElement(
+ Hash *pH, /* The complete hash table */
+ struct _ht *pEntry, /* The entry into which pNew is inserted */
+ HashElem *pNew /* The element to be inserted */
+){
+ HashElem *pHead; /* First element already in pEntry */
+ if( pEntry ){
+ pHead = pEntry->count ? pEntry->chain : 0;
+ pEntry->count++;
+ pEntry->chain = pNew;
+ }else{
+ pHead = 0;
+ }
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+}
+
+
+/* Resize the hash table so that it contains "new_size" buckets.
+**
+** The hash table might fail to resize if sqlite3_malloc() fails or
+** if the new size is the same as the prior size.
+** Return TRUE if the resize occurs and false if not.
+*/
+static int rehash(Hash *pH, unsigned int new_size){
+ struct _ht *new_ht; /* The new hash table */
+ HashElem *elem, *next_elem; /* For looping over existing elements */
+
+#if SQLITE_MALLOC_SOFT_LIMIT>0
+ if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
+ new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
+ }
+ if( new_size==pH->htsize ) return 0;
+#endif
+
+ /* The inability to allocates space for a larger hash table is
+ ** a performance hit but it is not a fatal error. So mark the
+ ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of
+ ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero()
+ ** only zeroes the requested number of bytes whereas this module will
+ ** use the actual amount of space allocated for the hash table (which
+ ** may be larger than the requested amount).
+ */
+ sqlite3BeginBenignMalloc();
+ new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
+ sqlite3EndBenignMalloc();
+
+ if( new_ht==0 ) return 0;
+ sqlite3_free(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht);
+ memset(new_ht, 0, new_size*sizeof(struct _ht));
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ unsigned int h = strHash(elem->pKey) % new_size;
+ next_elem = elem->next;
+ insertElement(pH, &new_ht[h], elem);
+ }
+ return 1;
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. If no element is found,
+** a pointer to a static null element with HashElem.data==0 is returned.
+** If pH is not NULL, then the hash for this key is written to *pH.
+*/
+static HashElem *findElementWithHash(
+ const Hash *pH, /* The pH to be searched */
+ const char *pKey, /* The key we are searching for */
+ unsigned int *pHash /* Write the hash value here */
+){
+ HashElem *elem; /* Used to loop thru the element list */
+ unsigned int count; /* Number of elements left to test */
+ unsigned int h; /* The computed hash */
+ static HashElem nullElement = { 0, 0, 0, 0 };
+
+ if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/
+ struct _ht *pEntry;
+ h = strHash(pKey) % pH->htsize;
+ pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ }else{
+ h = 0;
+ elem = pH->first;
+ count = pH->count;
+ }
+ if( pHash ) *pHash = h;
+ while( count ){
+ assert( elem!=0 );
+ if( sqlite3StrICmp(elem->pKey,pKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ count--;
+ }
+ return &nullElement;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void removeElementGivenHash(
+ Hash *pH, /* The pH containing "elem" */
+ HashElem* elem, /* The element to be removed from the pH */
+ unsigned int h /* Hash value for the element */
+){
+ struct _ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ if( pH->ht ){
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ assert( pEntry->count>0 );
+ pEntry->count--;
+ }
+ sqlite3_free( elem );
+ pH->count--;
+ if( pH->count==0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ sqlite3HashClear(pH);
+ }
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){
+ assert( pH!=0 );
+ assert( pKey!=0 );
+ return findElementWithHash(pH, pKey, 0)->data;
+}
+
+/* Insert an element into the hash table pH. The key is pKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created and NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){
+ unsigned int h; /* the hash of the key modulo hash table size */
+ HashElem *elem; /* Used to loop thru the element list */
+ HashElem *new_elem; /* New element added to the pH */
+
+ assert( pH!=0 );
+ assert( pKey!=0 );
+ elem = findElementWithHash(pH,pKey,&h);
+ if( elem->data ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ removeElementGivenHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ elem->pKey = pKey;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
+ if( new_elem==0 ) return data;
+ new_elem->pKey = pKey;
+ new_elem->data = data;
+ pH->count++;
+ if( pH->count>=10 && pH->count > 2*pH->htsize ){
+ if( rehash(pH, pH->count*2) ){
+ assert( pH->htsize>0 );
+ h = strHash(pKey) % pH->htsize;
+ }
+ }
+ insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem);
+ return 0;
+}
+
+/************** End of hash.c ************************************************/
+/************** Begin file opcodes.c *****************************************/
+/* Automatically generated. Do not edit */
+/* See the tool/mkopcodec.tcl script for details. */
+#if !defined(SQLITE_OMIT_EXPLAIN) \
+ || defined(VDBE_PROFILE) \
+ || defined(SQLITE_DEBUG)
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
+# define OpHelp(X) "\0" X
+#else
+# define OpHelp(X)
+#endif
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
+ static const char *const azName[] = {
+ /* 0 */ "Savepoint" OpHelp(""),
+ /* 1 */ "AutoCommit" OpHelp(""),
+ /* 2 */ "Transaction" OpHelp(""),
+ /* 3 */ "Checkpoint" OpHelp(""),
+ /* 4 */ "JournalMode" OpHelp(""),
+ /* 5 */ "Vacuum" OpHelp(""),
+ /* 6 */ "VFilter" OpHelp("iplan=r[P3] zplan='P4'"),
+ /* 7 */ "VUpdate" OpHelp("data=r[P3@P2]"),
+ /* 8 */ "Init" OpHelp("Start at P2"),
+ /* 9 */ "Goto" OpHelp(""),
+ /* 10 */ "Gosub" OpHelp(""),
+ /* 11 */ "InitCoroutine" OpHelp(""),
+ /* 12 */ "Yield" OpHelp(""),
+ /* 13 */ "MustBeInt" OpHelp(""),
+ /* 14 */ "Jump" OpHelp(""),
+ /* 15 */ "Once" OpHelp(""),
+ /* 16 */ "If" OpHelp(""),
+ /* 17 */ "IfNot" OpHelp(""),
+ /* 18 */ "IsType" OpHelp("if typeof(P1.P3) in P5 goto P2"),
+ /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"),
+ /* 20 */ "IfNullRow" OpHelp("if P1.nullRow then r[P3]=NULL, goto P2"),
+ /* 21 */ "SeekLT" OpHelp("key=r[P3@P4]"),
+ /* 22 */ "SeekLE" OpHelp("key=r[P3@P4]"),
+ /* 23 */ "SeekGE" OpHelp("key=r[P3@P4]"),
+ /* 24 */ "SeekGT" OpHelp("key=r[P3@P4]"),
+ /* 25 */ "IfNotOpen" OpHelp("if( !csr[P1] ) goto P2"),
+ /* 26 */ "IfNoHope" OpHelp("key=r[P3@P4]"),
+ /* 27 */ "NoConflict" OpHelp("key=r[P3@P4]"),
+ /* 28 */ "NotFound" OpHelp("key=r[P3@P4]"),
+ /* 29 */ "Found" OpHelp("key=r[P3@P4]"),
+ /* 30 */ "SeekRowid" OpHelp("intkey=r[P3]"),
+ /* 31 */ "NotExists" OpHelp("intkey=r[P3]"),
+ /* 32 */ "Last" OpHelp(""),
+ /* 33 */ "IfSmaller" OpHelp(""),
+ /* 34 */ "SorterSort" OpHelp(""),
+ /* 35 */ "Sort" OpHelp(""),
+ /* 36 */ "Rewind" OpHelp(""),
+ /* 37 */ "SorterNext" OpHelp(""),
+ /* 38 */ "Prev" OpHelp(""),
+ /* 39 */ "Next" OpHelp(""),
+ /* 40 */ "IdxLE" OpHelp("key=r[P3@P4]"),
+ /* 41 */ "IdxGT" OpHelp("key=r[P3@P4]"),
+ /* 42 */ "IdxLT" OpHelp("key=r[P3@P4]"),
+ /* 43 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"),
+ /* 44 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"),
+ /* 45 */ "IdxGE" OpHelp("key=r[P3@P4]"),
+ /* 46 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"),
+ /* 47 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"),
+ /* 48 */ "Program" OpHelp(""),
+ /* 49 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"),
+ /* 50 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"),
+ /* 51 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"),
+ /* 52 */ "Ne" OpHelp("IF r[P3]!=r[P1]"),
+ /* 53 */ "Eq" OpHelp("IF r[P3]==r[P1]"),
+ /* 54 */ "Gt" OpHelp("IF r[P3]>r[P1]"),
+ /* 55 */ "Le" OpHelp("IF r[P3]<=r[P1]"),
+ /* 56 */ "Lt" OpHelp("IF r[P3]<r[P1]"),
+ /* 57 */ "Ge" OpHelp("IF r[P3]>=r[P1]"),
+ /* 58 */ "ElseEq" OpHelp(""),
+ /* 59 */ "IfPos" OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
+ /* 60 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]--, goto P2"),
+ /* 61 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"),
+ /* 62 */ "IncrVacuum" OpHelp(""),
+ /* 63 */ "VNext" OpHelp(""),
+ /* 64 */ "Filter" OpHelp("if key(P3@P4) not in filter(P1) goto P2"),
+ /* 65 */ "PureFunc" OpHelp("r[P3]=func(r[P2@NP])"),
+ /* 66 */ "Function" OpHelp("r[P3]=func(r[P2@NP])"),
+ /* 67 */ "Return" OpHelp(""),
+ /* 68 */ "EndCoroutine" OpHelp(""),
+ /* 69 */ "HaltIfNull" OpHelp("if r[P3]=null halt"),
+ /* 70 */ "Halt" OpHelp(""),
+ /* 71 */ "Integer" OpHelp("r[P2]=P1"),
+ /* 72 */ "Int64" OpHelp("r[P2]=P4"),
+ /* 73 */ "String" OpHelp("r[P2]='P4' (len=P1)"),
+ /* 74 */ "BeginSubrtn" OpHelp("r[P2]=NULL"),
+ /* 75 */ "Null" OpHelp("r[P2..P3]=NULL"),
+ /* 76 */ "SoftNull" OpHelp("r[P1]=NULL"),
+ /* 77 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"),
+ /* 78 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"),
+ /* 79 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"),
+ /* 80 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
+ /* 81 */ "SCopy" OpHelp("r[P2]=r[P1]"),
+ /* 82 */ "IntCopy" OpHelp("r[P2]=r[P1]"),
+ /* 83 */ "FkCheck" OpHelp(""),
+ /* 84 */ "ResultRow" OpHelp("output=r[P1@P2]"),
+ /* 85 */ "CollSeq" OpHelp(""),
+ /* 86 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"),
+ /* 87 */ "RealAffinity" OpHelp(""),
+ /* 88 */ "Cast" OpHelp("affinity(r[P1])"),
+ /* 89 */ "Permutation" OpHelp(""),
+ /* 90 */ "Compare" OpHelp("r[P1@P3] <-> r[P2@P3]"),
+ /* 91 */ "IsTrue" OpHelp("r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4"),
+ /* 92 */ "ZeroOrNull" OpHelp("r[P2] = 0 OR NULL"),
+ /* 93 */ "Offset" OpHelp("r[P3] = sqlite_offset(P1)"),
+ /* 94 */ "Column" OpHelp("r[P3]=PX cursor P1 column P2"),
+ /* 95 */ "TypeCheck" OpHelp("typecheck(r[P1@P2])"),
+ /* 96 */ "Affinity" OpHelp("affinity(r[P1@P2])"),
+ /* 97 */ "MakeRecord" OpHelp("r[P3]=mkrec(r[P1@P2])"),
+ /* 98 */ "Count" OpHelp("r[P2]=count()"),
+ /* 99 */ "ReadCookie" OpHelp(""),
+ /* 100 */ "SetCookie" OpHelp(""),
+ /* 101 */ "ReopenIdx" OpHelp("root=P2 iDb=P3"),
+ /* 102 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"),
+ /* 103 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"),
+ /* 104 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<<r[P1]"),
+ /* 105 */ "ShiftRight" OpHelp("r[P3]=r[P2]>>r[P1]"),
+ /* 106 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"),
+ /* 107 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"),
+ /* 108 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"),
+ /* 109 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"),
+ /* 110 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"),
+ /* 111 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"),
+ /* 112 */ "OpenRead" OpHelp("root=P2 iDb=P3"),
+ /* 113 */ "OpenWrite" OpHelp("root=P2 iDb=P3"),
+ /* 114 */ "BitNot" OpHelp("r[P2]= ~r[P1]"),
+ /* 115 */ "OpenDup" OpHelp(""),
+ /* 116 */ "OpenAutoindex" OpHelp("nColumn=P2"),
+ /* 117 */ "String8" OpHelp("r[P2]='P4'"),
+ /* 118 */ "OpenEphemeral" OpHelp("nColumn=P2"),
+ /* 119 */ "SorterOpen" OpHelp(""),
+ /* 120 */ "SequenceTest" OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
+ /* 121 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"),
+ /* 122 */ "Close" OpHelp(""),
+ /* 123 */ "ColumnsUsed" OpHelp(""),
+ /* 124 */ "SeekScan" OpHelp("Scan-ahead up to P1 rows"),
+ /* 125 */ "SeekHit" OpHelp("set P2<=seekHit<=P3"),
+ /* 126 */ "Sequence" OpHelp("r[P2]=cursor[P1].ctr++"),
+ /* 127 */ "NewRowid" OpHelp("r[P2]=rowid"),
+ /* 128 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"),
+ /* 129 */ "RowCell" OpHelp(""),
+ /* 130 */ "Delete" OpHelp(""),
+ /* 131 */ "ResetCount" OpHelp(""),
+ /* 132 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
+ /* 133 */ "SorterData" OpHelp("r[P2]=data"),
+ /* 134 */ "RowData" OpHelp("r[P2]=data"),
+ /* 135 */ "Rowid" OpHelp("r[P2]=PX rowid of P1"),
+ /* 136 */ "NullRow" OpHelp(""),
+ /* 137 */ "SeekEnd" OpHelp(""),
+ /* 138 */ "IdxInsert" OpHelp("key=r[P2]"),
+ /* 139 */ "SorterInsert" OpHelp("key=r[P2]"),
+ /* 140 */ "IdxDelete" OpHelp("key=r[P2@P3]"),
+ /* 141 */ "DeferredSeek" OpHelp("Move P3 to P1.rowid if needed"),
+ /* 142 */ "IdxRowid" OpHelp("r[P2]=rowid"),
+ /* 143 */ "FinishSeek" OpHelp(""),
+ /* 144 */ "Destroy" OpHelp(""),
+ /* 145 */ "Clear" OpHelp(""),
+ /* 146 */ "ResetSorter" OpHelp(""),
+ /* 147 */ "CreateBtree" OpHelp("r[P2]=root iDb=P1 flags=P3"),
+ /* 148 */ "SqlExec" OpHelp(""),
+ /* 149 */ "ParseSchema" OpHelp(""),
+ /* 150 */ "LoadAnalysis" OpHelp(""),
+ /* 151 */ "DropTable" OpHelp(""),
+ /* 152 */ "DropIndex" OpHelp(""),
+ /* 153 */ "Real" OpHelp("r[P2]=P4"),
+ /* 154 */ "DropTrigger" OpHelp(""),
+ /* 155 */ "IntegrityCk" OpHelp(""),
+ /* 156 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"),
+ /* 157 */ "Param" OpHelp(""),
+ /* 158 */ "FkCounter" OpHelp("fkctr[P1]+=P2"),
+ /* 159 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"),
+ /* 160 */ "OffsetLimit" OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"),
+ /* 161 */ "AggInverse" OpHelp("accum=r[P3] inverse(r[P2@P5])"),
+ /* 162 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"),
+ /* 163 */ "AggStep1" OpHelp("accum=r[P3] step(r[P2@P5])"),
+ /* 164 */ "AggValue" OpHelp("r[P3]=value N=P2"),
+ /* 165 */ "AggFinal" OpHelp("accum=r[P1] N=P2"),
+ /* 166 */ "Expire" OpHelp(""),
+ /* 167 */ "CursorLock" OpHelp(""),
+ /* 168 */ "CursorUnlock" OpHelp(""),
+ /* 169 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"),
+ /* 170 */ "VBegin" OpHelp(""),
+ /* 171 */ "VCreate" OpHelp(""),
+ /* 172 */ "VDestroy" OpHelp(""),
+ /* 173 */ "VOpen" OpHelp(""),
+ /* 174 */ "VCheck" OpHelp(""),
+ /* 175 */ "VInitIn" OpHelp("r[P2]=ValueList(P1,P3)"),
+ /* 176 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"),
+ /* 177 */ "VRename" OpHelp(""),
+ /* 178 */ "Pagecount" OpHelp(""),
+ /* 179 */ "MaxPgcnt" OpHelp(""),
+ /* 180 */ "ClrSubtype" OpHelp("r[P1].subtype = 0"),
+ /* 181 */ "FilterAdd" OpHelp("filter(P1) += key(P3@P4)"),
+ /* 182 */ "Trace" OpHelp(""),
+ /* 183 */ "CursorHint" OpHelp(""),
+ /* 184 */ "ReleaseReg" OpHelp("release r[P1@P2] mask P3"),
+ /* 185 */ "Noop" OpHelp(""),
+ /* 186 */ "Explain" OpHelp(""),
+ /* 187 */ "Abortable" OpHelp(""),
+ };
+ return azName[i];
+}
+#endif
+
+/************** End of opcodes.c *********************************************/
+/************** Begin file os_kv.c *******************************************/
+/*
+** 2022-09-06
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains an experimental VFS layer that operates on a
+** Key/Value storage engine where both keys and values must be pure
+** text.
+*/
+/* #include <sqliteInt.h> */
+#if SQLITE_OS_KV || (SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL))
+
+/*****************************************************************************
+** Debugging logic
+*/
+
+/* SQLITE_KV_TRACE() is used for tracing calls to kvstorage routines. */
+#if 0
+#define SQLITE_KV_TRACE(X) printf X
+#else
+#define SQLITE_KV_TRACE(X)
+#endif
+
+/* SQLITE_KV_LOG() is used for tracing calls to the VFS interface */
+#if 0
+#define SQLITE_KV_LOG(X) printf X
+#else
+#define SQLITE_KV_LOG(X)
+#endif
+
+
+/*
+** Forward declaration of objects used by this VFS implementation
+*/
+typedef struct KVVfsFile KVVfsFile;
+
+/* A single open file. There are only two files represented by this
+** VFS - the database and the rollback journal.
+*/
+struct KVVfsFile {
+ sqlite3_file base; /* IO methods */
+ const char *zClass; /* Storage class */
+ int isJournal; /* True if this is a journal file */
+ unsigned int nJrnl; /* Space allocated for aJrnl[] */
+ char *aJrnl; /* Journal content */
+ int szPage; /* Last known page size */
+ sqlite3_int64 szDb; /* Database file size. -1 means unknown */
+ char *aData; /* Buffer to hold page data */
+};
+#define SQLITE_KVOS_SZ 133073
+
+/*
+** Methods for KVVfsFile
+*/
+static int kvvfsClose(sqlite3_file*);
+static int kvvfsReadDb(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+static int kvvfsReadJrnl(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+static int kvvfsWriteDb(sqlite3_file*,const void*,int iAmt, sqlite3_int64);
+static int kvvfsWriteJrnl(sqlite3_file*,const void*,int iAmt, sqlite3_int64);
+static int kvvfsTruncateDb(sqlite3_file*, sqlite3_int64 size);
+static int kvvfsTruncateJrnl(sqlite3_file*, sqlite3_int64 size);
+static int kvvfsSyncDb(sqlite3_file*, int flags);
+static int kvvfsSyncJrnl(sqlite3_file*, int flags);
+static int kvvfsFileSizeDb(sqlite3_file*, sqlite3_int64 *pSize);
+static int kvvfsFileSizeJrnl(sqlite3_file*, sqlite3_int64 *pSize);
+static int kvvfsLock(sqlite3_file*, int);
+static int kvvfsUnlock(sqlite3_file*, int);
+static int kvvfsCheckReservedLock(sqlite3_file*, int *pResOut);
+static int kvvfsFileControlDb(sqlite3_file*, int op, void *pArg);
+static int kvvfsFileControlJrnl(sqlite3_file*, int op, void *pArg);
+static int kvvfsSectorSize(sqlite3_file*);
+static int kvvfsDeviceCharacteristics(sqlite3_file*);
+
+/*
+** Methods for sqlite3_vfs
+*/
+static int kvvfsOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *);
+static int kvvfsDelete(sqlite3_vfs*, const char *zName, int syncDir);
+static int kvvfsAccess(sqlite3_vfs*, const char *zName, int flags, int *);
+static int kvvfsFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut);
+static void *kvvfsDlOpen(sqlite3_vfs*, const char *zFilename);
+static int kvvfsRandomness(sqlite3_vfs*, int nByte, char *zOut);
+static int kvvfsSleep(sqlite3_vfs*, int microseconds);
+static int kvvfsCurrentTime(sqlite3_vfs*, double*);
+static int kvvfsCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*);
+
+static sqlite3_vfs sqlite3OsKvvfsObject = {
+ 1, /* iVersion */
+ sizeof(KVVfsFile), /* szOsFile */
+ 1024, /* mxPathname */
+ 0, /* pNext */
+ "kvvfs", /* zName */
+ 0, /* pAppData */
+ kvvfsOpen, /* xOpen */
+ kvvfsDelete, /* xDelete */
+ kvvfsAccess, /* xAccess */
+ kvvfsFullPathname, /* xFullPathname */
+ kvvfsDlOpen, /* xDlOpen */
+ 0, /* xDlError */
+ 0, /* xDlSym */
+ 0, /* xDlClose */
+ kvvfsRandomness, /* xRandomness */
+ kvvfsSleep, /* xSleep */
+ kvvfsCurrentTime, /* xCurrentTime */
+ 0, /* xGetLastError */
+ kvvfsCurrentTimeInt64 /* xCurrentTimeInt64 */
+};
+
+/* Methods for sqlite3_file objects referencing a database file
+*/
+static sqlite3_io_methods kvvfs_db_io_methods = {
+ 1, /* iVersion */
+ kvvfsClose, /* xClose */
+ kvvfsReadDb, /* xRead */
+ kvvfsWriteDb, /* xWrite */
+ kvvfsTruncateDb, /* xTruncate */
+ kvvfsSyncDb, /* xSync */
+ kvvfsFileSizeDb, /* xFileSize */
+ kvvfsLock, /* xLock */
+ kvvfsUnlock, /* xUnlock */
+ kvvfsCheckReservedLock, /* xCheckReservedLock */
+ kvvfsFileControlDb, /* xFileControl */
+ kvvfsSectorSize, /* xSectorSize */
+ kvvfsDeviceCharacteristics, /* xDeviceCharacteristics */
+ 0, /* xShmMap */
+ 0, /* xShmLock */
+ 0, /* xShmBarrier */
+ 0, /* xShmUnmap */
+ 0, /* xFetch */
+ 0 /* xUnfetch */
+};
+
+/* Methods for sqlite3_file objects referencing a rollback journal
+*/
+static sqlite3_io_methods kvvfs_jrnl_io_methods = {
+ 1, /* iVersion */
+ kvvfsClose, /* xClose */
+ kvvfsReadJrnl, /* xRead */
+ kvvfsWriteJrnl, /* xWrite */
+ kvvfsTruncateJrnl, /* xTruncate */
+ kvvfsSyncJrnl, /* xSync */
+ kvvfsFileSizeJrnl, /* xFileSize */
+ kvvfsLock, /* xLock */
+ kvvfsUnlock, /* xUnlock */
+ kvvfsCheckReservedLock, /* xCheckReservedLock */
+ kvvfsFileControlJrnl, /* xFileControl */
+ kvvfsSectorSize, /* xSectorSize */
+ kvvfsDeviceCharacteristics, /* xDeviceCharacteristics */
+ 0, /* xShmMap */
+ 0, /* xShmLock */
+ 0, /* xShmBarrier */
+ 0, /* xShmUnmap */
+ 0, /* xFetch */
+ 0 /* xUnfetch */
+};
+
+/****** Storage subsystem **************************************************/
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+/* Forward declarations for the low-level storage engine
+*/
+static int kvstorageWrite(const char*, const char *zKey, const char *zData);
+static int kvstorageDelete(const char*, const char *zKey);
+static int kvstorageRead(const char*, const char *zKey, char *zBuf, int nBuf);
+#define KVSTORAGE_KEY_SZ 32
+
+/* Expand the key name with an appropriate prefix and put the result
+** zKeyOut[]. The zKeyOut[] buffer is assumed to hold at least
+** KVSTORAGE_KEY_SZ bytes.
+*/
+static void kvstorageMakeKey(
+ const char *zClass,
+ const char *zKeyIn,
+ char *zKeyOut
+){
+ sqlite3_snprintf(KVSTORAGE_KEY_SZ, zKeyOut, "kvvfs-%s-%s", zClass, zKeyIn);
+}
+
+/* Write content into a key. zClass is the particular namespace of the
+** underlying key/value store to use - either "local" or "session".
+**
+** Both zKey and zData are zero-terminated pure text strings.
+**
+** Return the number of errors.
+*/
+static int kvstorageWrite(
+ const char *zClass,
+ const char *zKey,
+ const char *zData
+){
+ FILE *fd;
+ char zXKey[KVSTORAGE_KEY_SZ];
+ kvstorageMakeKey(zClass, zKey, zXKey);
+ fd = fopen(zXKey, "wb");
+ if( fd ){
+ SQLITE_KV_TRACE(("KVVFS-WRITE %-15s (%d) %.50s%s\n", zXKey,
+ (int)strlen(zData), zData,
+ strlen(zData)>50 ? "..." : ""));
+ fputs(zData, fd);
+ fclose(fd);
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/* Delete a key (with its corresponding data) from the key/value
+** namespace given by zClass. If the key does not previously exist,
+** this routine is a no-op.
+*/
+static int kvstorageDelete(const char *zClass, const char *zKey){
+ char zXKey[KVSTORAGE_KEY_SZ];
+ kvstorageMakeKey(zClass, zKey, zXKey);
+ unlink(zXKey);
+ SQLITE_KV_TRACE(("KVVFS-DELETE %-15s\n", zXKey));
+ return 0;
+}
+
+/* Read the value associated with a zKey from the key/value namespace given
+** by zClass and put the text data associated with that key in the first
+** nBuf bytes of zBuf[]. The value might be truncated if zBuf is not large
+** enough to hold it all. The value put into zBuf must always be zero
+** terminated, even if it gets truncated because nBuf is not large enough.
+**
+** Return the total number of bytes in the data, without truncation, and
+** not counting the final zero terminator. Return -1 if the key does
+** not exist.
+**
+** If nBuf<=0 then this routine simply returns the size of the data without
+** actually reading it.
+*/
+static int kvstorageRead(
+ const char *zClass,
+ const char *zKey,
+ char *zBuf,
+ int nBuf
+){
+ FILE *fd;
+ struct stat buf;
+ char zXKey[KVSTORAGE_KEY_SZ];
+ kvstorageMakeKey(zClass, zKey, zXKey);
+ if( access(zXKey, R_OK)!=0
+ || stat(zXKey, &buf)!=0
+ || !S_ISREG(buf.st_mode)
+ ){
+ SQLITE_KV_TRACE(("KVVFS-READ %-15s (-1)\n", zXKey));
+ return -1;
+ }
+ if( nBuf<=0 ){
+ return (int)buf.st_size;
+ }else if( nBuf==1 ){
+ zBuf[0] = 0;
+ SQLITE_KV_TRACE(("KVVFS-READ %-15s (%d)\n", zXKey,
+ (int)buf.st_size));
+ return (int)buf.st_size;
+ }
+ if( nBuf > buf.st_size + 1 ){
+ nBuf = buf.st_size + 1;
+ }
+ fd = fopen(zXKey, "rb");
+ if( fd==0 ){
+ SQLITE_KV_TRACE(("KVVFS-READ %-15s (-1)\n", zXKey));
+ return -1;
+ }else{
+ sqlite3_int64 n = fread(zBuf, 1, nBuf-1, fd);
+ fclose(fd);
+ zBuf[n] = 0;
+ SQLITE_KV_TRACE(("KVVFS-READ %-15s (%lld) %.50s%s\n", zXKey,
+ n, zBuf, n>50 ? "..." : ""));
+ return (int)n;
+ }
+}
+
+/*
+** An internal level of indirection which enables us to replace the
+** kvvfs i/o methods with JavaScript implementations in WASM builds.
+** Maintenance reminder: if this struct changes in any way, the JSON
+** rendering of its structure must be updated in
+** sqlite3_wasm_enum_json(). There are no binary compatibility
+** concerns, so it does not need an iVersion member. This file is
+** necessarily always compiled together with sqlite3_wasm_enum_json(),
+** and JS code dynamically creates the mapping of members based on
+** that JSON description.
+*/
+typedef struct sqlite3_kvvfs_methods sqlite3_kvvfs_methods;
+struct sqlite3_kvvfs_methods {
+ int (*xRead)(const char *zClass, const char *zKey, char *zBuf, int nBuf);
+ int (*xWrite)(const char *zClass, const char *zKey, const char *zData);
+ int (*xDelete)(const char *zClass, const char *zKey);
+ const int nKeySize;
+};
+
+/*
+** This object holds the kvvfs I/O methods which may be swapped out
+** for JavaScript-side implementations in WASM builds. In such builds
+** it cannot be const, but in native builds it should be so that
+** the compiler can hopefully optimize this level of indirection out.
+** That said, kvvfs is intended primarily for use in WASM builds.
+**
+** Note that this is not explicitly flagged as static because the
+** amalgamation build will tag it with SQLITE_PRIVATE.
+*/
+#ifndef SQLITE_WASM
+const
+#endif
+SQLITE_PRIVATE sqlite3_kvvfs_methods sqlite3KvvfsMethods = {
+kvstorageRead,
+kvstorageWrite,
+kvstorageDelete,
+KVSTORAGE_KEY_SZ
+};
+
+/****** Utility subroutines ************************************************/
+
+/*
+** Encode binary into the text encoded used to persist on disk.
+** The output text is stored in aOut[], which must be at least
+** nData+1 bytes in length.
+**
+** Return the actual length of the encoded text, not counting the
+** zero terminator at the end.
+**
+** Encoding format
+** ---------------
+**
+** * Non-zero bytes are encoded as upper-case hexadecimal
+**
+** * A sequence of one or more zero-bytes that are not at the
+** beginning of the buffer are encoded as a little-endian
+** base-26 number using a..z. "a" means 0. "b" means 1,
+** "z" means 25. "ab" means 26. "ac" means 52. And so forth.
+**
+** * Because there is no overlap between the encoding characters
+** of hexadecimal and base-26 numbers, it is always clear where
+** one stops and the next begins.
+*/
+static int kvvfsEncode(const char *aData, int nData, char *aOut){
+ int i, j;
+ const unsigned char *a = (const unsigned char*)aData;
+ for(i=j=0; i<nData; i++){
+ unsigned char c = a[i];
+ if( c!=0 ){
+ aOut[j++] = "0123456789ABCDEF"[c>>4];
+ aOut[j++] = "0123456789ABCDEF"[c&0xf];
+ }else{
+ /* A sequence of 1 or more zeros is stored as a little-endian
+ ** base-26 number using a..z as the digits. So one zero is "b".
+ ** Two zeros is "c". 25 zeros is "z", 26 zeros is "ab", 27 is "bb",
+ ** and so forth.
+ */
+ int k;
+ for(k=1; i+k<nData && a[i+k]==0; k++){}
+ i += k-1;
+ while( k>0 ){
+ aOut[j++] = 'a'+(k%26);
+ k /= 26;
+ }
+ }
+ }
+ aOut[j] = 0;
+ return j;
+}
+
+static const signed char kvvfsHexValue[256] = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
+ -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
+};
+
+/*
+** Decode the text encoding back to binary. The binary content is
+** written into pOut, which must be at least nOut bytes in length.
+**
+** The return value is the number of bytes actually written into aOut[].
+*/
+static int kvvfsDecode(const char *a, char *aOut, int nOut){
+ int i, j;
+ int c;
+ const unsigned char *aIn = (const unsigned char*)a;
+ i = 0;
+ j = 0;
+ while( 1 ){
+ c = kvvfsHexValue[aIn[i]];
+ if( c<0 ){
+ int n = 0;
+ int mult = 1;
+ c = aIn[i];
+ if( c==0 ) break;
+ while( c>='a' && c<='z' ){
+ n += (c - 'a')*mult;
+ mult *= 26;
+ c = aIn[++i];
+ }
+ if( j+n>nOut ) return -1;
+ memset(&aOut[j], 0, n);
+ j += n;
+ if( c==0 || mult==1 ) break; /* progress stalled if mult==1 */
+ }else{
+ aOut[j] = c<<4;
+ c = kvvfsHexValue[aIn[++i]];
+ if( c<0 ) break;
+ aOut[j++] += c;
+ i++;
+ }
+ }
+ return j;
+}
+
+/*
+** Decode a complete journal file. Allocate space in pFile->aJrnl
+** and store the decoding there. Or leave pFile->aJrnl set to NULL
+** if an error is encountered.
+**
+** The first few characters of the text encoding will be a little-endian
+** base-26 number (digits a..z) that is the total number of bytes
+** in the decoded journal file image. This base-26 number is followed
+** by a single space, then the encoding of the journal. The space
+** separator is required to act as a terminator for the base-26 number.
+*/
+static void kvvfsDecodeJournal(
+ KVVfsFile *pFile, /* Store decoding in pFile->aJrnl */
+ const char *zTxt, /* Text encoding. Zero-terminated */
+ int nTxt /* Bytes in zTxt, excluding zero terminator */
+){
+ unsigned int n = 0;
+ int c, i, mult;
+ i = 0;
+ mult = 1;
+ while( (c = zTxt[i++])>='a' && c<='z' ){
+ n += (zTxt[i] - 'a')*mult;
+ mult *= 26;
+ }
+ sqlite3_free(pFile->aJrnl);
+ pFile->aJrnl = sqlite3_malloc64( n );
+ if( pFile->aJrnl==0 ){
+ pFile->nJrnl = 0;
+ return;
+ }
+ pFile->nJrnl = n;
+ n = kvvfsDecode(zTxt+i, pFile->aJrnl, pFile->nJrnl);
+ if( n<pFile->nJrnl ){
+ sqlite3_free(pFile->aJrnl);
+ pFile->aJrnl = 0;
+ pFile->nJrnl = 0;
+ }
+}
+
+/*
+** Read or write the "sz" element, containing the database file size.
+*/
+static sqlite3_int64 kvvfsReadFileSize(KVVfsFile *pFile){
+ char zData[50];
+ zData[0] = 0;
+ sqlite3KvvfsMethods.xRead(pFile->zClass, "sz", zData, sizeof(zData)-1);
+ return strtoll(zData, 0, 0);
+}
+static int kvvfsWriteFileSize(KVVfsFile *pFile, sqlite3_int64 sz){
+ char zData[50];
+ sqlite3_snprintf(sizeof(zData), zData, "%lld", sz);
+ return sqlite3KvvfsMethods.xWrite(pFile->zClass, "sz", zData);
+}
+
+/****** sqlite3_io_methods methods ******************************************/
+
+/*
+** Close an kvvfs-file.
+*/
+static int kvvfsClose(sqlite3_file *pProtoFile){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+
+ SQLITE_KV_LOG(("xClose %s %s\n", pFile->zClass,
+ pFile->isJournal ? "journal" : "db"));
+ sqlite3_free(pFile->aJrnl);
+ sqlite3_free(pFile->aData);
+ return SQLITE_OK;
+}
+
+/*
+** Read from the -journal file.
+*/
+static int kvvfsReadJrnl(
+ sqlite3_file *pProtoFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ KVVfsFile *pFile = (KVVfsFile*)pProtoFile;
+ assert( pFile->isJournal );
+ SQLITE_KV_LOG(("xRead('%s-journal',%d,%lld)\n", pFile->zClass, iAmt, iOfst));
+ if( pFile->aJrnl==0 ){
+ int szTxt = kvstorageRead(pFile->zClass, "jrnl", 0, 0);
+ char *aTxt;
+ if( szTxt<=4 ){
+ return SQLITE_IOERR;
+ }
+ aTxt = sqlite3_malloc64( szTxt+1 );
+ if( aTxt==0 ) return SQLITE_NOMEM;
+ kvstorageRead(pFile->zClass, "jrnl", aTxt, szTxt+1);
+ kvvfsDecodeJournal(pFile, aTxt, szTxt);
+ sqlite3_free(aTxt);
+ if( pFile->aJrnl==0 ) return SQLITE_IOERR;
+ }
+ if( iOfst+iAmt>pFile->nJrnl ){
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ memcpy(zBuf, pFile->aJrnl+iOfst, iAmt);
+ return SQLITE_OK;
+}
+
+/*
+** Read from the database file.
+*/
+static int kvvfsReadDb(
+ sqlite3_file *pProtoFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ KVVfsFile *pFile = (KVVfsFile*)pProtoFile;
+ unsigned int pgno;
+ int got, n;
+ char zKey[30];
+ char *aData = pFile->aData;
+ assert( iOfst>=0 );
+ assert( iAmt>=0 );
+ SQLITE_KV_LOG(("xRead('%s-db',%d,%lld)\n", pFile->zClass, iAmt, iOfst));
+ if( iOfst+iAmt>=512 ){
+ if( (iOfst % iAmt)!=0 ){
+ return SQLITE_IOERR_READ;
+ }
+ if( (iAmt & (iAmt-1))!=0 || iAmt<512 || iAmt>65536 ){
+ return SQLITE_IOERR_READ;
+ }
+ pFile->szPage = iAmt;
+ pgno = 1 + iOfst/iAmt;
+ }else{
+ pgno = 1;
+ }
+ sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno);
+ got = sqlite3KvvfsMethods.xRead(pFile->zClass, zKey,
+ aData, SQLITE_KVOS_SZ-1);
+ if( got<0 ){
+ n = 0;
+ }else{
+ aData[got] = 0;
+ if( iOfst+iAmt<512 ){
+ int k = iOfst+iAmt;
+ aData[k*2] = 0;
+ n = kvvfsDecode(aData, &aData[2000], SQLITE_KVOS_SZ-2000);
+ if( n>=iOfst+iAmt ){
+ memcpy(zBuf, &aData[2000+iOfst], iAmt);
+ n = iAmt;
+ }else{
+ n = 0;
+ }
+ }else{
+ n = kvvfsDecode(aData, zBuf, iAmt);
+ }
+ }
+ if( n<iAmt ){
+ memset(zBuf+n, 0, iAmt-n);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Write into the -journal file.
+*/
+static int kvvfsWriteJrnl(
+ sqlite3_file *pProtoFile,
+ const void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ KVVfsFile *pFile = (KVVfsFile*)pProtoFile;
+ sqlite3_int64 iEnd = iOfst+iAmt;
+ SQLITE_KV_LOG(("xWrite('%s-journal',%d,%lld)\n", pFile->zClass, iAmt, iOfst));
+ if( iEnd>=0x10000000 ) return SQLITE_FULL;
+ if( pFile->aJrnl==0 || pFile->nJrnl<iEnd ){
+ char *aNew = sqlite3_realloc(pFile->aJrnl, iEnd);
+ if( aNew==0 ){
+ return SQLITE_IOERR_NOMEM;
+ }
+ pFile->aJrnl = aNew;
+ if( pFile->nJrnl<iOfst ){
+ memset(pFile->aJrnl+pFile->nJrnl, 0, iOfst-pFile->nJrnl);
+ }
+ pFile->nJrnl = iEnd;
+ }
+ memcpy(pFile->aJrnl+iOfst, zBuf, iAmt);
+ return SQLITE_OK;
+}
+
+/*
+** Write into the database file.
+*/
+static int kvvfsWriteDb(
+ sqlite3_file *pProtoFile,
+ const void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ KVVfsFile *pFile = (KVVfsFile*)pProtoFile;
+ unsigned int pgno;
+ char zKey[30];
+ char *aData = pFile->aData;
+ SQLITE_KV_LOG(("xWrite('%s-db',%d,%lld)\n", pFile->zClass, iAmt, iOfst));
+ assert( iAmt>=512 && iAmt<=65536 );
+ assert( (iAmt & (iAmt-1))==0 );
+ assert( pFile->szPage<0 || pFile->szPage==iAmt );
+ pFile->szPage = iAmt;
+ pgno = 1 + iOfst/iAmt;
+ sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno);
+ kvvfsEncode(zBuf, iAmt, aData);
+ if( sqlite3KvvfsMethods.xWrite(pFile->zClass, zKey, aData) ){
+ return SQLITE_IOERR;
+ }
+ if( iOfst+iAmt > pFile->szDb ){
+ pFile->szDb = iOfst + iAmt;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an kvvfs-file.
+*/
+static int kvvfsTruncateJrnl(sqlite3_file *pProtoFile, sqlite_int64 size){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ SQLITE_KV_LOG(("xTruncate('%s-journal',%lld)\n", pFile->zClass, size));
+ assert( size==0 );
+ sqlite3KvvfsMethods.xDelete(pFile->zClass, "jrnl");
+ sqlite3_free(pFile->aJrnl);
+ pFile->aJrnl = 0;
+ pFile->nJrnl = 0;
+ return SQLITE_OK;
+}
+static int kvvfsTruncateDb(sqlite3_file *pProtoFile, sqlite_int64 size){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ if( pFile->szDb>size
+ && pFile->szPage>0
+ && (size % pFile->szPage)==0
+ ){
+ char zKey[50];
+ unsigned int pgno, pgnoMax;
+ SQLITE_KV_LOG(("xTruncate('%s-db',%lld)\n", pFile->zClass, size));
+ pgno = 1 + size/pFile->szPage;
+ pgnoMax = 2 + pFile->szDb/pFile->szPage;
+ while( pgno<=pgnoMax ){
+ sqlite3_snprintf(sizeof(zKey), zKey, "%u", pgno);
+ sqlite3KvvfsMethods.xDelete(pFile->zClass, zKey);
+ pgno++;
+ }
+ pFile->szDb = size;
+ return kvvfsWriteFileSize(pFile, size) ? SQLITE_IOERR : SQLITE_OK;
+ }
+ return SQLITE_IOERR;
+}
+
+/*
+** Sync an kvvfs-file.
+*/
+static int kvvfsSyncJrnl(sqlite3_file *pProtoFile, int flags){
+ int i, n;
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ char *zOut;
+ SQLITE_KV_LOG(("xSync('%s-journal')\n", pFile->zClass));
+ if( pFile->nJrnl<=0 ){
+ return kvvfsTruncateJrnl(pProtoFile, 0);
+ }
+ zOut = sqlite3_malloc64( pFile->nJrnl*2 + 50 );
+ if( zOut==0 ){
+ return SQLITE_IOERR_NOMEM;
+ }
+ n = pFile->nJrnl;
+ i = 0;
+ do{
+ zOut[i++] = 'a' + (n%26);
+ n /= 26;
+ }while( n>0 );
+ zOut[i++] = ' ';
+ kvvfsEncode(pFile->aJrnl, pFile->nJrnl, &zOut[i]);
+ i = sqlite3KvvfsMethods.xWrite(pFile->zClass, "jrnl", zOut);
+ sqlite3_free(zOut);
+ return i ? SQLITE_IOERR : SQLITE_OK;
+}
+static int kvvfsSyncDb(sqlite3_file *pProtoFile, int flags){
+ return SQLITE_OK;
+}
+
+/*
+** Return the current file-size of an kvvfs-file.
+*/
+static int kvvfsFileSizeJrnl(sqlite3_file *pProtoFile, sqlite_int64 *pSize){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ SQLITE_KV_LOG(("xFileSize('%s-journal')\n", pFile->zClass));
+ *pSize = pFile->nJrnl;
+ return SQLITE_OK;
+}
+static int kvvfsFileSizeDb(sqlite3_file *pProtoFile, sqlite_int64 *pSize){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ SQLITE_KV_LOG(("xFileSize('%s-db')\n", pFile->zClass));
+ if( pFile->szDb>=0 ){
+ *pSize = pFile->szDb;
+ }else{
+ *pSize = kvvfsReadFileSize(pFile);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Lock an kvvfs-file.
+*/
+static int kvvfsLock(sqlite3_file *pProtoFile, int eLock){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ assert( !pFile->isJournal );
+ SQLITE_KV_LOG(("xLock(%s,%d)\n", pFile->zClass, eLock));
+
+ if( eLock!=SQLITE_LOCK_NONE ){
+ pFile->szDb = kvvfsReadFileSize(pFile);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Unlock an kvvfs-file.
+*/
+static int kvvfsUnlock(sqlite3_file *pProtoFile, int eLock){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ assert( !pFile->isJournal );
+ SQLITE_KV_LOG(("xUnlock(%s,%d)\n", pFile->zClass, eLock));
+ if( eLock==SQLITE_LOCK_NONE ){
+ pFile->szDb = -1;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Check if another file-handle holds a RESERVED lock on an kvvfs-file.
+*/
+static int kvvfsCheckReservedLock(sqlite3_file *pProtoFile, int *pResOut){
+ SQLITE_KV_LOG(("xCheckReservedLock\n"));
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+
+/*
+** File control method. For custom operations on an kvvfs-file.
+*/
+static int kvvfsFileControlJrnl(sqlite3_file *pProtoFile, int op, void *pArg){
+ SQLITE_KV_LOG(("xFileControl(%d) on journal\n", op));
+ return SQLITE_NOTFOUND;
+}
+static int kvvfsFileControlDb(sqlite3_file *pProtoFile, int op, void *pArg){
+ SQLITE_KV_LOG(("xFileControl(%d) on database\n", op));
+ if( op==SQLITE_FCNTL_SYNC ){
+ KVVfsFile *pFile = (KVVfsFile *)pProtoFile;
+ int rc = SQLITE_OK;
+ SQLITE_KV_LOG(("xSync('%s-db')\n", pFile->zClass));
+ if( pFile->szDb>0 && 0!=kvvfsWriteFileSize(pFile, pFile->szDb) ){
+ rc = SQLITE_IOERR;
+ }
+ return rc;
+ }
+ return SQLITE_NOTFOUND;
+}
+
+/*
+** Return the sector-size in bytes for an kvvfs-file.
+*/
+static int kvvfsSectorSize(sqlite3_file *pFile){
+ return 512;
+}
+
+/*
+** Return the device characteristic flags supported by an kvvfs-file.
+*/
+static int kvvfsDeviceCharacteristics(sqlite3_file *pProtoFile){
+ return 0;
+}
+
+/****** sqlite3_vfs methods *************************************************/
+
+/*
+** Open an kvvfs file handle.
+*/
+static int kvvfsOpen(
+ sqlite3_vfs *pProtoVfs,
+ const char *zName,
+ sqlite3_file *pProtoFile,
+ int flags,
+ int *pOutFlags
+){
+ KVVfsFile *pFile = (KVVfsFile*)pProtoFile;
+ if( zName==0 ) zName = "";
+ SQLITE_KV_LOG(("xOpen(\"%s\")\n", zName));
+ if( strcmp(zName, "local")==0
+ || strcmp(zName, "session")==0
+ ){
+ pFile->isJournal = 0;
+ pFile->base.pMethods = &kvvfs_db_io_methods;
+ }else
+ if( strcmp(zName, "local-journal")==0
+ || strcmp(zName, "session-journal")==0
+ ){
+ pFile->isJournal = 1;
+ pFile->base.pMethods = &kvvfs_jrnl_io_methods;
+ }else{
+ return SQLITE_CANTOPEN;
+ }
+ if( zName[0]=='s' ){
+ pFile->zClass = "session";
+ }else{
+ pFile->zClass = "local";
+ }
+ pFile->aData = sqlite3_malloc64(SQLITE_KVOS_SZ);
+ if( pFile->aData==0 ){
+ return SQLITE_NOMEM;
+ }
+ pFile->aJrnl = 0;
+ pFile->nJrnl = 0;
+ pFile->szPage = -1;
+ pFile->szDb = -1;
+ return SQLITE_OK;
+}
+
+/*
+** Delete the file located at zPath. If the dirSync argument is true,
+** ensure the file-system modifications are synced to disk before
+** returning.
+*/
+static int kvvfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ if( strcmp(zPath, "local-journal")==0 ){
+ sqlite3KvvfsMethods.xDelete("local", "jrnl");
+ }else
+ if( strcmp(zPath, "session-journal")==0 ){
+ sqlite3KvvfsMethods.xDelete("session", "jrnl");
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Test for access permissions. Return true if the requested permission
+** is available, or false otherwise.
+*/
+static int kvvfsAccess(
+ sqlite3_vfs *pProtoVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ SQLITE_KV_LOG(("xAccess(\"%s\")\n", zPath));
+ if( strcmp(zPath, "local-journal")==0 ){
+ *pResOut = sqlite3KvvfsMethods.xRead("local", "jrnl", 0, 0)>0;
+ }else
+ if( strcmp(zPath, "session-journal")==0 ){
+ *pResOut = sqlite3KvvfsMethods.xRead("session", "jrnl", 0, 0)>0;
+ }else
+ if( strcmp(zPath, "local")==0 ){
+ *pResOut = sqlite3KvvfsMethods.xRead("local", "sz", 0, 0)>0;
+ }else
+ if( strcmp(zPath, "session")==0 ){
+ *pResOut = sqlite3KvvfsMethods.xRead("session", "sz", 0, 0)>0;
+ }else
+ {
+ *pResOut = 0;
+ }
+ SQLITE_KV_LOG(("xAccess returns %d\n",*pResOut));
+ return SQLITE_OK;
+}
+
+/*
+** Populate buffer zOut with the full canonical pathname corresponding
+** to the pathname in zPath. zOut is guaranteed to point to a buffer
+** of at least (INST_MAX_PATHNAME+1) bytes.
+*/
+static int kvvfsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nOut,
+ char *zOut
+){
+ size_t nPath;
+#ifdef SQLITE_OS_KV_ALWAYS_LOCAL
+ zPath = "local";
+#endif
+ nPath = strlen(zPath);
+ SQLITE_KV_LOG(("xFullPathname(\"%s\")\n", zPath));
+ if( nOut<nPath+1 ) nPath = nOut - 1;
+ memcpy(zOut, zPath, nPath);
+ zOut[nPath] = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Open the dynamic library located at zPath and return a handle.
+*/
+static void *kvvfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ return 0;
+}
+
+/*
+** Populate the buffer pointed to by zBufOut with nByte bytes of
+** random data.
+*/
+static int kvvfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ memset(zBufOut, 0, nByte);
+ return nByte;
+}
+
+/*
+** Sleep for nMicro microseconds. Return the number of microseconds
+** actually slept.
+*/
+static int kvvfsSleep(sqlite3_vfs *pVfs, int nMicro){
+ return SQLITE_OK;
+}
+
+/*
+** Return the current time as a Julian Day number in *pTimeOut.
+*/
+static int kvvfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ sqlite3_int64 i = 0;
+ int rc;
+ rc = kvvfsCurrentTimeInt64(0, &i);
+ *pTimeOut = i/86400000.0;
+ return rc;
+}
+#include <sys/time.h>
+static int kvvfsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
+ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
+ struct timeval sNow;
+ (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */
+ *pTimeOut = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OS_KV || SQLITE_OS_UNIX */
+
+#if SQLITE_OS_KV
+/*
+** This routine is called initialize the KV-vfs as the default VFS.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ return sqlite3_vfs_register(&sqlite3OsKvvfsObject, 1);
+}
+SQLITE_API int sqlite3_os_end(void){
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OS_KV */
+
+#if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL)
+SQLITE_PRIVATE int sqlite3KvvfsInit(void){
+ return sqlite3_vfs_register(&sqlite3OsKvvfsObject, 0);
+}
+#endif
+
+/************** End of os_kv.c ***********************************************/
+/************** Begin file os_unix.c *****************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains the VFS implementation for unix-like operating systems
+** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
+**
+** There are actually several different VFS implementations in this file.
+** The differences are in the way that file locking is done. The default
+** implementation uses Posix Advisory Locks. Alternative implementations
+** use flock(), dot-files, various proprietary locking schemas, or simply
+** skip locking all together.
+**
+** This source file is organized into divisions where the logic for various
+** subfunctions is contained within the appropriate division. PLEASE
+** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
+** in the correct division and should be clearly labelled.
+**
+** The layout of divisions is as follows:
+**
+** * General-purpose declarations and utility functions.
+** * Unique file ID logic used by VxWorks.
+** * Various locking primitive implementations (all except proxy locking):
+** + for Posix Advisory Locks
+** + for no-op locks
+** + for dot-file locks
+** + for flock() locking
+** + for named semaphore locks (VxWorks only)
+** + for AFP filesystem locks (MacOSX only)
+** * sqlite3_file methods not associated with locking.
+** * Definitions of sqlite3_io_methods objects for all locking
+** methods plus "finder" functions for each locking method.
+** * sqlite3_vfs method implementations.
+** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
+** * Definitions of sqlite3_vfs objects for all locking methods
+** plus implementations of sqlite3_os_init() and sqlite3_os_end().
+*/
+/* #include "sqliteInt.h" */
+#if SQLITE_OS_UNIX /* This file is used on unix only */
+
+/*
+** There are various methods for file locking used for concurrency
+** control:
+**
+** 1. POSIX locking (the default),
+** 2. No locking,
+** 3. Dot-file locking,
+** 4. flock() locking,
+** 5. AFP locking (OSX only),
+** 6. Named POSIX semaphores (VXWorks only),
+** 7. proxy locking. (OSX only)
+**
+** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
+** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
+** selection of the appropriate locking style based on the filesystem
+** where the database is located.
+*/
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
+# if defined(__APPLE__)
+# define SQLITE_ENABLE_LOCKING_STYLE 1
+# else
+# define SQLITE_ENABLE_LOCKING_STYLE 0
+# endif
+#endif
+
+/* Use pread() and pwrite() if they are available */
+#if defined(__APPLE__) || defined(__linux__)
+# define HAVE_PREAD 1
+# define HAVE_PWRITE 1
+#endif
+#if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
+# undef USE_PREAD
+# define USE_PREAD64 1
+#elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
+# undef USE_PREAD64
+# define USE_PREAD 1
+#endif
+
+/*
+** standard include files.
+*/
+#include <sys/types.h> /* amalgamator: keep */
+#include <sys/stat.h> /* amalgamator: keep */
+#include <fcntl.h>
+#include <sys/ioctl.h>
+#include <unistd.h> /* amalgamator: keep */
+/* #include <time.h> */
+#include <sys/time.h> /* amalgamator: keep */
+#include <errno.h>
+#if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \
+ && !defined(SQLITE_WASI)
+# include <sys/mman.h>
+#endif
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+/* # include <sys/ioctl.h> */
+# include <sys/file.h>
+# include <sys/param.h>
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** Try to determine if gethostuuid() is available based on standard
+** macros. This might sometimes compute the wrong value for some
+** obscure platforms. For those cases, simply compile with one of
+** the following:
+**
+** -DHAVE_GETHOSTUUID=0
+** -DHAVE_GETHOSTUUID=1
+**
+** None if this matters except when building on Apple products with
+** -DSQLITE_ENABLE_LOCKING_STYLE.
+*/
+#ifndef HAVE_GETHOSTUUID
+# define HAVE_GETHOSTUUID 0
+# if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
+ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
+# if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
+ && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\
+ && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0))
+# undef HAVE_GETHOSTUUID
+# define HAVE_GETHOSTUUID 1
+# else
+# warning "gethostuuid() is disabled."
+# endif
+# endif
+#endif
+
+
+#if OS_VXWORKS
+/* # include <sys/ioctl.h> */
+# include <semaphore.h>
+# include <limits.h>
+#endif /* OS_VXWORKS */
+
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
+# include <sys/mount.h>
+#endif
+
+#ifdef HAVE_UTIME
+# include <utime.h>
+#endif
+
+/*
+** Allowed values of unixFile.fsFlags
+*/
+#define SQLITE_FSFLAGS_IS_MSDOS 0x1
+
+/*
+** If we are to be thread-safe, include the pthreads header.
+*/
+#if SQLITE_THREADSAFE
+/* # include <pthread.h> */
+#endif
+
+/*
+** Default permissions when creating a new file
+*/
+#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
+# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
+#endif
+
+/*
+** Default permissions when creating auto proxy dir
+*/
+#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
+#endif
+
+/*
+** Maximum supported path-length.
+*/
+#define MAX_PATHNAME 512
+
+/*
+** Maximum supported symbolic links
+*/
+#define SQLITE_MAX_SYMLINKS 100
+
+/*
+** Remove and stub certain info for WASI (WebAssembly System
+** Interface) builds.
+*/
+#ifdef SQLITE_WASI
+# undef HAVE_FCHMOD
+# undef HAVE_FCHOWN
+# undef HAVE_MREMAP
+# define HAVE_MREMAP 0
+# ifndef SQLITE_DEFAULT_UNIX_VFS
+# define SQLITE_DEFAULT_UNIX_VFS "unix-dotfile"
+ /* ^^^ should SQLITE_DEFAULT_UNIX_VFS be "unix-none"? */
+# endif
+# ifndef F_RDLCK
+# define F_RDLCK 0
+# define F_WRLCK 1
+# define F_UNLCK 2
+# if __LONG_MAX == 0x7fffffffL
+# define F_GETLK 12
+# define F_SETLK 13
+# define F_SETLKW 14
+# else
+# define F_GETLK 5
+# define F_SETLK 6
+# define F_SETLKW 7
+# endif
+# endif
+#else /* !SQLITE_WASI */
+# ifndef HAVE_FCHMOD
+# define HAVE_FCHMOD
+# endif
+#endif /* SQLITE_WASI */
+
+#ifdef SQLITE_WASI
+# define osGetpid(X) (pid_t)1
+#else
+/* Always cast the getpid() return type for compatibility with
+** kernel modules in VxWorks. */
+# define osGetpid(X) (pid_t)getpid()
+#endif
+
+/*
+** Only set the lastErrno if the error code is a real error and not
+** a normal expected return code of SQLITE_BUSY or SQLITE_OK
+*/
+#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
+
+/* Forward references */
+typedef struct unixShm unixShm; /* Connection shared memory */
+typedef struct unixShmNode unixShmNode; /* Shared memory instance */
+typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
+typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
+
+/*
+** Sometimes, after a file handle is closed by SQLite, the file descriptor
+** cannot be closed immediately. In these cases, instances of the following
+** structure are used to store the file descriptor while waiting for an
+** opportunity to either close or reuse it.
+*/
+struct UnixUnusedFd {
+ int fd; /* File descriptor to close */
+ int flags; /* Flags this file descriptor was opened with */
+ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
+};
+
+/*
+** The unixFile structure is subclass of sqlite3_file specific to the unix
+** VFS implementations.
+*/
+typedef struct unixFile unixFile;
+struct unixFile {
+ sqlite3_io_methods const *pMethod; /* Always the first entry */
+ sqlite3_vfs *pVfs; /* The VFS that created this unixFile */
+ unixInodeInfo *pInode; /* Info about locks on this inode */
+ int h; /* The file descriptor */
+ unsigned char eFileLock; /* The type of lock held on this fd */
+ unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
+ int lastErrno; /* The unix errno from last I/O error */
+ void *lockingContext; /* Locking style specific state */
+ UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */
+ const char *zPath; /* Name of the file */
+ unixShm *pShm; /* Shared memory segment information */
+ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
+#if SQLITE_MAX_MMAP_SIZE>0
+ int nFetchOut; /* Number of outstanding xFetch refs */
+ sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */
+ sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */
+ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
+ void *pMapRegion; /* Memory mapped region */
+#endif
+ int sectorSize; /* Device sector size */
+ int deviceCharacteristics; /* Precomputed device characteristics */
+#if SQLITE_ENABLE_LOCKING_STYLE
+ int openFlags; /* The flags specified at open() */
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
+ unsigned fsFlags; /* cached details from statfs() */
+#endif
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ unsigned iBusyTimeout; /* Wait this many millisec on locks */
+#endif
+#if OS_VXWORKS
+ struct vxworksFileId *pId; /* Unique file ID */
+#endif
+#ifdef SQLITE_DEBUG
+ /* The next group of variables are used to track whether or not the
+ ** transaction counter in bytes 24-27 of database files are updated
+ ** whenever any part of the database changes. An assertion fault will
+ ** occur if a file is updated without also updating the transaction
+ ** counter. This test is made to avoid new problems similar to the
+ ** one described by ticket #3584.
+ */
+ unsigned char transCntrChng; /* True if the transaction counter changed */
+ unsigned char dbUpdate; /* True if any part of database file changed */
+ unsigned char inNormalWrite; /* True if in a normal write operation */
+
+#endif
+
+#ifdef SQLITE_TEST
+ /* In test mode, increase the size of this structure a bit so that
+ ** it is larger than the struct CrashFile defined in test6.c.
+ */
+ char aPadding[32];
+#endif
+};
+
+/* This variable holds the process id (pid) from when the xRandomness()
+** method was called. If xOpen() is called from a different process id,
+** indicating that a fork() has occurred, the PRNG will be reset.
+*/
+static pid_t randomnessPid = 0;
+
+/*
+** Allowed values for the unixFile.ctrlFlags bitmask:
+*/
+#define UNIXFILE_EXCL 0x01 /* Connections from one process only */
+#define UNIXFILE_RDONLY 0x02 /* Connection is read only */
+#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
+#ifndef SQLITE_DISABLE_DIRSYNC
+# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
+#else
+# define UNIXFILE_DIRSYNC 0x00
+#endif
+#define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
+#define UNIXFILE_DELETE 0x20 /* Delete on close */
+#define UNIXFILE_URI 0x40 /* Filename might have query parameters */
+#define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/* #include "os_common.h" */
+
+/*
+** Define various macros that are missing from some systems.
+*/
+#ifndef O_LARGEFILE
+# define O_LARGEFILE 0
+#endif
+#ifdef SQLITE_DISABLE_LFS
+# undef O_LARGEFILE
+# define O_LARGEFILE 0
+#endif
+#ifndef O_NOFOLLOW
+# define O_NOFOLLOW 0
+#endif
+#ifndef O_BINARY
+# define O_BINARY 0
+#endif
+
+/*
+** The threadid macro resolves to the thread-id or to 0. Used for
+** testing and debugging only.
+*/
+#if SQLITE_THREADSAFE
+#define threadid pthread_self()
+#else
+#define threadid 0
+#endif
+
+/*
+** HAVE_MREMAP defaults to true on Linux and false everywhere else.
+*/
+#if !defined(HAVE_MREMAP)
+# if defined(__linux__) && defined(_GNU_SOURCE)
+# define HAVE_MREMAP 1
+# else
+# define HAVE_MREMAP 0
+# endif
+#endif
+
+/*
+** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
+** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
+*/
+#ifdef __ANDROID__
+# define lseek lseek64
+#endif
+
+#ifdef __linux__
+/*
+** Linux-specific IOCTL magic numbers used for controlling F2FS
+*/
+#define F2FS_IOCTL_MAGIC 0xf5
+#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
+#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
+#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
+#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
+#define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32)
+#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
+#endif /* __linux__ */
+
+
+/*
+** Different Unix systems declare open() in different ways. Same use
+** open(const char*,int,mode_t). Others use open(const char*,int,...).
+** The difference is important when using a pointer to the function.
+**
+** The safest way to deal with the problem is to always use this wrapper
+** which always has the same well-defined interface.
+*/
+static int posixOpen(const char *zFile, int flags, int mode){
+ return open(zFile, flags, mode);
+}
+
+/* Forward reference */
+static int openDirectory(const char*, int*);
+static int unixGetpagesize(void);
+
+/*
+** Many system calls are accessed through pointer-to-functions so that
+** they may be overridden at runtime to facilitate fault injection during
+** testing and sandboxing. The following array holds the names and pointers
+** to all overrideable system calls.
+*/
+static struct unix_syscall {
+ const char *zName; /* Name of the system call */
+ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
+ sqlite3_syscall_ptr pDefault; /* Default value */
+} aSyscall[] = {
+ { "open", (sqlite3_syscall_ptr)posixOpen, 0 },
+#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
+
+ { "close", (sqlite3_syscall_ptr)close, 0 },
+#define osClose ((int(*)(int))aSyscall[1].pCurrent)
+
+ { "access", (sqlite3_syscall_ptr)access, 0 },
+#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
+
+ { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
+#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
+
+ { "stat", (sqlite3_syscall_ptr)stat, 0 },
+#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
+
+/*
+** The DJGPP compiler environment looks mostly like Unix, but it
+** lacks the fcntl() system call. So redefine fcntl() to be something
+** that always succeeds. This means that locking does not occur under
+** DJGPP. But it is DOS - what did you expect?
+*/
+#ifdef __DJGPP__
+ { "fstat", 0, 0 },
+#define osFstat(a,b,c) 0
+#else
+ { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
+#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
+#endif
+
+ { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
+#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
+
+ { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
+#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
+
+ { "read", (sqlite3_syscall_ptr)read, 0 },
+#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
+
+#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
+ { "pread", (sqlite3_syscall_ptr)pread, 0 },
+#else
+ { "pread", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
+
+#if defined(USE_PREAD64)
+ { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
+#else
+ { "pread64", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
+
+ { "write", (sqlite3_syscall_ptr)write, 0 },
+#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
+
+#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
+ { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
+#else
+ { "pwrite", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
+ aSyscall[12].pCurrent)
+
+#if defined(USE_PREAD64)
+ { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
+#else
+ { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\
+ aSyscall[13].pCurrent)
+
+#if defined(HAVE_FCHMOD)
+ { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
+#else
+ { "fchmod", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
+
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
+ { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
+#else
+ { "fallocate", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
+
+ { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
+#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
+
+ { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
+#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
+
+ { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 },
+#define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
+
+ { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 },
+#define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
+
+#if defined(HAVE_FCHOWN)
+ { "fchown", (sqlite3_syscall_ptr)fchown, 0 },
+#else
+ { "fchown", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
+
+#if defined(HAVE_FCHOWN)
+ { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 },
+#else
+ { "geteuid", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent)
+
+#if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \
+ && !defined(SQLITE_WASI)
+ { "mmap", (sqlite3_syscall_ptr)mmap, 0 },
+#else
+ { "mmap", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
+
+#if (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) \
+ && !defined(SQLITE_WASI)
+ { "munmap", (sqlite3_syscall_ptr)munmap, 0 },
+#else
+ { "munmap", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent)
+
+#if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+ { "mremap", (sqlite3_syscall_ptr)mremap, 0 },
+#else
+ { "mremap", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
+
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+ { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 },
+#else
+ { "getpagesize", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
+
+#if defined(HAVE_READLINK)
+ { "readlink", (sqlite3_syscall_ptr)readlink, 0 },
+#else
+ { "readlink", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
+
+#if defined(HAVE_LSTAT)
+ { "lstat", (sqlite3_syscall_ptr)lstat, 0 },
+#else
+ { "lstat", (sqlite3_syscall_ptr)0, 0 },
+#endif
+#define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
+
+#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+# ifdef __ANDROID__
+ { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 },
+#define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)
+# else
+ { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 },
+#define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent)
+# endif
+#else
+ { "ioctl", (sqlite3_syscall_ptr)0, 0 },
+#endif
+
+}; /* End of the overrideable system calls */
+
+
+/*
+** On some systems, calls to fchown() will trigger a message in a security
+** log if they come from non-root processes. So avoid calling fchown() if
+** we are not running as root.
+*/
+static int robustFchown(int fd, uid_t uid, gid_t gid){
+#if defined(HAVE_FCHOWN)
+ return osGeteuid() ? 0 : osFchown(fd,uid,gid);
+#else
+ return 0;
+#endif
+}
+
+/*
+** This is the xSetSystemCall() method of sqlite3_vfs for all of the
+** "unix" VFSes. Return SQLITE_OK upon successfully updating the
+** system call pointer, or SQLITE_NOTFOUND if there is no configurable
+** system call named zName.
+*/
+static int unixSetSystemCall(
+ sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
+ const char *zName, /* Name of system call to override */
+ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
+){
+ unsigned int i;
+ int rc = SQLITE_NOTFOUND;
+
+ UNUSED_PARAMETER(pNotUsed);
+ if( zName==0 ){
+ /* If no zName is given, restore all system calls to their default
+ ** settings and return NULL
+ */
+ rc = SQLITE_OK;
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( aSyscall[i].pDefault ){
+ aSyscall[i].pCurrent = aSyscall[i].pDefault;
+ }
+ }
+ }else{
+ /* If zName is specified, operate on only the one system call
+ ** specified.
+ */
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ){
+ if( aSyscall[i].pDefault==0 ){
+ aSyscall[i].pDefault = aSyscall[i].pCurrent;
+ }
+ rc = SQLITE_OK;
+ if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
+ aSyscall[i].pCurrent = pNewFunc;
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the value of a system call. Return NULL if zName is not a
+** recognized system call name. NULL is also returned if the system call
+** is currently undefined.
+*/
+static sqlite3_syscall_ptr unixGetSystemCall(
+ sqlite3_vfs *pNotUsed,
+ const char *zName
+){
+ unsigned int i;
+
+ UNUSED_PARAMETER(pNotUsed);
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
+ }
+ return 0;
+}
+
+/*
+** Return the name of the first system call after zName. If zName==NULL
+** then return the name of the first system call. Return NULL if zName
+** is the last system call or if zName is not the name of a valid
+** system call.
+*/
+static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
+ int i = -1;
+
+ UNUSED_PARAMETER(p);
+ if( zName ){
+ for(i=0; i<ArraySize(aSyscall)-1; i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) break;
+ }
+ }
+ for(i++; i<ArraySize(aSyscall); i++){
+ if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
+ }
+ return 0;
+}
+
+/*
+** Do not accept any file descriptor less than this value, in order to avoid
+** opening database file using file descriptors that are commonly used for
+** standard input, output, and error.
+*/
+#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
+# define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
+#endif
+
+/*
+** Invoke open(). Do so multiple times, until it either succeeds or
+** fails for some reason other than EINTR.
+**
+** If the file creation mode "m" is 0 then set it to the default for
+** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
+** 0644) as modified by the system umask. If m is not 0, then
+** make the file creation mode be exactly m ignoring the umask.
+**
+** The m parameter will be non-zero only when creating -wal, -journal,
+** and -shm files. We want those files to have *exactly* the same
+** permissions as their original database, unadulterated by the umask.
+** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
+** transaction crashes and leaves behind hot journals, then any
+** process that is able to write to the database will also be able to
+** recover the hot journals.
+*/
+static int robust_open(const char *z, int f, mode_t m){
+ int fd;
+ mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
+ while(1){
+#if defined(O_CLOEXEC)
+ fd = osOpen(z,f|O_CLOEXEC,m2);
+#else
+ fd = osOpen(z,f,m2);
+#endif
+ if( fd<0 ){
+ if( errno==EINTR ) continue;
+ break;
+ }
+ if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
+ if( (f & (O_EXCL|O_CREAT))==(O_EXCL|O_CREAT) ){
+ (void)osUnlink(z);
+ }
+ osClose(fd);
+ sqlite3_log(SQLITE_WARNING,
+ "attempt to open \"%s\" as file descriptor %d", z, fd);
+ fd = -1;
+ if( osOpen("/dev/null", O_RDONLY, m)<0 ) break;
+ }
+ if( fd>=0 ){
+ if( m!=0 ){
+ struct stat statbuf;
+ if( osFstat(fd, &statbuf)==0
+ && statbuf.st_size==0
+ && (statbuf.st_mode&0777)!=m
+ ){
+ osFchmod(fd, m);
+ }
+ }
+#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
+ osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+ }
+ return fd;
+}
+
+/*
+** Helper functions to obtain and relinquish the global mutex. The
+** global mutex is used to protect the unixInodeInfo and
+** vxworksFileId objects used by this file, all of which may be
+** shared by multiple threads.
+**
+** Function unixMutexHeld() is used to assert() that the global mutex
+** is held when required. This function is only used as part of assert()
+** statements. e.g.
+**
+** unixEnterMutex()
+** assert( unixMutexHeld() );
+** unixEnterLeave()
+**
+** To prevent deadlock, the global unixBigLock must must be acquired
+** before the unixInodeInfo.pLockMutex mutex, if both are held. It is
+** OK to get the pLockMutex without holding unixBigLock first, but if
+** that happens, the unixBigLock mutex must not be acquired until after
+** pLockMutex is released.
+**
+** OK: enter(unixBigLock), enter(pLockInfo)
+** OK: enter(unixBigLock)
+** OK: enter(pLockInfo)
+** ERROR: enter(pLockInfo), enter(unixBigLock)
+*/
+static sqlite3_mutex *unixBigLock = 0;
+static void unixEnterMutex(void){
+ assert( sqlite3_mutex_notheld(unixBigLock) ); /* Not a recursive mutex */
+ sqlite3_mutex_enter(unixBigLock);
+}
+static void unixLeaveMutex(void){
+ assert( sqlite3_mutex_held(unixBigLock) );
+ sqlite3_mutex_leave(unixBigLock);
+}
+#ifdef SQLITE_DEBUG
+static int unixMutexHeld(void) {
+ return sqlite3_mutex_held(unixBigLock);
+}
+#endif
+
+
+#ifdef SQLITE_HAVE_OS_TRACE
+/*
+** Helper function for printing out trace information from debugging
+** binaries. This returns the string representation of the supplied
+** integer lock-type.
+*/
+static const char *azFileLock(int eFileLock){
+ switch( eFileLock ){
+ case NO_LOCK: return "NONE";
+ case SHARED_LOCK: return "SHARED";
+ case RESERVED_LOCK: return "RESERVED";
+ case PENDING_LOCK: return "PENDING";
+ case EXCLUSIVE_LOCK: return "EXCLUSIVE";
+ }
+ return "ERROR";
+}
+#endif
+
+#ifdef SQLITE_LOCK_TRACE
+/*
+** Print out information about all locking operations.
+**
+** This routine is used for troubleshooting locks on multithreaded
+** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
+** command-line option on the compiler. This code is normally
+** turned off.
+*/
+static int lockTrace(int fd, int op, struct flock *p){
+ char *zOpName, *zType;
+ int s;
+ int savedErrno;
+ if( op==F_GETLK ){
+ zOpName = "GETLK";
+ }else if( op==F_SETLK ){
+ zOpName = "SETLK";
+ }else{
+ s = osFcntl(fd, op, p);
+ sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
+ return s;
+ }
+ if( p->l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( p->l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( p->l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ assert( p->l_whence==SEEK_SET );
+ s = osFcntl(fd, op, p);
+ savedErrno = errno;
+ sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
+ threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
+ (int)p->l_pid, s);
+ if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
+ struct flock l2;
+ l2 = *p;
+ osFcntl(fd, F_GETLK, &l2);
+ if( l2.l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( l2.l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( l2.l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
+ zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
+ }
+ errno = savedErrno;
+ return s;
+}
+#undef osFcntl
+#define osFcntl lockTrace
+#endif /* SQLITE_LOCK_TRACE */
+
+/*
+** Retry ftruncate() calls that fail due to EINTR
+**
+** All calls to ftruncate() within this file should be made through
+** this wrapper. On the Android platform, bypassing the logic below
+** could lead to a corrupt database.
+*/
+static int robust_ftruncate(int h, sqlite3_int64 sz){
+ int rc;
+#ifdef __ANDROID__
+ /* On Android, ftruncate() always uses 32-bit offsets, even if
+ ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
+ ** truncate a file to any size larger than 2GiB. Silently ignore any
+ ** such attempts. */
+ if( sz>(sqlite3_int64)0x7FFFFFFF ){
+ rc = SQLITE_OK;
+ }else
+#endif
+ do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
+ return rc;
+}
+
+/*
+** This routine translates a standard POSIX errno code into something
+** useful to the clients of the sqlite3 functions. Specifically, it is
+** intended to translate a variety of "try again" errors into SQLITE_BUSY
+** and a variety of "please close the file descriptor NOW" errors into
+** SQLITE_IOERR
+**
+** Errors during initialization of locks, or file system support for locks,
+** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
+*/
+static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
+ assert( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
+ (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
+ switch (posixError) {
+ case EACCES:
+ case EAGAIN:
+ case ETIMEDOUT:
+ case EBUSY:
+ case EINTR:
+ case ENOLCK:
+ /* random NFS retry error, unless during file system support
+ * introspection, in which it actually means what it says */
+ return SQLITE_BUSY;
+
+ case EPERM:
+ return SQLITE_PERM;
+
+ default:
+ return sqliteIOErr;
+ }
+}
+
+
+/******************************************************************************
+****************** Begin Unique File ID Utility Used By VxWorks ***************
+**
+** On most versions of unix, we can get a unique ID for a file by concatenating
+** the device number and the inode number. But this does not work on VxWorks.
+** On VxWorks, a unique file id must be based on the canonical filename.
+**
+** A pointer to an instance of the following structure can be used as a
+** unique file ID in VxWorks. Each instance of this structure contains
+** a copy of the canonical filename. There is also a reference count.
+** The structure is reclaimed when the number of pointers to it drops to
+** zero.
+**
+** There are never very many files open at one time and lookups are not
+** a performance-critical path, so it is sufficient to put these
+** structures on a linked list.
+*/
+struct vxworksFileId {
+ struct vxworksFileId *pNext; /* Next in a list of them all */
+ int nRef; /* Number of references to this one */
+ int nName; /* Length of the zCanonicalName[] string */
+ char *zCanonicalName; /* Canonical filename */
+};
+
+#if OS_VXWORKS
+/*
+** All unique filenames are held on a linked list headed by this
+** variable:
+*/
+static struct vxworksFileId *vxworksFileList = 0;
+
+/*
+** Simplify a filename into its canonical form
+** by making the following changes:
+**
+** * removing any trailing and duplicate /
+** * convert /./ into just /
+** * convert /A/../ where A is any simple name into just /
+**
+** Changes are made in-place. Return the new name length.
+**
+** The original filename is in z[0..n-1]. Return the number of
+** characters in the simplified name.
+*/
+static int vxworksSimplifyName(char *z, int n){
+ int i, j;
+ while( n>1 && z[n-1]=='/' ){ n--; }
+ for(i=j=0; i<n; i++){
+ if( z[i]=='/' ){
+ if( z[i+1]=='/' ) continue;
+ if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
+ i += 1;
+ continue;
+ }
+ if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
+ while( j>0 && z[j-1]!='/' ){ j--; }
+ if( j>0 ){ j--; }
+ i += 2;
+ continue;
+ }
+ }
+ z[j++] = z[i];
+ }
+ z[j] = 0;
+ return j;
+}
+
+/*
+** Find a unique file ID for the given absolute pathname. Return
+** a pointer to the vxworksFileId object. This pointer is the unique
+** file ID.
+**
+** The nRef field of the vxworksFileId object is incremented before
+** the object is returned. A new vxworksFileId object is created
+** and added to the global list if necessary.
+**
+** If a memory allocation error occurs, return NULL.
+*/
+static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
+ struct vxworksFileId *pNew; /* search key and new file ID */
+ struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
+ int n; /* Length of zAbsoluteName string */
+
+ assert( zAbsoluteName[0]=='/' );
+ n = (int)strlen(zAbsoluteName);
+ pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) );
+ if( pNew==0 ) return 0;
+ pNew->zCanonicalName = (char*)&pNew[1];
+ memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
+ n = vxworksSimplifyName(pNew->zCanonicalName, n);
+
+ /* Search for an existing entry that matching the canonical name.
+ ** If found, increment the reference count and return a pointer to
+ ** the existing file ID.
+ */
+ unixEnterMutex();
+ for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
+ if( pCandidate->nName==n
+ && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
+ ){
+ sqlite3_free(pNew);
+ pCandidate->nRef++;
+ unixLeaveMutex();
+ return pCandidate;
+ }
+ }
+
+ /* No match was found. We will make a new file ID */
+ pNew->nRef = 1;
+ pNew->nName = n;
+ pNew->pNext = vxworksFileList;
+ vxworksFileList = pNew;
+ unixLeaveMutex();
+ return pNew;
+}
+
+/*
+** Decrement the reference count on a vxworksFileId object. Free
+** the object when the reference count reaches zero.
+*/
+static void vxworksReleaseFileId(struct vxworksFileId *pId){
+ unixEnterMutex();
+ assert( pId->nRef>0 );
+ pId->nRef--;
+ if( pId->nRef==0 ){
+ struct vxworksFileId **pp;
+ for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
+ assert( *pp==pId );
+ *pp = pId->pNext;
+ sqlite3_free(pId);
+ }
+ unixLeaveMutex();
+}
+#endif /* OS_VXWORKS */
+/*************** End of Unique File ID Utility Used By VxWorks ****************
+******************************************************************************/
+
+
+/******************************************************************************
+*************************** Posix Advisory Locking ****************************
+**
+** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
+** section 6.5.2.2 lines 483 through 490 specify that when a process
+** sets or clears a lock, that operation overrides any prior locks set
+** by the same process. It does not explicitly say so, but this implies
+** that it overrides locks set by the same process using a different
+** file descriptor. Consider this test case:
+**
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
+**
+** Suppose ./file1 and ./file2 are really the same file (because
+** one is a hard or symbolic link to the other) then if you set
+** an exclusive lock on fd1, then try to get an exclusive lock
+** on fd2, it works. I would have expected the second lock to
+** fail since there was already a lock on the file due to fd1.
+** But not so. Since both locks came from the same process, the
+** second overrides the first, even though they were on different
+** file descriptors opened on different file names.
+**
+** This means that we cannot use POSIX locks to synchronize file access
+** among competing threads of the same process. POSIX locks will work fine
+** to synchronize access for threads in separate processes, but not
+** threads within the same process.
+**
+** To work around the problem, SQLite has to manage file locks internally
+** on its own. Whenever a new database is opened, we have to find the
+** specific inode of the database file (the inode is determined by the
+** st_dev and st_ino fields of the stat structure that fstat() fills in)
+** and check for locks already existing on that inode. When locks are
+** created or removed, we have to look at our own internal record of the
+** locks to see if another thread has previously set a lock on that same
+** inode.
+**
+** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
+** For VxWorks, we have to use the alternative unique ID system based on
+** canonical filename and implemented in the previous division.)
+**
+** The sqlite3_file structure for POSIX is no longer just an integer file
+** descriptor. It is now a structure that holds the integer file
+** descriptor and a pointer to a structure that describes the internal
+** locks on the corresponding inode. There is one locking structure
+** per inode, so if the same inode is opened twice, both unixFile structures
+** point to the same locking structure. The locking structure keeps
+** a reference count (so we will know when to delete it) and a "cnt"
+** field that tells us its internal lock status. cnt==0 means the
+** file is unlocked. cnt==-1 means the file has an exclusive lock.
+** cnt>0 means there are cnt shared locks on the file.
+**
+** Any attempt to lock or unlock a file first checks the locking
+** structure. The fcntl() system call is only invoked to set a
+** POSIX lock if the internal lock structure transitions between
+** a locked and an unlocked state.
+**
+** But wait: there are yet more problems with POSIX advisory locks.
+**
+** If you close a file descriptor that points to a file that has locks,
+** all locks on that file that are owned by the current process are
+** released. To work around this problem, each unixInodeInfo object
+** maintains a count of the number of pending locks on the inode.
+** When an attempt is made to close an unixFile, if there are
+** other unixFile open on the same inode that are holding locks, the call
+** to close() the file descriptor is deferred until all of the locks clear.
+** The unixInodeInfo structure keeps a list of file descriptors that need to
+** be closed and that list is walked (and cleared) when the last lock
+** clears.
+**
+** Yet another problem: LinuxThreads do not play well with posix locks.
+**
+** Many older versions of linux use the LinuxThreads library which is
+** not posix compliant. Under LinuxThreads, a lock created by thread
+** A cannot be modified or overridden by a different thread B.
+** Only thread A can modify the lock. Locking behavior is correct
+** if the application uses the newer Native Posix Thread Library (NPTL)
+** on linux - with NPTL a lock created by thread A can override locks
+** in thread B. But there is no way to know at compile-time which
+** threading library is being used. So there is no way to know at
+** compile-time whether or not thread A can override locks on thread B.
+** One has to do a run-time check to discover the behavior of the
+** current process.
+**
+** SQLite used to support LinuxThreads. But support for LinuxThreads
+** was dropped beginning with version 3.7.0. SQLite will still work with
+** LinuxThreads provided that (1) there is no more than one connection
+** per database file in the same process and (2) database connections
+** do not move across threads.
+*/
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular unixInodeInfo object.
+*/
+struct unixFileId {
+ dev_t dev; /* Device number */
+#if OS_VXWORKS
+ struct vxworksFileId *pId; /* Unique file ID for vxworks. */
+#else
+ /* We are told that some versions of Android contain a bug that
+ ** sizes ino_t at only 32-bits instead of 64-bits. (See
+ ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c)
+ ** To work around this, always allocate 64-bits for the inode number.
+ ** On small machines that only have 32-bit inodes, this wastes 4 bytes,
+ ** but that should not be a big deal. */
+ /* WAS: ino_t ino; */
+ u64 ino; /* Inode number */
+#endif
+};
+
+/*
+** An instance of the following structure is allocated for each open
+** inode.
+**
+** A single inode can have multiple file descriptors, so each unixFile
+** structure contains a pointer to an instance of this object and this
+** object keeps a count of the number of unixFile pointing to it.
+**
+** Mutex rules:
+**
+** (1) Only the pLockMutex mutex must be held in order to read or write
+** any of the locking fields:
+** nShared, nLock, eFileLock, bProcessLock, pUnused
+**
+** (2) When nRef>0, then the following fields are unchanging and can
+** be read (but not written) without holding any mutex:
+** fileId, pLockMutex
+**
+** (3) With the exceptions above, all the fields may only be read
+** or written while holding the global unixBigLock mutex.
+**
+** Deadlock prevention: The global unixBigLock mutex may not
+** be acquired while holding the pLockMutex mutex. If both unixBigLock
+** and pLockMutex are needed, then unixBigLock must be acquired first.
+*/
+struct unixInodeInfo {
+ struct unixFileId fileId; /* The lookup key */
+ sqlite3_mutex *pLockMutex; /* Hold this mutex for... */
+ int nShared; /* Number of SHARED locks held */
+ int nLock; /* Number of outstanding file locks */
+ unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
+ unsigned char bProcessLock; /* An exclusive process lock is held */
+ UnixUnusedFd *pUnused; /* Unused file descriptors to close */
+ int nRef; /* Number of pointers to this structure */
+ unixShmNode *pShmNode; /* Shared memory associated with this inode */
+ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
+ unixInodeInfo *pPrev; /* .... doubly linked */
+#if SQLITE_ENABLE_LOCKING_STYLE
+ unsigned long long sharedByte; /* for AFP simulated shared lock */
+#endif
+#if OS_VXWORKS
+ sem_t *pSem; /* Named POSIX semaphore */
+ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
+#endif
+};
+
+/*
+** A lists of all unixInodeInfo objects.
+**
+** Must hold unixBigLock in order to read or write this variable.
+*/
+static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */
+
+#ifdef SQLITE_DEBUG
+/*
+** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not.
+** This routine is used only within assert() to help verify correct mutex
+** usage.
+*/
+int unixFileMutexHeld(unixFile *pFile){
+ assert( pFile->pInode );
+ return sqlite3_mutex_held(pFile->pInode->pLockMutex);
+}
+int unixFileMutexNotheld(unixFile *pFile){
+ assert( pFile->pInode );
+ return sqlite3_mutex_notheld(pFile->pInode->pLockMutex);
+}
+#endif
+
+/*
+**
+** This function - unixLogErrorAtLine(), is only ever called via the macro
+** unixLogError().
+**
+** It is invoked after an error occurs in an OS function and errno has been
+** set. It logs a message using sqlite3_log() containing the current value of
+** errno and, if possible, the human-readable equivalent from strerror() or
+** strerror_r().
+**
+** The first argument passed to the macro should be the error code that
+** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
+** The two subsequent arguments should be the name of the OS function that
+** failed (e.g. "unlink", "open") and the associated file-system path,
+** if any.
+*/
+#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
+static int unixLogErrorAtLine(
+ int errcode, /* SQLite error code */
+ const char *zFunc, /* Name of OS function that failed */
+ const char *zPath, /* File path associated with error */
+ int iLine /* Source line number where error occurred */
+){
+ char *zErr; /* Message from strerror() or equivalent */
+ int iErrno = errno; /* Saved syscall error number */
+
+ /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
+ ** the strerror() function to obtain the human-readable error message
+ ** equivalent to errno. Otherwise, use strerror_r().
+ */
+#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
+ char aErr[80];
+ memset(aErr, 0, sizeof(aErr));
+ zErr = aErr;
+
+ /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
+ ** assume that the system provides the GNU version of strerror_r() that
+ ** returns a pointer to a buffer containing the error message. That pointer
+ ** may point to aErr[], or it may point to some static storage somewhere.
+ ** Otherwise, assume that the system provides the POSIX version of
+ ** strerror_r(), which always writes an error message into aErr[].
+ **
+ ** If the code incorrectly assumes that it is the POSIX version that is
+ ** available, the error message will often be an empty string. Not a
+ ** huge problem. Incorrectly concluding that the GNU version is available
+ ** could lead to a segfault though.
+ */
+#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
+ zErr =
+# endif
+ strerror_r(iErrno, aErr, sizeof(aErr)-1);
+
+#elif SQLITE_THREADSAFE
+ /* This is a threadsafe build, but strerror_r() is not available. */
+ zErr = "";
+#else
+ /* Non-threadsafe build, use strerror(). */
+ zErr = strerror(iErrno);
+#endif
+
+ if( zPath==0 ) zPath = "";
+ sqlite3_log(errcode,
+ "os_unix.c:%d: (%d) %s(%s) - %s",
+ iLine, iErrno, zFunc, zPath, zErr
+ );
+
+ return errcode;
+}
+
+/*
+** Close a file descriptor.
+**
+** We assume that close() almost always works, since it is only in a
+** very sick application or on a very sick platform that it might fail.
+** If it does fail, simply leak the file descriptor, but do log the
+** error.
+**
+** Note that it is not safe to retry close() after EINTR since the
+** file descriptor might have already been reused by another thread.
+** So we don't even try to recover from an EINTR. Just log the error
+** and move on.
+*/
+static void robust_close(unixFile *pFile, int h, int lineno){
+ if( osClose(h) ){
+ unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
+ pFile ? pFile->zPath : 0, lineno);
+ }
+}
+
+/*
+** Set the pFile->lastErrno. Do this in a subroutine as that provides
+** a convenient place to set a breakpoint.
+*/
+static void storeLastErrno(unixFile *pFile, int error){
+ pFile->lastErrno = error;
+}
+
+/*
+** Close all file descriptors accumulated in the unixInodeInfo->pUnused list.
+*/
+static void closePendingFds(unixFile *pFile){
+ unixInodeInfo *pInode = pFile->pInode;
+ UnixUnusedFd *p;
+ UnixUnusedFd *pNext;
+ assert( unixFileMutexHeld(pFile) );
+ for(p=pInode->pUnused; p; p=pNext){
+ pNext = p->pNext;
+ robust_close(pFile, p->fd, __LINE__);
+ sqlite3_free(p);
+ }
+ pInode->pUnused = 0;
+}
+
+/*
+** Release a unixInodeInfo structure previously allocated by findInodeInfo().
+**
+** The global mutex must be held when this routine is called, but the mutex
+** on the inode being deleted must NOT be held.
+*/
+static void releaseInodeInfo(unixFile *pFile){
+ unixInodeInfo *pInode = pFile->pInode;
+ assert( unixMutexHeld() );
+ assert( unixFileMutexNotheld(pFile) );
+ if( ALWAYS(pInode) ){
+ pInode->nRef--;
+ if( pInode->nRef==0 ){
+ assert( pInode->pShmNode==0 );
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ closePendingFds(pFile);
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ if( pInode->pPrev ){
+ assert( pInode->pPrev->pNext==pInode );
+ pInode->pPrev->pNext = pInode->pNext;
+ }else{
+ assert( inodeList==pInode );
+ inodeList = pInode->pNext;
+ }
+ if( pInode->pNext ){
+ assert( pInode->pNext->pPrev==pInode );
+ pInode->pNext->pPrev = pInode->pPrev;
+ }
+ sqlite3_mutex_free(pInode->pLockMutex);
+ sqlite3_free(pInode);
+ }
+ }
+}
+
+/*
+** Given a file descriptor, locate the unixInodeInfo object that
+** describes that file descriptor. Create a new one if necessary. The
+** return value might be uninitialized if an error occurs.
+**
+** The global mutex must held when calling this routine.
+**
+** Return an appropriate error code.
+*/
+static int findInodeInfo(
+ unixFile *pFile, /* Unix file with file desc used in the key */
+ unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
+){
+ int rc; /* System call return code */
+ int fd; /* The file descriptor for pFile */
+ struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
+ struct stat statbuf; /* Low-level file information */
+ unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
+
+ assert( unixMutexHeld() );
+
+ /* Get low-level information about the file that we can used to
+ ** create a unique name for the file.
+ */
+ fd = pFile->h;
+ rc = osFstat(fd, &statbuf);
+ if( rc!=0 ){
+ storeLastErrno(pFile, errno);
+#if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
+ if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
+#endif
+ return SQLITE_IOERR;
+ }
+
+#ifdef __APPLE__
+ /* On OS X on an msdos filesystem, the inode number is reported
+ ** incorrectly for zero-size files. See ticket #3260. To work
+ ** around this problem (we consider it a bug in OS X, not SQLite)
+ ** we always increase the file size to 1 by writing a single byte
+ ** prior to accessing the inode number. The one byte written is
+ ** an ASCII 'S' character which also happens to be the first byte
+ ** in the header of every SQLite database. In this way, if there
+ ** is a race condition such that another thread has already populated
+ ** the first page of the database, no damage is done.
+ */
+ if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
+ do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
+ if( rc!=1 ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR;
+ }
+ rc = osFstat(fd, &statbuf);
+ if( rc!=0 ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR;
+ }
+ }
+#endif
+
+ memset(&fileId, 0, sizeof(fileId));
+ fileId.dev = statbuf.st_dev;
+#if OS_VXWORKS
+ fileId.pId = pFile->pId;
+#else
+ fileId.ino = (u64)statbuf.st_ino;
+#endif
+ assert( unixMutexHeld() );
+ pInode = inodeList;
+ while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
+ pInode = pInode->pNext;
+ }
+ if( pInode==0 ){
+ pInode = sqlite3_malloc64( sizeof(*pInode) );
+ if( pInode==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(pInode, 0, sizeof(*pInode));
+ memcpy(&pInode->fileId, &fileId, sizeof(fileId));
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pInode->pLockMutex==0 ){
+ sqlite3_free(pInode);
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+ pInode->nRef = 1;
+ assert( unixMutexHeld() );
+ pInode->pNext = inodeList;
+ pInode->pPrev = 0;
+ if( inodeList ) inodeList->pPrev = pInode;
+ inodeList = pInode;
+ }else{
+ pInode->nRef++;
+ }
+ *ppInode = pInode;
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if pFile has been renamed or unlinked since it was first opened.
+*/
+static int fileHasMoved(unixFile *pFile){
+#if OS_VXWORKS
+ return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId;
+#else
+ struct stat buf;
+ return pFile->pInode!=0 &&
+ (osStat(pFile->zPath, &buf)!=0
+ || (u64)buf.st_ino!=pFile->pInode->fileId.ino);
+#endif
+}
+
+
+/*
+** Check a unixFile that is a database. Verify the following:
+**
+** (1) There is exactly one hard link on the file
+** (2) The file is not a symbolic link
+** (3) The file has not been renamed or unlinked
+**
+** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
+*/
+static void verifyDbFile(unixFile *pFile){
+ struct stat buf;
+ int rc;
+
+ /* These verifications occurs for the main database only */
+ if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return;
+
+ rc = osFstat(pFile->h, &buf);
+ if( rc!=0 ){
+ sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
+ return;
+ }
+ if( buf.st_nlink==0 ){
+ sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
+ return;
+ }
+ if( buf.st_nlink>1 ){
+ sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
+ return;
+ }
+ if( fileHasMoved(pFile) ){
+ sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
+ return;
+ }
+}
+
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+ assert( pFile->eFileLock<=SHARED_LOCK );
+ sqlite3_mutex_enter(pFile->pInode->pLockMutex);
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->pInode->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it.
+ */
+#ifndef __DJGPP__
+ if( !reserved && !pFile->pInode->bProcessLock ){
+ struct flock lock;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = RESERVED_BYTE;
+ lock.l_len = 1;
+ lock.l_type = F_WRLCK;
+ if( osFcntl(pFile->h, F_GETLK, &lock) ){
+ rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
+ storeLastErrno(pFile, errno);
+ } else if( lock.l_type!=F_UNLCK ){
+ reserved = 1;
+ }
+ }
+#endif
+
+ sqlite3_mutex_leave(pFile->pInode->pLockMutex);
+ OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
+
+ *pResOut = reserved;
+ return rc;
+}
+
+/* Forward declaration*/
+static int unixSleep(sqlite3_vfs*,int);
+
+/*
+** Set a posix-advisory-lock.
+**
+** There are two versions of this routine. If compiled with
+** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter
+** which is a pointer to a unixFile. If the unixFile->iBusyTimeout
+** value is set, then it is the number of milliseconds to wait before
+** failing the lock. The iBusyTimeout value is always reset back to
+** zero on each call.
+**
+** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking
+** attempt to set the lock.
+*/
+#ifndef SQLITE_ENABLE_SETLK_TIMEOUT
+# define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x)
+#else
+static int osSetPosixAdvisoryLock(
+ int h, /* The file descriptor on which to take the lock */
+ struct flock *pLock, /* The description of the lock */
+ unixFile *pFile /* Structure holding timeout value */
+){
+ int tm = pFile->iBusyTimeout;
+ int rc = osFcntl(h,F_SETLK,pLock);
+ while( rc<0 && tm>0 ){
+ /* On systems that support some kind of blocking file lock with a timeout,
+ ** make appropriate changes here to invoke that blocking file lock. On
+ ** generic posix, however, there is no such API. So we simply try the
+ ** lock once every millisecond until either the timeout expires, or until
+ ** the lock is obtained. */
+ unixSleep(0,1000);
+ rc = osFcntl(h,F_SETLK,pLock);
+ tm--;
+ }
+ return rc;
+}
+#endif /* SQLITE_ENABLE_SETLK_TIMEOUT */
+
+
+/*
+** Attempt to set a system-lock on the file pFile. The lock is
+** described by pLock.
+**
+** If the pFile was opened read/write from unix-excl, then the only lock
+** ever obtained is an exclusive lock, and it is obtained exactly once
+** the first time any lock is attempted. All subsequent system locking
+** operations become no-ops. Locking operations still happen internally,
+** in order to coordinate access between separate database connections
+** within this process, but all of that is handled in memory and the
+** operating system does not participate.
+**
+** This function is a pass-through to fcntl(F_SETLK) if pFile is using
+** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
+** and is read-only.
+**
+** Zero is returned if the call completes successfully, or -1 if a call
+** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
+*/
+static int unixFileLock(unixFile *pFile, struct flock *pLock){
+ int rc;
+ unixInodeInfo *pInode = pFile->pInode;
+ assert( pInode!=0 );
+ assert( sqlite3_mutex_held(pInode->pLockMutex) );
+ if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){
+ if( pInode->bProcessLock==0 ){
+ struct flock lock;
+ assert( pInode->nLock==0 );
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ lock.l_type = F_WRLCK;
+ rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile);
+ if( rc<0 ) return rc;
+ pInode->bProcessLock = 1;
+ pInode->nLock++;
+ }else{
+ rc = 0;
+ }
+ }else{
+ rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile);
+ }
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int unixLock(sqlite3_file *id, int eFileLock){
+ /* The following describes the implementation of the various locks and
+ ** lock transitions in terms of the POSIX advisory shared and exclusive
+ ** lock primitives (called read-locks and write-locks below, to avoid
+ ** confusion with SQLite lock names). The algorithms are complicated
+ ** slightly in order to be compatible with Windows95 systems simultaneously
+ ** accessing the same database file, in case that is ever required.
+ **
+ ** Symbols defined in os.h identify the 'pending byte' and the 'reserved
+ ** byte', each single bytes at well known offsets, and the 'shared byte
+ ** range', a range of 510 bytes at a well known offset.
+ **
+ ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
+ ** byte'. If this is successful, 'shared byte range' is read-locked
+ ** and the lock on the 'pending byte' released. (Legacy note: When
+ ** SQLite was first developed, Windows95 systems were still very common,
+ ** and Windows95 lacks a shared-lock capability. So on Windows95, a
+ ** single randomly selected by from the 'shared byte range' is locked.
+ ** Windows95 is now pretty much extinct, but this work-around for the
+ ** lack of shared-locks on Windows95 lives on, for backwards
+ ** compatibility.)
+ **
+ ** A process may only obtain a RESERVED lock after it has a SHARED lock.
+ ** A RESERVED lock is implemented by grabbing a write-lock on the
+ ** 'reserved byte'.
+ **
+ ** An EXCLUSIVE lock may only be requested after either a SHARED or
+ ** RESERVED lock is held. An EXCLUSIVE lock is implemented by obtaining
+ ** a write-lock on the entire 'shared byte range'. Since all other locks
+ ** require a read-lock on one of the bytes within this range, this ensures
+ ** that no other locks are held on the database.
+ **
+ ** If a process that holds a RESERVED lock requests an EXCLUSIVE, then
+ ** a PENDING lock is obtained first. A PENDING lock is implemented by
+ ** obtaining a write-lock on the 'pending byte'. This ensures that no new
+ ** SHARED locks can be obtained, but existing SHARED locks are allowed to
+ ** persist. If the call to this function fails to obtain the EXCLUSIVE
+ ** lock in this case, it holds the PENDING lock instead. The client may
+ ** then re-attempt the EXCLUSIVE lock later on, after existing SHARED
+ ** locks have cleared.
+ */
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode;
+ struct flock lock;
+ int tErrno = 0;
+
+ assert( pFile );
+ OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
+ azFileLock(eFileLock), azFileLock(pFile->eFileLock),
+ azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
+ osGetpid(0)));
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** unixFile, do nothing. Don't use the end_lock: exit path, as
+ ** unixEnterMutex() hasn't been called yet.
+ */
+ if( pFile->eFileLock>=eFileLock ){
+ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
+ azFileLock(eFileLock)));
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct.
+ ** (1) We never move from unlocked to anything higher than shared lock.
+ ** (2) SQLite never explicitly requests a pending lock.
+ ** (3) A shared lock is always held when a reserve lock is requested.
+ */
+ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
+ assert( eFileLock!=PENDING_LOCK );
+ assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
+
+ /* This mutex is needed because pFile->pInode is shared across threads
+ */
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+
+ /* If some thread using this PID has a lock via a different unixFile*
+ ** handle that precludes the requested lock, return BUSY.
+ */
+ if( (pFile->eFileLock!=pInode->eFileLock &&
+ (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
+ ){
+ rc = SQLITE_BUSY;
+ goto end_lock;
+ }
+
+ /* If a SHARED lock is requested, and some thread using this PID already
+ ** has a SHARED or RESERVED lock, then increment reference counts and
+ ** return SQLITE_OK.
+ */
+ if( eFileLock==SHARED_LOCK &&
+ (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
+ assert( eFileLock==SHARED_LOCK );
+ assert( pFile->eFileLock==0 );
+ assert( pInode->nShared>0 );
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nShared++;
+ pInode->nLock++;
+ goto end_lock;
+ }
+
+
+ /* A PENDING lock is needed before acquiring a SHARED lock and before
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
+ lock.l_len = 1L;
+ lock.l_whence = SEEK_SET;
+ if( eFileLock==SHARED_LOCK
+ || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock==RESERVED_LOCK)
+ ){
+ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
+ lock.l_start = PENDING_BYTE;
+ if( unixFileLock(pFile, &lock) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ goto end_lock;
+ }else if( eFileLock==EXCLUSIVE_LOCK ){
+ pFile->eFileLock = PENDING_LOCK;
+ pInode->eFileLock = PENDING_LOCK;
+ }
+ }
+
+
+ /* If control gets to this point, then actually go ahead and make
+ ** operating system calls for the specified lock.
+ */
+ if( eFileLock==SHARED_LOCK ){
+ assert( pInode->nShared==0 );
+ assert( pInode->eFileLock==0 );
+ assert( rc==SQLITE_OK );
+
+ /* Now get the read-lock */
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ if( unixFileLock(pFile, &lock) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ }
+
+ /* Drop the temporary PENDING lock */
+ lock.l_start = PENDING_BYTE;
+ lock.l_len = 1L;
+ lock.l_type = F_UNLCK;
+ if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
+ /* This could happen with a network mount */
+ tErrno = errno;
+ rc = SQLITE_IOERR_UNLOCK;
+ }
+
+ if( rc ){
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ goto end_lock;
+ }else{
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nLock++;
+ pInode->nShared = 1;
+ }
+ }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ }else{
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is
+ ** assumed that there is a SHARED or greater lock on the file
+ ** already.
+ */
+ assert( 0!=pFile->eFileLock );
+ lock.l_type = F_WRLCK;
+
+ assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
+ if( eFileLock==RESERVED_LOCK ){
+ lock.l_start = RESERVED_BYTE;
+ lock.l_len = 1L;
+ }else{
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ }
+
+ if( unixFileLock(pFile, &lock) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ }
+ }
+
+
+#ifdef SQLITE_DEBUG
+ /* Set up the transaction-counter change checking flags when
+ ** transitioning from a SHARED to a RESERVED lock. The change
+ ** from SHARED to RESERVED marks the beginning of a normal
+ ** write operation (not a hot journal rollback).
+ */
+ if( rc==SQLITE_OK
+ && pFile->eFileLock<=SHARED_LOCK
+ && eFileLock==RESERVED_LOCK
+ ){
+ pFile->transCntrChng = 0;
+ pFile->dbUpdate = 0;
+ pFile->inNormalWrite = 1;
+ }
+#endif
+
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ pInode->eFileLock = eFileLock;
+ }
+
+end_lock:
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
+ rc==SQLITE_OK ? "ok" : "failed"));
+ return rc;
+}
+
+/*
+** Add the file descriptor used by file handle pFile to the corresponding
+** pUnused list.
+*/
+static void setPendingFd(unixFile *pFile){
+ unixInodeInfo *pInode = pFile->pInode;
+ UnixUnusedFd *p = pFile->pPreallocatedUnused;
+ assert( unixFileMutexHeld(pFile) );
+ p->pNext = pInode->pUnused;
+ pInode->pUnused = p;
+ pFile->h = -1;
+ pFile->pPreallocatedUnused = 0;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
+** the byte range is divided into 2 parts and the first part is unlocked then
+** set to a read lock, then the other part is simply unlocked. This works
+** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
+** remove the write lock on a region when a read lock is set.
+*/
+static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode;
+ struct flock lock;
+ int rc = SQLITE_OK;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
+ pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
+ osGetpid(0)));
+
+ assert( eFileLock<=SHARED_LOCK );
+ if( pFile->eFileLock<=eFileLock ){
+ return SQLITE_OK;
+ }
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ assert( pInode->nShared!=0 );
+ if( pFile->eFileLock>SHARED_LOCK ){
+ assert( pInode->eFileLock==pFile->eFileLock );
+
+#ifdef SQLITE_DEBUG
+ /* When reducing a lock such that other processes can start
+ ** reading the database file again, make sure that the
+ ** transaction counter was updated if any part of the database
+ ** file changed. If the transaction counter is not updated,
+ ** other connections to the same file might not realize that
+ ** the file has changed and hence might not know to flush their
+ ** cache. The use of a stale cache can lead to database corruption.
+ */
+ pFile->inNormalWrite = 0;
+#endif
+
+ /* downgrading to a shared lock on NFS involves clearing the write lock
+ ** before establishing the readlock - to avoid a race condition we downgrade
+ ** the lock in 2 blocks, so that part of the range will be covered by a
+ ** write lock until the rest is covered by a read lock:
+ ** 1: [WWWWW]
+ ** 2: [....W]
+ ** 3: [RRRRW]
+ ** 4: [RRRR.]
+ */
+ if( eFileLock==SHARED_LOCK ){
+#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
+ (void)handleNFSUnlock;
+ assert( handleNFSUnlock==0 );
+#endif
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+ if( handleNFSUnlock ){
+ int tErrno; /* Error code from system call errors */
+ off_t divSize = SHARED_SIZE - 1;
+
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = divSize;
+ if( unixFileLock(pFile, &lock)==(-1) ){
+ tErrno = errno;
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ goto end_unlock;
+ }
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = divSize;
+ if( unixFileLock(pFile, &lock)==(-1) ){
+ tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ goto end_unlock;
+ }
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST+divSize;
+ lock.l_len = SHARED_SIZE-divSize;
+ if( unixFileLock(pFile, &lock)==(-1) ){
+ tErrno = errno;
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ goto end_unlock;
+ }
+ }else
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+ {
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ if( unixFileLock(pFile, &lock) ){
+ /* In theory, the call to unixFileLock() cannot fail because another
+ ** process is holding an incompatible lock. If it does, this
+ ** indicates that the other process is not following the locking
+ ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
+ ** SQLITE_BUSY would confuse the upper layer (in practice it causes
+ ** an assert to fail). */
+ rc = SQLITE_IOERR_RDLOCK;
+ storeLastErrno(pFile, errno);
+ goto end_unlock;
+ }
+ }
+ }
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = PENDING_BYTE;
+ lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
+ if( unixFileLock(pFile, &lock)==0 ){
+ pInode->eFileLock = SHARED_LOCK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, errno);
+ goto end_unlock;
+ }
+ }
+ if( eFileLock==NO_LOCK ){
+ /* Decrement the shared lock counter. Release the lock using an
+ ** OS call only when all threads in this same process have released
+ ** the lock.
+ */
+ pInode->nShared--;
+ if( pInode->nShared==0 ){
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ if( unixFileLock(pFile, &lock)==0 ){
+ pInode->eFileLock = NO_LOCK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, errno);
+ pInode->eFileLock = NO_LOCK;
+ pFile->eFileLock = NO_LOCK;
+ }
+ }
+
+ /* Decrement the count of locks against this same file. When the
+ ** count reaches zero, close any other file descriptors whose close
+ ** was deferred because of outstanding locks.
+ */
+ pInode->nLock--;
+ assert( pInode->nLock>=0 );
+ if( pInode->nLock==0 ) closePendingFds(pFile);
+ }
+
+end_unlock:
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ }
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int unixUnlock(sqlite3_file *id, int eFileLock){
+#if SQLITE_MAX_MMAP_SIZE>0
+ assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
+#endif
+ return posixUnlock(id, eFileLock, 0);
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+static int unixMapfile(unixFile *pFd, i64 nByte);
+static void unixUnmapfile(unixFile *pFd);
+#endif
+
+/*
+** This function performs the parts of the "close file" operation
+** common to all locking schemes. It closes the directory and file
+** handles, if they are valid, and sets all fields of the unixFile
+** structure to 0.
+**
+** It is *not* necessary to hold the mutex when this routine is called,
+** even on VxWorks. A mutex will be acquired on VxWorks by the
+** vxworksReleaseFileId() routine.
+*/
+static int closeUnixFile(sqlite3_file *id){
+ unixFile *pFile = (unixFile*)id;
+#if SQLITE_MAX_MMAP_SIZE>0
+ unixUnmapfile(pFile);
+#endif
+ if( pFile->h>=0 ){
+ robust_close(pFile, pFile->h, __LINE__);
+ pFile->h = -1;
+ }
+#if OS_VXWORKS
+ if( pFile->pId ){
+ if( pFile->ctrlFlags & UNIXFILE_DELETE ){
+ osUnlink(pFile->pId->zCanonicalName);
+ }
+ vxworksReleaseFileId(pFile->pId);
+ pFile->pId = 0;
+ }
+#endif
+#ifdef SQLITE_UNLINK_AFTER_CLOSE
+ if( pFile->ctrlFlags & UNIXFILE_DELETE ){
+ osUnlink(pFile->zPath);
+ sqlite3_free(*(char**)&pFile->zPath);
+ pFile->zPath = 0;
+ }
+#endif
+ OSTRACE(("CLOSE %-3d\n", pFile->h));
+ OpenCounter(-1);
+ sqlite3_free(pFile->pPreallocatedUnused);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+/*
+** Close a file.
+*/
+static int unixClose(sqlite3_file *id){
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile *)id;
+ unixInodeInfo *pInode = pFile->pInode;
+
+ assert( pInode!=0 );
+ verifyDbFile(pFile);
+ unixUnlock(id, NO_LOCK);
+ assert( unixFileMutexNotheld(pFile) );
+ unixEnterMutex();
+
+ /* unixFile.pInode is always valid here. Otherwise, a different close
+ ** routine (e.g. nolockClose()) would be called instead.
+ */
+ assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ if( pInode->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pInode->pUnused list. It will be automatically closed
+ ** when the last lock is cleared.
+ */
+ setPendingFd(pFile);
+ }
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ releaseInodeInfo(pFile);
+ assert( pFile->pShm==0 );
+ rc = closeUnixFile(id);
+ unixLeaveMutex();
+ return rc;
+}
+
+/************** End of the posix advisory lock implementation *****************
+******************************************************************************/
+
+/******************************************************************************
+****************************** No-op Locking **********************************
+**
+** Of the various locking implementations available, this is by far the
+** simplest: locking is ignored. No attempt is made to lock the database
+** file for reading or writing.
+**
+** This locking mode is appropriate for use on read-only databases
+** (ex: databases that are burned into CD-ROM, for example.) It can
+** also be used if the application employs some external mechanism to
+** prevent simultaneous access of the same database by two or more
+** database connections. But there is a serious risk of database
+** corruption if this locking mode is used in situations where multiple
+** database connections are accessing the same database file at the same
+** time and one or more of those connections are writing.
+*/
+
+static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
+ UNUSED_PARAMETER(NotUsed);
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return SQLITE_OK;
+}
+static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return SQLITE_OK;
+}
+
+/*
+** Close the file.
+*/
+static int nolockClose(sqlite3_file *id) {
+ return closeUnixFile(id);
+}
+
+/******************* End of the no-op lock implementation *********************
+******************************************************************************/
+
+/******************************************************************************
+************************* Begin dot-file Locking ******************************
+**
+** The dotfile locking implementation uses the existence of separate lock
+** files (really a directory) to control access to the database. This works
+** on just about every filesystem imaginable. But there are serious downsides:
+**
+** (1) There is zero concurrency. A single reader blocks all other
+** connections from reading or writing the database.
+**
+** (2) An application crash or power loss can leave stale lock files
+** sitting around that need to be cleared manually.
+**
+** Nevertheless, a dotlock is an appropriate locking mode for use if no
+** other locking strategy is available.
+**
+** Dotfile locking works by creating a subdirectory in the same directory as
+** the database and with the same name but with a ".lock" extension added.
+** The existence of a lock directory implies an EXCLUSIVE lock. All other
+** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
+*/
+
+/*
+** The file suffix added to the data base filename in order to create the
+** lock directory.
+*/
+#define DOTLOCK_SUFFIX ".lock"
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+**
+** In dotfile locking, either a lock exists or it does not. So in this
+** variation of CheckReservedLock(), *pResOut is set to true if any lock
+** is held on the file and false if the file is unlocked.
+*/
+static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+ reserved = osAccess((const char*)pFile->lockingContext, 0)==0;
+ OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+**
+** With dotfile locking, we really only support state (4): EXCLUSIVE.
+** But we track the other locking levels internally.
+*/
+static int dotlockLock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ char *zLockFile = (char *)pFile->lockingContext;
+ int rc = SQLITE_OK;
+
+
+ /* If we have any lock, then the lock file already exists. All we have
+ ** to do is adjust our internal record of the lock level.
+ */
+ if( pFile->eFileLock > NO_LOCK ){
+ pFile->eFileLock = eFileLock;
+ /* Always update the timestamp on the old file */
+#ifdef HAVE_UTIME
+ utime(zLockFile, NULL);
+#else
+ utimes(zLockFile, NULL);
+#endif
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+ rc = osMkdir(zLockFile, 0777);
+ if( rc<0 ){
+ /* failed to open/create the lock directory */
+ int tErrno = errno;
+ if( EEXIST == tErrno ){
+ rc = SQLITE_BUSY;
+ } else {
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( rc!=SQLITE_BUSY ){
+ storeLastErrno(pFile, tErrno);
+ }
+ }
+ return rc;
+ }
+
+ /* got it, set the type and return ok */
+ pFile->eFileLock = eFileLock;
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** When the locking level reaches NO_LOCK, delete the lock file.
+*/
+static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ char *zLockFile = (char *)pFile->lockingContext;
+ int rc;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
+ pFile->eFileLock, osGetpid(0)));
+ assert( eFileLock<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->eFileLock==eFileLock ){
+ return SQLITE_OK;
+ }
+
+ /* To downgrade to shared, simply update our internal notion of the
+ ** lock state. No need to mess with the file on disk.
+ */
+ if( eFileLock==SHARED_LOCK ){
+ pFile->eFileLock = SHARED_LOCK;
+ return SQLITE_OK;
+ }
+
+ /* To fully unlock the database, delete the lock file */
+ assert( eFileLock==NO_LOCK );
+ rc = osRmdir(zLockFile);
+ if( rc<0 ){
+ int tErrno = errno;
+ if( tErrno==ENOENT ){
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ }
+ return rc;
+ }
+ pFile->eFileLock = NO_LOCK;
+ return SQLITE_OK;
+}
+
+/*
+** Close a file. Make sure the lock has been released before closing.
+*/
+static int dotlockClose(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+ assert( id!=0 );
+ dotlockUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ return closeUnixFile(id);
+}
+/****************** End of the dot-file lock implementation *******************
+******************************************************************************/
+
+/******************************************************************************
+************************** Begin flock Locking ********************************
+**
+** Use the flock() system call to do file locking.
+**
+** flock() locking is like dot-file locking in that the various
+** fine-grain locking levels supported by SQLite are collapsed into
+** a single exclusive lock. In other words, SHARED, RESERVED, and
+** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
+** still works when you do this, but concurrency is reduced since
+** only a single process can be reading the database at a time.
+**
+** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
+*/
+#if SQLITE_ENABLE_LOCKING_STYLE
+
+/*
+** Retry flock() calls that fail with EINTR
+*/
+#ifdef EINTR
+static int robust_flock(int fd, int op){
+ int rc;
+ do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
+ return rc;
+}
+#else
+# define robust_flock(a,b) flock(a,b)
+#endif
+
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it. */
+ if( !reserved ){
+ /* attempt to get the lock */
+ int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
+ if( !lrc ){
+ /* got the lock, unlock it */
+ lrc = robust_flock(pFile->h, LOCK_UN);
+ if ( lrc ) {
+ int tErrno = errno;
+ /* unlock failed with an error */
+ lrc = SQLITE_IOERR_UNLOCK;
+ storeLastErrno(pFile, tErrno);
+ rc = lrc;
+ }
+ } else {
+ int tErrno = errno;
+ reserved = 1;
+ /* someone else might have it reserved */
+ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(lrc) ){
+ storeLastErrno(pFile, tErrno);
+ rc = lrc;
+ }
+ }
+ }
+ OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
+
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (rc & 0xff) == SQLITE_IOERR ){
+ rc = SQLITE_OK;
+ reserved=1;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** flock() only really support EXCLUSIVE locks. We track intermediate
+** lock states in the sqlite3_file structure, but all locks SHARED or
+** above are really EXCLUSIVE locks and exclude all other processes from
+** access the file.
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int flockLock(sqlite3_file *id, int eFileLock) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->eFileLock > NO_LOCK) {
+ pFile->eFileLock = eFileLock;
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+
+ if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
+ int tErrno = errno;
+ /* didn't get, must be busy */
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ } else {
+ /* got it, set the type and return ok */
+ pFile->eFileLock = eFileLock;
+ }
+ OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
+ rc==SQLITE_OK ? "ok" : "failed"));
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ if( (rc & 0xff) == SQLITE_IOERR ){
+ rc = SQLITE_BUSY;
+ }
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ return rc;
+}
+
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int flockUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
+ pFile->eFileLock, osGetpid(0)));
+ assert( eFileLock<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->eFileLock==eFileLock ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (eFileLock==SHARED_LOCK) {
+ pFile->eFileLock = eFileLock;
+ return SQLITE_OK;
+ }
+
+ /* no, really, unlock. */
+ if( robust_flock(pFile->h, LOCK_UN) ){
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
+ return SQLITE_OK;
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
+ return SQLITE_IOERR_UNLOCK;
+ }else{
+ pFile->eFileLock = NO_LOCK;
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Close a file.
+*/
+static int flockClose(sqlite3_file *id) {
+ assert( id!=0 );
+ flockUnlock(id, NO_LOCK);
+ return closeUnixFile(id);
+}
+
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
+
+/******************* End of the flock lock implementation *********************
+******************************************************************************/
+
+/******************************************************************************
+************************ Begin Named Semaphore Locking ************************
+**
+** Named semaphore locking is only supported on VxWorks.
+**
+** Semaphore locking is like dot-lock and flock in that it really only
+** supports EXCLUSIVE locking. Only a single process can read or write
+** the database file at a time. This reduces potential concurrency, but
+** makes the lock implementation much easier.
+*/
+#if OS_VXWORKS
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it. */
+ if( !reserved ){
+ sem_t *pSem = pFile->pInode->pSem;
+
+ if( sem_trywait(pSem)==-1 ){
+ int tErrno = errno;
+ if( EAGAIN != tErrno ){
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
+ storeLastErrno(pFile, tErrno);
+ } else {
+ /* someone else has the lock when we are in NO_LOCK */
+ reserved = (pFile->eFileLock < SHARED_LOCK);
+ }
+ }else{
+ /* we could have it if we want it */
+ sem_post(pSem);
+ }
+ }
+ OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
+
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
+** lock states in the sqlite3_file structure, but all locks SHARED or
+** above are really EXCLUSIVE locks and exclude all other processes from
+** access the file.
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int semXLock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ sem_t *pSem = pFile->pInode->pSem;
+ int rc = SQLITE_OK;
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->eFileLock > NO_LOCK) {
+ pFile->eFileLock = eFileLock;
+ rc = SQLITE_OK;
+ goto sem_end_lock;
+ }
+
+ /* lock semaphore now but bail out when already locked. */
+ if( sem_trywait(pSem)==-1 ){
+ rc = SQLITE_BUSY;
+ goto sem_end_lock;
+ }
+
+ /* got it, set the type and return ok */
+ pFile->eFileLock = eFileLock;
+
+ sem_end_lock:
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int semXUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ sem_t *pSem = pFile->pInode->pSem;
+
+ assert( pFile );
+ assert( pSem );
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
+ pFile->eFileLock, osGetpid(0)));
+ assert( eFileLock<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->eFileLock==eFileLock ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (eFileLock==SHARED_LOCK) {
+ pFile->eFileLock = eFileLock;
+ return SQLITE_OK;
+ }
+
+ /* no, really unlock. */
+ if ( sem_post(pSem)==-1 ) {
+ int rc, tErrno = errno;
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ return rc;
+ }
+ pFile->eFileLock = NO_LOCK;
+ return SQLITE_OK;
+}
+
+/*
+ ** Close a file.
+ */
+static int semXClose(sqlite3_file *id) {
+ if( id ){
+ unixFile *pFile = (unixFile*)id;
+ semXUnlock(id, NO_LOCK);
+ assert( pFile );
+ assert( unixFileMutexNotheld(pFile) );
+ unixEnterMutex();
+ releaseInodeInfo(pFile);
+ unixLeaveMutex();
+ closeUnixFile(id);
+ }
+ return SQLITE_OK;
+}
+
+#endif /* OS_VXWORKS */
+/*
+** Named semaphore locking is only available on VxWorks.
+**
+*************** End of the named semaphore lock implementation ****************
+******************************************************************************/
+
+
+/******************************************************************************
+*************************** Begin AFP Locking *********************************
+**
+** AFP is the Apple Filing Protocol. AFP is a network filesystem found
+** on Apple Macintosh computers - both OS9 and OSX.
+**
+** Third-party implementations of AFP are available. But this code here
+** only works on OSX.
+*/
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+** The afpLockingContext structure contains all afp lock specific state
+*/
+typedef struct afpLockingContext afpLockingContext;
+struct afpLockingContext {
+ int reserved;
+ const char *dbPath; /* Name of the open file */
+};
+
+struct ByteRangeLockPB2
+{
+ unsigned long long offset; /* offset to first byte to lock */
+ unsigned long long length; /* nbr of bytes to lock */
+ unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
+ unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
+ unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
+ int fd; /* file desc to assoc this lock with */
+};
+
+#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
+
+/*
+** This is a utility for setting or clearing a bit-range lock on an
+** AFP filesystem.
+**
+** Return SQLITE_OK on success, SQLITE_BUSY on failure.
+*/
+static int afpSetLock(
+ const char *path, /* Name of the file to be locked or unlocked */
+ unixFile *pFile, /* Open file descriptor on path */
+ unsigned long long offset, /* First byte to be locked */
+ unsigned long long length, /* Number of bytes to lock */
+ int setLockFlag /* True to set lock. False to clear lock */
+){
+ struct ByteRangeLockPB2 pb;
+ int err;
+
+ pb.unLockFlag = setLockFlag ? 0 : 1;
+ pb.startEndFlag = 0;
+ pb.offset = offset;
+ pb.length = length;
+ pb.fd = pFile->h;
+
+ OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
+ (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
+ offset, length));
+ err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
+ if ( err==-1 ) {
+ int rc;
+ int tErrno = errno;
+ OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
+ path, tErrno, strerror(tErrno)));
+#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
+ rc = SQLITE_BUSY;
+#else
+ rc = sqliteErrorFromPosixError(tErrno,
+ setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
+#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
+ if( IS_LOCK_ERROR(rc) ){
+ storeLastErrno(pFile, tErrno);
+ }
+ return rc;
+ } else {
+ return SQLITE_OK;
+ }
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int rc = SQLITE_OK;
+ int reserved = 0;
+ unixFile *pFile = (unixFile*)id;
+ afpLockingContext *context;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+
+ assert( pFile );
+ context = (afpLockingContext *) pFile->lockingContext;
+ if( context->reserved ){
+ *pResOut = 1;
+ return SQLITE_OK;
+ }
+ sqlite3_mutex_enter(pFile->pInode->pLockMutex);
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->pInode->eFileLock>SHARED_LOCK ){
+ reserved = 1;
+ }
+
+ /* Otherwise see if some other process holds it.
+ */
+ if( !reserved ){
+ /* lock the RESERVED byte */
+ int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
+ if( SQLITE_OK==lrc ){
+ /* if we succeeded in taking the reserved lock, unlock it to restore
+ ** the original state */
+ lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
+ } else {
+ /* if we failed to get the lock then someone else must have it */
+ reserved = 1;
+ }
+ if( IS_LOCK_ERROR(lrc) ){
+ rc=lrc;
+ }
+ }
+
+ sqlite3_mutex_leave(pFile->pInode->pLockMutex);
+ OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
+
+ *pResOut = reserved;
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int afpLock(sqlite3_file *id, int eFileLock){
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode = pFile->pInode;
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+
+ assert( pFile );
+ OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
+ azFileLock(eFileLock), azFileLock(pFile->eFileLock),
+ azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
+ ** unixEnterMutex() hasn't been called yet.
+ */
+ if( pFile->eFileLock>=eFileLock ){
+ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
+ azFileLock(eFileLock)));
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct
+ ** (1) We never move from unlocked to anything higher than shared lock.
+ ** (2) SQLite never explicitly requests a pending lock.
+ ** (3) A shared lock is always held when a reserve lock is requested.
+ */
+ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
+ assert( eFileLock!=PENDING_LOCK );
+ assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
+
+ /* This mutex is needed because pFile->pInode is shared across threads
+ */
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+
+ /* If some thread using this PID has a lock via a different unixFile*
+ ** handle that precludes the requested lock, return BUSY.
+ */
+ if( (pFile->eFileLock!=pInode->eFileLock &&
+ (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
+ ){
+ rc = SQLITE_BUSY;
+ goto afp_end_lock;
+ }
+
+ /* If a SHARED lock is requested, and some thread using this PID already
+ ** has a SHARED or RESERVED lock, then increment reference counts and
+ ** return SQLITE_OK.
+ */
+ if( eFileLock==SHARED_LOCK &&
+ (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
+ assert( eFileLock==SHARED_LOCK );
+ assert( pFile->eFileLock==0 );
+ assert( pInode->nShared>0 );
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nShared++;
+ pInode->nLock++;
+ goto afp_end_lock;
+ }
+
+ /* A PENDING lock is needed before acquiring a SHARED lock and before
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
+ if( eFileLock==SHARED_LOCK
+ || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
+ ){
+ int failed;
+ failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
+ if (failed) {
+ rc = failed;
+ goto afp_end_lock;
+ }
+ }
+
+ /* If control gets to this point, then actually go ahead and make
+ ** operating system calls for the specified lock.
+ */
+ if( eFileLock==SHARED_LOCK ){
+ int lrc1, lrc2, lrc1Errno = 0;
+ long lk, mask;
+
+ assert( pInode->nShared==0 );
+ assert( pInode->eFileLock==0 );
+
+ mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
+ /* Now get the read-lock SHARED_LOCK */
+ /* note that the quality of the randomness doesn't matter that much */
+ lk = random();
+ pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
+ lrc1 = afpSetLock(context->dbPath, pFile,
+ SHARED_FIRST+pInode->sharedByte, 1, 1);
+ if( IS_LOCK_ERROR(lrc1) ){
+ lrc1Errno = pFile->lastErrno;
+ }
+ /* Drop the temporary PENDING lock */
+ lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
+
+ if( IS_LOCK_ERROR(lrc1) ) {
+ storeLastErrno(pFile, lrc1Errno);
+ rc = lrc1;
+ goto afp_end_lock;
+ } else if( IS_LOCK_ERROR(lrc2) ){
+ rc = lrc2;
+ goto afp_end_lock;
+ } else if( lrc1 != SQLITE_OK ) {
+ rc = lrc1;
+ } else {
+ pFile->eFileLock = SHARED_LOCK;
+ pInode->nLock++;
+ pInode->nShared = 1;
+ }
+ }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ }else{
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is
+ ** assumed that there is a SHARED or greater lock on the file
+ ** already.
+ */
+ int failed = 0;
+ assert( 0!=pFile->eFileLock );
+ if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
+ /* Acquire a RESERVED lock */
+ failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
+ if( !failed ){
+ context->reserved = 1;
+ }
+ }
+ if (!failed && eFileLock == EXCLUSIVE_LOCK) {
+ /* Acquire an EXCLUSIVE lock */
+
+ /* Remove the shared lock before trying the range. we'll need to
+ ** reestablish the shared lock if we can't get the afpUnlock
+ */
+ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
+ pInode->sharedByte, 1, 0)) ){
+ int failed2 = SQLITE_OK;
+ /* now attempt to get the exclusive lock range */
+ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
+ SHARED_SIZE, 1);
+ if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
+ SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
+ /* Can't reestablish the shared lock. Sqlite can't deal, this is
+ ** a critical I/O error
+ */
+ rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 :
+ SQLITE_IOERR_LOCK;
+ goto afp_end_lock;
+ }
+ }else{
+ rc = failed;
+ }
+ }
+ if( failed ){
+ rc = failed;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ pInode->eFileLock = eFileLock;
+ }else if( eFileLock==EXCLUSIVE_LOCK ){
+ pFile->eFileLock = PENDING_LOCK;
+ pInode->eFileLock = PENDING_LOCK;
+ }
+
+afp_end_lock:
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
+ rc==SQLITE_OK ? "ok" : "failed"));
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int afpUnlock(sqlite3_file *id, int eFileLock) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ unixInodeInfo *pInode;
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+ int skipShared = 0;
+
+ assert( pFile );
+ OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
+ pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
+ osGetpid(0)));
+
+ assert( eFileLock<=SHARED_LOCK );
+ if( pFile->eFileLock<=eFileLock ){
+ return SQLITE_OK;
+ }
+ pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ assert( pInode->nShared!=0 );
+ if( pFile->eFileLock>SHARED_LOCK ){
+ assert( pInode->eFileLock==pFile->eFileLock );
+
+#ifdef SQLITE_DEBUG
+ /* When reducing a lock such that other processes can start
+ ** reading the database file again, make sure that the
+ ** transaction counter was updated if any part of the database
+ ** file changed. If the transaction counter is not updated,
+ ** other connections to the same file might not realize that
+ ** the file has changed and hence might not know to flush their
+ ** cache. The use of a stale cache can lead to database corruption.
+ */
+ assert( pFile->inNormalWrite==0
+ || pFile->dbUpdate==0
+ || pFile->transCntrChng==1 );
+ pFile->inNormalWrite = 0;
+#endif
+
+ if( pFile->eFileLock==EXCLUSIVE_LOCK ){
+ rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
+ if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
+ /* only re-establish the shared lock if necessary */
+ int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
+ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
+ } else {
+ skipShared = 1;
+ }
+ }
+ if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
+ rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
+ }
+ if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
+ rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
+ if( !rc ){
+ context->reserved = 0;
+ }
+ }
+ if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
+ pInode->eFileLock = SHARED_LOCK;
+ }
+ }
+ if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
+
+ /* Decrement the shared lock counter. Release the lock using an
+ ** OS call only when all threads in this same process have released
+ ** the lock.
+ */
+ unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
+ pInode->nShared--;
+ if( pInode->nShared==0 ){
+ if( !skipShared ){
+ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
+ }
+ if( !rc ){
+ pInode->eFileLock = NO_LOCK;
+ pFile->eFileLock = NO_LOCK;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pInode->nLock--;
+ assert( pInode->nLock>=0 );
+ if( pInode->nLock==0 ) closePendingFds(pFile);
+ }
+ }
+
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ if( rc==SQLITE_OK ){
+ pFile->eFileLock = eFileLock;
+ }
+ return rc;
+}
+
+/*
+** Close a file & cleanup AFP specific locking context
+*/
+static int afpClose(sqlite3_file *id) {
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ assert( id!=0 );
+ afpUnlock(id, NO_LOCK);
+ assert( unixFileMutexNotheld(pFile) );
+ unixEnterMutex();
+ if( pFile->pInode ){
+ unixInodeInfo *pInode = pFile->pInode;
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ if( pInode->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pInode->aPending. It will be automatically closed when
+ ** the last lock is cleared.
+ */
+ setPendingFd(pFile);
+ }
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ }
+ releaseInodeInfo(pFile);
+ sqlite3_free(pFile->lockingContext);
+ rc = closeUnixFile(id);
+ unixLeaveMutex();
+ return rc;
+}
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The code above is the AFP lock implementation. The code is specific
+** to MacOSX and does not work on other unix platforms. No alternative
+** is available. If you don't compile for a mac, then the "unix-afp"
+** VFS is not available.
+**
+********************* End of the AFP lock implementation **********************
+******************************************************************************/
+
+/******************************************************************************
+*************************** Begin NFS Locking ********************************/
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+ ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+ ** must be either NO_LOCK or SHARED_LOCK.
+ **
+ ** If the locking level of the file descriptor is already at or below
+ ** the requested locking level, this routine is a no-op.
+ */
+static int nfsUnlock(sqlite3_file *id, int eFileLock){
+ return posixUnlock(id, eFileLock, 1);
+}
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The code above is the NFS lock implementation. The code is specific
+** to MacOSX and does not work on other unix platforms. No alternative
+** is available.
+**
+********************* End of the NFS lock implementation **********************
+******************************************************************************/
+
+/******************************************************************************
+**************** Non-locking sqlite3_file methods *****************************
+**
+** The next division contains implementations for all methods of the
+** sqlite3_file object other than the locking methods. The locking
+** methods were defined in divisions above (one locking method per
+** division). Those methods that are common to all locking modes
+** are gather together into this division.
+*/
+
+/*
+** Seek to the offset passed as the second argument, then read cnt
+** bytes into pBuf. Return the number of bytes actually read.
+**
+** To avoid stomping the errno value on a failed read the lastErrno value
+** is set before returning.
+*/
+static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
+ int got;
+ int prior = 0;
+#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
+ i64 newOffset;
+#endif
+ TIMER_START;
+ assert( cnt==(cnt&0x1ffff) );
+ assert( id->h>2 );
+ do{
+#if defined(USE_PREAD)
+ got = osPread(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#elif defined(USE_PREAD64)
+ got = osPread64(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#else
+ newOffset = lseek(id->h, offset, SEEK_SET);
+ SimulateIOError( newOffset = -1 );
+ if( newOffset<0 ){
+ storeLastErrno((unixFile*)id, errno);
+ return -1;
+ }
+ got = osRead(id->h, pBuf, cnt);
+#endif
+ if( got==cnt ) break;
+ if( got<0 ){
+ if( errno==EINTR ){ got = 1; continue; }
+ prior = 0;
+ storeLastErrno((unixFile*)id, errno);
+ break;
+ }else if( got>0 ){
+ cnt -= got;
+ offset += got;
+ prior += got;
+ pBuf = (void*)(got + (char*)pBuf);
+ }
+ }while( got>0 );
+ TIMER_END;
+ OSTRACE(("READ %-3d %5d %7lld %llu\n",
+ id->h, got+prior, offset-prior, TIMER_ELAPSED));
+ return got+prior;
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int unixRead(
+ sqlite3_file *id,
+ void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ unixFile *pFile = (unixFile *)id;
+ int got;
+ assert( id );
+ assert( offset>=0 );
+ assert( amt>0 );
+
+ /* If this is a database file (not a journal, super-journal or temp
+ ** file), the bytes in the locking range should never be read or written. */
+#if 0
+ assert( pFile->pPreallocatedUnused==0
+ || offset>=PENDING_BYTE+512
+ || offset+amt<=PENDING_BYTE
+ );
+#endif
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this read request as possible by transferring
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
+ return SQLITE_OK;
+ }else{
+ int nCopy = pFile->mmapSize - offset;
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+ got = seekAndRead(pFile, offset, pBuf, amt);
+ if( got==amt ){
+ return SQLITE_OK;
+ }else if( got<0 ){
+ /* pFile->lastErrno has been set by seekAndRead().
+ ** Usually we return SQLITE_IOERR_READ here, though for some
+ ** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The
+ ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT
+ ** prior to returning to the application by the sqlite3ApiExit()
+ ** routine.
+ */
+ switch( pFile->lastErrno ){
+ case ERANGE:
+ case EIO:
+#ifdef ENXIO
+ case ENXIO:
+#endif
+#ifdef EDEVERR
+ case EDEVERR:
+#endif
+ return SQLITE_IOERR_CORRUPTFS;
+ }
+ return SQLITE_IOERR_READ;
+ }else{
+ storeLastErrno(pFile, 0); /* not a system error */
+ /* Unread parts of the buffer must be zero-filled */
+ memset(&((char*)pBuf)[got], 0, amt-got);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+}
+
+/*
+** Attempt to seek the file-descriptor passed as the first argument to
+** absolute offset iOff, then attempt to write nBuf bytes of data from
+** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
+** return the actual number of bytes written (which may be less than
+** nBuf).
+*/
+static int seekAndWriteFd(
+ int fd, /* File descriptor to write to */
+ i64 iOff, /* File offset to begin writing at */
+ const void *pBuf, /* Copy data from this buffer to the file */
+ int nBuf, /* Size of buffer pBuf in bytes */
+ int *piErrno /* OUT: Error number if error occurs */
+){
+ int rc = 0; /* Value returned by system call */
+
+ assert( nBuf==(nBuf&0x1ffff) );
+ assert( fd>2 );
+ assert( piErrno!=0 );
+ nBuf &= 0x1ffff;
+ TIMER_START;
+
+#if defined(USE_PREAD)
+ do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
+#elif defined(USE_PREAD64)
+ do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
+#else
+ do{
+ i64 iSeek = lseek(fd, iOff, SEEK_SET);
+ SimulateIOError( iSeek = -1 );
+ if( iSeek<0 ){
+ rc = -1;
+ break;
+ }
+ rc = osWrite(fd, pBuf, nBuf);
+ }while( rc<0 && errno==EINTR );
+#endif
+
+ TIMER_END;
+ OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
+
+ if( rc<0 ) *piErrno = errno;
+ return rc;
+}
+
+
+/*
+** Seek to the offset in id->offset then read cnt bytes into pBuf.
+** Return the number of bytes actually read. Update the offset.
+**
+** To avoid stomping the errno value on a failed write the lastErrno value
+** is set before returning.
+*/
+static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
+ return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
+}
+
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int unixWrite(
+ sqlite3_file *id,
+ const void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ unixFile *pFile = (unixFile*)id;
+ int wrote = 0;
+ assert( id );
+ assert( amt>0 );
+
+ /* If this is a database file (not a journal, super-journal or temp
+ ** file), the bytes in the locking range should never be read or written. */
+#if 0
+ assert( pFile->pPreallocatedUnused==0
+ || offset>=PENDING_BYTE+512
+ || offset+amt<=PENDING_BYTE
+ );
+#endif
+
+#ifdef SQLITE_DEBUG
+ /* If we are doing a normal write to a database file (as opposed to
+ ** doing a hot-journal rollback or a write to some file other than a
+ ** normal database file) then record the fact that the database
+ ** has changed. If the transaction counter is modified, record that
+ ** fact too.
+ */
+ if( pFile->inNormalWrite ){
+ pFile->dbUpdate = 1; /* The database has been modified */
+ if( offset<=24 && offset+amt>=27 ){
+ int rc;
+ char oldCntr[4];
+ SimulateIOErrorBenign(1);
+ rc = seekAndRead(pFile, 24, oldCntr, 4);
+ SimulateIOErrorBenign(0);
+ if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
+ pFile->transCntrChng = 1; /* The transaction counter has changed */
+ }
+ }
+ }
+#endif
+
+#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this write request as possible by transferring
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
+ return SQLITE_OK;
+ }else{
+ int nCopy = pFile->mmapSize - offset;
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+ while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){
+ amt -= wrote;
+ offset += wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ SimulateIOError(( wrote=(-1), amt=1 ));
+ SimulateDiskfullError(( wrote=0, amt=1 ));
+
+ if( amt>wrote ){
+ if( wrote<0 && pFile->lastErrno!=ENOSPC ){
+ /* lastErrno set by seekAndWrite */
+ return SQLITE_IOERR_WRITE;
+ }else{
+ storeLastErrno(pFile, 0); /* not a system error */
+ return SQLITE_FULL;
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occurring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** We do not trust systems to provide a working fdatasync(). Some do.
+** Others do no. To be safe, we will stick with the (slightly slower)
+** fsync(). If you know that your system does support fdatasync() correctly,
+** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
+*/
+#if !defined(fdatasync) && !HAVE_FDATASYNC
+# define fdatasync fsync
+#endif
+
+/*
+** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
+** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
+** only available on Mac OS X. But that could change.
+*/
+#ifdef F_FULLFSYNC
+# define HAVE_FULLFSYNC 1
+#else
+# define HAVE_FULLFSYNC 0
+#endif
+
+
+/*
+** The fsync() system call does not work as advertised on many
+** unix systems. The following procedure is an attempt to make
+** it work better.
+**
+** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
+** for testing when we want to run through the test suite quickly.
+** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
+** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
+** or power failure will likely corrupt the database file.
+**
+** SQLite sets the dataOnly flag if the size of the file is unchanged.
+** The idea behind dataOnly is that it should only write the file content
+** to disk, not the inode. We only set dataOnly if the file size is
+** unchanged since the file size is part of the inode. However,
+** Ted Ts'o tells us that fdatasync() will also write the inode if the
+** file size has changed. The only real difference between fdatasync()
+** and fsync(), Ted tells us, is that fdatasync() will not flush the
+** inode if the mtime or owner or other inode attributes have changed.
+** We only care about the file size, not the other file attributes, so
+** as far as SQLite is concerned, an fdatasync() is always adequate.
+** So, we always use fdatasync() if it is available, regardless of
+** the value of the dataOnly flag.
+*/
+static int full_fsync(int fd, int fullSync, int dataOnly){
+ int rc;
+
+ /* The following "ifdef/elif/else/" block has the same structure as
+ ** the one below. It is replicated here solely to avoid cluttering
+ ** up the real code with the UNUSED_PARAMETER() macros.
+ */
+#ifdef SQLITE_NO_SYNC
+ UNUSED_PARAMETER(fd);
+ UNUSED_PARAMETER(fullSync);
+ UNUSED_PARAMETER(dataOnly);
+#elif HAVE_FULLFSYNC
+ UNUSED_PARAMETER(dataOnly);
+#else
+ UNUSED_PARAMETER(fullSync);
+ UNUSED_PARAMETER(dataOnly);
+#endif
+
+ /* Record the number of times that we do a normal fsync() and
+ ** FULLSYNC. This is used during testing to verify that this procedure
+ ** gets called with the correct arguments.
+ */
+#ifdef SQLITE_TEST
+ if( fullSync ) sqlite3_fullsync_count++;
+ sqlite3_sync_count++;
+#endif
+
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op. But go ahead and call fstat() to validate the file
+ ** descriptor as we need a method to provoke a failure during
+ ** coverage testing.
+ */
+#ifdef SQLITE_NO_SYNC
+ {
+ struct stat buf;
+ rc = osFstat(fd, &buf);
+ }
+#elif HAVE_FULLFSYNC
+ if( fullSync ){
+ rc = osFcntl(fd, F_FULLFSYNC, 0);
+ }else{
+ rc = 1;
+ }
+ /* If the FULLFSYNC failed, fall back to attempting an fsync().
+ ** It shouldn't be possible for fullfsync to fail on the local
+ ** file system (on OSX), so failure indicates that FULLFSYNC
+ ** isn't supported for this file system. So, attempt an fsync
+ ** and (for now) ignore the overhead of a superfluous fcntl call.
+ ** It'd be better to detect fullfsync support once and avoid
+ ** the fcntl call every time sync is called.
+ */
+ if( rc ) rc = fsync(fd);
+
+#elif defined(__APPLE__)
+ /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
+ ** so currently we default to the macro that redefines fdatasync to fsync
+ */
+ rc = fsync(fd);
+#else
+ rc = fdatasync(fd);
+#if OS_VXWORKS
+ if( rc==-1 && errno==ENOTSUP ){
+ rc = fsync(fd);
+ }
+#endif /* OS_VXWORKS */
+#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
+
+ if( OS_VXWORKS && rc!= -1 ){
+ rc = 0;
+ }
+ return rc;
+}
+
+/*
+** Open a file descriptor to the directory containing file zFilename.
+** If successful, *pFd is set to the opened file descriptor and
+** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
+** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
+** value.
+**
+** The directory file descriptor is used for only one thing - to
+** fsync() a directory to make sure file creation and deletion events
+** are flushed to disk. Such fsyncs are not needed on newer
+** journaling filesystems, but are required on older filesystems.
+**
+** This routine can be overridden using the xSetSysCall interface.
+** The ability to override this routine was added in support of the
+** chromium sandbox. Opening a directory is a security risk (we are
+** told) so making it overrideable allows the chromium sandbox to
+** replace this routine with a harmless no-op. To make this routine
+** a no-op, replace it with a stub that returns SQLITE_OK but leaves
+** *pFd set to a negative number.
+**
+** If SQLITE_OK is returned, the caller is responsible for closing
+** the file descriptor *pFd using close().
+*/
+static int openDirectory(const char *zFilename, int *pFd){
+ int ii;
+ int fd = -1;
+ char zDirname[MAX_PATHNAME+1];
+
+ sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
+ for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
+ if( ii>0 ){
+ zDirname[ii] = '\0';
+ }else{
+ if( zDirname[0]!='/' ) zDirname[0] = '.';
+ zDirname[1] = 0;
+ }
+ fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
+ if( fd>=0 ){
+ OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
+ }
+ *pFd = fd;
+ if( fd>=0 ) return SQLITE_OK;
+ return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
+}
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+**
+** If dataOnly==0 then both the file itself and its metadata (file
+** size, access time, etc) are synced. If dataOnly!=0 then only the
+** file data is synced.
+**
+** Under Unix, also make sure that the directory entry for the file
+** has been created by fsync-ing the directory that contains the file.
+** If we do not do this and we encounter a power failure, the directory
+** entry for the journal might not exist after we reboot. The next
+** SQLite to access the file will not know that the journal exists (because
+** the directory entry for the journal was never created) and the transaction
+** will not roll back - possibly leading to database corruption.
+*/
+static int unixSync(sqlite3_file *id, int flags){
+ int rc;
+ unixFile *pFile = (unixFile*)id;
+
+ int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
+ int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
+
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL
+ || (flags&0x0F)==SQLITE_SYNC_FULL
+ );
+
+ /* Unix cannot, but some systems may return SQLITE_FULL from here. This
+ ** line is to test that doing so does not cause any problems.
+ */
+ SimulateDiskfullError( return SQLITE_FULL );
+
+ assert( pFile );
+ OSTRACE(("SYNC %-3d\n", pFile->h));
+ rc = full_fsync(pFile->h, isFullsync, isDataOnly);
+ SimulateIOError( rc=1 );
+ if( rc ){
+ storeLastErrno(pFile, errno);
+ return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
+ }
+
+ /* Also fsync the directory containing the file if the DIRSYNC flag
+ ** is set. This is a one-time occurrence. Many systems (examples: AIX)
+ ** are unable to fsync a directory, so ignore errors on the fsync.
+ */
+ if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
+ int dirfd;
+ OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
+ HAVE_FULLFSYNC, isFullsync));
+ rc = osOpenDirectory(pFile->zPath, &dirfd);
+ if( rc==SQLITE_OK ){
+ full_fsync(dirfd, 0, 0);
+ robust_close(pFile, dirfd, __LINE__);
+ }else{
+ assert( rc==SQLITE_CANTOPEN );
+ rc = SQLITE_OK;
+ }
+ pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
+ }
+ return rc;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+static int unixTruncate(sqlite3_file *id, i64 nByte){
+ unixFile *pFile = (unixFile *)id;
+ int rc;
+ assert( pFile );
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE );
+
+ /* If the user has configured a chunk-size for this file, truncate the
+ ** file so that it consists of an integer number of chunks (i.e. the
+ ** actual file size after the operation may be larger than the requested
+ ** size).
+ */
+ if( pFile->szChunk>0 ){
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
+ }
+
+ rc = robust_ftruncate(pFile->h, nByte);
+ if( rc ){
+ storeLastErrno(pFile, errno);
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
+ }else{
+#ifdef SQLITE_DEBUG
+ /* If we are doing a normal write to a database file (as opposed to
+ ** doing a hot-journal rollback or a write to some file other than a
+ ** normal database file) and we truncate the file to zero length,
+ ** that effectively updates the change counter. This might happen
+ ** when restoring a database using the backup API from a zero-length
+ ** source.
+ */
+ if( pFile->inNormalWrite && nByte==0 ){
+ pFile->transCntrChng = 1;
+ }
+#endif
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ /* If the file was just truncated to a size smaller than the currently
+ ** mapped region, reduce the effective mapping size as well. SQLite will
+ ** use read() and write() to access data beyond this point from now on.
+ */
+ if( nByte<pFile->mmapSize ){
+ pFile->mmapSize = nByte;
+ }
+#endif
+
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+static int unixFileSize(sqlite3_file *id, i64 *pSize){
+ int rc;
+ struct stat buf;
+ assert( id );
+ rc = osFstat(((unixFile*)id)->h, &buf);
+ SimulateIOError( rc=1 );
+ if( rc!=0 ){
+ storeLastErrno((unixFile*)id, errno);
+ return SQLITE_IOERR_FSTAT;
+ }
+ *pSize = buf.st_size;
+
+ /* When opening a zero-size database, the findInodeInfo() procedure
+ ** writes a single byte into that file in order to work around a bug
+ ** in the OS-X msdos filesystem. In order to avoid problems with upper
+ ** layers, we need to report this file size as zero even though it is
+ ** really 1. Ticket #3260.
+ */
+ if( *pSize==1 ) *pSize = 0;
+
+
+ return SQLITE_OK;
+}
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+/*
+** Handler for proxy-locking file-control verbs. Defined below in the
+** proxying locking division.
+*/
+static int proxyFileControl(sqlite3_file*,int,void*);
+#endif
+
+/*
+** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
+** file-control operation. Enlarge the database to nBytes in size
+** (rounded up to the next chunk-size). If the database is already
+** nBytes or larger, this routine is a no-op.
+*/
+static int fcntlSizeHint(unixFile *pFile, i64 nByte){
+ if( pFile->szChunk>0 ){
+ i64 nSize; /* Required file size */
+ struct stat buf; /* Used to hold return values of fstat() */
+
+ if( osFstat(pFile->h, &buf) ){
+ return SQLITE_IOERR_FSTAT;
+ }
+
+ nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
+ if( nSize>(i64)buf.st_size ){
+
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
+ /* The code below is handling the return value of osFallocate()
+ ** correctly. posix_fallocate() is defined to "returns zero on success,
+ ** or an error number on failure". See the manpage for details. */
+ int err;
+ do{
+ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
+ }while( err==EINTR );
+ if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE;
+#else
+ /* If the OS does not have posix_fallocate(), fake it. Write a
+ ** single byte to the last byte in each block that falls entirely
+ ** within the extended region. Then, if required, a single byte
+ ** at offset (nSize-1), to set the size of the file correctly.
+ ** This is a similar technique to that used by glibc on systems
+ ** that do not have a real fallocate() call.
+ */
+ int nBlk = buf.st_blksize; /* File-system block size */
+ int nWrite = 0; /* Number of bytes written by seekAndWrite */
+ i64 iWrite; /* Next offset to write to */
+
+ iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
+ assert( iWrite>=buf.st_size );
+ assert( ((iWrite+1)%nBlk)==0 );
+ for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
+ if( iWrite>=nSize ) iWrite = nSize - 1;
+ nWrite = seekAndWrite(pFile, iWrite, "", 1);
+ if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
+ }
+#endif
+ }
+ }
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
+ int rc;
+ if( pFile->szChunk<=0 ){
+ if( robust_ftruncate(pFile->h, nByte) ){
+ storeLastErrno(pFile, errno);
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
+ }
+ }
+
+ rc = unixMapfile(pFile, nByte);
+ return rc;
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+/*
+** If *pArg is initially negative then this is a query. Set *pArg to
+** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
+**
+** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
+*/
+static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
+ if( *pArg<0 ){
+ *pArg = (pFile->ctrlFlags & mask)!=0;
+ }else if( (*pArg)==0 ){
+ pFile->ctrlFlags &= ~mask;
+ }else{
+ pFile->ctrlFlags |= mask;
+ }
+}
+
+/* Forward declaration */
+static int unixGetTempname(int nBuf, char *zBuf);
+#ifndef SQLITE_OMIT_WAL
+ static int unixFcntlExternalReader(unixFile*, int*);
+#endif
+
+/*
+** Information and control of an open file handle.
+*/
+static int unixFileControl(sqlite3_file *id, int op, void *pArg){
+ unixFile *pFile = (unixFile*)id;
+ switch( op ){
+#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+ case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: {
+ int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE);
+ return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK;
+ }
+ case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: {
+ int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE);
+ return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK;
+ }
+ case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: {
+ int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE);
+ return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK;
+ }
+#endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
+
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = pFile->eFileLock;
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_LAST_ERRNO: {
+ *(int*)pArg = pFile->lastErrno;
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_CHUNK_SIZE: {
+ pFile->szChunk = *(int *)pArg;
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_SIZE_HINT: {
+ int rc;
+ SimulateIOErrorBenign(1);
+ rc = fcntlSizeHint(pFile, *(i64 *)pArg);
+ SimulateIOErrorBenign(0);
+ return rc;
+ }
+ case SQLITE_FCNTL_PERSIST_WAL: {
+ unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
+ unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_VFSNAME: {
+ *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_TEMPFILENAME: {
+ char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname );
+ if( zTFile ){
+ unixGetTempname(pFile->pVfs->mxPathname, zTFile);
+ *(char**)pArg = zTFile;
+ }
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_HAS_MOVED: {
+ *(int*)pArg = fileHasMoved(pFile);
+ return SQLITE_OK;
+ }
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ case SQLITE_FCNTL_LOCK_TIMEOUT: {
+ int iOld = pFile->iBusyTimeout;
+ pFile->iBusyTimeout = *(int*)pArg;
+ *(int*)pArg = iOld;
+ return SQLITE_OK;
+ }
+#endif
+#if SQLITE_MAX_MMAP_SIZE>0
+ case SQLITE_FCNTL_MMAP_SIZE: {
+ i64 newLimit = *(i64*)pArg;
+ int rc = SQLITE_OK;
+ if( newLimit>sqlite3GlobalConfig.mxMmap ){
+ newLimit = sqlite3GlobalConfig.mxMmap;
+ }
+
+ /* The value of newLimit may be eventually cast to (size_t) and passed
+ ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a
+ ** 64-bit type. */
+ if( newLimit>0 && sizeof(size_t)<8 ){
+ newLimit = (newLimit & 0x7FFFFFFF);
+ }
+
+ *(i64*)pArg = pFile->mmapSizeMax;
+ if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
+ pFile->mmapSizeMax = newLimit;
+ if( pFile->mmapSize>0 ){
+ unixUnmapfile(pFile);
+ rc = unixMapfile(pFile, -1);
+ }
+ }
+ return rc;
+ }
+#endif
+#ifdef SQLITE_DEBUG
+ /* The pager calls this method to signal that it has done
+ ** a rollback and that the database is therefore unchanged and
+ ** it hence it is OK for the transaction change counter to be
+ ** unchanged.
+ */
+ case SQLITE_FCNTL_DB_UNCHANGED: {
+ ((unixFile*)id)->dbUpdate = 0;
+ return SQLITE_OK;
+ }
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ case SQLITE_FCNTL_SET_LOCKPROXYFILE:
+ case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
+ return proxyFileControl(id,op,pArg);
+ }
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
+
+ case SQLITE_FCNTL_EXTERNAL_READER: {
+#ifndef SQLITE_OMIT_WAL
+ return unixFcntlExternalReader((unixFile*)id, (int*)pArg);
+#else
+ *(int*)pArg = 0;
+ return SQLITE_OK;
+#endif
+ }
+ }
+ return SQLITE_NOTFOUND;
+}
+
+/*
+** If pFd->sectorSize is non-zero when this function is called, it is a
+** no-op. Otherwise, the values of pFd->sectorSize and
+** pFd->deviceCharacteristics are set according to the file-system
+** characteristics.
+**
+** There are two versions of this function. One for QNX and one for all
+** other systems.
+*/
+#ifndef __QNXNTO__
+static void setDeviceCharacteristics(unixFile *pFd){
+ assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 );
+ if( pFd->sectorSize==0 ){
+#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+ int res;
+ u32 f = 0;
+
+ /* Check for support for F2FS atomic batch writes. */
+ res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f);
+ if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){
+ pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC;
+ }
+#endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
+
+ /* Set the POWERSAFE_OVERWRITE flag if requested. */
+ if( pFd->ctrlFlags & UNIXFILE_PSOW ){
+ pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
+ }
+
+ pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
+ }
+}
+#else
+#include <sys/dcmd_blk.h>
+#include <sys/statvfs.h>
+static void setDeviceCharacteristics(unixFile *pFile){
+ if( pFile->sectorSize == 0 ){
+ struct statvfs fsInfo;
+
+ /* Set defaults for non-supported filesystems */
+ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
+ pFile->deviceCharacteristics = 0;
+ if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
+ return;
+ }
+
+ if( !strcmp(fsInfo.f_basetype, "tmp") ) {
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( strstr(fsInfo.f_basetype, "etfs") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ /* etfs cluster size writes are atomic */
+ (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ /* full bitset of atomics from max sector size and smaller */
+ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else if( strstr(fsInfo.f_basetype, "dos") ){
+ pFile->sectorSize = fsInfo.f_bsize;
+ pFile->deviceCharacteristics =
+ /* full bitset of atomics from max sector size and smaller */
+ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
+ ** so it is ordered */
+ 0;
+ }else{
+ pFile->deviceCharacteristics =
+ SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
+ ** the write succeeds */
+ 0;
+ }
+ }
+ /* Last chance verification. If the sector size isn't a multiple of 512
+ ** then it isn't valid.*/
+ if( pFile->sectorSize % 512 != 0 ){
+ pFile->deviceCharacteristics = 0;
+ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
+ }
+}
+#endif
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int unixSectorSize(sqlite3_file *id){
+ unixFile *pFd = (unixFile*)id;
+ setDeviceCharacteristics(pFd);
+ return pFd->sectorSize;
+}
+
+/*
+** Return the device characteristics for the file.
+**
+** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
+** However, that choice is controversial since technically the underlying
+** file system does not always provide powersafe overwrites. (In other
+** words, after a power-loss event, parts of the file that were never
+** written might end up being altered.) However, non-PSOW behavior is very,
+** very rare. And asserting PSOW makes a large reduction in the amount
+** of required I/O for journaling, since a lot of padding is eliminated.
+** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
+** available to turn it off and URI query parameter available to turn it off.
+*/
+static int unixDeviceCharacteristics(sqlite3_file *id){
+ unixFile *pFd = (unixFile*)id;
+ setDeviceCharacteristics(pFd);
+ return pFd->deviceCharacteristics;
+}
+
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+
+/*
+** Return the system page size.
+**
+** This function should not be called directly by other code in this file.
+** Instead, it should be called via macro osGetpagesize().
+*/
+static int unixGetpagesize(void){
+#if OS_VXWORKS
+ return 1024;
+#elif defined(_BSD_SOURCE)
+ return getpagesize();
+#else
+ return (int)sysconf(_SC_PAGESIZE);
+#endif
+}
+
+#endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
+
+#ifndef SQLITE_OMIT_WAL
+
+/*
+** Object used to represent an shared memory buffer.
+**
+** When multiple threads all reference the same wal-index, each thread
+** has its own unixShm object, but they all point to a single instance
+** of this unixShmNode object. In other words, each wal-index is opened
+** only once per process.
+**
+** Each unixShmNode object is connected to a single unixInodeInfo object.
+** We could coalesce this object into unixInodeInfo, but that would mean
+** every open file that does not use shared memory (in other words, most
+** open files) would have to carry around this extra information. So
+** the unixInodeInfo object contains a pointer to this unixShmNode object
+** and the unixShmNode object is created only when needed.
+**
+** unixMutexHeld() must be true when creating or destroying
+** this object or while reading or writing the following fields:
+**
+** nRef
+**
+** The following fields are read-only after the object is created:
+**
+** hShm
+** zFilename
+**
+** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and
+** unixMutexHeld() is true when reading or writing any other field
+** in this structure.
+*/
+struct unixShmNode {
+ unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
+ sqlite3_mutex *pShmMutex; /* Mutex to access this object */
+ char *zFilename; /* Name of the mmapped file */
+ int hShm; /* Open file descriptor */
+ int szRegion; /* Size of shared-memory regions */
+ u16 nRegion; /* Size of array apRegion */
+ u8 isReadonly; /* True if read-only */
+ u8 isUnlocked; /* True if no DMS lock held */
+ char **apRegion; /* Array of mapped shared-memory regions */
+ int nRef; /* Number of unixShm objects pointing to this */
+ unixShm *pFirst; /* All unixShm objects pointing to this */
+ int aLock[SQLITE_SHM_NLOCK]; /* # shared locks on slot, -1==excl lock */
+#ifdef SQLITE_DEBUG
+ u8 exclMask; /* Mask of exclusive locks held */
+ u8 sharedMask; /* Mask of shared locks held */
+ u8 nextShmId; /* Next available unixShm.id value */
+#endif
+};
+
+/*
+** Structure used internally by this VFS to record the state of an
+** open shared memory connection.
+**
+** The following fields are initialized when this object is created and
+** are read-only thereafter:
+**
+** unixShm.pShmNode
+** unixShm.id
+**
+** All other fields are read/write. The unixShm.pShmNode->pShmMutex must
+** be held while accessing any read/write fields.
+*/
+struct unixShm {
+ unixShmNode *pShmNode; /* The underlying unixShmNode object */
+ unixShm *pNext; /* Next unixShm with the same unixShmNode */
+ u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */
+ u8 id; /* Id of this connection within its unixShmNode */
+ u16 sharedMask; /* Mask of shared locks held */
+ u16 exclMask; /* Mask of exclusive locks held */
+};
+
+/*
+** Constants used for locking
+*/
+#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
+#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
+
+/*
+** Use F_GETLK to check whether or not there are any readers with open
+** wal-mode transactions in other processes on database file pFile. If
+** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are
+** such transactions, or 0 otherwise. If an error occurs, return an
+** SQLite error code. The final value of *piOut is undefined in this
+** case.
+*/
+static int unixFcntlExternalReader(unixFile *pFile, int *piOut){
+ int rc = SQLITE_OK;
+ *piOut = 0;
+ if( pFile->pShm){
+ unixShmNode *pShmNode = pFile->pShm->pShmNode;
+ struct flock f;
+
+ memset(&f, 0, sizeof(f));
+ f.l_type = F_WRLCK;
+ f.l_whence = SEEK_SET;
+ f.l_start = UNIX_SHM_BASE + 3;
+ f.l_len = SQLITE_SHM_NLOCK - 3;
+
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){
+ rc = SQLITE_IOERR_LOCK;
+ }else{
+ *piOut = (f.l_type!=F_UNLCK);
+ }
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ }
+
+ return rc;
+}
+
+
+/*
+** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
+**
+** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
+** otherwise.
+*/
+static int unixShmSystemLock(
+ unixFile *pFile, /* Open connection to the WAL file */
+ int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
+ int ofst, /* First byte of the locking range */
+ int n /* Number of bytes to lock */
+){
+ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
+ struct flock f; /* The posix advisory locking structure */
+ int rc = SQLITE_OK; /* Result code form fcntl() */
+
+ /* Access to the unixShmNode object is serialized by the caller */
+ pShmNode = pFile->pInode->pShmNode;
+ assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) );
+ assert( pShmNode->nRef>0 || unixMutexHeld() );
+
+ /* Shared locks never span more than one byte */
+ assert( n==1 || lockType!=F_RDLCK );
+
+ /* Locks are within range */
+ assert( n>=1 && n<=SQLITE_SHM_NLOCK );
+
+ if( pShmNode->hShm>=0 ){
+ int res;
+ /* Initialize the locking parameters */
+ f.l_type = lockType;
+ f.l_whence = SEEK_SET;
+ f.l_start = ofst;
+ f.l_len = n;
+ res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile);
+ if( res==-1 ){
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY);
+#else
+ rc = SQLITE_BUSY;
+#endif
+ }
+ }
+
+ /* Update the global lock state and do debug tracing */
+#ifdef SQLITE_DEBUG
+ { u16 mask;
+ OSTRACE(("SHM-LOCK "));
+ mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
+ if( rc==SQLITE_OK ){
+ if( lockType==F_UNLCK ){
+ OSTRACE(("unlock %d ok", ofst));
+ pShmNode->exclMask &= ~mask;
+ pShmNode->sharedMask &= ~mask;
+ }else if( lockType==F_RDLCK ){
+ OSTRACE(("read-lock %d ok", ofst));
+ pShmNode->exclMask &= ~mask;
+ pShmNode->sharedMask |= mask;
+ }else{
+ assert( lockType==F_WRLCK );
+ OSTRACE(("write-lock %d ok", ofst));
+ pShmNode->exclMask |= mask;
+ pShmNode->sharedMask &= ~mask;
+ }
+ }else{
+ if( lockType==F_UNLCK ){
+ OSTRACE(("unlock %d failed", ofst));
+ }else if( lockType==F_RDLCK ){
+ OSTRACE(("read-lock failed"));
+ }else{
+ assert( lockType==F_WRLCK );
+ OSTRACE(("write-lock %d failed", ofst));
+ }
+ }
+ OSTRACE((" - afterwards %03x,%03x\n",
+ pShmNode->sharedMask, pShmNode->exclMask));
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Return the minimum number of 32KB shm regions that should be mapped at
+** a time, assuming that each mapping must be an integer multiple of the
+** current system page-size.
+**
+** Usually, this is 1. The exception seems to be systems that are configured
+** to use 64KB pages - in this case each mapping must cover at least two
+** shm regions.
+*/
+static int unixShmRegionPerMap(void){
+ int shmsz = 32*1024; /* SHM region size */
+ int pgsz = osGetpagesize(); /* System page size */
+ assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */
+ if( pgsz<shmsz ) return 1;
+ return pgsz/shmsz;
+}
+
+/*
+** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
+**
+** This is not a VFS shared-memory method; it is a utility function called
+** by VFS shared-memory methods.
+*/
+static void unixShmPurge(unixFile *pFd){
+ unixShmNode *p = pFd->pInode->pShmNode;
+ assert( unixMutexHeld() );
+ if( p && ALWAYS(p->nRef==0) ){
+ int nShmPerMap = unixShmRegionPerMap();
+ int i;
+ assert( p->pInode==pFd->pInode );
+ sqlite3_mutex_free(p->pShmMutex);
+ for(i=0; i<p->nRegion; i+=nShmPerMap){
+ if( p->hShm>=0 ){
+ osMunmap(p->apRegion[i], p->szRegion);
+ }else{
+ sqlite3_free(p->apRegion[i]);
+ }
+ }
+ sqlite3_free(p->apRegion);
+ if( p->hShm>=0 ){
+ robust_close(pFd, p->hShm, __LINE__);
+ p->hShm = -1;
+ }
+ p->pInode->pShmNode = 0;
+ sqlite3_free(p);
+ }
+}
+
+/*
+** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
+** take it now. Return SQLITE_OK if successful, or an SQLite error
+** code otherwise.
+**
+** If the DMS cannot be locked because this is a readonly_shm=1
+** connection and no other process already holds a lock, return
+** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
+*/
+static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){
+ struct flock lock;
+ int rc = SQLITE_OK;
+
+ /* Use F_GETLK to determine the locks other processes are holding
+ ** on the DMS byte. If it indicates that another process is holding
+ ** a SHARED lock, then this process may also take a SHARED lock
+ ** and proceed with opening the *-shm file.
+ **
+ ** Or, if no other process is holding any lock, then this process
+ ** is the first to open it. In this case take an EXCLUSIVE lock on the
+ ** DMS byte and truncate the *-shm file to zero bytes in size. Then
+ ** downgrade to a SHARED lock on the DMS byte.
+ **
+ ** If another process is holding an EXCLUSIVE lock on the DMS byte,
+ ** return SQLITE_BUSY to the caller (it will try again). An earlier
+ ** version of this code attempted the SHARED lock at this point. But
+ ** this introduced a subtle race condition: if the process holding
+ ** EXCLUSIVE failed just before truncating the *-shm file, then this
+ ** process might open and use the *-shm file without truncating it.
+ ** And if the *-shm file has been corrupted by a power failure or
+ ** system crash, the database itself may also become corrupt. */
+ lock.l_whence = SEEK_SET;
+ lock.l_start = UNIX_SHM_DMS;
+ lock.l_len = 1;
+ lock.l_type = F_WRLCK;
+ if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) {
+ rc = SQLITE_IOERR_LOCK;
+ }else if( lock.l_type==F_UNLCK ){
+ if( pShmNode->isReadonly ){
+ pShmNode->isUnlocked = 1;
+ rc = SQLITE_READONLY_CANTINIT;
+ }else{
+ rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);
+ /* The first connection to attach must truncate the -shm file. We
+ ** truncate to 3 bytes (an arbitrary small number, less than the
+ ** -shm header size) rather than 0 as a system debugging aid, to
+ ** help detect if a -shm file truncation is legitimate or is the work
+ ** or a rogue process. */
+ if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){
+ rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
+ }
+ }
+ }else if( lock.l_type==F_WRLCK ){
+ rc = SQLITE_BUSY;
+ }
+
+ if( rc==SQLITE_OK ){
+ assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK );
+ rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
+ }
+ return rc;
+}
+
+/*
+** Open a shared-memory area associated with open database file pDbFd.
+** This particular implementation uses mmapped files.
+**
+** The file used to implement shared-memory is in the same directory
+** as the open database file and has the same name as the open database
+** file with the "-shm" suffix added. For example, if the database file
+** is "/home/user1/config.db" then the file that is created and mmapped
+** for shared memory will be called "/home/user1/config.db-shm".
+**
+** Another approach to is to use files in /dev/shm or /dev/tmp or an
+** some other tmpfs mount. But if a file in a different directory
+** from the database file is used, then differing access permissions
+** or a chroot() might cause two different processes on the same
+** database to end up using different files for shared memory -
+** meaning that their memory would not really be shared - resulting
+** in database corruption. Nevertheless, this tmpfs file usage
+** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
+** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
+** option results in an incompatible build of SQLite; builds of SQLite
+** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
+** same database file at the same time, database corruption will likely
+** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
+** "unsupported" and may go away in a future SQLite release.
+**
+** When opening a new shared-memory file, if no other instances of that
+** file are currently open, in this process or in other processes, then
+** the file must be truncated to zero length or have its header cleared.
+**
+** If the original database file (pDbFd) is using the "unix-excl" VFS
+** that means that an exclusive lock is held on the database file and
+** that no other processes are able to read or write the database. In
+** that case, we do not really need shared memory. No shared memory
+** file is created. The shared memory will be simulated with heap memory.
+*/
+static int unixOpenSharedMemory(unixFile *pDbFd){
+ struct unixShm *p = 0; /* The connection to be opened */
+ struct unixShmNode *pShmNode; /* The underlying mmapped file */
+ int rc = SQLITE_OK; /* Result code */
+ unixInodeInfo *pInode; /* The inode of fd */
+ char *zShm; /* Name of the file used for SHM */
+ int nShmFilename; /* Size of the SHM filename in bytes */
+
+ /* Allocate space for the new unixShm object. */
+ p = sqlite3_malloc64( sizeof(*p) );
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ memset(p, 0, sizeof(*p));
+ assert( pDbFd->pShm==0 );
+
+ /* Check to see if a unixShmNode object already exists. Reuse an existing
+ ** one if present. Create a new one if necessary.
+ */
+ assert( unixFileMutexNotheld(pDbFd) );
+ unixEnterMutex();
+ pInode = pDbFd->pInode;
+ pShmNode = pInode->pShmNode;
+ if( pShmNode==0 ){
+ struct stat sStat; /* fstat() info for database file */
+#ifndef SQLITE_SHM_DIRECTORY
+ const char *zBasePath = pDbFd->zPath;
+#endif
+
+ /* Call fstat() to figure out the permissions on the database file. If
+ ** a new *-shm file is created, an attempt will be made to create it
+ ** with the same permissions.
+ */
+ if( osFstat(pDbFd->h, &sStat) ){
+ rc = SQLITE_IOERR_FSTAT;
+ goto shm_open_err;
+ }
+
+#ifdef SQLITE_SHM_DIRECTORY
+ nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
+#else
+ nShmFilename = 6 + (int)strlen(zBasePath);
+#endif
+ pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename );
+ if( pShmNode==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto shm_open_err;
+ }
+ memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
+ zShm = pShmNode->zFilename = (char*)&pShmNode[1];
+#ifdef SQLITE_SHM_DIRECTORY
+ sqlite3_snprintf(nShmFilename, zShm,
+ SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
+ (u32)sStat.st_ino, (u32)sStat.st_dev);
+#else
+ sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
+ sqlite3FileSuffix3(pDbFd->zPath, zShm);
+#endif
+ pShmNode->hShm = -1;
+ pDbFd->pInode->pShmNode = pShmNode;
+ pShmNode->pInode = pDbFd->pInode;
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pShmNode->pShmMutex==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto shm_open_err;
+ }
+ }
+
+ if( pInode->bProcessLock==0 ){
+ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
+ pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW,
+ (sStat.st_mode&0777));
+ }
+ if( pShmNode->hShm<0 ){
+ pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW,
+ (sStat.st_mode&0777));
+ if( pShmNode->hShm<0 ){
+ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
+ goto shm_open_err;
+ }
+ pShmNode->isReadonly = 1;
+ }
+
+ /* If this process is running as root, make sure that the SHM file
+ ** is owned by the same user that owns the original database. Otherwise,
+ ** the original owner will not be able to connect.
+ */
+ robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid);
+
+ rc = unixLockSharedMemory(pDbFd, pShmNode);
+ if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
+ }
+ }
+
+ /* Make the new connection a child of the unixShmNode */
+ p->pShmNode = pShmNode;
+#ifdef SQLITE_DEBUG
+ p->id = pShmNode->nextShmId++;
+#endif
+ pShmNode->nRef++;
+ pDbFd->pShm = p;
+ unixLeaveMutex();
+
+ /* The reference count on pShmNode has already been incremented under
+ ** the cover of the unixEnterMutex() mutex and the pointer from the
+ ** new (struct unixShm) object to the pShmNode has been set. All that is
+ ** left to do is to link the new object into the linked list starting
+ ** at pShmNode->pFirst. This must be done while holding the
+ ** pShmNode->pShmMutex.
+ */
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ p->pNext = pShmNode->pFirst;
+ pShmNode->pFirst = p;
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ return rc;
+
+ /* Jump here on any error */
+shm_open_err:
+ unixShmPurge(pDbFd); /* This call frees pShmNode if required */
+ sqlite3_free(p);
+ unixLeaveMutex();
+ return rc;
+}
+
+/*
+** This function is called to obtain a pointer to region iRegion of the
+** shared-memory associated with the database file fd. Shared-memory regions
+** are numbered starting from zero. Each shared-memory region is szRegion
+** bytes in size.
+**
+** If an error occurs, an error code is returned and *pp is set to NULL.
+**
+** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
+** region has not been allocated (by any client, including one running in a
+** separate process), then *pp is set to NULL and SQLITE_OK returned. If
+** bExtend is non-zero and the requested shared-memory region has not yet
+** been allocated, it is allocated by this function.
+**
+** If the shared-memory region has already been allocated or is allocated by
+** this call as described above, then it is mapped into this processes
+** address space (if it is not already), *pp is set to point to the mapped
+** memory and SQLITE_OK returned.
+*/
+static int unixShmMap(
+ sqlite3_file *fd, /* Handle open on database file */
+ int iRegion, /* Region to retrieve */
+ int szRegion, /* Size of regions */
+ int bExtend, /* True to extend file if necessary */
+ void volatile **pp /* OUT: Mapped memory */
+){
+ unixFile *pDbFd = (unixFile*)fd;
+ unixShm *p;
+ unixShmNode *pShmNode;
+ int rc = SQLITE_OK;
+ int nShmPerMap = unixShmRegionPerMap();
+ int nReqRegion;
+
+ /* If the shared-memory file has not yet been opened, open it now. */
+ if( pDbFd->pShm==0 ){
+ rc = unixOpenSharedMemory(pDbFd);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ p = pDbFd->pShm;
+ pShmNode = p->pShmNode;
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ if( pShmNode->isUnlocked ){
+ rc = unixLockSharedMemory(pDbFd, pShmNode);
+ if( rc!=SQLITE_OK ) goto shmpage_out;
+ pShmNode->isUnlocked = 0;
+ }
+ assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
+ assert( pShmNode->pInode==pDbFd->pInode );
+ assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
+ assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
+
+ /* Minimum number of regions required to be mapped. */
+ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
+
+ if( pShmNode->nRegion<nReqRegion ){
+ char **apNew; /* New apRegion[] array */
+ int nByte = nReqRegion*szRegion; /* Minimum required file size */
+ struct stat sStat; /* Used by fstat() */
+
+ pShmNode->szRegion = szRegion;
+
+ if( pShmNode->hShm>=0 ){
+ /* The requested region is not mapped into this processes address space.
+ ** Check to see if it has been allocated (i.e. if the wal-index file is
+ ** large enough to contain the requested region).
+ */
+ if( osFstat(pShmNode->hShm, &sStat) ){
+ rc = SQLITE_IOERR_SHMSIZE;
+ goto shmpage_out;
+ }
+
+ if( sStat.st_size<nByte ){
+ /* The requested memory region does not exist. If bExtend is set to
+ ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
+ */
+ if( !bExtend ){
+ goto shmpage_out;
+ }
+
+ /* Alternatively, if bExtend is true, extend the file. Do this by
+ ** writing a single byte to the end of each (OS) page being
+ ** allocated or extended. Technically, we need only write to the
+ ** last page in order to extend the file. But writing to all new
+ ** pages forces the OS to allocate them immediately, which reduces
+ ** the chances of SIGBUS while accessing the mapped region later on.
+ */
+ else{
+ static const int pgsz = 4096;
+ int iPg;
+
+ /* Write to the last byte of each newly allocated or extended page */
+ assert( (nByte % pgsz)==0 );
+ for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
+ int x = 0;
+ if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){
+ const char *zFile = pShmNode->zFilename;
+ rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
+ goto shmpage_out;
+ }
+ }
+ }
+ }
+ }
+
+ /* Map the requested memory region into this processes address space. */
+ apNew = (char **)sqlite3_realloc(
+ pShmNode->apRegion, nReqRegion*sizeof(char *)
+ );
+ if( !apNew ){
+ rc = SQLITE_IOERR_NOMEM_BKPT;
+ goto shmpage_out;
+ }
+ pShmNode->apRegion = apNew;
+ while( pShmNode->nRegion<nReqRegion ){
+ int nMap = szRegion*nShmPerMap;
+ int i;
+ void *pMem;
+ if( pShmNode->hShm>=0 ){
+ pMem = osMmap(0, nMap,
+ pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
+ MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion
+ );
+ if( pMem==MAP_FAILED ){
+ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
+ goto shmpage_out;
+ }
+ }else{
+ pMem = sqlite3_malloc64(nMap);
+ if( pMem==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto shmpage_out;
+ }
+ memset(pMem, 0, nMap);
+ }
+
+ for(i=0; i<nShmPerMap; i++){
+ pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
+ }
+ pShmNode->nRegion += nShmPerMap;
+ }
+ }
+
+shmpage_out:
+ if( pShmNode->nRegion>iRegion ){
+ *pp = pShmNode->apRegion[iRegion];
+ }else{
+ *pp = 0;
+ }
+ if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ return rc;
+}
+
+/*
+** Check that the pShmNode->aLock[] array comports with the locking bitmasks
+** held by each client. Return true if it does, or false otherwise. This
+** is to be used in an assert(). e.g.
+**
+** assert( assertLockingArrayOk(pShmNode) );
+*/
+#ifdef SQLITE_DEBUG
+static int assertLockingArrayOk(unixShmNode *pShmNode){
+ unixShm *pX;
+ int aLock[SQLITE_SHM_NLOCK];
+ assert( sqlite3_mutex_held(pShmNode->pShmMutex) );
+
+ memset(aLock, 0, sizeof(aLock));
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ int i;
+ for(i=0; i<SQLITE_SHM_NLOCK; i++){
+ if( pX->exclMask & (1<<i) ){
+ assert( aLock[i]==0 );
+ aLock[i] = -1;
+ }else if( pX->sharedMask & (1<<i) ){
+ assert( aLock[i]>=0 );
+ aLock[i]++;
+ }
+ }
+ }
+
+ assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) );
+ return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0);
+}
+#endif
+
+/*
+** Change the lock state for a shared-memory segment.
+**
+** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
+** different here than in posix. In xShmLock(), one can go from unlocked
+** to shared and back or from unlocked to exclusive and back. But one may
+** not go from shared to exclusive or from exclusive to shared.
+*/
+static int unixShmLock(
+ sqlite3_file *fd, /* Database file holding the shared memory */
+ int ofst, /* First lock to acquire or release */
+ int n, /* Number of locks to acquire or release */
+ int flags /* What to do with the lock */
+){
+ unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
+ unixShm *p; /* The shared memory being locked */
+ unixShmNode *pShmNode; /* The underlying file iNode */
+ int rc = SQLITE_OK; /* Result code */
+ u16 mask; /* Mask of locks to take or release */
+ int *aLock;
+
+ p = pDbFd->pShm;
+ if( p==0 ) return SQLITE_IOERR_SHMLOCK;
+ pShmNode = p->pShmNode;
+ if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
+ aLock = pShmNode->aLock;
+
+ assert( pShmNode==pDbFd->pInode->pShmNode );
+ assert( pShmNode->pInode==pDbFd->pInode );
+ assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
+ assert( n>=1 );
+ assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
+ assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
+ assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
+ assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
+
+ /* Check that, if this to be a blocking lock, no locks that occur later
+ ** in the following list than the lock being obtained are already held:
+ **
+ ** 1. Checkpointer lock (ofst==1).
+ ** 2. Write lock (ofst==0).
+ ** 3. Read locks (ofst>=3 && ofst<SQLITE_SHM_NLOCK).
+ **
+ ** In other words, if this is a blocking lock, none of the locks that
+ ** occur later in the above list than the lock being obtained may be
+ ** held.
+ **
+ ** It is not permitted to block on the RECOVER lock.
+ */
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ assert( (flags & SQLITE_SHM_UNLOCK) || pDbFd->iBusyTimeout==0 || (
+ (ofst!=2) /* not RECOVER */
+ && (ofst!=1 || (p->exclMask|p->sharedMask)==0)
+ && (ofst!=0 || (p->exclMask|p->sharedMask)<3)
+ && (ofst<3 || (p->exclMask|p->sharedMask)<(1<<ofst))
+ ));
+#endif
+
+ mask = (1<<(ofst+n)) - (1<<ofst);
+ assert( n>1 || mask==(1<<ofst) );
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ assert( assertLockingArrayOk(pShmNode) );
+ if( flags & SQLITE_SHM_UNLOCK ){
+ if( (p->exclMask|p->sharedMask) & mask ){
+ int ii;
+ int bUnlock = 1;
+
+ for(ii=ofst; ii<ofst+n; ii++){
+ if( aLock[ii]>((p->sharedMask & (1<<ii)) ? 1 : 0) ){
+ bUnlock = 0;
+ }
+ }
+
+ if( bUnlock ){
+ rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
+ if( rc==SQLITE_OK ){
+ memset(&aLock[ofst], 0, sizeof(int)*n);
+ }
+ }else if( ALWAYS(p->sharedMask & (1<<ofst)) ){
+ assert( n==1 && aLock[ofst]>1 );
+ aLock[ofst]--;
+ }
+
+ /* Undo the local locks */
+ if( rc==SQLITE_OK ){
+ p->exclMask &= ~mask;
+ p->sharedMask &= ~mask;
+ }
+ }
+ }else if( flags & SQLITE_SHM_SHARED ){
+ assert( n==1 );
+ assert( (p->exclMask & (1<<ofst))==0 );
+ if( (p->sharedMask & mask)==0 ){
+ if( aLock[ofst]<0 ){
+ rc = SQLITE_BUSY;
+ }else if( aLock[ofst]==0 ){
+ rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
+ }
+
+ /* Get the local shared locks */
+ if( rc==SQLITE_OK ){
+ p->sharedMask |= mask;
+ aLock[ofst]++;
+ }
+ }
+ }else{
+ /* Make sure no sibling connections hold locks that will block this
+ ** lock. If any do, return SQLITE_BUSY right away. */
+ int ii;
+ for(ii=ofst; ii<ofst+n; ii++){
+ assert( (p->sharedMask & mask)==0 );
+ if( ALWAYS((p->exclMask & (1<<ii))==0) && aLock[ii] ){
+ rc = SQLITE_BUSY;
+ break;
+ }
+ }
+
+ /* Get the exclusive locks at the system level. Then if successful
+ ** also update the in-memory values. */
+ if( rc==SQLITE_OK ){
+ rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
+ if( rc==SQLITE_OK ){
+ assert( (p->sharedMask & mask)==0 );
+ p->exclMask |= mask;
+ for(ii=ofst; ii<ofst+n; ii++){
+ aLock[ii] = -1;
+ }
+ }
+ }
+ }
+ assert( assertLockingArrayOk(pShmNode) );
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+ OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
+ p->id, osGetpid(0), p->sharedMask, p->exclMask));
+ return rc;
+}
+
+/*
+** Implement a memory barrier or memory fence on shared memory.
+**
+** All loads and stores begun before the barrier must complete before
+** any load or store begun after the barrier.
+*/
+static void unixShmBarrier(
+ sqlite3_file *fd /* Database file holding the shared memory */
+){
+ UNUSED_PARAMETER(fd);
+ sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
+ assert( fd->pMethods->xLock==nolockLock
+ || unixFileMutexNotheld((unixFile*)fd)
+ );
+ unixEnterMutex(); /* Also mutex, for redundancy */
+ unixLeaveMutex();
+}
+
+/*
+** Close a connection to shared-memory. Delete the underlying
+** storage if deleteFlag is true.
+**
+** If there is no shared memory associated with the connection then this
+** routine is a harmless no-op.
+*/
+static int unixShmUnmap(
+ sqlite3_file *fd, /* The underlying database file */
+ int deleteFlag /* Delete shared-memory if true */
+){
+ unixShm *p; /* The connection to be closed */
+ unixShmNode *pShmNode; /* The underlying shared-memory file */
+ unixShm **pp; /* For looping over sibling connections */
+ unixFile *pDbFd; /* The underlying database file */
+
+ pDbFd = (unixFile*)fd;
+ p = pDbFd->pShm;
+ if( p==0 ) return SQLITE_OK;
+ pShmNode = p->pShmNode;
+
+ assert( pShmNode==pDbFd->pInode->pShmNode );
+ assert( pShmNode->pInode==pDbFd->pInode );
+
+ /* Remove connection p from the set of connections associated
+ ** with pShmNode */
+ sqlite3_mutex_enter(pShmNode->pShmMutex);
+ for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
+ *pp = p->pNext;
+
+ /* Free the connection p */
+ sqlite3_free(p);
+ pDbFd->pShm = 0;
+ sqlite3_mutex_leave(pShmNode->pShmMutex);
+
+ /* If pShmNode->nRef has reached 0, then close the underlying
+ ** shared-memory file, too */
+ assert( unixFileMutexNotheld(pDbFd) );
+ unixEnterMutex();
+ assert( pShmNode->nRef>0 );
+ pShmNode->nRef--;
+ if( pShmNode->nRef==0 ){
+ if( deleteFlag && pShmNode->hShm>=0 ){
+ osUnlink(pShmNode->zFilename);
+ }
+ unixShmPurge(pDbFd);
+ }
+ unixLeaveMutex();
+
+ return SQLITE_OK;
+}
+
+
+#else
+# define unixShmMap 0
+# define unixShmLock 0
+# define unixShmBarrier 0
+# define unixShmUnmap 0
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** If it is currently memory mapped, unmap file pFd.
+*/
+static void unixUnmapfile(unixFile *pFd){
+ assert( pFd->nFetchOut==0 );
+ if( pFd->pMapRegion ){
+ osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
+ pFd->pMapRegion = 0;
+ pFd->mmapSize = 0;
+ pFd->mmapSizeActual = 0;
+ }
+}
+
+/*
+** Attempt to set the size of the memory mapping maintained by file
+** descriptor pFd to nNew bytes. Any existing mapping is discarded.
+**
+** If successful, this function sets the following variables:
+**
+** unixFile.pMapRegion
+** unixFile.mmapSize
+** unixFile.mmapSizeActual
+**
+** If unsuccessful, an error message is logged via sqlite3_log() and
+** the three variables above are zeroed. In this case SQLite should
+** continue accessing the database using the xRead() and xWrite()
+** methods.
+*/
+static void unixRemapfile(
+ unixFile *pFd, /* File descriptor object */
+ i64 nNew /* Required mapping size */
+){
+ const char *zErr = "mmap";
+ int h = pFd->h; /* File descriptor open on db file */
+ u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */
+ i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */
+ u8 *pNew = 0; /* Location of new mapping */
+ int flags = PROT_READ; /* Flags to pass to mmap() */
+
+ assert( pFd->nFetchOut==0 );
+ assert( nNew>pFd->mmapSize );
+ assert( nNew<=pFd->mmapSizeMax );
+ assert( nNew>0 );
+ assert( pFd->mmapSizeActual>=pFd->mmapSize );
+ assert( MAP_FAILED!=0 );
+
+#ifdef SQLITE_MMAP_READWRITE
+ if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
+#endif
+
+ if( pOrig ){
+#if HAVE_MREMAP
+ i64 nReuse = pFd->mmapSize;
+#else
+ const int szSyspage = osGetpagesize();
+ i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
+#endif
+ u8 *pReq = &pOrig[nReuse];
+
+ /* Unmap any pages of the existing mapping that cannot be reused. */
+ if( nReuse!=nOrig ){
+ osMunmap(pReq, nOrig-nReuse);
+ }
+
+#if HAVE_MREMAP
+ pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
+ zErr = "mremap";
+#else
+ pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
+ if( pNew!=MAP_FAILED ){
+ if( pNew!=pReq ){
+ osMunmap(pNew, nNew - nReuse);
+ pNew = 0;
+ }else{
+ pNew = pOrig;
+ }
+ }
+#endif
+
+ /* The attempt to extend the existing mapping failed. Free it. */
+ if( pNew==MAP_FAILED || pNew==0 ){
+ osMunmap(pOrig, nReuse);
+ }
+ }
+
+ /* If pNew is still NULL, try to create an entirely new mapping. */
+ if( pNew==0 ){
+ pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
+ }
+
+ if( pNew==MAP_FAILED ){
+ pNew = 0;
+ nNew = 0;
+ unixLogError(SQLITE_OK, zErr, pFd->zPath);
+
+ /* If the mmap() above failed, assume that all subsequent mmap() calls
+ ** will probably fail too. Fall back to using xRead/xWrite exclusively
+ ** in this case. */
+ pFd->mmapSizeMax = 0;
+ }
+ pFd->pMapRegion = (void *)pNew;
+ pFd->mmapSize = pFd->mmapSizeActual = nNew;
+}
+
+/*
+** Memory map or remap the file opened by file-descriptor pFd (if the file
+** is already mapped, the existing mapping is replaced by the new). Or, if
+** there already exists a mapping for this file, and there are still
+** outstanding xFetch() references to it, this function is a no-op.
+**
+** If parameter nByte is non-negative, then it is the requested size of
+** the mapping to create. Otherwise, if nByte is less than zero, then the
+** requested size is the size of the file on disk. The actual size of the
+** created mapping is either the requested size or the value configured
+** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
+**
+** SQLITE_OK is returned if no error occurs (even if the mapping is not
+** recreated as a result of outstanding references) or an SQLite error
+** code otherwise.
+*/
+static int unixMapfile(unixFile *pFd, i64 nMap){
+ assert( nMap>=0 || pFd->nFetchOut==0 );
+ assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
+ if( pFd->nFetchOut>0 ) return SQLITE_OK;
+
+ if( nMap<0 ){
+ struct stat statbuf; /* Low-level file information */
+ if( osFstat(pFd->h, &statbuf) ){
+ return SQLITE_IOERR_FSTAT;
+ }
+ nMap = statbuf.st_size;
+ }
+ if( nMap>pFd->mmapSizeMax ){
+ nMap = pFd->mmapSizeMax;
+ }
+
+ assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
+ if( nMap!=pFd->mmapSize ){
+ unixRemapfile(pFd, nMap);
+ }
+
+ return SQLITE_OK;
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/*
+** If possible, return a pointer to a mapping of file fd starting at offset
+** iOff. The mapping must be valid for at least nAmt bytes.
+**
+** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
+** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
+** Finally, if an error does occur, return an SQLite error code. The final
+** value of *pp is undefined in this case.
+**
+** If this function does return a pointer, the caller must eventually
+** release the reference by calling unixUnfetch().
+*/
+static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
+#if SQLITE_MAX_MMAP_SIZE>0
+ unixFile *pFd = (unixFile *)fd; /* The underlying database file */
+#endif
+ *pp = 0;
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFd->mmapSizeMax>0 ){
+ if( pFd->pMapRegion==0 ){
+ int rc = unixMapfile(pFd, -1);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( pFd->mmapSize >= iOff+nAmt ){
+ *pp = &((u8 *)pFd->pMapRegion)[iOff];
+ pFd->nFetchOut++;
+ }
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** If the third argument is non-NULL, then this function releases a
+** reference obtained by an earlier call to unixFetch(). The second
+** argument passed to this function must be the same as the corresponding
+** argument that was passed to the unixFetch() invocation.
+**
+** Or, if the third argument is NULL, then this function is being called
+** to inform the VFS layer that, according to POSIX, any existing mapping
+** may now be invalid and should be unmapped.
+*/
+static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
+#if SQLITE_MAX_MMAP_SIZE>0
+ unixFile *pFd = (unixFile *)fd; /* The underlying database file */
+ UNUSED_PARAMETER(iOff);
+
+ /* If p==0 (unmap the entire file) then there must be no outstanding
+ ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
+ ** then there must be at least one outstanding. */
+ assert( (p==0)==(pFd->nFetchOut==0) );
+
+ /* If p!=0, it must match the iOff value. */
+ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
+
+ if( p ){
+ pFd->nFetchOut--;
+ }else{
+ unixUnmapfile(pFd);
+ }
+
+ assert( pFd->nFetchOut>=0 );
+#else
+ UNUSED_PARAMETER(fd);
+ UNUSED_PARAMETER(p);
+ UNUSED_PARAMETER(iOff);
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Here ends the implementation of all sqlite3_file methods.
+**
+********************** End sqlite3_file Methods *******************************
+******************************************************************************/
+
+/*
+** This division contains definitions of sqlite3_io_methods objects that
+** implement various file locking strategies. It also contains definitions
+** of "finder" functions. A finder-function is used to locate the appropriate
+** sqlite3_io_methods object for a particular database file. The pAppData
+** field of the sqlite3_vfs VFS objects are initialized to be pointers to
+** the correct finder-function for that VFS.
+**
+** Most finder functions return a pointer to a fixed sqlite3_io_methods
+** object. The only interesting finder-function is autolockIoFinder, which
+** looks at the filesystem type and tries to guess the best locking
+** strategy from that.
+**
+** For finder-function F, two objects are created:
+**
+** (1) The real finder-function named "FImpt()".
+**
+** (2) A constant pointer to this function named just "F".
+**
+**
+** A pointer to the F pointer is used as the pAppData value for VFS
+** objects. We have to do this instead of letting pAppData point
+** directly at the finder-function since C90 rules prevent a void*
+** from be cast into a function pointer.
+**
+**
+** Each instance of this macro generates two objects:
+**
+** * A constant sqlite3_io_methods object call METHOD that has locking
+** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
+**
+** * An I/O method finder function called FINDER that returns a pointer
+** to the METHOD object in the previous bullet.
+*/
+#define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \
+static const sqlite3_io_methods METHOD = { \
+ VERSION, /* iVersion */ \
+ CLOSE, /* xClose */ \
+ unixRead, /* xRead */ \
+ unixWrite, /* xWrite */ \
+ unixTruncate, /* xTruncate */ \
+ unixSync, /* xSync */ \
+ unixFileSize, /* xFileSize */ \
+ LOCK, /* xLock */ \
+ UNLOCK, /* xUnlock */ \
+ CKLOCK, /* xCheckReservedLock */ \
+ unixFileControl, /* xFileControl */ \
+ unixSectorSize, /* xSectorSize */ \
+ unixDeviceCharacteristics, /* xDeviceCapabilities */ \
+ SHMMAP, /* xShmMap */ \
+ unixShmLock, /* xShmLock */ \
+ unixShmBarrier, /* xShmBarrier */ \
+ unixShmUnmap, /* xShmUnmap */ \
+ unixFetch, /* xFetch */ \
+ unixUnfetch, /* xUnfetch */ \
+}; \
+static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
+ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
+ return &METHOD; \
+} \
+static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
+ = FINDER##Impl;
+
+/*
+** Here are all of the sqlite3_io_methods objects for each of the
+** locking strategies. Functions that return pointers to these methods
+** are also created.
+*/
+IOMETHODS(
+ posixIoFinder, /* Finder function name */
+ posixIoMethods, /* sqlite3_io_methods object name */
+ 3, /* shared memory and mmap are enabled */
+ unixClose, /* xClose method */
+ unixLock, /* xLock method */
+ unixUnlock, /* xUnlock method */
+ unixCheckReservedLock, /* xCheckReservedLock method */
+ unixShmMap /* xShmMap method */
+)
+IOMETHODS(
+ nolockIoFinder, /* Finder function name */
+ nolockIoMethods, /* sqlite3_io_methods object name */
+ 3, /* shared memory and mmap are enabled */
+ nolockClose, /* xClose method */
+ nolockLock, /* xLock method */
+ nolockUnlock, /* xUnlock method */
+ nolockCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+IOMETHODS(
+ dotlockIoFinder, /* Finder function name */
+ dotlockIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ dotlockClose, /* xClose method */
+ dotlockLock, /* xLock method */
+ dotlockUnlock, /* xUnlock method */
+ dotlockCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ flockIoFinder, /* Finder function name */
+ flockIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ flockClose, /* xClose method */
+ flockLock, /* xLock method */
+ flockUnlock, /* xUnlock method */
+ flockCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+#if OS_VXWORKS
+IOMETHODS(
+ semIoFinder, /* Finder function name */
+ semIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ semXClose, /* xClose method */
+ semXLock, /* xLock method */
+ semXUnlock, /* xUnlock method */
+ semXCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ afpIoFinder, /* Finder function name */
+ afpIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ afpClose, /* xClose method */
+ afpLock, /* xLock method */
+ afpUnlock, /* xUnlock method */
+ afpCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+/*
+** The proxy locking method is a "super-method" in the sense that it
+** opens secondary file descriptors for the conch and lock files and
+** it uses proxy, dot-file, AFP, and flock() locking methods on those
+** secondary files. For this reason, the division that implements
+** proxy locking is located much further down in the file. But we need
+** to go ahead and define the sqlite3_io_methods and finder function
+** for proxy locking here. So we forward declare the I/O methods.
+*/
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+static int proxyClose(sqlite3_file*);
+static int proxyLock(sqlite3_file*, int);
+static int proxyUnlock(sqlite3_file*, int);
+static int proxyCheckReservedLock(sqlite3_file*, int*);
+IOMETHODS(
+ proxyIoFinder, /* Finder function name */
+ proxyIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ proxyClose, /* xClose method */
+ proxyLock, /* xLock method */
+ proxyUnlock, /* xUnlock method */
+ proxyCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+IOMETHODS(
+ nfsIoFinder, /* Finder function name */
+ nfsIoMethods, /* sqlite3_io_methods object name */
+ 1, /* shared memory is disabled */
+ unixClose, /* xClose method */
+ unixLock, /* xLock method */
+ nfsUnlock, /* xUnlock method */
+ unixCheckReservedLock, /* xCheckReservedLock method */
+ 0 /* xShmMap method */
+)
+#endif
+
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+/*
+** This "finder" function attempts to determine the best locking strategy
+** for the database file "filePath". It then returns the sqlite3_io_methods
+** object that implements that strategy.
+**
+** This is for MacOSX only.
+*/
+static const sqlite3_io_methods *autolockIoFinderImpl(
+ const char *filePath, /* name of the database file */
+ unixFile *pNew /* open file object for the database file */
+){
+ static const struct Mapping {
+ const char *zFilesystem; /* Filesystem type name */
+ const sqlite3_io_methods *pMethods; /* Appropriate locking method */
+ } aMap[] = {
+ { "hfs", &posixIoMethods },
+ { "ufs", &posixIoMethods },
+ { "afpfs", &afpIoMethods },
+ { "smbfs", &afpIoMethods },
+ { "webdav", &nolockIoMethods },
+ { 0, 0 }
+ };
+ int i;
+ struct statfs fsInfo;
+ struct flock lockInfo;
+
+ if( !filePath ){
+ /* If filePath==NULL that means we are dealing with a transient file
+ ** that does not need to be locked. */
+ return &nolockIoMethods;
+ }
+ if( statfs(filePath, &fsInfo) != -1 ){
+ if( fsInfo.f_flags & MNT_RDONLY ){
+ return &nolockIoMethods;
+ }
+ for(i=0; aMap[i].zFilesystem; i++){
+ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
+ return aMap[i].pMethods;
+ }
+ }
+ }
+
+ /* Default case. Handles, amongst others, "nfs".
+ ** Test byte-range lock using fcntl(). If the call succeeds,
+ ** assume that the file-system supports POSIX style locks.
+ */
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+ if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
+ if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
+ return &nfsIoMethods;
+ } else {
+ return &posixIoMethods;
+ }
+ }else{
+ return &dotlockIoMethods;
+ }
+}
+static const sqlite3_io_methods
+ *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+
+#if OS_VXWORKS
+/*
+** This "finder" function for VxWorks checks to see if posix advisory
+** locking works. If it does, then that is what is used. If it does not
+** work, then fallback to named semaphore locking.
+*/
+static const sqlite3_io_methods *vxworksIoFinderImpl(
+ const char *filePath, /* name of the database file */
+ unixFile *pNew /* the open file object */
+){
+ struct flock lockInfo;
+
+ if( !filePath ){
+ /* If filePath==NULL that means we are dealing with a transient file
+ ** that does not need to be locked. */
+ return &nolockIoMethods;
+ }
+
+ /* Test if fcntl() is supported and use POSIX style locks.
+ ** Otherwise fall back to the named semaphore method.
+ */
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+ if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
+ return &posixIoMethods;
+ }else{
+ return &semIoMethods;
+ }
+}
+static const sqlite3_io_methods
+ *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;
+
+#endif /* OS_VXWORKS */
+
+/*
+** An abstract type for a pointer to an IO method finder function:
+*/
+typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
+
+
+/****************************************************************************
+**************************** sqlite3_vfs methods ****************************
+**
+** This division contains the implementation of methods on the
+** sqlite3_vfs object.
+*/
+
+/*
+** Initialize the contents of the unixFile structure pointed to by pId.
+*/
+static int fillInUnixFile(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ int h, /* Open file descriptor of file being opened */
+ sqlite3_file *pId, /* Write to the unixFile structure here */
+ const char *zFilename, /* Name of the file being opened */
+ int ctrlFlags /* Zero or more UNIXFILE_* values */
+){
+ const sqlite3_io_methods *pLockingStyle;
+ unixFile *pNew = (unixFile *)pId;
+ int rc = SQLITE_OK;
+
+ assert( pNew->pInode==NULL );
+
+ /* No locking occurs in temporary files */
+ assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
+
+ OSTRACE(("OPEN %-3d %s\n", h, zFilename));
+ pNew->h = h;
+ pNew->pVfs = pVfs;
+ pNew->zPath = zFilename;
+ pNew->ctrlFlags = (u8)ctrlFlags;
+#if SQLITE_MAX_MMAP_SIZE>0
+ pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
+#endif
+ if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
+ "psow", SQLITE_POWERSAFE_OVERWRITE) ){
+ pNew->ctrlFlags |= UNIXFILE_PSOW;
+ }
+ if( strcmp(pVfs->zName,"unix-excl")==0 ){
+ pNew->ctrlFlags |= UNIXFILE_EXCL;
+ }
+
+#if OS_VXWORKS
+ pNew->pId = vxworksFindFileId(zFilename);
+ if( pNew->pId==0 ){
+ ctrlFlags |= UNIXFILE_NOLOCK;
+ rc = SQLITE_NOMEM_BKPT;
+ }
+#endif
+
+ if( ctrlFlags & UNIXFILE_NOLOCK ){
+ pLockingStyle = &nolockIoMethods;
+ }else{
+ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
+#if SQLITE_ENABLE_LOCKING_STYLE
+ /* Cache zFilename in the locking context (AFP and dotlock override) for
+ ** proxyLock activation is possible (remote proxy is based on db name)
+ ** zFilename remains valid until file is closed, to support */
+ pNew->lockingContext = (void*)zFilename;
+#endif
+ }
+
+ if( pLockingStyle == &posixIoMethods
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+ || pLockingStyle == &nfsIoMethods
+#endif
+ ){
+ unixEnterMutex();
+ rc = findInodeInfo(pNew, &pNew->pInode);
+ if( rc!=SQLITE_OK ){
+ /* If an error occurred in findInodeInfo(), close the file descriptor
+ ** immediately, before releasing the mutex. findInodeInfo() may fail
+ ** in two scenarios:
+ **
+ ** (a) A call to fstat() failed.
+ ** (b) A malloc failed.
+ **
+ ** Scenario (b) may only occur if the process is holding no other
+ ** file descriptors open on the same file. If there were other file
+ ** descriptors on this file, then no malloc would be required by
+ ** findInodeInfo(). If this is the case, it is quite safe to close
+ ** handle h - as it is guaranteed that no posix locks will be released
+ ** by doing so.
+ **
+ ** If scenario (a) caused the error then things are not so safe. The
+ ** implicit assumption here is that if fstat() fails, things are in
+ ** such bad shape that dropping a lock or two doesn't matter much.
+ */
+ robust_close(pNew, h, __LINE__);
+ h = -1;
+ }
+ unixLeaveMutex();
+ }
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ else if( pLockingStyle == &afpIoMethods ){
+ /* AFP locking uses the file path so it needs to be included in
+ ** the afpLockingContext.
+ */
+ afpLockingContext *pCtx;
+ pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ /* NB: zFilename exists and remains valid until the file is closed
+ ** according to requirement F11141. So we do not need to make a
+ ** copy of the filename. */
+ pCtx->dbPath = zFilename;
+ pCtx->reserved = 0;
+ srandomdev();
+ unixEnterMutex();
+ rc = findInodeInfo(pNew, &pNew->pInode);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pNew->lockingContext);
+ robust_close(pNew, h, __LINE__);
+ h = -1;
+ }
+ unixLeaveMutex();
+ }
+ }
+#endif
+
+ else if( pLockingStyle == &dotlockIoMethods ){
+ /* Dotfile locking uses the file path so it needs to be included in
+ ** the dotlockLockingContext
+ */
+ char *zLockFile;
+ int nFilename;
+ assert( zFilename!=0 );
+ nFilename = (int)strlen(zFilename) + 6;
+ zLockFile = (char *)sqlite3_malloc64(nFilename);
+ if( zLockFile==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
+ }
+ pNew->lockingContext = zLockFile;
+ }
+
+#if OS_VXWORKS
+ else if( pLockingStyle == &semIoMethods ){
+ /* Named semaphore locking uses the file path so it needs to be
+ ** included in the semLockingContext
+ */
+ unixEnterMutex();
+ rc = findInodeInfo(pNew, &pNew->pInode);
+ if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
+ char *zSemName = pNew->pInode->aSemName;
+ int n;
+ sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
+ pNew->pId->zCanonicalName);
+ for( n=1; zSemName[n]; n++ )
+ if( zSemName[n]=='/' ) zSemName[n] = '_';
+ pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
+ if( pNew->pInode->pSem == SEM_FAILED ){
+ rc = SQLITE_NOMEM_BKPT;
+ pNew->pInode->aSemName[0] = '\0';
+ }
+ }
+ unixLeaveMutex();
+ }
+#endif
+
+ storeLastErrno(pNew, 0);
+#if OS_VXWORKS
+ if( rc!=SQLITE_OK ){
+ if( h>=0 ) robust_close(pNew, h, __LINE__);
+ h = -1;
+ osUnlink(zFilename);
+ pNew->ctrlFlags |= UNIXFILE_DELETE;
+ }
+#endif
+ if( rc!=SQLITE_OK ){
+ if( h>=0 ) robust_close(pNew, h, __LINE__);
+ }else{
+ pId->pMethods = pLockingStyle;
+ OpenCounter(+1);
+ verifyDbFile(pNew);
+ }
+ return rc;
+}
+
+/*
+** Directories to consider for temp files.
+*/
+static const char *azTempDirs[] = {
+ 0,
+ 0,
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ "."
+};
+
+/*
+** Initialize first two members of azTempDirs[] array.
+*/
+static void unixTempFileInit(void){
+ azTempDirs[0] = getenv("SQLITE_TMPDIR");
+ azTempDirs[1] = getenv("TMPDIR");
+}
+
+/*
+** Return the name of a directory in which to put temporary files.
+** If no suitable temporary file directory can be found, return NULL.
+*/
+static const char *unixTempFileDir(void){
+ unsigned int i = 0;
+ struct stat buf;
+ const char *zDir = sqlite3_temp_directory;
+
+ while(1){
+ if( zDir!=0
+ && osStat(zDir, &buf)==0
+ && S_ISDIR(buf.st_mode)
+ && osAccess(zDir, 03)==0
+ ){
+ return zDir;
+ }
+ if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break;
+ zDir = azTempDirs[i++];
+ }
+ return 0;
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be allocated
+** by the calling process and must be big enough to hold at least
+** pVfs->mxPathname bytes.
+*/
+static int unixGetTempname(int nBuf, char *zBuf){
+ const char *zDir;
+ int iLimit = 0;
+ int rc = SQLITE_OK;
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ zBuf[0] = 0;
+ SimulateIOError( return SQLITE_IOERR );
+
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ zDir = unixTempFileDir();
+ if( zDir==0 ){
+ rc = SQLITE_IOERR_GETTEMPPATH;
+ }else{
+ do{
+ u64 r;
+ sqlite3_randomness(sizeof(r), &r);
+ assert( nBuf>2 );
+ zBuf[nBuf-2] = 0;
+ sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
+ zDir, r, 0);
+ if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }while( osAccess(zBuf,0)==0 );
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ return rc;
+}
+
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+/*
+** Routine to transform a unixFile into a proxy-locking unixFile.
+** Implementation in the proxy-lock division, but used by unixOpen()
+** if SQLITE_PREFER_PROXY_LOCKING is defined.
+*/
+static int proxyTransformUnixFile(unixFile*, const char*);
+#endif
+
+/*
+** Search for an unused file descriptor that was opened on the database
+** file (not a journal or super-journal file) identified by pathname
+** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
+** argument to this function.
+**
+** Such a file descriptor may exist if a database connection was closed
+** but the associated file descriptor could not be closed because some
+** other file descriptor open on the same file is holding a file-lock.
+** Refer to comments in the unixClose() function and the lengthy comment
+** describing "Posix Advisory Locking" at the start of this file for
+** further details. Also, ticket #4018.
+**
+** If a suitable file descriptor is found, then it is returned. If no
+** such file descriptor is located, -1 is returned.
+*/
+static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
+ UnixUnusedFd *pUnused = 0;
+
+ /* Do not search for an unused file descriptor on vxworks. Not because
+ ** vxworks would not benefit from the change (it might, we're not sure),
+ ** but because no way to test it is currently available. It is better
+ ** not to risk breaking vxworks support for the sake of such an obscure
+ ** feature. */
+#if !OS_VXWORKS
+ struct stat sStat; /* Results of stat() call */
+
+ unixEnterMutex();
+
+ /* A stat() call may fail for various reasons. If this happens, it is
+ ** almost certain that an open() call on the same path will also fail.
+ ** For this reason, if an error occurs in the stat() call here, it is
+ ** ignored and -1 is returned. The caller will try to open a new file
+ ** descriptor on the same path, fail, and return an error to SQLite.
+ **
+ ** Even if a subsequent open() call does succeed, the consequences of
+ ** not searching for a reusable file descriptor are not dire. */
+ if( inodeList!=0 && 0==osStat(zPath, &sStat) ){
+ unixInodeInfo *pInode;
+
+ pInode = inodeList;
+ while( pInode && (pInode->fileId.dev!=sStat.st_dev
+ || pInode->fileId.ino!=(u64)sStat.st_ino) ){
+ pInode = pInode->pNext;
+ }
+ if( pInode ){
+ UnixUnusedFd **pp;
+ assert( sqlite3_mutex_notheld(pInode->pLockMutex) );
+ sqlite3_mutex_enter(pInode->pLockMutex);
+ flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
+ for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
+ pUnused = *pp;
+ if( pUnused ){
+ *pp = pUnused->pNext;
+ }
+ sqlite3_mutex_leave(pInode->pLockMutex);
+ }
+ }
+ unixLeaveMutex();
+#endif /* if !OS_VXWORKS */
+ return pUnused;
+}
+
+/*
+** Find the mode, uid and gid of file zFile.
+*/
+static int getFileMode(
+ const char *zFile, /* File name */
+ mode_t *pMode, /* OUT: Permissions of zFile */
+ uid_t *pUid, /* OUT: uid of zFile. */
+ gid_t *pGid /* OUT: gid of zFile. */
+){
+ struct stat sStat; /* Output of stat() on database file */
+ int rc = SQLITE_OK;
+ if( 0==osStat(zFile, &sStat) ){
+ *pMode = sStat.st_mode & 0777;
+ *pUid = sStat.st_uid;
+ *pGid = sStat.st_gid;
+ }else{
+ rc = SQLITE_IOERR_FSTAT;
+ }
+ return rc;
+}
+
+/*
+** This function is called by unixOpen() to determine the unix permissions
+** to create new files with. If no error occurs, then SQLITE_OK is returned
+** and a value suitable for passing as the third argument to open(2) is
+** written to *pMode. If an IO error occurs, an SQLite error code is
+** returned and the value of *pMode is not modified.
+**
+** In most cases, this routine sets *pMode to 0, which will become
+** an indication to robust_open() to create the file using
+** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
+** But if the file being opened is a WAL or regular journal file, then
+** this function queries the file-system for the permissions on the
+** corresponding database file and sets *pMode to this value. Whenever
+** possible, WAL and journal files are created using the same permissions
+** as the associated database file.
+**
+** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
+** original filename is unavailable. But 8_3_NAMES is only used for
+** FAT filesystems and permissions do not matter there, so just use
+** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero.
+*/
+static int findCreateFileMode(
+ const char *zPath, /* Path of file (possibly) being created */
+ int flags, /* Flags passed as 4th argument to xOpen() */
+ mode_t *pMode, /* OUT: Permissions to open file with */
+ uid_t *pUid, /* OUT: uid to set on the file */
+ gid_t *pGid /* OUT: gid to set on the file */
+){
+ int rc = SQLITE_OK; /* Return Code */
+ *pMode = 0;
+ *pUid = 0;
+ *pGid = 0;
+ if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
+ char zDb[MAX_PATHNAME+1]; /* Database file path */
+ int nDb; /* Number of valid bytes in zDb */
+
+ /* zPath is a path to a WAL or journal file. The following block derives
+ ** the path to the associated database file from zPath. This block handles
+ ** the following naming conventions:
+ **
+ ** "<path to db>-journal"
+ ** "<path to db>-wal"
+ ** "<path to db>-journalNN"
+ ** "<path to db>-walNN"
+ **
+ ** where NN is a decimal number. The NN naming schemes are
+ ** used by the test_multiplex.c module.
+ **
+ ** In normal operation, the journal file name will always contain
+ ** a '-' character. However in 8+3 filename mode, or if a corrupt
+ ** rollback journal specifies a super-journal with a goofy name, then
+ ** the '-' might be missing or the '-' might be the first character in
+ ** the filename. In that case, just return SQLITE_OK with *pMode==0.
+ */
+ nDb = sqlite3Strlen30(zPath) - 1;
+ while( nDb>0 && zPath[nDb]!='.' ){
+ if( zPath[nDb]=='-' ){
+ memcpy(zDb, zPath, nDb);
+ zDb[nDb] = '\0';
+ rc = getFileMode(zDb, pMode, pUid, pGid);
+ break;
+ }
+ nDb--;
+ }
+ }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
+ *pMode = 0600;
+ }else if( flags & SQLITE_OPEN_URI ){
+ /* If this is a main database file and the file was opened using a URI
+ ** filename, check for the "modeof" parameter. If present, interpret
+ ** its value as a filename and try to copy the mode, uid and gid from
+ ** that file. */
+ const char *z = sqlite3_uri_parameter(zPath, "modeof");
+ if( z ){
+ rc = getFileMode(z, pMode, pUid, pGid);
+ }
+ }
+ return rc;
+}
+
+/*
+** Open the file zPath.
+**
+** Previously, the SQLite OS layer used three functions in place of this
+** one:
+**
+** sqlite3OsOpenReadWrite();
+** sqlite3OsOpenReadOnly();
+** sqlite3OsOpenExclusive();
+**
+** These calls correspond to the following combinations of flags:
+**
+** ReadWrite() -> (READWRITE | CREATE)
+** ReadOnly() -> (READONLY)
+** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
+**
+** The old OpenExclusive() accepted a boolean argument - "delFlag". If
+** true, the file was configured to be automatically deleted when the
+** file handle closed. To achieve the same effect using this new
+** interface, add the DELETEONCLOSE flag to those specified above for
+** OpenExclusive().
+*/
+static int unixOpen(
+ sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
+ const char *zPath, /* Pathname of file to be opened */
+ sqlite3_file *pFile, /* The file descriptor to be filled in */
+ int flags, /* Input flags to control the opening */
+ int *pOutFlags /* Output flags returned to SQLite core */
+){
+ unixFile *p = (unixFile *)pFile;
+ int fd = -1; /* File descriptor returned by open() */
+ int openFlags = 0; /* Flags to pass to open() */
+ int eType = flags&0x0FFF00; /* Type of file to open */
+ int noLock; /* True to omit locking primitives */
+ int rc = SQLITE_OK; /* Function Return Code */
+ int ctrlFlags = 0; /* UNIXFILE_* flags */
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+#if SQLITE_ENABLE_LOCKING_STYLE
+ int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
+#endif
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
+ struct statfs fsInfo;
+#endif
+
+ /* If creating a super- or main-file journal, this function will open
+ ** a file-descriptor on the directory too. The first time unixSync()
+ ** is called the directory file descriptor will be fsync()ed and close()d.
+ */
+ int isNewJrnl = (isCreate && (
+ eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_MAIN_JOURNAL
+ || eType==SQLITE_OPEN_WAL
+ ));
+
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char zTmpname[MAX_PATHNAME+2];
+ const char *zName = zPath;
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+ /* The main DB, main journal, WAL file and super-journal are never
+ ** automatically deleted. Nor are they ever temporary files. */
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
+ );
+
+ /* Detect a pid change and reset the PRNG. There is a race condition
+ ** here such that two or more threads all trying to open databases at
+ ** the same instant might all reset the PRNG. But multiple resets
+ ** are harmless.
+ */
+ if( randomnessPid!=osGetpid(0) ){
+ randomnessPid = osGetpid(0);
+ sqlite3_randomness(0,0);
+ }
+ memset(p, 0, sizeof(unixFile));
+
+#ifdef SQLITE_ASSERT_NO_FILES
+ /* Applications that never read or write a persistent disk files */
+ assert( zName==0 );
+#endif
+
+ if( eType==SQLITE_OPEN_MAIN_DB ){
+ UnixUnusedFd *pUnused;
+ pUnused = findReusableFd(zName, flags);
+ if( pUnused ){
+ fd = pUnused->fd;
+ }else{
+ pUnused = sqlite3_malloc64(sizeof(*pUnused));
+ if( !pUnused ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+ p->pPreallocatedUnused = pUnused;
+
+ /* Database filenames are double-zero terminated if they are not
+ ** URIs with parameters. Hence, they can always be passed into
+ ** sqlite3_uri_parameter(). */
+ assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
+
+ }else if( !zName ){
+ /* If zName is NULL, the upper layer is requesting a temp file. */
+ assert(isDelete && !isNewJrnl);
+ rc = unixGetTempname(pVfs->mxPathname, zTmpname);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zName = zTmpname;
+
+ /* Generated temporary filenames are always double-zero terminated
+ ** for use by sqlite3_uri_parameter(). */
+ assert( zName[strlen(zName)+1]==0 );
+ }
+
+ /* Determine the value of the flags parameter passed to POSIX function
+ ** open(). These must be calculated even if open() is not called, as
+ ** they may be stored as part of the file handle and used by the
+ ** 'conch file' locking functions later on. */
+ if( isReadonly ) openFlags |= O_RDONLY;
+ if( isReadWrite ) openFlags |= O_RDWR;
+ if( isCreate ) openFlags |= O_CREAT;
+ if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
+ openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW);
+
+ if( fd<0 ){
+ mode_t openMode; /* Permissions to create file with */
+ uid_t uid; /* Userid for the file */
+ gid_t gid; /* Groupid for the file */
+ rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
+ if( rc!=SQLITE_OK ){
+ assert( !p->pPreallocatedUnused );
+ assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
+ return rc;
+ }
+ fd = robust_open(zName, openFlags, openMode);
+ OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
+ assert( !isExclusive || (openFlags & O_CREAT)!=0 );
+ if( fd<0 ){
+ if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){
+ /* If unable to create a journal because the directory is not
+ ** writable, change the error code to indicate that. */
+ rc = SQLITE_READONLY_DIRECTORY;
+ }else if( errno!=EISDIR && isReadWrite ){
+ /* Failed to open the file for read/write access. Try read-only. */
+ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
+ openFlags &= ~(O_RDWR|O_CREAT);
+ flags |= SQLITE_OPEN_READONLY;
+ openFlags |= O_RDONLY;
+ isReadonly = 1;
+ fd = robust_open(zName, openFlags, openMode);
+ }
+ }
+ if( fd<0 ){
+ int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
+ if( rc==SQLITE_OK ) rc = rc2;
+ goto open_finished;
+ }
+
+ /* The owner of the rollback journal or WAL file should always be the
+ ** same as the owner of the database file. Try to ensure that this is
+ ** the case. The chown() system call will be a no-op if the current
+ ** process lacks root privileges, be we should at least try. Without
+ ** this step, if a root process opens a database file, it can leave
+ ** behinds a journal/WAL that is owned by root and hence make the
+ ** database inaccessible to unprivileged processes.
+ **
+ ** If openMode==0, then that means uid and gid are not set correctly
+ ** (probably because SQLite is configured to use 8+3 filename mode) and
+ ** in that case we do not want to attempt the chown().
+ */
+ if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){
+ robustFchown(fd, uid, gid);
+ }
+ }
+ assert( fd>=0 );
+ if( pOutFlags ){
+ *pOutFlags = flags;
+ }
+
+ if( p->pPreallocatedUnused ){
+ p->pPreallocatedUnused->fd = fd;
+ p->pPreallocatedUnused->flags =
+ flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
+ }
+
+ if( isDelete ){
+#if OS_VXWORKS
+ zPath = zName;
+#elif defined(SQLITE_UNLINK_AFTER_CLOSE)
+ zPath = sqlite3_mprintf("%s", zName);
+ if( zPath==0 ){
+ robust_close(p, fd, __LINE__);
+ return SQLITE_NOMEM_BKPT;
+ }
+#else
+ osUnlink(zName);
+#endif
+ }
+#if SQLITE_ENABLE_LOCKING_STYLE
+ else{
+ p->openFlags = openFlags;
+ }
+#endif
+
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
+ if( fstatfs(fd, &fsInfo) == -1 ){
+ storeLastErrno(p, errno);
+ robust_close(p, fd, __LINE__);
+ return SQLITE_IOERR_ACCESS;
+ }
+ if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
+ ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
+ }
+ if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
+ ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
+ }
+#endif
+
+ /* Set up appropriate ctrlFlags */
+ if( isDelete ) ctrlFlags |= UNIXFILE_DELETE;
+ if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY;
+ noLock = eType!=SQLITE_OPEN_MAIN_DB;
+ if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK;
+ if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC;
+ if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+#if SQLITE_PREFER_PROXY_LOCKING
+ isAutoProxy = 1;
+#endif
+ if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
+ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
+ int useProxy = 0;
+
+ /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
+ ** never use proxy, NULL means use proxy for non-local files only. */
+ if( envforce!=NULL ){
+ useProxy = atoi(envforce)>0;
+ }else{
+ useProxy = !(fsInfo.f_flags&MNT_LOCAL);
+ }
+ if( useProxy ){
+ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
+ if( rc==SQLITE_OK ){
+ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
+ if( rc!=SQLITE_OK ){
+ /* Use unixClose to clean up the resources added in fillInUnixFile
+ ** and clear all the structure's references. Specifically,
+ ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
+ */
+ unixClose(pFile);
+ return rc;
+ }
+ }
+ goto open_finished;
+ }
+ }
+#endif
+
+ assert( zPath==0 || zPath[0]=='/'
+ || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL
+ );
+ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
+
+open_finished:
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(p->pPreallocatedUnused);
+ }
+ return rc;
+}
+
+
+/*
+** Delete the file at zPath. If the dirSync argument is true, fsync()
+** the directory after deleting the file.
+*/
+static int unixDelete(
+ sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
+ const char *zPath, /* Name of file to be deleted */
+ int dirSync /* If true, fsync() directory after deleting file */
+){
+ int rc = SQLITE_OK;
+ UNUSED_PARAMETER(NotUsed);
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ if( osUnlink(zPath)==(-1) ){
+ if( errno==ENOENT
+#if OS_VXWORKS
+ || osAccess(zPath,0)!=0
+#endif
+ ){
+ rc = SQLITE_IOERR_DELETE_NOENT;
+ }else{
+ rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
+ }
+ return rc;
+ }
+#ifndef SQLITE_DISABLE_DIRSYNC
+ if( (dirSync & 1)!=0 ){
+ int fd;
+ rc = osOpenDirectory(zPath, &fd);
+ if( rc==SQLITE_OK ){
+ if( full_fsync(fd,0,0) ){
+ rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
+ }
+ robust_close(0, fd, __LINE__);
+ }else{
+ assert( rc==SQLITE_CANTOPEN );
+ rc = SQLITE_OK;
+ }
+ }
+#endif
+ return rc;
+}
+
+/*
+** Test the existence of or access permissions of file zPath. The
+** test performed depends on the value of flags:
+**
+** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
+** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
+** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
+**
+** Otherwise return 0.
+*/
+static int unixAccess(
+ sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
+ const char *zPath, /* Path of the file to examine */
+ int flags, /* What do we want to learn about the zPath file? */
+ int *pResOut /* Write result boolean here */
+){
+ UNUSED_PARAMETER(NotUsed);
+ SimulateIOError( return SQLITE_IOERR_ACCESS; );
+ assert( pResOut!=0 );
+
+ /* The spec says there are three possible values for flags. But only
+ ** two of them are actually used */
+ assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );
+
+ if( flags==SQLITE_ACCESS_EXISTS ){
+ struct stat buf;
+ *pResOut = 0==osStat(zPath, &buf) &&
+ (!S_ISREG(buf.st_mode) || buf.st_size>0);
+ }else{
+ *pResOut = osAccess(zPath, W_OK|R_OK)==0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** A pathname under construction
+*/
+typedef struct DbPath DbPath;
+struct DbPath {
+ int rc; /* Non-zero following any error */
+ int nSymlink; /* Number of symlinks resolved */
+ char *zOut; /* Write the pathname here */
+ int nOut; /* Bytes of space available to zOut[] */
+ int nUsed; /* Bytes of zOut[] currently being used */
+};
+
+/* Forward reference */
+static void appendAllPathElements(DbPath*,const char*);
+
+/*
+** Append a single path element to the DbPath under construction
+*/
+static void appendOnePathElement(
+ DbPath *pPath, /* Path under construction, to which to append zName */
+ const char *zName, /* Name to append to pPath. Not zero-terminated */
+ int nName /* Number of significant bytes in zName */
+){
+ assert( nName>0 );
+ assert( zName!=0 );
+ if( zName[0]=='.' ){
+ if( nName==1 ) return;
+ if( zName[1]=='.' && nName==2 ){
+ if( pPath->nUsed>1 ){
+ assert( pPath->zOut[0]=='/' );
+ while( pPath->zOut[--pPath->nUsed]!='/' ){}
+ }
+ return;
+ }
+ }
+ if( pPath->nUsed + nName + 2 >= pPath->nOut ){
+ pPath->rc = SQLITE_ERROR;
+ return;
+ }
+ pPath->zOut[pPath->nUsed++] = '/';
+ memcpy(&pPath->zOut[pPath->nUsed], zName, nName);
+ pPath->nUsed += nName;
+#if defined(HAVE_READLINK) && defined(HAVE_LSTAT)
+ if( pPath->rc==SQLITE_OK ){
+ const char *zIn;
+ struct stat buf;
+ pPath->zOut[pPath->nUsed] = 0;
+ zIn = pPath->zOut;
+ if( osLstat(zIn, &buf)!=0 ){
+ if( errno!=ENOENT ){
+ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
+ }
+ }else if( S_ISLNK(buf.st_mode) ){
+ ssize_t got;
+ char zLnk[SQLITE_MAX_PATHLEN+2];
+ if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){
+ pPath->rc = SQLITE_CANTOPEN_BKPT;
+ return;
+ }
+ got = osReadlink(zIn, zLnk, sizeof(zLnk)-2);
+ if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){
+ pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
+ return;
+ }
+ zLnk[got] = 0;
+ if( zLnk[0]=='/' ){
+ pPath->nUsed = 0;
+ }else{
+ pPath->nUsed -= nName + 1;
+ }
+ appendAllPathElements(pPath, zLnk);
+ }
+ }
+#endif
+}
+
+/*
+** Append all path elements in zPath to the DbPath under construction.
+*/
+static void appendAllPathElements(
+ DbPath *pPath, /* Path under construction, to which to append zName */
+ const char *zPath /* Path to append to pPath. Is zero-terminated */
+){
+ int i = 0;
+ int j = 0;
+ do{
+ while( zPath[i] && zPath[i]!='/' ){ i++; }
+ if( i>j ){
+ appendOnePathElement(pPath, &zPath[j], i-j);
+ }
+ j = i+1;
+ }while( zPath[i++] );
+}
+
+/*
+** Turn a relative pathname into a full pathname. The relative path
+** is stored as a nul-terminated string in the buffer pointed to by
+** zPath.
+**
+** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
+** (in this case, MAX_PATHNAME bytes). The full-path is written to
+** this buffer before returning.
+*/
+static int unixFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zPath, /* Possibly relative input path */
+ int nOut, /* Size of output buffer in bytes */
+ char *zOut /* Output buffer */
+){
+ DbPath path;
+ UNUSED_PARAMETER(pVfs);
+ path.rc = 0;
+ path.nUsed = 0;
+ path.nSymlink = 0;
+ path.nOut = nOut;
+ path.zOut = zOut;
+ if( zPath[0]!='/' ){
+ char zPwd[SQLITE_MAX_PATHLEN+2];
+ if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){
+ return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
+ }
+ appendAllPathElements(&path, zPwd);
+ }
+ appendAllPathElements(&path, zPath);
+ zOut[path.nUsed] = 0;
+ if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT;
+ if( path.nSymlink ) return SQLITE_OK_SYMLINK;
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+#include <dlfcn.h>
+static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
+ UNUSED_PARAMETER(NotUsed);
+ return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
+}
+
+/*
+** SQLite calls this function immediately after a call to unixDlSym() or
+** unixDlOpen() fails (returns a null pointer). If a more detailed error
+** message is available, it is written to zBufOut. If no error message
+** is available, zBufOut is left unmodified and SQLite uses a default
+** error message.
+*/
+static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
+ const char *zErr;
+ UNUSED_PARAMETER(NotUsed);
+ unixEnterMutex();
+ zErr = dlerror();
+ if( zErr ){
+ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
+ }
+ unixLeaveMutex();
+}
+static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
+ /*
+ ** GCC with -pedantic-errors says that C90 does not allow a void* to be
+ ** cast into a pointer to a function. And yet the library dlsym() routine
+ ** returns a void* which is really a pointer to a function. So how do we
+ ** use dlsym() with -pedantic-errors?
+ **
+ ** Variable x below is defined to be a pointer to a function taking
+ ** parameters void* and const char* and returning a pointer to a function.
+ ** We initialize x by assigning it a pointer to the dlsym() function.
+ ** (That assignment requires a cast.) Then we call the function that
+ ** x points to.
+ **
+ ** This work-around is unlikely to work correctly on any system where
+ ** you really cannot cast a function pointer into void*. But then, on the
+ ** other hand, dlsym() will not work on such a system either, so we have
+ ** not really lost anything.
+ */
+ void (*(*x)(void*,const char*))(void);
+ UNUSED_PARAMETER(NotUsed);
+ x = (void(*(*)(void*,const char*))(void))dlsym;
+ return (*x)(p, zSym);
+}
+static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
+ UNUSED_PARAMETER(NotUsed);
+ dlclose(pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define unixDlOpen 0
+ #define unixDlError 0
+ #define unixDlSym 0
+ #define unixDlClose 0
+#endif
+
+/*
+** Write nBuf bytes of random data to the supplied buffer zBuf.
+*/
+static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
+ UNUSED_PARAMETER(NotUsed);
+ assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
+
+ /* We have to initialize zBuf to prevent valgrind from reporting
+ ** errors. The reports issued by valgrind are incorrect - we would
+ ** prefer that the randomness be increased by making use of the
+ ** uninitialized space in zBuf - but valgrind errors tend to worry
+ ** some users. Rather than argue, it seems easier just to initialize
+ ** the whole array and silence valgrind, even if that means less randomness
+ ** in the random seed.
+ **
+ ** When testing, initializing zBuf[] to zero is all we do. That means
+ ** that we always use the same random number sequence. This makes the
+ ** tests repeatable.
+ */
+ memset(zBuf, 0, nBuf);
+ randomnessPid = osGetpid(0);
+#if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
+ {
+ int fd, got;
+ fd = robust_open("/dev/urandom", O_RDONLY, 0);
+ if( fd<0 ){
+ time_t t;
+ time(&t);
+ memcpy(zBuf, &t, sizeof(t));
+ memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
+ assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
+ nBuf = sizeof(t) + sizeof(randomnessPid);
+ }else{
+ do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
+ robust_close(0, fd, __LINE__);
+ }
+ }
+#endif
+ return nBuf;
+}
+
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+** The argument is the number of microseconds we want to sleep.
+** The return value is the number of microseconds of sleep actually
+** requested from the underlying operating system, a number which
+** might be greater than or equal to the argument, but not less
+** than the argument.
+*/
+static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
+#if !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP+0
+ struct timespec sp;
+ sp.tv_sec = microseconds / 1000000;
+ sp.tv_nsec = (microseconds % 1000000) * 1000;
+
+ /* Almost all modern unix systems support nanosleep(). But if you are
+ ** compiling for one of the rare exceptions, you can use
+ ** -DHAVE_NANOSLEEP=0 (perhaps in conjuction with -DHAVE_USLEEP if
+ ** usleep() is available) in order to bypass the use of nanosleep() */
+ nanosleep(&sp, NULL);
+
+ UNUSED_PARAMETER(NotUsed);
+ return microseconds;
+#elif defined(HAVE_USLEEP) && HAVE_USLEEP
+ if( microseconds>=1000000 ) sleep(microseconds/1000000);
+ if( microseconds%1000000 ) usleep(microseconds%1000000);
+ UNUSED_PARAMETER(NotUsed);
+ return microseconds;
+#else
+ int seconds = (microseconds+999999)/1000000;
+ sleep(seconds);
+ UNUSED_PARAMETER(NotUsed);
+ return seconds*1000000;
+#endif
+}
+
+/*
+** The following variable, if set to a non-zero value, is interpreted as
+** the number of seconds since 1970 and is used to set the result of
+** sqlite3OsCurrentTime() during testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write into *piNow
+** the current time and date as a Julian Day number times 86_400_000. In
+** other words, write into *piNow the number of milliseconds since the Julian
+** epoch of noon in Greenwich on November 24, 4714 B.C according to the
+** proleptic Gregorian calendar.
+**
+** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
+** cannot be found.
+*/
+static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
+ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
+ int rc = SQLITE_OK;
+#if defined(NO_GETTOD)
+ time_t t;
+ time(&t);
+ *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
+#elif OS_VXWORKS
+ struct timespec sNow;
+ clock_gettime(CLOCK_REALTIME, &sNow);
+ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
+#else
+ struct timeval sNow;
+ (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */
+ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
+#endif
+
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
+ }
+#endif
+ UNUSED_PARAMETER(NotUsed);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
+ sqlite3_int64 i = 0;
+ int rc;
+ UNUSED_PARAMETER(NotUsed);
+ rc = unixCurrentTimeInt64(0, &i);
+ *prNow = i/86400000.0;
+ return rc;
+}
+#else
+# define unixCurrentTime 0
+#endif
+
+/*
+** The xGetLastError() method is designed to return a better
+** low-level error message when operating-system problems come up
+** during SQLite operation. Only the integer return code is currently
+** used.
+*/
+static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
+ UNUSED_PARAMETER(NotUsed);
+ UNUSED_PARAMETER(NotUsed2);
+ UNUSED_PARAMETER(NotUsed3);
+ return errno;
+}
+
+
+/*
+************************ End of sqlite3_vfs methods ***************************
+******************************************************************************/
+
+/******************************************************************************
+************************** Begin Proxy Locking ********************************
+**
+** Proxy locking is a "uber-locking-method" in this sense: It uses the
+** other locking methods on secondary lock files. Proxy locking is a
+** meta-layer over top of the primitive locking implemented above. For
+** this reason, the division that implements of proxy locking is deferred
+** until late in the file (here) after all of the other I/O methods have
+** been defined - so that the primitive locking methods are available
+** as services to help with the implementation of proxy locking.
+**
+****
+**
+** The default locking schemes in SQLite use byte-range locks on the
+** database file to coordinate safe, concurrent access by multiple readers
+** and writers [http://sqlite.org/lockingv3.html]. The five file locking
+** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
+** as POSIX read & write locks over fixed set of locations (via fsctl),
+** on AFP and SMB only exclusive byte-range locks are available via fsctl
+** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
+** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
+** address in the shared range is taken for a SHARED lock, the entire
+** shared range is taken for an EXCLUSIVE lock):
+**
+** PENDING_BYTE 0x40000000
+** RESERVED_BYTE 0x40000001
+** SHARED_RANGE 0x40000002 -> 0x40000200
+**
+** This works well on the local file system, but shows a nearly 100x
+** slowdown in read performance on AFP because the AFP client disables
+** the read cache when byte-range locks are present. Enabling the read
+** cache exposes a cache coherency problem that is present on all OS X
+** supported network file systems. NFS and AFP both observe the
+** close-to-open semantics for ensuring cache coherency
+** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
+** address the requirements for concurrent database access by multiple
+** readers and writers
+** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
+**
+** To address the performance and cache coherency issues, proxy file locking
+** changes the way database access is controlled by limiting access to a
+** single host at a time and moving file locks off of the database file
+** and onto a proxy file on the local file system.
+**
+**
+** Using proxy locks
+** -----------------
+**
+** C APIs
+**
+** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
+** <proxy_path> | ":auto:");
+** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
+** &<proxy_path>);
+**
+**
+** SQL pragmas
+**
+** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
+** PRAGMA [database.]lock_proxy_file
+**
+** Specifying ":auto:" means that if there is a conch file with a matching
+** host ID in it, the proxy path in the conch file will be used, otherwise
+** a proxy path based on the user's temp dir
+** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
+** actual proxy file name is generated from the name and path of the
+** database file. For example:
+**
+** For database path "/Users/me/foo.db"
+** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
+**
+** Once a lock proxy is configured for a database connection, it can not
+** be removed, however it may be switched to a different proxy path via
+** the above APIs (assuming the conch file is not being held by another
+** connection or process).
+**
+**
+** How proxy locking works
+** -----------------------
+**
+** Proxy file locking relies primarily on two new supporting files:
+**
+** * conch file to limit access to the database file to a single host
+** at a time
+**
+** * proxy file to act as a proxy for the advisory locks normally
+** taken on the database
+**
+** The conch file - to use a proxy file, sqlite must first "hold the conch"
+** by taking an sqlite-style shared lock on the conch file, reading the
+** contents and comparing the host's unique host ID (see below) and lock
+** proxy path against the values stored in the conch. The conch file is
+** stored in the same directory as the database file and the file name
+** is patterned after the database file name as ".<databasename>-conch".
+** If the conch file does not exist, or its contents do not match the
+** host ID and/or proxy path, then the lock is escalated to an exclusive
+** lock and the conch file contents is updated with the host ID and proxy
+** path and the lock is downgraded to a shared lock again. If the conch
+** is held by another process (with a shared lock), the exclusive lock
+** will fail and SQLITE_BUSY is returned.
+**
+** The proxy file - a single-byte file used for all advisory file locks
+** normally taken on the database file. This allows for safe sharing
+** of the database file for multiple readers and writers on the same
+** host (the conch ensures that they all use the same local lock file).
+**
+** Requesting the lock proxy does not immediately take the conch, it is
+** only taken when the first request to lock database file is made.
+** This matches the semantics of the traditional locking behavior, where
+** opening a connection to a database file does not take a lock on it.
+** The shared lock and an open file descriptor are maintained until
+** the connection to the database is closed.
+**
+** The proxy file and the lock file are never deleted so they only need
+** to be created the first time they are used.
+**
+** Configuration options
+** ---------------------
+**
+** SQLITE_PREFER_PROXY_LOCKING
+**
+** Database files accessed on non-local file systems are
+** automatically configured for proxy locking, lock files are
+** named automatically using the same logic as
+** PRAGMA lock_proxy_file=":auto:"
+**
+** SQLITE_PROXY_DEBUG
+**
+** Enables the logging of error messages during host id file
+** retrieval and creation
+**
+** LOCKPROXYDIR
+**
+** Overrides the default directory used for lock proxy files that
+** are named automatically via the ":auto:" setting
+**
+** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
+**
+** Permissions to use when creating a directory for storing the
+** lock proxy files, only used when LOCKPROXYDIR is not set.
+**
+**
+** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
+** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
+** force proxy locking to be used for every database file opened, and 0
+** will force automatic proxy locking to be disabled for all database
+** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
+** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
+*/
+
+/*
+** Proxy locking is only available on MacOSX
+*/
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
+
+/*
+** The proxyLockingContext has the path and file structures for the remote
+** and local proxy files in it
+*/
+typedef struct proxyLockingContext proxyLockingContext;
+struct proxyLockingContext {
+ unixFile *conchFile; /* Open conch file */
+ char *conchFilePath; /* Name of the conch file */
+ unixFile *lockProxy; /* Open proxy lock file */
+ char *lockProxyPath; /* Name of the proxy lock file */
+ char *dbPath; /* Name of the open file */
+ int conchHeld; /* 1 if the conch is held, -1 if lockless */
+ int nFails; /* Number of conch taking failures */
+ void *oldLockingContext; /* Original lockingcontext to restore on close */
+ sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
+};
+
+/*
+** The proxy lock file path for the database at dbPath is written into lPath,
+** which must point to valid, writable memory large enough for a maxLen length
+** file path.
+*/
+static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
+ int len;
+ int dbLen;
+ int i;
+
+#ifdef LOCKPROXYDIR
+ len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
+#else
+# ifdef _CS_DARWIN_USER_TEMP_DIR
+ {
+ if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
+ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
+ lPath, errno, osGetpid(0)));
+ return SQLITE_IOERR_LOCK;
+ }
+ len = strlcat(lPath, "sqliteplocks", maxLen);
+ }
+# else
+ len = strlcpy(lPath, "/tmp/", maxLen);
+# endif
+#endif
+
+ if( lPath[len-1]!='/' ){
+ len = strlcat(lPath, "/", maxLen);
+ }
+
+ /* transform the db path to a unique cache name */
+ dbLen = (int)strlen(dbPath);
+ for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
+ char c = dbPath[i];
+ lPath[i+len] = (c=='/')?'_':c;
+ }
+ lPath[i+len]='\0';
+ strlcat(lPath, ":auto:", maxLen);
+ OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
+ return SQLITE_OK;
+}
+
+/*
+ ** Creates the lock file and any missing directories in lockPath
+ */
+static int proxyCreateLockPath(const char *lockPath){
+ int i, len;
+ char buf[MAXPATHLEN];
+ int start = 0;
+
+ assert(lockPath!=NULL);
+ /* try to create all the intermediate directories */
+ len = (int)strlen(lockPath);
+ buf[0] = lockPath[0];
+ for( i=1; i<len; i++ ){
+ if( lockPath[i] == '/' && (i - start > 0) ){
+ /* only mkdir if leaf dir != "." or "/" or ".." */
+ if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
+ || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
+ buf[i]='\0';
+ if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
+ int err=errno;
+ if( err!=EEXIST ) {
+ OSTRACE(("CREATELOCKPATH FAILED creating %s, "
+ "'%s' proxy lock path=%s pid=%d\n",
+ buf, strerror(err), lockPath, osGetpid(0)));
+ return err;
+ }
+ }
+ }
+ start=i+1;
+ }
+ buf[i] = lockPath[i];
+ }
+ OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
+ return 0;
+}
+
+/*
+** Create a new VFS file descriptor (stored in memory obtained from
+** sqlite3_malloc) and open the file named "path" in the file descriptor.
+**
+** The caller is responsible not only for closing the file descriptor
+** but also for freeing the memory associated with the file descriptor.
+*/
+static int proxyCreateUnixFile(
+ const char *path, /* path for the new unixFile */
+ unixFile **ppFile, /* unixFile created and returned by ref */
+ int islockfile /* if non zero missing dirs will be created */
+) {
+ int fd = -1;
+ unixFile *pNew;
+ int rc = SQLITE_OK;
+ int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW;
+ sqlite3_vfs dummyVfs;
+ int terrno = 0;
+ UnixUnusedFd *pUnused = NULL;
+
+ /* 1. first try to open/create the file
+ ** 2. if that fails, and this is a lock file (not-conch), try creating
+ ** the parent directories and then try again.
+ ** 3. if that fails, try to open the file read-only
+ ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
+ */
+ pUnused = findReusableFd(path, openFlags);
+ if( pUnused ){
+ fd = pUnused->fd;
+ }else{
+ pUnused = sqlite3_malloc64(sizeof(*pUnused));
+ if( !pUnused ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+ if( fd<0 ){
+ fd = robust_open(path, openFlags, 0);
+ terrno = errno;
+ if( fd<0 && errno==ENOENT && islockfile ){
+ if( proxyCreateLockPath(path) == SQLITE_OK ){
+ fd = robust_open(path, openFlags, 0);
+ }
+ }
+ }
+ if( fd<0 ){
+ openFlags = O_RDONLY | O_NOFOLLOW;
+ fd = robust_open(path, openFlags, 0);
+ terrno = errno;
+ }
+ if( fd<0 ){
+ if( islockfile ){
+ return SQLITE_BUSY;
+ }
+ switch (terrno) {
+ case EACCES:
+ return SQLITE_PERM;
+ case EIO:
+ return SQLITE_IOERR_LOCK; /* even though it is the conch */
+ default:
+ return SQLITE_CANTOPEN_BKPT;
+ }
+ }
+
+ pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew));
+ if( pNew==NULL ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto end_create_proxy;
+ }
+ memset(pNew, 0, sizeof(unixFile));
+ pNew->openFlags = openFlags;
+ memset(&dummyVfs, 0, sizeof(dummyVfs));
+ dummyVfs.pAppData = (void*)&autolockIoFinder;
+ dummyVfs.zName = "dummy";
+ pUnused->fd = fd;
+ pUnused->flags = openFlags;
+ pNew->pPreallocatedUnused = pUnused;
+
+ rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
+ if( rc==SQLITE_OK ){
+ *ppFile = pNew;
+ return SQLITE_OK;
+ }
+end_create_proxy:
+ robust_close(pNew, fd, __LINE__);
+ sqlite3_free(pNew);
+ sqlite3_free(pUnused);
+ return rc;
+}
+
+#ifdef SQLITE_TEST
+/* simulate multiple hosts by creating unique hostid file paths */
+SQLITE_API int sqlite3_hostid_num = 0;
+#endif
+
+#define PROXY_HOSTIDLEN 16 /* conch file host id length */
+
+#if HAVE_GETHOSTUUID
+/* Not always defined in the headers as it ought to be */
+extern int gethostuuid(uuid_t id, const struct timespec *wait);
+#endif
+
+/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
+** bytes of writable memory.
+*/
+static int proxyGetHostID(unsigned char *pHostID, int *pError){
+ assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
+ memset(pHostID, 0, PROXY_HOSTIDLEN);
+#if HAVE_GETHOSTUUID
+ {
+ struct timespec timeout = {1, 0}; /* 1 sec timeout */
+ if( gethostuuid(pHostID, &timeout) ){
+ int err = errno;
+ if( pError ){
+ *pError = err;
+ }
+ return SQLITE_IOERR;
+ }
+ }
+#else
+ UNUSED_PARAMETER(pError);
+#endif
+#ifdef SQLITE_TEST
+ /* simulate multiple hosts by creating unique hostid file paths */
+ if( sqlite3_hostid_num != 0){
+ pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+/* The conch file contains the header, host id and lock file path
+ */
+#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
+#define PROXY_HEADERLEN 1 /* conch file header length */
+#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
+#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
+
+/*
+** Takes an open conch file, copies the contents to a new path and then moves
+** it back. The newly created file's file descriptor is assigned to the
+** conch file structure and finally the original conch file descriptor is
+** closed. Returns zero if successful.
+*/
+static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *conchFile = pCtx->conchFile;
+ char tPath[MAXPATHLEN];
+ char buf[PROXY_MAXCONCHLEN];
+ char *cPath = pCtx->conchFilePath;
+ size_t readLen = 0;
+ size_t pathLen = 0;
+ char errmsg[64] = "";
+ int fd = -1;
+ int rc = -1;
+ UNUSED_PARAMETER(myHostID);
+
+ /* create a new path by replace the trailing '-conch' with '-break' */
+ pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
+ if( pathLen>MAXPATHLEN || pathLen<6 ||
+ (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
+ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
+ goto end_breaklock;
+ }
+ /* read the conch content */
+ readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
+ if( readLen<PROXY_PATHINDEX ){
+ sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
+ goto end_breaklock;
+ }
+ /* write it out to the temporary break file */
+ fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW), 0);
+ if( fd<0 ){
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
+ goto end_breaklock;
+ }
+ if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
+ goto end_breaklock;
+ }
+ if( rename(tPath, cPath) ){
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
+ goto end_breaklock;
+ }
+ rc = 0;
+ fprintf(stderr, "broke stale lock on %s\n", cPath);
+ robust_close(pFile, conchFile->h, __LINE__);
+ conchFile->h = fd;
+ conchFile->openFlags = O_RDWR | O_CREAT;
+
+end_breaklock:
+ if( rc ){
+ if( fd>=0 ){
+ osUnlink(tPath);
+ robust_close(pFile, fd, __LINE__);
+ }
+ fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
+ }
+ return rc;
+}
+
+/* Take the requested lock on the conch file and break a stale lock if the
+** host id matches.
+*/
+static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *conchFile = pCtx->conchFile;
+ int rc = SQLITE_OK;
+ int nTries = 0;
+ struct timespec conchModTime;
+
+ memset(&conchModTime, 0, sizeof(conchModTime));
+ do {
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
+ nTries ++;
+ if( rc==SQLITE_BUSY ){
+ /* If the lock failed (busy):
+ * 1st try: get the mod time of the conch, wait 0.5s and try again.
+ * 2nd try: fail if the mod time changed or host id is different, wait
+ * 10 sec and try again
+ * 3rd try: break the lock unless the mod time has changed.
+ */
+ struct stat buf;
+ if( osFstat(conchFile->h, &buf) ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR_LOCK;
+ }
+
+ if( nTries==1 ){
+ conchModTime = buf.st_mtimespec;
+ unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/
+ continue;
+ }
+
+ assert( nTries>1 );
+ if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
+ conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
+ return SQLITE_BUSY;
+ }
+
+ if( nTries==2 ){
+ char tBuf[PROXY_MAXCONCHLEN];
+ int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
+ if( len<0 ){
+ storeLastErrno(pFile, errno);
+ return SQLITE_IOERR_LOCK;
+ }
+ if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
+ /* don't break the lock if the host id doesn't match */
+ if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
+ return SQLITE_BUSY;
+ }
+ }else{
+ /* don't break the lock on short read or a version mismatch */
+ return SQLITE_BUSY;
+ }
+ unixSleep(0,10000000); /* wait 10 sec and try the lock again */
+ continue;
+ }
+
+ assert( nTries==3 );
+ if( 0==proxyBreakConchLock(pFile, myHostID) ){
+ rc = SQLITE_OK;
+ if( lockType==EXCLUSIVE_LOCK ){
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
+ }
+ if( !rc ){
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
+ }
+ }
+ }
+ } while( rc==SQLITE_BUSY && nTries<3 );
+
+ return rc;
+}
+
+/* Takes the conch by taking a shared lock and read the contents conch, if
+** lockPath is non-NULL, the host ID and lock file path must match. A NULL
+** lockPath means that the lockPath in the conch file will be used if the
+** host IDs match, or a new lock path will be generated automatically
+** and written to the conch file.
+*/
+static int proxyTakeConch(unixFile *pFile){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+
+ if( pCtx->conchHeld!=0 ){
+ return SQLITE_OK;
+ }else{
+ unixFile *conchFile = pCtx->conchFile;
+ uuid_t myHostID;
+ int pError = 0;
+ char readBuf[PROXY_MAXCONCHLEN];
+ char lockPath[MAXPATHLEN];
+ char *tempLockPath = NULL;
+ int rc = SQLITE_OK;
+ int createConch = 0;
+ int hostIdMatch = 0;
+ int readLen = 0;
+ int tryOldLockPath = 0;
+ int forceNewLockPath = 0;
+
+ OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
+ osGetpid(0)));
+
+ rc = proxyGetHostID(myHostID, &pError);
+ if( (rc&0xff)==SQLITE_IOERR ){
+ storeLastErrno(pFile, pError);
+ goto end_takeconch;
+ }
+ rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ goto end_takeconch;
+ }
+ /* read the existing conch file */
+ readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
+ if( readLen<0 ){
+ /* I/O error: lastErrno set by seekAndRead */
+ storeLastErrno(pFile, conchFile->lastErrno);
+ rc = SQLITE_IOERR_READ;
+ goto end_takeconch;
+ }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
+ readBuf[0]!=(char)PROXY_CONCHVERSION ){
+ /* a short read or version format mismatch means we need to create a new
+ ** conch file.
+ */
+ createConch = 1;
+ }
+ /* if the host id matches and the lock path already exists in the conch
+ ** we'll try to use the path there, if we can't open that path, we'll
+ ** retry with a new auto-generated path
+ */
+ do { /* in case we need to try again for an :auto: named lock file */
+
+ if( !createConch && !forceNewLockPath ){
+ hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
+ PROXY_HOSTIDLEN);
+ /* if the conch has data compare the contents */
+ if( !pCtx->lockProxyPath ){
+ /* for auto-named local lock file, just check the host ID and we'll
+ ** use the local lock file path that's already in there
+ */
+ if( hostIdMatch ){
+ size_t pathLen = (readLen - PROXY_PATHINDEX);
+
+ if( pathLen>=MAXPATHLEN ){
+ pathLen=MAXPATHLEN-1;
+ }
+ memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
+ lockPath[pathLen] = 0;
+ tempLockPath = lockPath;
+ tryOldLockPath = 1;
+ /* create a copy of the lock path if the conch is taken */
+ goto end_takeconch;
+ }
+ }else if( hostIdMatch
+ && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
+ readLen-PROXY_PATHINDEX)
+ ){
+ /* conch host and lock path match */
+ goto end_takeconch;
+ }
+ }
+
+ /* if the conch isn't writable and doesn't match, we can't take it */
+ if( (conchFile->openFlags&O_RDWR) == 0 ){
+ rc = SQLITE_BUSY;
+ goto end_takeconch;
+ }
+
+ /* either the conch didn't match or we need to create a new one */
+ if( !pCtx->lockProxyPath ){
+ proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
+ tempLockPath = lockPath;
+ /* create a copy of the lock path _only_ if the conch is taken */
+ }
+
+ /* update conch with host and path (this will fail if other process
+ ** has a shared lock already), if the host id matches, use the big
+ ** stick.
+ */
+ futimes(conchFile->h, NULL);
+ if( hostIdMatch && !createConch ){
+ if( conchFile->pInode && conchFile->pInode->nShared>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ } else {
+ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
+ }
+ }else{
+ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
+ }
+ if( rc==SQLITE_OK ){
+ char writeBuffer[PROXY_MAXCONCHLEN];
+ int writeSize = 0;
+
+ writeBuffer[0] = (char)PROXY_CONCHVERSION;
+ memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
+ if( pCtx->lockProxyPath!=NULL ){
+ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
+ MAXPATHLEN);
+ }else{
+ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
+ }
+ writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
+ robust_ftruncate(conchFile->h, writeSize);
+ rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
+ full_fsync(conchFile->h,0,0);
+ /* If we created a new conch file (not just updated the contents of a
+ ** valid conch file), try to match the permissions of the database
+ */
+ if( rc==SQLITE_OK && createConch ){
+ struct stat buf;
+ int err = osFstat(pFile->h, &buf);
+ if( err==0 ){
+ mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
+ S_IROTH|S_IWOTH);
+ /* try to match the database file R/W permissions, ignore failure */
+#ifndef SQLITE_PROXY_DEBUG
+ osFchmod(conchFile->h, cmode);
+#else
+ do{
+ rc = osFchmod(conchFile->h, cmode);
+ }while( rc==(-1) && errno==EINTR );
+ if( rc!=0 ){
+ int code = errno;
+ fprintf(stderr, "fchmod %o FAILED with %d %s\n",
+ cmode, code, strerror(code));
+ } else {
+ fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
+ }
+ }else{
+ int code = errno;
+ fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
+ err, code, strerror(code));
+#endif
+ }
+ }
+ }
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
+
+ end_takeconch:
+ OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
+ if( rc==SQLITE_OK && pFile->openFlags ){
+ int fd;
+ if( pFile->h>=0 ){
+ robust_close(pFile, pFile->h, __LINE__);
+ }
+ pFile->h = -1;
+ fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
+ OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
+ if( fd>=0 ){
+ pFile->h = fd;
+ }else{
+ rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
+ during locking */
+ }
+ }
+ if( rc==SQLITE_OK && !pCtx->lockProxy ){
+ char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
+ rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
+ /* we couldn't create the proxy lock file with the old lock file path
+ ** so try again via auto-naming
+ */
+ forceNewLockPath = 1;
+ tryOldLockPath = 0;
+ continue; /* go back to the do {} while start point, try again */
+ }
+ }
+ if( rc==SQLITE_OK ){
+ /* Need to make a copy of path if we extracted the value
+ ** from the conch file or the path was allocated on the stack
+ */
+ if( tempLockPath ){
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
+ if( !pCtx->lockProxyPath ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pCtx->conchHeld = 1;
+
+ if( pCtx->lockProxy->pMethod == &afpIoMethods ){
+ afpLockingContext *afpCtx;
+ afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
+ afpCtx->dbPath = pCtx->lockProxyPath;
+ }
+ } else {
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
+ }
+ OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
+ rc==SQLITE_OK?"ok":"failed"));
+ return rc;
+ } while (1); /* in case we need to retry the :auto: lock file -
+ ** we should never get here except via the 'continue' call. */
+ }
+}
+
+/*
+** If pFile holds a lock on a conch file, then release that lock.
+*/
+static int proxyReleaseConch(unixFile *pFile){
+ int rc = SQLITE_OK; /* Subroutine return code */
+ proxyLockingContext *pCtx; /* The locking context for the proxy lock */
+ unixFile *conchFile; /* Name of the conch file */
+
+ pCtx = (proxyLockingContext *)pFile->lockingContext;
+ conchFile = pCtx->conchFile;
+ OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
+ osGetpid(0)));
+ if( pCtx->conchHeld>0 ){
+ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
+ }
+ pCtx->conchHeld = 0;
+ OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
+ (rc==SQLITE_OK ? "ok" : "failed")));
+ return rc;
+}
+
+/*
+** Given the name of a database file, compute the name of its conch file.
+** Store the conch filename in memory obtained from sqlite3_malloc64().
+** Make *pConchPath point to the new name. Return SQLITE_OK on success
+** or SQLITE_NOMEM if unable to obtain memory.
+**
+** The caller is responsible for ensuring that the allocated memory
+** space is eventually freed.
+**
+** *pConchPath is set to NULL if a memory allocation error occurs.
+*/
+static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
+ int i; /* Loop counter */
+ int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
+ char *conchPath; /* buffer in which to construct conch name */
+
+ /* Allocate space for the conch filename and initialize the name to
+ ** the name of the original database file. */
+ *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8);
+ if( conchPath==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(conchPath, dbPath, len+1);
+
+ /* now insert a "." before the last / character */
+ for( i=(len-1); i>=0; i-- ){
+ if( conchPath[i]=='/' ){
+ i++;
+ break;
+ }
+ }
+ conchPath[i]='.';
+ while ( i<len ){
+ conchPath[i+1]=dbPath[i];
+ i++;
+ }
+
+ /* append the "-conch" suffix to the file */
+ memcpy(&conchPath[i+1], "-conch", 7);
+ assert( (int)strlen(conchPath) == len+7 );
+
+ return SQLITE_OK;
+}
+
+
+/* Takes a fully configured proxy locking-style unix file and switches
+** the local lock file path
+*/
+static int switchLockProxyPath(unixFile *pFile, const char *path) {
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
+ char *oldPath = pCtx->lockProxyPath;
+ int rc = SQLITE_OK;
+
+ if( pFile->eFileLock!=NO_LOCK ){
+ return SQLITE_BUSY;
+ }
+
+ /* nothing to do if the path is NULL, :auto: or matches the existing path */
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
+ (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
+ return SQLITE_OK;
+ }else{
+ unixFile *lockProxy = pCtx->lockProxy;
+ pCtx->lockProxy=NULL;
+ pCtx->conchHeld = 0;
+ if( lockProxy!=NULL ){
+ rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
+ if( rc ) return rc;
+ sqlite3_free(lockProxy);
+ }
+ sqlite3_free(oldPath);
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
+ }
+
+ return rc;
+}
+
+/*
+** pFile is a file that has been opened by a prior xOpen call. dbPath
+** is a string buffer at least MAXPATHLEN+1 characters in size.
+**
+** This routine find the filename associated with pFile and writes it
+** int dbPath.
+*/
+static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
+#if defined(__APPLE__)
+ if( pFile->pMethod == &afpIoMethods ){
+ /* afp style keeps a reference to the db path in the filePath field
+ ** of the struct */
+ assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
+ strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
+ MAXPATHLEN);
+ } else
+#endif
+ if( pFile->pMethod == &dotlockIoMethods ){
+ /* dot lock style uses the locking context to store the dot lock
+ ** file path */
+ int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
+ memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
+ }else{
+ /* all other styles use the locking context to store the db file path */
+ assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
+ strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Takes an already filled in unix file and alters it so all file locking
+** will be performed on the local proxy lock file. The following fields
+** are preserved in the locking context so that they can be restored and
+** the unix structure properly cleaned up at close time:
+** ->lockingContext
+** ->pMethod
+*/
+static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
+ proxyLockingContext *pCtx;
+ char dbPath[MAXPATHLEN+1]; /* Name of the database file */
+ char *lockPath=NULL;
+ int rc = SQLITE_OK;
+
+ if( pFile->eFileLock!=NO_LOCK ){
+ return SQLITE_BUSY;
+ }
+ proxyGetDbPathForUnixFile(pFile, dbPath);
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
+ lockPath=NULL;
+ }else{
+ lockPath=(char *)path;
+ }
+
+ OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
+ (lockPath ? lockPath : ":auto:"), osGetpid(0)));
+
+ pCtx = sqlite3_malloc64( sizeof(*pCtx) );
+ if( pCtx==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(pCtx, 0, sizeof(*pCtx));
+
+ rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
+ if( rc==SQLITE_OK ){
+ rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
+ if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
+ /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
+ ** (c) the file system is read-only, then enable no-locking access.
+ ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
+ ** that openFlags will have only one of O_RDONLY or O_RDWR.
+ */
+ struct statfs fsInfo;
+ struct stat conchInfo;
+ int goLockless = 0;
+
+ if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
+ int err = errno;
+ if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
+ goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
+ }
+ }
+ if( goLockless ){
+ pCtx->conchHeld = -1; /* read only FS/ lockless */
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ if( rc==SQLITE_OK && lockPath ){
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
+ }
+
+ if( rc==SQLITE_OK ){
+ pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
+ if( pCtx->dbPath==NULL ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ /* all memory is allocated, proxys are created and assigned,
+ ** switch the locking context and pMethod then return.
+ */
+ pCtx->oldLockingContext = pFile->lockingContext;
+ pFile->lockingContext = pCtx;
+ pCtx->pOldMethod = pFile->pMethod;
+ pFile->pMethod = &proxyIoMethods;
+ }else{
+ if( pCtx->conchFile ){
+ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
+ sqlite3_free(pCtx->conchFile);
+ }
+ sqlite3DbFree(0, pCtx->lockProxyPath);
+ sqlite3_free(pCtx->conchFilePath);
+ sqlite3_free(pCtx);
+ }
+ OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
+ (rc==SQLITE_OK ? "ok" : "failed")));
+ return rc;
+}
+
+
+/*
+** This routine handles sqlite3_file_control() calls that are specific
+** to proxy locking.
+*/
+static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
+ unixFile *pFile = (unixFile*)id;
+ if( pFile->pMethod == &proxyIoMethods ){
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
+ proxyTakeConch(pFile);
+ if( pCtx->lockProxyPath ){
+ *(const char **)pArg = pCtx->lockProxyPath;
+ }else{
+ *(const char **)pArg = ":auto: (not held)";
+ }
+ } else {
+ *(const char **)pArg = NULL;
+ }
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
+ unixFile *pFile = (unixFile*)id;
+ int rc = SQLITE_OK;
+ int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
+ if( pArg==NULL || (const char *)pArg==0 ){
+ if( isProxyStyle ){
+ /* turn off proxy locking - not supported. If support is added for
+ ** switching proxy locking mode off then it will need to fail if
+ ** the journal mode is WAL mode.
+ */
+ rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
+ }else{
+ /* turn off proxy locking - already off - NOOP */
+ rc = SQLITE_OK;
+ }
+ }else{
+ const char *proxyPath = (const char *)pArg;
+ if( isProxyStyle ){
+ proxyLockingContext *pCtx =
+ (proxyLockingContext*)pFile->lockingContext;
+ if( !strcmp(pArg, ":auto:")
+ || (pCtx->lockProxyPath &&
+ !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
+ ){
+ rc = SQLITE_OK;
+ }else{
+ rc = switchLockProxyPath(pFile, proxyPath);
+ }
+ }else{
+ /* turn on proxy file locking */
+ rc = proxyTransformUnixFile(pFile, proxyPath);
+ }
+ }
+ return rc;
+ }
+ default: {
+ assert( 0 ); /* The call assures that only valid opcodes are sent */
+ }
+ }
+ /*NOTREACHED*/ assert(0);
+ return SQLITE_ERROR;
+}
+
+/*
+** Within this division (the proxying locking implementation) the procedures
+** above this point are all utilities. The lock-related methods of the
+** proxy-locking sqlite3_io_method object follow.
+*/
+
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, set *pResOut
+** to a non-zero value otherwise *pResOut is set to zero. The return value
+** is set to SQLITE_OK unless an I/O error occurs during lock checking.
+*/
+static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ if( pCtx->conchHeld>0 ){
+ unixFile *proxy = pCtx->lockProxy;
+ return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
+ }else{ /* conchHeld < 0 is lockless */
+ pResOut=0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Lock the file with the lock specified by parameter eFileLock - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int proxyLock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ if( pCtx->conchHeld>0 ){
+ unixFile *proxy = pCtx->lockProxy;
+ rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
+ pFile->eFileLock = proxy->eFileLock;
+ }else{
+ /* conchHeld < 0 is lockless */
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int proxyUnlock(sqlite3_file *id, int eFileLock) {
+ unixFile *pFile = (unixFile*)id;
+ int rc = proxyTakeConch(pFile);
+ if( rc==SQLITE_OK ){
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ if( pCtx->conchHeld>0 ){
+ unixFile *proxy = pCtx->lockProxy;
+ rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
+ pFile->eFileLock = proxy->eFileLock;
+ }else{
+ /* conchHeld < 0 is lockless */
+ }
+ }
+ return rc;
+}
+
+/*
+** Close a file that uses proxy locks.
+*/
+static int proxyClose(sqlite3_file *id) {
+ if( ALWAYS(id) ){
+ unixFile *pFile = (unixFile*)id;
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
+ unixFile *lockProxy = pCtx->lockProxy;
+ unixFile *conchFile = pCtx->conchFile;
+ int rc = SQLITE_OK;
+
+ if( lockProxy ){
+ rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
+ if( rc ) return rc;
+ rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
+ if( rc ) return rc;
+ sqlite3_free(lockProxy);
+ pCtx->lockProxy = 0;
+ }
+ if( conchFile ){
+ if( pCtx->conchHeld ){
+ rc = proxyReleaseConch(pFile);
+ if( rc ) return rc;
+ }
+ rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
+ if( rc ) return rc;
+ sqlite3_free(conchFile);
+ }
+ sqlite3DbFree(0, pCtx->lockProxyPath);
+ sqlite3_free(pCtx->conchFilePath);
+ sqlite3DbFree(0, pCtx->dbPath);
+ /* restore the original locking context and pMethod then close it */
+ pFile->lockingContext = pCtx->oldLockingContext;
+ pFile->pMethod = pCtx->pOldMethod;
+ sqlite3_free(pCtx);
+ return pFile->pMethod->xClose(id);
+ }
+ return SQLITE_OK;
+}
+
+
+
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
+/*
+** The proxy locking style is intended for use with AFP filesystems.
+** And since AFP is only supported on MacOSX, the proxy locking is also
+** restricted to MacOSX.
+**
+**
+******************* End of the proxy lock implementation **********************
+******************************************************************************/
+
+/*
+** Initialize the operating system interface.
+**
+** This routine registers all VFS implementations for unix-like operating
+** systems. This routine, and the sqlite3_os_end() routine that follows,
+** should be the only routines in this file that are visible from other
+** files.
+**
+** This routine is called once during SQLite initialization and by a
+** single thread. The memory allocation and mutex subsystems have not
+** necessarily been initialized when this routine is called, and so they
+** should not be used.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ /*
+ ** The following macro defines an initializer for an sqlite3_vfs object.
+ ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
+ ** to the "finder" function. (pAppData is a pointer to a pointer because
+ ** silly C90 rules prohibit a void* from being cast to a function pointer
+ ** and so we have to go through the intermediate pointer to avoid problems
+ ** when compiling with -pedantic-errors on GCC.)
+ **
+ ** The FINDER parameter to this macro is the name of the pointer to the
+ ** finder-function. The finder-function returns a pointer to the
+ ** sqlite_io_methods object that implements the desired locking
+ ** behaviors. See the division above that contains the IOMETHODS
+ ** macro for addition information on finder-functions.
+ **
+ ** Most finders simply return a pointer to a fixed sqlite3_io_methods
+ ** object. But the "autolockIoFinder" available on MacOSX does a little
+ ** more than that; it looks at the filesystem type that hosts the
+ ** database file and tries to choose an locking method appropriate for
+ ** that filesystem time.
+ */
+ #define UNIXVFS(VFSNAME, FINDER) { \
+ 3, /* iVersion */ \
+ sizeof(unixFile), /* szOsFile */ \
+ MAX_PATHNAME, /* mxPathname */ \
+ 0, /* pNext */ \
+ VFSNAME, /* zName */ \
+ (void*)&FINDER, /* pAppData */ \
+ unixOpen, /* xOpen */ \
+ unixDelete, /* xDelete */ \
+ unixAccess, /* xAccess */ \
+ unixFullPathname, /* xFullPathname */ \
+ unixDlOpen, /* xDlOpen */ \
+ unixDlError, /* xDlError */ \
+ unixDlSym, /* xDlSym */ \
+ unixDlClose, /* xDlClose */ \
+ unixRandomness, /* xRandomness */ \
+ unixSleep, /* xSleep */ \
+ unixCurrentTime, /* xCurrentTime */ \
+ unixGetLastError, /* xGetLastError */ \
+ unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
+ unixSetSystemCall, /* xSetSystemCall */ \
+ unixGetSystemCall, /* xGetSystemCall */ \
+ unixNextSystemCall, /* xNextSystemCall */ \
+ }
+
+ /*
+ ** All default VFSes for unix are contained in the following array.
+ **
+ ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
+ ** by the SQLite core when the VFS is registered. So the following
+ ** array cannot be const.
+ */
+ static sqlite3_vfs aVfs[] = {
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ UNIXVFS("unix", autolockIoFinder ),
+#elif OS_VXWORKS
+ UNIXVFS("unix", vxworksIoFinder ),
+#else
+ UNIXVFS("unix", posixIoFinder ),
+#endif
+ UNIXVFS("unix-none", nolockIoFinder ),
+ UNIXVFS("unix-dotfile", dotlockIoFinder ),
+ UNIXVFS("unix-excl", posixIoFinder ),
+#if OS_VXWORKS
+ UNIXVFS("unix-namedsem", semIoFinder ),
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
+ UNIXVFS("unix-posix", posixIoFinder ),
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE
+ UNIXVFS("unix-flock", flockIoFinder ),
+#endif
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
+ UNIXVFS("unix-afp", afpIoFinder ),
+ UNIXVFS("unix-nfs", nfsIoFinder ),
+ UNIXVFS("unix-proxy", proxyIoFinder ),
+#endif
+ };
+ unsigned int i; /* Loop counter */
+
+ /* Double-check that the aSyscall[] array has been constructed
+ ** correctly. See ticket [bb3a86e890c8e96ab] */
+ assert( ArraySize(aSyscall)==29 );
+
+ /* Register all VFSes defined in the aVfs[] array */
+ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
+#ifdef SQLITE_DEFAULT_UNIX_VFS
+ sqlite3_vfs_register(&aVfs[i],
+ 0==strcmp(aVfs[i].zName,SQLITE_DEFAULT_UNIX_VFS));
+#else
+ sqlite3_vfs_register(&aVfs[i], i==0);
+#endif
+ }
+#ifdef SQLITE_OS_KV_OPTIONAL
+ sqlite3KvvfsInit();
+#endif
+ unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+
+#ifndef SQLITE_OMIT_WAL
+ /* Validate lock assumptions */
+ assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */
+ assert( UNIX_SHM_BASE==120 ); /* Start of locking area */
+ /* Locks:
+ ** WRITE UNIX_SHM_BASE 120
+ ** CKPT UNIX_SHM_BASE+1 121
+ ** RECOVER UNIX_SHM_BASE+2 122
+ ** READ-0 UNIX_SHM_BASE+3 123
+ ** READ-1 UNIX_SHM_BASE+4 124
+ ** READ-2 UNIX_SHM_BASE+5 125
+ ** READ-3 UNIX_SHM_BASE+6 126
+ ** READ-4 UNIX_SHM_BASE+7 127
+ ** DMS UNIX_SHM_BASE+8 128
+ */
+ assert( UNIX_SHM_DMS==128 ); /* Byte offset of the deadman-switch */
+#endif
+
+ /* Initialize temp file dir array. */
+ unixTempFileInit();
+
+ return SQLITE_OK;
+}
+
+/*
+** Shutdown the operating system interface.
+**
+** Some operating systems might need to do some cleanup in this routine,
+** to release dynamically allocated objects. But not on unix.
+** This routine is a no-op for unix.
+*/
+SQLITE_API int sqlite3_os_end(void){
+ unixBigLock = 0;
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_UNIX */
+
+/************** End of os_unix.c *********************************************/
+/************** Begin file os_win.c ******************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Windows.
+*/
+/* #include "sqliteInt.h" */
+#if SQLITE_OS_WIN /* This file is used for Windows only */
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/* #include "os_common.h" */
+
+/*
+** Include the header file for the Windows VFS.
+*/
+/* #include "os_win.h" */
+
+/*
+** Compiling and using WAL mode requires several APIs that are only
+** available in Windows platforms based on the NT kernel.
+*/
+#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
+# error "WAL mode requires support from the Windows NT kernel, compile\
+ with SQLITE_OMIT_WAL."
+#endif
+
+#if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0
+# error "Memory mapped files require support from the Windows NT kernel,\
+ compile with SQLITE_MAX_MMAP_SIZE=0."
+#endif
+
+/*
+** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
+** based on the sub-platform)?
+*/
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
+# define SQLITE_WIN32_HAS_ANSI
+#endif
+
+/*
+** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions
+** based on the sub-platform)?
+*/
+#if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \
+ !defined(SQLITE_WIN32_NO_WIDE)
+# define SQLITE_WIN32_HAS_WIDE
+#endif
+
+/*
+** Make sure at least one set of Win32 APIs is available.
+*/
+#if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE)
+# error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\
+ must be defined."
+#endif
+
+/*
+** Define the required Windows SDK version constants if they are not
+** already available.
+*/
+#ifndef NTDDI_WIN8
+# define NTDDI_WIN8 0x06020000
+#endif
+
+#ifndef NTDDI_WINBLUE
+# define NTDDI_WINBLUE 0x06030000
+#endif
+
+#ifndef NTDDI_WINTHRESHOLD
+# define NTDDI_WINTHRESHOLD 0x06040000
+#endif
+
+/*
+** Check to see if the GetVersionEx[AW] functions are deprecated on the
+** target system. GetVersionEx was first deprecated in Win8.1.
+*/
+#ifndef SQLITE_WIN32_GETVERSIONEX
+# if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE
+# define SQLITE_WIN32_GETVERSIONEX 0 /* GetVersionEx() is deprecated */
+# else
+# define SQLITE_WIN32_GETVERSIONEX 1 /* GetVersionEx() is current */
+# endif
+#endif
+
+/*
+** Check to see if the CreateFileMappingA function is supported on the
+** target system. It is unavailable when using "mincore.lib" on Win10.
+** When compiling for Windows 10, always assume "mincore.lib" is in use.
+*/
+#ifndef SQLITE_WIN32_CREATEFILEMAPPINGA
+# if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINTHRESHOLD
+# define SQLITE_WIN32_CREATEFILEMAPPINGA 0
+# else
+# define SQLITE_WIN32_CREATEFILEMAPPINGA 1
+# endif
+#endif
+
+/*
+** This constant should already be defined (in the "WinDef.h" SDK file).
+*/
+#ifndef MAX_PATH
+# define MAX_PATH (260)
+#endif
+
+/*
+** Maximum pathname length (in chars) for Win32. This should normally be
+** MAX_PATH.
+*/
+#ifndef SQLITE_WIN32_MAX_PATH_CHARS
+# define SQLITE_WIN32_MAX_PATH_CHARS (MAX_PATH)
+#endif
+
+/*
+** This constant should already be defined (in the "WinNT.h" SDK file).
+*/
+#ifndef UNICODE_STRING_MAX_CHARS
+# define UNICODE_STRING_MAX_CHARS (32767)
+#endif
+
+/*
+** Maximum pathname length (in chars) for WinNT. This should normally be
+** UNICODE_STRING_MAX_CHARS.
+*/
+#ifndef SQLITE_WINNT_MAX_PATH_CHARS
+# define SQLITE_WINNT_MAX_PATH_CHARS (UNICODE_STRING_MAX_CHARS)
+#endif
+
+/*
+** Maximum pathname length (in bytes) for Win32. The MAX_PATH macro is in
+** characters, so we allocate 4 bytes per character assuming worst-case of
+** 4-bytes-per-character for UTF8.
+*/
+#ifndef SQLITE_WIN32_MAX_PATH_BYTES
+# define SQLITE_WIN32_MAX_PATH_BYTES (SQLITE_WIN32_MAX_PATH_CHARS*4)
+#endif
+
+/*
+** Maximum pathname length (in bytes) for WinNT. This should normally be
+** UNICODE_STRING_MAX_CHARS * sizeof(WCHAR).
+*/
+#ifndef SQLITE_WINNT_MAX_PATH_BYTES
+# define SQLITE_WINNT_MAX_PATH_BYTES \
+ (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS)
+#endif
+
+/*
+** Maximum error message length (in chars) for WinRT.
+*/
+#ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS
+# define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024)
+#endif
+
+/*
+** Returns non-zero if the character should be treated as a directory
+** separator.
+*/
+#ifndef winIsDirSep
+# define winIsDirSep(a) (((a) == '/') || ((a) == '\\'))
+#endif
+
+/*
+** This macro is used when a local variable is set to a value that is
+** [sometimes] not used by the code (e.g. via conditional compilation).
+*/
+#ifndef UNUSED_VARIABLE_VALUE
+# define UNUSED_VARIABLE_VALUE(x) (void)(x)
+#endif
+
+/*
+** Returns the character that should be used as the directory separator.
+*/
+#ifndef winGetDirSep
+# define winGetDirSep() '\\'
+#endif
+
+/*
+** Do we need to manually define the Win32 file mapping APIs for use with WAL
+** mode or memory mapped files (e.g. these APIs are available in the Windows
+** CE SDK; however, they are not present in the header file)?
+*/
+#if SQLITE_WIN32_FILEMAPPING_API && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+/*
+** Two of the file mapping APIs are different under WinRT. Figure out which
+** set we need.
+*/
+#if SQLITE_OS_WINRT
+WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
+ LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
+
+WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T);
+#else
+#if defined(SQLITE_WIN32_HAS_ANSI)
+WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \
+ DWORD, DWORD, DWORD, LPCSTR);
+#endif /* defined(SQLITE_WIN32_HAS_ANSI) */
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \
+ DWORD, DWORD, DWORD, LPCWSTR);
+#endif /* defined(SQLITE_WIN32_HAS_WIDE) */
+
+WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
+#endif /* SQLITE_OS_WINRT */
+
+/*
+** These file mapping APIs are common to both Win32 and WinRT.
+*/
+
+WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T);
+WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
+#endif /* SQLITE_WIN32_FILEMAPPING_API */
+
+/*
+** Some Microsoft compilers lack this definition.
+*/
+#ifndef INVALID_FILE_ATTRIBUTES
+# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
+#endif
+
+#ifndef FILE_FLAG_MASK
+# define FILE_FLAG_MASK (0xFF3C0000)
+#endif
+
+#ifndef FILE_ATTRIBUTE_MASK
+# define FILE_ATTRIBUTE_MASK (0x0003FFF7)
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+/* Forward references to structures used for WAL */
+typedef struct winShm winShm; /* A connection to shared-memory */
+typedef struct winShmNode winShmNode; /* A region of shared-memory */
+#endif
+
+/*
+** WinCE lacks native support for file locking so we have to fake it
+** with some code of our own.
+*/
+#if SQLITE_OS_WINCE
+typedef struct winceLock {
+ int nReaders; /* Number of reader locks obtained */
+ BOOL bPending; /* Indicates a pending lock has been obtained */
+ BOOL bReserved; /* Indicates a reserved lock has been obtained */
+ BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
+} winceLock;
+#endif
+
+/*
+** The winFile structure is a subclass of sqlite3_file* specific to the win32
+** portability layer.
+*/
+typedef struct winFile winFile;
+struct winFile {
+ const sqlite3_io_methods *pMethod; /*** Must be first ***/
+ sqlite3_vfs *pVfs; /* The VFS used to open this file */
+ HANDLE h; /* Handle for accessing the file */
+ u8 locktype; /* Type of lock currently held on this file */
+ short sharedLockByte; /* Randomly chosen byte used as a shared lock */
+ u8 ctrlFlags; /* Flags. See WINFILE_* below */
+ DWORD lastErrno; /* The Windows errno from the last I/O error */
+#ifndef SQLITE_OMIT_WAL
+ winShm *pShm; /* Instance of shared memory on this file */
+#endif
+ const char *zPath; /* Full pathname of this file */
+ int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
+#if SQLITE_OS_WINCE
+ LPWSTR zDeleteOnClose; /* Name of file to delete when closing */
+ HANDLE hMutex; /* Mutex used to control access to shared lock */
+ HANDLE hShared; /* Shared memory segment used for locking */
+ winceLock local; /* Locks obtained by this instance of winFile */
+ winceLock *shared; /* Global shared lock memory for the file */
+#endif
+#if SQLITE_MAX_MMAP_SIZE>0
+ int nFetchOut; /* Number of outstanding xFetch references */
+ HANDLE hMap; /* Handle for accessing memory mapping */
+ void *pMapRegion; /* Area memory mapped */
+ sqlite3_int64 mmapSize; /* Size of mapped region */
+ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
+#endif
+};
+
+/*
+** The winVfsAppData structure is used for the pAppData member for all of the
+** Win32 VFS variants.
+*/
+typedef struct winVfsAppData winVfsAppData;
+struct winVfsAppData {
+ const sqlite3_io_methods *pMethod; /* The file I/O methods to use. */
+ void *pAppData; /* The extra pAppData, if any. */
+ BOOL bNoLock; /* Non-zero if locking is disabled. */
+};
+
+/*
+** Allowed values for winFile.ctrlFlags
+*/
+#define WINFILE_RDONLY 0x02 /* Connection is read only */
+#define WINFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
+#define WINFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
+
+/*
+ * The size of the buffer used by sqlite3_win32_write_debug().
+ */
+#ifndef SQLITE_WIN32_DBG_BUF_SIZE
+# define SQLITE_WIN32_DBG_BUF_SIZE ((int)(4096-sizeof(DWORD)))
+#endif
+
+/*
+ * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
+ * various Win32 API heap functions instead of our own.
+ */
+#ifdef SQLITE_WIN32_MALLOC
+
+/*
+ * If this is non-zero, an isolated heap will be created by the native Win32
+ * allocator subsystem; otherwise, the default process heap will be used. This
+ * setting has no effect when compiling for WinRT. By default, this is enabled
+ * and an isolated heap will be created to store all allocated data.
+ *
+ ******************************************************************************
+ * WARNING: It is important to note that when this setting is non-zero and the
+ * winMemShutdown function is called (e.g. by the sqlite3_shutdown
+ * function), all data that was allocated using the isolated heap will
+ * be freed immediately and any attempt to access any of that freed
+ * data will almost certainly result in an immediate access violation.
+ ******************************************************************************
+ */
+#ifndef SQLITE_WIN32_HEAP_CREATE
+# define SQLITE_WIN32_HEAP_CREATE (TRUE)
+#endif
+
+/*
+ * This is the maximum possible initial size of the Win32-specific heap, in
+ * bytes.
+ */
+#ifndef SQLITE_WIN32_HEAP_MAX_INIT_SIZE
+# define SQLITE_WIN32_HEAP_MAX_INIT_SIZE (4294967295U)
+#endif
+
+/*
+ * This is the extra space for the initial size of the Win32-specific heap,
+ * in bytes. This value may be zero.
+ */
+#ifndef SQLITE_WIN32_HEAP_INIT_EXTRA
+# define SQLITE_WIN32_HEAP_INIT_EXTRA (4194304)
+#endif
+
+/*
+ * Calculate the maximum legal cache size, in pages, based on the maximum
+ * possible initial heap size and the default page size, setting aside the
+ * needed extra space.
+ */
+#ifndef SQLITE_WIN32_MAX_CACHE_SIZE
+# define SQLITE_WIN32_MAX_CACHE_SIZE (((SQLITE_WIN32_HEAP_MAX_INIT_SIZE) - \
+ (SQLITE_WIN32_HEAP_INIT_EXTRA)) / \
+ (SQLITE_DEFAULT_PAGE_SIZE))
+#endif
+
+/*
+ * This is cache size used in the calculation of the initial size of the
+ * Win32-specific heap. It cannot be negative.
+ */
+#ifndef SQLITE_WIN32_CACHE_SIZE
+# if SQLITE_DEFAULT_CACHE_SIZE>=0
+# define SQLITE_WIN32_CACHE_SIZE (SQLITE_DEFAULT_CACHE_SIZE)
+# else
+# define SQLITE_WIN32_CACHE_SIZE (-(SQLITE_DEFAULT_CACHE_SIZE))
+# endif
+#endif
+
+/*
+ * Make sure that the calculated cache size, in pages, cannot cause the
+ * initial size of the Win32-specific heap to exceed the maximum amount
+ * of memory that can be specified in the call to HeapCreate.
+ */
+#if SQLITE_WIN32_CACHE_SIZE>SQLITE_WIN32_MAX_CACHE_SIZE
+# undef SQLITE_WIN32_CACHE_SIZE
+# define SQLITE_WIN32_CACHE_SIZE (2000)
+#endif
+
+/*
+ * The initial size of the Win32-specific heap. This value may be zero.
+ */
+#ifndef SQLITE_WIN32_HEAP_INIT_SIZE
+# define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_WIN32_CACHE_SIZE) * \
+ (SQLITE_DEFAULT_PAGE_SIZE) + \
+ (SQLITE_WIN32_HEAP_INIT_EXTRA))
+#endif
+
+/*
+ * The maximum size of the Win32-specific heap. This value may be zero.
+ */
+#ifndef SQLITE_WIN32_HEAP_MAX_SIZE
+# define SQLITE_WIN32_HEAP_MAX_SIZE (0)
+#endif
+
+/*
+ * The extra flags to use in calls to the Win32 heap APIs. This value may be
+ * zero for the default behavior.
+ */
+#ifndef SQLITE_WIN32_HEAP_FLAGS
+# define SQLITE_WIN32_HEAP_FLAGS (0)
+#endif
+
+
+/*
+** The winMemData structure stores information required by the Win32-specific
+** sqlite3_mem_methods implementation.
+*/
+typedef struct winMemData winMemData;
+struct winMemData {
+#ifndef NDEBUG
+ u32 magic1; /* Magic number to detect structure corruption. */
+#endif
+ HANDLE hHeap; /* The handle to our heap. */
+ BOOL bOwned; /* Do we own the heap (i.e. destroy it on shutdown)? */
+#ifndef NDEBUG
+ u32 magic2; /* Magic number to detect structure corruption. */
+#endif
+};
+
+#ifndef NDEBUG
+#define WINMEM_MAGIC1 0x42b2830b
+#define WINMEM_MAGIC2 0xbd4d7cf4
+#endif
+
+static struct winMemData win_mem_data = {
+#ifndef NDEBUG
+ WINMEM_MAGIC1,
+#endif
+ NULL, FALSE
+#ifndef NDEBUG
+ ,WINMEM_MAGIC2
+#endif
+};
+
+#ifndef NDEBUG
+#define winMemAssertMagic1() assert( win_mem_data.magic1==WINMEM_MAGIC1 )
+#define winMemAssertMagic2() assert( win_mem_data.magic2==WINMEM_MAGIC2 )
+#define winMemAssertMagic() winMemAssertMagic1(); winMemAssertMagic2();
+#else
+#define winMemAssertMagic()
+#endif
+
+#define winMemGetDataPtr() &win_mem_data
+#define winMemGetHeap() win_mem_data.hHeap
+#define winMemGetOwned() win_mem_data.bOwned
+
+static void *winMemMalloc(int nBytes);
+static void winMemFree(void *pPrior);
+static void *winMemRealloc(void *pPrior, int nBytes);
+static int winMemSize(void *p);
+static int winMemRoundup(int n);
+static int winMemInit(void *pAppData);
+static void winMemShutdown(void *pAppData);
+
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void);
+#endif /* SQLITE_WIN32_MALLOC */
+
+/*
+** The following variable is (normally) set once and never changes
+** thereafter. It records whether the operating system is Win9x
+** or WinNT.
+**
+** 0: Operating system unknown.
+** 1: Operating system is Win9x.
+** 2: Operating system is WinNT.
+**
+** In order to facilitate testing on a WinNT system, the test fixture
+** can manually set this value to 1 to emulate Win98 behavior.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0;
+#else
+static LONG SQLITE_WIN32_VOLATILE sqlite3_os_type = 0;
+#endif
+
+#ifndef SYSCALL
+# define SYSCALL sqlite3_syscall_ptr
+#endif
+
+/*
+** This function is not available on Windows CE or WinRT.
+ */
+
+#if SQLITE_OS_WINCE || SQLITE_OS_WINRT
+# define osAreFileApisANSI() 1
+#endif
+
+/*
+** Many system calls are accessed through pointer-to-functions so that
+** they may be overridden at runtime to facilitate fault injection during
+** testing and sandboxing. The following array holds the names and pointers
+** to all overrideable system calls.
+*/
+static struct win_syscall {
+ const char *zName; /* Name of the system call */
+ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
+ sqlite3_syscall_ptr pDefault; /* Default value */
+} aSyscall[] = {
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "AreFileApisANSI", (SYSCALL)AreFileApisANSI, 0 },
+#else
+ { "AreFileApisANSI", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osAreFileApisANSI
+#define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent)
+#endif
+
+#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CharLowerW", (SYSCALL)CharLowerW, 0 },
+#else
+ { "CharLowerW", (SYSCALL)0, 0 },
+#endif
+
+#define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent)
+
+#if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CharUpperW", (SYSCALL)CharUpperW, 0 },
+#else
+ { "CharUpperW", (SYSCALL)0, 0 },
+#endif
+
+#define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent)
+
+ { "CloseHandle", (SYSCALL)CloseHandle, 0 },
+
+#define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "CreateFileA", (SYSCALL)CreateFileA, 0 },
+#else
+ { "CreateFileA", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \
+ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CreateFileW", (SYSCALL)CreateFileW, 0 },
+#else
+ { "CreateFileW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
+ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) && \
+ SQLITE_WIN32_CREATEFILEMAPPINGA
+ { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 },
+#else
+ { "CreateFileMappingA", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
+ DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)
+
+#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
+ { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 },
+#else
+ { "CreateFileMappingW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
+ DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "CreateMutexW", (SYSCALL)CreateMutexW, 0 },
+#else
+ { "CreateMutexW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \
+ LPCWSTR))aSyscall[8].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "DeleteFileA", (SYSCALL)DeleteFileA, 0 },
+#else
+ { "DeleteFileA", (SYSCALL)0, 0 },
+#endif
+
+#define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "DeleteFileW", (SYSCALL)DeleteFileW, 0 },
+#else
+ { "DeleteFileW", (SYSCALL)0, 0 },
+#endif
+
+#define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent)
+
+#if SQLITE_OS_WINCE
+ { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 },
+#else
+ { "FileTimeToLocalFileTime", (SYSCALL)0, 0 },
+#endif
+
+#define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \
+ LPFILETIME))aSyscall[11].pCurrent)
+
+#if SQLITE_OS_WINCE
+ { "FileTimeToSystemTime", (SYSCALL)FileTimeToSystemTime, 0 },
+#else
+ { "FileTimeToSystemTime", (SYSCALL)0, 0 },
+#endif
+
+#define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \
+ LPSYSTEMTIME))aSyscall[12].pCurrent)
+
+ { "FlushFileBuffers", (SYSCALL)FlushFileBuffers, 0 },
+
+#define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "FormatMessageA", (SYSCALL)FormatMessageA, 0 },
+#else
+ { "FormatMessageA", (SYSCALL)0, 0 },
+#endif
+
+#define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \
+ DWORD,va_list*))aSyscall[14].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "FormatMessageW", (SYSCALL)FormatMessageW, 0 },
+#else
+ { "FormatMessageW", (SYSCALL)0, 0 },
+#endif
+
+#define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \
+ DWORD,va_list*))aSyscall[15].pCurrent)
+
+#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "FreeLibrary", (SYSCALL)FreeLibrary, 0 },
+#else
+ { "FreeLibrary", (SYSCALL)0, 0 },
+#endif
+
+#define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent)
+
+ { "GetCurrentProcessId", (SYSCALL)GetCurrentProcessId, 0 },
+
+#define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent)
+
+#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetDiskFreeSpaceA", (SYSCALL)GetDiskFreeSpaceA, 0 },
+#else
+ { "GetDiskFreeSpaceA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \
+ LPDWORD))aSyscall[18].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetDiskFreeSpaceW", (SYSCALL)GetDiskFreeSpaceW, 0 },
+#else
+ { "GetDiskFreeSpaceW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \
+ LPDWORD))aSyscall[19].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetFileAttributesA", (SYSCALL)GetFileAttributesA, 0 },
+#else
+ { "GetFileAttributesA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetFileAttributesW", (SYSCALL)GetFileAttributesW, 0 },
+#else
+ { "GetFileAttributesW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetFileAttributesExW", (SYSCALL)GetFileAttributesExW, 0 },
+#else
+ { "GetFileAttributesExW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \
+ LPVOID))aSyscall[22].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "GetFileSize", (SYSCALL)GetFileSize, 0 },
+#else
+ { "GetFileSize", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent)
+
+#if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetFullPathNameA", (SYSCALL)GetFullPathNameA, 0 },
+#else
+ { "GetFullPathNameA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \
+ LPSTR*))aSyscall[24].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetFullPathNameW", (SYSCALL)GetFullPathNameW, 0 },
+#else
+ { "GetFullPathNameW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \
+ LPWSTR*))aSyscall[25].pCurrent)
+
+ { "GetLastError", (SYSCALL)GetLastError, 0 },
+
+#define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent)
+
+#if !defined(SQLITE_OMIT_LOAD_EXTENSION)
+#if SQLITE_OS_WINCE
+ /* The GetProcAddressA() routine is only available on Windows CE. */
+ { "GetProcAddressA", (SYSCALL)GetProcAddressA, 0 },
+#else
+ /* All other Windows platforms expect GetProcAddress() to take
+ ** an ANSI string regardless of the _UNICODE setting */
+ { "GetProcAddressA", (SYSCALL)GetProcAddress, 0 },
+#endif
+#else
+ { "GetProcAddressA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \
+ LPCSTR))aSyscall[27].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "GetSystemInfo", (SYSCALL)GetSystemInfo, 0 },
+#else
+ { "GetSystemInfo", (SYSCALL)0, 0 },
+#endif
+
+#define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent)
+
+ { "GetSystemTime", (SYSCALL)GetSystemTime, 0 },
+
+#define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent)
+
+#if !SQLITE_OS_WINCE
+ { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 },
+#else
+ { "GetSystemTimeAsFileTime", (SYSCALL)0, 0 },
+#endif
+
+#define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \
+ LPFILETIME))aSyscall[30].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "GetTempPathA", (SYSCALL)GetTempPathA, 0 },
+#else
+ { "GetTempPathA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
+ { "GetTempPathW", (SYSCALL)GetTempPathW, 0 },
+#else
+ { "GetTempPathW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "GetTickCount", (SYSCALL)GetTickCount, 0 },
+#else
+ { "GetTickCount", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_GETVERSIONEX
+ { "GetVersionExA", (SYSCALL)GetVersionExA, 0 },
+#else
+ { "GetVersionExA", (SYSCALL)0, 0 },
+#endif
+
+#define osGetVersionExA ((BOOL(WINAPI*)( \
+ LPOSVERSIONINFOA))aSyscall[34].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
+ SQLITE_WIN32_GETVERSIONEX
+ { "GetVersionExW", (SYSCALL)GetVersionExW, 0 },
+#else
+ { "GetVersionExW", (SYSCALL)0, 0 },
+#endif
+
+#define osGetVersionExW ((BOOL(WINAPI*)( \
+ LPOSVERSIONINFOW))aSyscall[35].pCurrent)
+
+ { "HeapAlloc", (SYSCALL)HeapAlloc, 0 },
+
+#define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \
+ SIZE_T))aSyscall[36].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "HeapCreate", (SYSCALL)HeapCreate, 0 },
+#else
+ { "HeapCreate", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \
+ SIZE_T))aSyscall[37].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "HeapDestroy", (SYSCALL)HeapDestroy, 0 },
+#else
+ { "HeapDestroy", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[38].pCurrent)
+
+ { "HeapFree", (SYSCALL)HeapFree, 0 },
+
+#define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[39].pCurrent)
+
+ { "HeapReAlloc", (SYSCALL)HeapReAlloc, 0 },
+
+#define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \
+ SIZE_T))aSyscall[40].pCurrent)
+
+ { "HeapSize", (SYSCALL)HeapSize, 0 },
+
+#define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \
+ LPCVOID))aSyscall[41].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "HeapValidate", (SYSCALL)HeapValidate, 0 },
+#else
+ { "HeapValidate", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \
+ LPCVOID))aSyscall[42].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "HeapCompact", (SYSCALL)HeapCompact, 0 },
+#else
+ { "HeapCompact", (SYSCALL)0, 0 },
+#endif
+
+#define osHeapCompact ((UINT(WINAPI*)(HANDLE,DWORD))aSyscall[43].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "LoadLibraryA", (SYSCALL)LoadLibraryA, 0 },
+#else
+ { "LoadLibraryA", (SYSCALL)0, 0 },
+#endif
+
+#define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[44].pCurrent)
+
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
+ !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "LoadLibraryW", (SYSCALL)LoadLibraryW, 0 },
+#else
+ { "LoadLibraryW", (SYSCALL)0, 0 },
+#endif
+
+#define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[45].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "LocalFree", (SYSCALL)LocalFree, 0 },
+#else
+ { "LocalFree", (SYSCALL)0, 0 },
+#endif
+
+#define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[46].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "LockFile", (SYSCALL)LockFile, 0 },
+#else
+ { "LockFile", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osLockFile
+#define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ DWORD))aSyscall[47].pCurrent)
+#endif
+
+#if !SQLITE_OS_WINCE
+ { "LockFileEx", (SYSCALL)LockFileEx, 0 },
+#else
+ { "LockFileEx", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osLockFileEx
+#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
+ LPOVERLAPPED))aSyscall[48].pCurrent)
+#endif
+
+#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \
+ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
+ { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 },
+#else
+ { "MapViewOfFile", (SYSCALL)0, 0 },
+#endif
+
+#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ SIZE_T))aSyscall[49].pCurrent)
+
+ { "MultiByteToWideChar", (SYSCALL)MultiByteToWideChar, 0 },
+
+#define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \
+ int))aSyscall[50].pCurrent)
+
+ { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 },
+
+#define osQueryPerformanceCounter ((BOOL(WINAPI*)( \
+ LARGE_INTEGER*))aSyscall[51].pCurrent)
+
+ { "ReadFile", (SYSCALL)ReadFile, 0 },
+
+#define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \
+ LPOVERLAPPED))aSyscall[52].pCurrent)
+
+ { "SetEndOfFile", (SYSCALL)SetEndOfFile, 0 },
+
+#define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[53].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "SetFilePointer", (SYSCALL)SetFilePointer, 0 },
+#else
+ { "SetFilePointer", (SYSCALL)0, 0 },
+#endif
+
+#define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \
+ DWORD))aSyscall[54].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "Sleep", (SYSCALL)Sleep, 0 },
+#else
+ { "Sleep", (SYSCALL)0, 0 },
+#endif
+
+#define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[55].pCurrent)
+
+ { "SystemTimeToFileTime", (SYSCALL)SystemTimeToFileTime, 0 },
+
+#define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \
+ LPFILETIME))aSyscall[56].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ { "UnlockFile", (SYSCALL)UnlockFile, 0 },
+#else
+ { "UnlockFile", (SYSCALL)0, 0 },
+#endif
+
+#ifndef osUnlockFile
+#define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ DWORD))aSyscall[57].pCurrent)
+#endif
+
+#if !SQLITE_OS_WINCE
+ { "UnlockFileEx", (SYSCALL)UnlockFileEx, 0 },
+#else
+ { "UnlockFileEx", (SYSCALL)0, 0 },
+#endif
+
+#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
+ LPOVERLAPPED))aSyscall[58].pCurrent)
+
+#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
+ { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 },
+#else
+ { "UnmapViewOfFile", (SYSCALL)0, 0 },
+#endif
+
+#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)
+
+ { "WideCharToMultiByte", (SYSCALL)WideCharToMultiByte, 0 },
+
+#define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \
+ LPCSTR,LPBOOL))aSyscall[60].pCurrent)
+
+ { "WriteFile", (SYSCALL)WriteFile, 0 },
+
+#define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \
+ LPOVERLAPPED))aSyscall[61].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "CreateEventExW", (SYSCALL)CreateEventExW, 0 },
+#else
+ { "CreateEventExW", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \
+ DWORD,DWORD))aSyscall[62].pCurrent)
+
+#if !SQLITE_OS_WINRT
+ { "WaitForSingleObject", (SYSCALL)WaitForSingleObject, 0 },
+#else
+ { "WaitForSingleObject", (SYSCALL)0, 0 },
+#endif
+
+#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
+ DWORD))aSyscall[63].pCurrent)
+
+#if !SQLITE_OS_WINCE
+ { "WaitForSingleObjectEx", (SYSCALL)WaitForSingleObjectEx, 0 },
+#else
+ { "WaitForSingleObjectEx", (SYSCALL)0, 0 },
+#endif
+
+#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
+ BOOL))aSyscall[64].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "SetFilePointerEx", (SYSCALL)SetFilePointerEx, 0 },
+#else
+ { "SetFilePointerEx", (SYSCALL)0, 0 },
+#endif
+
+#define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \
+ PLARGE_INTEGER,DWORD))aSyscall[65].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 },
+#else
+ { "GetFileInformationByHandleEx", (SYSCALL)0, 0 },
+#endif
+
+#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
+ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)
+
+#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+ { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 },
+#else
+ { "MapViewOfFileFromApp", (SYSCALL)0, 0 },
+#endif
+
+#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
+ SIZE_T))aSyscall[67].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "CreateFile2", (SYSCALL)CreateFile2, 0 },
+#else
+ { "CreateFile2", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \
+ LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[68].pCurrent)
+
+#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ { "LoadPackagedLibrary", (SYSCALL)LoadPackagedLibrary, 0 },
+#else
+ { "LoadPackagedLibrary", (SYSCALL)0, 0 },
+#endif
+
+#define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \
+ DWORD))aSyscall[69].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "GetTickCount64", (SYSCALL)GetTickCount64, 0 },
+#else
+ { "GetTickCount64", (SYSCALL)0, 0 },
+#endif
+
+#define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[70].pCurrent)
+
+#if SQLITE_OS_WINRT
+ { "GetNativeSystemInfo", (SYSCALL)GetNativeSystemInfo, 0 },
+#else
+ { "GetNativeSystemInfo", (SYSCALL)0, 0 },
+#endif
+
+#define osGetNativeSystemInfo ((VOID(WINAPI*)( \
+ LPSYSTEM_INFO))aSyscall[71].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ { "OutputDebugStringA", (SYSCALL)OutputDebugStringA, 0 },
+#else
+ { "OutputDebugStringA", (SYSCALL)0, 0 },
+#endif
+
+#define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[72].pCurrent)
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ { "OutputDebugStringW", (SYSCALL)OutputDebugStringW, 0 },
+#else
+ { "OutputDebugStringW", (SYSCALL)0, 0 },
+#endif
+
+#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)
+
+ { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 },
+
+#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)
+
+#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
+ { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
+#else
+ { "CreateFileMappingFromApp", (SYSCALL)0, 0 },
+#endif
+
+#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
+ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
+
+/*
+** NOTE: On some sub-platforms, the InterlockedCompareExchange "function"
+** is really just a macro that uses a compiler intrinsic (e.g. x64).
+** So do not try to make this is into a redefinable interface.
+*/
+#if defined(InterlockedCompareExchange)
+ { "InterlockedCompareExchange", (SYSCALL)0, 0 },
+
+#define osInterlockedCompareExchange InterlockedCompareExchange
+#else
+ { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 },
+
+#define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \
+ SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent)
+#endif /* defined(InterlockedCompareExchange) */
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
+ { "UuidCreate", (SYSCALL)UuidCreate, 0 },
+#else
+ { "UuidCreate", (SYSCALL)0, 0 },
+#endif
+
+#define osUuidCreate ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[77].pCurrent)
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
+ { "UuidCreateSequential", (SYSCALL)UuidCreateSequential, 0 },
+#else
+ { "UuidCreateSequential", (SYSCALL)0, 0 },
+#endif
+
+#define osUuidCreateSequential \
+ ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent)
+
+#if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0
+ { "FlushViewOfFile", (SYSCALL)FlushViewOfFile, 0 },
+#else
+ { "FlushViewOfFile", (SYSCALL)0, 0 },
+#endif
+
+#define osFlushViewOfFile \
+ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent)
+
+}; /* End of the overrideable system calls */
+
+/*
+** This is the xSetSystemCall() method of sqlite3_vfs for all of the
+** "win32" VFSes. Return SQLITE_OK upon successfully updating the
+** system call pointer, or SQLITE_NOTFOUND if there is no configurable
+** system call named zName.
+*/
+static int winSetSystemCall(
+ sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
+ const char *zName, /* Name of system call to override */
+ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
+){
+ unsigned int i;
+ int rc = SQLITE_NOTFOUND;
+
+ UNUSED_PARAMETER(pNotUsed);
+ if( zName==0 ){
+ /* If no zName is given, restore all system calls to their default
+ ** settings and return NULL
+ */
+ rc = SQLITE_OK;
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( aSyscall[i].pDefault ){
+ aSyscall[i].pCurrent = aSyscall[i].pDefault;
+ }
+ }
+ }else{
+ /* If zName is specified, operate on only the one system call
+ ** specified.
+ */
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ){
+ if( aSyscall[i].pDefault==0 ){
+ aSyscall[i].pDefault = aSyscall[i].pCurrent;
+ }
+ rc = SQLITE_OK;
+ if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
+ aSyscall[i].pCurrent = pNewFunc;
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the value of a system call. Return NULL if zName is not a
+** recognized system call name. NULL is also returned if the system call
+** is currently undefined.
+*/
+static sqlite3_syscall_ptr winGetSystemCall(
+ sqlite3_vfs *pNotUsed,
+ const char *zName
+){
+ unsigned int i;
+
+ UNUSED_PARAMETER(pNotUsed);
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
+ }
+ return 0;
+}
+
+/*
+** Return the name of the first system call after zName. If zName==NULL
+** then return the name of the first system call. Return NULL if zName
+** is the last system call or if zName is not the name of a valid
+** system call.
+*/
+static const char *winNextSystemCall(sqlite3_vfs *p, const char *zName){
+ int i = -1;
+
+ UNUSED_PARAMETER(p);
+ if( zName ){
+ for(i=0; i<ArraySize(aSyscall)-1; i++){
+ if( strcmp(zName, aSyscall[i].zName)==0 ) break;
+ }
+ }
+ for(i++; i<ArraySize(aSyscall); i++){
+ if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
+ }
+ return 0;
+}
+
+#ifdef SQLITE_WIN32_MALLOC
+/*
+** If a Win32 native heap has been configured, this function will attempt to
+** compact it. Upon success, SQLITE_OK will be returned. Upon failure, one
+** of SQLITE_NOMEM, SQLITE_ERROR, or SQLITE_NOTFOUND will be returned. The
+** "pnLargest" argument, if non-zero, will be used to return the size of the
+** largest committed free block in the heap, in bytes.
+*/
+SQLITE_API int sqlite3_win32_compact_heap(LPUINT pnLargest){
+ int rc = SQLITE_OK;
+ UINT nLargest = 0;
+ HANDLE hHeap;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
+ if( (nLargest=osHeapCompact(hHeap, SQLITE_WIN32_HEAP_FLAGS))==0 ){
+ DWORD lastErrno = osGetLastError();
+ if( lastErrno==NO_ERROR ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapCompact (no space), heap=%p",
+ (void*)hHeap);
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ sqlite3_log(SQLITE_ERROR, "failed to HeapCompact (%lu), heap=%p",
+ osGetLastError(), (void*)hHeap);
+ rc = SQLITE_ERROR;
+ }
+ }
+#else
+ sqlite3_log(SQLITE_NOTFOUND, "failed to HeapCompact, heap=%p",
+ (void*)hHeap);
+ rc = SQLITE_NOTFOUND;
+#endif
+ if( pnLargest ) *pnLargest = nLargest;
+ return rc;
+}
+
+/*
+** If a Win32 native heap has been configured, this function will attempt to
+** destroy and recreate it. If the Win32 native heap is not isolated and/or
+** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
+** be returned and no changes will be made to the Win32 native heap.
+*/
+SQLITE_API int sqlite3_win32_reset_heap(){
+ int rc;
+ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */
+ MUTEX_LOGIC( sqlite3_mutex *pMem; ) /* The memsys static mutex */
+ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ MUTEX_LOGIC( pMem = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); )
+ sqlite3_mutex_enter(pMainMtx);
+ sqlite3_mutex_enter(pMem);
+ winMemAssertMagic();
+ if( winMemGetHeap()!=NULL && winMemGetOwned() && sqlite3_memory_used()==0 ){
+ /*
+ ** At this point, there should be no outstanding memory allocations on
+ ** the heap. Also, since both the main and memsys locks are currently
+ ** being held by us, no other function (i.e. from another thread) should
+ ** be able to even access the heap. Attempt to destroy and recreate our
+ ** isolated Win32 native heap now.
+ */
+ assert( winMemGetHeap()!=NULL );
+ assert( winMemGetOwned() );
+ assert( sqlite3_memory_used()==0 );
+ winMemShutdown(winMemGetDataPtr());
+ assert( winMemGetHeap()==NULL );
+ assert( !winMemGetOwned() );
+ assert( sqlite3_memory_used()==0 );
+ rc = winMemInit(winMemGetDataPtr());
+ assert( rc!=SQLITE_OK || winMemGetHeap()!=NULL );
+ assert( rc!=SQLITE_OK || winMemGetOwned() );
+ assert( rc!=SQLITE_OK || sqlite3_memory_used()==0 );
+ }else{
+ /*
+ ** The Win32 native heap cannot be modified because it may be in use.
+ */
+ rc = SQLITE_BUSY;
+ }
+ sqlite3_mutex_leave(pMem);
+ sqlite3_mutex_leave(pMainMtx);
+ return rc;
+}
+#endif /* SQLITE_WIN32_MALLOC */
+
+/*
+** This function outputs the specified (ANSI) string to the Win32 debugger
+** (if available).
+*/
+
+SQLITE_API void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
+ char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
+ int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
+ if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
+ assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zBuf ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ if( nMin>0 ){
+ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
+ memcpy(zDbgBuf, zBuf, nMin);
+ osOutputDebugStringA(zDbgBuf);
+ }else{
+ osOutputDebugStringA(zBuf);
+ }
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
+ if ( osMultiByteToWideChar(
+ osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf,
+ nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){
+ return;
+ }
+ osOutputDebugStringW((LPCWSTR)zDbgBuf);
+#else
+ if( nMin>0 ){
+ memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
+ memcpy(zDbgBuf, zBuf, nMin);
+ fprintf(stderr, "%s", zDbgBuf);
+ }else{
+ fprintf(stderr, "%s", zBuf);
+ }
+#endif
+}
+
+/*
+** The following routine suspends the current thread for at least ms
+** milliseconds. This is equivalent to the Win32 Sleep() interface.
+*/
+#if SQLITE_OS_WINRT
+static HANDLE sleepObj = NULL;
+#endif
+
+SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){
+#if SQLITE_OS_WINRT
+ if ( sleepObj==NULL ){
+ sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET,
+ SYNCHRONIZE);
+ }
+ assert( sleepObj!=NULL );
+ osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
+#else
+ osSleep(milliseconds);
+#endif
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
+ SQLITE_THREADSAFE>0
+SQLITE_PRIVATE DWORD sqlite3Win32Wait(HANDLE hObject){
+ DWORD rc;
+ while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
+ TRUE))==WAIT_IO_COMPLETION ){}
+ return rc;
+}
+#endif
+
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
+** or WinCE. Return false (zero) for Win95, Win98, or WinME.
+**
+** Here is an interesting observation: Win95, Win98, and WinME lack
+** the LockFileEx() API. But we can still statically link against that
+** API as long as we don't call it when running Win95/98/ME. A call to
+** this routine is used to determine if the host is Win95/98/ME or
+** WinNT/2K/XP so that we will know whether or not we can safely call
+** the LockFileEx() API.
+*/
+
+#if !SQLITE_WIN32_GETVERSIONEX
+# define osIsNT() (1)
+#elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
+# define osIsNT() (1)
+#elif !defined(SQLITE_WIN32_HAS_WIDE)
+# define osIsNT() (0)
+#else
+# define osIsNT() ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
+#endif
+
+/*
+** This function determines if the machine is running a version of Windows
+** based on the NT kernel.
+*/
+SQLITE_API int sqlite3_win32_is_nt(void){
+#if SQLITE_OS_WINRT
+ /*
+ ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
+ ** kernel.
+ */
+ return 1;
+#elif SQLITE_WIN32_GETVERSIONEX
+ if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){
+#if defined(SQLITE_WIN32_HAS_ANSI)
+ OSVERSIONINFOA sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ osGetVersionExA(&sInfo);
+ osInterlockedCompareExchange(&sqlite3_os_type,
+ (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ OSVERSIONINFOW sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ osGetVersionExW(&sInfo);
+ osInterlockedCompareExchange(&sqlite3_os_type,
+ (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0);
+#endif
+ }
+ return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
+#elif SQLITE_TEST
+ return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2;
+#else
+ /*
+ ** NOTE: All sub-platforms where the GetVersionEx[AW] functions are
+ ** deprecated are always assumed to be based on the NT kernel.
+ */
+ return 1;
+#endif
+}
+
+#ifdef SQLITE_WIN32_MALLOC
+/*
+** Allocate nBytes of memory.
+*/
+static void *winMemMalloc(int nBytes){
+ HANDLE hHeap;
+ void *p;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+ assert( nBytes>=0 );
+ p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
+ if( !p ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%lu), heap=%p",
+ nBytes, osGetLastError(), (void*)hHeap);
+ }
+ return p;
+}
+
+/*
+** Free memory.
+*/
+static void winMemFree(void *pPrior){
+ HANDLE hHeap;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
+#endif
+ if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */
+ if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%lu), heap=%p",
+ pPrior, osGetLastError(), (void*)hHeap);
+ }
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+static void *winMemRealloc(void *pPrior, int nBytes){
+ HANDLE hHeap;
+ void *p;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
+#endif
+ assert( nBytes>=0 );
+ if( !pPrior ){
+ p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
+ }else{
+ p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes);
+ }
+ if( !p ){
+ sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%lu), heap=%p",
+ pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(),
+ (void*)hHeap);
+ }
+ return p;
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes.
+*/
+static int winMemSize(void *p){
+ HANDLE hHeap;
+ SIZE_T n;
+
+ winMemAssertMagic();
+ hHeap = winMemGetHeap();
+ assert( hHeap!=0 );
+ assert( hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, p) );
+#endif
+ if( !p ) return 0;
+ n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p);
+ if( n==(SIZE_T)-1 ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%lu), heap=%p",
+ p, osGetLastError(), (void*)hHeap);
+ return 0;
+ }
+ return (int)n;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int winMemRoundup(int n){
+ return n;
+}
+
+/*
+** Initialize this module.
+*/
+static int winMemInit(void *pAppData){
+ winMemData *pWinMemData = (winMemData *)pAppData;
+
+ if( !pWinMemData ) return SQLITE_ERROR;
+ assert( pWinMemData->magic1==WINMEM_MAGIC1 );
+ assert( pWinMemData->magic2==WINMEM_MAGIC2 );
+
+#if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE
+ if( !pWinMemData->hHeap ){
+ DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE;
+ DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap;
+ if( dwMaximumSize==0 ){
+ dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE;
+ }else if( dwInitialSize>dwMaximumSize ){
+ dwInitialSize = dwMaximumSize;
+ }
+ pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS,
+ dwInitialSize, dwMaximumSize);
+ if( !pWinMemData->hHeap ){
+ sqlite3_log(SQLITE_NOMEM,
+ "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu",
+ osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize,
+ dwMaximumSize);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pWinMemData->bOwned = TRUE;
+ assert( pWinMemData->bOwned );
+ }
+#else
+ pWinMemData->hHeap = osGetProcessHeap();
+ if( !pWinMemData->hHeap ){
+ sqlite3_log(SQLITE_NOMEM,
+ "failed to GetProcessHeap (%lu)", osGetLastError());
+ return SQLITE_NOMEM_BKPT;
+ }
+ pWinMemData->bOwned = FALSE;
+ assert( !pWinMemData->bOwned );
+#endif
+ assert( pWinMemData->hHeap!=0 );
+ assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void winMemShutdown(void *pAppData){
+ winMemData *pWinMemData = (winMemData *)pAppData;
+
+ if( !pWinMemData ) return;
+ assert( pWinMemData->magic1==WINMEM_MAGIC1 );
+ assert( pWinMemData->magic2==WINMEM_MAGIC2 );
+
+ if( pWinMemData->hHeap ){
+ assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
+#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
+ assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
+#endif
+ if( pWinMemData->bOwned ){
+ if( !osHeapDestroy(pWinMemData->hHeap) ){
+ sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%lu), heap=%p",
+ osGetLastError(), (void*)pWinMemData->hHeap);
+ }
+ pWinMemData->bOwned = FALSE;
+ }
+ pWinMemData->hHeap = NULL;
+ }
+}
+
+/*
+** Populate the low-level memory allocation function pointers in
+** sqlite3GlobalConfig.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void){
+ static const sqlite3_mem_methods winMemMethods = {
+ winMemMalloc,
+ winMemFree,
+ winMemRealloc,
+ winMemSize,
+ winMemRoundup,
+ winMemInit,
+ winMemShutdown,
+ &win_mem_data
+ };
+ return &winMemMethods;
+}
+
+SQLITE_PRIVATE void sqlite3MemSetDefault(void){
+ sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32());
+}
+#endif /* SQLITE_WIN32_MALLOC */
+
+/*
+** Convert a UTF-8 string to Microsoft Unicode.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static LPWSTR winUtf8ToUnicode(const char *zText){
+ int nChar;
+ LPWSTR zWideText;
+
+ nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, NULL, 0);
+ if( nChar==0 ){
+ return 0;
+ }
+ zWideText = sqlite3MallocZero( nChar*sizeof(WCHAR) );
+ if( zWideText==0 ){
+ return 0;
+ }
+ nChar = osMultiByteToWideChar(CP_UTF8, 0, zText, -1, zWideText,
+ nChar);
+ if( nChar==0 ){
+ sqlite3_free(zWideText);
+ zWideText = 0;
+ }
+ return zWideText;
+}
+
+/*
+** Convert a Microsoft Unicode string to UTF-8.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winUnicodeToUtf8(LPCWSTR zWideText){
+ int nByte;
+ char *zText;
+
+ nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, 0, 0, 0, 0);
+ if( nByte == 0 ){
+ return 0;
+ }
+ zText = sqlite3MallocZero( nByte );
+ if( zText==0 ){
+ return 0;
+ }
+ nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideText, -1, zText, nByte,
+ 0, 0);
+ if( nByte == 0 ){
+ sqlite3_free(zText);
+ zText = 0;
+ }
+ return zText;
+}
+
+/*
+** Convert an ANSI string to Microsoft Unicode, using the ANSI or OEM
+** code page.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static LPWSTR winMbcsToUnicode(const char *zText, int useAnsi){
+ int nByte;
+ LPWSTR zMbcsText;
+ int codepage = useAnsi ? CP_ACP : CP_OEMCP;
+
+ nByte = osMultiByteToWideChar(codepage, 0, zText, -1, NULL,
+ 0)*sizeof(WCHAR);
+ if( nByte==0 ){
+ return 0;
+ }
+ zMbcsText = sqlite3MallocZero( nByte*sizeof(WCHAR) );
+ if( zMbcsText==0 ){
+ return 0;
+ }
+ nByte = osMultiByteToWideChar(codepage, 0, zText, -1, zMbcsText,
+ nByte);
+ if( nByte==0 ){
+ sqlite3_free(zMbcsText);
+ zMbcsText = 0;
+ }
+ return zMbcsText;
+}
+
+/*
+** Convert a Microsoft Unicode string to a multi-byte character string,
+** using the ANSI or OEM code page.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winUnicodeToMbcs(LPCWSTR zWideText, int useAnsi){
+ int nByte;
+ char *zText;
+ int codepage = useAnsi ? CP_ACP : CP_OEMCP;
+
+ nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, 0, 0, 0, 0);
+ if( nByte == 0 ){
+ return 0;
+ }
+ zText = sqlite3MallocZero( nByte );
+ if( zText==0 ){
+ return 0;
+ }
+ nByte = osWideCharToMultiByte(codepage, 0, zWideText, -1, zText,
+ nByte, 0, 0);
+ if( nByte == 0 ){
+ sqlite3_free(zText);
+ zText = 0;
+ }
+ return zText;
+}
+
+/*
+** Convert a multi-byte character string to UTF-8.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winMbcsToUtf8(const char *zText, int useAnsi){
+ char *zTextUtf8;
+ LPWSTR zTmpWide;
+
+ zTmpWide = winMbcsToUnicode(zText, useAnsi);
+ if( zTmpWide==0 ){
+ return 0;
+ }
+ zTextUtf8 = winUnicodeToUtf8(zTmpWide);
+ sqlite3_free(zTmpWide);
+ return zTextUtf8;
+}
+
+/*
+** Convert a UTF-8 string to a multi-byte character string.
+**
+** Space to hold the returned string is obtained from sqlite3_malloc().
+*/
+static char *winUtf8ToMbcs(const char *zText, int useAnsi){
+ char *zTextMbcs;
+ LPWSTR zTmpWide;
+
+ zTmpWide = winUtf8ToUnicode(zText);
+ if( zTmpWide==0 ){
+ return 0;
+ }
+ zTextMbcs = winUnicodeToMbcs(zTmpWide, useAnsi);
+ sqlite3_free(zTmpWide);
+ return zTextMbcs;
+}
+
+/*
+** This is a public wrapper for the winUtf8ToUnicode() function.
+*/
+SQLITE_API LPWSTR sqlite3_win32_utf8_to_unicode(const char *zText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUtf8ToUnicode(zText);
+}
+
+/*
+** This is a public wrapper for the winUnicodeToUtf8() function.
+*/
+SQLITE_API char *sqlite3_win32_unicode_to_utf8(LPCWSTR zWideText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zWideText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUnicodeToUtf8(zWideText);
+}
+
+/*
+** This is a public wrapper for the winMbcsToUtf8() function.
+*/
+SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winMbcsToUtf8(zText, osAreFileApisANSI());
+}
+
+/*
+** This is a public wrapper for the winMbcsToUtf8() function.
+*/
+SQLITE_API char *sqlite3_win32_mbcs_to_utf8_v2(const char *zText, int useAnsi){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winMbcsToUtf8(zText, useAnsi);
+}
+
+/*
+** This is a public wrapper for the winUtf8ToMbcs() function.
+*/
+SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zText){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUtf8ToMbcs(zText, osAreFileApisANSI());
+}
+
+/*
+** This is a public wrapper for the winUtf8ToMbcs() function.
+*/
+SQLITE_API char *sqlite3_win32_utf8_to_mbcs_v2(const char *zText, int useAnsi){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !zText ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize() ) return 0;
+#endif
+ return winUtf8ToMbcs(zText, useAnsi);
+}
+
+/*
+** This function is the same as sqlite3_win32_set_directory (below); however,
+** it accepts a UTF-8 string.
+*/
+SQLITE_API int sqlite3_win32_set_directory8(
+ unsigned long type, /* Identifier for directory being set or reset */
+ const char *zValue /* New value for directory being set or reset */
+){
+ char **ppDirectory = 0;
+ int rc;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
+ ppDirectory = &sqlite3_data_directory;
+ }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
+ ppDirectory = &sqlite3_temp_directory;
+ }
+ assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
+ || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
+ );
+ assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
+ if( ppDirectory ){
+ char *zCopy = 0;
+ if( zValue && zValue[0] ){
+ zCopy = sqlite3_mprintf("%s", zValue);
+ if ( zCopy==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto set_directory8_done;
+ }
+ }
+ sqlite3_free(*ppDirectory);
+ *ppDirectory = zCopy;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+set_directory8_done:
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ return rc;
+}
+
+/*
+** This function is the same as sqlite3_win32_set_directory (below); however,
+** it accepts a UTF-16 string.
+*/
+SQLITE_API int sqlite3_win32_set_directory16(
+ unsigned long type, /* Identifier for directory being set or reset */
+ const void *zValue /* New value for directory being set or reset */
+){
+ int rc;
+ char *zUtf8 = 0;
+ if( zValue ){
+ zUtf8 = sqlite3_win32_unicode_to_utf8(zValue);
+ if( zUtf8==0 ) return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_win32_set_directory8(type, zUtf8);
+ if( zUtf8 ) sqlite3_free(zUtf8);
+ return rc;
+}
+
+/*
+** This function sets the data directory or the temporary directory based on
+** the provided arguments. The type argument must be 1 in order to set the
+** data directory or 2 in order to set the temporary directory. The zValue
+** argument is the name of the directory to use. The return value will be
+** SQLITE_OK if successful.
+*/
+SQLITE_API int sqlite3_win32_set_directory(
+ unsigned long type, /* Identifier for directory being set or reset */
+ void *zValue /* New value for directory being set or reset */
+){
+ return sqlite3_win32_set_directory16(type, zValue);
+}
+
+/*
+** The return value of winGetLastErrorMsg
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated).
+*/
+static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
+ /* FormatMessage returns 0 on failure. Otherwise it
+ ** returns the number of TCHARs written to the output
+ ** buffer, excluding the terminating null char.
+ */
+ DWORD dwLen = 0;
+ char *zOut = 0;
+
+ if( osIsNT() ){
+#if SQLITE_OS_WINRT
+ WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1];
+ dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL,
+ lastErrno,
+ 0,
+ zTempWide,
+ SQLITE_WIN32_MAX_ERRMSG_CHARS,
+ 0);
+#else
+ LPWSTR zTempWide = NULL;
+ dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
+ FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL,
+ lastErrno,
+ 0,
+ (LPWSTR) &zTempWide,
+ 0,
+ 0);
+#endif
+ if( dwLen > 0 ){
+ /* allocate a buffer and convert to UTF8 */
+ sqlite3BeginBenignMalloc();
+ zOut = winUnicodeToUtf8(zTempWide);
+ sqlite3EndBenignMalloc();
+#if !SQLITE_OS_WINRT
+ /* free the system buffer allocated by FormatMessage */
+ osLocalFree(zTempWide);
+#endif
+ }
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ char *zTemp = NULL;
+ dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
+ FORMAT_MESSAGE_FROM_SYSTEM |
+ FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL,
+ lastErrno,
+ 0,
+ (LPSTR) &zTemp,
+ 0,
+ 0);
+ if( dwLen > 0 ){
+ /* allocate a buffer and convert to UTF8 */
+ sqlite3BeginBenignMalloc();
+ zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI());
+ sqlite3EndBenignMalloc();
+ /* free the system buffer allocated by FormatMessage */
+ osLocalFree(zTemp);
+ }
+ }
+#endif
+ if( 0 == dwLen ){
+ sqlite3_snprintf(nBuf, zBuf, "OsError 0x%lx (%lu)", lastErrno, lastErrno);
+ }else{
+ /* copy a maximum of nBuf chars to output buffer */
+ sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
+ /* free the UTF8 buffer */
+ sqlite3_free(zOut);
+ }
+ return 0;
+}
+
+/*
+**
+** This function - winLogErrorAtLine() - is only ever called via the macro
+** winLogError().
+**
+** This routine is invoked after an error occurs in an OS function.
+** It logs a message using sqlite3_log() containing the current value of
+** error code and, if possible, the human-readable equivalent from
+** FormatMessage.
+**
+** The first argument passed to the macro should be the error code that
+** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
+** The two subsequent arguments should be the name of the OS function that
+** failed and the associated file-system path, if any.
+*/
+#define winLogError(a,b,c,d) winLogErrorAtLine(a,b,c,d,__LINE__)
+static int winLogErrorAtLine(
+ int errcode, /* SQLite error code */
+ DWORD lastErrno, /* Win32 last error */
+ const char *zFunc, /* Name of OS function that failed */
+ const char *zPath, /* File path associated with error */
+ int iLine /* Source line number where error occurred */
+){
+ char zMsg[500]; /* Human readable error text */
+ int i; /* Loop counter */
+
+ zMsg[0] = 0;
+ winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg);
+ assert( errcode!=SQLITE_OK );
+ if( zPath==0 ) zPath = "";
+ for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
+ zMsg[i] = 0;
+ sqlite3_log(errcode,
+ "os_win.c:%d: (%lu) %s(%s) - %s",
+ iLine, lastErrno, zFunc, zPath, zMsg
+ );
+
+ return errcode;
+}
+
+/*
+** The number of times that a ReadFile(), WriteFile(), and DeleteFile()
+** will be retried following a locking error - probably caused by
+** antivirus software. Also the initial delay before the first retry.
+** The delay increases linearly with each retry.
+*/
+#ifndef SQLITE_WIN32_IOERR_RETRY
+# define SQLITE_WIN32_IOERR_RETRY 10
+#endif
+#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
+# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
+#endif
+static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY;
+static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;
+
+/*
+** The "winIoerrCanRetry1" macro is used to determine if a particular I/O
+** error code obtained via GetLastError() is eligible to be retried. It
+** must accept the error code DWORD as its only argument and should return
+** non-zero if the error code is transient in nature and the operation
+** responsible for generating the original error might succeed upon being
+** retried. The argument to this macro should be a variable.
+**
+** Additionally, a macro named "winIoerrCanRetry2" may be defined. If it
+** is defined, it will be consulted only when the macro "winIoerrCanRetry1"
+** returns zero. The "winIoerrCanRetry2" macro is completely optional and
+** may be used to include additional error codes in the set that should
+** result in the failing I/O operation being retried by the caller. If
+** defined, the "winIoerrCanRetry2" macro must exhibit external semantics
+** identical to those of the "winIoerrCanRetry1" macro.
+*/
+#if !defined(winIoerrCanRetry1)
+#define winIoerrCanRetry1(a) (((a)==ERROR_ACCESS_DENIED) || \
+ ((a)==ERROR_SHARING_VIOLATION) || \
+ ((a)==ERROR_LOCK_VIOLATION) || \
+ ((a)==ERROR_DEV_NOT_EXIST) || \
+ ((a)==ERROR_NETNAME_DELETED) || \
+ ((a)==ERROR_SEM_TIMEOUT) || \
+ ((a)==ERROR_NETWORK_UNREACHABLE))
+#endif
+
+/*
+** If a ReadFile() or WriteFile() error occurs, invoke this routine
+** to see if it should be retried. Return TRUE to retry. Return FALSE
+** to give up with an error.
+*/
+static int winRetryIoerr(int *pnRetry, DWORD *pError){
+ DWORD e = osGetLastError();
+ if( *pnRetry>=winIoerrRetry ){
+ if( pError ){
+ *pError = e;
+ }
+ return 0;
+ }
+ if( winIoerrCanRetry1(e) ){
+ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
+ ++*pnRetry;
+ return 1;
+ }
+#if defined(winIoerrCanRetry2)
+ else if( winIoerrCanRetry2(e) ){
+ sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
+ ++*pnRetry;
+ return 1;
+ }
+#endif
+ if( pError ){
+ *pError = e;
+ }
+ return 0;
+}
+
+/*
+** Log a I/O error retry episode.
+*/
+static void winLogIoerr(int nRetry, int lineno){
+ if( nRetry ){
+ sqlite3_log(SQLITE_NOTICE,
+ "delayed %dms for lock/sharing conflict at line %d",
+ winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno
+ );
+ }
+}
+
+/*
+** This #if does not rely on the SQLITE_OS_WINCE define because the
+** corresponding section in "date.c" cannot use it.
+*/
+#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
+ (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
+/*
+** The MSVC CRT on Windows CE may not have a localtime() function.
+** So define a substitute.
+*/
+/* # include <time.h> */
+struct tm *__cdecl localtime(const time_t *t)
+{
+ static struct tm y;
+ FILETIME uTm, lTm;
+ SYSTEMTIME pTm;
+ sqlite3_int64 t64;
+ t64 = *t;
+ t64 = (t64 + 11644473600)*10000000;
+ uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
+ uTm.dwHighDateTime= (DWORD)(t64 >> 32);
+ osFileTimeToLocalFileTime(&uTm,&lTm);
+ osFileTimeToSystemTime(&lTm,&pTm);
+ y.tm_year = pTm.wYear - 1900;
+ y.tm_mon = pTm.wMonth - 1;
+ y.tm_wday = pTm.wDayOfWeek;
+ y.tm_mday = pTm.wDay;
+ y.tm_hour = pTm.wHour;
+ y.tm_min = pTm.wMinute;
+ y.tm_sec = pTm.wSecond;
+ return &y;
+}
+#endif
+
+#if SQLITE_OS_WINCE
+/*************************************************************************
+** This section contains code for WinCE only.
+*/
+#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
+
+/*
+** Acquire a lock on the handle h
+*/
+static void winceMutexAcquire(HANDLE h){
+ DWORD dwErr;
+ do {
+ dwErr = osWaitForSingleObject(h, INFINITE);
+ } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
+}
+/*
+** Release a lock acquired by winceMutexAcquire()
+*/
+#define winceMutexRelease(h) ReleaseMutex(h)
+
+/*
+** Create the mutex and shared memory used for locking in the file
+** descriptor pFile
+*/
+static int winceCreateLock(const char *zFilename, winFile *pFile){
+ LPWSTR zTok;
+ LPWSTR zName;
+ DWORD lastErrno;
+ BOOL bLogged = FALSE;
+ BOOL bInit = TRUE;
+
+ zName = winUtf8ToUnicode(zFilename);
+ if( zName==0 ){
+ /* out of memory */
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+
+ /* Initialize the local lockdata */
+ memset(&pFile->local, 0, sizeof(pFile->local));
+
+ /* Replace the backslashes from the filename and lowercase it
+ ** to derive a mutex name. */
+ zTok = osCharLowerW(zName);
+ for (;*zTok;zTok++){
+ if (*zTok == '\\') *zTok = '_';
+ }
+
+ /* Create/open the named mutex */
+ pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
+ if (!pFile->hMutex){
+ pFile->lastErrno = osGetLastError();
+ sqlite3_free(zName);
+ return winLogError(SQLITE_IOERR, pFile->lastErrno,
+ "winceCreateLock1", zFilename);
+ }
+
+ /* Acquire the mutex before continuing */
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Since the names of named mutexes, semaphores, file mappings etc are
+ ** case-sensitive, take advantage of that by uppercasing the mutex name
+ ** and using that as the shared filemapping name.
+ */
+ osCharUpperW(zName);
+ pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
+ PAGE_READWRITE, 0, sizeof(winceLock),
+ zName);
+
+ /* Set a flag that indicates we're the first to create the memory so it
+ ** must be zero-initialized */
+ lastErrno = osGetLastError();
+ if (lastErrno == ERROR_ALREADY_EXISTS){
+ bInit = FALSE;
+ }
+
+ sqlite3_free(zName);
+
+ /* If we succeeded in making the shared memory handle, map it. */
+ if( pFile->hShared ){
+ pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared,
+ FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
+ /* If mapping failed, close the shared memory handle and erase it */
+ if( !pFile->shared ){
+ pFile->lastErrno = osGetLastError();
+ winLogError(SQLITE_IOERR, pFile->lastErrno,
+ "winceCreateLock2", zFilename);
+ bLogged = TRUE;
+ osCloseHandle(pFile->hShared);
+ pFile->hShared = NULL;
+ }
+ }
+
+ /* If shared memory could not be created, then close the mutex and fail */
+ if( pFile->hShared==NULL ){
+ if( !bLogged ){
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_IOERR, pFile->lastErrno,
+ "winceCreateLock3", zFilename);
+ bLogged = TRUE;
+ }
+ winceMutexRelease(pFile->hMutex);
+ osCloseHandle(pFile->hMutex);
+ pFile->hMutex = NULL;
+ return SQLITE_IOERR;
+ }
+
+ /* Initialize the shared memory if we're supposed to */
+ if( bInit ){
+ memset(pFile->shared, 0, sizeof(winceLock));
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return SQLITE_OK;
+}
+
+/*
+** Destroy the part of winFile that deals with wince locks
+*/
+static void winceDestroyLock(winFile *pFile){
+ if (pFile->hMutex){
+ /* Acquire the mutex */
+ winceMutexAcquire(pFile->hMutex);
+
+ /* The following blocks should probably assert in debug mode, but they
+ are to cleanup in case any locks remained open */
+ if (pFile->local.nReaders){
+ pFile->shared->nReaders --;
+ }
+ if (pFile->local.bReserved){
+ pFile->shared->bReserved = FALSE;
+ }
+ if (pFile->local.bPending){
+ pFile->shared->bPending = FALSE;
+ }
+ if (pFile->local.bExclusive){
+ pFile->shared->bExclusive = FALSE;
+ }
+
+ /* De-reference and close our copy of the shared memory handle */
+ osUnmapViewOfFile(pFile->shared);
+ osCloseHandle(pFile->hShared);
+
+ /* Done with the mutex */
+ winceMutexRelease(pFile->hMutex);
+ osCloseHandle(pFile->hMutex);
+ pFile->hMutex = NULL;
+ }
+}
+
+/*
+** An implementation of the LockFile() API of Windows for CE
+*/
+static BOOL winceLockFile(
+ LPHANDLE phFile,
+ DWORD dwFileOffsetLow,
+ DWORD dwFileOffsetHigh,
+ DWORD nNumberOfBytesToLockLow,
+ DWORD nNumberOfBytesToLockHigh
+){
+ winFile *pFile = HANDLE_TO_WINFILE(phFile);
+ BOOL bReturn = FALSE;
+
+ UNUSED_PARAMETER(dwFileOffsetHigh);
+ UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
+
+ if (!pFile->hMutex) return TRUE;
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Wanting an exclusive lock? */
+ if (dwFileOffsetLow == (DWORD)SHARED_FIRST
+ && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
+ if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
+ pFile->shared->bExclusive = TRUE;
+ pFile->local.bExclusive = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a read-only lock? */
+ else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
+ nNumberOfBytesToLockLow == 1){
+ if (pFile->shared->bExclusive == 0){
+ pFile->local.nReaders ++;
+ if (pFile->local.nReaders == 1){
+ pFile->shared->nReaders ++;
+ }
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a pending lock? */
+ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
+ && nNumberOfBytesToLockLow == 1){
+ /* If no pending lock has been acquired, then acquire it */
+ if (pFile->shared->bPending == 0) {
+ pFile->shared->bPending = TRUE;
+ pFile->local.bPending = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a reserved lock? */
+ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
+ && nNumberOfBytesToLockLow == 1){
+ if (pFile->shared->bReserved == 0) {
+ pFile->shared->bReserved = TRUE;
+ pFile->local.bReserved = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return bReturn;
+}
+
+/*
+** An implementation of the UnlockFile API of Windows for CE
+*/
+static BOOL winceUnlockFile(
+ LPHANDLE phFile,
+ DWORD dwFileOffsetLow,
+ DWORD dwFileOffsetHigh,
+ DWORD nNumberOfBytesToUnlockLow,
+ DWORD nNumberOfBytesToUnlockHigh
+){
+ winFile *pFile = HANDLE_TO_WINFILE(phFile);
+ BOOL bReturn = FALSE;
+
+ UNUSED_PARAMETER(dwFileOffsetHigh);
+ UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
+
+ if (!pFile->hMutex) return TRUE;
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Releasing a reader lock or an exclusive lock */
+ if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
+ /* Did we have an exclusive lock? */
+ if (pFile->local.bExclusive){
+ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
+ pFile->local.bExclusive = FALSE;
+ pFile->shared->bExclusive = FALSE;
+ bReturn = TRUE;
+ }
+
+ /* Did we just have a reader lock? */
+ else if (pFile->local.nReaders){
+ assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE
+ || nNumberOfBytesToUnlockLow == 1);
+ pFile->local.nReaders --;
+ if (pFile->local.nReaders == 0)
+ {
+ pFile->shared->nReaders --;
+ }
+ bReturn = TRUE;
+ }
+ }
+
+ /* Releasing a pending lock */
+ else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
+ && nNumberOfBytesToUnlockLow == 1){
+ if (pFile->local.bPending){
+ pFile->local.bPending = FALSE;
+ pFile->shared->bPending = FALSE;
+ bReturn = TRUE;
+ }
+ }
+ /* Releasing a reserved lock */
+ else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
+ && nNumberOfBytesToUnlockLow == 1){
+ if (pFile->local.bReserved) {
+ pFile->local.bReserved = FALSE;
+ pFile->shared->bReserved = FALSE;
+ bReturn = TRUE;
+ }
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return bReturn;
+}
+/*
+** End of the special code for wince
+*****************************************************************************/
+#endif /* SQLITE_OS_WINCE */
+
+/*
+** Lock a file region.
+*/
+static BOOL winLockFile(
+ LPHANDLE phFile,
+ DWORD flags,
+ DWORD offsetLow,
+ DWORD offsetHigh,
+ DWORD numBytesLow,
+ DWORD numBytesHigh
+){
+#if SQLITE_OS_WINCE
+ /*
+ ** NOTE: Windows CE is handled differently here due its lack of the Win32
+ ** API LockFile.
+ */
+ return winceLockFile(phFile, offsetLow, offsetHigh,
+ numBytesLow, numBytesHigh);
+#else
+ if( osIsNT() ){
+ OVERLAPPED ovlp;
+ memset(&ovlp, 0, sizeof(OVERLAPPED));
+ ovlp.Offset = offsetLow;
+ ovlp.OffsetHigh = offsetHigh;
+ return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp);
+ }else{
+ return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
+ numBytesHigh);
+ }
+#endif
+}
+
+/*
+** Unlock a file region.
+ */
+static BOOL winUnlockFile(
+ LPHANDLE phFile,
+ DWORD offsetLow,
+ DWORD offsetHigh,
+ DWORD numBytesLow,
+ DWORD numBytesHigh
+){
+#if SQLITE_OS_WINCE
+ /*
+ ** NOTE: Windows CE is handled differently here due its lack of the Win32
+ ** API UnlockFile.
+ */
+ return winceUnlockFile(phFile, offsetLow, offsetHigh,
+ numBytesLow, numBytesHigh);
+#else
+ if( osIsNT() ){
+ OVERLAPPED ovlp;
+ memset(&ovlp, 0, sizeof(OVERLAPPED));
+ ovlp.Offset = offsetLow;
+ ovlp.OffsetHigh = offsetHigh;
+ return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp);
+ }else{
+ return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
+ numBytesHigh);
+ }
+#endif
+}
+
+/*****************************************************************************
+** The next group of routines implement the I/O methods specified
+** by the sqlite3_io_methods object.
+******************************************************************************/
+
+/*
+** Some Microsoft compilers lack this definition.
+*/
+#ifndef INVALID_SET_FILE_POINTER
+# define INVALID_SET_FILE_POINTER ((DWORD)-1)
+#endif
+
+/*
+** Move the current position of the file handle passed as the first
+** argument to offset iOffset within the file. If successful, return 0.
+** Otherwise, set pFile->lastErrno and return non-zero.
+*/
+static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){
+#if !SQLITE_OS_WINRT
+ LONG upperBits; /* Most sig. 32 bits of new offset */
+ LONG lowerBits; /* Least sig. 32 bits of new offset */
+ DWORD dwRet; /* Value returned by SetFilePointer() */
+ DWORD lastErrno; /* Value returned by GetLastError() */
+
+ OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset));
+
+ upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
+ lowerBits = (LONG)(iOffset & 0xffffffff);
+
+ /* API oddity: If successful, SetFilePointer() returns a dword
+ ** containing the lower 32-bits of the new file-offset. Or, if it fails,
+ ** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
+ ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
+ ** whether an error has actually occurred, it is also necessary to call
+ ** GetLastError().
+ */
+ dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+
+ if( (dwRet==INVALID_SET_FILE_POINTER
+ && ((lastErrno = osGetLastError())!=NO_ERROR)) ){
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
+ "winSeekFile", pFile->zPath);
+ OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
+ return 1;
+ }
+
+ OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
+ return 0;
+#else
+ /*
+ ** Same as above, except that this implementation works for WinRT.
+ */
+
+ LARGE_INTEGER x; /* The new offset */
+ BOOL bRet; /* Value returned by SetFilePointerEx() */
+
+ x.QuadPart = iOffset;
+ bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN);
+
+ if(!bRet){
+ pFile->lastErrno = osGetLastError();
+ winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
+ "winSeekFile", pFile->zPath);
+ OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
+ return 1;
+ }
+
+ OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
+ return 0;
+#endif
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* Forward references to VFS helper methods used for memory mapped files */
+static int winMapfile(winFile*, sqlite3_int64);
+static int winUnmapfile(winFile*);
+#endif
+
+/*
+** Close a file.
+**
+** It is reported that an attempt to close a handle might sometimes
+** fail. This is a very unreasonable result, but Windows is notorious
+** for being unreasonable so I do not doubt that it might happen. If
+** the close fails, we pause for 100 milliseconds and try again. As
+** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
+** giving up and returning an error.
+*/
+#define MX_CLOSE_ATTEMPT 3
+static int winClose(sqlite3_file *id){
+ int rc, cnt = 0;
+ winFile *pFile = (winFile*)id;
+
+ assert( id!=0 );
+#ifndef SQLITE_OMIT_WAL
+ assert( pFile->pShm==0 );
+#endif
+ assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
+ OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ winUnmapfile(pFile);
+#endif
+
+ do{
+ rc = osCloseHandle(pFile->h);
+ /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
+ }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
+#if SQLITE_OS_WINCE
+#define WINCE_DELETION_ATTEMPTS 3
+ {
+ winVfsAppData *pAppData = (winVfsAppData*)pFile->pVfs->pAppData;
+ if( pAppData==NULL || !pAppData->bNoLock ){
+ winceDestroyLock(pFile);
+ }
+ }
+ if( pFile->zDeleteOnClose ){
+ int cnt = 0;
+ while(
+ osDeleteFileW(pFile->zDeleteOnClose)==0
+ && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
+ && cnt++ < WINCE_DELETION_ATTEMPTS
+ ){
+ sqlite3_win32_sleep(100); /* Wait a little before trying again */
+ }
+ sqlite3_free(pFile->zDeleteOnClose);
+ }
+#endif
+ if( rc ){
+ pFile->h = NULL;
+ }
+ OpenCounter(-1);
+ OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed"));
+ return rc ? SQLITE_OK
+ : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(),
+ "winClose", pFile->zPath);
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int winRead(
+ sqlite3_file *id, /* File to read from */
+ void *pBuf, /* Write content into this buffer */
+ int amt, /* Number of bytes to read */
+ sqlite3_int64 offset /* Begin reading at this offset */
+){
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ OVERLAPPED overlapped; /* The offset for ReadFile. */
+#endif
+ winFile *pFile = (winFile*)id; /* file handle */
+ DWORD nRead; /* Number of bytes actually read from file */
+ int nRetry = 0; /* Number of retrys */
+
+ assert( id!=0 );
+ assert( amt>0 );
+ assert( offset>=0 );
+ SimulateIOError(return SQLITE_IOERR_READ);
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
+ "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
+ pFile->h, pBuf, amt, offset, pFile->locktype));
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this read request as possible by transferring
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
+ OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+ }else{
+ int nCopy = (int)(pFile->mmapSize - offset);
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
+ if( winSeekFile(pFile, offset) ){
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_FULL;
+ }
+ while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
+#else
+ memset(&overlapped, 0, sizeof(OVERLAPPED));
+ overlapped.Offset = (LONG)(offset & 0xffffffff);
+ overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
+ while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
+ osGetLastError()!=ERROR_HANDLE_EOF ){
+#endif
+ DWORD lastErrno;
+ if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
+ pFile->lastErrno = lastErrno;
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
+ "winRead", pFile->zPath);
+ }
+ winLogIoerr(nRetry, __LINE__);
+ if( nRead<(DWORD)amt ){
+ /* Unread parts of the buffer must be zero-filled */
+ memset(&((char*)pBuf)[nRead], 0, amt-nRead);
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_IOERR_SHORT_READ;
+ }
+
+ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+}
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int winWrite(
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
+){
+ int rc = 0; /* True if error has occurred, else false */
+ winFile *pFile = (winFile*)id; /* File handle */
+ int nRetry = 0; /* Number of retries */
+
+ assert( amt>0 );
+ assert( pFile );
+ SimulateIOError(return SQLITE_IOERR_WRITE);
+ SimulateDiskfullError(return SQLITE_FULL);
+
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
+ "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
+ pFile->h, pBuf, amt, offset, pFile->locktype));
+
+#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
+ /* Deal with as much of this write request as possible by transferring
+ ** data from the memory mapping using memcpy(). */
+ if( offset<pFile->mmapSize ){
+ if( offset+amt <= pFile->mmapSize ){
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
+ OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+ }else{
+ int nCopy = (int)(pFile->mmapSize - offset);
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
+ pBuf = &((u8 *)pBuf)[nCopy];
+ amt -= nCopy;
+ offset += nCopy;
+ }
+ }
+#endif
+
+#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
+ rc = winSeekFile(pFile, offset);
+ if( rc==0 ){
+#else
+ {
+#endif
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ OVERLAPPED overlapped; /* The offset for WriteFile. */
+#endif
+ u8 *aRem = (u8 *)pBuf; /* Data yet to be written */
+ int nRem = amt; /* Number of bytes yet to be written */
+ DWORD nWrite; /* Bytes written by each WriteFile() call */
+ DWORD lastErrno = NO_ERROR; /* Value returned by GetLastError() */
+
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ memset(&overlapped, 0, sizeof(OVERLAPPED));
+ overlapped.Offset = (LONG)(offset & 0xffffffff);
+ overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
+#endif
+
+ while( nRem>0 ){
+#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
+ if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
+#else
+ if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
+#endif
+ if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
+ break;
+ }
+ assert( nWrite==0 || nWrite<=(DWORD)nRem );
+ if( nWrite==0 || nWrite>(DWORD)nRem ){
+ lastErrno = osGetLastError();
+ break;
+ }
+#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
+ offset += nWrite;
+ overlapped.Offset = (LONG)(offset & 0xffffffff);
+ overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
+#endif
+ aRem += nWrite;
+ nRem -= nWrite;
+ }
+ if( nRem>0 ){
+ pFile->lastErrno = lastErrno;
+ rc = 1;
+ }
+ }
+
+ if( rc ){
+ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
+ || ( pFile->lastErrno==ERROR_DISK_FULL )){
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_FULL, pFile->lastErrno,
+ "winWrite1", pFile->zPath);
+ }
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
+ "winWrite2", pFile->zPath);
+ }else{
+ winLogIoerr(nRetry, __LINE__);
+ }
+ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
+ winFile *pFile = (winFile*)id; /* File handle object */
+ int rc = SQLITE_OK; /* Return code for this function */
+ DWORD lastErrno;
+#if SQLITE_MAX_MMAP_SIZE>0
+ sqlite3_int64 oldMmapSize;
+ if( pFile->nFetchOut>0 ){
+ /* File truncation is a no-op if there are outstanding memory mapped
+ ** pages. This is because truncating the file means temporarily unmapping
+ ** the file, and that might delete memory out from under existing cursors.
+ **
+ ** This can result in incremental vacuum not truncating the file,
+ ** if there is an active read cursor when the incremental vacuum occurs.
+ ** No real harm comes of this - the database file is not corrupted,
+ ** though some folks might complain that the file is bigger than it
+ ** needs to be.
+ **
+ ** The only feasible work-around is to defer the truncation until after
+ ** all references to memory-mapped content are closed. That is doable,
+ ** but involves adding a few branches in the common write code path which
+ ** could slow down normal operations slightly. Hence, we have decided for
+ ** now to simply make transactions a no-op if there are pending reads. We
+ ** can maybe revisit this decision in the future.
+ */
+ return SQLITE_OK;
+ }
+#endif
+
+ assert( pFile );
+ SimulateIOError(return SQLITE_IOERR_TRUNCATE);
+ OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n",
+ osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype));
+
+ /* If the user has configured a chunk-size for this file, truncate the
+ ** file so that it consists of an integer number of chunks (i.e. the
+ ** actual file size after the operation may be larger than the requested
+ ** size).
+ */
+ if( pFile->szChunk>0 ){
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
+ }
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFile->pMapRegion ){
+ oldMmapSize = pFile->mmapSize;
+ }else{
+ oldMmapSize = 0;
+ }
+ winUnmapfile(pFile);
+#endif
+
+ /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
+ if( winSeekFile(pFile, nByte) ){
+ rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
+ "winTruncate1", pFile->zPath);
+ }else if( 0==osSetEndOfFile(pFile->h) &&
+ ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){
+ pFile->lastErrno = lastErrno;
+ rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
+ "winTruncate2", pFile->zPath);
+ }
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( rc==SQLITE_OK && oldMmapSize>0 ){
+ if( oldMmapSize>nByte ){
+ winMapfile(pFile, -1);
+ }else{
+ winMapfile(pFile, oldMmapSize);
+ }
+ }
+#endif
+
+ OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc)));
+ return rc;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occurring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+*/
+static int winSync(sqlite3_file *id, int flags){
+#ifndef SQLITE_NO_SYNC
+ /*
+ ** Used only when SQLITE_NO_SYNC is not defined.
+ */
+ BOOL rc;
+#endif
+#if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \
+ defined(SQLITE_HAVE_OS_TRACE)
+ /*
+ ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or
+ ** OSTRACE() macros.
+ */
+ winFile *pFile = (winFile*)id;
+#else
+ UNUSED_PARAMETER(id);
+#endif
+
+ assert( pFile );
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL
+ || (flags&0x0F)==SQLITE_SYNC_FULL
+ );
+
+ /* Unix cannot, but some systems may return SQLITE_FULL from here. This
+ ** line is to test that doing so does not cause any problems.
+ */
+ SimulateDiskfullError( return SQLITE_FULL );
+
+ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n",
+ osGetCurrentProcessId(), pFile, pFile->h, flags,
+ pFile->locktype));
+
+#ifndef SQLITE_TEST
+ UNUSED_PARAMETER(flags);
+#else
+ if( (flags&0x0F)==SQLITE_SYNC_FULL ){
+ sqlite3_fullsync_count++;
+ }
+ sqlite3_sync_count++;
+#endif
+
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op
+ */
+#ifdef SQLITE_NO_SYNC
+ OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+#else
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFile->pMapRegion ){
+ if( osFlushViewOfFile(pFile->pMapRegion, 0) ){
+ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
+ "rc=SQLITE_OK\n", osGetCurrentProcessId(),
+ pFile, pFile->pMapRegion));
+ }else{
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
+ "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(),
+ pFile, pFile->pMapRegion));
+ return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
+ "winSync1", pFile->zPath);
+ }
+ }
+#endif
+ rc = osFlushFileBuffers(pFile->h);
+ SimulateIOError( rc=FALSE );
+ if( rc ){
+ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return SQLITE_OK;
+ }else{
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n",
+ osGetCurrentProcessId(), pFile, pFile->h));
+ return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
+ "winSync2", pFile->zPath);
+ }
+#endif
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
+ winFile *pFile = (winFile*)id;
+ int rc = SQLITE_OK;
+
+ assert( id!=0 );
+ assert( pSize!=0 );
+ SimulateIOError(return SQLITE_IOERR_FSTAT);
+ OSTRACE(("SIZE file=%p, pSize=%p\n", pFile->h, pSize));
+
+#if SQLITE_OS_WINRT
+ {
+ FILE_STANDARD_INFO info;
+ if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo,
+ &info, sizeof(info)) ){
+ *pSize = info.EndOfFile.QuadPart;
+ }else{
+ pFile->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
+ "winFileSize", pFile->zPath);
+ }
+ }
+#else
+ {
+ DWORD upperBits;
+ DWORD lowerBits;
+ DWORD lastErrno;
+
+ lowerBits = osGetFileSize(pFile->h, &upperBits);
+ *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
+ if( (lowerBits == INVALID_FILE_SIZE)
+ && ((lastErrno = osGetLastError())!=NO_ERROR) ){
+ pFile->lastErrno = lastErrno;
+ rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
+ "winFileSize", pFile->zPath);
+ }
+ }
+#endif
+ OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n",
+ pFile->h, pSize, *pSize, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
+*/
+#ifndef LOCKFILE_FAIL_IMMEDIATELY
+# define LOCKFILE_FAIL_IMMEDIATELY 1
+#endif
+
+#ifndef LOCKFILE_EXCLUSIVE_LOCK
+# define LOCKFILE_EXCLUSIVE_LOCK 2
+#endif
+
+/*
+** Historically, SQLite has used both the LockFile and LockFileEx functions.
+** When the LockFile function was used, it was always expected to fail
+** immediately if the lock could not be obtained. Also, it always expected to
+** obtain an exclusive lock. These flags are used with the LockFileEx function
+** and reflect those expectations; therefore, they should not be changed.
+*/
+#ifndef SQLITE_LOCKFILE_FLAGS
+# define SQLITE_LOCKFILE_FLAGS (LOCKFILE_FAIL_IMMEDIATELY | \
+ LOCKFILE_EXCLUSIVE_LOCK)
+#endif
+
+/*
+** Currently, SQLite never calls the LockFileEx function without wanting the
+** call to fail immediately if the lock cannot be obtained.
+*/
+#ifndef SQLITE_LOCKFILEEX_FLAGS
+# define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY)
+#endif
+
+/*
+** Acquire a reader lock.
+** Different API routines are called depending on whether or not this
+** is Win9x or WinNT.
+*/
+static int winGetReadLock(winFile *pFile){
+ int res;
+ OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
+ if( osIsNT() ){
+#if SQLITE_OS_WINCE
+ /*
+ ** NOTE: Windows CE is handled differently here due its lack of the Win32
+ ** API LockFileEx.
+ */
+ res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0);
+#else
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0,
+ SHARED_SIZE, 0);
+#endif
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ int lk;
+ sqlite3_randomness(sizeof(lk), &lk);
+ pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
+ SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
+ }
+#endif
+ if( res == 0 ){
+ pFile->lastErrno = osGetLastError();
+ /* No need to log a failure to lock */
+ }
+ OSTRACE(("READ-LOCK file=%p, result=%d\n", pFile->h, res));
+ return res;
+}
+
+/*
+** Undo a readlock
+*/
+static int winUnlockReadLock(winFile *pFile){
+ int res;
+ DWORD lastErrno;
+ OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
+ if( osIsNT() ){
+ res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
+ }
+#endif
+ if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno,
+ "winUnlockReadLock", pFile->zPath);
+ }
+ OSTRACE(("READ-UNLOCK file=%p, result=%d\n", pFile->h, res));
+ return res;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. The winUnlock() routine
+** erases all locks at once and returns us immediately to locking level 0.
+** It is not possible to lower the locking level one step at a time. You
+** must go straight to locking level 0.
+*/
+static int winLock(sqlite3_file *id, int locktype){
+ int rc = SQLITE_OK; /* Return code from subroutines */
+ int res = 1; /* Result of a Windows lock call */
+ int newLocktype; /* Set pFile->locktype to this value before exiting */
+ int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
+ winFile *pFile = (winFile*)id;
+ DWORD lastErrno = NO_ERROR;
+
+ assert( id!=0 );
+ OSTRACE(("LOCK file=%p, oldLock=%d(%d), newLock=%d\n",
+ pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** OsFile, do nothing. Don't use the end_lock: exit path, as
+ ** sqlite3OsEnterMutex() hasn't been called yet.
+ */
+ if( pFile->locktype>=locktype ){
+ OSTRACE(("LOCK-HELD file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+
+ /* Do not allow any kind of write-lock on a read-only database
+ */
+ if( (pFile->ctrlFlags & WINFILE_RDONLY)!=0 && locktype>=RESERVED_LOCK ){
+ return SQLITE_IOERR_LOCK;
+ }
+
+ /* Make sure the locking sequence is correct
+ */
+ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
+ assert( locktype!=PENDING_LOCK );
+ assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
+
+ /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
+ ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
+ ** the PENDING_LOCK byte is temporary.
+ */
+ newLocktype = pFile->locktype;
+ if( pFile->locktype==NO_LOCK
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype<=RESERVED_LOCK)
+ ){
+ int cnt = 3;
+ while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
+ PENDING_BYTE, 0, 1, 0))==0 ){
+ /* Try 3 times to get the pending lock. This is needed to work
+ ** around problems caused by indexing and/or anti-virus software on
+ ** Windows systems.
+ ** If you are using this code as a model for alternative VFSes, do not
+ ** copy this retry logic. It is a hack intended for Windows only.
+ */
+ lastErrno = osGetLastError();
+ OSTRACE(("LOCK-PENDING-FAIL file=%p, count=%d, result=%d\n",
+ pFile->h, cnt, res));
+ if( lastErrno==ERROR_INVALID_HANDLE ){
+ pFile->lastErrno = lastErrno;
+ rc = SQLITE_IOERR_LOCK;
+ OSTRACE(("LOCK-FAIL file=%p, count=%d, rc=%s\n",
+ pFile->h, cnt, sqlite3ErrName(rc)));
+ return rc;
+ }
+ if( cnt ) sqlite3_win32_sleep(1);
+ }
+ gotPendingLock = res;
+ if( !res ){
+ lastErrno = osGetLastError();
+ }
+ }
+
+ /* Acquire a shared lock
+ */
+ if( locktype==SHARED_LOCK && res ){
+ assert( pFile->locktype==NO_LOCK );
+ res = winGetReadLock(pFile);
+ if( res ){
+ newLocktype = SHARED_LOCK;
+ }else{
+ lastErrno = osGetLastError();
+ }
+ }
+
+ /* Acquire a RESERVED lock
+ */
+ if( locktype==RESERVED_LOCK && res ){
+ assert( pFile->locktype==SHARED_LOCK );
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0);
+ if( res ){
+ newLocktype = RESERVED_LOCK;
+ }else{
+ lastErrno = osGetLastError();
+ }
+ }
+
+ /* Acquire a PENDING lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res ){
+ newLocktype = PENDING_LOCK;
+ gotPendingLock = 0;
+ }
+
+ /* Acquire an EXCLUSIVE lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res ){
+ assert( pFile->locktype>=SHARED_LOCK );
+ (void)winUnlockReadLock(pFile);
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0,
+ SHARED_SIZE, 0);
+ if( res ){
+ newLocktype = EXCLUSIVE_LOCK;
+ }else{
+ lastErrno = osGetLastError();
+ winGetReadLock(pFile);
+ }
+ }
+
+ /* If we are holding a PENDING lock that ought to be released, then
+ ** release it now.
+ */
+ if( gotPendingLock && locktype==SHARED_LOCK ){
+ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
+ }
+
+ /* Update the state of the lock has held in the file descriptor then
+ ** return the appropriate result code.
+ */
+ if( res ){
+ rc = SQLITE_OK;
+ }else{
+ pFile->lastErrno = lastErrno;
+ rc = SQLITE_BUSY;
+ OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n",
+ pFile->h, locktype, newLocktype));
+ }
+ pFile->locktype = (u8)newLocktype;
+ OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n",
+ pFile->h, pFile->locktype, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, return
+** non-zero, otherwise zero.
+*/
+static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
+ int res;
+ winFile *pFile = (winFile*)id;
+
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
+ OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut));
+
+ assert( id!=0 );
+ if( pFile->locktype>=RESERVED_LOCK ){
+ res = 1;
+ OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res));
+ }else{
+ res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE,0,1,0);
+ if( res ){
+ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
+ }
+ res = !res;
+ OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res));
+ }
+ *pResOut = res;
+ OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
+ pFile->h, pResOut, *pResOut));
+ return SQLITE_OK;
+}
+
+/*
+** Lower the locking level on file descriptor id to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** It is not possible for this routine to fail if the second argument
+** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
+** might return SQLITE_IOERR;
+*/
+static int winUnlock(sqlite3_file *id, int locktype){
+ int type;
+ winFile *pFile = (winFile*)id;
+ int rc = SQLITE_OK;
+ assert( pFile!=0 );
+ assert( locktype<=SHARED_LOCK );
+ OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n",
+ pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
+ type = pFile->locktype;
+ if( type>=EXCLUSIVE_LOCK ){
+ winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){
+ /* This should never happen. We should always be able to
+ ** reacquire the read lock */
+ rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(),
+ "winUnlock", pFile->zPath);
+ }
+ }
+ if( type>=RESERVED_LOCK ){
+ winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
+ }
+ if( locktype==NO_LOCK && type>=SHARED_LOCK ){
+ winUnlockReadLock(pFile);
+ }
+ if( type>=PENDING_LOCK ){
+ winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
+ }
+ pFile->locktype = (u8)locktype;
+ OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
+ pFile->h, pFile->locktype, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/******************************************************************************
+****************************** No-op Locking **********************************
+**
+** Of the various locking implementations available, this is by far the
+** simplest: locking is ignored. No attempt is made to lock the database
+** file for reading or writing.
+**
+** This locking mode is appropriate for use on read-only databases
+** (ex: databases that are burned into CD-ROM, for example.) It can
+** also be used if the application employs some external mechanism to
+** prevent simultaneous access of the same database by two or more
+** database connections. But there is a serious risk of database
+** corruption if this locking mode is used in situations where multiple
+** database connections are accessing the same database file at the same
+** time and one or more of those connections are writing.
+*/
+
+static int winNolockLock(sqlite3_file *id, int locktype){
+ UNUSED_PARAMETER(id);
+ UNUSED_PARAMETER(locktype);
+ return SQLITE_OK;
+}
+
+static int winNolockCheckReservedLock(sqlite3_file *id, int *pResOut){
+ UNUSED_PARAMETER(id);
+ UNUSED_PARAMETER(pResOut);
+ return SQLITE_OK;
+}
+
+static int winNolockUnlock(sqlite3_file *id, int locktype){
+ UNUSED_PARAMETER(id);
+ UNUSED_PARAMETER(locktype);
+ return SQLITE_OK;
+}
+
+/******************* End of the no-op lock implementation *********************
+******************************************************************************/
+
+/*
+** If *pArg is initially negative then this is a query. Set *pArg to
+** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
+**
+** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
+*/
+static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){
+ if( *pArg<0 ){
+ *pArg = (pFile->ctrlFlags & mask)!=0;
+ }else if( (*pArg)==0 ){
+ pFile->ctrlFlags &= ~mask;
+ }else{
+ pFile->ctrlFlags |= mask;
+ }
+}
+
+/* Forward references to VFS helper methods used for temporary files */
+static int winGetTempname(sqlite3_vfs *, char **);
+static int winIsDir(const void *);
+static BOOL winIsLongPathPrefix(const char *);
+static BOOL winIsDriveLetterAndColon(const char *);
+
+/*
+** Control and query of the open file handle.
+*/
+static int winFileControl(sqlite3_file *id, int op, void *pArg){
+ winFile *pFile = (winFile*)id;
+ OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg));
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = pFile->locktype;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_LAST_ERRNO: {
+ *(int*)pArg = (int)pFile->lastErrno;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_CHUNK_SIZE: {
+ pFile->szChunk = *(int *)pArg;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_SIZE_HINT: {
+ if( pFile->szChunk>0 ){
+ sqlite3_int64 oldSz;
+ int rc = winFileSize(id, &oldSz);
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
+ if( newSz>oldSz ){
+ SimulateIOErrorBenign(1);
+ rc = winTruncate(id, newSz);
+ SimulateIOErrorBenign(0);
+ }
+ }
+ OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
+ return rc;
+ }
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_PERSIST_WAL: {
+ winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg);
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
+ winModeBit(pFile, WINFILE_PSOW, (int*)pArg);
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_VFSNAME: {
+ *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_WIN32_AV_RETRY: {
+ int *a = (int*)pArg;
+ if( a[0]>0 ){
+ winIoerrRetry = a[0];
+ }else{
+ a[0] = winIoerrRetry;
+ }
+ if( a[1]>0 ){
+ winIoerrRetryDelay = a[1];
+ }else{
+ a[1] = winIoerrRetryDelay;
+ }
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+ case SQLITE_FCNTL_WIN32_GET_HANDLE: {
+ LPHANDLE phFile = (LPHANDLE)pArg;
+ *phFile = pFile->h;
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
+ return SQLITE_OK;
+ }
+#ifdef SQLITE_TEST
+ case SQLITE_FCNTL_WIN32_SET_HANDLE: {
+ LPHANDLE phFile = (LPHANDLE)pArg;
+ HANDLE hOldFile = pFile->h;
+ pFile->h = *phFile;
+ *phFile = hOldFile;
+ OSTRACE(("FCNTL oldFile=%p, newFile=%p, rc=SQLITE_OK\n",
+ hOldFile, pFile->h));
+ return SQLITE_OK;
+ }
+#endif
+ case SQLITE_FCNTL_TEMPFILENAME: {
+ char *zTFile = 0;
+ int rc = winGetTempname(pFile->pVfs, &zTFile);
+ if( rc==SQLITE_OK ){
+ *(char**)pArg = zTFile;
+ }
+ OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
+ return rc;
+ }
+#if SQLITE_MAX_MMAP_SIZE>0
+ case SQLITE_FCNTL_MMAP_SIZE: {
+ i64 newLimit = *(i64*)pArg;
+ int rc = SQLITE_OK;
+ if( newLimit>sqlite3GlobalConfig.mxMmap ){
+ newLimit = sqlite3GlobalConfig.mxMmap;
+ }
+
+ /* The value of newLimit may be eventually cast to (SIZE_T) and passed
+ ** to MapViewOfFile(). Restrict its value to 2GB if (SIZE_T) is not at
+ ** least a 64-bit type. */
+ if( newLimit>0 && sizeof(SIZE_T)<8 ){
+ newLimit = (newLimit & 0x7FFFFFFF);
+ }
+
+ *(i64*)pArg = pFile->mmapSizeMax;
+ if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
+ pFile->mmapSizeMax = newLimit;
+ if( pFile->mmapSize>0 ){
+ winUnmapfile(pFile);
+ rc = winMapfile(pFile, -1);
+ }
+ }
+ OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
+ return rc;
+ }
+#endif
+ }
+ OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h));
+ return SQLITE_NOTFOUND;
+}
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int winSectorSize(sqlite3_file *id){
+ (void)id;
+ return SQLITE_DEFAULT_SECTOR_SIZE;
+}
+
+/*
+** Return a vector of device characteristics.
+*/
+static int winDeviceCharacteristics(sqlite3_file *id){
+ winFile *p = (winFile*)id;
+ return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN |
+ ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0);
+}
+
+/*
+** Windows will only let you create file view mappings
+** on allocation size granularity boundaries.
+** During sqlite3_os_init() we do a GetSystemInfo()
+** to get the granularity size.
+*/
+static SYSTEM_INFO winSysInfo;
+
+#ifndef SQLITE_OMIT_WAL
+
+/*
+** Helper functions to obtain and relinquish the global mutex. The
+** global mutex is used to protect the winLockInfo objects used by
+** this file, all of which may be shared by multiple threads.
+**
+** Function winShmMutexHeld() is used to assert() that the global mutex
+** is held when required. This function is only used as part of assert()
+** statements. e.g.
+**
+** winShmEnterMutex()
+** assert( winShmMutexHeld() );
+** winShmLeaveMutex()
+*/
+static sqlite3_mutex *winBigLock = 0;
+static void winShmEnterMutex(void){
+ sqlite3_mutex_enter(winBigLock);
+}
+static void winShmLeaveMutex(void){
+ sqlite3_mutex_leave(winBigLock);
+}
+#ifndef NDEBUG
+static int winShmMutexHeld(void) {
+ return sqlite3_mutex_held(winBigLock);
+}
+#endif
+
+/*
+** Object used to represent a single file opened and mmapped to provide
+** shared memory. When multiple threads all reference the same
+** log-summary, each thread has its own winFile object, but they all
+** point to a single instance of this object. In other words, each
+** log-summary is opened only once per process.
+**
+** winShmMutexHeld() must be true when creating or destroying
+** this object or while reading or writing the following fields:
+**
+** nRef
+** pNext
+**
+** The following fields are read-only after the object is created:
+**
+** fid
+** zFilename
+**
+** Either winShmNode.mutex must be held or winShmNode.nRef==0 and
+** winShmMutexHeld() is true when reading or writing any other field
+** in this structure.
+**
+*/
+struct winShmNode {
+ sqlite3_mutex *mutex; /* Mutex to access this object */
+ char *zFilename; /* Name of the file */
+ winFile hFile; /* File handle from winOpen */
+
+ int szRegion; /* Size of shared-memory regions */
+ int nRegion; /* Size of array apRegion */
+ u8 isReadonly; /* True if read-only */
+ u8 isUnlocked; /* True if no DMS lock held */
+
+ struct ShmRegion {
+ HANDLE hMap; /* File handle from CreateFileMapping */
+ void *pMap;
+ } *aRegion;
+ DWORD lastErrno; /* The Windows errno from the last I/O error */
+
+ int nRef; /* Number of winShm objects pointing to this */
+ winShm *pFirst; /* All winShm objects pointing to this */
+ winShmNode *pNext; /* Next in list of all winShmNode objects */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+ u8 nextShmId; /* Next available winShm.id value */
+#endif
+};
+
+/*
+** A global array of all winShmNode objects.
+**
+** The winShmMutexHeld() must be true while reading or writing this list.
+*/
+static winShmNode *winShmNodeList = 0;
+
+/*
+** Structure used internally by this VFS to record the state of an
+** open shared memory connection.
+**
+** The following fields are initialized when this object is created and
+** are read-only thereafter:
+**
+** winShm.pShmNode
+** winShm.id
+**
+** All other fields are read/write. The winShm.pShmNode->mutex must be held
+** while accessing any read/write fields.
+*/
+struct winShm {
+ winShmNode *pShmNode; /* The underlying winShmNode object */
+ winShm *pNext; /* Next winShm with the same winShmNode */
+ u8 hasMutex; /* True if holding the winShmNode mutex */
+ u16 sharedMask; /* Mask of shared locks held */
+ u16 exclMask; /* Mask of exclusive locks held */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+ u8 id; /* Id of this connection with its winShmNode */
+#endif
+};
+
+/*
+** Constants used for locking
+*/
+#define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
+#define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
+
+/*
+** Apply advisory locks for all n bytes beginning at ofst.
+*/
+#define WINSHM_UNLCK 1
+#define WINSHM_RDLCK 2
+#define WINSHM_WRLCK 3
+static int winShmSystemLock(
+ winShmNode *pFile, /* Apply locks to this open shared-memory segment */
+ int lockType, /* WINSHM_UNLCK, WINSHM_RDLCK, or WINSHM_WRLCK */
+ int ofst, /* Offset to first byte to be locked/unlocked */
+ int nByte /* Number of bytes to lock or unlock */
+){
+ int rc = 0; /* Result code form Lock/UnlockFileEx() */
+
+ /* Access to the winShmNode object is serialized by the caller */
+ assert( pFile->nRef==0 || sqlite3_mutex_held(pFile->mutex) );
+
+ OSTRACE(("SHM-LOCK file=%p, lock=%d, offset=%d, size=%d\n",
+ pFile->hFile.h, lockType, ofst, nByte));
+
+ /* Release/Acquire the system-level lock */
+ if( lockType==WINSHM_UNLCK ){
+ rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0);
+ }else{
+ /* Initialize the locking parameters */
+ DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
+ if( lockType == WINSHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
+ rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0);
+ }
+
+ if( rc!= 0 ){
+ rc = SQLITE_OK;
+ }else{
+ pFile->lastErrno = osGetLastError();
+ rc = SQLITE_BUSY;
+ }
+
+ OSTRACE(("SHM-LOCK file=%p, func=%s, errno=%lu, rc=%s\n",
+ pFile->hFile.h, (lockType == WINSHM_UNLCK) ? "winUnlockFile" :
+ "winLockFile", pFile->lastErrno, sqlite3ErrName(rc)));
+
+ return rc;
+}
+
+/* Forward references to VFS methods */
+static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*);
+static int winDelete(sqlite3_vfs *,const char*,int);
+
+/*
+** Purge the winShmNodeList list of all entries with winShmNode.nRef==0.
+**
+** This is not a VFS shared-memory method; it is a utility function called
+** by VFS shared-memory methods.
+*/
+static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
+ winShmNode **pp;
+ winShmNode *p;
+ assert( winShmMutexHeld() );
+ OSTRACE(("SHM-PURGE pid=%lu, deleteFlag=%d\n",
+ osGetCurrentProcessId(), deleteFlag));
+ pp = &winShmNodeList;
+ while( (p = *pp)!=0 ){
+ if( p->nRef==0 ){
+ int i;
+ if( p->mutex ){ sqlite3_mutex_free(p->mutex); }
+ for(i=0; i<p->nRegion; i++){
+ BOOL bRc = osUnmapViewOfFile(p->aRegion[i].pMap);
+ OSTRACE(("SHM-PURGE-UNMAP pid=%lu, region=%d, rc=%s\n",
+ osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
+ UNUSED_VARIABLE_VALUE(bRc);
+ bRc = osCloseHandle(p->aRegion[i].hMap);
+ OSTRACE(("SHM-PURGE-CLOSE pid=%lu, region=%d, rc=%s\n",
+ osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
+ UNUSED_VARIABLE_VALUE(bRc);
+ }
+ if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){
+ SimulateIOErrorBenign(1);
+ winClose((sqlite3_file *)&p->hFile);
+ SimulateIOErrorBenign(0);
+ }
+ if( deleteFlag ){
+ SimulateIOErrorBenign(1);
+ sqlite3BeginBenignMalloc();
+ winDelete(pVfs, p->zFilename, 0);
+ sqlite3EndBenignMalloc();
+ SimulateIOErrorBenign(0);
+ }
+ *pp = p->pNext;
+ sqlite3_free(p->aRegion);
+ sqlite3_free(p);
+ }else{
+ pp = &p->pNext;
+ }
+ }
+}
+
+/*
+** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
+** take it now. Return SQLITE_OK if successful, or an SQLite error
+** code otherwise.
+**
+** If the DMS cannot be locked because this is a readonly_shm=1
+** connection and no other process already holds a lock, return
+** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
+*/
+static int winLockSharedMemory(winShmNode *pShmNode){
+ int rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, WIN_SHM_DMS, 1);
+
+ if( rc==SQLITE_OK ){
+ if( pShmNode->isReadonly ){
+ pShmNode->isUnlocked = 1;
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ return SQLITE_READONLY_CANTINIT;
+ }else if( winTruncate((sqlite3_file*)&pShmNode->hFile, 0) ){
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ return winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(),
+ "winLockSharedMemory", pShmNode->zFilename);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ }
+
+ return winShmSystemLock(pShmNode, WINSHM_RDLCK, WIN_SHM_DMS, 1);
+}
+
+/*
+** Open the shared-memory area associated with database file pDbFd.
+**
+** When opening a new shared-memory file, if no other instances of that
+** file are currently open, in this process or in other processes, then
+** the file must be truncated to zero length or have its header cleared.
+*/
+static int winOpenSharedMemory(winFile *pDbFd){
+ struct winShm *p; /* The connection to be opened */
+ winShmNode *pShmNode = 0; /* The underlying mmapped file */
+ int rc = SQLITE_OK; /* Result code */
+ winShmNode *pNew; /* Newly allocated winShmNode */
+ int nName; /* Size of zName in bytes */
+
+ assert( pDbFd->pShm==0 ); /* Not previously opened */
+
+ /* Allocate space for the new sqlite3_shm object. Also speculatively
+ ** allocate space for a new winShmNode and filename.
+ */
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p==0 ) return SQLITE_IOERR_NOMEM_BKPT;
+ nName = sqlite3Strlen30(pDbFd->zPath);
+ pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 );
+ if( pNew==0 ){
+ sqlite3_free(p);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ pNew->zFilename = (char*)&pNew[1];
+ sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath);
+ sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename);
+
+ /* Look to see if there is an existing winShmNode that can be used.
+ ** If no matching winShmNode currently exists, create a new one.
+ */
+ winShmEnterMutex();
+ for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){
+ /* TBD need to come up with better match here. Perhaps
+ ** use FILE_ID_BOTH_DIR_INFO Structure.
+ */
+ if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break;
+ }
+ if( pShmNode ){
+ sqlite3_free(pNew);
+ }else{
+ int inFlags = SQLITE_OPEN_WAL;
+ int outFlags = 0;
+
+ pShmNode = pNew;
+ pNew = 0;
+ ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE;
+ pShmNode->pNext = winShmNodeList;
+ winShmNodeList = pShmNode;
+
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pShmNode->mutex==0 ){
+ rc = SQLITE_IOERR_NOMEM_BKPT;
+ goto shm_open_err;
+ }
+ }
+
+ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
+ inFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE;
+ }else{
+ inFlags |= SQLITE_OPEN_READONLY;
+ }
+ rc = winOpen(pDbFd->pVfs, pShmNode->zFilename,
+ (sqlite3_file*)&pShmNode->hFile,
+ inFlags, &outFlags);
+ if( rc!=SQLITE_OK ){
+ rc = winLogError(rc, osGetLastError(), "winOpenShm",
+ pShmNode->zFilename);
+ goto shm_open_err;
+ }
+ if( outFlags==SQLITE_OPEN_READONLY ) pShmNode->isReadonly = 1;
+
+ rc = winLockSharedMemory(pShmNode);
+ if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
+ }
+
+ /* Make the new connection a child of the winShmNode */
+ p->pShmNode = pShmNode;
+#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
+ p->id = pShmNode->nextShmId++;
+#endif
+ pShmNode->nRef++;
+ pDbFd->pShm = p;
+ winShmLeaveMutex();
+
+ /* The reference count on pShmNode has already been incremented under
+ ** the cover of the winShmEnterMutex() mutex and the pointer from the
+ ** new (struct winShm) object to the pShmNode has been set. All that is
+ ** left to do is to link the new object into the linked list starting
+ ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
+ ** mutex.
+ */
+ sqlite3_mutex_enter(pShmNode->mutex);
+ p->pNext = pShmNode->pFirst;
+ pShmNode->pFirst = p;
+ sqlite3_mutex_leave(pShmNode->mutex);
+ return rc;
+
+ /* Jump here on any error */
+shm_open_err:
+ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1);
+ winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */
+ sqlite3_free(p);
+ sqlite3_free(pNew);
+ winShmLeaveMutex();
+ return rc;
+}
+
+/*
+** Close a connection to shared-memory. Delete the underlying
+** storage if deleteFlag is true.
+*/
+static int winShmUnmap(
+ sqlite3_file *fd, /* Database holding shared memory */
+ int deleteFlag /* Delete after closing if true */
+){
+ winFile *pDbFd; /* Database holding shared-memory */
+ winShm *p; /* The connection to be closed */
+ winShmNode *pShmNode; /* The underlying shared-memory file */
+ winShm **pp; /* For looping over sibling connections */
+
+ pDbFd = (winFile*)fd;
+ p = pDbFd->pShm;
+ if( p==0 ) return SQLITE_OK;
+ pShmNode = p->pShmNode;
+
+ /* Remove connection p from the set of connections associated
+ ** with pShmNode */
+ sqlite3_mutex_enter(pShmNode->mutex);
+ for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
+ *pp = p->pNext;
+
+ /* Free the connection p */
+ sqlite3_free(p);
+ pDbFd->pShm = 0;
+ sqlite3_mutex_leave(pShmNode->mutex);
+
+ /* If pShmNode->nRef has reached 0, then close the underlying
+ ** shared-memory file, too */
+ winShmEnterMutex();
+ assert( pShmNode->nRef>0 );
+ pShmNode->nRef--;
+ if( pShmNode->nRef==0 ){
+ winShmPurge(pDbFd->pVfs, deleteFlag);
+ }
+ winShmLeaveMutex();
+
+ return SQLITE_OK;
+}
+
+/*
+** Change the lock state for a shared-memory segment.
+*/
+static int winShmLock(
+ sqlite3_file *fd, /* Database file holding the shared memory */
+ int ofst, /* First lock to acquire or release */
+ int n, /* Number of locks to acquire or release */
+ int flags /* What to do with the lock */
+){
+ winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */
+ winShm *p = pDbFd->pShm; /* The shared memory being locked */
+ winShm *pX; /* For looping over all siblings */
+ winShmNode *pShmNode;
+ int rc = SQLITE_OK; /* Result code */
+ u16 mask; /* Mask of locks to take or release */
+
+ if( p==0 ) return SQLITE_IOERR_SHMLOCK;
+ pShmNode = p->pShmNode;
+ if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
+
+ assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
+ assert( n>=1 );
+ assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
+ assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
+
+ mask = (u16)((1U<<(ofst+n)) - (1U<<ofst));
+ assert( n>1 || mask==(1<<ofst) );
+ sqlite3_mutex_enter(pShmNode->mutex);
+ if( flags & SQLITE_SHM_UNLOCK ){
+ u16 allMask = 0; /* Mask of locks held by siblings */
+
+ /* See if any siblings hold this same lock */
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ if( pX==p ) continue;
+ assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
+ allMask |= pX->sharedMask;
+ }
+
+ /* Unlock the system-level locks */
+ if( (mask & allMask)==0 ){
+ rc = winShmSystemLock(pShmNode, WINSHM_UNLCK, ofst+WIN_SHM_BASE, n);
+ }else{
+ rc = SQLITE_OK;
+ }
+
+ /* Undo the local locks */
+ if( rc==SQLITE_OK ){
+ p->exclMask &= ~mask;
+ p->sharedMask &= ~mask;
+ }
+ }else if( flags & SQLITE_SHM_SHARED ){
+ u16 allShared = 0; /* Union of locks held by connections other than "p" */
+
+ /* Find out which shared locks are already held by sibling connections.
+ ** If any sibling already holds an exclusive lock, go ahead and return
+ ** SQLITE_BUSY.
+ */
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ if( (pX->exclMask & mask)!=0 ){
+ rc = SQLITE_BUSY;
+ break;
+ }
+ allShared |= pX->sharedMask;
+ }
+
+ /* Get shared locks at the system level, if necessary */
+ if( rc==SQLITE_OK ){
+ if( (allShared & mask)==0 ){
+ rc = winShmSystemLock(pShmNode, WINSHM_RDLCK, ofst+WIN_SHM_BASE, n);
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+
+ /* Get the local shared locks */
+ if( rc==SQLITE_OK ){
+ p->sharedMask |= mask;
+ }
+ }else{
+ /* Make sure no sibling connections hold locks that will block this
+ ** lock. If any do, return SQLITE_BUSY right away.
+ */
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
+ if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
+ rc = SQLITE_BUSY;
+ break;
+ }
+ }
+
+ /* Get the exclusive locks at the system level. Then if successful
+ ** also mark the local connection as being locked.
+ */
+ if( rc==SQLITE_OK ){
+ rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, ofst+WIN_SHM_BASE, n);
+ if( rc==SQLITE_OK ){
+ assert( (p->sharedMask & mask)==0 );
+ p->exclMask |= mask;
+ }
+ }
+ }
+ sqlite3_mutex_leave(pShmNode->mutex);
+ OSTRACE(("SHM-LOCK pid=%lu, id=%d, sharedMask=%03x, exclMask=%03x, rc=%s\n",
+ osGetCurrentProcessId(), p->id, p->sharedMask, p->exclMask,
+ sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** Implement a memory barrier or memory fence on shared memory.
+**
+** All loads and stores begun before the barrier must complete before
+** any load or store begun after the barrier.
+*/
+static void winShmBarrier(
+ sqlite3_file *fd /* Database holding the shared memory */
+){
+ UNUSED_PARAMETER(fd);
+ sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
+ winShmEnterMutex(); /* Also mutex, for redundancy */
+ winShmLeaveMutex();
+}
+
+/*
+** This function is called to obtain a pointer to region iRegion of the
+** shared-memory associated with the database file fd. Shared-memory regions
+** are numbered starting from zero. Each shared-memory region is szRegion
+** bytes in size.
+**
+** If an error occurs, an error code is returned and *pp is set to NULL.
+**
+** Otherwise, if the isWrite parameter is 0 and the requested shared-memory
+** region has not been allocated (by any client, including one running in a
+** separate process), then *pp is set to NULL and SQLITE_OK returned. If
+** isWrite is non-zero and the requested shared-memory region has not yet
+** been allocated, it is allocated by this function.
+**
+** If the shared-memory region has already been allocated or is allocated by
+** this call as described above, then it is mapped into this processes
+** address space (if it is not already), *pp is set to point to the mapped
+** memory and SQLITE_OK returned.
+*/
+static int winShmMap(
+ sqlite3_file *fd, /* Handle open on database file */
+ int iRegion, /* Region to retrieve */
+ int szRegion, /* Size of regions */
+ int isWrite, /* True to extend file if necessary */
+ void volatile **pp /* OUT: Mapped memory */
+){
+ winFile *pDbFd = (winFile*)fd;
+ winShm *pShm = pDbFd->pShm;
+ winShmNode *pShmNode;
+ DWORD protect = PAGE_READWRITE;
+ DWORD flags = FILE_MAP_WRITE | FILE_MAP_READ;
+ int rc = SQLITE_OK;
+
+ if( !pShm ){
+ rc = winOpenSharedMemory(pDbFd);
+ if( rc!=SQLITE_OK ) return rc;
+ pShm = pDbFd->pShm;
+ assert( pShm!=0 );
+ }
+ pShmNode = pShm->pShmNode;
+
+ sqlite3_mutex_enter(pShmNode->mutex);
+ if( pShmNode->isUnlocked ){
+ rc = winLockSharedMemory(pShmNode);
+ if( rc!=SQLITE_OK ) goto shmpage_out;
+ pShmNode->isUnlocked = 0;
+ }
+ assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
+
+ if( pShmNode->nRegion<=iRegion ){
+ struct ShmRegion *apNew; /* New aRegion[] array */
+ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
+ sqlite3_int64 sz; /* Current size of wal-index file */
+
+ pShmNode->szRegion = szRegion;
+
+ /* The requested region is not mapped into this processes address space.
+ ** Check to see if it has been allocated (i.e. if the wal-index file is
+ ** large enough to contain the requested region).
+ */
+ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
+ if( rc!=SQLITE_OK ){
+ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
+ "winShmMap1", pDbFd->zPath);
+ goto shmpage_out;
+ }
+
+ if( sz<nByte ){
+ /* The requested memory region does not exist. If isWrite is set to
+ ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
+ **
+ ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
+ ** the requested memory region.
+ */
+ if( !isWrite ) goto shmpage_out;
+ rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
+ if( rc!=SQLITE_OK ){
+ rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
+ "winShmMap2", pDbFd->zPath);
+ goto shmpage_out;
+ }
+ }
+
+ /* Map the requested memory region into this processes address space. */
+ apNew = (struct ShmRegion *)sqlite3_realloc64(
+ pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
+ );
+ if( !apNew ){
+ rc = SQLITE_IOERR_NOMEM_BKPT;
+ goto shmpage_out;
+ }
+ pShmNode->aRegion = apNew;
+
+ if( pShmNode->isReadonly ){
+ protect = PAGE_READONLY;
+ flags = FILE_MAP_READ;
+ }
+
+ while( pShmNode->nRegion<=iRegion ){
+ HANDLE hMap = NULL; /* file-mapping handle */
+ void *pMap = 0; /* Mapped memory region */
+
+#if SQLITE_OS_WINRT
+ hMap = osCreateFileMappingFromApp(pShmNode->hFile.h,
+ NULL, protect, nByte, NULL
+ );
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ hMap = osCreateFileMappingW(pShmNode->hFile.h,
+ NULL, protect, 0, nByte, NULL
+ );
+#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
+ hMap = osCreateFileMappingA(pShmNode->hFile.h,
+ NULL, protect, 0, nByte, NULL
+ );
+#endif
+ OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n",
+ osGetCurrentProcessId(), pShmNode->nRegion, nByte,
+ hMap ? "ok" : "failed"));
+ if( hMap ){
+ int iOffset = pShmNode->nRegion*szRegion;
+ int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
+#if SQLITE_OS_WINRT
+ pMap = osMapViewOfFileFromApp(hMap, flags,
+ iOffset - iOffsetShift, szRegion + iOffsetShift
+ );
+#else
+ pMap = osMapViewOfFile(hMap, flags,
+ 0, iOffset - iOffsetShift, szRegion + iOffsetShift
+ );
+#endif
+ OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n",
+ osGetCurrentProcessId(), pShmNode->nRegion, iOffset,
+ szRegion, pMap ? "ok" : "failed"));
+ }
+ if( !pMap ){
+ pShmNode->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno,
+ "winShmMap3", pDbFd->zPath);
+ if( hMap ) osCloseHandle(hMap);
+ goto shmpage_out;
+ }
+
+ pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
+ pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
+ pShmNode->nRegion++;
+ }
+ }
+
+shmpage_out:
+ if( pShmNode->nRegion>iRegion ){
+ int iOffset = iRegion*szRegion;
+ int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
+ char *p = (char *)pShmNode->aRegion[iRegion].pMap;
+ *pp = (void *)&p[iOffsetShift];
+ }else{
+ *pp = 0;
+ }
+ if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
+ sqlite3_mutex_leave(pShmNode->mutex);
+ return rc;
+}
+
+#else
+# define winShmMap 0
+# define winShmLock 0
+# define winShmBarrier 0
+# define winShmUnmap 0
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+/*
+** Cleans up the mapped region of the specified file, if any.
+*/
+#if SQLITE_MAX_MMAP_SIZE>0
+static int winUnmapfile(winFile *pFile){
+ assert( pFile!=0 );
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, "
+ "mmapSize=%lld, mmapSizeMax=%lld\n",
+ osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion,
+ pFile->mmapSize, pFile->mmapSizeMax));
+ if( pFile->pMapRegion ){
+ if( !osUnmapViewOfFile(pFile->pMapRegion) ){
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
+ "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
+ pFile->pMapRegion));
+ return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
+ "winUnmapfile1", pFile->zPath);
+ }
+ pFile->pMapRegion = 0;
+ pFile->mmapSize = 0;
+ }
+ if( pFile->hMap!=NULL ){
+ if( !osCloseHandle(pFile->hMap) ){
+ pFile->lastErrno = osGetLastError();
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
+ osGetCurrentProcessId(), pFile, pFile->hMap));
+ return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
+ "winUnmapfile2", pFile->zPath);
+ }
+ pFile->hMap = NULL;
+ }
+ OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFile));
+ return SQLITE_OK;
+}
+
+/*
+** Memory map or remap the file opened by file-descriptor pFd (if the file
+** is already mapped, the existing mapping is replaced by the new). Or, if
+** there already exists a mapping for this file, and there are still
+** outstanding xFetch() references to it, this function is a no-op.
+**
+** If parameter nByte is non-negative, then it is the requested size of
+** the mapping to create. Otherwise, if nByte is less than zero, then the
+** requested size is the size of the file on disk. The actual size of the
+** created mapping is either the requested size or the value configured
+** using SQLITE_FCNTL_MMAP_SIZE, whichever is smaller.
+**
+** SQLITE_OK is returned if no error occurs (even if the mapping is not
+** recreated as a result of outstanding references) or an SQLite error
+** code otherwise.
+*/
+static int winMapfile(winFile *pFd, sqlite3_int64 nByte){
+ sqlite3_int64 nMap = nByte;
+ int rc;
+
+ assert( nMap>=0 || pFd->nFetchOut==0 );
+ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, size=%lld\n",
+ osGetCurrentProcessId(), pFd, nByte));
+
+ if( pFd->nFetchOut>0 ) return SQLITE_OK;
+
+ if( nMap<0 ){
+ rc = winFileSize((sqlite3_file*)pFd, &nMap);
+ if( rc ){
+ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_IOERR_FSTAT\n",
+ osGetCurrentProcessId(), pFd));
+ return SQLITE_IOERR_FSTAT;
+ }
+ }
+ if( nMap>pFd->mmapSizeMax ){
+ nMap = pFd->mmapSizeMax;
+ }
+ nMap &= ~(sqlite3_int64)(winSysInfo.dwPageSize - 1);
+
+ if( nMap==0 && pFd->mmapSize>0 ){
+ winUnmapfile(pFd);
+ }
+ if( nMap!=pFd->mmapSize ){
+ void *pNew = 0;
+ DWORD protect = PAGE_READONLY;
+ DWORD flags = FILE_MAP_READ;
+
+ winUnmapfile(pFd);
+#ifdef SQLITE_MMAP_READWRITE
+ if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){
+ protect = PAGE_READWRITE;
+ flags |= FILE_MAP_WRITE;
+ }
+#endif
+#if SQLITE_OS_WINRT
+ pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
+#elif defined(SQLITE_WIN32_HAS_WIDE)
+ pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
+ (DWORD)((nMap>>32) & 0xffffffff),
+ (DWORD)(nMap & 0xffffffff), NULL);
+#elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA
+ pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
+ (DWORD)((nMap>>32) & 0xffffffff),
+ (DWORD)(nMap & 0xffffffff), NULL);
+#endif
+ if( pFd->hMap==NULL ){
+ pFd->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
+ "winMapfile1", pFd->zPath);
+ /* Log the error, but continue normal operation using xRead/xWrite */
+ OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
+ return SQLITE_OK;
+ }
+ assert( (nMap % winSysInfo.dwPageSize)==0 );
+ assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff );
+#if SQLITE_OS_WINRT
+ pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap);
+#else
+ pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap);
+#endif
+ if( pNew==NULL ){
+ osCloseHandle(pFd->hMap);
+ pFd->hMap = NULL;
+ pFd->lastErrno = osGetLastError();
+ rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
+ "winMapfile2", pFd->zPath);
+ /* Log the error, but continue normal operation using xRead/xWrite */
+ OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
+ return SQLITE_OK;
+ }
+ pFd->pMapRegion = pNew;
+ pFd->mmapSize = nMap;
+ }
+
+ OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), pFd));
+ return SQLITE_OK;
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/*
+** If possible, return a pointer to a mapping of file fd starting at offset
+** iOff. The mapping must be valid for at least nAmt bytes.
+**
+** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
+** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
+** Finally, if an error does occur, return an SQLite error code. The final
+** value of *pp is undefined in this case.
+**
+** If this function does return a pointer, the caller must eventually
+** release the reference by calling winUnfetch().
+*/
+static int winFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
+#if SQLITE_MAX_MMAP_SIZE>0
+ winFile *pFd = (winFile*)fd; /* The underlying database file */
+#endif
+ *pp = 0;
+
+ OSTRACE(("FETCH pid=%lu, pFile=%p, offset=%lld, amount=%d, pp=%p\n",
+ osGetCurrentProcessId(), fd, iOff, nAmt, pp));
+
+#if SQLITE_MAX_MMAP_SIZE>0
+ if( pFd->mmapSizeMax>0 ){
+ if( pFd->pMapRegion==0 ){
+ int rc = winMapfile(pFd, -1);
+ if( rc!=SQLITE_OK ){
+ OSTRACE(("FETCH pid=%lu, pFile=%p, rc=%s\n",
+ osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
+ return rc;
+ }
+ }
+ if( pFd->mmapSize >= iOff+nAmt ){
+ assert( pFd->pMapRegion!=0 );
+ *pp = &((u8 *)pFd->pMapRegion)[iOff];
+ pFd->nFetchOut++;
+ }
+ }
+#endif
+
+ OSTRACE(("FETCH pid=%lu, pFile=%p, pp=%p, *pp=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), fd, pp, *pp));
+ return SQLITE_OK;
+}
+
+/*
+** If the third argument is non-NULL, then this function releases a
+** reference obtained by an earlier call to winFetch(). The second
+** argument passed to this function must be the same as the corresponding
+** argument that was passed to the winFetch() invocation.
+**
+** Or, if the third argument is NULL, then this function is being called
+** to inform the VFS layer that, according to POSIX, any existing mapping
+** may now be invalid and should be unmapped.
+*/
+static int winUnfetch(sqlite3_file *fd, i64 iOff, void *p){
+#if SQLITE_MAX_MMAP_SIZE>0
+ winFile *pFd = (winFile*)fd; /* The underlying database file */
+
+ /* If p==0 (unmap the entire file) then there must be no outstanding
+ ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
+ ** then there must be at least one outstanding. */
+ assert( (p==0)==(pFd->nFetchOut==0) );
+
+ /* If p!=0, it must match the iOff value. */
+ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
+
+ OSTRACE(("UNFETCH pid=%lu, pFile=%p, offset=%lld, p=%p\n",
+ osGetCurrentProcessId(), pFd, iOff, p));
+
+ if( p ){
+ pFd->nFetchOut--;
+ }else{
+ /* FIXME: If Windows truly always prevents truncating or deleting a
+ ** file while a mapping is held, then the following winUnmapfile() call
+ ** is unnecessary can be omitted - potentially improving
+ ** performance. */
+ winUnmapfile(pFd);
+ }
+
+ assert( pFd->nFetchOut>=0 );
+#endif
+
+ OSTRACE(("UNFETCH pid=%lu, pFile=%p, rc=SQLITE_OK\n",
+ osGetCurrentProcessId(), fd));
+ return SQLITE_OK;
+}
+
+/*
+** Here ends the implementation of all sqlite3_file methods.
+**
+********************** End sqlite3_file Methods *******************************
+******************************************************************************/
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for win32.
+*/
+static const sqlite3_io_methods winIoMethod = {
+ 3, /* iVersion */
+ winClose, /* xClose */
+ winRead, /* xRead */
+ winWrite, /* xWrite */
+ winTruncate, /* xTruncate */
+ winSync, /* xSync */
+ winFileSize, /* xFileSize */
+ winLock, /* xLock */
+ winUnlock, /* xUnlock */
+ winCheckReservedLock, /* xCheckReservedLock */
+ winFileControl, /* xFileControl */
+ winSectorSize, /* xSectorSize */
+ winDeviceCharacteristics, /* xDeviceCharacteristics */
+ winShmMap, /* xShmMap */
+ winShmLock, /* xShmLock */
+ winShmBarrier, /* xShmBarrier */
+ winShmUnmap, /* xShmUnmap */
+ winFetch, /* xFetch */
+ winUnfetch /* xUnfetch */
+};
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for win32 without performing any locking.
+*/
+static const sqlite3_io_methods winIoNolockMethod = {
+ 3, /* iVersion */
+ winClose, /* xClose */
+ winRead, /* xRead */
+ winWrite, /* xWrite */
+ winTruncate, /* xTruncate */
+ winSync, /* xSync */
+ winFileSize, /* xFileSize */
+ winNolockLock, /* xLock */
+ winNolockUnlock, /* xUnlock */
+ winNolockCheckReservedLock, /* xCheckReservedLock */
+ winFileControl, /* xFileControl */
+ winSectorSize, /* xSectorSize */
+ winDeviceCharacteristics, /* xDeviceCharacteristics */
+ winShmMap, /* xShmMap */
+ winShmLock, /* xShmLock */
+ winShmBarrier, /* xShmBarrier */
+ winShmUnmap, /* xShmUnmap */
+ winFetch, /* xFetch */
+ winUnfetch /* xUnfetch */
+};
+
+static winVfsAppData winAppData = {
+ &winIoMethod, /* pMethod */
+ 0, /* pAppData */
+ 0 /* bNoLock */
+};
+
+static winVfsAppData winNolockAppData = {
+ &winIoNolockMethod, /* pMethod */
+ 0, /* pAppData */
+ 1 /* bNoLock */
+};
+
+/****************************************************************************
+**************************** sqlite3_vfs methods ****************************
+**
+** This division contains the implementation of methods on the
+** sqlite3_vfs object.
+*/
+
+#if defined(__CYGWIN__)
+/*
+** Convert a filename from whatever the underlying operating system
+** supports for filenames into UTF-8. Space to hold the result is
+** obtained from malloc and must be freed by the calling function.
+*/
+static char *winConvertToUtf8Filename(const void *zFilename){
+ char *zConverted = 0;
+ if( osIsNT() ){
+ zConverted = winUnicodeToUtf8(zFilename);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ zConverted = winMbcsToUtf8(zFilename, osAreFileApisANSI());
+ }
+#endif
+ /* caller will handle out of memory */
+ return zConverted;
+}
+#endif
+
+/*
+** Convert a UTF-8 filename into whatever form the underlying
+** operating system wants filenames in. Space to hold the result
+** is obtained from malloc and must be freed by the calling
+** function.
+*/
+static void *winConvertFromUtf8Filename(const char *zFilename){
+ void *zConverted = 0;
+ if( osIsNT() ){
+ zConverted = winUtf8ToUnicode(zFilename);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ zConverted = winUtf8ToMbcs(zFilename, osAreFileApisANSI());
+ }
+#endif
+ /* caller will handle out of memory */
+ return zConverted;
+}
+
+/*
+** This function returns non-zero if the specified UTF-8 string buffer
+** ends with a directory separator character or one was successfully
+** added to it.
+*/
+static int winMakeEndInDirSep(int nBuf, char *zBuf){
+ if( zBuf ){
+ int nLen = sqlite3Strlen30(zBuf);
+ if( nLen>0 ){
+ if( winIsDirSep(zBuf[nLen-1]) ){
+ return 1;
+ }else if( nLen+1<nBuf ){
+ zBuf[nLen] = winGetDirSep();
+ zBuf[nLen+1] = '\0';
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** If sqlite3_temp_directory is defined, take the mutex and return true.
+**
+** If sqlite3_temp_directory is NULL (undefined), omit the mutex and
+** return false.
+*/
+static int winTempDirDefined(void){
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( sqlite3_temp_directory!=0 ) return 1;
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ return 0;
+}
+
+/*
+** Create a temporary file name and store the resulting pointer into pzBuf.
+** The pointer returned in pzBuf must be freed via sqlite3_free().
+*/
+static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ size_t i, j;
+ DWORD pid;
+ int nPre = sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX);
+ int nMax, nBuf, nDir, nLen;
+ char *zBuf;
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ SimulateIOError( return SQLITE_IOERR );
+
+ /* Allocate a temporary buffer to store the fully qualified file
+ ** name for the temporary file. If this fails, we cannot continue.
+ */
+ nMax = pVfs->mxPathname; nBuf = nMax + 2;
+ zBuf = sqlite3MallocZero( nBuf );
+ if( !zBuf ){
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+
+ /* Figure out the effective temporary directory. First, check if one
+ ** has been explicitly set by the application; otherwise, use the one
+ ** configured by the operating system.
+ */
+ nDir = nMax - (nPre + 15);
+ assert( nDir>0 );
+ if( winTempDirDefined() ){
+ int nDirLen = sqlite3Strlen30(sqlite3_temp_directory);
+ if( nDirLen>0 ){
+ if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){
+ nDirLen++;
+ }
+ if( nDirLen>nDir ){
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
+ return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0);
+ }
+ sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory);
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ }
+
+#if defined(__CYGWIN__)
+ else{
+ static const char *azDirs[] = {
+ 0, /* getenv("SQLITE_TMPDIR") */
+ 0, /* getenv("TMPDIR") */
+ 0, /* getenv("TMP") */
+ 0, /* getenv("TEMP") */
+ 0, /* getenv("USERPROFILE") */
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ 0 /* List terminator */
+ };
+ unsigned int i;
+ const char *zDir = 0;
+
+ if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
+ if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
+ if( !azDirs[2] ) azDirs[2] = getenv("TMP");
+ if( !azDirs[3] ) azDirs[3] = getenv("TEMP");
+ if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE");
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
+ void *zConverted;
+ if( zDir==0 ) continue;
+ /* If the path starts with a drive letter followed by the colon
+ ** character, assume it is already a native Win32 path; otherwise,
+ ** it must be converted to a native Win32 path via the Cygwin API
+ ** prior to using it.
+ */
+ if( winIsDriveLetterAndColon(zDir) ){
+ zConverted = winConvertFromUtf8Filename(zDir);
+ if( !zConverted ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( winIsDir(zConverted) ){
+ sqlite3_snprintf(nMax, zBuf, "%s", zDir);
+ sqlite3_free(zConverted);
+ break;
+ }
+ sqlite3_free(zConverted);
+ }else{
+ zConverted = sqlite3MallocZero( nMax+1 );
+ if( !zConverted ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( cygwin_conv_path(
+ osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A, zDir,
+ zConverted, nMax+1)<0 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_CONVPATH\n"));
+ return winLogError(SQLITE_IOERR_CONVPATH, (DWORD)errno,
+ "winGetTempname2", zDir);
+ }
+ if( winIsDir(zConverted) ){
+ /* At this point, we know the candidate directory exists and should
+ ** be used. However, we may need to convert the string containing
+ ** its name into UTF-8 (i.e. if it is UTF-16 right now).
+ */
+ char *zUtf8 = winConvertToUtf8Filename(zConverted);
+ if( !zUtf8 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
+ sqlite3_free(zUtf8);
+ sqlite3_free(zConverted);
+ break;
+ }
+ sqlite3_free(zConverted);
+ }
+ }
+ }
+#elif !SQLITE_OS_WINRT && !defined(__CYGWIN__)
+ else if( osIsNT() ){
+ char *zMulti;
+ LPWSTR zWidePath = sqlite3MallocZero( nMax*sizeof(WCHAR) );
+ if( !zWidePath ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osGetTempPathW(nMax, zWidePath)==0 ){
+ sqlite3_free(zWidePath);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
+ return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
+ "winGetTempname2", 0);
+ }
+ zMulti = winUnicodeToUtf8(zWidePath);
+ if( zMulti ){
+ sqlite3_snprintf(nMax, zBuf, "%s", zMulti);
+ sqlite3_free(zMulti);
+ sqlite3_free(zWidePath);
+ }else{
+ sqlite3_free(zWidePath);
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ char *zUtf8;
+ char *zMbcsPath = sqlite3MallocZero( nMax );
+ if( !zMbcsPath ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osGetTempPathA(nMax, zMbcsPath)==0 ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
+ return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
+ "winGetTempname3", 0);
+ }
+ zUtf8 = winMbcsToUtf8(zMbcsPath, osAreFileApisANSI());
+ if( zUtf8 ){
+ sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
+ sqlite3_free(zUtf8);
+ }else{
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ }
+#endif /* SQLITE_WIN32_HAS_ANSI */
+#endif /* !SQLITE_OS_WINRT */
+
+ /*
+ ** Check to make sure the temporary directory ends with an appropriate
+ ** separator. If it does not and there is not enough space left to add
+ ** one, fail.
+ */
+ if( !winMakeEndInDirSep(nDir+1, zBuf) ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
+ return winLogError(SQLITE_ERROR, 0, "winGetTempname4", 0);
+ }
+
+ /*
+ ** Check that the output buffer is large enough for the temporary file
+ ** name in the following format:
+ **
+ ** "<temporary_directory>/etilqs_XXXXXXXXXXXXXXX\0\0"
+ **
+ ** If not, return SQLITE_ERROR. The number 17 is used here in order to
+ ** account for the space used by the 15 character random suffix and the
+ ** two trailing NUL characters. The final directory separator character
+ ** has already added if it was not already present.
+ */
+ nLen = sqlite3Strlen30(zBuf);
+ if( (nLen + nPre + 17) > nBuf ){
+ sqlite3_free(zBuf);
+ OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
+ return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0);
+ }
+
+ sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX);
+
+ j = sqlite3Strlen30(zBuf);
+ sqlite3_randomness(15, &zBuf[j]);
+ pid = osGetCurrentProcessId();
+ for(i=0; i<15; i++, j++){
+ zBuf[j] += pid & 0xff;
+ pid >>= 8;
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ zBuf[j+1] = 0;
+ *pzBuf = zBuf;
+
+ OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf));
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the named file is really a directory. Return false if
+** it is something other than a directory, or if there is any kind of memory
+** allocation failure.
+*/
+static int winIsDir(const void *zConverted){
+ DWORD attr;
+ int rc = 0;
+ DWORD lastErrno;
+
+ if( osIsNT() ){
+ int cnt = 0;
+ WIN32_FILE_ATTRIBUTE_DATA sAttrData;
+ memset(&sAttrData, 0, sizeof(sAttrData));
+ while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
+ GetFileExInfoStandard,
+ &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
+ if( !rc ){
+ return 0; /* Invalid name? */
+ }
+ attr = sAttrData.dwFileAttributes;
+#if SQLITE_OS_WINCE==0
+ }else{
+ attr = osGetFileAttributesA((char*)zConverted);
+#endif
+ }
+ return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY);
+}
+
+/* forward reference */
+static int winAccess(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to check */
+ int flags, /* Type of test to make on this file */
+ int *pResOut /* OUT: Result */
+);
+
+/*
+** Open a file.
+*/
+static int winOpen(
+ sqlite3_vfs *pVfs, /* Used to get maximum path length and AppData */
+ const char *zName, /* Name of the file (UTF-8) */
+ sqlite3_file *id, /* Write the SQLite file handle here */
+ int flags, /* Open mode flags */
+ int *pOutFlags /* Status return flags */
+){
+ HANDLE h;
+ DWORD lastErrno = 0;
+ DWORD dwDesiredAccess;
+ DWORD dwShareMode;
+ DWORD dwCreationDisposition;
+ DWORD dwFlagsAndAttributes = 0;
+#if SQLITE_OS_WINCE
+ int isTemp = 0;
+#endif
+ winVfsAppData *pAppData;
+ winFile *pFile = (winFile*)id;
+ void *zConverted; /* Filename in OS encoding */
+ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
+ int cnt = 0;
+
+ /* If argument zPath is a NULL pointer, this function is required to open
+ ** a temporary file. Use this buffer to store the file name in.
+ */
+ char *zTmpname = 0; /* For temporary filename, if necessary. */
+
+ int rc = SQLITE_OK; /* Function Return Code */
+#if !defined(NDEBUG) || SQLITE_OS_WINCE
+ int eType = flags&0xFFFFFF00; /* Type of file to open */
+#endif
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+
+#ifndef NDEBUG
+ int isOpenJournal = (isCreate && (
+ eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_MAIN_JOURNAL
+ || eType==SQLITE_OPEN_WAL
+ ));
+#endif
+
+ OSTRACE(("OPEN name=%s, pFile=%p, flags=%x, pOutFlags=%p\n",
+ zUtf8Name, id, flags, pOutFlags));
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+ /* The main DB, main journal, WAL file and super-journal are never
+ ** automatically deleted. Nor are they ever temporary files. */
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
+ );
+
+ assert( pFile!=0 );
+ memset(pFile, 0, sizeof(winFile));
+ pFile->h = INVALID_HANDLE_VALUE;
+
+#if SQLITE_OS_WINRT
+ if( !zUtf8Name && !sqlite3_temp_directory ){
+ sqlite3_log(SQLITE_ERROR,
+ "sqlite3_temp_directory variable should be set for WinRT");
+ }
+#endif
+
+ /* If the second argument to this function is NULL, generate a
+ ** temporary file name to use
+ */
+ if( !zUtf8Name ){
+ assert( isDelete && !isOpenJournal );
+ rc = winGetTempname(pVfs, &zTmpname);
+ if( rc!=SQLITE_OK ){
+ OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc)));
+ return rc;
+ }
+ zUtf8Name = zTmpname;
+ }
+
+ /* Database filenames are double-zero terminated if they are not
+ ** URIs with parameters. Hence, they can always be passed into
+ ** sqlite3_uri_parameter().
+ */
+ assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) ||
+ zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 );
+
+ /* Convert the filename to the system encoding. */
+ zConverted = winConvertFromUtf8Filename(zUtf8Name);
+ if( zConverted==0 ){
+ sqlite3_free(zTmpname);
+ OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+
+ if( winIsDir(zConverted) ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTmpname);
+ OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name));
+ return SQLITE_CANTOPEN_ISDIR;
+ }
+
+ if( isReadWrite ){
+ dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
+ }else{
+ dwDesiredAccess = GENERIC_READ;
+ }
+
+ /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
+ ** created. SQLite doesn't use it to indicate "exclusive access"
+ ** as it is usually understood.
+ */
+ if( isExclusive ){
+ /* Creates a new file, only if it does not already exist. */
+ /* If the file exists, it fails. */
+ dwCreationDisposition = CREATE_NEW;
+ }else if( isCreate ){
+ /* Open existing file, or create if it doesn't exist */
+ dwCreationDisposition = OPEN_ALWAYS;
+ }else{
+ /* Opens a file, only if it exists. */
+ dwCreationDisposition = OPEN_EXISTING;
+ }
+
+ if( 0==sqlite3_uri_boolean(zName, "exclusive", 0) ){
+ dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
+ }else{
+ dwShareMode = 0;
+ }
+
+ if( isDelete ){
+#if SQLITE_OS_WINCE
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
+ isTemp = 1;
+#else
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
+ | FILE_ATTRIBUTE_HIDDEN
+ | FILE_FLAG_DELETE_ON_CLOSE;
+#endif
+ }else{
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
+ }
+ /* Reports from the internet are that performance is always
+ ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
+#if SQLITE_OS_WINCE
+ dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
+#endif
+
+ if( osIsNT() ){
+#if SQLITE_OS_WINRT
+ CREATEFILE2_EXTENDED_PARAMETERS extendedParameters;
+ extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
+ extendedParameters.dwFileAttributes =
+ dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK;
+ extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK;
+ extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS;
+ extendedParameters.lpSecurityAttributes = NULL;
+ extendedParameters.hTemplateFile = NULL;
+ do{
+ h = osCreateFile2((LPCWSTR)zConverted,
+ dwDesiredAccess,
+ dwShareMode,
+ dwCreationDisposition,
+ &extendedParameters);
+ if( h!=INVALID_HANDLE_VALUE ) break;
+ if( isReadWrite ){
+ int rc2, isRO = 0;
+ sqlite3BeginBenignMalloc();
+ rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO);
+ sqlite3EndBenignMalloc();
+ if( rc2==SQLITE_OK && isRO ) break;
+ }
+ }while( winRetryIoerr(&cnt, &lastErrno) );
+#else
+ do{
+ h = osCreateFileW((LPCWSTR)zConverted,
+ dwDesiredAccess,
+ dwShareMode, NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL);
+ if( h!=INVALID_HANDLE_VALUE ) break;
+ if( isReadWrite ){
+ int rc2, isRO = 0;
+ sqlite3BeginBenignMalloc();
+ rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO);
+ sqlite3EndBenignMalloc();
+ if( rc2==SQLITE_OK && isRO ) break;
+ }
+ }while( winRetryIoerr(&cnt, &lastErrno) );
+#endif
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ do{
+ h = osCreateFileA((LPCSTR)zConverted,
+ dwDesiredAccess,
+ dwShareMode, NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL);
+ if( h!=INVALID_HANDLE_VALUE ) break;
+ if( isReadWrite ){
+ int rc2, isRO = 0;
+ sqlite3BeginBenignMalloc();
+ rc2 = winAccess(pVfs, zUtf8Name, SQLITE_ACCESS_READ, &isRO);
+ sqlite3EndBenignMalloc();
+ if( rc2==SQLITE_OK && isRO ) break;
+ }
+ }while( winRetryIoerr(&cnt, &lastErrno) );
+ }
+#endif
+ winLogIoerr(cnt, __LINE__);
+
+ OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
+ dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
+
+ if( h==INVALID_HANDLE_VALUE ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTmpname);
+ if( isReadWrite && !isExclusive ){
+ return winOpen(pVfs, zName, id,
+ ((flags|SQLITE_OPEN_READONLY) &
+ ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
+ pOutFlags);
+ }else{
+ pFile->lastErrno = lastErrno;
+ winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
+ return SQLITE_CANTOPEN_BKPT;
+ }
+ }
+
+ if( pOutFlags ){
+ if( isReadWrite ){
+ *pOutFlags = SQLITE_OPEN_READWRITE;
+ }else{
+ *pOutFlags = SQLITE_OPEN_READONLY;
+ }
+ }
+
+ OSTRACE(("OPEN file=%p, name=%s, access=%lx, pOutFlags=%p, *pOutFlags=%d, "
+ "rc=%s\n", h, zUtf8Name, dwDesiredAccess, pOutFlags, pOutFlags ?
+ *pOutFlags : 0, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
+
+ pAppData = (winVfsAppData*)pVfs->pAppData;
+
+#if SQLITE_OS_WINCE
+ {
+ if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
+ && ((pAppData==NULL) || !pAppData->bNoLock)
+ && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
+ ){
+ osCloseHandle(h);
+ sqlite3_free(zConverted);
+ sqlite3_free(zTmpname);
+ OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc)));
+ return rc;
+ }
+ }
+ if( isTemp ){
+ pFile->zDeleteOnClose = zConverted;
+ }else
+#endif
+ {
+ sqlite3_free(zConverted);
+ }
+
+ sqlite3_free(zTmpname);
+ id->pMethods = pAppData ? pAppData->pMethod : &winIoMethod;
+ pFile->pVfs = pVfs;
+ pFile->h = h;
+ if( isReadonly ){
+ pFile->ctrlFlags |= WINFILE_RDONLY;
+ }
+ if( (flags & SQLITE_OPEN_MAIN_DB)
+ && sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE)
+ ){
+ pFile->ctrlFlags |= WINFILE_PSOW;
+ }
+ pFile->lastErrno = NO_ERROR;
+ pFile->zPath = zName;
+#if SQLITE_MAX_MMAP_SIZE>0
+ pFile->hMap = NULL;
+ pFile->pMapRegion = 0;
+ pFile->mmapSize = 0;
+ pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap;
+#endif
+
+ OpenCounter(+1);
+ return rc;
+}
+
+/*
+** Delete the named file.
+**
+** Note that Windows does not allow a file to be deleted if some other
+** process has it open. Sometimes a virus scanner or indexing program
+** will open a journal file shortly after it is created in order to do
+** whatever it does. While this other process is holding the
+** file open, we will be unable to delete it. To work around this
+** problem, we delay 100 milliseconds and try to delete again. Up
+** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
+** up and returning an error.
+*/
+static int winDelete(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to delete */
+ int syncDir /* Not used on win32 */
+){
+ int cnt = 0;
+ int rc;
+ DWORD attr;
+ DWORD lastErrno = 0;
+ void *zConverted;
+ UNUSED_PARAMETER(pVfs);
+ UNUSED_PARAMETER(syncDir);
+
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir));
+
+ zConverted = winConvertFromUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osIsNT() ){
+ do {
+#if SQLITE_OS_WINRT
+ WIN32_FILE_ATTRIBUTE_DATA sAttrData;
+ memset(&sAttrData, 0, sizeof(sAttrData));
+ if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
+ &sAttrData) ){
+ attr = sAttrData.dwFileAttributes;
+ }else{
+ lastErrno = osGetLastError();
+ if( lastErrno==ERROR_FILE_NOT_FOUND
+ || lastErrno==ERROR_PATH_NOT_FOUND ){
+ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ break;
+ }
+#else
+ attr = osGetFileAttributesW(zConverted);
+#endif
+ if ( attr==INVALID_FILE_ATTRIBUTES ){
+ lastErrno = osGetLastError();
+ if( lastErrno==ERROR_FILE_NOT_FOUND
+ || lastErrno==ERROR_PATH_NOT_FOUND ){
+ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ break;
+ }
+ if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
+ rc = SQLITE_ERROR; /* Files only. */
+ break;
+ }
+ if ( osDeleteFileW(zConverted) ){
+ rc = SQLITE_OK; /* Deleted OK. */
+ break;
+ }
+ if ( !winRetryIoerr(&cnt, &lastErrno) ){
+ rc = SQLITE_ERROR; /* No more retries. */
+ break;
+ }
+ } while(1);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ do {
+ attr = osGetFileAttributesA(zConverted);
+ if ( attr==INVALID_FILE_ATTRIBUTES ){
+ lastErrno = osGetLastError();
+ if( lastErrno==ERROR_FILE_NOT_FOUND
+ || lastErrno==ERROR_PATH_NOT_FOUND ){
+ rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ break;
+ }
+ if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
+ rc = SQLITE_ERROR; /* Files only. */
+ break;
+ }
+ if ( osDeleteFileA(zConverted) ){
+ rc = SQLITE_OK; /* Deleted OK. */
+ break;
+ }
+ if ( !winRetryIoerr(&cnt, &lastErrno) ){
+ rc = SQLITE_ERROR; /* No more retries. */
+ break;
+ }
+ } while(1);
+ }
+#endif
+ if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
+ rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);
+ }else{
+ winLogIoerr(cnt, __LINE__);
+ }
+ sqlite3_free(zConverted);
+ OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
+ return rc;
+}
+
+/*
+** Check the existence and status of a file.
+*/
+static int winAccess(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to check */
+ int flags, /* Type of test to make on this file */
+ int *pResOut /* OUT: Result */
+){
+ DWORD attr;
+ int rc = 0;
+ DWORD lastErrno = 0;
+ void *zConverted;
+ UNUSED_PARAMETER(pVfs);
+
+ SimulateIOError( return SQLITE_IOERR_ACCESS; );
+ OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n",
+ zFilename, flags, pResOut));
+
+ if( zFilename==0 ){
+ *pResOut = 0;
+ OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
+ zFilename, pResOut, *pResOut));
+ return SQLITE_OK;
+ }
+
+ zConverted = winConvertFromUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osIsNT() ){
+ int cnt = 0;
+ WIN32_FILE_ATTRIBUTE_DATA sAttrData;
+ memset(&sAttrData, 0, sizeof(sAttrData));
+ while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
+ GetFileExInfoStandard,
+ &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
+ if( rc ){
+ /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
+ ** as if it does not exist.
+ */
+ if( flags==SQLITE_ACCESS_EXISTS
+ && sAttrData.nFileSizeHigh==0
+ && sAttrData.nFileSizeLow==0 ){
+ attr = INVALID_FILE_ATTRIBUTES;
+ }else{
+ attr = sAttrData.dwFileAttributes;
+ }
+ }else{
+ winLogIoerr(cnt, __LINE__);
+ if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
+ sqlite3_free(zConverted);
+ return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
+ zFilename);
+ }else{
+ attr = INVALID_FILE_ATTRIBUTES;
+ }
+ }
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ attr = osGetFileAttributesA((char*)zConverted);
+ }
+#endif
+ sqlite3_free(zConverted);
+ switch( flags ){
+ case SQLITE_ACCESS_READ:
+ case SQLITE_ACCESS_EXISTS:
+ rc = attr!=INVALID_FILE_ATTRIBUTES;
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ rc = attr!=INVALID_FILE_ATTRIBUTES &&
+ (attr & FILE_ATTRIBUTE_READONLY)==0;
+ break;
+ default:
+ assert(!"Invalid flags argument");
+ }
+ *pResOut = rc;
+ OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
+ zFilename, pResOut, *pResOut));
+ return SQLITE_OK;
+}
+
+/*
+** Returns non-zero if the specified path name starts with the "long path"
+** prefix.
+*/
+static BOOL winIsLongPathPrefix(
+ const char *zPathname
+){
+ return ( zPathname[0]=='\\' && zPathname[1]=='\\'
+ && zPathname[2]=='?' && zPathname[3]=='\\' );
+}
+
+/*
+** Returns non-zero if the specified path name starts with a drive letter
+** followed by a colon character.
+*/
+static BOOL winIsDriveLetterAndColon(
+ const char *zPathname
+){
+ return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' );
+}
+
+/*
+** Returns non-zero if the specified path name should be used verbatim. If
+** non-zero is returned from this function, the calling function must simply
+** use the provided path name verbatim -OR- resolve it into a full path name
+** using the GetFullPathName Win32 API function (if available).
+*/
+static BOOL winIsVerbatimPathname(
+ const char *zPathname
+){
+ /*
+ ** If the path name starts with a forward slash or a backslash, it is either
+ ** a legal UNC name, a volume relative path, or an absolute path name in the
+ ** "Unix" format on Windows. There is no easy way to differentiate between
+ ** the final two cases; therefore, we return the safer return value of TRUE
+ ** so that callers of this function will simply use it verbatim.
+ */
+ if ( winIsDirSep(zPathname[0]) ){
+ return TRUE;
+ }
+
+ /*
+ ** If the path name starts with a letter and a colon it is either a volume
+ ** relative path or an absolute path. Callers of this function must not
+ ** attempt to treat it as a relative path name (i.e. they should simply use
+ ** it verbatim).
+ */
+ if ( winIsDriveLetterAndColon(zPathname) ){
+ return TRUE;
+ }
+
+ /*
+ ** If we get to this point, the path name should almost certainly be a purely
+ ** relative one (i.e. not a UNC name, not absolute, and not volume relative).
+ */
+ return FALSE;
+}
+
+/*
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
+** bytes in size.
+*/
+static int winFullPathnameNoMutex(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
+ DWORD nByte;
+ void *zConverted;
+ char *zOut;
+#endif
+
+ /* If this path name begins with "/X:" or "\\?\", where "X" is any
+ ** alphabetic character, discard the initial "/" from the pathname.
+ */
+ if( zRelative[0]=='/' && (winIsDriveLetterAndColon(zRelative+1)
+ || winIsLongPathPrefix(zRelative+1)) ){
+ zRelative++;
+ }
+
+#if defined(__CYGWIN__)
+ SimulateIOError( return SQLITE_ERROR );
+ UNUSED_PARAMETER(nFull);
+ assert( nFull>=pVfs->mxPathname );
+ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
+ /*
+ ** NOTE: We are dealing with a relative path name and the data
+ ** directory has been set. Therefore, use it as the basis
+ ** for converting the relative path name to an absolute
+ ** one by prepending the data directory and a slash.
+ */
+ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
+ if( !zOut ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( cygwin_conv_path(
+ (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) |
+ CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){
+ sqlite3_free(zOut);
+ return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
+ "winFullPathname1", zRelative);
+ }else{
+ char *zUtf8 = winConvertToUtf8Filename(zOut);
+ if( !zUtf8 ){
+ sqlite3_free(zOut);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
+ sqlite3_data_directory, winGetDirSep(), zUtf8);
+ sqlite3_free(zUtf8);
+ sqlite3_free(zOut);
+ }
+ }else{
+ char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
+ if( !zOut ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( cygwin_conv_path(
+ (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A),
+ zRelative, zOut, pVfs->mxPathname+1)<0 ){
+ sqlite3_free(zOut);
+ return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
+ "winFullPathname2", zRelative);
+ }else{
+ char *zUtf8 = winConvertToUtf8Filename(zOut);
+ if( !zUtf8 ){
+ sqlite3_free(zOut);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8);
+ sqlite3_free(zUtf8);
+ sqlite3_free(zOut);
+ }
+ }
+ return SQLITE_OK;
+#endif
+
+#if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
+ SimulateIOError( return SQLITE_ERROR );
+ /* WinCE has no concept of a relative pathname, or so I am told. */
+ /* WinRT has no way to convert a relative path to an absolute one. */
+ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
+ /*
+ ** NOTE: We are dealing with a relative path name and the data
+ ** directory has been set. Therefore, use it as the basis
+ ** for converting the relative path name to an absolute
+ ** one by prepending the data directory and a backslash.
+ */
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
+ sqlite3_data_directory, winGetDirSep(), zRelative);
+ }else{
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative);
+ }
+ return SQLITE_OK;
+#endif
+
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing. This function could fail if, for example, the
+ ** current working directory has been unlinked.
+ */
+ SimulateIOError( return SQLITE_ERROR );
+ if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
+ /*
+ ** NOTE: We are dealing with a relative path name and the data
+ ** directory has been set. Therefore, use it as the basis
+ ** for converting the relative path name to an absolute
+ ** one by prepending the data directory and a backslash.
+ */
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
+ sqlite3_data_directory, winGetDirSep(), zRelative);
+ return SQLITE_OK;
+ }
+ zConverted = winConvertFromUtf8Filename(zRelative);
+ if( zConverted==0 ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ if( osIsNT() ){
+ LPWSTR zTemp;
+ nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname1", zRelative);
+ }
+ nByte += 3;
+ zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ sqlite3_free(zConverted);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTemp);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname2", zRelative);
+ }
+ sqlite3_free(zConverted);
+ zOut = winUnicodeToUtf8(zTemp);
+ sqlite3_free(zTemp);
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ char *zTemp;
+ nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname3", zRelative);
+ }
+ nByte += 3;
+ zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ sqlite3_free(zConverted);
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
+ if( nByte==0 ){
+ sqlite3_free(zConverted);
+ sqlite3_free(zTemp);
+ return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
+ "winFullPathname4", zRelative);
+ }
+ sqlite3_free(zConverted);
+ zOut = winMbcsToUtf8(zTemp, osAreFileApisANSI());
+ sqlite3_free(zTemp);
+ }
+#endif
+ if( zOut ){
+ sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut);
+ sqlite3_free(zOut);
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+#endif
+}
+static int winFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+ int rc;
+ MUTEX_LOGIC( sqlite3_mutex *pMutex; )
+ MUTEX_LOGIC( pMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR); )
+ sqlite3_mutex_enter(pMutex);
+ rc = winFullPathnameNoMutex(pVfs, zRelative, nFull, zFull);
+ sqlite3_mutex_leave(pMutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
+ HANDLE h;
+#if defined(__CYGWIN__)
+ int nFull = pVfs->mxPathname+1;
+ char *zFull = sqlite3MallocZero( nFull );
+ void *zConverted = 0;
+ if( zFull==0 ){
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
+ return 0;
+ }
+ if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){
+ sqlite3_free(zFull);
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
+ return 0;
+ }
+ zConverted = winConvertFromUtf8Filename(zFull);
+ sqlite3_free(zFull);
+#else
+ void *zConverted = winConvertFromUtf8Filename(zFilename);
+ UNUSED_PARAMETER(pVfs);
+#endif
+ if( zConverted==0 ){
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
+ return 0;
+ }
+ if( osIsNT() ){
+#if SQLITE_OS_WINRT
+ h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
+#else
+ h = osLoadLibraryW((LPCWSTR)zConverted);
+#endif
+ }
+#ifdef SQLITE_WIN32_HAS_ANSI
+ else{
+ h = osLoadLibraryA((char*)zConverted);
+ }
+#endif
+ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h));
+ sqlite3_free(zConverted);
+ return (void*)h;
+}
+static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+ UNUSED_PARAMETER(pVfs);
+ winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut);
+}
+static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
+ FARPROC proc;
+ UNUSED_PARAMETER(pVfs);
+ proc = osGetProcAddressA((HANDLE)pH, zSym);
+ OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n",
+ (void*)pH, zSym, (void*)proc));
+ return (void(*)(void))proc;
+}
+static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ UNUSED_PARAMETER(pVfs);
+ osFreeLibrary((HANDLE)pHandle);
+ OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle));
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define winDlOpen 0
+ #define winDlError 0
+ #define winDlSym 0
+ #define winDlClose 0
+#endif
+
+/* State information for the randomness gatherer. */
+typedef struct EntropyGatherer EntropyGatherer;
+struct EntropyGatherer {
+ unsigned char *a; /* Gather entropy into this buffer */
+ int na; /* Size of a[] in bytes */
+ int i; /* XOR next input into a[i] */
+ int nXor; /* Number of XOR operations done */
+};
+
+#if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
+/* Mix sz bytes of entropy into p. */
+static void xorMemory(EntropyGatherer *p, unsigned char *x, int sz){
+ int j, k;
+ for(j=0, k=p->i; j<sz; j++){
+ p->a[k++] ^= x[j];
+ if( k>=p->na ) k = 0;
+ }
+ p->i = k;
+ p->nXor += sz;
+}
+#endif /* !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) */
+
+/*
+** Write up to nBuf bytes of randomness into zBuf.
+*/
+static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+#if defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS)
+ UNUSED_PARAMETER(pVfs);
+ memset(zBuf, 0, nBuf);
+ return nBuf;
+#else
+ EntropyGatherer e;
+ UNUSED_PARAMETER(pVfs);
+ memset(zBuf, 0, nBuf);
+ e.a = (unsigned char*)zBuf;
+ e.na = nBuf;
+ e.nXor = 0;
+ e.i = 0;
+ {
+ SYSTEMTIME x;
+ osGetSystemTime(&x);
+ xorMemory(&e, (unsigned char*)&x, sizeof(SYSTEMTIME));
+ }
+ {
+ DWORD pid = osGetCurrentProcessId();
+ xorMemory(&e, (unsigned char*)&pid, sizeof(DWORD));
+ }
+#if SQLITE_OS_WINRT
+ {
+ ULONGLONG cnt = osGetTickCount64();
+ xorMemory(&e, (unsigned char*)&cnt, sizeof(ULONGLONG));
+ }
+#else
+ {
+ DWORD cnt = osGetTickCount();
+ xorMemory(&e, (unsigned char*)&cnt, sizeof(DWORD));
+ }
+#endif /* SQLITE_OS_WINRT */
+ {
+ LARGE_INTEGER i;
+ osQueryPerformanceCounter(&i);
+ xorMemory(&e, (unsigned char*)&i, sizeof(LARGE_INTEGER));
+ }
+#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
+ {
+ UUID id;
+ memset(&id, 0, sizeof(UUID));
+ osUuidCreate(&id);
+ xorMemory(&e, (unsigned char*)&id, sizeof(UUID));
+ memset(&id, 0, sizeof(UUID));
+ osUuidCreateSequential(&id);
+ xorMemory(&e, (unsigned char*)&id, sizeof(UUID));
+ }
+#endif /* !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID */
+ return e.nXor>nBuf ? nBuf : e.nXor;
+#endif /* defined(SQLITE_TEST) || defined(SQLITE_OMIT_RANDOMNESS) */
+}
+
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+static int winSleep(sqlite3_vfs *pVfs, int microsec){
+ sqlite3_win32_sleep((microsec+999)/1000);
+ UNUSED_PARAMETER(pVfs);
+ return ((microsec+999)/1000)*1000;
+}
+
+/*
+** The following variable, if set to a non-zero value, is interpreted as
+** the number of seconds since 1970 and is used to set the result of
+** sqlite3OsCurrentTime() during testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write into *piNow
+** the current time and date as a Julian Day number times 86_400_000. In
+** other words, write into *piNow the number of milliseconds since the Julian
+** epoch of noon in Greenwich on November 24, 4714 B.C according to the
+** proleptic Gregorian calendar.
+**
+** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
+** cannot be found.
+*/
+static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
+ /* FILETIME structure is a 64-bit value representing the number of
+ 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
+ */
+ FILETIME ft;
+ static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
+#ifdef SQLITE_TEST
+ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
+#endif
+ /* 2^32 - to avoid use of LL and warnings in gcc */
+ static const sqlite3_int64 max32BitValue =
+ (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 +
+ (sqlite3_int64)294967296;
+
+#if SQLITE_OS_WINCE
+ SYSTEMTIME time;
+ osGetSystemTime(&time);
+ /* if SystemTimeToFileTime() fails, it returns zero. */
+ if (!osSystemTimeToFileTime(&time,&ft)){
+ return SQLITE_ERROR;
+ }
+#else
+ osGetSystemTimeAsFileTime( &ft );
+#endif
+
+ *piNow = winFiletimeEpoch +
+ ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
+ (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000;
+
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
+ }
+#endif
+ UNUSED_PARAMETER(pVfs);
+ return SQLITE_OK;
+}
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
+ int rc;
+ sqlite3_int64 i;
+ rc = winCurrentTimeInt64(pVfs, &i);
+ if( !rc ){
+ *prNow = i/86400000.0;
+ }
+ return rc;
+}
+
+/*
+** The idea is that this function works like a combination of
+** GetLastError() and FormatMessage() on Windows (or errno and
+** strerror_r() on Unix). After an error is returned by an OS
+** function, SQLite calls this function with zBuf pointing to
+** a buffer of nBuf bytes. The OS layer should populate the
+** buffer with a nul-terminated UTF-8 encoded error message
+** describing the last IO error to have occurred within the calling
+** thread.
+**
+** If the error message is too large for the supplied buffer,
+** it should be truncated. The return value of xGetLastError
+** is zero if the error message fits in the buffer, or non-zero
+** otherwise (if the message was truncated). If non-zero is returned,
+** then it is not necessary to include the nul-terminator character
+** in the output buffer.
+**
+** Not supplying an error message will have no adverse effect
+** on SQLite. It is fine to have an implementation that never
+** returns an error message:
+**
+** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+** assert(zBuf[0]=='\0');
+** return 0;
+** }
+**
+** However if an error message is supplied, it will be incorporated
+** by sqlite into the error message available to the user using
+** sqlite3_errmsg(), possibly making IO errors easier to debug.
+*/
+static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ DWORD e = osGetLastError();
+ UNUSED_PARAMETER(pVfs);
+ if( nBuf>0 ) winGetLastErrorMsg(e, nBuf, zBuf);
+ return e;
+}
+
+/*
+** Initialize and deinitialize the operating system interface.
+*/
+SQLITE_API int sqlite3_os_init(void){
+ static sqlite3_vfs winVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32", /* zName */
+ &winAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ static sqlite3_vfs winLongPathVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32-longpath", /* zName */
+ &winAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#endif
+ static sqlite3_vfs winNolockVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32-none", /* zName */
+ &winNolockAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ static sqlite3_vfs winLongPathNolockVfs = {
+ 3, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
+ 0, /* pNext */
+ "win32-longpath-none", /* zName */
+ &winNolockAppData, /* pAppData */
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime, /* xCurrentTime */
+ winGetLastError, /* xGetLastError */
+ winCurrentTimeInt64, /* xCurrentTimeInt64 */
+ winSetSystemCall, /* xSetSystemCall */
+ winGetSystemCall, /* xGetSystemCall */
+ winNextSystemCall, /* xNextSystemCall */
+ };
+#endif
+
+ /* Double-check that the aSyscall[] array has been constructed
+ ** correctly. See ticket [bb3a86e890c8e96ab] */
+ assert( ArraySize(aSyscall)==80 );
+
+ /* get memory map allocation granularity */
+ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
+#if SQLITE_OS_WINRT
+ osGetNativeSystemInfo(&winSysInfo);
+#else
+ osGetSystemInfo(&winSysInfo);
+#endif
+ assert( winSysInfo.dwAllocationGranularity>0 );
+ assert( winSysInfo.dwPageSize>0 );
+
+ sqlite3_vfs_register(&winVfs, 1);
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ sqlite3_vfs_register(&winLongPathVfs, 0);
+#endif
+
+ sqlite3_vfs_register(&winNolockVfs, 0);
+
+#if defined(SQLITE_WIN32_HAS_WIDE)
+ sqlite3_vfs_register(&winLongPathNolockVfs, 0);
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+ winBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+#endif
+
+ return SQLITE_OK;
+}
+
+SQLITE_API int sqlite3_os_end(void){
+#if SQLITE_OS_WINRT
+ if( sleepObj!=NULL ){
+ osCloseHandle(sleepObj);
+ sleepObj = NULL;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+ winBigLock = 0;
+#endif
+
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OS_WIN */
+
+/************** End of os_win.c **********************************************/
+/************** Begin file memdb.c *******************************************/
+/*
+** 2016-09-07
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file implements an in-memory VFS. A database is held as a contiguous
+** block of memory.
+**
+** This file also implements interface sqlite3_serialize() and
+** sqlite3_deserialize().
+*/
+/* #include "sqliteInt.h" */
+#ifndef SQLITE_OMIT_DESERIALIZE
+
+/*
+** Forward declaration of objects used by this utility
+*/
+typedef struct sqlite3_vfs MemVfs;
+typedef struct MemFile MemFile;
+typedef struct MemStore MemStore;
+
+/* Access to a lower-level VFS that (might) implement dynamic loading,
+** access to randomness, etc.
+*/
+#define ORIGVFS(p) ((sqlite3_vfs*)((p)->pAppData))
+
+/* Storage for a memdb file.
+**
+** An memdb object can be shared or separate. Shared memdb objects can be
+** used by more than one database connection. Mutexes are used by shared
+** memdb objects to coordinate access. Separate memdb objects are only
+** connected to a single database connection and do not require additional
+** mutexes.
+**
+** Shared memdb objects have .zFName!=0 and .pMutex!=0. They are created
+** using "file:/name?vfs=memdb". The first character of the name must be
+** "/" or else the object will be a separate memdb object. All shared
+** memdb objects are stored in memdb_g.apMemStore[] in an arbitrary order.
+**
+** Separate memdb objects are created using a name that does not begin
+** with "/" or using sqlite3_deserialize().
+**
+** Access rules for shared MemStore objects:
+**
+** * .zFName is initialized when the object is created and afterwards
+** is unchanged until the object is destroyed. So it can be accessed
+** at any time as long as we know the object is not being destroyed,
+** which means while either the SQLITE_MUTEX_STATIC_VFS1 or
+** .pMutex is held or the object is not part of memdb_g.apMemStore[].
+**
+** * Can .pMutex can only be changed while holding the
+** SQLITE_MUTEX_STATIC_VFS1 mutex or while the object is not part
+** of memdb_g.apMemStore[].
+**
+** * Other fields can only be changed while holding the .pMutex mutex
+** or when the .nRef is less than zero and the object is not part of
+** memdb_g.apMemStore[].
+**
+** * The .aData pointer has the added requirement that it can can only
+** be changed (for resizing) when nMmap is zero.
+**
+*/
+struct MemStore {
+ sqlite3_int64 sz; /* Size of the file */
+ sqlite3_int64 szAlloc; /* Space allocated to aData */
+ sqlite3_int64 szMax; /* Maximum allowed size of the file */
+ unsigned char *aData; /* content of the file */
+ sqlite3_mutex *pMutex; /* Used by shared stores only */
+ int nMmap; /* Number of memory mapped pages */
+ unsigned mFlags; /* Flags */
+ int nRdLock; /* Number of readers */
+ int nWrLock; /* Number of writers. (Always 0 or 1) */
+ int nRef; /* Number of users of this MemStore */
+ char *zFName; /* The filename for shared stores */
+};
+
+/* An open file */
+struct MemFile {
+ sqlite3_file base; /* IO methods */
+ MemStore *pStore; /* The storage */
+ int eLock; /* Most recent lock against this file */
+};
+
+/*
+** File-scope variables for holding the memdb files that are accessible
+** to multiple database connections in separate threads.
+**
+** Must hold SQLITE_MUTEX_STATIC_VFS1 to access any part of this object.
+*/
+static struct MemFS {
+ int nMemStore; /* Number of shared MemStore objects */
+ MemStore **apMemStore; /* Array of all shared MemStore objects */
+} memdb_g;
+
+/*
+** Methods for MemFile
+*/
+static int memdbClose(sqlite3_file*);
+static int memdbRead(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+static int memdbWrite(sqlite3_file*,const void*,int iAmt, sqlite3_int64 iOfst);
+static int memdbTruncate(sqlite3_file*, sqlite3_int64 size);
+static int memdbSync(sqlite3_file*, int flags);
+static int memdbFileSize(sqlite3_file*, sqlite3_int64 *pSize);
+static int memdbLock(sqlite3_file*, int);
+static int memdbUnlock(sqlite3_file*, int);
+/* static int memdbCheckReservedLock(sqlite3_file*, int *pResOut);// not used */
+static int memdbFileControl(sqlite3_file*, int op, void *pArg);
+/* static int memdbSectorSize(sqlite3_file*); // not used */
+static int memdbDeviceCharacteristics(sqlite3_file*);
+static int memdbFetch(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
+static int memdbUnfetch(sqlite3_file*, sqlite3_int64 iOfst, void *p);
+
+/*
+** Methods for MemVfs
+*/
+static int memdbOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *);
+/* static int memdbDelete(sqlite3_vfs*, const char *zName, int syncDir); */
+static int memdbAccess(sqlite3_vfs*, const char *zName, int flags, int *);
+static int memdbFullPathname(sqlite3_vfs*, const char *zName, int, char *zOut);
+static void *memdbDlOpen(sqlite3_vfs*, const char *zFilename);
+static void memdbDlError(sqlite3_vfs*, int nByte, char *zErrMsg);
+static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char*zSym))(void);
+static void memdbDlClose(sqlite3_vfs*, void*);
+static int memdbRandomness(sqlite3_vfs*, int nByte, char *zOut);
+static int memdbSleep(sqlite3_vfs*, int microseconds);
+/* static int memdbCurrentTime(sqlite3_vfs*, double*); */
+static int memdbGetLastError(sqlite3_vfs*, int, char *);
+static int memdbCurrentTimeInt64(sqlite3_vfs*, sqlite3_int64*);
+
+static sqlite3_vfs memdb_vfs = {
+ 2, /* iVersion */
+ 0, /* szOsFile (set when registered) */
+ 1024, /* mxPathname */
+ 0, /* pNext */
+ "memdb", /* zName */
+ 0, /* pAppData (set when registered) */
+ memdbOpen, /* xOpen */
+ 0, /* memdbDelete, */ /* xDelete */
+ memdbAccess, /* xAccess */
+ memdbFullPathname, /* xFullPathname */
+ memdbDlOpen, /* xDlOpen */
+ memdbDlError, /* xDlError */
+ memdbDlSym, /* xDlSym */
+ memdbDlClose, /* xDlClose */
+ memdbRandomness, /* xRandomness */
+ memdbSleep, /* xSleep */
+ 0, /* memdbCurrentTime, */ /* xCurrentTime */
+ memdbGetLastError, /* xGetLastError */
+ memdbCurrentTimeInt64, /* xCurrentTimeInt64 */
+ 0, /* xSetSystemCall */
+ 0, /* xGetSystemCall */
+ 0, /* xNextSystemCall */
+};
+
+static const sqlite3_io_methods memdb_io_methods = {
+ 3, /* iVersion */
+ memdbClose, /* xClose */
+ memdbRead, /* xRead */
+ memdbWrite, /* xWrite */
+ memdbTruncate, /* xTruncate */
+ memdbSync, /* xSync */
+ memdbFileSize, /* xFileSize */
+ memdbLock, /* xLock */
+ memdbUnlock, /* xUnlock */
+ 0, /* memdbCheckReservedLock, */ /* xCheckReservedLock */
+ memdbFileControl, /* xFileControl */
+ 0, /* memdbSectorSize,*/ /* xSectorSize */
+ memdbDeviceCharacteristics, /* xDeviceCharacteristics */
+ 0, /* xShmMap */
+ 0, /* xShmLock */
+ 0, /* xShmBarrier */
+ 0, /* xShmUnmap */
+ memdbFetch, /* xFetch */
+ memdbUnfetch /* xUnfetch */
+};
+
+/*
+** Enter/leave the mutex on a MemStore
+*/
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE==0
+static void memdbEnter(MemStore *p){
+ UNUSED_PARAMETER(p);
+}
+static void memdbLeave(MemStore *p){
+ UNUSED_PARAMETER(p);
+}
+#else
+static void memdbEnter(MemStore *p){
+ sqlite3_mutex_enter(p->pMutex);
+}
+static void memdbLeave(MemStore *p){
+ sqlite3_mutex_leave(p->pMutex);
+}
+#endif
+
+
+
+/*
+** Close an memdb-file.
+** Free the underlying MemStore object when its refcount drops to zero
+** or less.
+*/
+static int memdbClose(sqlite3_file *pFile){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ if( p->zFName ){
+ int i;
+#ifndef SQLITE_MUTEX_OMIT
+ sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+#endif
+ sqlite3_mutex_enter(pVfsMutex);
+ for(i=0; ALWAYS(i<memdb_g.nMemStore); i++){
+ if( memdb_g.apMemStore[i]==p ){
+ memdbEnter(p);
+ if( p->nRef==1 ){
+ memdb_g.apMemStore[i] = memdb_g.apMemStore[--memdb_g.nMemStore];
+ if( memdb_g.nMemStore==0 ){
+ sqlite3_free(memdb_g.apMemStore);
+ memdb_g.apMemStore = 0;
+ }
+ }
+ break;
+ }
+ }
+ sqlite3_mutex_leave(pVfsMutex);
+ }else{
+ memdbEnter(p);
+ }
+ p->nRef--;
+ if( p->nRef<=0 ){
+ if( p->mFlags & SQLITE_DESERIALIZE_FREEONCLOSE ){
+ sqlite3_free(p->aData);
+ }
+ memdbLeave(p);
+ sqlite3_mutex_free(p->pMutex);
+ sqlite3_free(p);
+ }else{
+ memdbLeave(p);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read data from an memdb-file.
+*/
+static int memdbRead(
+ sqlite3_file *pFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ if( iOfst+iAmt>p->sz ){
+ memset(zBuf, 0, iAmt);
+ if( iOfst<p->sz ) memcpy(zBuf, p->aData+iOfst, p->sz - iOfst);
+ memdbLeave(p);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ memcpy(zBuf, p->aData+iOfst, iAmt);
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Try to enlarge the memory allocation to hold at least sz bytes
+*/
+static int memdbEnlarge(MemStore *p, sqlite3_int64 newSz){
+ unsigned char *pNew;
+ if( (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)==0 || NEVER(p->nMmap>0) ){
+ return SQLITE_FULL;
+ }
+ if( newSz>p->szMax ){
+ return SQLITE_FULL;
+ }
+ newSz *= 2;
+ if( newSz>p->szMax ) newSz = p->szMax;
+ pNew = sqlite3Realloc(p->aData, newSz);
+ if( pNew==0 ) return SQLITE_IOERR_NOMEM;
+ p->aData = pNew;
+ p->szAlloc = newSz;
+ return SQLITE_OK;
+}
+
+/*
+** Write data to an memdb-file.
+*/
+static int memdbWrite(
+ sqlite3_file *pFile,
+ const void *z,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ if( NEVER(p->mFlags & SQLITE_DESERIALIZE_READONLY) ){
+ /* Can't happen: memdbLock() will return SQLITE_READONLY before
+ ** reaching this point */
+ memdbLeave(p);
+ return SQLITE_IOERR_WRITE;
+ }
+ if( iOfst+iAmt>p->sz ){
+ int rc;
+ if( iOfst+iAmt>p->szAlloc
+ && (rc = memdbEnlarge(p, iOfst+iAmt))!=SQLITE_OK
+ ){
+ memdbLeave(p);
+ return rc;
+ }
+ if( iOfst>p->sz ) memset(p->aData+p->sz, 0, iOfst-p->sz);
+ p->sz = iOfst+iAmt;
+ }
+ memcpy(p->aData+iOfst, z, iAmt);
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an memdb-file.
+**
+** In rollback mode (which is always the case for memdb, as it does not
+** support WAL mode) the truncate() method is only used to reduce
+** the size of a file, never to increase the size.
+*/
+static int memdbTruncate(sqlite3_file *pFile, sqlite_int64 size){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ int rc = SQLITE_OK;
+ memdbEnter(p);
+ if( size>p->sz ){
+ /* This can only happen with a corrupt wal mode db */
+ rc = SQLITE_CORRUPT;
+ }else{
+ p->sz = size;
+ }
+ memdbLeave(p);
+ return rc;
+}
+
+/*
+** Sync an memdb-file.
+*/
+static int memdbSync(sqlite3_file *pFile, int flags){
+ UNUSED_PARAMETER(pFile);
+ UNUSED_PARAMETER(flags);
+ return SQLITE_OK;
+}
+
+/*
+** Return the current file-size of an memdb-file.
+*/
+static int memdbFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ *pSize = p->sz;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Lock an memdb-file.
+*/
+static int memdbLock(sqlite3_file *pFile, int eLock){
+ MemFile *pThis = (MemFile*)pFile;
+ MemStore *p = pThis->pStore;
+ int rc = SQLITE_OK;
+ if( eLock<=pThis->eLock ) return SQLITE_OK;
+ memdbEnter(p);
+
+ assert( p->nWrLock==0 || p->nWrLock==1 );
+ assert( pThis->eLock<=SQLITE_LOCK_SHARED || p->nWrLock==1 );
+ assert( pThis->eLock==SQLITE_LOCK_NONE || p->nRdLock>=1 );
+
+ if( eLock>SQLITE_LOCK_SHARED && (p->mFlags & SQLITE_DESERIALIZE_READONLY) ){
+ rc = SQLITE_READONLY;
+ }else{
+ switch( eLock ){
+ case SQLITE_LOCK_SHARED: {
+ assert( pThis->eLock==SQLITE_LOCK_NONE );
+ if( p->nWrLock>0 ){
+ rc = SQLITE_BUSY;
+ }else{
+ p->nRdLock++;
+ }
+ break;
+ };
+
+ case SQLITE_LOCK_RESERVED:
+ case SQLITE_LOCK_PENDING: {
+ assert( pThis->eLock>=SQLITE_LOCK_SHARED );
+ if( ALWAYS(pThis->eLock==SQLITE_LOCK_SHARED) ){
+ if( p->nWrLock>0 ){
+ rc = SQLITE_BUSY;
+ }else{
+ p->nWrLock = 1;
+ }
+ }
+ break;
+ }
+
+ default: {
+ assert( eLock==SQLITE_LOCK_EXCLUSIVE );
+ assert( pThis->eLock>=SQLITE_LOCK_SHARED );
+ if( p->nRdLock>1 ){
+ rc = SQLITE_BUSY;
+ }else if( pThis->eLock==SQLITE_LOCK_SHARED ){
+ p->nWrLock = 1;
+ }
+ break;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ) pThis->eLock = eLock;
+ memdbLeave(p);
+ return rc;
+}
+
+/*
+** Unlock an memdb-file.
+*/
+static int memdbUnlock(sqlite3_file *pFile, int eLock){
+ MemFile *pThis = (MemFile*)pFile;
+ MemStore *p = pThis->pStore;
+ if( eLock>=pThis->eLock ) return SQLITE_OK;
+ memdbEnter(p);
+
+ assert( eLock==SQLITE_LOCK_SHARED || eLock==SQLITE_LOCK_NONE );
+ if( eLock==SQLITE_LOCK_SHARED ){
+ if( ALWAYS(pThis->eLock>SQLITE_LOCK_SHARED) ){
+ p->nWrLock--;
+ }
+ }else{
+ if( pThis->eLock>SQLITE_LOCK_SHARED ){
+ p->nWrLock--;
+ }
+ p->nRdLock--;
+ }
+
+ pThis->eLock = eLock;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+#if 0
+/*
+** This interface is only used for crash recovery, which does not
+** occur on an in-memory database.
+*/
+static int memdbCheckReservedLock(sqlite3_file *pFile, int *pResOut){
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+#endif
+
+
+/*
+** File control method. For custom operations on an memdb-file.
+*/
+static int memdbFileControl(sqlite3_file *pFile, int op, void *pArg){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ int rc = SQLITE_NOTFOUND;
+ memdbEnter(p);
+ if( op==SQLITE_FCNTL_VFSNAME ){
+ *(char**)pArg = sqlite3_mprintf("memdb(%p,%lld)", p->aData, p->sz);
+ rc = SQLITE_OK;
+ }
+ if( op==SQLITE_FCNTL_SIZE_LIMIT ){
+ sqlite3_int64 iLimit = *(sqlite3_int64*)pArg;
+ if( iLimit<p->sz ){
+ if( iLimit<0 ){
+ iLimit = p->szMax;
+ }else{
+ iLimit = p->sz;
+ }
+ }
+ p->szMax = iLimit;
+ *(sqlite3_int64*)pArg = iLimit;
+ rc = SQLITE_OK;
+ }
+ memdbLeave(p);
+ return rc;
+}
+
+#if 0 /* Not used because of SQLITE_IOCAP_POWERSAFE_OVERWRITE */
+/*
+** Return the sector-size in bytes for an memdb-file.
+*/
+static int memdbSectorSize(sqlite3_file *pFile){
+ return 1024;
+}
+#endif
+
+/*
+** Return the device characteristic flags supported by an memdb-file.
+*/
+static int memdbDeviceCharacteristics(sqlite3_file *pFile){
+ UNUSED_PARAMETER(pFile);
+ return SQLITE_IOCAP_ATOMIC |
+ SQLITE_IOCAP_POWERSAFE_OVERWRITE |
+ SQLITE_IOCAP_SAFE_APPEND |
+ SQLITE_IOCAP_SEQUENTIAL;
+}
+
+/* Fetch a page of a memory-mapped file */
+static int memdbFetch(
+ sqlite3_file *pFile,
+ sqlite3_int64 iOfst,
+ int iAmt,
+ void **pp
+){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ memdbEnter(p);
+ if( iOfst+iAmt>p->sz || (p->mFlags & SQLITE_DESERIALIZE_RESIZEABLE)!=0 ){
+ *pp = 0;
+ }else{
+ p->nMmap++;
+ *pp = (void*)(p->aData + iOfst);
+ }
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/* Release a memory-mapped page */
+static int memdbUnfetch(sqlite3_file *pFile, sqlite3_int64 iOfst, void *pPage){
+ MemStore *p = ((MemFile*)pFile)->pStore;
+ UNUSED_PARAMETER(iOfst);
+ UNUSED_PARAMETER(pPage);
+ memdbEnter(p);
+ p->nMmap--;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Open an mem file handle.
+*/
+static int memdbOpen(
+ sqlite3_vfs *pVfs,
+ const char *zName,
+ sqlite3_file *pFd,
+ int flags,
+ int *pOutFlags
+){
+ MemFile *pFile = (MemFile*)pFd;
+ MemStore *p = 0;
+ int szName;
+ UNUSED_PARAMETER(pVfs);
+
+ memset(pFile, 0, sizeof(*pFile));
+ szName = sqlite3Strlen30(zName);
+ if( szName>1 && (zName[0]=='/' || zName[0]=='\\') ){
+ int i;
+#ifndef SQLITE_MUTEX_OMIT
+ sqlite3_mutex *pVfsMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
+#endif
+ sqlite3_mutex_enter(pVfsMutex);
+ for(i=0; i<memdb_g.nMemStore; i++){
+ if( strcmp(memdb_g.apMemStore[i]->zFName,zName)==0 ){
+ p = memdb_g.apMemStore[i];
+ break;
+ }
+ }
+ if( p==0 ){
+ MemStore **apNew;
+ p = sqlite3Malloc( sizeof(*p) + szName + 3 );
+ if( p==0 ){
+ sqlite3_mutex_leave(pVfsMutex);
+ return SQLITE_NOMEM;
+ }
+ apNew = sqlite3Realloc(memdb_g.apMemStore,
+ sizeof(apNew[0])*(memdb_g.nMemStore+1) );
+ if( apNew==0 ){
+ sqlite3_free(p);
+ sqlite3_mutex_leave(pVfsMutex);
+ return SQLITE_NOMEM;
+ }
+ apNew[memdb_g.nMemStore++] = p;
+ memdb_g.apMemStore = apNew;
+ memset(p, 0, sizeof(*p));
+ p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE|SQLITE_DESERIALIZE_FREEONCLOSE;
+ p->szMax = sqlite3GlobalConfig.mxMemdbSize;
+ p->zFName = (char*)&p[1];
+ memcpy(p->zFName, zName, szName+1);
+ p->pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( p->pMutex==0 ){
+ memdb_g.nMemStore--;
+ sqlite3_free(p);
+ sqlite3_mutex_leave(pVfsMutex);
+ return SQLITE_NOMEM;
+ }
+ p->nRef = 1;
+ memdbEnter(p);
+ }else{
+ memdbEnter(p);
+ p->nRef++;
+ }
+ sqlite3_mutex_leave(pVfsMutex);
+ }else{
+ p = sqlite3Malloc( sizeof(*p) );
+ if( p==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(p, 0, sizeof(*p));
+ p->mFlags = SQLITE_DESERIALIZE_RESIZEABLE | SQLITE_DESERIALIZE_FREEONCLOSE;
+ p->szMax = sqlite3GlobalConfig.mxMemdbSize;
+ }
+ pFile->pStore = p;
+ if( pOutFlags!=0 ){
+ *pOutFlags = flags | SQLITE_OPEN_MEMORY;
+ }
+ pFd->pMethods = &memdb_io_methods;
+ memdbLeave(p);
+ return SQLITE_OK;
+}
+
+#if 0 /* Only used to delete rollback journals, super-journals, and WAL
+ ** files, none of which exist in memdb. So this routine is never used */
+/*
+** Delete the file located at zPath. If the dirSync argument is true,
+** ensure the file-system modifications are synced to disk before
+** returning.
+*/
+static int memdbDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ return SQLITE_IOERR_DELETE;
+}
+#endif
+
+/*
+** Test for access permissions. Return true if the requested permission
+** is available, or false otherwise.
+**
+** With memdb, no files ever exist on disk. So always return false.
+*/
+static int memdbAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ UNUSED_PARAMETER(pVfs);
+ UNUSED_PARAMETER(zPath);
+ UNUSED_PARAMETER(flags);
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Populate buffer zOut with the full canonical pathname corresponding
+** to the pathname in zPath. zOut is guaranteed to point to a buffer
+** of at least (INST_MAX_PATHNAME+1) bytes.
+*/
+static int memdbFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nOut,
+ char *zOut
+){
+ UNUSED_PARAMETER(pVfs);
+ sqlite3_snprintf(nOut, zOut, "%s", zPath);
+ return SQLITE_OK;
+}
+
+/*
+** Open the dynamic library located at zPath and return a handle.
+*/
+static void *memdbDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ return ORIGVFS(pVfs)->xDlOpen(ORIGVFS(pVfs), zPath);
+}
+
+/*
+** Populate the buffer zErrMsg (size nByte bytes) with a human readable
+** utf-8 string describing the most recent error encountered associated
+** with dynamic libraries.
+*/
+static void memdbDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
+ ORIGVFS(pVfs)->xDlError(ORIGVFS(pVfs), nByte, zErrMsg);
+}
+
+/*
+** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
+*/
+static void (*memdbDlSym(sqlite3_vfs *pVfs, void *p, const char *zSym))(void){
+ return ORIGVFS(pVfs)->xDlSym(ORIGVFS(pVfs), p, zSym);
+}
+
+/*
+** Close the dynamic library handle pHandle.
+*/
+static void memdbDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ ORIGVFS(pVfs)->xDlClose(ORIGVFS(pVfs), pHandle);
+}
+
+/*
+** Populate the buffer pointed to by zBufOut with nByte bytes of
+** random data.
+*/
+static int memdbRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ return ORIGVFS(pVfs)->xRandomness(ORIGVFS(pVfs), nByte, zBufOut);
+}
+
+/*
+** Sleep for nMicro microseconds. Return the number of microseconds
+** actually slept.
+*/
+static int memdbSleep(sqlite3_vfs *pVfs, int nMicro){
+ return ORIGVFS(pVfs)->xSleep(ORIGVFS(pVfs), nMicro);
+}
+
+#if 0 /* Never used. Modern cores only call xCurrentTimeInt64() */
+/*
+** Return the current time as a Julian Day number in *pTimeOut.
+*/
+static int memdbCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ return ORIGVFS(pVfs)->xCurrentTime(ORIGVFS(pVfs), pTimeOut);
+}
+#endif
+
+static int memdbGetLastError(sqlite3_vfs *pVfs, int a, char *b){
+ return ORIGVFS(pVfs)->xGetLastError(ORIGVFS(pVfs), a, b);
+}
+static int memdbCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *p){
+ return ORIGVFS(pVfs)->xCurrentTimeInt64(ORIGVFS(pVfs), p);
+}
+
+/*
+** Translate a database connection pointer and schema name into a
+** MemFile pointer.
+*/
+static MemFile *memdbFromDbSchema(sqlite3 *db, const char *zSchema){
+ MemFile *p = 0;
+ MemStore *pStore;
+ int rc = sqlite3_file_control(db, zSchema, SQLITE_FCNTL_FILE_POINTER, &p);
+ if( rc ) return 0;
+ if( p->base.pMethods!=&memdb_io_methods ) return 0;
+ pStore = p->pStore;
+ memdbEnter(pStore);
+ if( pStore->zFName!=0 ) p = 0;
+ memdbLeave(pStore);
+ return p;
+}
+
+/*
+** Return the serialization of a database
+*/
+SQLITE_API unsigned char *sqlite3_serialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which database within the connection */
+ sqlite3_int64 *piSize, /* Write size here, if not NULL */
+ unsigned int mFlags /* Maybe SQLITE_SERIALIZE_NOCOPY */
+){
+ MemFile *p;
+ int iDb;
+ Btree *pBt;
+ sqlite3_int64 sz;
+ int szPage = 0;
+ sqlite3_stmt *pStmt = 0;
+ unsigned char *pOut;
+ char *zSql;
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ if( zSchema==0 ) zSchema = db->aDb[0].zDbSName;
+ p = memdbFromDbSchema(db, zSchema);
+ iDb = sqlite3FindDbName(db, zSchema);
+ if( piSize ) *piSize = -1;
+ if( iDb<0 ) return 0;
+ if( p ){
+ MemStore *pStore = p->pStore;
+ assert( pStore->pMutex==0 );
+ if( piSize ) *piSize = pStore->sz;
+ if( mFlags & SQLITE_SERIALIZE_NOCOPY ){
+ pOut = pStore->aData;
+ }else{
+ pOut = sqlite3_malloc64( pStore->sz );
+ if( pOut ) memcpy(pOut, pStore->aData, pStore->sz);
+ }
+ return pOut;
+ }
+ pBt = db->aDb[iDb].pBt;
+ if( pBt==0 ) return 0;
+ szPage = sqlite3BtreeGetPageSize(pBt);
+ zSql = sqlite3_mprintf("PRAGMA \"%w\".page_count", zSchema);
+ rc = zSql ? sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0) : SQLITE_NOMEM;
+ sqlite3_free(zSql);
+ if( rc ) return 0;
+ rc = sqlite3_step(pStmt);
+ if( rc!=SQLITE_ROW ){
+ pOut = 0;
+ }else{
+ sz = sqlite3_column_int64(pStmt, 0)*szPage;
+ if( piSize ) *piSize = sz;
+ if( mFlags & SQLITE_SERIALIZE_NOCOPY ){
+ pOut = 0;
+ }else{
+ pOut = sqlite3_malloc64( sz );
+ if( pOut ){
+ int nPage = sqlite3_column_int(pStmt, 0);
+ Pager *pPager = sqlite3BtreePager(pBt);
+ int pgno;
+ for(pgno=1; pgno<=nPage; pgno++){
+ DbPage *pPage = 0;
+ unsigned char *pTo = pOut + szPage*(sqlite3_int64)(pgno-1);
+ rc = sqlite3PagerGet(pPager, pgno, (DbPage**)&pPage, 0);
+ if( rc==SQLITE_OK ){
+ memcpy(pTo, sqlite3PagerGetData(pPage), szPage);
+ }else{
+ memset(pTo, 0, szPage);
+ }
+ sqlite3PagerUnref(pPage);
+ }
+ }
+ }
+ }
+ sqlite3_finalize(pStmt);
+ return pOut;
+}
+
+/* Convert zSchema to a MemDB and initialize its content.
+*/
+SQLITE_API int sqlite3_deserialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to reopen with the deserialization */
+ unsigned char *pData, /* The serialized database content */
+ sqlite3_int64 szDb, /* Number bytes in the deserialization */
+ sqlite3_int64 szBuf, /* Total size of buffer pData[] */
+ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */
+){
+ MemFile *p;
+ char *zSql;
+ sqlite3_stmt *pStmt = 0;
+ int rc;
+ int iDb;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( szDb<0 ) return SQLITE_MISUSE_BKPT;
+ if( szBuf<0 ) return SQLITE_MISUSE_BKPT;
+#endif
+
+ sqlite3_mutex_enter(db->mutex);
+ if( zSchema==0 ) zSchema = db->aDb[0].zDbSName;
+ iDb = sqlite3FindDbName(db, zSchema);
+ testcase( iDb==1 );
+ if( iDb<2 && iDb!=0 ){
+ rc = SQLITE_ERROR;
+ goto end_deserialize;
+ }
+ zSql = sqlite3_mprintf("ATTACH x AS %Q", zSchema);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ }
+ if( rc ) goto end_deserialize;
+ db->init.iDb = (u8)iDb;
+ db->init.reopenMemdb = 1;
+ rc = sqlite3_step(pStmt);
+ db->init.reopenMemdb = 0;
+ if( rc!=SQLITE_DONE ){
+ rc = SQLITE_ERROR;
+ goto end_deserialize;
+ }
+ p = memdbFromDbSchema(db, zSchema);
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ MemStore *pStore = p->pStore;
+ pStore->aData = pData;
+ pData = 0;
+ pStore->sz = szDb;
+ pStore->szAlloc = szBuf;
+ pStore->szMax = szBuf;
+ if( pStore->szMax<sqlite3GlobalConfig.mxMemdbSize ){
+ pStore->szMax = sqlite3GlobalConfig.mxMemdbSize;
+ }
+ pStore->mFlags = mFlags;
+ rc = SQLITE_OK;
+ }
+
+end_deserialize:
+ sqlite3_finalize(pStmt);
+ if( pData && (mFlags & SQLITE_DESERIALIZE_FREEONCLOSE)!=0 ){
+ sqlite3_free(pData);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Return true if the VFS is the memvfs.
+*/
+SQLITE_PRIVATE int sqlite3IsMemdb(const sqlite3_vfs *pVfs){
+ return pVfs==&memdb_vfs;
+}
+
+/*
+** This routine is called when the extension is loaded.
+** Register the new VFS.
+*/
+SQLITE_PRIVATE int sqlite3MemdbInit(void){
+ sqlite3_vfs *pLower = sqlite3_vfs_find(0);
+ unsigned int sz;
+ if( NEVER(pLower==0) ) return SQLITE_ERROR;
+ sz = pLower->szOsFile;
+ memdb_vfs.pAppData = pLower;
+ /* The following conditional can only be true when compiled for
+ ** Windows x86 and SQLITE_MAX_MMAP_SIZE=0. We always leave
+ ** it in, to be safe, but it is marked as NO_TEST since there
+ ** is no way to reach it under most builds. */
+ if( sz<sizeof(MemFile) ) sz = sizeof(MemFile); /*NO_TEST*/
+ memdb_vfs.szOsFile = sz;
+ return sqlite3_vfs_register(&memdb_vfs, 0);
+}
+#endif /* SQLITE_OMIT_DESERIALIZE */
+
+/************** End of memdb.c ***********************************************/
+/************** Begin file bitvec.c ******************************************/
+/*
+** 2008 February 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an object that represents a fixed-length
+** bitmap. Bits are numbered starting with 1.
+**
+** A bitmap is used to record which pages of a database file have been
+** journalled during a transaction, or which pages have the "dont-write"
+** property. Usually only a few pages are meet either condition.
+** So the bitmap is usually sparse and has low cardinality.
+** But sometimes (for example when during a DROP of a large table) most
+** or all of the pages in a database can get journalled. In those cases,
+** the bitmap becomes dense with high cardinality. The algorithm needs
+** to handle both cases well.
+**
+** The size of the bitmap is fixed when the object is created.
+**
+** All bits are clear when the bitmap is created. Individual bits
+** may be set or cleared one at a time.
+**
+** Test operations are about 100 times more common that set operations.
+** Clear operations are exceedingly rare. There are usually between
+** 5 and 500 set operations per Bitvec object, though the number of sets can
+** sometimes grow into tens of thousands or larger. The size of the
+** Bitvec object is the number of pages in the database file at the
+** start of a transaction, and is thus usually less than a few thousand,
+** but can be as large as 2 billion for a really big database.
+*/
+/* #include "sqliteInt.h" */
+
+/* Size of the Bitvec structure in bytes. */
+#define BITVEC_SZ 512
+
+/* Round the union size down to the nearest pointer boundary, since that's how
+** it will be aligned within the Bitvec struct. */
+#define BITVEC_USIZE \
+ (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
+
+/* Type of the array "element" for the bitmap representation.
+** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
+** Setting this to the "natural word" size of your CPU may improve
+** performance. */
+#define BITVEC_TELEM u8
+/* Size, in bits, of the bitmap element. */
+#define BITVEC_SZELEM 8
+/* Number of elements in a bitmap array. */
+#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
+/* Number of bits in the bitmap array. */
+#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
+
+/* Number of u32 values in hash table. */
+#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
+/* Maximum number of entries in hash table before
+** sub-dividing and re-hashing. */
+#define BITVEC_MXHASH (BITVEC_NINT/2)
+/* Hashing function for the aHash representation.
+** Empirical testing showed that the *37 multiplier
+** (an arbitrary prime)in the hash function provided
+** no fewer collisions than the no-op *1. */
+#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
+
+#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
+
+
+/*
+** A bitmap is an instance of the following structure.
+**
+** This bitmap records the existence of zero or more bits
+** with values between 1 and iSize, inclusive.
+**
+** There are three possible representations of the bitmap.
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
+** bitmap. The least significant bit is bit 1.
+**
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
+**
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
+** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
+** handles up to iDivisor separate values of i. apSub[0] holds
+** values between 1 and iDivisor. apSub[1] holds values between
+** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
+** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
+** to hold deal with values between 1 and iDivisor.
+*/
+struct Bitvec {
+ u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
+ u32 nSet; /* Number of bits that are set - only valid for aHash
+ ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
+ ** this would be 125. */
+ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
+ /* Should >=0 for apSub element. */
+ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
+ /* For a BITVEC_SZ of 512, this would be 34,359,739. */
+ union {
+ BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
+ u32 aHash[BITVEC_NINT]; /* Hash table representation */
+ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
+ } u;
+};
+
+/*
+** Create a new bitmap object able to handle bits between 0 and iSize,
+** inclusive. Return a pointer to the new object. Return NULL if
+** malloc fails.
+*/
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
+ Bitvec *p;
+ assert( sizeof(*p)==BITVEC_SZ );
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->iSize = iSize;
+ }
+ return p;
+}
+
+/*
+** Check to see if the i-th bit is set. Return true or false.
+** If p is NULL (if the bitmap has not been created) or if
+** i is out of range, then return false.
+*/
+SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
+ assert( p!=0 );
+ i--;
+ if( i>=p->iSize ) return 0;
+ while( p->iDivisor ){
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ p = p->u.apSub[bin];
+ if (!p) {
+ return 0;
+ }
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
+ } else{
+ u32 h = BITVEC_HASH(i++);
+ while( p->u.aHash[h] ){
+ if( p->u.aHash[h]==i ) return 1;
+ h = (h+1) % BITVEC_NINT;
+ }
+ return 0;
+ }
+}
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
+ return p!=0 && sqlite3BitvecTestNotNull(p,i);
+}
+
+/*
+** Set the i-th bit. Return 0 on success and an error code if
+** anything goes wrong.
+**
+** This routine might cause sub-bitmaps to be allocated. Failing
+** to get the memory needed to hold the sub-bitmap is the only
+** that can go wrong with an insert, assuming p and i are valid.
+**
+** The calling function must ensure that p is a valid Bitvec object
+** and that the value for "i" is within range of the Bitvec object.
+** Otherwise the behavior is undefined.
+*/
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
+ u32 h;
+ if( p==0 ) return SQLITE_OK;
+ assert( i>0 );
+ assert( i<=p->iSize );
+ i--;
+ while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ if( p->u.apSub[bin]==0 ){
+ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
+ if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT;
+ }
+ p = p->u.apSub[bin];
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
+ return SQLITE_OK;
+ }
+ h = BITVEC_HASH(i++);
+ /* if there wasn't a hash collision, and this doesn't */
+ /* completely fill the hash, then just add it without */
+ /* worrying about sub-dividing and re-hashing. */
+ if( !p->u.aHash[h] ){
+ if (p->nSet<(BITVEC_NINT-1)) {
+ goto bitvec_set_end;
+ } else {
+ goto bitvec_set_rehash;
+ }
+ }
+ /* there was a collision, check to see if it's already */
+ /* in hash, if not, try to find a spot for it */
+ do {
+ if( p->u.aHash[h]==i ) return SQLITE_OK;
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ } while( p->u.aHash[h] );
+ /* we didn't find it in the hash. h points to the first */
+ /* available free spot. check to see if this is going to */
+ /* make our hash too "full". */
+bitvec_set_rehash:
+ if( p->nSet>=BITVEC_MXHASH ){
+ unsigned int j;
+ int rc;
+ u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
+ if( aiValues==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+ memset(p->u.apSub, 0, sizeof(p->u.apSub));
+ p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
+ rc = sqlite3BitvecSet(p, i);
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
+ }
+ sqlite3StackFree(0, aiValues);
+ return rc;
+ }
+ }
+bitvec_set_end:
+ p->nSet++;
+ p->u.aHash[h] = i;
+ return SQLITE_OK;
+}
+
+/*
+** Clear the i-th bit.
+**
+** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
+** that BitvecClear can use to rebuilt its hash table.
+*/
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
+ if( p==0 ) return;
+ assert( i>0 );
+ i--;
+ while( p->iDivisor ){
+ u32 bin = i/p->iDivisor;
+ i = i%p->iDivisor;
+ p = p->u.apSub[bin];
+ if (!p) {
+ return;
+ }
+ }
+ if( p->iSize<=BITVEC_NBIT ){
+ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
+ }else{
+ unsigned int j;
+ u32 *aiValues = pBuf;
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+ memset(p->u.aHash, 0, sizeof(p->u.aHash));
+ p->nSet = 0;
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] && aiValues[j]!=(i+1) ){
+ u32 h = BITVEC_HASH(aiValues[j]-1);
+ p->nSet++;
+ while( p->u.aHash[h] ){
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ }
+ p->u.aHash[h] = aiValues[j];
+ }
+ }
+ }
+}
+
+/*
+** Destroy a bitmap object. Reclaim all memory used.
+*/
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
+ if( p==0 ) return;
+ if( p->iDivisor ){
+ unsigned int i;
+ for(i=0; i<BITVEC_NPTR; i++){
+ sqlite3BitvecDestroy(p->u.apSub[i]);
+ }
+ }
+ sqlite3_free(p);
+}
+
+/*
+** Return the value of the iSize parameter specified when Bitvec *p
+** was created.
+*/
+SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){
+ return p->iSize;
+}
+
+#ifndef SQLITE_UNTESTABLE
+/*
+** Let V[] be an array of unsigned characters sufficient to hold
+** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
+** Then the following macros can be used to set, clear, or test
+** individual bits within V.
+*/
+#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
+#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
+#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
+
+/*
+** This routine runs an extensive test of the Bitvec code.
+**
+** The input is an array of integers that acts as a program
+** to test the Bitvec. The integers are opcodes followed
+** by 0, 1, or 3 operands, depending on the opcode. Another
+** opcode follows immediately after the last operand.
+**
+** There are 6 opcodes numbered from 0 through 5. 0 is the
+** "halt" opcode and causes the test to end.
+**
+** 0 Halt and return the number of errors
+** 1 N S X Set N bits beginning with S and incrementing by X
+** 2 N S X Clear N bits beginning with S and incrementing by X
+** 3 N Set N randomly chosen bits
+** 4 N Clear N randomly chosen bits
+** 5 N S X Set N bits from S increment X in array only, not in bitvec
+**
+** The opcodes 1 through 4 perform set and clear operations are performed
+** on both a Bitvec object and on a linear array of bits obtained from malloc.
+** Opcode 5 works on the linear array only, not on the Bitvec.
+** Opcode 5 is used to deliberately induce a fault in order to
+** confirm that error detection works.
+**
+** At the conclusion of the test the linear array is compared
+** against the Bitvec object. If there are any differences,
+** an error is returned. If they are the same, zero is returned.
+**
+** If a memory allocation error occurs, return -1.
+*/
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
+ Bitvec *pBitvec = 0;
+ unsigned char *pV = 0;
+ int rc = -1;
+ int i, nx, pc, op;
+ void *pTmpSpace;
+
+ /* Allocate the Bitvec to be tested and a linear array of
+ ** bits to act as the reference */
+ pBitvec = sqlite3BitvecCreate( sz );
+ pV = sqlite3MallocZero( (sz+7)/8 + 1 );
+ pTmpSpace = sqlite3_malloc64(BITVEC_SZ);
+ if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end;
+
+ /* NULL pBitvec tests */
+ sqlite3BitvecSet(0, 1);
+ sqlite3BitvecClear(0, 1, pTmpSpace);
+
+ /* Run the program */
+ pc = i = 0;
+ while( (op = aOp[pc])!=0 ){
+ switch( op ){
+ case 1:
+ case 2:
+ case 5: {
+ nx = 4;
+ i = aOp[pc+2] - 1;
+ aOp[pc+2] += aOp[pc+3];
+ break;
+ }
+ case 3:
+ case 4:
+ default: {
+ nx = 2;
+ sqlite3_randomness(sizeof(i), &i);
+ break;
+ }
+ }
+ if( (--aOp[pc+1]) > 0 ) nx = 0;
+ pc += nx;
+ i = (i & 0x7fffffff)%sz;
+ if( (op & 1)!=0 ){
+ SETBIT(pV, (i+1));
+ if( op!=5 ){
+ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
+ }
+ }else{
+ CLEARBIT(pV, (i+1));
+ sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
+ }
+ }
+
+ /* Test to make sure the linear array exactly matches the
+ ** Bitvec object. Start with the assumption that they do
+ ** match (rc==0). Change rc to non-zero if a discrepancy
+ ** is found.
+ */
+ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
+ + sqlite3BitvecTest(pBitvec, 0)
+ + (sqlite3BitvecSize(pBitvec) - sz);
+ for(i=1; i<=sz; i++){
+ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
+ rc = i;
+ break;
+ }
+ }
+
+ /* Free allocated structure */
+bitvec_end:
+ sqlite3_free(pTmpSpace);
+ sqlite3_free(pV);
+ sqlite3BitvecDestroy(pBitvec);
+ return rc;
+}
+#endif /* SQLITE_UNTESTABLE */
+
+/************** End of bitvec.c **********************************************/
+/************** Begin file pcache.c ******************************************/
+/*
+** 2008 August 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements that page cache.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** A complete page cache is an instance of this structure. Every
+** entry in the cache holds a single page of the database file. The
+** btree layer only operates on the cached copy of the database pages.
+**
+** A page cache entry is "clean" if it exactly matches what is currently
+** on disk. A page is "dirty" if it has been modified and needs to be
+** persisted to disk.
+**
+** pDirty, pDirtyTail, pSynced:
+** All dirty pages are linked into the doubly linked list using
+** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
+** such that p was added to the list more recently than p->pDirtyNext.
+** PCache.pDirty points to the first (newest) element in the list and
+** pDirtyTail to the last (oldest).
+**
+** The PCache.pSynced variable is used to optimize searching for a dirty
+** page to eject from the cache mid-transaction. It is better to eject
+** a page that does not require a journal sync than one that does.
+** Therefore, pSynced is maintained so that it *almost* always points
+** to either the oldest page in the pDirty/pDirtyTail list that has a
+** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
+** (so that the right page to eject can be found by following pDirtyPrev
+** pointers).
+*/
+struct PCache {
+ PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
+ PgHdr *pSynced; /* Last synced page in dirty page list */
+ i64 nRefSum; /* Sum of ref counts over all pages */
+ int szCache; /* Configured cache size */
+ int szSpill; /* Size before spilling occurs */
+ int szPage; /* Size of every page in this cache */
+ int szExtra; /* Size of extra space for each page */
+ u8 bPurgeable; /* True if pages are on backing store */
+ u8 eCreate; /* eCreate value for for xFetch() */
+ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
+ void *pStress; /* Argument to xStress */
+ sqlite3_pcache *pCache; /* Pluggable cache module */
+};
+
+/********************************** Test and Debug Logic **********************/
+/*
+** Debug tracing macros. Enable by by changing the "0" to "1" and
+** recompiling.
+**
+** When sqlite3PcacheTrace is 1, single line trace messages are issued.
+** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
+** is displayed for many operations, resulting in a lot of output.
+*/
+#if defined(SQLITE_DEBUG) && 0
+ int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
+ int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
+# define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
+ static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){
+ PgHdr *pPg;
+ unsigned char *a;
+ int j;
+ if( pLower==0 ){
+ printf("%3d: NULL\n", i);
+ }else{
+ pPg = (PgHdr*)pLower->pExtra;
+ printf("%3d: nRef %2lld flgs %02x data ", i, pPg->nRef, pPg->flags);
+ a = (unsigned char *)pLower->pBuf;
+ for(j=0; j<12; j++) printf("%02x", a[j]);
+ printf(" ptr %p\n", pPg);
+ }
+ }
+ static void pcacheDump(PCache *pCache){
+ int N;
+ int i;
+ sqlite3_pcache_page *pLower;
+
+ if( sqlite3PcacheTrace<2 ) return;
+ if( pCache->pCache==0 ) return;
+ N = sqlite3PcachePagecount(pCache);
+ if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
+ for(i=1; i<=N; i++){
+ pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
+ pcachePageTrace(i, pLower);
+ if( pLower && ((PgHdr*)pLower)->pPage==0 ){
+ sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
+ }
+ }
+ }
+#else
+# define pcacheTrace(X)
+# define pcachePageTrace(PGNO, X)
+# define pcacheDump(X)
+#endif
+
+/*
+** Return 1 if pPg is on the dirty list for pCache. Return 0 if not.
+** This routine runs inside of assert() statements only.
+*/
+#if defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
+static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ if( p==pPg ) return 1;
+ }
+ return 0;
+}
+static int pageNotOnDirtyList(PCache *pCache, PgHdr *pPg){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ if( p==pPg ) return 0;
+ }
+ return 1;
+}
+#else
+# define pageOnDirtyList(A,B) 1
+# define pageNotOnDirtyList(A,B) 1
+#endif
+
+/*
+** Check invariants on a PgHdr entry. Return true if everything is OK.
+** Return false if any invariant is violated.
+**
+** This routine is for use inside of assert() statements only. For
+** example:
+**
+** assert( sqlite3PcachePageSanity(pPg) );
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr *pPg){
+ PCache *pCache;
+ assert( pPg!=0 );
+ assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */
+ pCache = pPg->pCache;
+ assert( pCache!=0 ); /* Every page has an associated PCache */
+ if( pPg->flags & PGHDR_CLEAN ){
+ assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
+ assert( pageNotOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirtylist */
+ }else{
+ assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */
+ assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg );
+ assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg );
+ assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg );
+ assert( pageOnDirtyList(pCache, pPg) );
+ }
+ /* WRITEABLE pages must also be DIRTY */
+ if( pPg->flags & PGHDR_WRITEABLE ){
+ assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */
+ }
+ /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
+ ** for example, when using the sqlite3PagerDontWrite() optimization:
+ ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
+ ** (2) Page X moved to freelist, WRITEABLE is cleared
+ ** (3) Page X reused, WRITEABLE is set again
+ ** If NEED_SYNC had been cleared in step 2, then it would not be reset
+ ** in step 3, and page might be written into the database without first
+ ** syncing the rollback journal, which might cause corruption on a power
+ ** loss.
+ **
+ ** Another example is when the database page size is smaller than the
+ ** disk sector size. When any page of a sector is journalled, all pages
+ ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
+ ** in case they are later modified, since all pages in the same sector
+ ** must be journalled and synced before any of those pages can be safely
+ ** written.
+ */
+ return 1;
+}
+#endif /* SQLITE_DEBUG */
+
+
+/********************************** Linked List Management ********************/
+
+/* Allowed values for second argument to pcacheManageDirtyList() */
+#define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
+#define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
+#define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
+
+/*
+** Manage pPage's participation on the dirty list. Bits of the addRemove
+** argument determines what operation to do. The 0x01 bit means first
+** remove pPage from the dirty list. The 0x02 means add pPage back to
+** the dirty list. Doing both moves pPage to the front of the dirty list.
+*/
+static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
+ PCache *p = pPage->pCache;
+
+ pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
+ addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
+ pPage->pgno));
+ if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
+ assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
+ assert( pPage->pDirtyPrev || pPage==p->pDirty );
+
+ /* Update the PCache1.pSynced variable if necessary. */
+ if( p->pSynced==pPage ){
+ p->pSynced = pPage->pDirtyPrev;
+ }
+
+ if( pPage->pDirtyNext ){
+ pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
+ }else{
+ assert( pPage==p->pDirtyTail );
+ p->pDirtyTail = pPage->pDirtyPrev;
+ }
+ if( pPage->pDirtyPrev ){
+ pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
+ }else{
+ /* If there are now no dirty pages in the cache, set eCreate to 2.
+ ** This is an optimization that allows sqlite3PcacheFetch() to skip
+ ** searching for a dirty page to eject from the cache when it might
+ ** otherwise have to. */
+ assert( pPage==p->pDirty );
+ p->pDirty = pPage->pDirtyNext;
+ assert( p->bPurgeable || p->eCreate==2 );
+ if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ assert( p->bPurgeable==0 || p->eCreate==1 );
+ p->eCreate = 2;
+ }
+ }
+ }
+ if( addRemove & PCACHE_DIRTYLIST_ADD ){
+ pPage->pDirtyPrev = 0;
+ pPage->pDirtyNext = p->pDirty;
+ if( pPage->pDirtyNext ){
+ assert( pPage->pDirtyNext->pDirtyPrev==0 );
+ pPage->pDirtyNext->pDirtyPrev = pPage;
+ }else{
+ p->pDirtyTail = pPage;
+ if( p->bPurgeable ){
+ assert( p->eCreate==2 );
+ p->eCreate = 1;
+ }
+ }
+ p->pDirty = pPage;
+
+ /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
+ ** pSynced to point to it. Checking the NEED_SYNC flag is an
+ ** optimization, as if pSynced points to a page with the NEED_SYNC
+ ** flag set sqlite3PcacheFetchStress() searches through all newer
+ ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
+ if( !p->pSynced
+ && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
+ ){
+ p->pSynced = pPage;
+ }
+ }
+ pcacheDump(p);
+}
+
+/*
+** Wrapper around the pluggable caches xUnpin method. If the cache is
+** being used for an in-memory database, this function is a no-op.
+*/
+static void pcacheUnpin(PgHdr *p){
+ if( p->pCache->bPurgeable ){
+ pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
+ sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
+ pcacheDump(p->pCache);
+ }
+}
+
+/*
+** Compute the number of pages of cache requested. p->szCache is the
+** cache size requested by the "PRAGMA cache_size" statement.
+*/
+static int numberOfCachePages(PCache *p){
+ if( p->szCache>=0 ){
+ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
+ ** suggested cache size is set to N. */
+ return p->szCache;
+ }else{
+ i64 n;
+ /* IMPLEMENTATION-OF: R-59858-46238 If the argument N is negative, then the
+ ** number of cache pages is adjusted to be a number of pages that would
+ ** use approximately abs(N*1024) bytes of memory based on the current
+ ** page size. */
+ n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
+ if( n>1000000000 ) n = 1000000000;
+ return (int)n;
+ }
+}
+
+/*************************************************** General Interfaces ******
+**
+** Initialize and shutdown the page cache subsystem. Neither of these
+** functions are threadsafe.
+*/
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void){
+ if( sqlite3GlobalConfig.pcache2.xInit==0 ){
+ /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
+ ** built-in default page cache is used instead of the application defined
+ ** page cache. */
+ sqlite3PCacheSetDefault();
+ assert( sqlite3GlobalConfig.pcache2.xInit!=0 );
+ }
+ return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
+}
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void){
+ if( sqlite3GlobalConfig.pcache2.xShutdown ){
+ /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
+ sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
+ }
+}
+
+/*
+** Return the size in bytes of a PCache object.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); }
+
+/*
+** Create a new PCache object. Storage space to hold the object
+** has already been allocated and is passed in as the p pointer.
+** The caller discovers how much space needs to be allocated by
+** calling sqlite3PcacheSize().
+**
+** szExtra is some extra space allocated for each page. The first
+** 8 bytes of the extra space will be zeroed as the page is allocated,
+** but remaining content will be uninitialized. Though it is opaque
+** to this module, the extra space really ends up being the MemPage
+** structure in the pager.
+*/
+SQLITE_PRIVATE int sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *p /* Preallocated space for the PCache */
+){
+ memset(p, 0, sizeof(PCache));
+ p->szPage = 1;
+ p->szExtra = szExtra;
+ assert( szExtra>=8 ); /* First 8 bytes will be zeroed */
+ p->bPurgeable = bPurgeable;
+ p->eCreate = 2;
+ p->xStress = xStress;
+ p->pStress = pStress;
+ p->szCache = 100;
+ p->szSpill = 1;
+ pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
+ return sqlite3PcacheSetPageSize(p, szPage);
+}
+
+/*
+** Change the page size for PCache object. The caller must ensure that there
+** are no outstanding page references when this function is called.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
+ assert( pCache->nRefSum==0 && pCache->pDirty==0 );
+ if( pCache->szPage ){
+ sqlite3_pcache *pNew;
+ pNew = sqlite3GlobalConfig.pcache2.xCreate(
+ szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
+ pCache->bPurgeable
+ );
+ if( pNew==0 ) return SQLITE_NOMEM_BKPT;
+ sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
+ if( pCache->pCache ){
+ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
+ }
+ pCache->pCache = pNew;
+ pCache->szPage = szPage;
+ pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Try to obtain a page from the cache.
+**
+** This routine returns a pointer to an sqlite3_pcache_page object if
+** such an object is already in cache, or if a new one is created.
+** This routine returns a NULL pointer if the object was not in cache
+** and could not be created.
+**
+** The createFlags should be 0 to check for existing pages and should
+** be 3 (not 1, but 3) to try to create a new page.
+**
+** If the createFlag is 0, then NULL is always returned if the page
+** is not already in the cache. If createFlag is 1, then a new page
+** is created only if that can be done without spilling dirty pages
+** and without exceeding the cache size limit.
+**
+** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
+** initialize the sqlite3_pcache_page object and convert it into a
+** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
+** routines are split this way for performance reasons. When separated
+** they can both (usually) operate without having to push values to
+** the stack on entry and pop them back off on exit, which saves a
+** lot of pushing and popping.
+*/
+SQLITE_PRIVATE sqlite3_pcache_page *sqlite3PcacheFetch(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number to obtain */
+ int createFlag /* If true, create page if it does not exist already */
+){
+ int eCreate;
+ sqlite3_pcache_page *pRes;
+
+ assert( pCache!=0 );
+ assert( pCache->pCache!=0 );
+ assert( createFlag==3 || createFlag==0 );
+ assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
+
+ /* eCreate defines what to do if the page does not exist.
+ ** 0 Do not allocate a new page. (createFlag==0)
+ ** 1 Allocate a new page if doing so is inexpensive.
+ ** (createFlag==1 AND bPurgeable AND pDirty)
+ ** 2 Allocate a new page even it doing so is difficult.
+ ** (createFlag==1 AND !(bPurgeable AND pDirty)
+ */
+ eCreate = createFlag & pCache->eCreate;
+ assert( eCreate==0 || eCreate==1 || eCreate==2 );
+ assert( createFlag==0 || pCache->eCreate==eCreate );
+ assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
+ pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
+ pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno,
+ createFlag?" create":"",pRes));
+ pcachePageTrace(pgno, pRes);
+ return pRes;
+}
+
+/*
+** If the sqlite3PcacheFetch() routine is unable to allocate a new
+** page because no clean pages are available for reuse and the cache
+** size limit has been reached, then this routine can be invoked to
+** try harder to allocate a page. This routine might invoke the stress
+** callback to spill dirty pages to the journal. It will then try to
+** allocate the new page and will only fail to allocate a new page on
+** an OOM error.
+**
+** This routine should be invoked only after sqlite3PcacheFetch() fails.
+*/
+SQLITE_PRIVATE int sqlite3PcacheFetchStress(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number to obtain */
+ sqlite3_pcache_page **ppPage /* Write result here */
+){
+ PgHdr *pPg;
+ if( pCache->eCreate==2 ) return 0;
+
+ if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
+ /* Find a dirty page to write-out and recycle. First try to find a
+ ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
+ ** cleared), but if that is not possible settle for any other
+ ** unreferenced dirty page.
+ **
+ ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
+ ** flag is currently referenced, then the following may leave pSynced
+ ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
+ ** cleared). This is Ok, as pSynced is just an optimization. */
+ for(pPg=pCache->pSynced;
+ pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
+ pPg=pPg->pDirtyPrev
+ );
+ pCache->pSynced = pPg;
+ if( !pPg ){
+ for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
+ }
+ if( pPg ){
+ int rc;
+#ifdef SQLITE_LOG_CACHE_SPILL
+ sqlite3_log(SQLITE_FULL,
+ "spill page %d making room for %d - cache used: %d/%d",
+ pPg->pgno, pgno,
+ sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
+ numberOfCachePages(pCache));
+#endif
+ pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
+ rc = pCache->xStress(pCache->pStress, pPg);
+ pcacheDump(pCache);
+ if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ }
+ *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
+ return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
+}
+
+/*
+** This is a helper routine for sqlite3PcacheFetchFinish()
+**
+** In the uncommon case where the page being fetched has not been
+** initialized, this routine is invoked to do the initialization.
+** This routine is broken out into a separate function since it
+** requires extra stack manipulation that can be avoided in the common
+** case.
+*/
+static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number obtained */
+ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
+){
+ PgHdr *pPgHdr;
+ assert( pPage!=0 );
+ pPgHdr = (PgHdr*)pPage->pExtra;
+ assert( pPgHdr->pPage==0 );
+ memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
+ pPgHdr->pPage = pPage;
+ pPgHdr->pData = pPage->pBuf;
+ pPgHdr->pExtra = (void *)&pPgHdr[1];
+ memset(pPgHdr->pExtra, 0, 8);
+ pPgHdr->pCache = pCache;
+ pPgHdr->pgno = pgno;
+ pPgHdr->flags = PGHDR_CLEAN;
+ return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
+}
+
+/*
+** This routine converts the sqlite3_pcache_page object returned by
+** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
+** must be called after sqlite3PcacheFetch() in order to get a usable
+** result.
+*/
+SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish(
+ PCache *pCache, /* Obtain the page from this cache */
+ Pgno pgno, /* Page number obtained */
+ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
+){
+ PgHdr *pPgHdr;
+
+ assert( pPage!=0 );
+ pPgHdr = (PgHdr *)pPage->pExtra;
+
+ if( !pPgHdr->pPage ){
+ return pcacheFetchFinishWithInit(pCache, pgno, pPage);
+ }
+ pCache->nRefSum++;
+ pPgHdr->nRef++;
+ assert( sqlite3PcachePageSanity(pPgHdr) );
+ return pPgHdr;
+}
+
+/*
+** Decrement the reference count on a page. If the page is clean and the
+** reference count drops to 0, then it is made eligible for recycling.
+*/
+SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
+ assert( p->nRef>0 );
+ p->pCache->nRefSum--;
+ if( (--p->nRef)==0 ){
+ if( p->flags&PGHDR_CLEAN ){
+ pcacheUnpin(p);
+ }else{
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
+ assert( sqlite3PcachePageSanity(p) );
+ }
+ }
+}
+
+/*
+** Increase the reference count of a supplied page by 1.
+*/
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){
+ assert(p->nRef>0);
+ assert( sqlite3PcachePageSanity(p) );
+ p->nRef++;
+ p->pCache->nRefSum++;
+}
+
+/*
+** Drop a page from the cache. There must be exactly one reference to the
+** page. This function deletes that reference, so after it returns the
+** page pointed to by p is invalid.
+*/
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){
+ assert( p->nRef==1 );
+ assert( sqlite3PcachePageSanity(p) );
+ if( p->flags&PGHDR_DIRTY ){
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
+ }
+ p->pCache->nRefSum--;
+ sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
+}
+
+/*
+** Make sure the page is marked as dirty. If it isn't dirty already,
+** make it so.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){
+ assert( p->nRef>0 );
+ assert( sqlite3PcachePageSanity(p) );
+ if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/
+ p->flags &= ~PGHDR_DONT_WRITE;
+ if( p->flags & PGHDR_CLEAN ){
+ p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
+ pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
+ assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
+ assert( sqlite3PcachePageSanity(p) );
+ }
+ assert( sqlite3PcachePageSanity(p) );
+ }
+}
+
+/*
+** Make sure the page is marked as clean. If it isn't clean already,
+** make it so.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
+ assert( sqlite3PcachePageSanity(p) );
+ assert( (p->flags & PGHDR_DIRTY)!=0 );
+ assert( (p->flags & PGHDR_CLEAN)==0 );
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
+ p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
+ p->flags |= PGHDR_CLEAN;
+ pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
+ assert( sqlite3PcachePageSanity(p) );
+ if( p->nRef==0 ){
+ pcacheUnpin(p);
+ }
+}
+
+/*
+** Make every page in the cache clean.
+*/
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){
+ PgHdr *p;
+ pcacheTrace(("%p.CLEAN-ALL\n",pCache));
+ while( (p = pCache->pDirty)!=0 ){
+ sqlite3PcacheMakeClean(p);
+ }
+}
+
+/*
+** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClearWritable(PCache *pCache){
+ PgHdr *p;
+ pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
+ }
+ pCache->pSynced = pCache->pDirtyTail;
+}
+
+/*
+** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->flags &= ~PGHDR_NEED_SYNC;
+ }
+ pCache->pSynced = pCache->pDirtyTail;
+}
+
+/*
+** Change the page number of page p to newPgno.
+*/
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
+ PCache *pCache = p->pCache;
+ sqlite3_pcache_page *pOther;
+ assert( p->nRef>0 );
+ assert( newPgno>0 );
+ assert( sqlite3PcachePageSanity(p) );
+ pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
+ pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0);
+ if( pOther ){
+ PgHdr *pXPage = (PgHdr*)pOther->pExtra;
+ assert( pXPage->nRef==0 );
+ pXPage->nRef++;
+ pCache->nRefSum++;
+ sqlite3PcacheDrop(pXPage);
+ }
+ sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
+ p->pgno = newPgno;
+ if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
+ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
+ assert( sqlite3PcachePageSanity(p) );
+ }
+}
+
+/*
+** Drop every cache entry whose page number is greater than "pgno". The
+** caller must ensure that there are no outstanding references to any pages
+** other than page 1 with a page number greater than pgno.
+**
+** If there is a reference to page 1 and the pgno parameter passed to this
+** function is 0, then the data area associated with page 1 is zeroed, but
+** the page object is not dropped.
+*/
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
+ if( pCache->pCache ){
+ PgHdr *p;
+ PgHdr *pNext;
+ pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
+ for(p=pCache->pDirty; p; p=pNext){
+ pNext = p->pDirtyNext;
+ /* This routine never gets call with a positive pgno except right
+ ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
+ ** it must be that pgno==0.
+ */
+ assert( p->pgno>0 );
+ if( p->pgno>pgno ){
+ assert( p->flags&PGHDR_DIRTY );
+ sqlite3PcacheMakeClean(p);
+ }
+ }
+ if( pgno==0 && pCache->nRefSum ){
+ sqlite3_pcache_page *pPage1;
+ pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
+ if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because
+ ** pCache->nRefSum>0 */
+ memset(pPage1->pBuf, 0, pCache->szPage);
+ pgno = 1;
+ }
+ }
+ sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
+ }
+}
+
+/*
+** Close a cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){
+ assert( pCache->pCache!=0 );
+ pcacheTrace(("%p.CLOSE\n",pCache));
+ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
+}
+
+/*
+** Discard the contents of the cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){
+ sqlite3PcacheTruncate(pCache, 0);
+}
+
+/*
+** Merge two lists of pages connected by pDirty and in pgno order.
+** Do not bother fixing the pDirtyPrev pointers.
+*/
+static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
+ PgHdr result, *pTail;
+ pTail = &result;
+ assert( pA!=0 && pB!=0 );
+ for(;;){
+ if( pA->pgno<pB->pgno ){
+ pTail->pDirty = pA;
+ pTail = pA;
+ pA = pA->pDirty;
+ if( pA==0 ){
+ pTail->pDirty = pB;
+ break;
+ }
+ }else{
+ pTail->pDirty = pB;
+ pTail = pB;
+ pB = pB->pDirty;
+ if( pB==0 ){
+ pTail->pDirty = pA;
+ break;
+ }
+ }
+ }
+ return result.pDirty;
+}
+
+/*
+** Sort the list of pages in ascending order by pgno. Pages are
+** connected by pDirty pointers. The pDirtyPrev pointers are
+** corrupted by this sort.
+**
+** Since there cannot be more than 2^31 distinct pages in a database,
+** there cannot be more than 31 buckets required by the merge sorter.
+** One extra bucket is added to catch overflow in case something
+** ever changes to make the previous sentence incorrect.
+*/
+#define N_SORT_BUCKET 32
+static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
+ PgHdr *a[N_SORT_BUCKET], *p;
+ int i;
+ memset(a, 0, sizeof(a));
+ while( pIn ){
+ p = pIn;
+ pIn = p->pDirty;
+ p->pDirty = 0;
+ for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
+ if( a[i]==0 ){
+ a[i] = p;
+ break;
+ }else{
+ p = pcacheMergeDirtyList(a[i], p);
+ a[i] = 0;
+ }
+ }
+ if( NEVER(i==N_SORT_BUCKET-1) ){
+ /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
+ ** the input list. But that is impossible.
+ */
+ a[i] = pcacheMergeDirtyList(a[i], p);
+ }
+ }
+ p = a[0];
+ for(i=1; i<N_SORT_BUCKET; i++){
+ if( a[i]==0 ) continue;
+ p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
+ }
+ return p;
+}
+
+/*
+** Return a list of all dirty pages in the cache, sorted by page number.
+*/
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
+ PgHdr *p;
+ for(p=pCache->pDirty; p; p=p->pDirtyNext){
+ p->pDirty = p->pDirtyNext;
+ }
+ return pcacheSortDirtyList(pCache->pDirty);
+}
+
+/*
+** Return the total number of references to all pages held by the cache.
+**
+** This is not the total number of pages referenced, but the sum of the
+** reference count for all pages.
+*/
+SQLITE_PRIVATE i64 sqlite3PcacheRefCount(PCache *pCache){
+ return pCache->nRefSum;
+}
+
+/*
+** Return the number of references to the page supplied as an argument.
+*/
+SQLITE_PRIVATE i64 sqlite3PcachePageRefcount(PgHdr *p){
+ return p->nRef;
+}
+
+/*
+** Return the total number of pages in the cache.
+*/
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){
+ assert( pCache->pCache!=0 );
+ return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
+}
+
+#ifdef SQLITE_TEST
+/*
+** Get the suggested cache-size value.
+*/
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){
+ return numberOfCachePages(pCache);
+}
+#endif
+
+/*
+** Set the suggested cache-size value.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
+ assert( pCache->pCache!=0 );
+ pCache->szCache = mxPage;
+ sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
+ numberOfCachePages(pCache));
+}
+
+/*
+** Set the suggested cache-spill value. Make no changes if if the
+** argument is zero. Return the effective cache-spill size, which will
+** be the larger of the szSpill and szCache.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
+ int res;
+ assert( p->pCache!=0 );
+ if( mxPage ){
+ if( mxPage<0 ){
+ mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
+ }
+ p->szSpill = mxPage;
+ }
+ res = numberOfCachePages(p);
+ if( res<p->szSpill ) res = p->szSpill;
+ return res;
+}
+
+/*
+** Free up as much memory as possible from the page cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
+ assert( pCache->pCache!=0 );
+ sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
+}
+
+/*
+** Return the size of the header added by this middleware layer
+** in the page-cache hierarchy.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
+
+/*
+** Return the number of dirty pages currently in the cache, as a percentage
+** of the configured cache size.
+*/
+SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){
+ PgHdr *pDirty;
+ int nDirty = 0;
+ int nCache = numberOfCachePages(pCache);
+ for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
+ return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
+}
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+/*
+** Return true if there are one or more dirty pages in the cache. Else false.
+*/
+SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache){
+ return (pCache->pDirty!=0);
+}
+#endif
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/*
+** For all dirty pages currently in the cache, invoke the specified
+** callback. This is only used if the SQLITE_CHECK_PAGES macro is
+** defined.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
+ PgHdr *pDirty;
+ for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
+ xIter(pDirty);
+ }
+}
+#endif
+
+/************** End of pcache.c **********************************************/
+/************** Begin file pcache1.c *****************************************/
+/*
+** 2008 November 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements the default page cache implementation (the
+** sqlite3_pcache interface). It also contains part of the implementation
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
+** If the default page cache implementation is overridden, then neither of
+** these two features are available.
+**
+** A Page cache line looks like this:
+**
+** -------------------------------------------------------------
+** | database page content | PgHdr1 | MemPage | PgHdr |
+** -------------------------------------------------------------
+**
+** The database page content is up front (so that buffer overreads tend to
+** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
+** is the extension added by the btree.c module containing information such
+** as the database page number and how that database page is used. PgHdr
+** is added by the pcache.c layer and contains information used to keep track
+** of which pages are "dirty". PgHdr1 is an extension added by this
+** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
+** PgHdr1 contains information needed to look up a page by its page number.
+** The superclass sqlite3_pcache_page.pBuf points to the start of the
+** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
+**
+** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
+** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
+** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
+** size can vary according to architecture, compile-time options, and
+** SQLite library version number.
+**
+** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER
+** was defined, then the page content would be held in a separate memory
+** allocation from the PgHdr1. This was intended to avoid clownshoe memory
+** allocations. However, the btree layer needs a small (16-byte) overrun
+** area after the page content buffer. The header serves as that overrun
+** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid
+** any possibility of a memory error.
+**
+** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
+** with this module. Information is passed back and forth as PgHdr1 pointers.
+**
+** The pcache.c and pager.c modules deal pointers to PgHdr objects.
+** The btree.c module deals with pointers to MemPage objects.
+**
+** SOURCE OF PAGE CACHE MEMORY:
+**
+** Memory for a page might come from any of three sources:
+**
+** (1) The general-purpose memory allocator - sqlite3Malloc()
+** (2) Global page-cache memory provided using sqlite3_config() with
+** SQLITE_CONFIG_PAGECACHE.
+** (3) PCache-local bulk allocation.
+**
+** The third case is a chunk of heap memory (defaulting to 100 pages worth)
+** that is allocated when the page cache is created. The size of the local
+** bulk allocation can be adjusted using
+**
+** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
+**
+** If N is positive, then N pages worth of memory are allocated using a single
+** sqlite3Malloc() call and that memory is used for the first N pages allocated.
+** Or if N is negative, then -1024*N bytes of memory are allocated and used
+** for as many pages as can be accommodated.
+**
+** Only one of (2) or (3) can be used. Once the memory available to (2) or
+** (3) is exhausted, subsequent allocations fail over to the general-purpose
+** memory allocator (1).
+**
+** Earlier versions of SQLite used only methods (1) and (2). But experiments
+** show that method (3) with N==100 provides about a 5% performance boost for
+** common workloads.
+*/
+/* #include "sqliteInt.h" */
+
+typedef struct PCache1 PCache1;
+typedef struct PgHdr1 PgHdr1;
+typedef struct PgFreeslot PgFreeslot;
+typedef struct PGroup PGroup;
+
+/*
+** Each cache entry is represented by an instance of the following
+** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
+** directly before this structure and is used to cache the page content.
+**
+** When reading a corrupt database file, it is possible that SQLite might
+** read a few bytes (no more than 16 bytes) past the end of the page buffer.
+** It will only read past the end of the page buffer, never write. This
+** object is positioned immediately after the page buffer to serve as an
+** overrun area, so that overreads are harmless.
+**
+** Variables isBulkLocal and isAnchor were once type "u8". That works,
+** but causes a 2-byte gap in the structure for most architectures (since
+** pointers must be either 4 or 8-byte aligned). As this structure is located
+** in memory directly after the associated page data, if the database is
+** corrupt, code at the b-tree layer may overread the page buffer and
+** read part of this structure before the corruption is detected. This
+** can cause a valgrind error if the uninitialized gap is accessed. Using u16
+** ensures there is no such gap, and therefore no bytes of uninitialized
+** memory in the structure.
+**
+** The pLruNext and pLruPrev pointers form a double-linked circular list
+** of all pages that are unpinned. The PGroup.lru element (which should be
+** the only element on the list with PgHdr1.isAnchor set to 1) forms the
+** beginning and the end of the list.
+*/
+struct PgHdr1 {
+ sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
+ unsigned int iKey; /* Key value (page number) */
+ u16 isBulkLocal; /* This page from bulk local storage */
+ u16 isAnchor; /* This is the PGroup.lru element */
+ PgHdr1 *pNext; /* Next in hash table chain */
+ PCache1 *pCache; /* Cache that currently owns this page */
+ PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
+ /* NB: pLruPrev is only valid if pLruNext!=0 */
+};
+
+/*
+** A page is pinned if it is not on the LRU list. To be "pinned" means
+** that the page is in active use and must not be deallocated.
+*/
+#define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
+#define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
+
+/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
+** of one or more PCaches that are able to recycle each other's unpinned
+** pages when they are under memory pressure. A PGroup is an instance of
+** the following object.
+**
+** This page cache implementation works in one of two modes:
+**
+** (1) Every PCache is the sole member of its own PGroup. There is
+** one PGroup per PCache.
+**
+** (2) There is a single global PGroup that all PCaches are a member
+** of.
+**
+** Mode 1 uses more memory (since PCache instances are not able to rob
+** unused pages from other PCaches) but it also operates without a mutex,
+** and is therefore often faster. Mode 2 requires a mutex in order to be
+** threadsafe, but recycles pages more efficiently.
+**
+** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
+** PGroup which is the pcache1.grp global variable and its mutex is
+** SQLITE_MUTEX_STATIC_LRU.
+*/
+struct PGroup {
+ sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
+ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
+ unsigned int nMinPage; /* Sum of nMin for purgeable caches */
+ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
+ unsigned int nPurgeable; /* Number of purgeable pages allocated */
+ PgHdr1 lru; /* The beginning and end of the LRU list */
+};
+
+/* Each page cache is an instance of the following object. Every
+** open database file (including each in-memory database and each
+** temporary or transient database) has a single page cache which
+** is an instance of this object.
+**
+** Pointers to structures of this type are cast and returned as
+** opaque sqlite3_pcache* handles.
+*/
+struct PCache1 {
+ /* Cache configuration parameters. Page size (szPage) and the purgeable
+ ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
+ ** cache is created and are never changed thereafter. nMax may be
+ ** modified at any time by a call to the pcache1Cachesize() method.
+ ** The PGroup mutex must be held when accessing nMax.
+ */
+ PGroup *pGroup; /* PGroup this cache belongs to */
+ unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
+ int szPage; /* Size of database content section */
+ int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
+ int szAlloc; /* Total size of one pcache line */
+ int bPurgeable; /* True if cache is purgeable */
+ unsigned int nMin; /* Minimum number of pages reserved */
+ unsigned int nMax; /* Configured "cache_size" value */
+ unsigned int n90pct; /* nMax*9/10 */
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */
+ unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/
+
+ /* Hash table of all pages. The following variables may only be accessed
+ ** when the accessor is holding the PGroup mutex.
+ */
+ unsigned int nRecyclable; /* Number of pages in the LRU list */
+ unsigned int nPage; /* Total number of pages in apHash */
+ unsigned int nHash; /* Number of slots in apHash[] */
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */
+ PgHdr1 *pFree; /* List of unused pcache-local pages */
+ void *pBulk; /* Bulk memory used by pcache-local */
+};
+
+/*
+** Free slots in the allocator used to divide up the global page cache
+** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
+*/
+struct PgFreeslot {
+ PgFreeslot *pNext; /* Next free slot */
+};
+
+/*
+** Global data used by this cache.
+*/
+static SQLITE_WSD struct PCacheGlobal {
+ PGroup grp; /* The global PGroup for mode (2) */
+
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
+ ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
+ ** fixed at sqlite3_initialize() time and do not require mutex protection.
+ ** The nFreeSlot and pFree values do require mutex protection.
+ */
+ int isInit; /* True if initialized */
+ int separateCache; /* Use a new PGroup for each PCache */
+ int nInitPage; /* Initial bulk allocation size */
+ int szSlot; /* Size of each free slot */
+ int nSlot; /* The number of pcache slots */
+ int nReserve; /* Try to keep nFreeSlot above this */
+ void *pStart, *pEnd; /* Bounds of global page cache memory */
+ /* Above requires no mutex. Use mutex below for variable that follow. */
+ sqlite3_mutex *mutex; /* Mutex for accessing the following: */
+ PgFreeslot *pFree; /* Free page blocks */
+ int nFreeSlot; /* Number of unused pcache slots */
+ /* The following value requires a mutex to change. We skip the mutex on
+ ** reading because (1) most platforms read a 32-bit integer atomically and
+ ** (2) even if an incorrect value is read, no great harm is done since this
+ ** is really just an optimization. */
+ int bUnderPressure; /* True if low on PAGECACHE memory */
+} pcache1_g;
+
+/*
+** All code in this file should access the global structure above via the
+** alias "pcache1". This ensures that the WSD emulation is used when
+** compiling for systems that do not support real WSD.
+*/
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
+
+/*
+** Macros to enter and leave the PCache LRU mutex.
+*/
+#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
+# define pcache1EnterMutex(X) assert((X)->mutex==0)
+# define pcache1LeaveMutex(X) assert((X)->mutex==0)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
+#else
+# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
+# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
+#endif
+
+/******************************************************************************/
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
+
+
+/*
+** This function is called during initialization if a static buffer is
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large
+** enough to contain 'n' buffers of 'sz' bytes each.
+**
+** This routine is called from sqlite3_initialize() and so it is guaranteed
+** to be serialized already. There is no need for further mutexing.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
+ if( pcache1.isInit ){
+ PgFreeslot *p;
+ if( pBuf==0 ) sz = n = 0;
+ if( n==0 ) sz = 0;
+ sz = ROUNDDOWN8(sz);
+ pcache1.szSlot = sz;
+ pcache1.nSlot = pcache1.nFreeSlot = n;
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
+ pcache1.pStart = pBuf;
+ pcache1.pFree = 0;
+ pcache1.bUnderPressure = 0;
+ while( n-- ){
+ p = (PgFreeslot*)pBuf;
+ p->pNext = pcache1.pFree;
+ pcache1.pFree = p;
+ pBuf = (void*)&((char*)pBuf)[sz];
+ }
+ pcache1.pEnd = pBuf;
+ }
+}
+
+/*
+** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
+** true if pCache->pFree ends up containing one or more free pages.
+*/
+static int pcache1InitBulk(PCache1 *pCache){
+ i64 szBulk;
+ char *zBulk;
+ if( pcache1.nInitPage==0 ) return 0;
+ /* Do not bother with a bulk allocation if the cache size very small */
+ if( pCache->nMax<3 ) return 0;
+ sqlite3BeginBenignMalloc();
+ if( pcache1.nInitPage>0 ){
+ szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
+ }else{
+ szBulk = -1024 * (i64)pcache1.nInitPage;
+ }
+ if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
+ szBulk = pCache->szAlloc*(i64)pCache->nMax;
+ }
+ zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
+ sqlite3EndBenignMalloc();
+ if( zBulk ){
+ int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
+ do{
+ PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
+ pX->page.pBuf = zBulk;
+ pX->page.pExtra = &pX[1];
+ pX->isBulkLocal = 1;
+ pX->isAnchor = 0;
+ pX->pNext = pCache->pFree;
+ pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
+ pCache->pFree = pX;
+ zBulk += pCache->szAlloc;
+ }while( --nBulk );
+ }
+ return pCache->pFree!=0;
+}
+
+/*
+** Malloc function used within this file to allocate space from the buffer
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
+** such buffer exists or there is no space left in it, this function falls
+** back to sqlite3Malloc().
+**
+** Multiple threads can run this routine at the same time. Global variables
+** in pcache1 need to be protected via mutex.
+*/
+static void *pcache1Alloc(int nByte){
+ void *p = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ if( nByte<=pcache1.szSlot ){
+ sqlite3_mutex_enter(pcache1.mutex);
+ p = (PgHdr1 *)pcache1.pFree;
+ if( p ){
+ pcache1.pFree = pcache1.pFree->pNext;
+ pcache1.nFreeSlot--;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot>=0 );
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
+ }
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+ if( p==0 ){
+ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
+ ** it from sqlite3Malloc instead.
+ */
+ p = sqlite3Malloc(nByte);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ if( p ){
+ int sz = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ }
+ return p;
+}
+
+/*
+** Free an allocated buffer obtained from pcache1Alloc().
+*/
+static void pcache1Free(void *p){
+ if( p==0 ) return;
+ if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
+ PgFreeslot *pSlot;
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
+ pSlot = (PgFreeslot*)p;
+ pSlot->pNext = pcache1.pFree;
+ pcache1.pFree = pSlot;
+ pcache1.nFreeSlot++;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot<=pcache1.nSlot );
+ sqlite3_mutex_leave(pcache1.mutex);
+ }else{
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ {
+ int nFreed = 0;
+ nFreed = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3_free(p);
+ }
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** Return the size of a pcache allocation
+*/
+static int pcache1MemSize(void *p){
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){
+ return pcache1.szSlot;
+ }else{
+ int iSize;
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ iSize = sqlite3MallocSize(p);
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ return iSize;
+ }
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+/*
+** Allocate a new page object initially associated with cache pCache.
+*/
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
+ PgHdr1 *p = 0;
+ void *pPg;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
+ assert( pCache->pFree!=0 );
+ p = pCache->pFree;
+ pCache->pFree = p->pNext;
+ p->pNext = 0;
+ }else{
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ /* The group mutex must be released before pcache1Alloc() is called. This
+ ** is because it might call sqlite3_release_memory(), which assumes that
+ ** this mutex is not held. */
+ assert( pcache1.separateCache==0 );
+ assert( pCache->pGroup==&pcache1.grp );
+ pcache1LeaveMutex(pCache->pGroup);
+#endif
+ if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
+ pPg = pcache1Alloc(pCache->szAlloc);
+ if( benignMalloc ){ sqlite3EndBenignMalloc(); }
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ pcache1EnterMutex(pCache->pGroup);
+#endif
+ if( pPg==0 ) return 0;
+ p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
+ p->page.pBuf = pPg;
+ p->page.pExtra = &p[1];
+ p->isBulkLocal = 0;
+ p->isAnchor = 0;
+ p->pLruPrev = 0; /* Initializing this saves a valgrind error */
+ }
+ (*pCache->pnPurgeable)++;
+ return p;
+}
+
+/*
+** Free a page object allocated by pcache1AllocPage().
+*/
+static void pcache1FreePage(PgHdr1 *p){
+ PCache1 *pCache;
+ assert( p!=0 );
+ pCache = p->pCache;
+ assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
+ if( p->isBulkLocal ){
+ p->pNext = pCache->pFree;
+ pCache->pFree = p;
+ }else{
+ pcache1Free(p->page.pBuf);
+ }
+ (*pCache->pnPurgeable)--;
+}
+
+/*
+** Malloc function used by SQLite to obtain space from the buffer configured
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
+** exists, this function falls back to sqlite3Malloc().
+*/
+SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){
+ assert( sz<=65536+8 ); /* These allocations are never very large */
+ return pcache1Alloc(sz);
+}
+
+/*
+** Free an allocated buffer obtained from sqlite3PageMalloc().
+*/
+SQLITE_PRIVATE void sqlite3PageFree(void *p){
+ pcache1Free(p);
+}
+
+
+/*
+** Return true if it desirable to avoid allocating a new page cache
+** entry.
+**
+** If memory was allocated specifically to the page cache using
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
+** it is desirable to avoid allocating a new page cache entry because
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
+** for all page cache needs and we should not need to spill the
+** allocation onto the heap.
+**
+** Or, the heap is used for all page cache memory but the heap is
+** under memory pressure, then again it is desirable to avoid
+** allocating a new page cache entry in order to avoid stressing
+** the heap even further.
+*/
+static int pcache1UnderMemoryPressure(PCache1 *pCache){
+ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
+ return pcache1.bUnderPressure;
+ }else{
+ return sqlite3HeapNearlyFull();
+ }
+}
+
+/******************************************************************************/
+/******** General Implementation Functions ************************************/
+
+/*
+** This function is used to resize the hash table used by the cache passed
+** as the first argument.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1ResizeHash(PCache1 *p){
+ PgHdr1 **apNew;
+ unsigned int nNew;
+ unsigned int i;
+
+ assert( sqlite3_mutex_held(p->pGroup->mutex) );
+
+ nNew = p->nHash*2;
+ if( nNew<256 ){
+ nNew = 256;
+ }
+
+ pcache1LeaveMutex(p->pGroup);
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); }
+ apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
+ if( p->nHash ){ sqlite3EndBenignMalloc(); }
+ pcache1EnterMutex(p->pGroup);
+ if( apNew ){
+ for(i=0; i<p->nHash; i++){
+ PgHdr1 *pPage;
+ PgHdr1 *pNext = p->apHash[i];
+ while( (pPage = pNext)!=0 ){
+ unsigned int h = pPage->iKey % nNew;
+ pNext = pPage->pNext;
+ pPage->pNext = apNew[h];
+ apNew[h] = pPage;
+ }
+ }
+ sqlite3_free(p->apHash);
+ p->apHash = apNew;
+ p->nHash = nNew;
+ }
+}
+
+/*
+** This function is used internally to remove the page pPage from the
+** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
+** LRU list, then this function is a no-op.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
+ assert( pPage!=0 );
+ assert( PAGE_IS_UNPINNED(pPage) );
+ assert( pPage->pLruNext );
+ assert( pPage->pLruPrev );
+ assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
+ pPage->pLruPrev->pLruNext = pPage->pLruNext;
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev;
+ pPage->pLruNext = 0;
+ /* pPage->pLruPrev = 0;
+ ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
+ assert( pPage->isAnchor==0 );
+ assert( pPage->pCache->pGroup->lru.isAnchor==1 );
+ pPage->pCache->nRecyclable--;
+ return pPage;
+}
+
+
+/*
+** Remove the page supplied as an argument from the hash table
+** (PCache1.apHash structure) that it is currently stored in.
+** Also free the page if freePage is true.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
+ unsigned int h;
+ PCache1 *pCache = pPage->pCache;
+ PgHdr1 **pp;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ h = pPage->iKey % pCache->nHash;
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
+ *pp = (*pp)->pNext;
+
+ pCache->nPage--;
+ if( freeFlag ) pcache1FreePage(pPage);
+}
+
+/*
+** If there are currently more than nMaxPage pages allocated, try
+** to recycle pages to reduce the number allocated to nMaxPage.
+*/
+static void pcache1EnforceMaxPage(PCache1 *pCache){
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *p;
+ assert( sqlite3_mutex_held(pGroup->mutex) );
+ while( pGroup->nPurgeable>pGroup->nMaxPage
+ && (p=pGroup->lru.pLruPrev)->isAnchor==0
+ ){
+ assert( p->pCache->pGroup==pGroup );
+ assert( PAGE_IS_UNPINNED(p) );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ if( pCache->nPage==0 && pCache->pBulk ){
+ sqlite3_free(pCache->pBulk);
+ pCache->pBulk = pCache->pFree = 0;
+ }
+}
+
+/*
+** Discard all pages from cache pCache with a page number (key value)
+** greater than or equal to iLimit. Any pinned pages that meet this
+** criteria are unpinned before they are discarded.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1TruncateUnsafe(
+ PCache1 *pCache, /* The cache to truncate */
+ unsigned int iLimit /* Drop pages with this pgno or larger */
+){
+ TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
+ unsigned int h, iStop;
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ assert( pCache->iMaxKey >= iLimit );
+ assert( pCache->nHash > 0 );
+ if( pCache->iMaxKey - iLimit < pCache->nHash ){
+ /* If we are just shaving the last few pages off the end of the
+ ** cache, then there is no point in scanning the entire hash table.
+ ** Only scan those hash slots that might contain pages that need to
+ ** be removed. */
+ h = iLimit % pCache->nHash;
+ iStop = pCache->iMaxKey % pCache->nHash;
+ TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
+ }else{
+ /* This is the general case where many pages are being removed.
+ ** It is necessary to scan the entire hash table */
+ h = pCache->nHash/2;
+ iStop = h - 1;
+ }
+ for(;;){
+ PgHdr1 **pp;
+ PgHdr1 *pPage;
+ assert( h<pCache->nHash );
+ pp = &pCache->apHash[h];
+ while( (pPage = *pp)!=0 ){
+ if( pPage->iKey>=iLimit ){
+ pCache->nPage--;
+ *pp = pPage->pNext;
+ if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
+ pcache1FreePage(pPage);
+ }else{
+ pp = &pPage->pNext;
+ TESTONLY( if( nPage>=0 ) nPage++; )
+ }
+ }
+ if( h==iStop ) break;
+ h = (h+1) % pCache->nHash;
+ }
+ assert( nPage<0 || pCache->nPage==(unsigned)nPage );
+}
+
+/******************************************************************************/
+/******** sqlite3_pcache Methods **********************************************/
+
+/*
+** Implementation of the sqlite3_pcache.xInit method.
+*/
+static int pcache1Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit==0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+
+
+ /*
+ ** The pcache1.separateCache variable is true if each PCache has its own
+ ** private PGroup (mode-1). pcache1.separateCache is false if the single
+ ** PGroup in pcache1.grp is used for all page caches (mode-2).
+ **
+ ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
+ **
+ ** * Use a unified cache in single-threaded applications that have
+ ** configured a start-time buffer for use as page-cache memory using
+ ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
+ ** pBuf argument.
+ **
+ ** * Otherwise use separate caches (mode-1)
+ */
+#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
+ pcache1.separateCache = 0;
+#elif SQLITE_THREADSAFE
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0
+ || sqlite3GlobalConfig.bCoreMutex>0;
+#else
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
+#endif
+
+#if SQLITE_THREADSAFE
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
+ pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
+ }
+#endif
+ if( pcache1.separateCache
+ && sqlite3GlobalConfig.nPage!=0
+ && sqlite3GlobalConfig.pPage==0
+ ){
+ pcache1.nInitPage = sqlite3GlobalConfig.nPage;
+ }else{
+ pcache1.nInitPage = 0;
+ }
+ pcache1.grp.mxPinned = 10;
+ pcache1.isInit = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShutdown method.
+** Note that the static mutex allocated in xInit does
+** not need to be freed.
+*/
+static void pcache1Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit!=0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+}
+
+/* forward declaration */
+static void pcache1Destroy(sqlite3_pcache *p);
+
+/*
+** Implementation of the sqlite3_pcache.xCreate method.
+**
+** Allocate a new cache.
+*/
+static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
+ PCache1 *pCache; /* The newly created page cache */
+ PGroup *pGroup; /* The group the new page cache will belong to */
+ int sz; /* Bytes of memory required to allocate the new cache */
+
+ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
+ assert( szExtra < 300 );
+
+ sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
+ pCache = (PCache1 *)sqlite3MallocZero(sz);
+ if( pCache ){
+ if( pcache1.separateCache ){
+ pGroup = (PGroup*)&pCache[1];
+ pGroup->mxPinned = 10;
+ }else{
+ pGroup = &pcache1.grp;
+ }
+ pcache1EnterMutex(pGroup);
+ if( pGroup->lru.isAnchor==0 ){
+ pGroup->lru.isAnchor = 1;
+ pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
+ }
+ pCache->pGroup = pGroup;
+ pCache->szPage = szPage;
+ pCache->szExtra = szExtra;
+ pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
+ pCache->bPurgeable = (bPurgeable ? 1 : 0);
+ pcache1ResizeHash(pCache);
+ if( bPurgeable ){
+ pCache->nMin = 10;
+ pGroup->nMinPage += pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->pnPurgeable = &pGroup->nPurgeable;
+ }else{
+ pCache->pnPurgeable = &pCache->nPurgeableDummy;
+ }
+ pcache1LeaveMutex(pGroup);
+ if( pCache->nHash==0 ){
+ pcache1Destroy((sqlite3_pcache*)pCache);
+ pCache = 0;
+ }
+ }
+ return (sqlite3_pcache *)pCache;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xCachesize method.
+**
+** Configure the cache_size limit for a cache.
+*/
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
+ PCache1 *pCache = (PCache1 *)p;
+ u32 n;
+ assert( nMax>=0 );
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ pcache1EnterMutex(pGroup);
+ n = (u32)nMax;
+ if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
+ n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
+ }
+ pGroup->nMaxPage += (n - pCache->nMax);
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->nMax = n;
+ pCache->n90pct = pCache->nMax*9/10;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShrink method.
+**
+** Free up as much memory as possible.
+*/
+static void pcache1Shrink(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1*)p;
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ unsigned int savedMaxPage;
+ pcache1EnterMutex(pGroup);
+ savedMaxPage = pGroup->nMaxPage;
+ pGroup->nMaxPage = 0;
+ pcache1EnforceMaxPage(pCache);
+ pGroup->nMaxPage = savedMaxPage;
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xPagecount method.
+*/
+static int pcache1Pagecount(sqlite3_pcache *p){
+ int n;
+ PCache1 *pCache = (PCache1*)p;
+ pcache1EnterMutex(pCache->pGroup);
+ n = pCache->nPage;
+ pcache1LeaveMutex(pCache->pGroup);
+ return n;
+}
+
+
+/*
+** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
+** in the header of the pcache1Fetch() procedure.
+**
+** This steps are broken out into a separate procedure because they are
+** usually not needed, and by avoiding the stack initialization required
+** for these steps, the main pcache1Fetch() procedure can run faster.
+*/
+static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
+ PCache1 *pCache,
+ unsigned int iKey,
+ int createFlag
+){
+ unsigned int nPinned;
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *pPage = 0;
+
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
+ assert( pCache->nPage >= pCache->nRecyclable );
+ nPinned = pCache->nPage - pCache->nRecyclable;
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
+ assert( pCache->n90pct == pCache->nMax*9/10 );
+ if( createFlag==1 && (
+ nPinned>=pGroup->mxPinned
+ || nPinned>=pCache->n90pct
+ || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
+ )){
+ return 0;
+ }
+
+ if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
+ assert( pCache->nHash>0 && pCache->apHash );
+
+ /* Step 4. Try to recycle a page. */
+ if( pCache->bPurgeable
+ && !pGroup->lru.pLruPrev->isAnchor
+ && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
+ ){
+ PCache1 *pOther;
+ pPage = pGroup->lru.pLruPrev;
+ assert( PAGE_IS_UNPINNED(pPage) );
+ pcache1RemoveFromHash(pPage, 0);
+ pcache1PinPage(pPage);
+ pOther = pPage->pCache;
+ if( pOther->szAlloc != pCache->szAlloc ){
+ pcache1FreePage(pPage);
+ pPage = 0;
+ }else{
+ pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
+ }
+ }
+
+ /* Step 5. If a usable page buffer has still not been found,
+ ** attempt to allocate a new one.
+ */
+ if( !pPage ){
+ pPage = pcache1AllocPage(pCache, createFlag==1);
+ }
+
+ if( pPage ){
+ unsigned int h = iKey % pCache->nHash;
+ pCache->nPage++;
+ pPage->iKey = iKey;
+ pPage->pNext = pCache->apHash[h];
+ pPage->pCache = pCache;
+ pPage->pLruNext = 0;
+ /* pPage->pLruPrev = 0;
+ ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
+ *(void **)pPage->page.pExtra = 0;
+ pCache->apHash[h] = pPage;
+ if( iKey>pCache->iMaxKey ){
+ pCache->iMaxKey = iKey;
+ }
+ }
+ return pPage;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xFetch method.
+**
+** Fetch a page by key value.
+**
+** Whether or not a new page may be allocated by this function depends on
+** the value of the createFlag argument. 0 means do not allocate a new
+** page. 1 means allocate a new page if space is easily available. 2
+** means to try really hard to allocate a new page.
+**
+** For a non-purgeable cache (a cache used as the storage for an in-memory
+** database) there is really no difference between createFlag 1 and 2. So
+** the calling function (pcache.c) will never have a createFlag of 1 on
+** a non-purgeable cache.
+**
+** There are three different approaches to obtaining space for a page,
+** depending on the value of parameter createFlag (which may be 0, 1 or 2).
+**
+** 1. Regardless of the value of createFlag, the cache is searched for a
+** copy of the requested page. If one is found, it is returned.
+**
+** 2. If createFlag==0 and the page is not already in the cache, NULL is
+** returned.
+**
+** 3. If createFlag is 1, and the page is not already in the cache, then
+** return NULL (do not allocate a new page) if any of the following
+** conditions are true:
+**
+** (a) the number of pages pinned by the cache is greater than
+** PCache1.nMax, or
+**
+** (b) the number of pages pinned by the cache is greater than
+** the sum of nMax for all purgeable caches, less the sum of
+** nMin for all other purgeable caches, or
+**
+** 4. If none of the first three conditions apply and the cache is marked
+** as purgeable, and if one of the following is true:
+**
+** (a) The number of pages allocated for the cache is already
+** PCache1.nMax, or
+**
+** (b) The number of pages allocated for all purgeable caches is
+** already equal to or greater than the sum of nMax for all
+** purgeable caches,
+**
+** (c) The system is under memory pressure and wants to avoid
+** unnecessary pages cache entry allocations
+**
+** then attempt to recycle a page from the LRU list. If it is the right
+** size, return the recycled buffer. Otherwise, free the buffer and
+** proceed to step 5.
+**
+** 5. Otherwise, allocate and return a new page buffer.
+**
+** There are two versions of this routine. pcache1FetchWithMutex() is
+** the general case. pcache1FetchNoMutex() is a faster implementation for
+** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
+** invokes the appropriate routine.
+*/
+static PgHdr1 *pcache1FetchNoMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = 0;
+
+ /* Step 1: Search the hash table for an existing entry. */
+ pPage = pCache->apHash[iKey % pCache->nHash];
+ while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
+
+ /* Step 2: If the page was found in the hash table, then return it.
+ ** If the page was not in the hash table and createFlag is 0, abort.
+ ** Otherwise (page not in hash and createFlag!=0) continue with
+ ** subsequent steps to try to create the page. */
+ if( pPage ){
+ if( PAGE_IS_UNPINNED(pPage) ){
+ return pcache1PinPage(pPage);
+ }else{
+ return pPage;
+ }
+ }else if( createFlag ){
+ /* Steps 3, 4, and 5 implemented by this subroutine */
+ return pcache1FetchStage2(pCache, iKey, createFlag);
+ }else{
+ return 0;
+ }
+}
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+static PgHdr1 *pcache1FetchWithMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage;
+
+ pcache1EnterMutex(pCache->pGroup);
+ pPage = pcache1FetchNoMutex(p, iKey, createFlag);
+ assert( pPage==0 || pCache->iMaxKey>=iKey );
+ pcache1LeaveMutex(pCache->pGroup);
+ return pPage;
+}
+#endif
+static sqlite3_pcache_page *pcache1Fetch(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
+ PCache1 *pCache = (PCache1 *)p;
+#endif
+
+ assert( offsetof(PgHdr1,page)==0 );
+ assert( pCache->bPurgeable || createFlag!=1 );
+ assert( pCache->bPurgeable || pCache->nMin==0 );
+ assert( pCache->bPurgeable==0 || pCache->nMin==10 );
+ assert( pCache->nMin==0 || pCache->bPurgeable );
+ assert( pCache->nHash>0 );
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+ if( pCache->pGroup->mutex ){
+ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
+ }else
+#endif
+ {
+ return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
+ }
+}
+
+
+/*
+** Implementation of the sqlite3_pcache.xUnpin method.
+**
+** Mark a page as unpinned (eligible for asynchronous recycling).
+*/
+static void pcache1Unpin(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ int reuseUnlikely
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PGroup *pGroup = pCache->pGroup;
+
+ assert( pPage->pCache==pCache );
+ pcache1EnterMutex(pGroup);
+
+ /* It is an error to call this function if the page is already
+ ** part of the PGroup LRU list.
+ */
+ assert( pPage->pLruNext==0 );
+ assert( PAGE_IS_PINNED(pPage) );
+
+ if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
+ pcache1RemoveFromHash(pPage, 1);
+ }else{
+ /* Add the page to the PGroup LRU list. */
+ PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
+ pPage->pLruPrev = &pGroup->lru;
+ (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
+ *ppFirst = pPage;
+ pCache->nRecyclable++;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xRekey method.
+*/
+static void pcache1Rekey(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ unsigned int iOld,
+ unsigned int iNew
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PgHdr1 **pp;
+ unsigned int hOld, hNew;
+ assert( pPage->iKey==iOld );
+ assert( pPage->pCache==pCache );
+ assert( iOld!=iNew ); /* The page number really is changing */
+
+ pcache1EnterMutex(pCache->pGroup);
+
+ assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
+ hOld = iOld%pCache->nHash;
+ pp = &pCache->apHash[hOld];
+ while( (*pp)!=pPage ){
+ pp = &(*pp)->pNext;
+ }
+ *pp = pPage->pNext;
+
+ assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
+ hNew = iNew%pCache->nHash;
+ pPage->iKey = iNew;
+ pPage->pNext = pCache->apHash[hNew];
+ pCache->apHash[hNew] = pPage;
+ if( iNew>pCache->iMaxKey ){
+ pCache->iMaxKey = iNew;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xTruncate method.
+**
+** Discard all unpinned pages in the cache with a page number equal to
+** or greater than parameter iLimit. Any pinned pages with a page number
+** equal to or greater than iLimit are implicitly unpinned.
+*/
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
+ PCache1 *pCache = (PCache1 *)p;
+ pcache1EnterMutex(pCache->pGroup);
+ if( iLimit<=pCache->iMaxKey ){
+ pcache1TruncateUnsafe(pCache, iLimit);
+ pCache->iMaxKey = iLimit-1;
+ }
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xDestroy method.
+**
+** Destroy a cache allocated using pcache1Create().
+*/
+static void pcache1Destroy(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1 *)p;
+ PGroup *pGroup = pCache->pGroup;
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
+ pcache1EnterMutex(pGroup);
+ if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
+ assert( pGroup->nMaxPage >= pCache->nMax );
+ pGroup->nMaxPage -= pCache->nMax;
+ assert( pGroup->nMinPage >= pCache->nMin );
+ pGroup->nMinPage -= pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ sqlite3_free(pCache->pBulk);
+ sqlite3_free(pCache->apHash);
+ sqlite3_free(pCache);
+}
+
+/*
+** This function is called during initialization (sqlite3_initialize()) to
+** install the default pluggable cache module, assuming the user has not
+** already provided an alternative.
+*/
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){
+ static const sqlite3_pcache_methods2 defaultMethods = {
+ 1, /* iVersion */
+ 0, /* pArg */
+ pcache1Init, /* xInit */
+ pcache1Shutdown, /* xShutdown */
+ pcache1Create, /* xCreate */
+ pcache1Cachesize, /* xCachesize */
+ pcache1Pagecount, /* xPagecount */
+ pcache1Fetch, /* xFetch */
+ pcache1Unpin, /* xUnpin */
+ pcache1Rekey, /* xRekey */
+ pcache1Truncate, /* xTruncate */
+ pcache1Destroy, /* xDestroy */
+ pcache1Shrink /* xShrink */
+ };
+ sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
+}
+
+/*
+** Return the size of the header on each page of this PCACHE implementation.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
+
+/*
+** Return the global mutex used by this PCACHE implementation. The
+** sqlite3_status() routine needs access to this mutex.
+*/
+SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void){
+ return pcache1.mutex;
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** This function is called to free superfluous dynamically allocated memory
+** held by the pager system. Memory in use by any SQLite pager allocated
+** by the current thread may be sqlite3_free()ed.
+**
+** nReq is the number of bytes of memory required. Once this much has
+** been released, the function returns. The return value is the total number
+** of bytes of memory released.
+*/
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
+ int nFree = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ assert( sqlite3_mutex_notheld(pcache1.mutex) );
+ if( sqlite3GlobalConfig.pPage==0 ){
+ PgHdr1 *p;
+ pcache1EnterMutex(&pcache1.grp);
+ while( (nReq<0 || nFree<nReq)
+ && (p=pcache1.grp.lru.pLruPrev)!=0
+ && p->isAnchor==0
+ ){
+ nFree += pcache1MemSize(p->page.pBuf);
+ assert( PAGE_IS_UNPINNED(p) );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ pcache1LeaveMutex(&pcache1.grp);
+ }
+ return nFree;
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+#ifdef SQLITE_TEST
+/*
+** This function is used by test procedures to inspect the internal state
+** of the global cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheStats(
+ int *pnCurrent, /* OUT: Total number of pages cached */
+ int *pnMax, /* OUT: Global maximum cache size */
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */
+){
+ PgHdr1 *p;
+ int nRecyclable = 0;
+ for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
+ assert( PAGE_IS_UNPINNED(p) );
+ nRecyclable++;
+ }
+ *pnCurrent = pcache1.grp.nPurgeable;
+ *pnMax = (int)pcache1.grp.nMaxPage;
+ *pnMin = (int)pcache1.grp.nMinPage;
+ *pnRecyclable = nRecyclable;
+}
+#endif
+
+/************** End of pcache1.c *********************************************/
+/************** Begin file rowset.c ******************************************/
+/*
+** 2008 December 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements an object we call a "RowSet".
+**
+** The RowSet object is a collection of rowids. Rowids
+** are inserted into the RowSet in an arbitrary order. Inserts
+** can be intermixed with tests to see if a given rowid has been
+** previously inserted into the RowSet.
+**
+** After all inserts are finished, it is possible to extract the
+** elements of the RowSet in sorted order. Once this extraction
+** process has started, no new elements may be inserted.
+**
+** Hence, the primitive operations for a RowSet are:
+**
+** CREATE
+** INSERT
+** TEST
+** SMALLEST
+** DESTROY
+**
+** The CREATE and DESTROY primitives are the constructor and destructor,
+** obviously. The INSERT primitive adds a new element to the RowSet.
+** TEST checks to see if an element is already in the RowSet. SMALLEST
+** extracts the least value from the RowSet.
+**
+** The INSERT primitive might allocate additional memory. Memory is
+** allocated in chunks so most INSERTs do no allocation. There is an
+** upper bound on the size of allocated memory. No memory is freed
+** until DESTROY.
+**
+** The TEST primitive includes a "batch" number. The TEST primitive
+** will only see elements that were inserted before the last change
+** in the batch number. In other words, if an INSERT occurs between
+** two TESTs where the TESTs have the same batch number, then the
+** value added by the INSERT will not be visible to the second TEST.
+** The initial batch number is zero, so if the very first TEST contains
+** a non-zero batch number, it will see all prior INSERTs.
+**
+** No INSERTs may occurs after a SMALLEST. An assertion will fail if
+** that is attempted.
+**
+** The cost of an INSERT is roughly constant. (Sometimes new memory
+** has to be allocated on an INSERT.) The cost of a TEST with a new
+** batch number is O(NlogN) where N is the number of elements in the RowSet.
+** The cost of a TEST using the same batch number is O(logN). The cost
+** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
+** primitives are constant time. The cost of DESTROY is O(N).
+**
+** TEST and SMALLEST may not be used by the same RowSet. This used to
+** be possible, but the feature was not used, so it was removed in order
+** to simplify the code.
+*/
+/* #include "sqliteInt.h" */
+
+
+/*
+** Target size for allocation chunks.
+*/
+#define ROWSET_ALLOCATION_SIZE 1024
+
+/*
+** The number of rowset entries per allocation chunk.
+*/
+#define ROWSET_ENTRY_PER_CHUNK \
+ ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
+
+/*
+** Each entry in a RowSet is an instance of the following object.
+**
+** This same object is reused to store a linked list of trees of RowSetEntry
+** objects. In that alternative use, pRight points to the next entry
+** in the list, pLeft points to the tree, and v is unused. The
+** RowSet.pForest value points to the head of this forest list.
+*/
+struct RowSetEntry {
+ i64 v; /* ROWID value for this entry */
+ struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
+ struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
+};
+
+/*
+** RowSetEntry objects are allocated in large chunks (instances of the
+** following structure) to reduce memory allocation overhead. The
+** chunks are kept on a linked list so that they can be deallocated
+** when the RowSet is destroyed.
+*/
+struct RowSetChunk {
+ struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
+ struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
+};
+
+/*
+** A RowSet in an instance of the following structure.
+**
+** A typedef of this structure if found in sqliteInt.h.
+*/
+struct RowSet {
+ struct RowSetChunk *pChunk; /* List of all chunk allocations */
+ sqlite3 *db; /* The database connection */
+ struct RowSetEntry *pEntry; /* List of entries using pRight */
+ struct RowSetEntry *pLast; /* Last entry on the pEntry list */
+ struct RowSetEntry *pFresh; /* Source of new entry objects */
+ struct RowSetEntry *pForest; /* List of binary trees of entries */
+ u16 nFresh; /* Number of objects on pFresh */
+ u16 rsFlags; /* Various flags */
+ int iBatch; /* Current insert batch */
+};
+
+/*
+** Allowed values for RowSet.rsFlags
+*/
+#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
+#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
+
+/*
+** Allocate a RowSet object. Return NULL if a memory allocation
+** error occurs.
+*/
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db){
+ RowSet *p = sqlite3DbMallocRawNN(db, sizeof(*p));
+ if( p ){
+ int N = sqlite3DbMallocSize(db, p);
+ p->pChunk = 0;
+ p->db = db;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pForest = 0;
+ p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
+ p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
+ p->rsFlags = ROWSET_SORTED;
+ p->iBatch = 0;
+ }
+ return p;
+}
+
+/*
+** Deallocate all chunks from a RowSet. This frees all memory that
+** the RowSet has allocated over its lifetime. This routine is
+** the destructor for the RowSet.
+*/
+SQLITE_PRIVATE void sqlite3RowSetClear(void *pArg){
+ RowSet *p = (RowSet*)pArg;
+ struct RowSetChunk *pChunk, *pNextChunk;
+ for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
+ pNextChunk = pChunk->pNextChunk;
+ sqlite3DbFree(p->db, pChunk);
+ }
+ p->pChunk = 0;
+ p->nFresh = 0;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pForest = 0;
+ p->rsFlags = ROWSET_SORTED;
+}
+
+/*
+** Deallocate all chunks from a RowSet. This frees all memory that
+** the RowSet has allocated over its lifetime. This routine is
+** the destructor for the RowSet.
+*/
+SQLITE_PRIVATE void sqlite3RowSetDelete(void *pArg){
+ sqlite3RowSetClear(pArg);
+ sqlite3DbFree(((RowSet*)pArg)->db, pArg);
+}
+
+/*
+** Allocate a new RowSetEntry object that is associated with the
+** given RowSet. Return a pointer to the new and completely uninitialized
+** object.
+**
+** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
+** routine returns NULL.
+*/
+static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
+ assert( p!=0 );
+ if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* We could allocate a fresh RowSetEntry each time one is needed, but it
+ ** is more efficient to pull a preallocated entry from the pool */
+ struct RowSetChunk *pNew;
+ pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
+ if( pNew==0 ){
+ return 0;
+ }
+ pNew->pNextChunk = p->pChunk;
+ p->pChunk = pNew;
+ p->pFresh = pNew->aEntry;
+ p->nFresh = ROWSET_ENTRY_PER_CHUNK;
+ }
+ p->nFresh--;
+ return p->pFresh++;
+}
+
+/*
+** Insert a new value into a RowSet.
+**
+** The mallocFailed flag of the database connection is set if a
+** memory allocation fails.
+*/
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
+ struct RowSetEntry *pEntry; /* The new entry */
+ struct RowSetEntry *pLast; /* The last prior entry */
+
+ /* This routine is never called after sqlite3RowSetNext() */
+ assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
+
+ pEntry = rowSetEntryAlloc(p);
+ if( pEntry==0 ) return;
+ pEntry->v = rowid;
+ pEntry->pRight = 0;
+ pLast = p->pLast;
+ if( pLast ){
+ if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/
+ /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
+ ** where possible */
+ p->rsFlags &= ~ROWSET_SORTED;
+ }
+ pLast->pRight = pEntry;
+ }else{
+ p->pEntry = pEntry;
+ }
+ p->pLast = pEntry;
+}
+
+/*
+** Merge two lists of RowSetEntry objects. Remove duplicates.
+**
+** The input lists are connected via pRight pointers and are
+** assumed to each already be in sorted order.
+*/
+static struct RowSetEntry *rowSetEntryMerge(
+ struct RowSetEntry *pA, /* First sorted list to be merged */
+ struct RowSetEntry *pB /* Second sorted list to be merged */
+){
+ struct RowSetEntry head;
+ struct RowSetEntry *pTail;
+
+ pTail = &head;
+ assert( pA!=0 && pB!=0 );
+ for(;;){
+ assert( pA->pRight==0 || pA->v<=pA->pRight->v );
+ assert( pB->pRight==0 || pB->v<=pB->pRight->v );
+ if( pA->v<=pB->v ){
+ if( pA->v<pB->v ) pTail = pTail->pRight = pA;
+ pA = pA->pRight;
+ if( pA==0 ){
+ pTail->pRight = pB;
+ break;
+ }
+ }else{
+ pTail = pTail->pRight = pB;
+ pB = pB->pRight;
+ if( pB==0 ){
+ pTail->pRight = pA;
+ break;
+ }
+ }
+ }
+ return head.pRight;
+}
+
+/*
+** Sort all elements on the list of RowSetEntry objects into order of
+** increasing v.
+*/
+static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
+ unsigned int i;
+ struct RowSetEntry *pNext, *aBucket[40];
+
+ memset(aBucket, 0, sizeof(aBucket));
+ while( pIn ){
+ pNext = pIn->pRight;
+ pIn->pRight = 0;
+ for(i=0; aBucket[i]; i++){
+ pIn = rowSetEntryMerge(aBucket[i], pIn);
+ aBucket[i] = 0;
+ }
+ aBucket[i] = pIn;
+ pIn = pNext;
+ }
+ pIn = aBucket[0];
+ for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
+ if( aBucket[i]==0 ) continue;
+ pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i];
+ }
+ return pIn;
+}
+
+
+/*
+** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
+** Convert this tree into a linked list connected by the pRight pointers
+** and return pointers to the first and last elements of the new list.
+*/
+static void rowSetTreeToList(
+ struct RowSetEntry *pIn, /* Root of the input tree */
+ struct RowSetEntry **ppFirst, /* Write head of the output list here */
+ struct RowSetEntry **ppLast /* Write tail of the output list here */
+){
+ assert( pIn!=0 );
+ if( pIn->pLeft ){
+ struct RowSetEntry *p;
+ rowSetTreeToList(pIn->pLeft, ppFirst, &p);
+ p->pRight = pIn;
+ }else{
+ *ppFirst = pIn;
+ }
+ if( pIn->pRight ){
+ rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
+ }else{
+ *ppLast = pIn;
+ }
+ assert( (*ppLast)->pRight==0 );
+}
+
+
+/*
+** Convert a sorted list of elements (connected by pRight) into a binary
+** tree with depth of iDepth. A depth of 1 means the tree contains a single
+** node taken from the head of *ppList. A depth of 2 means a tree with
+** three nodes. And so forth.
+**
+** Use as many entries from the input list as required and update the
+** *ppList to point to the unused elements of the list. If the input
+** list contains too few elements, then construct an incomplete tree
+** and leave *ppList set to NULL.
+**
+** Return a pointer to the root of the constructed binary tree.
+*/
+static struct RowSetEntry *rowSetNDeepTree(
+ struct RowSetEntry **ppList,
+ int iDepth
+){
+ struct RowSetEntry *p; /* Root of the new tree */
+ struct RowSetEntry *pLeft; /* Left subtree */
+ if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Prevent unnecessary deep recursion when we run out of entries */
+ return 0;
+ }
+ if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* This branch causes a *balanced* tree to be generated. A valid tree
+ ** is still generated without this branch, but the tree is wildly
+ ** unbalanced and inefficient. */
+ pLeft = rowSetNDeepTree(ppList, iDepth-1);
+ p = *ppList;
+ if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* It is safe to always return here, but the resulting tree
+ ** would be unbalanced */
+ return pLeft;
+ }
+ p->pLeft = pLeft;
+ *ppList = p->pRight;
+ p->pRight = rowSetNDeepTree(ppList, iDepth-1);
+ }else{
+ p = *ppList;
+ *ppList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ }
+ return p;
+}
+
+/*
+** Convert a sorted list of elements into a binary tree. Make the tree
+** as deep as it needs to be in order to contain the entire list.
+*/
+static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
+ int iDepth; /* Depth of the tree so far */
+ struct RowSetEntry *p; /* Current tree root */
+ struct RowSetEntry *pLeft; /* Left subtree */
+
+ assert( pList!=0 );
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ for(iDepth=1; pList; iDepth++){
+ pLeft = p;
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = pLeft;
+ p->pRight = rowSetNDeepTree(&pList, iDepth);
+ }
+ return p;
+}
+
+/*
+** Extract the smallest element from the RowSet.
+** Write the element into *pRowid. Return 1 on success. Return
+** 0 if the RowSet is already empty.
+**
+** After this routine has been called, the sqlite3RowSetInsert()
+** routine may not be called again.
+**
+** This routine may not be called after sqlite3RowSetTest() has
+** been used. Older versions of RowSet allowed that, but as the
+** capability was not used by the code generator, it was removed
+** for code economy.
+*/
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
+ assert( p!=0 );
+ assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */
+
+ /* Merge the forest into a single sorted list on first call */
+ if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ p->pEntry = rowSetEntrySort(p->pEntry);
+ }
+ p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT;
+ }
+
+ /* Return the next entry on the list */
+ if( p->pEntry ){
+ *pRowid = p->pEntry->v;
+ p->pEntry = p->pEntry->pRight;
+ if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Free memory immediately, rather than waiting on sqlite3_finalize() */
+ sqlite3RowSetClear(p);
+ }
+ return 1;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Check to see if element iRowid was inserted into the rowset as
+** part of any insert batch prior to iBatch. Return 1 or 0.
+**
+** If this is the first test of a new batch and if there exist entries
+** on pRowSet->pEntry, then sort those entries into the forest at
+** pRowSet->pForest so that they can be tested.
+*/
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
+ struct RowSetEntry *p, *pTree;
+
+ /* This routine is never called after sqlite3RowSetNext() */
+ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
+
+ /* Sort entries into the forest on the first test of a new batch.
+ ** To save unnecessary work, only do this when the batch number changes.
+ */
+ if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/
+ p = pRowSet->pEntry;
+ if( p ){
+ struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
+ if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* Only sort the current set of entries if they need it */
+ p = rowSetEntrySort(p);
+ }
+ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
+ ppPrevTree = &pTree->pRight;
+ if( pTree->pLeft==0 ){
+ pTree->pLeft = rowSetListToTree(p);
+ break;
+ }else{
+ struct RowSetEntry *pAux, *pTail;
+ rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
+ pTree->pLeft = 0;
+ p = rowSetEntryMerge(pAux, p);
+ }
+ }
+ if( pTree==0 ){
+ *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
+ if( pTree ){
+ pTree->v = 0;
+ pTree->pRight = 0;
+ pTree->pLeft = rowSetListToTree(p);
+ }
+ }
+ pRowSet->pEntry = 0;
+ pRowSet->pLast = 0;
+ pRowSet->rsFlags |= ROWSET_SORTED;
+ }
+ pRowSet->iBatch = iBatch;
+ }
+
+ /* Test to see if the iRowid value appears anywhere in the forest.
+ ** Return 1 if it does and 0 if not.
+ */
+ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
+ p = pTree->pLeft;
+ while( p ){
+ if( p->v<iRowid ){
+ p = p->pRight;
+ }else if( p->v>iRowid ){
+ p = p->pLeft;
+ }else{
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/************** End of rowset.c **********************************************/
+/************** Begin file pager.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of the page cache subsystem or "pager".
+**
+** The pager is used to access a database disk file. It implements
+** atomic commit and rollback through the use of a journal file that
+** is separate from the database file. The pager also implements file
+** locking to prevent two processes from writing the same database
+** file simultaneously, or one process from reading the database while
+** another is writing.
+*/
+#ifndef SQLITE_OMIT_DISKIO
+/* #include "sqliteInt.h" */
+/************** Include wal.h in the middle of pager.c ***********************/
+/************** Begin file wal.h *********************************************/
+/*
+** 2010 February 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface to the write-ahead logging
+** system. Refer to the comments below and the header comment attached to
+** the implementation of each function in log.c for further details.
+*/
+
+#ifndef SQLITE_WAL_H
+#define SQLITE_WAL_H
+
+/* #include "sqliteInt.h" */
+
+/* Macros for extracting appropriate sync flags for either transaction
+** commits (WAL_SYNC_FLAGS(X)) or for checkpoint ops (CKPT_SYNC_FLAGS(X)):
+*/
+#define WAL_SYNC_FLAGS(X) ((X)&0x03)
+#define CKPT_SYNC_FLAGS(X) (((X)>>2)&0x03)
+
+#ifdef SQLITE_OMIT_WAL
+# define sqlite3WalOpen(x,y,z) 0
+# define sqlite3WalLimit(x,y)
+# define sqlite3WalClose(v,w,x,y,z) 0
+# define sqlite3WalBeginReadTransaction(y,z) 0
+# define sqlite3WalEndReadTransaction(z)
+# define sqlite3WalDbsize(y) 0
+# define sqlite3WalBeginWriteTransaction(y) 0
+# define sqlite3WalEndWriteTransaction(x) 0
+# define sqlite3WalUndo(x,y,z) 0
+# define sqlite3WalSavepoint(y,z)
+# define sqlite3WalSavepointUndo(y,z) 0
+# define sqlite3WalFrames(u,v,w,x,y,z) 0
+# define sqlite3WalCheckpoint(q,r,s,t,u,v,w,x,y,z) 0
+# define sqlite3WalCallback(z) 0
+# define sqlite3WalExclusiveMode(y,z) 0
+# define sqlite3WalHeapMemory(z) 0
+# define sqlite3WalFramesize(z) 0
+# define sqlite3WalFindFrame(x,y,z) 0
+# define sqlite3WalFile(x) 0
+# undef SQLITE_USE_SEH
+#else
+
+#define WAL_SAVEPOINT_NDATA 4
+
+/* Connection to a write-ahead log (WAL) file.
+** There is one object of this type for each pager.
+*/
+typedef struct Wal Wal;
+
+/* Open and close a connection to a write-ahead log. */
+SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**);
+SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, sqlite3*, int sync_flags, int, u8 *);
+
+/* Set the limiting size of a WAL file. */
+SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64);
+
+/* Used by readers to open (lock) and close (unlock) a snapshot. A
+** snapshot is like a read-transaction. It is the state of the database
+** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and
+** preserves the current state even if the other threads or processes
+** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the
+** transaction and releases the lock.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *);
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal);
+
+/* Read a page from the write-ahead log, if it is present. */
+SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *);
+SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *);
+
+/* If the WAL is not empty, return the size of the database. */
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal);
+
+/* Obtain or release the WRITER lock. */
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal);
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal);
+
+/* Undo any frames written (but not committed) to the log */
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx);
+
+/* Return an integer that records the current (uncommitted) write
+** position in the WAL */
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData);
+
+/* Move the write position of the WAL back to iFrame. Called in
+** response to a ROLLBACK TO command. */
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData);
+
+/* Write a frame or frames to the log. */
+SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int);
+
+/* Copy pages from the log to the database file */
+SQLITE_PRIVATE int sqlite3WalCheckpoint(
+ Wal *pWal, /* Write-ahead log connection */
+ sqlite3 *db, /* Check this handle's interrupt flag */
+ int eMode, /* One of PASSIVE, FULL and RESTART */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags to sync db file with (or 0) */
+ int nBuf, /* Size of buffer nBuf */
+ u8 *zBuf, /* Temporary buffer to use */
+ int *pnLog, /* OUT: Number of frames in WAL */
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */
+);
+
+/* Return the value to pass to a sqlite3_wal_hook callback, the
+** number of frames in the WAL at the point of the last commit since
+** sqlite3WalCallback() was called. If no commits have occurred since
+** the last call, then return 0.
+*/
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal);
+
+/* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released)
+** by the pager layer on the database file.
+*/
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);
+
+/* Return true if the argument is non-NULL and the WAL module is using
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
+** WAL module is using shared-memory, return false.
+*/
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot);
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal);
+SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal);
+#endif
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/* If the WAL file is not empty, return the number of bytes of content
+** stored in each frame (i.e. the db page-size when the WAL was created).
+*/
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal);
+#endif
+
+/* Return the sqlite3_file object for the WAL file */
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal);
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock);
+SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db);
+#endif
+
+#ifdef SQLITE_USE_SEH
+SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal*);
+#endif
+
+#endif /* ifndef SQLITE_OMIT_WAL */
+#endif /* SQLITE_WAL_H */
+
+/************** End of wal.h *************************************************/
+/************** Continuing where we left off in pager.c **********************/
+
+
+/******************* NOTES ON THE DESIGN OF THE PAGER ************************
+**
+** This comment block describes invariants that hold when using a rollback
+** journal. These invariants do not apply for journal_mode=WAL,
+** journal_mode=MEMORY, or journal_mode=OFF.
+**
+** Within this comment block, a page is deemed to have been synced
+** automatically as soon as it is written when PRAGMA synchronous=OFF.
+** Otherwise, the page is not synced until the xSync method of the VFS
+** is called successfully on the file containing the page.
+**
+** Definition: A page of the database file is said to be "overwriteable" if
+** one or more of the following are true about the page:
+**
+** (a) The original content of the page as it was at the beginning of
+** the transaction has been written into the rollback journal and
+** synced.
+**
+** (b) The page was a freelist leaf page at the start of the transaction.
+**
+** (c) The page number is greater than the largest page that existed in
+** the database file at the start of the transaction.
+**
+** (1) A page of the database file is never overwritten unless one of the
+** following are true:
+**
+** (a) The page and all other pages on the same sector are overwriteable.
+**
+** (b) The atomic page write optimization is enabled, and the entire
+** transaction other than the update of the transaction sequence
+** number consists of a single page change.
+**
+** (2) The content of a page written into the rollback journal exactly matches
+** both the content in the database when the rollback journal was written
+** and the content in the database at the beginning of the current
+** transaction.
+**
+** (3) Writes to the database file are an integer multiple of the page size
+** in length and are aligned on a page boundary.
+**
+** (4) Reads from the database file are either aligned on a page boundary and
+** an integer multiple of the page size in length or are taken from the
+** first 100 bytes of the database file.
+**
+** (5) All writes to the database file are synced prior to the rollback journal
+** being deleted, truncated, or zeroed.
+**
+** (6) If a super-journal file is used, then all writes to the database file
+** are synced prior to the super-journal being deleted.
+**
+** Definition: Two databases (or the same database at two points it time)
+** are said to be "logically equivalent" if they give the same answer to
+** all queries. Note in particular the content of freelist leaf
+** pages can be changed arbitrarily without affecting the logical equivalence
+** of the database.
+**
+** (7) At any time, if any subset, including the empty set and the total set,
+** of the unsynced changes to a rollback journal are removed and the
+** journal is rolled back, the resulting database file will be logically
+** equivalent to the database file at the beginning of the transaction.
+**
+** (8) When a transaction is rolled back, the xTruncate method of the VFS
+** is called to restore the database file to the same size it was at
+** the beginning of the transaction. (In some VFSes, the xTruncate
+** method is a no-op, but that does not change the fact the SQLite will
+** invoke it.)
+**
+** (9) Whenever the database file is modified, at least one bit in the range
+** of bytes from 24 through 39 inclusive will be changed prior to releasing
+** the EXCLUSIVE lock, thus signaling other connections on the same
+** database to flush their caches.
+**
+** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
+** than one billion transactions.
+**
+** (11) A database file is well-formed at the beginning and at the conclusion
+** of every transaction.
+**
+** (12) An EXCLUSIVE lock is held on the database file when writing to
+** the database file.
+**
+** (13) A SHARED lock is held on the database file while reading any
+** content out of the database file.
+**
+******************************************************************************/
+
+/*
+** Macros for troubleshooting. Normally turned off
+*/
+#if 0
+int sqlite3PagerTrace=1; /* True to enable tracing */
+#define sqlite3DebugPrintf printf
+#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
+#else
+#define PAGERTRACE(X)
+#endif
+
+/*
+** The following two macros are used within the PAGERTRACE() macros above
+** to print out file-descriptors.
+**
+** PAGERID() takes a pointer to a Pager struct as its argument. The
+** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
+** struct as its argument.
+*/
+#define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd))
+#define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd))
+
+/*
+** The Pager.eState variable stores the current 'state' of a pager. A
+** pager may be in any one of the seven states shown in the following
+** state diagram.
+**
+** OPEN <------+------+
+** | | |
+** V | |
+** +---------> READER-------+ |
+** | | |
+** | V |
+** |<-------WRITER_LOCKED------> ERROR
+** | | ^
+** | V |
+** |<------WRITER_CACHEMOD-------->|
+** | | |
+** | V |
+** |<-------WRITER_DBMOD---------->|
+** | | |
+** | V |
+** +<------WRITER_FINISHED-------->+
+**
+**
+** List of state transitions and the C [function] that performs each:
+**
+** OPEN -> READER [sqlite3PagerSharedLock]
+** READER -> OPEN [pager_unlock]
+**
+** READER -> WRITER_LOCKED [sqlite3PagerBegin]
+** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal]
+** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal]
+** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne]
+** WRITER_*** -> READER [pager_end_transaction]
+**
+** WRITER_*** -> ERROR [pager_error]
+** ERROR -> OPEN [pager_unlock]
+**
+**
+** OPEN:
+**
+** The pager starts up in this state. Nothing is guaranteed in this
+** state - the file may or may not be locked and the database size is
+** unknown. The database may not be read or written.
+**
+** * No read or write transaction is active.
+** * Any lock, or no lock at all, may be held on the database file.
+** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
+**
+** READER:
+**
+** In this state all the requirements for reading the database in
+** rollback (non-WAL) mode are met. Unless the pager is (or recently
+** was) in exclusive-locking mode, a user-level read transaction is
+** open. The database size is known in this state.
+**
+** A connection running with locking_mode=normal enters this state when
+** it opens a read-transaction on the database and returns to state
+** OPEN after the read-transaction is completed. However a connection
+** running in locking_mode=exclusive (including temp databases) remains in
+** this state even after the read-transaction is closed. The only way
+** a locking_mode=exclusive connection can transition from READER to OPEN
+** is via the ERROR state (see below).
+**
+** * A read transaction may be active (but a write-transaction cannot).
+** * A SHARED or greater lock is held on the database file.
+** * The dbSize variable may be trusted (even if a user-level read
+** transaction is not active). The dbOrigSize and dbFileSize variables
+** may not be trusted at this point.
+** * If the database is a WAL database, then the WAL connection is open.
+** * Even if a read-transaction is not open, it is guaranteed that
+** there is no hot-journal in the file-system.
+**
+** WRITER_LOCKED:
+**
+** The pager moves to this state from READER when a write-transaction
+** is first opened on the database. In WRITER_LOCKED state, all locks
+** required to start a write-transaction are held, but no actual
+** modifications to the cache or database have taken place.
+**
+** In rollback mode, a RESERVED or (if the transaction was opened with
+** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
+** moving to this state, but the journal file is not written to or opened
+** to in this state. If the transaction is committed or rolled back while
+** in WRITER_LOCKED state, all that is required is to unlock the database
+** file.
+**
+** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
+** If the connection is running with locking_mode=exclusive, an attempt
+** is made to obtain an EXCLUSIVE lock on the database file.
+**
+** * A write transaction is active.
+** * If the connection is open in rollback-mode, a RESERVED or greater
+** lock is held on the database file.
+** * If the connection is open in WAL-mode, a WAL write transaction
+** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
+** called).
+** * The dbSize, dbOrigSize and dbFileSize variables are all valid.
+** * The contents of the pager cache have not been modified.
+** * The journal file may or may not be open.
+** * Nothing (not even the first header) has been written to the journal.
+**
+** WRITER_CACHEMOD:
+**
+** A pager moves from WRITER_LOCKED state to this state when a page is
+** first modified by the upper layer. In rollback mode the journal file
+** is opened (if it is not already open) and a header written to the
+** start of it. The database file on disk has not been modified.
+**
+** * A write transaction is active.
+** * A RESERVED or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** to it, but the header has not been synced to disk.
+** * The contents of the page cache have been modified.
+**
+** WRITER_DBMOD:
+**
+** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
+** when it modifies the contents of the database file. WAL connections
+** never enter this state (since they do not modify the database file,
+** just the log file).
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** and synced to disk.
+** * The contents of the page cache have been modified (and possibly
+** written to disk).
+**
+** WRITER_FINISHED:
+**
+** It is not possible for a WAL connection to enter this state.
+**
+** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
+** state after the entire transaction has been successfully written into the
+** database file. In this state the transaction may be committed simply
+** by finalizing the journal file. Once in WRITER_FINISHED state, it is
+** not possible to modify the database further. At this point, the upper
+** layer must either commit or rollback the transaction.
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * All writing and syncing of journal and database data has finished.
+** If no error occurred, all that remains is to finalize the journal to
+** commit the transaction. If an error did occur, the caller will need
+** to rollback the transaction.
+**
+** ERROR:
+**
+** The ERROR state is entered when an IO or disk-full error (including
+** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
+** difficult to be sure that the in-memory pager state (cache contents,
+** db size etc.) are consistent with the contents of the file-system.
+**
+** Temporary pager files may enter the ERROR state, but in-memory pagers
+** cannot.
+**
+** For example, if an IO error occurs while performing a rollback,
+** the contents of the page-cache may be left in an inconsistent state.
+** At this point it would be dangerous to change back to READER state
+** (as usually happens after a rollback). Any subsequent readers might
+** report database corruption (due to the inconsistent cache), and if
+** they upgrade to writers, they may inadvertently corrupt the database
+** file. To avoid this hazard, the pager switches into the ERROR state
+** instead of READER following such an error.
+**
+** Once it has entered the ERROR state, any attempt to use the pager
+** to read or write data returns an error. Eventually, once all
+** outstanding transactions have been abandoned, the pager is able to
+** transition back to OPEN state, discarding the contents of the
+** page-cache and any other in-memory state at the same time. Everything
+** is reloaded from disk (and, if necessary, hot-journal rollback performed)
+** when a read-transaction is next opened on the pager (transitioning
+** the pager into READER state). At that point the system has recovered
+** from the error.
+**
+** Specifically, the pager jumps into the ERROR state if:
+**
+** 1. An error occurs while attempting a rollback. This happens in
+** function sqlite3PagerRollback().
+**
+** 2. An error occurs while attempting to finalize a journal file
+** following a commit in function sqlite3PagerCommitPhaseTwo().
+**
+** 3. An error occurs while attempting to write to the journal or
+** database file in function pagerStress() in order to free up
+** memory.
+**
+** In other cases, the error is returned to the b-tree layer. The b-tree
+** layer then attempts a rollback operation. If the error condition
+** persists, the pager enters the ERROR state via condition (1) above.
+**
+** Condition (3) is necessary because it can be triggered by a read-only
+** statement executed within a transaction. In this case, if the error
+** code were simply returned to the user, the b-tree layer would not
+** automatically attempt a rollback, as it assumes that an error in a
+** read-only statement cannot leave the pager in an internally inconsistent
+** state.
+**
+** * The Pager.errCode variable is set to something other than SQLITE_OK.
+** * There are one or more outstanding references to pages (after the
+** last reference is dropped the pager should move back to OPEN state).
+** * The pager is not an in-memory pager.
+**
+**
+** Notes:
+**
+** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
+** connection is open in WAL mode. A WAL connection is always in one
+** of the first four states.
+**
+** * Normally, a connection open in exclusive mode is never in PAGER_OPEN
+** state. There are two exceptions: immediately after exclusive-mode has
+** been turned on (and before any read or write transactions are
+** executed), and when the pager is leaving the "error state".
+**
+** * See also: assert_pager_state().
+*/
+#define PAGER_OPEN 0
+#define PAGER_READER 1
+#define PAGER_WRITER_LOCKED 2
+#define PAGER_WRITER_CACHEMOD 3
+#define PAGER_WRITER_DBMOD 4
+#define PAGER_WRITER_FINISHED 5
+#define PAGER_ERROR 6
+
+/*
+** The Pager.eLock variable is almost always set to one of the
+** following locking-states, according to the lock currently held on
+** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+** This variable is kept up to date as locks are taken and released by
+** the pagerLockDb() and pagerUnlockDb() wrappers.
+**
+** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
+** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
+** the operation was successful. In these circumstances pagerLockDb() and
+** pagerUnlockDb() take a conservative approach - eLock is always updated
+** when unlocking the file, and only updated when locking the file if the
+** VFS call is successful. This way, the Pager.eLock variable may be set
+** to a less exclusive (lower) value than the lock that is actually held
+** at the system level, but it is never set to a more exclusive value.
+**
+** This is usually safe. If an xUnlock fails or appears to fail, there may
+** be a few redundant xLock() calls or a lock may be held for longer than
+** required, but nothing really goes wrong.
+**
+** The exception is when the database file is unlocked as the pager moves
+** from ERROR to OPEN state. At this point there may be a hot-journal file
+** in the file-system that needs to be rolled back (as part of an OPEN->SHARED
+** transition, by the same pager or any other). If the call to xUnlock()
+** fails at this point and the pager is left holding an EXCLUSIVE lock, this
+** can confuse the call to xCheckReservedLock() call made later as part
+** of hot-journal detection.
+**
+** xCheckReservedLock() is defined as returning true "if there is a RESERVED
+** lock held by this process or any others". So xCheckReservedLock may
+** return true because the caller itself is holding an EXCLUSIVE lock (but
+** doesn't know it because of a previous error in xUnlock). If this happens
+** a hot-journal may be mistaken for a journal being created by an active
+** transaction in another process, causing SQLite to read from the database
+** without rolling it back.
+**
+** To work around this, if a call to xUnlock() fails when unlocking the
+** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
+** is only changed back to a real locking state after a successful call
+** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
+** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
+** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
+** lock on the database file before attempting to roll it back. See function
+** PagerSharedLock() for more detail.
+**
+** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
+** PAGER_OPEN state.
+*/
+#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1)
+
+/*
+** The maximum allowed sector size. 64KiB. If the xSectorsize() method
+** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
+** This could conceivably cause corruption following a power failure on
+** such a system. This is currently an undocumented limit.
+*/
+#define MAX_SECTOR_SIZE 0x10000
+
+
+/*
+** An instance of the following structure is allocated for each active
+** savepoint and statement transaction in the system. All such structures
+** are stored in the Pager.aSavepoint[] array, which is allocated and
+** resized using sqlite3Realloc().
+**
+** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
+** set to 0. If a journal-header is written into the main journal while
+** the savepoint is active, then iHdrOffset is set to the byte offset
+** immediately following the last journal record written into the main
+** journal before the journal-header. This is required during savepoint
+** rollback (see pagerPlaybackSavepoint()).
+*/
+typedef struct PagerSavepoint PagerSavepoint;
+struct PagerSavepoint {
+ i64 iOffset; /* Starting offset in main journal */
+ i64 iHdrOffset; /* See above */
+ Bitvec *pInSavepoint; /* Set of pages in this savepoint */
+ Pgno nOrig; /* Original number of pages in file */
+ Pgno iSubRec; /* Index of first record in sub-journal */
+ int bTruncateOnRelease; /* If stmt journal may be truncated on RELEASE */
+#ifndef SQLITE_OMIT_WAL
+ u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */
+#endif
+};
+
+/*
+** Bits of the Pager.doNotSpill flag. See further description below.
+*/
+#define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */
+#define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */
+#define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */
+
+/*
+** An open page cache is an instance of struct Pager. A description of
+** some of the more important member variables follows:
+**
+** eState
+**
+** The current 'state' of the pager object. See the comment and state
+** diagram above for a description of the pager state.
+**
+** eLock
+**
+** For a real on-disk database, the current lock held on the database file -
+** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+**
+** For a temporary or in-memory database (neither of which require any
+** locks), this variable is always set to EXCLUSIVE_LOCK. Since such
+** databases always have Pager.exclusiveMode==1, this tricks the pager
+** logic into thinking that it already has all the locks it will ever
+** need (and no reason to release them).
+**
+** In some (obscure) circumstances, this variable may also be set to
+** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
+** details.
+**
+** changeCountDone
+**
+** This boolean variable is used to make sure that the change-counter
+** (the 4-byte header field at byte offset 24 of the database file) is
+** not updated more often than necessary.
+**
+** It is set to true when the change-counter field is updated, which
+** can only happen if an exclusive lock is held on the database file.
+** It is cleared (set to false) whenever an exclusive lock is
+** relinquished on the database file. Each time a transaction is committed,
+** The changeCountDone flag is inspected. If it is true, the work of
+** updating the change-counter is omitted for the current transaction.
+**
+** This mechanism means that when running in exclusive mode, a connection
+** need only update the change-counter once, for the first transaction
+** committed.
+**
+** setSuper
+**
+** When PagerCommitPhaseOne() is called to commit a transaction, it may
+** (or may not) specify a super-journal name to be written into the
+** journal file before it is synced to disk.
+**
+** Whether or not a journal file contains a super-journal pointer affects
+** the way in which the journal file is finalized after the transaction is
+** committed or rolled back when running in "journal_mode=PERSIST" mode.
+** If a journal file does not contain a super-journal pointer, it is
+** finalized by overwriting the first journal header with zeroes. If
+** it does contain a super-journal pointer the journal file is finalized
+** by truncating it to zero bytes, just as if the connection were
+** running in "journal_mode=truncate" mode.
+**
+** Journal files that contain super-journal pointers cannot be finalized
+** simply by overwriting the first journal-header with zeroes, as the
+** super-journal pointer could interfere with hot-journal rollback of any
+** subsequently interrupted transaction that reuses the journal file.
+**
+** The flag is cleared as soon as the journal file is finalized (either
+** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
+** journal file from being successfully finalized, the setSuper flag
+** is cleared anyway (and the pager will move to ERROR state).
+**
+** doNotSpill
+**
+** This variables control the behavior of cache-spills (calls made by
+** the pcache module to the pagerStress() routine to write cached data
+** to the file-system in order to free up memory).
+**
+** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set,
+** writing to the database from pagerStress() is disabled altogether.
+** The SPILLFLAG_ROLLBACK case is done in a very obscure case that
+** comes up during savepoint rollback that requires the pcache module
+** to allocate a new page to prevent the journal file from being written
+** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF
+** case is a user preference.
+**
+** If the SPILLFLAG_NOSYNC bit is set, writing to the database from
+** pagerStress() is permitted, but syncing the journal file is not.
+** This flag is set by sqlite3PagerWrite() when the file-system sector-size
+** is larger than the database page-size in order to prevent a journal sync
+** from happening in between the journalling of two pages on the same sector.
+**
+** subjInMemory
+**
+** This is a boolean variable. If true, then any required sub-journal
+** is opened as an in-memory journal file. If false, then in-memory
+** sub-journals are only used for in-memory pager files.
+**
+** This variable is updated by the upper layer each time a new
+** write-transaction is opened.
+**
+** dbSize, dbOrigSize, dbFileSize
+**
+** Variable dbSize is set to the number of pages in the database file.
+** It is valid in PAGER_READER and higher states (all states except for
+** OPEN and ERROR).
+**
+** dbSize is set based on the size of the database file, which may be
+** larger than the size of the database (the value stored at offset
+** 28 of the database header by the btree). If the size of the file
+** is not an integer multiple of the page-size, the value stored in
+** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
+** Except, any file that is greater than 0 bytes in size is considered
+** to have at least one page. (i.e. a 1KB file with 2K page-size leads
+** to dbSize==1).
+**
+** During a write-transaction, if pages with page-numbers greater than
+** dbSize are modified in the cache, dbSize is updated accordingly.
+** Similarly, if the database is truncated using PagerTruncateImage(),
+** dbSize is updated.
+**
+** Variables dbOrigSize and dbFileSize are valid in states
+** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
+** variable at the start of the transaction. It is used during rollback,
+** and to determine whether or not pages need to be journalled before
+** being modified.
+**
+** Throughout a write-transaction, dbFileSize contains the size of
+** the file on disk in pages. It is set to a copy of dbSize when the
+** write-transaction is first opened, and updated when VFS calls are made
+** to write or truncate the database file on disk.
+**
+** The only reason the dbFileSize variable is required is to suppress
+** unnecessary calls to xTruncate() after committing a transaction. If,
+** when a transaction is committed, the dbFileSize variable indicates
+** that the database file is larger than the database image (Pager.dbSize),
+** pager_truncate() is called. The pager_truncate() call uses xFilesize()
+** to measure the database file on disk, and then truncates it if required.
+** dbFileSize is not used when rolling back a transaction. In this case
+** pager_truncate() is called unconditionally (which means there may be
+** a call to xFilesize() that is not strictly required). In either case,
+** pager_truncate() may cause the file to become smaller or larger.
+**
+** dbHintSize
+**
+** The dbHintSize variable is used to limit the number of calls made to
+** the VFS xFileControl(FCNTL_SIZE_HINT) method.
+**
+** dbHintSize is set to a copy of the dbSize variable when a
+** write-transaction is opened (at the same time as dbFileSize and
+** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
+** dbHintSize is increased to the number of pages that correspond to the
+** size-hint passed to the method call. See pager_write_pagelist() for
+** details.
+**
+** errCode
+**
+** The Pager.errCode variable is only ever used in PAGER_ERROR state. It
+** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
+** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
+** sub-codes.
+**
+** syncFlags, walSyncFlags
+**
+** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03).
+** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode
+** and contains the flags used to sync the checkpoint operations in the
+** lower two bits, and sync flags used for transaction commits in the WAL
+** file in bits 0x04 and 0x08. In other words, to get the correct sync flags
+** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct
+** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note
+** that with synchronous=NORMAL in WAL mode, transaction commit is not synced
+** meaning that the 0x04 and 0x08 bits are both zero.
+*/
+struct Pager {
+ sqlite3_vfs *pVfs; /* OS functions to use for IO */
+ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
+ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
+ u8 useJournal; /* Use a rollback journal on this file */
+ u8 noSync; /* Do not sync the journal if true */
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
+ u8 extraSync; /* sync directory after journal delete */
+ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */
+ u8 walSyncFlags; /* See description above */
+ u8 tempFile; /* zFilename is a temporary or immutable file */
+ u8 noLock; /* Do not lock (except in WAL mode) */
+ u8 readOnly; /* True for a read-only database */
+ u8 memDb; /* True to inhibit all file I/O */
+ u8 memVfs; /* VFS-implemented memory database */
+
+ /**************************************************************************
+ ** The following block contains those class members that change during
+ ** routine operation. Class members not in this block are either fixed
+ ** when the pager is first created or else only change when there is a
+ ** significant mode change (such as changing the page_size, locking_mode,
+ ** or the journal_mode). From another view, these class members describe
+ ** the "state" of the pager, while other class members describe the
+ ** "configuration" of the pager.
+ */
+ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */
+ u8 eLock; /* Current lock held on database file */
+ u8 changeCountDone; /* Set after incrementing the change-counter */
+ u8 setSuper; /* Super-jrnl name is written into jrnl */
+ u8 doNotSpill; /* Do not spill the cache when non-zero */
+ u8 subjInMemory; /* True to use in-memory sub-journals */
+ u8 bUseFetch; /* True to use xFetch() */
+ u8 hasHeldSharedLock; /* True if a shared lock has ever been held */
+ Pgno dbSize; /* Number of pages in the database */
+ Pgno dbOrigSize; /* dbSize before the current transaction */
+ Pgno dbFileSize; /* Number of pages in the database file */
+ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */
+ int errCode; /* One of several kinds of errors */
+ int nRec; /* Pages journalled since last j-header written */
+ u32 cksumInit; /* Quasi-random value added to every checksum */
+ u32 nSubRec; /* Number of records written to sub-journal */
+ Bitvec *pInJournal; /* One bit for each page in the database file */
+ sqlite3_file *fd; /* File descriptor for database */
+ sqlite3_file *jfd; /* File descriptor for main journal */
+ sqlite3_file *sjfd; /* File descriptor for sub-journal */
+ i64 journalOff; /* Current write offset in the journal file */
+ i64 journalHdr; /* Byte offset to previous journal header */
+ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
+ PagerSavepoint *aSavepoint; /* Array of active savepoints */
+ int nSavepoint; /* Number of elements in aSavepoint[] */
+ u32 iDataVersion; /* Changes whenever database content changes */
+ char dbFileVers[16]; /* Changes whenever database file changes */
+
+ int nMmapOut; /* Number of mmap pages currently outstanding */
+ sqlite3_int64 szMmap; /* Desired maximum mmap size */
+ PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */
+ /*
+ ** End of the routinely-changing class members
+ ***************************************************************************/
+
+ u16 nExtra; /* Add this many bytes to each in-memory page */
+ i16 nReserve; /* Number of unused bytes at end of each page */
+ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
+ u32 sectorSize; /* Assumed sector size during rollback */
+ Pgno mxPgno; /* Maximum allowed size of the database */
+ Pgno lckPgno; /* Page number for the locking page */
+ i64 pageSize; /* Number of bytes in a page */
+ i64 journalSizeLimit; /* Size limit for persistent journal files */
+ char *zFilename; /* Name of the database file */
+ char *zJournal; /* Name of the journal file */
+ int (*xBusyHandler)(void*); /* Function to call when busy */
+ void *pBusyHandlerArg; /* Context argument for xBusyHandler */
+ int aStat[4]; /* Total cache hits, misses, writes, spills */
+#ifdef SQLITE_TEST
+ int nRead; /* Database pages read */
+#endif
+ void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
+ int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */
+ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
+ PCache *pPCache; /* Pointer to page cache object */
+#ifndef SQLITE_OMIT_WAL
+ Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */
+ char *zWal; /* File name for write-ahead log */
+#endif
+};
+
+/*
+** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains
+** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS
+** or CACHE_WRITE to sqlite3_db_status().
+*/
+#define PAGER_STAT_HIT 0
+#define PAGER_STAT_MISS 1
+#define PAGER_STAT_WRITE 2
+#define PAGER_STAT_SPILL 3
+
+/*
+** The following global variables hold counters used for
+** testing purposes only. These variables do not exist in
+** a non-testing build. These variables are not thread-safe.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
+SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
+SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
+# define PAGER_INCR(v) v++
+#else
+# define PAGER_INCR(v)
+#endif
+
+
+
+/*
+** Journal files begin with the following magic string. The data
+** was obtained from /dev/random. It is used only as a sanity check.
+**
+** Since version 2.8.0, the journal format contains additional sanity
+** checking information. If the power fails while the journal is being
+** written, semi-random garbage data might appear in the journal
+** file after power is restored. If an attempt is then made
+** to roll the journal back, the database could be corrupted. The additional
+** sanity checking data is an attempt to discover the garbage in the
+** journal and ignore it.
+**
+** The sanity checking information for the new journal format consists
+** of a 32-bit checksum on each page of data. The checksum covers both
+** the page number and the pPager->pageSize bytes of data for the page.
+** This cksum is initialized to a 32-bit random value that appears in the
+** journal file right after the header. The random initializer is important,
+** because garbage data that appears at the end of a journal is likely
+** data that was once in other files that have now been deleted. If the
+** garbage data came from an obsolete journal file, the checksums might
+** be correct. But by initializing the checksum to random value which
+** is different for every journal, we minimize that risk.
+*/
+static const unsigned char aJournalMagic[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
+};
+
+/*
+** The size of the of each page record in the journal is given by
+** the following macro.
+*/
+#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
+
+/*
+** The journal header size for this pager. This is usually the same
+** size as a single disk sector. See also setSectorSize().
+*/
+#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
+
+/*
+** The macro MEMDB is true if we are dealing with an in-memory database.
+** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
+** the value of MEMDB will be a constant and the compiler will optimize
+** out code that would never execute.
+*/
+#ifdef SQLITE_OMIT_MEMORYDB
+# define MEMDB 0
+#else
+# define MEMDB pPager->memDb
+#endif
+
+/*
+** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch
+** interfaces to access the database using memory-mapped I/O.
+*/
+#if SQLITE_MAX_MMAP_SIZE>0
+# define USEFETCH(x) ((x)->bUseFetch)
+#else
+# define USEFETCH(x) 0
+#endif
+
+/*
+** The argument to this macro is a file descriptor (type sqlite3_file*).
+** Return 0 if it is not open, or non-zero (but not 1) if it is.
+**
+** This is so that expressions can be written as:
+**
+** if( isOpen(pPager->jfd) ){ ...
+**
+** instead of
+**
+** if( pPager->jfd->pMethods ){ ...
+*/
+#define isOpen(pFd) ((pFd)->pMethods!=0)
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+/*
+** Return true if page pgno can be read directly from the database file
+** by the b-tree layer. This is the case if:
+**
+** * the database file is open,
+** * there are no dirty pages in the cache, and
+** * the desired page is not currently in the wal file.
+*/
+SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){
+ if( pPager->fd->pMethods==0 ) return 0;
+ if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0;
+#ifndef SQLITE_OMIT_WAL
+ if( pPager->pWal ){
+ u32 iRead = 0;
+ int rc;
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);
+ return (rc==SQLITE_OK && iRead==0);
+ }
+#endif
+ return 1;
+}
+#endif
+
+#ifndef SQLITE_OMIT_WAL
+# define pagerUseWal(x) ((x)->pWal!=0)
+#else
+# define pagerUseWal(x) 0
+# define pagerRollbackWal(x) 0
+# define pagerWalFrames(v,w,x,y) 0
+# define pagerOpenWalIfPresent(z) SQLITE_OK
+# define pagerBeginReadTransaction(z) SQLITE_OK
+#endif
+
+#ifndef NDEBUG
+/*
+** Usage:
+**
+** assert( assert_pager_state(pPager) );
+**
+** This function runs many asserts to try to find inconsistencies in
+** the internal state of the Pager object.
+*/
+static int assert_pager_state(Pager *p){
+ Pager *pPager = p;
+
+ /* State must be valid. */
+ assert( p->eState==PAGER_OPEN
+ || p->eState==PAGER_READER
+ || p->eState==PAGER_WRITER_LOCKED
+ || p->eState==PAGER_WRITER_CACHEMOD
+ || p->eState==PAGER_WRITER_DBMOD
+ || p->eState==PAGER_WRITER_FINISHED
+ || p->eState==PAGER_ERROR
+ );
+
+ /* Regardless of the current state, a temp-file connection always behaves
+ ** as if it has an exclusive lock on the database file. It never updates
+ ** the change-counter field, so the changeCountDone flag is always set.
+ */
+ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
+ assert( p->tempFile==0 || pPager->changeCountDone );
+
+ /* If the useJournal flag is clear, the journal-mode must be "OFF".
+ ** And if the journal-mode is "OFF", the journal file must not be open.
+ */
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
+ assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
+
+ /* Check that MEMDB implies noSync. And an in-memory journal. Since
+ ** this means an in-memory pager performs no IO at all, it cannot encounter
+ ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
+ ** a journal file. (although the in-memory journal implementation may
+ ** return SQLITE_IOERR_NOMEM while the journal file is being written). It
+ ** is therefore not possible for an in-memory pager to enter the ERROR
+ ** state.
+ */
+ if( MEMDB ){
+ assert( !isOpen(p->fd) );
+ assert( p->noSync );
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_MEMORY
+ );
+ assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
+ assert( pagerUseWal(p)==0 );
+ }
+
+ /* If changeCountDone is set, a RESERVED lock or greater must be held
+ ** on the file.
+ */
+ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
+ assert( p->eLock!=PENDING_LOCK );
+
+ switch( p->eState ){
+ case PAGER_OPEN:
+ assert( !MEMDB );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
+ break;
+
+ case PAGER_READER:
+ assert( pPager->errCode==SQLITE_OK );
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( p->eLock>=SHARED_LOCK );
+ break;
+
+ case PAGER_WRITER_LOCKED:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ assert( p->eLock>=RESERVED_LOCK );
+ }
+ assert( pPager->dbSize==pPager->dbOrigSize );
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ assert( pPager->setSuper==0 );
+ break;
+
+ case PAGER_WRITER_CACHEMOD:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ /* It is possible that if journal_mode=wal here that neither the
+ ** journal file nor the WAL file are open. This happens during
+ ** a rollback transaction that switches from journal_mode=off
+ ** to journal_mode=wal.
+ */
+ assert( p->eLock>=RESERVED_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ }
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_DBMOD:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( p->eLock>=EXCLUSIVE_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
+ );
+ assert( pPager->dbOrigSize<=pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_FINISHED:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
+ );
+ break;
+
+ case PAGER_ERROR:
+ /* There must be at least one outstanding reference to the pager if
+ ** in ERROR state. Otherwise the pager should have already dropped
+ ** back to OPEN state.
+ */
+ assert( pPager->errCode!=SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile );
+ break;
+ }
+
+ return 1;
+}
+#endif /* ifndef NDEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+** Return a pointer to a human readable string in a static buffer
+** containing the state of the Pager object passed as an argument. This
+** is intended to be used within debuggers. For example, as an alternative
+** to "print *pPager" in gdb:
+**
+** (gdb) printf "%s", print_pager_state(pPager)
+**
+** This routine has external linkage in order to suppress compiler warnings
+** about an unused function. It is enclosed within SQLITE_DEBUG and so does
+** not appear in normal builds.
+*/
+char *print_pager_state(Pager *p){
+ static char zRet[1024];
+
+ sqlite3_snprintf(1024, zRet,
+ "Filename: %s\n"
+ "State: %s errCode=%d\n"
+ "Lock: %s\n"
+ "Locking mode: locking_mode=%s\n"
+ "Journal mode: journal_mode=%s\n"
+ "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
+ "Journal: journalOff=%lld journalHdr=%lld\n"
+ "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
+ , p->zFilename
+ , p->eState==PAGER_OPEN ? "OPEN" :
+ p->eState==PAGER_READER ? "READER" :
+ p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" :
+ p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
+ p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" :
+ p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
+ p->eState==PAGER_ERROR ? "ERROR" : "?error?"
+ , (int)p->errCode
+ , p->eLock==NO_LOCK ? "NO_LOCK" :
+ p->eLock==RESERVED_LOCK ? "RESERVED" :
+ p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" :
+ p->eLock==SHARED_LOCK ? "SHARED" :
+ p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?"
+ , p->exclusiveMode ? "exclusive" : "normal"
+ , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" :
+ p->journalMode==PAGER_JOURNALMODE_OFF ? "off" :
+ p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" :
+ p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" :
+ p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
+ p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?"
+ , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
+ , p->journalOff, p->journalHdr
+ , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
+ );
+
+ return zRet;
+}
+#endif
+
+/* Forward references to the various page getters */
+static int getPageNormal(Pager*,Pgno,DbPage**,int);
+static int getPageError(Pager*,Pgno,DbPage**,int);
+#if SQLITE_MAX_MMAP_SIZE>0
+static int getPageMMap(Pager*,Pgno,DbPage**,int);
+#endif
+
+/*
+** Set the Pager.xGet method for the appropriate routine used to fetch
+** content from the pager.
+*/
+static void setGetterMethod(Pager *pPager){
+ if( pPager->errCode ){
+ pPager->xGet = getPageError;
+#if SQLITE_MAX_MMAP_SIZE>0
+ }else if( USEFETCH(pPager) ){
+ pPager->xGet = getPageMMap;
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+ }else{
+ pPager->xGet = getPageNormal;
+ }
+}
+
+/*
+** Return true if it is necessary to write page *pPg into the sub-journal.
+** A page needs to be written into the sub-journal if there exists one
+** or more open savepoints for which:
+**
+** * The page-number is less than or equal to PagerSavepoint.nOrig, and
+** * The bit corresponding to the page-number is not set in
+** PagerSavepoint.pInSavepoint.
+*/
+static int subjRequiresPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ PagerSavepoint *p;
+ Pgno pgno = pPg->pgno;
+ int i;
+ for(i=0; i<pPager->nSavepoint; i++){
+ p = &pPager->aSavepoint[i];
+ if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){
+ for(i=i+1; i<pPager->nSavepoint; i++){
+ pPager->aSavepoint[i].bTruncateOnRelease = 0;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if the page is already in the journal file.
+*/
+static int pageInJournal(Pager *pPager, PgHdr *pPg){
+ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno);
+}
+#endif
+
+/*
+** Read a 32-bit integer from the given file descriptor. Store the integer
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an
+** error code is something goes wrong.
+**
+** All values are stored on disk as big-endian.
+*/
+static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
+ unsigned char ac[4];
+ int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
+ if( rc==SQLITE_OK ){
+ *pRes = sqlite3Get4byte(ac);
+ }
+ return rc;
+}
+
+/*
+** Write a 32-bit integer into a string buffer in big-endian byte order.
+*/
+#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
+
+
+/*
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
+** on success or an error code is something goes wrong.
+*/
+static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
+ char ac[4];
+ put32bits(ac, val);
+ return sqlite3OsWrite(fd, ac, 4, offset);
+}
+
+/*
+** Unlock the database file to level eLock, which must be either NO_LOCK
+** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
+** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it. See the comment above the #define of
+** UNKNOWN_LOCK for an explanation of this.
+*/
+static int pagerUnlockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( !pPager->exclusiveMode || pPager->eLock==eLock );
+ assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
+ assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
+ if( isOpen(pPager->fd) ){
+ assert( pPager->eLock>=eLock );
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock);
+ if( pPager->eLock!=UNKNOWN_LOCK ){
+ pPager->eLock = (u8)eLock;
+ }
+ IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
+ }
+ pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */
+ return rc;
+}
+
+/*
+** Lock the database file to level eLock, which must be either SHARED_LOCK,
+** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
+** Pager.eLock variable to the new locking state.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK.
+** See the comment above the #define of UNKNOWN_LOCK for an explanation
+** of this.
+*/
+static int pagerLockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
+ if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock);
+ if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
+ pPager->eLock = (u8)eLock;
+ IOTRACE(("LOCK %p %d\n", pPager, eLock))
+ }
+ }
+ return rc;
+}
+
+/*
+** This function determines whether or not the atomic-write or
+** atomic-batch-write optimizations can be used with this pager. The
+** atomic-write optimization can be used if:
+**
+** (a) the value returned by OsDeviceCharacteristics() indicates that
+** a database page may be written atomically, and
+** (b) the value returned by OsSectorSize() is less than or equal
+** to the page size.
+**
+** If it can be used, then the value returned is the size of the journal
+** file when it contains rollback data for exactly one page.
+**
+** The atomic-batch-write optimization can be used if OsDeviceCharacteristics()
+** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is
+** returned in this case.
+**
+** If neither optimization can be used, 0 is returned.
+*/
+static int jrnlBufferSize(Pager *pPager){
+ assert( !MEMDB );
+
+#if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
+ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+ int dc; /* Device characteristics */
+
+ assert( isOpen(pPager->fd) );
+ dc = sqlite3OsDeviceCharacteristics(pPager->fd);
+#else
+ UNUSED_PARAMETER(pPager);
+#endif
+
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){
+ return -1;
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int nSector = pPager->sectorSize;
+ int szPage = pPager->pageSize;
+
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
+ return 0;
+ }
+ }
+
+ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
+#endif
+
+ return 0;
+}
+
+/*
+** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
+** on the cache using a hash function. This is used for testing
+** and debugging only.
+*/
+#ifdef SQLITE_CHECK_PAGES
+/*
+** Return a 32-bit hash of the page data for pPage.
+*/
+static u32 pager_datahash(int nByte, unsigned char *pData){
+ u32 hash = 0;
+ int i;
+ for(i=0; i<nByte; i++){
+ hash = (hash*1039) + pData[i];
+ }
+ return hash;
+}
+static u32 pager_pagehash(PgHdr *pPage){
+ return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
+}
+static void pager_set_pagehash(PgHdr *pPage){
+ pPage->pageHash = pager_pagehash(pPage);
+}
+
+/*
+** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
+** is defined, and NDEBUG is not defined, an assert() statement checks
+** that the page is either dirty or still matches the calculated page-hash.
+*/
+#define CHECK_PAGE(x) checkPage(x)
+static void checkPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
+}
+
+#else
+#define pager_datahash(X,Y) 0
+#define pager_pagehash(X) 0
+#define pager_set_pagehash(X)
+#define CHECK_PAGE(x)
+#endif /* SQLITE_CHECK_PAGES */
+
+/*
+** When this is called the journal file for pager pPager must be open.
+** This function attempts to read a super-journal file name from the
+** end of the file and, if successful, copies it into memory supplied
+** by the caller. See comments above writeSuperJournal() for the format
+** used to store a super-journal file name at the end of a journal file.
+**
+** zSuper must point to a buffer of at least nSuper bytes allocated by
+** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
+** enough space to write the super-journal name). If the super-journal
+** name in the journal is longer than nSuper bytes (including a
+** nul-terminator), then this is handled as if no super-journal name
+** were present in the journal.
+**
+** If a super-journal file name is present at the end of the journal
+** file, then it is copied into the buffer pointed to by zSuper. A
+** nul-terminator byte is appended to the buffer following the
+** super-journal file name.
+**
+** If it is determined that no super-journal file name is present
+** zSuper[0] is set to 0 and SQLITE_OK returned.
+**
+** If an error occurs while reading from the journal file, an SQLite
+** error code is returned.
+*/
+static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){
+ int rc; /* Return code */
+ u32 len; /* Length in bytes of super-journal name */
+ i64 szJ; /* Total size in bytes of journal file pJrnl */
+ u32 cksum; /* MJ checksum value read from journal */
+ u32 u; /* Unsigned loop counter */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ zSuper[0] = '\0';
+
+ if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ))
+ || szJ<16
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
+ || len>=nSuper
+ || len>szJ-16
+ || len==0
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8))
+ || memcmp(aMagic, aJournalMagic, 8)
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len))
+ ){
+ return rc;
+ }
+
+ /* See if the checksum matches the super-journal name */
+ for(u=0; u<len; u++){
+ cksum -= zSuper[u];
+ }
+ if( cksum ){
+ /* If the checksum doesn't add up, then one or more of the disk sectors
+ ** containing the super-journal filename is corrupted. This means
+ ** definitely roll back, so just return SQLITE_OK and report a (nul)
+ ** super-journal filename.
+ */
+ len = 0;
+ }
+ zSuper[len] = '\0';
+ zSuper[len+1] = '\0';
+
+ return SQLITE_OK;
+}
+
+/*
+** Return the offset of the sector boundary at or immediately
+** following the value in pPager->journalOff, assuming a sector
+** size of pPager->sectorSize bytes.
+**
+** i.e for a sector size of 512:
+**
+** Pager.journalOff Return value
+** ---------------------------------------
+** 0 0
+** 512 512
+** 100 512
+** 2000 2048
+**
+*/
+static i64 journalHdrOffset(Pager *pPager){
+ i64 offset = 0;
+ i64 c = pPager->journalOff;
+ if( c ){
+ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
+ }
+ assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
+ assert( offset>=c );
+ assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
+ return offset;
+}
+
+/*
+** The journal file must be open when this function is called.
+**
+** This function is a no-op if the journal file has not been written to
+** within the current transaction (i.e. if Pager.journalOff==0).
+**
+** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
+** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
+** zero the 28-byte header at the start of the journal file. In either case,
+** if the pager is not in no-sync mode, sync the journal file immediately
+** after writing or truncating it.
+**
+** If Pager.journalSizeLimit is set to a positive, non-zero value, and
+** following the truncation or zeroing described above the size of the
+** journal file in bytes is larger than this value, then truncate the
+** journal file to Pager.journalSizeLimit bytes. The journal file does
+** not need to be synced following this operation.
+**
+** If an IO error occurs, abandon processing and return the IO error code.
+** Otherwise, return SQLITE_OK.
+*/
+static int zeroJournalHdr(Pager *pPager, int doTruncate){
+ int rc = SQLITE_OK; /* Return code */
+ assert( isOpen(pPager->jfd) );
+ assert( !sqlite3JournalIsInMemory(pPager->jfd) );
+ if( pPager->journalOff ){
+ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */
+
+ IOTRACE(("JZEROHDR %p\n", pPager))
+ if( doTruncate || iLimit==0 ){
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ }else{
+ static const char zeroHdr[28] = {0};
+ rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
+ }
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags);
+ }
+
+ /* At this point the transaction is committed but the write lock
+ ** is still held on the file. If there is a size limit configured for
+ ** the persistent journal and the journal file currently consumes more
+ ** space than that limit allows for, truncate it now. There is no need
+ ** to sync the file following this operation.
+ */
+ if( rc==SQLITE_OK && iLimit>0 ){
+ i64 sz;
+ rc = sqlite3OsFileSize(pPager->jfd, &sz);
+ if( rc==SQLITE_OK && sz>iLimit ){
+ rc = sqlite3OsTruncate(pPager->jfd, iLimit);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** The journal file must be open when this routine is called. A journal
+** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
+** current location.
+**
+** The format for the journal header is as follows:
+** - 8 bytes: Magic identifying journal format.
+** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
+** - 4 bytes: Random number used for page hash.
+** - 4 bytes: Initial database page count.
+** - 4 bytes: Sector size used by the process that wrote this journal.
+** - 4 bytes: Database page size.
+**
+** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
+*/
+static int writeJournalHdr(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */
+ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
+ u32 nWrite; /* Bytes of header sector written */
+ int ii; /* Loop counter */
+
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ if( nHeader>JOURNAL_HDR_SZ(pPager) ){
+ nHeader = JOURNAL_HDR_SZ(pPager);
+ }
+
+ /* If there are active savepoints and any of them were created
+ ** since the most recent journal header was written, update the
+ ** PagerSavepoint.iHdrOffset fields now.
+ */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ if( pPager->aSavepoint[ii].iHdrOffset==0 ){
+ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
+ }
+ }
+
+ pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);
+
+ /*
+ ** Write the nRec Field - the number of page records that follow this
+ ** journal header. Normally, zero is written to this value at this time.
+ ** After the records are added to the journal (and the journal synced,
+ ** if in full-sync mode), the zero is overwritten with the true number
+ ** of records (see syncJournal()).
+ **
+ ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
+ ** reading the journal this value tells SQLite to assume that the
+ ** rest of the journal file contains valid page records. This assumption
+ ** is dangerous, as if a failure occurred whilst writing to the journal
+ ** file it may contain some garbage data. There are two scenarios
+ ** where this risk can be ignored:
+ **
+ ** * When the pager is in no-sync mode. Corruption can follow a
+ ** power failure in this case anyway.
+ **
+ ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
+ ** that garbage data is never appended to the journal file.
+ */
+ assert( isOpen(pPager->fd) || pPager->noSync );
+ if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
+ ){
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
+ }else{
+ memset(zHeader, 0, sizeof(aJournalMagic)+4);
+ }
+
+
+
+ /* The random check-hash initializer */
+ if( pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
+ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ /* The Pager.cksumInit variable is usually randomized above to protect
+ ** against there being existing records in the journal file. This is
+ ** dangerous, as following a crash they may be mistaken for records
+ ** written by the current transaction and rolled back into the database
+ ** file, causing corruption. The following assert statements verify
+ ** that this is not required in "journal_mode=memory" mode, as in that
+ ** case the journal file is always 0 bytes in size at this point.
+ ** It is advantageous to avoid the sqlite3_randomness() call if possible
+ ** as it takes the global PRNG mutex. */
+ i64 sz = 0;
+ sqlite3OsFileSize(pPager->jfd, &sz);
+ assert( sz==0 );
+ assert( pPager->journalOff==journalHdrOffset(pPager) );
+ assert( sqlite3JournalIsInMemory(pPager->jfd) );
+ }
+#endif
+ put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
+
+ /* The initial database size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
+ /* The assumed sector size for this process */
+ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
+
+ /* The page size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
+
+ /* Initializing the tail of the buffer is not necessary. Everything
+ ** works find if the following memset() is omitted. But initializing
+ ** the memory prevents valgrind from complaining, so we are willing to
+ ** take the performance hit.
+ */
+ memset(&zHeader[sizeof(aJournalMagic)+20], 0,
+ nHeader-(sizeof(aJournalMagic)+20));
+
+ /* In theory, it is only necessary to write the 28 bytes that the
+ ** journal header consumes to the journal file here. Then increment the
+ ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next
+ ** record is written to the following sector (leaving a gap in the file
+ ** that will be implicitly filled in by the OS).
+ **
+ ** However it has been discovered that on some systems this pattern can
+ ** be significantly slower than contiguously writing data to the file,
+ ** even if that means explicitly writing data to the block of
+ ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
+ ** is done.
+ **
+ ** The loop is required here in case the sector-size is larger than the
+ ** database page size. Since the zHeader buffer is only Pager.pageSize
+ ** bytes in size, more than one call to sqlite3OsWrite() may be required
+ ** to populate the entire journal header sector.
+ */
+ for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
+ IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
+ rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
+ assert( pPager->journalHdr <= pPager->journalOff );
+ pPager->journalOff += nHeader;
+ }
+
+ return rc;
+}
+
+/*
+** The journal file must be open when this is called. A journal header file
+** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
+** file. The current location in the journal file is given by
+** pPager->journalOff. See comments above function writeJournalHdr() for
+** a description of the journal header format.
+**
+** If the header is read successfully, *pNRec is set to the number of
+** page records following this header and *pDbSize is set to the size of the
+** database before the transaction began, in pages. Also, pPager->cksumInit
+** is set to the value read from the journal header. SQLITE_OK is returned
+** in this case.
+**
+** If the journal header file appears to be corrupted, SQLITE_DONE is
+** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes
+** cannot be read from the journal file an error code is returned.
+*/
+static int readJournalHdr(
+ Pager *pPager, /* Pager object */
+ int isHot,
+ i64 journalSize, /* Size of the open journal file in bytes */
+ u32 *pNRec, /* OUT: Value read from the nRec field */
+ u32 *pDbSize /* OUT: Value of original database size field */
+){
+ int rc; /* Return code */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ i64 iHdrOff; /* Offset of journal header being read */
+
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ /* Advance Pager.journalOff to the start of the next sector. If the
+ ** journal file is too small for there to be a header stored at this
+ ** point, return SQLITE_DONE.
+ */
+ pPager->journalOff = journalHdrOffset(pPager);
+ if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
+ return SQLITE_DONE;
+ }
+ iHdrOff = pPager->journalOff;
+
+ /* Read in the first 8 bytes of the journal header. If they do not match
+ ** the magic string found at the start of each journal header, return
+ ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
+ ** proceed.
+ */
+ if( isHot || iHdrOff!=pPager->journalHdr ){
+ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
+ if( rc ){
+ return rc;
+ }
+ if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* Read the first three 32-bit fields of the journal header: The nRec
+ ** field, the checksum-initializer and the database size at the start
+ ** of the transaction. Return an error code if anything goes wrong.
+ */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
+ ){
+ return rc;
+ }
+
+ if( pPager->journalOff==0 ){
+ u32 iPageSize; /* Page-size field of journal header */
+ u32 iSectorSize; /* Sector-size field of journal header */
+
+ /* Read the page-size and sector-size journal header fields. */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
+ ){
+ return rc;
+ }
+
+ /* Versions of SQLite prior to 3.5.8 set the page-size field of the
+ ** journal header to zero. In this case, assume that the Pager.pageSize
+ ** variable is already set to the correct page size.
+ */
+ if( iPageSize==0 ){
+ iPageSize = pPager->pageSize;
+ }
+
+ /* Check that the values read from the page-size and sector-size fields
+ ** are within range. To be 'in range', both values need to be a power
+ ** of two greater than or equal to 512 or 32, and not greater than their
+ ** respective compile time maximum limits.
+ */
+ if( iPageSize<512 || iSectorSize<32
+ || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
+ || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0
+ ){
+ /* If the either the page-size or sector-size in the journal-header is
+ ** invalid, then the process that wrote the journal-header must have
+ ** crashed before the header was synced. In this case stop reading
+ ** the journal file here.
+ */
+ return SQLITE_DONE;
+ }
+
+ /* Update the page-size to match the value read from the journal.
+ ** Use a testcase() macro to make sure that malloc failure within
+ ** PagerSetPagesize() is tested.
+ */
+ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1);
+ testcase( rc!=SQLITE_OK );
+
+ /* Update the assumed sector-size to match the value used by
+ ** the process that created this journal. If this journal was
+ ** created by a process other than this one, then this routine
+ ** is being called from within pager_playback(). The local value
+ ** of Pager.sectorSize is restored at the end of that routine.
+ */
+ pPager->sectorSize = iSectorSize;
+ }
+
+ pPager->journalOff += JOURNAL_HDR_SZ(pPager);
+ return rc;
+}
+
+
+/*
+** Write the supplied super-journal name into the journal file for pager
+** pPager at the current location. The super-journal name must be the last
+** thing written to a journal file. If the pager is in full-sync mode, the
+** journal file descriptor is advanced to the next sector boundary before
+** anything is written. The format is:
+**
+** + 4 bytes: PAGER_SJ_PGNO.
+** + N bytes: super-journal filename in utf-8.
+** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator).
+** + 4 bytes: super-journal name checksum.
+** + 8 bytes: aJournalMagic[].
+**
+** The super-journal page checksum is the sum of the bytes in the super-journal
+** name, where each byte is interpreted as a signed 8-bit integer.
+**
+** If zSuper is a NULL pointer (occurs for a single database transaction),
+** this call is a no-op.
+*/
+static int writeSuperJournal(Pager *pPager, const char *zSuper){
+ int rc; /* Return code */
+ int nSuper; /* Length of string zSuper */
+ i64 iHdrOff; /* Offset of header in journal file */
+ i64 jrnlSize; /* Size of journal file on disk */
+ u32 cksum = 0; /* Checksum of string zSuper */
+
+ assert( pPager->setSuper==0 );
+ assert( !pagerUseWal(pPager) );
+
+ if( !zSuper
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || !isOpen(pPager->jfd)
+ ){
+ return SQLITE_OK;
+ }
+ pPager->setSuper = 1;
+ assert( pPager->journalHdr <= pPager->journalOff );
+
+ /* Calculate the length in bytes and the checksum of zSuper */
+ for(nSuper=0; zSuper[nSuper]; nSuper++){
+ cksum += zSuper[nSuper];
+ }
+
+ /* If in full-sync mode, advance to the next disk sector before writing
+ ** the super-journal name. This is in case the previous page written to
+ ** the journal has already been synced.
+ */
+ if( pPager->fullSync ){
+ pPager->journalOff = journalHdrOffset(pPager);
+ }
+ iHdrOff = pPager->journalOff;
+
+ /* Write the super-journal data to the end of the journal file. If
+ ** an error occurs, return the error code to the caller.
+ */
+ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_SJ_PGNO(pPager))))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum)))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8,
+ iHdrOff+4+nSuper+8)))
+ ){
+ return rc;
+ }
+ pPager->journalOff += (nSuper+20);
+
+ /* If the pager is in persistent-journal mode, then the physical
+ ** journal-file may extend past the end of the super-journal name
+ ** and 8 bytes of magic data just written to the file. This is
+ ** dangerous because the code to rollback a hot-journal file
+ ** will not be able to find the super-journal name to determine
+ ** whether or not the journal is hot.
+ **
+ ** Easiest thing to do in this scenario is to truncate the journal
+ ** file to the required size.
+ */
+ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))
+ && jrnlSize>pPager->journalOff
+ ){
+ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff);
+ }
+ return rc;
+}
+
+/*
+** Discard the entire contents of the in-memory page-cache.
+*/
+static void pager_reset(Pager *pPager){
+ pPager->iDataVersion++;
+ sqlite3BackupRestart(pPager->pBackup);
+ sqlite3PcacheClear(pPager->pPCache);
+}
+
+/*
+** Return the pPager->iDataVersion value
+*/
+SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){
+ return pPager->iDataVersion;
+}
+
+/*
+** Free all structures in the Pager.aSavepoint[] array and set both
+** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
+** if it is open and the pager is not in exclusive mode.
+*/
+static void releaseAllSavepoints(Pager *pPager){
+ int ii; /* Iterator for looping through Pager.aSavepoint */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){
+ sqlite3OsClose(pPager->sjfd);
+ }
+ sqlite3_free(pPager->aSavepoint);
+ pPager->aSavepoint = 0;
+ pPager->nSavepoint = 0;
+ pPager->nSubRec = 0;
+}
+
+/*
+** Set the bit number pgno in the PagerSavepoint.pInSavepoint
+** bitvecs of all open savepoints. Return SQLITE_OK if successful
+** or SQLITE_NOMEM if a malloc failure occurs.
+*/
+static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
+ int ii; /* Loop counter */
+ int rc = SQLITE_OK; /* Result code */
+
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ PagerSavepoint *p = &pPager->aSavepoint[ii];
+ if( pgno<=p->nOrig ){
+ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is a no-op if the pager is in exclusive mode and not
+** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
+** state.
+**
+** If the pager is not in exclusive-access mode, the database file is
+** completely unlocked. If the file is unlocked and the file-system does
+** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
+** closed (if it is open).
+**
+** If the pager is in ERROR state when this function is called, the
+** contents of the pager cache are discarded before switching back to
+** the OPEN state. Regardless of whether the pager is in exclusive-mode
+** or not, any journal file left in the file-system will be treated
+** as a hot-journal and rolled back the next time a read-transaction
+** is opened (by this or by any other connection).
+*/
+static void pager_unlock(Pager *pPager){
+
+ assert( pPager->eState==PAGER_READER
+ || pPager->eState==PAGER_OPEN
+ || pPager->eState==PAGER_ERROR
+ );
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ releaseAllSavepoints(pPager);
+
+ if( pagerUseWal(pPager) ){
+ assert( !isOpen(pPager->jfd) );
+ sqlite3WalEndReadTransaction(pPager->pWal);
+ pPager->eState = PAGER_OPEN;
+ }else if( !pPager->exclusiveMode ){
+ int rc; /* Error code returned by pagerUnlockDb() */
+ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0;
+
+ /* If the operating system support deletion of open files, then
+ ** close the journal file when dropping the database lock. Otherwise
+ ** another connection with journal_mode=delete might delete the file
+ ** out from under us.
+ */
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_OFF & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_WAL & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
+ if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN)
+ || 1!=(pPager->journalMode & 5)
+ ){
+ sqlite3OsClose(pPager->jfd);
+ }
+
+ /* If the pager is in the ERROR state and the call to unlock the database
+ ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
+ ** above the #define for UNKNOWN_LOCK for an explanation of why this
+ ** is necessary.
+ */
+ rc = pagerUnlockDb(pPager, NO_LOCK);
+ if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
+ pPager->eLock = UNKNOWN_LOCK;
+ }
+
+ /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
+ ** without clearing the error code. This is intentional - the error
+ ** code is cleared and the cache reset in the block below.
+ */
+ assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
+ pPager->eState = PAGER_OPEN;
+ }
+
+ /* If Pager.errCode is set, the contents of the pager cache cannot be
+ ** trusted. Now that there are no outstanding references to the pager,
+ ** it can safely move back to PAGER_OPEN state. This happens in both
+ ** normal and exclusive-locking mode.
+ */
+ assert( pPager->errCode==SQLITE_OK || !MEMDB );
+ if( pPager->errCode ){
+ if( pPager->tempFile==0 ){
+ pager_reset(pPager);
+ pPager->changeCountDone = 0;
+ pPager->eState = PAGER_OPEN;
+ }else{
+ pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER);
+ }
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
+ pPager->errCode = SQLITE_OK;
+ setGetterMethod(pPager);
+ }
+
+ pPager->journalOff = 0;
+ pPager->journalHdr = 0;
+ pPager->setSuper = 0;
+}
+
+/*
+** This function is called whenever an IOERR or FULL error that requires
+** the pager to transition into the ERROR state may have occurred.
+** The first argument is a pointer to the pager structure, the second
+** the error-code about to be returned by a pager API function. The
+** value returned is a copy of the second argument to this function.
+**
+** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
+** IOERR sub-codes, the pager enters the ERROR state and the error code
+** is stored in Pager.errCode. While the pager remains in the ERROR state,
+** all major API calls on the Pager will immediately return Pager.errCode.
+**
+** The ERROR state indicates that the contents of the pager-cache
+** cannot be trusted. This state can be cleared by completely discarding
+** the contents of the pager-cache. If a transaction was active when
+** the persistent error occurred, then the rollback journal may need
+** to be replayed to restore the contents of the database file (as if
+** it were a hot-journal).
+*/
+static int pager_error(Pager *pPager, int rc){
+ int rc2 = rc & 0xff;
+ assert( rc==SQLITE_OK || !MEMDB );
+ assert(
+ pPager->errCode==SQLITE_FULL ||
+ pPager->errCode==SQLITE_OK ||
+ (pPager->errCode & 0xff)==SQLITE_IOERR
+ );
+ if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
+ pPager->errCode = rc;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ }
+ return rc;
+}
+
+static int pager_truncate(Pager *pPager, Pgno nPage);
+
+/*
+** The write transaction open on pPager is being committed (bCommit==1)
+** or rolled back (bCommit==0).
+**
+** Return TRUE if and only if all dirty pages should be flushed to disk.
+**
+** Rules:
+**
+** * For non-TEMP databases, always sync to disk. This is necessary
+** for transactions to be durable.
+**
+** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing
+** file has been created already (via a spill on pagerStress()) and
+** when the number of dirty pages in memory exceeds 25% of the total
+** cache size.
+*/
+static int pagerFlushOnCommit(Pager *pPager, int bCommit){
+ if( pPager->tempFile==0 ) return 1;
+ if( !bCommit ) return 0;
+ if( !isOpen(pPager->fd) ) return 0;
+ return (sqlite3PCachePercentDirty(pPager->pPCache)>=25);
+}
+
+/*
+** This routine ends a transaction. A transaction is usually ended by
+** either a COMMIT or a ROLLBACK operation. This routine may be called
+** after rollback of a hot-journal, or if an error occurs while opening
+** the journal file or writing the very first journal-header of a
+** database transaction.
+**
+** This routine is never called in PAGER_ERROR state. If it is called
+** in PAGER_NONE or PAGER_SHARED state and the lock held is less
+** exclusive than a RESERVED lock, it is a no-op.
+**
+** Otherwise, any active savepoints are released.
+**
+** If the journal file is open, then it is "finalized". Once a journal
+** file has been finalized it is not possible to use it to roll back a
+** transaction. Nor will it be considered to be a hot-journal by this
+** or any other database connection. Exactly how a journal is finalized
+** depends on whether or not the pager is running in exclusive mode and
+** the current journal-mode (Pager.journalMode value), as follows:
+**
+** journalMode==MEMORY
+** Journal file descriptor is simply closed. This destroys an
+** in-memory journal.
+**
+** journalMode==TRUNCATE
+** Journal file is truncated to zero bytes in size.
+**
+** journalMode==PERSIST
+** The first 28 bytes of the journal file are zeroed. This invalidates
+** the first journal header in the file, and hence the entire journal
+** file. An invalid journal file cannot be rolled back.
+**
+** journalMode==DELETE
+** The journal file is closed and deleted using sqlite3OsDelete().
+**
+** If the pager is running in exclusive mode, this method of finalizing
+** the journal file is never used. Instead, if the journalMode is
+** DELETE and the pager is in exclusive mode, the method described under
+** journalMode==PERSIST is used instead.
+**
+** After the journal is finalized, the pager moves to PAGER_READER state.
+** If running in non-exclusive rollback mode, the lock on the file is
+** downgraded to a SHARED_LOCK.
+**
+** SQLITE_OK is returned if no error occurs. If an error occurs during
+** any of the IO operations to finalize the journal file or unlock the
+** database then the IO error code is returned to the user. If the
+** operation to finalize the journal file fails, then the code still
+** tries to unlock the database file if not in exclusive mode. If the
+** unlock operation fails as well, then the first error code related
+** to the first error encountered (the journal finalization one) is
+** returned.
+*/
+static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){
+ int rc = SQLITE_OK; /* Error code from journal finalization operation */
+ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */
+
+ /* Do nothing if the pager does not have an open write transaction
+ ** or at least a RESERVED lock. This function may be called when there
+ ** is no write-transaction active but a RESERVED or greater lock is
+ ** held under two circumstances:
+ **
+ ** 1. After a successful hot-journal rollback, it is called with
+ ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
+ **
+ ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE
+ ** lock switches back to locking_mode=normal and then executes a
+ ** read-transaction, this function is called with eState==PAGER_READER
+ ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
+ */
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState!=PAGER_ERROR );
+ if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
+ return SQLITE_OK;
+ }
+
+ releaseAllSavepoints(pPager);
+ assert( isOpen(pPager->jfd) || pPager->pInJournal==0
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC)
+ );
+ if( isOpen(pPager->jfd) ){
+ assert( !pagerUseWal(pPager) );
+
+ /* Finalize the journal file. */
+ if( sqlite3JournalIsInMemory(pPager->jfd) ){
+ /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */
+ sqlite3OsClose(pPager->jfd);
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
+ if( pPager->journalOff==0 ){
+ rc = SQLITE_OK;
+ }else{
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ if( rc==SQLITE_OK && pPager->fullSync ){
+ /* Make sure the new file size is written into the inode right away.
+ ** Otherwise the journal might resurrect following a power loss and
+ ** cause the last transaction to roll back. See
+ ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773
+ */
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
+ }
+ }
+ pPager->journalOff = 0;
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
+ ){
+ rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile);
+ pPager->journalOff = 0;
+ }else{
+ /* This branch may be executed with Pager.journalMode==MEMORY if
+ ** a hot-journal was just rolled back. In this case the journal
+ ** file should be closed and deleted. If this connection writes to
+ ** the database file, it will do so using an in-memory journal.
+ */
+ int bDelete = !pPager->tempFile;
+ assert( sqlite3JournalIsInMemory(pPager->jfd)==0 );
+ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ sqlite3OsClose(pPager->jfd);
+ if( bDelete ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync);
+ }
+ }
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
+ if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
+ PgHdr *p = sqlite3PagerLookup(pPager, 1);
+ if( p ){
+ p->pageHash = 0;
+ sqlite3PagerUnrefNotNull(p);
+ }
+ }
+#endif
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ pPager->nRec = 0;
+ if( rc==SQLITE_OK ){
+ if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ }else{
+ sqlite3PcacheClearWritable(pPager->pPCache);
+ }
+ sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
+ }
+
+ if( pagerUseWal(pPager) ){
+ /* Drop the WAL write-lock, if any. Also, if the connection was in
+ ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE
+ ** lock held on the database file.
+ */
+ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
+ assert( rc2==SQLITE_OK );
+ }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){
+ /* This branch is taken when committing a transaction in rollback-journal
+ ** mode if the database file on disk is larger than the database image.
+ ** At this point the journal has been finalized and the transaction
+ ** successfully committed, but the EXCLUSIVE lock is still held on the
+ ** file. So it is safe to truncate the database file to its minimum
+ ** required size. */
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ rc = pager_truncate(pPager, pPager->dbSize);
+ }
+
+ if( rc==SQLITE_OK && bCommit ){
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ }
+
+ if( !pPager->exclusiveMode
+ && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
+ ){
+ rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ pPager->eState = PAGER_READER;
+ pPager->setSuper = 0;
+
+ return (rc==SQLITE_OK?rc2:rc);
+}
+
+/* Forward reference */
+static int pager_playback(Pager *pPager, int isHot);
+
+/*
+** Execute a rollback if a transaction is active and unlock the
+** database file.
+**
+** If the pager has already entered the ERROR state, do not attempt
+** the rollback at this time. Instead, pager_unlock() is called. The
+** call to pager_unlock() will discard all in-memory pages, unlock
+** the database file and move the pager back to OPEN state. If this
+** means that there is a hot-journal left in the file-system, the next
+** connection to obtain a shared lock on the pager (which may be this one)
+** will roll it back.
+**
+** If the pager has not already entered the ERROR state, but an IO or
+** malloc error occurs during a rollback, then this will itself cause
+** the pager to enter the ERROR state. Which will be cleared by the
+** call to pager_unlock(), as described above.
+*/
+static void pagerUnlockAndRollback(Pager *pPager){
+ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_LOCKED ){
+ sqlite3BeginBenignMalloc();
+ sqlite3PagerRollback(pPager);
+ sqlite3EndBenignMalloc();
+ }else if( !pPager->exclusiveMode ){
+ assert( pPager->eState==PAGER_READER );
+ pager_end_transaction(pPager, 0, 0);
+ }
+ }else if( pPager->eState==PAGER_ERROR
+ && pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ && isOpen(pPager->jfd)
+ ){
+ /* Special case for a ROLLBACK due to I/O error with an in-memory
+ ** journal: We have to rollback immediately, before the journal is
+ ** closed, because once it is closed, all content is forgotten. */
+ int errCode = pPager->errCode;
+ u8 eLock = pPager->eLock;
+ pPager->eState = PAGER_OPEN;
+ pPager->errCode = SQLITE_OK;
+ pPager->eLock = EXCLUSIVE_LOCK;
+ pager_playback(pPager, 1);
+ pPager->errCode = errCode;
+ pPager->eLock = eLock;
+ }
+ pager_unlock(pPager);
+}
+
+/*
+** Parameter aData must point to a buffer of pPager->pageSize bytes
+** of data. Compute and return a checksum based on the contents of the
+** page of data and the current value of pPager->cksumInit.
+**
+** This is not a real checksum. It is really just the sum of the
+** random initial value (pPager->cksumInit) and every 200th byte
+** of the page data, starting with byte offset (pPager->pageSize%200).
+** Each byte is interpreted as an 8-bit unsigned integer.
+**
+** Changing the formula used to compute this checksum results in an
+** incompatible journal file format.
+**
+** If journal corruption occurs due to a power failure, the most likely
+** scenario is that one end or the other of the record will be changed.
+** It is much less likely that the two ends of the journal record will be
+** correct and the middle be corrupt. Thus, this "checksum" scheme,
+** though fast and simple, catches the mostly likely kind of corruption.
+*/
+static u32 pager_cksum(Pager *pPager, const u8 *aData){
+ u32 cksum = pPager->cksumInit; /* Checksum value to return */
+ int i = pPager->pageSize-200; /* Loop counter */
+ while( i>0 ){
+ cksum += aData[i];
+ i -= 200;
+ }
+ return cksum;
+}
+
+/*
+** Read a single page from either the journal file (if isMainJrnl==1) or
+** from the sub-journal (if isMainJrnl==0) and playback that page.
+** The page begins at offset *pOffset into the file. The *pOffset
+** value is increased to the start of the next page in the journal.
+**
+** The main rollback journal uses checksums - the statement journal does
+** not.
+**
+** If the page number of the page record read from the (sub-)journal file
+** is greater than the current value of Pager.dbSize, then playback is
+** skipped and SQLITE_OK is returned.
+**
+** If pDone is not NULL, then it is a record of pages that have already
+** been played back. If the page at *pOffset has already been played back
+** (if the corresponding pDone bit is set) then skip the playback.
+** Make sure the pDone bit corresponding to the *pOffset page is set
+** prior to returning.
+**
+** If the page record is successfully read from the (sub-)journal file
+** and played back, then SQLITE_OK is returned. If an IO error occurs
+** while reading the record from the (sub-)journal file or while writing
+** to the database file, then the IO error code is returned. If data
+** is successfully read from the (sub-)journal file but appears to be
+** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
+** two circumstances:
+**
+** * If the record page-number is illegal (0 or PAGER_SJ_PGNO), or
+** * If the record is being rolled back from the main journal file
+** and the checksum field does not match the record content.
+**
+** Neither of these two scenarios are possible during a savepoint rollback.
+**
+** If this is a savepoint rollback, then memory may have to be dynamically
+** allocated by this function. If this is the case and an allocation fails,
+** SQLITE_NOMEM is returned.
+*/
+static int pager_playback_one_page(
+ Pager *pPager, /* The pager being played back */
+ i64 *pOffset, /* Offset of record to playback */
+ Bitvec *pDone, /* Bitvec of pages already played back */
+ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */
+ int isSavepnt /* True for a savepoint rollback */
+){
+ int rc;
+ PgHdr *pPg; /* An existing page in the cache */
+ Pgno pgno; /* The page number of a page in journal */
+ u32 cksum; /* Checksum used for sanity checking */
+ char *aData; /* Temporary storage for the page */
+ sqlite3_file *jfd; /* The file descriptor for the journal file */
+ int isSynced; /* True if journal page is synced */
+
+ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */
+ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */
+ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */
+ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */
+
+ aData = pPager->pTmpSpace;
+ assert( aData ); /* Temp storage must have already been allocated */
+ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );
+
+ /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction
+ ** or savepoint rollback done at the request of the caller) or this is
+ ** a hot-journal rollback. If it is a hot-journal rollback, the pager
+ ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
+ ** only reads from the main journal, not the sub-journal.
+ */
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD
+ || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
+ );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );
+
+ /* Read the page number and page data from the journal or sub-journal
+ ** file. Return an error code to the caller if an IO error occurs.
+ */
+ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
+ rc = read32bits(jfd, *pOffset, &pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4);
+ if( rc!=SQLITE_OK ) return rc;
+ *pOffset += pPager->pageSize + 4 + isMainJrnl*4;
+
+ /* Sanity checking on the page. This is more important that I originally
+ ** thought. If a power failure occurs while the journal is being written,
+ ** it could cause invalid data to be written into the journal. We need to
+ ** detect this invalid data (with high probability) and ignore it.
+ */
+ if( pgno==0 || pgno==PAGER_SJ_PGNO(pPager) ){
+ assert( !isSavepnt );
+ return SQLITE_DONE;
+ }
+ if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){
+ return SQLITE_OK;
+ }
+ if( isMainJrnl ){
+ rc = read32bits(jfd, (*pOffset)-4, &cksum);
+ if( rc ) return rc;
+ if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* If this page has already been played back before during the current
+ ** rollback, then don't bother to play it back again.
+ */
+ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* When playing back page 1, restore the nReserve setting
+ */
+ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){
+ pPager->nReserve = ((u8*)aData)[20];
+ }
+
+ /* If the pager is in CACHEMOD state, then there must be a copy of this
+ ** page in the pager cache. In this case just update the pager cache,
+ ** not the database file. The page is left marked dirty in this case.
+ **
+ ** An exception to the above rule: If the database is in no-sync mode
+ ** and a page is moved during an incremental vacuum then the page may
+ ** not be in the pager cache. Later: if a malloc() or IO error occurs
+ ** during a Movepage() call, then the page may not be in the cache
+ ** either. So the condition described in the above paragraph is not
+ ** assert()able.
+ **
+ ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
+ ** pager cache if it exists and the main file. The page is then marked
+ ** not dirty. Since this code is only executed in PAGER_OPEN state for
+ ** a hot-journal rollback, it is guaranteed that the page-cache is empty
+ ** if the pager is in OPEN state.
+ **
+ ** Ticket #1171: The statement journal might contain page content that is
+ ** different from the page content at the start of the transaction.
+ ** This occurs when a page is changed prior to the start of a statement
+ ** then changed again within the statement. When rolling back such a
+ ** statement we must not write to the original database unless we know
+ ** for certain that original page contents are synced into the main rollback
+ ** journal. Otherwise, a power loss might leave modified data in the
+ ** database file without an entry in the rollback journal that can
+ ** restore the database to its original form. Two conditions must be
+ ** met before writing to the database files. (1) the database must be
+ ** locked. (2) we know that the original page content is fully synced
+ ** in the main journal either because the page is not in cache or else
+ ** the page is marked as needSync==0.
+ **
+ ** 2008-04-14: When attempting to vacuum a corrupt database file, it
+ ** is possible to fail a statement on a database that does not yet exist.
+ ** Do not attempt to write if database file has never been opened.
+ */
+ if( pagerUseWal(pPager) ){
+ pPg = 0;
+ }else{
+ pPg = sqlite3PagerLookup(pPager, pgno);
+ }
+ assert( pPg || !MEMDB );
+ assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile );
+ PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
+ PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
+ (isMainJrnl?"main-journal":"sub-journal")
+ ));
+ if( isMainJrnl ){
+ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr);
+ }else{
+ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
+ }
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ && isSynced
+ ){
+ i64 ofst = (pgno-1)*(i64)pPager->pageSize;
+ testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
+ assert( !pagerUseWal(pPager) );
+
+ /* Write the data read from the journal back into the database file.
+ ** This is usually safe even for an encrypted database - as the data
+ ** was encrypted before it was written to the journal file. The exception
+ ** is if the data was just read from an in-memory sub-journal. In that
+ ** case it must be encrypted here before it is copied into the database
+ ** file. */
+ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);
+
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ if( pPager->pBackup ){
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
+ }
+ }else if( !isMainJrnl && pPg==0 ){
+ /* If this is a rollback of a savepoint and data was not written to
+ ** the database and the page is not in-memory, there is a potential
+ ** problem. When the page is next fetched by the b-tree layer, it
+ ** will be read from the database file, which may or may not be
+ ** current.
+ **
+ ** There are a couple of different ways this can happen. All are quite
+ ** obscure. When running in synchronous mode, this can only happen
+ ** if the page is on the free-list at the start of the transaction, then
+ ** populated, then moved using sqlite3PagerMovepage().
+ **
+ ** The solution is to add an in-memory page to the cache containing
+ ** the data just read from the sub-journal. Mark the page as dirty
+ ** and if the pager requires a journal-sync, then mark the page as
+ ** requiring a journal-sync before it is written.
+ */
+ assert( isSavepnt );
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
+ pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
+ rc = sqlite3PagerGet(pPager, pgno, &pPg, 1);
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
+ pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3PcacheMakeDirty(pPg);
+ }
+ if( pPg ){
+ /* No page should ever be explicitly rolled back that is in use, except
+ ** for page 1 which is held in use in order to keep the lock on the
+ ** database active. However such a page may be rolled back as a result
+ ** of an internal error resulting in an automatic call to
+ ** sqlite3PagerRollback().
+ */
+ void *pData;
+ pData = pPg->pData;
+ memcpy(pData, (u8*)aData, pPager->pageSize);
+ pPager->xReiniter(pPg);
+ /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But
+ ** that call was dangerous and had no detectable benefit since the cache
+ ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so
+ ** has been removed. */
+ pager_set_pagehash(pPg);
+
+ /* If this was page 1, then restore the value of Pager.dbFileVers.
+ ** Do this before any decoding. */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
+ }
+ sqlite3PcacheRelease(pPg);
+ }
+ return rc;
+}
+
+/*
+** Parameter zSuper is the name of a super-journal file. A single journal
+** file that referred to the super-journal file has just been rolled back.
+** This routine checks if it is possible to delete the super-journal file,
+** and does so if it is.
+**
+** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not
+** available for use within this function.
+**
+** When a super-journal file is created, it is populated with the names
+** of all of its child journals, one after another, formatted as utf-8
+** encoded text. The end of each child journal file is marked with a
+** nul-terminator byte (0x00). i.e. the entire contents of a super-journal
+** file for a transaction involving two databases might be:
+**
+** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
+**
+** A super-journal file may only be deleted once all of its child
+** journals have been rolled back.
+**
+** This function reads the contents of the super-journal file into
+** memory and loops through each of the child journal names. For
+** each child journal, it checks if:
+**
+** * if the child journal exists, and if so
+** * if the child journal contains a reference to super-journal
+** file zSuper
+**
+** If a child journal can be found that matches both of the criteria
+** above, this function returns without doing anything. Otherwise, if
+** no such child journal can be found, file zSuper is deleted from
+** the file-system using sqlite3OsDelete().
+**
+** If an IO error within this function, an error code is returned. This
+** function allocates memory by calling sqlite3Malloc(). If an allocation
+** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors
+** occur, SQLITE_OK is returned.
+**
+** TODO: This function allocates a single block of memory to load
+** the entire contents of the super-journal file. This could be
+** a couple of kilobytes or so - potentially larger than the page
+** size.
+*/
+static int pager_delsuper(Pager *pPager, const char *zSuper){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int rc; /* Return code */
+ sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */
+ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */
+ char *zSuperJournal = 0; /* Contents of super-journal file */
+ i64 nSuperJournal; /* Size of super-journal file */
+ char *zJournal; /* Pointer to one journal within MJ file */
+ char *zSuperPtr; /* Space to hold super-journal filename */
+ char *zFree = 0; /* Free this buffer */
+ int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */
+
+ /* Allocate space for both the pJournal and pSuper file descriptors.
+ ** If successful, open the super-journal file for reading.
+ */
+ pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2);
+ if( !pSuper ){
+ rc = SQLITE_NOMEM_BKPT;
+ pJournal = 0;
+ }else{
+ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0);
+ pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile);
+ }
+ if( rc!=SQLITE_OK ) goto delsuper_out;
+
+ /* Load the entire super-journal file into space obtained from
+ ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain
+ ** sufficient space (in zSuperPtr) to hold the names of super-journal
+ ** files extracted from regular rollback-journals.
+ */
+ rc = sqlite3OsFileSize(pSuper, &nSuperJournal);
+ if( rc!=SQLITE_OK ) goto delsuper_out;
+ nSuperPtr = pVfs->mxPathname+1;
+ zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2);
+ if( !zFree ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto delsuper_out;
+ }
+ zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0;
+ zSuperJournal = &zFree[4];
+ zSuperPtr = &zSuperJournal[nSuperJournal+2];
+ rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0);
+ if( rc!=SQLITE_OK ) goto delsuper_out;
+ zSuperJournal[nSuperJournal] = 0;
+ zSuperJournal[nSuperJournal+1] = 0;
+
+ zJournal = zSuperJournal;
+ while( (zJournal-zSuperJournal)<nSuperJournal ){
+ int exists;
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc!=SQLITE_OK ){
+ goto delsuper_out;
+ }
+ if( exists ){
+ /* One of the journals pointed to by the super-journal exists.
+ ** Open it and check if it points at the super-journal. If
+ ** so, return without deleting the super-journal file.
+ ** NB: zJournal is really a MAIN_JOURNAL. But call it a
+ ** SUPER_JOURNAL here so that the VFS will not send the zJournal
+ ** name into sqlite3_database_file_object().
+ */
+ int c;
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
+ if( rc!=SQLITE_OK ){
+ goto delsuper_out;
+ }
+
+ rc = readSuperJournal(pJournal, zSuperPtr, nSuperPtr);
+ sqlite3OsClose(pJournal);
+ if( rc!=SQLITE_OK ){
+ goto delsuper_out;
+ }
+
+ c = zSuperPtr[0]!=0 && strcmp(zSuperPtr, zSuper)==0;
+ if( c ){
+ /* We have a match. Do not delete the super-journal file. */
+ goto delsuper_out;
+ }
+ }
+ zJournal += (sqlite3Strlen30(zJournal)+1);
+ }
+
+ sqlite3OsClose(pSuper);
+ rc = sqlite3OsDelete(pVfs, zSuper, 0);
+
+delsuper_out:
+ sqlite3_free(zFree);
+ if( pSuper ){
+ sqlite3OsClose(pSuper);
+ assert( !isOpen(pJournal) );
+ sqlite3_free(pSuper);
+ }
+ return rc;
+}
+
+
+/*
+** This function is used to change the actual size of the database
+** file in the file-system. This only happens when committing a transaction,
+** or rolling back a transaction (including rolling back a hot-journal).
+**
+** If the main database file is not open, or the pager is not in either
+** DBMOD or OPEN state, this function is a no-op. Otherwise, the size
+** of the file is changed to nPage pages (nPage*pPager->pageSize bytes).
+** If the file on disk is currently larger than nPage pages, then use the VFS
+** xTruncate() method to truncate it.
+**
+** Or, it might be the case that the file on disk is smaller than
+** nPage pages. Some operating system implementations can get confused if
+** you try to truncate a file to some size that is larger than it
+** currently is, so detect this case and write a single zero byte to
+** the end of the new file instead.
+**
+** If successful, return SQLITE_OK. If an IO error occurs while modifying
+** the database file, return the error code to the caller.
+*/
+static int pager_truncate(Pager *pPager, Pgno nPage){
+ int rc = SQLITE_OK;
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState!=PAGER_READER );
+ PAGERTRACE(("Truncate %d npage %u\n", PAGERID(pPager), nPage));
+
+
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
+ i64 currentSize, newSize;
+ int szPage = pPager->pageSize;
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ /* TODO: Is it safe to use Pager.dbFileSize here? */
+ rc = sqlite3OsFileSize(pPager->fd, &currentSize);
+ newSize = szPage*(i64)nPage;
+ if( rc==SQLITE_OK && currentSize!=newSize ){
+ if( currentSize>newSize ){
+ rc = sqlite3OsTruncate(pPager->fd, newSize);
+ }else if( (currentSize+szPage)<=newSize ){
+ char *pTmp = pPager->pTmpSpace;
+ memset(pTmp, 0, szPage);
+ testcase( (newSize-szPage) == currentSize );
+ testcase( (newSize-szPage) > currentSize );
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &newSize);
+ rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage);
+ }
+ if( rc==SQLITE_OK ){
+ pPager->dbFileSize = nPage;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return a sanitized version of the sector-size of OS file pFile. The
+** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE.
+*/
+SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){
+ int iRet = sqlite3OsSectorSize(pFile);
+ if( iRet<32 ){
+ iRet = 512;
+ }else if( iRet>MAX_SECTOR_SIZE ){
+ assert( MAX_SECTOR_SIZE>=512 );
+ iRet = MAX_SECTOR_SIZE;
+ }
+ return iRet;
+}
+
+/*
+** Set the value of the Pager.sectorSize variable for the given
+** pager based on the value returned by the xSectorSize method
+** of the open database file. The sector size will be used
+** to determine the size and alignment of journal header and
+** super-journal pointers within created journal files.
+**
+** For temporary files the effective sector size is always 512 bytes.
+**
+** Otherwise, for non-temporary files, the effective sector size is
+** the value returned by the xSectorSize() method rounded up to 32 if
+** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it
+** is greater than MAX_SECTOR_SIZE.
+**
+** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set
+** the effective sector size to its minimum value (512). The purpose of
+** pPager->sectorSize is to define the "blast radius" of bytes that
+** might change if a crash occurs while writing to a single byte in
+** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero
+** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector
+** size. For backwards compatibility of the rollback journal file format,
+** we cannot reduce the effective sector size below 512.
+*/
+static void setSectorSize(Pager *pPager){
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ if( pPager->tempFile
+ || (sqlite3OsDeviceCharacteristics(pPager->fd) &
+ SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0
+ ){
+ /* Sector size doesn't matter for temporary files. Also, the file
+ ** may not have been opened yet, in which case the OsSectorSize()
+ ** call will segfault. */
+ pPager->sectorSize = 512;
+ }else{
+ pPager->sectorSize = sqlite3SectorSize(pPager->fd);
+ }
+}
+
+/*
+** Playback the journal and thus restore the database file to
+** the state it was in before we started making changes.
+**
+** The journal file format is as follows:
+**
+** (1) 8 byte prefix. A copy of aJournalMagic[].
+** (2) 4 byte big-endian integer which is the number of valid page records
+** in the journal. If this value is 0xffffffff, then compute the
+** number of page records from the journal size.
+** (3) 4 byte big-endian integer which is the initial value for the
+** sanity checksum.
+** (4) 4 byte integer which is the number of pages to truncate the
+** database to during a rollback.
+** (5) 4 byte big-endian integer which is the sector size. The header
+** is this many bytes in size.
+** (6) 4 byte big-endian integer which is the page size.
+** (7) zero padding out to the next sector size.
+** (8) Zero or more pages instances, each as follows:
+** + 4 byte page number.
+** + pPager->pageSize bytes of data.
+** + 4 byte checksum
+**
+** When we speak of the journal header, we mean the first 7 items above.
+** Each entry in the journal is an instance of the 8th item.
+**
+** Call the value from the second bullet "nRec". nRec is the number of
+** valid page entries in the journal. In most cases, you can compute the
+** value of nRec from the size of the journal file. But if a power
+** failure occurred while the journal was being written, it could be the
+** case that the size of the journal file had already been increased but
+** the extra entries had not yet made it safely to disk. In such a case,
+** the value of nRec computed from the file size would be too large. For
+** that reason, we always use the nRec value in the header.
+**
+** If the nRec value is 0xffffffff it means that nRec should be computed
+** from the file size. This value is used when the user selects the
+** no-sync option for the journal. A power failure could lead to corruption
+** in this case. But for things like temporary table (which will be
+** deleted when the power is restored) we don't care.
+**
+** If the file opened as the journal file is not a well-formed
+** journal file then all pages up to the first corrupted page are rolled
+** back (or no pages if the journal header is corrupted). The journal file
+** is then deleted and SQLITE_OK returned, just as if no corruption had
+** been encountered.
+**
+** If an I/O or malloc() error occurs, the journal-file is not deleted
+** and an error code is returned.
+**
+** The isHot parameter indicates that we are trying to rollback a journal
+** that might be a hot journal. Or, it could be that the journal is
+** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
+** If the journal really is hot, reset the pager cache prior rolling
+** back any content. If the journal is merely persistent, no reset is
+** needed.
+*/
+static int pager_playback(Pager *pPager, int isHot){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ i64 szJ; /* Size of the journal file in bytes */
+ u32 nRec; /* Number of Records in the journal */
+ u32 u; /* Unsigned loop counter */
+ Pgno mxPg = 0; /* Size of the original file in pages */
+ int rc; /* Result code of a subroutine */
+ int res = 1; /* Value returned by sqlite3OsAccess() */
+ char *zSuper = 0; /* Name of super-journal file if any */
+ int needPagerReset; /* True to reset page prior to first page rollback */
+ int nPlayback = 0; /* Total number of pages restored from journal */
+ u32 savedPageSize = pPager->pageSize;
+
+ /* Figure out how many records are in the journal. Abort early if
+ ** the journal is empty.
+ */
+ assert( isOpen(pPager->jfd) );
+ rc = sqlite3OsFileSize(pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+
+ /* Read the super-journal name from the journal, if it is present.
+ ** If a super-journal file name is specified, but the file is not
+ ** present on disk, then the journal is not hot and does not need to be
+ ** played back.
+ **
+ ** TODO: Technically the following is an error because it assumes that
+ ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
+ ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
+ ** mxPathname is 512, which is the same as the minimum allowable value
+ ** for pageSize.
+ */
+ zSuper = pPager->pTmpSpace;
+ rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1);
+ if( rc==SQLITE_OK && zSuper[0] ){
+ rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
+ }
+ zSuper = 0;
+ if( rc!=SQLITE_OK || !res ){
+ goto end_playback;
+ }
+ pPager->journalOff = 0;
+ needPagerReset = isHot;
+
+ /* This loop terminates either when a readJournalHdr() or
+ ** pager_playback_one_page() call returns SQLITE_DONE or an IO error
+ ** occurs.
+ */
+ while( 1 ){
+ /* Read the next journal header from the journal file. If there are
+ ** not enough bytes left in the journal file for a complete header, or
+ ** it is corrupted, then a process must have failed while writing it.
+ ** This indicates nothing more needs to be rolled back.
+ */
+ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+ goto end_playback;
+ }
+
+ /* If nRec is 0xffffffff, then this journal was created by a process
+ ** working in no-sync mode. This means that the rest of the journal
+ ** file consists of pages, there are no more journal headers. Compute
+ ** the value of nRec based on this assumption.
+ */
+ if( nRec==0xffffffff ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
+ nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
+ }
+
+ /* If nRec is 0 and this rollback is of a transaction created by this
+ ** process and if this is the final header in the journal, then it means
+ ** that this part of the journal was being filled but has not yet been
+ ** synced to disk. Compute the number of pages based on the remaining
+ ** size of the file.
+ **
+ ** The third term of the test was added to fix ticket #2565.
+ ** When rolling back a hot journal, nRec==0 always means that the next
+ ** chunk of the journal contains zero pages to be rolled back. But
+ ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
+ ** the journal, it means that the journal might contain additional
+ ** pages that need to be rolled back and that the number of pages
+ ** should be computed based on the journal file size.
+ */
+ if( nRec==0 && !isHot &&
+ pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
+ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
+ }
+
+ /* If this is the first header read from the journal, truncate the
+ ** database file back to its original size.
+ */
+ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
+ rc = pager_truncate(pPager, mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ pPager->dbSize = mxPg;
+ if( pPager->mxPgno<mxPg ){
+ pPager->mxPgno = mxPg;
+ }
+ }
+
+ /* Copy original pages out of the journal and back into the
+ ** database file and/or page cache.
+ */
+ for(u=0; u<nRec; u++){
+ if( needPagerReset ){
+ pager_reset(pPager);
+ needPagerReset = 0;
+ }
+ rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0);
+ if( rc==SQLITE_OK ){
+ nPlayback++;
+ }else{
+ if( rc==SQLITE_DONE ){
+ pPager->journalOff = szJ;
+ break;
+ }else if( rc==SQLITE_IOERR_SHORT_READ ){
+ /* If the journal has been truncated, simply stop reading and
+ ** processing the journal. This might happen if the journal was
+ ** not completely written and synced prior to a crash. In that
+ ** case, the database should have never been written in the
+ ** first place so it is OK to simply abandon the rollback. */
+ rc = SQLITE_OK;
+ goto end_playback;
+ }else{
+ /* If we are unable to rollback, quit and return the error
+ ** code. This will cause the pager to enter the error state
+ ** so that no further harm will be done. Perhaps the next
+ ** process to come along will be able to rollback the database.
+ */
+ goto end_playback;
+ }
+ }
+ }
+ }
+ /*NOTREACHED*/
+ assert( 0 );
+
+end_playback:
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1);
+ }
+ /* Following a rollback, the database file should be back in its original
+ ** state prior to the start of the transaction, so invoke the
+ ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
+ ** assertion that the transaction counter was modified.
+ */
+#ifdef SQLITE_DEBUG
+ sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0);
+#endif
+
+ /* If this playback is happening automatically as a result of an IO or
+ ** malloc error that occurred after the change-counter was updated but
+ ** before the transaction was committed, then the change-counter
+ ** modification may just have been reverted. If this happens in exclusive
+ ** mode, then subsequent transactions performed by the connection will not
+ ** update the change-counter at all. This may lead to cache inconsistency
+ ** problems for other processes at some point in the future. So, just
+ ** in case this has happened, clear the changeCountDone flag now.
+ */
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( rc==SQLITE_OK ){
+ /* Leave 4 bytes of space before the super-journal filename in memory.
+ ** This is because it may end up being passed to sqlite3OsOpen(), in
+ ** which case it requires 4 0x00 bytes in memory immediately before
+ ** the filename. */
+ zSuper = &pPager->pTmpSpace[4];
+ rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( rc==SQLITE_OK
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
+ rc = sqlite3PagerSync(pPager, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( rc==SQLITE_OK && zSuper[0] && res ){
+ /* If there was a super-journal and this routine will return success,
+ ** see if it is possible to delete the super-journal.
+ */
+ assert( zSuper==&pPager->pTmpSpace[4] );
+ memset(pPager->pTmpSpace, 0, 4);
+ rc = pager_delsuper(pPager, zSuper);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( isHot && nPlayback ){
+ sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s",
+ nPlayback, pPager->zJournal);
+ }
+
+ /* The Pager.sectorSize variable may have been updated while rolling
+ ** back a journal created by a process with a different sector size
+ ** value. Reset it to the correct value for this process.
+ */
+ setSectorSize(pPager);
+ return rc;
+}
+
+
+/*
+** Read the content for page pPg out of the database file (or out of
+** the WAL if that is where the most recent copy if found) into
+** pPg->pData. A shared lock or greater must be held on the database
+** file before this function is called.
+**
+** If page 1 is read, then the value of Pager.dbFileVers[] is set to
+** the value read from the database file.
+**
+** If an IO error occurs, then the IO error is returned to the caller.
+** Otherwise, SQLITE_OK is returned.
+*/
+static int readDbPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
+ int rc = SQLITE_OK; /* Return code */
+
+#ifndef SQLITE_OMIT_WAL
+ u32 iFrame = 0; /* Frame of WAL containing pgno */
+
+ assert( pPager->eState>=PAGER_READER && !MEMDB );
+ assert( isOpen(pPager->fd) );
+
+ if( pagerUseWal(pPager) ){
+ rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame);
+ if( rc ) return rc;
+ }
+ if( iFrame ){
+ rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData);
+ }else
+#endif
+ {
+ i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+
+ if( pPg->pgno==1 ){
+ if( rc ){
+ /* If the read is unsuccessful, set the dbFileVers[] to something
+ ** that will never be a valid file version. dbFileVers[] is a copy
+ ** of bytes 24..39 of the database. Bytes 28..31 should always be
+ ** zero or the size of the database in page. Bytes 32..35 and 35..39
+ ** should be page numbers which are never 0xffffffff. So filling
+ ** pPager->dbFileVers[] with all 0xff bytes should suffice.
+ **
+ ** For an encrypted database, the situation is more complex: bytes
+ ** 24..39 of the database are white noise. But the probability of
+ ** white noise equaling 16 bytes of 0xff is vanishingly small so
+ ** we should still be ok.
+ */
+ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
+ }else{
+ u8 *dbFileVers = &((u8*)pPg->pData)[24];
+ memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
+ }
+ }
+ PAGER_INCR(sqlite3_pager_readdb_count);
+ PAGER_INCR(pPager->nRead);
+ IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno));
+ PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)));
+
+ return rc;
+}
+
+/*
+** Update the value of the change-counter at offsets 24 and 92 in
+** the header and the sqlite version number at offset 96.
+**
+** This is an unconditional update. See also the pager_incr_changecounter()
+** routine which only updates the change-counter if the update is actually
+** needed, as determined by the pPager->changeCountDone state variable.
+*/
+static void pager_write_changecounter(PgHdr *pPg){
+ u32 change_counter;
+ if( NEVER(pPg==0) ) return;
+
+ /* Increment the value just read and write it back to byte 24. */
+ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1;
+ put32bits(((char*)pPg->pData)+24, change_counter);
+
+ /* Also store the SQLite version number in bytes 96..99 and in
+ ** bytes 92..95 store the change counter for which the version number
+ ** is valid. */
+ put32bits(((char*)pPg->pData)+92, change_counter);
+ put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER);
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** This function is invoked once for each page that has already been
+** written into the log file when a WAL transaction is rolled back.
+** Parameter iPg is the page number of said page. The pCtx argument
+** is actually a pointer to the Pager structure.
+**
+** If page iPg is present in the cache, and has no outstanding references,
+** it is discarded. Otherwise, if there are one or more outstanding
+** references, the page content is reloaded from the database. If the
+** attempt to reload content from the database is required and fails,
+** return an SQLite error code. Otherwise, SQLITE_OK.
+*/
+static int pagerUndoCallback(void *pCtx, Pgno iPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = (Pager *)pCtx;
+ PgHdr *pPg;
+
+ assert( pagerUseWal(pPager) );
+ pPg = sqlite3PagerLookup(pPager, iPg);
+ if( pPg ){
+ if( sqlite3PcachePageRefcount(pPg)==1 ){
+ sqlite3PcacheDrop(pPg);
+ }else{
+ rc = readDbPage(pPg);
+ if( rc==SQLITE_OK ){
+ pPager->xReiniter(pPg);
+ }
+ sqlite3PagerUnrefNotNull(pPg);
+ }
+ }
+
+ /* Normally, if a transaction is rolled back, any backup processes are
+ ** updated as data is copied out of the rollback journal and into the
+ ** database. This is not generally possible with a WAL database, as
+ ** rollback involves simply truncating the log file. Therefore, if one
+ ** or more frames have already been written to the log (and therefore
+ ** also copied into the backup databases) as part of this transaction,
+ ** the backups must be restarted.
+ */
+ sqlite3BackupRestart(pPager->pBackup);
+
+ return rc;
+}
+
+/*
+** This function is called to rollback a transaction on a WAL database.
+*/
+static int pagerRollbackWal(Pager *pPager){
+ int rc; /* Return Code */
+ PgHdr *pList; /* List of dirty pages to revert */
+
+ /* For all pages in the cache that are currently dirty or have already
+ ** been written (but not committed) to the log file, do one of the
+ ** following:
+ **
+ ** + Discard the cached page (if refcount==0), or
+ ** + Reload page content from the database (if refcount>0).
+ */
+ pPager->dbSize = pPager->dbOrigSize;
+ rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager);
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ while( pList && rc==SQLITE_OK ){
+ PgHdr *pNext = pList->pDirty;
+ rc = pagerUndoCallback((void *)pPager, pList->pgno);
+ pList = pNext;
+ }
+
+ return rc;
+}
+
+/*
+** This function is a wrapper around sqlite3WalFrames(). As well as logging
+** the contents of the list of pages headed by pList (connected by pDirty),
+** this function notifies any active backup processes that the pages have
+** changed.
+**
+** The list of pages passed into this routine is always sorted by page number.
+** Hence, if page 1 appears anywhere on the list, it will be the first page.
+*/
+static int pagerWalFrames(
+ Pager *pPager, /* Pager object */
+ PgHdr *pList, /* List of frames to log */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit /* True if this is a commit */
+){
+ int rc; /* Return code */
+ int nList; /* Number of pages in pList */
+ PgHdr *p; /* For looping over pages */
+
+ assert( pPager->pWal );
+ assert( pList );
+#ifdef SQLITE_DEBUG
+ /* Verify that the page list is in ascending order */
+ for(p=pList; p && p->pDirty; p=p->pDirty){
+ assert( p->pgno < p->pDirty->pgno );
+ }
+#endif
+
+ assert( pList->pDirty==0 || isCommit );
+ if( isCommit ){
+ /* If a WAL transaction is being committed, there is no point in writing
+ ** any pages with page numbers greater than nTruncate into the WAL file.
+ ** They will never be read by any client. So remove them from the pDirty
+ ** list here. */
+ PgHdr **ppNext = &pList;
+ nList = 0;
+ for(p=pList; (*ppNext = p)!=0; p=p->pDirty){
+ if( p->pgno<=nTruncate ){
+ ppNext = &p->pDirty;
+ nList++;
+ }
+ }
+ assert( pList );
+ }else{
+ nList = 1;
+ }
+ pPager->aStat[PAGER_STAT_WRITE] += nList;
+
+ if( pList->pgno==1 ) pager_write_changecounter(pList);
+ rc = sqlite3WalFrames(pPager->pWal,
+ pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags
+ );
+ if( rc==SQLITE_OK && pPager->pBackup ){
+ for(p=pList; p; p=p->pDirty){
+ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData);
+ }
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ for(p=pList; p; p=p->pDirty){
+ pager_set_pagehash(p);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Begin a read transaction on the WAL.
+**
+** This routine used to be called "pagerOpenSnapshot()" because it essentially
+** makes a snapshot of the database at the current point in time and preserves
+** that snapshot for use by the reader in spite of concurrently changes by
+** other writers or checkpointers.
+*/
+static int pagerBeginReadTransaction(Pager *pPager){
+ int rc; /* Return code */
+ int changed = 0; /* True if cache must be reset */
+
+ assert( pagerUseWal(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
+
+ /* sqlite3WalEndReadTransaction() was not called for the previous
+ ** transaction in locking_mode=EXCLUSIVE. So call it now. If we
+ ** are in locking_mode=NORMAL and EndRead() was previously called,
+ ** the duplicate call is harmless.
+ */
+ sqlite3WalEndReadTransaction(pPager->pWal);
+
+ rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed);
+ if( rc!=SQLITE_OK || changed ){
+ pager_reset(pPager);
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
+ }
+
+ return rc;
+}
+#endif
+
+/*
+** This function is called as part of the transition from PAGER_OPEN
+** to PAGER_READER state to determine the size of the database file
+** in pages (assuming the page size currently stored in Pager.pageSize).
+**
+** If no error occurs, SQLITE_OK is returned and the size of the database
+** in pages is stored in *pnPage. Otherwise, an error code (perhaps
+** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
+*/
+static int pagerPagecount(Pager *pPager, Pgno *pnPage){
+ Pgno nPage; /* Value to return via *pnPage */
+
+ /* Query the WAL sub-system for the database size. The WalDbsize()
+ ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or
+ ** if the database size is not available. The database size is not
+ ** available from the WAL sub-system if the log file is empty or
+ ** contains no valid committed transactions.
+ */
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK );
+ assert( isOpen(pPager->fd) );
+ assert( pPager->tempFile==0 );
+ nPage = sqlite3WalDbsize(pPager->pWal);
+
+ /* If the number of pages in the database is not available from the
+ ** WAL sub-system, determine the page count based on the size of
+ ** the database file. If the size of the database file is not an
+ ** integer multiple of the page-size, round up the result.
+ */
+ if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){
+ i64 n = 0; /* Size of db file in bytes */
+ int rc = sqlite3OsFileSize(pPager->fd, &n);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize);
+ }
+
+ /* If the current number of pages in the file is greater than the
+ ** configured maximum pager number, increase the allowed limit so
+ ** that the file can be read.
+ */
+ if( nPage>pPager->mxPgno ){
+ pPager->mxPgno = (Pgno)nPage;
+ }
+
+ *pnPage = nPage;
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Check if the *-wal file that corresponds to the database opened by pPager
+** exists if the database is not empty, or verify that the *-wal file does
+** not exist (by deleting it) if the database file is empty.
+**
+** If the database is not empty and the *-wal file exists, open the pager
+** in WAL mode. If the database is empty or if no *-wal file exists and
+** if no error occurs, make sure Pager.journalMode is not set to
+** PAGER_JOURNALMODE_WAL.
+**
+** Return SQLITE_OK or an error code.
+**
+** The caller must hold a SHARED lock on the database file to call this
+** function. Because an EXCLUSIVE lock on the db file is required to delete
+** a WAL on a none-empty database, this ensures there is no race condition
+** between the xAccess() below and an xDelete() being executed by some
+** other connection.
+*/
+static int pagerOpenWalIfPresent(Pager *pPager){
+ int rc = SQLITE_OK;
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK );
+
+ if( !pPager->tempFile ){
+ int isWal; /* True if WAL file exists */
+ rc = sqlite3OsAccess(
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal
+ );
+ if( rc==SQLITE_OK ){
+ if( isWal ){
+ Pgno nPage; /* Size of the database file */
+
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc ) return rc;
+ if( nPage==0 ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0);
+ }else{
+ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 );
+ rc = sqlite3PagerOpenWal(pPager, 0);
+ }
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){
+ pPager->journalMode = PAGER_JOURNALMODE_DELETE;
+ }
+ }
+ }
+ return rc;
+}
+#endif
+
+/*
+** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
+** the entire super-journal file. The case pSavepoint==NULL occurs when
+** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction
+** savepoint.
+**
+** When pSavepoint is not NULL (meaning a non-transaction savepoint is
+** being rolled back), then the rollback consists of up to three stages,
+** performed in the order specified:
+**
+** * Pages are played back from the main journal starting at byte
+** offset PagerSavepoint.iOffset and continuing to
+** PagerSavepoint.iHdrOffset, or to the end of the main journal
+** file if PagerSavepoint.iHdrOffset is zero.
+**
+** * If PagerSavepoint.iHdrOffset is not zero, then pages are played
+** back starting from the journal header immediately following
+** PagerSavepoint.iHdrOffset to the end of the main journal file.
+**
+** * Pages are then played back from the sub-journal file, starting
+** with the PagerSavepoint.iSubRec and continuing to the end of
+** the journal file.
+**
+** Throughout the rollback process, each time a page is rolled back, the
+** corresponding bit is set in a bitvec structure (variable pDone in the
+** implementation below). This is used to ensure that a page is only
+** rolled back the first time it is encountered in either journal.
+**
+** If pSavepoint is NULL, then pages are only played back from the main
+** journal file. There is no need for a bitvec in this case.
+**
+** In either case, before playback commences the Pager.dbSize variable
+** is reset to the value that it held at the start of the savepoint
+** (or transaction). No page with a page-number greater than this value
+** is played back. If one is encountered it is simply skipped.
+*/
+static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
+ i64 szJ; /* Effective size of the main journal */
+ i64 iHdrOff; /* End of first segment of main-journal records */
+ int rc = SQLITE_OK; /* Return code */
+ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */
+
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+
+ /* Allocate a bitvec to use to store the set of pages rolled back */
+ if( pSavepoint ){
+ pDone = sqlite3BitvecCreate(pSavepoint->nOrig);
+ if( !pDone ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+
+ /* Set the database size back to the value it was before the savepoint
+ ** being reverted was opened.
+ */
+ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( !pSavepoint && pagerUseWal(pPager) ){
+ return pagerRollbackWal(pPager);
+ }
+
+ /* Use pPager->journalOff as the effective size of the main rollback
+ ** journal. The actual file might be larger than this in
+ ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything
+ ** past pPager->journalOff is off-limits to us.
+ */
+ szJ = pPager->journalOff;
+ assert( pagerUseWal(pPager)==0 || szJ==0 );
+
+ /* Begin by rolling back records from the main journal starting at
+ ** PagerSavepoint.iOffset and continuing to the next journal header.
+ ** There might be records in the main journal that have a page number
+ ** greater than the current database size (pPager->dbSize) but those
+ ** will be skipped automatically. Pages are added to pDone as they
+ ** are played back.
+ */
+ if( pSavepoint && !pagerUseWal(pPager) ){
+ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
+ pPager->journalOff = pSavepoint->iOffset;
+ while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }else{
+ pPager->journalOff = 0;
+ }
+
+ /* Continue rolling back records out of the main journal starting at
+ ** the first journal header seen and continuing until the effective end
+ ** of the main journal file. Continue to skip out-of-range pages and
+ ** continue adding pages rolled back to pDone.
+ */
+ while( rc==SQLITE_OK && pPager->journalOff<szJ ){
+ u32 ii; /* Loop counter */
+ u32 nJRec = 0; /* Number of Journal Records */
+ u32 dummy;
+ rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
+ assert( rc!=SQLITE_DONE );
+
+ /*
+ ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
+ ** test is related to ticket #2565. See the discussion in the
+ ** pager_playback() function for additional information.
+ */
+ if( nJRec==0
+ && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
+ ){
+ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
+ }
+ for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }
+ assert( rc!=SQLITE_OK || pPager->journalOff>=szJ );
+
+ /* Finally, rollback pages from the sub-journal. Page that were
+ ** previously rolled back out of the main journal (and are hence in pDone)
+ ** will be skipped. Out-of-range pages are also skipped.
+ */
+ if( pSavepoint ){
+ u32 ii; /* Loop counter */
+ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize);
+
+ if( pagerUseWal(pPager) ){
+ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData);
+ }
+ for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
+ assert( offset==(i64)ii*(4+pPager->pageSize) );
+ rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }
+
+ sqlite3BitvecDestroy(pDone);
+ if( rc==SQLITE_OK ){
+ pPager->journalOff = szJ;
+ }
+
+ return rc;
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed
+** before attempting to recycle clean and unused pages.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
+ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed
+** before attempting to spill pages to journal.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){
+ return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage);
+}
+
+/*
+** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
+*/
+static void pagerFixMaplimit(Pager *pPager){
+#if SQLITE_MAX_MMAP_SIZE>0
+ sqlite3_file *fd = pPager->fd;
+ if( isOpen(fd) && fd->pMethods->iVersion>=3 ){
+ sqlite3_int64 sz;
+ sz = pPager->szMmap;
+ pPager->bUseFetch = (sz>0);
+ setGetterMethod(pPager);
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz);
+ }
+#endif
+}
+
+/*
+** Change the maximum size of any memory mapping made of the database file.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){
+ pPager->szMmap = szMmap;
+ pagerFixMaplimit(pPager);
+}
+
+/*
+** Free as much memory as possible from the pager.
+*/
+SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){
+ sqlite3PcacheShrink(pPager->pPCache);
+}
+
+/*
+** Adjust settings of the pager to those specified in the pgFlags parameter.
+**
+** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness
+** of the database to damage due to OS crashes or power failures by
+** changing the number of syncs()s when writing the journals.
+** There are four levels:
+**
+** OFF sqlite3OsSync() is never called. This is the default
+** for temporary and transient files.
+**
+** NORMAL The journal is synced once before writes begin on the
+** database. This is normally adequate protection, but
+** it is theoretically possible, though very unlikely,
+** that an inopertune power failure could leave the journal
+** in a state which would cause damage to the database
+** when it is rolled back.
+**
+** FULL The journal is synced twice before writes begin on the
+** database (with some additional information - the nRec field
+** of the journal header - being written in between the two
+** syncs). If we assume that writing a
+** single disk sector is atomic, then this mode provides
+** assurance that the journal will not be corrupted to the
+** point of causing damage to the database during rollback.
+**
+** EXTRA This is like FULL except that is also syncs the directory
+** that contains the rollback journal after the rollback
+** journal is unlinked.
+**
+** The above is for a rollback-journal mode. For WAL mode, OFF continues
+** to mean that no syncs ever occur. NORMAL means that the WAL is synced
+** prior to the start of checkpoint and that the database file is synced
+** at the conclusion of the checkpoint if the entire content of the WAL
+** was written back into the database. But no sync operations occur for
+** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL
+** file is synced following each commit operation, in addition to the
+** syncs associated with NORMAL. There is no difference between FULL
+** and EXTRA for WAL mode.
+**
+** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The
+** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync
+** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an
+** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL
+** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the
+** synchronous=FULL versus synchronous=NORMAL setting determines when
+** the xSync primitive is called and is relevant to all platforms.
+**
+** Numeric values associated with these states are OFF==1, NORMAL=2,
+** and FULL=3.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetFlags(
+ Pager *pPager, /* The pager to set safety level for */
+ unsigned pgFlags /* Various flags */
+){
+ unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
+ if( pPager->tempFile ){
+ pPager->noSync = 1;
+ pPager->fullSync = 0;
+ pPager->extraSync = 0;
+ }else{
+ pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0;
+ pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0;
+ pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0;
+ }
+ if( pPager->noSync ){
+ pPager->syncFlags = 0;
+ }else if( pgFlags & PAGER_FULLFSYNC ){
+ pPager->syncFlags = SQLITE_SYNC_FULL;
+ }else{
+ pPager->syncFlags = SQLITE_SYNC_NORMAL;
+ }
+ pPager->walSyncFlags = (pPager->syncFlags<<2);
+ if( pPager->fullSync ){
+ pPager->walSyncFlags |= pPager->syncFlags;
+ }
+ if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){
+ pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2);
+ }
+ if( pgFlags & PAGER_CACHESPILL ){
+ pPager->doNotSpill &= ~SPILLFLAG_OFF;
+ }else{
+ pPager->doNotSpill |= SPILLFLAG_OFF;
+ }
+}
+
+/*
+** The following global variable is incremented whenever the library
+** attempts to open a temporary file. This information is used for
+** testing and analysis only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_opentemp_count = 0;
+#endif
+
+/*
+** Open a temporary file.
+**
+** Write the file descriptor into *pFile. Return SQLITE_OK on success
+** or some other error code if we fail. The OS will automatically
+** delete the temporary file when it is closed.
+**
+** The flags passed to the VFS layer xOpen() call are those specified
+** by parameter vfsFlags ORed with the following:
+**
+** SQLITE_OPEN_READWRITE
+** SQLITE_OPEN_CREATE
+** SQLITE_OPEN_EXCLUSIVE
+** SQLITE_OPEN_DELETEONCLOSE
+*/
+static int pagerOpentemp(
+ Pager *pPager, /* The pager object */
+ sqlite3_file *pFile, /* Write the file descriptor here */
+ int vfsFlags /* Flags passed through to the VFS */
+){
+ int rc; /* Return code */
+
+#ifdef SQLITE_TEST
+ sqlite3_opentemp_count++; /* Used for testing and analysis only */
+#endif
+
+ vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
+ assert( rc!=SQLITE_OK || isOpen(pFile) );
+ return rc;
+}
+
+/*
+** Set the busy handler function.
+**
+** The pager invokes the busy-handler if sqlite3OsLock() returns
+** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
+** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE
+** lock. It does *not* invoke the busy handler when upgrading from
+** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
+** (which occurs during hot-journal rollback). Summary:
+**
+** Transition | Invokes xBusyHandler
+** --------------------------------------------------------
+** NO_LOCK -> SHARED_LOCK | Yes
+** SHARED_LOCK -> RESERVED_LOCK | No
+** SHARED_LOCK -> EXCLUSIVE_LOCK | No
+** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes
+**
+** If the busy-handler callback returns non-zero, the lock is
+** retried. If it returns zero, then the SQLITE_BUSY error is
+** returned to the caller of the pager API function.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetBusyHandler(
+ Pager *pPager, /* Pager object */
+ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */
+ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */
+){
+ void **ap;
+ pPager->xBusyHandler = xBusyHandler;
+ pPager->pBusyHandlerArg = pBusyHandlerArg;
+ ap = (void **)&pPager->xBusyHandler;
+ assert( ((int(*)(void *))(ap[0]))==xBusyHandler );
+ assert( ap[1]==pBusyHandlerArg );
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap);
+}
+
+/*
+** Change the page size used by the Pager object. The new page size
+** is passed in *pPageSize.
+**
+** If the pager is in the error state when this function is called, it
+** is a no-op. The value returned is the error state error code (i.e.
+** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
+**
+** Otherwise, if all of the following are true:
+**
+** * the new page size (value of *pPageSize) is valid (a power
+** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
+**
+** * there are no outstanding page references, and
+**
+** * the database is either not an in-memory database or it is
+** an in-memory database that currently consists of zero pages.
+**
+** then the pager object page size is set to *pPageSize.
+**
+** If the page size is changed, then this function uses sqlite3PagerMalloc()
+** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt
+** fails, SQLITE_NOMEM is returned and the page size remains unchanged.
+** In all other cases, SQLITE_OK is returned.
+**
+** If the page size is not changed, either because one of the enumerated
+** conditions above is not true, the pager was in error state when this
+** function was called, or because the memory allocation attempt failed,
+** then *pPageSize is set to the old, retained page size before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
+ int rc = SQLITE_OK;
+
+ /* It is not possible to do a full assert_pager_state() here, as this
+ ** function may be called from within PagerOpen(), before the state
+ ** of the Pager object is internally consistent.
+ **
+ ** At one point this function returned an error if the pager was in
+ ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
+ ** there is at least one outstanding page reference, this function
+ ** is a no-op for that case anyhow.
+ */
+
+ u32 pageSize = *pPageSize;
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
+ if( (pPager->memDb==0 || pPager->dbSize==0)
+ && sqlite3PcacheRefCount(pPager->pPCache)==0
+ && pageSize && pageSize!=(u32)pPager->pageSize
+ ){
+ char *pNew = NULL; /* New temp space */
+ i64 nByte = 0;
+
+ if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
+ rc = sqlite3OsFileSize(pPager->fd, &nByte);
+ }
+ if( rc==SQLITE_OK ){
+ /* 8 bytes of zeroed overrun space is sufficient so that the b-tree
+ * cell header parser will never run off the end of the allocation */
+ pNew = (char *)sqlite3PageMalloc(pageSize+8);
+ if( !pNew ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ memset(pNew+pageSize, 0, 8);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pager_reset(pPager);
+ rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3PageFree(pPager->pTmpSpace);
+ pPager->pTmpSpace = pNew;
+ pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
+ pPager->pageSize = pageSize;
+ pPager->lckPgno = (Pgno)(PENDING_BYTE/pageSize) + 1;
+ }else{
+ sqlite3PageFree(pNew);
+ }
+ }
+
+ *pPageSize = pPager->pageSize;
+ if( rc==SQLITE_OK ){
+ if( nReserve<0 ) nReserve = pPager->nReserve;
+ assert( nReserve>=0 && nReserve<1000 );
+ pPager->nReserve = (i16)nReserve;
+ pagerFixMaplimit(pPager);
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to the "temporary page" buffer held internally
+** by the pager. This is a buffer that is big enough to hold the
+** entire content of a database page. This buffer is used internally
+** during rollback and will be overwritten whenever a rollback
+** occurs. But other modules are free to use it too, as long as
+** no rollbacks are happening.
+*/
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
+ return pPager->pTmpSpace;
+}
+
+/*
+** Attempt to set the maximum database page count if mxPage is positive.
+** Make no changes if mxPage is zero or negative. And never reduce the
+** maximum page count below the current size of the database.
+**
+** Regardless of mxPage, return the current maximum page count.
+*/
+SQLITE_PRIVATE Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){
+ if( mxPage>0 ){
+ pPager->mxPgno = mxPage;
+ }
+ assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */
+ /* assert( pPager->mxPgno>=pPager->dbSize ); */
+ /* OP_MaxPgcnt ensures that the parameter passed to this function is not
+ ** less than the total number of valid pages in the database. But this
+ ** may be less than Pager.dbSize, and so the assert() above is not valid */
+ return pPager->mxPgno;
+}
+
+/*
+** The following set of routines are used to disable the simulated
+** I/O error mechanism. These routines are used to avoid simulated
+** errors in places where we do not care about errors.
+**
+** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
+** and generate no code.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_hit;
+static int saved_cnt;
+void disable_simulated_io_errors(void){
+ saved_cnt = sqlite3_io_error_pending;
+ sqlite3_io_error_pending = -1;
+}
+void enable_simulated_io_errors(void){
+ sqlite3_io_error_pending = saved_cnt;
+}
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+/*
+** Read the first N bytes from the beginning of the file into memory
+** that pDest points to.
+**
+** If the pager was opened on a transient file (zFilename==""), or
+** opened on a file less than N bytes in size, the output buffer is
+** zeroed and SQLITE_OK returned. The rationale for this is that this
+** function is used to read database headers, and a new transient or
+** zero sized database has a header than consists entirely of zeroes.
+**
+** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
+** the error code is returned to the caller and the contents of the
+** output buffer undefined.
+*/
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
+ int rc = SQLITE_OK;
+ memset(pDest, 0, N);
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ /* This routine is only called by btree immediately after creating
+ ** the Pager object. There has not been an opportunity to transition
+ ** to WAL mode yet.
+ */
+ assert( !pagerUseWal(pPager) );
+
+ if( isOpen(pPager->fd) ){
+ IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
+ rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/*
+** This function may only be called when a read-transaction is open on
+** the pager. It returns the total number of pages in the database.
+**
+** However, if the file is between 1 and <page-size> bytes in size, then
+** this is considered a 1 page file.
+*/
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){
+ assert( pPager->eState>=PAGER_READER );
+ assert( pPager->eState!=PAGER_WRITER_FINISHED );
+ *pnPage = (int)pPager->dbSize;
+}
+
+
+/*
+** Try to obtain a lock of type locktype on the database file. If
+** a similar or greater lock is already held, this function is a no-op
+** (returning SQLITE_OK immediately).
+**
+** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke
+** the busy callback if the lock is currently not available. Repeat
+** until the busy callback returns false or until the attempt to
+** obtain the lock succeeds.
+**
+** Return SQLITE_OK on success and an error code if we cannot obtain
+** the lock. If the lock is obtained successfully, set the Pager.state
+** variable to locktype before returning.
+*/
+static int pager_wait_on_lock(Pager *pPager, int locktype){
+ int rc; /* Return code */
+
+ /* Check that this is either a no-op (because the requested lock is
+ ** already held), or one of the transitions that the busy-handler
+ ** may be invoked during, according to the comment above
+ ** sqlite3PagerSetBusyhandler().
+ */
+ assert( (pPager->eLock>=locktype)
+ || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
+ || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
+ );
+
+ do {
+ rc = pagerLockDb(pPager, locktype);
+ }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
+ return rc;
+}
+
+/*
+** Function assertTruncateConstraint(pPager) checks that one of the
+** following is true for all dirty pages currently in the page-cache:
+**
+** a) The page number is less than or equal to the size of the
+** current database image, in pages, OR
+**
+** b) if the page content were written at this time, it would not
+** be necessary to write the current content out to the sub-journal.
+**
+** If the condition asserted by this function were not true, and the
+** dirty page were to be discarded from the cache via the pagerStress()
+** routine, pagerStress() would not write the current page content to
+** the database file. If a savepoint transaction were rolled back after
+** this happened, the correct behavior would be to restore the current
+** content of the page. However, since this content is not present in either
+** the database file or the portion of the rollback journal and
+** sub-journal rolled back the content could not be restored and the
+** database image would become corrupt. It is therefore fortunate that
+** this circumstance cannot arise.
+*/
+#if defined(SQLITE_DEBUG)
+static void assertTruncateConstraintCb(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( pPg->flags&PGHDR_DIRTY );
+ if( pPg->pgno>pPager->dbSize ){ /* if (a) is false */
+ Pgno pgno = pPg->pgno;
+ int i;
+ for(i=0; i<pPg->pPager->nSavepoint; i++){
+ PagerSavepoint *p = &pPager->aSavepoint[i];
+ assert( p->nOrig<pgno || sqlite3BitvecTestNotNull(p->pInSavepoint,pgno) );
+ }
+ }
+}
+static void assertTruncateConstraint(Pager *pPager){
+ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
+}
+#else
+# define assertTruncateConstraint(pPager)
+#endif
+
+/*
+** Truncate the in-memory database file image to nPage pages. This
+** function does not actually modify the database file on disk. It
+** just sets the internal state of the pager object so that the
+** truncation will be done when the current transaction is committed.
+**
+** This function is only called right before committing a transaction.
+** Once this function has been called, the transaction must either be
+** rolled back or committed. It is not safe to call this function and
+** then continue writing to the database.
+*/
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
+ assert( pPager->dbSize>=nPage || CORRUPT_DB );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ pPager->dbSize = nPage;
+
+ /* At one point the code here called assertTruncateConstraint() to
+ ** ensure that all pages being truncated away by this operation are,
+ ** if one or more savepoints are open, present in the savepoint
+ ** journal so that they can be restored if the savepoint is rolled
+ ** back. This is no longer necessary as this function is now only
+ ** called right before committing a transaction. So although the
+ ** Pager object may still have open savepoints (Pager.nSavepoint!=0),
+ ** they cannot be rolled back. So the assertTruncateConstraint() call
+ ** is no longer correct. */
+}
+
+
+/*
+** This function is called before attempting a hot-journal rollback. It
+** syncs the journal file to disk, then sets pPager->journalHdr to the
+** size of the journal file so that the pager_playback() routine knows
+** that the entire journal file has been synced.
+**
+** Syncing a hot-journal to disk before attempting to roll it back ensures
+** that if a power-failure occurs during the rollback, the process that
+** attempts rollback following system recovery sees the same journal
+** content as this process.
+**
+** If everything goes as planned, SQLITE_OK is returned. Otherwise,
+** an SQLite error code.
+*/
+static int pagerSyncHotJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr);
+ }
+ return rc;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** Obtain a reference to a memory mapped page object for page number pgno.
+** The new object will use the pointer pData, obtained from xFetch().
+** If successful, set *ppPage to point to the new page reference
+** and return SQLITE_OK. Otherwise, return an SQLite error code and set
+** *ppPage to zero.
+**
+** Page references obtained by calling this function should be released
+** by calling pagerReleaseMapPage().
+*/
+static int pagerAcquireMapPage(
+ Pager *pPager, /* Pager object */
+ Pgno pgno, /* Page number */
+ void *pData, /* xFetch()'d data for this page */
+ PgHdr **ppPage /* OUT: Acquired page object */
+){
+ PgHdr *p; /* Memory mapped page to return */
+
+ if( pPager->pMmapFreelist ){
+ *ppPage = p = pPager->pMmapFreelist;
+ pPager->pMmapFreelist = p->pDirty;
+ p->pDirty = 0;
+ assert( pPager->nExtra>=8 );
+ memset(p->pExtra, 0, 8);
+ }else{
+ *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra);
+ if( p==0 ){
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData);
+ return SQLITE_NOMEM_BKPT;
+ }
+ p->pExtra = (void *)&p[1];
+ p->flags = PGHDR_MMAP;
+ p->nRef = 1;
+ p->pPager = pPager;
+ }
+
+ assert( p->pExtra==(void *)&p[1] );
+ assert( p->pPage==0 );
+ assert( p->flags==PGHDR_MMAP );
+ assert( p->pPager==pPager );
+ assert( p->nRef==1 );
+
+ p->pgno = pgno;
+ p->pData = pData;
+ pPager->nMmapOut++;
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Release a reference to page pPg. pPg must have been returned by an
+** earlier call to pagerAcquireMapPage().
+*/
+static void pagerReleaseMapPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ pPager->nMmapOut--;
+ pPg->pDirty = pPager->pMmapFreelist;
+ pPager->pMmapFreelist = pPg;
+
+ assert( pPager->fd->pMethods->iVersion>=3 );
+ sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData);
+}
+
+/*
+** Free all PgHdr objects stored in the Pager.pMmapFreelist list.
+*/
+static void pagerFreeMapHdrs(Pager *pPager){
+ PgHdr *p;
+ PgHdr *pNext;
+ for(p=pPager->pMmapFreelist; p; p=pNext){
+ pNext = p->pDirty;
+ sqlite3_free(p);
+ }
+}
+
+/* Verify that the database file has not be deleted or renamed out from
+** under the pager. Return SQLITE_OK if the database is still where it ought
+** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error
+** code from sqlite3OsAccess()) if the database has gone missing.
+*/
+static int databaseIsUnmoved(Pager *pPager){
+ int bHasMoved = 0;
+ int rc;
+
+ if( pPager->tempFile ) return SQLITE_OK;
+ if( pPager->dbSize==0 ) return SQLITE_OK;
+ assert( pPager->zFilename && pPager->zFilename[0] );
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved);
+ if( rc==SQLITE_NOTFOUND ){
+ /* If the HAS_MOVED file-control is unimplemented, assume that the file
+ ** has not been moved. That is the historical behavior of SQLite: prior to
+ ** version 3.8.3, it never checked */
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_OK && bHasMoved ){
+ rc = SQLITE_READONLY_DBMOVED;
+ }
+ return rc;
+}
+
+
+/*
+** Shutdown the page cache. Free all memory and close all files.
+**
+** If a transaction was in progress when this routine is called, that
+** transaction is rolled back. All outstanding pages are invalidated
+** and their memory is freed. Any attempt to use a page associated
+** with this page cache after this function returns will likely
+** result in a coredump.
+**
+** This function always succeeds. If a transaction is active an attempt
+** is made to roll it back. If an error occurs during the rollback
+** a hot journal may be left in the filesystem but no error is returned
+** to the caller.
+*/
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3 *db){
+ u8 *pTmp = (u8*)pPager->pTmpSpace;
+ assert( db || pagerUseWal(pPager)==0 );
+ assert( assert_pager_state(pPager) );
+ disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
+ pagerFreeMapHdrs(pPager);
+ /* pPager->errCode = 0; */
+ pPager->exclusiveMode = 0;
+#ifndef SQLITE_OMIT_WAL
+ {
+ u8 *a = 0;
+ assert( db || pPager->pWal==0 );
+ if( db && 0==(db->flags & SQLITE_NoCkptOnClose)
+ && SQLITE_OK==databaseIsUnmoved(pPager)
+ ){
+ a = pTmp;
+ }
+ sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a);
+ pPager->pWal = 0;
+ }
+#endif
+ pager_reset(pPager);
+ if( MEMDB ){
+ pager_unlock(pPager);
+ }else{
+ /* If it is open, sync the journal file before calling UnlockAndRollback.
+ ** If this is not done, then an unsynced portion of the open journal
+ ** file may be played back into the database. If a power failure occurs
+ ** while this is happening, the database could become corrupt.
+ **
+ ** If an error occurs while trying to sync the journal, shift the pager
+ ** into the ERROR state. This causes UnlockAndRollback to unlock the
+ ** database and close the journal file without attempting to roll it
+ ** back or finalize it. The next database user will have to do hot-journal
+ ** rollback before accessing the database file.
+ */
+ if( isOpen(pPager->jfd) ){
+ pager_error(pPager, pagerSyncHotJournal(pPager));
+ }
+ pagerUnlockAndRollback(pPager);
+ }
+ sqlite3EndBenignMalloc();
+ enable_simulated_io_errors();
+ PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
+ IOTRACE(("CLOSE %p\n", pPager))
+ sqlite3OsClose(pPager->jfd);
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pTmp);
+ sqlite3PcacheClose(pPager->pPCache);
+ assert( !pPager->aSavepoint && !pPager->pInJournal );
+ assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );
+
+ sqlite3_free(pPager);
+ return SQLITE_OK;
+}
+
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+/*
+** Return the page number for page pPg.
+*/
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){
+ return pPg->pgno;
+}
+#endif
+
+/*
+** Increment the reference count for page pPg.
+*/
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){
+ sqlite3PcacheRef(pPg);
+}
+
+/*
+** Sync the journal. In other words, make sure all the pages that have
+** been written to the journal have actually reached the surface of the
+** disk and can be restored in the event of a hot-journal rollback.
+**
+** If the Pager.noSync flag is set, then this function is a no-op.
+** Otherwise, the actions required depend on the journal-mode and the
+** device characteristics of the file-system, as follows:
+**
+** * If the journal file is an in-memory journal file, no action need
+** be taken.
+**
+** * Otherwise, if the device does not support the SAFE_APPEND property,
+** then the nRec field of the most recently written journal header
+** is updated to contain the number of journal records that have
+** been written following it. If the pager is operating in full-sync
+** mode, then the journal file is synced before this field is updated.
+**
+** * If the device does not support the SEQUENTIAL property, then
+** journal file is synced.
+**
+** Or, in pseudo-code:
+**
+** if( NOT <in-memory journal> ){
+** if( NOT SAFE_APPEND ){
+** if( <full-sync mode> ) xSync(<journal file>);
+** <update nRec field>
+** }
+** if( NOT SEQUENTIAL ) xSync(<journal file>);
+** }
+**
+** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
+** page currently held in memory before returning SQLITE_OK. If an IO
+** error is encountered, then the IO error code is returned to the caller.
+*/
+static int syncJournal(Pager *pPager, int newHdr){
+ int rc; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( !pagerUseWal(pPager) );
+
+ rc = sqlite3PagerExclusiveLock(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( !pPager->noSync ){
+ assert( !pPager->tempFile );
+ if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
+ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ assert( isOpen(pPager->jfd) );
+
+ if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* This block deals with an obscure problem. If the last connection
+ ** that wrote to this database was operating in persistent-journal
+ ** mode, then the journal file may at this point actually be larger
+ ** than Pager.journalOff bytes. If the next thing in the journal
+ ** file happens to be a journal-header (written as part of the
+ ** previous connection's transaction), and a crash or power-failure
+ ** occurs after nRec is updated but before this connection writes
+ ** anything else to the journal file (or commits/rolls back its
+ ** transaction), then SQLite may become confused when doing the
+ ** hot-journal rollback following recovery. It may roll back all
+ ** of this connections data, then proceed to rolling back the old,
+ ** out-of-date data that follows it. Database corruption.
+ **
+ ** To work around this, if the journal file does appear to contain
+ ** a valid header following Pager.journalOff, then write a 0x00
+ ** byte to the start of it to prevent it from being recognized.
+ **
+ ** Variable iNextHdrOffset is set to the offset at which this
+ ** problematic header will occur, if it exists. aMagic is used
+ ** as a temporary buffer to inspect the first couple of bytes of
+ ** the potential journal header.
+ */
+ i64 iNextHdrOffset;
+ u8 aMagic[8];
+ u8 zHeader[sizeof(aJournalMagic)+4];
+
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);
+
+ iNextHdrOffset = journalHdrOffset(pPager);
+ rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
+ if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
+ static const u8 zerobyte = 0;
+ rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
+ return rc;
+ }
+
+ /* Write the nRec value into the journal file header. If in
+ ** full-synchronous mode, sync the journal first. This ensures that
+ ** all data has really hit the disk before nRec is updated to mark
+ ** it as a candidate for rollback.
+ **
+ ** This is not required if the persistent media supports the
+ ** SAFE_APPEND property. Because in this case it is not possible
+ ** for garbage data to be appended to the file, the nRec field
+ ** is populated with 0xFFFFFFFF when the journal header is written
+ ** and never needs to be updated.
+ */
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
+ rc = sqlite3OsWrite(
+ pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags|
+ (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ pPager->journalHdr = pPager->journalOff;
+ if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ pPager->nRec = 0;
+ rc = writeJournalHdr(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }else{
+ pPager->journalHdr = pPager->journalOff;
+ }
+ }
+
+ /* Unless the pager is in noSync mode, the journal file was just
+ ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on
+ ** all pages.
+ */
+ sqlite3PcacheClearSyncFlags(pPager->pPCache);
+ pPager->eState = PAGER_WRITER_DBMOD;
+ assert( assert_pager_state(pPager) );
+ return SQLITE_OK;
+}
+
+/*
+** The argument is the first in a linked list of dirty pages connected
+** by the PgHdr.pDirty pointer. This function writes each one of the
+** in-memory pages in the list to the database file. The argument may
+** be NULL, representing an empty list. In this case this function is
+** a no-op.
+**
+** The pager must hold at least a RESERVED lock when this function
+** is called. Before writing anything to the database file, this lock
+** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
+** SQLITE_BUSY is returned and no data is written to the database file.
+**
+** If the pager is a temp-file pager and the actual file-system file
+** is not yet open, it is created and opened before any data is
+** written out.
+**
+** Once the lock has been upgraded and, if necessary, the file opened,
+** the pages are written out to the database file in list order. Writing
+** a page is skipped if it meets either of the following criteria:
+**
+** * The page number is greater than Pager.dbSize, or
+** * The PGHDR_DONT_WRITE flag is set on the page.
+**
+** If writing out a page causes the database file to grow, Pager.dbFileSize
+** is updated accordingly. If page 1 is written out, then the value cached
+** in Pager.dbFileVers[] is updated to match the new value stored in
+** the database file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
+** be obtained, SQLITE_BUSY is returned.
+*/
+static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This function is only called for rollback pagers in WRITER_DBMOD state. */
+ assert( !pagerUseWal(pPager) );
+ assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD );
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ assert( isOpen(pPager->fd) || pList->pDirty==0 );
+
+ /* If the file is a temp-file has not yet been opened, open it now. It
+ ** is not possible for rc to be other than SQLITE_OK if this branch
+ ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
+ */
+ if( !isOpen(pPager->fd) ){
+ assert( pPager->tempFile && rc==SQLITE_OK );
+ rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
+ }
+
+ /* Before the first write, give the VFS a hint of what the final
+ ** file size will be.
+ */
+ assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
+ if( rc==SQLITE_OK
+ && pPager->dbHintSize<pPager->dbSize
+ && (pList->pDirty || pList->pgno>pPager->dbHintSize)
+ ){
+ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize;
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
+ pPager->dbHintSize = pPager->dbSize;
+ }
+
+ while( rc==SQLITE_OK && pList ){
+ Pgno pgno = pList->pgno;
+
+ /* If there are dirty pages in the page cache with page numbers greater
+ ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to
+ ** make the file smaller (presumably by auto-vacuum code). Do not write
+ ** any such pages to the file.
+ **
+ ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
+ ** set (set by sqlite3PagerDontWrite()).
+ */
+ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
+ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */
+ char *pData; /* Data to write */
+
+ assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
+ if( pList->pgno==1 ) pager_write_changecounter(pList);
+
+ pData = pList->pData;
+
+ /* Write out the page data. */
+ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
+
+ /* If page 1 was just written, update Pager.dbFileVers to match
+ ** the value now stored in the database file. If writing this
+ ** page caused the database file to grow, update dbFileSize.
+ */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
+ }
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ pPager->aStat[PAGER_STAT_WRITE]++;
+
+ /* Update any backup objects copying the contents of this pager. */
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);
+
+ PAGERTRACE(("STORE %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_pagehash(pList)));
+ IOTRACE(("PGOUT %p %d\n", pPager, pgno));
+ PAGER_INCR(sqlite3_pager_writedb_count);
+ }else{
+ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
+ }
+ pager_set_pagehash(pList);
+ pList = pList->pDirty;
+ }
+
+ return rc;
+}
+
+/*
+** Ensure that the sub-journal file is open. If it is already open, this
+** function is a no-op.
+**
+** SQLITE_OK is returned if everything goes according to plan. An
+** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen()
+** fails.
+*/
+static int openSubJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( !isOpen(pPager->sjfd) ){
+ const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE
+ | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE
+ | SQLITE_OPEN_DELETEONCLOSE;
+ int nStmtSpill = sqlite3Config.nStmtSpill;
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
+ nStmtSpill = -1;
+ }
+ rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill);
+ }
+ return rc;
+}
+
+/*
+** Append a record of the current state of page pPg to the sub-journal.
+**
+** If successful, set the bit corresponding to pPg->pgno in the bitvecs
+** for all open savepoints before returning.
+**
+** This function returns SQLITE_OK if everything is successful, an IO
+** error code if the attempt to write to the sub-journal fails, or
+** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
+** bitvec.
+*/
+static int subjournalPage(PgHdr *pPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = pPg->pPager;
+ if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+
+ /* Open the sub-journal, if it has not already been opened */
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->jfd) || pagerUseWal(pPager) );
+ assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 );
+ assert( pagerUseWal(pPager)
+ || pageInJournal(pPager, pPg)
+ || pPg->pgno>pPager->dbOrigSize
+ );
+ rc = openSubJournal(pPager);
+
+ /* If the sub-journal was opened successfully (or was already open),
+ ** write the journal record into the file. */
+ if( rc==SQLITE_OK ){
+ void *pData = pPg->pData;
+ i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
+ char *pData2;
+ pData2 = pData;
+ PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
+ rc = write32bits(pPager->sjfd, offset, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pPager->nSubRec++;
+ assert( pPager->nSavepoint>0 );
+ rc = addToSavepointBitvecs(pPager, pPg->pgno);
+ }
+ return rc;
+}
+static int subjournalPageIfRequired(PgHdr *pPg){
+ if( subjRequiresPage(pPg) ){
+ return subjournalPage(pPg);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+/*
+** This function is called by the pcache layer when it has reached some
+** soft memory limit. The first argument is a pointer to a Pager object
+** (cast as a void*). The pager is always 'purgeable' (not an in-memory
+** database). The second argument is a reference to a page that is
+** currently dirty but has no outstanding references. The page
+** is always associated with the Pager object passed as the first
+** argument.
+**
+** The job of this function is to make pPg clean by writing its contents
+** out to the database file, if possible. This may involve syncing the
+** journal file.
+**
+** If successful, sqlite3PcacheMakeClean() is called on the page and
+** SQLITE_OK returned. If an IO error occurs while trying to make the
+** page clean, the IO error code is returned. If the page cannot be
+** made clean for some other reason, but no error occurs, then SQLITE_OK
+** is returned by sqlite3PcacheMakeClean() is not called.
+*/
+static int pagerStress(void *p, PgHdr *pPg){
+ Pager *pPager = (Pager *)p;
+ int rc = SQLITE_OK;
+
+ assert( pPg->pPager==pPager );
+ assert( pPg->flags&PGHDR_DIRTY );
+
+ /* The doNotSpill NOSYNC bit is set during times when doing a sync of
+ ** journal (and adding a new header) is not allowed. This occurs
+ ** during calls to sqlite3PagerWrite() while trying to journal multiple
+ ** pages belonging to the same sector.
+ **
+ ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
+ ** regardless of whether or not a sync is required. This is set during
+ ** a rollback or by user request, respectively.
+ **
+ ** Spilling is also prohibited when in an error state since that could
+ ** lead to database corruption. In the current implementation it
+ ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3
+ ** while in the error state, hence it is impossible for this routine to
+ ** be called in the error state. Nevertheless, we include a NEVER()
+ ** test for the error state as a safeguard against future changes.
+ */
+ if( NEVER(pPager->errCode) ) return SQLITE_OK;
+ testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );
+ testcase( pPager->doNotSpill & SPILLFLAG_OFF );
+ testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC );
+ if( pPager->doNotSpill
+ && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0
+ || (pPg->flags & PGHDR_NEED_SYNC)!=0)
+ ){
+ return SQLITE_OK;
+ }
+
+ pPager->aStat[PAGER_STAT_SPILL]++;
+ pPg->pDirty = 0;
+ if( pagerUseWal(pPager) ){
+ /* Write a single frame for this page to the log. */
+ rc = subjournalPageIfRequired(pPg);
+ if( rc==SQLITE_OK ){
+ rc = pagerWalFrames(pPager, pPg, 0, 0);
+ }
+ }else{
+
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( pPager->tempFile==0 ){
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc!=SQLITE_OK ) return pager_error(pPager, rc);
+ }
+#endif
+
+ /* Sync the journal file if required. */
+ if( pPg->flags&PGHDR_NEED_SYNC
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ ){
+ rc = syncJournal(pPager, 1);
+ }
+
+ /* Write the contents of the page out to the database file. */
+ if( rc==SQLITE_OK ){
+ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
+ rc = pager_write_pagelist(pPager, pPg);
+ }
+ }
+
+ /* Mark the page as clean. */
+ if( rc==SQLITE_OK ){
+ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
+ sqlite3PcacheMakeClean(pPg);
+ }
+
+ return pager_error(pPager, rc);
+}
+
+/*
+** Flush all unreferenced dirty pages to disk.
+*/
+SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){
+ int rc = pPager->errCode;
+ if( !MEMDB ){
+ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ assert( assert_pager_state(pPager) );
+ while( rc==SQLITE_OK && pList ){
+ PgHdr *pNext = pList->pDirty;
+ if( pList->nRef==0 ){
+ rc = pagerStress((void*)pPager, pList);
+ }
+ pList = pNext;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Allocate and initialize a new Pager object and put a pointer to it
+** in *ppPager. The pager should eventually be freed by passing it
+** to sqlite3PagerClose().
+**
+** The zFilename argument is the path to the database file to open.
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. Temporary files are be deleted
+** automatically when they are closed. If zFilename is ":memory:" then
+** all information is held in cache. It is never written to disk.
+** This can be used to implement an in-memory database.
+**
+** The nExtra parameter specifies the number of bytes of space allocated
+** along with each page reference. This space is available to the user
+** via the sqlite3PagerGetExtra() API. When a new page is allocated, the
+** first 8 bytes of this space are zeroed but the remainder is uninitialized.
+** (The extra space is used by btree as the MemPage object.)
+**
+** The flags argument is used to specify properties that affect the
+** operation of the pager. It should be passed some bitwise combination
+** of the PAGER_* flags.
+**
+** The vfsFlags parameter is a bitmask to pass to the flags parameter
+** of the xOpen() method of the supplied VFS when opening files.
+**
+** If the pager object is allocated and the specified file opened
+** successfully, SQLITE_OK is returned and *ppPager set to point to
+** the new pager object. If an error occurs, *ppPager is set to NULL
+** and error code returned. This function may return SQLITE_NOMEM
+** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or
+** various SQLITE_IO_XXX errors.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs *pVfs, /* The virtual file system to use */
+ Pager **ppPager, /* OUT: Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int flags, /* flags controlling this file */
+ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */
+ void (*xReinit)(DbPage*) /* Function to reinitialize pages */
+){
+ u8 *pPtr;
+ Pager *pPager = 0; /* Pager object to allocate and return */
+ int rc = SQLITE_OK; /* Return code */
+ int tempFile = 0; /* True for temp files (incl. in-memory files) */
+ int memDb = 0; /* True if this is an in-memory file */
+ int memJM = 0; /* Memory journal mode */
+ int readOnly = 0; /* True if this is a read-only file */
+ int journalFileSize; /* Bytes to allocate for each journal fd */
+ char *zPathname = 0; /* Full path to database file */
+ int nPathname = 0; /* Number of bytes in zPathname */
+ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
+ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */
+ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
+ const char *zUri = 0; /* URI args to copy */
+ int nUriByte = 1; /* Number of bytes of URI args at *zUri */
+
+ /* Figure out how much space is required for each journal file-handle
+ ** (there are two of them, the main journal and the sub-journal). */
+ journalFileSize = ROUND8(sqlite3JournalSize(pVfs));
+
+ /* Set the output variable to NULL in case an error occurs. */
+ *ppPager = 0;
+
+#ifndef SQLITE_OMIT_MEMORYDB
+ if( flags & PAGER_MEMORY ){
+ memDb = 1;
+ if( zFilename && zFilename[0] ){
+ zPathname = sqlite3DbStrDup(0, zFilename);
+ if( zPathname==0 ) return SQLITE_NOMEM_BKPT;
+ nPathname = sqlite3Strlen30(zPathname);
+ zFilename = 0;
+ }
+ }
+#endif
+
+ /* Compute and store the full pathname in an allocated buffer pointed
+ ** to by zPathname, length nPathname. Or, if this is a temporary file,
+ ** leave both nPathname and zPathname set to 0.
+ */
+ if( zFilename && zFilename[0] ){
+ const char *z;
+ nPathname = pVfs->mxPathname+1;
+ zPathname = sqlite3DbMallocRaw(0, nPathname*2);
+ if( zPathname==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_OK_SYMLINK ){
+ if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){
+ rc = SQLITE_CANTOPEN_SYMLINK;
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ nPathname = sqlite3Strlen30(zPathname);
+ z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1];
+ while( *z ){
+ z += strlen(z)+1;
+ z += strlen(z)+1;
+ }
+ nUriByte = (int)(&z[1] - zUri);
+ assert( nUriByte>=1 );
+ if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
+ /* This branch is taken when the journal path required by
+ ** the database being opened will be more than pVfs->mxPathname
+ ** bytes in length. This means the database cannot be opened,
+ ** as it will not be possible to open the journal file or even
+ ** check for a hot-journal before reading.
+ */
+ rc = SQLITE_CANTOPEN_BKPT;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(0, zPathname);
+ return rc;
+ }
+ }
+
+ /* Allocate memory for the Pager structure, PCache object, the
+ ** three file descriptors, the database file name and the journal
+ ** file name. The layout in memory is as follows:
+ **
+ ** Pager object (sizeof(Pager) bytes)
+ ** PCache object (sqlite3PcacheSize() bytes)
+ ** Database file handle (pVfs->szOsFile bytes)
+ ** Sub-journal file handle (journalFileSize bytes)
+ ** Main journal file handle (journalFileSize bytes)
+ ** Ptr back to the Pager (sizeof(Pager*) bytes)
+ ** \0\0\0\0 database prefix (4 bytes)
+ ** Database file name (nPathname+1 bytes)
+ ** URI query parameters (nUriByte bytes)
+ ** Journal filename (nPathname+8+1 bytes)
+ ** WAL filename (nPathname+4+1 bytes)
+ ** \0\0\0 terminator (3 bytes)
+ **
+ ** Some 3rd-party software, over which we have no control, depends on
+ ** the specific order of the filenames and the \0 separators between them
+ ** so that it can (for example) find the database filename given the WAL
+ ** filename without using the sqlite3_filename_database() API. This is a
+ ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party
+ ** software is in widespread use, so we try to avoid changing the filename
+ ** order and formatting if possible. In particular, the details of the
+ ** filename format expected by 3rd-party software should be as follows:
+ **
+ ** - Main Database Path
+ ** - \0
+ ** - Multiple URI components consisting of:
+ ** - Key
+ ** - \0
+ ** - Value
+ ** - \0
+ ** - \0
+ ** - Journal Path
+ ** - \0
+ ** - WAL Path (zWALName)
+ ** - \0
+ **
+ ** The sqlite3_create_filename() interface and the databaseFilename() utility
+ ** that is used by sqlite3_filename_database() and kin also depend on the
+ ** specific formatting and order of the various filenames, so if the format
+ ** changes here, be sure to change it there as well.
+ */
+ assert( SQLITE_PTRSIZE==sizeof(Pager*) );
+ pPtr = (u8 *)sqlite3MallocZero(
+ ROUND8(sizeof(*pPager)) + /* Pager structure */
+ ROUND8(pcacheSize) + /* PCache object */
+ ROUND8(pVfs->szOsFile) + /* The main db file */
+ journalFileSize * 2 + /* The two journal files */
+ SQLITE_PTRSIZE + /* Space to hold a pointer */
+ 4 + /* Database prefix */
+ nPathname + 1 + /* database filename */
+ nUriByte + /* query parameters */
+ nPathname + 8 + 1 + /* Journal filename */
+#ifndef SQLITE_OMIT_WAL
+ nPathname + 4 + 1 + /* WAL filename */
+#endif
+ 3 /* Terminator */
+ );
+ assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
+ if( !pPtr ){
+ sqlite3DbFree(0, zPathname);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager));
+ pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize);
+ pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile);
+ pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize;
+ pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize;
+ assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );
+ memcpy(pPtr, &pPager, SQLITE_PTRSIZE); pPtr += SQLITE_PTRSIZE;
+
+ /* Fill in the Pager.zFilename and pPager.zQueryParam fields */
+ pPtr += 4; /* Skip zero prefix */
+ pPager->zFilename = (char*)pPtr;
+ if( nPathname>0 ){
+ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1;
+ if( zUri ){
+ memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte;
+ }else{
+ pPtr++;
+ }
+ }
+
+
+ /* Fill in Pager.zJournal */
+ if( nPathname>0 ){
+ pPager->zJournal = (char*)pPtr;
+ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname;
+ memcpy(pPtr, "-journal",8); pPtr += 8 + 1;
+#ifdef SQLITE_ENABLE_8_3_NAMES
+ sqlite3FileSuffix3(zFilename,pPager->zJournal);
+ pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1);
+#endif
+ }else{
+ pPager->zJournal = 0;
+ }
+
+#ifndef SQLITE_OMIT_WAL
+ /* Fill in Pager.zWal */
+ if( nPathname>0 ){
+ pPager->zWal = (char*)pPtr;
+ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname;
+ memcpy(pPtr, "-wal", 4); pPtr += 4 + 1;
+#ifdef SQLITE_ENABLE_8_3_NAMES
+ sqlite3FileSuffix3(zFilename, pPager->zWal);
+ pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1);
+#endif
+ }else{
+ pPager->zWal = 0;
+ }
+#endif
+ (void)pPtr; /* Suppress warning about unused pPtr value */
+
+ if( nPathname ) sqlite3DbFree(0, zPathname);
+ pPager->pVfs = pVfs;
+ pPager->vfsFlags = vfsFlags;
+
+ /* Open the pager file.
+ */
+ if( zFilename && zFilename[0] ){
+ int fout = 0; /* VFS flags returned by xOpen() */
+ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
+ assert( !memDb );
+ pPager->memVfs = memJM = (fout&SQLITE_OPEN_MEMORY)!=0;
+ readOnly = (fout&SQLITE_OPEN_READONLY)!=0;
+
+ /* If the file was successfully opened for read/write access,
+ ** choose a default page size in case we have to create the
+ ** database file. The default page size is the maximum of:
+ **
+ ** + SQLITE_DEFAULT_PAGE_SIZE,
+ ** + The value returned by sqlite3OsSectorSize()
+ ** + The largest page size that can be written atomically.
+ */
+ if( rc==SQLITE_OK ){
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ if( !readOnly ){
+ setSectorSize(pPager);
+ assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
+ if( szPageDflt<pPager->sectorSize ){
+ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
+ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
+ }else{
+ szPageDflt = (u32)pPager->sectorSize;
+ }
+ }
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int ii;
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
+ for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
+ szPageDflt = ii;
+ }
+ }
+ }
+#endif
+ }
+ pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0);
+ if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0
+ || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){
+ vfsFlags |= SQLITE_OPEN_READONLY;
+ goto act_like_temp_file;
+ }
+ }
+ }else{
+ /* If a temporary file is requested, it is not opened immediately.
+ ** In this case we accept the default page size and delay actually
+ ** opening the file until the first call to OsWrite().
+ **
+ ** This branch is also run for an in-memory database. An in-memory
+ ** database is the same as a temp-file that is never written out to
+ ** disk and uses an in-memory rollback journal.
+ **
+ ** This branch also runs for files marked as immutable.
+ */
+act_like_temp_file:
+ tempFile = 1;
+ pPager->eState = PAGER_READER; /* Pretend we already have a lock */
+ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */
+ pPager->noLock = 1; /* Do no locking */
+ readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
+ }
+
+ /* The following call to PagerSetPagesize() serves to set the value of
+ ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
+ */
+ if( rc==SQLITE_OK ){
+ assert( pPager->memDb==0 );
+ rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
+ testcase( rc!=SQLITE_OK );
+ }
+
+ /* Initialize the PCache object. */
+ if( rc==SQLITE_OK ){
+ nExtra = ROUND8(nExtra);
+ assert( nExtra>=8 && nExtra<1000 );
+ rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
+ !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
+ }
+
+ /* If an error occurred above, free the Pager structure and close the file.
+ */
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pPager->pTmpSpace);
+ sqlite3_free(pPager);
+ return rc;
+ }
+
+ PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
+ IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
+
+ pPager->useJournal = (u8)useJournal;
+ /* pPager->stmtOpen = 0; */
+ /* pPager->stmtInUse = 0; */
+ /* pPager->nRef = 0; */
+ /* pPager->stmtSize = 0; */
+ /* pPager->stmtJSize = 0; */
+ /* pPager->nPage = 0; */
+ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
+ /* pPager->state = PAGER_UNLOCK; */
+ /* pPager->errMask = 0; */
+ pPager->tempFile = (u8)tempFile;
+ assert( tempFile==PAGER_LOCKINGMODE_NORMAL
+ || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
+ pPager->exclusiveMode = (u8)tempFile;
+ pPager->changeCountDone = pPager->tempFile;
+ pPager->memDb = (u8)memDb;
+ pPager->readOnly = (u8)readOnly;
+ assert( useJournal || pPager->tempFile );
+ sqlite3PagerSetFlags(pPager, (SQLITE_DEFAULT_SYNCHRONOUS+1)|PAGER_CACHESPILL);
+ /* pPager->pFirst = 0; */
+ /* pPager->pFirstSynced = 0; */
+ /* pPager->pLast = 0; */
+ pPager->nExtra = (u16)nExtra;
+ pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
+ assert( isOpen(pPager->fd) || tempFile );
+ setSectorSize(pPager);
+ if( !useJournal ){
+ pPager->journalMode = PAGER_JOURNALMODE_OFF;
+ }else if( memDb || memJM ){
+ pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
+ }
+ /* pPager->xBusyHandler = 0; */
+ /* pPager->pBusyHandlerArg = 0; */
+ pPager->xReiniter = xReinit;
+ setGetterMethod(pPager);
+ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
+ /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */
+
+ *ppPager = pPager;
+ return SQLITE_OK;
+}
+
+/*
+** Return the sqlite3_file for the main database given the name
+** of the corresponding WAL or Journal name as passed into
+** xOpen.
+*/
+SQLITE_API sqlite3_file *sqlite3_database_file_object(const char *zName){
+ Pager *pPager;
+ while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){
+ zName--;
+ }
+ pPager = *(Pager**)(zName - 4 - sizeof(Pager*));
+ return pPager->fd;
+}
+
+
+/*
+** This function is called after transitioning from PAGER_UNLOCK to
+** PAGER_SHARED state. It tests if there is a hot journal present in
+** the file-system for the given pager. A hot journal is one that
+** needs to be played back. According to this function, a hot-journal
+** file exists if the following criteria are met:
+**
+** * The journal file exists in the file system, and
+** * No process holds a RESERVED or greater lock on the database file, and
+** * The database file itself is greater than 0 bytes in size, and
+** * The first byte of the journal file exists and is not 0x00.
+**
+** If the current size of the database file is 0 but a journal file
+** exists, that is probably an old journal left over from a prior
+** database with the same name. In this case the journal file is
+** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
+** is returned.
+**
+** This routine does not check if there is a super-journal filename
+** at the end of the file. If there is, and that super-journal file
+** does not exist, then the journal file is not really hot. In this
+** case this routine will return a false-positive. The pager_playback()
+** routine will discover that the journal file is not really hot and
+** will not roll it back.
+**
+** If a hot-journal file is found to exist, *pExists is set to 1 and
+** SQLITE_OK returned. If no hot-journal file is present, *pExists is
+** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
+** to determine whether or not a hot-journal file exists, the IO error
+** code is returned and the value of *pExists is undefined.
+*/
+static int hasHotJournal(Pager *pPager, int *pExists){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int rc = SQLITE_OK; /* Return code */
+ int exists = 1; /* True if a journal file is present */
+ int jrnlOpen = !!isOpen(pPager->jfd);
+
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->fd) );
+ assert( pPager->eState==PAGER_OPEN );
+
+ assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) &
+ SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+ ));
+
+ *pExists = 0;
+ if( !jrnlOpen ){
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ }
+ if( rc==SQLITE_OK && exists ){
+ int locked = 0; /* True if some process holds a RESERVED lock */
+
+ /* Race condition here: Another process might have been holding the
+ ** the RESERVED lock and have a journal open at the sqlite3OsAccess()
+ ** call above, but then delete the journal and drop the lock before
+ ** we get to the following sqlite3OsCheckReservedLock() call. If that
+ ** is the case, this routine might think there is a hot journal when
+ ** in fact there is none. This results in a false-positive which will
+ ** be dealt with by the playback routine. Ticket #3883.
+ */
+ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
+ if( rc==SQLITE_OK && !locked ){
+ Pgno nPage; /* Number of pages in database file */
+
+ assert( pPager->tempFile==0 );
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc==SQLITE_OK ){
+ /* If the database is zero pages in size, that means that either (1) the
+ ** journal is a remnant from a prior database with the same name where
+ ** the database file but not the journal was deleted, or (2) the initial
+ ** transaction that populates a new database is being rolled back.
+ ** In either case, the journal file can be deleted. However, take care
+ ** not to delete the journal file if it is already open due to
+ ** journal_mode=PERSIST.
+ */
+ if( nPage==0 && !jrnlOpen ){
+ sqlite3BeginBenignMalloc();
+ if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ sqlite3EndBenignMalloc();
+ }else{
+ /* The journal file exists and no other connection has a reserved
+ ** or greater lock on the database file. Now check that there is
+ ** at least one non-zero bytes at the start of the journal file.
+ ** If there is, then we consider this journal to be hot. If not,
+ ** it can be ignored.
+ */
+ if( !jrnlOpen ){
+ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
+ }
+ if( rc==SQLITE_OK ){
+ u8 first = 0;
+ rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ if( !jrnlOpen ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ *pExists = (first!=0);
+ }else if( rc==SQLITE_CANTOPEN ){
+ /* If we cannot open the rollback journal file in order to see if
+ ** it has a zero header, that might be due to an I/O error, or
+ ** it might be due to the race condition described above and in
+ ** ticket #3883. Either way, assume that the journal is hot.
+ ** This might be a false positive. But if it is, then the
+ ** automatic journal playback and recovery mechanism will deal
+ ** with it under an EXCLUSIVE lock where we do not need to
+ ** worry so much with race conditions.
+ */
+ *pExists = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to obtain a shared lock on the database file.
+** It is illegal to call sqlite3PagerGet() until after this function
+** has been successfully called. If a shared-lock is already held when
+** this function is called, it is a no-op.
+**
+** The following operations are also performed by this function.
+**
+** 1) If the pager is currently in PAGER_OPEN state (no lock held
+** on the database file), then an attempt is made to obtain a
+** SHARED lock on the database file. Immediately after obtaining
+** the SHARED lock, the file-system is checked for a hot-journal,
+** which is played back if present. Following any hot-journal
+** rollback, the contents of the cache are validated by checking
+** the 'change-counter' field of the database file header and
+** discarded if they are found to be invalid.
+**
+** 2) If the pager is running in exclusive-mode, and there are currently
+** no outstanding references to any pages, and is in the error state,
+** then an attempt is made to clear the error state by discarding
+** the contents of the page cache and rolling back any open journal
+** file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs while locking the database, checking for a hot-journal file or
+** rolling back a journal file, the IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This routine is only called from b-tree and only when there are no
+ ** outstanding pages. This implies that the pager state should either
+ ** be OPEN or READER. READER is only possible if the pager is or was in
+ ** exclusive access mode. */
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
+ assert( pPager->errCode==SQLITE_OK );
+
+ if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
+ int bHotJournal = 1; /* True if there exists a hot journal-file */
+
+ assert( !MEMDB );
+ assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK );
+
+ rc = pager_wait_on_lock(pPager, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
+ goto failed;
+ }
+
+ /* If a journal file exists, and there is no RESERVED lock on the
+ ** database file, then it either needs to be played back or deleted.
+ */
+ if( pPager->eLock<=SHARED_LOCK ){
+ rc = hasHotJournal(pPager, &bHotJournal);
+ }
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+ if( bHotJournal ){
+ if( pPager->readOnly ){
+ rc = SQLITE_READONLY_ROLLBACK;
+ goto failed;
+ }
+
+ /* Get an EXCLUSIVE lock on the database file. At this point it is
+ ** important that a RESERVED lock is not obtained on the way to the
+ ** EXCLUSIVE lock. If it were, another process might open the
+ ** database file, detect the RESERVED lock, and conclude that the
+ ** database is safe to read while this process is still rolling the
+ ** hot-journal back.
+ **
+ ** Because the intermediate RESERVED lock is not requested, any
+ ** other process attempting to access the database file will get to
+ ** this point in the code and fail to obtain its own EXCLUSIVE lock
+ ** on the database file.
+ **
+ ** Unless the pager is in locking_mode=exclusive mode, the lock is
+ ** downgraded to SHARED_LOCK before this function returns.
+ */
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+
+ /* If it is not already open and the file exists on disk, open the
+ ** journal for read/write access. Write access is required because
+ ** in exclusive-access mode the file descriptor will be kept open
+ ** and possibly used for a transaction later on. Also, write-access
+ ** is usually required to finalize the journal in journal_mode=persist
+ ** mode (and also for journal_mode=truncate on some systems).
+ **
+ ** If the journal does not exist, it usually means that some
+ ** other connection managed to get in and roll it back before
+ ** this connection obtained the exclusive lock above. Or, it
+ ** may mean that the pager was in the error-state when this
+ ** function was called and the journal file does not exist.
+ */
+ if( !isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int bExists; /* True if journal file exists */
+ rc = sqlite3OsAccess(
+ pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
+ if( rc==SQLITE_OK && bExists ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+ }
+
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock. Purge the cache before
+ ** playing back the hot-journal so that we don't end up with
+ ** an inconsistent cache. Sync the hot journal before playing
+ ** it back since the process that crashed and left the hot journal
+ ** probably did not sync it and we are required to always sync
+ ** the journal before playing it back.
+ */
+ if( isOpen(pPager->jfd) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerSyncHotJournal(pPager);
+ if( rc==SQLITE_OK ){
+ rc = pager_playback(pPager, !pPager->tempFile);
+ pPager->eState = PAGER_OPEN;
+ }
+ }else if( !pPager->exclusiveMode ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+
+ if( rc!=SQLITE_OK ){
+ /* This branch is taken if an error occurs while trying to open
+ ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
+ ** pager_unlock() routine will be called before returning to unlock
+ ** the file. If the unlock attempt fails, then Pager.eLock must be
+ ** set to UNKNOWN_LOCK (see the comment above the #define for
+ ** UNKNOWN_LOCK above for an explanation).
+ **
+ ** In order to get pager_unlock() to do this, set Pager.eState to
+ ** PAGER_ERROR now. This is not actually counted as a transition
+ ** to ERROR state in the state diagram at the top of this file,
+ ** since we know that the same call to pager_unlock() will very
+ ** shortly transition the pager object to the OPEN state. Calling
+ ** assert_pager_state() would fail now, as it should not be possible
+ ** to be in ERROR state when there are zero outstanding page
+ ** references.
+ */
+ pager_error(pPager, rc);
+ goto failed;
+ }
+
+ assert( pPager->eState==PAGER_OPEN );
+ assert( (pPager->eLock==SHARED_LOCK)
+ || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
+ );
+ }
+
+ if( !pPager->tempFile && pPager->hasHeldSharedLock ){
+ /* The shared-lock has just been acquired then check to
+ ** see if the database has been modified. If the database has changed,
+ ** flush the cache. The hasHeldSharedLock flag prevents this from
+ ** occurring on the very first access to a file, in order to save a
+ ** single unnecessary sqlite3OsRead() call at the start-up.
+ **
+ ** Database changes are detected by looking at 15 bytes beginning
+ ** at offset 24 into the file. The first 4 of these 16 bytes are
+ ** a 32-bit counter that is incremented with each change. The
+ ** other bytes change randomly with each file change when
+ ** a codec is in use.
+ **
+ ** There is a vanishingly small chance that a change will not be
+ ** detected. The chance of an undetected change is so small that
+ ** it can be neglected.
+ */
+ char dbFileVers[sizeof(pPager->dbFileVers)];
+
+ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
+ rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
+ if( rc!=SQLITE_OK ){
+ if( rc!=SQLITE_IOERR_SHORT_READ ){
+ goto failed;
+ }
+ memset(dbFileVers, 0, sizeof(dbFileVers));
+ }
+
+ if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
+ pager_reset(pPager);
+
+ /* Unmap the database file. It is possible that external processes
+ ** may have truncated the database file and then extended it back
+ ** to its original size while this process was not holding a lock.
+ ** In this case there may exist a Pager.pMap mapping that appears
+ ** to be the right size but is not actually valid. Avoid this
+ ** possibility by unmapping the db here. */
+ if( USEFETCH(pPager) ){
+ sqlite3OsUnfetch(pPager->fd, 0, 0);
+ }
+ }
+ }
+
+ /* If there is a WAL file in the file-system, open this database in WAL
+ ** mode. Otherwise, the following function call is a no-op.
+ */
+ rc = pagerOpenWalIfPresent(pPager);
+#ifndef SQLITE_OMIT_WAL
+ assert( pPager->pWal==0 || rc==SQLITE_OK );
+#endif
+ }
+
+ if( pagerUseWal(pPager) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerBeginReadTransaction(pPager);
+ }
+
+ if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
+ rc = pagerPagecount(pPager, &pPager->dbSize);
+ }
+
+ failed:
+ if( rc!=SQLITE_OK ){
+ assert( !MEMDB );
+ pager_unlock(pPager);
+ assert( pPager->eState==PAGER_OPEN );
+ }else{
+ pPager->eState = PAGER_READER;
+ pPager->hasHeldSharedLock = 1;
+ }
+ return rc;
+}
+
+/*
+** If the reference count has reached zero, rollback any active
+** transaction and unlock the pager.
+**
+** Except, in locking_mode=EXCLUSIVE when there is nothing to in
+** the rollback journal, the unlock is not performed and there is
+** nothing to rollback, so this routine is a no-op.
+*/
+static void pagerUnlockIfUnused(Pager *pPager){
+ if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){
+ assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */
+ pagerUnlockAndRollback(pPager);
+ }
+}
+
+/*
+** The page getter methods each try to acquire a reference to a
+** page with page number pgno. If the requested reference is
+** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
+**
+** There are different implementations of the getter method depending
+** on the current state of the pager.
+**
+** getPageNormal() -- The normal getter
+** getPageError() -- Used if the pager is in an error state
+** getPageMmap() -- Used if memory-mapped I/O is enabled
+**
+** If the requested page is already in the cache, it is returned.
+** Otherwise, a new page object is allocated and populated with data
+** read from the database file. In some cases, the pcache module may
+** choose not to allocate a new page object and may reuse an existing
+** object with no outstanding references.
+**
+** The extra data appended to a page is always initialized to zeros the
+** first time a page is loaded into memory. If the page requested is
+** already in the cache when this function is called, then the extra
+** data is left as it was when the page object was last used.
+**
+** If the database image is smaller than the requested page or if
+** the flags parameter contains the PAGER_GET_NOCONTENT bit and the
+** requested page is not already stored in the cache, then no
+** actual disk read occurs. In this case the memory image of the
+** page is initialized to all zeros.
+**
+** If PAGER_GET_NOCONTENT is true, it means that we do not care about
+** the contents of the page. This occurs in two scenarios:
+**
+** a) When reading a free-list leaf page from the database, and
+**
+** b) When a savepoint is being rolled back and we need to load
+** a new page into the cache to be filled with the data read
+** from the savepoint journal.
+**
+** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead
+** of being read from the database. Additionally, the bits corresponding
+** to pgno in Pager.pInJournal (bitvec of pages already written to the
+** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
+** savepoints are set. This means if the page is made writable at any
+** point in the future, using a call to sqlite3PagerWrite(), its contents
+** will not be journaled. This saves IO.
+**
+** The acquisition might fail for several reasons. In all cases,
+** an appropriate error code is returned and *ppPage is set to NULL.
+**
+** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
+** to find a page in the in-memory cache first. If the page is not already
+** in memory, this routine goes to disk to read it in whereas Lookup()
+** just returns 0. This routine acquires a read-lock the first time it
+** has to go to disk, and could also playback an old journal if necessary.
+** Since Lookup() never goes to disk, it never has to deal with locks
+** or journal files.
+*/
+static int getPageNormal(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ int rc = SQLITE_OK;
+ PgHdr *pPg;
+ u8 noContent; /* True if PAGER_GET_NOCONTENT is set */
+ sqlite3_pcache_page *pBase;
+
+ assert( pPager->errCode==SQLITE_OK );
+ assert( pPager->eState>=PAGER_READER );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->hasHeldSharedLock==1 );
+
+ if( pgno==0 ) return SQLITE_CORRUPT_BKPT;
+ pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3);
+ if( pBase==0 ){
+ pPg = 0;
+ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase);
+ if( rc!=SQLITE_OK ) goto pager_acquire_err;
+ if( pBase==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto pager_acquire_err;
+ }
+ }
+ pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase);
+ assert( pPg==(*ppPage) );
+ assert( pPg->pgno==pgno );
+ assert( pPg->pPager==pPager || pPg->pPager==0 );
+
+ noContent = (flags & PAGER_GET_NOCONTENT)!=0;
+ if( pPg->pPager && !noContent ){
+ /* In this case the pcache already contains an initialized copy of
+ ** the page. Return without further ado. */
+ assert( pgno!=PAGER_SJ_PGNO(pPager) );
+ pPager->aStat[PAGER_STAT_HIT]++;
+ return SQLITE_OK;
+
+ }else{
+ /* The pager cache has created a new page. Its content needs to
+ ** be initialized. But first some error checks:
+ **
+ ** (*) obsolete. Was: maximum page number is 2^31
+ ** (2) Never try to fetch the locking page
+ */
+ if( pgno==PAGER_SJ_PGNO(pPager) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto pager_acquire_err;
+ }
+
+ pPg->pPager = pPager;
+
+ assert( !isOpen(pPager->fd) || !MEMDB );
+ if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){
+ if( pgno>pPager->mxPgno ){
+ rc = SQLITE_FULL;
+ if( pgno<=pPager->dbSize ){
+ sqlite3PcacheRelease(pPg);
+ pPg = 0;
+ }
+ goto pager_acquire_err;
+ }
+ if( noContent ){
+ /* Failure to set the bits in the InJournal bit-vectors is benign.
+ ** It merely means that we might do some extra work to journal a
+ ** page that does not need to be journaled. Nevertheless, be sure
+ ** to test the case where a malloc error occurs while trying to set
+ ** a bit in a bit vector.
+ */
+ sqlite3BeginBenignMalloc();
+ if( pgno<=pPager->dbOrigSize ){
+ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ }
+ TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ sqlite3EndBenignMalloc();
+ }
+ memset(pPg->pData, 0, pPager->pageSize);
+ IOTRACE(("ZERO %p %d\n", pPager, pgno));
+ }else{
+ assert( pPg->pPager==pPager );
+ pPager->aStat[PAGER_STAT_MISS]++;
+ rc = readDbPage(pPg);
+ if( rc!=SQLITE_OK ){
+ goto pager_acquire_err;
+ }
+ }
+ pager_set_pagehash(pPg);
+ }
+ return SQLITE_OK;
+
+pager_acquire_err:
+ assert( rc!=SQLITE_OK );
+ if( pPg ){
+ sqlite3PcacheDrop(pPg);
+ }
+ pagerUnlockIfUnused(pPager);
+ *ppPage = 0;
+ return rc;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* The page getter for when memory-mapped I/O is enabled */
+static int getPageMMap(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ int rc = SQLITE_OK;
+ PgHdr *pPg = 0;
+ u32 iFrame = 0; /* Frame to read from WAL file */
+
+ /* It is acceptable to use a read-only (mmap) page for any page except
+ ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
+ ** flag was specified by the caller. And so long as the db is not a
+ ** temporary or in-memory database. */
+ const int bMmapOk = (pgno>1
+ && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY))
+ );
+
+ assert( USEFETCH(pPager) );
+
+ /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here
+ ** allows the compiler optimizer to reuse the results of the "pgno>1"
+ ** test in the previous statement, and avoid testing pgno==0 in the
+ ** common case where pgno is large. */
+ if( pgno<=1 && pgno==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( pPager->eState>=PAGER_READER );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->hasHeldSharedLock==1 );
+ assert( pPager->errCode==SQLITE_OK );
+
+ if( bMmapOk && pagerUseWal(pPager) ){
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame);
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ if( bMmapOk && iFrame==0 ){
+ void *pData = 0;
+ rc = sqlite3OsFetch(pPager->fd,
+ (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData
+ );
+ if( rc==SQLITE_OK && pData ){
+ if( pPager->eState>PAGER_READER || pPager->tempFile ){
+ pPg = sqlite3PagerLookup(pPager, pgno);
+ }
+ if( pPg==0 ){
+ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg);
+ }else{
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData);
+ }
+ if( pPg ){
+ assert( rc==SQLITE_OK );
+ *ppPage = pPg;
+ return SQLITE_OK;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ return getPageNormal(pPager, pgno, ppPage, flags);
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/* The page getter method for when the pager is an error state */
+static int getPageError(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ UNUSED_PARAMETER(pgno);
+ UNUSED_PARAMETER(flags);
+ assert( pPager->errCode!=SQLITE_OK );
+ *ppPage = 0;
+ return pPager->errCode;
+}
+
+
+/* Dispatch all page fetch requests to the appropriate getter method.
+*/
+SQLITE_PRIVATE int sqlite3PagerGet(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+#if 0 /* Trace page fetch by setting to 1 */
+ int rc;
+ printf("PAGE %u\n", pgno);
+ fflush(stdout);
+ rc = pPager->xGet(pPager, pgno, ppPage, flags);
+ if( rc ){
+ printf("PAGE %u failed with 0x%02x\n", pgno, rc);
+ fflush(stdout);
+ }
+ return rc;
+#else
+ /* Normal, high-speed version of sqlite3PagerGet() */
+ return pPager->xGet(pPager, pgno, ppPage, flags);
+#endif
+}
+
+/*
+** Acquire a page if it is already in the in-memory cache. Do
+** not read the page from disk. Return a pointer to the page,
+** or 0 if the page is not in cache.
+**
+** See also sqlite3PagerGet(). The difference between this routine
+** and sqlite3PagerGet() is that _get() will go to the disk and read
+** in the page if the page is not already in cache. This routine
+** returns NULL if the page is not in cache or if a disk I/O error
+** has ever happened.
+*/
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
+ sqlite3_pcache_page *pPage;
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ assert( pPager->pPCache!=0 );
+ pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);
+ assert( pPage==0 || pPager->hasHeldSharedLock );
+ if( pPage==0 ) return 0;
+ return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
+}
+
+/*
+** Release a page reference.
+**
+** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be used
+** if we know that the page being released is not the last reference to page1.
+** The btree layer always holds page1 open until the end, so these first
+** two routines can be used to release any page other than BtShared.pPage1.
+** The assert() at tag-20230419-2 proves that this constraint is always
+** honored.
+**
+** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine
+** checks the total number of outstanding pages and if the number of
+** pages reaches zero it drops the database lock.
+*/
+SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){
+ TESTONLY( Pager *pPager = pPg->pPager; )
+ assert( pPg!=0 );
+ if( pPg->flags & PGHDR_MMAP ){
+ assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */
+ pagerReleaseMapPage(pPg);
+ }else{
+ sqlite3PcacheRelease(pPg);
+ }
+ /* Do not use this routine to release the last reference to page1 */
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); /* tag-20230419-2 */
+}
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){
+ if( pPg ) sqlite3PagerUnrefNotNull(pPg);
+}
+SQLITE_PRIVATE void sqlite3PagerUnrefPageOne(DbPage *pPg){
+ Pager *pPager;
+ assert( pPg!=0 );
+ assert( pPg->pgno==1 );
+ assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */
+ pPager = pPg->pPager;
+ sqlite3PcacheRelease(pPg);
+ pagerUnlockIfUnused(pPager);
+}
+
+/*
+** This function is called at the start of every write transaction.
+** There must already be a RESERVED or EXCLUSIVE lock on the database
+** file when this routine is called.
+**
+** Open the journal file for pager pPager and write a journal header
+** to the start of it. If there are active savepoints, open the sub-journal
+** as well. This function is only used when the journal file is being
+** opened to write a rollback log for a transaction. It is not used
+** when opening a hot journal file to roll it back.
+**
+** If the journal file is already open (as it may be in exclusive mode),
+** then this function just writes a journal header to the start of the
+** already open file.
+**
+** Whether or not the journal file is opened by this function, the
+** Pager.pInJournal bitvec structure is allocated.
+**
+** Return SQLITE_OK if everything is successful. Otherwise, return
+** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or
+** an IO error code if opening or writing the journal file fails.
+*/
+static int pager_open_journal(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->pInJournal==0 );
+
+ /* If already in the error state, this function is a no-op. But on
+ ** the other hand, this routine is never called if we are already in
+ ** an error state. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
+ if( pPager->pInJournal==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* Open the journal file if it is not already open. */
+ if( !isOpen(pPager->jfd) ){
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
+ sqlite3MemJournalOpen(pPager->jfd);
+ }else{
+ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
+ int nSpill;
+
+ if( pPager->tempFile ){
+ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
+ flags |= SQLITE_OPEN_EXCLUSIVE;
+ nSpill = sqlite3Config.nStmtSpill;
+ }else{
+ flags |= SQLITE_OPEN_MAIN_JOURNAL;
+ nSpill = jrnlBufferSize(pPager);
+ }
+
+ /* Verify that the database still has the same name as it did when
+ ** it was originally opened. */
+ rc = databaseIsUnmoved(pPager);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3JournalOpen (
+ pVfs, pPager->zJournal, pPager->jfd, flags, nSpill
+ );
+ }
+ }
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ }
+
+
+ /* Write the first journal header to the journal file and open
+ ** the sub-journal if necessary.
+ */
+ if( rc==SQLITE_OK ){
+ /* TODO: Check if all of these are really required. */
+ pPager->nRec = 0;
+ pPager->journalOff = 0;
+ pPager->setSuper = 0;
+ pPager->journalHdr = 0;
+ rc = writeJournalHdr(pPager);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ pPager->journalOff = 0;
+ }else{
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ pPager->eState = PAGER_WRITER_CACHEMOD;
+ }
+
+ return rc;
+}
+
+/*
+** Begin a write-transaction on the specified pager object. If a
+** write-transaction has already been opened, this function is a no-op.
+**
+** If the exFlag argument is false, then acquire at least a RESERVED
+** lock on the database file. If exFlag is true, then acquire at least
+** an EXCLUSIVE lock. If such a lock is already held, no locking
+** functions need be called.
+**
+** If the subjInMemory argument is non-zero, then any sub-journal opened
+** within this transaction will be opened as an in-memory file. This
+** has no effect if the sub-journal is already opened (as it may be when
+** running in exclusive mode) or if the transaction does not require a
+** sub-journal. If the subjInMemory argument is zero, then any required
+** sub-journal is implemented in-memory if pPager is an in-memory database,
+** or using a temporary file otherwise.
+*/
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
+ int rc = SQLITE_OK;
+
+ if( pPager->errCode ) return pPager->errCode;
+ assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
+ pPager->subjInMemory = (u8)subjInMemory;
+
+ if( pPager->eState==PAGER_READER ){
+ assert( pPager->pInJournal==0 );
+
+ if( pagerUseWal(pPager) ){
+ /* If the pager is configured to use locking_mode=exclusive, and an
+ ** exclusive lock on the database is not already held, obtain it now.
+ */
+ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ (void)sqlite3WalExclusiveMode(pPager->pWal, 1);
+ }
+
+ /* Grab the write lock on the log file. If successful, upgrade to
+ ** PAGER_RESERVED state. Otherwise, return an error code to the caller.
+ ** The busy-handler is not invoked if another connection already
+ ** holds the write-lock. If possible, the upper layer will call it.
+ */
+ rc = sqlite3WalBeginWriteTransaction(pPager->pWal);
+ }else{
+ /* Obtain a RESERVED lock on the database file. If the exFlag parameter
+ ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
+ ** busy-handler callback can be used when upgrading to the EXCLUSIVE
+ ** lock, but not when obtaining the RESERVED lock.
+ */
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ if( rc==SQLITE_OK && exFlag ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Change to WRITER_LOCKED state.
+ **
+ ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
+ ** when it has an open transaction, but never to DBMOD or FINISHED.
+ ** This is because in those states the code to roll back savepoint
+ ** transactions may copy data from the sub-journal into the database
+ ** file as well as into the page cache. Which would be incorrect in
+ ** WAL mode.
+ */
+ pPager->eState = PAGER_WRITER_LOCKED;
+ pPager->dbHintSize = pPager->dbSize;
+ pPager->dbFileSize = pPager->dbSize;
+ pPager->dbOrigSize = pPager->dbSize;
+ pPager->journalOff = 0;
+ }
+
+ assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
+ assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ }
+
+ PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
+ return rc;
+}
+
+/*
+** Write page pPg onto the end of the rollback journal.
+*/
+static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ int rc;
+ u32 cksum;
+ char *pData2;
+ i64 iOff = pPager->journalOff;
+
+ /* We should never write to the journal file the page that
+ ** contains the database locks. The following assert verifies
+ ** that we do not. */
+ assert( pPg->pgno!=PAGER_SJ_PGNO(pPager) );
+
+ assert( pPager->journalHdr<=pPager->journalOff );
+ pData2 = pPg->pData;
+ cksum = pager_cksum(pPager, (u8*)pData2);
+
+ /* Even if an IO or diskfull error occurs while journalling the
+ ** page in the block above, set the need-sync flag for the page.
+ ** Otherwise, when the transaction is rolled back, the logic in
+ ** playback_one_page() will think that the page needs to be restored
+ ** in the database file. And if an IO error occurs while doing so,
+ ** then corruption may follow.
+ */
+ pPg->flags |= PGHDR_NEED_SYNC;
+
+ rc = write32bits(pPager->jfd, iOff, pPg->pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
+ if( rc!=SQLITE_OK ) return rc;
+
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
+ pPager->journalOff, pPager->pageSize));
+ PAGER_INCR(sqlite3_pager_writej_count);
+ PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
+
+ pPager->journalOff += 8 + pPager->pageSize;
+ pPager->nRec++;
+ assert( pPager->pInJournal!=0 );
+ rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ rc |= addToSavepointBitvecs(pPager, pPg->pgno);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ return rc;
+}
+
+/*
+** Mark a single data page as writeable. The page is written into the
+** main journal or sub-journal as required. If the page is written into
+** one of the journals, the corresponding bit is set in the
+** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
+** of any open savepoints as appropriate.
+*/
+static int pager_write(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+
+ /* This routine is not called unless a write-transaction has already
+ ** been started. The journal file may or may not be open at this point.
+ ** It is never called in the ERROR state.
+ */
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->errCode==0 );
+ assert( pPager->readOnly==0 );
+ CHECK_PAGE(pPg);
+
+ /* The journal file needs to be opened. Higher level routines have already
+ ** obtained the necessary locks to begin the write-transaction, but the
+ ** rollback journal might not yet be open. Open it now if this is the case.
+ **
+ ** This is done before calling sqlite3PcacheMakeDirty() on the page.
+ ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
+ ** an error might occur and the pager would end up in WRITER_LOCKED state
+ ** with pages marked as dirty in the cache.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ assert( assert_pager_state(pPager) );
+
+ /* Mark the page that is about to be modified as dirty. */
+ sqlite3PcacheMakeDirty(pPg);
+
+ /* If a rollback journal is in use, them make sure the page that is about
+ ** to change is in the rollback journal, or if the page is a new page off
+ ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC.
+ */
+ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) );
+ if( pPager->pInJournal!=0
+ && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0
+ ){
+ assert( pagerUseWal(pPager)==0 );
+ if( pPg->pgno<=pPager->dbOrigSize ){
+ rc = pagerAddPageToRollbackJournal(pPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ if( pPager->eState!=PAGER_WRITER_DBMOD ){
+ pPg->flags |= PGHDR_NEED_SYNC;
+ }
+ PAGERTRACE(("APPEND %d page %d needSync=%d\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
+ }
+ }
+
+ /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list
+ ** and before writing the page into the rollback journal. Wait until now,
+ ** after the page has been successfully journalled, before setting the
+ ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified.
+ */
+ pPg->flags |= PGHDR_WRITEABLE;
+
+ /* If the statement journal is open and the page is not in it,
+ ** then write the page into the statement journal.
+ */
+ if( pPager->nSavepoint>0 ){
+ rc = subjournalPageIfRequired(pPg);
+ }
+
+ /* Update the database size and return. */
+ if( pPager->dbSize<pPg->pgno ){
+ pPager->dbSize = pPg->pgno;
+ }
+ return rc;
+}
+
+/*
+** This is a variant of sqlite3PagerWrite() that runs when the sector size
+** is larger than the page size. SQLite makes the (reasonable) assumption that
+** all bytes of a sector are written together by hardware. Hence, all bytes of
+** a sector need to be journalled in case of a power loss in the middle of
+** a write.
+**
+** Usually, the sector size is less than or equal to the page size, in which
+** case pages can be individually written. This routine only runs in the
+** exceptional case where the page size is smaller than the sector size.
+*/
+static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){
+ int rc = SQLITE_OK; /* Return code */
+ Pgno nPageCount; /* Total number of pages in database file */
+ Pgno pg1; /* First page of the sector pPg is located on. */
+ int nPage = 0; /* Number of pages starting at pg1 to journal */
+ int ii; /* Loop counter */
+ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */
+ Pager *pPager = pPg->pPager; /* The pager that owns pPg */
+ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
+
+ /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
+ ** a journal header to be written between the pages journaled by
+ ** this function.
+ */
+ assert( !MEMDB );
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );
+ pPager->doNotSpill |= SPILLFLAG_NOSYNC;
+
+ /* This trick assumes that both the page-size and sector-size are
+ ** an integer power of 2. It sets variable pg1 to the identifier
+ ** of the first page of the sector pPg is located on.
+ */
+ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
+
+ nPageCount = pPager->dbSize;
+ if( pPg->pgno>nPageCount ){
+ nPage = (pPg->pgno - pg1)+1;
+ }else if( (pg1+nPagePerSector-1)>nPageCount ){
+ nPage = nPageCount+1-pg1;
+ }else{
+ nPage = nPagePerSector;
+ }
+ assert(nPage>0);
+ assert(pg1<=pPg->pgno);
+ assert((pg1+nPage)>pPg->pgno);
+
+ for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
+ Pgno pg = pg1+ii;
+ PgHdr *pPage;
+ if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
+ if( pg!=PAGER_SJ_PGNO(pPager) ){
+ rc = sqlite3PagerGet(pPager, pg, &pPage, 0);
+ if( rc==SQLITE_OK ){
+ rc = pager_write(pPage);
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+ }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+
+ /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages
+ ** starting at pg1, then it needs to be set for all of them. Because
+ ** writing to any of these nPage pages may damage the others, the
+ ** journal file must contain sync()ed copies of all of them
+ ** before any of them can be written out to the database file.
+ */
+ if( rc==SQLITE_OK && needSync ){
+ assert( !MEMDB );
+ for(ii=0; ii<nPage; ii++){
+ PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii);
+ if( pPage ){
+ pPage->flags |= PGHDR_NEED_SYNC;
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+ }
+
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 );
+ pPager->doNotSpill &= ~SPILLFLAG_NOSYNC;
+ return rc;
+}
+
+/*
+** Mark a data page as writeable. This routine must be called before
+** making changes to a page. The caller must check the return value
+** of this function and be careful not to change any page data unless
+** this routine returns SQLITE_OK.
+**
+** The difference between this function and pager_write() is that this
+** function also deals with the special case where 2 or more pages
+** fit on a single disk sector. In this case all co-resident pages
+** must have been written to the journal file before returning.
+**
+** If an error occurs, SQLITE_NOMEM or an IO error code is returned
+** as appropriate. Otherwise, SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( (pPg->flags & PGHDR_MMAP)==0 );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){
+ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg);
+ return SQLITE_OK;
+ }else if( pPager->errCode ){
+ return pPager->errCode;
+ }else if( pPager->sectorSize > (u32)pPager->pageSize ){
+ assert( pPager->tempFile==0 );
+ return pagerWriteLargeSector(pPg);
+ }else{
+ return pager_write(pPg);
+ }
+}
+
+/*
+** Return TRUE if the page given in the argument was previously passed
+** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
+** to change the content of the page.
+*/
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
+ return pPg->flags & PGHDR_WRITEABLE;
+}
+#endif
+
+/*
+** A call to this routine tells the pager that it is not necessary to
+** write the information on page pPg back to the disk, even though
+** that page might be marked as dirty. This happens, for example, when
+** the page has been added as a leaf of the freelist and so its
+** content no longer matters.
+**
+** The overlying software layer calls this routine when all of the data
+** on the given page is unused. The pager marks the page as clean so
+** that it does not get written to disk.
+**
+** Tests show that this optimization can quadruple the speed of large
+** DELETE operations.
+**
+** This optimization cannot be used with a temp-file, as the page may
+** have been dirty at the start of the transaction. In that case, if
+** memory pressure forces page pPg out of the cache, the data does need
+** to be written out to disk so that it may be read back in if the
+** current transaction is rolled back.
+*/
+SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
+ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
+ IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
+ pPg->flags |= PGHDR_DONT_WRITE;
+ pPg->flags &= ~PGHDR_WRITEABLE;
+ testcase( pPg->flags & PGHDR_NEED_SYNC );
+ pager_set_pagehash(pPg);
+ }
+}
+
+/*
+** This routine is called to increment the value of the database file
+** change-counter, stored as a 4-byte big-endian integer starting at
+** byte offset 24 of the pager file. The secondary change counter at
+** 92 is also updated, as is the SQLite version number at offset 96.
+**
+** But this only happens if the pPager->changeCountDone flag is false.
+** To avoid excess churning of page 1, the update only happens once.
+** See also the pager_write_changecounter() routine that does an
+** unconditional update of the change counters.
+**
+** If the isDirectMode flag is zero, then this is done by calling
+** sqlite3PagerWrite() on page 1, then modifying the contents of the
+** page data. In this case the file will be updated when the current
+** transaction is committed.
+**
+** The isDirectMode flag may only be non-zero if the library was compiled
+** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
+** if isDirect is non-zero, then the database file is updated directly
+** by writing an updated version of page 1 using a call to the
+** sqlite3OsWrite() function.
+*/
+static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
+ int rc = SQLITE_OK;
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* Declare and initialize constant integer 'isDirect'. If the
+ ** atomic-write optimization is enabled in this build, then isDirect
+ ** is initialized to the value passed as the isDirectMode parameter
+ ** to this function. Otherwise, it is always set to zero.
+ **
+ ** The idea is that if the atomic-write optimization is not
+ ** enabled at compile time, the compiler can omit the tests of
+ ** 'isDirect' below, as well as the block enclosed in the
+ ** "if( isDirect )" condition.
+ */
+#ifndef SQLITE_ENABLE_ATOMIC_WRITE
+# define DIRECT_MODE 0
+ assert( isDirectMode==0 );
+ UNUSED_PARAMETER(isDirectMode);
+#else
+# define DIRECT_MODE isDirectMode
+#endif
+
+ if( !pPager->changeCountDone && pPager->dbSize>0 ){
+ PgHdr *pPgHdr; /* Reference to page 1 */
+
+ assert( !pPager->tempFile && isOpen(pPager->fd) );
+
+ /* Open page 1 of the file for writing. */
+ rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0);
+ assert( pPgHdr==0 || rc==SQLITE_OK );
+
+ /* If page one was fetched successfully, and this function is not
+ ** operating in direct-mode, make page 1 writable. When not in
+ ** direct mode, page 1 is always held in cache and hence the PagerGet()
+ ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
+ */
+ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
+ rc = sqlite3PagerWrite(pPgHdr);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Actually do the update of the change counter */
+ pager_write_changecounter(pPgHdr);
+
+ /* If running in direct mode, write the contents of page 1 to the file. */
+ if( DIRECT_MODE ){
+ const void *zBuf;
+ assert( pPager->dbFileSize>0 );
+ zBuf = pPgHdr->pData;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
+ pPager->aStat[PAGER_STAT_WRITE]++;
+ }
+ if( rc==SQLITE_OK ){
+ /* Update the pager's copy of the change-counter. Otherwise, the
+ ** next time a read transaction is opened the cache will be
+ ** flushed (as the change-counter values will not match). */
+ const void *pCopy = (const void *)&((const char *)zBuf)[24];
+ memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers));
+ pPager->changeCountDone = 1;
+ }
+ }else{
+ pPager->changeCountDone = 1;
+ }
+ }
+
+ /* Release the page reference. */
+ sqlite3PagerUnref(pPgHdr);
+ }
+ return rc;
+}
+
+/*
+** Sync the database file to disk. This is a no-op for in-memory databases
+** or pages with the Pager.noSync flag set.
+**
+** If successful, or if called on a pager for which it is a no-op, this
+** function returns SQLITE_OK. Otherwise, an IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zSuper){
+ int rc = SQLITE_OK;
+ void *pArg = (void*)zSuper;
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ assert( !MEMDB );
+ rc = sqlite3OsSync(pPager->fd, pPager->syncFlags);
+ }
+ return rc;
+}
+
+/*
+** This function may only be called while a write-transaction is active in
+** rollback. If the connection is in WAL mode, this call is a no-op.
+** Otherwise, if the connection does not already have an EXCLUSIVE lock on
+** the database file, an attempt is made to obtain one.
+**
+** If the EXCLUSIVE lock is already held or the attempt to obtain it is
+** successful, or the connection is in WAL mode, SQLITE_OK is returned.
+** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is
+** returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
+ int rc = pPager->errCode;
+ assert( assert_pager_state(pPager) );
+ if( rc==SQLITE_OK ){
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_WRITER_LOCKED
+ );
+ assert( assert_pager_state(pPager) );
+ if( 0==pagerUseWal(pPager) ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+ return rc;
+}
+
+/*
+** Sync the database file for the pager pPager. zSuper points to the name
+** of a super-journal file that should be written into the individual
+** journal file. zSuper may be NULL, which is interpreted as no
+** super-journal (a single database transaction).
+**
+** This routine ensures that:
+**
+** * The database file change-counter is updated,
+** * the journal is synced (unless the atomic-write optimization is used),
+** * all dirty pages are written to the database file,
+** * the database file is truncated (if required), and
+** * the database file synced.
+**
+** The only thing that remains to commit the transaction is to finalize
+** (delete, truncate or zero the first part of) the journal file (or
+** delete the super-journal file if specified).
+**
+** Note that if zSuper==NULL, this does not overwrite a previous value
+** passed to an sqlite3PagerCommitPhaseOne() call.
+**
+** If the final parameter - noSync - is true, then the database file itself
+** is not synced. The caller must call sqlite3PagerSync() directly to
+** sync the database file before calling CommitPhaseTwo() to delete the
+** journal file in this case.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
+ Pager *pPager, /* Pager object */
+ const char *zSuper, /* If not NULL, the super-journal name */
+ int noSync /* True to omit the xSync on the db file */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_ERROR
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* If a prior error occurred, report that error again. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ /* Provide the ability to easily simulate an I/O error during testing */
+ if( sqlite3FaultSim(400) ) return SQLITE_IOERR;
+
+ PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n",
+ pPager->zFilename, zSuper, pPager->dbSize));
+
+ /* If no database changes have been made, return early. */
+ if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;
+
+ assert( MEMDB==0 || pPager->tempFile );
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+ if( 0==pagerFlushOnCommit(pPager, 1) ){
+ /* If this is an in-memory db, or no pages have been written to, or this
+ ** function has already been called, it is mostly a no-op. However, any
+ ** backup in progress needs to be restarted. */
+ sqlite3BackupRestart(pPager->pBackup);
+ }else{
+ PgHdr *pList;
+ if( pagerUseWal(pPager) ){
+ PgHdr *pPageOne = 0;
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ if( pList==0 ){
+ /* Must have at least one page for the WAL commit flag.
+ ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
+ rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0);
+ pList = pPageOne;
+ pList->pDirty = 0;
+ }
+ assert( rc==SQLITE_OK );
+ if( ALWAYS(pList) ){
+ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
+ }
+ sqlite3PagerUnref(pPageOne);
+ if( rc==SQLITE_OK ){
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ }
+ }else{
+ /* The bBatch boolean is true if the batch-atomic-write commit method
+ ** should be used. No rollback journal is created if batch-atomic-write
+ ** is enabled.
+ */
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ sqlite3_file *fd = pPager->fd;
+ int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */
+ && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC)
+ && !pPager->noSync
+ && sqlite3JournalIsInMemory(pPager->jfd);
+#else
+# define bBatch 0
+#endif
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ /* The following block updates the change-counter. Exactly how it
+ ** does this depends on whether or not the atomic-update optimization
+ ** was enabled at compile time, and if this transaction meets the
+ ** runtime criteria to use the operation:
+ **
+ ** * The file-system supports the atomic-write property for
+ ** blocks of size page-size, and
+ ** * This commit is not part of a multi-file transaction, and
+ ** * Exactly one page has been modified and store in the journal file.
+ **
+ ** If the optimization was not enabled at compile time, then the
+ ** pager_incr_changecounter() function is called to update the change
+ ** counter in 'indirect-mode'. If the optimization is compiled in but
+ ** is not applicable to this transaction, call sqlite3JournalCreate()
+ ** to make sure the journal file has actually been created, then call
+ ** pager_incr_changecounter() to update the change-counter in indirect
+ ** mode.
+ **
+ ** Otherwise, if the optimization is both enabled and applicable,
+ ** then call pager_incr_changecounter() to update the change-counter
+ ** in 'direct' mode. In this case the journal file will never be
+ ** created for this transaction.
+ */
+ if( bBatch==0 ){
+ PgHdr *pPg;
+ assert( isOpen(pPager->jfd)
+ || pPager->journalMode==PAGER_JOURNALMODE_OFF
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ if( !zSuper && isOpen(pPager->jfd)
+ && pPager->journalOff==jrnlBufferSize(pPager)
+ && pPager->dbSize>=pPager->dbOrigSize
+ && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
+ ){
+ /* Update the db file change counter via the direct-write method. The
+ ** following call will modify the in-memory representation of page 1
+ ** to include the updated change counter and then write page 1
+ ** directly to the database file. Because of the atomic-write
+ ** property of the host file-system, this is safe.
+ */
+ rc = pager_incr_changecounter(pPager, 1);
+ }else{
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc==SQLITE_OK ){
+ rc = pager_incr_changecounter(pPager, 0);
+ }
+ }
+ }
+#else /* SQLITE_ENABLE_ATOMIC_WRITE */
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( zSuper ){
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ assert( bBatch==0 );
+ }
+#endif
+ rc = pager_incr_changecounter(pPager, 0);
+#endif /* !SQLITE_ENABLE_ATOMIC_WRITE */
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Write the super-journal name into the journal file. If a
+ ** super-journal file name has already been written to the journal file,
+ ** or if zSuper is NULL (no super-journal), then this call is a no-op.
+ */
+ rc = writeSuperJournal(pPager, zSuper);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Sync the journal file and write all dirty pages to the database.
+ ** If the atomic-update optimization is being used, this sync will not
+ ** create the journal file or perform any real IO.
+ **
+ ** Because the change-counter page was just modified, unless the
+ ** atomic-update optimization is used it is almost certain that the
+ ** journal requires a sync here. However, in locking_mode=exclusive
+ ** on a system under memory pressure it is just possible that this is
+ ** not the case. In this case it is likely enough that the redundant
+ ** xSync() call will be changed to a no-op by the OS anyhow.
+ */
+ rc = syncJournal(pPager, 0);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ if( bBatch ){
+ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0);
+ if( rc==SQLITE_OK ){
+ rc = pager_write_pagelist(pPager, pList);
+ if( rc==SQLITE_OK && pPager->dbSize>pPager->dbFileSize ){
+ char *pTmp = pPager->pTmpSpace;
+ int szPage = (int)pPager->pageSize;
+ memset(pTmp, 0, szPage);
+ rc = sqlite3OsWrite(pPager->fd, pTmp, szPage,
+ ((i64)pPager->dbSize*pPager->pageSize)-szPage);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0);
+ }
+ }
+
+ if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(pPager->jfd);
+ goto commit_phase_one_exit;
+ }
+ bBatch = 0;
+ }else{
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+#endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
+
+ if( bBatch==0 ){
+ rc = pager_write_pagelist(pPager, pList);
+ }
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_IOERR_BLOCKED );
+ goto commit_phase_one_exit;
+ }
+ sqlite3PcacheCleanAll(pPager->pPCache);
+
+ /* If the file on disk is smaller than the database image, use
+ ** pager_truncate to grow the file here. This can happen if the database
+ ** image was extended as part of the current transaction and then the
+ ** last page in the db image moved to the free-list. In this case the
+ ** last page is never written out to disk, leaving the database file
+ ** undersized. Fix this now if it is the case. */
+ if( pPager->dbSize>pPager->dbFileSize ){
+ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_SJ_PGNO(pPager));
+ assert( pPager->eState==PAGER_WRITER_DBMOD );
+ rc = pager_truncate(pPager, nNew);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ }
+
+ /* Finally, sync the database file. */
+ if( !noSync ){
+ rc = sqlite3PagerSync(pPager, zSuper);
+ }
+ IOTRACE(("DBSYNC %p\n", pPager))
+ }
+ }
+
+commit_phase_one_exit:
+ if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
+ pPager->eState = PAGER_WRITER_FINISHED;
+ }
+ return rc;
+}
+
+
+/*
+** When this function is called, the database file has been completely
+** updated to reflect the changes made by the current transaction and
+** synced to disk. The journal file still exists in the file-system
+** though, and if a failure occurs at this point it will eventually
+** be used as a hot-journal and the current transaction rolled back.
+**
+** This function finalizes the journal file, either by deleting,
+** truncating or partially zeroing it, so that it cannot be used
+** for hot-journal rollback. Once this is done the transaction is
+** irrevocably committed.
+**
+** If an error occurs, an IO error code is returned and the pager
+** moves into the error state. Otherwise, SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This routine should not be called if a prior error has occurred.
+ ** But if (due to a coding error elsewhere in the system) it does get
+ ** called, just return the same error code without doing anything. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+ pPager->iDataVersion++;
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_FINISHED
+ || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* An optimization. If the database was not actually modified during
+ ** this transaction, the pager is running in exclusive-mode and is
+ ** using persistent journals, then this function is a no-op.
+ **
+ ** The start of the journal file currently contains a single journal
+ ** header with the nRec field set to 0. If such a journal is used as
+ ** a hot-journal during hot-journal rollback, 0 changes will be made
+ ** to the database file. So there is no need to zero the journal
+ ** header. Since the pager is in exclusive mode, there is no need
+ ** to drop any locks either.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED
+ && pPager->exclusiveMode
+ && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
+ pPager->eState = PAGER_READER;
+ return SQLITE_OK;
+ }
+
+ PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
+ rc = pager_end_transaction(pPager, pPager->setSuper, 1);
+ return pager_error(pPager, rc);
+}
+
+/*
+** If a write transaction is open, then all changes made within the
+** transaction are reverted and the current write-transaction is closed.
+** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
+** state if an error occurs.
+**
+** If the pager is already in PAGER_ERROR state when this function is called,
+** it returns Pager.errCode immediately. No work is performed in this case.
+**
+** Otherwise, in rollback mode, this function performs two functions:
+**
+** 1) It rolls back the journal file, restoring all database file and
+** in-memory cache pages to the state they were in when the transaction
+** was opened, and
+**
+** 2) It finalizes the journal file, so that it is not used for hot
+** rollback at any point in the future.
+**
+** Finalization of the journal file (task 2) is only performed if the
+** rollback is successful.
+**
+** In WAL mode, all cache-entries containing data modified within the
+** current transaction are either expelled from the cache or reverted to
+** their pre-transaction state by re-reading data from the database or
+** WAL files. The WAL transaction is then closed.
+*/
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
+
+ /* PagerRollback() is a no-op if called in READER or OPEN state. If
+ ** the pager is already in the ERROR state, the rollback is not
+ ** attempted here. Instead, the error code is returned to the caller.
+ */
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
+ if( pPager->eState<=PAGER_READER ) return SQLITE_OK;
+
+ if( pagerUseWal(pPager) ){
+ int rc2;
+ rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
+ rc2 = pager_end_transaction(pPager, pPager->setSuper, 0);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
+ int eState = pPager->eState;
+ rc = pager_end_transaction(pPager, 0, 0);
+ if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
+ /* This can happen using journal_mode=off. Move the pager to the error
+ ** state to indicate that the contents of the cache may not be trusted.
+ ** Any active readers will get SQLITE_ABORT.
+ */
+ pPager->errCode = SQLITE_ABORT;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ return rc;
+ }
+ }else{
+ rc = pager_playback(pPager, 0);
+ }
+
+ assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
+ assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT
+ || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR
+ || rc==SQLITE_CANTOPEN
+ );
+
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager
+ ** cache. So call pager_error() on the way out to make any error persistent.
+ */
+ return pager_error(pPager, rc);
+}
+
+/*
+** Return TRUE if the database file is opened read-only. Return FALSE
+** if the database is (in theory) writable.
+*/
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){
+ return pPager->readOnly;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return the sum of the reference counts for all pages held by pPager.
+*/
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
+ return sqlite3PcacheRefCount(pPager->pPCache);
+}
+#endif
+
+/*
+** Return the approximate number of bytes of memory currently
+** used by the pager and its associated cache.
+*/
+SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){
+ int perPageSize = pPager->pageSize + pPager->nExtra
+ + (int)(sizeof(PgHdr) + 5*sizeof(void*));
+ return perPageSize*sqlite3PcachePagecount(pPager->pPCache)
+ + sqlite3MallocSize(pPager)
+ + pPager->pageSize;
+}
+
+/*
+** Return the number of references to the specified page.
+*/
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){
+ return sqlite3PcachePageRefcount(pPage);
+}
+
+#ifdef SQLITE_TEST
+/*
+** This routine is used for testing and analysis only.
+*/
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
+ static int a[11];
+ a[0] = sqlite3PcacheRefCount(pPager->pPCache);
+ a[1] = sqlite3PcachePagecount(pPager->pPCache);
+ a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
+ a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
+ a[4] = pPager->eState;
+ a[5] = pPager->errCode;
+ a[6] = pPager->aStat[PAGER_STAT_HIT];
+ a[7] = pPager->aStat[PAGER_STAT_MISS];
+ a[8] = 0; /* Used to be pPager->nOvfl */
+ a[9] = pPager->nRead;
+ a[10] = pPager->aStat[PAGER_STAT_WRITE];
+ return a;
+}
+#endif
+
+/*
+** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE,
+** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation
+** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because
+** it was added later.
+**
+** Before returning, *pnVal is incremented by the
+** current cache hit or miss count, according to the value of eStat. If the
+** reset parameter is non-zero, the cache hit or miss count is zeroed before
+** returning.
+*/
+SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){
+
+ assert( eStat==SQLITE_DBSTATUS_CACHE_HIT
+ || eStat==SQLITE_DBSTATUS_CACHE_MISS
+ || eStat==SQLITE_DBSTATUS_CACHE_WRITE
+ || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1
+ );
+
+ assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS );
+ assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE );
+ assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1
+ && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 );
+
+ eStat -= SQLITE_DBSTATUS_CACHE_HIT;
+ *pnVal += pPager->aStat[eStat];
+ if( reset ){
+ pPager->aStat[eStat] = 0;
+ }
+}
+
+/*
+** Return true if this is an in-memory or temp-file backed pager.
+*/
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
+ return pPager->tempFile || pPager->memVfs;
+}
+
+/*
+** Check that there are at least nSavepoint savepoints open. If there are
+** currently less than nSavepoints open, then open one or more savepoints
+** to make up the difference. If the number of savepoints is already
+** equal to nSavepoint, then this function is a no-op.
+**
+** If a memory allocation fails, SQLITE_NOMEM is returned. If an error
+** occurs while opening the sub-journal file, then an IO error code is
+** returned. Otherwise, SQLITE_OK.
+*/
+static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ int rc = SQLITE_OK; /* Return code */
+ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */
+ int ii; /* Iterator variable */
+ PagerSavepoint *aNew; /* New Pager.aSavepoint array */
+
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ assert( nSavepoint>nCurrent && pPager->useJournal );
+
+ /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
+ ** if the allocation fails. Otherwise, zero the new portion in case a
+ ** malloc failure occurs while populating it in the for(...) loop below.
+ */
+ aNew = (PagerSavepoint *)sqlite3Realloc(
+ pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
+ );
+ if( !aNew ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
+ pPager->aSavepoint = aNew;
+
+ /* Populate the PagerSavepoint structures just allocated. */
+ for(ii=nCurrent; ii<nSavepoint; ii++){
+ aNew[ii].nOrig = pPager->dbSize;
+ if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
+ aNew[ii].iOffset = pPager->journalOff;
+ }else{
+ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
+ }
+ aNew[ii].iSubRec = pPager->nSubRec;
+ aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
+ aNew[ii].bTruncateOnRelease = 1;
+ if( !aNew[ii].pInSavepoint ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( pagerUseWal(pPager) ){
+ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
+ }
+ pPager->nSavepoint = ii+1;
+ }
+ assert( pPager->nSavepoint==nSavepoint );
+ assertTruncateConstraint(pPager);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+
+ if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){
+ return pagerOpenSavepoint(pPager, nSavepoint);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+
+/*
+** This function is called to rollback or release (commit) a savepoint.
+** The savepoint to release or rollback need not be the most recently
+** created savepoint.
+**
+** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
+** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
+** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
+** that have occurred since the specified savepoint was created.
+**
+** The savepoint to rollback or release is identified by parameter
+** iSavepoint. A value of 0 means to operate on the outermost savepoint
+** (the first created). A value of (Pager.nSavepoint-1) means operate
+** on the most recently created savepoint. If iSavepoint is greater than
+** (Pager.nSavepoint-1), then this function is a no-op.
+**
+** If a negative value is passed to this function, then the current
+** transaction is rolled back. This is different to calling
+** sqlite3PagerRollback() because this function does not terminate
+** the transaction or unlock the database, it just restores the
+** contents of the database to its original state.
+**
+** In any case, all savepoints with an index greater than iSavepoint
+** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
+** then savepoint iSavepoint is also destroyed.
+**
+** This function may return SQLITE_NOMEM if a memory allocation fails,
+** or an IO error code if an IO error occurs while rolling back a
+** savepoint. If no errors occur, SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
+ int rc = pPager->errCode;
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+ if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK;
+#endif
+
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
+
+ if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
+ int ii; /* Iterator variable */
+ int nNew; /* Number of remaining savepoints after this op. */
+
+ /* Figure out how many savepoints will still be active after this
+ ** operation. Store this value in nNew. Then free resources associated
+ ** with any savepoints that are destroyed by this operation.
+ */
+ nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1);
+ for(ii=nNew; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ pPager->nSavepoint = nNew;
+
+ /* Truncate the sub-journal so that it only includes the parts
+ ** that are still in use. */
+ if( op==SAVEPOINT_RELEASE ){
+ PagerSavepoint *pRel = &pPager->aSavepoint[nNew];
+ if( pRel->bTruncateOnRelease && isOpen(pPager->sjfd) ){
+ /* Only truncate if it is an in-memory sub-journal. */
+ if( sqlite3JournalIsInMemory(pPager->sjfd) ){
+ i64 sz = (pPager->pageSize+4)*(i64)pRel->iSubRec;
+ rc = sqlite3OsTruncate(pPager->sjfd, sz);
+ assert( rc==SQLITE_OK );
+ }
+ pPager->nSubRec = pRel->iSubRec;
+ }
+ }
+ /* Else this is a rollback operation, playback the specified savepoint.
+ ** If this is a temp-file, it is possible that the journal file has
+ ** not yet been opened. In this case there have been no changes to
+ ** the database file, so the playback operation can be skipped.
+ */
+ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){
+ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
+ rc = pagerPlaybackSavepoint(pPager, pSavepoint);
+ assert(rc!=SQLITE_DONE);
+ }
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+ /* If the cache has been modified but the savepoint cannot be rolled
+ ** back journal_mode=off, put the pager in the error state. This way,
+ ** if the VFS used by this pager includes ZipVFS, the entire transaction
+ ** can be rolled back at the ZipVFS level. */
+ else if(
+ pPager->journalMode==PAGER_JOURNALMODE_OFF
+ && pPager->eState>=PAGER_WRITER_CACHEMOD
+ ){
+ pPager->errCode = SQLITE_ABORT;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ }
+#endif
+ }
+
+ return rc;
+}
+
+/*
+** Return the full pathname of the database file.
+**
+** Except, if the pager is in-memory only, then return an empty string if
+** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when
+** used to report the filename to the user, for compatibility with legacy
+** behavior. But when the Btree needs to know the filename for matching to
+** shared cache, it uses nullIfMemDb==0 so that in-memory databases can
+** participate in shared-cache.
+**
+** The return value to this routine is always safe to use with
+** sqlite3_uri_parameter() and sqlite3_filename_database() and friends.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){
+ static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+ if( nullIfMemDb && (pPager->memDb || sqlite3IsMemdb(pPager->pVfs)) ){
+ return &zFake[4];
+ }else{
+ return pPager->zFilename;
+ }
+}
+
+/*
+** Return the VFS structure for the pager.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
+ return pPager->pVfs;
+}
+
+/*
+** Return the file handle for the database file associated
+** with the pager. This might return NULL if the file has
+** not yet been opened.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
+ return pPager->fd;
+}
+
+/*
+** Return the file handle for the journal file (if it exists).
+** This will be either the rollback journal or the WAL file.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){
+#if SQLITE_OMIT_WAL
+ return pPager->jfd;
+#else
+ return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd;
+#endif
+}
+
+/*
+** Return the full pathname of the journal file.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
+ return pPager->zJournal;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Move the page pPg to location pgno in the file.
+**
+** There must be no references to the page previously located at
+** pgno (which we call pPgOld) though that page is allowed to be
+** in cache. If the page previously located at pgno is not already
+** in the rollback journal, it is not put there by by this routine.
+**
+** References to the page pPg remain valid. Updating any
+** meta-data associated with pPg (i.e. data stored in the nExtra bytes
+** allocated along with the page) is the responsibility of the caller.
+**
+** A transaction must be active when this routine is called. It used to be
+** required that a statement transaction was not active, but this restriction
+** has been removed (CREATE INDEX needs to move a page when a statement
+** transaction is active).
+**
+** If the fourth argument, isCommit, is non-zero, then this page is being
+** moved as part of a database reorganization just before the transaction
+** is being committed. In this case, it is guaranteed that the database page
+** pPg refers to will not be written to again within this transaction.
+**
+** This function may return SQLITE_NOMEM or an IO error code if an error
+** occurs. Otherwise, it returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
+ PgHdr *pPgOld; /* The page being overwritten. */
+ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */
+ int rc; /* Return code */
+ Pgno origPgno; /* The original page number */
+
+ assert( pPg->nRef>0 );
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* In order to be able to rollback, an in-memory database must journal
+ ** the page we are moving from.
+ */
+ assert( pPager->tempFile || !MEMDB );
+ if( pPager->tempFile ){
+ rc = sqlite3PagerWrite(pPg);
+ if( rc ) return rc;
+ }
+
+ /* If the page being moved is dirty and has not been saved by the latest
+ ** savepoint, then save the current contents of the page into the
+ ** sub-journal now. This is required to handle the following scenario:
+ **
+ ** BEGIN;
+ ** <journal page X, then modify it in memory>
+ ** SAVEPOINT one;
+ ** <Move page X to location Y>
+ ** ROLLBACK TO one;
+ **
+ ** If page X were not written to the sub-journal here, it would not
+ ** be possible to restore its contents when the "ROLLBACK TO one"
+ ** statement were is processed.
+ **
+ ** subjournalPage() may need to allocate space to store pPg->pgno into
+ ** one or more savepoint bitvecs. This is the reason this function
+ ** may return SQLITE_NOMEM.
+ */
+ if( (pPg->flags & PGHDR_DIRTY)!=0
+ && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg))
+ ){
+ return rc;
+ }
+
+ PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n",
+ PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
+ IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
+
+ /* If the journal needs to be sync()ed before page pPg->pgno can
+ ** be written to, store pPg->pgno in local variable needSyncPgno.
+ **
+ ** If the isCommit flag is set, there is no need to remember that
+ ** the journal needs to be sync()ed before database page pPg->pgno
+ ** can be written to. The caller has already promised not to write to it.
+ */
+ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
+ needSyncPgno = pPg->pgno;
+ assert( pPager->journalMode==PAGER_JOURNALMODE_OFF ||
+ pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize );
+ assert( pPg->flags&PGHDR_DIRTY );
+ }
+
+ /* If the cache contains a page with page-number pgno, remove it
+ ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for
+ ** page pgno before the 'move' operation, it needs to be retained
+ ** for the page moved there.
+ */
+ pPg->flags &= ~PGHDR_NEED_SYNC;
+ pPgOld = sqlite3PagerLookup(pPager, pgno);
+ assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB );
+ if( pPgOld ){
+ if( NEVER(pPgOld->nRef>1) ){
+ sqlite3PagerUnrefNotNull(pPgOld);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
+ if( pPager->tempFile ){
+ /* Do not discard pages from an in-memory database since we might
+ ** need to rollback later. Just move the page out of the way. */
+ sqlite3PcacheMove(pPgOld, pPager->dbSize+1);
+ }else{
+ sqlite3PcacheDrop(pPgOld);
+ }
+ }
+
+ origPgno = pPg->pgno;
+ sqlite3PcacheMove(pPg, pgno);
+ sqlite3PcacheMakeDirty(pPg);
+
+ /* For an in-memory database, make sure the original page continues
+ ** to exist, in case the transaction needs to roll back. Use pPgOld
+ ** as the original page since it has already been allocated.
+ */
+ if( pPager->tempFile && pPgOld ){
+ sqlite3PcacheMove(pPgOld, origPgno);
+ sqlite3PagerUnrefNotNull(pPgOld);
+ }
+
+ if( needSyncPgno ){
+ /* If needSyncPgno is non-zero, then the journal file needs to be
+ ** sync()ed before any data is written to database file page needSyncPgno.
+ ** Currently, no such page exists in the page-cache and the
+ ** "is journaled" bitvec flag has been set. This needs to be remedied by
+ ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
+ ** flag.
+ **
+ ** If the attempt to load the page into the page-cache fails, (due
+ ** to a malloc() or IO failure), clear the bit in the pInJournal[]
+ ** array. Otherwise, if the page is loaded and written again in
+ ** this transaction, it may be written to the database file before
+ ** it is synced into the journal file. This way, it may end up in
+ ** the journal file twice, but that is not a problem.
+ */
+ PgHdr *pPgHdr;
+ rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0);
+ if( rc!=SQLITE_OK ){
+ if( needSyncPgno<=pPager->dbOrigSize ){
+ assert( pPager->pTmpSpace!=0 );
+ sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
+ }
+ return rc;
+ }
+ pPgHdr->flags |= PGHDR_NEED_SYNC;
+ sqlite3PcacheMakeDirty(pPgHdr);
+ sqlite3PagerUnrefNotNull(pPgHdr);
+ }
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The page handle passed as the first argument refers to a dirty page
+** with a page number other than iNew. This function changes the page's
+** page number to iNew and sets the value of the PgHdr.flags field to
+** the value passed as the third parameter.
+*/
+SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){
+ assert( pPg->pgno!=iNew );
+ pPg->flags = flags;
+ sqlite3PcacheMove(pPg, iNew);
+}
+
+/*
+** Return a pointer to the data for the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
+ assert( pPg->nRef>0 || pPg->pPager->memDb );
+ return pPg->pData;
+}
+
+/*
+** Return a pointer to the Pager.nExtra bytes of "extra" space
+** allocated along with the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
+ return pPg->pExtra;
+}
+
+/*
+** Get/set the locking-mode for this pager. Parameter eMode must be one
+** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
+** the locking-mode is set to the value specified.
+**
+** The returned value is either PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
+** locking-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
+ assert( eMode==PAGER_LOCKINGMODE_QUERY
+ || eMode==PAGER_LOCKINGMODE_NORMAL
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_QUERY<0 );
+ assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
+ assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) );
+ if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){
+ pPager->exclusiveMode = (u8)eMode;
+ }
+ return (int)pPager->exclusiveMode;
+}
+
+/*
+** Set the journal-mode for this pager. Parameter eMode must be one of:
+**
+** PAGER_JOURNALMODE_DELETE
+** PAGER_JOURNALMODE_TRUNCATE
+** PAGER_JOURNALMODE_PERSIST
+** PAGER_JOURNALMODE_OFF
+** PAGER_JOURNALMODE_MEMORY
+** PAGER_JOURNALMODE_WAL
+**
+** The journalmode is set to the value specified if the change is allowed.
+** The change may be disallowed for the following reasons:
+**
+** * An in-memory database can only have its journal_mode set to _OFF
+** or _MEMORY.
+**
+** * Temporary databases cannot have _WAL journalmode.
+**
+** The returned indicate the current (possibly updated) journal-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
+ u8 eOld = pPager->journalMode; /* Prior journalmode */
+
+ /* The eMode parameter is always valid */
+ assert( eMode==PAGER_JOURNALMODE_DELETE /* 0 */
+ || eMode==PAGER_JOURNALMODE_PERSIST /* 1 */
+ || eMode==PAGER_JOURNALMODE_OFF /* 2 */
+ || eMode==PAGER_JOURNALMODE_TRUNCATE /* 3 */
+ || eMode==PAGER_JOURNALMODE_MEMORY /* 4 */
+ || eMode==PAGER_JOURNALMODE_WAL /* 5 */ );
+
+ /* This routine is only called from the OP_JournalMode opcode, and
+ ** the logic there will never allow a temporary file to be changed
+ ** to WAL mode.
+ */
+ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );
+
+ /* Do allow the journalmode of an in-memory database to be set to
+ ** anything other than MEMORY or OFF
+ */
+ if( MEMDB ){
+ assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF );
+ if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){
+ eMode = eOld;
+ }
+ }
+
+ if( eMode!=eOld ){
+
+ /* Change the journal mode. */
+ assert( pPager->eState!=PAGER_ERROR );
+ pPager->journalMode = (u8)eMode;
+
+ /* When transitioning from TRUNCATE or PERSIST to any other journal
+ ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
+ ** delete the journal file.
+ */
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
+ assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
+ assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
+ assert( (PAGER_JOURNALMODE_WAL & 5)==5 );
+
+ assert( isOpen(pPager->fd) || pPager->exclusiveMode );
+ if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){
+ /* In this case we would like to delete the journal file. If it is
+ ** not possible, then that is not a problem. Deleting the journal file
+ ** here is an optimization only.
+ **
+ ** Before deleting the journal file, obtain a RESERVED lock on the
+ ** database file. This ensures that the journal file is not deleted
+ ** while it is in use by some other client.
+ */
+ sqlite3OsClose(pPager->jfd);
+ if( pPager->eLock>=RESERVED_LOCK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }else{
+ int rc = SQLITE_OK;
+ int state = pPager->eState;
+ assert( state==PAGER_OPEN || state==PAGER_READER );
+ if( state==PAGER_OPEN ){
+ rc = sqlite3PagerSharedLock(pPager);
+ }
+ if( pPager->eState==PAGER_READER ){
+ assert( rc==SQLITE_OK );
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }
+ if( rc==SQLITE_OK && state==PAGER_READER ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }else if( state==PAGER_OPEN ){
+ pager_unlock(pPager);
+ }
+ assert( state==pPager->eState );
+ }
+ }else if( eMode==PAGER_JOURNALMODE_OFF || eMode==PAGER_JOURNALMODE_MEMORY ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+
+ /* Return the new journal mode */
+ return (int)pPager->journalMode;
+}
+
+/*
+** Return the current journal mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){
+ return (int)pPager->journalMode;
+}
+
+/*
+** Return TRUE if the pager is in a state where it is OK to change the
+** journalmode. Journalmode changes can only happen when the database
+** is unmodified.
+*/
+SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
+ if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0;
+ return 1;
+}
+
+/*
+** Get/set the size-limit used for persistent journal files.
+**
+** Setting the size limit to -1 means no limit is enforced.
+** An attempt to set a limit smaller than -1 is a no-op.
+*/
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
+ if( iLimit>=-1 ){
+ pPager->journalSizeLimit = iLimit;
+ sqlite3WalLimit(pPager->pWal, iLimit);
+ }
+ return pPager->journalSizeLimit;
+}
+
+/*
+** Return a pointer to the pPager->pBackup variable. The backup module
+** in backup.c maintains the content of this variable. This module
+** uses it opaquely as an argument to sqlite3BackupRestart() and
+** sqlite3BackupUpdate() only.
+*/
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){
+ return &pPager->pBackup;
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Unless this is an in-memory or temporary database, clear the pager cache.
+*/
+SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){
+ assert( MEMDB==0 || pPager->tempFile );
+ if( pPager->tempFile==0 ) pager_reset(pPager);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** This function is called when the user invokes "PRAGMA wal_checkpoint",
+** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint()
+** or wal_blocking_checkpoint() API functions.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
+*/
+SQLITE_PRIVATE int sqlite3PagerCheckpoint(
+ Pager *pPager, /* Checkpoint on this pager */
+ sqlite3 *db, /* Db handle used to check for interrupts */
+ int eMode, /* Type of checkpoint */
+ int *pnLog, /* OUT: Final number of frames in log */
+ int *pnCkpt /* OUT: Final number of checkpointed frames */
+){
+ int rc = SQLITE_OK;
+ if( pPager->pWal==0 && pPager->journalMode==PAGER_JOURNALMODE_WAL ){
+ /* This only happens when a database file is zero bytes in size opened and
+ ** then "PRAGMA journal_mode=WAL" is run and then sqlite3_wal_checkpoint()
+ ** is invoked without any intervening transactions. We need to start
+ ** a transaction to initialize pWal. The PRAGMA table_list statement is
+ ** used for this since it starts transactions on every database file,
+ ** including all ATTACHed databases. This seems expensive for a single
+ ** sqlite3_wal_checkpoint() call, but it happens very rarely.
+ ** https://sqlite.org/forum/forumpost/fd0f19d229156939
+ */
+ sqlite3_exec(db, "PRAGMA table_list",0,0,0);
+ }
+ if( pPager->pWal ){
+ rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode,
+ (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler),
+ pPager->pBusyHandlerArg,
+ pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
+ pnLog, pnCkpt
+ );
+ }
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){
+ return sqlite3WalCallback(pPager->pWal);
+}
+
+/*
+** Return true if the underlying VFS for the given pager supports the
+** primitives necessary for write-ahead logging.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){
+ const sqlite3_io_methods *pMethods = pPager->fd->pMethods;
+ if( pPager->noLock ) return 0;
+ return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap);
+}
+
+/*
+** Attempt to take an exclusive lock on the database file. If a PENDING lock
+** is obtained instead, immediately release it.
+*/
+static int pagerExclusiveLock(Pager *pPager){
+ int rc; /* Return code */
+ u8 eOrigLock; /* Original lock */
+
+ assert( pPager->eLock>=SHARED_LOCK );
+ eOrigLock = pPager->eLock;
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ /* If the attempt to grab the exclusive lock failed, release the
+ ** pending lock that may have been obtained instead. */
+ pagerUnlockDb(pPager, eOrigLock);
+ }
+
+ return rc;
+}
+
+/*
+** Call sqlite3WalOpen() to open the WAL handle. If the pager is in
+** exclusive-locking mode when this function is called, take an EXCLUSIVE
+** lock on the database file and use heap-memory to store the wal-index
+** in. Otherwise, use the normal shared-memory.
+*/
+static int pagerOpenWal(Pager *pPager){
+ int rc = SQLITE_OK;
+
+ assert( pPager->pWal==0 && pPager->tempFile==0 );
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
+
+ /* If the pager is already in exclusive-mode, the WAL module will use
+ ** heap-memory for the wal-index instead of the VFS shared-memory
+ ** implementation. Take the exclusive lock now, before opening the WAL
+ ** file, to make sure this is safe.
+ */
+ if( pPager->exclusiveMode ){
+ rc = pagerExclusiveLock(pPager);
+ }
+
+ /* Open the connection to the log file. If this operation fails,
+ ** (e.g. due to malloc() failure), return an error code.
+ */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3WalOpen(pPager->pVfs,
+ pPager->fd, pPager->zWal, pPager->exclusiveMode,
+ pPager->journalSizeLimit, &pPager->pWal
+ );
+ }
+ pagerFixMaplimit(pPager);
+
+ return rc;
+}
+
+
+/*
+** The caller must be holding a SHARED lock on the database file to call
+** this function.
+**
+** If the pager passed as the first argument is open on a real database
+** file (not a temp file or an in-memory database), and the WAL file
+** is not already open, make an attempt to open it now. If successful,
+** return SQLITE_OK. If an error occurs or the VFS used by the pager does
+** not support the xShmXXX() methods, return an error code. *pbOpen is
+** not modified in either case.
+**
+** If the pager is open on a temp-file (or in-memory database), or if
+** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK
+** without doing anything.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpenWal(
+ Pager *pPager, /* Pager object */
+ int *pbOpen /* OUT: Set to true if call is a no-op */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pbOpen );
+ assert( pPager->eState==PAGER_READER || !pbOpen );
+ assert( pbOpen==0 || *pbOpen==0 );
+ assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) );
+
+ if( !pPager->tempFile && !pPager->pWal ){
+ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN;
+
+ /* Close any rollback journal previously open */
+ sqlite3OsClose(pPager->jfd);
+
+ rc = pagerOpenWal(pPager);
+ if( rc==SQLITE_OK ){
+ pPager->journalMode = PAGER_JOURNALMODE_WAL;
+ pPager->eState = PAGER_OPEN;
+ }
+ }else{
+ *pbOpen = 1;
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to close the connection to the log file prior
+** to switching from WAL to rollback mode.
+**
+** Before closing the log file, this function attempts to take an
+** EXCLUSIVE lock on the database file. If this cannot be obtained, an
+** error (SQLITE_BUSY) is returned and the log connection is not closed.
+** If successful, the EXCLUSIVE lock is not released before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){
+ int rc = SQLITE_OK;
+
+ assert( pPager->journalMode==PAGER_JOURNALMODE_WAL );
+
+ /* If the log file is not already open, but does exist in the file-system,
+ ** it may need to be checkpointed before the connection can switch to
+ ** rollback mode. Open it now so this can happen.
+ */
+ if( !pPager->pWal ){
+ int logexists = 0;
+ rc = pagerLockDb(pPager, SHARED_LOCK);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsAccess(
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists
+ );
+ }
+ if( rc==SQLITE_OK && logexists ){
+ rc = pagerOpenWal(pPager);
+ }
+ }
+
+ /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on
+ ** the database file, the log and log-summary files will be deleted.
+ */
+ if( rc==SQLITE_OK && pPager->pWal ){
+ rc = pagerExclusiveLock(pPager);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags,
+ pPager->pageSize, (u8*)pPager->pTmpSpace);
+ pPager->pWal = 0;
+ pagerFixMaplimit(pPager);
+ if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ }
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+/*
+** If pager pPager is a wal-mode database not in exclusive locking mode,
+** invoke the sqlite3WalWriteLock() function on the associated Wal object
+** with the same db and bLock parameters as were passed to this function.
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){
+ int rc = SQLITE_OK;
+ if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){
+ rc = sqlite3WalWriteLock(pPager->pWal, bLock);
+ }
+ return rc;
+}
+
+/*
+** Set the database handle used by the wal layer to determine if
+** blocking locks are required.
+*/
+SQLITE_PRIVATE void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){
+ if( pagerUseWal(pPager) ){
+ sqlite3WalDb(pPager->pWal, db);
+ }
+}
+#endif
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** If this is a WAL database, obtain a snapshot handle for the snapshot
+** currently open. Otherwise, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){
+ int rc = SQLITE_ERROR;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot);
+ }
+ return rc;
+}
+
+/*
+** If this is a WAL database, store a pointer to pSnapshot. Next time a
+** read transaction is opened, attempt to read from the snapshot it
+** identifies. If this is not a WAL database, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(
+ Pager *pPager,
+ sqlite3_snapshot *pSnapshot
+){
+ int rc = SQLITE_OK;
+ if( pPager->pWal ){
+ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this
+** is not a WAL database, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager){
+ int rc;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotRecover(pPager->pWal);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** The caller currently has a read transaction open on the database.
+** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise,
+** this function takes a SHARED lock on the CHECKPOINTER slot and then
+** checks if the snapshot passed as the second argument is still
+** available. If so, SQLITE_OK is returned.
+**
+** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
+** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
+** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
+** lock is released before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){
+ int rc;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Release a lock obtained by an earlier successful call to
+** sqlite3PagerSnapshotCheck().
+*/
+SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager){
+ assert( pPager->pWal );
+ sqlite3WalSnapshotUnlock(pPager->pWal);
+}
+
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+#endif /* !SQLITE_OMIT_WAL */
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/*
+** A read-lock must be held on the pager when this function is called. If
+** the pager is in WAL mode and the WAL file currently contains one or more
+** frames, return the size in bytes of the page images stored within the
+** WAL frames. Otherwise, if this is not a WAL database or the WAL file
+** is empty, return 0.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){
+ assert( pPager->eState>=PAGER_READER );
+ return sqlite3WalFramesize(pPager->pWal);
+}
+#endif
+
+#ifdef SQLITE_USE_SEH
+SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager *pPager){
+ return sqlite3WalSystemErrno(pPager->pWal);
+}
+#endif
+
+#endif /* SQLITE_OMIT_DISKIO */
+
+/************** End of pager.c ***********************************************/
+/************** Begin file wal.c *********************************************/
+/*
+** 2010 February 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of a write-ahead log (WAL) used in
+** "journal_mode=WAL" mode.
+**
+** WRITE-AHEAD LOG (WAL) FILE FORMAT
+**
+** A WAL file consists of a header followed by zero or more "frames".
+** Each frame records the revised content of a single page from the
+** database file. All changes to the database are recorded by writing
+** frames into the WAL. Transactions commit when a frame is written that
+** contains a commit marker. A single WAL can and usually does record
+** multiple transactions. Periodically, the content of the WAL is
+** transferred back into the database file in an operation called a
+** "checkpoint".
+**
+** A single WAL file can be used multiple times. In other words, the
+** WAL can fill up with frames and then be checkpointed and then new
+** frames can overwrite the old ones. A WAL always grows from beginning
+** toward the end. Checksums and counters attached to each frame are
+** used to determine which frames within the WAL are valid and which
+** are leftovers from prior checkpoints.
+**
+** The WAL header is 32 bytes in size and consists of the following eight
+** big-endian 32-bit unsigned integer values:
+**
+** 0: Magic number. 0x377f0682 or 0x377f0683
+** 4: File format version. Currently 3007000
+** 8: Database page size. Example: 1024
+** 12: Checkpoint sequence number
+** 16: Salt-1, random integer incremented with each checkpoint
+** 20: Salt-2, a different random integer changing with each ckpt
+** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
+** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
+**
+** Immediately following the wal-header are zero or more frames. Each
+** frame consists of a 24-byte frame-header followed by a <page-size> bytes
+** of page data. The frame-header is six big-endian 32-bit unsigned
+** integer values, as follows:
+**
+** 0: Page number.
+** 4: For commit records, the size of the database image in pages
+** after the commit. For all other records, zero.
+** 8: Salt-1 (copied from the header)
+** 12: Salt-2 (copied from the header)
+** 16: Checksum-1.
+** 20: Checksum-2.
+**
+** A frame is considered valid if and only if the following conditions are
+** true:
+**
+** (1) The salt-1 and salt-2 values in the frame-header match
+** salt values in the wal-header
+**
+** (2) The checksum values in the final 8 bytes of the frame-header
+** exactly match the checksum computed consecutively on the
+** WAL header and the first 8 bytes and the content of all frames
+** up to and including the current frame.
+**
+** The checksum is computed using 32-bit big-endian integers if the
+** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
+** is computed using little-endian if the magic number is 0x377f0682.
+** The checksum values are always stored in the frame header in a
+** big-endian format regardless of which byte order is used to compute
+** the checksum. The checksum is computed by interpreting the input as
+** an even number of unsigned 32-bit integers: x[0] through x[N]. The
+** algorithm used for the checksum is as follows:
+**
+** for i from 0 to n-1 step 2:
+** s0 += x[i] + s1;
+** s1 += x[i+1] + s0;
+** endfor
+**
+** Note that s0 and s1 are both weighted checksums using fibonacci weights
+** in reverse order (the largest fibonacci weight occurs on the first element
+** of the sequence being summed.) The s1 value spans all 32-bit
+** terms of the sequence whereas s0 omits the final term.
+**
+** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
+** WAL is transferred into the database, then the database is VFS.xSync-ed.
+** The VFS.xSync operations serve as write barriers - all writes launched
+** before the xSync must complete before any write that launches after the
+** xSync begins.
+**
+** After each checkpoint, the salt-1 value is incremented and the salt-2
+** value is randomized. This prevents old and new frames in the WAL from
+** being considered valid at the same time and being checkpointing together
+** following a crash.
+**
+** READER ALGORITHM
+**
+** To read a page from the database (call it page number P), a reader
+** first checks the WAL to see if it contains page P. If so, then the
+** last valid instance of page P that is a followed by a commit frame
+** or is a commit frame itself becomes the value read. If the WAL
+** contains no copies of page P that are valid and which are a commit
+** frame or are followed by a commit frame, then page P is read from
+** the database file.
+**
+** To start a read transaction, the reader records the index of the last
+** valid frame in the WAL. The reader uses this recorded "mxFrame" value
+** for all subsequent read operations. New transactions can be appended
+** to the WAL, but as long as the reader uses its original mxFrame value
+** and ignores the newly appended content, it will see a consistent snapshot
+** of the database from a single point in time. This technique allows
+** multiple concurrent readers to view different versions of the database
+** content simultaneously.
+**
+** The reader algorithm in the previous paragraphs works correctly, but
+** because frames for page P can appear anywhere within the WAL, the
+** reader has to scan the entire WAL looking for page P frames. If the
+** WAL is large (multiple megabytes is typical) that scan can be slow,
+** and read performance suffers. To overcome this problem, a separate
+** data structure called the wal-index is maintained to expedite the
+** search for frames of a particular page.
+**
+** WAL-INDEX FORMAT
+**
+** Conceptually, the wal-index is shared memory, though VFS implementations
+** might choose to implement the wal-index using a mmapped file. Because
+** the wal-index is shared memory, SQLite does not support journal_mode=WAL
+** on a network filesystem. All users of the database must be able to
+** share memory.
+**
+** In the default unix and windows implementation, the wal-index is a mmapped
+** file whose name is the database name with a "-shm" suffix added. For that
+** reason, the wal-index is sometimes called the "shm" file.
+**
+** The wal-index is transient. After a crash, the wal-index can (and should
+** be) reconstructed from the original WAL file. In fact, the VFS is required
+** to either truncate or zero the header of the wal-index when the last
+** connection to it closes. Because the wal-index is transient, it can
+** use an architecture-specific format; it does not have to be cross-platform.
+** Hence, unlike the database and WAL file formats which store all values
+** as big endian, the wal-index can store multi-byte values in the native
+** byte order of the host computer.
+**
+** The purpose of the wal-index is to answer this question quickly: Given
+** a page number P and a maximum frame index M, return the index of the
+** last frame in the wal before frame M for page P in the WAL, or return
+** NULL if there are no frames for page P in the WAL prior to M.
+**
+** The wal-index consists of a header region, followed by an one or
+** more index blocks.
+**
+** The wal-index header contains the total number of frames within the WAL
+** in the mxFrame field.
+**
+** Each index block except for the first contains information on
+** HASHTABLE_NPAGE frames. The first index block contains information on
+** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
+** HASHTABLE_NPAGE are selected so that together the wal-index header and
+** first index block are the same size as all other index blocks in the
+** wal-index. The values are:
+**
+** HASHTABLE_NPAGE 4096
+** HASHTABLE_NPAGE_ONE 4062
+**
+** Each index block contains two sections, a page-mapping that contains the
+** database page number associated with each wal frame, and a hash-table
+** that allows readers to query an index block for a specific page number.
+** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
+** for the first index block) 32-bit page numbers. The first entry in the
+** first index-block contains the database page number corresponding to the
+** first frame in the WAL file. The first entry in the second index block
+** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
+** the log, and so on.
+**
+** The last index block in a wal-index usually contains less than the full
+** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
+** depending on the contents of the WAL file. This does not change the
+** allocated size of the page-mapping array - the page-mapping array merely
+** contains unused entries.
+**
+** Even without using the hash table, the last frame for page P
+** can be found by scanning the page-mapping sections of each index block
+** starting with the last index block and moving toward the first, and
+** within each index block, starting at the end and moving toward the
+** beginning. The first entry that equals P corresponds to the frame
+** holding the content for that page.
+**
+** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
+** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
+** hash table for each page number in the mapping section, so the hash
+** table is never more than half full. The expected number of collisions
+** prior to finding a match is 1. Each entry of the hash table is an
+** 1-based index of an entry in the mapping section of the same
+** index block. Let K be the 1-based index of the largest entry in
+** the mapping section. (For index blocks other than the last, K will
+** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
+** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
+** contain a value of 0.
+**
+** To look for page P in the hash table, first compute a hash iKey on
+** P as follows:
+**
+** iKey = (P * 383) % HASHTABLE_NSLOT
+**
+** Then start scanning entries of the hash table, starting with iKey
+** (wrapping around to the beginning when the end of the hash table is
+** reached) until an unused hash slot is found. Let the first unused slot
+** be at index iUnused. (iUnused might be less than iKey if there was
+** wrap-around.) Because the hash table is never more than half full,
+** the search is guaranteed to eventually hit an unused entry. Let
+** iMax be the value between iKey and iUnused, closest to iUnused,
+** where aHash[iMax]==P. If there is no iMax entry (if there exists
+** no hash slot such that aHash[i]==p) then page P is not in the
+** current index block. Otherwise the iMax-th mapping entry of the
+** current index block corresponds to the last entry that references
+** page P.
+**
+** A hash search begins with the last index block and moves toward the
+** first index block, looking for entries corresponding to page P. On
+** average, only two or three slots in each index block need to be
+** examined in order to either find the last entry for page P, or to
+** establish that no such entry exists in the block. Each index block
+** holds over 4000 entries. So two or three index blocks are sufficient
+** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
+** comparisons (on average) suffice to either locate a frame in the
+** WAL or to establish that the frame does not exist in the WAL. This
+** is much faster than scanning the entire 10MB WAL.
+**
+** Note that entries are added in order of increasing K. Hence, one
+** reader might be using some value K0 and a second reader that started
+** at a later time (after additional transactions were added to the WAL
+** and to the wal-index) might be using a different value K1, where K1>K0.
+** Both readers can use the same hash table and mapping section to get
+** the correct result. There may be entries in the hash table with
+** K>K0 but to the first reader, those entries will appear to be unused
+** slots in the hash table and so the first reader will get an answer as
+** if no values greater than K0 had ever been inserted into the hash table
+** in the first place - which is what reader one wants. Meanwhile, the
+** second reader using K1 will see additional values that were inserted
+** later, which is exactly what reader two wants.
+**
+** When a rollback occurs, the value of K is decreased. Hash table entries
+** that correspond to frames greater than the new K value are removed
+** from the hash table at this point.
+*/
+#ifndef SQLITE_OMIT_WAL
+
+/* #include "wal.h" */
+
+/*
+** Trace output macros
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+SQLITE_PRIVATE int sqlite3WalTrace = 0;
+# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
+#else
+# define WALTRACE(X)
+#endif
+
+/*
+** The maximum (and only) versions of the wal and wal-index formats
+** that may be interpreted by this version of SQLite.
+**
+** If a client begins recovering a WAL file and finds that (a) the checksum
+** values in the wal-header are correct and (b) the version field is not
+** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
+**
+** Similarly, if a client successfully reads a wal-index header (i.e. the
+** checksum test is successful) and finds that the version field is not
+** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
+** returns SQLITE_CANTOPEN.
+*/
+#define WAL_MAX_VERSION 3007000
+#define WALINDEX_MAX_VERSION 3007000
+
+/*
+** Index numbers for various locking bytes. WAL_NREADER is the number
+** of available reader locks and should be at least 3. The default
+** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
+**
+** Technically, the various VFSes are free to implement these locks however
+** they see fit. However, compatibility is encouraged so that VFSes can
+** interoperate. The standard implementation used on both unix and windows
+** is for the index number to indicate a byte offset into the
+** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
+** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
+** should be 120) is the location in the shm file for the first locking
+** byte.
+*/
+#define WAL_WRITE_LOCK 0
+#define WAL_ALL_BUT_WRITE 1
+#define WAL_CKPT_LOCK 1
+#define WAL_RECOVER_LOCK 2
+#define WAL_READ_LOCK(I) (3+(I))
+#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
+
+
+/* Object declarations */
+typedef struct WalIndexHdr WalIndexHdr;
+typedef struct WalIterator WalIterator;
+typedef struct WalCkptInfo WalCkptInfo;
+
+
+/*
+** The following object holds a copy of the wal-index header content.
+**
+** The actual header in the wal-index consists of two copies of this
+** object followed by one instance of the WalCkptInfo object.
+** For all versions of SQLite through 3.10.0 and probably beyond,
+** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
+** the total header size is 136 bytes.
+**
+** The szPage value can be any power of 2 between 512 and 32768, inclusive.
+** Or it can be 1 to represent a 65536-byte page. The latter case was
+** added in 3.7.1 when support for 64K pages was added.
+*/
+struct WalIndexHdr {
+ u32 iVersion; /* Wal-index version */
+ u32 unused; /* Unused (padding) field */
+ u32 iChange; /* Counter incremented each transaction */
+ u8 isInit; /* 1 when initialized */
+ u8 bigEndCksum; /* True if checksums in WAL are big-endian */
+ u16 szPage; /* Database page size in bytes. 1==64K */
+ u32 mxFrame; /* Index of last valid frame in the WAL */
+ u32 nPage; /* Size of database in pages */
+ u32 aFrameCksum[2]; /* Checksum of last frame in log */
+ u32 aSalt[2]; /* Two salt values copied from WAL header */
+ u32 aCksum[2]; /* Checksum over all prior fields */
+};
+
+/*
+** A copy of the following object occurs in the wal-index immediately
+** following the second copy of the WalIndexHdr. This object stores
+** information used by checkpoint.
+**
+** nBackfill is the number of frames in the WAL that have been written
+** back into the database. (We call the act of moving content from WAL to
+** database "backfilling".) The nBackfill number is never greater than
+** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
+** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
+** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
+** mxFrame back to zero when the WAL is reset.
+**
+** nBackfillAttempted is the largest value of nBackfill that a checkpoint
+** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
+** the nBackfillAttempted is set before any backfilling is done and the
+** nBackfill is only set after all backfilling completes. So if a checkpoint
+** crashes, nBackfillAttempted might be larger than nBackfill. The
+** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
+**
+** The aLock[] field is a set of bytes used for locking. These bytes should
+** never be read or written.
+**
+** There is one entry in aReadMark[] for each reader lock. If a reader
+** holds read-lock K, then the value in aReadMark[K] is no greater than
+** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
+** for any aReadMark[] means that entry is unused. aReadMark[0] is
+** a special case; its value is never used and it exists as a place-holder
+** to avoid having to offset aReadMark[] indexes by one. Readers holding
+** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
+** directly from the database.
+**
+** The value of aReadMark[K] may only be changed by a thread that
+** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
+** aReadMark[K] cannot changed while there is a reader is using that mark
+** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
+**
+** The checkpointer may only transfer frames from WAL to database where
+** the frame numbers are less than or equal to every aReadMark[] that is
+** in use (that is, every aReadMark[j] for which there is a corresponding
+** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
+** largest value and will increase an unused aReadMark[] to mxFrame if there
+** is not already an aReadMark[] equal to mxFrame. The exception to the
+** previous sentence is when nBackfill equals mxFrame (meaning that everything
+** in the WAL has been backfilled into the database) then new readers
+** will choose aReadMark[0] which has value 0 and hence such reader will
+** get all their all content directly from the database file and ignore
+** the WAL.
+**
+** Writers normally append new frames to the end of the WAL. However,
+** if nBackfill equals mxFrame (meaning that all WAL content has been
+** written back into the database) and if no readers are using the WAL
+** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
+** the writer will first "reset" the WAL back to the beginning and start
+** writing new content beginning at frame 1.
+**
+** We assume that 32-bit loads are atomic and so no locks are needed in
+** order to read from any aReadMark[] entries.
+*/
+struct WalCkptInfo {
+ u32 nBackfill; /* Number of WAL frames backfilled into DB */
+ u32 aReadMark[WAL_NREADER]; /* Reader marks */
+ u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
+ u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
+ u32 notUsed0; /* Available for future enhancements */
+};
+#define READMARK_NOT_USED 0xffffffff
+
+/*
+** This is a schematic view of the complete 136-byte header of the
+** wal-index file (also known as the -shm file):
+**
+** +-----------------------------+
+** 0: | iVersion | \
+** +-----------------------------+ |
+** 4: | (unused padding) | |
+** +-----------------------------+ |
+** 8: | iChange | |
+** +-------+-------+-------------+ |
+** 12: | bInit | bBig | szPage | |
+** +-------+-------+-------------+ |
+** 16: | mxFrame | | First copy of the
+** +-----------------------------+ | WalIndexHdr object
+** 20: | nPage | |
+** +-----------------------------+ |
+** 24: | aFrameCksum | |
+** | | |
+** +-----------------------------+ |
+** 32: | aSalt | |
+** | | |
+** +-----------------------------+ |
+** 40: | aCksum | |
+** | | /
+** +-----------------------------+
+** 48: | iVersion | \
+** +-----------------------------+ |
+** 52: | (unused padding) | |
+** +-----------------------------+ |
+** 56: | iChange | |
+** +-------+-------+-------------+ |
+** 60: | bInit | bBig | szPage | |
+** +-------+-------+-------------+ | Second copy of the
+** 64: | mxFrame | | WalIndexHdr
+** +-----------------------------+ |
+** 68: | nPage | |
+** +-----------------------------+ |
+** 72: | aFrameCksum | |
+** | | |
+** +-----------------------------+ |
+** 80: | aSalt | |
+** | | |
+** +-----------------------------+ |
+** 88: | aCksum | |
+** | | /
+** +-----------------------------+
+** 96: | nBackfill |
+** +-----------------------------+
+** 100: | 5 read marks |
+** | |
+** | |
+** | |
+** | |
+** +-------+-------+------+------+
+** 120: | Write | Ckpt | Rcvr | Rd0 | \
+** +-------+-------+------+------+ ) 8 lock bytes
+** | Read1 | Read2 | Rd3 | Rd4 | /
+** +-------+-------+------+------+
+** 128: | nBackfillAttempted |
+** +-----------------------------+
+** 132: | (unused padding) |
+** +-----------------------------+
+*/
+
+/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
+** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
+** only support mandatory file-locks, we do not read or write data
+** from the region of the file on which locks are applied.
+*/
+#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
+#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
+
+/* Size of header before each frame in wal */
+#define WAL_FRAME_HDRSIZE 24
+
+/* Size of write ahead log header, including checksum. */
+#define WAL_HDRSIZE 32
+
+/* WAL magic value. Either this value, or the same value with the least
+** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
+** big-endian format in the first 4 bytes of a WAL file.
+**
+** If the LSB is set, then the checksums for each frame within the WAL
+** file are calculated by treating all data as an array of 32-bit
+** big-endian words. Otherwise, they are calculated by interpreting
+** all data as 32-bit little-endian words.
+*/
+#define WAL_MAGIC 0x377f0682
+
+/*
+** Return the offset of frame iFrame in the write-ahead log file,
+** assuming a database page size of szPage bytes. The offset returned
+** is to the start of the write-ahead log frame-header.
+*/
+#define walFrameOffset(iFrame, szPage) ( \
+ WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
+)
+
+/*
+** An open write-ahead log file is represented by an instance of the
+** following object.
+*/
+struct Wal {
+ sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
+ sqlite3_file *pDbFd; /* File handle for the database file */
+ sqlite3_file *pWalFd; /* File handle for WAL file */
+ u32 iCallback; /* Value to pass to log callback (or 0) */
+ i64 mxWalSize; /* Truncate WAL to this size upon reset */
+ int nWiData; /* Size of array apWiData */
+ int szFirstBlock; /* Size of first block written to WAL file */
+ volatile u32 **apWiData; /* Pointer to wal-index content in memory */
+ u32 szPage; /* Database page size */
+ i16 readLock; /* Which read lock is being held. -1 for none */
+ u8 syncFlags; /* Flags to use to sync header writes */
+ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
+ u8 writeLock; /* True if in a write transaction */
+ u8 ckptLock; /* True if holding a checkpoint lock */
+ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
+ u8 truncateOnCommit; /* True to truncate WAL file on commit */
+ u8 syncHeader; /* Fsync the WAL header if true */
+ u8 padToSectorBoundary; /* Pad transactions out to the next sector */
+ u8 bShmUnreliable; /* SHM content is read-only and unreliable */
+ WalIndexHdr hdr; /* Wal-index header for current transaction */
+ u32 minFrame; /* Ignore wal frames before this one */
+ u32 iReCksum; /* On commit, recalculate checksums from here */
+ const char *zWalName; /* Name of WAL file */
+ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
+#ifdef SQLITE_USE_SEH
+ u32 lockMask; /* Mask of locks held */
+ void *pFree; /* Pointer to sqlite3_free() if exception thrown */
+ u32 *pWiValue; /* Value to write into apWiData[iWiPg] */
+ int iWiPg; /* Write pWiValue into apWiData[iWiPg] */
+ int iSysErrno; /* System error code following exception */
+#endif
+#ifdef SQLITE_DEBUG
+ int nSehTry; /* Number of nested SEH_TRY{} blocks */
+ u8 lockError; /* True if a locking error has occurred */
+#endif
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
+#endif
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ sqlite3 *db;
+#endif
+};
+
+/*
+** Candidate values for Wal.exclusiveMode.
+*/
+#define WAL_NORMAL_MODE 0
+#define WAL_EXCLUSIVE_MODE 1
+#define WAL_HEAPMEMORY_MODE 2
+
+/*
+** Possible values for WAL.readOnly
+*/
+#define WAL_RDWR 0 /* Normal read/write connection */
+#define WAL_RDONLY 1 /* The WAL file is readonly */
+#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
+
+/*
+** Each page of the wal-index mapping contains a hash-table made up of
+** an array of HASHTABLE_NSLOT elements of the following type.
+*/
+typedef u16 ht_slot;
+
+/*
+** This structure is used to implement an iterator that loops through
+** all frames in the WAL in database page order. Where two or more frames
+** correspond to the same database page, the iterator visits only the
+** frame most recently written to the WAL (in other words, the frame with
+** the largest index).
+**
+** The internals of this structure are only accessed by:
+**
+** walIteratorInit() - Create a new iterator,
+** walIteratorNext() - Step an iterator,
+** walIteratorFree() - Free an iterator.
+**
+** This functionality is used by the checkpoint code (see walCheckpoint()).
+*/
+struct WalIterator {
+ u32 iPrior; /* Last result returned from the iterator */
+ int nSegment; /* Number of entries in aSegment[] */
+ struct WalSegment {
+ int iNext; /* Next slot in aIndex[] not yet returned */
+ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
+ u32 *aPgno; /* Array of page numbers. */
+ int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
+ int iZero; /* Frame number associated with aPgno[0] */
+ } aSegment[1]; /* One for every 32KB page in the wal-index */
+};
+
+/*
+** Define the parameters of the hash tables in the wal-index file. There
+** is a hash-table following every HASHTABLE_NPAGE page numbers in the
+** wal-index.
+**
+** Changing any of these constants will alter the wal-index format and
+** create incompatibilities.
+*/
+#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
+#define HASHTABLE_HASH_1 383 /* Should be prime */
+#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
+
+/*
+** The block of page numbers associated with the first hash-table in a
+** wal-index is smaller than usual. This is so that there is a complete
+** hash-table on each aligned 32KB page of the wal-index.
+*/
+#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
+
+/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
+#define WALINDEX_PGSZ ( \
+ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
+)
+
+/*
+** Structured Exception Handling (SEH) is a Windows-specific technique
+** for catching exceptions raised while accessing memory-mapped files.
+**
+** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and
+** deal with system-level errors that arise during WAL -shm file processing.
+** Without this compile-time option, any system-level faults that appear
+** while accessing the memory-mapped -shm file will cause a process-wide
+** signal to be deliver, which will more than likely cause the entire
+** process to exit.
+*/
+#ifdef SQLITE_USE_SEH
+#include <Windows.h>
+
+/* Beginning of a block of code in which an exception might occur */
+# define SEH_TRY __try { \
+ assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \
+ VVA_ONLY(pWal->nSehTry++);
+
+/* The end of a block of code in which an exception might occur */
+# define SEH_EXCEPT(X) \
+ VVA_ONLY(pWal->nSehTry--); \
+ assert( pWal->nSehTry==0 ); \
+ } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X }
+
+/* Simulate a memory-mapping fault in the -shm file for testing purposes */
+# define SEH_INJECT_FAULT sehInjectFault(pWal)
+
+/*
+** The second argument is the return value of GetExceptionCode() for the
+** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code
+** indicates that the exception may have been caused by accessing the *-shm
+** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise.
+*/
+static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){
+ VVA_ONLY(pWal->nSehTry--);
+ if( eCode==EXCEPTION_IN_PAGE_ERROR ){
+ if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){
+ /* From MSDN: For this type of exception, the first element of the
+ ** ExceptionInformation[] array is a read-write flag - 0 if the exception
+ ** was thrown while reading, 1 if while writing. The second element is
+ ** the virtual address being accessed. The "third array element specifies
+ ** the underlying NTSTATUS code that resulted in the exception". */
+ pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2];
+ }
+ return EXCEPTION_EXECUTE_HANDLER;
+ }
+ return EXCEPTION_CONTINUE_SEARCH;
+}
+
+/*
+** If one is configured, invoke the xTestCallback callback with 650 as
+** the argument. If it returns true, throw the same exception that is
+** thrown by the system if the *-shm file mapping is accessed after it
+** has been invalidated.
+*/
+static void sehInjectFault(Wal *pWal){
+ int res;
+ assert( pWal->nSehTry>0 );
+
+ res = sqlite3FaultSim(650);
+ if( res!=0 ){
+ ULONG_PTR aArg[3];
+ aArg[0] = 0;
+ aArg[1] = 0;
+ aArg[2] = (ULONG_PTR)res;
+ RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg);
+ }
+}
+
+/*
+** There are two ways to use this macro. To set a pointer to be freed
+** if an exception is thrown:
+**
+** SEH_FREE_ON_ERROR(0, pPtr);
+**
+** and to cancel the same:
+**
+** SEH_FREE_ON_ERROR(pPtr, 0);
+**
+** In the first case, there must not already be a pointer registered to
+** be freed. In the second case, pPtr must be the registered pointer.
+*/
+#define SEH_FREE_ON_ERROR(X,Y) \
+ assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y
+
+/*
+** There are two ways to use this macro. To arrange for pWal->apWiData[iPg]
+** to be set to pValue if an exception is thrown:
+**
+** SEH_SET_ON_ERROR(iPg, pValue);
+**
+** and to cancel the same:
+**
+** SEH_SET_ON_ERROR(0, 0);
+*/
+#define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y
+
+#else
+# define SEH_TRY VVA_ONLY(pWal->nSehTry++);
+# define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 );
+# define SEH_INJECT_FAULT assert( pWal->nSehTry>0 );
+# define SEH_FREE_ON_ERROR(X,Y)
+# define SEH_SET_ON_ERROR(X,Y)
+#endif /* ifdef SQLITE_USE_SEH */
+
+
+/*
+** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
+** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
+** numbered from zero.
+**
+** If the wal-index is currently smaller the iPage pages then the size
+** of the wal-index might be increased, but only if it is safe to do
+** so. It is safe to enlarge the wal-index if pWal->writeLock is true
+** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
+**
+** Three possible result scenarios:
+**
+** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page
+** (2) rc>=SQLITE_ERROR and *ppPage==NULL
+** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0
+**
+** Scenario (3) can only occur when pWal->writeLock is false and iPage==0
+*/
+static SQLITE_NOINLINE int walIndexPageRealloc(
+ Wal *pWal, /* The WAL context */
+ int iPage, /* The page we seek */
+ volatile u32 **ppPage /* Write the page pointer here */
+){
+ int rc = SQLITE_OK;
+
+ /* Enlarge the pWal->apWiData[] array if required */
+ if( pWal->nWiData<=iPage ){
+ sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
+ volatile u32 **apNew;
+ apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
+ if( !apNew ){
+ *ppPage = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset((void*)&apNew[pWal->nWiData], 0,
+ sizeof(u32*)*(iPage+1-pWal->nWiData));
+ pWal->apWiData = apNew;
+ pWal->nWiData = iPage+1;
+ }
+
+ /* Request a pointer to the required page from the VFS */
+ assert( pWal->apWiData[iPage]==0 );
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
+ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
+ if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
+ pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
+ );
+ assert( pWal->apWiData[iPage]!=0
+ || rc!=SQLITE_OK
+ || (pWal->writeLock==0 && iPage==0) );
+ testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
+ if( rc==SQLITE_OK ){
+ if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
+ }else if( (rc&0xff)==SQLITE_READONLY ){
+ pWal->readOnly |= WAL_SHM_RDONLY;
+ if( rc==SQLITE_READONLY ){
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ *ppPage = pWal->apWiData[iPage];
+ assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
+ return rc;
+}
+static int walIndexPage(
+ Wal *pWal, /* The WAL context */
+ int iPage, /* The page we seek */
+ volatile u32 **ppPage /* Write the page pointer here */
+){
+ SEH_INJECT_FAULT;
+ if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
+ return walIndexPageRealloc(pWal, iPage, ppPage);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return a pointer to the WalCkptInfo structure in the wal-index.
+*/
+static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+ SEH_INJECT_FAULT;
+ return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
+}
+
+/*
+** Return a pointer to the WalIndexHdr structure in the wal-index.
+*/
+static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+ SEH_INJECT_FAULT;
+ return (volatile WalIndexHdr*)pWal->apWiData[0];
+}
+
+/*
+** The argument to this macro must be of type u32. On a little-endian
+** architecture, it returns the u32 value that results from interpreting
+** the 4 bytes as a big-endian value. On a big-endian architecture, it
+** returns the value that would be produced by interpreting the 4 bytes
+** of the input value as a little-endian integer.
+*/
+#define BYTESWAP32(x) ( \
+ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
+ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
+)
+
+/*
+** Generate or extend an 8 byte checksum based on the data in
+** array aByte[] and the initial values of aIn[0] and aIn[1] (or
+** initial values of 0 and 0 if aIn==NULL).
+**
+** The checksum is written back into aOut[] before returning.
+**
+** nByte must be a positive multiple of 8.
+*/
+static void walChecksumBytes(
+ int nativeCksum, /* True for native byte-order, false for non-native */
+ u8 *a, /* Content to be checksummed */
+ int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
+ const u32 *aIn, /* Initial checksum value input */
+ u32 *aOut /* OUT: Final checksum value output */
+){
+ u32 s1, s2;
+ u32 *aData = (u32 *)a;
+ u32 *aEnd = (u32 *)&a[nByte];
+
+ if( aIn ){
+ s1 = aIn[0];
+ s2 = aIn[1];
+ }else{
+ s1 = s2 = 0;
+ }
+
+ assert( nByte>=8 );
+ assert( (nByte&0x00000007)==0 );
+ assert( nByte<=65536 );
+ assert( nByte%4==0 );
+
+ if( !nativeCksum ){
+ do {
+ s1 += BYTESWAP32(aData[0]) + s2;
+ s2 += BYTESWAP32(aData[1]) + s1;
+ aData += 2;
+ }while( aData<aEnd );
+ }else if( nByte%64==0 ){
+ do {
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ }while( aData<aEnd );
+ }else{
+ do {
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ }while( aData<aEnd );
+ }
+ assert( aData==aEnd );
+
+ aOut[0] = s1;
+ aOut[1] = s2;
+}
+
+/*
+** If there is the possibility of concurrent access to the SHM file
+** from multiple threads and/or processes, then do a memory barrier.
+*/
+static void walShmBarrier(Wal *pWal){
+ if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
+ sqlite3OsShmBarrier(pWal->pDbFd);
+ }
+}
+
+/*
+** Add the SQLITE_NO_TSAN as part of the return-type of a function
+** definition as a hint that the function contains constructs that
+** might give false-positive TSAN warnings.
+**
+** See tag-20200519-1.
+*/
+#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
+# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
+#else
+# define SQLITE_NO_TSAN
+#endif
+
+/*
+** Write the header information in pWal->hdr into the wal-index.
+**
+** The checksum on pWal->hdr is updated before it is written.
+*/
+static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
+ volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
+ const int nCksum = offsetof(WalIndexHdr, aCksum);
+
+ assert( pWal->writeLock );
+ pWal->hdr.isInit = 1;
+ pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
+ walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
+ /* Possible TSAN false-positive. See tag-20200519-1 */
+ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
+ walShmBarrier(pWal);
+ memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
+}
+
+/*
+** This function encodes a single frame header and writes it to a buffer
+** supplied by the caller. A frame-header is made up of a series of
+** 4-byte big-endian integers, as follows:
+**
+** 0: Page number.
+** 4: For commit records, the size of the database image in pages
+** after the commit. For all other records, zero.
+** 8: Salt-1 (copied from the wal-header)
+** 12: Salt-2 (copied from the wal-header)
+** 16: Checksum-1.
+** 20: Checksum-2.
+*/
+static void walEncodeFrame(
+ Wal *pWal, /* The write-ahead log */
+ u32 iPage, /* Database page number for frame */
+ u32 nTruncate, /* New db size (or 0 for non-commit frames) */
+ u8 *aData, /* Pointer to page data */
+ u8 *aFrame /* OUT: Write encoded frame here */
+){
+ int nativeCksum; /* True for native byte-order checksums */
+ u32 *aCksum = pWal->hdr.aFrameCksum;
+ assert( WAL_FRAME_HDRSIZE==24 );
+ sqlite3Put4byte(&aFrame[0], iPage);
+ sqlite3Put4byte(&aFrame[4], nTruncate);
+ if( pWal->iReCksum==0 ){
+ memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
+
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
+
+ sqlite3Put4byte(&aFrame[16], aCksum[0]);
+ sqlite3Put4byte(&aFrame[20], aCksum[1]);
+ }else{
+ memset(&aFrame[8], 0, 16);
+ }
+}
+
+/*
+** Check to see if the frame with header in aFrame[] and content
+** in aData[] is valid. If it is a valid frame, fill *piPage and
+** *pnTruncate and return true. Return if the frame is not valid.
+*/
+static int walDecodeFrame(
+ Wal *pWal, /* The write-ahead log */
+ u32 *piPage, /* OUT: Database page number for frame */
+ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
+ u8 *aData, /* Pointer to page data (for checksum) */
+ u8 *aFrame /* Frame data */
+){
+ int nativeCksum; /* True for native byte-order checksums */
+ u32 *aCksum = pWal->hdr.aFrameCksum;
+ u32 pgno; /* Page number of the frame */
+ assert( WAL_FRAME_HDRSIZE==24 );
+
+ /* A frame is only valid if the salt values in the frame-header
+ ** match the salt values in the wal-header.
+ */
+ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
+ return 0;
+ }
+
+ /* A frame is only valid if the page number is greater than zero.
+ */
+ pgno = sqlite3Get4byte(&aFrame[0]);
+ if( pgno==0 ){
+ return 0;
+ }
+
+ /* A frame is only valid if a checksum of the WAL header,
+ ** all prior frames, the first 16 bytes of this frame-header,
+ ** and the frame-data matches the checksum in the last 8
+ ** bytes of this frame-header.
+ */
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
+ if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
+ || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
+ ){
+ /* Checksum failed. */
+ return 0;
+ }
+
+ /* If we reach this point, the frame is valid. Return the page number
+ ** and the new database size.
+ */
+ *piPage = pgno;
+ *pnTruncate = sqlite3Get4byte(&aFrame[4]);
+ return 1;
+}
+
+
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Names of locks. This routine is used to provide debugging output and is not
+** a part of an ordinary build.
+*/
+static const char *walLockName(int lockIdx){
+ if( lockIdx==WAL_WRITE_LOCK ){
+ return "WRITE-LOCK";
+ }else if( lockIdx==WAL_CKPT_LOCK ){
+ return "CKPT-LOCK";
+ }else if( lockIdx==WAL_RECOVER_LOCK ){
+ return "RECOVER-LOCK";
+ }else{
+ static char zName[15];
+ sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
+ lockIdx-WAL_READ_LOCK(0));
+ return zName;
+ }
+}
+#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
+
+
+/*
+** Set or release locks on the WAL. Locks are either shared or exclusive.
+** A lock cannot be moved directly between shared and exclusive - it must go
+** through the unlocked state first.
+**
+** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
+*/
+static int walLockShared(Wal *pWal, int lockIdx){
+ int rc;
+ if( pWal->exclusiveMode ) return SQLITE_OK;
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
+ SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
+ WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
+ walLockName(lockIdx), rc ? "failed" : "ok"));
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
+#ifdef SQLITE_USE_SEH
+ if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx);
+#endif
+ return rc;
+}
+static void walUnlockShared(Wal *pWal, int lockIdx){
+ if( pWal->exclusiveMode ) return;
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
+#ifdef SQLITE_USE_SEH
+ pWal->lockMask &= ~(1 << lockIdx);
+#endif
+ WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
+}
+static int walLockExclusive(Wal *pWal, int lockIdx, int n){
+ int rc;
+ if( pWal->exclusiveMode ) return SQLITE_OK;
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
+ SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
+ WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
+ walLockName(lockIdx), n, rc ? "failed" : "ok"));
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
+#ifdef SQLITE_USE_SEH
+ if( rc==SQLITE_OK ){
+ pWal->lockMask |= (((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx));
+ }
+#endif
+ return rc;
+}
+static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
+ if( pWal->exclusiveMode ) return;
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
+#ifdef SQLITE_USE_SEH
+ pWal->lockMask &= ~(((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx));
+#endif
+ WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
+ walLockName(lockIdx), n));
+}
+
+/*
+** Compute a hash on a page number. The resulting hash value must land
+** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
+** the hash to the next value in the event of a collision.
+*/
+static int walHash(u32 iPage){
+ assert( iPage>0 );
+ assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
+ return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
+}
+static int walNextHash(int iPriorHash){
+ return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
+}
+
+/*
+** An instance of the WalHashLoc object is used to describe the location
+** of a page hash table in the wal-index. This becomes the return value
+** from walHashGet().
+*/
+typedef struct WalHashLoc WalHashLoc;
+struct WalHashLoc {
+ volatile ht_slot *aHash; /* Start of the wal-index hash table */
+ volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
+ u32 iZero; /* One less than the frame number of first indexed*/
+};
+
+/*
+** Return pointers to the hash table and page number array stored on
+** page iHash of the wal-index. The wal-index is broken into 32KB pages
+** numbered starting from 0.
+**
+** Set output variable pLoc->aHash to point to the start of the hash table
+** in the wal-index file. Set pLoc->iZero to one less than the frame
+** number of the first frame indexed by this hash table. If a
+** slot in the hash table is set to N, it refers to frame number
+** (pLoc->iZero+N) in the log.
+**
+** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the
+** first frame indexed by the hash table, frame (pLoc->iZero).
+*/
+static int walHashGet(
+ Wal *pWal, /* WAL handle */
+ int iHash, /* Find the iHash'th table */
+ WalHashLoc *pLoc /* OUT: Hash table location */
+){
+ int rc; /* Return code */
+
+ rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
+ assert( rc==SQLITE_OK || iHash>0 );
+
+ if( pLoc->aPgno ){
+ pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
+ if( iHash==0 ){
+ pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
+ pLoc->iZero = 0;
+ }else{
+ pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
+ }
+ }else if( NEVER(rc==SQLITE_OK) ){
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Return the number of the wal-index page that contains the hash-table
+** and page-number array that contain entries corresponding to WAL frame
+** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
+** are numbered starting from 0.
+*/
+static int walFramePage(u32 iFrame){
+ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
+ assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
+ && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
+ && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
+ && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
+ && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
+ );
+ assert( iHash>=0 );
+ return iHash;
+}
+
+/*
+** Return the page number associated with frame iFrame in this WAL.
+*/
+static u32 walFramePgno(Wal *pWal, u32 iFrame){
+ int iHash = walFramePage(iFrame);
+ SEH_INJECT_FAULT;
+ if( iHash==0 ){
+ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
+ }
+ return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
+}
+
+/*
+** Remove entries from the hash table that point to WAL slots greater
+** than pWal->hdr.mxFrame.
+**
+** This function is called whenever pWal->hdr.mxFrame is decreased due
+** to a rollback or savepoint.
+**
+** At most only the hash table containing pWal->hdr.mxFrame needs to be
+** updated. Any later hash tables will be automatically cleared when
+** pWal->hdr.mxFrame advances to the point where those hash tables are
+** actually needed.
+*/
+static void walCleanupHash(Wal *pWal){
+ WalHashLoc sLoc; /* Hash table location */
+ int iLimit = 0; /* Zero values greater than this */
+ int nByte; /* Number of bytes to zero in aPgno[] */
+ int i; /* Used to iterate through aHash[] */
+
+ assert( pWal->writeLock );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
+
+ if( pWal->hdr.mxFrame==0 ) return;
+
+ /* Obtain pointers to the hash-table and page-number array containing
+ ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
+ ** that the page said hash-table and array reside on is already mapped.(1)
+ */
+ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
+ assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
+ i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
+ if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
+
+ /* Zero all hash-table entries that correspond to frame numbers greater
+ ** than pWal->hdr.mxFrame.
+ */
+ iLimit = pWal->hdr.mxFrame - sLoc.iZero;
+ assert( iLimit>0 );
+ for(i=0; i<HASHTABLE_NSLOT; i++){
+ if( sLoc.aHash[i]>iLimit ){
+ sLoc.aHash[i] = 0;
+ }
+ }
+
+ /* Zero the entries in the aPgno array that correspond to frames with
+ ** frame numbers greater than pWal->hdr.mxFrame.
+ */
+ nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]);
+ assert( nByte>=0 );
+ memset((void *)&sLoc.aPgno[iLimit], 0, nByte);
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* Verify that the every entry in the mapping region is still reachable
+ ** via the hash table even after the cleanup.
+ */
+ if( iLimit ){
+ int j; /* Loop counter */
+ int iKey; /* Hash key */
+ for(j=0; j<iLimit; j++){
+ for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
+ if( sLoc.aHash[iKey]==j+1 ) break;
+ }
+ assert( sLoc.aHash[iKey]==j+1 );
+ }
+ }
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
+}
+
+
+/*
+** Set an entry in the wal-index that will map database page number
+** pPage into WAL frame iFrame.
+*/
+static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
+ int rc; /* Return code */
+ WalHashLoc sLoc; /* Wal-index hash table location */
+
+ rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
+
+ /* Assuming the wal-index file was successfully mapped, populate the
+ ** page number array and hash table entry.
+ */
+ if( rc==SQLITE_OK ){
+ int iKey; /* Hash table key */
+ int idx; /* Value to write to hash-table slot */
+ int nCollide; /* Number of hash collisions */
+
+ idx = iFrame - sLoc.iZero;
+ assert( idx <= HASHTABLE_NSLOT/2 + 1 );
+
+ /* If this is the first entry to be added to this hash-table, zero the
+ ** entire hash table and aPgno[] array before proceeding.
+ */
+ if( idx==1 ){
+ int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno);
+ assert( nByte>=0 );
+ memset((void*)sLoc.aPgno, 0, nByte);
+ }
+
+ /* If the entry in aPgno[] is already set, then the previous writer
+ ** must have exited unexpectedly in the middle of a transaction (after
+ ** writing one or more dirty pages to the WAL to free up memory).
+ ** Remove the remnants of that writers uncommitted transaction from
+ ** the hash-table before writing any new entries.
+ */
+ if( sLoc.aPgno[idx-1] ){
+ walCleanupHash(pWal);
+ assert( !sLoc.aPgno[idx-1] );
+ }
+
+ /* Write the aPgno[] array entry and the hash-table slot. */
+ nCollide = idx;
+ for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
+ if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
+ }
+ sLoc.aPgno[idx-1] = iPage;
+ AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* Verify that the number of entries in the hash table exactly equals
+ ** the number of entries in the mapping region.
+ */
+ {
+ int i; /* Loop counter */
+ int nEntry = 0; /* Number of entries in the hash table */
+ for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
+ assert( nEntry==idx );
+ }
+
+ /* Verify that the every entry in the mapping region is reachable
+ ** via the hash table. This turns out to be a really, really expensive
+ ** thing to check, so only do this occasionally - not on every
+ ** iteration.
+ */
+ if( (idx&0x3ff)==0 ){
+ int i; /* Loop counter */
+ for(i=0; i<idx; i++){
+ for(iKey=walHash(sLoc.aPgno[i]);
+ sLoc.aHash[iKey];
+ iKey=walNextHash(iKey)){
+ if( sLoc.aHash[iKey]==i+1 ) break;
+ }
+ assert( sLoc.aHash[iKey]==i+1 );
+ }
+ }
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
+ }
+
+ return rc;
+}
+
+
+/*
+** Recover the wal-index by reading the write-ahead log file.
+**
+** This routine first tries to establish an exclusive lock on the
+** wal-index to prevent other threads/processes from doing anything
+** with the WAL or wal-index while recovery is running. The
+** WAL_RECOVER_LOCK is also held so that other threads will know
+** that this thread is running recovery. If unable to establish
+** the necessary locks, this routine returns SQLITE_BUSY.
+*/
+static int walIndexRecover(Wal *pWal){
+ int rc; /* Return Code */
+ i64 nSize; /* Size of log file */
+ u32 aFrameCksum[2] = {0, 0};
+ int iLock; /* Lock offset to lock for checkpoint */
+
+ /* Obtain an exclusive lock on all byte in the locking range not already
+ ** locked by the caller. The caller is guaranteed to have locked the
+ ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
+ ** If successful, the same bytes that are locked here are unlocked before
+ ** this function returns.
+ */
+ assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
+ assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
+ assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
+ assert( pWal->writeLock );
+ iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
+ rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
+ if( rc ){
+ return rc;
+ }
+
+ WALTRACE(("WAL%p: recovery begin...\n", pWal));
+
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
+
+ rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
+ if( rc!=SQLITE_OK ){
+ goto recovery_error;
+ }
+
+ if( nSize>WAL_HDRSIZE ){
+ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
+ u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
+ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
+ int szFrame; /* Number of bytes in buffer aFrame[] */
+ u8 *aData; /* Pointer to data part of aFrame buffer */
+ int szPage; /* Page size according to the log */
+ u32 magic; /* Magic value read from WAL header */
+ u32 version; /* Magic value read from WAL header */
+ int isValid; /* True if this frame is valid */
+ u32 iPg; /* Current 32KB wal-index page */
+ u32 iLastFrame; /* Last frame in wal, based on nSize alone */
+
+ /* Read in the WAL header. */
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
+ if( rc!=SQLITE_OK ){
+ goto recovery_error;
+ }
+
+ /* If the database page size is not a power of two, or is greater than
+ ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
+ ** data. Similarly, if the 'magic' value is invalid, ignore the whole
+ ** WAL file.
+ */
+ magic = sqlite3Get4byte(&aBuf[0]);
+ szPage = sqlite3Get4byte(&aBuf[8]);
+ if( (magic&0xFFFFFFFE)!=WAL_MAGIC
+ || szPage&(szPage-1)
+ || szPage>SQLITE_MAX_PAGE_SIZE
+ || szPage<512
+ ){
+ goto finished;
+ }
+ pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
+ pWal->szPage = szPage;
+ pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
+ memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
+
+ /* Verify that the WAL header checksum is correct */
+ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
+ aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
+ );
+ if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
+ || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
+ ){
+ goto finished;
+ }
+
+ /* Verify that the version number on the WAL format is one that
+ ** are able to understand */
+ version = sqlite3Get4byte(&aBuf[4]);
+ if( version!=WAL_MAX_VERSION ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ goto finished;
+ }
+
+ /* Malloc a buffer to read frames into. */
+ szFrame = szPage + WAL_FRAME_HDRSIZE;
+ aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
+ SEH_FREE_ON_ERROR(0, aFrame);
+ if( !aFrame ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto recovery_error;
+ }
+ aData = &aFrame[WAL_FRAME_HDRSIZE];
+ aPrivate = (u32*)&aData[szPage];
+
+ /* Read all frames from the log file. */
+ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
+ for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
+ u32 *aShare;
+ u32 iFrame; /* Index of last frame read */
+ u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
+ u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
+ u32 nHdr, nHdr32;
+ rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
+ assert( aShare!=0 || rc!=SQLITE_OK );
+ if( aShare==0 ) break;
+ SEH_SET_ON_ERROR(iPg, aShare);
+ pWal->apWiData[iPg] = aPrivate;
+
+ for(iFrame=iFirst; iFrame<=iLast; iFrame++){
+ i64 iOffset = walFrameOffset(iFrame, szPage);
+ u32 pgno; /* Database page number for frame */
+ u32 nTruncate; /* dbsize field from frame header */
+
+ /* Read and decode the next log frame. */
+ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
+ if( !isValid ) break;
+ rc = walIndexAppend(pWal, iFrame, pgno);
+ if( NEVER(rc!=SQLITE_OK) ) break;
+
+ /* If nTruncate is non-zero, this is a commit record. */
+ if( nTruncate ){
+ pWal->hdr.mxFrame = iFrame;
+ pWal->hdr.nPage = nTruncate;
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
+ aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
+ }
+ }
+ pWal->apWiData[iPg] = aShare;
+ SEH_SET_ON_ERROR(0,0);
+ nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
+ nHdr32 = nHdr / sizeof(u32);
+#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
+ /* Memcpy() should work fine here, on all reasonable implementations.
+ ** Technically, memcpy() might change the destination to some
+ ** intermediate value before setting to the final value, and that might
+ ** cause a concurrent reader to malfunction. Memcpy() is allowed to
+ ** do that, according to the spec, but no memcpy() implementation that
+ ** we know of actually does that, which is why we say that memcpy()
+ ** is safe for this. Memcpy() is certainly a lot faster.
+ */
+ memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
+#else
+ /* In the event that some platform is found for which memcpy()
+ ** changes the destination to some intermediate value before
+ ** setting the final value, this alternative copy routine is
+ ** provided.
+ */
+ {
+ int i;
+ for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
+ if( aShare[i]!=aPrivate[i] ){
+ /* Atomic memory operations are not required here because if
+ ** the value needs to be changed, that means it is not being
+ ** accessed concurrently. */
+ aShare[i] = aPrivate[i];
+ }
+ }
+ }
+#endif
+ SEH_INJECT_FAULT;
+ if( iFrame<=iLast ) break;
+ }
+
+ SEH_FREE_ON_ERROR(aFrame, 0);
+ sqlite3_free(aFrame);
+ }
+
+finished:
+ if( rc==SQLITE_OK ){
+ volatile WalCkptInfo *pInfo;
+ int i;
+ pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
+ pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
+ walIndexWriteHdr(pWal);
+
+ /* Reset the checkpoint-header. This is safe because this thread is
+ ** currently holding locks that exclude all other writers and
+ ** checkpointers. Then set the values of read-mark slots 1 through N.
+ */
+ pInfo = walCkptInfo(pWal);
+ pInfo->nBackfill = 0;
+ pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
+ pInfo->aReadMark[0] = 0;
+ for(i=1; i<WAL_NREADER; i++){
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ if( i==1 && pWal->hdr.mxFrame ){
+ pInfo->aReadMark[i] = pWal->hdr.mxFrame;
+ }else{
+ pInfo->aReadMark[i] = READMARK_NOT_USED;
+ }
+ SEH_INJECT_FAULT;
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ }else if( rc!=SQLITE_BUSY ){
+ goto recovery_error;
+ }
+ }
+
+ /* If more than one frame was recovered from the log file, report an
+ ** event via sqlite3_log(). This is to help with identifying performance
+ ** problems caused by applications routinely shutting down without
+ ** checkpointing the log file.
+ */
+ if( pWal->hdr.nPage ){
+ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
+ "recovered %d frames from WAL file %s",
+ pWal->hdr.mxFrame, pWal->zWalName
+ );
+ }
+ }
+
+recovery_error:
+ WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
+ walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
+ return rc;
+}
+
+/*
+** Close an open wal-index.
+*/
+static void walIndexClose(Wal *pWal, int isDelete){
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
+ int i;
+ for(i=0; i<pWal->nWiData; i++){
+ sqlite3_free((void *)pWal->apWiData[i]);
+ pWal->apWiData[i] = 0;
+ }
+ }
+ if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
+ sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
+ }
+}
+
+/*
+** Open a connection to the WAL file zWalName. The database file must
+** already be opened on connection pDbFd. The buffer that zWalName points
+** to must remain valid for the lifetime of the returned Wal* handle.
+**
+** A SHARED lock should be held on the database file when this function
+** is called. The purpose of this SHARED lock is to prevent any other
+** client from unlinking the WAL or wal-index file. If another process
+** were to do this just after this client opened one of these files, the
+** system would be badly broken.
+**
+** If the log file is successfully opened, SQLITE_OK is returned and
+** *ppWal is set to point to a new WAL handle. If an error occurs,
+** an SQLite error code is returned and *ppWal is left unmodified.
+*/
+SQLITE_PRIVATE int sqlite3WalOpen(
+ sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
+ sqlite3_file *pDbFd, /* The open database file */
+ const char *zWalName, /* Name of the WAL file */
+ int bNoShm, /* True to run in heap-memory mode */
+ i64 mxWalSize, /* Truncate WAL to this size on reset */
+ Wal **ppWal /* OUT: Allocated Wal handle */
+){
+ int rc; /* Return Code */
+ Wal *pRet; /* Object to allocate and return */
+ int flags; /* Flags passed to OsOpen() */
+
+ assert( zWalName && zWalName[0] );
+ assert( pDbFd );
+
+ /* Verify the values of various constants. Any changes to the values
+ ** of these constants would result in an incompatible on-disk format
+ ** for the -shm file. Any change that causes one of these asserts to
+ ** fail is a backward compatibility problem, even if the change otherwise
+ ** works.
+ **
+ ** This table also serves as a helpful cross-reference when trying to
+ ** interpret hex dumps of the -shm file.
+ */
+ assert( 48 == sizeof(WalIndexHdr) );
+ assert( 40 == sizeof(WalCkptInfo) );
+ assert( 120 == WALINDEX_LOCK_OFFSET );
+ assert( 136 == WALINDEX_HDR_SIZE );
+ assert( 4096 == HASHTABLE_NPAGE );
+ assert( 4062 == HASHTABLE_NPAGE_ONE );
+ assert( 8192 == HASHTABLE_NSLOT );
+ assert( 383 == HASHTABLE_HASH_1 );
+ assert( 32768 == WALINDEX_PGSZ );
+ assert( 8 == SQLITE_SHM_NLOCK );
+ assert( 5 == WAL_NREADER );
+ assert( 24 == WAL_FRAME_HDRSIZE );
+ assert( 32 == WAL_HDRSIZE );
+ assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK );
+ assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK );
+ assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
+ assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
+ assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
+ assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
+ assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
+ assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
+
+ /* In the amalgamation, the os_unix.c and os_win.c source files come before
+ ** this source file. Verify that the #defines of the locking byte offsets
+ ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
+ ** For that matter, if the lock offset ever changes from its initial design
+ ** value of 120, we need to know that so there is an assert() to check it.
+ */
+#ifdef WIN_SHM_BASE
+ assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
+#endif
+#ifdef UNIX_SHM_BASE
+ assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
+#endif
+
+
+ /* Allocate an instance of struct Wal to return. */
+ *ppWal = 0;
+ pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
+ if( !pRet ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ pRet->pVfs = pVfs;
+ pRet->pWalFd = (sqlite3_file *)&pRet[1];
+ pRet->pDbFd = pDbFd;
+ pRet->readLock = -1;
+ pRet->mxWalSize = mxWalSize;
+ pRet->zWalName = zWalName;
+ pRet->syncHeader = 1;
+ pRet->padToSectorBoundary = 1;
+ pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
+
+ /* Open file handle on the write-ahead log file. */
+ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
+ rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
+ if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
+ pRet->readOnly = WAL_RDONLY;
+ }
+
+ if( rc!=SQLITE_OK ){
+ walIndexClose(pRet, 0);
+ sqlite3OsClose(pRet->pWalFd);
+ sqlite3_free(pRet);
+ }else{
+ int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
+ if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
+ if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
+ pRet->padToSectorBoundary = 0;
+ }
+ *ppWal = pRet;
+ WALTRACE(("WAL%d: opened\n", pRet));
+ }
+ return rc;
+}
+
+/*
+** Change the size to which the WAL file is truncated on each reset.
+*/
+SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){
+ if( pWal ) pWal->mxWalSize = iLimit;
+}
+
+/*
+** Find the smallest page number out of all pages held in the WAL that
+** has not been returned by any prior invocation of this method on the
+** same WalIterator object. Write into *piFrame the frame index where
+** that page was last written into the WAL. Write into *piPage the page
+** number.
+**
+** Return 0 on success. If there are no pages in the WAL with a page
+** number larger than *piPage, then return 1.
+*/
+static int walIteratorNext(
+ WalIterator *p, /* Iterator */
+ u32 *piPage, /* OUT: The page number of the next page */
+ u32 *piFrame /* OUT: Wal frame index of next page */
+){
+ u32 iMin; /* Result pgno must be greater than iMin */
+ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
+ int i; /* For looping through segments */
+
+ iMin = p->iPrior;
+ assert( iMin<0xffffffff );
+ for(i=p->nSegment-1; i>=0; i--){
+ struct WalSegment *pSegment = &p->aSegment[i];
+ while( pSegment->iNext<pSegment->nEntry ){
+ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
+ if( iPg>iMin ){
+ if( iPg<iRet ){
+ iRet = iPg;
+ *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
+ }
+ break;
+ }
+ pSegment->iNext++;
+ }
+ }
+
+ *piPage = p->iPrior = iRet;
+ return (iRet==0xFFFFFFFF);
+}
+
+/*
+** This function merges two sorted lists into a single sorted list.
+**
+** aLeft[] and aRight[] are arrays of indices. The sort key is
+** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
+** is guaranteed for all J<K:
+**
+** aContent[aLeft[J]] < aContent[aLeft[K]]
+** aContent[aRight[J]] < aContent[aRight[K]]
+**
+** This routine overwrites aRight[] with a new (probably longer) sequence
+** of indices such that the aRight[] contains every index that appears in
+** either aLeft[] or the old aRight[] and such that the second condition
+** above is still met.
+**
+** The aContent[aLeft[X]] values will be unique for all X. And the
+** aContent[aRight[X]] values will be unique too. But there might be
+** one or more combinations of X and Y such that
+**
+** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
+**
+** When that happens, omit the aLeft[X] and use the aRight[Y] index.
+*/
+static void walMerge(
+ const u32 *aContent, /* Pages in wal - keys for the sort */
+ ht_slot *aLeft, /* IN: Left hand input list */
+ int nLeft, /* IN: Elements in array *paLeft */
+ ht_slot **paRight, /* IN/OUT: Right hand input list */
+ int *pnRight, /* IN/OUT: Elements in *paRight */
+ ht_slot *aTmp /* Temporary buffer */
+){
+ int iLeft = 0; /* Current index in aLeft */
+ int iRight = 0; /* Current index in aRight */
+ int iOut = 0; /* Current index in output buffer */
+ int nRight = *pnRight;
+ ht_slot *aRight = *paRight;
+
+ assert( nLeft>0 && nRight>0 );
+ while( iRight<nRight || iLeft<nLeft ){
+ ht_slot logpage;
+ Pgno dbpage;
+
+ if( (iLeft<nLeft)
+ && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
+ ){
+ logpage = aLeft[iLeft++];
+ }else{
+ logpage = aRight[iRight++];
+ }
+ dbpage = aContent[logpage];
+
+ aTmp[iOut++] = logpage;
+ if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
+
+ assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
+ assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
+ }
+
+ *paRight = aLeft;
+ *pnRight = iOut;
+ memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
+}
+
+/*
+** Sort the elements in list aList using aContent[] as the sort key.
+** Remove elements with duplicate keys, preferring to keep the
+** larger aList[] values.
+**
+** The aList[] entries are indices into aContent[]. The values in
+** aList[] are to be sorted so that for all J<K:
+**
+** aContent[aList[J]] < aContent[aList[K]]
+**
+** For any X and Y such that
+**
+** aContent[aList[X]] == aContent[aList[Y]]
+**
+** Keep the larger of the two values aList[X] and aList[Y] and discard
+** the smaller.
+*/
+static void walMergesort(
+ const u32 *aContent, /* Pages in wal */
+ ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
+ ht_slot *aList, /* IN/OUT: List to sort */
+ int *pnList /* IN/OUT: Number of elements in aList[] */
+){
+ struct Sublist {
+ int nList; /* Number of elements in aList */
+ ht_slot *aList; /* Pointer to sub-list content */
+ };
+
+ const int nList = *pnList; /* Size of input list */
+ int nMerge = 0; /* Number of elements in list aMerge */
+ ht_slot *aMerge = 0; /* List to be merged */
+ int iList; /* Index into input list */
+ u32 iSub = 0; /* Index into aSub array */
+ struct Sublist aSub[13]; /* Array of sub-lists */
+
+ memset(aSub, 0, sizeof(aSub));
+ assert( nList<=HASHTABLE_NPAGE && nList>0 );
+ assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
+
+ for(iList=0; iList<nList; iList++){
+ nMerge = 1;
+ aMerge = &aList[iList];
+ for(iSub=0; iList & (1<<iSub); iSub++){
+ struct Sublist *p;
+ assert( iSub<ArraySize(aSub) );
+ p = &aSub[iSub];
+ assert( p->aList && p->nList<=(1<<iSub) );
+ assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
+ }
+ aSub[iSub].aList = aMerge;
+ aSub[iSub].nList = nMerge;
+ }
+
+ for(iSub++; iSub<ArraySize(aSub); iSub++){
+ if( nList & (1<<iSub) ){
+ struct Sublist *p;
+ assert( iSub<ArraySize(aSub) );
+ p = &aSub[iSub];
+ assert( p->nList<=(1<<iSub) );
+ assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
+ }
+ }
+ assert( aMerge==aList );
+ *pnList = nMerge;
+
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=1; i<*pnList; i++){
+ assert( aContent[aList[i]] > aContent[aList[i-1]] );
+ }
+ }
+#endif
+}
+
+/*
+** Free an iterator allocated by walIteratorInit().
+*/
+static void walIteratorFree(WalIterator *p){
+ sqlite3_free(p);
+}
+
+/*
+** Construct a WalInterator object that can be used to loop over all
+** pages in the WAL following frame nBackfill in ascending order. Frames
+** nBackfill or earlier may be included - excluding them is an optimization
+** only. The caller must hold the checkpoint lock.
+**
+** On success, make *pp point to the newly allocated WalInterator object
+** return SQLITE_OK. Otherwise, return an error code. If this routine
+** returns an error, the value of *pp is undefined.
+**
+** The calling routine should invoke walIteratorFree() to destroy the
+** WalIterator object when it has finished with it.
+*/
+static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
+ WalIterator *p; /* Return value */
+ int nSegment; /* Number of segments to merge */
+ u32 iLast; /* Last frame in log */
+ sqlite3_int64 nByte; /* Number of bytes to allocate */
+ int i; /* Iterator variable */
+ ht_slot *aTmp; /* Temp space used by merge-sort */
+ int rc = SQLITE_OK; /* Return Code */
+
+ /* This routine only runs while holding the checkpoint lock. And
+ ** it only runs if there is actually content in the log (mxFrame>0).
+ */
+ assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
+ iLast = pWal->hdr.mxFrame;
+
+ /* Allocate space for the WalIterator object. */
+ nSegment = walFramePage(iLast) + 1;
+ nByte = sizeof(WalIterator)
+ + (nSegment-1)*sizeof(struct WalSegment)
+ + iLast*sizeof(ht_slot);
+ p = (WalIterator *)sqlite3_malloc64(nByte
+ + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
+ );
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(p, 0, nByte);
+ p->nSegment = nSegment;
+ aTmp = (ht_slot*)&(((u8*)p)[nByte]);
+ SEH_FREE_ON_ERROR(0, p);
+ for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
+ WalHashLoc sLoc;
+
+ rc = walHashGet(pWal, i, &sLoc);
+ if( rc==SQLITE_OK ){
+ int j; /* Counter variable */
+ int nEntry; /* Number of entries in this segment */
+ ht_slot *aIndex; /* Sorted index for this segment */
+
+ if( (i+1)==nSegment ){
+ nEntry = (int)(iLast - sLoc.iZero);
+ }else{
+ nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
+ }
+ aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
+ sLoc.iZero++;
+
+ for(j=0; j<nEntry; j++){
+ aIndex[j] = (ht_slot)j;
+ }
+ walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
+ p->aSegment[i].iZero = sLoc.iZero;
+ p->aSegment[i].nEntry = nEntry;
+ p->aSegment[i].aIndex = aIndex;
+ p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ SEH_FREE_ON_ERROR(p, 0);
+ walIteratorFree(p);
+ p = 0;
+ }
+ *pp = p;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+/*
+** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
+** they are supported by the VFS, and (b) the database handle is configured
+** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
+** or 0 otherwise.
+*/
+static int walEnableBlocking(Wal *pWal){
+ int res = 0;
+ if( pWal->db ){
+ int tmout = pWal->db->busyTimeout;
+ if( tmout ){
+ int rc;
+ rc = sqlite3OsFileControl(
+ pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
+ );
+ res = (rc==SQLITE_OK);
+ }
+ }
+ return res;
+}
+
+/*
+** Disable blocking locks.
+*/
+static void walDisableBlocking(Wal *pWal){
+ int tmout = 0;
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
+}
+
+/*
+** If parameter bLock is true, attempt to enable blocking locks, take
+** the WRITER lock, and then disable blocking locks. If blocking locks
+** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
+** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
+** an error if blocking locks can not be enabled.
+**
+** If the bLock parameter is false and the WRITER lock is held, release it.
+*/
+SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock){
+ int rc = SQLITE_OK;
+ assert( pWal->readLock<0 || bLock==0 );
+ if( bLock ){
+ assert( pWal->db );
+ if( walEnableBlocking(pWal) ){
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ pWal->writeLock = 1;
+ }
+ walDisableBlocking(pWal);
+ }
+ }else if( pWal->writeLock ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ }
+ return rc;
+}
+
+/*
+** Set the database handle used to determine if blocking locks are required.
+*/
+SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db){
+ pWal->db = db;
+}
+
+/*
+** Take an exclusive WRITE lock. Blocking if so configured.
+*/
+static int walLockWriter(Wal *pWal){
+ int rc;
+ walEnableBlocking(pWal);
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ walDisableBlocking(pWal);
+ return rc;
+}
+#else
+# define walEnableBlocking(x) 0
+# define walDisableBlocking(x)
+# define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
+# define sqlite3WalDb(pWal, db)
+#endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
+
+
+/*
+** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
+** n. If the attempt fails and parameter xBusy is not NULL, then it is a
+** busy-handler function. Invoke it and retry the lock until either the
+** lock is successfully obtained or the busy-handler returns 0.
+*/
+static int walBusyLock(
+ Wal *pWal, /* WAL connection */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int lockIdx, /* Offset of first byte to lock */
+ int n /* Number of bytes to lock */
+){
+ int rc;
+ do {
+ rc = walLockExclusive(pWal, lockIdx, n);
+ }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ if( rc==SQLITE_BUSY_TIMEOUT ){
+ walDisableBlocking(pWal);
+ rc = SQLITE_BUSY;
+ }
+#endif
+ return rc;
+}
+
+/*
+** The cache of the wal-index header must be valid to call this function.
+** Return the page-size in bytes used by the database.
+*/
+static int walPagesize(Wal *pWal){
+ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+}
+
+/*
+** The following is guaranteed when this function is called:
+**
+** a) the WRITER lock is held,
+** b) the entire log file has been checkpointed, and
+** c) any existing readers are reading exclusively from the database
+** file - there are no readers that may attempt to read a frame from
+** the log file.
+**
+** This function updates the shared-memory structures so that the next
+** client to write to the database (which may be this one) does so by
+** writing frames into the start of the log file.
+**
+** The value of parameter salt1 is used as the aSalt[1] value in the
+** new wal-index header. It should be passed a pseudo-random value (i.e.
+** one obtained from sqlite3_randomness()).
+*/
+static void walRestartHdr(Wal *pWal, u32 salt1){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ int i; /* Loop counter */
+ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
+ pWal->nCkpt++;
+ pWal->hdr.mxFrame = 0;
+ sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
+ memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
+ walIndexWriteHdr(pWal);
+ AtomicStore(&pInfo->nBackfill, 0);
+ pInfo->nBackfillAttempted = 0;
+ pInfo->aReadMark[1] = 0;
+ for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
+ assert( pInfo->aReadMark[0]==0 );
+}
+
+/*
+** Copy as much content as we can from the WAL back into the database file
+** in response to an sqlite3_wal_checkpoint() request or the equivalent.
+**
+** The amount of information copies from WAL to database might be limited
+** by active readers. This routine will never overwrite a database page
+** that a concurrent reader might be using.
+**
+** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
+** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
+** checkpoints are always run by a background thread or background
+** process, foreground threads will never block on a lengthy fsync call.
+**
+** Fsync is called on the WAL before writing content out of the WAL and
+** into the database. This ensures that if the new content is persistent
+** in the WAL and can be recovered following a power-loss or hard reset.
+**
+** Fsync is also called on the database file if (and only if) the entire
+** WAL content is copied into the database file. This second fsync makes
+** it safe to delete the WAL since the new content will persist in the
+** database file.
+**
+** This routine uses and updates the nBackfill field of the wal-index header.
+** This is the only routine that will increase the value of nBackfill.
+** (A WAL reset or recovery will revert nBackfill to zero, but not increase
+** its value.)
+**
+** The caller must be holding sufficient locks to ensure that no other
+** checkpoint is running (in any other thread or process) at the same
+** time.
+*/
+static int walCheckpoint(
+ Wal *pWal, /* Wal connection */
+ sqlite3 *db, /* Check for interrupts on this handle */
+ int eMode, /* One of PASSIVE, FULL or RESTART */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags for OsSync() (or 0) */
+ u8 *zBuf /* Temporary buffer to use */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int szPage; /* Database page-size */
+ WalIterator *pIter = 0; /* Wal iterator context */
+ u32 iDbpage = 0; /* Next database page to write */
+ u32 iFrame = 0; /* Wal frame containing data for iDbpage */
+ u32 mxSafeFrame; /* Max frame that can be backfilled */
+ u32 mxPage; /* Max database page to write */
+ int i; /* Loop counter */
+ volatile WalCkptInfo *pInfo; /* The checkpoint status information */
+
+ szPage = walPagesize(pWal);
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ pInfo = walCkptInfo(pWal);
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){
+
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
+
+ /* Compute in mxSafeFrame the index of the last frame of the WAL that is
+ ** safe to write into the database. Frames beyond mxSafeFrame might
+ ** overwrite database pages that are in use by active readers and thus
+ ** cannot be backfilled from the WAL.
+ */
+ mxSafeFrame = pWal->hdr.mxFrame;
+ mxPage = pWal->hdr.nPage;
+ for(i=1; i<WAL_NREADER; i++){
+ u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT;
+ if( mxSafeFrame>y ){
+ assert( y<=pWal->hdr.mxFrame );
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
+ AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT;
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ }else if( rc==SQLITE_BUSY ){
+ mxSafeFrame = y;
+ xBusy = 0;
+ }else{
+ goto walcheckpoint_out;
+ }
+ }
+ }
+
+ /* Allocate the iterator */
+ if( pInfo->nBackfill<mxSafeFrame ){
+ rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
+ assert( rc==SQLITE_OK || pIter==0 );
+ }
+
+ if( pIter
+ && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
+ ){
+ u32 nBackfill = pInfo->nBackfill;
+ pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT;
+
+ /* Sync the WAL to disk */
+ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
+
+ /* If the database may grow as a result of this checkpoint, hint
+ ** about the eventual size of the db file to the VFS layer.
+ */
+ if( rc==SQLITE_OK ){
+ i64 nReq = ((i64)mxPage * szPage);
+ i64 nSize; /* Current size of database file */
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
+ rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
+ if( rc==SQLITE_OK && nSize<nReq ){
+ if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
+ /* If the size of the final database is larger than the current
+ ** database plus the amount of data in the wal file, plus the
+ ** maximum size of the pending-byte page (65536 bytes), then
+ ** must be corruption somewhere. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
+ }
+ }
+
+ }
+
+ /* Iterate through the contents of the WAL, copying data to the db file */
+ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
+ i64 iOffset;
+ assert( walFramePgno(pWal, iFrame)==iDbpage );
+ SEH_INJECT_FAULT;
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
+ break;
+ }
+ if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
+ continue;
+ }
+ iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
+ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ iOffset = (iDbpage-1)*(i64)szPage;
+ testcase( IS_BIG_INT(iOffset) );
+ rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ }
+ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
+
+ /* If work was actually accomplished... */
+ if( rc==SQLITE_OK ){
+ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
+ i64 szDb = pWal->hdr.nPage*(i64)szPage;
+ testcase( IS_BIG_INT(szDb) );
+ rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
+ }
+ }
+ if( rc==SQLITE_OK ){
+ AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT;
+ }
+ }
+
+ /* Release the reader lock held while backfilling */
+ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
+ }
+
+ if( rc==SQLITE_BUSY ){
+ /* Reset the return code so as not to report a checkpoint failure
+ ** just because there are active readers. */
+ rc = SQLITE_OK;
+ }
+ }
+
+ /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
+ ** entire wal file has been copied into the database file, then block
+ ** until all readers have finished using the wal file. This ensures that
+ ** the next process to write to the database restarts the wal file.
+ */
+ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
+ assert( pWal->writeLock );
+ SEH_INJECT_FAULT;
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){
+ rc = SQLITE_BUSY;
+ }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
+ u32 salt1;
+ sqlite3_randomness(4, &salt1);
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame );
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
+ if( rc==SQLITE_OK ){
+ if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
+ /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
+ ** SQLITE_CHECKPOINT_RESTART with the addition that it also
+ ** truncates the log file to zero bytes just prior to a
+ ** successful return.
+ **
+ ** In theory, it might be safe to do this without updating the
+ ** wal-index header in shared memory, as all subsequent reader or
+ ** writer clients should see that the entire log file has been
+ ** checkpointed and behave accordingly. This seems unsafe though,
+ ** as it would leave the system in a state where the contents of
+ ** the wal-index header do not match the contents of the
+ ** file-system. To avoid this, update the wal-index header to
+ ** indicate that the log file contains zero valid frames. */
+ walRestartHdr(pWal, salt1);
+ rc = sqlite3OsTruncate(pWal->pWalFd, 0);
+ }
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }
+ }
+ }
+
+ walcheckpoint_out:
+ SEH_FREE_ON_ERROR(pIter, 0);
+ walIteratorFree(pIter);
+ return rc;
+}
+
+/*
+** If the WAL file is currently larger than nMax bytes in size, truncate
+** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
+*/
+static void walLimitSize(Wal *pWal, i64 nMax){
+ i64 sz;
+ int rx;
+ sqlite3BeginBenignMalloc();
+ rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
+ if( rx==SQLITE_OK && (sz > nMax ) ){
+ rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
+ }
+ sqlite3EndBenignMalloc();
+ if( rx ){
+ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
+ }
+}
+
+#ifdef SQLITE_USE_SEH
+/*
+** This is the "standard" exception handler used in a few places to handle
+** an exception thrown by reading from the *-shm mapping after it has become
+** invalid in SQLITE_USE_SEH builds. It is used as follows:
+**
+** SEH_TRY { ... }
+** SEH_EXCEPT( rc = walHandleException(pWal); )
+**
+** This function does three things:
+**
+** 1) Determines the locks that should be held, based on the contents of
+** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other
+** held locks are assumed to be transient locks that would have been
+** released had the exception not been thrown and are dropped.
+**
+** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free().
+**
+** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL
+**
+** 4) Returns SQLITE_IOERR.
+*/
+static int walHandleException(Wal *pWal){
+ if( pWal->exclusiveMode==0 ){
+ static const int S = 1;
+ static const int E = (1<<SQLITE_SHM_NLOCK);
+ int ii;
+ u32 mUnlock = pWal->lockMask & ~(
+ (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock)))
+ | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0)
+ | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0)
+ );
+ for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){
+ if( (S<<ii) & mUnlock ) walUnlockShared(pWal, ii);
+ if( (E<<ii) & mUnlock ) walUnlockExclusive(pWal, ii, 1);
+ }
+ }
+ sqlite3_free(pWal->pFree);
+ pWal->pFree = 0;
+ if( pWal->pWiValue ){
+ pWal->apWiData[pWal->iWiPg] = pWal->pWiValue;
+ pWal->pWiValue = 0;
+ }
+ return SQLITE_IOERR_IN_PAGE;
+}
+
+/*
+** Assert that the Wal.lockMask mask, which indicates the locks held
+** by the connenction, is consistent with the Wal.readLock, Wal.writeLock
+** and Wal.ckptLock variables. To be used as:
+**
+** assert( walAssertLockmask(pWal) );
+*/
+static int walAssertLockmask(Wal *pWal){
+ if( pWal->exclusiveMode==0 ){
+ static const int S = 1;
+ static const int E = (1<<SQLITE_SHM_NLOCK);
+ u32 mExpect = (
+ (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock)))
+ | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0)
+ | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0)
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0)
+#endif
+ );
+ assert( mExpect==pWal->lockMask );
+ }
+ return 1;
+}
+
+/*
+** Return and zero the "system error" field set when an
+** EXCEPTION_IN_PAGE_ERROR exception is caught.
+*/
+SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal *pWal){
+ int iRet = 0;
+ if( pWal ){
+ iRet = pWal->iSysErrno;
+ pWal->iSysErrno = 0;
+ }
+ return iRet;
+}
+
+#else
+# define walAssertLockmask(x) 1
+#endif /* ifdef SQLITE_USE_SEH */
+
+/*
+** Close a connection to a log file.
+*/
+SQLITE_PRIVATE int sqlite3WalClose(
+ Wal *pWal, /* Wal to close */
+ sqlite3 *db, /* For interrupt flag */
+ int sync_flags, /* Flags to pass to OsSync() (or 0) */
+ int nBuf,
+ u8 *zBuf /* Buffer of at least nBuf bytes */
+){
+ int rc = SQLITE_OK;
+ if( pWal ){
+ int isDelete = 0; /* True to unlink wal and wal-index files */
+
+ assert( walAssertLockmask(pWal) );
+
+ /* If an EXCLUSIVE lock can be obtained on the database file (using the
+ ** ordinary, rollback-mode locking methods, this guarantees that the
+ ** connection associated with this log file is the only connection to
+ ** the database. In this case checkpoint the database and unlink both
+ ** the wal and wal-index files.
+ **
+ ** The EXCLUSIVE lock is not released before returning.
+ */
+ if( zBuf!=0
+ && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
+ ){
+ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ }
+ rc = sqlite3WalCheckpoint(pWal, db,
+ SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
+ );
+ if( rc==SQLITE_OK ){
+ int bPersist = -1;
+ sqlite3OsFileControlHint(
+ pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
+ );
+ if( bPersist!=1 ){
+ /* Try to delete the WAL file if the checkpoint completed and
+ ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal
+ ** mode (!bPersist) */
+ isDelete = 1;
+ }else if( pWal->mxWalSize>=0 ){
+ /* Try to truncate the WAL file to zero bytes if the checkpoint
+ ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
+ ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
+ ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
+ ** to zero bytes as truncating to the journal_size_limit might
+ ** leave a corrupt WAL file on disk. */
+ walLimitSize(pWal, 0);
+ }
+ }
+ }
+
+ walIndexClose(pWal, isDelete);
+ sqlite3OsClose(pWal->pWalFd);
+ if( isDelete ){
+ sqlite3BeginBenignMalloc();
+ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
+ sqlite3EndBenignMalloc();
+ }
+ WALTRACE(("WAL%p: closed\n", pWal));
+ sqlite3_free((void *)pWal->apWiData);
+ sqlite3_free(pWal);
+ }
+ return rc;
+}
+
+/*
+** Try to read the wal-index header. Return 0 on success and 1 if
+** there is a problem.
+**
+** The wal-index is in shared memory. Another thread or process might
+** be writing the header at the same time this procedure is trying to
+** read it, which might result in inconsistency. A dirty read is detected
+** by verifying that both copies of the header are the same and also by
+** a checksum on the header.
+**
+** If and only if the read is consistent and the header is different from
+** pWal->hdr, then pWal->hdr is updated to the content of the new header
+** and *pChanged is set to 1.
+**
+** If the checksum cannot be verified return non-zero. If the header
+** is read successfully and the checksum verified, return zero.
+*/
+static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
+ u32 aCksum[2]; /* Checksum on the header content */
+ WalIndexHdr h1, h2; /* Two copies of the header content */
+ WalIndexHdr volatile *aHdr; /* Header in shared memory */
+
+ /* The first page of the wal-index must be mapped at this point. */
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+
+ /* Read the header. This might happen concurrently with a write to the
+ ** same area of shared memory on a different CPU in a SMP,
+ ** meaning it is possible that an inconsistent snapshot is read
+ ** from the file. If this happens, return non-zero.
+ **
+ ** tag-20200519-1:
+ ** There are two copies of the header at the beginning of the wal-index.
+ ** When reading, read [0] first then [1]. Writes are in the reverse order.
+ ** Memory barriers are used to prevent the compiler or the hardware from
+ ** reordering the reads and writes. TSAN and similar tools can sometimes
+ ** give false-positive warnings about these accesses because the tools do not
+ ** account for the double-read and the memory barrier. The use of mutexes
+ ** here would be problematic as the memory being accessed is potentially
+ ** shared among multiple processes and not all mutex implementations work
+ ** reliably in that environment.
+ */
+ aHdr = walIndexHdr(pWal);
+ memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
+ walShmBarrier(pWal);
+ memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
+
+ if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
+ return 1; /* Dirty read */
+ }
+ if( h1.isInit==0 ){
+ return 1; /* Malformed header - probably all zeros */
+ }
+ walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
+ if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
+ return 1; /* Checksum does not match */
+ }
+
+ if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
+ *pChanged = 1;
+ memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
+ pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+ testcase( pWal->szPage<=32768 );
+ testcase( pWal->szPage>=65536 );
+ }
+
+ /* The header was successfully read. Return zero. */
+ return 0;
+}
+
+/*
+** This is the value that walTryBeginRead returns when it needs to
+** be retried.
+*/
+#define WAL_RETRY (-1)
+
+/*
+** Read the wal-index header from the wal-index and into pWal->hdr.
+** If the wal-header appears to be corrupt, try to reconstruct the
+** wal-index from the WAL before returning.
+**
+** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
+** changed by this operation. If pWal->hdr is unchanged, set *pChanged
+** to 0.
+**
+** If the wal-index header is successfully read, return SQLITE_OK.
+** Otherwise an SQLite error code.
+*/
+static int walIndexReadHdr(Wal *pWal, int *pChanged){
+ int rc; /* Return code */
+ int badHdr; /* True if a header read failed */
+ volatile u32 *page0; /* Chunk of wal-index containing header */
+
+ /* Ensure that page 0 of the wal-index (the page that contains the
+ ** wal-index header) is mapped. Return early if an error occurs here.
+ */
+ assert( pChanged );
+ rc = walIndexPage(pWal, 0, &page0);
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
+ if( rc==SQLITE_READONLY_CANTINIT ){
+ /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
+ ** was openable but is not writable, and this thread is unable to
+ ** confirm that another write-capable connection has the shared-memory
+ ** open, and hence the content of the shared-memory is unreliable,
+ ** since the shared-memory might be inconsistent with the WAL file
+ ** and there is no writer on hand to fix it. */
+ assert( page0==0 );
+ assert( pWal->writeLock==0 );
+ assert( pWal->readOnly & WAL_SHM_RDONLY );
+ pWal->bShmUnreliable = 1;
+ pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
+ *pChanged = 1;
+ }else{
+ return rc; /* Any other non-OK return is just an error */
+ }
+ }else{
+ /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
+ ** is zero, which prevents the SHM from growing */
+ testcase( page0!=0 );
+ }
+ assert( page0!=0 || pWal->writeLock==0 );
+
+ /* If the first page of the wal-index has been mapped, try to read the
+ ** wal-index header immediately, without holding any lock. This usually
+ ** works, but may fail if the wal-index header is corrupt or currently
+ ** being modified by another thread or process.
+ */
+ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
+
+ /* If the first attempt failed, it might have been due to a race
+ ** with a writer. So get a WRITE lock and try again.
+ */
+ if( badHdr ){
+ if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
+ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
+ walUnlockShared(pWal, WAL_WRITE_LOCK);
+ rc = SQLITE_READONLY_RECOVERY;
+ }
+ }else{
+ int bWriteLock = pWal->writeLock;
+ if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
+ pWal->writeLock = 1;
+ if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
+ badHdr = walIndexTryHdr(pWal, pChanged);
+ if( badHdr ){
+ /* If the wal-index header is still malformed even while holding
+ ** a WRITE lock, it can only mean that the header is corrupted and
+ ** needs to be reconstructed. So run recovery to do exactly that.
+ */
+ rc = walIndexRecover(pWal);
+ *pChanged = 1;
+ }
+ }
+ if( bWriteLock==0 ){
+ pWal->writeLock = 0;
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ }
+ }
+ }
+ }
+
+ /* If the header is read successfully, check the version number to make
+ ** sure the wal-index was not constructed with some future format that
+ ** this version of SQLite cannot understand.
+ */
+ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ }
+ if( pWal->bShmUnreliable ){
+ if( rc!=SQLITE_OK ){
+ walIndexClose(pWal, 0);
+ pWal->bShmUnreliable = 0;
+ assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
+ /* walIndexRecover() might have returned SHORT_READ if a concurrent
+ ** writer truncated the WAL out from under it. If that happens, it
+ ** indicates that a writer has fixed the SHM file for us, so retry */
+ if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
+ }
+ pWal->exclusiveMode = WAL_NORMAL_MODE;
+ }
+
+ return rc;
+}
+
+/*
+** Open a transaction in a connection where the shared-memory is read-only
+** and where we cannot verify that there is a separate write-capable connection
+** on hand to keep the shared-memory up-to-date with the WAL file.
+**
+** This can happen, for example, when the shared-memory is implemented by
+** memory-mapping a *-shm file, where a prior writer has shut down and
+** left the *-shm file on disk, and now the present connection is trying
+** to use that database but lacks write permission on the *-shm file.
+** Other scenarios are also possible, depending on the VFS implementation.
+**
+** Precondition:
+**
+** The *-wal file has been read and an appropriate wal-index has been
+** constructed in pWal->apWiData[] using heap memory instead of shared
+** memory.
+**
+** If this function returns SQLITE_OK, then the read transaction has
+** been successfully opened. In this case output variable (*pChanged)
+** is set to true before returning if the caller should discard the
+** contents of the page cache before proceeding. Or, if it returns
+** WAL_RETRY, then the heap memory wal-index has been discarded and
+** the caller should retry opening the read transaction from the
+** beginning (including attempting to map the *-shm file).
+**
+** If an error occurs, an SQLite error code is returned.
+*/
+static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
+ i64 szWal; /* Size of wal file on disk in bytes */
+ i64 iOffset; /* Current offset when reading wal file */
+ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
+ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
+ int szFrame; /* Number of bytes in buffer aFrame[] */
+ u8 *aData; /* Pointer to data part of aFrame buffer */
+ volatile void *pDummy; /* Dummy argument for xShmMap */
+ int rc; /* Return code */
+ u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
+
+ assert( pWal->bShmUnreliable );
+ assert( pWal->readOnly & WAL_SHM_RDONLY );
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+
+ /* Take WAL_READ_LOCK(0). This has the effect of preventing any
+ ** writers from running a checkpoint, but does not stop them
+ ** from running recovery. */
+ rc = walLockShared(pWal, WAL_READ_LOCK(0));
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
+ goto begin_unreliable_shm_out;
+ }
+ pWal->readLock = 0;
+
+ /* Check to see if a separate writer has attached to the shared-memory area,
+ ** thus making the shared-memory "reliable" again. Do this by invoking
+ ** the xShmMap() routine of the VFS and looking to see if the return
+ ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
+ **
+ ** If the shared-memory is now "reliable" return WAL_RETRY, which will
+ ** cause the heap-memory WAL-index to be discarded and the actual
+ ** shared memory to be used in its place.
+ **
+ ** This step is important because, even though this connection is holding
+ ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
+ ** have already checkpointed the WAL file and, while the current
+ ** is active, wrap the WAL and start overwriting frames that this
+ ** process wants to use.
+ **
+ ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
+ ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
+ ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
+ ** even if some external agent does a "chmod" to make the shared-memory
+ ** writable by us, until sqlite3OsShmUnmap() has been called.
+ ** This is a requirement on the VFS implementation.
+ */
+ rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
+ assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
+ if( rc!=SQLITE_READONLY_CANTINIT ){
+ rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
+ goto begin_unreliable_shm_out;
+ }
+
+ /* We reach this point only if the real shared-memory is still unreliable.
+ ** Assume the in-memory WAL-index substitute is correct and load it
+ ** into pWal->hdr.
+ */
+ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
+
+ /* Make sure some writer hasn't come in and changed the WAL file out
+ ** from under us, then disconnected, while we were not looking.
+ */
+ rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
+ if( rc!=SQLITE_OK ){
+ goto begin_unreliable_shm_out;
+ }
+ if( szWal<WAL_HDRSIZE ){
+ /* If the wal file is too small to contain a wal-header and the
+ ** wal-index header has mxFrame==0, then it must be safe to proceed
+ ** reading the database file only. However, the page cache cannot
+ ** be trusted, as a read/write connection may have connected, written
+ ** the db, run a checkpoint, truncated the wal file and disconnected
+ ** since this client's last read transaction. */
+ *pChanged = 1;
+ rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
+ goto begin_unreliable_shm_out;
+ }
+
+ /* Check the salt keys at the start of the wal file still match. */
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
+ if( rc!=SQLITE_OK ){
+ goto begin_unreliable_shm_out;
+ }
+ if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
+ /* Some writer has wrapped the WAL file while we were not looking.
+ ** Return WAL_RETRY which will cause the in-memory WAL-index to be
+ ** rebuilt. */
+ rc = WAL_RETRY;
+ goto begin_unreliable_shm_out;
+ }
+
+ /* Allocate a buffer to read frames into */
+ assert( (pWal->szPage & (pWal->szPage-1))==0 );
+ assert( pWal->szPage>=512 && pWal->szPage<=65536 );
+ szFrame = pWal->szPage + WAL_FRAME_HDRSIZE;
+ aFrame = (u8 *)sqlite3_malloc64(szFrame);
+ if( aFrame==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto begin_unreliable_shm_out;
+ }
+ aData = &aFrame[WAL_FRAME_HDRSIZE];
+
+ /* Check to see if a complete transaction has been appended to the
+ ** wal file since the heap-memory wal-index was created. If so, the
+ ** heap-memory wal-index is discarded and WAL_RETRY returned to
+ ** the caller. */
+ aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
+ aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
+ for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage);
+ iOffset+szFrame<=szWal;
+ iOffset+=szFrame
+ ){
+ u32 pgno; /* Database page number for frame */
+ u32 nTruncate; /* dbsize field from frame header */
+
+ /* Read and decode the next log frame. */
+ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
+
+ /* If nTruncate is non-zero, then a complete transaction has been
+ ** appended to this wal file. Set rc to WAL_RETRY and break out of
+ ** the loop. */
+ if( nTruncate ){
+ rc = WAL_RETRY;
+ break;
+ }
+ }
+ pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
+ pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
+
+ begin_unreliable_shm_out:
+ sqlite3_free(aFrame);
+ if( rc!=SQLITE_OK ){
+ int i;
+ for(i=0; i<pWal->nWiData; i++){
+ sqlite3_free((void*)pWal->apWiData[i]);
+ pWal->apWiData[i] = 0;
+ }
+ pWal->bShmUnreliable = 0;
+ sqlite3WalEndReadTransaction(pWal);
+ *pChanged = 1;
+ }
+ return rc;
+}
+
+/*
+** Attempt to start a read transaction. This might fail due to a race or
+** other transient condition. When that happens, it returns WAL_RETRY to
+** indicate to the caller that it is safe to retry immediately.
+**
+** On success return SQLITE_OK. On a permanent failure (such an
+** I/O error or an SQLITE_BUSY because another process is running
+** recovery) return a positive error code.
+**
+** The useWal parameter is true to force the use of the WAL and disable
+** the case where the WAL is bypassed because it has been completely
+** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
+** to make a copy of the wal-index header into pWal->hdr. If the
+** wal-index header has changed, *pChanged is set to 1 (as an indication
+** to the caller that the local page cache is obsolete and needs to be
+** flushed.) When useWal==1, the wal-index header is assumed to already
+** be loaded and the pChanged parameter is unused.
+**
+** The caller must set the cnt parameter to the number of prior calls to
+** this routine during the current read attempt that returned WAL_RETRY.
+** This routine will start taking more aggressive measures to clear the
+** race conditions after multiple WAL_RETRY returns, and after an excessive
+** number of errors will ultimately return SQLITE_PROTOCOL. The
+** SQLITE_PROTOCOL return indicates that some other process has gone rogue
+** and is not honoring the locking protocol. There is a vanishingly small
+** chance that SQLITE_PROTOCOL could be returned because of a run of really
+** bad luck when there is lots of contention for the wal-index, but that
+** possibility is so small that it can be safely neglected, we believe.
+**
+** On success, this routine obtains a read lock on
+** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
+** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
+** that means the Wal does not hold any read lock. The reader must not
+** access any database page that is modified by a WAL frame up to and
+** including frame number aReadMark[pWal->readLock]. The reader will
+** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
+** Or if pWal->readLock==0, then the reader will ignore the WAL
+** completely and get all content directly from the database file.
+** If the useWal parameter is 1 then the WAL will never be ignored and
+** this routine will always set pWal->readLock>0 on success.
+** When the read transaction is completed, the caller must release the
+** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
+**
+** This routine uses the nBackfill and aReadMark[] fields of the header
+** to select a particular WAL_READ_LOCK() that strives to let the
+** checkpoint process do as much work as possible. This routine might
+** update values of the aReadMark[] array in the header, but if it does
+** so it takes care to hold an exclusive lock on the corresponding
+** WAL_READ_LOCK() while changing values.
+*/
+static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
+ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
+ u32 mxReadMark; /* Largest aReadMark[] value */
+ int mxI; /* Index of largest aReadMark[] value */
+ int i; /* Loop counter */
+ int rc = SQLITE_OK; /* Return code */
+ u32 mxFrame; /* Wal frame to lock to */
+
+ assert( pWal->readLock<0 ); /* Not currently locked */
+
+ /* useWal may only be set for read/write connections */
+ assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
+
+ /* Take steps to avoid spinning forever if there is a protocol error.
+ **
+ ** Circumstances that cause a RETRY should only last for the briefest
+ ** instances of time. No I/O or other system calls are done while the
+ ** locks are held, so the locks should not be held for very long. But
+ ** if we are unlucky, another process that is holding a lock might get
+ ** paged out or take a page-fault that is time-consuming to resolve,
+ ** during the few nanoseconds that it is holding the lock. In that case,
+ ** it might take longer than normal for the lock to free.
+ **
+ ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
+ ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
+ ** is more of a scheduler yield than an actual delay. But on the 10th
+ ** an subsequent retries, the delays start becoming longer and longer,
+ ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
+ ** The total delay time before giving up is less than 10 seconds.
+ */
+ if( cnt>5 ){
+ int nDelay = 1; /* Pause time in microseconds */
+ if( cnt>100 ){
+ VVA_ONLY( pWal->lockError = 1; )
+ return SQLITE_PROTOCOL;
+ }
+ if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
+ sqlite3OsSleep(pWal->pVfs, nDelay);
+ }
+
+ if( !useWal ){
+ assert( rc==SQLITE_OK );
+ if( pWal->bShmUnreliable==0 ){
+ rc = walIndexReadHdr(pWal, pChanged);
+ }
+ if( rc==SQLITE_BUSY ){
+ /* If there is not a recovery running in another thread or process
+ ** then convert BUSY errors to WAL_RETRY. If recovery is known to
+ ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
+ ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
+ ** would be technically correct. But the race is benign since with
+ ** WAL_RETRY this routine will be called again and will probably be
+ ** right on the second iteration.
+ */
+ if( pWal->apWiData[0]==0 ){
+ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
+ ** We assume this is a transient condition, so return WAL_RETRY. The
+ ** xShmMap() implementation used by the default unix and win32 VFS
+ ** modules may return SQLITE_BUSY due to a race condition in the
+ ** code that determines whether or not the shared-memory region
+ ** must be zeroed before the requested page is returned.
+ */
+ rc = WAL_RETRY;
+ }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
+ walUnlockShared(pWal, WAL_RECOVER_LOCK);
+ rc = WAL_RETRY;
+ }else if( rc==SQLITE_BUSY ){
+ rc = SQLITE_BUSY_RECOVERY;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ else if( pWal->bShmUnreliable ){
+ return walBeginShmUnreliable(pWal, pChanged);
+ }
+ }
+
+ assert( pWal->nWiData>0 );
+ assert( pWal->apWiData[0]!=0 );
+ pInfo = walCkptInfo(pWal);
+ SEH_INJECT_FAULT;
+ if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
+#endif
+ ){
+ /* The WAL has been completely backfilled (or it is empty).
+ ** and can be safely ignored.
+ */
+ rc = walLockShared(pWal, WAL_READ_LOCK(0));
+ walShmBarrier(pWal);
+ if( rc==SQLITE_OK ){
+ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
+ /* It is not safe to allow the reader to continue here if frames
+ ** may have been appended to the log before READ_LOCK(0) was obtained.
+ ** When holding READ_LOCK(0), the reader ignores the entire log file,
+ ** which implies that the database file contains a trustworthy
+ ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
+ ** happening, this is usually correct.
+ **
+ ** However, if frames have been appended to the log (or if the log
+ ** is wrapped and written for that matter) before the READ_LOCK(0)
+ ** is obtained, that is not necessarily true. A checkpointer may
+ ** have started to backfill the appended frames but crashed before
+ ** it finished. Leaving a corrupt image in the database file.
+ */
+ walUnlockShared(pWal, WAL_READ_LOCK(0));
+ return WAL_RETRY;
+ }
+ pWal->readLock = 0;
+ return SQLITE_OK;
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+
+ /* If we get this far, it means that the reader will want to use
+ ** the WAL to get at content from recent commits. The job now is
+ ** to select one of the aReadMark[] entries that is closest to
+ ** but not exceeding pWal->hdr.mxFrame and lock that entry.
+ */
+ mxReadMark = 0;
+ mxI = 0;
+ mxFrame = pWal->hdr.mxFrame;
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
+ mxFrame = pWal->pSnapshot->mxFrame;
+ }
+#endif
+ for(i=1; i<WAL_NREADER; i++){
+ u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT;
+ if( mxReadMark<=thisMark && thisMark<=mxFrame ){
+ assert( thisMark!=READMARK_NOT_USED );
+ mxReadMark = thisMark;
+ mxI = i;
+ }
+ }
+ if( (pWal->readOnly & WAL_SHM_RDONLY)==0
+ && (mxReadMark<mxFrame || mxI==0)
+ ){
+ for(i=1; i<WAL_NREADER; i++){
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ AtomicStore(pInfo->aReadMark+i,mxFrame);
+ mxReadMark = mxFrame;
+ mxI = i;
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ break;
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ }
+ if( mxI==0 ){
+ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
+ return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
+ }
+
+ rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
+ if( rc ){
+ return rc==SQLITE_BUSY ? WAL_RETRY : rc;
+ }
+ /* Now that the read-lock has been obtained, check that neither the
+ ** value in the aReadMark[] array or the contents of the wal-index
+ ** header have changed.
+ **
+ ** It is necessary to check that the wal-index header did not change
+ ** between the time it was read and when the shared-lock was obtained
+ ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
+ ** that the log file may have been wrapped by a writer, or that frames
+ ** that occur later in the log than pWal->hdr.mxFrame may have been
+ ** copied into the database by a checkpointer. If either of these things
+ ** happened, then reading the database with the current value of
+ ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
+ ** instead.
+ **
+ ** Before checking that the live wal-index header has not changed
+ ** since it was read, set Wal.minFrame to the first frame in the wal
+ ** file that has not yet been checkpointed. This client will not need
+ ** to read any frames earlier than minFrame from the wal file - they
+ ** can be safely read directly from the database file.
+ **
+ ** Because a ShmBarrier() call is made between taking the copy of
+ ** nBackfill and checking that the wal-header in shared-memory still
+ ** matches the one cached in pWal->hdr, it is guaranteed that the
+ ** checkpointer that set nBackfill was not working with a wal-index
+ ** header newer than that cached in pWal->hdr. If it were, that could
+ ** cause a problem. The checkpointer could omit to checkpoint
+ ** a version of page X that lies before pWal->minFrame (call that version
+ ** A) on the basis that there is a newer version (version B) of the same
+ ** page later in the wal file. But if version B happens to like past
+ ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
+ ** that it can read version A from the database file. However, since
+ ** we can guarantee that the checkpointer that set nBackfill could not
+ ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
+ */
+ pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT;
+ walShmBarrier(pWal);
+ if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
+ || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
+ ){
+ walUnlockShared(pWal, WAL_READ_LOCK(mxI));
+ return WAL_RETRY;
+ }else{
+ assert( mxReadMark<=pWal->hdr.mxFrame );
+ pWal->readLock = (i16)mxI;
+ }
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** This function does the work of sqlite3WalSnapshotRecover().
+*/
+static int walSnapshotRecover(
+ Wal *pWal, /* WAL handle */
+ void *pBuf1, /* Temp buffer pWal->szPage bytes in size */
+ void *pBuf2 /* Temp buffer pWal->szPage bytes in size */
+){
+ int szPage = (int)pWal->szPage;
+ int rc;
+ i64 szDb; /* Size of db file in bytes */
+
+ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
+ if( rc==SQLITE_OK ){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ u32 i = pInfo->nBackfillAttempted;
+ for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
+ WalHashLoc sLoc; /* Hash table location */
+ u32 pgno; /* Page number in db file */
+ i64 iDbOff; /* Offset of db file entry */
+ i64 iWalOff; /* Offset of wal file entry */
+
+ rc = walHashGet(pWal, walFramePage(i), &sLoc);
+ if( rc!=SQLITE_OK ) break;
+ assert( i - sLoc.iZero - 1 >=0 );
+ pgno = sLoc.aPgno[i-sLoc.iZero-1];
+ iDbOff = (i64)(pgno-1) * szPage;
+
+ if( iDbOff+szPage<=szDb ){
+ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
+ rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
+ }
+
+ if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
+ break;
+ }
+ }
+
+ pInfo->nBackfillAttempted = i-1;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
+** variable so that older snapshots can be accessed. To do this, loop
+** through all wal frames from nBackfillAttempted to (nBackfill+1),
+** comparing their content to the corresponding page with the database
+** file, if any. Set nBackfillAttempted to the frame number of the
+** first frame for which the wal file content matches the db file.
+**
+** This is only really safe if the file-system is such that any page
+** writes made by earlier checkpointers were atomic operations, which
+** is not always true. It is also possible that nBackfillAttempted
+** may be left set to a value larger than expected, if a wal frame
+** contains content that duplicate of an earlier version of the same
+** page.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code if an
+** error occurs. It is not an error if nBackfillAttempted cannot be
+** decreased at all.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){
+ int rc;
+
+ assert( pWal->readLock>=0 );
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ void *pBuf1 = sqlite3_malloc(pWal->szPage);
+ void *pBuf2 = sqlite3_malloc(pWal->szPage);
+ if( pBuf1==0 || pBuf2==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pWal->ckptLock = 1;
+ SEH_TRY {
+ rc = walSnapshotRecover(pWal, pBuf1, pBuf2);
+ }
+ SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
+ pWal->ckptLock = 0;
+ }
+
+ sqlite3_free(pBuf1);
+ sqlite3_free(pBuf2);
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ }
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+/*
+** This function does the work of sqlite3WalBeginReadTransaction() (see
+** below). That function simply calls this one inside an SEH_TRY{...} block.
+*/
+static int walBeginReadTransaction(Wal *pWal, int *pChanged){
+ int rc; /* Return code */
+ int cnt = 0; /* Number of TryBeginRead attempts */
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ int ckptLock = 0;
+ int bChanged = 0;
+ WalIndexHdr *pSnapshot = pWal->pSnapshot;
+#endif
+
+ assert( pWal->ckptLock==0 );
+ assert( pWal->nSehTry>0 );
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( pSnapshot ){
+ if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
+ bChanged = 1;
+ }
+
+ /* It is possible that there is a checkpointer thread running
+ ** concurrent with this code. If this is the case, it may be that the
+ ** checkpointer has already determined that it will checkpoint
+ ** snapshot X, where X is later in the wal file than pSnapshot, but
+ ** has not yet set the pInfo->nBackfillAttempted variable to indicate
+ ** its intent. To avoid the race condition this leads to, ensure that
+ ** there is no checkpointer process by taking a shared CKPT lock
+ ** before checking pInfo->nBackfillAttempted. */
+ (void)walEnableBlocking(pWal);
+ rc = walLockShared(pWal, WAL_CKPT_LOCK);
+ walDisableBlocking(pWal);
+
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ ckptLock = 1;
+ }
+#endif
+
+ do{
+ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
+ }while( rc==WAL_RETRY );
+ testcase( (rc&0xff)==SQLITE_BUSY );
+ testcase( (rc&0xff)==SQLITE_IOERR );
+ testcase( rc==SQLITE_PROTOCOL );
+ testcase( rc==SQLITE_OK );
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( rc==SQLITE_OK ){
+ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
+ /* At this point the client has a lock on an aReadMark[] slot holding
+ ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
+ ** is populated with the wal-index header corresponding to the head
+ ** of the wal file. Verify that pSnapshot is still valid before
+ ** continuing. Reasons why pSnapshot might no longer be valid:
+ **
+ ** (1) The WAL file has been reset since the snapshot was taken.
+ ** In this case, the salt will have changed.
+ **
+ ** (2) A checkpoint as been attempted that wrote frames past
+ ** pSnapshot->mxFrame into the database file. Note that the
+ ** checkpoint need not have completed for this to cause problems.
+ */
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+
+ assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
+ assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
+
+ /* Check that the wal file has not been wrapped. Assuming that it has
+ ** not, also check that no checkpointer has attempted to checkpoint any
+ ** frames beyond pSnapshot->mxFrame. If either of these conditions are
+ ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
+ ** with *pSnapshot and set *pChanged as appropriate for opening the
+ ** snapshot. */
+ if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
+ && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
+ ){
+ assert( pWal->readLock>0 );
+ memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
+ *pChanged = bChanged;
+ }else{
+ rc = SQLITE_ERROR_SNAPSHOT;
+ }
+
+ /* A client using a non-current snapshot may not ignore any frames
+ ** from the start of the wal file. This is because, for a system
+ ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
+ ** have omitted to checkpoint a frame earlier than minFrame in
+ ** the file because there exists a frame after iSnapshot that
+ ** is the same database page. */
+ pWal->minFrame = 1;
+
+ if( rc!=SQLITE_OK ){
+ sqlite3WalEndReadTransaction(pWal);
+ }
+ }
+ }
+
+ /* Release the shared CKPT lock obtained above. */
+ if( ckptLock ){
+ assert( pSnapshot );
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+ }
+#endif
+ return rc;
+}
+
+/*
+** Begin a read transaction on the database.
+**
+** This routine used to be called sqlite3OpenSnapshot() and with good reason:
+** it takes a snapshot of the state of the WAL and wal-index for the current
+** instant in time. The current thread will continue to use this snapshot.
+** Other threads might append new content to the WAL and wal-index but
+** that extra content is ignored by the current thread.
+**
+** If the database contents have changes since the previous read
+** transaction, then *pChanged is set to 1 before returning. The
+** Pager layer will use this to know that its cache is stale and
+** needs to be flushed.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
+ int rc;
+ SEH_TRY {
+ rc = walBeginReadTransaction(pWal, pChanged);
+ }
+ SEH_EXCEPT( rc = walHandleException(pWal); )
+ return rc;
+}
+
+/*
+** Finish with a read transaction. All this does is release the
+** read-lock.
+*/
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){
+ sqlite3WalEndWriteTransaction(pWal);
+ if( pWal->readLock>=0 ){
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
+ pWal->readLock = -1;
+ }
+}
+
+/*
+** Search the wal file for page pgno. If found, set *piRead to the frame that
+** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
+** to zero.
+**
+** Return SQLITE_OK if successful, or an error code if an error occurs. If an
+** error does occur, the final value of *piRead is undefined.
+*/
+static int walFindFrame(
+ Wal *pWal, /* WAL handle */
+ Pgno pgno, /* Database page number to read data for */
+ u32 *piRead /* OUT: Frame number (or zero) */
+){
+ u32 iRead = 0; /* If !=0, WAL frame to return data from */
+ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
+ int iHash; /* Used to loop through N hash tables */
+ int iMinHash;
+
+ /* This routine is only be called from within a read transaction. */
+ assert( pWal->readLock>=0 || pWal->lockError );
+
+ /* If the "last page" field of the wal-index header snapshot is 0, then
+ ** no data will be read from the wal under any circumstances. Return early
+ ** in this case as an optimization. Likewise, if pWal->readLock==0,
+ ** then the WAL is ignored by the reader so return early, as if the
+ ** WAL were empty.
+ */
+ if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
+ *piRead = 0;
+ return SQLITE_OK;
+ }
+
+ /* Search the hash table or tables for an entry matching page number
+ ** pgno. Each iteration of the following for() loop searches one
+ ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
+ **
+ ** This code might run concurrently to the code in walIndexAppend()
+ ** that adds entries to the wal-index (and possibly to this hash
+ ** table). This means the value just read from the hash
+ ** slot (aHash[iKey]) may have been added before or after the
+ ** current read transaction was opened. Values added after the
+ ** read transaction was opened may have been written incorrectly -
+ ** i.e. these slots may contain garbage data. However, we assume
+ ** that any slots written before the current read transaction was
+ ** opened remain unmodified.
+ **
+ ** For the reasons above, the if(...) condition featured in the inner
+ ** loop of the following block is more stringent that would be required
+ ** if we had exclusive access to the hash-table:
+ **
+ ** (aPgno[iFrame]==pgno):
+ ** This condition filters out normal hash-table collisions.
+ **
+ ** (iFrame<=iLast):
+ ** This condition filters out entries that were added to the hash
+ ** table after the current read-transaction had started.
+ */
+ iMinHash = walFramePage(pWal->minFrame);
+ for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
+ WalHashLoc sLoc; /* Hash table location */
+ int iKey; /* Hash slot index */
+ int nCollide; /* Number of hash collisions remaining */
+ int rc; /* Error code */
+ u32 iH;
+
+ rc = walHashGet(pWal, iHash, &sLoc);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nCollide = HASHTABLE_NSLOT;
+ iKey = walHash(pgno);
+ SEH_INJECT_FAULT;
+ while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
+ u32 iFrame = iH + sLoc.iZero;
+ if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){
+ assert( iFrame>iRead || CORRUPT_DB );
+ iRead = iFrame;
+ }
+ if( (nCollide--)==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ iKey = walNextHash(iKey);
+ }
+ if( iRead ) break;
+ }
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* If expensive assert() statements are available, do a linear search
+ ** of the wal-index file content. Make sure the results agree with the
+ ** result obtained using the hash indexes above. */
+ {
+ u32 iRead2 = 0;
+ u32 iTest;
+ assert( pWal->bShmUnreliable || pWal->minFrame>0 );
+ for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
+ if( walFramePgno(pWal, iTest)==pgno ){
+ iRead2 = iTest;
+ break;
+ }
+ }
+ assert( iRead==iRead2 );
+ }
+#endif
+
+ *piRead = iRead;
+ return SQLITE_OK;
+}
+
+/*
+** Search the wal file for page pgno. If found, set *piRead to the frame that
+** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
+** to zero.
+**
+** Return SQLITE_OK if successful, or an error code if an error occurs. If an
+** error does occur, the final value of *piRead is undefined.
+**
+** The difference between this function and walFindFrame() is that this
+** function wraps walFindFrame() in an SEH_TRY{...} block.
+*/
+SQLITE_PRIVATE int sqlite3WalFindFrame(
+ Wal *pWal, /* WAL handle */
+ Pgno pgno, /* Database page number to read data for */
+ u32 *piRead /* OUT: Frame number (or zero) */
+){
+ int rc;
+ SEH_TRY {
+ rc = walFindFrame(pWal, pgno, piRead);
+ }
+ SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
+ return rc;
+}
+
+/*
+** Read the contents of frame iRead from the wal file into buffer pOut
+** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
+** error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3WalReadFrame(
+ Wal *pWal, /* WAL handle */
+ u32 iRead, /* Frame to read */
+ int nOut, /* Size of buffer pOut in bytes */
+ u8 *pOut /* Buffer to write page data to */
+){
+ int sz;
+ i64 iOffset;
+ sz = pWal->hdr.szPage;
+ sz = (sz&0xfe00) + ((sz&0x0001)<<16);
+ testcase( sz<=32768 );
+ testcase( sz>=65536 );
+ iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
+ return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
+}
+
+/*
+** Return the size of the database in pages (or zero, if unknown).
+*/
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){
+ if( pWal && ALWAYS(pWal->readLock>=0) ){
+ return pWal->hdr.nPage;
+ }
+ return 0;
+}
+
+
+/*
+** This function starts a write transaction on the WAL.
+**
+** A read transaction must have already been started by a prior call
+** to sqlite3WalBeginReadTransaction().
+**
+** If another thread or process has written into the database since
+** the read transaction was started, then it is not possible for this
+** thread to write as doing so would cause a fork. So this routine
+** returns SQLITE_BUSY in that case and no write transaction is started.
+**
+** There can only be a single writer active at a time.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
+ int rc;
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ /* If the write-lock is already held, then it was obtained before the
+ ** read-transaction was even opened, making this call a no-op.
+ ** Return early. */
+ if( pWal->writeLock ){
+ assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
+ return SQLITE_OK;
+ }
+#endif
+
+ /* Cannot start a write transaction without first holding a read
+ ** transaction. */
+ assert( pWal->readLock>=0 );
+ assert( pWal->writeLock==0 && pWal->iReCksum==0 );
+
+ if( pWal->readOnly ){
+ return SQLITE_READONLY;
+ }
+
+ /* Only one writer allowed at a time. Get the write lock. Return
+ ** SQLITE_BUSY if unable.
+ */
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ if( rc ){
+ return rc;
+ }
+ pWal->writeLock = 1;
+
+ /* If another connection has written to the database file since the
+ ** time the read transaction on this connection was started, then
+ ** the write is disallowed.
+ */
+ SEH_TRY {
+ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
+ rc = SQLITE_BUSY_SNAPSHOT;
+ }
+ }
+ SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
+
+ if( rc!=SQLITE_OK ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ }
+ return rc;
+}
+
+/*
+** End a write transaction. The commit has already been done. This
+** routine merely releases the lock.
+*/
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
+ if( pWal->writeLock ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ pWal->iReCksum = 0;
+ pWal->truncateOnCommit = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** If any data has been written (but not committed) to the log file, this
+** function moves the write-pointer back to the start of the transaction.
+**
+** Additionally, the callback function is invoked for each frame written
+** to the WAL since the start of the transaction. If the callback returns
+** other than SQLITE_OK, it is not invoked again and the error code is
+** returned to the caller.
+**
+** Otherwise, if the callback function does not return an error, this
+** function returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
+ int rc = SQLITE_OK;
+ if( ALWAYS(pWal->writeLock) ){
+ Pgno iMax = pWal->hdr.mxFrame;
+ Pgno iFrame;
+
+ SEH_TRY {
+ /* Restore the clients cache of the wal-index header to the state it
+ ** was in before the client began writing to the database.
+ */
+ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
+
+ for(iFrame=pWal->hdr.mxFrame+1;
+ ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
+ iFrame++
+ ){
+ /* This call cannot fail. Unless the page for which the page number
+ ** is passed as the second argument is (a) in the cache and
+ ** (b) has an outstanding reference, then xUndo is either a no-op
+ ** (if (a) is false) or simply expels the page from the cache (if (b)
+ ** is false).
+ **
+ ** If the upper layer is doing a rollback, it is guaranteed that there
+ ** are no outstanding references to any page other than page 1. And
+ ** page 1 is never written to the log until the transaction is
+ ** committed. As a result, the call to xUndo may not fail.
+ */
+ assert( walFramePgno(pWal, iFrame)!=1 );
+ rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
+ }
+ if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
+ }
+ SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
+ }
+ return rc;
+}
+
+/*
+** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
+** values. This function populates the array with values required to
+** "rollback" the write position of the WAL handle back to the current
+** point in the event of a savepoint rollback (via WalSavepointUndo()).
+*/
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
+ assert( pWal->writeLock );
+ aWalData[0] = pWal->hdr.mxFrame;
+ aWalData[1] = pWal->hdr.aFrameCksum[0];
+ aWalData[2] = pWal->hdr.aFrameCksum[1];
+ aWalData[3] = pWal->nCkpt;
+}
+
+/*
+** Move the write position of the WAL back to the point identified by
+** the values in the aWalData[] array. aWalData must point to an array
+** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
+** by a call to WalSavepoint().
+*/
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
+ int rc = SQLITE_OK;
+
+ assert( pWal->writeLock );
+ assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
+
+ if( aWalData[3]!=pWal->nCkpt ){
+ /* This savepoint was opened immediately after the write-transaction
+ ** was started. Right after that, the writer decided to wrap around
+ ** to the start of the log. Update the savepoint values to match.
+ */
+ aWalData[0] = 0;
+ aWalData[3] = pWal->nCkpt;
+ }
+
+ if( aWalData[0]<pWal->hdr.mxFrame ){
+ pWal->hdr.mxFrame = aWalData[0];
+ pWal->hdr.aFrameCksum[0] = aWalData[1];
+ pWal->hdr.aFrameCksum[1] = aWalData[2];
+ SEH_TRY {
+ walCleanupHash(pWal);
+ }
+ SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
+ }
+
+ return rc;
+}
+
+/*
+** This function is called just before writing a set of frames to the log
+** file (see sqlite3WalFrames()). It checks to see if, instead of appending
+** to the current log file, it is possible to overwrite the start of the
+** existing log file with the new frames (i.e. "reset" the log). If so,
+** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
+** unchanged.
+**
+** SQLITE_OK is returned if no error is encountered (regardless of whether
+** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
+** if an error occurs.
+*/
+static int walRestartLog(Wal *pWal){
+ int rc = SQLITE_OK;
+ int cnt;
+
+ if( pWal->readLock==0 ){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame );
+ if( pInfo->nBackfill>0 ){
+ u32 salt1;
+ sqlite3_randomness(4, &salt1);
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ if( rc==SQLITE_OK ){
+ /* If all readers are using WAL_READ_LOCK(0) (in other words if no
+ ** readers are currently using the WAL), then the transactions
+ ** frames will overwrite the start of the existing log. Update the
+ ** wal-index header to reflect this.
+ **
+ ** In theory it would be Ok to update the cache of the header only
+ ** at this point. But updating the actual wal-index header is also
+ ** safe and means there is no special case for sqlite3WalUndo()
+ ** to handle if this transaction is rolled back. */
+ walRestartHdr(pWal, salt1);
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ walUnlockShared(pWal, WAL_READ_LOCK(0));
+ pWal->readLock = -1;
+ cnt = 0;
+ do{
+ int notUsed;
+ rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
+ }while( rc==WAL_RETRY );
+ assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
+ testcase( (rc&0xff)==SQLITE_IOERR );
+ testcase( rc==SQLITE_PROTOCOL );
+ testcase( rc==SQLITE_OK );
+ }
+ return rc;
+}
+
+/*
+** Information about the current state of the WAL file and where
+** the next fsync should occur - passed from sqlite3WalFrames() into
+** walWriteToLog().
+*/
+typedef struct WalWriter {
+ Wal *pWal; /* The complete WAL information */
+ sqlite3_file *pFd; /* The WAL file to which we write */
+ sqlite3_int64 iSyncPoint; /* Fsync at this offset */
+ int syncFlags; /* Flags for the fsync */
+ int szPage; /* Size of one page */
+} WalWriter;
+
+/*
+** Write iAmt bytes of content into the WAL file beginning at iOffset.
+** Do a sync when crossing the p->iSyncPoint boundary.
+**
+** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
+** first write the part before iSyncPoint, then sync, then write the
+** rest.
+*/
+static int walWriteToLog(
+ WalWriter *p, /* WAL to write to */
+ void *pContent, /* Content to be written */
+ int iAmt, /* Number of bytes to write */
+ sqlite3_int64 iOffset /* Start writing at this offset */
+){
+ int rc;
+ if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
+ int iFirstAmt = (int)(p->iSyncPoint - iOffset);
+ rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
+ if( rc ) return rc;
+ iOffset += iFirstAmt;
+ iAmt -= iFirstAmt;
+ pContent = (void*)(iFirstAmt + (char*)pContent);
+ assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
+ rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
+ if( iAmt==0 || rc ) return rc;
+ }
+ rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
+ return rc;
+}
+
+/*
+** Write out a single frame of the WAL
+*/
+static int walWriteOneFrame(
+ WalWriter *p, /* Where to write the frame */
+ PgHdr *pPage, /* The page of the frame to be written */
+ int nTruncate, /* The commit flag. Usually 0. >0 for commit */
+ sqlite3_int64 iOffset /* Byte offset at which to write */
+){
+ int rc; /* Result code from subfunctions */
+ void *pData; /* Data actually written */
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
+ pData = pPage->pData;
+ walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
+ rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
+ if( rc ) return rc;
+ /* Write the page data */
+ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
+ return rc;
+}
+
+/*
+** This function is called as part of committing a transaction within which
+** one or more frames have been overwritten. It updates the checksums for
+** all frames written to the wal file by the current transaction starting
+** with the earliest to have been overwritten.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int walRewriteChecksums(Wal *pWal, u32 iLast){
+ const int szPage = pWal->szPage;/* Database page size */
+ int rc = SQLITE_OK; /* Return code */
+ u8 *aBuf; /* Buffer to load data from wal file into */
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
+ u32 iRead; /* Next frame to read from wal file */
+ i64 iCksumOff;
+
+ aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
+ if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
+
+ /* Find the checksum values to use as input for the recalculating the
+ ** first checksum. If the first frame is frame 1 (implying that the current
+ ** transaction restarted the wal file), these values must be read from the
+ ** wal-file header. Otherwise, read them from the frame header of the
+ ** previous frame. */
+ assert( pWal->iReCksum>0 );
+ if( pWal->iReCksum==1 ){
+ iCksumOff = 24;
+ }else{
+ iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
+ }
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
+ pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
+ pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
+
+ iRead = pWal->iReCksum;
+ pWal->iReCksum = 0;
+ for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
+ i64 iOff = walFrameOffset(iRead, szPage);
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
+ if( rc==SQLITE_OK ){
+ u32 iPgno, nDbSize;
+ iPgno = sqlite3Get4byte(aBuf);
+ nDbSize = sqlite3Get4byte(&aBuf[4]);
+
+ walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
+ rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
+ }
+ }
+
+ sqlite3_free(aBuf);
+ return rc;
+}
+
+/*
+** Write a set of frames to the log. The caller must hold the write-lock
+** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
+*/
+static int walFrames(
+ Wal *pWal, /* Wal handle to write to */
+ int szPage, /* Database page-size in bytes */
+ PgHdr *pList, /* List of dirty pages to write */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit, /* True if this is a commit */
+ int sync_flags /* Flags to pass to OsSync() (or 0) */
+){
+ int rc; /* Used to catch return codes */
+ u32 iFrame; /* Next frame address */
+ PgHdr *p; /* Iterator to run through pList with. */
+ PgHdr *pLast = 0; /* Last frame in list */
+ int nExtra = 0; /* Number of extra copies of last page */
+ int szFrame; /* The size of a single frame */
+ i64 iOffset; /* Next byte to write in WAL file */
+ WalWriter w; /* The writer */
+ u32 iFirst = 0; /* First frame that may be overwritten */
+ WalIndexHdr *pLive; /* Pointer to shared header */
+
+ assert( pList );
+ assert( pWal->writeLock );
+
+ /* If this frame set completes a transaction, then nTruncate>0. If
+ ** nTruncate==0 then this frame set does not complete the transaction. */
+ assert( (isCommit!=0)==(nTruncate!=0) );
+
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+ { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
+ WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
+ pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
+ }
+#endif
+
+ pLive = (WalIndexHdr*)walIndexHdr(pWal);
+ if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
+ iFirst = pLive->mxFrame+1;
+ }
+
+ /* See if it is possible to write these frames into the start of the
+ ** log file, instead of appending to it at pWal->hdr.mxFrame.
+ */
+ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
+ return rc;
+ }
+
+ /* If this is the first frame written into the log, write the WAL
+ ** header to the start of the WAL file. See comments at the top of
+ ** this source file for a description of the WAL header format.
+ */
+ iFrame = pWal->hdr.mxFrame;
+ if( iFrame==0 ){
+ u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
+ u32 aCksum[2]; /* Checksum for wal-header */
+
+ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
+ sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
+ sqlite3Put4byte(&aWalHdr[8], szPage);
+ sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
+ if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
+ memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
+ walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
+ sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
+ sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
+
+ pWal->szPage = szPage;
+ pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
+ pWal->hdr.aFrameCksum[0] = aCksum[0];
+ pWal->hdr.aFrameCksum[1] = aCksum[1];
+ pWal->truncateOnCommit = 1;
+
+ rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
+ WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
+ ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
+ ** an out-of-order write following a WAL restart could result in
+ ** database corruption. See the ticket:
+ **
+ ** https://sqlite.org/src/info/ff5be73dee
+ */
+ if( pWal->syncHeader ){
+ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
+ if( rc ) return rc;
+ }
+ }
+ if( (int)pWal->szPage!=szPage ){
+ return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */
+ }
+
+ /* Setup information needed to write frames into the WAL */
+ w.pWal = pWal;
+ w.pFd = pWal->pWalFd;
+ w.iSyncPoint = 0;
+ w.syncFlags = sync_flags;
+ w.szPage = szPage;
+ iOffset = walFrameOffset(iFrame+1, szPage);
+ szFrame = szPage + WAL_FRAME_HDRSIZE;
+
+ /* Write all frames into the log file exactly once */
+ for(p=pList; p; p=p->pDirty){
+ int nDbSize; /* 0 normally. Positive == commit flag */
+
+ /* Check if this page has already been written into the wal file by
+ ** the current transaction. If so, overwrite the existing frame and
+ ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
+ ** checksums must be recomputed when the transaction is committed. */
+ if( iFirst && (p->pDirty || isCommit==0) ){
+ u32 iWrite = 0;
+ VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite);
+ assert( rc==SQLITE_OK || iWrite==0 );
+ if( iWrite>=iFirst ){
+ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
+ void *pData;
+ if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
+ pWal->iReCksum = iWrite;
+ }
+ pData = p->pData;
+ rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
+ if( rc ) return rc;
+ p->flags &= ~PGHDR_WAL_APPEND;
+ continue;
+ }
+ }
+
+ iFrame++;
+ assert( iOffset==walFrameOffset(iFrame, szPage) );
+ nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
+ rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
+ if( rc ) return rc;
+ pLast = p;
+ iOffset += szFrame;
+ p->flags |= PGHDR_WAL_APPEND;
+ }
+
+ /* Recalculate checksums within the wal file if required. */
+ if( isCommit && pWal->iReCksum ){
+ rc = walRewriteChecksums(pWal, iFrame);
+ if( rc ) return rc;
+ }
+
+ /* If this is the end of a transaction, then we might need to pad
+ ** the transaction and/or sync the WAL file.
+ **
+ ** Padding and syncing only occur if this set of frames complete a
+ ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
+ ** or synchronous==OFF, then no padding or syncing are needed.
+ **
+ ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
+ ** needed and only the sync is done. If padding is needed, then the
+ ** final frame is repeated (with its commit mark) until the next sector
+ ** boundary is crossed. Only the part of the WAL prior to the last
+ ** sector boundary is synced; the part of the last frame that extends
+ ** past the sector boundary is written after the sync.
+ */
+ if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
+ int bSync = 1;
+ if( pWal->padToSectorBoundary ){
+ int sectorSize = sqlite3SectorSize(pWal->pWalFd);
+ w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
+ bSync = (w.iSyncPoint==iOffset);
+ testcase( bSync );
+ while( iOffset<w.iSyncPoint ){
+ rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
+ if( rc ) return rc;
+ iOffset += szFrame;
+ nExtra++;
+ assert( pLast!=0 );
+ }
+ }
+ if( bSync ){
+ assert( rc==SQLITE_OK );
+ rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
+ }
+ }
+
+ /* If this frame set completes the first transaction in the WAL and
+ ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
+ ** journal size limit, if possible.
+ */
+ if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
+ i64 sz = pWal->mxWalSize;
+ if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
+ sz = walFrameOffset(iFrame+nExtra+1, szPage);
+ }
+ walLimitSize(pWal, sz);
+ pWal->truncateOnCommit = 0;
+ }
+
+ /* Append data to the wal-index. It is not necessary to lock the
+ ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
+ ** guarantees that there are no other writers, and no data that may
+ ** be in use by existing readers is being overwritten.
+ */
+ iFrame = pWal->hdr.mxFrame;
+ for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
+ if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
+ iFrame++;
+ rc = walIndexAppend(pWal, iFrame, p->pgno);
+ }
+ assert( pLast!=0 || nExtra==0 );
+ while( rc==SQLITE_OK && nExtra>0 ){
+ iFrame++;
+ nExtra--;
+ rc = walIndexAppend(pWal, iFrame, pLast->pgno);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Update the private copy of the header. */
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ pWal->hdr.mxFrame = iFrame;
+ if( isCommit ){
+ pWal->hdr.iChange++;
+ pWal->hdr.nPage = nTruncate;
+ }
+ /* If this is a commit, update the wal-index header too. */
+ if( isCommit ){
+ walIndexWriteHdr(pWal);
+ pWal->iCallback = iFrame;
+ }
+ }
+
+ WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
+ return rc;
+}
+
+/*
+** Write a set of frames to the log. The caller must hold the write-lock
+** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
+**
+** The difference between this function and walFrames() is that this
+** function wraps walFrames() in an SEH_TRY{...} block.
+*/
+SQLITE_PRIVATE int sqlite3WalFrames(
+ Wal *pWal, /* Wal handle to write to */
+ int szPage, /* Database page-size in bytes */
+ PgHdr *pList, /* List of dirty pages to write */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit, /* True if this is a commit */
+ int sync_flags /* Flags to pass to OsSync() (or 0) */
+){
+ int rc;
+ SEH_TRY {
+ rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags);
+ }
+ SEH_EXCEPT( rc = walHandleException(pWal); )
+ return rc;
+}
+
+/*
+** This routine is called to implement sqlite3_wal_checkpoint() and
+** related interfaces.
+**
+** Obtain a CHECKPOINT lock and then backfill as much information as
+** we can from WAL into the database.
+**
+** If parameter xBusy is not NULL, it is a pointer to a busy-handler
+** callback. In this case this function runs a blocking checkpoint.
+*/
+SQLITE_PRIVATE int sqlite3WalCheckpoint(
+ Wal *pWal, /* Wal connection */
+ sqlite3 *db, /* Check this handle's interrupt flag */
+ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags to sync db file with (or 0) */
+ int nBuf, /* Size of temporary buffer */
+ u8 *zBuf, /* Temporary buffer to use */
+ int *pnLog, /* OUT: Number of frames in WAL */
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */
+){
+ int rc; /* Return code */
+ int isChanged = 0; /* True if a new wal-index header is loaded */
+ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
+ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
+
+ assert( pWal->ckptLock==0 );
+ assert( pWal->writeLock==0 );
+
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
+
+ if( pWal->readOnly ) return SQLITE_READONLY;
+ WALTRACE(("WAL%p: checkpoint begins\n", pWal));
+
+ /* Enable blocking locks, if possible. If blocking locks are successfully
+ ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
+ sqlite3WalDb(pWal, db);
+ (void)walEnableBlocking(pWal);
+
+ /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
+ ** "checkpoint" lock on the database file.
+ ** EVIDENCE-OF: R-10421-19736 If any other process is running a
+ ** checkpoint operation at the same time, the lock cannot be obtained and
+ ** SQLITE_BUSY is returned.
+ ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
+ ** it will not be invoked in this case.
+ */
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ testcase( rc==SQLITE_BUSY );
+ testcase( rc!=SQLITE_OK && xBusy2!=0 );
+ if( rc==SQLITE_OK ){
+ pWal->ckptLock = 1;
+
+ /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
+ ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
+ ** file.
+ **
+ ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
+ ** immediately, and a busy-handler is configured, it is invoked and the
+ ** writer lock retried until either the busy-handler returns 0 or the
+ ** lock is successfully obtained.
+ */
+ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
+ rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ pWal->writeLock = 1;
+ }else if( rc==SQLITE_BUSY ){
+ eMode2 = SQLITE_CHECKPOINT_PASSIVE;
+ xBusy2 = 0;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+
+ /* Read the wal-index header. */
+ SEH_TRY {
+ if( rc==SQLITE_OK ){
+ walDisableBlocking(pWal);
+ rc = walIndexReadHdr(pWal, &isChanged);
+ (void)walEnableBlocking(pWal);
+ if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
+ sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
+ }
+ }
+
+ /* Copy data from the log to the database file. */
+ if( rc==SQLITE_OK ){
+ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf);
+ }
+
+ /* If no error occurred, set the output variables. */
+ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
+ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
+ SEH_INJECT_FAULT;
+ if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
+ }
+ }
+ }
+ SEH_EXCEPT( rc = walHandleException(pWal); )
+
+ if( isChanged ){
+ /* If a new wal-index header was loaded before the checkpoint was
+ ** performed, then the pager-cache associated with pWal is now
+ ** out of date. So zero the cached wal-index header to ensure that
+ ** next time the pager opens a snapshot on this database it knows that
+ ** the cache needs to be reset.
+ */
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
+ }
+
+ walDisableBlocking(pWal);
+ sqlite3WalDb(pWal, 0);
+
+ /* Release the locks. */
+ sqlite3WalEndWriteTransaction(pWal);
+ if( pWal->ckptLock ){
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ pWal->ckptLock = 0;
+ }
+ WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
+#endif
+ return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
+}
+
+/* Return the value to pass to a sqlite3_wal_hook callback, the
+** number of frames in the WAL at the point of the last commit since
+** sqlite3WalCallback() was called. If no commits have occurred since
+** the last call, then return 0.
+*/
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){
+ u32 ret = 0;
+ if( pWal ){
+ ret = pWal->iCallback;
+ pWal->iCallback = 0;
+ }
+ return (int)ret;
+}
+
+/*
+** This function is called to change the WAL subsystem into or out
+** of locking_mode=EXCLUSIVE.
+**
+** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
+** into locking_mode=NORMAL. This means that we must acquire a lock
+** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
+** or if the acquisition of the lock fails, then return 0. If the
+** transition out of exclusive-mode is successful, return 1. This
+** operation must occur while the pager is still holding the exclusive
+** lock on the main database file.
+**
+** If op is one, then change from locking_mode=NORMAL into
+** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
+** be released. Return 1 if the transition is made and 0 if the
+** WAL is already in exclusive-locking mode - meaning that this
+** routine is a no-op. The pager must already hold the exclusive lock
+** on the main database file before invoking this operation.
+**
+** If op is negative, then do a dry-run of the op==1 case but do
+** not actually change anything. The pager uses this to see if it
+** should acquire the database exclusive lock prior to invoking
+** the op==1 case.
+*/
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){
+ int rc;
+ assert( pWal->writeLock==0 );
+ assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
+
+ /* pWal->readLock is usually set, but might be -1 if there was a
+ ** prior error while attempting to acquire are read-lock. This cannot
+ ** happen if the connection is actually in exclusive mode (as no xShmLock
+ ** locks are taken in this case). Nor should the pager attempt to
+ ** upgrade to exclusive-mode following such an error.
+ */
+#ifndef SQLITE_USE_SEH
+ assert( pWal->readLock>=0 || pWal->lockError );
+#endif
+ assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
+
+ if( op==0 ){
+ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
+ pWal->exclusiveMode = WAL_NORMAL_MODE;
+ if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ }
+ rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
+ }else{
+ /* Already in locking_mode=NORMAL */
+ rc = 0;
+ }
+ }else if( op>0 ){
+ assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
+ assert( pWal->readLock>=0 );
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ rc = 1;
+ }else{
+ rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
+ }
+ return rc;
+}
+
+/*
+** Return true if the argument is non-NULL and the WAL module is using
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
+** WAL module is using shared-memory, return false.
+*/
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
+ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/* Create a snapshot object. The content of a snapshot is opaque to
+** every other subsystem, so the WAL module can put whatever it needs
+** in the object.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
+ int rc = SQLITE_OK;
+ WalIndexHdr *pRet;
+ static const u32 aZero[4] = { 0, 0, 0, 0 };
+
+ assert( pWal->readLock>=0 && pWal->writeLock==0 );
+
+ if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
+ *ppSnapshot = 0;
+ return SQLITE_ERROR;
+ }
+ pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
+ if( pRet==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
+ *ppSnapshot = (sqlite3_snapshot*)pRet;
+ }
+
+ return rc;
+}
+
+/* Try to open on pSnapshot when the next read-transaction starts
+*/
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(
+ Wal *pWal,
+ sqlite3_snapshot *pSnapshot
+){
+ pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
+}
+
+/*
+** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
+** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
+*/
+SQLITE_API int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
+ WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
+ WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
+
+ /* aSalt[0] is a copy of the value stored in the wal file header. It
+ ** is incremented each time the wal file is restarted. */
+ if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
+ if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
+ if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
+ if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
+ return 0;
+}
+
+/*
+** The caller currently has a read transaction open on the database.
+** This function takes a SHARED lock on the CHECKPOINTER slot and then
+** checks if the snapshot passed as the second argument is still
+** available. If so, SQLITE_OK is returned.
+**
+** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
+** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
+** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
+** lock is released before returning.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
+ int rc;
+ SEH_TRY {
+ rc = walLockShared(pWal, WAL_CKPT_LOCK);
+ if( rc==SQLITE_OK ){
+ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
+ if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
+ || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
+ ){
+ rc = SQLITE_ERROR_SNAPSHOT;
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+ }
+ }
+ }
+ SEH_EXCEPT( rc = walHandleException(pWal); )
+ return rc;
+}
+
+/*
+** Release a lock obtained by an earlier successful call to
+** sqlite3WalSnapshotCheck().
+*/
+SQLITE_PRIVATE void sqlite3WalSnapshotUnlock(Wal *pWal){
+ assert( pWal );
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+}
+
+
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/*
+** If the argument is not NULL, it points to a Wal object that holds a
+** read-lock. This function returns the database page-size if it is known,
+** or zero if it is not (or if pWal is NULL).
+*/
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){
+ assert( pWal==0 || pWal->readLock>=0 );
+ return (pWal ? pWal->szPage : 0);
+}
+#endif
+
+/* Return the sqlite3_file object for the WAL file
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal){
+ return pWal->pWalFd;
+}
+
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+/************** End of wal.c *************************************************/
+/************** Begin file btmutex.c *****************************************/
+/*
+** 2007 August 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to implement mutexes on Btree objects.
+** This code really belongs in btree.c. But btree.c is getting too
+** big and we want to break it down some. This packaged seemed like
+** a good breakout.
+*/
+/************** Include btreeInt.h in the middle of btmutex.c ****************/
+/************** Begin file btreeInt.h ****************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N) and its subpages have values greater than Key(N-1). And
+** so forth.
+**
+** Finding a particular key requires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". A
+** fixed amount of payload can be carried directly on the database
+** page. If the payload is larger than the preset amount then surplus
+** bytes are stored on overflow pages. The payload for an entry
+** and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N) pointer and other
+** information such as the size of key and data.
+**
+** FORMAT DETAILS
+**
+** The file is divided into pages. The first page is called page 1,
+** the second is page 2, and so forth. A page number of zero indicates
+** "no such page". The page size can be any power of 2 between 512 and 65536.
+** Each page can be either a btree page, a freelist page, an overflow
+** page, or a pointer-map page.
+**
+** The first page is always a btree page. The first 100 bytes of the first
+** page contain a special header (the "file header") that describes the file.
+** The format of the file header is as follows:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 16 Header string: "SQLite format 3\000"
+** 16 2 Page size in bytes. (1 means 65536)
+** 18 1 File format write version
+** 19 1 File format read version
+** 20 1 Bytes of unused space at the end of each page
+** 21 1 Max embedded payload fraction (must be 64)
+** 22 1 Min embedded payload fraction (must be 32)
+** 23 1 Min leaf payload fraction (must be 32)
+** 24 4 File change counter
+** 28 4 Reserved for future use
+** 32 4 First freelist page
+** 36 4 Number of freelist pages in the file
+** 40 60 15 4-byte meta values passed to higher layers
+**
+** 40 4 Schema cookie
+** 44 4 File format of schema layer
+** 48 4 Size of page cache
+** 52 4 Largest root-page (auto/incr_vacuum)
+** 56 4 1=UTF-8 2=UTF16le 3=UTF16be
+** 60 4 User version
+** 64 4 Incremental vacuum mode
+** 68 4 Application-ID
+** 72 20 unused
+** 92 4 The version-valid-for number
+** 96 4 SQLITE_VERSION_NUMBER
+**
+** All of the integer values are big-endian (most significant byte first).
+**
+** The file change counter is incremented when the database is changed
+** This counter allows other processes to know when the file has changed
+** and thus when they need to flush their cache.
+**
+** The max embedded payload fraction is the amount of the total usable
+** space in a page that can be consumed by a single cell for standard
+** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
+** is to limit the maximum cell size so that at least 4 cells will fit
+** on one page. Thus the default max embedded payload fraction is 64.
+**
+** If the payload for a cell is larger than the max payload, then extra
+** payload is spilled to overflow pages. Once an overflow page is allocated,
+** as many bytes as possible are moved into the overflow pages without letting
+** the cell size drop below the min embedded payload fraction.
+**
+** The min leaf payload fraction is like the min embedded payload fraction
+** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
+** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
+** not specified in the header.
+**
+** Each btree pages is divided into three sections: The header, the
+** cell pointer array, and the cell content area. Page 1 also has a 100-byte
+** file header that occurs before the page header.
+**
+** |----------------|
+** | file header | 100 bytes. Page 1 only.
+** |----------------|
+** | page header | 8 bytes for leaves. 12 bytes for interior nodes
+** |----------------|
+** | cell pointer | | 2 bytes per cell. Sorted order.
+** | array | | Grows downward
+** | | v
+** |----------------|
+** | unallocated |
+** | space |
+** |----------------| ^ Grows upwards
+** | cell content | | Arbitrary order interspersed with freeblocks.
+** | area | | and free space fragments.
+** |----------------|
+**
+** The page headers looks like this:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
+** 1 2 byte offset to the first freeblock
+** 3 2 number of cells on this page
+** 5 2 first byte of the cell content area
+** 7 1 number of fragmented free bytes
+** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
+**
+** The flags define the format of this btree page. The leaf flag means that
+** this page has no children. The zerodata flag means that this page carries
+** only keys and no data. The intkey flag means that the key is an integer
+** which is stored in the key size entry of the cell header rather than in
+** the payload area.
+**
+** The cell pointer array begins on the first byte after the page header.
+** The cell pointer array contains zero or more 2-byte numbers which are
+** offsets from the beginning of the page to the cell content in the cell
+** content area. The cell pointers occur in sorted order. The system strives
+** to keep free space after the last cell pointer so that new cells can
+** be easily added without having to defragment the page.
+**
+** Cell content is stored at the very end of the page and grows toward the
+** beginning of the page.
+**
+** Unused space within the cell content area is collected into a linked list of
+** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
+** to the first freeblock is given in the header. Freeblocks occur in
+** increasing order. Because a freeblock must be at least 4 bytes in size,
+** any group of 3 or fewer unused bytes in the cell content area cannot
+** exist on the freeblock chain. A group of 3 or fewer free bytes is called
+** a fragment. The total number of bytes in all fragments is recorded.
+** in the page header at offset 7.
+**
+** SIZE DESCRIPTION
+** 2 Byte offset of the next freeblock
+** 2 Bytes in this freeblock
+**
+** Cells are of variable length. Cells are stored in the cell content area at
+** the end of the page. Pointers to the cells are in the cell pointer array
+** that immediately follows the page header. Cells is not necessarily
+** contiguous or in order, but cell pointers are contiguous and in order.
+**
+** Cell content makes use of variable length integers. A variable
+** length integer is 1 to 9 bytes where the lower 7 bits of each
+** byte are used. The integer consists of all bytes that have bit 8 set and
+** the first byte with bit 8 clear. The most significant byte of the integer
+** appears first. A variable-length integer may not be more than 9 bytes long.
+** As a special case, all 8 bits of the 9th byte are used as data. This
+** allows a 64-bit integer to be encoded in 9 bytes.
+**
+** 0x00 becomes 0x00000000
+** 0x7f becomes 0x0000007f
+** 0x81 0x00 becomes 0x00000080
+** 0x82 0x00 becomes 0x00000100
+** 0x80 0x7f becomes 0x0000007f
+** 0x81 0x91 0xd1 0xac 0x78 becomes 0x12345678
+** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
+**
+** Variable length integers are used for rowids and to hold the number of
+** bytes of key and data in a btree cell.
+**
+** The content of a cell looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of the left child. Omitted if leaf flag is set.
+** var Number of bytes of data. Omitted if the zerodata flag is set.
+** var Number of bytes of key. Or the key itself if intkey flag is set.
+** * Payload
+** 4 First page of the overflow chain. Omitted if no overflow
+**
+** Overflow pages form a linked list. Each page except the last is completely
+** filled with data (pagesize - 4 bytes). The last page can have as little
+** as 1 byte of data.
+**
+** SIZE DESCRIPTION
+** 4 Page number of next overflow page
+** * Data
+**
+** Freelist pages come in two subtypes: trunk pages and leaf pages. The
+** file header points to the first in a linked list of trunk page. Each trunk
+** page points to multiple leaf pages. The content of a leaf page is
+** unspecified. A trunk page looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of next trunk page
+** 4 Number of leaf pointers on this page
+** * zero or more pages numbers of leaves
+*/
+/* #include "sqliteInt.h" */
+
+
+/* The following value is the maximum cell size assuming a maximum page
+** size give above.
+*/
+#define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8))
+
+/* The maximum number of cells on a single page of the database. This
+** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
+** plus 2 bytes for the index to the cell in the page header). Such
+** small cells will be rare, but they are possible.
+*/
+#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
+
+/* Forward declarations */
+typedef struct MemPage MemPage;
+typedef struct BtLock BtLock;
+typedef struct CellInfo CellInfo;
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+**
+** You can change this value at compile-time by specifying a
+** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
+** header must be exactly 16 bytes including the zero-terminator so
+** the string itself should be 15 characters long. If you change
+** the header, then your custom library will not be able to read
+** databases generated by the standard tools and the standard tools
+** will not be able to read databases created by your custom library.
+*/
+#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
+# define SQLITE_FILE_HEADER "SQLite format 3"
+#endif
+
+/*
+** Page type flags. An ORed combination of these flags appear as the
+** first byte of on-disk image of every BTree page.
+*/
+#define PTF_INTKEY 0x01
+#define PTF_ZERODATA 0x02
+#define PTF_LEAFDATA 0x04
+#define PTF_LEAF 0x08
+
+/*
+** An instance of this object stores information about each a single database
+** page that has been loaded into memory. The information in this object
+** is derived from the raw on-disk page content.
+**
+** As each database page is loaded into memory, the pager allocates an
+** instance of this object and zeros the first 8 bytes. (This is the
+** "extra" information associated with each page of the pager.)
+**
+** Access to all fields of this structure is controlled by the mutex
+** stored in MemPage.pBt->mutex.
+*/
+struct MemPage {
+ u8 isInit; /* True if previously initialized. MUST BE FIRST! */
+ u8 intKey; /* True if table b-trees. False for index b-trees */
+ u8 intKeyLeaf; /* True if the leaf of an intKey table */
+ Pgno pgno; /* Page number for this page */
+ /* Only the first 8 bytes (above) are zeroed by pager.c when a new page
+ ** is allocated. All fields that follow must be initialized before use */
+ u8 leaf; /* True if a leaf page */
+ u8 hdrOffset; /* 100 for page 1. 0 otherwise */
+ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
+ u8 max1bytePayload; /* min(maxLocal,127) */
+ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
+ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
+ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
+ u16 cellOffset; /* Index in aData of first cell pointer */
+ int nFree; /* Number of free bytes on the page. -1 for unknown */
+ u16 nCell; /* Number of cells on this page, local and ovfl */
+ u16 maskPage; /* Mask for page offset */
+ u16 aiOvfl[4]; /* Insert the i-th overflow cell before the aiOvfl-th
+ ** non-overflow cell */
+ u8 *apOvfl[4]; /* Pointers to the body of overflow cells */
+ BtShared *pBt; /* Pointer to BtShared that this page is part of */
+ u8 *aData; /* Pointer to disk image of the page data */
+ u8 *aDataEnd; /* One byte past the end of the entire page - not just
+ ** the usable space, the entire page. Used to prevent
+ ** corruption-induced buffer overflow. */
+ u8 *aCellIdx; /* The cell index area */
+ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */
+ DbPage *pDbPage; /* Pager page handle */
+ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */
+ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */
+};
+
+/*
+** A linked list of the following structures is stored at BtShared.pLock.
+** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
+** is opened on the table with root page BtShared.iTable. Locks are removed
+** from this list when a transaction is committed or rolled back, or when
+** a btree handle is closed.
+*/
+struct BtLock {
+ Btree *pBtree; /* Btree handle holding this lock */
+ Pgno iTable; /* Root page of table */
+ u8 eLock; /* READ_LOCK or WRITE_LOCK */
+ BtLock *pNext; /* Next in BtShared.pLock list */
+};
+
+/* Candidate values for BtLock.eLock */
+#define READ_LOCK 1
+#define WRITE_LOCK 2
+
+/* A Btree handle
+**
+** A database connection contains a pointer to an instance of
+** this object for every database file that it has open. This structure
+** is opaque to the database connection. The database connection cannot
+** see the internals of this structure and only deals with pointers to
+** this structure.
+**
+** For some database files, the same underlying database cache might be
+** shared between multiple connections. In that case, each connection
+** has it own instance of this object. But each instance of this object
+** points to the same BtShared object. The database cache and the
+** schema associated with the database file are all contained within
+** the BtShared object.
+**
+** All fields in this structure are accessed under sqlite3.mutex.
+** The pBt pointer itself may not be changed while there exists cursors
+** in the referenced BtShared that point back to this Btree since those
+** cursors have to go through this Btree to find their BtShared and
+** they often do so without holding sqlite3.mutex.
+*/
+struct Btree {
+ sqlite3 *db; /* The database connection holding this btree */
+ BtShared *pBt; /* Sharable content of this btree */
+ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
+ u8 sharable; /* True if we can share pBt with another db */
+ u8 locked; /* True if db currently has pBt locked */
+ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */
+ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
+ int nBackup; /* Number of backup operations reading this btree */
+ u32 iBDataVersion; /* Combines with pBt->pPager->iDataVersion */
+ Btree *pNext; /* List of other sharable Btrees from the same db */
+ Btree *pPrev; /* Back pointer of the same list */
+#ifdef SQLITE_DEBUG
+ u64 nSeek; /* Calls to sqlite3BtreeMovetoUnpacked() */
+#endif
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ BtLock lock; /* Object used to lock page 1 */
+#endif
+};
+
+/*
+** Btree.inTrans may take one of the following values.
+**
+** If the shared-data extension is enabled, there may be multiple users
+** of the Btree structure. At most one of these may open a write transaction,
+** but any number may have active read transactions.
+**
+** These values must match SQLITE_TXN_NONE, SQLITE_TXN_READ, and
+** SQLITE_TXN_WRITE
+*/
+#define TRANS_NONE 0
+#define TRANS_READ 1
+#define TRANS_WRITE 2
+
+#if TRANS_NONE!=SQLITE_TXN_NONE
+# error wrong numeric code for no-transaction
+#endif
+#if TRANS_READ!=SQLITE_TXN_READ
+# error wrong numeric code for read-transaction
+#endif
+#if TRANS_WRITE!=SQLITE_TXN_WRITE
+# error wrong numeric code for write-transaction
+#endif
+
+
+/*
+** An instance of this object represents a single database file.
+**
+** A single database file can be in use at the same time by two
+** or more database connections. When two or more connections are
+** sharing the same database file, each connection has it own
+** private Btree object for the file and each of those Btrees points
+** to this one BtShared object. BtShared.nRef is the number of
+** connections currently sharing this database file.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** mutex, except for nRef and pNext which are accessed under the
+** global SQLITE_MUTEX_STATIC_MAIN mutex. The pPager field
+** may not be modified once it is initially set as long as nRef>0.
+** The pSchema field may be set once under BtShared.mutex and
+** thereafter is unchanged as long as nRef>0.
+**
+** isPending:
+**
+** If a BtShared client fails to obtain a write-lock on a database
+** table (because there exists one or more read-locks on the table),
+** the shared-cache enters 'pending-lock' state and isPending is
+** set to true.
+**
+** The shared-cache leaves the 'pending lock' state when either of
+** the following occur:
+**
+** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
+** 2) The number of locks held by other connections drops to zero.
+**
+** while in the 'pending-lock' state, no connection may start a new
+** transaction.
+**
+** This feature is included to help prevent writer-starvation.
+*/
+struct BtShared {
+ Pager *pPager; /* The page cache */
+ sqlite3 *db; /* Database connection currently using this Btree */
+ BtCursor *pCursor; /* A list of all open cursors */
+ MemPage *pPage1; /* First page of the database */
+ u8 openFlags; /* Flags to sqlite3BtreeOpen() */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ u8 autoVacuum; /* True if auto-vacuum is enabled */
+ u8 incrVacuum; /* True if incr-vacuum is enabled */
+ u8 bDoTruncate; /* True to truncate db on commit */
+#endif
+ u8 inTransaction; /* Transaction state */
+ u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */
+ u8 nReserveWanted; /* Desired number of extra bytes per page */
+ u16 btsFlags; /* Boolean parameters. See BTS_* macros below */
+ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
+ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
+ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
+ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
+ u32 pageSize; /* Total number of bytes on a page */
+ u32 usableSize; /* Number of usable bytes on each page */
+ int nTransaction; /* Number of open transactions (read + write) */
+ u32 nPage; /* Number of pages in the database */
+ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
+ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
+ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
+ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nRef; /* Number of references to this structure */
+ BtShared *pNext; /* Next on a list of sharable BtShared structs */
+ BtLock *pLock; /* List of locks held on this shared-btree struct */
+ Btree *pWriter; /* Btree with currently open write transaction */
+#endif
+ u8 *pTmpSpace; /* Temp space sufficient to hold a single cell */
+ int nPreformatSize; /* Size of last cell written by TransferRow() */
+};
+
+/*
+** Allowed values for BtShared.btsFlags
+*/
+#define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */
+#define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */
+#define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */
+#define BTS_OVERWRITE 0x0008 /* Overwrite deleted content with zeros */
+#define BTS_FAST_SECURE 0x000c /* Combination of the previous two */
+#define BTS_INITIALLY_EMPTY 0x0010 /* Database was empty at trans start */
+#define BTS_NO_WAL 0x0020 /* Do not open write-ahead-log files */
+#define BTS_EXCLUSIVE 0x0040 /* pWriter has an exclusive lock */
+#define BTS_PENDING 0x0080 /* Waiting for read-locks to clear */
+
+/*
+** An instance of the following structure is used to hold information
+** about a cell. The parseCellPtr() function fills in this structure
+** based on information extract from the raw disk page.
+*/
+struct CellInfo {
+ i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */
+ u8 *pPayload; /* Pointer to the start of payload */
+ u32 nPayload; /* Bytes of payload */
+ u16 nLocal; /* Amount of payload held locally, not on overflow */
+ u16 nSize; /* Size of the cell content on the main b-tree page */
+};
+
+/*
+** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
+** this will be declared corrupt. This value is calculated based on a
+** maximum database size of 2^31 pages a minimum fanout of 2 for a
+** root-node and 3 for all other internal nodes.
+**
+** If a tree that appears to be taller than this is encountered, it is
+** assumed that the database is corrupt.
+*/
+#define BTCURSOR_MAX_DEPTH 20
+
+/*
+** A cursor is a pointer to a particular entry within a particular
+** b-tree within a database file.
+**
+** The entry is identified by its MemPage and the index in
+** MemPage.aCell[] of the entry.
+**
+** A single database file can be shared by two more database connections,
+** but cursors cannot be shared. Each cursor is associated with a
+** particular database connection identified BtCursor.pBtree.db.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** found at self->pBt->mutex.
+**
+** skipNext meaning:
+** The meaning of skipNext depends on the value of eState:
+**
+** eState Meaning of skipNext
+** VALID skipNext is meaningless and is ignored
+** INVALID skipNext is meaningless and is ignored
+** SKIPNEXT sqlite3BtreeNext() is a no-op if skipNext>0 and
+** sqlite3BtreePrevious() is no-op if skipNext<0.
+** REQUIRESEEK restoreCursorPosition() restores the cursor to
+** eState=SKIPNEXT if skipNext!=0
+** FAULT skipNext holds the cursor fault error code.
+*/
+struct BtCursor {
+ u8 eState; /* One of the CURSOR_XXX constants (see below) */
+ u8 curFlags; /* zero or more BTCF_* flags defined below */
+ u8 curPagerFlags; /* Flags to send to sqlite3PagerGet() */
+ u8 hints; /* As configured by CursorSetHints() */
+ int skipNext; /* Prev() is noop if negative. Next() is noop if positive.
+ ** Error code if eState==CURSOR_FAULT */
+ Btree *pBtree; /* The Btree to which this cursor belongs */
+ Pgno *aOverflow; /* Cache of overflow page locations */
+ void *pKey; /* Saved key that was cursor last known position */
+ /* All fields above are zeroed when the cursor is allocated. See
+ ** sqlite3BtreeCursorZero(). Fields that follow must be manually
+ ** initialized. */
+#define BTCURSOR_FIRST_UNINIT pBt /* Name of first uninitialized field */
+ BtShared *pBt; /* The BtShared this cursor points to */
+ BtCursor *pNext; /* Forms a linked list of all cursors */
+ CellInfo info; /* A parse of the cell we are pointing at */
+ i64 nKey; /* Size of pKey, or last integer key */
+ Pgno pgnoRoot; /* The root page of this tree */
+ i8 iPage; /* Index of current page in apPage */
+ u8 curIntKey; /* Value of apPage[0]->intKey */
+ u16 ix; /* Current index for apPage[iPage] */
+ u16 aiIdx[BTCURSOR_MAX_DEPTH-1]; /* Current index in apPage[i] */
+ struct KeyInfo *pKeyInfo; /* Arg passed to comparison function */
+ MemPage *pPage; /* Current page */
+ MemPage *apPage[BTCURSOR_MAX_DEPTH-1]; /* Stack of parents of current page */
+};
+
+/*
+** Legal values for BtCursor.curFlags
+*/
+#define BTCF_WriteFlag 0x01 /* True if a write cursor */
+#define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */
+#define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */
+#define BTCF_AtLast 0x08 /* Cursor is pointing to the last entry */
+#define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */
+#define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */
+#define BTCF_Pinned 0x40 /* Cursor is busy and cannot be moved */
+
+/*
+** Potential values for BtCursor.eState.
+**
+** CURSOR_INVALID:
+** Cursor does not point to a valid entry. This can happen (for example)
+** because the table is empty or because BtreeCursorFirst() has not been
+** called.
+**
+** CURSOR_VALID:
+** Cursor points to a valid entry. getPayload() etc. may be called.
+**
+** CURSOR_SKIPNEXT:
+** Cursor is valid except that the Cursor.skipNext field is non-zero
+** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
+** operation should be a no-op.
+**
+** CURSOR_REQUIRESEEK:
+** The table that this cursor was opened on still exists, but has been
+** modified since the cursor was last used. The cursor position is saved
+** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
+** this state, restoreCursorPosition() can be called to attempt to
+** seek the cursor to the saved position.
+**
+** CURSOR_FAULT:
+** An unrecoverable error (an I/O error or a malloc failure) has occurred
+** on a different connection that shares the BtShared cache with this
+** cursor. The error has left the cache in an inconsistent state.
+** Do nothing else with this cursor. Any attempt to use the cursor
+** should return the error code stored in BtCursor.skipNext
+*/
+#define CURSOR_VALID 0
+#define CURSOR_INVALID 1
+#define CURSOR_SKIPNEXT 2
+#define CURSOR_REQUIRESEEK 3
+#define CURSOR_FAULT 4
+
+/*
+** The database page the PENDING_BYTE occupies. This page is never used.
+*/
+#define PENDING_BYTE_PAGE(pBt) ((Pgno)((PENDING_BYTE/((pBt)->pageSize))+1))
+
+/*
+** These macros define the location of the pointer-map entry for a
+** database page. The first argument to each is the number of usable
+** bytes on each page of the database (often 1024). The second is the
+** page number to look up in the pointer map.
+**
+** PTRMAP_PAGENO returns the database page number of the pointer-map
+** page that stores the required pointer. PTRMAP_PTROFFSET returns
+** the offset of the requested map entry.
+**
+** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
+** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
+** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
+** this test.
+*/
+#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
+#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
+#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
+
+/*
+** The pointer map is a lookup table that identifies the parent page for
+** each child page in the database file. The parent page is the page that
+** contains a pointer to the child. Every page in the database contains
+** 0 or 1 parent pages. (In this context 'database page' refers
+** to any page that is not part of the pointer map itself.) Each pointer map
+** entry consists of a single byte 'type' and a 4 byte parent page number.
+** The PTRMAP_XXX identifiers below are the valid types.
+**
+** The purpose of the pointer map is to facility moving pages from one
+** position in the file to another as part of autovacuum. When a page
+** is moved, the pointer in its parent must be updated to point to the
+** new location. The pointer map is used to locate the parent page quickly.
+**
+** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
+** used in this case.
+**
+** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
+** is not used in this case.
+**
+** PTRMAP_OVERFLOW1: The database page is the first page in a list of
+** overflow pages. The page number identifies the page that
+** contains the cell with a pointer to this overflow page.
+**
+** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
+** overflow pages. The page-number identifies the previous
+** page in the overflow page list.
+**
+** PTRMAP_BTREE: The database page is a non-root btree page. The page number
+** identifies the parent page in the btree.
+*/
+#define PTRMAP_ROOTPAGE 1
+#define PTRMAP_FREEPAGE 2
+#define PTRMAP_OVERFLOW1 3
+#define PTRMAP_OVERFLOW2 4
+#define PTRMAP_BTREE 5
+
+/* A bunch of assert() statements to check the transaction state variables
+** of handle p (type Btree*) are internally consistent.
+*/
+#define btreeIntegrity(p) \
+ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
+ assert( p->pBt->inTransaction>=p->inTrans );
+
+
+/*
+** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
+** if the database supports auto-vacuum or not. Because it is used
+** within an expression that is an argument to another macro
+** (sqliteMallocRaw), it is not possible to use conditional compilation.
+** So, this macro is defined instead.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define ISAUTOVACUUM(pBt) (pBt->autoVacuum)
+#else
+#define ISAUTOVACUUM(pBt) 0
+#endif
+
+
+/*
+** This structure is passed around through all the PRAGMA integrity_check
+** checking routines in order to keep track of some global state information.
+**
+** The aRef[] array is allocated so that there is 1 bit for each page in
+** the database. As the integrity-check proceeds, for each page used in
+** the database the corresponding bit is set. This allows integrity-check to
+** detect pages that are used twice and orphaned pages (both of which
+** indicate corruption).
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ BtShared *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ u8 *aPgRef; /* 1 bit per page in the db (see above) */
+ Pgno nCkPage; /* Pages in the database. 0 for partial check */
+ int mxErr; /* Stop accumulating errors when this reaches zero */
+ int nErr; /* Number of messages written to zErrMsg so far */
+ int rc; /* SQLITE_OK, SQLITE_NOMEM, or SQLITE_INTERRUPT */
+ u32 nStep; /* Number of steps into the integrity_check process */
+ const char *zPfx; /* Error message prefix */
+ Pgno v0; /* Value for first %u substitution in zPfx (root page) */
+ Pgno v1; /* Value for second %u substitution in zPfx (current pg) */
+ int v2; /* Value for third %d substitution in zPfx */
+ StrAccum errMsg; /* Accumulate the error message text here */
+ u32 *heap; /* Min-heap used for analyzing cell coverage */
+ sqlite3 *db; /* Database connection running the check */
+};
+
+/*
+** Routines to read or write a two- and four-byte big-endian integer values.
+*/
+#define get2byte(x) ((x)[0]<<8 | (x)[1])
+#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
+#define get4byte sqlite3Get4byte
+#define put4byte sqlite3Put4byte
+
+/*
+** get2byteAligned(), unlike get2byte(), requires that its argument point to a
+** two-byte aligned address. get2byteAligned() is only used for accessing the
+** cell addresses in a btree header.
+*/
+#if SQLITE_BYTEORDER==4321
+# define get2byteAligned(x) (*(u16*)(x))
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000
+# define get2byteAligned(x) __builtin_bswap16(*(u16*)(x))
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+# define get2byteAligned(x) _byteswap_ushort(*(u16*)(x))
+#else
+# define get2byteAligned(x) ((x)[0]<<8 | (x)[1])
+#endif
+
+/************** End of btreeInt.h ********************************************/
+/************** Continuing where we left off in btmutex.c ********************/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+#if SQLITE_THREADSAFE
+
+/*
+** Obtain the BtShared mutex associated with B-Tree handle p. Also,
+** set BtShared.db to the database handle associated with p and the
+** p->locked boolean to true.
+*/
+static void lockBtreeMutex(Btree *p){
+ assert( p->locked==0 );
+ assert( sqlite3_mutex_notheld(p->pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->pBt->db = p->db;
+ p->locked = 1;
+}
+
+/*
+** Release the BtShared mutex associated with B-Tree handle p and
+** clear the p->locked boolean.
+*/
+static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){
+ BtShared *pBt = p->pBt;
+ assert( p->locked==1 );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ assert( p->db==pBt->db );
+
+ sqlite3_mutex_leave(pBt->mutex);
+ p->locked = 0;
+}
+
+/* Forward reference */
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p);
+
+/*
+** Enter a mutex on the given BTree object.
+**
+** If the object is not sharable, then no mutex is ever required
+** and this routine is a no-op. The underlying mutex is non-recursive.
+** But we keep a reference count in Btree.wantToLock so the behavior
+** of this interface is recursive.
+**
+** To avoid deadlocks, multiple Btrees are locked in the same order
+** by all database connections. The p->pNext is a list of other
+** Btrees belonging to the same database connection as the p Btree
+** which need to be locked after p. If we cannot get a lock on
+** p, then first unlock all of the others on p->pNext, then wait
+** for the lock to become available on p, then relock all of the
+** subsequent Btrees that desire a lock.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ /* Some basic sanity checking on the Btree. The list of Btrees
+ ** connected by pNext and pPrev should be in sorted order by
+ ** Btree.pBt value. All elements of the list should belong to
+ ** the same connection. Only shared Btrees are on the list. */
+ assert( p->pNext==0 || p->pNext->pBt>p->pBt );
+ assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
+ assert( p->pNext==0 || p->pNext->db==p->db );
+ assert( p->pPrev==0 || p->pPrev->db==p->db );
+ assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
+
+ /* Check for locking consistency */
+ assert( !p->locked || p->wantToLock>0 );
+ assert( p->sharable || p->wantToLock==0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ /* Unless the database is sharable and unlocked, then BtShared.db
+ ** should already be set correctly. */
+ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
+
+ if( !p->sharable ) return;
+ p->wantToLock++;
+ if( p->locked ) return;
+ btreeLockCarefully(p);
+}
+
+/* This is a helper function for sqlite3BtreeLock(). By moving
+** complex, but seldom used logic, out of sqlite3BtreeLock() and
+** into this routine, we avoid unnecessary stack pointer changes
+** and thus help the sqlite3BtreeLock() routine to run much faster
+** in the common case.
+*/
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
+ Btree *pLater;
+
+ /* In most cases, we should be able to acquire the lock we
+ ** want without having to go through the ascending lock
+ ** procedure that follows. Just be sure not to block.
+ */
+ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
+ p->pBt->db = p->db;
+ p->locked = 1;
+ return;
+ }
+
+ /* To avoid deadlock, first release all locks with a larger
+ ** BtShared address. Then acquire our lock. Then reacquire
+ ** the other BtShared locks that we used to hold in ascending
+ ** order.
+ */
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ assert( pLater->sharable );
+ assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
+ assert( !pLater->locked || pLater->wantToLock>0 );
+ if( pLater->locked ){
+ unlockBtreeMutex(pLater);
+ }
+ }
+ lockBtreeMutex(p);
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->wantToLock ){
+ lockBtreeMutex(pLater);
+ }
+ }
+}
+
+
+/*
+** Exit the recursive mutex on a Btree.
+*/
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ if( p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ unlockBtreeMutex(p);
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the BtShared mutex is held on the btree, or if the
+** B-Tree is not marked as sharable.
+**
+** This routine is used only from within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
+ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
+ assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
+
+ return (p->sharable==0 || p->locked);
+}
+#endif
+
+
+/*
+** Enter the mutex on every Btree associated with a database
+** connection. This is needed (for example) prior to parsing
+** a statement since we will be comparing table and column names
+** against all schemas and we do not want those schemas being
+** reset out from under us.
+**
+** There is a corresponding leave-all procedures.
+**
+** Enter the mutexes in ascending order by BtShared pointer address
+** to avoid the possibility of deadlock when two threads with
+** two or more btrees in common both try to lock all their btrees
+** at the same instant.
+*/
+static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){
+ int i;
+ int skipOk = 1;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p && p->sharable ){
+ sqlite3BtreeEnter(p);
+ skipOk = 0;
+ }
+ }
+ db->noSharedCache = skipOk;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ if( db->noSharedCache==0 ) btreeEnterAll(db);
+}
+static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
+ int i;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p ) sqlite3BtreeLeave(p);
+ }
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
+ if( db->noSharedCache==0 ) btreeLeaveAll(db);
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the current thread holds the database connection
+** mutex and all required BtShared mutexes.
+**
+** This routine is used inside assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
+ int i;
+ if( !sqlite3_mutex_held(db->mutex) ){
+ return 0;
+ }
+ for(i=0; i<db->nDb; i++){
+ Btree *p;
+ p = db->aDb[i].pBt;
+ if( p && p->sharable &&
+ (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
+ return 0;
+ }
+ }
+ return 1;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Return true if the correct mutexes are held for accessing the
+** db->aDb[iDb].pSchema structure. The mutexes required for schema
+** access are:
+**
+** (1) The mutex on db
+** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
+**
+** If pSchema is not NULL, then iDb is computed from pSchema and
+** db using sqlite3SchemaToIndex().
+*/
+SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
+ Btree *p;
+ assert( db!=0 );
+ if( db->pVfs==0 && db->nDb==0 ) return 1;
+ if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+ if( !sqlite3_mutex_held(db->mutex) ) return 0;
+ if( iDb==1 ) return 1;
+ p = db->aDb[iDb].pBt;
+ assert( p!=0 );
+ return p->sharable==0 || p->locked==1;
+}
+#endif /* NDEBUG */
+
+#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
+/*
+** The following are special cases for mutex enter routines for use
+** in single threaded applications that use shared cache. Except for
+** these two routines, all mutex operations are no-ops in that case and
+** are null #defines in btree.h.
+**
+** If shared cache is disabled, then all btree mutex routines, including
+** the ones below, are no-ops and are null #defines in btree.h.
+*/
+
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ p->pBt->db = p->db;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p ){
+ p->pBt->db = p->db;
+ }
+ }
+}
+#endif /* if SQLITE_THREADSAFE */
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Enter a mutex on a Btree given a cursor owned by that Btree.
+**
+** These entry points are used by incremental I/O only. Enter() is required
+** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not
+** the build is threadsafe. Leave() is only required by threadsafe builds.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
+ sqlite3BtreeEnter(pCur->pBtree);
+}
+# if SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
+ sqlite3BtreeLeave(pCur->pBtree);
+}
+# endif
+#endif /* ifndef SQLITE_OMIT_INCRBLOB */
+
+#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
+
+/************** End of btmutex.c *********************************************/
+/************** Begin file btree.c *******************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an external (disk-based) database using BTrees.
+** See the header comment on "btreeInt.h" for additional information.
+** Including a description of file format and an overview of operation.
+*/
+/* #include "btreeInt.h" */
+
+/*
+** The header string that appears at the beginning of every
+** SQLite database.
+*/
+static const char zMagicHeader[] = SQLITE_FILE_HEADER;
+
+/*
+** Set this global variable to 1 to enable tracing using the TRACE
+** macro.
+*/
+#if 0
+int sqlite3BtreeTrace=1; /* True to enable tracing */
+# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
+#else
+# define TRACE(X)
+#endif
+
+/*
+** Extract a 2-byte big-endian integer from an array of unsigned bytes.
+** But if the value is zero, make it 65536.
+**
+** This routine is used to extract the "offset to cell content area" value
+** from the header of a btree page. If the page size is 65536 and the page
+** is empty, the offset should be 65536, but the 2-byte value stores zero.
+** This routine makes the necessary adjustment to 65536.
+*/
+#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
+
+/*
+** Values passed as the 5th argument to allocateBtreePage()
+*/
+#define BTALLOC_ANY 0 /* Allocate any page */
+#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
+#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
+
+/*
+** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
+** defined, or 0 if it is. For example:
+**
+** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define IfNotOmitAV(expr) (expr)
+#else
+#define IfNotOmitAV(expr) 0
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** A list of BtShared objects that are eligible for participation
+** in shared cache. This variable has file scope during normal builds,
+** but the test harness needs to access it so we make it global for
+** test builds.
+**
+** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
+*/
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
+#else
+static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
+#endif
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Enable or disable the shared pager and schema features.
+**
+** This routine has no effect on existing database connections.
+** The shared cache setting effects only future calls to
+** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int enable){
+ sqlite3GlobalConfig.sharedCacheEnabled = enable;
+ return SQLITE_OK;
+}
+#endif
+
+
+
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ /*
+ ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
+ ** and clearAllSharedCacheTableLocks()
+ ** manipulate entries in the BtShared.pLock linked list used to store
+ ** shared-cache table level locks. If the library is compiled with the
+ ** shared-cache feature disabled, then there is only ever one user
+ ** of each BtShared structure and so this locking is not necessary.
+ ** So define the lock related functions as no-ops.
+ */
+ #define querySharedCacheTableLock(a,b,c) SQLITE_OK
+ #define setSharedCacheTableLock(a,b,c) SQLITE_OK
+ #define clearAllSharedCacheTableLocks(a)
+ #define downgradeAllSharedCacheTableLocks(a)
+ #define hasSharedCacheTableLock(a,b,c,d) 1
+ #define hasReadConflicts(a, b) 0
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return and reset the seek counter for a Btree object.
+*/
+SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
+ u64 n = pBt->nSeek;
+ pBt->nSeek = 0;
+ return n;
+}
+#endif
+
+/*
+** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
+** (MemPage*) as an argument. The (MemPage*) must not be NULL.
+**
+** If SQLITE_DEBUG is not defined, then this macro is equivalent to
+** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
+** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
+** with the page number and filename associated with the (MemPage*).
+*/
+#ifdef SQLITE_DEBUG
+int corruptPageError(int lineno, MemPage *p){
+ char *zMsg;
+ sqlite3BeginBenignMalloc();
+ zMsg = sqlite3_mprintf("database corruption page %u of %s",
+ p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
+ );
+ sqlite3EndBenignMalloc();
+ if( zMsg ){
+ sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
+ }
+ sqlite3_free(zMsg);
+ return SQLITE_CORRUPT_BKPT;
+}
+# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
+#else
+# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+
+#ifdef SQLITE_DEBUG
+/*
+**** This function is only used as part of an assert() statement. ***
+**
+** Check to see if pBtree holds the required locks to read or write to the
+** table with root page iRoot. Return 1 if it does and 0 if not.
+**
+** For example, when writing to a table with root-page iRoot via
+** Btree connection pBtree:
+**
+** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
+**
+** When writing to an index that resides in a sharable database, the
+** caller should have first obtained a lock specifying the root page of
+** the corresponding table. This makes things a bit more complicated,
+** as this module treats each table as a separate structure. To determine
+** the table corresponding to the index being written, this
+** function has to search through the database schema.
+**
+** Instead of a lock on the table/index rooted at page iRoot, the caller may
+** hold a write-lock on the schema table (root page 1). This is also
+** acceptable.
+*/
+static int hasSharedCacheTableLock(
+ Btree *pBtree, /* Handle that must hold lock */
+ Pgno iRoot, /* Root page of b-tree */
+ int isIndex, /* True if iRoot is the root of an index b-tree */
+ int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
+){
+ Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
+ Pgno iTab = 0;
+ BtLock *pLock;
+
+ /* If this database is not shareable, or if the client is reading
+ ** and has the read-uncommitted flag set, then no lock is required.
+ ** Return true immediately.
+ */
+ if( (pBtree->sharable==0)
+ || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
+ ){
+ return 1;
+ }
+
+ /* If the client is reading or writing an index and the schema is
+ ** not loaded, then it is too difficult to actually check to see if
+ ** the correct locks are held. So do not bother - just return true.
+ ** This case does not come up very often anyhow.
+ */
+ if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
+ return 1;
+ }
+
+ /* Figure out the root-page that the lock should be held on. For table
+ ** b-trees, this is just the root page of the b-tree being read or
+ ** written. For index b-trees, it is the root page of the associated
+ ** table. */
+ if( isIndex ){
+ HashElem *p;
+ int bSeen = 0;
+ for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
+ Index *pIdx = (Index *)sqliteHashData(p);
+ if( pIdx->tnum==iRoot ){
+ if( bSeen ){
+ /* Two or more indexes share the same root page. There must
+ ** be imposter tables. So just return true. The assert is not
+ ** useful in that case. */
+ return 1;
+ }
+ iTab = pIdx->pTable->tnum;
+ bSeen = 1;
+ }
+ }
+ }else{
+ iTab = iRoot;
+ }
+
+ /* Search for the required lock. Either a write-lock on root-page iTab, a
+ ** write-lock on the schema table, or (if the client is reading) a
+ ** read-lock on iTab will suffice. Return 1 if any of these are found. */
+ for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
+ if( pLock->pBtree==pBtree
+ && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
+ && pLock->eLock>=eLockType
+ ){
+ return 1;
+ }
+ }
+
+ /* Failed to find the required lock. */
+ return 0;
+}
+#endif /* SQLITE_DEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+**** This function may be used as part of assert() statements only. ****
+**
+** Return true if it would be illegal for pBtree to write into the
+** table or index rooted at iRoot because other shared connections are
+** simultaneously reading that same table or index.
+**
+** It is illegal for pBtree to write if some other Btree object that
+** shares the same BtShared object is currently reading or writing
+** the iRoot table. Except, if the other Btree object has the
+** read-uncommitted flag set, then it is OK for the other object to
+** have a read cursor.
+**
+** For example, before writing to any part of the table or index
+** rooted at page iRoot, one should call:
+**
+** assert( !hasReadConflicts(pBtree, iRoot) );
+*/
+static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
+ BtCursor *p;
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( p->pgnoRoot==iRoot
+ && p->pBtree!=pBtree
+ && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif /* #ifdef SQLITE_DEBUG */
+
+/*
+** Query to see if Btree handle p may obtain a lock of type eLock
+** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
+** SQLITE_OK if the lock may be obtained (by calling
+** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
+*/
+static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
+ BtShared *pBt = p->pBt;
+ BtLock *pIter;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
+ assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
+
+ /* If requesting a write-lock, then the Btree must have an open write
+ ** transaction on this file. And, obviously, for this to be so there
+ ** must be an open write transaction on the file itself.
+ */
+ assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
+ assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
+
+ /* This routine is a no-op if the shared-cache is not enabled */
+ if( !p->sharable ){
+ return SQLITE_OK;
+ }
+
+ /* If some other connection is holding an exclusive lock, the
+ ** requested lock may not be obtained.
+ */
+ if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
+ sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
+ return SQLITE_LOCKED_SHAREDCACHE;
+ }
+
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ /* The condition (pIter->eLock!=eLock) in the following if(...)
+ ** statement is a simplification of:
+ **
+ ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
+ **
+ ** since we know that if eLock==WRITE_LOCK, then no other connection
+ ** may hold a WRITE_LOCK on any table in this file (since there can
+ ** only be a single writer).
+ */
+ assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
+ assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
+ if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
+ sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
+ if( eLock==WRITE_LOCK ){
+ assert( p==pBt->pWriter );
+ pBt->btsFlags |= BTS_PENDING;
+ }
+ return SQLITE_LOCKED_SHAREDCACHE;
+ }
+ }
+ return SQLITE_OK;
+}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Add a lock on the table with root-page iTable to the shared-btree used
+** by Btree handle p. Parameter eLock must be either READ_LOCK or
+** WRITE_LOCK.
+**
+** This function assumes the following:
+**
+** (a) The specified Btree object p is connected to a sharable
+** database (one with the BtShared.sharable flag set), and
+**
+** (b) No other Btree objects hold a lock that conflicts
+** with the requested lock (i.e. querySharedCacheTableLock() has
+** already been called and returned SQLITE_OK).
+**
+** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
+** is returned if a malloc attempt fails.
+*/
+static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
+ BtShared *pBt = p->pBt;
+ BtLock *pLock = 0;
+ BtLock *pIter;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
+ assert( p->db!=0 );
+
+ /* A connection with the read-uncommitted flag set will never try to
+ ** obtain a read-lock using this function. The only read-lock obtained
+ ** by a connection in read-uncommitted mode is on the sqlite_schema
+ ** table, and that lock is obtained in BtreeBeginTrans(). */
+ assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
+
+ /* This function should only be called on a sharable b-tree after it
+ ** has been determined that no other b-tree holds a conflicting lock. */
+ assert( p->sharable );
+ assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
+
+ /* First search the list for an existing lock on this table. */
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->iTable==iTable && pIter->pBtree==p ){
+ pLock = pIter;
+ break;
+ }
+ }
+
+ /* If the above search did not find a BtLock struct associating Btree p
+ ** with table iTable, allocate one and link it into the list.
+ */
+ if( !pLock ){
+ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
+ if( !pLock ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pLock->iTable = iTable;
+ pLock->pBtree = p;
+ pLock->pNext = pBt->pLock;
+ pBt->pLock = pLock;
+ }
+
+ /* Set the BtLock.eLock variable to the maximum of the current lock
+ ** and the requested lock. This means if a write-lock was already held
+ ** and a read-lock requested, we don't incorrectly downgrade the lock.
+ */
+ assert( WRITE_LOCK>READ_LOCK );
+ if( eLock>pLock->eLock ){
+ pLock->eLock = eLock;
+ }
+
+ return SQLITE_OK;
+}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Release all the table locks (locks obtained via calls to
+** the setSharedCacheTableLock() procedure) held by Btree object p.
+**
+** This function assumes that Btree p has an open read or write
+** transaction. If it does not, then the BTS_PENDING flag
+** may be incorrectly cleared.
+*/
+static void clearAllSharedCacheTableLocks(Btree *p){
+ BtShared *pBt = p->pBt;
+ BtLock **ppIter = &pBt->pLock;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->sharable || 0==*ppIter );
+ assert( p->inTrans>0 );
+
+ while( *ppIter ){
+ BtLock *pLock = *ppIter;
+ assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
+ assert( pLock->pBtree->inTrans>=pLock->eLock );
+ if( pLock->pBtree==p ){
+ *ppIter = pLock->pNext;
+ assert( pLock->iTable!=1 || pLock==&p->lock );
+ if( pLock->iTable!=1 ){
+ sqlite3_free(pLock);
+ }
+ }else{
+ ppIter = &pLock->pNext;
+ }
+ }
+
+ assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
+ if( pBt->pWriter==p ){
+ pBt->pWriter = 0;
+ pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
+ }else if( pBt->nTransaction==2 ){
+ /* This function is called when Btree p is concluding its
+ ** transaction. If there currently exists a writer, and p is not
+ ** that writer, then the number of locks held by connections other
+ ** than the writer must be about to drop to zero. In this case
+ ** set the BTS_PENDING flag to 0.
+ **
+ ** If there is not currently a writer, then BTS_PENDING must
+ ** be zero already. So this next line is harmless in that case.
+ */
+ pBt->btsFlags &= ~BTS_PENDING;
+ }
+}
+
+/*
+** This function changes all write-locks held by Btree p into read-locks.
+*/
+static void downgradeAllSharedCacheTableLocks(Btree *p){
+ BtShared *pBt = p->pBt;
+ if( pBt->pWriter==p ){
+ BtLock *pLock;
+ pBt->pWriter = 0;
+ pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
+ for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
+ assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
+ pLock->eLock = READ_LOCK;
+ }
+ }
+}
+
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+static void releasePage(MemPage *pPage); /* Forward reference */
+static void releasePageOne(MemPage *pPage); /* Forward reference */
+static void releasePageNotNull(MemPage *pPage); /* Forward reference */
+
+/*
+***** This routine is used inside of assert() only ****
+**
+** Verify that the cursor holds the mutex on its BtShared
+*/
+#ifdef SQLITE_DEBUG
+static int cursorHoldsMutex(BtCursor *p){
+ return sqlite3_mutex_held(p->pBt->mutex);
+}
+
+/* Verify that the cursor and the BtShared agree about what is the current
+** database connetion. This is important in shared-cache mode. If the database
+** connection pointers get out-of-sync, it is possible for routines like
+** btreeInitPage() to reference an stale connection pointer that references a
+** a connection that has already closed. This routine is used inside assert()
+** statements only and for the purpose of double-checking that the btree code
+** does keep the database connection pointers up-to-date.
+*/
+static int cursorOwnsBtShared(BtCursor *p){
+ assert( cursorHoldsMutex(p) );
+ return (p->pBtree->db==p->pBt->db);
+}
+#endif
+
+/*
+** Invalidate the overflow cache of the cursor passed as the first argument.
+** on the shared btree structure pBt.
+*/
+#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
+
+/*
+** Invalidate the overflow page-list cache for all cursors opened
+** on the shared btree structure pBt.
+*/
+static void invalidateAllOverflowCache(BtShared *pBt){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ invalidateOverflowCache(p);
+ }
+}
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** This function is called before modifying the contents of a table
+** to invalidate any incrblob cursors that are open on the
+** row or one of the rows being modified.
+**
+** If argument isClearTable is true, then the entire contents of the
+** table is about to be deleted. In this case invalidate all incrblob
+** cursors open on any row within the table with root-page pgnoRoot.
+**
+** Otherwise, if argument isClearTable is false, then the row with
+** rowid iRow is being replaced or deleted. In this case invalidate
+** only those incrblob cursors open on that specific row.
+*/
+static void invalidateIncrblobCursors(
+ Btree *pBtree, /* The database file to check */
+ Pgno pgnoRoot, /* The table that might be changing */
+ i64 iRow, /* The rowid that might be changing */
+ int isClearTable /* True if all rows are being deleted */
+){
+ BtCursor *p;
+ assert( pBtree->hasIncrblobCur );
+ assert( sqlite3BtreeHoldsMutex(pBtree) );
+ pBtree->hasIncrblobCur = 0;
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( (p->curFlags & BTCF_Incrblob)!=0 ){
+ pBtree->hasIncrblobCur = 1;
+ if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
+ p->eState = CURSOR_INVALID;
+ }
+ }
+ }
+}
+
+#else
+ /* Stub function when INCRBLOB is omitted */
+ #define invalidateIncrblobCursors(w,x,y,z)
+#endif /* SQLITE_OMIT_INCRBLOB */
+
+/*
+** Set bit pgno of the BtShared.pHasContent bitvec. This is called
+** when a page that previously contained data becomes a free-list leaf
+** page.
+**
+** The BtShared.pHasContent bitvec exists to work around an obscure
+** bug caused by the interaction of two useful IO optimizations surrounding
+** free-list leaf pages:
+**
+** 1) When all data is deleted from a page and the page becomes
+** a free-list leaf page, the page is not written to the database
+** (as free-list leaf pages contain no meaningful data). Sometimes
+** such a page is not even journalled (as it will not be modified,
+** why bother journalling it?).
+**
+** 2) When a free-list leaf page is reused, its content is not read
+** from the database or written to the journal file (why should it
+** be, if it is not at all meaningful?).
+**
+** By themselves, these optimizations work fine and provide a handy
+** performance boost to bulk delete or insert operations. However, if
+** a page is moved to the free-list and then reused within the same
+** transaction, a problem comes up. If the page is not journalled when
+** it is moved to the free-list and it is also not journalled when it
+** is extracted from the free-list and reused, then the original data
+** may be lost. In the event of a rollback, it may not be possible
+** to restore the database to its original configuration.
+**
+** The solution is the BtShared.pHasContent bitvec. Whenever a page is
+** moved to become a free-list leaf page, the corresponding bit is
+** set in the bitvec. Whenever a leaf page is extracted from the free-list,
+** optimization 2 above is omitted if the corresponding bit is already
+** set in BtShared.pHasContent. The contents of the bitvec are cleared
+** at the end of every transaction.
+*/
+static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
+ int rc = SQLITE_OK;
+ if( !pBt->pHasContent ){
+ assert( pgno<=pBt->nPage );
+ pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
+ if( !pBt->pHasContent ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
+ rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
+ }
+ return rc;
+}
+
+/*
+** Query the BtShared.pHasContent vector.
+**
+** This function is called when a free-list leaf page is removed from the
+** free-list for reuse. It returns false if it is safe to retrieve the
+** page from the pager layer with the 'no-content' flag set. True otherwise.
+*/
+static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
+ Bitvec *p = pBt->pHasContent;
+ return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
+}
+
+/*
+** Clear (destroy) the BtShared.pHasContent bitvec. This should be
+** invoked at the conclusion of each write-transaction.
+*/
+static void btreeClearHasContent(BtShared *pBt){
+ sqlite3BitvecDestroy(pBt->pHasContent);
+ pBt->pHasContent = 0;
+}
+
+/*
+** Release all of the apPage[] pages for a cursor.
+*/
+static void btreeReleaseAllCursorPages(BtCursor *pCur){
+ int i;
+ if( pCur->iPage>=0 ){
+ for(i=0; i<pCur->iPage; i++){
+ releasePageNotNull(pCur->apPage[i]);
+ }
+ releasePageNotNull(pCur->pPage);
+ pCur->iPage = -1;
+ }
+}
+
+/*
+** The cursor passed as the only argument must point to a valid entry
+** when this function is called (i.e. have eState==CURSOR_VALID). This
+** function saves the current cursor key in variables pCur->nKey and
+** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
+** code otherwise.
+**
+** If the cursor is open on an intkey table, then the integer key
+** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
+** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
+** set to point to a malloced buffer pCur->nKey bytes in size containing
+** the key.
+*/
+static int saveCursorKey(BtCursor *pCur){
+ int rc = SQLITE_OK;
+ assert( CURSOR_VALID==pCur->eState );
+ assert( 0==pCur->pKey );
+ assert( cursorHoldsMutex(pCur) );
+
+ if( pCur->curIntKey ){
+ /* Only the rowid is required for a table btree */
+ pCur->nKey = sqlite3BtreeIntegerKey(pCur);
+ }else{
+ /* For an index btree, save the complete key content. It is possible
+ ** that the current key is corrupt. In that case, it is possible that
+ ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
+ ** up to the size of 1 varint plus 1 8-byte value when the cursor
+ ** position is restored. Hence the 17 bytes of padding allocated
+ ** below. */
+ void *pKey;
+ pCur->nKey = sqlite3BtreePayloadSize(pCur);
+ pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
+ if( pKey ){
+ rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
+ if( rc==SQLITE_OK ){
+ memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
+ pCur->pKey = pKey;
+ }else{
+ sqlite3_free(pKey);
+ }
+ }else{
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ assert( !pCur->curIntKey || !pCur->pKey );
+ return rc;
+}
+
+/*
+** Save the current cursor position in the variables BtCursor.nKey
+** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
+**
+** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
+** prior to calling this routine.
+*/
+static int saveCursorPosition(BtCursor *pCur){
+ int rc;
+
+ assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
+ assert( 0==pCur->pKey );
+ assert( cursorHoldsMutex(pCur) );
+
+ if( pCur->curFlags & BTCF_Pinned ){
+ return SQLITE_CONSTRAINT_PINNED;
+ }
+ if( pCur->eState==CURSOR_SKIPNEXT ){
+ pCur->eState = CURSOR_VALID;
+ }else{
+ pCur->skipNext = 0;
+ }
+
+ rc = saveCursorKey(pCur);
+ if( rc==SQLITE_OK ){
+ btreeReleaseAllCursorPages(pCur);
+ pCur->eState = CURSOR_REQUIRESEEK;
+ }
+
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
+ return rc;
+}
+
+/* Forward reference */
+static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
+
+/*
+** Save the positions of all cursors (except pExcept) that are open on
+** the table with root-page iRoot. "Saving the cursor position" means that
+** the location in the btree is remembered in such a way that it can be
+** moved back to the same spot after the btree has been modified. This
+** routine is called just before cursor pExcept is used to modify the
+** table, for example in BtreeDelete() or BtreeInsert().
+**
+** If there are two or more cursors on the same btree, then all such
+** cursors should have their BTCF_Multiple flag set. The btreeCursor()
+** routine enforces that rule. This routine only needs to be called in
+** the uncommon case when pExpect has the BTCF_Multiple flag set.
+**
+** If pExpect!=NULL and if no other cursors are found on the same root-page,
+** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
+** pointless call to this routine.
+**
+** Implementation note: This routine merely checks to see if any cursors
+** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
+** event that cursors are in need to being saved.
+*/
+static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pExcept==0 || pExcept->pBt==pBt );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
+ }
+ if( p ) return saveCursorsOnList(p, iRoot, pExcept);
+ if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
+ return SQLITE_OK;
+}
+
+/* This helper routine to saveAllCursors does the actual work of saving
+** the cursors if and when a cursor is found that actually requires saving.
+** The common case is that no cursors need to be saved, so this routine is
+** broken out from its caller to avoid unnecessary stack pointer movement.
+*/
+static int SQLITE_NOINLINE saveCursorsOnList(
+ BtCursor *p, /* The first cursor that needs saving */
+ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
+ BtCursor *pExcept /* Do not save this cursor */
+){
+ do{
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
+ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
+ int rc = saveCursorPosition(p);
+ if( SQLITE_OK!=rc ){
+ return rc;
+ }
+ }else{
+ testcase( p->iPage>=0 );
+ btreeReleaseAllCursorPages(p);
+ }
+ }
+ p = p->pNext;
+ }while( p );
+ return SQLITE_OK;
+}
+
+/*
+** Clear the current cursor position.
+*/
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ sqlite3_free(pCur->pKey);
+ pCur->pKey = 0;
+ pCur->eState = CURSOR_INVALID;
+}
+
+/*
+** In this version of BtreeMoveto, pKey is a packed index record
+** such as is generated by the OP_MakeRecord opcode. Unpack the
+** record and then call sqlite3BtreeIndexMoveto() to do the work.
+*/
+static int btreeMoveto(
+ BtCursor *pCur, /* Cursor open on the btree to be searched */
+ const void *pKey, /* Packed key if the btree is an index */
+ i64 nKey, /* Integer key for tables. Size of pKey for indices */
+ int bias, /* Bias search to the high end */
+ int *pRes /* Write search results here */
+){
+ int rc; /* Status code */
+ UnpackedRecord *pIdxKey; /* Unpacked index key */
+
+ if( pKey ){
+ KeyInfo *pKeyInfo = pCur->pKeyInfo;
+ assert( nKey==(i64)(int)nKey );
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
+ if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
+ sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
+ if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
+ }
+ sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
+ }else{
+ pIdxKey = 0;
+ rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
+ }
+ return rc;
+}
+
+/*
+** Restore the cursor to the position it was in (or as close to as possible)
+** when saveCursorPosition() was called. Note that this call deletes the
+** saved position info stored by saveCursorPosition(), so there can be
+** at most one effective restoreCursorPosition() call after each
+** saveCursorPosition().
+*/
+static int btreeRestoreCursorPosition(BtCursor *pCur){
+ int rc;
+ int skipNext = 0;
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState>=CURSOR_REQUIRESEEK );
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skipNext;
+ }
+ pCur->eState = CURSOR_INVALID;
+ if( sqlite3FaultSim(410) ){
+ rc = SQLITE_IOERR;
+ }else{
+ rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_free(pCur->pKey);
+ pCur->pKey = 0;
+ assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
+ if( skipNext ) pCur->skipNext = skipNext;
+ if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
+ pCur->eState = CURSOR_SKIPNEXT;
+ }
+ }
+ return rc;
+}
+
+#define restoreCursorPosition(p) \
+ (p->eState>=CURSOR_REQUIRESEEK ? \
+ btreeRestoreCursorPosition(p) : \
+ SQLITE_OK)
+
+/*
+** Determine whether or not a cursor has moved from the position where
+** it was last placed, or has been invalidated for any other reason.
+** Cursors can move when the row they are pointing at is deleted out
+** from under them, for example. Cursor might also move if a btree
+** is rebalanced.
+**
+** Calling this routine with a NULL cursor pointer returns false.
+**
+** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
+** back to where it ought to be if this routine returns true.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
+ assert( EIGHT_BYTE_ALIGNMENT(pCur)
+ || pCur==sqlite3BtreeFakeValidCursor() );
+ assert( offsetof(BtCursor, eState)==0 );
+ assert( sizeof(pCur->eState)==1 );
+ return CURSOR_VALID != *(u8*)pCur;
+}
+
+/*
+** Return a pointer to a fake BtCursor object that will always answer
+** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
+** cursor returned must not be used with any other Btree interface.
+*/
+SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void){
+ static u8 fakeCursor = CURSOR_VALID;
+ assert( offsetof(BtCursor, eState)==0 );
+ return (BtCursor*)&fakeCursor;
+}
+
+/*
+** This routine restores a cursor back to its original position after it
+** has been moved by some outside activity (such as a btree rebalance or
+** a row having been deleted out from under the cursor).
+**
+** On success, the *pDifferentRow parameter is false if the cursor is left
+** pointing at exactly the same row. *pDifferntRow is the row the cursor
+** was pointing to has been deleted, forcing the cursor to point to some
+** nearby row.
+**
+** This routine should only be called for a cursor that just returned
+** TRUE from sqlite3BtreeCursorHasMoved().
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
+ int rc;
+
+ assert( pCur!=0 );
+ assert( pCur->eState!=CURSOR_VALID );
+ rc = restoreCursorPosition(pCur);
+ if( rc ){
+ *pDifferentRow = 1;
+ return rc;
+ }
+ if( pCur->eState!=CURSOR_VALID ){
+ *pDifferentRow = 1;
+ }else{
+ *pDifferentRow = 0;
+ }
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/*
+** Provide hints to the cursor. The particular hint given (and the type
+** and number of the varargs parameters) is determined by the eHintType
+** parameter. See the definitions of the BTREE_HINT_* macros for details.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
+ /* Used only by system that substitute their own storage engine */
+#ifdef SQLITE_DEBUG
+ if( ALWAYS(eHintType==BTREE_HINT_RANGE) ){
+ va_list ap;
+ Expr *pExpr;
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = sqlite3CursorRangeHintExprCheck;
+ va_start(ap, eHintType);
+ pExpr = va_arg(ap, Expr*);
+ w.u.aMem = va_arg(ap, Mem*);
+ va_end(ap);
+ assert( pExpr!=0 );
+ assert( w.u.aMem!=0 );
+ sqlite3WalkExpr(&w, pExpr);
+ }
+#endif /* SQLITE_DEBUG */
+}
+#endif /* SQLITE_ENABLE_CURSOR_HINTS */
+
+
+/*
+** Provide flag hints to the cursor.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
+ assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
+ pCur->hints = x;
+}
+
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Given a page number of a regular database page, return the page
+** number for the pointer-map page that contains the entry for the
+** input page number.
+**
+** Return 0 (not a valid page) for pgno==1 since there is
+** no pointer map associated with page 1. The integrity_check logic
+** requires that ptrmapPageno(*,1)!=1.
+*/
+static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
+ int nPagesPerMapPage;
+ Pgno iPtrMap, ret;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno<2 ) return 0;
+ nPagesPerMapPage = (pBt->usableSize/5)+1;
+ iPtrMap = (pgno-2)/nPagesPerMapPage;
+ ret = (iPtrMap*nPagesPerMapPage) + 2;
+ if( ret==PENDING_BYTE_PAGE(pBt) ){
+ ret++;
+ }
+ return ret;
+}
+
+/*
+** Write an entry into the pointer map.
+**
+** This routine updates the pointer map entry for page number 'key'
+** so that it maps to type 'eType' and parent page number 'pgno'.
+**
+** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
+** a no-op. If an error occurs, the appropriate error code is written
+** into *pRC.
+*/
+static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
+ DbPage *pDbPage; /* The pointer map page */
+ u8 *pPtrmap; /* The pointer map data */
+ Pgno iPtrmap; /* The pointer map page number */
+ int offset; /* Offset in pointer map page */
+ int rc; /* Return code from subfunctions */
+
+ if( *pRC ) return;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ /* The super-journal page number must never be used as a pointer map page */
+ assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
+
+ assert( pBt->autoVacuum );
+ if( key==0 ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ iPtrmap = PTRMAP_PAGENO(pBt, key);
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
+ if( rc!=SQLITE_OK ){
+ *pRC = rc;
+ return;
+ }
+ if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
+ /* The first byte of the extra data is the MemPage.isInit byte.
+ ** If that byte is set, it means this page is also being used
+ ** as a btree page. */
+ *pRC = SQLITE_CORRUPT_BKPT;
+ goto ptrmap_exit;
+ }
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
+ if( offset<0 ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ goto ptrmap_exit;
+ }
+ assert( offset <= (int)pBt->usableSize-5 );
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
+
+ if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
+ TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key, eType, parent));
+ *pRC= rc = sqlite3PagerWrite(pDbPage);
+ if( rc==SQLITE_OK ){
+ pPtrmap[offset] = eType;
+ put4byte(&pPtrmap[offset+1], parent);
+ }
+ }
+
+ptrmap_exit:
+ sqlite3PagerUnref(pDbPage);
+}
+
+/*
+** Read an entry from the pointer map.
+**
+** This routine retrieves the pointer map entry for page 'key', writing
+** the type and parent page number to *pEType and *pPgno respectively.
+** An error code is returned if something goes wrong, otherwise SQLITE_OK.
+*/
+static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
+ DbPage *pDbPage; /* The pointer map page */
+ int iPtrmap; /* Pointer map page index */
+ u8 *pPtrmap; /* Pointer map page data */
+ int offset; /* Offset of entry in pointer map */
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ iPtrmap = PTRMAP_PAGENO(pBt, key);
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
+ if( rc!=0 ){
+ return rc;
+ }
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
+
+ offset = PTRMAP_PTROFFSET(iPtrmap, key);
+ if( offset<0 ){
+ sqlite3PagerUnref(pDbPage);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( offset <= (int)pBt->usableSize-5 );
+ assert( pEType!=0 );
+ *pEType = pPtrmap[offset];
+ if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
+
+ sqlite3PagerUnref(pDbPage);
+ if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
+ return SQLITE_OK;
+}
+
+#else /* if defined SQLITE_OMIT_AUTOVACUUM */
+ #define ptrmapPut(w,x,y,z,rc)
+ #define ptrmapGet(w,x,y,z) SQLITE_OK
+ #define ptrmapPutOvflPtr(x, y, z, rc)
+#endif
+
+/*
+** Given a btree page and a cell index (0 means the first cell on
+** the page, 1 means the second cell, and so forth) return a pointer
+** to the cell content.
+**
+** findCellPastPtr() does the same except it skips past the initial
+** 4-byte child pointer found on interior pages, if there is one.
+**
+** This routine works only for pages that do not contain overflow cells.
+*/
+#define findCell(P,I) \
+ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
+#define findCellPastPtr(P,I) \
+ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
+
+
+/*
+** This is common tail processing for btreeParseCellPtr() and
+** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
+** on a single B-tree page. Make necessary adjustments to the CellInfo
+** structure.
+*/
+static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ /* If the payload will not fit completely on the local page, we have
+ ** to decide how much to store locally and how much to spill onto
+ ** overflow pages. The strategy is to minimize the amount of unused
+ ** space on overflow pages while keeping the amount of local storage
+ ** in between minLocal and maxLocal.
+ **
+ ** Warning: changing the way overflow payload is distributed in any
+ ** way will result in an incompatible file format.
+ */
+ int minLocal; /* Minimum amount of payload held locally */
+ int maxLocal; /* Maximum amount of payload held locally */
+ int surplus; /* Overflow payload available for local storage */
+
+ minLocal = pPage->minLocal;
+ maxLocal = pPage->maxLocal;
+ surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
+ testcase( surplus==maxLocal );
+ testcase( surplus==maxLocal+1 );
+ if( surplus <= maxLocal ){
+ pInfo->nLocal = (u16)surplus;
+ }else{
+ pInfo->nLocal = (u16)minLocal;
+ }
+ pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
+}
+
+/*
+** Given a record with nPayload bytes of payload stored within btree
+** page pPage, return the number of bytes of payload stored locally.
+*/
+static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
+ int maxLocal; /* Maximum amount of payload held locally */
+ maxLocal = pPage->maxLocal;
+ if( nPayload<=maxLocal ){
+ return nPayload;
+ }else{
+ int minLocal; /* Minimum amount of payload held locally */
+ int surplus; /* Overflow payload available for local storage */
+ minLocal = pPage->minLocal;
+ surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
+ return ( surplus <= maxLocal ) ? surplus : minLocal;
+ }
+}
+
+/*
+** The following routines are implementations of the MemPage.xParseCell()
+** method.
+**
+** Parse a cell content block and fill in the CellInfo structure.
+**
+** btreeParseCellPtr() => table btree leaf nodes
+** btreeParseCellNoPayload() => table btree internal nodes
+** btreeParseCellPtrIndex() => index btree nodes
+**
+** There is also a wrapper function btreeParseCell() that works for
+** all MemPage types and that references the cell by index rather than
+** by pointer.
+*/
+static void btreeParseCellPtrNoPayload(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->leaf==0 );
+ assert( pPage->childPtrSize==4 );
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER(pPage);
+#endif
+ pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
+ pInfo->nPayload = 0;
+ pInfo->nLocal = 0;
+ pInfo->pPayload = 0;
+ return;
+}
+static void btreeParseCellPtr(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ u8 *pIter; /* For scanning through pCell */
+ u32 nPayload; /* Number of bytes of cell payload */
+ u64 iKey; /* Extracted Key value */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->leaf==0 || pPage->leaf==1 );
+ assert( pPage->intKeyLeaf );
+ assert( pPage->childPtrSize==0 );
+ pIter = pCell;
+
+ /* The next block of code is equivalent to:
+ **
+ ** pIter += getVarint32(pIter, nPayload);
+ **
+ ** The code is inlined to avoid a function call.
+ */
+ nPayload = *pIter;
+ if( nPayload>=0x80 ){
+ u8 *pEnd = &pIter[8];
+ nPayload &= 0x7f;
+ do{
+ nPayload = (nPayload<<7) | (*++pIter & 0x7f);
+ }while( (*pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+
+ /* The next block of code is equivalent to:
+ **
+ ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
+ **
+ ** The code is inlined and the loop is unrolled for performance.
+ ** This routine is a high-runner.
+ */
+ iKey = *pIter;
+ if( iKey>=0x80 ){
+ u8 x;
+ iKey = (iKey<<7) ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) ^ 0x10204000 ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<7) ^ 0x4000 ^ (x = *++pIter);
+ if( x>=0x80 ){
+ iKey = (iKey<<8) ^ 0x8000 ^ (*++pIter);
+ }
+ }
+ }
+ }
+ }
+ }else{
+ iKey ^= 0x204000;
+ }
+ }else{
+ iKey ^= 0x4000;
+ }
+ }
+ pIter++;
+
+ pInfo->nKey = *(i64*)&iKey;
+ pInfo->nPayload = nPayload;
+ pInfo->pPayload = pIter;
+ testcase( nPayload==pPage->maxLocal );
+ testcase( nPayload==(u32)pPage->maxLocal+1 );
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the (easy) common case where the entire payload fits
+ ** on the local page. No overflow is required.
+ */
+ pInfo->nSize = nPayload + (u16)(pIter - pCell);
+ if( pInfo->nSize<4 ) pInfo->nSize = 4;
+ pInfo->nLocal = (u16)nPayload;
+ }else{
+ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
+ }
+}
+static void btreeParseCellPtrIndex(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ u8 *pIter; /* For scanning through pCell */
+ u32 nPayload; /* Number of bytes of cell payload */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->leaf==0 || pPage->leaf==1 );
+ assert( pPage->intKeyLeaf==0 );
+ pIter = pCell + pPage->childPtrSize;
+ nPayload = *pIter;
+ if( nPayload>=0x80 ){
+ u8 *pEnd = &pIter[8];
+ nPayload &= 0x7f;
+ do{
+ nPayload = (nPayload<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ pInfo->nKey = nPayload;
+ pInfo->nPayload = nPayload;
+ pInfo->pPayload = pIter;
+ testcase( nPayload==pPage->maxLocal );
+ testcase( nPayload==(u32)pPage->maxLocal+1 );
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the (easy) common case where the entire payload fits
+ ** on the local page. No overflow is required.
+ */
+ pInfo->nSize = nPayload + (u16)(pIter - pCell);
+ if( pInfo->nSize<4 ) pInfo->nSize = 4;
+ pInfo->nLocal = (u16)nPayload;
+ }else{
+ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
+ }
+}
+static void btreeParseCell(
+ MemPage *pPage, /* Page containing the cell */
+ int iCell, /* The cell index. First cell is 0 */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
+}
+
+/*
+** The following routines are implementations of the MemPage.xCellSize
+** method.
+**
+** Compute the total number of bytes that a Cell needs in the cell
+** data area of the btree-page. The return number includes the cell
+** data header and the local payload, but not any overflow page or
+** the space used by the cell pointer.
+**
+** cellSizePtrNoPayload() => table internal nodes
+** cellSizePtrTableLeaf() => table leaf nodes
+** cellSizePtr() => index internal nodes
+** cellSizeIdxLeaf() => index leaf nodes
+*/
+static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+ u32 nSize; /* Size value to return */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#endif
+
+ assert( pPage->childPtrSize==4 );
+ nSize = *pIter;
+ if( nSize>=0x80 ){
+ pEnd = &pIter[8];
+ nSize &= 0x7f;
+ do{
+ nSize = (nSize<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize<=pPage->maxLocal ){
+ nSize += (u32)(pIter - pCell);
+ assert( nSize>4 );
+ }else{
+ int minLocal = pPage->minLocal;
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ nSize = minLocal;
+ }
+ nSize += 4 + (u16)(pIter - pCell);
+ }
+ assert( nSize==debuginfo.nSize || CORRUPT_DB );
+ return (u16)nSize;
+}
+static u16 cellSizePtrIdxLeaf(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+ u32 nSize; /* Size value to return */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#endif
+
+ assert( pPage->childPtrSize==0 );
+ nSize = *pIter;
+ if( nSize>=0x80 ){
+ pEnd = &pIter[8];
+ nSize &= 0x7f;
+ do{
+ nSize = (nSize<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize<=pPage->maxLocal ){
+ nSize += (u32)(pIter - pCell);
+ if( nSize<4 ) nSize = 4;
+ }else{
+ int minLocal = pPage->minLocal;
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ nSize = minLocal;
+ }
+ nSize += 4 + (u16)(pIter - pCell);
+ }
+ assert( nSize==debuginfo.nSize || CORRUPT_DB );
+ return (u16)nSize;
+}
+static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#else
+ UNUSED_PARAMETER(pPage);
+#endif
+
+ assert( pPage->childPtrSize==4 );
+ pEnd = pIter + 9;
+ while( (*pIter++)&0x80 && pIter<pEnd );
+ assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
+ return (u16)(pIter - pCell);
+}
+static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
+ u8 *pIter = pCell; /* For looping over bytes of pCell */
+ u8 *pEnd; /* End mark for a varint */
+ u32 nSize; /* Size value to return */
+
+#ifdef SQLITE_DEBUG
+ /* The value returned by this function should always be the same as
+ ** the (CellInfo.nSize) value found by doing a full parse of the
+ ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
+ ** this function verifies that this invariant is not violated. */
+ CellInfo debuginfo;
+ pPage->xParseCell(pPage, pCell, &debuginfo);
+#endif
+
+ nSize = *pIter;
+ if( nSize>=0x80 ){
+ pEnd = &pIter[8];
+ nSize &= 0x7f;
+ do{
+ nSize = (nSize<<7) | (*++pIter & 0x7f);
+ }while( *(pIter)>=0x80 && pIter<pEnd );
+ }
+ pIter++;
+ /* pIter now points at the 64-bit integer key value, a variable length
+ ** integer. The following block moves pIter to point at the first byte
+ ** past the end of the key value. */
+ if( (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80
+ && (*pIter++)&0x80 ){ pIter++; }
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize<=pPage->maxLocal ){
+ nSize += (u32)(pIter - pCell);
+ if( nSize<4 ) nSize = 4;
+ }else{
+ int minLocal = pPage->minLocal;
+ nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
+ testcase( nSize==pPage->maxLocal );
+ testcase( nSize==(u32)pPage->maxLocal+1 );
+ if( nSize>pPage->maxLocal ){
+ nSize = minLocal;
+ }
+ nSize += 4 + (u16)(pIter - pCell);
+ }
+ assert( nSize==debuginfo.nSize || CORRUPT_DB );
+ return (u16)nSize;
+}
+
+
+#ifdef SQLITE_DEBUG
+/* This variation on cellSizePtr() is used inside of assert() statements
+** only. */
+static u16 cellSize(MemPage *pPage, int iCell){
+ return pPage->xCellSize(pPage, findCell(pPage, iCell));
+}
+#endif
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** The cell pCell is currently part of page pSrc but will ultimately be part
+** of pPage. (pSrc and pPage are often the same.) If pCell contains a
+** pointer to an overflow page, insert an entry into the pointer-map for
+** the overflow page that will be valid after pCell has been moved to pPage.
+*/
+static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
+ CellInfo info;
+ if( *pRC ) return;
+ assert( pCell!=0 );
+ pPage->xParseCell(pPage, pCell, &info);
+ if( info.nLocal<info.nPayload ){
+ Pgno ovfl;
+ if( SQLITE_OVERFLOW(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
+ testcase( pSrc!=pPage );
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ ovfl = get4byte(&pCell[info.nSize-4]);
+ ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
+ }
+}
+#endif
+
+
+/*
+** Defragment the page given. This routine reorganizes cells within the
+** page so that there are no free-blocks on the free-block list.
+**
+** Parameter nMaxFrag is the maximum amount of fragmented space that may be
+** present in the page after this routine returns.
+**
+** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
+** b-tree page so that there are no freeblocks or fragment bytes, all
+** unused bytes are contained in the unallocated space region, and all
+** cells are packed tightly at the end of the page.
+*/
+static int defragmentPage(MemPage *pPage, int nMaxFrag){
+ int i; /* Loop counter */
+ int pc; /* Address of the i-th cell */
+ int hdr; /* Offset to the page header */
+ int size; /* Size of a cell */
+ int usableSize; /* Number of usable bytes on a page */
+ int cellOffset; /* Offset to the cell pointer array */
+ int cbrk; /* Offset to the cell content area */
+ int nCell; /* Number of cells on the page */
+ unsigned char *data; /* The page data */
+ unsigned char *temp; /* Temp area for cell content */
+ unsigned char *src; /* Source of content */
+ int iCellFirst; /* First allowable cell index */
+ int iCellLast; /* Last possible cell index */
+ int iCellStart; /* First cell offset in input */
+
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
+ assert( pPage->nOverflow==0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ cellOffset = pPage->cellOffset;
+ nCell = pPage->nCell;
+ assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
+ iCellFirst = cellOffset + 2*nCell;
+ usableSize = pPage->pBt->usableSize;
+
+ /* This block handles pages with two or fewer free blocks and nMaxFrag
+ ** or fewer fragmented bytes. In this case it is faster to move the
+ ** two (or one) blocks of cells using memmove() and add the required
+ ** offsets to each pointer in the cell-pointer array than it is to
+ ** reconstruct the entire page. */
+ if( (int)data[hdr+7]<=nMaxFrag ){
+ int iFree = get2byte(&data[hdr+1]);
+ if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
+ if( iFree ){
+ int iFree2 = get2byte(&data[iFree]);
+ if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
+ if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
+ u8 *pEnd = &data[cellOffset + nCell*2];
+ u8 *pAddr;
+ int sz2 = 0;
+ int sz = get2byte(&data[iFree+2]);
+ int top = get2byte(&data[hdr+5]);
+ if( top>=iFree ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( iFree2 ){
+ if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
+ sz2 = get2byte(&data[iFree2+2]);
+ if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
+ memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
+ sz += sz2;
+ }else if( iFree+sz>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+
+ cbrk = top+sz;
+ assert( cbrk+(iFree-top) <= usableSize );
+ memmove(&data[cbrk], &data[top], iFree-top);
+ for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
+ pc = get2byte(pAddr);
+ if( pc<iFree ){ put2byte(pAddr, pc+sz); }
+ else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
+ }
+ goto defragment_out;
+ }
+ }
+ }
+
+ cbrk = usableSize;
+ iCellLast = usableSize - 4;
+ iCellStart = get2byte(&data[hdr+5]);
+ if( nCell>0 ){
+ temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
+ memcpy(temp, data, usableSize);
+ src = temp;
+ for(i=0; i<nCell; i++){
+ u8 *pAddr; /* The i-th cell pointer */
+ pAddr = &data[cellOffset + i*2];
+ pc = get2byte(pAddr);
+ testcase( pc==iCellFirst );
+ testcase( pc==iCellLast );
+ /* These conditions have already been verified in btreeInitPage()
+ ** if PRAGMA cell_size_check=ON.
+ */
+ if( pc>iCellLast ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( pc>=0 && pc<=iCellLast );
+ size = pPage->xCellSize(pPage, &src[pc]);
+ cbrk -= size;
+ if( cbrk<iCellStart || pc+size>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( cbrk+size<=usableSize && cbrk>=iCellStart );
+ testcase( cbrk+size==usableSize );
+ testcase( pc+size==usableSize );
+ put2byte(pAddr, cbrk);
+ memcpy(&data[cbrk], &src[pc], size);
+ }
+ }
+ data[hdr+7] = 0;
+
+defragment_out:
+ assert( pPage->nFree>=0 );
+ if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( cbrk>=iCellFirst );
+ put2byte(&data[hdr+5], cbrk);
+ data[hdr+1] = 0;
+ data[hdr+2] = 0;
+ memset(&data[iCellFirst], 0, cbrk-iCellFirst);
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ return SQLITE_OK;
+}
+
+/*
+** Search the free-list on page pPg for space to store a cell nByte bytes in
+** size. If one can be found, return a pointer to the space and remove it
+** from the free-list.
+**
+** If no suitable space can be found on the free-list, return NULL.
+**
+** This function may detect corruption within pPg. If corruption is
+** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
+**
+** Slots on the free list that are between 1 and 3 bytes larger than nByte
+** will be ignored if adding the extra space to the fragmentation count
+** causes the fragmentation count to exceed 60.
+*/
+static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
+ const int hdr = pPg->hdrOffset; /* Offset to page header */
+ u8 * const aData = pPg->aData; /* Page data */
+ int iAddr = hdr + 1; /* Address of ptr to pc */
+ u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
+ int pc = get2byte(pTmp); /* Address of a free slot */
+ int x; /* Excess size of the slot */
+ int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
+ int size; /* Size of the free slot */
+
+ assert( pc>0 );
+ while( pc<=maxPC ){
+ /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
+ ** freeblock form a big-endian integer which is the size of the freeblock
+ ** in bytes, including the 4-byte header. */
+ pTmp = &aData[pc+2];
+ size = get2byte(pTmp);
+ if( (x = size - nByte)>=0 ){
+ testcase( x==4 );
+ testcase( x==3 );
+ if( x<4 ){
+ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
+ ** number of bytes in fragments may not exceed 60. */
+ if( aData[hdr+7]>57 ) return 0;
+
+ /* Remove the slot from the free-list. Update the number of
+ ** fragmented bytes within the page. */
+ memcpy(&aData[iAddr], &aData[pc], 2);
+ aData[hdr+7] += (u8)x;
+ return &aData[pc];
+ }else if( x+pc > maxPC ){
+ /* This slot extends off the end of the usable part of the page */
+ *pRc = SQLITE_CORRUPT_PAGE(pPg);
+ return 0;
+ }else{
+ /* The slot remains on the free-list. Reduce its size to account
+ ** for the portion used by the new allocation. */
+ put2byte(&aData[pc+2], x);
+ }
+ return &aData[pc + x];
+ }
+ iAddr = pc;
+ pTmp = &aData[pc];
+ pc = get2byte(pTmp);
+ if( pc<=iAddr ){
+ if( pc ){
+ /* The next slot in the chain comes before the current slot */
+ *pRc = SQLITE_CORRUPT_PAGE(pPg);
+ }
+ return 0;
+ }
+ }
+ if( pc>maxPC+nByte-4 ){
+ /* The free slot chain extends off the end of the page */
+ *pRc = SQLITE_CORRUPT_PAGE(pPg);
+ }
+ return 0;
+}
+
+/*
+** Allocate nByte bytes of space from within the B-Tree page passed
+** as the first argument. Write into *pIdx the index into pPage->aData[]
+** of the first byte of allocated space. Return either SQLITE_OK or
+** an error code (usually SQLITE_CORRUPT).
+**
+** The caller guarantees that there is sufficient space to make the
+** allocation. This routine might need to defragment in order to bring
+** all the space together, however. This routine will avoid using
+** the first two bytes past the cell pointer area since presumably this
+** allocation is being made in order to insert a new cell, so we will
+** also end up needing a new cell pointer.
+*/
+static SQLITE_INLINE int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
+ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
+ u8 * const data = pPage->aData; /* Local cache of pPage->aData */
+ int top; /* First byte of cell content area */
+ int rc = SQLITE_OK; /* Integer return code */
+ u8 *pTmp; /* Temp ptr into data[] */
+ int gap; /* First byte of gap between cell pointers and cell content */
+
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( pPage->pBt );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( nByte>=0 ); /* Minimum cell size is 4 */
+ assert( pPage->nFree>=nByte );
+ assert( pPage->nOverflow==0 );
+ assert( nByte < (int)(pPage->pBt->usableSize-8) );
+
+ assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
+ gap = pPage->cellOffset + 2*pPage->nCell;
+ assert( gap<=65536 );
+ /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
+ ** and the reserved space is zero (the usual value for reserved space)
+ ** then the cell content offset of an empty page wants to be 65536.
+ ** However, that integer is too large to be stored in a 2-byte unsigned
+ ** integer, so a value of 0 is used in its place. */
+ pTmp = &data[hdr+5];
+ top = get2byte(pTmp);
+ if( gap>top ){
+ if( top==0 && pPage->pBt->usableSize==65536 ){
+ top = 65536;
+ }else{
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }else if( top>(int)pPage->pBt->usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+
+ /* If there is enough space between gap and top for one more cell pointer,
+ ** and if the freelist is not empty, then search the
+ ** freelist looking for a slot big enough to satisfy the request.
+ */
+ testcase( gap+2==top );
+ testcase( gap+1==top );
+ testcase( gap==top );
+ if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
+ u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
+ if( pSpace ){
+ int g2;
+ assert( pSpace+nByte<=data+pPage->pBt->usableSize );
+ *pIdx = g2 = (int)(pSpace-data);
+ if( g2<=gap ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }else{
+ return SQLITE_OK;
+ }
+ }else if( rc ){
+ return rc;
+ }
+ }
+
+ /* The request could not be fulfilled using a freelist slot. Check
+ ** to see if defragmentation is necessary.
+ */
+ testcase( gap+2+nByte==top );
+ if( gap+2+nByte>top ){
+ assert( pPage->nCell>0 || CORRUPT_DB );
+ assert( pPage->nFree>=0 );
+ rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
+ if( rc ) return rc;
+ top = get2byteNotZero(&data[hdr+5]);
+ assert( gap+2+nByte<=top );
+ }
+
+
+ /* Allocate memory from the gap in between the cell pointer array
+ ** and the cell content area. The btreeComputeFreeSpace() call has already
+ ** validated the freelist. Given that the freelist is valid, there
+ ** is no way that the allocation can extend off the end of the page.
+ ** The assert() below verifies the previous sentence.
+ */
+ top -= nByte;
+ put2byte(&data[hdr+5], top);
+ assert( top+nByte <= (int)pPage->pBt->usableSize );
+ *pIdx = top;
+ return SQLITE_OK;
+}
+
+/*
+** Return a section of the pPage->aData to the freelist.
+** The first byte of the new free block is pPage->aData[iStart]
+** and the size of the block is iSize bytes.
+**
+** Adjacent freeblocks are coalesced.
+**
+** Even though the freeblock list was checked by btreeComputeFreeSpace(),
+** that routine will not detect overlap between cells or freeblocks. Nor
+** does it detect cells or freeblocks that encroach into the reserved bytes
+** at the end of the page. So do additional corruption checks inside this
+** routine and return SQLITE_CORRUPT if any problems are found.
+*/
+static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
+ u16 iPtr; /* Address of ptr to next freeblock */
+ u16 iFreeBlk; /* Address of the next freeblock */
+ u8 hdr; /* Page header size. 0 or 100 */
+ u8 nFrag = 0; /* Reduction in fragmentation */
+ u16 iOrigSize = iSize; /* Original value of iSize */
+ u16 x; /* Offset to cell content area */
+ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
+ unsigned char *data = pPage->aData; /* Page content */
+ u8 *pTmp; /* Temporary ptr into data[] */
+
+ assert( pPage->pBt!=0 );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
+ assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( iSize>=4 ); /* Minimum cell size is 4 */
+ assert( CORRUPT_DB || iStart<=pPage->pBt->usableSize-4 );
+
+ /* The list of freeblocks must be in ascending order. Find the
+ ** spot on the list where iStart should be inserted.
+ */
+ hdr = pPage->hdrOffset;
+ iPtr = hdr + 1;
+ if( data[iPtr+1]==0 && data[iPtr]==0 ){
+ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
+ }else{
+ while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
+ if( iFreeBlk<=iPtr ){
+ if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ iPtr = iFreeBlk;
+ }
+ if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
+
+ /* At this point:
+ ** iFreeBlk: First freeblock after iStart, or zero if none
+ ** iPtr: The address of a pointer to iFreeBlk
+ **
+ ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
+ */
+ if( iFreeBlk && iEnd+3>=iFreeBlk ){
+ nFrag = iFreeBlk - iEnd;
+ if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
+ iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
+ if( iEnd > pPage->pBt->usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ iSize = iEnd - iStart;
+ iFreeBlk = get2byte(&data[iFreeBlk]);
+ }
+
+ /* If iPtr is another freeblock (that is, if iPtr is not the freelist
+ ** pointer in the page header) then check to see if iStart should be
+ ** coalesced onto the end of iPtr.
+ */
+ if( iPtr>hdr+1 ){
+ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
+ if( iPtrEnd+3>=iStart ){
+ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
+ nFrag += iStart - iPtrEnd;
+ iSize = iEnd - iPtr;
+ iStart = iPtr;
+ }
+ }
+ if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
+ data[hdr+7] -= nFrag;
+ }
+ pTmp = &data[hdr+5];
+ x = get2byte(pTmp);
+ if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
+ /* Overwrite deleted information with zeros when the secure_delete
+ ** option is enabled */
+ memset(&data[iStart], 0, iSize);
+ }
+ if( iStart<=x ){
+ /* The new freeblock is at the beginning of the cell content area,
+ ** so just extend the cell content area rather than create another
+ ** freelist entry */
+ if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
+ if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
+ put2byte(&data[hdr+1], iFreeBlk);
+ put2byte(&data[hdr+5], iEnd);
+ }else{
+ /* Insert the new freeblock into the freelist */
+ put2byte(&data[iPtr], iStart);
+ put2byte(&data[iStart], iFreeBlk);
+ put2byte(&data[iStart+2], iSize);
+ }
+ pPage->nFree += iOrigSize;
+ return SQLITE_OK;
+}
+
+/*
+** Decode the flags byte (the first byte of the header) for a page
+** and initialize fields of the MemPage structure accordingly.
+**
+** Only the following combinations are supported. Anything different
+** indicates a corrupt database files:
+**
+** PTF_ZERODATA (0x02, 2)
+** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
+** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
+** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
+*/
+static int decodeFlags(MemPage *pPage, int flagByte){
+ BtShared *pBt; /* A copy of pPage->pBt */
+
+ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pBt = pPage->pBt;
+ pPage->max1bytePayload = pBt->max1bytePayload;
+ if( flagByte>=(PTF_ZERODATA | PTF_LEAF) ){
+ pPage->childPtrSize = 0;
+ pPage->leaf = 1;
+ if( flagByte==(PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF) ){
+ pPage->intKeyLeaf = 1;
+ pPage->xCellSize = cellSizePtrTableLeaf;
+ pPage->xParseCell = btreeParseCellPtr;
+ pPage->intKey = 1;
+ pPage->maxLocal = pBt->maxLeaf;
+ pPage->minLocal = pBt->minLeaf;
+ }else if( flagByte==(PTF_ZERODATA | PTF_LEAF) ){
+ pPage->intKey = 0;
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtrIdxLeaf;
+ pPage->xParseCell = btreeParseCellPtrIndex;
+ pPage->maxLocal = pBt->maxLocal;
+ pPage->minLocal = pBt->minLocal;
+ }else{
+ pPage->intKey = 0;
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtrIdxLeaf;
+ pPage->xParseCell = btreeParseCellPtrIndex;
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }else{
+ pPage->childPtrSize = 4;
+ pPage->leaf = 0;
+ if( flagByte==(PTF_ZERODATA) ){
+ pPage->intKey = 0;
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtr;
+ pPage->xParseCell = btreeParseCellPtrIndex;
+ pPage->maxLocal = pBt->maxLocal;
+ pPage->minLocal = pBt->minLocal;
+ }else if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtrNoPayload;
+ pPage->xParseCell = btreeParseCellPtrNoPayload;
+ pPage->intKey = 1;
+ pPage->maxLocal = pBt->maxLeaf;
+ pPage->minLocal = pBt->minLeaf;
+ }else{
+ pPage->intKey = 0;
+ pPage->intKeyLeaf = 0;
+ pPage->xCellSize = cellSizePtr;
+ pPage->xParseCell = btreeParseCellPtrIndex;
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Compute the amount of freespace on the page. In other words, fill
+** in the pPage->nFree field.
+*/
+static int btreeComputeFreeSpace(MemPage *pPage){
+ int pc; /* Address of a freeblock within pPage->aData[] */
+ u8 hdr; /* Offset to beginning of page header */
+ u8 *data; /* Equal to pPage->aData */
+ int usableSize; /* Amount of usable space on each page */
+ int nFree; /* Number of unused bytes on the page */
+ int top; /* First byte of the cell content area */
+ int iCellFirst; /* First allowable cell or freeblock offset */
+ int iCellLast; /* Last possible cell or freeblock offset */
+
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->db!=0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+ assert( pPage->isInit==1 );
+ assert( pPage->nFree<0 );
+
+ usableSize = pPage->pBt->usableSize;
+ hdr = pPage->hdrOffset;
+ data = pPage->aData;
+ /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
+ ** the start of the cell content area. A zero value for this integer is
+ ** interpreted as 65536. */
+ top = get2byteNotZero(&data[hdr+5]);
+ iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
+ iCellLast = usableSize - 4;
+
+ /* Compute the total free space on the page
+ ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
+ ** start of the first freeblock on the page, or is zero if there are no
+ ** freeblocks. */
+ pc = get2byte(&data[hdr+1]);
+ nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
+ if( pc>0 ){
+ u32 next, size;
+ if( pc<top ){
+ /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
+ ** always be at least one cell before the first freeblock.
+ */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ while( 1 ){
+ if( pc>iCellLast ){
+ /* Freeblock off the end of the page */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ next = get2byte(&data[pc]);
+ size = get2byte(&data[pc+2]);
+ nFree = nFree + size;
+ if( next<=pc+size+3 ) break;
+ pc = next;
+ }
+ if( next>0 ){
+ /* Freeblock not in ascending order */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( pc+size>(unsigned int)usableSize ){
+ /* Last freeblock extends past page end */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+
+ /* At this point, nFree contains the sum of the offset to the start
+ ** of the cell-content area plus the number of free bytes within
+ ** the cell-content area. If this is greater than the usable-size
+ ** of the page, then the page must be corrupted. This check also
+ ** serves to verify that the offset to the start of the cell-content
+ ** area, according to the page header, lies within the page.
+ */
+ if( nFree>usableSize || nFree<iCellFirst ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ pPage->nFree = (u16)(nFree - iCellFirst);
+ return SQLITE_OK;
+}
+
+/*
+** Do additional sanity check after btreeInitPage() if
+** PRAGMA cell_size_check=ON
+*/
+static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
+ int iCellFirst; /* First allowable cell or freeblock offset */
+ int iCellLast; /* Last possible cell or freeblock offset */
+ int i; /* Index into the cell pointer array */
+ int sz; /* Size of a cell */
+ int pc; /* Address of a freeblock within pPage->aData[] */
+ u8 *data; /* Equal to pPage->aData */
+ int usableSize; /* Maximum usable space on the page */
+ int cellOffset; /* Start of cell content area */
+
+ iCellFirst = pPage->cellOffset + 2*pPage->nCell;
+ usableSize = pPage->pBt->usableSize;
+ iCellLast = usableSize - 4;
+ data = pPage->aData;
+ cellOffset = pPage->cellOffset;
+ if( !pPage->leaf ) iCellLast--;
+ for(i=0; i<pPage->nCell; i++){
+ pc = get2byteAligned(&data[cellOffset+i*2]);
+ testcase( pc==iCellFirst );
+ testcase( pc==iCellLast );
+ if( pc<iCellFirst || pc>iCellLast ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ sz = pPage->xCellSize(pPage, &data[pc]);
+ testcase( pc+sz==usableSize );
+ if( pc+sz>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Initialize the auxiliary information for a disk block.
+**
+** Return SQLITE_OK on success. If we see that the page does
+** not contain a well-formed database page, then return
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
+** guarantee that the page is well-formed. It only shows that
+** we failed to detect any corruption.
+*/
+static int btreeInitPage(MemPage *pPage){
+ u8 *data; /* Equal to pPage->aData */
+ BtShared *pBt; /* The main btree structure */
+
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->db!=0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+ assert( pPage->isInit==0 );
+
+ pBt = pPage->pBt;
+ data = pPage->aData + pPage->hdrOffset;
+ /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
+ ** the b-tree page type. */
+ if( decodeFlags(pPage, data[0]) ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
+ pPage->maskPage = (u16)(pBt->pageSize - 1);
+ pPage->nOverflow = 0;
+ pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
+ pPage->aCellIdx = data + pPage->childPtrSize + 8;
+ pPage->aDataEnd = pPage->aData + pBt->pageSize;
+ pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
+ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
+ ** number of cells on the page. */
+ pPage->nCell = get2byte(&data[3]);
+ if( pPage->nCell>MX_CELL(pBt) ){
+ /* To many cells for a single page. The page must be corrupt */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ testcase( pPage->nCell==MX_CELL(pBt) );
+ /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
+ ** possible for a root page of a table that contains no rows) then the
+ ** offset to the cell content area will equal the page size minus the
+ ** bytes of reserved space. */
+ assert( pPage->nCell>0
+ || get2byteNotZero(&data[5])==(int)pBt->usableSize
+ || CORRUPT_DB );
+ pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
+ pPage->isInit = 1;
+ if( pBt->db->flags & SQLITE_CellSizeCk ){
+ return btreeCellSizeCheck(pPage);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Set up a raw page so that it looks like a database page holding
+** no entries.
+*/
+static void zeroPage(MemPage *pPage, int flags){
+ unsigned char *data = pPage->aData;
+ BtShared *pBt = pPage->pBt;
+ u8 hdr = pPage->hdrOffset;
+ u16 first;
+
+ assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage) == data );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pBt->btsFlags & BTS_FAST_SECURE ){
+ memset(&data[hdr], 0, pBt->usableSize - hdr);
+ }
+ data[hdr] = (char)flags;
+ first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
+ memset(&data[hdr+1], 0, 4);
+ data[hdr+7] = 0;
+ put2byte(&data[hdr+5], pBt->usableSize);
+ pPage->nFree = (u16)(pBt->usableSize - first);
+ decodeFlags(pPage, flags);
+ pPage->cellOffset = first;
+ pPage->aDataEnd = &data[pBt->pageSize];
+ pPage->aCellIdx = &data[first];
+ pPage->aDataOfst = &data[pPage->childPtrSize];
+ pPage->nOverflow = 0;
+ assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
+ pPage->maskPage = (u16)(pBt->pageSize - 1);
+ pPage->nCell = 0;
+ pPage->isInit = 1;
+}
+
+
+/*
+** Convert a DbPage obtained from the pager into a MemPage used by
+** the btree layer.
+*/
+static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
+ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
+ if( pgno!=pPage->pgno ){
+ pPage->aData = sqlite3PagerGetData(pDbPage);
+ pPage->pDbPage = pDbPage;
+ pPage->pBt = pBt;
+ pPage->pgno = pgno;
+ pPage->hdrOffset = pgno==1 ? 100 : 0;
+ }
+ assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
+ return pPage;
+}
+
+/*
+** Get a page from the pager. Initialize the MemPage.pBt and
+** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
+**
+** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
+** about the content of the page at this time. So do not go to the disk
+** to fetch the content. Just fill in the content with zeros for now.
+** If in the future we call sqlite3PagerWrite() on this page, that
+** means we have started to be concerned about content and the disk
+** read should occur at that point.
+*/
+static int btreeGetPage(
+ BtShared *pBt, /* The btree */
+ Pgno pgno, /* Number of the page to fetch */
+ MemPage **ppPage, /* Return the page in this parameter */
+ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
+){
+ int rc;
+ DbPage *pDbPage;
+
+ assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
+ if( rc ) return rc;
+ *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
+ return SQLITE_OK;
+}
+
+/*
+** Retrieve a page from the pager cache. If the requested page is not
+** already in the pager cache return NULL. Initialize the MemPage.pBt and
+** MemPage.aData elements if needed.
+*/
+static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
+ DbPage *pDbPage;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
+ if( pDbPage ){
+ return btreePageFromDbPage(pDbPage, pgno, pBt);
+ }
+ return 0;
+}
+
+/*
+** Return the size of the database file in pages. If there is any kind of
+** error, return ((unsigned int)-1).
+*/
+static Pgno btreePagecount(BtShared *pBt){
+ return pBt->nPage;
+}
+SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree *p){
+ assert( sqlite3BtreeHoldsMutex(p) );
+ return btreePagecount(p->pBt);
+}
+
+/*
+** Get a page from the pager and initialize it.
+*/
+static int getAndInitPage(
+ BtShared *pBt, /* The database file */
+ Pgno pgno, /* Number of the page to get */
+ MemPage **ppPage, /* Write the page pointer here */
+ int bReadOnly /* True for a read-only page */
+){
+ int rc;
+ DbPage *pDbPage;
+ MemPage *pPage;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ if( pgno>btreePagecount(pBt) ){
+ *ppPage = 0;
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
+ if( rc ){
+ *ppPage = 0;
+ return rc;
+ }
+ pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
+ if( pPage->isInit==0 ){
+ btreePageFromDbPage(pDbPage, pgno, pBt);
+ rc = btreeInitPage(pPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pPage);
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ assert( pPage->pgno==pgno || CORRUPT_DB );
+ assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
+ *ppPage = pPage;
+ return SQLITE_OK;
+}
+
+/*
+** Release a MemPage. This should be called once for each prior
+** call to btreeGetPage.
+**
+** Page1 is a special case and must be released using releasePageOne().
+*/
+static void releasePageNotNull(MemPage *pPage){
+ assert( pPage->aData );
+ assert( pPage->pBt );
+ assert( pPage->pDbPage!=0 );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ sqlite3PagerUnrefNotNull(pPage->pDbPage);
+}
+static void releasePage(MemPage *pPage){
+ if( pPage ) releasePageNotNull(pPage);
+}
+static void releasePageOne(MemPage *pPage){
+ assert( pPage!=0 );
+ assert( pPage->aData );
+ assert( pPage->pBt );
+ assert( pPage->pDbPage!=0 );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ sqlite3PagerUnrefPageOne(pPage->pDbPage);
+}
+
+/*
+** Get an unused page.
+**
+** This works just like btreeGetPage() with the addition:
+**
+** * If the page is already in use for some other purpose, immediately
+** release it and return an SQLITE_CURRUPT error.
+** * Make sure the isInit flag is clear
+*/
+static int btreeGetUnusedPage(
+ BtShared *pBt, /* The btree */
+ Pgno pgno, /* Number of the page to fetch */
+ MemPage **ppPage, /* Return the page in this parameter */
+ int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
+){
+ int rc = btreeGetPage(pBt, pgno, ppPage, flags);
+ if( rc==SQLITE_OK ){
+ if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ return SQLITE_CORRUPT_BKPT;
+ }
+ (*ppPage)->isInit = 0;
+ }else{
+ *ppPage = 0;
+ }
+ return rc;
+}
+
+
+/*
+** During a rollback, when the pager reloads information into the cache
+** so that the cache is restored to its original state at the start of
+** the transaction, for each page restored this routine is called.
+**
+** This routine needs to reset the extra data section at the end of the
+** page to agree with the restored data.
+*/
+static void pageReinit(DbPage *pData){
+ MemPage *pPage;
+ pPage = (MemPage *)sqlite3PagerGetExtra(pData);
+ assert( sqlite3PagerPageRefcount(pData)>0 );
+ if( pPage->isInit ){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pPage->isInit = 0;
+ if( sqlite3PagerPageRefcount(pData)>1 ){
+ /* pPage might not be a btree page; it might be an overflow page
+ ** or ptrmap page or a free page. In those cases, the following
+ ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
+ ** But no harm is done by this. And it is very important that
+ ** btreeInitPage() be called on every btree page so we make
+ ** the call for every page that comes in for re-initializing. */
+ btreeInitPage(pPage);
+ }
+ }
+}
+
+/*
+** Invoke the busy handler for a btree.
+*/
+static int btreeInvokeBusyHandler(void *pArg){
+ BtShared *pBt = (BtShared*)pArg;
+ assert( pBt->db );
+ assert( sqlite3_mutex_held(pBt->db->mutex) );
+ return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
+}
+
+/*
+** Open a database file.
+**
+** zFilename is the name of the database file. If zFilename is NULL
+** then an ephemeral database is created. The ephemeral database might
+** be exclusively in memory, or it might use a disk-based memory cache.
+** Either way, the ephemeral database will be automatically deleted
+** when sqlite3BtreeClose() is called.
+**
+** If zFilename is ":memory:" then an in-memory database is created
+** that is automatically destroyed when it is closed.
+**
+** The "flags" parameter is a bitmask that might contain bits like
+** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
+**
+** If the database is already opened in the same database connection
+** and we are in shared cache mode, then the open will fail with an
+** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
+** objects in the same database connection since doing so will lead
+** to problems with locking.
+*/
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
+ const char *zFilename, /* Name of the file containing the BTree database */
+ sqlite3 *db, /* Associated database handle */
+ Btree **ppBtree, /* Pointer to new Btree object written here */
+ int flags, /* Options */
+ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
+){
+ BtShared *pBt = 0; /* Shared part of btree structure */
+ Btree *p; /* Handle to return */
+ sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
+ int rc = SQLITE_OK; /* Result code from this function */
+ u8 nReserve; /* Byte of unused space on each page */
+ unsigned char zDbHeader[100]; /* Database header content */
+
+ /* True if opening an ephemeral, temporary database */
+ const int isTempDb = zFilename==0 || zFilename[0]==0;
+
+ /* Set the variable isMemdb to true for an in-memory database, or
+ ** false for a file-based database.
+ */
+#ifdef SQLITE_OMIT_MEMORYDB
+ const int isMemdb = 0;
+#else
+ const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
+ || (isTempDb && sqlite3TempInMemory(db))
+ || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
+#endif
+
+ assert( db!=0 );
+ assert( pVfs!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
+
+ /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
+ assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
+
+ /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
+ assert( (flags & BTREE_SINGLE)==0 || isTempDb );
+
+ if( isMemdb ){
+ flags |= BTREE_MEMORY;
+ }
+ if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
+ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
+ }
+ p = sqlite3MallocZero(sizeof(Btree));
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ p->inTrans = TRANS_NONE;
+ p->db = db;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ p->lock.pBtree = p;
+ p->lock.iTable = 1;
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /*
+ ** If this Btree is a candidate for shared cache, try to find an
+ ** existing BtShared object that we can share with
+ */
+ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
+ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
+ int nFilename = sqlite3Strlen30(zFilename)+1;
+ int nFullPathname = pVfs->mxPathname+1;
+ char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
+ MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
+
+ p->sharable = 1;
+ if( !zFullPathname ){
+ sqlite3_free(p);
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( isMemdb ){
+ memcpy(zFullPathname, zFilename, nFilename);
+ }else{
+ rc = sqlite3OsFullPathname(pVfs, zFilename,
+ nFullPathname, zFullPathname);
+ if( rc ){
+ if( rc==SQLITE_OK_SYMLINK ){
+ rc = SQLITE_OK;
+ }else{
+ sqlite3_free(zFullPathname);
+ sqlite3_free(p);
+ return rc;
+ }
+ }
+ }
+#if SQLITE_THREADSAFE
+ mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
+ sqlite3_mutex_enter(mutexOpen);
+ mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+ sqlite3_mutex_enter(mutexShared);
+#endif
+ for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
+ assert( pBt->nRef>0 );
+ if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
+ && sqlite3PagerVfs(pBt->pPager)==pVfs ){
+ int iDb;
+ for(iDb=db->nDb-1; iDb>=0; iDb--){
+ Btree *pExisting = db->aDb[iDb].pBt;
+ if( pExisting && pExisting->pBt==pBt ){
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_mutex_leave(mutexOpen);
+ sqlite3_free(zFullPathname);
+ sqlite3_free(p);
+ return SQLITE_CONSTRAINT;
+ }
+ }
+ p->pBt = pBt;
+ pBt->nRef++;
+ break;
+ }
+ }
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_free(zFullPathname);
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ /* In debug mode, we mark all persistent databases as sharable
+ ** even when they are not. This exercises the locking code and
+ ** gives more opportunity for asserts(sqlite3_mutex_held())
+ ** statements to find locking problems.
+ */
+ p->sharable = 1;
+ }
+#endif
+ }
+#endif
+ if( pBt==0 ){
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(i64)==8 );
+ assert( sizeof(u64)==8 );
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+
+ /* Suppress false-positive compiler warning from PVS-Studio */
+ memset(&zDbHeader[16], 0, 8);
+
+ pBt = sqlite3MallocZero( sizeof(*pBt) );
+ if( pBt==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto btree_open_out;
+ }
+ rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
+ sizeof(MemPage), flags, vfsFlags, pageReinit);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
+ rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
+ }
+ if( rc!=SQLITE_OK ){
+ goto btree_open_out;
+ }
+ pBt->openFlags = (u8)flags;
+ pBt->db = db;
+ sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
+ p->pBt = pBt;
+
+ pBt->pCursor = 0;
+ pBt->pPage1 = 0;
+ if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
+#if defined(SQLITE_SECURE_DELETE)
+ pBt->btsFlags |= BTS_SECURE_DELETE;
+#elif defined(SQLITE_FAST_SECURE_DELETE)
+ pBt->btsFlags |= BTS_OVERWRITE;
+#endif
+ /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
+ ** determined by the 2-byte integer located at an offset of 16 bytes from
+ ** the beginning of the database file. */
+ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
+ if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
+ || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
+ pBt->pageSize = 0;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the magic name ":memory:" will create an in-memory database, then
+ ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
+ ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
+ ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
+ ** regular file-name. In this case the auto-vacuum applies as per normal.
+ */
+ if( zFilename && !isMemdb ){
+ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
+ pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
+ }
+#endif
+ nReserve = 0;
+ }else{
+ /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
+ ** determined by the one-byte unsigned integer found at an offset of 20
+ ** into the database file header. */
+ nReserve = zDbHeader[20];
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
+#endif
+ }
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
+ if( rc ) goto btree_open_out;
+ pBt->usableSize = pBt->pageSize - nReserve;
+ assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* Add the new BtShared object to the linked list sharable BtShareds.
+ */
+ pBt->nRef = 1;
+ if( p->sharable ){
+ MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
+ MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
+ if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
+ pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
+ if( pBt->mutex==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto btree_open_out;
+ }
+ }
+ sqlite3_mutex_enter(mutexShared);
+ pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
+ sqlite3_mutex_leave(mutexShared);
+ }
+#endif
+ }
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* If the new Btree uses a sharable pBtShared, then link the new
+ ** Btree into the list of all sharable Btrees for the same connection.
+ ** The list is kept in ascending order by pBt address.
+ */
+ if( p->sharable ){
+ int i;
+ Btree *pSib;
+ for(i=0; i<db->nDb; i++){
+ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
+ while( pSib->pPrev ){ pSib = pSib->pPrev; }
+ if( (uptr)p->pBt<(uptr)pSib->pBt ){
+ p->pNext = pSib;
+ p->pPrev = 0;
+ pSib->pPrev = p;
+ }else{
+ while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
+ pSib = pSib->pNext;
+ }
+ p->pNext = pSib->pNext;
+ p->pPrev = pSib;
+ if( p->pNext ){
+ p->pNext->pPrev = p;
+ }
+ pSib->pNext = p;
+ }
+ break;
+ }
+ }
+ }
+#endif
+ *ppBtree = p;
+
+btree_open_out:
+ if( rc!=SQLITE_OK ){
+ if( pBt && pBt->pPager ){
+ sqlite3PagerClose(pBt->pPager, 0);
+ }
+ sqlite3_free(pBt);
+ sqlite3_free(p);
+ *ppBtree = 0;
+ }else{
+ sqlite3_file *pFile;
+
+ /* If the B-Tree was successfully opened, set the pager-cache size to the
+ ** default value. Except, when opening on an existing shared pager-cache,
+ ** do not change the pager-cache size.
+ */
+ if( sqlite3BtreeSchema(p, 0, 0)==0 ){
+ sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
+ }
+
+ pFile = sqlite3PagerFile(pBt->pPager);
+ if( pFile->pMethods ){
+ sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
+ }
+ }
+ if( mutexOpen ){
+ assert( sqlite3_mutex_held(mutexOpen) );
+ sqlite3_mutex_leave(mutexOpen);
+ }
+ assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
+ return rc;
+}
+
+/*
+** Decrement the BtShared.nRef counter. When it reaches zero,
+** remove the BtShared structure from the sharing list. Return
+** true if the BtShared.nRef counter reaches zero and return
+** false if it is still positive.
+*/
+static int removeFromSharingList(BtShared *pBt){
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
+ BtShared *pList;
+ int removed = 0;
+
+ assert( sqlite3_mutex_notheld(pBt->mutex) );
+ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(pMainMtx);
+ pBt->nRef--;
+ if( pBt->nRef<=0 ){
+ if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
+ GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
+ }else{
+ pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
+ while( ALWAYS(pList) && pList->pNext!=pBt ){
+ pList=pList->pNext;
+ }
+ if( ALWAYS(pList) ){
+ pList->pNext = pBt->pNext;
+ }
+ }
+ if( SQLITE_THREADSAFE ){
+ sqlite3_mutex_free(pBt->mutex);
+ }
+ removed = 1;
+ }
+ sqlite3_mutex_leave(pMainMtx);
+ return removed;
+#else
+ return 1;
+#endif
+}
+
+/*
+** Make sure pBt->pTmpSpace points to an allocation of
+** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
+** pointer.
+*/
+static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
+ assert( pBt!=0 );
+ assert( pBt->pTmpSpace==0 );
+ /* This routine is called only by btreeCursor() when allocating the
+ ** first write cursor for the BtShared object */
+ assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
+ pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
+ if( pBt->pTmpSpace==0 ){
+ BtCursor *pCur = pBt->pCursor;
+ pBt->pCursor = pCur->pNext; /* Unlink the cursor */
+ memset(pCur, 0, sizeof(*pCur));
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* One of the uses of pBt->pTmpSpace is to format cells before
+ ** inserting them into a leaf page (function fillInCell()). If
+ ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
+ ** by the various routines that manipulate binary cells. Which
+ ** can mean that fillInCell() only initializes the first 2 or 3
+ ** bytes of pTmpSpace, but that the first 4 bytes are copied from
+ ** it into a database page. This is not actually a problem, but it
+ ** does cause a valgrind error when the 1 or 2 bytes of uninitialized
+ ** data is passed to system call write(). So to avoid this error,
+ ** zero the first 4 bytes of temp space here.
+ **
+ ** Also: Provide four bytes of initialized space before the
+ ** beginning of pTmpSpace as an area available to prepend the
+ ** left-child pointer to the beginning of a cell.
+ */
+ memset(pBt->pTmpSpace, 0, 8);
+ pBt->pTmpSpace += 4;
+ return SQLITE_OK;
+}
+
+/*
+** Free the pBt->pTmpSpace allocation
+*/
+static void freeTempSpace(BtShared *pBt){
+ if( pBt->pTmpSpace ){
+ pBt->pTmpSpace -= 4;
+ sqlite3PageFree(pBt->pTmpSpace);
+ pBt->pTmpSpace = 0;
+ }
+}
+
+/*
+** Close an open database and invalidate all cursors.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
+ BtShared *pBt = p->pBt;
+
+ /* Close all cursors opened via this handle. */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+
+ /* Verify that no other cursors have this Btree open */
+#ifdef SQLITE_DEBUG
+ {
+ BtCursor *pCur = pBt->pCursor;
+ while( pCur ){
+ BtCursor *pTmp = pCur;
+ pCur = pCur->pNext;
+ assert( pTmp->pBtree!=p );
+
+ }
+ }
+#endif
+
+ /* Rollback any active transaction and free the handle structure.
+ ** The call to sqlite3BtreeRollback() drops any table-locks held by
+ ** this handle.
+ */
+ sqlite3BtreeRollback(p, SQLITE_OK, 0);
+ sqlite3BtreeLeave(p);
+
+ /* If there are still other outstanding references to the shared-btree
+ ** structure, return now. The remainder of this procedure cleans
+ ** up the shared-btree.
+ */
+ assert( p->wantToLock==0 && p->locked==0 );
+ if( !p->sharable || removeFromSharingList(pBt) ){
+ /* The pBt is no longer on the sharing list, so we can access
+ ** it without having to hold the mutex.
+ **
+ ** Clean out and delete the BtShared object.
+ */
+ assert( !pBt->pCursor );
+ sqlite3PagerClose(pBt->pPager, p->db);
+ if( pBt->xFreeSchema && pBt->pSchema ){
+ pBt->xFreeSchema(pBt->pSchema);
+ }
+ sqlite3DbFree(0, pBt->pSchema);
+ freeTempSpace(pBt);
+ sqlite3_free(pBt);
+ }
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ assert( p->wantToLock==0 );
+ assert( p->locked==0 );
+ if( p->pPrev ) p->pPrev->pNext = p->pNext;
+ if( p->pNext ) p->pNext->pPrev = p->pPrev;
+#endif
+
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Change the "soft" limit on the number of pages in the cache.
+** Unused and unmodified pages will be recycled when the number of
+** pages in the cache exceeds this soft limit. But the size of the
+** cache is allowed to grow larger than this limit if it contains
+** dirty pages or pages still in active use.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetCachesize(pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Change the "spill" limit on the number of pages in the cache.
+** If the number of pages exceeds this limit during a write transaction,
+** the pager might attempt to "spill" pages to the journal early in
+** order to free up memory.
+**
+** The value returned is the current spill size. If zero is passed
+** as an argument, no changes are made to the spill size setting, so
+** using mxPage of 0 is a way to query the current spill size.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
+ BtShared *pBt = p->pBt;
+ int res;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return res;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** Change the limit on the amount of the database file that may be
+** memory mapped.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/*
+** Change the way data is synced to disk in order to increase or decrease
+** how well the database resists damage due to OS crashes and power
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
+** there is a high probability of damage) Level 2 is the default. There
+** is a very low but non-zero probability of damage. Level 3 reduces the
+** probability of damage to near zero but with a write performance reduction.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(
+ Btree *p, /* The btree to set the safety level on */
+ unsigned pgFlags /* Various PAGER_* flags */
+){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetFlags(pBt->pPager, pgFlags);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Change the default pages size and the number of reserved bytes per page.
+** Or, if the page size has already been fixed, return SQLITE_READONLY
+** without changing anything.
+**
+** The page size must be a power of 2 between 512 and 65536. If the page
+** size supplied does not meet this constraint then the page size is not
+** changed.
+**
+** Page sizes are constrained to be a power of two so that the region
+** of the database file used for locking (beginning at PENDING_BYTE,
+** the first byte past the 1GB boundary, 0x40000000) needs to occur
+** at the beginning of a page.
+**
+** If parameter nReserve is less than zero, then the number of reserved
+** bytes per page is left unchanged.
+**
+** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
+** and autovacuum mode can no longer be changed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
+ int rc = SQLITE_OK;
+ int x;
+ BtShared *pBt = p->pBt;
+ assert( nReserve>=0 && nReserve<=255 );
+ sqlite3BtreeEnter(p);
+ pBt->nReserveWanted = nReserve;
+ x = pBt->pageSize - pBt->usableSize;
+ if( nReserve<x ) nReserve = x;
+ if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
+ sqlite3BtreeLeave(p);
+ return SQLITE_READONLY;
+ }
+ assert( nReserve>=0 && nReserve<=255 );
+ if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
+ ((pageSize-1)&pageSize)==0 ){
+ assert( (pageSize & 7)==0 );
+ assert( !pBt->pCursor );
+ if( nReserve>32 && pageSize==512 ) pageSize = 1024;
+ pBt->pageSize = (u32)pageSize;
+ freeTempSpace(pBt);
+ }
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
+ pBt->usableSize = pBt->pageSize - (u16)nReserve;
+ if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Return the currently defined page size
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
+ return p->pBt->pageSize;
+}
+
+/*
+** This function is similar to sqlite3BtreeGetReserve(), except that it
+** may only be called if it is guaranteed that the b-tree mutex is already
+** held.
+**
+** This is useful in one special case in the backup API code where it is
+** known that the shared b-tree mutex is held, but the mutex on the
+** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
+** were to be called, it might collide with some other operation on the
+** database handle that owns *p, causing undefined behavior.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){
+ int n;
+ assert( sqlite3_mutex_held(p->pBt->mutex) );
+ n = p->pBt->pageSize - p->pBt->usableSize;
+ return n;
+}
+
+/*
+** Return the number of bytes of space at the end of every page that
+** are intentionally left unused. This is the "reserved" space that is
+** sometimes used by extensions.
+**
+** The value returned is the larger of the current reserve size and
+** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
+** The amount of reserve can only grow - never shrink.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree *p){
+ int n1, n2;
+ sqlite3BtreeEnter(p);
+ n1 = (int)p->pBt->nReserveWanted;
+ n2 = sqlite3BtreeGetReserveNoMutex(p);
+ sqlite3BtreeLeave(p);
+ return n1>n2 ? n1 : n2;
+}
+
+
+/*
+** Set the maximum page count for a database if mxPage is positive.
+** No changes are made if mxPage is 0 or negative.
+** Regardless of the value of mxPage, return the maximum page count.
+*/
+SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
+ Pgno n;
+ sqlite3BtreeEnter(p);
+ n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return n;
+}
+
+/*
+** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
+**
+** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
+** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
+** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
+** newFlag==(-1) No changes
+**
+** This routine acts as a query if newFlag is less than zero
+**
+** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
+** freelist leaf pages are not written back to the database. Thus in-page
+** deleted content is cleared, but freelist deleted content is not.
+**
+** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
+** that freelist leaf pages are written back into the database, increasing
+** the amount of disk I/O.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
+ int b;
+ if( p==0 ) return 0;
+ sqlite3BtreeEnter(p);
+ assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
+ assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
+ if( newFlag>=0 ){
+ p->pBt->btsFlags &= ~BTS_FAST_SECURE;
+ p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
+ }
+ b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
+ sqlite3BtreeLeave(p);
+ return b;
+}
+
+/*
+** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
+** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
+** is disabled. The default value for the auto-vacuum property is
+** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ return SQLITE_READONLY;
+#else
+ BtShared *pBt = p->pBt;
+ int rc = SQLITE_OK;
+ u8 av = (u8)autoVacuum;
+
+ sqlite3BtreeEnter(p);
+ if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
+ rc = SQLITE_READONLY;
+ }else{
+ pBt->autoVacuum = av ?1:0;
+ pBt->incrVacuum = av==2 ?1:0;
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+#endif
+}
+
+/*
+** Return the value of the 'auto-vacuum' property. If auto-vacuum is
+** enabled 1 is returned. Otherwise 0.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ return BTREE_AUTOVACUUM_NONE;
+#else
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = (
+ (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
+ (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
+ BTREE_AUTOVACUUM_INCR
+ );
+ sqlite3BtreeLeave(p);
+ return rc;
+#endif
+}
+
+/*
+** If the user has not set the safety-level for this database connection
+** using "PRAGMA synchronous", and if the safety-level is not already
+** set to the value passed to this function as the second parameter,
+** set it so.
+*/
+#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
+ && !defined(SQLITE_OMIT_WAL)
+static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
+ sqlite3 *db;
+ Db *pDb;
+ if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
+ while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
+ if( pDb->bSyncSet==0
+ && pDb->safety_level!=safety_level
+ && pDb!=&db->aDb[1]
+ ){
+ pDb->safety_level = safety_level;
+ sqlite3PagerSetFlags(pBt->pPager,
+ pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
+ }
+ }
+}
+#else
+# define setDefaultSyncFlag(pBt,safety_level)
+#endif
+
+/* Forward declaration */
+static int newDatabase(BtShared*);
+
+
+/*
+** Get a reference to pPage1 of the database file. This will
+** also acquire a readlock on that file.
+**
+** SQLITE_OK is returned on success. If the file is not a
+** well-formed database file, then SQLITE_CORRUPT is returned.
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
+** is returned if we run out of memory.
+*/
+static int lockBtree(BtShared *pBt){
+ int rc; /* Result code from subfunctions */
+ MemPage *pPage1; /* Page 1 of the database file */
+ u32 nPage; /* Number of pages in the database */
+ u32 nPageFile = 0; /* Number of pages in the database file */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pBt->pPage1==0 );
+ rc = sqlite3PagerSharedLock(pBt->pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = btreeGetPage(pBt, 1, &pPage1, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Do some checking to help insure the file we opened really is
+ ** a valid database file.
+ */
+ nPage = get4byte(28+(u8*)pPage1->aData);
+ sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
+ if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
+ nPage = nPageFile;
+ }
+ if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
+ nPage = 0;
+ }
+ if( nPage>0 ){
+ u32 pageSize;
+ u32 usableSize;
+ u8 *page1 = pPage1->aData;
+ rc = SQLITE_NOTADB;
+ /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
+ ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
+ ** 61 74 20 33 00. */
+ if( memcmp(page1, zMagicHeader, 16)!=0 ){
+ goto page1_init_failed;
+ }
+
+#ifdef SQLITE_OMIT_WAL
+ if( page1[18]>1 ){
+ pBt->btsFlags |= BTS_READ_ONLY;
+ }
+ if( page1[19]>1 ){
+ goto page1_init_failed;
+ }
+#else
+ if( page1[18]>2 ){
+ pBt->btsFlags |= BTS_READ_ONLY;
+ }
+ if( page1[19]>2 ){
+ goto page1_init_failed;
+ }
+
+ /* If the read version is set to 2, this database should be accessed
+ ** in WAL mode. If the log is not already open, open it now. Then
+ ** return SQLITE_OK and return without populating BtShared.pPage1.
+ ** The caller detects this and calls this function again. This is
+ ** required as the version of page 1 currently in the page1 buffer
+ ** may not be the latest version - there may be a newer one in the log
+ ** file.
+ */
+ if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
+ int isOpen = 0;
+ rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
+ if( rc!=SQLITE_OK ){
+ goto page1_init_failed;
+ }else{
+ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
+ if( isOpen==0 ){
+ releasePageOne(pPage1);
+ return SQLITE_OK;
+ }
+ }
+ rc = SQLITE_NOTADB;
+ }else{
+ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
+ }
+#endif
+
+ /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
+ ** fractions and the leaf payload fraction values must be 64, 32, and 32.
+ **
+ ** The original design allowed these amounts to vary, but as of
+ ** version 3.6.0, we require them to be fixed.
+ */
+ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
+ goto page1_init_failed;
+ }
+ /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
+ ** determined by the 2-byte integer located at an offset of 16 bytes from
+ ** the beginning of the database file. */
+ pageSize = (page1[16]<<8) | (page1[17]<<16);
+ /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
+ ** between 512 and 65536 inclusive. */
+ if( ((pageSize-1)&pageSize)!=0
+ || pageSize>SQLITE_MAX_PAGE_SIZE
+ || pageSize<=256
+ ){
+ goto page1_init_failed;
+ }
+ assert( (pageSize & 7)==0 );
+ /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
+ ** integer at offset 20 is the number of bytes of space at the end of
+ ** each page to reserve for extensions.
+ **
+ ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
+ ** determined by the one-byte unsigned integer found at an offset of 20
+ ** into the database file header. */
+ usableSize = pageSize - page1[20];
+ if( (u32)pageSize!=pBt->pageSize ){
+ /* After reading the first page of the database assuming a page size
+ ** of BtShared.pageSize, we have discovered that the page-size is
+ ** actually pageSize. Unlock the database, leave pBt->pPage1 at
+ ** zero and return SQLITE_OK. The caller will call this function
+ ** again with the correct page-size.
+ */
+ releasePageOne(pPage1);
+ pBt->usableSize = usableSize;
+ pBt->pageSize = pageSize;
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+ freeTempSpace(pBt);
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
+ pageSize-usableSize);
+ return rc;
+ }
+ if( nPage>nPageFile ){
+ if( sqlite3WritableSchema(pBt->db)==0 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto page1_init_failed;
+ }else{
+ nPage = nPageFile;
+ }
+ }
+ /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
+ ** be less than 480. In other words, if the page size is 512, then the
+ ** reserved space size cannot exceed 32. */
+ if( usableSize<480 ){
+ goto page1_init_failed;
+ }
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+ pBt->pageSize = pageSize;
+ pBt->usableSize = usableSize;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
+#endif
+ }
+
+ /* maxLocal is the maximum amount of payload to store locally for
+ ** a cell. Make sure it is small enough so that at least minFanout
+ ** cells can will fit on one page. We assume a 10-byte page header.
+ ** Besides the payload, the cell must store:
+ ** 2-byte pointer to the cell
+ ** 4-byte child pointer
+ ** 9-byte nKey value
+ ** 4-byte nData value
+ ** 4-byte overflow page pointer
+ ** So a cell consists of a 2-byte pointer, a header which is as much as
+ ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
+ ** page pointer.
+ */
+ pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
+ pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
+ pBt->maxLeaf = (u16)(pBt->usableSize - 35);
+ pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
+ if( pBt->maxLocal>127 ){
+ pBt->max1bytePayload = 127;
+ }else{
+ pBt->max1bytePayload = (u8)pBt->maxLocal;
+ }
+ assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
+ pBt->pPage1 = pPage1;
+ pBt->nPage = nPage;
+ return SQLITE_OK;
+
+page1_init_failed:
+ releasePageOne(pPage1);
+ pBt->pPage1 = 0;
+ return rc;
+}
+
+#ifndef NDEBUG
+/*
+** Return the number of cursors open on pBt. This is for use
+** in assert() expressions, so it is only compiled if NDEBUG is not
+** defined.
+**
+** Only write cursors are counted if wrOnly is true. If wrOnly is
+** false then all cursors are counted.
+**
+** For the purposes of this routine, a cursor is any cursor that
+** is capable of reading or writing to the database. Cursors that
+** have been tripped into the CURSOR_FAULT state are not counted.
+*/
+static int countValidCursors(BtShared *pBt, int wrOnly){
+ BtCursor *pCur;
+ int r = 0;
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
+ && pCur->eState!=CURSOR_FAULT ) r++;
+ }
+ return r;
+}
+#endif
+
+/*
+** If there are no outstanding cursors and we are not in the middle
+** of a transaction but there is a read lock on the database, then
+** this routine unrefs the first page of the database file which
+** has the effect of releasing the read lock.
+**
+** If there is a transaction in progress, this routine is a no-op.
+*/
+static void unlockBtreeIfUnused(BtShared *pBt){
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
+ if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
+ MemPage *pPage1 = pBt->pPage1;
+ assert( pPage1->aData );
+ assert( sqlite3PagerRefcount(pBt->pPager)==1 );
+ pBt->pPage1 = 0;
+ releasePageOne(pPage1);
+ }
+}
+
+/*
+** If pBt points to an empty file then convert that empty file
+** into a new empty database by initializing the first page of
+** the database.
+*/
+static int newDatabase(BtShared *pBt){
+ MemPage *pP1;
+ unsigned char *data;
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pBt->nPage>0 ){
+ return SQLITE_OK;
+ }
+ pP1 = pBt->pPage1;
+ assert( pP1!=0 );
+ data = pP1->aData;
+ rc = sqlite3PagerWrite(pP1->pDbPage);
+ if( rc ) return rc;
+ memcpy(data, zMagicHeader, sizeof(zMagicHeader));
+ assert( sizeof(zMagicHeader)==16 );
+ data[16] = (u8)((pBt->pageSize>>8)&0xff);
+ data[17] = (u8)((pBt->pageSize>>16)&0xff);
+ data[18] = 1;
+ data[19] = 1;
+ assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
+ data[20] = (u8)(pBt->pageSize - pBt->usableSize);
+ data[21] = 64;
+ data[22] = 32;
+ data[23] = 32;
+ memset(&data[24], 0, 100-24);
+ zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
+ pBt->btsFlags |= BTS_PAGESIZE_FIXED;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
+ assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
+ put4byte(&data[36 + 4*4], pBt->autoVacuum);
+ put4byte(&data[36 + 7*4], pBt->incrVacuum);
+#endif
+ pBt->nPage = 1;
+ data[31] = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Initialize the first page of the database file (creating a database
+** consisting of a single page and no schema objects). Return SQLITE_OK
+** if successful, or an SQLite error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){
+ int rc;
+ sqlite3BtreeEnter(p);
+ p->pBt->nPage = 0;
+ rc = newDatabase(p->pBt);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Attempt to start a new transaction. A write-transaction
+** is started if the second argument is nonzero, otherwise a read-
+** transaction. If the second argument is 2 or more and exclusive
+** transaction is started, meaning that no other process is allowed
+** to access the database. A preexisting transaction may not be
+** upgraded to exclusive by calling this routine a second time - the
+** exclusivity flag only works for a new transaction.
+**
+** A write-transaction must be started before attempting any
+** changes to the database. None of the following routines
+** will work unless a transaction is started first:
+**
+** sqlite3BtreeCreateTable()
+** sqlite3BtreeCreateIndex()
+** sqlite3BtreeClearTable()
+** sqlite3BtreeDropTable()
+** sqlite3BtreeInsert()
+** sqlite3BtreeDelete()
+** sqlite3BtreeUpdateMeta()
+**
+** If an initial attempt to acquire the lock fails because of lock contention
+** and the database was previously unlocked, then invoke the busy handler
+** if there is one. But if there was previously a read-lock, do not
+** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
+** returned when there is already a read-lock in order to avoid a deadlock.
+**
+** Suppose there are two processes A and B. A has a read lock and B has
+** a reserved lock. B tries to promote to exclusive but is blocked because
+** of A's read lock. A tries to promote to reserved but is blocked by B.
+** One or the other of the two processes must give way or there can be
+** no progress. By returning SQLITE_BUSY and not invoking the busy callback
+** when A already has a read lock, we encourage A to give up and let B
+** proceed.
+*/
+static SQLITE_NOINLINE int btreeBeginTrans(
+ Btree *p, /* The btree in which to start the transaction */
+ int wrflag, /* True to start a write transaction */
+ int *pSchemaVersion /* Put schema version number here, if not NULL */
+){
+ BtShared *pBt = p->pBt;
+ Pager *pPager = pBt->pPager;
+ int rc = SQLITE_OK;
+
+ sqlite3BtreeEnter(p);
+ btreeIntegrity(p);
+
+ /* If the btree is already in a write-transaction, or it
+ ** is already in a read-transaction and a read-transaction
+ ** is requested, this is a no-op.
+ */
+ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
+ goto trans_begun;
+ }
+ assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
+
+ if( (p->db->flags & SQLITE_ResetDatabase)
+ && sqlite3PagerIsreadonly(pPager)==0
+ ){
+ pBt->btsFlags &= ~BTS_READ_ONLY;
+ }
+
+ /* Write transactions are not possible on a read-only database */
+ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
+ rc = SQLITE_READONLY;
+ goto trans_begun;
+ }
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ {
+ sqlite3 *pBlock = 0;
+ /* If another database handle has already opened a write transaction
+ ** on this shared-btree structure and a second write transaction is
+ ** requested, return SQLITE_LOCKED.
+ */
+ if( (wrflag && pBt->inTransaction==TRANS_WRITE)
+ || (pBt->btsFlags & BTS_PENDING)!=0
+ ){
+ pBlock = pBt->pWriter->db;
+ }else if( wrflag>1 ){
+ BtLock *pIter;
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->pBtree!=p ){
+ pBlock = pIter->pBtree->db;
+ break;
+ }
+ }
+ }
+ if( pBlock ){
+ sqlite3ConnectionBlocked(p->db, pBlock);
+ rc = SQLITE_LOCKED_SHAREDCACHE;
+ goto trans_begun;
+ }
+ }
+#endif
+
+ /* Any read-only or read-write transaction implies a read-lock on
+ ** page 1. So if some other shared-cache client already has a write-lock
+ ** on page 1, the transaction cannot be opened. */
+ rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
+ if( SQLITE_OK!=rc ) goto trans_begun;
+
+ pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
+ if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
+ do {
+ sqlite3PagerWalDb(pPager, p->db);
+
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ /* If transitioning from no transaction directly to a write transaction,
+ ** block for the WRITER lock first if possible. */
+ if( pBt->pPage1==0 && wrflag ){
+ assert( pBt->inTransaction==TRANS_NONE );
+ rc = sqlite3PagerWalWriteLock(pPager, 1);
+ if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
+ }
+#endif
+
+ /* Call lockBtree() until either pBt->pPage1 is populated or
+ ** lockBtree() returns something other than SQLITE_OK. lockBtree()
+ ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
+ ** reading page 1 it discovers that the page-size of the database
+ ** file is not pBt->pageSize. In this case lockBtree() will update
+ ** pBt->pageSize to the page-size of the file on disk.
+ */
+ while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
+
+ if( rc==SQLITE_OK && wrflag ){
+ if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
+ rc = SQLITE_READONLY;
+ }else{
+ rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
+ /* if there was no transaction opened when this function was
+ ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
+ ** code to SQLITE_BUSY. */
+ rc = SQLITE_BUSY;
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ (void)sqlite3PagerWalWriteLock(pPager, 0);
+ unlockBtreeIfUnused(pBt);
+ }
+ }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
+ btreeInvokeBusyHandler(pBt) );
+ sqlite3PagerWalDb(pPager, 0);
+#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
+ if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
+#endif
+
+ if( rc==SQLITE_OK ){
+ if( p->inTrans==TRANS_NONE ){
+ pBt->nTransaction++;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( p->sharable ){
+ assert( p->lock.pBtree==p && p->lock.iTable==1 );
+ p->lock.eLock = READ_LOCK;
+ p->lock.pNext = pBt->pLock;
+ pBt->pLock = &p->lock;
+ }
+#endif
+ }
+ p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
+ if( p->inTrans>pBt->inTransaction ){
+ pBt->inTransaction = p->inTrans;
+ }
+ if( wrflag ){
+ MemPage *pPage1 = pBt->pPage1;
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ assert( !pBt->pWriter );
+ pBt->pWriter = p;
+ pBt->btsFlags &= ~BTS_EXCLUSIVE;
+ if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
+#endif
+
+ /* If the db-size header field is incorrect (as it may be if an old
+ ** client has been writing the database file), update it now. Doing
+ ** this sooner rather than later means the database size can safely
+ ** re-read the database size from page 1 if a savepoint or transaction
+ ** rollback occurs within the transaction.
+ */
+ if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pPage1->aData[28], pBt->nPage);
+ }
+ }
+ }
+ }
+
+trans_begun:
+ if( rc==SQLITE_OK ){
+ if( pSchemaVersion ){
+ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
+ }
+ if( wrflag ){
+ /* This call makes sure that the pager has the correct number of
+ ** open savepoints. If the second parameter is greater than 0 and
+ ** the sub-journal is not already open, then it will be opened here.
+ */
+ rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
+ }
+ }
+
+ btreeIntegrity(p);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
+ BtShared *pBt;
+ if( p->sharable
+ || p->inTrans==TRANS_NONE
+ || (p->inTrans==TRANS_READ && wrflag!=0)
+ ){
+ return btreeBeginTrans(p,wrflag,pSchemaVersion);
+ }
+ pBt = p->pBt;
+ if( pSchemaVersion ){
+ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
+ }
+ if( wrflag ){
+ /* This call makes sure that the pager has the correct number of
+ ** open savepoints. If the second parameter is greater than 0 and
+ ** the sub-journal is not already open, then it will be opened here.
+ */
+ return sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+
+/*
+** Set the pointer-map entries for all children of page pPage. Also, if
+** pPage contains cells that point to overflow pages, set the pointer
+** map entries for the overflow pages as well.
+*/
+static int setChildPtrmaps(MemPage *pPage){
+ int i; /* Counter variable */
+ int nCell; /* Number of cells in page pPage */
+ int rc; /* Return code */
+ BtShared *pBt = pPage->pBt;
+ Pgno pgno = pPage->pgno;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
+ if( rc!=SQLITE_OK ) return rc;
+ nCell = pPage->nCell;
+
+ for(i=0; i<nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+
+ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
+
+ if( !pPage->leaf ){
+ Pgno childPgno = get4byte(pCell);
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
+ }
+ }
+
+ if( !pPage->leaf ){
+ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
+ }
+
+ return rc;
+}
+
+/*
+** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
+** that it points to iTo. Parameter eType describes the type of pointer to
+** be modified, as follows:
+**
+** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
+** page of pPage.
+**
+** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
+** page pointed to by one of the cells on pPage.
+**
+** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
+** overflow page in the list.
+*/
+static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ if( eType==PTRMAP_OVERFLOW2 ){
+ /* The pointer is always the first 4 bytes of the page in this case. */
+ if( get4byte(pPage->aData)!=iFrom ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ put4byte(pPage->aData, iTo);
+ }else{
+ int i;
+ int nCell;
+ int rc;
+
+ rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
+ if( rc ) return rc;
+ nCell = pPage->nCell;
+
+ for(i=0; i<nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+ if( eType==PTRMAP_OVERFLOW1 ){
+ CellInfo info;
+ pPage->xParseCell(pPage, pCell, &info);
+ if( info.nLocal<info.nPayload ){
+ if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( iFrom==get4byte(pCell+info.nSize-4) ){
+ put4byte(pCell+info.nSize-4, iTo);
+ break;
+ }
+ }
+ }else{
+ if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( get4byte(pCell)==iFrom ){
+ put4byte(pCell, iTo);
+ break;
+ }
+ }
+ }
+
+ if( i==nCell ){
+ if( eType!=PTRMAP_BTREE ||
+ get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
+ }
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Move the open database page pDbPage to location iFreePage in the
+** database. The pDbPage reference remains valid.
+**
+** The isCommit flag indicates that there is no need to remember that
+** the journal needs to be sync()ed before database page pDbPage->pgno
+** can be written to. The caller has already promised not to write to that
+** page.
+*/
+static int relocatePage(
+ BtShared *pBt, /* Btree */
+ MemPage *pDbPage, /* Open page to move */
+ u8 eType, /* Pointer map 'type' entry for pDbPage */
+ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
+ Pgno iFreePage, /* The location to move pDbPage to */
+ int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
+){
+ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
+ Pgno iDbPage = pDbPage->pgno;
+ Pager *pPager = pBt->pPager;
+ int rc;
+
+ assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
+ eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pDbPage->pBt==pBt );
+ if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
+
+ /* Move page iDbPage from its current location to page number iFreePage */
+ TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n",
+ iDbPage, iFreePage, iPtrPage, eType));
+ rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pDbPage->pgno = iFreePage;
+
+ /* If pDbPage was a btree-page, then it may have child pages and/or cells
+ ** that point to overflow pages. The pointer map entries for all these
+ ** pages need to be changed.
+ **
+ ** If pDbPage is an overflow page, then the first 4 bytes may store a
+ ** pointer to a subsequent overflow page. If this is the case, then
+ ** the pointer map needs to be updated for the subsequent overflow page.
+ */
+ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
+ rc = setChildPtrmaps(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ Pgno nextOvfl = get4byte(pDbPage->aData);
+ if( nextOvfl!=0 ){
+ ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+
+ /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
+ ** that it points at iFreePage. Also fix the pointer map entry for
+ ** iPtrPage.
+ */
+ if( eType!=PTRMAP_ROOTPAGE ){
+ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pPtrPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pPtrPage);
+ return rc;
+ }
+ rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
+ releasePage(pPtrPage);
+ if( rc==SQLITE_OK ){
+ ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
+ }
+ }
+ return rc;
+}
+
+/* Forward declaration required by incrVacuumStep(). */
+static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
+
+/*
+** Perform a single step of an incremental-vacuum. If successful, return
+** SQLITE_OK. If there is no work to do (and therefore no point in
+** calling this function again), return SQLITE_DONE. Or, if an error
+** occurs, return some other error code.
+**
+** More specifically, this function attempts to re-organize the database so
+** that the last page of the file currently in use is no longer in use.
+**
+** Parameter nFin is the number of pages that this database would contain
+** were this function called until it returns SQLITE_DONE.
+**
+** If the bCommit parameter is non-zero, this function assumes that the
+** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
+** or an error. bCommit is passed true for an auto-vacuum-on-commit
+** operation, or false for an incremental vacuum.
+*/
+static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
+ Pgno nFreeList; /* Number of pages still on the free-list */
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( iLastPg>nFin );
+
+ if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
+ u8 eType;
+ Pgno iPtrPage;
+
+ nFreeList = get4byte(&pBt->pPage1->aData[36]);
+ if( nFreeList==0 ){
+ return SQLITE_DONE;
+ }
+
+ rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( eType==PTRMAP_ROOTPAGE ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ if( eType==PTRMAP_FREEPAGE ){
+ if( bCommit==0 ){
+ /* Remove the page from the files free-list. This is not required
+ ** if bCommit is non-zero. In that case, the free-list will be
+ ** truncated to zero after this function returns, so it doesn't
+ ** matter if it still contains some garbage entries.
+ */
+ Pgno iFreePg;
+ MemPage *pFreePg;
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( iFreePg==iLastPg );
+ releasePage(pFreePg);
+ }
+ } else {
+ Pgno iFreePg; /* Index of free page to move pLastPg to */
+ MemPage *pLastPg;
+ u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
+ Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
+
+ rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* If bCommit is zero, this loop runs exactly once and page pLastPg
+ ** is swapped with the first free page pulled off the free list.
+ **
+ ** On the other hand, if bCommit is greater than zero, then keep
+ ** looping until a free-page located within the first nFin pages
+ ** of the file is found.
+ */
+ if( bCommit==0 ){
+ eMode = BTALLOC_LE;
+ iNear = nFin;
+ }
+ do {
+ MemPage *pFreePg;
+ Pgno dbSize = btreePagecount(pBt);
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
+ if( rc!=SQLITE_OK ){
+ releasePage(pLastPg);
+ return rc;
+ }
+ releasePage(pFreePg);
+ if( iFreePg>dbSize ){
+ releasePage(pLastPg);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }while( bCommit && iFreePg>nFin );
+ assert( iFreePg<iLastPg );
+
+ rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
+ releasePage(pLastPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+
+ if( bCommit==0 ){
+ do {
+ iLastPg--;
+ }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
+ pBt->bDoTruncate = 1;
+ pBt->nPage = iLastPg;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The database opened by the first argument is an auto-vacuum database
+** nOrig pages in size containing nFree free pages. Return the expected
+** size of the database in pages following an auto-vacuum operation.
+*/
+static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
+ int nEntry; /* Number of entries on one ptrmap page */
+ Pgno nPtrmap; /* Number of PtrMap pages to be freed */
+ Pgno nFin; /* Return value */
+
+ nEntry = pBt->usableSize/5;
+ nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
+ nFin = nOrig - nFree - nPtrmap;
+ if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+ while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+
+ return nFin;
+}
+
+/*
+** A write-transaction must be opened before calling this function.
+** It performs a single unit of work towards an incremental vacuum.
+**
+** If the incremental vacuum is finished after this function has run,
+** SQLITE_DONE is returned. If it is not finished, but no error occurred,
+** SQLITE_OK is returned. Otherwise an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
+ if( !pBt->autoVacuum ){
+ rc = SQLITE_DONE;
+ }else{
+ Pgno nOrig = btreePagecount(pBt);
+ Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
+ Pgno nFin = finalDbSize(pBt, nOrig, nFree);
+
+ if( nOrig<nFin || nFree>=nOrig ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else if( nFree>0 ){
+ rc = saveAllCursors(pBt, 0, 0);
+ if( rc==SQLITE_OK ){
+ invalidateAllOverflowCache(pBt);
+ rc = incrVacuumStep(pBt, nFin, nOrig, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ put4byte(&pBt->pPage1->aData[28], pBt->nPage);
+ }
+ }else{
+ rc = SQLITE_DONE;
+ }
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** This routine is called prior to sqlite3PagerCommit when a transaction
+** is committed for an auto-vacuum database.
+*/
+static int autoVacuumCommit(Btree *p){
+ int rc = SQLITE_OK;
+ Pager *pPager;
+ BtShared *pBt;
+ sqlite3 *db;
+ VVA_ONLY( int nRef );
+
+ assert( p!=0 );
+ pBt = p->pBt;
+ pPager = pBt->pPager;
+ VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ invalidateAllOverflowCache(pBt);
+ assert(pBt->autoVacuum);
+ if( !pBt->incrVacuum ){
+ Pgno nFin; /* Number of pages in database after autovacuuming */
+ Pgno nFree; /* Number of pages on the freelist initially */
+ Pgno nVac; /* Number of pages to vacuum */
+ Pgno iFree; /* The next page to be freed */
+ Pgno nOrig; /* Database size before freeing */
+
+ nOrig = btreePagecount(pBt);
+ if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
+ /* It is not possible to create a database for which the final page
+ ** is either a pointer-map page or the pending-byte page. If one
+ ** is encountered, this indicates corruption.
+ */
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ nFree = get4byte(&pBt->pPage1->aData[36]);
+ db = p->db;
+ if( db->xAutovacPages ){
+ int iDb;
+ for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
+ if( db->aDb[iDb].pBt==p ) break;
+ }
+ nVac = db->xAutovacPages(
+ db->pAutovacPagesArg,
+ db->aDb[iDb].zDbSName,
+ nOrig,
+ nFree,
+ pBt->pageSize
+ );
+ if( nVac>nFree ){
+ nVac = nFree;
+ }
+ if( nVac==0 ){
+ return SQLITE_OK;
+ }
+ }else{
+ nVac = nFree;
+ }
+ nFin = finalDbSize(pBt, nOrig, nVac);
+ if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
+ if( nFin<nOrig ){
+ rc = saveAllCursors(pBt, 0, 0);
+ }
+ for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
+ rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
+ }
+ if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( nVac==nFree ){
+ put4byte(&pBt->pPage1->aData[32], 0);
+ put4byte(&pBt->pPage1->aData[36], 0);
+ }
+ put4byte(&pBt->pPage1->aData[28], nFin);
+ pBt->bDoTruncate = 1;
+ pBt->nPage = nFin;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3PagerRollback(pPager);
+ }
+ }
+
+ assert( nRef>=sqlite3PagerRefcount(pPager) );
+ return rc;
+}
+
+#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
+# define setChildPtrmaps(x) SQLITE_OK
+#endif
+
+/*
+** This routine does the first phase of a two-phase commit. This routine
+** causes a rollback journal to be created (if it does not already exist)
+** and populated with enough information so that if a power loss occurs
+** the database can be restored to its original state by playing back
+** the journal. Then the contents of the journal are flushed out to
+** the disk. After the journal is safely on oxide, the changes to the
+** database are written into the database file and flushed to oxide.
+** At the end of this call, the rollback journal still exists on the
+** disk and we are still holding all locks, so the transaction has not
+** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
+** commit process.
+**
+** This call is a no-op if no write-transaction is currently active on pBt.
+**
+** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
+** the name of a super-journal file that should be written into the
+** individual journal file, or is NULL, indicating no super-journal file
+** (single database transaction).
+**
+** When this is called, the super-journal should already have been
+** created, populated with this journal pointer and synced to disk.
+**
+** Once this is routine has returned, the only thing required to commit
+** the write-transaction for this database file is to delete the journal.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
+ int rc = SQLITE_OK;
+ if( p->inTrans==TRANS_WRITE ){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ rc = autoVacuumCommit(p);
+ if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ }
+ if( pBt->bDoTruncate ){
+ sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
+ }
+#endif
+ rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+
+/*
+** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
+** at the conclusion of a transaction.
+*/
+static void btreeEndTransaction(Btree *p){
+ BtShared *pBt = p->pBt;
+ sqlite3 *db = p->db;
+ assert( sqlite3BtreeHoldsMutex(p) );
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->bDoTruncate = 0;
+#endif
+ if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
+ /* If there are other active statements that belong to this database
+ ** handle, downgrade to a read-only transaction. The other statements
+ ** may still be reading from the database. */
+ downgradeAllSharedCacheTableLocks(p);
+ p->inTrans = TRANS_READ;
+ }else{
+ /* If the handle had any kind of transaction open, decrement the
+ ** transaction count of the shared btree. If the transaction count
+ ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
+ ** call below will unlock the pager. */
+ if( p->inTrans!=TRANS_NONE ){
+ clearAllSharedCacheTableLocks(p);
+ pBt->nTransaction--;
+ if( 0==pBt->nTransaction ){
+ pBt->inTransaction = TRANS_NONE;
+ }
+ }
+
+ /* Set the current transaction state to TRANS_NONE and unlock the
+ ** pager if this call closed the only read or write transaction. */
+ p->inTrans = TRANS_NONE;
+ unlockBtreeIfUnused(pBt);
+ }
+
+ btreeIntegrity(p);
+}
+
+/*
+** Commit the transaction currently in progress.
+**
+** This routine implements the second phase of a 2-phase commit. The
+** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
+** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
+** routine did all the work of writing information out to disk and flushing the
+** contents so that they are written onto the disk platter. All this
+** routine has to do is delete or truncate or zero the header in the
+** the rollback journal (which causes the transaction to commit) and
+** drop locks.
+**
+** Normally, if an error occurs while the pager layer is attempting to
+** finalize the underlying journal file, this function returns an error and
+** the upper layer will attempt a rollback. However, if the second argument
+** is non-zero then this b-tree transaction is part of a multi-file
+** transaction. In this case, the transaction has already been committed
+** (by deleting a super-journal file) and the caller will ignore this
+** functions return code. So, even if an error occurs in the pager layer,
+** reset the b-tree objects internal state to indicate that the write
+** transaction has been closed. This is quite safe, as the pager will have
+** transitioned to the error state.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
+
+ if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
+ sqlite3BtreeEnter(p);
+ btreeIntegrity(p);
+
+ /* If the handle has a write-transaction open, commit the shared-btrees
+ ** transaction and set the shared state to TRANS_READ.
+ */
+ if( p->inTrans==TRANS_WRITE ){
+ int rc;
+ BtShared *pBt = p->pBt;
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( pBt->nTransaction>0 );
+ rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
+ if( rc!=SQLITE_OK && bCleanup==0 ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
+ pBt->inTransaction = TRANS_READ;
+ btreeClearHasContent(pBt);
+ }
+
+ btreeEndTransaction(p);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Do both phases of a commit.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = sqlite3BtreeCommitPhaseOne(p, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeCommitPhaseTwo(p, 0);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** This routine sets the state to CURSOR_FAULT and the error
+** code to errCode for every cursor on any BtShared that pBtree
+** references. Or if the writeOnly flag is set to 1, then only
+** trip write cursors and leave read cursors unchanged.
+**
+** Every cursor is a candidate to be tripped, including cursors
+** that belong to other database connections that happen to be
+** sharing the cache with pBtree.
+**
+** This routine gets called when a rollback occurs. If the writeOnly
+** flag is true, then only write-cursors need be tripped - read-only
+** cursors save their current positions so that they may continue
+** following the rollback. Or, if writeOnly is false, all cursors are
+** tripped. In general, writeOnly is false if the transaction being
+** rolled back modified the database schema. In this case b-tree root
+** pages may be moved or deleted from the database altogether, making
+** it unsafe for read cursors to continue.
+**
+** If the writeOnly flag is true and an error is encountered while
+** saving the current position of a read-only cursor, all cursors,
+** including all read-cursors are tripped.
+**
+** SQLITE_OK is returned if successful, or if an error occurs while
+** saving a cursor position, an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
+ BtCursor *p;
+ int rc = SQLITE_OK;
+
+ assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
+ if( pBtree ){
+ sqlite3BtreeEnter(pBtree);
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
+ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
+ rc = saveCursorPosition(p);
+ if( rc!=SQLITE_OK ){
+ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
+ break;
+ }
+ }
+ }else{
+ sqlite3BtreeClearCursor(p);
+ p->eState = CURSOR_FAULT;
+ p->skipNext = errCode;
+ }
+ btreeReleaseAllCursorPages(p);
+ }
+ sqlite3BtreeLeave(pBtree);
+ }
+ return rc;
+}
+
+/*
+** Set the pBt->nPage field correctly, according to the current
+** state of the database. Assume pBt->pPage1 is valid.
+*/
+static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
+ int nPage = get4byte(&pPage1->aData[28]);
+ testcase( nPage==0 );
+ if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
+ testcase( pBt->nPage!=(u32)nPage );
+ pBt->nPage = nPage;
+}
+
+/*
+** Rollback the transaction in progress.
+**
+** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
+** Only write cursors are tripped if writeOnly is true but all cursors are
+** tripped if writeOnly is false. Any attempt to use
+** a tripped cursor will result in an error.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
+ int rc;
+ BtShared *pBt = p->pBt;
+ MemPage *pPage1;
+
+ assert( writeOnly==1 || writeOnly==0 );
+ assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
+ sqlite3BtreeEnter(p);
+ if( tripCode==SQLITE_OK ){
+ rc = tripCode = saveAllCursors(pBt, 0, 0);
+ if( rc ) writeOnly = 0;
+ }else{
+ rc = SQLITE_OK;
+ }
+ if( tripCode ){
+ int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
+ assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
+ if( rc2!=SQLITE_OK ) rc = rc2;
+ }
+ btreeIntegrity(p);
+
+ if( p->inTrans==TRANS_WRITE ){
+ int rc2;
+
+ assert( TRANS_WRITE==pBt->inTransaction );
+ rc2 = sqlite3PagerRollback(pBt->pPager);
+ if( rc2!=SQLITE_OK ){
+ rc = rc2;
+ }
+
+ /* The rollback may have destroyed the pPage1->aData value. So
+ ** call btreeGetPage() on page 1 again to make
+ ** sure pPage1->aData is set correctly. */
+ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
+ btreeSetNPage(pBt, pPage1);
+ releasePageOne(pPage1);
+ }
+ assert( countValidCursors(pBt, 1)==0 );
+ pBt->inTransaction = TRANS_READ;
+ btreeClearHasContent(pBt);
+ }
+
+ btreeEndTransaction(p);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Start a statement subtransaction. The subtransaction can be rolled
+** back independently of the main transaction. You must start a transaction
+** before starting a subtransaction. The subtransaction is ended automatically
+** if the main transaction commits or rolls back.
+**
+** Statement subtransactions are used around individual SQL statements
+** that are contained within a BEGIN...COMMIT block. If a constraint
+** error occurs within the statement, the effect of that one statement
+** can be rolled back without having to rollback the entire transaction.
+**
+** A statement sub-transaction is implemented as an anonymous savepoint. The
+** value passed as the second parameter is the total number of savepoints,
+** including the new anonymous savepoint, open on the B-Tree. i.e. if there
+** are no active savepoints and no other statement-transactions open,
+** iStatement is 1. This anonymous savepoint can be released or rolled back
+** using the sqlite3BtreeSavepoint() function.
+*/
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
+ assert( iStatement>0 );
+ assert( iStatement>p->db->nSavepoint );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ /* At the pager level, a statement transaction is a savepoint with
+ ** an index greater than all savepoints created explicitly using
+ ** SQL statements. It is illegal to open, release or rollback any
+ ** such savepoints while the statement transaction savepoint is active.
+ */
+ rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
+** or SAVEPOINT_RELEASE. This function either releases or rolls back the
+** savepoint identified by parameter iSavepoint, depending on the value
+** of op.
+**
+** Normally, iSavepoint is greater than or equal to zero. However, if op is
+** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
+** contents of the entire transaction are rolled back. This is different
+** from a normal transaction rollback, as no locks are released and the
+** transaction remains open.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
+ int rc = SQLITE_OK;
+ if( p && p->inTrans==TRANS_WRITE ){
+ BtShared *pBt = p->pBt;
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
+ sqlite3BtreeEnter(p);
+ if( op==SAVEPOINT_ROLLBACK ){
+ rc = saveAllCursors(pBt, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
+ pBt->nPage = 0;
+ }
+ rc = newDatabase(pBt);
+ btreeSetNPage(pBt, pBt->pPage1);
+
+ /* pBt->nPage might be zero if the database was corrupt when
+ ** the transaction was started. Otherwise, it must be at least 1. */
+ assert( CORRUPT_DB || pBt->nPage>0 );
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+
+/*
+** Create a new cursor for the BTree whose root is on the page
+** iTable. If a read-only cursor is requested, it is assumed that
+** the caller already has at least a read-only transaction open
+** on the database already. If a write-cursor is requested, then
+** the caller is assumed to have an open write transaction.
+**
+** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
+** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
+** can be used for reading or for writing if other conditions for writing
+** are also met. These are the conditions that must be met in order
+** for writing to be allowed:
+**
+** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
+**
+** 2: Other database connections that share the same pager cache
+** but which are not in the READ_UNCOMMITTED state may not have
+** cursors open with wrFlag==0 on the same table. Otherwise
+** the changes made by this write cursor would be visible to
+** the read cursors in the other database connection.
+**
+** 3: The database must be writable (not on read-only media)
+**
+** 4: There must be an active transaction.
+**
+** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
+** is set. If FORDELETE is set, that is a hint to the implementation that
+** this cursor will only be used to seek to and delete entries of an index
+** as part of a larger DELETE statement. The FORDELETE hint is not used by
+** this implementation. But in a hypothetical alternative storage engine
+** in which index entries are automatically deleted when corresponding table
+** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
+** operations on this cursor can be no-ops and all READ operations can
+** return a null row (2-bytes: 0x01 0x00).
+**
+** No checking is done to make sure that page iTable really is the
+** root page of a b-tree. If it is not, then the cursor acquired
+** will not work correctly.
+**
+** It is assumed that the sqlite3BtreeCursorZero() has been called
+** on pCur to initialize the memory space prior to invoking this routine.
+*/
+static int btreeCursor(
+ Btree *p, /* The btree */
+ Pgno iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */
+ BtCursor *pCur /* Space for new cursor */
+){
+ BtShared *pBt = p->pBt; /* Shared b-tree handle */
+ BtCursor *pX; /* Looping over other all cursors */
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( wrFlag==0
+ || wrFlag==BTREE_WRCSR
+ || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
+ );
+
+ /* The following assert statements verify that if this is a sharable
+ ** b-tree database, the connection is holding the required table locks,
+ ** and that no other connection has any open cursor that conflicts with
+ ** this lock. The iTable<1 term disables the check for corrupt schemas. */
+ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
+ || iTable<1 );
+ assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
+
+ /* Assert that the caller has opened the required transaction. */
+ assert( p->inTrans>TRANS_NONE );
+ assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
+ assert( pBt->pPage1 && pBt->pPage1->aData );
+ assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
+
+ if( iTable<=1 ){
+ if( iTable<1 ){
+ return SQLITE_CORRUPT_BKPT;
+ }else if( btreePagecount(pBt)==0 ){
+ assert( wrFlag==0 );
+ iTable = 0;
+ }
+ }
+
+ /* Now that no other errors can occur, finish filling in the BtCursor
+ ** variables and link the cursor into the BtShared list. */
+ pCur->pgnoRoot = iTable;
+ pCur->iPage = -1;
+ pCur->pKeyInfo = pKeyInfo;
+ pCur->pBtree = p;
+ pCur->pBt = pBt;
+ pCur->curFlags = 0;
+ /* If there are two or more cursors on the same btree, then all such
+ ** cursors *must* have the BTCF_Multiple flag set. */
+ for(pX=pBt->pCursor; pX; pX=pX->pNext){
+ if( pX->pgnoRoot==iTable ){
+ pX->curFlags |= BTCF_Multiple;
+ pCur->curFlags = BTCF_Multiple;
+ }
+ }
+ pCur->eState = CURSOR_INVALID;
+ pCur->pNext = pBt->pCursor;
+ pBt->pCursor = pCur;
+ if( wrFlag ){
+ pCur->curFlags |= BTCF_WriteFlag;
+ pCur->curPagerFlags = 0;
+ if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
+ }else{
+ pCur->curPagerFlags = PAGER_GET_READONLY;
+ }
+ return SQLITE_OK;
+}
+static int btreeCursorWithLock(
+ Btree *p, /* The btree */
+ Pgno iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */
+ BtCursor *pCur /* Space for new cursor */
+){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree *p, /* The btree */
+ Pgno iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
+ BtCursor *pCur /* Write new cursor here */
+){
+ if( p->sharable ){
+ return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
+ }else{
+ return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
+ }
+}
+
+/*
+** Return the size of a BtCursor object in bytes.
+**
+** This interfaces is needed so that users of cursors can preallocate
+** sufficient storage to hold a cursor. The BtCursor object is opaque
+** to users so they cannot do the sizeof() themselves - they must call
+** this routine.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){
+ return ROUND8(sizeof(BtCursor));
+}
+
+/*
+** Initialize memory that will be converted into a BtCursor object.
+**
+** The simple approach here would be to memset() the entire object
+** to zero. But it turns out that the apPage[] and aiIdx[] arrays
+** do not need to be zeroed and they are large, so we can save a lot
+** of run-time by skipping the initialization of those elements.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){
+ memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
+}
+
+/*
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
+ Btree *pBtree = pCur->pBtree;
+ if( pBtree ){
+ BtShared *pBt = pCur->pBt;
+ sqlite3BtreeEnter(pBtree);
+ assert( pBt->pCursor!=0 );
+ if( pBt->pCursor==pCur ){
+ pBt->pCursor = pCur->pNext;
+ }else{
+ BtCursor *pPrev = pBt->pCursor;
+ do{
+ if( pPrev->pNext==pCur ){
+ pPrev->pNext = pCur->pNext;
+ break;
+ }
+ pPrev = pPrev->pNext;
+ }while( ALWAYS(pPrev) );
+ }
+ btreeReleaseAllCursorPages(pCur);
+ unlockBtreeIfUnused(pBt);
+ sqlite3_free(pCur->aOverflow);
+ sqlite3_free(pCur->pKey);
+ if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
+ /* Since the BtShared is not sharable, there is no need to
+ ** worry about the missing sqlite3BtreeLeave() call here. */
+ assert( pBtree->sharable==0 );
+ sqlite3BtreeClose(pBtree);
+ }else{
+ sqlite3BtreeLeave(pBtree);
+ }
+ pCur->pBtree = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Make sure the BtCursor* given in the argument has a valid
+** BtCursor.info structure. If it is not already valid, call
+** btreeParseCell() to fill it in.
+**
+** BtCursor.info is a cache of the information in the current cell.
+** Using this cache reduces the number of calls to btreeParseCell().
+*/
+#ifndef NDEBUG
+ static int cellInfoEqual(CellInfo *a, CellInfo *b){
+ if( a->nKey!=b->nKey ) return 0;
+ if( a->pPayload!=b->pPayload ) return 0;
+ if( a->nPayload!=b->nPayload ) return 0;
+ if( a->nLocal!=b->nLocal ) return 0;
+ if( a->nSize!=b->nSize ) return 0;
+ return 1;
+ }
+ static void assertCellInfo(BtCursor *pCur){
+ CellInfo info;
+ memset(&info, 0, sizeof(info));
+ btreeParseCell(pCur->pPage, pCur->ix, &info);
+ assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
+ }
+#else
+ #define assertCellInfo(x)
+#endif
+static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
+ if( pCur->info.nSize==0 ){
+ pCur->curFlags |= BTCF_ValidNKey;
+ btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
+ }else{
+ assertCellInfo(pCur);
+ }
+}
+
+#ifndef NDEBUG /* The next routine used only within assert() statements */
+/*
+** Return true if the given BtCursor is valid. A valid cursor is one
+** that is currently pointing to a row in a (non-empty) table.
+** This is a verification routine is used only within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){
+ return pCur && pCur->eState==CURSOR_VALID;
+}
+#endif /* NDEBUG */
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
+ assert( pCur!=0 );
+ return pCur->eState==CURSOR_VALID;
+}
+
+/*
+** Return the value of the integer key or "rowid" for a table btree.
+** This routine is only valid for a cursor that is pointing into a
+** ordinary table btree. If the cursor points to an index btree or
+** is invalid, the result of this routine is undefined.
+*/
+SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->curIntKey );
+ getCellInfo(pCur);
+ return pCur->info.nKey;
+}
+
+/*
+** Pin or unpin a cursor.
+*/
+SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor *pCur){
+ assert( (pCur->curFlags & BTCF_Pinned)==0 );
+ pCur->curFlags |= BTCF_Pinned;
+}
+SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor *pCur){
+ assert( (pCur->curFlags & BTCF_Pinned)!=0 );
+ pCur->curFlags &= ~BTCF_Pinned;
+}
+
+/*
+** Return the offset into the database file for the start of the
+** payload to which the cursor is pointing.
+*/
+SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ getCellInfo(pCur);
+ return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
+ (i64)(pCur->info.pPayload - pCur->pPage->aData);
+}
+
+/*
+** Return the number of bytes of payload for the entry that pCur is
+** currently pointing to. For table btrees, this will be the amount
+** of data. For index btrees, this will be the size of the key.
+**
+** The caller must guarantee that the cursor is pointing to a non-NULL
+** valid entry. In other words, the calling procedure must guarantee
+** that the cursor has Cursor.eState==CURSOR_VALID.
+*/
+SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ getCellInfo(pCur);
+ return pCur->info.nPayload;
+}
+
+/*
+** Return an upper bound on the size of any record for the table
+** that the cursor is pointing into.
+**
+** This is an optimization. Everything will still work if this
+** routine always returns 2147483647 (which is the largest record
+** that SQLite can handle) or more. But returning a smaller value might
+** prevent large memory allocations when trying to interpret a
+** corrupt database.
+**
+** The current implementation merely returns the size of the underlying
+** database file.
+*/
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
+}
+
+/*
+** Given the page number of an overflow page in the database (parameter
+** ovfl), this function finds the page number of the next page in the
+** linked list of overflow pages. If possible, it uses the auto-vacuum
+** pointer-map data instead of reading the content of page ovfl to do so.
+**
+** If an error occurs an SQLite error code is returned. Otherwise:
+**
+** The page number of the next overflow page in the linked list is
+** written to *pPgnoNext. If page ovfl is the last page in its linked
+** list, *pPgnoNext is set to zero.
+**
+** If ppPage is not NULL, and a reference to the MemPage object corresponding
+** to page number pOvfl was obtained, then *ppPage is set to point to that
+** reference. It is the responsibility of the caller to call releasePage()
+** on *ppPage to free the reference. In no reference was obtained (because
+** the pointer-map was used to obtain the value for *pPgnoNext), then
+** *ppPage is set to zero.
+*/
+static int getOverflowPage(
+ BtShared *pBt, /* The database file */
+ Pgno ovfl, /* Current overflow page number */
+ MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
+ Pgno *pPgnoNext /* OUT: Next overflow page number */
+){
+ Pgno next = 0;
+ MemPage *pPage = 0;
+ int rc = SQLITE_OK;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert(pPgnoNext);
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* Try to find the next page in the overflow list using the
+ ** autovacuum pointer-map pages. Guess that the next page in
+ ** the overflow list is page number (ovfl+1). If that guess turns
+ ** out to be wrong, fall back to loading the data of page
+ ** number ovfl to determine the next page number.
+ */
+ if( pBt->autoVacuum ){
+ Pgno pgno;
+ Pgno iGuess = ovfl+1;
+ u8 eType;
+
+ while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
+ iGuess++;
+ }
+
+ if( iGuess<=btreePagecount(pBt) ){
+ rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
+ if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
+ next = iGuess;
+ rc = SQLITE_DONE;
+ }
+ }
+ }
+#endif
+
+ assert( next==0 || rc==SQLITE_DONE );
+ if( rc==SQLITE_OK ){
+ rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
+ assert( rc==SQLITE_OK || pPage==0 );
+ if( rc==SQLITE_OK ){
+ next = get4byte(pPage->aData);
+ }
+ }
+
+ *pPgnoNext = next;
+ if( ppPage ){
+ *ppPage = pPage;
+ }else{
+ releasePage(pPage);
+ }
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc);
+}
+
+/*
+** Copy data from a buffer to a page, or from a page to a buffer.
+**
+** pPayload is a pointer to data stored on database page pDbPage.
+** If argument eOp is false, then nByte bytes of data are copied
+** from pPayload to the buffer pointed at by pBuf. If eOp is true,
+** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
+** of data are copied from the buffer pBuf to pPayload.
+**
+** SQLITE_OK is returned on success, otherwise an error code.
+*/
+static int copyPayload(
+ void *pPayload, /* Pointer to page data */
+ void *pBuf, /* Pointer to buffer */
+ int nByte, /* Number of bytes to copy */
+ int eOp, /* 0 -> copy from page, 1 -> copy to page */
+ DbPage *pDbPage /* Page containing pPayload */
+){
+ if( eOp ){
+ /* Copy data from buffer to page (a write operation) */
+ int rc = sqlite3PagerWrite(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ memcpy(pPayload, pBuf, nByte);
+ }else{
+ /* Copy data from page to buffer (a read operation) */
+ memcpy(pBuf, pPayload, nByte);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is used to read or overwrite payload information
+** for the entry that the pCur cursor is pointing to. The eOp
+** argument is interpreted as follows:
+**
+** 0: The operation is a read. Populate the overflow cache.
+** 1: The operation is a write. Populate the overflow cache.
+**
+** A total of "amt" bytes are read or written beginning at "offset".
+** Data is read to or from the buffer pBuf.
+**
+** The content being read or written might appear on the main page
+** or be scattered out on multiple overflow pages.
+**
+** If the current cursor entry uses one or more overflow pages
+** this function may allocate space for and lazily populate
+** the overflow page-list cache array (BtCursor.aOverflow).
+** Subsequent calls use this cache to make seeking to the supplied offset
+** more efficient.
+**
+** Once an overflow page-list cache has been allocated, it must be
+** invalidated if some other cursor writes to the same table, or if
+** the cursor is moved to a different row. Additionally, in auto-vacuum
+** mode, the following events may invalidate an overflow page-list cache.
+**
+** * An incremental vacuum,
+** * A commit in auto_vacuum="full" mode,
+** * Creating a table (may require moving an overflow page).
+*/
+static int accessPayload(
+ BtCursor *pCur, /* Cursor pointing to entry to read from */
+ u32 offset, /* Begin reading this far into payload */
+ u32 amt, /* Read this many bytes */
+ unsigned char *pBuf, /* Write the bytes into this buffer */
+ int eOp /* zero to read. non-zero to write. */
+){
+ unsigned char *aPayload;
+ int rc = SQLITE_OK;
+ int iIdx = 0;
+ MemPage *pPage = pCur->pPage; /* Btree page of current entry */
+ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+ unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
+#endif
+
+ assert( pPage );
+ assert( eOp==0 || eOp==1 );
+ assert( pCur->eState==CURSOR_VALID );
+ if( pCur->ix>=pPage->nCell ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ assert( cursorHoldsMutex(pCur) );
+
+ getCellInfo(pCur);
+ aPayload = pCur->info.pPayload;
+ assert( offset+amt <= pCur->info.nPayload );
+
+ assert( aPayload > pPage->aData );
+ if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
+ /* Trying to read or write past the end of the data is an error. The
+ ** conditional above is really:
+ ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
+ ** but is recast into its current form to avoid integer overflow problems
+ */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+
+ /* Check if data must be read/written to/from the btree page itself. */
+ if( offset<pCur->info.nLocal ){
+ int a = amt;
+ if( a+offset>pCur->info.nLocal ){
+ a = pCur->info.nLocal - offset;
+ }
+ rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
+ offset = 0;
+ pBuf += a;
+ amt -= a;
+ }else{
+ offset -= pCur->info.nLocal;
+ }
+
+
+ if( rc==SQLITE_OK && amt>0 ){
+ const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
+ Pgno nextPage;
+
+ nextPage = get4byte(&aPayload[pCur->info.nLocal]);
+
+ /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
+ **
+ ** The aOverflow[] array is sized at one entry for each overflow page
+ ** in the overflow chain. The page number of the first overflow page is
+ ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
+ ** means "not yet known" (the cache is lazily populated).
+ */
+ if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
+ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
+ if( pCur->aOverflow==0
+ || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
+ ){
+ Pgno *aNew = (Pgno*)sqlite3Realloc(
+ pCur->aOverflow, nOvfl*2*sizeof(Pgno)
+ );
+ if( aNew==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ pCur->aOverflow = aNew;
+ }
+ }
+ memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
+ pCur->curFlags |= BTCF_ValidOvfl;
+ }else{
+ /* If the overflow page-list cache has been allocated and the
+ ** entry for the first required overflow page is valid, skip
+ ** directly to it.
+ */
+ if( pCur->aOverflow[offset/ovflSize] ){
+ iIdx = (offset/ovflSize);
+ nextPage = pCur->aOverflow[iIdx];
+ offset = (offset%ovflSize);
+ }
+ }
+
+ assert( rc==SQLITE_OK && amt>0 );
+ while( nextPage ){
+ /* If required, populate the overflow page-list cache. */
+ if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
+ assert( pCur->aOverflow[iIdx]==0
+ || pCur->aOverflow[iIdx]==nextPage
+ || CORRUPT_DB );
+ pCur->aOverflow[iIdx] = nextPage;
+
+ if( offset>=ovflSize ){
+ /* The only reason to read this page is to obtain the page
+ ** number for the next page in the overflow chain. The page
+ ** data is not required. So first try to lookup the overflow
+ ** page-list cache, if any, then fall back to the getOverflowPage()
+ ** function.
+ */
+ assert( pCur->curFlags & BTCF_ValidOvfl );
+ assert( pCur->pBtree->db==pBt->db );
+ if( pCur->aOverflow[iIdx+1] ){
+ nextPage = pCur->aOverflow[iIdx+1];
+ }else{
+ rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
+ }
+ offset -= ovflSize;
+ }else{
+ /* Need to read this page properly. It contains some of the
+ ** range of data that is being read (eOp==0) or written (eOp!=0).
+ */
+ int a = amt;
+ if( a + offset > ovflSize ){
+ a = ovflSize - offset;
+ }
+
+#ifdef SQLITE_DIRECT_OVERFLOW_READ
+ /* If all the following are true:
+ **
+ ** 1) this is a read operation, and
+ ** 2) data is required from the start of this overflow page, and
+ ** 3) there are no dirty pages in the page-cache
+ ** 4) the database is file-backed, and
+ ** 5) the page is not in the WAL file
+ ** 6) at least 4 bytes have already been read into the output buffer
+ **
+ ** then data can be read directly from the database file into the
+ ** output buffer, bypassing the page-cache altogether. This speeds
+ ** up loading large records that span many overflow pages.
+ */
+ if( eOp==0 /* (1) */
+ && offset==0 /* (2) */
+ && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
+ && &pBuf[-4]>=pBufStart /* (6) */
+ ){
+ sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
+ u8 aSave[4];
+ u8 *aWrite = &pBuf[-4];
+ assert( aWrite>=pBufStart ); /* due to (6) */
+ memcpy(aSave, aWrite, 4);
+ rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
+ if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
+ nextPage = get4byte(aWrite);
+ memcpy(aWrite, aSave, 4);
+ }else
+#endif
+
+ {
+ DbPage *pDbPage;
+ rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
+ (eOp==0 ? PAGER_GET_READONLY : 0)
+ );
+ if( rc==SQLITE_OK ){
+ aPayload = sqlite3PagerGetData(pDbPage);
+ nextPage = get4byte(aPayload);
+ rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
+ sqlite3PagerUnref(pDbPage);
+ offset = 0;
+ }
+ }
+ amt -= a;
+ if( amt==0 ) return rc;
+ pBuf += a;
+ }
+ if( rc ) break;
+ iIdx++;
+ }
+ }
+
+ if( rc==SQLITE_OK && amt>0 ){
+ /* Overflow chain ends prematurely */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ return rc;
+}
+
+/*
+** Read part of the payload for the row at which that cursor pCur is currently
+** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
+** begins at "offset".
+**
+** pCur can be pointing to either a table or an index b-tree.
+** If pointing to a table btree, then the content section is read. If
+** pCur is pointing to an index b-tree then the key section is read.
+**
+** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
+** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
+** cursor might be invalid or might need to be restored before being read.
+**
+** Return SQLITE_OK on success or an error code if anything goes
+** wrong. An error is returned if "offset+amt" is larger than
+** the available payload.
+*/
+SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage>=0 && pCur->pPage );
+ return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
+}
+
+/*
+** This variant of sqlite3BtreePayload() works even if the cursor has not
+** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
+** interface.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+static SQLITE_NOINLINE int accessPayloadChecked(
+ BtCursor *pCur,
+ u32 offset,
+ u32 amt,
+ void *pBuf
+){
+ int rc;
+ if ( pCur->eState==CURSOR_INVALID ){
+ return SQLITE_ABORT;
+ }
+ assert( cursorOwnsBtShared(pCur) );
+ rc = btreeRestoreCursorPosition(pCur);
+ return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
+}
+SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ if( pCur->eState==CURSOR_VALID ){
+ assert( cursorOwnsBtShared(pCur) );
+ return accessPayload(pCur, offset, amt, pBuf, 0);
+ }else{
+ return accessPayloadChecked(pCur, offset, amt, pBuf);
+ }
+}
+#endif /* SQLITE_OMIT_INCRBLOB */
+
+/*
+** Return a pointer to payload information from the entry that the
+** pCur cursor is pointing to. The pointer is to the beginning of
+** the key if index btrees (pPage->intKey==0) and is the data for
+** table btrees (pPage->intKey==1). The number of bytes of available
+** key/data is written into *pAmt. If *pAmt==0, then the value
+** returned will not be a valid pointer.
+**
+** This routine is an optimization. It is common for the entire key
+** and data to fit on the local page and for there to be no overflow
+** pages. When that is so, this routine can be used to access the
+** key and data without making a copy. If the key and/or data spills
+** onto overflow pages, then accessPayload() must be used to reassemble
+** the key/data and copy it into a preallocated buffer.
+**
+** The pointer returned by this routine looks directly into the cached
+** page of the database. The data might change or move the next time
+** any btree routine is called.
+*/
+static const void *fetchPayload(
+ BtCursor *pCur, /* Cursor pointing to entry to read from */
+ u32 *pAmt /* Write the number of available bytes here */
+){
+ int amt;
+ assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
+ assert( pCur->eState==CURSOR_VALID );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
+ assert( pCur->info.nSize>0 );
+ assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
+ assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
+ amt = pCur->info.nLocal;
+ if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
+ /* There is too little space on the page for the expected amount
+ ** of local content. Database must be corrupt. */
+ assert( CORRUPT_DB );
+ amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
+ }
+ *pAmt = (u32)amt;
+ return (void*)pCur->info.pPayload;
+}
+
+
+/*
+** For the entry that cursor pCur is point to, return as
+** many bytes of the key or data as are available on the local
+** b-tree page. Write the number of available bytes into *pAmt.
+**
+** The pointer returned is ephemeral. The key/data may move
+** or be destroyed on the next call to any Btree routine,
+** including calls from other threads against the same cache.
+** Hence, a mutex on the BtShared should be held prior to calling
+** this routine.
+**
+** These routines is used to get quick access to key and data
+** in the common case where no overflow pages are used.
+*/
+SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
+ return fetchPayload(pCur, pAmt);
+}
+
+
+/*
+** Move the cursor down to a new child page. The newPgno argument is the
+** page number of the child page to move to.
+**
+** This function returns SQLITE_CORRUPT if the page-header flags field of
+** the new child page does not match the flags field of the parent (i.e.
+** if an intkey page appears to be the parent of a non-intkey page, or
+** vice-versa).
+*/
+static int moveToChild(BtCursor *pCur, u32 newPgno){
+ int rc;
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
+ assert( pCur->iPage>=0 );
+ if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ pCur->aiIdx[pCur->iPage] = pCur->ix;
+ pCur->apPage[pCur->iPage] = pCur->pPage;
+ pCur->ix = 0;
+ pCur->iPage++;
+ rc = getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur->curPagerFlags);
+ assert( pCur->pPage!=0 || rc!=SQLITE_OK );
+ if( rc==SQLITE_OK
+ && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey)
+ ){
+ releasePage(pCur->pPage);
+ rc = SQLITE_CORRUPT_PGNO(newPgno);
+ }
+ if( rc ){
+ pCur->pPage = pCur->apPage[--pCur->iPage];
+ }
+ return rc;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Page pParent is an internal (non-leaf) tree page. This function
+** asserts that page number iChild is the left-child if the iIdx'th
+** cell in page pParent. Or, if iIdx is equal to the total number of
+** cells in pParent, that page number iChild is the right-child of
+** the page.
+*/
+static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
+ if( CORRUPT_DB ) return; /* The conditions tested below might not be true
+ ** in a corrupt database */
+ assert( iIdx<=pParent->nCell );
+ if( iIdx==pParent->nCell ){
+ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
+ }else{
+ assert( get4byte(findCell(pParent, iIdx))==iChild );
+ }
+}
+#else
+# define assertParentIndex(x,y,z)
+#endif
+
+/*
+** Move the cursor up to the parent page.
+**
+** pCur->idx is set to the cell index that contains the pointer
+** to the page we are coming from. If we are coming from the
+** right-most child page then pCur->idx is set to one more than
+** the largest cell index.
+*/
+static void moveToParent(BtCursor *pCur){
+ MemPage *pLeaf;
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->iPage>0 );
+ assert( pCur->pPage );
+ assertParentIndex(
+ pCur->apPage[pCur->iPage-1],
+ pCur->aiIdx[pCur->iPage-1],
+ pCur->pPage->pgno
+ );
+ testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ pCur->ix = pCur->aiIdx[pCur->iPage-1];
+ pLeaf = pCur->pPage;
+ pCur->pPage = pCur->apPage[--pCur->iPage];
+ releasePageNotNull(pLeaf);
+}
+
+/*
+** Move the cursor to point to the root page of its b-tree structure.
+**
+** If the table has a virtual root page, then the cursor is moved to point
+** to the virtual root page instead of the actual root page. A table has a
+** virtual root page when the actual root page contains no cells and a
+** single child page. This can only happen with the table rooted at page 1.
+**
+** If the b-tree structure is empty, the cursor state is set to
+** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
+** the cursor is set to point to the first cell located on the root
+** (or virtual root) page and the cursor state is set to CURSOR_VALID.
+**
+** If this function returns successfully, it may be assumed that the
+** page-header flags indicate that the [virtual] root-page is the expected
+** kind of b-tree page (i.e. if when opening the cursor the caller did not
+** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
+** indicating a table b-tree, or if the caller did specify a KeyInfo
+** structure the flags byte is set to 0x02 or 0x0A, indicating an index
+** b-tree).
+*/
+static int moveToRoot(BtCursor *pCur){
+ MemPage *pRoot;
+ int rc = SQLITE_OK;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
+ assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
+ assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
+
+ if( pCur->iPage>=0 ){
+ if( pCur->iPage ){
+ releasePageNotNull(pCur->pPage);
+ while( --pCur->iPage ){
+ releasePageNotNull(pCur->apPage[pCur->iPage]);
+ }
+ pRoot = pCur->pPage = pCur->apPage[0];
+ goto skip_init;
+ }
+ }else if( pCur->pgnoRoot==0 ){
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_EMPTY;
+ }else{
+ assert( pCur->iPage==(-1) );
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ if( pCur->eState==CURSOR_FAULT ){
+ assert( pCur->skipNext!=SQLITE_OK );
+ return pCur->skipNext;
+ }
+ sqlite3BtreeClearCursor(pCur);
+ }
+ rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage,
+ pCur->curPagerFlags);
+ if( rc!=SQLITE_OK ){
+ pCur->eState = CURSOR_INVALID;
+ return rc;
+ }
+ pCur->iPage = 0;
+ pCur->curIntKey = pCur->pPage->intKey;
+ }
+ pRoot = pCur->pPage;
+ assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
+
+ /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
+ ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
+ ** NULL, the caller expects a table b-tree. If this is not the case,
+ ** return an SQLITE_CORRUPT error.
+ **
+ ** Earlier versions of SQLite assumed that this test could not fail
+ ** if the root page was already loaded when this function was called (i.e.
+ ** if pCur->iPage>=0). But this is not so if the database is corrupted
+ ** in such a way that page pRoot is linked into a second b-tree table
+ ** (or the freelist). */
+ assert( pRoot->intKey==1 || pRoot->intKey==0 );
+ if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
+ return SQLITE_CORRUPT_PAGE(pCur->pPage);
+ }
+
+skip_init:
+ pCur->ix = 0;
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
+
+ if( pRoot->nCell>0 ){
+ pCur->eState = CURSOR_VALID;
+ }else if( !pRoot->leaf ){
+ Pgno subpage;
+ if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
+ subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
+ pCur->eState = CURSOR_VALID;
+ rc = moveToChild(pCur, subpage);
+ }else{
+ pCur->eState = CURSOR_INVALID;
+ rc = SQLITE_EMPTY;
+ }
+ return rc;
+}
+
+/*
+** Move the cursor down to the left-most leaf entry beneath the
+** entry to which it is currently pointing.
+**
+** The left-most leaf is the one with the smallest key - the first
+** in ascending order.
+*/
+static int moveToLeftmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc = SQLITE_OK;
+ MemPage *pPage;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
+ assert( pCur->ix<pPage->nCell );
+ pgno = get4byte(findCell(pPage, pCur->ix));
+ rc = moveToChild(pCur, pgno);
+ }
+ return rc;
+}
+
+/*
+** Move the cursor down to the right-most leaf entry beneath the
+** page to which it is currently pointing. Notice the difference
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
+** finds the right-most entry beneath the *page*.
+**
+** The right-most entry is the one with the largest key - the last
+** key in ascending order.
+*/
+static int moveToRightmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc = SQLITE_OK;
+ MemPage *pPage = 0;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ while( !(pPage = pCur->pPage)->leaf ){
+ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ pCur->ix = pPage->nCell;
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ pCur->ix = pPage->nCell-1;
+ assert( pCur->info.nSize==0 );
+ assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
+ return SQLITE_OK;
+}
+
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
+ int rc;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->pPage->nCell>0 );
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ }else if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || (pCur->pPage!=0 && pCur->pPage->nCell==0) );
+ *pRes = 1;
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+static SQLITE_NOINLINE int btreeLast(BtCursor *pCur, int *pRes){
+ int rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->eState==CURSOR_VALID );
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ if( rc==SQLITE_OK ){
+ pCur->curFlags |= BTCF_AtLast;
+ }else{
+ pCur->curFlags &= ~BTCF_AtLast;
+ }
+ }else if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = 1;
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+
+ /* If the cursor already points to the last entry, this is a no-op. */
+ if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
+#ifdef SQLITE_DEBUG
+ /* This block serves to assert() that the cursor really does point
+ ** to the last entry in the b-tree. */
+ int ii;
+ for(ii=0; ii<pCur->iPage; ii++){
+ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
+ }
+ assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
+ testcase( pCur->ix!=pCur->pPage->nCell-1 );
+ /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
+ assert( pCur->pPage->leaf );
+#endif
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ return btreeLast(pCur, pRes);
+}
+
+/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
+** table near the key intKey. Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** An integer is written into *pRes which is the result of
+** comparing the key with the entry to which the cursor is
+** pointing. The meaning of the integer written into
+** *pRes is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than intKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches intKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than intKey.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTableMoveto(
+ BtCursor *pCur, /* The cursor to be moved */
+ i64 intKey, /* The table key */
+ int biasRight, /* If true, bias the search to the high end */
+ int *pRes /* Write search results here */
+){
+ int rc;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( pRes );
+ assert( pCur->pKeyInfo==0 );
+ assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
+
+ /* If the cursor is already positioned at the point we are trying
+ ** to move to, then just return without doing any work */
+ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
+ if( pCur->info.nKey==intKey ){
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( pCur->info.nKey<intKey ){
+ if( (pCur->curFlags & BTCF_AtLast)!=0 ){
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ /* If the requested key is one more than the previous key, then
+ ** try to get there using sqlite3BtreeNext() rather than a full
+ ** binary search. This is an optimization only. The correct answer
+ ** is still obtained without this case, only a little more slowly. */
+ if( pCur->info.nKey+1==intKey ){
+ *pRes = 0;
+ rc = sqlite3BtreeNext(pCur, 0);
+ if( rc==SQLITE_OK ){
+ getCellInfo(pCur);
+ if( pCur->info.nKey==intKey ){
+ return SQLITE_OK;
+ }
+ }else if( rc!=SQLITE_DONE ){
+ return rc;
+ }
+ }
+ }
+ }
+
+#ifdef SQLITE_DEBUG
+ pCur->pBtree->nSeek++; /* Performance measurement during testing */
+#endif
+
+ rc = moveToRoot(pCur);
+ if( rc ){
+ if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+ assert( pCur->pPage );
+ assert( pCur->pPage->isInit );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->pPage->nCell > 0 );
+ assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
+ assert( pCur->curIntKey );
+
+ for(;;){
+ int lwr, upr, idx, c;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ u8 *pCell; /* Pointer to current cell in pPage */
+
+ /* pPage->nCell must be greater than zero. If this is the root-page
+ ** the cursor would have been INVALID above and this for(;;) loop
+ ** not run. If this is not the root-page, then the moveToChild() routine
+ ** would have already detected db corruption. Similarly, pPage must
+ ** be the right kind (index or table) of b-tree page. Otherwise
+ ** a moveToChild() or moveToRoot() call would have detected corruption. */
+ assert( pPage->nCell>0 );
+ assert( pPage->intKey );
+ lwr = 0;
+ upr = pPage->nCell-1;
+ assert( biasRight==0 || biasRight==1 );
+ idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
+ for(;;){
+ i64 nCellKey;
+ pCell = findCellPastPtr(pPage, idx);
+ if( pPage->intKeyLeaf ){
+ while( 0x80 <= *(pCell++) ){
+ if( pCell>=pPage->aDataEnd ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+ }
+ getVarint(pCell, (u64*)&nCellKey);
+ if( nCellKey<intKey ){
+ lwr = idx+1;
+ if( lwr>upr ){ c = -1; break; }
+ }else if( nCellKey>intKey ){
+ upr = idx-1;
+ if( lwr>upr ){ c = +1; break; }
+ }else{
+ assert( nCellKey==intKey );
+ pCur->ix = (u16)idx;
+ if( !pPage->leaf ){
+ lwr = idx;
+ goto moveto_table_next_layer;
+ }else{
+ pCur->curFlags |= BTCF_ValidNKey;
+ pCur->info.nKey = nCellKey;
+ pCur->info.nSize = 0;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ }
+ assert( lwr+upr>=0 );
+ idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
+ }
+ assert( lwr==upr+1 || !pPage->leaf );
+ assert( pPage->isInit );
+ if( pPage->leaf ){
+ assert( pCur->ix<pCur->pPage->nCell );
+ pCur->ix = (u16)idx;
+ *pRes = c;
+ rc = SQLITE_OK;
+ goto moveto_table_finish;
+ }
+moveto_table_next_layer:
+ if( lwr>=pPage->nCell ){
+ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ }else{
+ chldPg = get4byte(findCell(pPage, lwr));
+ }
+ pCur->ix = (u16)lwr;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) break;
+ }
+moveto_table_finish:
+ pCur->info.nSize = 0;
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
+ return rc;
+}
+
+/*
+** Compare the "idx"-th cell on the page the cursor pCur is currently
+** pointing to to pIdxKey using xRecordCompare. Return negative or
+** zero if the cell is less than or equal pIdxKey. Return positive
+** if unknown.
+**
+** Return value negative: Cell at pCur[idx] less than pIdxKey
+**
+** Return value is zero: Cell at pCur[idx] equals pIdxKey
+**
+** Return value positive: Nothing is known about the relationship
+** of the cell at pCur[idx] and pIdxKey.
+**
+** This routine is part of an optimization. It is always safe to return
+** a positive value as that will cause the optimization to be skipped.
+*/
+static int indexCellCompare(
+ BtCursor *pCur,
+ int idx,
+ UnpackedRecord *pIdxKey,
+ RecordCompare xRecordCompare
+){
+ MemPage *pPage = pCur->pPage;
+ int c;
+ int nCell; /* Size of the pCell cell in bytes */
+ u8 *pCell = findCellPastPtr(pPage, idx);
+
+ nCell = pCell[0];
+ if( nCell<=pPage->max1bytePayload ){
+ /* This branch runs if the record-size field of the cell is a
+ ** single byte varint and the record fits entirely on the main
+ ** b-tree page. */
+ testcase( pCell+nCell+1==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
+ }else if( !(pCell[1] & 0x80)
+ && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
+ ){
+ /* The record-size field is a 2 byte varint and the record
+ ** fits entirely on the main b-tree page. */
+ testcase( pCell+nCell+2==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
+ }else{
+ /* If the record extends into overflow pages, do not attempt
+ ** the optimization. */
+ c = 99;
+ }
+ return c;
+}
+
+/*
+** Return true (non-zero) if pCur is current pointing to the last
+** page of a table.
+*/
+static int cursorOnLastPage(BtCursor *pCur){
+ int i;
+ assert( pCur->eState==CURSOR_VALID );
+ for(i=0; i<pCur->iPage; i++){
+ MemPage *pPage = pCur->apPage[i];
+ if( pCur->aiIdx[i]<pPage->nCell ) return 0;
+ }
+ return 1;
+}
+
+/* Move the cursor so that it points to an entry in an index table
+** near the key pIdxKey. Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** An integer is written into *pRes which is the result of
+** comparing the key with the entry to which the cursor is
+** pointing. The meaning of the integer written into
+** *pRes is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pIdxKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pIdxKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pIdxKey.
+**
+** The pIdxKey->eqSeen field is set to 1 if there
+** exists an entry in the table that exactly matches pIdxKey.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIndexMoveto(
+ BtCursor *pCur, /* The cursor to be moved */
+ UnpackedRecord *pIdxKey, /* Unpacked index key */
+ int *pRes /* Write search results here */
+){
+ int rc;
+ RecordCompare xRecordCompare;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert( pRes );
+ assert( pCur->pKeyInfo!=0 );
+
+#ifdef SQLITE_DEBUG
+ pCur->pBtree->nSeek++; /* Performance measurement during testing */
+#endif
+
+ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
+ pIdxKey->errCode = 0;
+ assert( pIdxKey->default_rc==1
+ || pIdxKey->default_rc==0
+ || pIdxKey->default_rc==-1
+ );
+
+
+ /* Check to see if we can skip a lot of work. Two cases:
+ **
+ ** (1) If the cursor is already pointing to the very last cell
+ ** in the table and the pIdxKey search key is greater than or
+ ** equal to that last cell, then no movement is required.
+ **
+ ** (2) If the cursor is on the last page of the table and the first
+ ** cell on that last page is less than or equal to the pIdxKey
+ ** search key, then we can start the search on the current page
+ ** without needing to go back to root.
+ */
+ if( pCur->eState==CURSOR_VALID
+ && pCur->pPage->leaf
+ && cursorOnLastPage(pCur)
+ ){
+ int c;
+ if( pCur->ix==pCur->pPage->nCell-1
+ && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
+ && pIdxKey->errCode==SQLITE_OK
+ ){
+ *pRes = c;
+ return SQLITE_OK; /* Cursor already pointing at the correct spot */
+ }
+ if( pCur->iPage>0
+ && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
+ && pIdxKey->errCode==SQLITE_OK
+ ){
+ pCur->curFlags &= ~BTCF_ValidOvfl;
+ if( !pCur->pPage->isInit ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ goto bypass_moveto_root; /* Start search on the current page */
+ }
+ pIdxKey->errCode = SQLITE_OK;
+ }
+
+ rc = moveToRoot(pCur);
+ if( rc ){
+ if( rc==SQLITE_EMPTY ){
+ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+
+bypass_moveto_root:
+ assert( pCur->pPage );
+ assert( pCur->pPage->isInit );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->pPage->nCell > 0 );
+ assert( pCur->curIntKey==0 );
+ assert( pIdxKey!=0 );
+ for(;;){
+ int lwr, upr, idx, c;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ u8 *pCell; /* Pointer to current cell in pPage */
+
+ /* pPage->nCell must be greater than zero. If this is the root-page
+ ** the cursor would have been INVALID above and this for(;;) loop
+ ** not run. If this is not the root-page, then the moveToChild() routine
+ ** would have already detected db corruption. Similarly, pPage must
+ ** be the right kind (index or table) of b-tree page. Otherwise
+ ** a moveToChild() or moveToRoot() call would have detected corruption. */
+ assert( pPage->nCell>0 );
+ assert( pPage->intKey==0 );
+ lwr = 0;
+ upr = pPage->nCell-1;
+ idx = upr>>1; /* idx = (lwr+upr)/2; */
+ for(;;){
+ int nCell; /* Size of the pCell cell in bytes */
+ pCell = findCellPastPtr(pPage, idx);
+
+ /* The maximum supported page-size is 65536 bytes. This means that
+ ** the maximum number of record bytes stored on an index B-Tree
+ ** page is less than 16384 bytes and may be stored as a 2-byte
+ ** varint. This information is used to attempt to avoid parsing
+ ** the entire cell by checking for the cases where the record is
+ ** stored entirely within the b-tree page by inspecting the first
+ ** 2 bytes of the cell.
+ */
+ nCell = pCell[0];
+ if( nCell<=pPage->max1bytePayload ){
+ /* This branch runs if the record-size field of the cell is a
+ ** single byte varint and the record fits entirely on the main
+ ** b-tree page. */
+ testcase( pCell+nCell+1==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
+ }else if( !(pCell[1] & 0x80)
+ && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
+ ){
+ /* The record-size field is a 2 byte varint and the record
+ ** fits entirely on the main b-tree page. */
+ testcase( pCell+nCell+2==pPage->aDataEnd );
+ c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
+ }else{
+ /* The record flows over onto one or more overflow pages. In
+ ** this case the whole cell needs to be parsed, a buffer allocated
+ ** and accessPayload() used to retrieve the record into the
+ ** buffer before VdbeRecordCompare() can be called.
+ **
+ ** If the record is corrupt, the xRecordCompare routine may read
+ ** up to two varints past the end of the buffer. An extra 18
+ ** bytes of padding is allocated at the end of the buffer in
+ ** case this happens. */
+ void *pCellKey;
+ u8 * const pCellBody = pCell - pPage->childPtrSize;
+ const int nOverrun = 18; /* Size of the overrun padding */
+ pPage->xParseCell(pPage, pCellBody, &pCur->info);
+ nCell = (int)pCur->info.nKey;
+ testcase( nCell<0 ); /* True if key size is 2^32 or more */
+ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
+ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
+ testcase( nCell==2 ); /* Minimum legal index key size */
+ if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
+ rc = SQLITE_CORRUPT_PAGE(pPage);
+ goto moveto_index_finish;
+ }
+ pCellKey = sqlite3Malloc( nCell+nOverrun );
+ if( pCellKey==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto moveto_index_finish;
+ }
+ pCur->ix = (u16)idx;
+ rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
+ memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
+ pCur->curFlags &= ~BTCF_ValidOvfl;
+ if( rc ){
+ sqlite3_free(pCellKey);
+ goto moveto_index_finish;
+ }
+ c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
+ sqlite3_free(pCellKey);
+ }
+ assert(
+ (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
+ && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
+ );
+ if( c<0 ){
+ lwr = idx+1;
+ }else if( c>0 ){
+ upr = idx-1;
+ }else{
+ assert( c==0 );
+ *pRes = 0;
+ rc = SQLITE_OK;
+ pCur->ix = (u16)idx;
+ if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
+ goto moveto_index_finish;
+ }
+ if( lwr>upr ) break;
+ assert( lwr+upr>=0 );
+ idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
+ }
+ assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
+ assert( pPage->isInit );
+ if( pPage->leaf ){
+ assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
+ pCur->ix = (u16)idx;
+ *pRes = c;
+ rc = SQLITE_OK;
+ goto moveto_index_finish;
+ }
+ if( lwr>=pPage->nCell ){
+ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ }else{
+ chldPg = get4byte(findCell(pPage, lwr));
+ }
+
+ /* This block is similar to an in-lined version of:
+ **
+ ** pCur->ix = (u16)lwr;
+ ** rc = moveToChild(pCur, chldPg);
+ ** if( rc ) break;
+ */
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pCur->aiIdx[pCur->iPage] = (u16)lwr;
+ pCur->apPage[pCur->iPage] = pCur->pPage;
+ pCur->ix = 0;
+ pCur->iPage++;
+ rc = getAndInitPage(pCur->pBt, chldPg, &pCur->pPage, pCur->curPagerFlags);
+ if( rc==SQLITE_OK
+ && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey)
+ ){
+ releasePage(pCur->pPage);
+ rc = SQLITE_CORRUPT_PGNO(chldPg);
+ }
+ if( rc ){
+ pCur->pPage = pCur->apPage[--pCur->iPage];
+ break;
+ }
+ /*
+ ***** End of in-lined moveToChild() call */
+ }
+moveto_index_finish:
+ pCur->info.nSize = 0;
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
+ return rc;
+}
+
+
+/*
+** Return TRUE if the cursor is not pointing at an entry of the table.
+**
+** TRUE will be returned after a call to sqlite3BtreeNext() moves
+** past the last entry in the table or sqlite3BtreePrev() moves past
+** the first entry. TRUE is also returned if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
+ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
+ ** have been deleted? This API will need to change to return an error code
+ ** as well as the boolean result value.
+ */
+ return (CURSOR_VALID!=pCur->eState);
+}
+
+/*
+** Return an estimate for the number of rows in the table that pCur is
+** pointing to. Return a negative number if no estimate is currently
+** available.
+*/
+SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
+ i64 n;
+ u8 i;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+
+ /* Currently this interface is only called by the OP_IfSmaller
+ ** opcode, and it that case the cursor will always be valid and
+ ** will always point to a leaf node. */
+ if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
+ if( NEVER(pCur->pPage->leaf==0) ) return -1;
+
+ n = pCur->pPage->nCell;
+ for(i=0; i<pCur->iPage; i++){
+ n *= pCur->apPage[i]->nCell;
+ }
+ return n;
+}
+
+/*
+** Advance the cursor to the next entry in the database.
+** Return value:
+**
+** SQLITE_OK success
+** SQLITE_DONE cursor is already pointing at the last element
+** otherwise some kind of error occurred
+**
+** The main entry point is sqlite3BtreeNext(). That routine is optimized
+** for the common case of merely incrementing the cell counter BtCursor.aiIdx
+** to the next cell on the current page. The (slower) btreeNext() helper
+** routine is called when it is necessary to move to a different page or
+** to restore the cursor.
+**
+** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
+** cursor corresponds to an SQL index and this routine could have been
+** skipped if the SQL index had been a unique index. The F argument
+** is a hint to the implement. SQLite btree implementation does not use
+** this hint, but COMDB2 does.
+*/
+static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
+ int rc;
+ int idx;
+ MemPage *pPage;
+
+ assert( cursorOwnsBtShared(pCur) );
+ if( pCur->eState!=CURSOR_VALID ){
+ assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
+ rc = restoreCursorPosition(pCur);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( CURSOR_INVALID==pCur->eState ){
+ return SQLITE_DONE;
+ }
+ if( pCur->eState==CURSOR_SKIPNEXT ){
+ pCur->eState = CURSOR_VALID;
+ if( pCur->skipNext>0 ) return SQLITE_OK;
+ }
+ }
+
+ pPage = pCur->pPage;
+ idx = ++pCur->ix;
+ if( sqlite3FaultSim(412) ) pPage->isInit = 0;
+ if( !pPage->isInit ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ if( idx>=pPage->nCell ){
+ if( !pPage->leaf ){
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
+ if( rc ) return rc;
+ return moveToLeftmost(pCur);
+ }
+ do{
+ if( pCur->iPage==0 ){
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_DONE;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }while( pCur->ix>=pPage->nCell );
+ if( pPage->intKey ){
+ return sqlite3BtreeNext(pCur, 0);
+ }else{
+ return SQLITE_OK;
+ }
+ }
+ if( pPage->leaf ){
+ return SQLITE_OK;
+ }else{
+ return moveToLeftmost(pCur);
+ }
+}
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int flags){
+ MemPage *pPage;
+ UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
+ assert( cursorOwnsBtShared(pCur) );
+ assert( flags==0 || flags==1 );
+ pCur->info.nSize = 0;
+ pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
+ if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
+ pPage = pCur->pPage;
+ if( (++pCur->ix)>=pPage->nCell ){
+ pCur->ix--;
+ return btreeNext(pCur);
+ }
+ if( pPage->leaf ){
+ return SQLITE_OK;
+ }else{
+ return moveToLeftmost(pCur);
+ }
+}
+
+/*
+** Step the cursor to the back to the previous entry in the database.
+** Return values:
+**
+** SQLITE_OK success
+** SQLITE_DONE the cursor is already on the first element of the table
+** otherwise some kind of error occurred
+**
+** The main entry point is sqlite3BtreePrevious(). That routine is optimized
+** for the common case of merely decrementing the cell counter BtCursor.aiIdx
+** to the previous cell on the current page. The (slower) btreePrevious()
+** helper routine is called when it is necessary to move to a different page
+** or to restore the cursor.
+**
+** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
+** the cursor corresponds to an SQL index and this routine could have been
+** skipped if the SQL index had been a unique index. The F argument is a
+** hint to the implement. The native SQLite btree implementation does not
+** use this hint, but COMDB2 does.
+*/
+static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
+ int rc;
+ MemPage *pPage;
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
+ assert( pCur->info.nSize==0 );
+ if( pCur->eState!=CURSOR_VALID ){
+ rc = restoreCursorPosition(pCur);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( CURSOR_INVALID==pCur->eState ){
+ return SQLITE_DONE;
+ }
+ if( CURSOR_SKIPNEXT==pCur->eState ){
+ pCur->eState = CURSOR_VALID;
+ if( pCur->skipNext<0 ) return SQLITE_OK;
+ }
+ }
+
+ pPage = pCur->pPage;
+ assert( pPage->isInit );
+ if( !pPage->leaf ){
+ int idx = pCur->ix;
+ rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
+ if( rc ) return rc;
+ rc = moveToRightmost(pCur);
+ }else{
+ while( pCur->ix==0 ){
+ if( pCur->iPage==0 ){
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_DONE;
+ }
+ moveToParent(pCur);
+ }
+ assert( pCur->info.nSize==0 );
+ assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
+
+ pCur->ix--;
+ pPage = pCur->pPage;
+ if( pPage->intKey && !pPage->leaf ){
+ rc = sqlite3BtreePrevious(pCur, 0);
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int flags){
+ assert( cursorOwnsBtShared(pCur) );
+ assert( flags==0 || flags==1 );
+ UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
+ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
+ pCur->info.nSize = 0;
+ if( pCur->eState!=CURSOR_VALID
+ || pCur->ix==0
+ || pCur->pPage->leaf==0
+ ){
+ return btreePrevious(pCur);
+ }
+ pCur->ix--;
+ return SQLITE_OK;
+}
+
+/*
+** Allocate a new page from the database file.
+**
+** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
+** has already been called on the new page.) The new page has also
+** been referenced and the calling routine is responsible for calling
+** sqlite3PagerUnref() on the new page when it is done.
+**
+** SQLITE_OK is returned on success. Any other return value indicates
+** an error. *ppPage is set to NULL in the event of an error.
+**
+** If the "nearby" parameter is not 0, then an effort is made to
+** locate a page close to the page number "nearby". This can be used in an
+** attempt to keep related pages close to each other in the database file,
+** which in turn can make database access faster.
+**
+** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
+** anywhere on the free-list, then it is guaranteed to be returned. If
+** eMode is BTALLOC_LT then the page returned will be less than or equal
+** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
+** are no restrictions on which page is returned.
+*/
+static int allocateBtreePage(
+ BtShared *pBt, /* The btree */
+ MemPage **ppPage, /* Store pointer to the allocated page here */
+ Pgno *pPgno, /* Store the page number here */
+ Pgno nearby, /* Search for a page near this one */
+ u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
+){
+ MemPage *pPage1;
+ int rc;
+ u32 n; /* Number of pages on the freelist */
+ u32 k; /* Number of leaves on the trunk of the freelist */
+ MemPage *pTrunk = 0;
+ MemPage *pPrevTrunk = 0;
+ Pgno mxPage; /* Total size of the database file */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
+ pPage1 = pBt->pPage1;
+ mxPage = btreePagecount(pBt);
+ /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
+ ** stores the total number of pages on the freelist. */
+ n = get4byte(&pPage1->aData[36]);
+ testcase( n==mxPage-1 );
+ if( n>=mxPage ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( n>0 ){
+ /* There are pages on the freelist. Reuse one of those pages. */
+ Pgno iTrunk;
+ u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
+ u32 nSearch = 0; /* Count of the number of search attempts */
+
+ /* If eMode==BTALLOC_EXACT and a query of the pointer-map
+ ** shows that the page 'nearby' is somewhere on the free-list, then
+ ** the entire-list will be searched for that page.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( eMode==BTALLOC_EXACT ){
+ if( nearby<=mxPage ){
+ u8 eType;
+ assert( nearby>0 );
+ assert( pBt->autoVacuum );
+ rc = ptrmapGet(pBt, nearby, &eType, 0);
+ if( rc ) return rc;
+ if( eType==PTRMAP_FREEPAGE ){
+ searchList = 1;
+ }
+ }
+ }else if( eMode==BTALLOC_LE ){
+ searchList = 1;
+ }
+#endif
+
+ /* Decrement the free-list count by 1. Set iTrunk to the index of the
+ ** first free-list trunk page. iPrevTrunk is initially 1.
+ */
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc ) return rc;
+ put4byte(&pPage1->aData[36], n-1);
+
+ /* The code within this loop is run only once if the 'searchList' variable
+ ** is not true. Otherwise, it runs once for each trunk-page on the
+ ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
+ ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
+ */
+ do {
+ pPrevTrunk = pTrunk;
+ if( pPrevTrunk ){
+ /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
+ ** is the page number of the next freelist trunk page in the list or
+ ** zero if this is the last freelist trunk page. */
+ iTrunk = get4byte(&pPrevTrunk->aData[0]);
+ }else{
+ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
+ ** stores the page number of the first page of the freelist, or zero if
+ ** the freelist is empty. */
+ iTrunk = get4byte(&pPage1->aData[32]);
+ }
+ testcase( iTrunk==mxPage );
+ if( iTrunk>mxPage || nSearch++ > n ){
+ rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
+ }else{
+ rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
+ }
+ if( rc ){
+ pTrunk = 0;
+ goto end_allocate_page;
+ }
+ assert( pTrunk!=0 );
+ assert( pTrunk->aData!=0 );
+ /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
+ ** is the number of leaf page pointers to follow. */
+ k = get4byte(&pTrunk->aData[4]);
+ if( k==0 && !searchList ){
+ /* The trunk has no leaves and the list is not being searched.
+ ** So extract the trunk page itself and use it as the newly
+ ** allocated page */
+ assert( pPrevTrunk==0 );
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ *pPgno = iTrunk;
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
+ *ppPage = pTrunk;
+ pTrunk = 0;
+ TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1));
+ }else if( k>(u32)(pBt->usableSize/4 - 2) ){
+ /* Value of k is out of range. Database corruption */
+ rc = SQLITE_CORRUPT_PGNO(iTrunk);
+ goto end_allocate_page;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ }else if( searchList
+ && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
+ ){
+ /* The list is being searched and this trunk page is the page
+ ** to allocate, regardless of whether it has leaves.
+ */
+ *pPgno = iTrunk;
+ *ppPage = pTrunk;
+ searchList = 0;
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ if( k==0 ){
+ if( !pPrevTrunk ){
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
+ }else{
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
+ if( rc!=SQLITE_OK ){
+ goto end_allocate_page;
+ }
+ memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
+ }
+ }else{
+ /* The trunk page is required by the caller but it contains
+ ** pointers to free-list leaves. The first leaf becomes a trunk
+ ** page in this case.
+ */
+ MemPage *pNewTrunk;
+ Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
+ if( iNewTrunk>mxPage ){
+ rc = SQLITE_CORRUPT_PGNO(iTrunk);
+ goto end_allocate_page;
+ }
+ testcase( iNewTrunk==mxPage );
+ rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
+ if( rc!=SQLITE_OK ){
+ goto end_allocate_page;
+ }
+ rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pNewTrunk);
+ goto end_allocate_page;
+ }
+ memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
+ put4byte(&pNewTrunk->aData[4], k-1);
+ memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
+ releasePage(pNewTrunk);
+ if( !pPrevTrunk ){
+ assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
+ put4byte(&pPage1->aData[32], iNewTrunk);
+ }else{
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ put4byte(&pPrevTrunk->aData[0], iNewTrunk);
+ }
+ }
+ pTrunk = 0;
+ TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno, n-1));
+#endif
+ }else if( k>0 ){
+ /* Extract a leaf from the trunk */
+ u32 closest;
+ Pgno iPage;
+ unsigned char *aData = pTrunk->aData;
+ if( nearby>0 ){
+ u32 i;
+ closest = 0;
+ if( eMode==BTALLOC_LE ){
+ for(i=0; i<k; i++){
+ iPage = get4byte(&aData[8+i*4]);
+ if( iPage<=nearby ){
+ closest = i;
+ break;
+ }
+ }
+ }else{
+ int dist;
+ dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
+ for(i=1; i<k; i++){
+ int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
+ if( d2<dist ){
+ closest = i;
+ dist = d2;
+ }
+ }
+ }
+ }else{
+ closest = 0;
+ }
+
+ iPage = get4byte(&aData[8+closest*4]);
+ testcase( iPage==mxPage );
+ if( iPage>mxPage || iPage<2 ){
+ rc = SQLITE_CORRUPT_PGNO(iTrunk);
+ goto end_allocate_page;
+ }
+ testcase( iPage==mxPage );
+ if( !searchList
+ || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
+ ){
+ int noContent;
+ *pPgno = iPage;
+ TRACE(("ALLOCATE: %u was leaf %u of %u on trunk %u"
+ ": %u more free pages\n",
+ *pPgno, closest+1, k, pTrunk->pgno, n-1));
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ) goto end_allocate_page;
+ if( closest<k-1 ){
+ memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
+ }
+ put4byte(&aData[4], k-1);
+ noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
+ rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ }
+ }
+ searchList = 0;
+ }
+ }
+ releasePage(pPrevTrunk);
+ pPrevTrunk = 0;
+ }while( searchList );
+ }else{
+ /* There are no pages on the freelist, so append a new page to the
+ ** database image.
+ **
+ ** Normally, new pages allocated by this block can be requested from the
+ ** pager layer with the 'no-content' flag set. This prevents the pager
+ ** from trying to read the pages content from disk. However, if the
+ ** current transaction has already run one or more incremental-vacuum
+ ** steps, then the page we are about to allocate may contain content
+ ** that is required in the event of a rollback. In this case, do
+ ** not set the no-content flag. This causes the pager to load and journal
+ ** the current page content before overwriting it.
+ **
+ ** Note that the pager will not actually attempt to load or journal
+ ** content for any page that really does lie past the end of the database
+ ** file on disk. So the effects of disabling the no-content optimization
+ ** here are confined to those pages that lie between the end of the
+ ** database image and the end of the database file.
+ */
+ int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
+
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc ) return rc;
+ pBt->nPage++;
+ if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
+ /* If *pPgno refers to a pointer-map page, allocate two new pages
+ ** at the end of the file instead of one. The first allocated page
+ ** becomes a new pointer-map page, the second is used by the caller.
+ */
+ MemPage *pPg = 0;
+ TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt->nPage));
+ assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
+ rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pPg->pDbPage);
+ releasePage(pPg);
+ }
+ if( rc ) return rc;
+ pBt->nPage++;
+ if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
+ }
+#endif
+ put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
+ *pPgno = pBt->nPage;
+
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
+ rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
+ if( rc ) return rc;
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ }
+ TRACE(("ALLOCATE: %u from end of file\n", *pPgno));
+ }
+
+ assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
+
+end_allocate_page:
+ releasePage(pTrunk);
+ releasePage(pPrevTrunk);
+ assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
+ assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
+ return rc;
+}
+
+/*
+** This function is used to add page iPage to the database file free-list.
+** It is assumed that the page is not already a part of the free-list.
+**
+** The value passed as the second argument to this function is optional.
+** If the caller happens to have a pointer to the MemPage object
+** corresponding to page iPage handy, it may pass it as the second value.
+** Otherwise, it may pass NULL.
+**
+** If a pointer to a MemPage object is passed as the second argument,
+** its reference count is not altered by this function.
+*/
+static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
+ MemPage *pTrunk = 0; /* Free-list trunk page */
+ Pgno iTrunk = 0; /* Page number of free-list trunk page */
+ MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
+ MemPage *pPage; /* Page being freed. May be NULL. */
+ int rc; /* Return Code */
+ u32 nFree; /* Initial number of pages on free-list */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( CORRUPT_DB || iPage>1 );
+ assert( !pMemPage || pMemPage->pgno==iPage );
+
+ if( iPage<2 || iPage>pBt->nPage ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( pMemPage ){
+ pPage = pMemPage;
+ sqlite3PagerRef(pPage->pDbPage);
+ }else{
+ pPage = btreePageLookup(pBt, iPage);
+ }
+
+ /* Increment the free page count on pPage1 */
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc ) goto freepage_out;
+ nFree = get4byte(&pPage1->aData[36]);
+ put4byte(&pPage1->aData[36], nFree+1);
+
+ if( pBt->btsFlags & BTS_SECURE_DELETE ){
+ /* If the secure_delete option is enabled, then
+ ** always fully overwrite deleted information with zeros.
+ */
+ if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
+ || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
+ ){
+ goto freepage_out;
+ }
+ memset(pPage->aData, 0, pPage->pBt->pageSize);
+ }
+
+ /* If the database supports auto-vacuum, write an entry in the pointer-map
+ ** to indicate that the page is free.
+ */
+ if( ISAUTOVACUUM(pBt) ){
+ ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
+ if( rc ) goto freepage_out;
+ }
+
+ /* Now manipulate the actual database free-list structure. There are two
+ ** possibilities. If the free-list is currently empty, or if the first
+ ** trunk page in the free-list is full, then this page will become a
+ ** new free-list trunk page. Otherwise, it will become a leaf of the
+ ** first trunk page in the current free-list. This block tests if it
+ ** is possible to add the page as a new free-list leaf.
+ */
+ if( nFree!=0 ){
+ u32 nLeaf; /* Initial number of leaf cells on trunk page */
+
+ iTrunk = get4byte(&pPage1->aData[32]);
+ if( iTrunk>btreePagecount(pBt) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto freepage_out;
+ }
+ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
+ if( rc!=SQLITE_OK ){
+ goto freepage_out;
+ }
+
+ nLeaf = get4byte(&pTrunk->aData[4]);
+ assert( pBt->usableSize>32 );
+ if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto freepage_out;
+ }
+ if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
+ /* In this case there is room on the trunk page to insert the page
+ ** being freed as a new leaf.
+ **
+ ** Note that the trunk page is not really full until it contains
+ ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
+ ** coded. But due to a coding error in versions of SQLite prior to
+ ** 3.6.0, databases with freelist trunk pages holding more than
+ ** usableSize/4 - 8 entries will be reported as corrupt. In order
+ ** to maintain backwards compatibility with older versions of SQLite,
+ ** we will continue to restrict the number of entries to usableSize/4 - 8
+ ** for now. At some point in the future (once everyone has upgraded
+ ** to 3.6.0 or later) we should consider fixing the conditional above
+ ** to read "usableSize/4-2" instead of "usableSize/4-8".
+ **
+ ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
+ ** avoid using the last six entries in the freelist trunk page array in
+ ** order that database files created by newer versions of SQLite can be
+ ** read by older versions of SQLite.
+ */
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pTrunk->aData[4], nLeaf+1);
+ put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
+ if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
+ sqlite3PagerDontWrite(pPage->pDbPage);
+ }
+ rc = btreeSetHasContent(pBt, iPage);
+ }
+ TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage->pgno,pTrunk->pgno));
+ goto freepage_out;
+ }
+ }
+
+ /* If control flows to this point, then it was not possible to add the
+ ** the page being freed as a leaf page of the first trunk in the free-list.
+ ** Possibly because the free-list is empty, or possibly because the
+ ** first trunk in the free-list is full. Either way, the page being freed
+ ** will become the new first trunk page in the free-list.
+ */
+ if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
+ goto freepage_out;
+ }
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ goto freepage_out;
+ }
+ put4byte(pPage->aData, iTrunk);
+ put4byte(&pPage->aData[4], 0);
+ put4byte(&pPage1->aData[32], iPage);
+ TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage->pgno, iTrunk));
+
+freepage_out:
+ if( pPage ){
+ pPage->isInit = 0;
+ }
+ releasePage(pPage);
+ releasePage(pTrunk);
+ return rc;
+}
+static void freePage(MemPage *pPage, int *pRC){
+ if( (*pRC)==SQLITE_OK ){
+ *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
+ }
+}
+
+/*
+** Free the overflow pages associated with the given Cell.
+*/
+static SQLITE_NOINLINE int clearCellOverflow(
+ MemPage *pPage, /* The page that contains the Cell */
+ unsigned char *pCell, /* First byte of the Cell */
+ CellInfo *pInfo /* Size information about the cell */
+){
+ BtShared *pBt;
+ Pgno ovflPgno;
+ int rc;
+ int nOvfl;
+ u32 ovflPageSize;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pInfo->nLocal!=pInfo->nPayload );
+ testcase( pCell + pInfo->nSize == pPage->aDataEnd );
+ testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
+ if( pCell + pInfo->nSize > pPage->aDataEnd ){
+ /* Cell extends past end of page */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ ovflPgno = get4byte(pCell + pInfo->nSize - 4);
+ pBt = pPage->pBt;
+ assert( pBt->usableSize > 4 );
+ ovflPageSize = pBt->usableSize - 4;
+ nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
+ assert( nOvfl>0 ||
+ (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
+ );
+ while( nOvfl-- ){
+ Pgno iNext = 0;
+ MemPage *pOvfl = 0;
+ if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
+ /* 0 is not a legal page number and page 1 cannot be an
+ ** overflow page. Therefore if ovflPgno<2 or past the end of the
+ ** file the database must be corrupt. */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( nOvfl ){
+ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
+ if( rc ) return rc;
+ }
+
+ if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
+ && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
+ ){
+ /* There is no reason any cursor should have an outstanding reference
+ ** to an overflow page belonging to a cell that is being deleted/updated.
+ ** So if there exists more than one reference to this page, then it
+ ** must not really be an overflow page and the database must be corrupt.
+ ** It is helpful to detect this before calling freePage2(), as
+ ** freePage2() may zero the page contents if secure-delete mode is
+ ** enabled. If this 'overflow' page happens to be a page that the
+ ** caller is iterating through or using in some other way, this
+ ** can be problematic.
+ */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = freePage2(pBt, pOvfl, ovflPgno);
+ }
+
+ if( pOvfl ){
+ sqlite3PagerUnref(pOvfl->pDbPage);
+ }
+ if( rc ) return rc;
+ ovflPgno = iNext;
+ }
+ return SQLITE_OK;
+}
+
+/* Call xParseCell to compute the size of a cell. If the cell contains
+** overflow, then invoke cellClearOverflow to clear out that overflow.
+** Store the result code (SQLITE_OK or some error code) in rc.
+**
+** Implemented as macro to force inlining for performance.
+*/
+#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
+ pPage->xParseCell(pPage, pCell, &sInfo); \
+ if( sInfo.nLocal!=sInfo.nPayload ){ \
+ rc = clearCellOverflow(pPage, pCell, &sInfo); \
+ }else{ \
+ rc = SQLITE_OK; \
+ }
+
+
+/*
+** Create the byte sequence used to represent a cell on page pPage
+** and write that byte sequence into pCell[]. Overflow pages are
+** allocated and filled in as necessary. The calling procedure
+** is responsible for making sure sufficient space has been allocated
+** for pCell[].
+**
+** Note that pCell does not necessary need to point to the pPage->aData
+** area. pCell might point to some temporary storage. The cell will
+** be constructed in this temporary area then copied into pPage->aData
+** later.
+*/
+static int fillInCell(
+ MemPage *pPage, /* The page that contains the cell */
+ unsigned char *pCell, /* Complete text of the cell */
+ const BtreePayload *pX, /* Payload with which to construct the cell */
+ int *pnSize /* Write cell size here */
+){
+ int nPayload;
+ const u8 *pSrc;
+ int nSrc, n, rc, mn;
+ int spaceLeft;
+ MemPage *pToRelease;
+ unsigned char *pPrior;
+ unsigned char *pPayload;
+ BtShared *pBt;
+ Pgno pgnoOvfl;
+ int nHeader;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ /* pPage is not necessarily writeable since pCell might be auxiliary
+ ** buffer space that is separate from the pPage buffer area */
+ assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ /* Fill in the header. */
+ nHeader = pPage->childPtrSize;
+ if( pPage->intKey ){
+ nPayload = pX->nData + pX->nZero;
+ pSrc = pX->pData;
+ nSrc = pX->nData;
+ assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
+ nHeader += putVarint32(&pCell[nHeader], nPayload);
+ nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
+ }else{
+ assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
+ nSrc = nPayload = (int)pX->nKey;
+ pSrc = pX->pKey;
+ nHeader += putVarint32(&pCell[nHeader], nPayload);
+ }
+
+ /* Fill in the payload */
+ pPayload = &pCell[nHeader];
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the common case where everything fits on the btree page
+ ** and no overflow pages are required. */
+ n = nHeader + nPayload;
+ testcase( n==3 );
+ testcase( n==4 );
+ if( n<4 ) n = 4;
+ *pnSize = n;
+ assert( nSrc<=nPayload );
+ testcase( nSrc<nPayload );
+ memcpy(pPayload, pSrc, nSrc);
+ memset(pPayload+nSrc, 0, nPayload-nSrc);
+ return SQLITE_OK;
+ }
+
+ /* If we reach this point, it means that some of the content will need
+ ** to spill onto overflow pages.
+ */
+ mn = pPage->minLocal;
+ n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
+ testcase( n==pPage->maxLocal );
+ testcase( n==pPage->maxLocal+1 );
+ if( n > pPage->maxLocal ) n = mn;
+ spaceLeft = n;
+ *pnSize = n + nHeader + 4;
+ pPrior = &pCell[nHeader+n];
+ pToRelease = 0;
+ pgnoOvfl = 0;
+ pBt = pPage->pBt;
+
+ /* At this point variables should be set as follows:
+ **
+ ** nPayload Total payload size in bytes
+ ** pPayload Begin writing payload here
+ ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
+ ** that means content must spill into overflow pages.
+ ** *pnSize Size of the local cell (not counting overflow pages)
+ ** pPrior Where to write the pgno of the first overflow page
+ **
+ ** Use a call to btreeParseCellPtr() to verify that the values above
+ ** were computed correctly.
+ */
+#ifdef SQLITE_DEBUG
+ {
+ CellInfo info;
+ pPage->xParseCell(pPage, pCell, &info);
+ assert( nHeader==(int)(info.pPayload - pCell) );
+ assert( info.nKey==pX->nKey );
+ assert( *pnSize == info.nSize );
+ assert( spaceLeft == info.nLocal );
+ }
+#endif
+
+ /* Write the payload into the local Cell and any extra into overflow pages */
+ while( 1 ){
+ n = nPayload;
+ if( n>spaceLeft ) n = spaceLeft;
+
+ /* If pToRelease is not zero than pPayload points into the data area
+ ** of pToRelease. Make sure pToRelease is still writeable. */
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
+
+ /* If pPayload is part of the data area of pPage, then make sure pPage
+ ** is still writeable */
+ assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ if( nSrc>=n ){
+ memcpy(pPayload, pSrc, n);
+ }else if( nSrc>0 ){
+ n = nSrc;
+ memcpy(pPayload, pSrc, n);
+ }else{
+ memset(pPayload, 0, n);
+ }
+ nPayload -= n;
+ if( nPayload<=0 ) break;
+ pPayload += n;
+ pSrc += n;
+ nSrc -= n;
+ spaceLeft -= n;
+ if( spaceLeft==0 ){
+ MemPage *pOvfl = 0;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
+ if( pBt->autoVacuum ){
+ do{
+ pgnoOvfl++;
+ } while(
+ PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
+ );
+ }
+#endif
+ rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the database supports auto-vacuum, and the second or subsequent
+ ** overflow page is being allocated, add an entry to the pointer-map
+ ** for that page now.
+ **
+ ** If this is the first overflow page, then write a partial entry
+ ** to the pointer-map. If we write nothing to this pointer-map slot,
+ ** then the optimistic overflow chain processing in clearCell()
+ ** may misinterpret the uninitialized values and delete the
+ ** wrong pages from the database.
+ */
+ if( pBt->autoVacuum && rc==SQLITE_OK ){
+ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
+ ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
+ if( rc ){
+ releasePage(pOvfl);
+ }
+ }
+#endif
+ if( rc ){
+ releasePage(pToRelease);
+ return rc;
+ }
+
+ /* If pToRelease is not zero than pPrior points into the data area
+ ** of pToRelease. Make sure pToRelease is still writeable. */
+ assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
+
+ /* If pPrior is part of the data area of pPage, then make sure pPage
+ ** is still writeable */
+ assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
+ || sqlite3PagerIswriteable(pPage->pDbPage) );
+
+ put4byte(pPrior, pgnoOvfl);
+ releasePage(pToRelease);
+ pToRelease = pOvfl;
+ pPrior = pOvfl->aData;
+ put4byte(pPrior, 0);
+ pPayload = &pOvfl->aData[4];
+ spaceLeft = pBt->usableSize - 4;
+ }
+ }
+ releasePage(pToRelease);
+ return SQLITE_OK;
+}
+
+/*
+** Remove the i-th cell from pPage. This routine effects pPage only.
+** The cell content is not freed or deallocated. It is assumed that
+** the cell content has been copied someplace else. This routine just
+** removes the reference to the cell from pPage.
+**
+** "sz" must be the number of bytes in the cell.
+*/
+static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
+ u32 pc; /* Offset to cell content of cell being deleted */
+ u8 *data; /* pPage->aData */
+ u8 *ptr; /* Used to move bytes around within data[] */
+ int rc; /* The return code */
+ int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
+
+ if( *pRC ) return;
+ assert( idx>=0 );
+ assert( idx<pPage->nCell );
+ assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->nFree>=0 );
+ data = pPage->aData;
+ ptr = &pPage->aCellIdx[2*idx];
+ assert( pPage->pBt->usableSize > (u32)(ptr-data) );
+ pc = get2byte(ptr);
+ hdr = pPage->hdrOffset;
+ testcase( pc==(u32)get2byte(&data[hdr+5]) );
+ testcase( pc+sz==pPage->pBt->usableSize );
+ if( pc+sz > pPage->pBt->usableSize ){
+ *pRC = SQLITE_CORRUPT_BKPT;
+ return;
+ }
+ rc = freeSpace(pPage, pc, sz);
+ if( rc ){
+ *pRC = rc;
+ return;
+ }
+ pPage->nCell--;
+ if( pPage->nCell==0 ){
+ memset(&data[hdr+1], 0, 4);
+ data[hdr+7] = 0;
+ put2byte(&data[hdr+5], pPage->pBt->usableSize);
+ pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
+ - pPage->childPtrSize - 8;
+ }else{
+ memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
+ put2byte(&data[hdr+3], pPage->nCell);
+ pPage->nFree += 2;
+ }
+}
+
+/*
+** Insert a new cell on pPage at cell index "i". pCell points to the
+** content of the cell.
+**
+** If the cell content will fit on the page, then put it there. If it
+** will not fit, then make a copy of the cell content into pTemp if
+** pTemp is not null. Regardless of pTemp, allocate a new entry
+** in pPage->apOvfl[] and make it point to the cell content (either
+** in pTemp or the original pCell) and also record its index.
+** Allocating a new entry in pPage->aCell[] implies that
+** pPage->nOverflow is incremented.
+**
+** The insertCellFast() routine below works exactly the same as
+** insertCell() except that it lacks the pTemp and iChild parameters
+** which are assumed zero. Other than that, the two routines are the
+** same.
+**
+** Fixes or enhancements to this routine should be reflected in
+** insertCellFast()!
+*/
+static int insertCell(
+ MemPage *pPage, /* Page into which we are copying */
+ int i, /* New cell becomes the i-th cell of the page */
+ u8 *pCell, /* Content of the new cell */
+ int sz, /* Bytes of content in pCell */
+ u8 *pTemp, /* Temp storage space for pCell, if needed */
+ Pgno iChild /* If non-zero, replace first 4 bytes with this value */
+){
+ int idx = 0; /* Where to write new cell content in data[] */
+ int j; /* Loop counter */
+ u8 *data; /* The content of the whole page */
+ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
+
+ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
+ assert( MX_CELL(pPage->pBt)<=10921 );
+ assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
+ assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
+ assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
+ assert( pPage->nFree>=0 );
+ assert( iChild>0 );
+ if( pPage->nOverflow || sz+2>pPage->nFree ){
+ if( pTemp ){
+ memcpy(pTemp, pCell, sz);
+ pCell = pTemp;
+ }
+ put4byte(pCell, iChild);
+ j = pPage->nOverflow++;
+ /* Comparison against ArraySize-1 since we hold back one extra slot
+ ** as a contingency. In other words, never need more than 3 overflow
+ ** slots but 4 are allocated, just to be safe. */
+ assert( j < ArraySize(pPage->apOvfl)-1 );
+ pPage->apOvfl[j] = pCell;
+ pPage->aiOvfl[j] = (u16)i;
+
+ /* When multiple overflows occur, they are always sequential and in
+ ** sorted order. This invariants arise because multiple overflows can
+ ** only occur when inserting divider cells into the parent page during
+ ** balancing, and the dividers are adjacent and sorted.
+ */
+ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
+ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
+ }else{
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( NEVER(rc!=SQLITE_OK) ){
+ return rc;
+ }
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ data = pPage->aData;
+ assert( &data[pPage->cellOffset]==pPage->aCellIdx );
+ rc = allocateSpace(pPage, sz, &idx);
+ if( rc ){ return rc; }
+ /* The allocateSpace() routine guarantees the following properties
+ ** if it returns successfully */
+ assert( idx >= 0 );
+ assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
+ assert( idx+sz <= (int)pPage->pBt->usableSize );
+ pPage->nFree -= (u16)(2 + sz);
+ /* In a corrupt database where an entry in the cell index section of
+ ** a btree page has a value of 3 or less, the pCell value might point
+ ** as many as 4 bytes in front of the start of the aData buffer for
+ ** the source page. Make sure this does not cause problems by not
+ ** reading the first 4 bytes */
+ memcpy(&data[idx+4], pCell+4, sz-4);
+ put4byte(&data[idx], iChild);
+ pIns = pPage->aCellIdx + i*2;
+ memmove(pIns+2, pIns, 2*(pPage->nCell - i));
+ put2byte(pIns, idx);
+ pPage->nCell++;
+ /* increment the cell count */
+ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
+ assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pPage->pBt->autoVacuum ){
+ int rc2 = SQLITE_OK;
+ /* The cell may contain a pointer to an overflow page. If so, write
+ ** the entry for the overflow page into the pointer map.
+ */
+ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
+ if( rc2 ) return rc2;
+ }
+#endif
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This variant of insertCell() assumes that the pTemp and iChild
+** parameters are both zero. Use this variant in sqlite3BtreeInsert()
+** for performance improvement, and also so that this variant is only
+** called from that one place, and is thus inlined, and thus runs must
+** faster.
+**
+** Fixes or enhancements to this routine should be reflected into
+** the insertCell() routine.
+*/
+static int insertCellFast(
+ MemPage *pPage, /* Page into which we are copying */
+ int i, /* New cell becomes the i-th cell of the page */
+ u8 *pCell, /* Content of the new cell */
+ int sz /* Bytes of content in pCell */
+){
+ int idx = 0; /* Where to write new cell content in data[] */
+ int j; /* Loop counter */
+ u8 *data; /* The content of the whole page */
+ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
+
+ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
+ assert( MX_CELL(pPage->pBt)<=10921 );
+ assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
+ assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
+ assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
+ assert( pPage->nFree>=0 );
+ assert( pPage->nOverflow==0 );
+ if( sz+2>pPage->nFree ){
+ j = pPage->nOverflow++;
+ /* Comparison against ArraySize-1 since we hold back one extra slot
+ ** as a contingency. In other words, never need more than 3 overflow
+ ** slots but 4 are allocated, just to be safe. */
+ assert( j < ArraySize(pPage->apOvfl)-1 );
+ pPage->apOvfl[j] = pCell;
+ pPage->aiOvfl[j] = (u16)i;
+
+ /* When multiple overflows occur, they are always sequential and in
+ ** sorted order. This invariants arise because multiple overflows can
+ ** only occur when inserting divider cells into the parent page during
+ ** balancing, and the dividers are adjacent and sorted.
+ */
+ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
+ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
+ }else{
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ data = pPage->aData;
+ assert( &data[pPage->cellOffset]==pPage->aCellIdx );
+ rc = allocateSpace(pPage, sz, &idx);
+ if( rc ){ return rc; }
+ /* The allocateSpace() routine guarantees the following properties
+ ** if it returns successfully */
+ assert( idx >= 0 );
+ assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
+ assert( idx+sz <= (int)pPage->pBt->usableSize );
+ pPage->nFree -= (u16)(2 + sz);
+ memcpy(&data[idx], pCell, sz);
+ pIns = pPage->aCellIdx + i*2;
+ memmove(pIns+2, pIns, 2*(pPage->nCell - i));
+ put2byte(pIns, idx);
+ pPage->nCell++;
+ /* increment the cell count */
+ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
+ assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pPage->pBt->autoVacuum ){
+ int rc2 = SQLITE_OK;
+ /* The cell may contain a pointer to an overflow page. If so, write
+ ** the entry for the overflow page into the pointer map.
+ */
+ ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
+ if( rc2 ) return rc2;
+ }
+#endif
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The following parameters determine how many adjacent pages get involved
+** in a balancing operation. NN is the number of neighbors on either side
+** of the page that participate in the balancing operation. NB is the
+** total number of pages that participate, including the target page and
+** NN neighbors on either side.
+**
+** The minimum value of NN is 1 (of course). Increasing NN above 1
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
+** in exchange for a larger degradation in INSERT and UPDATE performance.
+** The value of NN appears to give the best results overall.
+**
+** (Later:) The description above makes it seem as if these values are
+** tunable - as if you could change them and recompile and it would all work.
+** But that is unlikely. NB has been 3 since the inception of SQLite and
+** we have never tested any other value.
+*/
+#define NN 1 /* Number of neighbors on either side of pPage */
+#define NB 3 /* (NN*2+1): Total pages involved in the balance */
+
+/*
+** A CellArray object contains a cache of pointers and sizes for a
+** consecutive sequence of cells that might be held on multiple pages.
+**
+** The cells in this array are the divider cell or cells from the pParent
+** page plus up to three child pages. There are a total of nCell cells.
+**
+** pRef is a pointer to one of the pages that contributes cells. This is
+** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
+** which should be common to all pages that contribute cells to this array.
+**
+** apCell[] and szCell[] hold, respectively, pointers to the start of each
+** cell and the size of each cell. Some of the apCell[] pointers might refer
+** to overflow cells. In other words, some apCel[] pointers might not point
+** to content area of the pages.
+**
+** A szCell[] of zero means the size of that cell has not yet been computed.
+**
+** The cells come from as many as four different pages:
+**
+** -----------
+** | Parent |
+** -----------
+** / | \
+** / | \
+** --------- --------- ---------
+** |Child-1| |Child-2| |Child-3|
+** --------- --------- ---------
+**
+** The order of cells is in the array is for an index btree is:
+**
+** 1. All cells from Child-1 in order
+** 2. The first divider cell from Parent
+** 3. All cells from Child-2 in order
+** 4. The second divider cell from Parent
+** 5. All cells from Child-3 in order
+**
+** For a table-btree (with rowids) the items 2 and 4 are empty because
+** content exists only in leaves and there are no divider cells.
+**
+** For an index btree, the apEnd[] array holds pointer to the end of page
+** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
+** respectively. The ixNx[] array holds the number of cells contained in
+** each of these 5 stages, and all stages to the left. Hence:
+**
+** ixNx[0] = Number of cells in Child-1.
+** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
+** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
+** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
+** ixNx[4] = Total number of cells.
+**
+** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
+** are used and they point to the leaf pages only, and the ixNx value are:
+**
+** ixNx[0] = Number of cells in Child-1.
+** ixNx[1] = Number of cells in Child-1 and Child-2.
+** ixNx[2] = Total number of cells.
+**
+** Sometimes when deleting, a child page can have zero cells. In those
+** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
+** entries, shift down. The end result is that each ixNx[] entry should
+** be larger than the previous
+*/
+typedef struct CellArray CellArray;
+struct CellArray {
+ int nCell; /* Number of cells in apCell[] */
+ MemPage *pRef; /* Reference page */
+ u8 **apCell; /* All cells begin balanced */
+ u16 *szCell; /* Local size of all cells in apCell[] */
+ u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
+ int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
+};
+
+/*
+** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
+** computed.
+*/
+static void populateCellCache(CellArray *p, int idx, int N){
+ MemPage *pRef = p->pRef;
+ u16 *szCell = p->szCell;
+ assert( idx>=0 && idx+N<=p->nCell );
+ while( N>0 ){
+ assert( p->apCell[idx]!=0 );
+ if( szCell[idx]==0 ){
+ szCell[idx] = pRef->xCellSize(pRef, p->apCell[idx]);
+ }else{
+ assert( CORRUPT_DB ||
+ szCell[idx]==pRef->xCellSize(pRef, p->apCell[idx]) );
+ }
+ idx++;
+ N--;
+ }
+}
+
+/*
+** Return the size of the Nth element of the cell array
+*/
+static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
+ assert( N>=0 && N<p->nCell );
+ assert( p->szCell[N]==0 );
+ p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
+ return p->szCell[N];
+}
+static u16 cachedCellSize(CellArray *p, int N){
+ assert( N>=0 && N<p->nCell );
+ if( p->szCell[N] ) return p->szCell[N];
+ return computeCellSize(p, N);
+}
+
+/*
+** Array apCell[] contains pointers to nCell b-tree page cells. The
+** szCell[] array contains the size in bytes of each cell. This function
+** replaces the current contents of page pPg with the contents of the cell
+** array.
+**
+** Some of the cells in apCell[] may currently be stored in pPg. This
+** function works around problems caused by this by making a copy of any
+** such cells before overwriting the page data.
+**
+** The MemPage.nFree field is invalidated by this function. It is the
+** responsibility of the caller to set it correctly.
+*/
+static int rebuildPage(
+ CellArray *pCArray, /* Content to be added to page pPg */
+ int iFirst, /* First cell in pCArray to use */
+ int nCell, /* Final number of cells on page */
+ MemPage *pPg /* The page to be reconstructed */
+){
+ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
+ u8 * const aData = pPg->aData; /* Pointer to data for pPg */
+ const int usableSize = pPg->pBt->usableSize;
+ u8 * const pEnd = &aData[usableSize];
+ int i = iFirst; /* Which cell to copy from pCArray*/
+ u32 j; /* Start of cell content area */
+ int iEnd = i+nCell; /* Loop terminator */
+ u8 *pCellptr = pPg->aCellIdx;
+ u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
+ u8 *pData;
+ int k; /* Current slot in pCArray->apEnd[] */
+ u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
+
+ assert( nCell>0 );
+ assert( i<iEnd );
+ j = get2byte(&aData[hdr+5]);
+ if( j>(u32)usableSize ){ j = 0; }
+ memcpy(&pTmp[j], &aData[j], usableSize - j);
+
+ for(k=0; ALWAYS(k<NB*2) && pCArray->ixNx[k]<=i; k++){}
+ pSrcEnd = pCArray->apEnd[k];
+
+ pData = pEnd;
+ while( 1/*exit by break*/ ){
+ u8 *pCell = pCArray->apCell[i];
+ u16 sz = pCArray->szCell[i];
+ assert( sz>0 );
+ if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
+ if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
+ pCell = &pTmp[pCell - aData];
+ }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
+ && (uptr)(pCell)<(uptr)pSrcEnd
+ ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ pData -= sz;
+ put2byte(pCellptr, (pData - aData));
+ pCellptr += 2;
+ if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
+ memmove(pData, pCell, sz);
+ assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
+ i++;
+ if( i>=iEnd ) break;
+ if( pCArray->ixNx[k]<=i ){
+ k++;
+ pSrcEnd = pCArray->apEnd[k];
+ }
+ }
+
+ /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
+ pPg->nCell = nCell;
+ pPg->nOverflow = 0;
+
+ put2byte(&aData[hdr+1], 0);
+ put2byte(&aData[hdr+3], pPg->nCell);
+ put2byte(&aData[hdr+5], pData - aData);
+ aData[hdr+7] = 0x00;
+ return SQLITE_OK;
+}
+
+/*
+** The pCArray objects contains pointers to b-tree cells and the cell sizes.
+** This function attempts to add the cells stored in the array to page pPg.
+** If it cannot (because the page needs to be defragmented before the cells
+** will fit), non-zero is returned. Otherwise, if the cells are added
+** successfully, zero is returned.
+**
+** Argument pCellptr points to the first entry in the cell-pointer array
+** (part of page pPg) to populate. After cell apCell[0] is written to the
+** page body, a 16-bit offset is written to pCellptr. And so on, for each
+** cell in the array. It is the responsibility of the caller to ensure
+** that it is safe to overwrite this part of the cell-pointer array.
+**
+** When this function is called, *ppData points to the start of the
+** content area on page pPg. If the size of the content area is extended,
+** *ppData is updated to point to the new start of the content area
+** before returning.
+**
+** Finally, argument pBegin points to the byte immediately following the
+** end of the space required by this page for the cell-pointer area (for
+** all cells - not just those inserted by the current call). If the content
+** area must be extended to before this point in order to accommodate all
+** cells in apCell[], then the cells do not fit and non-zero is returned.
+*/
+static int pageInsertArray(
+ MemPage *pPg, /* Page to add cells to */
+ u8 *pBegin, /* End of cell-pointer array */
+ u8 **ppData, /* IN/OUT: Page content-area pointer */
+ u8 *pCellptr, /* Pointer to cell-pointer area */
+ int iFirst, /* Index of first cell to add */
+ int nCell, /* Number of cells to add to pPg */
+ CellArray *pCArray /* Array of cells */
+){
+ int i = iFirst; /* Loop counter - cell index to insert */
+ u8 *aData = pPg->aData; /* Complete page */
+ u8 *pData = *ppData; /* Content area. A subset of aData[] */
+ int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
+ int k; /* Current slot in pCArray->apEnd[] */
+ u8 *pEnd; /* Maximum extent of cell data */
+ assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
+ if( iEnd<=iFirst ) return 0;
+ for(k=0; ALWAYS(k<NB*2) && pCArray->ixNx[k]<=i ; k++){}
+ pEnd = pCArray->apEnd[k];
+ while( 1 /*Exit by break*/ ){
+ int sz, rc;
+ u8 *pSlot;
+ assert( pCArray->szCell[i]!=0 );
+ sz = pCArray->szCell[i];
+ if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
+ if( (pData - pBegin)<sz ) return 1;
+ pData -= sz;
+ pSlot = pData;
+ }
+ /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
+ ** database. But they might for a corrupt database. Hence use memmove()
+ ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
+ assert( (pSlot+sz)<=pCArray->apCell[i]
+ || pSlot>=(pCArray->apCell[i]+sz)
+ || CORRUPT_DB );
+ if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
+ && (uptr)(pCArray->apCell[i])<(uptr)pEnd
+ ){
+ assert( CORRUPT_DB );
+ (void)SQLITE_CORRUPT_BKPT;
+ return 1;
+ }
+ memmove(pSlot, pCArray->apCell[i], sz);
+ put2byte(pCellptr, (pSlot - aData));
+ pCellptr += 2;
+ i++;
+ if( i>=iEnd ) break;
+ if( pCArray->ixNx[k]<=i ){
+ k++;
+ pEnd = pCArray->apEnd[k];
+ }
+ }
+ *ppData = pData;
+ return 0;
+}
+
+/*
+** The pCArray object contains pointers to b-tree cells and their sizes.
+**
+** This function adds the space associated with each cell in the array
+** that is currently stored within the body of pPg to the pPg free-list.
+** The cell-pointers and other fields of the page are not updated.
+**
+** This function returns the total number of cells added to the free-list.
+*/
+static int pageFreeArray(
+ MemPage *pPg, /* Page to edit */
+ int iFirst, /* First cell to delete */
+ int nCell, /* Cells to delete */
+ CellArray *pCArray /* Array of cells */
+){
+ u8 * const aData = pPg->aData;
+ u8 * const pEnd = &aData[pPg->pBt->usableSize];
+ u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
+ int nRet = 0;
+ int i, j;
+ int iEnd = iFirst + nCell;
+ int nFree = 0;
+ int aOfst[10];
+ int aAfter[10];
+
+ for(i=iFirst; i<iEnd; i++){
+ u8 *pCell = pCArray->apCell[i];
+ if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
+ int sz;
+ int iAfter;
+ int iOfst;
+ /* No need to use cachedCellSize() here. The sizes of all cells that
+ ** are to be freed have already been computing while deciding which
+ ** cells need freeing */
+ sz = pCArray->szCell[i]; assert( sz>0 );
+ iOfst = (u16)(pCell - aData);
+ iAfter = iOfst+sz;
+ for(j=0; j<nFree; j++){
+ if( aOfst[j]==iAfter ){
+ aOfst[j] = iOfst;
+ break;
+ }else if( aAfter[j]==iOfst ){
+ aAfter[j] = iAfter;
+ break;
+ }
+ }
+ if( j>=nFree ){
+ if( nFree>=(int)(sizeof(aOfst)/sizeof(aOfst[0])) ){
+ for(j=0; j<nFree; j++){
+ freeSpace(pPg, aOfst[j], aAfter[j]-aOfst[j]);
+ }
+ nFree = 0;
+ }
+ aOfst[nFree] = iOfst;
+ aAfter[nFree] = iAfter;
+ if( &aData[iAfter]>pEnd ) return 0;
+ nFree++;
+ }
+ nRet++;
+ }
+ }
+ for(j=0; j<nFree; j++){
+ freeSpace(pPg, aOfst[j], aAfter[j]-aOfst[j]);
+ }
+ return nRet;
+}
+
+/*
+** pCArray contains pointers to and sizes of all cells in the page being
+** balanced. The current page, pPg, has pPg->nCell cells starting with
+** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
+** starting at apCell[iNew].
+**
+** This routine makes the necessary adjustments to pPg so that it contains
+** the correct cells after being balanced.
+**
+** The pPg->nFree field is invalid when this function returns. It is the
+** responsibility of the caller to set it correctly.
+*/
+static int editPage(
+ MemPage *pPg, /* Edit this page */
+ int iOld, /* Index of first cell currently on page */
+ int iNew, /* Index of new first cell on page */
+ int nNew, /* Final number of cells on page */
+ CellArray *pCArray /* Array of cells and sizes */
+){
+ u8 * const aData = pPg->aData;
+ const int hdr = pPg->hdrOffset;
+ u8 *pBegin = &pPg->aCellIdx[nNew * 2];
+ int nCell = pPg->nCell; /* Cells stored on pPg */
+ u8 *pData;
+ u8 *pCellptr;
+ int i;
+ int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
+ int iNewEnd = iNew + nNew;
+
+#ifdef SQLITE_DEBUG
+ u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
+ memcpy(pTmp, aData, pPg->pBt->usableSize);
+#endif
+
+ /* Remove cells from the start and end of the page */
+ assert( nCell>=0 );
+ if( iOld<iNew ){
+ int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
+ if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
+ memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
+ nCell -= nShift;
+ }
+ if( iNewEnd < iOldEnd ){
+ int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
+ assert( nCell>=nTail );
+ nCell -= nTail;
+ }
+
+ pData = &aData[get2byte(&aData[hdr+5])];
+ if( pData<pBegin ) goto editpage_fail;
+ if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail;
+
+ /* Add cells to the start of the page */
+ if( iNew<iOld ){
+ int nAdd = MIN(nNew,iOld-iNew);
+ assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
+ assert( nAdd>=0 );
+ pCellptr = pPg->aCellIdx;
+ memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
+ if( pageInsertArray(
+ pPg, pBegin, &pData, pCellptr,
+ iNew, nAdd, pCArray
+ ) ) goto editpage_fail;
+ nCell += nAdd;
+ }
+
+ /* Add any overflow cells */
+ for(i=0; i<pPg->nOverflow; i++){
+ int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
+ if( iCell>=0 && iCell<nNew ){
+ pCellptr = &pPg->aCellIdx[iCell * 2];
+ if( nCell>iCell ){
+ memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
+ }
+ nCell++;
+ cachedCellSize(pCArray, iCell+iNew);
+ if( pageInsertArray(
+ pPg, pBegin, &pData, pCellptr,
+ iCell+iNew, 1, pCArray
+ ) ) goto editpage_fail;
+ }
+ }
+
+ /* Append cells to the end of the page */
+ assert( nCell>=0 );
+ pCellptr = &pPg->aCellIdx[nCell*2];
+ if( pageInsertArray(
+ pPg, pBegin, &pData, pCellptr,
+ iNew+nCell, nNew-nCell, pCArray
+ ) ) goto editpage_fail;
+
+ pPg->nCell = nNew;
+ pPg->nOverflow = 0;
+
+ put2byte(&aData[hdr+3], pPg->nCell);
+ put2byte(&aData[hdr+5], pData - aData);
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<nNew && !CORRUPT_DB; i++){
+ u8 *pCell = pCArray->apCell[i+iNew];
+ int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
+ if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
+ pCell = &pTmp[pCell - aData];
+ }
+ assert( 0==memcmp(pCell, &aData[iOff],
+ pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
+ }
+#endif
+
+ return SQLITE_OK;
+ editpage_fail:
+ /* Unable to edit this page. Rebuild it from scratch instead. */
+ if( nNew<1 ) return SQLITE_CORRUPT_BKPT;
+ populateCellCache(pCArray, iNew, nNew);
+ return rebuildPage(pCArray, iNew, nNew, pPg);
+}
+
+
+#ifndef SQLITE_OMIT_QUICKBALANCE
+/*
+** This version of balance() handles the common special case where
+** a new entry is being inserted on the extreme right-end of the
+** tree, in other words, when the new entry will become the largest
+** entry in the tree.
+**
+** Instead of trying to balance the 3 right-most leaf pages, just add
+** a new page to the right-hand side and put the one new entry in
+** that page. This leaves the right side of the tree somewhat
+** unbalanced. But odds are that we will be inserting new entries
+** at the end soon afterwards so the nearly empty page will quickly
+** fill up. On average.
+**
+** pPage is the leaf page which is the right-most page in the tree.
+** pParent is its parent. pPage must have a single overflow entry
+** which is also the right-most entry on the page.
+**
+** The pSpace buffer is used to store a temporary copy of the divider
+** cell that will be inserted into pParent. Such a cell consists of a 4
+** byte page number followed by a variable length integer. In other
+** words, at most 13 bytes. Hence the pSpace buffer must be at
+** least 13 bytes in size.
+*/
+static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
+ BtShared *const pBt = pPage->pBt; /* B-Tree Database */
+ MemPage *pNew; /* Newly allocated page */
+ int rc; /* Return Code */
+ Pgno pgnoNew; /* Page number of pNew */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ assert( pPage->nOverflow==1 );
+
+ if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
+ assert( pPage->nFree>=0 );
+ assert( pParent->nFree>=0 );
+
+ /* Allocate a new page. This page will become the right-sibling of
+ ** pPage. Make the parent page writable, so that the new divider cell
+ ** may be inserted. If both these operations are successful, proceed.
+ */
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
+
+ if( rc==SQLITE_OK ){
+
+ u8 *pOut = &pSpace[4];
+ u8 *pCell = pPage->apOvfl[0];
+ u16 szCell = pPage->xCellSize(pPage, pCell);
+ u8 *pStop;
+ CellArray b;
+
+ assert( sqlite3PagerIswriteable(pNew->pDbPage) );
+ assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
+ zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
+ b.nCell = 1;
+ b.pRef = pPage;
+ b.apCell = &pCell;
+ b.szCell = &szCell;
+ b.apEnd[0] = pPage->aDataEnd;
+ b.ixNx[0] = 2;
+ rc = rebuildPage(&b, 0, 1, pNew);
+ if( NEVER(rc) ){
+ releasePage(pNew);
+ return rc;
+ }
+ pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
+
+ /* If this is an auto-vacuum database, update the pointer map
+ ** with entries for the new page, and any pointer from the
+ ** cell on the page to an overflow page. If either of these
+ ** operations fails, the return code is set, but the contents
+ ** of the parent page are still manipulated by the code below.
+ ** That is Ok, at this point the parent page is guaranteed to
+ ** be marked as dirty. Returning an error code will cause a
+ ** rollback, undoing any changes made to the parent page.
+ */
+ if( ISAUTOVACUUM(pBt) ){
+ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
+ if( szCell>pNew->minLocal ){
+ ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
+ }
+ }
+
+ /* Create a divider cell to insert into pParent. The divider cell
+ ** consists of a 4-byte page number (the page number of pPage) and
+ ** a variable length key value (which must be the same value as the
+ ** largest key on pPage).
+ **
+ ** To find the largest key value on pPage, first find the right-most
+ ** cell on pPage. The first two fields of this cell are the
+ ** record-length (a variable length integer at most 32-bits in size)
+ ** and the key value (a variable length integer, may have any value).
+ ** The first of the while(...) loops below skips over the record-length
+ ** field. The second while(...) loop copies the key value from the
+ ** cell on pPage into the pSpace buffer.
+ */
+ pCell = findCell(pPage, pPage->nCell-1);
+ pStop = &pCell[9];
+ while( (*(pCell++)&0x80) && pCell<pStop );
+ pStop = &pCell[9];
+ while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
+
+ /* Insert the new divider cell into pParent. */
+ if( rc==SQLITE_OK ){
+ rc = insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
+ 0, pPage->pgno);
+ }
+
+ /* Set the right-child pointer of pParent to point to the new page. */
+ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
+
+ /* Release the reference to the new page. */
+ releasePage(pNew);
+ }
+
+ return rc;
+}
+#endif /* SQLITE_OMIT_QUICKBALANCE */
+
+#if 0
+/*
+** This function does not contribute anything to the operation of SQLite.
+** it is sometimes activated temporarily while debugging code responsible
+** for setting pointer-map entries.
+*/
+static int ptrmapCheckPages(MemPage **apPage, int nPage){
+ int i, j;
+ for(i=0; i<nPage; i++){
+ Pgno n;
+ u8 e;
+ MemPage *pPage = apPage[i];
+ BtShared *pBt = pPage->pBt;
+ assert( pPage->isInit );
+
+ for(j=0; j<pPage->nCell; j++){
+ CellInfo info;
+ u8 *z;
+
+ z = findCell(pPage, j);
+ pPage->xParseCell(pPage, z, &info);
+ if( info.nLocal<info.nPayload ){
+ Pgno ovfl = get4byte(&z[info.nSize-4]);
+ ptrmapGet(pBt, ovfl, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
+ }
+ if( !pPage->leaf ){
+ Pgno child = get4byte(z);
+ ptrmapGet(pBt, child, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_BTREE );
+ }
+ }
+ if( !pPage->leaf ){
+ Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ ptrmapGet(pBt, child, &e, &n);
+ assert( n==pPage->pgno && e==PTRMAP_BTREE );
+ }
+ }
+ return 1;
+}
+#endif
+
+/*
+** This function is used to copy the contents of the b-tree node stored
+** on page pFrom to page pTo. If page pFrom was not a leaf page, then
+** the pointer-map entries for each child page are updated so that the
+** parent page stored in the pointer map is page pTo. If pFrom contained
+** any cells with overflow page pointers, then the corresponding pointer
+** map entries are also updated so that the parent page is page pTo.
+**
+** If pFrom is currently carrying any overflow cells (entries in the
+** MemPage.apOvfl[] array), they are not copied to pTo.
+**
+** Before returning, page pTo is reinitialized using btreeInitPage().
+**
+** The performance of this function is not critical. It is only used by
+** the balance_shallower() and balance_deeper() procedures, neither of
+** which are called often under normal circumstances.
+*/
+static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
+ if( (*pRC)==SQLITE_OK ){
+ BtShared * const pBt = pFrom->pBt;
+ u8 * const aFrom = pFrom->aData;
+ u8 * const aTo = pTo->aData;
+ int const iFromHdr = pFrom->hdrOffset;
+ int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
+ int rc;
+ int iData;
+
+
+ assert( pFrom->isInit );
+ assert( pFrom->nFree>=iToHdr );
+ assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
+
+ /* Copy the b-tree node content from page pFrom to page pTo. */
+ iData = get2byte(&aFrom[iFromHdr+5]);
+ memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
+ memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
+
+ /* Reinitialize page pTo so that the contents of the MemPage structure
+ ** match the new data. The initialization of pTo can actually fail under
+ ** fairly obscure circumstances, even though it is a copy of initialized
+ ** page pFrom.
+ */
+ pTo->isInit = 0;
+ rc = btreeInitPage(pTo);
+ if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
+ if( rc!=SQLITE_OK ){
+ *pRC = rc;
+ return;
+ }
+
+ /* If this is an auto-vacuum database, update the pointer-map entries
+ ** for any b-tree or overflow pages that pTo now contains the pointers to.
+ */
+ if( ISAUTOVACUUM(pBt) ){
+ *pRC = setChildPtrmaps(pTo);
+ }
+ }
+}
+
+/*
+** This routine redistributes cells on the iParentIdx'th child of pParent
+** (hereafter "the page") and up to 2 siblings so that all pages have about the
+** same amount of free space. Usually a single sibling on either side of the
+** page are used in the balancing, though both siblings might come from one
+** side if the page is the first or last child of its parent. If the page
+** has fewer than 2 siblings (something which can only happen if the page
+** is a root page or a child of a root page) then all available siblings
+** participate in the balancing.
+**
+** The number of siblings of the page might be increased or decreased by
+** one or two in an effort to keep pages nearly full but not over full.
+**
+** Note that when this routine is called, some of the cells on the page
+** might not actually be stored in MemPage.aData[]. This can happen
+** if the page is overfull. This routine ensures that all cells allocated
+** to the page and its siblings fit into MemPage.aData[] before returning.
+**
+** In the course of balancing the page and its siblings, cells may be
+** inserted into or removed from the parent page (pParent). Doing so
+** may cause the parent page to become overfull or underfull. If this
+** happens, it is the responsibility of the caller to invoke the correct
+** balancing routine to fix this problem (see the balance() routine).
+**
+** If this routine fails for any reason, it might leave the database
+** in a corrupted state. So if this routine fails, the database should
+** be rolled back.
+**
+** The third argument to this function, aOvflSpace, is a pointer to a
+** buffer big enough to hold one page. If while inserting cells into the parent
+** page (pParent) the parent page becomes overfull, this buffer is
+** used to store the parent's overflow cells. Because this function inserts
+** a maximum of four divider cells into the parent page, and the maximum
+** size of a cell stored within an internal node is always less than 1/4
+** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
+** enough for all overflow cells.
+**
+** If aOvflSpace is set to a null pointer, this function returns
+** SQLITE_NOMEM.
+*/
+static int balance_nonroot(
+ MemPage *pParent, /* Parent page of siblings being balanced */
+ int iParentIdx, /* Index of "the page" in pParent */
+ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
+ int isRoot, /* True if pParent is a root-page */
+ int bBulk /* True if this call is part of a bulk load */
+){
+ BtShared *pBt; /* The whole database */
+ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
+ int nNew = 0; /* Number of pages in apNew[] */
+ int nOld; /* Number of pages in apOld[] */
+ int i, j, k; /* Loop counters */
+ int nxDiv; /* Next divider slot in pParent->aCell[] */
+ int rc = SQLITE_OK; /* The return code */
+ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
+ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
+ int usableSpace; /* Bytes in pPage beyond the header */
+ int pageFlags; /* Value of pPage->aData[0] */
+ int iSpace1 = 0; /* First unused byte of aSpace1[] */
+ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
+ int szScratch; /* Size of scratch memory requested */
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
+ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
+ u8 *pRight; /* Location in parent of right-sibling pointer */
+ u8 *apDiv[NB-1]; /* Divider cells in pParent */
+ int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
+ int cntOld[NB+2]; /* Old index in b.apCell[] */
+ int szNew[NB+2]; /* Combined size of cells placed on i-th page */
+ u8 *aSpace1; /* Space for copies of dividers cells */
+ Pgno pgno; /* Temp var to store a page number in */
+ u8 abDone[NB+2]; /* True after i'th new page is populated */
+ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
+ CellArray b; /* Parsed information on cells being balanced */
+
+ memset(abDone, 0, sizeof(abDone));
+ memset(&b, 0, sizeof(b));
+ pBt = pParent->pBt;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+
+ /* At this point pParent may have at most one overflow cell. And if
+ ** this overflow cell is present, it must be the cell with
+ ** index iParentIdx. This scenario comes about when this function
+ ** is called (indirectly) from sqlite3BtreeDelete().
+ */
+ assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
+ assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
+
+ if( !aOvflSpace ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( pParent->nFree>=0 );
+
+ /* Find the sibling pages to balance. Also locate the cells in pParent
+ ** that divide the siblings. An attempt is made to find NN siblings on
+ ** either side of pPage. More siblings are taken from one side, however,
+ ** if there are fewer than NN siblings on the other side. If pParent
+ ** has NB or fewer children then all children of pParent are taken.
+ **
+ ** This loop also drops the divider cells from the parent page. This
+ ** way, the remainder of the function does not have to deal with any
+ ** overflow cells in the parent page, since if any existed they will
+ ** have already been removed.
+ */
+ i = pParent->nOverflow + pParent->nCell;
+ if( i<2 ){
+ nxDiv = 0;
+ }else{
+ assert( bBulk==0 || bBulk==1 );
+ if( iParentIdx==0 ){
+ nxDiv = 0;
+ }else if( iParentIdx==i ){
+ nxDiv = i-2+bBulk;
+ }else{
+ nxDiv = iParentIdx-1;
+ }
+ i = 2-bBulk;
+ }
+ nOld = i+1;
+ if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
+ pRight = &pParent->aData[pParent->hdrOffset+8];
+ }else{
+ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
+ }
+ pgno = get4byte(pRight);
+ while( 1 ){
+ if( rc==SQLITE_OK ){
+ rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
+ }
+ if( rc ){
+ memset(apOld, 0, (i+1)*sizeof(MemPage*));
+ goto balance_cleanup;
+ }
+ if( apOld[i]->nFree<0 ){
+ rc = btreeComputeFreeSpace(apOld[i]);
+ if( rc ){
+ memset(apOld, 0, (i)*sizeof(MemPage*));
+ goto balance_cleanup;
+ }
+ }
+ nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
+ if( (i--)==0 ) break;
+
+ if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
+ apDiv[i] = pParent->apOvfl[0];
+ pgno = get4byte(apDiv[i]);
+ szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
+ pParent->nOverflow = 0;
+ }else{
+ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
+ pgno = get4byte(apDiv[i]);
+ szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
+
+ /* Drop the cell from the parent page. apDiv[i] still points to
+ ** the cell within the parent, even though it has been dropped.
+ ** This is safe because dropping a cell only overwrites the first
+ ** four bytes of it, and this function does not need the first
+ ** four bytes of the divider cell. So the pointer is safe to use
+ ** later on.
+ **
+ ** But not if we are in secure-delete mode. In secure-delete mode,
+ ** the dropCell() routine will overwrite the entire cell with zeroes.
+ ** In this case, temporarily copy the cell into the aOvflSpace[]
+ ** buffer. It will be copied out again as soon as the aSpace[] buffer
+ ** is allocated. */
+ if( pBt->btsFlags & BTS_FAST_SECURE ){
+ int iOff;
+
+ /* If the following if() condition is not true, the db is corrupted.
+ ** The call to dropCell() below will detect this. */
+ iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
+ if( (iOff+szNew[i])<=(int)pBt->usableSize ){
+ memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
+ apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
+ }
+ }
+ dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
+ }
+ }
+
+ /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
+ ** alignment */
+ nMaxCells = (nMaxCells + 3)&~3;
+
+ /*
+ ** Allocate space for memory structures
+ */
+ szScratch =
+ nMaxCells*sizeof(u8*) /* b.apCell */
+ + nMaxCells*sizeof(u16) /* b.szCell */
+ + pBt->pageSize; /* aSpace1 */
+
+ assert( szScratch<=7*(int)pBt->pageSize );
+ b.apCell = sqlite3StackAllocRaw(0, szScratch );
+ if( b.apCell==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto balance_cleanup;
+ }
+ b.szCell = (u16*)&b.apCell[nMaxCells];
+ aSpace1 = (u8*)&b.szCell[nMaxCells];
+ assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
+
+ /*
+ ** Load pointers to all cells on sibling pages and the divider cells
+ ** into the local b.apCell[] array. Make copies of the divider cells
+ ** into space obtained from aSpace1[]. The divider cells have already
+ ** been removed from pParent.
+ **
+ ** If the siblings are on leaf pages, then the child pointers of the
+ ** divider cells are stripped from the cells before they are copied
+ ** into aSpace1[]. In this way, all cells in b.apCell[] are without
+ ** child pointers. If siblings are not leaves, then all cell in
+ ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
+ ** are alike.
+ **
+ ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
+ ** leafData: 1 if pPage holds key+data and pParent holds only keys.
+ */
+ b.pRef = apOld[0];
+ leafCorrection = b.pRef->leaf*4;
+ leafData = b.pRef->intKeyLeaf;
+ for(i=0; i<nOld; i++){
+ MemPage *pOld = apOld[i];
+ int limit = pOld->nCell;
+ u8 *aData = pOld->aData;
+ u16 maskPage = pOld->maskPage;
+ u8 *piCell = aData + pOld->cellOffset;
+ u8 *piEnd;
+ VVA_ONLY( int nCellAtStart = b.nCell; )
+
+ /* Verify that all sibling pages are of the same "type" (table-leaf,
+ ** table-interior, index-leaf, or index-interior).
+ */
+ if( pOld->aData[0]!=apOld[0]->aData[0] ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+
+ /* Load b.apCell[] with pointers to all cells in pOld. If pOld
+ ** contains overflow cells, include them in the b.apCell[] array
+ ** in the correct spot.
+ **
+ ** Note that when there are multiple overflow cells, it is always the
+ ** case that they are sequential and adjacent. This invariant arises
+ ** because multiple overflows can only occurs when inserting divider
+ ** cells into a parent on a prior balance, and divider cells are always
+ ** adjacent and are inserted in order. There is an assert() tagged
+ ** with "NOTE 1" in the overflow cell insertion loop to prove this
+ ** invariant.
+ **
+ ** This must be done in advance. Once the balance starts, the cell
+ ** offset section of the btree page will be overwritten and we will no
+ ** long be able to find the cells if a pointer to each cell is not saved
+ ** first.
+ */
+ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
+ if( pOld->nOverflow>0 ){
+ if( NEVER(limit<pOld->aiOvfl[0]) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ limit = pOld->aiOvfl[0];
+ for(j=0; j<limit; j++){
+ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
+ piCell += 2;
+ b.nCell++;
+ }
+ for(k=0; k<pOld->nOverflow; k++){
+ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
+ b.apCell[b.nCell] = pOld->apOvfl[k];
+ b.nCell++;
+ }
+ }
+ piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
+ while( piCell<piEnd ){
+ assert( b.nCell<nMaxCells );
+ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
+ piCell += 2;
+ b.nCell++;
+ }
+ assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
+
+ cntOld[i] = b.nCell;
+ if( i<nOld-1 && !leafData){
+ u16 sz = (u16)szNew[i];
+ u8 *pTemp;
+ assert( b.nCell<nMaxCells );
+ b.szCell[b.nCell] = sz;
+ pTemp = &aSpace1[iSpace1];
+ iSpace1 += sz;
+ assert( sz<=pBt->maxLocal+23 );
+ assert( iSpace1 <= (int)pBt->pageSize );
+ memcpy(pTemp, apDiv[i], sz);
+ b.apCell[b.nCell] = pTemp+leafCorrection;
+ assert( leafCorrection==0 || leafCorrection==4 );
+ b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
+ if( !pOld->leaf ){
+ assert( leafCorrection==0 );
+ assert( pOld->hdrOffset==0 || CORRUPT_DB );
+ /* The right pointer of the child page pOld becomes the left
+ ** pointer of the divider cell */
+ memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
+ }else{
+ assert( leafCorrection==4 );
+ while( b.szCell[b.nCell]<4 ){
+ /* Do not allow any cells smaller than 4 bytes. If a smaller cell
+ ** does exist, pad it with 0x00 bytes. */
+ assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
+ assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
+ aSpace1[iSpace1++] = 0x00;
+ b.szCell[b.nCell]++;
+ }
+ }
+ b.nCell++;
+ }
+ }
+
+ /*
+ ** Figure out the number of pages needed to hold all b.nCell cells.
+ ** Store this number in "k". Also compute szNew[] which is the total
+ ** size of all cells on the i-th page and cntNew[] which is the index
+ ** in b.apCell[] of the cell that divides page i from page i+1.
+ ** cntNew[k] should equal b.nCell.
+ **
+ ** Values computed by this block:
+ **
+ ** k: The total number of sibling pages
+ ** szNew[i]: Spaced used on the i-th sibling page.
+ ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
+ ** the right of the i-th sibling page.
+ ** usableSpace: Number of bytes of space available on each sibling.
+ **
+ */
+ usableSpace = pBt->usableSize - 12 + leafCorrection;
+ for(i=k=0; i<nOld; i++, k++){
+ MemPage *p = apOld[i];
+ b.apEnd[k] = p->aDataEnd;
+ b.ixNx[k] = cntOld[i];
+ if( k && b.ixNx[k]==b.ixNx[k-1] ){
+ k--; /* Omit b.ixNx[] entry for child pages with no cells */
+ }
+ if( !leafData ){
+ k++;
+ b.apEnd[k] = pParent->aDataEnd;
+ b.ixNx[k] = cntOld[i]+1;
+ }
+ assert( p->nFree>=0 );
+ szNew[i] = usableSpace - p->nFree;
+ for(j=0; j<p->nOverflow; j++){
+ szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
+ }
+ cntNew[i] = cntOld[i];
+ }
+ k = nOld;
+ for(i=0; i<k; i++){
+ int sz;
+ while( szNew[i]>usableSpace ){
+ if( i+1>=k ){
+ k = i+2;
+ if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
+ szNew[k-1] = 0;
+ cntNew[k-1] = b.nCell;
+ }
+ sz = 2 + cachedCellSize(&b, cntNew[i]-1);
+ szNew[i] -= sz;
+ if( !leafData ){
+ if( cntNew[i]<b.nCell ){
+ sz = 2 + cachedCellSize(&b, cntNew[i]);
+ }else{
+ sz = 0;
+ }
+ }
+ szNew[i+1] += sz;
+ cntNew[i]--;
+ }
+ while( cntNew[i]<b.nCell ){
+ sz = 2 + cachedCellSize(&b, cntNew[i]);
+ if( szNew[i]+sz>usableSpace ) break;
+ szNew[i] += sz;
+ cntNew[i]++;
+ if( !leafData ){
+ if( cntNew[i]<b.nCell ){
+ sz = 2 + cachedCellSize(&b, cntNew[i]);
+ }else{
+ sz = 0;
+ }
+ }
+ szNew[i+1] -= sz;
+ }
+ if( cntNew[i]>=b.nCell ){
+ k = i+1;
+ }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ }
+
+ /*
+ ** The packing computed by the previous block is biased toward the siblings
+ ** on the left side (siblings with smaller keys). The left siblings are
+ ** always nearly full, while the right-most sibling might be nearly empty.
+ ** The next block of code attempts to adjust the packing of siblings to
+ ** get a better balance.
+ **
+ ** This adjustment is more than an optimization. The packing above might
+ ** be so out of balance as to be illegal. For example, the right-most
+ ** sibling might be completely empty. This adjustment is not optional.
+ */
+ for(i=k-1; i>0; i--){
+ int szRight = szNew[i]; /* Size of sibling on the right */
+ int szLeft = szNew[i-1]; /* Size of sibling on the left */
+ int r; /* Index of right-most cell in left sibling */
+ int d; /* Index of first cell to the left of right sibling */
+
+ r = cntNew[i-1] - 1;
+ d = r + 1 - leafData;
+ (void)cachedCellSize(&b, d);
+ do{
+ int szR, szD;
+ assert( d<nMaxCells );
+ assert( r<nMaxCells );
+ szR = cachedCellSize(&b, r);
+ szD = b.szCell[d];
+ if( szRight!=0
+ && (bBulk || szRight+szD+2 > szLeft-(szR+(i==k-1?0:2)))){
+ break;
+ }
+ szRight += szD + 2;
+ szLeft -= szR + 2;
+ cntNew[i-1] = r;
+ r--;
+ d--;
+ }while( r>=0 );
+ szNew[i] = szRight;
+ szNew[i-1] = szLeft;
+ if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ }
+
+ /* Sanity check: For a non-corrupt database file one of the following
+ ** must be true:
+ ** (1) We found one or more cells (cntNew[0])>0), or
+ ** (2) pPage is a virtual root page. A virtual root page is when
+ ** the real root page is page 1 and we are the only child of
+ ** that page.
+ */
+ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
+ TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n",
+ apOld[0]->pgno, apOld[0]->nCell,
+ nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
+ nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
+ ));
+
+ /*
+ ** Allocate k new pages. Reuse old pages where possible.
+ */
+ pageFlags = apOld[0]->aData[0];
+ for(i=0; i<k; i++){
+ MemPage *pNew;
+ if( i<nOld ){
+ pNew = apNew[i] = apOld[i];
+ apOld[i] = 0;
+ rc = sqlite3PagerWrite(pNew->pDbPage);
+ nNew++;
+ if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
+ && rc==SQLITE_OK
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ if( rc ) goto balance_cleanup;
+ }else{
+ assert( i>0 );
+ rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
+ if( rc ) goto balance_cleanup;
+ zeroPage(pNew, pageFlags);
+ apNew[i] = pNew;
+ nNew++;
+ cntOld[i] = b.nCell;
+
+ /* Set the pointer-map entry for the new sibling page. */
+ if( ISAUTOVACUUM(pBt) ){
+ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
+ }
+ }
+
+ /*
+ ** Reassign page numbers so that the new pages are in ascending order.
+ ** This helps to keep entries in the disk file in order so that a scan
+ ** of the table is closer to a linear scan through the file. That in turn
+ ** helps the operating system to deliver pages from the disk more rapidly.
+ **
+ ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
+ ** (5), that is not a performance concern.
+ **
+ ** When NB==3, this one optimization makes the database about 25% faster
+ ** for large insertions and deletions.
+ */
+ for(i=0; i<nNew; i++){
+ aPgno[i] = apNew[i]->pgno;
+ assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );
+ assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );
+ }
+ for(i=0; i<nNew-1; i++){
+ int iB = i;
+ for(j=i+1; j<nNew; j++){
+ if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
+ }
+
+ /* If apNew[i] has a page number that is bigger than any of the
+ ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
+ ** entry that has the smallest page number (which we know to be
+ ** entry apNew[iB]).
+ */
+ if( iB!=i ){
+ Pgno pgnoA = apNew[i]->pgno;
+ Pgno pgnoB = apNew[iB]->pgno;
+ Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
+ u16 fgA = apNew[i]->pDbPage->flags;
+ u16 fgB = apNew[iB]->pDbPage->flags;
+ sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
+ sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);
+ sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
+ apNew[i]->pgno = pgnoB;
+ apNew[iB]->pgno = pgnoA;
+ }
+ }
+
+ TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) "
+ "%u(%u nc=%u) %u(%u nc=%u)\n",
+ apNew[0]->pgno, szNew[0], cntNew[0],
+ nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
+ nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
+ nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
+ nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
+ nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
+ nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
+ nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
+ nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
+ ));
+
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ assert( nNew>=1 && nNew<=ArraySize(apNew) );
+ assert( apNew[nNew-1]!=0 );
+ put4byte(pRight, apNew[nNew-1]->pgno);
+
+ /* If the sibling pages are not leaves, ensure that the right-child pointer
+ ** of the right-most new sibling page is set to the value that was
+ ** originally in the same field of the right-most old sibling page. */
+ if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
+ MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
+ memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
+ }
+
+ /* Make any required updates to pointer map entries associated with
+ ** cells stored on sibling pages following the balance operation. Pointer
+ ** map entries associated with divider cells are set by the insertCell()
+ ** routine. The associated pointer map entries are:
+ **
+ ** a) if the cell contains a reference to an overflow chain, the
+ ** entry associated with the first page in the overflow chain, and
+ **
+ ** b) if the sibling pages are not leaves, the child page associated
+ ** with the cell.
+ **
+ ** If the sibling pages are not leaves, then the pointer map entry
+ ** associated with the right-child of each sibling may also need to be
+ ** updated. This happens below, after the sibling pages have been
+ ** populated, not here.
+ */
+ if( ISAUTOVACUUM(pBt) ){
+ MemPage *pOld;
+ MemPage *pNew = pOld = apNew[0];
+ int cntOldNext = pNew->nCell + pNew->nOverflow;
+ int iNew = 0;
+ int iOld = 0;
+
+ for(i=0; i<b.nCell; i++){
+ u8 *pCell = b.apCell[i];
+ while( i==cntOldNext ){
+ iOld++;
+ assert( iOld<nNew || iOld<nOld );
+ assert( iOld>=0 && iOld<NB );
+ pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
+ cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
+ }
+ if( i==cntNew[iNew] ){
+ pNew = apNew[++iNew];
+ if( !leafData ) continue;
+ }
+
+ /* Cell pCell is destined for new sibling page pNew. Originally, it
+ ** was either part of sibling page iOld (possibly an overflow cell),
+ ** or else the divider cell to the left of sibling page iOld. So,
+ ** if sibling page iOld had the same page number as pNew, and if
+ ** pCell really was a part of sibling page iOld (not a divider or
+ ** overflow cell), we can skip updating the pointer map entries. */
+ if( iOld>=nNew
+ || pNew->pgno!=aPgno[iOld]
+ || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
+ ){
+ if( !leafCorrection ){
+ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
+ }
+ if( cachedCellSize(&b,i)>pNew->minLocal ){
+ ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
+ }
+ if( rc ) goto balance_cleanup;
+ }
+ }
+ }
+
+ /* Insert new divider cells into pParent. */
+ for(i=0; i<nNew-1; i++){
+ u8 *pCell;
+ u8 *pTemp;
+ int sz;
+ u8 *pSrcEnd;
+ MemPage *pNew = apNew[i];
+ j = cntNew[i];
+
+ assert( j<nMaxCells );
+ assert( b.apCell[j]!=0 );
+ pCell = b.apCell[j];
+ sz = b.szCell[j] + leafCorrection;
+ pTemp = &aOvflSpace[iOvflSpace];
+ if( !pNew->leaf ){
+ memcpy(&pNew->aData[8], pCell, 4);
+ }else if( leafData ){
+ /* If the tree is a leaf-data tree, and the siblings are leaves,
+ ** then there is no divider cell in b.apCell[]. Instead, the divider
+ ** cell consists of the integer key for the right-most cell of
+ ** the sibling-page assembled above only.
+ */
+ CellInfo info;
+ j--;
+ pNew->xParseCell(pNew, b.apCell[j], &info);
+ pCell = pTemp;
+ sz = 4 + putVarint(&pCell[4], info.nKey);
+ pTemp = 0;
+ }else{
+ pCell -= 4;
+ /* Obscure case for non-leaf-data trees: If the cell at pCell was
+ ** previously stored on a leaf node, and its reported size was 4
+ ** bytes, then it may actually be smaller than this
+ ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
+ ** any cell). But it is important to pass the correct size to
+ ** insertCell(), so reparse the cell now.
+ **
+ ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
+ ** and WITHOUT ROWID tables with exactly one column which is the
+ ** primary key.
+ */
+ if( b.szCell[j]==4 ){
+ assert(leafCorrection==4);
+ sz = pParent->xCellSize(pParent, pCell);
+ }
+ }
+ iOvflSpace += sz;
+ assert( sz<=pBt->maxLocal+23 );
+ assert( iOvflSpace <= (int)pBt->pageSize );
+ for(k=0; ALWAYS(k<NB*2) && b.ixNx[k]<=j; k++){}
+ pSrcEnd = b.apEnd[k];
+ if( SQLITE_OVERFLOW(pSrcEnd, pCell, pCell+sz) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto balance_cleanup;
+ }
+ rc = insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno);
+ if( rc!=SQLITE_OK ) goto balance_cleanup;
+ assert( sqlite3PagerIswriteable(pParent->pDbPage) );
+ }
+
+ /* Now update the actual sibling pages. The order in which they are updated
+ ** is important, as this code needs to avoid disrupting any page from which
+ ** cells may still to be read. In practice, this means:
+ **
+ ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
+ ** then it is not safe to update page apNew[iPg] until after
+ ** the left-hand sibling apNew[iPg-1] has been updated.
+ **
+ ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
+ ** then it is not safe to update page apNew[iPg] until after
+ ** the right-hand sibling apNew[iPg+1] has been updated.
+ **
+ ** If neither of the above apply, the page is safe to update.
+ **
+ ** The iPg value in the following loop starts at nNew-1 goes down
+ ** to 0, then back up to nNew-1 again, thus making two passes over
+ ** the pages. On the initial downward pass, only condition (1) above
+ ** needs to be tested because (2) will always be true from the previous
+ ** step. On the upward pass, both conditions are always true, so the
+ ** upwards pass simply processes pages that were missed on the downward
+ ** pass.
+ */
+ for(i=1-nNew; i<nNew; i++){
+ int iPg = i<0 ? -i : i;
+ assert( iPg>=0 && iPg<nNew );
+ assert( iPg>=1 || i>=0 );
+ assert( iPg<ArraySize(cntOld) );
+ if( abDone[iPg] ) continue; /* Skip pages already processed */
+ if( i>=0 /* On the upwards pass, or... */
+ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
+ ){
+ int iNew;
+ int iOld;
+ int nNewCell;
+
+ /* Verify condition (1): If cells are moving left, update iPg
+ ** only after iPg-1 has already been updated. */
+ assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
+
+ /* Verify condition (2): If cells are moving right, update iPg
+ ** only after iPg+1 has already been updated. */
+ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
+
+ if( iPg==0 ){
+ iNew = iOld = 0;
+ nNewCell = cntNew[0];
+ }else{
+ iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
+ iNew = cntNew[iPg-1] + !leafData;
+ nNewCell = cntNew[iPg] - iNew;
+ }
+
+ rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
+ if( rc ) goto balance_cleanup;
+ abDone[iPg]++;
+ apNew[iPg]->nFree = usableSpace-szNew[iPg];
+ assert( apNew[iPg]->nOverflow==0 );
+ assert( apNew[iPg]->nCell==nNewCell );
+ }
+ }
+
+ /* All pages have been processed exactly once */
+ assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
+
+ assert( nOld>0 );
+ assert( nNew>0 );
+
+ if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
+ /* The root page of the b-tree now contains no cells. The only sibling
+ ** page is the right-child of the parent. Copy the contents of the
+ ** child page into the parent, decreasing the overall height of the
+ ** b-tree structure by one. This is described as the "balance-shallower"
+ ** sub-algorithm in some documentation.
+ **
+ ** If this is an auto-vacuum database, the call to copyNodeContent()
+ ** sets all pointer-map entries corresponding to database image pages
+ ** for which the pointer is stored within the content being copied.
+ **
+ ** It is critical that the child page be defragmented before being
+ ** copied into the parent, because if the parent is page 1 then it will
+ ** by smaller than the child due to the database header, and so all the
+ ** free space needs to be up front.
+ */
+ assert( nNew==1 || CORRUPT_DB );
+ rc = defragmentPage(apNew[0], -1);
+ testcase( rc!=SQLITE_OK );
+ assert( apNew[0]->nFree ==
+ (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
+ - apNew[0]->nCell*2)
+ || rc!=SQLITE_OK
+ );
+ copyNodeContent(apNew[0], pParent, &rc);
+ freePage(apNew[0], &rc);
+ }else if( ISAUTOVACUUM(pBt) && !leafCorrection ){
+ /* Fix the pointer map entries associated with the right-child of each
+ ** sibling page. All other pointer map entries have already been taken
+ ** care of. */
+ for(i=0; i<nNew; i++){
+ u32 key = get4byte(&apNew[i]->aData[8]);
+ ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
+ }
+ }
+
+ assert( pParent->isInit );
+ TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n",
+ nOld, nNew, b.nCell));
+
+ /* Free any old pages that were not reused as new pages.
+ */
+ for(i=nNew; i<nOld; i++){
+ freePage(apOld[i], &rc);
+ }
+
+#if 0
+ if( ISAUTOVACUUM(pBt) && rc==SQLITE_OK && apNew[0]->isInit ){
+ /* The ptrmapCheckPages() contains assert() statements that verify that
+ ** all pointer map pages are set correctly. This is helpful while
+ ** debugging. This is usually disabled because a corrupt database may
+ ** cause an assert() statement to fail. */
+ ptrmapCheckPages(apNew, nNew);
+ ptrmapCheckPages(&pParent, 1);
+ }
+#endif
+
+ /*
+ ** Cleanup before returning.
+ */
+balance_cleanup:
+ sqlite3StackFree(0, b.apCell);
+ for(i=0; i<nOld; i++){
+ releasePage(apOld[i]);
+ }
+ for(i=0; i<nNew; i++){
+ releasePage(apNew[i]);
+ }
+
+ return rc;
+}
+
+
+/*
+** This function is called when the root page of a b-tree structure is
+** overfull (has one or more overflow pages).
+**
+** A new child page is allocated and the contents of the current root
+** page, including overflow cells, are copied into the child. The root
+** page is then overwritten to make it an empty page with the right-child
+** pointer pointing to the new page.
+**
+** Before returning, all pointer-map entries corresponding to pages
+** that the new child-page now contains pointers to are updated. The
+** entry corresponding to the new right-child pointer of the root
+** page is also updated.
+**
+** If successful, *ppChild is set to contain a reference to the child
+** page and SQLITE_OK is returned. In this case the caller is required
+** to call releasePage() on *ppChild exactly once. If an error occurs,
+** an error code is returned and *ppChild is set to 0.
+*/
+static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
+ int rc; /* Return value from subprocedures */
+ MemPage *pChild = 0; /* Pointer to a new child page */
+ Pgno pgnoChild = 0; /* Page number of the new child page */
+ BtShared *pBt = pRoot->pBt; /* The BTree */
+
+ assert( pRoot->nOverflow>0 );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ /* Make pRoot, the root page of the b-tree, writable. Allocate a new
+ ** page that will become the new right-child of pPage. Copy the contents
+ ** of the node stored on pRoot into the new child page.
+ */
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
+ copyNodeContent(pRoot, pChild, &rc);
+ if( ISAUTOVACUUM(pBt) ){
+ ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
+ }
+ }
+ if( rc ){
+ *ppChild = 0;
+ releasePage(pChild);
+ return rc;
+ }
+ assert( sqlite3PagerIswriteable(pChild->pDbPage) );
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
+ assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
+
+ TRACE(("BALANCE: copy root %u into %u\n", pRoot->pgno, pChild->pgno));
+
+ /* Copy the overflow cells from pRoot to pChild */
+ memcpy(pChild->aiOvfl, pRoot->aiOvfl,
+ pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
+ memcpy(pChild->apOvfl, pRoot->apOvfl,
+ pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
+ pChild->nOverflow = pRoot->nOverflow;
+
+ /* Zero the contents of pRoot. Then install pChild as the right-child. */
+ zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
+ put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
+
+ *ppChild = pChild;
+ return SQLITE_OK;
+}
+
+/*
+** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
+** on the same B-tree as pCur.
+**
+** This can occur if a database is corrupt with two or more SQL tables
+** pointing to the same b-tree. If an insert occurs on one SQL table
+** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
+** table linked to the same b-tree. If the secondary insert causes a
+** rebalance, that can change content out from under the cursor on the
+** first SQL table, violating invariants on the first insert.
+*/
+static int anotherValidCursor(BtCursor *pCur){
+ BtCursor *pOther;
+ for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
+ if( pOther!=pCur
+ && pOther->eState==CURSOR_VALID
+ && pOther->pPage==pCur->pPage
+ ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The page that pCur currently points to has just been modified in
+** some way. This function figures out if this modification means the
+** tree needs to be balanced, and if so calls the appropriate balancing
+** routine. Balancing routines are:
+**
+** balance_quick()
+** balance_deeper()
+** balance_nonroot()
+*/
+static int balance(BtCursor *pCur){
+ int rc = SQLITE_OK;
+ u8 aBalanceQuickSpace[13];
+ u8 *pFree = 0;
+
+ VVA_ONLY( int balance_quick_called = 0 );
+ VVA_ONLY( int balance_deeper_called = 0 );
+
+ do {
+ int iPage;
+ MemPage *pPage = pCur->pPage;
+
+ if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
+ if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
+ /* No rebalance required as long as:
+ ** (1) There are no overflow cells
+ ** (2) The amount of free space on the page is less than 2/3rds of
+ ** the total usable space on the page. */
+ break;
+ }else if( (iPage = pCur->iPage)==0 ){
+ if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
+ /* The root page of the b-tree is overfull. In this case call the
+ ** balance_deeper() function to create a new child for the root-page
+ ** and copy the current contents of the root-page to it. The
+ ** next iteration of the do-loop will balance the child page.
+ */
+ assert( balance_deeper_called==0 );
+ VVA_ONLY( balance_deeper_called++ );
+ rc = balance_deeper(pPage, &pCur->apPage[1]);
+ if( rc==SQLITE_OK ){
+ pCur->iPage = 1;
+ pCur->ix = 0;
+ pCur->aiIdx[0] = 0;
+ pCur->apPage[0] = pPage;
+ pCur->pPage = pCur->apPage[1];
+ assert( pCur->pPage->nOverflow );
+ }
+ }else{
+ break;
+ }
+ }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
+ /* The page being written is not a root page, and there is currently
+ ** more than one reference to it. This only happens if the page is one
+ ** of its own ancestor pages. Corruption. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ MemPage * const pParent = pCur->apPage[iPage-1];
+ int const iIdx = pCur->aiIdx[iPage-1];
+
+ rc = sqlite3PagerWrite(pParent->pDbPage);
+ if( rc==SQLITE_OK && pParent->nFree<0 ){
+ rc = btreeComputeFreeSpace(pParent);
+ }
+ if( rc==SQLITE_OK ){
+#ifndef SQLITE_OMIT_QUICKBALANCE
+ if( pPage->intKeyLeaf
+ && pPage->nOverflow==1
+ && pPage->aiOvfl[0]==pPage->nCell
+ && pParent->pgno!=1
+ && pParent->nCell==iIdx
+ ){
+ /* Call balance_quick() to create a new sibling of pPage on which
+ ** to store the overflow cell. balance_quick() inserts a new cell
+ ** into pParent, which may cause pParent overflow. If this
+ ** happens, the next iteration of the do-loop will balance pParent
+ ** use either balance_nonroot() or balance_deeper(). Until this
+ ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
+ ** buffer.
+ **
+ ** The purpose of the following assert() is to check that only a
+ ** single call to balance_quick() is made for each call to this
+ ** function. If this were not verified, a subtle bug involving reuse
+ ** of the aBalanceQuickSpace[] might sneak in.
+ */
+ assert( balance_quick_called==0 );
+ VVA_ONLY( balance_quick_called++ );
+ rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
+ }else
+#endif
+ {
+ /* In this case, call balance_nonroot() to redistribute cells
+ ** between pPage and up to 2 of its sibling pages. This involves
+ ** modifying the contents of pParent, which may cause pParent to
+ ** become overfull or underfull. The next iteration of the do-loop
+ ** will balance the parent page to correct this.
+ **
+ ** If the parent page becomes overfull, the overflow cell or cells
+ ** are stored in the pSpace buffer allocated immediately below.
+ ** A subsequent iteration of the do-loop will deal with this by
+ ** calling balance_nonroot() (balance_deeper() may be called first,
+ ** but it doesn't deal with overflow cells - just moves them to a
+ ** different page). Once this subsequent call to balance_nonroot()
+ ** has completed, it is safe to release the pSpace buffer used by
+ ** the previous call, as the overflow cell data will have been
+ ** copied either into the body of a database page or into the new
+ ** pSpace buffer passed to the latter call to balance_nonroot().
+ */
+ u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
+ rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
+ pCur->hints&BTREE_BULKLOAD);
+ if( pFree ){
+ /* If pFree is not NULL, it points to the pSpace buffer used
+ ** by a previous call to balance_nonroot(). Its contents are
+ ** now stored either on real database pages or within the
+ ** new pSpace buffer, so it may be safely freed here. */
+ sqlite3PageFree(pFree);
+ }
+
+ /* The pSpace buffer will be freed after the next call to
+ ** balance_nonroot(), or just before this function returns, whichever
+ ** comes first. */
+ pFree = pSpace;
+ }
+ }
+
+ pPage->nOverflow = 0;
+
+ /* The next iteration of the do-loop balances the parent page. */
+ releasePage(pPage);
+ pCur->iPage--;
+ assert( pCur->iPage>=0 );
+ pCur->pPage = pCur->apPage[pCur->iPage];
+ }
+ }while( rc==SQLITE_OK );
+
+ if( pFree ){
+ sqlite3PageFree(pFree);
+ }
+ return rc;
+}
+
+/* Overwrite content from pX into pDest. Only do the write if the
+** content is different from what is already there.
+*/
+static int btreeOverwriteContent(
+ MemPage *pPage, /* MemPage on which writing will occur */
+ u8 *pDest, /* Pointer to the place to start writing */
+ const BtreePayload *pX, /* Source of data to write */
+ int iOffset, /* Offset of first byte to write */
+ int iAmt /* Number of bytes to be written */
+){
+ int nData = pX->nData - iOffset;
+ if( nData<=0 ){
+ /* Overwriting with zeros */
+ int i;
+ for(i=0; i<iAmt && pDest[i]==0; i++){}
+ if( i<iAmt ){
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ memset(pDest + i, 0, iAmt - i);
+ }
+ }else{
+ if( nData<iAmt ){
+ /* Mixed read data and zeros at the end. Make a recursive call
+ ** to write the zeros then fall through to write the real data */
+ int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
+ iAmt-nData);
+ if( rc ) return rc;
+ iAmt = nData;
+ }
+ if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ /* In a corrupt database, it is possible for the source and destination
+ ** buffers to overlap. This is harmless since the database is already
+ ** corrupt but it does cause valgrind and ASAN warnings. So use
+ ** memmove(). */
+ memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Overwrite the cell that cursor pCur is pointing to with fresh content
+** contained in pX. In this variant, pCur is pointing to an overflow
+** cell.
+*/
+static SQLITE_NOINLINE int btreeOverwriteOverflowCell(
+ BtCursor *pCur, /* Cursor pointing to cell to overwrite */
+ const BtreePayload *pX /* Content to write into the cell */
+){
+ int iOffset; /* Next byte of pX->pData to write */
+ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
+ int rc; /* Return code */
+ MemPage *pPage = pCur->pPage; /* Page being written */
+ BtShared *pBt; /* Btree */
+ Pgno ovflPgno; /* Next overflow page to write */
+ u32 ovflPageSize; /* Size to write on overflow page */
+
+ assert( pCur->info.nLocal<nTotal ); /* pCur is an overflow cell */
+
+ /* Overwrite the local portion first */
+ rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
+ 0, pCur->info.nLocal);
+ if( rc ) return rc;
+
+ /* Now overwrite the overflow pages */
+ iOffset = pCur->info.nLocal;
+ assert( nTotal>=0 );
+ assert( iOffset>=0 );
+ ovflPgno = get4byte(pCur->info.pPayload + iOffset);
+ pBt = pPage->pBt;
+ ovflPageSize = pBt->usableSize - 4;
+ do{
+ rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
+ if( rc ) return rc;
+ if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ if( iOffset+ovflPageSize<(u32)nTotal ){
+ ovflPgno = get4byte(pPage->aData);
+ }else{
+ ovflPageSize = nTotal - iOffset;
+ }
+ rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
+ iOffset, ovflPageSize);
+ }
+ sqlite3PagerUnref(pPage->pDbPage);
+ if( rc ) return rc;
+ iOffset += ovflPageSize;
+ }while( iOffset<nTotal );
+ return SQLITE_OK;
+}
+
+/*
+** Overwrite the cell that cursor pCur is pointing to with fresh content
+** contained in pX.
+*/
+static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
+ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
+ MemPage *pPage = pCur->pPage; /* Page being written */
+
+ if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
+ || pCur->info.pPayload < pPage->aData + pPage->cellOffset
+ ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( pCur->info.nLocal==nTotal ){
+ /* The entire cell is local */
+ return btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
+ 0, pCur->info.nLocal);
+ }else{
+ /* The cell contains overflow content */
+ return btreeOverwriteOverflowCell(pCur, pX);
+ }
+}
+
+
+/*
+** Insert a new record into the BTree. The content of the new record
+** is described by the pX object. The pCur cursor is used only to
+** define what table the record should be inserted into, and is left
+** pointing at a random location.
+**
+** For a table btree (used for rowid tables), only the pX.nKey value of
+** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
+** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
+** hold the content of the row.
+**
+** For an index btree (used for indexes and WITHOUT ROWID tables), the
+** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
+** pX.pData,nData,nZero fields must be zero.
+**
+** If the seekResult parameter is non-zero, then a successful call to
+** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
+** been performed. In other words, if seekResult!=0 then the cursor
+** is currently pointing to a cell that will be adjacent to the cell
+** to be inserted. If seekResult<0 then pCur points to a cell that is
+** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
+** that is larger than (pKey,nKey).
+**
+** If seekResult==0, that means pCur is pointing at some unknown location.
+** In that case, this routine must seek the cursor to the correct insertion
+** point for (pKey,nKey) before doing the insertion. For index btrees,
+** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
+** key values and pX->aMem can be used instead of pX->pKey to avoid having
+** to decode the key.
+*/
+SQLITE_PRIVATE int sqlite3BtreeInsert(
+ BtCursor *pCur, /* Insert data into the table of this cursor */
+ const BtreePayload *pX, /* Content of the row to be inserted */
+ int flags, /* True if this is likely an append */
+ int seekResult /* Result of prior IndexMoveto() call */
+){
+ int rc;
+ int loc = seekResult; /* -1: before desired location +1: after */
+ int szNew = 0;
+ int idx;
+ MemPage *pPage;
+ Btree *p = pCur->pBtree;
+ unsigned char *oldCell;
+ unsigned char *newCell = 0;
+
+ assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
+ assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
+
+ /* Save the positions of any other cursors open on this table.
+ **
+ ** In some cases, the call to btreeMoveto() below is a no-op. For
+ ** example, when inserting data into a table with auto-generated integer
+ ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
+ ** integer key to use. It then calls this function to actually insert the
+ ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
+ ** that the cursor is already where it needs to be and returns without
+ ** doing any work. To avoid thwarting these optimizations, it is important
+ ** not to clear the cursor here.
+ */
+ if( pCur->curFlags & BTCF_Multiple ){
+ rc = saveAllCursors(p->pBt, pCur->pgnoRoot, pCur);
+ if( rc ) return rc;
+ if( loc && pCur->iPage<0 ){
+ /* This can only happen if the schema is corrupt such that there is more
+ ** than one table or index with the same root page as used by the cursor.
+ ** Which can only happen if the SQLITE_NoSchemaError flag was set when
+ ** the schema was loaded. This cannot be asserted though, as a user might
+ ** set the flag, load the schema, and then unset the flag. */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+
+ /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
+ ** points to a valid cell.
+ */
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ testcase( pCur->eState==CURSOR_REQUIRESEEK );
+ testcase( pCur->eState==CURSOR_FAULT );
+ rc = moveToRoot(pCur);
+ if( rc && rc!=SQLITE_EMPTY ) return rc;
+ }
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( (pCur->curFlags & BTCF_WriteFlag)!=0
+ && p->pBt->inTransaction==TRANS_WRITE
+ && (p->pBt->btsFlags & BTS_READ_ONLY)==0 );
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
+
+ /* Assert that the caller has been consistent. If this cursor was opened
+ ** expecting an index b-tree, then the caller should be inserting blob
+ ** keys with no associated data. If the cursor was opened expecting an
+ ** intkey table, the caller should be inserting integer keys with a
+ ** blob of associated data. */
+ assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
+
+ if( pCur->pKeyInfo==0 ){
+ assert( pX->pKey==0 );
+ /* If this is an insert into a table b-tree, invalidate any incrblob
+ ** cursors open on the row being replaced */
+ if( p->hasIncrblobCur ){
+ invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
+ }
+
+ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
+ ** to a row with the same key as the new entry being inserted.
+ */
+#ifdef SQLITE_DEBUG
+ if( flags & BTREE_SAVEPOSITION ){
+ assert( pCur->curFlags & BTCF_ValidNKey );
+ assert( pX->nKey==pCur->info.nKey );
+ assert( loc==0 );
+ }
+#endif
+
+ /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
+ ** that the cursor is not pointing to a row to be overwritten.
+ ** So do a complete check.
+ */
+ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
+ /* The cursor is pointing to the entry that is to be
+ ** overwritten */
+ assert( pX->nData>=0 && pX->nZero>=0 );
+ if( pCur->info.nSize!=0
+ && pCur->info.nPayload==(u32)pX->nData+pX->nZero
+ ){
+ /* New entry is the same size as the old. Do an overwrite */
+ return btreeOverwriteCell(pCur, pX);
+ }
+ assert( loc==0 );
+ }else if( loc==0 ){
+ /* The cursor is *not* pointing to the cell to be overwritten, nor
+ ** to an adjacent cell. Move the cursor so that it is pointing either
+ ** to the cell to be overwritten or an adjacent cell.
+ */
+ rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
+ (flags & BTREE_APPEND)!=0, &loc);
+ if( rc ) return rc;
+ }
+ }else{
+ /* This is an index or a WITHOUT ROWID table */
+
+ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
+ ** to a row with the same key as the new entry being inserted.
+ */
+ assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
+
+ /* If the cursor is not already pointing either to the cell to be
+ ** overwritten, or if a new cell is being inserted, if the cursor is
+ ** not pointing to an immediately adjacent cell, then move the cursor
+ ** so that it does.
+ */
+ if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
+ if( pX->nMem ){
+ UnpackedRecord r;
+ r.pKeyInfo = pCur->pKeyInfo;
+ r.aMem = pX->aMem;
+ r.nField = pX->nMem;
+ r.default_rc = 0;
+ r.eqSeen = 0;
+ rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
+ }else{
+ rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
+ (flags & BTREE_APPEND)!=0, &loc);
+ }
+ if( rc ) return rc;
+ }
+
+ /* If the cursor is currently pointing to an entry to be overwritten
+ ** and the new content is the same as as the old, then use the
+ ** overwrite optimization.
+ */
+ if( loc==0 ){
+ getCellInfo(pCur);
+ if( pCur->info.nKey==pX->nKey ){
+ BtreePayload x2;
+ x2.pData = pX->pKey;
+ x2.nData = pX->nKey;
+ x2.nZero = 0;
+ return btreeOverwriteCell(pCur, &x2);
+ }
+ }
+ }
+ assert( pCur->eState==CURSOR_VALID
+ || (pCur->eState==CURSOR_INVALID && loc) || CORRUPT_DB );
+
+ pPage = pCur->pPage;
+ assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
+ assert( pPage->leaf || !pPage->intKey );
+ if( pPage->nFree<0 ){
+ if( NEVER(pCur->eState>CURSOR_INVALID) ){
+ /* ^^^^^--- due to the moveToRoot() call above */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = btreeComputeFreeSpace(pPage);
+ }
+ if( rc ) return rc;
+ }
+
+ TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",
+ pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
+ loc==0 ? "overwrite" : "new entry"));
+ assert( pPage->isInit || CORRUPT_DB );
+ newCell = p->pBt->pTmpSpace;
+ assert( newCell!=0 );
+ assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
+ if( flags & BTREE_PREFORMAT ){
+ rc = SQLITE_OK;
+ szNew = p->pBt->nPreformatSize;
+ if( szNew<4 ) szNew = 4;
+ if( ISAUTOVACUUM(p->pBt) && szNew>pPage->maxLocal ){
+ CellInfo info;
+ pPage->xParseCell(pPage, newCell, &info);
+ if( info.nPayload!=info.nLocal ){
+ Pgno ovfl = get4byte(&newCell[szNew-4]);
+ ptrmapPut(p->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
+ if( NEVER(rc) ) goto end_insert;
+ }
+ }
+ }else{
+ rc = fillInCell(pPage, newCell, pX, &szNew);
+ if( rc ) goto end_insert;
+ }
+ assert( szNew==pPage->xCellSize(pPage, newCell) );
+ assert( szNew <= MX_CELL_SIZE(p->pBt) );
+ idx = pCur->ix;
+ pCur->info.nSize = 0;
+ if( loc==0 ){
+ CellInfo info;
+ assert( idx>=0 );
+ if( idx>=pPage->nCell ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ){
+ goto end_insert;
+ }
+ oldCell = findCell(pPage, idx);
+ if( !pPage->leaf ){
+ memcpy(newCell, oldCell, 4);
+ }
+ BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
+ testcase( pCur->curFlags & BTCF_ValidOvfl );
+ invalidateOverflowCache(pCur);
+ if( info.nSize==szNew && info.nLocal==info.nPayload
+ && (!ISAUTOVACUUM(p->pBt) || szNew<pPage->minLocal)
+ ){
+ /* Overwrite the old cell with the new if they are the same size.
+ ** We could also try to do this if the old cell is smaller, then add
+ ** the leftover space to the free list. But experiments show that
+ ** doing that is no faster then skipping this optimization and just
+ ** calling dropCell() and insertCell().
+ **
+ ** This optimization cannot be used on an autovacuum database if the
+ ** new entry uses overflow pages, as the insertCell() call below is
+ ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
+ assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
+ if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( oldCell+szNew > pPage->aDataEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ memcpy(oldCell, newCell, szNew);
+ return SQLITE_OK;
+ }
+ dropCell(pPage, idx, info.nSize, &rc);
+ if( rc ) goto end_insert;
+ }else if( loc<0 && pPage->nCell>0 ){
+ assert( pPage->leaf );
+ idx = ++pCur->ix;
+ pCur->curFlags &= ~BTCF_ValidNKey;
+ }else{
+ assert( pPage->leaf );
+ }
+ rc = insertCellFast(pPage, idx, newCell, szNew);
+ assert( pPage->nOverflow==0 || rc==SQLITE_OK );
+ assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
+
+ /* If no error has occurred and pPage has an overflow cell, call balance()
+ ** to redistribute the cells within the tree. Since balance() may move
+ ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
+ ** variables.
+ **
+ ** Previous versions of SQLite called moveToRoot() to move the cursor
+ ** back to the root page as balance() used to invalidate the contents
+ ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
+ ** set the cursor state to "invalid". This makes common insert operations
+ ** slightly faster.
+ **
+ ** There is a subtle but important optimization here too. When inserting
+ ** multiple records into an intkey b-tree using a single cursor (as can
+ ** happen while processing an "INSERT INTO ... SELECT" statement), it
+ ** is advantageous to leave the cursor pointing to the last entry in
+ ** the b-tree if possible. If the cursor is left pointing to the last
+ ** entry in the table, and the next row inserted has an integer key
+ ** larger than the largest existing key, it is possible to insert the
+ ** row without seeking the cursor. This can be a big performance boost.
+ */
+ if( pPage->nOverflow ){
+ assert( rc==SQLITE_OK );
+ pCur->curFlags &= ~(BTCF_ValidNKey);
+ rc = balance(pCur);
+
+ /* Must make sure nOverflow is reset to zero even if the balance()
+ ** fails. Internal data structure corruption will result otherwise.
+ ** Also, set the cursor state to invalid. This stops saveCursorPosition()
+ ** from trying to save the current position of the cursor. */
+ pCur->pPage->nOverflow = 0;
+ pCur->eState = CURSOR_INVALID;
+ if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
+ btreeReleaseAllCursorPages(pCur);
+ if( pCur->pKeyInfo ){
+ assert( pCur->pKey==0 );
+ pCur->pKey = sqlite3Malloc( pX->nKey );
+ if( pCur->pKey==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pCur->pKey, pX->pKey, pX->nKey);
+ }
+ }
+ pCur->eState = CURSOR_REQUIRESEEK;
+ pCur->nKey = pX->nKey;
+ }
+ }
+ assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
+
+end_insert:
+ return rc;
+}
+
+/*
+** This function is used as part of copying the current row from cursor
+** pSrc into cursor pDest. If the cursors are open on intkey tables, then
+** parameter iKey is used as the rowid value when the record is copied
+** into pDest. Otherwise, the record is copied verbatim.
+**
+** This function does not actually write the new value to cursor pDest.
+** Instead, it creates and populates any required overflow pages and
+** writes the data for the new cell into the BtShared.pTmpSpace buffer
+** for the destination database. The size of the cell, in bytes, is left
+** in BtShared.nPreformatSize. The caller completes the insertion by
+** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
+ BtShared *pBt = pDest->pBt;
+ u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
+ const u8 *aIn; /* Pointer to next input buffer */
+ u32 nIn; /* Size of input buffer aIn[] */
+ u32 nRem; /* Bytes of data still to copy */
+
+ getCellInfo(pSrc);
+ if( pSrc->info.nPayload<0x80 ){
+ *(aOut++) = pSrc->info.nPayload;
+ }else{
+ aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
+ }
+ if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
+ nIn = pSrc->info.nLocal;
+ aIn = pSrc->info.pPayload;
+ if( aIn+nIn>pSrc->pPage->aDataEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ nRem = pSrc->info.nPayload;
+ if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
+ memcpy(aOut, aIn, nIn);
+ pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
+ return SQLITE_OK;
+ }else{
+ int rc = SQLITE_OK;
+ Pager *pSrcPager = pSrc->pBt->pPager;
+ u8 *pPgnoOut = 0;
+ Pgno ovflIn = 0;
+ DbPage *pPageIn = 0;
+ MemPage *pPageOut = 0;
+ u32 nOut; /* Size of output buffer aOut[] */
+
+ nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
+ pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
+ if( nOut<pSrc->info.nPayload ){
+ pPgnoOut = &aOut[nOut];
+ pBt->nPreformatSize += 4;
+ }
+
+ if( nRem>nIn ){
+ if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
+ }
+
+ do {
+ nRem -= nOut;
+ do{
+ assert( nOut>0 );
+ if( nIn>0 ){
+ int nCopy = MIN(nOut, nIn);
+ memcpy(aOut, aIn, nCopy);
+ nOut -= nCopy;
+ nIn -= nCopy;
+ aOut += nCopy;
+ aIn += nCopy;
+ }
+ if( nOut>0 ){
+ sqlite3PagerUnref(pPageIn);
+ pPageIn = 0;
+ rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
+ if( rc==SQLITE_OK ){
+ aIn = (const u8*)sqlite3PagerGetData(pPageIn);
+ ovflIn = get4byte(aIn);
+ aIn += 4;
+ nIn = pSrc->pBt->usableSize - 4;
+ }
+ }
+ }while( rc==SQLITE_OK && nOut>0 );
+
+ if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
+ Pgno pgnoNew;
+ MemPage *pNew = 0;
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
+ put4byte(pPgnoOut, pgnoNew);
+ if( ISAUTOVACUUM(pBt) && pPageOut ){
+ ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
+ }
+ releasePage(pPageOut);
+ pPageOut = pNew;
+ if( pPageOut ){
+ pPgnoOut = pPageOut->aData;
+ put4byte(pPgnoOut, 0);
+ aOut = &pPgnoOut[4];
+ nOut = MIN(pBt->usableSize - 4, nRem);
+ }
+ }
+ }while( nRem>0 && rc==SQLITE_OK );
+
+ releasePage(pPageOut);
+ sqlite3PagerUnref(pPageIn);
+ return rc;
+ }
+}
+
+/*
+** Delete the entry that the cursor is pointing to.
+**
+** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
+** the cursor is left pointing at an arbitrary location after the delete.
+** But if that bit is set, then the cursor is left in a state such that
+** the next call to BtreeNext() or BtreePrev() moves it to the same row
+** as it would have been on if the call to BtreeDelete() had been omitted.
+**
+** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
+** associated with a single table entry and its indexes. Only one of those
+** deletes is considered the "primary" delete. The primary delete occurs
+** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
+** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
+** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
+** but which might be used by alternative storage engines.
+*/
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+ int rc; /* Return code */
+ MemPage *pPage; /* Page to delete cell from */
+ unsigned char *pCell; /* Pointer to cell to delete */
+ int iCellIdx; /* Index of cell to delete */
+ int iCellDepth; /* Depth of node containing pCell */
+ CellInfo info; /* Size of the cell being deleted */
+ u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
+
+ assert( cursorOwnsBtShared(pCur) );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
+ assert( pCur->curFlags & BTCF_WriteFlag );
+ assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
+ assert( !hasReadConflicts(p, pCur->pgnoRoot) );
+ assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
+ if( pCur->eState!=CURSOR_VALID ){
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ rc = btreeRestoreCursorPosition(pCur);
+ assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
+ if( rc || pCur->eState!=CURSOR_VALID ) return rc;
+ }else{
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+ assert( pCur->eState==CURSOR_VALID );
+
+ iCellDepth = pCur->iPage;
+ iCellIdx = pCur->ix;
+ pPage = pCur->pPage;
+ if( pPage->nCell<=iCellIdx ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pCell = findCell(pPage, iCellIdx);
+ if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( pCell<&pPage->aCellIdx[pPage->nCell] ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
+ ** be preserved following this delete operation. If the current delete
+ ** will cause a b-tree rebalance, then this is done by saving the cursor
+ ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
+ ** returning.
+ **
+ ** If the current delete will not cause a rebalance, then the cursor
+ ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
+ ** before or after the deleted entry.
+ **
+ ** The bPreserve value records which path is required:
+ **
+ ** bPreserve==0 Not necessary to save the cursor position
+ ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
+ ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
+ */
+ bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
+ if( bPreserve ){
+ if( !pPage->leaf
+ || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
+ (int)(pBt->usableSize*2/3)
+ || pPage->nCell==1 /* See dbfuzz001.test for a test case */
+ ){
+ /* A b-tree rebalance will be required after deleting this entry.
+ ** Save the cursor key. */
+ rc = saveCursorKey(pCur);
+ if( rc ) return rc;
+ }else{
+ bPreserve = 2;
+ }
+ }
+
+ /* If the page containing the entry to delete is not a leaf page, move
+ ** the cursor to the largest entry in the tree that is smaller than
+ ** the entry being deleted. This cell will replace the cell being deleted
+ ** from the internal node. The 'previous' entry is used for this instead
+ ** of the 'next' entry, as the previous entry is always a part of the
+ ** sub-tree headed by the child page of the cell being deleted. This makes
+ ** balancing the tree following the delete operation easier. */
+ if( !pPage->leaf ){
+ rc = sqlite3BtreePrevious(pCur, 0);
+ assert( rc!=SQLITE_DONE );
+ if( rc ) return rc;
+ }
+
+ /* Save the positions of any other cursors open on this table before
+ ** making any modifications. */
+ if( pCur->curFlags & BTCF_Multiple ){
+ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
+ if( rc ) return rc;
+ }
+
+ /* If this is a delete operation to remove a row from a table b-tree,
+ ** invalidate any incrblob cursors open on the row being deleted. */
+ if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
+ invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
+ }
+
+ /* Make the page containing the entry to be deleted writable. Then free any
+ ** overflow pages associated with the entry and finally remove the cell
+ ** itself from within the page. */
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ BTREE_CLEAR_CELL(rc, pPage, pCell, info);
+ dropCell(pPage, iCellIdx, info.nSize, &rc);
+ if( rc ) return rc;
+
+ /* If the cell deleted was not located on a leaf page, then the cursor
+ ** is currently pointing to the largest entry in the sub-tree headed
+ ** by the child-page of the cell that was just deleted from an internal
+ ** node. The cell from the leaf node needs to be moved to the internal
+ ** node to replace the deleted cell. */
+ if( !pPage->leaf ){
+ MemPage *pLeaf = pCur->pPage;
+ int nCell;
+ Pgno n;
+ unsigned char *pTmp;
+
+ if( pLeaf->nFree<0 ){
+ rc = btreeComputeFreeSpace(pLeaf);
+ if( rc ) return rc;
+ }
+ if( iCellDepth<pCur->iPage-1 ){
+ n = pCur->apPage[iCellDepth+1]->pgno;
+ }else{
+ n = pCur->pPage->pgno;
+ }
+ pCell = findCell(pLeaf, pLeaf->nCell-1);
+ if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
+ nCell = pLeaf->xCellSize(pLeaf, pCell);
+ assert( MX_CELL_SIZE(pBt) >= nCell );
+ pTmp = pBt->pTmpSpace;
+ assert( pTmp!=0 );
+ rc = sqlite3PagerWrite(pLeaf->pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
+ }
+ dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
+ if( rc ) return rc;
+ }
+
+ /* Balance the tree. If the entry deleted was located on a leaf page,
+ ** then the cursor still points to that page. In this case the first
+ ** call to balance() repairs the tree, and the if(...) condition is
+ ** never true.
+ **
+ ** Otherwise, if the entry deleted was on an internal node page, then
+ ** pCur is pointing to the leaf page from which a cell was removed to
+ ** replace the cell deleted from the internal node. This is slightly
+ ** tricky as the leaf node may be underfull, and the internal node may
+ ** be either under or overfull. In this case run the balancing algorithm
+ ** on the leaf node first. If the balance proceeds far enough up the
+ ** tree that we can be sure that any problem in the internal node has
+ ** been corrected, so be it. Otherwise, after balancing the leaf node,
+ ** walk the cursor up the tree to the internal node and balance it as
+ ** well. */
+ assert( pCur->pPage->nOverflow==0 );
+ assert( pCur->pPage->nFree>=0 );
+ if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
+ /* Optimization: If the free space is less than 2/3rds of the page,
+ ** then balance() will always be a no-op. No need to invoke it. */
+ rc = SQLITE_OK;
+ }else{
+ rc = balance(pCur);
+ }
+ if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
+ releasePageNotNull(pCur->pPage);
+ pCur->iPage--;
+ while( pCur->iPage>iCellDepth ){
+ releasePage(pCur->apPage[pCur->iPage--]);
+ }
+ pCur->pPage = pCur->apPage[pCur->iPage];
+ rc = balance(pCur);
+ }
+
+ if( rc==SQLITE_OK ){
+ if( bPreserve>1 ){
+ assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
+ assert( pPage==pCur->pPage || CORRUPT_DB );
+ assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
+ pCur->eState = CURSOR_SKIPNEXT;
+ if( iCellIdx>=pPage->nCell ){
+ pCur->skipNext = -1;
+ pCur->ix = pPage->nCell-1;
+ }else{
+ pCur->skipNext = 1;
+ }
+ }else{
+ rc = moveToRoot(pCur);
+ if( bPreserve ){
+ btreeReleaseAllCursorPages(pCur);
+ pCur->eState = CURSOR_REQUIRESEEK;
+ }
+ if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/*
+** Create a new BTree table. Write into *piTable the page
+** number for the root page of the new table.
+**
+** The type of type is determined by the flags parameter. Only the
+** following values of flags are currently in use. Other values for
+** flags might not work:
+**
+** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
+** BTREE_ZERODATA Used for SQL indices
+*/
+static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
+ BtShared *pBt = p->pBt;
+ MemPage *pRoot;
+ Pgno pgnoRoot;
+ int rc;
+ int ptfFlags; /* Page-type flags for the root page of new table */
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
+
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
+ if( rc ){
+ return rc;
+ }
+#else
+ if( pBt->autoVacuum ){
+ Pgno pgnoMove; /* Move a page here to make room for the root-page */
+ MemPage *pPageMove; /* The page to move to. */
+
+ /* Creating a new table may probably require moving an existing database
+ ** to make room for the new tables root page. In case this page turns
+ ** out to be an overflow page, delete all overflow page-map caches
+ ** held by open cursors.
+ */
+ invalidateAllOverflowCache(pBt);
+
+ /* Read the value of meta[3] from the database to determine where the
+ ** root page of the new table should go. meta[3] is the largest root-page
+ ** created so far, so the new root-page is (meta[3]+1).
+ */
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
+ if( pgnoRoot>btreePagecount(pBt) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ pgnoRoot++;
+
+ /* The new root-page may not be allocated on a pointer-map page, or the
+ ** PENDING_BYTE page.
+ */
+ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
+ pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
+ pgnoRoot++;
+ }
+ assert( pgnoRoot>=3 );
+
+ /* Allocate a page. The page that currently resides at pgnoRoot will
+ ** be moved to the allocated page (unless the allocated page happens
+ ** to reside at pgnoRoot).
+ */
+ rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ if( pgnoMove!=pgnoRoot ){
+ /* pgnoRoot is the page that will be used for the root-page of
+ ** the new table (assuming an error did not occur). But we were
+ ** allocated pgnoMove. If required (i.e. if it was not allocated
+ ** by extending the file), the current page at position pgnoMove
+ ** is already journaled.
+ */
+ u8 eType = 0;
+ Pgno iPtrPage = 0;
+
+ /* Save the positions of any open cursors. This is required in
+ ** case they are holding a reference to an xFetch reference
+ ** corresponding to page pgnoRoot. */
+ rc = saveAllCursors(pBt, 0, 0);
+ releasePage(pPageMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Move the page currently at pgnoRoot to pgnoMove. */
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
+ if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ if( rc!=SQLITE_OK ){
+ releasePage(pRoot);
+ return rc;
+ }
+ assert( eType!=PTRMAP_ROOTPAGE );
+ assert( eType!=PTRMAP_FREEPAGE );
+ rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
+ releasePage(pRoot);
+
+ /* Obtain the page at pgnoRoot */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pRoot);
+ return rc;
+ }
+ }else{
+ pRoot = pPageMove;
+ }
+
+ /* Update the pointer-map and meta-data with the new root-page number. */
+ ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
+ if( rc ){
+ releasePage(pRoot);
+ return rc;
+ }
+
+ /* When the new root page was allocated, page 1 was made writable in
+ ** order either to increase the database filesize, or to decrement the
+ ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
+ */
+ assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
+ rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
+ if( NEVER(rc) ){
+ releasePage(pRoot);
+ return rc;
+ }
+
+ }else{
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
+ if( rc ) return rc;
+ }
+#endif
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
+ if( createTabFlags & BTREE_INTKEY ){
+ ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
+ }else{
+ ptfFlags = PTF_ZERODATA | PTF_LEAF;
+ }
+ zeroPage(pRoot, ptfFlags);
+ sqlite3PagerUnref(pRoot->pDbPage);
+ assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
+ *piTable = pgnoRoot;
+ return SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeCreateTable(p, piTable, flags);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Erase the given database page and all its children. Return
+** the page to the freelist.
+*/
+static int clearDatabasePage(
+ BtShared *pBt, /* The BTree that contains the table */
+ Pgno pgno, /* Page number to clear */
+ int freePageFlag, /* Deallocate page if true */
+ i64 *pnChange /* Add number of Cells freed to this counter */
+){
+ MemPage *pPage;
+ int rc;
+ unsigned char *pCell;
+ int i;
+ int hdr;
+ CellInfo info;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno>btreePagecount(pBt) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = getAndInitPage(pBt, pgno, &pPage, 0);
+ if( rc ) return rc;
+ if( (pBt->openFlags & BTREE_SINGLE)==0
+ && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto cleardatabasepage_out;
+ }
+ hdr = pPage->hdrOffset;
+ for(i=0; i<pPage->nCell; i++){
+ pCell = findCell(pPage, i);
+ if( !pPage->leaf ){
+ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ BTREE_CLEAR_CELL(rc, pPage, pCell, info);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ if( !pPage->leaf ){
+ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
+ if( rc ) goto cleardatabasepage_out;
+ if( pPage->intKey ) pnChange = 0;
+ }
+ if( pnChange ){
+ testcase( !pPage->intKey );
+ *pnChange += pPage->nCell;
+ }
+ if( freePageFlag ){
+ freePage(pPage, &rc);
+ }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
+ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
+ }
+
+cleardatabasepage_out:
+ releasePage(pPage);
+ return rc;
+}
+
+/*
+** Delete all information from a single table in the database. iTable is
+** the page number of the root of the table. After this routine returns,
+** the root page is empty, but still exists.
+**
+** This routine will fail with SQLITE_LOCKED if there are any open
+** read cursors on the table. Open write cursors are moved to the
+** root of the table.
+**
+** If pnChange is not NULL, then the integer value pointed to by pnChange
+** is incremented by the number of entries in the table.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+
+ rc = saveAllCursors(pBt, (Pgno)iTable, 0);
+
+ if( SQLITE_OK==rc ){
+ /* Invalidate all incrblob cursors open on table iTable (assuming iTable
+ ** is the root of a table b-tree - if it is not, the following call is
+ ** a no-op). */
+ if( p->hasIncrblobCur ){
+ invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
+ }
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Delete all information from the single table that pCur is open on.
+**
+** This routine only work for pCur on an ephemeral table.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
+ return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
+}
+
+/*
+** Erase all information in a table and add the root of the table to
+** the freelist. Except, the root of the principle table (the one on
+** page 1) is never added to the freelist.
+**
+** This routine will fail with SQLITE_LOCKED if there are any open
+** cursors on the table.
+**
+** If AUTOVACUUM is enabled and the page at iTable is not the last
+** root page in the database file, then the last root page
+** in the database file is moved into the slot formerly occupied by
+** iTable and that last slot formerly occupied by the last root page
+** is added to the freelist instead of iTable. In this say, all
+** root pages are kept at the beginning of the database file, which
+** is necessary for AUTOVACUUM to work right. *piMoved is set to the
+** page number that used to be the last root page in the file before
+** the move. If no page gets moved, *piMoved is set to 0.
+** The last root page is recorded in meta[3] and the value of
+** meta[3] is updated by this procedure.
+*/
+static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
+ int rc;
+ MemPage *pPage = 0;
+ BtShared *pBt = p->pBt;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->inTrans==TRANS_WRITE );
+ assert( iTable>=2 );
+ if( iTable>btreePagecount(pBt) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ rc = sqlite3BtreeClearTable(p, iTable, 0);
+ if( rc ) return rc;
+ rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
+ if( NEVER(rc) ){
+ releasePage(pPage);
+ return rc;
+ }
+
+ *piMoved = 0;
+
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ freePage(pPage, &rc);
+ releasePage(pPage);
+#else
+ if( pBt->autoVacuum ){
+ Pgno maxRootPgno;
+ sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
+
+ if( iTable==maxRootPgno ){
+ /* If the table being dropped is the table with the largest root-page
+ ** number in the database, put the root page on the free list.
+ */
+ freePage(pPage, &rc);
+ releasePage(pPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ /* The table being dropped does not have the largest root-page
+ ** number in the database. So move the page that does into the
+ ** gap left by the deleted root-page.
+ */
+ MemPage *pMove;
+ releasePage(pPage);
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
+ releasePage(pMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pMove = 0;
+ rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ freePage(pMove, &rc);
+ releasePage(pMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ *piMoved = maxRootPgno;
+ }
+
+ /* Set the new 'max-root-page' value in the database header. This
+ ** is the old value less one, less one more if that happens to
+ ** be a root-page number, less one again if that is the
+ ** PENDING_BYTE_PAGE.
+ */
+ maxRootPgno--;
+ while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
+ || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
+ maxRootPgno--;
+ }
+ assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
+
+ rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
+ }else{
+ freePage(pPage, &rc);
+ releasePage(pPage);
+ }
+#endif
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = btreeDropTable(p, iTable, piMoved);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+/*
+** This function may only be called if the b-tree connection already
+** has a read or write transaction open on the database.
+**
+** Read the meta-information out of a database file. Meta[0]
+** is the number of free pages currently in the database. Meta[1]
+** through meta[15] are available for use by higher layers. Meta[0]
+** is read-only, the others are read/write.
+**
+** The schema layer numbers meta values differently. At the schema
+** layer (and the SetCookie and ReadCookie opcodes) the number of
+** free pages is not visible. So Cookie[0] is the same as Meta[1].
+**
+** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
+** of reading the value out of the header, it instead loads the "DataVersion"
+** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
+** database file. It is a number computed by the pager. But its access
+** pattern is the same as header meta values, and so it is convenient to
+** read it from this routine.
+*/
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans>TRANS_NONE );
+ assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
+ assert( pBt->pPage1 );
+ assert( idx>=0 && idx<=15 );
+
+ if( idx==BTREE_DATA_VERSION ){
+ *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
+ }else{
+ *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
+ }
+
+ /* If auto-vacuum is disabled in this build and this is an auto-vacuum
+ ** database, mark the database as read-only. */
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
+ pBt->btsFlags |= BTS_READ_ONLY;
+ }
+#endif
+
+ sqlite3BtreeLeave(p);
+}
+
+/*
+** Write meta-information back into the database. Meta[0] is
+** read-only and may not be written.
+*/
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
+ BtShared *pBt = p->pBt;
+ unsigned char *pP1;
+ int rc;
+ assert( idx>=1 && idx<=15 );
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans==TRANS_WRITE );
+ assert( pBt->pPage1!=0 );
+ pP1 = pBt->pPage1->aData;
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pP1[36 + idx*4], iMeta);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( idx==BTREE_INCR_VACUUM ){
+ assert( pBt->autoVacuum || iMeta==0 );
+ assert( iMeta==0 || iMeta==1 );
+ pBt->incrVacuum = (u8)iMeta;
+ }
+#endif
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** The first argument, pCur, is a cursor opened on some b-tree. Count the
+** number of entries in the b-tree and write the result to *pnEntry.
+**
+** SQLITE_OK is returned if the operation is successfully executed.
+** Otherwise, if an error is encountered (i.e. an IO error or database
+** corruption) an SQLite error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
+ i64 nEntry = 0; /* Value to return in *pnEntry */
+ int rc; /* Return code */
+
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_EMPTY ){
+ *pnEntry = 0;
+ return SQLITE_OK;
+ }
+
+ /* Unless an error occurs, the following loop runs one iteration for each
+ ** page in the B-Tree structure (not including overflow pages).
+ */
+ while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
+ int iIdx; /* Index of child node in parent */
+ MemPage *pPage; /* Current page of the b-tree */
+
+ /* If this is a leaf page or the tree is not an int-key tree, then
+ ** this page contains countable entries. Increment the entry counter
+ ** accordingly.
+ */
+ pPage = pCur->pPage;
+ if( pPage->leaf || !pPage->intKey ){
+ nEntry += pPage->nCell;
+ }
+
+ /* pPage is a leaf node. This loop navigates the cursor so that it
+ ** points to the first interior cell that it points to the parent of
+ ** the next page in the tree that has not yet been visited. The
+ ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
+ ** of the page, or to the number of cells in the page if the next page
+ ** to visit is the right-child of its parent.
+ **
+ ** If all pages in the tree have been visited, return SQLITE_OK to the
+ ** caller.
+ */
+ if( pPage->leaf ){
+ do {
+ if( pCur->iPage==0 ){
+ /* All pages of the b-tree have been visited. Return successfully. */
+ *pnEntry = nEntry;
+ return moveToRoot(pCur);
+ }
+ moveToParent(pCur);
+ }while ( pCur->ix>=pCur->pPage->nCell );
+
+ pCur->ix++;
+ pPage = pCur->pPage;
+ }
+
+ /* Descend to the child node of the cell that the cursor currently
+ ** points at. This is the right-child if (iIdx==pPage->nCell).
+ */
+ iIdx = pCur->ix;
+ if( iIdx==pPage->nCell ){
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
+ }else{
+ rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
+ }
+ }
+
+ /* An error has occurred. Return an error code. */
+ return rc;
+}
+
+/*
+** Return the pager associated with a BTree. This routine is used for
+** testing and debugging only.
+*/
+SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
+ return p->pBt->pPager;
+}
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Record an OOM error during integrity_check
+*/
+static void checkOom(IntegrityCk *pCheck){
+ pCheck->rc = SQLITE_NOMEM;
+ pCheck->mxErr = 0; /* Causes integrity_check processing to stop */
+ if( pCheck->nErr==0 ) pCheck->nErr++;
+}
+
+/*
+** Invoke the progress handler, if appropriate. Also check for an
+** interrupt.
+*/
+static void checkProgress(IntegrityCk *pCheck){
+ sqlite3 *db = pCheck->db;
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ pCheck->rc = SQLITE_INTERRUPT;
+ pCheck->nErr++;
+ pCheck->mxErr = 0;
+ }
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ if( db->xProgress ){
+ assert( db->nProgressOps>0 );
+ pCheck->nStep++;
+ if( (pCheck->nStep % db->nProgressOps)==0
+ && db->xProgress(db->pProgressArg)
+ ){
+ pCheck->rc = SQLITE_INTERRUPT;
+ pCheck->nErr++;
+ pCheck->mxErr = 0;
+ }
+ }
+#endif
+}
+
+/*
+** Append a message to the error message string.
+*/
+static void checkAppendMsg(
+ IntegrityCk *pCheck,
+ const char *zFormat,
+ ...
+){
+ va_list ap;
+ checkProgress(pCheck);
+ if( !pCheck->mxErr ) return;
+ pCheck->mxErr--;
+ pCheck->nErr++;
+ va_start(ap, zFormat);
+ if( pCheck->errMsg.nChar ){
+ sqlite3_str_append(&pCheck->errMsg, "\n", 1);
+ }
+ if( pCheck->zPfx ){
+ sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx,
+ pCheck->v0, pCheck->v1, pCheck->v2);
+ }
+ sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
+ va_end(ap);
+ if( pCheck->errMsg.accError==SQLITE_NOMEM ){
+ checkOom(pCheck);
+ }
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+
+/*
+** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
+** corresponds to page iPg is already set.
+*/
+static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
+ assert( pCheck->aPgRef!=0 );
+ assert( iPg<=pCheck->nCkPage && sizeof(pCheck->aPgRef[0])==1 );
+ return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
+}
+
+/*
+** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
+*/
+static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
+ assert( pCheck->aPgRef!=0 );
+ assert( iPg<=pCheck->nCkPage && sizeof(pCheck->aPgRef[0])==1 );
+ pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
+}
+
+
+/*
+** Add 1 to the reference count for page iPage. If this is the second
+** reference to the page, add an error message to pCheck->zErrMsg.
+** Return 1 if there are 2 or more references to the page and 0 if
+** if this is the first reference to the page.
+**
+** Also check that the page number is in bounds.
+*/
+static int checkRef(IntegrityCk *pCheck, Pgno iPage){
+ if( iPage>pCheck->nCkPage || iPage==0 ){
+ checkAppendMsg(pCheck, "invalid page number %u", iPage);
+ return 1;
+ }
+ if( getPageReferenced(pCheck, iPage) ){
+ checkAppendMsg(pCheck, "2nd reference to page %u", iPage);
+ return 1;
+ }
+ setPageReferenced(pCheck, iPage);
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Check that the entry in the pointer-map for page iChild maps to
+** page iParent, pointer type ptrType. If not, append an error message
+** to pCheck.
+*/
+static void checkPtrmap(
+ IntegrityCk *pCheck, /* Integrity check context */
+ Pgno iChild, /* Child page number */
+ u8 eType, /* Expected pointer map type */
+ Pgno iParent /* Expected pointer map parent page number */
+){
+ int rc;
+ u8 ePtrmapType;
+ Pgno iPtrmapParent;
+
+ rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) checkOom(pCheck);
+ checkAppendMsg(pCheck, "Failed to read ptrmap key=%u", iChild);
+ return;
+ }
+
+ if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
+ checkAppendMsg(pCheck,
+ "Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)",
+ iChild, eType, iParent, ePtrmapType, iPtrmapParent);
+ }
+}
+#endif
+
+/*
+** Check the integrity of the freelist or of an overflow page list.
+** Verify that the number of pages on the list is N.
+*/
+static void checkList(
+ IntegrityCk *pCheck, /* Integrity checking context */
+ int isFreeList, /* True for a freelist. False for overflow page list */
+ Pgno iPage, /* Page number for first page in the list */
+ u32 N /* Expected number of pages in the list */
+){
+ int i;
+ u32 expected = N;
+ int nErrAtStart = pCheck->nErr;
+ while( iPage!=0 && pCheck->mxErr ){
+ DbPage *pOvflPage;
+ unsigned char *pOvflData;
+ if( checkRef(pCheck, iPage) ) break;
+ N--;
+ if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
+ checkAppendMsg(pCheck, "failed to get page %u", iPage);
+ break;
+ }
+ pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
+ if( isFreeList ){
+ u32 n = (u32)get4byte(&pOvflData[4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pCheck->pBt->autoVacuum ){
+ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
+ }
+#endif
+ if( n>pCheck->pBt->usableSize/4-2 ){
+ checkAppendMsg(pCheck,
+ "freelist leaf count too big on page %u", iPage);
+ N--;
+ }else{
+ for(i=0; i<(int)n; i++){
+ Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pCheck->pBt->autoVacuum ){
+ checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
+ }
+#endif
+ checkRef(pCheck, iFreePage);
+ }
+ N -= n;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ else{
+ /* If this database supports auto-vacuum and iPage is not the last
+ ** page in this overflow list, check that the pointer-map entry for
+ ** the following page matches iPage.
+ */
+ if( pCheck->pBt->autoVacuum && N>0 ){
+ i = get4byte(pOvflData);
+ checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
+ }
+ }
+#endif
+ iPage = get4byte(pOvflData);
+ sqlite3PagerUnref(pOvflPage);
+ }
+ if( N && nErrAtStart==pCheck->nErr ){
+ checkAppendMsg(pCheck,
+ "%s is %u but should be %u",
+ isFreeList ? "size" : "overflow list length",
+ expected-N, expected);
+ }
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/*
+** An implementation of a min-heap.
+**
+** aHeap[0] is the number of elements on the heap. aHeap[1] is the
+** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
+** and aHeap[N*2+1].
+**
+** The heap property is this: Every node is less than or equal to both
+** of its daughter nodes. A consequence of the heap property is that the
+** root node aHeap[1] is always the minimum value currently in the heap.
+**
+** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
+** the heap, preserving the heap property. The btreeHeapPull() routine
+** removes the root element from the heap (the minimum value in the heap)
+** and then moves other nodes around as necessary to preserve the heap
+** property.
+**
+** This heap is used for cell overlap and coverage testing. Each u32
+** entry represents the span of a cell or freeblock on a btree page.
+** The upper 16 bits are the index of the first byte of a range and the
+** lower 16 bits are the index of the last byte of that range.
+*/
+static void btreeHeapInsert(u32 *aHeap, u32 x){
+ u32 j, i;
+ assert( aHeap!=0 );
+ i = ++aHeap[0];
+ aHeap[i] = x;
+ while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
+ x = aHeap[j];
+ aHeap[j] = aHeap[i];
+ aHeap[i] = x;
+ i = j;
+ }
+}
+static int btreeHeapPull(u32 *aHeap, u32 *pOut){
+ u32 j, i, x;
+ if( (x = aHeap[0])==0 ) return 0;
+ *pOut = aHeap[1];
+ aHeap[1] = aHeap[x];
+ aHeap[x] = 0xffffffff;
+ aHeap[0]--;
+ i = 1;
+ while( (j = i*2)<=aHeap[0] ){
+ if( aHeap[j]>aHeap[j+1] ) j++;
+ if( aHeap[i]<aHeap[j] ) break;
+ x = aHeap[i];
+ aHeap[i] = aHeap[j];
+ aHeap[j] = x;
+ i = j;
+ }
+ return 1;
+}
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Do various sanity checks on a single page of a tree. Return
+** the tree depth. Root pages return 0. Parents of root pages
+** return 1, and so forth.
+**
+** These checks are done:
+**
+** 1. Make sure that cells and freeblocks do not overlap
+** but combine to completely cover the page.
+** 2. Make sure integer cell keys are in order.
+** 3. Check the integrity of overflow pages.
+** 4. Recursively call checkTreePage on all children.
+** 5. Verify that the depth of all children is the same.
+*/
+static int checkTreePage(
+ IntegrityCk *pCheck, /* Context for the sanity check */
+ Pgno iPage, /* Page number of the page to check */
+ i64 *piMinKey, /* Write minimum integer primary key here */
+ i64 maxKey /* Error if integer primary key greater than this */
+){
+ MemPage *pPage = 0; /* The page being analyzed */
+ int i; /* Loop counter */
+ int rc; /* Result code from subroutine call */
+ int depth = -1, d2; /* Depth of a subtree */
+ int pgno; /* Page number */
+ int nFrag; /* Number of fragmented bytes on the page */
+ int hdr; /* Offset to the page header */
+ int cellStart; /* Offset to the start of the cell pointer array */
+ int nCell; /* Number of cells */
+ int doCoverageCheck = 1; /* True if cell coverage checking should be done */
+ int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
+ ** False if IPK must be strictly less than maxKey */
+ u8 *data; /* Page content */
+ u8 *pCell; /* Cell content */
+ u8 *pCellIdx; /* Next element of the cell pointer array */
+ BtShared *pBt; /* The BtShared object that owns pPage */
+ u32 pc; /* Address of a cell */
+ u32 usableSize; /* Usable size of the page */
+ u32 contentOffset; /* Offset to the start of the cell content area */
+ u32 *heap = 0; /* Min-heap used for checking cell coverage */
+ u32 x, prev = 0; /* Next and previous entry on the min-heap */
+ const char *saved_zPfx = pCheck->zPfx;
+ int saved_v1 = pCheck->v1;
+ int saved_v2 = pCheck->v2;
+ u8 savedIsInit = 0;
+
+ /* Check that the page exists
+ */
+ checkProgress(pCheck);
+ if( pCheck->mxErr==0 ) goto end_of_check;
+ pBt = pCheck->pBt;
+ usableSize = pBt->usableSize;
+ if( iPage==0 ) return 0;
+ if( checkRef(pCheck, iPage) ) return 0;
+ pCheck->zPfx = "Tree %u page %u: ";
+ pCheck->v1 = iPage;
+ if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
+ checkAppendMsg(pCheck,
+ "unable to get the page. error code=%d", rc);
+ if( rc==SQLITE_IOERR_NOMEM ) pCheck->rc = SQLITE_NOMEM;
+ goto end_of_check;
+ }
+
+ /* Clear MemPage.isInit to make sure the corruption detection code in
+ ** btreeInitPage() is executed. */
+ savedIsInit = pPage->isInit;
+ pPage->isInit = 0;
+ if( (rc = btreeInitPage(pPage))!=0 ){
+ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
+ checkAppendMsg(pCheck,
+ "btreeInitPage() returns error code %d", rc);
+ goto end_of_check;
+ }
+ if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
+ assert( rc==SQLITE_CORRUPT );
+ checkAppendMsg(pCheck, "free space corruption", rc);
+ goto end_of_check;
+ }
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+
+ /* Set up for cell analysis */
+ pCheck->zPfx = "Tree %u page %u cell %u: ";
+ contentOffset = get2byteNotZero(&data[hdr+5]);
+ assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
+
+ /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
+ ** number of cells on the page. */
+ nCell = get2byte(&data[hdr+3]);
+ assert( pPage->nCell==nCell );
+
+ /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
+ ** immediately follows the b-tree page header. */
+ cellStart = hdr + 12 - 4*pPage->leaf;
+ assert( pPage->aCellIdx==&data[cellStart] );
+ pCellIdx = &data[cellStart + 2*(nCell-1)];
+
+ if( !pPage->leaf ){
+ /* Analyze the right-child page of internal pages */
+ pgno = get4byte(&data[hdr+8]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ pCheck->zPfx = "Tree %u page %u right child: ";
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
+ }
+#endif
+ depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
+ keyCanBeEqual = 0;
+ }else{
+ /* For leaf pages, the coverage check will occur in the same loop
+ ** as the other cell checks, so initialize the heap. */
+ heap = pCheck->heap;
+ heap[0] = 0;
+ }
+
+ /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
+ ** integer offsets to the cell contents. */
+ for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
+ CellInfo info;
+
+ /* Check cell size */
+ pCheck->v2 = i;
+ assert( pCellIdx==&data[cellStart + i*2] );
+ pc = get2byteAligned(pCellIdx);
+ pCellIdx -= 2;
+ if( pc<contentOffset || pc>usableSize-4 ){
+ checkAppendMsg(pCheck, "Offset %u out of range %u..%u",
+ pc, contentOffset, usableSize-4);
+ doCoverageCheck = 0;
+ continue;
+ }
+ pCell = &data[pc];
+ pPage->xParseCell(pPage, pCell, &info);
+ if( pc+info.nSize>usableSize ){
+ checkAppendMsg(pCheck, "Extends off end of page");
+ doCoverageCheck = 0;
+ continue;
+ }
+
+ /* Check for integer primary key out of range */
+ if( pPage->intKey ){
+ if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
+ checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
+ }
+ maxKey = info.nKey;
+ keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
+ }
+
+ /* Check the content overflow list */
+ if( info.nPayload>info.nLocal ){
+ u32 nPage; /* Number of pages on the overflow chain */
+ Pgno pgnoOvfl; /* First page of the overflow chain */
+ assert( pc + info.nSize - 4 <= usableSize );
+ nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
+ pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
+ }
+#endif
+ checkList(pCheck, 0, pgnoOvfl, nPage);
+ }
+
+ if( !pPage->leaf ){
+ /* Check sanity of left child page for internal pages */
+ pgno = get4byte(pCell);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
+ }
+#endif
+ d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
+ keyCanBeEqual = 0;
+ if( d2!=depth ){
+ checkAppendMsg(pCheck, "Child page depth differs");
+ depth = d2;
+ }
+ }else{
+ /* Populate the coverage-checking heap for leaf pages */
+ btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
+ }
+ }
+ *piMinKey = maxKey;
+
+ /* Check for complete coverage of the page
+ */
+ pCheck->zPfx = 0;
+ if( doCoverageCheck && pCheck->mxErr>0 ){
+ /* For leaf pages, the min-heap has already been initialized and the
+ ** cells have already been inserted. But for internal pages, that has
+ ** not yet been done, so do it now */
+ if( !pPage->leaf ){
+ heap = pCheck->heap;
+ heap[0] = 0;
+ for(i=nCell-1; i>=0; i--){
+ u32 size;
+ pc = get2byteAligned(&data[cellStart+i*2]);
+ size = pPage->xCellSize(pPage, &data[pc]);
+ btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
+ }
+ }
+ /* Add the freeblocks to the min-heap
+ **
+ ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
+ ** is the offset of the first freeblock, or zero if there are no
+ ** freeblocks on the page.
+ */
+ i = get2byte(&data[hdr+1]);
+ while( i>0 ){
+ int size, j;
+ assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
+ size = get2byte(&data[i+2]);
+ assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
+ btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
+ /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
+ ** big-endian integer which is the offset in the b-tree page of the next
+ ** freeblock in the chain, or zero if the freeblock is the last on the
+ ** chain. */
+ j = get2byte(&data[i]);
+ /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
+ ** increasing offset. */
+ assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
+ assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
+ i = j;
+ }
+ /* Analyze the min-heap looking for overlap between cells and/or
+ ** freeblocks, and counting the number of untracked bytes in nFrag.
+ **
+ ** Each min-heap entry is of the form: (start_address<<16)|end_address.
+ ** There is an implied first entry the covers the page header, the cell
+ ** pointer index, and the gap between the cell pointer index and the start
+ ** of cell content.
+ **
+ ** The loop below pulls entries from the min-heap in order and compares
+ ** the start_address against the previous end_address. If there is an
+ ** overlap, that means bytes are used multiple times. If there is a gap,
+ ** that gap is added to the fragmentation count.
+ */
+ nFrag = 0;
+ prev = contentOffset - 1; /* Implied first min-heap entry */
+ while( btreeHeapPull(heap,&x) ){
+ if( (prev&0xffff)>=(x>>16) ){
+ checkAppendMsg(pCheck,
+ "Multiple uses for byte %u of page %u", x>>16, iPage);
+ break;
+ }else{
+ nFrag += (x>>16) - (prev&0xffff) - 1;
+ prev = x;
+ }
+ }
+ nFrag += usableSize - (prev&0xffff) - 1;
+ /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
+ ** is stored in the fifth field of the b-tree page header.
+ ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
+ ** number of fragmented free bytes within the cell content area.
+ */
+ if( heap[0]==0 && nFrag!=data[hdr+7] ){
+ checkAppendMsg(pCheck,
+ "Fragmentation of %u bytes reported as %u on page %u",
+ nFrag, data[hdr+7], iPage);
+ }
+ }
+
+end_of_check:
+ if( !doCoverageCheck ) pPage->isInit = savedIsInit;
+ releasePage(pPage);
+ pCheck->zPfx = saved_zPfx;
+ pCheck->v1 = saved_v1;
+ pCheck->v2 = saved_v2;
+ return depth+1;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** This routine does a complete check of the given BTree file. aRoot[] is
+** an array of pages numbers were each page number is the root page of
+** a table. nRoot is the number of entries in aRoot.
+**
+** A read-only or read-write transaction must be opened before calling
+** this function.
+**
+** Write the number of error seen in *pnErr. Except for some memory
+** allocation errors, an error message held in memory obtained from
+** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
+** returned. If a memory allocation error occurs, NULL is returned.
+**
+** If the first entry in aRoot[] is 0, that indicates that the list of
+** root pages is incomplete. This is a "partial integrity-check". This
+** happens when performing an integrity check on a single table. The
+** zero is skipped, of course. But in addition, the freelist checks
+** and the checks to make sure every page is referenced are also skipped,
+** since obviously it is not possible to know which pages are covered by
+** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
+** checks are still performed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck(
+ sqlite3 *db, /* Database connection that is running the check */
+ Btree *p, /* The btree to be checked */
+ Pgno *aRoot, /* An array of root pages numbers for individual trees */
+ int nRoot, /* Number of entries in aRoot[] */
+ int mxErr, /* Stop reporting errors after this many */
+ int *pnErr, /* OUT: Write number of errors seen to this variable */
+ char **pzOut /* OUT: Write the error message string here */
+){
+ Pgno i;
+ IntegrityCk sCheck;
+ BtShared *pBt = p->pBt;
+ u64 savedDbFlags = pBt->db->flags;
+ char zErr[100];
+ int bPartial = 0; /* True if not checking all btrees */
+ int bCkFreelist = 1; /* True to scan the freelist */
+ VVA_ONLY( int nRef );
+ assert( nRoot>0 );
+
+ /* aRoot[0]==0 means this is a partial check */
+ if( aRoot[0]==0 ){
+ assert( nRoot>1 );
+ bPartial = 1;
+ if( aRoot[1]!=1 ) bCkFreelist = 0;
+ }
+
+ sqlite3BtreeEnter(p);
+ assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
+ VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
+ assert( nRef>=0 );
+ memset(&sCheck, 0, sizeof(sCheck));
+ sCheck.db = db;
+ sCheck.pBt = pBt;
+ sCheck.pPager = pBt->pPager;
+ sCheck.nCkPage = btreePagecount(sCheck.pBt);
+ sCheck.mxErr = mxErr;
+ sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
+ sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
+ if( sCheck.nCkPage==0 ){
+ goto integrity_ck_cleanup;
+ }
+
+ sCheck.aPgRef = sqlite3MallocZero((sCheck.nCkPage / 8)+ 1);
+ if( !sCheck.aPgRef ){
+ checkOom(&sCheck);
+ goto integrity_ck_cleanup;
+ }
+ sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
+ if( sCheck.heap==0 ){
+ checkOom(&sCheck);
+ goto integrity_ck_cleanup;
+ }
+
+ i = PENDING_BYTE_PAGE(pBt);
+ if( i<=sCheck.nCkPage ) setPageReferenced(&sCheck, i);
+
+ /* Check the integrity of the freelist
+ */
+ if( bCkFreelist ){
+ sCheck.zPfx = "Freelist: ";
+ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
+ get4byte(&pBt->pPage1->aData[36]));
+ sCheck.zPfx = 0;
+ }
+
+ /* Check all the tables.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( !bPartial ){
+ if( pBt->autoVacuum ){
+ Pgno mx = 0;
+ Pgno mxInHdr;
+ for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
+ mxInHdr = get4byte(&pBt->pPage1->aData[52]);
+ if( mx!=mxInHdr ){
+ checkAppendMsg(&sCheck,
+ "max rootpage (%u) disagrees with header (%u)",
+ mx, mxInHdr
+ );
+ }
+ }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
+ checkAppendMsg(&sCheck,
+ "incremental_vacuum enabled with a max rootpage of zero"
+ );
+ }
+ }
+#endif
+ testcase( pBt->db->flags & SQLITE_CellSizeCk );
+ pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
+ for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
+ i64 notUsed;
+ if( aRoot[i]==0 ) continue;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
+ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
+ }
+#endif
+ sCheck.v0 = aRoot[i];
+ checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
+ }
+ pBt->db->flags = savedDbFlags;
+
+ /* Make sure every page in the file is referenced
+ */
+ if( !bPartial ){
+ for(i=1; i<=sCheck.nCkPage && sCheck.mxErr; i++){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ if( getPageReferenced(&sCheck, i)==0 ){
+ checkAppendMsg(&sCheck, "Page %u: never used", i);
+ }
+#else
+ /* If the database supports auto-vacuum, make sure no tables contain
+ ** references to pointer-map pages.
+ */
+ if( getPageReferenced(&sCheck, i)==0 &&
+ (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
+ checkAppendMsg(&sCheck, "Page %u: never used", i);
+ }
+ if( getPageReferenced(&sCheck, i)!=0 &&
+ (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
+ checkAppendMsg(&sCheck, "Page %u: pointer map referenced", i);
+ }
+#endif
+ }
+ }
+
+ /* Clean up and report errors.
+ */
+integrity_ck_cleanup:
+ sqlite3PageFree(sCheck.heap);
+ sqlite3_free(sCheck.aPgRef);
+ *pnErr = sCheck.nErr;
+ if( sCheck.nErr==0 ){
+ sqlite3_str_reset(&sCheck.errMsg);
+ *pzOut = 0;
+ }else{
+ *pzOut = sqlite3StrAccumFinish(&sCheck.errMsg);
+ }
+ /* Make sure this analysis did not leave any unref() pages. */
+ assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
+ sqlite3BtreeLeave(p);
+ return sCheck.rc;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/*
+** Return the full pathname of the underlying database file. Return
+** an empty string if the database is in-memory or a TEMP database.
+**
+** The pager filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerFilename(p->pBt->pPager, 1);
+}
+
+/*
+** Return the pathname of the journal file for this database. The return
+** value of this routine is the same regardless of whether the journal file
+** has been created or not.
+**
+** The pager journal filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerJournalname(p->pBt->pPager);
+}
+
+/*
+** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
+** to describe the current transaction state of Btree p.
+*/
+SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree *p){
+ assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
+ return p ? p->inTrans : 0;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Run a checkpoint on the Btree passed as the first argument.
+**
+** Return SQLITE_LOCKED if this or any other connection has an open
+** transaction on the shared-cache the argument Btree is connected to.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
+ int rc = SQLITE_OK;
+ if( p ){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( pBt->inTransaction!=TRANS_NONE ){
+ rc = SQLITE_LOCKED;
+ }else{
+ rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+#endif
+
+/*
+** Return true if there is currently a backup running on Btree p.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){
+ assert( p );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ return p->nBackup!=0;
+}
+
+/*
+** This function returns a pointer to a blob of memory associated with
+** a single shared-btree. The memory is used by client code for its own
+** purposes (for example, to store a high-level schema associated with
+** the shared-btree). The btree layer manages reference counting issues.
+**
+** The first time this is called on a shared-btree, nBytes bytes of memory
+** are allocated, zeroed, and returned to the caller. For each subsequent
+** call the nBytes parameter is ignored and a pointer to the same blob
+** of memory returned.
+**
+** If the nBytes parameter is 0 and the blob of memory has not yet been
+** allocated, a null pointer is returned. If the blob has already been
+** allocated, it is returned as normal.
+**
+** Just before the shared-btree is closed, the function passed as the
+** xFree argument when the memory allocation was made is invoked on the
+** blob of allocated memory. The xFree function should not call sqlite3_free()
+** on the memory, the btree layer does that.
+*/
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( !pBt->pSchema && nBytes ){
+ pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
+ pBt->xFreeSchema = xFree;
+ }
+ sqlite3BtreeLeave(p);
+ return pBt->pSchema;
+}
+
+/*
+** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
+** btree as the argument handle holds an exclusive lock on the
+** sqlite_schema table. Otherwise SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
+ int rc;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
+ assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Obtain a lock on the table whose root page is iTab. The
+** lock is a write lock if isWritelock is true or a read lock
+** if it is false.
+*/
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
+ int rc = SQLITE_OK;
+ assert( p->inTrans!=TRANS_NONE );
+ if( p->sharable ){
+ u8 lockType = READ_LOCK + isWriteLock;
+ assert( READ_LOCK+1==WRITE_LOCK );
+ assert( isWriteLock==0 || isWriteLock==1 );
+
+ sqlite3BtreeEnter(p);
+ rc = querySharedCacheTableLock(p, iTab, lockType);
+ if( rc==SQLITE_OK ){
+ rc = setSharedCacheTableLock(p, iTab, lockType);
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+#endif
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Argument pCsr must be a cursor opened for writing on an
+** INTKEY table currently pointing at a valid table entry.
+** This function modifies the data stored as part of that entry.
+**
+** Only the data content may only be modified, it is not possible to
+** change the length of the data stored. If this function is called with
+** parameters that attempt to write past the end of the existing data,
+** no modifications are made and SQLITE_CORRUPT is returned.
+*/
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
+ int rc;
+ assert( cursorOwnsBtShared(pCsr) );
+ assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
+ assert( pCsr->curFlags & BTCF_Incrblob );
+
+ rc = restoreCursorPosition(pCsr);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pCsr->eState!=CURSOR_REQUIRESEEK );
+ if( pCsr->eState!=CURSOR_VALID ){
+ return SQLITE_ABORT;
+ }
+
+ /* Save the positions of all other cursors open on this table. This is
+ ** required in case any of them are holding references to an xFetch
+ ** version of the b-tree page modified by the accessPayload call below.
+ **
+ ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
+ ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
+ ** saveAllCursors can only return SQLITE_OK.
+ */
+ VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
+ assert( rc==SQLITE_OK );
+
+ /* Check some assumptions:
+ ** (a) the cursor is open for writing,
+ ** (b) there is a read/write transaction open,
+ ** (c) the connection holds a write-lock on the table (if required),
+ ** (d) there are no conflicting read-locks, and
+ ** (e) the cursor points at a valid row of an intKey table.
+ */
+ if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
+ return SQLITE_READONLY;
+ }
+ assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
+ && pCsr->pBt->inTransaction==TRANS_WRITE );
+ assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
+ assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
+ assert( pCsr->pPage->intKey );
+
+ return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
+}
+
+/*
+** Mark this cursor as an incremental blob cursor.
+*/
+SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
+ pCur->curFlags |= BTCF_Incrblob;
+ pCur->pBtree->hasIncrblobCur = 1;
+}
+#endif
+
+/*
+** Set both the "read version" (single byte at byte offset 18) and
+** "write version" (single byte at byte offset 19) fields in the database
+** header to iVersion.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
+ BtShared *pBt = pBtree->pBt;
+ int rc; /* Return code */
+
+ assert( iVersion==1 || iVersion==2 );
+
+ /* If setting the version fields to 1, do not automatically open the
+ ** WAL connection, even if the version fields are currently set to 2.
+ */
+ pBt->btsFlags &= ~BTS_NO_WAL;
+ if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
+
+ rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
+ if( rc==SQLITE_OK ){
+ u8 *aData = pBt->pPage1->aData;
+ if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
+ rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ aData[18] = (u8)iVersion;
+ aData[19] = (u8)iVersion;
+ }
+ }
+ }
+ }
+
+ pBt->btsFlags &= ~BTS_NO_WAL;
+ return rc;
+}
+
+/*
+** Return true if the cursor has a hint specified. This routine is
+** only used from within assert() statements
+*/
+SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
+ return (pCsr->hints & mask)!=0;
+}
+
+/*
+** Return true if the given Btree is read-only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
+ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
+}
+
+/*
+** Return the size of the header added to each page by this module.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
+
+/*
+** If no transaction is active and the database is not a temp-db, clear
+** the in-memory pager cache.
+*/
+SQLITE_PRIVATE void sqlite3BtreeClearCache(Btree *p){
+ BtShared *pBt = p->pBt;
+ if( pBt->inTransaction==TRANS_NONE ){
+ sqlite3PagerClearCache(pBt->pPager);
+ }
+}
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE)
+/*
+** Return true if the Btree passed as the only argument is sharable.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){
+ return p->sharable;
+}
+
+/*
+** Return the number of connections to the BtShared object accessed by
+** the Btree handle passed as the only argument. For private caches
+** this is always 1. For shared caches it may be 1 or greater.
+*/
+SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree *p){
+ testcase( p->sharable );
+ return p->pBt->nRef;
+}
+#endif
+
+/************** End of btree.c ***********************************************/
+/************** Begin file backup.c ******************************************/
+/*
+** 2009 January 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation of the sqlite3_backup_XXX()
+** API functions and the related features.
+*/
+/* #include "sqliteInt.h" */
+/* #include "btreeInt.h" */
+
+/*
+** Structure allocated for each backup operation.
+*/
+struct sqlite3_backup {
+ sqlite3* pDestDb; /* Destination database handle */
+ Btree *pDest; /* Destination b-tree file */
+ u32 iDestSchema; /* Original schema cookie in destination */
+ int bDestLocked; /* True once a write-transaction is open on pDest */
+
+ Pgno iNext; /* Page number of the next source page to copy */
+ sqlite3* pSrcDb; /* Source database handle */
+ Btree *pSrc; /* Source b-tree file */
+
+ int rc; /* Backup process error code */
+
+ /* These two variables are set by every call to backup_step(). They are
+ ** read by calls to backup_remaining() and backup_pagecount().
+ */
+ Pgno nRemaining; /* Number of pages left to copy */
+ Pgno nPagecount; /* Total number of pages to copy */
+
+ int isAttached; /* True once backup has been registered with pager */
+ sqlite3_backup *pNext; /* Next backup associated with source pager */
+};
+
+/*
+** THREAD SAFETY NOTES:
+**
+** Once it has been created using backup_init(), a single sqlite3_backup
+** structure may be accessed via two groups of thread-safe entry points:
+**
+** * Via the sqlite3_backup_XXX() API function backup_step() and
+** backup_finish(). Both these functions obtain the source database
+** handle mutex and the mutex associated with the source BtShared
+** structure, in that order.
+**
+** * Via the BackupUpdate() and BackupRestart() functions, which are
+** invoked by the pager layer to report various state changes in
+** the page cache associated with the source database. The mutex
+** associated with the source database BtShared structure will always
+** be held when either of these functions are invoked.
+**
+** The other sqlite3_backup_XXX() API functions, backup_remaining() and
+** backup_pagecount() are not thread-safe functions. If they are called
+** while some other thread is calling backup_step() or backup_finish(),
+** the values returned may be invalid. There is no way for a call to
+** BackupUpdate() or BackupRestart() to interfere with backup_remaining()
+** or backup_pagecount().
+**
+** Depending on the SQLite configuration, the database handles and/or
+** the Btree objects may have their own mutexes that require locking.
+** Non-sharable Btrees (in-memory databases for example), do not have
+** associated mutexes.
+*/
+
+/*
+** Return a pointer corresponding to database zDb (i.e. "main", "temp")
+** in connection handle pDb. If such a database cannot be found, return
+** a NULL pointer and write an error message to pErrorDb.
+**
+** If the "temp" database is requested, it may need to be opened by this
+** function. If an error occurs while doing so, return 0 and write an
+** error message to pErrorDb.
+*/
+static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){
+ int i = sqlite3FindDbName(pDb, zDb);
+
+ if( i==1 ){
+ Parse sParse;
+ int rc = 0;
+ sqlite3ParseObjectInit(&sParse,pDb);
+ if( sqlite3OpenTempDatabase(&sParse) ){
+ sqlite3ErrorWithMsg(pErrorDb, sParse.rc, "%s", sParse.zErrMsg);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3DbFree(pErrorDb, sParse.zErrMsg);
+ sqlite3ParseObjectReset(&sParse);
+ if( rc ){
+ return 0;
+ }
+ }
+
+ if( i<0 ){
+ sqlite3ErrorWithMsg(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
+ return 0;
+ }
+
+ return pDb->aDb[i].pBt;
+}
+
+/*
+** Attempt to set the page size of the destination to match the page size
+** of the source.
+*/
+static int setDestPgsz(sqlite3_backup *p){
+ int rc;
+ rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),0,0);
+ return rc;
+}
+
+/*
+** Check that there is no open read-transaction on the b-tree passed as the
+** second argument. If there is not, return SQLITE_OK. Otherwise, if there
+** is an open read-transaction, return SQLITE_ERROR and leave an error
+** message in database handle db.
+*/
+static int checkReadTransaction(sqlite3 *db, Btree *p){
+ if( sqlite3BtreeTxnState(p)!=SQLITE_TXN_NONE ){
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use");
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create an sqlite3_backup process to copy the contents of zSrcDb from
+** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
+** a pointer to the new sqlite3_backup object.
+**
+** If an error occurs, NULL is returned and an error code and error message
+** stored in database handle pDestDb.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3* pDestDb, /* Database to write to */
+ const char *zDestDb, /* Name of database within pDestDb */
+ sqlite3* pSrcDb, /* Database connection to read from */
+ const char *zSrcDb /* Name of database within pSrcDb */
+){
+ sqlite3_backup *p; /* Value to return */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ /* Lock the source database handle. The destination database
+ ** handle is not locked in this routine, but it is locked in
+ ** sqlite3_backup_step(). The user is required to ensure that no
+ ** other thread accesses the destination handle for the duration
+ ** of the backup operation. Any attempt to use the destination
+ ** database connection while a backup is in progress may cause
+ ** a malfunction or a deadlock.
+ */
+ sqlite3_mutex_enter(pSrcDb->mutex);
+ sqlite3_mutex_enter(pDestDb->mutex);
+
+ if( pSrcDb==pDestDb ){
+ sqlite3ErrorWithMsg(
+ pDestDb, SQLITE_ERROR, "source and destination must be distinct"
+ );
+ p = 0;
+ }else {
+ /* Allocate space for a new sqlite3_backup object...
+ ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
+ ** call to sqlite3_backup_init() and is destroyed by a call to
+ ** sqlite3_backup_finish(). */
+ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup));
+ if( !p ){
+ sqlite3Error(pDestDb, SQLITE_NOMEM_BKPT);
+ }
+ }
+
+ /* If the allocation succeeded, populate the new object. */
+ if( p ){
+ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
+ p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
+ p->pDestDb = pDestDb;
+ p->pSrcDb = pSrcDb;
+ p->iNext = 1;
+ p->isAttached = 0;
+
+ if( 0==p->pSrc || 0==p->pDest
+ || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK
+ ){
+ /* One (or both) of the named databases did not exist or an OOM
+ ** error was hit. Or there is a transaction open on the destination
+ ** database. The error has already been written into the pDestDb
+ ** handle. All that is left to do here is free the sqlite3_backup
+ ** structure. */
+ sqlite3_free(p);
+ p = 0;
+ }
+ }
+ if( p ){
+ p->pSrc->nBackup++;
+ }
+
+ sqlite3_mutex_leave(pDestDb->mutex);
+ sqlite3_mutex_leave(pSrcDb->mutex);
+ return p;
+}
+
+/*
+** Argument rc is an SQLite error code. Return true if this error is
+** considered fatal if encountered during a backup operation. All errors
+** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
+*/
+static int isFatalError(int rc){
+ return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED));
+}
+
+/*
+** Parameter zSrcData points to a buffer containing the data for
+** page iSrcPg from the source database. Copy this data into the
+** destination database.
+*/
+static int backupOnePage(
+ sqlite3_backup *p, /* Backup handle */
+ Pgno iSrcPg, /* Source database page to backup */
+ const u8 *zSrcData, /* Source database page data */
+ int bUpdate /* True for an update, false otherwise */
+){
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest);
+ const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
+ int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
+ const int nCopy = MIN(nSrcPgsz, nDestPgsz);
+ const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
+ int rc = SQLITE_OK;
+ i64 iOff;
+
+ assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 );
+ assert( p->bDestLocked );
+ assert( !isFatalError(p->rc) );
+ assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
+ assert( zSrcData );
+ assert( nSrcPgsz==nDestPgsz || sqlite3PagerIsMemdb(pDestPager)==0 );
+
+ /* This loop runs once for each destination page spanned by the source
+ ** page. For each iteration, variable iOff is set to the byte offset
+ ** of the destination page.
+ */
+ for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
+ DbPage *pDestPg = 0;
+ Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
+ if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
+ if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg, 0))
+ && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
+ ){
+ const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
+ u8 *zDestData = sqlite3PagerGetData(pDestPg);
+ u8 *zOut = &zDestData[iOff%nDestPgsz];
+
+ /* Copy the data from the source page into the destination page.
+ ** Then clear the Btree layer MemPage.isInit flag. Both this module
+ ** and the pager code use this trick (clearing the first byte
+ ** of the page 'extra' space to invalidate the Btree layers
+ ** cached parse of the page). MemPage.isInit is marked
+ ** "MUST BE FIRST" for this purpose.
+ */
+ memcpy(zOut, zIn, nCopy);
+ ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
+ if( iOff==0 && bUpdate==0 ){
+ sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc));
+ }
+ }
+ sqlite3PagerUnref(pDestPg);
+ }
+
+ return rc;
+}
+
+/*
+** If pFile is currently larger than iSize bytes, then truncate it to
+** exactly iSize bytes. If pFile is not larger than iSize bytes, then
+** this function is a no-op.
+**
+** Return SQLITE_OK if everything is successful, or an SQLite error
+** code if an error occurs.
+*/
+static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){
+ i64 iCurrent;
+ int rc = sqlite3OsFileSize(pFile, &iCurrent);
+ if( rc==SQLITE_OK && iCurrent>iSize ){
+ rc = sqlite3OsTruncate(pFile, iSize);
+ }
+ return rc;
+}
+
+/*
+** Register this backup object with the associated source pager for
+** callbacks when pages are changed or the cache invalidated.
+*/
+static void attachBackupObject(sqlite3_backup *p){
+ sqlite3_backup **pp;
+ assert( sqlite3BtreeHoldsMutex(p->pSrc) );
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
+ p->pNext = *pp;
+ *pp = p;
+ p->isAttached = 1;
+}
+
+/*
+** Copy nPage pages from the source b-tree to the destination.
+*/
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
+ int rc;
+ int destMode; /* Destination journal mode */
+ int pgszSrc = 0; /* Source page size */
+ int pgszDest = 0; /* Destination page size */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(p->pSrcDb->mutex);
+ sqlite3BtreeEnter(p->pSrc);
+ if( p->pDestDb ){
+ sqlite3_mutex_enter(p->pDestDb->mutex);
+ }
+
+ rc = p->rc;
+ if( !isFatalError(rc) ){
+ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */
+ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */
+ int ii; /* Iterator variable */
+ int nSrcPage = -1; /* Size of source db in pages */
+ int bCloseTrans = 0; /* True if src db requires unlocking */
+
+ /* If the source pager is currently in a write-transaction, return
+ ** SQLITE_BUSY immediately.
+ */
+ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
+ rc = SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ }
+
+ /* If there is no open read-transaction on the source database, open
+ ** one now. If a transaction is opened here, then it will be closed
+ ** before this function exits.
+ */
+ if( rc==SQLITE_OK && SQLITE_TXN_NONE==sqlite3BtreeTxnState(p->pSrc) ){
+ rc = sqlite3BtreeBeginTrans(p->pSrc, 0, 0);
+ bCloseTrans = 1;
+ }
+
+ /* If the destination database has not yet been locked (i.e. if this
+ ** is the first call to backup_step() for the current backup operation),
+ ** try to set its page size to the same as the source database. This
+ ** is especially important on ZipVFS systems, as in that case it is
+ ** not possible to create a database file that uses one page size by
+ ** writing to it with another. */
+ if( p->bDestLocked==0 && rc==SQLITE_OK && setDestPgsz(p)==SQLITE_NOMEM ){
+ rc = SQLITE_NOMEM;
+ }
+
+ /* Lock the destination database, if it is not locked already. */
+ if( SQLITE_OK==rc && p->bDestLocked==0
+ && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2,
+ (int*)&p->iDestSchema))
+ ){
+ p->bDestLocked = 1;
+ }
+
+ /* Do not allow backup if the destination database is in WAL mode
+ ** and the page sizes are different between source and destination */
+ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc);
+ pgszDest = sqlite3BtreeGetPageSize(p->pDest);
+ destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest));
+ if( SQLITE_OK==rc
+ && (destMode==PAGER_JOURNALMODE_WAL || sqlite3PagerIsMemdb(pDestPager))
+ && pgszSrc!=pgszDest
+ ){
+ rc = SQLITE_READONLY;
+ }
+
+ /* Now that there is a read-lock on the source database, query the
+ ** source pager for the number of pages in the database.
+ */
+ nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
+ assert( nSrcPage>=0 );
+ for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
+ const Pgno iSrcPg = p->iNext; /* Source page number */
+ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
+ DbPage *pSrcPg; /* Source page object */
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY);
+ if( rc==SQLITE_OK ){
+ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
+ sqlite3PagerUnref(pSrcPg);
+ }
+ }
+ p->iNext++;
+ }
+ if( rc==SQLITE_OK ){
+ p->nPagecount = nSrcPage;
+ p->nRemaining = nSrcPage+1-p->iNext;
+ if( p->iNext>(Pgno)nSrcPage ){
+ rc = SQLITE_DONE;
+ }else if( !p->isAttached ){
+ attachBackupObject(p);
+ }
+ }
+
+ /* Update the schema version field in the destination database. This
+ ** is to make sure that the schema-version really does change in
+ ** the case where the source and destination databases have the
+ ** same schema version.
+ */
+ if( rc==SQLITE_DONE ){
+ if( nSrcPage==0 ){
+ rc = sqlite3BtreeNewDb(p->pDest);
+ nSrcPage = 1;
+ }
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){
+ rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1);
+ }
+ if( rc==SQLITE_OK ){
+ if( p->pDestDb ){
+ sqlite3ResetAllSchemasOfConnection(p->pDestDb);
+ }
+ if( destMode==PAGER_JOURNALMODE_WAL ){
+ rc = sqlite3BtreeSetVersion(p->pDest, 2);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ int nDestTruncate;
+ /* Set nDestTruncate to the final number of pages in the destination
+ ** database. The complication here is that the destination page
+ ** size may be different to the source page size.
+ **
+ ** If the source page size is smaller than the destination page size,
+ ** round up. In this case the call to sqlite3OsTruncate() below will
+ ** fix the size of the file. However it is important to call
+ ** sqlite3PagerTruncateImage() here so that any pages in the
+ ** destination file that lie beyond the nDestTruncate page mark are
+ ** journalled by PagerCommitPhaseOne() before they are destroyed
+ ** by the file truncation.
+ */
+ assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) );
+ assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) );
+ if( pgszSrc<pgszDest ){
+ int ratio = pgszDest/pgszSrc;
+ nDestTruncate = (nSrcPage+ratio-1)/ratio;
+ if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
+ nDestTruncate--;
+ }
+ }else{
+ nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
+ }
+ assert( nDestTruncate>0 );
+
+ if( pgszSrc<pgszDest ){
+ /* If the source page-size is smaller than the destination page-size,
+ ** two extra things may need to happen:
+ **
+ ** * The destination may need to be truncated, and
+ **
+ ** * Data stored on the pages immediately following the
+ ** pending-byte page in the source database may need to be
+ ** copied into the destination database.
+ */
+ const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
+ sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
+ Pgno iPg;
+ int nDstPage;
+ i64 iOff;
+ i64 iEnd;
+
+ assert( pFile );
+ assert( nDestTruncate==0
+ || (i64)nDestTruncate*(i64)pgszDest >= iSize || (
+ nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
+ && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
+ ));
+
+ /* This block ensures that all data required to recreate the original
+ ** database has been stored in the journal for pDestPager and the
+ ** journal synced to disk. So at this point we may safely modify
+ ** the database file in any way, knowing that if a power failure
+ ** occurs, the original database will be reconstructed from the
+ ** journal file. */
+ sqlite3PagerPagecount(pDestPager, &nDstPage);
+ for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){
+ if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){
+ DbPage *pPg;
+ rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pPg);
+ sqlite3PagerUnref(pPg);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
+ }
+
+ /* Write the extra pages and truncate the database file as required */
+ iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
+ for(
+ iOff=PENDING_BYTE+pgszSrc;
+ rc==SQLITE_OK && iOff<iEnd;
+ iOff+=pgszSrc
+ ){
+ PgHdr *pSrcPg = 0;
+ const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
+ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg, 0);
+ if( rc==SQLITE_OK ){
+ u8 *zData = sqlite3PagerGetData(pSrcPg);
+ rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff);
+ }
+ sqlite3PagerUnref(pSrcPg);
+ }
+ if( rc==SQLITE_OK ){
+ rc = backupTruncateFile(pFile, iSize);
+ }
+
+ /* Sync the database file to disk. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSync(pDestPager, 0);
+ }
+ }else{
+ sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
+ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
+ }
+
+ /* Finish committing the transaction to the destination database. */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0))
+ ){
+ rc = SQLITE_DONE;
+ }
+ }
+ }
+
+ /* If bCloseTrans is true, then this function opened a read transaction
+ ** on the source database. Close the read transaction here. There is
+ ** no need to check the return values of the btree methods here, as
+ ** "committing" a read-only transaction cannot fail.
+ */
+ if( bCloseTrans ){
+ TESTONLY( int rc2 );
+ TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0);
+ TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0);
+ assert( rc2==SQLITE_OK );
+ }
+
+ if( rc==SQLITE_IOERR_NOMEM ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ p->rc = rc;
+ }
+ if( p->pDestDb ){
+ sqlite3_mutex_leave(p->pDestDb->mutex);
+ }
+ sqlite3BtreeLeave(p->pSrc);
+ sqlite3_mutex_leave(p->pSrcDb->mutex);
+ return rc;
+}
+
+/*
+** Release all resources associated with an sqlite3_backup* handle.
+*/
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
+ sqlite3_backup **pp; /* Ptr to head of pagers backup list */
+ sqlite3 *pSrcDb; /* Source database connection */
+ int rc; /* Value to return */
+
+ /* Enter the mutexes */
+ if( p==0 ) return SQLITE_OK;
+ pSrcDb = p->pSrcDb;
+ sqlite3_mutex_enter(pSrcDb->mutex);
+ sqlite3BtreeEnter(p->pSrc);
+ if( p->pDestDb ){
+ sqlite3_mutex_enter(p->pDestDb->mutex);
+ }
+
+ /* Detach this backup from the source pager. */
+ if( p->pDestDb ){
+ p->pSrc->nBackup--;
+ }
+ if( p->isAttached ){
+ pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
+ assert( pp!=0 );
+ while( *pp!=p ){
+ pp = &(*pp)->pNext;
+ assert( pp!=0 );
+ }
+ *pp = p->pNext;
+ }
+
+ /* If a transaction is still open on the Btree, roll it back. */
+ sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0);
+
+ /* Set the error code of the destination database handle. */
+ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
+ if( p->pDestDb ){
+ sqlite3Error(p->pDestDb, rc);
+
+ /* Exit the mutexes and free the backup context structure. */
+ sqlite3LeaveMutexAndCloseZombie(p->pDestDb);
+ }
+ sqlite3BtreeLeave(p->pSrc);
+ if( p->pDestDb ){
+ /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
+ ** call to sqlite3_backup_init() and is destroyed by a call to
+ ** sqlite3_backup_finish(). */
+ sqlite3_free(p);
+ }
+ sqlite3LeaveMutexAndCloseZombie(pSrcDb);
+ return rc;
+}
+
+/*
+** Return the number of pages still to be backed up as of the most recent
+** call to sqlite3_backup_step().
+*/
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return p->nRemaining;
+}
+
+/*
+** Return the total number of pages in the source database as of the most
+** recent call to sqlite3_backup_step().
+*/
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return p->nPagecount;
+}
+
+/*
+** This function is called after the contents of page iPage of the
+** source database have been modified. If page iPage has already been
+** copied into the destination database, then the data written to the
+** destination is now invalidated. The destination copy of iPage needs
+** to be updated with the new data before the backup operation is
+** complete.
+**
+** It is assumed that the mutex associated with the BtShared object
+** corresponding to the source database is held when this function is
+** called.
+*/
+static SQLITE_NOINLINE void backupUpdate(
+ sqlite3_backup *p,
+ Pgno iPage,
+ const u8 *aData
+){
+ assert( p!=0 );
+ do{
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
+ if( !isFatalError(p->rc) && iPage<p->iNext ){
+ /* The backup process p has already copied page iPage. But now it
+ ** has been modified by a transaction on the source pager. Copy
+ ** the new data into the backup.
+ */
+ int rc;
+ assert( p->pDestDb );
+ sqlite3_mutex_enter(p->pDestDb->mutex);
+ rc = backupOnePage(p, iPage, aData, 1);
+ sqlite3_mutex_leave(p->pDestDb->mutex);
+ assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
+ if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ }
+ }
+ }while( (p = p->pNext)!=0 );
+}
+SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){
+ if( pBackup ) backupUpdate(pBackup, iPage, aData);
+}
+
+/*
+** Restart the backup process. This is called when the pager layer
+** detects that the database has been modified by an external database
+** connection. In this case there is no way of knowing which of the
+** pages that have been copied into the destination database are still
+** valid and which are not, so the entire process needs to be restarted.
+**
+** It is assumed that the mutex associated with the BtShared object
+** corresponding to the source database is held when this function is
+** called.
+*/
+SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){
+ sqlite3_backup *p; /* Iterator variable */
+ for(p=pBackup; p; p=p->pNext){
+ assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
+ p->iNext = 1;
+ }
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Copy the complete content of pBtFrom into pBtTo. A transaction
+** must be active for both files.
+**
+** The size of file pTo may be reduced by this operation. If anything
+** goes wrong, the transaction on pTo is rolled back. If successful, the
+** transaction is committed before returning.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
+ int rc;
+ sqlite3_file *pFd; /* File descriptor for database pTo */
+ sqlite3_backup b;
+ sqlite3BtreeEnter(pTo);
+ sqlite3BtreeEnter(pFrom);
+
+ assert( sqlite3BtreeTxnState(pTo)==SQLITE_TXN_WRITE );
+ pFd = sqlite3PagerFile(sqlite3BtreePager(pTo));
+ if( pFd->pMethods ){
+ i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom);
+ rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc ) goto copy_finished;
+ }
+
+ /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set
+ ** to 0. This is used by the implementations of sqlite3_backup_step()
+ ** and sqlite3_backup_finish() to detect that they are being called
+ ** from this function, not directly by the user.
+ */
+ memset(&b, 0, sizeof(b));
+ b.pSrcDb = pFrom->db;
+ b.pSrc = pFrom;
+ b.pDest = pTo;
+ b.iNext = 1;
+
+ /* 0x7FFFFFFF is the hard limit for the number of pages in a database
+ ** file. By passing this as the number of pages to copy to
+ ** sqlite3_backup_step(), we can guarantee that the copy finishes
+ ** within a single call (unless an error occurs). The assert() statement
+ ** checks this assumption - (p->rc) should be set to either SQLITE_DONE
+ ** or an error code. */
+ sqlite3_backup_step(&b, 0x7FFFFFFF);
+ assert( b.rc!=SQLITE_OK );
+
+ rc = sqlite3_backup_finish(&b);
+ if( rc==SQLITE_OK ){
+ pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED;
+ }else{
+ sqlite3PagerClearCache(sqlite3BtreePager(b.pDest));
+ }
+
+ assert( sqlite3BtreeTxnState(pTo)!=SQLITE_TXN_WRITE );
+copy_finished:
+ sqlite3BtreeLeave(pFrom);
+ sqlite3BtreeLeave(pTo);
+ return rc;
+}
+#endif /* SQLITE_OMIT_VACUUM */
+
+/************** End of backup.c **********************************************/
+/************** Begin file vdbemem.c *****************************************/
+/*
+** 2004 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to manipulate "Mem" structure. A "Mem"
+** stores a single value in the VDBE. Mem is an opaque structure visible
+** only within the VDBE. Interface routines refer to a Mem using the
+** name sqlite_value
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/* True if X is a power of two. 0 is considered a power of two here.
+** In other words, return true if X has at most one bit set.
+*/
+#define ISPOWEROF2(X) (((X)&((X)-1))==0)
+
+#ifdef SQLITE_DEBUG
+/*
+** Check invariants on a Mem object.
+**
+** This routine is intended for use inside of assert() statements, like
+** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
+*/
+SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){
+ /* If MEM_Dyn is set then Mem.xDel!=0.
+ ** Mem.xDel might not be initialized if MEM_Dyn is clear.
+ */
+ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
+
+ /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
+ ** ensure that if Mem.szMalloc>0 then it is safe to do
+ ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
+ ** That saves a few cycles in inner loops. */
+ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
+
+ /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
+ assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
+
+ if( p->flags & MEM_Null ){
+ /* Cannot be both MEM_Null and some other type */
+ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
+
+ /* If MEM_Null is set, then either the value is a pure NULL (the usual
+ ** case) or it is a pointer set using sqlite3_bind_pointer() or
+ ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
+ ** set.
+ */
+ if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
+ /* This is a pointer type. There may be a flag to indicate what to
+ ** do with the pointer. */
+ assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
+
+ /* No other bits set */
+ assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
+ |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
+ }else{
+ /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
+ ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
+ }
+ }else{
+ /* The MEM_Cleared bit is only allowed on NULLs */
+ assert( (p->flags & MEM_Cleared)==0 );
+ }
+
+ /* The szMalloc field holds the correct memory allocation size */
+ assert( p->szMalloc==0
+ || (p->flags==MEM_Undefined
+ && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
+ || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
+
+ /* If p holds a string or blob, the Mem.z must point to exactly
+ ** one of the following:
+ **
+ ** (1) Memory in Mem.zMalloc and managed by the Mem object
+ ** (2) Memory to be freed using Mem.xDel
+ ** (3) An ephemeral string or blob
+ ** (4) A static string or blob
+ */
+ if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
+ assert(
+ ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
+ ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
+ ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
+ );
+ }
+ return 1;
+}
+#endif
+
+/*
+** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
+** into a buffer.
+*/
+static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
+ StrAccum acc;
+ assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
+ assert( sz>22 );
+ if( p->flags & MEM_Int ){
+#if GCC_VERSION>=7000000
+ /* Work-around for GCC bug
+ ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
+ i64 x;
+ assert( (p->flags&MEM_Int)*2==sizeof(x) );
+ memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
+ p->n = sqlite3Int64ToText(x, zBuf);
+#else
+ p->n = sqlite3Int64ToText(p->u.i, zBuf);
+#endif
+ }else{
+ sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
+ sqlite3_str_appendf(&acc, "%!.15g",
+ (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
+ assert( acc.zText==zBuf && acc.mxAlloc<=0 );
+ zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
+ p->n = acc.nChar;
+ }
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Validity checks on pMem. pMem holds a string.
+**
+** (1) Check that string value of pMem agrees with its integer or real value.
+** (2) Check that the string is correctly zero terminated
+**
+** A single int or real value always converts to the same strings. But
+** many different strings can be converted into the same int or real.
+** If a table contains a numeric value and an index is based on the
+** corresponding string value, then it is important that the string be
+** derived from the numeric value, not the other way around, to ensure
+** that the index and table are consistent. See ticket
+** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
+** an example.
+**
+** This routine looks at pMem to verify that if it has both a numeric
+** representation and a string representation then the string rep has
+** been derived from the numeric and not the other way around. It returns
+** true if everything is ok and false if there is a problem.
+**
+** This routine is for use inside of assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemValidStrRep(Mem *p){
+ Mem tmp;
+ char zBuf[100];
+ char *z;
+ int i, j, incr;
+ if( (p->flags & MEM_Str)==0 ) return 1;
+ if( p->db && p->db->mallocFailed ) return 1;
+ if( p->flags & MEM_Term ){
+ /* Insure that the string is properly zero-terminated. Pay particular
+ ** attention to the case where p->n is odd */
+ if( p->szMalloc>0 && p->z==p->zMalloc ){
+ assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
+ assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
+ }
+ assert( p->z[p->n]==0 );
+ assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
+ assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
+ }
+ if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
+ memcpy(&tmp, p, sizeof(tmp));
+ vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
+ z = p->z;
+ i = j = 0;
+ incr = 1;
+ if( p->enc!=SQLITE_UTF8 ){
+ incr = 2;
+ if( p->enc==SQLITE_UTF16BE ) z++;
+ }
+ while( zBuf[j] ){
+ if( zBuf[j++]!=z[i] ) return 0;
+ i += incr;
+ }
+ return 1;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** If pMem is an object with a valid string representation, this routine
+** ensures the internal encoding for the string representation is
+** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
+**
+** If pMem is not a string object, or the encoding of the string
+** representation is already stored using the requested encoding, then this
+** routine is a no-op.
+**
+** SQLITE_OK is returned if the conversion is successful (or not required).
+** SQLITE_NOMEM may be returned if a malloc() fails during conversion
+** between formats.
+*/
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
+#ifndef SQLITE_OMIT_UTF16
+ int rc;
+#endif
+ assert( pMem!=0 );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
+ || desiredEnc==SQLITE_UTF16BE );
+ if( !(pMem->flags&MEM_Str) ){
+ pMem->enc = desiredEnc;
+ return SQLITE_OK;
+ }
+ if( pMem->enc==desiredEnc ){
+ return SQLITE_OK;
+ }
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+#ifdef SQLITE_OMIT_UTF16
+ return SQLITE_ERROR;
+#else
+
+ /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
+ ** then the encoding of the value may not have changed.
+ */
+ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
+ assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
+ assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
+ assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
+ return rc;
+#endif
+}
+
+/*
+** Make sure pMem->z points to a writable allocation of at least n bytes.
+**
+** If the bPreserve argument is true, then copy of the content of
+** pMem->z into the new allocation. pMem must be either a string or
+** blob if bPreserve is true. If bPreserve is false, any prior content
+** in pMem->z is discarded.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
+ assert( sqlite3VdbeCheckMemInvariants(pMem) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ testcase( pMem->db==0 );
+
+ /* If the bPreserve flag is set to true, then the memory cell must already
+ ** contain a valid string or blob value. */
+ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
+ testcase( bPreserve && pMem->z==0 );
+
+ assert( pMem->szMalloc==0
+ || (pMem->flags==MEM_Undefined
+ && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
+ || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
+ if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
+ if( pMem->db ){
+ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
+ }else{
+ pMem->zMalloc = sqlite3Realloc(pMem->z, n);
+ if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
+ pMem->z = pMem->zMalloc;
+ }
+ bPreserve = 0;
+ }else{
+ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
+ }
+ if( pMem->zMalloc==0 ){
+ sqlite3VdbeMemSetNull(pMem);
+ pMem->z = 0;
+ pMem->szMalloc = 0;
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
+ }
+
+ if( bPreserve && pMem->z ){
+ assert( pMem->z!=pMem->zMalloc );
+ memcpy(pMem->zMalloc, pMem->z, pMem->n);
+ }
+ if( (pMem->flags&MEM_Dyn)!=0 ){
+ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
+ pMem->xDel((void *)(pMem->z));
+ }
+
+ pMem->z = pMem->zMalloc;
+ pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
+ return SQLITE_OK;
+}
+
+/*
+** Change the pMem->zMalloc allocation to be at least szNew bytes.
+** If pMem->zMalloc already meets or exceeds the requested size, this
+** routine is a no-op.
+**
+** Any prior string or blob content in the pMem object may be discarded.
+** The pMem->xDel destructor is called, if it exists. Though MEM_Str
+** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
+** and MEM_Null values are preserved.
+**
+** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
+** if unable to complete the resizing.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
+ assert( CORRUPT_DB || szNew>0 );
+ assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
+ if( pMem->szMalloc<szNew ){
+ return sqlite3VdbeMemGrow(pMem, szNew, 0);
+ }
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ pMem->z = pMem->zMalloc;
+ pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
+ return SQLITE_OK;
+}
+
+/*
+** If pMem is already a string, detect if it is a zero-terminated
+** string, or make it into one if possible, and mark it as such.
+**
+** This is an optimization. Correct operation continues even if
+** this routine is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){
+ if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){
+ /* pMem must be a string, and it cannot be an ephemeral or static string */
+ return;
+ }
+ if( pMem->enc!=SQLITE_UTF8 ) return;
+ if( NEVER(pMem->z==0) ) return;
+ if( pMem->flags & MEM_Dyn ){
+ if( pMem->xDel==sqlite3_free
+ && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1)
+ ){
+ pMem->z[pMem->n] = 0;
+ pMem->flags |= MEM_Term;
+ return;
+ }
+ if( pMem->xDel==sqlite3RCStrUnref ){
+ /* Blindly assume that all RCStr objects are zero-terminated */
+ pMem->flags |= MEM_Term;
+ return;
+ }
+ }else if( pMem->szMalloc >= pMem->n+1 ){
+ pMem->z[pMem->n] = 0;
+ pMem->flags |= MEM_Term;
+ return;
+ }
+}
+
+/*
+** It is already known that pMem contains an unterminated string.
+** Add the zero terminator.
+**
+** Three bytes of zero are added. In this way, there is guaranteed
+** to be a double-zero byte at an even byte boundary in order to
+** terminate a UTF16 string, even if the initial size of the buffer
+** is an odd number of bytes.
+*/
+static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
+ if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pMem->z[pMem->n] = 0;
+ pMem->z[pMem->n+1] = 0;
+ pMem->z[pMem->n+2] = 0;
+ pMem->flags |= MEM_Term;
+ return SQLITE_OK;
+}
+
+/*
+** Change pMem so that its MEM_Str or MEM_Blob value is stored in
+** MEM.zMalloc, where it can be safely written.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
+ if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
+ if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
+ int rc = vdbeMemAddTerminator(pMem);
+ if( rc ) return rc;
+ }
+ }
+ pMem->flags &= ~MEM_Ephem;
+#ifdef SQLITE_DEBUG
+ pMem->pScopyFrom = 0;
+#endif
+
+ return SQLITE_OK;
+}
+
+/*
+** If the given Mem* has a zero-filled tail, turn it into an ordinary
+** blob stored in dynamically allocated space.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
+ int nByte;
+ assert( pMem!=0 );
+ assert( pMem->flags & MEM_Zero );
+ assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
+ testcase( sqlite3_value_nochange(pMem) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+
+ /* Set nByte to the number of bytes required to store the expanded blob. */
+ nByte = pMem->n + pMem->u.nZero;
+ if( nByte<=0 ){
+ if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
+ nByte = 1;
+ }
+ if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( pMem->z!=0 );
+ assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
+
+ memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
+ pMem->n += pMem->u.nZero;
+ pMem->flags &= ~(MEM_Zero|MEM_Term);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Make sure the given Mem is \u0000 terminated.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
+ testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
+ if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
+ return SQLITE_OK; /* Nothing to do */
+ }else{
+ return vdbeMemAddTerminator(pMem);
+ }
+}
+
+/*
+** Add MEM_Str to the set of representations for the given Mem. This
+** routine is only called if pMem is a number of some kind, not a NULL
+** or a BLOB.
+**
+** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
+** if bForce is true but are retained if bForce is false.
+**
+** A MEM_Null value will never be passed to this function. This function is
+** used for converting values to text for returning to the user (i.e. via
+** sqlite3_value_text()), or for ensuring that values to be used as btree
+** keys are strings. In the former case a NULL pointer is returned the
+** user and the latter is an internal programming error.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
+ const int nByte = 32;
+
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !(pMem->flags&MEM_Zero) );
+ assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
+ assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+
+ if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
+ pMem->enc = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ vdbeMemRenderNum(nByte, pMem->z, pMem);
+ assert( pMem->z!=0 );
+ assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) );
+ pMem->enc = SQLITE_UTF8;
+ pMem->flags |= MEM_Str|MEM_Term;
+ if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
+ sqlite3VdbeChangeEncoding(pMem, enc);
+ return SQLITE_OK;
+}
+
+/*
+** Memory cell pMem contains the context of an aggregate function.
+** This routine calls the finalize method for that function. The
+** result of the aggregate is stored back into pMem.
+**
+** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
+** otherwise.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
+ sqlite3_context ctx;
+ Mem t;
+ assert( pFunc!=0 );
+ assert( pMem!=0 );
+ assert( pMem->db!=0 );
+ assert( pFunc->xFinalize!=0 );
+ assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
+ assert( sqlite3_mutex_held(pMem->db->mutex) );
+ memset(&ctx, 0, sizeof(ctx));
+ memset(&t, 0, sizeof(t));
+ t.flags = MEM_Null;
+ t.db = pMem->db;
+ ctx.pOut = &t;
+ ctx.pMem = pMem;
+ ctx.pFunc = pFunc;
+ ctx.enc = ENC(t.db);
+ pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ memcpy(pMem, &t, sizeof(t));
+ return ctx.isError;
+}
+
+/*
+** Memory cell pAccum contains the context of an aggregate function.
+** This routine calls the xValue method for that function and stores
+** the results in memory cell pMem.
+**
+** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
+** otherwise.
+*/
+#ifndef SQLITE_OMIT_WINDOWFUNC
+SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
+ sqlite3_context ctx;
+ assert( pFunc!=0 );
+ assert( pFunc->xValue!=0 );
+ assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
+ assert( pAccum->db!=0 );
+ assert( sqlite3_mutex_held(pAccum->db->mutex) );
+ memset(&ctx, 0, sizeof(ctx));
+ sqlite3VdbeMemSetNull(pOut);
+ ctx.pOut = pOut;
+ ctx.pMem = pAccum;
+ ctx.pFunc = pFunc;
+ ctx.enc = ENC(pAccum->db);
+ pFunc->xValue(&ctx);
+ return ctx.isError;
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** If the memory cell contains a value that must be freed by
+** invoking the external callback in Mem.xDel, then this routine
+** will free that value. It also sets Mem.flags to MEM_Null.
+**
+** This is a helper routine for sqlite3VdbeMemSetNull() and
+** for sqlite3VdbeMemRelease(). Use those other routines as the
+** entry point for releasing Mem resources.
+*/
+static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
+ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
+ assert( VdbeMemDynamic(p) );
+ if( p->flags&MEM_Agg ){
+ sqlite3VdbeMemFinalize(p, p->u.pDef);
+ assert( (p->flags & MEM_Agg)==0 );
+ testcase( p->flags & MEM_Dyn );
+ }
+ if( p->flags&MEM_Dyn ){
+ assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
+ p->xDel((void *)p->z);
+ }
+ p->flags = MEM_Null;
+}
+
+/*
+** Release memory held by the Mem p, both external memory cleared
+** by p->xDel and memory in p->zMalloc.
+**
+** This is a helper routine invoked by sqlite3VdbeMemRelease() in
+** the unusual case where there really is memory in p that needs
+** to be freed.
+*/
+static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
+ if( VdbeMemDynamic(p) ){
+ vdbeMemClearExternAndSetNull(p);
+ }
+ if( p->szMalloc ){
+ sqlite3DbFreeNN(p->db, p->zMalloc);
+ p->szMalloc = 0;
+ }
+ p->z = 0;
+}
+
+/*
+** Release any memory resources held by the Mem. Both the memory that is
+** free by Mem.xDel and the Mem.zMalloc allocation are freed.
+**
+** Use this routine prior to clean up prior to abandoning a Mem, or to
+** reset a Mem back to its minimum memory utilization.
+**
+** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
+** prior to inserting new content into the Mem.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
+ assert( sqlite3VdbeCheckMemInvariants(p) );
+ if( VdbeMemDynamic(p) || p->szMalloc ){
+ vdbeMemClear(p);
+ }
+}
+
+/* Like sqlite3VdbeMemRelease() but faster for cases where we
+** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem *p){
+ assert( !VdbeMemDynamic(p) );
+ if( p->szMalloc ) vdbeMemClear(p);
+}
+
+/*
+** Return some kind of integer value which is the best we can do
+** at representing the value that *pMem describes as an integer.
+** If pMem is an integer, then the value is exact. If pMem is
+** a floating-point then the value returned is the integer part.
+** If pMem is a string or blob, then we make an attempt to convert
+** it into an integer and return that. If pMem represents an
+** an SQL-NULL value, return 0.
+**
+** If pMem represents a string value, its encoding might be changed.
+*/
+static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
+ i64 value = 0;
+ sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
+ return value;
+}
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem *pMem){
+ int flags;
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ flags = pMem->flags;
+ if( flags & (MEM_Int|MEM_IntReal) ){
+ testcase( flags & MEM_IntReal );
+ return pMem->u.i;
+ }else if( flags & MEM_Real ){
+ return sqlite3RealToI64(pMem->u.r);
+ }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
+ return memIntValue(pMem);
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Return the best representation of pMem that we can get into a
+** double. If pMem is already a double or an integer, return its
+** value. If it is a string or blob, try to convert it to a double.
+** If it is a NULL, return 0.0.
+*/
+static SQLITE_NOINLINE double memRealValue(Mem *pMem){
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ double val = (double)0;
+ sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
+ return val;
+}
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ if( pMem->flags & MEM_Real ){
+ return pMem->u.r;
+ }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pMem->flags & MEM_IntReal );
+ return (double)pMem->u.i;
+ }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
+ return memRealValue(pMem);
+ }else{
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ return (double)0;
+ }
+}
+
+/*
+** Return 1 if pMem represents true, and return 0 if pMem represents false.
+** Return the value ifNull if pMem is NULL.
+*/
+SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
+ testcase( pMem->flags & MEM_IntReal );
+ if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
+ if( pMem->flags & MEM_Null ) return ifNull;
+ return sqlite3VdbeRealValue(pMem)!=0.0;
+}
+
+/*
+** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
+** make it a MEM_Int if we can.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->flags & (MEM_Real|MEM_IntReal) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ if( pMem->flags & MEM_IntReal ){
+ MemSetTypeFlag(pMem, MEM_Int);
+ }else{
+ i64 ix = sqlite3RealToI64(pMem->u.r);
+
+ /* Only mark the value as an integer if
+ **
+ ** (1) the round-trip conversion real->int->real is a no-op, and
+ ** (2) The integer is neither the largest nor the smallest
+ ** possible integer (ticket #3922)
+ **
+ ** The second and third terms in the following conditional enforces
+ ** the second condition under the assumption that addition overflow causes
+ ** values to wrap around.
+ */
+ if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
+ pMem->u.i = ix;
+ MemSetTypeFlag(pMem, MEM_Int);
+ }
+ }
+}
+
+/*
+** Convert pMem to type integer. Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ pMem->u.i = sqlite3VdbeIntValue(pMem);
+ MemSetTypeFlag(pMem, MEM_Int);
+ return SQLITE_OK;
+}
+
+/*
+** Convert pMem so that it is of type MEM_Real.
+** Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+
+ pMem->u.r = sqlite3VdbeRealValue(pMem);
+ MemSetTypeFlag(pMem, MEM_Real);
+ return SQLITE_OK;
+}
+
+/* Compare a floating point value to an integer. Return true if the two
+** values are the same within the precision of the floating point value.
+**
+** This function assumes that i was obtained by assignment from r1.
+**
+** For some versions of GCC on 32-bit machines, if you do the more obvious
+** comparison of "r1==(double)i" you sometimes get an answer of false even
+** though the r1 and (double)i values are bit-for-bit the same.
+*/
+SQLITE_PRIVATE int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
+ double r2 = (double)i;
+ return r1==0.0
+ || (memcmp(&r1, &r2, sizeof(r1))==0
+ && i >= -2251799813685248LL && i < 2251799813685248LL);
+}
+
+/* Convert a floating point value to its closest integer. Do so in
+** a way that avoids 'outside the range of representable values' warnings
+** from UBSAN.
+*/
+SQLITE_PRIVATE i64 sqlite3RealToI64(double r){
+ if( r<-9223372036854774784.0 ) return SMALLEST_INT64;
+ if( r>+9223372036854774784.0 ) return LARGEST_INT64;
+ return (i64)r;
+}
+
+/*
+** Convert pMem so that it has type MEM_Real or MEM_Int.
+** Invalidate any prior representations.
+**
+** Every effort is made to force the conversion, even if the input
+** is a string that does not look completely like a number. Convert
+** as much of the string as we can and ignore the rest.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
+ assert( pMem!=0 );
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_Real );
+ testcase( pMem->flags & MEM_IntReal );
+ testcase( pMem->flags & MEM_Null );
+ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
+ int rc;
+ sqlite3_int64 ix;
+ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
+ if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
+ || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
+ ){
+ pMem->u.i = ix;
+ MemSetTypeFlag(pMem, MEM_Int);
+ }else{
+ MemSetTypeFlag(pMem, MEM_Real);
+ }
+ }
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
+ pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
+ return SQLITE_OK;
+}
+
+/*
+** Cast the datatype of the value in pMem according to the affinity
+** "aff". Casting is different from applying affinity in that a cast
+** is forced. In other words, the value is converted into the desired
+** affinity even if that results in loss of data. This routine is
+** used (for example) to implement the SQL "cast()" operator.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
+ if( pMem->flags & MEM_Null ) return SQLITE_OK;
+ switch( aff ){
+ case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
+ if( (pMem->flags & MEM_Blob)==0 ){
+ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
+ assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
+ if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
+ }else{
+ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
+ }
+ break;
+ }
+ case SQLITE_AFF_NUMERIC: {
+ sqlite3VdbeMemNumerify(pMem);
+ break;
+ }
+ case SQLITE_AFF_INTEGER: {
+ sqlite3VdbeMemIntegerify(pMem);
+ break;
+ }
+ case SQLITE_AFF_REAL: {
+ sqlite3VdbeMemRealify(pMem);
+ break;
+ }
+ default: {
+ int rc;
+ assert( aff==SQLITE_AFF_TEXT );
+ assert( MEM_Str==(MEM_Blob>>3) );
+ pMem->flags |= (pMem->flags&MEM_Blob)>>3;
+ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
+ assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
+ pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
+ if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
+ rc = sqlite3VdbeChangeEncoding(pMem, encoding);
+ if( rc ) return rc;
+ sqlite3VdbeMemZeroTerminateIfAble(pMem);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Initialize bulk memory to be a consistent Mem object.
+**
+** The minimum amount of initialization feasible is performed.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
+ assert( (flags & ~MEM_TypeMask)==0 );
+ pMem->flags = flags;
+ pMem->db = db;
+ pMem->szMalloc = 0;
+}
+
+
+/*
+** Delete any previous value and set the value stored in *pMem to NULL.
+**
+** This routine calls the Mem.xDel destructor to dispose of values that
+** require the destructor. But it preserves the Mem.zMalloc memory allocation.
+** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
+** routine to invoke the destructor and deallocates Mem.zMalloc.
+**
+** Use this routine to reset the Mem prior to insert a new value.
+**
+** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
+ if( VdbeMemDynamic(pMem) ){
+ vdbeMemClearExternAndSetNull(pMem);
+ }else{
+ pMem->flags = MEM_Null;
+ }
+}
+SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){
+ sqlite3VdbeMemSetNull((Mem*)p);
+}
+
+/*
+** Delete any previous value and set the value to be a BLOB of length
+** n containing all zeros.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags = MEM_Blob|MEM_Zero;
+ pMem->n = 0;
+ if( n<0 ) n = 0;
+ pMem->u.nZero = n;
+ pMem->enc = SQLITE_UTF8;
+ pMem->z = 0;
+}
+#else
+SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
+ int nByte = n>0?n:1;
+ if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( pMem->z!=0 );
+ assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
+ memset(pMem->z, 0, nByte);
+ pMem->n = n>0?n:0;
+ pMem->flags = MEM_Blob;
+ pMem->enc = SQLITE_UTF8;
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The pMem is known to contain content that needs to be destroyed prior
+** to a value change. So invoke the destructor, then set the value to
+** a 64-bit integer.
+*/
+static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
+ sqlite3VdbeMemSetNull(pMem);
+ pMem->u.i = val;
+ pMem->flags = MEM_Int;
+}
+
+/*
+** Delete any previous value and set the value stored in *pMem to val,
+** manifest type INTEGER.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
+ if( VdbeMemDynamic(pMem) ){
+ vdbeReleaseAndSetInt64(pMem, val);
+ }else{
+ pMem->u.i = val;
+ pMem->flags = MEM_Int;
+ }
+}
+
+/* A no-op destructor */
+SQLITE_PRIVATE void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
+
+/*
+** Set the value stored in *pMem should already be a NULL.
+** Also store a pointer to go with it.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetPointer(
+ Mem *pMem,
+ void *pPtr,
+ const char *zPType,
+ void (*xDestructor)(void*)
+){
+ assert( pMem->flags==MEM_Null );
+ vdbeMemClear(pMem);
+ pMem->u.zPType = zPType ? zPType : "";
+ pMem->z = pPtr;
+ pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
+ pMem->eSubtype = 'p';
+ pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** Delete any previous value and set the value stored in *pMem to val,
+** manifest type REAL.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
+ sqlite3VdbeMemSetNull(pMem);
+ if( !sqlite3IsNaN(val) ){
+ pMem->u.r = val;
+ pMem->flags = MEM_Real;
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if the Mem holds a RowSet object. This routine is intended
+** for use inside of assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem *pMem){
+ return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
+ && pMem->xDel==sqlite3RowSetDelete;
+}
+#endif
+
+/*
+** Delete any previous value and set the value of pMem to be an
+** empty boolean index.
+**
+** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
+** error occurs.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem *pMem){
+ sqlite3 *db = pMem->db;
+ RowSet *p;
+ assert( db!=0 );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ sqlite3VdbeMemRelease(pMem);
+ p = sqlite3RowSetInit(db);
+ if( p==0 ) return SQLITE_NOMEM;
+ pMem->z = (char*)p;
+ pMem->flags = MEM_Blob|MEM_Dyn;
+ pMem->xDel = sqlite3RowSetDelete;
+ return SQLITE_OK;
+}
+
+/*
+** Return true if the Mem object contains a TEXT or BLOB that is
+** too large - whose size exceeds SQLITE_MAX_LENGTH.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
+ assert( p->db!=0 );
+ if( p->flags & (MEM_Str|MEM_Blob) ){
+ int n = p->n;
+ if( p->flags & MEM_Zero ){
+ n += p->u.nZero;
+ }
+ return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This routine prepares a memory cell for modification by breaking
+** its link to a shallow copy and by marking any current shallow
+** copies of this cell as invalid.
+**
+** This is used for testing and debugging only - to help ensure that shallow
+** copies (created by OP_SCopy) are not misused.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
+ int i;
+ Mem *pX;
+ for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
+ if( pX->pScopyFrom==pMem ){
+ u16 mFlags;
+ if( pVdbe->db->flags & SQLITE_VdbeTrace ){
+ sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
+ (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
+ }
+ /* If pX is marked as a shallow copy of pMem, then try to verify that
+ ** no significant changes have been made to pX since the OP_SCopy.
+ ** A significant change would indicated a missed call to this
+ ** function for pX. Minor changes, such as adding or removing a
+ ** dual type, are allowed, as long as the underlying value is the
+ ** same. */
+ mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
+ assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
+
+ /* pMem is the register that is changing. But also mark pX as
+ ** undefined so that we can quickly detect the shallow-copy error */
+ pX->flags = MEM_Undefined;
+ pX->pScopyFrom = 0;
+ }
+ }
+ pMem->pScopyFrom = 0;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Make an shallow copy of pFrom into pTo. Prior contents of
+** pTo are freed. The pFrom->z field is not duplicated. If
+** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
+** and flags gets srcType (either MEM_Ephem or MEM_Static).
+*/
+static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
+ vdbeMemClearExternAndSetNull(pTo);
+ assert( !VdbeMemDynamic(pTo) );
+ sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
+}
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
+ assert( !sqlite3VdbeMemIsRowSet(pFrom) );
+ assert( pTo->db==pFrom->db );
+ if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ if( (pFrom->flags&MEM_Static)==0 ){
+ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
+ assert( srcType==MEM_Ephem || srcType==MEM_Static );
+ pTo->flags |= srcType;
+ }
+}
+
+/*
+** Make a full copy of pFrom into pTo. Prior contents of pTo are
+** freed before the copy is made.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
+ int rc = SQLITE_OK;
+
+ assert( !sqlite3VdbeMemIsRowSet(pFrom) );
+ if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ pTo->flags &= ~MEM_Dyn;
+ if( pTo->flags&(MEM_Str|MEM_Blob) ){
+ if( 0==(pFrom->flags&MEM_Static) ){
+ pTo->flags |= MEM_Ephem;
+ rc = sqlite3VdbeMemMakeWriteable(pTo);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Transfer the contents of pFrom to pTo. Any existing value in pTo is
+** freed. If pFrom contains ephemeral data, a copy is made.
+**
+** pFrom contains an SQL NULL when this routine returns.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
+ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
+ assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
+ assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
+
+ sqlite3VdbeMemRelease(pTo);
+ memcpy(pTo, pFrom, sizeof(Mem));
+ pFrom->flags = MEM_Null;
+ pFrom->szMalloc = 0;
+}
+
+/*
+** Change the value of a Mem to be a string or a BLOB.
+**
+** The memory management strategy depends on the value of the xDel
+** parameter. If the value passed is SQLITE_TRANSIENT, then the
+** string is copied into a (possibly existing) buffer managed by the
+** Mem structure. Otherwise, any existing buffer is freed and the
+** pointer copied.
+**
+** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
+** size limit) then no memory allocation occurs. If the string can be
+** stored without allocating memory, then it is. If a memory allocation
+** is required to store the string, then value of pMem is unchanged. In
+** either case, SQLITE_TOOBIG is returned.
+**
+** The "enc" parameter is the text encoding for the string, or zero
+** to store a blob.
+**
+** If n is negative, then the string consists of all bytes up to but
+** excluding the first zero character. The n parameter must be
+** non-negative for blobs.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
+ Mem *pMem, /* Memory cell to set to string value */
+ const char *z, /* String pointer */
+ i64 n, /* Bytes in string, or negative */
+ u8 enc, /* Encoding of z. 0 for BLOBs */
+ void (*xDel)(void*) /* Destructor function */
+){
+ i64 nByte = n; /* New value for pMem->n */
+ int iLimit; /* Maximum allowed string or blob size */
+ u16 flags; /* New value for pMem->flags */
+
+ assert( pMem!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ assert( enc!=0 || n>=0 );
+
+ /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
+ if( !z ){
+ sqlite3VdbeMemSetNull(pMem);
+ return SQLITE_OK;
+ }
+
+ if( pMem->db ){
+ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }else{
+ iLimit = SQLITE_MAX_LENGTH;
+ }
+ if( nByte<0 ){
+ assert( enc!=0 );
+ if( enc==SQLITE_UTF8 ){
+ nByte = strlen(z);
+ }else{
+ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
+ }
+ flags= MEM_Str|MEM_Term;
+ }else if( enc==0 ){
+ flags = MEM_Blob;
+ enc = SQLITE_UTF8;
+ }else{
+ flags = MEM_Str;
+ }
+ if( nByte>iLimit ){
+ if( xDel && xDel!=SQLITE_TRANSIENT ){
+ if( xDel==SQLITE_DYNAMIC ){
+ sqlite3DbFree(pMem->db, (void*)z);
+ }else{
+ xDel((void*)z);
+ }
+ }
+ sqlite3VdbeMemSetNull(pMem);
+ return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
+ }
+
+ /* The following block sets the new values of Mem.z and Mem.xDel. It
+ ** also sets a flag in local variable "flags" to indicate the memory
+ ** management (one of MEM_Dyn or MEM_Static).
+ */
+ if( xDel==SQLITE_TRANSIENT ){
+ i64 nAlloc = nByte;
+ if( flags&MEM_Term ){
+ nAlloc += (enc==SQLITE_UTF8?1:2);
+ }
+ testcase( nAlloc==0 );
+ testcase( nAlloc==31 );
+ testcase( nAlloc==32 );
+ if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(pMem->z, z, nAlloc);
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ pMem->z = (char *)z;
+ if( xDel==SQLITE_DYNAMIC ){
+ pMem->zMalloc = pMem->z;
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
+ }else{
+ pMem->xDel = xDel;
+ flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
+ }
+ }
+
+ pMem->n = (int)(nByte & 0x7fffffff);
+ pMem->flags = flags;
+ pMem->enc = enc;
+
+#ifndef SQLITE_OMIT_UTF16
+ if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+#endif
+
+
+ return SQLITE_OK;
+}
+
+/*
+** Move data out of a btree key or data field and into a Mem structure.
+** The data is payload from the entry that pCur is currently pointing
+** to. offset and amt determine what portion of the data or key to retrieve.
+** The result is written into the pMem element.
+**
+** The pMem object must have been initialized. This routine will use
+** pMem->zMalloc to hold the content from the btree, if possible. New
+** pMem->zMalloc space will be allocated if necessary. The calling routine
+** is responsible for making sure that the pMem object is eventually
+** destroyed.
+**
+** If this routine fails for any reason (malloc returns NULL or unable
+** to read from the disk) then the pMem is left in an inconsistent state.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
+ BtCursor *pCur, /* Cursor pointing at record to retrieve. */
+ u32 offset, /* Offset from the start of data to return bytes from. */
+ u32 amt, /* Number of bytes to return. */
+ Mem *pMem /* OUT: Return data in this Mem structure. */
+){
+ int rc;
+ pMem->flags = MEM_Null;
+ if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
+ rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
+ if( rc==SQLITE_OK ){
+ pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
+ pMem->flags = MEM_Blob;
+ pMem->n = (int)amt;
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtreeZeroOffset(
+ BtCursor *pCur, /* Cursor pointing at record to retrieve. */
+ u32 amt, /* Number of bytes to return. */
+ Mem *pMem /* OUT: Return data in this Mem structure. */
+){
+ u32 available = 0; /* Number of bytes available on the local btree page */
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ assert( !VdbeMemDynamic(pMem) );
+
+ /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
+ ** that both the BtShared and database handle mutexes are held. */
+ assert( !sqlite3VdbeMemIsRowSet(pMem) );
+ pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
+ assert( pMem->z!=0 );
+
+ if( amt<=available ){
+ pMem->flags = MEM_Blob|MEM_Ephem;
+ pMem->n = (int)amt;
+ }else{
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
+ }
+
+ return rc;
+}
+
+/*
+** The pVal argument is known to be a value other than NULL.
+** Convert it into a string with encoding enc and return a pointer
+** to a zero-terminated version of that string.
+*/
+static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
+ assert( pVal!=0 );
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
+ assert( !sqlite3VdbeMemIsRowSet(pVal) );
+ assert( (pVal->flags & (MEM_Null))==0 );
+ if( pVal->flags & (MEM_Blob|MEM_Str) ){
+ if( ExpandBlob(pVal) ) return 0;
+ pVal->flags |= MEM_Str;
+ if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
+ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
+ }
+ if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
+ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
+ if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
+ return 0;
+ }
+ }
+ sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
+ }else{
+ sqlite3VdbeMemStringify(pVal, enc, 0);
+ assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
+ }
+ assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
+ || pVal->db->mallocFailed );
+ if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
+ assert( sqlite3VdbeMemValidStrRep(pVal) );
+ return pVal->z;
+ }else{
+ return 0;
+ }
+}
+
+/* This function is only available internally, it is not part of the
+** external API. It works in a similar way to sqlite3_value_text(),
+** except the data returned is in the encoding specified by the second
+** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
+** SQLITE_UTF8.
+**
+** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
+** If that is the case, then the result must be aligned on an even byte
+** boundary.
+*/
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
+ if( !pVal ) return 0;
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
+ assert( !sqlite3VdbeMemIsRowSet(pVal) );
+ if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
+ assert( sqlite3VdbeMemValidStrRep(pVal) );
+ return pVal->z;
+ }
+ if( pVal->flags&MEM_Null ){
+ return 0;
+ }
+ return valueToText(pVal, enc);
+}
+
+/* Return true if sqlit3_value object pVal is a string or blob value
+** that uses the destructor specified in the second argument.
+**
+** TODO: Maybe someday promote this interface into a published API so
+** that third-party extensions can get access to it?
+*/
+SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){
+ if( ALWAYS(pVal!=0)
+ && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0)
+ && (pVal->flags & MEM_Dyn)!=0
+ && pVal->xDel==xFree
+ ){
+ return 1;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Create a new sqlite3_value object.
+*/
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
+ Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
+ if( p ){
+ p->flags = MEM_Null;
+ p->db = db;
+ }
+ return p;
+}
+
+/*
+** Context object passed by sqlite3Stat4ProbeSetValue() through to
+** valueNew(). See comments above valueNew() for details.
+*/
+struct ValueNewStat4Ctx {
+ Parse *pParse;
+ Index *pIdx;
+ UnpackedRecord **ppRec;
+ int iVal;
+};
+
+/*
+** Allocate and return a pointer to a new sqlite3_value object. If
+** the second argument to this function is NULL, the object is allocated
+** by calling sqlite3ValueNew().
+**
+** Otherwise, if the second argument is non-zero, then this function is
+** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
+** already been allocated, allocate the UnpackedRecord structure that
+** that function will return to its caller here. Then return a pointer to
+** an sqlite3_value within the UnpackedRecord.a[] array.
+*/
+static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
+#ifdef SQLITE_ENABLE_STAT4
+ if( p ){
+ UnpackedRecord *pRec = p->ppRec[0];
+
+ if( pRec==0 ){
+ Index *pIdx = p->pIdx; /* Index being probed */
+ int nByte; /* Bytes of space to allocate */
+ int i; /* Counter variable */
+ int nCol = pIdx->nColumn; /* Number of index columns including rowid */
+
+ nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
+ pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
+ if( pRec ){
+ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
+ if( pRec->pKeyInfo ){
+ assert( pRec->pKeyInfo->nAllField==nCol );
+ assert( pRec->pKeyInfo->enc==ENC(db) );
+ pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
+ for(i=0; i<nCol; i++){
+ pRec->aMem[i].flags = MEM_Null;
+ pRec->aMem[i].db = db;
+ }
+ }else{
+ sqlite3DbFreeNN(db, pRec);
+ pRec = 0;
+ }
+ }
+ if( pRec==0 ) return 0;
+ p->ppRec[0] = pRec;
+ }
+
+ pRec->nField = p->iVal+1;
+ sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]);
+ return &pRec->aMem[p->iVal];
+ }
+#else
+ UNUSED_PARAMETER(p);
+#endif /* defined(SQLITE_ENABLE_STAT4) */
+ return sqlite3ValueNew(db);
+}
+
+/*
+** The expression object indicated by the second argument is guaranteed
+** to be a scalar SQL function. If
+**
+** * all function arguments are SQL literals,
+** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
+** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
+**
+** then this routine attempts to invoke the SQL function. Assuming no
+** error occurs, output parameter (*ppVal) is set to point to a value
+** object containing the result before returning SQLITE_OK.
+**
+** Affinity aff is applied to the result of the function before returning.
+** If the result is a text value, the sqlite3_value object uses encoding
+** enc.
+**
+** If the conditions above are not met, this function returns SQLITE_OK
+** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
+** NULL and an SQLite error code returned.
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static int valueFromFunction(
+ sqlite3 *db, /* The database connection */
+ const Expr *p, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 aff, /* Affinity to use */
+ sqlite3_value **ppVal, /* Write the new value here */
+ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
+){
+ sqlite3_context ctx; /* Context object for function invocation */
+ sqlite3_value **apVal = 0; /* Function arguments */
+ int nVal = 0; /* Size of apVal[] array */
+ FuncDef *pFunc = 0; /* Function definition */
+ sqlite3_value *pVal = 0; /* New value */
+ int rc = SQLITE_OK; /* Return code */
+ ExprList *pList = 0; /* Function arguments */
+ int i; /* Iterator variable */
+
+ assert( pCtx!=0 );
+ assert( (p->flags & EP_TokenOnly)==0 );
+ assert( ExprUseXList(p) );
+ pList = p->x.pList;
+ if( pList ) nVal = pList->nExpr;
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ if( pFunc==0 ) return SQLITE_OK;
+#endif
+ assert( pFunc );
+ if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
+ || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
+ ){
+ return SQLITE_OK;
+ }
+
+ if( pList ){
+ apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
+ if( apVal==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto value_from_function_out;
+ }
+ for(i=0; i<nVal; i++){
+ rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
+ if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
+ }
+ }
+
+ pVal = valueNew(db, pCtx);
+ if( pVal==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto value_from_function_out;
+ }
+
+ memset(&ctx, 0, sizeof(ctx));
+ ctx.pOut = pVal;
+ ctx.pFunc = pFunc;
+ ctx.enc = ENC(db);
+ pFunc->xSFunc(&ctx, nVal, apVal);
+ if( ctx.isError ){
+ rc = ctx.isError;
+ sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
+ }else{
+ sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
+ assert( rc==SQLITE_OK );
+ rc = sqlite3VdbeChangeEncoding(pVal, enc);
+ if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){
+ rc = SQLITE_TOOBIG;
+ pCtx->pParse->nErr++;
+ }
+ }
+
+ value_from_function_out:
+ if( rc!=SQLITE_OK ){
+ pVal = 0;
+ pCtx->pParse->rc = rc;
+ }
+ if( apVal ){
+ for(i=0; i<nVal; i++){
+ sqlite3ValueFree(apVal[i]);
+ }
+ sqlite3DbFreeNN(db, apVal);
+ }
+
+ *ppVal = pVal;
+ return rc;
+}
+#else
+# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
+#endif /* defined(SQLITE_ENABLE_STAT4) */
+
+/*
+** Extract a value from the supplied expression in the manner described
+** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
+** using valueNew().
+**
+** If pCtx is NULL and an error occurs after the sqlite3_value object
+** has been allocated, it is freed before returning. Or, if pCtx is not
+** NULL, it is assumed that the caller will free any allocated object
+** in all cases.
+*/
+static int valueFromExpr(
+ sqlite3 *db, /* The database connection */
+ const Expr *pExpr, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal, /* Write the new value here */
+ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
+){
+ int op;
+ char *zVal = 0;
+ sqlite3_value *pVal = 0;
+ int negInt = 1;
+ const char *zNeg = "";
+ int rc = SQLITE_OK;
+
+ assert( pExpr!=0 );
+ while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
+ if( op==TK_REGISTER ) op = pExpr->op2;
+
+ /* Compressed expressions only appear when parsing the DEFAULT clause
+ ** on a table column definition, and hence only when pCtx==0. This
+ ** check ensures that an EP_TokenOnly expression is never passed down
+ ** into valueFromFunction(). */
+ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
+
+ if( op==TK_CAST ){
+ u8 aff;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ aff = sqlite3AffinityType(pExpr->u.zToken,0);
+ rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
+ testcase( rc!=SQLITE_OK );
+ if( *ppVal ){
+#ifdef SQLITE_ENABLE_STAT4
+ rc = ExpandBlob(*ppVal);
+#else
+ /* zero-blobs only come from functions, not literal values. And
+ ** functions are only processed under STAT4 */
+ assert( (ppVal[0][0].flags & MEM_Zero)==0 );
+#endif
+ sqlite3VdbeMemCast(*ppVal, aff, enc);
+ sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
+ }
+ return rc;
+ }
+
+ /* Handle negative integers in a single step. This is needed in the
+ ** case when the value is -9223372036854775808.
+ */
+ if( op==TK_UMINUS
+ && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
+ pExpr = pExpr->pLeft;
+ op = pExpr->op;
+ negInt = -1;
+ zNeg = "-";
+ }
+
+ if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
+ pVal = valueNew(db, pCtx);
+ if( pVal==0 ) goto no_mem;
+ if( ExprHasProperty(pExpr, EP_IntValue) ){
+ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
+ }else{
+ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
+ if( zVal==0 ) goto no_mem;
+ sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
+ }
+ if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
+ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
+ }else{
+ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
+ }
+ assert( (pVal->flags & MEM_IntReal)==0 );
+ if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
+ testcase( pVal->flags & MEM_Int );
+ testcase( pVal->flags & MEM_Real );
+ pVal->flags &= ~MEM_Str;
+ }
+ if( enc!=SQLITE_UTF8 ){
+ rc = sqlite3VdbeChangeEncoding(pVal, enc);
+ }
+ }else if( op==TK_UMINUS ) {
+ /* This branch happens for multiple negative signs. Ex: -(-5) */
+ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
+ && pVal!=0
+ ){
+ sqlite3VdbeMemNumerify(pVal);
+ if( pVal->flags & MEM_Real ){
+ pVal->u.r = -pVal->u.r;
+ }else if( pVal->u.i==SMALLEST_INT64 ){
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ pVal->u.r = -(double)SMALLEST_INT64;
+#else
+ pVal->u.r = LARGEST_INT64;
+#endif
+ MemSetTypeFlag(pVal, MEM_Real);
+ }else{
+ pVal->u.i = -pVal->u.i;
+ }
+ sqlite3ValueApplyAffinity(pVal, affinity, enc);
+ }
+ }else if( op==TK_NULL ){
+ pVal = valueNew(db, pCtx);
+ if( pVal==0 ) goto no_mem;
+ sqlite3VdbeMemSetNull(pVal);
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ else if( op==TK_BLOB ){
+ int nVal;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
+ assert( pExpr->u.zToken[1]=='\'' );
+ pVal = valueNew(db, pCtx);
+ if( !pVal ) goto no_mem;
+ zVal = &pExpr->u.zToken[2];
+ nVal = sqlite3Strlen30(zVal)-1;
+ assert( zVal[nVal]=='\'' );
+ sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
+ 0, SQLITE_DYNAMIC);
+ }
+#endif
+#ifdef SQLITE_ENABLE_STAT4
+ else if( op==TK_FUNCTION && pCtx!=0 ){
+ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
+ }
+#endif
+ else if( op==TK_TRUEFALSE ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pVal = valueNew(db, pCtx);
+ if( pVal ){
+ pVal->flags = MEM_Int;
+ pVal->u.i = pExpr->u.zToken[4]==0;
+ sqlite3ValueApplyAffinity(pVal, affinity, enc);
+ }
+ }
+
+ *ppVal = pVal;
+ return rc;
+
+no_mem:
+#ifdef SQLITE_ENABLE_STAT4
+ if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
+#endif
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, zVal);
+ assert( *ppVal==0 );
+#ifdef SQLITE_ENABLE_STAT4
+ if( pCtx==0 ) sqlite3ValueFree(pVal);
+#else
+ assert( pCtx==0 ); sqlite3ValueFree(pVal);
+#endif
+ return SQLITE_NOMEM_BKPT;
+}
+
+/*
+** Create a new sqlite3_value object, containing the value of pExpr.
+**
+** This only works for very simple expressions that consist of one constant
+** token (i.e. "5", "5.1", "'a string'"). If the expression can
+** be converted directly into a value, then the value is allocated and
+** a pointer written to *ppVal. The caller is responsible for deallocating
+** the value by passing it to sqlite3ValueFree() later on. If the expression
+** cannot be converted to a value, then *ppVal is set to NULL.
+*/
+SQLITE_PRIVATE int sqlite3ValueFromExpr(
+ sqlite3 *db, /* The database connection */
+ const Expr *pExpr, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal /* Write the new value here */
+){
+ return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Attempt to extract a value from pExpr and use it to construct *ppVal.
+**
+** If pAlloc is not NULL, then an UnpackedRecord object is created for
+** pAlloc if one does not exist and the new value is added to the
+** UnpackedRecord object.
+**
+** A value is extracted in the following cases:
+**
+** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
+**
+** * The expression is a bound variable, and this is a reprepare, or
+**
+** * The expression is a literal value.
+**
+** On success, *ppVal is made to point to the extracted value. The caller
+** is responsible for ensuring that the value is eventually freed.
+*/
+static int stat4ValueFromExpr(
+ Parse *pParse, /* Parse context */
+ Expr *pExpr, /* The expression to extract a value from */
+ u8 affinity, /* Affinity to use */
+ struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
+ sqlite3_value **ppVal /* OUT: New value object (or NULL) */
+){
+ int rc = SQLITE_OK;
+ sqlite3_value *pVal = 0;
+ sqlite3 *db = pParse->db;
+
+ /* Skip over any TK_COLLATE nodes */
+ pExpr = sqlite3ExprSkipCollate(pExpr);
+
+ assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
+ if( !pExpr ){
+ pVal = valueNew(db, pAlloc);
+ if( pVal ){
+ sqlite3VdbeMemSetNull((Mem*)pVal);
+ }
+ }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
+ Vdbe *v;
+ int iBindVar = pExpr->iColumn;
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
+ if( (v = pParse->pReprepare)!=0 ){
+ pVal = valueNew(db, pAlloc);
+ if( pVal ){
+ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
+ sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
+ pVal->db = pParse->db;
+ }
+ }
+ }else{
+ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
+ }
+
+ assert( pVal==0 || pVal->db==db );
+ *ppVal = pVal;
+ return rc;
+}
+
+/*
+** This function is used to allocate and populate UnpackedRecord
+** structures intended to be compared against sample index keys stored
+** in the sqlite_stat4 table.
+**
+** A single call to this function populates zero or more fields of the
+** record starting with field iVal (fields are numbered from left to
+** right starting with 0). A single field is populated if:
+**
+** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
+**
+** * The expression is a bound variable, and this is a reprepare, or
+**
+** * The sqlite3ValueFromExpr() function is able to extract a value
+** from the expression (i.e. the expression is a literal value).
+**
+** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
+** vector components that match either of the two latter criteria listed
+** above.
+**
+** Before any value is appended to the record, the affinity of the
+** corresponding column within index pIdx is applied to it. Before
+** this function returns, output parameter *pnExtract is set to the
+** number of values appended to the record.
+**
+** When this function is called, *ppRec must either point to an object
+** allocated by an earlier call to this function, or must be NULL. If it
+** is NULL and a value can be successfully extracted, a new UnpackedRecord
+** is allocated (and *ppRec set to point to it) before returning.
+**
+** Unless an error is encountered, SQLITE_OK is returned. It is not an
+** error if a value cannot be extracted from pExpr. If an error does
+** occur, an SQLite error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue(
+ Parse *pParse, /* Parse context */
+ Index *pIdx, /* Index being probed */
+ UnpackedRecord **ppRec, /* IN/OUT: Probe record */
+ Expr *pExpr, /* The expression to extract a value from */
+ int nElem, /* Maximum number of values to append */
+ int iVal, /* Array element to populate */
+ int *pnExtract /* OUT: Values appended to the record */
+){
+ int rc = SQLITE_OK;
+ int nExtract = 0;
+
+ if( pExpr==0 || pExpr->op!=TK_SELECT ){
+ int i;
+ struct ValueNewStat4Ctx alloc;
+
+ alloc.pParse = pParse;
+ alloc.pIdx = pIdx;
+ alloc.ppRec = ppRec;
+
+ for(i=0; i<nElem; i++){
+ sqlite3_value *pVal = 0;
+ Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
+ u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
+ alloc.iVal = iVal+i;
+ rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
+ if( !pVal ) break;
+ nExtract++;
+ }
+ }
+
+ *pnExtract = nExtract;
+ return rc;
+}
+
+/*
+** Attempt to extract a value from expression pExpr using the methods
+** as described for sqlite3Stat4ProbeSetValue() above.
+**
+** If successful, set *ppVal to point to a new value object and return
+** SQLITE_OK. If no value can be extracted, but no other error occurs
+** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
+** does occur, return an SQLite error code. The final value of *ppVal
+** is undefined in this case.
+*/
+SQLITE_PRIVATE int sqlite3Stat4ValueFromExpr(
+ Parse *pParse, /* Parse context */
+ Expr *pExpr, /* The expression to extract a value from */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal /* OUT: New value object (or NULL) */
+){
+ return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
+}
+
+/*
+** Extract the iCol-th column from the nRec-byte record in pRec. Write
+** the column value into *ppVal. If *ppVal is initially NULL then a new
+** sqlite3_value object is allocated.
+**
+** If *ppVal is initially NULL then the caller is responsible for
+** ensuring that the value written into *ppVal is eventually freed.
+*/
+SQLITE_PRIVATE int sqlite3Stat4Column(
+ sqlite3 *db, /* Database handle */
+ const void *pRec, /* Pointer to buffer containing record */
+ int nRec, /* Size of buffer pRec in bytes */
+ int iCol, /* Column to extract */
+ sqlite3_value **ppVal /* OUT: Extracted value */
+){
+ u32 t = 0; /* a column type code */
+ int nHdr; /* Size of the header in the record */
+ int iHdr; /* Next unread header byte */
+ int iField; /* Next unread data byte */
+ int szField = 0; /* Size of the current data field */
+ int i; /* Column index */
+ u8 *a = (u8*)pRec; /* Typecast byte array */
+ Mem *pMem = *ppVal; /* Write result into this Mem object */
+
+ assert( iCol>0 );
+ iHdr = getVarint32(a, nHdr);
+ if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
+ iField = nHdr;
+ for(i=0; i<=iCol; i++){
+ iHdr += getVarint32(&a[iHdr], t);
+ testcase( iHdr==nHdr );
+ testcase( iHdr==nHdr+1 );
+ if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
+ szField = sqlite3VdbeSerialTypeLen(t);
+ iField += szField;
+ }
+ testcase( iField==nRec );
+ testcase( iField==nRec+1 );
+ if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
+ if( pMem==0 ){
+ pMem = *ppVal = sqlite3ValueNew(db);
+ if( pMem==0 ) return SQLITE_NOMEM_BKPT;
+ }
+ sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
+ pMem->enc = ENC(db);
+ return SQLITE_OK;
+}
+
+/*
+** Unless it is NULL, the argument must be an UnpackedRecord object returned
+** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
+** the object.
+*/
+SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
+ if( pRec ){
+ int i;
+ int nCol = pRec->pKeyInfo->nAllField;
+ Mem *aMem = pRec->aMem;
+ sqlite3 *db = aMem[0].db;
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeMemRelease(&aMem[i]);
+ }
+ sqlite3KeyInfoUnref(pRec->pKeyInfo);
+ sqlite3DbFreeNN(db, pRec);
+ }
+}
+#endif /* ifdef SQLITE_ENABLE_STAT4 */
+
+/*
+** Change the string value of an sqlite3_value object
+*/
+SQLITE_PRIVATE void sqlite3ValueSetStr(
+ sqlite3_value *v, /* Value to be set */
+ int n, /* Length of string z */
+ const void *z, /* Text of the new string */
+ u8 enc, /* Encoding to use */
+ void (*xDel)(void*) /* Destructor for the string */
+){
+ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
+}
+
+/*
+** Free an sqlite3_value object
+*/
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
+ if( !v ) return;
+ sqlite3VdbeMemRelease((Mem *)v);
+ sqlite3DbFreeNN(((Mem*)v)->db, v);
+}
+
+/*
+** The sqlite3ValueBytes() routine returns the number of bytes in the
+** sqlite3_value object assuming that it uses the encoding "enc".
+** The valueBytes() routine is a helper function.
+*/
+static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
+ return valueToText(pVal, enc)!=0 ? pVal->n : 0;
+}
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
+ Mem *p = (Mem*)pVal;
+ assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
+ if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
+ return p->n;
+ }
+ if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
+ return p->n;
+ }
+ if( (p->flags & MEM_Blob)!=0 ){
+ if( p->flags & MEM_Zero ){
+ return p->n + p->u.nZero;
+ }else{
+ return p->n;
+ }
+ }
+ if( p->flags & MEM_Null ) return 0;
+ return valueBytes(pVal, enc);
+}
+
+/************** End of vdbemem.c *********************************************/
+/************** Begin file vdbeaux.c *****************************************/
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/* Forward references */
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
+static void vdbeFreeOpArray(sqlite3 *, Op *, int);
+
+/*
+** Create a new virtual database engine.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ Vdbe *p;
+ p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->ppVPrev = &p->pVNext;
+ }
+ p->pVNext = db->pVdbe;
+ p->ppVPrev = &db->pVdbe;
+ db->pVdbe = p;
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ p->pParse = pParse;
+ pParse->pVdbe = p;
+ assert( pParse->aLabel==0 );
+ assert( pParse->nLabel==0 );
+ assert( p->nOpAlloc==0 );
+ assert( pParse->szOpAlloc==0 );
+ sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
+ return p;
+}
+
+/*
+** Return the Parse object that owns a Vdbe object.
+*/
+SQLITE_PRIVATE Parse *sqlite3VdbeParser(Vdbe *p){
+ return p->pParse;
+}
+
+/*
+** Change the error string stored in Vdbe.zErrMsg
+*/
+SQLITE_PRIVATE void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ sqlite3DbFree(p->db, p->zErrMsg);
+ va_start(ap, zFormat);
+ p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** Remember the SQL string for a prepared statement.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
+ if( p==0 ) return;
+ p->prepFlags = prepFlags;
+ if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
+ p->expmask = 0;
+ }
+ assert( p->zSql==0 );
+ p->zSql = sqlite3DbStrNDup(p->db, z, n);
+}
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** Add a new element to the Vdbe->pDblStr list.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
+ if( p ){
+ int n = sqlite3Strlen30(z);
+ DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
+ sizeof(*pStr)+n+1-sizeof(pStr->z));
+ if( pStr ){
+ pStr->pNextStr = p->pDblStr;
+ p->pDblStr = pStr;
+ memcpy(pStr->z, z, n+1);
+ }
+ }
+}
+#endif
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** zId of length nId is a double-quoted identifier. Check to see if
+** that identifier is really used as a string literal.
+*/
+SQLITE_PRIVATE int sqlite3VdbeUsesDoubleQuotedString(
+ Vdbe *pVdbe, /* The prepared statement */
+ const char *zId /* The double-quoted identifier, already dequoted */
+){
+ DblquoteStr *pStr;
+ assert( zId!=0 );
+ if( pVdbe->pDblStr==0 ) return 0;
+ for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
+ if( strcmp(zId, pStr->z)==0 ) return 1;
+ }
+ return 0;
+}
+#endif
+
+/*
+** Swap byte-code between two VDBE structures.
+**
+** This happens after pB was previously run and returned
+** SQLITE_SCHEMA. The statement was then reprepared in pA.
+** This routine transfers the new bytecode in pA over to pB
+** so that pB can be run again. The old pB byte code is
+** moved back to pA so that it will be cleaned up when pA is
+** finalized.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
+ Vdbe tmp, *pTmp, **ppTmp;
+ char *zTmp;
+ assert( pA->db==pB->db );
+ tmp = *pA;
+ *pA = *pB;
+ *pB = tmp;
+ pTmp = pA->pVNext;
+ pA->pVNext = pB->pVNext;
+ pB->pVNext = pTmp;
+ ppTmp = pA->ppVPrev;
+ pA->ppVPrev = pB->ppVPrev;
+ pB->ppVPrev = ppTmp;
+ zTmp = pA->zSql;
+ pA->zSql = pB->zSql;
+ pB->zSql = zTmp;
+#ifdef SQLITE_ENABLE_NORMALIZE
+ zTmp = pA->zNormSql;
+ pA->zNormSql = pB->zNormSql;
+ pB->zNormSql = zTmp;
+#endif
+ pB->expmask = pA->expmask;
+ pB->prepFlags = pA->prepFlags;
+ memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
+ pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
+}
+
+/*
+** Resize the Vdbe.aOp array so that it is at least nOp elements larger
+** than its current size. nOp is guaranteed to be less than or equal
+** to 1024/sizeof(Op).
+**
+** If an out-of-memory error occurs while resizing the array, return
+** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
+** unchanged (this is so that any opcodes already allocated can be
+** correctly deallocated along with the rest of the Vdbe).
+*/
+static int growOpArray(Vdbe *v, int nOp){
+ VdbeOp *pNew;
+ Parse *p = v->pParse;
+
+ /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
+ ** more frequent reallocs and hence provide more opportunities for
+ ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
+ ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
+ ** by the minimum* amount required until the size reaches 512. Normal
+ ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
+ ** size of the op array or add 1KB of space, whichever is smaller. */
+#ifdef SQLITE_TEST_REALLOC_STRESS
+ sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
+ : (sqlite3_int64)v->nOpAlloc+nOp);
+#else
+ sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
+ : (sqlite3_int64)(1024/sizeof(Op)));
+ UNUSED_PARAMETER(nOp);
+#endif
+
+ /* Ensure that the size of a VDBE does not grow too large */
+ if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
+ sqlite3OomFault(p->db);
+ return SQLITE_NOMEM;
+ }
+
+ assert( nOp<=(int)(1024/sizeof(Op)) );
+ assert( nNew>=(v->nOpAlloc+nOp) );
+ pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
+ if( pNew ){
+ p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
+ v->nOpAlloc = p->szOpAlloc/sizeof(Op);
+ v->aOp = pNew;
+ }
+ return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
+}
+
+#ifdef SQLITE_DEBUG
+/* This routine is just a convenient place to set a breakpoint that will
+** fire after each opcode is inserted and displayed using
+** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
+** pOp are available to make the breakpoint conditional.
+**
+** Other useful labels for breakpoints include:
+** test_trace_breakpoint(pc,pOp)
+** sqlite3CorruptError(lineno)
+** sqlite3MisuseError(lineno)
+** sqlite3CantopenError(lineno)
+*/
+static void test_addop_breakpoint(int pc, Op *pOp){
+ static int n = 0;
+ (void)pc;
+ (void)pOp;
+ n++;
+}
+#endif
+
+/*
+** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
+** unusual case when we need to increase the size of the Vdbe.aOp[] array
+** before adding the new opcode.
+*/
+static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
+ assert( p->nOpAlloc<=p->nOp );
+ if( growOpArray(p, 1) ) return 1;
+ assert( p->nOpAlloc>p->nOp );
+ return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+}
+static SQLITE_NOINLINE int addOp4IntSlow(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ int p4 /* The P4 operand as an integer */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ if( p->db->mallocFailed==0 ){
+ VdbeOp *pOp = &p->aOp[addr];
+ pOp->p4type = P4_INT32;
+ pOp->p4.i = p4;
+ }
+ return addr;
+}
+
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2, p3, p4 Operands
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( op>=0 && op<0xff );
+ if( p->nOpAlloc<=i ){
+ return growOp3(p, op, p1, p2, p3);
+ }
+ assert( p->aOp!=0 );
+ p->nOp++;
+ pOp = &p->aOp[i];
+ assert( pOp!=0 );
+ pOp->opcode = (u8)op;
+ pOp->p5 = 0;
+ pOp->p1 = p1;
+ pOp->p2 = p2;
+ pOp->p3 = p3;
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+
+ /* Replicate this logic in sqlite3VdbeAddOp4Int()
+ ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ pOp->zComment = 0;
+#endif
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
+ pOp->nExec = 0;
+ pOp->nCycle = 0;
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+ test_addop_breakpoint(i, &p->aOp[i]);
+ }
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ pOp->iSrcLine = 0;
+#endif
+ /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+ ** Replicate in sqlite3VdbeAddOp4Int() */
+
+ return i;
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ int p4 /* The P4 operand as an integer */
+){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ if( p->nOpAlloc<=i ){
+ return addOp4IntSlow(p, op, p1, p2, p3, p4);
+ }
+ p->nOp++;
+ pOp = &p->aOp[i];
+ assert( pOp!=0 );
+ pOp->opcode = (u8)op;
+ pOp->p5 = 0;
+ pOp->p1 = p1;
+ pOp->p2 = p2;
+ pOp->p3 = p3;
+ pOp->p4.i = p4;
+ pOp->p4type = P4_INT32;
+
+ /* Replicate this logic in sqlite3VdbeAddOp3()
+ ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ pOp->zComment = 0;
+#endif
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
+ pOp->nExec = 0;
+ pOp->nCycle = 0;
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+ test_addop_breakpoint(i, &p->aOp[i]);
+ }
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ pOp->iSrcLine = 0;
+#endif
+ /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+ ** Replicate in sqlite3VdbeAddOp3() */
+
+ return i;
+}
+
+/* Generate code for an unconditional jump to instruction iDest
+*/
+SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe *p, int iDest){
+ return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
+}
+
+/* Generate code to cause the string zStr to be loaded into
+** register iDest
+*/
+SQLITE_PRIVATE int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
+ return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
+}
+
+/*
+** Generate code that initializes multiple registers to string or integer
+** constants. The registers begin with iDest and increase consecutively.
+** One register is initialized for each characgter in zTypes[]. For each
+** "s" character in zTypes[], the register is a string if the argument is
+** not NULL, or OP_Null if the value is a null pointer. For each "i" character
+** in zTypes[], the register is initialized to an integer.
+**
+** If the input string does not end with "X" then an OP_ResultRow instruction
+** is generated for the values inserted.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
+ va_list ap;
+ int i;
+ char c;
+ va_start(ap, zTypes);
+ for(i=0; (c = zTypes[i])!=0; i++){
+ if( c=='s' ){
+ const char *z = va_arg(ap, const char*);
+ sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
+ }else if( c=='i' ){
+ sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
+ }else{
+ goto skip_op_resultrow;
+ }
+ }
+ sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
+skip_op_resultrow:
+ va_end(ap);
+}
+
+/*
+** Add an opcode that includes the p4 value as a pointer.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const char *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type);
+ return addr;
+}
+
+/*
+** Add an OP_Function or OP_PureFunc opcode.
+**
+** The eCallCtx argument is information (typically taken from Expr.op2)
+** that describes the calling context of the function. 0 means a general
+** function call. NC_IsCheck means called by a check constraint,
+** NC_IdxExpr means called as part of an index expression. NC_PartIdx
+** means in the WHERE clause of a partial index. NC_GenCol means called
+** while computing a generated column value. 0 is the usual case.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddFunctionCall(
+ Parse *pParse, /* Parsing context */
+ int p1, /* Constant argument mask */
+ int p2, /* First argument register */
+ int p3, /* Register into which results are written */
+ int nArg, /* Number of argument */
+ const FuncDef *pFunc, /* The function to be invoked */
+ int eCallCtx /* Calling context */
+){
+ Vdbe *v = pParse->pVdbe;
+ int nByte;
+ int addr;
+ sqlite3_context *pCtx;
+ assert( v );
+ nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
+ pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
+ if( pCtx==0 ){
+ assert( pParse->db->mallocFailed );
+ freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
+ return 0;
+ }
+ pCtx->pOut = 0;
+ pCtx->pFunc = (FuncDef*)pFunc;
+ pCtx->pVdbe = 0;
+ pCtx->isError = 0;
+ pCtx->argc = nArg;
+ pCtx->iOp = sqlite3VdbeCurrentAddr(v);
+ addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
+ p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
+ sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
+ sqlite3MayAbort(pParse);
+ return addr;
+}
+
+/*
+** Add an opcode that includes the p4 value with a P4_INT64 or
+** P4_REAL type.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const u8 *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
+ if( p4copy ) memcpy(p4copy, zP4, 8);
+ return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Return the address of the current EXPLAIN QUERY PLAN baseline.
+** 0 means "none".
+*/
+SQLITE_PRIVATE int sqlite3VdbeExplainParent(Parse *pParse){
+ VdbeOp *pOp;
+ if( pParse->addrExplain==0 ) return 0;
+ pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
+ return pOp->p2;
+}
+
+/*
+** Set a debugger breakpoint on the following routine in order to
+** monitor the EXPLAIN QUERY PLAN code generation.
+*/
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
+ (void)z1;
+ (void)z2;
+}
+#endif
+
+/*
+** Add a new OP_Explain opcode.
+**
+** If the bPush flag is true, then make this opcode the parent for
+** subsequent Explains until sqlite3VdbeExplainPop() is called.
+*/
+SQLITE_PRIVATE int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
+ int addr = 0;
+#if !defined(SQLITE_DEBUG)
+ /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
+ ** But omit them (for performance) during production builds */
+ if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
+#endif
+ {
+ char *zMsg;
+ Vdbe *v;
+ va_list ap;
+ int iThis;
+ va_start(ap, zFmt);
+ zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
+ va_end(ap);
+ v = pParse->pVdbe;
+ iThis = v->nOp;
+ addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
+ zMsg, P4_DYNAMIC);
+ sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
+ if( bPush){
+ pParse->addrExplain = iThis;
+ }
+ sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0);
+ }
+ return addr;
+}
+
+/*
+** Pop the EXPLAIN QUERY PLAN stack one level.
+*/
+SQLITE_PRIVATE void sqlite3VdbeExplainPop(Parse *pParse){
+ sqlite3ExplainBreakpoint("POP", 0);
+ pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+/*
+** Add an OP_ParseSchema opcode. This routine is broken out from
+** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
+** as having been used.
+**
+** The zWhere string must have been obtained from sqlite3_malloc().
+** This routine will take ownership of the allocated memory.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
+ int j;
+ sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
+ sqlite3VdbeChangeP5(p, p5);
+ for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
+ sqlite3MayAbort(p->pParse);
+}
+
+/* Insert the end of a co-routine
+*/
+SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
+
+ /* Clear the temporary register cache, thereby ensuring that each
+ ** co-routine has its own independent set of registers, because co-routines
+ ** might expect their registers to be preserved across an OP_Yield, and
+ ** that could cause problems if two or more co-routines are using the same
+ ** temporary register.
+ */
+ v->pParse->nTempReg = 0;
+ v->pParse->nRangeReg = 0;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+** (Later:) This is only true for opcodes that have the OPFLG_JUMP
+** property.
+**
+** Variable usage notes:
+**
+** Parse.aLabel[x] Stores the address that the x-th label resolves
+** into. For testing (SQLITE_DEBUG), unresolved
+** labels stores -1, but that is not required.
+** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
+** Parse.nLabel The *negative* of the number of labels that have
+** been issued. The negative is stored because
+** that gives a performance improvement over storing
+** the equivalent positive value.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Parse *pParse){
+ return --pParse->nLabel;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqlite3VdbeMakeLabel().
+*/
+static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
+ int nNewSize = 10 - p->nLabel;
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
+ nNewSize*sizeof(p->aLabel[0]));
+ if( p->aLabel==0 ){
+ p->nLabelAlloc = 0;
+ }else{
+#ifdef SQLITE_DEBUG
+ int i;
+ for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
+#endif
+ if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
+ sqlite3ProgressCheck(p);
+ }
+ p->nLabelAlloc = nNewSize;
+ p->aLabel[j] = v->nOp;
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){
+ Parse *p = v->pParse;
+ int j = ADDR(x);
+ assert( v->eVdbeState==VDBE_INIT_STATE );
+ assert( j<-p->nLabel );
+ assert( j>=0 );
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
+ }
+#endif
+ if( p->nLabelAlloc + p->nLabel < 0 ){
+ resizeResolveLabel(p,v,j);
+ }else{
+ assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
+ p->aLabel[j] = v->nOp;
+ }
+}
+
+/*
+** Mark the VDBE as one that can only be run one time.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){
+ sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
+}
+
+/*
+** Mark the VDBE as one that can be run multiple times.
+*/
+SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe *p){
+ int i;
+ for(i=1; ALWAYS(i<p->nOp); i++){
+ if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
+ p->aOp[1].opcode = OP_Noop;
+ break;
+ }
+ }
+}
+
+#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
+
+/*
+** The following type and function are used to iterate through all opcodes
+** in a Vdbe main program and each of the sub-programs (triggers) it may
+** invoke directly or indirectly. It should be used as follows:
+**
+** Op *pOp;
+** VdbeOpIter sIter;
+**
+** memset(&sIter, 0, sizeof(sIter));
+** sIter.v = v; // v is of type Vdbe*
+** while( (pOp = opIterNext(&sIter)) ){
+** // Do something with pOp
+** }
+** sqlite3DbFree(v->db, sIter.apSub);
+**
+*/
+typedef struct VdbeOpIter VdbeOpIter;
+struct VdbeOpIter {
+ Vdbe *v; /* Vdbe to iterate through the opcodes of */
+ SubProgram **apSub; /* Array of subprograms */
+ int nSub; /* Number of entries in apSub */
+ int iAddr; /* Address of next instruction to return */
+ int iSub; /* 0 = main program, 1 = first sub-program etc. */
+};
+static Op *opIterNext(VdbeOpIter *p){
+ Vdbe *v = p->v;
+ Op *pRet = 0;
+ Op *aOp;
+ int nOp;
+
+ if( p->iSub<=p->nSub ){
+
+ if( p->iSub==0 ){
+ aOp = v->aOp;
+ nOp = v->nOp;
+ }else{
+ aOp = p->apSub[p->iSub-1]->aOp;
+ nOp = p->apSub[p->iSub-1]->nOp;
+ }
+ assert( p->iAddr<nOp );
+
+ pRet = &aOp[p->iAddr];
+ p->iAddr++;
+ if( p->iAddr==nOp ){
+ p->iSub++;
+ p->iAddr = 0;
+ }
+
+ if( pRet->p4type==P4_SUBPROGRAM ){
+ int nByte = (p->nSub+1)*sizeof(SubProgram*);
+ int j;
+ for(j=0; j<p->nSub; j++){
+ if( p->apSub[j]==pRet->p4.pProgram ) break;
+ }
+ if( j==p->nSub ){
+ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
+ if( !p->apSub ){
+ pRet = 0;
+ }else{
+ p->apSub[p->nSub++] = pRet->p4.pProgram;
+ }
+ }
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Check if the program stored in the VM associated with pParse may
+** throw an ABORT exception (causing the statement, but not entire transaction
+** to be rolled back). This condition is true if the main program or any
+** sub-programs contains any of the following:
+**
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_Destroy
+** * OP_VUpdate
+** * OP_VCreate
+** * OP_VRename
+** * OP_FkCounter with P2==0 (immediate foreign key constraint)
+** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
+** (for CREATE TABLE AS SELECT ...)
+**
+** Then check that the value of Parse.mayAbort is true if an
+** ABORT may be thrown, or false otherwise. Return true if it does
+** match, or false otherwise. This function is intended to be used as
+** part of an assert statement in the compiler. Similar to:
+**
+** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
+*/
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
+ int hasAbort = 0;
+ int hasFkCounter = 0;
+ int hasCreateTable = 0;
+ int hasCreateIndex = 0;
+ int hasInitCoroutine = 0;
+ Op *pOp;
+ VdbeOpIter sIter;
+
+ if( v==0 ) return 0;
+ memset(&sIter, 0, sizeof(sIter));
+ sIter.v = v;
+
+ while( (pOp = opIterNext(&sIter))!=0 ){
+ int opcode = pOp->opcode;
+ if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
+ || opcode==OP_VDestroy
+ || opcode==OP_VCreate
+ || opcode==OP_ParseSchema
+ || opcode==OP_Function || opcode==OP_PureFunc
+ || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
+ && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
+ ){
+ hasAbort = 1;
+ break;
+ }
+ if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
+ if( mayAbort ){
+ /* hasCreateIndex may also be set for some DELETE statements that use
+ ** OP_Clear. So this routine may end up returning true in the case
+ ** where a "DELETE FROM tbl" has a statement-journal but does not
+ ** require one. This is not so bad - it is an inefficiency, not a bug. */
+ if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
+ if( opcode==OP_Clear ) hasCreateIndex = 1;
+ }
+ if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
+ hasFkCounter = 1;
+ }
+#endif
+ }
+ sqlite3DbFree(v->db, sIter.apSub);
+
+ /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
+ ** If malloc failed, then the while() loop above may not have iterated
+ ** through all opcodes and hasAbort may be set incorrectly. Return
+ ** true for this case to prevent the assert() in the callers frame
+ ** from failing. */
+ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
+ || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
+ );
+}
+#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
+
+#ifdef SQLITE_DEBUG
+/*
+** Increment the nWrite counter in the VDBE if the cursor is not an
+** ephemeral cursor, or if the cursor argument is NULL.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
+ if( pC==0
+ || (pC->eCurType!=CURTYPE_SORTER
+ && pC->eCurType!=CURTYPE_PSEUDO
+ && !pC->isEphemeral)
+ ){
+ p->nWrite++;
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Assert if an Abort at this point in time might result in a corrupt
+** database.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAssertAbortable(Vdbe *p){
+ assert( p->nWrite==0 || p->usesStmtJournal );
+}
+#endif
+
+/*
+** This routine is called after all opcodes have been inserted. It loops
+** through all the opcodes and fixes up some details.
+**
+** (1) For each jump instruction with a negative P2 value (a label)
+** resolve the P2 value to an actual address.
+**
+** (2) Compute the maximum number of arguments used by any SQL function
+** and store that value in *pMaxFuncArgs.
+**
+** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
+** indicate what the prepared statement actually does.
+**
+** (4) (discontinued)
+**
+** (5) Reclaim the memory allocated for storing labels.
+**
+** This routine will only function correctly if the mkopcodeh.tcl generator
+** script numbers the opcodes correctly. Changes to this routine must be
+** coordinated with changes to mkopcodeh.tcl.
+*/
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
+ int nMaxArgs = *pMaxFuncArgs;
+ Op *pOp;
+ Parse *pParse = p->pParse;
+ int *aLabel = pParse->aLabel;
+
+ assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */
+ p->readOnly = 1;
+ p->bIsReader = 0;
+ pOp = &p->aOp[p->nOp-1];
+ assert( p->aOp[0].opcode==OP_Init );
+ while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
+ /* Only JUMP opcodes and the short list of special opcodes in the switch
+ ** below need to be considered. The mkopcodeh.tcl generator script groups
+ ** all these opcodes together near the front of the opcode list. Skip
+ ** any opcode that does not need processing by virtual of the fact that
+ ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
+ */
+ if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
+ /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
+ ** cases from this switch! */
+ switch( pOp->opcode ){
+ case OP_Transaction: {
+ if( pOp->p2!=0 ) p->readOnly = 0;
+ /* no break */ deliberate_fall_through
+ }
+ case OP_AutoCommit:
+ case OP_Savepoint: {
+ p->bIsReader = 1;
+ break;
+ }
+#ifndef SQLITE_OMIT_WAL
+ case OP_Checkpoint:
+#endif
+ case OP_Vacuum:
+ case OP_JournalMode: {
+ p->readOnly = 0;
+ p->bIsReader = 1;
+ break;
+ }
+ case OP_Init: {
+ assert( pOp->p2>=0 );
+ goto resolve_p2_values_loop_exit;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case OP_VUpdate: {
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
+ break;
+ }
+ case OP_VFilter: {
+ int n;
+ assert( (pOp - p->aOp) >= 3 );
+ assert( pOp[-1].opcode==OP_Integer );
+ n = pOp[-1].p1;
+ if( n>nMaxArgs ) nMaxArgs = n;
+ /* Fall through into the default case */
+ /* no break */ deliberate_fall_through
+ }
+#endif
+ default: {
+ if( pOp->p2<0 ){
+ /* The mkopcodeh.tcl script has so arranged things that the only
+ ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
+ ** have non-negative values for P2. */
+ assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
+ assert( ADDR(pOp->p2)<-pParse->nLabel );
+ assert( aLabel!=0 ); /* True because of tag-20230419-1 */
+ pOp->p2 = aLabel[ADDR(pOp->p2)];
+ }
+ break;
+ }
+ }
+ /* The mkopcodeh.tcl script has so arranged things that the only
+ ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
+ ** have non-negative values for P2. */
+ assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
+ }
+ assert( pOp>p->aOp );
+ pOp--;
+ }
+resolve_p2_values_loop_exit:
+ if( aLabel ){
+ sqlite3DbNNFreeNN(p->db, pParse->aLabel);
+ pParse->aLabel = 0;
+ }
+ pParse->nLabel = 0;
+ *pMaxFuncArgs = nMaxArgs;
+ assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Check to see if a subroutine contains a jump to a location outside of
+** the subroutine. If a jump outside the subroutine is detected, add code
+** that will cause the program to halt with an error message.
+**
+** The subroutine consists of opcodes between iFirst and iLast. Jumps to
+** locations within the subroutine are acceptable. iRetReg is a register
+** that contains the return address. Jumps to outside the range of iFirst
+** through iLast are also acceptable as long as the jump destination is
+** an OP_Return to iReturnAddr.
+**
+** A jump to an unresolved label means that the jump destination will be
+** beyond the current address. That is normally a jump to an early
+** termination and is consider acceptable.
+**
+** This routine only runs during debug builds. The purpose is (of course)
+** to detect invalid escapes out of a subroutine. The OP_Halt opcode
+** is generated rather than an assert() or other error, so that ".eqp full"
+** will still work to show the original bytecode, to aid in debugging.
+*/
+SQLITE_PRIVATE void sqlite3VdbeNoJumpsOutsideSubrtn(
+ Vdbe *v, /* The byte-code program under construction */
+ int iFirst, /* First opcode of the subroutine */
+ int iLast, /* Last opcode of the subroutine */
+ int iRetReg /* Subroutine return address register */
+){
+ VdbeOp *pOp;
+ Parse *pParse;
+ int i;
+ sqlite3_str *pErr = 0;
+ assert( v!=0 );
+ pParse = v->pParse;
+ assert( pParse!=0 );
+ if( pParse->nErr ) return;
+ assert( iLast>=iFirst );
+ assert( iLast<v->nOp );
+ pOp = &v->aOp[iFirst];
+ for(i=iFirst; i<=iLast; i++, pOp++){
+ if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
+ int iDest = pOp->p2; /* Jump destination */
+ if( iDest==0 ) continue;
+ if( pOp->opcode==OP_Gosub ) continue;
+ if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){
+ /* This is a deliberately taken illegal branch. tag-20230325-2 */
+ continue;
+ }
+ if( iDest<0 ){
+ int j = ADDR(iDest);
+ assert( j>=0 );
+ if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
+ continue;
+ }
+ iDest = pParse->aLabel[j];
+ }
+ if( iDest<iFirst || iDest>iLast ){
+ int j = iDest;
+ for(; j<v->nOp; j++){
+ VdbeOp *pX = &v->aOp[j];
+ if( pX->opcode==OP_Return ){
+ if( pX->p1==iRetReg ) break;
+ continue;
+ }
+ if( pX->opcode==OP_Noop ) continue;
+ if( pX->opcode==OP_Explain ) continue;
+ if( pErr==0 ){
+ pErr = sqlite3_str_new(0);
+ }else{
+ sqlite3_str_appendchar(pErr, 1, '\n');
+ }
+ sqlite3_str_appendf(pErr,
+ "Opcode at %d jumps to %d which is outside the "
+ "subroutine at %d..%d",
+ i, iDest, iFirst, iLast);
+ break;
+ }
+ }
+ }
+ }
+ if( pErr ){
+ char *zErr = sqlite3_str_finish(pErr);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
+ sqlite3_free(zErr);
+ sqlite3MayAbort(pParse);
+ }
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ return p->nOp;
+}
+
+/*
+** Verify that at least N opcode slots are available in p without
+** having to malloc for more space (except when compiled using
+** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
+** to verify that certain calls to sqlite3VdbeAddOpList() can never
+** fail due to a OOM fault and hence that the return value from
+** sqlite3VdbeAddOpList() will always be non-NULL.
+*/
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
+ assert( p->nOp + N <= p->nOpAlloc );
+}
+#endif
+
+/*
+** Verify that the VM passed as the only argument does not contain
+** an OP_ResultRow opcode. Fail an assert() if it does. This is used
+** by code in pragma.c to ensure that the implementation of certain
+** pragmas comports with the flags specified in the mkpragmatab.tcl
+** script.
+*/
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
+SQLITE_PRIVATE void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
+ int i;
+ for(i=0; i<p->nOp; i++){
+ assert( p->aOp[i].opcode!=OP_ResultRow );
+ }
+}
+#endif
+
+/*
+** Generate code (a single OP_Abortable opcode) that will
+** verify that the VDBE program can safely call Abort in the current
+** context.
+*/
+#if defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
+ if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
+}
+#endif
+
+/*
+** This function returns a pointer to the array of opcodes associated with
+** the Vdbe passed as the first argument. It is the callers responsibility
+** to arrange for the returned array to be eventually freed using the
+** vdbeFreeOpArray() function.
+**
+** Before returning, *pnOp is set to the number of entries in the returned
+** array. Also, *pnMaxArg is set to the larger of its current value and
+** the number of entries in the Vdbe.apArg[] array required to execute the
+** returned program.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
+ VdbeOp *aOp = p->aOp;
+ assert( aOp && !p->db->mallocFailed );
+
+ /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
+ assert( DbMaskAllZero(p->btreeMask) );
+
+ resolveP2Values(p, pnMaxArg);
+ *pnOp = p->nOp;
+ p->aOp = 0;
+ return aOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return a
+** pointer to the first operation inserted.
+**
+** Non-zero P2 arguments to jump instructions are automatically adjusted
+** so that the jump target is relative to the first operation inserted.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(
+ Vdbe *p, /* Add opcodes to the prepared statement */
+ int nOp, /* Number of opcodes to add */
+ VdbeOpList const *aOp, /* The opcodes to be added */
+ int iLineno /* Source-file line number of first opcode */
+){
+ int i;
+ VdbeOp *pOut, *pFirst;
+ assert( nOp>0 );
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
+ return 0;
+ }
+ pFirst = pOut = &p->aOp[p->nOp];
+ for(i=0; i<nOp; i++, aOp++, pOut++){
+ pOut->opcode = aOp->opcode;
+ pOut->p1 = aOp->p1;
+ pOut->p2 = aOp->p2;
+ assert( aOp->p2>=0 );
+ if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
+ pOut->p2 += p->nOp;
+ }
+ pOut->p3 = aOp->p3;
+ pOut->p4type = P4_NOTUSED;
+ pOut->p4.p = 0;
+ pOut->p5 = 0;
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ pOut->zComment = 0;
+#endif
+#ifdef SQLITE_VDBE_COVERAGE
+ pOut->iSrcLine = iLineno+i;
+#else
+ (void)iLineno;
+#endif
+#ifdef SQLITE_DEBUG
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ return pFirst;
+}
+
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+/*
+** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
+*/
+SQLITE_PRIVATE void sqlite3VdbeScanStatus(
+ Vdbe *p, /* VM to add scanstatus() to */
+ int addrExplain, /* Address of OP_Explain (or 0) */
+ int addrLoop, /* Address of loop counter */
+ int addrVisit, /* Address of rows visited counter */
+ LogEst nEst, /* Estimated number of output rows */
+ const char *zName /* Name of table or index being scanned */
+){
+ if( IS_STMT_SCANSTATUS(p->db) ){
+ sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
+ ScanStatus *aNew;
+ aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
+ if( aNew ){
+ ScanStatus *pNew = &aNew[p->nScan++];
+ memset(pNew, 0, sizeof(ScanStatus));
+ pNew->addrExplain = addrExplain;
+ pNew->addrLoop = addrLoop;
+ pNew->addrVisit = addrVisit;
+ pNew->nEst = nEst;
+ pNew->zName = sqlite3DbStrDup(p->db, zName);
+ p->aScan = aNew;
+ }
+ }
+}
+
+/*
+** Add the range of instructions from addrStart to addrEnd (inclusive) to
+** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
+** associated with the OP_Explain instruction at addrExplain. The
+** sum of the sqlite3Hwtime() values for each of these instructions
+** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
+*/
+SQLITE_PRIVATE void sqlite3VdbeScanStatusRange(
+ Vdbe *p,
+ int addrExplain,
+ int addrStart,
+ int addrEnd
+){
+ if( IS_STMT_SCANSTATUS(p->db) ){
+ ScanStatus *pScan = 0;
+ int ii;
+ for(ii=p->nScan-1; ii>=0; ii--){
+ pScan = &p->aScan[ii];
+ if( pScan->addrExplain==addrExplain ) break;
+ pScan = 0;
+ }
+ if( pScan ){
+ if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
+ for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
+ if( pScan->aAddrRange[ii]==0 ){
+ pScan->aAddrRange[ii] = addrStart;
+ pScan->aAddrRange[ii+1] = addrEnd;
+ break;
+ }
+ }
+ }
+ }
+}
+
+/*
+** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
+** counters for the query element associated with the OP_Explain at
+** addrExplain.
+*/
+SQLITE_PRIVATE void sqlite3VdbeScanStatusCounters(
+ Vdbe *p,
+ int addrExplain,
+ int addrLoop,
+ int addrVisit
+){
+ if( IS_STMT_SCANSTATUS(p->db) ){
+ ScanStatus *pScan = 0;
+ int ii;
+ for(ii=p->nScan-1; ii>=0; ii--){
+ pScan = &p->aScan[ii];
+ if( pScan->addrExplain==addrExplain ) break;
+ pScan = 0;
+ }
+ if( pScan ){
+ if( addrLoop>0 ) pScan->addrLoop = addrLoop;
+ if( addrVisit>0 ) pScan->addrVisit = addrVisit;
+ }
+ }
+}
+#endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
+
+
+/*
+** Change the value of the opcode, or P1, P2, P3, or P5 operands
+** for a specific instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
+ assert( addr>=0 );
+ sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( addr>=0 );
+ sqlite3VdbeGetOp(p,addr)->p1 = val;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( addr>=0 || p->db->mallocFailed );
+ sqlite3VdbeGetOp(p,addr)->p2 = val;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
+ assert( addr>=0 );
+ sqlite3VdbeGetOp(p,addr)->p3 = val;
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
+ assert( p->nOp>0 || p->db->mallocFailed );
+ if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
+}
+
+/*
+** If the previous opcode is an OP_Column that delivers results
+** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
+** opcode.
+*/
+SQLITE_PRIVATE void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
+ VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
+ if( pOp->p3==iDest && pOp->opcode==OP_Column ){
+ pOp->p5 |= OPFLAG_TYPEOFARG;
+ }
+}
+
+/*
+** Change the P2 operand of instruction addr so that it points to
+** the address of the next instruction to be coded.
+*/
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
+ sqlite3VdbeChangeP2(p, addr, p->nOp);
+}
+
+/*
+** Change the P2 operand of the jump instruction at addr so that
+** the jump lands on the next opcode. Or if the jump instruction was
+** the previous opcode (and is thus a no-op) then simply back up
+** the next instruction counter by one slot so that the jump is
+** overwritten by the next inserted opcode.
+**
+** This routine is an optimization of sqlite3VdbeJumpHere() that
+** strives to omit useless byte-code like this:
+**
+** 7 Once 0 8 0
+** 8 ...
+*/
+SQLITE_PRIVATE void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
+ if( addr==p->nOp-1 ){
+ assert( p->aOp[addr].opcode==OP_Once
+ || p->aOp[addr].opcode==OP_If
+ || p->aOp[addr].opcode==OP_FkIfZero );
+ assert( p->aOp[addr].p4type==0 );
+#ifdef SQLITE_VDBE_COVERAGE
+ sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
+#endif
+ p->nOp--;
+ }else{
+ sqlite3VdbeChangeP2(p, addr, p->nOp);
+ }
+}
+
+
+/*
+** If the input FuncDef structure is ephemeral, then free it. If
+** the FuncDef is not ephemeral, then do nothing.
+*/
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
+ assert( db!=0 );
+ if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
+ sqlite3DbNNFreeNN(db, pDef);
+ }
+}
+
+/*
+** Delete a P4 value if necessary.
+*/
+static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
+ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
+ sqlite3DbNNFreeNN(db, p);
+}
+static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
+ assert( db!=0 );
+ freeEphemeralFunction(db, p->pFunc);
+ sqlite3DbNNFreeNN(db, p);
+}
+static void freeP4(sqlite3 *db, int p4type, void *p4){
+ assert( db );
+ switch( p4type ){
+ case P4_FUNCCTX: {
+ freeP4FuncCtx(db, (sqlite3_context*)p4);
+ break;
+ }
+ case P4_REAL:
+ case P4_INT64:
+ case P4_DYNAMIC:
+ case P4_INTARRAY: {
+ if( p4 ) sqlite3DbNNFreeNN(db, p4);
+ break;
+ }
+ case P4_KEYINFO: {
+ if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
+ break;
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ case P4_EXPR: {
+ sqlite3ExprDelete(db, (Expr*)p4);
+ break;
+ }
+#endif
+ case P4_FUNCDEF: {
+ freeEphemeralFunction(db, (FuncDef*)p4);
+ break;
+ }
+ case P4_MEM: {
+ if( db->pnBytesFreed==0 ){
+ sqlite3ValueFree((sqlite3_value*)p4);
+ }else{
+ freeP4Mem(db, (Mem*)p4);
+ }
+ break;
+ }
+ case P4_VTAB : {
+ if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
+ break;
+ }
+ }
+}
+
+/*
+** Free the space allocated for aOp and any p4 values allocated for the
+** opcodes contained within. If aOp is not NULL it is assumed to contain
+** nOp entries.
+*/
+static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
+ assert( nOp>=0 );
+ assert( db!=0 );
+ if( aOp ){
+ Op *pOp = &aOp[nOp-1];
+ while(1){ /* Exit via break */
+ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ sqlite3DbFree(db, pOp->zComment);
+#endif
+ if( pOp==aOp ) break;
+ pOp--;
+ }
+ sqlite3DbNNFreeNN(db, aOp);
+ }
+}
+
+/*
+** Link the SubProgram object passed as the second argument into the linked
+** list at Vdbe.pSubProgram. This list is used to delete all sub-program
+** objects when the VM is no longer required.
+*/
+SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
+ p->pNext = pVdbe->pProgram;
+ pVdbe->pProgram = p;
+}
+
+/*
+** Return true if the given Vdbe has any SubPrograms.
+*/
+SQLITE_PRIVATE int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
+ return pVdbe->pProgram!=0;
+}
+
+/*
+** Change the opcode at addr into OP_Noop
+*/
+SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
+ VdbeOp *pOp;
+ if( p->db->mallocFailed ) return 0;
+ assert( addr>=0 && addr<p->nOp );
+ pOp = &p->aOp[addr];
+ freeP4(p->db, pOp->p4type, pOp->p4.p);
+ pOp->p4type = P4_NOTUSED;
+ pOp->p4.z = 0;
+ pOp->opcode = OP_Noop;
+ return 1;
+}
+
+/*
+** If the last opcode is "op" and it is not a jump destination,
+** then remove it. Return true if and only if an opcode was removed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
+ if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
+ return sqlite3VdbeChangeToNoop(p, p->nOp-1);
+ }else{
+ return 0;
+ }
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Generate an OP_ReleaseReg opcode to indicate that a range of
+** registers, except any identified by mask, are no longer in use.
+*/
+SQLITE_PRIVATE void sqlite3VdbeReleaseRegisters(
+ Parse *pParse, /* Parsing context */
+ int iFirst, /* Index of first register to be released */
+ int N, /* Number of registers to release */
+ u32 mask, /* Mask of registers to NOT release */
+ int bUndefine /* If true, mark registers as undefined */
+){
+ if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
+ assert( pParse->pVdbe );
+ assert( iFirst>=1 );
+ assert( iFirst+N-1<=pParse->nMem );
+ if( N<=31 && mask!=0 ){
+ while( N>0 && (mask&1)!=0 ){
+ mask >>= 1;
+ iFirst++;
+ N--;
+ }
+ while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
+ mask &= ~MASKBIT32(N-1);
+ N--;
+ }
+ }
+ if( N>0 ){
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
+ if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
+ }
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Change the value of the P4 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqlite3_malloc().
+** A value of n==0 means copy bytes of zP4 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP4.
+**
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
+** to a string or structure that is guaranteed to exist for the lifetime of
+** the Vdbe. In these cases we can just copy the pointer.
+**
+** If addr<0 then change P4 on the most recently inserted instruction.
+*/
+static void SQLITE_NOINLINE vdbeChangeP4Full(
+ Vdbe *p,
+ Op *pOp,
+ const char *zP4,
+ int n
+){
+ if( pOp->p4type ){
+ freeP4(p->db, pOp->p4type, pOp->p4.p);
+ pOp->p4type = 0;
+ pOp->p4.p = 0;
+ }
+ if( n<0 ){
+ sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
+ }else{
+ if( n==0 ) n = sqlite3Strlen30(zP4);
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
+ pOp->p4type = P4_DYNAMIC;
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
+ Op *pOp;
+ sqlite3 *db;
+ assert( p!=0 );
+ db = p->db;
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( p->aOp!=0 || db->mallocFailed );
+ if( db->mallocFailed ){
+ if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
+ return;
+ }
+ assert( p->nOp>0 );
+ assert( addr<p->nOp );
+ if( addr<0 ){
+ addr = p->nOp - 1;
+ }
+ pOp = &p->aOp[addr];
+ if( n>=0 || pOp->p4type ){
+ vdbeChangeP4Full(p, pOp, zP4, n);
+ return;
+ }
+ if( n==P4_INT32 ){
+ /* Note: this cast is safe, because the origin data point was an int
+ ** that was cast to a (const char *). */
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
+ pOp->p4type = P4_INT32;
+ }else if( zP4!=0 ){
+ assert( n<0 );
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = (signed char)n;
+ if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
+ }
+}
+
+/*
+** Change the P4 operand of the most recently coded instruction
+** to the value defined by the arguments. This is a high-speed
+** version of sqlite3VdbeChangeP4().
+**
+** The P4 operand must not have been previously defined. And the new
+** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
+** those cases.
+*/
+SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
+ VdbeOp *pOp;
+ assert( n!=P4_INT32 && n!=P4_VTAB );
+ assert( n<=0 );
+ if( p->db->mallocFailed ){
+ freeP4(p->db, n, pP4);
+ }else{
+ assert( pP4!=0 || n==P4_DYNAMIC );
+ assert( p->nOp>0 );
+ pOp = &p->aOp[p->nOp-1];
+ assert( pOp->p4type==P4_NOTUSED );
+ pOp->p4type = n;
+ pOp->p4.p = pP4;
+ }
+}
+
+/*
+** Set the P4 on the most recently added opcode to the KeyInfo for the
+** index given.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
+ Vdbe *v = pParse->pVdbe;
+ KeyInfo *pKeyInfo;
+ assert( v!=0 );
+ assert( pIdx!=0 );
+ pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
+ if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/*
+** Change the comment on the most recently coded instruction. Or
+** insert a No-op and add the comment to that new instruction. This
+** makes the code easier to read during debugging. None of this happens
+** in a production build.
+*/
+static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
+ if( p->nOp ){
+ assert( p->aOp );
+ sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
+ p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ if( p ){
+ va_start(ap, zFormat);
+ vdbeVComment(p, zFormat, ap);
+ va_end(ap);
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ if( p ){
+ sqlite3VdbeAddOp0(p, OP_Noop);
+ va_start(ap, zFormat);
+ vdbeVComment(p, zFormat, ap);
+ va_end(ap);
+ }
+}
+#endif /* NDEBUG */
+
+#ifdef SQLITE_VDBE_COVERAGE
+/*
+** Set the value if the iSrcLine field for the previously coded instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
+ sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
+}
+#endif /* SQLITE_VDBE_COVERAGE */
+
+/*
+** Return the opcode for a given address. The address must be non-negative.
+** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
+**
+** If a memory allocation error has occurred prior to the calling of this
+** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
+** is readable but not writable, though it is cast to a writable value.
+** The return of a dummy opcode allows the call to continue functioning
+** after an OOM fault without having to check to see if the return from
+** this routine is a valid pointer. But because the dummy.opcode is 0,
+** dummy will never be written to. This is verified by code inspection and
+** by running with Valgrind.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+ /* C89 specifies that the constant "dummy" will be initialized to all
+ ** zeros, which is correct. MSVC generates a warning, nevertheless. */
+ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
+ if( p->db->mallocFailed ){
+ return (VdbeOp*)&dummy;
+ }else{
+ return &p->aOp[addr];
+ }
+}
+
+/* Return the most recently added opcode
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){
+ return sqlite3VdbeGetOp(p, p->nOp - 1);
+}
+
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
+/*
+** Return an integer value for one of the parameters to the opcode pOp
+** determined by character c.
+*/
+static int translateP(char c, const Op *pOp){
+ if( c=='1' ) return pOp->p1;
+ if( c=='2' ) return pOp->p2;
+ if( c=='3' ) return pOp->p3;
+ if( c=='4' ) return pOp->p4.i;
+ return pOp->p5;
+}
+
+/*
+** Compute a string for the "comment" field of a VDBE opcode listing.
+**
+** The Synopsis: field in comments in the vdbe.c source file gets converted
+** to an extra string that is appended to the sqlite3OpcodeName(). In the
+** absence of other comments, this synopsis becomes the comment on the opcode.
+** Some translation occurs:
+**
+** "PX" -> "r[X]"
+** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
+** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
+** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
+*/
+SQLITE_PRIVATE char *sqlite3VdbeDisplayComment(
+ sqlite3 *db, /* Optional - Oom error reporting only */
+ const Op *pOp, /* The opcode to be commented */
+ const char *zP4 /* Previously obtained value for P4 */
+){
+ const char *zOpName;
+ const char *zSynopsis;
+ int nOpName;
+ int ii;
+ char zAlt[50];
+ StrAccum x;
+
+ sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
+ zOpName = sqlite3OpcodeName(pOp->opcode);
+ nOpName = sqlite3Strlen30(zOpName);
+ if( zOpName[nOpName+1] ){
+ int seenCom = 0;
+ char c;
+ zSynopsis = zOpName + nOpName + 1;
+ if( strncmp(zSynopsis,"IF ",3)==0 ){
+ sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
+ zSynopsis = zAlt;
+ }
+ for(ii=0; (c = zSynopsis[ii])!=0; ii++){
+ if( c=='P' ){
+ c = zSynopsis[++ii];
+ if( c=='4' ){
+ sqlite3_str_appendall(&x, zP4);
+ }else if( c=='X' ){
+ if( pOp->zComment && pOp->zComment[0] ){
+ sqlite3_str_appendall(&x, pOp->zComment);
+ seenCom = 1;
+ break;
+ }
+ }else{
+ int v1 = translateP(c, pOp);
+ int v2;
+ if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
+ ii += 3;
+ v2 = translateP(zSynopsis[ii], pOp);
+ if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
+ ii += 2;
+ v2++;
+ }
+ if( v2<2 ){
+ sqlite3_str_appendf(&x, "%d", v1);
+ }else{
+ sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
+ }
+ }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
+ sqlite3_context *pCtx = pOp->p4.pCtx;
+ if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
+ sqlite3_str_appendf(&x, "%d", v1);
+ }else if( pCtx->argc>1 ){
+ sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
+ }else if( x.accError==0 ){
+ assert( x.nChar>2 );
+ x.nChar -= 2;
+ ii++;
+ }
+ ii += 3;
+ }else{
+ sqlite3_str_appendf(&x, "%d", v1);
+ if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
+ ii += 4;
+ }
+ }
+ }
+ }else{
+ sqlite3_str_appendchar(&x, 1, c);
+ }
+ }
+ if( !seenCom && pOp->zComment ){
+ sqlite3_str_appendf(&x, "; %s", pOp->zComment);
+ }
+ }else if( pOp->zComment ){
+ sqlite3_str_appendall(&x, pOp->zComment);
+ }
+ if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
+ sqlite3OomFault(db);
+ }
+ return sqlite3StrAccumFinish(&x);
+}
+#endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
+
+#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
+/*
+** Translate the P4.pExpr value for an OP_CursorHint opcode into text
+** that can be displayed in the P4 column of EXPLAIN output.
+*/
+static void displayP4Expr(StrAccum *p, Expr *pExpr){
+ const char *zOp = 0;
+ switch( pExpr->op ){
+ case TK_STRING:
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
+ break;
+ case TK_INTEGER:
+ sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
+ break;
+ case TK_NULL:
+ sqlite3_str_appendf(p, "NULL");
+ break;
+ case TK_REGISTER: {
+ sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
+ break;
+ }
+ case TK_COLUMN: {
+ if( pExpr->iColumn<0 ){
+ sqlite3_str_appendf(p, "rowid");
+ }else{
+ sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
+ }
+ break;
+ }
+ case TK_LT: zOp = "LT"; break;
+ case TK_LE: zOp = "LE"; break;
+ case TK_GT: zOp = "GT"; break;
+ case TK_GE: zOp = "GE"; break;
+ case TK_NE: zOp = "NE"; break;
+ case TK_EQ: zOp = "EQ"; break;
+ case TK_IS: zOp = "IS"; break;
+ case TK_ISNOT: zOp = "ISNOT"; break;
+ case TK_AND: zOp = "AND"; break;
+ case TK_OR: zOp = "OR"; break;
+ case TK_PLUS: zOp = "ADD"; break;
+ case TK_STAR: zOp = "MUL"; break;
+ case TK_MINUS: zOp = "SUB"; break;
+ case TK_REM: zOp = "REM"; break;
+ case TK_BITAND: zOp = "BITAND"; break;
+ case TK_BITOR: zOp = "BITOR"; break;
+ case TK_SLASH: zOp = "DIV"; break;
+ case TK_LSHIFT: zOp = "LSHIFT"; break;
+ case TK_RSHIFT: zOp = "RSHIFT"; break;
+ case TK_CONCAT: zOp = "CONCAT"; break;
+ case TK_UMINUS: zOp = "MINUS"; break;
+ case TK_UPLUS: zOp = "PLUS"; break;
+ case TK_BITNOT: zOp = "BITNOT"; break;
+ case TK_NOT: zOp = "NOT"; break;
+ case TK_ISNULL: zOp = "ISNULL"; break;
+ case TK_NOTNULL: zOp = "NOTNULL"; break;
+
+ default:
+ sqlite3_str_appendf(p, "%s", "expr");
+ break;
+ }
+
+ if( zOp ){
+ sqlite3_str_appendf(p, "%s(", zOp);
+ displayP4Expr(p, pExpr->pLeft);
+ if( pExpr->pRight ){
+ sqlite3_str_append(p, ",", 1);
+ displayP4Expr(p, pExpr->pRight);
+ }
+ sqlite3_str_append(p, ")", 1);
+ }
+}
+#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
+
+
+#if VDBE_DISPLAY_P4
+/*
+** Compute a string that describes the P4 parameter for an opcode.
+** Use zTemp for any required temporary buffer space.
+*/
+SQLITE_PRIVATE char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
+ char *zP4 = 0;
+ StrAccum x;
+
+ sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
+ switch( pOp->p4type ){
+ case P4_KEYINFO: {
+ int j;
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pKeyInfo->aSortFlags!=0 );
+ sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
+ for(j=0; j<pKeyInfo->nKeyField; j++){
+ CollSeq *pColl = pKeyInfo->aColl[j];
+ const char *zColl = pColl ? pColl->zName : "";
+ if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
+ sqlite3_str_appendf(&x, ",%s%s%s",
+ (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
+ (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
+ zColl);
+ }
+ sqlite3_str_append(&x, ")", 1);
+ break;
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ case P4_EXPR: {
+ displayP4Expr(&x, pOp->p4.pExpr);
+ break;
+ }
+#endif
+ case P4_COLLSEQ: {
+ static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
+ CollSeq *pColl = pOp->p4.pColl;
+ assert( pColl->enc<4 );
+ sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
+ encnames[pColl->enc]);
+ break;
+ }
+ case P4_FUNCDEF: {
+ FuncDef *pDef = pOp->p4.pFunc;
+ sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
+ break;
+ }
+ case P4_FUNCCTX: {
+ FuncDef *pDef = pOp->p4.pCtx->pFunc;
+ sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
+ break;
+ }
+ case P4_INT64: {
+ sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
+ break;
+ }
+ case P4_INT32: {
+ sqlite3_str_appendf(&x, "%d", pOp->p4.i);
+ break;
+ }
+ case P4_REAL: {
+ sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
+ break;
+ }
+ case P4_MEM: {
+ Mem *pMem = pOp->p4.pMem;
+ if( pMem->flags & MEM_Str ){
+ zP4 = pMem->z;
+ }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
+ sqlite3_str_appendf(&x, "%lld", pMem->u.i);
+ }else if( pMem->flags & MEM_Real ){
+ sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
+ }else if( pMem->flags & MEM_Null ){
+ zP4 = "NULL";
+ }else{
+ assert( pMem->flags & MEM_Blob );
+ zP4 = "(blob)";
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case P4_VTAB: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
+ sqlite3_str_appendf(&x, "vtab:%p", pVtab);
+ break;
+ }
+#endif
+ case P4_INTARRAY: {
+ u32 i;
+ u32 *ai = pOp->p4.ai;
+ u32 n = ai[0]; /* The first element of an INTARRAY is always the
+ ** count of the number of elements to follow */
+ for(i=1; i<=n; i++){
+ sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
+ }
+ sqlite3_str_append(&x, "]", 1);
+ break;
+ }
+ case P4_SUBPROGRAM: {
+ zP4 = "program";
+ break;
+ }
+ case P4_TABLE: {
+ zP4 = pOp->p4.pTab->zName;
+ break;
+ }
+ default: {
+ zP4 = pOp->p4.z;
+ }
+ }
+ if( zP4 ) sqlite3_str_appendall(&x, zP4);
+ if( (x.accError & SQLITE_NOMEM)!=0 ){
+ sqlite3OomFault(db);
+ }
+ return sqlite3StrAccumFinish(&x);
+}
+#endif /* VDBE_DISPLAY_P4 */
+
+/*
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
+**
+** The prepared statements need to know in advance the complete set of
+** attached databases that will be use. A mask of these databases
+** is maintained in p->btreeMask. The p->lockMask value is the subset of
+** p->btreeMask of databases that will require a lock.
+*/
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
+ assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
+ assert( i<(int)sizeof(p->btreeMask)*8 );
+ DbMaskSet(p->btreeMask, i);
+ if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
+ DbMaskSet(p->lockMask, i);
+ }
+}
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE)
+/*
+** If SQLite is compiled to support shared-cache mode and to be threadsafe,
+** this routine obtains the mutex associated with each BtShared structure
+** that may be accessed by the VM passed as an argument. In doing so it also
+** sets the BtShared.db member of each of the BtShared structures, ensuring
+** that the correct busy-handler callback is invoked if required.
+**
+** If SQLite is not threadsafe but does support shared-cache mode, then
+** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
+** of all of BtShared structures accessible via the database handle
+** associated with the VM.
+**
+** If SQLite is not threadsafe and does not support shared-cache mode, this
+** function is a no-op.
+**
+** The p->btreeMask field is a bitmask of all btrees that the prepared
+** statement p will ever use. Let N be the number of bits in p->btreeMask
+** corresponding to btrees that use shared cache. Then the runtime of
+** this routine is N*N. But as N is rarely more than 1, this should not
+** be a problem.
+*/
+SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){
+ int i;
+ sqlite3 *db;
+ Db *aDb;
+ int nDb;
+ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
+ db = p->db;
+ aDb = db->aDb;
+ nDb = db->nDb;
+ for(i=0; i<nDb; i++){
+ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
+ sqlite3BtreeEnter(aDb[i].pBt);
+ }
+ }
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
+/*
+** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
+*/
+static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
+ int i;
+ sqlite3 *db;
+ Db *aDb;
+ int nDb;
+ db = p->db;
+ aDb = db->aDb;
+ nDb = db->nDb;
+ for(i=0; i<nDb; i++){
+ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
+ sqlite3BtreeLeave(aDb[i].pBt);
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){
+ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
+ vdbeLeave(p);
+}
+#endif
+
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
+ char *zP4;
+ char *zCom;
+ sqlite3 dummyDb;
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
+ if( pOut==0 ) pOut = stdout;
+ sqlite3BeginBenignMalloc();
+ dummyDb.mallocFailed = 1;
+ zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
+#else
+ zCom = 0;
+#endif
+ /* NB: The sqlite3OpcodeName() function is implemented by code created
+ ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
+ ** information from the vdbe.c source text */
+ fprintf(pOut, zFormat1, pc,
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
+ zP4 ? zP4 : "", pOp->p5,
+ zCom ? zCom : ""
+ );
+ fflush(pOut);
+ sqlite3_free(zP4);
+ sqlite3_free(zCom);
+ sqlite3EndBenignMalloc();
+}
+#endif
+
+/*
+** Initialize an array of N Mem element.
+**
+** This is a high-runner, so only those fields that really do need to
+** be initialized are set. The Mem structure is organized so that
+** the fields that get initialized are nearby and hopefully on the same
+** cache line.
+**
+** Mem.flags = flags
+** Mem.db = db
+** Mem.szMalloc = 0
+**
+** All other fields of Mem can safely remain uninitialized for now. They
+** will be initialized before use.
+*/
+static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
+ if( N>0 ){
+ do{
+ p->flags = flags;
+ p->db = db;
+ p->szMalloc = 0;
+#ifdef SQLITE_DEBUG
+ p->pScopyFrom = 0;
+#endif
+ p++;
+ }while( (--N)>0 );
+ }
+}
+
+/*
+** Release auxiliary memory held in an array of N Mem elements.
+**
+** After this routine returns, all Mem elements in the array will still
+** be valid. Those Mem elements that were not holding auxiliary resources
+** will be unchanged. Mem elements which had something freed will be
+** set to MEM_Undefined.
+*/
+static void releaseMemArray(Mem *p, int N){
+ if( p && N ){
+ Mem *pEnd = &p[N];
+ sqlite3 *db = p->db;
+ if( db->pnBytesFreed ){
+ do{
+ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
+ }while( (++p)<pEnd );
+ return;
+ }
+ do{
+ assert( (&p[1])==pEnd || p[0].db==p[1].db );
+ assert( sqlite3VdbeCheckMemInvariants(p) );
+
+ /* This block is really an inlined version of sqlite3VdbeMemRelease()
+ ** that takes advantage of the fact that the memory cell value is
+ ** being set to NULL after releasing any dynamic resources.
+ **
+ ** The justification for duplicating code is that according to
+ ** callgrind, this causes a certain test case to hit the CPU 4.7
+ ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
+ ** sqlite3MemRelease() were called from here. With -O2, this jumps
+ ** to 6.6 percent. The test case is inserting 1000 rows into a table
+ ** with no indexes using a single prepared INSERT statement, bind()
+ ** and reset(). Inserts are grouped into a transaction.
+ */
+ testcase( p->flags & MEM_Agg );
+ testcase( p->flags & MEM_Dyn );
+ if( p->flags&(MEM_Agg|MEM_Dyn) ){
+ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
+ sqlite3VdbeMemRelease(p);
+ p->flags = MEM_Undefined;
+ }else if( p->szMalloc ){
+ sqlite3DbNNFreeNN(db, p->zMalloc);
+ p->szMalloc = 0;
+ p->flags = MEM_Undefined;
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ p->flags = MEM_Undefined;
+ }
+#endif
+ }while( (++p)<pEnd );
+ }
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
+** and false if something is wrong.
+**
+** This routine is intended for use inside of assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
+ if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
+ return 1;
+}
+#endif
+
+
+/*
+** This is a destructor on a Mem object (which is really an sqlite3_value)
+** that deletes the Frame object that is attached to it as a blob.
+**
+** This routine does not delete the Frame right away. It merely adds the
+** frame to a list of frames to be deleted when the Vdbe halts.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void *pArg){
+ VdbeFrame *pFrame = (VdbeFrame*)pArg;
+ assert( sqlite3VdbeFrameIsValid(pFrame) );
+ pFrame->pParent = pFrame->v->pDelFrame;
+ pFrame->v->pDelFrame = pFrame;
+}
+
+#if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
+/*
+** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
+** QUERY PLAN output.
+**
+** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
+** more opcodes to be displayed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeNextOpcode(
+ Vdbe *p, /* The statement being explained */
+ Mem *pSub, /* Storage for keeping track of subprogram nesting */
+ int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
+ int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
+ int *piAddr, /* OUT: Write index into (*paOp)[] here */
+ Op **paOp /* OUT: Write the opcode array here */
+){
+ int nRow; /* Stop when row count reaches this */
+ int nSub = 0; /* Number of sub-vdbes seen so far */
+ SubProgram **apSub = 0; /* Array of sub-vdbes */
+ int i; /* Next instruction address */
+ int rc = SQLITE_OK; /* Result code */
+ Op *aOp = 0; /* Opcode array */
+ int iPc; /* Rowid. Copy of value in *piPc */
+
+ /* When the number of output rows reaches nRow, that means the
+ ** listing has finished and sqlite3_step() should return SQLITE_DONE.
+ ** nRow is the sum of the number of rows in the main program, plus
+ ** the sum of the number of rows in all trigger subprograms encountered
+ ** so far. The nRow value will increase as new trigger subprograms are
+ ** encountered, but p->pc will eventually catch up to nRow.
+ */
+ nRow = p->nOp;
+ if( pSub!=0 ){
+ if( pSub->flags&MEM_Blob ){
+ /* pSub is initiallly NULL. It is initialized to a BLOB by
+ ** the P4_SUBPROGRAM processing logic below */
+ nSub = pSub->n/sizeof(Vdbe*);
+ apSub = (SubProgram **)pSub->z;
+ }
+ for(i=0; i<nSub; i++){
+ nRow += apSub[i]->nOp;
+ }
+ }
+ iPc = *piPc;
+ while(1){ /* Loop exits via break */
+ i = iPc++;
+ if( i>=nRow ){
+ p->rc = SQLITE_OK;
+ rc = SQLITE_DONE;
+ break;
+ }
+ if( i<p->nOp ){
+ /* The rowid is small enough that we are still in the
+ ** main program. */
+ aOp = p->aOp;
+ }else{
+ /* We are currently listing subprograms. Figure out which one and
+ ** pick up the appropriate opcode. */
+ int j;
+ i -= p->nOp;
+ assert( apSub!=0 );
+ assert( nSub>0 );
+ for(j=0; i>=apSub[j]->nOp; j++){
+ i -= apSub[j]->nOp;
+ assert( i<apSub[j]->nOp || j+1<nSub );
+ }
+ aOp = apSub[j]->aOp;
+ }
+
+ /* When an OP_Program opcode is encounter (the only opcode that has
+ ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
+ ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
+ ** has not already been seen.
+ */
+ if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
+ int nByte = (nSub+1)*sizeof(SubProgram*);
+ int j;
+ for(j=0; j<nSub; j++){
+ if( apSub[j]==aOp[i].p4.pProgram ) break;
+ }
+ if( j==nSub ){
+ p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
+ if( p->rc!=SQLITE_OK ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+ apSub = (SubProgram **)pSub->z;
+ apSub[nSub++] = aOp[i].p4.pProgram;
+ MemSetTypeFlag(pSub, MEM_Blob);
+ pSub->n = nSub*sizeof(SubProgram*);
+ nRow += aOp[i].p4.pProgram->nOp;
+ }
+ }
+ if( eMode==0 ) break;
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+ if( eMode==2 ){
+ Op *pOp = aOp + i;
+ if( pOp->opcode==OP_OpenRead ) break;
+ if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
+ if( pOp->opcode==OP_ReopenIdx ) break;
+ }else
+#endif
+ {
+ assert( eMode==1 );
+ if( aOp[i].opcode==OP_Explain ) break;
+ if( aOp[i].opcode==OP_Init && iPc>1 ) break;
+ }
+ }
+ *piPc = iPc;
+ *piAddr = i;
+ *paOp = aOp;
+ return rc;
+}
+#endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
+
+
+/*
+** Delete a VdbeFrame object and its contents. VdbeFrame objects are
+** allocated by the OP_Program opcode in sqlite3VdbeExec().
+*/
+SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){
+ int i;
+ Mem *aMem = VdbeFrameMem(p);
+ VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
+ assert( sqlite3VdbeFrameIsValid(p) );
+ for(i=0; i<p->nChildCsr; i++){
+ if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
+ }
+ releaseMemArray(aMem, p->nChildMem);
+ sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
+ sqlite3DbFree(p->v->db, p);
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqlite3VdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+**
+** When p->explain==1, each instruction is listed. When
+** p->explain==2, only OP_Explain instructions are listed and these
+** are shown in a different format. p->explain==2 is used to implement
+** EXPLAIN QUERY PLAN.
+** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
+** are also shown, so that the boundaries between the main program and
+** each trigger are clear.
+**
+** When p->explain==1, first the main program is listed, then each of
+** the trigger subprograms are listed one by one.
+*/
+SQLITE_PRIVATE int sqlite3VdbeList(
+ Vdbe *p /* The VDBE */
+){
+ Mem *pSub = 0; /* Memory cell hold array of subprogs */
+ sqlite3 *db = p->db; /* The database connection */
+ int i; /* Loop counter */
+ int rc = SQLITE_OK; /* Return code */
+ Mem *pMem = &p->aMem[1]; /* First Mem of result set */
+ int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
+ Op *aOp; /* Array of opcodes */
+ Op *pOp; /* Current opcode */
+
+ assert( p->explain );
+ assert( p->eVdbeState==VDBE_RUN_STATE );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
+
+ /* Even though this opcode does not use dynamic strings for
+ ** the result, result columns may become dynamic if the user calls
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
+ */
+ releaseMemArray(pMem, 8);
+
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ sqlite3OomFault(db);
+ return SQLITE_ERROR;
+ }
+
+ if( bListSubprogs ){
+ /* The first 8 memory cells are used for the result set. So we will
+ ** commandeer the 9th cell to use as storage for an array of pointers
+ ** to trigger subprograms. The VDBE is guaranteed to have at least 9
+ ** cells. */
+ assert( p->nMem>9 );
+ pSub = &p->aMem[9];
+ }else{
+ pSub = 0;
+ }
+
+ /* Figure out which opcode is next to display */
+ rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
+
+ if( rc==SQLITE_OK ){
+ pOp = aOp + i;
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ p->rc = SQLITE_INTERRUPT;
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
+ }else{
+ char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
+ if( p->explain==2 ){
+ sqlite3VdbeMemSetInt64(pMem, pOp->p1);
+ sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
+ sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
+ sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
+ assert( p->nResColumn==4 );
+ }else{
+ sqlite3VdbeMemSetInt64(pMem+0, i);
+ sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
+ -1, SQLITE_UTF8, SQLITE_STATIC);
+ sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
+ sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
+ sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
+ /* pMem+5 for p4 is done last */
+ sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ {
+ char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
+ sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
+ }
+#else
+ sqlite3VdbeMemSetNull(pMem+7);
+#endif
+ sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
+ assert( p->nResColumn==8 );
+ }
+ p->pResultRow = pMem;
+ if( db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ rc = SQLITE_ERROR;
+ }else{
+ p->rc = SQLITE_OK;
+ rc = SQLITE_ROW;
+ }
+ }
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the SQL that was used to generate a VDBE program.
+*/
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
+ const char *z = 0;
+ if( p->zSql ){
+ z = p->zSql;
+ }else if( p->nOp>=1 ){
+ const VdbeOp *pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
+ z = pOp->p4.z;
+ while( sqlite3Isspace(*z) ) z++;
+ }
+ }
+ if( z ) printf("SQL: [%s]\n", z);
+}
+#endif
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** Print an IOTRACE message showing SQL content.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( sqlite3IoTrace==0 ) return;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
+ int i, j;
+ char z[1000];
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
+ for(i=0; sqlite3Isspace(z[i]); i++){}
+ for(j=0; z[i]; i++){
+ if( sqlite3Isspace(z[i]) ){
+ if( z[i-1]!=' ' ){
+ z[j++] = ' ';
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+ z[j] = 0;
+ sqlite3IoTrace("SQL %s\n", z);
+ }
+}
+#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
+
+/* An instance of this object describes bulk memory available for use
+** by subcomponents of a prepared statement. Space is allocated out
+** of a ReusableSpace object by the allocSpace() routine below.
+*/
+struct ReusableSpace {
+ u8 *pSpace; /* Available memory */
+ sqlite3_int64 nFree; /* Bytes of available memory */
+ sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
+};
+
+/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
+** from the ReusableSpace object. Return a pointer to the allocated
+** memory on success. If insufficient memory is available in the
+** ReusableSpace object, increase the ReusableSpace.nNeeded
+** value by the amount needed and return NULL.
+**
+** If pBuf is not initially NULL, that means that the memory has already
+** been allocated by a prior call to this routine, so just return a copy
+** of pBuf and leave ReusableSpace unchanged.
+**
+** This allocator is employed to repurpose unused slots at the end of the
+** opcode array of prepared state for other memory needs of the prepared
+** statement.
+*/
+static void *allocSpace(
+ struct ReusableSpace *p, /* Bulk memory available for allocation */
+ void *pBuf, /* Pointer to a prior allocation */
+ sqlite3_int64 nByte /* Bytes of memory needed. */
+){
+ assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
+ if( pBuf==0 ){
+ nByte = ROUND8P(nByte);
+ if( nByte <= p->nFree ){
+ p->nFree -= nByte;
+ pBuf = &p->pSpace[p->nFree];
+ }else{
+ p->nNeeded += nByte;
+ }
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
+ return pBuf;
+}
+
+/*
+** Rewind the VDBE back to the beginning in preparation for
+** running it.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe *p){
+#if defined(SQLITE_DEBUG)
+ int i;
+#endif
+ assert( p!=0 );
+ assert( p->eVdbeState==VDBE_INIT_STATE
+ || p->eVdbeState==VDBE_READY_STATE
+ || p->eVdbeState==VDBE_HALT_STATE );
+
+ /* There should be at least one opcode.
+ */
+ assert( p->nOp>0 );
+
+ p->eVdbeState = VDBE_READY_STATE;
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<p->nMem; i++){
+ assert( p->aMem[i].db==p->db );
+ }
+#endif
+ p->pc = -1;
+ p->rc = SQLITE_OK;
+ p->errorAction = OE_Abort;
+ p->nChange = 0;
+ p->cacheCtr = 1;
+ p->minWriteFileFormat = 255;
+ p->iStatement = 0;
+ p->nFkConstraint = 0;
+#ifdef VDBE_PROFILE
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].nExec = 0;
+ p->aOp[i].nCycle = 0;
+ }
+#endif
+}
+
+/*
+** Prepare a virtual machine for execution for the first time after
+** creating the virtual machine. This involves things such
+** as allocating registers and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqlite3VdbeExec().
+**
+** This function may be called exactly once on each virtual machine.
+** After this routine is called the VM has been "packaged" and is ready
+** to run. After this routine is called, further calls to
+** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
+** the Vdbe from the Parse object that helped generate it so that the
+** the Vdbe becomes an independent entity and the Parse object can be
+** destroyed.
+**
+** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
+** to its initial state after it has been run.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ Parse *pParse /* Parsing context */
+){
+ sqlite3 *db; /* The database connection */
+ int nVar; /* Number of parameters */
+ int nMem; /* Number of VM memory registers */
+ int nCursor; /* Number of cursors required */
+ int nArg; /* Number of arguments in subprograms */
+ int n; /* Loop counter */
+ struct ReusableSpace x; /* Reusable bulk memory */
+
+ assert( p!=0 );
+ assert( p->nOp>0 );
+ assert( pParse!=0 );
+ assert( p->eVdbeState==VDBE_INIT_STATE );
+ assert( pParse==p->pParse );
+ p->pVList = pParse->pVList;
+ pParse->pVList = 0;
+ db = p->db;
+ assert( db->mallocFailed==0 );
+ nVar = pParse->nVar;
+ nMem = pParse->nMem;
+ nCursor = pParse->nTab;
+ nArg = pParse->nMaxArg;
+
+ /* Each cursor uses a memory cell. The first cursor (cursor 0) can
+ ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
+ ** space at the end of aMem[] for cursors 1 and greater.
+ ** See also: allocateCursor().
+ */
+ nMem += nCursor;
+ if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
+
+ /* Figure out how much reusable memory is available at the end of the
+ ** opcode array. This extra memory will be reallocated for other elements
+ ** of the prepared statement.
+ */
+ n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
+ x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
+ assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
+ x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
+ assert( x.nFree>=0 );
+ assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
+
+ resolveP2Values(p, &nArg);
+ p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
+ if( pParse->explain ){
+ if( nMem<10 ) nMem = 10;
+ p->explain = pParse->explain;
+ p->nResColumn = 12 - 4*p->explain;
+ }
+ p->expired = 0;
+
+ /* Memory for registers, parameters, cursor, etc, is allocated in one or two
+ ** passes. On the first pass, we try to reuse unused memory at the
+ ** end of the opcode array. If we are unable to satisfy all memory
+ ** requirements by reusing the opcode array tail, then the second
+ ** pass will fill in the remainder using a fresh memory allocation.
+ **
+ ** This two-pass approach that reuses as much memory as possible from
+ ** the leftover memory at the end of the opcode array. This can significantly
+ ** reduce the amount of memory held by a prepared statement.
+ */
+ x.nNeeded = 0;
+ p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
+ p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
+ p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
+ p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
+ if( x.nNeeded ){
+ x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
+ x.nFree = x.nNeeded;
+ if( !db->mallocFailed ){
+ p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
+ p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
+ p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
+ p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
+ }
+ }
+
+ if( db->mallocFailed ){
+ p->nVar = 0;
+ p->nCursor = 0;
+ p->nMem = 0;
+ }else{
+ p->nCursor = nCursor;
+ p->nVar = (ynVar)nVar;
+ initMemArray(p->aVar, nVar, db, MEM_Null);
+ p->nMem = nMem;
+ initMemArray(p->aMem, nMem, db, MEM_Undefined);
+ memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
+ }
+ sqlite3VdbeRewind(p);
+}
+
+/*
+** Close a VDBE cursor and release all the resources that cursor
+** happens to hold.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
+ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
+}
+static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){
+ VdbeTxtBlbCache *pCache = pCx->pCache;
+ assert( pCx->colCache );
+ pCx->colCache = 0;
+ pCx->pCache = 0;
+ if( pCache->pCValue ){
+ sqlite3RCStrUnref(pCache->pCValue);
+ pCache->pCValue = 0;
+ }
+ sqlite3DbFree(p->db, pCache);
+ sqlite3VdbeFreeCursorNN(p, pCx);
+}
+SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
+ if( pCx->colCache ){
+ freeCursorWithCache(p, pCx);
+ return;
+ }
+ switch( pCx->eCurType ){
+ case CURTYPE_SORTER: {
+ sqlite3VdbeSorterClose(p->db, pCx);
+ break;
+ }
+ case CURTYPE_BTREE: {
+ assert( pCx->uc.pCursor!=0 );
+ sqlite3BtreeCloseCursor(pCx->uc.pCursor);
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case CURTYPE_VTAB: {
+ sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
+ const sqlite3_module *pModule = pVCur->pVtab->pModule;
+ assert( pVCur->pVtab->nRef>0 );
+ pVCur->pVtab->nRef--;
+ pModule->xClose(pVCur);
+ break;
+ }
+#endif
+ }
+}
+
+/*
+** Close all cursors in the current frame.
+*/
+static void closeCursorsInFrame(Vdbe *p){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ VdbeCursor *pC = p->apCsr[i];
+ if( pC ){
+ sqlite3VdbeFreeCursorNN(p, pC);
+ p->apCsr[i] = 0;
+ }
+ }
+}
+
+/*
+** Copy the values stored in the VdbeFrame structure to its Vdbe. This
+** is used, for example, when a trigger sub-program is halted to restore
+** control to the main program.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
+ Vdbe *v = pFrame->v;
+ closeCursorsInFrame(v);
+ v->aOp = pFrame->aOp;
+ v->nOp = pFrame->nOp;
+ v->aMem = pFrame->aMem;
+ v->nMem = pFrame->nMem;
+ v->apCsr = pFrame->apCsr;
+ v->nCursor = pFrame->nCursor;
+ v->db->lastRowid = pFrame->lastRowid;
+ v->nChange = pFrame->nChange;
+ v->db->nChange = pFrame->nDbChange;
+ sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
+ v->pAuxData = pFrame->pAuxData;
+ pFrame->pAuxData = 0;
+ return pFrame->pc;
+}
+
+/*
+** Close all cursors.
+**
+** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
+** cell array. This is necessary as the memory cell array may contain
+** pointers to VdbeFrame objects, which may in turn contain pointers to
+** open cursors.
+*/
+static void closeAllCursors(Vdbe *p){
+ if( p->pFrame ){
+ VdbeFrame *pFrame;
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ sqlite3VdbeFrameRestore(pFrame);
+ p->pFrame = 0;
+ p->nFrame = 0;
+ }
+ assert( p->nFrame==0 );
+ closeCursorsInFrame(p);
+ releaseMemArray(p->aMem, p->nMem);
+ while( p->pDelFrame ){
+ VdbeFrame *pDel = p->pDelFrame;
+ p->pDelFrame = pDel->pParent;
+ sqlite3VdbeFrameDelete(pDel);
+ }
+
+ /* Delete any auxdata allocations made by the VM */
+ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
+ assert( p->pAuxData==0 );
+}
+
+/*
+** Set the number of result columns that will be returned by this SQL
+** statement. This is now set at compile time, rather than during
+** execution of the vdbe program so that sqlite3_column_count() can
+** be called on an SQL statement before sqlite3_step().
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
+ int n;
+ sqlite3 *db = p->db;
+
+ if( p->nResAlloc ){
+ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
+ sqlite3DbFree(db, p->aColName);
+ }
+ n = nResColumn*COLNAME_N;
+ p->nResColumn = p->nResAlloc = (u16)nResColumn;
+ p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
+ if( p->aColName==0 ) return;
+ initMemArray(p->aColName, n, db, MEM_Null);
+}
+
+/*
+** Set the name of the idx'th column to be returned by the SQL statement.
+** zName must be a pointer to a nul terminated string.
+**
+** This call must be made after a call to sqlite3VdbeSetNumCols().
+**
+** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
+** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
+** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSetColName(
+ Vdbe *p, /* Vdbe being configured */
+ int idx, /* Index of column zName applies to */
+ int var, /* One of the COLNAME_* constants */
+ const char *zName, /* Pointer to buffer containing name */
+ void (*xDel)(void*) /* Memory management strategy for zName */
+){
+ int rc;
+ Mem *pColName;
+ assert( idx<p->nResAlloc );
+ assert( var<COLNAME_N );
+ if( p->db->mallocFailed ){
+ assert( !zName || xDel!=SQLITE_DYNAMIC );
+ return SQLITE_NOMEM_BKPT;
+ }
+ assert( p->aColName!=0 );
+ pColName = &(p->aColName[idx+var*p->nResAlloc]);
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
+ assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
+ return rc;
+}
+
+/*
+** A read or write transaction may or may not be active on database handle
+** db. If a transaction is active, commit it. If there is a
+** write-transaction spanning more than one database file, this routine
+** takes care of the super-journal trickery.
+*/
+static int vdbeCommit(sqlite3 *db, Vdbe *p){
+ int i;
+ int nTrans = 0; /* Number of databases with an active write-transaction
+ ** that are candidates for a two-phase commit using a
+ ** super-journal */
+ int rc = SQLITE_OK;
+ int needXcommit = 0;
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ /* With this option, sqlite3VtabSync() is defined to be simply
+ ** SQLITE_OK so p is not used.
+ */
+ UNUSED_PARAMETER(p);
+#endif
+
+ /* Before doing anything else, call the xSync() callback for any
+ ** virtual module tables written in this transaction. This has to
+ ** be done before determining whether a super-journal file is
+ ** required, as an xSync() callback may add an attached database
+ ** to the transaction.
+ */
+ rc = sqlite3VtabSync(db, p);
+
+ /* This loop determines (a) if the commit hook should be invoked and
+ ** (b) how many database files have open write transactions, not
+ ** including the temp database. (b) is important because if more than
+ ** one database file has an open write transaction, a super-journal
+ ** file is required for an atomic commit.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
+ /* Whether or not a database might need a super-journal depends upon
+ ** its journal mode (among other things). This matrix determines which
+ ** journal modes use a super-journal and which do not */
+ static const u8 aMJNeeded[] = {
+ /* DELETE */ 1,
+ /* PERSIST */ 1,
+ /* OFF */ 0,
+ /* TRUNCATE */ 1,
+ /* MEMORY */ 0,
+ /* WAL */ 0
+ };
+ Pager *pPager; /* Pager associated with pBt */
+ needXcommit = 1;
+ sqlite3BtreeEnter(pBt);
+ pPager = sqlite3BtreePager(pBt);
+ if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
+ && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
+ && sqlite3PagerIsMemdb(pPager)==0
+ ){
+ assert( i!=1 );
+ nTrans++;
+ }
+ rc = sqlite3PagerExclusiveLock(pPager);
+ sqlite3BtreeLeave(pBt);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* If there are any write-transactions at all, invoke the commit hook */
+ if( needXcommit && db->xCommitCallback ){
+ rc = db->xCommitCallback(db->pCommitArg);
+ if( rc ){
+ return SQLITE_CONSTRAINT_COMMITHOOK;
+ }
+ }
+
+ /* The simple case - no more than one database file (not counting the
+ ** TEMP database) has a transaction active. There is no need for the
+ ** super-journal.
+ **
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length
+ ** string, it means the main database is :memory: or a temp file. In
+ ** that case we do not support atomic multi-file commits, so use the
+ ** simple case then too.
+ */
+ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
+ || nTrans<=1
+ ){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
+ }
+ }
+
+ /* Do the commit only if all databases successfully complete phase 1.
+ ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
+ ** IO error while deleting or truncating a journal file. It is unlikely,
+ ** but could happen. In this case abandon processing and return the error.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3VtabCommit(db);
+ }
+ }
+
+ /* The complex case - There is a multi-file write-transaction active.
+ ** This requires a super-journal file to ensure the transaction is
+ ** committed atomically.
+ */
+#ifndef SQLITE_OMIT_DISKIO
+ else{
+ sqlite3_vfs *pVfs = db->pVfs;
+ char *zSuper = 0; /* File-name for the super-journal */
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
+ sqlite3_file *pSuperJrnl = 0;
+ i64 offset = 0;
+ int res;
+ int retryCount = 0;
+ int nMainFile;
+
+ /* Select a super-journal file name */
+ nMainFile = sqlite3Strlen30(zMainFile);
+ zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
+ if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
+ zSuper += 4;
+ do {
+ u32 iRandom;
+ if( retryCount ){
+ if( retryCount>100 ){
+ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
+ sqlite3OsDelete(pVfs, zSuper, 0);
+ break;
+ }else if( retryCount==1 ){
+ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
+ }
+ }
+ retryCount++;
+ sqlite3_randomness(sizeof(iRandom), &iRandom);
+ sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
+ (iRandom>>8)&0xffffff, iRandom&0xff);
+ /* The antipenultimate character of the super-journal name must
+ ** be "9" to avoid name collisions when using 8+3 filenames. */
+ assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
+ sqlite3FileSuffix3(zMainFile, zSuper);
+ rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
+ }while( rc==SQLITE_OK && res );
+ if( rc==SQLITE_OK ){
+ /* Open the super-journal. */
+ rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
+ );
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+
+ /* Write the name of each database file in the transaction into the new
+ ** super-journal file. If an error occurs at this point close
+ ** and delete the super-journal file. All the individual journal files
+ ** still have 'null' as the super-journal pointer, so they will roll
+ ** back independently if a failure occurs.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
+ char const *zFile = sqlite3BtreeGetJournalname(pBt);
+ if( zFile==0 ){
+ continue; /* Ignore TEMP and :memory: databases */
+ }
+ assert( zFile[0]!=0 );
+ rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
+ offset += sqlite3Strlen30(zFile)+1;
+ if( rc!=SQLITE_OK ){
+ sqlite3OsCloseFree(pSuperJrnl);
+ sqlite3OsDelete(pVfs, zSuper, 0);
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+ }
+ }
+
+ /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
+ ** flag is set this is not required.
+ */
+ if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
+ && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
+ ){
+ sqlite3OsCloseFree(pSuperJrnl);
+ sqlite3OsDelete(pVfs, zSuper, 0);
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+
+ /* Sync all the db files involved in the transaction. The same call
+ ** sets the super-journal pointer in each individual journal. If
+ ** an error occurs here, do not delete the super-journal file.
+ **
+ ** If the error occurs during the first call to
+ ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
+ ** super-journal file will be orphaned. But we cannot delete it,
+ ** in case the super-journal file name was written into the journal
+ ** file before the failure occurred.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
+ }
+ }
+ sqlite3OsCloseFree(pSuperJrnl);
+ assert( rc!=SQLITE_BUSY );
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, zSuper-4);
+ return rc;
+ }
+
+ /* Delete the super-journal file. This commits the transaction. After
+ ** doing this the directory is synced again before any individual
+ ** transaction files are deleted.
+ */
+ rc = sqlite3OsDelete(pVfs, zSuper, 1);
+ sqlite3DbFree(db, zSuper-4);
+ zSuper = 0;
+ if( rc ){
+ return rc;
+ }
+
+ /* All files and directories have already been synced, so the following
+ ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
+ ** deleting or truncating journals. If something goes wrong while
+ ** this is happening we don't really care. The integrity of the
+ ** transaction is already guaranteed, but some stray 'cold' journals
+ ** may be lying around. Returning an error code won't help matters.
+ */
+ disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ sqlite3BtreeCommitPhaseTwo(pBt, 1);
+ }
+ }
+ sqlite3EndBenignMalloc();
+ enable_simulated_io_errors();
+
+ sqlite3VtabCommit(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** This routine checks that the sqlite3.nVdbeActive count variable
+** matches the number of vdbe's in the list sqlite3.pVdbe that are
+** currently active. An assertion fails if the two counts do not match.
+** This is an internal self-check only - it is not an essential processing
+** step.
+**
+** This is a no-op if NDEBUG is defined.
+*/
+#ifndef NDEBUG
+static void checkActiveVdbeCnt(sqlite3 *db){
+ Vdbe *p;
+ int cnt = 0;
+ int nWrite = 0;
+ int nRead = 0;
+ p = db->pVdbe;
+ while( p ){
+ if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
+ cnt++;
+ if( p->readOnly==0 ) nWrite++;
+ if( p->bIsReader ) nRead++;
+ }
+ p = p->pVNext;
+ }
+ assert( cnt==db->nVdbeActive );
+ assert( nWrite==db->nVdbeWrite );
+ assert( nRead==db->nVdbeRead );
+}
+#else
+#define checkActiveVdbeCnt(x)
+#endif
+
+/*
+** If the Vdbe passed as the first argument opened a statement-transaction,
+** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
+** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
+** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
+** statement transaction is committed.
+**
+** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
+** Otherwise SQLITE_OK.
+*/
+static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
+ sqlite3 *const db = p->db;
+ int rc = SQLITE_OK;
+ int i;
+ const int iSavepoint = p->iStatement-1;
+
+ assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
+ assert( db->nStatement>0 );
+ assert( p->iStatement==(db->nStatement+db->nSavepoint) );
+
+ for(i=0; i<db->nDb; i++){
+ int rc2 = SQLITE_OK;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
+ }
+ if( rc2==SQLITE_OK ){
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ db->nStatement--;
+ p->iStatement = 0;
+
+ if( rc==SQLITE_OK ){
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
+ }
+ }
+
+ /* If the statement transaction is being rolled back, also restore the
+ ** database handles deferred constraint counter to the value it had when
+ ** the statement transaction was opened. */
+ if( eOp==SAVEPOINT_ROLLBACK ){
+ db->nDeferredCons = p->nStmtDefCons;
+ db->nDeferredImmCons = p->nStmtDefImmCons;
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
+ if( p->db->nStatement && p->iStatement ){
+ return vdbeCloseStatement(p, eOp);
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** This function is called when a transaction opened by the database
+** handle associated with the VM passed as an argument is about to be
+** committed. If there are outstanding deferred foreign key constraint
+** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
+**
+** If there are outstanding FK violations and this function returns
+** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
+** and write an error message to it. Then return SQLITE_ERROR.
+*/
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
+ sqlite3 *db = p->db;
+ if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
+ || (!deferred && p->nFkConstraint>0)
+ ){
+ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
+ p->errorAction = OE_Abort;
+ sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
+ if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
+ return SQLITE_CONSTRAINT_FOREIGNKEY;
+ }
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** This routine is called the when a VDBE tries to halt. If the VDBE
+** has made changes and is in autocommit mode, then commit those
+** changes. If a rollback is needed, then do the rollback.
+**
+** This routine is the only way to move the sqlite3eOpenState of a VM from
+** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
+** call this on a VM that is in the SQLITE_STATE_HALT state.
+**
+** Return an error code. If the commit could not complete because of
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
+** means the close did not happen and needs to be repeated.
+*/
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
+ int rc; /* Used to store transient return codes */
+ sqlite3 *db = p->db;
+
+ /* This function contains the logic that determines if a statement or
+ ** transaction will be committed or rolled back as a result of the
+ ** execution of this virtual machine.
+ **
+ ** If any of the following errors occur:
+ **
+ ** SQLITE_NOMEM
+ ** SQLITE_IOERR
+ ** SQLITE_FULL
+ ** SQLITE_INTERRUPT
+ **
+ ** Then the internal cache might have been left in an inconsistent
+ ** state. We need to rollback the statement transaction, if there is
+ ** one, or the complete transaction if there is no statement transaction.
+ */
+
+ assert( p->eVdbeState==VDBE_RUN_STATE );
+ if( db->mallocFailed ){
+ p->rc = SQLITE_NOMEM_BKPT;
+ }
+ closeAllCursors(p);
+ checkActiveVdbeCnt(db);
+
+ /* No commit or rollback needed if the program never started or if the
+ ** SQL statement does not read or write a database file. */
+ if( p->bIsReader ){
+ int mrc; /* Primary error code from p->rc */
+ int eStatementOp = 0;
+ int isSpecialError; /* Set to true if a 'special' error */
+
+ /* Lock all btrees used by the statement */
+ sqlite3VdbeEnter(p);
+
+ /* Check for one of the special errors */
+ if( p->rc ){
+ mrc = p->rc & 0xff;
+ isSpecialError = mrc==SQLITE_NOMEM
+ || mrc==SQLITE_IOERR
+ || mrc==SQLITE_INTERRUPT
+ || mrc==SQLITE_FULL;
+ }else{
+ mrc = isSpecialError = 0;
+ }
+ if( isSpecialError ){
+ /* If the query was read-only and the error code is SQLITE_INTERRUPT,
+ ** no rollback is necessary. Otherwise, at least a savepoint
+ ** transaction must be rolled back to restore the database to a
+ ** consistent state.
+ **
+ ** Even if the statement is read-only, it is important to perform
+ ** a statement or transaction rollback operation. If the error
+ ** occurred while writing to the journal, sub-journal or database
+ ** file as part of an effort to free up cache space (see function
+ ** pagerStress() in pager.c), the rollback is required to restore
+ ** the pager to a consistent state.
+ */
+ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
+ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
+ eStatementOp = SAVEPOINT_ROLLBACK;
+ }else{
+ /* We are forced to roll back the active transaction. Before doing
+ ** so, abort any other statements this handle currently has active.
+ */
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ sqlite3CloseSavepoints(db);
+ db->autoCommit = 1;
+ p->nChange = 0;
+ }
+ }
+ }
+
+ /* Check for immediate foreign key violations. */
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
+ sqlite3VdbeCheckFk(p, 0);
+ }
+
+ /* If the auto-commit flag is set and this is the only active writer
+ ** VM, then we do either a commit or rollback of the current transaction.
+ **
+ ** Note: This block also runs if one of the special errors handled
+ ** above has occurred.
+ */
+ if( !sqlite3VtabInSync(db)
+ && db->autoCommit
+ && db->nVdbeWrite==(p->readOnly==0)
+ ){
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
+ rc = sqlite3VdbeCheckFk(p, 1);
+ if( rc!=SQLITE_OK ){
+ if( NEVER(p->readOnly) ){
+ sqlite3VdbeLeave(p);
+ return SQLITE_ERROR;
+ }
+ rc = SQLITE_CONSTRAINT_FOREIGNKEY;
+ }else if( db->flags & SQLITE_CorruptRdOnly ){
+ rc = SQLITE_CORRUPT;
+ db->flags &= ~SQLITE_CorruptRdOnly;
+ }else{
+ /* The auto-commit flag is true, the vdbe program was successful
+ ** or hit an 'OR FAIL' constraint and there are no deferred foreign
+ ** key constraints to hold up the transaction. This means a commit
+ ** is required. */
+ rc = vdbeCommit(db, p);
+ }
+ if( rc==SQLITE_BUSY && p->readOnly ){
+ sqlite3VdbeLeave(p);
+ return SQLITE_BUSY;
+ }else if( rc!=SQLITE_OK ){
+ sqlite3SystemError(db, rc);
+ p->rc = rc;
+ sqlite3RollbackAll(db, SQLITE_OK);
+ p->nChange = 0;
+ }else{
+ db->nDeferredCons = 0;
+ db->nDeferredImmCons = 0;
+ db->flags &= ~(u64)SQLITE_DeferFKs;
+ sqlite3CommitInternalChanges(db);
+ }
+ }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){
+ p->nChange = 0;
+ }else{
+ sqlite3RollbackAll(db, SQLITE_OK);
+ p->nChange = 0;
+ }
+ db->nStatement = 0;
+ }else if( eStatementOp==0 ){
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
+ eStatementOp = SAVEPOINT_RELEASE;
+ }else if( p->errorAction==OE_Abort ){
+ eStatementOp = SAVEPOINT_ROLLBACK;
+ }else{
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ sqlite3CloseSavepoints(db);
+ db->autoCommit = 1;
+ p->nChange = 0;
+ }
+ }
+
+ /* If eStatementOp is non-zero, then a statement transaction needs to
+ ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
+ ** do so. If this operation returns an error, and the current statement
+ ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
+ ** current statement error code.
+ */
+ if( eStatementOp ){
+ rc = sqlite3VdbeCloseStatement(p, eStatementOp);
+ if( rc ){
+ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
+ p->rc = rc;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ sqlite3CloseSavepoints(db);
+ db->autoCommit = 1;
+ p->nChange = 0;
+ }
+ }
+
+ /* If this was an INSERT, UPDATE or DELETE and no statement transaction
+ ** has been rolled back, update the database connection change-counter.
+ */
+ if( p->changeCntOn ){
+ if( eStatementOp!=SAVEPOINT_ROLLBACK ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }else{
+ sqlite3VdbeSetChanges(db, 0);
+ }
+ p->nChange = 0;
+ }
+
+ /* Release the locks */
+ sqlite3VdbeLeave(p);
+ }
+
+ /* We have successfully halted and closed the VM. Record this fact. */
+ db->nVdbeActive--;
+ if( !p->readOnly ) db->nVdbeWrite--;
+ if( p->bIsReader ) db->nVdbeRead--;
+ assert( db->nVdbeActive>=db->nVdbeRead );
+ assert( db->nVdbeRead>=db->nVdbeWrite );
+ assert( db->nVdbeWrite>=0 );
+ p->eVdbeState = VDBE_HALT_STATE;
+ checkActiveVdbeCnt(db);
+ if( db->mallocFailed ){
+ p->rc = SQLITE_NOMEM_BKPT;
+ }
+
+ /* If the auto-commit flag is set to true, then any locks that were held
+ ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
+ ** to invoke any required unlock-notify callbacks.
+ */
+ if( db->autoCommit ){
+ sqlite3ConnectionUnlocked(db);
+ }
+
+ assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
+ return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
+}
+
+
+/*
+** Each VDBE holds the result of the most recent sqlite3_step() call
+** in p->rc. This routine sets that result back to SQLITE_OK.
+*/
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
+ p->rc = SQLITE_OK;
+}
+
+/*
+** Copy the error code and error message belonging to the VDBE passed
+** as the first argument to its database handle (so that they will be
+** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
+**
+** This function does not clear the VDBE error code or message, just
+** copies them to the database handle.
+*/
+SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){
+ sqlite3 *db = p->db;
+ int rc = p->rc;
+ if( p->zErrMsg ){
+ db->bBenignMalloc++;
+ sqlite3BeginBenignMalloc();
+ if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
+ sqlite3EndBenignMalloc();
+ db->bBenignMalloc--;
+ }else if( db->pErr ){
+ sqlite3ValueSetNull(db->pErr);
+ }
+ db->errCode = rc;
+ db->errByteOffset = -1;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SQLLOG
+/*
+** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
+** invoke it.
+*/
+static void vdbeInvokeSqllog(Vdbe *v){
+ if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
+ char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
+ assert( v->db->init.busy==0 );
+ if( zExpanded ){
+ sqlite3GlobalConfig.xSqllog(
+ sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
+ );
+ sqlite3DbFree(v->db, zExpanded);
+ }
+ }
+}
+#else
+# define vdbeInvokeSqllog(x)
+#endif
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+**
+** To look at it another way, this routine resets the state of the
+** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
+** VDBE_READY_STATE.
+*/
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+ int i;
+#endif
+
+ sqlite3 *db;
+ db = p->db;
+
+ /* If the VM did not run to completion or if it encountered an
+ ** error, then it might not have been halted properly. So halt
+ ** it now.
+ */
+ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
+
+ /* If the VDBE has been run even partially, then transfer the error code
+ ** and error message from the VDBE into the main database structure. But
+ ** if the VDBE has just been set to run but has not actually executed any
+ ** instructions yet, leave the main database error information unchanged.
+ */
+ if( p->pc>=0 ){
+ vdbeInvokeSqllog(p);
+ if( db->pErr || p->zErrMsg ){
+ sqlite3VdbeTransferError(p);
+ }else{
+ db->errCode = p->rc;
+ }
+ }
+
+ /* Reset register contents and reclaim error message memory.
+ */
+#ifdef SQLITE_DEBUG
+ /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
+ ** Vdbe.aMem[] arrays have already been cleaned up. */
+ if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
+ if( p->aMem ){
+ for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
+ }
+#endif
+ if( p->zErrMsg ){
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }
+ p->pResultRow = 0;
+#ifdef SQLITE_DEBUG
+ p->nWrite = 0;
+#endif
+
+ /* Save profiling information from this VDBE run.
+ */
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ if( p->zSql ){
+ char c, pc = 0;
+ fprintf(out, "-- ");
+ for(i=0; (c = p->zSql[i])!=0; i++){
+ if( pc=='\n' ) fprintf(out, "-- ");
+ putc(c, out);
+ pc = c;
+ }
+ if( pc!='\n' ) fprintf(out, "\n");
+ }
+ for(i=0; i<p->nOp; i++){
+ char zHdr[100];
+ i64 cnt = p->aOp[i].nExec;
+ i64 cycles = p->aOp[i].nCycle;
+ sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
+ cnt,
+ cycles,
+ cnt>0 ? cycles/cnt : 0
+ );
+ fprintf(out, "%s", zHdr);
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ return p->rc & db->errMask;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
+ int rc = SQLITE_OK;
+ assert( VDBE_RUN_STATE>VDBE_READY_STATE );
+ assert( VDBE_HALT_STATE>VDBE_READY_STATE );
+ assert( VDBE_INIT_STATE<VDBE_READY_STATE );
+ if( p->eVdbeState>=VDBE_READY_STATE ){
+ rc = sqlite3VdbeReset(p);
+ assert( (rc & p->db->errMask)==rc );
+ }
+ sqlite3VdbeDelete(p);
+ return rc;
+}
+
+/*
+** If parameter iOp is less than zero, then invoke the destructor for
+** all auxiliary data pointers currently cached by the VM passed as
+** the first argument.
+**
+** Or, if iOp is greater than or equal to zero, then the destructor is
+** only invoked for those auxiliary data pointers created by the user
+** function invoked by the OP_Function opcode at instruction iOp of
+** VM pVdbe, and only then if:
+**
+** * the associated function parameter is the 32nd or later (counting
+** from left to right), or
+**
+** * the corresponding bit in argument mask is clear (where the first
+** function parameter corresponds to bit 0 etc.).
+*/
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
+ while( *pp ){
+ AuxData *pAux = *pp;
+ if( (iOp<0)
+ || (pAux->iAuxOp==iOp
+ && pAux->iAuxArg>=0
+ && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
+ ){
+ testcase( pAux->iAuxArg==31 );
+ if( pAux->xDeleteAux ){
+ pAux->xDeleteAux(pAux->pAux);
+ }
+ *pp = pAux->pNextAux;
+ sqlite3DbFree(db, pAux);
+ }else{
+ pp= &pAux->pNextAux;
+ }
+ }
+}
+
+/*
+** Free all memory associated with the Vdbe passed as the second argument,
+** except for object itself, which is preserved.
+**
+** The difference between this function and sqlite3VdbeDelete() is that
+** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
+** the database connection and frees the object itself.
+*/
+static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
+ SubProgram *pSub, *pNext;
+ assert( db!=0 );
+ assert( p->db==0 || p->db==db );
+ if( p->aColName ){
+ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
+ sqlite3DbNNFreeNN(db, p->aColName);
+ }
+ for(pSub=p->pProgram; pSub; pSub=pNext){
+ pNext = pSub->pNext;
+ vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
+ sqlite3DbFree(db, pSub);
+ }
+ if( p->eVdbeState!=VDBE_INIT_STATE ){
+ releaseMemArray(p->aVar, p->nVar);
+ if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
+ if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
+ }
+ vdbeFreeOpArray(db, p->aOp, p->nOp);
+ if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
+#ifdef SQLITE_ENABLE_NORMALIZE
+ sqlite3DbFree(db, p->zNormSql);
+ {
+ DblquoteStr *pThis, *pNxt;
+ for(pThis=p->pDblStr; pThis; pThis=pNxt){
+ pNxt = pThis->pNextStr;
+ sqlite3DbFree(db, pThis);
+ }
+ }
+#endif
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ {
+ int i;
+ for(i=0; i<p->nScan; i++){
+ sqlite3DbFree(db, p->aScan[i].zName);
+ }
+ sqlite3DbFree(db, p->aScan);
+ }
+#endif
+}
+
+/*
+** Delete an entire VDBE.
+*/
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
+ sqlite3 *db;
+
+ assert( p!=0 );
+ db = p->db;
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+ sqlite3VdbeClearObject(db, p);
+ if( db->pnBytesFreed==0 ){
+ assert( p->ppVPrev!=0 );
+ *p->ppVPrev = p->pVNext;
+ if( p->pVNext ){
+ p->pVNext->ppVPrev = p->ppVPrev;
+ }
+ }
+ sqlite3DbNNFreeNN(db, p);
+}
+
+/*
+** The cursor "p" has a pending seek operation that has not yet been
+** carried out. Seek the cursor now. If an error occurs, return
+** the appropriate error code.
+*/
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
+ int res, rc;
+#ifdef SQLITE_TEST
+ extern int sqlite3_search_count;
+#endif
+ assert( p->deferredMoveto );
+ assert( p->isTable );
+ assert( p->eCurType==CURTYPE_BTREE );
+ rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
+ if( rc ) return rc;
+ if( res!=0 ) return SQLITE_CORRUPT_BKPT;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ p->deferredMoveto = 0;
+ p->cacheStatus = CACHE_STALE;
+ return SQLITE_OK;
+}
+
+/*
+** Something has moved cursor "p" out of place. Maybe the row it was
+** pointed to was deleted out from under it. Or maybe the btree was
+** rebalanced. Whatever the cause, try to restore "p" to the place it
+** is supposed to be pointing. If the row was deleted out from under the
+** cursor, set the cursor to point to a NULL row.
+*/
+SQLITE_PRIVATE int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
+ int isDifferentRow, rc;
+ assert( p->eCurType==CURTYPE_BTREE );
+ assert( p->uc.pCursor!=0 );
+ assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
+ rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
+ p->cacheStatus = CACHE_STALE;
+ if( isDifferentRow ) p->nullRow = 1;
+ return rc;
+}
+
+/*
+** Check to ensure that the cursor is valid. Restore the cursor
+** if need be. Return any I/O error from the restore operation.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor *p){
+ assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
+ if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
+ return sqlite3VdbeHandleMovedCursor(p);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The following functions:
+**
+** sqlite3VdbeSerialType()
+** sqlite3VdbeSerialTypeLen()
+** sqlite3VdbeSerialLen()
+** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
+** sqlite3VdbeSerialGet()
+**
+** encapsulate the code that serializes values for storage in SQLite
+** data and index records. Each serialized value consists of a
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
+** integer, stored as a varint.
+**
+** In an SQLite index record, the serial type is stored directly before
+** the blob of data that it corresponds to. In a table record, all serial
+** types are stored at the start of the record, and the blobs of data at
+** the end. Hence these functions allow the caller to handle the
+** serial-type and data blob separately.
+**
+** The following table describes the various storage classes for data:
+**
+** serial type bytes of data type
+** -------------- --------------- ---------------
+** 0 0 NULL
+** 1 1 signed integer
+** 2 2 signed integer
+** 3 3 signed integer
+** 4 4 signed integer
+** 5 6 signed integer
+** 6 8 signed integer
+** 7 8 IEEE float
+** 8 0 Integer constant 0
+** 9 0 Integer constant 1
+** 10,11 reserved for expansion
+** N>=12 and even (N-12)/2 BLOB
+** N>=13 and odd (N-13)/2 text
+**
+** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
+** of SQLite will not understand those serial types.
+*/
+
+#if 0 /* Inlined into the OP_MakeRecord opcode */
+/*
+** Return the serial-type for the value stored in pMem.
+**
+** This routine might convert a large MEM_IntReal value into MEM_Real.
+**
+** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
+** opcode in the byte-code engine. But by moving this routine in-line, we
+** can omit some redundant tests and make that opcode a lot faster. So
+** this routine is now only used by the STAT3 logic and STAT3 support has
+** ended. The code is kept here for historical reference only.
+*/
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
+ int flags = pMem->flags;
+ u32 n;
+
+ assert( pLen!=0 );
+ if( flags&MEM_Null ){
+ *pLen = 0;
+ return 0;
+ }
+ if( flags&(MEM_Int|MEM_IntReal) ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
+ i64 i = pMem->u.i;
+ u64 u;
+ testcase( flags & MEM_Int );
+ testcase( flags & MEM_IntReal );
+ if( i<0 ){
+ u = ~i;
+ }else{
+ u = i;
+ }
+ if( u<=127 ){
+ if( (i&1)==i && file_format>=4 ){
+ *pLen = 0;
+ return 8+(u32)u;
+ }else{
+ *pLen = 1;
+ return 1;
+ }
+ }
+ if( u<=32767 ){ *pLen = 2; return 2; }
+ if( u<=8388607 ){ *pLen = 3; return 3; }
+ if( u<=2147483647 ){ *pLen = 4; return 4; }
+ if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
+ *pLen = 8;
+ if( flags&MEM_IntReal ){
+ /* If the value is IntReal and is going to take up 8 bytes to store
+ ** as an integer, then we might as well make it an 8-byte floating
+ ** point value */
+ pMem->u.r = (double)pMem->u.i;
+ pMem->flags &= ~MEM_IntReal;
+ pMem->flags |= MEM_Real;
+ return 7;
+ }
+ return 6;
+ }
+ if( flags&MEM_Real ){
+ *pLen = 8;
+ return 7;
+ }
+ assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
+ assert( pMem->n>=0 );
+ n = (u32)pMem->n;
+ if( flags & MEM_Zero ){
+ n += pMem->u.nZero;
+ }
+ *pLen = n;
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0));
+}
+#endif /* inlined into OP_MakeRecord */
+
+/*
+** The sizes for serial types less than 128
+*/
+SQLITE_PRIVATE const u8 sqlite3SmallTypeSizes[128] = {
+ /* 0 1 2 3 4 5 6 7 8 9 */
+/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
+/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
+/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
+/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
+/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
+/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
+/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
+/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
+/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
+/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
+/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
+/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
+/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
+};
+
+/*
+** Return the length of the data corresponding to the supplied serial-type.
+*/
+SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
+ if( serial_type>=128 ){
+ return (serial_type-12)/2;
+ }else{
+ assert( serial_type<12
+ || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
+ return sqlite3SmallTypeSizes[serial_type];
+ }
+}
+SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
+ assert( serial_type<128 );
+ return sqlite3SmallTypeSizes[serial_type];
+}
+
+/*
+** If we are on an architecture with mixed-endian floating
+** points (ex: ARM7) then swap the lower 4 bytes with the
+** upper 4 bytes. Return the result.
+**
+** For most architectures, this is a no-op.
+**
+** (later): It is reported to me that the mixed-endian problem
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
+** that early versions of GCC stored the two words of a 64-bit
+** float in the wrong order. And that error has been propagated
+** ever since. The blame is not necessarily with GCC, though.
+** GCC might have just copying the problem from a prior compiler.
+** I am also told that newer versions of GCC that follow a different
+** ABI get the byte order right.
+**
+** Developers using SQLite on an ARM7 should compile and run their
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
+** enabled, some asserts below will ensure that the byte order of
+** floating point values is correct.
+**
+** (2007-08-30) Frank van Vugt has studied this problem closely
+** and has send his findings to the SQLite developers. Frank
+** writes that some Linux kernels offer floating point hardware
+** emulation that uses only 32-bit mantissas instead of a full
+** 48-bits as required by the IEEE standard. (This is the
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point
+** byte swapping becomes very complicated. To avoid problems,
+** the necessary byte swapping is carried out using a 64-bit integer
+** rather than a 64-bit float. Frank assures us that the code here
+** works for him. We, the developers, have no way to independently
+** verify this, but Frank seems to know what he is talking about
+** so we trust him.
+*/
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+SQLITE_PRIVATE u64 sqlite3FloatSwap(u64 in){
+ union {
+ u64 r;
+ u32 i[2];
+ } u;
+ u32 t;
+
+ u.r = in;
+ t = u.i[0];
+ u.i[0] = u.i[1];
+ u.i[1] = t;
+ return u.r;
+}
+#endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
+
+
+/* Input "x" is a sequence of unsigned characters that represent a
+** big-endian integer. Return the equivalent native integer
+*/
+#define ONE_BYTE_INT(x) ((i8)(x)[0])
+#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
+#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
+#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
+#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
+
+/*
+** Deserialize the data blob pointed to by buf as serial type serial_type
+** and store the result in pMem.
+**
+** This function is implemented as two separate routines for performance.
+** The few cases that require local variables are broken out into a separate
+** routine so that in most cases the overhead of moving the stack pointer
+** is avoided.
+*/
+static void serialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ u64 x = FOUR_BYTE_UINT(buf);
+ u32 y = FOUR_BYTE_UINT(buf+4);
+ x = (x<<32) + y;
+ if( serial_type==6 ){
+ /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
+ ** twos-complement integer. */
+ pMem->u.i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ }else{
+ /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
+ ** floating point number. */
+#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
+ /* Verify that integers and floating point values use the same
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
+ ** defined that 64-bit floating point values really are mixed
+ ** endian.
+ */
+ static const u64 t1 = ((u64)0x3ff00000)<<32;
+ static const double r1 = 1.0;
+ u64 t2 = t1;
+ swapMixedEndianFloat(t2);
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
+#endif
+ assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
+ swapMixedEndianFloat(x);
+ memcpy(&pMem->u.r, &x, sizeof(x));
+ pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
+ }
+}
+SQLITE_PRIVATE void sqlite3VdbeSerialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ switch( serial_type ){
+ case 10: { /* Internal use only: NULL with virtual table
+ ** UPDATE no-change flag set */
+ pMem->flags = MEM_Null|MEM_Zero;
+ pMem->n = 0;
+ pMem->u.nZero = 0;
+ return;
+ }
+ case 11: /* Reserved for future use */
+ case 0: { /* Null */
+ /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
+ pMem->flags = MEM_Null;
+ return;
+ }
+ case 1: {
+ /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
+ ** integer. */
+ pMem->u.i = ONE_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 2: { /* 2-byte signed integer */
+ /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
+ ** twos-complement integer. */
+ pMem->u.i = TWO_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 3: { /* 3-byte signed integer */
+ /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
+ ** twos-complement integer. */
+ pMem->u.i = THREE_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 4: { /* 4-byte signed integer */
+ /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
+ ** twos-complement integer. */
+ pMem->u.i = FOUR_BYTE_INT(buf);
+#ifdef __HP_cc
+ /* Work around a sign-extension bug in the HP compiler for HP/UX */
+ if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
+#endif
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 5: { /* 6-byte signed integer */
+ /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
+ ** twos-complement integer. */
+ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
+ pMem->flags = MEM_Int;
+ testcase( pMem->u.i<0 );
+ return;
+ }
+ case 6: /* 8-byte signed integer */
+ case 7: { /* IEEE floating point */
+ /* These use local variables, so do them in a separate routine
+ ** to avoid having to move the frame pointer in the common case */
+ serialGet(buf,serial_type,pMem);
+ return;
+ }
+ case 8: /* Integer 0 */
+ case 9: { /* Integer 1 */
+ /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
+ /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
+ pMem->u.i = serial_type-8;
+ pMem->flags = MEM_Int;
+ return;
+ }
+ default: {
+ /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
+ ** length.
+ ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
+ ** (N-13)/2 bytes in length. */
+ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
+ pMem->z = (char *)buf;
+ pMem->n = (serial_type-12)/2;
+ pMem->flags = aFlag[serial_type&1];
+ return;
+ }
+ }
+ return;
+}
+/*
+** This routine is used to allocate sufficient space for an UnpackedRecord
+** structure large enough to be used with sqlite3VdbeRecordUnpack() if
+** the first argument is a pointer to KeyInfo structure pKeyInfo.
+**
+** The space is either allocated using sqlite3DbMallocRaw() or from within
+** the unaligned buffer passed via the second and third arguments (presumably
+** stack space). If the former, then *ppFree is set to a pointer that should
+** be eventually freed by the caller using sqlite3DbFree(). Or, if the
+** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
+** before returning.
+**
+** If an OOM error occurs, NULL is returned.
+*/
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
+ KeyInfo *pKeyInfo /* Description of the record */
+){
+ UnpackedRecord *p; /* Unpacked record to return */
+ int nByte; /* Number of bytes required for *p */
+ nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
+ p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
+ if( !p ) return 0;
+ p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
+ assert( pKeyInfo->aSortFlags!=0 );
+ p->pKeyInfo = pKeyInfo;
+ p->nField = pKeyInfo->nKeyField + 1;
+ return p;
+}
+
+/*
+** Given the nKey-byte encoding of a record in pKey[], populate the
+** UnpackedRecord structure indicated by the fourth argument with the
+** contents of the decoded record.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(
+ KeyInfo *pKeyInfo, /* Information about the record format */
+ int nKey, /* Size of the binary record */
+ const void *pKey, /* The binary record */
+ UnpackedRecord *p /* Populate this structure before returning. */
+){
+ const unsigned char *aKey = (const unsigned char *)pKey;
+ u32 d;
+ u32 idx; /* Offset in aKey[] to read from */
+ u16 u; /* Unsigned loop counter */
+ u32 szHdr;
+ Mem *pMem = p->aMem;
+
+ p->default_rc = 0;
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) );
+ idx = getVarint32(aKey, szHdr);
+ d = szHdr;
+ u = 0;
+ while( idx<szHdr && d<=(u32)nKey ){
+ u32 serial_type;
+
+ idx += getVarint32(&aKey[idx], serial_type);
+ pMem->enc = pKeyInfo->enc;
+ pMem->db = pKeyInfo->db;
+ /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
+ pMem->szMalloc = 0;
+ pMem->z = 0;
+ sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
+ d += sqlite3VdbeSerialTypeLen(serial_type);
+ pMem++;
+ if( (++u)>=p->nField ) break;
+ }
+ if( d>(u32)nKey && u ){
+ assert( CORRUPT_DB );
+ /* In a corrupt record entry, the last pMem might have been set up using
+ ** uninitialized memory. Overwrite its value with NULL, to prevent
+ ** warnings from MSAN. */
+ sqlite3VdbeMemSetNull(pMem-1);
+ }
+ assert( u<=pKeyInfo->nKeyField + 1 );
+ p->nField = u;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This function compares two index or table record keys in the same way
+** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
+** this function deserializes and compares values using the
+** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
+** in assert() statements to ensure that the optimized code in
+** sqlite3VdbeRecordCompare() returns results with these two primitives.
+**
+** Return true if the result of comparison is equivalent to desiredResult.
+** Return false if there is a disagreement.
+*/
+static int vdbeRecordCompareDebug(
+ int nKey1, const void *pKey1, /* Left key */
+ const UnpackedRecord *pPKey2, /* Right key */
+ int desiredResult /* Correct answer */
+){
+ u32 d1; /* Offset into aKey[] of next data element */
+ u32 idx1; /* Offset into aKey[] of next header element */
+ u32 szHdr1; /* Number of bytes in header */
+ int i = 0;
+ int rc = 0;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ KeyInfo *pKeyInfo;
+ Mem mem1;
+
+ pKeyInfo = pPKey2->pKeyInfo;
+ if( pKeyInfo->db==0 ) return 1;
+ mem1.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
+ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
+
+ /* Compilers may complain that mem1.u.i is potentially uninitialized.
+ ** We could initialize it, as shown here, to silence those complaints.
+ ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
+ ** the unnecessary initialization has a measurable negative performance
+ ** impact, since this routine is a very high runner. And so, we choose
+ ** to ignore the compiler warnings and leave this variable uninitialized.
+ */
+ /* mem1.u.i = 0; // not needed, here to silence compiler warning */
+
+ idx1 = getVarint32(aKey1, szHdr1);
+ if( szHdr1>98307 ) return SQLITE_CORRUPT;
+ d1 = szHdr1;
+ assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
+ assert( pKeyInfo->aSortFlags!=0 );
+ assert( pKeyInfo->nKeyField>0 );
+ assert( idx1<=szHdr1 || CORRUPT_DB );
+ do{
+ u32 serial_type1;
+
+ /* Read the serial types for the next element in each key. */
+ idx1 += getVarint32( aKey1+idx1, serial_type1 );
+
+ /* Verify that there is enough key space remaining to avoid
+ ** a buffer overread. The "d1+serial_type1+2" subexpression will
+ ** always be greater than or equal to the amount of required key space.
+ ** Use that approximation to avoid the more expensive call to
+ ** sqlite3VdbeSerialTypeLen() in the common case.
+ */
+ if( d1+(u64)serial_type1+2>(u64)nKey1
+ && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
+ ){
+ if( serial_type1>=1
+ && serial_type1<=7
+ && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8
+ && CORRUPT_DB
+ ){
+ return 1; /* corrupt record not detected by
+ ** sqlite3VdbeRecordCompareWithSkip(). Return true
+ ** to avoid firing the assert() */
+ }
+ break;
+ }
+
+ /* Extract the values to be compared.
+ */
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
+ d1 += sqlite3VdbeSerialTypeLen(serial_type1);
+
+ /* Do the comparison
+ */
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
+ pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
+ if( rc!=0 ){
+ assert( mem1.szMalloc==0 ); /* See comment below */
+ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
+ && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
+ ){
+ rc = -rc;
+ }
+ if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
+ rc = -rc; /* Invert the result for DESC sort order. */
+ }
+ goto debugCompareEnd;
+ }
+ i++;
+ }while( idx1<szHdr1 && i<pPKey2->nField );
+
+ /* No memory allocation is ever used on mem1. Prove this using
+ ** the following assert(). If the assert() fails, it indicates a
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
+ */
+ assert( mem1.szMalloc==0 );
+
+ /* rc==0 here means that one of the keys ran out of fields and
+ ** all the fields up to that point were equal. Return the default_rc
+ ** value. */
+ rc = pPKey2->default_rc;
+
+debugCompareEnd:
+ if( desiredResult==0 && rc==0 ) return 1;
+ if( desiredResult<0 && rc<0 ) return 1;
+ if( desiredResult>0 && rc>0 ) return 1;
+ if( CORRUPT_DB ) return 1;
+ if( pKeyInfo->db->mallocFailed ) return 1;
+ return 0;
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Count the number of fields (a.k.a. columns) in the record given by
+** pKey,nKey. The verify that this count is less than or equal to the
+** limit given by pKeyInfo->nAllField.
+**
+** If this constraint is not satisfied, it means that the high-speed
+** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
+** not work correctly. If this assert() ever fires, it probably means
+** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
+** incorrectly.
+*/
+static void vdbeAssertFieldCountWithinLimits(
+ int nKey, const void *pKey, /* The record to verify */
+ const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
+){
+ int nField = 0;
+ u32 szHdr;
+ u32 idx;
+ u32 notUsed;
+ const unsigned char *aKey = (const unsigned char*)pKey;
+
+ if( CORRUPT_DB ) return;
+ idx = getVarint32(aKey, szHdr);
+ assert( nKey>=0 );
+ assert( szHdr<=(u32)nKey );
+ while( idx<szHdr ){
+ idx += getVarint32(aKey+idx, notUsed);
+ nField++;
+ }
+ assert( nField <= pKeyInfo->nAllField );
+}
+#else
+# define vdbeAssertFieldCountWithinLimits(A,B,C)
+#endif
+
+/*
+** Both *pMem1 and *pMem2 contain string values. Compare the two values
+** using the collation sequence pColl. As usual, return a negative , zero
+** or positive value if *pMem1 is less than, equal to or greater than
+** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
+*/
+static int vdbeCompareMemString(
+ const Mem *pMem1,
+ const Mem *pMem2,
+ const CollSeq *pColl,
+ u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
+){
+ if( pMem1->enc==pColl->enc ){
+ /* The strings are already in the correct encoding. Call the
+ ** comparison function directly */
+ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
+ }else{
+ int rc;
+ const void *v1, *v2;
+ Mem c1;
+ Mem c2;
+ sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
+ sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
+ sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
+ sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
+ v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
+ v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
+ if( (v1==0 || v2==0) ){
+ if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
+ rc = 0;
+ }else{
+ rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
+ }
+ sqlite3VdbeMemReleaseMalloc(&c1);
+ sqlite3VdbeMemReleaseMalloc(&c2);
+ return rc;
+ }
+}
+
+/*
+** The input pBlob is guaranteed to be a Blob that is not marked
+** with MEM_Zero. Return true if it could be a zero-blob.
+*/
+static int isAllZero(const char *z, int n){
+ int i;
+ for(i=0; i<n; i++){
+ if( z[i] ) return 0;
+ }
+ return 1;
+}
+
+/*
+** Compare two blobs. Return negative, zero, or positive if the first
+** is less than, equal to, or greater than the second, respectively.
+** If one blob is a prefix of the other, then the shorter is the lessor.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
+ int c;
+ int n1 = pB1->n;
+ int n2 = pB2->n;
+
+ /* It is possible to have a Blob value that has some non-zero content
+ ** followed by zero content. But that only comes up for Blobs formed
+ ** by the OP_MakeRecord opcode, and such Blobs never get passed into
+ ** sqlite3MemCompare(). */
+ assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
+ assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
+
+ if( (pB1->flags|pB2->flags) & MEM_Zero ){
+ if( pB1->flags & pB2->flags & MEM_Zero ){
+ return pB1->u.nZero - pB2->u.nZero;
+ }else if( pB1->flags & MEM_Zero ){
+ if( !isAllZero(pB2->z, pB2->n) ) return -1;
+ return pB1->u.nZero - n2;
+ }else{
+ if( !isAllZero(pB1->z, pB1->n) ) return +1;
+ return n1 - pB2->u.nZero;
+ }
+ }
+ c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
+ if( c ) return c;
+ return n1 - n2;
+}
+
+/* The following two functions are used only within testcase() to prove
+** test coverage. These functions do no exist for production builds.
+** We must use separate SQLITE_NOINLINE functions here, since otherwise
+** optimizer code movement causes gcov to become very confused.
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; }
+static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; }
+#endif
+
+/*
+** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
+** number. Return negative, zero, or positive if the first (i64) is less than,
+** equal to, or greater than the second (double).
+*/
+SQLITE_PRIVATE int sqlite3IntFloatCompare(i64 i, double r){
+ if( sqlite3IsNaN(r) ){
+ /* SQLite considers NaN to be a NULL. And all integer values are greater
+ ** than NULL */
+ return 1;
+ }
+ if( sqlite3Config.bUseLongDouble ){
+ LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
+ testcase( x<r );
+ testcase( x>r );
+ testcase( x==r );
+ return (x<r) ? -1 : (x>r);
+ }else{
+ i64 y;
+ double s;
+ if( r<-9223372036854775808.0 ) return +1;
+ if( r>=9223372036854775808.0 ) return -1;
+ y = (i64)r;
+ if( i<y ) return -1;
+ if( i>y ) return +1;
+ s = (double)i;
+ testcase( doubleLt(s,r) );
+ testcase( doubleLt(r,s) );
+ testcase( doubleEq(r,s) );
+ return (s<r) ? -1 : (s>r);
+ }
+}
+
+/*
+** Compare the values contained by the two memory cells, returning
+** negative, zero or positive if pMem1 is less than, equal to, or greater
+** than pMem2. Sorting order is NULL's first, followed by numbers (integers
+** and reals) sorted numerically, followed by text ordered by the collating
+** sequence pColl and finally blob's ordered by memcmp().
+**
+** Two NULL values are considered equal by this function.
+*/
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
+ int f1, f2;
+ int combined_flags;
+
+ f1 = pMem1->flags;
+ f2 = pMem2->flags;
+ combined_flags = f1|f2;
+ assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
+
+ /* If one value is NULL, it is less than the other. If both values
+ ** are NULL, return 0.
+ */
+ if( combined_flags&MEM_Null ){
+ return (f2&MEM_Null) - (f1&MEM_Null);
+ }
+
+ /* At least one of the two values is a number
+ */
+ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
+ testcase( combined_flags & MEM_Int );
+ testcase( combined_flags & MEM_Real );
+ testcase( combined_flags & MEM_IntReal );
+ if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
+ testcase( f1 & f2 & MEM_Int );
+ testcase( f1 & f2 & MEM_IntReal );
+ if( pMem1->u.i < pMem2->u.i ) return -1;
+ if( pMem1->u.i > pMem2->u.i ) return +1;
+ return 0;
+ }
+ if( (f1 & f2 & MEM_Real)!=0 ){
+ if( pMem1->u.r < pMem2->u.r ) return -1;
+ if( pMem1->u.r > pMem2->u.r ) return +1;
+ return 0;
+ }
+ if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
+ testcase( f1 & MEM_Int );
+ testcase( f1 & MEM_IntReal );
+ if( (f2&MEM_Real)!=0 ){
+ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
+ }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
+ if( pMem1->u.i < pMem2->u.i ) return -1;
+ if( pMem1->u.i > pMem2->u.i ) return +1;
+ return 0;
+ }else{
+ return -1;
+ }
+ }
+ if( (f1&MEM_Real)!=0 ){
+ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
+ testcase( f2 & MEM_Int );
+ testcase( f2 & MEM_IntReal );
+ return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
+ }else{
+ return -1;
+ }
+ }
+ return +1;
+ }
+
+ /* If one value is a string and the other is a blob, the string is less.
+ ** If both are strings, compare using the collating functions.
+ */
+ if( combined_flags&MEM_Str ){
+ if( (f1 & MEM_Str)==0 ){
+ return 1;
+ }
+ if( (f2 & MEM_Str)==0 ){
+ return -1;
+ }
+
+ assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
+ assert( pMem1->enc==SQLITE_UTF8 ||
+ pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
+
+ /* The collation sequence must be defined at this point, even if
+ ** the user deletes the collation sequence after the vdbe program is
+ ** compiled (this was not always the case).
+ */
+ assert( !pColl || pColl->xCmp );
+
+ if( pColl ){
+ return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
+ }
+ /* If a NULL pointer was passed as the collate function, fall through
+ ** to the blob case and use memcmp(). */
+ }
+
+ /* Both values must be blobs. Compare using memcmp(). */
+ return sqlite3BlobCompare(pMem1, pMem2);
+}
+
+
+/*
+** The first argument passed to this function is a serial-type that
+** corresponds to an integer - all values between 1 and 9 inclusive
+** except 7. The second points to a buffer containing an integer value
+** serialized according to serial_type. This function deserializes
+** and returns the value.
+*/
+static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
+ u32 y;
+ assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
+ switch( serial_type ){
+ case 0:
+ case 1:
+ testcase( aKey[0]&0x80 );
+ return ONE_BYTE_INT(aKey);
+ case 2:
+ testcase( aKey[0]&0x80 );
+ return TWO_BYTE_INT(aKey);
+ case 3:
+ testcase( aKey[0]&0x80 );
+ return THREE_BYTE_INT(aKey);
+ case 4: {
+ testcase( aKey[0]&0x80 );
+ y = FOUR_BYTE_UINT(aKey);
+ return (i64)*(int*)&y;
+ }
+ case 5: {
+ testcase( aKey[0]&0x80 );
+ return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
+ }
+ case 6: {
+ u64 x = FOUR_BYTE_UINT(aKey);
+ testcase( aKey[0]&0x80 );
+ x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
+ return (i64)*(i64*)&x;
+ }
+ }
+
+ return (serial_type - 8);
+}
+
+/*
+** This function compares the two table rows or index records
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
+** or positive integer if key1 is less than, equal to or
+** greater than key2. The {nKey1, pKey1} key must be a blob
+** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
+** key must be a parsed key such as obtained from
+** sqlite3VdbeParseRecord.
+**
+** If argument bSkip is non-zero, it is assumed that the caller has already
+** determined that the first fields of the keys are equal.
+**
+** Key1 and Key2 do not have to contain the same number of fields. If all
+** fields that appear in both keys are equal, then pPKey2->default_rc is
+** returned.
+**
+** If database corruption is discovered, set pPKey2->errCode to
+** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
+** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
+** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
+*/
+SQLITE_PRIVATE int sqlite3VdbeRecordCompareWithSkip(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2, /* Right key */
+ int bSkip /* If true, skip the first field */
+){
+ u32 d1; /* Offset into aKey[] of next data element */
+ int i; /* Index of next field to compare */
+ u32 szHdr1; /* Size of record header in bytes */
+ u32 idx1; /* Offset of first type in header */
+ int rc = 0; /* Return value */
+ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
+ KeyInfo *pKeyInfo;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ Mem mem1;
+
+ /* If bSkip is true, then the caller has already determined that the first
+ ** two elements in the keys are equal. Fix the various stack variables so
+ ** that this routine begins comparing at the second field. */
+ if( bSkip ){
+ u32 s1 = aKey1[1];
+ if( s1<0x80 ){
+ idx1 = 2;
+ }else{
+ idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
+ }
+ szHdr1 = aKey1[0];
+ d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
+ i = 1;
+ pRhs++;
+ }else{
+ if( (szHdr1 = aKey1[0])<0x80 ){
+ idx1 = 1;
+ }else{
+ idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
+ }
+ d1 = szHdr1;
+ i = 0;
+ }
+ if( d1>(unsigned)nKey1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }
+
+ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
+ assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
+ || CORRUPT_DB );
+ assert( pPKey2->pKeyInfo->aSortFlags!=0 );
+ assert( pPKey2->pKeyInfo->nKeyField>0 );
+ assert( idx1<=szHdr1 || CORRUPT_DB );
+ while( 1 /*exit-by-break*/ ){
+ u32 serial_type;
+
+ /* RHS is an integer */
+ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pRhs->flags & MEM_Int );
+ testcase( pRhs->flags & MEM_IntReal );
+ serial_type = aKey1[idx1];
+ testcase( serial_type==12 );
+ if( serial_type>=10 ){
+ rc = serial_type==10 ? -1 : +1;
+ }else if( serial_type==0 ){
+ rc = -1;
+ }else if( serial_type==7 ){
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
+ rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
+ }else{
+ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
+ i64 rhs = pRhs->u.i;
+ if( lhs<rhs ){
+ rc = -1;
+ }else if( lhs>rhs ){
+ rc = +1;
+ }
+ }
+ }
+
+ /* RHS is real */
+ else if( pRhs->flags & MEM_Real ){
+ serial_type = aKey1[idx1];
+ if( serial_type>=10 ){
+ /* Serial types 12 or greater are strings and blobs (greater than
+ ** numbers). Types 10 and 11 are currently "reserved for future
+ ** use", so it doesn't really matter what the results of comparing
+ ** them to numeric values are. */
+ rc = serial_type==10 ? -1 : +1;
+ }else if( serial_type==0 ){
+ rc = -1;
+ }else{
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
+ if( serial_type==7 ){
+ if( mem1.u.r<pRhs->u.r ){
+ rc = -1;
+ }else if( mem1.u.r>pRhs->u.r ){
+ rc = +1;
+ }
+ }else{
+ rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
+ }
+ }
+ }
+
+ /* RHS is a string */
+ else if( pRhs->flags & MEM_Str ){
+ getVarint32NR(&aKey1[idx1], serial_type);
+ testcase( serial_type==12 );
+ if( serial_type<12 ){
+ rc = -1;
+ }else if( !(serial_type & 0x01) ){
+ rc = +1;
+ }else{
+ mem1.n = (serial_type - 12) / 2;
+ testcase( (d1+mem1.n)==(unsigned)nKey1 );
+ testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
+ if( (d1+mem1.n) > (unsigned)nKey1
+ || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
+ ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }else if( pKeyInfo->aColl[i] ){
+ mem1.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ mem1.flags = MEM_Str;
+ mem1.z = (char*)&aKey1[d1];
+ rc = vdbeCompareMemString(
+ &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
+ );
+ }else{
+ int nCmp = MIN(mem1.n, pRhs->n);
+ rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
+ if( rc==0 ) rc = mem1.n - pRhs->n;
+ }
+ }
+ }
+
+ /* RHS is a blob */
+ else if( pRhs->flags & MEM_Blob ){
+ assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
+ getVarint32NR(&aKey1[idx1], serial_type);
+ testcase( serial_type==12 );
+ if( serial_type<12 || (serial_type & 0x01) ){
+ rc = -1;
+ }else{
+ int nStr = (serial_type - 12) / 2;
+ testcase( (d1+nStr)==(unsigned)nKey1 );
+ testcase( (d1+nStr+1)==(unsigned)nKey1 );
+ if( (d1+nStr) > (unsigned)nKey1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }else if( pRhs->flags & MEM_Zero ){
+ if( !isAllZero((const char*)&aKey1[d1],nStr) ){
+ rc = 1;
+ }else{
+ rc = nStr - pRhs->u.nZero;
+ }
+ }else{
+ int nCmp = MIN(nStr, pRhs->n);
+ rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
+ if( rc==0 ) rc = nStr - pRhs->n;
+ }
+ }
+ }
+
+ /* RHS is null */
+ else{
+ serial_type = aKey1[idx1];
+ rc = (serial_type!=0 && serial_type!=10);
+ }
+
+ if( rc!=0 ){
+ int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
+ if( sortFlags ){
+ if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
+ || ((sortFlags & KEYINFO_ORDER_DESC)
+ !=(serial_type==0 || (pRhs->flags&MEM_Null)))
+ ){
+ rc = -rc;
+ }
+ }
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
+ assert( mem1.szMalloc==0 ); /* See comment below */
+ return rc;
+ }
+
+ i++;
+ if( i==pPKey2->nField ) break;
+ pRhs++;
+ d1 += sqlite3VdbeSerialTypeLen(serial_type);
+ if( d1>(unsigned)nKey1 ) break;
+ idx1 += sqlite3VarintLen(serial_type);
+ if( idx1>=(unsigned)szHdr1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corrupt index */
+ }
+ }
+
+ /* No memory allocation is ever used on mem1. Prove this using
+ ** the following assert(). If the assert() fails, it indicates a
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
+ assert( mem1.szMalloc==0 );
+
+ /* rc==0 here means that one or both of the keys ran out of fields and
+ ** all the fields up to that point were equal. Return the default_rc
+ ** value. */
+ assert( CORRUPT_DB
+ || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
+ || pPKey2->pKeyInfo->db->mallocFailed
+ );
+ pPKey2->eqSeen = 1;
+ return pPKey2->default_rc;
+}
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
+}
+
+
+/*
+** This function is an optimized version of sqlite3VdbeRecordCompare()
+** that (a) the first field of pPKey2 is an integer, and (b) the
+** size-of-header varint at the start of (pKey1/nKey1) fits in a single
+** byte (i.e. is less than 128).
+**
+** To avoid concerns about buffer overreads, this routine is only used
+** on schemas where the maximum valid header size is 63 bytes or less.
+*/
+static int vdbeRecordCompareInt(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
+ int serial_type = ((const u8*)pKey1)[1];
+ int res;
+ u32 y;
+ u64 x;
+ i64 v;
+ i64 lhs;
+
+ vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
+ assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
+ switch( serial_type ){
+ case 1: { /* 1-byte signed integer */
+ lhs = ONE_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 2: { /* 2-byte signed integer */
+ lhs = TWO_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 3: { /* 3-byte signed integer */
+ lhs = THREE_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 4: { /* 4-byte signed integer */
+ y = FOUR_BYTE_UINT(aKey);
+ lhs = (i64)*(int*)&y;
+ testcase( lhs<0 );
+ break;
+ }
+ case 5: { /* 6-byte signed integer */
+ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
+ testcase( lhs<0 );
+ break;
+ }
+ case 6: { /* 8-byte signed integer */
+ x = FOUR_BYTE_UINT(aKey);
+ x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
+ lhs = *(i64*)&x;
+ testcase( lhs<0 );
+ break;
+ }
+ case 8:
+ lhs = 0;
+ break;
+ case 9:
+ lhs = 1;
+ break;
+
+ /* This case could be removed without changing the results of running
+ ** this code. Including it causes gcc to generate a faster switch
+ ** statement (since the range of switch targets now starts at zero and
+ ** is contiguous) but does not cause any duplicate code to be generated
+ ** (as gcc is clever enough to combine the two like cases). Other
+ ** compilers might be similar. */
+ case 0: case 7:
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
+
+ default:
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
+ }
+
+ assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
+ v = pPKey2->u.i;
+ if( v>lhs ){
+ res = pPKey2->r1;
+ }else if( v<lhs ){
+ res = pPKey2->r2;
+ }else if( pPKey2->nField>1 ){
+ /* The first fields of the two keys are equal. Compare the trailing
+ ** fields. */
+ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
+ }else{
+ /* The first fields of the two keys are equal and there are no trailing
+ ** fields. Return pPKey2->default_rc in this case. */
+ res = pPKey2->default_rc;
+ pPKey2->eqSeen = 1;
+ }
+
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
+ return res;
+}
+
+/*
+** This function is an optimized version of sqlite3VdbeRecordCompare()
+** that (a) the first field of pPKey2 is a string, that (b) the first field
+** uses the collation sequence BINARY and (c) that the size-of-header varint
+** at the start of (pKey1/nKey1) fits in a single byte.
+*/
+static int vdbeRecordCompareString(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ const u8 *aKey1 = (const u8*)pKey1;
+ int serial_type;
+ int res;
+
+ assert( pPKey2->aMem[0].flags & MEM_Str );
+ assert( pPKey2->aMem[0].n == pPKey2->n );
+ assert( pPKey2->aMem[0].z == pPKey2->u.z );
+ vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
+ serial_type = (signed char)(aKey1[1]);
+
+vrcs_restart:
+ if( serial_type<12 ){
+ if( serial_type<0 ){
+ sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
+ if( serial_type>=12 ) goto vrcs_restart;
+ assert( CORRUPT_DB );
+ }
+ res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
+ }else if( !(serial_type & 0x01) ){
+ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
+ }else{
+ int nCmp;
+ int nStr;
+ int szHdr = aKey1[0];
+
+ nStr = (serial_type-12) / 2;
+ if( (szHdr + nStr) > nKey1 ){
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
+ return 0; /* Corruption */
+ }
+ nCmp = MIN( pPKey2->n, nStr );
+ res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
+
+ if( res>0 ){
+ res = pPKey2->r2;
+ }else if( res<0 ){
+ res = pPKey2->r1;
+ }else{
+ res = nStr - pPKey2->n;
+ if( res==0 ){
+ if( pPKey2->nField>1 ){
+ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
+ }else{
+ res = pPKey2->default_rc;
+ pPKey2->eqSeen = 1;
+ }
+ }else if( res>0 ){
+ res = pPKey2->r2;
+ }else{
+ res = pPKey2->r1;
+ }
+ }
+ }
+
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
+ || CORRUPT_DB
+ || pPKey2->pKeyInfo->db->mallocFailed
+ );
+ return res;
+}
+
+/*
+** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
+** suitable for comparing serialized records to the unpacked record passed
+** as the only argument.
+*/
+SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
+ /* varintRecordCompareInt() and varintRecordCompareString() both assume
+ ** that the size-of-header varint that occurs at the start of each record
+ ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
+ ** also assumes that it is safe to overread a buffer by at least the
+ ** maximum possible legal header size plus 8 bytes. Because there is
+ ** guaranteed to be at least 74 (but not 136) bytes of padding following each
+ ** buffer passed to varintRecordCompareInt() this makes it convenient to
+ ** limit the size of the header to 64 bytes in cases where the first field
+ ** is an integer.
+ **
+ ** The easiest way to enforce this limit is to consider only records with
+ ** 13 fields or less. If the first field is an integer, the maximum legal
+ ** header size is (12*5 + 1 + 1) bytes. */
+ if( p->pKeyInfo->nAllField<=13 ){
+ int flags = p->aMem[0].flags;
+ if( p->pKeyInfo->aSortFlags[0] ){
+ if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
+ return sqlite3VdbeRecordCompare;
+ }
+ p->r1 = 1;
+ p->r2 = -1;
+ }else{
+ p->r1 = -1;
+ p->r2 = 1;
+ }
+ if( (flags & MEM_Int) ){
+ p->u.i = p->aMem[0].u.i;
+ return vdbeRecordCompareInt;
+ }
+ testcase( flags & MEM_Real );
+ testcase( flags & MEM_Null );
+ testcase( flags & MEM_Blob );
+ if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
+ && p->pKeyInfo->aColl[0]==0
+ ){
+ assert( flags & MEM_Str );
+ p->u.z = p->aMem[0].z;
+ p->n = p->aMem[0].n;
+ return vdbeRecordCompareString;
+ }
+ }
+
+ return sqlite3VdbeRecordCompare;
+}
+
+/*
+** pCur points at an index entry created using the OP_MakeRecord opcode.
+** Read the rowid (the last field in the record) and store it in *rowid.
+** Return SQLITE_OK if everything works, or an error code otherwise.
+**
+** pCur might be pointing to text obtained from a corrupt database file.
+** So the content cannot be trusted. Do appropriate checks on the content.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
+ i64 nCellKey = 0;
+ int rc;
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+ u32 lenRowid; /* Size of the rowid */
+ Mem m, v;
+
+ /* Get the size of the index entry. Only indices entries of less
+ ** than 2GiB are support - anything large must be database corruption.
+ ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
+ ** this code can safely assume that nCellKey is 32-bits
+ */
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
+
+ /* Read in the complete content of the index entry */
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ){
+ return rc;
+ }
+
+ /* The index entry must begin with a header size */
+ getVarint32NR((u8*)m.z, szHdr);
+ testcase( szHdr==3 );
+ testcase( szHdr==(u32)m.n );
+ testcase( szHdr>0x7fffffff );
+ assert( m.n>=0 );
+ if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
+ goto idx_rowid_corruption;
+ }
+
+ /* The last field of the index should be an integer - the ROWID.
+ ** Verify that the last entry really is an integer. */
+ getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
+ testcase( typeRowid==1 );
+ testcase( typeRowid==2 );
+ testcase( typeRowid==3 );
+ testcase( typeRowid==4 );
+ testcase( typeRowid==5 );
+ testcase( typeRowid==6 );
+ testcase( typeRowid==8 );
+ testcase( typeRowid==9 );
+ if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
+ goto idx_rowid_corruption;
+ }
+ lenRowid = sqlite3SmallTypeSizes[typeRowid];
+ testcase( (u32)m.n==szHdr+lenRowid );
+ if( unlikely((u32)m.n<szHdr+lenRowid) ){
+ goto idx_rowid_corruption;
+ }
+
+ /* Fetch the integer off the end of the index record */
+ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
+ *rowid = v.u.i;
+ sqlite3VdbeMemReleaseMalloc(&m);
+ return SQLITE_OK;
+
+ /* Jump here if database corruption is detected after m has been
+ ** allocated. Free the m object and return SQLITE_CORRUPT. */
+idx_rowid_corruption:
+ testcase( m.szMalloc!=0 );
+ sqlite3VdbeMemReleaseMalloc(&m);
+ return SQLITE_CORRUPT_BKPT;
+}
+
+/*
+** Compare the key of the index entry that cursor pC is pointing to against
+** the key string in pUnpacked. Write into *pRes a number
+** that is negative, zero, or positive if pC is less than, equal to,
+** or greater than pUnpacked. Return SQLITE_OK on success.
+**
+** pUnpacked is either created without a rowid or is truncated so that it
+** omits the rowid at the end. The rowid at the end of the index entry
+** is ignored as well. Hence, this routine only compares the prefixes
+** of the keys prior to the final rowid, not the entire key.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
+ sqlite3 *db, /* Database connection */
+ VdbeCursor *pC, /* The cursor to compare against */
+ UnpackedRecord *pUnpacked, /* Unpacked version of key */
+ int *res /* Write the comparison result here */
+){
+ i64 nCellKey = 0;
+ int rc;
+ BtCursor *pCur;
+ Mem m;
+
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCur = pC->uc.pCursor;
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ /* nCellKey will always be between 0 and 0xffffffff because of the way
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){
+ *res = 0;
+ return SQLITE_CORRUPT_BKPT;
+ }
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ){
+ return rc;
+ }
+ *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
+ sqlite3VdbeMemReleaseMalloc(&m);
+ return SQLITE_OK;
+}
+
+/*
+** This routine sets the value to be returned by subsequent calls to
+** sqlite3_changes() on the database handle 'db'.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
+ assert( sqlite3_mutex_held(db->mutex) );
+ db->nChange = nChange;
+ db->nTotalChange += nChange;
+}
+
+/*
+** Set a flag in the vdbe to update the change counter when it is finalised
+** or reset.
+*/
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
+ v->changeCntOn = 1;
+}
+
+/*
+** Mark every prepared statement associated with a database connection
+** as expired.
+**
+** An expired statement means that recompilation of the statement is
+** recommend. Statements expire when things happen that make their
+** programs obsolete. Removing user-defined functions or collating
+** sequences, or changing an authorization function are the types of
+** things that make prepared statements obsolete.
+**
+** If iCode is 1, then expiration is advisory. The statement should
+** be reprepared before being restarted, but if it is already running
+** it is allowed to run to completion.
+**
+** Internally, this function just sets the Vdbe.expired flag on all
+** prepared statements. The flag is set to 1 for an immediate expiration
+** and set to 2 for an advisory expiration.
+*/
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
+ Vdbe *p;
+ for(p = db->pVdbe; p; p=p->pVNext){
+ p->expired = iCode+1;
+ }
+}
+
+/*
+** Return the database associated with the Vdbe.
+*/
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
+ return v->db;
+}
+
+/*
+** Return the SQLITE_PREPARE flags for a Vdbe.
+*/
+SQLITE_PRIVATE u8 sqlite3VdbePrepareFlags(Vdbe *v){
+ return v->prepFlags;
+}
+
+/*
+** Return a pointer to an sqlite3_value structure containing the value bound
+** parameter iVar of VM v. Except, if the value is an SQL NULL, return
+** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
+** constants) to the value before returning it.
+**
+** The returned value must be freed by the caller using sqlite3ValueFree().
+*/
+SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
+ assert( iVar>0 );
+ if( v ){
+ Mem *pMem = &v->aVar[iVar-1];
+ assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
+ if( 0==(pMem->flags & MEM_Null) ){
+ sqlite3_value *pRet = sqlite3ValueNew(v->db);
+ if( pRet ){
+ sqlite3VdbeMemCopy((Mem *)pRet, pMem);
+ sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
+ }
+ return pRet;
+ }
+ }
+ return 0;
+}
+
+/*
+** Configure SQL variable iVar so that binding a new value to it signals
+** to sqlite3_reoptimize() that re-preparing the statement may result
+** in a better query plan.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
+ assert( iVar>0 );
+ assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
+ if( iVar>=32 ){
+ v->expmask |= 0x80000000;
+ }else{
+ v->expmask |= ((u32)1 << (iVar-1));
+ }
+}
+
+/*
+** Cause a function to throw an error if it was call from OP_PureFunc
+** rather than OP_Function.
+**
+** OP_PureFunc means that the function must be deterministic, and should
+** throw an error if it is given inputs that would make it non-deterministic.
+** This routine is invoked by date/time functions that use non-deterministic
+** features such as 'now'.
+*/
+SQLITE_PRIVATE int sqlite3NotPureFunc(sqlite3_context *pCtx){
+ const VdbeOp *pOp;
+#ifdef SQLITE_ENABLE_STAT4
+ if( pCtx->pVdbe==0 ) return 1;
+#endif
+ pOp = pCtx->pVdbe->aOp + pCtx->iOp;
+ if( pOp->opcode==OP_PureFunc ){
+ const char *zContext;
+ char *zMsg;
+ if( pOp->p5 & NC_IsCheck ){
+ zContext = "a CHECK constraint";
+ }else if( pOp->p5 & NC_GenCol ){
+ zContext = "a generated column";
+ }else{
+ zContext = "an index";
+ }
+ zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
+ pCtx->pFunc->zName, zContext);
+ sqlite3_result_error(pCtx, zMsg, -1);
+ sqlite3_free(zMsg);
+ return 0;
+ }
+ return 1;
+}
+
+#if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
+/*
+** This Walker callback is used to help verify that calls to
+** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
+** byte-code register values correctly initialized.
+*/
+SQLITE_PRIVATE int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_REGISTER ){
+ assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 );
+ }
+ return WRC_Continue;
+}
+#endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
+** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
+** in memory obtained from sqlite3DbMalloc).
+*/
+SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
+ if( pVtab->zErrMsg ){
+ sqlite3 *db = p->db;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+ }
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+
+/*
+** If the second argument is not NULL, release any allocations associated
+** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
+** structure itself, using sqlite3DbFree().
+**
+** This function is used to free UnpackedRecord structures allocated by
+** the vdbeUnpackRecord() function found in vdbeapi.c.
+*/
+static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
+ assert( db!=0 );
+ if( p ){
+ int i;
+ for(i=0; i<nField; i++){
+ Mem *pMem = &p->aMem[i];
+ if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
+ }
+ sqlite3DbNNFreeNN(db, p);
+ }
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
+** then cursor passed as the second argument should point to the row about
+** to be update or deleted. If the application calls sqlite3_preupdate_old(),
+** the required value will be read from the row the cursor points to.
+*/
+SQLITE_PRIVATE void sqlite3VdbePreUpdateHook(
+ Vdbe *v, /* Vdbe pre-update hook is invoked by */
+ VdbeCursor *pCsr, /* Cursor to grab old.* values from */
+ int op, /* SQLITE_INSERT, UPDATE or DELETE */
+ const char *zDb, /* Database name */
+ Table *pTab, /* Modified table */
+ i64 iKey1, /* Initial key value */
+ int iReg, /* Register for new.* record */
+ int iBlobWrite
+){
+ sqlite3 *db = v->db;
+ i64 iKey2;
+ PreUpdate preupdate;
+ const char *zTbl = pTab->zName;
+ static const u8 fakeSortOrder = 0;
+#ifdef SQLITE_DEBUG
+ int nRealCol;
+ if( pTab->tabFlags & TF_WithoutRowid ){
+ nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn;
+ }else if( pTab->tabFlags & TF_HasVirtual ){
+ nRealCol = pTab->nNVCol;
+ }else{
+ nRealCol = pTab->nCol;
+ }
+#endif
+
+ assert( db->pPreUpdate==0 );
+ memset(&preupdate, 0, sizeof(PreUpdate));
+ if( HasRowid(pTab)==0 ){
+ iKey1 = iKey2 = 0;
+ preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
+ }else{
+ if( op==SQLITE_UPDATE ){
+ iKey2 = v->aMem[iReg].u.i;
+ }else{
+ iKey2 = iKey1;
+ }
+ }
+
+ assert( pCsr!=0 );
+ assert( pCsr->eCurType==CURTYPE_BTREE );
+ assert( pCsr->nField==nRealCol
+ || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1)
+ );
+
+ preupdate.v = v;
+ preupdate.pCsr = pCsr;
+ preupdate.op = op;
+ preupdate.iNewReg = iReg;
+ preupdate.keyinfo.db = db;
+ preupdate.keyinfo.enc = ENC(db);
+ preupdate.keyinfo.nKeyField = pTab->nCol;
+ preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
+ preupdate.iKey1 = iKey1;
+ preupdate.iKey2 = iKey2;
+ preupdate.pTab = pTab;
+ preupdate.iBlobWrite = iBlobWrite;
+
+ db->pPreUpdate = &preupdate;
+ db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
+ db->pPreUpdate = 0;
+ sqlite3DbFree(db, preupdate.aRecord);
+ vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
+ vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
+ if( preupdate.aNew ){
+ int i;
+ for(i=0; i<pCsr->nField; i++){
+ sqlite3VdbeMemRelease(&preupdate.aNew[i]);
+ }
+ sqlite3DbNNFreeNN(db, preupdate.aNew);
+ }
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+/************** End of vdbeaux.c *********************************************/
+/************** Begin file vdbeapi.c *****************************************/
+/*
+** 2004 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to implement APIs that are part of the
+** VDBE.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+/* #include "opcodes.h" */
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Return TRUE (non-zero) of the statement supplied as an argument needs
+** to be recompiled. A statement needs to be recompiled whenever the
+** execution environment changes in a way that would alter the program
+** that sqlite3_prepare() generates. For example, if new functions or
+** collating sequences are registered or if an authorizer function is
+** added or changed.
+*/
+SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ return p==0 || p->expired;
+}
+#endif
+
+/*
+** Check on a Vdbe to make sure it has not been finalized. Log
+** an error and return true if it has been finalized (or is otherwise
+** invalid). Return false if it is ok.
+*/
+static int vdbeSafety(Vdbe *p){
+ if( p->db==0 ){
+ sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
+ return 1;
+ }else{
+ return 0;
+ }
+}
+static int vdbeSafetyNotNull(Vdbe *p){
+ if( p==0 ){
+ sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
+ return 1;
+ }else{
+ return vdbeSafety(p);
+ }
+}
+
+#ifndef SQLITE_OMIT_TRACE
+/*
+** Invoke the profile callback. This routine is only called if we already
+** know that the profile callback is defined and needs to be invoked.
+*/
+static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
+ sqlite3_int64 iNow;
+ sqlite3_int64 iElapse;
+ assert( p->startTime>0 );
+ assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
+ assert( db->init.busy==0 );
+ assert( p->zSql!=0 );
+ sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
+ iElapse = (iNow - p->startTime)*1000000;
+#ifndef SQLITE_OMIT_DEPRECATED
+ if( db->xProfile ){
+ db->xProfile(db->pProfileArg, p->zSql, iElapse);
+ }
+#endif
+ if( db->mTrace & SQLITE_TRACE_PROFILE ){
+ db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
+ }
+ p->startTime = 0;
+}
+/*
+** The checkProfileCallback(DB,P) macro checks to see if a profile callback
+** is needed, and it invokes the callback if it is needed.
+*/
+# define checkProfileCallback(DB,P) \
+ if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
+#else
+# define checkProfileCallback(DB,P) /*no-op*/
+#endif
+
+/*
+** The following routine destroys a virtual machine that is created by
+** the sqlite3_compile() routine. The integer returned is an SQLITE_
+** success/failure code that describes the result of executing the virtual
+** machine.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
+ ** pointer is a harmless no-op. */
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+ if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
+ sqlite3_mutex_enter(db->mutex);
+ checkProfileCallback(db, v);
+ assert( v->eVdbeState>=VDBE_READY_STATE );
+ rc = sqlite3VdbeReset(v);
+ sqlite3VdbeDelete(v);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3LeaveMutexAndCloseZombie(db);
+ }
+ return rc;
+}
+
+/*
+** Terminate the current execution of an SQL statement and reset it
+** back to its starting state so that it can be reused. A success code from
+** the prior execution is returned.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+ sqlite3_mutex_enter(db->mutex);
+ checkProfileCallback(db, v);
+ rc = sqlite3VdbeReset(v);
+ sqlite3VdbeRewind(v);
+ assert( (rc & (db->errMask))==rc );
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ }
+ return rc;
+}
+
+/*
+** Set all the parameters in the compiled SQL statement to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
+ int i;
+ int rc = SQLITE_OK;
+ Vdbe *p = (Vdbe*)pStmt;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<p->nVar; i++){
+ sqlite3VdbeMemRelease(&p->aVar[i]);
+ p->aVar[i].flags = MEM_Null;
+ }
+ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
+ if( p->expmask ){
+ p->expired = 1;
+ }
+ sqlite3_mutex_leave(mutex);
+ return rc;
+}
+
+
+/**************************** sqlite3_value_ *******************************
+** The following routines extract information from a Mem or sqlite3_value
+** structure.
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
+ Mem *p = (Mem*)pVal;
+ if( p->flags & (MEM_Blob|MEM_Str) ){
+ if( ExpandBlob(p)!=SQLITE_OK ){
+ assert( p->flags==MEM_Null && p->z==0 );
+ return 0;
+ }
+ p->flags |= MEM_Blob;
+ return p->n ? p->z : 0;
+ }else{
+ return sqlite3_value_text(pVal);
+ }
+}
+SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
+ return sqlite3ValueBytes(pVal, SQLITE_UTF8);
+}
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
+ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
+}
+SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
+ return sqlite3VdbeRealValue((Mem*)pVal);
+}
+SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
+ return (int)sqlite3VdbeIntValue((Mem*)pVal);
+}
+SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
+ return sqlite3VdbeIntValue((Mem*)pVal);
+}
+SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
+ Mem *pMem = (Mem*)pVal;
+ return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
+}
+SQLITE_API void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
+ Mem *p = (Mem*)pVal;
+ if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
+ (MEM_Null|MEM_Term|MEM_Subtype)
+ && zPType!=0
+ && p->eSubtype=='p'
+ && strcmp(p->u.zPType, zPType)==0
+ ){
+ return (void*)p->z;
+ }else{
+ return 0;
+ }
+}
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
+ return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
+}
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16BE);
+}
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16LE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+/* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
+** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
+** point number string BLOB NULL
+*/
+SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
+ static const u8 aType[] = {
+ SQLITE_BLOB, /* 0x00 (not possible) */
+ SQLITE_NULL, /* 0x01 NULL */
+ SQLITE_TEXT, /* 0x02 TEXT */
+ SQLITE_NULL, /* 0x03 (not possible) */
+ SQLITE_INTEGER, /* 0x04 INTEGER */
+ SQLITE_NULL, /* 0x05 (not possible) */
+ SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
+ SQLITE_NULL, /* 0x07 (not possible) */
+ SQLITE_FLOAT, /* 0x08 FLOAT */
+ SQLITE_NULL, /* 0x09 (not possible) */
+ SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
+ SQLITE_NULL, /* 0x0b (not possible) */
+ SQLITE_INTEGER, /* 0x0c (not possible) */
+ SQLITE_NULL, /* 0x0d (not possible) */
+ SQLITE_INTEGER, /* 0x0e (not possible) */
+ SQLITE_NULL, /* 0x0f (not possible) */
+ SQLITE_BLOB, /* 0x10 BLOB */
+ SQLITE_NULL, /* 0x11 (not possible) */
+ SQLITE_TEXT, /* 0x12 (not possible) */
+ SQLITE_NULL, /* 0x13 (not possible) */
+ SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
+ SQLITE_NULL, /* 0x15 (not possible) */
+ SQLITE_INTEGER, /* 0x16 (not possible) */
+ SQLITE_NULL, /* 0x17 (not possible) */
+ SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
+ SQLITE_NULL, /* 0x19 (not possible) */
+ SQLITE_FLOAT, /* 0x1a (not possible) */
+ SQLITE_NULL, /* 0x1b (not possible) */
+ SQLITE_INTEGER, /* 0x1c (not possible) */
+ SQLITE_NULL, /* 0x1d (not possible) */
+ SQLITE_INTEGER, /* 0x1e (not possible) */
+ SQLITE_NULL, /* 0x1f (not possible) */
+ SQLITE_FLOAT, /* 0x20 INTREAL */
+ SQLITE_NULL, /* 0x21 (not possible) */
+ SQLITE_FLOAT, /* 0x22 INTREAL + TEXT */
+ SQLITE_NULL, /* 0x23 (not possible) */
+ SQLITE_FLOAT, /* 0x24 (not possible) */
+ SQLITE_NULL, /* 0x25 (not possible) */
+ SQLITE_FLOAT, /* 0x26 (not possible) */
+ SQLITE_NULL, /* 0x27 (not possible) */
+ SQLITE_FLOAT, /* 0x28 (not possible) */
+ SQLITE_NULL, /* 0x29 (not possible) */
+ SQLITE_FLOAT, /* 0x2a (not possible) */
+ SQLITE_NULL, /* 0x2b (not possible) */
+ SQLITE_FLOAT, /* 0x2c (not possible) */
+ SQLITE_NULL, /* 0x2d (not possible) */
+ SQLITE_FLOAT, /* 0x2e (not possible) */
+ SQLITE_NULL, /* 0x2f (not possible) */
+ SQLITE_BLOB, /* 0x30 (not possible) */
+ SQLITE_NULL, /* 0x31 (not possible) */
+ SQLITE_TEXT, /* 0x32 (not possible) */
+ SQLITE_NULL, /* 0x33 (not possible) */
+ SQLITE_FLOAT, /* 0x34 (not possible) */
+ SQLITE_NULL, /* 0x35 (not possible) */
+ SQLITE_FLOAT, /* 0x36 (not possible) */
+ SQLITE_NULL, /* 0x37 (not possible) */
+ SQLITE_FLOAT, /* 0x38 (not possible) */
+ SQLITE_NULL, /* 0x39 (not possible) */
+ SQLITE_FLOAT, /* 0x3a (not possible) */
+ SQLITE_NULL, /* 0x3b (not possible) */
+ SQLITE_FLOAT, /* 0x3c (not possible) */
+ SQLITE_NULL, /* 0x3d (not possible) */
+ SQLITE_FLOAT, /* 0x3e (not possible) */
+ SQLITE_NULL, /* 0x3f (not possible) */
+ };
+#ifdef SQLITE_DEBUG
+ {
+ int eType = SQLITE_BLOB;
+ if( pVal->flags & MEM_Null ){
+ eType = SQLITE_NULL;
+ }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
+ eType = SQLITE_FLOAT;
+ }else if( pVal->flags & MEM_Int ){
+ eType = SQLITE_INTEGER;
+ }else if( pVal->flags & MEM_Str ){
+ eType = SQLITE_TEXT;
+ }
+ assert( eType == aType[pVal->flags&MEM_AffMask] );
+ }
+#endif
+ return aType[pVal->flags&MEM_AffMask];
+}
+SQLITE_API int sqlite3_value_encoding(sqlite3_value *pVal){
+ return pVal->enc;
+}
+
+/* Return true if a parameter to xUpdate represents an unchanged column */
+SQLITE_API int sqlite3_value_nochange(sqlite3_value *pVal){
+ return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
+}
+
+/* Return true if a parameter value originated from an sqlite3_bind() */
+SQLITE_API int sqlite3_value_frombind(sqlite3_value *pVal){
+ return (pVal->flags&MEM_FromBind)!=0;
+}
+
+/* Make a copy of an sqlite3_value object
+*/
+SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
+ sqlite3_value *pNew;
+ if( pOrig==0 ) return 0;
+ pNew = sqlite3_malloc( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ memset(pNew, 0, sizeof(*pNew));
+ memcpy(pNew, pOrig, MEMCELLSIZE);
+ pNew->flags &= ~MEM_Dyn;
+ pNew->db = 0;
+ if( pNew->flags&(MEM_Str|MEM_Blob) ){
+ pNew->flags &= ~(MEM_Static|MEM_Dyn);
+ pNew->flags |= MEM_Ephem;
+ if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
+ sqlite3ValueFree(pNew);
+ pNew = 0;
+ }
+ }else if( pNew->flags & MEM_Null ){
+ /* Do not duplicate pointer values */
+ pNew->flags &= ~(MEM_Term|MEM_Subtype);
+ }
+ return pNew;
+}
+
+/* Destroy an sqlite3_value object previously obtained from
+** sqlite3_value_dup().
+*/
+SQLITE_API void sqlite3_value_free(sqlite3_value *pOld){
+ sqlite3ValueFree(pOld);
+}
+
+
+/**************************** sqlite3_result_ *******************************
+** The following routines are used by user-defined functions to specify
+** the function result.
+**
+** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
+** result as a string or blob. Appropriate errors are set if the string/blob
+** is too big or if an OOM occurs.
+**
+** The invokeValueDestructor(P,X) routine invokes destructor function X()
+** on value P if P is not going to be used and need to be destroyed.
+*/
+static void setResultStrOrError(
+ sqlite3_context *pCtx, /* Function context */
+ const char *z, /* String pointer */
+ int n, /* Bytes in string, or negative */
+ u8 enc, /* Encoding of z. 0 for BLOBs */
+ void (*xDel)(void*) /* Destructor function */
+){
+ Mem *pOut = pCtx->pOut;
+ int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
+ if( rc ){
+ if( rc==SQLITE_TOOBIG ){
+ sqlite3_result_error_toobig(pCtx);
+ }else{
+ /* The only errors possible from sqlite3VdbeMemSetStr are
+ ** SQLITE_TOOBIG and SQLITE_NOMEM */
+ assert( rc==SQLITE_NOMEM );
+ sqlite3_result_error_nomem(pCtx);
+ }
+ return;
+ }
+ sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ sqlite3_result_error_toobig(pCtx);
+ }
+}
+static int invokeValueDestructor(
+ const void *p, /* Value to destroy */
+ void (*xDel)(void*), /* The destructor */
+ sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if not NULL */
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( xDel==0 ){
+ /* noop */
+ }else if( xDel==SQLITE_TRANSIENT ){
+ /* noop */
+ }else{
+ xDel((void*)p);
+ }
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx!=0 ){
+ sqlite3_result_error_toobig(pCtx);
+ }
+#else
+ assert( pCtx!=0 );
+ sqlite3_result_error_toobig(pCtx);
+#endif
+ return SQLITE_TOOBIG;
+}
+SQLITE_API void sqlite3_result_blob(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 || n<0 ){
+ invokeValueDestructor(z, xDel, pCtx);
+ return;
+ }
+#endif
+ assert( n>=0 );
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, 0, xDel);
+}
+SQLITE_API void sqlite3_result_blob64(
+ sqlite3_context *pCtx,
+ const void *z,
+ sqlite3_uint64 n,
+ void (*xDel)(void *)
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ){
+ invokeValueDestructor(z, xDel, 0);
+ return;
+ }
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ if( n>0x7fffffff ){
+ (void)invokeValueDestructor(z, xDel, pCtx);
+ }else{
+ setResultStrOrError(pCtx, z, (int)n, 0, xDel);
+ }
+}
+SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
+}
+SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
+ sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
+ sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
+}
+#endif
+SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
+}
+SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
+}
+SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetNull(pCtx->pOut);
+}
+SQLITE_API void sqlite3_result_pointer(
+ sqlite3_context *pCtx,
+ void *pPtr,
+ const char *zPType,
+ void (*xDestructor)(void*)
+){
+ Mem *pOut;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ){
+ invokeValueDestructor(pPtr, xDestructor, 0);
+ return;
+ }
+#endif
+ pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pOut->db->mutex) );
+ sqlite3VdbeMemRelease(pOut);
+ pOut->flags = MEM_Null;
+ sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
+}
+SQLITE_API void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
+ Mem *pOut;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pOut->db->mutex) );
+ pOut->eSubtype = eSubtype & 0xff;
+ pOut->flags |= MEM_Subtype;
+}
+SQLITE_API void sqlite3_result_text(
+ sqlite3_context *pCtx,
+ const char *z,
+ int n,
+ void (*xDel)(void *)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ){
+ invokeValueDestructor(z, xDel, 0);
+ return;
+ }
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
+}
+SQLITE_API void sqlite3_result_text64(
+ sqlite3_context *pCtx,
+ const char *z,
+ sqlite3_uint64 n,
+ void (*xDel)(void *),
+ unsigned char enc
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ){
+ invokeValueDestructor(z, xDel, 0);
+ return;
+ }
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( enc!=SQLITE_UTF8 ){
+ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
+ n &= ~(u64)1;
+ }
+ if( n>0x7fffffff ){
+ (void)invokeValueDestructor(z, xDel, pCtx);
+ }else{
+ setResultStrOrError(pCtx, z, (int)n, enc, xDel);
+ sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut);
+ }
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API void sqlite3_result_text16(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16NATIVE, xDel);
+}
+SQLITE_API void sqlite3_result_text16be(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16BE, xDel);
+}
+SQLITE_API void sqlite3_result_text16le(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16LE, xDel);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
+ Mem *pOut;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+ if( pValue==0 ){
+ sqlite3_result_null(pCtx);
+ return;
+ }
+#endif
+ pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemCopy(pOut, pValue);
+ sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ sqlite3_result_error_toobig(pCtx);
+ }
+}
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
+ sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
+}
+SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
+ Mem *pOut;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ pOut = pCtx->pOut;
+ assert( sqlite3_mutex_held(pOut->db->mutex) );
+ if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(pCtx);
+ return SQLITE_TOOBIG;
+ }
+#ifndef SQLITE_OMIT_INCRBLOB
+ sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
+ return SQLITE_OK;
+#else
+ return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
+#endif
+}
+SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ pCtx->isError = errCode ? errCode : -1;
+#ifdef SQLITE_DEBUG
+ if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
+#endif
+ if( pCtx->pOut->flags & MEM_Null ){
+ setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
+ SQLITE_STATIC);
+ }
+}
+
+/* Force an SQLITE_TOOBIG error. */
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ pCtx->isError = SQLITE_TOOBIG;
+ sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
+ SQLITE_UTF8, SQLITE_STATIC);
+}
+
+/* An SQLITE_NOMEM error. */
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ sqlite3VdbeMemSetNull(pCtx->pOut);
+ pCtx->isError = SQLITE_NOMEM_BKPT;
+ sqlite3OomFault(pCtx->pOut->db);
+}
+
+#ifndef SQLITE_UNTESTABLE
+/* Force the INT64 value currently stored as the result to be
+** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
+** test-control.
+*/
+SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+ if( pCtx->pOut->flags & MEM_Int ){
+ pCtx->pOut->flags &= ~MEM_Int;
+ pCtx->pOut->flags |= MEM_IntReal;
+ }
+}
+#endif
+
+
+/*
+** This function is called after a transaction has been committed. It
+** invokes callbacks registered with sqlite3_wal_hook() as required.
+*/
+static int doWalCallbacks(sqlite3 *db){
+ int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_WAL
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ int nEntry;
+ sqlite3BtreeEnter(pBt);
+ nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
+ sqlite3BtreeLeave(pBt);
+ if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
+ rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
+ }
+ }
+ }
+#endif
+ return rc;
+}
+
+
+/*
+** Execute the statement pStmt, either until a row of data is ready, the
+** statement is completely executed or an error occurs.
+**
+** This routine implements the bulk of the logic behind the sqlite_step()
+** API. The only thing omitted is the automatic recompile if a
+** schema change has occurred. That detail is handled by the
+** outer sqlite3_step() wrapper procedure.
+*/
+static int sqlite3Step(Vdbe *p){
+ sqlite3 *db;
+ int rc;
+
+ assert(p);
+ db = p->db;
+ if( p->eVdbeState!=VDBE_RUN_STATE ){
+ restart_step:
+ if( p->eVdbeState==VDBE_READY_STATE ){
+ if( p->expired ){
+ p->rc = SQLITE_SCHEMA;
+ rc = SQLITE_ERROR;
+ if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
+ /* If this statement was prepared using saved SQL and an
+ ** error has occurred, then return the error code in p->rc to the
+ ** caller. Set the error code in the database handle to the same
+ ** value.
+ */
+ rc = sqlite3VdbeTransferError(p);
+ }
+ goto end_of_step;
+ }
+
+ /* If there are no other statements currently running, then
+ ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
+ ** from interrupting a statement that has not yet started.
+ */
+ if( db->nVdbeActive==0 ){
+ AtomicStore(&db->u1.isInterrupted, 0);
+ }
+
+ assert( db->nVdbeWrite>0 || db->autoCommit==0
+ || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
+ );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
+ && !db->init.busy && p->zSql ){
+ sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
+ }else{
+ assert( p->startTime==0 );
+ }
+#endif
+
+ db->nVdbeActive++;
+ if( p->readOnly==0 ) db->nVdbeWrite++;
+ if( p->bIsReader ) db->nVdbeRead++;
+ p->pc = 0;
+ p->eVdbeState = VDBE_RUN_STATE;
+ }else
+
+ if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){
+ /* We used to require that sqlite3_reset() be called before retrying
+ ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
+ ** with version 3.7.0, we changed this so that sqlite3_reset() would
+ ** be called automatically instead of throwing the SQLITE_MISUSE error.
+ ** This "automatic-reset" change is not technically an incompatibility,
+ ** since any application that receives an SQLITE_MISUSE is broken by
+ ** definition.
+ **
+ ** Nevertheless, some published applications that were originally written
+ ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
+ ** returns, and those were broken by the automatic-reset change. As a
+ ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
+ ** legacy behavior of returning SQLITE_MISUSE for cases where the
+ ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
+ ** or SQLITE_BUSY error.
+ */
+#ifdef SQLITE_OMIT_AUTORESET
+ if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
+ sqlite3_reset((sqlite3_stmt*)p);
+ }else{
+ return SQLITE_MISUSE_BKPT;
+ }
+#else
+ sqlite3_reset((sqlite3_stmt*)p);
+#endif
+ assert( p->eVdbeState==VDBE_READY_STATE );
+ goto restart_step;
+ }
+ }
+
+#ifdef SQLITE_DEBUG
+ p->rcApp = SQLITE_OK;
+#endif
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( p->explain ){
+ rc = sqlite3VdbeList(p);
+ }else
+#endif /* SQLITE_OMIT_EXPLAIN */
+ {
+ db->nVdbeExec++;
+ rc = sqlite3VdbeExec(p);
+ db->nVdbeExec--;
+ }
+
+ if( rc==SQLITE_ROW ){
+ assert( p->rc==SQLITE_OK );
+ assert( db->mallocFailed==0 );
+ db->errCode = SQLITE_ROW;
+ return SQLITE_ROW;
+ }else{
+#ifndef SQLITE_OMIT_TRACE
+ /* If the statement completed successfully, invoke the profile callback */
+ checkProfileCallback(db, p);
+#endif
+ p->pResultRow = 0;
+ if( rc==SQLITE_DONE && db->autoCommit ){
+ assert( p->rc==SQLITE_OK );
+ p->rc = doWalCallbacks(db);
+ if( p->rc!=SQLITE_OK ){
+ rc = SQLITE_ERROR;
+ }
+ }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
+ /* If this statement was prepared using saved SQL and an
+ ** error has occurred, then return the error code in p->rc to the
+ ** caller. Set the error code in the database handle to the same value.
+ */
+ rc = sqlite3VdbeTransferError(p);
+ }
+ }
+
+ db->errCode = rc;
+ if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
+ p->rc = SQLITE_NOMEM_BKPT;
+ if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
+ }
+end_of_step:
+ /* There are only a limited number of result codes allowed from the
+ ** statements prepared using the legacy sqlite3_prepare() interface */
+ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
+ || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
+ || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
+ );
+ return (rc&db->errMask);
+}
+
+/*
+** This is the top-level implementation of sqlite3_step(). Call
+** sqlite3Step() to do most of the work. If a schema error occurs,
+** call sqlite3Reprepare() and try again.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
+ int rc = SQLITE_OK; /* Result from sqlite3Step() */
+ Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
+ int cnt = 0; /* Counter to prevent infinite loop of reprepares */
+ sqlite3 *db; /* The database connection */
+
+ if( vdbeSafetyNotNull(v) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ db = v->db;
+ sqlite3_mutex_enter(db->mutex);
+ while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
+ && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
+ int savedPc = v->pc;
+ rc = sqlite3Reprepare(v);
+ if( rc!=SQLITE_OK ){
+ /* This case occurs after failing to recompile an sql statement.
+ ** The error message from the SQL compiler has already been loaded
+ ** into the database handle. This block copies the error message
+ ** from the database handle into the statement and sets the statement
+ ** program counter to 0 to ensure that when the statement is
+ ** finalized or reset the parser error message is available via
+ ** sqlite3_errmsg() and sqlite3_errcode().
+ */
+ const char *zErr = (const char *)sqlite3_value_text(db->pErr);
+ sqlite3DbFree(db, v->zErrMsg);
+ if( !db->mallocFailed ){
+ v->zErrMsg = sqlite3DbStrDup(db, zErr);
+ v->rc = rc = sqlite3ApiExit(db, rc);
+ } else {
+ v->zErrMsg = 0;
+ v->rc = rc = SQLITE_NOMEM_BKPT;
+ }
+ break;
+ }
+ sqlite3_reset(pStmt);
+ if( savedPc>=0 ){
+ /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
+ ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
+ ** already been done once on a prior invocation that failed due to
+ ** SQLITE_SCHEMA. tag-20220401a */
+ v->minWriteFileFormat = 254;
+ }
+ assert( v->expired==0 );
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ) return 0;
+#else
+ assert( p && p->pFunc );
+#endif
+ return p->pFunc->pUserData;
+}
+
+/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+**
+** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
+** returns a copy of the pointer to the database connection (the 1st
+** parameter) of the sqlite3_create_function() and
+** sqlite3_create_function16() routines that originally registered the
+** application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ) return 0;
+#else
+ assert( p && p->pOut );
+#endif
+ return p->pOut->db;
+}
+
+/*
+** If this routine is invoked from within an xColumn method of a virtual
+** table, then it returns true if and only if the the call is during an
+** UPDATE operation and the value of the column will not be modified
+** by the UPDATE.
+**
+** If this routine is called from any context other than within the
+** xColumn method of a virtual table, then the return value is meaningless
+** and arbitrary.
+**
+** Virtual table implements might use this routine to optimize their
+** performance by substituting a NULL result, or some other light-weight
+** value, as a signal to the xUpdate routine that the column is unchanged.
+*/
+SQLITE_API int sqlite3_vtab_nochange(sqlite3_context *p){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ) return 0;
+#else
+ assert( p );
+#endif
+ return sqlite3_value_nochange(p->pOut);
+}
+
+/*
+** The destructor function for a ValueList object. This needs to be
+** a separate function, unknowable to the application, to ensure that
+** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not
+** preceded by activation of IN processing via sqlite3_vtab_int() do not
+** try to access a fake ValueList object inserted by a hostile extension.
+*/
+SQLITE_PRIVATE void sqlite3VdbeValueListFree(void *pToDelete){
+ sqlite3_free(pToDelete);
+}
+
+/*
+** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
+** sqlite3_vtab_in_next() (if bNext!=0).
+*/
+static int valueFromValueList(
+ sqlite3_value *pVal, /* Pointer to the ValueList object */
+ sqlite3_value **ppOut, /* Store the next value from the list here */
+ int bNext /* 1 for _next(). 0 for _first() */
+){
+ int rc;
+ ValueList *pRhs;
+
+ *ppOut = 0;
+ if( pVal==0 ) return SQLITE_MISUSE_BKPT;
+ if( (pVal->flags & MEM_Dyn)==0 || pVal->xDel!=sqlite3VdbeValueListFree ){
+ return SQLITE_ERROR;
+ }else{
+ assert( (pVal->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
+ (MEM_Null|MEM_Term|MEM_Subtype) );
+ assert( pVal->eSubtype=='p' );
+ assert( pVal->u.zPType!=0 && strcmp(pVal->u.zPType,"ValueList")==0 );
+ pRhs = (ValueList*)pVal->z;
+ }
+ if( bNext ){
+ rc = sqlite3BtreeNext(pRhs->pCsr, 0);
+ }else{
+ int dummy = 0;
+ rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
+ assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
+ if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
+ }
+ if( rc==SQLITE_OK ){
+ u32 sz; /* Size of current row in bytes */
+ Mem sMem; /* Raw content of current row */
+ memset(&sMem, 0, sizeof(sMem));
+ sz = sqlite3BtreePayloadSize(pRhs->pCsr);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
+ if( rc==SQLITE_OK ){
+ u8 *zBuf = (u8*)sMem.z;
+ u32 iSerial;
+ sqlite3_value *pOut = pRhs->pOut;
+ int iOff = 1 + getVarint32(&zBuf[1], iSerial);
+ sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
+ pOut->enc = ENC(pOut->db);
+ if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
+ rc = SQLITE_NOMEM;
+ }else{
+ *ppOut = pOut;
+ }
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ }
+ return rc;
+}
+
+/*
+** Set the iterator value pVal to point to the first value in the set.
+** Set (*ppOut) to point to this value before returning.
+*/
+SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
+ return valueFromValueList(pVal, ppOut, 0);
+}
+
+/*
+** Set the iterator value pVal to point to the next value in the set.
+** Set (*ppOut) to point to this value before returning.
+*/
+SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
+ return valueFromValueList(pVal, ppOut, 1);
+}
+
+/*
+** Return the current time for a statement. If the current time
+** is requested more than once within the same run of a single prepared
+** statement, the exact same time is returned for each invocation regardless
+** of the amount of time that elapses between invocations. In other words,
+** the time returned is always the time of the first call.
+*/
+SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
+ int rc;
+#ifndef SQLITE_ENABLE_STAT4
+ sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
+ assert( p->pVdbe!=0 );
+#else
+ sqlite3_int64 iTime = 0;
+ sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
+#endif
+ if( *piTime==0 ){
+ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
+ if( rc ) *piTime = 0;
+ }
+ return *piTime;
+}
+
+/*
+** Create a new aggregate context for p and return a pointer to
+** its pMem->z element.
+*/
+static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
+ Mem *pMem = p->pMem;
+ assert( (pMem->flags & MEM_Agg)==0 );
+ if( nByte<=0 ){
+ sqlite3VdbeMemSetNull(pMem);
+ pMem->z = 0;
+ }else{
+ sqlite3VdbeMemClearAndResize(pMem, nByte);
+ pMem->flags = MEM_Agg;
+ pMem->u.pDef = p->pFunc;
+ if( pMem->z ){
+ memset(pMem->z, 0, nByte);
+ }
+ }
+ return (void*)pMem->z;
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
+ assert( p && p->pFunc && p->pFunc->xFinalize );
+ assert( sqlite3_mutex_held(p->pOut->db->mutex) );
+ testcase( nByte<0 );
+ if( (p->pMem->flags & MEM_Agg)==0 ){
+ return createAggContext(p, nByte);
+ }else{
+ return (void*)p->pMem->z;
+ }
+}
+
+/*
+** Return the auxiliary data pointer, if any, for the iArg'th argument to
+** the user-function defined by pCtx.
+**
+** The left-most argument is 0.
+**
+** Undocumented behavior: If iArg is negative then access a cache of
+** auxiliary data pointers that is available to all functions within a
+** single prepared statement. The iArg values must match.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
+ AuxData *pAuxData;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return 0;
+#endif
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+#if SQLITE_ENABLE_STAT4
+ if( pCtx->pVdbe==0 ) return 0;
+#else
+ assert( pCtx->pVdbe!=0 );
+#endif
+ for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
+ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
+ return pAuxData->pAux;
+ }
+ }
+ return 0;
+}
+
+/*
+** Set the auxiliary data pointer and delete function, for the iArg'th
+** argument to the user-function defined by pCtx. Any previous value is
+** deleted by calling the delete function specified when it was set.
+**
+** The left-most argument is 0.
+**
+** Undocumented behavior: If iArg is negative then make the data available
+** to all functions within the current prepared statement using iArg as an
+** access code.
+*/
+SQLITE_API void sqlite3_set_auxdata(
+ sqlite3_context *pCtx,
+ int iArg,
+ void *pAux,
+ void (*xDelete)(void*)
+){
+ AuxData *pAuxData;
+ Vdbe *pVdbe;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pCtx==0 ) return;
+#endif
+ pVdbe= pCtx->pVdbe;
+ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
+#ifdef SQLITE_ENABLE_STAT4
+ if( pVdbe==0 ) goto failed;
+#else
+ assert( pVdbe!=0 );
+#endif
+
+ for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
+ if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
+ break;
+ }
+ }
+ if( pAuxData==0 ){
+ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
+ if( !pAuxData ) goto failed;
+ pAuxData->iAuxOp = pCtx->iOp;
+ pAuxData->iAuxArg = iArg;
+ pAuxData->pNextAux = pVdbe->pAuxData;
+ pVdbe->pAuxData = pAuxData;
+ if( pCtx->isError==0 ) pCtx->isError = -1;
+ }else if( pAuxData->xDeleteAux ){
+ pAuxData->xDeleteAux(pAuxData->pAux);
+ }
+
+ pAuxData->pAux = pAux;
+ pAuxData->xDeleteAux = xDelete;
+ return;
+
+failed:
+ if( xDelete ){
+ xDelete(pAux);
+ }
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Return the number of times the Step function of an aggregate has been
+** called.
+**
+** This function is deprecated. Do not use it for new code. It is
+** provide only to avoid breaking legacy code. New aggregate function
+** implementations should keep their own counts within their aggregate
+** context.
+*/
+SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
+ assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
+ return p->pMem->n;
+}
+#endif
+
+/*
+** Return the number of columns in the result set for the statement pStmt.
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
+ Vdbe *pVm = (Vdbe *)pStmt;
+ if( pVm==0 ) return 0;
+ return pVm->nResColumn;
+}
+
+/*
+** Return the number of values available from the current row of the
+** currently executing statement pStmt.
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
+ Vdbe *pVm = (Vdbe *)pStmt;
+ if( pVm==0 || pVm->pResultRow==0 ) return 0;
+ return pVm->nResColumn;
+}
+
+/*
+** Return a pointer to static memory containing an SQL NULL value.
+*/
+static const Mem *columnNullValue(void){
+ /* Even though the Mem structure contains an element
+ ** of type i64, on certain architectures (x86) with certain compiler
+ ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
+ ** instead of an 8-byte one. This all works fine, except that when
+ ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
+ ** that a Mem structure is located on an 8-byte boundary. To prevent
+ ** these assert()s from failing, when building with SQLITE_DEBUG defined
+ ** using gcc, we force nullMem to be 8-byte aligned using the magical
+ ** __attribute__((aligned(8))) macro. */
+ static const Mem nullMem
+#if defined(SQLITE_DEBUG) && defined(__GNUC__)
+ __attribute__((aligned(8)))
+#endif
+ = {
+ /* .u = */ {0},
+ /* .z = */ (char*)0,
+ /* .n = */ (int)0,
+ /* .flags = */ (u16)MEM_Null,
+ /* .enc = */ (u8)0,
+ /* .eSubtype = */ (u8)0,
+ /* .db = */ (sqlite3*)0,
+ /* .szMalloc = */ (int)0,
+ /* .uTemp = */ (u32)0,
+ /* .zMalloc = */ (char*)0,
+ /* .xDel = */ (void(*)(void*))0,
+#ifdef SQLITE_DEBUG
+ /* .pScopyFrom = */ (Mem*)0,
+ /* .mScopyFlags= */ 0,
+#endif
+ };
+ return &nullMem;
+}
+
+/*
+** Check to see if column iCol of the given statement is valid. If
+** it is, return a pointer to the Mem for the value of that column.
+** If iCol is not valid, return a pointer to a Mem which has a value
+** of NULL.
+*/
+static Mem *columnMem(sqlite3_stmt *pStmt, int i){
+ Vdbe *pVm;
+ Mem *pOut;
+
+ pVm = (Vdbe *)pStmt;
+ if( pVm==0 ) return (Mem*)columnNullValue();
+ assert( pVm->db );
+ sqlite3_mutex_enter(pVm->db->mutex);
+ if( pVm->pResultRow!=0 && i<pVm->nResColumn && i>=0 ){
+ pOut = &pVm->pResultRow[i];
+ }else{
+ sqlite3Error(pVm->db, SQLITE_RANGE);
+ pOut = (Mem*)columnNullValue();
+ }
+ return pOut;
+}
+
+/*
+** This function is called after invoking an sqlite3_value_XXX function on a
+** column value (i.e. a value returned by evaluating an SQL expression in the
+** select list of a SELECT statement) that may cause a malloc() failure. If
+** malloc() has failed, the threads mallocFailed flag is cleared and the result
+** code of statement pStmt set to SQLITE_NOMEM.
+**
+** Specifically, this is called from within:
+**
+** sqlite3_column_int()
+** sqlite3_column_int64()
+** sqlite3_column_text()
+** sqlite3_column_text16()
+** sqlite3_column_real()
+** sqlite3_column_bytes()
+** sqlite3_column_bytes16()
+** sqlite3_column_blob()
+*/
+static void columnMallocFailure(sqlite3_stmt *pStmt)
+{
+ /* If malloc() failed during an encoding conversion within an
+ ** sqlite3_column_XXX API, then set the return code of the statement to
+ ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
+ ** and _finalize() will return NOMEM.
+ */
+ Vdbe *p = (Vdbe *)pStmt;
+ if( p ){
+ assert( p->db!=0 );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ p->rc = sqlite3ApiExit(p->db, p->rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+}
+
+/**************************** sqlite3_column_ *******************************
+** The following routines are used to access elements of the current row
+** in the result set.
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
+ const void *val;
+ val = sqlite3_value_blob( columnMem(pStmt,i) );
+ /* Even though there is no encoding conversion, value_blob() might
+ ** need to call malloc() to expand the result of a zeroblob()
+ ** expression.
+ */
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_bytes( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
+ double val = sqlite3_value_double( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_int( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
+ sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
+ const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
+ Mem *pOut = columnMem(pStmt, i);
+ if( pOut->flags&MEM_Static ){
+ pOut->flags &= ~MEM_Static;
+ pOut->flags |= MEM_Ephem;
+ }
+ columnMallocFailure(pStmt);
+ return (sqlite3_value *)pOut;
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
+ const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
+ int iType = sqlite3_value_type( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return iType;
+}
+
+/*
+** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN.
+*/
+static const char * const azExplainColNames8[] = {
+ "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */
+ "id", "parent", "notused", "detail" /* EQP */
+};
+static const u16 azExplainColNames16data[] = {
+ /* 0 */ 'a', 'd', 'd', 'r', 0,
+ /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0,
+ /* 12 */ 'p', '1', 0,
+ /* 15 */ 'p', '2', 0,
+ /* 18 */ 'p', '3', 0,
+ /* 21 */ 'p', '4', 0,
+ /* 24 */ 'p', '5', 0,
+ /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0,
+ /* 35 */ 'i', 'd', 0,
+ /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0,
+ /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0,
+ /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0
+};
+static const u8 iExplainColNames16[] = {
+ 0, 5, 12, 15, 18, 21, 24, 27,
+ 35, 38, 45, 53
+};
+
+/*
+** Convert the N-th element of pStmt->pColName[] into a string using
+** xFunc() then return that string. If N is out of range, return 0.
+**
+** There are up to 5 names for each column. useType determines which
+** name is returned. Here are the names:
+**
+** 0 The column name as it should be displayed for output
+** 1 The datatype name for the column
+** 2 The name of the database that the column derives from
+** 3 The name of the table that the column derives from
+** 4 The name of the table column that the result column derives from
+**
+** If the result is not a simple column reference (if it is an expression
+** or a constant) then useTypes 2, 3, and 4 return NULL.
+*/
+static const void *columnName(
+ sqlite3_stmt *pStmt, /* The statement */
+ int N, /* Which column to get the name for */
+ int useUtf16, /* True to return the name as UTF16 */
+ int useType /* What type of name */
+){
+ const void *ret;
+ Vdbe *p;
+ int n;
+ sqlite3 *db;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pStmt==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ if( N<0 ) return 0;
+ ret = 0;
+ p = (Vdbe *)pStmt;
+ db = p->db;
+ assert( db!=0 );
+ sqlite3_mutex_enter(db->mutex);
+
+ if( p->explain ){
+ if( useType>0 ) goto columnName_end;
+ n = p->explain==1 ? 8 : 4;
+ if( N>=n ) goto columnName_end;
+ if( useUtf16 ){
+ int i = iExplainColNames16[N + 8*p->explain - 8];
+ ret = (void*)&azExplainColNames16data[i];
+ }else{
+ ret = (void*)azExplainColNames8[N + 8*p->explain - 8];
+ }
+ goto columnName_end;
+ }
+ n = p->nResColumn;
+ if( N<n ){
+ u8 prior_mallocFailed = db->mallocFailed;
+ N += useType*n;
+#ifndef SQLITE_OMIT_UTF16
+ if( useUtf16 ){
+ ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
+ }else
+#endif
+ {
+ ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
+ }
+ /* A malloc may have failed inside of the _text() call. If this
+ ** is the case, clear the mallocFailed flag and return NULL.
+ */
+ assert( db->mallocFailed==0 || db->mallocFailed==1 );
+ if( db->mallocFailed > prior_mallocFailed ){
+ sqlite3OomClear(db);
+ ret = 0;
+ }
+ }
+columnName_end:
+ sqlite3_mutex_leave(db->mutex);
+ return ret;
+}
+
+/*
+** Return the name of the Nth column of the result set returned by SQL
+** statement pStmt.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_NAME);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_NAME);
+}
+#endif
+
+/*
+** Constraint: If you have ENABLE_COLUMN_METADATA then you must
+** not define OMIT_DECLTYPE.
+*/
+#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
+# error "Must not define both SQLITE_OMIT_DECLTYPE \
+ and SQLITE_ENABLE_COLUMN_METADATA"
+#endif
+
+#ifndef SQLITE_OMIT_DECLTYPE
+/*
+** Return the column declaration type (if applicable) of the 'i'th column
+** of the result set of SQL statement pStmt.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_DECLTYPE */
+
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+/*
+** Return the name of the database from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unambiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_DATABASE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_DATABASE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the name of the table from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unambiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_TABLE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_TABLE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the name of the table column from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unambiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 0, COLNAME_COLUMN);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(pStmt, N, 1, COLNAME_COLUMN);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_ENABLE_COLUMN_METADATA */
+
+
+/******************************* sqlite3_bind_ ***************************
+**
+** Routines used to attach values to wildcards in a compiled SQL statement.
+*/
+/*
+** Unbind the value bound to variable i in virtual machine p. This is the
+** the same as binding a NULL value to the column. If the "i" parameter is
+** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK.
+**
+** A successful evaluation of this routine acquires the mutex on p.
+** the mutex is released if any kind of error occurs.
+**
+** The error code stored in database p->db is overwritten with the return
+** value in any case.
+*/
+static int vdbeUnbind(Vdbe *p, unsigned int i){
+ Mem *pVar;
+ if( vdbeSafetyNotNull(p) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ sqlite3_mutex_enter(p->db->mutex);
+ if( p->eVdbeState!=VDBE_READY_STATE ){
+ sqlite3Error(p->db, SQLITE_MISUSE_BKPT);
+ sqlite3_mutex_leave(p->db->mutex);
+ sqlite3_log(SQLITE_MISUSE,
+ "bind on a busy prepared statement: [%s]", p->zSql);
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( i>=(unsigned int)p->nVar ){
+ sqlite3Error(p->db, SQLITE_RANGE);
+ sqlite3_mutex_leave(p->db->mutex);
+ return SQLITE_RANGE;
+ }
+ pVar = &p->aVar[i];
+ sqlite3VdbeMemRelease(pVar);
+ pVar->flags = MEM_Null;
+ p->db->errCode = SQLITE_OK;
+
+ /* If the bit corresponding to this variable in Vdbe.expmask is set, then
+ ** binding a new value to this variable invalidates the current query plan.
+ **
+ ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
+ ** parameter in the WHERE clause might influence the choice of query plan
+ ** for a statement, then the statement will be automatically recompiled,
+ ** as if there had been a schema change, on the first sqlite3_step() call
+ ** following any change to the bindings of that parameter.
+ */
+ assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
+ if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
+ p->expired = 1;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Bind a text or BLOB value.
+*/
+static int bindText(
+ sqlite3_stmt *pStmt, /* The statement to bind against */
+ int i, /* Index of the parameter to bind */
+ const void *zData, /* Pointer to the data to be bound */
+ i64 nData, /* Number of bytes of data to be bound */
+ void (*xDel)(void*), /* Destructor for the data */
+ u8 encoding /* Encoding for the data */
+){
+ Vdbe *p = (Vdbe *)pStmt;
+ Mem *pVar;
+ int rc;
+
+ rc = vdbeUnbind(p, (u32)(i-1));
+ if( rc==SQLITE_OK ){
+ if( zData!=0 ){
+ pVar = &p->aVar[i-1];
+ rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
+ if( rc==SQLITE_OK && encoding!=0 ){
+ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
+ }
+ if( rc ){
+ sqlite3Error(p->db, rc);
+ rc = sqlite3ApiExit(p->db, rc);
+ }
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
+ xDel((void*)zData);
+ }
+ return rc;
+}
+
+
+/*
+** Bind a blob value to an SQL statement variable.
+*/
+SQLITE_API int sqlite3_bind_blob(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( nData<0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ return bindText(pStmt, i, zData, nData, xDel, 0);
+}
+SQLITE_API int sqlite3_bind_blob64(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ sqlite3_uint64 nData,
+ void (*xDel)(void*)
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+ return bindText(pStmt, i, zData, nData, xDel, 0);
+}
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ rc = vdbeUnbind(p, (u32)(i-1));
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
+ return sqlite3_bind_int64(p, i, (i64)iValue);
+}
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ rc = vdbeUnbind(p, (u32)(i-1));
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
+ int rc;
+ Vdbe *p = (Vdbe*)pStmt;
+ rc = vdbeUnbind(p, (u32)(i-1));
+ if( rc==SQLITE_OK ){
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_pointer(
+ sqlite3_stmt *pStmt,
+ int i,
+ void *pPtr,
+ const char *zPTtype,
+ void (*xDestructor)(void*)
+){
+ int rc;
+ Vdbe *p = (Vdbe*)pStmt;
+ rc = vdbeUnbind(p, (u32)(i-1));
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
+ sqlite3_mutex_leave(p->db->mutex);
+ }else if( xDestructor ){
+ xDestructor(pPtr);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_text(
+ sqlite3_stmt *pStmt,
+ int i,
+ const char *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
+}
+SQLITE_API int sqlite3_bind_text64(
+ sqlite3_stmt *pStmt,
+ int i,
+ const char *zData,
+ sqlite3_uint64 nData,
+ void (*xDel)(void*),
+ unsigned char enc
+){
+ assert( xDel!=SQLITE_DYNAMIC );
+ if( enc!=SQLITE_UTF8 ){
+ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
+ nData &= ~(u16)1;
+ }
+ return bindText(pStmt, i, zData, nData, xDel, enc);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API int sqlite3_bind_text16(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ int n,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, n & ~(u64)1, xDel, SQLITE_UTF16NATIVE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
+ int rc;
+ switch( sqlite3_value_type((sqlite3_value*)pValue) ){
+ case SQLITE_INTEGER: {
+ rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ assert( pValue->flags & (MEM_Real|MEM_IntReal) );
+ rc = sqlite3_bind_double(pStmt, i,
+ (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
+ );
+ break;
+ }
+ case SQLITE_BLOB: {
+ if( pValue->flags & MEM_Zero ){
+ rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
+ }else{
+ rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
+ pValue->enc);
+ break;
+ }
+ default: {
+ rc = sqlite3_bind_null(pStmt, i);
+ break;
+ }
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ rc = vdbeUnbind(p, (u32)(i-1));
+ if( rc==SQLITE_OK ){
+#ifndef SQLITE_OMIT_INCRBLOB
+ sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
+#else
+ rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
+#endif
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return rc;
+}
+SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(p->db->mutex);
+ if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ rc = SQLITE_TOOBIG;
+ }else{
+ assert( (n & 0x7FFFFFFF)==n );
+ rc = sqlite3_bind_zeroblob(pStmt, i, n);
+ }
+ rc = sqlite3ApiExit(p->db, rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+
+/*
+** Return the number of wildcards that can be potentially bound to.
+** This routine is added to support DBD::SQLite.
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ return p ? p->nVar : 0;
+}
+
+/*
+** Return the name of a wildcard parameter. Return NULL if the index
+** is out of range or if the wildcard is unnamed.
+**
+** The result is always UTF-8.
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
+ Vdbe *p = (Vdbe*)pStmt;
+ if( p==0 ) return 0;
+ return sqlite3VListNumToName(p->pVList, i);
+}
+
+/*
+** Given a wildcard parameter name, return the index of the variable
+** with that name. If there is no variable with the given name,
+** return 0.
+*/
+SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
+ if( p==0 || zName==0 ) return 0;
+ return sqlite3VListNameToNum(p->pVList, zName, nName);
+}
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
+ return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
+}
+
+/*
+** Transfer all bindings from the first statement over to the second.
+*/
+SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+ Vdbe *pFrom = (Vdbe*)pFromStmt;
+ Vdbe *pTo = (Vdbe*)pToStmt;
+ int i;
+ assert( pTo->db==pFrom->db );
+ assert( pTo->nVar==pFrom->nVar );
+ sqlite3_mutex_enter(pTo->db->mutex);
+ for(i=0; i<pFrom->nVar; i++){
+ sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
+ }
+ sqlite3_mutex_leave(pTo->db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Deprecated external interface. Internal/core SQLite code
+** should call sqlite3TransferBindings.
+**
+** It is misuse to call this routine with statements from different
+** database connections. But as this is a deprecated interface, we
+** will not bother to check for that condition.
+**
+** If the two statements contain a different number of bindings, then
+** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
+** SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+ Vdbe *pFrom = (Vdbe*)pFromStmt;
+ Vdbe *pTo = (Vdbe*)pToStmt;
+ if( pFrom->nVar!=pTo->nVar ){
+ return SQLITE_ERROR;
+ }
+ assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
+ if( pTo->expmask ){
+ pTo->expired = 1;
+ }
+ assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
+ if( pFrom->expmask ){
+ pFrom->expired = 1;
+ }
+ return sqlite3TransferBindings(pFromStmt, pToStmt);
+}
+#endif
+
+/*
+** Return the sqlite3* database handle to which the prepared statement given
+** in the argument belongs. This is the same database handle that was
+** the first argument to the sqlite3_prepare() that was used to create
+** the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->db : 0;
+}
+
+/*
+** Return true if the prepared statement is guaranteed to not modify the
+** database.
+*/
+SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
+}
+
+/*
+** Return 1 if the statement is an EXPLAIN and return 2 if the
+** statement is an EXPLAIN QUERY PLAN
+*/
+SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->explain : 0;
+}
+
+/*
+** Set the explain mode for a statement.
+*/
+SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){
+ Vdbe *v = (Vdbe*)pStmt;
+ int rc;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( pStmt==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(v->db->mutex);
+ if( ((int)v->explain)==eMode ){
+ rc = SQLITE_OK;
+ }else if( eMode<0 || eMode>2 ){
+ rc = SQLITE_ERROR;
+ }else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
+ rc = SQLITE_ERROR;
+ }else if( v->eVdbeState!=VDBE_READY_STATE ){
+ rc = SQLITE_BUSY;
+ }else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){
+ /* No reprepare necessary */
+ v->explain = eMode;
+ rc = SQLITE_OK;
+ }else{
+ v->explain = eMode;
+ rc = sqlite3Reprepare(v);
+ v->haveEqpOps = eMode==2;
+ }
+ if( v->explain ){
+ v->nResColumn = 12 - 4*v->explain;
+ }else{
+ v->nResColumn = v->nResAlloc;
+ }
+ sqlite3_mutex_leave(v->db->mutex);
+ return rc;
+}
+
+/*
+** Return true if the prepared statement is in need of being reset.
+*/
+SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
+ Vdbe *v = (Vdbe*)pStmt;
+ return v!=0 && v->eVdbeState==VDBE_RUN_STATE;
+}
+
+/*
+** Return a pointer to the next prepared statement after pStmt associated
+** with database connection pDb. If pStmt is NULL, return the first
+** prepared statement for the database connection. Return NULL if there
+** are no more.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
+ sqlite3_stmt *pNext;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(pDb) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(pDb->mutex);
+ if( pStmt==0 ){
+ pNext = (sqlite3_stmt*)pDb->pVdbe;
+ }else{
+ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext;
+ }
+ sqlite3_mutex_leave(pDb->mutex);
+ return pNext;
+}
+
+/*
+** Return the value of a status counter for a prepared statement
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
+ Vdbe *pVdbe = (Vdbe*)pStmt;
+ u32 v;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !pStmt
+ || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
+ ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ if( op==SQLITE_STMTSTATUS_MEMUSED ){
+ sqlite3 *db = pVdbe->db;
+ sqlite3_mutex_enter(db->mutex);
+ v = 0;
+ db->pnBytesFreed = (int*)&v;
+ assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
+ db->lookaside.pEnd = db->lookaside.pStart;
+ sqlite3VdbeDelete(pVdbe);
+ db->pnBytesFreed = 0;
+ db->lookaside.pEnd = db->lookaside.pTrueEnd;
+ sqlite3_mutex_leave(db->mutex);
+ }else{
+ v = pVdbe->aCounter[op];
+ if( resetFlag ) pVdbe->aCounter[op] = 0;
+ }
+ return (int)v;
+}
+
+/*
+** Return the SQL associated with a prepared statement
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe *)pStmt;
+ return p ? p->zSql : 0;
+}
+
+/*
+** Return the SQL associated with a prepared statement with
+** bound parameters expanded. Space to hold the returned string is
+** obtained from sqlite3_malloc(). The caller is responsible for
+** freeing the returned string by passing it to sqlite3_free().
+**
+** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
+** expanded bound parameters.
+*/
+SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
+#ifdef SQLITE_OMIT_TRACE
+ return 0;
+#else
+ char *z = 0;
+ const char *zSql = sqlite3_sql(pStmt);
+ if( zSql ){
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ z = sqlite3VdbeExpandSql(p, zSql);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return z;
+#endif
+}
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** Return the normalized SQL associated with a prepared statement.
+*/
+SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe *)pStmt;
+ if( p==0 ) return 0;
+ if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
+ sqlite3_mutex_enter(p->db->mutex);
+ p->zNormSql = sqlite3Normalize(p, p->zSql);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ return p->zNormSql;
+}
+#endif /* SQLITE_ENABLE_NORMALIZE */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** Allocate and populate an UnpackedRecord structure based on the serialized
+** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
+** if successful, or a NULL pointer if an OOM error is encountered.
+*/
+static UnpackedRecord *vdbeUnpackRecord(
+ KeyInfo *pKeyInfo,
+ int nKey,
+ const void *pKey
+){
+ UnpackedRecord *pRet; /* Return value */
+
+ pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
+ if( pRet ){
+ memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
+ sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
+ }
+ return pRet;
+}
+
+/*
+** This function is called from within a pre-update callback to retrieve
+** a field of the row currently being updated or deleted.
+*/
+SQLITE_API int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
+ PreUpdate *p;
+ Mem *pMem;
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( db==0 || ppValue==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ p = db->pPreUpdate;
+ /* Test that this call is being made from within an SQLITE_DELETE or
+ ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
+ if( !p || p->op==SQLITE_INSERT ){
+ rc = SQLITE_MISUSE_BKPT;
+ goto preupdate_old_out;
+ }
+ if( p->pPk ){
+ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
+ }
+ if( iIdx>=p->pCsr->nField || iIdx<0 ){
+ rc = SQLITE_RANGE;
+ goto preupdate_old_out;
+ }
+
+ /* If the old.* record has not yet been loaded into memory, do so now. */
+ if( p->pUnpacked==0 ){
+ u32 nRec;
+ u8 *aRec;
+
+ assert( p->pCsr->eCurType==CURTYPE_BTREE );
+ nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
+ aRec = sqlite3DbMallocRaw(db, nRec);
+ if( !aRec ) goto preupdate_old_out;
+ rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
+ if( rc==SQLITE_OK ){
+ p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
+ if( !p->pUnpacked ) rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, aRec);
+ goto preupdate_old_out;
+ }
+ p->aRecord = aRec;
+ }
+
+ pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
+ if( iIdx==p->pTab->iPKey ){
+ sqlite3VdbeMemSetInt64(pMem, p->iKey1);
+ }else if( iIdx>=p->pUnpacked->nField ){
+ *ppValue = (sqlite3_value *)columnNullValue();
+ }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
+ if( pMem->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_IntReal );
+ sqlite3VdbeMemRealify(pMem);
+ }
+ }
+
+ preupdate_old_out:
+ sqlite3Error(db, rc);
+ return sqlite3ApiExit(db, rc);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is called from within a pre-update callback to retrieve
+** the number of columns in the row being updated, deleted or inserted.
+*/
+SQLITE_API int sqlite3_preupdate_count(sqlite3 *db){
+ PreUpdate *p;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ p = db!=0 ? db->pPreUpdate : 0;
+#else
+ p = db->pPreUpdate;
+#endif
+ return (p ? p->keyinfo.nKeyField : 0);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is designed to be called from within a pre-update callback
+** only. It returns zero if the change that caused the callback was made
+** immediately by a user SQL statement. Or, if the change was made by a
+** trigger program, it returns the number of trigger programs currently
+** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
+** top-level trigger etc.).
+**
+** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
+** or SET DEFAULT action is considered a trigger.
+*/
+SQLITE_API int sqlite3_preupdate_depth(sqlite3 *db){
+ PreUpdate *p;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ p = db!=0 ? db->pPreUpdate : 0;
+#else
+ p = db->pPreUpdate;
+#endif
+ return (p ? p->v->nFrame : 0);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is designed to be called from within a pre-update callback
+** only.
+*/
+SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *db){
+ PreUpdate *p;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ p = db!=0 ? db->pPreUpdate : 0;
+#else
+ p = db->pPreUpdate;
+#endif
+ return (p ? p->iBlobWrite : -1);
+}
+#endif
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** This function is called from within a pre-update callback to retrieve
+** a field of the row currently being updated or inserted.
+*/
+SQLITE_API int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
+ PreUpdate *p;
+ int rc = SQLITE_OK;
+ Mem *pMem;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( db==0 || ppValue==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ p = db->pPreUpdate;
+ if( !p || p->op==SQLITE_DELETE ){
+ rc = SQLITE_MISUSE_BKPT;
+ goto preupdate_new_out;
+ }
+ if( p->pPk && p->op!=SQLITE_UPDATE ){
+ iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
+ }
+ if( iIdx>=p->pCsr->nField || iIdx<0 ){
+ rc = SQLITE_RANGE;
+ goto preupdate_new_out;
+ }
+
+ if( p->op==SQLITE_INSERT ){
+ /* For an INSERT, memory cell p->iNewReg contains the serialized record
+ ** that is being inserted. Deserialize it. */
+ UnpackedRecord *pUnpack = p->pNewUnpacked;
+ if( !pUnpack ){
+ Mem *pData = &p->v->aMem[p->iNewReg];
+ rc = ExpandBlob(pData);
+ if( rc!=SQLITE_OK ) goto preupdate_new_out;
+ pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
+ if( !pUnpack ){
+ rc = SQLITE_NOMEM;
+ goto preupdate_new_out;
+ }
+ p->pNewUnpacked = pUnpack;
+ }
+ pMem = &pUnpack->aMem[iIdx];
+ if( iIdx==p->pTab->iPKey ){
+ sqlite3VdbeMemSetInt64(pMem, p->iKey2);
+ }else if( iIdx>=pUnpack->nField ){
+ pMem = (sqlite3_value *)columnNullValue();
+ }
+ }else{
+ /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
+ ** value. Make a copy of the cell contents and return a pointer to it.
+ ** It is not safe to return a pointer to the memory cell itself as the
+ ** caller may modify the value text encoding.
+ */
+ assert( p->op==SQLITE_UPDATE );
+ if( !p->aNew ){
+ p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
+ if( !p->aNew ){
+ rc = SQLITE_NOMEM;
+ goto preupdate_new_out;
+ }
+ }
+ assert( iIdx>=0 && iIdx<p->pCsr->nField );
+ pMem = &p->aNew[iIdx];
+ if( pMem->flags==0 ){
+ if( iIdx==p->pTab->iPKey ){
+ sqlite3VdbeMemSetInt64(pMem, p->iKey2);
+ }else{
+ rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
+ if( rc!=SQLITE_OK ) goto preupdate_new_out;
+ }
+ }
+ }
+ *ppValue = pMem;
+
+ preupdate_new_out:
+ sqlite3Error(db, rc);
+ return sqlite3ApiExit(db, rc);
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+/*
+** Return status data for a single loop within query pStmt.
+*/
+SQLITE_API int sqlite3_stmt_scanstatus_v2(
+ sqlite3_stmt *pStmt, /* Prepared statement being queried */
+ int iScan, /* Index of loop to report on */
+ int iScanStatusOp, /* Which metric to return */
+ int flags,
+ void *pOut /* OUT: Write the answer here */
+){
+ Vdbe *p = (Vdbe*)pStmt;
+ VdbeOp *aOp;
+ int nOp;
+ ScanStatus *pScan = 0;
+ int idx;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( p==0 || pOut==0
+ || iScanStatusOp<SQLITE_SCANSTAT_NLOOP
+ || iScanStatusOp>SQLITE_SCANSTAT_NCYCLE ){
+ return 1;
+ }
+#endif
+ aOp = p->aOp;
+ nOp = p->nOp;
+ if( p->pFrame ){
+ VdbeFrame *pFrame;
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ aOp = pFrame->aOp;
+ nOp = pFrame->nOp;
+ }
+
+ if( iScan<0 ){
+ int ii;
+ if( iScanStatusOp==SQLITE_SCANSTAT_NCYCLE ){
+ i64 res = 0;
+ for(ii=0; ii<nOp; ii++){
+ res += aOp[ii].nCycle;
+ }
+ *(i64*)pOut = res;
+ return 0;
+ }
+ return 1;
+ }
+ if( flags & SQLITE_SCANSTAT_COMPLEX ){
+ idx = iScan;
+ pScan = &p->aScan[idx];
+ }else{
+ /* If the COMPLEX flag is clear, then this function must ignore any
+ ** ScanStatus structures with ScanStatus.addrLoop set to 0. */
+ for(idx=0; idx<p->nScan; idx++){
+ pScan = &p->aScan[idx];
+ if( pScan->zName ){
+ iScan--;
+ if( iScan<0 ) break;
+ }
+ }
+ }
+ if( idx>=p->nScan ) return 1;
+
+ switch( iScanStatusOp ){
+ case SQLITE_SCANSTAT_NLOOP: {
+ if( pScan->addrLoop>0 ){
+ *(sqlite3_int64*)pOut = aOp[pScan->addrLoop].nExec;
+ }else{
+ *(sqlite3_int64*)pOut = -1;
+ }
+ break;
+ }
+ case SQLITE_SCANSTAT_NVISIT: {
+ if( pScan->addrVisit>0 ){
+ *(sqlite3_int64*)pOut = aOp[pScan->addrVisit].nExec;
+ }else{
+ *(sqlite3_int64*)pOut = -1;
+ }
+ break;
+ }
+ case SQLITE_SCANSTAT_EST: {
+ double r = 1.0;
+ LogEst x = pScan->nEst;
+ while( x<100 ){
+ x += 10;
+ r *= 0.5;
+ }
+ *(double*)pOut = r*sqlite3LogEstToInt(x);
+ break;
+ }
+ case SQLITE_SCANSTAT_NAME: {
+ *(const char**)pOut = pScan->zName;
+ break;
+ }
+ case SQLITE_SCANSTAT_EXPLAIN: {
+ if( pScan->addrExplain ){
+ *(const char**)pOut = aOp[ pScan->addrExplain ].p4.z;
+ }else{
+ *(const char**)pOut = 0;
+ }
+ break;
+ }
+ case SQLITE_SCANSTAT_SELECTID: {
+ if( pScan->addrExplain ){
+ *(int*)pOut = aOp[ pScan->addrExplain ].p1;
+ }else{
+ *(int*)pOut = -1;
+ }
+ break;
+ }
+ case SQLITE_SCANSTAT_PARENTID: {
+ if( pScan->addrExplain ){
+ *(int*)pOut = aOp[ pScan->addrExplain ].p2;
+ }else{
+ *(int*)pOut = -1;
+ }
+ break;
+ }
+ case SQLITE_SCANSTAT_NCYCLE: {
+ i64 res = 0;
+ if( pScan->aAddrRange[0]==0 ){
+ res = -1;
+ }else{
+ int ii;
+ for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
+ int iIns = pScan->aAddrRange[ii];
+ int iEnd = pScan->aAddrRange[ii+1];
+ if( iIns==0 ) break;
+ if( iIns>0 ){
+ while( iIns<=iEnd ){
+ res += aOp[iIns].nCycle;
+ iIns++;
+ }
+ }else{
+ int iOp;
+ for(iOp=0; iOp<nOp; iOp++){
+ Op *pOp = &aOp[iOp];
+ if( pOp->p1!=iEnd ) continue;
+ if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_NCYCLE)==0 ){
+ continue;
+ }
+ res += aOp[iOp].nCycle;
+ }
+ }
+ }
+ }
+ *(i64*)pOut = res;
+ break;
+ }
+ default: {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Return status data for a single loop within query pStmt.
+*/
+SQLITE_API int sqlite3_stmt_scanstatus(
+ sqlite3_stmt *pStmt, /* Prepared statement being queried */
+ int iScan, /* Index of loop to report on */
+ int iScanStatusOp, /* Which metric to return */
+ void *pOut /* OUT: Write the answer here */
+){
+ return sqlite3_stmt_scanstatus_v2(pStmt, iScan, iScanStatusOp, 0, pOut);
+}
+
+/*
+** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
+*/
+SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ int ii;
+ for(ii=0; p!=0 && ii<p->nOp; ii++){
+ Op *pOp = &p->aOp[ii];
+ pOp->nExec = 0;
+ pOp->nCycle = 0;
+ }
+}
+#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
+
+/************** End of vdbeapi.c *********************************************/
+/************** Begin file vdbetrace.c ***************************************/
+/*
+** 2009 November 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to insert the values of host parameters
+** (aka "wildcards") into the SQL text output by sqlite3_trace().
+**
+** The Vdbe parse-tree explainer is also found here.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#ifndef SQLITE_OMIT_TRACE
+
+/*
+** zSql is a zero-terminated string of UTF-8 SQL text. Return the number of
+** bytes in this text up to but excluding the first character in
+** a host parameter. If the text contains no host parameters, return
+** the total number of bytes in the text.
+*/
+static int findNextHostParameter(const char *zSql, int *pnToken){
+ int tokenType;
+ int nTotal = 0;
+ int n;
+
+ *pnToken = 0;
+ while( zSql[0] ){
+ n = sqlite3GetToken((u8*)zSql, &tokenType);
+ assert( n>0 && tokenType!=TK_ILLEGAL );
+ if( tokenType==TK_VARIABLE ){
+ *pnToken = n;
+ break;
+ }
+ nTotal += n;
+ zSql += n;
+ }
+ return nTotal;
+}
+
+/*
+** This function returns a pointer to a nul-terminated string in memory
+** obtained from sqlite3DbMalloc(). If sqlite3.nVdbeExec is 1, then the
+** string contains a copy of zRawSql but with host parameters expanded to
+** their current bindings. Or, if sqlite3.nVdbeExec is greater than 1,
+** then the returned string holds a copy of zRawSql with "-- " prepended
+** to each line of text.
+**
+** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then
+** then long strings and blobs are truncated to that many bytes. This
+** can be used to prevent unreasonably large trace strings when dealing
+** with large (multi-megabyte) strings and blobs.
+**
+** The calling function is responsible for making sure the memory returned
+** is eventually freed.
+**
+** ALGORITHM: Scan the input string looking for host parameters in any of
+** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within
+** string literals, quoted identifier names, and comments. For text forms,
+** the host parameter index is found by scanning the prepared
+** statement for the corresponding OP_Variable opcode. Once the host
+** parameter index is known, locate the value in p->aVar[]. Then render
+** the value as a literal in place of the host parameter name.
+*/
+SQLITE_PRIVATE char *sqlite3VdbeExpandSql(
+ Vdbe *p, /* The prepared statement being evaluated */
+ const char *zRawSql /* Raw text of the SQL statement */
+){
+ sqlite3 *db; /* The database connection */
+ int idx = 0; /* Index of a host parameter */
+ int nextIndex = 1; /* Index of next ? host parameter */
+ int n; /* Length of a token prefix */
+ int nToken; /* Length of the parameter token */
+ int i; /* Loop counter */
+ Mem *pVar; /* Value of a host parameter */
+ StrAccum out; /* Accumulate the output here */
+#ifndef SQLITE_OMIT_UTF16
+ Mem utf8; /* Used to convert UTF16 into UTF8 for display */
+#endif
+
+ db = p->db;
+ sqlite3StrAccumInit(&out, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ if( db->nVdbeExec>1 ){
+ while( *zRawSql ){
+ const char *zStart = zRawSql;
+ while( *(zRawSql++)!='\n' && *zRawSql );
+ sqlite3_str_append(&out, "-- ", 3);
+ assert( (zRawSql - zStart) > 0 );
+ sqlite3_str_append(&out, zStart, (int)(zRawSql-zStart));
+ }
+ }else if( p->nVar==0 ){
+ sqlite3_str_append(&out, zRawSql, sqlite3Strlen30(zRawSql));
+ }else{
+ while( zRawSql[0] ){
+ n = findNextHostParameter(zRawSql, &nToken);
+ assert( n>0 );
+ sqlite3_str_append(&out, zRawSql, n);
+ zRawSql += n;
+ assert( zRawSql[0] || nToken==0 );
+ if( nToken==0 ) break;
+ if( zRawSql[0]=='?' ){
+ if( nToken>1 ){
+ assert( sqlite3Isdigit(zRawSql[1]) );
+ sqlite3GetInt32(&zRawSql[1], &idx);
+ }else{
+ idx = nextIndex;
+ }
+ }else{
+ assert( zRawSql[0]==':' || zRawSql[0]=='$' ||
+ zRawSql[0]=='@' || zRawSql[0]=='#' );
+ testcase( zRawSql[0]==':' );
+ testcase( zRawSql[0]=='$' );
+ testcase( zRawSql[0]=='@' );
+ testcase( zRawSql[0]=='#' );
+ idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken);
+ assert( idx>0 );
+ }
+ zRawSql += nToken;
+ nextIndex = MAX(idx + 1, nextIndex);
+ assert( idx>0 && idx<=p->nVar );
+ pVar = &p->aVar[idx-1];
+ if( pVar->flags & MEM_Null ){
+ sqlite3_str_append(&out, "NULL", 4);
+ }else if( pVar->flags & (MEM_Int|MEM_IntReal) ){
+ sqlite3_str_appendf(&out, "%lld", pVar->u.i);
+ }else if( pVar->flags & MEM_Real ){
+ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r);
+ }else if( pVar->flags & MEM_Str ){
+ int nOut; /* Number of bytes of the string text to include in output */
+#ifndef SQLITE_OMIT_UTF16
+ u8 enc = ENC(db);
+ if( enc!=SQLITE_UTF8 ){
+ memset(&utf8, 0, sizeof(utf8));
+ utf8.db = db;
+ sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
+ if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){
+ out.accError = SQLITE_NOMEM;
+ out.nAlloc = 0;
+ }
+ pVar = &utf8;
+ }
+#endif
+ nOut = pVar->n;
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
+ nOut = SQLITE_TRACE_SIZE_LIMIT;
+ while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
+ }
+#endif
+ sqlite3_str_appendf(&out, "'%.*q'", nOut, pVar->z);
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut<pVar->n ){
+ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut);
+ }
+#endif
+#ifndef SQLITE_OMIT_UTF16
+ if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
+#endif
+ }else if( pVar->flags & MEM_Zero ){
+ sqlite3_str_appendf(&out, "zeroblob(%d)", pVar->u.nZero);
+ }else{
+ int nOut; /* Number of bytes of the blob to include in output */
+ assert( pVar->flags & MEM_Blob );
+ sqlite3_str_append(&out, "x'", 2);
+ nOut = pVar->n;
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
+#endif
+ for(i=0; i<nOut; i++){
+ sqlite3_str_appendf(&out, "%02x", pVar->z[i]&0xff);
+ }
+ sqlite3_str_append(&out, "'", 1);
+#ifdef SQLITE_TRACE_SIZE_LIMIT
+ if( nOut<pVar->n ){
+ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut);
+ }
+#endif
+ }
+ }
+ }
+ if( out.accError ) sqlite3_str_reset(&out);
+ return sqlite3StrAccumFinish(&out);
+}
+
+#endif /* #ifndef SQLITE_OMIT_TRACE */
+
+/************** End of vdbetrace.c *******************************************/
+/************** Begin file vdbe.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements the function that runs the
+** bytecode of a prepared statement.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/*
+** Invoke this macro on memory cells just prior to changing the
+** value of the cell. This macro verifies that shallow copies are
+** not misused. A shallow copy of a string or blob just copies a
+** pointer to the string or blob, not the content. If the original
+** is changed while the copy is still in use, the string or blob might
+** be changed out from under the copy. This macro verifies that nothing
+** like that ever happens.
+*/
+#ifdef SQLITE_DEBUG
+# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
+#else
+# define memAboutToChange(P,M)
+#endif
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_search_count = 0;
+#endif
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
+** field of the sqlite3 structure is set in order to simulate an interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_interrupt_count = 0;
+#endif
+
+/*
+** The next global variable is incremented each type the OP_Sort opcode
+** is executed. The test procedures use this information to make sure that
+** sorting is occurring or not occurring at appropriate times. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_sort_count = 0;
+#endif
+
+/*
+** The next global variable records the size of the largest MEM_Blob
+** or MEM_Str that has been used by a VDBE opcode. The test procedures
+** use this information to make sure that the zero-blob functionality
+** is working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_max_blobsize = 0;
+static void updateMaxBlobsize(Mem *p){
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
+ sqlite3_max_blobsize = p->n;
+ }
+}
+#endif
+
+/*
+** This macro evaluates to true if either the update hook or the preupdate
+** hook are enabled for database connect DB.
+*/
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
+#else
+# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
+#endif
+
+/*
+** The next global variable is incremented each time the OP_Found opcode
+** is executed. This is used to test whether or not the foreign key
+** operation implemented using OP_FkIsZero is working. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_found_count = 0;
+#endif
+
+/*
+** Test a register to see if it exceeds the current maximum blob size.
+** If it does, record the new maximum blob size.
+*/
+#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
+#else
+# define UPDATE_MAX_BLOBSIZE(P)
+#endif
+
+#ifdef SQLITE_DEBUG
+/* This routine provides a convenient place to set a breakpoint during
+** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
+** each opcode is printed. Variables "pc" (program counter) and pOp are
+** available to add conditionals to the breakpoint. GDB example:
+**
+** break test_trace_breakpoint if pc=22
+**
+** Other useful labels for breakpoints include:
+** test_addop_breakpoint(pc,pOp)
+** sqlite3CorruptError(lineno)
+** sqlite3MisuseError(lineno)
+** sqlite3CantopenError(lineno)
+*/
+static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
+ static int n = 0;
+ (void)pc;
+ (void)pOp;
+ (void)v;
+ n++;
+}
+#endif
+
+/*
+** Invoke the VDBE coverage callback, if that callback is defined. This
+** feature is used for test suite validation only and does not appear an
+** production builds.
+**
+** M is the type of branch. I is the direction taken for this instance of
+** the branch.
+**
+** M: 2 - two-way branch (I=0: fall-thru 1: jump )
+** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
+** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
+**
+** In other words, if M is 2, then I is either 0 (for fall-through) or
+** 1 (for when the branch is taken). If M is 3, the I is 0 for an
+** ordinary fall-through, I is 1 if the branch was taken, and I is 2
+** if the result of comparison is NULL. For M=3, I=2 the jump may or
+** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
+** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
+** depending on if the operands are less than, equal, or greater than.
+**
+** iSrcLine is the source code line (from the __LINE__ macro) that
+** generated the VDBE instruction combined with flag bits. The source
+** code line number is in the lower 24 bits of iSrcLine and the upper
+** 8 bytes are flags. The lower three bits of the flags indicate
+** values for I that should never occur. For example, if the branch is
+** always taken, the flags should be 0x05 since the fall-through and
+** alternate branch are never taken. If a branch is never taken then
+** flags should be 0x06 since only the fall-through approach is allowed.
+**
+** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
+** interested in equal or not-equal. In other words, I==0 and I==2
+** should be treated as equivalent
+**
+** Since only a line number is retained, not the filename, this macro
+** only works for amalgamation builds. But that is ok, since these macros
+** should be no-ops except for special builds used to measure test coverage.
+*/
+#if !defined(SQLITE_VDBE_COVERAGE)
+# define VdbeBranchTaken(I,M)
+#else
+# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
+ static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
+ u8 mNever;
+ assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
+ assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
+ assert( I<M ); /* I can only be 2 if M is 3 or 4 */
+ /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
+ I = 1<<I;
+ /* The upper 8 bits of iSrcLine are flags. The lower three bits of
+ ** the flags indicate directions that the branch can never go. If
+ ** a branch really does go in one of those directions, assert right
+ ** away. */
+ mNever = iSrcLine >> 24;
+ assert( (I & mNever)==0 );
+ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
+ /* Invoke the branch coverage callback with three arguments:
+ ** iSrcLine - the line number of the VdbeCoverage() macro, with
+ ** flags removed.
+ ** I - Mask of bits 0x07 indicating which cases are are
+ ** fulfilled by this instance of the jump. 0x01 means
+ ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
+ ** impossible cases (ex: if the comparison is never NULL)
+ ** are filled in automatically so that the coverage
+ ** measurement logic does not flag those impossible cases
+ ** as missed coverage.
+ ** M - Type of jump. Same as M argument above
+ */
+ I |= mNever;
+ if( M==2 ) I |= 0x04;
+ if( M==4 ){
+ I |= 0x08;
+ if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
+ }
+ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
+ iSrcLine&0xffffff, I, M);
+ }
+#endif
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the register
+** does not control the string, it might be deleted without the register
+** knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the register itself controls. In other words, it
+** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 \
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
+
+/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
+#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
+
+/*
+** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
+** if we run out of memory.
+*/
+static VdbeCursor *allocateCursor(
+ Vdbe *p, /* The virtual machine */
+ int iCur, /* Index of the new VdbeCursor */
+ int nField, /* Number of fields in the table or index */
+ u8 eCurType /* Type of the new cursor */
+){
+ /* Find the memory cell that will be used to store the blob of memory
+ ** required for this VdbeCursor structure. It is convenient to use a
+ ** vdbe memory cell to manage the memory allocation required for a
+ ** VdbeCursor structure for the following reasons:
+ **
+ ** * Sometimes cursor numbers are used for a couple of different
+ ** purposes in a vdbe program. The different uses might require
+ ** different sized allocations. Memory cells provide growable
+ ** allocations.
+ **
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
+ ** be freed lazily via the sqlite3_release_memory() API. This
+ ** minimizes the number of malloc calls made by the system.
+ **
+ ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
+ ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
+ ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
+ */
+ Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
+
+ int nByte;
+ VdbeCursor *pCx = 0;
+ nByte =
+ ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
+ (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
+
+ assert( iCur>=0 && iCur<p->nCursor );
+ if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
+ sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
+ p->apCsr[iCur] = 0;
+ }
+
+ /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
+ ** the pMem used to hold space for the cursor has enough storage available
+ ** in pMem->zMalloc. But for the special case of the aMem[] entries used
+ ** to hold cursors, it is faster to in-line the logic. */
+ assert( pMem->flags==MEM_Undefined );
+ assert( (pMem->flags & MEM_Dyn)==0 );
+ assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
+ if( pMem->szMalloc<nByte ){
+ if( pMem->szMalloc>0 ){
+ sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
+ }
+ pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
+ if( pMem->zMalloc==0 ){
+ pMem->szMalloc = 0;
+ return 0;
+ }
+ pMem->szMalloc = nByte;
+ }
+
+ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
+ memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
+ pCx->eCurType = eCurType;
+ pCx->nField = nField;
+ pCx->aOffset = &pCx->aType[nField];
+ if( eCurType==CURTYPE_BTREE ){
+ pCx->uc.pCursor = (BtCursor*)
+ &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
+ sqlite3BtreeCursorZero(pCx->uc.pCursor);
+ }
+ return pCx;
+}
+
+/*
+** The string in pRec is known to look like an integer and to have a
+** floating point value of rValue. Return true and set *piValue to the
+** integer value if the string is in range to be an integer. Otherwise,
+** return false.
+*/
+static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
+ i64 iValue;
+ iValue = sqlite3RealToI64(rValue);
+ if( sqlite3RealSameAsInt(rValue,iValue) ){
+ *piValue = iValue;
+ return 1;
+ }
+ return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
+}
+
+/*
+** Try to convert a value into a numeric representation if we can
+** do so without loss of information. In other words, if the string
+** looks like a number, convert it into a number. If it does not
+** look like a number, leave it alone.
+**
+** If the bTryForInt flag is true, then extra effort is made to give
+** an integer representation. Strings that look like floating point
+** values but which have no fractional component (example: '48.00')
+** will have a MEM_Int representation when bTryForInt is true.
+**
+** If bTryForInt is false, then if the input string contains a decimal
+** point or exponential notation, the result is only MEM_Real, even
+** if there is an exact integer representation of the quantity.
+*/
+static void applyNumericAffinity(Mem *pRec, int bTryForInt){
+ double rValue;
+ u8 enc = pRec->enc;
+ int rc;
+ assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
+ rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
+ if( rc<=0 ) return;
+ if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
+ pRec->flags |= MEM_Int;
+ }else{
+ pRec->u.r = rValue;
+ pRec->flags |= MEM_Real;
+ if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
+ }
+ /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
+ ** string representation after computing a numeric equivalent, because the
+ ** string representation might not be the canonical representation for the
+ ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
+ pRec->flags &= ~MEM_Str;
+}
+
+/*
+** Processing is determine by the affinity parameter:
+**
+** SQLITE_AFF_INTEGER:
+** SQLITE_AFF_REAL:
+** SQLITE_AFF_NUMERIC:
+** Try to convert pRec to an integer representation or a
+** floating-point representation if an integer representation
+** is not possible. Note that the integer representation is
+** always preferred, even if the affinity is REAL, because
+** an integer representation is more space efficient on disk.
+**
+** SQLITE_AFF_FLEXNUM:
+** If the value is text, then try to convert it into a number of
+** some kind (integer or real) but do not make any other changes.
+**
+** SQLITE_AFF_TEXT:
+** Convert pRec to a text representation.
+**
+** SQLITE_AFF_BLOB:
+** SQLITE_AFF_NONE:
+** No-op. pRec is unchanged.
+*/
+static void applyAffinity(
+ Mem *pRec, /* The value to apply affinity to */
+ char affinity, /* The affinity to be applied */
+ u8 enc /* Use this text encoding */
+){
+ if( affinity>=SQLITE_AFF_NUMERIC ){
+ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
+ || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
+ if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
+ if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
+ }else if( affinity<=SQLITE_AFF_REAL ){
+ sqlite3VdbeIntegerAffinity(pRec);
+ }
+ }
+ }else if( affinity==SQLITE_AFF_TEXT ){
+ /* Only attempt the conversion to TEXT if there is an integer or real
+ ** representation (blob and NULL do not get converted) but no string
+ ** representation. It would be harmless to repeat the conversion if
+ ** there is already a string rep, but it is pointless to waste those
+ ** CPU cycles. */
+ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
+ testcase( pRec->flags & MEM_Int );
+ testcase( pRec->flags & MEM_Real );
+ testcase( pRec->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pRec, enc, 1);
+ }
+ }
+ pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
+ }
+}
+
+/*
+** Try to convert the type of a function argument or a result column
+** into a numeric representation. Use either INTEGER or REAL whichever
+** is appropriate. But only do the conversion if it is possible without
+** loss of information and return the revised type of the argument.
+*/
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
+ int eType = sqlite3_value_type(pVal);
+ if( eType==SQLITE_TEXT ){
+ Mem *pMem = (Mem*)pVal;
+ applyNumericAffinity(pMem, 0);
+ eType = sqlite3_value_type(pVal);
+ }
+ return eType;
+}
+
+/*
+** Exported version of applyAffinity(). This one works on sqlite3_value*,
+** not the internal Mem* type.
+*/
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
+ sqlite3_value *pVal,
+ u8 affinity,
+ u8 enc
+){
+ applyAffinity((Mem *)pVal, affinity, enc);
+}
+
+/*
+** pMem currently only holds a string type (or maybe a BLOB that we can
+** interpret as a string if we want to). Compute its corresponding
+** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
+** accordingly.
+*/
+static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
+ int rc;
+ sqlite3_int64 ix;
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
+ assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
+ if( ExpandBlob(pMem) ){
+ pMem->u.i = 0;
+ return MEM_Int;
+ }
+ rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
+ if( rc<=0 ){
+ if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
+ pMem->u.i = ix;
+ return MEM_Int;
+ }else{
+ return MEM_Real;
+ }
+ }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
+ pMem->u.i = ix;
+ return MEM_Int;
+ }
+ return MEM_Real;
+}
+
+/*
+** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
+** none.
+**
+** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
+** But it does set pMem->u.r and pMem->u.i appropriately.
+*/
+static u16 numericType(Mem *pMem){
+ assert( (pMem->flags & MEM_Null)==0
+ || pMem->db==0 || pMem->db->mallocFailed );
+ if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
+ testcase( pMem->flags & MEM_Int );
+ testcase( pMem->flags & MEM_Real );
+ testcase( pMem->flags & MEM_IntReal );
+ return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
+ }
+ assert( pMem->flags & (MEM_Str|MEM_Blob) );
+ testcase( pMem->flags & MEM_Str );
+ testcase( pMem->flags & MEM_Blob );
+ return computeNumericType(pMem);
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Write a nice string representation of the contents of cell pMem
+** into buffer zBuf, length nBuf.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
+ int f = pMem->flags;
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
+ if( f&MEM_Blob ){
+ int i;
+ char c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+ sqlite3_str_appendf(pStr, "%cx[", c);
+ for(i=0; i<25 && i<pMem->n; i++){
+ sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
+ }
+ sqlite3_str_appendf(pStr, "|");
+ for(i=0; i<25 && i<pMem->n; i++){
+ char z = pMem->z[i];
+ sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
+ }
+ sqlite3_str_appendf(pStr,"]");
+ if( f & MEM_Zero ){
+ sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
+ }
+ }else if( f & MEM_Str ){
+ int j;
+ u8 c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+ sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
+ for(j=0; j<25 && j<pMem->n; j++){
+ c = pMem->z[j];
+ sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
+ }
+ sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
+ if( f & MEM_Term ){
+ sqlite3_str_appendf(pStr, "(0-term)");
+ }
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the value of a register for tracing purposes:
+*/
+static void memTracePrint(Mem *p){
+ if( p->flags & MEM_Undefined ){
+ printf(" undefined");
+ }else if( p->flags & MEM_Null ){
+ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ printf(" si:%lld", p->u.i);
+ }else if( (p->flags & (MEM_IntReal))!=0 ){
+ printf(" ir:%lld", p->u.i);
+ }else if( p->flags & MEM_Int ){
+ printf(" i:%lld", p->u.i);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( p->flags & MEM_Real ){
+ printf(" r:%.17g", p->u.r);
+#endif
+ }else if( sqlite3VdbeMemIsRowSet(p) ){
+ printf(" (rowset)");
+ }else{
+ StrAccum acc;
+ char zBuf[1000];
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3VdbeMemPrettyPrint(p, &acc);
+ printf(" %s", sqlite3StrAccumFinish(&acc));
+ }
+ if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
+}
+static void registerTrace(int iReg, Mem *p){
+ printf("R[%d] = ", iReg);
+ memTracePrint(p);
+ if( p->pScopyFrom ){
+ printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
+ }
+ printf("\n");
+ sqlite3VdbeCheckMemInvariants(p);
+}
+/**/ void sqlite3PrintMem(Mem *pMem){
+ memTracePrint(pMem);
+ printf("\n");
+ fflush(stdout);
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Show the values of all registers in the virtual machine. Used for
+** interactive debugging.
+*/
+SQLITE_PRIVATE void sqlite3VdbeRegisterDump(Vdbe *v){
+ int i;
+ for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
+}
+#endif /* SQLITE_DEBUG */
+
+
+#ifdef SQLITE_DEBUG
+# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
+#else
+# define REGISTER_TRACE(R,M)
+#endif
+
+#ifndef NDEBUG
+/*
+** This function is only called from within an assert() expression. It
+** checks that the sqlite3.nTransaction variable is correctly set to
+** the number of non-transaction savepoints currently in the
+** linked list starting at sqlite3.pSavepoint.
+**
+** Usage:
+**
+** assert( checkSavepointCount(db) );
+*/
+static int checkSavepointCount(sqlite3 *db){
+ int n = 0;
+ Savepoint *p;
+ for(p=db->pSavepoint; p; p=p->pNext) n++;
+ assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
+ return 1;
+}
+#endif
+
+/*
+** Return the register of pOp->p2 after first preparing it to be
+** overwritten with an integer value.
+*/
+static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
+ sqlite3VdbeMemSetNull(pOut);
+ pOut->flags = MEM_Int;
+ return pOut;
+}
+static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
+ Mem *pOut;
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ pOut = &p->aMem[pOp->p2];
+ memAboutToChange(p, pOut);
+ if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
+ return out2PrereleaseWithClear(pOut);
+ }else{
+ pOut->flags = MEM_Int;
+ return pOut;
+ }
+}
+
+/*
+** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
+** with pOp->p3. Return the hash.
+*/
+static u64 filterHash(const Mem *aMem, const Op *pOp){
+ int i, mx;
+ u64 h = 0;
+
+ assert( pOp->p4type==P4_INT32 );
+ for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
+ const Mem *p = &aMem[i];
+ if( p->flags & (MEM_Int|MEM_IntReal) ){
+ h += p->u.i;
+ }else if( p->flags & MEM_Real ){
+ h += sqlite3VdbeIntValue(p);
+ }else if( p->flags & (MEM_Str|MEM_Blob) ){
+ /* All strings have the same hash and all blobs have the same hash,
+ ** though, at least, those hashes are different from each other and
+ ** from NULL. */
+ h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
+ }
+ }
+ return h;
+}
+
+
+/*
+** For OP_Column, factor out the case where content is loaded from
+** overflow pages, so that the code to implement this case is separate
+** the common case where all content fits on the page. Factoring out
+** the code reduces register pressure and helps the common case
+** to run faster.
+*/
+static SQLITE_NOINLINE int vdbeColumnFromOverflow(
+ VdbeCursor *pC, /* The BTree cursor from which we are reading */
+ int iCol, /* The column to read */
+ int t, /* The serial-type code for the column value */
+ i64 iOffset, /* Offset to the start of the content value */
+ u32 cacheStatus, /* Current Vdbe.cacheCtr value */
+ u32 colCacheCtr, /* Current value of the column cache counter */
+ Mem *pDest /* Store the value into this register. */
+){
+ int rc;
+ sqlite3 *db = pDest->db;
+ int encoding = pDest->enc;
+ int len = sqlite3VdbeSerialTypeLen(t);
+ assert( pC->eCurType==CURTYPE_BTREE );
+ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
+ if( len > 4000 && pC->pKeyInfo==0 ){
+ /* Cache large column values that are on overflow pages using
+ ** an RCStr (reference counted string) so that if they are reloaded,
+ ** that do not have to be copied a second time. The overhead of
+ ** creating and managing the cache is such that this is only
+ ** profitable for larger TEXT and BLOB values.
+ **
+ ** Only do this on table-btrees so that writes to index-btrees do not
+ ** need to clear the cache. This buys performance in the common case
+ ** in exchange for generality.
+ */
+ VdbeTxtBlbCache *pCache;
+ char *pBuf;
+ if( pC->colCache==0 ){
+ pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
+ if( pC->pCache==0 ) return SQLITE_NOMEM;
+ pC->colCache = 1;
+ }
+ pCache = pC->pCache;
+ if( pCache->pCValue==0
+ || pCache->iCol!=iCol
+ || pCache->cacheStatus!=cacheStatus
+ || pCache->colCacheCtr!=colCacheCtr
+ || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
+ ){
+ if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
+ pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
+ if( pBuf==0 ) return SQLITE_NOMEM;
+ rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
+ if( rc ) return rc;
+ pBuf[len] = 0;
+ pBuf[len+1] = 0;
+ pBuf[len+2] = 0;
+ pCache->iCol = iCol;
+ pCache->cacheStatus = cacheStatus;
+ pCache->colCacheCtr = colCacheCtr;
+ pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
+ }else{
+ pBuf = pCache->pCValue;
+ }
+ assert( t>=12 );
+ sqlite3RCStrRef(pBuf);
+ if( t&1 ){
+ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
+ sqlite3RCStrUnref);
+ pDest->flags |= MEM_Term;
+ }else{
+ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
+ sqlite3RCStrUnref);
+ }
+ }else{
+ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
+ if( rc ) return rc;
+ sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
+ if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
+ pDest->z[len] = 0;
+ pDest->flags |= MEM_Term;
+ }
+ }
+ pDest->flags &= ~MEM_Ephem;
+ return rc;
+}
+
+
+/*
+** Return the symbolic name for the data type of a pMem
+*/
+static const char *vdbeMemTypeName(Mem *pMem){
+ static const char *azTypes[] = {
+ /* SQLITE_INTEGER */ "INT",
+ /* SQLITE_FLOAT */ "REAL",
+ /* SQLITE_TEXT */ "TEXT",
+ /* SQLITE_BLOB */ "BLOB",
+ /* SQLITE_NULL */ "NULL"
+ };
+ return azTypes[sqlite3_value_type(pMem)-1];
+}
+
+/*
+** Execute as much of a VDBE program as we can.
+** This is the core of sqlite3_step().
+*/
+SQLITE_PRIVATE int sqlite3VdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ Op *aOp = p->aOp; /* Copy of p->aOp */
+ Op *pOp = aOp; /* Current operation */
+#ifdef SQLITE_DEBUG
+ Op *pOrigOp; /* Value of pOp at the top of the loop */
+ int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
+ u8 iCompareIsInit = 0; /* iCompare is initialized */
+#endif
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite3 *db = p->db; /* The database */
+ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
+ u8 encoding = ENC(db); /* The database encoding */
+ int iCompare = 0; /* Result of last comparison */
+ u64 nVmStep = 0; /* Number of virtual machine steps */
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
+#endif
+ Mem *aMem = p->aMem; /* Copy of p->aMem */
+ Mem *pIn1 = 0; /* 1st input operand */
+ Mem *pIn2 = 0; /* 2nd input operand */
+ Mem *pIn3 = 0; /* 3rd input operand */
+ Mem *pOut = 0; /* Output operand */
+ u32 colCacheCtr = 0; /* Column cache counter */
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
+ u64 *pnCycle = 0;
+ int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
+#endif
+ /*** INSERT STACK UNION HERE ***/
+
+ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
+ if( DbMaskNonZero(p->lockMask) ){
+ sqlite3VdbeEnter(p);
+ }
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ if( db->xProgress ){
+ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
+ assert( 0 < db->nProgressOps );
+ nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
+ }else{
+ nProgressLimit = LARGEST_UINT64;
+ }
+#endif
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ goto no_mem;
+ }
+ assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
+ testcase( p->rc!=SQLITE_OK );
+ p->rc = SQLITE_OK;
+ assert( p->bIsReader || p->readOnly!=0 );
+ p->iCurrentTime = 0;
+ assert( p->explain==0 );
+ db->busyHandler.nBusy = 0;
+ if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
+ sqlite3VdbeIOTraceSql(p);
+#ifdef SQLITE_DEBUG
+ sqlite3BeginBenignMalloc();
+ if( p->pc==0
+ && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
+ ){
+ int i;
+ int once = 1;
+ sqlite3VdbePrintSql(p);
+ if( p->db->flags & SQLITE_VdbeListing ){
+ printf("VDBE Program Listing:\n");
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &aOp[i]);
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeEQP ){
+ for(i=0; i<p->nOp; i++){
+ if( aOp[i].opcode==OP_Explain ){
+ if( once ) printf("VDBE Query Plan:\n");
+ printf("%s\n", aOp[i].p4.z);
+ once = 0;
+ }
+ }
+ }
+ if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
+ }
+ sqlite3EndBenignMalloc();
+#endif
+ for(pOp=&aOp[p->pc]; 1; pOp++){
+ /* Errors are detected by individual opcodes, with an immediate
+ ** jumps to abort_due_to_error. */
+ assert( rc==SQLITE_OK );
+
+ assert( pOp>=aOp && pOp<&aOp[p->nOp]);
+ nVmStep++;
+
+#if defined(VDBE_PROFILE)
+ pOp->nExec++;
+ pnCycle = &pOp->nCycle;
+ if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
+#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( bStmtScanStatus ){
+ pOp->nExec++;
+ pnCycle = &pOp->nCycle;
+ *pnCycle -= sqlite3Hwtime();
+ }
+#endif
+
+ /* Only allow tracing if SQLITE_DEBUG is defined.
+ */
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
+ test_trace_breakpoint((int)(pOp - aOp),pOp,p);
+ }
+#endif
+
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite3_interrupt_count>0 ){
+ sqlite3_interrupt_count--;
+ if( sqlite3_interrupt_count==0 ){
+ sqlite3_interrupt(db);
+ }
+ }
+#endif
+
+ /* Sanity checking on other operands */
+#ifdef SQLITE_DEBUG
+ {
+ u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
+ if( (opProperty & OPFLG_IN1)!=0 ){
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p1]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
+ REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
+ }
+ if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p2]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
+ REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
+ }
+ if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ assert( memIsValid(&aMem[pOp->p3]) );
+ assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
+ REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
+ }
+ if( (opProperty & OPFLG_OUT2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
+ memAboutToChange(p, &aMem[pOp->p2]);
+ }
+ if( (opProperty & OPFLG_OUT3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ }
+ }
+#endif
+#ifdef SQLITE_DEBUG
+ pOrigOp = pOp;
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode. If the
+** case statement is followed by a comment of the form "/# same as ... #/"
+** that comment is used to determine the particular value of the opcode.
+**
+** Other keywords in the comment that follows each case are used to
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
+** Keywords include: in1, in2, in3, out2, out3. See
+** the mkopcodeh.awk script for additional information.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 * * *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+**
+** The P1 parameter is not actually used by this opcode. However, it
+** is sometimes set to 1 instead of 0 as a hint to the command-line shell
+** that this Goto is the bottom of a loop and that the lines from P2 down
+** to the current line should be indented for EXPLAIN output.
+*/
+case OP_Goto: { /* jump */
+
+#ifdef SQLITE_DEBUG
+ /* In debugging mode, when the p5 flags is set on an OP_Goto, that
+ ** means we should really jump back to the preceding OP_ReleaseReg
+ ** instruction. */
+ if( pOp->p5 ){
+ assert( pOp->p2 < (int)(pOp - aOp) );
+ assert( pOp->p2 > 1 );
+ pOp = &aOp[pOp->p2 - 2];
+ assert( pOp[1].opcode==OP_ReleaseReg );
+ goto check_for_interrupt;
+ }
+#endif
+
+jump_to_p2_and_check_for_interrupt:
+ pOp = &aOp[pOp->p2 - 1];
+
+ /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
+ ** OP_VNext, or OP_SorterNext) all jump here upon
+ ** completion. Check to see if sqlite3_interrupt() has been called
+ ** or if the progress callback needs to be invoked.
+ **
+ ** This code uses unstructured "goto" statements and does not look clean.
+ ** But that is not due to sloppy coding habits. The code is written this
+ ** way for performance, to avoid having to run the interrupt and progress
+ ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
+ ** faster according to "valgrind --tool=cachegrind" */
+check_for_interrupt:
+ if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
+ assert( db->nProgressOps!=0 );
+ nProgressLimit += db->nProgressOps;
+ if( db->xProgress(db->pProgressArg) ){
+ nProgressLimit = LARGEST_UINT64;
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+ }
+ }
+#endif
+
+ break;
+}
+
+/* Opcode: Gosub P1 P2 * * *
+**
+** Write the current address onto register P1
+** and then jump to address P2.
+*/
+case OP_Gosub: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( VdbeMemDynamic(pIn1)==0 );
+ memAboutToChange(p, pIn1);
+ pIn1->flags = MEM_Int;
+ pIn1->u.i = (int)(pOp-aOp);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ goto jump_to_p2_and_check_for_interrupt;
+}
+
+/* Opcode: Return P1 P2 P3 * *
+**
+** Jump to the address stored in register P1. If P1 is a return address
+** register, then this accomplishes a return from a subroutine.
+**
+** If P3 is 1, then the jump is only taken if register P1 holds an integer
+** values, otherwise execution falls through to the next opcode, and the
+** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
+** integer or else an assert() is raised. P3 should be set to 1 when
+** this opcode is used in combination with OP_BeginSubrtn, and set to 0
+** otherwise.
+**
+** The value in register P1 is unchanged by this opcode.
+**
+** P2 is not used by the byte-code engine. However, if P2 is positive
+** and also less than the current address, then the "EXPLAIN" output
+** formatter in the CLI will indent all opcodes from the P2 opcode up
+** to be not including the current Return. P2 should be the first opcode
+** in the subroutine from which this opcode is returning. Thus the P2
+** value is a byte-code indentation hint. See tag-20220407a in
+** wherecode.c and shell.c.
+*/
+case OP_Return: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & MEM_Int ){
+ if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
+ pOp = &aOp[pIn1->u.i];
+ }else if( ALWAYS(pOp->p3) ){
+ VdbeBranchTaken(0, 2);
+ }
+ break;
+}
+
+/* Opcode: InitCoroutine P1 P2 P3 * *
+**
+** Set up register P1 so that it will Yield to the coroutine
+** located at address P3.
+**
+** If P2!=0 then the coroutine implementation immediately follows
+** this opcode. So jump over the coroutine implementation to
+** address P2.
+**
+** See also: EndCoroutine
+*/
+case OP_InitCoroutine: { /* jump */
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( pOp->p2>=0 && pOp->p2<p->nOp );
+ assert( pOp->p3>=0 && pOp->p3<p->nOp );
+ pOut = &aMem[pOp->p1];
+ assert( !VdbeMemDynamic(pOut) );
+ pOut->u.i = pOp->p3 - 1;
+ pOut->flags = MEM_Int;
+ if( pOp->p2==0 ) break;
+
+ /* Most jump operations do a goto to this spot in order to update
+ ** the pOp pointer. */
+jump_to_p2:
+ assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
+ assert( pOp->p2<p->nOp ); /* Jumps must be in range */
+ pOp = &aOp[pOp->p2 - 1];
+ break;
+}
+
+/* Opcode: EndCoroutine P1 * * * *
+**
+** The instruction at the address in register P1 is a Yield.
+** Jump to the P2 parameter of that Yield.
+** After the jump, register P1 becomes undefined.
+**
+** See also: InitCoroutine
+*/
+case OP_EndCoroutine: { /* in1 */
+ VdbeOp *pCaller;
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags==MEM_Int );
+ assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
+ pCaller = &aOp[pIn1->u.i];
+ assert( pCaller->opcode==OP_Yield );
+ assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
+ pOp = &aOp[pCaller->p2 - 1];
+ pIn1->flags = MEM_Undefined;
+ break;
+}
+
+/* Opcode: Yield P1 P2 * * *
+**
+** Swap the program counter with the value in register P1. This
+** has the effect of yielding to a coroutine.
+**
+** If the coroutine that is launched by this instruction ends with
+** Yield or Return then continue to the next instruction. But if
+** the coroutine launched by this instruction ends with
+** EndCoroutine, then jump to P2 rather than continuing with the
+** next instruction.
+**
+** See also: InitCoroutine
+*/
+case OP_Yield: { /* in1, jump */
+ int pcDest;
+ pIn1 = &aMem[pOp->p1];
+ assert( VdbeMemDynamic(pIn1)==0 );
+ pIn1->flags = MEM_Int;
+ pcDest = (int)pIn1->u.i;
+ pIn1->u.i = (int)(pOp - aOp);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ pOp = &aOp[pcDest];
+ break;
+}
+
+/* Opcode: HaltIfNull P1 P2 P3 P4 P5
+** Synopsis: if r[P3]=null halt
+**
+** Check the value in register P3. If it is NULL then Halt using
+** parameter P1, P2, and P4 as if this were a Halt instruction. If the
+** value in register P3 is not NULL, then this routine is a no-op.
+** The P5 parameter should be 1.
+*/
+case OP_HaltIfNull: { /* in3 */
+ pIn3 = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
+#endif
+ if( (pIn3->flags & MEM_Null)==0 ) break;
+ /* Fall through into OP_Halt */
+ /* no break */ deliberate_fall_through
+}
+
+/* Opcode: Halt P1 P2 * P4 P5
+**
+** Exit immediately. All open cursors, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
+** For errors, it can be some other value. If P1!=0 then P2 will determine
+** whether or not to rollback the current transaction. Do not rollback
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
+** then back out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** If P4 is not null then it is an error message string.
+**
+** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
+**
+** 0: (no change)
+** 1: NOT NULL constraint failed: P4
+** 2: UNIQUE constraint failed: P4
+** 3: CHECK constraint failed: P4
+** 4: FOREIGN KEY constraint failed: P4
+**
+** If P5 is not zero and P4 is NULL, then everything after the ":" is
+** omitted.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ VdbeFrame *pFrame;
+ int pcx;
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
+#endif
+
+ /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
+ ** something is wrong with the code generator. Raise an assertion in order
+ ** to bring this to the attention of fuzzers and other testing tools. */
+ assert( pOp->p1!=SQLITE_INTERNAL );
+
+ if( p->pFrame && pOp->p1==SQLITE_OK ){
+ /* Halt the sub-program. Return control to the parent frame. */
+ pFrame = p->pFrame;
+ p->pFrame = pFrame->pParent;
+ p->nFrame--;
+ sqlite3VdbeSetChanges(db, p->nChange);
+ pcx = sqlite3VdbeFrameRestore(pFrame);
+ if( pOp->p2==OE_Ignore ){
+ /* Instruction pcx is the OP_Program that invoked the sub-program
+ ** currently being halted. If the p2 instruction of this OP_Halt
+ ** instruction is set to OE_Ignore, then the sub-program is throwing
+ ** an IGNORE exception. In this case jump to the address specified
+ ** as the p2 of the calling OP_Program. */
+ pcx = p->aOp[pcx].p2-1;
+ }
+ aOp = p->aOp;
+ aMem = p->aMem;
+ pOp = &aOp[pcx];
+ break;
+ }
+ p->rc = pOp->p1;
+ p->errorAction = (u8)pOp->p2;
+ assert( pOp->p5<=4 );
+ if( p->rc ){
+ if( pOp->p5 ){
+ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
+ "FOREIGN KEY" };
+ testcase( pOp->p5==1 );
+ testcase( pOp->p5==2 );
+ testcase( pOp->p5==3 );
+ testcase( pOp->p5==4 );
+ sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
+ if( pOp->p4.z ){
+ p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
+ }
+ }else{
+ sqlite3VdbeError(p, "%s", pOp->p4.z);
+ }
+ pcx = (int)(pOp - aOp);
+ sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
+ }
+ rc = sqlite3VdbeHalt(p);
+ assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
+ if( rc==SQLITE_BUSY ){
+ p->rc = SQLITE_BUSY;
+ }else{
+ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
+ assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
+ }
+ goto vdbe_return;
+}
+
+/* Opcode: Integer P1 P2 * * *
+** Synopsis: r[P2]=P1
+**
+** The 32-bit integer value P1 is written into register P2.
+*/
+case OP_Integer: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = pOp->p1;
+ break;
+}
+
+/* Opcode: Int64 * P2 * P4 *
+** Synopsis: r[P2]=P4
+**
+** P4 is a pointer to a 64-bit integer value.
+** Write that value into register P2.
+*/
+case OP_Int64: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p4.pI64!=0 );
+ pOut->u.i = *pOp->p4.pI64;
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: Real * P2 * P4 *
+** Synopsis: r[P2]=P4
+**
+** P4 is a pointer to a 64-bit floating point value.
+** Write that value into register P2.
+*/
+case OP_Real: { /* same as TK_FLOAT, out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Real;
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) );
+ pOut->u.r = *pOp->p4.pReal;
+ break;
+}
+#endif
+
+/* Opcode: String8 * P2 * P4 *
+** Synopsis: r[P2]='P4'
+**
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed
+** into a String opcode before it is executed for the first time. During
+** this transformation, the length of string P4 is computed and stored
+** as the P1 parameter.
+*/
+case OP_String8: { /* same as TK_STRING, out2 */
+ assert( pOp->p4.z!=0 );
+ pOut = out2Prerelease(p, pOp);
+ pOp->p1 = sqlite3Strlen30(pOp->p4.z);
+
+#ifndef SQLITE_OMIT_UTF16
+ if( encoding!=SQLITE_UTF8 ){
+ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
+ assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
+ if( rc ) goto too_big;
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
+ assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
+ assert( VdbeMemDynamic(pOut)==0 );
+ pOut->szMalloc = 0;
+ pOut->flags |= MEM_Static;
+ if( pOp->p4type==P4_DYNAMIC ){
+ sqlite3DbFree(db, pOp->p4.z);
+ }
+ pOp->p4type = P4_DYNAMIC;
+ pOp->p4.z = pOut->z;
+ pOp->p1 = pOut->n;
+ }
+#endif
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ pOp->opcode = OP_String;
+ assert( rc==SQLITE_OK );
+ /* Fall through to the next case, OP_String */
+ /* no break */ deliberate_fall_through
+}
+
+/* Opcode: String P1 P2 P3 P4 P5
+** Synopsis: r[P2]='P4' (len=P1)
+**
+** The string value P4 of length P1 (bytes) is stored in register P2.
+**
+** If P3 is not zero and the content of register P3 is equal to P5, then
+** the datatype of the register P2 is converted to BLOB. The content is
+** the same sequence of bytes, it is merely interpreted as a BLOB instead
+** of a string, as if it had been CAST. In other words:
+**
+** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
+*/
+case OP_String: { /* out2 */
+ assert( pOp->p4.z!=0 );
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = pOp->p4.z;
+ pOut->n = pOp->p1;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( pOp->p3>0 ){
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pIn3 = &aMem[pOp->p3];
+ assert( pIn3->flags & MEM_Int );
+ if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
+ }
+#endif
+ break;
+}
+
+/* Opcode: BeginSubrtn * P2 * * *
+** Synopsis: r[P2]=NULL
+**
+** Mark the beginning of a subroutine that can be entered in-line
+** or that can be called using OP_Gosub. The subroutine should
+** be terminated by an OP_Return instruction that has a P1 operand that
+** is the same as the P2 operand to this opcode and that has P3 set to 1.
+** If the subroutine is entered in-line, then the OP_Return will simply
+** fall through. But if the subroutine is entered using OP_Gosub, then
+** the OP_Return will jump back to the first instruction after the OP_Gosub.
+**
+** This routine works by loading a NULL into the P2 register. When the
+** return address register contains a NULL, the OP_Return instruction is
+** a no-op that simply falls through to the next instruction (assuming that
+** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
+** entered in-line, then the OP_Return will cause in-line execution to
+** continue. But if the subroutine is entered via OP_Gosub, then the
+** OP_Return will cause a return to the address following the OP_Gosub.
+**
+** This opcode is identical to OP_Null. It has a different name
+** only to make the byte code easier to read and verify.
+*/
+/* Opcode: Null P1 P2 P3 * *
+** Synopsis: r[P2..P3]=NULL
+**
+** Write a NULL into registers P2. If P3 greater than P2, then also write
+** NULL into register P3 and every register in between P2 and P3. If P3
+** is less than P2 (typically P3 is zero) then only register P2 is
+** set to NULL.
+**
+** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
+** NULL values will not compare equal even if SQLITE_NULLEQ is set on
+** OP_Ne or OP_Eq.
+*/
+case OP_BeginSubrtn:
+case OP_Null: { /* out2 */
+ int cnt;
+ u16 nullFlag;
+ pOut = out2Prerelease(p, pOp);
+ cnt = pOp->p3-pOp->p2;
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
+ pOut->n = 0;
+#ifdef SQLITE_DEBUG
+ pOut->uTemp = 0;
+#endif
+ while( cnt>0 ){
+ pOut++;
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemSetNull(pOut);
+ pOut->flags = nullFlag;
+ pOut->n = 0;
+ cnt--;
+ }
+ break;
+}
+
+/* Opcode: SoftNull P1 * * * *
+** Synopsis: r[P1]=NULL
+**
+** Set register P1 to have the value NULL as seen by the OP_MakeRecord
+** instruction, but do not free any string or blob memory associated with
+** the register, so that if the value was a string or blob that was
+** previously copied using OP_SCopy, the copies will continue to be valid.
+*/
+case OP_SoftNull: {
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pOut = &aMem[pOp->p1];
+ pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
+ break;
+}
+
+/* Opcode: Blob P1 P2 * P4 *
+** Synopsis: r[P2]=P4 (len=P1)
+**
+** P4 points to a blob of data P1 bytes long. Store this
+** blob in register P2. If P4 is a NULL pointer, then construct
+** a zero-filled blob that is P1 bytes long in P2.
+*/
+case OP_Blob: { /* out2 */
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH );
+ pOut = out2Prerelease(p, pOp);
+ if( pOp->p4.z==0 ){
+ sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
+ if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
+ }else{
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
+ }
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Variable P1 P2 * P4 *
+** Synopsis: r[P2]=parameter(P1,P4)
+**
+** Transfer the values of bound parameter P1 into register P2
+**
+** If the parameter is named, then its name appears in P4.
+** The P4 value is used by sqlite3_bind_parameter_name().
+*/
+case OP_Variable: { /* out2 */
+ Mem *pVar; /* Value being transferred */
+
+ assert( pOp->p1>0 && pOp->p1<=p->nVar );
+ assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
+ pVar = &p->aVar[pOp->p1 - 1];
+ if( sqlite3VdbeMemTooBig(pVar) ){
+ goto too_big;
+ }
+ pOut = &aMem[pOp->p2];
+ if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
+ memcpy(pOut, pVar, MEMCELLSIZE);
+ pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
+ pOut->flags |= MEM_Static|MEM_FromBind;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Move P1 P2 P3 * *
+** Synopsis: r[P2@P3]=r[P1@P3]
+**
+** Move the P3 values in register P1..P1+P3-1 over into
+** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
+** left holding a NULL. It is an error for register ranges
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
+** for P3 to be less than 1.
+*/
+case OP_Move: {
+ int n; /* Number of registers left to copy */
+ int p1; /* Register to copy from */
+ int p2; /* Register to copy to */
+
+ n = pOp->p3;
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+ assert( n>0 && p1>0 && p2>0 );
+ assert( p1+n<=p2 || p2+n<=p1 );
+
+ pIn1 = &aMem[p1];
+ pOut = &aMem[p2];
+ do{
+ assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
+ assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
+ assert( memIsValid(pIn1) );
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemMove(pOut, pIn1);
+#ifdef SQLITE_DEBUG
+ pIn1->pScopyFrom = 0;
+ { int i;
+ for(i=1; i<p->nMem; i++){
+ if( aMem[i].pScopyFrom==pIn1 ){
+ aMem[i].pScopyFrom = pOut;
+ }
+ }
+ }
+#endif
+ Deephemeralize(pOut);
+ REGISTER_TRACE(p2++, pOut);
+ pIn1++;
+ pOut++;
+ }while( --n );
+ break;
+}
+
+/* Opcode: Copy P1 P2 P3 * P5
+** Synopsis: r[P2@P3+1]=r[P1@P3+1]
+**
+** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
+**
+** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
+** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
+** be merged. The 0x0001 bit is used by the query planner and does not
+** come into play during query execution.
+**
+** This instruction makes a deep copy of the value. A duplicate
+** is made of any string or blob constant. See also OP_SCopy.
+*/
+case OP_Copy: {
+ int n;
+
+ n = pOp->p3;
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ while( 1 ){
+ memAboutToChange(p, pOut);
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ Deephemeralize(pOut);
+ if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
+ pOut->flags &= ~MEM_Subtype;
+ }
+#ifdef SQLITE_DEBUG
+ pOut->pScopyFrom = 0;
+#endif
+ REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
+ if( (n--)==0 ) break;
+ pOut++;
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: SCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
+**
+** Make a shallow copy of register P1 into register P2.
+**
+** This instruction makes a shallow copy of the value. If the value
+** is a string or blob, then the copy is only a pointer to the
+** original and hence if the original changes so will the copy.
+** Worse, if the original is deallocated, the copy becomes invalid.
+** Thus the program must guarantee that the original will not change
+** during the lifetime of the copy. Use OP_Copy to make a complete
+** copy.
+*/
+case OP_SCopy: { /* out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+#ifdef SQLITE_DEBUG
+ pOut->pScopyFrom = pIn1;
+ pOut->mScopyFlags = pIn1->flags;
+#endif
+ break;
+}
+
+/* Opcode: IntCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
+**
+** Transfer the integer value held in register P1 into register P2.
+**
+** This is an optimized version of SCopy that works only for integer
+** values.
+*/
+case OP_IntCopy: { /* out2 */
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Int)!=0 );
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
+ break;
+}
+
+/* Opcode: FkCheck * * * * *
+**
+** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
+** foreign key constraint violations. If there are no foreign key
+** constraint violations, this is a no-op.
+**
+** FK constraint violations are also checked when the prepared statement
+** exits. This opcode is used to raise foreign key constraint errors prior
+** to returning results such as a row change count or the result of a
+** RETURNING clause.
+*/
+case OP_FkCheck: {
+ if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: ResultRow P1 P2 * * *
+** Synopsis: output=r[P1@P2]
+**
+** The registers P1 through P1+P2-1 contain a single row of
+** results. This opcode causes the sqlite3_step() call to terminate
+** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
+** structure to provide access to the r(P1)..r(P1+P2-1) values as
+** the result row.
+*/
+case OP_ResultRow: {
+ assert( p->nResColumn==pOp->p2 );
+ assert( pOp->p1>0 || CORRUPT_DB );
+ assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
+
+ p->cacheCtr = (p->cacheCtr + 2)|1;
+ p->pResultRow = &aMem[pOp->p1];
+#ifdef SQLITE_DEBUG
+ {
+ Mem *pMem = p->pResultRow;
+ int i;
+ for(i=0; i<pOp->p2; i++){
+ assert( memIsValid(&pMem[i]) );
+ REGISTER_TRACE(pOp->p1+i, &pMem[i]);
+ /* The registers in the result will not be used again when the
+ ** prepared statement restarts. This is because sqlite3_column()
+ ** APIs might have caused type conversions of made other changes to
+ ** the register values. Therefore, we can go ahead and break any
+ ** OP_SCopy dependencies. */
+ pMem[i].pScopyFrom = 0;
+ }
+ }
+#endif
+ if( db->mallocFailed ) goto no_mem;
+ if( db->mTrace & SQLITE_TRACE_ROW ){
+ db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
+ }
+ p->pc = (int)(pOp - aOp) + 1;
+ rc = SQLITE_ROW;
+ goto vdbe_return;
+}
+
+/* Opcode: Concat P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]+r[P1]
+**
+** Add the text in register P1 onto the end of the text in
+** register P2 and store the result in register P3.
+** If either the P1 or P2 text are NULL then store NULL in P3.
+**
+** P3 = P2 || P1
+**
+** It is illegal for P1 and P3 to be the same register. Sometimes,
+** if P3 is the same register as P2, the implementation is able
+** to avoid a memcpy().
+*/
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
+ i64 nByte; /* Total size of the output string or blob */
+ u16 flags1; /* Initial flags for P1 */
+ u16 flags2; /* Initial flags for P2 */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ testcase( pOut==pIn2 );
+ assert( pIn1!=pOut );
+ flags1 = pIn1->flags;
+ testcase( flags1 & MEM_Null );
+ testcase( pIn2->flags & MEM_Null );
+ if( (flags1 | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
+ if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
+ flags1 = pIn1->flags & ~MEM_Str;
+ }else if( (flags1 & MEM_Zero)!=0 ){
+ if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
+ flags1 = pIn1->flags & ~MEM_Str;
+ }
+ flags2 = pIn2->flags;
+ if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
+ if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
+ flags2 = pIn2->flags & ~MEM_Str;
+ }else if( (flags2 & MEM_Zero)!=0 ){
+ if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
+ flags2 = pIn2->flags & ~MEM_Str;
+ }
+ nByte = pIn1->n + pIn2->n;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
+ goto no_mem;
+ }
+ MemSetTypeFlag(pOut, MEM_Str);
+ if( pOut!=pIn2 ){
+ memcpy(pOut->z, pIn2->z, pIn2->n);
+ assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
+ pIn2->flags = flags2;
+ }
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
+ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
+ pIn1->flags = flags1;
+ if( encoding>SQLITE_UTF8 ) nByte &= ~1;
+ pOut->z[nByte]=0;
+ pOut->z[nByte+1] = 0;
+ pOut->flags |= MEM_Term;
+ pOut->n = (int)nByte;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Add P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]+r[P2]
+**
+** Add the value in register P1 to the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Multiply P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]*r[P2]
+**
+**
+** Multiply the value in register P1 by the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Subtract P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]-r[P1]
+**
+** Subtract the value in register P1 from the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Divide P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]/r[P1]
+**
+** Divide the value in register P1 by the value in register P2
+** and store the result in register P3 (P3=P2/P1). If the value in
+** register P1 is zero, then the result is NULL. If either input is
+** NULL, the result is NULL.
+*/
+/* Opcode: Remainder P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]%r[P1]
+**
+** Compute the remainder after integer register P2 is divided by
+** register P1 and store the result in register P3.
+** If the value in register P1 is zero the result is NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
+ u16 type1; /* Numeric type of left operand */
+ u16 type2; /* Numeric type of right operand */
+ i64 iA; /* Integer value of left operand */
+ i64 iB; /* Integer value of right operand */
+ double rA; /* Real value of left operand */
+ double rB; /* Real value of right operand */
+
+ pIn1 = &aMem[pOp->p1];
+ type1 = pIn1->flags;
+ pIn2 = &aMem[pOp->p2];
+ type2 = pIn2->flags;
+ pOut = &aMem[pOp->p3];
+ if( (type1 & type2 & MEM_Int)!=0 ){
+int_math:
+ iA = pIn1->u.i;
+ iB = pIn2->u.i;
+ switch( pOp->opcode ){
+ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
+ case OP_Divide: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
+ iB /= iA;
+ break;
+ }
+ default: {
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ iB %= iA;
+ break;
+ }
+ }
+ pOut->u.i = iB;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }else if( ((type1 | type2) & MEM_Null)!=0 ){
+ goto arithmetic_result_is_null;
+ }else{
+ type1 = numericType(pIn1);
+ type2 = numericType(pIn2);
+ if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
+fp_math:
+ rA = sqlite3VdbeRealValue(pIn1);
+ rB = sqlite3VdbeRealValue(pIn2);
+ switch( pOp->opcode ){
+ case OP_Add: rB += rA; break;
+ case OP_Subtract: rB -= rA; break;
+ case OP_Multiply: rB *= rA; break;
+ case OP_Divide: {
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
+ if( rA==(double)0 ) goto arithmetic_result_is_null;
+ rB /= rA;
+ break;
+ }
+ default: {
+ iA = sqlite3VdbeIntValue(pIn1);
+ iB = sqlite3VdbeIntValue(pIn2);
+ if( iA==0 ) goto arithmetic_result_is_null;
+ if( iA==-1 ) iA = 1;
+ rB = (double)(iB % iA);
+ break;
+ }
+ }
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ pOut->u.i = rB;
+ MemSetTypeFlag(pOut, MEM_Int);
+#else
+ if( sqlite3IsNaN(rB) ){
+ goto arithmetic_result_is_null;
+ }
+ pOut->u.r = rB;
+ MemSetTypeFlag(pOut, MEM_Real);
+#endif
+ }
+ break;
+
+arithmetic_result_is_null:
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+}
+
+/* Opcode: CollSeq P1 * * P4
+**
+** P4 is a pointer to a CollSeq object. If the next call to a user function
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
+** be returned. This is used by the built-in min(), max() and nullif()
+** functions.
+**
+** If P1 is not zero, then it is a register that a subsequent min() or
+** max() aggregate will set to 1 if the current row is not the minimum or
+** maximum. The P1 register is initialized to 0 by this instruction.
+**
+** The interface used by the implementation of the aforementioned functions
+** to retrieve the collation sequence set by this opcode is not available
+** publicly. Only built-in functions have access to this feature.
+*/
+case OP_CollSeq: {
+ assert( pOp->p4type==P4_COLLSEQ );
+ if( pOp->p1 ){
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
+ }
+ break;
+}
+
+/* Opcode: BitAnd P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]&r[P2]
+**
+** Take the bit-wise AND of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: BitOr P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]|r[P2]
+**
+** Take the bit-wise OR of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]<<r[P1]
+**
+** Shift the integer value in register P2 to the left by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]>>r[P1]
+**
+** Shift the integer value in register P2 to the right by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
+ i64 iA;
+ u64 uA;
+ i64 iB;
+ u8 op;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ iA = sqlite3VdbeIntValue(pIn2);
+ iB = sqlite3VdbeIntValue(pIn1);
+ op = pOp->opcode;
+ if( op==OP_BitAnd ){
+ iA &= iB;
+ }else if( op==OP_BitOr ){
+ iA |= iB;
+ }else if( iB!=0 ){
+ assert( op==OP_ShiftRight || op==OP_ShiftLeft );
+
+ /* If shifting by a negative amount, shift in the other direction */
+ if( iB<0 ){
+ assert( OP_ShiftRight==OP_ShiftLeft+1 );
+ op = 2*OP_ShiftLeft + 1 - op;
+ iB = iB>(-64) ? -iB : 64;
+ }
+
+ if( iB>=64 ){
+ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
+ }else{
+ memcpy(&uA, &iA, sizeof(uA));
+ if( op==OP_ShiftLeft ){
+ uA <<= iB;
+ }else{
+ uA >>= iB;
+ /* Sign-extend on a right shift of a negative number */
+ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
+ }
+ memcpy(&iA, &uA, sizeof(iA));
+ }
+ }
+ pOut->u.i = iA;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: AddImm P1 P2 * * *
+** Synopsis: r[P1]=r[P1]+P2
+**
+** Add the constant P2 to the value in register P1.
+** The result is always an integer.
+**
+** To force any register to be an integer, just add 0.
+*/
+case OP_AddImm: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i += pOp->p2;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 * * *
+**
+** Force the value in register P1 to be an integer. If the value
+** in P1 is not an integer and cannot be converted into an integer
+** without data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+*/
+case OP_MustBeInt: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( (pIn1->flags & MEM_Int)==0 ){
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & MEM_Int)==0 ){
+ VdbeBranchTaken(1, 2);
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ goto jump_to_p2;
+ }
+ }
+ }
+ VdbeBranchTaken(0, 2);
+ MemSetTypeFlag(pIn1, MEM_Int);
+ break;
+}
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* Opcode: RealAffinity P1 * * * *
+**
+** If register P1 holds an integer convert it to a real value.
+**
+** This opcode is used when extracting information from a column that
+** has REAL affinity. Such column values may still be stored as
+** integers, for space efficiency, but after extraction we want them
+** to have only a real value.
+*/
+case OP_RealAffinity: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
+ testcase( pIn1->flags & MEM_Int );
+ testcase( pIn1->flags & MEM_IntReal );
+ sqlite3VdbeMemRealify(pIn1);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ }
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_CAST
+/* Opcode: Cast P1 P2 * * *
+** Synopsis: affinity(r[P1])
+**
+** Force the value in register P1 to be the type defined by P2.
+**
+** <ul>
+** <li> P2=='A' &rarr; BLOB
+** <li> P2=='B' &rarr; TEXT
+** <li> P2=='C' &rarr; NUMERIC
+** <li> P2=='D' &rarr; INTEGER
+** <li> P2=='E' &rarr; REAL
+** </ul>
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_Cast: { /* in1 */
+ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
+ testcase( pOp->p2==SQLITE_AFF_TEXT );
+ testcase( pOp->p2==SQLITE_AFF_BLOB );
+ testcase( pOp->p2==SQLITE_AFF_NUMERIC );
+ testcase( pOp->p2==SQLITE_AFF_INTEGER );
+ testcase( pOp->p2==SQLITE_AFF_REAL );
+ pIn1 = &aMem[pOp->p1];
+ memAboutToChange(p, pIn1);
+ rc = ExpandBlob(pIn1);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
+ if( rc ) goto abort_due_to_error;
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ REGISTER_TRACE(pOp->p1, pIn1);
+ break;
+}
+#endif /* SQLITE_OMIT_CAST */
+
+/* Opcode: Eq P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]==r[P1]
+**
+** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
+** jump to address P2.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
+** true or false and is never NULL. If both operands are NULL then the result
+** of comparison is true. If either operand is NULL then the result is false.
+** If neither operand is NULL the result is the same as it would be if
+** the SQLITE_NULLEQ flag were omitted from P5.
+**
+** This opcode saves the result of comparison for use by the new
+** OP_Jump opcode.
+*/
+/* Opcode: Ne P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]!=r[P1]
+**
+** This works just like the Eq opcode except that the jump is taken if
+** the operands in registers P1 and P3 are not equal. See the Eq opcode for
+** additional information.
+*/
+/* Opcode: Lt P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]<r[P1]
+**
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
+** jump to address P2.
+**
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
+** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
+** bit is clear then fall through if either operand is NULL.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** This opcode saves the result of comparison for use by the new
+** OP_Jump opcode.
+*/
+/* Opcode: Le P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]<=r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is less than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Gt P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]>r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Ge P1 P2 P3 P4 P5
+** Synopsis: IF r[P3]>=r[P1]
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */
+case OP_Le: /* same as TK_LE, jump, in1, in3 */
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
+ int res, res2; /* Result of the comparison of pIn1 against pIn3 */
+ char affinity; /* Affinity to use for comparison */
+ u16 flags1; /* Copy of initial value of pIn1->flags */
+ u16 flags3; /* Copy of initial value of pIn3->flags */
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ flags1 = pIn1->flags;
+ flags3 = pIn3->flags;
+ if( (flags1 & flags3 & MEM_Int)!=0 ){
+ /* Common case of comparison of two integers */
+ if( pIn3->u.i > pIn1->u.i ){
+ if( sqlite3aGTb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = +1;
+ VVA_ONLY( iCompareIsInit = 1; )
+ }else if( pIn3->u.i < pIn1->u.i ){
+ if( sqlite3aLTb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = -1;
+ VVA_ONLY( iCompareIsInit = 1; )
+ }else{
+ if( sqlite3aEQb[pOp->opcode] ){
+ VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ goto jump_to_p2;
+ }
+ iCompare = 0;
+ VVA_ONLY( iCompareIsInit = 1; )
+ }
+ VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ break;
+ }
+ if( (flags1 | flags3)&MEM_Null ){
+ /* One or both operands are NULL */
+ if( pOp->p5 & SQLITE_NULLEQ ){
+ /* If SQLITE_NULLEQ is set (which will only happen if the operator is
+ ** OP_Eq or OP_Ne) then take the jump or not depending on whether
+ ** or not both operands are null.
+ */
+ assert( (flags1 & MEM_Cleared)==0 );
+ assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
+ testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
+ if( (flags1&flags3&MEM_Null)!=0
+ && (flags3&MEM_Cleared)==0
+ ){
+ res = 0; /* Operands are equal */
+ }else{
+ res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
+ }
+ }else{
+ /* SQLITE_NULLEQ is clear and at least one operand is NULL,
+ ** then the result is always NULL.
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
+ */
+ VdbeBranchTaken(2,3);
+ if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ goto jump_to_p2;
+ }
+ iCompare = 1; /* Operands are not equal */
+ VVA_ONLY( iCompareIsInit = 1; )
+ break;
+ }
+ }else{
+ /* Neither operand is NULL and we couldn't do the special high-speed
+ ** integer comparison case. So do a general-case comparison. */
+ affinity = pOp->p5 & SQLITE_AFF_MASK;
+ if( affinity>=SQLITE_AFF_NUMERIC ){
+ if( (flags1 | flags3)&MEM_Str ){
+ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn1,0);
+ assert( flags3==pIn3->flags || CORRUPT_DB );
+ flags3 = pIn3->flags;
+ }
+ if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn3,0);
+ }
+ }
+ }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
+ if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
+ testcase( pIn1->flags & MEM_Int );
+ testcase( pIn1->flags & MEM_Real );
+ testcase( pIn1->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pIn1, encoding, 1);
+ testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
+ flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
+ if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
+ }
+ if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
+ testcase( pIn3->flags & MEM_Int );
+ testcase( pIn3->flags & MEM_Real );
+ testcase( pIn3->flags & MEM_IntReal );
+ sqlite3VdbeMemStringify(pIn3, encoding, 1);
+ testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
+ flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
+ }
+ }
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
+ res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
+ }
+
+ /* At this point, res is negative, zero, or positive if reg[P1] is
+ ** less than, equal to, or greater than reg[P3], respectively. Compute
+ ** the answer to this operator in res2, depending on what the comparison
+ ** operator actually is. The next block of code depends on the fact
+ ** that the 6 comparison operators are consecutive integers in this
+ ** order: NE, EQ, GT, LE, LT, GE */
+ assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
+ assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
+ if( res<0 ){
+ res2 = sqlite3aLTb[pOp->opcode];
+ }else if( res==0 ){
+ res2 = sqlite3aEQb[pOp->opcode];
+ }else{
+ res2 = sqlite3aGTb[pOp->opcode];
+ }
+ iCompare = res;
+ VVA_ONLY( iCompareIsInit = 1; )
+
+ /* Undo any changes made by applyAffinity() to the input registers. */
+ assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
+ pIn3->flags = flags3;
+ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
+ pIn1->flags = flags1;
+
+ VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
+ if( res2 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: ElseEq * P2 * * *
+**
+** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
+** can be zero or more OP_ReleaseReg opcodes intervening, but no other
+** opcodes are allowed to occur between this instruction and the previous
+** OP_Lt or OP_Gt.
+**
+** If the result of an OP_Eq comparison on the same two operands as
+** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If
+** the result of an OP_Eq comparison on the two previous operands
+** would have been false or NULL, then fall through.
+*/
+case OP_ElseEq: { /* same as TK_ESCAPE, jump */
+
+#ifdef SQLITE_DEBUG
+ /* Verify the preconditions of this opcode - that it follows an OP_Lt or
+ ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
+ int iAddr;
+ for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
+ if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
+ assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
+ break;
+ }
+#endif /* SQLITE_DEBUG */
+ assert( iCompareIsInit );
+ VdbeBranchTaken(iCompare==0, 2);
+ if( iCompare==0 ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: Permutation * * * P4 *
+**
+** Set the permutation used by the OP_Compare operator in the next
+** instruction. The permutation is stored in the P4 operand.
+**
+** The permutation is only valid for the next opcode which must be
+** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
+**
+** The first integer in the P4 integer array is the length of the array
+** and does not become part of the permutation.
+*/
+case OP_Permutation: {
+ assert( pOp->p4type==P4_INTARRAY );
+ assert( pOp->p4.ai );
+ assert( pOp[1].opcode==OP_Compare );
+ assert( pOp[1].p5 & OPFLAG_PERMUTE );
+ break;
+}
+
+/* Opcode: Compare P1 P2 P3 P4 P5
+** Synopsis: r[P1@P3] <-> r[P2@P3]
+**
+** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
+** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
+** the comparison for use by the next OP_Jump instruct.
+**
+** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
+** determined by the most recent OP_Permutation operator. If the
+** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
+** order.
+**
+** P4 is a KeyInfo structure that defines collating sequences and sort
+** orders for the comparison. The permutation applies to registers
+** only. The KeyInfo elements are used sequentially.
+**
+** The comparison is a sort comparison, so NULLs compare equal,
+** NULLs are less than numbers, numbers are less than strings,
+** and strings are less than blobs.
+**
+** This opcode must be immediately followed by an OP_Jump opcode.
+*/
+case OP_Compare: {
+ int n;
+ int i;
+ int p1;
+ int p2;
+ const KeyInfo *pKeyInfo;
+ u32 idx;
+ CollSeq *pColl; /* Collating sequence to use on this term */
+ int bRev; /* True for DESCENDING sort order */
+ u32 *aPermute; /* The permutation */
+
+ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
+ aPermute = 0;
+ }else{
+ assert( pOp>aOp );
+ assert( pOp[-1].opcode==OP_Permutation );
+ assert( pOp[-1].p4type==P4_INTARRAY );
+ aPermute = pOp[-1].p4.ai + 1;
+ assert( aPermute!=0 );
+ }
+ n = pOp->p3;
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( n>0 );
+ assert( pKeyInfo!=0 );
+ p1 = pOp->p1;
+ p2 = pOp->p2;
+#ifdef SQLITE_DEBUG
+ if( aPermute ){
+ int k, mx = 0;
+ for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
+ assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
+ assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
+ }else{
+ assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
+ assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
+ }
+#endif /* SQLITE_DEBUG */
+ for(i=0; i<n; i++){
+ idx = aPermute ? aPermute[i] : (u32)i;
+ assert( memIsValid(&aMem[p1+idx]) );
+ assert( memIsValid(&aMem[p2+idx]) );
+ REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
+ REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
+ assert( i<pKeyInfo->nKeyField );
+ pColl = pKeyInfo->aColl[i];
+ bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
+ iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
+ VVA_ONLY( iCompareIsInit = 1; )
+ if( iCompare ){
+ if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
+ && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
+ ){
+ iCompare = -iCompare;
+ }
+ if( bRev ) iCompare = -iCompare;
+ break;
+ }
+ }
+ assert( pOp[1].opcode==OP_Jump );
+ break;
+}
+
+/* Opcode: Jump P1 P2 P3 * *
+**
+** Jump to the instruction at address P1, P2, or P3 depending on whether
+** in the most recent OP_Compare instruction the P1 vector was less than,
+** equal to, or greater than the P2 vector, respectively.
+**
+** This opcode must immediately follow an OP_Compare opcode.
+*/
+case OP_Jump: { /* jump */
+ assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
+ assert( iCompareIsInit );
+ if( iCompare<0 ){
+ VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
+ }else if( iCompare==0 ){
+ VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
+ }else{
+ VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
+ }
+ break;
+}
+
+/* Opcode: And P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] && r[P2])
+**
+** Take the logical AND of the values in registers P1 and P2 and
+** write the result into register P3.
+**
+** If either P1 or P2 is 0 (false) then the result is 0 even if
+** the other input is NULL. A NULL and true or two NULLs give
+** a NULL output.
+*/
+/* Opcode: Or P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] || r[P2])
+**
+** Take the logical OR of the values in register P1 and P2 and
+** store the answer in register P3.
+**
+** If either P1 or P2 is nonzero (true) then the result is 1 (true)
+** even if the other input is NULL. A NULL and false or two NULLs
+** give a NULL output.
+*/
+case OP_And: /* same as TK_AND, in1, in2, out3 */
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+
+ v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
+ v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ pOut = &aMem[pOp->p3];
+ if( v1==2 ){
+ MemSetTypeFlag(pOut, MEM_Null);
+ }else{
+ pOut->u.i = v1;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: IsTrue P1 P2 P3 P4 *
+** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
+**
+** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
+** IS NOT FALSE operators.
+**
+** Interpret the value in register P1 as a boolean value. Store that
+** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
+** NULL, then the P3 is stored in register P2. Invert the answer if P4
+** is 1.
+**
+** The logic is summarized like this:
+**
+** <ul>
+** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
+** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
+** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
+** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
+** </ul>
+*/
+case OP_IsTrue: { /* in1, out2 */
+ assert( pOp->p4type==P4_INT32 );
+ assert( pOp->p4.i==0 || pOp->p4.i==1 );
+ assert( pOp->p3==0 || pOp->p3==1 );
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
+ sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
+ break;
+}
+
+/* Opcode: Not P1 P2 * * *
+** Synopsis: r[P2]= !r[P1]
+**
+** Interpret the value in register P1 as a boolean value. Store the
+** boolean complement in register P2. If the value in register P1 is
+** NULL, then a NULL is stored in P2.
+*/
+case OP_Not: { /* same as TK_NOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
+ }else{
+ sqlite3VdbeMemSetNull(pOut);
+ }
+ break;
+}
+
+/* Opcode: BitNot P1 P2 * * *
+** Synopsis: r[P2]= ~r[P1]
+**
+** Interpret the content of register P1 as an integer. Store the
+** ones-complement of the P1 value into register P2. If P1 holds
+** a NULL then store a NULL in P2.
+*/
+case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
+ pIn1 = &aMem[pOp->p1];
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetNull(pOut);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ pOut->flags = MEM_Int;
+ pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
+ }
+ break;
+}
+
+/* Opcode: Once P1 P2 * * *
+**
+** Fall through to the next instruction the first time this opcode is
+** encountered on each invocation of the byte-code program. Jump to P2
+** on the second and all subsequent encounters during the same invocation.
+**
+** Top-level programs determine first invocation by comparing the P1
+** operand against the P1 operand on the OP_Init opcode at the beginning
+** of the program. If the P1 values differ, then fall through and make
+** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
+** the same then take the jump.
+**
+** For subprograms, there is a bitmask in the VdbeFrame that determines
+** whether or not the jump should be taken. The bitmask is necessary
+** because the self-altering code trick does not work for recursive
+** triggers.
+*/
+case OP_Once: { /* jump */
+ u32 iAddr; /* Address of this instruction */
+ assert( p->aOp[0].opcode==OP_Init );
+ if( p->pFrame ){
+ iAddr = (int)(pOp - p->aOp);
+ if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
+ VdbeBranchTaken(1, 2);
+ goto jump_to_p2;
+ }
+ p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
+ }else{
+ if( p->aOp[0].p1==pOp->p1 ){
+ VdbeBranchTaken(1, 2);
+ goto jump_to_p2;
+ }
+ }
+ VdbeBranchTaken(0, 2);
+ pOp->p1 = p->aOp[0].p1;
+ break;
+}
+
+/* Opcode: If P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is true. The value
+** is considered true if it is numeric and non-zero. If the value
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
+*/
+case OP_If: { /* jump, in1 */
+ int c;
+ c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
+ VdbeBranchTaken(c!=0, 2);
+ if( c ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: IfNot P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is False. The value
+** is considered false if it has a numeric value of zero. If the value
+** in P1 is NULL then take the jump if and only if P3 is non-zero.
+*/
+case OP_IfNot: { /* jump, in1 */
+ int c;
+ c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
+ VdbeBranchTaken(c!=0, 2);
+ if( c ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 * * *
+** Synopsis: if r[P1]==NULL goto P2
+**
+** Jump to P2 if the value in register P1 is NULL.
+*/
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
+ if( (pIn1->flags & MEM_Null)!=0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IsType P1 P2 P3 P4 P5
+** Synopsis: if typeof(P1.P3) in P5 goto P2
+**
+** Jump to P2 if the type of a column in a btree is one of the types specified
+** by the P5 bitmask.
+**
+** P1 is normally a cursor on a btree for which the row decode cache is
+** valid through at least column P3. In other words, there should have been
+** a prior OP_Column for column P3 or greater. If the cursor is not valid,
+** then this opcode might give spurious results.
+** The the btree row has fewer than P3 columns, then use P4 as the
+** datatype.
+**
+** If P1 is -1, then P3 is a register number and the datatype is taken
+** from the value in that register.
+**
+** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
+** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
+** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
+**
+** WARNING: This opcode does not reliably distinguish between NULL and REAL
+** when P1>=0. If the database contains a NaN value, this opcode will think
+** that the datatype is REAL when it should be NULL. When P1<0 and the value
+** is already stored in register P3, then this opcode does reliably
+** distinguish between NULL and REAL. The problem only arises then P1>=0.
+**
+** Take the jump to address P2 if and only if the datatype of the
+** value determined by P1 and P3 corresponds to one of the bits in the
+** P5 bitmask.
+**
+*/
+case OP_IsType: { /* jump */
+ VdbeCursor *pC;
+ u16 typeMask;
+ u32 serialType;
+
+ assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
+ assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
+ if( pOp->p1>=0 ){
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pOp->p3>=0 );
+ if( pOp->p3<pC->nHdrParsed ){
+ serialType = pC->aType[pOp->p3];
+ if( serialType>=12 ){
+ if( serialType&1 ){
+ typeMask = 0x04; /* SQLITE_TEXT */
+ }else{
+ typeMask = 0x08; /* SQLITE_BLOB */
+ }
+ }else{
+ static const unsigned char aMask[] = {
+ 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
+ 0x01, 0x01, 0x10, 0x10
+ };
+ testcase( serialType==0 );
+ testcase( serialType==1 );
+ testcase( serialType==2 );
+ testcase( serialType==3 );
+ testcase( serialType==4 );
+ testcase( serialType==5 );
+ testcase( serialType==6 );
+ testcase( serialType==7 );
+ testcase( serialType==8 );
+ testcase( serialType==9 );
+ testcase( serialType==10 );
+ testcase( serialType==11 );
+ typeMask = aMask[serialType];
+ }
+ }else{
+ typeMask = 1 << (pOp->p4.i - 1);
+ testcase( typeMask==0x01 );
+ testcase( typeMask==0x02 );
+ testcase( typeMask==0x04 );
+ testcase( typeMask==0x08 );
+ testcase( typeMask==0x10 );
+ }
+ }else{
+ assert( memIsValid(&aMem[pOp->p3]) );
+ typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
+ testcase( typeMask==0x01 );
+ testcase( typeMask==0x02 );
+ testcase( typeMask==0x04 );
+ testcase( typeMask==0x08 );
+ testcase( typeMask==0x10 );
+ }
+ VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
+ if( typeMask & pOp->p5 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: ZeroOrNull P1 P2 P3 * *
+** Synopsis: r[P2] = 0 OR NULL
+**
+** If both registers P1 and P3 are NOT NULL, then store a zero in
+** register P2. If either registers P1 or P3 are NULL then put
+** a NULL in register P2.
+*/
+case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
+ if( (aMem[pOp->p1].flags & MEM_Null)!=0
+ || (aMem[pOp->p3].flags & MEM_Null)!=0
+ ){
+ sqlite3VdbeMemSetNull(aMem + pOp->p2);
+ }else{
+ sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
+ }
+ break;
+}
+
+/* Opcode: NotNull P1 P2 * * *
+** Synopsis: if r[P1]!=NULL goto P2
+**
+** Jump to P2 if the value in register P1 is not NULL.
+*/
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IfNullRow P1 P2 P3 * *
+** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
+**
+** Check the cursor P1 to see if it is currently pointing at a NULL row.
+** If it is, then set register P3 to NULL and jump immediately to P2.
+** If P1 is not on a NULL row, then fall through without making any
+** changes.
+**
+** If P1 is not an open cursor, then this opcode is a no-op.
+*/
+case OP_IfNullRow: { /* jump */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC && pC->nullRow ){
+ sqlite3VdbeMemSetNull(aMem + pOp->p3);
+ goto jump_to_p2;
+ }
+ break;
+}
+
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+/* Opcode: Offset P1 P2 P3 * *
+** Synopsis: r[P3] = sqlite_offset(P1)
+**
+** Store in register r[P3] the byte offset into the database file that is the
+** start of the payload for the record at which that cursor P1 is currently
+** pointing.
+**
+** P2 is the column number for the argument to the sqlite_offset() function.
+** This opcode does not use P2 itself, but the P2 value is used by the
+** code generator. The P1, P2, and P3 operands to this opcode are the
+** same as for OP_Column.
+**
+** This opcode is only available if SQLite is compiled with the
+** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
+*/
+case OP_Offset: { /* out3 */
+ VdbeCursor *pC; /* The VDBE cursor */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ pOut = &p->aMem[pOp->p3];
+ if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ if( pC->deferredMoveto ){
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }
+ if( sqlite3BtreeEof(pC->uc.pCursor) ){
+ sqlite3VdbeMemSetNull(pOut);
+ }else{
+ sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
+ }
+ }
+ break;
+}
+#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
+
+/* Opcode: Column P1 P2 P3 P4 P5
+** Synopsis: r[P3]=PX cursor P1 column P2
+**
+** Interpret the data that cursor P1 points to as a structure built using
+** the MakeRecord instruction. (See the MakeRecord opcode for additional
+** information about the format of the data.) Extract the P2-th column
+** from this record. If there are less than (P2+1)
+** values in the record, extract a NULL.
+**
+** The value extracted is stored in register P3.
+**
+** If the record contains fewer than P2 fields, then extract a NULL. Or,
+** if the P4 argument is a P4_MEM use the value of the P4 argument as
+** the result.
+**
+** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
+** to only be used by the length() function or the equivalent. The content
+** of large blobs is not loaded, thus saving CPU cycles. If the
+** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
+** typeof() function or the IS NULL or IS NOT NULL operators or the
+** equivalent. In this case, all content loading can be omitted.
+*/
+case OP_Column: { /* ncycle */
+ u32 p2; /* column number to retrieve */
+ VdbeCursor *pC; /* The VDBE cursor */
+ BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ int len; /* The length of the serialized data for the column */
+ int i; /* Loop counter */
+ Mem *pDest; /* Where to write the extracted value */
+ Mem sMem; /* For storing the record being decoded */
+ const u8 *zData; /* Part of the record being decoded */
+ const u8 *zHdr; /* Next unparsed byte of the header */
+ const u8 *zEndHdr; /* Pointer to first byte after the header */
+ u64 offset64; /* 64-bit offset */
+ u32 t; /* A type code from the record header */
+ Mem *pReg; /* PseudoTable input register */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pC = p->apCsr[pOp->p1];
+ p2 = (u32)pOp->p2;
+
+op_column_restart:
+ assert( pC!=0 );
+ assert( p2<(u32)pC->nField
+ || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
+ aOffset = pC->aOffset;
+ assert( aOffset==pC->aType+pC->nField );
+ assert( pC->eCurType!=CURTYPE_VTAB );
+ assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
+ assert( pC->eCurType!=CURTYPE_SORTER );
+
+ if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
+ if( pC->nullRow ){
+ if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
+ /* For the special case of as pseudo-cursor, the seekResult field
+ ** identifies the register that holds the record */
+ pReg = &aMem[pC->seekResult];
+ assert( pReg->flags & MEM_Blob );
+ assert( memIsValid(pReg) );
+ pC->payloadSize = pC->szRow = pReg->n;
+ pC->aRow = (u8*)pReg->z;
+ }else{
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ sqlite3VdbeMemSetNull(pDest);
+ goto op_column_out;
+ }
+ }else{
+ pCrsr = pC->uc.pCursor;
+ if( pC->deferredMoveto ){
+ u32 iMap;
+ assert( !pC->isEphemeral );
+ if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
+ pC = pC->pAltCursor;
+ p2 = iMap - 1;
+ goto op_column_restart;
+ }
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
+ rc = sqlite3VdbeHandleMovedCursor(pC);
+ if( rc ) goto abort_due_to_error;
+ goto op_column_restart;
+ }
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pCrsr );
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+ pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
+ pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
+ assert( pC->szRow<=pC->payloadSize );
+ assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
+ }
+ pC->cacheStatus = p->cacheCtr;
+ if( (aOffset[0] = pC->aRow[0])<0x80 ){
+ pC->iHdrOffset = 1;
+ }else{
+ pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
+ }
+ pC->nHdrParsed = 0;
+
+ if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
+ /* pC->aRow does not have to hold the entire row, but it does at least
+ ** need to cover the header of the record. If pC->aRow does not contain
+ ** the complete header, then set it to zero, forcing the header to be
+ ** dynamically allocated. */
+ pC->aRow = 0;
+ pC->szRow = 0;
+
+ /* Make sure a corrupt database has not given us an oversize header.
+ ** Do this now to avoid an oversize memory allocation.
+ **
+ ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
+ ** types use so much data space that there can only be 4096 and 32 of
+ ** them, respectively. So the maximum header length results from a
+ ** 3-byte type for each of the maximum of 32768 columns plus three
+ ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
+ */
+ if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
+ goto op_column_corrupt;
+ }
+ }else{
+ /* This is an optimization. By skipping over the first few tests
+ ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
+ ** measurable performance gain.
+ **
+ ** This branch is taken even if aOffset[0]==0. Such a record is never
+ ** generated by SQLite, and could be considered corruption, but we
+ ** accept it for historical reasons. When aOffset[0]==0, the code this
+ ** branch jumps to reads past the end of the record, but never more
+ ** than a few bytes. Even if the record occurs at the end of the page
+ ** content area, the "page header" comes after the page content and so
+ ** this overread is harmless. Similar overreads can occur for a corrupt
+ ** database file.
+ */
+ zData = pC->aRow;
+ assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
+ testcase( aOffset[0]==0 );
+ goto op_column_read_header;
+ }
+ }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
+ rc = sqlite3VdbeHandleMovedCursor(pC);
+ if( rc ) goto abort_due_to_error;
+ goto op_column_restart;
+ }
+
+ /* Make sure at least the first p2+1 entries of the header have been
+ ** parsed and valid information is in aOffset[] and pC->aType[].
+ */
+ if( pC->nHdrParsed<=p2 ){
+ /* If there is more header available for parsing in the record, try
+ ** to extract additional fields up through the p2+1-th field
+ */
+ if( pC->iHdrOffset<aOffset[0] ){
+ /* Make sure zData points to enough of the record to cover the header. */
+ if( pC->aRow==0 ){
+ memset(&sMem, 0, sizeof(sMem));
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ zData = (u8*)sMem.z;
+ }else{
+ zData = pC->aRow;
+ }
+
+ /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
+ op_column_read_header:
+ i = pC->nHdrParsed;
+ offset64 = aOffset[i];
+ zHdr = zData + pC->iHdrOffset;
+ zEndHdr = zData + aOffset[0];
+ testcase( zHdr>=zEndHdr );
+ do{
+ if( (pC->aType[i] = t = zHdr[0])<0x80 ){
+ zHdr++;
+ offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
+ }else{
+ zHdr += sqlite3GetVarint32(zHdr, &t);
+ pC->aType[i] = t;
+ offset64 += sqlite3VdbeSerialTypeLen(t);
+ }
+ aOffset[++i] = (u32)(offset64 & 0xffffffff);
+ }while( (u32)i<=p2 && zHdr<zEndHdr );
+
+ /* The record is corrupt if any of the following are true:
+ ** (1) the bytes of the header extend past the declared header size
+ ** (2) the entire header was used but not all data was used
+ ** (3) the end of the data extends beyond the end of the record.
+ */
+ if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
+ || (offset64 > pC->payloadSize)
+ ){
+ if( aOffset[0]==0 ){
+ i = 0;
+ zHdr = zEndHdr;
+ }else{
+ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
+ goto op_column_corrupt;
+ }
+ }
+
+ pC->nHdrParsed = i;
+ pC->iHdrOffset = (u32)(zHdr - zData);
+ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
+ }else{
+ t = 0;
+ }
+
+ /* If after trying to extract new entries from the header, nHdrParsed is
+ ** still not up to p2, that means that the record has fewer than p2
+ ** columns. So the result will be either the default value or a NULL.
+ */
+ if( pC->nHdrParsed<=p2 ){
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
+ }else{
+ sqlite3VdbeMemSetNull(pDest);
+ }
+ goto op_column_out;
+ }
+ }else{
+ t = pC->aType[p2];
+ }
+
+ /* Extract the content for the p2+1-th column. Control can only
+ ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
+ ** all valid.
+ */
+ assert( p2<pC->nHdrParsed );
+ assert( rc==SQLITE_OK );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ assert( sqlite3VdbeCheckMemInvariants(pDest) );
+ if( VdbeMemDynamic(pDest) ){
+ sqlite3VdbeMemSetNull(pDest);
+ }
+ assert( t==pC->aType[p2] );
+ if( pC->szRow>=aOffset[p2+1] ){
+ /* This is the common case where the desired content fits on the original
+ ** page - where the content is not on an overflow page */
+ zData = pC->aRow + aOffset[p2];
+ if( t<12 ){
+ sqlite3VdbeSerialGet(zData, t, pDest);
+ }else{
+ /* If the column value is a string, we need a persistent value, not
+ ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
+ ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
+ */
+ static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
+ pDest->n = len = (t-12)/2;
+ pDest->enc = encoding;
+ if( pDest->szMalloc < len+2 ){
+ if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
+ pDest->flags = MEM_Null;
+ if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
+ }else{
+ pDest->z = pDest->zMalloc;
+ }
+ memcpy(pDest->z, zData, len);
+ pDest->z[len] = 0;
+ pDest->z[len+1] = 0;
+ pDest->flags = aFlag[t&1];
+ }
+ }else{
+ u8 p5;
+ pDest->enc = encoding;
+ assert( pDest->db==db );
+ /* This branch happens only when content is on overflow pages */
+ if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
+ && (p5==OPFLAG_TYPEOFARG
+ || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
+ )
+ )
+ || sqlite3VdbeSerialTypeLen(t)==0
+ ){
+ /* Content is irrelevant for
+ ** 1. the typeof() function,
+ ** 2. the length(X) function if X is a blob, and
+ ** 3. if the content length is zero.
+ ** So we might as well use bogus content rather than reading
+ ** content from disk.
+ **
+ ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
+ ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
+ ** read more. Use the global constant sqlite3CtypeMap[] as the array,
+ ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
+ ** and it begins with a bunch of zeros.
+ */
+ sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
+ }else{
+ rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
+ p->cacheCtr, colCacheCtr, pDest);
+ if( rc ){
+ if( rc==SQLITE_NOMEM ) goto no_mem;
+ if( rc==SQLITE_TOOBIG ) goto too_big;
+ goto abort_due_to_error;
+ }
+ }
+ }
+
+op_column_out:
+ UPDATE_MAX_BLOBSIZE(pDest);
+ REGISTER_TRACE(pOp->p3, pDest);
+ break;
+
+op_column_corrupt:
+ if( aOp[0].p3>0 ){
+ pOp = &aOp[aOp[0].p3-1];
+ break;
+ }else{
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+}
+
+/* Opcode: TypeCheck P1 P2 P3 P4 *
+** Synopsis: typecheck(r[P1@P2])
+**
+** Apply affinities to the range of P2 registers beginning with P1.
+** Take the affinities from the Table object in P4. If any value
+** cannot be coerced into the correct type, then raise an error.
+**
+** This opcode is similar to OP_Affinity except that this opcode
+** forces the register type to the Table column type. This is used
+** to implement "strict affinity".
+**
+** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
+** is zero. When P3 is non-zero, no type checking occurs for
+** static generated columns. Virtual columns are computed at query time
+** and so they are never checked.
+**
+** Preconditions:
+**
+** <ul>
+** <li> P2 should be the number of non-virtual columns in the
+** table of P4.
+** <li> Table P4 should be a STRICT table.
+** </ul>
+**
+** If any precondition is false, an assertion fault occurs.
+*/
+case OP_TypeCheck: {
+ Table *pTab;
+ Column *aCol;
+ int i;
+
+ assert( pOp->p4type==P4_TABLE );
+ pTab = pOp->p4.pTab;
+ assert( pTab->tabFlags & TF_Strict );
+ assert( pTab->nNVCol==pOp->p2 );
+ aCol = pTab->aCol;
+ pIn1 = &aMem[pOp->p1];
+ for(i=0; i<pTab->nCol; i++){
+ if( aCol[i].colFlags & COLFLAG_GENERATED ){
+ if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
+ if( pOp->p3 ){ pIn1++; continue; }
+ }
+ assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
+ applyAffinity(pIn1, aCol[i].affinity, encoding);
+ if( (pIn1->flags & MEM_Null)==0 ){
+ switch( aCol[i].eCType ){
+ case COLTYPE_BLOB: {
+ if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_INTEGER:
+ case COLTYPE_INT: {
+ if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_TEXT: {
+ if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
+ break;
+ }
+ case COLTYPE_REAL: {
+ testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
+ assert( (pIn1->flags & MEM_IntReal)==0 );
+ if( pIn1->flags & MEM_Int ){
+ /* When applying REAL affinity, if the result is still an MEM_Int
+ ** that will fit in 6 bytes, then change the type to MEM_IntReal
+ ** so that we keep the high-resolution integer value but know that
+ ** the type really wants to be REAL. */
+ testcase( pIn1->u.i==140737488355328LL );
+ testcase( pIn1->u.i==140737488355327LL );
+ testcase( pIn1->u.i==-140737488355328LL );
+ testcase( pIn1->u.i==-140737488355329LL );
+ if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
+ pIn1->flags |= MEM_IntReal;
+ pIn1->flags &= ~MEM_Int;
+ }else{
+ pIn1->u.r = (double)pIn1->u.i;
+ pIn1->flags |= MEM_Real;
+ pIn1->flags &= ~MEM_Int;
+ }
+ }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
+ goto vdbe_type_error;
+ }
+ break;
+ }
+ default: {
+ /* COLTYPE_ANY. Accept anything. */
+ break;
+ }
+ }
+ }
+ REGISTER_TRACE((int)(pIn1-aMem), pIn1);
+ pIn1++;
+ }
+ assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
+ break;
+
+vdbe_type_error:
+ sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
+ vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
+ pTab->zName, aCol[i].zCnName);
+ rc = SQLITE_CONSTRAINT_DATATYPE;
+ goto abort_due_to_error;
+}
+
+/* Opcode: Affinity P1 P2 * P4 *
+** Synopsis: affinity(r[P1@P2])
+**
+** Apply affinities to a range of P2 registers starting with P1.
+**
+** P4 is a string that is P2 characters long. The N-th character of the
+** string indicates the column affinity that should be used for the N-th
+** memory cell in the range.
+*/
+case OP_Affinity: {
+ const char *zAffinity; /* The affinity to be applied */
+
+ zAffinity = pOp->p4.z;
+ assert( zAffinity!=0 );
+ assert( pOp->p2>0 );
+ assert( zAffinity[pOp->p2]==0 );
+ pIn1 = &aMem[pOp->p1];
+ while( 1 /*exit-by-break*/ ){
+ assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
+ assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
+ applyAffinity(pIn1, zAffinity[0], encoding);
+ if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
+ /* When applying REAL affinity, if the result is still an MEM_Int
+ ** that will fit in 6 bytes, then change the type to MEM_IntReal
+ ** so that we keep the high-resolution integer value but know that
+ ** the type really wants to be REAL. */
+ testcase( pIn1->u.i==140737488355328LL );
+ testcase( pIn1->u.i==140737488355327LL );
+ testcase( pIn1->u.i==-140737488355328LL );
+ testcase( pIn1->u.i==-140737488355329LL );
+ if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
+ pIn1->flags |= MEM_IntReal;
+ pIn1->flags &= ~MEM_Int;
+ }else{
+ pIn1->u.r = (double)pIn1->u.i;
+ pIn1->flags |= MEM_Real;
+ pIn1->flags &= ~(MEM_Int|MEM_Str);
+ }
+ }
+ REGISTER_TRACE((int)(pIn1-aMem), pIn1);
+ zAffinity++;
+ if( zAffinity[0]==0 ) break;
+ pIn1++;
+ }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 P3 P4 *
+** Synopsis: r[P3]=mkrec(r[P1@P2])
+**
+** Convert P2 registers beginning with P1 into the [record format]
+** use as a data record in a database table or as a key
+** in an index. The OP_Column opcode can decode the record later.
+**
+** P4 may be a string that is P2 characters long. The N-th character of the
+** string indicates the column affinity that should be used for the N-th
+** field of the index key.
+**
+** The mapping from character to affinity is given by the SQLITE_AFF_
+** macros defined in sqliteInt.h.
+**
+** If P4 is NULL then all index fields have the affinity BLOB.
+**
+** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
+** compile-time option is enabled:
+**
+** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
+** of the right-most table that can be null-trimmed.
+**
+** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
+** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
+** accept no-change records with serial_type 10. This value is
+** only used inside an assert() and does not affect the end result.
+*/
+case OP_MakeRecord: {
+ Mem *pRec; /* The new record */
+ u64 nData; /* Number of bytes of data space */
+ int nHdr; /* Number of bytes of header space */
+ i64 nByte; /* Data space required for this record */
+ i64 nZero; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ u32 len; /* Length of a field */
+ u8 *zHdr; /* Where to write next byte of the header */
+ u8 *zPayload; /* Where to write next byte of the payload */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** ------------------------------------------------------------------------
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** ------------------------------------------------------------------------
+ **
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1
+ ** and so forth.
+ **
+ ** Each type field is a varint representing the serial type of the
+ ** corresponding data element (see sqlite3VdbeSerialType()). The
+ ** hdr-size field is also a varint which is the offset from the beginning
+ ** of the record to data0.
+ */
+ nData = 0; /* Number of bytes of data space */
+ nHdr = 0; /* Number of bytes of header space */
+ nZero = 0; /* Number of zero bytes at the end of the record */
+ nField = pOp->p1;
+ zAffinity = pOp->p4.z;
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
+ pData0 = &aMem[nField];
+ nField = pOp->p2;
+ pLast = &pData0[nField-1];
+
+ /* Identify the output register */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &aMem[pOp->p3];
+ memAboutToChange(p, pOut);
+
+ /* Apply the requested affinity to all inputs
+ */
+ assert( pData0<=pLast );
+ if( zAffinity ){
+ pRec = pData0;
+ do{
+ applyAffinity(pRec, zAffinity[0], encoding);
+ if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
+ pRec->flags |= MEM_IntReal;
+ pRec->flags &= ~(MEM_Int);
+ }
+ REGISTER_TRACE((int)(pRec-aMem), pRec);
+ zAffinity++;
+ pRec++;
+ assert( zAffinity[0]==0 || pRec<=pLast );
+ }while( zAffinity[0] );
+ }
+
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ /* NULLs can be safely trimmed from the end of the record, as long as
+ ** as the schema format is 2 or more and none of the omitted columns
+ ** have a non-NULL default value. Also, the record must be left with
+ ** at least one field. If P5>0 then it will be one more than the
+ ** index of the right-most column with a non-NULL default value */
+ if( pOp->p5 ){
+ while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
+ pLast--;
+ nField--;
+ }
+ }
+#endif
+
+ /* Loop through the elements that will make up the record to figure
+ ** out how much space is required for the new record. After this loop,
+ ** the Mem.uTemp field of each term should hold the serial-type that will
+ ** be used for that term in the generated record:
+ **
+ ** Mem.uTemp value type
+ ** --------------- ---------------
+ ** 0 NULL
+ ** 1 1-byte signed integer
+ ** 2 2-byte signed integer
+ ** 3 3-byte signed integer
+ ** 4 4-byte signed integer
+ ** 5 6-byte signed integer
+ ** 6 8-byte signed integer
+ ** 7 IEEE float
+ ** 8 Integer constant 0
+ ** 9 Integer constant 1
+ ** 10,11 reserved for expansion
+ ** N>=12 and even BLOB
+ ** N>=13 and odd text
+ **
+ ** The following additional values are computed:
+ ** nHdr Number of bytes needed for the record header
+ ** nData Number of bytes of data space needed for the record
+ ** nZero Zero bytes at the end of the record
+ */
+ pRec = pLast;
+ do{
+ assert( memIsValid(pRec) );
+ if( pRec->flags & MEM_Null ){
+ if( pRec->flags & MEM_Zero ){
+ /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
+ ** table methods that never invoke sqlite3_result_xxxxx() while
+ ** computing an unchanging column value in an UPDATE statement.
+ ** Give such values a special internal-use-only serial-type of 10
+ ** so that they can be passed through to xUpdate and have
+ ** a true sqlite3_value_nochange(). */
+#ifndef SQLITE_ENABLE_NULL_TRIM
+ assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
+#endif
+ pRec->uTemp = 10;
+ }else{
+ pRec->uTemp = 0;
+ }
+ nHdr++;
+ }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+ i64 i = pRec->u.i;
+ u64 uu;
+ testcase( pRec->flags & MEM_Int );
+ testcase( pRec->flags & MEM_IntReal );
+ if( i<0 ){
+ uu = ~i;
+ }else{
+ uu = i;
+ }
+ nHdr++;
+ testcase( uu==127 ); testcase( uu==128 );
+ testcase( uu==32767 ); testcase( uu==32768 );
+ testcase( uu==8388607 ); testcase( uu==8388608 );
+ testcase( uu==2147483647 ); testcase( uu==2147483648LL );
+ testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
+ if( uu<=127 ){
+ if( (i&1)==i && p->minWriteFileFormat>=4 ){
+ pRec->uTemp = 8+(u32)uu;
+ }else{
+ nData++;
+ pRec->uTemp = 1;
+ }
+ }else if( uu<=32767 ){
+ nData += 2;
+ pRec->uTemp = 2;
+ }else if( uu<=8388607 ){
+ nData += 3;
+ pRec->uTemp = 3;
+ }else if( uu<=2147483647 ){
+ nData += 4;
+ pRec->uTemp = 4;
+ }else if( uu<=140737488355327LL ){
+ nData += 6;
+ pRec->uTemp = 5;
+ }else{
+ nData += 8;
+ if( pRec->flags & MEM_IntReal ){
+ /* If the value is IntReal and is going to take up 8 bytes to store
+ ** as an integer, then we might as well make it an 8-byte floating
+ ** point value */
+ pRec->u.r = (double)pRec->u.i;
+ pRec->flags &= ~MEM_IntReal;
+ pRec->flags |= MEM_Real;
+ pRec->uTemp = 7;
+ }else{
+ pRec->uTemp = 6;
+ }
+ }
+ }else if( pRec->flags & MEM_Real ){
+ nHdr++;
+ nData += 8;
+ pRec->uTemp = 7;
+ }else{
+ assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
+ assert( pRec->n>=0 );
+ len = (u32)pRec->n;
+ serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
+ if( pRec->flags & MEM_Zero ){
+ serial_type += pRec->u.nZero*2;
+ if( nData ){
+ if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
+ len += pRec->u.nZero;
+ }else{
+ nZero += pRec->u.nZero;
+ }
+ }
+ nData += len;
+ nHdr += sqlite3VarintLen(serial_type);
+ pRec->uTemp = serial_type;
+ }
+ if( pRec==pData0 ) break;
+ pRec--;
+ }while(1);
+
+ /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
+ ** which determines the total number of bytes in the header. The varint
+ ** value is the size of the header in bytes including the size varint
+ ** itself. */
+ testcase( nHdr==126 );
+ testcase( nHdr==127 );
+ if( nHdr<=126 ){
+ /* The common case */
+ nHdr += 1;
+ }else{
+ /* Rare case of a really large header */
+ nVarint = sqlite3VarintLen(nHdr);
+ nHdr += nVarint;
+ if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
+ }
+ nByte = nHdr+nData;
+
+ /* Make sure the output register has a buffer large enough to store
+ ** the new record. The output register (pOp->p3) is not allowed to
+ ** be one of the input registers (because the following call to
+ ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
+ */
+ if( nByte+nZero<=pOut->szMalloc ){
+ /* The output register is already large enough to hold the record.
+ ** No error checks or buffer enlargement is required */
+ pOut->z = pOut->zMalloc;
+ }else{
+ /* Need to make sure that the output is not too big and then enlarge
+ ** the output register to hold the full result */
+ if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
+ goto no_mem;
+ }
+ }
+ pOut->n = (int)nByte;
+ pOut->flags = MEM_Blob;
+ if( nZero ){
+ pOut->u.nZero = nZero;
+ pOut->flags |= MEM_Zero;
+ }
+ UPDATE_MAX_BLOBSIZE(pOut);
+ zHdr = (u8 *)pOut->z;
+ zPayload = zHdr + nHdr;
+
+ /* Write the record */
+ if( nHdr<0x80 ){
+ *(zHdr++) = nHdr;
+ }else{
+ zHdr += sqlite3PutVarint(zHdr,nHdr);
+ }
+ assert( pData0<=pLast );
+ pRec = pData0;
+ while( 1 /*exit-by-break*/ ){
+ serial_type = pRec->uTemp;
+ /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
+ ** additional varints, one per column.
+ ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
+ ** immediately follow the header. */
+ if( serial_type<=7 ){
+ *(zHdr++) = serial_type;
+ if( serial_type==0 ){
+ /* NULL value. No change in zPayload */
+ }else{
+ u64 v;
+ if( serial_type==7 ){
+ assert( sizeof(v)==sizeof(pRec->u.r) );
+ memcpy(&v, &pRec->u.r, sizeof(v));
+ swapMixedEndianFloat(v);
+ }else{
+ v = pRec->u.i;
+ }
+ len = sqlite3SmallTypeSizes[serial_type];
+ assert( len>=1 && len<=8 && len!=5 && len!=7 );
+ switch( len ){
+ default: zPayload[7] = (u8)(v&0xff); v >>= 8;
+ zPayload[6] = (u8)(v&0xff); v >>= 8;
+ case 6: zPayload[5] = (u8)(v&0xff); v >>= 8;
+ zPayload[4] = (u8)(v&0xff); v >>= 8;
+ case 4: zPayload[3] = (u8)(v&0xff); v >>= 8;
+ case 3: zPayload[2] = (u8)(v&0xff); v >>= 8;
+ case 2: zPayload[1] = (u8)(v&0xff); v >>= 8;
+ case 1: zPayload[0] = (u8)(v&0xff);
+ }
+ zPayload += len;
+ }
+ }else if( serial_type<0x80 ){
+ *(zHdr++) = serial_type;
+ if( serial_type>=14 && pRec->n>0 ){
+ assert( pRec->z!=0 );
+ memcpy(zPayload, pRec->z, pRec->n);
+ zPayload += pRec->n;
+ }
+ }else{
+ zHdr += sqlite3PutVarint(zHdr, serial_type);
+ if( pRec->n ){
+ assert( pRec->z!=0 );
+ memcpy(zPayload, pRec->z, pRec->n);
+ zPayload += pRec->n;
+ }
+ }
+ if( pRec==pLast ) break;
+ pRec++;
+ }
+ assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
+ assert( nByte==(int)(zPayload - (u8*)pOut->z) );
+
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ REGISTER_TRACE(pOp->p3, pOut);
+ break;
+}
+
+/* Opcode: Count P1 P2 P3 * *
+** Synopsis: r[P2]=count()
+**
+** Store the number of entries (an integer value) in the table or index
+** opened by cursor P1 in register P2.
+**
+** If P3==0, then an exact count is obtained, which involves visiting
+** every btree page of the table. But if P3 is non-zero, an estimate
+** is returned based on the current cursor position.
+*/
+case OP_Count: { /* out2 */
+ i64 nEntry;
+ BtCursor *pCrsr;
+
+ assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
+ pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
+ assert( pCrsr );
+ if( pOp->p3 ){
+ nEntry = sqlite3BtreeRowCountEst(pCrsr);
+ }else{
+ nEntry = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
+ if( rc ) goto abort_due_to_error;
+ }
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = nEntry;
+ goto check_for_interrupt;
+}
+
+/* Opcode: Savepoint P1 * * P4 *
+**
+** Open, release or rollback the savepoint named by parameter P4, depending
+** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
+** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
+** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
+*/
+case OP_Savepoint: {
+ int p1; /* Value of P1 operand */
+ char *zName; /* Name of savepoint */
+ int nName;
+ Savepoint *pNew;
+ Savepoint *pSavepoint;
+ Savepoint *pTmp;
+ int iSavepoint;
+ int ii;
+
+ p1 = pOp->p1;
+ zName = pOp->p4.z;
+
+ /* Assert that the p1 parameter is valid. Also that if there is no open
+ ** transaction, then there cannot be any savepoints.
+ */
+ assert( db->pSavepoint==0 || db->autoCommit==0 );
+ assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
+ assert( db->pSavepoint || db->isTransactionSavepoint==0 );
+ assert( checkSavepointCount(db) );
+ assert( p->bIsReader );
+
+ if( p1==SAVEPOINT_BEGIN ){
+ if( db->nVdbeWrite>0 ){
+ /* A new savepoint cannot be created if there are active write
+ ** statements (i.e. open read/write incremental blob handles).
+ */
+ sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+ nName = sqlite3Strlen30(zName);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* This call is Ok even if this savepoint is actually a transaction
+ ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
+ ** If this is a transaction savepoint being opened, it is guaranteed
+ ** that the db->aVTrans[] array is empty. */
+ assert( db->autoCommit==0 || db->nVTrans==0 );
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
+ db->nStatement+db->nSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+#endif
+
+ /* Create a new savepoint structure. */
+ pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
+ if( pNew ){
+ pNew->zName = (char *)&pNew[1];
+ memcpy(pNew->zName, zName, nName+1);
+
+ /* If there is no open transaction, then mark this as a special
+ ** "transaction savepoint". */
+ if( db->autoCommit ){
+ db->autoCommit = 0;
+ db->isTransactionSavepoint = 1;
+ }else{
+ db->nSavepoint++;
+ }
+
+ /* Link the new savepoint into the database handle's list. */
+ pNew->pNext = db->pSavepoint;
+ db->pSavepoint = pNew;
+ pNew->nDeferredCons = db->nDeferredCons;
+ pNew->nDeferredImmCons = db->nDeferredImmCons;
+ }
+ }
+ }else{
+ assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
+ iSavepoint = 0;
+
+ /* Find the named savepoint. If there is no such savepoint, then an
+ ** an error is returned to the user. */
+ for(
+ pSavepoint = db->pSavepoint;
+ pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
+ pSavepoint = pSavepoint->pNext
+ ){
+ iSavepoint++;
+ }
+ if( !pSavepoint ){
+ sqlite3VdbeError(p, "no such savepoint: %s", zName);
+ rc = SQLITE_ERROR;
+ }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
+ /* It is not possible to release (commit) a savepoint if there are
+ ** active write statements.
+ */
+ sqlite3VdbeError(p, "cannot release savepoint - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ }else{
+
+ /* Determine whether or not this is a transaction savepoint. If so,
+ ** and this is a RELEASE command, then the current transaction
+ ** is committed.
+ */
+ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
+ if( isTransaction && p1==SAVEPOINT_RELEASE ){
+ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }
+ db->autoCommit = 1;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ db->autoCommit = 0;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ rc = p->rc;
+ if( rc ){
+ db->autoCommit = 0;
+ }else{
+ db->isTransactionSavepoint = 0;
+ }
+ }else{
+ int isSchemaChange;
+ iSavepoint = db->nSavepoint - iSavepoint - 1;
+ if( p1==SAVEPOINT_ROLLBACK ){
+ isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
+ SQLITE_ABORT_ROLLBACK,
+ isSchemaChange==0);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }else{
+ assert( p1==SAVEPOINT_RELEASE );
+ isSchemaChange = 0;
+ }
+ for(ii=0; ii<db->nDb; ii++){
+ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }
+ if( isSchemaChange ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ sqlite3ResetAllSchemasOfConnection(db);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+
+ /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
+ ** savepoints nested inside of the savepoint being operated on. */
+ while( db->pSavepoint!=pSavepoint ){
+ pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ db->nSavepoint--;
+ }
+
+ /* If it is a RELEASE, then destroy the savepoint being operated on
+ ** too. If it is a ROLLBACK TO, then set the number of deferred
+ ** constraint violations present in the database to the value stored
+ ** when the savepoint was created. */
+ if( p1==SAVEPOINT_RELEASE ){
+ assert( pSavepoint==db->pSavepoint );
+ db->pSavepoint = pSavepoint->pNext;
+ sqlite3DbFree(db, pSavepoint);
+ if( !isTransaction ){
+ db->nSavepoint--;
+ }
+ }else{
+ assert( p1==SAVEPOINT_ROLLBACK );
+ db->nDeferredCons = pSavepoint->nDeferredCons;
+ db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
+ }
+
+ if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
+ rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ }
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ if( p->eVdbeState==VDBE_HALT_STATE ){
+ rc = SQLITE_DONE;
+ goto vdbe_return;
+ }
+ break;
+}
+
+/* Opcode: AutoCommit P1 P2 * * *
+**
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
+** back any currently active btree transactions. If there are any active
+** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
+** there are active writing VMs or active VMs that use shared cache.
+**
+** This instruction causes the VM to halt.
+*/
+case OP_AutoCommit: {
+ int desiredAutoCommit;
+ int iRollback;
+
+ desiredAutoCommit = pOp->p1;
+ iRollback = pOp->p2;
+ assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
+ assert( desiredAutoCommit==1 || iRollback==0 );
+ assert( db->nVdbeActive>0 ); /* At least this one VM is active */
+ assert( p->bIsReader );
+
+ if( desiredAutoCommit!=db->autoCommit ){
+ if( iRollback ){
+ assert( desiredAutoCommit==1 );
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
+ db->autoCommit = 1;
+ }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
+ /* If this instruction implements a COMMIT and other VMs are writing
+ ** return an error indicating that the other VMs must complete first.
+ */
+ sqlite3VdbeError(p, "cannot commit transaction - "
+ "SQL statements in progress");
+ rc = SQLITE_BUSY;
+ goto abort_due_to_error;
+ }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
+ goto vdbe_return;
+ }else{
+ db->autoCommit = (u8)desiredAutoCommit;
+ }
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ db->autoCommit = (u8)(1-desiredAutoCommit);
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ sqlite3CloseSavepoints(db);
+ if( p->rc==SQLITE_OK ){
+ rc = SQLITE_DONE;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ goto vdbe_return;
+ }else{
+ sqlite3VdbeError(p,
+ (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
+ (iRollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"));
+
+ rc = SQLITE_ERROR;
+ goto abort_due_to_error;
+ }
+ /*NOTREACHED*/ assert(0);
+}
+
+/* Opcode: Transaction P1 P2 P3 P4 P5
+**
+** Begin a transaction on database P1 if a transaction is not already
+** active.
+** If P2 is non-zero, then a write-transaction is started, or if a
+** read-transaction is already active, it is upgraded to a write-transaction.
+** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
+** then an exclusive transaction is started.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables. Indices of 2 or more are used for
+** attached databases.
+**
+** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
+** true (this flag is set if the Vdbe may modify more than one row and may
+** throw an ABORT exception), a statement transaction may also be opened.
+** More specifically, a statement transaction is opened iff the database
+** connection is currently not in autocommit mode, or if there are other
+** active statements. A statement transaction allows the changes made by this
+** VDBE to be rolled back after an error without having to roll back the
+** entire transaction. If no error is encountered, the statement transaction
+** will automatically commit when the VDBE halts.
+**
+** If P5!=0 then this opcode also checks the schema cookie against P3
+** and the schema generation counter against P4.
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema. If the schema
+** cookie in P3 differs from the schema cookie in the database header or
+** if the schema generation counter in P4 differs from the current
+** generation counter, then an SQLITE_SCHEMA error is raised and execution
+** halts. The sqlite3_step() wrapper function might then reprepare the
+** statement and rerun it from the beginning.
+*/
+case OP_Transaction: {
+ Btree *pBt;
+ Db *pDb;
+ int iMeta = 0;
+
+ assert( p->bIsReader );
+ assert( p->readOnly==0 || pOp->p2==0 );
+ assert( pOp->p2>=0 && pOp->p2<=2 );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( rc==SQLITE_OK );
+ if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
+ if( db->flags & SQLITE_QueryOnly ){
+ /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
+ rc = SQLITE_READONLY;
+ }else{
+ /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
+ ** transaction */
+ rc = SQLITE_CORRUPT;
+ }
+ goto abort_due_to_error;
+ }
+ pDb = &db->aDb[pOp->p1];
+ pBt = pDb->pBt;
+
+ if( pBt ){
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
+ testcase( rc==SQLITE_BUSY_SNAPSHOT );
+ testcase( rc==SQLITE_BUSY_RECOVERY );
+ if( rc!=SQLITE_OK ){
+ if( (rc&0xff)==SQLITE_BUSY ){
+ p->pc = (int)(pOp - aOp);
+ p->rc = rc;
+ goto vdbe_return;
+ }
+ goto abort_due_to_error;
+ }
+
+ if( p->usesStmtJournal
+ && pOp->p2
+ && (db->autoCommit==0 || db->nVdbeRead>1)
+ ){
+ assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
+ if( p->iStatement==0 ){
+ assert( db->nStatement>=0 && db->nSavepoint>=0 );
+ db->nStatement++;
+ p->iStatement = db->nSavepoint + db->nStatement;
+ }
+
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
+ }
+
+ /* Store the current value of the database handles deferred constraint
+ ** counter. If the statement transaction needs to be rolled back,
+ ** the value of this counter needs to be restored too. */
+ p->nStmtDefCons = db->nDeferredCons;
+ p->nStmtDefImmCons = db->nDeferredImmCons;
+ }
+ }
+ assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
+ if( rc==SQLITE_OK
+ && pOp->p5
+ && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
+ ){
+ /*
+ ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
+ ** version is checked to ensure that the schema has not changed since the
+ ** SQL statement was prepared.
+ */
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
+ ** stored with the in-memory representation of the schema, do
+ ** not reload the schema from the database file.
+ **
+ ** If virtual-tables are in use, this is not just an optimization.
+ ** Often, v-tables store their data in other SQLite tables, which
+ ** are queried from within xNext() and other v-table methods using
+ ** prepared queries. If such a query is out-of-date, we do not want to
+ ** discard the database schema, as the user code implementing the
+ ** v-table would have to be ready for the sqlite3_vtab structure itself
+ ** to be invalidated whenever sqlite3_step() is called from within
+ ** a v-table method.
+ */
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ sqlite3ResetOneSchema(db, pOp->p1);
+ }
+ p->expired = 1;
+ rc = SQLITE_SCHEMA;
+
+ /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
+ ** from being modified in sqlite3VdbeHalt(). If this statement is
+ ** reprepared, changeCntOn will be set again. */
+ p->changeCntOn = 0;
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 P3 * *
+**
+** Read cookie number P3 from database P1 and write it into register P2.
+** P3==1 is the schema version. P3==2 is the database format.
+** P3==3 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: { /* out2 */
+ int iMeta;
+ int iDb;
+ int iCookie;
+
+ assert( p->bIsReader );
+ iDb = pOp->p1;
+ iCookie = pOp->p3;
+ assert( pOp->p3<SQLITE_N_BTREE_META );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+
+ sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = iMeta;
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 P3 * P5
+**
+** Write the integer value P3 into cookie number P2 of database P1.
+** P2==1 is the schema version. P2==2 is the database format.
+** P2==3 is the recommended pager cache
+** size, and so forth. P1==0 is the main database file and P1==1 is the
+** database file used to store temporary tables.
+**
+** A transaction must be started before executing this opcode.
+**
+** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
+** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
+** has P5 set to 1, so that the internal schema version will be different
+** from the database schema version, resulting in a schema reset.
+*/
+case OP_SetCookie: {
+ Db *pDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
+ /* See note about index shifting on OP_ReadCookie */
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
+ if( pOp->p2==BTREE_SCHEMA_VERSION ){
+ /* When the schema cookie changes, record the new cookie internally */
+ *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ sqlite3FkClearTriggerCache(db, pOp->p1);
+ }else if( pOp->p2==BTREE_FILE_FORMAT ){
+ /* Record changes in the file format */
+ pDb->pSchema->file_format = pOp->p3;
+ }
+ if( pOp->p1==1 ){
+ /* Invalidate all prepared statements whenever the TEMP database
+ ** schema is changed. Ticket #1644 */
+ sqlite3ExpirePreparedStatements(db, 0);
+ p->expired = 0;
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by P3.
+** P3==0 means the main database, P3==1 means the database used for
+** temporary tables, and P3>1 means used the corresponding attached
+** database. Give the new cursor an identifier of P1. The P1
+** values need not be contiguous but all P1 values should be small integers.
+** It is an error for P1 to be negative.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** </ul>
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** object, then table being opened must be an [index b-tree] where the
+** KeyInfo object defines the content and collating
+** sequence of that index b-tree. Otherwise, if P4 is an integer
+** value, then the table being opened must be a [table b-tree] with a
+** number of columns no less than the value of P4.
+**
+** See also: OpenWrite, ReopenIdx
+*/
+/* Opcode: ReopenIdx P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** The ReopenIdx opcode works like OP_OpenRead except that it first
+** checks to see if the cursor on P1 is already open on the same
+** b-tree and if it is this opcode becomes a no-op. In other words,
+** if the cursor is already open, do not reopen it.
+**
+** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
+** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
+** be the same as every other ReopenIdx or OpenRead for the same cursor
+** number.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** </ul>
+**
+** See also: OP_OpenRead, OP_OpenWrite
+*/
+/* Opcode: OpenWrite P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2 (or whose root page is held in register P2 if the
+** OPFLAG_P2ISREG bit is set in P5 - see below).
+**
+** The P4 value may be either an integer (P4_INT32) or a pointer to
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
+** object, then table being opened must be an [index b-tree] where the
+** KeyInfo object defines the content and collating
+** sequence of that index b-tree. Otherwise, if P4 is an integer
+** value, then the table being opened must be a [table b-tree] with a
+** number of columns no less than the value of P4.
+**
+** Allowed P5 bits:
+** <ul>
+** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
+** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
+** of OP_SeekLE/OP_IdxLT)
+** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
+** and subsequently delete entries in an index btree. This is a
+** hint to the storage engine that the storage engine is allowed to
+** ignore. The hint is not used by the official SQLite b*tree storage
+** engine, but is used by COMDB2.
+** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
+** as the root page, not the value of P2 itself.
+** </ul>
+**
+** This instruction works like OpenRead except that it opens the cursor
+** in read/write mode.
+**
+** See also: OP_OpenRead, OP_ReopenIdx
+*/
+case OP_ReopenIdx: { /* ncycle */
+ int nField;
+ KeyInfo *pKeyInfo;
+ u32 p2;
+ int iDb;
+ int wrFlag;
+ Btree *pX;
+ VdbeCursor *pCur;
+ Db *pDb;
+
+ assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
+ assert( pOp->p4type==P4_KEYINFO );
+ pCur = p->apCsr[pOp->p1];
+ if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
+ assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
+ assert( pCur->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeClearCursor(pCur->uc.pCursor);
+ goto open_cursor_set_hints;
+ }
+ /* If the cursor is not currently open or is open on a different
+ ** index, then fall through into OP_OpenRead to force a reopen */
+case OP_OpenRead: /* ncycle */
+case OP_OpenWrite:
+
+ assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
+ assert( p->bIsReader );
+ assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
+ || p->readOnly==0 );
+
+ if( p->expired==1 ){
+ rc = SQLITE_ABORT_ROLLBACK;
+ goto abort_due_to_error;
+ }
+
+ nField = 0;
+ pKeyInfo = 0;
+ p2 = (u32)pOp->p2;
+ iDb = pOp->p3;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ pDb = &db->aDb[iDb];
+ pX = pDb->pBt;
+ assert( pX!=0 );
+ if( pOp->opcode==OP_OpenWrite ){
+ assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
+ wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( pDb->pSchema->file_format < p->minWriteFileFormat ){
+ p->minWriteFileFormat = pDb->pSchema->file_format;
+ }
+ }else{
+ wrFlag = 0;
+ }
+ if( pOp->p5 & OPFLAG_P2ISREG ){
+ assert( p2>0 );
+ assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
+ assert( pOp->opcode==OP_OpenWrite );
+ pIn2 = &aMem[p2];
+ assert( memIsValid(pIn2) );
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ sqlite3VdbeMemIntegerify(pIn2);
+ p2 = (int)pIn2->u.i;
+ /* The p2 value always comes from a prior OP_CreateBtree opcode and
+ ** that opcode will always set the p2 value to 2 or more or else fail.
+ ** If there were a failure, the prepared statement would have halted
+ ** before reaching this instruction. */
+ assert( p2>=2 );
+ }
+ if( pOp->p4type==P4_KEYINFO ){
+ pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pKeyInfo->enc==ENC(db) );
+ assert( pKeyInfo->db==db );
+ nField = pKeyInfo->nAllField;
+ }else if( pOp->p4type==P4_INT32 ){
+ nField = pOp->p4.i;
+ }
+ assert( pOp->p1>=0 );
+ assert( nField>=0 );
+ testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
+ pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
+ if( pCur==0 ) goto no_mem;
+ pCur->iDb = iDb;
+ pCur->nullRow = 1;
+ pCur->isOrdered = 1;
+ pCur->pgnoRoot = p2;
+#ifdef SQLITE_DEBUG
+ pCur->wrFlag = wrFlag;
+#endif
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
+ pCur->pKeyInfo = pKeyInfo;
+ /* Set the VdbeCursor.isTable variable. Previous versions of
+ ** SQLite used to check if the root-page flags were sane at this point
+ ** and report database corruption if they were not, but this check has
+ ** since moved into the btree layer. */
+ pCur->isTable = pOp->p4type!=P4_KEYINFO;
+
+open_cursor_set_hints:
+ assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
+ assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
+ testcase( pOp->p5 & OPFLAG_BULKCSR );
+ testcase( pOp->p2 & OPFLAG_SEEKEQ );
+ sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
+ (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: OpenDup P1 P2 * * *
+**
+** Open a new cursor P1 that points to the same ephemeral table as
+** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
+** opcode. Only ephemeral cursors may be duplicated.
+**
+** Duplicate ephemeral cursors are used for self-joins of materialized views.
+*/
+case OP_OpenDup: { /* ncycle */
+ VdbeCursor *pOrig; /* The original cursor to be duplicated */
+ VdbeCursor *pCx; /* The new cursor */
+
+ pOrig = p->apCsr[pOp->p2];
+ assert( pOrig );
+ assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
+
+ pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->isEphemeral = 1;
+ pCx->pKeyInfo = pOrig->pKeyInfo;
+ pCx->isTable = pOrig->isTable;
+ pCx->pgnoRoot = pOrig->pgnoRoot;
+ pCx->isOrdered = pOrig->isOrdered;
+ pCx->ub.pBtx = pOrig->ub.pBtx;
+ pCx->noReuse = 1;
+ pOrig->noReuse = 1;
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
+ pCx->pKeyInfo, pCx->uc.pCursor);
+ /* The sqlite3BtreeCursor() routine can only fail for the first cursor
+ ** opened for a database. Since there is already an open cursor when this
+ ** opcode is run, the sqlite3BtreeCursor() cannot fail */
+ assert( rc==SQLITE_OK );
+ break;
+}
+
+
+/* Opcode: OpenEphemeral P1 P2 P3 P4 P5
+** Synopsis: nColumn=P2
+**
+** Open a new cursor P1 to a transient table.
+** The cursor is always opened read/write even if
+** the main database is read-only. The ephemeral
+** table is deleted automatically when the cursor is closed.
+**
+** If the cursor P1 is already opened on an ephemeral table, the table
+** is cleared (all content is erased).
+**
+** P2 is the number of columns in the ephemeral table.
+** The cursor points to a BTree table if P4==0 and to a BTree index
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
+** that defines the format of keys in the index.
+**
+** The P5 parameter can be a mask of the BTREE_* flags defined
+** in btree.h. These flags control aspects of the operation of
+** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
+** added automatically.
+**
+** If P3 is positive, then reg[P3] is modified slightly so that it
+** can be used as zero-length data for OP_Insert. This is an optimization
+** that avoids an extra OP_Blob opcode to initialize that register.
+*/
+/* Opcode: OpenAutoindex P1 P2 * P4 *
+** Synopsis: nColumn=P2
+**
+** This opcode works the same as OP_OpenEphemeral. It has a
+** different name to distinguish its use. Tables created using
+** by this opcode will be used for automatically created transient
+** indices in joins.
+*/
+case OP_OpenAutoindex: /* ncycle */
+case OP_OpenEphemeral: { /* ncycle */
+ VdbeCursor *pCx;
+ KeyInfo *pKeyInfo;
+
+ static const int vfsFlags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TRANSIENT_DB;
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
+ if( pOp->p3>0 ){
+ /* Make register reg[P3] into a value that can be used as the data
+ ** form sqlite3BtreeInsert() where the length of the data is zero. */
+ assert( pOp->p2==0 ); /* Only used when number of columns is zero */
+ assert( pOp->opcode==OP_OpenEphemeral );
+ assert( aMem[pOp->p3].flags & MEM_Null );
+ aMem[pOp->p3].n = 0;
+ aMem[pOp->p3].z = "";
+ }
+ pCx = p->apCsr[pOp->p1];
+ if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
+ /* If the ephemeral table is already open and has no duplicates from
+ ** OP_OpenDup, then erase all existing content so that the table is
+ ** empty again, rather than creating a new table. */
+ assert( pCx->isEphemeral );
+ pCx->seqCount = 0;
+ pCx->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
+ }else{
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
+ if( pCx==0 ) goto no_mem;
+ pCx->isEphemeral = 1;
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
+ BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
+ vfsFlags);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
+ if( rc==SQLITE_OK ){
+ /* If a transient index is required, create it by calling
+ ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
+ ** opening it. If a transient table is required, just use the
+ ** automatically created table with root-page 1 (an BLOB_INTKEY table).
+ */
+ if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
+ assert( pOp->p4type==P4_KEYINFO );
+ rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
+ BTREE_BLOBKEY | pOp->p5);
+ if( rc==SQLITE_OK ){
+ assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
+ assert( pKeyInfo->db==db );
+ assert( pKeyInfo->enc==ENC(db) );
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
+ pKeyInfo, pCx->uc.pCursor);
+ }
+ pCx->isTable = 0;
+ }else{
+ pCx->pgnoRoot = SCHEMA_ROOT;
+ rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
+ 0, pCx->uc.pCursor);
+ pCx->isTable = 1;
+ }
+ }
+ pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
+ if( rc ){
+ sqlite3BtreeClose(pCx->ub.pBtx);
+ }
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ pCx->nullRow = 1;
+ break;
+}
+
+/* Opcode: SorterOpen P1 P2 P3 P4 *
+**
+** This opcode works like OP_OpenEphemeral except that it opens
+** a transient index that is specifically designed to sort large
+** tables using an external merge-sort algorithm.
+**
+** If argument P3 is non-zero, then it indicates that the sorter may
+** assume that a stable sort considering the first P3 fields of each
+** key is sufficient to produce the required results.
+*/
+case OP_SorterOpen: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ assert( pOp->p2>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
+ if( pCx==0 ) goto no_mem;
+ pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ assert( pCx->pKeyInfo->db==db );
+ assert( pCx->pKeyInfo->enc==ENC(db) );
+ rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: SequenceTest P1 P2 * * *
+** Synopsis: if( cursor[P1].ctr++ ) pc = P2
+**
+** P1 is a sorter cursor. If the sequence counter is currently zero, jump
+** to P2. Regardless of whether or not the jump is taken, increment the
+** the sequence value.
+*/
+case OP_SequenceTest: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ if( (pC->seqCount++)==0 ){
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: OpenPseudo P1 P2 P3 * *
+** Synopsis: P3 columns in r[P2]
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. The content of that one row is the content of memory
+** register P2. In other words, cursor P1 becomes an alias for the
+** MEM_Blob content contained in register P2.
+**
+** A pseudo-table created by this opcode is used to hold a single
+** row output from the sorter so that the row can be decomposed into
+** individual columns using the OP_Column opcode. The OP_Column opcode
+** is the only cursor opcode that works with a pseudo-table.
+**
+** P3 is the number of fields in the records that will be stored by
+** the pseudo-table.
+*/
+case OP_OpenPseudo: {
+ VdbeCursor *pCx;
+
+ assert( pOp->p1>=0 );
+ assert( pOp->p3>=0 );
+ pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->seekResult = pOp->p2;
+ pCx->isTable = 1;
+ /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
+ ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
+ ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
+ ** which is a performance optimization */
+ pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
+ assert( pOp->p5==0 );
+ break;
+}
+
+/* Opcode: Close P1 * * * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: { /* ncycle */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
+ p->apCsr[pOp->p1] = 0;
+ break;
+}
+
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+/* Opcode: ColumnsUsed P1 * * P4 *
+**
+** This opcode (which only exists if SQLite was compiled with
+** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
+** table or index for cursor P1 are used. P4 is a 64-bit integer
+** (P4_INT64) in which the first 63 bits are one for each of the
+** first 63 columns of the table or index that are actually used
+** by the cursor. The high-order bit is set if any column after
+** the 64th is used.
+*/
+case OP_ColumnsUsed: {
+ VdbeCursor *pC;
+ pC = p->apCsr[pOp->p1];
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pC->maskUsed = *(u64*)pOp->p4.pI64;
+ break;
+}
+#endif
+
+/* Opcode: SeekGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as the key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than or equal to the key value. If there are no records
+** greater than or equal to the key and P2 is not zero, then jump to P2.
+**
+** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
+** opcode will either land on a record that exactly matches the key, or
+** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
+** this opcode must be followed by an IdxLE opcode with the same arguments.
+** The IdxGT opcode will be skipped if this opcode succeeds, but the
+** IdxGT opcode will be used on subsequent loop iterations. The
+** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
+** is an equality search.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
+*/
+/* Opcode: SeekGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than the key value. If there are no records greater than
+** the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+**
+** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than the key value. If there are no records less than
+** the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
+*/
+/* Opcode: SeekLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than or equal to the key value. If there are no records
+** less than or equal to the key and P2 is not zero, then jump to P2.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+**
+** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
+** opcode will either land on a record that exactly matches the key, or
+** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
+** this opcode must be followed by an IdxLE opcode with the same arguments.
+** The IdxGE opcode will be skipped if this opcode succeeds, but the
+** IdxGE opcode will be used on subsequent loop iterations. The
+** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
+** is an equality search.
+**
+** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
+*/
+case OP_SeekLT: /* jump, in3, group, ncycle */
+case OP_SeekLE: /* jump, in3, group, ncycle */
+case OP_SeekGE: /* jump, in3, group, ncycle */
+case OP_SeekGT: { /* jump, in3, group, ncycle */
+ int res; /* Comparison result */
+ int oc; /* Opcode */
+ VdbeCursor *pC; /* The cursor to seek */
+ UnpackedRecord r; /* The key to seek for */
+ int nField; /* Number of columns or fields in the key */
+ i64 iKey; /* The rowid we are to seek to */
+ int eqOnly; /* Only interested in == results */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p2!=0 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( OP_SeekLE == OP_SeekLT+1 );
+ assert( OP_SeekGE == OP_SeekLT+2 );
+ assert( OP_SeekGT == OP_SeekLT+3 );
+ assert( pC->isOrdered );
+ assert( pC->uc.pCursor!=0 );
+ oc = pOp->opcode;
+ eqOnly = 0;
+ pC->nullRow = 0;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pC->isTable ){
+ u16 flags3, newType;
+ /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
+ assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
+ || CORRUPT_DB );
+
+ /* The input value in P3 might be of any type: integer, real, string,
+ ** blob, or NULL. But it needs to be an integer before we can do
+ ** the seek, so convert it. */
+ pIn3 = &aMem[pOp->p3];
+ flags3 = pIn3->flags;
+ if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
+ applyNumericAffinity(pIn3, 0);
+ }
+ iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
+ newType = pIn3->flags; /* Record the type after applying numeric affinity */
+ pIn3->flags = flags3; /* But convert the type back to its original */
+
+ /* If the P3 value could not be converted into an integer without
+ ** loss of information, then special processing is required... */
+ if( (newType & (MEM_Int|MEM_IntReal))==0 ){
+ int c;
+ if( (newType & MEM_Real)==0 ){
+ if( (newType & MEM_Null) || oc>=OP_SeekGE ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }else{
+ rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ goto seek_not_found;
+ }
+ }
+ c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
+
+ /* If the approximation iKey is larger than the actual real search
+ ** term, substitute >= for > and < for <=. e.g. if the search term
+ ** is 4.9 and the integer approximation 5:
+ **
+ ** (x > 4.9) -> (x >= 5)
+ ** (x <= 4.9) -> (x < 5)
+ */
+ if( c>0 ){
+ assert( OP_SeekGE==(OP_SeekGT-1) );
+ assert( OP_SeekLT==(OP_SeekLE-1) );
+ assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
+ }
+
+ /* If the approximation iKey is smaller than the actual real search
+ ** term, substitute <= for < and > for >=. */
+ else if( c<0 ){
+ assert( OP_SeekLE==(OP_SeekLT+1) );
+ assert( OP_SeekGT==(OP_SeekGE+1) );
+ assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
+ if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
+ }
+ }
+ rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
+ pC->movetoTarget = iKey; /* Used by OP_Delete */
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ }else{
+ /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
+ ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
+ ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
+ ** with the same key.
+ */
+ if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
+ eqOnly = 1;
+ assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
+ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
+ assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
+ assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
+ assert( pOp[1].p1==pOp[0].p1 );
+ assert( pOp[1].p2==pOp[0].p2 );
+ assert( pOp[1].p3==pOp[0].p3 );
+ assert( pOp[1].p4.i==pOp[0].p4.i );
+ }
+
+ nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( nField>0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)nField;
+
+ /* The next line of code computes as follows, only faster:
+ ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
+ ** r.default_rc = -1;
+ ** }else{
+ ** r.default_rc = +1;
+ ** }
+ */
+ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
+ assert( oc!=OP_SeekGT || r.default_rc==-1 );
+ assert( oc!=OP_SeekLE || r.default_rc==-1 );
+ assert( oc!=OP_SeekGE || r.default_rc==+1 );
+ assert( oc!=OP_SeekLT || r.default_rc==+1 );
+
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
+ }
+ }
+#endif
+ r.eqSeen = 0;
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( eqOnly && r.eqSeen==0 ){
+ assert( res!=0 );
+ goto seek_not_found;
+ }
+ }
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
+ if( res<0 || (res==0 && oc==OP_SeekGT) ){
+ res = 0;
+ rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ res = 1;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }else{
+ res = 0;
+ }
+ }else{
+ assert( oc==OP_SeekLT || oc==OP_SeekLE );
+ if( res>0 || (res==0 && oc==OP_SeekLT) ){
+ res = 0;
+ rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ res = 1;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->uc.pCursor);
+ }
+ }
+seek_not_found:
+ assert( pOp->p2>0 );
+ VdbeBranchTaken(res!=0,2);
+ if( res ){
+ goto jump_to_p2;
+ }else if( eqOnly ){
+ assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
+ pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
+ }
+ break;
+}
+
+
+/* Opcode: SeekScan P1 P2 * * P5
+** Synopsis: Scan-ahead up to P1 rows
+**
+** This opcode is a prefix opcode to OP_SeekGE. In other words, this
+** opcode must be immediately followed by OP_SeekGE. This constraint is
+** checked by assert() statements.
+**
+** This opcode uses the P1 through P4 operands of the subsequent
+** OP_SeekGE. In the text that follows, the operands of the subsequent
+** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
+** the P1, P2 and P5 operands of this opcode are also used, and are called
+** This.P1, This.P2 and This.P5.
+**
+** This opcode helps to optimize IN operators on a multi-column index
+** where the IN operator is on the later terms of the index by avoiding
+** unnecessary seeks on the btree, substituting steps to the next row
+** of the b-tree instead. A correct answer is obtained if this opcode
+** is omitted or is a no-op.
+**
+** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
+** is the desired entry that we want the cursor SeekGE.P1 to be pointing
+** to. Call this SeekGE.P3/P4 row the "target".
+**
+** If the SeekGE.P1 cursor is not currently pointing to a valid row,
+** then this opcode is a no-op and control passes through into the OP_SeekGE.
+**
+** If the SeekGE.P1 cursor is pointing to a valid row, then that row
+** might be the target row, or it might be near and slightly before the
+** target row, or it might be after the target row. If the cursor is
+** currently before the target row, then this opcode attempts to position
+** the cursor on or after the target row by invoking sqlite3BtreeStep()
+** on the cursor between 1 and This.P1 times.
+**
+** The This.P5 parameter is a flag that indicates what to do if the
+** cursor ends up pointing at a valid row that is past the target
+** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
+** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
+** case occurs when there are no inequality constraints to the right of
+** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case
+** occurs when there are inequality constraints to the right of the IN
+** operator. In that case, the This.P2 will point either directly to or
+** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
+** loop terminate.
+**
+** Possible outcomes from this opcode:<ol>
+**
+** <li> If the cursor is initially not pointed to any valid row, then
+** fall through into the subsequent OP_SeekGE opcode.
+**
+** <li> If the cursor is left pointing to a row that is before the target
+** row, even after making as many as This.P1 calls to
+** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
+**
+** <li> If the cursor is left pointing at the target row, either because it
+** was at the target row to begin with or because one or more
+** sqlite3BtreeNext() calls moved the cursor to the target row,
+** then jump to This.P2..,
+**
+** <li> If the cursor started out before the target row and a call to
+** to sqlite3BtreeNext() moved the cursor off the end of the index
+** (indicating that the target row definitely does not exist in the
+** btree) then jump to SeekGE.P2, ending the loop.
+**
+** <li> If the cursor ends up on a valid row that is past the target row
+** (indicating that the target row does not exist in the btree) then
+** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
+** </ol>
+*/
+case OP_SeekScan: { /* ncycle */
+ VdbeCursor *pC;
+ int res;
+ int nStep;
+ UnpackedRecord r;
+
+ assert( pOp[1].opcode==OP_SeekGE );
+
+ /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
+ ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
+ ** opcode past the OP_SeekGE itself. */
+ assert( pOp->p2>=(int)(pOp-aOp)+2 );
+#ifdef SQLITE_DEBUG
+ if( pOp->p5==0 ){
+ /* There are no inequality constraints following the IN constraint. */
+ assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
+ assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
+ assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
+ assert( aOp[pOp->p2-1].opcode==OP_IdxGT
+ || aOp[pOp->p2-1].opcode==OP_IdxGE );
+ testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
+ }else{
+ /* There are inequality constraints. */
+ assert( pOp->p2==(int)(pOp-aOp)+2 );
+ assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
+ }
+#endif
+
+ assert( pOp->p1>0 );
+ pC = p->apCsr[pOp[1].p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( !pC->isTable );
+ if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... cursor not valid - fall through\n");
+ }
+#endif
+ break;
+ }
+ nStep = pOp->p1;
+ assert( nStep>=1 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp[1].p4.i;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp[1].p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
+ }
+ }
+#endif
+ res = 0; /* Not needed. Only used to silence a warning. */
+ while(1){
+ rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res>0 && pOp->p5==0 ){
+ seekscan_search_fail:
+ /* Jump to SeekGE.P2, ending the loop */
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... %d steps and then skip\n", pOp->p1 - nStep);
+ }
+#endif
+ VdbeBranchTaken(1,3);
+ pOp++;
+ goto jump_to_p2;
+ }
+ if( res>=0 ){
+ /* Jump to This.P2, bypassing the OP_SeekGE opcode */
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... %d steps and then success\n", pOp->p1 - nStep);
+ }
+#endif
+ VdbeBranchTaken(2,3);
+ goto jump_to_p2;
+ break;
+ }
+ if( nStep<=0 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("... fall through after %d steps\n", pOp->p1);
+ }
+#endif
+ VdbeBranchTaken(0,3);
+ break;
+ }
+ nStep--;
+ pC->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
+ if( rc ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ goto seekscan_search_fail;
+ }else{
+ goto abort_due_to_error;
+ }
+ }
+ }
+
+ break;
+}
+
+
+/* Opcode: SeekHit P1 P2 P3 * *
+** Synopsis: set P2<=seekHit<=P3
+**
+** Increase or decrease the seekHit value for cursor P1, if necessary,
+** so that it is no less than P2 and no greater than P3.
+**
+** The seekHit integer represents the maximum of terms in an index for which
+** there is known to be at least one match. If the seekHit value is smaller
+** than the total number of equality terms in an index lookup, then the
+** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
+** early, thus saving work. This is part of the IN-early-out optimization.
+**
+** P1 must be a valid b-tree cursor.
+*/
+case OP_SeekHit: { /* ncycle */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pOp->p3>=pOp->p2 );
+ if( pC->seekHit<pOp->p2 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
+ }
+#endif
+ pC->seekHit = pOp->p2;
+ }else if( pC->seekHit>pOp->p3 ){
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
+ }
+#endif
+ pC->seekHit = pOp->p3;
+ }
+ break;
+}
+
+/* Opcode: IfNotOpen P1 P2 * * *
+** Synopsis: if( !csr[P1] ) goto P2
+**
+** If cursor P1 is not open or if P1 is set to a NULL row using the
+** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
+*/
+case OP_IfNotOpen: { /* jump */
+ VdbeCursor *pCur;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pCur = p->apCsr[pOp->p1];
+ VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
+ if( pCur==0 || pCur->nullRow ){
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ break;
+}
+
+/* Opcode: Found P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is a prefix of any entry in P1 then a jump is made to P2 and
+** P1 is left pointing at the matching entry.
+**
+** This operation leaves the cursor in a state where it can be
+** advanced in the forward direction. The Next instruction will work,
+** but not the Prev instruction.
+**
+** See also: NotFound, NoConflict, NotExists. SeekGe
+*/
+/* Opcode: NotFound P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** is not the prefix of any entry in P1 then a jump is made to P2. If P1
+** does contain an entry whose prefix matches the P3/P4 record then control
+** falls through to the next instruction and P1 is left pointing at the
+** matching entry.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: Found, NotExists, NoConflict, IfNoHope
+*/
+/* Opcode: IfNoHope P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** Register P3 is the first of P4 registers that form an unpacked
+** record. Cursor P1 is an index btree. P2 is a jump destination.
+** In other words, the operands to this opcode are the same as the
+** operands to OP_NotFound and OP_IdxGT.
+**
+** This opcode is an optimization attempt only. If this opcode always
+** falls through, the correct answer is still obtained, but extra work
+** is performed.
+**
+** A value of N in the seekHit flag of cursor P1 means that there exists
+** a key P3:N that will match some record in the index. We want to know
+** if it is possible for a record P3:P4 to match some record in the
+** index. If it is not possible, we can skip some work. So if seekHit
+** is less than P4, attempt to find out if a match is possible by running
+** OP_NotFound.
+**
+** This opcode is used in IN clause processing for a multi-column key.
+** If an IN clause is attached to an element of the key other than the
+** left-most element, and if there are no matches on the most recent
+** seek over the whole key, then it might be that one of the key element
+** to the left is prohibiting a match, and hence there is "no hope" of
+** any match regardless of how many IN clause elements are checked.
+** In such a case, we abandon the IN clause search early, using this
+** opcode. The opcode name comes from the fact that the
+** jump is taken if there is "no hope" of achieving a match.
+**
+** See also: NotFound, SeekHit
+*/
+/* Opcode: NoConflict P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
+** P4>0 then register P3 is the first of P4 registers that form an unpacked
+** record.
+**
+** Cursor P1 is on an index btree. If the record identified by P3 and P4
+** contains any NULL value, jump immediately to P2. If all terms of the
+** record are not-NULL then a check is done to determine if any row in the
+** P1 index btree has a matching key prefix. If there are no matches, jump
+** immediately to P2. If there is a match, fall through and leave the P1
+** cursor pointing to the matching row.
+**
+** This opcode is similar to OP_NotFound with the exceptions that the
+** branch is always taken if any part of the search key input is NULL.
+**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
+** See also: NotFound, Found, NotExists
+*/
+case OP_IfNoHope: { /* jump, in3, ncycle */
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ printf("seekHit is %d\n", pC->seekHit);
+ }
+#endif
+ if( pC->seekHit>=pOp->p4.i ) break;
+ /* Fall through into OP_NotFound */
+ /* no break */ deliberate_fall_through
+}
+case OP_NoConflict: /* jump, in3, ncycle */
+case OP_NotFound: /* jump, in3, ncycle */
+case OP_Found: { /* jump, in3, ncycle */
+ int alreadyExists;
+ int ii;
+ VdbeCursor *pC;
+ UnpackedRecord *pIdxKey;
+ UnpackedRecord r;
+
+#ifdef SQLITE_TEST
+ if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
+#endif
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_INT32 );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ r.aMem = &aMem[pOp->p3];
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->isTable==0 );
+ r.nField = (u16)pOp->p4.i;
+ if( r.nField>0 ){
+ /* Key values in an array of registers */
+ r.pKeyInfo = pC->pKeyInfo;
+ r.default_rc = 0;
+#ifdef SQLITE_DEBUG
+ for(ii=0; ii<r.nField; ii++){
+ assert( memIsValid(&r.aMem[ii]) );
+ assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
+ if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
+ }
+#endif
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
+ }else{
+ /* Composite key generated by OP_MakeRecord */
+ assert( r.aMem->flags & MEM_Blob );
+ assert( pOp->opcode!=OP_NoConflict );
+ rc = ExpandBlob(r.aMem);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ if( rc ) goto no_mem;
+ pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
+ if( pIdxKey==0 ) goto no_mem;
+ sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
+ pIdxKey->default_rc = 0;
+ rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
+ sqlite3DbFreeNN(db, pIdxKey);
+ }
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ alreadyExists = (pC->seekResult==0);
+ pC->nullRow = 1-alreadyExists;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( pOp->opcode==OP_Found ){
+ VdbeBranchTaken(alreadyExists!=0,2);
+ if( alreadyExists ) goto jump_to_p2;
+ }else{
+ if( !alreadyExists ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }
+ if( pOp->opcode==OP_NoConflict ){
+ /* For the OP_NoConflict opcode, take the jump if any of the
+ ** input fields are NULL, since any key with a NULL will not
+ ** conflict */
+ for(ii=0; ii<r.nField; ii++){
+ if( r.aMem[ii].flags & MEM_Null ){
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2;
+ }
+ }
+ }
+ VdbeBranchTaken(0,2);
+ if( pOp->opcode==OP_IfNoHope ){
+ pC->seekHit = pOp->p4.i;
+ }
+ }
+ break;
+}
+
+/* Opcode: SeekRowid P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
+**
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). If register P3 does not contain an integer or if P1 does not
+** contain a record with rowid P3 then jump immediately to P2.
+** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
+** a record with rowid P3 then
+** leave the cursor pointing at that record and fall through to the next
+** instruction.
+**
+** The OP_NotExists opcode performs the same operation, but with OP_NotExists
+** the P3 register must be guaranteed to contain an integer value. With this
+** opcode, register P3 might not contain an integer.
+**
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
+**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict, SeekRowid
+*/
+/* Opcode: NotExists P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
+**
+** P1 is the index of a cursor open on an SQL table btree (with integer
+** keys). P3 is an integer rowid. If P1 does not contain a record with
+** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
+** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
+** leave the cursor pointing at that record and fall through to the next
+** instruction.
+**
+** The OP_SeekRowid opcode performs the same operation but also allows the
+** P3 register to contain a non-integer value, in which case the jump is
+** always taken. This opcode requires that P3 always contain an integer.
+**
+** The OP_NotFound opcode performs the same operation on index btrees
+** (with arbitrary multi-value keys).
+**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
+** See also: Found, NotFound, NoConflict, SeekRowid
+*/
+case OP_SeekRowid: { /* jump, in3, ncycle */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ u64 iKey;
+
+ pIn3 = &aMem[pOp->p3];
+ testcase( pIn3->flags & MEM_Int );
+ testcase( pIn3->flags & MEM_IntReal );
+ testcase( pIn3->flags & MEM_Real );
+ testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
+ if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
+ /* If pIn3->u.i does not contain an integer, compute iKey as the
+ ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
+ ** into an integer without loss of information. Take care to avoid
+ ** changing the datatype of pIn3, however, as it is used by other
+ ** parts of the prepared statement. */
+ Mem x = pIn3[0];
+ applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
+ if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
+ iKey = x.u.i;
+ goto notExistsWithKey;
+ }
+ /* Fall through into OP_NotExists */
+ /* no break */ deliberate_fall_through
+case OP_NotExists: /* jump, in3, ncycle */
+ pIn3 = &aMem[pOp->p3];
+ assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ iKey = pIn3->u.i;
+notExistsWithKey:
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
+#endif
+ assert( pC->isTable );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr!=0 );
+ res = 0;
+ rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
+ assert( rc==SQLITE_OK || res==0 );
+ pC->movetoTarget = iKey; /* Used by OP_Delete */
+ pC->nullRow = 0;
+ pC->cacheStatus = CACHE_STALE;
+ pC->deferredMoveto = 0;
+ VdbeBranchTaken(res!=0,2);
+ pC->seekResult = res;
+ if( res!=0 ){
+ assert( rc==SQLITE_OK );
+ if( pOp->p2==0 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ goto jump_to_p2;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: Sequence P1 P2 * * *
+** Synopsis: r[P2]=cursor[P1].ctr++
+**
+** Find the next available sequence number for cursor P1.
+** Write the sequence number into register P2.
+** The sequence number on the cursor is incremented after this
+** instruction.
+*/
+case OP_Sequence: { /* out2 */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( p->apCsr[pOp->p1]!=0 );
+ assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
+ break;
+}
+
+
+/* Opcode: NewRowid P1 P2 P3 * *
+** Synopsis: r[P2]=rowid
+**
+** Get a new integer record number (a.k.a "rowid") used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is written
+** written to register P2.
+**
+** If P3>0 then P3 is a register in the root frame of this VDBE that holds
+** the largest previously generated record number. No new record numbers are
+** allowed to be less than this value. When this value reaches its maximum,
+** an SQLITE_FULL error is generated. The P3 register is updated with the '
+** generated record number. This P3 mechanism is used to help implement the
+** AUTOINCREMENT feature.
+*/
+case OP_NewRowid: { /* out2 */
+ i64 v; /* The new rowid */
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */
+ int res; /* Result of an sqlite3BtreeLast() */
+ int cnt; /* Counter to limit the number of searches */
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
+ VdbeFrame *pFrame; /* Root frame of VDBE */
+#endif
+
+ v = 0;
+ res = 0;
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isTable );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ {
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 100 times.
+ */
+ assert( pC->isTable );
+
+#ifdef SQLITE_32BIT_ROWID
+# define MAX_ROWID 0x7fffffff
+#else
+ /* Some compilers complain about constants of the form 0x7fffffffffffffff.
+ ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
+ ** to provide the constant while making all compilers happy.
+ */
+# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
+#endif
+
+ if( !pC->useRandomRowid ){
+ rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res ){
+ v = 1; /* IMP: R-61914-48074 */
+ }else{
+ assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
+ v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ if( v>=MAX_ROWID ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++; /* IMP: R-29538-34987 */
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( pOp->p3 ){
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3>0 );
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=pFrame->nMem );
+ pMem = &pFrame->aMem[pOp->p3];
+ }else{
+ /* Assert that P3 is a valid memory cell. */
+ assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pMem = &aMem[pOp->p3];
+ memAboutToChange(p, pMem);
+ }
+ assert( memIsValid(pMem) );
+
+ REGISTER_TRACE(pOp->p3, pMem);
+ sqlite3VdbeMemIntegerify(pMem);
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ rc = SQLITE_FULL; /* IMP: R-17817-00630 */
+ goto abort_due_to_error;
+ }
+ if( v<pMem->u.i+1 ){
+ v = pMem->u.i + 1;
+ }
+ pMem->u.i = v;
+ }
+#endif
+ if( pC->useRandomRowid ){
+ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
+ ** largest possible integer (9223372036854775807) then the database
+ ** engine starts picking positive candidate ROWIDs at random until
+ ** it finds one that is not previously used. */
+ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
+ ** an AUTOINCREMENT table. */
+ cnt = 0;
+ do{
+ sqlite3_randomness(sizeof(v), &v);
+ v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
+ }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
+ 0, &res))==SQLITE_OK)
+ && (res==0)
+ && (++cnt<100));
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ rc = SQLITE_FULL; /* IMP: R-38219-53002 */
+ goto abort_due_to_error;
+ }
+ assert( v>0 ); /* EV: R-40812-03570 */
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: Insert P1 P2 P3 P4 P5
+** Synopsis: intkey=r[P3] data=r[P2]
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value MEM_Blob stored in register
+** number P2. The key is stored in register P3. The key must
+** be a MEM_Int.
+**
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
+** then rowid is stored for subsequent return by the
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
+** run faster by avoiding an unnecessary seek on cursor P1. However,
+** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
+** seeks on the cursor or if the most recent seek used a key equal to P3.
+**
+** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
+** UPDATE operation. Otherwise (if the flag is clear) then this opcode
+** is part of an INSERT operation. The difference is only important to
+** the update hook.
+**
+** Parameter P4 may point to a Table structure, or may be NULL. If it is
+** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
+** following a successful insert.
+**
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
+** allocated, then ownership of P2 is transferred to the pseudo-cursor
+** and register P2 becomes ephemeral. If the cursor is changed, the
+** value of register P2 will then change. Make sure this does not
+** cause any problems.)
+**
+** This instruction only works on tables. The equivalent instruction
+** for indices is OP_IdxInsert.
+*/
+case OP_Insert: {
+ Mem *pData; /* MEM cell holding data for the record to be inserted */
+ Mem *pKey; /* MEM cell holding key for the record */
+ VdbeCursor *pC; /* Cursor to table into which insert is written */
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
+ const char *zDb; /* database name - used by the update hook */
+ Table *pTab; /* Table structure - used by update and pre-update hooks */
+ BtreePayload x; /* Payload to be inserted */
+
+ pData = &aMem[pOp->p2];
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( memIsValid(pData) );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->uc.pCursor!=0 );
+ assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
+ assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
+ REGISTER_TRACE(pOp->p2, pData);
+ sqlite3VdbeIncrWriteCounter(p, pC);
+
+ pKey = &aMem[pOp->p3];
+ assert( pKey->flags & MEM_Int );
+ assert( memIsValid(pKey) );
+ REGISTER_TRACE(pOp->p3, pKey);
+ x.nKey = pKey->u.i;
+
+ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
+ assert( pC->iDb>=0 );
+ zDb = db->aDb[pC->iDb].zDbSName;
+ pTab = pOp->p4.pTab;
+ assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
+ }else{
+ pTab = 0;
+ zDb = 0;
+ }
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ /* Invoke the pre-update hook, if any */
+ if( pTab ){
+ if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
+ sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
+ }
+ if( db->xUpdateCallback==0 || pTab->aCol==0 ){
+ /* Prevent post-update hook from running in cases when it should not */
+ pTab = 0;
+ }
+ }
+ if( pOp->p5 & OPFLAG_ISNOOP ) break;
+#endif
+
+ assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
+ if( pOp->p5 & OPFLAG_NCHANGE ){
+ p->nChange++;
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
+ }
+ assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
+ x.pData = pData->z;
+ x.nData = pData->n;
+ seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
+ if( pData->flags & MEM_Zero ){
+ x.nZero = pData->u.nZero;
+ }else{
+ x.nZero = 0;
+ }
+ x.pKey = 0;
+ assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
+ rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
+ (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
+ seekResult
+ );
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ colCacheCtr++;
+
+ /* Invoke the update-hook if required. */
+ if( rc ) goto abort_due_to_error;
+ if( pTab ){
+ assert( db->xUpdateCallback!=0 );
+ assert( pTab->aCol!=0 );
+ db->xUpdateCallback(db->pUpdateArg,
+ (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
+ zDb, pTab->zName, x.nKey);
+ }
+ break;
+}
+
+/* Opcode: RowCell P1 P2 P3 * *
+**
+** P1 and P2 are both open cursors. Both must be opened on the same type
+** of table - intkey or index. This opcode is used as part of copying
+** the current row from P2 into P1. If the cursors are opened on intkey
+** tables, register P3 contains the rowid to use with the new record in
+** P1. If they are opened on index tables, P3 is not used.
+**
+** This opcode must be followed by either an Insert or InsertIdx opcode
+** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
+*/
+case OP_RowCell: {
+ VdbeCursor *pDest; /* Cursor to write to */
+ VdbeCursor *pSrc; /* Cursor to read from */
+ i64 iKey; /* Rowid value to insert with */
+ assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
+ assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
+ assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
+ assert( pOp[1].p5 & OPFLAG_PREFORMAT );
+ pDest = p->apCsr[pOp->p1];
+ pSrc = p->apCsr[pOp->p2];
+ iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
+ rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ break;
+};
+
+/* Opcode: Delete P1 P2 P3 P4 P5
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
+** the cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. As a result, in this case
+** it is ok to delete a record from within a Next loop. If
+** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
+** left in an undefined state.
+**
+** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
+** delete is one of several associated with deleting a table row and
+** all its associated index entries. Exactly one of those deletes is
+** the "primary" delete. The others are all on OPFLAG_FORDELETE
+** cursors or else are marked with the AUXDELETE flag.
+**
+** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
+** the row change count is incremented (otherwise not).
+**
+** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
+** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
+** This happens when the OP_Delete is to be shortly followed by an OP_Insert
+** with the same key, causing the btree entry to be overwritten.
+**
+** P1 must not be pseudo-table. It has to be a real table with
+** multiple rows.
+**
+** If P4 is not NULL then it points to a Table object. In this case either
+** the update or pre-update hook, or both, may be invoked. The P1 cursor must
+** have been positioned using OP_NotFound prior to invoking this opcode in
+** this case. Specifically, if one is configured, the pre-update hook is
+** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
+** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
+**
+** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
+** of the memory cell that contains the value that the rowid of the row will
+** be set to by the update.
+*/
+case OP_Delete: {
+ VdbeCursor *pC;
+ const char *zDb;
+ Table *pTab;
+ int opflags;
+
+ opflags = pOp->p2;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->deferredMoveto==0 );
+ sqlite3VdbeIncrWriteCounter(p, pC);
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p4type==P4_TABLE
+ && HasRowid(pOp->p4.pTab)
+ && pOp->p5==0
+ && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
+ ){
+ /* If p5 is zero, the seek operation that positioned the cursor prior to
+ ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
+ ** the row that is being deleted */
+ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ assert( CORRUPT_DB || pC->movetoTarget==iKey );
+ }
+#endif
+
+ /* If the update-hook or pre-update-hook will be invoked, set zDb to
+ ** the name of the db to pass as to it. Also set local pTab to a copy
+ ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
+ ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
+ ** VdbeCursor.movetoTarget to the current rowid. */
+ if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
+ assert( pC->iDb>=0 );
+ assert( pOp->p4.pTab!=0 );
+ zDb = db->aDb[pC->iDb].zDbSName;
+ pTab = pOp->p4.pTab;
+ if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
+ pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ }
+ }else{
+ zDb = 0;
+ pTab = 0;
+ }
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ /* Invoke the pre-update-hook if required. */
+ assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
+ if( db->xPreUpdateCallback && pTab ){
+ assert( !(opflags & OPFLAG_ISUPDATE)
+ || HasRowid(pTab)==0
+ || (aMem[pOp->p3].flags & MEM_Int)
+ );
+ sqlite3VdbePreUpdateHook(p, pC,
+ (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
+ zDb, pTab, pC->movetoTarget,
+ pOp->p3, -1
+ );
+ }
+ if( opflags & OPFLAG_ISNOOP ) break;
+#endif
+
+ /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
+ assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
+ assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
+ assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
+
+#ifdef SQLITE_DEBUG
+ if( p->pFrame==0 ){
+ if( pC->isEphemeral==0
+ && (pOp->p5 & OPFLAG_AUXDELETE)==0
+ && (pC->wrFlag & OPFLAG_FORDELETE)==0
+ ){
+ nExtraDelete++;
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ){
+ nExtraDelete--;
+ }
+ }
+#endif
+
+ rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
+ pC->cacheStatus = CACHE_STALE;
+ colCacheCtr++;
+ pC->seekResult = 0;
+ if( rc ) goto abort_due_to_error;
+
+ /* Invoke the update-hook if required. */
+ if( opflags & OPFLAG_NCHANGE ){
+ p->nChange++;
+ if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
+ pC->movetoTarget);
+ assert( pC->iDb>=0 );
+ }
+ }
+
+ break;
+}
+/* Opcode: ResetCount * * * * *
+**
+** The value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes()).
+** Then the VMs internal change counter resets to 0.
+** This is used by trigger programs.
+*/
+case OP_ResetCount: {
+ sqlite3VdbeSetChanges(db, p->nChange);
+ p->nChange = 0;
+ break;
+}
+
+/* Opcode: SorterCompare P1 P2 P3 P4
+** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
+**
+** P1 is a sorter cursor. This instruction compares a prefix of the
+** record blob in register P3 against a prefix of the entry that
+** the sorter cursor currently points to. Only the first P4 fields
+** of r[P3] and the sorter record are compared.
+**
+** If either P3 or the sorter contains a NULL in one of their significant
+** fields (not counting the P4 fields at the end which are ignored) then
+** the comparison is assumed to be equal.
+**
+** Fall through to next instruction if the two records compare equal to
+** each other. Jump to P2 if they are different.
+*/
+case OP_SorterCompare: {
+ VdbeCursor *pC;
+ int res;
+ int nKeyCol;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ assert( pOp->p4type==P4_INT32 );
+ pIn3 = &aMem[pOp->p3];
+ nKeyCol = pOp->p4.i;
+ res = 0;
+ rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
+ VdbeBranchTaken(res!=0,2);
+ if( rc ) goto abort_due_to_error;
+ if( res ) goto jump_to_p2;
+ break;
+};
+
+/* Opcode: SorterData P1 P2 P3 * *
+** Synopsis: r[P2]=data
+**
+** Write into register P2 the current sorter data for sorter cursor P1.
+** Then clear the column header cache on cursor P3.
+**
+** This opcode is normally used to move a record out of the sorter and into
+** a register that is the source for a pseudo-table cursor created using
+** OpenPseudo. That pseudo-table cursor is the one that is identified by
+** parameter P3. Clearing the P3 column cache as part of this opcode saves
+** us from having to issue a separate NullRow instruction to clear that cache.
+*/
+case OP_SorterData: { /* ncycle */
+ VdbeCursor *pC;
+
+ pOut = &aMem[pOp->p2];
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ rc = sqlite3VdbeSorterRowkey(pC, pOut);
+ assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ if( rc ) goto abort_due_to_error;
+ p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
+ break;
+}
+
+/* Opcode: RowData P1 P2 P3 * *
+** Synopsis: r[P2]=data
+**
+** Write into register P2 the complete row content for the row at
+** which cursor P1 is currently pointing.
+** There is no interpretation of the data.
+** It is just copied onto the P2 register exactly as
+** it is found in the database file.
+**
+** If cursor P1 is an index, then the content is the key of the row.
+** If cursor P2 is a table, then the content extracted is the data.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+**
+** If P3!=0 then this opcode is allowed to make an ephemeral pointer
+** into the database page. That means that the content of the output
+** register will be invalidated as soon as the cursor moves - including
+** moves caused by other cursors that "save" the current cursors
+** position in order that they can write to the same table. If P3==0
+** then a copy of the data is made into memory. P3!=0 is faster, but
+** P3==0 is safer.
+**
+** If P3!=0 then the content of the P2 register is unsuitable for use
+** in OP_Result and any OP_Result will invalidate the P2 register content.
+** The P2 register content is invalidated by opcodes like OP_Function or
+** by any use of another cursor pointing to the same table.
+*/
+case OP_RowData: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ u32 n;
+
+ pOut = out2Prerelease(p, pOp);
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( isSorter(pC)==0 );
+ assert( pC->nullRow==0 );
+ assert( pC->uc.pCursor!=0 );
+ pCrsr = pC->uc.pCursor;
+
+ /* The OP_RowData opcodes always follow OP_NotExists or
+ ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
+ ** that might invalidate the cursor.
+ ** If this where not the case, on of the following assert()s
+ ** would fail. Should this ever change (because of changes in the code
+ ** generator) then the fix would be to insert a call to
+ ** sqlite3VdbeCursorMoveto().
+ */
+ assert( pC->deferredMoveto==0 );
+ assert( sqlite3BtreeCursorIsValid(pCrsr) );
+
+ n = sqlite3BtreePayloadSize(pCrsr);
+ if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ testcase( n==0 );
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
+ if( rc ) goto abort_due_to_error;
+ if( !pOp->p3 ) Deephemeralize(pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: Rowid P1 P2 * * *
+** Synopsis: r[P2]=PX rowid of P1
+**
+** Store in register P2 an integer which is the key of the table entry that
+** P1 is currently point to.
+**
+** P1 can be either an ordinary table or a virtual table. There used to
+** be a separate OP_VRowid opcode for use with virtual tables, but this
+** one opcode now works for both table types.
+*/
+case OP_Rowid: { /* out2, ncycle */
+ VdbeCursor *pC;
+ i64 v;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ pOut = out2Prerelease(p, pOp);
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }else if( pC->deferredMoveto ){
+ v = pC->movetoTarget;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( pC->eCurType==CURTYPE_VTAB ){
+ assert( pC->uc.pVCur!=0 );
+ pVtab = pC->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xRowid );
+ rc = pModule->xRowid(pC->uc.pVCur, &v);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0 );
+ rc = sqlite3VdbeCursorRestore(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->nullRow ){
+ pOut->flags = MEM_Null;
+ break;
+ }
+ v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
+ }
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: NullRow P1 * * * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always
+** write a NULL.
+**
+** If cursor P1 is not previously opened, open it now to a special
+** pseudo-cursor that always returns NULL for every column.
+*/
+case OP_NullRow: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC==0 ){
+ /* If the cursor is not already open, create a special kind of
+ ** pseudo-cursor that always gives null rows. */
+ pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
+ if( pC==0 ) goto no_mem;
+ pC->seekResult = 0;
+ pC->isTable = 1;
+ pC->noReuse = 1;
+ pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
+ }
+ pC->nullRow = 1;
+ pC->cacheStatus = CACHE_STALE;
+ if( pC->eCurType==CURTYPE_BTREE ){
+ assert( pC->uc.pCursor!=0 );
+ sqlite3BtreeClearCursor(pC->uc.pCursor);
+ }
+#ifdef SQLITE_DEBUG
+ if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
+#endif
+ break;
+}
+
+/* Opcode: SeekEnd P1 * * * *
+**
+** Position cursor P1 at the end of the btree for the purpose of
+** appending a new entry onto the btree.
+**
+** It is assumed that the cursor is used only for appending and so
+** if the cursor is valid, then the cursor must already be pointing
+** at the end of the btree and so no changes are made to
+** the cursor.
+*/
+/* Opcode: Last P1 P2 * * *
+**
+** The next use of the Rowid or Column or Prev instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use Prev, not Next.
+*/
+case OP_SeekEnd: /* ncycle */
+case OP_Last: { /* jump, ncycle */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ res = 0;
+ assert( pCrsr!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
+ if( pOp->opcode==OP_SeekEnd ){
+ assert( pOp->p2==0 );
+ pC->seekResult = -1;
+ if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
+ break;
+ }
+ }
+ rc = sqlite3BtreeLast(pCrsr, &res);
+ pC->nullRow = (u8)res;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( rc ) goto abort_due_to_error;
+ if( pOp->p2>0 ){
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: IfSmaller P1 P2 P3 * *
+**
+** Estimate the number of rows in the table P1. Jump to P2 if that
+** estimate is less than approximately 2**(0.1*P3).
+*/
+case OP_IfSmaller: { /* jump */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ i64 sz;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ sz = sqlite3BtreeRowCountEst(pCrsr);
+ if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
+ }
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: SorterSort P1 P2 * * *
+**
+** After all records have been inserted into the Sorter object
+** identified by P1, invoke this opcode to actually do the sorting.
+** Jump to P2 if there are no records to be sorted.
+**
+** This opcode is an alias for OP_Sort and OP_Rewind that is used
+** for Sorter objects.
+*/
+/* Opcode: Sort P1 P2 * * *
+**
+** This opcode does exactly the same thing as OP_Rewind except that
+** it increments an undocumented global variable used for testing.
+**
+** Sorting is accomplished by writing records into a sorting index,
+** then rewinding that index and playing it back from beginning to
+** end. We use the OP_Sort opcode instead of OP_Rewind to do the
+** rewinding so that the global variable will be incremented and
+** regression tests can determine whether or not the optimizer is
+** correctly optimizing out sorts.
+*/
+case OP_SorterSort: /* jump ncycle */
+case OP_Sort: { /* jump ncycle */
+#ifdef SQLITE_TEST
+ sqlite3_sort_count++;
+ sqlite3_search_count--;
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_SORT]++;
+ /* Fall through into OP_Rewind */
+ /* no break */ deliberate_fall_through
+}
+/* Opcode: Rewind P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty, jump immediately to P2.
+** If the table or index is not empty, fall through to the following
+** instruction.
+**
+** If P2 is zero, that is an assertion that the P1 table is never
+** empty and hence the jump will never be taken.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the beginning toward the end. In other words, the cursor is
+** configured to use Next, not Prev.
+*/
+case OP_Rewind: { /* jump, ncycle */
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0 );
+ assert( pOp->p2>=0 && pOp->p2<p->nOp );
+
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
+ res = 1;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Rewind;
+#endif
+ if( isSorter(pC) ){
+ rc = sqlite3VdbeSorterRewind(pC, &res);
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr );
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ if( rc ) goto abort_due_to_error;
+ pC->nullRow = (u8)res;
+ if( pOp->p2>0 ){
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 P3 * P5
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** The Next opcode is only valid following an SeekGT, SeekGE, or
+** OP_Rewind opcode used to position the cursor. Next is not allowed
+** to follow SeekLT, SeekLE, or OP_Last.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
+** been opened prior to this opcode or the program will segfault.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 P3 * P5
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+**
+**
+** The Prev opcode is only valid following an SeekLT, SeekLE, or
+** OP_Last opcode used to position the cursor. Prev is not allowed
+** to follow SeekGT, SeekGE, or OP_Rewind.
+**
+** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
+** not open then the behavior is undefined.
+**
+** The P3 value is a hint to the btree implementation. If P3==1, that
+** means P1 is an SQL index and that this instruction could have been
+** omitted if that index had been unique. P3 is usually 0. P3 is
+** always either 0 or 1.
+**
+** If P5 is positive and the jump is taken, then event counter
+** number P5-1 in the prepared statement is incremented.
+*/
+/* Opcode: SorterNext P1 P2 * * P5
+**
+** This opcode works just like OP_Next except that P1 must be a
+** sorter object for which the OP_SorterSort opcode has been
+** invoked. This opcode advances the cursor to the next sorted
+** record, or jumps to P2 if there are no more sorted records.
+*/
+case OP_SorterNext: { /* jump */
+ VdbeCursor *pC;
+
+ pC = p->apCsr[pOp->p1];
+ assert( isSorter(pC) );
+ rc = sqlite3VdbeSorterNext(db, pC);
+ goto next_tail;
+
+case OP_Prev: /* jump, ncycle */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0
+ || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
+ || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
+ || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
+ || pC->seekOp==OP_NullRow);
+ rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
+ goto next_tail;
+
+case OP_Next: /* jump, ncycle */
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p5==0
+ || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
+ || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->deferredMoveto==0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
+ || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
+ || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
+ || pC->seekOp==OP_IfNoHope);
+ rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
+
+next_tail:
+ pC->cacheStatus = CACHE_STALE;
+ VdbeBranchTaken(rc==SQLITE_OK,2);
+ if( rc==SQLITE_OK ){
+ pC->nullRow = 0;
+ p->aCounter[pOp->p5]++;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ if( rc!=SQLITE_DONE ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ pC->nullRow = 1;
+ goto check_for_interrupt;
+}
+
+/* Opcode: IdxInsert P1 P2 P3 P4 P5
+** Synopsis: key=r[P2]
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the index P1. Data for the entry is nil.
+**
+** If P4 is not zero, then it is the number of values in the unpacked
+** key of reg(P2). In that case, P3 is the index of the first register
+** for the unpacked key. The availability of the unpacked key can sometimes
+** be an optimization.
+**
+** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
+** that this insert is likely to be an append.
+**
+** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
+** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
+** then the change counter is unchanged.
+**
+** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
+** run faster by avoiding an unnecessary seek on cursor P1. However,
+** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
+** seeks on the cursor or if the most recent seek used a key equivalent
+** to P2.
+**
+** This instruction only works for indices. The equivalent instruction
+** for tables is OP_Insert.
+*/
+case OP_IdxInsert: { /* in2 */
+ VdbeCursor *pC;
+ BtreePayload x;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ assert( pC!=0 );
+ assert( !isSorter(pC) );
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc ) goto abort_due_to_error;
+ x.nKey = pIn2->n;
+ x.pKey = pIn2->z;
+ x.aMem = aMem + pOp->p3;
+ x.nMem = (u16)pOp->p4.i;
+ rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
+ (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
+ );
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ if( rc) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: SorterInsert P1 P2 * * *
+** Synopsis: key=r[P2]
+**
+** Register P2 holds an SQL index key made using the
+** MakeRecord instructions. This opcode writes that key
+** into the sorter P1. Data for the entry is nil.
+*/
+case OP_SorterInsert: { /* in2 */
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ assert( pC!=0 );
+ assert( isSorter(pC) );
+ pIn2 = &aMem[pOp->p2];
+ assert( pIn2->flags & MEM_Blob );
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3VdbeSorterWrite(pC, pIn2);
+ if( rc) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: IdxDelete P1 P2 P3 * P5
+** Synopsis: key=r[P2@P3]
+**
+** The content of P3 registers starting at register P2 form
+** an unpacked index key. This opcode removes that entry from the
+** index opened by cursor P1.
+**
+** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
+** if no matching index entry is found. This happens when running
+** an UPDATE or DELETE statement and the index entry to be updated
+** or deleted is not found. For some uses of IdxDelete
+** (example: the EXCEPT operator) it does not matter that no matching
+** entry is found. For those cases, P5 is zero. Also, do not raise
+** this (self-correcting and non-critical) error if in writable_schema mode.
+*/
+case OP_IdxDelete: {
+ VdbeCursor *pC;
+ BtCursor *pCrsr;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p3>0 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3VdbeIncrWriteCounter(p, pC);
+ pCrsr = pC->uc.pCursor;
+ assert( pCrsr!=0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p3;
+ r.default_rc = 0;
+ r.aMem = &aMem[pOp->p2];
+ rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
+ if( rc ) goto abort_due_to_error;
+ if( res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
+ if( rc ) goto abort_due_to_error;
+ }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
+ rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
+ goto abort_due_to_error;
+ }
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ pC->seekResult = 0;
+ break;
+}
+
+/* Opcode: DeferredSeek P1 * P3 P4 *
+** Synopsis: Move P3 to P1.rowid if needed
+**
+** P1 is an open index cursor and P3 is a cursor on the corresponding
+** table. This opcode does a deferred seek of the P3 table cursor
+** to the row that corresponds to the current row of P1.
+**
+** This is a deferred seek. Nothing actually happens until
+** the cursor is used to read a record. That way, if no reads
+** occur, no unnecessary I/O happens.
+**
+** P4 may be an array of integers (type P4_INTARRAY) containing
+** one entry for each column in the P3 table. If array entry a(i)
+** is non-zero, then reading column a(i)-1 from cursor P3 is
+** equivalent to performing the deferred seek and then reading column i
+** from P1. This information is stored in P3 and used to redirect
+** reads against P3 over to P1, thus possibly avoiding the need to
+** seek and read cursor P3.
+*/
+/* Opcode: IdxRowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
+**
+** Write into register P2 an integer which is the last entry in the record at
+** the end of the index key pointed to by cursor P1. This integer should be
+** the rowid of the table entry to which this index entry points.
+**
+** See also: Rowid, MakeRecord.
+*/
+case OP_DeferredSeek: /* ncycle */
+case OP_IdxRowid: { /* out2, ncycle */
+ VdbeCursor *pC; /* The P1 index cursor */
+ VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
+ i64 rowid; /* Rowid that P1 current points to */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
+ assert( pC->uc.pCursor!=0 );
+ assert( pC->isTable==0 || IsNullCursor(pC) );
+ assert( pC->deferredMoveto==0 );
+ assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
+
+ /* The IdxRowid and Seek opcodes are combined because of the commonality
+ ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
+ rc = sqlite3VdbeCursorRestore(pC);
+
+ /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
+ ** since it was last positioned and an error (e.g. OOM or an IO error)
+ ** occurs while trying to reposition it. */
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+
+ if( !pC->nullRow ){
+ rowid = 0; /* Not needed. Only used to silence a warning. */
+ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( pOp->opcode==OP_DeferredSeek ){
+ assert( pOp->p3>=0 && pOp->p3<p->nCursor );
+ pTabCur = p->apCsr[pOp->p3];
+ assert( pTabCur!=0 );
+ assert( pTabCur->eCurType==CURTYPE_BTREE );
+ assert( pTabCur->uc.pCursor!=0 );
+ assert( pTabCur->isTable );
+ pTabCur->nullRow = 0;
+ pTabCur->movetoTarget = rowid;
+ pTabCur->deferredMoveto = 1;
+ pTabCur->cacheStatus = CACHE_STALE;
+ assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
+ assert( !pTabCur->isEphemeral );
+ pTabCur->ub.aAltMap = pOp->p4.ai;
+ assert( !pC->isEphemeral );
+ pTabCur->pAltCursor = pC;
+ }else{
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = rowid;
+ }
+ }else{
+ assert( pOp->opcode==OP_IdxRowid );
+ sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
+ }
+ break;
+}
+
+/* Opcode: FinishSeek P1 * * * *
+**
+** If cursor P1 was previously moved via OP_DeferredSeek, complete that
+** seek operation now, without further delay. If the cursor seek has
+** already occurred, this instruction is a no-op.
+*/
+case OP_FinishSeek: { /* ncycle */
+ VdbeCursor *pC; /* The P1 index cursor */
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC->deferredMoveto ){
+ rc = sqlite3VdbeFinishMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: IdxGE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
+**
+** If the P1 index entry is greater than or equal to the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxGT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
+** fields at the end.
+**
+** If the P1 index entry is greater than the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLT P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
+**
+** If the P1 index entry is less than the key value then jump to P2.
+** Otherwise fall through to the next instruction.
+*/
+/* Opcode: IdxLE P1 P2 P3 P4 *
+** Synopsis: key=r[P3@P4]
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the PRIMARY KEY or ROWID. Compare this key value against
+** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
+** ROWID on the P1 index.
+**
+** If the P1 index entry is less than or equal to the key value then jump
+** to P2. Otherwise fall through to the next instruction.
+*/
+case OP_IdxLE: /* jump, ncycle */
+case OP_IdxGT: /* jump, ncycle */
+case OP_IdxLT: /* jump, ncycle */
+case OP_IdxGE: { /* jump, ncycle */
+ VdbeCursor *pC;
+ int res;
+ UnpackedRecord r;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->isOrdered );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->uc.pCursor!=0);
+ assert( pC->deferredMoveto==0 );
+ assert( pOp->p4type==P4_INT32 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = (u16)pOp->p4.i;
+ if( pOp->opcode<OP_IdxLT ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
+ r.default_rc = -1;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
+ r.default_rc = 0;
+ }
+ r.aMem = &aMem[pOp->p3];
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; i<r.nField; i++){
+ assert( memIsValid(&r.aMem[i]) );
+ REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
+ }
+ }
+#endif
+
+ /* Inlined version of sqlite3VdbeIdxKeyCompare() */
+ {
+ i64 nCellKey = 0;
+ BtCursor *pCur;
+ Mem m;
+
+ assert( pC->eCurType==CURTYPE_BTREE );
+ pCur = pC->uc.pCursor;
+ assert( sqlite3BtreeCursorIsValid(pCur) );
+ nCellKey = sqlite3BtreePayloadSize(pCur);
+ /* nCellKey will always be between 0 and 0xffffffff because of the way
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ sqlite3VdbeMemInit(&m, db, 0);
+ rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
+ if( rc ) goto abort_due_to_error;
+ res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
+ sqlite3VdbeMemReleaseMalloc(&m);
+ }
+ /* End of inlined sqlite3VdbeIdxKeyCompare() */
+
+ assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
+ if( (pOp->opcode&1)==(OP_IdxLT&1) ){
+ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
+ res = -res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
+ res++;
+ }
+ VdbeBranchTaken(res>0,2);
+ assert( rc==SQLITE_OK );
+ if( res>0 ) goto jump_to_p2;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 P3 * *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P3==0. If
+** P3==1 then the table to be destroyed is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If AUTOVACUUM is enabled then it is possible that another root page
+** might be moved into the newly deleted root page in order to keep all
+** root pages contiguous at the beginning of the database. The former
+** value of the root page that moved - its value before the move occurred -
+** is stored in register P2. If no page movement was required (because the
+** table being dropped was already the last one in the database) then a
+** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
+** is stored in register P2.
+**
+** This opcode throws an error if there are any active reader VMs when
+** it is invoked. This is done to avoid the difficulty associated with
+** updating existing cursors when a root page is moved in an AUTOVACUUM
+** database. This error is thrown even if the database is not an AUTOVACUUM
+** db in order to avoid introducing an incompatibility between autovacuum
+** and non-autovacuum modes.
+**
+** See also: Clear
+*/
+case OP_Destroy: { /* out2 */
+ int iMoved;
+ int iDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ assert( p->readOnly==0 );
+ assert( pOp->p1>1 );
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Null;
+ if( db->nVdbeRead > db->nVDestroy+1 ){
+ rc = SQLITE_LOCKED;
+ p->errorAction = OE_Abort;
+ goto abort_due_to_error;
+ }else{
+ iDb = pOp->p3;
+ assert( DbMaskTest(p->btreeMask, iDb) );
+ iMoved = 0; /* Not needed. Only to silence a warning. */
+ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
+ pOut->flags = MEM_Int;
+ pOut->u.i = iMoved;
+ if( rc ) goto abort_due_to_error;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( iMoved!=0 ){
+ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
+ /* All OP_Destroy operations occur on the same btree */
+ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
+ resetSchemaOnFault = iDb+1;
+ }
+#endif
+ }
+ break;
+}
+
+/* Opcode: Clear P1 P2 P3
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being cleared is in the main database file if P2==0. If
+** P2==1 then the table to be cleared is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If the P3 value is non-zero, then the row change count is incremented
+** by the number of rows in the table being cleared. If P3 is greater
+** than zero, then the value stored in register P3 is also incremented
+** by the number of rows in the table being cleared.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ i64 nChange;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ nChange = 0;
+ assert( p->readOnly==0 );
+ assert( DbMaskTest(p->btreeMask, pOp->p2) );
+ rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
+ if( pOp->p3 ){
+ p->nChange += nChange;
+ if( pOp->p3>0 ){
+ assert( memIsValid(&aMem[pOp->p3]) );
+ memAboutToChange(p, &aMem[pOp->p3]);
+ aMem[pOp->p3].u.i += nChange;
+ }
+ }
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+
+/* Opcode: ResetSorter P1 * * * *
+**
+** Delete all contents from the ephemeral table or sorter
+** that is open on cursor P1.
+**
+** This opcode only works for cursors used for sorting and
+** opened with OP_OpenEphemeral or OP_SorterOpen.
+*/
+case OP_ResetSorter: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ if( isSorter(pC) ){
+ sqlite3VdbeSorterReset(db, pC->uc.pSorter);
+ }else{
+ assert( pC->eCurType==CURTYPE_BTREE );
+ assert( pC->isEphemeral );
+ rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: CreateBtree P1 P2 P3 * *
+** Synopsis: r[P2]=root iDb=P1 flags=P3
+**
+** Allocate a new b-tree in the main database file if P1==0 or in the
+** TEMP database file if P1==1 or in an attached database if
+** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
+** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
+** The root page number of the new b-tree is stored in register P2.
+*/
+case OP_CreateBtree: { /* out2 */
+ Pgno pgno;
+ Db *pDb;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ pOut = out2Prerelease(p, pOp);
+ pgno = 0;
+ assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
+ if( rc ) goto abort_due_to_error;
+ pOut->u.i = pgno;
+ break;
+}
+
+/* Opcode: SqlExec * * * P4 *
+**
+** Run the SQL statement or statements specified in the P4 string.
+** Disable Auth and Trace callbacks while those statements are running if
+** P1 is true.
+*/
+case OP_SqlExec: {
+ char *zErr;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth;
+#endif
+ u8 mTrace;
+
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ db->nSqlExec++;
+ zErr = 0;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ xAuth = db->xAuth;
+#endif
+ mTrace = db->mTrace;
+ if( pOp->p1 ){
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = 0;
+#endif
+ db->mTrace = 0;
+ }
+ rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
+ db->nSqlExec--;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ db->mTrace = mTrace;
+ if( zErr || rc ){
+ sqlite3VdbeError(p, "%s", zErr);
+ sqlite3_free(zErr);
+ if( rc==SQLITE_NOMEM ) goto no_mem;
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+/* Opcode: ParseSchema P1 * * P4 *
+**
+** Read and parse all entries from the schema table of database P1
+** that match the WHERE clause P4. If P4 is a NULL pointer, then the
+** entire schema for P1 is reparsed.
+**
+** This opcode invokes the parser to create a new virtual machine,
+** then runs the new virtual machine. It is thus a re-entrant opcode.
+*/
+case OP_ParseSchema: {
+ int iDb;
+ const char *zSchema;
+ char *zSql;
+ InitData initData;
+
+ /* Any prepared statement that invokes this opcode will hold mutexes
+ ** on every btree. This is a prerequisite for invoking
+ ** sqlite3InitCallback().
+ */
+#ifdef SQLITE_DEBUG
+ for(iDb=0; iDb<db->nDb; iDb++){
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+ }
+#endif
+
+ iDb = pOp->p1;
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
+ || db->mallocFailed
+ || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( pOp->p4.z==0 ){
+ sqlite3SchemaClear(db->aDb[iDb].pSchema);
+ db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
+ rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ p->expired = 0;
+ }else
+#endif
+ {
+ zSchema = LEGACY_SCHEMA_TABLE;
+ initData.db = db;
+ initData.iDb = iDb;
+ initData.pzErrMsg = &p->zErrMsg;
+ initData.mInitFlags = 0;
+ initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
+ zSql = sqlite3MPrintf(db,
+ "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
+ db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ initData.rc = SQLITE_OK;
+ initData.nInitRow = 0;
+ assert( !db->mallocFailed );
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ if( rc==SQLITE_OK && initData.nInitRow==0 ){
+ /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
+ ** at least one SQL statement. Any less than that indicates that
+ ** the sqlite_schema table is corrupt. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ sqlite3DbFreeNN(db, zSql);
+ db->init.busy = 0;
+ }
+ }
+ if( rc ){
+ sqlite3ResetAllSchemasOfConnection(db);
+ if( rc==SQLITE_NOMEM ){
+ goto no_mem;
+ }
+ goto abort_due_to_error;
+ }
+ break;
+}
+
+#if !defined(SQLITE_OMIT_ANALYZE)
+/* Opcode: LoadAnalysis P1 * * * *
+**
+** Read the sqlite_stat1 table for database P1 and load the content
+** of that table into the internal index hash table. This will cause
+** the analysis to be used when preparing all subsequent queries.
+*/
+case OP_LoadAnalysis: {
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = sqlite3AnalysisLoad(db, pOp->p1);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* !defined(SQLITE_OMIT_ANALYZE) */
+
+/* Opcode: DropTable P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the table named P4 in database P1. This is called after a table
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTable: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropIndex P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the index named P4 in database P1. This is called after an index
+** is dropped from disk (using the Destroy opcode)
+** in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropIndex: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropTrigger P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the trigger named P4 in database P1. This is called after a trigger
+** is dropped from disk (using the Destroy opcode) in order to keep
+** the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTrigger: {
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/* Opcode: IntegrityCk P1 P2 P3 P4 P5
+**
+** Do an analysis of the currently open database. Store in
+** register P1 the text of an error message describing any problems.
+** If no problems are found, store a NULL in register P1.
+**
+** The register P3 contains one less than the maximum number of allowed errors.
+** At most reg(P3) errors will be reported.
+** In other words, the analysis stops as soon as reg(P1) errors are
+** seen. Reg(P1) is updated with the number of errors remaining.
+**
+** The root page numbers of all tables in the database are integers
+** stored in P4_INTARRAY argument.
+**
+** If P5 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used to implement the integrity_check pragma.
+*/
+case OP_IntegrityCk: {
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+
+ assert( p->bIsReader );
+ nRoot = pOp->p2;
+ aRoot = pOp->p4.ai;
+ assert( nRoot>0 );
+ assert( aRoot[0]==(Pgno)nRoot );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pnErr = &aMem[pOp->p3];
+ assert( (pnErr->flags & MEM_Int)!=0 );
+ assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
+ pIn1 = &aMem[pOp->p1];
+ assert( pOp->p5<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p5) );
+ rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
+ (int)pnErr->u.i+1, &nErr, &z);
+ sqlite3VdbeMemSetNull(pIn1);
+ if( nErr==0 ){
+ assert( z==0 );
+ }else if( rc ){
+ sqlite3_free(z);
+ goto abort_due_to_error;
+ }else{
+ pnErr->u.i -= nErr-1;
+ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ sqlite3VdbeChangeEncoding(pIn1, encoding);
+ goto check_for_interrupt;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/* Opcode: RowSetAdd P1 P2 * * *
+** Synopsis: rowset(P1)=r[P2]
+**
+** Insert the integer value held by register P2 into a RowSet object
+** held in register P1.
+**
+** An assertion fails if P2 is not an integer.
+*/
+case OP_RowSetAdd: { /* in1, in2 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ assert( (pIn2->flags & MEM_Int)!=0 );
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
+ }
+ assert( sqlite3VdbeMemIsRowSet(pIn1) );
+ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
+ break;
+}
+
+/* Opcode: RowSetRead P1 P2 P3 * *
+** Synopsis: r[P3]=rowset(P1)
+**
+** Extract the smallest value from the RowSet object in P1
+** and put that value into register P3.
+** Or, if RowSet object P1 is initially empty, leave P3
+** unchanged and jump to instruction P2.
+*/
+case OP_RowSetRead: { /* jump, in1, out3 */
+ i64 val;
+
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
+ if( (pIn1->flags & MEM_Blob)==0
+ || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
+ ){
+ /* The boolean index is empty */
+ sqlite3VdbeMemSetNull(pIn1);
+ VdbeBranchTaken(1,2);
+ goto jump_to_p2_and_check_for_interrupt;
+ }else{
+ /* A value was pulled from the index */
+ VdbeBranchTaken(0,2);
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
+ }
+ goto check_for_interrupt;
+}
+
+/* Opcode: RowSetTest P1 P2 P3 P4
+** Synopsis: if r[P3] in rowset(P1) goto P2
+**
+** Register P3 is assumed to hold a 64-bit integer value. If register P1
+** contains a RowSet object and that RowSet object contains
+** the value held in P3, jump to register P2. Otherwise, insert the
+** integer in P3 into the RowSet and continue on to the
+** next opcode.
+**
+** The RowSet object is optimized for the case where sets of integers
+** are inserted in distinct phases, which each set contains no duplicates.
+** Each set is identified by a unique P4 value. The first set
+** must have P4==0, the final set must have P4==-1, and for all other sets
+** must have P4>0.
+**
+** This allows optimizations: (a) when P4==0 there is no need to test
+** the RowSet object for P3, as it is guaranteed not to contain it,
+** (b) when P4==-1 there is no need to insert the value, as it will
+** never be tested for, and (c) when a value that is part of set X is
+** inserted, there is no need to search to see if the same value was
+** previously inserted as part of set X (only if it was previously
+** inserted as part of some other set).
+*/
+case OP_RowSetTest: { /* jump, in1, in3 */
+ int iSet;
+ int exists;
+
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ iSet = pOp->p4.i;
+ assert( pIn3->flags&MEM_Int );
+
+ /* If there is anything other than a rowset object in memory cell P1,
+ ** delete it now and initialize P1 with an empty rowset
+ */
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
+ }
+ assert( sqlite3VdbeMemIsRowSet(pIn1) );
+ assert( pOp->p4type==P4_INT32 );
+ assert( iSet==-1 || iSet>=0 );
+ if( iSet ){
+ exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
+ VdbeBranchTaken(exists!=0,2);
+ if( exists ) goto jump_to_p2;
+ }
+ if( iSet>=0 ){
+ sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
+ }
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_TRIGGER
+
+/* Opcode: Program P1 P2 P3 P4 P5
+**
+** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
+**
+** P1 contains the address of the memory cell that contains the first memory
+** cell in an array of values used as arguments to the sub-program. P2
+** contains the address to jump to if the sub-program throws an IGNORE
+** exception using the RAISE() function. Register P3 contains the address
+** of a memory cell in this (the parent) VM that is used to allocate the
+** memory required by the sub-vdbe at runtime.
+**
+** P4 is a pointer to the VM containing the trigger program.
+**
+** If P5 is non-zero, then recursive program invocation is enabled.
+*/
+case OP_Program: { /* jump */
+ int nMem; /* Number of memory registers for sub-program */
+ int nByte; /* Bytes of runtime space required for sub-program */
+ Mem *pRt; /* Register to allocate runtime space */
+ Mem *pMem; /* Used to iterate through memory cells */
+ Mem *pEnd; /* Last memory cell in new array */
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */
+ SubProgram *pProgram; /* Sub-program to execute */
+ void *t; /* Token identifying trigger */
+
+ pProgram = pOp->p4.pProgram;
+ pRt = &aMem[pOp->p3];
+ assert( pProgram->nOp>0 );
+
+ /* If the p5 flag is clear, then recursive invocation of triggers is
+ ** disabled for backwards compatibility (p5 is set if this sub-program
+ ** is really a trigger, not a foreign key action, and the flag set
+ ** and cleared by the "PRAGMA recursive_triggers" command is clear).
+ **
+ ** It is recursive invocation of triggers, at the SQL level, that is
+ ** disabled. In some cases a single trigger may generate more than one
+ ** SubProgram (if the trigger may be executed with more than one different
+ ** ON CONFLICT algorithm). SubProgram structures associated with a
+ ** single trigger all have the same value for the SubProgram.token
+ ** variable. */
+ if( pOp->p5 ){
+ t = pProgram->token;
+ for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
+ if( pFrame ) break;
+ }
+
+ if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p, "too many levels of trigger recursion");
+ goto abort_due_to_error;
+ }
+
+ /* Register pRt is used to store the memory required to save the state
+ ** of the current program, and the memory required at runtime to execute
+ ** the trigger program. If this trigger has been fired before, then pRt
+ ** is already allocated. Otherwise, it must be initialized. */
+ if( (pRt->flags&MEM_Blob)==0 ){
+ /* SubProgram.nMem is set to the number of memory cells used by the
+ ** program stored in SubProgram.aOp. As well as these, one memory
+ ** cell is required for each cursor used by the program. Set local
+ ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
+ */
+ nMem = pProgram->nMem + pProgram->nCsr;
+ assert( nMem>0 );
+ if( pProgram->nCsr==0 ) nMem++;
+ nByte = ROUND8(sizeof(VdbeFrame))
+ + nMem * sizeof(Mem)
+ + pProgram->nCsr * sizeof(VdbeCursor*)
+ + (pProgram->nOp + 7)/8;
+ pFrame = sqlite3DbMallocZero(db, nByte);
+ if( !pFrame ){
+ goto no_mem;
+ }
+ sqlite3VdbeMemRelease(pRt);
+ pRt->flags = MEM_Blob|MEM_Dyn;
+ pRt->z = (char*)pFrame;
+ pRt->n = nByte;
+ pRt->xDel = sqlite3VdbeFrameMemDel;
+
+ pFrame->v = p;
+ pFrame->nChildMem = nMem;
+ pFrame->nChildCsr = pProgram->nCsr;
+ pFrame->pc = (int)(pOp - aOp);
+ pFrame->aMem = p->aMem;
+ pFrame->nMem = p->nMem;
+ pFrame->apCsr = p->apCsr;
+ pFrame->nCursor = p->nCursor;
+ pFrame->aOp = p->aOp;
+ pFrame->nOp = p->nOp;
+ pFrame->token = pProgram->token;
+#ifdef SQLITE_DEBUG
+ pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
+#endif
+
+ pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
+ for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
+ pMem->flags = MEM_Undefined;
+ pMem->db = db;
+ }
+ }else{
+ pFrame = (VdbeFrame*)pRt->z;
+ assert( pRt->xDel==sqlite3VdbeFrameMemDel );
+ assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
+ || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
+ assert( pProgram->nCsr==pFrame->nChildCsr );
+ assert( (int)(pOp - aOp)==pFrame->pc );
+ }
+
+ p->nFrame++;
+ pFrame->pParent = p->pFrame;
+ pFrame->lastRowid = db->lastRowid;
+ pFrame->nChange = p->nChange;
+ pFrame->nDbChange = p->db->nChange;
+ assert( pFrame->pAuxData==0 );
+ pFrame->pAuxData = p->pAuxData;
+ p->pAuxData = 0;
+ p->nChange = 0;
+ p->pFrame = pFrame;
+ p->aMem = aMem = VdbeFrameMem(pFrame);
+ p->nMem = pFrame->nChildMem;
+ p->nCursor = (u16)pFrame->nChildCsr;
+ p->apCsr = (VdbeCursor **)&aMem[p->nMem];
+ pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
+ memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
+ p->aOp = aOp = pProgram->aOp;
+ p->nOp = pProgram->nOp;
+#ifdef SQLITE_DEBUG
+ /* Verify that second and subsequent executions of the same trigger do not
+ ** try to reuse register values from the first use. */
+ {
+ int i;
+ for(i=0; i<p->nMem; i++){
+ aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
+ MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
+ }
+ }
+#endif
+ pOp = &aOp[-1];
+ goto check_for_interrupt;
+}
+
+/* Opcode: Param P1 P2 * * *
+**
+** This opcode is only ever present in sub-programs called via the
+** OP_Program instruction. Copy a value currently stored in a memory
+** cell of the calling (parent) frame to cell P2 in the current frames
+** address space. This is used by trigger programs to access the new.*
+** and old.* values.
+**
+** The address of the cell in the parent frame is determined by adding
+** the value of the P1 argument to the value of the P1 argument to the
+** calling OP_Program instruction.
+*/
+case OP_Param: { /* out2 */
+ VdbeFrame *pFrame;
+ Mem *pIn;
+ pOut = out2Prerelease(p, pOp);
+ pFrame = p->pFrame;
+ pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
+ sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
+ break;
+}
+
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+/* Opcode: FkCounter P1 P2 * * *
+** Synopsis: fkctr[P1]+=P2
+**
+** Increment a "constraint counter" by P2 (P2 may be negative or positive).
+** If P1 is non-zero, the database constraint counter is incremented
+** (deferred foreign key constraints). Otherwise, if P1 is zero, the
+** statement counter is incremented (immediate foreign key constraints).
+*/
+case OP_FkCounter: {
+ if( db->flags & SQLITE_DeferFKs ){
+ db->nDeferredImmCons += pOp->p2;
+ }else if( pOp->p1 ){
+ db->nDeferredCons += pOp->p2;
+ }else{
+ p->nFkConstraint += pOp->p2;
+ }
+ break;
+}
+
+/* Opcode: FkIfZero P1 P2 * * *
+** Synopsis: if fkctr[P1]==0 goto P2
+**
+** This opcode tests if a foreign key constraint-counter is currently zero.
+** If so, jump to instruction P2. Otherwise, fall through to the next
+** instruction.
+**
+** If P1 is non-zero, then the jump is taken if the database constraint-counter
+** is zero (the one that counts deferred constraint violations). If P1 is
+** zero, the jump is taken if the statement constraint-counter is zero
+** (immediate foreign key constraint violations).
+*/
+case OP_FkIfZero: { /* jump */
+ if( pOp->p1 ){
+ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
+ if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
+ }else{
+ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
+ if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
+ }
+ break;
+}
+#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/* Opcode: MemMax P1 P2 * * *
+** Synopsis: r[P1]=max(r[P1],r[P2])
+**
+** P1 is a register in the root frame of this VM (the root frame is
+** different from the current frame if this instruction is being executed
+** within a sub-program). Set the value of register P1 to the maximum of
+** its current value and the value in register P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemMax: { /* in2 */
+ VdbeFrame *pFrame;
+ if( p->pFrame ){
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
+ pIn1 = &pFrame->aMem[pOp->p1];
+ }else{
+ pIn1 = &aMem[pOp->p1];
+ }
+ assert( memIsValid(pIn1) );
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn2 = &aMem[pOp->p2];
+ sqlite3VdbeMemIntegerify(pIn2);
+ if( pIn1->u.i<pIn2->u.i){
+ pIn1->u.i = pIn2->u.i;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+/* Opcode: IfPos P1 P2 P3 * *
+** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
+**
+** Register P1 must contain an integer.
+** If the value of register P1 is 1 or greater, subtract P3 from the
+** value in P1 and jump to P2.
+**
+** If the initial value of register P1 is less than 1, then the
+** value is unchanged and control passes through to the next instruction.
+*/
+case OP_IfPos: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken( pIn1->u.i>0, 2);
+ if( pIn1->u.i>0 ){
+ pIn1->u.i -= pOp->p3;
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: OffsetLimit P1 P2 P3 * *
+** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
+**
+** This opcode performs a commonly used computation associated with
+** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
+** holds the offset counter. The opcode computes the combined value
+** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
+** value computed is the total number of rows that will need to be
+** visited in order to complete the query.
+**
+** If r[P3] is zero or negative, that means there is no OFFSET
+** and r[P2] is set to be the value of the LIMIT, r[P1].
+**
+** if r[P1] is zero or negative, that means there is no LIMIT
+** and r[P2] is set to -1.
+**
+** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
+*/
+case OP_OffsetLimit: { /* in1, out2, in3 */
+ i64 x;
+ pIn1 = &aMem[pOp->p1];
+ pIn3 = &aMem[pOp->p3];
+ pOut = out2Prerelease(p, pOp);
+ assert( pIn1->flags & MEM_Int );
+ assert( pIn3->flags & MEM_Int );
+ x = pIn1->u.i;
+ if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
+ /* If the LIMIT is less than or equal to zero, loop forever. This
+ ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
+ ** also loop forever. This is undocumented. In fact, one could argue
+ ** that the loop should terminate. But assuming 1 billion iterations
+ ** per second (far exceeding the capabilities of any current hardware)
+ ** it would take nearly 300 years to actually reach the limit. So
+ ** looping forever is a reasonable approximation. */
+ pOut->u.i = -1;
+ }else{
+ pOut->u.i = x;
+ }
+ break;
+}
+
+/* Opcode: IfNotZero P1 P2 * * *
+** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
+**
+** Register P1 must contain an integer. If the content of register P1 is
+** initially greater than zero, then decrement the value in register P1.
+** If it is non-zero (negative or positive) and then also jump to P2.
+** If register P1 is initially zero, leave it unchanged and fall through.
+*/
+case OP_IfNotZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ VdbeBranchTaken(pIn1->u.i<0, 2);
+ if( pIn1->u.i ){
+ if( pIn1->u.i>0 ) pIn1->u.i--;
+ goto jump_to_p2;
+ }
+ break;
+}
+
+/* Opcode: DecrJumpZero P1 P2 * * *
+** Synopsis: if (--r[P1])==0 goto P2
+**
+** Register P1 must hold an integer. Decrement the value in P1
+** and jump to P2 if the new value is exactly zero.
+*/
+case OP_DecrJumpZero: { /* jump, in1 */
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
+ VdbeBranchTaken(pIn1->u.i==0, 2);
+ if( pIn1->u.i==0 ) goto jump_to_p2;
+ break;
+}
+
+
+/* Opcode: AggStep * P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
+**
+** Execute the xStep function for an aggregate.
+** The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+/* Opcode: AggInverse * P2 P3 P4 P5
+** Synopsis: accum=r[P3] inverse(r[P2@P5])
+**
+** Execute the xInverse function for an aggregate.
+** The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+/* Opcode: AggStep1 P1 P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2@P5])
+**
+** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
+** aggregate. The function has P5 arguments. P4 is a pointer to the
+** FuncDef structure that specifies the function. Register P3 is the
+** accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+**
+** This opcode is initially coded as OP_AggStep0. On first evaluation,
+** the FuncDef stored in P4 is converted into an sqlite3_context and
+** the opcode is changed. In this way, the initialization of the
+** sqlite3_context only happens once, instead of on each call to the
+** step function.
+*/
+case OP_AggInverse:
+case OP_AggStep: {
+ int n;
+ sqlite3_context *pCtx;
+
+ assert( pOp->p4type==P4_FUNCDEF );
+ n = pOp->p5;
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
+ pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
+ (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
+ if( pCtx==0 ) goto no_mem;
+ pCtx->pMem = 0;
+ pCtx->pOut = (Mem*)&(pCtx->argv[n]);
+ sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
+ pCtx->pFunc = pOp->p4.pFunc;
+ pCtx->iOp = (int)(pOp - aOp);
+ pCtx->pVdbe = p;
+ pCtx->skipFlag = 0;
+ pCtx->isError = 0;
+ pCtx->enc = encoding;
+ pCtx->argc = n;
+ pOp->p4type = P4_FUNCCTX;
+ pOp->p4.pCtx = pCtx;
+
+ /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
+ assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
+
+ pOp->opcode = OP_AggStep1;
+ /* Fall through into OP_AggStep */
+ /* no break */ deliberate_fall_through
+}
+case OP_AggStep1: {
+ int i;
+ sqlite3_context *pCtx;
+ Mem *pMem;
+
+ assert( pOp->p4type==P4_FUNCCTX );
+ pCtx = pOp->p4.pCtx;
+ pMem = &aMem[pOp->p3];
+
+#ifdef SQLITE_DEBUG
+ if( pOp->p1 ){
+ /* This is an OP_AggInverse call. Verify that xStep has always
+ ** been called at least once prior to any xInverse call. */
+ assert( pMem->uTemp==0x1122e0e3 );
+ }else{
+ /* This is an OP_AggStep call. Mark it as such. */
+ pMem->uTemp = 0x1122e0e3;
+ }
+#endif
+
+ /* If this function is inside of a trigger, the register array in aMem[]
+ ** might change from one evaluation to the next. The next block of code
+ ** checks to see if the register array has changed, and if so it
+ ** reinitializes the relevant parts of the sqlite3_context object */
+ if( pCtx->pMem != pMem ){
+ pCtx->pMem = pMem;
+ for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
+ }
+
+#ifdef SQLITE_DEBUG
+ for(i=0; i<pCtx->argc; i++){
+ assert( memIsValid(pCtx->argv[i]) );
+ REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
+ }
+#endif
+
+ pMem->n++;
+ assert( pCtx->pOut->flags==MEM_Null );
+ assert( pCtx->isError==0 );
+ assert( pCtx->skipFlag==0 );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pOp->p1 ){
+ (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
+ }else
+#endif
+ (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
+
+ if( pCtx->isError ){
+ if( pCtx->isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
+ rc = pCtx->isError;
+ }
+ if( pCtx->skipFlag ){
+ assert( pOp[-1].opcode==OP_CollSeq );
+ i = pOp[-1].p1;
+ if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
+ pCtx->skipFlag = 0;
+ }
+ sqlite3VdbeMemRelease(pCtx->pOut);
+ pCtx->pOut->flags = MEM_Null;
+ pCtx->isError = 0;
+ if( rc ) goto abort_due_to_error;
+ }
+ assert( pCtx->pOut->flags==MEM_Null );
+ assert( pCtx->skipFlag==0 );
+ break;
+}
+
+/* Opcode: AggFinal P1 P2 * P4 *
+** Synopsis: accum=r[P1] N=P2
+**
+** P1 is the memory location that is the accumulator for an aggregate
+** or window function. Execute the finalizer function
+** for an aggregate and store the result in P1.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the case where
+** the step function was not previously called.
+*/
+/* Opcode: AggValue * P2 P3 P4 *
+** Synopsis: r[P3]=value N=P2
+**
+** Invoke the xValue() function and store the result in register P3.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the case where
+** the step function was not previously called.
+*/
+case OP_AggValue:
+case OP_AggFinal: {
+ Mem *pMem;
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
+ pMem = &aMem[pOp->p1];
+ assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pOp->p3 ){
+ memAboutToChange(p, &aMem[pOp->p3]);
+ rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
+ pMem = &aMem[pOp->p3];
+ }else
+#endif
+ {
+ rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
+ }
+
+ if( rc ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
+ goto abort_due_to_error;
+ }
+ sqlite3VdbeChangeEncoding(pMem, encoding);
+ UPDATE_MAX_BLOBSIZE(pMem);
+ REGISTER_TRACE((int)(pMem-aMem), pMem);
+ break;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/* Opcode: Checkpoint P1 P2 P3 * *
+**
+** Checkpoint database P1. This is a no-op if P1 is not currently in
+** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
+** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
+** SQLITE_BUSY or not, respectively. Write the number of pages in the
+** WAL after the checkpoint into mem[P3+1] and the number of pages
+** in the WAL that have been checkpointed after the checkpoint
+** completes into mem[P3+2]. However on an error, mem[P3+1] and
+** mem[P3+2] are initialized to -1.
+*/
+case OP_Checkpoint: {
+ int i; /* Loop counter */
+ int aRes[3]; /* Results */
+ Mem *pMem; /* Write results here */
+
+ assert( p->readOnly==0 );
+ aRes[0] = 0;
+ aRes[1] = aRes[2] = -1;
+ assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
+ || pOp->p2==SQLITE_CHECKPOINT_FULL
+ || pOp->p2==SQLITE_CHECKPOINT_RESTART
+ || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
+ );
+ rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
+ if( rc ){
+ if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ aRes[0] = 1;
+ }
+ for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
+ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
+ }
+ break;
+};
+#endif
+
+#ifndef SQLITE_OMIT_PRAGMA
+/* Opcode: JournalMode P1 P2 P3 * *
+**
+** Change the journal mode of database P1 to P3. P3 must be one of the
+** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
+** modes (delete, truncate, persist, off and memory), this is a simple
+** operation. No IO is required.
+**
+** If changing into or out of WAL mode the procedure is more complicated.
+**
+** Write a string containing the final journal-mode to register P2.
+*/
+case OP_JournalMode: { /* out2 */
+ Btree *pBt; /* Btree to change journal mode of */
+ Pager *pPager; /* Pager associated with pBt */
+ int eNew; /* New journal mode */
+ int eOld; /* The old journal mode */
+#ifndef SQLITE_OMIT_WAL
+ const char *zFilename; /* Name of database file for pPager */
+#endif
+
+ pOut = out2Prerelease(p, pOp);
+ eNew = pOp->p3;
+ assert( eNew==PAGER_JOURNALMODE_DELETE
+ || eNew==PAGER_JOURNALMODE_TRUNCATE
+ || eNew==PAGER_JOURNALMODE_PERSIST
+ || eNew==PAGER_JOURNALMODE_OFF
+ || eNew==PAGER_JOURNALMODE_MEMORY
+ || eNew==PAGER_JOURNALMODE_WAL
+ || eNew==PAGER_JOURNALMODE_QUERY
+ );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( p->readOnly==0 );
+
+ pBt = db->aDb[pOp->p1].pBt;
+ pPager = sqlite3BtreePager(pBt);
+ eOld = sqlite3PagerGetJournalMode(pPager);
+ if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
+ assert( sqlite3BtreeHoldsMutex(pBt) );
+ if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
+
+#ifndef SQLITE_OMIT_WAL
+ zFilename = sqlite3PagerFilename(pPager, 1);
+
+ /* Do not allow a transition to journal_mode=WAL for a database
+ ** in temporary storage or if the VFS does not support shared memory
+ */
+ if( eNew==PAGER_JOURNALMODE_WAL
+ && (sqlite3Strlen30(zFilename)==0 /* Temp file */
+ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
+ ){
+ eNew = eOld;
+ }
+
+ if( (eNew!=eOld)
+ && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
+ ){
+ if( !db->autoCommit || db->nVdbeRead>1 ){
+ rc = SQLITE_ERROR;
+ sqlite3VdbeError(p,
+ "cannot change %s wal mode from within a transaction",
+ (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
+ );
+ goto abort_due_to_error;
+ }else{
+
+ if( eOld==PAGER_JOURNALMODE_WAL ){
+ /* If leaving WAL mode, close the log file. If successful, the call
+ ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
+ ** file. An EXCLUSIVE lock may still be held on the database file
+ ** after a successful return.
+ */
+ rc = sqlite3PagerCloseWal(pPager, db);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerSetJournalMode(pPager, eNew);
+ }
+ }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
+ /* Cannot transition directly from MEMORY to WAL. Use mode OFF
+ ** as an intermediate */
+ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
+ }
+
+ /* Open a transaction on the database file. Regardless of the journal
+ ** mode, this transaction always uses a rollback journal.
+ */
+ assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
+ }
+ }
+ }
+#endif /* ifndef SQLITE_OMIT_WAL */
+
+ if( rc ) eNew = eOld;
+ eNew = sqlite3PagerSetJournalMode(pPager, eNew);
+
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = (char *)sqlite3JournalModename(eNew);
+ pOut->n = sqlite3Strlen30(pOut->z);
+ pOut->enc = SQLITE_UTF8;
+ sqlite3VdbeChangeEncoding(pOut, encoding);
+ if( rc ) goto abort_due_to_error;
+ break;
+};
+#endif /* SQLITE_OMIT_PRAGMA */
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+/* Opcode: Vacuum P1 P2 * * *
+**
+** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
+** for an attached database. The "temp" database may not be vacuumed.
+**
+** If P2 is not zero, then it is a register holding a string which is
+** the file into which the result of vacuum should be written. When
+** P2 is zero, the vacuum overwrites the original database.
+*/
+case OP_Vacuum: {
+ assert( p->readOnly==0 );
+ rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
+ pOp->p2 ? &aMem[pOp->p2] : 0);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+/* Opcode: IncrVacuum P1 P2 * * *
+**
+** Perform a single step of the incremental vacuum procedure on
+** the P1 database. If the vacuum has finished, jump to instruction
+** P2. Otherwise, fall through to the next instruction.
+*/
+case OP_IncrVacuum: { /* jump */
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, pOp->p1) );
+ assert( p->readOnly==0 );
+ pBt = db->aDb[pOp->p1].pBt;
+ rc = sqlite3BtreeIncrVacuum(pBt);
+ VdbeBranchTaken(rc==SQLITE_DONE,2);
+ if( rc ){
+ if( rc!=SQLITE_DONE ) goto abort_due_to_error;
+ rc = SQLITE_OK;
+ goto jump_to_p2;
+ }
+ break;
+}
+#endif
+
+/* Opcode: Expire P1 P2 * * *
+**
+** Cause precompiled statements to expire. When an expired statement
+** is executed using sqlite3_step() it will either automatically
+** reprepare itself (if it was originally created using sqlite3_prepare_v2())
+** or it will fail with SQLITE_SCHEMA.
+**
+** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
+** then only the currently executing statement is expired.
+**
+** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
+** then running SQL statements are allowed to continue to run to completion.
+** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
+** that might help the statement run faster but which does not affect the
+** correctness of operation.
+*/
+case OP_Expire: {
+ assert( pOp->p2==0 || pOp->p2==1 );
+ if( !pOp->p1 ){
+ sqlite3ExpirePreparedStatements(db, pOp->p2);
+ }else{
+ p->expired = pOp->p2+1;
+ }
+ break;
+}
+
+/* Opcode: CursorLock P1 * * * *
+**
+** Lock the btree to which cursor P1 is pointing so that the btree cannot be
+** written by an other cursor.
+*/
+case OP_CursorLock: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorPin(pC->uc.pCursor);
+ break;
+}
+
+/* Opcode: CursorUnlock P1 * * * *
+**
+** Unlock the btree to which cursor P1 is pointing so that it can be
+** written by other cursors.
+*/
+case OP_CursorUnlock: {
+ VdbeCursor *pC;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorUnpin(pC->uc.pCursor);
+ break;
+}
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/* Opcode: TableLock P1 P2 P3 P4 *
+** Synopsis: iDb=P1 root=P2 write=P3
+**
+** Obtain a lock on a particular table. This instruction is only used when
+** the shared-cache feature is enabled.
+**
+** P1 is the index of the database in sqlite3.aDb[] of the database
+** on which the lock is acquired. A readlock is obtained if P3==0 or
+** a write lock if P3==1.
+**
+** P2 contains the root-page of the table to lock.
+**
+** P4 contains a pointer to the name of the table being locked. This is only
+** used to generate an error message if the lock cannot be obtained.
+*/
+case OP_TableLock: {
+ u8 isWriteLock = (u8)pOp->p3;
+ if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
+ int p1 = pOp->p1;
+ assert( p1>=0 && p1<db->nDb );
+ assert( DbMaskTest(p->btreeMask, p1) );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
+ if( rc ){
+ if( (rc&0xFF)==SQLITE_LOCKED ){
+ const char *z = pOp->p4.z;
+ sqlite3VdbeError(p, "database table is locked: %s", z);
+ }
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VBegin * * * P4 *
+**
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
+** xBegin method for that table.
+**
+** Also, whether or not P4 is set, check that this is not being called from
+** within a callback to a virtual table xSync() method. If it is, the error
+** code will be set to SQLITE_LOCKED.
+*/
+case OP_VBegin: {
+ VTable *pVTab;
+ pVTab = pOp->p4.pVtab;
+ rc = sqlite3VtabBegin(db, pVTab);
+ if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCreate P1 P2 * * *
+**
+** P2 is a register that holds the name of a virtual table in database
+** P1. Call the xCreate method for that table.
+*/
+case OP_VCreate: {
+ Mem sMem; /* For storing the record being decoded */
+ const char *zTab; /* Name of the virtual table */
+
+ memset(&sMem, 0, sizeof(sMem));
+ sMem.db = db;
+ /* Because P2 is always a static string, it is impossible for the
+ ** sqlite3VdbeMemCopy() to fail */
+ assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
+ assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
+ rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
+ assert( rc==SQLITE_OK );
+ zTab = (const char*)sqlite3_value_text(&sMem);
+ assert( zTab || db->mallocFailed );
+ if( zTab ){
+ rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VDestroy P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xDestroy method
+** of that table.
+*/
+case OP_VDestroy: {
+ db->nVDestroy++;
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
+ db->nVDestroy--;
+ assert( p->errorAction==OE_Abort && p->usesStmtJournal );
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VOpen P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P1 is a cursor number. This opcode opens a cursor to the virtual
+** table and stores that cursor in P1.
+*/
+case OP_VOpen: { /* ncycle */
+ VdbeCursor *pCur;
+ sqlite3_vtab_cursor *pVCur;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+
+ assert( p->bIsReader );
+ pCur = 0;
+ pVCur = 0;
+ pVtab = pOp->p4.pVtab->pVtab;
+ if( pVtab==0 || NEVER(pVtab->pModule==0) ){
+ rc = SQLITE_LOCKED;
+ goto abort_due_to_error;
+ }
+ pModule = pVtab->pModule;
+ rc = pModule->xOpen(pVtab, &pVCur);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+
+ /* Initialize sqlite3_vtab_cursor base class */
+ pVCur->pVtab = pVtab;
+
+ /* Initialize vdbe cursor object */
+ pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
+ if( pCur ){
+ pCur->uc.pVCur = pVCur;
+ pVtab->nRef++;
+ }else{
+ assert( db->mallocFailed );
+ pModule->xClose(pVCur);
+ goto no_mem;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCheck P1 P2 P3 P4 *
+**
+** P4 is a pointer to a Table object that is a virtual table in schema P1
+** that supports the xIntegrity() method. This opcode runs the xIntegrity()
+** method for that virtual table, using P3 as the integer argument. If
+** an error is reported back, the table name is prepended to the error
+** message and that message is stored in P2. If no errors are seen,
+** register P2 is set to NULL.
+*/
+case OP_VCheck: { /* out2 */
+ Table *pTab;
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ char *zErr = 0;
+
+ pOut = &aMem[pOp->p2];
+ sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */
+ assert( pOp->p4type==P4_TABLE );
+ pTab = pOp->p4.pTab;
+ assert( pTab!=0 );
+ assert( IsVirtual(pTab) );
+ assert( pTab->u.vtab.p!=0 );
+ pVtab = pTab->u.vtab.p->pVtab;
+ assert( pVtab!=0 );
+ pModule = pVtab->pModule;
+ assert( pModule!=0 );
+ assert( pModule->iVersion>=4 );
+ assert( pModule->xIntegrity!=0 );
+ pTab->nTabRef++;
+ sqlite3VtabLock(pTab->u.vtab.p);
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName,
+ pOp->p3, &zErr);
+ sqlite3VtabUnlock(pTab->u.vtab.p);
+ sqlite3DeleteTable(db, pTab);
+ if( rc ){
+ sqlite3_free(zErr);
+ goto abort_due_to_error;
+ }
+ if( zErr ){
+ sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VInitIn P1 P2 P3 * *
+** Synopsis: r[P2]=ValueList(P1,P3)
+**
+** Set register P2 to be a pointer to a ValueList object for cursor P1
+** with cache register P3 and output register P3+1. This ValueList object
+** can be used as the first argument to sqlite3_vtab_in_first() and
+** sqlite3_vtab_in_next() to extract all of the values stored in the P1
+** cursor. Register P3 is used to hold the values returned by
+** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
+*/
+case OP_VInitIn: { /* out2, ncycle */
+ VdbeCursor *pC; /* The cursor containing the RHS values */
+ ValueList *pRhs; /* New ValueList object to put in reg[P2] */
+
+ pC = p->apCsr[pOp->p1];
+ pRhs = sqlite3_malloc64( sizeof(*pRhs) );
+ if( pRhs==0 ) goto no_mem;
+ pRhs->pCsr = pC->uc.pCursor;
+ pRhs->pOut = &aMem[pOp->p3];
+ pOut = out2Prerelease(p, pOp);
+ pOut->flags = MEM_Null;
+ sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VFilter P1 P2 P3 P4 *
+** Synopsis: iplan=r[P3] zplan='P4'
+**
+** P1 is a cursor opened using VOpen. P2 is an address to jump to if
+** the filtered result set is empty.
+**
+** P4 is either NULL or a string that was generated by the xBestIndex
+** method of the module. The interpretation of the P4 string is left
+** to the module implementation.
+**
+** This opcode invokes the xFilter method on the virtual table specified
+** by P1. The integer query plan parameter to xFilter is stored in register
+** P3. Register P3+1 stores the argc parameter to be passed to the
+** xFilter method. Registers P3+2..P3+1+argc are the argc
+** additional parameters which are passed to
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
+**
+** A jump is made to P2 if the result set after filtering would be empty.
+*/
+case OP_VFilter: { /* jump, ncycle */
+ int nArg;
+ int iQuery;
+ const sqlite3_module *pModule;
+ Mem *pQuery;
+ Mem *pArgc;
+ sqlite3_vtab_cursor *pVCur;
+ sqlite3_vtab *pVtab;
+ VdbeCursor *pCur;
+ int res;
+ int i;
+ Mem **apArg;
+
+ pQuery = &aMem[pOp->p3];
+ pArgc = &pQuery[1];
+ pCur = p->apCsr[pOp->p1];
+ assert( memIsValid(pQuery) );
+ REGISTER_TRACE(pOp->p3, pQuery);
+ assert( pCur!=0 );
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ pVCur = pCur->uc.pVCur;
+ pVtab = pVCur->pVtab;
+ pModule = pVtab->pModule;
+
+ /* Grab the index number and argc parameters */
+ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
+ nArg = (int)pArgc->u.i;
+ iQuery = (int)pQuery->u.i;
+
+ /* Invoke the xFilter method */
+ apArg = p->apArg;
+ for(i = 0; i<nArg; i++){
+ apArg[i] = &pArgc[i+1];
+ }
+ rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+ res = pModule->xEof(pVCur);
+ pCur->nullRow = 0;
+ VdbeBranchTaken(res!=0,2);
+ if( res ) goto jump_to_p2;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VColumn P1 P2 P3 * P5
+** Synopsis: r[P3]=vcolumn(P2)
+**
+** Store in register P3 the value of the P2-th column of
+** the current row of the virtual-table of cursor P1.
+**
+** If the VColumn opcode is being used to fetch the value of
+** an unchanging column during an UPDATE operation, then the P5
+** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
+** function to return true inside the xColumn method of the virtual
+** table implementation. The P5 column might also contain other
+** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
+** unused by OP_VColumn.
+*/
+case OP_VColumn: { /* ncycle */
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+
+ VdbeCursor *pCur = p->apCsr[pOp->p1];
+ assert( pCur!=0 );
+ assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
+ pDest = &aMem[pOp->p3];
+ memAboutToChange(p, pDest);
+ if( pCur->nullRow ){
+ sqlite3VdbeMemSetNull(pDest);
+ break;
+ }
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ pVtab = pCur->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xColumn );
+ memset(&sContext, 0, sizeof(sContext));
+ sContext.pOut = pDest;
+ sContext.enc = encoding;
+ assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
+ if( pOp->p5 & OPFLAG_NOCHNG ){
+ sqlite3VdbeMemSetNull(pDest);
+ pDest->flags = MEM_Null|MEM_Zero;
+ pDest->u.nZero = 0;
+ }else{
+ MemSetTypeFlag(pDest, MEM_Null);
+ }
+ rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( sContext.isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
+ rc = sContext.isError;
+ }
+ sqlite3VdbeChangeEncoding(pDest, encoding);
+ REGISTER_TRACE(pOp->p3, pDest);
+ UPDATE_MAX_BLOBSIZE(pDest);
+
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VNext P1 P2 * * *
+**
+** Advance virtual table P1 to the next row in its result set and
+** jump to instruction P2. Or, if the virtual table has reached
+** the end of its result set, then fall through to the next instruction.
+*/
+case OP_VNext: { /* jump, ncycle */
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int res;
+ VdbeCursor *pCur;
+
+ pCur = p->apCsr[pOp->p1];
+ assert( pCur!=0 );
+ assert( pCur->eCurType==CURTYPE_VTAB );
+ if( pCur->nullRow ){
+ break;
+ }
+ pVtab = pCur->uc.pVCur->pVtab;
+ pModule = pVtab->pModule;
+ assert( pModule->xNext );
+
+ /* Invoke the xNext() method of the module. There is no way for the
+ ** underlying implementation to return an error if one occurs during
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that
+ ** data is available) and the error code returned when xColumn or
+ ** some other method is next invoked on the save virtual table cursor.
+ */
+ rc = pModule->xNext(pCur->uc.pVCur);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc ) goto abort_due_to_error;
+ res = pModule->xEof(pCur->uc.pVCur);
+ VdbeBranchTaken(!res,2);
+ if( !res ){
+ /* If there is data, jump to P2 */
+ goto jump_to_p2_and_check_for_interrupt;
+ }
+ goto check_for_interrupt;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VRename P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xRename method. The value
+** in register P1 is passed as the zName argument to the xRename method.
+*/
+case OP_VRename: {
+ sqlite3_vtab *pVtab;
+ Mem *pName;
+ int isLegacy;
+
+ isLegacy = (db->flags & SQLITE_LegacyAlter);
+ db->flags |= SQLITE_LegacyAlter;
+ pVtab = pOp->p4.pVtab->pVtab;
+ pName = &aMem[pOp->p1];
+ assert( pVtab->pModule->xRename );
+ assert( memIsValid(pName) );
+ assert( p->readOnly==0 );
+ REGISTER_TRACE(pOp->p1, pName);
+ assert( pName->flags & MEM_Str );
+ testcase( pName->enc==SQLITE_UTF8 );
+ testcase( pName->enc==SQLITE_UTF16BE );
+ testcase( pName->enc==SQLITE_UTF16LE );
+ rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
+ if( rc ) goto abort_due_to_error;
+ rc = pVtab->pModule->xRename(pVtab, pName->z);
+ if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
+ sqlite3VtabImportErrmsg(p, pVtab);
+ p->expired = 0;
+ if( rc ) goto abort_due_to_error;
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VUpdate P1 P2 P3 P4 P5
+** Synopsis: data=r[P3@P2]
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xUpdate method. P2 values
+** are contiguous memory cells starting at P3 to pass to the xUpdate
+** invocation. The value in register (P3+P2-1) corresponds to the
+** p2th element of the argv array passed to xUpdate.
+**
+** The xUpdate method will do a DELETE or an INSERT or both.
+** The argv[0] element (which corresponds to memory cell P3)
+** is the rowid of a row to delete. If argv[0] is NULL then no
+** deletion occurs. The argv[1] element is the rowid of the new
+** row. This can be NULL to have the virtual table select the new
+** rowid for itself. The subsequent elements in the array are
+** the values of columns in the new row.
+**
+** If P2==1 then no insert is performed. argv[0] is the rowid of
+** a row to delete.
+**
+** P1 is a boolean flag. If it is set to true and the xUpdate call
+** is successful, then the value returned by sqlite3_last_insert_rowid()
+** is set to the value of the rowid for the row just inserted.
+**
+** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
+** apply in the case of a constraint failure on an insert or update.
+*/
+case OP_VUpdate: {
+ sqlite3_vtab *pVtab;
+ const sqlite3_module *pModule;
+ int nArg;
+ int i;
+ sqlite_int64 rowid = 0;
+ Mem **apArg;
+ Mem *pX;
+
+ assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
+ || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
+ );
+ assert( p->readOnly==0 );
+ if( db->mallocFailed ) goto no_mem;
+ sqlite3VdbeIncrWriteCounter(p, 0);
+ pVtab = pOp->p4.pVtab->pVtab;
+ if( pVtab==0 || NEVER(pVtab->pModule==0) ){
+ rc = SQLITE_LOCKED;
+ goto abort_due_to_error;
+ }
+ pModule = pVtab->pModule;
+ nArg = pOp->p2;
+ assert( pOp->p4type==P4_VTAB );
+ if( ALWAYS(pModule->xUpdate) ){
+ u8 vtabOnConflict = db->vtabOnConflict;
+ apArg = p->apArg;
+ pX = &aMem[pOp->p3];
+ for(i=0; i<nArg; i++){
+ assert( memIsValid(pX) );
+ memAboutToChange(p, pX);
+ apArg[i] = pX;
+ pX++;
+ }
+ db->vtabOnConflict = pOp->p5;
+ rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
+ db->vtabOnConflict = vtabOnConflict;
+ sqlite3VtabImportErrmsg(p, pVtab);
+ if( rc==SQLITE_OK && pOp->p1 ){
+ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
+ db->lastRowid = rowid;
+ }
+ if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
+ if( pOp->p5==OE_Ignore ){
+ rc = SQLITE_OK;
+ }else{
+ p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
+ }
+ }else{
+ p->nChange++;
+ }
+ if( rc ) goto abort_due_to_error;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: Pagecount P1 P2 * * *
+**
+** Write the current number of pages in database P1 to memory cell P2.
+*/
+case OP_Pagecount: { /* out2 */
+ pOut = out2Prerelease(p, pOp);
+ pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
+ break;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/* Opcode: MaxPgcnt P1 P2 P3 * *
+**
+** Try to set the maximum page count for database P1 to the value in P3.
+** Do not let the maximum page count fall below the current page count and
+** do not change the maximum page count value if P3==0.
+**
+** Store the maximum page count after the change in register P2.
+*/
+case OP_MaxPgcnt: { /* out2 */
+ unsigned int newMax;
+ Btree *pBt;
+
+ pOut = out2Prerelease(p, pOp);
+ pBt = db->aDb[pOp->p1].pBt;
+ newMax = 0;
+ if( pOp->p3 ){
+ newMax = sqlite3BtreeLastPage(pBt);
+ if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
+ }
+ pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
+ break;
+}
+#endif
+
+/* Opcode: Function P1 P2 P3 P4 *
+** Synopsis: r[P3]=func(r[P2@NP])
+**
+** Invoke a user function (P4 is a pointer to an sqlite3_context object that
+** contains a pointer to the function to be run) with arguments taken
+** from register P2 and successors. The number of arguments is in
+** the sqlite3_context object that P4 points to.
+** The result of the function is stored
+** in register P3. Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** See also: AggStep, AggFinal, PureFunc
+*/
+/* Opcode: PureFunc P1 P2 P3 P4 *
+** Synopsis: r[P3]=func(r[P2@NP])
+**
+** Invoke a user function (P4 is a pointer to an sqlite3_context object that
+** contains a pointer to the function to be run) with arguments taken
+** from register P2 and successors. The number of arguments is in
+** the sqlite3_context object that P4 points to.
+** The result of the function is stored
+** in register P3. Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** This opcode works exactly like OP_Function. The only difference is in
+** its name. This opcode is used in places where the function must be
+** purely non-deterministic. Some built-in date/time functions can be
+** either deterministic of non-deterministic, depending on their arguments.
+** When those function are used in a non-deterministic way, they will check
+** to see if they were called using OP_PureFunc instead of OP_Function, and
+** if they were, they throw an error.
+**
+** See also: AggStep, AggFinal, Function
+*/
+case OP_PureFunc: /* group */
+case OP_Function: { /* group */
+ int i;
+ sqlite3_context *pCtx;
+
+ assert( pOp->p4type==P4_FUNCCTX );
+ pCtx = pOp->p4.pCtx;
+
+ /* If this function is inside of a trigger, the register array in aMem[]
+ ** might change from one evaluation to the next. The next block of code
+ ** checks to see if the register array has changed, and if so it
+ ** reinitializes the relevant parts of the sqlite3_context object */
+ pOut = &aMem[pOp->p3];
+ if( pCtx->pOut != pOut ){
+ pCtx->pVdbe = p;
+ pCtx->pOut = pOut;
+ pCtx->enc = encoding;
+ for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
+ }
+ assert( pCtx->pVdbe==p );
+
+ memAboutToChange(p, pOut);
+#ifdef SQLITE_DEBUG
+ for(i=0; i<pCtx->argc; i++){
+ assert( memIsValid(pCtx->argv[i]) );
+ REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
+ }
+#endif
+ MemSetTypeFlag(pOut, MEM_Null);
+ assert( pCtx->isError==0 );
+ (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
+
+ /* If the function returned an error, throw an exception */
+ if( pCtx->isError ){
+ if( pCtx->isError>0 ){
+ sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
+ rc = pCtx->isError;
+ }
+ sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
+ pCtx->isError = 0;
+ if( rc ) goto abort_due_to_error;
+ }
+
+ assert( (pOut->flags&MEM_Str)==0
+ || pOut->enc==encoding
+ || db->mallocFailed );
+ assert( !sqlite3VdbeMemTooBig(pOut) );
+
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: ClrSubtype P1 * * * *
+** Synopsis: r[P1].subtype = 0
+**
+** Clear the subtype from register P1.
+*/
+case OP_ClrSubtype: { /* in1 */
+ pIn1 = &aMem[pOp->p1];
+ pIn1->flags &= ~MEM_Subtype;
+ break;
+}
+
+/* Opcode: FilterAdd P1 * P3 P4 *
+** Synopsis: filter(P1) += key(P3@P4)
+**
+** Compute a hash on the P4 registers starting with r[P3] and
+** add that hash to the bloom filter contained in r[P1].
+*/
+case OP_FilterAdd: {
+ u64 h;
+
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( pIn1->flags & MEM_Blob );
+ assert( pIn1->n>0 );
+ h = filterHash(aMem, pOp);
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ int ii;
+ for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
+ registerTrace(ii, &aMem[ii]);
+ }
+ printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
+ }
+#endif
+ h %= (pIn1->n*8);
+ pIn1->z[h/8] |= 1<<(h&7);
+ break;
+}
+
+/* Opcode: Filter P1 P2 P3 P4 *
+** Synopsis: if key(P3@P4) not in filter(P1) goto P2
+**
+** Compute a hash on the key contained in the P4 registers starting
+** with r[P3]. Check to see if that hash is found in the
+** bloom filter hosted by register P1. If it is not present then
+** maybe jump to P2. Otherwise fall through.
+**
+** False negatives are harmless. It is always safe to fall through,
+** even if the value is in the bloom filter. A false negative causes
+** more CPU cycles to be used, but it should still yield the correct
+** answer. However, an incorrect answer may well arise from a
+** false positive - if the jump is taken when it should fall through.
+*/
+case OP_Filter: { /* jump */
+ u64 h;
+
+ assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
+ pIn1 = &aMem[pOp->p1];
+ assert( (pIn1->flags & MEM_Blob)!=0 );
+ assert( pIn1->n >= 1 );
+ h = filterHash(aMem, pOp);
+#ifdef SQLITE_DEBUG
+ if( db->flags&SQLITE_VdbeTrace ){
+ int ii;
+ for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
+ registerTrace(ii, &aMem[ii]);
+ }
+ printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
+ }
+#endif
+ h %= (pIn1->n*8);
+ if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
+ VdbeBranchTaken(1, 2);
+ p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
+ goto jump_to_p2;
+ }else{
+ p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
+ VdbeBranchTaken(0, 2);
+ }
+ break;
+}
+
+/* Opcode: Trace P1 P2 * P4 *
+**
+** Write P4 on the statement trace output if statement tracing is
+** enabled.
+**
+** Operand P1 must be 0x7fffffff and P2 must positive.
+*/
+/* Opcode: Init P1 P2 P3 P4 *
+** Synopsis: Start at P2
+**
+** Programs contain a single instance of this opcode as the very first
+** opcode.
+**
+** If tracing is enabled (by the sqlite3_trace()) interface, then
+** the UTF-8 string contained in P4 is emitted on the trace callback.
+** Or if P4 is blank, use the string returned by sqlite3_sql().
+**
+** If P2 is not zero, jump to instruction P2.
+**
+** Increment the value of P1 so that OP_Once opcodes will jump the
+** first time they are evaluated for this run.
+**
+** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
+** error is encountered.
+*/
+case OP_Trace:
+case OP_Init: { /* jump */
+ int i;
+#ifndef SQLITE_OMIT_TRACE
+ char *zTrace;
+#endif
+
+ /* If the P4 argument is not NULL, then it must be an SQL comment string.
+ ** The "--" string is broken up to prevent false-positives with srcck1.c.
+ **
+ ** This assert() provides evidence for:
+ ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
+ ** would have been returned by the legacy sqlite3_trace() interface by
+ ** using the X argument when X begins with "--" and invoking
+ ** sqlite3_expanded_sql(P) otherwise.
+ */
+ assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
+
+ /* OP_Init is always instruction 0 */
+ assert( pOp==p->aOp || pOp->opcode==OP_Trace );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
+ && p->minWriteFileFormat!=254 /* tag-20220401a */
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+#ifndef SQLITE_OMIT_DEPRECATED
+ if( db->mTrace & SQLITE_TRACE_LEGACY ){
+ char *z = sqlite3VdbeExpandSql(p, zTrace);
+ db->trace.xLegacy(db->pTraceArg, z);
+ sqlite3_free(z);
+ }else
+#endif
+ if( db->nVdbeExec>1 ){
+ char *z = sqlite3MPrintf(db, "-- %s", zTrace);
+ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
+ sqlite3DbFree(db, z);
+ }else{
+ (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
+ }
+ }
+#ifdef SQLITE_USE_FCNTL_TRACE
+ zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
+ if( zTrace ){
+ int j;
+ for(j=0; j<db->nDb; j++){
+ if( DbMaskTest(p->btreeMask, j)==0 ) continue;
+ sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
+ }
+ }
+#endif /* SQLITE_USE_FCNTL_TRACE */
+#ifdef SQLITE_DEBUG
+ if( (db->flags & SQLITE_SqlTrace)!=0
+ && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
+ ){
+ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* SQLITE_OMIT_TRACE */
+ assert( pOp->p2>0 );
+ if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
+ if( pOp->opcode==OP_Trace ) break;
+ for(i=1; i<p->nOp; i++){
+ if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
+ }
+ pOp->p1 = 0;
+ }
+ pOp->p1++;
+ p->aCounter[SQLITE_STMTSTATUS_RUN]++;
+ goto jump_to_p2;
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/* Opcode: CursorHint P1 * * P4 *
+**
+** Provide a hint to cursor P1 that it only needs to return rows that
+** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
+** to values currently held in registers. TK_COLUMN terms in the P4
+** expression refer to columns in the b-tree to which cursor P1 is pointing.
+*/
+case OP_CursorHint: {
+ VdbeCursor *pC;
+
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ assert( pOp->p4type==P4_EXPR );
+ pC = p->apCsr[pOp->p1];
+ if( pC ){
+ assert( pC->eCurType==CURTYPE_BTREE );
+ sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
+ pOp->p4.pExpr, aMem);
+ }
+ break;
+}
+#endif /* SQLITE_ENABLE_CURSOR_HINTS */
+
+#ifdef SQLITE_DEBUG
+/* Opcode: Abortable * * * * *
+**
+** Verify that an Abort can happen. Assert if an Abort at this point
+** might cause database corruption. This opcode only appears in debugging
+** builds.
+**
+** An Abort is safe if either there have been no writes, or if there is
+** an active statement journal.
+*/
+case OP_Abortable: {
+ sqlite3VdbeAssertAbortable(p);
+ break;
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/* Opcode: ReleaseReg P1 P2 P3 * P5
+** Synopsis: release r[P1@P2] mask P3
+**
+** Release registers from service. Any content that was in the
+** the registers is unreliable after this opcode completes.
+**
+** The registers released will be the P2 registers starting at P1,
+** except if bit ii of P3 set, then do not release register P1+ii.
+** In other words, P3 is a mask of registers to preserve.
+**
+** Releasing a register clears the Mem.pScopyFrom pointer. That means
+** that if the content of the released register was set using OP_SCopy,
+** a change to the value of the source register for the OP_SCopy will no longer
+** generate an assertion fault in sqlite3VdbeMemAboutToChange().
+**
+** If P5 is set, then all released registers have their type set
+** to MEM_Undefined so that any subsequent attempt to read the released
+** register (before it is reinitialized) will generate an assertion fault.
+**
+** P5 ought to be set on every call to this opcode.
+** However, there are places in the code generator will release registers
+** before their are used, under the (valid) assumption that the registers
+** will not be reallocated for some other purpose before they are used and
+** hence are safe to release.
+**
+** This opcode is only available in testing and debugging builds. It is
+** not generated for release builds. The purpose of this opcode is to help
+** validate the generated bytecode. This opcode does not actually contribute
+** to computing an answer.
+*/
+case OP_ReleaseReg: {
+ Mem *pMem;
+ int i;
+ u32 constMask;
+ assert( pOp->p1>0 );
+ assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
+ pMem = &aMem[pOp->p1];
+ constMask = pOp->p3;
+ for(i=0; i<pOp->p2; i++, pMem++){
+ if( i>=32 || (constMask & MASKBIT32(i))==0 ){
+ pMem->pScopyFrom = 0;
+ if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
+ }
+ }
+ break;
+}
+#endif
+
+/* Opcode: Noop * * * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+/*
+** The magic Explain opcode are only inserted when explain==2 (which
+** is to say when the EXPLAIN QUERY PLAN syntax is used.)
+** This opcode records information from the optimizer. It is the
+** the same as a no-op. This opcodesnever appears in a real VM program.
+*/
+default: { /* This is really OP_Noop, OP_Explain */
+ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
+
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#if defined(VDBE_PROFILE)
+ *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
+ pnCycle = 0;
+#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( pnCycle ){
+ *pnCycle += sqlite3Hwtime();
+ pnCycle = 0;
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
+
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
+ if( rc!=0 ) printf("rc=%d\n",rc);
+ if( opProperty & (OPFLG_OUT2) ){
+ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
+ }
+ if( opProperty & OPFLG_OUT3 ){
+ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
+ }
+ if( opProperty==0xff ){
+ /* Never happens. This code exists to avoid a harmless linkage
+ ** warning about sqlite3VdbeRegisterDump() being defined but not
+ ** used. */
+ sqlite3VdbeRegisterDump(p);
+ }
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* NDEBUG */
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished with
+ ** an error of some kind.
+ */
+abort_due_to_error:
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else if( rc==SQLITE_IOERR_CORRUPTFS ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ assert( rc );
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeTrace ){
+ const char *zTrace = p->zSql;
+ if( zTrace==0 ){
+ if( aOp[0].opcode==OP_Trace ){
+ zTrace = aOp[0].p4.z;
+ }
+ if( zTrace==0 ) zTrace = "???";
+ }
+ printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
+ }
+#endif
+ if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
+ sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
+ }
+ p->rc = rc;
+ sqlite3SystemError(db, rc);
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ sqlite3_log(rc, "statement aborts at %d: [%s] %s",
+ (int)(pOp - aOp), p->zSql, p->zErrMsg);
+ if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
+ if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
+ if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
+ db->flags |= SQLITE_CorruptRdOnly;
+ }
+ rc = SQLITE_ERROR;
+ if( resetSchemaOnFault>0 ){
+ sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
+ }
+
+ /* This is the only way out of this procedure. We have to
+ ** release the mutexes on btrees that were acquired at the
+ ** top. */
+vdbe_return:
+#if defined(VDBE_PROFILE)
+ if( pnCycle ){
+ *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
+ pnCycle = 0;
+ }
+#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ if( pnCycle ){
+ *pnCycle += sqlite3Hwtime();
+ pnCycle = 0;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
+ nProgressLimit += db->nProgressOps;
+ if( db->xProgress(db->pProgressArg) ){
+ nProgressLimit = LARGEST_UINT64;
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+ }
+ }
+#endif
+ p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
+ if( DbMaskNonZero(p->lockMask) ){
+ sqlite3VdbeLeave(p);
+ }
+ assert( rc!=SQLITE_OK || nExtraDelete==0
+ || sqlite3_strlike("DELETE%",p->zSql,0)!=0
+ );
+ return rc;
+
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
+ ** is encountered.
+ */
+too_big:
+ sqlite3VdbeError(p, "string or blob too big");
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+
+ /* Jump to here if a malloc() fails.
+ */
+no_mem:
+ sqlite3OomFault(db);
+ sqlite3VdbeError(p, "out of memory");
+ rc = SQLITE_NOMEM_BKPT;
+ goto abort_due_to_error;
+
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( AtomicLoad(&db->u1.isInterrupted) );
+ rc = SQLITE_INTERRUPT;
+ goto abort_due_to_error;
+}
+
+
+/************** End of vdbe.c ************************************************/
+/************** Begin file vdbeblob.c ****************************************/
+/*
+** 2007 May 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to implement incremental BLOB I/O.
+*/
+
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#ifndef SQLITE_OMIT_INCRBLOB
+
+/*
+** Valid sqlite3_blob* handles point to Incrblob structures.
+*/
+typedef struct Incrblob Incrblob;
+struct Incrblob {
+ int nByte; /* Size of open blob, in bytes */
+ int iOffset; /* Byte offset of blob in cursor data */
+ u16 iCol; /* Table column this handle is open on */
+ BtCursor *pCsr; /* Cursor pointing at blob row */
+ sqlite3_stmt *pStmt; /* Statement holding cursor open */
+ sqlite3 *db; /* The associated database */
+ char *zDb; /* Database name */
+ Table *pTab; /* Table object */
+};
+
+
+/*
+** This function is used by both blob_open() and blob_reopen(). It seeks
+** the b-tree cursor associated with blob handle p to point to row iRow.
+** If successful, SQLITE_OK is returned and subsequent calls to
+** sqlite3_blob_read() or sqlite3_blob_write() access the specified row.
+**
+** If an error occurs, or if the specified row does not exist or does not
+** contain a value of type TEXT or BLOB in the column nominated when the
+** blob handle was opened, then an error code is returned and *pzErr may
+** be set to point to a buffer containing an error message. It is the
+** responsibility of the caller to free the error message buffer using
+** sqlite3DbFree().
+**
+** If an error does occur, then the b-tree cursor is closed. All subsequent
+** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will
+** immediately return SQLITE_ABORT.
+*/
+static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
+ int rc; /* Error code */
+ char *zErr = 0; /* Error message */
+ Vdbe *v = (Vdbe *)p->pStmt;
+
+ /* Set the value of register r[1] in the SQL statement to integer iRow.
+ ** This is done directly as a performance optimization
+ */
+ sqlite3VdbeMemSetInt64(&v->aMem[1], iRow);
+
+ /* If the statement has been run before (and is paused at the OP_ResultRow)
+ ** then back it up to the point where it does the OP_NotExists. This could
+ ** have been down with an extra OP_Goto, but simply setting the program
+ ** counter is faster. */
+ if( v->pc>4 ){
+ v->pc = 4;
+ assert( v->aOp[v->pc].opcode==OP_NotExists );
+ rc = sqlite3VdbeExec(v);
+ }else{
+ rc = sqlite3_step(p->pStmt);
+ }
+ if( rc==SQLITE_ROW ){
+ VdbeCursor *pC = v->apCsr[0];
+ u32 type;
+ assert( pC!=0 );
+ assert( pC->eCurType==CURTYPE_BTREE );
+ type = pC->nHdrParsed>p->iCol ? pC->aType[p->iCol] : 0;
+ testcase( pC->nHdrParsed==p->iCol );
+ testcase( pC->nHdrParsed==p->iCol+1 );
+ if( type<12 ){
+ zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
+ type==0?"null": type==7?"real": "integer"
+ );
+ rc = SQLITE_ERROR;
+ sqlite3_finalize(p->pStmt);
+ p->pStmt = 0;
+ }else{
+ p->iOffset = pC->aType[p->iCol + pC->nField];
+ p->nByte = sqlite3VdbeSerialTypeLen(type);
+ p->pCsr = pC->uc.pCursor;
+ sqlite3BtreeIncrblobCursor(p->pCsr);
+ }
+ }
+
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ }else if( p->pStmt ){
+ rc = sqlite3_finalize(p->pStmt);
+ p->pStmt = 0;
+ if( rc==SQLITE_OK ){
+ zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow);
+ rc = SQLITE_ERROR;
+ }else{
+ zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db));
+ }
+ }
+
+ assert( rc!=SQLITE_OK || zErr==0 );
+ assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE );
+
+ *pzErr = zErr;
+ return rc;
+}
+
+/*
+** Open a blob handle.
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3* db, /* The database connection */
+ const char *zDb, /* The attached database containing the blob */
+ const char *zTable, /* The table containing the blob */
+ const char *zColumn, /* The column containing the blob */
+ sqlite_int64 iRow, /* The row containing the glob */
+ int wrFlag, /* True -> read/write access, false -> read-only */
+ sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
+){
+ int nAttempt = 0;
+ int iCol; /* Index of zColumn in row-record */
+ int rc = SQLITE_OK;
+ char *zErr = 0;
+ Table *pTab;
+ Incrblob *pBlob = 0;
+ Parse sParse;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppBlob==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ *ppBlob = 0;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zTable==0 || zColumn==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ wrFlag = !!wrFlag; /* wrFlag = (wrFlag ? 1 : 0); */
+
+ sqlite3_mutex_enter(db->mutex);
+
+ pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
+ while(1){
+ sqlite3ParseObjectInit(&sParse,db);
+ if( !pBlob ) goto blob_open_out;
+ sqlite3DbFree(db, zErr);
+ zErr = 0;
+
+ sqlite3BtreeEnterAll(db);
+ pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
+ if( pTab && IsVirtual(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
+ }
+ if( pTab && !HasRowid(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open table without rowid: %s", zTable);
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab && IsView(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
+ }
+#endif
+ if( !pTab ){
+ if( sParse.zErrMsg ){
+ sqlite3DbFree(db, zErr);
+ zErr = sParse.zErrMsg;
+ sParse.zErrMsg = 0;
+ }
+ rc = SQLITE_ERROR;
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+ pBlob->pTab = pTab;
+ pBlob->zDb = db->aDb[sqlite3SchemaToIndex(db, pTab->pSchema)].zDbSName;
+
+ /* Now search pTab for the exact column. */
+ for(iCol=0; iCol<pTab->nCol; iCol++) {
+ if( sqlite3StrICmp(pTab->aCol[iCol].zCnName, zColumn)==0 ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn);
+ rc = SQLITE_ERROR;
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+
+ /* If the value is being opened for writing, check that the
+ ** column is not indexed, and that it is not part of a foreign key.
+ */
+ if( wrFlag ){
+ const char *zFault = 0;
+ Index *pIdx;
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( db->flags&SQLITE_ForeignKeys ){
+ /* Check that the column is not part of an FK child key definition. It
+ ** is not necessary to check if it is part of a parent key, as parent
+ ** key columns must be indexed. The check below will pick up this
+ ** case. */
+ FKey *pFKey;
+ assert( IsOrdinaryTable(pTab) );
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ int j;
+ for(j=0; j<pFKey->nCol; j++){
+ if( pFKey->aCol[j].iFrom==iCol ){
+ zFault = "foreign key";
+ }
+ }
+ }
+ }
+#endif
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int j;
+ for(j=0; j<pIdx->nKeyCol; j++){
+ /* FIXME: Be smarter about indexes that use expressions */
+ if( pIdx->aiColumn[j]==iCol || pIdx->aiColumn[j]==XN_EXPR ){
+ zFault = "indexed";
+ }
+ }
+ }
+ if( zFault ){
+ sqlite3DbFree(db, zErr);
+ zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault);
+ rc = SQLITE_ERROR;
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+ }
+
+ pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(&sParse);
+ assert( pBlob->pStmt || db->mallocFailed );
+ if( pBlob->pStmt ){
+
+ /* This VDBE program seeks a btree cursor to the identified
+ ** db/table/row entry. The reason for using a vdbe program instead
+ ** of writing code to use the b-tree layer directly is that the
+ ** vdbe program will take advantage of the various transaction,
+ ** locking and error handling infrastructure built into the vdbe.
+ **
+ ** After seeking the cursor, the vdbe executes an OP_ResultRow.
+ ** Code external to the Vdbe then "borrows" the b-tree cursor and
+ ** uses it to implement the blob_read(), blob_write() and
+ ** blob_bytes() functions.
+ **
+ ** The sqlite3_blob_close() function finalizes the vdbe program,
+ ** which closes the b-tree cursor and (possibly) commits the
+ ** transaction.
+ */
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList openBlob[] = {
+ {OP_TableLock, 0, 0, 0}, /* 0: Acquire a read or write lock */
+ {OP_OpenRead, 0, 0, 0}, /* 1: Open a cursor */
+ /* blobSeekToRow() will initialize r[1] to the desired rowid */
+ {OP_NotExists, 0, 5, 1}, /* 2: Seek the cursor to rowid=r[1] */
+ {OP_Column, 0, 0, 1}, /* 3 */
+ {OP_ResultRow, 1, 0, 0}, /* 4 */
+ {OP_Halt, 0, 0, 0}, /* 5 */
+ };
+ Vdbe *v = (Vdbe *)pBlob->pStmt;
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ VdbeOp *aOp;
+
+ sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, wrFlag,
+ pTab->pSchema->schema_cookie,
+ pTab->pSchema->iGeneration);
+ sqlite3VdbeChangeP5(v, 1);
+ assert( sqlite3VdbeCurrentAddr(v)==2 || db->mallocFailed );
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);
+
+ /* Make sure a mutex is held on the table to be accessed */
+ sqlite3VdbeUsesBtree(v, iDb);
+
+ if( db->mallocFailed==0 ){
+ assert( aOp!=0 );
+ /* Configure the OP_TableLock instruction */
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ aOp[0].opcode = OP_Noop;
+#else
+ aOp[0].p1 = iDb;
+ aOp[0].p2 = pTab->tnum;
+ aOp[0].p3 = wrFlag;
+ sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT);
+ }
+ if( db->mallocFailed==0 ){
+#endif
+
+ /* Remove either the OP_OpenWrite or OpenRead. Set the P2
+ ** parameter of the other to pTab->tnum. */
+ if( wrFlag ) aOp[1].opcode = OP_OpenWrite;
+ aOp[1].p2 = pTab->tnum;
+ aOp[1].p3 = iDb;
+
+ /* Configure the number of columns. Configure the cursor to
+ ** think that the table has one more column than it really
+ ** does. An OP_Column to retrieve this imaginary column will
+ ** always return an SQL NULL. This is useful because it means
+ ** we can invoke OP_Column to fill in the vdbe cursors type
+ ** and offset cache without causing any IO.
+ */
+ aOp[1].p4type = P4_INT32;
+ aOp[1].p4.i = pTab->nCol+1;
+ aOp[3].p2 = pTab->nCol;
+
+ sParse.nVar = 0;
+ sParse.nMem = 1;
+ sParse.nTab = 1;
+ sqlite3VdbeMakeReady(v, &sParse);
+ }
+ }
+
+ pBlob->iCol = iCol;
+ pBlob->db = db;
+ sqlite3BtreeLeaveAll(db);
+ if( db->mallocFailed ){
+ goto blob_open_out;
+ }
+ rc = blobSeekToRow(pBlob, iRow, &zErr);
+ if( (++nAttempt)>=SQLITE_MAX_SCHEMA_RETRY || rc!=SQLITE_SCHEMA ) break;
+ sqlite3ParseObjectReset(&sParse);
+ }
+
+blob_open_out:
+ if( rc==SQLITE_OK && db->mallocFailed==0 ){
+ *ppBlob = (sqlite3_blob *)pBlob;
+ }else{
+ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt);
+ sqlite3DbFree(db, pBlob);
+ }
+ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr);
+ sqlite3DbFree(db, zErr);
+ sqlite3ParseObjectReset(&sParse);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Close a blob handle that was previously created using
+** sqlite3_blob_open().
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ int rc;
+ sqlite3 *db;
+
+ if( p ){
+ sqlite3_stmt *pStmt = p->pStmt;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3DbFree(db, p);
+ sqlite3_mutex_leave(db->mutex);
+ rc = sqlite3_finalize(pStmt);
+ }else{
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+
+/*
+** Perform a read or write operation on a blob
+*/
+static int blobReadWrite(
+ sqlite3_blob *pBlob,
+ void *z,
+ int n,
+ int iOffset,
+ int (*xCall)(BtCursor*, u32, u32, void*)
+){
+ int rc;
+ Incrblob *p = (Incrblob *)pBlob;
+ Vdbe *v;
+ sqlite3 *db;
+
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+ v = (Vdbe*)p->pStmt;
+
+ if( n<0 || iOffset<0 || ((sqlite3_int64)iOffset+n)>p->nByte ){
+ /* Request is out of range. Return a transient error. */
+ rc = SQLITE_ERROR;
+ }else if( v==0 ){
+ /* If there is no statement handle, then the blob-handle has
+ ** already been invalidated. Return SQLITE_ABORT in this case.
+ */
+ rc = SQLITE_ABORT;
+ }else{
+ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
+ ** returned, clean-up the statement handle.
+ */
+ assert( db == v->db );
+ sqlite3BtreeEnterCursor(p->pCsr);
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( xCall==sqlite3BtreePutData && db->xPreUpdateCallback ){
+ /* If a pre-update hook is registered and this is a write cursor,
+ ** invoke it here.
+ **
+ ** TODO: The preupdate-hook is passed SQLITE_DELETE, even though this
+ ** operation should really be an SQLITE_UPDATE. This is probably
+ ** incorrect, but is convenient because at this point the new.* values
+ ** are not easily obtainable. And for the sessions module, an
+ ** SQLITE_UPDATE where the PK columns do not change is handled in the
+ ** same way as an SQLITE_DELETE (the SQLITE_DELETE code is actually
+ ** slightly more efficient). Since you cannot write to a PK column
+ ** using the incremental-blob API, this works. For the sessions module
+ ** anyhow.
+ */
+ sqlite3_int64 iKey;
+ iKey = sqlite3BtreeIntegerKey(p->pCsr);
+ assert( v->apCsr[0]!=0 );
+ assert( v->apCsr[0]->eCurType==CURTYPE_BTREE );
+ sqlite3VdbePreUpdateHook(
+ v, v->apCsr[0], SQLITE_DELETE, p->zDb, p->pTab, iKey, -1, p->iCol
+ );
+ }
+#endif
+
+ rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
+ sqlite3BtreeLeaveCursor(p->pCsr);
+ if( rc==SQLITE_ABORT ){
+ sqlite3VdbeFinalize(v);
+ p->pStmt = 0;
+ }else{
+ v->rc = rc;
+ }
+ }
+ sqlite3Error(db, rc);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Read data from a blob handle.
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreePayloadChecked);
+}
+
+/*
+** Write data to a blob handle.
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
+}
+
+/*
+** Query a blob handle for the size of the data.
+**
+** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
+** so no mutex is required for access.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ return (p && p->pStmt) ? p->nByte : 0;
+}
+
+/*
+** Move an existing blob handle to point to a different row of the same
+** database table.
+**
+** If an error occurs, or if the specified row does not exist or does not
+** contain a blob or text value, then an error code is returned and the
+** database handle error code and message set. If this happens, then all
+** subsequent calls to sqlite3_blob_xxx() functions (except blob_close())
+** immediately return SQLITE_ABORT.
+*/
+SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
+ int rc;
+ Incrblob *p = (Incrblob *)pBlob;
+ sqlite3 *db;
+
+ if( p==0 ) return SQLITE_MISUSE_BKPT;
+ db = p->db;
+ sqlite3_mutex_enter(db->mutex);
+
+ if( p->pStmt==0 ){
+ /* If there is no statement handle, then the blob-handle has
+ ** already been invalidated. Return SQLITE_ABORT in this case.
+ */
+ rc = SQLITE_ABORT;
+ }else{
+ char *zErr;
+ ((Vdbe*)p->pStmt)->rc = SQLITE_OK;
+ rc = blobSeekToRow(p, iRow, &zErr);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr);
+ sqlite3DbFree(db, zErr);
+ }
+ assert( rc!=SQLITE_SCHEMA );
+ }
+
+ rc = sqlite3ApiExit(db, rc);
+ assert( rc==SQLITE_OK || p->pStmt==0 );
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
+
+/************** End of vdbeblob.c ********************************************/
+/************** Begin file vdbesort.c ****************************************/
+/*
+** 2011-07-09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for the VdbeSorter object, used in concert with
+** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements
+** or by SELECT statements with ORDER BY clauses that cannot be satisfied
+** using indexes and without LIMIT clauses.
+**
+** The VdbeSorter object implements a multi-threaded external merge sort
+** algorithm that is efficient even if the number of elements being sorted
+** exceeds the available memory.
+**
+** Here is the (internal, non-API) interface between this module and the
+** rest of the SQLite system:
+**
+** sqlite3VdbeSorterInit() Create a new VdbeSorter object.
+**
+** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter
+** object. The row is a binary blob in the
+** OP_MakeRecord format that contains both
+** the ORDER BY key columns and result columns
+** in the case of a SELECT w/ ORDER BY, or
+** the complete record for an index entry
+** in the case of a CREATE INDEX.
+**
+** sqlite3VdbeSorterRewind() Sort all content previously added.
+** Position the read cursor on the
+** first sorted element.
+**
+** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted
+** element.
+**
+** sqlite3VdbeSorterRowkey() Return the complete binary blob for the
+** row currently under the read cursor.
+**
+** sqlite3VdbeSorterCompare() Compare the binary blob for the row
+** currently under the read cursor against
+** another binary blob X and report if
+** X is strictly less than the read cursor.
+** Used to enforce uniqueness in a
+** CREATE UNIQUE INDEX statement.
+**
+** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim
+** all resources.
+**
+** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This
+** is like Close() followed by Init() only
+** much faster.
+**
+** The interfaces above must be called in a particular order. Write() can
+** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and
+** Compare() can only occur in between Rewind() and Close()/Reset(). i.e.
+**
+** Init()
+** for each record: Write()
+** Rewind()
+** Rowkey()/Compare()
+** Next()
+** Close()
+**
+** Algorithm:
+**
+** Records passed to the sorter via calls to Write() are initially held
+** unsorted in main memory. Assuming the amount of memory used never exceeds
+** a threshold, when Rewind() is called the set of records is sorted using
+** an in-memory merge sort. In this case, no temporary files are required
+** and subsequent calls to Rowkey(), Next() and Compare() read records
+** directly from main memory.
+**
+** If the amount of space used to store records in main memory exceeds the
+** threshold, then the set of records currently in memory are sorted and
+** written to a temporary file in "Packed Memory Array" (PMA) format.
+** A PMA created at this point is known as a "level-0 PMA". Higher levels
+** of PMAs may be created by merging existing PMAs together - for example
+** merging two or more level-0 PMAs together creates a level-1 PMA.
+**
+** The threshold for the amount of main memory to use before flushing
+** records to a PMA is roughly the same as the limit configured for the
+** page-cache of the main database. Specifically, the threshold is set to
+** the value returned by "PRAGMA main.page_size" multiplied by
+** that returned by "PRAGMA main.cache_size", in bytes.
+**
+** If the sorter is running in single-threaded mode, then all PMAs generated
+** are appended to a single temporary file. Or, if the sorter is running in
+** multi-threaded mode then up to (N+1) temporary files may be opened, where
+** N is the configured number of worker threads. In this case, instead of
+** sorting the records and writing the PMA to a temporary file itself, the
+** calling thread usually launches a worker thread to do so. Except, if
+** there are already N worker threads running, the main thread does the work
+** itself.
+**
+** The sorter is running in multi-threaded mode if (a) the library was built
+** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
+** than zero, and (b) worker threads have been enabled at runtime by calling
+** "PRAGMA threads=N" with some value of N greater than 0.
+**
+** When Rewind() is called, any data remaining in memory is flushed to a
+** final PMA. So at this point the data is stored in some number of sorted
+** PMAs within temporary files on disk.
+**
+** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
+** sorter is running in single-threaded mode, then these PMAs are merged
+** incrementally as keys are retrieved from the sorter by the VDBE. The
+** MergeEngine object, described in further detail below, performs this
+** merge.
+**
+** Or, if running in multi-threaded mode, then a background thread is
+** launched to merge the existing PMAs. Once the background thread has
+** merged T bytes of data into a single sorted PMA, the main thread
+** begins reading keys from that PMA while the background thread proceeds
+** with merging the next T bytes of data. And so on.
+**
+** Parameter T is set to half the value of the memory threshold used
+** by Write() above to determine when to create a new PMA.
+**
+** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when
+** Rewind() is called, then a hierarchy of incremental-merges is used.
+** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on
+** disk are merged together. Then T bytes of data from the second set, and
+** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT
+** PMAs at a time. This done is to improve locality.
+**
+** If running in multi-threaded mode and there are more than
+** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more
+** than one background thread may be created. Specifically, there may be
+** one background thread for each temporary file on disk, and one background
+** thread to merge the output of each of the others to a single PMA for
+** the main thread to read from.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+/*
+** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various
+** messages to stderr that may be helpful in understanding the performance
+** characteristics of the sorter in multi-threaded mode.
+*/
+#if 0
+# define SQLITE_DEBUG_SORTER_THREADS 1
+#endif
+
+/*
+** Hard-coded maximum amount of data to accumulate in memory before flushing
+** to a level 0 PMA. The purpose of this limit is to prevent various integer
+** overflows. 512MiB.
+*/
+#define SQLITE_MAX_PMASZ (1<<29)
+
+/*
+** Private objects used by the sorter
+*/
+typedef struct MergeEngine MergeEngine; /* Merge PMAs together */
+typedef struct PmaReader PmaReader; /* Incrementally read one PMA */
+typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */
+typedef struct SorterRecord SorterRecord; /* A record being sorted */
+typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */
+typedef struct SorterFile SorterFile; /* Temporary file object wrapper */
+typedef struct SorterList SorterList; /* In-memory list of records */
+typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */
+
+/*
+** A container for a temp file handle and the current amount of data
+** stored in the file.
+*/
+struct SorterFile {
+ sqlite3_file *pFd; /* File handle */
+ i64 iEof; /* Bytes of data stored in pFd */
+};
+
+/*
+** An in-memory list of objects to be sorted.
+**
+** If aMemory==0 then each object is allocated separately and the objects
+** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects
+** are stored in the aMemory[] bulk memory, one right after the other, and
+** are connected using SorterRecord.u.iNext.
+*/
+struct SorterList {
+ SorterRecord *pList; /* Linked list of records */
+ u8 *aMemory; /* If non-NULL, bulk memory to hold pList */
+ i64 szPMA; /* Size of pList as PMA in bytes */
+};
+
+/*
+** The MergeEngine object is used to combine two or more smaller PMAs into
+** one big PMA using a merge operation. Separate PMAs all need to be
+** combined into one big PMA in order to be able to step through the sorted
+** records in order.
+**
+** The aReadr[] array contains a PmaReader object for each of the PMAs being
+** merged. An aReadr[] object either points to a valid key or else is at EOF.
+** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.)
+** For the purposes of the paragraphs below, we assume that the array is
+** actually N elements in size, where N is the smallest power of 2 greater
+** to or equal to the number of PMAs being merged. The extra aReadr[] elements
+** are treated as if they are empty (always at EOF).
+**
+** The aTree[] array is also N elements in size. The value of N is stored in
+** the MergeEngine.nTree variable.
+**
+** The final (N/2) elements of aTree[] contain the results of comparing
+** pairs of PMA keys together. Element i contains the result of
+** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the
+** aTree element is set to the index of it.
+**
+** For the purposes of this comparison, EOF is considered greater than any
+** other key value. If the keys are equal (only possible with two EOF
+** values), it doesn't matter which index is stored.
+**
+** The (N/4) elements of aTree[] that precede the final (N/2) described
+** above contains the index of the smallest of each block of 4 PmaReaders
+** And so on. So that aTree[1] contains the index of the PmaReader that
+** currently points to the smallest key value. aTree[0] is unused.
+**
+** Example:
+**
+** aReadr[0] -> Banana
+** aReadr[1] -> Feijoa
+** aReadr[2] -> Elderberry
+** aReadr[3] -> Currant
+** aReadr[4] -> Grapefruit
+** aReadr[5] -> Apple
+** aReadr[6] -> Durian
+** aReadr[7] -> EOF
+**
+** aTree[] = { X, 5 0, 5 0, 3, 5, 6 }
+**
+** The current element is "Apple" (the value of the key indicated by
+** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will
+** be advanced to the next key in its segment. Say the next key is
+** "Eggplant":
+**
+** aReadr[5] -> Eggplant
+**
+** The contents of aTree[] are updated first by comparing the new PmaReader
+** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader
+** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
+** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader
+** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
+** so the value written into element 1 of the array is 0. As follows:
+**
+** aTree[] = { X, 0 0, 6 0, 3, 5, 6 }
+**
+** In other words, each time we advance to the next sorter element, log2(N)
+** key comparison operations are required, where N is the number of segments
+** being merged (rounded up to the next power of 2).
+*/
+struct MergeEngine {
+ int nTree; /* Used size of aTree/aReadr (power of 2) */
+ SortSubtask *pTask; /* Used by this thread only */
+ int *aTree; /* Current state of incremental merge */
+ PmaReader *aReadr; /* Array of PmaReaders to merge data from */
+};
+
+/*
+** This object represents a single thread of control in a sort operation.
+** Exactly VdbeSorter.nTask instances of this object are allocated
+** as part of each VdbeSorter object. Instances are never allocated any
+** other way. VdbeSorter.nTask is set to the number of worker threads allowed
+** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for
+** single-threaded operation, there is exactly one instance of this object
+** and for multi-threaded operation there are two or more instances.
+**
+** Essentially, this structure contains all those fields of the VdbeSorter
+** structure for which each thread requires a separate instance. For example,
+** each thread requeries its own UnpackedRecord object to unpack records in
+** as part of comparison operations.
+**
+** Before a background thread is launched, variable bDone is set to 0. Then,
+** right before it exits, the thread itself sets bDone to 1. This is used for
+** two purposes:
+**
+** 1. When flushing the contents of memory to a level-0 PMA on disk, to
+** attempt to select a SortSubtask for which there is not already an
+** active background thread (since doing so causes the main thread
+** to block until it finishes).
+**
+** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call
+** to sqlite3ThreadJoin() is likely to block. Cases that are likely to
+** block provoke debugging output.
+**
+** In both cases, the effects of the main thread seeing (bDone==0) even
+** after the thread has finished are not dire. So we don't worry about
+** memory barriers and such here.
+*/
+typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int);
+struct SortSubtask {
+ SQLiteThread *pThread; /* Background thread, if any */
+ int bDone; /* Set if thread is finished but not joined */
+ int nPMA; /* Number of PMAs currently in file */
+ VdbeSorter *pSorter; /* Sorter that owns this sub-task */
+ UnpackedRecord *pUnpacked; /* Space to unpack a record */
+ SorterList list; /* List for thread to write to a PMA */
+ SorterCompare xCompare; /* Compare function to use */
+ SorterFile file; /* Temp file for level-0 PMAs */
+ SorterFile file2; /* Space for other PMAs */
+};
+
+
+/*
+** Main sorter structure. A single instance of this is allocated for each
+** sorter cursor created by the VDBE.
+**
+** mxKeysize:
+** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(),
+** this variable is updated so as to be set to the size on disk of the
+** largest record in the sorter.
+*/
+struct VdbeSorter {
+ int mnPmaSize; /* Minimum PMA size, in bytes */
+ int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */
+ int mxKeysize; /* Largest serialized key seen so far */
+ int pgsz; /* Main database page size */
+ PmaReader *pReader; /* Readr data from here after Rewind() */
+ MergeEngine *pMerger; /* Or here, if bUseThreads==0 */
+ sqlite3 *db; /* Database connection */
+ KeyInfo *pKeyInfo; /* How to compare records */
+ UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */
+ SorterList list; /* List of in-memory records */
+ int iMemory; /* Offset of free space in list.aMemory */
+ int nMemory; /* Size of list.aMemory allocation in bytes */
+ u8 bUsePMA; /* True if one or more PMAs created */
+ u8 bUseThreads; /* True to use background threads */
+ u8 iPrev; /* Previous thread used to flush PMA */
+ u8 nTask; /* Size of aTask[] array */
+ u8 typeMask;
+ SortSubtask aTask[1]; /* One or more subtasks */
+};
+
+#define SORTER_TYPE_INTEGER 0x01
+#define SORTER_TYPE_TEXT 0x02
+
+/*
+** An instance of the following object is used to read records out of a
+** PMA, in sorted order. The next key to be read is cached in nKey/aKey.
+** aKey might point into aMap or into aBuffer. If neither of those locations
+** contain a contiguous representation of the key, then aAlloc is allocated
+** and the key is copied into aAlloc and aKey is made to point to aAlloc.
+**
+** pFd==0 at EOF.
+*/
+struct PmaReader {
+ i64 iReadOff; /* Current read offset */
+ i64 iEof; /* 1 byte past EOF for this PmaReader */
+ int nAlloc; /* Bytes of space at aAlloc */
+ int nKey; /* Number of bytes in key */
+ sqlite3_file *pFd; /* File handle we are reading from */
+ u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */
+ u8 *aKey; /* Pointer to current key */
+ u8 *aBuffer; /* Current read buffer */
+ int nBuffer; /* Size of read buffer in bytes */
+ u8 *aMap; /* Pointer to mapping of entire file */
+ IncrMerger *pIncr; /* Incremental merger */
+};
+
+/*
+** Normally, a PmaReader object iterates through an existing PMA stored
+** within a temp file. However, if the PmaReader.pIncr variable points to
+** an object of the following type, it may be used to iterate/merge through
+** multiple PMAs simultaneously.
+**
+** There are two types of IncrMerger object - single (bUseThread==0) and
+** multi-threaded (bUseThread==1).
+**
+** A multi-threaded IncrMerger object uses two temporary files - aFile[0]
+** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in
+** size. When the IncrMerger is initialized, it reads enough data from
+** pMerger to populate aFile[0]. It then sets variables within the
+** corresponding PmaReader object to read from that file and kicks off
+** a background thread to populate aFile[1] with the next mxSz bytes of
+** sorted record data from pMerger.
+**
+** When the PmaReader reaches the end of aFile[0], it blocks until the
+** background thread has finished populating aFile[1]. It then exchanges
+** the contents of the aFile[0] and aFile[1] variables within this structure,
+** sets the PmaReader fields to read from the new aFile[0] and kicks off
+** another background thread to populate the new aFile[1]. And so on, until
+** the contents of pMerger are exhausted.
+**
+** A single-threaded IncrMerger does not open any temporary files of its
+** own. Instead, it has exclusive access to mxSz bytes of space beginning
+** at offset iStartOff of file pTask->file2. And instead of using a
+** background thread to prepare data for the PmaReader, with a single
+** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with
+** keys from pMerger by the calling thread whenever the PmaReader runs out
+** of data.
+*/
+struct IncrMerger {
+ SortSubtask *pTask; /* Task that owns this merger */
+ MergeEngine *pMerger; /* Merge engine thread reads data from */
+ i64 iStartOff; /* Offset to start writing file at */
+ int mxSz; /* Maximum bytes of data to store */
+ int bEof; /* Set to true when merge is finished */
+ int bUseThread; /* True to use a bg thread for this object */
+ SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */
+};
+
+/*
+** An instance of this object is used for writing a PMA.
+**
+** The PMA is written one record at a time. Each record is of an arbitrary
+** size. But I/O is more efficient if it occurs in page-sized blocks where
+** each block is aligned on a page boundary. This object caches writes to
+** the PMA so that aligned, page-size blocks are written.
+*/
+struct PmaWriter {
+ int eFWErr; /* Non-zero if in an error state */
+ u8 *aBuffer; /* Pointer to write buffer */
+ int nBuffer; /* Size of write buffer in bytes */
+ int iBufStart; /* First byte of buffer to write */
+ int iBufEnd; /* Last byte of buffer to write */
+ i64 iWriteOff; /* Offset of start of buffer in file */
+ sqlite3_file *pFd; /* File handle to write to */
+};
+
+/*
+** This object is the header on a single record while that record is being
+** held in memory and prior to being written out as part of a PMA.
+**
+** How the linked list is connected depends on how memory is being managed
+** by this module. If using a separate allocation for each in-memory record
+** (VdbeSorter.list.aMemory==0), then the list is always connected using the
+** SorterRecord.u.pNext pointers.
+**
+** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0),
+** then while records are being accumulated the list is linked using the
+** SorterRecord.u.iNext offset. This is because the aMemory[] array may
+** be sqlite3Realloc()ed while records are being accumulated. Once the VM
+** has finished passing records to the sorter, or when the in-memory buffer
+** is full, the list is sorted. As part of the sorting process, it is
+** converted to use the SorterRecord.u.pNext pointers. See function
+** vdbeSorterSort() for details.
+*/
+struct SorterRecord {
+ int nVal; /* Size of the record in bytes */
+ union {
+ SorterRecord *pNext; /* Pointer to next record in list */
+ int iNext; /* Offset within aMemory of next record */
+ } u;
+ /* The data for the record immediately follows this header */
+};
+
+/* Return a pointer to the buffer containing the record data for SorterRecord
+** object p. Should be used as if:
+**
+** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
+*/
+#define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))
+
+
+/* Maximum number of PMAs that a single MergeEngine can merge */
+#define SORTER_MAX_MERGE_COUNT 16
+
+static int vdbeIncrSwap(IncrMerger*);
+static void vdbeIncrFree(IncrMerger *);
+
+/*
+** Free all memory belonging to the PmaReader object passed as the
+** argument. All structure fields are set to zero before returning.
+*/
+static void vdbePmaReaderClear(PmaReader *pReadr){
+ sqlite3_free(pReadr->aAlloc);
+ sqlite3_free(pReadr->aBuffer);
+ if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
+ vdbeIncrFree(pReadr->pIncr);
+ memset(pReadr, 0, sizeof(PmaReader));
+}
+
+/*
+** Read the next nByte bytes of data from the PMA p.
+** If successful, set *ppOut to point to a buffer containing the data
+** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
+** error code.
+**
+** The buffer returned in *ppOut is only valid until the
+** next call to this function.
+*/
+static int vdbePmaReadBlob(
+ PmaReader *p, /* PmaReader from which to take the blob */
+ int nByte, /* Bytes of data to read */
+ u8 **ppOut /* OUT: Pointer to buffer containing data */
+){
+ int iBuf; /* Offset within buffer to read from */
+ int nAvail; /* Bytes of data available in buffer */
+
+ if( p->aMap ){
+ *ppOut = &p->aMap[p->iReadOff];
+ p->iReadOff += nByte;
+ return SQLITE_OK;
+ }
+
+ assert( p->aBuffer );
+
+ /* If there is no more data to be read from the buffer, read the next
+ ** p->nBuffer bytes of data from the file into it. Or, if there are less
+ ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */
+ iBuf = p->iReadOff % p->nBuffer;
+ if( iBuf==0 ){
+ int nRead; /* Bytes to read from disk */
+ int rc; /* sqlite3OsRead() return code */
+
+ /* Determine how many bytes of data to read. */
+ if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
+ nRead = p->nBuffer;
+ }else{
+ nRead = (int)(p->iEof - p->iReadOff);
+ }
+ assert( nRead>0 );
+
+ /* Readr data from the file. Return early if an error occurs. */
+ rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff);
+ assert( rc!=SQLITE_IOERR_SHORT_READ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ nAvail = p->nBuffer - iBuf;
+
+ if( nByte<=nAvail ){
+ /* The requested data is available in the in-memory buffer. In this
+ ** case there is no need to make a copy of the data, just return a
+ ** pointer into the buffer to the caller. */
+ *ppOut = &p->aBuffer[iBuf];
+ p->iReadOff += nByte;
+ }else{
+ /* The requested data is not all available in the in-memory buffer.
+ ** In this case, allocate space at p->aAlloc[] to copy the requested
+ ** range into. Then return a copy of pointer p->aAlloc to the caller. */
+ int nRem; /* Bytes remaining to copy */
+
+ /* Extend the p->aAlloc[] allocation if required. */
+ if( p->nAlloc<nByte ){
+ u8 *aNew;
+ sqlite3_int64 nNew = MAX(128, 2*(sqlite3_int64)p->nAlloc);
+ while( nByte>nNew ) nNew = nNew*2;
+ aNew = sqlite3Realloc(p->aAlloc, nNew);
+ if( !aNew ) return SQLITE_NOMEM_BKPT;
+ p->nAlloc = nNew;
+ p->aAlloc = aNew;
+ }
+
+ /* Copy as much data as is available in the buffer into the start of
+ ** p->aAlloc[]. */
+ memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
+ p->iReadOff += nAvail;
+ nRem = nByte - nAvail;
+
+ /* The following loop copies up to p->nBuffer bytes per iteration into
+ ** the p->aAlloc[] buffer. */
+ while( nRem>0 ){
+ int rc; /* vdbePmaReadBlob() return code */
+ int nCopy; /* Number of bytes to copy */
+ u8 *aNext; /* Pointer to buffer to copy data from */
+
+ nCopy = nRem;
+ if( nRem>p->nBuffer ) nCopy = p->nBuffer;
+ rc = vdbePmaReadBlob(p, nCopy, &aNext);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( aNext!=p->aAlloc );
+ memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
+ nRem -= nCopy;
+ }
+
+ *ppOut = p->aAlloc;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Read a varint from the stream of data accessed by p. Set *pnOut to
+** the value read.
+*/
+static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){
+ int iBuf;
+
+ if( p->aMap ){
+ p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut);
+ }else{
+ iBuf = p->iReadOff % p->nBuffer;
+ if( iBuf && (p->nBuffer-iBuf)>=9 ){
+ p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
+ }else{
+ u8 aVarint[16], *a;
+ int i = 0, rc;
+ do{
+ rc = vdbePmaReadBlob(p, 1, &a);
+ if( rc ) return rc;
+ aVarint[(i++)&0xf] = a[0];
+ }while( (a[0]&0x80)!=0 );
+ sqlite3GetVarint(aVarint, pnOut);
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Attempt to memory map file pFile. If successful, set *pp to point to the
+** new mapping and return SQLITE_OK. If the mapping is not attempted
+** (because the file is too large or the VFS layer is configured not to use
+** mmap), return SQLITE_OK and set *pp to NULL.
+**
+** Or, if an error occurs, return an SQLite error code. The final value of
+** *pp is undefined in this case.
+*/
+static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
+ int rc = SQLITE_OK;
+ if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){
+ sqlite3_file *pFd = pFile->pFd;
+ if( pFd->pMethods->iVersion>=3 ){
+ rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp);
+ testcase( rc!=SQLITE_OK );
+ }
+ }
+ return rc;
+}
+
+/*
+** Attach PmaReader pReadr to file pFile (if it is not already attached to
+** that file) and seek it to offset iOff within the file. Return SQLITE_OK
+** if successful, or an SQLite error code if an error occurs.
+*/
+static int vdbePmaReaderSeek(
+ SortSubtask *pTask, /* Task context */
+ PmaReader *pReadr, /* Reader whose cursor is to be moved */
+ SorterFile *pFile, /* Sorter file to read from */
+ i64 iOff /* Offset in pFile */
+){
+ int rc = SQLITE_OK;
+
+ assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 );
+
+ if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ;
+ if( pReadr->aMap ){
+ sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
+ pReadr->aMap = 0;
+ }
+ pReadr->iReadOff = iOff;
+ pReadr->iEof = pFile->iEof;
+ pReadr->pFd = pFile->pFd;
+
+ rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap);
+ if( rc==SQLITE_OK && pReadr->aMap==0 ){
+ int pgsz = pTask->pSorter->pgsz;
+ int iBuf = pReadr->iReadOff % pgsz;
+ if( pReadr->aBuffer==0 ){
+ pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz);
+ if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM_BKPT;
+ pReadr->nBuffer = pgsz;
+ }
+ if( rc==SQLITE_OK && iBuf ){
+ int nRead = pgsz - iBuf;
+ if( (pReadr->iReadOff + nRead) > pReadr->iEof ){
+ nRead = (int)(pReadr->iEof - pReadr->iReadOff);
+ }
+ rc = sqlite3OsRead(
+ pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff
+ );
+ testcase( rc!=SQLITE_OK );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if
+** no error occurs, or an SQLite error code if one does.
+*/
+static int vdbePmaReaderNext(PmaReader *pReadr){
+ int rc = SQLITE_OK; /* Return Code */
+ u64 nRec = 0; /* Size of record in bytes */
+
+
+ if( pReadr->iReadOff>=pReadr->iEof ){
+ IncrMerger *pIncr = pReadr->pIncr;
+ int bEof = 1;
+ if( pIncr ){
+ rc = vdbeIncrSwap(pIncr);
+ if( rc==SQLITE_OK && pIncr->bEof==0 ){
+ rc = vdbePmaReaderSeek(
+ pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff
+ );
+ bEof = 0;
+ }
+ }
+
+ if( bEof ){
+ /* This is an EOF condition */
+ vdbePmaReaderClear(pReadr);
+ testcase( rc!=SQLITE_OK );
+ return rc;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = vdbePmaReadVarint(pReadr, &nRec);
+ }
+ if( rc==SQLITE_OK ){
+ pReadr->nKey = (int)nRec;
+ rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey);
+ testcase( rc!=SQLITE_OK );
+ }
+
+ return rc;
+}
+
+/*
+** Initialize PmaReader pReadr to scan through the PMA stored in file pFile
+** starting at offset iStart and ending at offset iEof-1. This function
+** leaves the PmaReader pointing to the first key in the PMA (or EOF if the
+** PMA is empty).
+**
+** If the pnByte parameter is NULL, then it is assumed that the file
+** contains a single PMA, and that that PMA omits the initial length varint.
+*/
+static int vdbePmaReaderInit(
+ SortSubtask *pTask, /* Task context */
+ SorterFile *pFile, /* Sorter file to read from */
+ i64 iStart, /* Start offset in pFile */
+ PmaReader *pReadr, /* PmaReader to populate */
+ i64 *pnByte /* IN/OUT: Increment this value by PMA size */
+){
+ int rc;
+
+ assert( pFile->iEof>iStart );
+ assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
+ assert( pReadr->aBuffer==0 );
+ assert( pReadr->aMap==0 );
+
+ rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
+ if( rc==SQLITE_OK ){
+ u64 nByte = 0; /* Size of PMA in bytes */
+ rc = vdbePmaReadVarint(pReadr, &nByte);
+ pReadr->iEof = pReadr->iReadOff + nByte;
+ *pnByte += nByte;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = vdbePmaReaderNext(pReadr);
+ }
+ return rc;
+}
+
+/*
+** A version of vdbeSorterCompare() that assumes that it has already been
+** determined that the first field of key1 is equal to the first field of
+** key2.
+*/
+static int vdbeSorterCompareTail(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ UnpackedRecord *r2 = pTask->pUnpacked;
+ if( *pbKey2Cached==0 ){
+ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
+ *pbKey2Cached = 1;
+ }
+ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1);
+}
+
+/*
+** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
+** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences
+** used by the comparison. Return the result of the comparison.
+**
+** If IN/OUT parameter *pbKey2Cached is true when this function is called,
+** it is assumed that (pTask->pUnpacked) contains the unpacked version
+** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked
+** version of key2 and *pbKey2Cached set to true before returning.
+**
+** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set
+** to SQLITE_NOMEM.
+*/
+static int vdbeSorterCompare(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ UnpackedRecord *r2 = pTask->pUnpacked;
+ if( !*pbKey2Cached ){
+ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
+ *pbKey2Cached = 1;
+ }
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
+}
+
+/*
+** A specially optimized version of vdbeSorterCompare() that assumes that
+** the first field of each key is a TEXT value and that the collation
+** sequence to compare them with is BINARY.
+*/
+static int vdbeSorterCompareText(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ const u8 * const p1 = (const u8 * const)pKey1;
+ const u8 * const p2 = (const u8 * const)pKey2;
+ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */
+ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */
+
+ int n1;
+ int n2;
+ int res;
+
+ getVarint32NR(&p1[1], n1);
+ getVarint32NR(&p2[1], n2);
+ res = memcmp(v1, v2, (MIN(n1, n2) - 13)/2);
+ if( res==0 ){
+ res = n1 - n2;
+ }
+
+ if( res==0 ){
+ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){
+ res = vdbeSorterCompareTail(
+ pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
+ );
+ }
+ }else{
+ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) );
+ if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){
+ res = res * -1;
+ }
+ }
+
+ return res;
+}
+
+/*
+** A specially optimized version of vdbeSorterCompare() that assumes that
+** the first field of each key is an INTEGER value.
+*/
+static int vdbeSorterCompareInt(
+ SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
+ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */
+ const void *pKey1, int nKey1, /* Left side of comparison */
+ const void *pKey2, int nKey2 /* Right side of comparison */
+){
+ const u8 * const p1 = (const u8 * const)pKey1;
+ const u8 * const p2 = (const u8 * const)pKey2;
+ const int s1 = p1[1]; /* Left hand serial type */
+ const int s2 = p2[1]; /* Right hand serial type */
+ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */
+ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */
+ int res; /* Return value */
+
+ assert( (s1>0 && s1<7) || s1==8 || s1==9 );
+ assert( (s2>0 && s2<7) || s2==8 || s2==9 );
+
+ if( s1==s2 ){
+ /* The two values have the same sign. Compare using memcmp(). */
+ static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 };
+ const u8 n = aLen[s1];
+ int i;
+ res = 0;
+ for(i=0; i<n; i++){
+ if( (res = v1[i] - v2[i])!=0 ){
+ if( ((v1[0] ^ v2[0]) & 0x80)!=0 ){
+ res = v1[0] & 0x80 ? -1 : +1;
+ }
+ break;
+ }
+ }
+ }else if( s1>7 && s2>7 ){
+ res = s1 - s2;
+ }else{
+ if( s2>7 ){
+ res = +1;
+ }else if( s1>7 ){
+ res = -1;
+ }else{
+ res = s1 - s2;
+ }
+ assert( res!=0 );
+
+ if( res>0 ){
+ if( *v1 & 0x80 ) res = -1;
+ }else{
+ if( *v2 & 0x80 ) res = +1;
+ }
+ }
+
+ if( res==0 ){
+ if( pTask->pSorter->pKeyInfo->nKeyField>1 ){
+ res = vdbeSorterCompareTail(
+ pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2
+ );
+ }
+ }else if( pTask->pSorter->pKeyInfo->aSortFlags[0] ){
+ assert( !(pTask->pSorter->pKeyInfo->aSortFlags[0]&KEYINFO_ORDER_BIGNULL) );
+ res = res * -1;
+ }
+
+ return res;
+}
+
+/*
+** Initialize the temporary index cursor just opened as a sorter cursor.
+**
+** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField)
+** to determine the number of fields that should be compared from the
+** records being sorted. However, if the value passed as argument nField
+** is non-zero and the sorter is able to guarantee a stable sort, nField
+** is used instead. This is used when sorting records for a CREATE INDEX
+** statement. In this case, keys are always delivered to the sorter in
+** order of the primary key, which happens to be make up the final part
+** of the records being sorted. So if the sort is stable, there is never
+** any reason to compare PK fields and they can be ignored for a small
+** performance boost.
+**
+** The sorter can guarantee a stable sort when running in single-threaded
+** mode, but not in multi-threaded mode.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterInit(
+ sqlite3 *db, /* Database connection (for malloc()) */
+ int nField, /* Number of key fields in each record */
+ VdbeCursor *pCsr /* Cursor that holds the new sorter */
+){
+ int pgsz; /* Page size of main database */
+ int i; /* Used to iterate through aTask[] */
+ VdbeSorter *pSorter; /* The new sorter */
+ KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */
+ int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */
+ int sz; /* Size of pSorter in bytes */
+ int rc = SQLITE_OK;
+#if SQLITE_MAX_WORKER_THREADS==0
+# define nWorker 0
+#else
+ int nWorker;
+#endif
+
+ /* Initialize the upper limit on the number of worker threads */
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){
+ nWorker = 0;
+ }else{
+ nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS];
+ }
+#endif
+
+ /* Do not allow the total number of threads (main thread + all workers)
+ ** to exceed the maximum merge count */
+#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
+ if( nWorker>=SORTER_MAX_MERGE_COUNT ){
+ nWorker = SORTER_MAX_MERGE_COUNT-1;
+ }
+#endif
+
+ assert( pCsr->pKeyInfo );
+ assert( !pCsr->isEphemeral );
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*);
+ sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);
+
+ pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
+ pCsr->uc.pSorter = pSorter;
+ if( pSorter==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ Btree *pBt = db->aDb[0].pBt;
+ pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
+ memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
+ pKeyInfo->db = 0;
+ if( nField && nWorker==0 ){
+ pKeyInfo->nKeyField = nField;
+ }
+ sqlite3BtreeEnter(pBt);
+ pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(pBt);
+ sqlite3BtreeLeave(pBt);
+ pSorter->nTask = nWorker + 1;
+ pSorter->iPrev = (u8)(nWorker - 1);
+ pSorter->bUseThreads = (pSorter->nTask>1);
+ pSorter->db = db;
+ for(i=0; i<pSorter->nTask; i++){
+ SortSubtask *pTask = &pSorter->aTask[i];
+ pTask->pSorter = pSorter;
+ }
+
+ if( !sqlite3TempInMemory(db) ){
+ i64 mxCache; /* Cache size in bytes*/
+ u32 szPma = sqlite3GlobalConfig.szPma;
+ pSorter->mnPmaSize = szPma * pgsz;
+
+ mxCache = db->aDb[0].pSchema->cache_size;
+ if( mxCache<0 ){
+ /* A negative cache-size value C indicates that the cache is abs(C)
+ ** KiB in size. */
+ mxCache = mxCache * -1024;
+ }else{
+ mxCache = mxCache * pgsz;
+ }
+ mxCache = MIN(mxCache, SQLITE_MAX_PMASZ);
+ pSorter->mxPmaSize = MAX(pSorter->mnPmaSize, (int)mxCache);
+
+ /* Avoid large memory allocations if the application has requested
+ ** SQLITE_CONFIG_SMALL_MALLOC. */
+ if( sqlite3GlobalConfig.bSmallMalloc==0 ){
+ assert( pSorter->iMemory==0 );
+ pSorter->nMemory = pgsz;
+ pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
+ if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+
+ if( pKeyInfo->nAllField<13
+ && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl)
+ && (pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL)==0
+ ){
+ pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT;
+ }
+ }
+
+ return rc;
+}
+#undef nWorker /* Defined at the top of this function */
+
+/*
+** Free the list of sorted records starting at pRecord.
+*/
+static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
+ SorterRecord *p;
+ SorterRecord *pNext;
+ for(p=pRecord; p; p=pNext){
+ pNext = p->u.pNext;
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Free all resources owned by the object indicated by argument pTask. All
+** fields of *pTask are zeroed before returning.
+*/
+static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){
+ sqlite3DbFree(db, pTask->pUnpacked);
+#if SQLITE_MAX_WORKER_THREADS>0
+ /* pTask->list.aMemory can only be non-zero if it was handed memory
+ ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */
+ if( pTask->list.aMemory ){
+ sqlite3_free(pTask->list.aMemory);
+ }else
+#endif
+ {
+ assert( pTask->list.aMemory==0 );
+ vdbeSorterRecordFree(0, pTask->list.pList);
+ }
+ if( pTask->file.pFd ){
+ sqlite3OsCloseFree(pTask->file.pFd);
+ }
+ if( pTask->file2.pFd ){
+ sqlite3OsCloseFree(pTask->file2.pFd);
+ }
+ memset(pTask, 0, sizeof(SortSubtask));
+}
+
+#ifdef SQLITE_DEBUG_SORTER_THREADS
+static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){
+ i64 t;
+ int iTask = (pTask - pTask->pSorter->aTask);
+ sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
+ fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent);
+}
+static void vdbeSorterRewindDebug(const char *zEvent){
+ i64 t = 0;
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
+ if( ALWAYS(pVfs) ) sqlite3OsCurrentTimeInt64(pVfs, &t);
+ fprintf(stderr, "%lld:X %s\n", t, zEvent);
+}
+static void vdbeSorterPopulateDebug(
+ SortSubtask *pTask,
+ const char *zEvent
+){
+ i64 t;
+ int iTask = (pTask - pTask->pSorter->aTask);
+ sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
+ fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent);
+}
+static void vdbeSorterBlockDebug(
+ SortSubtask *pTask,
+ int bBlocked,
+ const char *zEvent
+){
+ if( bBlocked ){
+ i64 t;
+ sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
+ fprintf(stderr, "%lld:main %s\n", t, zEvent);
+ }
+}
+#else
+# define vdbeSorterWorkDebug(x,y)
+# define vdbeSorterRewindDebug(y)
+# define vdbeSorterPopulateDebug(x,y)
+# define vdbeSorterBlockDebug(x,y,z)
+#endif
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** Join thread pTask->thread.
+*/
+static int vdbeSorterJoinThread(SortSubtask *pTask){
+ int rc = SQLITE_OK;
+ if( pTask->pThread ){
+#ifdef SQLITE_DEBUG_SORTER_THREADS
+ int bDone = pTask->bDone;
+#endif
+ void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR);
+ vdbeSorterBlockDebug(pTask, !bDone, "enter");
+ (void)sqlite3ThreadJoin(pTask->pThread, &pRet);
+ vdbeSorterBlockDebug(pTask, !bDone, "exit");
+ rc = SQLITE_PTR_TO_INT(pRet);
+ assert( pTask->bDone==1 );
+ pTask->bDone = 0;
+ pTask->pThread = 0;
+ }
+ return rc;
+}
+
+/*
+** Launch a background thread to run xTask(pIn).
+*/
+static int vdbeSorterCreateThread(
+ SortSubtask *pTask, /* Thread will use this task object */
+ void *(*xTask)(void*), /* Routine to run in a separate thread */
+ void *pIn /* Argument passed into xTask() */
+){
+ assert( pTask->pThread==0 && pTask->bDone==0 );
+ return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn);
+}
+
+/*
+** Join all outstanding threads launched by SorterWrite() to create
+** level-0 PMAs.
+*/
+static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){
+ int rc = rcin;
+ int i;
+
+ /* This function is always called by the main user thread.
+ **
+ ** If this function is being called after SorterRewind() has been called,
+ ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread
+ ** is currently attempt to join one of the other threads. To avoid a race
+ ** condition where this thread also attempts to join the same object, join
+ ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */
+ for(i=pSorter->nTask-1; i>=0; i--){
+ SortSubtask *pTask = &pSorter->aTask[i];
+ int rc2 = vdbeSorterJoinThread(pTask);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+ return rc;
+}
+#else
+# define vdbeSorterJoinAll(x,rcin) (rcin)
+# define vdbeSorterJoinThread(pTask) SQLITE_OK
+#endif
+
+/*
+** Allocate a new MergeEngine object capable of handling up to
+** nReader PmaReader inputs.
+**
+** nReader is automatically rounded up to the next power of two.
+** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up.
+*/
+static MergeEngine *vdbeMergeEngineNew(int nReader){
+ int N = 2; /* Smallest power of two >= nReader */
+ int nByte; /* Total bytes of space to allocate */
+ MergeEngine *pNew; /* Pointer to allocated object to return */
+
+ assert( nReader<=SORTER_MAX_MERGE_COUNT );
+
+ while( N<nReader ) N += N;
+ nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader));
+
+ pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte);
+ if( pNew ){
+ pNew->nTree = N;
+ pNew->pTask = 0;
+ pNew->aReadr = (PmaReader*)&pNew[1];
+ pNew->aTree = (int*)&pNew->aReadr[N];
+ }
+ return pNew;
+}
+
+/*
+** Free the MergeEngine object passed as the only argument.
+*/
+static void vdbeMergeEngineFree(MergeEngine *pMerger){
+ int i;
+ if( pMerger ){
+ for(i=0; i<pMerger->nTree; i++){
+ vdbePmaReaderClear(&pMerger->aReadr[i]);
+ }
+ }
+ sqlite3_free(pMerger);
+}
+
+/*
+** Free all resources associated with the IncrMerger object indicated by
+** the first argument.
+*/
+static void vdbeIncrFree(IncrMerger *pIncr){
+ if( pIncr ){
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pIncr->bUseThread ){
+ vdbeSorterJoinThread(pIncr->pTask);
+ if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd);
+ if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd);
+ }
+#endif
+ vdbeMergeEngineFree(pIncr->pMerger);
+ sqlite3_free(pIncr);
+ }
+}
+
+/*
+** Reset a sorting cursor back to its original empty state.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
+ int i;
+ (void)vdbeSorterJoinAll(pSorter, SQLITE_OK);
+ assert( pSorter->bUseThreads || pSorter->pReader==0 );
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pSorter->pReader ){
+ vdbePmaReaderClear(pSorter->pReader);
+ sqlite3DbFree(db, pSorter->pReader);
+ pSorter->pReader = 0;
+ }
+#endif
+ vdbeMergeEngineFree(pSorter->pMerger);
+ pSorter->pMerger = 0;
+ for(i=0; i<pSorter->nTask; i++){
+ SortSubtask *pTask = &pSorter->aTask[i];
+ vdbeSortSubtaskCleanup(db, pTask);
+ pTask->pSorter = pSorter;
+ }
+ if( pSorter->list.aMemory==0 ){
+ vdbeSorterRecordFree(0, pSorter->list.pList);
+ }
+ pSorter->list.pList = 0;
+ pSorter->list.szPMA = 0;
+ pSorter->bUsePMA = 0;
+ pSorter->iMemory = 0;
+ pSorter->mxKeysize = 0;
+ sqlite3DbFree(db, pSorter->pUnpacked);
+ pSorter->pUnpacked = 0;
+}
+
+/*
+** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
+ VdbeSorter *pSorter;
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ if( pSorter ){
+ sqlite3VdbeSorterReset(db, pSorter);
+ sqlite3_free(pSorter->list.aMemory);
+ sqlite3DbFree(db, pSorter);
+ pCsr->uc.pSorter = 0;
+ }
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** The first argument is a file-handle open on a temporary file. The file
+** is guaranteed to be nByte bytes or smaller in size. This function
+** attempts to extend the file to nByte bytes in size and to ensure that
+** the VFS has memory mapped it.
+**
+** Whether or not the file does end up memory mapped of course depends on
+** the specific VFS implementation.
+*/
+static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
+ if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
+ void *p = 0;
+ int chunksize = 4*1024;
+ sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize);
+ sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte);
+ sqlite3OsFetch(pFd, 0, (int)nByte, &p);
+ if( p ) sqlite3OsUnfetch(pFd, 0, p);
+ }
+}
+#else
+# define vdbeSorterExtendFile(x,y,z)
+#endif
+
+/*
+** Allocate space for a file-handle and open a temporary file. If successful,
+** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK.
+** Otherwise, set *ppFd to 0 and return an SQLite error code.
+*/
+static int vdbeSorterOpenTempFile(
+ sqlite3 *db, /* Database handle doing sort */
+ i64 nExtend, /* Attempt to extend file to this size */
+ sqlite3_file **ppFd
+){
+ int rc;
+ if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS;
+ rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
+ SQLITE_OPEN_TEMP_JOURNAL |
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc
+ );
+ if( rc==SQLITE_OK ){
+ i64 max = SQLITE_MAX_MMAP_SIZE;
+ sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max);
+ if( nExtend>0 ){
+ vdbeSorterExtendFile(db, *ppFd, nExtend);
+ }
+ }
+ return rc;
+}
+
+/*
+** If it has not already been allocated, allocate the UnpackedRecord
+** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or
+** if no allocation was required), or SQLITE_NOMEM otherwise.
+*/
+static int vdbeSortAllocUnpacked(SortSubtask *pTask){
+ if( pTask->pUnpacked==0 ){
+ pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pTask->pSorter->pKeyInfo);
+ if( pTask->pUnpacked==0 ) return SQLITE_NOMEM_BKPT;
+ pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nKeyField;
+ pTask->pUnpacked->errCode = 0;
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Merge the two sorted lists p1 and p2 into a single list.
+*/
+static SorterRecord *vdbeSorterMerge(
+ SortSubtask *pTask, /* Calling thread context */
+ SorterRecord *p1, /* First list to merge */
+ SorterRecord *p2 /* Second list to merge */
+){
+ SorterRecord *pFinal = 0;
+ SorterRecord **pp = &pFinal;
+ int bCached = 0;
+
+ assert( p1!=0 && p2!=0 );
+ for(;;){
+ int res;
+ res = pTask->xCompare(
+ pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal
+ );
+
+ if( res<=0 ){
+ *pp = p1;
+ pp = &p1->u.pNext;
+ p1 = p1->u.pNext;
+ if( p1==0 ){
+ *pp = p2;
+ break;
+ }
+ }else{
+ *pp = p2;
+ pp = &p2->u.pNext;
+ p2 = p2->u.pNext;
+ bCached = 0;
+ if( p2==0 ){
+ *pp = p1;
+ break;
+ }
+ }
+ }
+ return pFinal;
+}
+
+/*
+** Return the SorterCompare function to compare values collected by the
+** sorter object passed as the only argument.
+*/
+static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){
+ if( p->typeMask==SORTER_TYPE_INTEGER ){
+ return vdbeSorterCompareInt;
+ }else if( p->typeMask==SORTER_TYPE_TEXT ){
+ return vdbeSorterCompareText;
+ }
+ return vdbeSorterCompare;
+}
+
+/*
+** Sort the linked list of records headed at pTask->pList. Return
+** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if
+** an error occurs.
+*/
+static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){
+ int i;
+ SorterRecord *p;
+ int rc;
+ SorterRecord *aSlot[64];
+
+ rc = vdbeSortAllocUnpacked(pTask);
+ if( rc!=SQLITE_OK ) return rc;
+
+ p = pList->pList;
+ pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter);
+ memset(aSlot, 0, sizeof(aSlot));
+
+ while( p ){
+ SorterRecord *pNext;
+ if( pList->aMemory ){
+ if( (u8*)p==pList->aMemory ){
+ pNext = 0;
+ }else{
+ assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) );
+ pNext = (SorterRecord*)&pList->aMemory[p->u.iNext];
+ }
+ }else{
+ pNext = p->u.pNext;
+ }
+
+ p->u.pNext = 0;
+ for(i=0; aSlot[i]; i++){
+ p = vdbeSorterMerge(pTask, p, aSlot[i]);
+ aSlot[i] = 0;
+ }
+ aSlot[i] = p;
+ p = pNext;
+ }
+
+ p = 0;
+ for(i=0; i<ArraySize(aSlot); i++){
+ if( aSlot[i]==0 ) continue;
+ p = p ? vdbeSorterMerge(pTask, p, aSlot[i]) : aSlot[i];
+ }
+ pList->pList = p;
+
+ assert( pTask->pUnpacked->errCode==SQLITE_OK
+ || pTask->pUnpacked->errCode==SQLITE_NOMEM
+ );
+ return pTask->pUnpacked->errCode;
+}
+
+/*
+** Initialize a PMA-writer object.
+*/
+static void vdbePmaWriterInit(
+ sqlite3_file *pFd, /* File handle to write to */
+ PmaWriter *p, /* Object to populate */
+ int nBuf, /* Buffer size */
+ i64 iStart /* Offset of pFd to begin writing at */
+){
+ memset(p, 0, sizeof(PmaWriter));
+ p->aBuffer = (u8*)sqlite3Malloc(nBuf);
+ if( !p->aBuffer ){
+ p->eFWErr = SQLITE_NOMEM_BKPT;
+ }else{
+ p->iBufEnd = p->iBufStart = (iStart % nBuf);
+ p->iWriteOff = iStart - p->iBufStart;
+ p->nBuffer = nBuf;
+ p->pFd = pFd;
+ }
+}
+
+/*
+** Write nData bytes of data to the PMA. Return SQLITE_OK
+** if successful, or an SQLite error code if an error occurs.
+*/
+static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){
+ int nRem = nData;
+ while( nRem>0 && p->eFWErr==0 ){
+ int nCopy = nRem;
+ if( nCopy>(p->nBuffer - p->iBufEnd) ){
+ nCopy = p->nBuffer - p->iBufEnd;
+ }
+
+ memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
+ p->iBufEnd += nCopy;
+ if( p->iBufEnd==p->nBuffer ){
+ p->eFWErr = sqlite3OsWrite(p->pFd,
+ &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
+ p->iWriteOff + p->iBufStart
+ );
+ p->iBufStart = p->iBufEnd = 0;
+ p->iWriteOff += p->nBuffer;
+ }
+ assert( p->iBufEnd<p->nBuffer );
+
+ nRem -= nCopy;
+ }
+}
+
+/*
+** Flush any buffered data to disk and clean up the PMA-writer object.
+** The results of using the PMA-writer after this call are undefined.
+** Return SQLITE_OK if flushing the buffered data succeeds or is not
+** required. Otherwise, return an SQLite error code.
+**
+** Before returning, set *piEof to the offset immediately following the
+** last byte written to the file.
+*/
+static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){
+ int rc;
+ if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
+ p->eFWErr = sqlite3OsWrite(p->pFd,
+ &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
+ p->iWriteOff + p->iBufStart
+ );
+ }
+ *piEof = (p->iWriteOff + p->iBufEnd);
+ sqlite3_free(p->aBuffer);
+ rc = p->eFWErr;
+ memset(p, 0, sizeof(PmaWriter));
+ return rc;
+}
+
+/*
+** Write value iVal encoded as a varint to the PMA. Return
+** SQLITE_OK if successful, or an SQLite error code if an error occurs.
+*/
+static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){
+ int nByte;
+ u8 aByte[10];
+ nByte = sqlite3PutVarint(aByte, iVal);
+ vdbePmaWriteBlob(p, aByte, nByte);
+}
+
+/*
+** Write the current contents of in-memory linked-list pList to a level-0
+** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if
+** successful, or an SQLite error code otherwise.
+**
+** The format of a PMA is:
+**
+** * A varint. This varint contains the total number of bytes of content
+** in the PMA (not including the varint itself).
+**
+** * One or more records packed end-to-end in order of ascending keys.
+** Each record consists of a varint followed by a blob of data (the
+** key). The varint is the number of bytes in the blob of data.
+*/
+static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){
+ sqlite3 *db = pTask->pSorter->db;
+ int rc = SQLITE_OK; /* Return code */
+ PmaWriter writer; /* Object used to write to the file */
+
+#ifdef SQLITE_DEBUG
+ /* Set iSz to the expected size of file pTask->file after writing the PMA.
+ ** This is used by an assert() statement at the end of this function. */
+ i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof;
+#endif
+
+ vdbeSorterWorkDebug(pTask, "enter");
+ memset(&writer, 0, sizeof(PmaWriter));
+ assert( pList->szPMA>0 );
+
+ /* If the first temporary PMA file has not been opened, open it now. */
+ if( pTask->file.pFd==0 ){
+ rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd);
+ assert( rc!=SQLITE_OK || pTask->file.pFd );
+ assert( pTask->file.iEof==0 );
+ assert( pTask->nPMA==0 );
+ }
+
+ /* Try to get the file to memory map */
+ if( rc==SQLITE_OK ){
+ vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9);
+ }
+
+ /* Sort the list */
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterSort(pTask, pList);
+ }
+
+ if( rc==SQLITE_OK ){
+ SorterRecord *p;
+ SorterRecord *pNext = 0;
+
+ vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz,
+ pTask->file.iEof);
+ pTask->nPMA++;
+ vdbePmaWriteVarint(&writer, pList->szPMA);
+ for(p=pList->pList; p; p=pNext){
+ pNext = p->u.pNext;
+ vdbePmaWriteVarint(&writer, p->nVal);
+ vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal);
+ if( pList->aMemory==0 ) sqlite3_free(p);
+ }
+ pList->pList = p;
+ rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof);
+ }
+
+ vdbeSorterWorkDebug(pTask, "exit");
+ assert( rc!=SQLITE_OK || pList->pList==0 );
+ assert( rc!=SQLITE_OK || pTask->file.iEof==iSz );
+ return rc;
+}
+
+/*
+** Advance the MergeEngine to its next entry.
+** Set *pbEof to true there is no next entry because
+** the MergeEngine has reached the end of all its inputs.
+**
+** Return SQLITE_OK if successful or an error code if an error occurs.
+*/
+static int vdbeMergeEngineStep(
+ MergeEngine *pMerger, /* The merge engine to advance to the next row */
+ int *pbEof /* Set TRUE at EOF. Set false for more content */
+){
+ int rc;
+ int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */
+ SortSubtask *pTask = pMerger->pTask;
+
+ /* Advance the current PmaReader */
+ rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]);
+
+ /* Update contents of aTree[] */
+ if( rc==SQLITE_OK ){
+ int i; /* Index of aTree[] to recalculate */
+ PmaReader *pReadr1; /* First PmaReader to compare */
+ PmaReader *pReadr2; /* Second PmaReader to compare */
+ int bCached = 0;
+
+ /* Find the first two PmaReaders to compare. The one that was just
+ ** advanced (iPrev) and the one next to it in the array. */
+ pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)];
+ pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)];
+
+ for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){
+ /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */
+ int iRes;
+ if( pReadr1->pFd==0 ){
+ iRes = +1;
+ }else if( pReadr2->pFd==0 ){
+ iRes = -1;
+ }else{
+ iRes = pTask->xCompare(pTask, &bCached,
+ pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey
+ );
+ }
+
+ /* If pReadr1 contained the smaller value, set aTree[i] to its index.
+ ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this
+ ** case there is no cache of pReadr2 in pTask->pUnpacked, so set
+ ** pKey2 to point to the record belonging to pReadr2.
+ **
+ ** Alternatively, if pReadr2 contains the smaller of the two values,
+ ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare()
+ ** was actually called above, then pTask->pUnpacked now contains
+ ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent
+ ** vdbeSorterCompare() from decoding pReadr2 again.
+ **
+ ** If the two values were equal, then the value from the oldest
+ ** PMA should be considered smaller. The VdbeSorter.aReadr[] array
+ ** is sorted from oldest to newest, so pReadr1 contains older values
+ ** than pReadr2 iff (pReadr1<pReadr2). */
+ if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){
+ pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr);
+ pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
+ bCached = 0;
+ }else{
+ if( pReadr1->pFd ) bCached = 0;
+ pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr);
+ pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
+ }
+ }
+ *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0);
+ }
+
+ return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc);
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** The main routine for background threads that write level-0 PMAs.
+*/
+static void *vdbeSorterFlushThread(void *pCtx){
+ SortSubtask *pTask = (SortSubtask*)pCtx;
+ int rc; /* Return code */
+ assert( pTask->bDone==0 );
+ rc = vdbeSorterListToPMA(pTask, &pTask->list);
+ pTask->bDone = 1;
+ return SQLITE_INT_TO_PTR(rc);
+}
+#endif /* SQLITE_MAX_WORKER_THREADS>0 */
+
+/*
+** Flush the current contents of VdbeSorter.list to a new PMA, possibly
+** using a background thread.
+*/
+static int vdbeSorterFlushPMA(VdbeSorter *pSorter){
+#if SQLITE_MAX_WORKER_THREADS==0
+ pSorter->bUsePMA = 1;
+ return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list);
+#else
+ int rc = SQLITE_OK;
+ int i;
+ SortSubtask *pTask = 0; /* Thread context used to create new PMA */
+ int nWorker = (pSorter->nTask-1);
+
+ /* Set the flag to indicate that at least one PMA has been written.
+ ** Or will be, anyhow. */
+ pSorter->bUsePMA = 1;
+
+ /* Select a sub-task to sort and flush the current list of in-memory
+ ** records to disk. If the sorter is running in multi-threaded mode,
+ ** round-robin between the first (pSorter->nTask-1) tasks. Except, if
+ ** the background thread from a sub-tasks previous turn is still running,
+ ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy,
+ ** fall back to using the final sub-task. The first (pSorter->nTask-1)
+ ** sub-tasks are preferred as they use background threads - the final
+ ** sub-task uses the main thread. */
+ for(i=0; i<nWorker; i++){
+ int iTest = (pSorter->iPrev + i + 1) % nWorker;
+ pTask = &pSorter->aTask[iTest];
+ if( pTask->bDone ){
+ rc = vdbeSorterJoinThread(pTask);
+ }
+ if( rc!=SQLITE_OK || pTask->pThread==0 ) break;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( i==nWorker ){
+ /* Use the foreground thread for this operation */
+ rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list);
+ }else{
+ /* Launch a background thread for this operation */
+ u8 *aMem;
+ void *pCtx;
+
+ assert( pTask!=0 );
+ assert( pTask->pThread==0 && pTask->bDone==0 );
+ assert( pTask->list.pList==0 );
+ assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 );
+
+ aMem = pTask->list.aMemory;
+ pCtx = (void*)pTask;
+ pSorter->iPrev = (u8)(pTask - pSorter->aTask);
+ pTask->list = pSorter->list;
+ pSorter->list.pList = 0;
+ pSorter->list.szPMA = 0;
+ if( aMem ){
+ pSorter->list.aMemory = aMem;
+ pSorter->nMemory = sqlite3MallocSize(aMem);
+ }else if( pSorter->list.aMemory ){
+ pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory);
+ if( !pSorter->list.aMemory ) return SQLITE_NOMEM_BKPT;
+ }
+
+ rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx);
+ }
+ }
+
+ return rc;
+#endif /* SQLITE_MAX_WORKER_THREADS!=0 */
+}
+
+/*
+** Add a record to the sorter.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
+ const VdbeCursor *pCsr, /* Sorter cursor */
+ Mem *pVal /* Memory cell containing record */
+){
+ VdbeSorter *pSorter;
+ int rc = SQLITE_OK; /* Return Code */
+ SorterRecord *pNew; /* New list element */
+ int bFlush; /* True to flush contents of memory to PMA */
+ i64 nReq; /* Bytes of memory required */
+ i64 nPMA; /* Bytes of PMA space required */
+ int t; /* serial type of first record field */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ getVarint32NR((const u8*)&pVal->z[1], t);
+ if( t>0 && t<10 && t!=7 ){
+ pSorter->typeMask &= SORTER_TYPE_INTEGER;
+ }else if( t>10 && (t & 0x01) ){
+ pSorter->typeMask &= SORTER_TYPE_TEXT;
+ }else{
+ pSorter->typeMask = 0;
+ }
+
+ assert( pSorter );
+
+ /* Figure out whether or not the current contents of memory should be
+ ** flushed to a PMA before continuing. If so, do so.
+ **
+ ** If using the single large allocation mode (pSorter->aMemory!=0), then
+ ** flush the contents of memory to a new PMA if (a) at least one value is
+ ** already in memory and (b) the new value will not fit in memory.
+ **
+ ** Or, if using separate allocations for each record, flush the contents
+ ** of memory to a PMA if either of the following are true:
+ **
+ ** * The total memory allocated for the in-memory list is greater
+ ** than (page-size * cache-size), or
+ **
+ ** * The total memory allocated for the in-memory list is greater
+ ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
+ */
+ nReq = pVal->n + sizeof(SorterRecord);
+ nPMA = pVal->n + sqlite3VarintLen(pVal->n);
+ if( pSorter->mxPmaSize ){
+ if( pSorter->list.aMemory ){
+ bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize;
+ }else{
+ bFlush = (
+ (pSorter->list.szPMA > pSorter->mxPmaSize)
+ || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull())
+ );
+ }
+ if( bFlush ){
+ rc = vdbeSorterFlushPMA(pSorter);
+ pSorter->list.szPMA = 0;
+ pSorter->iMemory = 0;
+ assert( rc!=SQLITE_OK || pSorter->list.pList==0 );
+ }
+ }
+
+ pSorter->list.szPMA += nPMA;
+ if( nPMA>pSorter->mxKeysize ){
+ pSorter->mxKeysize = nPMA;
+ }
+
+ if( pSorter->list.aMemory ){
+ int nMin = pSorter->iMemory + nReq;
+
+ if( nMin>pSorter->nMemory ){
+ u8 *aNew;
+ sqlite3_int64 nNew = 2 * (sqlite3_int64)pSorter->nMemory;
+ int iListOff = -1;
+ if( pSorter->list.pList ){
+ iListOff = (u8*)pSorter->list.pList - pSorter->list.aMemory;
+ }
+ while( nNew < nMin ) nNew = nNew*2;
+ if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
+ if( nNew < nMin ) nNew = nMin;
+ aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
+ if( !aNew ) return SQLITE_NOMEM_BKPT;
+ if( iListOff>=0 ){
+ pSorter->list.pList = (SorterRecord*)&aNew[iListOff];
+ }
+ pSorter->list.aMemory = aNew;
+ pSorter->nMemory = nNew;
+ }
+
+ pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
+ pSorter->iMemory += ROUND8(nReq);
+ if( pSorter->list.pList ){
+ pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);
+ }
+ }else{
+ pNew = (SorterRecord *)sqlite3Malloc(nReq);
+ if( pNew==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pNew->u.pNext = pSorter->list.pList;
+ }
+
+ memcpy(SRVAL(pNew), pVal->z, pVal->n);
+ pNew->nVal = pVal->n;
+ pSorter->list.pList = pNew;
+
+ return rc;
+}
+
+/*
+** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format
+** of the data stored in aFile[1] is the same as that used by regular PMAs,
+** except that the number-of-bytes varint is omitted from the start.
+*/
+static int vdbeIncrPopulate(IncrMerger *pIncr){
+ int rc = SQLITE_OK;
+ int rc2;
+ i64 iStart = pIncr->iStartOff;
+ SorterFile *pOut = &pIncr->aFile[1];
+ SortSubtask *pTask = pIncr->pTask;
+ MergeEngine *pMerger = pIncr->pMerger;
+ PmaWriter writer;
+ assert( pIncr->bEof==0 );
+
+ vdbeSorterPopulateDebug(pTask, "enter");
+
+ vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart);
+ while( rc==SQLITE_OK ){
+ int dummy;
+ PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ];
+ int nKey = pReader->nKey;
+ i64 iEof = writer.iWriteOff + writer.iBufEnd;
+
+ /* Check if the output file is full or if the input has been exhausted.
+ ** In either case exit the loop. */
+ if( pReader->pFd==0 ) break;
+ if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break;
+
+ /* Write the next key to the output. */
+ vdbePmaWriteVarint(&writer, nKey);
+ vdbePmaWriteBlob(&writer, pReader->aKey, nKey);
+ assert( pIncr->pMerger->pTask==pTask );
+ rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy);
+ }
+
+ rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof);
+ if( rc==SQLITE_OK ) rc = rc2;
+ vdbeSorterPopulateDebug(pTask, "exit");
+ return rc;
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** The main routine for background threads that populate aFile[1] of
+** multi-threaded IncrMerger objects.
+*/
+static void *vdbeIncrPopulateThread(void *pCtx){
+ IncrMerger *pIncr = (IncrMerger*)pCtx;
+ void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) );
+ pIncr->pTask->bDone = 1;
+ return pRet;
+}
+
+/*
+** Launch a background thread to populate aFile[1] of pIncr.
+*/
+static int vdbeIncrBgPopulate(IncrMerger *pIncr){
+ void *p = (void*)pIncr;
+ assert( pIncr->bUseThread );
+ return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p);
+}
+#endif
+
+/*
+** This function is called when the PmaReader corresponding to pIncr has
+** finished reading the contents of aFile[0]. Its purpose is to "refill"
+** aFile[0] such that the PmaReader should start rereading it from the
+** beginning.
+**
+** For single-threaded objects, this is accomplished by literally reading
+** keys from pIncr->pMerger and repopulating aFile[0].
+**
+** For multi-threaded objects, all that is required is to wait until the
+** background thread is finished (if it is not already) and then swap
+** aFile[0] and aFile[1] in place. If the contents of pMerger have not
+** been exhausted, this function also launches a new background thread
+** to populate the new aFile[1].
+**
+** SQLITE_OK is returned on success, or an SQLite error code otherwise.
+*/
+static int vdbeIncrSwap(IncrMerger *pIncr){
+ int rc = SQLITE_OK;
+
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pIncr->bUseThread ){
+ rc = vdbeSorterJoinThread(pIncr->pTask);
+
+ if( rc==SQLITE_OK ){
+ SorterFile f0 = pIncr->aFile[0];
+ pIncr->aFile[0] = pIncr->aFile[1];
+ pIncr->aFile[1] = f0;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
+ pIncr->bEof = 1;
+ }else{
+ rc = vdbeIncrBgPopulate(pIncr);
+ }
+ }
+ }else
+#endif
+ {
+ rc = vdbeIncrPopulate(pIncr);
+ pIncr->aFile[0] = pIncr->aFile[1];
+ if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
+ pIncr->bEof = 1;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Allocate and return a new IncrMerger object to read data from pMerger.
+**
+** If an OOM condition is encountered, return NULL. In this case free the
+** pMerger argument before returning.
+*/
+static int vdbeIncrMergerNew(
+ SortSubtask *pTask, /* The thread that will be using the new IncrMerger */
+ MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */
+ IncrMerger **ppOut /* Write the new IncrMerger here */
+){
+ int rc = SQLITE_OK;
+ IncrMerger *pIncr = *ppOut = (IncrMerger*)
+ (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr)));
+ if( pIncr ){
+ pIncr->pMerger = pMerger;
+ pIncr->pTask = pTask;
+ pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2);
+ pTask->file2.iEof += pIncr->mxSz;
+ }else{
+ vdbeMergeEngineFree(pMerger);
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ assert( *ppOut!=0 || rc!=SQLITE_OK );
+ return rc;
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** Set the "use-threads" flag on object pIncr.
+*/
+static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){
+ pIncr->bUseThread = 1;
+ pIncr->pTask->file2.iEof -= pIncr->mxSz;
+}
+#endif /* SQLITE_MAX_WORKER_THREADS>0 */
+
+
+
+/*
+** Recompute pMerger->aTree[iOut] by comparing the next keys on the
+** two PmaReaders that feed that entry. Neither of the PmaReaders
+** are advanced. This routine merely does the comparison.
+*/
+static void vdbeMergeEngineCompare(
+ MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */
+ int iOut /* Store the result in pMerger->aTree[iOut] */
+){
+ int i1;
+ int i2;
+ int iRes;
+ PmaReader *p1;
+ PmaReader *p2;
+
+ assert( iOut<pMerger->nTree && iOut>0 );
+
+ if( iOut>=(pMerger->nTree/2) ){
+ i1 = (iOut - pMerger->nTree/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pMerger->aTree[iOut*2];
+ i2 = pMerger->aTree[iOut*2+1];
+ }
+
+ p1 = &pMerger->aReadr[i1];
+ p2 = &pMerger->aReadr[i2];
+
+ if( p1->pFd==0 ){
+ iRes = i2;
+ }else if( p2->pFd==0 ){
+ iRes = i1;
+ }else{
+ SortSubtask *pTask = pMerger->pTask;
+ int bCached = 0;
+ int res;
+ assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */
+ res = pTask->xCompare(
+ pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey
+ );
+ if( res<=0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pMerger->aTree[iOut] = iRes;
+}
+
+/*
+** Allowed values for the eMode parameter to vdbeMergeEngineInit()
+** and vdbePmaReaderIncrMergeInit().
+**
+** Only INCRINIT_NORMAL is valid in single-threaded builds (when
+** SQLITE_MAX_WORKER_THREADS==0). The other values are only used
+** when there exists one or more separate worker threads.
+*/
+#define INCRINIT_NORMAL 0
+#define INCRINIT_TASK 1
+#define INCRINIT_ROOT 2
+
+/*
+** Forward reference required as the vdbeIncrMergeInit() and
+** vdbePmaReaderIncrInit() routines are called mutually recursively when
+** building a merge tree.
+*/
+static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode);
+
+/*
+** Initialize the MergeEngine object passed as the second argument. Once this
+** function returns, the first key of merged data may be read from the
+** MergeEngine object in the usual fashion.
+**
+** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge
+** objects attached to the PmaReader objects that the merger reads from have
+** already been populated, but that they have not yet populated aFile[0] and
+** set the PmaReader objects up to read from it. In this case all that is
+** required is to call vdbePmaReaderNext() on each PmaReader to point it at
+** its first key.
+**
+** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use
+** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data
+** to pMerger.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int vdbeMergeEngineInit(
+ SortSubtask *pTask, /* Thread that will run pMerger */
+ MergeEngine *pMerger, /* MergeEngine to initialize */
+ int eMode /* One of the INCRINIT_XXX constants */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* For looping over PmaReader objects */
+ int nTree; /* Number of subtrees to merge */
+
+ /* Failure to allocate the merge would have been detected prior to
+ ** invoking this routine */
+ assert( pMerger!=0 );
+
+ /* eMode is always INCRINIT_NORMAL in single-threaded mode */
+ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
+
+ /* Verify that the MergeEngine is assigned to a single thread */
+ assert( pMerger->pTask==0 );
+ pMerger->pTask = pTask;
+
+ nTree = pMerger->nTree;
+ for(i=0; i<nTree; i++){
+ if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){
+ /* PmaReaders should be normally initialized in order, as if they are
+ ** reading from the same temp file this makes for more linear file IO.
+ ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is
+ ** in use it will block the vdbePmaReaderNext() call while it uses
+ ** the main thread to fill its buffer. So calling PmaReaderNext()
+ ** on this PmaReader before any of the multi-threaded PmaReaders takes
+ ** better advantage of multi-processor hardware. */
+ rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]);
+ }else{
+ rc = vdbePmaReaderIncrInit(&pMerger->aReadr[i], INCRINIT_NORMAL);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ for(i=pMerger->nTree-1; i>0; i--){
+ vdbeMergeEngineCompare(pMerger, i);
+ }
+ return pTask->pUnpacked->errCode;
+}
+
+/*
+** The PmaReader passed as the first argument is guaranteed to be an
+** incremental-reader (pReadr->pIncr!=0). This function serves to open
+** and/or initialize the temp file related fields of the IncrMerge
+** object at (pReadr->pIncr).
+**
+** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders
+** in the sub-tree headed by pReadr are also initialized. Data is then
+** loaded into the buffers belonging to pReadr and it is set to point to
+** the first key in its range.
+**
+** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed
+** to be a multi-threaded PmaReader and this function is being called in a
+** background thread. In this case all PmaReaders in the sub-tree are
+** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to
+** pReadr is populated. However, pReadr itself is not set up to point
+** to its first key. A call to vdbePmaReaderNext() is still required to do
+** that.
+**
+** The reason this function does not call vdbePmaReaderNext() immediately
+** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has
+** to block on thread (pTask->thread) before accessing aFile[1]. But, since
+** this entire function is being run by thread (pTask->thread), that will
+** lead to the current background thread attempting to join itself.
+**
+** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed
+** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all
+** child-trees have already been initialized using IncrInit(INCRINIT_TASK).
+** In this case vdbePmaReaderNext() is called on all child PmaReaders and
+** the current PmaReader set to point to the first key in its range.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){
+ int rc = SQLITE_OK;
+ IncrMerger *pIncr = pReadr->pIncr;
+ SortSubtask *pTask = pIncr->pTask;
+ sqlite3 *db = pTask->pSorter->db;
+
+ /* eMode is always INCRINIT_NORMAL in single-threaded mode */
+ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
+
+ rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode);
+
+ /* Set up the required files for pIncr. A multi-threaded IncrMerge object
+ ** requires two temp files to itself, whereas a single-threaded object
+ ** only requires a region of pTask->file2. */
+ if( rc==SQLITE_OK ){
+ int mxSz = pIncr->mxSz;
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pIncr->bUseThread ){
+ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd);
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd);
+ }
+ }else
+#endif
+ /*if( !pIncr->bUseThread )*/{
+ if( pTask->file2.pFd==0 ){
+ assert( pTask->file2.iEof>0 );
+ rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd);
+ pTask->file2.iEof = 0;
+ }
+ if( rc==SQLITE_OK ){
+ pIncr->aFile[1].pFd = pTask->file2.pFd;
+ pIncr->iStartOff = pTask->file2.iEof;
+ pTask->file2.iEof += mxSz;
+ }
+ }
+ }
+
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( rc==SQLITE_OK && pIncr->bUseThread ){
+ /* Use the current thread to populate aFile[1], even though this
+ ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object,
+ ** then this function is already running in background thread
+ ** pIncr->pTask->thread.
+ **
+ ** If this is the INCRINIT_ROOT object, then it is running in the
+ ** main VDBE thread. But that is Ok, as that thread cannot return
+ ** control to the VDBE or proceed with anything useful until the
+ ** first results are ready from this merger object anyway.
+ */
+ assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK );
+ rc = vdbeIncrPopulate(pIncr);
+ }
+#endif
+
+ if( rc==SQLITE_OK && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK) ){
+ rc = vdbePmaReaderNext(pReadr);
+ }
+
+ return rc;
+}
+
+#if SQLITE_MAX_WORKER_THREADS>0
+/*
+** The main routine for vdbePmaReaderIncrMergeInit() operations run in
+** background threads.
+*/
+static void *vdbePmaReaderBgIncrInit(void *pCtx){
+ PmaReader *pReader = (PmaReader*)pCtx;
+ void *pRet = SQLITE_INT_TO_PTR(
+ vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK)
+ );
+ pReader->pIncr->pTask->bDone = 1;
+ return pRet;
+}
+#endif
+
+/*
+** If the PmaReader passed as the first argument is not an incremental-reader
+** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes
+** the vdbePmaReaderIncrMergeInit() function with the parameters passed to
+** this routine to initialize the incremental merge.
+**
+** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1),
+** then a background thread is launched to call vdbePmaReaderIncrMergeInit().
+** Or, if the IncrMerger is single threaded, the same function is called
+** using the current thread.
+*/
+static int vdbePmaReaderIncrInit(PmaReader *pReadr, int eMode){
+ IncrMerger *pIncr = pReadr->pIncr; /* Incremental merger */
+ int rc = SQLITE_OK; /* Return code */
+ if( pIncr ){
+#if SQLITE_MAX_WORKER_THREADS>0
+ assert( pIncr->bUseThread==0 || eMode==INCRINIT_TASK );
+ if( pIncr->bUseThread ){
+ void *pCtx = (void*)pReadr;
+ rc = vdbeSorterCreateThread(pIncr->pTask, vdbePmaReaderBgIncrInit, pCtx);
+ }else
+#endif
+ {
+ rc = vdbePmaReaderIncrMergeInit(pReadr, eMode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Allocate a new MergeEngine object to merge the contents of nPMA level-0
+** PMAs from pTask->file. If no error occurs, set *ppOut to point to
+** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut
+** to NULL and return an SQLite error code.
+**
+** When this function is called, *piOffset is set to the offset of the
+** first PMA to read from pTask->file. Assuming no error occurs, it is
+** set to the offset immediately following the last byte of the last
+** PMA before returning. If an error does occur, then the final value of
+** *piOffset is undefined.
+*/
+static int vdbeMergeEngineLevel0(
+ SortSubtask *pTask, /* Sorter task to read from */
+ int nPMA, /* Number of PMAs to read */
+ i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */
+ MergeEngine **ppOut /* OUT: New merge-engine */
+){
+ MergeEngine *pNew; /* Merge engine to return */
+ i64 iOff = *piOffset;
+ int i;
+ int rc = SQLITE_OK;
+
+ *ppOut = pNew = vdbeMergeEngineNew(nPMA);
+ if( pNew==0 ) rc = SQLITE_NOMEM_BKPT;
+
+ for(i=0; i<nPMA && rc==SQLITE_OK; i++){
+ i64 nDummy = 0;
+ PmaReader *pReadr = &pNew->aReadr[i];
+ rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy);
+ iOff = pReadr->iEof;
+ }
+
+ if( rc!=SQLITE_OK ){
+ vdbeMergeEngineFree(pNew);
+ *ppOut = 0;
+ }
+ *piOffset = iOff;
+ return rc;
+}
+
+/*
+** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of
+** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes.
+**
+** i.e.
+**
+** nPMA<=16 -> TreeDepth() == 0
+** nPMA<=256 -> TreeDepth() == 1
+** nPMA<=65536 -> TreeDepth() == 2
+*/
+static int vdbeSorterTreeDepth(int nPMA){
+ int nDepth = 0;
+ i64 nDiv = SORTER_MAX_MERGE_COUNT;
+ while( nDiv < (i64)nPMA ){
+ nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
+ nDepth++;
+ }
+ return nDepth;
+}
+
+/*
+** pRoot is the root of an incremental merge-tree with depth nDepth (according
+** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the
+** tree, counting from zero. This function adds pLeaf to the tree.
+**
+** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error
+** code is returned and pLeaf is freed.
+*/
+static int vdbeSorterAddToTree(
+ SortSubtask *pTask, /* Task context */
+ int nDepth, /* Depth of tree according to TreeDepth() */
+ int iSeq, /* Sequence number of leaf within tree */
+ MergeEngine *pRoot, /* Root of tree */
+ MergeEngine *pLeaf /* Leaf to add to tree */
+){
+ int rc = SQLITE_OK;
+ int nDiv = 1;
+ int i;
+ MergeEngine *p = pRoot;
+ IncrMerger *pIncr;
+
+ rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr);
+
+ for(i=1; i<nDepth; i++){
+ nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
+ }
+
+ for(i=1; i<nDepth && rc==SQLITE_OK; i++){
+ int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT;
+ PmaReader *pReadr = &p->aReadr[iIter];
+
+ if( pReadr->pIncr==0 ){
+ MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ p = pReadr->pIncr->pMerger;
+ nDiv = nDiv / SORTER_MAX_MERGE_COUNT;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr;
+ }else{
+ vdbeIncrFree(pIncr);
+ }
+ return rc;
+}
+
+/*
+** This function is called as part of a SorterRewind() operation on a sorter
+** that has already written two or more level-0 PMAs to one or more temp
+** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that
+** can be used to incrementally merge all PMAs on disk.
+**
+** If successful, SQLITE_OK is returned and *ppOut set to point to the
+** MergeEngine object at the root of the tree before returning. Or, if an
+** error occurs, an SQLite error code is returned and the final value
+** of *ppOut is undefined.
+*/
+static int vdbeSorterMergeTreeBuild(
+ VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */
+ MergeEngine **ppOut /* Write the MergeEngine here */
+){
+ MergeEngine *pMain = 0;
+ int rc = SQLITE_OK;
+ int iTask;
+
+#if SQLITE_MAX_WORKER_THREADS>0
+ /* If the sorter uses more than one task, then create the top-level
+ ** MergeEngine here. This MergeEngine will read data from exactly
+ ** one PmaReader per sub-task. */
+ assert( pSorter->bUseThreads || pSorter->nTask==1 );
+ if( pSorter->nTask>1 ){
+ pMain = vdbeMergeEngineNew(pSorter->nTask);
+ if( pMain==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+#endif
+
+ for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
+ SortSubtask *pTask = &pSorter->aTask[iTask];
+ assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 );
+ if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){
+ MergeEngine *pRoot = 0; /* Root node of tree for this task */
+ int nDepth = vdbeSorterTreeDepth(pTask->nPMA);
+ i64 iReadOff = 0;
+
+ if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){
+ rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot);
+ }else{
+ int i;
+ int iSeq = 0;
+ pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
+ if( pRoot==0 ) rc = SQLITE_NOMEM_BKPT;
+ for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){
+ MergeEngine *pMerger = 0; /* New level-0 PMA merger */
+ int nReader; /* Number of level-0 PMAs to merge */
+
+ nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT);
+ rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger);
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pMain!=0 ){
+ rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr);
+ }else
+#endif
+ {
+ assert( pMain==0 );
+ pMain = pRoot;
+ }
+ }else{
+ vdbeMergeEngineFree(pRoot);
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ vdbeMergeEngineFree(pMain);
+ pMain = 0;
+ }
+ *ppOut = pMain;
+ return rc;
+}
+
+/*
+** This function is called as part of an sqlite3VdbeSorterRewind() operation
+** on a sorter that has written two or more PMAs to temporary files. It sets
+** up either VdbeSorter.pMerger (for single threaded sorters) or pReader
+** (for multi-threaded sorters) so that it can be used to iterate through
+** all records stored in the sorter.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int vdbeSorterSetupMerge(VdbeSorter *pSorter){
+ int rc; /* Return code */
+ SortSubtask *pTask0 = &pSorter->aTask[0];
+ MergeEngine *pMain = 0;
+#if SQLITE_MAX_WORKER_THREADS
+ sqlite3 *db = pTask0->pSorter->db;
+ int i;
+ SorterCompare xCompare = vdbeSorterGetCompare(pSorter);
+ for(i=0; i<pSorter->nTask; i++){
+ pSorter->aTask[i].xCompare = xCompare;
+ }
+#endif
+
+ rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
+ if( rc==SQLITE_OK ){
+#if SQLITE_MAX_WORKER_THREADS
+ assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
+ if( pSorter->bUseThreads ){
+ int iTask;
+ PmaReader *pReadr = 0;
+ SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
+ rc = vdbeSortAllocUnpacked(pLast);
+ if( rc==SQLITE_OK ){
+ pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
+ pSorter->pReader = pReadr;
+ if( pReadr==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ if( rc==SQLITE_OK ){
+ rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr);
+ if( rc==SQLITE_OK ){
+ vdbeIncrMergerSetThreads(pReadr->pIncr);
+ for(iTask=0; iTask<(pSorter->nTask-1); iTask++){
+ IncrMerger *pIncr;
+ if( (pIncr = pMain->aReadr[iTask].pIncr) ){
+ vdbeIncrMergerSetThreads(pIncr);
+ assert( pIncr->pTask!=pLast );
+ }
+ }
+ for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
+ /* Check that:
+ **
+ ** a) The incremental merge object is configured to use the
+ ** right task, and
+ ** b) If it is using task (nTask-1), it is configured to run
+ ** in single-threaded mode. This is important, as the
+ ** root merge (INCRINIT_ROOT) will be using the same task
+ ** object.
+ */
+ PmaReader *p = &pMain->aReadr[iTask];
+ assert( p->pIncr==0 || (
+ (p->pIncr->pTask==&pSorter->aTask[iTask]) /* a */
+ && (iTask!=pSorter->nTask-1 || p->pIncr->bUseThread==0) /* b */
+ ));
+ rc = vdbePmaReaderIncrInit(p, INCRINIT_TASK);
+ }
+ }
+ pMain = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT);
+ }
+ }else
+#endif
+ {
+ rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL);
+ pSorter->pMerger = pMain;
+ pMain = 0;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ vdbeMergeEngineFree(pMain);
+ }
+ return rc;
+}
+
+
+/*
+** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
+** this function is called to prepare for iterating through the records
+** in sorted order.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
+ VdbeSorter *pSorter;
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ assert( pSorter );
+
+ /* If no data has been written to disk, then do not do so now. Instead,
+ ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
+ ** from the in-memory list. */
+ if( pSorter->bUsePMA==0 ){
+ if( pSorter->list.pList ){
+ *pbEof = 0;
+ rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list);
+ }else{
+ *pbEof = 1;
+ }
+ return rc;
+ }
+
+ /* Write the current in-memory list to a PMA. When the VdbeSorterWrite()
+ ** function flushes the contents of memory to disk, it immediately always
+ ** creates a new list consisting of a single key immediately afterwards.
+ ** So the list is never empty at this point. */
+ assert( pSorter->list.pList );
+ rc = vdbeSorterFlushPMA(pSorter);
+
+ /* Join all threads */
+ rc = vdbeSorterJoinAll(pSorter, rc);
+
+ vdbeSorterRewindDebug("rewind");
+
+ /* Assuming no errors have occurred, set up a merger structure to
+ ** incrementally read and merge all remaining PMAs. */
+ assert( pSorter->pReader==0 );
+ if( rc==SQLITE_OK ){
+ rc = vdbeSorterSetupMerge(pSorter);
+ *pbEof = 0;
+ }
+
+ vdbeSorterRewindDebug("rewinddone");
+ return rc;
+}
+
+/*
+** Advance to the next element in the sorter. Return value:
+**
+** SQLITE_OK success
+** SQLITE_DONE end of data
+** otherwise some kind of error.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr){
+ VdbeSorter *pSorter;
+ int rc; /* Return code */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
+ if( pSorter->bUsePMA ){
+ assert( pSorter->pReader==0 || pSorter->pMerger==0 );
+ assert( pSorter->bUseThreads==0 || pSorter->pReader );
+ assert( pSorter->bUseThreads==1 || pSorter->pMerger );
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pSorter->bUseThreads ){
+ rc = vdbePmaReaderNext(pSorter->pReader);
+ if( rc==SQLITE_OK && pSorter->pReader->pFd==0 ) rc = SQLITE_DONE;
+ }else
+#endif
+ /*if( !pSorter->bUseThreads )*/ {
+ int res = 0;
+ assert( pSorter->pMerger!=0 );
+ assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) );
+ rc = vdbeMergeEngineStep(pSorter->pMerger, &res);
+ if( rc==SQLITE_OK && res ) rc = SQLITE_DONE;
+ }
+ }else{
+ SorterRecord *pFree = pSorter->list.pList;
+ pSorter->list.pList = pFree->u.pNext;
+ pFree->u.pNext = 0;
+ if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree);
+ rc = pSorter->list.pList ? SQLITE_OK : SQLITE_DONE;
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to a buffer owned by the sorter that contains the
+** current key.
+*/
+static void *vdbeSorterRowkey(
+ const VdbeSorter *pSorter, /* Sorter object */
+ int *pnKey /* OUT: Size of current key in bytes */
+){
+ void *pKey;
+ if( pSorter->bUsePMA ){
+ PmaReader *pReader;
+#if SQLITE_MAX_WORKER_THREADS>0
+ if( pSorter->bUseThreads ){
+ pReader = pSorter->pReader;
+ }else
+#endif
+ /*if( !pSorter->bUseThreads )*/{
+ pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]];
+ }
+ *pnKey = pReader->nKey;
+ pKey = pReader->aKey;
+ }else{
+ *pnKey = pSorter->list.pList->nVal;
+ pKey = SRVAL(pSorter->list.pList);
+ }
+ return pKey;
+}
+
+/*
+** Copy the current sorter key into the memory cell pOut.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
+ VdbeSorter *pSorter;
+ void *pKey; int nKey; /* Sorter key to copy into pOut */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ pKey = vdbeSorterRowkey(pSorter, &nKey);
+ if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ pOut->n = nKey;
+ MemSetTypeFlag(pOut, MEM_Blob);
+ memcpy(pOut->z, pKey, nKey);
+
+ return SQLITE_OK;
+}
+
+/*
+** Compare the key in memory cell pVal with the key that the sorter cursor
+** passed as the first argument currently points to. For the purposes of
+** the comparison, ignore the rowid field at the end of each record.
+**
+** If the sorter cursor key contains any NULL values, consider it to be
+** less than pVal. Even if pVal also contains NULL values.
+**
+** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
+** Otherwise, set *pRes to a negative, zero or positive value if the
+** key in pVal is smaller than, equal to or larger than the current sorter
+** key.
+**
+** This routine forms the core of the OP_SorterCompare opcode, which in
+** turn is used to verify uniqueness when constructing a UNIQUE INDEX.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
+ const VdbeCursor *pCsr, /* Sorter cursor */
+ Mem *pVal, /* Value to compare to current sorter key */
+ int nKeyCol, /* Compare this many columns */
+ int *pRes /* OUT: Result of comparison */
+){
+ VdbeSorter *pSorter;
+ UnpackedRecord *r2;
+ KeyInfo *pKeyInfo;
+ int i;
+ void *pKey; int nKey; /* Sorter key to compare pVal with */
+
+ assert( pCsr->eCurType==CURTYPE_SORTER );
+ pSorter = pCsr->uc.pSorter;
+ r2 = pSorter->pUnpacked;
+ pKeyInfo = pCsr->pKeyInfo;
+ if( r2==0 ){
+ r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
+ if( r2==0 ) return SQLITE_NOMEM_BKPT;
+ r2->nField = nKeyCol;
+ }
+ assert( r2->nField==nKeyCol );
+
+ pKey = vdbeSorterRowkey(pSorter, &nKey);
+ sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2);
+ for(i=0; i<nKeyCol; i++){
+ if( r2->aMem[i].flags & MEM_Null ){
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ }
+
+ *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
+ return SQLITE_OK;
+}
+
+/************** End of vdbesort.c ********************************************/
+/************** Begin file vdbevtab.c ****************************************/
+/*
+** 2020-03-23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements virtual-tables for examining the bytecode content
+** of a prepared statement.
+*/
+/* #include "sqliteInt.h" */
+#if defined(SQLITE_ENABLE_BYTECODE_VTAB) && !defined(SQLITE_OMIT_VIRTUALTABLE)
+/* #include "vdbeInt.h" */
+
+/* An instance of the bytecode() table-valued function.
+*/
+typedef struct bytecodevtab bytecodevtab;
+struct bytecodevtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ sqlite3 *db; /* Database connection */
+ int bTablesUsed; /* 2 for tables_used(). 0 for bytecode(). */
+};
+
+/* A cursor for scanning through the bytecode
+*/
+typedef struct bytecodevtab_cursor bytecodevtab_cursor;
+struct bytecodevtab_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ sqlite3_stmt *pStmt; /* The statement whose bytecode is displayed */
+ int iRowid; /* The rowid of the output table */
+ int iAddr; /* Address */
+ int needFinalize; /* Cursors owns pStmt and must finalize it */
+ int showSubprograms; /* Provide a listing of subprograms */
+ Op *aOp; /* Operand array */
+ char *zP4; /* Rendered P4 value */
+ const char *zType; /* tables_used.type */
+ const char *zSchema; /* tables_used.schema */
+ const char *zName; /* tables_used.name */
+ Mem sub; /* Subprograms */
+};
+
+/*
+** Create a new bytecode() table-valued function.
+*/
+static int bytecodevtabConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ bytecodevtab *pNew;
+ int rc;
+ int isTabUsed = pAux!=0;
+ const char *azSchema[2] = {
+ /* bytecode() schema */
+ "CREATE TABLE x("
+ "addr INT,"
+ "opcode TEXT,"
+ "p1 INT,"
+ "p2 INT,"
+ "p3 INT,"
+ "p4 TEXT,"
+ "p5 INT,"
+ "comment TEXT,"
+ "subprog TEXT,"
+ "nexec INT,"
+ "ncycle INT,"
+ "stmt HIDDEN"
+ ");",
+
+ /* Tables_used() schema */
+ "CREATE TABLE x("
+ "type TEXT,"
+ "schema TEXT,"
+ "name TEXT,"
+ "wr INT,"
+ "subprog TEXT,"
+ "stmt HIDDEN"
+ ");"
+ };
+
+ (void)argc;
+ (void)argv;
+ (void)pzErr;
+ rc = sqlite3_declare_vtab(db, azSchema[isTabUsed]);
+ if( rc==SQLITE_OK ){
+ pNew = sqlite3_malloc( sizeof(*pNew) );
+ *ppVtab = (sqlite3_vtab*)pNew;
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->db = db;
+ pNew->bTablesUsed = isTabUsed*2;
+ }
+ return rc;
+}
+
+/*
+** This method is the destructor for bytecodevtab objects.
+*/
+static int bytecodevtabDisconnect(sqlite3_vtab *pVtab){
+ bytecodevtab *p = (bytecodevtab*)pVtab;
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Constructor for a new bytecodevtab_cursor object.
+*/
+static int bytecodevtabOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ bytecodevtab *pVTab = (bytecodevtab*)p;
+ bytecodevtab_cursor *pCur;
+ pCur = sqlite3_malloc( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ sqlite3VdbeMemInit(&pCur->sub, pVTab->db, 1);
+ *ppCursor = &pCur->base;
+ return SQLITE_OK;
+}
+
+/*
+** Clear all internal content from a bytecodevtab cursor.
+*/
+static void bytecodevtabCursorClear(bytecodevtab_cursor *pCur){
+ sqlite3_free(pCur->zP4);
+ pCur->zP4 = 0;
+ sqlite3VdbeMemRelease(&pCur->sub);
+ sqlite3VdbeMemSetNull(&pCur->sub);
+ if( pCur->needFinalize ){
+ sqlite3_finalize(pCur->pStmt);
+ }
+ pCur->pStmt = 0;
+ pCur->needFinalize = 0;
+ pCur->zType = 0;
+ pCur->zSchema = 0;
+ pCur->zName = 0;
+}
+
+/*
+** Destructor for a bytecodevtab_cursor.
+*/
+static int bytecodevtabClose(sqlite3_vtab_cursor *cur){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ bytecodevtabCursorClear(pCur);
+ sqlite3_free(pCur);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance a bytecodevtab_cursor to its next row of output.
+*/
+static int bytecodevtabNext(sqlite3_vtab_cursor *cur){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ bytecodevtab *pTab = (bytecodevtab*)cur->pVtab;
+ int rc;
+ if( pCur->zP4 ){
+ sqlite3_free(pCur->zP4);
+ pCur->zP4 = 0;
+ }
+ if( pCur->zName ){
+ pCur->zName = 0;
+ pCur->zType = 0;
+ pCur->zSchema = 0;
+ }
+ rc = sqlite3VdbeNextOpcode(
+ (Vdbe*)pCur->pStmt,
+ pCur->showSubprograms ? &pCur->sub : 0,
+ pTab->bTablesUsed,
+ &pCur->iRowid,
+ &pCur->iAddr,
+ &pCur->aOp);
+ if( rc!=SQLITE_OK ){
+ sqlite3VdbeMemSetNull(&pCur->sub);
+ pCur->aOp = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the cursor has been moved off of the last
+** row of output.
+*/
+static int bytecodevtabEof(sqlite3_vtab_cursor *cur){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ return pCur->aOp==0;
+}
+
+/*
+** Return values of columns for the row at which the bytecodevtab_cursor
+** is currently pointing.
+*/
+static int bytecodevtabColumn(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ bytecodevtab *pVTab = (bytecodevtab*)cur->pVtab;
+ Op *pOp = pCur->aOp + pCur->iAddr;
+ if( pVTab->bTablesUsed ){
+ if( i==4 ){
+ i = 8;
+ }else{
+ if( i<=2 && pCur->zType==0 ){
+ Schema *pSchema;
+ HashElem *k;
+ int iDb = pOp->p3;
+ Pgno iRoot = (Pgno)pOp->p2;
+ sqlite3 *db = pVTab->db;
+ pSchema = db->aDb[iDb].pSchema;
+ pCur->zSchema = db->aDb[iDb].zDbSName;
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pTab = (Table*)sqliteHashData(k);
+ if( !IsVirtual(pTab) && pTab->tnum==iRoot ){
+ pCur->zName = pTab->zName;
+ pCur->zType = "table";
+ break;
+ }
+ }
+ if( pCur->zName==0 ){
+ for(k=sqliteHashFirst(&pSchema->idxHash); k; k=sqliteHashNext(k)){
+ Index *pIdx = (Index*)sqliteHashData(k);
+ if( pIdx->tnum==iRoot ){
+ pCur->zName = pIdx->zName;
+ pCur->zType = "index";
+ }
+ }
+ }
+ }
+ i += 20;
+ }
+ }
+ switch( i ){
+ case 0: /* addr */
+ sqlite3_result_int(ctx, pCur->iAddr);
+ break;
+ case 1: /* opcode */
+ sqlite3_result_text(ctx, (char*)sqlite3OpcodeName(pOp->opcode),
+ -1, SQLITE_STATIC);
+ break;
+ case 2: /* p1 */
+ sqlite3_result_int(ctx, pOp->p1);
+ break;
+ case 3: /* p2 */
+ sqlite3_result_int(ctx, pOp->p2);
+ break;
+ case 4: /* p3 */
+ sqlite3_result_int(ctx, pOp->p3);
+ break;
+ case 5: /* p4 */
+ case 7: /* comment */
+ if( pCur->zP4==0 ){
+ pCur->zP4 = sqlite3VdbeDisplayP4(pVTab->db, pOp);
+ }
+ if( i==5 ){
+ sqlite3_result_text(ctx, pCur->zP4, -1, SQLITE_STATIC);
+ }else{
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ char *zCom = sqlite3VdbeDisplayComment(pVTab->db, pOp, pCur->zP4);
+ sqlite3_result_text(ctx, zCom, -1, sqlite3_free);
+#endif
+ }
+ break;
+ case 6: /* p5 */
+ sqlite3_result_int(ctx, pOp->p5);
+ break;
+ case 8: { /* subprog */
+ Op *aOp = pCur->aOp;
+ assert( aOp[0].opcode==OP_Init );
+ assert( aOp[0].p4.z==0 || strncmp(aOp[0].p4.z,"-" "- ",3)==0 );
+ if( pCur->iRowid==pCur->iAddr+1 ){
+ break; /* Result is NULL for the main program */
+ }else if( aOp[0].p4.z!=0 ){
+ sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC);
+ }else{
+ sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC);
+ }
+ break;
+ }
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ case 9: /* nexec */
+ sqlite3_result_int(ctx, pOp->nExec);
+ break;
+ case 10: /* ncycle */
+ sqlite3_result_int(ctx, pOp->nCycle);
+ break;
+#else
+ case 9: /* nexec */
+ case 10: /* ncycle */
+ sqlite3_result_int(ctx, 0);
+ break;
+#endif
+
+ case 20: /* tables_used.type */
+ sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC);
+ break;
+ case 21: /* tables_used.schema */
+ sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC);
+ break;
+ case 22: /* tables_used.name */
+ sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC);
+ break;
+ case 23: /* tables_used.wr */
+ sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite);
+ break;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the rowid for the current row. In this implementation, the
+** rowid is the same as the output value.
+*/
+static int bytecodevtabRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor*)cur;
+ *pRowid = pCur->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Initialize a cursor.
+**
+** idxNum==0 means show all subprograms
+** idxNum==1 means show only the main bytecode and omit subprograms.
+*/
+static int bytecodevtabFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ bytecodevtab_cursor *pCur = (bytecodevtab_cursor *)pVtabCursor;
+ bytecodevtab *pVTab = (bytecodevtab *)pVtabCursor->pVtab;
+ int rc = SQLITE_OK;
+ (void)idxStr;
+
+ bytecodevtabCursorClear(pCur);
+ pCur->iRowid = 0;
+ pCur->iAddr = 0;
+ pCur->showSubprograms = idxNum==0;
+ assert( argc==1 );
+ if( sqlite3_value_type(argv[0])==SQLITE_TEXT ){
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pVTab->db, zSql, -1, &pCur->pStmt, 0);
+ pCur->needFinalize = 1;
+ }
+ }else{
+ pCur->pStmt = (sqlite3_stmt*)sqlite3_value_pointer(argv[0],"stmt-pointer");
+ }
+ if( pCur->pStmt==0 ){
+ pVTab->base.zErrMsg = sqlite3_mprintf(
+ "argument to %s() is not a valid SQL statement",
+ pVTab->bTablesUsed ? "tables_used" : "bytecode"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ bytecodevtabNext(pVtabCursor);
+ }
+ return rc;
+}
+
+/*
+** We must have a single stmt=? constraint that will be passed through
+** into the xFilter method. If there is no valid stmt=? constraint,
+** then return an SQLITE_CONSTRAINT error.
+*/
+static int bytecodevtabBestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ int i;
+ int rc = SQLITE_CONSTRAINT;
+ struct sqlite3_index_constraint *p;
+ bytecodevtab *pVTab = (bytecodevtab*)tab;
+ int iBaseCol = pVTab->bTablesUsed ? 4 : 10;
+ pIdxInfo->estimatedCost = (double)100;
+ pIdxInfo->estimatedRows = 100;
+ pIdxInfo->idxNum = 0;
+ for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){
+ if( p->usable==0 ) continue;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){
+ rc = SQLITE_OK;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ }
+ if( p->op==SQLITE_INDEX_CONSTRAINT_ISNULL && p->iColumn==iBaseCol ){
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->idxNum = 1;
+ }
+ }
+ return rc;
+}
+
+/*
+** This following structure defines all the methods for the
+** virtual table.
+*/
+static sqlite3_module bytecodevtabModule = {
+ /* iVersion */ 0,
+ /* xCreate */ 0,
+ /* xConnect */ bytecodevtabConnect,
+ /* xBestIndex */ bytecodevtabBestIndex,
+ /* xDisconnect */ bytecodevtabDisconnect,
+ /* xDestroy */ 0,
+ /* xOpen */ bytecodevtabOpen,
+ /* xClose */ bytecodevtabClose,
+ /* xFilter */ bytecodevtabFilter,
+ /* xNext */ bytecodevtabNext,
+ /* xEof */ bytecodevtabEof,
+ /* xColumn */ bytecodevtabColumn,
+ /* xRowid */ bytecodevtabRowid,
+ /* xUpdate */ 0,
+ /* xBegin */ 0,
+ /* xSync */ 0,
+ /* xCommit */ 0,
+ /* xRollback */ 0,
+ /* xFindMethod */ 0,
+ /* xRename */ 0,
+ /* xSavepoint */ 0,
+ /* xRelease */ 0,
+ /* xRollbackTo */ 0,
+ /* xShadowName */ 0,
+ /* xIntegrity */ 0
+};
+
+
+SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){
+ int rc;
+ rc = sqlite3_create_module(db, "bytecode", &bytecodevtabModule, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_module(db, "tables_used", &bytecodevtabModule, &db);
+ }
+ return rc;
+}
+#elif defined(SQLITE_ENABLE_BYTECODE_VTAB)
+SQLITE_PRIVATE int sqlite3VdbeBytecodeVtabInit(sqlite3 *db){ return SQLITE_OK; }
+#endif /* SQLITE_ENABLE_BYTECODE_VTAB */
+
+/************** End of vdbevtab.c ********************************************/
+/************** Begin file memjournal.c **************************************/
+/*
+** 2008 October 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to implement an in-memory rollback journal.
+** The in-memory rollback journal is used to journal transactions for
+** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
+**
+** Update: The in-memory journal is also used to temporarily cache
+** smaller journals that are not critical for power-loss recovery.
+** For example, statement journals that are not too big will be held
+** entirely in memory, thus reducing the number of file I/O calls, and
+** more importantly, reducing temporary file creation events. If these
+** journals become too large for memory, they are spilled to disk. But
+** in the common case, they are usually small and no file I/O needs to
+** occur.
+*/
+/* #include "sqliteInt.h" */
+
+/* Forward references to internal structures */
+typedef struct MemJournal MemJournal;
+typedef struct FilePoint FilePoint;
+typedef struct FileChunk FileChunk;
+
+/*
+** The rollback journal is composed of a linked list of these structures.
+**
+** The zChunk array is always at least 8 bytes in size - usually much more.
+** Its actual size is stored in the MemJournal.nChunkSize variable.
+*/
+struct FileChunk {
+ FileChunk *pNext; /* Next chunk in the journal */
+ u8 zChunk[8]; /* Content of this chunk */
+};
+
+/*
+** By default, allocate this many bytes of memory for each FileChunk object.
+*/
+#define MEMJOURNAL_DFLT_FILECHUNKSIZE 1024
+
+/*
+** For chunk size nChunkSize, return the number of bytes that should
+** be allocated for each FileChunk structure.
+*/
+#define fileChunkSize(nChunkSize) (sizeof(FileChunk) + ((nChunkSize)-8))
+
+/*
+** An instance of this object serves as a cursor into the rollback journal.
+** The cursor can be either for reading or writing.
+*/
+struct FilePoint {
+ sqlite3_int64 iOffset; /* Offset from the beginning of the file */
+ FileChunk *pChunk; /* Specific chunk into which cursor points */
+};
+
+/*
+** This structure is a subclass of sqlite3_file. Each open memory-journal
+** is an instance of this class.
+*/
+struct MemJournal {
+ const sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */
+ int nChunkSize; /* In-memory chunk-size */
+
+ int nSpill; /* Bytes of data before flushing */
+ FileChunk *pFirst; /* Head of in-memory chunk-list */
+ FilePoint endpoint; /* Pointer to the end of the file */
+ FilePoint readpoint; /* Pointer to the end of the last xRead() */
+
+ int flags; /* xOpen flags */
+ sqlite3_vfs *pVfs; /* The "real" underlying VFS */
+ const char *zJournal; /* Name of the journal file */
+};
+
+/*
+** Read data from the in-memory journal file. This is the implementation
+** of the sqlite3_vfs.xRead method.
+*/
+static int memjrnlRead(
+ sqlite3_file *pJfd, /* The journal file from which to read */
+ void *zBuf, /* Put the results here */
+ int iAmt, /* Number of bytes to read */
+ sqlite_int64 iOfst /* Begin reading at this offset */
+){
+ MemJournal *p = (MemJournal *)pJfd;
+ u8 *zOut = zBuf;
+ int nRead = iAmt;
+ int iChunkOffset;
+ FileChunk *pChunk;
+
+ if( (iAmt+iOfst)>p->endpoint.iOffset ){
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ assert( p->readpoint.iOffset==0 || p->readpoint.pChunk!=0 );
+ if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
+ sqlite3_int64 iOff = 0;
+ for(pChunk=p->pFirst;
+ ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst;
+ pChunk=pChunk->pNext
+ ){
+ iOff += p->nChunkSize;
+ }
+ }else{
+ pChunk = p->readpoint.pChunk;
+ assert( pChunk!=0 );
+ }
+
+ iChunkOffset = (int)(iOfst%p->nChunkSize);
+ do {
+ int iSpace = p->nChunkSize - iChunkOffset;
+ int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset));
+ memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy);
+ zOut += nCopy;
+ nRead -= iSpace;
+ iChunkOffset = 0;
+ } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
+ p->readpoint.iOffset = pChunk ? iOfst+iAmt : 0;
+ p->readpoint.pChunk = pChunk;
+
+ return SQLITE_OK;
+}
+
+/*
+** Free the list of FileChunk structures headed at MemJournal.pFirst.
+*/
+static void memjrnlFreeChunks(FileChunk *pFirst){
+ FileChunk *pIter;
+ FileChunk *pNext;
+ for(pIter=pFirst; pIter; pIter=pNext){
+ pNext = pIter->pNext;
+ sqlite3_free(pIter);
+ }
+}
+
+/*
+** Flush the contents of memory to a real file on disk.
+*/
+static int memjrnlCreateFile(MemJournal *p){
+ int rc;
+ sqlite3_file *pReal = (sqlite3_file*)p;
+ MemJournal copy = *p;
+
+ memset(p, 0, sizeof(MemJournal));
+ rc = sqlite3OsOpen(copy.pVfs, copy.zJournal, pReal, copy.flags, 0);
+ if( rc==SQLITE_OK ){
+ int nChunk = copy.nChunkSize;
+ i64 iOff = 0;
+ FileChunk *pIter;
+ for(pIter=copy.pFirst; pIter; pIter=pIter->pNext){
+ if( iOff + nChunk > copy.endpoint.iOffset ){
+ nChunk = copy.endpoint.iOffset - iOff;
+ }
+ rc = sqlite3OsWrite(pReal, (u8*)pIter->zChunk, nChunk, iOff);
+ if( rc ) break;
+ iOff += nChunk;
+ }
+ if( rc==SQLITE_OK ){
+ /* No error has occurred. Free the in-memory buffers. */
+ memjrnlFreeChunks(copy.pFirst);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ /* If an error occurred while creating or writing to the file, restore
+ ** the original before returning. This way, SQLite uses the in-memory
+ ** journal data to roll back changes made to the internal page-cache
+ ** before this function was called. */
+ sqlite3OsClose(pReal);
+ *p = copy;
+ }
+ return rc;
+}
+
+
+/* Forward reference */
+static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size);
+
+/*
+** Write data to the file.
+*/
+static int memjrnlWrite(
+ sqlite3_file *pJfd, /* The journal file into which to write */
+ const void *zBuf, /* Take data to be written from here */
+ int iAmt, /* Number of bytes to write */
+ sqlite_int64 iOfst /* Begin writing at this offset into the file */
+){
+ MemJournal *p = (MemJournal *)pJfd;
+ int nWrite = iAmt;
+ u8 *zWrite = (u8 *)zBuf;
+
+ /* If the file should be created now, create it and write the new data
+ ** into the file on disk. */
+ if( p->nSpill>0 && (iAmt+iOfst)>p->nSpill ){
+ int rc = memjrnlCreateFile(p);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pJfd, zBuf, iAmt, iOfst);
+ }
+ return rc;
+ }
+
+ /* If the contents of this write should be stored in memory */
+ else{
+ /* An in-memory journal file should only ever be appended to. Random
+ ** access writes are not required. The only exception to this is when
+ ** the in-memory journal is being used by a connection using the
+ ** atomic-write optimization. In this case the first 28 bytes of the
+ ** journal file may be written as part of committing the transaction. */
+ assert( iOfst<=p->endpoint.iOffset );
+ if( iOfst>0 && iOfst!=p->endpoint.iOffset ){
+ memjrnlTruncate(pJfd, iOfst);
+ }
+ if( iOfst==0 && p->pFirst ){
+ assert( p->nChunkSize>iAmt );
+ memcpy((u8*)p->pFirst->zChunk, zBuf, iAmt);
+ }else{
+ while( nWrite>0 ){
+ FileChunk *pChunk = p->endpoint.pChunk;
+ int iChunkOffset = (int)(p->endpoint.iOffset%p->nChunkSize);
+ int iSpace = MIN(nWrite, p->nChunkSize - iChunkOffset);
+
+ assert( pChunk!=0 || iChunkOffset==0 );
+ if( iChunkOffset==0 ){
+ /* New chunk is required to extend the file. */
+ FileChunk *pNew = sqlite3_malloc(fileChunkSize(p->nChunkSize));
+ if( !pNew ){
+ return SQLITE_IOERR_NOMEM_BKPT;
+ }
+ pNew->pNext = 0;
+ if( pChunk ){
+ assert( p->pFirst );
+ pChunk->pNext = pNew;
+ }else{
+ assert( !p->pFirst );
+ p->pFirst = pNew;
+ }
+ pChunk = p->endpoint.pChunk = pNew;
+ }
+
+ assert( pChunk!=0 );
+ memcpy((u8*)pChunk->zChunk + iChunkOffset, zWrite, iSpace);
+ zWrite += iSpace;
+ nWrite -= iSpace;
+ p->endpoint.iOffset += iSpace;
+ }
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Truncate the in-memory file.
+*/
+static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
+ MemJournal *p = (MemJournal *)pJfd;
+ assert( p->endpoint.pChunk==0 || p->endpoint.pChunk->pNext==0 );
+ if( size<p->endpoint.iOffset ){
+ FileChunk *pIter = 0;
+ if( size==0 ){
+ memjrnlFreeChunks(p->pFirst);
+ p->pFirst = 0;
+ }else{
+ i64 iOff = p->nChunkSize;
+ for(pIter=p->pFirst; ALWAYS(pIter) && iOff<size; pIter=pIter->pNext){
+ iOff += p->nChunkSize;
+ }
+ if( ALWAYS(pIter) ){
+ memjrnlFreeChunks(pIter->pNext);
+ pIter->pNext = 0;
+ }
+ }
+
+ p->endpoint.pChunk = pIter;
+ p->endpoint.iOffset = size;
+ p->readpoint.pChunk = 0;
+ p->readpoint.iOffset = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Close the file.
+*/
+static int memjrnlClose(sqlite3_file *pJfd){
+ MemJournal *p = (MemJournal *)pJfd;
+ memjrnlFreeChunks(p->pFirst);
+ return SQLITE_OK;
+}
+
+/*
+** Sync the file.
+**
+** If the real file has been created, call its xSync method. Otherwise,
+** syncing an in-memory journal is a no-op.
+*/
+static int memjrnlSync(sqlite3_file *pJfd, int flags){
+ UNUSED_PARAMETER2(pJfd, flags);
+ return SQLITE_OK;
+}
+
+/*
+** Query the size of the file in bytes.
+*/
+static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
+ MemJournal *p = (MemJournal *)pJfd;
+ *pSize = (sqlite_int64) p->endpoint.iOffset;
+ return SQLITE_OK;
+}
+
+/*
+** Table of methods for MemJournal sqlite3_file object.
+*/
+static const struct sqlite3_io_methods MemJournalMethods = {
+ 1, /* iVersion */
+ memjrnlClose, /* xClose */
+ memjrnlRead, /* xRead */
+ memjrnlWrite, /* xWrite */
+ memjrnlTruncate, /* xTruncate */
+ memjrnlSync, /* xSync */
+ memjrnlFileSize, /* xFileSize */
+ 0, /* xLock */
+ 0, /* xUnlock */
+ 0, /* xCheckReservedLock */
+ 0, /* xFileControl */
+ 0, /* xSectorSize */
+ 0, /* xDeviceCharacteristics */
+ 0, /* xShmMap */
+ 0, /* xShmLock */
+ 0, /* xShmBarrier */
+ 0, /* xShmUnmap */
+ 0, /* xFetch */
+ 0 /* xUnfetch */
+};
+
+/*
+** Open a journal file.
+**
+** The behaviour of the journal file depends on the value of parameter
+** nSpill. If nSpill is 0, then the journal file is always create and
+** accessed using the underlying VFS. If nSpill is less than zero, then
+** all content is always stored in main-memory. Finally, if nSpill is a
+** positive value, then the journal file is initially created in-memory
+** but may be flushed to disk later on. In this case the journal file is
+** flushed to disk either when it grows larger than nSpill bytes in size,
+** or when sqlite3JournalCreate() is called.
+*/
+SQLITE_PRIVATE int sqlite3JournalOpen(
+ sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
+ const char *zName, /* Name of the journal file */
+ sqlite3_file *pJfd, /* Preallocated, blank file handle */
+ int flags, /* Opening flags */
+ int nSpill /* Bytes buffered before opening the file */
+){
+ MemJournal *p = (MemJournal*)pJfd;
+
+ assert( zName || nSpill<0 || (flags & SQLITE_OPEN_EXCLUSIVE) );
+
+ /* Zero the file-handle object. If nSpill was passed zero, initialize
+ ** it using the sqlite3OsOpen() function of the underlying VFS. In this
+ ** case none of the code in this module is executed as a result of calls
+ ** made on the journal file-handle. */
+ memset(p, 0, sizeof(MemJournal));
+ if( nSpill==0 ){
+ return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
+ }
+
+ if( nSpill>0 ){
+ p->nChunkSize = nSpill;
+ }else{
+ p->nChunkSize = 8 + MEMJOURNAL_DFLT_FILECHUNKSIZE - sizeof(FileChunk);
+ assert( MEMJOURNAL_DFLT_FILECHUNKSIZE==fileChunkSize(p->nChunkSize) );
+ }
+
+ pJfd->pMethods = (const sqlite3_io_methods*)&MemJournalMethods;
+ p->nSpill = nSpill;
+ p->flags = flags;
+ p->zJournal = zName;
+ p->pVfs = pVfs;
+ return SQLITE_OK;
+}
+
+/*
+** Open an in-memory journal file.
+*/
+SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){
+ sqlite3JournalOpen(0, 0, pJfd, 0, -1);
+}
+
+#if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
+ || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
+/*
+** If the argument p points to a MemJournal structure that is not an
+** in-memory-only journal file (i.e. is one that was opened with a +ve
+** nSpill parameter or as SQLITE_OPEN_MAIN_JOURNAL), and the underlying
+** file has not yet been created, create it now.
+*/
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *pJfd){
+ int rc = SQLITE_OK;
+ MemJournal *p = (MemJournal*)pJfd;
+ if( pJfd->pMethods==&MemJournalMethods && (
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ p->nSpill>0
+#else
+ /* While this appears to not be possible without ATOMIC_WRITE, the
+ ** paths are complex, so it seems prudent to leave the test in as
+ ** a NEVER(), in case our analysis is subtly flawed. */
+ NEVER(p->nSpill>0)
+#endif
+#ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE
+ || (p->flags & SQLITE_OPEN_MAIN_JOURNAL)
+#endif
+ )){
+ rc = memjrnlCreateFile(p);
+ }
+ return rc;
+}
+#endif
+
+/*
+** The file-handle passed as the only argument is open on a journal file.
+** Return true if this "journal file" is currently stored in heap memory,
+** or false otherwise.
+*/
+SQLITE_PRIVATE int sqlite3JournalIsInMemory(sqlite3_file *p){
+ return p->pMethods==&MemJournalMethods;
+}
+
+/*
+** Return the number of bytes required to store a JournalFile that uses vfs
+** pVfs to create the underlying on-disk files.
+*/
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
+ return MAX(pVfs->szOsFile, (int)sizeof(MemJournal));
+}
+
+/************** End of memjournal.c ******************************************/
+/************** Begin file walker.c ******************************************/
+/*
+** 2008 August 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for walking the parser tree for
+** an SQL statement.
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+/* #include <string.h> */
+
+
+#if !defined(SQLITE_OMIT_WINDOWFUNC)
+/*
+** Walk all expressions linked into the list of Window objects passed
+** as the second argument.
+*/
+static int walkWindowList(Walker *pWalker, Window *pList, int bOneOnly){
+ Window *pWin;
+ for(pWin=pList; pWin; pWin=pWin->pNextWin){
+ int rc;
+ rc = sqlite3WalkExprList(pWalker, pWin->pOrderBy);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExprList(pWalker, pWin->pPartition);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExpr(pWalker, pWin->pFilter);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExpr(pWalker, pWin->pStart);
+ if( rc ) return WRC_Abort;
+ rc = sqlite3WalkExpr(pWalker, pWin->pEnd);
+ if( rc ) return WRC_Abort;
+ if( bOneOnly ) break;
+ }
+ return WRC_Continue;
+}
+#endif
+
+/*
+** Walk an expression tree. Invoke the callback once for each node
+** of the expression, while descending. (In other words, the callback
+** is invoked before visiting children.)
+**
+** The return value from the callback should be one of the WRC_*
+** constants to specify how to proceed with the walk.
+**
+** WRC_Continue Continue descending down the tree.
+**
+** WRC_Prune Do not descend into child nodes, but allow
+** the walk to continue with sibling nodes.
+**
+** WRC_Abort Do no more callbacks. Unwind the stack and
+** return from the top-level walk call.
+**
+** The return value from this routine is WRC_Abort to abandon the tree walk
+** and WRC_Continue to continue.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3WalkExprNN(Walker *pWalker, Expr *pExpr){
+ int rc;
+ testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
+ testcase( ExprHasProperty(pExpr, EP_Reduced) );
+ while(1){
+ rc = pWalker->xExprCallback(pWalker, pExpr);
+ if( rc ) return rc & WRC_Abort;
+ if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){
+ assert( pExpr->x.pList==0 || pExpr->pRight==0 );
+ if( pExpr->pLeft && sqlite3WalkExprNN(pWalker, pExpr->pLeft) ){
+ return WRC_Abort;
+ }
+ if( pExpr->pRight ){
+ assert( !ExprHasProperty(pExpr, EP_WinFunc) );
+ pExpr = pExpr->pRight;
+ continue;
+ }else if( ExprUseXSelect(pExpr) ){
+ assert( !ExprHasProperty(pExpr, EP_WinFunc) );
+ if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
+ }else{
+ if( pExpr->x.pList ){
+ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ if( walkWindowList(pWalker, pExpr->y.pWin, 1) ) return WRC_Abort;
+ }
+#endif
+ }
+ }
+ break;
+ }
+ return WRC_Continue;
+}
+SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
+ return pExpr ? sqlite3WalkExprNN(pWalker,pExpr) : WRC_Continue;
+}
+
+/*
+** Call sqlite3WalkExpr() for every expression in list p or until
+** an abort request is seen.
+*/
+SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
+ int i;
+ struct ExprList_item *pItem;
+ if( p ){
+ for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
+ if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** This is a no-op callback for Walker->xSelectCallback2. If this
+** callback is set, then the Select->pWinDefn list is traversed.
+*/
+SQLITE_PRIVATE void sqlite3WalkWinDefnDummyCallback(Walker *pWalker, Select *p){
+ UNUSED_PARAMETER(pWalker);
+ UNUSED_PARAMETER(p);
+ /* No-op */
+}
+
+/*
+** Walk all expressions associated with SELECT statement p. Do
+** not invoke the SELECT callback on p, but do (of course) invoke
+** any expr callbacks and SELECT callbacks that come from subqueries.
+** Return WRC_Abort or WRC_Continue.
+*/
+SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
+ if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
+ if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
+ if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
+ if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
+#if !defined(SQLITE_OMIT_WINDOWFUNC)
+ if( p->pWinDefn ){
+ Parse *pParse;
+ if( pWalker->xSelectCallback2==sqlite3WalkWinDefnDummyCallback
+ || ((pParse = pWalker->pParse)!=0 && IN_RENAME_OBJECT)
+#ifndef SQLITE_OMIT_CTE
+ || pWalker->xSelectCallback2==sqlite3SelectPopWith
+#endif
+ ){
+ /* The following may return WRC_Abort if there are unresolvable
+ ** symbols (e.g. a table that does not exist) in a window definition. */
+ int rc = walkWindowList(pWalker, p->pWinDefn, 0);
+ return rc;
+ }
+ }
+#endif
+ return WRC_Continue;
+}
+
+/*
+** Walk the parse trees associated with all subqueries in the
+** FROM clause of SELECT statement p. Do not invoke the select
+** callback on p, but do invoke it on each FROM clause subquery
+** and on any subqueries further down in the tree. Return
+** WRC_Abort or WRC_Continue;
+*/
+SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
+ SrcList *pSrc;
+ int i;
+ SrcItem *pItem;
+
+ pSrc = p->pSrc;
+ if( ALWAYS(pSrc) ){
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ if( pItem->pSelect && sqlite3WalkSelect(pWalker, pItem->pSelect) ){
+ return WRC_Abort;
+ }
+ if( pItem->fg.isTabFunc
+ && sqlite3WalkExprList(pWalker, pItem->u1.pFuncArg)
+ ){
+ return WRC_Abort;
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Call sqlite3WalkExpr() for every expression in Select statement p.
+** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
+** on the compound select chain, p->pPrior.
+**
+** If it is not NULL, the xSelectCallback() callback is invoked before
+** the walk of the expressions and FROM clause. The xSelectCallback2()
+** method is invoked following the walk of the expressions and FROM clause,
+** but only if both xSelectCallback and xSelectCallback2 are both non-NULL
+** and if the expressions and FROM clause both return WRC_Continue;
+**
+** Return WRC_Continue under normal conditions. Return WRC_Abort if
+** there is an abort request.
+**
+** If the Walker does not have an xSelectCallback() then this routine
+** is a no-op returning WRC_Continue.
+*/
+SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
+ int rc;
+ if( p==0 ) return WRC_Continue;
+ if( pWalker->xSelectCallback==0 ) return WRC_Continue;
+ do{
+ rc = pWalker->xSelectCallback(pWalker, p);
+ if( rc ) return rc & WRC_Abort;
+ if( sqlite3WalkSelectExpr(pWalker, p)
+ || sqlite3WalkSelectFrom(pWalker, p)
+ ){
+ return WRC_Abort;
+ }
+ if( pWalker->xSelectCallback2 ){
+ pWalker->xSelectCallback2(pWalker, p);
+ }
+ p = p->pPrior;
+ }while( p!=0 );
+ return WRC_Continue;
+}
+
+/* Increase the walkerDepth when entering a subquery, and
+** decrease when leaving the subquery.
+*/
+SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker *pWalker, Select *pSelect){
+ UNUSED_PARAMETER(pSelect);
+ pWalker->walkerDepth++;
+ return WRC_Continue;
+}
+SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker *pWalker, Select *pSelect){
+ UNUSED_PARAMETER(pSelect);
+ pWalker->walkerDepth--;
+}
+
+
+/*
+** No-op routine for the parse-tree walker.
+**
+** When this routine is the Walker.xExprCallback then expression trees
+** are walked without any actions being taken at each node. Presumably,
+** when this routine is used for Walker.xExprCallback then
+** Walker.xSelectCallback is set to do something useful for every
+** subquery in the parser tree.
+*/
+SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return WRC_Continue;
+}
+
+/*
+** No-op routine for the parse-tree walker for SELECT statements.
+** subquery in the parser tree.
+*/
+SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ return WRC_Continue;
+}
+
+/************** End of walker.c **********************************************/
+/************** Begin file resolve.c *****************************************/
+/*
+** 2008 August 18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains routines used for walking the parser tree and
+** resolve all identifiers by associating them with a particular
+** table and column.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Magic table number to mean the EXCLUDED table in an UPSERT statement.
+*/
+#define EXCLUDED_TABLE_NUMBER 2
+
+/*
+** Walk the expression tree pExpr and increase the aggregate function
+** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node.
+** This needs to occur when copying a TK_AGG_FUNCTION node from an
+** outer query into an inner subquery.
+**
+** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..)
+** is a helper function - a callback for the tree walker.
+**
+** See also the sqlite3WindowExtraAggFuncDepth() routine in window.c
+*/
+static int incrAggDepth(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n;
+ return WRC_Continue;
+}
+static void incrAggFunctionDepth(Expr *pExpr, int N){
+ if( N>0 ){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = incrAggDepth;
+ w.u.n = N;
+ sqlite3WalkExpr(&w, pExpr);
+ }
+}
+
+/*
+** Turn the pExpr expression into an alias for the iCol-th column of the
+** result set in pEList.
+**
+** If the reference is followed by a COLLATE operator, then make sure
+** the COLLATE operator is preserved. For example:
+**
+** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
+**
+** Should be transformed into:
+**
+** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase;
+**
+** The nSubquery parameter specifies how many levels of subquery the
+** alias is removed from the original expression. The usual value is
+** zero but it might be more if the alias is contained within a subquery
+** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION
+** structures must be increased by the nSubquery amount.
+*/
+static void resolveAlias(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* A result set */
+ int iCol, /* A column in the result set. 0..pEList->nExpr-1 */
+ Expr *pExpr, /* Transform this into an alias to the result set */
+ int nSubquery /* Number of subqueries that the label is moving */
+){
+ Expr *pOrig; /* The iCol-th column of the result set */
+ Expr *pDup; /* Copy of pOrig */
+ sqlite3 *db; /* The database connection */
+
+ assert( iCol>=0 && iCol<pEList->nExpr );
+ pOrig = pEList->a[iCol].pExpr;
+ assert( pOrig!=0 );
+ db = pParse->db;
+ pDup = sqlite3ExprDup(db, pOrig, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ pDup = 0;
+ }else{
+ Expr temp;
+ incrAggFunctionDepth(pDup, nSubquery);
+ if( pExpr->op==TK_COLLATE ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
+ }
+ memcpy(&temp, pDup, sizeof(Expr));
+ memcpy(pDup, pExpr, sizeof(Expr));
+ memcpy(pExpr, &temp, sizeof(Expr));
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ if( ALWAYS(pExpr->y.pWin!=0) ){
+ pExpr->y.pWin->pOwner = pExpr;
+ }
+ }
+ sqlite3ExprDeferredDelete(pParse, pDup);
+ }
+}
+
+/*
+** Subqueries store the original database, table and column names for their
+** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN",
+** and mark the expression-list item by setting ExprList.a[].fg.eEName
+** to ENAME_TAB.
+**
+** Check to see if the zSpan/eEName of the expression-list item passed to this
+** routine matches the zDb, zTab, and zCol. If any of zDb, zTab, and zCol are
+** NULL then those fields will match anything. Return true if there is a match,
+** or false otherwise.
+**
+** SF_NestedFrom subqueries also store an entry for the implicit rowid (or
+** _rowid_, or oid) column by setting ExprList.a[].fg.eEName to ENAME_ROWID,
+** and setting zSpan to "DATABASE.TABLE.<rowid-alias>". This type of pItem
+** argument matches if zCol is a rowid alias. If it is not NULL, (*pbRowid)
+** is set to 1 if there is this kind of match.
+*/
+SQLITE_PRIVATE int sqlite3MatchEName(
+ const struct ExprList_item *pItem,
+ const char *zCol,
+ const char *zTab,
+ const char *zDb,
+ int *pbRowid
+){
+ int n;
+ const char *zSpan;
+ int eEName = pItem->fg.eEName;
+ if( eEName!=ENAME_TAB && (eEName!=ENAME_ROWID || NEVER(pbRowid==0)) ){
+ return 0;
+ }
+ assert( pbRowid==0 || *pbRowid==0 );
+ zSpan = pItem->zEName;
+ for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
+ if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){
+ return 0;
+ }
+ zSpan += n+1;
+ for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
+ if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){
+ return 0;
+ }
+ zSpan += n+1;
+ if( zCol ){
+ if( eEName==ENAME_TAB && sqlite3StrICmp(zSpan, zCol)!=0 ) return 0;
+ if( eEName==ENAME_ROWID && sqlite3IsRowid(zCol)==0 ) return 0;
+ }
+ if( eEName==ENAME_ROWID ) *pbRowid = 1;
+ return 1;
+}
+
+/*
+** Return TRUE if the double-quoted string mis-feature should be supported.
+*/
+static int areDoubleQuotedStringsEnabled(sqlite3 *db, NameContext *pTopNC){
+ if( db->init.busy ) return 1; /* Always support for legacy schemas */
+ if( pTopNC->ncFlags & NC_IsDDL ){
+ /* Currently parsing a DDL statement */
+ if( sqlite3WritableSchema(db) && (db->flags & SQLITE_DqsDML)!=0 ){
+ return 1;
+ }
+ return (db->flags & SQLITE_DqsDDL)!=0;
+ }else{
+ /* Currently parsing a DML statement */
+ return (db->flags & SQLITE_DqsDML)!=0;
+ }
+}
+
+/*
+** The argument is guaranteed to be a non-NULL Expr node of type TK_COLUMN.
+** return the appropriate colUsed mask.
+*/
+SQLITE_PRIVATE Bitmask sqlite3ExprColUsed(Expr *pExpr){
+ int n;
+ Table *pExTab;
+
+ n = pExpr->iColumn;
+ assert( ExprUseYTab(pExpr) );
+ pExTab = pExpr->y.pTab;
+ assert( pExTab!=0 );
+ if( (pExTab->tabFlags & TF_HasGenerated)!=0
+ && (pExTab->aCol[n].colFlags & COLFLAG_GENERATED)!=0
+ ){
+ testcase( pExTab->nCol==BMS-1 );
+ testcase( pExTab->nCol==BMS );
+ return pExTab->nCol>=BMS ? ALLBITS : MASKBIT(pExTab->nCol)-1;
+ }else{
+ testcase( n==BMS-1 );
+ testcase( n==BMS );
+ if( n>=BMS ) n = BMS-1;
+ return ((Bitmask)1)<<n;
+ }
+}
+
+/*
+** Create a new expression term for the column specified by pMatch and
+** iColumn. Append this new expression term to the FULL JOIN Match set
+** in *ppList. Create a new *ppList if this is the first term in the
+** set.
+*/
+static void extendFJMatch(
+ Parse *pParse, /* Parsing context */
+ ExprList **ppList, /* ExprList to extend */
+ SrcItem *pMatch, /* Source table containing the column */
+ i16 iColumn /* The column number */
+){
+ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
+ if( pNew ){
+ pNew->iTable = pMatch->iCursor;
+ pNew->iColumn = iColumn;
+ pNew->y.pTab = pMatch->pTab;
+ assert( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 );
+ ExprSetProperty(pNew, EP_CanBeNull);
+ *ppList = sqlite3ExprListAppend(pParse, *ppList, pNew);
+ }
+}
+
+/*
+** Return TRUE (non-zero) if zTab is a valid name for the schema table pTab.
+*/
+static SQLITE_NOINLINE int isValidSchemaTableName(
+ const char *zTab, /* Name as it appears in the SQL */
+ Table *pTab, /* The schema table we are trying to match */
+ Schema *pSchema /* non-NULL if a database qualifier is present */
+){
+ const char *zLegacy;
+ assert( pTab!=0 );
+ assert( pTab->tnum==1 );
+ if( sqlite3StrNICmp(zTab, "sqlite_", 7)!=0 ) return 0;
+ zLegacy = pTab->zName;
+ if( strcmp(zLegacy+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
+ if( sqlite3StrICmp(zTab+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
+ return 1;
+ }
+ if( pSchema==0 ) return 0;
+ if( sqlite3StrICmp(zTab+7, &LEGACY_SCHEMA_TABLE[7])==0 ) return 1;
+ if( sqlite3StrICmp(zTab+7, &PREFERRED_SCHEMA_TABLE[7])==0 ) return 1;
+ }else{
+ if( sqlite3StrICmp(zTab+7, &PREFERRED_SCHEMA_TABLE[7])==0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
+** that name in the set of source tables in pSrcList and make the pExpr
+** expression node refer back to that source column. The following changes
+** are made to pExpr:
+**
+** pExpr->iDb Set the index in db->aDb[] of the database X
+** (even if X is implied).
+** pExpr->iTable Set to the cursor number for the table obtained
+** from pSrcList.
+** pExpr->y.pTab Points to the Table structure of X.Y (even if
+** X and/or Y are implied.)
+** pExpr->iColumn Set to the column number within the table.
+** pExpr->op Set to TK_COLUMN.
+** pExpr->pLeft Any expression this points to is deleted
+** pExpr->pRight Any expression this points to is deleted.
+**
+** The zDb variable is the name of the database (the "X"). This value may be
+** NULL meaning that name is of the form Y.Z or Z. Any available database
+** can be used. The zTable variable is the name of the table (the "Y"). This
+** value can be NULL if zDb is also NULL. If zTable is NULL it
+** means that the form of the name is Z and that columns from any table
+** can be used.
+**
+** If the name cannot be resolved unambiguously, leave an error message
+** in pParse and return WRC_Abort. Return WRC_Prune on success.
+*/
+static int lookupName(
+ Parse *pParse, /* The parsing context */
+ const char *zDb, /* Name of the database containing table, or NULL */
+ const char *zTab, /* Name of table containing column, or NULL */
+ const char *zCol, /* Name of the column. */
+ NameContext *pNC, /* The name context used to resolve the name */
+ Expr *pExpr /* Make this EXPR node point to the selected column */
+){
+ int i, j; /* Loop counters */
+ int cnt = 0; /* Number of matching column names */
+ int cntTab = 0; /* Number of potential "rowid" matches */
+ int nSubquery = 0; /* How many levels of subquery */
+ sqlite3 *db = pParse->db; /* The database connection */
+ SrcItem *pItem; /* Use for looping over pSrcList items */
+ SrcItem *pMatch = 0; /* The matching pSrcList item */
+ NameContext *pTopNC = pNC; /* First namecontext in the list */
+ Schema *pSchema = 0; /* Schema of the expression */
+ int eNewExprOp = TK_COLUMN; /* New value for pExpr->op on success */
+ Table *pTab = 0; /* Table holding the row */
+ Column *pCol; /* A column of pTab */
+ ExprList *pFJMatch = 0; /* Matches for FULL JOIN .. USING */
+
+ assert( pNC ); /* the name context cannot be NULL. */
+ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */
+ assert( zDb==0 || zTab!=0 );
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+
+ /* Initialize the node to no-match */
+ pExpr->iTable = -1;
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+
+ /* Translate the schema name in zDb into a pointer to the corresponding
+ ** schema. If not found, pSchema will remain NULL and nothing will match
+ ** resulting in an appropriate error message toward the end of this routine
+ */
+ if( zDb ){
+ testcase( pNC->ncFlags & NC_PartIdx );
+ testcase( pNC->ncFlags & NC_IsCheck );
+ if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
+ /* Silently ignore database qualifiers inside CHECK constraints and
+ ** partial indices. Do not raise errors because that might break
+ ** legacy and because it does not hurt anything to just ignore the
+ ** database name. */
+ zDb = 0;
+ }else{
+ for(i=0; i<db->nDb; i++){
+ assert( db->aDb[i].zDbSName );
+ if( sqlite3StrICmp(db->aDb[i].zDbSName,zDb)==0 ){
+ pSchema = db->aDb[i].pSchema;
+ break;
+ }
+ }
+ if( i==db->nDb && sqlite3StrICmp("main", zDb)==0 ){
+ /* This branch is taken when the main database has been renamed
+ ** using SQLITE_DBCONFIG_MAINDBNAME. */
+ pSchema = db->aDb[0].pSchema;
+ zDb = db->aDb[0].zDbSName;
+ }
+ }
+ }
+
+ /* Start at the inner-most context and move outward until a match is found */
+ assert( pNC && cnt==0 );
+ do{
+ ExprList *pEList;
+ SrcList *pSrcList = pNC->pSrcList;
+
+ if( pSrcList ){
+ for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
+ u8 hCol;
+ pTab = pItem->pTab;
+ assert( pTab!=0 && pTab->zName!=0 );
+ assert( pTab->nCol>0 || pParse->nErr );
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ if( pItem->fg.isNestedFrom ){
+ /* In this case, pItem is a subquery that has been formed from a
+ ** parenthesized subset of the FROM clause terms. Example:
+ ** .... FROM t1 LEFT JOIN (t2 RIGHT JOIN t3 USING(x)) USING(y) ...
+ ** \_________________________/
+ ** This pItem -------------^
+ */
+ int hit = 0;
+ assert( pItem->pSelect!=0 );
+ pEList = pItem->pSelect->pEList;
+ assert( pEList!=0 );
+ assert( pEList->nExpr==pTab->nCol );
+ for(j=0; j<pEList->nExpr; j++){
+ int bRowid = 0; /* True if possible rowid match */
+ if( !sqlite3MatchEName(&pEList->a[j], zCol, zTab, zDb, &bRowid) ){
+ continue;
+ }
+ if( bRowid==0 ){
+ if( cnt>0 ){
+ if( pItem->fg.isUsing==0
+ || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0
+ ){
+ /* Two or more tables have the same column name which is
+ ** not joined by USING. This is an error. Signal as much
+ ** by clearing pFJMatch and letting cnt go above 1. */
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else
+ if( (pItem->fg.jointype & JT_RIGHT)==0 ){
+ /* An INNER or LEFT JOIN. Use the left-most table */
+ continue;
+ }else
+ if( (pItem->fg.jointype & JT_LEFT)==0 ){
+ /* A RIGHT JOIN. Use the right-most table */
+ cnt = 0;
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else{
+ /* For a FULL JOIN, we must construct a coalesce() func */
+ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn);
+ }
+ }
+ cnt++;
+ hit = 1;
+ }else if( cnt>0 ){
+ /* This is a potential rowid match, but there has already been
+ ** a real match found. So this can be ignored. */
+ continue;
+ }
+ cntTab++;
+ pMatch = pItem;
+ pExpr->iColumn = j;
+ pEList->a[j].fg.bUsed = 1;
+
+ /* rowid cannot be part of a USING clause - assert() this. */
+ assert( bRowid==0 || pEList->a[j].fg.bUsingTerm==0 );
+ if( pEList->a[j].fg.bUsingTerm ) break;
+ }
+ if( hit || zTab==0 ) continue;
+ }
+ assert( zDb==0 || zTab!=0 );
+ if( zTab ){
+ if( zDb ){
+ if( pTab->pSchema!=pSchema ) continue;
+ if( pSchema==0 && strcmp(zDb,"*")!=0 ) continue;
+ }
+ if( pItem->zAlias!=0 ){
+ if( sqlite3StrICmp(zTab, pItem->zAlias)!=0 ){
+ continue;
+ }
+ }else if( sqlite3StrICmp(zTab, pTab->zName)!=0 ){
+ if( pTab->tnum!=1 ) continue;
+ if( !isValidSchemaTableName(zTab, pTab, pSchema) ) continue;
+ }
+ assert( ExprUseYTab(pExpr) );
+ if( IN_RENAME_OBJECT && pItem->zAlias ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->y.pTab);
+ }
+ }
+ hCol = sqlite3StrIHash(zCol);
+ for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
+ if( pCol->hName==hCol
+ && sqlite3StrICmp(pCol->zCnName, zCol)==0
+ ){
+ if( cnt>0 ){
+ if( pItem->fg.isUsing==0
+ || sqlite3IdListIndex(pItem->u3.pUsing, zCol)<0
+ ){
+ /* Two or more tables have the same column name which is
+ ** not joined by USING. This is an error. Signal as much
+ ** by clearing pFJMatch and letting cnt go above 1. */
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else
+ if( (pItem->fg.jointype & JT_RIGHT)==0 ){
+ /* An INNER or LEFT JOIN. Use the left-most table */
+ continue;
+ }else
+ if( (pItem->fg.jointype & JT_LEFT)==0 ){
+ /* A RIGHT JOIN. Use the right-most table */
+ cnt = 0;
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }else{
+ /* For a FULL JOIN, we must construct a coalesce() func */
+ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn);
+ }
+ }
+ cnt++;
+ pMatch = pItem;
+ /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
+ pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
+ if( pItem->fg.isNestedFrom ){
+ sqlite3SrcItemColumnUsed(pItem, j);
+ }
+ break;
+ }
+ }
+ if( 0==cnt && VisibleRowid(pTab) ){
+ cntTab++;
+ pMatch = pItem;
+ }
+ }
+ if( pMatch ){
+ pExpr->iTable = pMatch->iCursor;
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pMatch->pTab;
+ if( (pMatch->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 ){
+ ExprSetProperty(pExpr, EP_CanBeNull);
+ }
+ pSchema = pExpr->y.pTab->pSchema;
+ }
+ } /* if( pSrcList ) */
+
+#if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT)
+ /* If we have not already resolved the name, then maybe
+ ** it is a new.* or old.* trigger argument reference. Or
+ ** maybe it is an excluded.* from an upsert. Or maybe it is
+ ** a reference in the RETURNING clause to a table being modified.
+ */
+ if( cnt==0 && zDb==0 ){
+ pTab = 0;
+#ifndef SQLITE_OMIT_TRIGGER
+ if( pParse->pTriggerTab!=0 ){
+ int op = pParse->eTriggerOp;
+ assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
+ if( pParse->bReturning ){
+ if( (pNC->ncFlags & NC_UBaseReg)!=0
+ && ALWAYS(zTab==0
+ || sqlite3StrICmp(zTab,pParse->pTriggerTab->zName)==0)
+ ){
+ pExpr->iTable = op!=TK_DELETE;
+ pTab = pParse->pTriggerTab;
+ }
+ }else if( op!=TK_DELETE && zTab && sqlite3StrICmp("new",zTab) == 0 ){
+ pExpr->iTable = 1;
+ pTab = pParse->pTriggerTab;
+ }else if( op!=TK_INSERT && zTab && sqlite3StrICmp("old",zTab)==0 ){
+ pExpr->iTable = 0;
+ pTab = pParse->pTriggerTab;
+ }
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+#ifndef SQLITE_OMIT_UPSERT
+ if( (pNC->ncFlags & NC_UUpsert)!=0 && zTab!=0 ){
+ Upsert *pUpsert = pNC->uNC.pUpsert;
+ if( pUpsert && sqlite3StrICmp("excluded",zTab)==0 ){
+ pTab = pUpsert->pUpsertSrc->a[0].pTab;
+ pExpr->iTable = EXCLUDED_TABLE_NUMBER;
+ }
+ }
+#endif /* SQLITE_OMIT_UPSERT */
+
+ if( pTab ){
+ int iCol;
+ u8 hCol = sqlite3StrIHash(zCol);
+ pSchema = pTab->pSchema;
+ cntTab++;
+ for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
+ if( pCol->hName==hCol
+ && sqlite3StrICmp(pCol->zCnName, zCol)==0
+ ){
+ if( iCol==pTab->iPKey ){
+ iCol = -1;
+ }
+ break;
+ }
+ }
+ if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){
+ /* IMP: R-51414-32910 */
+ iCol = -1;
+ }
+ if( iCol<pTab->nCol ){
+ cnt++;
+ pMatch = 0;
+#ifndef SQLITE_OMIT_UPSERT
+ if( pExpr->iTable==EXCLUDED_TABLE_NUMBER ){
+ testcase( iCol==(-1) );
+ assert( ExprUseYTab(pExpr) );
+ if( IN_RENAME_OBJECT ){
+ pExpr->iColumn = iCol;
+ pExpr->y.pTab = pTab;
+ eNewExprOp = TK_COLUMN;
+ }else{
+ pExpr->iTable = pNC->uNC.pUpsert->regData +
+ sqlite3TableColumnToStorage(pTab, iCol);
+ eNewExprOp = TK_REGISTER;
+ }
+ }else
+#endif /* SQLITE_OMIT_UPSERT */
+ {
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pTab;
+ if( pParse->bReturning ){
+ eNewExprOp = TK_REGISTER;
+ pExpr->op2 = TK_COLUMN;
+ pExpr->iColumn = iCol;
+ pExpr->iTable = pNC->uNC.iBaseReg + (pTab->nCol+1)*pExpr->iTable +
+ sqlite3TableColumnToStorage(pTab, iCol) + 1;
+ }else{
+ pExpr->iColumn = (i16)iCol;
+ eNewExprOp = TK_TRIGGER;
+#ifndef SQLITE_OMIT_TRIGGER
+ if( iCol<0 ){
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ }else if( pExpr->iTable==0 ){
+ testcase( iCol==31 );
+ testcase( iCol==32 );
+ pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
+ }else{
+ testcase( iCol==31 );
+ testcase( iCol==32 );
+ pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ }
+ }
+ }
+ }
+ }
+#endif /* !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) */
+
+ /*
+ ** Perhaps the name is a reference to the ROWID
+ */
+ if( cnt==0
+ && cntTab==1
+ && pMatch
+ && (pNC->ncFlags & (NC_IdxExpr|NC_GenCol))==0
+ && sqlite3IsRowid(zCol)
+ && ALWAYS(VisibleRowid(pMatch->pTab) || pMatch->fg.isNestedFrom)
+ ){
+ cnt = 1;
+ if( pMatch->fg.isNestedFrom==0 ) pExpr->iColumn = -1;
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ }
+
+ /*
+ ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
+ ** might refer to an result-set alias. This happens, for example, when
+ ** we are resolving names in the WHERE clause of the following command:
+ **
+ ** SELECT a+b AS x FROM table WHERE x<10;
+ **
+ ** In cases like this, replace pExpr with a copy of the expression that
+ ** forms the result set entry ("a+b" in the example) and return immediately.
+ ** Note that the expression in the result set should have already been
+ ** resolved by the time the WHERE clause is resolved.
+ **
+ ** The ability to use an output result-set column in the WHERE, GROUP BY,
+ ** or HAVING clauses, or as part of a larger expression in the ORDER BY
+ ** clause is not standard SQL. This is a (goofy) SQLite extension, that
+ ** is supported for backwards compatibility only. Hence, we issue a warning
+ ** on sqlite3_log() whenever the capability is used.
+ */
+ if( cnt==0
+ && (pNC->ncFlags & NC_UEList)!=0
+ && zTab==0
+ ){
+ pEList = pNC->uNC.pEList;
+ assert( pEList!=0 );
+ for(j=0; j<pEList->nExpr; j++){
+ char *zAs = pEList->a[j].zEName;
+ if( pEList->a[j].fg.eEName==ENAME_NAME
+ && sqlite3_stricmp(zAs, zCol)==0
+ ){
+ Expr *pOrig;
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ assert( ExprUseXList(pExpr)==0 || pExpr->x.pList==0 );
+ assert( ExprUseXSelect(pExpr)==0 || pExpr->x.pSelect==0 );
+ pOrig = pEList->a[j].pExpr;
+ if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
+ return WRC_Abort;
+ }
+ if( ExprHasProperty(pOrig, EP_Win)
+ && ((pNC->ncFlags&NC_AllowWin)==0 || pNC!=pTopNC )
+ ){
+ sqlite3ErrorMsg(pParse, "misuse of aliased window function %s",zAs);
+ return WRC_Abort;
+ }
+ if( sqlite3ExprVectorSize(pOrig)!=1 ){
+ sqlite3ErrorMsg(pParse, "row value misused");
+ return WRC_Abort;
+ }
+ resolveAlias(pParse, pEList, j, pExpr, nSubquery);
+ cnt = 1;
+ pMatch = 0;
+ assert( zTab==0 && zDb==0 );
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pExpr);
+ }
+ goto lookupname_end;
+ }
+ }
+ }
+
+ /* Advance to the next name context. The loop will exit when either
+ ** we have a match (cnt>0) or when we run out of name contexts.
+ */
+ if( cnt ) break;
+ pNC = pNC->pNext;
+ nSubquery++;
+ }while( pNC );
+
+
+ /*
+ ** If X and Y are NULL (in other words if only the column name Z is
+ ** supplied) and the value of Z is enclosed in double-quotes, then
+ ** Z is a string literal if it doesn't match any column names. In that
+ ** case, we need to return right away and not make any changes to
+ ** pExpr.
+ **
+ ** Because no reference was made to outer contexts, the pNC->nRef
+ ** fields are not changed in any context.
+ */
+ if( cnt==0 && zTab==0 ){
+ assert( pExpr->op==TK_ID );
+ if( ExprHasProperty(pExpr,EP_DblQuoted)
+ && areDoubleQuotedStringsEnabled(db, pTopNC)
+ ){
+ /* If a double-quoted identifier does not match any known column name,
+ ** then treat it as a string.
+ **
+ ** This hack was added in the early days of SQLite in a misguided attempt
+ ** to be compatible with MySQL 3.x, which used double-quotes for strings.
+ ** I now sorely regret putting in this hack. The effect of this hack is
+ ** that misspelled identifier names are silently converted into strings
+ ** rather than causing an error, to the frustration of countless
+ ** programmers. To all those frustrated programmers, my apologies.
+ **
+ ** Someday, I hope to get rid of this hack. Unfortunately there is
+ ** a huge amount of legacy SQL that uses it. So for now, we just
+ ** issue a warning.
+ */
+ sqlite3_log(SQLITE_WARNING,
+ "double-quoted string literal: \"%w\"", zCol);
+#ifdef SQLITE_ENABLE_NORMALIZE
+ sqlite3VdbeAddDblquoteStr(db, pParse->pVdbe, zCol);
+#endif
+ pExpr->op = TK_STRING;
+ memset(&pExpr->y, 0, sizeof(pExpr->y));
+ return WRC_Prune;
+ }
+ if( sqlite3ExprIdToTrueFalse(pExpr) ){
+ return WRC_Prune;
+ }
+ }
+
+ /*
+ ** cnt==0 means there was not match.
+ ** cnt>1 means there were two or more matches.
+ **
+ ** cnt==0 is always an error. cnt>1 is often an error, but might
+ ** be multiple matches for a NATURAL LEFT JOIN or a LEFT JOIN USING.
+ */
+ assert( pFJMatch==0 || cnt>0 );
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) );
+ if( cnt!=1 ){
+ const char *zErr;
+ if( pFJMatch ){
+ if( pFJMatch->nExpr==cnt-1 ){
+ if( ExprHasProperty(pExpr,EP_Leaf) ){
+ ExprClearProperty(pExpr,EP_Leaf);
+ }else{
+ sqlite3ExprDelete(db, pExpr->pLeft);
+ pExpr->pLeft = 0;
+ sqlite3ExprDelete(db, pExpr->pRight);
+ pExpr->pRight = 0;
+ }
+ extendFJMatch(pParse, &pFJMatch, pMatch, pExpr->iColumn);
+ pExpr->op = TK_FUNCTION;
+ pExpr->u.zToken = "coalesce";
+ pExpr->x.pList = pFJMatch;
+ cnt = 1;
+ goto lookupname_end;
+ }else{
+ sqlite3ExprListDelete(db, pFJMatch);
+ pFJMatch = 0;
+ }
+ }
+ zErr = cnt==0 ? "no such column" : "ambiguous column name";
+ if( zDb ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
+ }else if( zTab ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
+ }else{
+ sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
+ }
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ pParse->checkSchema = 1;
+ pTopNC->nNcErr++;
+ }
+ assert( pFJMatch==0 );
+
+ /* Remove all substructure from pExpr */
+ if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){
+ sqlite3ExprDelete(db, pExpr->pLeft);
+ pExpr->pLeft = 0;
+ sqlite3ExprDelete(db, pExpr->pRight);
+ pExpr->pRight = 0;
+ ExprSetProperty(pExpr, EP_Leaf);
+ }
+
+ /* If a column from a table in pSrcList is referenced, then record
+ ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
+ ** bit 0 to be set. Column 1 sets bit 1. And so forth. Bit 63 is
+ ** set if the 63rd or any subsequent column is used.
+ **
+ ** The colUsed mask is an optimization used to help determine if an
+ ** index is a covering index. The correct answer is still obtained
+ ** if the mask contains extra set bits. However, it is important to
+ ** avoid setting bits beyond the maximum column number of the table.
+ ** (See ticket [b92e5e8ec2cdbaa1]).
+ **
+ ** If a generated column is referenced, set bits for every column
+ ** of the table.
+ */
+ if( pExpr->iColumn>=0 && pMatch!=0 ){
+ pMatch->colUsed |= sqlite3ExprColUsed(pExpr);
+ }
+
+ pExpr->op = eNewExprOp;
+lookupname_end:
+ if( cnt==1 ){
+ assert( pNC!=0 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( pParse->db->xAuth
+ && (pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER)
+ ){
+ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
+ }
+#endif
+ /* Increment the nRef value on all name contexts from TopNC up to
+ ** the point where the name matched. */
+ for(;;){
+ assert( pTopNC!=0 );
+ pTopNC->nRef++;
+ if( pTopNC==pNC ) break;
+ pTopNC = pTopNC->pNext;
+ }
+ return WRC_Prune;
+ } else {
+ return WRC_Abort;
+ }
+}
+
+/*
+** Allocate and return a pointer to an expression to load the column iCol
+** from datasource iSrc in SrcList pSrc.
+*/
+SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){
+ Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0);
+ if( p ){
+ SrcItem *pItem = &pSrc->a[iSrc];
+ Table *pTab;
+ assert( ExprUseYTab(p) );
+ pTab = p->y.pTab = pItem->pTab;
+ p->iTable = pItem->iCursor;
+ if( p->y.pTab->iPKey==iCol ){
+ p->iColumn = -1;
+ }else{
+ p->iColumn = (ynVar)iCol;
+ if( (pTab->tabFlags & TF_HasGenerated)!=0
+ && (pTab->aCol[iCol].colFlags & COLFLAG_GENERATED)!=0
+ ){
+ testcase( pTab->nCol==63 );
+ testcase( pTab->nCol==64 );
+ pItem->colUsed = pTab->nCol>=64 ? ALLBITS : MASKBIT(pTab->nCol)-1;
+ }else{
+ testcase( iCol==BMS );
+ testcase( iCol==BMS-1 );
+ pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
+ }
+ }
+ }
+ return p;
+}
+
+/*
+** Report an error that an expression is not valid for some set of
+** pNC->ncFlags values determined by validMask.
+**
+** static void notValid(
+** Parse *pParse, // Leave error message here
+** NameContext *pNC, // The name context
+** const char *zMsg, // Type of error
+** int validMask, // Set of contexts for which prohibited
+** Expr *pExpr // Invalidate this expression on error
+** ){...}
+**
+** As an optimization, since the conditional is almost always false
+** (because errors are rare), the conditional is moved outside of the
+** function call using a macro.
+*/
+static void notValidImpl(
+ Parse *pParse, /* Leave error message here */
+ NameContext *pNC, /* The name context */
+ const char *zMsg, /* Type of error */
+ Expr *pExpr, /* Invalidate this expression on error */
+ Expr *pError /* Associate error with this expression */
+){
+ const char *zIn = "partial index WHERE clauses";
+ if( pNC->ncFlags & NC_IdxExpr ) zIn = "index expressions";
+#ifndef SQLITE_OMIT_CHECK
+ else if( pNC->ncFlags & NC_IsCheck ) zIn = "CHECK constraints";
+#endif
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ else if( pNC->ncFlags & NC_GenCol ) zIn = "generated columns";
+#endif
+ sqlite3ErrorMsg(pParse, "%s prohibited in %s", zMsg, zIn);
+ if( pExpr ) pExpr->op = TK_NULL;
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pError);
+}
+#define sqlite3ResolveNotValid(P,N,M,X,E,R) \
+ assert( ((X)&~(NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol))==0 ); \
+ if( ((N)->ncFlags & (X))!=0 ) notValidImpl(P,N,M,E,R);
+
+/*
+** Expression p should encode a floating point value between 1.0 and 0.0.
+** Return 1024 times this value. Or return -1 if p is not a floating point
+** value between 1.0 and 0.0.
+*/
+static int exprProbability(Expr *p){
+ double r = -1.0;
+ if( p->op!=TK_FLOAT ) return -1;
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8);
+ assert( r>=0.0 );
+ if( r>1.0 ) return -1;
+ return (int)(r*134217728.0);
+}
+
+/*
+** This routine is callback for sqlite3WalkExpr().
+**
+** Resolve symbolic names into TK_COLUMN operators for the current
+** node in the expression tree. Return 0 to continue the search down
+** the tree or 2 to abort the tree walk.
+**
+** This routine also does error checking and name resolution for
+** function names. The operator for aggregate functions is changed
+** to TK_AGG_FUNCTION.
+*/
+static int resolveExprStep(Walker *pWalker, Expr *pExpr){
+ NameContext *pNC;
+ Parse *pParse;
+
+ pNC = pWalker->u.pNC;
+ assert( pNC!=0 );
+ pParse = pNC->pParse;
+ assert( pParse==pWalker->pParse );
+
+#ifndef NDEBUG
+ if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
+ SrcList *pSrcList = pNC->pSrcList;
+ int i;
+ for(i=0; i<pNC->pSrcList->nSrc; i++){
+ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
+ }
+ }
+#endif
+ switch( pExpr->op ){
+
+ /* The special operator TK_ROW means use the rowid for the first
+ ** column in the FROM clause. This is used by the LIMIT and ORDER BY
+ ** clause processing on UPDATE and DELETE statements, and by
+ ** UPDATE ... FROM statement processing.
+ */
+ case TK_ROW: {
+ SrcList *pSrcList = pNC->pSrcList;
+ SrcItem *pItem;
+ assert( pSrcList && pSrcList->nSrc>=1 );
+ pItem = pSrcList->a;
+ pExpr->op = TK_COLUMN;
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pItem->pTab;
+ pExpr->iTable = pItem->iCursor;
+ pExpr->iColumn--;
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ break;
+ }
+
+ /* An optimization: Attempt to convert
+ **
+ ** "expr IS NOT NULL" --> "TRUE"
+ ** "expr IS NULL" --> "FALSE"
+ **
+ ** if we can prove that "expr" is never NULL. Call this the
+ ** "NOT NULL strength reduction optimization".
+ **
+ ** If this optimization occurs, also restore the NameContext ref-counts
+ ** to the state they where in before the "column" LHS expression was
+ ** resolved. This prevents "column" from being counted as having been
+ ** referenced, which might prevent a SELECT from being erroneously
+ ** marked as correlated.
+ */
+ case TK_NOTNULL:
+ case TK_ISNULL: {
+ int anRef[8];
+ NameContext *p;
+ int i;
+ for(i=0, p=pNC; p && i<ArraySize(anRef); p=p->pNext, i++){
+ anRef[i] = p->nRef;
+ }
+ sqlite3WalkExpr(pWalker, pExpr->pLeft);
+ if( 0==sqlite3ExprCanBeNull(pExpr->pLeft) && !IN_RENAME_OBJECT ){
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pExpr->u.iValue = (pExpr->op==TK_NOTNULL);
+ pExpr->flags |= EP_IntValue;
+ pExpr->op = TK_INTEGER;
+
+ for(i=0, p=pNC; p && i<ArraySize(anRef); p=p->pNext, i++){
+ p->nRef = anRef[i];
+ }
+ sqlite3ExprDelete(pParse->db, pExpr->pLeft);
+ pExpr->pLeft = 0;
+ }
+ return WRC_Prune;
+ }
+
+ /* A column name: ID
+ ** Or table name and column name: ID.ID
+ ** Or a database, table and column: ID.ID.ID
+ **
+ ** The TK_ID and TK_OUT cases are combined so that there will only
+ ** be one call to lookupName(). Then the compiler will in-line
+ ** lookupName() for a size reduction and performance increase.
+ */
+ case TK_ID:
+ case TK_DOT: {
+ const char *zColumn;
+ const char *zTable;
+ const char *zDb;
+ Expr *pRight;
+
+ if( pExpr->op==TK_ID ){
+ zDb = 0;
+ zTable = 0;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ zColumn = pExpr->u.zToken;
+ }else{
+ Expr *pLeft = pExpr->pLeft;
+ testcase( pNC->ncFlags & NC_IdxExpr );
+ testcase( pNC->ncFlags & NC_GenCol );
+ sqlite3ResolveNotValid(pParse, pNC, "the \".\" operator",
+ NC_IdxExpr|NC_GenCol, 0, pExpr);
+ pRight = pExpr->pRight;
+ if( pRight->op==TK_ID ){
+ zDb = 0;
+ }else{
+ assert( pRight->op==TK_DOT );
+ assert( !ExprHasProperty(pRight, EP_IntValue) );
+ zDb = pLeft->u.zToken;
+ pLeft = pRight->pLeft;
+ pRight = pRight->pRight;
+ }
+ assert( ExprUseUToken(pLeft) && ExprUseUToken(pRight) );
+ zTable = pLeft->u.zToken;
+ zColumn = pRight->u.zToken;
+ assert( ExprUseYTab(pExpr) );
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight);
+ sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft);
+ }
+ }
+ return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
+ }
+
+ /* Resolve function names
+ */
+ case TK_FUNCTION: {
+ ExprList *pList = pExpr->x.pList; /* The argument list */
+ int n = pList ? pList->nExpr : 0; /* Number of arguments */
+ int no_such_func = 0; /* True if no such function exists */
+ int wrong_num_args = 0; /* True if wrong number of arguments */
+ int is_agg = 0; /* True if is an aggregate function */
+ const char *zId; /* The function name. */
+ FuncDef *pDef; /* Information about the function */
+ u8 enc = ENC(pParse->db); /* The database encoding */
+ int savedAllowFlags = (pNC->ncFlags & (NC_AllowAgg | NC_AllowWin));
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin = (IsWindowFunc(pExpr) ? pExpr->y.pWin : 0);
+#endif
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect|EP_IntValue) );
+ assert( pExpr->pLeft==0 || pExpr->pLeft->op==TK_ORDER );
+ zId = pExpr->u.zToken;
+ pDef = sqlite3FindFunction(pParse->db, zId, n, enc, 0);
+ if( pDef==0 ){
+ pDef = sqlite3FindFunction(pParse->db, zId, -2, enc, 0);
+ if( pDef==0 ){
+ no_such_func = 1;
+ }else{
+ wrong_num_args = 1;
+ }
+ }else{
+ is_agg = pDef->xFinalize!=0;
+ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
+ ExprSetProperty(pExpr, EP_Unlikely);
+ if( n==2 ){
+ pExpr->iTable = exprProbability(pList->a[1].pExpr);
+ if( pExpr->iTable<0 ){
+ sqlite3ErrorMsg(pParse,
+ "second argument to %#T() must be a "
+ "constant between 0.0 and 1.0", pExpr);
+ pNC->nNcErr++;
+ }
+ }else{
+ /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is
+ ** equivalent to likelihood(X, 0.0625).
+ ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is
+ ** short-hand for likelihood(X,0.0625).
+ ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand
+ ** for likelihood(X,0.9375).
+ ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent
+ ** to likelihood(X,0.9375). */
+ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */
+ pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0,pDef->zName,0);
+ if( auth!=SQLITE_OK ){
+ if( auth==SQLITE_DENY ){
+ sqlite3ErrorMsg(pParse, "not authorized to use function: %#T",
+ pExpr);
+ pNC->nNcErr++;
+ }
+ pExpr->op = TK_NULL;
+ return WRC_Prune;
+ }
+ }
+#endif
+ if( pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG) ){
+ /* For the purposes of the EP_ConstFunc flag, date and time
+ ** functions and other functions that change slowly are considered
+ ** constant because they are constant for the duration of one query.
+ ** This allows them to be factored out of inner loops. */
+ ExprSetProperty(pExpr,EP_ConstFunc);
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){
+ /* Clearly non-deterministic functions like random(), but also
+ ** date/time functions that use 'now', and other functions like
+ ** sqlite_version() that might change over time cannot be used
+ ** in an index or generated column. Curiously, they can be used
+ ** in a CHECK constraint. SQLServer, MySQL, and PostgreSQL all
+ ** all this. */
+ sqlite3ResolveNotValid(pParse, pNC, "non-deterministic functions",
+ NC_IdxExpr|NC_PartIdx|NC_GenCol, 0, pExpr);
+ }else{
+ assert( (NC_SelfRef & 0xff)==NC_SelfRef ); /* Must fit in 8 bits */
+ pExpr->op2 = pNC->ncFlags & NC_SelfRef;
+ if( pNC->ncFlags & NC_FromDDL ) ExprSetProperty(pExpr, EP_FromDDL);
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_INTERNAL)!=0
+ && pParse->nested==0
+ && (pParse->db->mDbFlags & DBFLAG_InternalFunc)==0
+ ){
+ /* Internal-use-only functions are disallowed unless the
+ ** SQL is being compiled using sqlite3NestedParse() or
+ ** the SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test-control has be
+ ** used to activate internal functions for testing purposes */
+ no_such_func = 1;
+ pDef = 0;
+ }else
+ if( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0
+ && !IN_RENAME_OBJECT
+ ){
+ sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
+ }
+ }
+
+ if( 0==IN_RENAME_OBJECT ){
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX)
+ || (pDef->xValue==0 && pDef->xInverse==0)
+ || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize)
+ );
+ if( pDef && pDef->xValue==0 && pWin ){
+ sqlite3ErrorMsg(pParse,
+ "%#T() may not be used as a window function", pExpr
+ );
+ pNC->nNcErr++;
+ }else if(
+ (is_agg && (pNC->ncFlags & NC_AllowAgg)==0)
+ || (is_agg && (pDef->funcFlags&SQLITE_FUNC_WINDOW) && !pWin)
+ || (is_agg && pWin && (pNC->ncFlags & NC_AllowWin)==0)
+ ){
+ const char *zType;
+ if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pWin ){
+ zType = "window";
+ }else{
+ zType = "aggregate";
+ }
+ sqlite3ErrorMsg(pParse, "misuse of %s function %#T()",zType,pExpr);
+ pNC->nNcErr++;
+ is_agg = 0;
+ }
+#else
+ if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) ){
+ sqlite3ErrorMsg(pParse,"misuse of aggregate function %#T()",pExpr);
+ pNC->nNcErr++;
+ is_agg = 0;
+ }
+#endif
+ else if( no_such_func && pParse->db->init.busy==0
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ && pParse->explain==0
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "no such function: %#T", pExpr);
+ pNC->nNcErr++;
+ }else if( wrong_num_args ){
+ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %#T()",
+ pExpr);
+ pNC->nNcErr++;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else if( is_agg==0 && ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3ErrorMsg(pParse,
+ "FILTER may not be used with non-aggregate %#T()",
+ pExpr
+ );
+ pNC->nNcErr++;
+ }
+#endif
+ else if( is_agg==0 && pExpr->pLeft ){
+ sqlite3ExprOrderByAggregateError(pParse, pExpr);
+ pNC->nNcErr++;
+ }
+ if( is_agg ){
+ /* Window functions may not be arguments of aggregate functions.
+ ** Or arguments of other window functions. But aggregate functions
+ ** may be arguments for window functions. */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNC->ncFlags &= ~(NC_AllowWin | (!pWin ? NC_AllowAgg : 0));
+#else
+ pNC->ncFlags &= ~NC_AllowAgg;
+#endif
+ }
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ is_agg = 1;
+ }
+#endif
+ sqlite3WalkExprList(pWalker, pList);
+ if( is_agg ){
+ if( pExpr->pLeft ){
+ assert( pExpr->pLeft->op==TK_ORDER );
+ assert( ExprUseXList(pExpr->pLeft) );
+ sqlite3WalkExprList(pWalker, pExpr->pLeft->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ Select *pSel = pNC->pWinSelect;
+ assert( pWin==0 || (ExprUseYWin(pExpr) && pWin==pExpr->y.pWin) );
+ if( IN_RENAME_OBJECT==0 ){
+ sqlite3WindowUpdate(pParse, pSel ? pSel->pWinDefn : 0, pWin, pDef);
+ if( pParse->db->mallocFailed ) break;
+ }
+ sqlite3WalkExprList(pWalker, pWin->pPartition);
+ sqlite3WalkExprList(pWalker, pWin->pOrderBy);
+ sqlite3WalkExpr(pWalker, pWin->pFilter);
+ sqlite3WindowLink(pSel, pWin);
+ pNC->ncFlags |= NC_HasWin;
+ }else
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ {
+ NameContext *pNC2; /* For looping up thru outer contexts */
+ pExpr->op = TK_AGG_FUNCTION;
+ pExpr->op2 = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3WalkExpr(pWalker, pExpr->y.pWin->pFilter);
+ }
+#endif
+ pNC2 = pNC;
+ while( pNC2
+ && sqlite3ReferencesSrcList(pParse, pExpr, pNC2->pSrcList)==0
+ ){
+ pExpr->op2++;
+ pNC2 = pNC2->pNext;
+ }
+ assert( pDef!=0 || IN_RENAME_OBJECT );
+ if( pNC2 && pDef ){
+ assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg );
+ assert( SQLITE_FUNC_ANYORDER==NC_OrderAgg );
+ testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 );
+ testcase( (pDef->funcFlags & SQLITE_FUNC_ANYORDER)!=0 );
+ pNC2->ncFlags |= NC_HasAgg
+ | ((pDef->funcFlags^SQLITE_FUNC_ANYORDER)
+ & (SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER));
+ }
+ }
+ pNC->ncFlags |= savedAllowFlags;
+ }
+ /* FIX ME: Compute pExpr->affinity based on the expected return
+ ** type of the function
+ */
+ return WRC_Prune;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT:
+ case TK_EXISTS: testcase( pExpr->op==TK_EXISTS );
+#endif
+ case TK_IN: {
+ testcase( pExpr->op==TK_IN );
+ if( ExprUseXSelect(pExpr) ){
+ int nRef = pNC->nRef;
+ testcase( pNC->ncFlags & NC_IsCheck );
+ testcase( pNC->ncFlags & NC_PartIdx );
+ testcase( pNC->ncFlags & NC_IdxExpr );
+ testcase( pNC->ncFlags & NC_GenCol );
+ if( pNC->ncFlags & NC_SelfRef ){
+ notValidImpl(pParse, pNC, "subqueries", pExpr, pExpr);
+ }else{
+ sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
+ }
+ assert( pNC->nRef>=nRef );
+ if( nRef!=pNC->nRef ){
+ ExprSetProperty(pExpr, EP_VarSelect);
+ }
+ pNC->ncFlags |= NC_Subquery;
+ }
+ break;
+ }
+ case TK_VARIABLE: {
+ testcase( pNC->ncFlags & NC_IsCheck );
+ testcase( pNC->ncFlags & NC_PartIdx );
+ testcase( pNC->ncFlags & NC_IdxExpr );
+ testcase( pNC->ncFlags & NC_GenCol );
+ sqlite3ResolveNotValid(pParse, pNC, "parameters",
+ NC_IsCheck|NC_PartIdx|NC_IdxExpr|NC_GenCol, pExpr, pExpr);
+ break;
+ }
+ case TK_IS:
+ case TK_ISNOT: {
+ Expr *pRight = sqlite3ExprSkipCollateAndLikely(pExpr->pRight);
+ assert( !ExprHasProperty(pExpr, EP_Reduced) );
+ /* Handle special cases of "x IS TRUE", "x IS FALSE", "x IS NOT TRUE",
+ ** and "x IS NOT FALSE". */
+ if( ALWAYS(pRight) && (pRight->op==TK_ID || pRight->op==TK_TRUEFALSE) ){
+ int rc = resolveExprStep(pWalker, pRight);
+ if( rc==WRC_Abort ) return WRC_Abort;
+ if( pRight->op==TK_TRUEFALSE ){
+ pExpr->op2 = pExpr->op;
+ pExpr->op = TK_TRUTH;
+ return WRC_Continue;
+ }
+ }
+ /* no break */ deliberate_fall_through
+ }
+ case TK_BETWEEN:
+ case TK_EQ:
+ case TK_NE:
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE: {
+ int nLeft, nRight;
+ if( pParse->db->mallocFailed ) break;
+ assert( pExpr->pLeft!=0 );
+ nLeft = sqlite3ExprVectorSize(pExpr->pLeft);
+ if( pExpr->op==TK_BETWEEN ){
+ assert( ExprUseXList(pExpr) );
+ nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[0].pExpr);
+ if( nRight==nLeft ){
+ nRight = sqlite3ExprVectorSize(pExpr->x.pList->a[1].pExpr);
+ }
+ }else{
+ assert( pExpr->pRight!=0 );
+ nRight = sqlite3ExprVectorSize(pExpr->pRight);
+ }
+ if( nLeft!=nRight ){
+ testcase( pExpr->op==TK_EQ );
+ testcase( pExpr->op==TK_NE );
+ testcase( pExpr->op==TK_LT );
+ testcase( pExpr->op==TK_LE );
+ testcase( pExpr->op==TK_GT );
+ testcase( pExpr->op==TK_GE );
+ testcase( pExpr->op==TK_IS );
+ testcase( pExpr->op==TK_ISNOT );
+ testcase( pExpr->op==TK_BETWEEN );
+ sqlite3ErrorMsg(pParse, "row value misused");
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ }
+ break;
+ }
+ }
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ return pParse->nErr ? WRC_Abort : WRC_Continue;
+}
+
+/*
+** pEList is a list of expressions which are really the result set of the
+** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause.
+** This routine checks to see if pE is a simple identifier which corresponds
+** to the AS-name of one of the terms of the expression list. If it is,
+** this routine return an integer between 1 and N where N is the number of
+** elements in pEList, corresponding to the matching entry. If there is
+** no match, or if pE is not a simple identifier, then this routine
+** return 0.
+**
+** pEList has been resolved. pE has not.
+*/
+static int resolveAsName(
+ Parse *pParse, /* Parsing context for error messages */
+ ExprList *pEList, /* List of expressions to scan */
+ Expr *pE /* Expression we are trying to match */
+){
+ int i; /* Loop counter */
+
+ UNUSED_PARAMETER(pParse);
+
+ if( pE->op==TK_ID ){
+ const char *zCol;
+ assert( !ExprHasProperty(pE, EP_IntValue) );
+ zCol = pE->u.zToken;
+ for(i=0; i<pEList->nExpr; i++){
+ if( pEList->a[i].fg.eEName==ENAME_NAME
+ && sqlite3_stricmp(pEList->a[i].zEName, zCol)==0
+ ){
+ return i+1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** pE is a pointer to an expression which is a single term in the
+** ORDER BY of a compound SELECT. The expression has not been
+** name resolved.
+**
+** At the point this routine is called, we already know that the
+** ORDER BY term is not an integer index into the result set. That
+** case is handled by the calling routine.
+**
+** Attempt to match pE against result set columns in the left-most
+** SELECT statement. Return the index i of the matching column,
+** as an indication to the caller that it should sort by the i-th column.
+** The left-most column is 1. In other words, the value returned is the
+** same integer value that would be used in the SQL statement to indicate
+** the column.
+**
+** If there is no match, return 0. Return -1 if an error occurs.
+*/
+static int resolveOrderByTermToExprList(
+ Parse *pParse, /* Parsing context for error messages */
+ Select *pSelect, /* The SELECT statement with the ORDER BY clause */
+ Expr *pE /* The specific ORDER BY term */
+){
+ int i; /* Loop counter */
+ ExprList *pEList; /* The columns of the result set */
+ NameContext nc; /* Name context for resolving pE */
+ sqlite3 *db; /* Database connection */
+ int rc; /* Return code from subprocedures */
+ u8 savedSuppErr; /* Saved value of db->suppressErr */
+
+ assert( sqlite3ExprIsInteger(pE, &i)==0 );
+ pEList = pSelect->pEList;
+
+ /* Resolve all names in the ORDER BY term expression
+ */
+ memset(&nc, 0, sizeof(nc));
+ nc.pParse = pParse;
+ nc.pSrcList = pSelect->pSrc;
+ nc.uNC.pEList = pEList;
+ nc.ncFlags = NC_AllowAgg|NC_UEList|NC_NoSelect;
+ nc.nNcErr = 0;
+ db = pParse->db;
+ savedSuppErr = db->suppressErr;
+ db->suppressErr = 1;
+ rc = sqlite3ResolveExprNames(&nc, pE);
+ db->suppressErr = savedSuppErr;
+ if( rc ) return 0;
+
+ /* Try to match the ORDER BY expression against an expression
+ ** in the result set. Return an 1-based index of the matching
+ ** result-set entry.
+ */
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqlite3ExprCompare(0, pEList->a[i].pExpr, pE, -1)<2 ){
+ return i+1;
+ }
+ }
+
+ /* If no match, return 0. */
+ return 0;
+}
+
+/*
+** Generate an ORDER BY or GROUP BY term out-of-range error.
+*/
+static void resolveOutOfRangeError(
+ Parse *pParse, /* The error context into which to write the error */
+ const char *zType, /* "ORDER" or "GROUP" */
+ int i, /* The index (1-based) of the term out of range */
+ int mx, /* Largest permissible value of i */
+ Expr *pError /* Associate the error with the expression */
+){
+ sqlite3ErrorMsg(pParse,
+ "%r %s BY term out of range - should be "
+ "between 1 and %d", i, zType, mx);
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pError);
+}
+
+/*
+** Analyze the ORDER BY clause in a compound SELECT statement. Modify
+** each term of the ORDER BY clause is a constant integer between 1
+** and N where N is the number of columns in the compound SELECT.
+**
+** ORDER BY terms that are already an integer between 1 and N are
+** unmodified. ORDER BY terms that are integers outside the range of
+** 1 through N generate an error. ORDER BY terms that are expressions
+** are matched against result set expressions of compound SELECT
+** beginning with the left-most SELECT and working toward the right.
+** At the first match, the ORDER BY expression is transformed into
+** the integer column number.
+**
+** Return the number of errors seen.
+*/
+static int resolveCompoundOrderBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect /* The SELECT statement containing the ORDER BY */
+){
+ int i;
+ ExprList *pOrderBy;
+ ExprList *pEList;
+ sqlite3 *db;
+ int moreToDo = 1;
+
+ pOrderBy = pSelect->pOrderBy;
+ if( pOrderBy==0 ) return 0;
+ db = pParse->db;
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
+ return 1;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].fg.done = 0;
+ }
+ pSelect->pNext = 0;
+ while( pSelect->pPrior ){
+ pSelect->pPrior->pNext = pSelect;
+ pSelect = pSelect->pPrior;
+ }
+ while( pSelect && moreToDo ){
+ struct ExprList_item *pItem;
+ moreToDo = 0;
+ pEList = pSelect->pEList;
+ assert( pEList!=0 );
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ int iCol = -1;
+ Expr *pE, *pDup;
+ if( pItem->fg.done ) continue;
+ pE = sqlite3ExprSkipCollateAndLikely(pItem->pExpr);
+ if( NEVER(pE==0) ) continue;
+ if( sqlite3ExprIsInteger(pE, &iCol) ){
+ if( iCol<=0 || iCol>pEList->nExpr ){
+ resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr, pE);
+ return 1;
+ }
+ }else{
+ iCol = resolveAsName(pParse, pEList, pE);
+ if( iCol==0 ){
+ /* Now test if expression pE matches one of the values returned
+ ** by pSelect. In the usual case this is done by duplicating the
+ ** expression, resolving any symbols in it, and then comparing
+ ** it against each expression returned by the SELECT statement.
+ ** Once the comparisons are finished, the duplicate expression
+ ** is deleted.
+ **
+ ** If this is running as part of an ALTER TABLE operation and
+ ** the symbols resolve successfully, also resolve the symbols in the
+ ** actual expression. This allows the code in alter.c to modify
+ ** column references within the ORDER BY expression as required. */
+ pDup = sqlite3ExprDup(db, pE, 0);
+ if( !db->mallocFailed ){
+ assert(pDup);
+ iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup);
+ if( IN_RENAME_OBJECT && iCol>0 ){
+ resolveOrderByTermToExprList(pParse, pSelect, pE);
+ }
+ }
+ sqlite3ExprDelete(db, pDup);
+ }
+ }
+ if( iCol>0 ){
+ /* Convert the ORDER BY term into an integer column number iCol,
+ ** taking care to preserve the COLLATE clause if it exists. */
+ if( !IN_RENAME_OBJECT ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return 1;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = iCol;
+ if( pItem->pExpr==pE ){
+ pItem->pExpr = pNew;
+ }else{
+ Expr *pParent = pItem->pExpr;
+ assert( pParent->op==TK_COLLATE );
+ while( pParent->pLeft->op==TK_COLLATE ) pParent = pParent->pLeft;
+ assert( pParent->pLeft==pE );
+ pParent->pLeft = pNew;
+ }
+ sqlite3ExprDelete(db, pE);
+ pItem->u.x.iOrderByCol = (u16)iCol;
+ }
+ pItem->fg.done = 1;
+ }else{
+ moreToDo = 1;
+ }
+ }
+ pSelect = pSelect->pNext;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ if( pOrderBy->a[i].fg.done==0 ){
+ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
+ "column in the result set", i+1);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
+** the SELECT statement pSelect. If any term is reference to a
+** result set expression (as determined by the ExprList.a.u.x.iOrderByCol
+** field) then convert that term into a copy of the corresponding result set
+** column.
+**
+** If any errors are detected, add an error message to pParse and
+** return non-zero. Return zero if no errors are seen.
+*/
+SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect, /* The SELECT statement containing the clause */
+ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
+ const char *zType /* "ORDER" or "GROUP" */
+){
+ int i;
+ sqlite3 *db = pParse->db;
+ ExprList *pEList;
+ struct ExprList_item *pItem;
+
+ if( pOrderBy==0 || pParse->db->mallocFailed || IN_RENAME_OBJECT ) return 0;
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
+ return 1;
+ }
+ pEList = pSelect->pEList;
+ assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ if( pItem->u.x.iOrderByCol ){
+ if( pItem->u.x.iOrderByCol>pEList->nExpr ){
+ resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr, 0);
+ return 1;
+ }
+ resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr,0);
+ }
+ }
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Walker callback for windowRemoveExprFromSelect().
+*/
+static int resolveRemoveWindowsCb(Walker *pWalker, Expr *pExpr){
+ UNUSED_PARAMETER(pWalker);
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ Window *pWin = pExpr->y.pWin;
+ sqlite3WindowUnlinkFromSelect(pWin);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Remove any Window objects owned by the expression pExpr from the
+** Select.pWin list of Select object pSelect.
+*/
+static void windowRemoveExprFromSelect(Select *pSelect, Expr *pExpr){
+ if( pSelect->pWin ){
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.xExprCallback = resolveRemoveWindowsCb;
+ sWalker.u.pSelect = pSelect;
+ sqlite3WalkExpr(&sWalker, pExpr);
+ }
+}
+#else
+# define windowRemoveExprFromSelect(a, b)
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
+** The Name context of the SELECT statement is pNC. zType is either
+** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
+**
+** This routine resolves each term of the clause into an expression.
+** If the order-by term is an integer I between 1 and N (where N is the
+** number of columns in the result set of the SELECT) then the expression
+** in the resolution is a copy of the I-th result-set expression. If
+** the order-by term is an identifier that corresponds to the AS-name of
+** a result-set expression, then the term resolves to a copy of the
+** result-set expression. Otherwise, the expression is resolved in
+** the usual way - using sqlite3ResolveExprNames().
+**
+** This routine returns the number of errors. If errors occur, then
+** an appropriate error message might be left in pParse. (OOM errors
+** excepted.)
+*/
+static int resolveOrderGroupBy(
+ NameContext *pNC, /* The name context of the SELECT statement */
+ Select *pSelect, /* The SELECT statement holding pOrderBy */
+ ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */
+ const char *zType /* Either "ORDER" or "GROUP", as appropriate */
+){
+ int i, j; /* Loop counters */
+ int iCol; /* Column number */
+ struct ExprList_item *pItem; /* A term of the ORDER BY clause */
+ Parse *pParse; /* Parsing context */
+ int nResult; /* Number of terms in the result set */
+
+ assert( pOrderBy!=0 );
+ nResult = pSelect->pEList->nExpr;
+ pParse = pNC->pParse;
+ for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
+ Expr *pE = pItem->pExpr;
+ Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pE);
+ if( NEVER(pE2==0) ) continue;
+ if( zType[0]!='G' ){
+ iCol = resolveAsName(pParse, pSelect->pEList, pE2);
+ if( iCol>0 ){
+ /* If an AS-name match is found, mark this ORDER BY column as being
+ ** a copy of the iCol-th result-set column. The subsequent call to
+ ** sqlite3ResolveOrderGroupBy() will convert the expression to a
+ ** copy of the iCol-th result-set expression. */
+ pItem->u.x.iOrderByCol = (u16)iCol;
+ continue;
+ }
+ }
+ if( sqlite3ExprIsInteger(pE2, &iCol) ){
+ /* The ORDER BY term is an integer constant. Again, set the column
+ ** number so that sqlite3ResolveOrderGroupBy() will convert the
+ ** order-by term to a copy of the result-set expression */
+ if( iCol<1 || iCol>0xffff ){
+ resolveOutOfRangeError(pParse, zType, i+1, nResult, pE2);
+ return 1;
+ }
+ pItem->u.x.iOrderByCol = (u16)iCol;
+ continue;
+ }
+
+ /* Otherwise, treat the ORDER BY term as an ordinary expression */
+ pItem->u.x.iOrderByCol = 0;
+ if( sqlite3ResolveExprNames(pNC, pE) ){
+ return 1;
+ }
+ for(j=0; j<pSelect->pEList->nExpr; j++){
+ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){
+ /* Since this expression is being changed into a reference
+ ** to an identical expression in the result set, remove all Window
+ ** objects belonging to the expression from the Select.pWin list. */
+ windowRemoveExprFromSelect(pSelect, pE);
+ pItem->u.x.iOrderByCol = j+1;
+ }
+ }
+ }
+ return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
+}
+
+/*
+** Resolve names in the SELECT statement p and all of its descendants.
+*/
+static int resolveSelectStep(Walker *pWalker, Select *p){
+ NameContext *pOuterNC; /* Context that contains this SELECT */
+ NameContext sNC; /* Name context of this SELECT */
+ int isCompound; /* True if p is a compound select */
+ int nCompound; /* Number of compound terms processed so far */
+ Parse *pParse; /* Parsing context */
+ int i; /* Loop counter */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Select *pLeftmost; /* Left-most of SELECT of a compound */
+ sqlite3 *db; /* Database connection */
+
+
+ assert( p!=0 );
+ if( p->selFlags & SF_Resolved ){
+ return WRC_Prune;
+ }
+ pOuterNC = pWalker->u.pNC;
+ pParse = pWalker->pParse;
+ db = pParse->db;
+
+ /* Normally sqlite3SelectExpand() will be called first and will have
+ ** already expanded this SELECT. However, if this is a subquery within
+ ** an expression, sqlite3ResolveExprNames() will be called without a
+ ** prior call to sqlite3SelectExpand(). When that happens, let
+ ** sqlite3SelectPrep() do all of the processing for this SELECT.
+ ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
+ ** this routine in the correct order.
+ */
+ if( (p->selFlags & SF_Expanded)==0 ){
+ sqlite3SelectPrep(pParse, p, pOuterNC);
+ return pParse->nErr ? WRC_Abort : WRC_Prune;
+ }
+
+ isCompound = p->pPrior!=0;
+ nCompound = 0;
+ pLeftmost = p;
+ while( p ){
+ assert( (p->selFlags & SF_Expanded)!=0 );
+ assert( (p->selFlags & SF_Resolved)==0 );
+ p->selFlags |= SF_Resolved;
+
+ /* Resolve the expressions in the LIMIT and OFFSET clauses. These
+ ** are not allowed to refer to any names, so pass an empty NameContext.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pWinSelect = p;
+ if( sqlite3ResolveExprNames(&sNC, p->pLimit) ){
+ return WRC_Abort;
+ }
+
+ /* If the SF_Converted flags is set, then this Select object was
+ ** was created by the convertCompoundSelectToSubquery() function.
+ ** In this case the ORDER BY clause (p->pOrderBy) should be resolved
+ ** as if it were part of the sub-query, not the parent. This block
+ ** moves the pOrderBy down to the sub-query. It will be moved back
+ ** after the names have been resolved. */
+ if( p->selFlags & SF_Converted ){
+ Select *pSub = p->pSrc->a[0].pSelect;
+ assert( p->pSrc->nSrc==1 && p->pOrderBy );
+ assert( pSub->pPrior && pSub->pOrderBy==0 );
+ pSub->pOrderBy = p->pOrderBy;
+ p->pOrderBy = 0;
+ }
+
+ /* Recursively resolve names in all subqueries in the FROM clause
+ */
+ for(i=0; i<p->pSrc->nSrc; i++){
+ SrcItem *pItem = &p->pSrc->a[i];
+ if( pItem->pSelect && (pItem->pSelect->selFlags & SF_Resolved)==0 ){
+ int nRef = pOuterNC ? pOuterNC->nRef : 0;
+ const char *zSavedContext = pParse->zAuthContext;
+
+ if( pItem->zName ) pParse->zAuthContext = pItem->zName;
+ sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
+ pParse->zAuthContext = zSavedContext;
+ if( pParse->nErr ) return WRC_Abort;
+ assert( db->mallocFailed==0 );
+
+ /* If the number of references to the outer context changed when
+ ** expressions in the sub-select were resolved, the sub-select
+ ** is correlated. It is not required to check the refcount on any
+ ** but the innermost outer context object, as lookupName() increments
+ ** the refcount on all contexts between the current one and the
+ ** context containing the column when it resolves a name. */
+ if( pOuterNC ){
+ assert( pItem->fg.isCorrelated==0 && pOuterNC->nRef>=nRef );
+ pItem->fg.isCorrelated = (pOuterNC->nRef>nRef);
+ }
+ }
+ }
+
+ /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
+ ** resolve the result-set expression list.
+ */
+ sNC.ncFlags = NC_AllowAgg|NC_AllowWin;
+ sNC.pSrcList = p->pSrc;
+ sNC.pNext = pOuterNC;
+
+ /* Resolve names in the result set. */
+ if( sqlite3ResolveExprListNames(&sNC, p->pEList) ) return WRC_Abort;
+ sNC.ncFlags &= ~NC_AllowWin;
+
+ /* If there are no aggregate functions in the result-set, and no GROUP BY
+ ** expression, do not allow aggregates in any of the other expressions.
+ */
+ assert( (p->selFlags & SF_Aggregate)==0 );
+ pGroupBy = p->pGroupBy;
+ if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){
+ assert( NC_MinMaxAgg==SF_MinMaxAgg );
+ assert( NC_OrderAgg==SF_OrderByReqd );
+ p->selFlags |= SF_Aggregate | (sNC.ncFlags&(NC_MinMaxAgg|NC_OrderAgg));
+ }else{
+ sNC.ncFlags &= ~NC_AllowAgg;
+ }
+
+ /* Add the output column list to the name-context before parsing the
+ ** other expressions in the SELECT statement. This is so that
+ ** expressions in the WHERE clause (etc.) can refer to expressions by
+ ** aliases in the result set.
+ **
+ ** Minor point: If this is the case, then the expression will be
+ ** re-evaluated for each reference to it.
+ */
+ assert( (sNC.ncFlags & (NC_UAggInfo|NC_UUpsert|NC_UBaseReg))==0 );
+ sNC.uNC.pEList = p->pEList;
+ sNC.ncFlags |= NC_UEList;
+ if( p->pHaving ){
+ if( (p->selFlags & SF_Aggregate)==0 ){
+ sqlite3ErrorMsg(pParse, "HAVING clause on a non-aggregate query");
+ return WRC_Abort;
+ }
+ if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
+ }
+ if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;
+
+ /* Resolve names in table-valued-function arguments */
+ for(i=0; i<p->pSrc->nSrc; i++){
+ SrcItem *pItem = &p->pSrc->a[i];
+ if( pItem->fg.isTabFunc
+ && sqlite3ResolveExprListNames(&sNC, pItem->u1.pFuncArg)
+ ){
+ return WRC_Abort;
+ }
+ }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( IN_RENAME_OBJECT ){
+ Window *pWin;
+ for(pWin=p->pWinDefn; pWin; pWin=pWin->pNextWin){
+ if( sqlite3ResolveExprListNames(&sNC, pWin->pOrderBy)
+ || sqlite3ResolveExprListNames(&sNC, pWin->pPartition)
+ ){
+ return WRC_Abort;
+ }
+ }
+ }
+#endif
+
+ /* The ORDER BY and GROUP BY clauses may not refer to terms in
+ ** outer queries
+ */
+ sNC.pNext = 0;
+ sNC.ncFlags |= NC_AllowAgg|NC_AllowWin;
+
+ /* If this is a converted compound query, move the ORDER BY clause from
+ ** the sub-query back to the parent query. At this point each term
+ ** within the ORDER BY clause has been transformed to an integer value.
+ ** These integers will be replaced by copies of the corresponding result
+ ** set expressions by the call to resolveOrderGroupBy() below. */
+ if( p->selFlags & SF_Converted ){
+ Select *pSub = p->pSrc->a[0].pSelect;
+ p->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }
+
+ /* Process the ORDER BY clause for singleton SELECT statements.
+ ** The ORDER BY clause for compounds SELECT statements is handled
+ ** below, after all of the result-sets for all of the elements of
+ ** the compound have been resolved.
+ **
+ ** If there is an ORDER BY clause on a term of a compound-select other
+ ** than the right-most term, then that is a syntax error. But the error
+ ** is not detected until much later, and so we need to go ahead and
+ ** resolve those symbols on the incorrect ORDER BY for consistency.
+ */
+ if( p->pOrderBy!=0
+ && isCompound<=nCompound /* Defer right-most ORDER BY of a compound */
+ && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER")
+ ){
+ return WRC_Abort;
+ }
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+ sNC.ncFlags &= ~NC_AllowWin;
+
+ /* Resolve the GROUP BY clause. At the same time, make sure
+ ** the GROUP BY clause does not contain aggregate functions.
+ */
+ if( pGroupBy ){
+ struct ExprList_item *pItem;
+
+ if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
+ return WRC_Abort;
+ }
+ for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
+ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
+ "the GROUP BY clause");
+ return WRC_Abort;
+ }
+ }
+ }
+
+ /* If this is part of a compound SELECT, check that it has the right
+ ** number of expressions in the select list. */
+ if( p->pNext && p->pEList->nExpr!=p->pNext->pEList->nExpr ){
+ sqlite3SelectWrongNumTermsError(pParse, p->pNext);
+ return WRC_Abort;
+ }
+
+ /* Advance to the next term of the compound
+ */
+ p = p->pPrior;
+ nCompound++;
+ }
+
+ /* Resolve the ORDER BY on a compound SELECT after all terms of
+ ** the compound have been resolved.
+ */
+ if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
+ return WRC_Abort;
+ }
+
+ return WRC_Prune;
+}
+
+/*
+** This routine walks an expression tree and resolves references to
+** table columns and result-set columns. At the same time, do error
+** checking on function usage and set a flag if any aggregate functions
+** are seen.
+**
+** To resolve table columns references we look for nodes (or subtrees) of the
+** form X.Y.Z or Y.Z or just Z where
+**
+** X: The name of a database. Ex: "main" or "temp" or
+** the symbolic name assigned to an ATTACH-ed database.
+**
+** Y: The name of a table in a FROM clause. Or in a trigger
+** one of the special names "old" or "new".
+**
+** Z: The name of a column in table Y.
+**
+** The node at the root of the subtree is modified as follows:
+**
+** Expr.op Changed to TK_COLUMN
+** Expr.pTab Points to the Table object for X.Y
+** Expr.iColumn The column index in X.Y. -1 for the rowid.
+** Expr.iTable The VDBE cursor number for X.Y
+**
+**
+** To resolve result-set references, look for expression nodes of the
+** form Z (with no X and Y prefix) where the Z matches the right-hand
+** size of an AS clause in the result-set of a SELECT. The Z expression
+** is replaced by a copy of the left-hand side of the result-set expression.
+** Table-name and function resolution occurs on the substituted expression
+** tree. For example, in:
+**
+** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
+**
+** The "x" term of the order by is replaced by "a+b" to render:
+**
+** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
+**
+** Function calls are checked to make sure that the function is
+** defined and that the correct number of arguments are specified.
+** If the function is an aggregate function, then the NC_HasAgg flag is
+** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
+** If an expression contains aggregate functions then the EP_Agg
+** property on the expression is set.
+**
+** An error message is left in pParse if anything is amiss. The number
+** if errors is returned.
+*/
+SQLITE_PRIVATE int sqlite3ResolveExprNames(
+ NameContext *pNC, /* Namespace to resolve expressions in. */
+ Expr *pExpr /* The expression to be analyzed. */
+){
+ int savedHasAgg;
+ Walker w;
+
+ if( pExpr==0 ) return SQLITE_OK;
+ savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ w.pParse = pNC->pParse;
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = (pNC->ncFlags & NC_NoSelect) ? 0 : resolveSelectStep;
+ w.xSelectCallback2 = 0;
+ w.u.pNC = pNC;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight += pExpr->nHeight;
+ if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){
+ return SQLITE_ERROR;
+ }
+#endif
+ assert( pExpr!=0 );
+ sqlite3WalkExprNN(&w, pExpr);
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight -= pExpr->nHeight;
+#endif
+ assert( EP_Agg==NC_HasAgg );
+ assert( EP_Win==NC_HasWin );
+ testcase( pNC->ncFlags & NC_HasAgg );
+ testcase( pNC->ncFlags & NC_HasWin );
+ ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) );
+ pNC->ncFlags |= savedHasAgg;
+ return pNC->nNcErr>0 || w.pParse->nErr>0;
+}
+
+/*
+** Resolve all names for all expression in an expression list. This is
+** just like sqlite3ResolveExprNames() except that it works for an expression
+** list rather than a single expression.
+*/
+SQLITE_PRIVATE int sqlite3ResolveExprListNames(
+ NameContext *pNC, /* Namespace to resolve expressions in. */
+ ExprList *pList /* The expression list to be analyzed. */
+){
+ int i;
+ int savedHasAgg = 0;
+ Walker w;
+ if( pList==0 ) return WRC_Continue;
+ w.pParse = pNC->pParse;
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = resolveSelectStep;
+ w.xSelectCallback2 = 0;
+ w.u.pNC = pNC;
+ savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ if( pExpr==0 ) continue;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight += pExpr->nHeight;
+ if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){
+ return WRC_Abort;
+ }
+#endif
+ sqlite3WalkExprNN(&w, pExpr);
+#if SQLITE_MAX_EXPR_DEPTH>0
+ w.pParse->nHeight -= pExpr->nHeight;
+#endif
+ assert( EP_Agg==NC_HasAgg );
+ assert( EP_Win==NC_HasWin );
+ testcase( pNC->ncFlags & NC_HasAgg );
+ testcase( pNC->ncFlags & NC_HasWin );
+ if( pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg) ){
+ ExprSetProperty(pExpr, pNC->ncFlags & (NC_HasAgg|NC_HasWin) );
+ savedHasAgg |= pNC->ncFlags &
+ (NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg|NC_HasWin|NC_OrderAgg);
+ }
+ if( w.pParse->nErr>0 ) return WRC_Abort;
+ }
+ pNC->ncFlags |= savedHasAgg;
+ return WRC_Continue;
+}
+
+/*
+** Resolve all names in all expressions of a SELECT and in all
+** descendants of the SELECT, including compounds off of p->pPrior,
+** subqueries in expressions, and subqueries used as FROM clause
+** terms.
+**
+** See sqlite3ResolveExprNames() for a description of the kinds of
+** transformations that occur.
+**
+** All SELECT statements should have been expanded using
+** sqlite3SelectExpand() prior to invoking this routine.
+*/
+SQLITE_PRIVATE void sqlite3ResolveSelectNames(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for parent SELECT statement */
+){
+ Walker w;
+
+ assert( p!=0 );
+ w.xExprCallback = resolveExprStep;
+ w.xSelectCallback = resolveSelectStep;
+ w.xSelectCallback2 = 0;
+ w.pParse = pParse;
+ w.u.pNC = pOuterNC;
+ sqlite3WalkSelect(&w, p);
+}
+
+/*
+** Resolve names in expressions that can only reference a single table
+** or which cannot reference any tables at all. Examples:
+**
+** "type" flag
+** ------------
+** (1) CHECK constraints NC_IsCheck
+** (2) WHERE clauses on partial indices NC_PartIdx
+** (3) Expressions in indexes on expressions NC_IdxExpr
+** (4) Expression arguments to VACUUM INTO. 0
+** (5) GENERATED ALWAYS as expressions NC_GenCol
+**
+** In all cases except (4), the Expr.iTable value for Expr.op==TK_COLUMN
+** nodes of the expression is set to -1 and the Expr.iColumn value is
+** set to the column number. In case (4), TK_COLUMN nodes cause an error.
+**
+** Any errors cause an error message to be set in pParse.
+*/
+SQLITE_PRIVATE int sqlite3ResolveSelfReference(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* The table being referenced, or NULL */
+ int type, /* NC_IsCheck, NC_PartIdx, NC_IdxExpr, NC_GenCol, or 0 */
+ Expr *pExpr, /* Expression to resolve. May be NULL. */
+ ExprList *pList /* Expression list to resolve. May be NULL. */
+){
+ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
+ NameContext sNC; /* Name context for pParse->pNewTable */
+ int rc;
+
+ assert( type==0 || pTab!=0 );
+ assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr
+ || type==NC_GenCol || pTab==0 );
+ memset(&sNC, 0, sizeof(sNC));
+ memset(&sSrc, 0, sizeof(sSrc));
+ if( pTab ){
+ sSrc.nSrc = 1;
+ sSrc.a[0].zName = pTab->zName;
+ sSrc.a[0].pTab = pTab;
+ sSrc.a[0].iCursor = -1;
+ if( pTab->pSchema!=pParse->db->aDb[1].pSchema ){
+ /* Cause EP_FromDDL to be set on TK_FUNCTION nodes of non-TEMP
+ ** schema elements */
+ type |= NC_FromDDL;
+ }
+ }
+ sNC.pParse = pParse;
+ sNC.pSrcList = &sSrc;
+ sNC.ncFlags = type | NC_IsDDL;
+ if( (rc = sqlite3ResolveExprNames(&sNC, pExpr))!=SQLITE_OK ) return rc;
+ if( pList ) rc = sqlite3ResolveExprListNames(&sNC, pList);
+ return rc;
+}
+
+/************** End of resolve.c *********************************************/
+/************** Begin file expr.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for analyzing expressions and
+** for generating VDBE code that evaluates expressions in SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/* Forward declarations */
+static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
+static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
+
+/*
+** Return the affinity character for a single column of a table.
+*/
+SQLITE_PRIVATE char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
+ if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
+ return pTab->aCol[iCol].affinity;
+}
+
+/*
+** Return the 'affinity' of the expression pExpr if any.
+**
+** If pExpr is a column, a reference to a column via an 'AS' alias,
+** or a sub-select with a column as the return value, then the
+** affinity of that column is returned. Otherwise, 0x00 is returned,
+** indicating no affinity for the expression.
+**
+** i.e. the WHERE clause expressions in the following statements all
+** have an affinity:
+**
+** CREATE TABLE t1(a);
+** SELECT * FROM t1 WHERE a;
+** SELECT a AS b FROM t1 WHERE b;
+** SELECT * FROM t1 WHERE (select a from t1);
+*/
+SQLITE_PRIVATE char sqlite3ExprAffinity(const Expr *pExpr){
+ int op;
+ op = pExpr->op;
+ while( 1 /* exit-by-break */ ){
+ if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){
+ assert( ExprUseYTab(pExpr) );
+ assert( pExpr->y.pTab!=0 );
+ return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
+ }
+ if( op==TK_SELECT ){
+ assert( ExprUseXSelect(pExpr) );
+ assert( pExpr->x.pSelect!=0 );
+ assert( pExpr->x.pSelect->pEList!=0 );
+ assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
+ return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
+ }
+#ifndef SQLITE_OMIT_CAST
+ if( op==TK_CAST ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ return sqlite3AffinityType(pExpr->u.zToken, 0);
+ }
+#endif
+ if( op==TK_SELECT_COLUMN ){
+ assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
+ assert( pExpr->iColumn < pExpr->iTable );
+ assert( pExpr->iColumn >= 0 );
+ assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
+ return sqlite3ExprAffinity(
+ pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
+ );
+ }
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(pExpr) );
+ return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
+ }
+ if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
+ assert( pExpr->op==TK_COLLATE
+ || pExpr->op==TK_IF_NULL_ROW
+ || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
+ pExpr = pExpr->pLeft;
+ op = pExpr->op;
+ continue;
+ }
+ if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break;
+ }
+ return pExpr->affExpr;
+}
+
+/*
+** Make a guess at all the possible datatypes of the result that could
+** be returned by an expression. Return a bitmask indicating the answer:
+**
+** 0x01 Numeric
+** 0x02 Text
+** 0x04 Blob
+**
+** If the expression must return NULL, then 0x00 is returned.
+*/
+SQLITE_PRIVATE int sqlite3ExprDataType(const Expr *pExpr){
+ while( pExpr ){
+ switch( pExpr->op ){
+ case TK_COLLATE:
+ case TK_IF_NULL_ROW:
+ case TK_UPLUS: {
+ pExpr = pExpr->pLeft;
+ break;
+ }
+ case TK_NULL: {
+ pExpr = 0;
+ break;
+ }
+ case TK_STRING: {
+ return 0x02;
+ }
+ case TK_BLOB: {
+ return 0x04;
+ }
+ case TK_CONCAT: {
+ return 0x06;
+ }
+ case TK_VARIABLE:
+ case TK_AGG_FUNCTION:
+ case TK_FUNCTION: {
+ return 0x07;
+ }
+ case TK_COLUMN:
+ case TK_AGG_COLUMN:
+ case TK_SELECT:
+ case TK_CAST:
+ case TK_SELECT_COLUMN:
+ case TK_VECTOR: {
+ int aff = sqlite3ExprAffinity(pExpr);
+ if( aff>=SQLITE_AFF_NUMERIC ) return 0x05;
+ if( aff==SQLITE_AFF_TEXT ) return 0x06;
+ return 0x07;
+ }
+ case TK_CASE: {
+ int res = 0;
+ int ii;
+ ExprList *pList = pExpr->x.pList;
+ assert( ExprUseXList(pExpr) && pList!=0 );
+ assert( pList->nExpr > 0);
+ for(ii=1; ii<pList->nExpr; ii+=2){
+ res |= sqlite3ExprDataType(pList->a[ii].pExpr);
+ }
+ if( pList->nExpr % 2 ){
+ res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr);
+ }
+ return res;
+ }
+ default: {
+ return 0x01;
+ }
+ } /* End of switch(op) */
+ } /* End of while(pExpr) */
+ return 0x00;
+}
+
+/*
+** Set the collating sequence for expression pExpr to be the collating
+** sequence named by pToken. Return a pointer to a new Expr node that
+** implements the COLLATE operator.
+**
+** If a memory allocation error occurs, that fact is recorded in pParse->db
+** and the pExpr parameter is returned unchanged.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(
+ const Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* Add the "COLLATE" clause to this expression */
+ const Token *pCollName, /* Name of collating sequence */
+ int dequote /* True to dequote pCollName */
+){
+ if( pCollName->n>0 ){
+ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
+ if( pNew ){
+ pNew->pLeft = pExpr;
+ pNew->flags |= EP_Collate|EP_Skip;
+ pExpr = pNew;
+ }
+ }
+ return pExpr;
+}
+SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(
+ const Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* Add the "COLLATE" clause to this expression */
+ const char *zC /* The collating sequence name */
+){
+ Token s;
+ assert( zC!=0 );
+ sqlite3TokenInit(&s, (char*)zC);
+ return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
+}
+
+/*
+** Skip over any TK_COLLATE operators.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){
+ while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
+ assert( pExpr->op==TK_COLLATE );
+ pExpr = pExpr->pLeft;
+ }
+ return pExpr;
+}
+
+/*
+** Skip over any TK_COLLATE operators and/or any unlikely()
+** or likelihood() or likely() functions at the root of an
+** expression.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
+ while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
+ if( ExprHasProperty(pExpr, EP_Unlikely) ){
+ assert( ExprUseXList(pExpr) );
+ assert( pExpr->x.pList->nExpr>0 );
+ assert( pExpr->op==TK_FUNCTION );
+ pExpr = pExpr->x.pList->a[0].pExpr;
+ }else{
+ assert( pExpr->op==TK_COLLATE );
+ pExpr = pExpr->pLeft;
+ }
+ }
+ return pExpr;
+}
+
+/*
+** Return the collation sequence for the expression pExpr. If
+** there is no defined collating sequence, return NULL.
+**
+** See also: sqlite3ExprNNCollSeq()
+**
+** The sqlite3ExprNNCollSeq() works the same exact that it returns the
+** default collation if pExpr has no defined collation.
+**
+** The collating sequence might be determined by a COLLATE operator
+** or by the presence of a column with a defined collating sequence.
+** COLLATE operators take first precedence. Left operands take
+** precedence over right operands.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
+ sqlite3 *db = pParse->db;
+ CollSeq *pColl = 0;
+ const Expr *p = pExpr;
+ while( p ){
+ int op = p->op;
+ if( op==TK_REGISTER ) op = p->op2;
+ if( (op==TK_AGG_COLUMN && p->y.pTab!=0)
+ || op==TK_COLUMN || op==TK_TRIGGER
+ ){
+ int j;
+ assert( ExprUseYTab(p) );
+ assert( p->y.pTab!=0 );
+ if( (j = p->iColumn)>=0 ){
+ const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
+ }
+ break;
+ }
+ if( op==TK_CAST || op==TK_UPLUS ){
+ p = p->pLeft;
+ continue;
+ }
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(p) );
+ p = p->x.pList->a[0].pExpr;
+ continue;
+ }
+ if( op==TK_COLLATE ){
+ assert( !ExprHasProperty(p, EP_IntValue) );
+ pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
+ break;
+ }
+ if( p->flags & EP_Collate ){
+ if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
+ p = p->pLeft;
+ }else{
+ Expr *pNext = p->pRight;
+ /* The Expr.x union is never used at the same time as Expr.pRight */
+ assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 );
+ if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
+ pNext = p->x.pList->a[i].pExpr;
+ break;
+ }
+ }
+ }
+ p = pNext;
+ }
+ }else{
+ break;
+ }
+ }
+ if( sqlite3CheckCollSeq(pParse, pColl) ){
+ pColl = 0;
+ }
+ return pColl;
+}
+
+/*
+** Return the collation sequence for the expression pExpr. If
+** there is no defined collating sequence, return a pointer to the
+** default collation sequence.
+**
+** See also: sqlite3ExprCollSeq()
+**
+** The sqlite3ExprCollSeq() routine works the same except that it
+** returns NULL if there is no defined collation.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
+ CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
+ if( p==0 ) p = pParse->db->pDfltColl;
+ assert( p!=0 );
+ return p;
+}
+
+/*
+** Return TRUE if the two expressions have equivalent collating sequences.
+*/
+SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
+ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
+ CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
+ return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
+}
+
+/*
+** pExpr is an operand of a comparison operator. aff2 is the
+** type affinity of the other operand. This routine returns the
+** type affinity that should be used for the comparison operator.
+*/
+SQLITE_PRIVATE char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
+ char aff1 = sqlite3ExprAffinity(pExpr);
+ if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
+ /* Both sides of the comparison are columns. If one has numeric
+ ** affinity, use that. Otherwise use no affinity.
+ */
+ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
+ return SQLITE_AFF_NUMERIC;
+ }else{
+ return SQLITE_AFF_BLOB;
+ }
+ }else{
+ /* One side is a column, the other is not. Use the columns affinity. */
+ assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
+ return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
+ }
+}
+
+/*
+** pExpr is a comparison operator. Return the type affinity that should
+** be applied to both operands prior to doing the comparison.
+*/
+static char comparisonAffinity(const Expr *pExpr){
+ char aff;
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
+ pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
+ pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
+ assert( pExpr->pLeft );
+ aff = sqlite3ExprAffinity(pExpr->pLeft);
+ if( pExpr->pRight ){
+ aff = sqlite3CompareAffinity(pExpr->pRight, aff);
+ }else if( ExprUseXSelect(pExpr) ){
+ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
+ }else if( aff==0 ){
+ aff = SQLITE_AFF_BLOB;
+ }
+ return aff;
+}
+
+/*
+** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
+** idx_affinity is the affinity of an indexed column. Return true
+** if the index with affinity idx_affinity may be used to implement
+** the comparison in pExpr.
+*/
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
+ char aff = comparisonAffinity(pExpr);
+ if( aff<SQLITE_AFF_TEXT ){
+ return 1;
+ }
+ if( aff==SQLITE_AFF_TEXT ){
+ return idx_affinity==SQLITE_AFF_TEXT;
+ }
+ return sqlite3IsNumericAffinity(idx_affinity);
+}
+
+/*
+** Return the P5 value that should be used for a binary comparison
+** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
+*/
+static u8 binaryCompareP5(
+ const Expr *pExpr1, /* Left operand */
+ const Expr *pExpr2, /* Right operand */
+ int jumpIfNull /* Extra flags added to P5 */
+){
+ u8 aff = (char)sqlite3ExprAffinity(pExpr2);
+ aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
+ return aff;
+}
+
+/*
+** Return a pointer to the collation sequence that should be used by
+** a binary comparison operator comparing pLeft and pRight.
+**
+** If the left hand expression has a collating sequence type, then it is
+** used. Otherwise the collation sequence for the right hand expression
+** is used, or the default (BINARY) if neither expression has a collating
+** type.
+**
+** Argument pRight (but not pLeft) may be a null pointer. In this case,
+** it is not considered.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
+ Parse *pParse,
+ const Expr *pLeft,
+ const Expr *pRight
+){
+ CollSeq *pColl;
+ assert( pLeft );
+ if( pLeft->flags & EP_Collate ){
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
+ pColl = sqlite3ExprCollSeq(pParse, pRight);
+ }else{
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ if( !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pRight);
+ }
+ }
+ return pColl;
+}
+
+/* Expression p is a comparison operator. Return a collation sequence
+** appropriate for the comparison operator.
+**
+** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
+** However, if the OP_Commuted flag is set, then the order of the operands
+** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
+** correct collating sequence is found.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
+ if( ExprHasProperty(p, EP_Commuted) ){
+ return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
+ }else{
+ return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
+ }
+}
+
+/*
+** Generate code for a comparison operator.
+*/
+static int codeCompare(
+ Parse *pParse, /* The parsing (and code generating) context */
+ Expr *pLeft, /* The left operand */
+ Expr *pRight, /* The right operand */
+ int opcode, /* The comparison opcode */
+ int in1, int in2, /* Register holding operands */
+ int dest, /* Jump here if true. */
+ int jumpIfNull, /* If true, jump if either operand is NULL */
+ int isCommuted /* The comparison has been commuted */
+){
+ int p5;
+ int addr;
+ CollSeq *p4;
+
+ if( pParse->nErr ) return 0;
+ if( isCommuted ){
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
+ }else{
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
+ }
+ p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
+ addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
+ (void*)p4, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
+ return addr;
+}
+
+/*
+** Return true if expression pExpr is a vector, or false otherwise.
+**
+** A vector is defined as any expression that results in two or more
+** columns of result. Every TK_VECTOR node is an vector because the
+** parser will not generate a TK_VECTOR with fewer than two entries.
+** But a TK_SELECT might be either a vector or a scalar. It is only
+** considered a vector if it has two or more result columns.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsVector(const Expr *pExpr){
+ return sqlite3ExprVectorSize(pExpr)>1;
+}
+
+/*
+** If the expression passed as the only argument is of type TK_VECTOR
+** return the number of expressions in the vector. Or, if the expression
+** is a sub-select, return the number of columns in the sub-select. For
+** any other type of expression, return 1.
+*/
+SQLITE_PRIVATE int sqlite3ExprVectorSize(const Expr *pExpr){
+ u8 op = pExpr->op;
+ if( op==TK_REGISTER ) op = pExpr->op2;
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(pExpr) );
+ return pExpr->x.pList->nExpr;
+ }else if( op==TK_SELECT ){
+ assert( ExprUseXSelect(pExpr) );
+ return pExpr->x.pSelect->pEList->nExpr;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Return a pointer to a subexpression of pVector that is the i-th
+** column of the vector (numbered starting with 0). The caller must
+** ensure that i is within range.
+**
+** If pVector is really a scalar (and "scalar" here includes subqueries
+** that return a single column!) then return pVector unmodified.
+**
+** pVector retains ownership of the returned subexpression.
+**
+** If the vector is a (SELECT ...) then the expression returned is
+** just the expression for the i-th term of the result set, and may
+** not be ready for evaluation because the table cursor has not yet
+** been positioned.
+*/
+SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
+ assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
+ if( sqlite3ExprIsVector(pVector) ){
+ assert( pVector->op2==0 || pVector->op==TK_REGISTER );
+ if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
+ assert( ExprUseXSelect(pVector) );
+ return pVector->x.pSelect->pEList->a[i].pExpr;
+ }else{
+ assert( ExprUseXList(pVector) );
+ return pVector->x.pList->a[i].pExpr;
+ }
+ }
+ return pVector;
+}
+
+/*
+** Compute and return a new Expr object which when passed to
+** sqlite3ExprCode() will generate all necessary code to compute
+** the iField-th column of the vector expression pVector.
+**
+** It is ok for pVector to be a scalar (as long as iField==0).
+** In that case, this routine works like sqlite3ExprDup().
+**
+** The caller owns the returned Expr object and is responsible for
+** ensuring that the returned value eventually gets freed.
+**
+** The caller retains ownership of pVector. If pVector is a TK_SELECT,
+** then the returned object will reference pVector and so pVector must remain
+** valid for the life of the returned object. If pVector is a TK_VECTOR
+** or a scalar expression, then it can be deleted as soon as this routine
+** returns.
+**
+** A trick to cause a TK_SELECT pVector to be deleted together with
+** the returned Expr object is to attach the pVector to the pRight field
+** of the returned TK_SELECT_COLUMN Expr object.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(
+ Parse *pParse, /* Parsing context */
+ Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
+ int iField, /* Which column of the vector to return */
+ int nField /* Total number of columns in the vector */
+){
+ Expr *pRet;
+ if( pVector->op==TK_SELECT ){
+ assert( ExprUseXSelect(pVector) );
+ /* The TK_SELECT_COLUMN Expr node:
+ **
+ ** pLeft: pVector containing TK_SELECT. Not deleted.
+ ** pRight: not used. But recursively deleted.
+ ** iColumn: Index of a column in pVector
+ ** iTable: 0 or the number of columns on the LHS of an assignment
+ ** pLeft->iTable: First in an array of register holding result, or 0
+ ** if the result is not yet computed.
+ **
+ ** sqlite3ExprDelete() specifically skips the recursive delete of
+ ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
+ ** can be attached to pRight to cause this node to take ownership of
+ ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
+ ** with the same pLeft pointer to the pVector, but only one of them
+ ** will own the pVector.
+ */
+ pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
+ if( pRet ){
+ ExprSetProperty(pRet, EP_FullSize);
+ pRet->iTable = nField;
+ pRet->iColumn = iField;
+ pRet->pLeft = pVector;
+ }
+ }else{
+ if( pVector->op==TK_VECTOR ){
+ Expr **ppVector;
+ assert( ExprUseXList(pVector) );
+ ppVector = &pVector->x.pList->a[iField].pExpr;
+ pVector = *ppVector;
+ if( IN_RENAME_OBJECT ){
+ /* This must be a vector UPDATE inside a trigger */
+ *ppVector = 0;
+ return pVector;
+ }
+ }
+ pRet = sqlite3ExprDup(pParse->db, pVector, 0);
+ }
+ return pRet;
+}
+
+/*
+** If expression pExpr is of type TK_SELECT, generate code to evaluate
+** it. Return the register in which the result is stored (or, if the
+** sub-select returns more than one column, the first in an array
+** of registers in which the result is stored).
+**
+** If pExpr is not a TK_SELECT expression, return 0.
+*/
+static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
+ int reg = 0;
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( pExpr->op==TK_SELECT ){
+ reg = sqlite3CodeSubselect(pParse, pExpr);
+ }
+#endif
+ return reg;
+}
+
+/*
+** Argument pVector points to a vector expression - either a TK_VECTOR
+** or TK_SELECT that returns more than one column. This function returns
+** the register number of a register that contains the value of
+** element iField of the vector.
+**
+** If pVector is a TK_SELECT expression, then code for it must have
+** already been generated using the exprCodeSubselect() routine. In this
+** case parameter regSelect should be the first in an array of registers
+** containing the results of the sub-select.
+**
+** If pVector is of type TK_VECTOR, then code for the requested field
+** is generated. In this case (*pRegFree) may be set to the number of
+** a temporary register to be freed by the caller before returning.
+**
+** Before returning, output parameter (*ppExpr) is set to point to the
+** Expr object corresponding to element iElem of the vector.
+*/
+static int exprVectorRegister(
+ Parse *pParse, /* Parse context */
+ Expr *pVector, /* Vector to extract element from */
+ int iField, /* Field to extract from pVector */
+ int regSelect, /* First in array of registers */
+ Expr **ppExpr, /* OUT: Expression element */
+ int *pRegFree /* OUT: Temp register to free */
+){
+ u8 op = pVector->op;
+ assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
+ if( op==TK_REGISTER ){
+ *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
+ return pVector->iTable+iField;
+ }
+ if( op==TK_SELECT ){
+ assert( ExprUseXSelect(pVector) );
+ *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
+ return regSelect+iField;
+ }
+ if( op==TK_VECTOR ){
+ assert( ExprUseXList(pVector) );
+ *ppExpr = pVector->x.pList->a[iField].pExpr;
+ return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
+ }
+ return 0;
+}
+
+/*
+** Expression pExpr is a comparison between two vector values. Compute
+** the result of the comparison (1, 0, or NULL) and write that
+** result into register dest.
+**
+** The caller must satisfy the following preconditions:
+**
+** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
+** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
+** otherwise: op==pExpr->op and p5==0
+*/
+static void codeVectorCompare(
+ Parse *pParse, /* Code generator context */
+ Expr *pExpr, /* The comparison operation */
+ int dest, /* Write results into this register */
+ u8 op, /* Comparison operator */
+ u8 p5 /* SQLITE_NULLEQ or zero */
+){
+ Vdbe *v = pParse->pVdbe;
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ int nLeft = sqlite3ExprVectorSize(pLeft);
+ int i;
+ int regLeft = 0;
+ int regRight = 0;
+ u8 opx = op;
+ int addrCmp = 0;
+ int addrDone = sqlite3VdbeMakeLabel(pParse);
+ int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
+
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ if( pParse->nErr ) return;
+ if( nLeft!=sqlite3ExprVectorSize(pRight) ){
+ sqlite3ErrorMsg(pParse, "row value misused");
+ return;
+ }
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
+ || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
+ || pExpr->op==TK_LT || pExpr->op==TK_GT
+ || pExpr->op==TK_LE || pExpr->op==TK_GE
+ );
+ assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
+ || (pExpr->op==TK_ISNOT && op==TK_NE) );
+ assert( p5==0 || pExpr->op!=op );
+ assert( p5==SQLITE_NULLEQ || pExpr->op==op );
+
+ if( op==TK_LE ) opx = TK_LT;
+ if( op==TK_GE ) opx = TK_GT;
+ if( op==TK_NE ) opx = TK_EQ;
+
+ regLeft = exprCodeSubselect(pParse, pLeft);
+ regRight = exprCodeSubselect(pParse, pRight);
+
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
+ for(i=0; 1 /*Loop exits by "break"*/; i++){
+ int regFree1 = 0, regFree2 = 0;
+ Expr *pL = 0, *pR = 0;
+ int r1, r2;
+ assert( i>=0 && i<nLeft );
+ if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
+ r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
+ r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
+ addrCmp = sqlite3VdbeCurrentAddr(v);
+ codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
+ testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
+ testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
+ addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
+ testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
+ testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
+ }
+ if( p5==SQLITE_NULLEQ ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
+ }
+ if( i==nLeft-1 ){
+ break;
+ }
+ if( opx==TK_EQ ){
+ sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
+ }else{
+ assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
+ if( i==nLeft-2 ) opx = op;
+ }
+ }
+ sqlite3VdbeJumpHere(v, addrCmp);
+ sqlite3VdbeResolveLabel(v, addrDone);
+ if( op==TK_NE ){
+ sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
+ }
+}
+
+#if SQLITE_MAX_EXPR_DEPTH>0
+/*
+** Check that argument nHeight is less than or equal to the maximum
+** expression depth allowed. If it is not, leave an error message in
+** pParse.
+*/
+SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
+ int rc = SQLITE_OK;
+ int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
+ if( nHeight>mxHeight ){
+ sqlite3ErrorMsg(pParse,
+ "Expression tree is too large (maximum depth %d)", mxHeight
+ );
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/* The following three functions, heightOfExpr(), heightOfExprList()
+** and heightOfSelect(), are used to determine the maximum height
+** of any expression tree referenced by the structure passed as the
+** first argument.
+**
+** If this maximum height is greater than the current value pointed
+** to by pnHeight, the second parameter, then set *pnHeight to that
+** value.
+*/
+static void heightOfExpr(const Expr *p, int *pnHeight){
+ if( p ){
+ if( p->nHeight>*pnHeight ){
+ *pnHeight = p->nHeight;
+ }
+ }
+}
+static void heightOfExprList(const ExprList *p, int *pnHeight){
+ if( p ){
+ int i;
+ for(i=0; i<p->nExpr; i++){
+ heightOfExpr(p->a[i].pExpr, pnHeight);
+ }
+ }
+}
+static void heightOfSelect(const Select *pSelect, int *pnHeight){
+ const Select *p;
+ for(p=pSelect; p; p=p->pPrior){
+ heightOfExpr(p->pWhere, pnHeight);
+ heightOfExpr(p->pHaving, pnHeight);
+ heightOfExpr(p->pLimit, pnHeight);
+ heightOfExprList(p->pEList, pnHeight);
+ heightOfExprList(p->pGroupBy, pnHeight);
+ heightOfExprList(p->pOrderBy, pnHeight);
+ }
+}
+
+/*
+** Set the Expr.nHeight variable in the structure passed as an
+** argument. An expression with no children, Expr.pList or
+** Expr.pSelect member has a height of 1. Any other expression
+** has a height equal to the maximum height of any other
+** referenced Expr plus one.
+**
+** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
+** if appropriate.
+*/
+static void exprSetHeight(Expr *p){
+ int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
+ if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
+ nHeight = p->pRight->nHeight;
+ }
+ if( ExprUseXSelect(p) ){
+ heightOfSelect(p->x.pSelect, &nHeight);
+ }else if( p->x.pList ){
+ heightOfExprList(p->x.pList, &nHeight);
+ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
+ }
+ p->nHeight = nHeight + 1;
+}
+
+/*
+** Set the Expr.nHeight variable using the exprSetHeight() function. If
+** the height is greater than the maximum allowed expression depth,
+** leave an error in pParse.
+**
+** Also propagate all EP_Propagate flags from the Expr.x.pList into
+** Expr.flags.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
+ if( pParse->nErr ) return;
+ exprSetHeight(p);
+ sqlite3ExprCheckHeight(pParse, p->nHeight);
+}
+
+/*
+** Return the maximum height of any expression tree referenced
+** by the select statement passed as an argument.
+*/
+SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *p){
+ int nHeight = 0;
+ heightOfSelect(p, &nHeight);
+ return nHeight;
+}
+#else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
+/*
+** Propagate all EP_Propagate flags from the Expr.x.pList into
+** Expr.flags.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
+ if( pParse->nErr ) return;
+ if( p && ExprUseXList(p) && p->x.pList ){
+ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
+ }
+}
+#define exprSetHeight(y)
+#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
+
+/*
+** Set the error offset for an Expr node, if possible.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){
+ if( pExpr==0 ) return;
+ if( NEVER(ExprUseWJoin(pExpr)) ) return;
+ pExpr->w.iOfst = iOfst;
+}
+
+/*
+** This routine is the core allocator for Expr nodes.
+**
+** Construct a new expression node and return a pointer to it. Memory
+** for this node and for the pToken argument is a single allocation
+** obtained from sqlite3DbMalloc(). The calling function
+** is responsible for making sure the node eventually gets freed.
+**
+** If dequote is true, then the token (if it exists) is dequoted.
+** If dequote is false, no dequoting is performed. The deQuote
+** parameter is ignored if pToken is NULL or if the token does not
+** appear to be quoted. If the quotes were of the form "..." (double-quotes)
+** then the EP_DblQuoted flag is set on the expression node.
+**
+** Special case: If op==TK_INTEGER and pToken points to a string that
+** can be translated into a 32-bit integer, then the token is not
+** stored in u.zToken. Instead, the integer values is written
+** into u.iValue and the EP_IntValue flag is set. No extra storage
+** is allocated to hold the integer text and the dequote flag is ignored.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAlloc(
+ sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
+ int op, /* Expression opcode */
+ const Token *pToken, /* Token argument. Might be NULL */
+ int dequote /* True to dequote */
+){
+ Expr *pNew;
+ int nExtra = 0;
+ int iValue = 0;
+
+ assert( db!=0 );
+ if( pToken ){
+ if( op!=TK_INTEGER || pToken->z==0
+ || sqlite3GetInt32(pToken->z, &iValue)==0 ){
+ nExtra = pToken->n+1;
+ assert( iValue>=0 );
+ }
+ }
+ pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
+ if( pNew ){
+ memset(pNew, 0, sizeof(Expr));
+ pNew->op = (u8)op;
+ pNew->iAgg = -1;
+ if( pToken ){
+ if( nExtra==0 ){
+ pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
+ pNew->u.iValue = iValue;
+ }else{
+ pNew->u.zToken = (char*)&pNew[1];
+ assert( pToken->z!=0 || pToken->n==0 );
+ if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
+ pNew->u.zToken[pToken->n] = 0;
+ if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
+ sqlite3DequoteExpr(pNew);
+ }
+ }
+ }
+#if SQLITE_MAX_EXPR_DEPTH>0
+ pNew->nHeight = 1;
+#endif
+ }
+ return pNew;
+}
+
+/*
+** Allocate a new expression node from a zero-terminated token that has
+** already been dequoted.
+*/
+SQLITE_PRIVATE Expr *sqlite3Expr(
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
+ int op, /* Expression opcode */
+ const char *zToken /* Token argument. Might be NULL */
+){
+ Token x;
+ x.z = zToken;
+ x.n = sqlite3Strlen30(zToken);
+ return sqlite3ExprAlloc(db, op, &x, 0);
+}
+
+/*
+** Attach subtrees pLeft and pRight to the Expr node pRoot.
+**
+** If pRoot==NULL that means that a memory allocation error has occurred.
+** In that case, delete the subtrees pLeft and pRight.
+*/
+SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(
+ sqlite3 *db,
+ Expr *pRoot,
+ Expr *pLeft,
+ Expr *pRight
+){
+ if( pRoot==0 ){
+ assert( db->mallocFailed );
+ sqlite3ExprDelete(db, pLeft);
+ sqlite3ExprDelete(db, pRight);
+ }else{
+ assert( ExprUseXList(pRoot) );
+ assert( pRoot->x.pSelect==0 );
+ if( pRight ){
+ pRoot->pRight = pRight;
+ pRoot->flags |= EP_Propagate & pRight->flags;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ pRoot->nHeight = pRight->nHeight+1;
+ }else{
+ pRoot->nHeight = 1;
+#endif
+ }
+ if( pLeft ){
+ pRoot->pLeft = pLeft;
+ pRoot->flags |= EP_Propagate & pLeft->flags;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ if( pLeft->nHeight>=pRoot->nHeight ){
+ pRoot->nHeight = pLeft->nHeight+1;
+ }
+#endif
+ }
+ }
+}
+
+/*
+** Allocate an Expr node which joins as many as two subtrees.
+**
+** One or both of the subtrees can be NULL. Return a pointer to the new
+** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
+** free the subtrees and return NULL.
+*/
+SQLITE_PRIVATE Expr *sqlite3PExpr(
+ Parse *pParse, /* Parsing context */
+ int op, /* Expression opcode */
+ Expr *pLeft, /* Left operand */
+ Expr *pRight /* Right operand */
+){
+ Expr *p;
+ p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
+ if( p ){
+ memset(p, 0, sizeof(Expr));
+ p->op = op & 0xff;
+ p->iAgg = -1;
+ sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
+ sqlite3ExprCheckHeight(pParse, p->nHeight);
+ }else{
+ sqlite3ExprDelete(pParse->db, pLeft);
+ sqlite3ExprDelete(pParse->db, pRight);
+ }
+ return p;
+}
+
+/*
+** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
+** do a memory allocation failure) then delete the pSelect object.
+*/
+SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
+ if( pExpr ){
+ pExpr->x.pSelect = pSelect;
+ ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
+ sqlite3ExprSetHeightAndFlags(pParse, pExpr);
+ }else{
+ assert( pParse->db->mallocFailed );
+ sqlite3SelectDelete(pParse->db, pSelect);
+ }
+}
+
+/*
+** Expression list pEList is a list of vector values. This function
+** converts the contents of pEList to a VALUES(...) Select statement
+** returning 1 row for each element of the list. For example, the
+** expression list:
+**
+** ( (1,2), (3,4) (5,6) )
+**
+** is translated to the equivalent of:
+**
+** VALUES(1,2), (3,4), (5,6)
+**
+** Each of the vector values in pEList must contain exactly nElem terms.
+** If a list element that is not a vector or does not contain nElem terms,
+** an error message is left in pParse.
+**
+** This is used as part of processing IN(...) expressions with a list
+** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
+*/
+SQLITE_PRIVATE Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
+ int ii;
+ Select *pRet = 0;
+ assert( nElem>1 );
+ for(ii=0; ii<pEList->nExpr; ii++){
+ Select *pSel;
+ Expr *pExpr = pEList->a[ii].pExpr;
+ int nExprElem;
+ if( pExpr->op==TK_VECTOR ){
+ assert( ExprUseXList(pExpr) );
+ nExprElem = pExpr->x.pList->nExpr;
+ }else{
+ nExprElem = 1;
+ }
+ if( nExprElem!=nElem ){
+ sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
+ nExprElem, nExprElem>1?"s":"", nElem
+ );
+ break;
+ }
+ assert( ExprUseXList(pExpr) );
+ pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
+ pExpr->x.pList = 0;
+ if( pSel ){
+ if( pRet ){
+ pSel->op = TK_ALL;
+ pSel->pPrior = pRet;
+ }
+ pRet = pSel;
+ }
+ }
+
+ if( pRet && pRet->pPrior ){
+ pRet->selFlags |= SF_MultiValue;
+ }
+ sqlite3ExprListDelete(pParse->db, pEList);
+ return pRet;
+}
+
+/*
+** Join two expressions using an AND operator. If either expression is
+** NULL, then just return the other expression.
+**
+** If one side or the other of the AND is known to be false, and neither side
+** is part of an ON clause, then instead of returning an AND expression,
+** just return a constant expression with a value of false.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
+ sqlite3 *db = pParse->db;
+ if( pLeft==0 ){
+ return pRight;
+ }else if( pRight==0 ){
+ return pLeft;
+ }else{
+ u32 f = pLeft->flags | pRight->flags;
+ if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse
+ && !IN_RENAME_OBJECT
+ ){
+ sqlite3ExprDeferredDelete(pParse, pLeft);
+ sqlite3ExprDeferredDelete(pParse, pRight);
+ return sqlite3Expr(db, TK_INTEGER, "0");
+ }else{
+ return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
+ }
+ }
+}
+
+/*
+** Construct a new expression node for a function with multiple
+** arguments.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* Argument list */
+ const Token *pToken, /* Name of the function */
+ int eDistinct /* SF_Distinct or SF_ALL or 0 */
+){
+ Expr *pNew;
+ sqlite3 *db = pParse->db;
+ assert( pToken );
+ pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
+ return 0;
+ }
+ assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
+ pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
+ if( pList
+ && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
+ && !pParse->nested
+ ){
+ sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
+ }
+ pNew->x.pList = pList;
+ ExprSetProperty(pNew, EP_HasFunc);
+ assert( ExprUseXList(pNew) );
+ sqlite3ExprSetHeightAndFlags(pParse, pNew);
+ if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
+ return pNew;
+}
+
+/*
+** Report an error when attempting to use an ORDER BY clause within
+** the arguments of a non-aggregate function.
+*/
+SQLITE_PRIVATE void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){
+ sqlite3ErrorMsg(pParse,
+ "ORDER BY may not be used with non-aggregate %#T()", p
+ );
+}
+
+/*
+** Attach an ORDER BY clause to a function call.
+**
+** functionname( arguments ORDER BY sortlist )
+** \_____________________/ \______/
+** pExpr pOrderBy
+**
+** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER
+** and added to the Expr.pLeft field of the parent TK_FUNCTION node.
+*/
+SQLITE_PRIVATE void sqlite3ExprAddFunctionOrderBy(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The function call to which ORDER BY is to be added */
+ ExprList *pOrderBy /* The ORDER BY clause to add */
+){
+ Expr *pOB;
+ sqlite3 *db = pParse->db;
+ if( NEVER(pOrderBy==0) ){
+ assert( db->mallocFailed );
+ return;
+ }
+ if( pExpr==0 ){
+ assert( db->mallocFailed );
+ sqlite3ExprListDelete(db, pOrderBy);
+ return;
+ }
+ assert( pExpr->op==TK_FUNCTION );
+ assert( pExpr->pLeft==0 );
+ assert( ExprUseXList(pExpr) );
+ if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){
+ /* Ignore ORDER BY on zero-argument aggregates */
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ pOrderBy);
+ return;
+ }
+ if( IsWindowFunc(pExpr) ){
+ sqlite3ExprOrderByAggregateError(pParse, pExpr);
+ sqlite3ExprListDelete(db, pOrderBy);
+ return;
+ }
+
+ pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0);
+ if( pOB==0 ){
+ sqlite3ExprListDelete(db, pOrderBy);
+ return;
+ }
+ pOB->x.pList = pOrderBy;
+ assert( ExprUseXList(pOB) );
+ pExpr->pLeft = pOB;
+ ExprSetProperty(pOB, EP_FullSize);
+}
+
+/*
+** Check to see if a function is usable according to current access
+** rules:
+**
+** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
+**
+** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
+** top-level SQL
+**
+** If the function is not usable, create an error.
+*/
+SQLITE_PRIVATE void sqlite3ExprFunctionUsable(
+ Parse *pParse, /* Parsing and code generating context */
+ const Expr *pExpr, /* The function invocation */
+ const FuncDef *pDef /* The function being invoked */
+){
+ assert( !IN_RENAME_OBJECT );
+ assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
+ if( ExprHasProperty(pExpr, EP_FromDDL) ){
+ if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
+ || (pParse->db->flags & SQLITE_TrustedSchema)==0
+ ){
+ /* Functions prohibited in triggers and views if:
+ ** (1) tagged with SQLITE_DIRECTONLY
+ ** (2) not tagged with SQLITE_INNOCUOUS (which means it
+ ** is tagged with SQLITE_FUNC_UNSAFE) and
+ ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
+ ** that the schema is possibly tainted).
+ */
+ sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
+ }
+ }
+}
+
+/*
+** Assign a variable number to an expression that encodes a wildcard
+** in the original SQL statement.
+**
+** Wildcards consisting of a single "?" are assigned the next sequential
+** variable number.
+**
+** Wildcards of the form "?nnn" are assigned the number "nnn". We make
+** sure "nnn" is not too big to avoid a denial of service attack when
+** the SQL statement comes from an external source.
+**
+** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
+** as the previous instance of the same wildcard. Or if this is the first
+** instance of the wildcard, the next sequential variable number is
+** assigned.
+*/
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
+ sqlite3 *db = pParse->db;
+ const char *z;
+ ynVar x;
+
+ if( pExpr==0 ) return;
+ assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
+ z = pExpr->u.zToken;
+ assert( z!=0 );
+ assert( z[0]!=0 );
+ assert( n==(u32)sqlite3Strlen30(z) );
+ if( z[1]==0 ){
+ /* Wildcard of the form "?". Assign the next variable number */
+ assert( z[0]=='?' );
+ x = (ynVar)(++pParse->nVar);
+ }else{
+ int doAdd = 0;
+ if( z[0]=='?' ){
+ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
+ ** use it as the variable number */
+ i64 i;
+ int bOk;
+ if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
+ i = z[1]-'0'; /* The common case of ?N for a single digit N */
+ bOk = 1;
+ }else{
+ bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
+ }
+ testcase( i==0 );
+ testcase( i==1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
+ if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
+ db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ return;
+ }
+ x = (ynVar)i;
+ if( x>pParse->nVar ){
+ pParse->nVar = (int)x;
+ doAdd = 1;
+ }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
+ doAdd = 1;
+ }
+ }else{
+ /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
+ ** number as the prior appearance of the same name, or if the name
+ ** has never appeared before, reuse the same variable number
+ */
+ x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
+ if( x==0 ){
+ x = (ynVar)(++pParse->nVar);
+ doAdd = 1;
+ }
+ }
+ if( doAdd ){
+ pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
+ }
+ }
+ pExpr->iColumn = x;
+ if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "too many SQL variables");
+ sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
+ }
+}
+
+/*
+** Recursively delete an expression tree.
+*/
+static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
+ assert( p!=0 );
+ assert( db!=0 );
+ assert( !ExprUseUValue(p) || p->u.iValue>=0 );
+ assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
+ assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
+ assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
+#ifdef SQLITE_DEBUG
+ if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
+ assert( p->pLeft==0 );
+ assert( p->pRight==0 );
+ assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
+ assert( !ExprUseXList(p) || p->x.pList==0 );
+ }
+#endif
+ if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
+ /* The Expr.x union is never used at the same time as Expr.pRight */
+ assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
+ if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
+ if( p->pRight ){
+ assert( !ExprHasProperty(p, EP_WinFunc) );
+ sqlite3ExprDeleteNN(db, p->pRight);
+ }else if( ExprUseXSelect(p) ){
+ assert( !ExprHasProperty(p, EP_WinFunc) );
+ sqlite3SelectDelete(db, p->x.pSelect);
+ }else{
+ sqlite3ExprListDelete(db, p->x.pList);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(p, EP_WinFunc) ){
+ sqlite3WindowDelete(db, p->y.pWin);
+ }
+#endif
+ }
+ }
+ if( !ExprHasProperty(p, EP_Static) ){
+ sqlite3DbNNFreeNN(db, p);
+ }
+}
+SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
+ if( p ) sqlite3ExprDeleteNN(db, p);
+}
+
+/*
+** Clear both elements of an OnOrUsing object
+*/
+SQLITE_PRIVATE void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
+ if( p==0 ){
+ /* Nothing to clear */
+ }else if( p->pOn ){
+ sqlite3ExprDeleteNN(db, p->pOn);
+ }else if( p->pUsing ){
+ sqlite3IdListDelete(db, p->pUsing);
+ }
+}
+
+/*
+** Arrange to cause pExpr to be deleted when the pParse is deleted.
+** This is similar to sqlite3ExprDelete() except that the delete is
+** deferred until the pParse is deleted.
+**
+** The pExpr might be deleted immediately on an OOM error.
+**
+** The deferred delete is (currently) implemented by adding the
+** pExpr to the pParse->pConstExpr list with a register number of 0.
+*/
+SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprDelete,
+ pExpr);
+}
+
+/* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
+** expression.
+*/
+SQLITE_PRIVATE void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
+ if( p ){
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameExprUnmap(pParse, p);
+ }
+ sqlite3ExprDeleteNN(pParse->db, p);
+ }
+}
+
+/*
+** Return the number of bytes allocated for the expression structure
+** passed as the first argument. This is always one of EXPR_FULLSIZE,
+** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
+*/
+static int exprStructSize(const Expr *p){
+ if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
+ if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
+ return EXPR_FULLSIZE;
+}
+
+/*
+** The dupedExpr*Size() routines each return the number of bytes required
+** to store a copy of an expression or expression tree. They differ in
+** how much of the tree is measured.
+**
+** dupedExprStructSize() Size of only the Expr structure
+** dupedExprNodeSize() Size of Expr + space for token
+** dupedExprSize() Expr + token + subtree components
+**
+***************************************************************************
+**
+** The dupedExprStructSize() function returns two values OR-ed together:
+** (1) the space required for a copy of the Expr structure only and
+** (2) the EP_xxx flags that indicate what the structure size should be.
+** The return values is always one of:
+**
+** EXPR_FULLSIZE
+** EXPR_REDUCEDSIZE | EP_Reduced
+** EXPR_TOKENONLYSIZE | EP_TokenOnly
+**
+** The size of the structure can be found by masking the return value
+** of this routine with 0xfff. The flags can be found by masking the
+** return value with EP_Reduced|EP_TokenOnly.
+**
+** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
+** (unreduced) Expr objects as they or originally constructed by the parser.
+** During expression analysis, extra information is computed and moved into
+** later parts of the Expr object and that extra information might get chopped
+** off if the expression is reduced. Note also that it does not work to
+** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
+** to reduce a pristine expression tree from the parser. The implementation
+** of dupedExprStructSize() contain multiple assert() statements that attempt
+** to enforce this constraint.
+*/
+static int dupedExprStructSize(const Expr *p, int flags){
+ int nSize;
+ assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
+ assert( EXPR_FULLSIZE<=0xfff );
+ assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
+ if( 0==flags || ExprHasProperty(p, EP_FullSize) ){
+ nSize = EXPR_FULLSIZE;
+ }else{
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
+ assert( !ExprHasProperty(p, EP_OuterON) );
+ assert( !ExprHasVVAProperty(p, EP_NoReduce) );
+ if( p->pLeft || p->x.pList ){
+ nSize = EXPR_REDUCEDSIZE | EP_Reduced;
+ }else{
+ assert( p->pRight==0 );
+ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
+ }
+ }
+ return nSize;
+}
+
+/*
+** This function returns the space in bytes required to store the copy
+** of the Expr structure and a copy of the Expr.u.zToken string (if that
+** string is defined.)
+*/
+static int dupedExprNodeSize(const Expr *p, int flags){
+ int nByte = dupedExprStructSize(p, flags) & 0xfff;
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nByte += sqlite3Strlen30NN(p->u.zToken)+1;
+ }
+ return ROUND8(nByte);
+}
+
+/*
+** Return the number of bytes required to create a duplicate of the
+** expression passed as the first argument.
+**
+** The value returned includes space to create a copy of the Expr struct
+** itself and the buffer referred to by Expr.u.zToken, if any.
+**
+** The return value includes space to duplicate all Expr nodes in the
+** tree formed by Expr.pLeft and Expr.pRight, but not any other
+** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin.
+*/
+static int dupedExprSize(const Expr *p){
+ int nByte;
+ assert( p!=0 );
+ nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE);
+ if( p->pLeft ) nByte += dupedExprSize(p->pLeft);
+ if( p->pRight ) nByte += dupedExprSize(p->pRight);
+ assert( nByte==ROUND8(nByte) );
+ return nByte;
+}
+
+/*
+** An EdupBuf is a memory allocation used to stored multiple Expr objects
+** together with their Expr.zToken content. This is used to help implement
+** compression while doing sqlite3ExprDup(). The top-level Expr does the
+** allocation for itself and many of its decendents, then passes an instance
+** of the structure down into exprDup() so that they decendents can have
+** access to that memory.
+*/
+typedef struct EdupBuf EdupBuf;
+struct EdupBuf {
+ u8 *zAlloc; /* Memory space available for storage */
+#ifdef SQLITE_DEBUG
+ u8 *zEnd; /* First byte past the end of memory */
+#endif
+};
+
+/*
+** This function is similar to sqlite3ExprDup(), except that if pEdupBuf
+** is not NULL then it points to memory that can be used to store a copy
+** of the input Expr p together with its p->u.zToken (if any). pEdupBuf
+** is updated with the new buffer tail prior to returning.
+*/
+static Expr *exprDup(
+ sqlite3 *db, /* Database connection (for memory allocation) */
+ const Expr *p, /* Expr tree to be duplicated */
+ int dupFlags, /* EXPRDUP_REDUCE for compression. 0 if not */
+ EdupBuf *pEdupBuf /* Preallocated storage space, or NULL */
+){
+ Expr *pNew; /* Value to return */
+ EdupBuf sEdupBuf; /* Memory space from which to build Expr object */
+ u32 staticFlag; /* EP_Static if space not obtained from malloc */
+ int nToken = -1; /* Space needed for p->u.zToken. -1 means unknown */
+
+ assert( db!=0 );
+ assert( p );
+ assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
+ assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE );
+
+ /* Figure out where to write the new Expr structure. */
+ if( pEdupBuf ){
+ sEdupBuf.zAlloc = pEdupBuf->zAlloc;
+#ifdef SQLITE_DEBUG
+ sEdupBuf.zEnd = pEdupBuf->zEnd;
+#endif
+ staticFlag = EP_Static;
+ assert( sEdupBuf.zAlloc!=0 );
+ assert( dupFlags==EXPRDUP_REDUCE );
+ }else{
+ int nAlloc;
+ if( dupFlags ){
+ nAlloc = dupedExprSize(p);
+ }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nToken = sqlite3Strlen30NN(p->u.zToken)+1;
+ nAlloc = ROUND8(EXPR_FULLSIZE + nToken);
+ }else{
+ nToken = 0;
+ nAlloc = ROUND8(EXPR_FULLSIZE);
+ }
+ assert( nAlloc==ROUND8(nAlloc) );
+ sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc);
+#ifdef SQLITE_DEBUG
+ sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0;
+#endif
+
+ staticFlag = 0;
+ }
+ pNew = (Expr *)sEdupBuf.zAlloc;
+ assert( EIGHT_BYTE_ALIGNMENT(pNew) );
+
+ if( pNew ){
+ /* Set nNewSize to the size allocated for the structure pointed to
+ ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
+ ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
+ ** by the copy of the p->u.zToken string (if any).
+ */
+ const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
+ int nNewSize = nStructSize & 0xfff;
+ if( nToken<0 ){
+ if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
+ nToken = sqlite3Strlen30(p->u.zToken) + 1;
+ }else{
+ nToken = 0;
+ }
+ }
+ if( dupFlags ){
+ assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken );
+ assert( ExprHasProperty(p, EP_Reduced)==0 );
+ memcpy(sEdupBuf.zAlloc, p, nNewSize);
+ }else{
+ u32 nSize = (u32)exprStructSize(p);
+ assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >=
+ (int)EXPR_FULLSIZE+nToken );
+ memcpy(sEdupBuf.zAlloc, p, nSize);
+ if( nSize<EXPR_FULLSIZE ){
+ memset(&sEdupBuf.zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
+ }
+ nNewSize = EXPR_FULLSIZE;
+ }
+
+ /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
+ pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
+ pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
+ pNew->flags |= staticFlag;
+ ExprClearVVAProperties(pNew);
+ if( dupFlags ){
+ ExprSetVVAProperty(pNew, EP_Immutable);
+ }
+
+ /* Copy the p->u.zToken string, if any. */
+ assert( nToken>=0 );
+ if( nToken>0 ){
+ char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize];
+ memcpy(zToken, p->u.zToken, nToken);
+ nNewSize += nToken;
+ }
+ sEdupBuf.zAlloc += ROUND8(nNewSize);
+
+ if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){
+
+ /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
+ if( ExprUseXSelect(p) ){
+ pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
+ }else{
+ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList,
+ p->op!=TK_ORDER ? dupFlags : 0);
+ }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(p, EP_WinFunc) ){
+ pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
+ assert( ExprHasProperty(pNew, EP_WinFunc) );
+ }
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+ /* Fill in pNew->pLeft and pNew->pRight. */
+ if( dupFlags ){
+ if( p->op==TK_SELECT_COLUMN ){
+ pNew->pLeft = p->pLeft;
+ assert( p->pRight==0
+ || p->pRight==p->pLeft
+ || ExprHasProperty(p->pLeft, EP_Subquery) );
+ }else{
+ pNew->pLeft = p->pLeft ?
+ exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0;
+ }
+ pNew->pRight = p->pRight ?
+ exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0;
+ }else{
+ if( p->op==TK_SELECT_COLUMN ){
+ pNew->pLeft = p->pLeft;
+ assert( p->pRight==0
+ || p->pRight==p->pLeft
+ || ExprHasProperty(p->pLeft, EP_Subquery) );
+ }else{
+ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
+ }
+ pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
+ }
+ }
+ }
+ if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf));
+ assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd );
+ return pNew;
+}
+
+/*
+** Create and return a deep copy of the object passed as the second
+** argument. If an OOM condition is encountered, NULL is returned
+** and the db->mallocFailed flag set.
+*/
+#ifndef SQLITE_OMIT_CTE
+SQLITE_PRIVATE With *sqlite3WithDup(sqlite3 *db, With *p){
+ With *pRet = 0;
+ if( p ){
+ sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
+ pRet = sqlite3DbMallocZero(db, nByte);
+ if( pRet ){
+ int i;
+ pRet->nCte = p->nCte;
+ for(i=0; i<p->nCte; i++){
+ pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
+ pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
+ pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
+ pRet->a[i].eM10d = p->a[i].eM10d;
+ }
+ }
+ }
+ return pRet;
+}
+#else
+# define sqlite3WithDup(x,y) 0
+#endif
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** The gatherSelectWindows() procedure and its helper routine
+** gatherSelectWindowsCallback() are used to scan all the expressions
+** an a newly duplicated SELECT statement and gather all of the Window
+** objects found there, assembling them onto the linked list at Select->pWin.
+*/
+static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
+ Select *pSelect = pWalker->u.pSelect;
+ Window *pWin = pExpr->y.pWin;
+ assert( pWin );
+ assert( IsWindowFunc(pExpr) );
+ assert( pWin->ppThis==0 );
+ sqlite3WindowLink(pSelect, pWin);
+ }
+ return WRC_Continue;
+}
+static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
+ return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
+}
+static void gatherSelectWindows(Select *p){
+ Walker w;
+ w.xExprCallback = gatherSelectWindowsCallback;
+ w.xSelectCallback = gatherSelectWindowsSelectCallback;
+ w.xSelectCallback2 = 0;
+ w.pParse = 0;
+ w.u.pSelect = p;
+ sqlite3WalkSelect(&w, p);
+}
+#endif
+
+
+/*
+** The following group of routines make deep copies of expressions,
+** expression lists, ID lists, and select statements. The copies can
+** be deleted (by being passed to their respective ...Delete() routines)
+** without effecting the originals.
+**
+** The expression list, ID, and source lists return by sqlite3ExprListDup(),
+** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
+** by subsequent calls to sqlite*ListAppend() routines.
+**
+** Any tables that the SrcList might point to are not duplicated.
+**
+** The flags parameter contains a combination of the EXPRDUP_XXX flags.
+** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
+** truncated version of the usual Expr structure that will be stored as
+** part of the in-memory representation of the database schema.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
+ assert( flags==0 || flags==EXPRDUP_REDUCE );
+ return p ? exprDup(db, p, flags, 0) : 0;
+}
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
+ ExprList *pNew;
+ struct ExprList_item *pItem;
+ const struct ExprList_item *pOldItem;
+ int i;
+ Expr *pPriorSelectColOld = 0;
+ Expr *pPriorSelectColNew = 0;
+ assert( db!=0 );
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
+ if( pNew==0 ) return 0;
+ pNew->nExpr = p->nExpr;
+ pNew->nAlloc = p->nAlloc;
+ pItem = pNew->a;
+ pOldItem = p->a;
+ for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
+ Expr *pOldExpr = pOldItem->pExpr;
+ Expr *pNewExpr;
+ pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
+ if( pOldExpr
+ && pOldExpr->op==TK_SELECT_COLUMN
+ && (pNewExpr = pItem->pExpr)!=0
+ ){
+ if( pNewExpr->pRight ){
+ pPriorSelectColOld = pOldExpr->pRight;
+ pPriorSelectColNew = pNewExpr->pRight;
+ pNewExpr->pLeft = pNewExpr->pRight;
+ }else{
+ if( pOldExpr->pLeft!=pPriorSelectColOld ){
+ pPriorSelectColOld = pOldExpr->pLeft;
+ pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
+ pNewExpr->pRight = pPriorSelectColNew;
+ }
+ pNewExpr->pLeft = pPriorSelectColNew;
+ }
+ }
+ pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
+ pItem->fg = pOldItem->fg;
+ pItem->fg.done = 0;
+ pItem->u = pOldItem->u;
+ }
+ return pNew;
+}
+
+/*
+** If cursors, triggers, views and subqueries are all omitted from
+** the build, then none of the following routines, except for
+** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
+** called with a NULL argument.
+*/
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
+ || !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
+ SrcList *pNew;
+ int i;
+ int nByte;
+ assert( db!=0 );
+ if( p==0 ) return 0;
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
+ pNew = sqlite3DbMallocRawNN(db, nByte );
+ if( pNew==0 ) return 0;
+ pNew->nSrc = pNew->nAlloc = p->nSrc;
+ for(i=0; i<p->nSrc; i++){
+ SrcItem *pNewItem = &pNew->a[i];
+ const SrcItem *pOldItem = &p->a[i];
+ Table *pTab;
+ pNewItem->pSchema = pOldItem->pSchema;
+ pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
+ pNewItem->fg = pOldItem->fg;
+ pNewItem->iCursor = pOldItem->iCursor;
+ pNewItem->addrFillSub = pOldItem->addrFillSub;
+ pNewItem->regReturn = pOldItem->regReturn;
+ if( pNewItem->fg.isIndexedBy ){
+ pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
+ }
+ pNewItem->u2 = pOldItem->u2;
+ if( pNewItem->fg.isCte ){
+ pNewItem->u2.pCteUse->nUse++;
+ }
+ if( pNewItem->fg.isTabFunc ){
+ pNewItem->u1.pFuncArg =
+ sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
+ }
+ pTab = pNewItem->pTab = pOldItem->pTab;
+ if( pTab ){
+ pTab->nTabRef++;
+ }
+ pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
+ if( pOldItem->fg.isUsing ){
+ assert( pNewItem->fg.isUsing );
+ pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
+ }else{
+ pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
+ }
+ pNewItem->colUsed = pOldItem->colUsed;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
+ IdList *pNew;
+ int i;
+ assert( db!=0 );
+ if( p==0 ) return 0;
+ assert( p->eU4!=EU4_EXPR );
+ pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
+ if( pNew==0 ) return 0;
+ pNew->nId = p->nId;
+ pNew->eU4 = p->eU4;
+ for(i=0; i<p->nId; i++){
+ struct IdList_item *pNewItem = &pNew->a[i];
+ const struct IdList_item *pOldItem = &p->a[i];
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->u4 = pOldItem->u4;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
+ Select *pRet = 0;
+ Select *pNext = 0;
+ Select **pp = &pRet;
+ const Select *p;
+
+ assert( db!=0 );
+ for(p=pDup; p; p=p->pPrior){
+ Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
+ if( pNew==0 ) break;
+ pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
+ pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
+ pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
+ pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
+ pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
+ pNew->op = p->op;
+ pNew->pNext = pNext;
+ pNew->pPrior = 0;
+ pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
+ pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->nSelectRow = p->nSelectRow;
+ pNew->pWith = sqlite3WithDup(db, p->pWith);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNew->pWin = 0;
+ pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
+ if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
+#endif
+ pNew->selId = p->selId;
+ if( db->mallocFailed ){
+ /* Any prior OOM might have left the Select object incomplete.
+ ** Delete the whole thing rather than allow an incomplete Select
+ ** to be used by the code generator. */
+ pNew->pNext = 0;
+ sqlite3SelectDelete(db, pNew);
+ break;
+ }
+ *pp = pNew;
+ pp = &pNew->pPrior;
+ pNext = pNew;
+ }
+
+ return pRet;
+}
+#else
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
+ assert( p==0 );
+ return 0;
+}
+#endif
+
+
+/*
+** Add a new element to the end of an expression list. If pList is
+** initially NULL, then create a new expression list.
+**
+** The pList argument must be either NULL or a pointer to an ExprList
+** obtained from a prior call to sqlite3ExprListAppend().
+**
+** If a memory allocation error occurs, the entire list is freed and
+** NULL is returned. If non-NULL is returned, then it is guaranteed
+** that the new entry was successfully appended.
+*/
+static const struct ExprList_item zeroItem = {0};
+SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
+ sqlite3 *db, /* Database handle. Used for memory allocation */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ struct ExprList_item *pItem;
+ ExprList *pList;
+
+ pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
+ if( pList==0 ){
+ sqlite3ExprDelete(db, pExpr);
+ return 0;
+ }
+ pList->nAlloc = 4;
+ pList->nExpr = 1;
+ pItem = &pList->a[0];
+ *pItem = zeroItem;
+ pItem->pExpr = pExpr;
+ return pList;
+}
+SQLITE_PRIVATE SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
+ sqlite3 *db, /* Database handle. Used for memory allocation */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ struct ExprList_item *pItem;
+ ExprList *pNew;
+ pList->nAlloc *= 2;
+ pNew = sqlite3DbRealloc(db, pList,
+ sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pList);
+ sqlite3ExprDelete(db, pExpr);
+ return 0;
+ }else{
+ pList = pNew;
+ }
+ pItem = &pList->a[pList->nExpr++];
+ *pItem = zeroItem;
+ pItem->pExpr = pExpr;
+ return pList;
+}
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ Expr *pExpr /* Expression to be appended. Might be NULL */
+){
+ struct ExprList_item *pItem;
+ if( pList==0 ){
+ return sqlite3ExprListAppendNew(pParse->db,pExpr);
+ }
+ if( pList->nAlloc<pList->nExpr+1 ){
+ return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
+ }
+ pItem = &pList->a[pList->nExpr++];
+ *pItem = zeroItem;
+ pItem->pExpr = pExpr;
+ return pList;
+}
+
+/*
+** pColumns and pExpr form a vector assignment which is part of the SET
+** clause of an UPDATE statement. Like this:
+**
+** (a,b,c) = (expr1,expr2,expr3)
+** Or: (a,b,c) = (SELECT x,y,z FROM ....)
+**
+** For each term of the vector assignment, append new entries to the
+** expression list pList. In the case of a subquery on the RHS, append
+** TK_SELECT_COLUMN expressions.
+*/
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ IdList *pColumns, /* List of names of LHS of the assignment */
+ Expr *pExpr /* Vector expression to be appended. Might be NULL */
+){
+ sqlite3 *db = pParse->db;
+ int n;
+ int i;
+ int iFirst = pList ? pList->nExpr : 0;
+ /* pColumns can only be NULL due to an OOM but an OOM will cause an
+ ** exit prior to this routine being invoked */
+ if( NEVER(pColumns==0) ) goto vector_append_error;
+ if( pExpr==0 ) goto vector_append_error;
+
+ /* If the RHS is a vector, then we can immediately check to see that
+ ** the size of the RHS and LHS match. But if the RHS is a SELECT,
+ ** wildcards ("*") in the result set of the SELECT must be expanded before
+ ** we can do the size check, so defer the size check until code generation.
+ */
+ if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
+ sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
+ pColumns->nId, n);
+ goto vector_append_error;
+ }
+
+ for(i=0; i<pColumns->nId; i++){
+ Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
+ assert( pSubExpr!=0 || db->mallocFailed );
+ if( pSubExpr==0 ) continue;
+ pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
+ if( pList ){
+ assert( pList->nExpr==iFirst+i+1 );
+ pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
+ pColumns->a[i].zName = 0;
+ }
+ }
+
+ if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
+ Expr *pFirst = pList->a[iFirst].pExpr;
+ assert( pFirst!=0 );
+ assert( pFirst->op==TK_SELECT_COLUMN );
+
+ /* Store the SELECT statement in pRight so it will be deleted when
+ ** sqlite3ExprListDelete() is called */
+ pFirst->pRight = pExpr;
+ pExpr = 0;
+
+ /* Remember the size of the LHS in iTable so that we can check that
+ ** the RHS and LHS sizes match during code generation. */
+ pFirst->iTable = pColumns->nId;
+ }
+
+vector_append_error:
+ sqlite3ExprUnmapAndDelete(pParse, pExpr);
+ sqlite3IdListDelete(db, pColumns);
+ return pList;
+}
+
+/*
+** Set the sort order for the last element on the given ExprList.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
+ struct ExprList_item *pItem;
+ if( p==0 ) return;
+ assert( p->nExpr>0 );
+
+ assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
+ assert( iSortOrder==SQLITE_SO_UNDEFINED
+ || iSortOrder==SQLITE_SO_ASC
+ || iSortOrder==SQLITE_SO_DESC
+ );
+ assert( eNulls==SQLITE_SO_UNDEFINED
+ || eNulls==SQLITE_SO_ASC
+ || eNulls==SQLITE_SO_DESC
+ );
+
+ pItem = &p->a[p->nExpr-1];
+ assert( pItem->fg.bNulls==0 );
+ if( iSortOrder==SQLITE_SO_UNDEFINED ){
+ iSortOrder = SQLITE_SO_ASC;
+ }
+ pItem->fg.sortFlags = (u8)iSortOrder;
+
+ if( eNulls!=SQLITE_SO_UNDEFINED ){
+ pItem->fg.bNulls = 1;
+ if( iSortOrder!=eNulls ){
+ pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
+ }
+ }
+}
+
+/*
+** Set the ExprList.a[].zEName element of the most recently added item
+** on the expression list.
+**
+** pList might be NULL following an OOM error. But pName should never be
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
+** is set.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetName(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to add the span. */
+ const Token *pName, /* Name to be added */
+ int dequote /* True to cause the name to be dequoted */
+){
+ assert( pList!=0 || pParse->db->mallocFailed!=0 );
+ assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
+ if( pList ){
+ struct ExprList_item *pItem;
+ assert( pList->nExpr>0 );
+ pItem = &pList->a[pList->nExpr-1];
+ assert( pItem->zEName==0 );
+ assert( pItem->fg.eEName==ENAME_NAME );
+ pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
+ if( dequote ){
+ /* If dequote==0, then pName->z does not point to part of a DDL
+ ** statement handled by the parser. And so no token need be added
+ ** to the token-map. */
+ sqlite3Dequote(pItem->zEName);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
+ }
+ }
+ }
+}
+
+/*
+** Set the ExprList.a[].zSpan element of the most recently added item
+** on the expression list.
+**
+** pList might be NULL following an OOM error. But pSpan should never be
+** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
+** is set.
+*/
+SQLITE_PRIVATE void sqlite3ExprListSetSpan(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to add the span. */
+ const char *zStart, /* Start of the span */
+ const char *zEnd /* End of the span */
+){
+ sqlite3 *db = pParse->db;
+ assert( pList!=0 || db->mallocFailed!=0 );
+ if( pList ){
+ struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
+ assert( pList->nExpr>0 );
+ if( pItem->zEName==0 ){
+ pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
+ pItem->fg.eEName = ENAME_SPAN;
+ }
+ }
+}
+
+/*
+** If the expression list pEList contains more than iLimit elements,
+** leave an error message in pParse.
+*/
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(
+ Parse *pParse,
+ ExprList *pEList,
+ const char *zObject
+){
+ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
+ testcase( pEList && pEList->nExpr==mx );
+ testcase( pEList && pEList->nExpr==mx+1 );
+ if( pEList && pEList->nExpr>mx ){
+ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
+ }
+}
+
+/*
+** Delete an entire expression list.
+*/
+static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
+ int i = pList->nExpr;
+ struct ExprList_item *pItem = pList->a;
+ assert( pList->nExpr>0 );
+ assert( db!=0 );
+ do{
+ sqlite3ExprDelete(db, pItem->pExpr);
+ if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
+ pItem++;
+ }while( --i>0 );
+ sqlite3DbNNFreeNN(db, pList);
+}
+SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
+ if( pList ) exprListDeleteNN(db, pList);
+}
+
+/*
+** Return the bitwise-OR of all Expr.flags fields in the given
+** ExprList.
+*/
+SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList *pList){
+ int i;
+ u32 m = 0;
+ assert( pList!=0 );
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ assert( pExpr!=0 );
+ m |= pExpr->flags;
+ }
+ return m;
+}
+
+/*
+** This is a SELECT-node callback for the expression walker that
+** always "fails". By "fail" in this case, we mean set
+** pWalker->eCode to zero and abort.
+**
+** This callback is used by multiple expression walkers.
+*/
+SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ pWalker->eCode = 0;
+ return WRC_Abort;
+}
+
+/*
+** Check the input string to see if it is "true" or "false" (in any case).
+**
+** If the string is.... Return
+** "true" EP_IsTrue
+** "false" EP_IsFalse
+** anything else 0
+*/
+SQLITE_PRIVATE u32 sqlite3IsTrueOrFalse(const char *zIn){
+ if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue;
+ if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
+ return 0;
+}
+
+
+/*
+** If the input expression is an ID with the name "true" or "false"
+** then convert it into an TK_TRUEFALSE term. Return non-zero if
+** the conversion happened, and zero if the expression is unaltered.
+*/
+SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr *pExpr){
+ u32 v;
+ assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
+ if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
+ && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
+ ){
+ pExpr->op = TK_TRUEFALSE;
+ ExprSetProperty(pExpr, v);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
+** and 0 if it is FALSE.
+*/
+SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr *pExpr){
+ pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr);
+ assert( pExpr->op==TK_TRUEFALSE );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
+ || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
+ return pExpr->u.zToken[4]==0;
+}
+
+/*
+** If pExpr is an AND or OR expression, try to simplify it by eliminating
+** terms that are always true or false. Return the simplified expression.
+** Or return the original expression if no simplification is possible.
+**
+** Examples:
+**
+** (x<10) AND true => (x<10)
+** (x<10) AND false => false
+** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
+** (x<10) AND (y=22 OR true) => (x<10)
+** (y=22) OR true => true
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
+ assert( pExpr!=0 );
+ if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
+ Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
+ Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
+ if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
+ pExpr = pExpr->op==TK_AND ? pRight : pLeft;
+ }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
+ pExpr = pExpr->op==TK_AND ? pLeft : pRight;
+ }
+ }
+ return pExpr;
+}
+
+
+/*
+** These routines are Walker callbacks used to check expressions to
+** see if they are "constant" for some definition of constant. The
+** Walker.eCode value determines the type of "constant" we are looking
+** for.
+**
+** These callback routines are used to implement the following:
+**
+** sqlite3ExprIsConstant() pWalker->eCode==1
+** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
+** sqlite3ExprIsTableConstant() pWalker->eCode==3
+** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
+**
+** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
+** is found to not be a constant.
+**
+** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
+** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
+** when parsing an existing schema out of the sqlite_schema table and 4
+** when processing a new CREATE TABLE statement. A bound parameter raises
+** an error for new statements, but is silently converted
+** to NULL for existing schemas. This allows sqlite_schema tables that
+** contain a bound parameter because they were generated by older versions
+** of SQLite to be parsed by newer versions of SQLite without raising a
+** malformed schema error.
+*/
+static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
+
+ /* If pWalker->eCode is 2 then any term of the expression that comes from
+ ** the ON or USING clauses of an outer join disqualifies the expression
+ ** from being considered constant. */
+ if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+
+ switch( pExpr->op ){
+ /* Consider functions to be constant if all their arguments are constant
+ ** and either pWalker->eCode==4 or 5 or the function has the
+ ** SQLITE_FUNC_CONST flag. */
+ case TK_FUNCTION:
+ if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
+ && !ExprHasProperty(pExpr, EP_WinFunc)
+ ){
+ if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
+ return WRC_Continue;
+ }else{
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ case TK_ID:
+ /* Convert "true" or "false" in a DEFAULT clause into the
+ ** appropriate TK_TRUEFALSE operator */
+ if( sqlite3ExprIdToTrueFalse(pExpr) ){
+ return WRC_Prune;
+ }
+ /* no break */ deliberate_fall_through
+ case TK_COLUMN:
+ case TK_AGG_FUNCTION:
+ case TK_AGG_COLUMN:
+ testcase( pExpr->op==TK_ID );
+ testcase( pExpr->op==TK_COLUMN );
+ testcase( pExpr->op==TK_AGG_FUNCTION );
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
+ return WRC_Continue;
+ }
+ if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
+ return WRC_Continue;
+ }
+ /* no break */ deliberate_fall_through
+ case TK_IF_NULL_ROW:
+ case TK_REGISTER:
+ case TK_DOT:
+ testcase( pExpr->op==TK_REGISTER );
+ testcase( pExpr->op==TK_IF_NULL_ROW );
+ testcase( pExpr->op==TK_DOT );
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ case TK_VARIABLE:
+ if( pWalker->eCode==5 ){
+ /* Silently convert bound parameters that appear inside of CREATE
+ ** statements into a NULL when parsing the CREATE statement text out
+ ** of the sqlite_schema table */
+ pExpr->op = TK_NULL;
+ }else if( pWalker->eCode==4 ){
+ /* A bound parameter in a CREATE statement that originates from
+ ** sqlite3_prepare() causes an error */
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ /* no break */ deliberate_fall_through
+ default:
+ testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
+ testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
+ return WRC_Continue;
+ }
+}
+static int exprIsConst(Expr *p, int initFlag, int iCur){
+ Walker w;
+ w.eCode = initFlag;
+ w.xExprCallback = exprNodeIsConstant;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+#ifdef SQLITE_DEBUG
+ w.xSelectCallback2 = sqlite3SelectWalkAssert2;
+#endif
+ w.u.iCur = iCur;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+/*
+** Walk an expression tree. Return non-zero if the expression is constant
+** and 0 if it involves variables or function calls.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
+ return exprIsConst(p, 1, 0);
+}
+
+/*
+** Walk an expression tree. Return non-zero if
+**
+** (1) the expression is constant, and
+** (2) the expression does originate in the ON or USING clause
+** of a LEFT JOIN, and
+** (3) the expression does not contain any EP_FixedCol TK_COLUMN
+** operands created by the constant propagation optimization.
+**
+** When this routine returns true, it indicates that the expression
+** can be added to the pParse->pConstExpr list and evaluated once when
+** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
+ return exprIsConst(p, 2, 0);
+}
+
+/*
+** Walk an expression tree. Return non-zero if the expression is constant
+** for any single row of the table with cursor iCur. In other words, the
+** expression must not refer to any non-deterministic function nor any
+** table other than iCur.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){
+ return exprIsConst(p, 3, iCur);
+}
+
+/*
+** Check pExpr to see if it is an constraint on the single data source
+** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr
+** constrains pSrc but does not depend on any other tables or data
+** sources anywhere else in the query. Return true (non-zero) if pExpr
+** is a constraint on pSrc only.
+**
+** This is an optimization. False negatives will perhaps cause slower
+** queries, but false positives will yield incorrect answers. So when in
+** doubt, return 0.
+**
+** To be an single-source constraint, the following must be true:
+**
+** (1) pExpr cannot refer to any table other than pSrc->iCursor.
+**
+** (2) pExpr cannot use subqueries or non-deterministic functions.
+**
+** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
+** (Is there some way to relax this constraint?)
+**
+** (4) If pSrc is the right operand of a LEFT JOIN, then...
+** (4a) pExpr must come from an ON clause..
+** (4b) and specifically the ON clause associated with the LEFT JOIN.
+**
+** (5) If pSrc is not the right operand of a LEFT JOIN or the left
+** operand of a RIGHT JOIN, then pExpr must be from the WHERE
+** clause, not an ON clause.
+**
+** (6) Either:
+**
+** (6a) pExpr does not originate in an ON or USING clause, or
+**
+** (6b) The ON or USING clause from which pExpr is derived is
+** not to the left of a RIGHT JOIN (or FULL JOIN).
+**
+** Without this restriction, accepting pExpr as a single-table
+** constraint might move the the ON/USING filter expression
+** from the left side of a RIGHT JOIN over to the right side,
+** which leads to incorrect answers. See also restriction (9)
+** on push-down.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint(
+ Expr *pExpr, /* The constraint */
+ const SrcList *pSrcList, /* Complete FROM clause */
+ int iSrc /* Which element of pSrcList to use */
+){
+ const SrcItem *pSrc = &pSrcList->a[iSrc];
+ if( pSrc->fg.jointype & JT_LTORJ ){
+ return 0; /* rule (3) */
+ }
+ if( pSrc->fg.jointype & JT_LEFT ){
+ if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */
+ if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */
+ }else{
+ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */
+ }
+ if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */
+ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */
+ ){
+ int jj;
+ for(jj=0; jj<iSrc; jj++){
+ if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){
+ if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){
+ return 0; /* restriction (6) */
+ }
+ break;
+ }
+ }
+ }
+ return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
+}
+
+
+/*
+** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
+*/
+static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
+ ExprList *pGroupBy = pWalker->u.pGroupBy;
+ int i;
+
+ /* Check if pExpr is identical to any GROUP BY term. If so, consider
+ ** it constant. */
+ for(i=0; i<pGroupBy->nExpr; i++){
+ Expr *p = pGroupBy->a[i].pExpr;
+ if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
+ CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
+ if( sqlite3IsBinary(pColl) ){
+ return WRC_Prune;
+ }
+ }
+ }
+
+ /* Check if pExpr is a sub-select. If so, consider it variable. */
+ if( ExprUseXSelect(pExpr) ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+
+ return exprNodeIsConstant(pWalker, pExpr);
+}
+
+/*
+** Walk the expression tree passed as the first argument. Return non-zero
+** if the expression consists entirely of constants or copies of terms
+** in pGroupBy that sort with the BINARY collation sequence.
+**
+** This routine is used to determine if a term of the HAVING clause can
+** be promoted into the WHERE clause. In order for such a promotion to work,
+** the value of the HAVING clause term must be the same for all members of
+** a "group". The requirement that the GROUP BY term must be BINARY
+** assumes that no other collating sequence will have a finer-grained
+** grouping than binary. In other words (A=B COLLATE binary) implies
+** A=B in every other collating sequence. The requirement that the
+** GROUP BY be BINARY is stricter than necessary. It would also work
+** to promote HAVING clauses that use the same alternative collating
+** sequence as the GROUP BY term, but that is much harder to check,
+** alternative collating sequences are uncommon, and this is only an
+** optimization, so we take the easy way out and simply require the
+** GROUP BY to use the BINARY collating sequence.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
+ Walker w;
+ w.eCode = 1;
+ w.xExprCallback = exprNodeIsConstantOrGroupBy;
+ w.xSelectCallback = 0;
+ w.u.pGroupBy = pGroupBy;
+ w.pParse = pParse;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+/*
+** Walk an expression tree for the DEFAULT field of a column definition
+** in a CREATE TABLE statement. Return non-zero if the expression is
+** acceptable for use as a DEFAULT. That is to say, return non-zero if
+** the expression is constant or a function call with constant arguments.
+** Return and 0 if there are any variables.
+**
+** isInit is true when parsing from sqlite_schema. isInit is false when
+** processing a new CREATE TABLE statement. When isInit is true, parameters
+** (such as ? or $abc) in the expression are converted into NULL. When
+** isInit is false, parameters raise an error. Parameters should not be
+** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
+** allowed it, so we need to support it when reading sqlite_schema for
+** backwards compatibility.
+**
+** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
+ assert( isInit==0 || isInit==1 );
+ return exprIsConst(p, 4+isInit, 0);
+}
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/*
+** Walk an expression tree. Return 1 if the expression contains a
+** subquery of some kind. Return 0 if there are no subqueries.
+*/
+SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr *p){
+ Walker w;
+ w.eCode = 1;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+#ifdef SQLITE_DEBUG
+ w.xSelectCallback2 = sqlite3SelectWalkAssert2;
+#endif
+ sqlite3WalkExpr(&w, p);
+ return w.eCode==0;
+}
+#endif
+
+/*
+** If the expression p codes a constant integer that is small enough
+** to fit in a 32-bit integer, return 1 and put the value of the integer
+** in *pValue. If the expression is not an integer or if it is too big
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr *p, int *pValue){
+ int rc = 0;
+ if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */
+
+ /* If an expression is an integer literal that fits in a signed 32-bit
+ ** integer, then the EP_IntValue flag will have already been set */
+ assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
+ || sqlite3GetInt32(p->u.zToken, &rc)==0 );
+
+ if( p->flags & EP_IntValue ){
+ *pValue = p->u.iValue;
+ return 1;
+ }
+ switch( p->op ){
+ case TK_UPLUS: {
+ rc = sqlite3ExprIsInteger(p->pLeft, pValue);
+ break;
+ }
+ case TK_UMINUS: {
+ int v = 0;
+ if( sqlite3ExprIsInteger(p->pLeft, &v) ){
+ assert( ((unsigned int)v)!=0x80000000 );
+ *pValue = -v;
+ rc = 1;
+ }
+ break;
+ }
+ default: break;
+ }
+ return rc;
+}
+
+/*
+** Return FALSE if there is no chance that the expression can be NULL.
+**
+** If the expression might be NULL or if the expression is too complex
+** to tell return TRUE.
+**
+** This routine is used as an optimization, to skip OP_IsNull opcodes
+** when we know that a value cannot be NULL. Hence, a false positive
+** (returning TRUE when in fact the expression can never be NULL) might
+** be a small performance hit but is otherwise harmless. On the other
+** hand, a false negative (returning FALSE when the result could be NULL)
+** will likely result in an incorrect answer. So when in doubt, return
+** TRUE.
+*/
+SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){
+ u8 op;
+ assert( p!=0 );
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
+ p = p->pLeft;
+ assert( p!=0 );
+ }
+ op = p->op;
+ if( op==TK_REGISTER ) op = p->op2;
+ switch( op ){
+ case TK_INTEGER:
+ case TK_STRING:
+ case TK_FLOAT:
+ case TK_BLOB:
+ return 0;
+ case TK_COLUMN:
+ assert( ExprUseYTab(p) );
+ return ExprHasProperty(p, EP_CanBeNull) ||
+ p->y.pTab==0 || /* Reference to column of index on expression */
+ (p->iColumn>=0
+ && p->y.pTab->aCol!=0 /* Possible due to prior error */
+ && p->y.pTab->aCol[p->iColumn].notNull==0);
+ default:
+ return 1;
+ }
+}
+
+/*
+** Return TRUE if the given expression is a constant which would be
+** unchanged by OP_Affinity with the affinity given in the second
+** argument.
+**
+** This routine is used to determine if the OP_Affinity operation
+** can be omitted. When in doubt return FALSE. A false negative
+** is harmless. A false positive, however, can result in the wrong
+** answer.
+*/
+SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
+ u8 op;
+ int unaryMinus = 0;
+ if( aff==SQLITE_AFF_BLOB ) return 1;
+ while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
+ if( p->op==TK_UMINUS ) unaryMinus = 1;
+ p = p->pLeft;
+ }
+ op = p->op;
+ if( op==TK_REGISTER ) op = p->op2;
+ switch( op ){
+ case TK_INTEGER: {
+ return aff>=SQLITE_AFF_NUMERIC;
+ }
+ case TK_FLOAT: {
+ return aff>=SQLITE_AFF_NUMERIC;
+ }
+ case TK_STRING: {
+ return !unaryMinus && aff==SQLITE_AFF_TEXT;
+ }
+ case TK_BLOB: {
+ return !unaryMinus;
+ }
+ case TK_COLUMN: {
+ assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
+ return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
+ }
+ default: {
+ return 0;
+ }
+ }
+}
+
+/*
+** Return TRUE if the given string is a row-id column name.
+*/
+SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
+ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
+ if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
+ if( sqlite3StrICmp(z, "OID")==0 ) return 1;
+ return 0;
+}
+
+/*
+** Return a pointer to a buffer containing a usable rowid alias for table
+** pTab. An alias is usable if there is not an explicit user-defined column
+** of the same name.
+*/
+SQLITE_PRIVATE const char *sqlite3RowidAlias(Table *pTab){
+ const char *azOpt[] = {"_ROWID_", "ROWID", "OID"};
+ int ii;
+ assert( VisibleRowid(pTab) );
+ for(ii=0; ii<ArraySize(azOpt); ii++){
+ int iCol;
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break;
+ }
+ if( iCol==pTab->nCol ){
+ return azOpt[ii];
+ }
+ }
+ return 0;
+}
+
+/*
+** pX is the RHS of an IN operator. If pX is a SELECT statement
+** that can be simplified to a direct table access, then return
+** a pointer to the SELECT statement. If pX is not a SELECT statement,
+** or if the SELECT statement needs to be materialized into a transient
+** table, then return NULL.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+static Select *isCandidateForInOpt(const Expr *pX){
+ Select *p;
+ SrcList *pSrc;
+ ExprList *pEList;
+ Table *pTab;
+ int i;
+ if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */
+ if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
+ p = pX->x.pSelect;
+ if( p->pPrior ) return 0; /* Not a compound SELECT */
+ if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ return 0; /* No DISTINCT keyword and no aggregate functions */
+ }
+ assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
+ if( p->pLimit ) return 0; /* Has no LIMIT clause */
+ if( p->pWhere ) return 0; /* Has no WHERE clause */
+ pSrc = p->pSrc;
+ assert( pSrc!=0 );
+ if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
+ if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
+ pTab = pSrc->a[0].pTab;
+ assert( pTab!=0 );
+ assert( !IsView(pTab) ); /* FROM clause is not a view */
+ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
+ pEList = p->pEList;
+ assert( pEList!=0 );
+ /* All SELECT results must be columns. */
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *pRes = pEList->a[i].pExpr;
+ if( pRes->op!=TK_COLUMN ) return 0;
+ assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
+ }
+ return p;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate code that checks the left-most column of index table iCur to see if
+** it contains any NULL entries. Cause the register at regHasNull to be set
+** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
+** to be set to NULL if iCur contains one or more NULL values.
+*/
+static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
+ int addr1;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
+ addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
+ sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
+ VdbeComment((v, "first_entry_in(%d)", iCur));
+ sqlite3VdbeJumpHere(v, addr1);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** The argument is an IN operator with a list (not a subquery) on the
+** right-hand side. Return TRUE if that list is constant.
+*/
+static int sqlite3InRhsIsConstant(Expr *pIn){
+ Expr *pLHS;
+ int res;
+ assert( !ExprHasProperty(pIn, EP_xIsSelect) );
+ pLHS = pIn->pLeft;
+ pIn->pLeft = 0;
+ res = sqlite3ExprIsConstant(pIn);
+ pIn->pLeft = pLHS;
+ return res;
+}
+#endif
+
+/*
+** This function is used by the implementation of the IN (...) operator.
+** The pX parameter is the expression on the RHS of the IN operator, which
+** might be either a list of expressions or a subquery.
+**
+** The job of this routine is to find or create a b-tree object that can
+** be used either to test for membership in the RHS set or to iterate through
+** all members of the RHS set, skipping duplicates.
+**
+** A cursor is opened on the b-tree object that is the RHS of the IN operator
+** and the *piTab parameter is set to the index of that cursor.
+**
+** The returned value of this function indicates the b-tree type, as follows:
+**
+** IN_INDEX_ROWID - The cursor was opened on a database table.
+** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
+** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
+** IN_INDEX_EPH - The cursor was opened on a specially created and
+** populated ephemeral table.
+** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
+** implemented as a sequence of comparisons.
+**
+** An existing b-tree might be used if the RHS expression pX is a simple
+** subquery such as:
+**
+** SELECT <column1>, <column2>... FROM <table>
+**
+** If the RHS of the IN operator is a list or a more complex subquery, then
+** an ephemeral table might need to be generated from the RHS and then
+** pX->iTable made to point to the ephemeral table instead of an
+** existing table. In this case, the creation and initialization of the
+** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag
+** will be set on pX and the pX->y.sub fields will be set to show where
+** the subroutine is coded.
+**
+** The inFlags parameter must contain, at a minimum, one of the bits
+** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
+** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
+** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
+** be used to loop over all values of the RHS of the IN operator.
+**
+** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
+** through the set members) then the b-tree must not contain duplicates.
+** An ephemeral table will be created unless the selected columns are guaranteed
+** to be unique - either because it is an INTEGER PRIMARY KEY or due to
+** a UNIQUE constraint or index.
+**
+** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
+** for fast set membership tests) then an ephemeral table must
+** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
+** index can be found with the specified <columns> as its left-most.
+**
+** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
+** if the RHS of the IN operator is a list (not a subquery) then this
+** routine might decide that creating an ephemeral b-tree for membership
+** testing is too expensive and return IN_INDEX_NOOP. In that case, the
+** calling routine should implement the IN operator using a sequence
+** of Eq or Ne comparison operations.
+**
+** When the b-tree is being used for membership tests, the calling function
+** might need to know whether or not the RHS side of the IN operator
+** contains a NULL. If prRhsHasNull is not a NULL pointer and
+** if there is any chance that the (...) might contain a NULL value at
+** runtime, then a register is allocated and the register number written
+** to *prRhsHasNull. If there is no chance that the (...) contains a
+** NULL value, then *prRhsHasNull is left unchanged.
+**
+** If a register is allocated and its location stored in *prRhsHasNull, then
+** the value in that register will be NULL if the b-tree contains one or more
+** NULL values, and it will be some non-NULL value if the b-tree contains no
+** NULL values.
+**
+** If the aiMap parameter is not NULL, it must point to an array containing
+** one element for each column returned by the SELECT statement on the RHS
+** of the IN(...) operator. The i'th entry of the array is populated with the
+** offset of the index column that matches the i'th column returned by the
+** SELECT. For example, if the expression and selected index are:
+**
+** (?,?,?) IN (SELECT a, b, c FROM t1)
+** CREATE INDEX i1 ON t1(b, c, a);
+**
+** then aiMap[] is populated with {2, 0, 1}.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3FindInIndex(
+ Parse *pParse, /* Parsing context */
+ Expr *pX, /* The IN expression */
+ u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
+ int *prRhsHasNull, /* Register holding NULL status. See notes */
+ int *aiMap, /* Mapping from Index fields to RHS fields */
+ int *piTab /* OUT: index to use */
+){
+ Select *p; /* SELECT to the right of IN operator */
+ int eType = 0; /* Type of RHS table. IN_INDEX_* */
+ int iTab; /* Cursor of the RHS table */
+ int mustBeUnique; /* True if RHS must be unique */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
+
+ assert( pX->op==TK_IN );
+ mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
+ iTab = pParse->nTab++;
+
+ /* If the RHS of this IN(...) operator is a SELECT, and if it matters
+ ** whether or not the SELECT result contains NULL values, check whether
+ ** or not NULL is actually possible (it may not be, for example, due
+ ** to NOT NULL constraints in the schema). If no NULL values are possible,
+ ** set prRhsHasNull to 0 before continuing. */
+ if( prRhsHasNull && ExprUseXSelect(pX) ){
+ int i;
+ ExprList *pEList = pX->x.pSelect->pEList;
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
+ }
+ if( i==pEList->nExpr ){
+ prRhsHasNull = 0;
+ }
+ }
+
+ /* Check to see if an existing table or index can be used to
+ ** satisfy the query. This is preferable to generating a new
+ ** ephemeral table. */
+ if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
+ sqlite3 *db = pParse->db; /* Database connection */
+ Table *pTab; /* Table <table>. */
+ int iDb; /* Database idx for pTab */
+ ExprList *pEList = p->pEList;
+ int nExpr = pEList->nExpr;
+
+ assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
+ assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
+ assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
+ pTab = p->pSrc->a[0].pTab;
+
+ /* Code an OP_Transaction and OP_TableLock for <table>. */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 && iDb<SQLITE_MAX_DB );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ assert(v); /* sqlite3GetVdbe() has always been previously called */
+ if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
+ /* The "x IN (SELECT rowid FROM table)" case */
+ int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
+ VdbeCoverage(v);
+
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ eType = IN_INDEX_ROWID;
+ ExplainQueryPlan((pParse, 0,
+ "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
+ sqlite3VdbeJumpHere(v, iAddr);
+ }else{
+ Index *pIdx; /* Iterator variable */
+ int affinity_ok = 1;
+ int i;
+
+ /* Check that the affinity that will be used to perform each
+ ** comparison is the same as the affinity of each column in table
+ ** on the RHS of the IN operator. If it not, it is not possible to
+ ** use any index of the RHS table. */
+ for(i=0; i<nExpr && affinity_ok; i++){
+ Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
+ int iCol = pEList->a[i].pExpr->iColumn;
+ char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
+ char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
+ testcase( cmpaff==SQLITE_AFF_BLOB );
+ testcase( cmpaff==SQLITE_AFF_TEXT );
+ switch( cmpaff ){
+ case SQLITE_AFF_BLOB:
+ break;
+ case SQLITE_AFF_TEXT:
+ /* sqlite3CompareAffinity() only returns TEXT if one side or the
+ ** other has no affinity and the other side is TEXT. Hence,
+ ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
+ ** and for the term on the LHS of the IN to have no affinity. */
+ assert( idxaff==SQLITE_AFF_TEXT );
+ break;
+ default:
+ affinity_ok = sqlite3IsNumericAffinity(idxaff);
+ }
+ }
+
+ if( affinity_ok ){
+ /* Search for an existing index that will work for this IN operator */
+ for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
+ Bitmask colUsed; /* Columns of the index used */
+ Bitmask mCol; /* Mask for the current column */
+ if( pIdx->nColumn<nExpr ) continue;
+ if( pIdx->pPartIdxWhere!=0 ) continue;
+ /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
+ ** BITMASK(nExpr) without overflowing */
+ testcase( pIdx->nColumn==BMS-2 );
+ testcase( pIdx->nColumn==BMS-1 );
+ if( pIdx->nColumn>=BMS-1 ) continue;
+ if( mustBeUnique ){
+ if( pIdx->nKeyCol>nExpr
+ ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
+ ){
+ continue; /* This index is not unique over the IN RHS columns */
+ }
+ }
+
+ colUsed = 0; /* Columns of index used so far */
+ for(i=0; i<nExpr; i++){
+ Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
+ Expr *pRhs = pEList->a[i].pExpr;
+ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
+ int j;
+
+ for(j=0; j<nExpr; j++){
+ if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
+ assert( pIdx->azColl[j] );
+ if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
+ continue;
+ }
+ break;
+ }
+ if( j==nExpr ) break;
+ mCol = MASKBIT(j);
+ if( mCol & colUsed ) break; /* Each column used only once */
+ colUsed |= mCol;
+ if( aiMap ) aiMap[i] = j;
+ }
+
+ assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
+ if( colUsed==(MASKBIT(nExpr)-1) ){
+ /* If we reach this point, that means the index pIdx is usable */
+ int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ ExplainQueryPlan((pParse, 0,
+ "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "%s", pIdx->zName));
+ assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
+ eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
+
+ if( prRhsHasNull ){
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ i64 mask = (1<<nExpr)-1;
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
+ iTab, 0, 0, (u8*)&mask, P4_INT64);
+#endif
+ *prRhsHasNull = ++pParse->nMem;
+ if( nExpr==1 ){
+ sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
+ }
+ }
+ sqlite3VdbeJumpHere(v, iAddr);
+ }
+ } /* End loop over indexes */
+ } /* End if( affinity_ok ) */
+ } /* End if not an rowid index */
+ } /* End attempt to optimize using an index */
+
+ /* If no preexisting index is available for the IN clause
+ ** and IN_INDEX_NOOP is an allowed reply
+ ** and the RHS of the IN operator is a list, not a subquery
+ ** and the RHS is not constant or has two or fewer terms,
+ ** then it is not worth creating an ephemeral table to evaluate
+ ** the IN operator so return IN_INDEX_NOOP.
+ */
+ if( eType==0
+ && (inFlags & IN_INDEX_NOOP_OK)
+ && ExprUseXList(pX)
+ && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
+ ){
+ pParse->nTab--; /* Back out the allocation of the unused cursor */
+ iTab = -1; /* Cursor is not allocated */
+ eType = IN_INDEX_NOOP;
+ }
+
+ if( eType==0 ){
+ /* Could not find an existing table or index to use as the RHS b-tree.
+ ** We will have to generate an ephemeral table to do the job.
+ */
+ u32 savedNQueryLoop = pParse->nQueryLoop;
+ int rMayHaveNull = 0;
+ eType = IN_INDEX_EPH;
+ if( inFlags & IN_INDEX_LOOP ){
+ pParse->nQueryLoop = 0;
+ }else if( prRhsHasNull ){
+ *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
+ }
+ assert( pX->op==TK_IN );
+ sqlite3CodeRhsOfIN(pParse, pX, iTab);
+ if( rMayHaveNull ){
+ sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
+ }
+ pParse->nQueryLoop = savedNQueryLoop;
+ }
+
+ if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
+ int i, n;
+ n = sqlite3ExprVectorSize(pX->pLeft);
+ for(i=0; i<n; i++) aiMap[i] = i;
+ }
+ *piTab = iTab;
+ return eType;
+}
+#endif
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Argument pExpr is an (?, ?...) IN(...) expression. This
+** function allocates and returns a nul-terminated string containing
+** the affinities to be used for each column of the comparison.
+**
+** It is the responsibility of the caller to ensure that the returned
+** string is eventually freed using sqlite3DbFree().
+*/
+static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
+ Expr *pLeft = pExpr->pLeft;
+ int nVal = sqlite3ExprVectorSize(pLeft);
+ Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
+ char *zRet;
+
+ assert( pExpr->op==TK_IN );
+ zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
+ if( zRet ){
+ int i;
+ for(i=0; i<nVal; i++){
+ Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
+ char a = sqlite3ExprAffinity(pA);
+ if( pSelect ){
+ zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
+ }else{
+ zRet[i] = a;
+ }
+ }
+ zRet[nVal] = '\0';
+ }
+ return zRet;
+}
+#endif
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Load the Parse object passed as the first argument with an error
+** message of the form:
+**
+** "sub-select returns N columns - expected M"
+*/
+SQLITE_PRIVATE void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
+ if( pParse->nErr==0 ){
+ const char *zFmt = "sub-select returns %d columns - expected %d";
+ sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
+ }
+}
+#endif
+
+/*
+** Expression pExpr is a vector that has been used in a context where
+** it is not permitted. If pExpr is a sub-select vector, this routine
+** loads the Parse object with a message of the form:
+**
+** "sub-select returns N columns - expected 1"
+**
+** Or, if it is a regular scalar vector:
+**
+** "row value misused"
+*/
+SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( ExprUseXSelect(pExpr) ){
+ sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
+ }else
+#endif
+ {
+ sqlite3ErrorMsg(pParse, "row value misused");
+ }
+}
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate code that will construct an ephemeral table containing all terms
+** in the RHS of an IN operator. The IN operator can be in either of two
+** forms:
+**
+** x IN (4,5,11) -- IN operator with list on right-hand side
+** x IN (SELECT a FROM b) -- IN operator with subquery on the right
+**
+** The pExpr parameter is the IN operator. The cursor number for the
+** constructed ephemeral table is returned. The first time the ephemeral
+** table is computed, the cursor number is also stored in pExpr->iTable,
+** however the cursor number returned might not be the same, as it might
+** have been duplicated using OP_OpenDup.
+**
+** If the LHS expression ("x" in the examples) is a column value, or
+** the SELECT statement returns a column value, then the affinity of that
+** column is used to build the index keys. If both 'x' and the
+** SELECT... statement are columns, then numeric affinity is used
+** if either column has NUMERIC or INTEGER affinity. If neither
+** 'x' nor the SELECT... statement are columns, then numeric affinity
+** is used.
+*/
+SQLITE_PRIVATE void sqlite3CodeRhsOfIN(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The IN operator */
+ int iTab /* Use this cursor number */
+){
+ int addrOnce = 0; /* Address of the OP_Once instruction at top */
+ int addr; /* Address of OP_OpenEphemeral instruction */
+ Expr *pLeft; /* the LHS of the IN operator */
+ KeyInfo *pKeyInfo = 0; /* Key information */
+ int nVal; /* Size of vector pLeft */
+ Vdbe *v; /* The prepared statement under construction */
+
+ v = pParse->pVdbe;
+ assert( v!=0 );
+
+ /* The evaluation of the IN must be repeated every time it
+ ** is encountered if any of the following is true:
+ **
+ ** * The right-hand side is a correlated subquery
+ ** * The right-hand side is an expression list containing variables
+ ** * We are inside a trigger
+ **
+ ** If all of the above are false, then we can compute the RHS just once
+ ** and reuse it many names.
+ */
+ if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
+ /* Reuse of the RHS is allowed */
+ /* If this routine has already been coded, but the previous code
+ ** might not have been invoked yet, so invoke it now as a subroutine.
+ */
+ if( ExprHasProperty(pExpr, EP_Subrtn) ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ if( ExprUseXSelect(pExpr) ){
+ ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
+ pExpr->x.pSelect->selId));
+ }
+ assert( ExprUseYSub(pExpr) );
+ sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr);
+ assert( iTab!=pExpr->iTable );
+ sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
+ sqlite3VdbeJumpHere(v, addrOnce);
+ return;
+ }
+
+ /* Begin coding the subroutine */
+ assert( !ExprUseYWin(pExpr) );
+ ExprSetProperty(pExpr, EP_Subrtn);
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ pExpr->y.sub.regReturn = ++pParse->nMem;
+ pExpr->y.sub.iAddr =
+ sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
+
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+
+ /* Check to see if this is a vector IN operator */
+ pLeft = pExpr->pLeft;
+ nVal = sqlite3ExprVectorSize(pLeft);
+
+ /* Construct the ephemeral table that will contain the content of
+ ** RHS of the IN operator.
+ */
+ pExpr->iTable = iTab;
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ if( ExprUseXSelect(pExpr) ){
+ VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
+ }else{
+ VdbeComment((v, "RHS of IN operator"));
+ }
+#endif
+ pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
+
+ if( ExprUseXSelect(pExpr) ){
+ /* Case 1: expr IN (SELECT ...)
+ **
+ ** Generate code to write the results of the select into the temporary
+ ** table allocated and opened above.
+ */
+ Select *pSelect = pExpr->x.pSelect;
+ ExprList *pEList = pSelect->pEList;
+
+ ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
+ addrOnce?"":"CORRELATED ", pSelect->selId
+ ));
+ /* If the LHS and RHS of the IN operator do not match, that
+ ** error will have been caught long before we reach this point. */
+ if( ALWAYS(pEList->nExpr==nVal) ){
+ Select *pCopy;
+ SelectDest dest;
+ int i;
+ int rc;
+ sqlite3SelectDestInit(&dest, SRT_Set, iTab);
+ dest.zAffSdst = exprINAffinity(pParse, pExpr);
+ pSelect->iLimit = 0;
+ testcase( pSelect->selFlags & SF_Distinct );
+ testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
+ pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
+ rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
+ sqlite3SelectDelete(pParse->db, pCopy);
+ sqlite3DbFree(pParse->db, dest.zAffSdst);
+ if( rc ){
+ sqlite3KeyInfoUnref(pKeyInfo);
+ return;
+ }
+ assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
+ assert( pEList!=0 );
+ assert( pEList->nExpr>0 );
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
+ for(i=0; i<nVal; i++){
+ Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
+ pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
+ pParse, p, pEList->a[i].pExpr
+ );
+ }
+ }
+ }else if( ALWAYS(pExpr->x.pList!=0) ){
+ /* Case 2: expr IN (exprlist)
+ **
+ ** For each expression, build an index key from the evaluation and
+ ** store it in the temporary table. If <expr> is a column, then use
+ ** that columns affinity when building index keys. If <expr> is not
+ ** a column, use numeric affinity.
+ */
+ char affinity; /* Affinity of the LHS of the IN */
+ int i;
+ ExprList *pList = pExpr->x.pList;
+ struct ExprList_item *pItem;
+ int r1, r2;
+ affinity = sqlite3ExprAffinity(pLeft);
+ if( affinity<=SQLITE_AFF_NONE ){
+ affinity = SQLITE_AFF_BLOB;
+ }else if( affinity==SQLITE_AFF_REAL ){
+ affinity = SQLITE_AFF_NUMERIC;
+ }
+ if( pKeyInfo ){
+ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
+ pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
+ }
+
+ /* Loop through each expression in <exprlist>. */
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempReg(pParse);
+ for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
+ Expr *pE2 = pItem->pExpr;
+
+ /* If the expression is not constant then we will need to
+ ** disable the test that was generated above that makes sure
+ ** this code only executes once. Because for a non-constant
+ ** expression we need to rerun this code each time.
+ */
+ if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
+ sqlite3VdbeChangeToNoop(v, addrOnce-1);
+ sqlite3VdbeChangeToNoop(v, addrOnce);
+ ExprClearProperty(pExpr, EP_Subrtn);
+ addrOnce = 0;
+ }
+
+ /* Evaluate the expression and insert it into the temp table */
+ sqlite3ExprCode(pParse, pE2, r1);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
+ }
+ if( addrOnce ){
+ sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
+ sqlite3VdbeJumpHere(v, addrOnce);
+ /* Subroutine return */
+ assert( ExprUseYSub(pExpr) );
+ assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
+ || pParse->nErr );
+ sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr, 1);
+ VdbeCoverage(v);
+ sqlite3ClearTempRegCache(pParse);
+ }
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+/*
+** Generate code for scalar subqueries used as a subquery expression
+** or EXISTS operator:
+**
+** (SELECT a FROM b) -- subquery
+** EXISTS (SELECT a FROM b) -- EXISTS subquery
+**
+** The pExpr parameter is the SELECT or EXISTS operator to be coded.
+**
+** Return the register that holds the result. For a multi-column SELECT,
+** the result is stored in a contiguous array of registers and the
+** return value is the register of the left-most result column.
+** Return 0 if an error occurs.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
+ int addrOnce = 0; /* Address of OP_Once at top of subroutine */
+ int rReg = 0; /* Register storing resulting */
+ Select *pSel; /* SELECT statement to encode */
+ SelectDest dest; /* How to deal with SELECT result */
+ int nReg; /* Registers to allocate */
+ Expr *pLimit; /* New limit expression */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrExplain; /* Address of OP_Explain instruction */
+#endif
+
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ if( pParse->nErr ) return 0;
+ testcase( pExpr->op==TK_EXISTS );
+ testcase( pExpr->op==TK_SELECT );
+ assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
+ assert( ExprUseXSelect(pExpr) );
+ pSel = pExpr->x.pSelect;
+
+ /* If this routine has already been coded, then invoke it as a
+ ** subroutine. */
+ if( ExprHasProperty(pExpr, EP_Subrtn) ){
+ ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
+ assert( ExprUseYSub(pExpr) );
+ sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr);
+ return pExpr->iTable;
+ }
+
+ /* Begin coding the subroutine */
+ assert( !ExprUseYWin(pExpr) );
+ assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
+ ExprSetProperty(pExpr, EP_Subrtn);
+ pExpr->y.sub.regReturn = ++pParse->nMem;
+ pExpr->y.sub.iAddr =
+ sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
+
+ /* The evaluation of the EXISTS/SELECT must be repeated every time it
+ ** is encountered if any of the following is true:
+ **
+ ** * The right-hand side is a correlated subquery
+ ** * The right-hand side is an expression list containing variables
+ ** * We are inside a trigger
+ **
+ ** If all of the above are false, then we can run this code just once
+ ** save the results, and reuse the same result on subsequent invocations.
+ */
+ if( !ExprHasProperty(pExpr, EP_VarSelect) ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+
+ /* For a SELECT, generate code to put the values for all columns of
+ ** the first row into an array of registers and return the index of
+ ** the first register.
+ **
+ ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
+ ** into a register and return that register number.
+ **
+ ** In both cases, the query is augmented with "LIMIT 1". Any
+ ** preexisting limit is discarded in place of the new LIMIT 1.
+ */
+ ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d",
+ addrOnce?"":"CORRELATED ", pSel->selId));
+ sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1);
+ nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
+ sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
+ pParse->nMem += nReg;
+ if( pExpr->op==TK_SELECT ){
+ dest.eDest = SRT_Mem;
+ dest.iSdst = dest.iSDParm;
+ dest.nSdst = nReg;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
+ VdbeComment((v, "Init subquery result"));
+ }else{
+ dest.eDest = SRT_Exists;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
+ VdbeComment((v, "Init EXISTS result"));
+ }
+ if( pSel->pLimit ){
+ /* The subquery already has a limit. If the pre-existing limit is X
+ ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
+ sqlite3 *db = pParse->db;
+ pLimit = sqlite3Expr(db, TK_INTEGER, "0");
+ if( pLimit ){
+ pLimit->affExpr = SQLITE_AFF_NUMERIC;
+ pLimit = sqlite3PExpr(pParse, TK_NE,
+ sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
+ }
+ sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
+ pSel->pLimit->pLeft = pLimit;
+ }else{
+ /* If there is no pre-existing limit add a limit of 1 */
+ pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
+ pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
+ }
+ pSel->iLimit = 0;
+ if( sqlite3Select(pParse, pSel, &dest) ){
+ pExpr->op2 = pExpr->op;
+ pExpr->op = TK_ERROR;
+ return 0;
+ }
+ pExpr->iTable = rReg = dest.iSDParm;
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+ if( addrOnce ){
+ sqlite3VdbeJumpHere(v, addrOnce);
+ }
+ sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
+
+ /* Subroutine return */
+ assert( ExprUseYSub(pExpr) );
+ assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
+ || pParse->nErr );
+ sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
+ pExpr->y.sub.iAddr, 1);
+ VdbeCoverage(v);
+ sqlite3ClearTempRegCache(pParse);
+ return rReg;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Expr pIn is an IN(...) expression. This function checks that the
+** sub-select on the RHS of the IN() operator has the same number of
+** columns as the vector on the LHS. Or, if the RHS of the IN() is not
+** a sub-query, that the LHS is a vector of size 1.
+*/
+SQLITE_PRIVATE int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
+ int nVector = sqlite3ExprVectorSize(pIn->pLeft);
+ if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
+ if( nVector!=pIn->x.pSelect->pEList->nExpr ){
+ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
+ return 1;
+ }
+ }else if( nVector!=1 ){
+ sqlite3VectorErrorMsg(pParse, pIn->pLeft);
+ return 1;
+ }
+ return 0;
+}
+#endif
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** Generate code for an IN expression.
+**
+** x IN (SELECT ...)
+** x IN (value, value, ...)
+**
+** The left-hand side (LHS) is a scalar or vector expression. The
+** right-hand side (RHS) is an array of zero or more scalar values, or a
+** subquery. If the RHS is a subquery, the number of result columns must
+** match the number of columns in the vector on the LHS. If the RHS is
+** a list of values, the LHS must be a scalar.
+**
+** The IN operator is true if the LHS value is contained within the RHS.
+** The result is false if the LHS is definitely not in the RHS. The
+** result is NULL if the presence of the LHS in the RHS cannot be
+** determined due to NULLs.
+**
+** This routine generates code that jumps to destIfFalse if the LHS is not
+** contained within the RHS. If due to NULLs we cannot determine if the LHS
+** is contained in the RHS then jump to destIfNull. If the LHS is contained
+** within the RHS then fall through.
+**
+** See the separate in-operator.md documentation file in the canonical
+** SQLite source tree for additional information.
+*/
+static void sqlite3ExprCodeIN(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* The IN expression */
+ int destIfFalse, /* Jump here if LHS is not contained in the RHS */
+ int destIfNull /* Jump here if the results are unknown due to NULLs */
+){
+ int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
+ int eType; /* Type of the RHS */
+ int rLhs; /* Register(s) holding the LHS values */
+ int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
+ Vdbe *v; /* Statement under construction */
+ int *aiMap = 0; /* Map from vector field to index column */
+ char *zAff = 0; /* Affinity string for comparisons */
+ int nVector; /* Size of vectors for this IN operator */
+ int iDummy; /* Dummy parameter to exprCodeVector() */
+ Expr *pLeft; /* The LHS of the IN operator */
+ int i; /* loop counter */
+ int destStep2; /* Where to jump when NULLs seen in step 2 */
+ int destStep6 = 0; /* Start of code for Step 6 */
+ int addrTruthOp; /* Address of opcode that determines the IN is true */
+ int destNotNull; /* Jump here if a comparison is not true in step 6 */
+ int addrTop; /* Top of the step-6 loop */
+ int iTab = 0; /* Index to use */
+ u8 okConstFactor = pParse->okConstFactor;
+
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ pLeft = pExpr->pLeft;
+ if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
+ zAff = exprINAffinity(pParse, pExpr);
+ nVector = sqlite3ExprVectorSize(pExpr->pLeft);
+ aiMap = (int*)sqlite3DbMallocZero(
+ pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
+ );
+ if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
+
+ /* Attempt to compute the RHS. After this step, if anything other than
+ ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
+ ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
+ ** the RHS has not yet been coded. */
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* OOM detected prior to this routine */
+ VdbeNoopComment((v, "begin IN expr"));
+ eType = sqlite3FindInIndex(pParse, pExpr,
+ IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
+ destIfFalse==destIfNull ? 0 : &rRhsHasNull,
+ aiMap, &iTab);
+
+ assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
+ || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
+ );
+#ifdef SQLITE_DEBUG
+ /* Confirm that aiMap[] contains nVector integer values between 0 and
+ ** nVector-1. */
+ for(i=0; i<nVector; i++){
+ int j, cnt;
+ for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
+ assert( cnt==1 );
+ }
+#endif
+
+ /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
+ ** vector, then it is stored in an array of nVector registers starting
+ ** at r1.
+ **
+ ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
+ ** so that the fields are in the same order as an existing index. The
+ ** aiMap[] array contains a mapping from the original LHS field order to
+ ** the field order that matches the RHS index.
+ **
+ ** Avoid factoring the LHS of the IN(...) expression out of the loop,
+ ** even if it is constant, as OP_Affinity may be used on the register
+ ** by code generated below. */
+ assert( pParse->okConstFactor==okConstFactor );
+ pParse->okConstFactor = 0;
+ rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
+ pParse->okConstFactor = okConstFactor;
+ for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
+ if( i==nVector ){
+ /* LHS fields are not reordered */
+ rLhs = rLhsOrig;
+ }else{
+ /* Need to reorder the LHS fields according to aiMap */
+ rLhs = sqlite3GetTempRange(pParse, nVector);
+ for(i=0; i<nVector; i++){
+ sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
+ }
+ }
+
+ /* If sqlite3FindInIndex() did not find or create an index that is
+ ** suitable for evaluating the IN operator, then evaluate using a
+ ** sequence of comparisons.
+ **
+ ** This is step (1) in the in-operator.md optimized algorithm.
+ */
+ if( eType==IN_INDEX_NOOP ){
+ ExprList *pList;
+ CollSeq *pColl;
+ int labelOk = sqlite3VdbeMakeLabel(pParse);
+ int r2, regToFree;
+ int regCkNull = 0;
+ int ii;
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
+ if( destIfNull!=destIfFalse ){
+ regCkNull = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
+ }
+ for(ii=0; ii<pList->nExpr; ii++){
+ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
+ if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
+ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
+ }
+ sqlite3ReleaseTempReg(pParse, regToFree);
+ if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
+ int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
+ sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
+ (void*)pColl, P4_COLLSEQ);
+ VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
+ VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
+ VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
+ VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
+ sqlite3VdbeChangeP5(v, zAff[0]);
+ }else{
+ int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
+ assert( destIfNull==destIfFalse );
+ sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
+ (void*)pColl, P4_COLLSEQ);
+ VdbeCoverageIf(v, op==OP_Ne);
+ VdbeCoverageIf(v, op==OP_IsNull);
+ sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
+ }
+ }
+ if( regCkNull ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, destIfFalse);
+ }
+ sqlite3VdbeResolveLabel(v, labelOk);
+ sqlite3ReleaseTempReg(pParse, regCkNull);
+ goto sqlite3ExprCodeIN_finished;
+ }
+
+ /* Step 2: Check to see if the LHS contains any NULL columns. If the
+ ** LHS does contain NULLs then the result must be either FALSE or NULL.
+ ** We will then skip the binary search of the RHS.
+ */
+ if( destIfNull==destIfFalse ){
+ destStep2 = destIfFalse;
+ }else{
+ destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
+ }
+ for(i=0; i<nVector; i++){
+ Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
+ if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
+ if( sqlite3ExprCanBeNull(p) ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
+ VdbeCoverage(v);
+ }
+ }
+
+ /* Step 3. The LHS is now known to be non-NULL. Do the binary search
+ ** of the RHS using the LHS as a probe. If found, the result is
+ ** true.
+ */
+ if( eType==IN_INDEX_ROWID ){
+ /* In this case, the RHS is the ROWID of table b-tree and so we also
+ ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
+ ** into a single opcode. */
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
+ VdbeCoverage(v);
+ addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
+ }else{
+ sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
+ if( destIfFalse==destIfNull ){
+ /* Combine Step 3 and Step 5 into a single opcode */
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
+ rLhs, nVector); VdbeCoverage(v);
+ goto sqlite3ExprCodeIN_finished;
+ }
+ /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
+ addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
+ rLhs, nVector); VdbeCoverage(v);
+ }
+
+ /* Step 4. If the RHS is known to be non-NULL and we did not find
+ ** an match on the search above, then the result must be FALSE.
+ */
+ if( rRhsHasNull && nVector==1 ){
+ sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
+ VdbeCoverage(v);
+ }
+
+ /* Step 5. If we do not care about the difference between NULL and
+ ** FALSE, then just return false.
+ */
+ if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
+
+ /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
+ ** If any comparison is NULL, then the result is NULL. If all
+ ** comparisons are FALSE then the final result is FALSE.
+ **
+ ** For a scalar LHS, it is sufficient to check just the first row
+ ** of the RHS.
+ */
+ if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
+ VdbeCoverage(v);
+ if( nVector>1 ){
+ destNotNull = sqlite3VdbeMakeLabel(pParse);
+ }else{
+ /* For nVector==1, combine steps 6 and 7 by immediately returning
+ ** FALSE if the first comparison is not NULL */
+ destNotNull = destIfFalse;
+ }
+ for(i=0; i<nVector; i++){
+ Expr *p;
+ CollSeq *pColl;
+ int r3 = sqlite3GetTempReg(pParse);
+ p = sqlite3VectorFieldSubexpr(pLeft, i);
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
+ sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
+ (void*)pColl, P4_COLLSEQ);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, r3);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
+ if( nVector>1 ){
+ sqlite3VdbeResolveLabel(v, destNotNull);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
+ VdbeCoverage(v);
+
+ /* Step 7: If we reach this point, we know that the result must
+ ** be false. */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
+ }
+
+ /* Jumps here in order to return true. */
+ sqlite3VdbeJumpHere(v, addrTruthOp);
+
+sqlite3ExprCodeIN_finished:
+ if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
+ VdbeComment((v, "end IN expr"));
+sqlite3ExprCodeIN_oom_error:
+ sqlite3DbFree(pParse->db, aiMap);
+ sqlite3DbFree(pParse->db, zAff);
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** Generate an instruction that will put the floating point
+** value described by z[0..n-1] into register iMem.
+**
+** The z[] string will probably not be zero-terminated. But the
+** z[n] character is guaranteed to be something that does not look
+** like the continuation of the number.
+*/
+static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
+ if( ALWAYS(z!=0) ){
+ double value;
+ sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
+ assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
+ if( negateFlag ) value = -value;
+ sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
+ }
+}
+#endif
+
+
+/*
+** Generate an instruction that will put the integer describe by
+** text z[0..n-1] into register iMem.
+**
+** Expr.u.zToken is always UTF8 and zero-terminated.
+*/
+static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
+ Vdbe *v = pParse->pVdbe;
+ if( pExpr->flags & EP_IntValue ){
+ int i = pExpr->u.iValue;
+ assert( i>=0 );
+ if( negFlag ) i = -i;
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
+ }else{
+ int c;
+ i64 value;
+ const char *z = pExpr->u.zToken;
+ assert( z!=0 );
+ c = sqlite3DecOrHexToI64(z, &value);
+ if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
+#else
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( sqlite3_strnicmp(z,"0x",2)==0 ){
+ sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
+ negFlag?"-":"",pExpr);
+ }else
+#endif
+ {
+ codeReal(v, z, negFlag, iMem);
+ }
+#endif
+ }else{
+ if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
+ sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
+ }
+ }
+}
+
+
+/* Generate code that will load into register regOut a value that is
+** appropriate for the iIdxCol-th column of index pIdx.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(
+ Parse *pParse, /* The parsing context */
+ Index *pIdx, /* The index whose column is to be loaded */
+ int iTabCur, /* Cursor pointing to a table row */
+ int iIdxCol, /* The column of the index to be loaded */
+ int regOut /* Store the index column value in this register */
+){
+ i16 iTabCol = pIdx->aiColumn[iIdxCol];
+ if( iTabCol==XN_EXPR ){
+ assert( pIdx->aColExpr );
+ assert( pIdx->aColExpr->nExpr>iIdxCol );
+ pParse->iSelfTab = iTabCur + 1;
+ sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
+ pParse->iSelfTab = 0;
+ }else{
+ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
+ iTabCol, regOut);
+ }
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/*
+** Generate code that will compute the value of generated column pCol
+** and store the result in register regOut
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeGeneratedColumn(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table containing the generated column */
+ Column *pCol, /* The generated column */
+ int regOut /* Put the result in this register */
+){
+ int iAddr;
+ Vdbe *v = pParse->pVdbe;
+ int nErr = pParse->nErr;
+ assert( v!=0 );
+ assert( pParse->iSelfTab!=0 );
+ if( pParse->iSelfTab>0 ){
+ iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
+ }else{
+ iAddr = 0;
+ }
+ sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
+ if( pCol->affinity>=SQLITE_AFF_TEXT ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
+ }
+ if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
+ if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1;
+}
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+
+/*
+** Generate code to extract the value of the iCol-th column of a table.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(
+ Vdbe *v, /* Parsing context */
+ Table *pTab, /* The table containing the value */
+ int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
+ int iCol, /* Index of the column to extract */
+ int regOut /* Extract the value into this register */
+){
+ Column *pCol;
+ assert( v!=0 );
+ assert( pTab!=0 );
+ assert( iCol!=XN_EXPR );
+ if( iCol<0 || iCol==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
+ VdbeComment((v, "%s.rowid", pTab->zName));
+ }else{
+ int op;
+ int x;
+ if( IsVirtual(pTab) ){
+ op = OP_VColumn;
+ x = iCol;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
+ Parse *pParse = sqlite3VdbeParser(v);
+ if( pCol->colFlags & COLFLAG_BUSY ){
+ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
+ pCol->zCnName);
+ }else{
+ int savedSelfTab = pParse->iSelfTab;
+ pCol->colFlags |= COLFLAG_BUSY;
+ pParse->iSelfTab = iTabCur+1;
+ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
+ pParse->iSelfTab = savedSelfTab;
+ pCol->colFlags &= ~COLFLAG_BUSY;
+ }
+ return;
+#endif
+ }else if( !HasRowid(pTab) ){
+ testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
+ x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
+ op = OP_Column;
+ }else{
+ x = sqlite3TableColumnToStorage(pTab,iCol);
+ testcase( x!=iCol );
+ op = OP_Column;
+ }
+ sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
+ sqlite3ColumnDefault(v, pTab, iCol, regOut);
+ }
+}
+
+/*
+** Generate code that will extract the iColumn-th column from
+** table pTab and store the column value in register iReg.
+**
+** There must be an open cursor to pTab in iTable when this routine
+** is called. If iColumn<0 then code is generated that extracts the rowid.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Description of the table we are reading from */
+ int iColumn, /* Index of the table column */
+ int iTable, /* The cursor pointing to the table */
+ int iReg, /* Store results here */
+ u8 p5 /* P5 value for OP_Column + FLAGS */
+){
+ assert( pParse->pVdbe!=0 );
+ assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 );
+ assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 );
+ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
+ if( p5 ){
+ VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
+ if( pOp->opcode==OP_Column ) pOp->p5 = p5;
+ if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG);
+ }
+ return iReg;
+}
+
+/*
+** Generate code to move content from registers iFrom...iFrom+nReg-1
+** over to iTo..iTo+nReg-1.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
+}
+
+/*
+** Convert a scalar expression node to a TK_REGISTER referencing
+** register iReg. The caller must ensure that iReg already contains
+** the correct value for the expression.
+*/
+static void exprToRegister(Expr *pExpr, int iReg){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
+ if( NEVER(p==0) ) return;
+ p->op2 = p->op;
+ p->op = TK_REGISTER;
+ p->iTable = iReg;
+ ExprClearProperty(p, EP_Skip);
+}
+
+/*
+** Evaluate an expression (either a vector or a scalar expression) and store
+** the result in contiguous temporary registers. Return the index of
+** the first register used to store the result.
+**
+** If the returned result register is a temporary scalar, then also write
+** that register number into *piFreeable. If the returned result register
+** is not a temporary or if the expression is a vector set *piFreeable
+** to 0.
+*/
+static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
+ int iResult;
+ int nResult = sqlite3ExprVectorSize(p);
+ if( nResult==1 ){
+ iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
+ }else{
+ *piFreeable = 0;
+ if( p->op==TK_SELECT ){
+#if SQLITE_OMIT_SUBQUERY
+ iResult = 0;
+#else
+ iResult = sqlite3CodeSubselect(pParse, p);
+#endif
+ }else{
+ int i;
+ iResult = pParse->nMem+1;
+ pParse->nMem += nResult;
+ assert( ExprUseXList(p) );
+ for(i=0; i<nResult; i++){
+ sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
+ }
+ }
+ }
+ return iResult;
+}
+
+/*
+** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
+** so that a subsequent copy will not be merged into this one.
+*/
+static void setDoNotMergeFlagOnCopy(Vdbe *v){
+ if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
+ sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */
+ }
+}
+
+/*
+** Generate code to implement special SQL functions that are implemented
+** in-line rather than by using the usual callbacks.
+*/
+static int exprCodeInlineFunction(
+ Parse *pParse, /* Parsing context */
+ ExprList *pFarg, /* List of function arguments */
+ int iFuncId, /* Function ID. One of the INTFUNC_... values */
+ int target /* Store function result in this register */
+){
+ int nFarg;
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( pFarg!=0 );
+ nFarg = pFarg->nExpr;
+ assert( nFarg>0 ); /* All in-line functions have at least one argument */
+ switch( iFuncId ){
+ case INLINEFUNC_coalesce: {
+ /* Attempt a direct implementation of the built-in COALESCE() and
+ ** IFNULL() functions. This avoids unnecessary evaluation of
+ ** arguments past the first non-NULL argument.
+ */
+ int endCoalesce = sqlite3VdbeMakeLabel(pParse);
+ int i;
+ assert( nFarg>=2 );
+ sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
+ for(i=1; i<nFarg; i++){
+ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
+ VdbeCoverage(v);
+ sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
+ }
+ setDoNotMergeFlagOnCopy(v);
+ sqlite3VdbeResolveLabel(v, endCoalesce);
+ break;
+ }
+ case INLINEFUNC_iif: {
+ Expr caseExpr;
+ memset(&caseExpr, 0, sizeof(caseExpr));
+ caseExpr.op = TK_CASE;
+ caseExpr.x.pList = pFarg;
+ return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
+ }
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ case INLINEFUNC_sqlite_offset: {
+ Expr *pArg = pFarg->a[0].pExpr;
+ if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
+ sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ break;
+ }
+#endif
+ default: {
+ /* The UNLIKELY() function is a no-op. The result is the value
+ ** of the first argument.
+ */
+ assert( nFarg==1 || nFarg==2 );
+ target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
+ break;
+ }
+
+ /***********************************************************************
+ ** Test-only SQL functions that are only usable if enabled
+ ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
+ */
+#if !defined(SQLITE_UNTESTABLE)
+ case INLINEFUNC_expr_compare: {
+ /* Compare two expressions using sqlite3ExprCompare() */
+ assert( nFarg==2 );
+ sqlite3VdbeAddOp2(v, OP_Integer,
+ sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
+ target);
+ break;
+ }
+
+ case INLINEFUNC_expr_implies_expr: {
+ /* Compare two expressions using sqlite3ExprImpliesExpr() */
+ assert( nFarg==2 );
+ sqlite3VdbeAddOp2(v, OP_Integer,
+ sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
+ target);
+ break;
+ }
+
+ case INLINEFUNC_implies_nonnull_row: {
+ /* Result of sqlite3ExprImpliesNonNullRow() */
+ Expr *pA1;
+ assert( nFarg==2 );
+ pA1 = pFarg->a[1].pExpr;
+ if( pA1->op==TK_COLUMN ){
+ sqlite3VdbeAddOp2(v, OP_Integer,
+ sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1),
+ target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ break;
+ }
+
+ case INLINEFUNC_affinity: {
+ /* The AFFINITY() function evaluates to a string that describes
+ ** the type affinity of the argument. This is used for testing of
+ ** the SQLite type logic.
+ */
+ const char *azAff[] = { "blob", "text", "numeric", "integer",
+ "real", "flexnum" };
+ char aff;
+ assert( nFarg==1 );
+ aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
+ assert( aff<=SQLITE_AFF_NONE
+ || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) );
+ sqlite3VdbeLoadString(v, target,
+ (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
+ break;
+ }
+#endif /* !defined(SQLITE_UNTESTABLE) */
+ }
+ return target;
+}
+
+/*
+** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
+** If it is, then resolve the expression by reading from the index and
+** return the register into which the value has been read. If pExpr is
+** not an indexed expression, then return negative.
+*/
+static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
+ Parse *pParse, /* The parsing context */
+ Expr *pExpr, /* The expression to potentially bypass */
+ int target /* Where to store the result of the expression */
+){
+ IndexedExpr *p;
+ Vdbe *v;
+ for(p=pParse->pIdxEpr; p; p=p->pIENext){
+ u8 exprAff;
+ int iDataCur = p->iDataCur;
+ if( iDataCur<0 ) continue;
+ if( pParse->iSelfTab ){
+ if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
+ iDataCur = -1;
+ }
+ if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
+ assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC );
+ exprAff = sqlite3ExprAffinity(pExpr);
+ if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB)
+ || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT)
+ || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC)
+ ){
+ /* Affinity mismatch on a generated column */
+ continue;
+ }
+
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ if( p->bMaybeNullRow ){
+ /* If the index is on a NULL row due to an outer join, then we
+ ** cannot extract the value from the index. The value must be
+ ** computed using the original expression. */
+ int addr = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
+ VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
+ sqlite3VdbeGoto(v, 0);
+ p = pParse->pIdxEpr;
+ pParse->pIdxEpr = 0;
+ sqlite3ExprCode(pParse, pExpr, target);
+ pParse->pIdxEpr = p;
+ sqlite3VdbeJumpHere(v, addr+2);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
+ VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
+ }
+ return target;
+ }
+ return -1; /* Not found */
+}
+
+
+/*
+** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This
+** function checks the Parse.pIdxPartExpr list to see if this column
+** can be replaced with a constant value. If so, it generates code to
+** put the constant value in a register (ideally, but not necessarily,
+** register iTarget) and returns the register number.
+**
+** Or, if the TK_COLUMN cannot be replaced by a constant, zero is
+** returned.
+*/
+static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){
+ IndexedExpr *p;
+ for(p=pParse->pIdxPartExpr; p; p=p->pIENext){
+ if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){
+ Vdbe *v = pParse->pVdbe;
+ int addr = 0;
+ int ret;
+
+ if( p->bMaybeNullRow ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur);
+ }
+ ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget);
+ sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0,
+ (const char*)&p->aff, 1);
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeChangeP3(v, addr, ret);
+ }
+ return ret;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Generate code into the current Vdbe to evaluate the given
+** expression. Attempt to store the results in register "target".
+** Return the register where results are stored.
+**
+** With this routine, there is no guarantee that results will
+** be stored in target. The result might be stored in some other
+** register if it is convenient to do so. The calling function
+** must check the return code and move the results to the desired
+** register.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
+ Vdbe *v = pParse->pVdbe; /* The VM under construction */
+ int op; /* The opcode being coded */
+ int inReg = target; /* Results stored in register inReg */
+ int regFree1 = 0; /* If non-zero free this temporary register */
+ int regFree2 = 0; /* If non-zero free this temporary register */
+ int r1, r2; /* Various register numbers */
+ Expr tempX; /* Temporary expression node */
+ int p5 = 0;
+
+ assert( target>0 && target<=pParse->nMem );
+ assert( v!=0 );
+
+expr_code_doover:
+ if( pExpr==0 ){
+ op = TK_NULL;
+ }else if( pParse->pIdxEpr!=0
+ && !ExprHasProperty(pExpr, EP_Leaf)
+ && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
+ ){
+ return r1;
+ }else{
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ op = pExpr->op;
+ }
+ assert( op!=TK_ORDER );
+ switch( op ){
+ case TK_AGG_COLUMN: {
+ AggInfo *pAggInfo = pExpr->pAggInfo;
+ struct AggInfo_col *pCol;
+ assert( pAggInfo!=0 );
+ assert( pExpr->iAgg>=0 );
+ if( pExpr->iAgg>=pAggInfo->nColumn ){
+ /* Happens when the left table of a RIGHT JOIN is null and
+ ** is using an expression index */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+#ifdef SQLITE_VDBE_COVERAGE
+ /* Verify that the OP_Null above is exercised by tests
+ ** tag-20230325-2 */
+ sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325);
+ VdbeCoverageNeverTaken(v);
+#endif
+ break;
+ }
+ pCol = &pAggInfo->aCol[pExpr->iAgg];
+ if( !pAggInfo->directMode ){
+ return AggInfoColumnReg(pAggInfo, pExpr->iAgg);
+ }else if( pAggInfo->useSortingIdx ){
+ Table *pTab = pCol->pTab;
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
+ pCol->iSorterColumn, target);
+ if( pTab==0 ){
+ /* No comment added */
+ }else if( pCol->iColumn<0 ){
+ VdbeComment((v,"%s.rowid",pTab->zName));
+ }else{
+ VdbeComment((v,"%s.%s",
+ pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
+ if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ }
+ }
+ return target;
+ }else if( pExpr->y.pTab==0 ){
+ /* This case happens when the argument to an aggregate function
+ ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
+ sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target);
+ return target;
+ }
+ /* Otherwise, fall thru into the TK_COLUMN case */
+ /* no break */ deliberate_fall_through
+ }
+ case TK_COLUMN: {
+ int iTab = pExpr->iTable;
+ int iReg;
+ if( ExprHasProperty(pExpr, EP_FixedCol) ){
+ /* This COLUMN expression is really a constant due to WHERE clause
+ ** constraints, and that constant is coded by the pExpr->pLeft
+ ** expression. However, make sure the constant has the correct
+ ** datatype by applying the Affinity of the table column to the
+ ** constant.
+ */
+ int aff;
+ iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
+ assert( ExprUseYTab(pExpr) );
+ assert( pExpr->y.pTab!=0 );
+ aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
+ if( aff>SQLITE_AFF_BLOB ){
+ static const char zAff[] = "B\000C\000D\000E\000F";
+ assert( SQLITE_AFF_BLOB=='A' );
+ assert( SQLITE_AFF_TEXT=='B' );
+ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
+ &zAff[(aff-'B')*2], P4_STATIC);
+ }
+ return iReg;
+ }
+ if( iTab<0 ){
+ if( pParse->iSelfTab<0 ){
+ /* Other columns in the same row for CHECK constraints or
+ ** generated columns or for inserting into partial index.
+ ** The row is unpacked into registers beginning at
+ ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
+ ** immediately prior to the first column.
+ */
+ Column *pCol;
+ Table *pTab;
+ int iSrc;
+ int iCol = pExpr->iColumn;
+ assert( ExprUseYTab(pExpr) );
+ pTab = pExpr->y.pTab;
+ assert( pTab!=0 );
+ assert( iCol>=XN_ROWID );
+ assert( iCol<pTab->nCol );
+ if( iCol<0 ){
+ return -1-pParse->iSelfTab;
+ }
+ pCol = pTab->aCol + iCol;
+ testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
+ iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pCol->colFlags & COLFLAG_GENERATED ){
+ if( pCol->colFlags & COLFLAG_BUSY ){
+ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
+ pCol->zCnName);
+ return 0;
+ }
+ pCol->colFlags |= COLFLAG_BUSY;
+ if( pCol->colFlags & COLFLAG_NOTAVAIL ){
+ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
+ }
+ pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
+ return iSrc;
+ }else
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+ if( pCol->affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ return target;
+ }else{
+ return iSrc;
+ }
+ }else{
+ /* Coding an expression that is part of an index where column names
+ ** in the index refer to the table to which the index belongs */
+ iTab = pParse->iSelfTab - 1;
+ }
+ }
+ else if( pParse->pIdxPartExpr
+ && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target))
+ ){
+ return r1;
+ }
+ assert( ExprUseYTab(pExpr) );
+ assert( pExpr->y.pTab!=0 );
+ iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
+ pExpr->iColumn, iTab, target,
+ pExpr->op2);
+ return iReg;
+ }
+ case TK_INTEGER: {
+ codeInteger(pParse, pExpr, 0, target);
+ return target;
+ }
+ case TK_TRUEFALSE: {
+ sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
+ return target;
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ case TK_FLOAT: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ codeReal(v, pExpr->u.zToken, 0, target);
+ return target;
+ }
+#endif
+ case TK_STRING: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
+ return target;
+ }
+ default: {
+ /* Make NULL the default case so that if a bug causes an illegal
+ ** Expr node to be passed into this function, it will be handled
+ ** sanely and not crash. But keep the assert() to bring the problem
+ ** to the attention of the developers. */
+ assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ return target;
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB: {
+ int n;
+ const char *z;
+ char *zBlob;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
+ assert( pExpr->u.zToken[1]=='\'' );
+ z = &pExpr->u.zToken[2];
+ n = sqlite3Strlen30(z) - 1;
+ assert( z[n]=='\'' );
+ zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
+ sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
+ return target;
+ }
+#endif
+ case TK_VARIABLE: {
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken!=0 );
+ assert( pExpr->u.zToken[0]!=0 );
+ sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
+ if( pExpr->u.zToken[1]!=0 ){
+ const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
+ assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
+ pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
+ sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
+ }
+ return target;
+ }
+ case TK_REGISTER: {
+ return pExpr->iTable;
+ }
+#ifndef SQLITE_OMIT_CAST
+ case TK_CAST: {
+ /* Expressions of the form: CAST(pLeft AS token) */
+ sqlite3ExprCode(pParse, pExpr->pLeft, target);
+ assert( inReg==target );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3VdbeAddOp2(v, OP_Cast, target,
+ sqlite3AffinityType(pExpr->u.zToken, 0));
+ return inReg;
+ }
+#endif /* SQLITE_OMIT_CAST */
+ case TK_IS:
+ case TK_ISNOT:
+ op = (op==TK_IS) ? TK_EQ : TK_NE;
+ p5 = SQLITE_NULLEQ;
+ /* fall-through */
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ Expr *pLeft = pExpr->pLeft;
+ if( sqlite3ExprIsVector(pLeft) ){
+ codeVectorCompare(pParse, pExpr, target, op, p5);
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
+ codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
+ sqlite3VdbeCurrentAddr(v)+2, p5,
+ ExprHasProperty(pExpr,EP_Commuted));
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
+ if( p5==SQLITE_NULLEQ ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
+ }
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ }
+ break;
+ }
+ case TK_AND:
+ case TK_OR:
+ case TK_PLUS:
+ case TK_STAR:
+ case TK_MINUS:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_SLASH:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_CONCAT: {
+ assert( TK_AND==OP_And ); testcase( op==TK_AND );
+ assert( TK_OR==OP_Or ); testcase( op==TK_OR );
+ assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
+ assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
+ assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
+ assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
+ assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
+ assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
+ assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
+ assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
+ assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ sqlite3VdbeAddOp3(v, op, r2, r1, target);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_UMINUS: {
+ Expr *pLeft = pExpr->pLeft;
+ assert( pLeft );
+ if( pLeft->op==TK_INTEGER ){
+ codeInteger(pParse, pLeft, 1, target);
+ return target;
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( pLeft->op==TK_FLOAT ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ codeReal(v, pLeft->u.zToken, 1, target);
+ return target;
+#endif
+ }else{
+ tempX.op = TK_INTEGER;
+ tempX.flags = EP_IntValue|EP_TokenOnly;
+ tempX.u.iValue = 0;
+ ExprClearVVAProperties(&tempX);
+ r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
+ sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
+ testcase( regFree2==0 );
+ }
+ break;
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
+ assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ sqlite3VdbeAddOp2(v, op, r1, inReg);
+ break;
+ }
+ case TK_TRUTH: {
+ int isTrue; /* IS TRUE or IS NOT TRUE */
+ int bNormal; /* IS TRUE or IS FALSE */
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ isTrue = sqlite3ExprTruthValue(pExpr->pRight);
+ bNormal = pExpr->op2==TK_IS;
+ testcase( isTrue && bNormal);
+ testcase( !isTrue && bNormal);
+ sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ int addr;
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ addr = sqlite3VdbeAddOp1(v, op, r1);
+ VdbeCoverageIf(v, op==TK_ISNULL);
+ VdbeCoverageIf(v, op==TK_NOTNULL);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
+ sqlite3VdbeJumpHere(v, addr);
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ AggInfo *pInfo = pExpr->pAggInfo;
+ if( pInfo==0
+ || NEVER(pExpr->iAgg<0)
+ || NEVER(pExpr->iAgg>=pInfo->nFunc)
+ ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
+ }else{
+ return AggInfoFuncReg(pInfo, pExpr->iAgg);
+ }
+ break;
+ }
+ case TK_FUNCTION: {
+ ExprList *pFarg; /* List of function arguments */
+ int nFarg; /* Number of function arguments */
+ FuncDef *pDef; /* The function definition object */
+ const char *zId; /* The function name */
+ u32 constMask = 0; /* Mask of function arguments that are constant */
+ int i; /* Loop counter */
+ sqlite3 *db = pParse->db; /* The database connection */
+ u8 enc = ENC(db); /* The text encoding used by this database */
+ CollSeq *pColl = 0; /* A collating sequence */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ return pExpr->y.pWin->regResult;
+ }
+#endif
+
+ if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
+ /* SQL functions can be expensive. So try to avoid running them
+ ** multiple times if we know they always give the same result */
+ return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
+ }
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
+ assert( ExprUseXList(pExpr) );
+ pFarg = pExpr->x.pList;
+ nFarg = pFarg ? pFarg->nExpr : 0;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ zId = pExpr->u.zToken;
+ pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ if( pDef==0 && pParse->explain ){
+ pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
+ }
+#endif
+ if( pDef==0 || pDef->xFinalize!=0 ){
+ sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
+ break;
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){
+ assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
+ assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
+ return exprCodeInlineFunction(pParse, pFarg,
+ SQLITE_PTR_TO_INT(pDef->pUserData), target);
+ }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
+ sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
+ }
+
+ for(i=0; i<nFarg; i++){
+ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
+ testcase( i==31 );
+ constMask |= MASKBIT32(i);
+ }
+ if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
+ }
+ }
+ if( pFarg ){
+ if( constMask ){
+ r1 = pParse->nMem+1;
+ pParse->nMem += nFarg;
+ }else{
+ r1 = sqlite3GetTempRange(pParse, nFarg);
+ }
+
+ /* For length() and typeof() and octet_length() functions,
+ ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
+ ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid
+ ** unnecessary data loading.
+ */
+ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
+ u8 exprOp;
+ assert( nFarg==1 );
+ assert( pFarg->a[0].pExpr!=0 );
+ exprOp = pFarg->a[0].pExpr->op;
+ if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
+ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
+ assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
+ assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG );
+ assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG );
+ testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG );
+ testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG );
+ testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG);
+ pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG;
+ }
+ }
+
+ sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR);
+ }else{
+ r1 = 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Possibly overload the function if the first argument is
+ ** a virtual table column.
+ **
+ ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
+ ** second argument, not the first, as the argument to test to
+ ** see if it is a column in a virtual table. This is done because
+ ** the left operand of infix functions (the operand we want to
+ ** control overloading) ends up as the second argument to the
+ ** function. The expression "A glob B" is equivalent to
+ ** "glob(B,A). We want to use the A in "A glob B" to test
+ ** for function overloading. But we use the B term in "glob(B,A)".
+ */
+ if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
+ }else if( nFarg>0 ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
+ }
+#endif
+ if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ if( !pColl ) pColl = db->pDfltColl;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
+ pDef, pExpr->op2);
+ if( nFarg ){
+ if( constMask==0 ){
+ sqlite3ReleaseTempRange(pParse, r1, nFarg);
+ }else{
+ sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
+ }
+ }
+ return target;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_EXISTS:
+ case TK_SELECT: {
+ int nCol;
+ testcase( op==TK_EXISTS );
+ testcase( op==TK_SELECT );
+ if( pParse->db->mallocFailed ){
+ return 0;
+ }else if( op==TK_SELECT
+ && ALWAYS( ExprUseXSelect(pExpr) )
+ && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
+ ){
+ sqlite3SubselectError(pParse, nCol, 1);
+ }else{
+ return sqlite3CodeSubselect(pParse, pExpr);
+ }
+ break;
+ }
+ case TK_SELECT_COLUMN: {
+ int n;
+ Expr *pLeft = pExpr->pLeft;
+ if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
+ pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
+ pLeft->op2 = pParse->withinRJSubrtn;
+ }
+ assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
+ n = sqlite3ExprVectorSize(pLeft);
+ if( pExpr->iTable!=n ){
+ sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
+ pExpr->iTable, n);
+ }
+ return pLeft->iTable + pExpr->iColumn;
+ }
+ case TK_IN: {
+ int destIfFalse = sqlite3VdbeMakeLabel(pParse);
+ int destIfNull = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ sqlite3VdbeResolveLabel(v, destIfFalse);
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
+ sqlite3VdbeResolveLabel(v, destIfNull);
+ return target;
+ }
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+
+ /*
+ ** x BETWEEN y AND z
+ **
+ ** This is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** X is stored in pExpr->pLeft.
+ ** Y is stored in pExpr->pList->a[0].pExpr.
+ ** Z is stored in pExpr->pList->a[1].pExpr.
+ */
+ case TK_BETWEEN: {
+ exprCodeBetween(pParse, pExpr, target, 0, 0);
+ return target;
+ }
+ case TK_COLLATE: {
+ if( !ExprHasProperty(pExpr, EP_Collate) ){
+ /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
+ ** "SOFT-COLLATE" that is added to constraints that are pushed down
+ ** from outer queries into sub-queries by the push-down optimization.
+ ** Clear subtypes as subtypes may not cross a subquery boundary.
+ */
+ assert( pExpr->pLeft );
+ sqlite3ExprCode(pParse, pExpr->pLeft, target);
+ sqlite3VdbeAddOp1(v, OP_ClrSubtype, target);
+ return target;
+ }else{
+ pExpr = pExpr->pLeft;
+ goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
+ }
+ }
+ case TK_SPAN:
+ case TK_UPLUS: {
+ pExpr = pExpr->pLeft;
+ goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
+ }
+
+ case TK_TRIGGER: {
+ /* If the opcode is TK_TRIGGER, then the expression is a reference
+ ** to a column in the new.* or old.* pseudo-tables available to
+ ** trigger programs. In this case Expr.iTable is set to 1 for the
+ ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
+ ** is set to the column of the pseudo-table to read, or to -1 to
+ ** read the rowid field.
+ **
+ ** The expression is implemented using an OP_Param opcode. The p1
+ ** parameter is set to 0 for an old.rowid reference, or to (i+1)
+ ** to reference another column of the old.* pseudo-table, where
+ ** i is the index of the column. For a new.rowid reference, p1 is
+ ** set to (n+1), where n is the number of columns in each pseudo-table.
+ ** For a reference to any other column in the new.* pseudo-table, p1
+ ** is set to (n+2+i), where n and i are as defined previously. For
+ ** example, if the table on which triggers are being fired is
+ ** declared as:
+ **
+ ** CREATE TABLE t1(a, b);
+ **
+ ** Then p1 is interpreted as follows:
+ **
+ ** p1==0 -> old.rowid p1==3 -> new.rowid
+ ** p1==1 -> old.a p1==4 -> new.a
+ ** p1==2 -> old.b p1==5 -> new.b
+ */
+ Table *pTab;
+ int iCol;
+ int p1;
+
+ assert( ExprUseYTab(pExpr) );
+ pTab = pExpr->y.pTab;
+ iCol = pExpr->iColumn;
+ p1 = pExpr->iTable * (pTab->nCol+1) + 1
+ + sqlite3TableColumnToStorage(pTab, iCol);
+
+ assert( pExpr->iTable==0 || pExpr->iTable==1 );
+ assert( iCol>=-1 && iCol<pTab->nCol );
+ assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
+ assert( p1>=0 && p1<(pTab->nCol*2+2) );
+
+ sqlite3VdbeAddOp2(v, OP_Param, p1, target);
+ VdbeComment((v, "r[%d]=%s.%s", target,
+ (pExpr->iTable ? "new" : "old"),
+ (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
+ ));
+
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ /* If the column has REAL affinity, it may currently be stored as an
+ ** integer. Use OP_RealAffinity to make sure it is really real.
+ **
+ ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
+ ** floating point when extracting it from the record. */
+ if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
+ }
+#endif
+ break;
+ }
+
+ case TK_VECTOR: {
+ sqlite3ErrorMsg(pParse, "row value misused");
+ break;
+ }
+
+ /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
+ ** that derive from the right-hand table of a LEFT JOIN. The
+ ** Expr.iTable value is the table number for the right-hand table.
+ ** The expression is only evaluated if that table is not currently
+ ** on a LEFT JOIN NULL row.
+ */
+ case TK_IF_NULL_ROW: {
+ int addrINR;
+ u8 okConstFactor = pParse->okConstFactor;
+ AggInfo *pAggInfo = pExpr->pAggInfo;
+ if( pAggInfo ){
+ assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
+ if( !pAggInfo->directMode ){
+ inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg);
+ break;
+ }
+ if( pExpr->pAggInfo->useSortingIdx ){
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
+ pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
+ target);
+ inReg = target;
+ break;
+ }
+ }
+ addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target);
+ /* The OP_IfNullRow opcode above can overwrite the result register with
+ ** NULL. So we have to ensure that the result register is not a value
+ ** that is suppose to be a constant. Two defenses are needed:
+ ** (1) Temporarily disable factoring of constant expressions
+ ** (2) Make sure the computed value really is stored in register
+ ** "target" and not someplace else.
+ */
+ pParse->okConstFactor = 0; /* note (1) above */
+ sqlite3ExprCode(pParse, pExpr->pLeft, target);
+ assert( target==inReg );
+ pParse->okConstFactor = okConstFactor;
+ sqlite3VdbeJumpHere(v, addrINR);
+ break;
+ }
+
+ /*
+ ** Form A:
+ ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form B:
+ ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form A is can be transformed into the equivalent form B as follows:
+ ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
+ ** WHEN x=eN THEN rN ELSE y END
+ **
+ ** X (if it exists) is in pExpr->pLeft.
+ ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
+ ** odd. The Y is also optional. If the number of elements in x.pList
+ ** is even, then Y is omitted and the "otherwise" result is NULL.
+ ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
+ **
+ ** The result of the expression is the Ri for the first matching Ei,
+ ** or if there is no matching Ei, the ELSE term Y, or if there is
+ ** no ELSE term, NULL.
+ */
+ case TK_CASE: {
+ int endLabel; /* GOTO label for end of CASE stmt */
+ int nextCase; /* GOTO label for next WHEN clause */
+ int nExpr; /* 2x number of WHEN terms */
+ int i; /* Loop counter */
+ ExprList *pEList; /* List of WHEN terms */
+ struct ExprList_item *aListelem; /* Array of WHEN terms */
+ Expr opCompare; /* The X==Ei expression */
+ Expr *pX; /* The X expression */
+ Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
+ Expr *pDel = 0;
+ sqlite3 *db = pParse->db;
+
+ assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
+ assert(pExpr->x.pList->nExpr > 0);
+ pEList = pExpr->x.pList;
+ aListelem = pEList->a;
+ nExpr = pEList->nExpr;
+ endLabel = sqlite3VdbeMakeLabel(pParse);
+ if( (pX = pExpr->pLeft)!=0 ){
+ pDel = sqlite3ExprDup(db, pX, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDel);
+ break;
+ }
+ testcase( pX->op==TK_COLUMN );
+ exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
+ testcase( regFree1==0 );
+ memset(&opCompare, 0, sizeof(opCompare));
+ opCompare.op = TK_EQ;
+ opCompare.pLeft = pDel;
+ pTest = &opCompare;
+ /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
+ ** The value in regFree1 might get SCopy-ed into the file result.
+ ** So make sure that the regFree1 register is not reused for other
+ ** purposes and possibly overwritten. */
+ regFree1 = 0;
+ }
+ for(i=0; i<nExpr-1; i=i+2){
+ if( pX ){
+ assert( pTest!=0 );
+ opCompare.pRight = aListelem[i].pExpr;
+ }else{
+ pTest = aListelem[i].pExpr;
+ }
+ nextCase = sqlite3VdbeMakeLabel(pParse);
+ testcase( pTest->op==TK_COLUMN );
+ sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
+ testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
+ sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
+ sqlite3VdbeGoto(v, endLabel);
+ sqlite3VdbeResolveLabel(v, nextCase);
+ }
+ if( (nExpr&1)!=0 ){
+ sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ sqlite3ExprDelete(db, pDel);
+ setDoNotMergeFlagOnCopy(v);
+ sqlite3VdbeResolveLabel(v, endLabel);
+ break;
+ }
+#ifndef SQLITE_OMIT_TRIGGER
+ case TK_RAISE: {
+ assert( pExpr->affExpr==OE_Rollback
+ || pExpr->affExpr==OE_Abort
+ || pExpr->affExpr==OE_Fail
+ || pExpr->affExpr==OE_Ignore
+ );
+ if( !pParse->pTriggerTab && !pParse->nested ){
+ sqlite3ErrorMsg(pParse,
+ "RAISE() may only be used within a trigger-program");
+ return 0;
+ }
+ if( pExpr->affExpr==OE_Abort ){
+ sqlite3MayAbort(pParse);
+ }
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( pExpr->affExpr==OE_Ignore ){
+ sqlite3VdbeAddOp4(
+ v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
+ VdbeCoverage(v);
+ }else{
+ sqlite3HaltConstraint(pParse,
+ pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
+ pExpr->affExpr, pExpr->u.zToken, 0, 0);
+ }
+
+ break;
+ }
+#endif
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ return inReg;
+}
+
+/*
+** Generate code that will evaluate expression pExpr just one time
+** per prepared statement execution.
+**
+** If the expression uses functions (that might throw an exception) then
+** guard them with an OP_Once opcode to ensure that the code is only executed
+** once. If no functions are involved, then factor the code out and put it at
+** the end of the prepared statement in the initialization section.
+**
+** If regDest>0 then the result is always stored in that register and the
+** result is not reusable. If regDest<0 then this routine is free to
+** store the value wherever it wants. The register where the expression
+** is stored is returned. When regDest<0, two identical expressions might
+** code to the same register, if they do not contain function calls and hence
+** are factored out into the initialization section at the end of the
+** prepared statement.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The expression to code when the VDBE initializes */
+ int regDest /* Store the value in this register */
+){
+ ExprList *p;
+ assert( ConstFactorOk(pParse) );
+ assert( regDest!=0 );
+ p = pParse->pConstExpr;
+ if( regDest<0 && p ){
+ struct ExprList_item *pItem;
+ int i;
+ for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
+ if( pItem->fg.reusable
+ && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
+ ){
+ return pItem->u.iConstExprReg;
+ }
+ }
+ }
+ pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
+ if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
+ Vdbe *v = pParse->pVdbe;
+ int addr;
+ assert( v );
+ addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ pParse->okConstFactor = 0;
+ if( !pParse->db->mallocFailed ){
+ if( regDest<0 ) regDest = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pExpr, regDest);
+ }
+ pParse->okConstFactor = 1;
+ sqlite3ExprDelete(pParse->db, pExpr);
+ sqlite3VdbeJumpHere(v, addr);
+ }else{
+ p = sqlite3ExprListAppend(pParse, p, pExpr);
+ if( p ){
+ struct ExprList_item *pItem = &p->a[p->nExpr-1];
+ pItem->fg.reusable = regDest<0;
+ if( regDest<0 ) regDest = ++pParse->nMem;
+ pItem->u.iConstExprReg = regDest;
+ }
+ pParse->pConstExpr = p;
+ }
+ return regDest;
+}
+
+/*
+** Generate code to evaluate an expression and store the results
+** into a register. Return the register number where the results
+** are stored.
+**
+** If the register is a temporary register that can be deallocated,
+** then write its number into *pReg. If the result register is not
+** a temporary, then set *pReg to zero.
+**
+** If pExpr is a constant, then this routine might generate this
+** code to fill the register in the initialization section of the
+** VDBE program, in order to factor it out of the evaluation loop.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
+ int r2;
+ pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
+ if( ConstFactorOk(pParse)
+ && ALWAYS(pExpr!=0)
+ && pExpr->op!=TK_REGISTER
+ && sqlite3ExprIsConstantNotJoin(pExpr)
+ ){
+ *pReg = 0;
+ r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
+ if( r2==r1 ){
+ *pReg = r1;
+ }else{
+ sqlite3ReleaseTempReg(pParse, r1);
+ *pReg = 0;
+ }
+ }
+ return r2;
+}
+
+/*
+** Generate code that will evaluate expression pExpr and store the
+** results in register target. The results are guaranteed to appear
+** in register target.
+*/
+SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
+ int inReg;
+
+ assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
+ assert( target>0 && target<=pParse->nMem );
+ assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
+ if( pParse->pVdbe==0 ) return;
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
+ if( inReg!=target ){
+ u8 op;
+ if( ALWAYS(pExpr)
+ && (ExprHasProperty(pExpr,EP_Subquery) || pExpr->op==TK_REGISTER)
+ ){
+ op = OP_Copy;
+ }else{
+ op = OP_SCopy;
+ }
+ sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
+ }
+}
+
+/*
+** Make a transient copy of expression pExpr and then code it using
+** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
+** except that the input expression is guaranteed to be unchanged.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
+ sqlite3 *db = pParse->db;
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
+ sqlite3ExprDelete(db, pExpr);
+}
+
+/*
+** Generate code that will evaluate expression pExpr and store the
+** results in register target. The results are guaranteed to appear
+** in register target. If the expression is constant, then this routine
+** might choose to code the expression at initialization time.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
+ if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
+ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
+ }else{
+ sqlite3ExprCodeCopy(pParse, pExpr, target);
+ }
+}
+
+/*
+** Generate code that pushes the value of every element of the given
+** expression list into a sequence of registers beginning at target.
+**
+** Return the number of elements evaluated. The number returned will
+** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
+** is defined.
+**
+** The SQLITE_ECEL_DUP flag prevents the arguments from being
+** filled using OP_SCopy. OP_Copy must be used instead.
+**
+** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
+** factored out into initialization code.
+**
+** The SQLITE_ECEL_REF flag means that expressions in the list with
+** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
+** in registers at srcReg, and so the value can be copied from there.
+** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
+** are simply omitted rather than being copied from srcReg.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* The expression list to be coded */
+ int target, /* Where to write results */
+ int srcReg, /* Source registers if SQLITE_ECEL_REF */
+ u8 flags /* SQLITE_ECEL_* flags */
+){
+ struct ExprList_item *pItem;
+ int i, j, n;
+ u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
+ Vdbe *v = pParse->pVdbe;
+ assert( pList!=0 );
+ assert( target>0 );
+ assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
+ n = pList->nExpr;
+ if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){
+ Expr *pExpr = pItem->pExpr;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pItem->fg.bSorterRef ){
+ i--;
+ n--;
+ }else
+#endif
+ if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
+ if( flags & SQLITE_ECEL_OMITREF ){
+ i--;
+ n--;
+ }else{
+ sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
+ }
+ }else if( (flags & SQLITE_ECEL_FACTOR)!=0
+ && sqlite3ExprIsConstantNotJoin(pExpr)
+ ){
+ sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
+ }else{
+ int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
+ if( inReg!=target+i ){
+ VdbeOp *pOp;
+ if( copyOp==OP_Copy
+ && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
+ && pOp->p1+pOp->p3+1==inReg
+ && pOp->p2+pOp->p3+1==target+i
+ && pOp->p5==0 /* The do-not-merge flag must be clear */
+ ){
+ pOp->p3++;
+ }else{
+ sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
+ }
+ }
+ }
+ }
+ return n;
+}
+
+/*
+** Generate code for a BETWEEN operator.
+**
+** x BETWEEN y AND z
+**
+** The above is equivalent to
+**
+** x>=y AND x<=z
+**
+** Code it as such, taking care to do the common subexpression
+** elimination of x.
+**
+** The xJumpIf parameter determines details:
+**
+** NULL: Store the boolean result in reg[dest]
+** sqlite3ExprIfTrue: Jump to dest if true
+** sqlite3ExprIfFalse: Jump to dest if false
+**
+** The jumpIfNull parameter is ignored if xJumpIf is NULL.
+*/
+static void exprCodeBetween(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* The BETWEEN expression */
+ int dest, /* Jump destination or storage location */
+ void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
+ int jumpIfNull /* Take the jump if the BETWEEN is NULL */
+){
+ Expr exprAnd; /* The AND operator in x>=y AND x<=z */
+ Expr compLeft; /* The x>=y term */
+ Expr compRight; /* The x<=z term */
+ int regFree1 = 0; /* Temporary use register */
+ Expr *pDel = 0;
+ sqlite3 *db = pParse->db;
+
+ memset(&compLeft, 0, sizeof(Expr));
+ memset(&compRight, 0, sizeof(Expr));
+ memset(&exprAnd, 0, sizeof(Expr));
+
+ assert( ExprUseXList(pExpr) );
+ pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
+ if( db->mallocFailed==0 ){
+ exprAnd.op = TK_AND;
+ exprAnd.pLeft = &compLeft;
+ exprAnd.pRight = &compRight;
+ compLeft.op = TK_GE;
+ compLeft.pLeft = pDel;
+ compLeft.pRight = pExpr->x.pList->a[0].pExpr;
+ compRight.op = TK_LE;
+ compRight.pLeft = pDel;
+ compRight.pRight = pExpr->x.pList->a[1].pExpr;
+ exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
+ if( xJump ){
+ xJump(pParse, &exprAnd, dest, jumpIfNull);
+ }else{
+ /* Mark the expression is being from the ON or USING clause of a join
+ ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
+ ** it into the Parse.pConstExpr list. We should use a new bit for this,
+ ** for clarity, but we are out of bits in the Expr.flags field so we
+ ** have to reuse the EP_OuterON bit. Bummer. */
+ pDel->flags |= EP_OuterON;
+ sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ }
+ sqlite3ExprDelete(db, pDel);
+
+ /* Ensure adequate test coverage */
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
+ testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
+ testcase( xJump==0 );
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is true but execution
+** continues straight thru if the expression is false.
+**
+** If the expression evaluates to NULL (neither true nor false), then
+** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
+**
+** This code depends on the fact that certain token values (ex: TK_EQ)
+** are the same as opcode values (ex: OP_Eq) that implement the corresponding
+** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
+** the make process cause these values to align. Assert()s in the code
+** below verify that the numbers are aligned correctly.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
+ if( NEVER(pExpr==0) ) return; /* No way this can happen */
+ assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
+ op = pExpr->op;
+ switch( op ){
+ case TK_AND:
+ case TK_OR: {
+ Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
+ if( pAlt!=pExpr ){
+ sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
+ }else if( op==TK_AND ){
+ int d2 = sqlite3VdbeMakeLabel(pParse);
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
+ jumpIfNull^SQLITE_JUMPIFNULL);
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqlite3VdbeResolveLabel(v, d2);
+ }else{
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ }
+ break;
+ }
+ case TK_NOT: {
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_TRUTH: {
+ int isNot; /* IS NOT TRUE or IS NOT FALSE */
+ int isTrue; /* IS TRUE or IS NOT TRUE */
+ testcase( jumpIfNull==0 );
+ isNot = pExpr->op2==TK_ISNOT;
+ isTrue = sqlite3ExprTruthValue(pExpr->pRight);
+ testcase( isTrue && isNot );
+ testcase( !isTrue && isNot );
+ if( isTrue ^ isNot ){
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
+ isNot ? SQLITE_JUMPIFNULL : 0);
+ }else{
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
+ isNot ? SQLITE_JUMPIFNULL : 0);
+ }
+ break;
+ }
+ case TK_IS:
+ case TK_ISNOT:
+ testcase( op==TK_IS );
+ testcase( op==TK_ISNOT );
+ op = (op==TK_IS) ? TK_EQ : TK_NE;
+ jumpIfNull = SQLITE_NULLEQ;
+ /* no break */ deliberate_fall_through
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
+ testcase( jumpIfNull==0 );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
+ assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeTypeofColumn(v, r1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ VdbeCoverageIf(v, op==TK_ISNULL);
+ VdbeCoverageIf(v, op==TK_NOTNULL);
+ testcase( regFree1==0 );
+ break;
+ }
+ case TK_BETWEEN: {
+ testcase( jumpIfNull==0 );
+ exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_IN: {
+ int destIfFalse = sqlite3VdbeMakeLabel(pParse);
+ int destIfNull = jumpIfNull ? dest : destIfFalse;
+ sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
+ sqlite3VdbeGoto(v, dest);
+ sqlite3VdbeResolveLabel(v, destIfFalse);
+ break;
+ }
+#endif
+ default: {
+ default_expr:
+ if( ExprAlwaysTrue(pExpr) ){
+ sqlite3VdbeGoto(v, dest);
+ }else if( ExprAlwaysFalse(pExpr) ){
+ /* No-op */
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
+ VdbeCoverage(v);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
+ }
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is false but execution
+** continues straight thru if the expression is true.
+**
+** If the expression evaluates to NULL (neither true nor false) then
+** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
+** is 0.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
+ if( pExpr==0 ) return;
+ assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
+
+ /* The value of pExpr->op and op are related as follows:
+ **
+ ** pExpr->op op
+ ** --------- ----------
+ ** TK_ISNULL OP_NotNull
+ ** TK_NOTNULL OP_IsNull
+ ** TK_NE OP_Eq
+ ** TK_EQ OP_Ne
+ ** TK_GT OP_Le
+ ** TK_LE OP_Gt
+ ** TK_GE OP_Lt
+ ** TK_LT OP_Ge
+ **
+ ** For other values of pExpr->op, op is undefined and unused.
+ ** The value of TK_ and OP_ constants are arranged such that we
+ ** can compute the mapping above using the following expression.
+ ** Assert()s verify that the computation is correct.
+ */
+ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
+
+ /* Verify correct alignment of TK_ and OP_ constants
+ */
+ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
+ assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
+ assert( pExpr->op!=TK_NE || op==OP_Eq );
+ assert( pExpr->op!=TK_EQ || op==OP_Ne );
+ assert( pExpr->op!=TK_LT || op==OP_Ge );
+ assert( pExpr->op!=TK_LE || op==OP_Gt );
+ assert( pExpr->op!=TK_GT || op==OP_Le );
+ assert( pExpr->op!=TK_GE || op==OP_Lt );
+
+ switch( pExpr->op ){
+ case TK_AND:
+ case TK_OR: {
+ Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
+ if( pAlt!=pExpr ){
+ sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
+ }else if( pExpr->op==TK_AND ){
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ }else{
+ int d2 = sqlite3VdbeMakeLabel(pParse);
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
+ jumpIfNull^SQLITE_JUMPIFNULL);
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqlite3VdbeResolveLabel(v, d2);
+ }
+ break;
+ }
+ case TK_NOT: {
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_TRUTH: {
+ int isNot; /* IS NOT TRUE or IS NOT FALSE */
+ int isTrue; /* IS TRUE or IS NOT TRUE */
+ testcase( jumpIfNull==0 );
+ isNot = pExpr->op2==TK_ISNOT;
+ isTrue = sqlite3ExprTruthValue(pExpr->pRight);
+ testcase( isTrue && isNot );
+ testcase( !isTrue && isNot );
+ if( isTrue ^ isNot ){
+ /* IS TRUE and IS NOT FALSE */
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
+ isNot ? 0 : SQLITE_JUMPIFNULL);
+
+ }else{
+ /* IS FALSE and IS NOT TRUE */
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
+ isNot ? 0 : SQLITE_JUMPIFNULL);
+ }
+ break;
+ }
+ case TK_IS:
+ case TK_ISNOT:
+ testcase( pExpr->op==TK_IS );
+ testcase( pExpr->op==TK_ISNOT );
+ op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
+ jumpIfNull = SQLITE_NULLEQ;
+ /* no break */ deliberate_fall_through
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
+ testcase( jumpIfNull==0 );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
+ assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
+ assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
+ assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
+ assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
+ assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
+ assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
+ VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeTypeofColumn(v, r1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
+ testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
+ testcase( regFree1==0 );
+ break;
+ }
+ case TK_BETWEEN: {
+ testcase( jumpIfNull==0 );
+ exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_IN: {
+ if( jumpIfNull ){
+ sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
+ }else{
+ int destIfNull = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
+ sqlite3VdbeResolveLabel(v, destIfNull);
+ }
+ break;
+ }
+#endif
+ default: {
+ default_expr:
+ if( ExprAlwaysFalse(pExpr) ){
+ sqlite3VdbeGoto(v, dest);
+ }else if( ExprAlwaysTrue(pExpr) ){
+ /* no-op */
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
+ VdbeCoverage(v);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
+ }
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+}
+
+/*
+** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
+** code generation, and that copy is deleted after code generation. This
+** ensures that the original pExpr is unchanged.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
+ sqlite3 *db = pParse->db;
+ Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
+ if( db->mallocFailed==0 ){
+ sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
+ }
+ sqlite3ExprDelete(db, pCopy);
+}
+
+/*
+** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
+** type of expression.
+**
+** If pExpr is a simple SQL value - an integer, real, string, blob
+** or NULL value - then the VDBE currently being prepared is configured
+** to re-prepare each time a new value is bound to variable pVar.
+**
+** Additionally, if pExpr is a simple SQL value and the value is the
+** same as that currently bound to variable pVar, non-zero is returned.
+** Otherwise, if the values are not the same or if pExpr is not a simple
+** SQL value, zero is returned.
+*/
+static int exprCompareVariable(
+ const Parse *pParse,
+ const Expr *pVar,
+ const Expr *pExpr
+){
+ int res = 0;
+ int iVar;
+ sqlite3_value *pL, *pR = 0;
+
+ sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
+ if( pR ){
+ iVar = pVar->iColumn;
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
+ pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
+ if( pL ){
+ if( sqlite3_value_type(pL)==SQLITE_TEXT ){
+ sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
+ }
+ res = 0==sqlite3MemCompare(pL, pR, 0);
+ }
+ sqlite3ValueFree(pR);
+ sqlite3ValueFree(pL);
+ }
+
+ return res;
+}
+
+/*
+** Do a deep comparison of two expression trees. Return 0 if the two
+** expressions are completely identical. Return 1 if they differ only
+** by a COLLATE operator at the top level. Return 2 if there are differences
+** other than the top-level COLLATE operator.
+**
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
+**
+** The pA side might be using TK_REGISTER. If that is the case and pB is
+** not using TK_REGISTER but is otherwise equivalent, then still return 0.
+**
+** Sometimes this routine will return 2 even if the two expressions
+** really are equivalent. If we cannot prove that the expressions are
+** identical, we return 2 just to be safe. So if this routine
+** returns 2, then you do not really know for certain if the two
+** expressions are the same. But if you get a 0 or 1 return, then you
+** can be sure the expressions are the same. In the places where
+** this routine is used, it does not hurt to get an extra 2 - that
+** just might result in some slightly slower code. But returning
+** an incorrect 0 or 1 could lead to a malfunction.
+**
+** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
+** pParse->pReprepare can be matched against literals in pB. The
+** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
+** If pParse is NULL (the normal case) then any TK_VARIABLE term in
+** Argument pParse should normally be NULL. If it is not NULL and pA or
+** pB causes a return value of 2.
+*/
+SQLITE_PRIVATE int sqlite3ExprCompare(
+ const Parse *pParse,
+ const Expr *pA,
+ const Expr *pB,
+ int iTab
+){
+ u32 combinedFlags;
+ if( pA==0 || pB==0 ){
+ return pB==pA ? 0 : 2;
+ }
+ if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
+ return 0;
+ }
+ combinedFlags = pA->flags | pB->flags;
+ if( combinedFlags & EP_IntValue ){
+ if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
+ return 0;
+ }
+ return 2;
+ }
+ if( pA->op!=pB->op || pA->op==TK_RAISE ){
+ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
+ return 1;
+ }
+ if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
+ return 1;
+ }
+ if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
+ && pB->iTable<0 && pA->iTable==iTab
+ ){
+ /* fall through */
+ }else{
+ return 2;
+ }
+ }
+ assert( !ExprHasProperty(pA, EP_IntValue) );
+ assert( !ExprHasProperty(pB, EP_IntValue) );
+ if( pA->u.zToken ){
+ if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
+ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( pA->op==pB->op );
+ if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
+ return 2;
+ }
+ if( ExprHasProperty(pA,EP_WinFunc) ){
+ if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
+ return 2;
+ }
+ }
+#endif
+ }else if( pA->op==TK_NULL ){
+ return 0;
+ }else if( pA->op==TK_COLLATE ){
+ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
+ }else
+ if( pB->u.zToken!=0
+ && pA->op!=TK_COLUMN
+ && pA->op!=TK_AGG_COLUMN
+ && strcmp(pA->u.zToken,pB->u.zToken)!=0
+ ){
+ return 2;
+ }
+ }
+ if( (pA->flags & (EP_Distinct|EP_Commuted))
+ != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
+ if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
+ if( combinedFlags & EP_xIsSelect ) return 2;
+ if( (combinedFlags & EP_FixedCol)==0
+ && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
+ if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
+ if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
+ if( pA->op!=TK_STRING
+ && pA->op!=TK_TRUEFALSE
+ && ALWAYS((combinedFlags & EP_Reduced)==0)
+ ){
+ if( pA->iColumn!=pB->iColumn ) return 2;
+ if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
+ if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
+ return 2;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Compare two ExprList objects. Return 0 if they are identical, 1
+** if they are certainly different, or 2 if it is not possible to
+** determine if they are identical or not.
+**
+** If any subelement of pB has Expr.iTable==(-1) then it is allowed
+** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
+**
+** This routine might return non-zero for equivalent ExprLists. The
+** only consequence will be disabled optimizations. But this routine
+** must never return 0 if the two ExprList objects are different, or
+** a malfunction will result.
+**
+** Two NULL pointers are considered to be the same. But a NULL pointer
+** always differs from a non-NULL pointer.
+*/
+SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
+ int i;
+ if( pA==0 && pB==0 ) return 0;
+ if( pA==0 || pB==0 ) return 1;
+ if( pA->nExpr!=pB->nExpr ) return 1;
+ for(i=0; i<pA->nExpr; i++){
+ int res;
+ Expr *pExprA = pA->a[i].pExpr;
+ Expr *pExprB = pB->a[i].pExpr;
+ if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
+ if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
+ }
+ return 0;
+}
+
+/*
+** Like sqlite3ExprCompare() except COLLATE operators at the top-level
+** are ignored.
+*/
+SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
+ return sqlite3ExprCompare(0,
+ sqlite3ExprSkipCollateAndLikely(pA),
+ sqlite3ExprSkipCollateAndLikely(pB),
+ iTab);
+}
+
+/*
+** Return non-zero if Expr p can only be true if pNN is not NULL.
+**
+** Or if seenNot is true, return non-zero if Expr p can only be
+** non-NULL if pNN is not NULL
+*/
+static int exprImpliesNotNull(
+ const Parse *pParse,/* Parsing context */
+ const Expr *p, /* The expression to be checked */
+ const Expr *pNN, /* The expression that is NOT NULL */
+ int iTab, /* Table being evaluated */
+ int seenNot /* Return true only if p can be any non-NULL value */
+){
+ assert( p );
+ assert( pNN );
+ if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
+ return pNN->op!=TK_NULL;
+ }
+ switch( p->op ){
+ case TK_IN: {
+ if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
+ assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ case TK_BETWEEN: {
+ ExprList *pList;
+ assert( ExprUseXList(p) );
+ pList = p->x.pList;
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ if( seenNot ) return 0;
+ if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
+ || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
+ ){
+ return 1;
+ }
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ case TK_EQ:
+ case TK_NE:
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_PLUS:
+ case TK_MINUS:
+ case TK_BITOR:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_CONCAT:
+ seenNot = 1;
+ /* no break */ deliberate_fall_through
+ case TK_STAR:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_SLASH: {
+ if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
+ /* no break */ deliberate_fall_through
+ }
+ case TK_SPAN:
+ case TK_COLLATE:
+ case TK_UPLUS:
+ case TK_UMINUS: {
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
+ }
+ case TK_TRUTH: {
+ if( seenNot ) return 0;
+ if( p->op2!=TK_IS ) return 0;
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
+ }
+ }
+ return 0;
+}
+
+/*
+** Return true if we can prove the pE2 will always be true if pE1 is
+** true. Return false if we cannot complete the proof or if pE2 might
+** be false. Examples:
+**
+** pE1: x==5 pE2: x==5 Result: true
+** pE1: x>0 pE2: x==5 Result: false
+** pE1: x=21 pE2: x=21 OR y=43 Result: true
+** pE1: x!=123 pE2: x IS NOT NULL Result: true
+** pE1: x!=?1 pE2: x IS NOT NULL Result: true
+** pE1: x IS NULL pE2: x IS NOT NULL Result: false
+** pE1: x IS ?2 pE2: x IS NOT NULL Result: false
+**
+** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
+** Expr.iTable<0 then assume a table number given by iTab.
+**
+** If pParse is not NULL, then the values of bound variables in pE1 are
+** compared against literal values in pE2 and pParse->pVdbe->expmask is
+** modified to record which bound variables are referenced. If pParse
+** is NULL, then false will be returned if pE1 contains any bound variables.
+**
+** When in doubt, return false. Returning true might give a performance
+** improvement. Returning false might cause a performance reduction, but
+** it will always give the correct answer and is hence always safe.
+*/
+SQLITE_PRIVATE int sqlite3ExprImpliesExpr(
+ const Parse *pParse,
+ const Expr *pE1,
+ const Expr *pE2,
+ int iTab
+){
+ if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
+ return 1;
+ }
+ if( pE2->op==TK_OR
+ && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
+ || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
+ ){
+ return 1;
+ }
+ if( pE2->op==TK_NOTNULL
+ && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
+ ){
+ return 1;
+ }
+ return 0;
+}
+
+/* This is a helper function to impliesNotNullRow(). In this routine,
+** set pWalker->eCode to one only if *both* of the input expressions
+** separately have the implies-not-null-row property.
+*/
+static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){
+ if( pWalker->eCode==0 ){
+ sqlite3WalkExpr(pWalker, pE1);
+ if( pWalker->eCode ){
+ pWalker->eCode = 0;
+ sqlite3WalkExpr(pWalker, pE2);
+ }
+ }
+}
+
+/*
+** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
+** If the expression node requires that the table at pWalker->iCur
+** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
+**
+** pWalker->mWFlags is non-zero if this inquiry is being undertaking on
+** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when
+** evaluating terms in the ON clause of an inner join.
+**
+** This routine controls an optimization. False positives (setting
+** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
+** (never setting pWalker->eCode) is a harmless missed optimization.
+*/
+static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_AGG_FUNCTION );
+ if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
+ if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){
+ /* If iCur is used in an inner-join ON clause to the left of a
+ ** RIGHT JOIN, that does *not* mean that the table must be non-null.
+ ** But it is difficult to check for that condition precisely.
+ ** To keep things simple, any use of iCur from any inner-join is
+ ** ignored while attempting to simplify a RIGHT JOIN. */
+ return WRC_Prune;
+ }
+ switch( pExpr->op ){
+ case TK_ISNOT:
+ case TK_ISNULL:
+ case TK_NOTNULL:
+ case TK_IS:
+ case TK_VECTOR:
+ case TK_FUNCTION:
+ case TK_TRUTH:
+ case TK_CASE:
+ testcase( pExpr->op==TK_ISNOT );
+ testcase( pExpr->op==TK_ISNULL );
+ testcase( pExpr->op==TK_NOTNULL );
+ testcase( pExpr->op==TK_IS );
+ testcase( pExpr->op==TK_VECTOR );
+ testcase( pExpr->op==TK_FUNCTION );
+ testcase( pExpr->op==TK_TRUTH );
+ testcase( pExpr->op==TK_CASE );
+ return WRC_Prune;
+
+ case TK_COLUMN:
+ if( pWalker->u.iCur==pExpr->iTable ){
+ pWalker->eCode = 1;
+ return WRC_Abort;
+ }
+ return WRC_Prune;
+
+ case TK_OR:
+ case TK_AND:
+ /* Both sides of an AND or OR must separately imply non-null-row.
+ ** Consider these cases:
+ ** 1. NOT (x AND y)
+ ** 2. x OR y
+ ** If only one of x or y is non-null-row, then the overall expression
+ ** can be true if the other arm is false (case 1) or true (case 2).
+ */
+ testcase( pExpr->op==TK_OR );
+ testcase( pExpr->op==TK_AND );
+ bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight);
+ return WRC_Prune;
+
+ case TK_IN:
+ /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)",
+ ** both of which can be true. But apart from these cases, if
+ ** the left-hand side of the IN is NULL then the IN itself will be
+ ** NULL. */
+ if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){
+ sqlite3WalkExpr(pWalker, pExpr->pLeft);
+ }
+ return WRC_Prune;
+
+ case TK_BETWEEN:
+ /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else
+ ** both y and z must be non-null row */
+ assert( ExprUseXList(pExpr) );
+ assert( pExpr->x.pList->nExpr==2 );
+ sqlite3WalkExpr(pWalker, pExpr->pLeft);
+ bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr,
+ pExpr->x.pList->a[1].pExpr);
+ return WRC_Prune;
+
+ /* Virtual tables are allowed to use constraints like x=NULL. So
+ ** a term of the form x=y does not prove that y is not null if x
+ ** is the column of a virtual table */
+ case TK_EQ:
+ case TK_NE:
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE: {
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ testcase( pExpr->op==TK_EQ );
+ testcase( pExpr->op==TK_NE );
+ testcase( pExpr->op==TK_LT );
+ testcase( pExpr->op==TK_LE );
+ testcase( pExpr->op==TK_GT );
+ testcase( pExpr->op==TK_GE );
+ /* The y.pTab=0 assignment in wherecode.c always happens after the
+ ** impliesNotNullRow() test */
+ assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
+ assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
+ if( (pLeft->op==TK_COLUMN
+ && ALWAYS(pLeft->y.pTab!=0)
+ && IsVirtual(pLeft->y.pTab))
+ || (pRight->op==TK_COLUMN
+ && ALWAYS(pRight->y.pTab!=0)
+ && IsVirtual(pRight->y.pTab))
+ ){
+ return WRC_Prune;
+ }
+ /* no break */ deliberate_fall_through
+ }
+ default:
+ return WRC_Continue;
+ }
+}
+
+/*
+** Return true (non-zero) if expression p can only be true if at least
+** one column of table iTab is non-null. In other words, return true
+** if expression p will always be NULL or false if every column of iTab
+** is NULL.
+**
+** False negatives are acceptable. In other words, it is ok to return
+** zero even if expression p will never be true of every column of iTab
+** is NULL. A false negative is merely a missed optimization opportunity.
+**
+** False positives are not allowed, however. A false positive may result
+** in an incorrect answer.
+**
+** Terms of p that are marked with EP_OuterON (and hence that come from
+** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
+**
+** This routine is used to check if a LEFT JOIN can be converted into
+** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
+** clause requires that some column of the right table of the LEFT JOIN
+** be non-NULL, then the LEFT JOIN can be safely converted into an
+** ordinary join.
+*/
+SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){
+ Walker w;
+ p = sqlite3ExprSkipCollateAndLikely(p);
+ if( p==0 ) return 0;
+ if( p->op==TK_NOTNULL ){
+ p = p->pLeft;
+ }else{
+ while( p->op==TK_AND ){
+ if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1;
+ p = p->pRight;
+ }
+ }
+ w.xExprCallback = impliesNotNullRow;
+ w.xSelectCallback = 0;
+ w.xSelectCallback2 = 0;
+ w.eCode = 0;
+ w.mWFlags = isRJ!=0;
+ w.u.iCur = iTab;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+/*
+** An instance of the following structure is used by the tree walker
+** to determine if an expression can be evaluated by reference to the
+** index only, without having to do a search for the corresponding
+** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
+** is the cursor for the table.
+*/
+struct IdxCover {
+ Index *pIdx; /* The index to be tested for coverage */
+ int iCur; /* Cursor number for the table corresponding to the index */
+};
+
+/*
+** Check to see if there are references to columns in table
+** pWalker->u.pIdxCover->iCur can be satisfied using the index
+** pWalker->u.pIdxCover->pIdx.
+*/
+static int exprIdxCover(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pWalker->u.pIdxCover->iCur
+ && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
+ ){
+ pWalker->eCode = 1;
+ return WRC_Abort;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Determine if an index pIdx on table with cursor iCur contains will
+** the expression pExpr. Return true if the index does cover the
+** expression and false if the pExpr expression references table columns
+** that are not found in the index pIdx.
+**
+** An index covering an expression means that the expression can be
+** evaluated using only the index and without having to lookup the
+** corresponding table entry.
+*/
+SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(
+ Expr *pExpr, /* The index to be tested */
+ int iCur, /* The cursor number for the corresponding table */
+ Index *pIdx /* The index that might be used for coverage */
+){
+ Walker w;
+ struct IdxCover xcov;
+ memset(&w, 0, sizeof(w));
+ xcov.iCur = iCur;
+ xcov.pIdx = pIdx;
+ w.xExprCallback = exprIdxCover;
+ w.u.pIdxCover = &xcov;
+ sqlite3WalkExpr(&w, pExpr);
+ return !w.eCode;
+}
+
+
+/* Structure used to pass information throughout the Walker in order to
+** implement sqlite3ReferencesSrcList().
+*/
+struct RefSrcList {
+ sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */
+ SrcList *pRef; /* Looking for references to these tables */
+ i64 nExclude; /* Number of tables to exclude from the search */
+ int *aiExclude; /* Cursor IDs for tables to exclude from the search */
+};
+
+/*
+** Walker SELECT callbacks for sqlite3ReferencesSrcList().
+**
+** When entering a new subquery on the pExpr argument, add all FROM clause
+** entries for that subquery to the exclude list.
+**
+** When leaving the subquery, remove those entries from the exclude list.
+*/
+static int selectRefEnter(Walker *pWalker, Select *pSelect){
+ struct RefSrcList *p = pWalker->u.pRefSrcList;
+ SrcList *pSrc = pSelect->pSrc;
+ i64 i, j;
+ int *piNew;
+ if( pSrc->nSrc==0 ) return WRC_Continue;
+ j = p->nExclude;
+ p->nExclude += pSrc->nSrc;
+ piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
+ if( piNew==0 ){
+ p->nExclude = 0;
+ return WRC_Abort;
+ }else{
+ p->aiExclude = piNew;
+ }
+ for(i=0; i<pSrc->nSrc; i++, j++){
+ p->aiExclude[j] = pSrc->a[i].iCursor;
+ }
+ return WRC_Continue;
+}
+static void selectRefLeave(Walker *pWalker, Select *pSelect){
+ struct RefSrcList *p = pWalker->u.pRefSrcList;
+ SrcList *pSrc = pSelect->pSrc;
+ if( p->nExclude ){
+ assert( p->nExclude>=pSrc->nSrc );
+ p->nExclude -= pSrc->nSrc;
+ }
+}
+
+/* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
+**
+** Set the 0x01 bit of pWalker->eCode if there is a reference to any
+** of the tables shown in RefSrcList.pRef.
+**
+** Set the 0x02 bit of pWalker->eCode if there is a reference to a
+** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
+*/
+static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN
+ || pExpr->op==TK_AGG_COLUMN
+ ){
+ int i;
+ struct RefSrcList *p = pWalker->u.pRefSrcList;
+ SrcList *pSrc = p->pRef;
+ int nSrc = pSrc ? pSrc->nSrc : 0;
+ for(i=0; i<nSrc; i++){
+ if( pExpr->iTable==pSrc->a[i].iCursor ){
+ pWalker->eCode |= 1;
+ return WRC_Continue;
+ }
+ }
+ for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
+ if( i>=p->nExclude ){
+ pWalker->eCode |= 2;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Check to see if pExpr references any tables in pSrcList.
+** Possible return values:
+**
+** 1 pExpr does references a table in pSrcList.
+**
+** 0 pExpr references some table that is not defined in either
+** pSrcList or in subqueries of pExpr itself.
+**
+** -1 pExpr only references no tables at all, or it only
+** references tables defined in subqueries of pExpr itself.
+**
+** As currently used, pExpr is always an aggregate function call. That
+** fact is exploited for efficiency.
+*/
+SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
+ Walker w;
+ struct RefSrcList x;
+ assert( pParse->db!=0 );
+ memset(&w, 0, sizeof(w));
+ memset(&x, 0, sizeof(x));
+ w.xExprCallback = exprRefToSrcList;
+ w.xSelectCallback = selectRefEnter;
+ w.xSelectCallback2 = selectRefLeave;
+ w.u.pRefSrcList = &x;
+ x.db = pParse->db;
+ x.pRef = pSrcList;
+ assert( pExpr->op==TK_AGG_FUNCTION );
+ assert( ExprUseXList(pExpr) );
+ sqlite3WalkExprList(&w, pExpr->x.pList);
+ if( pExpr->pLeft ){
+ assert( pExpr->pLeft->op==TK_ORDER );
+ assert( ExprUseXList(pExpr->pLeft) );
+ assert( pExpr->pLeft->x.pList!=0 );
+ sqlite3WalkExprList(&w, pExpr->pLeft->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
+ }
+#endif
+ if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
+ if( w.eCode & 0x01 ){
+ return 1;
+ }else if( w.eCode ){
+ return 0;
+ }else{
+ return -1;
+ }
+}
+
+/*
+** This is a Walker expression node callback.
+**
+** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
+** object that is referenced does not refer directly to the Expr. If
+** it does, make a copy. This is done because the pExpr argument is
+** subject to change.
+**
+** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
+** which builds on the sqlite3ParserAddCleanup() mechanism.
+*/
+static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
+ if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
+ && pExpr->pAggInfo!=0
+ ){
+ AggInfo *pAggInfo = pExpr->pAggInfo;
+ int iAgg = pExpr->iAgg;
+ Parse *pParse = pWalker->pParse;
+ sqlite3 *db = pParse->db;
+ assert( iAgg>=0 );
+ if( pExpr->op!=TK_AGG_FUNCTION ){
+ if( iAgg<pAggInfo->nColumn
+ && pAggInfo->aCol[iAgg].pCExpr==pExpr
+ ){
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ if( pExpr ){
+ pAggInfo->aCol[iAgg].pCExpr = pExpr;
+ sqlite3ExprDeferredDelete(pParse, pExpr);
+ }
+ }
+ }else{
+ assert( pExpr->op==TK_AGG_FUNCTION );
+ if( ALWAYS(iAgg<pAggInfo->nFunc)
+ && pAggInfo->aFunc[iAgg].pFExpr==pExpr
+ ){
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ if( pExpr ){
+ pAggInfo->aFunc[iAgg].pFExpr = pExpr;
+ sqlite3ExprDeferredDelete(pParse, pExpr);
+ }
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Initialize a Walker object so that will persist AggInfo entries referenced
+** by the tree that is walked.
+*/
+SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
+ memset(pWalker, 0, sizeof(*pWalker));
+ pWalker->pParse = pParse;
+ pWalker->xExprCallback = agginfoPersistExprCb;
+ pWalker->xSelectCallback = sqlite3SelectWalkNoop;
+}
+
+/*
+** Add a new element to the pAggInfo->aCol[] array. Return the index of
+** the new element. Return a negative number if malloc fails.
+*/
+static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
+ int i;
+ pInfo->aCol = sqlite3ArrayAllocate(
+ db,
+ pInfo->aCol,
+ sizeof(pInfo->aCol[0]),
+ &pInfo->nColumn,
+ &i
+ );
+ return i;
+}
+
+/*
+** Add a new element to the pAggInfo->aFunc[] array. Return the index of
+** the new element. Return a negative number if malloc fails.
+*/
+static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
+ int i;
+ pInfo->aFunc = sqlite3ArrayAllocate(
+ db,
+ pInfo->aFunc,
+ sizeof(pInfo->aFunc[0]),
+ &pInfo->nFunc,
+ &i
+ );
+ return i;
+}
+
+/*
+** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
+** Return the index in aCol[] of the entry that describes that column.
+**
+** If no prior entry is found, create a new one and return -1. The
+** new column will have an index of pAggInfo->nColumn-1.
+*/
+static void findOrCreateAggInfoColumn(
+ Parse *pParse, /* Parsing context */
+ AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */
+ Expr *pExpr /* Expr describing the column to find or insert */
+){
+ struct AggInfo_col *pCol;
+ int k;
+
+ assert( pAggInfo->iFirstReg==0 );
+ pCol = pAggInfo->aCol;
+ for(k=0; k<pAggInfo->nColumn; k++, pCol++){
+ if( pCol->pCExpr==pExpr ) return;
+ if( pCol->iTable==pExpr->iTable
+ && pCol->iColumn==pExpr->iColumn
+ && pExpr->op!=TK_IF_NULL_ROW
+ ){
+ goto fix_up_expr;
+ }
+ }
+ k = addAggInfoColumn(pParse->db, pAggInfo);
+ if( k<0 ){
+ /* OOM on resize */
+ assert( pParse->db->mallocFailed );
+ return;
+ }
+ pCol = &pAggInfo->aCol[k];
+ assert( ExprUseYTab(pExpr) );
+ pCol->pTab = pExpr->y.pTab;
+ pCol->iTable = pExpr->iTable;
+ pCol->iColumn = pExpr->iColumn;
+ pCol->iSorterColumn = -1;
+ pCol->pCExpr = pExpr;
+ if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
+ int j, n;
+ ExprList *pGB = pAggInfo->pGroupBy;
+ struct ExprList_item *pTerm = pGB->a;
+ n = pGB->nExpr;
+ for(j=0; j<n; j++, pTerm++){
+ Expr *pE = pTerm->pExpr;
+ if( pE->op==TK_COLUMN
+ && pE->iTable==pExpr->iTable
+ && pE->iColumn==pExpr->iColumn
+ ){
+ pCol->iSorterColumn = j;
+ break;
+ }
+ }
+ }
+ if( pCol->iSorterColumn<0 ){
+ pCol->iSorterColumn = pAggInfo->nSortingColumn++;
+ }
+fix_up_expr:
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+ assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo );
+ pExpr->pAggInfo = pAggInfo;
+ if( pExpr->op==TK_COLUMN ){
+ pExpr->op = TK_AGG_COLUMN;
+ }
+ pExpr->iAgg = (i16)k;
+}
+
+/*
+** This is the xExprCallback for a tree walker. It is used to
+** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
+** for additional information.
+*/
+static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
+ int i;
+ NameContext *pNC = pWalker->u.pNC;
+ Parse *pParse = pNC->pParse;
+ SrcList *pSrcList = pNC->pSrcList;
+ AggInfo *pAggInfo = pNC->uNC.pAggInfo;
+
+ assert( pNC->ncFlags & NC_UAggInfo );
+ assert( pAggInfo->iFirstReg==0 );
+ switch( pExpr->op ){
+ default: {
+ IndexedExpr *pIEpr;
+ Expr tmp;
+ assert( pParse->iSelfTab==0 );
+ if( (pNC->ncFlags & NC_InAggFunc)==0 ) break;
+ if( pParse->pIdxEpr==0 ) break;
+ for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
+ int iDataCur = pIEpr->iDataCur;
+ if( iDataCur<0 ) continue;
+ if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break;
+ }
+ if( pIEpr==0 ) break;
+ if( NEVER(!ExprUseYTab(pExpr)) ) break;
+ for(i=0; i<pSrcList->nSrc; i++){
+ if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break;
+ }
+ if( i>=pSrcList->nSrc ) break;
+ if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */
+ if( pParse->nErr ){ return WRC_Abort; }
+
+ /* If we reach this point, it means that expression pExpr can be
+ ** translated into a reference to an index column as described by
+ ** pIEpr.
+ */
+ memset(&tmp, 0, sizeof(tmp));
+ tmp.op = TK_AGG_COLUMN;
+ tmp.iTable = pIEpr->iIdxCur;
+ tmp.iColumn = pIEpr->iIdxCol;
+ findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp);
+ if( pParse->nErr ){ return WRC_Abort; }
+ assert( pAggInfo->aCol!=0 );
+ assert( tmp.iAgg<pAggInfo->nColumn );
+ pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr;
+ pExpr->pAggInfo = pAggInfo;
+ pExpr->iAgg = tmp.iAgg;
+ return WRC_Prune;
+ }
+ case TK_IF_NULL_ROW:
+ case TK_AGG_COLUMN:
+ case TK_COLUMN: {
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ testcase( pExpr->op==TK_COLUMN );
+ testcase( pExpr->op==TK_IF_NULL_ROW );
+ /* Check to see if the column is in one of the tables in the FROM
+ ** clause of the aggregate query */
+ if( ALWAYS(pSrcList!=0) ){
+ SrcItem *pItem = pSrcList->a;
+ for(i=0; i<pSrcList->nSrc; i++, pItem++){
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ if( pExpr->iTable==pItem->iCursor ){
+ findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr);
+ break;
+ } /* endif pExpr->iTable==pItem->iCursor */
+ } /* end loop over pSrcList */
+ }
+ return WRC_Continue;
+ }
+ case TK_AGG_FUNCTION: {
+ if( (pNC->ncFlags & NC_InAggFunc)==0
+ && pWalker->walkerDepth==pExpr->op2
+ ){
+ /* Check to see if pExpr is a duplicate of another aggregate
+ ** function that is already in the pAggInfo structure
+ */
+ struct AggInfo_func *pItem = pAggInfo->aFunc;
+ for(i=0; i<pAggInfo->nFunc; i++, pItem++){
+ if( pItem->pFExpr==pExpr ) break;
+ if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
+ break;
+ }
+ }
+ if( i>=pAggInfo->nFunc ){
+ /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
+ */
+ u8 enc = ENC(pParse->db);
+ i = addAggInfoFunc(pParse->db, pAggInfo);
+ if( i>=0 ){
+ int nArg;
+ assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
+ pItem = &pAggInfo->aFunc[i];
+ pItem->pFExpr = pExpr;
+ assert( ExprUseUToken(pExpr) );
+ nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
+ pItem->pFunc = sqlite3FindFunction(pParse->db,
+ pExpr->u.zToken, nArg, enc, 0);
+ assert( pItem->bOBUnique==0 );
+ if( pExpr->pLeft
+ && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0
+ ){
+ /* The NEEDCOLL test above causes any ORDER BY clause on
+ ** aggregate min() or max() to be ignored. */
+ ExprList *pOBList;
+ assert( nArg>0 );
+ assert( pExpr->pLeft->op==TK_ORDER );
+ assert( ExprUseXList(pExpr->pLeft) );
+ pItem->iOBTab = pParse->nTab++;
+ pOBList = pExpr->pLeft->x.pList;
+ assert( pOBList->nExpr>0 );
+ assert( pItem->bOBUnique==0 );
+ if( pOBList->nExpr==1
+ && nArg==1
+ && sqlite3ExprCompare(0,pOBList->a[0].pExpr,
+ pExpr->x.pList->a[0].pExpr,0)==0
+ ){
+ pItem->bOBPayload = 0;
+ pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct);
+ }else{
+ pItem->bOBPayload = 1;
+ }
+ }else{
+ pItem->iOBTab = -1;
+ }
+ if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){
+ pItem->iDistinct = pParse->nTab++;
+ }else{
+ pItem->iDistinct = -1;
+ }
+ }
+ }
+ /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
+ */
+ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(pExpr, EP_NoReduce);
+ pExpr->iAgg = (i16)i;
+ pExpr->pAggInfo = pAggInfo;
+ return WRC_Prune;
+ }else{
+ return WRC_Continue;
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Analyze the pExpr expression looking for aggregate functions and
+** for variables that need to be added to AggInfo object that pNC->pAggInfo
+** points to. Additional entries are made on the AggInfo object as
+** necessary.
+**
+** This routine should only be called after the expression has been
+** analyzed by sqlite3ResolveExprNames().
+*/
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
+ Walker w;
+ w.xExprCallback = analyzeAggregate;
+ w.xSelectCallback = sqlite3WalkerDepthIncrease;
+ w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
+ w.walkerDepth = 0;
+ w.u.pNC = pNC;
+ w.pParse = 0;
+ assert( pNC->pSrcList!=0 );
+ sqlite3WalkExpr(&w, pExpr);
+}
+
+/*
+** Call sqlite3ExprAnalyzeAggregates() for every expression in an
+** expression list. Return the number of errors.
+**
+** If an error is found, the analysis is cut short.
+*/
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
+ struct ExprList_item *pItem;
+ int i;
+ if( pList ){
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
+ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
+ }
+ }
+}
+
+/*
+** Allocate a single new register for use to hold some intermediate result.
+*/
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
+ if( pParse->nTempReg==0 ){
+ return ++pParse->nMem;
+ }
+ return pParse->aTempReg[--pParse->nTempReg];
+}
+
+/*
+** Deallocate a register, making available for reuse for some other
+** purpose.
+*/
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
+ if( iReg ){
+ sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
+ if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
+ pParse->aTempReg[pParse->nTempReg++] = iReg;
+ }
+ }
+}
+
+/*
+** Allocate or deallocate a block of nReg consecutive registers.
+*/
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
+ int i, n;
+ if( nReg==1 ) return sqlite3GetTempReg(pParse);
+ i = pParse->iRangeReg;
+ n = pParse->nRangeReg;
+ if( nReg<=n ){
+ pParse->iRangeReg += nReg;
+ pParse->nRangeReg -= nReg;
+ }else{
+ i = pParse->nMem+1;
+ pParse->nMem += nReg;
+ }
+ return i;
+}
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
+ if( nReg==1 ){
+ sqlite3ReleaseTempReg(pParse, iReg);
+ return;
+ }
+ sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
+ if( nReg>pParse->nRangeReg ){
+ pParse->nRangeReg = nReg;
+ pParse->iRangeReg = iReg;
+ }
+}
+
+/*
+** Mark all temporary registers as being unavailable for reuse.
+**
+** Always invoke this procedure after coding a subroutine or co-routine
+** that might be invoked from other parts of the code, to ensure that
+** the sub/co-routine does not use registers in common with the code that
+** invokes the sub/co-routine.
+*/
+SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){
+ pParse->nTempReg = 0;
+ pParse->nRangeReg = 0;
+}
+
+/*
+** Make sure sufficient registers have been allocated so that
+** iReg is a valid register number.
+*/
+SQLITE_PRIVATE void sqlite3TouchRegister(Parse *pParse, int iReg){
+ if( pParse->nMem<iReg ) pParse->nMem = iReg;
+}
+
+#if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
+/*
+** Return the latest reusable register in the set of all registers.
+** The value returned is no less than iMin. If any register iMin or
+** greater is in permanent use, then return one more than that last
+** permanent register.
+*/
+SQLITE_PRIVATE int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){
+ const ExprList *pList = pParse->pConstExpr;
+ if( pList ){
+ int i;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].u.iConstExprReg>=iMin ){
+ iMin = pList->a[i].u.iConstExprReg + 1;
+ }
+ }
+ }
+ pParse->nTempReg = 0;
+ pParse->nRangeReg = 0;
+ return iMin;
+}
+#endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
+
+/*
+** Validate that no temporary register falls within the range of
+** iFirst..iLast, inclusive. This routine is only call from within assert()
+** statements.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
+ int i;
+ if( pParse->nRangeReg>0
+ && pParse->iRangeReg+pParse->nRangeReg > iFirst
+ && pParse->iRangeReg <= iLast
+ ){
+ return 0;
+ }
+ for(i=0; i<pParse->nTempReg; i++){
+ if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
+ return 0;
+ }
+ }
+ if( pParse->pConstExpr ){
+ ExprList *pList = pParse->pConstExpr;
+ for(i=0; i<pList->nExpr; i++){
+ int iReg = pList->a[i].u.iConstExprReg;
+ if( iReg==0 ) continue;
+ if( iReg>=iFirst && iReg<=iLast ) return 0;
+ }
+ }
+ return 1;
+}
+#endif /* SQLITE_DEBUG */
+
+/************** End of expr.c ************************************************/
+/************** Begin file alter.c *******************************************/
+/*
+** 2005 February 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that used to generate VDBE code
+** that implements the ALTER TABLE command.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** The code in this file only exists if we are not omitting the
+** ALTER TABLE logic from the build.
+*/
+#ifndef SQLITE_OMIT_ALTERTABLE
+
+/*
+** Parameter zName is the name of a table that is about to be altered
+** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
+** If the table is a system table, this function leaves an error message
+** in pParse->zErr (system tables may not be altered) and returns non-zero.
+**
+** Or, if zName is not a system table, zero is returned.
+*/
+static int isAlterableTable(Parse *pParse, Table *pTab){
+ if( 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7)
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ || (pTab->tabFlags & TF_Eponymous)!=0
+ || ( (pTab->tabFlags & TF_Shadow)!=0
+ && sqlite3ReadOnlyShadowTables(pParse->db)
+ )
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Generate code to verify that the schemas of database zDb and, if
+** bTemp is not true, database "temp", can still be parsed. This is
+** called at the end of the generation of an ALTER TABLE ... RENAME ...
+** statement to ensure that the operation has not rendered any schema
+** objects unusable.
+*/
+static void renameTestSchema(
+ Parse *pParse, /* Parse context */
+ const char *zDb, /* Name of db to verify schema of */
+ int bTemp, /* True if this is the temp db */
+ const char *zWhen, /* "when" part of error message */
+ int bNoDQS /* Do not allow DQS in the schema */
+){
+ pParse->colNamesSet = 1;
+ sqlite3NestedParse(pParse,
+ "SELECT 1 "
+ "FROM \"%w\"." LEGACY_SCHEMA_TABLE " "
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'"
+ " AND sqlite_rename_test(%Q, sql, type, name, %d, %Q, %d)=NULL ",
+ zDb,
+ zDb, bTemp, zWhen, bNoDQS
+ );
+
+ if( bTemp==0 ){
+ sqlite3NestedParse(pParse,
+ "SELECT 1 "
+ "FROM temp." LEGACY_SCHEMA_TABLE " "
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'"
+ " AND sqlite_rename_test(%Q, sql, type, name, 1, %Q, %d)=NULL ",
+ zDb, zWhen, bNoDQS
+ );
+ }
+}
+
+/*
+** Generate VM code to replace any double-quoted strings (but not double-quoted
+** identifiers) within the "sql" column of the sqlite_schema table in
+** database zDb with their single-quoted equivalents. If argument bTemp is
+** not true, similarly update all SQL statements in the sqlite_schema table
+** of the temp db.
+*/
+static void renameFixQuotes(Parse *pParse, const char *zDb, int bTemp){
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE
+ " SET sql = sqlite_rename_quotefix(%Q, sql)"
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'" , zDb, zDb
+ );
+ if( bTemp==0 ){
+ sqlite3NestedParse(pParse,
+ "UPDATE temp." LEGACY_SCHEMA_TABLE
+ " SET sql = sqlite_rename_quotefix('temp', sql)"
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ " AND sql NOT LIKE 'create virtual%%'"
+ );
+ }
+}
+
+/*
+** Generate code to reload the schema for database iDb. And, if iDb!=1, for
+** the temp database as well.
+*/
+static void renameReloadSchema(Parse *pParse, int iDb, u16 p5){
+ Vdbe *v = pParse->pVdbe;
+ if( v ){
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0, p5);
+ if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0, p5);
+ }
+}
+
+/*
+** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
+** command.
+*/
+SQLITE_PRIVATE void sqlite3AlterRenameTable(
+ Parse *pParse, /* Parser context. */
+ SrcList *pSrc, /* The table to rename. */
+ Token *pName /* The new table name. */
+){
+ int iDb; /* Database that contains the table */
+ char *zDb; /* Name of database iDb */
+ Table *pTab; /* Table being renamed */
+ char *zName = 0; /* NULL-terminated version of pName */
+ sqlite3 *db = pParse->db; /* Database connection */
+ int nTabName; /* Number of UTF-8 characters in zTabName */
+ const char *zTabName; /* Original name of the table */
+ Vdbe *v;
+ VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */
+
+ if( NEVER(db->mallocFailed) ) goto exit_rename_table;
+ assert( pSrc->nSrc==1 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_rename_table;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+
+ /* Get a NULL terminated version of the new table name. */
+ zName = sqlite3NameFromToken(db, pName);
+ if( !zName ) goto exit_rename_table;
+
+ /* Check that a table or index named 'zName' does not already exist
+ ** in database iDb. If so, this is an error.
+ */
+ if( sqlite3FindTable(db, zName, zDb)
+ || sqlite3FindIndex(db, zName, zDb)
+ || sqlite3IsShadowTableOf(db, pTab, zName)
+ ){
+ sqlite3ErrorMsg(pParse,
+ "there is already another table or index with this name: %s", zName);
+ goto exit_rename_table;
+ }
+
+ /* Make sure it is not a system table being altered, or a reserved name
+ ** that the table is being renamed to.
+ */
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){
+ goto exit_rename_table;
+ }
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse,zName,"table",zName) ){
+ goto exit_rename_table;
+ }
+
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
+ goto exit_rename_table;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ goto exit_rename_table;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_rename_table;
+ }
+ if( IsVirtual(pTab) ){
+ pVTab = sqlite3GetVTable(db, pTab);
+ if( pVTab->pVtab->pModule->xRename==0 ){
+ pVTab = 0;
+ }
+ }
+#endif
+
+ /* Begin a transaction for database iDb. Then modify the schema cookie
+ ** (since the ALTER TABLE modifies the schema). Call sqlite3MayAbort(),
+ ** as the scalar functions (e.g. sqlite_rename_table()) invoked by the
+ ** nested SQL may raise an exception. */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ goto exit_rename_table;
+ }
+ sqlite3MayAbort(pParse);
+
+ /* figure out how many UTF-8 characters are in zName */
+ zTabName = pTab->zName;
+ nTabName = sqlite3Utf8CharLen(zTabName, -1);
+
+ /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in
+ ** the schema to use the new table name. */
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, %d) "
+ "WHERE (type!='index' OR tbl_name=%Q COLLATE nocase)"
+ "AND name NOT LIKE 'sqliteX_%%' ESCAPE 'X'"
+ , zDb, zDb, zTabName, zName, (iDb==1), zTabName
+ );
+
+ /* Update the tbl_name and name columns of the sqlite_schema table
+ ** as required. */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET "
+ "tbl_name = %Q, "
+ "name = CASE "
+ "WHEN type='table' THEN %Q "
+ "WHEN name LIKE 'sqliteX_autoindex%%' ESCAPE 'X' "
+ " AND type='index' THEN "
+ "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
+ "ELSE name END "
+ "WHERE tbl_name=%Q COLLATE nocase AND "
+ "(type='table' OR type='index' OR type='trigger');",
+ zDb,
+ zName, zName, zName,
+ nTabName, zTabName
+ );
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* If the sqlite_sequence table exists in this database, then update
+ ** it with the new table name.
+ */
+ if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
+ zDb, zName, pTab->zName);
+ }
+#endif
+
+ /* If the table being renamed is not itself part of the temp database,
+ ** edit view and trigger definitions within the temp database
+ ** as required. */
+ if( iDb!=1 ){
+ sqlite3NestedParse(pParse,
+ "UPDATE sqlite_temp_schema SET "
+ "sql = sqlite_rename_table(%Q, type, name, sql, %Q, %Q, 1), "
+ "tbl_name = "
+ "CASE WHEN tbl_name=%Q COLLATE nocase AND "
+ " sqlite_rename_test(%Q, sql, type, name, 1, 'after rename', 0) "
+ "THEN %Q ELSE tbl_name END "
+ "WHERE type IN ('view', 'trigger')"
+ , zDb, zTabName, zName, zTabName, zDb, zName);
+ }
+
+ /* If this is a virtual table, invoke the xRename() function if
+ ** one is defined. The xRename() callback will modify the names
+ ** of any resources used by the v-table implementation (including other
+ ** SQLite tables) that are identified by the name of the virtual table.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pVTab ){
+ int i = ++pParse->nMem;
+ sqlite3VdbeLoadString(v, i, zName);
+ sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
+ }
+#endif
+
+ renameReloadSchema(pParse, iDb, INITFLAG_AlterRename);
+ renameTestSchema(pParse, zDb, iDb==1, "after rename", 0);
+
+exit_rename_table:
+ sqlite3SrcListDelete(db, pSrc);
+ sqlite3DbFree(db, zName);
+}
+
+/*
+** Write code that will raise an error if the table described by
+** zDb and zTab is not empty.
+*/
+static void sqlite3ErrorIfNotEmpty(
+ Parse *pParse, /* Parsing context */
+ const char *zDb, /* Schema holding the table */
+ const char *zTab, /* Table to check for empty */
+ const char *zErr /* Error message text */
+){
+ sqlite3NestedParse(pParse,
+ "SELECT raise(ABORT,%Q) FROM \"%w\".\"%w\"",
+ zErr, zDb, zTab
+ );
+}
+
+/*
+** This function is called after an "ALTER TABLE ... ADD" statement
+** has been parsed. Argument pColDef contains the text of the new
+** column definition.
+**
+** The Table structure pParse->pNewTable was extended to include
+** the new column during parsing.
+*/
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
+ Table *pNew; /* Copy of pParse->pNewTable */
+ Table *pTab; /* Table being altered */
+ int iDb; /* Database number */
+ const char *zDb; /* Database name */
+ const char *zTab; /* Table name */
+ char *zCol; /* Null-terminated column definition */
+ Column *pCol; /* The new column */
+ Expr *pDflt; /* Default value for the new column */
+ sqlite3 *db; /* The database connection; */
+ Vdbe *v; /* The prepared statement under construction */
+ int r1; /* Temporary registers */
+
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ) return;
+ assert( db->mallocFailed==0 );
+ pNew = pParse->pNewTable;
+ assert( pNew );
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+ zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */
+ pCol = &pNew->aCol[pNew->nCol-1];
+ pDflt = sqlite3ColumnExpr(pNew, pCol);
+ pTab = sqlite3FindTable(db, zTab, zDb);
+ assert( pTab );
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ return;
+ }
+#endif
+
+
+ /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
+ ** If there is a NOT NULL constraint, then the default value for the
+ ** column must not be NULL.
+ */
+ if( pCol->colFlags & COLFLAG_PRIMKEY ){
+ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
+ return;
+ }
+ if( pNew->pIndex ){
+ sqlite3ErrorMsg(pParse,
+ "Cannot add a UNIQUE column");
+ return;
+ }
+ if( (pCol->colFlags & COLFLAG_GENERATED)==0 ){
+ /* If the default value for the new column was specified with a
+ ** literal NULL, then set pDflt to 0. This simplifies checking
+ ** for an SQL NULL default below.
+ */
+ assert( pDflt==0 || pDflt->op==TK_SPAN );
+ if( pDflt && pDflt->pLeft->op==TK_NULL ){
+ pDflt = 0;
+ }
+ assert( IsOrdinaryTable(pNew) );
+ if( (db->flags&SQLITE_ForeignKeys) && pNew->u.tab.pFKey && pDflt ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab,
+ "Cannot add a REFERENCES column with non-NULL default value");
+ }
+ if( pCol->notNull && !pDflt ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab,
+ "Cannot add a NOT NULL column with default value NULL");
+ }
+
+
+ /* Ensure the default expression is something that sqlite3ValueFromExpr()
+ ** can handle (i.e. not CURRENT_TIME etc.)
+ */
+ if( pDflt ){
+ sqlite3_value *pVal = 0;
+ int rc;
+ rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ if( rc!=SQLITE_OK ){
+ assert( db->mallocFailed == 1 );
+ return;
+ }
+ if( !pVal ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab,
+ "Cannot add a column with non-constant default");
+ }
+ sqlite3ValueFree(pVal);
+ }
+ }else if( pCol->colFlags & COLFLAG_STORED ){
+ sqlite3ErrorIfNotEmpty(pParse, zDb, zTab, "cannot add a STORED column");
+ }
+
+
+ /* Modify the CREATE TABLE statement. */
+ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
+ if( zCol ){
+ char *zEnd = &zCol[pColDef->n-1];
+ while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){
+ *zEnd-- = '\0';
+ }
+ /* substr() operations on characters, but addColOffset is in bytes. So we
+ ** have to use printf() to translate between these units: */
+ assert( IsOrdinaryTable(pTab) );
+ assert( IsOrdinaryTable(pNew) );
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = printf('%%.%ds, ',sql) || %Q"
+ " || substr(sql,1+length(printf('%%.%ds',sql))) "
+ "WHERE type = 'table' AND name = %Q",
+ zDb, pNew->u.tab.addColOffset, zCol, pNew->u.tab.addColOffset,
+ zTab
+ );
+ sqlite3DbFree(db, zCol);
+ }
+
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ /* Make sure the schema version is at least 3. But do not upgrade
+ ** from less than 3 to 4, as that will corrupt any preexisting DESC
+ ** index.
+ */
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
+ sqlite3VdbeUsesBtree(v, iDb);
+ sqlite3VdbeAddOp2(v, OP_AddImm, r1, -2);
+ sqlite3VdbeAddOp2(v, OP_IfPos, r1, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, 3);
+ sqlite3ReleaseTempReg(pParse, r1);
+
+ /* Reload the table definition */
+ renameReloadSchema(pParse, iDb, INITFLAG_AlterAdd);
+
+ /* Verify that constraints are still satisfied */
+ if( pNew->pCheck!=0
+ || (pCol->notNull && (pCol->colFlags & COLFLAG_GENERATED)!=0)
+ || (pTab->tabFlags & TF_Strict)!=0
+ ){
+ sqlite3NestedParse(pParse,
+ "SELECT CASE WHEN quick_check GLOB 'CHECK*'"
+ " THEN raise(ABORT,'CHECK constraint failed')"
+ " WHEN quick_check GLOB 'non-* value in*'"
+ " THEN raise(ABORT,'type mismatch on DEFAULT')"
+ " ELSE raise(ABORT,'NOT NULL constraint failed')"
+ " END"
+ " FROM pragma_quick_check(%Q,%Q)"
+ " WHERE quick_check GLOB 'CHECK*'"
+ " OR quick_check GLOB 'NULL*'"
+ " OR quick_check GLOB 'non-* value in*'",
+ zTab, zDb
+ );
+ }
+ }
+}
+
+/*
+** This function is called by the parser after the table-name in
+** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
+** pSrc is the full-name of the table being altered.
+**
+** This routine makes a (partial) copy of the Table structure
+** for the table being altered and sets Parse.pNewTable to point
+** to it. Routines called by the parser as the column definition
+** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
+** the copy. The copy of the Table structure is deleted by tokenize.c
+** after parsing is finished.
+**
+** Routine sqlite3AlterFinishAddColumn() will be called to complete
+** coding the "ALTER TABLE ... ADD" statement.
+*/
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
+ Table *pNew;
+ Table *pTab;
+ int iDb;
+ int i;
+ int nAlloc;
+ sqlite3 *db = pParse->db;
+
+ /* Look up the table being altered. */
+ assert( pParse->pNewTable==0 );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ if( db->mallocFailed ) goto exit_begin_add_column;
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_begin_add_column;
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
+ goto exit_begin_add_column;
+ }
+#endif
+
+ /* Make sure this is not an attempt to ALTER a view. */
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
+ goto exit_begin_add_column;
+ }
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ){
+ goto exit_begin_add_column;
+ }
+
+ sqlite3MayAbort(pParse);
+ assert( IsOrdinaryTable(pTab) );
+ assert( pTab->u.tab.addColOffset>0 );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+
+ /* Put a copy of the Table struct in Parse.pNewTable for the
+ ** sqlite3AddColumn() function and friends to modify. But modify
+ ** the name by adding an "sqlite_altertab_" prefix. By adding this
+ ** prefix, we insure that the name will not collide with an existing
+ ** table because user table are not allowed to have the "sqlite_"
+ ** prefix on their name.
+ */
+ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
+ if( !pNew ) goto exit_begin_add_column;
+ pParse->pNewTable = pNew;
+ pNew->nTabRef = 1;
+ pNew->nCol = pTab->nCol;
+ assert( pNew->nCol>0 );
+ nAlloc = (((pNew->nCol-1)/8)*8)+8;
+ assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
+ pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
+ pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
+ if( !pNew->aCol || !pNew->zName ){
+ assert( db->mallocFailed );
+ goto exit_begin_add_column;
+ }
+ memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
+ for(i=0; i<pNew->nCol; i++){
+ Column *pCol = &pNew->aCol[i];
+ pCol->zCnName = sqlite3DbStrDup(db, pCol->zCnName);
+ pCol->hName = sqlite3StrIHash(pCol->zCnName);
+ }
+ assert( IsOrdinaryTable(pNew) );
+ pNew->u.tab.pDfltList = sqlite3ExprListDup(db, pTab->u.tab.pDfltList, 0);
+ pNew->pSchema = db->aDb[iDb].pSchema;
+ pNew->u.tab.addColOffset = pTab->u.tab.addColOffset;
+ assert( pNew->nTabRef==1 );
+
+exit_begin_add_column:
+ sqlite3SrcListDelete(db, pSrc);
+ return;
+}
+
+/*
+** Parameter pTab is the subject of an ALTER TABLE ... RENAME COLUMN
+** command. This function checks if the table is a view or virtual
+** table (columns of views or virtual tables may not be renamed). If so,
+** it loads an error message into pParse and returns non-zero.
+**
+** Or, if pTab is not a view or virtual table, zero is returned.
+*/
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+static int isRealTable(Parse *pParse, Table *pTab, int bDrop){
+ const char *zType = 0;
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab) ){
+ zType = "view";
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ zType = "virtual table";
+ }
+#endif
+ if( zType ){
+ sqlite3ErrorMsg(pParse, "cannot %s %s \"%s\"",
+ (bDrop ? "drop column from" : "rename columns of"),
+ zType, pTab->zName
+ );
+ return 1;
+ }
+ return 0;
+}
+#else /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
+# define isRealTable(x,y,z) (0)
+#endif
+
+/*
+** Handles the following parser reduction:
+**
+** cmd ::= ALTER TABLE pSrc RENAME COLUMN pOld TO pNew
+*/
+SQLITE_PRIVATE void sqlite3AlterRenameColumn(
+ Parse *pParse, /* Parsing context */
+ SrcList *pSrc, /* Table being altered. pSrc->nSrc==1 */
+ Token *pOld, /* Name of column being changed */
+ Token *pNew /* New column name */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ Table *pTab; /* Table being updated */
+ int iCol; /* Index of column being renamed */
+ char *zOld = 0; /* Old column name */
+ char *zNew = 0; /* New column name */
+ const char *zDb; /* Name of schema containing the table */
+ int iSchema; /* Index of the schema */
+ int bQuote; /* True to quote the new name */
+
+ /* Locate the table to be altered */
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_rename_column;
+
+ /* Cannot alter a system table */
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_rename_column;
+ if( SQLITE_OK!=isRealTable(pParse, pTab, 0) ) goto exit_rename_column;
+
+ /* Which schema holds the table to be altered */
+ iSchema = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iSchema>=0 );
+ zDb = db->aDb[iSchema].zDbSName;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ goto exit_rename_column;
+ }
+#endif
+
+ /* Make sure the old name really is a column name in the table to be
+ ** altered. Set iCol to be the index of the column being renamed */
+ zOld = sqlite3NameFromToken(db, pOld);
+ if( !zOld ) goto exit_rename_column;
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( 0==sqlite3StrICmp(pTab->aCol[iCol].zCnName, zOld) ) break;
+ }
+ if( iCol==pTab->nCol ){
+ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pOld);
+ goto exit_rename_column;
+ }
+
+ /* Ensure the schema contains no double-quoted strings */
+ renameTestSchema(pParse, zDb, iSchema==1, "", 0);
+ renameFixQuotes(pParse, zDb, iSchema==1);
+
+ /* Do the rename operation using a recursive UPDATE statement that
+ ** uses the sqlite_rename_column() SQL function to compute the new
+ ** CREATE statement text for the sqlite_schema table.
+ */
+ sqlite3MayAbort(pParse);
+ zNew = sqlite3NameFromToken(db, pNew);
+ if( !zNew ) goto exit_rename_column;
+ assert( pNew->n>0 );
+ bQuote = sqlite3Isquote(pNew->z[0]);
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, %d) "
+ "WHERE name NOT LIKE 'sqliteX_%%' ESCAPE 'X' "
+ " AND (type != 'index' OR tbl_name = %Q)",
+ zDb,
+ zDb, pTab->zName, iCol, zNew, bQuote, iSchema==1,
+ pTab->zName
+ );
+
+ sqlite3NestedParse(pParse,
+ "UPDATE temp." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_rename_column(sql, type, name, %Q, %Q, %d, %Q, %d, 1) "
+ "WHERE type IN ('trigger', 'view')",
+ zDb, pTab->zName, iCol, zNew, bQuote
+ );
+
+ /* Drop and reload the database schema. */
+ renameReloadSchema(pParse, iSchema, INITFLAG_AlterRename);
+ renameTestSchema(pParse, zDb, iSchema==1, "after rename", 1);
+
+ exit_rename_column:
+ sqlite3SrcListDelete(db, pSrc);
+ sqlite3DbFree(db, zOld);
+ sqlite3DbFree(db, zNew);
+ return;
+}
+
+/*
+** Each RenameToken object maps an element of the parse tree into
+** the token that generated that element. The parse tree element
+** might be one of:
+**
+** * A pointer to an Expr that represents an ID
+** * The name of a table column in Column.zName
+**
+** A list of RenameToken objects can be constructed during parsing.
+** Each new object is created by sqlite3RenameTokenMap().
+** As the parse tree is transformed, the sqlite3RenameTokenRemap()
+** routine is used to keep the mapping current.
+**
+** After the parse finishes, renameTokenFind() routine can be used
+** to look up the actual token value that created some element in
+** the parse tree.
+*/
+struct RenameToken {
+ const void *p; /* Parse tree element created by token t */
+ Token t; /* The token that created parse tree element p */
+ RenameToken *pNext; /* Next is a list of all RenameToken objects */
+};
+
+/*
+** The context of an ALTER TABLE RENAME COLUMN operation that gets passed
+** down into the Walker.
+*/
+typedef struct RenameCtx RenameCtx;
+struct RenameCtx {
+ RenameToken *pList; /* List of tokens to overwrite */
+ int nList; /* Number of tokens in pList */
+ int iCol; /* Index of column being renamed */
+ Table *pTab; /* Table being ALTERed */
+ const char *zOld; /* Old column name */
+};
+
+#ifdef SQLITE_DEBUG
+/*
+** This function is only for debugging. It performs two tasks:
+**
+** 1. Checks that pointer pPtr does not already appear in the
+** rename-token list.
+**
+** 2. Dereferences each pointer in the rename-token list.
+**
+** The second is most effective when debugging under valgrind or
+** address-sanitizer or similar. If any of these pointers no longer
+** point to valid objects, an exception is raised by the memory-checking
+** tool.
+**
+** The point of this is to prevent comparisons of invalid pointer values.
+** Even though this always seems to work, it is undefined according to the
+** C standard. Example of undefined comparison:
+**
+** sqlite3_free(x);
+** if( x==y ) ...
+**
+** Technically, as x no longer points into a valid object or to the byte
+** following a valid object, it may not be used in comparison operations.
+*/
+static void renameTokenCheckAll(Parse *pParse, const void *pPtr){
+ assert( pParse==pParse->db->pParse );
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ if( pParse->nErr==0 ){
+ const RenameToken *p;
+ u32 i = 1;
+ for(p=pParse->pRename; p; p=p->pNext){
+ if( p->p ){
+ assert( p->p!=pPtr );
+ i += *(u8*)(p->p) | 1;
+ }
+ }
+ assert( i>0 );
+ }
+}
+#else
+# define renameTokenCheckAll(x,y)
+#endif
+
+/*
+** Remember that the parser tree element pPtr was created using
+** the token pToken.
+**
+** In other words, construct a new RenameToken object and add it
+** to the list of RenameToken objects currently being built up
+** in pParse->pRename.
+**
+** The pPtr argument is returned so that this routine can be used
+** with tail recursion in tokenExpr() routine, for a small performance
+** improvement.
+*/
+SQLITE_PRIVATE const void *sqlite3RenameTokenMap(
+ Parse *pParse,
+ const void *pPtr,
+ const Token *pToken
+){
+ RenameToken *pNew;
+ assert( pPtr || pParse->db->mallocFailed );
+ renameTokenCheckAll(pParse, pPtr);
+ if( ALWAYS(pParse->eParseMode!=PARSE_MODE_UNMAP) ){
+ pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken));
+ if( pNew ){
+ pNew->p = pPtr;
+ pNew->t = *pToken;
+ pNew->pNext = pParse->pRename;
+ pParse->pRename = pNew;
+ }
+ }
+
+ return pPtr;
+}
+
+/*
+** It is assumed that there is already a RenameToken object associated
+** with parse tree element pFrom. This function remaps the associated token
+** to parse tree element pTo.
+*/
+SQLITE_PRIVATE void sqlite3RenameTokenRemap(Parse *pParse, const void *pTo, const void *pFrom){
+ RenameToken *p;
+ renameTokenCheckAll(pParse, pTo);
+ for(p=pParse->pRename; p; p=p->pNext){
+ if( p->p==pFrom ){
+ p->p = pTo;
+ break;
+ }
+ }
+}
+
+/*
+** Walker callback used by sqlite3RenameExprUnmap().
+*/
+static int renameUnmapExprCb(Walker *pWalker, Expr *pExpr){
+ Parse *pParse = pWalker->pParse;
+ sqlite3RenameTokenRemap(pParse, 0, (const void*)pExpr);
+ if( ExprUseYTab(pExpr) ){
+ sqlite3RenameTokenRemap(pParse, 0, (const void*)&pExpr->y.pTab);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Iterate through the Select objects that are part of WITH clauses attached
+** to select statement pSelect.
+*/
+static void renameWalkWith(Walker *pWalker, Select *pSelect){
+ With *pWith = pSelect->pWith;
+ if( pWith ){
+ Parse *pParse = pWalker->pParse;
+ int i;
+ With *pCopy = 0;
+ assert( pWith->nCte>0 );
+ if( (pWith->a[0].pSelect->selFlags & SF_Expanded)==0 ){
+ /* Push a copy of the With object onto the with-stack. We use a copy
+ ** here as the original will be expanded and resolved (flags SF_Expanded
+ ** and SF_Resolved) below. And the parser code that uses the with-stack
+ ** fails if the Select objects on it have already been expanded and
+ ** resolved. */
+ pCopy = sqlite3WithDup(pParse->db, pWith);
+ pCopy = sqlite3WithPush(pParse, pCopy, 1);
+ }
+ for(i=0; i<pWith->nCte; i++){
+ Select *p = pWith->a[i].pSelect;
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ if( pCopy ) sqlite3SelectPrep(sNC.pParse, p, &sNC);
+ if( sNC.pParse->db->mallocFailed ) return;
+ sqlite3WalkSelect(pWalker, p);
+ sqlite3RenameExprlistUnmap(pParse, pWith->a[i].pCols);
+ }
+ if( pCopy && pParse->pWith==pCopy ){
+ pParse->pWith = pCopy->pOuter;
+ }
+ }
+}
+
+/*
+** Unmap all tokens in the IdList object passed as the second argument.
+*/
+static void unmapColumnIdlistNames(
+ Parse *pParse,
+ const IdList *pIdList
+){
+ int ii;
+ assert( pIdList!=0 );
+ for(ii=0; ii<pIdList->nId; ii++){
+ sqlite3RenameTokenRemap(pParse, 0, (const void*)pIdList->a[ii].zName);
+ }
+}
+
+/*
+** Walker callback used by sqlite3RenameExprUnmap().
+*/
+static int renameUnmapSelectCb(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i;
+ if( pParse->nErr ) return WRC_Abort;
+ testcase( p->selFlags & SF_View );
+ testcase( p->selFlags & SF_CopyCte );
+ if( p->selFlags & (SF_View|SF_CopyCte) ){
+ return WRC_Prune;
+ }
+ if( ALWAYS(p->pEList) ){
+ ExprList *pList = p->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].zEName && pList->a[i].fg.eEName==ENAME_NAME ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pList->a[i].zEName);
+ }
+ }
+ }
+ if( ALWAYS(p->pSrc) ){ /* Every Select as a SrcList, even if it is empty */
+ SrcList *pSrc = p->pSrc;
+ for(i=0; i<pSrc->nSrc; i++){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pSrc->a[i].zName);
+ if( pSrc->a[i].fg.isUsing==0 ){
+ sqlite3WalkExpr(pWalker, pSrc->a[i].u3.pOn);
+ }else{
+ unmapColumnIdlistNames(pParse, pSrc->a[i].u3.pUsing);
+ }
+ }
+ }
+
+ renameWalkWith(pWalker, p);
+ return WRC_Continue;
+}
+
+/*
+** Remove all nodes that are part of expression pExpr from the rename list.
+*/
+SQLITE_PRIVATE void sqlite3RenameExprUnmap(Parse *pParse, Expr *pExpr){
+ u8 eMode = pParse->eParseMode;
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = renameUnmapExprCb;
+ sWalker.xSelectCallback = renameUnmapSelectCb;
+ pParse->eParseMode = PARSE_MODE_UNMAP;
+ sqlite3WalkExpr(&sWalker, pExpr);
+ pParse->eParseMode = eMode;
+}
+
+/*
+** Remove all nodes that are part of expression-list pEList from the
+** rename list.
+*/
+SQLITE_PRIVATE void sqlite3RenameExprlistUnmap(Parse *pParse, ExprList *pEList){
+ if( pEList ){
+ int i;
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = renameUnmapExprCb;
+ sqlite3WalkExprList(&sWalker, pEList);
+ for(i=0; i<pEList->nExpr; i++){
+ if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME) ){
+ sqlite3RenameTokenRemap(pParse, 0, (void*)pEList->a[i].zEName);
+ }
+ }
+ }
+}
+
+/*
+** Free the list of RenameToken objects given in the second argument
+*/
+static void renameTokenFree(sqlite3 *db, RenameToken *pToken){
+ RenameToken *pNext;
+ RenameToken *p;
+ for(p=pToken; p; p=pNext){
+ pNext = p->pNext;
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Search the Parse object passed as the first argument for a RenameToken
+** object associated with parse tree element pPtr. If found, return a pointer
+** to it. Otherwise, return NULL.
+**
+** If the second argument passed to this function is not NULL and a matching
+** RenameToken object is found, remove it from the Parse object and add it to
+** the list maintained by the RenameCtx object.
+*/
+static RenameToken *renameTokenFind(
+ Parse *pParse,
+ struct RenameCtx *pCtx,
+ const void *pPtr
+){
+ RenameToken **pp;
+ if( NEVER(pPtr==0) ){
+ return 0;
+ }
+ for(pp=&pParse->pRename; (*pp); pp=&(*pp)->pNext){
+ if( (*pp)->p==pPtr ){
+ RenameToken *pToken = *pp;
+ if( pCtx ){
+ *pp = pToken->pNext;
+ pToken->pNext = pCtx->pList;
+ pCtx->pList = pToken;
+ pCtx->nList++;
+ }
+ return pToken;
+ }
+ }
+ return 0;
+}
+
+/*
+** This is a Walker select callback. It does nothing. It is only required
+** because without a dummy callback, sqlite3WalkExpr() and similar do not
+** descend into sub-select statements.
+*/
+static int renameColumnSelectCb(Walker *pWalker, Select *p){
+ if( p->selFlags & (SF_View|SF_CopyCte) ){
+ testcase( p->selFlags & SF_View );
+ testcase( p->selFlags & SF_CopyCte );
+ return WRC_Prune;
+ }
+ renameWalkWith(pWalker, p);
+ return WRC_Continue;
+}
+
+/*
+** This is a Walker expression callback.
+**
+** For every TK_COLUMN node in the expression tree, search to see
+** if the column being references is the column being renamed by an
+** ALTER TABLE statement. If it is, then attach its associated
+** RenameToken object to the list of RenameToken objects being
+** constructed in RenameCtx object at pWalker->u.pRename.
+*/
+static int renameColumnExprCb(Walker *pWalker, Expr *pExpr){
+ RenameCtx *p = pWalker->u.pRename;
+ if( pExpr->op==TK_TRIGGER
+ && pExpr->iColumn==p->iCol
+ && pWalker->pParse->pTriggerTab==p->pTab
+ ){
+ renameTokenFind(pWalker->pParse, p, (void*)pExpr);
+ }else if( pExpr->op==TK_COLUMN
+ && pExpr->iColumn==p->iCol
+ && ALWAYS(ExprUseYTab(pExpr))
+ && p->pTab==pExpr->y.pTab
+ ){
+ renameTokenFind(pWalker->pParse, p, (void*)pExpr);
+ }
+ return WRC_Continue;
+}
+
+/*
+** The RenameCtx contains a list of tokens that reference a column that
+** is being renamed by an ALTER TABLE statement. Return the "last"
+** RenameToken in the RenameCtx and remove that RenameToken from the
+** RenameContext. "Last" means the last RenameToken encountered when
+** the input SQL is parsed from left to right. Repeated calls to this routine
+** return all column name tokens in the order that they are encountered
+** in the SQL statement.
+*/
+static RenameToken *renameColumnTokenNext(RenameCtx *pCtx){
+ RenameToken *pBest = pCtx->pList;
+ RenameToken *pToken;
+ RenameToken **pp;
+
+ for(pToken=pBest->pNext; pToken; pToken=pToken->pNext){
+ if( pToken->t.z>pBest->t.z ) pBest = pToken;
+ }
+ for(pp=&pCtx->pList; *pp!=pBest; pp=&(*pp)->pNext);
+ *pp = pBest->pNext;
+
+ return pBest;
+}
+
+/*
+** An error occurred while parsing or otherwise processing a database
+** object (either pParse->pNewTable, pNewIndex or pNewTrigger) as part of an
+** ALTER TABLE RENAME COLUMN program. The error message emitted by the
+** sub-routine is currently stored in pParse->zErrMsg. This function
+** adds context to the error message and then stores it in pCtx.
+*/
+static void renameColumnParseError(
+ sqlite3_context *pCtx,
+ const char *zWhen,
+ sqlite3_value *pType,
+ sqlite3_value *pObject,
+ Parse *pParse
+){
+ const char *zT = (const char*)sqlite3_value_text(pType);
+ const char *zN = (const char*)sqlite3_value_text(pObject);
+ char *zErr;
+
+ zErr = sqlite3MPrintf(pParse->db, "error in %s %s%s%s: %s",
+ zT, zN, (zWhen[0] ? " " : ""), zWhen,
+ pParse->zErrMsg
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3DbFree(pParse->db, zErr);
+}
+
+/*
+** For each name in the the expression-list pEList (i.e. each
+** pEList->a[i].zName) that matches the string in zOld, extract the
+** corresponding rename-token from Parse object pParse and add it
+** to the RenameCtx pCtx.
+*/
+static void renameColumnElistNames(
+ Parse *pParse,
+ RenameCtx *pCtx,
+ const ExprList *pEList,
+ const char *zOld
+){
+ if( pEList ){
+ int i;
+ for(i=0; i<pEList->nExpr; i++){
+ const char *zName = pEList->a[i].zEName;
+ if( ALWAYS(pEList->a[i].fg.eEName==ENAME_NAME)
+ && ALWAYS(zName!=0)
+ && 0==sqlite3_stricmp(zName, zOld)
+ ){
+ renameTokenFind(pParse, pCtx, (const void*)zName);
+ }
+ }
+ }
+}
+
+/*
+** For each name in the the id-list pIdList (i.e. each pIdList->a[i].zName)
+** that matches the string in zOld, extract the corresponding rename-token
+** from Parse object pParse and add it to the RenameCtx pCtx.
+*/
+static void renameColumnIdlistNames(
+ Parse *pParse,
+ RenameCtx *pCtx,
+ const IdList *pIdList,
+ const char *zOld
+){
+ if( pIdList ){
+ int i;
+ for(i=0; i<pIdList->nId; i++){
+ const char *zName = pIdList->a[i].zName;
+ if( 0==sqlite3_stricmp(zName, zOld) ){
+ renameTokenFind(pParse, pCtx, (const void*)zName);
+ }
+ }
+ }
+}
+
+
+/*
+** Parse the SQL statement zSql using Parse object (*p). The Parse object
+** is initialized by this function before it is used.
+*/
+static int renameParseSql(
+ Parse *p, /* Memory to use for Parse object */
+ const char *zDb, /* Name of schema SQL belongs to */
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL to parse */
+ int bTemp /* True if SQL is from temp schema */
+){
+ int rc;
+
+ sqlite3ParseObjectInit(p, db);
+ if( zSql==0 ){
+ return SQLITE_NOMEM;
+ }
+ if( sqlite3StrNICmp(zSql,"CREATE ",7)!=0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ db->init.iDb = bTemp ? 1 : sqlite3FindDbName(db, zDb);
+ p->eParseMode = PARSE_MODE_RENAME;
+ p->db = db;
+ p->nQueryLoop = 1;
+ rc = sqlite3RunParser(p, zSql);
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+ if( rc==SQLITE_OK
+ && NEVER(p->pNewTable==0 && p->pNewIndex==0 && p->pNewTrigger==0)
+ ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+
+#ifdef SQLITE_DEBUG
+ /* Ensure that all mappings in the Parse.pRename list really do map to
+ ** a part of the input string. */
+ if( rc==SQLITE_OK ){
+ int nSql = sqlite3Strlen30(zSql);
+ RenameToken *pToken;
+ for(pToken=p->pRename; pToken; pToken=pToken->pNext){
+ assert( pToken->t.z>=zSql && &pToken->t.z[pToken->t.n]<=&zSql[nSql] );
+ }
+ }
+#endif
+
+ db->init.iDb = 0;
+ return rc;
+}
+
+/*
+** This function edits SQL statement zSql, replacing each token identified
+** by the linked list pRename with the text of zNew. If argument bQuote is
+** true, then zNew is always quoted first. If no error occurs, the result
+** is loaded into context object pCtx as the result.
+**
+** Or, if an error occurs (i.e. an OOM condition), an error is left in
+** pCtx and an SQLite error code returned.
+*/
+static int renameEditSql(
+ sqlite3_context *pCtx, /* Return result here */
+ RenameCtx *pRename, /* Rename context */
+ const char *zSql, /* SQL statement to edit */
+ const char *zNew, /* New token text */
+ int bQuote /* True to always quote token */
+){
+ i64 nNew = sqlite3Strlen30(zNew);
+ i64 nSql = sqlite3Strlen30(zSql);
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ int rc = SQLITE_OK;
+ char *zQuot = 0;
+ char *zOut;
+ i64 nQuot = 0;
+ char *zBuf1 = 0;
+ char *zBuf2 = 0;
+
+ if( zNew ){
+ /* Set zQuot to point to a buffer containing a quoted copy of the
+ ** identifier zNew. If the corresponding identifier in the original
+ ** ALTER TABLE statement was quoted (bQuote==1), then set zNew to
+ ** point to zQuot so that all substitutions are made using the
+ ** quoted version of the new column name. */
+ zQuot = sqlite3MPrintf(db, "\"%w\" ", zNew);
+ if( zQuot==0 ){
+ return SQLITE_NOMEM;
+ }else{
+ nQuot = sqlite3Strlen30(zQuot)-1;
+ }
+
+ assert( nQuot>=nNew );
+ zOut = sqlite3DbMallocZero(db, nSql + pRename->nList*nQuot + 1);
+ }else{
+ zOut = (char*)sqlite3DbMallocZero(db, (nSql*2+1) * 3);
+ if( zOut ){
+ zBuf1 = &zOut[nSql*2+1];
+ zBuf2 = &zOut[nSql*4+2];
+ }
+ }
+
+ /* At this point pRename->pList contains a list of RenameToken objects
+ ** corresponding to all tokens in the input SQL that must be replaced
+ ** with the new column name, or with single-quoted versions of themselves.
+ ** All that remains is to construct and return the edited SQL string. */
+ if( zOut ){
+ int nOut = nSql;
+ memcpy(zOut, zSql, nSql);
+ while( pRename->pList ){
+ int iOff; /* Offset of token to replace in zOut */
+ u32 nReplace;
+ const char *zReplace;
+ RenameToken *pBest = renameColumnTokenNext(pRename);
+
+ if( zNew ){
+ if( bQuote==0 && sqlite3IsIdChar(*pBest->t.z) ){
+ nReplace = nNew;
+ zReplace = zNew;
+ }else{
+ nReplace = nQuot;
+ zReplace = zQuot;
+ if( pBest->t.z[pBest->t.n]=='"' ) nReplace++;
+ }
+ }else{
+ /* Dequote the double-quoted token. Then requote it again, this time
+ ** using single quotes. If the character immediately following the
+ ** original token within the input SQL was a single quote ('), then
+ ** add another space after the new, single-quoted version of the
+ ** token. This is so that (SELECT "string"'alias') maps to
+ ** (SELECT 'string' 'alias'), and not (SELECT 'string''alias'). */
+ memcpy(zBuf1, pBest->t.z, pBest->t.n);
+ zBuf1[pBest->t.n] = 0;
+ sqlite3Dequote(zBuf1);
+ sqlite3_snprintf(nSql*2, zBuf2, "%Q%s", zBuf1,
+ pBest->t.z[pBest->t.n]=='\'' ? " " : ""
+ );
+ zReplace = zBuf2;
+ nReplace = sqlite3Strlen30(zReplace);
+ }
+
+ iOff = pBest->t.z - zSql;
+ if( pBest->t.n!=nReplace ){
+ memmove(&zOut[iOff + nReplace], &zOut[iOff + pBest->t.n],
+ nOut - (iOff + pBest->t.n)
+ );
+ nOut += nReplace - pBest->t.n;
+ zOut[nOut] = '\0';
+ }
+ memcpy(&zOut[iOff], zReplace, nReplace);
+ sqlite3DbFree(db, pBest);
+ }
+
+ sqlite3_result_text(pCtx, zOut, -1, SQLITE_TRANSIENT);
+ sqlite3DbFree(db, zOut);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ sqlite3_free(zQuot);
+ return rc;
+}
+
+/*
+** Set all pEList->a[].fg.eEName fields in the expression-list to val.
+*/
+static void renameSetENames(ExprList *pEList, int val){
+ if( pEList ){
+ int i;
+ for(i=0; i<pEList->nExpr; i++){
+ assert( val==ENAME_NAME || pEList->a[i].fg.eEName==ENAME_NAME );
+ pEList->a[i].fg.eEName = val;
+ }
+ }
+}
+
+/*
+** Resolve all symbols in the trigger at pParse->pNewTrigger, assuming
+** it was read from the schema of database zDb. Return SQLITE_OK if
+** successful. Otherwise, return an SQLite error code and leave an error
+** message in the Parse object.
+*/
+static int renameResolveTrigger(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ Trigger *pNew = pParse->pNewTrigger;
+ TriggerStep *pStep;
+ NameContext sNC;
+ int rc = SQLITE_OK;
+
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ assert( pNew->pTabSchema );
+ pParse->pTriggerTab = sqlite3FindTable(db, pNew->table,
+ db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName
+ );
+ pParse->eTriggerOp = pNew->op;
+ /* ALWAYS() because if the table of the trigger does not exist, the
+ ** error would have been hit before this point */
+ if( ALWAYS(pParse->pTriggerTab) ){
+ rc = sqlite3ViewGetColumnNames(pParse, pParse->pTriggerTab);
+ }
+
+ /* Resolve symbols in WHEN clause */
+ if( rc==SQLITE_OK && pNew->pWhen ){
+ rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen);
+ }
+
+ for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){
+ if( pStep->pSelect ){
+ sqlite3SelectPrep(pParse, pStep->pSelect, &sNC);
+ if( pParse->nErr ) rc = pParse->rc;
+ }
+ if( rc==SQLITE_OK && pStep->zTarget ){
+ SrcList *pSrc = sqlite3TriggerStepSrc(pParse, pStep);
+ if( pSrc ){
+ Select *pSel = sqlite3SelectNew(
+ pParse, pStep->pExprList, pSrc, 0, 0, 0, 0, 0, 0
+ );
+ if( pSel==0 ){
+ pStep->pExprList = 0;
+ pSrc = 0;
+ rc = SQLITE_NOMEM;
+ }else{
+ /* pStep->pExprList contains an expression-list used for an UPDATE
+ ** statement. So the a[].zEName values are the RHS of the
+ ** "<col> = <expr>" clauses of the UPDATE statement. So, before
+ ** running SelectPrep(), change all the eEName values in
+ ** pStep->pExprList to ENAME_SPAN (from their current value of
+ ** ENAME_NAME). This is to prevent any ids in ON() clauses that are
+ ** part of pSrc from being incorrectly resolved against the
+ ** a[].zEName values as if they were column aliases. */
+ renameSetENames(pStep->pExprList, ENAME_SPAN);
+ sqlite3SelectPrep(pParse, pSel, 0);
+ renameSetENames(pStep->pExprList, ENAME_NAME);
+ rc = pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
+ assert( pStep->pExprList==0 || pStep->pExprList==pSel->pEList );
+ assert( pSrc==pSel->pSrc );
+ if( pStep->pExprList ) pSel->pEList = 0;
+ pSel->pSrc = 0;
+ sqlite3SelectDelete(db, pSel);
+ }
+ if( pStep->pFrom ){
+ int i;
+ for(i=0; i<pStep->pFrom->nSrc && rc==SQLITE_OK; i++){
+ SrcItem *p = &pStep->pFrom->a[i];
+ if( p->pSelect ){
+ sqlite3SelectPrep(pParse, p->pSelect, 0);
+ }
+ }
+ }
+
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM;
+ }
+ sNC.pSrcList = pSrc;
+ if( rc==SQLITE_OK && pStep->pWhere ){
+ rc = sqlite3ResolveExprNames(&sNC, pStep->pWhere);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3ResolveExprListNames(&sNC, pStep->pExprList);
+ }
+ assert( !pStep->pUpsert || (!pStep->pWhere && !pStep->pExprList) );
+ if( pStep->pUpsert && rc==SQLITE_OK ){
+ Upsert *pUpsert = pStep->pUpsert;
+ pUpsert->pUpsertSrc = pSrc;
+ sNC.uNC.pUpsert = pUpsert;
+ sNC.ncFlags = NC_UUpsert;
+ rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
+ if( rc==SQLITE_OK ){
+ ExprList *pUpsertSet = pUpsert->pUpsertSet;
+ rc = sqlite3ResolveExprListNames(&sNC, pUpsertSet);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertWhere);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
+ }
+ sNC.ncFlags = 0;
+ }
+ sNC.pSrcList = 0;
+ sqlite3SrcListDelete(db, pSrc);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Invoke sqlite3WalkExpr() or sqlite3WalkSelect() on all Select or Expr
+** objects that are part of the trigger passed as the second argument.
+*/
+static void renameWalkTrigger(Walker *pWalker, Trigger *pTrigger){
+ TriggerStep *pStep;
+
+ /* Find tokens to edit in WHEN clause */
+ sqlite3WalkExpr(pWalker, pTrigger->pWhen);
+
+ /* Find tokens to edit in trigger steps */
+ for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){
+ sqlite3WalkSelect(pWalker, pStep->pSelect);
+ sqlite3WalkExpr(pWalker, pStep->pWhere);
+ sqlite3WalkExprList(pWalker, pStep->pExprList);
+ if( pStep->pUpsert ){
+ Upsert *pUpsert = pStep->pUpsert;
+ sqlite3WalkExprList(pWalker, pUpsert->pUpsertTarget);
+ sqlite3WalkExprList(pWalker, pUpsert->pUpsertSet);
+ sqlite3WalkExpr(pWalker, pUpsert->pUpsertWhere);
+ sqlite3WalkExpr(pWalker, pUpsert->pUpsertTargetWhere);
+ }
+ if( pStep->pFrom ){
+ int i;
+ for(i=0; i<pStep->pFrom->nSrc; i++){
+ sqlite3WalkSelect(pWalker, pStep->pFrom->a[i].pSelect);
+ }
+ }
+ }
+}
+
+/*
+** Free the contents of Parse object (*pParse). Do not free the memory
+** occupied by the Parse object itself.
+*/
+static void renameParseCleanup(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ Index *pIdx;
+ if( pParse->pVdbe ){
+ sqlite3VdbeFinalize(pParse->pVdbe);
+ }
+ sqlite3DeleteTable(db, pParse->pNewTable);
+ while( (pIdx = pParse->pNewIndex)!=0 ){
+ pParse->pNewIndex = pIdx->pNext;
+ sqlite3FreeIndex(db, pIdx);
+ }
+ sqlite3DeleteTrigger(db, pParse->pNewTrigger);
+ sqlite3DbFree(db, pParse->zErrMsg);
+ renameTokenFree(db, pParse->pRename);
+ sqlite3ParseObjectReset(pParse);
+}
+
+/*
+** SQL function:
+**
+** sqlite_rename_column(SQL,TYPE,OBJ,DB,TABLE,COL,NEWNAME,QUOTE,TEMP)
+**
+** 0. zSql: SQL statement to rewrite
+** 1. type: Type of object ("table", "view" etc.)
+** 2. object: Name of object
+** 3. Database: Database name (e.g. "main")
+** 4. Table: Table name
+** 5. iCol: Index of column to rename
+** 6. zNew: New column name
+** 7. bQuote: Non-zero if the new column name should be quoted.
+** 8. bTemp: True if zSql comes from temp schema
+**
+** Do a column rename operation on the CREATE statement given in zSql.
+** The iCol-th column (left-most is 0) of table zTable is renamed from zCol
+** into zNew. The name should be quoted if bQuote is true.
+**
+** This function is used internally by the ALTER TABLE RENAME COLUMN command.
+** It is only accessible to SQL created using sqlite3NestedParse(). It is
+** not reachable from ordinary SQL passed into sqlite3_prepare() unless the
+** SQLITE_TESTCTRL_INTERNAL_FUNCTIONS test setting is enabled.
+*/
+static void renameColumnFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ RenameCtx sCtx;
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]);
+ const char *zDb = (const char*)sqlite3_value_text(argv[3]);
+ const char *zTable = (const char*)sqlite3_value_text(argv[4]);
+ int iCol = sqlite3_value_int(argv[5]);
+ const char *zNew = (const char*)sqlite3_value_text(argv[6]);
+ int bQuote = sqlite3_value_int(argv[7]);
+ int bTemp = sqlite3_value_int(argv[8]);
+ const char *zOld;
+ int rc;
+ Parse sParse;
+ Walker sWalker;
+ Index *pIdx;
+ int i;
+ Table *pTab;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+#endif
+
+ UNUSED_PARAMETER(NotUsed);
+ if( zSql==0 ) return;
+ if( zTable==0 ) return;
+ if( zNew==0 ) return;
+ if( iCol<0 ) return;
+ sqlite3BtreeEnterAll(db);
+ pTab = sqlite3FindTable(db, zTable, zDb);
+ if( pTab==0 || iCol>=pTab->nCol ){
+ sqlite3BtreeLeaveAll(db);
+ return;
+ }
+ zOld = pTab->aCol[iCol].zCnName;
+ memset(&sCtx, 0, sizeof(sCtx));
+ sCtx.iCol = ((iCol==pTab->iPKey) ? -1 : iCol);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = 0;
+#endif
+ rc = renameParseSql(&sParse, zDb, db, zSql, bTemp);
+
+ /* Find tokens that need to be replaced. */
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = &sParse;
+ sWalker.xExprCallback = renameColumnExprCb;
+ sWalker.xSelectCallback = renameColumnSelectCb;
+ sWalker.u.pRename = &sCtx;
+
+ sCtx.pTab = pTab;
+ if( rc!=SQLITE_OK ) goto renameColumnFunc_done;
+ if( sParse.pNewTable ){
+ if( IsView(sParse.pNewTable) ){
+ Select *pSelect = sParse.pNewTable->u.view.pSelect;
+ pSelect->selFlags &= ~SF_View;
+ sParse.rc = SQLITE_OK;
+ sqlite3SelectPrep(&sParse, pSelect, 0);
+ rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc);
+ if( rc==SQLITE_OK ){
+ sqlite3WalkSelect(&sWalker, pSelect);
+ }
+ if( rc!=SQLITE_OK ) goto renameColumnFunc_done;
+ }else if( IsOrdinaryTable(sParse.pNewTable) ){
+ /* A regular table */
+ int bFKOnly = sqlite3_stricmp(zTable, sParse.pNewTable->zName);
+ FKey *pFKey;
+ sCtx.pTab = sParse.pNewTable;
+ if( bFKOnly==0 ){
+ if( iCol<sParse.pNewTable->nCol ){
+ renameTokenFind(
+ &sParse, &sCtx, (void*)sParse.pNewTable->aCol[iCol].zCnName
+ );
+ }
+ if( sCtx.iCol<0 ){
+ renameTokenFind(&sParse, &sCtx, (void*)&sParse.pNewTable->iPKey);
+ }
+ sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck);
+ for(pIdx=sParse.pNewTable->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3WalkExprList(&sWalker, pIdx->aColExpr);
+ }
+ for(pIdx=sParse.pNewIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3WalkExprList(&sWalker, pIdx->aColExpr);
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ for(i=0; i<sParse.pNewTable->nCol; i++){
+ Expr *pExpr = sqlite3ColumnExpr(sParse.pNewTable,
+ &sParse.pNewTable->aCol[i]);
+ sqlite3WalkExpr(&sWalker, pExpr);
+ }
+#endif
+ }
+
+ assert( IsOrdinaryTable(sParse.pNewTable) );
+ for(pFKey=sParse.pNewTable->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ for(i=0; i<pFKey->nCol; i++){
+ if( bFKOnly==0 && pFKey->aCol[i].iFrom==iCol ){
+ renameTokenFind(&sParse, &sCtx, (void*)&pFKey->aCol[i]);
+ }
+ if( 0==sqlite3_stricmp(pFKey->zTo, zTable)
+ && 0==sqlite3_stricmp(pFKey->aCol[i].zCol, zOld)
+ ){
+ renameTokenFind(&sParse, &sCtx, (void*)pFKey->aCol[i].zCol);
+ }
+ }
+ }
+ }
+ }else if( sParse.pNewIndex ){
+ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr);
+ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
+ }else{
+ /* A trigger */
+ TriggerStep *pStep;
+ rc = renameResolveTrigger(&sParse);
+ if( rc!=SQLITE_OK ) goto renameColumnFunc_done;
+
+ for(pStep=sParse.pNewTrigger->step_list; pStep; pStep=pStep->pNext){
+ if( pStep->zTarget ){
+ Table *pTarget = sqlite3LocateTable(&sParse, 0, pStep->zTarget, zDb);
+ if( pTarget==pTab ){
+ if( pStep->pUpsert ){
+ ExprList *pUpsertSet = pStep->pUpsert->pUpsertSet;
+ renameColumnElistNames(&sParse, &sCtx, pUpsertSet, zOld);
+ }
+ renameColumnIdlistNames(&sParse, &sCtx, pStep->pIdList, zOld);
+ renameColumnElistNames(&sParse, &sCtx, pStep->pExprList, zOld);
+ }
+ }
+ }
+
+
+ /* Find tokens to edit in UPDATE OF clause */
+ if( sParse.pTriggerTab==pTab ){
+ renameColumnIdlistNames(&sParse, &sCtx,sParse.pNewTrigger->pColumns,zOld);
+ }
+
+ /* Find tokens to edit in various expressions and selects */
+ renameWalkTrigger(&sWalker, sParse.pNewTrigger);
+ }
+
+ assert( rc==SQLITE_OK );
+ rc = renameEditSql(context, &sCtx, zSql, zNew, bQuote);
+
+renameColumnFunc_done:
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){
+ sqlite3_result_value(context, argv[0]);
+ }else if( sParse.zErrMsg ){
+ renameColumnParseError(context, "", argv[1], argv[2], &sParse);
+ }else{
+ sqlite3_result_error_code(context, rc);
+ }
+ }
+
+ renameParseCleanup(&sParse);
+ renameTokenFree(db, sCtx.pList);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ sqlite3BtreeLeaveAll(db);
+}
+
+/*
+** Walker expression callback used by "RENAME TABLE".
+*/
+static int renameTableExprCb(Walker *pWalker, Expr *pExpr){
+ RenameCtx *p = pWalker->u.pRename;
+ if( pExpr->op==TK_COLUMN
+ && ALWAYS(ExprUseYTab(pExpr))
+ && p->pTab==pExpr->y.pTab
+ ){
+ renameTokenFind(pWalker->pParse, p, (void*)&pExpr->y.pTab);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Walker select callback used by "RENAME TABLE".
+*/
+static int renameTableSelectCb(Walker *pWalker, Select *pSelect){
+ int i;
+ RenameCtx *p = pWalker->u.pRename;
+ SrcList *pSrc = pSelect->pSrc;
+ if( pSelect->selFlags & (SF_View|SF_CopyCte) ){
+ testcase( pSelect->selFlags & SF_View );
+ testcase( pSelect->selFlags & SF_CopyCte );
+ return WRC_Prune;
+ }
+ if( NEVER(pSrc==0) ){
+ assert( pWalker->pParse->db->mallocFailed );
+ return WRC_Abort;
+ }
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *pItem = &pSrc->a[i];
+ if( pItem->pTab==p->pTab ){
+ renameTokenFind(pWalker->pParse, p, pItem->zName);
+ }
+ }
+ renameWalkWith(pWalker, pSelect);
+
+ return WRC_Continue;
+}
+
+
+/*
+** This C function implements an SQL user function that is used by SQL code
+** generated by the ALTER TABLE ... RENAME command to modify the definition
+** of any foreign key constraints that use the table being renamed as the
+** parent table. It is passed three arguments:
+**
+** 0: The database containing the table being renamed.
+** 1. type: Type of object ("table", "view" etc.)
+** 2. object: Name of object
+** 3: The complete text of the schema statement being modified,
+** 4: The old name of the table being renamed, and
+** 5: The new name of the table being renamed.
+** 6: True if the schema statement comes from the temp db.
+**
+** It returns the new schema statement. For example:
+**
+** sqlite_rename_table('main', 'CREATE TABLE t1(a REFERENCES t2)','t2','t3',0)
+** -> 'CREATE TABLE t1(a REFERENCES t3)'
+*/
+static void renameTableFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char *zDb = (const char*)sqlite3_value_text(argv[0]);
+ const char *zInput = (const char*)sqlite3_value_text(argv[3]);
+ const char *zOld = (const char*)sqlite3_value_text(argv[4]);
+ const char *zNew = (const char*)sqlite3_value_text(argv[5]);
+ int bTemp = sqlite3_value_int(argv[6]);
+ UNUSED_PARAMETER(NotUsed);
+
+ if( zInput && zOld && zNew ){
+ Parse sParse;
+ int rc;
+ int bQuote = 1;
+ RenameCtx sCtx;
+ Walker sWalker;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ sqlite3BtreeEnterAll(db);
+
+ memset(&sCtx, 0, sizeof(RenameCtx));
+ sCtx.pTab = sqlite3FindTable(db, zOld, zDb);
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = &sParse;
+ sWalker.xExprCallback = renameTableExprCb;
+ sWalker.xSelectCallback = renameTableSelectCb;
+ sWalker.u.pRename = &sCtx;
+
+ rc = renameParseSql(&sParse, zDb, db, zInput, bTemp);
+
+ if( rc==SQLITE_OK ){
+ int isLegacy = (db->flags & SQLITE_LegacyAlter);
+ if( sParse.pNewTable ){
+ Table *pTab = sParse.pNewTable;
+
+ if( IsView(pTab) ){
+ if( isLegacy==0 ){
+ Select *pSelect = pTab->u.view.pSelect;
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = &sParse;
+
+ assert( pSelect->selFlags & SF_View );
+ pSelect->selFlags &= ~SF_View;
+ sqlite3SelectPrep(&sParse, pTab->u.view.pSelect, &sNC);
+ if( sParse.nErr ){
+ rc = sParse.rc;
+ }else{
+ sqlite3WalkSelect(&sWalker, pTab->u.view.pSelect);
+ }
+ }
+ }else{
+ /* Modify any FK definitions to point to the new table. */
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( (isLegacy==0 || (db->flags & SQLITE_ForeignKeys))
+ && !IsVirtual(pTab)
+ ){
+ FKey *pFKey;
+ assert( IsOrdinaryTable(pTab) );
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){
+ renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo);
+ }
+ }
+ }
+#endif
+
+ /* If this is the table being altered, fix any table refs in CHECK
+ ** expressions. Also update the name that appears right after the
+ ** "CREATE [VIRTUAL] TABLE" bit. */
+ if( sqlite3_stricmp(zOld, pTab->zName)==0 ){
+ sCtx.pTab = pTab;
+ if( isLegacy==0 ){
+ sqlite3WalkExprList(&sWalker, pTab->pCheck);
+ }
+ renameTokenFind(&sParse, &sCtx, pTab->zName);
+ }
+ }
+ }
+
+ else if( sParse.pNewIndex ){
+ renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName);
+ if( isLegacy==0 ){
+ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
+ }
+ }
+
+#ifndef SQLITE_OMIT_TRIGGER
+ else{
+ Trigger *pTrigger = sParse.pNewTrigger;
+ TriggerStep *pStep;
+ if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld)
+ && sCtx.pTab->pSchema==pTrigger->pTabSchema
+ ){
+ renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table);
+ }
+
+ if( isLegacy==0 ){
+ rc = renameResolveTrigger(&sParse);
+ if( rc==SQLITE_OK ){
+ renameWalkTrigger(&sWalker, pTrigger);
+ for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){
+ if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){
+ renameTokenFind(&sParse, &sCtx, pStep->zTarget);
+ }
+ if( pStep->pFrom ){
+ int i;
+ for(i=0; i<pStep->pFrom->nSrc; i++){
+ SrcItem *pItem = &pStep->pFrom->a[i];
+ if( 0==sqlite3_stricmp(pItem->zName, zOld) ){
+ renameTokenFind(&sParse, &sCtx, pItem->zName);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+#endif
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = renameEditSql(context, &sCtx, zInput, zNew, bQuote);
+ }
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_ERROR && sqlite3WritableSchema(db) ){
+ sqlite3_result_value(context, argv[3]);
+ }else if( sParse.zErrMsg ){
+ renameColumnParseError(context, "", argv[1], argv[2], &sParse);
+ }else{
+ sqlite3_result_error_code(context, rc);
+ }
+ }
+
+ renameParseCleanup(&sParse);
+ renameTokenFree(db, sCtx.pList);
+ sqlite3BtreeLeaveAll(db);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ }
+
+ return;
+}
+
+static int renameQuotefixExprCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_STRING && (pExpr->flags & EP_DblQuoted) ){
+ renameTokenFind(pWalker->pParse, pWalker->u.pRename, (const void*)pExpr);
+ }
+ return WRC_Continue;
+}
+
+/* SQL function: sqlite_rename_quotefix(DB,SQL)
+**
+** Rewrite the DDL statement "SQL" so that any string literals that use
+** double-quotes use single quotes instead.
+**
+** Two arguments must be passed:
+**
+** 0: Database name ("main", "temp" etc.).
+** 1: SQL statement to edit.
+**
+** The returned value is the modified SQL statement. For example, given
+** the database schema:
+**
+** CREATE TABLE t1(a, b, c);
+**
+** SELECT sqlite_rename_quotefix('main',
+** 'CREATE VIEW v1 AS SELECT "a", "string" FROM t1'
+** );
+**
+** returns the string:
+**
+** CREATE VIEW v1 AS SELECT "a", 'string' FROM t1
+**
+** If there is a error in the input SQL, then raise an error, except
+** if PRAGMA writable_schema=ON, then just return the input string
+** unmodified following an error.
+*/
+static void renameQuotefixFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char const *zDb = (const char*)sqlite3_value_text(argv[0]);
+ char const *zInput = (const char*)sqlite3_value_text(argv[1]);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ sqlite3BtreeEnterAll(db);
+
+ UNUSED_PARAMETER(NotUsed);
+ if( zDb && zInput ){
+ int rc;
+ Parse sParse;
+ rc = renameParseSql(&sParse, zDb, db, zInput, 0);
+
+ if( rc==SQLITE_OK ){
+ RenameCtx sCtx;
+ Walker sWalker;
+
+ /* Walker to find tokens that need to be replaced. */
+ memset(&sCtx, 0, sizeof(RenameCtx));
+ memset(&sWalker, 0, sizeof(Walker));
+ sWalker.pParse = &sParse;
+ sWalker.xExprCallback = renameQuotefixExprCb;
+ sWalker.xSelectCallback = renameColumnSelectCb;
+ sWalker.u.pRename = &sCtx;
+
+ if( sParse.pNewTable ){
+ if( IsView(sParse.pNewTable) ){
+ Select *pSelect = sParse.pNewTable->u.view.pSelect;
+ pSelect->selFlags &= ~SF_View;
+ sParse.rc = SQLITE_OK;
+ sqlite3SelectPrep(&sParse, pSelect, 0);
+ rc = (db->mallocFailed ? SQLITE_NOMEM : sParse.rc);
+ if( rc==SQLITE_OK ){
+ sqlite3WalkSelect(&sWalker, pSelect);
+ }
+ }else{
+ int i;
+ sqlite3WalkExprList(&sWalker, sParse.pNewTable->pCheck);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ for(i=0; i<sParse.pNewTable->nCol; i++){
+ sqlite3WalkExpr(&sWalker,
+ sqlite3ColumnExpr(sParse.pNewTable,
+ &sParse.pNewTable->aCol[i]));
+ }
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+ }
+ }else if( sParse.pNewIndex ){
+ sqlite3WalkExprList(&sWalker, sParse.pNewIndex->aColExpr);
+ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
+ }else{
+#ifndef SQLITE_OMIT_TRIGGER
+ rc = renameResolveTrigger(&sParse);
+ if( rc==SQLITE_OK ){
+ renameWalkTrigger(&sWalker, sParse.pNewTrigger);
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = renameEditSql(context, &sCtx, zInput, 0, 0);
+ }
+ renameTokenFree(db, sCtx.pList);
+ }
+ if( rc!=SQLITE_OK ){
+ if( sqlite3WritableSchema(db) && rc==SQLITE_ERROR ){
+ sqlite3_result_value(context, argv[1]);
+ }else{
+ sqlite3_result_error_code(context, rc);
+ }
+ }
+ renameParseCleanup(&sParse);
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+
+ sqlite3BtreeLeaveAll(db);
+}
+
+/* Function: sqlite_rename_test(DB,SQL,TYPE,NAME,ISTEMP,WHEN,DQS)
+**
+** An SQL user function that checks that there are no parse or symbol
+** resolution problems in a CREATE TRIGGER|TABLE|VIEW|INDEX statement.
+** After an ALTER TABLE .. RENAME operation is performed and the schema
+** reloaded, this function is called on each SQL statement in the schema
+** to ensure that it is still usable.
+**
+** 0: Database name ("main", "temp" etc.).
+** 1: SQL statement.
+** 2: Object type ("view", "table", "trigger" or "index").
+** 3: Object name.
+** 4: True if object is from temp schema.
+** 5: "when" part of error message.
+** 6: True to disable the DQS quirk when parsing SQL.
+**
+** The return value is computed as follows:
+**
+** A. If an error is seen and not in PRAGMA writable_schema=ON mode,
+** then raise the error.
+** B. Else if a trigger is created and the the table that the trigger is
+** attached to is in database zDb, then return 1.
+** C. Otherwise return NULL.
+*/
+static void renameTableTest(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char const *zDb = (const char*)sqlite3_value_text(argv[0]);
+ char const *zInput = (const char*)sqlite3_value_text(argv[1]);
+ int bTemp = sqlite3_value_int(argv[4]);
+ int isLegacy = (db->flags & SQLITE_LegacyAlter);
+ char const *zWhen = (const char*)sqlite3_value_text(argv[5]);
+ int bNoDQS = sqlite3_value_int(argv[6]);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ UNUSED_PARAMETER(NotUsed);
+
+ if( zDb && zInput ){
+ int rc;
+ Parse sParse;
+ int flags = db->flags;
+ if( bNoDQS ) db->flags &= ~(SQLITE_DqsDML|SQLITE_DqsDDL);
+ rc = renameParseSql(&sParse, zDb, db, zInput, bTemp);
+ db->flags |= (flags & (SQLITE_DqsDML|SQLITE_DqsDDL));
+ if( rc==SQLITE_OK ){
+ if( isLegacy==0 && sParse.pNewTable && IsView(sParse.pNewTable) ){
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = &sParse;
+ sqlite3SelectPrep(&sParse, sParse.pNewTable->u.view.pSelect, &sNC);
+ if( sParse.nErr ) rc = sParse.rc;
+ }
+
+ else if( sParse.pNewTrigger ){
+ if( isLegacy==0 ){
+ rc = renameResolveTrigger(&sParse);
+ }
+ if( rc==SQLITE_OK ){
+ int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema);
+ int i2 = sqlite3FindDbName(db, zDb);
+ if( i1==i2 ){
+ /* Handle output case B */
+ sqlite3_result_int(context, 1);
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK && zWhen && !sqlite3WritableSchema(db) ){
+ /* Output case A */
+ renameColumnParseError(context, zWhen, argv[2], argv[3],&sParse);
+ }
+ renameParseCleanup(&sParse);
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+}
+
+/*
+** The implementation of internal UDF sqlite_drop_column().
+**
+** Arguments:
+**
+** argv[0]: An integer - the index of the schema containing the table
+** argv[1]: CREATE TABLE statement to modify.
+** argv[2]: An integer - the index of the column to remove.
+**
+** The value returned is a string containing the CREATE TABLE statement
+** with column argv[2] removed.
+*/
+static void dropColumnFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int iSchema = sqlite3_value_int(argv[0]);
+ const char *zSql = (const char*)sqlite3_value_text(argv[1]);
+ int iCol = sqlite3_value_int(argv[2]);
+ const char *zDb = db->aDb[iSchema].zDbSName;
+ int rc;
+ Parse sParse;
+ RenameToken *pCol;
+ Table *pTab;
+ const char *zEnd;
+ char *zNew = 0;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+
+ UNUSED_PARAMETER(NotUsed);
+ rc = renameParseSql(&sParse, zDb, db, zSql, iSchema==1);
+ if( rc!=SQLITE_OK ) goto drop_column_done;
+ pTab = sParse.pNewTable;
+ if( pTab==0 || pTab->nCol==1 || iCol>=pTab->nCol ){
+ /* This can happen if the sqlite_schema table is corrupt */
+ rc = SQLITE_CORRUPT_BKPT;
+ goto drop_column_done;
+ }
+
+ pCol = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol].zCnName);
+ if( iCol<pTab->nCol-1 ){
+ RenameToken *pEnd;
+ pEnd = renameTokenFind(&sParse, 0, (void*)pTab->aCol[iCol+1].zCnName);
+ zEnd = (const char*)pEnd->t.z;
+ }else{
+ assert( IsOrdinaryTable(pTab) );
+ zEnd = (const char*)&zSql[pTab->u.tab.addColOffset];
+ while( ALWAYS(pCol->t.z[0]!=0) && pCol->t.z[0]!=',' ) pCol->t.z--;
+ }
+
+ zNew = sqlite3MPrintf(db, "%.*s%s", pCol->t.z-zSql, zSql, zEnd);
+ sqlite3_result_text(context, zNew, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zNew);
+
+drop_column_done:
+ renameParseCleanup(&sParse);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+#endif
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(context, rc);
+ }
+}
+
+/*
+** This function is called by the parser upon parsing an
+**
+** ALTER TABLE pSrc DROP COLUMN pName
+**
+** statement. Argument pSrc contains the possibly qualified name of the
+** table being edited, and token pName the name of the column to drop.
+*/
+SQLITE_PRIVATE void sqlite3AlterDropColumn(Parse *pParse, SrcList *pSrc, const Token *pName){
+ sqlite3 *db = pParse->db; /* Database handle */
+ Table *pTab; /* Table to modify */
+ int iDb; /* Index of db containing pTab in aDb[] */
+ const char *zDb; /* Database containing pTab ("main" etc.) */
+ char *zCol = 0; /* Name of column to drop */
+ int iCol; /* Index of column zCol in pTab->aCol[] */
+
+ /* Look up the table being altered. */
+ assert( pParse->pNewTable==0 );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ if( NEVER(db->mallocFailed) ) goto exit_drop_column;
+ pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
+ if( !pTab ) goto exit_drop_column;
+
+ /* Make sure this is not an attempt to ALTER a view, virtual table or
+ ** system table. */
+ if( SQLITE_OK!=isAlterableTable(pParse, pTab) ) goto exit_drop_column;
+ if( SQLITE_OK!=isRealTable(pParse, pTab, 1) ) goto exit_drop_column;
+
+ /* Find the index of the column being dropped. */
+ zCol = sqlite3NameFromToken(db, pName);
+ if( zCol==0 ){
+ assert( db->mallocFailed );
+ goto exit_drop_column;
+ }
+ iCol = sqlite3ColumnIndex(pTab, zCol);
+ if( iCol<0 ){
+ sqlite3ErrorMsg(pParse, "no such column: \"%T\"", pName);
+ goto exit_drop_column;
+ }
+
+ /* Do not allow the user to drop a PRIMARY KEY column or a column
+ ** constrained by a UNIQUE constraint. */
+ if( pTab->aCol[iCol].colFlags & (COLFLAG_PRIMKEY|COLFLAG_UNIQUE) ){
+ sqlite3ErrorMsg(pParse, "cannot drop %s column: \"%s\"",
+ (pTab->aCol[iCol].colFlags&COLFLAG_PRIMKEY) ? "PRIMARY KEY" : "UNIQUE",
+ zCol
+ );
+ goto exit_drop_column;
+ }
+
+ /* Do not allow the number of columns to go to zero */
+ if( pTab->nCol<=1 ){
+ sqlite3ErrorMsg(pParse, "cannot drop column \"%s\": no other columns exist",zCol);
+ goto exit_drop_column;
+ }
+
+ /* Edit the sqlite_schema table */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 );
+ zDb = db->aDb[iDb].zDbSName;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, zCol) ){
+ goto exit_drop_column;
+ }
+#endif
+ renameTestSchema(pParse, zDb, iDb==1, "", 0);
+ renameFixQuotes(pParse, zDb, iDb==1);
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\"." LEGACY_SCHEMA_TABLE " SET "
+ "sql = sqlite_drop_column(%d, sql, %d) "
+ "WHERE (type=='table' AND tbl_name=%Q COLLATE nocase)"
+ , zDb, iDb, iCol, pTab->zName
+ );
+
+ /* Drop and reload the database schema. */
+ renameReloadSchema(pParse, iDb, INITFLAG_AlterDrop);
+ renameTestSchema(pParse, zDb, iDb==1, "after drop column", 1);
+
+ /* Edit rows of table on disk */
+ if( pParse->nErr==0 && (pTab->aCol[iCol].colFlags & COLFLAG_VIRTUAL)==0 ){
+ int i;
+ int addr;
+ int reg;
+ int regRec;
+ Index *pPk = 0;
+ int nField = 0; /* Number of non-virtual columns after drop */
+ int iCur;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ iCur = pParse->nTab++;
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
+ addr = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ reg = ++pParse->nMem;
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, reg);
+ pParse->nMem += pTab->nCol;
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ pParse->nMem += pPk->nColumn;
+ for(i=0; i<pPk->nKeyCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, reg+i+1);
+ }
+ nField = pPk->nKeyCol;
+ }
+ regRec = ++pParse->nMem;
+ for(i=0; i<pTab->nCol; i++){
+ if( i!=iCol && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
+ int regOut;
+ if( pPk ){
+ int iPos = sqlite3TableColumnToIndex(pPk, i);
+ int iColPos = sqlite3TableColumnToIndex(pPk, iCol);
+ if( iPos<pPk->nKeyCol ) continue;
+ regOut = reg+1+iPos-(iPos>iColPos);
+ }else{
+ regOut = reg+1+nField;
+ }
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regOut);
+ }else{
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOut);
+ }
+ nField++;
+ }
+ }
+ if( nField==0 ){
+ /* dbsqlfuzz 5f09e7bcc78b4954d06bf9f2400d7715f48d1fef */
+ pParse->nMem++;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, reg+1);
+ nField = 1;
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, reg+1, nField, regRec);
+ if( pPk ){
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iCur, regRec, reg+1, pPk->nKeyCol);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Insert, iCur, regRec, reg);
+ }
+ sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
+
+ sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+
+exit_drop_column:
+ sqlite3DbFree(db, zCol);
+ sqlite3SrcListDelete(db, pSrc);
+}
+
+/*
+** Register built-in functions used to help implement ALTER TABLE
+*/
+SQLITE_PRIVATE void sqlite3AlterFunctions(void){
+ static FuncDef aAlterTableFuncs[] = {
+ INTERNAL_FUNCTION(sqlite_rename_column, 9, renameColumnFunc),
+ INTERNAL_FUNCTION(sqlite_rename_table, 7, renameTableFunc),
+ INTERNAL_FUNCTION(sqlite_rename_test, 7, renameTableTest),
+ INTERNAL_FUNCTION(sqlite_drop_column, 3, dropColumnFunc),
+ INTERNAL_FUNCTION(sqlite_rename_quotefix,2, renameQuotefixFunc),
+ };
+ sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs));
+}
+#endif /* SQLITE_ALTER_TABLE */
+
+/************** End of alter.c ***********************************************/
+/************** Begin file analyze.c *****************************************/
+/*
+** 2005-07-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code associated with the ANALYZE command.
+**
+** The ANALYZE command gather statistics about the content of tables
+** and indices. These statistics are made available to the query planner
+** to help it make better decisions about how to perform queries.
+**
+** The following system tables are or have been supported:
+**
+** CREATE TABLE sqlite_stat1(tbl, idx, stat);
+** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
+** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
+** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
+**
+** Additional tables might be added in future releases of SQLite.
+** The sqlite_stat2 table is not created or used unless the SQLite version
+** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
+** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
+** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
+** created and used by SQLite versions 3.7.9 through 3.29.0 when
+** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
+** is a superset of sqlite_stat2 and is also now deprecated. The
+** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
+** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
+** versions 3.8.1 and later. STAT4 is the only variant that is still
+** supported.
+**
+** For most applications, sqlite_stat1 provides all the statistics required
+** for the query planner to make good choices.
+**
+** Format of sqlite_stat1:
+**
+** There is normally one row per index, with the index identified by the
+** name in the idx column. The tbl column is the name of the table to
+** which the index belongs. In each such row, the stat column will be
+** a string consisting of a list of integers. The first integer in this
+** list is the number of rows in the index. (This is the same as the
+** number of rows in the table, except for partial indices.) The second
+** integer is the average number of rows in the index that have the same
+** value in the first column of the index. The third integer is the average
+** number of rows in the index that have the same value for the first two
+** columns. The N-th integer (for N>1) is the average number of rows in
+** the index which have the same value for the first N-1 columns. For
+** a K-column index, there will be K+1 integers in the stat column. If
+** the index is unique, then the last integer will be 1.
+**
+** The list of integers in the stat column can optionally be followed
+** by the keyword "unordered". The "unordered" keyword, if it is present,
+** must be separated from the last integer by a single space. If the
+** "unordered" keyword is present, then the query planner assumes that
+** the index is unordered and will not use the index for a range query.
+**
+** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
+** column contains a single integer which is the (estimated) number of
+** rows in the table identified by sqlite_stat1.tbl.
+**
+** Format of sqlite_stat2:
+**
+** The sqlite_stat2 is only created and is only used if SQLite is compiled
+** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
+** 3.6.18 and 3.7.8. The "stat2" table contains additional information
+** about the distribution of keys within an index. The index is identified by
+** the "idx" column and the "tbl" column is the name of the table to which
+** the index belongs. There are usually 10 rows in the sqlite_stat2
+** table for each index.
+**
+** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
+** inclusive are samples of the left-most key value in the index taken at
+** evenly spaced points along the index. Let the number of samples be S
+** (10 in the standard build) and let C be the number of rows in the index.
+** Then the sampled rows are given by:
+**
+** rownumber = (i*C*2 + C)/(S*2)
+**
+** For i between 0 and S-1. Conceptually, the index space is divided into
+** S uniform buckets and the samples are the middle row from each bucket.
+**
+** The format for sqlite_stat2 is recorded here for legacy reference. This
+** version of SQLite does not support sqlite_stat2. It neither reads nor
+** writes the sqlite_stat2 table. This version of SQLite only supports
+** sqlite_stat3.
+**
+** Format for sqlite_stat3:
+**
+** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
+** sqlite_stat4 format will be described first. Further information
+** about sqlite_stat3 follows the sqlite_stat4 description.
+**
+** Format for sqlite_stat4:
+**
+** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
+** to aid the query planner in choosing good indices based on the values
+** that indexed columns are compared against in the WHERE clauses of
+** queries.
+**
+** The sqlite_stat4 table contains multiple entries for each index.
+** The idx column names the index and the tbl column is the table of the
+** index. If the idx and tbl columns are the same, then the sample is
+** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
+** binary encoding of a key from the index. The nEq column is a
+** list of integers. The first integer is the approximate number
+** of entries in the index whose left-most column exactly matches
+** the left-most column of the sample. The second integer in nEq
+** is the approximate number of entries in the index where the
+** first two columns match the first two columns of the sample.
+** And so forth. nLt is another list of integers that show the approximate
+** number of entries that are strictly less than the sample. The first
+** integer in nLt contains the number of entries in the index where the
+** left-most column is less than the left-most column of the sample.
+** The K-th integer in the nLt entry is the number of index entries
+** where the first K columns are less than the first K columns of the
+** sample. The nDLt column is like nLt except that it contains the
+** number of distinct entries in the index that are less than the
+** sample.
+**
+** There can be an arbitrary number of sqlite_stat4 entries per index.
+** The ANALYZE command will typically generate sqlite_stat4 tables
+** that contain between 10 and 40 samples which are distributed across
+** the key space, though not uniformly, and which include samples with
+** large nEq values.
+**
+** Format for sqlite_stat3 redux:
+**
+** The sqlite_stat3 table is like sqlite_stat4 except that it only
+** looks at the left-most column of the index. The sqlite_stat3.sample
+** column contains the actual value of the left-most column instead
+** of a blob encoding of the complete index key as is found in
+** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
+** all contain just a single integer which is the same as the first
+** integer in the equivalent columns in sqlite_stat4.
+*/
+#ifndef SQLITE_OMIT_ANALYZE
+/* #include "sqliteInt.h" */
+
+#if defined(SQLITE_ENABLE_STAT4)
+# define IsStat4 1
+#else
+# define IsStat4 0
+# undef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 1
+#endif
+
+/*
+** This routine generates code that opens the sqlite_statN tables.
+** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
+** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
+** appropriate compile-time options are provided.
+**
+** If the sqlite_statN tables do not previously exist, it is created.
+**
+** Argument zWhere may be a pointer to a buffer containing a table name,
+** or it may be a NULL pointer. If it is not NULL, then all entries in
+** the sqlite_statN tables associated with the named table are deleted.
+** If zWhere==0, then code is generated to delete all stat table entries.
+*/
+static void openStatTable(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* The database we are looking in */
+ int iStatCur, /* Open the sqlite_stat1 table on this cursor */
+ const char *zWhere, /* Delete entries for this table or index */
+ const char *zWhereType /* Either "tbl" or "idx" */
+){
+ static const struct {
+ const char *zName;
+ const char *zCols;
+ } aTable[] = {
+ { "sqlite_stat1", "tbl,idx,stat" },
+#if defined(SQLITE_ENABLE_STAT4)
+ { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
+#else
+ { "sqlite_stat4", 0 },
+#endif
+ { "sqlite_stat3", 0 },
+ };
+ int i;
+ sqlite3 *db = pParse->db;
+ Db *pDb;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ u32 aRoot[ArraySize(aTable)];
+ u8 aCreateTbl[ArraySize(aTable)];
+#ifdef SQLITE_ENABLE_STAT4
+ const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
+#else
+ const int nToOpen = 1;
+#endif
+
+ if( v==0 ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3VdbeDb(v)==db );
+ pDb = &db->aDb[iDb];
+
+ /* Create new statistic tables if they do not exist, or clear them
+ ** if they do already exist.
+ */
+ for(i=0; i<ArraySize(aTable); i++){
+ const char *zTab = aTable[i].zName;
+ Table *pStat;
+ aCreateTbl[i] = 0;
+ if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
+ if( i<nToOpen ){
+ /* The sqlite_statN table does not exist. Create it. Note that a
+ ** side-effect of the CREATE TABLE statement is to leave the rootpage
+ ** of the new table in register pParse->regRoot. This is important
+ ** because the OpenWrite opcode below will be needing it. */
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
+ );
+ aRoot[i] = (u32)pParse->regRoot;
+ aCreateTbl[i] = OPFLAG_P2ISREG;
+ }
+ }else{
+ /* The table already exists. If zWhere is not NULL, delete all entries
+ ** associated with the table zWhere. If zWhere is NULL, delete the
+ ** entire contents of the table. */
+ aRoot[i] = pStat->tnum;
+ sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
+ if( zWhere ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE %s=%Q",
+ pDb->zDbSName, zTab, zWhereType, zWhere
+ );
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ }else if( db->xPreUpdateCallback ){
+ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
+#endif
+ }else{
+ /* The sqlite_stat[134] table already exists. Delete all rows. */
+ sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
+ }
+ }
+ }
+
+ /* Open the sqlite_stat[134] tables for writing. */
+ for(i=0; i<nToOpen; i++){
+ assert( i<ArraySize(aTable) );
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
+ sqlite3VdbeChangeP5(v, aCreateTbl[i]);
+ VdbeComment((v, aTable[i].zName));
+ }
+}
+
+/*
+** Recommended number of samples for sqlite_stat4
+*/
+#ifndef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 24
+#endif
+
+/*
+** Three SQL functions - stat_init(), stat_push(), and stat_get() -
+** share an instance of the following structure to hold their state
+** information.
+*/
+typedef struct StatAccum StatAccum;
+typedef struct StatSample StatSample;
+struct StatSample {
+ tRowcnt *anEq; /* sqlite_stat4.nEq */
+ tRowcnt *anDLt; /* sqlite_stat4.nDLt */
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt *anLt; /* sqlite_stat4.nLt */
+ union {
+ i64 iRowid; /* Rowid in main table of the key */
+ u8 *aRowid; /* Key for WITHOUT ROWID tables */
+ } u;
+ u32 nRowid; /* Sizeof aRowid[] */
+ u8 isPSample; /* True if a periodic sample */
+ int iCol; /* If !isPSample, the reason for inclusion */
+ u32 iHash; /* Tiebreaker hash */
+#endif
+};
+struct StatAccum {
+ sqlite3 *db; /* Database connection, for malloc() */
+ tRowcnt nEst; /* Estimated number of rows */
+ tRowcnt nRow; /* Number of rows visited so far */
+ int nLimit; /* Analysis row-scan limit */
+ int nCol; /* Number of columns in index + pk/rowid */
+ int nKeyCol; /* Number of index columns w/o the pk/rowid */
+ u8 nSkipAhead; /* Number of times of skip-ahead */
+ StatSample current; /* Current row as a StatSample */
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt nPSample; /* How often to do a periodic sample */
+ int mxSample; /* Maximum number of samples to accumulate */
+ u32 iPrn; /* Pseudo-random number used for sampling */
+ StatSample *aBest; /* Array of nCol best samples */
+ int iMin; /* Index in a[] of entry with minimum score */
+ int nSample; /* Current number of samples */
+ int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */
+ int iGet; /* Index of current sample accessed by stat_get() */
+ StatSample *a; /* Array of mxSample StatSample objects */
+#endif
+};
+
+/* Reclaim memory used by a StatSample
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleClear(sqlite3 *db, StatSample *p){
+ assert( db!=0 );
+ if( p->nRowid ){
+ sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the BLOB value of a ROWID
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->u.aRowid = sqlite3DbMallocRawNN(db, n);
+ if( p->u.aRowid ){
+ p->nRowid = n;
+ memcpy(p->u.aRowid, pData, n);
+ }else{
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the INTEGER value of a ROWID.
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ p->u.iRowid = iRowid;
+}
+#endif
+
+
+/*
+** Copy the contents of object (*pFrom) into (*pTo).
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
+ pTo->isPSample = pFrom->isPSample;
+ pTo->iCol = pFrom->iCol;
+ pTo->iHash = pFrom->iHash;
+ memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
+ if( pFrom->nRowid ){
+ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
+ }else{
+ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
+ }
+}
+#endif
+
+/*
+** Reclaim all memory of a StatAccum structure.
+*/
+static void statAccumDestructor(void *pOld){
+ StatAccum *p = (StatAccum*)pOld;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ){
+ int i;
+ for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
+ for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
+ sampleClear(p->db, &p->current);
+ }
+#endif
+ sqlite3DbFree(p->db, p);
+}
+
+/*
+** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
+** are:
+** N: The number of columns in the index including the rowid/pk (note 1)
+** K: The number of columns in the index excluding the rowid/pk.
+** C: Estimated number of rows in the index
+** L: A limit on the number of rows to scan, or 0 for no-limit
+**
+** Note 1: In the special case of the covering index that implements a
+** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
+** total number of columns in the table.
+**
+** For indexes on ordinary rowid tables, N==K+1. But for indexes on
+** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
+** PRIMARY KEY of the table. The covering index that implements the
+** original WITHOUT ROWID table as N==K as a special case.
+**
+** This routine allocates the StatAccum object in heap memory. The return
+** value is a pointer to the StatAccum object. The datatype of the
+** return value is BLOB, but it is really just a pointer to the StatAccum
+** object.
+*/
+static void statInit(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ StatAccum *p;
+ int nCol; /* Number of columns in index being sampled */
+ int nKeyCol; /* Number of key columns */
+ int nColUp; /* nCol rounded up for alignment */
+ int n; /* Bytes of space to allocate */
+ sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */
+#ifdef SQLITE_ENABLE_STAT4
+ /* Maximum number of samples. 0 if STAT4 data is not collected */
+ int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
+#endif
+
+ /* Decode the three function arguments */
+ UNUSED_PARAMETER(argc);
+ nCol = sqlite3_value_int(argv[0]);
+ assert( nCol>0 );
+ nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
+ nKeyCol = sqlite3_value_int(argv[1]);
+ assert( nKeyCol<=nCol );
+ assert( nKeyCol>0 );
+
+ /* Allocate the space required for the StatAccum object */
+ n = sizeof(*p)
+ + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */
+ + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */
+#ifdef SQLITE_ENABLE_STAT4
+ if( mxSample ){
+ n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */
+ + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */
+ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
+ }
+#endif
+ p = sqlite3DbMallocZero(db, n);
+ if( p==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+
+ p->db = db;
+ p->nEst = sqlite3_value_int64(argv[2]);
+ p->nRow = 0;
+ p->nLimit = sqlite3_value_int64(argv[3]);
+ p->nCol = nCol;
+ p->nKeyCol = nKeyCol;
+ p->nSkipAhead = 0;
+ p->current.anDLt = (tRowcnt*)&p[1];
+ p->current.anEq = &p->current.anDLt[nColUp];
+
+#ifdef SQLITE_ENABLE_STAT4
+ p->mxSample = p->nLimit==0 ? mxSample : 0;
+ if( mxSample ){
+ u8 *pSpace; /* Allocated space not yet assigned */
+ int i; /* Used to iterate through p->aSample[] */
+
+ p->iGet = -1;
+ p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
+ p->current.anLt = &p->current.anEq[nColUp];
+ p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
+
+ /* Set up the StatAccum.a[] and aBest[] arrays */
+ p->a = (struct StatSample*)&p->current.anLt[nColUp];
+ p->aBest = &p->a[mxSample];
+ pSpace = (u8*)(&p->a[mxSample+nCol]);
+ for(i=0; i<(mxSample+nCol); i++){
+ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ }
+ assert( (pSpace - (u8*)p)==n );
+
+ for(i=0; i<nCol; i++){
+ p->aBest[i].iCol = i;
+ }
+ }
+#endif
+
+ /* Return a pointer to the allocated object to the caller. Note that
+ ** only the pointer (the 2nd parameter) matters. The size of the object
+ ** (given by the 3rd parameter) is never used and can be any positive
+ ** value. */
+ sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
+}
+static const FuncDef statInitFuncdef = {
+ 4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statInit, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_init", /* zName */
+ {0}
+};
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** pNew and pOld are both candidate non-periodic samples selected for
+** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
+** considering only any trailing columns and the sample hash value, this
+** function returns true if sample pNew is to be preferred over pOld.
+** In other words, if we assume that the cardinalities of the selected
+** column for pNew and pOld are equal, is pNew to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
+*/
+static int sampleIsBetterPost(
+ StatAccum *pAccum,
+ StatSample *pNew,
+ StatSample *pOld
+){
+ int nCol = pAccum->nCol;
+ int i;
+ assert( pNew->iCol==pOld->iCol );
+ for(i=pNew->iCol+1; i<nCol; i++){
+ if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
+ if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
+ }
+ if( pNew->iHash>pOld->iHash ) return 1;
+ return 0;
+}
+#endif
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Return true if pNew is to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
+*/
+static int sampleIsBetter(
+ StatAccum *pAccum,
+ StatSample *pNew,
+ StatSample *pOld
+){
+ tRowcnt nEqNew = pNew->anEq[pNew->iCol];
+ tRowcnt nEqOld = pOld->anEq[pOld->iCol];
+
+ assert( pOld->isPSample==0 && pNew->isPSample==0 );
+ assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
+
+ if( (nEqNew>nEqOld) ) return 1;
+ if( nEqNew==nEqOld ){
+ if( pNew->iCol<pOld->iCol ) return 1;
+ return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
+ }
+ return 0;
+}
+
+/*
+** Copy the contents of sample *pNew into the p->a[] array. If necessary,
+** remove the least desirable sample from p->a[] to make room.
+*/
+static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
+ StatSample *pSample = 0;
+ int i;
+
+ assert( IsStat4 || nEqZero==0 );
+
+ /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
+ ** values in the anEq[] array of any sample in StatAccum.a[]. In
+ ** other words, if nMaxEqZero is n, then it is guaranteed that there
+ ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
+ if( nEqZero>p->nMaxEqZero ){
+ p->nMaxEqZero = nEqZero;
+ }
+ if( pNew->isPSample==0 ){
+ StatSample *pUpgrade = 0;
+ assert( pNew->anEq[pNew->iCol]>0 );
+
+ /* This sample is being added because the prefix that ends in column
+ ** iCol occurs many times in the table. However, if we have already
+ ** added a sample that shares this prefix, there is no need to add
+ ** this one. Instead, upgrade the priority of the highest priority
+ ** existing sample that shares this prefix. */
+ for(i=p->nSample-1; i>=0; i--){
+ StatSample *pOld = &p->a[i];
+ if( pOld->anEq[pNew->iCol]==0 ){
+ if( pOld->isPSample ) return;
+ assert( pOld->iCol>pNew->iCol );
+ assert( sampleIsBetter(p, pNew, pOld) );
+ if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
+ pUpgrade = pOld;
+ }
+ }
+ }
+ if( pUpgrade ){
+ pUpgrade->iCol = pNew->iCol;
+ pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
+ goto find_new_min;
+ }
+ }
+
+ /* If necessary, remove sample iMin to make room for the new sample. */
+ if( p->nSample>=p->mxSample ){
+ StatSample *pMin = &p->a[p->iMin];
+ tRowcnt *anEq = pMin->anEq;
+ tRowcnt *anLt = pMin->anLt;
+ tRowcnt *anDLt = pMin->anDLt;
+ sampleClear(p->db, pMin);
+ memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
+ pSample = &p->a[p->nSample-1];
+ pSample->nRowid = 0;
+ pSample->anEq = anEq;
+ pSample->anDLt = anDLt;
+ pSample->anLt = anLt;
+ p->nSample = p->mxSample-1;
+ }
+
+ /* The "rows less-than" for the rowid column must be greater than that
+ ** for the last sample in the p->a[] array. Otherwise, the samples would
+ ** be out of order. */
+ assert( p->nSample==0
+ || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
+
+ /* Insert the new sample */
+ pSample = &p->a[p->nSample];
+ sampleCopy(p, pSample, pNew);
+ p->nSample++;
+
+ /* Zero the first nEqZero entries in the anEq[] array. */
+ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
+
+find_new_min:
+ if( p->nSample>=p->mxSample ){
+ int iMin = -1;
+ for(i=0; i<p->mxSample; i++){
+ if( p->a[i].isPSample ) continue;
+ if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
+ iMin = i;
+ }
+ }
+ assert( iMin>=0 );
+ p->iMin = iMin;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Field iChng of the index being scanned has changed. So at this point
+** p->current contains a sample that reflects the previous row of the
+** index. The value of anEq[iChng] and subsequent anEq[] elements are
+** correct at this point.
+*/
+static void samplePushPrevious(StatAccum *p, int iChng){
+ int i;
+
+ /* Check if any samples from the aBest[] array should be pushed
+ ** into IndexSample.a[] at this point. */
+ for(i=(p->nCol-2); i>=iChng; i--){
+ StatSample *pBest = &p->aBest[i];
+ pBest->anEq[i] = p->current.anEq[i];
+ if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
+ sampleInsert(p, pBest, i);
+ }
+ }
+
+ /* Check that no sample contains an anEq[] entry with an index of
+ ** p->nMaxEqZero or greater set to zero. */
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
+ }
+
+ /* Update the anEq[] fields of any samples already collected. */
+ if( iChng<p->nMaxEqZero ){
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=iChng; j<p->nCol; j++){
+ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
+ }
+ }
+ p->nMaxEqZero = iChng;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** Implementation of the stat_push SQL function: stat_push(P,C,R)
+** Arguments:
+**
+** P Pointer to the StatAccum object created by stat_init()
+** C Index of left-most column to differ from previous row
+** R Rowid for the current row. Might be a key record for
+** WITHOUT ROWID tables.
+**
+** The purpose of this routine is to collect statistical data and/or
+** samples from the index being analyzed into the StatAccum object.
+** The stat_get() SQL function will be used afterwards to
+** retrieve the information gathered.
+**
+** This SQL function usually returns NULL, but might return an integer
+** if it wants the byte-code to do special processing.
+**
+** The R parameter is only used for STAT4
+*/
+static void statPush(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+
+ /* The three function arguments */
+ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
+ int iChng = sqlite3_value_int(argv[1]);
+
+ UNUSED_PARAMETER( argc );
+ UNUSED_PARAMETER( context );
+ assert( p->nCol>0 );
+ assert( iChng<p->nCol );
+
+ if( p->nRow==0 ){
+ /* This is the first call to this function. Do initialization. */
+ for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
+ }else{
+ /* Second and subsequent calls get processed here */
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ) samplePushPrevious(p, iChng);
+#endif
+
+ /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
+ ** to the current row of the index. */
+ for(i=0; i<iChng; i++){
+ p->current.anEq[i]++;
+ }
+ for(i=iChng; i<p->nCol; i++){
+ p->current.anDLt[i]++;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
+#endif
+ p->current.anEq[i] = 1;
+ }
+ }
+
+ p->nRow++;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ){
+ tRowcnt nLt;
+ if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
+ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
+ }else{
+ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
+ sqlite3_value_blob(argv[2]));
+ }
+ p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
+
+ nLt = p->current.anLt[p->nCol-1];
+ /* Check if this is to be a periodic sample. If so, add it. */
+ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
+ p->current.isPSample = 1;
+ p->current.iCol = 0;
+ sampleInsert(p, &p->current, p->nCol-1);
+ p->current.isPSample = 0;
+ }
+
+ /* Update the aBest[] array. */
+ for(i=0; i<(p->nCol-1); i++){
+ p->current.iCol = i;
+ if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
+ sampleCopy(p, &p->aBest[i], &p->current);
+ }
+ }
+ }else
+#endif
+ if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
+ p->nSkipAhead++;
+ sqlite3_result_int(context, p->current.anDLt[0]>0);
+ }
+}
+
+static const FuncDef statPushFuncdef = {
+ 2+IsStat4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statPush, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_push", /* zName */
+ {0}
+};
+
+#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
+#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
+#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
+#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
+#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
+
+/*
+** Implementation of the stat_get(P,J) SQL function. This routine is
+** used to query statistical information that has been gathered into
+** the StatAccum object by prior calls to stat_push(). The P parameter
+** has type BLOB but it is really just a pointer to the StatAccum object.
+** The content to returned is determined by the parameter J
+** which is one of the STAT_GET_xxxx values defined above.
+**
+** The stat_get(P,J) function is not available to generic SQL. It is
+** inserted as part of a manually constructed bytecode program. (See
+** the callStatGet() routine below.) It is guaranteed that the P
+** parameter will always be a pointer to a StatAccum object, never a
+** NULL.
+**
+** If STAT4 is not enabled, then J is always
+** STAT_GET_STAT1 and is hence omitted and this routine becomes
+** a one-parameter function, stat_get(P), that always returns the
+** stat1 table entry information.
+*/
+static void statGet(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
+#ifdef SQLITE_ENABLE_STAT4
+ /* STAT4 has a parameter on this routine. */
+ int eCall = sqlite3_value_int(argv[1]);
+ assert( argc==2 );
+ assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
+ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
+ || eCall==STAT_GET_NDLT
+ );
+ assert( eCall==STAT_GET_STAT1 || p->mxSample );
+ if( eCall==STAT_GET_STAT1 )
+#else
+ assert( argc==1 );
+#endif
+ {
+ /* Return the value to store in the "stat" column of the sqlite_stat1
+ ** table for this index.
+ **
+ ** The value is a string composed of a list of integers describing
+ ** the index. The first integer in the list is the total number of
+ ** entries in the index. There is one additional integer in the list
+ ** for each indexed column. This additional integer is an estimate of
+ ** the number of rows matched by a equality query on the index using
+ ** a key with the corresponding number of fields. In other words,
+ ** if the index is on columns (a,b) and the sqlite_stat1 value is
+ ** "100 10 2", then SQLite estimates that:
+ **
+ ** * the index contains 100 rows,
+ ** * "WHERE a=?" matches 10 rows, and
+ ** * "WHERE a=? AND b=?" matches 2 rows.
+ **
+ ** If D is the count of distinct values and K is the total number of
+ ** rows, then each estimate is usually computed as:
+ **
+ ** I = (K+D-1)/D
+ **
+ ** In other words, I is K/D rounded up to the next whole integer.
+ ** However, if I is between 1.0 and 1.1 (in other words if I is
+ ** close to 1.0 but just a little larger) then do not round up but
+ ** instead keep the I value at 1.0.
+ */
+ sqlite3_str sStat; /* Text of the constructed "stat" line */
+ int i; /* Loop counter */
+
+ sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
+ sqlite3_str_appendf(&sStat, "%llu",
+ p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
+ for(i=0; i<p->nKeyCol; i++){
+ u64 nDistinct = p->current.anDLt[i] + 1;
+ u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
+ if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
+ sqlite3_str_appendf(&sStat, " %llu", iVal);
+ assert( p->current.anEq[i] );
+ }
+ sqlite3ResultStrAccum(context, &sStat);
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ else if( eCall==STAT_GET_ROWID ){
+ if( p->iGet<0 ){
+ samplePushPrevious(p, 0);
+ p->iGet = 0;
+ }
+ if( p->iGet<p->nSample ){
+ StatSample *pS = p->a + p->iGet;
+ if( pS->nRowid==0 ){
+ sqlite3_result_int64(context, pS->u.iRowid);
+ }else{
+ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
+ SQLITE_TRANSIENT);
+ }
+ }
+ }else{
+ tRowcnt *aCnt = 0;
+ sqlite3_str sStat;
+ int i;
+
+ assert( p->iGet<p->nSample );
+ switch( eCall ){
+ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
+ case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
+ default: {
+ aCnt = p->a[p->iGet].anDLt;
+ p->iGet++;
+ break;
+ }
+ }
+ sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
+ for(i=0; i<p->nCol; i++){
+ sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
+ }
+ if( sStat.nChar ) sStat.nChar--;
+ sqlite3ResultStrAccum(context, &sStat);
+ }
+#endif /* SQLITE_ENABLE_STAT4 */
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( argc );
+#endif
+}
+static const FuncDef statGetFuncdef = {
+ 1+IsStat4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statGet, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_get", /* zName */
+ {0}
+};
+
+static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
+#elif SQLITE_DEBUG
+ assert( iParam==STAT_GET_STAT1 );
+#else
+ UNUSED_PARAMETER( iParam );
+#endif
+ assert( regOut!=regStat && regOut!=regStat+1 );
+ sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
+ &statGetFuncdef, 0);
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/* Add a comment to the most recent VDBE opcode that is the name
+** of the k-th column of the pIdx index.
+*/
+static void analyzeVdbeCommentIndexWithColumnName(
+ Vdbe *v, /* Prepared statement under construction */
+ Index *pIdx, /* Index whose column is being loaded */
+ int k /* Which column index */
+){
+ int i; /* Index of column in the table */
+ assert( k>=0 && k<pIdx->nColumn );
+ i = pIdx->aiColumn[k];
+ if( NEVER(i==XN_ROWID) ){
+ VdbeComment((v,"%s.rowid",pIdx->zName));
+ }else if( i==XN_EXPR ){
+ assert( pIdx->bHasExpr );
+ VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
+ }else{
+ VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
+ }
+}
+#else
+# define analyzeVdbeCommentIndexWithColumnName(a,b,c)
+#endif /* SQLITE_DEBUG */
+
+/*
+** Generate code to do an analysis of all indices associated with
+** a single table.
+*/
+static void analyzeOneTable(
+ Parse *pParse, /* Parser context */
+ Table *pTab, /* Table whose indices are to be analyzed */
+ Index *pOnlyIdx, /* If not NULL, only analyze this one index */
+ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
+ int iMem, /* Available memory locations begin here */
+ int iTab /* Next available cursor */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ Index *pIdx; /* An index to being analyzed */
+ int iIdxCur; /* Cursor open on index being analyzed */
+ int iTabCur; /* Table cursor */
+ Vdbe *v; /* The virtual machine being built up */
+ int i; /* Loop counter */
+ int jZeroRows = -1; /* Jump from here if number of rows is zero */
+ int iDb; /* Index of database containing pTab */
+ u8 needTableCnt = 1; /* True to count the table */
+ int regNewRowid = iMem++; /* Rowid for the inserted record */
+ int regStat = iMem++; /* Register to hold StatAccum object */
+ int regChng = iMem++; /* Index of changed index field */
+ int regRowid = iMem++; /* Rowid argument passed to stat_push() */
+ int regTemp = iMem++; /* Temporary use register */
+ int regTemp2 = iMem++; /* Second temporary use register */
+ int regTabname = iMem++; /* Register containing table name */
+ int regIdxname = iMem++; /* Register containing index name */
+ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
+ int regPrev = iMem; /* MUST BE LAST (see below) */
+#ifdef SQLITE_ENABLE_STAT4
+ int doOnce = 1; /* Flag for a one-time computation */
+#endif
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ Table *pStat1 = 0;
+#endif
+
+ sqlite3TouchRegister(pParse, iMem);
+ assert( sqlite3NoTempsInRange(pParse, regNewRowid, iMem) );
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 || NEVER(pTab==0) ){
+ return;
+ }
+ if( !IsOrdinaryTable(pTab) ){
+ /* Do not gather statistics on views or virtual tables */
+ return;
+ }
+ if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
+ /* Do not gather statistics on system tables */
+ return;
+ }
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 );
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
+ db->aDb[iDb].zDbSName ) ){
+ return;
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( db->xPreUpdateCallback ){
+ pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
+ if( pStat1==0 ) return;
+ pStat1->zName = (char*)&pStat1[1];
+ memcpy(pStat1->zName, "sqlite_stat1", 13);
+ pStat1->nCol = 3;
+ pStat1->iPKey = -1;
+ sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC);
+ }
+#endif
+
+ /* Establish a read-lock on the table at the shared-cache level.
+ ** Open a read-only cursor on the table. Also allocate a cursor number
+ ** to use for scanning indexes (iIdxCur). No index cursor is opened at
+ ** this time though. */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ iTabCur = iTab++;
+ iIdxCur = iTab++;
+ pParse->nTab = MAX(pParse->nTab, iTab);
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, regTabname, pTab->zName);
+
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int nCol; /* Number of columns in pIdx. "N" */
+ int addrRewind; /* Address of "OP_Rewind iIdxCur" */
+ int addrNextRow; /* Address of "next_row:" */
+ const char *zIdxName; /* Name of the index */
+ int nColTest; /* Number of columns to test for changes */
+
+ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
+ if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
+ nCol = pIdx->nKeyCol;
+ zIdxName = pTab->zName;
+ nColTest = nCol - 1;
+ }else{
+ nCol = pIdx->nColumn;
+ zIdxName = pIdx->zName;
+ nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
+ }
+
+ /* Populate the register containing the index name. */
+ sqlite3VdbeLoadString(v, regIdxname, zIdxName);
+ VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
+
+ /*
+ ** Pseudo-code for loop that calls stat_push():
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto chng_addr_0;
+ **
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto chng_addr_N
+ **
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ **
+ ** endDistinctTest:
+ ** regRowid = idx(rowid)
+ ** stat_push(P, regChng, regRowid)
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ **
+ ** end_of_scan:
+ */
+
+ /* Make sure there are enough memory cells allocated to accommodate
+ ** the regPrev array and a trailing rowid (the rowid slot is required
+ ** when building a record to insert into the sample column of
+ ** the sqlite_stat4 table. */
+ sqlite3TouchRegister(pParse, regPrev+nColTest);
+
+ /* Open a read-only cursor on the index being analyzed. */
+ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "%s", pIdx->zName));
+
+ /* Invoke the stat_init() function. The arguments are:
+ **
+ ** (1) the number of columns in the index including the rowid
+ ** (or for a WITHOUT ROWID table, the number of PK columns),
+ ** (2) the number of columns in the key without the rowid/pk
+ ** (3) estimated number of rows in the index,
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
+ assert( regRowid==regStat+2 );
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) ){
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ }else
+#endif
+ {
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
+ }
+ assert( regTemp2==regStat+4 );
+ sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
+ sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
+ &statInitFuncdef, 0);
+
+ /* Implementation of the following:
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto next_push_0;
+ **
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+
+ if( nColTest>0 ){
+ int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
+ int *aGotoChng; /* Array of jump instruction addresses */
+ aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
+ if( aGotoChng==0 ) continue;
+
+ /*
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto endDistinctTest
+ */
+ sqlite3VdbeAddOp0(v, OP_Goto);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+ if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
+ /* For a single-column UNIQUE index, once we have found a non-NULL
+ ** row, we know that all the rest will be distinct, so skip
+ ** subsequent distinctness tests. */
+ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
+ VdbeCoverage(v);
+ }
+ for(i=0; i<nColTest; i++){
+ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
+ aGotoChng[i] =
+ sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
+ sqlite3VdbeGoto(v, endDistinctTest);
+
+
+ /*
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ */
+ sqlite3VdbeJumpHere(v, addrNextRow-1);
+ for(i=0; i<nColTest; i++){
+ sqlite3VdbeJumpHere(v, aGotoChng[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
+ }
+ sqlite3VdbeResolveLabel(v, endDistinctTest);
+ sqlite3DbFree(db, aGotoChng);
+ }
+
+ /*
+ ** chng_addr_N:
+ ** regRowid = idx(rowid) // STAT4 only
+ ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ */
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) ){
+ assert( regRowid==(regStat+2) );
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
+ int j, k, regKey;
+ regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ for(j=0; j<pPk->nKeyCol; j++){
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
+ assert( k>=0 && k<pIdx->nColumn );
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
+ sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
+ }
+ }
+#endif
+ assert( regChng==(regStat+1) );
+ {
+ sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
+ &statPushFuncdef, 0);
+ if( db->nAnalysisLimit ){
+ int j1, j2, j3;
+ j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
+ j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
+ j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeJumpHere(v, j3);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
+ }
+ }
+
+ /* Add the entry to the stat1 table. */
+ callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
+#endif
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+
+ /* Add the entries to the stat4 table. */
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
+ int regEq = regStat1;
+ int regLt = regStat1+1;
+ int regDLt = regStat1+2;
+ int regSample = regStat1+3;
+ int regCol = regStat1+4;
+ int regSampleRowid = regCol + nCol;
+ int addrNext;
+ int addrIsNull;
+ u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
+
+ if( doOnce ){
+ int mxCol = nCol;
+ Index *pX;
+
+ /* Compute the maximum number of columns in any index */
+ for(pX=pTab->pIndex; pX; pX=pX->pNext){
+ int nColX; /* Number of columns in pX */
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pX) ){
+ nColX = pX->nKeyCol;
+ }else{
+ nColX = pX->nColumn;
+ }
+ if( nColX>mxCol ) mxCol = nColX;
+ }
+
+ /* Allocate space to compute results for the largest index */
+ sqlite3TouchRegister(pParse, regCol+mxCol);
+ doOnce = 0;
+#ifdef SQLITE_DEBUG
+ /* Verify that the call to sqlite3ClearTempRegCache() below
+ ** really is needed.
+ ** https://sqlite.org/forum/forumpost/83cb4a95a0 (2023-03-25)
+ */
+ testcase( !sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) );
+#endif
+ sqlite3ClearTempRegCache(pParse); /* tag-20230325-1 */
+ assert( sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) );
+ }
+ assert( sqlite3NoTempsInRange(pParse, regEq, regCol+nCol) );
+
+ addrNext = sqlite3VdbeCurrentAddr(v);
+ callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
+ addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
+ VdbeCoverage(v);
+ callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
+ callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
+ callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
+ sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
+ VdbeCoverage(v);
+ for(i=0; i<nCol; i++){
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
+ sqlite3VdbeJumpHere(v, addrIsNull);
+ }
+#endif /* SQLITE_ENABLE_STAT4 */
+
+ /* End of analysis */
+ sqlite3VdbeJumpHere(v, addrRewind);
+ }
+
+
+ /* Create a single sqlite_stat1 entry containing NULL as the index
+ ** name and the row count as the content.
+ */
+ if( pOnlyIdx==0 && needTableCnt ){
+ VdbeComment((v, "%s", pTab->zName));
+ sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
+ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
+#endif
+ sqlite3VdbeJumpHere(v, jZeroRows);
+ }
+}
+
+
+/*
+** Generate code that will cause the most recent index analysis to
+** be loaded into internal hash tables where is can be used.
+*/
+static void loadAnalysis(Parse *pParse, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
+ }
+}
+
+/*
+** Generate code that will do an analysis of an entire database
+*/
+static void analyzeDatabase(Parse *pParse, int iDb){
+ sqlite3 *db = pParse->db;
+ Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
+ HashElem *k;
+ int iStatCur;
+ int iMem;
+ int iTab;
+
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab;
+ pParse->nTab += 3;
+ openStatTable(pParse, iDb, iStatCur, 0, 0);
+ iMem = pParse->nMem+1;
+ iTab = pParse->nTab;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pTab = (Table*)sqliteHashData(k);
+ analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
+#ifdef SQLITE_ENABLE_STAT4
+ iMem = sqlite3FirstAvailableRegister(pParse, iMem);
+#else
+ assert( iMem==sqlite3FirstAvailableRegister(pParse,iMem) );
+#endif
+ }
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code that will do an analysis of a single table in
+** a database. If pOnlyIdx is not NULL then it is a single index
+** in pTab that should be analyzed.
+*/
+static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
+ int iDb;
+ int iStatCur;
+
+ assert( pTab!=0 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab;
+ pParse->nTab += 3;
+ if( pOnlyIdx ){
+ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
+ }else{
+ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
+ }
+ analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code for the ANALYZE command. The parser calls this routine
+** when it recognizes an ANALYZE command.
+**
+** ANALYZE -- 1
+** ANALYZE <database> -- 2
+** ANALYZE ?<database>.?<tablename> -- 3
+**
+** Form 1 causes all indices in all attached databases to be analyzed.
+** Form 2 analyzes all indices the single database named.
+** Form 3 analyzes all indices associated with the named table.
+*/
+SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
+ sqlite3 *db = pParse->db;
+ int iDb;
+ int i;
+ char *z, *zDb;
+ Table *pTab;
+ Index *pIdx;
+ Token *pTableName;
+ Vdbe *v;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ assert( pName2!=0 || pName1==0 );
+ if( pName1==0 ){
+ /* Form 1: Analyze everything */
+ for(i=0; i<db->nDb; i++){
+ if( i==1 ) continue; /* Do not analyze the TEMP database */
+ analyzeDatabase(pParse, i);
+ }
+ }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
+ /* Analyze the schema named as the argument */
+ analyzeDatabase(pParse, iDb);
+ }else{
+ /* Form 3: Analyze the table or index named as an argument */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
+ if( iDb>=0 ){
+ zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
+ z = sqlite3NameFromToken(db, pTableName);
+ if( z ){
+ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
+ analyzeTable(pParse, pIdx->pTable, pIdx);
+ }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
+ analyzeTable(pParse, pTab, 0);
+ }
+ sqlite3DbFree(db, z);
+ }
+ }
+ }
+ if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ }
+}
+
+/*
+** Used to pass information from the analyzer reader through to the
+** callback routine.
+*/
+typedef struct analysisInfo analysisInfo;
+struct analysisInfo {
+ sqlite3 *db;
+ const char *zDatabase;
+};
+
+/*
+** The first argument points to a nul-terminated string containing a
+** list of space separated integers. Read the first nOut of these into
+** the array aOut[].
+*/
+static void decodeIntArray(
+ char *zIntArray, /* String containing int array to decode */
+ int nOut, /* Number of slots in aOut[] */
+ tRowcnt *aOut, /* Store integers here */
+ LogEst *aLog, /* Or, if aOut==0, here */
+ Index *pIndex /* Handle extra flags for this index, if not NULL */
+){
+ char *z = zIntArray;
+ int c;
+ int i;
+ tRowcnt v;
+
+#ifdef SQLITE_ENABLE_STAT4
+ if( z==0 ) z = "";
+#else
+ assert( z!=0 );
+#endif
+ for(i=0; *z && i<nOut; i++){
+ v = 0;
+ while( (c=z[0])>='0' && c<='9' ){
+ v = v*10 + c - '0';
+ z++;
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ if( aOut ) aOut[i] = v;
+ if( aLog ) aLog[i] = sqlite3LogEst(v);
+#else
+ assert( aOut==0 );
+ UNUSED_PARAMETER(aOut);
+ assert( aLog!=0 );
+ aLog[i] = sqlite3LogEst(v);
+#endif
+ if( *z==' ' ) z++;
+ }
+#ifndef SQLITE_ENABLE_STAT4
+ assert( pIndex!=0 ); {
+#else
+ if( pIndex ){
+#endif
+ pIndex->bUnordered = 0;
+ pIndex->noSkipScan = 0;
+ while( z[0] ){
+ if( sqlite3_strglob("unordered*", z)==0 ){
+ pIndex->bUnordered = 1;
+ }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
+ int sz = sqlite3Atoi(z+3);
+ if( sz<2 ) sz = 2;
+ pIndex->szIdxRow = sqlite3LogEst(sz);
+ }else if( sqlite3_strglob("noskipscan*", z)==0 ){
+ pIndex->noSkipScan = 1;
+ }
+#ifdef SQLITE_ENABLE_COSTMULT
+ else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
+ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
+ }
+#endif
+ while( z[0]!=0 && z[0]!=' ' ) z++;
+ while( z[0]==' ' ) z++;
+ }
+ }
+}
+
+/*
+** This callback is invoked once for each index when reading the
+** sqlite_stat1 table.
+**
+** argv[0] = name of the table
+** argv[1] = name of the index (might be NULL)
+** argv[2] = results of analysis - on integer for each column
+**
+** Entries for which argv[1]==NULL simply record the number of rows in
+** the table.
+*/
+static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
+ analysisInfo *pInfo = (analysisInfo*)pData;
+ Index *pIndex;
+ Table *pTable;
+ const char *z;
+
+ assert( argc==3 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+
+ if( argv==0 || argv[0]==0 || argv[2]==0 ){
+ return 0;
+ }
+ pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
+ if( pTable==0 ){
+ return 0;
+ }
+ if( argv[1]==0 ){
+ pIndex = 0;
+ }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
+ pIndex = sqlite3PrimaryKeyIndex(pTable);
+ }else{
+ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
+ }
+ z = argv[2];
+
+ if( pIndex ){
+ tRowcnt *aiRowEst = 0;
+ int nCol = pIndex->nKeyCol+1;
+#ifdef SQLITE_ENABLE_STAT4
+ /* Index.aiRowEst may already be set here if there are duplicate
+ ** sqlite_stat1 entries for this index. In that case just clobber
+ ** the old data with the new instead of allocating a new array. */
+ if( pIndex->aiRowEst==0 ){
+ pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
+ if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
+ }
+ aiRowEst = pIndex->aiRowEst;
+#endif
+ pIndex->bUnordered = 0;
+ decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
+ pIndex->hasStat1 = 1;
+ if( pIndex->pPartIdxWhere==0 ){
+ pTable->nRowLogEst = pIndex->aiRowLogEst[0];
+ pTable->tabFlags |= TF_HasStat1;
+ }
+ }else{
+ Index fakeIdx;
+ fakeIdx.szIdxRow = pTable->szTabRow;
+#ifdef SQLITE_ENABLE_COSTMULT
+ fakeIdx.pTable = pTable;
+#endif
+ decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
+ pTable->szTabRow = fakeIdx.szIdxRow;
+ pTable->tabFlags |= TF_HasStat1;
+ }
+
+ return 0;
+}
+
+/*
+** If the Index.aSample variable is not NULL, delete the aSample[] array
+** and its contents.
+*/
+SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
+ assert( db!=0 );
+ assert( pIdx!=0 );
+#ifdef SQLITE_ENABLE_STAT4
+ if( pIdx->aSample ){
+ int j;
+ for(j=0; j<pIdx->nSample; j++){
+ IndexSample *p = &pIdx->aSample[j];
+ sqlite3DbFree(db, p->p);
+ }
+ sqlite3DbFree(db, pIdx->aSample);
+ }
+ if( db->pnBytesFreed==0 ){
+ pIdx->nSample = 0;
+ pIdx->aSample = 0;
+ }
+#else
+ UNUSED_PARAMETER(db);
+ UNUSED_PARAMETER(pIdx);
+#endif /* SQLITE_ENABLE_STAT4 */
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Populate the pIdx->aAvgEq[] array based on the samples currently
+** stored in pIdx->aSample[].
+*/
+static void initAvgEq(Index *pIdx){
+ if( pIdx ){
+ IndexSample *aSample = pIdx->aSample;
+ IndexSample *pFinal = &aSample[pIdx->nSample-1];
+ int iCol;
+ int nCol = 1;
+ if( pIdx->nSampleCol>1 ){
+ /* If this is stat4 data, then calculate aAvgEq[] values for all
+ ** sample columns except the last. The last is always set to 1, as
+ ** once the trailing PK fields are considered all index keys are
+ ** unique. */
+ nCol = pIdx->nSampleCol-1;
+ pIdx->aAvgEq[nCol] = 1;
+ }
+ for(iCol=0; iCol<nCol; iCol++){
+ int nSample = pIdx->nSample;
+ int i; /* Used to iterate through samples */
+ tRowcnt sumEq = 0; /* Sum of the nEq values */
+ tRowcnt avgEq = 0;
+ tRowcnt nRow; /* Number of rows in index */
+ i64 nSum100 = 0; /* Number of terms contributing to sumEq */
+ i64 nDist100; /* Number of distinct values in index */
+
+ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
+ nRow = pFinal->anLt[iCol];
+ nDist100 = (i64)100 * pFinal->anDLt[iCol];
+ nSample--;
+ }else{
+ nRow = pIdx->aiRowEst[0];
+ nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
+ }
+ pIdx->nRowEst0 = nRow;
+
+ /* Set nSum to the number of distinct (iCol+1) field prefixes that
+ ** occur in the stat4 table for this index. Set sumEq to the sum of
+ ** the nEq values for column iCol for the same set (adding the value
+ ** only once where there exist duplicate prefixes). */
+ for(i=0; i<nSample; i++){
+ if( i==(pIdx->nSample-1)
+ || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
+ ){
+ sumEq += aSample[i].anEq[iCol];
+ nSum100 += 100;
+ }
+ }
+
+ if( nDist100>nSum100 && sumEq<nRow ){
+ avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
+ }
+ if( avgEq==0 ) avgEq = 1;
+ pIdx->aAvgEq[iCol] = avgEq;
+ }
+ }
+}
+
+/*
+** Look up an index by name. Or, if the name of a WITHOUT ROWID table
+** is supplied instead, find the PRIMARY KEY index for that table.
+*/
+static Index *findIndexOrPrimaryKey(
+ sqlite3 *db,
+ const char *zName,
+ const char *zDb
+){
+ Index *pIdx = sqlite3FindIndex(db, zName, zDb);
+ if( pIdx==0 ){
+ Table *pTab = sqlite3FindTable(db, zName, zDb);
+ if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
+ }
+ return pIdx;
+}
+
+/*
+** Load the content from either the sqlite_stat4
+** into the relevant Index.aSample[] arrays.
+**
+** Arguments zSql1 and zSql2 must point to SQL statements that return
+** data equivalent to the following:
+**
+** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
+** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
+**
+** where %Q is replaced with the database name before the SQL is executed.
+*/
+static int loadStatTbl(
+ sqlite3 *db, /* Database handle */
+ const char *zSql1, /* SQL statement 1 (see above) */
+ const char *zSql2, /* SQL statement 2 (see above) */
+ const char *zDb /* Database name (e.g. "main") */
+){
+ int rc; /* Result codes from subroutines */
+ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
+ char *zSql; /* Text of the SQL statement */
+ Index *pPrevIdx = 0; /* Previous index in the loop */
+ IndexSample *pSample; /* A slot in pIdx->aSample[] */
+
+ assert( db->lookaside.bDisable );
+ zSql = sqlite3MPrintf(db, zSql1, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ int nIdxCol = 1; /* Number of columns in stat4 records */
+
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nSample; /* Number of samples */
+ int nByte; /* Bytes of space required */
+ int i; /* Bytes of space required */
+ tRowcnt *pSpace;
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ nSample = sqlite3_column_int(pStmt, 1);
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ assert( pIdx==0 || pIdx->nSample==0 );
+ if( pIdx==0 ) continue;
+ if( pIdx->aSample!=0 ){
+ /* The same index appears in sqlite_stat4 under multiple names */
+ continue;
+ }
+ assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
+ nIdxCol = pIdx->nKeyCol;
+ }else{
+ nIdxCol = pIdx->nColumn;
+ }
+ pIdx->nSampleCol = nIdxCol;
+ pIdx->mxSample = nSample;
+ nByte = sizeof(IndexSample) * nSample;
+ nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
+ nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
+
+ pIdx->aSample = sqlite3DbMallocZero(db, nByte);
+ if( pIdx->aSample==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pSpace = (tRowcnt*)&pIdx->aSample[nSample];
+ pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
+ pIdx->pTable->tabFlags |= TF_HasStat4;
+ for(i=0; i<nSample; i++){
+ pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
+ }
+ assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc ) return rc;
+
+ zSql = sqlite3MPrintf(db, zSql2, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nCol = 1; /* Number of columns in index */
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ if( pIdx==0 ) continue;
+ if( pIdx->nSample>=pIdx->mxSample ){
+ /* Too many slots used because the same index appears in
+ ** sqlite_stat4 using multiple names */
+ continue;
+ }
+ /* This next condition is true if data has already been loaded from
+ ** the sqlite_stat4 table. */
+ nCol = pIdx->nSampleCol;
+ if( pIdx!=pPrevIdx ){
+ initAvgEq(pPrevIdx);
+ pPrevIdx = pIdx;
+ }
+ pSample = &pIdx->aSample[pIdx->nSample];
+ decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
+
+ /* Take a copy of the sample. Add 8 extra 0x00 bytes the end of the buffer.
+ ** This is in case the sample record is corrupted. In that case, the
+ ** sqlite3VdbeRecordCompare() may read up to two varints past the
+ ** end of the allocated buffer before it realizes it is dealing with
+ ** a corrupt record. Or it might try to read a large integer from the
+ ** buffer. In any case, eight 0x00 bytes prevents this from causing
+ ** a buffer overread. */
+ pSample->n = sqlite3_column_bytes(pStmt, 4);
+ pSample->p = sqlite3DbMallocZero(db, pSample->n + 8);
+ if( pSample->p==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( pSample->n ){
+ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
+ }
+ pIdx->nSample++;
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
+ return rc;
+}
+
+/*
+** Load content from the sqlite_stat4 table into
+** the Index.aSample[] arrays of all indices.
+*/
+static int loadStat4(sqlite3 *db, const char *zDb){
+ int rc = SQLITE_OK; /* Result codes from subroutines */
+ const Table *pStat4;
+
+ assert( db->lookaside.bDisable );
+ if( OptimizationEnabled(db, SQLITE_Stat4)
+ && (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
+ && IsOrdinaryTable(pStat4)
+ ){
+ rc = loadStatTbl(db,
+ "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx COLLATE nocase",
+ "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
+ zDb
+ );
+ }
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
+** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
+** arrays. The contents of sqlite_stat4 are used to populate the
+** Index.aSample[] arrays.
+**
+** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
+** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
+** during compilation and the sqlite_stat4 table is present, no data is
+** read from it.
+**
+** If SQLITE_ENABLE_STAT4 was defined during compilation and the
+** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
+** returned. However, in this case, data is read from the sqlite_stat1
+** table (if it is present) before returning.
+**
+** If an OOM error occurs, this function always sets db->mallocFailed.
+** This means if the caller does not care about other errors, the return
+** code may be ignored.
+*/
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
+ analysisInfo sInfo;
+ HashElem *i;
+ char *zSql;
+ int rc = SQLITE_OK;
+ Schema *pSchema = db->aDb[iDb].pSchema;
+ const Table *pStat1;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+
+ /* Clear any prior statistics */
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ pTab->tabFlags &= ~TF_HasStat1;
+ }
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ pIdx->hasStat1 = 0;
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3DeleteIndexSamples(db, pIdx);
+ pIdx->aSample = 0;
+#endif
+ }
+
+ /* Load new statistics out of the sqlite_stat1 table */
+ sInfo.db = db;
+ sInfo.zDatabase = db->aDb[iDb].zDbSName;
+ if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
+ && IsOrdinaryTable(pStat1)
+ ){
+ zSql = sqlite3MPrintf(db,
+ "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
+ sqlite3DbFree(db, zSql);
+ }
+ }
+
+ /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
+ }
+
+ /* Load the statistics from the sqlite_stat4 table. */
+#ifdef SQLITE_ENABLE_STAT4
+ if( rc==SQLITE_OK ){
+ DisableLookaside;
+ rc = loadStat4(db, sInfo.zDatabase);
+ EnableLookaside;
+ }
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ sqlite3_free(pIdx->aiRowEst);
+ pIdx->aiRowEst = 0;
+ }
+#endif
+
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ return rc;
+}
+
+
+#endif /* SQLITE_OMIT_ANALYZE */
+
+/************** End of analyze.c *********************************************/
+/************** Begin file attach.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the ATTACH and DETACH commands.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_ATTACH
+/*
+** Resolve an expression that was part of an ATTACH or DETACH statement. This
+** is slightly different from resolving a normal SQL expression, because simple
+** identifiers are treated as strings, not possible column names or aliases.
+**
+** i.e. if the parser sees:
+**
+** ATTACH DATABASE abc AS def
+**
+** it treats the two expressions as literal strings 'abc' and 'def' instead of
+** looking for columns of the same name.
+**
+** This only applies to the root node of pExpr, so the statement:
+**
+** ATTACH DATABASE abc||def AS 'db2'
+**
+** will fail because neither abc or def can be resolved.
+*/
+static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
+{
+ int rc = SQLITE_OK;
+ if( pExpr ){
+ if( pExpr->op!=TK_ID ){
+ rc = sqlite3ResolveExprNames(pName, pExpr);
+ }else{
+ pExpr->op = TK_STRING;
+ }
+ }
+ return rc;
+}
+
+/*
+** Return true if zName points to a name that may be used to refer to
+** database iDb attached to handle db.
+*/
+SQLITE_PRIVATE int sqlite3DbIsNamed(sqlite3 *db, int iDb, const char *zName){
+ return (
+ sqlite3StrICmp(db->aDb[iDb].zDbSName, zName)==0
+ || (iDb==0 && sqlite3StrICmp("main", zName)==0)
+ );
+}
+
+/*
+** An SQL user-function registered to do the work of an ATTACH statement. The
+** three arguments to the function come directly from an attach statement:
+**
+** ATTACH DATABASE x AS y KEY z
+**
+** SELECT sqlite_attach(x, y, z)
+**
+** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
+** third argument.
+**
+** If the db->init.reopenMemdb flags is set, then instead of attaching a
+** new database, close the database on db->init.iDb and reopen it as an
+** empty MemDB.
+*/
+static void attachFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ int i;
+ int rc = 0;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char *zName;
+ const char *zFile;
+ char *zPath = 0;
+ char *zErr = 0;
+ unsigned int flags;
+ Db *aNew; /* New array of Db pointers */
+ Db *pNew = 0; /* Db object for the newly attached database */
+ char *zErrDyn = 0;
+ sqlite3_vfs *pVfs;
+
+ UNUSED_PARAMETER(NotUsed);
+ zFile = (const char *)sqlite3_value_text(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[1]);
+ if( zFile==0 ) zFile = "";
+ if( zName==0 ) zName = "";
+
+#ifndef SQLITE_OMIT_DESERIALIZE
+# define REOPEN_AS_MEMDB(db) (db->init.reopenMemdb)
+#else
+# define REOPEN_AS_MEMDB(db) (0)
+#endif
+
+ if( REOPEN_AS_MEMDB(db) ){
+ /* This is not a real ATTACH. Instead, this routine is being called
+ ** from sqlite3_deserialize() to close database db->init.iDb and
+ ** reopen it as a MemDB */
+ Btree *pNewBt = 0;
+ pVfs = sqlite3_vfs_find("memdb");
+ if( pVfs==0 ) return;
+ rc = sqlite3BtreeOpen(pVfs, "x\0", db, &pNewBt, 0, SQLITE_OPEN_MAIN_DB);
+ if( rc==SQLITE_OK ){
+ Schema *pNewSchema = sqlite3SchemaGet(db, pNewBt);
+ if( pNewSchema ){
+ /* Both the Btree and the new Schema were allocated successfully.
+ ** Close the old db and update the aDb[] slot with the new memdb
+ ** values. */
+ pNew = &db->aDb[db->init.iDb];
+ if( ALWAYS(pNew->pBt) ) sqlite3BtreeClose(pNew->pBt);
+ pNew->pBt = pNewBt;
+ pNew->pSchema = pNewSchema;
+ }else{
+ sqlite3BtreeClose(pNewBt);
+ rc = SQLITE_NOMEM;
+ }
+ }
+ if( rc ) goto attach_error;
+ }else{
+ /* This is a real ATTACH
+ **
+ ** Check for the following errors:
+ **
+ ** * Too many attached databases,
+ ** * Transaction currently open
+ ** * Specified database name already being used.
+ */
+ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
+ zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d",
+ db->aLimit[SQLITE_LIMIT_ATTACHED]
+ );
+ goto attach_error;
+ }
+ for(i=0; i<db->nDb; i++){
+ assert( zName );
+ if( sqlite3DbIsNamed(db, i, zName) ){
+ zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName);
+ goto attach_error;
+ }
+ }
+
+ /* Allocate the new entry in the db->aDb[] array and initialize the schema
+ ** hash tables.
+ */
+ if( db->aDb==db->aDbStatic ){
+ aNew = sqlite3DbMallocRawNN(db, sizeof(db->aDb[0])*3 );
+ if( aNew==0 ) return;
+ memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
+ }else{
+ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
+ if( aNew==0 ) return;
+ }
+ db->aDb = aNew;
+ pNew = &db->aDb[db->nDb];
+ memset(pNew, 0, sizeof(*pNew));
+
+ /* Open the database file. If the btree is successfully opened, use
+ ** it to obtain the database schema. At this point the schema may
+ ** or may not be initialized.
+ */
+ flags = db->openFlags;
+ rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ assert( pVfs );
+ flags |= SQLITE_OPEN_MAIN_DB;
+ rc = sqlite3BtreeOpen(pVfs, zPath, db, &pNew->pBt, 0, flags);
+ db->nDb++;
+ pNew->zDbSName = sqlite3DbStrDup(db, zName);
+ }
+ db->noSharedCache = 0;
+ if( rc==SQLITE_CONSTRAINT ){
+ rc = SQLITE_ERROR;
+ zErrDyn = sqlite3MPrintf(db, "database is already attached");
+ }else if( rc==SQLITE_OK ){
+ Pager *pPager;
+ pNew->pSchema = sqlite3SchemaGet(db, pNew->pBt);
+ if( !pNew->pSchema ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else if( pNew->pSchema->file_format && pNew->pSchema->enc!=ENC(db) ){
+ zErrDyn = sqlite3MPrintf(db,
+ "attached databases must use the same text encoding as main database");
+ rc = SQLITE_ERROR;
+ }
+ sqlite3BtreeEnter(pNew->pBt);
+ pPager = sqlite3BtreePager(pNew->pBt);
+ sqlite3PagerLockingMode(pPager, db->dfltLockMode);
+ sqlite3BtreeSecureDelete(pNew->pBt,
+ sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ sqlite3BtreeSetPagerFlags(pNew->pBt,
+ PAGER_SYNCHRONOUS_FULL | (db->flags & PAGER_FLAGS_MASK));
+#endif
+ sqlite3BtreeLeave(pNew->pBt);
+ }
+ pNew->safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1;
+ if( rc==SQLITE_OK && pNew->zDbSName==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3_free_filename( zPath );
+
+ /* If the file was opened successfully, read the schema for the new database.
+ ** If this fails, or if opening the file failed, then close the file and
+ ** remove the entry from the db->aDb[] array. i.e. put everything back the
+ ** way we found it.
+ */
+ if( rc==SQLITE_OK ){
+ sqlite3BtreeEnterAll(db);
+ db->init.iDb = 0;
+ db->mDbFlags &= ~(DBFLAG_SchemaKnownOk);
+ if( !REOPEN_AS_MEMDB(db) ){
+ rc = sqlite3Init(db, &zErrDyn);
+ }
+ sqlite3BtreeLeaveAll(db);
+ assert( zErrDyn==0 || rc!=SQLITE_OK );
+ }
+#ifdef SQLITE_USER_AUTHENTICATION
+ if( rc==SQLITE_OK && !REOPEN_AS_MEMDB(db) ){
+ u8 newAuth = 0;
+ rc = sqlite3UserAuthCheckLogin(db, zName, &newAuth);
+ if( newAuth<db->auth.authLevel ){
+ rc = SQLITE_AUTH_USER;
+ }
+ }
+#endif
+ if( rc ){
+ if( ALWAYS(!REOPEN_AS_MEMDB(db)) ){
+ int iDb = db->nDb - 1;
+ assert( iDb>=2 );
+ if( db->aDb[iDb].pBt ){
+ sqlite3BtreeClose(db->aDb[iDb].pBt);
+ db->aDb[iDb].pBt = 0;
+ db->aDb[iDb].pSchema = 0;
+ }
+ sqlite3ResetAllSchemasOfConnection(db);
+ db->nDb = iDb;
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, zErrDyn);
+ zErrDyn = sqlite3MPrintf(db, "out of memory");
+ }else if( zErrDyn==0 ){
+ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
+ }
+ }
+ goto attach_error;
+ }
+
+ return;
+
+attach_error:
+ /* Return an error if we get here */
+ if( zErrDyn ){
+ sqlite3_result_error(context, zErrDyn, -1);
+ sqlite3DbFree(db, zErrDyn);
+ }
+ if( rc ) sqlite3_result_error_code(context, rc);
+}
+
+/*
+** An SQL user-function registered to do the work of an DETACH statement. The
+** three arguments to the function come directly from a detach statement:
+**
+** DETACH DATABASE x
+**
+** SELECT sqlite_detach(x)
+*/
+static void detachFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ const char *zName = (const char *)sqlite3_value_text(argv[0]);
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int i;
+ Db *pDb = 0;
+ HashElem *pEntry;
+ char zErr[128];
+
+ UNUSED_PARAMETER(NotUsed);
+
+ if( zName==0 ) zName = "";
+ for(i=0; i<db->nDb; i++){
+ pDb = &db->aDb[i];
+ if( pDb->pBt==0 ) continue;
+ if( sqlite3DbIsNamed(db, i, zName) ) break;
+ }
+
+ if( i>=db->nDb ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
+ goto detach_error;
+ }
+ if( i<2 ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
+ goto detach_error;
+ }
+ if( sqlite3BtreeTxnState(pDb->pBt)!=SQLITE_TXN_NONE
+ || sqlite3BtreeIsInBackup(pDb->pBt)
+ ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
+ goto detach_error;
+ }
+
+ /* If any TEMP triggers reference the schema being detached, move those
+ ** triggers to reference the TEMP schema itself. */
+ assert( db->aDb[1].pSchema );
+ pEntry = sqliteHashFirst(&db->aDb[1].pSchema->trigHash);
+ while( pEntry ){
+ Trigger *pTrig = (Trigger*)sqliteHashData(pEntry);
+ if( pTrig->pTabSchema==pDb->pSchema ){
+ pTrig->pTabSchema = pTrig->pSchema;
+ }
+ pEntry = sqliteHashNext(pEntry);
+ }
+
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ pDb->pSchema = 0;
+ sqlite3CollapseDatabaseArray(db);
+ return;
+
+detach_error:
+ sqlite3_result_error(context, zErr, -1);
+}
+
+/*
+** This procedure generates VDBE code for a single invocation of either the
+** sqlite_detach() or sqlite_attach() SQL user functions.
+*/
+static void codeAttach(
+ Parse *pParse, /* The parser context */
+ int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
+ FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */
+ Expr *pAuthArg, /* Expression to pass to authorization callback */
+ Expr *pFilename, /* Name of database file */
+ Expr *pDbname, /* Name of the database to use internally */
+ Expr *pKey /* Database key for encryption extension */
+){
+ int rc;
+ NameContext sName;
+ Vdbe *v;
+ sqlite3* db = pParse->db;
+ int regArgs;
+
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto attach_end;
+
+ if( pParse->nErr ) goto attach_end;
+ memset(&sName, 0, sizeof(NameContext));
+ sName.pParse = pParse;
+
+ if(
+ SQLITE_OK!=resolveAttachExpr(&sName, pFilename) ||
+ SQLITE_OK!=resolveAttachExpr(&sName, pDbname) ||
+ SQLITE_OK!=resolveAttachExpr(&sName, pKey)
+ ){
+ goto attach_end;
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( ALWAYS(pAuthArg) ){
+ char *zAuthArg;
+ if( pAuthArg->op==TK_STRING ){
+ assert( !ExprHasProperty(pAuthArg, EP_IntValue) );
+ zAuthArg = pAuthArg->u.zToken;
+ }else{
+ zAuthArg = 0;
+ }
+ rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
+ if(rc!=SQLITE_OK ){
+ goto attach_end;
+ }
+ }
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+
+ v = sqlite3GetVdbe(pParse);
+ regArgs = sqlite3GetTempRange(pParse, 4);
+ sqlite3ExprCode(pParse, pFilename, regArgs);
+ sqlite3ExprCode(pParse, pDbname, regArgs+1);
+ sqlite3ExprCode(pParse, pKey, regArgs+2);
+
+ assert( v || db->mallocFailed );
+ if( v ){
+ sqlite3VdbeAddFunctionCall(pParse, 0, regArgs+3-pFunc->nArg, regArgs+3,
+ pFunc->nArg, pFunc, 0);
+ /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
+ ** statement only). For DETACH, set it to false (expire all existing
+ ** statements).
+ */
+ sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
+ }
+
+attach_end:
+ sqlite3ExprDelete(db, pFilename);
+ sqlite3ExprDelete(db, pDbname);
+ sqlite3ExprDelete(db, pKey);
+}
+
+/*
+** Called by the parser to compile a DETACH statement.
+**
+** DETACH pDbname
+*/
+SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
+ static const FuncDef detach_func = {
+ 1, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ detachFunc, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "sqlite_detach", /* zName */
+ {0}
+ };
+ codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
+}
+
+/*
+** Called by the parser to compile an ATTACH statement.
+**
+** ATTACH p AS pDbname KEY pKey
+*/
+SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
+ static const FuncDef attach_func = {
+ 3, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ attachFunc, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "sqlite_attach", /* zName */
+ {0}
+ };
+ codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
+}
+#endif /* SQLITE_OMIT_ATTACH */
+
+/*
+** Expression callback used by sqlite3FixAAAA() routines.
+*/
+static int fixExprCb(Walker *p, Expr *pExpr){
+ DbFixer *pFix = p->u.pFix;
+ if( !pFix->bTemp ) ExprSetProperty(pExpr, EP_FromDDL);
+ if( pExpr->op==TK_VARIABLE ){
+ if( pFix->pParse->db->init.busy ){
+ pExpr->op = TK_NULL;
+ }else{
+ sqlite3ErrorMsg(pFix->pParse, "%s cannot use variables", pFix->zType);
+ return WRC_Abort;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Select callback used by sqlite3FixAAAA() routines.
+*/
+static int fixSelectCb(Walker *p, Select *pSelect){
+ DbFixer *pFix = p->u.pFix;
+ int i;
+ SrcItem *pItem;
+ sqlite3 *db = pFix->pParse->db;
+ int iDb = sqlite3FindDbName(db, pFix->zDb);
+ SrcList *pList = pSelect->pSrc;
+
+ if( NEVER(pList==0) ) return WRC_Continue;
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pFix->bTemp==0 ){
+ if( pItem->zDatabase ){
+ if( iDb!=sqlite3FindDbName(db, pItem->zDatabase) ){
+ sqlite3ErrorMsg(pFix->pParse,
+ "%s %T cannot reference objects in database %s",
+ pFix->zType, pFix->pName, pItem->zDatabase);
+ return WRC_Abort;
+ }
+ sqlite3DbFree(db, pItem->zDatabase);
+ pItem->zDatabase = 0;
+ pItem->fg.notCte = 1;
+ }
+ pItem->pSchema = pFix->pSchema;
+ pItem->fg.fromDDL = 1;
+ }
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
+ if( pList->a[i].fg.isUsing==0
+ && sqlite3WalkExpr(&pFix->w, pList->a[i].u3.pOn)
+ ){
+ return WRC_Abort;
+ }
+#endif
+ }
+ if( pSelect->pWith ){
+ for(i=0; i<pSelect->pWith->nCte; i++){
+ if( sqlite3WalkSelect(p, pSelect->pWith->a[i].pSelect) ){
+ return WRC_Abort;
+ }
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** Initialize a DbFixer structure. This routine must be called prior
+** to passing the structure to one of the sqliteFixAAAA() routines below.
+*/
+SQLITE_PRIVATE void sqlite3FixInit(
+ DbFixer *pFix, /* The fixer to be initialized */
+ Parse *pParse, /* Error messages will be written here */
+ int iDb, /* This is the database that must be used */
+ const char *zType, /* "view", "trigger", or "index" */
+ const Token *pName /* Name of the view, trigger, or index */
+){
+ sqlite3 *db = pParse->db;
+ assert( db->nDb>iDb );
+ pFix->pParse = pParse;
+ pFix->zDb = db->aDb[iDb].zDbSName;
+ pFix->pSchema = db->aDb[iDb].pSchema;
+ pFix->zType = zType;
+ pFix->pName = pName;
+ pFix->bTemp = (iDb==1);
+ pFix->w.pParse = pParse;
+ pFix->w.xExprCallback = fixExprCb;
+ pFix->w.xSelectCallback = fixSelectCb;
+ pFix->w.xSelectCallback2 = sqlite3WalkWinDefnDummyCallback;
+ pFix->w.walkerDepth = 0;
+ pFix->w.eCode = 0;
+ pFix->w.u.pFix = pFix;
+}
+
+/*
+** The following set of routines walk through the parse tree and assign
+** a specific database to all table references where the database name
+** was left unspecified in the original SQL statement. The pFix structure
+** must have been initialized by a prior call to sqlite3FixInit().
+**
+** These routines are used to make sure that an index, trigger, or
+** view in one database does not refer to objects in a different database.
+** (Exception: indices, triggers, and views in the TEMP database are
+** allowed to refer to anything.) If a reference is explicitly made
+** to an object in a different database, an error message is added to
+** pParse->zErrMsg and these routines return non-zero. If everything
+** checks out, these routines return 0.
+*/
+SQLITE_PRIVATE int sqlite3FixSrcList(
+ DbFixer *pFix, /* Context of the fixation */
+ SrcList *pList /* The Source list to check and modify */
+){
+ int res = 0;
+ if( pList ){
+ Select s;
+ memset(&s, 0, sizeof(s));
+ s.pSrc = pList;
+ res = sqlite3WalkSelect(&pFix->w, &s);
+ }
+ return res;
+}
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE int sqlite3FixSelect(
+ DbFixer *pFix, /* Context of the fixation */
+ Select *pSelect /* The SELECT statement to be fixed to one database */
+){
+ return sqlite3WalkSelect(&pFix->w, pSelect);
+}
+SQLITE_PRIVATE int sqlite3FixExpr(
+ DbFixer *pFix, /* Context of the fixation */
+ Expr *pExpr /* The expression to be fixed to one database */
+){
+ return sqlite3WalkExpr(&pFix->w, pExpr);
+}
+#endif
+
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE int sqlite3FixTriggerStep(
+ DbFixer *pFix, /* Context of the fixation */
+ TriggerStep *pStep /* The trigger step be fixed to one database */
+){
+ while( pStep ){
+ if( sqlite3WalkSelect(&pFix->w, pStep->pSelect)
+ || sqlite3WalkExpr(&pFix->w, pStep->pWhere)
+ || sqlite3WalkExprList(&pFix->w, pStep->pExprList)
+ || sqlite3FixSrcList(pFix, pStep->pFrom)
+ ){
+ return 1;
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ {
+ Upsert *pUp;
+ for(pUp=pStep->pUpsert; pUp; pUp=pUp->pNextUpsert){
+ if( sqlite3WalkExprList(&pFix->w, pUp->pUpsertTarget)
+ || sqlite3WalkExpr(&pFix->w, pUp->pUpsertTargetWhere)
+ || sqlite3WalkExprList(&pFix->w, pUp->pUpsertSet)
+ || sqlite3WalkExpr(&pFix->w, pUp->pUpsertWhere)
+ ){
+ return 1;
+ }
+ }
+ }
+#endif
+ pStep = pStep->pNext;
+ }
+
+ return 0;
+}
+#endif
+
+/************** End of attach.c **********************************************/
+/************** Begin file auth.c ********************************************/
+/*
+** 2003 January 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the sqlite3_set_authorizer()
+** API. This facility is an optional feature of the library. Embedded
+** systems that do not need this facility may omit it by recompiling
+** the library with -DSQLITE_OMIT_AUTHORIZATION=1
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** All of the code in this file may be omitted by defining a single
+** macro.
+*/
+#ifndef SQLITE_OMIT_AUTHORIZATION
+
+/*
+** Set or clear the access authorization function.
+**
+** The access authorization function is be called during the compilation
+** phase to verify that the user has read and/or write access permission on
+** various fields of the database. The first argument to the auth function
+** is a copy of the 3rd argument to this routine. The second argument
+** to the auth function is one of these constants:
+**
+** SQLITE_CREATE_INDEX
+** SQLITE_CREATE_TABLE
+** SQLITE_CREATE_TEMP_INDEX
+** SQLITE_CREATE_TEMP_TABLE
+** SQLITE_CREATE_TEMP_TRIGGER
+** SQLITE_CREATE_TEMP_VIEW
+** SQLITE_CREATE_TRIGGER
+** SQLITE_CREATE_VIEW
+** SQLITE_DELETE
+** SQLITE_DROP_INDEX
+** SQLITE_DROP_TABLE
+** SQLITE_DROP_TEMP_INDEX
+** SQLITE_DROP_TEMP_TABLE
+** SQLITE_DROP_TEMP_TRIGGER
+** SQLITE_DROP_TEMP_VIEW
+** SQLITE_DROP_TRIGGER
+** SQLITE_DROP_VIEW
+** SQLITE_INSERT
+** SQLITE_PRAGMA
+** SQLITE_READ
+** SQLITE_SELECT
+** SQLITE_TRANSACTION
+** SQLITE_UPDATE
+**
+** The third and fourth arguments to the auth function are the name of
+** the table and the column that are being accessed. The auth function
+** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
+** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
+** means that the SQL statement will never-run - the sqlite3_exec() call
+** will return with an error. SQLITE_IGNORE means that the SQL statement
+** should run but attempts to read the specified column will return NULL
+** and attempts to write the column will be ignored.
+**
+** Setting the auth function to NULL disables this hook. The default
+** setting of the auth function is NULL.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3 *db,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pArg
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->xAuth = (sqlite3_xauth)xAuth;
+ db->pAuthArg = pArg;
+ if( db->xAuth ) sqlite3ExpirePreparedStatements(db, 1);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into pParse->zErrMsg that explains that the
+** user-supplied authorization function returned an illegal value.
+*/
+static void sqliteAuthBadReturnCode(Parse *pParse){
+ sqlite3ErrorMsg(pParse, "authorizer malfunction");
+ pParse->rc = SQLITE_ERROR;
+}
+
+/*
+** Invoke the authorization callback for permission to read column zCol from
+** table zTab in database zDb. This function assumes that an authorization
+** callback has been registered (i.e. that sqlite3.xAuth is not NULL).
+**
+** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed
+** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE
+** is treated as SQLITE_DENY. In this case an error is left in pParse.
+*/
+SQLITE_PRIVATE int sqlite3AuthReadCol(
+ Parse *pParse, /* The parser context */
+ const char *zTab, /* Table name */
+ const char *zCol, /* Column name */
+ int iDb /* Index of containing database. */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ char *zDb = db->aDb[iDb].zDbSName; /* Schema name of attached database */
+ int rc; /* Auth callback return code */
+
+ if( db->init.busy ) return SQLITE_OK;
+ rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext
+#ifdef SQLITE_USER_AUTHENTICATION
+ ,db->auth.zAuthUser
+#endif
+ );
+ if( rc==SQLITE_DENY ){
+ char *z = sqlite3_mprintf("%s.%s", zTab, zCol);
+ if( db->nDb>2 || iDb!=0 ) z = sqlite3_mprintf("%s.%z", zDb, z);
+ sqlite3ErrorMsg(pParse, "access to %z is prohibited", z);
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){
+ sqliteAuthBadReturnCode(pParse);
+ }
+ return rc;
+}
+
+/*
+** The pExpr should be a TK_COLUMN expression. The table referred to
+** is in pTabList or else it is the NEW or OLD table of a trigger.
+** Check to see if it is OK to read this particular column.
+**
+** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
+** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
+** then generate an error.
+*/
+SQLITE_PRIVATE void sqlite3AuthRead(
+ Parse *pParse, /* The parser context */
+ Expr *pExpr, /* The expression to check authorization on */
+ Schema *pSchema, /* The schema of the expression */
+ SrcList *pTabList /* All table that pExpr might refer to */
+){
+ Table *pTab = 0; /* The table being read */
+ const char *zCol; /* Name of the column of the table */
+ int iSrc; /* Index in pTabList->a[] of table being read */
+ int iDb; /* The index of the database the expression refers to */
+ int iCol; /* Index of column in table */
+
+ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
+ assert( !IN_RENAME_OBJECT );
+ assert( pParse->db->xAuth!=0 );
+ iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
+ if( iDb<0 ){
+ /* An attempt to read a column out of a subquery or other
+ ** temporary table. */
+ return;
+ }
+
+ if( pExpr->op==TK_TRIGGER ){
+ pTab = pParse->pTriggerTab;
+ }else{
+ assert( pTabList );
+ for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){
+ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
+ pTab = pTabList->a[iSrc].pTab;
+ break;
+ }
+ }
+ }
+ iCol = pExpr->iColumn;
+ if( pTab==0 ) return;
+
+ if( iCol>=0 ){
+ assert( iCol<pTab->nCol );
+ zCol = pTab->aCol[iCol].zCnName;
+ }else if( pTab->iPKey>=0 ){
+ assert( pTab->iPKey<pTab->nCol );
+ zCol = pTab->aCol[pTab->iPKey].zCnName;
+ }else{
+ zCol = "ROWID";
+ }
+ assert( iDb>=0 && iDb<pParse->db->nDb );
+ if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){
+ pExpr->op = TK_NULL;
+ }
+}
+
+/*
+** Do an authorization check using the code and arguments given. Return
+** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
+** is returned, then the error count and error message in pParse are
+** modified appropriately.
+*/
+SQLITE_PRIVATE int sqlite3AuthCheck(
+ Parse *pParse,
+ int code,
+ const char *zArg1,
+ const char *zArg2,
+ const char *zArg3
+){
+ sqlite3 *db = pParse->db;
+ int rc;
+
+ /* Don't do any authorization checks if the database is initializing
+ ** or if the parser is being invoked from within sqlite3_declare_vtab.
+ */
+ assert( !IN_RENAME_OBJECT || db->xAuth==0 );
+ if( db->xAuth==0 || db->init.busy || IN_SPECIAL_PARSE ){
+ return SQLITE_OK;
+ }
+
+ /* EVIDENCE-OF: R-43249-19882 The third through sixth parameters to the
+ ** callback are either NULL pointers or zero-terminated strings that
+ ** contain additional details about the action to be authorized.
+ **
+ ** The following testcase() macros show that any of the 3rd through 6th
+ ** parameters can be either NULL or a string. */
+ testcase( zArg1==0 );
+ testcase( zArg2==0 );
+ testcase( zArg3==0 );
+ testcase( pParse->zAuthContext==0 );
+
+ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext
+#ifdef SQLITE_USER_AUTHENTICATION
+ ,db->auth.zAuthUser
+#endif
+ );
+ if( rc==SQLITE_DENY ){
+ sqlite3ErrorMsg(pParse, "not authorized");
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
+ rc = SQLITE_DENY;
+ sqliteAuthBadReturnCode(pParse);
+ }
+ return rc;
+}
+
+/*
+** Push an authorization context. After this routine is called, the
+** zArg3 argument to authorization callbacks will be zContext until
+** popped. Or if pParse==0, this routine is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3AuthContextPush(
+ Parse *pParse,
+ AuthContext *pContext,
+ const char *zContext
+){
+ assert( pParse );
+ pContext->pParse = pParse;
+ pContext->zAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = zContext;
+}
+
+/*
+** Pop an authorization context that was previously pushed
+** by sqlite3AuthContextPush
+*/
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
+ if( pContext->pParse ){
+ pContext->pParse->zAuthContext = pContext->zAuthContext;
+ pContext->pParse = 0;
+ }
+}
+
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+/************** End of auth.c ************************************************/
+/************** Begin file build.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the SQLite parser
+** when syntax rules are reduced. The routines in this file handle the
+** following kinds of SQL syntax:
+**
+** CREATE TABLE
+** DROP TABLE
+** CREATE INDEX
+** DROP INDEX
+** creating ID lists
+** BEGIN TRANSACTION
+** COMMIT
+** ROLLBACK
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** The TableLock structure is only used by the sqlite3TableLock() and
+** codeTableLocks() functions.
+*/
+struct TableLock {
+ int iDb; /* The database containing the table to be locked */
+ Pgno iTab; /* The root page of the table to be locked */
+ u8 isWriteLock; /* True for write lock. False for a read lock */
+ const char *zLockName; /* Name of the table */
+};
+
+/*
+** Record the fact that we want to lock a table at run-time.
+**
+** The table to be locked has root page iTab and is found in database iDb.
+** A read or a write lock can be taken depending on isWritelock.
+**
+** This routine just records the fact that the lock is desired. The
+** code to make the lock occur is generated by a later call to
+** codeTableLocks() which occurs during sqlite3FinishCoding().
+*/
+static SQLITE_NOINLINE void lockTable(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database containing the table to lock */
+ Pgno iTab, /* Root page number of the table to be locked */
+ u8 isWriteLock, /* True for a write lock */
+ const char *zName /* Name of the table to be locked */
+){
+ Parse *pToplevel;
+ int i;
+ int nBytes;
+ TableLock *p;
+ assert( iDb>=0 );
+
+ pToplevel = sqlite3ParseToplevel(pParse);
+ for(i=0; i<pToplevel->nTableLock; i++){
+ p = &pToplevel->aTableLock[i];
+ if( p->iDb==iDb && p->iTab==iTab ){
+ p->isWriteLock = (p->isWriteLock || isWriteLock);
+ return;
+ }
+ }
+
+ nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
+ pToplevel->aTableLock =
+ sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
+ if( pToplevel->aTableLock ){
+ p = &pToplevel->aTableLock[pToplevel->nTableLock++];
+ p->iDb = iDb;
+ p->iTab = iTab;
+ p->isWriteLock = isWriteLock;
+ p->zLockName = zName;
+ }else{
+ pToplevel->nTableLock = 0;
+ sqlite3OomFault(pToplevel->db);
+ }
+}
+SQLITE_PRIVATE void sqlite3TableLock(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database containing the table to lock */
+ Pgno iTab, /* Root page number of the table to be locked */
+ u8 isWriteLock, /* True for a write lock */
+ const char *zName /* Name of the table to be locked */
+){
+ if( iDb==1 ) return;
+ if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
+ lockTable(pParse, iDb, iTab, isWriteLock, zName);
+}
+
+/*
+** Code an OP_TableLock instruction for each table locked by the
+** statement (configured by calls to sqlite3TableLock()).
+*/
+static void codeTableLocks(Parse *pParse){
+ int i;
+ Vdbe *pVdbe = pParse->pVdbe;
+ assert( pVdbe!=0 );
+
+ for(i=0; i<pParse->nTableLock; i++){
+ TableLock *p = &pParse->aTableLock[i];
+ int p1 = p->iDb;
+ sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
+ p->zLockName, P4_STATIC);
+ }
+}
+#else
+ #define codeTableLocks(x)
+#endif
+
+/*
+** Return TRUE if the given yDbMask object is empty - if it contains no
+** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
+** macros when SQLITE_MAX_ATTACHED is greater than 30.
+*/
+#if SQLITE_MAX_ATTACHED>30
+SQLITE_PRIVATE int sqlite3DbMaskAllZero(yDbMask m){
+ int i;
+ for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
+ return 1;
+}
+#endif
+
+/*
+** This routine is called after a single SQL statement has been
+** parsed and a VDBE program to execute that statement has been
+** prepared. This routine puts the finishing touches on the
+** VDBE program and resets the pParse structure for the next
+** parse.
+**
+** Note that if an error occurred, it might be the case that
+** no VDBE code was generated.
+*/
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
+ sqlite3 *db;
+ Vdbe *v;
+ int iDb, i;
+
+ assert( pParse->pToplevel==0 );
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nested ) return;
+ if( pParse->nErr ){
+ if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
+ return;
+ }
+ assert( db->mallocFailed==0 );
+
+ /* Begin by generating some termination code at the end of the
+ ** vdbe program
+ */
+ v = pParse->pVdbe;
+ if( v==0 ){
+ if( db->init.busy ){
+ pParse->rc = SQLITE_DONE;
+ return;
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) pParse->rc = SQLITE_ERROR;
+ }
+ assert( !pParse->isMultiWrite
+ || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
+ if( v ){
+ if( pParse->bReturning ){
+ Returning *pReturning = pParse->u1.pReturning;
+ int addrRewind;
+ int reg;
+
+ if( pReturning->nRetCol ){
+ sqlite3VdbeAddOp0(v, OP_FkCheck);
+ addrRewind =
+ sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
+ VdbeCoverage(v);
+ reg = pReturning->iRetReg;
+ for(i=0; i<pReturning->nRetCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
+ sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrRewind);
+ }
+ }
+ sqlite3VdbeAddOp0(v, OP_Halt);
+
+#if SQLITE_USER_AUTHENTICATION
+ if( pParse->nTableLock>0 && db->init.busy==0 ){
+ sqlite3UserAuthInit(db);
+ if( db->auth.authLevel<UAUTH_User ){
+ sqlite3ErrorMsg(pParse, "user not authenticated");
+ pParse->rc = SQLITE_AUTH_USER;
+ return;
+ }
+ }
+#endif
+
+ /* The cookie mask contains one bit for each database file open.
+ ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
+ ** set for each database that is used. Generate code to start a
+ ** transaction on each used database and to verify the schema cookie
+ ** on each used database.
+ */
+ assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
+ sqlite3VdbeJumpHere(v, 0);
+ assert( db->nDb>0 );
+ iDb = 0;
+ do{
+ Schema *pSchema;
+ if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
+ sqlite3VdbeUsesBtree(v, iDb);
+ pSchema = db->aDb[iDb].pSchema;
+ sqlite3VdbeAddOp4Int(v,
+ OP_Transaction, /* Opcode */
+ iDb, /* P1 */
+ DbMaskTest(pParse->writeMask,iDb), /* P2 */
+ pSchema->schema_cookie, /* P3 */
+ pSchema->iGeneration /* P4 */
+ );
+ if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
+ VdbeComment((v,
+ "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
+ }while( ++iDb<db->nDb );
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ for(i=0; i<pParse->nVtabLock; i++){
+ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
+ sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
+ }
+ pParse->nVtabLock = 0;
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ /* Once all the cookies have been verified and transactions opened,
+ ** obtain the required table-locks. This is a no-op unless the
+ ** shared-cache feature is enabled.
+ */
+ if( pParse->nTableLock ) codeTableLocks(pParse);
+#endif
+
+ /* Initialize any AUTOINCREMENT data structures required.
+ */
+ if( pParse->pAinc ) sqlite3AutoincrementBegin(pParse);
+
+ /* Code constant expressions that were factored out of inner loops.
+ */
+ if( pParse->pConstExpr ){
+ ExprList *pEL = pParse->pConstExpr;
+ pParse->okConstFactor = 0;
+ for(i=0; i<pEL->nExpr; i++){
+ assert( pEL->a[i].u.iConstExprReg>0 );
+ sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
+ }
+ }
+
+ if( pParse->bReturning ){
+ Returning *pRet = pParse->u1.pReturning;
+ if( pRet->nRetCol ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
+ }
+ }
+
+ /* Finally, jump back to the beginning of the executable code. */
+ sqlite3VdbeGoto(v, 1);
+ }
+
+ /* Get the VDBE program ready for execution
+ */
+ assert( v!=0 || pParse->nErr );
+ assert( db->mallocFailed==0 || pParse->nErr );
+ if( pParse->nErr==0 ){
+ /* A minimum of one cursor is required if autoincrement is used
+ * See ticket [a696379c1f08866] */
+ assert( pParse->pAinc==0 || pParse->nTab>0 );
+ sqlite3VdbeMakeReady(v, pParse);
+ pParse->rc = SQLITE_DONE;
+ }else{
+ pParse->rc = SQLITE_ERROR;
+ }
+}
+
+/*
+** Run the parser and code generator recursively in order to generate
+** code for the SQL statement given onto the end of the pParse context
+** currently under construction. Notes:
+**
+** * The final OP_Halt is not appended and other initialization
+** and finalization steps are omitted because those are handling by the
+** outermost parser.
+**
+** * Built-in SQL functions always take precedence over application-defined
+** SQL functions. In other words, it is not possible to override a
+** built-in function.
+*/
+SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
+ va_list ap;
+ char *zSql;
+ sqlite3 *db = pParse->db;
+ u32 savedDbFlags = db->mDbFlags;
+ char saveBuf[PARSE_TAIL_SZ];
+
+ if( pParse->nErr ) return;
+ if( pParse->eParseMode ) return;
+ assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
+ va_start(ap, zFormat);
+ zSql = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ if( zSql==0 ){
+ /* This can result either from an OOM or because the formatted string
+ ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
+ ** an error */
+ if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
+ pParse->nErr++;
+ return;
+ }
+ pParse->nested++;
+ memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
+ memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
+ db->mDbFlags |= DBFLAG_PreferBuiltin;
+ sqlite3RunParser(pParse, zSql);
+ db->mDbFlags = savedDbFlags;
+ sqlite3DbFree(db, zSql);
+ memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
+ pParse->nested--;
+}
+
+#if SQLITE_USER_AUTHENTICATION
+/*
+** Return TRUE if zTable is the name of the system table that stores the
+** list of users and their access credentials.
+*/
+SQLITE_PRIVATE int sqlite3UserAuthTable(const char *zTable){
+ return sqlite3_stricmp(zTable, "sqlite_user")==0;
+}
+#endif
+
+/*
+** Locate the in-memory structure that describes a particular database
+** table given the name of that table and (optionally) the name of the
+** database containing the table. Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the table and the
+** first matching table is returned. (No checking for duplicate table
+** names is done.) The search order is TEMP first, then MAIN, then any
+** auxiliary databases added using the ATTACH command.
+**
+** See also sqlite3LocateTable().
+*/
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
+ Table *p = 0;
+ int i;
+
+ /* All mutexes are required for schema access. Make sure we hold them. */
+ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
+#if SQLITE_USER_AUTHENTICATION
+ /* Only the admin user is allowed to know that the sqlite_user table
+ ** exists */
+ if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
+ return 0;
+ }
+#endif
+ if( zDatabase ){
+ for(i=0; i<db->nDb; i++){
+ if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
+ }
+ if( i>=db->nDb ){
+ /* No match against the official names. But always match "main"
+ ** to schema 0 as a legacy fallback. */
+ if( sqlite3StrICmp(zDatabase,"main")==0 ){
+ i = 0;
+ }else{
+ return 0;
+ }
+ }
+ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
+ if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
+ if( i==1 ){
+ if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
+ || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
+ || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
+ ){
+ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
+ LEGACY_TEMP_SCHEMA_TABLE);
+ }
+ }else{
+ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
+ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
+ LEGACY_SCHEMA_TABLE);
+ }
+ }
+ }
+ }else{
+ /* Match against TEMP first */
+ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
+ if( p ) return p;
+ /* The main database is second */
+ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
+ if( p ) return p;
+ /* Attached databases are in order of attachment */
+ for(i=2; i<db->nDb; i++){
+ assert( sqlite3SchemaMutexHeld(db, i, 0) );
+ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
+ if( p ) break;
+ }
+ if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
+ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
+ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
+ }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
+ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
+ LEGACY_TEMP_SCHEMA_TABLE);
+ }
+ }
+ }
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes a particular database
+** table given the name of that table and (optionally) the name of the
+** database containing the table. Return NULL if not found. Also leave an
+** error message in pParse->zErrMsg.
+**
+** The difference between this routine and sqlite3FindTable() is that this
+** routine leaves an error message in pParse->zErrMsg where
+** sqlite3FindTable() does not.
+*/
+SQLITE_PRIVATE Table *sqlite3LocateTable(
+ Parse *pParse, /* context in which to report errors */
+ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
+ const char *zName, /* Name of the table we are looking for */
+ const char *zDbase /* Name of the database. Might be NULL */
+){
+ Table *p;
+ sqlite3 *db = pParse->db;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
+ && SQLITE_OK!=sqlite3ReadSchema(pParse)
+ ){
+ return 0;
+ }
+
+ p = sqlite3FindTable(db, zName, zDbase);
+ if( p==0 ){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* If zName is the not the name of a table in the schema created using
+ ** CREATE, then check to see if it is the name of an virtual table that
+ ** can be an eponymous virtual table. */
+ if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){
+ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
+ if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
+ pMod = sqlite3PragmaVtabRegister(db, zName);
+ }
+ if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
+ testcase( pMod->pEpoTab==0 );
+ return pMod->pEpoTab;
+ }
+ }
+#endif
+ if( flags & LOCATE_NOERR ) return 0;
+ pParse->checkSchema = 1;
+ }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){
+ p = 0;
+ }
+
+ if( p==0 ){
+ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
+ if( zDbase ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
+ }else{
+ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
+ }
+ }else{
+ assert( HasRowid(p) || p->iPKey<0 );
+ }
+
+ return p;
+}
+
+/*
+** Locate the table identified by *p.
+**
+** This is a wrapper around sqlite3LocateTable(). The difference between
+** sqlite3LocateTable() and this function is that this function restricts
+** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
+** non-NULL if it is part of a view or trigger program definition. See
+** sqlite3FixSrcList() for details.
+*/
+SQLITE_PRIVATE Table *sqlite3LocateTableItem(
+ Parse *pParse,
+ u32 flags,
+ SrcItem *p
+){
+ const char *zDb;
+ assert( p->pSchema==0 || p->zDatabase==0 );
+ if( p->pSchema ){
+ int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
+ zDb = pParse->db->aDb[iDb].zDbSName;
+ }else{
+ zDb = p->zDatabase;
+ }
+ return sqlite3LocateTable(pParse, flags, p->zName, zDb);
+}
+
+/*
+** Return the preferred table name for system tables. Translate legacy
+** names into the new preferred names, as appropriate.
+*/
+SQLITE_PRIVATE const char *sqlite3PreferredTableName(const char *zName){
+ if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
+ if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
+ return PREFERRED_SCHEMA_TABLE;
+ }
+ if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
+ return PREFERRED_TEMP_SCHEMA_TABLE;
+ }
+ }
+ return zName;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular index given the name of that index
+** and the name of the database that contains the index.
+** Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the
+** table and the first matching index is returned. (No checking
+** for duplicate index names is done.) The search order is
+** TEMP first, then MAIN, then any auxiliary databases added
+** using the ATTACH command.
+*/
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
+ Index *p = 0;
+ int i;
+ /* All mutexes are required for schema access. Make sure we hold them. */
+ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ Schema *pSchema = db->aDb[j].pSchema;
+ assert( pSchema );
+ if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
+ assert( sqlite3SchemaMutexHeld(db, j, 0) );
+ p = sqlite3HashFind(&pSchema->idxHash, zName);
+ if( p ) break;
+ }
+ return p;
+}
+
+/*
+** Reclaim the memory used by an index
+*/
+SQLITE_PRIVATE void sqlite3FreeIndex(sqlite3 *db, Index *p){
+#ifndef SQLITE_OMIT_ANALYZE
+ sqlite3DeleteIndexSamples(db, p);
+#endif
+ sqlite3ExprDelete(db, p->pPartIdxWhere);
+ sqlite3ExprListDelete(db, p->aColExpr);
+ sqlite3DbFree(db, p->zColAff);
+ if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3_free(p->aiRowEst);
+#endif
+ sqlite3DbFree(db, p);
+}
+
+/*
+** For the index called zIdxName which is found in the database iDb,
+** unlike that index from its Table then remove the index from
+** the index hash table and free all memory structures associated
+** with the index.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
+ Index *pIndex;
+ Hash *pHash;
+
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pHash = &db->aDb[iDb].pSchema->idxHash;
+ pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
+ if( ALWAYS(pIndex) ){
+ if( pIndex->pTable->pIndex==pIndex ){
+ pIndex->pTable->pIndex = pIndex->pNext;
+ }else{
+ Index *p;
+ /* Justification of ALWAYS(); The index must be on the list of
+ ** indices. */
+ p = pIndex->pTable->pIndex;
+ while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
+ if( ALWAYS(p && p->pNext==pIndex) ){
+ p->pNext = pIndex->pNext;
+ }
+ }
+ sqlite3FreeIndex(db, pIndex);
+ }
+ db->mDbFlags |= DBFLAG_SchemaChange;
+}
+
+/*
+** Look through the list of open database files in db->aDb[] and if
+** any have been closed, remove them from the list. Reallocate the
+** db->aDb[] structure to a smaller size, if possible.
+**
+** Entry 0 (the "main" database) and entry 1 (the "temp" database)
+** are never candidates for being collapsed.
+*/
+SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3 *db){
+ int i, j;
+ for(i=j=2; i<db->nDb; i++){
+ struct Db *pDb = &db->aDb[i];
+ if( pDb->pBt==0 ){
+ sqlite3DbFree(db, pDb->zDbSName);
+ pDb->zDbSName = 0;
+ continue;
+ }
+ if( j<i ){
+ db->aDb[j] = db->aDb[i];
+ }
+ j++;
+ }
+ db->nDb = j;
+ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
+ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
+ sqlite3DbFree(db, db->aDb);
+ db->aDb = db->aDbStatic;
+ }
+}
+
+/*
+** Reset the schema for the database at index iDb. Also reset the
+** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
+** Deferred resets may be run by calling with iDb<0.
+*/
+SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
+ int i;
+ assert( iDb<db->nDb );
+
+ if( iDb>=0 ){
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ DbSetProperty(db, iDb, DB_ResetWanted);
+ DbSetProperty(db, 1, DB_ResetWanted);
+ db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
+ }
+
+ if( db->nSchemaLock==0 ){
+ for(i=0; i<db->nDb; i++){
+ if( DbHasProperty(db, i, DB_ResetWanted) ){
+ sqlite3SchemaClear(db->aDb[i].pSchema);
+ }
+ }
+ }
+}
+
+/*
+** Erase all schema information from all attached databases (including
+** "main" and "temp") for a single database connection.
+*/
+SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
+ int i;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Db *pDb = &db->aDb[i];
+ if( pDb->pSchema ){
+ if( db->nSchemaLock==0 ){
+ sqlite3SchemaClear(pDb->pSchema);
+ }else{
+ DbSetProperty(db, i, DB_ResetWanted);
+ }
+ }
+ }
+ db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
+ sqlite3VtabUnlockList(db);
+ sqlite3BtreeLeaveAll(db);
+ if( db->nSchemaLock==0 ){
+ sqlite3CollapseDatabaseArray(db);
+ }
+}
+
+/*
+** This routine is called when a commit occurs.
+*/
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
+ db->mDbFlags &= ~DBFLAG_SchemaChange;
+}
+
+/*
+** Set the expression associated with a column. This is usually
+** the DEFAULT value, but might also be the expression that computes
+** the value for a generated column.
+*/
+SQLITE_PRIVATE void sqlite3ColumnSetExpr(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* The table containing the column */
+ Column *pCol, /* The column to receive the new DEFAULT expression */
+ Expr *pExpr /* The new default expression */
+){
+ ExprList *pList;
+ assert( IsOrdinaryTable(pTab) );
+ pList = pTab->u.tab.pDfltList;
+ if( pCol->iDflt==0
+ || NEVER(pList==0)
+ || NEVER(pList->nExpr<pCol->iDflt)
+ ){
+ pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
+ pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
+ }else{
+ sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
+ pList->a[pCol->iDflt-1].pExpr = pExpr;
+ }
+}
+
+/*
+** Return the expression associated with a column. The expression might be
+** the DEFAULT clause or the AS clause of a generated column.
+** Return NULL if the column has no associated expression.
+*/
+SQLITE_PRIVATE Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
+ if( pCol->iDflt==0 ) return 0;
+ if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
+ if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
+ if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
+ return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
+}
+
+/*
+** Set the collating sequence name for a column.
+*/
+SQLITE_PRIVATE void sqlite3ColumnSetColl(
+ sqlite3 *db,
+ Column *pCol,
+ const char *zColl
+){
+ i64 nColl;
+ i64 n;
+ char *zNew;
+ assert( zColl!=0 );
+ n = sqlite3Strlen30(pCol->zCnName) + 1;
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ n += sqlite3Strlen30(pCol->zCnName+n) + 1;
+ }
+ nColl = sqlite3Strlen30(zColl) + 1;
+ zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
+ if( zNew ){
+ pCol->zCnName = zNew;
+ memcpy(pCol->zCnName + n, zColl, nColl);
+ pCol->colFlags |= COLFLAG_HASCOLL;
+ }
+}
+
+/*
+** Return the collating sequence name for a column
+*/
+SQLITE_PRIVATE const char *sqlite3ColumnColl(Column *pCol){
+ const char *z;
+ if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
+ z = pCol->zCnName;
+ while( *z ){ z++; }
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ do{ z++; }while( *z );
+ }
+ return z+1;
+}
+
+/*
+** Delete memory allocated for the column names of a table or view (the
+** Table.aCol[] array).
+*/
+SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
+ int i;
+ Column *pCol;
+ assert( pTable!=0 );
+ assert( db!=0 );
+ if( (pCol = pTable->aCol)!=0 ){
+ for(i=0; i<pTable->nCol; i++, pCol++){
+ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
+ sqlite3DbFree(db, pCol->zCnName);
+ }
+ sqlite3DbNNFreeNN(db, pTable->aCol);
+ if( IsOrdinaryTable(pTable) ){
+ sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
+ }
+ if( db->pnBytesFreed==0 ){
+ pTable->aCol = 0;
+ pTable->nCol = 0;
+ if( IsOrdinaryTable(pTable) ){
+ pTable->u.tab.pDfltList = 0;
+ }
+ }
+ }
+}
+
+/*
+** Remove the memory data structures associated with the given
+** Table. No changes are made to disk by this routine.
+**
+** This routine just deletes the data structure. It does not unlink
+** the table data structure from the hash table. But it does destroy
+** memory structures of the indices and foreign keys associated with
+** the table.
+**
+** The db parameter is optional. It is needed if the Table object
+** contains lookaside memory. (Table objects in the schema do not use
+** lookaside memory, but some ephemeral Table objects do.) Or the
+** db parameter can be used with db->pnBytesFreed to measure the memory
+** used by the Table object.
+*/
+static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
+ Index *pIndex, *pNext;
+
+#ifdef SQLITE_DEBUG
+ /* Record the number of outstanding lookaside allocations in schema Tables
+ ** prior to doing any free() operations. Since schema Tables do not use
+ ** lookaside, this number should not change.
+ **
+ ** If malloc has already failed, it may be that it failed while allocating
+ ** a Table object that was going to be marked ephemeral. So do not check
+ ** that no lookaside memory is used in this case either. */
+ int nLookaside = 0;
+ assert( db!=0 );
+ if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
+ nLookaside = sqlite3LookasideUsed(db, 0);
+ }
+#endif
+
+ /* Delete all indices associated with this table. */
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
+ pNext = pIndex->pNext;
+ assert( pIndex->pSchema==pTable->pSchema
+ || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
+ if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){
+ char *zName = pIndex->zName;
+ TESTONLY ( Index *pOld = ) sqlite3HashInsert(
+ &pIndex->pSchema->idxHash, zName, 0
+ );
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
+ assert( pOld==pIndex || pOld==0 );
+ }
+ sqlite3FreeIndex(db, pIndex);
+ }
+
+ if( IsOrdinaryTable(pTable) ){
+ sqlite3FkDelete(db, pTable);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( IsVirtual(pTable) ){
+ sqlite3VtabClear(db, pTable);
+ }
+#endif
+ else{
+ assert( IsView(pTable) );
+ sqlite3SelectDelete(db, pTable->u.view.pSelect);
+ }
+
+ /* Delete the Table structure itself.
+ */
+ sqlite3DeleteColumnNames(db, pTable);
+ sqlite3DbFree(db, pTable->zName);
+ sqlite3DbFree(db, pTable->zColAff);
+ sqlite3ExprListDelete(db, pTable->pCheck);
+ sqlite3DbFree(db, pTable);
+
+ /* Verify that no lookaside memory was used by schema tables */
+ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
+}
+SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
+ /* Do not delete the table until the reference count reaches zero. */
+ assert( db!=0 );
+ if( !pTable ) return;
+ if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return;
+ deleteTable(db, pTable);
+}
+
+
+/*
+** Unlink the given table from the hash tables and the delete the
+** table structure with all its indices and foreign keys.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
+ Table *p;
+ Db *pDb;
+
+ assert( db!=0 );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( zTabName );
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
+ pDb = &db->aDb[iDb];
+ p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
+ sqlite3DeleteTable(db, p);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+}
+
+/*
+** Given a token, return a string that consists of the text of that
+** token. Space to hold the returned string
+** is obtained from sqliteMalloc() and must be freed by the calling
+** function.
+**
+** Any quotation marks (ex: "name", 'name', [name], or `name`) that
+** surround the body of the token are removed.
+**
+** Tokens are often just pointers into the original SQL text and so
+** are not \000 terminated and are not persistent. The returned string
+** is \000 terminated and is persistent.
+*/
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
+ char *zName;
+ if( pName ){
+ zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
+ sqlite3Dequote(zName);
+ }else{
+ zName = 0;
+ }
+ return zName;
+}
+
+/*
+** Open the sqlite_schema table stored in database number iDb for
+** writing. The table is opened using cursor 0.
+*/
+SQLITE_PRIVATE void sqlite3OpenSchemaTable(Parse *p, int iDb){
+ Vdbe *v = sqlite3GetVdbe(p);
+ sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
+ if( p->nTab==0 ){
+ p->nTab = 1;
+ }
+}
+
+/*
+** Parameter zName points to a nul-terminated buffer containing the name
+** of a database ("main", "temp" or the name of an attached db). This
+** function returns the index of the named database in db->aDb[], or
+** -1 if the named db cannot be found.
+*/
+SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){
+ int i = -1; /* Database number */
+ if( zName ){
+ Db *pDb;
+ for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
+ if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
+ /* "main" is always an acceptable alias for the primary database
+ ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
+ if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
+ }
+ }
+ return i;
+}
+
+/*
+** The token *pName contains the name of a database (either "main" or
+** "temp" or the name of an attached db). This routine returns the
+** index of the named database in db->aDb[], or -1 if the named db
+** does not exist.
+*/
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
+ int i; /* Database number */
+ char *zName; /* Name we are searching for */
+ zName = sqlite3NameFromToken(db, pName);
+ i = sqlite3FindDbName(db, zName);
+ sqlite3DbFree(db, zName);
+ return i;
+}
+
+/* The table or view or trigger name is passed to this routine via tokens
+** pName1 and pName2. If the table name was fully qualified, for example:
+**
+** CREATE TABLE xxx.yyy (...);
+**
+** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
+** the table name is not fully qualified, i.e.:
+**
+** CREATE TABLE yyy(...);
+**
+** Then pName1 is set to "yyy" and pName2 is "".
+**
+** This routine sets the *ppUnqual pointer to point at the token (pName1 or
+** pName2) that stores the unqualified table name. The index of the
+** database "xxx" is returned.
+*/
+SQLITE_PRIVATE int sqlite3TwoPartName(
+ Parse *pParse, /* Parsing and code generating context */
+ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
+ Token *pName2, /* The "yyy" in the name "xxx.yyy" */
+ Token **pUnqual /* Write the unqualified object name here */
+){
+ int iDb; /* Database holding the object */
+ sqlite3 *db = pParse->db;
+
+ assert( pName2!=0 );
+ if( pName2->n>0 ){
+ if( db->init.busy ) {
+ sqlite3ErrorMsg(pParse, "corrupt database");
+ return -1;
+ }
+ *pUnqual = pName2;
+ iDb = sqlite3FindDb(db, pName1);
+ if( iDb<0 ){
+ sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
+ return -1;
+ }
+ }else{
+ assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
+ || (db->mDbFlags & DBFLAG_Vacuum)!=0);
+ iDb = db->init.iDb;
+ *pUnqual = pName1;
+ }
+ return iDb;
+}
+
+/*
+** True if PRAGMA writable_schema is ON
+*/
+SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3 *db){
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
+ SQLITE_WriteSchema );
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
+ SQLITE_Defensive );
+ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
+ (SQLITE_WriteSchema|SQLITE_Defensive) );
+ return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
+}
+
+/*
+** This routine is used to check if the UTF-8 string zName is a legal
+** unqualified name for a new schema object (table, index, view or
+** trigger). All names are legal except those that begin with the string
+** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
+** is reserved for internal use.
+**
+** When parsing the sqlite_schema table, this routine also checks to
+** make sure the "type", "name", and "tbl_name" columns are consistent
+** with the SQL.
+*/
+SQLITE_PRIVATE int sqlite3CheckObjectName(
+ Parse *pParse, /* Parsing context */
+ const char *zName, /* Name of the object to check */
+ const char *zType, /* Type of this object */
+ const char *zTblName /* Parent table name for triggers and indexes */
+){
+ sqlite3 *db = pParse->db;
+ if( sqlite3WritableSchema(db)
+ || db->init.imposterTable
+ || !sqlite3Config.bExtraSchemaChecks
+ ){
+ /* Skip these error checks for writable_schema=ON */
+ return SQLITE_OK;
+ }
+ if( db->init.busy ){
+ if( sqlite3_stricmp(zType, db->init.azInit[0])
+ || sqlite3_stricmp(zName, db->init.azInit[1])
+ || sqlite3_stricmp(zTblName, db->init.azInit[2])
+ ){
+ sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
+ return SQLITE_ERROR;
+ }
+ }else{
+ if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
+ || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
+ ){
+ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
+ zName);
+ return SQLITE_ERROR;
+ }
+
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the PRIMARY KEY index of a table
+*/
+SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table *pTab){
+ Index *p;
+ for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
+ return p;
+}
+
+/*
+** Convert an table column number into a index column number. That is,
+** for the column iCol in the table (as defined by the CREATE TABLE statement)
+** find the (first) offset of that column in index pIdx. Or return -1
+** if column iCol is not used in index pIdx.
+*/
+SQLITE_PRIVATE i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
+ int i;
+ for(i=0; i<pIdx->nColumn; i++){
+ if( iCol==pIdx->aiColumn[i] ) return i;
+ }
+ return -1;
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/* Convert a storage column number into a table column number.
+**
+** The storage column number (0,1,2,....) is the index of the value
+** as it appears in the record on disk. The true column number
+** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
+**
+** The storage column number is less than the table column number if
+** and only there are VIRTUAL columns to the left.
+**
+** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
+*/
+SQLITE_PRIVATE i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
+ if( pTab->tabFlags & TF_HasVirtual ){
+ int i;
+ for(i=0; i<=iCol; i++){
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
+ }
+ }
+ return iCol;
+}
+#endif
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/* Convert a table column number into a storage column number.
+**
+** The storage column number (0,1,2,....) is the index of the value
+** as it appears in the record on disk. Or, if the input column is
+** the N-th virtual column (zero-based) then the storage number is
+** the number of non-virtual columns in the table plus N.
+**
+** The true column number is the index (0,1,2,...) of the column in
+** the CREATE TABLE statement.
+**
+** If the input column is a VIRTUAL column, then it should not appear
+** in storage. But the value sometimes is cached in registers that
+** follow the range of registers used to construct storage. This
+** avoids computing the same VIRTUAL column multiple times, and provides
+** values for use by OP_Param opcodes in triggers. Hence, if the
+** input column is a VIRTUAL table, put it after all the other columns.
+**
+** In the following, N means "normal column", S means STORED, and
+** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
+**
+** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
+** -- 0 1 2 3 4 5 6 7 8
+**
+** Then the mapping from this function is as follows:
+**
+** INPUTS: 0 1 2 3 4 5 6 7 8
+** OUTPUTS: 0 1 6 2 3 7 4 5 8
+**
+** So, in other words, this routine shifts all the virtual columns to
+** the end.
+**
+** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
+** this routine is a no-op macro. If the pTab does not have any virtual
+** columns, then this routine is no-op that always return iCol. If iCol
+** is negative (indicating the ROWID column) then this routine return iCol.
+*/
+SQLITE_PRIVATE i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
+ int i;
+ i16 n;
+ assert( iCol<pTab->nCol );
+ if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
+ for(i=0, n=0; i<iCol; i++){
+ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
+ }
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
+ /* iCol is a virtual column itself */
+ return pTab->nNVCol + i - n;
+ }else{
+ /* iCol is a normal or stored column */
+ return n;
+ }
+}
+#endif
+
+/*
+** Insert a single OP_JournalMode query opcode in order to force the
+** prepared statement to return false for sqlite3_stmt_readonly(). This
+** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
+** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
+** will return false for sqlite3_stmt_readonly() even if that statement
+** is a read-only no-op.
+*/
+static void sqlite3ForceNotReadOnly(Parse *pParse){
+ int iReg = ++pParse->nMem;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
+ sqlite3VdbeUsesBtree(v, 0);
+ }
+}
+
+/*
+** Begin constructing a new table representation in memory. This is
+** the first of several action routines that get called in response
+** to a CREATE TABLE statement. In particular, this routine is called
+** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
+** flag is true if the table should be stored in the auxiliary database
+** file instead of in the main database file. This is normally the case
+** when the "TEMP" or "TEMPORARY" keyword occurs in between
+** CREATE and TABLE.
+**
+** The new table record is initialized and put in pParse->pNewTable.
+** As more of the CREATE TABLE statement is parsed, additional action
+** routines will be called to add more information to this record.
+** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
+** is called to complete the construction of the new table record.
+*/
+SQLITE_PRIVATE void sqlite3StartTable(
+ Parse *pParse, /* Parser context */
+ Token *pName1, /* First part of the name of the table or view */
+ Token *pName2, /* Second part of the name of the table or view */
+ int isTemp, /* True if this is a TEMP table */
+ int isView, /* True if this is a VIEW */
+ int isVirtual, /* True if this is a VIRTUAL table */
+ int noErr /* Do nothing if table already exists */
+){
+ Table *pTable;
+ char *zName = 0; /* The name of the new table */
+ sqlite3 *db = pParse->db;
+ Vdbe *v;
+ int iDb; /* Database number to create the table in */
+ Token *pName; /* Unqualified name of the table to create */
+
+ if( db->init.busy && db->init.newTnum==1 ){
+ /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
+ iDb = db->init.iDb;
+ zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
+ pName = pName1;
+ }else{
+ /* The common case */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ) return;
+ if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
+ /* If creating a temp table, the name may not be qualified. Unless
+ ** the database name is "temp" anyway. */
+ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
+ return;
+ }
+ if( !OMIT_TEMPDB && isTemp ) iDb = 1;
+ zName = sqlite3NameFromToken(db, pName);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, (void*)zName, pName);
+ }
+ }
+ pParse->sNameToken = *pName;
+ if( zName==0 ) return;
+ if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
+ goto begin_table_error;
+ }
+ if( db->init.iDb==1 ) isTemp = 1;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ assert( isTemp==0 || isTemp==1 );
+ assert( isView==0 || isView==1 );
+ {
+ static const u8 aCode[] = {
+ SQLITE_CREATE_TABLE,
+ SQLITE_CREATE_TEMP_TABLE,
+ SQLITE_CREATE_VIEW,
+ SQLITE_CREATE_TEMP_VIEW
+ };
+ char *zDb = db->aDb[iDb].zDbSName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
+ goto begin_table_error;
+ }
+ if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
+ zName, 0, zDb) ){
+ goto begin_table_error;
+ }
+ }
+#endif
+
+ /* Make sure the new table name does not collide with an existing
+ ** index or table name in the same database. Issue an error message if
+ ** it does. The exception is if the statement being parsed was passed
+ ** to an sqlite3_declare_vtab() call. In that case only the column names
+ ** and types will be used, so there is no need to test for namespace
+ ** collisions.
+ */
+ if( !IN_SPECIAL_PARSE ){
+ char *zDb = db->aDb[iDb].zDbSName;
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto begin_table_error;
+ }
+ pTable = sqlite3FindTable(db, zName, zDb);
+ if( pTable ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "%s %T already exists",
+ (IsView(pTable)? "view" : "table"), pName);
+ }else{
+ assert( !db->init.busy || CORRUPT_DB );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ goto begin_table_error;
+ }
+ if( sqlite3FindIndex(db, zName, zDb)!=0 ){
+ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
+ goto begin_table_error;
+ }
+ }
+
+ pTable = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTable==0 ){
+ assert( db->mallocFailed );
+ pParse->rc = SQLITE_NOMEM_BKPT;
+ pParse->nErr++;
+ goto begin_table_error;
+ }
+ pTable->zName = zName;
+ pTable->iPKey = -1;
+ pTable->pSchema = db->aDb[iDb].pSchema;
+ pTable->nTabRef = 1;
+#ifdef SQLITE_DEFAULT_ROWEST
+ pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
+#else
+ pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+#endif
+ assert( pParse->pNewTable==0 );
+ pParse->pNewTable = pTable;
+
+ /* Begin generating the code that will insert the table record into
+ ** the schema table. Note in particular that we must go ahead
+ ** and allocate the record number for the table entry now. Before any
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
+ ** indices to be created and the table record must come before the
+ ** indices. Hence, the record number for the table must be allocated
+ ** now.
+ */
+ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
+ int addr1;
+ int fileFormat;
+ int reg1, reg2, reg3;
+ /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
+ static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( isVirtual ){
+ sqlite3VdbeAddOp0(v, OP_VBegin);
+ }
+#endif
+
+ /* If the file format and encoding in the database have not been set,
+ ** set them now.
+ */
+ reg1 = pParse->regRowid = ++pParse->nMem;
+ reg2 = pParse->regRoot = ++pParse->nMem;
+ reg3 = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
+ sqlite3VdbeUsesBtree(v, iDb);
+ addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
+ fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
+ 1 : SQLITE_MAX_FILE_FORMAT;
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
+ sqlite3VdbeJumpHere(v, addr1);
+
+ /* This just creates a place-holder record in the sqlite_schema table.
+ ** The record created does not contain anything yet. It will be replaced
+ ** by the real entry in code generated at sqlite3EndTable().
+ **
+ ** The rowid for the new entry is left in register pParse->regRowid.
+ ** The root page number of the new table is left in reg pParse->regRoot.
+ ** The rowid and root page number values are needed by the code that
+ ** sqlite3EndTable will generate.
+ */
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+ if( isView || isVirtual ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
+ }else
+#endif
+ {
+ assert( !pParse->bReturning );
+ pParse->u1.addrCrTab =
+ sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
+ }
+ sqlite3OpenSchemaTable(pParse, iDb);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
+ sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeAddOp0(v, OP_Close);
+ }
+
+ /* Normal (non-error) return. */
+ return;
+
+ /* If an error occurs, we jump here */
+begin_table_error:
+ pParse->checkSchema = 1;
+ sqlite3DbFree(db, zName);
+ return;
+}
+
+/* Set properties of a table column based on the (magical)
+** name of the column.
+*/
+#if SQLITE_ENABLE_HIDDEN_COLUMNS
+SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
+ if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
+ pCol->colFlags |= COLFLAG_HIDDEN;
+ if( pTab ) pTab->tabFlags |= TF_HasHidden;
+ }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
+ pTab->tabFlags |= TF_OOOHidden;
+ }
+}
+#endif
+
+/*
+** Clean up the data structures associated with the RETURNING clause.
+*/
+static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
+ Hash *pHash;
+ pHash = &(db->aDb[1].pSchema->trigHash);
+ sqlite3HashInsert(pHash, pRet->zName, 0);
+ sqlite3ExprListDelete(db, pRet->pReturnEL);
+ sqlite3DbFree(db, pRet);
+}
+
+/*
+** Add the RETURNING clause to the parse currently underway.
+**
+** This routine creates a special TEMP trigger that will fire for each row
+** of the DML statement. That TEMP trigger contains a single SELECT
+** statement with a result set that is the argument of the RETURNING clause.
+** The trigger has the Trigger.bReturning flag and an opcode of
+** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
+** knows to handle it specially. The TEMP trigger is automatically
+** removed at the end of the parse.
+**
+** When this routine is called, we do not yet know if the RETURNING clause
+** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
+** RETURNING trigger instead. It will then be converted into the appropriate
+** type on the first call to sqlite3TriggersExist().
+*/
+SQLITE_PRIVATE void sqlite3AddReturning(Parse *pParse, ExprList *pList){
+ Returning *pRet;
+ Hash *pHash;
+ sqlite3 *db = pParse->db;
+ if( pParse->pNewTrigger ){
+ sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
+ }else{
+ assert( pParse->bReturning==0 || pParse->ifNotExists );
+ }
+ pParse->bReturning = 1;
+ pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
+ if( pRet==0 ){
+ sqlite3ExprListDelete(db, pList);
+ return;
+ }
+ pParse->u1.pReturning = pRet;
+ pRet->pParse = pParse;
+ pRet->pReturnEL = pList;
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
+ testcase( pParse->earlyCleanup );
+ if( db->mallocFailed ) return;
+ sqlite3_snprintf(sizeof(pRet->zName), pRet->zName,
+ "sqlite_returning_%p", pParse);
+ pRet->retTrig.zName = pRet->zName;
+ pRet->retTrig.op = TK_RETURNING;
+ pRet->retTrig.tr_tm = TRIGGER_AFTER;
+ pRet->retTrig.bReturning = 1;
+ pRet->retTrig.pSchema = db->aDb[1].pSchema;
+ pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
+ pRet->retTrig.step_list = &pRet->retTStep;
+ pRet->retTStep.op = TK_RETURNING;
+ pRet->retTStep.pTrig = &pRet->retTrig;
+ pRet->retTStep.pExprList = pList;
+ pHash = &(db->aDb[1].pSchema->trigHash);
+ assert( sqlite3HashFind(pHash, pRet->zName)==0
+ || pParse->nErr || pParse->ifNotExists );
+ if( sqlite3HashInsert(pHash, pRet->zName, &pRet->retTrig)
+ ==&pRet->retTrig ){
+ sqlite3OomFault(db);
+ }
+}
+
+/*
+** Add a new column to the table currently being constructed.
+**
+** The parser calls this routine once for each column declaration
+** in a CREATE TABLE statement. sqlite3StartTable() gets called
+** first to get things going. Then this routine is called for each
+** column.
+*/
+SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
+ Table *p;
+ int i;
+ char *z;
+ char *zType;
+ Column *pCol;
+ sqlite3 *db = pParse->db;
+ u8 hName;
+ Column *aNew;
+ u8 eType = COLTYPE_CUSTOM;
+ u8 szEst = 1;
+ char affinity = SQLITE_AFF_BLOB;
+
+ if( (p = pParse->pNewTable)==0 ) return;
+ if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
+ return;
+ }
+ if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
+
+ /* Because keywords GENERATE ALWAYS can be converted into identifiers
+ ** by the parser, we can sometimes end up with a typename that ends
+ ** with "generated always". Check for this case and omit the surplus
+ ** text. */
+ if( sType.n>=16
+ && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
+ ){
+ sType.n -= 6;
+ while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
+ if( sType.n>=9
+ && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
+ ){
+ sType.n -= 9;
+ while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
+ }
+ }
+
+ /* Check for standard typenames. For standard typenames we will
+ ** set the Column.eType field rather than storing the typename after
+ ** the column name, in order to save space. */
+ if( sType.n>=3 ){
+ sqlite3DequoteToken(&sType);
+ for(i=0; i<SQLITE_N_STDTYPE; i++){
+ if( sType.n==sqlite3StdTypeLen[i]
+ && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
+ ){
+ sType.n = 0;
+ eType = i+1;
+ affinity = sqlite3StdTypeAffinity[i];
+ if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
+ break;
+ }
+ }
+ }
+
+ z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
+ if( z==0 ) return;
+ if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
+ memcpy(z, sName.z, sName.n);
+ z[sName.n] = 0;
+ sqlite3Dequote(z);
+ hName = sqlite3StrIHash(z);
+ for(i=0; i<p->nCol; i++){
+ if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
+ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
+ sqlite3DbFree(db, z);
+ return;
+ }
+ }
+ aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
+ if( aNew==0 ){
+ sqlite3DbFree(db, z);
+ return;
+ }
+ p->aCol = aNew;
+ pCol = &p->aCol[p->nCol];
+ memset(pCol, 0, sizeof(p->aCol[0]));
+ pCol->zCnName = z;
+ pCol->hName = hName;
+ sqlite3ColumnPropertiesFromName(p, pCol);
+
+ if( sType.n==0 ){
+ /* If there is no type specified, columns have the default affinity
+ ** 'BLOB' with a default size of 4 bytes. */
+ pCol->affinity = affinity;
+ pCol->eCType = eType;
+ pCol->szEst = szEst;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( affinity==SQLITE_AFF_BLOB ){
+ if( 4>=sqlite3GlobalConfig.szSorterRef ){
+ pCol->colFlags |= COLFLAG_SORTERREF;
+ }
+ }
+#endif
+ }else{
+ zType = z + sqlite3Strlen30(z) + 1;
+ memcpy(zType, sType.z, sType.n);
+ zType[sType.n] = 0;
+ sqlite3Dequote(zType);
+ pCol->affinity = sqlite3AffinityType(zType, pCol);
+ pCol->colFlags |= COLFLAG_HASTYPE;
+ }
+ p->nCol++;
+ p->nNVCol++;
+ pParse->constraintName.n = 0;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
+** been seen on a column. This routine sets the notNull flag on
+** the column currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
+ Table *p;
+ Column *pCol;
+ p = pParse->pNewTable;
+ if( p==0 || NEVER(p->nCol<1) ) return;
+ pCol = &p->aCol[p->nCol-1];
+ pCol->notNull = (u8)onError;
+ p->tabFlags |= TF_HasNotNull;
+
+ /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
+ ** on this column. */
+ if( pCol->colFlags & COLFLAG_UNIQUE ){
+ Index *pIdx;
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
+ if( pIdx->aiColumn[0]==p->nCol-1 ){
+ pIdx->uniqNotNull = 1;
+ }
+ }
+ }
+}
+
+/*
+** Scan the column type name zType (length nType) and return the
+** associated affinity type.
+**
+** This routine does a case-independent search of zType for the
+** substrings in the following table. If one of the substrings is
+** found, the corresponding affinity is returned. If zType contains
+** more than one of the substrings, entries toward the top of
+** the table take priority. For example, if zType is 'BLOBINT',
+** SQLITE_AFF_INTEGER is returned.
+**
+** Substring | Affinity
+** --------------------------------
+** 'INT' | SQLITE_AFF_INTEGER
+** 'CHAR' | SQLITE_AFF_TEXT
+** 'CLOB' | SQLITE_AFF_TEXT
+** 'TEXT' | SQLITE_AFF_TEXT
+** 'BLOB' | SQLITE_AFF_BLOB
+** 'REAL' | SQLITE_AFF_REAL
+** 'FLOA' | SQLITE_AFF_REAL
+** 'DOUB' | SQLITE_AFF_REAL
+**
+** If none of the substrings in the above table are found,
+** SQLITE_AFF_NUMERIC is returned.
+*/
+SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn, Column *pCol){
+ u32 h = 0;
+ char aff = SQLITE_AFF_NUMERIC;
+ const char *zChar = 0;
+
+ assert( zIn!=0 );
+ while( zIn[0] ){
+ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
+ zIn++;
+ if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
+ aff = SQLITE_AFF_TEXT;
+ zChar = zIn;
+ }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
+ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
+ aff = SQLITE_AFF_BLOB;
+ if( zIn[0]=='(' ) zChar = zIn;
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+ }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+ }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+#endif
+ }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
+ aff = SQLITE_AFF_INTEGER;
+ break;
+ }
+ }
+
+ /* If pCol is not NULL, store an estimate of the field size. The
+ ** estimate is scaled so that the size of an integer is 1. */
+ if( pCol ){
+ int v = 0; /* default size is approx 4 bytes */
+ if( aff<SQLITE_AFF_NUMERIC ){
+ if( zChar ){
+ while( zChar[0] ){
+ if( sqlite3Isdigit(zChar[0]) ){
+ /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
+ sqlite3GetInt32(zChar, &v);
+ break;
+ }
+ zChar++;
+ }
+ }else{
+ v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
+ }
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( v>=sqlite3GlobalConfig.szSorterRef ){
+ pCol->colFlags |= COLFLAG_SORTERREF;
+ }
+#endif
+ v = v/4 + 1;
+ if( v>255 ) v = 255;
+ pCol->szEst = v;
+ }
+ return aff;
+}
+
+/*
+** The expression is the default value for the most recently added column
+** of the table currently under construction.
+**
+** Default value expressions must be constant. Raise an exception if this
+** is not the case.
+**
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3AddDefaultValue(
+ Parse *pParse, /* Parsing context */
+ Expr *pExpr, /* The parsed expression of the default value */
+ const char *zStart, /* Start of the default value text */
+ const char *zEnd /* First character past end of default value text */
+){
+ Table *p;
+ Column *pCol;
+ sqlite3 *db = pParse->db;
+ p = pParse->pNewTable;
+ if( p!=0 ){
+ int isInit = db->init.busy && db->init.iDb!=1;
+ pCol = &(p->aCol[p->nCol-1]);
+ if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
+ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
+ pCol->zCnName);
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ }else if( pCol->colFlags & COLFLAG_GENERATED ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
+#endif
+ }else{
+ /* A copy of pExpr is used instead of the original, as pExpr contains
+ ** tokens that point to volatile memory.
+ */
+ Expr x, *pDfltExpr;
+ memset(&x, 0, sizeof(x));
+ x.op = TK_SPAN;
+ x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
+ x.pLeft = pExpr;
+ x.flags = EP_Skip;
+ pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
+ sqlite3DbFree(db, x.u.zToken);
+ sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
+ }
+ }
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameExprUnmap(pParse, pExpr);
+ }
+ sqlite3ExprDelete(db, pExpr);
+}
+
+/*
+** Backwards Compatibility Hack:
+**
+** Historical versions of SQLite accepted strings as column names in
+** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
+**
+** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
+** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
+**
+** This is goofy. But to preserve backwards compatibility we continue to
+** accept it. This routine does the necessary conversion. It converts
+** the expression given in its argument from a TK_STRING into a TK_ID
+** if the expression is just a TK_STRING with an optional COLLATE clause.
+** If the expression is anything other than TK_STRING, the expression is
+** unchanged.
+*/
+static void sqlite3StringToId(Expr *p){
+ if( p->op==TK_STRING ){
+ p->op = TK_ID;
+ }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
+ p->pLeft->op = TK_ID;
+ }
+}
+
+/*
+** Tag the given column as being part of the PRIMARY KEY
+*/
+static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
+ pCol->colFlags |= COLFLAG_PRIMKEY;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pCol->colFlags & COLFLAG_GENERATED ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ sqlite3ErrorMsg(pParse,
+ "generated columns cannot be part of the PRIMARY KEY");
+ }
+#endif
+}
+
+/*
+** Designate the PRIMARY KEY for the table. pList is a list of names
+** of columns that form the primary key. If pList is NULL, then the
+** most recently added column of the table is the primary key.
+**
+** A table can have at most one primary key. If the table already has
+** a primary key (and this is the second primary key) then create an
+** error.
+**
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
+** then we will try to use that column as the rowid. Set the Table.iPKey
+** field of the table under construction to be the index of the
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
+** no INTEGER PRIMARY KEY.
+**
+** If the key is not an INTEGER PRIMARY KEY, then create a unique
+** index for the key. No index is created for INTEGER PRIMARY KEYs.
+*/
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List of field names to be indexed */
+ int onError, /* What to do with a uniqueness conflict */
+ int autoInc, /* True if the AUTOINCREMENT keyword is present */
+ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
+){
+ Table *pTab = pParse->pNewTable;
+ Column *pCol = 0;
+ int iCol = -1, i;
+ int nTerm;
+ if( pTab==0 ) goto primary_key_exit;
+ if( pTab->tabFlags & TF_HasPrimaryKey ){
+ sqlite3ErrorMsg(pParse,
+ "table \"%s\" has more than one primary key", pTab->zName);
+ goto primary_key_exit;
+ }
+ pTab->tabFlags |= TF_HasPrimaryKey;
+ if( pList==0 ){
+ iCol = pTab->nCol - 1;
+ pCol = &pTab->aCol[iCol];
+ makeColumnPartOfPrimaryKey(pParse, pCol);
+ nTerm = 1;
+ }else{
+ nTerm = pList->nExpr;
+ for(i=0; i<nTerm; i++){
+ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
+ assert( pCExpr!=0 );
+ sqlite3StringToId(pCExpr);
+ if( pCExpr->op==TK_ID ){
+ const char *zCName;
+ assert( !ExprHasProperty(pCExpr, EP_IntValue) );
+ zCName = pCExpr->u.zToken;
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
+ pCol = &pTab->aCol[iCol];
+ makeColumnPartOfPrimaryKey(pParse, pCol);
+ break;
+ }
+ }
+ }
+ }
+ }
+ if( nTerm==1
+ && pCol
+ && pCol->eCType==COLTYPE_INTEGER
+ && sortOrder!=SQLITE_SO_DESC
+ ){
+ if( IN_RENAME_OBJECT && pList ){
+ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
+ sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
+ }
+ pTab->iPKey = iCol;
+ pTab->keyConf = (u8)onError;
+ assert( autoInc==0 || autoInc==1 );
+ pTab->tabFlags |= autoInc*TF_Autoincrement;
+ if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
+ (void)sqlite3HasExplicitNulls(pParse, pList);
+ }else if( autoInc ){
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
+ "INTEGER PRIMARY KEY");
+#endif
+ }else{
+ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
+ 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
+ pList = 0;
+ }
+
+primary_key_exit:
+ sqlite3ExprListDelete(pParse->db, pList);
+ return;
+}
+
+/*
+** Add a new CHECK constraint to the table currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(
+ Parse *pParse, /* Parsing context */
+ Expr *pCheckExpr, /* The check expression */
+ const char *zStart, /* Opening "(" */
+ const char *zEnd /* Closing ")" */
+){
+#ifndef SQLITE_OMIT_CHECK
+ Table *pTab = pParse->pNewTable;
+ sqlite3 *db = pParse->db;
+ if( pTab && !IN_DECLARE_VTAB
+ && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
+ ){
+ pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
+ if( pParse->constraintName.n ){
+ sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
+ }else{
+ Token t;
+ for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
+ while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
+ t.z = zStart;
+ t.n = (int)(zEnd - t.z);
+ sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
+ }
+ }else
+#endif
+ {
+ sqlite3ExprDelete(pParse->db, pCheckExpr);
+ }
+}
+
+/*
+** Set the collation function of the most recently parsed table column
+** to the CollSeq given.
+*/
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
+ Table *p;
+ int i;
+ char *zColl; /* Dequoted name of collation sequence */
+ sqlite3 *db;
+
+ if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
+ i = p->nCol-1;
+ db = pParse->db;
+ zColl = sqlite3NameFromToken(db, pToken);
+ if( !zColl ) return;
+
+ if( sqlite3LocateCollSeq(pParse, zColl) ){
+ Index *pIdx;
+ sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
+
+ /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
+ ** then an index may have been created on this column before the
+ ** collation type was added. Correct this if it is the case.
+ */
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nKeyCol==1 );
+ if( pIdx->aiColumn[0]==i ){
+ pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
+ }
+ }
+ }
+ sqlite3DbFree(db, zColl);
+}
+
+/* Change the most recently parsed column to be a GENERATED ALWAYS AS
+** column.
+*/
+SQLITE_PRIVATE void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ u8 eType = COLFLAG_VIRTUAL;
+ Table *pTab = pParse->pNewTable;
+ Column *pCol;
+ if( pTab==0 ){
+ /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
+ goto generated_done;
+ }
+ pCol = &(pTab->aCol[pTab->nCol-1]);
+ if( IN_DECLARE_VTAB ){
+ sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
+ goto generated_done;
+ }
+ if( pCol->iDflt>0 ) goto generated_error;
+ if( pType ){
+ if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
+ /* no-op */
+ }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
+ eType = COLFLAG_STORED;
+ }else{
+ goto generated_error;
+ }
+ }
+ if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
+ pCol->colFlags |= eType;
+ assert( TF_HasVirtual==COLFLAG_VIRTUAL );
+ assert( TF_HasStored==COLFLAG_STORED );
+ pTab->tabFlags |= eType;
+ if( pCol->colFlags & COLFLAG_PRIMKEY ){
+ makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
+ }
+ if( ALWAYS(pExpr) && pExpr->op==TK_ID ){
+ /* The value of a generated column needs to be a real expression, not
+ ** just a reference to another column, in order for covering index
+ ** optimizations to work correctly. So if the value is not an expression,
+ ** turn it into one by adding a unary "+" operator. */
+ pExpr = sqlite3PExpr(pParse, TK_UPLUS, pExpr, 0);
+ }
+ if( pExpr && pExpr->op!=TK_RAISE ) pExpr->affExpr = pCol->affinity;
+ sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
+ pExpr = 0;
+ goto generated_done;
+
+generated_error:
+ sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
+ pCol->zCnName);
+generated_done:
+ sqlite3ExprDelete(pParse->db, pExpr);
+#else
+ /* Throw and error for the GENERATED ALWAYS AS clause if the
+ ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
+ sqlite3ErrorMsg(pParse, "generated columns not supported");
+ sqlite3ExprDelete(pParse->db, pExpr);
+#endif
+}
+
+/*
+** Generate code that will increment the schema cookie.
+**
+** The schema cookie is used to determine when the schema for the
+** database changes. After each schema change, the cookie value
+** changes. When a process first reads the schema it records the
+** cookie. Thereafter, whenever it goes to access the database,
+** it checks the cookie to make sure the schema has not changed
+** since it was last read.
+**
+** This plan is not completely bullet-proof. It is possible for
+** the schema to change multiple times and for the cookie to be
+** set back to prior value. But schema changes are infrequent
+** and the probability of hitting the same cookie value is only
+** 1 chance in 2^32. So we're safe enough.
+**
+** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
+** the schema-version whenever the schema changes.
+*/
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
+ (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
+}
+
+/*
+** Measure the number of characters needed to output the given
+** identifier. The number returned includes any quotes used
+** but does not include the null terminator.
+**
+** The estimate is conservative. It might be larger that what is
+** really needed.
+*/
+static int identLength(const char *z){
+ int n;
+ for(n=0; *z; n++, z++){
+ if( *z=='"' ){ n++; }
+ }
+ return n + 2;
+}
+
+/*
+** The first parameter is a pointer to an output buffer. The second
+** parameter is a pointer to an integer that contains the offset at
+** which to write into the output buffer. This function copies the
+** nul-terminated string pointed to by the third parameter, zSignedIdent,
+** to the specified offset in the buffer and updates *pIdx to refer
+** to the first byte after the last byte written before returning.
+**
+** If the string zSignedIdent consists entirely of alphanumeric
+** characters, does not begin with a digit and is not an SQL keyword,
+** then it is copied to the output buffer exactly as it is. Otherwise,
+** it is quoted using double-quotes.
+*/
+static void identPut(char *z, int *pIdx, char *zSignedIdent){
+ unsigned char *zIdent = (unsigned char*)zSignedIdent;
+ int i, j, needQuote;
+ i = *pIdx;
+
+ for(j=0; zIdent[j]; j++){
+ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ }
+ needQuote = sqlite3Isdigit(zIdent[0])
+ || sqlite3KeywordCode(zIdent, j)!=TK_ID
+ || zIdent[j]!=0
+ || j==0;
+
+ if( needQuote ) z[i++] = '"';
+ for(j=0; zIdent[j]; j++){
+ z[i++] = zIdent[j];
+ if( zIdent[j]=='"' ) z[i++] = '"';
+ }
+ if( needQuote ) z[i++] = '"';
+ z[i] = 0;
+ *pIdx = i;
+}
+
+/*
+** Generate a CREATE TABLE statement appropriate for the given
+** table. Memory to hold the text of the statement is obtained
+** from sqliteMalloc() and must be freed by the calling function.
+*/
+static char *createTableStmt(sqlite3 *db, Table *p){
+ int i, k, n;
+ char *zStmt;
+ char *zSep, *zSep2, *zEnd;
+ Column *pCol;
+ n = 0;
+ for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
+ n += identLength(pCol->zCnName) + 5;
+ }
+ n += identLength(p->zName);
+ if( n<50 ){
+ zSep = "";
+ zSep2 = ",";
+ zEnd = ")";
+ }else{
+ zSep = "\n ";
+ zSep2 = ",\n ";
+ zEnd = "\n)";
+ }
+ n += 35 + 6*p->nCol;
+ zStmt = sqlite3DbMallocRaw(0, n);
+ if( zStmt==0 ){
+ sqlite3OomFault(db);
+ return 0;
+ }
+ sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
+ k = sqlite3Strlen30(zStmt);
+ identPut(zStmt, &k, p->zName);
+ zStmt[k++] = '(';
+ for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
+ static const char * const azType[] = {
+ /* SQLITE_AFF_BLOB */ "",
+ /* SQLITE_AFF_TEXT */ " TEXT",
+ /* SQLITE_AFF_NUMERIC */ " NUM",
+ /* SQLITE_AFF_INTEGER */ " INT",
+ /* SQLITE_AFF_REAL */ " REAL",
+ /* SQLITE_AFF_FLEXNUM */ " NUM",
+ };
+ int len;
+ const char *zType;
+
+ sqlite3_snprintf(n-k, &zStmt[k], zSep);
+ k += sqlite3Strlen30(&zStmt[k]);
+ zSep = zSep2;
+ identPut(zStmt, &k, pCol->zCnName);
+ assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
+ assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
+ testcase( pCol->affinity==SQLITE_AFF_BLOB );
+ testcase( pCol->affinity==SQLITE_AFF_TEXT );
+ testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
+ testcase( pCol->affinity==SQLITE_AFF_INTEGER );
+ testcase( pCol->affinity==SQLITE_AFF_REAL );
+ testcase( pCol->affinity==SQLITE_AFF_FLEXNUM );
+
+ zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
+ len = sqlite3Strlen30(zType);
+ assert( pCol->affinity==SQLITE_AFF_BLOB
+ || pCol->affinity==SQLITE_AFF_FLEXNUM
+ || pCol->affinity==sqlite3AffinityType(zType, 0) );
+ memcpy(&zStmt[k], zType, len);
+ k += len;
+ assert( k<=n );
+ }
+ sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
+ return zStmt;
+}
+
+/*
+** Resize an Index object to hold N columns total. Return SQLITE_OK
+** on success and SQLITE_NOMEM on an OOM error.
+*/
+static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
+ char *zExtra;
+ int nByte;
+ if( pIdx->nColumn>=N ) return SQLITE_OK;
+ assert( pIdx->isResized==0 );
+ nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
+ zExtra = sqlite3DbMallocZero(db, nByte);
+ if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
+ memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
+ pIdx->azColl = (const char**)zExtra;
+ zExtra += sizeof(char*)*N;
+ memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
+ pIdx->aiRowLogEst = (LogEst*)zExtra;
+ zExtra += sizeof(LogEst)*N;
+ memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
+ pIdx->aiColumn = (i16*)zExtra;
+ zExtra += sizeof(i16)*N;
+ memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
+ pIdx->aSortOrder = (u8*)zExtra;
+ pIdx->nColumn = N;
+ pIdx->isResized = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Estimate the total row width for a table.
+*/
+static void estimateTableWidth(Table *pTab){
+ unsigned wTable = 0;
+ const Column *pTabCol;
+ int i;
+ for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
+ wTable += pTabCol->szEst;
+ }
+ if( pTab->iPKey<0 ) wTable++;
+ pTab->szTabRow = sqlite3LogEst(wTable*4);
+}
+
+/*
+** Estimate the average size of a row for an index.
+*/
+static void estimateIndexWidth(Index *pIdx){
+ unsigned wIndex = 0;
+ int i;
+ const Column *aCol = pIdx->pTable->aCol;
+ for(i=0; i<pIdx->nColumn; i++){
+ i16 x = pIdx->aiColumn[i];
+ assert( x<pIdx->pTable->nCol );
+ wIndex += x<0 ? 1 : aCol[x].szEst;
+ }
+ pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
+}
+
+/* Return true if column number x is any of the first nCol entries of aiCol[].
+** This is used to determine if the column number x appears in any of the
+** first nCol entries of an index.
+*/
+static int hasColumn(const i16 *aiCol, int nCol, int x){
+ while( nCol-- > 0 ){
+ if( x==*(aiCol++) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Return true if any of the first nKey entries of index pIdx exactly
+** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
+** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
+** or may not be the same index as pPk.
+**
+** The first nKey entries of pIdx are guaranteed to be ordinary columns,
+** not a rowid or expression.
+**
+** This routine differs from hasColumn() in that both the column and the
+** collating sequence must match for this routine, but for hasColumn() only
+** the column name must match.
+*/
+static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
+ int i, j;
+ assert( nKey<=pIdx->nColumn );
+ assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
+ assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
+ assert( pPk->pTable->tabFlags & TF_WithoutRowid );
+ assert( pPk->pTable==pIdx->pTable );
+ testcase( pPk==pIdx );
+ j = pPk->aiColumn[iCol];
+ assert( j!=XN_ROWID && j!=XN_EXPR );
+ for(i=0; i<nKey; i++){
+ assert( pIdx->aiColumn[i]>=0 || j>=0 );
+ if( pIdx->aiColumn[i]==j
+ && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Recompute the colNotIdxed field of the Index.
+**
+** colNotIdxed is a bitmask that has a 0 bit representing each indexed
+** columns that are within the first 63 columns of the table and a 1 for
+** all other bits (all columns that are not in the index). The
+** high-order bit of colNotIdxed is always 1. All unindexed columns
+** of the table have a 1.
+**
+** 2019-10-24: For the purpose of this computation, virtual columns are
+** not considered to be covered by the index, even if they are in the
+** index, because we do not trust the logic in whereIndexExprTrans() to be
+** able to find all instances of a reference to the indexed table column
+** and convert them into references to the index. Hence we always want
+** the actual table at hand in order to recompute the virtual column, if
+** necessary.
+**
+** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
+** to determine if the index is covering index.
+*/
+static void recomputeColumnsNotIndexed(Index *pIdx){
+ Bitmask m = 0;
+ int j;
+ Table *pTab = pIdx->pTable;
+ for(j=pIdx->nColumn-1; j>=0; j--){
+ int x = pIdx->aiColumn[j];
+ if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
+ testcase( x==BMS-1 );
+ testcase( x==BMS-2 );
+ if( x<BMS-1 ) m |= MASKBIT(x);
+ }
+ }
+ pIdx->colNotIdxed = ~m;
+ assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */
+}
+
+/*
+** This routine runs at the end of parsing a CREATE TABLE statement that
+** has a WITHOUT ROWID clause. The job of this routine is to convert both
+** internal schema data structures and the generated VDBE code so that they
+** are appropriate for a WITHOUT ROWID table instead of a rowid table.
+** Changes include:
+**
+** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
+** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
+** into BTREE_BLOBKEY.
+** (3) Bypass the creation of the sqlite_schema table entry
+** for the PRIMARY KEY as the primary key index is now
+** identified by the sqlite_schema table entry of the table itself.
+** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
+** schema to the rootpage from the main table.
+** (5) Add all table columns to the PRIMARY KEY Index object
+** so that the PRIMARY KEY is a covering index. The surplus
+** columns are part of KeyInfo.nAllField and are not used for
+** sorting or lookup or uniqueness checks.
+** (6) Replace the rowid tail on all automatically generated UNIQUE
+** indices with the PRIMARY KEY columns.
+**
+** For virtual tables, only (1) is performed.
+*/
+static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
+ Index *pIdx;
+ Index *pPk;
+ int nPk;
+ int nExtra;
+ int i, j;
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+
+ /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
+ */
+ if( !db->init.imposterTable ){
+ for(i=0; i<pTab->nCol; i++){
+ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
+ && (pTab->aCol[i].notNull==OE_None)
+ ){
+ pTab->aCol[i].notNull = OE_Abort;
+ }
+ }
+ pTab->tabFlags |= TF_HasNotNull;
+ }
+
+ /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
+ ** into BTREE_BLOBKEY.
+ */
+ assert( !pParse->bReturning );
+ if( pParse->u1.addrCrTab ){
+ assert( v );
+ sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
+ }
+
+ /* Locate the PRIMARY KEY index. Or, if this table was originally
+ ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
+ */
+ if( pTab->iPKey>=0 ){
+ ExprList *pList;
+ Token ipkToken;
+ sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
+ pList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
+ if( pList==0 ){
+ pTab->tabFlags &= ~TF_WithoutRowid;
+ return;
+ }
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
+ }
+ pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
+ assert( pParse->pNewTable==pTab );
+ pTab->iPKey = -1;
+ sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
+ SQLITE_IDXTYPE_PRIMARYKEY);
+ if( pParse->nErr ){
+ pTab->tabFlags &= ~TF_WithoutRowid;
+ return;
+ }
+ assert( db->mallocFailed==0 );
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk->nKeyCol==1 );
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+
+ /*
+ ** Remove all redundant columns from the PRIMARY KEY. For example, change
+ ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
+ ** code assumes the PRIMARY KEY contains no repeated columns.
+ */
+ for(i=j=1; i<pPk->nKeyCol; i++){
+ if( isDupColumn(pPk, j, pPk, i) ){
+ pPk->nColumn--;
+ }else{
+ testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
+ pPk->azColl[j] = pPk->azColl[i];
+ pPk->aSortOrder[j] = pPk->aSortOrder[i];
+ pPk->aiColumn[j++] = pPk->aiColumn[i];
+ }
+ }
+ pPk->nKeyCol = j;
+ }
+ assert( pPk!=0 );
+ pPk->isCovering = 1;
+ if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
+ nPk = pPk->nColumn = pPk->nKeyCol;
+
+ /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
+ ** table entry. This is only required if currently generating VDBE
+ ** code for a CREATE TABLE (not when parsing one as part of reading
+ ** a database schema). */
+ if( v && pPk->tnum>0 ){
+ assert( db->init.busy==0 );
+ sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
+ }
+
+ /* The root page of the PRIMARY KEY is the table root page */
+ pPk->tnum = pTab->tnum;
+
+ /* Update the in-memory representation of all UNIQUE indices by converting
+ ** the final rowid column into one or more columns of the PRIMARY KEY.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int n;
+ if( IsPrimaryKeyIndex(pIdx) ) continue;
+ for(i=n=0; i<nPk; i++){
+ if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
+ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
+ n++;
+ }
+ }
+ if( n==0 ){
+ /* This index is a superset of the primary key */
+ pIdx->nColumn = pIdx->nKeyCol;
+ continue;
+ }
+ if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
+ for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
+ if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
+ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
+ pIdx->aiColumn[j] = pPk->aiColumn[i];
+ pIdx->azColl[j] = pPk->azColl[i];
+ if( pPk->aSortOrder[i] ){
+ /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
+ pIdx->bAscKeyBug = 1;
+ }
+ j++;
+ }
+ }
+ assert( pIdx->nColumn>=pIdx->nKeyCol+n );
+ assert( pIdx->nColumn>=j );
+ }
+
+ /* Add all table columns to the PRIMARY KEY index
+ */
+ nExtra = 0;
+ for(i=0; i<pTab->nCol; i++){
+ if( !hasColumn(pPk->aiColumn, nPk, i)
+ && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
+ }
+ if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
+ for(i=0, j=nPk; i<pTab->nCol; i++){
+ if( !hasColumn(pPk->aiColumn, j, i)
+ && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
+ ){
+ assert( j<pPk->nColumn );
+ pPk->aiColumn[j] = i;
+ pPk->azColl[j] = sqlite3StrBINARY;
+ j++;
+ }
+ }
+ assert( pPk->nColumn==j );
+ assert( pTab->nNVCol<=j );
+ recomputeColumnsNotIndexed(pPk);
+}
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Return true if pTab is a virtual table and zName is a shadow table name
+** for that virtual table.
+*/
+SQLITE_PRIVATE int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
+ int nName; /* Length of zName */
+ Module *pMod; /* Module for the virtual table */
+
+ if( !IsVirtual(pTab) ) return 0;
+ nName = sqlite3Strlen30(pTab->zName);
+ if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
+ if( zName[nName]!='_' ) return 0;
+ pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
+ if( pMod==0 ) return 0;
+ if( pMod->pModule->iVersion<3 ) return 0;
+ if( pMod->pModule->xShadowName==0 ) return 0;
+ return pMod->pModule->xShadowName(zName+nName+1);
+}
+#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Table pTab is a virtual table. If it the virtual table implementation
+** exists and has an xShadowName method, then loop over all other ordinary
+** tables within the same schema looking for shadow tables of pTab, and mark
+** any shadow tables seen using the TF_Shadow flag.
+*/
+SQLITE_PRIVATE void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
+ int nName; /* Length of pTab->zName */
+ Module *pMod; /* Module for the virtual table */
+ HashElem *k; /* For looping through the symbol table */
+
+ assert( IsVirtual(pTab) );
+ pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
+ if( pMod==0 ) return;
+ if( NEVER(pMod->pModule==0) ) return;
+ if( pMod->pModule->iVersion<3 ) return;
+ if( pMod->pModule->xShadowName==0 ) return;
+ assert( pTab->zName!=0 );
+ nName = sqlite3Strlen30(pTab->zName);
+ for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pOther = sqliteHashData(k);
+ assert( pOther->zName!=0 );
+ if( !IsOrdinaryTable(pOther) ) continue;
+ if( pOther->tabFlags & TF_Shadow ) continue;
+ if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
+ && pOther->zName[nName]=='_'
+ && pMod->pModule->xShadowName(pOther->zName+nName+1)
+ ){
+ pOther->tabFlags |= TF_Shadow;
+ }
+ }
+}
+#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Return true if zName is a shadow table name in the current database
+** connection.
+**
+** zName is temporarily modified while this routine is running, but is
+** restored to its original value prior to this routine returning.
+*/
+SQLITE_PRIVATE int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
+ char *zTail; /* Pointer to the last "_" in zName */
+ Table *pTab; /* Table that zName is a shadow of */
+ zTail = strrchr(zName, '_');
+ if( zTail==0 ) return 0;
+ *zTail = 0;
+ pTab = sqlite3FindTable(db, zName, 0);
+ *zTail = '_';
+ if( pTab==0 ) return 0;
+ if( !IsVirtual(pTab) ) return 0;
+ return sqlite3IsShadowTableOf(db, pTab, zName);
+}
+#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
+
+
+#ifdef SQLITE_DEBUG
+/*
+** Mark all nodes of an expression as EP_Immutable, indicating that
+** they should not be changed. Expressions attached to a table or
+** index definition are tagged this way to help ensure that we do
+** not pass them into code generator routines by mistake.
+*/
+static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
+ (void)pWalker;
+ ExprSetVVAProperty(pExpr, EP_Immutable);
+ return WRC_Continue;
+}
+static void markExprListImmutable(ExprList *pList){
+ if( pList ){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = markImmutableExprStep;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = 0;
+ sqlite3WalkExprList(&w, pList);
+ }
+}
+#else
+#define markExprListImmutable(X) /* no-op */
+#endif /* SQLITE_DEBUG */
+
+
+/*
+** This routine is called to report the final ")" that terminates
+** a CREATE TABLE statement.
+**
+** The table structure that other action routines have been building
+** is added to the internal hash tables, assuming no errors have
+** occurred.
+**
+** An entry for the table is made in the schema table on disk, unless
+** this is a temporary table or db->init.busy==1. When db->init.busy==1
+** it means we are reading the sqlite_schema table because we just
+** connected to the database or because the sqlite_schema table has
+** recently changed, so the entry for this table already exists in
+** the sqlite_schema table. We do not want to create it again.
+**
+** If the pSelect argument is not NULL, it means that this routine
+** was called to create a table generated from a
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of
+** the new table will match the result set of the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3EndTable(
+ Parse *pParse, /* Parse context */
+ Token *pCons, /* The ',' token after the last column defn. */
+ Token *pEnd, /* The ')' before options in the CREATE TABLE */
+ u32 tabOpts, /* Extra table options. Usually 0. */
+ Select *pSelect /* Select from a "CREATE ... AS SELECT" */
+){
+ Table *p; /* The new table */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb; /* Database in which the table lives */
+ Index *pIdx; /* An implied index of the table */
+
+ if( pEnd==0 && pSelect==0 ){
+ return;
+ }
+ p = pParse->pNewTable;
+ if( p==0 ) return;
+
+ if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
+ p->tabFlags |= TF_Shadow;
+ }
+
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
+ ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
+ ** So do not write to the disk again. Extract the root page number
+ ** for the table from the db->init.newTnum field. (The page number
+ ** should have been put there by the sqliteOpenCb routine.)
+ **
+ ** If the root page number is 1, that means this is the sqlite_schema
+ ** table itself. So mark it read-only.
+ */
+ if( db->init.busy ){
+ if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
+ sqlite3ErrorMsg(pParse, "");
+ return;
+ }
+ p->tnum = db->init.newTnum;
+ if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
+ }
+
+ /* Special processing for tables that include the STRICT keyword:
+ **
+ ** * Do not allow custom column datatypes. Every column must have
+ ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
+ **
+ ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
+ ** then all columns of the PRIMARY KEY must have a NOT NULL
+ ** constraint.
+ */
+ if( tabOpts & TF_Strict ){
+ int ii;
+ p->tabFlags |= TF_Strict;
+ for(ii=0; ii<p->nCol; ii++){
+ Column *pCol = &p->aCol[ii];
+ if( pCol->eCType==COLTYPE_CUSTOM ){
+ if( pCol->colFlags & COLFLAG_HASTYPE ){
+ sqlite3ErrorMsg(pParse,
+ "unknown datatype for %s.%s: \"%s\"",
+ p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
+ );
+ }else{
+ sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
+ p->zName, pCol->zCnName);
+ }
+ return;
+ }else if( pCol->eCType==COLTYPE_ANY ){
+ pCol->affinity = SQLITE_AFF_BLOB;
+ }
+ if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
+ && p->iPKey!=ii
+ && pCol->notNull == OE_None
+ ){
+ pCol->notNull = OE_Abort;
+ p->tabFlags |= TF_HasNotNull;
+ }
+ }
+ }
+
+ assert( (p->tabFlags & TF_HasPrimaryKey)==0
+ || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
+ assert( (p->tabFlags & TF_HasPrimaryKey)!=0
+ || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
+
+ /* Special processing for WITHOUT ROWID Tables */
+ if( tabOpts & TF_WithoutRowid ){
+ if( (p->tabFlags & TF_Autoincrement) ){
+ sqlite3ErrorMsg(pParse,
+ "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
+ return;
+ }
+ if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
+ sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
+ return;
+ }
+ p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
+ convertToWithoutRowidTable(pParse, p);
+ }
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
+
+#ifndef SQLITE_OMIT_CHECK
+ /* Resolve names in all CHECK constraint expressions.
+ */
+ if( p->pCheck ){
+ sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
+ if( pParse->nErr ){
+ /* If errors are seen, delete the CHECK constraints now, else they might
+ ** actually be used if PRAGMA writable_schema=ON is set. */
+ sqlite3ExprListDelete(db, p->pCheck);
+ p->pCheck = 0;
+ }else{
+ markExprListImmutable(p->pCheck);
+ }
+ }
+#endif /* !defined(SQLITE_OMIT_CHECK) */
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( p->tabFlags & TF_HasGenerated ){
+ int ii, nNG = 0;
+ testcase( p->tabFlags & TF_HasVirtual );
+ testcase( p->tabFlags & TF_HasStored );
+ for(ii=0; ii<p->nCol; ii++){
+ u32 colFlags = p->aCol[ii].colFlags;
+ if( (colFlags & COLFLAG_GENERATED)!=0 ){
+ Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
+ testcase( colFlags & COLFLAG_VIRTUAL );
+ testcase( colFlags & COLFLAG_STORED );
+ if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
+ /* If there are errors in resolving the expression, change the
+ ** expression to a NULL. This prevents code generators that operate
+ ** on the expression from inserting extra parts into the expression
+ ** tree that have been allocated from lookaside memory, which is
+ ** illegal in a schema and will lead to errors or heap corruption
+ ** when the database connection closes. */
+ sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
+ sqlite3ExprAlloc(db, TK_NULL, 0, 0));
+ }
+ }else{
+ nNG++;
+ }
+ }
+ if( nNG==0 ){
+ sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
+ return;
+ }
+ }
+#endif
+
+ /* Estimate the average row size for the table and for all implied indices */
+ estimateTableWidth(p);
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ estimateIndexWidth(pIdx);
+ }
+
+ /* If not initializing, then create a record for the new table
+ ** in the schema table of the database.
+ **
+ ** If this is a TEMPORARY table, write the entry into the auxiliary
+ ** file instead of into the main database file.
+ */
+ if( !db->init.busy ){
+ int n;
+ Vdbe *v;
+ char *zType; /* "view" or "table" */
+ char *zType2; /* "VIEW" or "TABLE" */
+ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
+
+ v = sqlite3GetVdbe(pParse);
+ if( NEVER(v==0) ) return;
+
+ sqlite3VdbeAddOp1(v, OP_Close, 0);
+
+ /*
+ ** Initialize zType for the new view or table.
+ */
+ if( IsOrdinaryTable(p) ){
+ /* A regular table */
+ zType = "table";
+ zType2 = "TABLE";
+#ifndef SQLITE_OMIT_VIEW
+ }else{
+ /* A view */
+ zType = "view";
+ zType2 = "VIEW";
+#endif
+ }
+
+ /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
+ ** statement to populate the new table. The root-page number for the
+ ** new table is in register pParse->regRoot.
+ **
+ ** Once the SELECT has been coded by sqlite3Select(), it is in a
+ ** suitable state to query for the column names and types to be used
+ ** by the new table.
+ **
+ ** A shared-cache write-lock is not required to write to the new table,
+ ** as a schema-lock must have already been obtained to create it. Since
+ ** a schema-lock excludes all other database users, the write-lock would
+ ** be redundant.
+ */
+ if( pSelect ){
+ SelectDest dest; /* Where the SELECT should store results */
+ int regYield; /* Register holding co-routine entry-point */
+ int addrTop; /* Top of the co-routine */
+ int regRec; /* A record to be insert into the new table */
+ int regRowid; /* Rowid of the next row to insert */
+ int addrInsLoop; /* Top of the loop for inserting rows */
+ Table *pSelTab; /* A table that describes the SELECT results */
+
+ if( IN_SPECIAL_PARSE ){
+ pParse->rc = SQLITE_ERROR;
+ pParse->nErr++;
+ return;
+ }
+ regYield = ++pParse->nMem;
+ regRec = ++pParse->nMem;
+ regRowid = ++pParse->nMem;
+ assert(pParse->nTab==1);
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
+ sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
+ pParse->nTab = 2;
+ addrTop = sqlite3VdbeCurrentAddr(v) + 1;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
+ if( pParse->nErr ) return;
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
+ if( pSelTab==0 ) return;
+ assert( p->aCol==0 );
+ p->nCol = p->nNVCol = pSelTab->nCol;
+ p->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqlite3DeleteTable(db, pSelTab);
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
+ sqlite3Select(pParse, pSelect, &dest);
+ if( pParse->nErr ) return;
+ sqlite3VdbeEndCoroutine(v, regYield);
+ sqlite3VdbeJumpHere(v, addrTop - 1);
+ addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
+ sqlite3TableAffinity(v, p, 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
+ sqlite3VdbeGoto(v, addrInsLoop);
+ sqlite3VdbeJumpHere(v, addrInsLoop);
+ sqlite3VdbeAddOp1(v, OP_Close, 1);
+ }
+
+ /* Compute the complete text of the CREATE statement */
+ if( pSelect ){
+ zStmt = createTableStmt(db, p);
+ }else{
+ Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
+ n = (int)(pEnd2->z - pParse->sNameToken.z);
+ if( pEnd2->z[0]!=';' ) n += pEnd2->n;
+ zStmt = sqlite3MPrintf(db,
+ "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
+ );
+ }
+
+ /* A slot for the record has already been allocated in the
+ ** schema table. We just need to update that slot with all
+ ** the information we've collected.
+ */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE
+ " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
+ " WHERE rowid=#%d",
+ db->aDb[iDb].zDbSName,
+ zType,
+ p->zName,
+ p->zName,
+ pParse->regRoot,
+ zStmt,
+ pParse->regRowid
+ );
+ sqlite3DbFree(db, zStmt);
+ sqlite3ChangeCookie(pParse, iDb);
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* Check to see if we need to create an sqlite_sequence table for
+ ** keeping track of autoincrement keys.
+ */
+ if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
+ Db *pDb = &db->aDb[iDb];
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( pDb->pSchema->pSeqTab==0 ){
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.sqlite_sequence(name,seq)",
+ pDb->zDbSName
+ );
+ }
+ }
+#endif
+
+ /* Reparse everything to update our internal data structures */
+ sqlite3VdbeAddParseSchemaOp(v, iDb,
+ sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
+
+ /* Test for cycles in generated columns and illegal expressions
+ ** in CHECK constraints and in DEFAULT clauses. */
+ if( p->tabFlags & TF_HasGenerated ){
+ sqlite3VdbeAddOp4(v, OP_SqlExec, 1, 0, 0,
+ sqlite3MPrintf(db, "SELECT*FROM\"%w\".\"%w\"",
+ db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC);
+ }
+ sqlite3VdbeAddOp4(v, OP_SqlExec, 1, 0, 0,
+ sqlite3MPrintf(db, "PRAGMA \"%w\".integrity_check(%Q)",
+ db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC);
+ }
+
+ /* Add the table to the in-memory representation of the database.
+ */
+ if( db->init.busy ){
+ Table *pOld;
+ Schema *pSchema = p->pSchema;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ assert( HasRowid(p) || p->iPKey<0 );
+ pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
+ if( pOld ){
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
+ sqlite3OomFault(db);
+ return;
+ }
+ pParse->pNewTable = 0;
+ db->mDbFlags |= DBFLAG_SchemaChange;
+
+ /* If this is the magic sqlite_sequence table used by autoincrement,
+ ** then record a pointer to this table in the main database structure
+ ** so that INSERT can find the table easily. */
+ assert( !pParse->nested );
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( strcmp(p->zName, "sqlite_sequence")==0 ){
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ p->pSchema->pSeqTab = p;
+ }
+#endif
+ }
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( !pSelect && IsOrdinaryTable(p) ){
+ assert( pCons && pEnd );
+ if( pCons->z==0 ){
+ pCons = pEnd;
+ }
+ p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
+ }
+#endif
+}
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** The parser calls this routine in order to create a new VIEW
+*/
+SQLITE_PRIVATE void sqlite3CreateView(
+ Parse *pParse, /* The parsing context */
+ Token *pBegin, /* The CREATE token that begins the statement */
+ Token *pName1, /* The token that holds the name of the view */
+ Token *pName2, /* The token that holds the name of the view */
+ ExprList *pCNames, /* Optional list of view column names */
+ Select *pSelect, /* A SELECT statement that will become the new view */
+ int isTemp, /* TRUE for a TEMPORARY view */
+ int noErr /* Suppress error messages if VIEW already exists */
+){
+ Table *p;
+ int n;
+ const char *z;
+ Token sEnd;
+ DbFixer sFix;
+ Token *pName = 0;
+ int iDb;
+ sqlite3 *db = pParse->db;
+
+ if( pParse->nVar>0 ){
+ sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
+ goto create_view_fail;
+ }
+ sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
+ p = pParse->pNewTable;
+ if( p==0 || pParse->nErr ) goto create_view_fail;
+
+ /* Legacy versions of SQLite allowed the use of the magic "rowid" column
+ ** on a view, even though views do not have rowids. The following flag
+ ** setting fixes this problem. But the fix can be disabled by compiling
+ ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
+ ** depend upon the old buggy behavior. */
+#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
+ p->tabFlags |= TF_NoVisibleRowid;
+#endif
+
+ sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
+ sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
+ if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
+
+ /* Make a copy of the entire SELECT statement that defines the view.
+ ** This will force all the Expr.token.z values to be dynamically
+ ** allocated rather than point to the input string - which means that
+ ** they will persist after the current sqlite3_exec() call returns.
+ */
+ pSelect->selFlags |= SF_View;
+ if( IN_RENAME_OBJECT ){
+ p->u.view.pSelect = pSelect;
+ pSelect = 0;
+ }else{
+ p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ }
+ p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
+ p->eTabType = TABTYP_VIEW;
+ if( db->mallocFailed ) goto create_view_fail;
+
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
+ ** the end.
+ */
+ sEnd = pParse->sLastToken;
+ assert( sEnd.z[0]!=0 || sEnd.n==0 );
+ if( sEnd.z[0]!=';' ){
+ sEnd.z += sEnd.n;
+ }
+ sEnd.n = 0;
+ n = (int)(sEnd.z - pBegin->z);
+ assert( n>0 );
+ z = pBegin->z;
+ while( sqlite3Isspace(z[n-1]) ){ n--; }
+ sEnd.z = &z[n-1];
+ sEnd.n = 1;
+
+ /* Use sqlite3EndTable() to add the view to the schema table */
+ sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
+
+create_view_fail:
+ sqlite3SelectDelete(db, pSelect);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameExprlistUnmap(pParse, pCNames);
+ }
+ sqlite3ExprListDelete(db, pCNames);
+ return;
+}
+#endif /* SQLITE_OMIT_VIEW */
+
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+/*
+** The Table structure pTable is really a VIEW. Fill in the names of
+** the columns of the view in the pTable structure. Return the number
+** of errors. If an error is seen leave an error message in pParse->zErrMsg.
+*/
+static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){
+ Table *pSelTab; /* A fake table from which we get the result set */
+ Select *pSel; /* Copy of the SELECT that implements the view */
+ int nErr = 0; /* Number of errors encountered */
+ sqlite3 *db = pParse->db; /* Database connection for malloc errors */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int rc;
+#endif
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ sqlite3_xauth xAuth; /* Saved xAuth pointer */
+#endif
+
+ assert( pTable );
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTable) ){
+ db->nSchemaLock++;
+ rc = sqlite3VtabCallConnect(pParse, pTable);
+ db->nSchemaLock--;
+ return rc;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_VIEW
+ /* A positive nCol means the columns names for this view are
+ ** already known. This routine is not called unless either the
+ ** table is virtual or nCol is zero.
+ */
+ assert( pTable->nCol<=0 );
+
+ /* A negative nCol is a special marker meaning that we are currently
+ ** trying to compute the column names. If we enter this routine with
+ ** a negative nCol, it means two or more views form a loop, like this:
+ **
+ ** CREATE VIEW one AS SELECT * FROM two;
+ ** CREATE VIEW two AS SELECT * FROM one;
+ **
+ ** Actually, the error above is now caught prior to reaching this point.
+ ** But the following test is still important as it does come up
+ ** in the following:
+ **
+ ** CREATE TABLE main.ex1(a);
+ ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
+ ** SELECT * FROM temp.ex1;
+ */
+ if( pTable->nCol<0 ){
+ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
+ return 1;
+ }
+ assert( pTable->nCol>=0 );
+
+ /* If we get this far, it means we need to compute the table names.
+ ** Note that the call to sqlite3ResultSetOfSelect() will expand any
+ ** "*" elements in the results set of the view and will assign cursors
+ ** to the elements of the FROM clause. But we do not want these changes
+ ** to be permanent. So the computation is done on a copy of the SELECT
+ ** statement that defines the view.
+ */
+ assert( IsView(pTable) );
+ pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
+ if( pSel ){
+ u8 eParseMode = pParse->eParseMode;
+ int nTab = pParse->nTab;
+ int nSelect = pParse->nSelect;
+ pParse->eParseMode = PARSE_MODE_NORMAL;
+ sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
+ pTable->nCol = -1;
+ DisableLookaside;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
+ db->xAuth = xAuth;
+#else
+ pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
+#endif
+ pParse->nTab = nTab;
+ pParse->nSelect = nSelect;
+ if( pSelTab==0 ){
+ pTable->nCol = 0;
+ nErr++;
+ }else if( pTable->pCheck ){
+ /* CREATE VIEW name(arglist) AS ...
+ ** The names of the columns in the table are taken from
+ ** arglist which is stored in pTable->pCheck. The pCheck field
+ ** normally holds CHECK constraints on an ordinary table, but for
+ ** a VIEW it holds the list of column names.
+ */
+ sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
+ &pTable->nCol, &pTable->aCol);
+ if( pParse->nErr==0
+ && pTable->nCol==pSel->pEList->nExpr
+ ){
+ assert( db->mallocFailed==0 );
+ sqlite3SubqueryColumnTypes(pParse, pTable, pSel, SQLITE_AFF_NONE);
+ }
+ }else{
+ /* CREATE VIEW name AS... without an argument list. Construct
+ ** the column names from the SELECT statement that defines the view.
+ */
+ assert( pTable->aCol==0 );
+ pTable->nCol = pSelTab->nCol;
+ pTable->aCol = pSelTab->aCol;
+ pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
+ }
+ pTable->nNVCol = pTable->nCol;
+ sqlite3DeleteTable(db, pSelTab);
+ sqlite3SelectDelete(db, pSel);
+ EnableLookaside;
+ pParse->eParseMode = eParseMode;
+ } else {
+ nErr++;
+ }
+ pTable->pSchema->schemaFlags |= DB_UnresetViews;
+ if( db->mallocFailed ){
+ sqlite3DeleteColumnNames(db, pTable);
+ }
+#endif /* SQLITE_OMIT_VIEW */
+ return nErr;
+}
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
+ assert( pTable!=0 );
+ if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0;
+ return viewGetColumnNames(pParse, pTable);
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** Clear the column names from every VIEW in database idx.
+*/
+static void sqliteViewResetAll(sqlite3 *db, int idx){
+ HashElem *i;
+ assert( sqlite3SchemaMutexHeld(db, idx, 0) );
+ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
+ for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ if( IsView(pTab) ){
+ sqlite3DeleteColumnNames(db, pTab);
+ }
+ }
+ DbClearProperty(db, idx, DB_UnresetViews);
+}
+#else
+# define sqliteViewResetAll(A,B)
+#endif /* SQLITE_OMIT_VIEW */
+
+/*
+** This function is called by the VDBE to adjust the internal schema
+** used by SQLite when the btree layer moves a table root page. The
+** root-page of a table or index in database iDb has changed from iFrom
+** to iTo.
+**
+** Ticket #1728: The symbol table might still contain information
+** on tables and/or indices that are the process of being deleted.
+** If you are unlucky, one of those deleted indices or tables might
+** have the same rootpage number as the real table or index that is
+** being moved. So we cannot stop searching after the first match
+** because the first match might be for one of the deleted indices
+** or tables and not the table/index that is actually being moved.
+** We must continue looping until all tables and indices with
+** rootpage==iFrom have been converted to have a rootpage of iTo
+** in order to be certain that we got the right one.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
+ HashElem *pElem;
+ Hash *pHash;
+ Db *pDb;
+
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pDb = &db->aDb[iDb];
+ pHash = &pDb->pSchema->tblHash;
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ if( pTab->tnum==iFrom ){
+ pTab->tnum = iTo;
+ }
+ }
+ pHash = &pDb->pSchema->idxHash;
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
+ Index *pIdx = sqliteHashData(pElem);
+ if( pIdx->tnum==iFrom ){
+ pIdx->tnum = iTo;
+ }
+ }
+}
+#endif
+
+/*
+** Write code to erase the table with root-page iTable from database iDb.
+** Also write code to modify the sqlite_schema table and internal schema
+** if a root-page of another table is moved by the btree-layer whilst
+** erasing iTable (this can happen with an auto-vacuum database).
+*/
+static void destroyRootPage(Parse *pParse, int iTable, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int r1 = sqlite3GetTempReg(pParse);
+ if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
+ sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
+ sqlite3MayAbort(pParse);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* OP_Destroy stores an in integer r1. If this integer
+ ** is non-zero, then it is the root page number of a table moved to
+ ** location iTable. The following code modifies the sqlite_schema table to
+ ** reflect this.
+ **
+ ** The "#NNN" in the SQL is a special constant that means whatever value
+ ** is in register NNN. See grammar rules associated with the TK_REGISTER
+ ** token for additional information.
+ */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE
+ " SET rootpage=%d WHERE #%d AND rootpage=#%d",
+ pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
+#endif
+ sqlite3ReleaseTempReg(pParse, r1);
+}
+
+/*
+** Write VDBE code to erase table pTab and all associated indices on disk.
+** Code to update the sqlite_schema tables and internal schema definitions
+** in case a root-page belonging to another table is moved by the btree layer
+** is also added (this can happen with an auto-vacuum database).
+*/
+static void destroyTable(Parse *pParse, Table *pTab){
+ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
+ ** is not defined), then it is important to call OP_Destroy on the
+ ** table and index root-pages in order, starting with the numerically
+ ** largest root-page number. This guarantees that none of the root-pages
+ ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
+ ** following were coded:
+ **
+ ** OP_Destroy 4 0
+ ** ...
+ ** OP_Destroy 5 0
+ **
+ ** and root page 5 happened to be the largest root-page number in the
+ ** database, then root page 5 would be moved to page 4 by the
+ ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
+ ** a free-list page.
+ */
+ Pgno iTab = pTab->tnum;
+ Pgno iDestroyed = 0;
+
+ while( 1 ){
+ Index *pIdx;
+ Pgno iLargest = 0;
+
+ if( iDestroyed==0 || iTab<iDestroyed ){
+ iLargest = iTab;
+ }
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ Pgno iIdx = pIdx->tnum;
+ assert( pIdx->pSchema==pTab->pSchema );
+ if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
+ iLargest = iIdx;
+ }
+ }
+ if( iLargest==0 ){
+ return;
+ }else{
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ assert( iDb>=0 && iDb<pParse->db->nDb );
+ destroyRootPage(pParse, iLargest, iDb);
+ iDestroyed = iLargest;
+ }
+ }
+}
+
+/*
+** Remove entries from the sqlite_statN tables (for N in (1,2,3))
+** after a DROP INDEX or DROP TABLE command.
+*/
+static void sqlite3ClearStatTables(
+ Parse *pParse, /* The parsing context */
+ int iDb, /* The database number */
+ const char *zType, /* "idx" or "tbl" */
+ const char *zName /* Name of index or table */
+){
+ int i;
+ const char *zDbName = pParse->db->aDb[iDb].zDbSName;
+ for(i=1; i<=4; i++){
+ char zTab[24];
+ sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
+ if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE %s=%Q",
+ zDbName, zTab, zType, zName
+ );
+ }
+ }
+}
+
+/*
+** Generate code to drop a table.
+*/
+SQLITE_PRIVATE void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ Trigger *pTrigger;
+ Db *pDb = &db->aDb[iDb];
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp0(v, OP_VBegin);
+ }
+#endif
+
+ /* Drop all triggers associated with the table being dropped. Code
+ ** is generated to remove entries from sqlite_schema and/or
+ ** sqlite_temp_schema if required.
+ */
+ pTrigger = sqlite3TriggerList(pParse, pTab);
+ while( pTrigger ){
+ assert( pTrigger->pSchema==pTab->pSchema ||
+ pTrigger->pSchema==db->aDb[1].pSchema );
+ sqlite3DropTriggerPtr(pParse, pTrigger);
+ pTrigger = pTrigger->pNext;
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* Remove any entries of the sqlite_sequence table associated with
+ ** the table being dropped. This is done before the table is dropped
+ ** at the btree level, in case the sqlite_sequence table needs to
+ ** move as a result of the drop (can happen in auto-vacuum mode).
+ */
+ if( pTab->tabFlags & TF_Autoincrement ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
+ pDb->zDbSName, pTab->zName
+ );
+ }
+#endif
+
+ /* Drop all entries in the schema table that refer to the
+ ** table. The program name loops through the schema table and deletes
+ ** every row that refers to a table of the same name as the one being
+ ** dropped. Triggers are handled separately because a trigger can be
+ ** created in the temp database that refers to a table in another
+ ** database.
+ */
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
+ " WHERE tbl_name=%Q and type!='trigger'",
+ pDb->zDbSName, pTab->zName);
+ if( !isView && !IsVirtual(pTab) ){
+ destroyTable(pParse, pTab);
+ }
+
+ /* Remove the table entry from SQLite's internal schema and modify
+ ** the schema cookie.
+ */
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
+ sqlite3MayAbort(pParse);
+ }
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqliteViewResetAll(db, iDb);
+}
+
+/*
+** Return TRUE if shadow tables should be read-only in the current
+** context.
+*/
+SQLITE_PRIVATE int sqlite3ReadOnlyShadowTables(sqlite3 *db){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (db->flags & SQLITE_Defensive)!=0
+ && db->pVtabCtx==0
+ && db->nVdbeExec==0
+ && !sqlite3VtabInSync(db)
+ ){
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+/*
+** Return true if it is not allowed to drop the given table
+*/
+static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
+ if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
+ if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
+ return 1;
+ }
+ if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
+ return 1;
+ }
+ if( pTab->tabFlags & TF_Eponymous ){
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** This routine is called to do the work of a DROP TABLE statement.
+** pName is the name of the table to be dropped.
+*/
+SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
+ Table *pTab;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( db->mallocFailed ){
+ goto exit_drop_table;
+ }
+ assert( pParse->nErr==0 );
+ assert( pName->nSrc==1 );
+ if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
+ if( noErr ) db->suppressErr++;
+ assert( isView==0 || isView==LOCATE_VIEW );
+ pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
+ if( noErr ) db->suppressErr--;
+
+ if( pTab==0 ){
+ if( noErr ){
+ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ goto exit_drop_table;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+
+ /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
+ ** it is initialized.
+ */
+ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_drop_table;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ const char *zDb = db->aDb[iDb].zDbSName;
+ const char *zArg2 = 0;
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
+ goto exit_drop_table;
+ }
+ if( isView ){
+ if( !OMIT_TEMPDB && iDb==1 ){
+ code = SQLITE_DROP_TEMP_VIEW;
+ }else{
+ code = SQLITE_DROP_VIEW;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( IsVirtual(pTab) ){
+ code = SQLITE_DROP_VTABLE;
+ zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
+#endif
+ }else{
+ if( !OMIT_TEMPDB && iDb==1 ){
+ code = SQLITE_DROP_TEMP_TABLE;
+ }else{
+ code = SQLITE_DROP_TABLE;
+ }
+ }
+ if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
+ goto exit_drop_table;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
+ goto exit_drop_table;
+ }
+ }
+#endif
+ if( tableMayNotBeDropped(db, pTab) ){
+ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
+ goto exit_drop_table;
+ }
+
+#ifndef SQLITE_OMIT_VIEW
+ /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
+ ** on a table.
+ */
+ if( isView && !IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
+ goto exit_drop_table;
+ }
+ if( !isView && IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
+ goto exit_drop_table;
+ }
+#endif
+
+ /* Generate code to remove the table from the schema table
+ ** on disk.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+ if( !isView ){
+ sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
+ sqlite3FkDropTable(pParse, pName, pTab);
+ }
+ sqlite3CodeDropTable(pParse, pTab, iDb, isView);
+ }
+
+exit_drop_table:
+ sqlite3SrcListDelete(db, pName);
+}
+
+/*
+** This routine is called to create a new foreign key on the table
+** currently under construction. pFromCol determines which columns
+** in the current table point to the foreign key. If pFromCol==0 then
+** connect the key to the last column inserted. pTo is the name of
+** the table referred to (a.k.a the "parent" table). pToCol is a list
+** of tables in the parent pTo table. flags contains all
+** information about the conflict resolution algorithms specified
+** in the ON DELETE, ON UPDATE and ON INSERT clauses.
+**
+** An FKey structure is created and added to the table currently
+** under construction in the pParse->pNewTable field.
+**
+** The foreign key is set for IMMEDIATE processing. A subsequent call
+** to sqlite3DeferForeignKey() might change this to DEFERRED.
+*/
+SQLITE_PRIVATE void sqlite3CreateForeignKey(
+ Parse *pParse, /* Parsing context */
+ ExprList *pFromCol, /* Columns in this table that point to other table */
+ Token *pTo, /* Name of the other table */
+ ExprList *pToCol, /* Columns in the other table */
+ int flags /* Conflict resolution algorithms. */
+){
+ sqlite3 *db = pParse->db;
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ FKey *pFKey = 0;
+ FKey *pNextTo;
+ Table *p = pParse->pNewTable;
+ i64 nByte;
+ int i;
+ int nCol;
+ char *z;
+
+ assert( pTo!=0 );
+ if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
+ if( pFromCol==0 ){
+ int iCol = p->nCol-1;
+ if( NEVER(iCol<0) ) goto fk_end;
+ if( pToCol && pToCol->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "foreign key on %s"
+ " should reference only one column of table %T",
+ p->aCol[iCol].zCnName, pTo);
+ goto fk_end;
+ }
+ nCol = 1;
+ }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
+ sqlite3ErrorMsg(pParse,
+ "number of columns in foreign key does not match the number of "
+ "columns in the referenced table");
+ goto fk_end;
+ }else{
+ nCol = pFromCol->nExpr;
+ }
+ nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
+ if( pToCol ){
+ for(i=0; i<pToCol->nExpr; i++){
+ nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
+ }
+ }
+ pFKey = sqlite3DbMallocZero(db, nByte );
+ if( pFKey==0 ){
+ goto fk_end;
+ }
+ pFKey->pFrom = p;
+ assert( IsOrdinaryTable(p) );
+ pFKey->pNextFrom = p->u.tab.pFKey;
+ z = (char*)&pFKey->aCol[nCol];
+ pFKey->zTo = z;
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, (void*)z, pTo);
+ }
+ memcpy(z, pTo->z, pTo->n);
+ z[pTo->n] = 0;
+ sqlite3Dequote(z);
+ z += pTo->n+1;
+ pFKey->nCol = nCol;
+ if( pFromCol==0 ){
+ pFKey->aCol[0].iFrom = p->nCol-1;
+ }else{
+ for(i=0; i<nCol; i++){
+ int j;
+ for(j=0; j<p->nCol; j++){
+ if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
+ pFKey->aCol[i].iFrom = j;
+ break;
+ }
+ }
+ if( j>=p->nCol ){
+ sqlite3ErrorMsg(pParse,
+ "unknown column \"%s\" in foreign key definition",
+ pFromCol->a[i].zEName);
+ goto fk_end;
+ }
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
+ }
+ }
+ }
+ if( pToCol ){
+ for(i=0; i<nCol; i++){
+ int n = sqlite3Strlen30(pToCol->a[i].zEName);
+ pFKey->aCol[i].zCol = z;
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
+ }
+ memcpy(z, pToCol->a[i].zEName, n);
+ z[n] = 0;
+ z += n+1;
+ }
+ }
+ pFKey->isDeferred = 0;
+ pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
+ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
+
+ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
+ pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
+ pFKey->zTo, (void *)pFKey
+ );
+ if( pNextTo==pFKey ){
+ sqlite3OomFault(db);
+ goto fk_end;
+ }
+ if( pNextTo ){
+ assert( pNextTo->pPrevTo==0 );
+ pFKey->pNextTo = pNextTo;
+ pNextTo->pPrevTo = pFKey;
+ }
+
+ /* Link the foreign key to the table as the last step.
+ */
+ assert( IsOrdinaryTable(p) );
+ p->u.tab.pFKey = pFKey;
+ pFKey = 0;
+
+fk_end:
+ sqlite3DbFree(db, pFKey);
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+ sqlite3ExprListDelete(db, pFromCol);
+ sqlite3ExprListDelete(db, pToCol);
+}
+
+/*
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
+** clause is seen as part of a foreign key definition. The isDeferred
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
+** The behavior of the most recently created foreign key is adjusted
+** accordingly.
+*/
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ Table *pTab;
+ FKey *pFKey;
+ if( (pTab = pParse->pNewTable)==0 ) return;
+ if( NEVER(!IsOrdinaryTable(pTab)) ) return;
+ if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
+ assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
+ pFKey->isDeferred = (u8)isDeferred;
+#endif
+}
+
+/*
+** Generate code that will erase and refill index *pIdx. This is
+** used to initialize a newly created index or to recompute the
+** content of an index in response to a REINDEX command.
+**
+** if memRootPage is not negative, it means that the index is newly
+** created. The register specified by memRootPage contains the
+** root page number of the index. If memRootPage is negative, then
+** the index already exists and must be cleared before being refilled and
+** the root page number of the index is taken from pIndex->tnum.
+*/
+static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
+ Table *pTab = pIndex->pTable; /* The table that is indexed */
+ int iTab = pParse->nTab++; /* Btree cursor used for pTab */
+ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
+ int iSorter; /* Cursor opened by OpenSorter (if in use) */
+ int addr1; /* Address of top of loop */
+ int addr2; /* Address to jump to for next iteration */
+ Pgno tnum; /* Root page of index */
+ int iPartIdxLabel; /* Jump to this label to skip a row */
+ Vdbe *v; /* Generate code into this virtual machine */
+ KeyInfo *pKey; /* KeyInfo for index */
+ int regRecord; /* Register holding assembled index record */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
+ db->aDb[iDb].zDbSName ) ){
+ return;
+ }
+#endif
+
+ /* Require a write-lock on the table to perform this operation */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+ if( memRootPage>=0 ){
+ tnum = (Pgno)memRootPage;
+ }else{
+ tnum = pIndex->tnum;
+ }
+ pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
+ assert( pKey!=0 || pParse->nErr );
+
+ /* Open the sorter cursor if we are to use one. */
+ iSorter = pParse->nTab++;
+ sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
+ sqlite3KeyInfoRef(pKey), P4_KEYINFO);
+
+ /* Open the table. Loop through all rows of the table, inserting index
+ ** records into the sorter. */
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3MultiWrite(pParse);
+
+ sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
+ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
+ (char *)pKey, P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
+
+ addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
+ if( IsUniqueIndex(pIndex) ){
+ int j2 = sqlite3VdbeGoto(v, 1);
+ addr2 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeVerifyAbortable(v, OE_Abort);
+ sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
+ pIndex->nKeyCol); VdbeCoverage(v);
+ sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
+ sqlite3VdbeJumpHere(v, j2);
+ }else{
+ /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
+ ** abort. The exception is if one of the indexed expressions contains a
+ ** user function that throws an exception when it is evaluated. But the
+ ** overhead of adding a statement journal to a CREATE INDEX statement is
+ ** very small (since most of the pages written do not contain content that
+ ** needs to be restored if the statement aborts), so we call
+ ** sqlite3MayAbort() for all CREATE INDEX statements. */
+ sqlite3MayAbort(pParse);
+ addr2 = sqlite3VdbeCurrentAddr(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
+ if( !pIndex->bAscKeyBug ){
+ /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
+ ** faster by avoiding unnecessary seeks. But the optimization does
+ ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
+ ** with DESC primary keys, since those indexes have there keys in
+ ** a different order from the main table.
+ ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
+ */
+ sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+
+ sqlite3VdbeAddOp1(v, OP_Close, iTab);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdx);
+ sqlite3VdbeAddOp1(v, OP_Close, iSorter);
+}
+
+/*
+** Allocate heap space to hold an Index object with nCol columns.
+**
+** Increase the allocation size to provide an extra nExtra bytes
+** of 8-byte aligned space after the Index object and return a
+** pointer to this extra space in *ppExtra.
+*/
+SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(
+ sqlite3 *db, /* Database connection */
+ i16 nCol, /* Total number of columns in the index */
+ int nExtra, /* Number of bytes of extra space to alloc */
+ char **ppExtra /* Pointer to the "extra" space */
+){
+ Index *p; /* Allocated index object */
+ int nByte; /* Bytes of space for Index object + arrays */
+
+ nByte = ROUND8(sizeof(Index)) + /* Index structure */
+ ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
+ ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
+ sizeof(i16)*nCol + /* Index.aiColumn */
+ sizeof(u8)*nCol); /* Index.aSortOrder */
+ p = sqlite3DbMallocZero(db, nByte + nExtra);
+ if( p ){
+ char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
+ p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
+ p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
+ p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
+ p->aSortOrder = (u8*)pExtra;
+ p->nColumn = nCol;
+ p->nKeyCol = nCol - 1;
+ *ppExtra = ((char*)p) + nByte;
+ }
+ return p;
+}
+
+/*
+** If expression list pList contains an expression that was parsed with
+** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
+** pParse and return non-zero. Otherwise, return zero.
+*/
+SQLITE_PRIVATE int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
+ if( pList ){
+ int i;
+ for(i=0; i<pList->nExpr; i++){
+ if( pList->a[i].fg.bNulls ){
+ u8 sf = pList->a[i].fg.sortFlags;
+ sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
+ (sf==0 || sf==3) ? "FIRST" : "LAST"
+ );
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Create a new index for an SQL table. pName1.pName2 is the name of the index
+** and pTblList is the name of the table that is to be indexed. Both will
+** be NULL for a primary key or an index that is created to satisfy a
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
+** as the table to be indexed. pParse->pNewTable is a table that is
+** currently being constructed by a CREATE TABLE statement.
+**
+** pList is a list of columns to be indexed. pList will be NULL if this
+** is a primary key or unique-constraint on the most recent column added
+** to the table currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3CreateIndex(
+ Parse *pParse, /* All information about this parse */
+ Token *pName1, /* First part of index name. May be NULL */
+ Token *pName2, /* Second part of index name. May be NULL */
+ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
+ ExprList *pList, /* A list of columns to be indexed */
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ Token *pStart, /* The CREATE token that begins this statement */
+ Expr *pPIWhere, /* WHERE clause for partial indices */
+ int sortOrder, /* Sort order of primary key when pList==NULL */
+ int ifNotExist, /* Omit error if index already exists */
+ u8 idxType /* The index type */
+){
+ Table *pTab = 0; /* Table to be indexed */
+ Index *pIndex = 0; /* The index to be created */
+ char *zName = 0; /* Name of the index */
+ int nName; /* Number of characters in zName */
+ int i, j;
+ DbFixer sFix; /* For assigning database names to pTable */
+ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
+ sqlite3 *db = pParse->db;
+ Db *pDb; /* The specific table containing the indexed database */
+ int iDb; /* Index of the database that is being written */
+ Token *pName = 0; /* Unqualified name of the index to create */
+ struct ExprList_item *pListItem; /* For looping over pList */
+ int nExtra = 0; /* Space allocated for zExtra[] */
+ int nExtraCol; /* Number of extra columns needed */
+ char *zExtra = 0; /* Extra space after the Index object */
+ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
+
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto exit_create_index;
+ }
+ assert( db->mallocFailed==0 );
+ if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
+ goto exit_create_index;
+ }
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto exit_create_index;
+ }
+ if( sqlite3HasExplicitNulls(pParse, pList) ){
+ goto exit_create_index;
+ }
+
+ /*
+ ** Find the table that is to be indexed. Return early if not found.
+ */
+ if( pTblName!=0 ){
+
+ /* Use the two-part index name to determine the database
+ ** to search for the table. 'Fix' the table name to this db
+ ** before looking up the table.
+ */
+ assert( pName1 && pName2 );
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ) goto exit_create_index;
+ assert( pName && pName->z );
+
+#ifndef SQLITE_OMIT_TEMPDB
+ /* If the index name was unqualified, check if the table
+ ** is a temp table. If so, set the database to 1. Do not do this
+ ** if initializing a database schema.
+ */
+ if( !db->init.busy ){
+ pTab = sqlite3SrcListLookup(pParse, pTblName);
+ if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
+ }
+#endif
+
+ sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
+ if( sqlite3FixSrcList(&sFix, pTblName) ){
+ /* Because the parser constructs pTblName from a single identifier,
+ ** sqlite3FixSrcList can never fail. */
+ assert(0);
+ }
+ pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
+ assert( db->mallocFailed==0 || pTab==0 );
+ if( pTab==0 ) goto exit_create_index;
+ if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
+ sqlite3ErrorMsg(pParse,
+ "cannot create a TEMP index on non-TEMP table \"%s\"",
+ pTab->zName);
+ goto exit_create_index;
+ }
+ if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
+ }else{
+ assert( pName==0 );
+ assert( pStart==0 );
+ pTab = pParse->pNewTable;
+ if( !pTab ) goto exit_create_index;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ }
+ pDb = &db->aDb[iDb];
+
+ assert( pTab!=0 );
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
+ && db->init.busy==0
+ && pTblName!=0
+#if SQLITE_USER_AUTHENTICATION
+ && sqlite3UserAuthTable(pTab->zName)==0
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
+ goto exit_create_index;
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "views may not be indexed");
+ goto exit_create_index;
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
+ goto exit_create_index;
+ }
+#endif
+
+ /*
+ ** Find the name of the index. Make sure there is not already another
+ ** index or table with the same name.
+ **
+ ** Exception: If we are reading the names of permanent indices from the
+ ** sqlite_schema table (because some other process changed the schema) and
+ ** one of the index names collides with the name of a temporary table or
+ ** index, then we will continue to process this index.
+ **
+ ** If pName==0 it means that we are
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our
+ ** own name.
+ */
+ if( pName ){
+ zName = sqlite3NameFromToken(db, pName);
+ if( zName==0 ) goto exit_create_index;
+ assert( pName->z!=0 );
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
+ goto exit_create_index;
+ }
+ if( !IN_RENAME_OBJECT ){
+ if( !db->init.busy ){
+ if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){
+ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
+ goto exit_create_index;
+ }
+ }
+ if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
+ if( !ifNotExist ){
+ sqlite3ErrorMsg(pParse, "index %s already exists", zName);
+ }else{
+ assert( !db->init.busy );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ goto exit_create_index;
+ }
+ }
+ }else{
+ int n;
+ Index *pLoop;
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
+ zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
+ if( zName==0 ){
+ goto exit_create_index;
+ }
+
+ /* Automatic index names generated from within sqlite3_declare_vtab()
+ ** must have names that are distinct from normal automatic index names.
+ ** The following statement converts "sqlite3_autoindex..." into
+ ** "sqlite3_butoindex..." in order to make the names distinct.
+ ** The "vtab_err.test" test demonstrates the need of this statement. */
+ if( IN_SPECIAL_PARSE ) zName[7]++;
+ }
+
+ /* Check for authorization to create an index.
+ */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( !IN_RENAME_OBJECT ){
+ const char *zDb = pDb->zDbSName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
+ goto exit_create_index;
+ }
+ i = SQLITE_CREATE_INDEX;
+ if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
+ if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
+ goto exit_create_index;
+ }
+ }
+#endif
+
+ /* If pList==0, it means this routine was called to make a primary
+ ** key out of the last column added to the table under construction.
+ ** So create a fake list to simulate this.
+ */
+ if( pList==0 ){
+ Token prevCol;
+ Column *pCol = &pTab->aCol[pTab->nCol-1];
+ pCol->colFlags |= COLFLAG_UNIQUE;
+ sqlite3TokenInit(&prevCol, pCol->zCnName);
+ pList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
+ if( pList==0 ) goto exit_create_index;
+ assert( pList->nExpr==1 );
+ sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
+ }else{
+ sqlite3ExprListCheckLength(pParse, pList, "index");
+ if( pParse->nErr ) goto exit_create_index;
+ }
+
+ /* Figure out how many bytes of space are required to store explicitly
+ ** specified collation sequence names.
+ */
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ assert( pExpr!=0 );
+ if( pExpr->op==TK_COLLATE ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
+ }
+ }
+
+ /*
+ ** Allocate the index structure.
+ */
+ nName = sqlite3Strlen30(zName);
+ nExtraCol = pPk ? pPk->nKeyCol : 1;
+ assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
+ pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
+ nName + nExtra + 1, &zExtra);
+ if( db->mallocFailed ){
+ goto exit_create_index;
+ }
+ assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
+ assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
+ pIndex->zName = zExtra;
+ zExtra += nName + 1;
+ memcpy(pIndex->zName, zName, nName+1);
+ pIndex->pTable = pTab;
+ pIndex->onError = (u8)onError;
+ pIndex->uniqNotNull = onError!=OE_None;
+ pIndex->idxType = idxType;
+ pIndex->pSchema = db->aDb[iDb].pSchema;
+ pIndex->nKeyCol = pList->nExpr;
+ if( pPIWhere ){
+ sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
+ pIndex->pPartIdxWhere = pPIWhere;
+ pPIWhere = 0;
+ }
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+
+ /* Check to see if we should honor DESC requests on index columns
+ */
+ if( pDb->pSchema->file_format>=4 ){
+ sortOrderMask = -1; /* Honor DESC */
+ }else{
+ sortOrderMask = 0; /* Ignore DESC */
+ }
+
+ /* Analyze the list of expressions that form the terms of the index and
+ ** report any errors. In the common case where the expression is exactly
+ ** a table column, store that column in aiColumn[]. For general expressions,
+ ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
+ **
+ ** TODO: Issue a warning if two or more columns of the index are identical.
+ ** TODO: Issue a warning if the table primary key is used as part of the
+ ** index key.
+ */
+ pListItem = pList->a;
+ if( IN_RENAME_OBJECT ){
+ pIndex->aColExpr = pList;
+ pList = 0;
+ }
+ for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
+ Expr *pCExpr; /* The i-th index expression */
+ int requestedSortOrder; /* ASC or DESC on the i-th expression */
+ const char *zColl; /* Collation sequence name */
+
+ sqlite3StringToId(pListItem->pExpr);
+ sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
+ if( pParse->nErr ) goto exit_create_index;
+ pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
+ if( pCExpr->op!=TK_COLUMN ){
+ if( pTab==pParse->pNewTable ){
+ sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
+ "UNIQUE constraints");
+ goto exit_create_index;
+ }
+ if( pIndex->aColExpr==0 ){
+ pIndex->aColExpr = pList;
+ pList = 0;
+ }
+ j = XN_EXPR;
+ pIndex->aiColumn[i] = XN_EXPR;
+ pIndex->uniqNotNull = 0;
+ pIndex->bHasExpr = 1;
+ }else{
+ j = pCExpr->iColumn;
+ assert( j<=0x7fff );
+ if( j<0 ){
+ j = pTab->iPKey;
+ }else{
+ if( pTab->aCol[j].notNull==0 ){
+ pIndex->uniqNotNull = 0;
+ }
+ if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
+ pIndex->bHasVCol = 1;
+ pIndex->bHasExpr = 1;
+ }
+ }
+ pIndex->aiColumn[i] = (i16)j;
+ }
+ zColl = 0;
+ if( pListItem->pExpr->op==TK_COLLATE ){
+ int nColl;
+ assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
+ zColl = pListItem->pExpr->u.zToken;
+ nColl = sqlite3Strlen30(zColl) + 1;
+ assert( nExtra>=nColl );
+ memcpy(zExtra, zColl, nColl);
+ zColl = zExtra;
+ zExtra += nColl;
+ nExtra -= nColl;
+ }else if( j>=0 ){
+ zColl = sqlite3ColumnColl(&pTab->aCol[j]);
+ }
+ if( !zColl ) zColl = sqlite3StrBINARY;
+ if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
+ goto exit_create_index;
+ }
+ pIndex->azColl[i] = zColl;
+ requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
+ pIndex->aSortOrder[i] = (u8)requestedSortOrder;
+ }
+
+ /* Append the table key to the end of the index. For WITHOUT ROWID
+ ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
+ ** normal tables (when pPk==0) this will be the rowid.
+ */
+ if( pPk ){
+ for(j=0; j<pPk->nKeyCol; j++){
+ int x = pPk->aiColumn[j];
+ assert( x>=0 );
+ if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
+ pIndex->nColumn--;
+ }else{
+ testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
+ pIndex->aiColumn[i] = x;
+ pIndex->azColl[i] = pPk->azColl[j];
+ pIndex->aSortOrder[i] = pPk->aSortOrder[j];
+ i++;
+ }
+ }
+ assert( i==pIndex->nColumn );
+ }else{
+ pIndex->aiColumn[i] = XN_ROWID;
+ pIndex->azColl[i] = sqlite3StrBINARY;
+ }
+ sqlite3DefaultRowEst(pIndex);
+ if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
+
+ /* If this index contains every column of its table, then mark
+ ** it as a covering index */
+ assert( HasRowid(pTab)
+ || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
+ recomputeColumnsNotIndexed(pIndex);
+ if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
+ pIndex->isCovering = 1;
+ for(j=0; j<pTab->nCol; j++){
+ if( j==pTab->iPKey ) continue;
+ if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
+ pIndex->isCovering = 0;
+ break;
+ }
+ }
+
+ if( pTab==pParse->pNewTable ){
+ /* This routine has been called to create an automatic index as a
+ ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
+ ** a PRIMARY KEY or UNIQUE clause following the column definitions.
+ ** i.e. one of:
+ **
+ ** CREATE TABLE t(x PRIMARY KEY, y);
+ ** CREATE TABLE t(x, y, UNIQUE(x, y));
+ **
+ ** Either way, check to see if the table already has such an index. If
+ ** so, don't bother creating this one. This only applies to
+ ** automatically created indices. Users can do as they wish with
+ ** explicit indices.
+ **
+ ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
+ ** (and thus suppressing the second one) even if they have different
+ ** sort orders.
+ **
+ ** If there are different collating sequences or if the columns of
+ ** the constraint occur in different orders, then the constraints are
+ ** considered distinct and both result in separate indices.
+ */
+ Index *pIdx;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int k;
+ assert( IsUniqueIndex(pIdx) );
+ assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
+ assert( IsUniqueIndex(pIndex) );
+
+ if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
+ for(k=0; k<pIdx->nKeyCol; k++){
+ const char *z1;
+ const char *z2;
+ assert( pIdx->aiColumn[k]>=0 );
+ if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
+ z1 = pIdx->azColl[k];
+ z2 = pIndex->azColl[k];
+ if( sqlite3StrICmp(z1, z2) ) break;
+ }
+ if( k==pIdx->nKeyCol ){
+ if( pIdx->onError!=pIndex->onError ){
+ /* This constraint creates the same index as a previous
+ ** constraint specified somewhere in the CREATE TABLE statement.
+ ** However the ON CONFLICT clauses are different. If both this
+ ** constraint and the previous equivalent constraint have explicit
+ ** ON CONFLICT clauses this is an error. Otherwise, use the
+ ** explicitly specified behavior for the index.
+ */
+ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
+ sqlite3ErrorMsg(pParse,
+ "conflicting ON CONFLICT clauses specified", 0);
+ }
+ if( pIdx->onError==OE_Default ){
+ pIdx->onError = pIndex->onError;
+ }
+ }
+ if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
+ if( IN_RENAME_OBJECT ){
+ pIndex->pNext = pParse->pNewIndex;
+ pParse->pNewIndex = pIndex;
+ pIndex = 0;
+ }
+ goto exit_create_index;
+ }
+ }
+ }
+
+ if( !IN_RENAME_OBJECT ){
+
+ /* Link the new Index structure to its table and to the other
+ ** in-memory database structures.
+ */
+ assert( pParse->nErr==0 );
+ if( db->init.busy ){
+ Index *p;
+ assert( !IN_SPECIAL_PARSE );
+ assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
+ if( pTblName!=0 ){
+ pIndex->tnum = db->init.newTnum;
+ if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
+ sqlite3ErrorMsg(pParse, "invalid rootpage");
+ pParse->rc = SQLITE_CORRUPT_BKPT;
+ goto exit_create_index;
+ }
+ }
+ p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
+ pIndex->zName, pIndex);
+ if( p ){
+ assert( p==pIndex ); /* Malloc must have failed */
+ sqlite3OomFault(db);
+ goto exit_create_index;
+ }
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+
+ /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
+ ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
+ ** emit code to allocate the index rootpage on disk and make an entry for
+ ** the index in the sqlite_schema table and populate the index with
+ ** content. But, do not do this if we are simply reading the sqlite_schema
+ ** table to parse the schema, or if this index is the PRIMARY KEY index
+ ** of a WITHOUT ROWID table.
+ **
+ ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
+ ** or UNIQUE index in a CREATE TABLE statement. Since the table
+ ** has just been created, it contains no data and the index initialization
+ ** step can be skipped.
+ */
+ else if( HasRowid(pTab) || pTblName!=0 ){
+ Vdbe *v;
+ char *zStmt;
+ int iMem = ++pParse->nMem;
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto exit_create_index;
+
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+ /* Create the rootpage for the index using CreateIndex. But before
+ ** doing so, code a Noop instruction and store its address in
+ ** Index.tnum. This is required in case this index is actually a
+ ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
+ ** that case the convertToWithoutRowidTable() routine will replace
+ ** the Noop with a Goto to jump over the VDBE code generated below. */
+ pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
+ sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
+
+ /* Gather the complete text of the CREATE INDEX statement into
+ ** the zStmt variable
+ */
+ assert( pName!=0 || pStart==0 );
+ if( pStart ){
+ int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
+ if( pName->z[n-1]==';' ) n--;
+ /* A named index with an explicit CREATE INDEX statement */
+ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
+ onError==OE_None ? "" : " UNIQUE", n, pName->z);
+ }else{
+ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
+ /* zStmt = sqlite3MPrintf(""); */
+ zStmt = 0;
+ }
+
+ /* Add an entry in sqlite_schema for this index
+ */
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
+ db->aDb[iDb].zDbSName,
+ pIndex->zName,
+ pTab->zName,
+ iMem,
+ zStmt
+ );
+ sqlite3DbFree(db, zStmt);
+
+ /* Fill the index with data and reparse the schema. Code an OP_Expire
+ ** to invalidate all pre-compiled statements.
+ */
+ if( pTblName ){
+ sqlite3RefillIndex(pParse, pIndex, iMem);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddParseSchemaOp(v, iDb,
+ sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
+ sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
+ }
+
+ sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
+ }
+ }
+ if( db->init.busy || pTblName==0 ){
+ pIndex->pNext = pTab->pIndex;
+ pTab->pIndex = pIndex;
+ pIndex = 0;
+ }
+ else if( IN_RENAME_OBJECT ){
+ assert( pParse->pNewIndex==0 );
+ pParse->pNewIndex = pIndex;
+ pIndex = 0;
+ }
+
+ /* Clean up before exiting */
+exit_create_index:
+ if( pIndex ) sqlite3FreeIndex(db, pIndex);
+ if( pTab ){
+ /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
+ ** The list was already ordered when this routine was entered, so at this
+ ** point at most a single index (the newly added index) will be out of
+ ** order. So we have to reorder at most one index. */
+ Index **ppFrom;
+ Index *pThis;
+ for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
+ Index *pNext;
+ if( pThis->onError!=OE_Replace ) continue;
+ while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
+ *ppFrom = pNext;
+ pThis->pNext = pNext->pNext;
+ pNext->pNext = pThis;
+ ppFrom = &pNext->pNext;
+ }
+ break;
+ }
+#ifdef SQLITE_DEBUG
+ /* Verify that all REPLACE indexes really are now at the end
+ ** of the index list. In other words, no other index type ever
+ ** comes after a REPLACE index on the list. */
+ for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
+ assert( pThis->onError!=OE_Replace
+ || pThis->pNext==0
+ || pThis->pNext->onError==OE_Replace );
+ }
+#endif
+ }
+ sqlite3ExprDelete(db, pPIWhere);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SrcListDelete(db, pTblName);
+ sqlite3DbFree(db, zName);
+}
+
+/*
+** Fill the Index.aiRowEst[] array with default information - information
+** to be used when we have not run the ANALYZE command.
+**
+** aiRowEst[0] is supposed to contain the number of elements in the index.
+** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
+** number of rows in the table that match any particular value of the
+** first column of the index. aiRowEst[2] is an estimate of the number
+** of rows that match any particular combination of the first 2 columns
+** of the index. And so forth. It must always be the case that
+*
+** aiRowEst[N]<=aiRowEst[N-1]
+** aiRowEst[N]>=1
+**
+** Apart from that, we have little to go on besides intuition as to
+** how aiRowEst[] should be initialized. The numbers generated here
+** are based on typical values found in actual indices.
+*/
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
+ /* 10, 9, 8, 7, 6 */
+ static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
+ LogEst *a = pIdx->aiRowLogEst;
+ LogEst x;
+ int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
+ int i;
+
+ /* Indexes with default row estimates should not have stat1 data */
+ assert( !pIdx->hasStat1 );
+
+ /* Set the first entry (number of rows in the index) to the estimated
+ ** number of rows in the table, or half the number of rows in the table
+ ** for a partial index.
+ **
+ ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
+ ** table but other parts we are having to guess at, then do not let the
+ ** estimated number of rows in the table be less than 1000 (LogEst 99).
+ ** Failure to do this can cause the indexes for which we do not have
+ ** stat1 data to be ignored by the query planner.
+ */
+ x = pIdx->pTable->nRowLogEst;
+ assert( 99==sqlite3LogEst(1000) );
+ if( x<99 ){
+ pIdx->pTable->nRowLogEst = x = 99;
+ }
+ if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); }
+ a[0] = x;
+
+ /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
+ ** 6 and each subsequent value (if any) is 5. */
+ memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
+ for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
+ a[i] = 23; assert( 23==sqlite3LogEst(5) );
+ }
+
+ assert( 0==sqlite3LogEst(1) );
+ if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
+}
+
+/*
+** This routine will drop an existing named index. This routine
+** implements the DROP INDEX statement.
+*/
+SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
+ Index *pIndex;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( db->mallocFailed ){
+ goto exit_drop_index;
+ }
+ assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */
+ assert( pName->nSrc==1 );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto exit_drop_index;
+ }
+ pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
+ if( pIndex==0 ){
+ if( !ifExists ){
+ sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
+ }else{
+ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
+ sqlite3ForceNotReadOnly(pParse);
+ }
+ pParse->checkSchema = 1;
+ goto exit_drop_index;
+ }
+ if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
+ sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
+ "or PRIMARY KEY constraint cannot be dropped", 0);
+ goto exit_drop_index;
+ }
+ iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_INDEX;
+ Table *pTab = pIndex->pTable;
+ const char *zDb = db->aDb[iDb].zDbSName;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ goto exit_drop_index;
+ }
+ if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
+ if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
+ goto exit_drop_index;
+ }
+ }
+#endif
+
+ /* Generate code to remove the index and from the schema table */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
+ db->aDb[iDb].zDbSName, pIndex->zName
+ );
+ sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
+ sqlite3ChangeCookie(pParse, iDb);
+ destroyRootPage(pParse, pIndex->tnum, iDb);
+ sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
+ }
+
+exit_drop_index:
+ sqlite3SrcListDelete(db, pName);
+}
+
+/*
+** pArray is a pointer to an array of objects. Each object in the
+** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
+** to extend the array so that there is space for a new object at the end.
+**
+** When this function is called, *pnEntry contains the current size of
+** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
+** in total).
+**
+** If the realloc() is successful (i.e. if no OOM condition occurs), the
+** space allocated for the new object is zeroed, *pnEntry updated to
+** reflect the new size of the array and a pointer to the new allocation
+** returned. *pIdx is set to the index of the new array entry in this case.
+**
+** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
+** unchanged and a copy of pArray returned.
+*/
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(
+ sqlite3 *db, /* Connection to notify of malloc failures */
+ void *pArray, /* Array of objects. Might be reallocated */
+ int szEntry, /* Size of each object in the array */
+ int *pnEntry, /* Number of objects currently in use */
+ int *pIdx /* Write the index of a new slot here */
+){
+ char *z;
+ sqlite3_int64 n = *pIdx = *pnEntry;
+ if( (n & (n-1))==0 ){
+ sqlite3_int64 sz = (n==0) ? 1 : 2*n;
+ void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
+ if( pNew==0 ){
+ *pIdx = -1;
+ return pArray;
+ }
+ pArray = pNew;
+ }
+ z = (char*)pArray;
+ memset(&z[n * szEntry], 0, szEntry);
+ ++*pnEntry;
+ return pArray;
+}
+
+/*
+** Append a new element to the given IdList. Create a new IdList if
+** need be.
+**
+** A new IdList is returned, or NULL if malloc() fails.
+*/
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
+ sqlite3 *db = pParse->db;
+ int i;
+ if( pList==0 ){
+ pList = sqlite3DbMallocZero(db, sizeof(IdList) );
+ if( pList==0 ) return 0;
+ }else{
+ IdList *pNew;
+ pNew = sqlite3DbRealloc(db, pList,
+ sizeof(IdList) + pList->nId*sizeof(pList->a));
+ if( pNew==0 ){
+ sqlite3IdListDelete(db, pList);
+ return 0;
+ }
+ pList = pNew;
+ }
+ i = pList->nId++;
+ pList->a[i].zName = sqlite3NameFromToken(db, pToken);
+ if( IN_RENAME_OBJECT && pList->a[i].zName ){
+ sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
+ }
+ return pList;
+}
+
+/*
+** Delete an IdList.
+*/
+SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
+ int i;
+ assert( db!=0 );
+ if( pList==0 ) return;
+ assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
+ for(i=0; i<pList->nId; i++){
+ sqlite3DbFree(db, pList->a[i].zName);
+ }
+ sqlite3DbNNFreeNN(db, pList);
+}
+
+/*
+** Return the index in pList of the identifier named zId. Return -1
+** if not found.
+*/
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
+ int i;
+ assert( pList!=0 );
+ for(i=0; i<pList->nId; i++){
+ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Maximum size of a SrcList object.
+** The SrcList object is used to represent the FROM clause of a
+** SELECT statement, and the query planner cannot deal with more
+** than 64 tables in a join. So any value larger than 64 here
+** is sufficient for most uses. Smaller values, like say 10, are
+** appropriate for small and memory-limited applications.
+*/
+#ifndef SQLITE_MAX_SRCLIST
+# define SQLITE_MAX_SRCLIST 200
+#endif
+
+/*
+** Expand the space allocated for the given SrcList object by
+** creating nExtra new slots beginning at iStart. iStart is zero based.
+** New slots are zeroed.
+**
+** For example, suppose a SrcList initially contains two entries: A,B.
+** To append 3 new entries onto the end, do this:
+**
+** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
+**
+** After the call above it would contain: A, B, nil, nil, nil.
+** If the iStart argument had been 1 instead of 2, then the result
+** would have been: A, nil, nil, nil, B. To prepend the new slots,
+** the iStart value would be 0. The result then would
+** be: nil, nil, nil, A, B.
+**
+** If a memory allocation fails or the SrcList becomes too large, leave
+** the original SrcList unchanged, return NULL, and leave an error message
+** in pParse.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(
+ Parse *pParse, /* Parsing context into which errors are reported */
+ SrcList *pSrc, /* The SrcList to be enlarged */
+ int nExtra, /* Number of new slots to add to pSrc->a[] */
+ int iStart /* Index in pSrc->a[] of first new slot */
+){
+ int i;
+
+ /* Sanity checking on calling parameters */
+ assert( iStart>=0 );
+ assert( nExtra>=1 );
+ assert( pSrc!=0 );
+ assert( iStart<=pSrc->nSrc );
+
+ /* Allocate additional space if needed */
+ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
+ SrcList *pNew;
+ sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
+ sqlite3 *db = pParse->db;
+
+ if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
+ sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
+ SQLITE_MAX_SRCLIST);
+ return 0;
+ }
+ if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
+ pNew = sqlite3DbRealloc(db, pSrc,
+ sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
+ if( pNew==0 ){
+ assert( db->mallocFailed );
+ return 0;
+ }
+ pSrc = pNew;
+ pSrc->nAlloc = nAlloc;
+ }
+
+ /* Move existing slots that come after the newly inserted slots
+ ** out of the way */
+ for(i=pSrc->nSrc-1; i>=iStart; i--){
+ pSrc->a[i+nExtra] = pSrc->a[i];
+ }
+ pSrc->nSrc += nExtra;
+
+ /* Zero the newly allocated slots */
+ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
+ for(i=iStart; i<iStart+nExtra; i++){
+ pSrc->a[i].iCursor = -1;
+ }
+
+ /* Return a pointer to the enlarged SrcList */
+ return pSrc;
+}
+
+
+/*
+** Append a new table name to the given SrcList. Create a new SrcList if
+** need be. A new entry is created in the SrcList even if pTable is NULL.
+**
+** A SrcList is returned, or NULL if there is an OOM error or if the
+** SrcList grows to large. The returned
+** SrcList might be the same as the SrcList that was input or it might be
+** a new one. If an OOM error does occurs, then the prior value of pList
+** that is input to this routine is automatically freed.
+**
+** If pDatabase is not null, it means that the table has an optional
+** database name prefix. Like this: "database.table". The pDatabase
+** points to the table name and the pTable points to the database name.
+** The SrcList.a[].zName field is filled with the table name which might
+** come from pTable (if pDatabase is NULL) or from pDatabase.
+** SrcList.a[].zDatabase is filled with the database name from pTable,
+** or with NULL if no database is specified.
+**
+** In other words, if call like this:
+**
+** sqlite3SrcListAppend(D,A,B,0);
+**
+** Then B is a table name and the database name is unspecified. If called
+** like this:
+**
+** sqlite3SrcListAppend(D,A,B,C);
+**
+** Then C is the table name and B is the database name. If C is defined
+** then so is B. In other words, we never have a case where:
+**
+** sqlite3SrcListAppend(D,A,0,C);
+**
+** Both pTable and pDatabase are assumed to be quoted. They are dequoted
+** before being added to the SrcList.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
+ Parse *pParse, /* Parsing context, in which errors are reported */
+ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
+ Token *pTable, /* Table to append */
+ Token *pDatabase /* Database of the table */
+){
+ SrcItem *pItem;
+ sqlite3 *db;
+ assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
+ assert( pParse!=0 );
+ assert( pParse->db!=0 );
+ db = pParse->db;
+ if( pList==0 ){
+ pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
+ if( pList==0 ) return 0;
+ pList->nAlloc = 1;
+ pList->nSrc = 1;
+ memset(&pList->a[0], 0, sizeof(pList->a[0]));
+ pList->a[0].iCursor = -1;
+ }else{
+ SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
+ if( pNew==0 ){
+ sqlite3SrcListDelete(db, pList);
+ return 0;
+ }else{
+ pList = pNew;
+ }
+ }
+ pItem = &pList->a[pList->nSrc-1];
+ if( pDatabase && pDatabase->z==0 ){
+ pDatabase = 0;
+ }
+ if( pDatabase ){
+ pItem->zName = sqlite3NameFromToken(db, pDatabase);
+ pItem->zDatabase = sqlite3NameFromToken(db, pTable);
+ }else{
+ pItem->zName = sqlite3NameFromToken(db, pTable);
+ pItem->zDatabase = 0;
+ }
+ return pList;
+}
+
+/*
+** Assign VdbeCursor index numbers to all tables in a SrcList
+*/
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
+ int i;
+ SrcItem *pItem;
+ assert( pList || pParse->db->mallocFailed );
+ if( ALWAYS(pList) ){
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pItem->iCursor>=0 ) continue;
+ pItem->iCursor = pParse->nTab++;
+ if( pItem->pSelect ){
+ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
+ }
+ }
+ }
+}
+
+/*
+** Delete an entire SrcList including all its substructure.
+*/
+SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
+ int i;
+ SrcItem *pItem;
+ assert( db!=0 );
+ if( pList==0 ) return;
+ for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
+ if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase);
+ if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName);
+ if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias);
+ if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
+ if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
+ sqlite3DeleteTable(db, pItem->pTab);
+ if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
+ if( pItem->fg.isUsing ){
+ sqlite3IdListDelete(db, pItem->u3.pUsing);
+ }else if( pItem->u3.pOn ){
+ sqlite3ExprDelete(db, pItem->u3.pOn);
+ }
+ }
+ sqlite3DbNNFreeNN(db, pList);
+}
+
+/*
+** This routine is called by the parser to add a new term to the
+** end of a growing FROM clause. The "p" parameter is the part of
+** the FROM clause that has already been constructed. "p" is NULL
+** if this is the first term of the FROM clause. pTable and pDatabase
+** are the name of the table and database named in the FROM clause term.
+** pDatabase is NULL if the database name qualifier is missing - the
+** usual case. If the term has an alias, then pAlias points to the
+** alias token. If the term is a subquery, then pSubquery is the
+** SELECT statement that the subquery encodes. The pTable and
+** pDatabase parameters are NULL for subqueries. The pOn and pUsing
+** parameters are the content of the ON and USING clauses.
+**
+** Return a new SrcList which encodes is the FROM with the new
+** term added.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
+ Parse *pParse, /* Parsing context */
+ SrcList *p, /* The left part of the FROM clause already seen */
+ Token *pTable, /* Name of the table to add to the FROM clause */
+ Token *pDatabase, /* Name of the database containing pTable */
+ Token *pAlias, /* The right-hand side of the AS subexpression */
+ Select *pSubquery, /* A subquery used in place of a table name */
+ OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */
+){
+ SrcItem *pItem;
+ sqlite3 *db = pParse->db;
+ if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
+ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
+ (pOnUsing->pOn ? "ON" : "USING")
+ );
+ goto append_from_error;
+ }
+ p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
+ if( p==0 ){
+ goto append_from_error;
+ }
+ assert( p->nSrc>0 );
+ pItem = &p->a[p->nSrc-1];
+ assert( (pTable==0)==(pDatabase==0) );
+ assert( pItem->zName==0 || pDatabase!=0 );
+ if( IN_RENAME_OBJECT && pItem->zName ){
+ Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
+ sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
+ }
+ assert( pAlias!=0 );
+ if( pAlias->n ){
+ pItem->zAlias = sqlite3NameFromToken(db, pAlias);
+ }
+ if( pSubquery ){
+ pItem->pSelect = pSubquery;
+ if( pSubquery->selFlags & SF_NestedFrom ){
+ pItem->fg.isNestedFrom = 1;
+ }
+ }
+ assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
+ assert( pItem->fg.isUsing==0 );
+ if( pOnUsing==0 ){
+ pItem->u3.pOn = 0;
+ }else if( pOnUsing->pUsing ){
+ pItem->fg.isUsing = 1;
+ pItem->u3.pUsing = pOnUsing->pUsing;
+ }else{
+ pItem->u3.pOn = pOnUsing->pOn;
+ }
+ return p;
+
+append_from_error:
+ assert( p==0 );
+ sqlite3ClearOnOrUsing(db, pOnUsing);
+ sqlite3SelectDelete(db, pSubquery);
+ return 0;
+}
+
+/*
+** Add an INDEXED BY or NOT INDEXED clause to the most recently added
+** element of the source-list passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
+ assert( pIndexedBy!=0 );
+ if( p && pIndexedBy->n>0 ){
+ SrcItem *pItem;
+ assert( p->nSrc>0 );
+ pItem = &p->a[p->nSrc-1];
+ assert( pItem->fg.notIndexed==0 );
+ assert( pItem->fg.isIndexedBy==0 );
+ assert( pItem->fg.isTabFunc==0 );
+ if( pIndexedBy->n==1 && !pIndexedBy->z ){
+ /* A "NOT INDEXED" clause was supplied. See parse.y
+ ** construct "indexed_opt" for details. */
+ pItem->fg.notIndexed = 1;
+ }else{
+ pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
+ pItem->fg.isIndexedBy = 1;
+ assert( pItem->fg.isCte==0 ); /* No collision on union u2 */
+ }
+ }
+}
+
+/*
+** Append the contents of SrcList p2 to SrcList p1 and return the resulting
+** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
+** are deleted by this function.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
+ assert( p1 && p1->nSrc==1 );
+ if( p2 ){
+ SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
+ if( pNew==0 ){
+ sqlite3SrcListDelete(pParse->db, p2);
+ }else{
+ p1 = pNew;
+ memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
+ sqlite3DbFree(pParse->db, p2);
+ p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
+ }
+ }
+ return p1;
+}
+
+/*
+** Add the list of function arguments to the SrcList entry for a
+** table-valued-function.
+*/
+SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
+ if( p ){
+ SrcItem *pItem = &p->a[p->nSrc-1];
+ assert( pItem->fg.notIndexed==0 );
+ assert( pItem->fg.isIndexedBy==0 );
+ assert( pItem->fg.isTabFunc==0 );
+ pItem->u1.pFuncArg = pList;
+ pItem->fg.isTabFunc = 1;
+ }else{
+ sqlite3ExprListDelete(pParse->db, pList);
+ }
+}
+
+/*
+** When building up a FROM clause in the parser, the join operator
+** is initially attached to the left operand. But the code generator
+** expects the join operator to be on the right operand. This routine
+** Shifts all join operators from left to right for an entire FROM
+** clause.
+**
+** Example: Suppose the join is like this:
+**
+** A natural cross join B
+**
+** The operator is "natural cross join". The A and B operands are stored
+** in p->a[0] and p->a[1], respectively. The parser initially stores the
+** operator with A. This routine shifts that operator over to B.
+**
+** Additional changes:
+**
+** * All tables to the left of the right-most RIGHT JOIN are tagged with
+** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
+** code generator can easily tell that the table is part of
+** the left operand of at least one RIGHT JOIN.
+*/
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
+ (void)pParse;
+ if( p && p->nSrc>1 ){
+ int i = p->nSrc-1;
+ u8 allFlags = 0;
+ do{
+ allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
+ }while( (--i)>0 );
+ p->a[0].fg.jointype = 0;
+
+ /* All terms to the left of a RIGHT JOIN should be tagged with the
+ ** JT_LTORJ flags */
+ if( allFlags & JT_RIGHT ){
+ for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
+ i--;
+ assert( i>=0 );
+ do{
+ p->a[i].fg.jointype |= JT_LTORJ;
+ }while( (--i)>=0 );
+ }
+ }
+}
+
+/*
+** Generate VDBE code for a BEGIN statement.
+*/
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
+ sqlite3 *db;
+ Vdbe *v;
+ int i;
+
+ assert( pParse!=0 );
+ db = pParse->db;
+ assert( db!=0 );
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
+ return;
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( !v ) return;
+ if( type!=TK_DEFERRED ){
+ for(i=0; i<db->nDb; i++){
+ int eTxnType;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt && sqlite3BtreeIsReadonly(pBt) ){
+ eTxnType = 0; /* Read txn */
+ }else if( type==TK_EXCLUSIVE ){
+ eTxnType = 2; /* Exclusive txn */
+ }else{
+ eTxnType = 1; /* Write txn */
+ }
+ sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
+ sqlite3VdbeUsesBtree(v, i);
+ }
+ }
+ sqlite3VdbeAddOp0(v, OP_AutoCommit);
+}
+
+/*
+** Generate VDBE code for a COMMIT or ROLLBACK statement.
+** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
+** code is generated for a COMMIT.
+*/
+SQLITE_PRIVATE void sqlite3EndTransaction(Parse *pParse, int eType){
+ Vdbe *v;
+ int isRollback;
+
+ assert( pParse!=0 );
+ assert( pParse->db!=0 );
+ assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
+ isRollback = eType==TK_ROLLBACK;
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
+ isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
+ return;
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
+ }
+}
+
+/*
+** This function is called by the parser when it parses a command to create,
+** release or rollback an SQL savepoint.
+*/
+SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
+ char *zName = sqlite3NameFromToken(pParse->db, pName);
+ if( zName ){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
+ assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
+#endif
+ if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
+ sqlite3DbFree(pParse->db, zName);
+ return;
+ }
+ sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
+ }
+}
+
+/*
+** Make sure the TEMP database is open and available for use. Return
+** the number of errors. Leave any error messages in the pParse structure.
+*/
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ if( db->aDb[1].pBt==0 && !pParse->explain ){
+ int rc;
+ Btree *pBt;
+ static const int flags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TEMP_DB;
+
+ rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "unable to open a temporary database "
+ "file for storing temporary tables");
+ pParse->rc = rc;
+ return 1;
+ }
+ db->aDb[1].pBt = pBt;
+ assert( db->aDb[1].pSchema );
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
+ sqlite3OomFault(db);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Record the fact that the schema cookie will need to be verified
+** for database iDb. The code to actually verify the schema cookie
+** will occur at the end of the top-level VDBE and will be generated
+** later, by sqlite3FinishCoding().
+*/
+static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
+ assert( iDb>=0 && iDb<pToplevel->db->nDb );
+ assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
+ assert( iDb<SQLITE_MAX_DB );
+ assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
+ if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
+ DbMaskSet(pToplevel->cookieMask, iDb);
+ if( !OMIT_TEMPDB && iDb==1 ){
+ sqlite3OpenTempDatabase(pToplevel);
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
+ sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
+}
+
+
+/*
+** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
+** attached database. Otherwise, invoke it for the database named zDb only.
+*/
+SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
+ sqlite3 *db = pParse->db;
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Db *pDb = &db->aDb[i];
+ if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
+ sqlite3CodeVerifySchema(pParse, i);
+ }
+ }
+}
+
+/*
+** Generate VDBE code that prepares for doing an operation that
+** might change the database.
+**
+** This routine starts a new transaction if we are not already within
+** a transaction. If we are already within a transaction, then a checkpoint
+** is set if the setStatement parameter is true. A checkpoint should
+** be set for operations that might fail (due to a constraint) part of
+** the way through and which will need to undo some writes without having to
+** rollback the whole transaction. For operations where all constraints
+** can be checked before any changes are made to the database, it is never
+** necessary to undo a write and the checkpoint should not be set.
+*/
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
+ DbMaskSet(pToplevel->writeMask, iDb);
+ pToplevel->isMultiWrite |= setStatement;
+}
+
+/*
+** Indicate that the statement currently under construction might write
+** more than one entry (example: deleting one row then inserting another,
+** inserting multiple rows in a table, or inserting a row and index entries.)
+** If an abort occurs after some of these writes have completed, then it will
+** be necessary to undo the completed writes.
+*/
+SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pToplevel->isMultiWrite = 1;
+}
+
+/*
+** The code generator calls this routine if is discovers that it is
+** possible to abort a statement prior to completion. In order to
+** perform this abort without corrupting the database, we need to make
+** sure that the statement is protected by a statement transaction.
+**
+** Technically, we only need to set the mayAbort flag if the
+** isMultiWrite flag was previously set. There is a time dependency
+** such that the abort must occur after the multiwrite. This makes
+** some statements involving the REPLACE conflict resolution algorithm
+** go a little faster. But taking advantage of this time dependency
+** makes it more difficult to prove that the code is correct (in
+** particular, it prevents us from writing an effective
+** implementation of sqlite3AssertMayAbort()) and so we have chosen
+** to take the safe route and skip the optimization.
+*/
+SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ pToplevel->mayAbort = 1;
+}
+
+/*
+** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
+** error. The onError parameter determines which (if any) of the statement
+** and/or current transaction is rolled back.
+*/
+SQLITE_PRIVATE void sqlite3HaltConstraint(
+ Parse *pParse, /* Parsing context */
+ int errCode, /* extended error code */
+ int onError, /* Constraint type */
+ char *p4, /* Error message */
+ i8 p4type, /* P4_STATIC or P4_TRANSIENT */
+ u8 p5Errmsg /* P5_ErrMsg type */
+){
+ Vdbe *v;
+ assert( pParse->pVdbe!=0 );
+ v = sqlite3GetVdbe(pParse);
+ assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
+ if( onError==OE_Abort ){
+ sqlite3MayAbort(pParse);
+ }
+ sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
+ sqlite3VdbeChangeP5(v, p5Errmsg);
+}
+
+/*
+** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
+*/
+SQLITE_PRIVATE void sqlite3UniqueConstraint(
+ Parse *pParse, /* Parsing context */
+ int onError, /* Constraint type */
+ Index *pIdx /* The index that triggers the constraint */
+){
+ char *zErr;
+ int j;
+ StrAccum errMsg;
+ Table *pTab = pIdx->pTable;
+
+ sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
+ pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
+ if( pIdx->aColExpr ){
+ sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
+ }else{
+ for(j=0; j<pIdx->nKeyCol; j++){
+ char *zCol;
+ assert( pIdx->aiColumn[j]>=0 );
+ zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
+ if( j ) sqlite3_str_append(&errMsg, ", ", 2);
+ sqlite3_str_appendall(&errMsg, pTab->zName);
+ sqlite3_str_append(&errMsg, ".", 1);
+ sqlite3_str_appendall(&errMsg, zCol);
+ }
+ }
+ zErr = sqlite3StrAccumFinish(&errMsg);
+ sqlite3HaltConstraint(pParse,
+ IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
+ : SQLITE_CONSTRAINT_UNIQUE,
+ onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
+}
+
+
+/*
+** Code an OP_Halt due to non-unique rowid.
+*/
+SQLITE_PRIVATE void sqlite3RowidConstraint(
+ Parse *pParse, /* Parsing context */
+ int onError, /* Conflict resolution algorithm */
+ Table *pTab /* The table with the non-unique rowid */
+){
+ char *zMsg;
+ int rc;
+ if( pTab->iPKey>=0 ){
+ zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
+ pTab->aCol[pTab->iPKey].zCnName);
+ rc = SQLITE_CONSTRAINT_PRIMARYKEY;
+ }else{
+ zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
+ rc = SQLITE_CONSTRAINT_ROWID;
+ }
+ sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
+ P5_ConstraintUnique);
+}
+
+/*
+** Check to see if pIndex uses the collating sequence pColl. Return
+** true if it does and false if it does not.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static int collationMatch(const char *zColl, Index *pIndex){
+ int i;
+ assert( zColl!=0 );
+ for(i=0; i<pIndex->nColumn; i++){
+ const char *z = pIndex->azColl[i];
+ assert( z!=0 || pIndex->aiColumn[i]<0 );
+ if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif
+
+/*
+** Recompute all indices of pTab that use the collating sequence pColl.
+** If pColl==0 then recompute all indices of pTab.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
+ if( !IsVirtual(pTab) ){
+ Index *pIndex; /* An index associated with pTab */
+
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( zColl==0 || collationMatch(zColl, pIndex) ){
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3RefillIndex(pParse, pIndex, -1);
+ }
+ }
+ }
+}
+#endif
+
+/*
+** Recompute all indices of all tables in all databases where the
+** indices use the collating sequence pColl. If pColl==0 then recompute
+** all indices everywhere.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static void reindexDatabases(Parse *pParse, char const *zColl){
+ Db *pDb; /* A single database */
+ int iDb; /* The database index number */
+ sqlite3 *db = pParse->db; /* The database connection */
+ HashElem *k; /* For looping over tables in pDb */
+ Table *pTab; /* A table in the database */
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
+ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
+ assert( pDb!=0 );
+ for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
+ pTab = (Table*)sqliteHashData(k);
+ reindexTable(pParse, pTab, zColl);
+ }
+ }
+}
+#endif
+
+/*
+** Generate code for the REINDEX command.
+**
+** REINDEX -- 1
+** REINDEX <collation> -- 2
+** REINDEX ?<database>.?<tablename> -- 3
+** REINDEX ?<database>.?<indexname> -- 4
+**
+** Form 1 causes all indices in all attached databases to be rebuilt.
+** Form 2 rebuilds all indices in all databases that use the named
+** collating function. Forms 3 and 4 rebuild the named index or all
+** indices associated with the named table.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
+ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
+ char *z; /* Name of a table or index */
+ const char *zDb; /* Name of the database */
+ Table *pTab; /* A table in the database */
+ Index *pIndex; /* An index associated with pTab */
+ int iDb; /* The database index number */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Token *pObjName; /* Name of the table or index to be reindexed */
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ if( pName1==0 ){
+ reindexDatabases(pParse, 0);
+ return;
+ }else if( NEVER(pName2==0) || pName2->z==0 ){
+ char *zColl;
+ assert( pName1->z );
+ zColl = sqlite3NameFromToken(pParse->db, pName1);
+ if( !zColl ) return;
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
+ if( pColl ){
+ reindexDatabases(pParse, zColl);
+ sqlite3DbFree(db, zColl);
+ return;
+ }
+ sqlite3DbFree(db, zColl);
+ }
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
+ if( iDb<0 ) return;
+ z = sqlite3NameFromToken(db, pObjName);
+ if( z==0 ) return;
+ zDb = db->aDb[iDb].zDbSName;
+ pTab = sqlite3FindTable(db, z, zDb);
+ if( pTab ){
+ reindexTable(pParse, pTab, 0);
+ sqlite3DbFree(db, z);
+ return;
+ }
+ pIndex = sqlite3FindIndex(db, z, zDb);
+ sqlite3DbFree(db, z);
+ if( pIndex ){
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3RefillIndex(pParse, pIndex, -1);
+ return;
+ }
+ sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
+}
+#endif
+
+/*
+** Return a KeyInfo structure that is appropriate for the given Index.
+**
+** The caller should invoke sqlite3KeyInfoUnref() on the returned object
+** when it has finished using it.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
+ int i;
+ int nCol = pIdx->nColumn;
+ int nKey = pIdx->nKeyCol;
+ KeyInfo *pKey;
+ if( pParse->nErr ) return 0;
+ if( pIdx->uniqNotNull ){
+ pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
+ }else{
+ pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
+ }
+ if( pKey ){
+ assert( sqlite3KeyInfoIsWriteable(pKey) );
+ for(i=0; i<nCol; i++){
+ const char *zColl = pIdx->azColl[i];
+ pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
+ sqlite3LocateCollSeq(pParse, zColl);
+ pKey->aSortFlags[i] = pIdx->aSortOrder[i];
+ assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
+ }
+ if( pParse->nErr ){
+ assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
+ if( pIdx->bNoQuery==0 ){
+ /* Deactivate the index because it contains an unknown collating
+ ** sequence. The only way to reactive the index is to reload the
+ ** schema. Adding the missing collating sequence later does not
+ ** reactive the index. The application had the chance to register
+ ** the missing index using the collation-needed callback. For
+ ** simplicity, SQLite will not give the application a second chance.
+ */
+ pIdx->bNoQuery = 1;
+ pParse->rc = SQLITE_ERROR_RETRY;
+ }
+ sqlite3KeyInfoUnref(pKey);
+ pKey = 0;
+ }
+ }
+ return pKey;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** Create a new CTE object
+*/
+SQLITE_PRIVATE Cte *sqlite3CteNew(
+ Parse *pParse, /* Parsing context */
+ Token *pName, /* Name of the common-table */
+ ExprList *pArglist, /* Optional column name list for the table */
+ Select *pQuery, /* Query used to initialize the table */
+ u8 eM10d /* The MATERIALIZED flag */
+){
+ Cte *pNew;
+ sqlite3 *db = pParse->db;
+
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
+ assert( pNew!=0 || db->mallocFailed );
+
+ if( db->mallocFailed ){
+ sqlite3ExprListDelete(db, pArglist);
+ sqlite3SelectDelete(db, pQuery);
+ }else{
+ pNew->pSelect = pQuery;
+ pNew->pCols = pArglist;
+ pNew->zName = sqlite3NameFromToken(pParse->db, pName);
+ pNew->eM10d = eM10d;
+ }
+ return pNew;
+}
+
+/*
+** Clear information from a Cte object, but do not deallocate storage
+** for the object itself.
+*/
+static void cteClear(sqlite3 *db, Cte *pCte){
+ assert( pCte!=0 );
+ sqlite3ExprListDelete(db, pCte->pCols);
+ sqlite3SelectDelete(db, pCte->pSelect);
+ sqlite3DbFree(db, pCte->zName);
+}
+
+/*
+** Free the contents of the CTE object passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
+ assert( pCte!=0 );
+ cteClear(db, pCte);
+ sqlite3DbFree(db, pCte);
+}
+
+/*
+** This routine is invoked once per CTE by the parser while parsing a
+** WITH clause. The CTE described by the third argument is added to
+** the WITH clause of the second argument. If the second argument is
+** NULL, then a new WITH argument is created.
+*/
+SQLITE_PRIVATE With *sqlite3WithAdd(
+ Parse *pParse, /* Parsing context */
+ With *pWith, /* Existing WITH clause, or NULL */
+ Cte *pCte /* CTE to add to the WITH clause */
+){
+ sqlite3 *db = pParse->db;
+ With *pNew;
+ char *zName;
+
+ if( pCte==0 ){
+ return pWith;
+ }
+
+ /* Check that the CTE name is unique within this WITH clause. If
+ ** not, store an error in the Parse structure. */
+ zName = pCte->zName;
+ if( zName && pWith ){
+ int i;
+ for(i=0; i<pWith->nCte; i++){
+ if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
+ sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
+ }
+ }
+ }
+
+ if( pWith ){
+ sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
+ pNew = sqlite3DbRealloc(db, pWith, nByte);
+ }else{
+ pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
+ }
+ assert( (pNew!=0 && zName!=0) || db->mallocFailed );
+
+ if( db->mallocFailed ){
+ sqlite3CteDelete(db, pCte);
+ pNew = pWith;
+ }else{
+ pNew->a[pNew->nCte++] = *pCte;
+ sqlite3DbFree(db, pCte);
+ }
+
+ return pNew;
+}
+
+/*
+** Free the contents of the With object passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3WithDelete(sqlite3 *db, With *pWith){
+ if( pWith ){
+ int i;
+ for(i=0; i<pWith->nCte; i++){
+ cteClear(db, &pWith->a[i]);
+ }
+ sqlite3DbFree(db, pWith);
+ }
+}
+#endif /* !defined(SQLITE_OMIT_CTE) */
+
+/************** End of build.c ***********************************************/
+/************** Begin file callback.c ****************************************/
+/*
+** 2005 May 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains functions used to access the internal hash tables
+** of user defined functions and collation sequences.
+*/
+
+/* #include "sqliteInt.h" */
+
+/*
+** Invoke the 'collation needed' callback to request a collation sequence
+** in the encoding enc of name zName, length nName.
+*/
+static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
+ assert( !db->xCollNeeded || !db->xCollNeeded16 );
+ if( db->xCollNeeded ){
+ char *zExternal = sqlite3DbStrDup(db, zName);
+ if( !zExternal ) return;
+ db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
+ sqlite3DbFree(db, zExternal);
+ }
+#ifndef SQLITE_OMIT_UTF16
+ if( db->xCollNeeded16 ){
+ char const *zExternal;
+ sqlite3_value *pTmp = sqlite3ValueNew(db);
+ sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
+ zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
+ if( zExternal ){
+ db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
+ }
+ sqlite3ValueFree(pTmp);
+ }
+#endif
+}
+
+/*
+** This routine is called if the collation factory fails to deliver a
+** collation function in the best encoding but there may be other versions
+** of this collation function (for other text encodings) available. Use one
+** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
+** possible.
+*/
+static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
+ CollSeq *pColl2;
+ char *z = pColl->zName;
+ int i;
+ static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
+ for(i=0; i<3; i++){
+ pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0);
+ if( pColl2->xCmp!=0 ){
+ memcpy(pColl, pColl2, sizeof(CollSeq));
+ pColl->xDel = 0; /* Do not copy the destructor */
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_ERROR;
+}
+
+/*
+** This routine is called on a collation sequence before it is used to
+** check that it is defined. An undefined collation sequence exists when
+** a database is loaded that contains references to collation sequences
+** that have not been defined by sqlite3_create_collation() etc.
+**
+** If required, this routine calls the 'collation needed' callback to
+** request a definition of the collating sequence. If this doesn't work,
+** an equivalent collating sequence that uses a text encoding different
+** from the main database is substituted, if one is available.
+*/
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
+ if( pColl && pColl->xCmp==0 ){
+ const char *zName = pColl->zName;
+ sqlite3 *db = pParse->db;
+ CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName);
+ if( !p ){
+ return SQLITE_ERROR;
+ }
+ assert( p==pColl );
+ }
+ return SQLITE_OK;
+}
+
+
+
+/*
+** Locate and return an entry from the db.aCollSeq hash table. If the entry
+** specified by zName and nName is not found and parameter 'create' is
+** true, then create a new entry. Otherwise return NULL.
+**
+** Each pointer stored in the sqlite3.aCollSeq hash table contains an
+** array of three CollSeq structures. The first is the collation sequence
+** preferred for UTF-8, the second UTF-16le, and the third UTF-16be.
+**
+** Stored immediately after the three collation sequences is a copy of
+** the collation sequence name. A pointer to this string is stored in
+** each collation sequence structure.
+*/
+static CollSeq *findCollSeqEntry(
+ sqlite3 *db, /* Database connection */
+ const char *zName, /* Name of the collating sequence */
+ int create /* Create a new entry if true */
+){
+ CollSeq *pColl;
+ pColl = sqlite3HashFind(&db->aCollSeq, zName);
+
+ if( 0==pColl && create ){
+ int nName = sqlite3Strlen30(zName) + 1;
+ pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName);
+ if( pColl ){
+ CollSeq *pDel = 0;
+ pColl[0].zName = (char*)&pColl[3];
+ pColl[0].enc = SQLITE_UTF8;
+ pColl[1].zName = (char*)&pColl[3];
+ pColl[1].enc = SQLITE_UTF16LE;
+ pColl[2].zName = (char*)&pColl[3];
+ pColl[2].enc = SQLITE_UTF16BE;
+ memcpy(pColl[0].zName, zName, nName);
+ pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl);
+
+ /* If a malloc() failure occurred in sqlite3HashInsert(), it will
+ ** return the pColl pointer to be deleted (because it wasn't added
+ ** to the hash table).
+ */
+ assert( pDel==0 || pDel==pColl );
+ if( pDel!=0 ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, pDel);
+ pColl = 0;
+ }
+ }
+ }
+ return pColl;
+}
+
+/*
+** Parameter zName points to a UTF-8 encoded string nName bytes long.
+** Return the CollSeq* pointer for the collation sequence named zName
+** for the encoding 'enc' from the database 'db'.
+**
+** If the entry specified is not found and 'create' is true, then create a
+** new entry. Otherwise return NULL.
+**
+** A separate function sqlite3LocateCollSeq() is a wrapper around
+** this routine. sqlite3LocateCollSeq() invokes the collation factory
+** if necessary and generates an error message if the collating sequence
+** cannot be found.
+**
+** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq()
+*/
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
+ sqlite3 *db, /* Database connection to search */
+ u8 enc, /* Desired text encoding */
+ const char *zName, /* Name of the collating sequence. Might be NULL */
+ int create /* True to create CollSeq if doesn't already exist */
+){
+ CollSeq *pColl;
+ assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
+ if( zName ){
+ pColl = findCollSeqEntry(db, zName, create);
+ if( pColl ) pColl += enc-1;
+ }else{
+ pColl = db->pDfltColl;
+ }
+ return pColl;
+}
+
+/*
+** Change the text encoding for a database connection. This means that
+** the pDfltColl must change as well.
+*/
+SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ db->enc = enc;
+ /* EVIDENCE-OF: R-08308-17224 The default collating function for all
+ ** strings is BINARY.
+ */
+ db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0);
+ sqlite3ExpirePreparedStatements(db, 1);
+}
+
+/*
+** This function is responsible for invoking the collation factory callback
+** or substituting a collation sequence of a different encoding when the
+** requested collation sequence is not available in the desired encoding.
+**
+** If it is not NULL, then pColl must point to the database native encoding
+** collation sequence with name zName, length nName.
+**
+** The return value is either the collation sequence to be used in database
+** db for collation type name zName, length nName, or NULL, if no collation
+** sequence can be found. If no collation is found, leave an error message.
+**
+** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
+*/
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
+ Parse *pParse, /* Parsing context */
+ u8 enc, /* The desired encoding for the collating sequence */
+ CollSeq *pColl, /* Collating sequence with native encoding, or NULL */
+ const char *zName /* Collating sequence name */
+){
+ CollSeq *p;
+ sqlite3 *db = pParse->db;
+
+ p = pColl;
+ if( !p ){
+ p = sqlite3FindCollSeq(db, enc, zName, 0);
+ }
+ if( !p || !p->xCmp ){
+ /* No collation sequence of this type for this encoding is registered.
+ ** Call the collation factory to see if it can supply us with one.
+ */
+ callCollNeeded(db, enc, zName);
+ p = sqlite3FindCollSeq(db, enc, zName, 0);
+ }
+ if( p && !p->xCmp && synthCollSeq(db, p) ){
+ p = 0;
+ }
+ assert( !p || p->xCmp );
+ if( p==0 ){
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
+ pParse->rc = SQLITE_ERROR_MISSING_COLLSEQ;
+ }
+ return p;
+}
+
+/*
+** This function returns the collation sequence for database native text
+** encoding identified by the string zName.
+**
+** If the requested collation sequence is not available, or not available
+** in the database native encoding, the collation factory is invoked to
+** request it. If the collation factory does not supply such a sequence,
+** and the sequence is available in another text encoding, then that is
+** returned instead.
+**
+** If no versions of the requested collations sequence are available, or
+** another error occurs, NULL is returned and an error message written into
+** pParse.
+**
+** This routine is a wrapper around sqlite3FindCollSeq(). This routine
+** invokes the collation factory if the named collation cannot be found
+** and generates an error message.
+**
+** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
+*/
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
+ sqlite3 *db = pParse->db;
+ u8 enc = ENC(db);
+ u8 initbusy = db->init.busy;
+ CollSeq *pColl;
+
+ pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
+ if( !initbusy && (!pColl || !pColl->xCmp) ){
+ pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
+ }
+
+ return pColl;
+}
+
+/* During the search for the best function definition, this procedure
+** is called to test how well the function passed as the first argument
+** matches the request for a function with nArg arguments in a system
+** that uses encoding enc. The value returned indicates how well the
+** request is matched. A higher value indicates a better match.
+**
+** If nArg is -1 that means to only return a match (non-zero) if p->nArg
+** is also -1. In other words, we are searching for a function that
+** takes a variable number of arguments.
+**
+** If nArg is -2 that means that we are searching for any function
+** regardless of the number of arguments it uses, so return a positive
+** match score for any
+**
+** The returned value is always between 0 and 6, as follows:
+**
+** 0: Not a match.
+** 1: UTF8/16 conversion required and function takes any number of arguments.
+** 2: UTF16 byte order change required and function takes any number of args.
+** 3: encoding matches and function takes any number of arguments
+** 4: UTF8/16 conversion required - argument count matches exactly
+** 5: UTF16 byte order conversion required - argument count matches exactly
+** 6: Perfect match: encoding and argument count match exactly.
+**
+** If nArg==(-2) then any function with a non-null xSFunc is
+** a perfect match and any function with xSFunc NULL is
+** a non-match.
+*/
+#define FUNC_PERFECT_MATCH 6 /* The score for a perfect match */
+static int matchQuality(
+ FuncDef *p, /* The function we are evaluating for match quality */
+ int nArg, /* Desired number of arguments. (-1)==any */
+ u8 enc /* Desired text encoding */
+){
+ int match;
+ assert( p->nArg>=-1 );
+
+ /* Wrong number of arguments means "no match" */
+ if( p->nArg!=nArg ){
+ if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH;
+ if( p->nArg>=0 ) return 0;
+ }
+
+ /* Give a better score to a function with a specific number of arguments
+ ** than to function that accepts any number of arguments. */
+ if( p->nArg==nArg ){
+ match = 4;
+ }else{
+ match = 1;
+ }
+
+ /* Bonus points if the text encoding matches */
+ if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){
+ match += 2; /* Exact encoding match */
+ }else if( (enc & p->funcFlags & 2)!=0 ){
+ match += 1; /* Both are UTF16, but with different byte orders */
+ }
+
+ return match;
+}
+
+/*
+** Search a FuncDefHash for a function with the given name. Return
+** a pointer to the matching FuncDef if found, or 0 if there is no match.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3FunctionSearch(
+ int h, /* Hash of the name */
+ const char *zFunc /* Name of function */
+){
+ FuncDef *p;
+ for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ if( sqlite3StrICmp(p->zName, zFunc)==0 ){
+ return p;
+ }
+ }
+ return 0;
+}
+
+/*
+** Insert a new FuncDef into a FuncDefHash hash table.
+*/
+SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(
+ FuncDef *aDef, /* List of global functions to be inserted */
+ int nDef /* Length of the apDef[] list */
+){
+ int i;
+ for(i=0; i<nDef; i++){
+ FuncDef *pOther;
+ const char *zName = aDef[i].zName;
+ int nName = sqlite3Strlen30(zName);
+ int h = SQLITE_FUNC_HASH(zName[0], nName);
+ assert( aDef[i].funcFlags & SQLITE_FUNC_BUILTIN );
+ pOther = sqlite3FunctionSearch(h, zName);
+ if( pOther ){
+ assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
+ aDef[i].pNext = pOther->pNext;
+ pOther->pNext = &aDef[i];
+ }else{
+ aDef[i].pNext = 0;
+ aDef[i].u.pHash = sqlite3BuiltinFunctions.a[h];
+ sqlite3BuiltinFunctions.a[h] = &aDef[i];
+ }
+ }
+}
+
+
+
+/*
+** Locate a user function given a name, a number of arguments and a flag
+** indicating whether the function prefers UTF-16 over UTF-8. Return a
+** pointer to the FuncDef structure that defines that function, or return
+** NULL if the function does not exist.
+**
+** If the createFlag argument is true, then a new (blank) FuncDef
+** structure is created and liked into the "db" structure if a
+** no matching function previously existed.
+**
+** If nArg is -2, then the first valid function found is returned. A
+** function is valid if xSFunc is non-zero. The nArg==(-2)
+** case is used to see if zName is a valid function name for some number
+** of arguments. If nArg is -2, then createFlag must be 0.
+**
+** If createFlag is false, then a function with the required name and
+** number of arguments may be returned even if the eTextRep flag does not
+** match that requested.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
+ sqlite3 *db, /* An open database */
+ const char *zName, /* Name of the function. zero-terminated */
+ int nArg, /* Number of arguments. -1 means any number */
+ u8 enc, /* Preferred text encoding */
+ u8 createFlag /* Create new entry if true and does not otherwise exist */
+){
+ FuncDef *p; /* Iterator variable */
+ FuncDef *pBest = 0; /* Best match found so far */
+ int bestScore = 0; /* Score of best match */
+ int h; /* Hash value */
+ int nName; /* Length of the name */
+
+ assert( nArg>=(-2) );
+ assert( nArg>=(-1) || createFlag==0 );
+ nName = sqlite3Strlen30(zName);
+
+ /* First search for a match amongst the application-defined functions.
+ */
+ p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName);
+ while( p ){
+ int score = matchQuality(p, nArg, enc);
+ if( score>bestScore ){
+ pBest = p;
+ bestScore = score;
+ }
+ p = p->pNext;
+ }
+
+ /* If no match is found, search the built-in functions.
+ **
+ ** If the DBFLAG_PreferBuiltin flag is set, then search the built-in
+ ** functions even if a prior app-defined function was found. And give
+ ** priority to built-in functions.
+ **
+ ** Except, if createFlag is true, that means that we are trying to
+ ** install a new function. Whatever FuncDef structure is returned it will
+ ** have fields overwritten with new information appropriate for the
+ ** new function. But the FuncDefs for built-in functions are read-only.
+ ** So we must not search for built-ins when creating a new function.
+ */
+ if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){
+ bestScore = 0;
+ h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName);
+ p = sqlite3FunctionSearch(h, zName);
+ while( p ){
+ int score = matchQuality(p, nArg, enc);
+ if( score>bestScore ){
+ pBest = p;
+ bestScore = score;
+ }
+ p = p->pNext;
+ }
+ }
+
+ /* If the createFlag parameter is true and the search did not reveal an
+ ** exact match for the name, number of arguments and encoding, then add a
+ ** new entry to the hash table and return it.
+ */
+ if( createFlag && bestScore<FUNC_PERFECT_MATCH &&
+ (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
+ FuncDef *pOther;
+ u8 *z;
+ pBest->zName = (const char*)&pBest[1];
+ pBest->nArg = (u16)nArg;
+ pBest->funcFlags = enc;
+ memcpy((char*)&pBest[1], zName, nName+1);
+ for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z];
+ pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest);
+ if( pOther==pBest ){
+ sqlite3DbFree(db, pBest);
+ sqlite3OomFault(db);
+ return 0;
+ }else{
+ pBest->pNext = pOther;
+ }
+ }
+
+ if( pBest && (pBest->xSFunc || createFlag) ){
+ return pBest;
+ }
+ return 0;
+}
+
+/*
+** Free all resources held by the schema structure. The void* argument points
+** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
+** pointer itself, it just cleans up subsidiary resources (i.e. the contents
+** of the schema hash tables).
+**
+** The Schema.cache_size variable is not cleared.
+*/
+SQLITE_PRIVATE void sqlite3SchemaClear(void *p){
+ Hash temp1;
+ Hash temp2;
+ HashElem *pElem;
+ Schema *pSchema = (Schema *)p;
+ sqlite3 xdb;
+
+ memset(&xdb, 0, sizeof(xdb));
+ temp1 = pSchema->tblHash;
+ temp2 = pSchema->trigHash;
+ sqlite3HashInit(&pSchema->trigHash);
+ sqlite3HashClear(&pSchema->idxHash);
+ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
+ sqlite3DeleteTrigger(&xdb, (Trigger*)sqliteHashData(pElem));
+ }
+ sqlite3HashClear(&temp2);
+ sqlite3HashInit(&pSchema->tblHash);
+ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ sqlite3DeleteTable(&xdb, pTab);
+ }
+ sqlite3HashClear(&temp1);
+ sqlite3HashClear(&pSchema->fkeyHash);
+ pSchema->pSeqTab = 0;
+ if( pSchema->schemaFlags & DB_SchemaLoaded ){
+ pSchema->iGeneration++;
+ }
+ pSchema->schemaFlags &= ~(DB_SchemaLoaded|DB_ResetWanted);
+}
+
+/*
+** Find and return the schema associated with a BTree. Create
+** a new one if necessary.
+*/
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
+ Schema * p;
+ if( pBt ){
+ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
+ }else{
+ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
+ }
+ if( !p ){
+ sqlite3OomFault(db);
+ }else if ( 0==p->file_format ){
+ sqlite3HashInit(&p->tblHash);
+ sqlite3HashInit(&p->idxHash);
+ sqlite3HashInit(&p->trigHash);
+ sqlite3HashInit(&p->fkeyHash);
+ p->enc = SQLITE_UTF8;
+ }
+ return p;
+}
+
+/************** End of callback.c ********************************************/
+/************** Begin file delete.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** in order to generate code for DELETE FROM statements.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** While a SrcList can in general represent multiple tables and subqueries
+** (as in the FROM clause of a SELECT statement) in this case it contains
+** the name of a single table, as one might find in an INSERT, DELETE,
+** or UPDATE statement. Look up that table in the symbol table and
+** return a pointer. Set an error message and return NULL if the table
+** name is not found or if any other error occurs.
+**
+** The following fields are initialized appropriate in pSrc:
+**
+** pSrc->a[0].pTab Pointer to the Table object
+** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one
+**
+*/
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
+ SrcItem *pItem = pSrc->a;
+ Table *pTab;
+ assert( pItem && pSrc->nSrc>=1 );
+ pTab = sqlite3LocateTableItem(pParse, 0, pItem);
+ if( pItem->pTab ) sqlite3DeleteTable(pParse->db, pItem->pTab);
+ pItem->pTab = pTab;
+ pItem->fg.notCte = 1;
+ if( pTab ){
+ pTab->nTabRef++;
+ if( pItem->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pItem) ){
+ pTab = 0;
+ }
+ }
+ return pTab;
+}
+
+/* Generate byte-code that will report the number of rows modified
+** by a DELETE, INSERT, or UPDATE statement.
+*/
+SQLITE_PRIVATE void sqlite3CodeChangeCount(Vdbe *v, int regCounter, const char *zColName){
+ sqlite3VdbeAddOp0(v, OP_FkCheck);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regCounter, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zColName, SQLITE_STATIC);
+}
+
+/* Return true if table pTab is read-only.
+**
+** A table is read-only if any of the following are true:
+**
+** 1) It is a virtual table and no implementation of the xUpdate method
+** has been provided
+**
+** 2) A trigger is currently being coded and the table is a virtual table
+** that is SQLITE_VTAB_DIRECTONLY or if PRAGMA trusted_schema=OFF and
+** the table is not SQLITE_VTAB_INNOCUOUS.
+**
+** 3) It is a system table (i.e. sqlite_schema), this call is not
+** part of a nested parse and writable_schema pragma has not
+** been specified
+**
+** 4) The table is a shadow table, the database connection is in
+** defensive mode, and the current sqlite3_prepare()
+** is for a top-level SQL statement.
+*/
+static int vtabIsReadOnly(Parse *pParse, Table *pTab){
+ if( sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 ){
+ return 1;
+ }
+
+ /* Within triggers:
+ ** * Do not allow DELETE, INSERT, or UPDATE of SQLITE_VTAB_DIRECTONLY
+ ** virtual tables
+ ** * Only allow DELETE, INSERT, or UPDATE of non-SQLITE_VTAB_INNOCUOUS
+ ** virtual tables if PRAGMA trusted_schema=ON.
+ */
+ if( pParse->pToplevel!=0
+ && pTab->u.vtab.p->eVtabRisk >
+ ((pParse->db->flags & SQLITE_TrustedSchema)!=0)
+ ){
+ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
+ pTab->zName);
+ }
+ return 0;
+}
+static int tabIsReadOnly(Parse *pParse, Table *pTab){
+ sqlite3 *db;
+ if( IsVirtual(pTab) ){
+ return vtabIsReadOnly(pParse, pTab);
+ }
+ if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0;
+ db = pParse->db;
+ if( (pTab->tabFlags & TF_Readonly)!=0 ){
+ return sqlite3WritableSchema(db)==0 && pParse->nested==0;
+ }
+ assert( pTab->tabFlags & TF_Shadow );
+ return sqlite3ReadOnlyShadowTables(db);
+}
+
+/*
+** Check to make sure the given table is writable.
+**
+** If pTab is not writable -> generate an error message and return 1.
+** If pTab is writable but other errors have occurred -> return 1.
+** If pTab is writable and no prior errors -> return 0;
+*/
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, Trigger *pTrigger){
+ if( tabIsReadOnly(pParse, pTab) ){
+ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
+ return 1;
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( IsView(pTab)
+ && (pTrigger==0 || (pTrigger->bReturning && pTrigger->pNext==0))
+ ){
+ sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+/*
+** Evaluate a view and store its result in an ephemeral table. The
+** pWhere argument is an optional WHERE clause that restricts the
+** set of rows in the view that are to be added to the ephemeral table.
+*/
+SQLITE_PRIVATE void sqlite3MaterializeView(
+ Parse *pParse, /* Parsing context */
+ Table *pView, /* View definition */
+ Expr *pWhere, /* Optional WHERE clause to be added */
+ ExprList *pOrderBy, /* Optional ORDER BY clause */
+ Expr *pLimit, /* Optional LIMIT clause */
+ int iCur /* Cursor number for ephemeral table */
+){
+ SelectDest dest;
+ Select *pSel;
+ SrcList *pFrom;
+ sqlite3 *db = pParse->db;
+ int iDb = sqlite3SchemaToIndex(db, pView->pSchema);
+ pWhere = sqlite3ExprDup(db, pWhere, 0);
+ pFrom = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ if( pFrom ){
+ assert( pFrom->nSrc==1 );
+ pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
+ pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName);
+ assert( pFrom->a[0].fg.isUsing==0 );
+ assert( pFrom->a[0].u3.pOn==0 );
+ }
+ pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, pOrderBy,
+ SF_IncludeHidden, pLimit);
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
+ sqlite3Select(pParse, pSel, &dest);
+ sqlite3SelectDelete(db, pSel);
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
+
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Generate an expression tree to implement the WHERE, ORDER BY,
+** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
+**
+** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
+** \__________________________/
+** pLimitWhere (pInClause)
+*/
+SQLITE_PRIVATE Expr *sqlite3LimitWhere(
+ Parse *pParse, /* The parser context */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ ExprList *pOrderBy, /* The ORDER BY clause. May be null */
+ Expr *pLimit, /* The LIMIT clause. May be null */
+ char *zStmtType /* Either DELETE or UPDATE. For err msgs. */
+){
+ sqlite3 *db = pParse->db;
+ Expr *pLhs = NULL; /* LHS of IN(SELECT...) operator */
+ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */
+ ExprList *pEList = NULL; /* Expression list containing only pSelectRowid*/
+ SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */
+ Select *pSelect = NULL; /* Complete SELECT tree */
+ Table *pTab;
+
+ /* Check that there isn't an ORDER BY without a LIMIT clause.
+ */
+ if( pOrderBy && pLimit==0 ) {
+ sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
+ sqlite3ExprDelete(pParse->db, pWhere);
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ return 0;
+ }
+
+ /* We only need to generate a select expression if there
+ ** is a limit/offset term to enforce.
+ */
+ if( pLimit == 0 ) {
+ return pWhere;
+ }
+
+ /* Generate a select expression tree to enforce the limit/offset
+ ** term for the DELETE or UPDATE statement. For example:
+ ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
+ ** becomes:
+ ** DELETE FROM table_a WHERE rowid IN (
+ ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
+ ** );
+ */
+
+ pTab = pSrc->a[0].pTab;
+ if( HasRowid(pTab) ){
+ pLhs = sqlite3PExpr(pParse, TK_ROW, 0, 0);
+ pEList = sqlite3ExprListAppend(
+ pParse, 0, sqlite3PExpr(pParse, TK_ROW, 0, 0)
+ );
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->nKeyCol>=1 );
+ if( pPk->nKeyCol==1 ){
+ const char *zName;
+ assert( pPk->aiColumn[0]>=0 && pPk->aiColumn[0]<pTab->nCol );
+ zName = pTab->aCol[pPk->aiColumn[0]].zCnName;
+ pLhs = sqlite3Expr(db, TK_ID, zName);
+ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, zName));
+ }else{
+ int i;
+ for(i=0; i<pPk->nKeyCol; i++){
+ Expr *p;
+ assert( pPk->aiColumn[i]>=0 && pPk->aiColumn[i]<pTab->nCol );
+ p = sqlite3Expr(db, TK_ID, pTab->aCol[pPk->aiColumn[i]].zCnName);
+ pEList = sqlite3ExprListAppend(pParse, pEList, p);
+ }
+ pLhs = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
+ if( pLhs ){
+ pLhs->x.pList = sqlite3ExprListDup(db, pEList, 0);
+ }
+ }
+ }
+
+ /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
+ ** and the SELECT subtree. */
+ pSrc->a[0].pTab = 0;
+ pSelectSrc = sqlite3SrcListDup(db, pSrc, 0);
+ pSrc->a[0].pTab = pTab;
+ if( pSrc->a[0].fg.isIndexedBy ){
+ assert( pSrc->a[0].fg.isCte==0 );
+ pSrc->a[0].u2.pIBIndex = 0;
+ pSrc->a[0].fg.isIndexedBy = 0;
+ sqlite3DbFree(db, pSrc->a[0].u1.zIndexedBy);
+ }else if( pSrc->a[0].fg.isCte ){
+ pSrc->a[0].u2.pCteUse->nUse++;
+ }
+
+ /* generate the SELECT expression tree. */
+ pSelect = sqlite3SelectNew(pParse, pEList, pSelectSrc, pWhere, 0 ,0,
+ pOrderBy,0,pLimit
+ );
+
+ /* now generate the new WHERE rowid IN clause for the DELETE/UPDATE */
+ pInClause = sqlite3PExpr(pParse, TK_IN, pLhs, 0);
+ sqlite3PExprAddSelect(pParse, pInClause, pSelect);
+ return pInClause;
+}
+#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */
+ /* && !defined(SQLITE_OMIT_SUBQUERY) */
+
+/*
+** Generate code for a DELETE FROM statement.
+**
+** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
+** \________/ \________________/
+** pTabList pWhere
+*/
+SQLITE_PRIVATE void sqlite3DeleteFrom(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table from which we should delete things */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ ExprList *pOrderBy, /* ORDER BY clause. May be null */
+ Expr *pLimit /* LIMIT clause. May be null */
+){
+ Vdbe *v; /* The virtual database engine */
+ Table *pTab; /* The table from which records will be deleted */
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Index *pIdx; /* For looping over indices of the table */
+ int iTabCur; /* Cursor number for the table */
+ int iDataCur = 0; /* VDBE cursor for the canonical data source */
+ int iIdxCur = 0; /* Cursor number of the first index */
+ int nIdx; /* Number of indices */
+ sqlite3 *db; /* Main database structure */
+ AuthContext sContext; /* Authorization context */
+ NameContext sNC; /* Name context to resolve expressions in */
+ int iDb; /* Database number */
+ int memCnt = 0; /* Memory cell used for change counting */
+ int rcauth; /* Value returned by authorization callback */
+ int eOnePass; /* ONEPASS_OFF or _SINGLE or _MULTI */
+ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */
+ u8 *aToOpen = 0; /* Open cursor iTabCur+j if aToOpen[j] is true */
+ Index *pPk; /* The PRIMARY KEY index on the table */
+ int iPk = 0; /* First of nPk registers holding PRIMARY KEY value */
+ i16 nPk = 1; /* Number of columns in the PRIMARY KEY */
+ int iKey; /* Memory cell holding key of row to be deleted */
+ i16 nKey; /* Number of memory cells in the row key */
+ int iEphCur = 0; /* Ephemeral table holding all primary key values */
+ int iRowSet = 0; /* Register for rowset of rows to delete */
+ int addrBypass = 0; /* Address of jump over the delete logic */
+ int addrLoop = 0; /* Top of the delete loop */
+ int addrEphOpen = 0; /* Instruction to open the Ephemeral table */
+ int bComplex; /* True if there are triggers or FKs or
+ ** subqueries in the WHERE clause */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True if attempting to delete from a view */
+ Trigger *pTrigger; /* List of table triggers, if required */
+#endif
+
+ memset(&sContext, 0, sizeof(sContext));
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto delete_from_cleanup;
+ }
+ assert( db->mallocFailed==0 );
+ assert( pTabList->nSrc==1 );
+
+ /* Locate the table which we want to delete. This table has to be
+ ** put in an SrcList structure because some of the subroutines we
+ ** will be calling are designed to work with multiple tables and expect
+ ** an SrcList* parameter instead of just a Table* parameter.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto delete_from_cleanup;
+
+ /* Figure out if we have any triggers and if the table being
+ ** deleted from is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
+ isView = IsView(pTab);
+#else
+# define pTrigger 0
+# define isView 0
+#endif
+ bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0);
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Delete() at %s:%d", __FILE__, __LINE__);
+ sqlite3TreeViewDelete(pParse->pWith, pTabList, pWhere,
+ pOrderBy, pLimit, pTrigger);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( !isView ){
+ pWhere = sqlite3LimitWhere(
+ pParse, pTabList, pWhere, pOrderBy, pLimit, "DELETE"
+ );
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ /* If pTab is really a view, make sure it has been initialized.
+ */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto delete_from_cleanup;
+ }
+
+ if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){
+ goto delete_from_cleanup;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0,
+ db->aDb[iDb].zDbSName);
+ assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
+ if( rcauth==SQLITE_DENY ){
+ goto delete_from_cleanup;
+ }
+ assert(!isView || pTrigger);
+
+ /* Assign cursor numbers to the table and all its indices.
+ */
+ assert( pTabList->nSrc==1 );
+ iTabCur = pTabList->a[0].iCursor = pParse->nTab++;
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
+ pParse->nTab++;
+ }
+
+ /* Start the view context
+ */
+ if( isView ){
+ sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* Begin generating code.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ goto delete_from_cleanup;
+ }
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, bComplex, iDb);
+
+ /* If we are trying to delete from a view, realize that view into
+ ** an ephemeral table.
+ */
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+ if( isView ){
+ sqlite3MaterializeView(pParse, pTab,
+ pWhere, pOrderBy, pLimit, iTabCur
+ );
+ iDataCur = iIdxCur = iTabCur;
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ /* Resolve the column names in the WHERE clause.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ if( sqlite3ResolveExprNames(&sNC, pWhere) ){
+ goto delete_from_cleanup;
+ }
+
+ /* Initialize the counter of the number of rows deleted, if
+ ** we are counting rows.
+ */
+ if( (db->flags & SQLITE_CountRows)!=0
+ && !pParse->nested
+ && !pParse->pTriggerTab
+ && !pParse->bReturning
+ ){
+ memCnt = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
+ }
+
+#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
+ /* Special case: A DELETE without a WHERE clause deletes everything.
+ ** It is easier just to erase the whole table. Prior to version 3.6.5,
+ ** this optimization caused the row change count (the value returned by
+ ** API function sqlite3_count_changes) to be set incorrectly.
+ **
+ ** The "rcauth==SQLITE_OK" terms is the
+ ** IMPLEMENTATION-OF: R-17228-37124 If the action code is SQLITE_DELETE and
+ ** the callback returns SQLITE_IGNORE then the DELETE operation proceeds but
+ ** the truncate optimization is disabled and all rows are deleted
+ ** individually.
+ */
+ if( rcauth==SQLITE_OK
+ && pWhere==0
+ && !bComplex
+ && !IsVirtual(pTab)
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ && db->xPreUpdateCallback==0
+#endif
+ ){
+ assert( !isView );
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt ? memCnt : -1,
+ pTab->zName, P4_STATIC);
+ }
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->pSchema==pTab->pSchema );
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Clear, pIdx->tnum, iDb, memCnt ? memCnt : -1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
+ }
+ }
+ }else
+#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
+ {
+ u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK;
+ if( sNC.ncFlags & NC_Subquery ) bComplex = 1;
+ wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW);
+ if( HasRowid(pTab) ){
+ /* For a rowid table, initialize the RowSet to an empty set */
+ pPk = 0;
+ assert( nPk==1 );
+ iRowSet = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
+ }else{
+ /* For a WITHOUT ROWID table, create an ephemeral table used to
+ ** hold all primary keys for rows to be deleted. */
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ nPk = pPk->nKeyCol;
+ iPk = pParse->nMem+1;
+ pParse->nMem += nPk;
+ iEphCur = pParse->nTab++;
+ addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+
+ /* Construct a query to find the rowid or primary key for every row
+ ** to be deleted, based on the WHERE clause. Set variable eOnePass
+ ** to indicate the strategy used to implement this delete:
+ **
+ ** ONEPASS_OFF: Two-pass approach - use a FIFO for rowids/PK values.
+ ** ONEPASS_SINGLE: One-pass approach - at most one row deleted.
+ ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted.
+ */
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,0,wcf,iTabCur+1);
+ if( pWInfo==0 ) goto delete_from_cleanup;
+ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
+ assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI );
+ assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF
+ || OptimizationDisabled(db, SQLITE_OnePass) );
+ if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse);
+ if( sqlite3WhereUsesDeferredSeek(pWInfo) ){
+ sqlite3VdbeAddOp1(v, OP_FinishSeek, iTabCur);
+ }
+
+ /* Keep track of the number of rows to be deleted */
+ if( memCnt ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
+ }
+
+ /* Extract the rowid or primary key for the current row */
+ if( pPk ){
+ for(i=0; i<nPk; i++){
+ assert( pPk->aiColumn[i]>=0 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
+ pPk->aiColumn[i], iPk+i);
+ }
+ iKey = iPk;
+ }else{
+ iKey = ++pParse->nMem;
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, -1, iKey);
+ }
+
+ if( eOnePass!=ONEPASS_OFF ){
+ /* For ONEPASS, no need to store the rowid/primary-key. There is only
+ ** one, so just keep it in its register(s) and fall through to the
+ ** delete code. */
+ nKey = nPk; /* OP_Found will use an unpacked key */
+ aToOpen = sqlite3DbMallocRawNN(db, nIdx+2);
+ if( aToOpen==0 ){
+ sqlite3WhereEnd(pWInfo);
+ goto delete_from_cleanup;
+ }
+ memset(aToOpen, 1, nIdx+1);
+ aToOpen[nIdx+1] = 0;
+ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
+ if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0;
+ if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
+ addrBypass = sqlite3VdbeMakeLabel(pParse);
+ }else{
+ if( pPk ){
+ /* Add the PK key for this row to the temporary table */
+ iKey = ++pParse->nMem;
+ nKey = 0; /* Zero tells OP_Found to use a composite key */
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
+ sqlite3IndexAffinityStr(pParse->db, pPk), nPk);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEphCur, iKey, iPk, nPk);
+ }else{
+ /* Add the rowid of the row to be deleted to the RowSet */
+ nKey = 1; /* OP_DeferredSeek always uses a single rowid */
+ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
+ }
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ /* Unless this is a view, open cursors for the table we are
+ ** deleting from and all its indices. If this is a view, then the
+ ** only effect this statement has is to fire the INSTEAD OF
+ ** triggers.
+ */
+ if( !isView ){
+ int iAddrOnce = 0;
+ if( eOnePass==ONEPASS_MULTI ){
+ iAddrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ testcase( IsVirtual(pTab) );
+ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, OPFLAG_FORDELETE,
+ iTabCur, aToOpen, &iDataCur, &iIdxCur);
+ assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
+ assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
+ if( eOnePass==ONEPASS_MULTI ){
+ sqlite3VdbeJumpHereOrPopInst(v, iAddrOnce);
+ }
+ }
+
+ /* Set up a loop over the rowids/primary-keys that were found in the
+ ** where-clause loop above.
+ */
+ if( eOnePass!=ONEPASS_OFF ){
+ assert( nKey==nPk ); /* OP_Found will use an unpacked key */
+ if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){
+ assert( pPk!=0 || IsView(pTab) );
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
+ VdbeCoverage(v);
+ }
+ }else if( pPk ){
+ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iEphCur, 0, iKey);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iEphCur, iKey);
+ }
+ assert( nKey==0 ); /* OP_Found will use a composite key */
+ }else{
+ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey);
+ VdbeCoverage(v);
+ assert( nKey==1 );
+ }
+
+ /* Delete the row */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
+ sqlite3MayAbort(pParse);
+ if( eOnePass==ONEPASS_SINGLE ){
+ sqlite3VdbeAddOp1(v, OP_Close, iTabCur);
+ if( sqlite3IsToplevel(pParse) ){
+ pParse->isMultiWrite = 0;
+ }
+ }
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
+ sqlite3VdbeChangeP5(v, OE_Abort);
+ }else
+#endif
+ {
+ int count = (pParse->nested==0); /* True to count changes */
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
+ iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]);
+ }
+
+ /* End of the loop over all rowids/primary-keys. */
+ if( eOnePass!=ONEPASS_OFF ){
+ sqlite3VdbeResolveLabel(v, addrBypass);
+ sqlite3WhereEnd(pWInfo);
+ }else if( pPk ){
+ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrLoop);
+ }else{
+ sqlite3VdbeGoto(v, addrLoop);
+ sqlite3VdbeJumpHere(v, addrLoop);
+ }
+ } /* End non-truncate path */
+
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /* Return the number of rows that were deleted. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( memCnt ){
+ sqlite3CodeChangeCount(v, memCnt, "rows deleted");
+ }
+
+delete_from_cleanup:
+ sqlite3AuthContextPop(&sContext);
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprDelete(db, pWhere);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
+ sqlite3ExprListDelete(db, pOrderBy);
+ sqlite3ExprDelete(db, pLimit);
+#endif
+ if( aToOpen ) sqlite3DbNNFreeNN(db, aToOpen);
+ return;
+}
+/* Make sure "isView" and other macros defined above are undefined. Otherwise
+** they may interfere with compilation of other functions in this file
+** (or in another file, if this file becomes part of the amalgamation). */
+#ifdef isView
+ #undef isView
+#endif
+#ifdef pTrigger
+ #undef pTrigger
+#endif
+
+/*
+** This routine generates VDBE code that causes a single row of a
+** single table to be deleted. Both the original table entry and
+** all indices are removed.
+**
+** Preconditions:
+**
+** 1. iDataCur is an open cursor on the btree that is the canonical data
+** store for the table. (This will be either the table itself,
+** in the case of a rowid table, or the PRIMARY KEY index in the case
+** of a WITHOUT ROWID table.)
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number iIdxCur+i for the i-th index.
+**
+** 3. The primary key for the row to be deleted must be stored in a
+** sequence of nPk memory cells starting at iPk. If nPk==0 that means
+** that a search record formed from OP_MakeRecord is contained in the
+** single memory location iPk.
+**
+** eMode:
+** Parameter eMode may be passed either ONEPASS_OFF (0), ONEPASS_SINGLE, or
+** ONEPASS_MULTI. If eMode is not ONEPASS_OFF, then the cursor
+** iDataCur already points to the row to delete. If eMode is ONEPASS_OFF
+** then this function must seek iDataCur to the entry identified by iPk
+** and nPk before reading from it.
+**
+** If eMode is ONEPASS_MULTI, then this call is being made as part
+** of a ONEPASS delete that affects multiple rows. In this case, if
+** iIdxNoSeek is a valid cursor number (>=0) and is not the same as
+** iDataCur, then its position should be preserved following the delete
+** operation. Or, if iIdxNoSeek is not a valid cursor number, the
+** position of iDataCur should be preserved instead.
+**
+** iIdxNoSeek:
+** If iIdxNoSeek is a valid cursor number (>=0) not equal to iDataCur,
+** then it identifies an index cursor (from within array of cursors
+** starting at iIdxCur) that already points to the index entry to be deleted.
+** Except, this optimization is disabled if there are BEFORE triggers since
+** the trigger body might have moved the cursor.
+*/
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table containing the row to be deleted */
+ Trigger *pTrigger, /* List of triggers to (potentially) fire */
+ int iDataCur, /* Cursor from which column data is extracted */
+ int iIdxCur, /* First index cursor */
+ int iPk, /* First memory cell containing the PRIMARY KEY */
+ i16 nPk, /* Number of PRIMARY KEY memory cells */
+ u8 count, /* If non-zero, increment the row change counter */
+ u8 onconf, /* Default ON CONFLICT policy for triggers */
+ u8 eMode, /* ONEPASS_OFF, _SINGLE, or _MULTI. See above */
+ int iIdxNoSeek /* Cursor number of cursor that does not need seeking */
+){
+ Vdbe *v = pParse->pVdbe; /* Vdbe */
+ int iOld = 0; /* First register in OLD.* array */
+ int iLabel; /* Label resolved to end of generated code */
+ u8 opSeek; /* Seek opcode */
+
+ /* Vdbe is guaranteed to have been allocated by this stage. */
+ assert( v );
+ VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)",
+ iDataCur, iIdxCur, iPk, (int)nPk));
+
+ /* Seek cursor iCur to the row to delete. If this row no longer exists
+ ** (this can happen if a trigger program has already deleted it), do
+ ** not attempt to delete it or fire any DELETE triggers. */
+ iLabel = sqlite3VdbeMakeLabel(pParse);
+ opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
+ if( eMode==ONEPASS_OFF ){
+ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
+ VdbeCoverageIf(v, opSeek==OP_NotExists);
+ VdbeCoverageIf(v, opSeek==OP_NotFound);
+ }
+
+ /* If there are any triggers to fire, allocate a range of registers to
+ ** use for the old.* references in the triggers. */
+ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){
+ u32 mask; /* Mask of OLD.* columns in use */
+ int iCol; /* Iterator used while populating OLD.* */
+ int addrStart; /* Start of BEFORE trigger programs */
+
+ /* TODO: Could use temporary registers here. Also could attempt to
+ ** avoid copying the contents of the rowid register. */
+ mask = sqlite3TriggerColmask(
+ pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf
+ );
+ mask |= sqlite3FkOldmask(pParse, pTab);
+ iOld = pParse->nMem+1;
+ pParse->nMem += (1 + pTab->nCol);
+
+ /* Populate the OLD.* pseudo-table register array. These values will be
+ ** used by any BEFORE and AFTER triggers that exist. */
+ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld);
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ testcase( mask!=0xffffffff && iCol==31 );
+ testcase( mask!=0xffffffff && iCol==32 );
+ if( mask==0xffffffff || (iCol<=31 && (mask & MASKBIT32(iCol))!=0) ){
+ int kk = sqlite3TableColumnToStorage(pTab, iCol);
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+kk+1);
+ }
+ }
+
+ /* Invoke BEFORE DELETE trigger programs. */
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ sqlite3CodeRowTrigger(pParse, pTrigger,
+ TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel
+ );
+
+ /* If any BEFORE triggers were coded, then seek the cursor to the
+ ** row to be deleted again. It may be that the BEFORE triggers moved
+ ** the cursor or already deleted the row that the cursor was
+ ** pointing to.
+ **
+ ** Also disable the iIdxNoSeek optimization since the BEFORE trigger
+ ** may have moved that cursor.
+ */
+ if( addrStart<sqlite3VdbeCurrentAddr(v) ){
+ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
+ VdbeCoverageIf(v, opSeek==OP_NotExists);
+ VdbeCoverageIf(v, opSeek==OP_NotFound);
+ testcase( iIdxNoSeek>=0 );
+ iIdxNoSeek = -1;
+ }
+
+ /* Do FK processing. This call checks that any FK constraints that
+ ** refer to this table (i.e. constraints attached to other tables)
+ ** are not violated by deleting this row. */
+ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
+ }
+
+ /* Delete the index and table entries. Skip this step if pTab is really
+ ** a view (in which case the only effect of the DELETE statement is to
+ ** fire the INSTEAD OF triggers).
+ **
+ ** If variable 'count' is non-zero, then this OP_Delete instruction should
+ ** invoke the update-hook. The pre-update-hook, on the other hand should
+ ** be invoked unless table pTab is a system table. The difference is that
+ ** the update-hook is not invoked for rows removed by REPLACE, but the
+ ** pre-update-hook is.
+ */
+ if( !IsView(pTab) ){
+ u8 p5 = 0;
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
+ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
+ if( pParse->nested==0 || 0==sqlite3_stricmp(pTab->zName, "sqlite_stat1") ){
+ sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE);
+ }
+ if( eMode!=ONEPASS_OFF ){
+ sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE);
+ }
+ if( iIdxNoSeek>=0 && iIdxNoSeek!=iDataCur ){
+ sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
+ }
+ if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION;
+ sqlite3VdbeChangeP5(v, p5);
+ }
+
+ /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
+ ** handle rows (possibly in other tables) that refer via a foreign key
+ ** to the row just deleted. */
+ sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);
+
+ /* Invoke AFTER DELETE trigger programs. */
+ if( pTrigger ){
+ sqlite3CodeRowTrigger(pParse, pTrigger,
+ TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel
+ );
+ }
+
+ /* Jump here if the row had already been deleted before any BEFORE
+ ** trigger programs were invoked. Or if a trigger program throws a
+ ** RAISE(IGNORE) exception. */
+ sqlite3VdbeResolveLabel(v, iLabel);
+ VdbeModuleComment((v, "END: GenRowDel()"));
+}
+
+/*
+** This routine generates VDBE code that causes the deletion of all
+** index entries associated with a single row of a single table, pTab
+**
+** Preconditions:
+**
+** 1. A read/write cursor "iDataCur" must be open on the canonical storage
+** btree for the table pTab. (This will be either the table itself
+** for rowid tables or to the primary key index for WITHOUT ROWID
+** tables.)
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number iIdxCur+i for the i-th index. (The pTab->pIndex
+** index is the 0-th index.)
+**
+** 3. The "iDataCur" cursor must be already be positioned on the row
+** that is to be deleted.
+*/
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Table containing the row to be deleted */
+ int iDataCur, /* Cursor of table holding data. */
+ int iIdxCur, /* First index cursor */
+ int *aRegIdx, /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
+ int iIdxNoSeek /* Do not delete from this cursor */
+){
+ int i; /* Index loop counter */
+ int r1 = -1; /* Register holding an index key */
+ int iPartIdxLabel; /* Jump destination for skipping partial index entries */
+ Index *pIdx; /* Current index */
+ Index *pPrior = 0; /* Prior index */
+ Vdbe *v; /* The prepared statement under construction */
+ Index *pPk; /* PRIMARY KEY index, or NULL for rowid tables */
+
+ v = pParse->pVdbe;
+ pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
+ for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ assert( iIdxCur+i!=iDataCur || pPk==pIdx );
+ if( aRegIdx!=0 && aRegIdx[i]==0 ) continue;
+ if( pIdx==pPk ) continue;
+ if( iIdxCur+i==iIdxNoSeek ) continue;
+ VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName));
+ r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1,
+ &iPartIdxLabel, pPrior, r1);
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1,
+ pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn);
+ sqlite3VdbeChangeP5(v, 1); /* Cause IdxDelete to error if no entry found */
+ sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
+ pPrior = pIdx;
+ }
+}
+
+/*
+** Generate code that will assemble an index key and stores it in register
+** regOut. The key with be for index pIdx which is an index on pTab.
+** iCur is the index of a cursor open on the pTab table and pointing to
+** the entry that needs indexing. If pTab is a WITHOUT ROWID table, then
+** iCur must be the cursor of the PRIMARY KEY index.
+**
+** Return a register number which is the first in a block of
+** registers that holds the elements of the index key. The
+** block of registers has already been deallocated by the time
+** this routine returns.
+**
+** If *piPartIdxLabel is not NULL, fill it in with a label and jump
+** to that label if pIdx is a partial index that should be skipped.
+** The label should be resolved using sqlite3ResolvePartIdxLabel().
+** A partial index should be skipped if its WHERE clause evaluates
+** to false or null. If pIdx is not a partial index, *piPartIdxLabel
+** will be set to zero which is an empty label that is ignored by
+** sqlite3ResolvePartIdxLabel().
+**
+** The pPrior and regPrior parameters are used to implement a cache to
+** avoid unnecessary register loads. If pPrior is not NULL, then it is
+** a pointer to a different index for which an index key has just been
+** computed into register regPrior. If the current pIdx index is generating
+** its key into the same sequence of registers and if pPrior and pIdx share
+** a column in common, then the register corresponding to that column already
+** holds the correct value and the loading of that register is skipped.
+** This optimization is helpful when doing a DELETE or an INTEGRITY_CHECK
+** on a table with multiple indices, and especially with the ROWID or
+** PRIMARY KEY columns of the index.
+*/
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(
+ Parse *pParse, /* Parsing context */
+ Index *pIdx, /* The index for which to generate a key */
+ int iDataCur, /* Cursor number from which to take column data */
+ int regOut, /* Put the new key into this register if not 0 */
+ int prefixOnly, /* Compute only a unique prefix of the key */
+ int *piPartIdxLabel, /* OUT: Jump to this label to skip partial index */
+ Index *pPrior, /* Previously generated index key */
+ int regPrior /* Register holding previous generated key */
+){
+ Vdbe *v = pParse->pVdbe;
+ int j;
+ int regBase;
+ int nCol;
+
+ if( piPartIdxLabel ){
+ if( pIdx->pPartIdxWhere ){
+ *piPartIdxLabel = sqlite3VdbeMakeLabel(pParse);
+ pParse->iSelfTab = iDataCur + 1;
+ sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel,
+ SQLITE_JUMPIFNULL);
+ pParse->iSelfTab = 0;
+ pPrior = 0; /* Ticket a9efb42811fa41ee 2019-11-02;
+ ** pPartIdxWhere may have corrupted regPrior registers */
+ }else{
+ *piPartIdxLabel = 0;
+ }
+ }
+ nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn;
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0;
+ for(j=0; j<nCol; j++){
+ if( pPrior
+ && pPrior->aiColumn[j]==pIdx->aiColumn[j]
+ && pPrior->aiColumn[j]!=XN_EXPR
+ ){
+ /* This column was already computed by the previous index */
+ continue;
+ }
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iDataCur, j, regBase+j);
+ if( pIdx->aiColumn[j]>=0 ){
+ /* If the column affinity is REAL but the number is an integer, then it
+ ** might be stored in the table as an integer (using a compact
+ ** representation) then converted to REAL by an OP_RealAffinity opcode.
+ ** But we are getting ready to store this value back into an index, where
+ ** it should be converted by to INTEGER again. So omit the
+ ** OP_RealAffinity opcode if it is present */
+ sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity);
+ }
+ }
+ if( regOut ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut);
+ }
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ return regBase;
+}
+
+/*
+** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label
+** because it was a partial index, then this routine should be called to
+** resolve that label.
+*/
+SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse *pParse, int iLabel){
+ if( iLabel ){
+ sqlite3VdbeResolveLabel(pParse->pVdbe, iLabel);
+ }
+}
+
+/************** End of delete.c **********************************************/
+/************** Begin file func.c ********************************************/
+/*
+** 2002 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C-language implementations for many of the SQL
+** functions of SQLite. (Some function, and in particular the date and
+** time functions, are implemented separately.)
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+/* #include <assert.h> */
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/* #include <math.h> */
+#endif
+/* #include "vdbeInt.h" */
+
+/*
+** Return the collating function associated with a function.
+*/
+static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
+ VdbeOp *pOp;
+ assert( context->pVdbe!=0 );
+ pOp = &context->pVdbe->aOp[context->iOp-1];
+ assert( pOp->opcode==OP_CollSeq );
+ assert( pOp->p4type==P4_COLLSEQ );
+ return pOp->p4.pColl;
+}
+
+/*
+** Indicate that the accumulator load should be skipped on this
+** iteration of the aggregate loop.
+*/
+static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
+ assert( context->isError<=0 );
+ context->isError = -1;
+ context->skipFlag = 1;
+}
+
+/*
+** Implementation of the non-aggregate min() and max() functions
+*/
+static void minmaxFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ int mask; /* 0 for min() or 0xffffffff for max() */
+ int iBest;
+ CollSeq *pColl;
+
+ assert( argc>1 );
+ mask = sqlite3_user_data(context)==0 ? 0 : -1;
+ pColl = sqlite3GetFuncCollSeq(context);
+ assert( pColl );
+ assert( mask==-1 || mask==0 );
+ iBest = 0;
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ for(i=1; i<argc; i++){
+ if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
+ if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
+ testcase( mask==0 );
+ iBest = i;
+ }
+ }
+ sqlite3_result_value(context, argv[iBest]);
+}
+
+/*
+** Return the type of the argument.
+*/
+static void typeofFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ static const char *azType[] = { "integer", "real", "text", "blob", "null" };
+ int i = sqlite3_value_type(argv[0]) - 1;
+ UNUSED_PARAMETER(NotUsed);
+ assert( i>=0 && i<ArraySize(azType) );
+ assert( SQLITE_INTEGER==1 );
+ assert( SQLITE_FLOAT==2 );
+ assert( SQLITE_TEXT==3 );
+ assert( SQLITE_BLOB==4 );
+ assert( SQLITE_NULL==5 );
+ /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
+ ** the datatype code for the initial datatype of the sqlite3_value object
+ ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
+ ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
+ sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
+}
+
+/* subtype(X)
+**
+** Return the subtype of X
+*/
+static void subtypeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
+}
+
+/*
+** Implementation of the length() function
+*/
+static void lengthFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_BLOB:
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ const unsigned char *z0;
+ unsigned char c;
+ if( z==0 ) return;
+ z0 = z;
+ while( (c = *z)!=0 ){
+ z++;
+ if( c>=0xc0 ){
+ while( (*z & 0xc0)==0x80 ){ z++; z0++; }
+ }
+ }
+ sqlite3_result_int(context, (int)(z-z0));
+ break;
+ }
+ default: {
+ sqlite3_result_null(context);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the octet_length() function
+*/
+static void bytelengthFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_BLOB: {
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ break;
+ }
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2;
+ sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m);
+ break;
+ }
+ case SQLITE_TEXT: {
+ if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ }else{
+ sqlite3_result_int(context, sqlite3_value_bytes16(argv[0]));
+ }
+ break;
+ }
+ default: {
+ sqlite3_result_null(context);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the abs() function.
+**
+** IMP: R-23979-26855 The abs(X) function returns the absolute value of
+** the numeric argument X.
+*/
+static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ i64 iVal = sqlite3_value_int64(argv[0]);
+ if( iVal<0 ){
+ if( iVal==SMALLEST_INT64 ){
+ /* IMP: R-31676-45509 If X is the integer -9223372036854775808
+ ** then abs(X) throws an integer overflow error since there is no
+ ** equivalent positive 64-bit two complement value. */
+ sqlite3_result_error(context, "integer overflow", -1);
+ return;
+ }
+ iVal = -iVal;
+ }
+ sqlite3_result_int64(context, iVal);
+ break;
+ }
+ case SQLITE_NULL: {
+ /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
+ sqlite3_result_null(context);
+ break;
+ }
+ default: {
+ /* Because sqlite3_value_double() returns 0.0 if the argument is not
+ ** something that can be converted into a number, we have:
+ ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
+ ** that cannot be converted to a numeric value.
+ */
+ double rVal = sqlite3_value_double(argv[0]);
+ if( rVal<0 ) rVal = -rVal;
+ sqlite3_result_double(context, rVal);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the instr() function.
+**
+** instr(haystack,needle) finds the first occurrence of needle
+** in haystack and returns the number of previous characters plus 1,
+** or 0 if needle does not occur within haystack.
+**
+** If both haystack and needle are BLOBs, then the result is one more than
+** the number of bytes in haystack prior to the first occurrence of needle,
+** or 0 if needle never occurs in haystack.
+*/
+static void instrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zHaystack;
+ const unsigned char *zNeedle;
+ int nHaystack;
+ int nNeedle;
+ int typeHaystack, typeNeedle;
+ int N = 1;
+ int isText;
+ unsigned char firstChar;
+ sqlite3_value *pC1 = 0;
+ sqlite3_value *pC2 = 0;
+
+ UNUSED_PARAMETER(argc);
+ typeHaystack = sqlite3_value_type(argv[0]);
+ typeNeedle = sqlite3_value_type(argv[1]);
+ if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
+ nHaystack = sqlite3_value_bytes(argv[0]);
+ nNeedle = sqlite3_value_bytes(argv[1]);
+ if( nNeedle>0 ){
+ if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
+ zHaystack = sqlite3_value_blob(argv[0]);
+ zNeedle = sqlite3_value_blob(argv[1]);
+ isText = 0;
+ }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
+ zHaystack = sqlite3_value_text(argv[0]);
+ zNeedle = sqlite3_value_text(argv[1]);
+ isText = 1;
+ }else{
+ pC1 = sqlite3_value_dup(argv[0]);
+ zHaystack = sqlite3_value_text(pC1);
+ if( zHaystack==0 ) goto endInstrOOM;
+ nHaystack = sqlite3_value_bytes(pC1);
+ pC2 = sqlite3_value_dup(argv[1]);
+ zNeedle = sqlite3_value_text(pC2);
+ if( zNeedle==0 ) goto endInstrOOM;
+ nNeedle = sqlite3_value_bytes(pC2);
+ isText = 1;
+ }
+ if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
+ firstChar = zNeedle[0];
+ while( nNeedle<=nHaystack
+ && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
+ ){
+ N++;
+ do{
+ nHaystack--;
+ zHaystack++;
+ }while( isText && (zHaystack[0]&0xc0)==0x80 );
+ }
+ if( nNeedle>nHaystack ) N = 0;
+ }
+ sqlite3_result_int(context, N);
+endInstr:
+ sqlite3_value_free(pC1);
+ sqlite3_value_free(pC2);
+ return;
+endInstrOOM:
+ sqlite3_result_error_nomem(context);
+ goto endInstr;
+}
+
+/*
+** Implementation of the printf() (a.k.a. format()) SQL function.
+*/
+static void printfFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ PrintfArguments x;
+ StrAccum str;
+ const char *zFormat;
+ int n;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
+ x.nArg = argc-1;
+ x.nUsed = 0;
+ x.apArg = argv+1;
+ sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ str.printfFlags = SQLITE_PRINTF_SQLFUNC;
+ sqlite3_str_appendf(&str, zFormat, &x);
+ n = str.nChar;
+ sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
+ SQLITE_DYNAMIC);
+ }
+}
+
+/*
+** Implementation of the substr() function.
+**
+** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
+** p1 is 1-indexed. So substr(x,1,1) returns the first character
+** of x. If x is text, then we actually count UTF-8 characters.
+** If x is a blob, then we count bytes.
+**
+** If p1 is negative, then we begin abs(p1) from the end of x[].
+**
+** If p2 is negative, return the p2 characters preceding p1.
+*/
+static void substrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z;
+ const unsigned char *z2;
+ int len;
+ int p0type;
+ i64 p1, p2;
+ int negP2 = 0;
+
+ assert( argc==3 || argc==2 );
+ if( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
+ ){
+ return;
+ }
+ p0type = sqlite3_value_type(argv[0]);
+ p1 = sqlite3_value_int(argv[1]);
+ if( p0type==SQLITE_BLOB ){
+ len = sqlite3_value_bytes(argv[0]);
+ z = sqlite3_value_blob(argv[0]);
+ if( z==0 ) return;
+ assert( len==sqlite3_value_bytes(argv[0]) );
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( z==0 ) return;
+ len = 0;
+ if( p1<0 ){
+ for(z2=z; *z2; len++){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ }
+ }
+#ifdef SQLITE_SUBSTR_COMPATIBILITY
+ /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
+ ** as substr(X,1,N) - it returns the first N characters of X. This
+ ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
+ ** from 2009-02-02 for compatibility of applications that exploited the
+ ** old buggy behavior. */
+ if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
+#endif
+ if( argc==3 ){
+ p2 = sqlite3_value_int(argv[2]);
+ if( p2<0 ){
+ p2 = -p2;
+ negP2 = 1;
+ }
+ }else{
+ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ if( p1<0 ){
+ p1 += len;
+ if( p1<0 ){
+ p2 += p1;
+ if( p2<0 ) p2 = 0;
+ p1 = 0;
+ }
+ }else if( p1>0 ){
+ p1--;
+ }else if( p2>0 ){
+ p2--;
+ }
+ if( negP2 ){
+ p1 -= p2;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
+ }
+ assert( p1>=0 && p2>=0 );
+ if( p0type!=SQLITE_BLOB ){
+ while( *z && p1 ){
+ SQLITE_SKIP_UTF8(z);
+ p1--;
+ }
+ for(z2=z; *z2 && p2; p2--){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
+ SQLITE_UTF8);
+ }else{
+ if( p1+p2>len ){
+ p2 = len-p1;
+ if( p2<0 ) p2 = 0;
+ }
+ sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** Implementation of the round() function
+*/
+#ifndef SQLITE_OMIT_FLOATING_POINT
+static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ int n = 0;
+ double r;
+ char *zBuf;
+ assert( argc==1 || argc==2 );
+ if( argc==2 ){
+ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
+ n = sqlite3_value_int(argv[1]);
+ if( n>30 ) n = 30;
+ if( n<0 ) n = 0;
+ }
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ r = sqlite3_value_double(argv[0]);
+ /* If Y==0 and X will fit in a 64-bit int,
+ ** handle the rounding directly,
+ ** otherwise use printf.
+ */
+ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
+ /* The value has no fractional part so there is nothing to round */
+ }else if( n==0 ){
+ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
+ }else{
+ zBuf = sqlite3_mprintf("%!.*f",n,r);
+ if( zBuf==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
+ sqlite3_free(zBuf);
+ }
+ sqlite3_result_double(context, r);
+}
+#endif
+
+/*
+** Allocate nByte bytes of space using sqlite3Malloc(). If the
+** allocation fails, call sqlite3_result_error_nomem() to notify
+** the database handle that malloc() has failed and return NULL.
+** If nByte is larger than the maximum string or blob length, then
+** raise an SQLITE_TOOBIG exception and return NULL.
+*/
+static void *contextMalloc(sqlite3_context *context, i64 nByte){
+ char *z;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( nByte>0 );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ z = 0;
+ }else{
+ z = sqlite3Malloc(nByte);
+ if( !z ){
+ sqlite3_result_error_nomem(context);
+ }
+ }
+ return z;
+}
+
+/*
+** Implementation of the upper() and lower() SQL functions.
+*/
+static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ for(i=0; i<n; i++){
+ z1[i] = (char)sqlite3Toupper(z2[i]);
+ }
+ sqlite3_result_text(context, z1, n, sqlite3_free);
+ }
+ }
+}
+static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ for(i=0; i<n; i++){
+ z1[i] = sqlite3Tolower(z2[i]);
+ }
+ sqlite3_result_text(context, z1, n, sqlite3_free);
+ }
+ }
+}
+
+/*
+** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
+** as VDBE code so that unused argument values do not have to be computed.
+** However, we still need some kind of function implementation for this
+** routines in the function table. The noopFunc macro provides this.
+** noopFunc will never be called so it doesn't matter what the implementation
+** is. We might as well use the "version()" function as a substitute.
+*/
+#define noopFunc versionFunc /* Substitute function - never called */
+
+/*
+** Implementation of random(). Return a random integer.
+*/
+static void randomFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite_int64 r;
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_randomness(sizeof(r), &r);
+ if( r<0 ){
+ /* We need to prevent a random number of 0x8000000000000000
+ ** (or -9223372036854775808) since when you do abs() of that
+ ** number of you get the same value back again. To do this
+ ** in a way that is testable, mask the sign bit off of negative
+ ** values, resulting in a positive value. Then take the
+ ** 2s complement of that positive value. The end result can
+ ** therefore be no less than -9223372036854775807.
+ */
+ r = -(r & LARGEST_INT64);
+ }
+ sqlite3_result_int64(context, r);
+}
+
+/*
+** Implementation of randomblob(N). Return a random blob
+** that is N bytes long.
+*/
+static void randomBlob(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_int64 n;
+ unsigned char *p;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ if( n<1 ){
+ n = 1;
+ }
+ p = contextMalloc(context, n);
+ if( p ){
+ sqlite3_randomness(n, p);
+ sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
+ }
+}
+
+/*
+** Implementation of the last_insert_rowid() SQL function. The return
+** value is the same as the sqlite3_last_insert_rowid() API function.
+*/
+static void last_insert_rowid(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
+ ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
+ ** function. */
+ sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
+}
+
+/*
+** Implementation of the changes() SQL function.
+**
+** IMP: R-32760-32347 The changes() SQL function is a wrapper
+** around the sqlite3_changes64() C/C++ function and hence follows the
+** same rules for counting changes.
+*/
+static void changes(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_result_int64(context, sqlite3_changes64(db));
+}
+
+/*
+** Implementation of the total_changes() SQL function. The return value is
+** the same as the sqlite3_total_changes64() API function.
+*/
+static void total_changes(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-11217-42568 This function is a wrapper around the
+ ** sqlite3_total_changes64() C/C++ interface. */
+ sqlite3_result_int64(context, sqlite3_total_changes64(db));
+}
+
+/*
+** A structure defining how to do GLOB-style comparisons.
+*/
+struct compareInfo {
+ u8 matchAll; /* "*" or "%" */
+ u8 matchOne; /* "?" or "_" */
+ u8 matchSet; /* "[" or 0 */
+ u8 noCase; /* true to ignore case differences */
+};
+
+/*
+** For LIKE and GLOB matching on EBCDIC machines, assume that every
+** character is exactly one byte in size. Also, provide the Utf8Read()
+** macro for fast reading of the next character in the common case where
+** the next character is ASCII.
+*/
+#if defined(SQLITE_EBCDIC)
+# define sqlite3Utf8Read(A) (*((*A)++))
+# define Utf8Read(A) (*(A++))
+#else
+# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
+#endif
+
+static const struct compareInfo globInfo = { '*', '?', '[', 0 };
+/* The correct SQL-92 behavior is for the LIKE operator to ignore
+** case. Thus 'a' LIKE 'A' would be true. */
+static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
+/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
+** is case sensitive causing 'a' LIKE 'A' to be false */
+static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
+
+/*
+** Possible error returns from patternMatch()
+*/
+#define SQLITE_MATCH 0
+#define SQLITE_NOMATCH 1
+#define SQLITE_NOWILDCARDMATCH 2
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a GLOB or LIKE expression. Return values:
+**
+** SQLITE_MATCH: Match
+** SQLITE_NOMATCH: No match
+** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
+**
+** Globbing rules:
+**
+** '*' Matches any sequence of zero or more characters.
+**
+** '?' Matches exactly one character.
+**
+** [...] Matches one character from the enclosed list of
+** characters.
+**
+** [^...] Matches one character not in the enclosed list.
+**
+** With the [...] and [^...] matching, a ']' character can be included
+** in the list by making it the first character after '[' or '^'. A
+** range of characters can be specified using '-'. Example:
+** "[a-z]" matches any single lower-case letter. To match a '-', make
+** it the last character in the list.
+**
+** Like matching rules:
+**
+** '%' Matches any sequence of zero or more characters
+**
+*** '_' Matches any one character
+**
+** Ec Where E is the "esc" character and c is any other
+** character, including '%', '_', and esc, match exactly c.
+**
+** The comments within this routine usually assume glob matching.
+**
+** This routine is usually quick, but can be N**2 in the worst case.
+*/
+static int patternCompare(
+ const u8 *zPattern, /* The glob pattern */
+ const u8 *zString, /* The string to compare against the glob */
+ const struct compareInfo *pInfo, /* Information about how to do the compare */
+ u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
+){
+ u32 c, c2; /* Next pattern and input string chars */
+ u32 matchOne = pInfo->matchOne; /* "?" or "_" */
+ u32 matchAll = pInfo->matchAll; /* "*" or "%" */
+ u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
+ const u8 *zEscaped = 0; /* One past the last escaped input char */
+
+ while( (c = Utf8Read(zPattern))!=0 ){
+ if( c==matchAll ){ /* Match "*" */
+ /* Skip over multiple "*" characters in the pattern. If there
+ ** are also "?" characters, skip those as well, but consume a
+ ** single character of the input string for each "?" skipped */
+ while( (c=Utf8Read(zPattern)) == matchAll
+ || (c == matchOne && matchOne!=0) ){
+ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ }
+ if( c==0 ){
+ return SQLITE_MATCH; /* "*" at the end of the pattern matches */
+ }else if( c==matchOther ){
+ if( pInfo->matchSet==0 ){
+ c = sqlite3Utf8Read(&zPattern);
+ if( c==0 ) return SQLITE_NOWILDCARDMATCH;
+ }else{
+ /* "[...]" immediately follows the "*". We have to do a slow
+ ** recursive search in this case, but it is an unusual case. */
+ assert( matchOther<0x80 ); /* '[' is a single-byte character */
+ while( *zString ){
+ int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ SQLITE_SKIP_UTF8(zString);
+ }
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ }
+
+ /* At this point variable c contains the first character of the
+ ** pattern string past the "*". Search in the input string for the
+ ** first matching character and recursively continue the match from
+ ** that point.
+ **
+ ** For a case-insensitive search, set variable cx to be the same as
+ ** c but in the other case and search the input string for either
+ ** c or cx.
+ */
+ if( c<0x80 ){
+ char zStop[3];
+ int bMatch;
+ if( noCase ){
+ zStop[0] = sqlite3Toupper(c);
+ zStop[1] = sqlite3Tolower(c);
+ zStop[2] = 0;
+ }else{
+ zStop[0] = c;
+ zStop[1] = 0;
+ }
+ while(1){
+ zString += strcspn((const char*)zString, zStop);
+ if( zString[0]==0 ) break;
+ zString++;
+ bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ }
+ }else{
+ int bMatch;
+ while( (c2 = Utf8Read(zString))!=0 ){
+ if( c2!=c ) continue;
+ bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ }
+ }
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ if( c==matchOther ){
+ if( pInfo->matchSet==0 ){
+ c = sqlite3Utf8Read(&zPattern);
+ if( c==0 ) return SQLITE_NOMATCH;
+ zEscaped = zPattern;
+ }else{
+ u32 prior_c = 0;
+ int seen = 0;
+ int invert = 0;
+ c = sqlite3Utf8Read(&zString);
+ if( c==0 ) return SQLITE_NOMATCH;
+ c2 = sqlite3Utf8Read(&zPattern);
+ if( c2=='^' ){
+ invert = 1;
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ if( c2==']' ){
+ if( c==']' ) seen = 1;
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ while( c2 && c2!=']' ){
+ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
+ c2 = sqlite3Utf8Read(&zPattern);
+ if( c>=prior_c && c<=c2 ) seen = 1;
+ prior_c = 0;
+ }else{
+ if( c==c2 ){
+ seen = 1;
+ }
+ prior_c = c2;
+ }
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ){
+ return SQLITE_NOMATCH;
+ }
+ continue;
+ }
+ }
+ c2 = Utf8Read(zString);
+ if( c==c2 ) continue;
+ if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
+ continue;
+ }
+ if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
+ return SQLITE_NOMATCH;
+ }
+ return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
+}
+
+/*
+** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
+** non-zero if there is no match.
+*/
+SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){
+ if( zString==0 ){
+ return zGlobPattern!=0;
+ }else if( zGlobPattern==0 ){
+ return 1;
+ }else {
+ return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
+ }
+}
+
+/*
+** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
+** a miss - like strcmp().
+*/
+SQLITE_API int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
+ if( zStr==0 ){
+ return zPattern!=0;
+ }else if( zPattern==0 ){
+ return 1;
+ }else{
+ return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
+ }
+}
+
+/*
+** Count the number of times that the LIKE operator (or GLOB which is
+** just a variation of LIKE) gets called. This is used for testing
+** only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_like_count = 0;
+#endif
+
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the built-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B,A).
+**
+** This same function (with a different compareInfo structure) computes
+** the GLOB operator.
+*/
+static void likeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA, *zB;
+ u32 escape;
+ int nPat;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ struct compareInfo *pInfo = sqlite3_user_data(context);
+ struct compareInfo backupInfo;
+
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( sqlite3_value_type(argv[0])==SQLITE_BLOB
+ || sqlite3_value_type(argv[1])==SQLITE_BLOB
+ ){
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+ sqlite3_result_int(context, 0);
+ return;
+ }
+#endif
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ nPat = sqlite3_value_bytes(argv[0]);
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
+ if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ const unsigned char *zEsc = sqlite3_value_text(argv[2]);
+ if( zEsc==0 ) return;
+ if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ escape = sqlite3Utf8Read(&zEsc);
+ if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
+ memcpy(&backupInfo, pInfo, sizeof(backupInfo));
+ pInfo = &backupInfo;
+ if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
+ if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
+ }
+ }else{
+ escape = pInfo->matchSet;
+ }
+ zB = sqlite3_value_text(argv[0]);
+ zA = sqlite3_value_text(argv[1]);
+ if( zA && zB ){
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+ sqlite3_result_int(context,
+ patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
+ }
+}
+
+/*
+** Implementation of the NULLIF(x,y) function. The result is the first
+** argument if the arguments are different. The result is NULL if the
+** arguments are equal to each other.
+*/
+static void nullifFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ UNUSED_PARAMETER(NotUsed);
+ if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
+ sqlite3_result_value(context, argv[0]);
+ }
+}
+
+/*
+** Implementation of the sqlite_version() function. The result is the version
+** of the SQLite library that is running.
+*/
+static void versionFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-48699-48617 This function is an SQL wrapper around the
+ ** sqlite3_libversion() C-interface. */
+ sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
+}
+
+/*
+** Implementation of the sqlite_source_id() function. The result is a string
+** that identifies the particular version of the source code used to build
+** SQLite.
+*/
+static void sourceidFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-24470-31136 This function is an SQL wrapper around the
+ ** sqlite3_sourceid() C interface. */
+ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
+}
+
+/*
+** Implementation of the sqlite_log() function. This is a wrapper around
+** sqlite3_log(). The return value is NULL. The function exists purely for
+** its side-effects.
+*/
+static void errlogFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(context);
+ sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
+}
+
+/*
+** Implementation of the sqlite_compileoption_used() function.
+** The result is an integer that identifies if the compiler option
+** was used to build SQLite.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+static void compileoptionusedFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zOptName;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
+ ** function is a wrapper around the sqlite3_compileoption_used() C/C++
+ ** function.
+ */
+ if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
+ sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
+ }
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/*
+** Implementation of the sqlite_compileoption_get() function.
+** The result is a string that identifies the compiler options
+** used to build SQLite.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+static void compileoptiongetFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int n;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
+ ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
+ */
+ n = sqlite3_value_int(argv[0]);
+ sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/* Array for converting from half-bytes (nybbles) into ASCII hex
+** digits. */
+static const char hexdigits[] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
+};
+
+/*
+** Append to pStr text that is the SQL literal representation of the
+** value contained in pValue.
+*/
+SQLITE_PRIVATE void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){
+ /* As currently implemented, the string must be initially empty.
+ ** we might relax this requirement in the future, but that will
+ ** require enhancements to the implementation. */
+ assert( pStr!=0 && pStr->nChar==0 );
+
+ switch( sqlite3_value_type(pValue) ){
+ case SQLITE_FLOAT: {
+ double r1, r2;
+ const char *zVal;
+ r1 = sqlite3_value_double(pValue);
+ sqlite3_str_appendf(pStr, "%!.15g", r1);
+ zVal = sqlite3_str_value(pStr);
+ if( zVal ){
+ sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
+ if( r1!=r2 ){
+ sqlite3_str_reset(pStr);
+ sqlite3_str_appendf(pStr, "%!.20e", r1);
+ }
+ }
+ break;
+ }
+ case SQLITE_INTEGER: {
+ sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
+ break;
+ }
+ case SQLITE_BLOB: {
+ char const *zBlob = sqlite3_value_blob(pValue);
+ i64 nBlob = sqlite3_value_bytes(pValue);
+ assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
+ sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
+ if( pStr->accError==0 ){
+ char *zText = pStr->zText;
+ int i;
+ for(i=0; i<nBlob; i++){
+ zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
+ zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
+ }
+ zText[(nBlob*2)+2] = '\'';
+ zText[(nBlob*2)+3] = '\0';
+ zText[0] = 'X';
+ zText[1] = '\'';
+ pStr->nChar = nBlob*2 + 3;
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *zArg = sqlite3_value_text(pValue);
+ sqlite3_str_appendf(pStr, "%Q", zArg);
+ break;
+ }
+ default: {
+ assert( sqlite3_value_type(pValue)==SQLITE_NULL );
+ sqlite3_str_append(pStr, "NULL", 4);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the QUOTE() function.
+**
+** The quote(X) function returns the text of an SQL literal which is the
+** value of its argument suitable for inclusion into an SQL statement.
+** Strings are surrounded by single-quotes with escapes on interior quotes
+** as needed. BLOBs are encoded as hexadecimal literals. Strings with
+** embedded NUL characters cannot be represented as string literals in SQL
+** and hence the returned string literal is truncated prior to the first NUL.
+*/
+static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ sqlite3_str str;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ sqlite3QuoteValue(&str,argv[0]);
+ sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
+ SQLITE_DYNAMIC);
+ if( str.accError!=SQLITE_OK ){
+ sqlite3_result_null(context);
+ sqlite3_result_error_code(context, str.accError);
+ }
+}
+
+/*
+** The unicode() function. Return the integer unicode code-point value
+** for the first character of the input string.
+*/
+static void unicodeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ (void)argc;
+ if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
+}
+
+/*
+** The char() function takes zero or more arguments, each of which is
+** an integer. It constructs a string where each character of the string
+** is the unicode character for the corresponding integer argument.
+*/
+static void charFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned char *z, *zOut;
+ int i;
+ zOut = z = sqlite3_malloc64( argc*4+1 );
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ for(i=0; i<argc; i++){
+ sqlite3_int64 x;
+ unsigned c;
+ x = sqlite3_value_int64(argv[i]);
+ if( x<0 || x>0x10ffff ) x = 0xfffd;
+ c = (unsigned)(x & 0x1fffff);
+ if( c<0x00080 ){
+ *zOut++ = (u8)(c&0xFF);
+ }else if( c<0x00800 ){
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ }else if( c<0x10000 ){
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ }else{
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ } \
+ }
+ *zOut = 0;
+ sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
+}
+
+/*
+** The hex() function. Interpret the argument as a blob. Return
+** a hexadecimal rendering as text.
+*/
+static void hexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i, n;
+ const unsigned char *pBlob;
+ char *zHex, *z;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ pBlob = sqlite3_value_blob(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
+ if( zHex ){
+ for(i=0; i<n; i++, pBlob++){
+ unsigned char c = *pBlob;
+ *(z++) = hexdigits[(c>>4)&0xf];
+ *(z++) = hexdigits[c&0xf];
+ }
+ *z = 0;
+ sqlite3_result_text64(context, zHex, (u64)(z-zHex),
+ sqlite3_free, SQLITE_UTF8);
+ }
+}
+
+/*
+** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr
+** contains character ch, or 0 if it does not.
+*/
+static int strContainsChar(const u8 *zStr, int nStr, u32 ch){
+ const u8 *zEnd = &zStr[nStr];
+ const u8 *z = zStr;
+ while( z<zEnd ){
+ u32 tst = Utf8Read(z);
+ if( tst==ch ) return 1;
+ }
+ return 0;
+}
+
+/*
+** The unhex() function. This function may be invoked with either one or
+** two arguments. In both cases the first argument is interpreted as text
+** a text value containing a set of pairs of hexadecimal digits which are
+** decoded and returned as a blob.
+**
+** If there is only a single argument, then it must consist only of an
+** even number of hexadecimal digits. Otherwise, return NULL.
+**
+** Or, if there is a second argument, then any character that appears in
+** the second argument is also allowed to appear between pairs of hexadecimal
+** digits in the first argument. If any other character appears in the
+** first argument, or if one of the allowed characters appears between
+** two hexadecimal digits that make up a single byte, NULL is returned.
+**
+** The following expressions are all true:
+**
+** unhex('ABCD') IS x'ABCD'
+** unhex('AB CD') IS NULL
+** unhex('AB CD', ' ') IS x'ABCD'
+** unhex('A BCD', ' ') IS NULL
+*/
+static void unhexFunc(
+ sqlite3_context *pCtx,
+ int argc,
+ sqlite3_value **argv
+){
+ const u8 *zPass = (const u8*)"";
+ int nPass = 0;
+ const u8 *zHex = sqlite3_value_text(argv[0]);
+ int nHex = sqlite3_value_bytes(argv[0]);
+#ifdef SQLITE_DEBUG
+ const u8 *zEnd = zHex ? &zHex[nHex] : 0;
+#endif
+ u8 *pBlob = 0;
+ u8 *p = 0;
+
+ assert( argc==1 || argc==2 );
+ if( argc==2 ){
+ zPass = sqlite3_value_text(argv[1]);
+ nPass = sqlite3_value_bytes(argv[1]);
+ }
+ if( !zHex || !zPass ) return;
+
+ p = pBlob = contextMalloc(pCtx, (nHex/2)+1);
+ if( pBlob ){
+ u8 c; /* Most significant digit of next byte */
+ u8 d; /* Least significant digit of next byte */
+
+ while( (c = *zHex)!=0x00 ){
+ while( !sqlite3Isxdigit(c) ){
+ u32 ch = Utf8Read(zHex);
+ assert( zHex<=zEnd );
+ if( !strContainsChar(zPass, nPass, ch) ) goto unhex_null;
+ c = *zHex;
+ if( c==0x00 ) goto unhex_done;
+ }
+ zHex++;
+ assert( *zEnd==0x00 );
+ assert( zHex<=zEnd );
+ d = *(zHex++);
+ if( !sqlite3Isxdigit(d) ) goto unhex_null;
+ *(p++) = (sqlite3HexToInt(c)<<4) | sqlite3HexToInt(d);
+ }
+ }
+
+ unhex_done:
+ sqlite3_result_blob(pCtx, pBlob, (p - pBlob), sqlite3_free);
+ return;
+
+ unhex_null:
+ sqlite3_free(pBlob);
+ return;
+}
+
+
+/*
+** The zeroblob(N) function returns a zero-filled blob of size N bytes.
+*/
+static void zeroblobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ i64 n;
+ int rc;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ if( n<0 ) n = 0;
+ rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
+ if( rc ){
+ sqlite3_result_error_code(context, rc);
+ }
+}
+
+/*
+** The replace() function. Three arguments are all strings: call
+** them A, B, and C. The result is also a string which is derived
+** from A by replacing every occurrence of B with C. The match
+** must be exact. Collating sequences are not used.
+*/
+static void replaceFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zStr; /* The input string A */
+ const unsigned char *zPattern; /* The pattern string B */
+ const unsigned char *zRep; /* The replacement string C */
+ unsigned char *zOut; /* The output */
+ int nStr; /* Size of zStr */
+ int nPattern; /* Size of zPattern */
+ int nRep; /* Size of zRep */
+ i64 nOut; /* Maximum size of zOut */
+ int loopLimit; /* Last zStr[] that might match zPattern[] */
+ int i, j; /* Loop counters */
+ unsigned cntExpand; /* Number zOut expansions */
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ assert( argc==3 );
+ UNUSED_PARAMETER(argc);
+ zStr = sqlite3_value_text(argv[0]);
+ if( zStr==0 ) return;
+ nStr = sqlite3_value_bytes(argv[0]);
+ assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
+ zPattern = sqlite3_value_text(argv[1]);
+ if( zPattern==0 ){
+ assert( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || sqlite3_context_db_handle(context)->mallocFailed );
+ return;
+ }
+ if( zPattern[0]==0 ){
+ assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
+ sqlite3_result_value(context, argv[0]);
+ return;
+ }
+ nPattern = sqlite3_value_bytes(argv[1]);
+ assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
+ zRep = sqlite3_value_text(argv[2]);
+ if( zRep==0 ) return;
+ nRep = sqlite3_value_bytes(argv[2]);
+ assert( zRep==sqlite3_value_text(argv[2]) );
+ nOut = nStr + 1;
+ assert( nOut<SQLITE_MAX_LENGTH );
+ zOut = contextMalloc(context, (i64)nOut);
+ if( zOut==0 ){
+ return;
+ }
+ loopLimit = nStr - nPattern;
+ cntExpand = 0;
+ for(i=j=0; i<=loopLimit; i++){
+ if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
+ zOut[j++] = zStr[i];
+ }else{
+ if( nRep>nPattern ){
+ nOut += nRep - nPattern;
+ testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ sqlite3_free(zOut);
+ return;
+ }
+ cntExpand++;
+ if( (cntExpand&(cntExpand-1))==0 ){
+ /* Grow the size of the output buffer only on substitutions
+ ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
+ u8 *zOld;
+ zOld = zOut;
+ zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(context);
+ sqlite3_free(zOld);
+ return;
+ }
+ }
+ }
+ memcpy(&zOut[j], zRep, nRep);
+ j += nRep;
+ i += nPattern-1;
+ }
+ }
+ assert( j+nStr-i+1<=nOut );
+ memcpy(&zOut[j], &zStr[i], nStr-i);
+ j += nStr - i;
+ assert( j<=nOut );
+ zOut[j] = 0;
+ sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
+}
+
+/*
+** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
+** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
+*/
+static void trimFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zIn; /* Input string */
+ const unsigned char *zCharSet; /* Set of characters to trim */
+ unsigned int nIn; /* Number of bytes in input */
+ int flags; /* 1: trimleft 2: trimright 3: trim */
+ int i; /* Loop counter */
+ unsigned int *aLen = 0; /* Length of each character in zCharSet */
+ unsigned char **azChar = 0; /* Individual characters in zCharSet */
+ int nChar; /* Number of characters in zCharSet */
+
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
+ return;
+ }
+ zIn = sqlite3_value_text(argv[0]);
+ if( zIn==0 ) return;
+ nIn = (unsigned)sqlite3_value_bytes(argv[0]);
+ assert( zIn==sqlite3_value_text(argv[0]) );
+ if( argc==1 ){
+ static const unsigned lenOne[] = { 1 };
+ static unsigned char * const azOne[] = { (u8*)" " };
+ nChar = 1;
+ aLen = (unsigned*)lenOne;
+ azChar = (unsigned char **)azOne;
+ zCharSet = 0;
+ }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
+ return;
+ }else{
+ const unsigned char *z;
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ SQLITE_SKIP_UTF8(z);
+ }
+ if( nChar>0 ){
+ azChar = contextMalloc(context,
+ ((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
+ if( azChar==0 ){
+ return;
+ }
+ aLen = (unsigned*)&azChar[nChar];
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ azChar[nChar] = (unsigned char *)z;
+ SQLITE_SKIP_UTF8(z);
+ aLen[nChar] = (unsigned)(z - azChar[nChar]);
+ }
+ }
+ }
+ if( nChar>0 ){
+ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
+ if( flags & 1 ){
+ while( nIn>0 ){
+ unsigned int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ zIn += len;
+ nIn -= len;
+ }
+ }
+ if( flags & 2 ){
+ while( nIn>0 ){
+ unsigned int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ nIn -= len;
+ }
+ }
+ if( zCharSet ){
+ sqlite3_free(azChar);
+ }
+ }
+ sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
+}
+
+/* The core implementation of the CONCAT(...) and CONCAT_WS(SEP,...)
+** functions.
+**
+** Return a string value that is the concatenation of all non-null
+** entries in argv[]. Use zSep as the separator.
+*/
+static void concatFuncCore(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ int nSep,
+ const char *zSep
+){
+ i64 j, k, n = 0;
+ int i;
+ char *z;
+ for(i=0; i<argc; i++){
+ n += sqlite3_value_bytes(argv[i]);
+ }
+ n += (argc-1)*nSep;
+ z = sqlite3_malloc64(n+1);
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ j = 0;
+ for(i=0; i<argc; i++){
+ k = sqlite3_value_bytes(argv[i]);
+ if( k>0 ){
+ const char *v = (const char*)sqlite3_value_text(argv[i]);
+ if( v!=0 ){
+ if( j>0 && nSep>0 ){
+ memcpy(&z[j], zSep, nSep);
+ j += nSep;
+ }
+ memcpy(&z[j], v, k);
+ j += k;
+ }
+ }
+ }
+ z[j] = 0;
+ assert( j<=n );
+ sqlite3_result_text64(context, z, j, sqlite3_free, SQLITE_UTF8);
+}
+
+/*
+** The CONCAT(...) function. Generate a string result that is the
+** concatentation of all non-null arguments.
+*/
+static void concatFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ concatFuncCore(context, argc, argv, 0, "");
+}
+
+/*
+** The CONCAT_WS(separator, ...) function.
+**
+** Generate a string that is the concatenation of 2nd through the Nth
+** argument. Use the first argument (which must be non-NULL) as the
+** separator.
+*/
+static void concatwsFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int nSep = sqlite3_value_bytes(argv[0]);
+ const char *zSep = (const char*)sqlite3_value_text(argv[0]);
+ if( zSep==0 ) return;
+ concatFuncCore(context, argc-1, argv+1, nSep, zSep);
+}
+
+
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+/*
+** The "unknown" function is automatically substituted in place of
+** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
+** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used.
+** When the "sqlite3" command-line shell is built using this functionality,
+** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
+** involving application-defined functions to be examined in a generic
+** sqlite3 shell.
+*/
+static void unknownFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ /* no-op */
+ (void)context;
+ (void)argc;
+ (void)argv;
+}
+#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
+
+
+/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
+** is only available if the SQLITE_SOUNDEX compile-time option is used
+** when SQLite is built.
+*/
+#ifdef SQLITE_SOUNDEX
+/*
+** Compute the soundex encoding of a word.
+**
+** IMP: R-59782-00072 The soundex(X) function returns a string that is the
+** soundex encoding of the string X.
+*/
+static void soundexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ char zResult[8];
+ const u8 *zIn;
+ int i, j;
+ static const unsigned char iCode[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ };
+ assert( argc==1 );
+ zIn = (u8*)sqlite3_value_text(argv[0]);
+ if( zIn==0 ) zIn = (u8*)"";
+ for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
+ if( zIn[i] ){
+ u8 prevcode = iCode[zIn[i]&0x7f];
+ zResult[0] = sqlite3Toupper(zIn[i]);
+ for(j=1; j<4 && zIn[i]; i++){
+ int code = iCode[zIn[i]&0x7f];
+ if( code>0 ){
+ if( code!=prevcode ){
+ prevcode = code;
+ zResult[j++] = code + '0';
+ }
+ }else{
+ prevcode = 0;
+ }
+ }
+ while( j<4 ){
+ zResult[j++] = '0';
+ }
+ zResult[j] = 0;
+ sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
+ }else{
+ /* IMP: R-64894-50321 The string "?000" is returned if the argument
+ ** is NULL or contains no ASCII alphabetic characters. */
+ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
+ }
+}
+#endif /* SQLITE_SOUNDEX */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** A function that loads a shared-library extension then returns NULL.
+*/
+static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
+ const char *zFile = (const char *)sqlite3_value_text(argv[0]);
+ const char *zProc;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char *zErrMsg = 0;
+
+ /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
+ ** flag is set. See the sqlite3_enable_load_extension() API.
+ */
+ if( (db->flags & SQLITE_LoadExtFunc)==0 ){
+ sqlite3_result_error(context, "not authorized", -1);
+ return;
+ }
+
+ if( argc==2 ){
+ zProc = (const char *)sqlite3_value_text(argv[1]);
+ }else{
+ zProc = 0;
+ }
+ if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
+ sqlite3_result_error(context, zErrMsg, -1);
+ sqlite3_free(zErrMsg);
+ }
+}
+#endif
+
+
+/*
+** An instance of the following structure holds the context of a
+** sum() or avg() aggregate computation.
+*/
+typedef struct SumCtx SumCtx;
+struct SumCtx {
+ double rSum; /* Running sum as as a double */
+ double rErr; /* Error term for Kahan-Babushka-Neumaier summation */
+ i64 iSum; /* Running sum as a signed integer */
+ i64 cnt; /* Number of elements summed */
+ u8 approx; /* True if any non-integer value was input to the sum */
+ u8 ovrfl; /* Integer overflow seen */
+};
+
+/*
+** Do one step of the Kahan-Babushka-Neumaier summation.
+**
+** https://en.wikipedia.org/wiki/Kahan_summation_algorithm
+**
+** Variables are marked "volatile" to defeat c89 x86 floating point
+** optimizations can mess up this algorithm.
+*/
+static void kahanBabuskaNeumaierStep(
+ volatile SumCtx *pSum,
+ volatile double r
+){
+ volatile double s = pSum->rSum;
+ volatile double t = s + r;
+ if( fabs(s) > fabs(r) ){
+ pSum->rErr += (s - t) + r;
+ }else{
+ pSum->rErr += (r - t) + s;
+ }
+ pSum->rSum = t;
+}
+
+/*
+** Add a (possibly large) integer to the running sum.
+*/
+static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){
+ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
+ i64 iBig, iSm;
+ iSm = iVal % 16384;
+ iBig = iVal - iSm;
+ kahanBabuskaNeumaierStep(pSum, iBig);
+ kahanBabuskaNeumaierStep(pSum, iSm);
+ }else{
+ kahanBabuskaNeumaierStep(pSum, (double)iVal);
+ }
+}
+
+/*
+** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer
+*/
+static void kahanBabuskaNeumaierInit(
+ volatile SumCtx *p,
+ i64 iVal
+){
+ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
+ i64 iSm = iVal % 16384;
+ p->rSum = (double)(iVal - iSm);
+ p->rErr = (double)iSm;
+ }else{
+ p->rSum = (double)iVal;
+ p->rErr = 0.0;
+ }
+}
+
+/*
+** Routines used to compute the sum, average, and total.
+**
+** The SUM() function follows the (broken) SQL standard which means
+** that it returns NULL if it sums over no inputs. TOTAL returns
+** 0.0 in that case. In addition, TOTAL always returns a float where
+** SUM might return an integer if it never encounters a floating point
+** value. TOTAL never fails, but SUM might through an exception if
+** it overflows an integer.
+*/
+static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ if( p && type!=SQLITE_NULL ){
+ p->cnt++;
+ if( p->approx==0 ){
+ if( type!=SQLITE_INTEGER ){
+ kahanBabuskaNeumaierInit(p, p->iSum);
+ p->approx = 1;
+ kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
+ }else{
+ i64 x = p->iSum;
+ if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){
+ p->iSum = x;
+ }else{
+ p->ovrfl = 1;
+ kahanBabuskaNeumaierInit(p, p->iSum);
+ p->approx = 1;
+ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
+ }
+ }
+ }else{
+ if( type==SQLITE_INTEGER ){
+ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
+ }else{
+ p->ovrfl = 0;
+ kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
+ }
+ }
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ /* p is always non-NULL because sumStep() will have been called first
+ ** to initialize it */
+ if( ALWAYS(p) && type!=SQLITE_NULL ){
+ assert( p->cnt>0 );
+ p->cnt--;
+ if( !p->approx ){
+ p->iSum -= sqlite3_value_int64(argv[0]);
+ }else if( type==SQLITE_INTEGER ){
+ i64 iVal = sqlite3_value_int64(argv[0]);
+ if( iVal!=SMALLEST_INT64 ){
+ kahanBabuskaNeumaierStepInt64(p, -iVal);
+ }else{
+ kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64);
+ kahanBabuskaNeumaierStepInt64(p, 1);
+ }
+ }else{
+ kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0]));
+ }
+ }
+}
+#else
+# define sumInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void sumFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ if( p->approx ){
+ if( p->ovrfl ){
+ sqlite3_result_error(context,"integer overflow",-1);
+ }else if( !sqlite3IsNaN(p->rErr) ){
+ sqlite3_result_double(context, p->rSum+p->rErr);
+ }else{
+ sqlite3_result_double(context, p->rSum);
+ }
+ }else{
+ sqlite3_result_int64(context, p->iSum);
+ }
+ }
+}
+static void avgFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ double r;
+ if( p->approx ){
+ r = p->rSum;
+ if( !sqlite3IsNaN(p->rErr) ) r += p->rErr;
+ }else{
+ r = (double)(p->iSum);
+ }
+ sqlite3_result_double(context, r/(double)p->cnt);
+ }
+}
+static void totalFinalize(sqlite3_context *context){
+ SumCtx *p;
+ double r = 0.0;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p ){
+ if( p->approx ){
+ r = p->rSum;
+ if( !sqlite3IsNaN(p->rErr) ) r += p->rErr;
+ }else{
+ r = (double)(p->iSum);
+ }
+ }
+ sqlite3_result_double(context, r);
+}
+
+/*
+** The following structure keeps track of state information for the
+** count() aggregate function.
+*/
+typedef struct CountCtx CountCtx;
+struct CountCtx {
+ i64 n;
+#ifdef SQLITE_DEBUG
+ int bInverse; /* True if xInverse() ever called */
+#endif
+};
+
+/*
+** Routines to implement the count() aggregate function.
+*/
+static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
+ p->n++;
+ }
+
+#ifndef SQLITE_OMIT_DEPRECATED
+ /* The sqlite3_aggregate_count() function is deprecated. But just to make
+ ** sure it still operates correctly, verify that its count agrees with our
+ ** internal count when using count(*) and when the total count can be
+ ** expressed as a 32-bit integer. */
+ assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
+ || p->n==sqlite3_aggregate_count(context) );
+#endif
+}
+static void countFinalize(sqlite3_context *context){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ sqlite3_result_int64(context, p ? p->n : 0);
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(ctx, sizeof(*p));
+ /* p is always non-NULL since countStep() will have been called first */
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
+ p->n--;
+#ifdef SQLITE_DEBUG
+ p->bInverse = 1;
+#endif
+ }
+}
+#else
+# define countInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Routines to implement min() and max() aggregate functions.
+*/
+static void minmaxStep(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ Mem *pArg = (Mem *)argv[0];
+ Mem *pBest;
+ UNUSED_PARAMETER(NotUsed);
+
+ pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
+ if( !pBest ) return;
+
+ if( sqlite3_value_type(pArg)==SQLITE_NULL ){
+ if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
+ }else if( pBest->flags ){
+ int max;
+ int cmp;
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ /* This step function is used for both the min() and max() aggregates,
+ ** the only difference between the two being that the sense of the
+ ** comparison is inverted. For the max() aggregate, the
+ ** sqlite3_user_data() function returns (void *)-1. For min() it
+ ** returns (void *)db, where db is the sqlite3* database pointer.
+ ** Therefore the next statement sets variable 'max' to 1 for the max()
+ ** aggregate, or 0 for min().
+ */
+ max = sqlite3_user_data(context)!=0;
+ cmp = sqlite3MemCompare(pBest, pArg, pColl);
+ if( (max && cmp<0) || (!max && cmp>0) ){
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }else{
+ sqlite3SkipAccumulatorLoad(context);
+ }
+ }else{
+ pBest->db = sqlite3_context_db_handle(context);
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }
+}
+static void minMaxValueFinalize(sqlite3_context *context, int bValue){
+ sqlite3_value *pRes;
+ pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
+ if( pRes ){
+ if( pRes->flags ){
+ sqlite3_result_value(context, pRes);
+ }
+ if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void minMaxValue(sqlite3_context *context){
+ minMaxValueFinalize(context, 1);
+}
+#else
+# define minMaxValue 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void minMaxFinalize(sqlite3_context *context){
+ minMaxValueFinalize(context, 0);
+}
+
+/*
+** group_concat(EXPR, ?SEPARATOR?)
+** string_agg(EXPR, SEPARATOR)
+**
+** The SEPARATOR goes before the EXPR string. This is tragic. The
+** groupConcatInverse() implementation would have been easier if the
+** SEPARATOR were appended after EXPR. And the order is undocumented,
+** so we could change it, in theory. But the old behavior has been
+** around for so long that we dare not, for fear of breaking something.
+*/
+typedef struct {
+ StrAccum str; /* The accumulated concatenation */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ int nAccum; /* Number of strings presently concatenated */
+ int nFirstSepLength; /* Used to detect separator length change */
+ /* If pnSepLengths!=0, refs an array of inter-string separator lengths,
+ ** stored as actually incorporated into presently accumulated result.
+ ** (Hence, its slots in use number nAccum-1 between method calls.)
+ ** If pnSepLengths==0, nFirstSepLength is the length used throughout.
+ */
+ int *pnSepLengths;
+#endif
+} GroupConcatCtx;
+
+static void groupConcatStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zVal;
+ GroupConcatCtx *pGCC;
+ const char *zSep;
+ int nVal, nSep;
+ assert( argc==1 || argc==2 );
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
+ if( pGCC ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int firstTerm = pGCC->str.mxAlloc==0;
+ pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
+ if( argc==1 ){
+ if( !firstTerm ){
+ sqlite3_str_appendchar(&pGCC->str, 1, ',');
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ pGCC->nFirstSepLength = 1;
+ }
+#endif
+ }else if( !firstTerm ){
+ zSep = (char*)sqlite3_value_text(argv[1]);
+ nSep = sqlite3_value_bytes(argv[1]);
+ if( zSep ){
+ sqlite3_str_append(&pGCC->str, zSep, nSep);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ nSep = 0;
+ }
+ if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
+ int *pnsl = pGCC->pnSepLengths;
+ if( pnsl == 0 ){
+ /* First separator length variation seen, start tracking them. */
+ pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
+ if( pnsl!=0 ){
+ int i = 0, nA = pGCC->nAccum-1;
+ while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
+ }
+ }else{
+ pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
+ }
+ if( pnsl!=0 ){
+ if( ALWAYS(pGCC->nAccum>0) ){
+ pnsl[pGCC->nAccum-1] = nSep;
+ }
+ pGCC->pnSepLengths = pnsl;
+ }else{
+ sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
+ }
+ }
+#endif
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
+ }
+ pGCC->nAccum += 1;
+#endif
+ zVal = (char*)sqlite3_value_text(argv[0]);
+ nVal = sqlite3_value_bytes(argv[0]);
+ if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
+ }
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void groupConcatInverse(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GroupConcatCtx *pGCC;
+ assert( argc==1 || argc==2 );
+ (void)argc; /* Suppress unused parameter warning */
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
+ /* pGCC is always non-NULL since groupConcatStep() will have always
+ ** run first to initialize it */
+ if( ALWAYS(pGCC) ){
+ int nVS;
+ /* Must call sqlite3_value_text() to convert the argument into text prior
+ ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
+ (void)sqlite3_value_text(argv[0]);
+ nVS = sqlite3_value_bytes(argv[0]);
+ pGCC->nAccum -= 1;
+ if( pGCC->pnSepLengths!=0 ){
+ assert(pGCC->nAccum >= 0);
+ if( pGCC->nAccum>0 ){
+ nVS += *pGCC->pnSepLengths;
+ memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
+ (pGCC->nAccum-1)*sizeof(int));
+ }
+ }else{
+ /* If removing single accumulated string, harmlessly over-do. */
+ nVS += pGCC->nFirstSepLength;
+ }
+ if( nVS>=(int)pGCC->str.nChar ){
+ pGCC->str.nChar = 0;
+ }else{
+ pGCC->str.nChar -= nVS;
+ memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
+ }
+ if( pGCC->str.nChar==0 ){
+ pGCC->str.mxAlloc = 0;
+ sqlite3_free(pGCC->pnSepLengths);
+ pGCC->pnSepLengths = 0;
+ }
+ }
+}
+#else
+# define groupConcatInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void groupConcatFinalize(sqlite3_context *context){
+ GroupConcatCtx *pGCC
+ = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
+ if( pGCC ){
+ sqlite3ResultStrAccum(context, &pGCC->str);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ sqlite3_free(pGCC->pnSepLengths);
+#endif
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void groupConcatValue(sqlite3_context *context){
+ GroupConcatCtx *pGCC
+ = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
+ if( pGCC ){
+ StrAccum *pAccum = &pGCC->str;
+ if( pAccum->accError==SQLITE_TOOBIG ){
+ sqlite3_result_error_toobig(context);
+ }else if( pAccum->accError==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ const char *zText = sqlite3_str_value(pAccum);
+ sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
+ }
+ }
+}
+#else
+# define groupConcatValue 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** This routine does per-connection function registration. Most
+** of the built-in functions above are part of the global function set.
+** This routine only deals with those that are not global.
+*/
+SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
+ int rc = sqlite3_overload_function(db, "MATCH", 2);
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+}
+
+/*
+** Re-register the built-in LIKE functions. The caseSensitive
+** parameter determines whether or not the LIKE operator is case
+** sensitive.
+*/
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
+ FuncDef *pDef;
+ struct compareInfo *pInfo;
+ int flags;
+ int nArg;
+ if( caseSensitive ){
+ pInfo = (struct compareInfo*)&likeInfoAlt;
+ flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
+ }else{
+ pInfo = (struct compareInfo*)&likeInfoNorm;
+ flags = SQLITE_FUNC_LIKE;
+ }
+ for(nArg=2; nArg<=3; nArg++){
+ sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc,
+ 0, 0, 0, 0, 0);
+ pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0);
+ pDef->funcFlags |= flags;
+ pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE;
+ }
+}
+
+/*
+** pExpr points to an expression which implements a function. If
+** it is appropriate to apply the LIKE optimization to that function
+** then set aWc[0] through aWc[2] to the wildcard characters and the
+** escape character and then return TRUE. If the function is not a
+** LIKE-style function then return FALSE.
+**
+** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
+** operator if c is a string literal that is exactly one byte in length.
+** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
+** no ESCAPE clause.
+**
+** *pIsNocase is set to true if uppercase and lowercase are equivalent for
+** the function (default for LIKE). If the function makes the distinction
+** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
+** false.
+*/
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
+ FuncDef *pDef;
+ int nExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->op==TK_FUNCTION );
+ assert( ExprUseXList(pExpr) );
+ if( !pExpr->x.pList ){
+ return 0;
+ }
+ nExpr = pExpr->x.pList->nExpr;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ if( pDef==0 ) return 0;
+#endif
+ if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
+ return 0;
+ }
+
+ /* The memcpy() statement assumes that the wildcard characters are
+ ** the first three statements in the compareInfo structure. The
+ ** asserts() that follow verify that assumption
+ */
+ memcpy(aWc, pDef->pUserData, 3);
+ assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
+ assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
+ assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
+
+ if( nExpr<3 ){
+ aWc[3] = 0;
+ }else{
+ Expr *pEscape = pExpr->x.pList->a[2].pExpr;
+ char *zEscape;
+ if( pEscape->op!=TK_STRING ) return 0;
+ assert( !ExprHasProperty(pEscape, EP_IntValue) );
+ zEscape = pEscape->u.zToken;
+ if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
+ if( zEscape[0]==aWc[0] ) return 0;
+ if( zEscape[0]==aWc[1] ) return 0;
+ aWc[3] = zEscape[0];
+ }
+
+ *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
+ return 1;
+}
+
+/* Mathematical Constants */
+#ifndef M_PI
+# define M_PI 3.141592653589793238462643383279502884
+#endif
+#ifndef M_LN10
+# define M_LN10 2.302585092994045684017991454684364208
+#endif
+#ifndef M_LN2
+# define M_LN2 0.693147180559945309417232121458176568
+#endif
+
+
+/* Extra math functions that require linking with -lm
+*/
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+/*
+** Implementation SQL functions:
+**
+** ceil(X)
+** ceiling(X)
+** floor(X)
+**
+** The sqlite3_user_data() pointer is a pointer to the libm implementation
+** of the underlying C function.
+*/
+static void ceilingFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
+ break;
+ }
+ case SQLITE_FLOAT: {
+ double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
+ sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+}
+
+/*
+** On some systems, ceil() and floor() are intrinsic function. You are
+** unable to take a pointer to these functions. Hence, we here wrap them
+** in our own actual functions.
+*/
+static double xCeil(double x){ return ceil(x); }
+static double xFloor(double x){ return floor(x); }
+
+/*
+** Some systems do not have log2() and log10() in their standard math
+** libraries.
+*/
+#if defined(HAVE_LOG10) && HAVE_LOG10==0
+# define log10(X) (0.4342944819032517867*log(X))
+#endif
+#if defined(HAVE_LOG2) && HAVE_LOG2==0
+# define log2(X) (1.442695040888963456*log(X))
+#endif
+
+
+/*
+** Implementation of SQL functions:
+**
+** ln(X) - natural logarithm
+** log(X) - log X base 10
+** log10(X) - log X base 10
+** log(B,X) - log X base B
+*/
+static void logFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ double x, b, ans;
+ assert( argc==1 || argc==2 );
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ x = sqlite3_value_double(argv[0]);
+ if( x<=0.0 ) return;
+ break;
+ default:
+ return;
+ }
+ if( argc==2 ){
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ b = log(x);
+ if( b<=0.0 ) return;
+ x = sqlite3_value_double(argv[1]);
+ if( x<=0.0 ) return;
+ break;
+ default:
+ return;
+ }
+ ans = log(x)/b;
+ }else{
+ switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
+ case 1:
+ ans = log10(x);
+ break;
+ case 2:
+ ans = log2(x);
+ break;
+ default:
+ ans = log(x);
+ break;
+ }
+ }
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Functions to converts degrees to radians and radians to degrees.
+*/
+static double degToRad(double x){ return x*(M_PI/180.0); }
+static double radToDeg(double x){ return x*(180.0/M_PI); }
+
+/*
+** Implementation of 1-argument SQL math functions:
+**
+** exp(X) - Compute e to the X-th power
+*/
+static void math1Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0;
+ double v0, ans;
+ double (*x)(double);
+ assert( argc==1 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ v0 = sqlite3_value_double(argv[0]);
+ x = (double(*)(double))sqlite3_user_data(context);
+ ans = x(v0);
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Implementation of 2-argument SQL math functions:
+**
+** power(X,Y) - Compute X to the Y-th power
+*/
+static void math2Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0, type1;
+ double v0, v1, ans;
+ double (*x)(double,double);
+ assert( argc==2 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ type1 = sqlite3_value_numeric_type(argv[1]);
+ if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
+ v0 = sqlite3_value_double(argv[0]);
+ v1 = sqlite3_value_double(argv[1]);
+ x = (double(*)(double,double))sqlite3_user_data(context);
+ ans = x(v0, v1);
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Implementation of 0-argument pi() function.
+*/
+static void piFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==0 );
+ (void)argv;
+ sqlite3_result_double(context, M_PI);
+}
+
+#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
+
+/*
+** Implementation of sign(X) function.
+*/
+static void signFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0;
+ double x;
+ UNUSED_PARAMETER(argc);
+ assert( argc==1 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ x = sqlite3_value_double(argv[0]);
+ sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Implementation of fpdecode(x,y,z) function.
+**
+** x is a real number that is to be decoded. y is the precision.
+** z is the maximum real precision.
+*/
+static void fpdecodeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ FpDecode s;
+ double x;
+ int y, z;
+ char zBuf[100];
+ UNUSED_PARAMETER(argc);
+ assert( argc==3 );
+ x = sqlite3_value_double(argv[0]);
+ y = sqlite3_value_int(argv[1]);
+ z = sqlite3_value_int(argv[2]);
+ sqlite3FpDecode(&s, x, y, z);
+ if( s.isSpecial==2 ){
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN");
+ }else{
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP);
+ }
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** All of the FuncDef structures in the aBuiltinFunc[] array above
+** to the global function hash table. This occurs at start-time (as
+** a consequence of calling sqlite3_initialize()).
+**
+** After this routine runs
+*/
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void){
+ /*
+ ** The following array holds FuncDef structures for all of the functions
+ ** defined in this file.
+ **
+ ** The array cannot be constant since changes are made to the
+ ** FuncDef.pHash elements at start-time. The elements of this array
+ ** are read-only after initialization is complete.
+ **
+ ** For peak efficiency, put the most frequently used function last.
+ */
+ static FuncDef aBuiltinFunc[] = {
+/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
+#if !defined(SQLITE_UNTESTABLE)
+ TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
+ TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
+ TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
+ TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
+#endif /* !defined(SQLITE_UNTESTABLE) */
+/***** Regular functions *****/
+#ifdef SQLITE_SOUNDEX
+ FUNCTION(soundex, 1, 0, 0, soundexFunc ),
+#endif
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+ SFUNCTION(load_extension, 1, 0, 0, loadExt ),
+ SFUNCTION(load_extension, 2, 0, 0, loadExt ),
+#endif
+#if SQLITE_USER_AUTHENTICATION
+ FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
+#endif
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
+ DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+ INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+ INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+ INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
+#endif
+ FUNCTION(ltrim, 1, 1, 0, trimFunc ),
+ FUNCTION(ltrim, 2, 1, 0, trimFunc ),
+ FUNCTION(rtrim, 1, 2, 0, trimFunc ),
+ FUNCTION(rtrim, 2, 2, 0, trimFunc ),
+ FUNCTION(trim, 1, 3, 0, trimFunc ),
+ FUNCTION(trim, 2, 3, 0, trimFunc ),
+ FUNCTION(min, -1, 0, 1, minmaxFunc ),
+ FUNCTION(min, 0, 0, 1, 0 ),
+ WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
+ SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
+ FUNCTION(max, -1, 1, 1, minmaxFunc ),
+ FUNCTION(max, 0, 1, 1, 0 ),
+ WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
+ SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
+ FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
+ FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF),
+ FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
+ FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN),
+ FUNCTION(instr, 2, 0, 0, instrFunc ),
+ FUNCTION(printf, -1, 0, 0, printfFunc ),
+ FUNCTION(format, -1, 0, 0, printfFunc ),
+ FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
+ FUNCTION(char, -1, 0, 0, charFunc ),
+ FUNCTION(abs, 1, 0, 0, absFunc ),
+#ifdef SQLITE_DEBUG
+ FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ),
+#endif
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ FUNCTION(round, 1, 0, 0, roundFunc ),
+ FUNCTION(round, 2, 0, 0, roundFunc ),
+#endif
+ FUNCTION(upper, 1, 0, 0, upperFunc ),
+ FUNCTION(lower, 1, 0, 0, lowerFunc ),
+ FUNCTION(hex, 1, 0, 0, hexFunc ),
+ FUNCTION(unhex, 1, 0, 0, unhexFunc ),
+ FUNCTION(unhex, 2, 0, 0, unhexFunc ),
+ FUNCTION(concat, -1, 0, 0, concatFunc ),
+ FUNCTION(concat, 0, 0, 0, 0 ),
+ FUNCTION(concat_ws, -1, 0, 0, concatwsFunc ),
+ FUNCTION(concat_ws, 0, 0, 0, 0 ),
+ FUNCTION(concat_ws, 1, 0, 0, 0 ),
+ INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
+ VFUNCTION(random, 0, 0, 0, randomFunc ),
+ VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
+ FUNCTION(nullif, 2, 0, 1, nullifFunc ),
+ DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
+ DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
+ FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
+ FUNCTION(quote, 1, 0, 0, quoteFunc ),
+ VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
+ VFUNCTION(changes, 0, 0, 0, changes ),
+ VFUNCTION(total_changes, 0, 0, 0, total_changes ),
+ FUNCTION(replace, 3, 0, 0, replaceFunc ),
+ FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
+ FUNCTION(substr, 2, 0, 0, substrFunc ),
+ FUNCTION(substr, 3, 0, 0, substrFunc ),
+ FUNCTION(substring, 2, 0, 0, substrFunc ),
+ FUNCTION(substring, 3, 0, 0, substrFunc ),
+ WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
+ WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
+ WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
+ WAGGREGATE(count, 0,0,0, countStep,
+ countFinalize, countFinalize, countInverse,
+ SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
+ WAGGREGATE(count, 1,0,0, countStep,
+ countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
+ WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+ WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+ WAGGREGATE(string_agg, 2, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+
+ LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+#ifdef SQLITE_CASE_SENSITIVE_LIKE
+ LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+ LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+#else
+ LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
+ LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
+#endif
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ FUNCTION(unknown, -1, 0, 0, unknownFunc ),
+#endif
+ FUNCTION(coalesce, 1, 0, 0, 0 ),
+ FUNCTION(coalesce, 0, 0, 0, 0 ),
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+ MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
+ MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
+ MFUNCTION(floor, 1, xFloor, ceilingFunc ),
+#if SQLITE_HAVE_C99_MATH_FUNCS
+ MFUNCTION(trunc, 1, trunc, ceilingFunc ),
+#endif
+ FUNCTION(ln, 1, 0, 0, logFunc ),
+ FUNCTION(log, 1, 1, 0, logFunc ),
+ FUNCTION(log10, 1, 1, 0, logFunc ),
+ FUNCTION(log2, 1, 2, 0, logFunc ),
+ FUNCTION(log, 2, 0, 0, logFunc ),
+ MFUNCTION(exp, 1, exp, math1Func ),
+ MFUNCTION(pow, 2, pow, math2Func ),
+ MFUNCTION(power, 2, pow, math2Func ),
+ MFUNCTION(mod, 2, fmod, math2Func ),
+ MFUNCTION(acos, 1, acos, math1Func ),
+ MFUNCTION(asin, 1, asin, math1Func ),
+ MFUNCTION(atan, 1, atan, math1Func ),
+ MFUNCTION(atan2, 2, atan2, math2Func ),
+ MFUNCTION(cos, 1, cos, math1Func ),
+ MFUNCTION(sin, 1, sin, math1Func ),
+ MFUNCTION(tan, 1, tan, math1Func ),
+ MFUNCTION(cosh, 1, cosh, math1Func ),
+ MFUNCTION(sinh, 1, sinh, math1Func ),
+ MFUNCTION(tanh, 1, tanh, math1Func ),
+#if SQLITE_HAVE_C99_MATH_FUNCS
+ MFUNCTION(acosh, 1, acosh, math1Func ),
+ MFUNCTION(asinh, 1, asinh, math1Func ),
+ MFUNCTION(atanh, 1, atanh, math1Func ),
+#endif
+ MFUNCTION(sqrt, 1, sqrt, math1Func ),
+ MFUNCTION(radians, 1, degToRad, math1Func ),
+ MFUNCTION(degrees, 1, radToDeg, math1Func ),
+ FUNCTION(pi, 0, 0, 0, piFunc ),
+#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
+ FUNCTION(sign, 1, 0, 0, signFunc ),
+ INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
+ INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
+ };
+#ifndef SQLITE_OMIT_ALTERTABLE
+ sqlite3AlterFunctions();
+#endif
+ sqlite3WindowFunctions();
+ sqlite3RegisterDateTimeFunctions();
+ sqlite3RegisterJsonFunctions();
+ sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
+
+#if 0 /* Enable to print out how the built-in functions are hashed */
+ {
+ int i;
+ FuncDef *p;
+ for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
+ printf("FUNC-HASH %02d:", i);
+ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
+ int n = sqlite3Strlen30(p->zName);
+ int h = p->zName[0] + n;
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ printf(" %s(%d)", p->zName, h);
+ }
+ printf("\n");
+ }
+ }
+#endif
+}
+
+/************** End of func.c ************************************************/
+/************** Begin file fkey.c ********************************************/
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used by the compiler to add foreign key
+** support to compiled SQL statements.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+#ifndef SQLITE_OMIT_TRIGGER
+
+/*
+** Deferred and Immediate FKs
+** --------------------------
+**
+** Foreign keys in SQLite come in two flavours: deferred and immediate.
+** If an immediate foreign key constraint is violated,
+** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
+** statement transaction rolled back. If a
+** deferred foreign key constraint is violated, no action is taken
+** immediately. However if the application attempts to commit the
+** transaction before fixing the constraint violation, the attempt fails.
+**
+** Deferred constraints are implemented using a simple counter associated
+** with the database handle. The counter is set to zero each time a
+** database transaction is opened. Each time a statement is executed
+** that causes a foreign key violation, the counter is incremented. Each
+** time a statement is executed that removes an existing violation from
+** the database, the counter is decremented. When the transaction is
+** committed, the commit fails if the current value of the counter is
+** greater than zero. This scheme has two big drawbacks:
+**
+** * When a commit fails due to a deferred foreign key constraint,
+** there is no way to tell which foreign constraint is not satisfied,
+** or which row it is not satisfied for.
+**
+** * If the database contains foreign key violations when the
+** transaction is opened, this may cause the mechanism to malfunction.
+**
+** Despite these problems, this approach is adopted as it seems simpler
+** than the alternatives.
+**
+** INSERT operations:
+**
+** I.1) For each FK for which the table is the child table, search
+** the parent table for a match. If none is found increment the
+** constraint counter.
+**
+** I.2) For each FK for which the table is the parent table,
+** search the child table for rows that correspond to the new
+** row in the parent table. Decrement the counter for each row
+** found (as the constraint is now satisfied).
+**
+** DELETE operations:
+**
+** D.1) For each FK for which the table is the child table,
+** search the parent table for a row that corresponds to the
+** deleted row in the child table. If such a row is not found,
+** decrement the counter.
+**
+** D.2) For each FK for which the table is the parent table, search
+** the child table for rows that correspond to the deleted row
+** in the parent table. For each found increment the counter.
+**
+** UPDATE operations:
+**
+** An UPDATE command requires that all 4 steps above are taken, but only
+** for FK constraints for which the affected columns are actually
+** modified (values must be compared at runtime).
+**
+** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
+** This simplifies the implementation a bit.
+**
+** For the purposes of immediate FK constraints, the OR REPLACE conflict
+** resolution is considered to delete rows before the new row is inserted.
+** If a delete caused by OR REPLACE violates an FK constraint, an exception
+** is thrown, even if the FK constraint would be satisfied after the new
+** row is inserted.
+**
+** Immediate constraints are usually handled similarly. The only difference
+** is that the counter used is stored as part of each individual statement
+** object (struct Vdbe). If, after the statement has run, its immediate
+** constraint counter is greater than zero,
+** it returns SQLITE_CONSTRAINT_FOREIGNKEY
+** and the statement transaction is rolled back. An exception is an INSERT
+** statement that inserts a single row only (no triggers). In this case,
+** instead of using a counter, an exception is thrown immediately if the
+** INSERT violates a foreign key constraint. This is necessary as such
+** an INSERT does not open a statement transaction.
+**
+** TODO: How should dropping a table be handled? How should renaming a
+** table be handled?
+**
+**
+** Query API Notes
+** ---------------
+**
+** Before coding an UPDATE or DELETE row operation, the code-generator
+** for those two operations needs to know whether or not the operation
+** requires any FK processing and, if so, which columns of the original
+** row are required by the FK processing VDBE code (i.e. if FKs were
+** implemented using triggers, which of the old.* columns would be
+** accessed). No information is required by the code-generator before
+** coding an INSERT operation. The functions used by the UPDATE/DELETE
+** generation code to query for this information are:
+**
+** sqlite3FkRequired() - Test to see if FK processing is required.
+** sqlite3FkOldmask() - Query for the set of required old.* columns.
+**
+**
+** Externally accessible module functions
+** --------------------------------------
+**
+** sqlite3FkCheck() - Check for foreign key violations.
+** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
+** sqlite3FkDelete() - Delete an FKey structure.
+*/
+
+/*
+** VDBE Calling Convention
+** -----------------------
+**
+** Example:
+**
+** For the following INSERT statement:
+**
+** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
+** INSERT INTO t1 VALUES(1, 2, 3.1);
+**
+** Register (x): 2 (type integer)
+** Register (x+1): 1 (type integer)
+** Register (x+2): NULL (type NULL)
+** Register (x+3): 3.1 (type real)
+*/
+
+/*
+** A foreign key constraint requires that the key columns in the parent
+** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
+** Given that pParent is the parent table for foreign key constraint pFKey,
+** search the schema for a unique index on the parent key columns.
+**
+** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
+** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
+** is set to point to the unique index.
+**
+** If the parent key consists of a single column (the foreign key constraint
+** is not a composite foreign key), output variable *paiCol is set to NULL.
+** Otherwise, it is set to point to an allocated array of size N, where
+** N is the number of columns in the parent key. The first element of the
+** array is the index of the child table column that is mapped by the FK
+** constraint to the parent table column stored in the left-most column
+** of index *ppIdx. The second element of the array is the index of the
+** child table column that corresponds to the second left-most column of
+** *ppIdx, and so on.
+**
+** If the required index cannot be found, either because:
+**
+** 1) The named parent key columns do not exist, or
+**
+** 2) The named parent key columns do exist, but are not subject to a
+** UNIQUE or PRIMARY KEY constraint, or
+**
+** 3) No parent key columns were provided explicitly as part of the
+** foreign key definition, and the parent table does not have a
+** PRIMARY KEY, or
+**
+** 4) No parent key columns were provided explicitly as part of the
+** foreign key definition, and the PRIMARY KEY of the parent table
+** consists of a different number of columns to the child key in
+** the child table.
+**
+** then non-zero is returned, and a "foreign key mismatch" error loaded
+** into pParse. If an OOM error occurs, non-zero is returned and the
+** pParse->db->mallocFailed flag is set.
+*/
+SQLITE_PRIVATE int sqlite3FkLocateIndex(
+ Parse *pParse, /* Parse context to store any error in */
+ Table *pParent, /* Parent table of FK constraint pFKey */
+ FKey *pFKey, /* Foreign key to find index for */
+ Index **ppIdx, /* OUT: Unique index on parent table */
+ int **paiCol /* OUT: Map of index columns in pFKey */
+){
+ Index *pIdx = 0; /* Value to return via *ppIdx */
+ int *aiCol = 0; /* Value to return via *paiCol */
+ int nCol = pFKey->nCol; /* Number of columns in parent key */
+ char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
+
+ /* The caller is responsible for zeroing output parameters. */
+ assert( ppIdx && *ppIdx==0 );
+ assert( !paiCol || *paiCol==0 );
+ assert( pParse );
+
+ /* If this is a non-composite (single column) foreign key, check if it
+ ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
+ ** and *paiCol set to zero and return early.
+ **
+ ** Otherwise, for a composite foreign key (more than one column), allocate
+ ** space for the aiCol array (returned via output parameter *paiCol).
+ ** Non-composite foreign keys do not require the aiCol array.
+ */
+ if( nCol==1 ){
+ /* The FK maps to the IPK if any of the following are true:
+ **
+ ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
+ ** mapped to the primary key of table pParent, or
+ ** 2) The FK is explicitly mapped to a column declared as INTEGER
+ ** PRIMARY KEY.
+ */
+ if( pParent->iPKey>=0 ){
+ if( !zKey ) return 0;
+ if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){
+ return 0;
+ }
+ }
+ }else if( paiCol ){
+ assert( nCol>1 );
+ aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
+ if( !aiCol ) return 1;
+ *paiCol = aiCol;
+ }
+
+ for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
+ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
+ ** of columns. If each indexed column corresponds to a foreign key
+ ** column of pFKey, then this index is a winner. */
+
+ if( zKey==0 ){
+ /* If zKey is NULL, then this foreign key is implicitly mapped to
+ ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
+ ** identified by the test. */
+ if( IsPrimaryKeyIndex(pIdx) ){
+ if( aiCol ){
+ int i;
+ for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
+ }
+ break;
+ }
+ }else{
+ /* If zKey is non-NULL, then this foreign key was declared to
+ ** map to an explicit list of columns in table pParent. Check if this
+ ** index matches those columns. Also, check that the index uses
+ ** the default collation sequences for each column. */
+ int i, j;
+ for(i=0; i<nCol; i++){
+ i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
+ const char *zDfltColl; /* Def. collation for column */
+ char *zIdxCol; /* Name of indexed column */
+
+ if( iCol<0 ) break; /* No foreign keys against expression indexes */
+
+ /* If the index uses a collation sequence that is different from
+ ** the default collation sequence for the column, this index is
+ ** unusable. Bail out early in this case. */
+ zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]);
+ if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
+ if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
+
+ zIdxCol = pParent->aCol[iCol].zCnName;
+ for(j=0; j<nCol; j++){
+ if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
+ if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
+ break;
+ }
+ }
+ if( j==nCol ) break;
+ }
+ if( i==nCol ) break; /* pIdx is usable */
+ }
+ }
+ }
+
+ if( !pIdx ){
+ if( !pParse->disableTriggers ){
+ sqlite3ErrorMsg(pParse,
+ "foreign key mismatch - \"%w\" referencing \"%w\"",
+ pFKey->pFrom->zName, pFKey->zTo);
+ }
+ sqlite3DbFree(pParse->db, aiCol);
+ return 1;
+ }
+
+ *ppIdx = pIdx;
+ return 0;
+}
+
+/*
+** This function is called when a row is inserted into or deleted from the
+** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
+** on the child table of pFKey, this function is invoked twice for each row
+** affected - once to "delete" the old row, and then again to "insert" the
+** new row.
+**
+** Each time it is called, this function generates VDBE code to locate the
+** row in the parent table that corresponds to the row being inserted into
+** or deleted from the child table. If the parent row can be found, no
+** special action is taken. Otherwise, if the parent row can *not* be
+** found in the parent table:
+**
+** Operation | FK type | Action taken
+** --------------------------------------------------------------------------
+** INSERT immediate Increment the "immediate constraint counter".
+**
+** DELETE immediate Decrement the "immediate constraint counter".
+**
+** INSERT deferred Increment the "deferred constraint counter".
+**
+** DELETE deferred Decrement the "deferred constraint counter".
+**
+** These operations are identified in the comment at the top of this file
+** (fkey.c) as "I.1" and "D.1".
+*/
+static void fkLookupParent(
+ Parse *pParse, /* Parse context */
+ int iDb, /* Index of database housing pTab */
+ Table *pTab, /* Parent table of FK pFKey */
+ Index *pIdx, /* Unique index on parent key columns in pTab */
+ FKey *pFKey, /* Foreign key constraint */
+ int *aiCol, /* Map from parent key columns to child table columns */
+ int regData, /* Address of array containing child table row */
+ int nIncr, /* Increment constraint counter by this */
+ int isIgnore /* If true, pretend pTab contains all NULL values */
+){
+ int i; /* Iterator variable */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
+ int iCur = pParse->nTab - 1; /* Cursor number to use */
+ int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */
+
+ sqlite3VdbeVerifyAbortable(v,
+ (!pFKey->isDeferred
+ && !(pParse->db->flags & SQLITE_DeferFKs)
+ && !pParse->pToplevel
+ && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
+
+ /* If nIncr is less than zero, then check at runtime if there are any
+ ** outstanding constraints to resolve. If there are not, there is no need
+ ** to check if deleting this row resolves any outstanding violations.
+ **
+ ** Check if any of the key columns in the child table row are NULL. If
+ ** any are, then the constraint is considered satisfied. No need to
+ ** search for a matching row in the parent table. */
+ if( nIncr<0 ){
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
+ VdbeCoverage(v);
+ }
+ for(i=0; i<pFKey->nCol; i++){
+ int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1;
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
+ }
+
+ if( isIgnore==0 ){
+ if( pIdx==0 ){
+ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
+ ** column of the parent table (table pTab). */
+ int iMustBeInt; /* Address of MustBeInt instruction */
+ int regTemp = sqlite3GetTempReg(pParse);
+
+ /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
+ ** apply the affinity of the parent key). If this fails, then there
+ ** is no matching parent key. Before using MustBeInt, make a copy of
+ ** the value. Otherwise, the value inserted into the child key column
+ ** will have INTEGER affinity applied to it, which may not be correct. */
+ sqlite3VdbeAddOp2(v, OP_SCopy,
+ sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp);
+ iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
+ VdbeCoverage(v);
+
+ /* If the parent table is the same as the child table, and we are about
+ ** to increment the constraint-counter (i.e. this is an INSERT operation),
+ ** then check if the row being inserted matches itself. If so, do not
+ ** increment the constraint-counter. */
+ if( pTab==pFKey->pFrom && nIncr==1 ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ }
+
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, iOk);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ sqlite3VdbeJumpHere(v, iMustBeInt);
+ sqlite3ReleaseTempReg(pParse, regTemp);
+ }else{
+ int nCol = pFKey->nCol;
+ int regTemp = sqlite3GetTempRange(pParse, nCol);
+
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeAddOp2(v, OP_Copy,
+ sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData,
+ regTemp+i);
+ }
+
+ /* If the parent table is the same as the child table, and we are about
+ ** to increment the constraint-counter (i.e. this is an INSERT operation),
+ ** then check if the row being inserted matches itself. If so, do not
+ ** increment the constraint-counter.
+ **
+ ** If any of the parent-key values are NULL, then the row cannot match
+ ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
+ ** of the parent-key values are NULL (at this point it is known that
+ ** none of the child key values are).
+ */
+ if( pTab==pFKey->pFrom && nIncr==1 ){
+ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
+ for(i=0; i<nCol; i++){
+ int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i])
+ +1+regData;
+ int iParent = 1+regData;
+ iParent += sqlite3TableColumnToStorage(pIdx->pTable,
+ pIdx->aiColumn[i]);
+ assert( pIdx->aiColumn[i]>=0 );
+ assert( aiCol[i]!=pTab->iPKey );
+ if( pIdx->aiColumn[i]==pTab->iPKey ){
+ /* The parent key is a composite key that includes the IPK column */
+ iParent = regData;
+ }
+ sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ }
+ sqlite3VdbeGoto(v, iOk);
+ }
+
+ sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0,
+ sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempRange(pParse, regTemp, nCol);
+ }
+ }
+
+ if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
+ && !pParse->pToplevel
+ && !pParse->isMultiWrite
+ ){
+ /* Special case: If this is an INSERT statement that will insert exactly
+ ** one row into the table, raise a constraint immediately instead of
+ ** incrementing a counter. This is necessary as the VM code is being
+ ** generated for will not open a statement transaction. */
+ assert( nIncr==1 );
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
+ OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
+ }else{
+ if( nIncr>0 && pFKey->isDeferred==0 ){
+ sqlite3MayAbort(pParse);
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
+ }
+
+ sqlite3VdbeResolveLabel(v, iOk);
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
+}
+
+
+/*
+** Return an Expr object that refers to a memory register corresponding
+** to column iCol of table pTab.
+**
+** regBase is the first of an array of register that contains the data
+** for pTab. regBase itself holds the rowid. regBase+1 holds the first
+** column. regBase+2 holds the second column, and so forth.
+*/
+static Expr *exprTableRegister(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* The table whose content is at r[regBase]... */
+ int regBase, /* Contents of table pTab */
+ i16 iCol /* Which column of pTab is desired */
+){
+ Expr *pExpr;
+ Column *pCol;
+ const char *zColl;
+ sqlite3 *db = pParse->db;
+
+ pExpr = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pExpr ){
+ if( iCol>=0 && iCol!=pTab->iPKey ){
+ pCol = &pTab->aCol[iCol];
+ pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1;
+ pExpr->affExpr = pCol->affinity;
+ zColl = sqlite3ColumnColl(pCol);
+ if( zColl==0 ) zColl = db->pDfltColl->zName;
+ pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
+ }else{
+ pExpr->iTable = regBase;
+ pExpr->affExpr = SQLITE_AFF_INTEGER;
+ }
+ }
+ return pExpr;
+}
+
+/*
+** Return an Expr object that refers to column iCol of table pTab which
+** has cursor iCur.
+*/
+static Expr *exprTableColumn(
+ sqlite3 *db, /* The database connection */
+ Table *pTab, /* The table whose column is desired */
+ int iCursor, /* The open cursor on the table */
+ i16 iCol /* The column that is wanted */
+){
+ Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
+ if( pExpr ){
+ assert( ExprUseYTab(pExpr) );
+ pExpr->y.pTab = pTab;
+ pExpr->iTable = iCursor;
+ pExpr->iColumn = iCol;
+ }
+ return pExpr;
+}
+
+/*
+** This function is called to generate code executed when a row is deleted
+** from the parent table of foreign key constraint pFKey and, if pFKey is
+** deferred, when a row is inserted into the same table. When generating
+** code for an SQL UPDATE operation, this function may be called twice -
+** once to "delete" the old row and once to "insert" the new row.
+**
+** Parameter nIncr is passed -1 when inserting a row (as this may decrease
+** the number of FK violations in the db) or +1 when deleting one (as this
+** may increase the number of FK constraint problems).
+**
+** The code generated by this function scans through the rows in the child
+** table that correspond to the parent table row being deleted or inserted.
+** For each child row found, one of the following actions is taken:
+**
+** Operation | FK type | Action taken
+** --------------------------------------------------------------------------
+** DELETE immediate Increment the "immediate constraint counter".
+**
+** INSERT immediate Decrement the "immediate constraint counter".
+**
+** DELETE deferred Increment the "deferred constraint counter".
+**
+** INSERT deferred Decrement the "deferred constraint counter".
+**
+** These operations are identified in the comment at the top of this file
+** (fkey.c) as "I.2" and "D.2".
+*/
+static void fkScanChildren(
+ Parse *pParse, /* Parse context */
+ SrcList *pSrc, /* The child table to be scanned */
+ Table *pTab, /* The parent table */
+ Index *pIdx, /* Index on parent covering the foreign key */
+ FKey *pFKey, /* The foreign key linking pSrc to pTab */
+ int *aiCol, /* Map from pIdx cols to child table cols */
+ int regData, /* Parent row data starts here */
+ int nIncr /* Amount to increment deferred counter by */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ int i; /* Iterator variable */
+ Expr *pWhere = 0; /* WHERE clause to scan with */
+ NameContext sNameContext; /* Context used to resolve WHERE clause */
+ WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
+ int iFkIfZero = 0; /* Address of OP_FkIfZero */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ assert( pIdx==0 || pIdx->pTable==pTab );
+ assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
+ assert( pIdx!=0 || pFKey->nCol==1 );
+ assert( pIdx!=0 || HasRowid(pTab) );
+
+ if( nIncr<0 ){
+ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
+ VdbeCoverage(v);
+ }
+
+ /* Create an Expr object representing an SQL expression like:
+ **
+ ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
+ **
+ ** The collation sequence used for the comparison should be that of
+ ** the parent key columns. The affinity of the parent key column should
+ ** be applied to each child key value before the comparison takes place.
+ */
+ for(i=0; i<pFKey->nCol; i++){
+ Expr *pLeft; /* Value from parent table row */
+ Expr *pRight; /* Column ref to child table */
+ Expr *pEq; /* Expression (pLeft = pRight) */
+ i16 iCol; /* Index of column in child table */
+ const char *zCol; /* Name of column in child table */
+
+ iCol = pIdx ? pIdx->aiColumn[i] : -1;
+ pLeft = exprTableRegister(pParse, pTab, regData, iCol);
+ iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
+ assert( iCol>=0 );
+ zCol = pFKey->pFrom->aCol[iCol].zCnName;
+ pRight = sqlite3Expr(db, TK_ID, zCol);
+ pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
+ pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
+ }
+
+ /* If the child table is the same as the parent table, then add terms
+ ** to the WHERE clause that prevent this entry from being scanned.
+ ** The added WHERE clause terms are like this:
+ **
+ ** $current_rowid!=rowid
+ ** NOT( $current_a==a AND $current_b==b AND ... )
+ **
+ ** The first form is used for rowid tables. The second form is used
+ ** for WITHOUT ROWID tables. In the second form, the *parent* key is
+ ** (a,b,...). Either the parent or primary key could be used to
+ ** uniquely identify the current row, but the parent key is more convenient
+ ** as the required values have already been loaded into registers
+ ** by the caller.
+ */
+ if( pTab==pFKey->pFrom && nIncr>0 ){
+ Expr *pNe; /* Expression (pLeft != pRight) */
+ Expr *pLeft; /* Value from parent table row */
+ Expr *pRight; /* Column ref to child table */
+ if( HasRowid(pTab) ){
+ pLeft = exprTableRegister(pParse, pTab, regData, -1);
+ pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
+ pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
+ }else{
+ Expr *pEq, *pAll = 0;
+ assert( pIdx!=0 );
+ for(i=0; i<pIdx->nKeyCol; i++){
+ i16 iCol = pIdx->aiColumn[i];
+ assert( iCol>=0 );
+ pLeft = exprTableRegister(pParse, pTab, regData, iCol);
+ pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName);
+ pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
+ pAll = sqlite3ExprAnd(pParse, pAll, pEq);
+ }
+ pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
+ }
+ pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
+ }
+
+ /* Resolve the references in the WHERE clause. */
+ memset(&sNameContext, 0, sizeof(NameContext));
+ sNameContext.pSrcList = pSrc;
+ sNameContext.pParse = pParse;
+ sqlite3ResolveExprNames(&sNameContext, pWhere);
+
+ /* Create VDBE to loop through the entries in pSrc that match the WHERE
+ ** clause. For each row found, increment either the deferred or immediate
+ ** foreign key constraint counter. */
+ if( pParse->nErr==0 ){
+ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
+ if( pWInfo ){
+ sqlite3WhereEnd(pWInfo);
+ }
+ }
+
+ /* Clean up the WHERE clause constructed above. */
+ sqlite3ExprDelete(db, pWhere);
+ if( iFkIfZero ){
+ sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero);
+ }
+}
+
+/*
+** This function returns a linked list of FKey objects (connected by
+** FKey.pNextTo) holding all children of table pTab. For example,
+** given the following schema:
+**
+** CREATE TABLE t1(a PRIMARY KEY);
+** CREATE TABLE t2(b REFERENCES t1(a);
+**
+** Calling this function with table "t1" as an argument returns a pointer
+** to the FKey structure representing the foreign key constraint on table
+** "t2". Calling this function with "t2" as the argument would return a
+** NULL pointer (as there are no FK constraints for which t2 is the parent
+** table).
+*/
+SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){
+ return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
+}
+
+/*
+** The second argument is a Trigger structure allocated by the
+** fkActionTrigger() routine. This function deletes the Trigger structure
+** and all of its sub-components.
+**
+** The Trigger structure or any of its sub-components may be allocated from
+** the lookaside buffer belonging to database handle dbMem.
+*/
+static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
+ if( p ){
+ TriggerStep *pStep = p->step_list;
+ sqlite3ExprDelete(dbMem, pStep->pWhere);
+ sqlite3ExprListDelete(dbMem, pStep->pExprList);
+ sqlite3SelectDelete(dbMem, pStep->pSelect);
+ sqlite3ExprDelete(dbMem, p->pWhen);
+ sqlite3DbFree(dbMem, p);
+ }
+}
+
+/*
+** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys
+** in a particular database. This needs to happen when the schema
+** changes.
+*/
+SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){
+ HashElem *k;
+ Hash *pHash = &db->aDb[iDb].pSchema->tblHash;
+ for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){
+ Table *pTab = sqliteHashData(k);
+ FKey *pFKey;
+ if( !IsOrdinaryTable(pTab) ) continue;
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0;
+ fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0;
+ }
+ }
+}
+
+/*
+** This function is called to generate code that runs when table pTab is
+** being dropped from the database. The SrcList passed as the second argument
+** to this function contains a single entry guaranteed to resolve to
+** table pTab.
+**
+** Normally, no code is required. However, if either
+**
+** (a) The table is the parent table of a FK constraint, or
+** (b) The table is the child table of a deferred FK constraint and it is
+** determined at runtime that there are outstanding deferred FK
+** constraint violations in the database,
+**
+** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
+** the table from the database. Triggers are disabled while running this
+** DELETE, but foreign key actions are not.
+*/
+SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
+ sqlite3 *db = pParse->db;
+ if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){
+ int iSkip = 0;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ assert( v ); /* VDBE has already been allocated */
+ assert( IsOrdinaryTable(pTab) );
+ if( sqlite3FkReferences(pTab)==0 ){
+ /* Search for a deferred foreign key constraint for which this table
+ ** is the child table. If one cannot be found, return without
+ ** generating any VDBE code. If one can be found, then jump over
+ ** the entire DELETE if there are no outstanding deferred constraints
+ ** when this statement is run. */
+ FKey *p;
+ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
+ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
+ }
+ if( !p ) return;
+ iSkip = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
+ }
+
+ pParse->disableTriggers = 1;
+ sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
+ pParse->disableTriggers = 0;
+
+ /* If the DELETE has generated immediate foreign key constraint
+ ** violations, halt the VDBE and return an error at this point, before
+ ** any modifications to the schema are made. This is because statement
+ ** transactions are not able to rollback schema changes.
+ **
+ ** If the SQLITE_DeferFKs flag is set, then this is not required, as
+ ** the statement transaction will not be rolled back even if FK
+ ** constraints are violated.
+ */
+ if( (db->flags & SQLITE_DeferFKs)==0 ){
+ sqlite3VdbeVerifyAbortable(v, OE_Abort);
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
+ OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
+ }
+
+ if( iSkip ){
+ sqlite3VdbeResolveLabel(v, iSkip);
+ }
+ }
+}
+
+
+/*
+** The second argument points to an FKey object representing a foreign key
+** for which pTab is the child table. An UPDATE statement against pTab
+** is currently being processed. For each column of the table that is
+** actually updated, the corresponding element in the aChange[] array
+** is zero or greater (if a column is unmodified the corresponding element
+** is set to -1). If the rowid column is modified by the UPDATE statement
+** the bChngRowid argument is non-zero.
+**
+** This function returns true if any of the columns that are part of the
+** child key for FK constraint *p are modified.
+*/
+static int fkChildIsModified(
+ Table *pTab, /* Table being updated */
+ FKey *p, /* Foreign key for which pTab is the child */
+ int *aChange, /* Array indicating modified columns */
+ int bChngRowid /* True if rowid is modified by this update */
+){
+ int i;
+ for(i=0; i<p->nCol; i++){
+ int iChildKey = p->aCol[i].iFrom;
+ if( aChange[iChildKey]>=0 ) return 1;
+ if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
+ }
+ return 0;
+}
+
+/*
+** The second argument points to an FKey object representing a foreign key
+** for which pTab is the parent table. An UPDATE statement against pTab
+** is currently being processed. For each column of the table that is
+** actually updated, the corresponding element in the aChange[] array
+** is zero or greater (if a column is unmodified the corresponding element
+** is set to -1). If the rowid column is modified by the UPDATE statement
+** the bChngRowid argument is non-zero.
+**
+** This function returns true if any of the columns that are part of the
+** parent key for FK constraint *p are modified.
+*/
+static int fkParentIsModified(
+ Table *pTab,
+ FKey *p,
+ int *aChange,
+ int bChngRowid
+){
+ int i;
+ for(i=0; i<p->nCol; i++){
+ char *zKey = p->aCol[i].zCol;
+ int iKey;
+ for(iKey=0; iKey<pTab->nCol; iKey++){
+ if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
+ Column *pCol = &pTab->aCol[iKey];
+ if( zKey ){
+ if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1;
+ }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Return true if the parser passed as the first argument is being
+** used to code a trigger that is really a "SET NULL" action belonging
+** to trigger pFKey.
+*/
+static int isSetNullAction(Parse *pParse, FKey *pFKey){
+ Parse *pTop = sqlite3ParseToplevel(pParse);
+ if( pTop->pTriggerPrg ){
+ Trigger *p = pTop->pTriggerPrg->pTrigger;
+ if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
+ || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
+ ){
+ assert( (pTop->db->flags & SQLITE_FkNoAction)==0 );
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** This function is called when inserting, deleting or updating a row of
+** table pTab to generate VDBE code to perform foreign key constraint
+** processing for the operation.
+**
+** For a DELETE operation, parameter regOld is passed the index of the
+** first register in an array of (pTab->nCol+1) registers containing the
+** rowid of the row being deleted, followed by each of the column values
+** of the row being deleted, from left to right. Parameter regNew is passed
+** zero in this case.
+**
+** For an INSERT operation, regOld is passed zero and regNew is passed the
+** first register of an array of (pTab->nCol+1) registers containing the new
+** row data.
+**
+** For an UPDATE operation, this function is called twice. Once before
+** the original record is deleted from the table using the calling convention
+** described for DELETE. Then again after the original record is deleted
+** but before the new record is inserted using the INSERT convention.
+*/
+SQLITE_PRIVATE void sqlite3FkCheck(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Row is being deleted from this table */
+ int regOld, /* Previous row data is stored here */
+ int regNew, /* New row data is stored here */
+ int *aChange, /* Array indicating UPDATEd columns (or 0) */
+ int bChngRowid /* True if rowid is UPDATEd */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ FKey *pFKey; /* Used to iterate through FKs */
+ int iDb; /* Index of database containing pTab */
+ const char *zDb; /* Name of database containing pTab */
+ int isIgnoreErrors = pParse->disableTriggers;
+
+ /* Exactly one of regOld and regNew should be non-zero. */
+ assert( (regOld==0)!=(regNew==0) );
+
+ /* If foreign-keys are disabled, this function is a no-op. */
+ if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
+ if( !IsOrdinaryTable(pTab) ) return;
+
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+
+ /* Loop through all the foreign key constraints for which pTab is the
+ ** child table (the table that the foreign key definition is part of). */
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ Table *pTo; /* Parent table of foreign key pFKey */
+ Index *pIdx = 0; /* Index on key columns in pTo */
+ int *aiFree = 0;
+ int *aiCol;
+ int iCol;
+ int i;
+ int bIgnore = 0;
+
+ if( aChange
+ && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
+ && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
+ ){
+ continue;
+ }
+
+ /* Find the parent table of this foreign key. Also find a unique index
+ ** on the parent key columns in the parent table. If either of these
+ ** schema items cannot be located, set an error in pParse and return
+ ** early. */
+ if( pParse->disableTriggers ){
+ pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
+ }else{
+ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
+ }
+ if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
+ assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
+ if( !isIgnoreErrors || db->mallocFailed ) return;
+ if( pTo==0 ){
+ /* If isIgnoreErrors is true, then a table is being dropped. In this
+ ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
+ ** before actually dropping it in order to check FK constraints.
+ ** If the parent table of an FK constraint on the current table is
+ ** missing, behave as if it is empty. i.e. decrement the relevant
+ ** FK counter for each row of the current table with non-NULL keys.
+ */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
+ for(i=0; i<pFKey->nCol; i++){
+ int iFromCol, iReg;
+ iFromCol = pFKey->aCol[i].iFrom;
+ iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1;
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
+ }
+ continue;
+ }
+ assert( pFKey->nCol==1 || (aiFree && pIdx) );
+
+ if( aiFree ){
+ aiCol = aiFree;
+ }else{
+ iCol = pFKey->aCol[0].iFrom;
+ aiCol = &iCol;
+ }
+ for(i=0; i<pFKey->nCol; i++){
+ if( aiCol[i]==pTab->iPKey ){
+ aiCol[i] = -1;
+ }
+ assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Request permission to read the parent key columns. If the
+ ** authorization callback returns SQLITE_IGNORE, behave as if any
+ ** values read from the parent table are NULL. */
+ if( db->xAuth ){
+ int rcauth;
+ char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName;
+ rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
+ bIgnore = (rcauth==SQLITE_IGNORE);
+ }
+#endif
+ }
+
+ /* Take a shared-cache advisory read-lock on the parent table. Allocate
+ ** a cursor to use to search the unique index on the parent key columns
+ ** in the parent table. */
+ sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
+ pParse->nTab++;
+
+ if( regOld!=0 ){
+ /* A row is being removed from the child table. Search for the parent.
+ ** If the parent does not exist, removing the child row resolves an
+ ** outstanding foreign key constraint violation. */
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
+ }
+ if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
+ /* A row is being added to the child table. If a parent row cannot
+ ** be found, adding the child row has violated the FK constraint.
+ **
+ ** If this operation is being performed as part of a trigger program
+ ** that is actually a "SET NULL" action belonging to this very
+ ** foreign key, then omit this scan altogether. As all child key
+ ** values are guaranteed to be NULL, it is not possible for adding
+ ** this row to cause an FK violation. */
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
+ }
+
+ sqlite3DbFree(db, aiFree);
+ }
+
+ /* Loop through all the foreign key constraints that refer to this table.
+ ** (the "child" constraints) */
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
+ Index *pIdx = 0; /* Foreign key index for pFKey */
+ SrcList *pSrc;
+ int *aiCol = 0;
+
+ if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
+ continue;
+ }
+
+ if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
+ && !pParse->pToplevel && !pParse->isMultiWrite
+ ){
+ assert( regOld==0 && regNew!=0 );
+ /* Inserting a single row into a parent table cannot cause (or fix)
+ ** an immediate foreign key violation. So do nothing in this case. */
+ continue;
+ }
+
+ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
+ if( !isIgnoreErrors || db->mallocFailed ) return;
+ continue;
+ }
+ assert( aiCol || pFKey->nCol==1 );
+
+ /* Create a SrcList structure containing the child table. We need the
+ ** child table as a SrcList for sqlite3WhereBegin() */
+ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ if( pSrc ){
+ SrcItem *pItem = pSrc->a;
+ pItem->pTab = pFKey->pFrom;
+ pItem->zName = pFKey->pFrom->zName;
+ pItem->pTab->nTabRef++;
+ pItem->iCursor = pParse->nTab++;
+
+ if( regNew!=0 ){
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
+ }
+ if( regOld!=0 ){
+ int eAction = pFKey->aAction[aChange!=0];
+ if( (db->flags & SQLITE_FkNoAction) ) eAction = OE_None;
+
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
+ /* If this is a deferred FK constraint, or a CASCADE or SET NULL
+ ** action applies, then any foreign key violations caused by
+ ** removing the parent key will be rectified by the action trigger.
+ ** So do not set the "may-abort" flag in this case.
+ **
+ ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
+ ** may-abort flag will eventually be set on this statement anyway
+ ** (when this function is called as part of processing the UPDATE
+ ** within the action trigger).
+ **
+ ** Note 2: At first glance it may seem like SQLite could simply omit
+ ** all OP_FkCounter related scans when either CASCADE or SET NULL
+ ** applies. The trouble starts if the CASCADE or SET NULL action
+ ** trigger causes other triggers or action rules attached to the
+ ** child table to fire. In these cases the fk constraint counters
+ ** might be set incorrectly if any OP_FkCounter related scans are
+ ** omitted. */
+ if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
+ sqlite3MayAbort(pParse);
+ }
+ }
+ pItem->zName = 0;
+ sqlite3SrcListDelete(db, pSrc);
+ }
+ sqlite3DbFree(db, aiCol);
+ }
+}
+
+#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
+
+/*
+** This function is called before generating code to update or delete a
+** row contained in table pTab.
+*/
+SQLITE_PRIVATE u32 sqlite3FkOldmask(
+ Parse *pParse, /* Parse context */
+ Table *pTab /* Table being modified */
+){
+ u32 mask = 0;
+ if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
+ FKey *p;
+ int i;
+ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
+ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
+ }
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
+ Index *pIdx = 0;
+ sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
+ if( pIdx ){
+ for(i=0; i<pIdx->nKeyCol; i++){
+ assert( pIdx->aiColumn[i]>=0 );
+ mask |= COLUMN_MASK(pIdx->aiColumn[i]);
+ }
+ }
+ }
+ }
+ return mask;
+}
+
+
+/*
+** This function is called before generating code to update or delete a
+** row contained in table pTab. If the operation is a DELETE, then
+** parameter aChange is passed a NULL value. For an UPDATE, aChange points
+** to an array of size N, where N is the number of columns in table pTab.
+** If the i'th column is not modified by the UPDATE, then the corresponding
+** entry in the aChange[] array is set to -1. If the column is modified,
+** the value is 0 or greater. Parameter chngRowid is set to true if the
+** UPDATE statement modifies the rowid fields of the table.
+**
+** If any foreign key processing will be required, this function returns
+** non-zero. If there is no foreign key related processing, this function
+** returns zero.
+**
+** For an UPDATE, this function returns 2 if:
+**
+** * There are any FKs for which pTab is the child and the parent table
+** and any FK processing at all is required (even of a different FK), or
+**
+** * the UPDATE modifies one or more parent keys for which the action is
+** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
+**
+** Or, assuming some other foreign key processing is required, 1.
+*/
+SQLITE_PRIVATE int sqlite3FkRequired(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being modified */
+ int *aChange, /* Non-NULL for UPDATE operations */
+ int chngRowid /* True for UPDATE that affects rowid */
+){
+ int eRet = 1; /* Value to return if bHaveFK is true */
+ int bHaveFK = 0; /* If FK processing is required */
+ if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
+ if( !aChange ){
+ /* A DELETE operation. Foreign key processing is required if the
+ ** table in question is either the child or parent table for any
+ ** foreign key constraint. */
+ bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey);
+ }else{
+ /* This is an UPDATE. Foreign key processing is only required if the
+ ** operation modifies one or more child or parent key columns. */
+ FKey *p;
+
+ /* Check if any child key columns are being modified. */
+ for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
+ if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
+ if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2;
+ bHaveFK = 1;
+ }
+ }
+
+ /* Check if any parent key columns are being modified. */
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
+ if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
+ if( (pParse->db->flags & SQLITE_FkNoAction)==0
+ && p->aAction[1]!=OE_None
+ ){
+ return 2;
+ }
+ bHaveFK = 1;
+ }
+ }
+ }
+ }
+ return bHaveFK ? eRet : 0;
+}
+
+/*
+** This function is called when an UPDATE or DELETE operation is being
+** compiled on table pTab, which is the parent table of foreign-key pFKey.
+** If the current operation is an UPDATE, then the pChanges parameter is
+** passed a pointer to the list of columns being modified. If it is a
+** DELETE, pChanges is passed a NULL pointer.
+**
+** It returns a pointer to a Trigger structure containing a trigger
+** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
+** If the action is "NO ACTION" then a NULL pointer is returned (these actions
+** require no special handling by the triggers sub-system, code for them is
+** created by fkScanChildren()).
+**
+** For example, if pFKey is the foreign key and pTab is table "p" in
+** the following schema:
+**
+** CREATE TABLE p(pk PRIMARY KEY);
+** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
+**
+** then the returned trigger structure is equivalent to:
+**
+** CREATE TRIGGER ... DELETE ON p BEGIN
+** DELETE FROM c WHERE ck = old.pk;
+** END;
+**
+** The returned pointer is cached as part of the foreign key object. It
+** is eventually freed along with the rest of the foreign key object by
+** sqlite3FkDelete().
+*/
+static Trigger *fkActionTrigger(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated or deleted from */
+ FKey *pFKey, /* Foreign key to get action for */
+ ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ int action; /* One of OE_None, OE_Cascade etc. */
+ Trigger *pTrigger; /* Trigger definition to return */
+ int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
+
+ action = pFKey->aAction[iAction];
+ if( (db->flags & SQLITE_FkNoAction) ) action = OE_None;
+ if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
+ return 0;
+ }
+ pTrigger = pFKey->apTrigger[iAction];
+
+ if( action!=OE_None && !pTrigger ){
+ char const *zFrom; /* Name of child table */
+ int nFrom; /* Length in bytes of zFrom */
+ Index *pIdx = 0; /* Parent key index for this FK */
+ int *aiCol = 0; /* child table cols -> parent key cols */
+ TriggerStep *pStep = 0; /* First (only) step of trigger program */
+ Expr *pWhere = 0; /* WHERE clause of trigger step */
+ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
+ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
+ int i; /* Iterator variable */
+ Expr *pWhen = 0; /* WHEN clause for the trigger */
+
+ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
+ assert( aiCol || pFKey->nCol==1 );
+
+ for(i=0; i<pFKey->nCol; i++){
+ Token tOld = { "old", 3 }; /* Literal "old" token */
+ Token tNew = { "new", 3 }; /* Literal "new" token */
+ Token tFromCol; /* Name of column in child table */
+ Token tToCol; /* Name of column in parent table */
+ int iFromCol; /* Idx of column in child table */
+ Expr *pEq; /* tFromCol = OLD.tToCol */
+
+ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
+ assert( iFromCol>=0 );
+ assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
+ assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
+ sqlite3TokenInit(&tToCol,
+ pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName);
+ sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName);
+
+ /* Create the expression "OLD.zToCol = zFromCol". It is important
+ ** that the "OLD.zToCol" term is on the LHS of the = operator, so
+ ** that the affinity and collation sequence associated with the
+ ** parent table are used for the comparison. */
+ pEq = sqlite3PExpr(pParse, TK_EQ,
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
+ sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
+ );
+ pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
+
+ /* For ON UPDATE, construct the next term of the WHEN clause.
+ ** The final WHEN clause will be like this:
+ **
+ ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
+ */
+ if( pChanges ){
+ pEq = sqlite3PExpr(pParse, TK_IS,
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
+ sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
+ );
+ pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
+ }
+
+ if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
+ Expr *pNew;
+ if( action==OE_Cascade ){
+ pNew = sqlite3PExpr(pParse, TK_DOT,
+ sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
+ sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
+ }else if( action==OE_SetDflt ){
+ Column *pCol = pFKey->pFrom->aCol + iFromCol;
+ Expr *pDflt;
+ if( pCol->colFlags & COLFLAG_GENERATED ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ pDflt = 0;
+ }else{
+ pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol);
+ }
+ if( pDflt ){
+ pNew = sqlite3ExprDup(db, pDflt, 0);
+ }else{
+ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
+ }
+ }else{
+ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
+ }
+ pList = sqlite3ExprListAppend(pParse, pList, pNew);
+ sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
+ }
+ }
+ sqlite3DbFree(db, aiCol);
+
+ zFrom = pFKey->pFrom->zName;
+ nFrom = sqlite3Strlen30(zFrom);
+
+ if( action==OE_Restrict ){
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ SrcList *pSrc;
+ Expr *pRaise;
+
+ pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
+ if( pRaise ){
+ pRaise->affExpr = OE_Abort;
+ }
+ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ if( pSrc ){
+ assert( pSrc->nSrc==1 );
+ pSrc->a[0].zName = sqlite3DbStrDup(db, zFrom);
+ pSrc->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName);
+ }
+ pSelect = sqlite3SelectNew(pParse,
+ sqlite3ExprListAppend(pParse, 0, pRaise),
+ pSrc,
+ pWhere,
+ 0, 0, 0, 0, 0
+ );
+ pWhere = 0;
+ }
+
+ /* Disable lookaside memory allocation */
+ DisableLookaside;
+
+ pTrigger = (Trigger *)sqlite3DbMallocZero(db,
+ sizeof(Trigger) + /* struct Trigger */
+ sizeof(TriggerStep) + /* Single step in trigger program */
+ nFrom + 1 /* Space for pStep->zTarget */
+ );
+ if( pTrigger ){
+ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
+ pStep->zTarget = (char *)&pStep[1];
+ memcpy((char *)pStep->zTarget, zFrom, nFrom);
+
+ pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
+ pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ if( pWhen ){
+ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
+ }
+ }
+
+ /* Re-enable the lookaside buffer, if it was disabled earlier. */
+ EnableLookaside;
+
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3ExprDelete(db, pWhen);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3SelectDelete(db, pSelect);
+ if( db->mallocFailed==1 ){
+ fkTriggerDelete(db, pTrigger);
+ return 0;
+ }
+ assert( pStep!=0 );
+ assert( pTrigger!=0 );
+
+ switch( action ){
+ case OE_Restrict:
+ pStep->op = TK_SELECT;
+ break;
+ case OE_Cascade:
+ if( !pChanges ){
+ pStep->op = TK_DELETE;
+ break;
+ }
+ /* no break */ deliberate_fall_through
+ default:
+ pStep->op = TK_UPDATE;
+ }
+ pStep->pTrig = pTrigger;
+ pTrigger->pSchema = pTab->pSchema;
+ pTrigger->pTabSchema = pTab->pSchema;
+ pFKey->apTrigger[iAction] = pTrigger;
+ pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
+ }
+
+ return pTrigger;
+}
+
+/*
+** This function is called when deleting or updating a row to implement
+** any required CASCADE, SET NULL or SET DEFAULT actions.
+*/
+SQLITE_PRIVATE void sqlite3FkActions(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated or deleted from */
+ ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
+ int regOld, /* Address of array containing old row */
+ int *aChange, /* Array indicating UPDATEd columns (or 0) */
+ int bChngRowid /* True if rowid is UPDATEd */
+){
+ /* If foreign-key support is enabled, iterate through all FKs that
+ ** refer to table pTab. If there is an action associated with the FK
+ ** for this operation (either update or delete), invoke the associated
+ ** trigger sub-program. */
+ if( pParse->db->flags&SQLITE_ForeignKeys ){
+ FKey *pFKey; /* Iterator variable */
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
+ if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
+ Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
+ if( pAct ){
+ sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
+ }
+ }
+ }
+ }
+}
+
+#endif /* ifndef SQLITE_OMIT_TRIGGER */
+
+/*
+** Free all memory associated with foreign key definitions attached to
+** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
+** hash table.
+*/
+SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){
+ FKey *pFKey; /* Iterator variable */
+ FKey *pNext; /* Copy of pFKey->pNextFrom */
+
+ assert( IsOrdinaryTable(pTab) );
+ assert( db!=0 );
+ for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
+
+ /* Remove the FK from the fkeyHash hash table. */
+ if( db->pnBytesFreed==0 ){
+ if( pFKey->pPrevTo ){
+ pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
+ }else{
+ const char *z = (pFKey->pNextTo ? pFKey->pNextTo->zTo : pFKey->zTo);
+ sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, pFKey->pNextTo);
+ }
+ if( pFKey->pNextTo ){
+ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
+ }
+ }
+
+ /* EV: R-30323-21917 Each foreign key constraint in SQLite is
+ ** classified as either immediate or deferred.
+ */
+ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
+
+ /* Delete any triggers created to implement actions for this FK. */
+#ifndef SQLITE_OMIT_TRIGGER
+ fkTriggerDelete(db, pFKey->apTrigger[0]);
+ fkTriggerDelete(db, pFKey->apTrigger[1]);
+#endif
+
+ pNext = pFKey->pNextFrom;
+ sqlite3DbFree(db, pFKey);
+ }
+}
+#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
+
+/************** End of fkey.c ************************************************/
+/************** Begin file insert.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle INSERT statements in SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Generate code that will
+**
+** (1) acquire a lock for table pTab then
+** (2) open pTab as cursor iCur.
+**
+** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
+** for that table that is actually opened.
+*/
+SQLITE_PRIVATE void sqlite3OpenTable(
+ Parse *pParse, /* Generate code into this VDBE */
+ int iCur, /* The cursor number of the table */
+ int iDb, /* The database index in sqlite3.aDb[] */
+ Table *pTab, /* The table to be opened */
+ int opcode /* OP_OpenRead or OP_OpenWrite */
+){
+ Vdbe *v;
+ assert( !IsVirtual(pTab) );
+ assert( pParse->pVdbe!=0 );
+ v = pParse->pVdbe;
+ assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
+ if( !pParse->db->noSharedCache ){
+ sqlite3TableLock(pParse, iDb, pTab->tnum,
+ (opcode==OP_OpenWrite)?1:0, pTab->zName);
+ }
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
+ VdbeComment((v, "%s", pTab->zName));
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
+ sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ VdbeComment((v, "%s", pTab->zName));
+ }
+}
+
+/*
+** Return a pointer to the column affinity string associated with index
+** pIdx. A column affinity string has one character for each column in
+** the table, according to the affinity of the column:
+**
+** Character Column affinity
+** ------------------------------
+** 'A' BLOB
+** 'B' TEXT
+** 'C' NUMERIC
+** 'D' INTEGER
+** 'F' REAL
+**
+** An extra 'D' is appended to the end of the string to cover the
+** rowid that appears as the last column in every index.
+**
+** Memory for the buffer containing the column index affinity string
+** is managed along with the rest of the Index structure. It will be
+** released when sqlite3DeleteIndex() is called.
+*/
+static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){
+ /* The first time a column affinity string for a particular index is
+ ** required, it is allocated and populated here. It is then stored as
+ ** a member of the Index structure for subsequent use.
+ **
+ ** The column affinity string will eventually be deleted by
+ ** sqliteDeleteIndex() when the Index structure itself is cleaned
+ ** up.
+ */
+ int n;
+ Table *pTab = pIdx->pTable;
+ pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
+ if( !pIdx->zColAff ){
+ sqlite3OomFault(db);
+ return 0;
+ }
+ for(n=0; n<pIdx->nColumn; n++){
+ i16 x = pIdx->aiColumn[n];
+ char aff;
+ if( x>=0 ){
+ aff = pTab->aCol[x].affinity;
+ }else if( x==XN_ROWID ){
+ aff = SQLITE_AFF_INTEGER;
+ }else{
+ assert( x==XN_EXPR );
+ assert( pIdx->bHasExpr );
+ assert( pIdx->aColExpr!=0 );
+ aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
+ }
+ if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
+ if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
+ pIdx->zColAff[n] = aff;
+ }
+ pIdx->zColAff[n] = 0;
+ return pIdx->zColAff;
+}
+SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
+ if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx);
+ return pIdx->zColAff;
+}
+
+
+/*
+** Compute an affinity string for a table. Space is obtained
+** from sqlite3DbMalloc(). The caller is responsible for freeing
+** the space when done.
+*/
+SQLITE_PRIVATE char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){
+ char *zColAff;
+ zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1);
+ if( zColAff ){
+ int i, j;
+ for(i=j=0; i<pTab->nCol; i++){
+ if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
+ zColAff[j++] = pTab->aCol[i].affinity;
+ }
+ }
+ do{
+ zColAff[j--] = 0;
+ }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
+ }
+ return zColAff;
+}
+
+/*
+** Make changes to the evolving bytecode to do affinity transformations
+** of values that are about to be gathered into a row for table pTab.
+**
+** For ordinary (legacy, non-strict) tables:
+** -----------------------------------------
+**
+** Compute the affinity string for table pTab, if it has not already been
+** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
+**
+** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
+** which were then optimized out) then this routine becomes a no-op.
+**
+** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
+** affinities for register iReg and following. Or if iReg==0,
+** then just set the P4 operand of the previous opcode (which should be
+** an OP_MakeRecord) to the affinity string.
+**
+** A column affinity string has one character per column:
+**
+** Character Column affinity
+** --------- ---------------
+** 'A' BLOB
+** 'B' TEXT
+** 'C' NUMERIC
+** 'D' INTEGER
+** 'E' REAL
+**
+** For STRICT tables:
+** ------------------
+**
+** Generate an appropriate OP_TypeCheck opcode that will verify the
+** datatypes against the column definitions in pTab. If iReg==0, that
+** means an OP_MakeRecord opcode has already been generated and should be
+** the last opcode generated. The new OP_TypeCheck needs to be inserted
+** before the OP_MakeRecord. The new OP_TypeCheck should use the same
+** register set as the OP_MakeRecord. If iReg>0 then register iReg is
+** the first of a series of registers that will form the new record.
+** Apply the type checking to that array of registers.
+*/
+SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
+ int i;
+ char *zColAff;
+ if( pTab->tabFlags & TF_Strict ){
+ if( iReg==0 ){
+ /* Move the previous opcode (which should be OP_MakeRecord) forward
+ ** by one slot and insert a new OP_TypeCheck where the current
+ ** OP_MakeRecord is found */
+ VdbeOp *pPrev;
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ pPrev = sqlite3VdbeGetLastOp(v);
+ assert( pPrev!=0 );
+ assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
+ pPrev->opcode = OP_TypeCheck;
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
+ }else{
+ /* Insert an isolated OP_Typecheck */
+ sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ }
+ return;
+ }
+ zColAff = pTab->zColAff;
+ if( zColAff==0 ){
+ zColAff = sqlite3TableAffinityStr(0, pTab);
+ if( !zColAff ){
+ sqlite3OomFault(sqlite3VdbeDb(v));
+ return;
+ }
+ pTab->zColAff = zColAff;
+ }
+ assert( zColAff!=0 );
+ i = sqlite3Strlen30NN(zColAff);
+ if( i ){
+ if( iReg ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
+ }else{
+ assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord
+ || sqlite3VdbeDb(v)->mallocFailed );
+ sqlite3VdbeChangeP4(v, -1, zColAff, i);
+ }
+ }
+}
+
+/*
+** Return non-zero if the table pTab in database iDb or any of its indices
+** have been opened at any point in the VDBE program. This is used to see if
+** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
+** run without using a temporary table for the results of the SELECT.
+*/
+static int readsTable(Parse *p, int iDb, Table *pTab){
+ Vdbe *v = sqlite3GetVdbe(p);
+ int i;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
+#endif
+
+ for(i=1; i<iEnd; i++){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
+ assert( pOp!=0 );
+ if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
+ Index *pIndex;
+ Pgno tnum = pOp->p2;
+ if( tnum==pTab->tnum ){
+ return 1;
+ }
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( tnum==pIndex->tnum ){
+ return 1;
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
+ assert( pOp->p4.pVtab!=0 );
+ assert( pOp->p4type==P4_VTAB );
+ return 1;
+ }
+#endif
+ }
+ return 0;
+}
+
+/* This walker callback will compute the union of colFlags flags for all
+** referenced columns in a CHECK constraint or generated column expression.
+*/
+static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
+ assert( pExpr->iColumn < pWalker->u.pTab->nCol );
+ pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
+ }
+ return WRC_Continue;
+}
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+/*
+** All regular columns for table pTab have been puts into registers
+** starting with iRegStore. The registers that correspond to STORED
+** or VIRTUAL columns have not yet been initialized. This routine goes
+** back and computes the values for those columns based on the previously
+** computed normal columns.
+*/
+SQLITE_PRIVATE void sqlite3ComputeGeneratedColumns(
+ Parse *pParse, /* Parsing context */
+ int iRegStore, /* Register holding the first column */
+ Table *pTab /* The table */
+){
+ int i;
+ Walker w;
+ Column *pRedo;
+ int eProgress;
+ VdbeOp *pOp;
+
+ assert( pTab->tabFlags & TF_HasGenerated );
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+
+ /* Before computing generated columns, first go through and make sure
+ ** that appropriate affinity has been applied to the regular columns
+ */
+ sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
+ if( (pTab->tabFlags & TF_HasStored)!=0 ){
+ pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
+ if( pOp->opcode==OP_Affinity ){
+ /* Change the OP_Affinity argument to '@' (NONE) for all stored
+ ** columns. '@' is the no-op affinity and those columns have not
+ ** yet been computed. */
+ int ii, jj;
+ char *zP4 = pOp->p4.z;
+ assert( zP4!=0 );
+ assert( pOp->p4type==P4_DYNAMIC );
+ for(ii=jj=0; zP4[jj]; ii++){
+ if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
+ continue;
+ }
+ if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
+ zP4[jj] = SQLITE_AFF_NONE;
+ }
+ jj++;
+ }
+ }else if( pOp->opcode==OP_TypeCheck ){
+ /* If an OP_TypeCheck was generated because the table is STRICT,
+ ** then set the P3 operand to indicate that generated columns should
+ ** not be checked */
+ pOp->p3 = 1;
+ }
+ }
+
+ /* Because there can be multiple generated columns that refer to one another,
+ ** this is a two-pass algorithm. On the first pass, mark all generated
+ ** columns as "not available".
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
+ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
+ testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
+ pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
+ }
+ }
+
+ w.u.pTab = pTab;
+ w.xExprCallback = exprColumnFlagUnion;
+ w.xSelectCallback = 0;
+ w.xSelectCallback2 = 0;
+
+ /* On the second pass, compute the value of each NOT-AVAILABLE column.
+ ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
+ ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
+ ** they are needed.
+ */
+ pParse->iSelfTab = -iRegStore;
+ do{
+ eProgress = 0;
+ pRedo = 0;
+ for(i=0; i<pTab->nCol; i++){
+ Column *pCol = pTab->aCol + i;
+ if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
+ int x;
+ pCol->colFlags |= COLFLAG_BUSY;
+ w.eCode = 0;
+ sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
+ pCol->colFlags &= ~COLFLAG_BUSY;
+ if( w.eCode & COLFLAG_NOTAVAIL ){
+ pRedo = pCol;
+ continue;
+ }
+ eProgress = 1;
+ assert( pCol->colFlags & COLFLAG_GENERATED );
+ x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
+ sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
+ pCol->colFlags &= ~COLFLAG_NOTAVAIL;
+ }
+ }
+ }while( pRedo && eProgress );
+ if( pRedo ){
+ sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
+ }
+ pParse->iSelfTab = 0;
+}
+#endif /* SQLITE_OMIT_GENERATED_COLUMNS */
+
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/*
+** Locate or create an AutoincInfo structure associated with table pTab
+** which is in database iDb. Return the register number for the register
+** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
+** table. (Also return zero when doing a VACUUM since we do not want to
+** update the AUTOINCREMENT counters during a VACUUM.)
+**
+** There is at most one AutoincInfo structure per table even if the
+** same table is autoincremented multiple times due to inserts within
+** triggers. A new AutoincInfo structure is created if this is the
+** first use of table pTab. On 2nd and subsequent uses, the original
+** AutoincInfo structure is used.
+**
+** Four consecutive registers are allocated:
+**
+** (1) The name of the pTab table.
+** (2) The maximum ROWID of pTab.
+** (3) The rowid in sqlite_sequence of pTab
+** (4) The original value of the max ROWID in pTab, or NULL if none
+**
+** The 2nd register is the one that is returned. That is all the
+** insert routine needs to know about.
+*/
+static int autoIncBegin(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database holding pTab */
+ Table *pTab /* The table we are writing to */
+){
+ int memId = 0; /* Register holding maximum rowid */
+ assert( pParse->db->aDb[iDb].pSchema!=0 );
+ if( (pTab->tabFlags & TF_Autoincrement)!=0
+ && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
+ ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ AutoincInfo *pInfo;
+ Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
+
+ /* Verify that the sqlite_sequence table exists and is an ordinary
+ ** rowid table with exactly two columns.
+ ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
+ if( pSeqTab==0
+ || !HasRowid(pSeqTab)
+ || NEVER(IsVirtual(pSeqTab))
+ || pSeqTab->nCol!=2
+ ){
+ pParse->nErr++;
+ pParse->rc = SQLITE_CORRUPT_SEQUENCE;
+ return 0;
+ }
+
+ pInfo = pToplevel->pAinc;
+ while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
+ if( pInfo==0 ){
+ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
+ sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
+ testcase( pParse->earlyCleanup );
+ if( pParse->db->mallocFailed ) return 0;
+ pInfo->pNext = pToplevel->pAinc;
+ pToplevel->pAinc = pInfo;
+ pInfo->pTab = pTab;
+ pInfo->iDb = iDb;
+ pToplevel->nMem++; /* Register to hold name of table */
+ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
+ pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
+ }
+ memId = pInfo->regCtr;
+ }
+ return memId;
+}
+
+/*
+** This routine generates code that will initialize all of the
+** register used by the autoincrement tracker.
+*/
+SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
+ AutoincInfo *p; /* Information about an AUTOINCREMENT */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Db *pDb; /* Database only autoinc table */
+ int memId; /* Register holding max rowid */
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */
+
+ /* This routine is never called during trigger-generation. It is
+ ** only called from the top-level */
+ assert( pParse->pTriggerTab==0 );
+ assert( sqlite3IsToplevel(pParse) );
+
+ assert( v ); /* We failed long ago if this is not so */
+ for(p = pParse->pAinc; p; p = p->pNext){
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList autoInc[] = {
+ /* 0 */ {OP_Null, 0, 0, 0},
+ /* 1 */ {OP_Rewind, 0, 10, 0},
+ /* 2 */ {OP_Column, 0, 0, 0},
+ /* 3 */ {OP_Ne, 0, 9, 0},
+ /* 4 */ {OP_Rowid, 0, 0, 0},
+ /* 5 */ {OP_Column, 0, 1, 0},
+ /* 6 */ {OP_AddImm, 0, 0, 0},
+ /* 7 */ {OP_Copy, 0, 0, 0},
+ /* 8 */ {OP_Goto, 0, 11, 0},
+ /* 9 */ {OP_Next, 0, 2, 0},
+ /* 10 */ {OP_Integer, 0, 0, 0},
+ /* 11 */ {OP_Close, 0, 0, 0}
+ };
+ VdbeOp *aOp;
+ pDb = &db->aDb[p->iDb];
+ memId = p->regCtr;
+ assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
+ if( aOp==0 ) break;
+ aOp[0].p2 = memId;
+ aOp[0].p3 = memId+2;
+ aOp[2].p3 = memId;
+ aOp[3].p1 = memId-1;
+ aOp[3].p3 = memId;
+ aOp[3].p5 = SQLITE_JUMPIFNULL;
+ aOp[4].p2 = memId+1;
+ aOp[5].p3 = memId;
+ aOp[6].p1 = memId;
+ aOp[7].p2 = memId+2;
+ aOp[7].p1 = memId;
+ aOp[10].p2 = memId;
+ if( pParse->nTab==0 ) pParse->nTab = 1;
+ }
+}
+
+/*
+** Update the maximum rowid for an autoincrement calculation.
+**
+** This routine should be called when the regRowid register holds a
+** new rowid that is about to be inserted. If that new rowid is
+** larger than the maximum rowid in the memId memory cell, then the
+** memory cell is updated.
+*/
+static void autoIncStep(Parse *pParse, int memId, int regRowid){
+ if( memId>0 ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
+ }
+}
+
+/*
+** This routine generates the code needed to write autoincrement
+** maximum rowid values back into the sqlite_sequence register.
+** Every statement that might do an INSERT into an autoincrement
+** table (either directly or through triggers) needs to call this
+** routine just before the "exit" code.
+*/
+static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
+ AutoincInfo *p;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+
+ assert( v );
+ for(p = pParse->pAinc; p; p = p->pNext){
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList autoIncEnd[] = {
+ /* 0 */ {OP_NotNull, 0, 2, 0},
+ /* 1 */ {OP_NewRowid, 0, 0, 0},
+ /* 2 */ {OP_MakeRecord, 0, 2, 0},
+ /* 3 */ {OP_Insert, 0, 0, 0},
+ /* 4 */ {OP_Close, 0, 0, 0}
+ };
+ VdbeOp *aOp;
+ Db *pDb = &db->aDb[p->iDb];
+ int iRec;
+ int memId = p->regCtr;
+
+ iRec = sqlite3GetTempReg(pParse);
+ assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
+ sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
+ VdbeCoverage(v);
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
+ if( aOp==0 ) break;
+ aOp[0].p1 = memId+1;
+ aOp[1].p2 = memId+1;
+ aOp[2].p1 = memId-1;
+ aOp[2].p3 = iRec;
+ aOp[3].p2 = iRec;
+ aOp[3].p3 = memId+1;
+ aOp[3].p5 = OPFLAG_APPEND;
+ sqlite3ReleaseTempReg(pParse, iRec);
+ }
+}
+SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
+ if( pParse->pAinc ) autoIncrementEnd(pParse);
+}
+#else
+/*
+** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
+** above are all no-ops
+*/
+# define autoIncBegin(A,B,C) (0)
+# define autoIncStep(A,B,C)
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+
+/* Forward declaration */
+static int xferOptimization(
+ Parse *pParse, /* Parser context */
+ Table *pDest, /* The table we are inserting into */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ int onError, /* How to handle constraint errors */
+ int iDbDest /* The database of pDest */
+);
+
+/*
+** This routine is called to handle SQL of the following forms:
+**
+** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
+** insert into TABLE (IDLIST) select
+** insert into TABLE (IDLIST) default values
+**
+** The IDLIST following the table name is always optional. If omitted,
+** then a list of all (non-hidden) columns for the table is substituted.
+** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
+** is omitted.
+**
+** For the pSelect parameter holds the values to be inserted for the
+** first two forms shown above. A VALUES clause is really just short-hand
+** for a SELECT statement that omits the FROM clause and everything else
+** that follows. If the pSelect parameter is NULL, that means that the
+** DEFAULT VALUES form of the INSERT statement is intended.
+**
+** The code generated follows one of four templates. For a simple
+** insert with data coming from a single-row VALUES clause, the code executes
+** once straight down through. Pseudo-code follows (we call this
+** the "1st template"):
+**
+** open write cursor to <table> and its indices
+** put VALUES clause expressions into registers
+** write the resulting record into <table>
+** cleanup
+**
+** The three remaining templates assume the statement is of the form
+**
+** INSERT INTO <table> SELECT ...
+**
+** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
+** in other words if the SELECT pulls all columns from a single table
+** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
+** if <table2> and <table1> are distinct tables but have identical
+** schemas, including all the same indices, then a special optimization
+** is invoked that copies raw records from <table2> over to <table1>.
+** See the xferOptimization() function for the implementation of this
+** template. This is the 2nd template.
+**
+** open a write cursor to <table>
+** open read cursor on <table2>
+** transfer all records in <table2> over to <table>
+** close cursors
+** foreach index on <table>
+** open a write cursor on the <table> index
+** open a read cursor on the corresponding <table2> index
+** transfer all records from the read to the write cursors
+** close cursors
+** end foreach
+**
+** The 3rd template is for when the second template does not apply
+** and the SELECT clause does not read from <table> at any time.
+** The generated code follows this template:
+**
+** X <- A
+** goto B
+** A: setup for the SELECT
+** loop over the rows in the SELECT
+** load values into registers R..R+n
+** yield X
+** end loop
+** cleanup after the SELECT
+** end-coroutine X
+** B: open write cursor to <table> and its indices
+** C: yield X, at EOF goto D
+** insert the select result into <table> from R..R+n
+** goto C
+** D: cleanup
+**
+** The 4th template is used if the insert statement takes its
+** values from a SELECT but the data is being inserted into a table
+** that is also read as part of the SELECT. In the third form,
+** we have to use an intermediate table to store the results of
+** the select. The template is like this:
+**
+** X <- A
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** load value into register R..R+n
+** yield X
+** end loop
+** cleanup after the SELECT
+** end co-routine R
+** B: open temp table
+** L: yield X, at EOF goto M
+** insert row from R..R+n into temp table
+** goto L
+** M: open write cursor to <table> and its indices
+** rewind temp table
+** C: loop over rows of intermediate table
+** transfer values form intermediate table into <table>
+** end loop
+** D: cleanup
+*/
+SQLITE_PRIVATE void sqlite3Insert(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* Name of table into which we are inserting */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */
+ int onError, /* How to handle constraint errors */
+ Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */
+){
+ sqlite3 *db; /* The main database structure */
+ Table *pTab; /* The table to insert into. aka TABLE */
+ int i, j; /* Loop counters */
+ Vdbe *v; /* Generate code into this virtual machine */
+ Index *pIdx; /* For looping over indices of the table */
+ int nColumn; /* Number of columns in the data */
+ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
+ int iDataCur = 0; /* VDBE cursor that is the main data repository */
+ int iIdxCur = 0; /* First index cursor */
+ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
+ int endOfLoop; /* Label for the end of the insertion loop */
+ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
+ int addrInsTop = 0; /* Jump to label "D" */
+ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
+ SelectDest dest; /* Destination for SELECT on rhs of INSERT */
+ int iDb; /* Index of database holding TABLE */
+ u8 useTempTable = 0; /* Store SELECT results in intermediate table */
+ u8 appendFlag = 0; /* True if the insert is likely to be an append */
+ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
+ u8 bIdListInOrder; /* True if IDLIST is in table order */
+ ExprList *pList = 0; /* List of VALUES() to be inserted */
+ int iRegStore; /* Register in which to store next column */
+
+ /* Register allocations */
+ int regFromSelect = 0;/* Base register for data coming from SELECT */
+ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
+ int regRowCount = 0; /* Memory cell used for the row counter */
+ int regIns; /* Block of regs holding rowid+data being inserted */
+ int regRowid; /* registers holding insert rowid */
+ int regData; /* register holding first column to insert */
+ int *aRegIdx = 0; /* One register allocated to each index */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True if attempting to insert into a view */
+ Trigger *pTrigger; /* List of triggers on pTab, if required */
+ int tmask; /* Mask of trigger times */
+#endif
+
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto insert_cleanup;
+ }
+ assert( db->mallocFailed==0 );
+ dest.iSDParm = 0; /* Suppress a harmless compiler warning */
+
+ /* If the Select object is really just a simple VALUES() list with a
+ ** single row (the common case) then keep that one row of values
+ ** and discard the other (unused) parts of the pSelect object
+ */
+ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
+ pList = pSelect->pEList;
+ pSelect->pEList = 0;
+ sqlite3SelectDelete(db, pSelect);
+ pSelect = 0;
+ }
+
+ /* Locate the table into which we will be inserting new information.
+ */
+ assert( pTabList->nSrc==1 );
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ){
+ goto insert_cleanup;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
+ db->aDb[iDb].zDbSName) ){
+ goto insert_cleanup;
+ }
+ withoutRowid = !HasRowid(pTab);
+
+ /* Figure out if we have any triggers and if the table being
+ ** inserted into is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
+ isView = IsView(pTab);
+#else
+# define pTrigger 0
+# define tmask 0
+# define isView 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+ assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__);
+ sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList,
+ onError, pUpsert, pTrigger);
+ }
+#endif
+
+ /* If pTab is really a view, make sure it has been initialized.
+ ** ViewGetColumnNames() is a no-op if pTab is not a view.
+ */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto insert_cleanup;
+ }
+
+ /* Cannot insert into a read-only table.
+ */
+ if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){
+ goto insert_cleanup;
+ }
+
+ /* Allocate a VDBE
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto insert_cleanup;
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
+
+#ifndef SQLITE_OMIT_XFER_OPT
+ /* If the statement is of the form
+ **
+ ** INSERT INTO <table1> SELECT * FROM <table2>;
+ **
+ ** Then special optimizations can be applied that make the transfer
+ ** very fast and which reduce fragmentation of indices.
+ **
+ ** This is the 2nd template.
+ */
+ if( pColumn==0
+ && pSelect!=0
+ && pTrigger==0
+ && xferOptimization(pParse, pTab, pSelect, onError, iDb)
+ ){
+ assert( !pTrigger );
+ assert( pList==0 );
+ goto insert_end;
+ }
+#endif /* SQLITE_OMIT_XFER_OPT */
+
+ /* If this is an AUTOINCREMENT table, look up the sequence number in the
+ ** sqlite_sequence table and store it in memory cell regAutoinc.
+ */
+ regAutoinc = autoIncBegin(pParse, iDb, pTab);
+
+ /* Allocate a block registers to hold the rowid and the values
+ ** for all columns of the new row.
+ */
+ regRowid = regIns = pParse->nMem+1;
+ pParse->nMem += pTab->nCol + 1;
+ if( IsVirtual(pTab) ){
+ regRowid++;
+ pParse->nMem++;
+ }
+ regData = regRowid+1;
+
+ /* If the INSERT statement included an IDLIST term, then make sure
+ ** all elements of the IDLIST really are columns of the table and
+ ** remember the column indices.
+ **
+ ** If the table has an INTEGER PRIMARY KEY column and that column
+ ** is named in the IDLIST, then record in the ipkColumn variable
+ ** the index into IDLIST of the primary key column. ipkColumn is
+ ** the index of the primary key as it appears in IDLIST, not as
+ ** is appears in the original table. (The index of the INTEGER
+ ** PRIMARY KEY in the original table is pTab->iPKey.) After this
+ ** loop, if ipkColumn==(-1), that means that integer primary key
+ ** is unspecified, and hence the table is either WITHOUT ROWID or
+ ** it will automatically generated an integer primary key.
+ **
+ ** bIdListInOrder is true if the columns in IDLIST are in storage
+ ** order. This enables an optimization that avoids shuffling the
+ ** columns into storage order. False negatives are harmless,
+ ** but false positives will cause database corruption.
+ */
+ bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
+ if( pColumn ){
+ assert( pColumn->eU4!=EU4_EXPR );
+ pColumn->eU4 = EU4_IDX;
+ for(i=0; i<pColumn->nId; i++){
+ pColumn->a[i].u4.idx = -1;
+ }
+ for(i=0; i<pColumn->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
+ pColumn->a[i].u4.idx = j;
+ if( i!=j ) bIdListInOrder = 0;
+ if( j==pTab->iPKey ){
+ ipkColumn = i; assert( !withoutRowid );
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
+ sqlite3ErrorMsg(pParse,
+ "cannot INSERT into generated column \"%s\"",
+ pTab->aCol[j].zCnName);
+ goto insert_cleanup;
+ }
+#endif
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
+ ipkColumn = i;
+ bIdListInOrder = 0;
+ }else{
+ sqlite3ErrorMsg(pParse, "table %S has no column named %s",
+ pTabList->a, pColumn->a[i].zName);
+ pParse->checkSchema = 1;
+ goto insert_cleanup;
+ }
+ }
+ }
+ }
+
+ /* Figure out how many columns of data are supplied. If the data
+ ** is coming from a SELECT statement, then generate a co-routine that
+ ** produces a single row of the SELECT on each invocation. The
+ ** co-routine is the common header to the 3rd and 4th templates.
+ */
+ if( pSelect ){
+ /* Data is coming from a SELECT or from a multi-row VALUES clause.
+ ** Generate a co-routine to run the SELECT. */
+ int regYield; /* Register holding co-routine entry-point */
+ int addrTop; /* Top of the co-routine */
+ int rc; /* Result code */
+
+ regYield = ++pParse->nMem;
+ addrTop = sqlite3VdbeCurrentAddr(v) + 1;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
+ dest.iSdst = bIdListInOrder ? regData : 0;
+ dest.nSdst = pTab->nCol;
+ rc = sqlite3Select(pParse, pSelect, &dest);
+ regFromSelect = dest.iSdst;
+ assert( db->pParse==pParse );
+ if( rc || pParse->nErr ) goto insert_cleanup;
+ assert( db->mallocFailed==0 );
+ sqlite3VdbeEndCoroutine(v, regYield);
+ sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
+ assert( pSelect->pEList );
+ nColumn = pSelect->pEList->nExpr;
+
+ /* Set useTempTable to TRUE if the result of the SELECT statement
+ ** should be written into a temporary table (template 4). Set to
+ ** FALSE if each output row of the SELECT can be written directly into
+ ** the destination table (template 3).
+ **
+ ** A temp table must be used if the table being updated is also one
+ ** of the tables being read by the SELECT statement. Also use a
+ ** temp table in the case of row triggers.
+ */
+ if( pTrigger || readsTable(pParse, iDb, pTab) ){
+ useTempTable = 1;
+ }
+
+ if( useTempTable ){
+ /* Invoke the coroutine to extract information from the SELECT
+ ** and add it to a transient table srcTab. The code generated
+ ** here is from the 4th template:
+ **
+ ** B: open temp table
+ ** L: yield X, goto M at EOF
+ ** insert row from R..R+n into temp table
+ ** goto L
+ ** M: ...
+ */
+ int regRec; /* Register to hold packed record */
+ int regTempRowid; /* Register to hold temp table ROWID */
+ int addrL; /* Label "L" */
+
+ srcTab = pParse->nTab++;
+ regRec = sqlite3GetTempReg(pParse);
+ regTempRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
+ addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
+ sqlite3VdbeGoto(v, addrL);
+ sqlite3VdbeJumpHere(v, addrL);
+ sqlite3ReleaseTempReg(pParse, regRec);
+ sqlite3ReleaseTempReg(pParse, regTempRowid);
+ }
+ }else{
+ /* This is the case if the data for the INSERT is coming from a
+ ** single-row VALUES clause
+ */
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ srcTab = -1;
+ assert( useTempTable==0 );
+ if( pList ){
+ nColumn = pList->nExpr;
+ if( sqlite3ResolveExprListNames(&sNC, pList) ){
+ goto insert_cleanup;
+ }
+ }else{
+ nColumn = 0;
+ }
+ }
+
+ /* If there is no IDLIST term but the table has an integer primary
+ ** key, the set the ipkColumn variable to the integer primary key
+ ** column index in the original table definition.
+ */
+ if( pColumn==0 && nColumn>0 ){
+ ipkColumn = pTab->iPKey;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ for(i=ipkColumn-1; i>=0; i--){
+ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
+ testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
+ testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
+ ipkColumn--;
+ }
+ }
+ }
+#endif
+
+ /* Make sure the number of columns in the source data matches the number
+ ** of columns to be inserted into the table.
+ */
+ assert( TF_HasHidden==COLFLAG_HIDDEN );
+ assert( TF_HasGenerated==COLFLAG_GENERATED );
+ assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
+ if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
+ }
+ }
+ if( nColumn!=(pTab->nCol-nHidden) ){
+ sqlite3ErrorMsg(pParse,
+ "table %S has %d columns but %d values were supplied",
+ pTabList->a, pTab->nCol-nHidden, nColumn);
+ goto insert_cleanup;
+ }
+ }
+ if( pColumn!=0 && nColumn!=pColumn->nId ){
+ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
+ goto insert_cleanup;
+ }
+
+ /* Initialize the count of rows to be inserted
+ */
+ if( (db->flags & SQLITE_CountRows)!=0
+ && !pParse->nested
+ && !pParse->pTriggerTab
+ && !pParse->bReturning
+ ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
+ }
+
+ /* If this is not a view, open the table and and all indices */
+ if( !isView ){
+ int nIdx;
+ nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
+ &iDataCur, &iIdxCur);
+ aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
+ if( aRegIdx==0 ){
+ goto insert_cleanup;
+ }
+ for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
+ assert( pIdx );
+ aRegIdx[i] = ++pParse->nMem;
+ pParse->nMem += pIdx->nColumn;
+ }
+ aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ if( pUpsert ){
+ Upsert *pNx;
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
+ pTab->zName);
+ goto insert_cleanup;
+ }
+ if( IsView(pTab) ){
+ sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
+ goto insert_cleanup;
+ }
+ if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
+ goto insert_cleanup;
+ }
+ pTabList->a[0].iCursor = iDataCur;
+ pNx = pUpsert;
+ do{
+ pNx->pUpsertSrc = pTabList;
+ pNx->regData = regData;
+ pNx->iDataCur = iDataCur;
+ pNx->iIdxCur = iIdxCur;
+ if( pNx->pUpsertTarget ){
+ if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
+ goto insert_cleanup;
+ }
+ }
+ pNx = pNx->pNextUpsert;
+ }while( pNx!=0 );
+ }
+#endif
+
+
+ /* This is the top of the main insertion loop */
+ if( useTempTable ){
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 4):
+ **
+ ** rewind temp table, if empty goto D
+ ** C: loop over rows of intermediate table
+ ** transfer values form intermediate table into <table>
+ ** end loop
+ ** D: ...
+ */
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
+ addrCont = sqlite3VdbeCurrentAddr(v);
+ }else if( pSelect ){
+ /* This block codes the top of loop only. The complete loop is the
+ ** following pseudocode (template 3):
+ **
+ ** C: yield X, at EOF goto D
+ ** insert the select result into <table> from R..R+n
+ ** goto C
+ ** D: ...
+ */
+ sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
+ addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
+ VdbeCoverage(v);
+ if( ipkColumn>=0 ){
+ /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
+ ** SELECT, go ahead and copy the value into the rowid slot now, so that
+ ** the value does not get overwritten by a NULL at tag-20191021-002. */
+ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
+ }
+ }
+
+ /* Compute data for ordinary columns of the new entry. Values
+ ** are written in storage order into registers starting with regData.
+ ** Only ordinary columns are computed in this loop. The rowid
+ ** (if there is one) is computed later and generated columns are
+ ** computed after the rowid since they might depend on the value
+ ** of the rowid.
+ */
+ nHidden = 0;
+ iRegStore = regData; assert( regData==regRowid+1 );
+ for(i=0; i<pTab->nCol; i++, iRegStore++){
+ int k;
+ u32 colFlags;
+ assert( i>=nHidden );
+ if( i==pTab->iPKey ){
+ /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
+ ** using the rowid. So put a NULL in the IPK slot of the record to avoid
+ ** using excess space. The file format definition requires this extra
+ ** NULL - we cannot optimize further by skipping the column completely */
+ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
+ continue;
+ }
+ if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
+ nHidden++;
+ if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
+ /* Virtual columns do not participate in OP_MakeRecord. So back up
+ ** iRegStore by one slot to compensate for the iRegStore++ in the
+ ** outer for() loop */
+ iRegStore--;
+ continue;
+ }else if( (colFlags & COLFLAG_STORED)!=0 ){
+ /* Stored columns are computed later. But if there are BEFORE
+ ** triggers, the slots used for stored columns will be OP_Copy-ed
+ ** to a second block of registers, so the register needs to be
+ ** initialized to NULL to avoid an uninitialized register read */
+ if( tmask & TRIGGER_BEFORE ){
+ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
+ }
+ continue;
+ }else if( pColumn==0 ){
+ /* Hidden columns that are not explicitly named in the INSERT
+ ** get there default value */
+ sqlite3ExprCodeFactorable(pParse,
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ iRegStore);
+ continue;
+ }
+ }
+ if( pColumn ){
+ assert( pColumn->eU4==EU4_IDX );
+ for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){}
+ if( j>=pColumn->nId ){
+ /* A column not named in the insert column list gets its
+ ** default value */
+ sqlite3ExprCodeFactorable(pParse,
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ iRegStore);
+ continue;
+ }
+ k = j;
+ }else if( nColumn==0 ){
+ /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
+ sqlite3ExprCodeFactorable(pParse,
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ iRegStore);
+ continue;
+ }else{
+ k = i - nHidden;
+ }
+
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
+ }else if( pSelect ){
+ if( regFromSelect!=regData ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
+ }
+ }else{
+ Expr *pX = pList->a[k].pExpr;
+ int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore);
+ if( y!=iRegStore ){
+ sqlite3VdbeAddOp2(v,
+ ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore);
+ }
+ }
+ }
+
+
+ /* Run the BEFORE and INSTEAD OF triggers, if there are any
+ */
+ endOfLoop = sqlite3VdbeMakeLabel(pParse);
+ if( tmask & TRIGGER_BEFORE ){
+ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
+
+ /* build the NEW.* reference row. Note that if there is an INTEGER
+ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
+ ** translated into a unique ID for the row. But on a BEFORE trigger,
+ ** we do not know what the unique ID will be (because the insert has
+ ** not happened yet) so we substitute a rowid of -1
+ */
+ if( ipkColumn<0 ){
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
+ }else{
+ int addr1;
+ assert( !withoutRowid );
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
+ }else{
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
+ }
+ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
+ }
+
+ /* Copy the new data already generated. */
+ assert( pTab->nNVCol>0 || pParse->nErr>0 );
+ sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Compute the new value for generated columns after all other
+ ** columns have already been computed. This must be done after
+ ** computing the ROWID in case one of the generated columns
+ ** refers to the ROWID. */
+ if( pTab->tabFlags & TF_HasGenerated ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
+ }
+#endif
+
+ /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
+ ** do not attempt any conversions before assembling the record.
+ ** If this is a real table, attempt conversions as required by the
+ ** table column affinities.
+ */
+ if( !isView ){
+ sqlite3TableAffinity(v, pTab, regCols+1);
+ }
+
+ /* Fire BEFORE or INSTEAD OF triggers */
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
+ pTab, regCols-pTab->nCol-1, onError, endOfLoop);
+
+ sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
+ }
+
+ if( !isView ){
+ if( IsVirtual(pTab) ){
+ /* The row that the VUpdate opcode will delete: none */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
+ }
+ if( ipkColumn>=0 ){
+ /* Compute the new rowid */
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
+ }else if( pSelect ){
+ /* Rowid already initialized at tag-20191021-001 */
+ }else{
+ Expr *pIpk = pList->a[ipkColumn].pExpr;
+ if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
+ appendFlag = 1;
+ }else{
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
+ }
+ }
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
+ ** to generate a unique primary key value.
+ */
+ if( !appendFlag ){
+ int addr1;
+ if( !IsVirtual(pTab) ){
+ addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
+ sqlite3VdbeJumpHere(v, addr1);
+ }else{
+ addr1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
+ }
+ }else if( IsVirtual(pTab) || withoutRowid ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
+ appendFlag = 1;
+ }
+ autoIncStep(pParse, regAutoinc, regRowid);
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Compute the new value for generated columns after all other
+ ** columns have already been computed. This must be done after
+ ** computing the ROWID in case one of the generated columns
+ ** is derived from the INTEGER PRIMARY KEY. */
+ if( pTab->tabFlags & TF_HasGenerated ){
+ sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
+ }
+#endif
+
+ /* Generate code to check constraints and generate index keys and
+ ** do the insertion.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
+ sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
+ sqlite3MayAbort(pParse);
+ }else
+#endif
+ {
+ int isReplace = 0;/* Set to true if constraints may cause a replace */
+ int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
+ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
+ regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
+ );
+ if( db->flags & SQLITE_ForeignKeys ){
+ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
+ }
+
+ /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
+ ** constraints or (b) there are no triggers and this table is not a
+ ** parent table in a foreign key constraint. It is safe to set the
+ ** flag in the second case as if any REPLACE constraint is hit, an
+ ** OP_Delete or OP_IdxDelete instruction will be executed on each
+ ** cursor that is disturbed. And these instructions both clear the
+ ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
+ ** functionality. */
+ bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
+ sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
+ regIns, aRegIdx, 0, appendFlag, bUseSeek
+ );
+ }
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ }else if( pParse->bReturning ){
+ /* If there is a RETURNING clause, populate the rowid register with
+ ** constant value -1, in case one or more of the returned expressions
+ ** refer to the "rowid" of the view. */
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
+#endif
+ }
+
+ /* Update the count of rows that are inserted
+ */
+ if( regRowCount ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
+ }
+
+ if( pTrigger ){
+ /* Code AFTER triggers */
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
+ pTab, regData-2-pTab->nCol, onError, endOfLoop);
+ }
+
+ /* The bottom of the main insertion loop, if the data source
+ ** is a SELECT statement.
+ */
+ sqlite3VdbeResolveLabel(v, endOfLoop);
+ if( useTempTable ){
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrInsTop);
+ sqlite3VdbeAddOp1(v, OP_Close, srcTab);
+ }else if( pSelect ){
+ sqlite3VdbeGoto(v, addrCont);
+#ifdef SQLITE_DEBUG
+ /* If we are jumping back to an OP_Yield that is preceded by an
+ ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
+ ** OP_ReleaseReg will be included in the loop. */
+ if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
+ assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
+ sqlite3VdbeChangeP5(v, 1);
+ }
+#endif
+ sqlite3VdbeJumpHere(v, addrInsTop);
+ }
+
+#ifndef SQLITE_OMIT_XFER_OPT
+insert_end:
+#endif /* SQLITE_OMIT_XFER_OPT */
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /*
+ ** Return the number of rows inserted. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( regRowCount ){
+ sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
+ }
+
+insert_cleanup:
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pList);
+ sqlite3UpsertDelete(db, pUpsert);
+ sqlite3SelectDelete(db, pSelect);
+ sqlite3IdListDelete(db, pColumn);
+ if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx);
+}
+
+/* Make sure "isView" and other macros defined above are undefined. Otherwise
+** they may interfere with compilation of other functions in this file
+** (or in another file, if this file becomes part of the amalgamation). */
+#ifdef isView
+ #undef isView
+#endif
+#ifdef pTrigger
+ #undef pTrigger
+#endif
+#ifdef tmask
+ #undef tmask
+#endif
+
+/*
+** Meanings of bits in of pWalker->eCode for
+** sqlite3ExprReferencesUpdatedColumn()
+*/
+#define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
+#define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
+
+/* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
+* Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
+** expression node references any of the
+** columns that are being modified by an UPDATE statement.
+*/
+static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_COLUMN ){
+ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
+ if( pExpr->iColumn>=0 ){
+ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
+ pWalker->eCode |= CKCNSTRNT_COLUMN;
+ }
+ }else{
+ pWalker->eCode |= CKCNSTRNT_ROWID;
+ }
+ }
+ return WRC_Continue;
+}
+
+/*
+** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
+** only columns that are modified by the UPDATE are those for which
+** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
+**
+** Return true if CHECK constraint pExpr uses any of the
+** changing columns (or the rowid if it is changing). In other words,
+** return true if this CHECK constraint must be validated for
+** the new row in the UPDATE statement.
+**
+** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
+** The operation of this routine is the same - return true if an only if
+** the expression uses one or more of columns identified by the second and
+** third arguments.
+*/
+SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(
+ Expr *pExpr, /* The expression to be checked */
+ int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */
+ int chngRowid /* True if UPDATE changes the rowid */
+){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.eCode = 0;
+ w.xExprCallback = checkConstraintExprNode;
+ w.u.aiCol = aiChng;
+ sqlite3WalkExpr(&w, pExpr);
+ if( !chngRowid ){
+ testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
+ w.eCode &= ~CKCNSTRNT_ROWID;
+ }
+ testcase( w.eCode==0 );
+ testcase( w.eCode==CKCNSTRNT_COLUMN );
+ testcase( w.eCode==CKCNSTRNT_ROWID );
+ testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
+ return w.eCode!=0;
+}
+
+/*
+** The sqlite3GenerateConstraintChecks() routine usually wants to visit
+** the indexes of a table in the order provided in the Table->pIndex list.
+** However, sometimes (rarely - when there is an upsert) it wants to visit
+** the indexes in a different order. The following data structures accomplish
+** this.
+**
+** The IndexIterator object is used to walk through all of the indexes
+** of a table in either Index.pNext order, or in some other order established
+** by an array of IndexListTerm objects.
+*/
+typedef struct IndexListTerm IndexListTerm;
+typedef struct IndexIterator IndexIterator;
+struct IndexIterator {
+ int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
+ int i; /* Index of the current item from the list */
+ union {
+ struct { /* Use this object for eType==0: A Index.pNext list */
+ Index *pIdx; /* The current Index */
+ } lx;
+ struct { /* Use this object for eType==1; Array of IndexListTerm */
+ int nIdx; /* Size of the array */
+ IndexListTerm *aIdx; /* Array of IndexListTerms */
+ } ax;
+ } u;
+};
+
+/* When IndexIterator.eType==1, then each index is an array of instances
+** of the following object
+*/
+struct IndexListTerm {
+ Index *p; /* The index */
+ int ix; /* Which entry in the original Table.pIndex list is this index*/
+};
+
+/* Return the first index on the list */
+static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
+ assert( pIter->i==0 );
+ if( pIter->eType ){
+ *pIx = pIter->u.ax.aIdx[0].ix;
+ return pIter->u.ax.aIdx[0].p;
+ }else{
+ *pIx = 0;
+ return pIter->u.lx.pIdx;
+ }
+}
+
+/* Return the next index from the list. Return NULL when out of indexes */
+static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
+ if( pIter->eType ){
+ int i = ++pIter->i;
+ if( i>=pIter->u.ax.nIdx ){
+ *pIx = i;
+ return 0;
+ }
+ *pIx = pIter->u.ax.aIdx[i].ix;
+ return pIter->u.ax.aIdx[i].p;
+ }else{
+ ++(*pIx);
+ pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
+ return pIter->u.lx.pIdx;
+ }
+}
+
+/*
+** Generate code to do constraint checks prior to an INSERT or an UPDATE
+** on table pTab.
+**
+** The regNewData parameter is the first register in a range that contains
+** the data to be inserted or the data after the update. There will be
+** pTab->nCol+1 registers in this range. The first register (the one
+** that regNewData points to) will contain the new rowid, or NULL in the
+** case of a WITHOUT ROWID table. The second register in the range will
+** contain the content of the first table column. The third register will
+** contain the content of the second table column. And so forth.
+**
+** The regOldData parameter is similar to regNewData except that it contains
+** the data prior to an UPDATE rather than afterwards. regOldData is zero
+** for an INSERT. This routine can distinguish between UPDATE and INSERT by
+** checking regOldData for zero.
+**
+** For an UPDATE, the pkChng boolean is true if the true primary key (the
+** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
+** might be modified by the UPDATE. If pkChng is false, then the key of
+** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
+**
+** For an INSERT, the pkChng boolean indicates whether or not the rowid
+** was explicitly specified as part of the INSERT statement. If pkChng
+** is zero, it means that the either rowid is computed automatically or
+** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
+** pkChng will only be true if the INSERT statement provides an integer
+** value for either the rowid column or its INTEGER PRIMARY KEY alias.
+**
+** The code generated by this routine will store new index entries into
+** registers identified by aRegIdx[]. No index entry is created for
+** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
+** the same as the order of indices on the linked list of indices
+** at pTab->pIndex.
+**
+** (2019-05-07) The generated code also creates a new record for the
+** main table, if pTab is a rowid table, and stores that record in the
+** register identified by aRegIdx[nIdx] - in other words in the first
+** entry of aRegIdx[] past the last index. It is important that the
+** record be generated during constraint checks to avoid affinity changes
+** to the register content that occur after constraint checks but before
+** the new record is inserted.
+**
+** The caller must have already opened writeable cursors on the main
+** table and all applicable indices (that is to say, all indices for which
+** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
+** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
+** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
+** for the first index in the pTab->pIndex list. Cursors for other indices
+** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
+**
+** This routine also generates code to check constraints. NOT NULL,
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
+** then the appropriate action is performed. There are five possible
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
+**
+** Constraint type Action What Happens
+** --------------- ---------- ----------------------------------------
+** any ROLLBACK The current transaction is rolled back and
+** sqlite3_step() returns immediately with a
+** return code of SQLITE_CONSTRAINT.
+**
+** any ABORT Back out changes from the current command
+** only (do not do a complete rollback) then
+** cause sqlite3_step() to return immediately
+** with SQLITE_CONSTRAINT.
+**
+** any FAIL Sqlite3_step() returns immediately with a
+** return code of SQLITE_CONSTRAINT. The
+** transaction is not rolled back and any
+** changes to prior rows are retained.
+**
+** any IGNORE The attempt in insert or update the current
+** row is skipped, without throwing an error.
+** Processing continues with the next row.
+** (There is an immediate jump to ignoreDest.)
+**
+** NOT NULL REPLACE The NULL value is replace by the default
+** value for that column. If the default value
+** is NULL, the action is the same as ABORT.
+**
+** UNIQUE REPLACE The other row that conflicts with the row
+** being inserted is removed.
+**
+** CHECK REPLACE Illegal. The results in an exception.
+**
+** Which action to take is determined by the overrideError parameter.
+** Or if overrideError==OE_Default, then the pParse->onError parameter
+** is used. Or if pParse->onError==OE_Default then the onError value
+** for the constraint is used.
+*/
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* The table being inserted or updated */
+ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
+ int iDataCur, /* Canonical data cursor (main table or PK index) */
+ int iIdxCur, /* First index cursor */
+ int regNewData, /* First register in a range holding values to insert */
+ int regOldData, /* Previous content. 0 for INSERTs */
+ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
+ u8 overrideError, /* Override onError to this if not OE_Default */
+ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
+ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
+ int *aiChng, /* column i is unchanged if aiChng[i]<0 */
+ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */
+){
+ Vdbe *v; /* VDBE under construction */
+ Index *pIdx; /* Pointer to one of the indices */
+ Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
+ sqlite3 *db; /* Database connection */
+ int i; /* loop counter */
+ int ix; /* Index loop counter */
+ int nCol; /* Number of columns */
+ int onError; /* Conflict resolution strategy */
+ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
+ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
+ Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */
+ u8 isUpdate; /* True if this is an UPDATE operation */
+ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
+ int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
+ int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */
+ int ipkTop = 0; /* Top of the IPK uniqueness check */
+ int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */
+ /* Variables associated with retesting uniqueness constraints after
+ ** replace triggers fire have run */
+ int regTrigCnt; /* Register used to count replace trigger invocations */
+ int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */
+ int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
+ Trigger *pTrigger; /* List of DELETE triggers on the table pTab */
+ int nReplaceTrig = 0; /* Number of replace triggers coded */
+ IndexIterator sIdxIter; /* Index iterator */
+
+ isUpdate = regOldData!=0;
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( !IsView(pTab) ); /* This table is not a VIEW */
+ nCol = pTab->nCol;
+
+ /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
+ ** normal rowid tables. nPkField is the number of key fields in the
+ ** pPk index or 1 for a rowid table. In other words, nPkField is the
+ ** number of fields in the true primary key of the table. */
+ if( HasRowid(pTab) ){
+ pPk = 0;
+ nPkField = 1;
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ nPkField = pPk->nKeyCol;
+ }
+
+ /* Record that this module has started */
+ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
+ iDataCur, iIdxCur, regNewData, regOldData, pkChng));
+
+ /* Test all NOT NULL constraints.
+ */
+ if( pTab->tabFlags & TF_HasNotNull ){
+ int b2ndPass = 0; /* True if currently running 2nd pass */
+ int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */
+ int nGenerated = 0; /* Number of generated columns with NOT NULL */
+ while(1){ /* Make 2 passes over columns. Exit loop via "break" */
+ for(i=0; i<nCol; i++){
+ int iReg; /* Register holding column value */
+ Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */
+ int isGenerated; /* non-zero if column is generated */
+ onError = pCol->notNull;
+ if( onError==OE_None ) continue; /* No NOT NULL on this column */
+ if( i==pTab->iPKey ){
+ continue; /* ROWID is never NULL */
+ }
+ isGenerated = pCol->colFlags & COLFLAG_GENERATED;
+ if( isGenerated && !b2ndPass ){
+ nGenerated++;
+ continue; /* Generated columns processed on 2nd pass */
+ }
+ if( aiChng && aiChng[i]<0 && !isGenerated ){
+ /* Do not check NOT NULL on columns that do not change */
+ continue;
+ }
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( onError==OE_Replace ){
+ if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */
+ || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */
+ ){
+ testcase( pCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pCol->colFlags & COLFLAG_STORED );
+ testcase( pCol->colFlags & COLFLAG_GENERATED );
+ onError = OE_Abort;
+ }else{
+ assert( !isGenerated );
+ }
+ }else if( b2ndPass && !isGenerated ){
+ continue;
+ }
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
+ || onError==OE_Ignore || onError==OE_Replace );
+ testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
+ iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
+ switch( onError ){
+ case OE_Replace: {
+ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
+ VdbeCoverage(v);
+ assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
+ nSeenReplace++;
+ sqlite3ExprCodeCopy(pParse,
+ sqlite3ColumnExpr(pTab, pCol), iReg);
+ sqlite3VdbeJumpHere(v, addr1);
+ break;
+ }
+ case OE_Abort:
+ sqlite3MayAbort(pParse);
+ /* no break */ deliberate_fall_through
+ case OE_Rollback:
+ case OE_Fail: {
+ char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
+ pCol->zCnName);
+ testcase( zMsg==0 && db->mallocFailed==0 );
+ sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
+ onError, iReg);
+ sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
+ sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
+ VdbeCoverage(v);
+ break;
+ }
+ default: {
+ assert( onError==OE_Ignore );
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
+ VdbeCoverage(v);
+ break;
+ }
+ } /* end switch(onError) */
+ } /* end loop i over columns */
+ if( nGenerated==0 && nSeenReplace==0 ){
+ /* If there are no generated columns with NOT NULL constraints
+ ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
+ ** pass is sufficient */
+ break;
+ }
+ if( b2ndPass ) break; /* Never need more than 2 passes */
+ b2ndPass = 1;
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
+ /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
+ ** first pass, recomputed values for all generated columns, as
+ ** those values might depend on columns affected by the REPLACE.
+ */
+ sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
+ }
+#endif
+ } /* end of 2-pass loop */
+ } /* end if( has-not-null-constraints ) */
+
+ /* Test all CHECK constraints
+ */
+#ifndef SQLITE_OMIT_CHECK
+ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
+ ExprList *pCheck = pTab->pCheck;
+ pParse->iSelfTab = -(regNewData+1);
+ onError = overrideError!=OE_Default ? overrideError : OE_Abort;
+ for(i=0; i<pCheck->nExpr; i++){
+ int allOk;
+ Expr *pCopy;
+ Expr *pExpr = pCheck->a[i].pExpr;
+ if( aiChng
+ && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
+ ){
+ /* The check constraints do not reference any of the columns being
+ ** updated so there is no point it verifying the check constraint */
+ continue;
+ }
+ if( bAffinityDone==0 ){
+ sqlite3TableAffinity(v, pTab, regNewData+1);
+ bAffinityDone = 1;
+ }
+ allOk = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeVerifyAbortable(v, onError);
+ pCopy = sqlite3ExprDup(db, pExpr, 0);
+ if( !db->mallocFailed ){
+ sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
+ }
+ sqlite3ExprDelete(db, pCopy);
+ if( onError==OE_Ignore ){
+ sqlite3VdbeGoto(v, ignoreDest);
+ }else{
+ char *zName = pCheck->a[i].zEName;
+ assert( zName!=0 || pParse->db->mallocFailed );
+ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
+ onError, zName, P4_TRANSIENT,
+ P5_ConstraintCheck);
+ }
+ sqlite3VdbeResolveLabel(v, allOk);
+ }
+ pParse->iSelfTab = 0;
+ }
+#endif /* !defined(SQLITE_OMIT_CHECK) */
+
+ /* UNIQUE and PRIMARY KEY constraints should be handled in the following
+ ** order:
+ **
+ ** (1) OE_Update
+ ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
+ ** (3) OE_Replace
+ **
+ ** OE_Fail and OE_Ignore must happen before any changes are made.
+ ** OE_Update guarantees that only a single row will change, so it
+ ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
+ ** could happen in any order, but they are grouped up front for
+ ** convenience.
+ **
+ ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
+ ** The order of constraints used to have OE_Update as (2) and OE_Abort
+ ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
+ ** constraint before any others, so it had to be moved.
+ **
+ ** Constraint checking code is generated in this order:
+ ** (A) The rowid constraint
+ ** (B) Unique index constraints that do not have OE_Replace as their
+ ** default conflict resolution strategy
+ ** (C) Unique index that do use OE_Replace by default.
+ **
+ ** The ordering of (2) and (3) is accomplished by making sure the linked
+ ** list of indexes attached to a table puts all OE_Replace indexes last
+ ** in the list. See sqlite3CreateIndex() for where that happens.
+ */
+ sIdxIter.eType = 0;
+ sIdxIter.i = 0;
+ sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */
+ sIdxIter.u.lx.pIdx = pTab->pIndex;
+ if( pUpsert ){
+ if( pUpsert->pUpsertTarget==0 ){
+ /* There is just on ON CONFLICT clause and it has no constraint-target */
+ assert( pUpsert->pNextUpsert==0 );
+ if( pUpsert->isDoUpdate==0 ){
+ /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
+ ** Make all unique constraint resolution be OE_Ignore */
+ overrideError = OE_Ignore;
+ pUpsert = 0;
+ }else{
+ /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
+ overrideError = OE_Update;
+ }
+ }else if( pTab->pIndex!=0 ){
+ /* Otherwise, we'll need to run the IndexListTerm array version of the
+ ** iterator to ensure that all of the ON CONFLICT conditions are
+ ** checked first and in order. */
+ int nIdx, jj;
+ u64 nByte;
+ Upsert *pTerm;
+ u8 *bUsed;
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
+ assert( aRegIdx[nIdx]>0 );
+ }
+ sIdxIter.eType = 1;
+ sIdxIter.u.ax.nIdx = nIdx;
+ nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
+ sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
+ if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
+ bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
+ pUpsert->pToFree = sIdxIter.u.ax.aIdx;
+ for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
+ if( pTerm->pUpsertTarget==0 ) break;
+ if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */
+ jj = 0;
+ pIdx = pTab->pIndex;
+ while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
+ pIdx = pIdx->pNext;
+ jj++;
+ }
+ if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
+ bUsed[jj] = 1;
+ sIdxIter.u.ax.aIdx[i].p = pIdx;
+ sIdxIter.u.ax.aIdx[i].ix = jj;
+ i++;
+ }
+ for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
+ if( bUsed[jj] ) continue;
+ sIdxIter.u.ax.aIdx[i].p = pIdx;
+ sIdxIter.u.ax.aIdx[i].ix = jj;
+ i++;
+ }
+ assert( i==nIdx );
+ }
+ }
+
+ /* Determine if it is possible that triggers (either explicitly coded
+ ** triggers or FK resolution actions) might run as a result of deletes
+ ** that happen when OE_Replace conflict resolution occurs. (Call these
+ ** "replace triggers".) If any replace triggers run, we will need to
+ ** recheck all of the uniqueness constraints after they have all run.
+ ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
+ **
+ ** If replace triggers are a possibility, then
+ **
+ ** (1) Allocate register regTrigCnt and initialize it to zero.
+ ** That register will count the number of replace triggers that
+ ** fire. Constraint recheck only occurs if the number is positive.
+ ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
+ ** (3) Initialize addrRecheck and lblRecheckOk
+ **
+ ** The uniqueness rechecking code will create a series of tests to run
+ ** in a second pass. The addrRecheck and lblRecheckOk variables are
+ ** used to link together these tests which are separated from each other
+ ** in the generate bytecode.
+ */
+ if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
+ /* There are not DELETE triggers nor FK constraints. No constraint
+ ** rechecks are needed. */
+ pTrigger = 0;
+ regTrigCnt = 0;
+ }else{
+ if( db->flags&SQLITE_RecTriggers ){
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
+ regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
+ }else{
+ pTrigger = 0;
+ regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
+ }
+ if( regTrigCnt ){
+ /* Replace triggers might exist. Allocate the counter and
+ ** initialize it to zero. */
+ regTrigCnt = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
+ VdbeComment((v, "trigger count"));
+ lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
+ addrRecheck = lblRecheckOk;
+ }
+ }
+
+ /* If rowid is changing, make sure the new rowid does not previously
+ ** exist in the table.
+ */
+ if( pkChng && pPk==0 ){
+ int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
+
+ /* Figure out what action to take in case of a rowid collision */
+ onError = pTab->keyConf;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+
+ /* figure out whether or not upsert applies in this case */
+ if( pUpsert ){
+ pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
+ if( pUpsertClause!=0 ){
+ if( pUpsertClause->isDoUpdate==0 ){
+ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
+ }else{
+ onError = OE_Update; /* DO UPDATE */
+ }
+ }
+ if( pUpsertClause!=pUpsert ){
+ /* The first ON CONFLICT clause has a conflict target other than
+ ** the IPK. We have to jump ahead to that first ON CONFLICT clause
+ ** and then come back here and deal with the IPK afterwards */
+ upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
+ }
+ }
+
+ /* If the response to a rowid conflict is REPLACE but the response
+ ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
+ ** to defer the running of the rowid conflict checking until after
+ ** the UNIQUE constraints have run.
+ */
+ if( onError==OE_Replace /* IPK rule is REPLACE */
+ && onError!=overrideError /* Rules for other constraints are different */
+ && pTab->pIndex /* There exist other constraints */
+ && !upsertIpkDelay /* IPK check already deferred by UPSERT */
+ ){
+ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
+ VdbeComment((v, "defer IPK REPLACE until last"));
+ }
+
+ if( isUpdate ){
+ /* pkChng!=0 does not mean that the rowid has changed, only that
+ ** it might have changed. Skip the conflict logic below if the rowid
+ ** is unchanged. */
+ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverage(v);
+ }
+
+ /* Check to see if the new rowid already exists in the table. Skip
+ ** the following conflict logic if it does not. */
+ VdbeNoopComment((v, "uniqueness check for ROWID"));
+ sqlite3VdbeVerifyAbortable(v, onError);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
+ VdbeCoverage(v);
+
+ switch( onError ){
+ default: {
+ onError = OE_Abort;
+ /* no break */ deliberate_fall_through
+ }
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ testcase( onError==OE_Rollback );
+ testcase( onError==OE_Abort );
+ testcase( onError==OE_Fail );
+ sqlite3RowidConstraint(pParse, onError, pTab);
+ break;
+ }
+ case OE_Replace: {
+ /* If there are DELETE triggers on this table and the
+ ** recursive-triggers flag is set, call GenerateRowDelete() to
+ ** remove the conflicting row from the table. This will fire
+ ** the triggers and remove both the table and index b-tree entries.
+ **
+ ** Otherwise, if there are no triggers or the recursive-triggers
+ ** flag is not set, but the table has one or more indexes, call
+ ** GenerateRowIndexDelete(). This removes the index b-tree entries
+ ** only. The table b-tree entry will be replaced by the new entry
+ ** when it is inserted.
+ **
+ ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
+ ** also invoke MultiWrite() to indicate that this VDBE may require
+ ** statement rollback (if the statement is aborted after the delete
+ ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
+ ** but being more selective here allows statements like:
+ **
+ ** REPLACE INTO t(rowid) VALUES($newrowid)
+ **
+ ** to run without a statement journal if there are no indexes on the
+ ** table.
+ */
+ if( regTrigCnt ){
+ sqlite3MultiWrite(pParse);
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
+ regNewData, 1, 0, OE_Replace, 1, -1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
+ nReplaceTrig++;
+ }else{
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ assert( HasRowid(pTab) );
+ /* This OP_Delete opcode fires the pre-update-hook only. It does
+ ** not modify the b-tree. It is more efficient to let the coming
+ ** OP_Insert replace the existing entry than it is to delete the
+ ** existing entry and then insert a new one. */
+ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+ if( pTab->pIndex ){
+ sqlite3MultiWrite(pParse);
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
+ }
+ }
+ seenReplace = 1;
+ break;
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ case OE_Update: {
+ sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
+ /* no break */ deliberate_fall_through
+ }
+#endif
+ case OE_Ignore: {
+ testcase( onError==OE_Ignore );
+ sqlite3VdbeGoto(v, ignoreDest);
+ break;
+ }
+ }
+ sqlite3VdbeResolveLabel(v, addrRowidOk);
+ if( pUpsert && pUpsertClause!=pUpsert ){
+ upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
+ }else if( ipkTop ){
+ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, ipkTop-1);
+ }
+ }
+
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE
+ ** index and making sure that duplicate entries do not already exist.
+ ** Compute the revised record entries for indices as we go.
+ **
+ ** This loop also handles the case of the PRIMARY KEY index for a
+ ** WITHOUT ROWID table.
+ */
+ for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
+ pIdx;
+ pIdx = indexIteratorNext(&sIdxIter, &ix)
+ ){
+ int regIdx; /* Range of registers holding content for pIdx */
+ int regR; /* Range of registers holding conflicting PK */
+ int iThisCur; /* Cursor for this UNIQUE index */
+ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
+ int addrConflictCk; /* First opcode in the conflict check logic */
+
+ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
+ if( pUpsert ){
+ pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
+ if( upsertIpkDelay && pUpsertClause==pUpsert ){
+ sqlite3VdbeJumpHere(v, upsertIpkDelay);
+ }
+ }
+ addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
+ if( bAffinityDone==0 ){
+ sqlite3TableAffinity(v, pTab, regNewData+1);
+ bAffinityDone = 1;
+ }
+ VdbeNoopComment((v, "prep index %s", pIdx->zName));
+ iThisCur = iIdxCur+ix;
+
+
+ /* Skip partial indices for which the WHERE clause is not true */
+ if( pIdx->pPartIdxWhere ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
+ pParse->iSelfTab = -(regNewData+1);
+ sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
+ SQLITE_JUMPIFNULL);
+ pParse->iSelfTab = 0;
+ }
+
+ /* Create a record for this index entry as it should appear after
+ ** the insert or update. Store that record in the aRegIdx[ix] register
+ */
+ regIdx = aRegIdx[ix]+1;
+ for(i=0; i<pIdx->nColumn; i++){
+ int iField = pIdx->aiColumn[i];
+ int x;
+ if( iField==XN_EXPR ){
+ pParse->iSelfTab = -(regNewData+1);
+ sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
+ pParse->iSelfTab = 0;
+ VdbeComment((v, "%s column %d", pIdx->zName, i));
+ }else if( iField==XN_ROWID || iField==pTab->iPKey ){
+ x = regNewData;
+ sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
+ VdbeComment((v, "rowid"));
+ }else{
+ testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
+ x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
+ sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
+ VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
+ }
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
+ VdbeComment((v, "for %s", pIdx->zName));
+#ifdef SQLITE_ENABLE_NULL_TRIM
+ if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
+ sqlite3SetMakeRecordP5(v, pIdx->pTable);
+ }
+#endif
+ sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
+
+ /* In an UPDATE operation, if this index is the PRIMARY KEY index
+ ** of a WITHOUT ROWID table and there has been no change the
+ ** primary key, then no collision is possible. The collision detection
+ ** logic below can all be skipped. */
+ if( isUpdate && pPk==pIdx && pkChng==0 ){
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ continue;
+ }
+
+ /* Find out what action to take in case there is a uniqueness conflict */
+ onError = pIdx->onError;
+ if( onError==OE_None ){
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ continue; /* pIdx is not a UNIQUE index */
+ }
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+
+ /* Figure out if the upsert clause applies to this index */
+ if( pUpsertClause ){
+ if( pUpsertClause->isDoUpdate==0 ){
+ onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
+ }else{
+ onError = OE_Update; /* DO UPDATE */
+ }
+ }
+
+ /* Collision detection may be omitted if all of the following are true:
+ ** (1) The conflict resolution algorithm is REPLACE
+ ** (2) The table is a WITHOUT ROWID table
+ ** (3) There are no secondary indexes on the table
+ ** (4) No delete triggers need to be fired if there is a conflict
+ ** (5) No FK constraint counters need to be updated if a conflict occurs.
+ **
+ ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
+ ** must be explicitly deleted in order to ensure any pre-update hook
+ ** is invoked. */
+ assert( IsOrdinaryTable(pTab) );
+#ifndef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
+ && pPk==pIdx /* Condition 2 */
+ && onError==OE_Replace /* Condition 1 */
+ && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
+ 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
+ && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
+ (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
+ ){
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ continue;
+ }
+#endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
+
+ /* Check to see if the new index entry will be unique */
+ sqlite3VdbeVerifyAbortable(v, onError);
+ addrConflictCk =
+ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
+ regIdx, pIdx->nKeyCol); VdbeCoverage(v);
+
+ /* Generate code to handle collisions */
+ regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
+ if( isUpdate || onError==OE_Replace ){
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
+ /* Conflict only if the rowid of the existing index entry
+ ** is different from old-rowid */
+ if( isUpdate ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverage(v);
+ }
+ }else{
+ int x;
+ /* Extract the PRIMARY KEY from the end of the index entry and
+ ** store it in registers regR..regR+nPk-1 */
+ if( pIdx!=pPk ){
+ for(i=0; i<pPk->nKeyCol; i++){
+ assert( pPk->aiColumn[i]>=0 );
+ x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
+ VdbeComment((v, "%s.%s", pTab->zName,
+ pTab->aCol[pPk->aiColumn[i]].zCnName));
+ }
+ }
+ if( isUpdate ){
+ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
+ ** table, only conflict if the new PRIMARY KEY values are actually
+ ** different from the old. See TH3 withoutrowid04.test.
+ **
+ ** For a UNIQUE index, only conflict if the PRIMARY KEY values
+ ** of the matched index row are different from the original PRIMARY
+ ** KEY values of this row before the update. */
+ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
+ int op = OP_Ne;
+ int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
+
+ for(i=0; i<pPk->nKeyCol; i++){
+ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
+ x = pPk->aiColumn[i];
+ assert( x>=0 );
+ if( i==(pPk->nKeyCol-1) ){
+ addrJump = addrUniqueOk;
+ op = OP_Eq;
+ }
+ x = sqlite3TableColumnToStorage(pTab, x);
+ sqlite3VdbeAddOp4(v, op,
+ regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
+ );
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverageIf(v, op==OP_Eq);
+ VdbeCoverageIf(v, op==OP_Ne);
+ }
+ }
+ }
+ }
+
+ /* Generate code that executes if the new index entry is not unique */
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
+ || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ testcase( onError==OE_Rollback );
+ testcase( onError==OE_Abort );
+ testcase( onError==OE_Fail );
+ sqlite3UniqueConstraint(pParse, onError, pIdx);
+ break;
+ }
+#ifndef SQLITE_OMIT_UPSERT
+ case OE_Update: {
+ sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
+ /* no break */ deliberate_fall_through
+ }
+#endif
+ case OE_Ignore: {
+ testcase( onError==OE_Ignore );
+ sqlite3VdbeGoto(v, ignoreDest);
+ break;
+ }
+ default: {
+ int nConflictCk; /* Number of opcodes in conflict check logic */
+
+ assert( onError==OE_Replace );
+ nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
+ assert( nConflictCk>0 || db->mallocFailed );
+ testcase( nConflictCk<=0 );
+ testcase( nConflictCk>1 );
+ if( regTrigCnt ){
+ sqlite3MultiWrite(pParse);
+ nReplaceTrig++;
+ }
+ if( pTrigger && isUpdate ){
+ sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
+ }
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
+ regR, nPkField, 0, OE_Replace,
+ (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
+ if( pTrigger && isUpdate ){
+ sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
+ }
+ if( regTrigCnt ){
+ int addrBypass; /* Jump destination to bypass recheck logic */
+
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
+ addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */
+ VdbeComment((v, "bypass recheck"));
+
+ /* Here we insert code that will be invoked after all constraint
+ ** checks have run, if and only if one or more replace triggers
+ ** fired. */
+ sqlite3VdbeResolveLabel(v, lblRecheckOk);
+ lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
+ if( pIdx->pPartIdxWhere ){
+ /* Bypass the recheck if this partial index is not defined
+ ** for the current row */
+ sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
+ VdbeCoverage(v);
+ }
+ /* Copy the constraint check code from above, except change
+ ** the constraint-ok jump destination to be the address of
+ ** the next retest block */
+ while( nConflictCk>0 ){
+ VdbeOp x; /* Conflict check opcode to copy */
+ /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
+ ** Hence, make a complete copy of the opcode, rather than using
+ ** a pointer to the opcode. */
+ x = *sqlite3VdbeGetOp(v, addrConflictCk);
+ if( x.opcode!=OP_IdxRowid ){
+ int p2; /* New P2 value for copied conflict check opcode */
+ const char *zP4;
+ if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
+ p2 = lblRecheckOk;
+ }else{
+ p2 = x.p2;
+ }
+ zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
+ sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
+ sqlite3VdbeChangeP5(v, x.p5);
+ VdbeCoverageIf(v, p2!=x.p2);
+ }
+ nConflictCk--;
+ addrConflictCk++;
+ }
+ /* If the retest fails, issue an abort */
+ sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
+
+ sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
+ }
+ seenReplace = 1;
+ break;
+ }
+ }
+ sqlite3VdbeResolveLabel(v, addrUniqueOk);
+ if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
+ if( pUpsertClause
+ && upsertIpkReturn
+ && sqlite3UpsertNextIsIPK(pUpsertClause)
+ ){
+ sqlite3VdbeGoto(v, upsertIpkDelay+1);
+ sqlite3VdbeJumpHere(v, upsertIpkReturn);
+ upsertIpkReturn = 0;
+ }
+ }
+
+ /* If the IPK constraint is a REPLACE, run it last */
+ if( ipkTop ){
+ sqlite3VdbeGoto(v, ipkTop);
+ VdbeComment((v, "Do IPK REPLACE"));
+ assert( ipkBottom>0 );
+ sqlite3VdbeJumpHere(v, ipkBottom);
+ }
+
+ /* Recheck all uniqueness constraints after replace triggers have run */
+ testcase( regTrigCnt!=0 && nReplaceTrig==0 );
+ assert( regTrigCnt!=0 || nReplaceTrig==0 );
+ if( nReplaceTrig ){
+ sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
+ if( !pPk ){
+ if( isUpdate ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
+ VdbeCoverage(v);
+ sqlite3RowidConstraint(pParse, OE_Abort, pTab);
+ }else{
+ sqlite3VdbeGoto(v, addrRecheck);
+ }
+ sqlite3VdbeResolveLabel(v, lblRecheckOk);
+ }
+
+ /* Generate the table record */
+ if( HasRowid(pTab) ){
+ int regRec = aRegIdx[ix];
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
+ sqlite3SetMakeRecordP5(v, pTab);
+ if( !bAffinityDone ){
+ sqlite3TableAffinity(v, pTab, 0);
+ }
+ }
+
+ *pbMayReplace = seenReplace;
+ VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
+}
+
+#ifdef SQLITE_ENABLE_NULL_TRIM
+/*
+** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
+** to be the number of columns in table pTab that must not be NULL-trimmed.
+**
+** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
+*/
+SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
+ u16 i;
+
+ /* Records with omitted columns are only allowed for schema format
+ ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
+ if( pTab->pSchema->file_format<2 ) return;
+
+ for(i=pTab->nCol-1; i>0; i--){
+ if( pTab->aCol[i].iDflt!=0 ) break;
+ if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
+ }
+ sqlite3VdbeChangeP5(v, i+1);
+}
+#endif
+
+/*
+** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
+** number is iCur, and register regData contains the new record for the
+** PK index. This function adds code to invoke the pre-update hook,
+** if one is registered.
+*/
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+static void codeWithoutRowidPreupdate(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being updated */
+ int iCur, /* Cursor number for table */
+ int regData /* Data containing new record */
+){
+ Vdbe *v = pParse->pVdbe;
+ int r = sqlite3GetTempReg(pParse);
+ assert( !HasRowid(pTab) );
+ assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
+ sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
+ sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
+ sqlite3ReleaseTempReg(pParse, r);
+}
+#else
+# define codeWithoutRowidPreupdate(a,b,c,d)
+#endif
+
+/*
+** This routine generates code to finish the INSERT or UPDATE operation
+** that was started by a prior call to sqlite3GenerateConstraintChecks.
+** A consecutive range of registers starting at regNewData contains the
+** rowid and the content to be inserted.
+**
+** The arguments to this routine should be the same as the first six
+** arguments to sqlite3GenerateConstraintChecks.
+*/
+SQLITE_PRIVATE void sqlite3CompleteInsertion(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int iDataCur, /* Cursor of the canonical data source */
+ int iIdxCur, /* First index cursor */
+ int regNewData, /* Range of content */
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */
+ int update_flags, /* True for UPDATE, False for INSERT */
+ int appendBias, /* True if this is likely to be an append */
+ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
+){
+ Vdbe *v; /* Prepared statements under construction */
+ Index *pIdx; /* An index being inserted or updated */
+ u8 pik_flags; /* flag values passed to the btree insert */
+ int i; /* Loop counter */
+
+ assert( update_flags==0
+ || update_flags==OPFLAG_ISUPDATE
+ || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
+ );
+
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ assert( !IsView(pTab) ); /* This table is not a VIEW */
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ /* All REPLACE indexes are at the end of the list */
+ assert( pIdx->onError!=OE_Replace
+ || pIdx->pNext==0
+ || pIdx->pNext->onError==OE_Replace );
+ if( aRegIdx[i]==0 ) continue;
+ if( pIdx->pPartIdxWhere ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ }
+ pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
+ pik_flags |= OPFLAG_NCHANGE;
+ pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
+ if( update_flags==0 ){
+ codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
+ }
+ }
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
+ aRegIdx[i]+1,
+ pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
+ sqlite3VdbeChangeP5(v, pik_flags);
+ }
+ if( !HasRowid(pTab) ) return;
+ if( pParse->nested ){
+ pik_flags = 0;
+ }else{
+ pik_flags = OPFLAG_NCHANGE;
+ pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
+ }
+ if( appendBias ){
+ pik_flags |= OPFLAG_APPEND;
+ }
+ if( useSeekResult ){
+ pik_flags |= OPFLAG_USESEEKRESULT;
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
+ if( !pParse->nested ){
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ }
+ sqlite3VdbeChangeP5(v, pik_flags);
+}
+
+/*
+** Allocate cursors for the pTab table and all its indices and generate
+** code to open and initialized those cursors.
+**
+** The cursor for the object that contains the complete data (normally
+** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
+** ROWID table) is returned in *piDataCur. The first index cursor is
+** returned in *piIdxCur. The number of indices is returned.
+**
+** Use iBase as the first cursor (either the *piDataCur for rowid tables
+** or the first index for WITHOUT ROWID tables) if it is non-negative.
+** If iBase is negative, then allocate the next available cursor.
+**
+** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
+** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
+** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
+** pTab->pIndex list.
+**
+** If pTab is a virtual table, then this routine is a no-op and the
+** *piDataCur and *piIdxCur values are left uninitialized.
+*/
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table to be opened */
+ int op, /* OP_OpenRead or OP_OpenWrite */
+ u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
+ int iBase, /* Use this for the table cursor, if there is one */
+ u8 *aToOpen, /* If not NULL: boolean for each table and index */
+ int *piDataCur, /* Write the database source cursor number here */
+ int *piIdxCur /* Write the first index cursor number here */
+){
+ int i;
+ int iDb;
+ int iDataCur;
+ Index *pIdx;
+ Vdbe *v;
+
+ assert( op==OP_OpenRead || op==OP_OpenWrite );
+ assert( op==OP_OpenWrite || p5==0 );
+ assert( piDataCur!=0 );
+ assert( piIdxCur!=0 );
+ if( IsVirtual(pTab) ){
+ /* This routine is a no-op for virtual tables. Leave the output
+ ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
+ ** for improved error detection. */
+ *piDataCur = *piIdxCur = -999;
+ return 0;
+ }
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ if( iBase<0 ) iBase = pParse->nTab;
+ iDataCur = iBase++;
+ *piDataCur = iDataCur;
+ if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
+ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
+ }else if( pParse->db->noSharedCache==0 ){
+ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
+ }
+ *piIdxCur = iBase;
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ int iIdxCur = iBase++;
+ assert( pIdx->pSchema==pTab->pSchema );
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
+ *piDataCur = iIdxCur;
+ p5 = 0;
+ }
+ if( aToOpen==0 || aToOpen[i+1] ){
+ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ sqlite3VdbeChangeP5(v, p5);
+ VdbeComment((v, "%s", pIdx->zName));
+ }
+ }
+ if( iBase>pParse->nTab ) pParse->nTab = iBase;
+ return i;
+}
+
+
+#ifdef SQLITE_TEST
+/*
+** The following global variable is incremented whenever the
+** transfer optimization is used. This is used for testing
+** purposes only - to make sure the transfer optimization really
+** is happening when it is supposed to.
+*/
+SQLITE_API int sqlite3_xferopt_count;
+#endif /* SQLITE_TEST */
+
+
+#ifndef SQLITE_OMIT_XFER_OPT
+/*
+** Check to see if index pSrc is compatible as a source of data
+** for index pDest in an insert transfer optimization. The rules
+** for a compatible index:
+**
+** * The index is over the same set of columns
+** * The same DESC and ASC markings occurs on all columns
+** * The same onError processing (OE_Abort, OE_Ignore, etc)
+** * The same collating sequence on each column
+** * The index has the exact same WHERE clause
+*/
+static int xferCompatibleIndex(Index *pDest, Index *pSrc){
+ int i;
+ assert( pDest && pSrc );
+ assert( pDest->pTable!=pSrc->pTable );
+ if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
+ return 0; /* Different number of columns */
+ }
+ if( pDest->onError!=pSrc->onError ){
+ return 0; /* Different conflict resolution strategies */
+ }
+ for(i=0; i<pSrc->nKeyCol; i++){
+ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
+ return 0; /* Different columns indexed */
+ }
+ if( pSrc->aiColumn[i]==XN_EXPR ){
+ assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
+ if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
+ pDest->aColExpr->a[i].pExpr, -1)!=0 ){
+ return 0; /* Different expressions in the index */
+ }
+ }
+ if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
+ return 0; /* Different sort orders */
+ }
+ if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
+ return 0; /* Different collating sequences */
+ }
+ }
+ if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
+ return 0; /* Different WHERE clauses */
+ }
+
+ /* If no test above fails then the indices must be compatible */
+ return 1;
+}
+
+/*
+** Attempt the transfer optimization on INSERTs of the form
+**
+** INSERT INTO tab1 SELECT * FROM tab2;
+**
+** The xfer optimization transfers raw records from tab2 over to tab1.
+** Columns are not decoded and reassembled, which greatly improves
+** performance. Raw index records are transferred in the same way.
+**
+** The xfer optimization is only attempted if tab1 and tab2 are compatible.
+** There are lots of rules for determining compatibility - see comments
+** embedded in the code for details.
+**
+** This routine returns TRUE if the optimization is guaranteed to be used.
+** Sometimes the xfer optimization will only work if the destination table
+** is empty - a factor that can only be determined at run-time. In that
+** case, this routine generates code for the xfer optimization but also
+** does a test to see if the destination table is empty and jumps over the
+** xfer optimization code if the test fails. In that case, this routine
+** returns FALSE so that the caller will know to go ahead and generate
+** an unoptimized transfer. This routine also returns FALSE if there
+** is no chance that the xfer optimization can be applied.
+**
+** This optimization is particularly useful at making VACUUM run faster.
+*/
+static int xferOptimization(
+ Parse *pParse, /* Parser context */
+ Table *pDest, /* The table we are inserting into */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ int onError, /* How to handle constraint errors */
+ int iDbDest /* The database of pDest */
+){
+ sqlite3 *db = pParse->db;
+ ExprList *pEList; /* The result set of the SELECT */
+ Table *pSrc; /* The table in the FROM clause of SELECT */
+ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
+ SrcItem *pItem; /* An element of pSelect->pSrc */
+ int i; /* Loop counter */
+ int iDbSrc; /* The database of pSrc */
+ int iSrc, iDest; /* Cursors from source and destination */
+ int addr1, addr2; /* Loop addresses */
+ int emptyDestTest = 0; /* Address of test for empty pDest */
+ int emptySrcTest = 0; /* Address of test for empty pSrc */
+ Vdbe *v; /* The VDBE we are building */
+ int regAutoinc; /* Memory register used by AUTOINC */
+ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
+ int regData, regRowid; /* Registers holding data and rowid */
+
+ assert( pSelect!=0 );
+ if( pParse->pWith || pSelect->pWith ){
+ /* Do not attempt to process this query if there are an WITH clauses
+ ** attached to it. Proceeding may generate a false "no such table: xxx"
+ ** error if pSelect reads from a CTE named "xxx". */
+ return 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pDest) ){
+ return 0; /* tab1 must not be a virtual table */
+ }
+#endif
+ if( onError==OE_Default ){
+ if( pDest->iPKey>=0 ) onError = pDest->keyConf;
+ if( onError==OE_Default ) onError = OE_Abort;
+ }
+ assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
+ if( pSelect->pSrc->nSrc!=1 ){
+ return 0; /* FROM clause must have exactly one term */
+ }
+ if( pSelect->pSrc->a[0].pSelect ){
+ return 0; /* FROM clause cannot contain a subquery */
+ }
+ if( pSelect->pWhere ){
+ return 0; /* SELECT may not have a WHERE clause */
+ }
+ if( pSelect->pOrderBy ){
+ return 0; /* SELECT may not have an ORDER BY clause */
+ }
+ /* Do not need to test for a HAVING clause. If HAVING is present but
+ ** there is no ORDER BY, we will get an error. */
+ if( pSelect->pGroupBy ){
+ return 0; /* SELECT may not have a GROUP BY clause */
+ }
+ if( pSelect->pLimit ){
+ return 0; /* SELECT may not have a LIMIT clause */
+ }
+ if( pSelect->pPrior ){
+ return 0; /* SELECT may not be a compound query */
+ }
+ if( pSelect->selFlags & SF_Distinct ){
+ return 0; /* SELECT may not be DISTINCT */
+ }
+ pEList = pSelect->pEList;
+ assert( pEList!=0 );
+ if( pEList->nExpr!=1 ){
+ return 0; /* The result set must have exactly one column */
+ }
+ assert( pEList->a[0].pExpr );
+ if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
+ return 0; /* The result set must be the special operator "*" */
+ }
+
+ /* At this point we have established that the statement is of the
+ ** correct syntactic form to participate in this optimization. Now
+ ** we have to check the semantics.
+ */
+ pItem = pSelect->pSrc->a;
+ pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
+ if( pSrc==0 ){
+ return 0; /* FROM clause does not contain a real table */
+ }
+ if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
+ testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
+ return 0; /* tab1 and tab2 may not be the same table */
+ }
+ if( HasRowid(pDest)!=HasRowid(pSrc) ){
+ return 0; /* source and destination must both be WITHOUT ROWID or not */
+ }
+ if( !IsOrdinaryTable(pSrc) ){
+ return 0; /* tab2 may not be a view or virtual table */
+ }
+ if( pDest->nCol!=pSrc->nCol ){
+ return 0; /* Number of columns must be the same in tab1 and tab2 */
+ }
+ if( pDest->iPKey!=pSrc->iPKey ){
+ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
+ }
+ if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
+ return 0; /* Cannot feed from a non-strict into a strict table */
+ }
+ for(i=0; i<pDest->nCol; i++){
+ Column *pDestCol = &pDest->aCol[i];
+ Column *pSrcCol = &pSrc->aCol[i];
+#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0
+ && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
+ ){
+ return 0; /* Neither table may have __hidden__ columns */
+ }
+#endif
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Even if tables t1 and t2 have identical schemas, if they contain
+ ** generated columns, then this statement is semantically incorrect:
+ **
+ ** INSERT INTO t2 SELECT * FROM t1;
+ **
+ ** The reason is that generated column values are returned by the
+ ** the SELECT statement on the right but the INSERT statement on the
+ ** left wants them to be omitted.
+ **
+ ** Nevertheless, this is a useful notational shorthand to tell SQLite
+ ** to do a bulk transfer all of the content from t1 over to t2.
+ **
+ ** We could, in theory, disable this (except for internal use by the
+ ** VACUUM command where it is actually needed). But why do that? It
+ ** seems harmless enough, and provides a useful service.
+ */
+ if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
+ (pSrcCol->colFlags & COLFLAG_GENERATED) ){
+ return 0; /* Both columns have the same generated-column type */
+ }
+ /* But the transfer is only allowed if both the source and destination
+ ** tables have the exact same expressions for generated columns.
+ ** This requirement could be relaxed for VIRTUAL columns, I suppose.
+ */
+ if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
+ if( sqlite3ExprCompare(0,
+ sqlite3ColumnExpr(pSrc, pSrcCol),
+ sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
+ testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
+ testcase( pDestCol->colFlags & COLFLAG_STORED );
+ return 0; /* Different generator expressions */
+ }
+ }
+#endif
+ if( pDestCol->affinity!=pSrcCol->affinity ){
+ return 0; /* Affinity must be the same on all columns */
+ }
+ if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
+ sqlite3ColumnColl(pSrcCol))!=0 ){
+ return 0; /* Collating sequence must be the same on all columns */
+ }
+ if( pDestCol->notNull && !pSrcCol->notNull ){
+ return 0; /* tab2 must be NOT NULL if tab1 is */
+ }
+ /* Default values for second and subsequent columns need to match. */
+ if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
+ Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
+ Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
+ assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
+ assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
+ assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
+ assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
+ if( (pDestExpr==0)!=(pSrcExpr==0)
+ || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
+ pSrcExpr->u.zToken)!=0)
+ ){
+ return 0; /* Default values must be the same for all columns */
+ }
+ }
+ }
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
+ if( IsUniqueIndex(pDestIdx) ){
+ destHasUniqueIdx = 1;
+ }
+ for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
+ }
+ if( pSrcIdx==0 ){
+ return 0; /* pDestIdx has no corresponding index in pSrc */
+ }
+ if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
+ && sqlite3FaultSim(411)==SQLITE_OK ){
+ /* The sqlite3FaultSim() call allows this corruption test to be
+ ** bypassed during testing, in order to exercise other corruption tests
+ ** further downstream. */
+ return 0; /* Corrupt schema - two indexes on the same btree */
+ }
+ }
+#ifndef SQLITE_OMIT_CHECK
+ if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
+ return 0; /* Tables have different CHECK constraints. Ticket #2252 */
+ }
+#endif
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ /* Disallow the transfer optimization if the destination table contains
+ ** any foreign key constraints. This is more restrictive than necessary.
+ ** But the main beneficiary of the transfer optimization is the VACUUM
+ ** command, and the VACUUM command disables foreign key constraints. So
+ ** the extra complication to make this rule less restrictive is probably
+ ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
+ */
+ assert( IsOrdinaryTable(pDest) );
+ if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
+ return 0;
+ }
+#endif
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ return 0; /* xfer opt does not play well with PRAGMA count_changes */
+ }
+
+ /* If we get this far, it means that the xfer optimization is at
+ ** least a possibility, though it might only work if the destination
+ ** table (tab1) is initially empty.
+ */
+#ifdef SQLITE_TEST
+ sqlite3_xferopt_count++;
+#endif
+ iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
+ v = sqlite3GetVdbe(pParse);
+ sqlite3CodeVerifySchema(pParse, iDbSrc);
+ iSrc = pParse->nTab++;
+ iDest = pParse->nTab++;
+ regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
+ regData = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
+ regRowid = sqlite3GetTempReg(pParse);
+ sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
+ assert( HasRowid(pDest) || destHasUniqueIdx );
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
+ (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
+ || destHasUniqueIdx /* (2) */
+ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
+ )){
+ /* In some circumstances, we are able to run the xfer optimization
+ ** only if the destination table is initially empty. Unless the
+ ** DBFLAG_Vacuum flag is set, this block generates code to make
+ ** that determination. If DBFLAG_Vacuum is set, then the destination
+ ** table is always empty.
+ **
+ ** Conditions under which the destination must be empty:
+ **
+ ** (1) There is no INTEGER PRIMARY KEY but there are indices.
+ ** (If the destination is not initially empty, the rowid fields
+ ** of index entries might need to change.)
+ **
+ ** (2) The destination has a unique index. (The xfer optimization
+ ** is unable to test uniqueness.)
+ **
+ ** (3) onError is something other than OE_Abort and OE_Rollback.
+ */
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
+ emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, addr1);
+ }
+ if( HasRowid(pSrc) ){
+ u8 insFlags;
+ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
+ emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
+ if( pDest->iPKey>=0 ){
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
+ sqlite3VdbeVerifyAbortable(v, onError);
+ addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
+ VdbeCoverage(v);
+ sqlite3RowidConstraint(pParse, onError, pDest);
+ sqlite3VdbeJumpHere(v, addr2);
+ }
+ autoIncStep(pParse, regAutoinc, regRowid);
+ }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
+ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
+ }else{
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ assert( (pDest->tabFlags & TF_Autoincrement)==0 );
+ }
+
+ if( db->mDbFlags & DBFLAG_Vacuum ){
+ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
+ insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
+ }else{
+ insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
+ }
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
+ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
+ insFlags &= ~OPFLAG_PREFORMAT;
+ }else
+#endif
+ {
+ sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
+ sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
+ }
+ sqlite3VdbeChangeP5(v, insFlags);
+
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ }else{
+ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
+ sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
+ }
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
+ u8 idxInsFlags = 0;
+ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
+ }
+ assert( pSrcIdx );
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
+ sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
+ VdbeComment((v, "%s", pSrcIdx->zName));
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
+ sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
+ VdbeComment((v, "%s", pDestIdx->zName));
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
+ if( db->mDbFlags & DBFLAG_Vacuum ){
+ /* This INSERT command is part of a VACUUM operation, which guarantees
+ ** that the destination table is empty. If all indexed columns use
+ ** collation sequence BINARY, then it can also be assumed that the
+ ** index will be populated by inserting keys in strictly sorted
+ ** order. In this case, instead of seeking within the b-tree as part
+ ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
+ ** OP_IdxInsert to seek to the point within the b-tree where each key
+ ** should be inserted. This is faster.
+ **
+ ** If any of the indexed columns use a collation sequence other than
+ ** BINARY, this optimization is disabled. This is because the user
+ ** might change the definition of a collation sequence and then run
+ ** a VACUUM command. In that case keys may not be written in strictly
+ ** sorted order. */
+ for(i=0; i<pSrcIdx->nColumn; i++){
+ const char *zColl = pSrcIdx->azColl[i];
+ if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
+ }
+ if( i==pSrcIdx->nColumn ){
+ idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
+ sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
+ sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
+ }
+ }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
+ idxInsFlags |= OPFLAG_NCHANGE;
+ }
+ if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
+ sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
+ if( (db->mDbFlags & DBFLAG_Vacuum)==0
+ && !HasRowid(pDest)
+ && IsPrimaryKeyIndex(pDestIdx)
+ ){
+ codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
+ sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ }
+ if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regData);
+ if( emptyDestTest ){
+ sqlite3AutoincrementEnd(pParse);
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
+ sqlite3VdbeJumpHere(v, emptyDestTest);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ return 0;
+ }else{
+ return 1;
+ }
+}
+#endif /* SQLITE_OMIT_XFER_OPT */
+
+/************** End of insert.c **********************************************/
+/************** Begin file legacy.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+*/
+
+/* #include "sqliteInt.h" */
+
+/*
+** Execute SQL code. Return one of the SQLITE_ success/failure
+** codes. Also write an error message into memory obtained from
+** malloc() and make *pzErrMsg point to that message.
+**
+** If the SQL is a query, then for each row in the query result
+** the xCallback() function is called. pArg becomes the first
+** argument to xCallback(). If xCallback=NULL then no callback
+** is invoked, even for queries.
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3 *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ sqlite3_callback xCallback, /* Invoke this callback routine */
+ void *pArg, /* First argument to xCallback() */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *zLeftover; /* Tail of unprocessed SQL */
+ sqlite3_stmt *pStmt = 0; /* The current SQL statement */
+ char **azCols = 0; /* Names of result columns */
+ int callbackIsInit; /* True if callback data is initialized */
+
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+ if( zSql==0 ) zSql = "";
+
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3Error(db, SQLITE_OK);
+ while( rc==SQLITE_OK && zSql[0] ){
+ int nCol = 0;
+ char **azVals = 0;
+
+ pStmt = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ if( rc!=SQLITE_OK ){
+ continue;
+ }
+ if( !pStmt ){
+ /* this happens for a comment or white-space */
+ zSql = zLeftover;
+ continue;
+ }
+ callbackIsInit = 0;
+
+ while( 1 ){
+ int i;
+ rc = sqlite3_step(pStmt);
+
+ /* Invoke the callback function if required */
+ if( xCallback && (SQLITE_ROW==rc ||
+ (SQLITE_DONE==rc && !callbackIsInit
+ && db->flags&SQLITE_NullCallback)) ){
+ if( !callbackIsInit ){
+ nCol = sqlite3_column_count(pStmt);
+ azCols = sqlite3DbMallocRaw(db, (2*nCol+1)*sizeof(const char*));
+ if( azCols==0 ){
+ goto exec_out;
+ }
+ for(i=0; i<nCol; i++){
+ azCols[i] = (char *)sqlite3_column_name(pStmt, i);
+ /* sqlite3VdbeSetColName() installs column names as UTF8
+ ** strings so there is no way for sqlite3_column_name() to fail. */
+ assert( azCols[i]!=0 );
+ }
+ callbackIsInit = 1;
+ }
+ if( rc==SQLITE_ROW ){
+ azVals = &azCols[nCol];
+ for(i=0; i<nCol; i++){
+ azVals[i] = (char *)sqlite3_column_text(pStmt, i);
+ if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
+ sqlite3OomFault(db);
+ goto exec_out;
+ }
+ }
+ azVals[i] = 0;
+ }
+ if( xCallback(pArg, nCol, azVals, azCols) ){
+ /* EVIDENCE-OF: R-38229-40159 If the callback function to
+ ** sqlite3_exec() returns non-zero, then sqlite3_exec() will
+ ** return SQLITE_ABORT. */
+ rc = SQLITE_ABORT;
+ sqlite3VdbeFinalize((Vdbe *)pStmt);
+ pStmt = 0;
+ sqlite3Error(db, SQLITE_ABORT);
+ goto exec_out;
+ }
+ }
+
+ if( rc!=SQLITE_ROW ){
+ rc = sqlite3VdbeFinalize((Vdbe *)pStmt);
+ pStmt = 0;
+ zSql = zLeftover;
+ while( sqlite3Isspace(zSql[0]) ) zSql++;
+ break;
+ }
+ }
+
+ sqlite3DbFree(db, azCols);
+ azCols = 0;
+ }
+
+exec_out:
+ if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
+ sqlite3DbFree(db, azCols);
+
+ rc = sqlite3ApiExit(db, rc);
+ if( rc!=SQLITE_OK && pzErrMsg ){
+ *pzErrMsg = sqlite3DbStrDup(0, sqlite3_errmsg(db));
+ if( *pzErrMsg==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ sqlite3Error(db, SQLITE_NOMEM);
+ }
+ }else if( pzErrMsg ){
+ *pzErrMsg = 0;
+ }
+
+ assert( (rc&db->errMask)==rc );
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/************** End of legacy.c **********************************************/
+/************** Begin file loadext.c *****************************************/
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to dynamically load extensions into
+** the SQLite library.
+*/
+
+#ifndef SQLITE_CORE
+ #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
+#endif
+/************** Include sqlite3ext.h in the middle of loadext.c **************/
+/************** Begin file sqlite3ext.h **************************************/
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the SQLite interface for use by
+** shared libraries that want to be imported as extensions into
+** an SQLite instance. Shared libraries that intend to be loaded
+** as extensions by SQLite should #include this file instead of
+** sqlite3.h.
+*/
+#ifndef SQLITE3EXT_H
+#define SQLITE3EXT_H
+/* #include "sqlite3.h" */
+
+/*
+** The following structure holds pointers to all of the SQLite API
+** routines.
+**
+** WARNING: In order to maintain backwards compatibility, add new
+** interfaces to the end of this structure only. If you insert new
+** interfaces in the middle of this structure, then older different
+** versions of SQLite will not be able to load each other's shared
+** libraries!
+*/
+struct sqlite3_api_routines {
+ void * (*aggregate_context)(sqlite3_context*,int nBytes);
+ int (*aggregate_count)(sqlite3_context*);
+ int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
+ int (*bind_double)(sqlite3_stmt*,int,double);
+ int (*bind_int)(sqlite3_stmt*,int,int);
+ int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
+ int (*bind_null)(sqlite3_stmt*,int);
+ int (*bind_parameter_count)(sqlite3_stmt*);
+ int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
+ const char * (*bind_parameter_name)(sqlite3_stmt*,int);
+ int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
+ int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
+ int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
+ int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
+ int (*busy_timeout)(sqlite3*,int ms);
+ int (*changes)(sqlite3*);
+ int (*close)(sqlite3*);
+ int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const char*));
+ int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const void*));
+ const void * (*column_blob)(sqlite3_stmt*,int iCol);
+ int (*column_bytes)(sqlite3_stmt*,int iCol);
+ int (*column_bytes16)(sqlite3_stmt*,int iCol);
+ int (*column_count)(sqlite3_stmt*pStmt);
+ const char * (*column_database_name)(sqlite3_stmt*,int);
+ const void * (*column_database_name16)(sqlite3_stmt*,int);
+ const char * (*column_decltype)(sqlite3_stmt*,int i);
+ const void * (*column_decltype16)(sqlite3_stmt*,int);
+ double (*column_double)(sqlite3_stmt*,int iCol);
+ int (*column_int)(sqlite3_stmt*,int iCol);
+ sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
+ const char * (*column_name)(sqlite3_stmt*,int);
+ const void * (*column_name16)(sqlite3_stmt*,int);
+ const char * (*column_origin_name)(sqlite3_stmt*,int);
+ const void * (*column_origin_name16)(sqlite3_stmt*,int);
+ const char * (*column_table_name)(sqlite3_stmt*,int);
+ const void * (*column_table_name16)(sqlite3_stmt*,int);
+ const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
+ const void * (*column_text16)(sqlite3_stmt*,int iCol);
+ int (*column_type)(sqlite3_stmt*,int iCol);
+ sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
+ void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
+ int (*complete)(const char*sql);
+ int (*complete16)(const void*sql);
+ int (*create_collation)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const void*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_function)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_function16)(sqlite3*,const void*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
+ int (*data_count)(sqlite3_stmt*pStmt);
+ sqlite3 * (*db_handle)(sqlite3_stmt*);
+ int (*declare_vtab)(sqlite3*,const char*);
+ int (*enable_shared_cache)(int);
+ int (*errcode)(sqlite3*db);
+ const char * (*errmsg)(sqlite3*);
+ const void * (*errmsg16)(sqlite3*);
+ int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
+ int (*expired)(sqlite3_stmt*);
+ int (*finalize)(sqlite3_stmt*pStmt);
+ void (*free)(void*);
+ void (*free_table)(char**result);
+ int (*get_autocommit)(sqlite3*);
+ void * (*get_auxdata)(sqlite3_context*,int);
+ int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
+ int (*global_recover)(void);
+ void (*interruptx)(sqlite3*);
+ sqlite_int64 (*last_insert_rowid)(sqlite3*);
+ const char * (*libversion)(void);
+ int (*libversion_number)(void);
+ void *(*malloc)(int);
+ char * (*mprintf)(const char*,...);
+ int (*open)(const char*,sqlite3**);
+ int (*open16)(const void*,sqlite3**);
+ int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
+ void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
+ void *(*realloc)(void*,int);
+ int (*reset)(sqlite3_stmt*pStmt);
+ void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_double)(sqlite3_context*,double);
+ void (*result_error)(sqlite3_context*,const char*,int);
+ void (*result_error16)(sqlite3_context*,const void*,int);
+ void (*result_int)(sqlite3_context*,int);
+ void (*result_int64)(sqlite3_context*,sqlite_int64);
+ void (*result_null)(sqlite3_context*);
+ void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
+ void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_value)(sqlite3_context*,sqlite3_value*);
+ void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
+ int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,
+ const char*,const char*),void*);
+ void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
+ char * (*xsnprintf)(int,char*,const char*,...);
+ int (*step)(sqlite3_stmt*);
+ int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,
+ char const**,char const**,int*,int*,int*);
+ void (*thread_cleanup)(void);
+ int (*total_changes)(sqlite3*);
+ void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
+ int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
+ void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,
+ sqlite_int64),void*);
+ void * (*user_data)(sqlite3_context*);
+ const void * (*value_blob)(sqlite3_value*);
+ int (*value_bytes)(sqlite3_value*);
+ int (*value_bytes16)(sqlite3_value*);
+ double (*value_double)(sqlite3_value*);
+ int (*value_int)(sqlite3_value*);
+ sqlite_int64 (*value_int64)(sqlite3_value*);
+ int (*value_numeric_type)(sqlite3_value*);
+ const unsigned char * (*value_text)(sqlite3_value*);
+ const void * (*value_text16)(sqlite3_value*);
+ const void * (*value_text16be)(sqlite3_value*);
+ const void * (*value_text16le)(sqlite3_value*);
+ int (*value_type)(sqlite3_value*);
+ char *(*vmprintf)(const char*,va_list);
+ /* Added ??? */
+ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
+ /* Added by 3.3.13 */
+ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ int (*clear_bindings)(sqlite3_stmt*);
+ /* Added by 3.4.1 */
+ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,
+ void (*xDestroy)(void *));
+ /* Added by 3.5.0 */
+ int (*bind_zeroblob)(sqlite3_stmt*,int,int);
+ int (*blob_bytes)(sqlite3_blob*);
+ int (*blob_close)(sqlite3_blob*);
+ int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,
+ int,sqlite3_blob**);
+ int (*blob_read)(sqlite3_blob*,void*,int,int);
+ int (*blob_write)(sqlite3_blob*,const void*,int,int);
+ int (*create_collation_v2)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*),
+ void(*)(void*));
+ int (*file_control)(sqlite3*,const char*,int,void*);
+ sqlite3_int64 (*memory_highwater)(int);
+ sqlite3_int64 (*memory_used)(void);
+ sqlite3_mutex *(*mutex_alloc)(int);
+ void (*mutex_enter)(sqlite3_mutex*);
+ void (*mutex_free)(sqlite3_mutex*);
+ void (*mutex_leave)(sqlite3_mutex*);
+ int (*mutex_try)(sqlite3_mutex*);
+ int (*open_v2)(const char*,sqlite3**,int,const char*);
+ int (*release_memory)(int);
+ void (*result_error_nomem)(sqlite3_context*);
+ void (*result_error_toobig)(sqlite3_context*);
+ int (*sleep)(int);
+ void (*soft_heap_limit)(int);
+ sqlite3_vfs *(*vfs_find)(const char*);
+ int (*vfs_register)(sqlite3_vfs*,int);
+ int (*vfs_unregister)(sqlite3_vfs*);
+ int (*xthreadsafe)(void);
+ void (*result_zeroblob)(sqlite3_context*,int);
+ void (*result_error_code)(sqlite3_context*,int);
+ int (*test_control)(int, ...);
+ void (*randomness)(int,void*);
+ sqlite3 *(*context_db_handle)(sqlite3_context*);
+ int (*extended_result_codes)(sqlite3*,int);
+ int (*limit)(sqlite3*,int,int);
+ sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
+ const char *(*sql)(sqlite3_stmt*);
+ int (*status)(int,int*,int*,int);
+ int (*backup_finish)(sqlite3_backup*);
+ sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*);
+ int (*backup_pagecount)(sqlite3_backup*);
+ int (*backup_remaining)(sqlite3_backup*);
+ int (*backup_step)(sqlite3_backup*,int);
+ const char *(*compileoption_get)(int);
+ int (*compileoption_used)(const char*);
+ int (*create_function_v2)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*));
+ int (*db_config)(sqlite3*,int,...);
+ sqlite3_mutex *(*db_mutex)(sqlite3*);
+ int (*db_status)(sqlite3*,int,int*,int*,int);
+ int (*extended_errcode)(sqlite3*);
+ void (*log)(int,const char*,...);
+ sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64);
+ const char *(*sourceid)(void);
+ int (*stmt_status)(sqlite3_stmt*,int,int);
+ int (*strnicmp)(const char*,const char*,int);
+ int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
+ int (*wal_autocheckpoint)(sqlite3*,int);
+ int (*wal_checkpoint)(sqlite3*,const char*);
+ void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
+ int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
+ int (*vtab_config)(sqlite3*,int op,...);
+ int (*vtab_on_conflict)(sqlite3*);
+ /* Version 3.7.16 and later */
+ int (*close_v2)(sqlite3*);
+ const char *(*db_filename)(sqlite3*,const char*);
+ int (*db_readonly)(sqlite3*,const char*);
+ int (*db_release_memory)(sqlite3*);
+ const char *(*errstr)(int);
+ int (*stmt_busy)(sqlite3_stmt*);
+ int (*stmt_readonly)(sqlite3_stmt*);
+ int (*stricmp)(const char*,const char*);
+ int (*uri_boolean)(const char*,const char*,int);
+ sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
+ const char *(*uri_parameter)(const char*,const char*);
+ char *(*xvsnprintf)(int,char*,const char*,va_list);
+ int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
+ /* Version 3.8.7 and later */
+ int (*auto_extension)(void(*)(void));
+ int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64,
+ void(*)(void*));
+ int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64,
+ void(*)(void*),unsigned char);
+ int (*cancel_auto_extension)(void(*)(void));
+ int (*load_extension)(sqlite3*,const char*,const char*,char**);
+ void *(*malloc64)(sqlite3_uint64);
+ sqlite3_uint64 (*msize)(void*);
+ void *(*realloc64)(void*,sqlite3_uint64);
+ void (*reset_auto_extension)(void);
+ void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
+ void(*)(void*));
+ void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char);
+ int (*strglob)(const char*,const char*);
+ /* Version 3.8.11 and later */
+ sqlite3_value *(*value_dup)(const sqlite3_value*);
+ void (*value_free)(sqlite3_value*);
+ int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
+ int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
+ /* Version 3.9.0 and later */
+ unsigned int (*value_subtype)(sqlite3_value*);
+ void (*result_subtype)(sqlite3_context*,unsigned int);
+ /* Version 3.10.0 and later */
+ int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int);
+ int (*strlike)(const char*,const char*,unsigned int);
+ int (*db_cacheflush)(sqlite3*);
+ /* Version 3.12.0 and later */
+ int (*system_errno)(sqlite3*);
+ /* Version 3.14.0 and later */
+ int (*trace_v2)(sqlite3*,unsigned,int(*)(unsigned,void*,void*,void*),void*);
+ char *(*expanded_sql)(sqlite3_stmt*);
+ /* Version 3.18.0 and later */
+ void (*set_last_insert_rowid)(sqlite3*,sqlite3_int64);
+ /* Version 3.20.0 and later */
+ int (*prepare_v3)(sqlite3*,const char*,int,unsigned int,
+ sqlite3_stmt**,const char**);
+ int (*prepare16_v3)(sqlite3*,const void*,int,unsigned int,
+ sqlite3_stmt**,const void**);
+ int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*));
+ void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*));
+ void *(*value_pointer)(sqlite3_value*,const char*);
+ int (*vtab_nochange)(sqlite3_context*);
+ int (*value_nochange)(sqlite3_value*);
+ const char *(*vtab_collation)(sqlite3_index_info*,int);
+ /* Version 3.24.0 and later */
+ int (*keyword_count)(void);
+ int (*keyword_name)(int,const char**,int*);
+ int (*keyword_check)(const char*,int);
+ sqlite3_str *(*str_new)(sqlite3*);
+ char *(*str_finish)(sqlite3_str*);
+ void (*str_appendf)(sqlite3_str*, const char *zFormat, ...);
+ void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list);
+ void (*str_append)(sqlite3_str*, const char *zIn, int N);
+ void (*str_appendall)(sqlite3_str*, const char *zIn);
+ void (*str_appendchar)(sqlite3_str*, int N, char C);
+ void (*str_reset)(sqlite3_str*);
+ int (*str_errcode)(sqlite3_str*);
+ int (*str_length)(sqlite3_str*);
+ char *(*str_value)(sqlite3_str*);
+ /* Version 3.25.0 and later */
+ int (*create_window_function)(sqlite3*,const char*,int,int,void*,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInv)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*));
+ /* Version 3.26.0 and later */
+ const char *(*normalized_sql)(sqlite3_stmt*);
+ /* Version 3.28.0 and later */
+ int (*stmt_isexplain)(sqlite3_stmt*);
+ int (*value_frombind)(sqlite3_value*);
+ /* Version 3.30.0 and later */
+ int (*drop_modules)(sqlite3*,const char**);
+ /* Version 3.31.0 and later */
+ sqlite3_int64 (*hard_heap_limit64)(sqlite3_int64);
+ const char *(*uri_key)(const char*,int);
+ const char *(*filename_database)(const char*);
+ const char *(*filename_journal)(const char*);
+ const char *(*filename_wal)(const char*);
+ /* Version 3.32.0 and later */
+ const char *(*create_filename)(const char*,const char*,const char*,
+ int,const char**);
+ void (*free_filename)(const char*);
+ sqlite3_file *(*database_file_object)(const char*);
+ /* Version 3.34.0 and later */
+ int (*txn_state)(sqlite3*,const char*);
+ /* Version 3.36.1 and later */
+ sqlite3_int64 (*changes64)(sqlite3*);
+ sqlite3_int64 (*total_changes64)(sqlite3*);
+ /* Version 3.37.0 and later */
+ int (*autovacuum_pages)(sqlite3*,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*, void(*)(void*));
+ /* Version 3.38.0 and later */
+ int (*error_offset)(sqlite3*);
+ int (*vtab_rhs_value)(sqlite3_index_info*,int,sqlite3_value**);
+ int (*vtab_distinct)(sqlite3_index_info*);
+ int (*vtab_in)(sqlite3_index_info*,int,int);
+ int (*vtab_in_first)(sqlite3_value*,sqlite3_value**);
+ int (*vtab_in_next)(sqlite3_value*,sqlite3_value**);
+ /* Version 3.39.0 and later */
+ int (*deserialize)(sqlite3*,const char*,unsigned char*,
+ sqlite3_int64,sqlite3_int64,unsigned);
+ unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*,
+ unsigned int);
+ const char *(*db_name)(sqlite3*,int);
+ /* Version 3.40.0 and later */
+ int (*value_encoding)(sqlite3_value*);
+ /* Version 3.41.0 and later */
+ int (*is_interrupted)(sqlite3*);
+ /* Version 3.43.0 and later */
+ int (*stmt_explain)(sqlite3_stmt*,int);
+ /* Version 3.44.0 and later */
+ void *(*get_clientdata)(sqlite3*,const char*);
+ int (*set_clientdata)(sqlite3*, const char*, void*, void(*)(void*));
+};
+
+/*
+** This is the function signature used for all extension entry points. It
+** is also defined in the file "loadext.c".
+*/
+typedef int (*sqlite3_loadext_entry)(
+ sqlite3 *db, /* Handle to the database. */
+ char **pzErrMsg, /* Used to set error string on failure. */
+ const sqlite3_api_routines *pThunk /* Extension API function pointers. */
+);
+
+/*
+** The following macros redefine the API routines so that they are
+** redirected through the global sqlite3_api structure.
+**
+** This header file is also used by the loadext.c source file
+** (part of the main SQLite library - not an extension) so that
+** it can get access to the sqlite3_api_routines structure
+** definition. But the main library does not want to redefine
+** the API. So the redefinition macros are only valid if the
+** SQLITE_CORE macros is undefined.
+*/
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+#define sqlite3_aggregate_context sqlite3_api->aggregate_context
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_aggregate_count sqlite3_api->aggregate_count
+#endif
+#define sqlite3_bind_blob sqlite3_api->bind_blob
+#define sqlite3_bind_double sqlite3_api->bind_double
+#define sqlite3_bind_int sqlite3_api->bind_int
+#define sqlite3_bind_int64 sqlite3_api->bind_int64
+#define sqlite3_bind_null sqlite3_api->bind_null
+#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
+#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
+#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
+#define sqlite3_bind_text sqlite3_api->bind_text
+#define sqlite3_bind_text16 sqlite3_api->bind_text16
+#define sqlite3_bind_value sqlite3_api->bind_value
+#define sqlite3_busy_handler sqlite3_api->busy_handler
+#define sqlite3_busy_timeout sqlite3_api->busy_timeout
+#define sqlite3_changes sqlite3_api->changes
+#define sqlite3_close sqlite3_api->close
+#define sqlite3_collation_needed sqlite3_api->collation_needed
+#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
+#define sqlite3_column_blob sqlite3_api->column_blob
+#define sqlite3_column_bytes sqlite3_api->column_bytes
+#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
+#define sqlite3_column_count sqlite3_api->column_count
+#define sqlite3_column_database_name sqlite3_api->column_database_name
+#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
+#define sqlite3_column_decltype sqlite3_api->column_decltype
+#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
+#define sqlite3_column_double sqlite3_api->column_double
+#define sqlite3_column_int sqlite3_api->column_int
+#define sqlite3_column_int64 sqlite3_api->column_int64
+#define sqlite3_column_name sqlite3_api->column_name
+#define sqlite3_column_name16 sqlite3_api->column_name16
+#define sqlite3_column_origin_name sqlite3_api->column_origin_name
+#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
+#define sqlite3_column_table_name sqlite3_api->column_table_name
+#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
+#define sqlite3_column_text sqlite3_api->column_text
+#define sqlite3_column_text16 sqlite3_api->column_text16
+#define sqlite3_column_type sqlite3_api->column_type
+#define sqlite3_column_value sqlite3_api->column_value
+#define sqlite3_commit_hook sqlite3_api->commit_hook
+#define sqlite3_complete sqlite3_api->complete
+#define sqlite3_complete16 sqlite3_api->complete16
+#define sqlite3_create_collation sqlite3_api->create_collation
+#define sqlite3_create_collation16 sqlite3_api->create_collation16
+#define sqlite3_create_function sqlite3_api->create_function
+#define sqlite3_create_function16 sqlite3_api->create_function16
+#define sqlite3_create_module sqlite3_api->create_module
+#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
+#define sqlite3_data_count sqlite3_api->data_count
+#define sqlite3_db_handle sqlite3_api->db_handle
+#define sqlite3_declare_vtab sqlite3_api->declare_vtab
+#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
+#define sqlite3_errcode sqlite3_api->errcode
+#define sqlite3_errmsg sqlite3_api->errmsg
+#define sqlite3_errmsg16 sqlite3_api->errmsg16
+#define sqlite3_exec sqlite3_api->exec
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_expired sqlite3_api->expired
+#endif
+#define sqlite3_finalize sqlite3_api->finalize
+#define sqlite3_free sqlite3_api->free
+#define sqlite3_free_table sqlite3_api->free_table
+#define sqlite3_get_autocommit sqlite3_api->get_autocommit
+#define sqlite3_get_auxdata sqlite3_api->get_auxdata
+#define sqlite3_get_table sqlite3_api->get_table
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_global_recover sqlite3_api->global_recover
+#endif
+#define sqlite3_interrupt sqlite3_api->interruptx
+#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
+#define sqlite3_libversion sqlite3_api->libversion
+#define sqlite3_libversion_number sqlite3_api->libversion_number
+#define sqlite3_malloc sqlite3_api->malloc
+#define sqlite3_mprintf sqlite3_api->mprintf
+#define sqlite3_open sqlite3_api->open
+#define sqlite3_open16 sqlite3_api->open16
+#define sqlite3_prepare sqlite3_api->prepare
+#define sqlite3_prepare16 sqlite3_api->prepare16
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_profile sqlite3_api->profile
+#define sqlite3_progress_handler sqlite3_api->progress_handler
+#define sqlite3_realloc sqlite3_api->realloc
+#define sqlite3_reset sqlite3_api->reset
+#define sqlite3_result_blob sqlite3_api->result_blob
+#define sqlite3_result_double sqlite3_api->result_double
+#define sqlite3_result_error sqlite3_api->result_error
+#define sqlite3_result_error16 sqlite3_api->result_error16
+#define sqlite3_result_int sqlite3_api->result_int
+#define sqlite3_result_int64 sqlite3_api->result_int64
+#define sqlite3_result_null sqlite3_api->result_null
+#define sqlite3_result_text sqlite3_api->result_text
+#define sqlite3_result_text16 sqlite3_api->result_text16
+#define sqlite3_result_text16be sqlite3_api->result_text16be
+#define sqlite3_result_text16le sqlite3_api->result_text16le
+#define sqlite3_result_value sqlite3_api->result_value
+#define sqlite3_rollback_hook sqlite3_api->rollback_hook
+#define sqlite3_set_authorizer sqlite3_api->set_authorizer
+#define sqlite3_set_auxdata sqlite3_api->set_auxdata
+#define sqlite3_snprintf sqlite3_api->xsnprintf
+#define sqlite3_step sqlite3_api->step
+#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
+#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
+#define sqlite3_total_changes sqlite3_api->total_changes
+#define sqlite3_trace sqlite3_api->trace
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
+#endif
+#define sqlite3_update_hook sqlite3_api->update_hook
+#define sqlite3_user_data sqlite3_api->user_data
+#define sqlite3_value_blob sqlite3_api->value_blob
+#define sqlite3_value_bytes sqlite3_api->value_bytes
+#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
+#define sqlite3_value_double sqlite3_api->value_double
+#define sqlite3_value_int sqlite3_api->value_int
+#define sqlite3_value_int64 sqlite3_api->value_int64
+#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
+#define sqlite3_value_text sqlite3_api->value_text
+#define sqlite3_value_text16 sqlite3_api->value_text16
+#define sqlite3_value_text16be sqlite3_api->value_text16be
+#define sqlite3_value_text16le sqlite3_api->value_text16le
+#define sqlite3_value_type sqlite3_api->value_type
+#define sqlite3_vmprintf sqlite3_api->vmprintf
+#define sqlite3_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_overload_function sqlite3_api->overload_function
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_clear_bindings sqlite3_api->clear_bindings
+#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
+#define sqlite3_blob_bytes sqlite3_api->blob_bytes
+#define sqlite3_blob_close sqlite3_api->blob_close
+#define sqlite3_blob_open sqlite3_api->blob_open
+#define sqlite3_blob_read sqlite3_api->blob_read
+#define sqlite3_blob_write sqlite3_api->blob_write
+#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
+#define sqlite3_file_control sqlite3_api->file_control
+#define sqlite3_memory_highwater sqlite3_api->memory_highwater
+#define sqlite3_memory_used sqlite3_api->memory_used
+#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
+#define sqlite3_mutex_enter sqlite3_api->mutex_enter
+#define sqlite3_mutex_free sqlite3_api->mutex_free
+#define sqlite3_mutex_leave sqlite3_api->mutex_leave
+#define sqlite3_mutex_try sqlite3_api->mutex_try
+#define sqlite3_open_v2 sqlite3_api->open_v2
+#define sqlite3_release_memory sqlite3_api->release_memory
+#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
+#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
+#define sqlite3_sleep sqlite3_api->sleep
+#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
+#define sqlite3_vfs_find sqlite3_api->vfs_find
+#define sqlite3_vfs_register sqlite3_api->vfs_register
+#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
+#define sqlite3_threadsafe sqlite3_api->xthreadsafe
+#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
+#define sqlite3_result_error_code sqlite3_api->result_error_code
+#define sqlite3_test_control sqlite3_api->test_control
+#define sqlite3_randomness sqlite3_api->randomness
+#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
+#define sqlite3_limit sqlite3_api->limit
+#define sqlite3_next_stmt sqlite3_api->next_stmt
+#define sqlite3_sql sqlite3_api->sql
+#define sqlite3_status sqlite3_api->status
+#define sqlite3_backup_finish sqlite3_api->backup_finish
+#define sqlite3_backup_init sqlite3_api->backup_init
+#define sqlite3_backup_pagecount sqlite3_api->backup_pagecount
+#define sqlite3_backup_remaining sqlite3_api->backup_remaining
+#define sqlite3_backup_step sqlite3_api->backup_step
+#define sqlite3_compileoption_get sqlite3_api->compileoption_get
+#define sqlite3_compileoption_used sqlite3_api->compileoption_used
+#define sqlite3_create_function_v2 sqlite3_api->create_function_v2
+#define sqlite3_db_config sqlite3_api->db_config
+#define sqlite3_db_mutex sqlite3_api->db_mutex
+#define sqlite3_db_status sqlite3_api->db_status
+#define sqlite3_extended_errcode sqlite3_api->extended_errcode
+#define sqlite3_log sqlite3_api->log
+#define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64
+#define sqlite3_sourceid sqlite3_api->sourceid
+#define sqlite3_stmt_status sqlite3_api->stmt_status
+#define sqlite3_strnicmp sqlite3_api->strnicmp
+#define sqlite3_unlock_notify sqlite3_api->unlock_notify
+#define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint
+#define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint
+#define sqlite3_wal_hook sqlite3_api->wal_hook
+#define sqlite3_blob_reopen sqlite3_api->blob_reopen
+#define sqlite3_vtab_config sqlite3_api->vtab_config
+#define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict
+/* Version 3.7.16 and later */
+#define sqlite3_close_v2 sqlite3_api->close_v2
+#define sqlite3_db_filename sqlite3_api->db_filename
+#define sqlite3_db_readonly sqlite3_api->db_readonly
+#define sqlite3_db_release_memory sqlite3_api->db_release_memory
+#define sqlite3_errstr sqlite3_api->errstr
+#define sqlite3_stmt_busy sqlite3_api->stmt_busy
+#define sqlite3_stmt_readonly sqlite3_api->stmt_readonly
+#define sqlite3_stricmp sqlite3_api->stricmp
+#define sqlite3_uri_boolean sqlite3_api->uri_boolean
+#define sqlite3_uri_int64 sqlite3_api->uri_int64
+#define sqlite3_uri_parameter sqlite3_api->uri_parameter
+#define sqlite3_uri_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2
+/* Version 3.8.7 and later */
+#define sqlite3_auto_extension sqlite3_api->auto_extension
+#define sqlite3_bind_blob64 sqlite3_api->bind_blob64
+#define sqlite3_bind_text64 sqlite3_api->bind_text64
+#define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension
+#define sqlite3_load_extension sqlite3_api->load_extension
+#define sqlite3_malloc64 sqlite3_api->malloc64
+#define sqlite3_msize sqlite3_api->msize
+#define sqlite3_realloc64 sqlite3_api->realloc64
+#define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension
+#define sqlite3_result_blob64 sqlite3_api->result_blob64
+#define sqlite3_result_text64 sqlite3_api->result_text64
+#define sqlite3_strglob sqlite3_api->strglob
+/* Version 3.8.11 and later */
+#define sqlite3_value_dup sqlite3_api->value_dup
+#define sqlite3_value_free sqlite3_api->value_free
+#define sqlite3_result_zeroblob64 sqlite3_api->result_zeroblob64
+#define sqlite3_bind_zeroblob64 sqlite3_api->bind_zeroblob64
+/* Version 3.9.0 and later */
+#define sqlite3_value_subtype sqlite3_api->value_subtype
+#define sqlite3_result_subtype sqlite3_api->result_subtype
+/* Version 3.10.0 and later */
+#define sqlite3_status64 sqlite3_api->status64
+#define sqlite3_strlike sqlite3_api->strlike
+#define sqlite3_db_cacheflush sqlite3_api->db_cacheflush
+/* Version 3.12.0 and later */
+#define sqlite3_system_errno sqlite3_api->system_errno
+/* Version 3.14.0 and later */
+#define sqlite3_trace_v2 sqlite3_api->trace_v2
+#define sqlite3_expanded_sql sqlite3_api->expanded_sql
+/* Version 3.18.0 and later */
+#define sqlite3_set_last_insert_rowid sqlite3_api->set_last_insert_rowid
+/* Version 3.20.0 and later */
+#define sqlite3_prepare_v3 sqlite3_api->prepare_v3
+#define sqlite3_prepare16_v3 sqlite3_api->prepare16_v3
+#define sqlite3_bind_pointer sqlite3_api->bind_pointer
+#define sqlite3_result_pointer sqlite3_api->result_pointer
+#define sqlite3_value_pointer sqlite3_api->value_pointer
+/* Version 3.22.0 and later */
+#define sqlite3_vtab_nochange sqlite3_api->vtab_nochange
+#define sqlite3_value_nochange sqlite3_api->value_nochange
+#define sqlite3_vtab_collation sqlite3_api->vtab_collation
+/* Version 3.24.0 and later */
+#define sqlite3_keyword_count sqlite3_api->keyword_count
+#define sqlite3_keyword_name sqlite3_api->keyword_name
+#define sqlite3_keyword_check sqlite3_api->keyword_check
+#define sqlite3_str_new sqlite3_api->str_new
+#define sqlite3_str_finish sqlite3_api->str_finish
+#define sqlite3_str_appendf sqlite3_api->str_appendf
+#define sqlite3_str_vappendf sqlite3_api->str_vappendf
+#define sqlite3_str_append sqlite3_api->str_append
+#define sqlite3_str_appendall sqlite3_api->str_appendall
+#define sqlite3_str_appendchar sqlite3_api->str_appendchar
+#define sqlite3_str_reset sqlite3_api->str_reset
+#define sqlite3_str_errcode sqlite3_api->str_errcode
+#define sqlite3_str_length sqlite3_api->str_length
+#define sqlite3_str_value sqlite3_api->str_value
+/* Version 3.25.0 and later */
+#define sqlite3_create_window_function sqlite3_api->create_window_function
+/* Version 3.26.0 and later */
+#define sqlite3_normalized_sql sqlite3_api->normalized_sql
+/* Version 3.28.0 and later */
+#define sqlite3_stmt_isexplain sqlite3_api->stmt_isexplain
+#define sqlite3_value_frombind sqlite3_api->value_frombind
+/* Version 3.30.0 and later */
+#define sqlite3_drop_modules sqlite3_api->drop_modules
+/* Version 3.31.0 and later */
+#define sqlite3_hard_heap_limit64 sqlite3_api->hard_heap_limit64
+#define sqlite3_uri_key sqlite3_api->uri_key
+#define sqlite3_filename_database sqlite3_api->filename_database
+#define sqlite3_filename_journal sqlite3_api->filename_journal
+#define sqlite3_filename_wal sqlite3_api->filename_wal
+/* Version 3.32.0 and later */
+#define sqlite3_create_filename sqlite3_api->create_filename
+#define sqlite3_free_filename sqlite3_api->free_filename
+#define sqlite3_database_file_object sqlite3_api->database_file_object
+/* Version 3.34.0 and later */
+#define sqlite3_txn_state sqlite3_api->txn_state
+/* Version 3.36.1 and later */
+#define sqlite3_changes64 sqlite3_api->changes64
+#define sqlite3_total_changes64 sqlite3_api->total_changes64
+/* Version 3.37.0 and later */
+#define sqlite3_autovacuum_pages sqlite3_api->autovacuum_pages
+/* Version 3.38.0 and later */
+#define sqlite3_error_offset sqlite3_api->error_offset
+#define sqlite3_vtab_rhs_value sqlite3_api->vtab_rhs_value
+#define sqlite3_vtab_distinct sqlite3_api->vtab_distinct
+#define sqlite3_vtab_in sqlite3_api->vtab_in
+#define sqlite3_vtab_in_first sqlite3_api->vtab_in_first
+#define sqlite3_vtab_in_next sqlite3_api->vtab_in_next
+/* Version 3.39.0 and later */
+#ifndef SQLITE_OMIT_DESERIALIZE
+#define sqlite3_deserialize sqlite3_api->deserialize
+#define sqlite3_serialize sqlite3_api->serialize
+#endif
+#define sqlite3_db_name sqlite3_api->db_name
+/* Version 3.40.0 and later */
+#define sqlite3_value_encoding sqlite3_api->value_encoding
+/* Version 3.41.0 and later */
+#define sqlite3_is_interrupted sqlite3_api->is_interrupted
+/* Version 3.43.0 and later */
+#define sqlite3_stmt_explain sqlite3_api->stmt_explain
+/* Version 3.44.0 and later */
+#define sqlite3_get_clientdata sqlite3_api->get_clientdata
+#define sqlite3_set_clientdata sqlite3_api->set_clientdata
+#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */
+
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ /* This case when the file really is being compiled as a loadable
+ ** extension */
+# define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0;
+# define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v;
+# define SQLITE_EXTENSION_INIT3 \
+ extern const sqlite3_api_routines *sqlite3_api;
+#else
+ /* This case when the file is being statically linked into the
+ ** application */
+# define SQLITE_EXTENSION_INIT1 /*no-op*/
+# define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */
+# define SQLITE_EXTENSION_INIT3 /*no-op*/
+#endif
+
+#endif /* SQLITE3EXT_H */
+
+/************** End of sqlite3ext.h ******************************************/
+/************** Continuing where we left off in loadext.c ********************/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Some API routines are omitted when various features are
+** excluded from a build of SQLite. Substitute a NULL pointer
+** for any missing APIs.
+*/
+#ifndef SQLITE_ENABLE_COLUMN_METADATA
+# define sqlite3_column_database_name 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name 0
+# define sqlite3_column_origin_name16 0
+#endif
+
+#ifdef SQLITE_OMIT_AUTHORIZATION
+# define sqlite3_set_authorizer 0
+#endif
+
+#ifdef SQLITE_OMIT_UTF16
+# define sqlite3_bind_text16 0
+# define sqlite3_collation_needed16 0
+# define sqlite3_column_decltype16 0
+# define sqlite3_column_name16 0
+# define sqlite3_column_text16 0
+# define sqlite3_complete16 0
+# define sqlite3_create_collation16 0
+# define sqlite3_create_function16 0
+# define sqlite3_errmsg16 0
+# define sqlite3_open16 0
+# define sqlite3_prepare16 0
+# define sqlite3_prepare16_v2 0
+# define sqlite3_prepare16_v3 0
+# define sqlite3_result_error16 0
+# define sqlite3_result_text16 0
+# define sqlite3_result_text16be 0
+# define sqlite3_result_text16le 0
+# define sqlite3_value_text16 0
+# define sqlite3_value_text16be 0
+# define sqlite3_value_text16le 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name16 0
+#endif
+
+#ifdef SQLITE_OMIT_COMPLETE
+# define sqlite3_complete 0
+# define sqlite3_complete16 0
+#endif
+
+#ifdef SQLITE_OMIT_DECLTYPE
+# define sqlite3_column_decltype16 0
+# define sqlite3_column_decltype 0
+#endif
+
+#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
+# define sqlite3_progress_handler 0
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3_create_module 0
+# define sqlite3_create_module_v2 0
+# define sqlite3_declare_vtab 0
+# define sqlite3_vtab_config 0
+# define sqlite3_vtab_on_conflict 0
+# define sqlite3_vtab_collation 0
+#endif
+
+#ifdef SQLITE_OMIT_SHARED_CACHE
+# define sqlite3_enable_shared_cache 0
+#endif
+
+#if defined(SQLITE_OMIT_TRACE) || defined(SQLITE_OMIT_DEPRECATED)
+# define sqlite3_profile 0
+# define sqlite3_trace 0
+#endif
+
+#ifdef SQLITE_OMIT_GET_TABLE
+# define sqlite3_free_table 0
+# define sqlite3_get_table 0
+#endif
+
+#ifdef SQLITE_OMIT_INCRBLOB
+#define sqlite3_bind_zeroblob 0
+#define sqlite3_blob_bytes 0
+#define sqlite3_blob_close 0
+#define sqlite3_blob_open 0
+#define sqlite3_blob_read 0
+#define sqlite3_blob_write 0
+#define sqlite3_blob_reopen 0
+#endif
+
+#if defined(SQLITE_OMIT_TRACE)
+# define sqlite3_trace_v2 0
+#endif
+
+/*
+** The following structure contains pointers to all SQLite API routines.
+** A pointer to this structure is passed into extensions when they are
+** loaded so that the extension can make calls back into the SQLite
+** library.
+**
+** When adding new APIs, add them to the bottom of this structure
+** in order to preserve backwards compatibility.
+**
+** Extensions that use newer APIs should first call the
+** sqlite3_libversion_number() to make sure that the API they
+** intend to use is supported by the library. Extensions should
+** also check to make sure that the pointer to the function is
+** not NULL before calling it.
+*/
+static const sqlite3_api_routines sqlite3Apis = {
+ sqlite3_aggregate_context,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_aggregate_count,
+#else
+ 0,
+#endif
+ sqlite3_bind_blob,
+ sqlite3_bind_double,
+ sqlite3_bind_int,
+ sqlite3_bind_int64,
+ sqlite3_bind_null,
+ sqlite3_bind_parameter_count,
+ sqlite3_bind_parameter_index,
+ sqlite3_bind_parameter_name,
+ sqlite3_bind_text,
+ sqlite3_bind_text16,
+ sqlite3_bind_value,
+ sqlite3_busy_handler,
+ sqlite3_busy_timeout,
+ sqlite3_changes,
+ sqlite3_close,
+ sqlite3_collation_needed,
+ sqlite3_collation_needed16,
+ sqlite3_column_blob,
+ sqlite3_column_bytes,
+ sqlite3_column_bytes16,
+ sqlite3_column_count,
+ sqlite3_column_database_name,
+ sqlite3_column_database_name16,
+ sqlite3_column_decltype,
+ sqlite3_column_decltype16,
+ sqlite3_column_double,
+ sqlite3_column_int,
+ sqlite3_column_int64,
+ sqlite3_column_name,
+ sqlite3_column_name16,
+ sqlite3_column_origin_name,
+ sqlite3_column_origin_name16,
+ sqlite3_column_table_name,
+ sqlite3_column_table_name16,
+ sqlite3_column_text,
+ sqlite3_column_text16,
+ sqlite3_column_type,
+ sqlite3_column_value,
+ sqlite3_commit_hook,
+ sqlite3_complete,
+ sqlite3_complete16,
+ sqlite3_create_collation,
+ sqlite3_create_collation16,
+ sqlite3_create_function,
+ sqlite3_create_function16,
+ sqlite3_create_module,
+ sqlite3_data_count,
+ sqlite3_db_handle,
+ sqlite3_declare_vtab,
+ sqlite3_enable_shared_cache,
+ sqlite3_errcode,
+ sqlite3_errmsg,
+ sqlite3_errmsg16,
+ sqlite3_exec,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_expired,
+#else
+ 0,
+#endif
+ sqlite3_finalize,
+ sqlite3_free,
+ sqlite3_free_table,
+ sqlite3_get_autocommit,
+ sqlite3_get_auxdata,
+ sqlite3_get_table,
+ 0, /* Was sqlite3_global_recover(), but that function is deprecated */
+ sqlite3_interrupt,
+ sqlite3_last_insert_rowid,
+ sqlite3_libversion,
+ sqlite3_libversion_number,
+ sqlite3_malloc,
+ sqlite3_mprintf,
+ sqlite3_open,
+ sqlite3_open16,
+ sqlite3_prepare,
+ sqlite3_prepare16,
+ sqlite3_profile,
+ sqlite3_progress_handler,
+ sqlite3_realloc,
+ sqlite3_reset,
+ sqlite3_result_blob,
+ sqlite3_result_double,
+ sqlite3_result_error,
+ sqlite3_result_error16,
+ sqlite3_result_int,
+ sqlite3_result_int64,
+ sqlite3_result_null,
+ sqlite3_result_text,
+ sqlite3_result_text16,
+ sqlite3_result_text16be,
+ sqlite3_result_text16le,
+ sqlite3_result_value,
+ sqlite3_rollback_hook,
+ sqlite3_set_authorizer,
+ sqlite3_set_auxdata,
+ sqlite3_snprintf,
+ sqlite3_step,
+ sqlite3_table_column_metadata,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_thread_cleanup,
+#else
+ 0,
+#endif
+ sqlite3_total_changes,
+ sqlite3_trace,
+#ifndef SQLITE_OMIT_DEPRECATED
+ sqlite3_transfer_bindings,
+#else
+ 0,
+#endif
+ sqlite3_update_hook,
+ sqlite3_user_data,
+ sqlite3_value_blob,
+ sqlite3_value_bytes,
+ sqlite3_value_bytes16,
+ sqlite3_value_double,
+ sqlite3_value_int,
+ sqlite3_value_int64,
+ sqlite3_value_numeric_type,
+ sqlite3_value_text,
+ sqlite3_value_text16,
+ sqlite3_value_text16be,
+ sqlite3_value_text16le,
+ sqlite3_value_type,
+ sqlite3_vmprintf,
+ /*
+ ** The original API set ends here. All extensions can call any
+ ** of the APIs above provided that the pointer is not NULL. But
+ ** before calling APIs that follow, extension should check the
+ ** sqlite3_libversion_number() to make sure they are dealing with
+ ** a library that is new enough to support that API.
+ *************************************************************************
+ */
+ sqlite3_overload_function,
+
+ /*
+ ** Added after 3.3.13
+ */
+ sqlite3_prepare_v2,
+ sqlite3_prepare16_v2,
+ sqlite3_clear_bindings,
+
+ /*
+ ** Added for 3.4.1
+ */
+ sqlite3_create_module_v2,
+
+ /*
+ ** Added for 3.5.0
+ */
+ sqlite3_bind_zeroblob,
+ sqlite3_blob_bytes,
+ sqlite3_blob_close,
+ sqlite3_blob_open,
+ sqlite3_blob_read,
+ sqlite3_blob_write,
+ sqlite3_create_collation_v2,
+ sqlite3_file_control,
+ sqlite3_memory_highwater,
+ sqlite3_memory_used,
+#ifdef SQLITE_MUTEX_OMIT
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#else
+ sqlite3_mutex_alloc,
+ sqlite3_mutex_enter,
+ sqlite3_mutex_free,
+ sqlite3_mutex_leave,
+ sqlite3_mutex_try,
+#endif
+ sqlite3_open_v2,
+ sqlite3_release_memory,
+ sqlite3_result_error_nomem,
+ sqlite3_result_error_toobig,
+ sqlite3_sleep,
+ sqlite3_soft_heap_limit,
+ sqlite3_vfs_find,
+ sqlite3_vfs_register,
+ sqlite3_vfs_unregister,
+
+ /*
+ ** Added for 3.5.8
+ */
+ sqlite3_threadsafe,
+ sqlite3_result_zeroblob,
+ sqlite3_result_error_code,
+ sqlite3_test_control,
+ sqlite3_randomness,
+ sqlite3_context_db_handle,
+
+ /*
+ ** Added for 3.6.0
+ */
+ sqlite3_extended_result_codes,
+ sqlite3_limit,
+ sqlite3_next_stmt,
+ sqlite3_sql,
+ sqlite3_status,
+
+ /*
+ ** Added for 3.7.4
+ */
+ sqlite3_backup_finish,
+ sqlite3_backup_init,
+ sqlite3_backup_pagecount,
+ sqlite3_backup_remaining,
+ sqlite3_backup_step,
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ sqlite3_compileoption_get,
+ sqlite3_compileoption_used,
+#else
+ 0,
+ 0,
+#endif
+ sqlite3_create_function_v2,
+ sqlite3_db_config,
+ sqlite3_db_mutex,
+ sqlite3_db_status,
+ sqlite3_extended_errcode,
+ sqlite3_log,
+ sqlite3_soft_heap_limit64,
+ sqlite3_sourceid,
+ sqlite3_stmt_status,
+ sqlite3_strnicmp,
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+ sqlite3_unlock_notify,
+#else
+ 0,
+#endif
+#ifndef SQLITE_OMIT_WAL
+ sqlite3_wal_autocheckpoint,
+ sqlite3_wal_checkpoint,
+ sqlite3_wal_hook,
+#else
+ 0,
+ 0,
+ 0,
+#endif
+ sqlite3_blob_reopen,
+ sqlite3_vtab_config,
+ sqlite3_vtab_on_conflict,
+ sqlite3_close_v2,
+ sqlite3_db_filename,
+ sqlite3_db_readonly,
+ sqlite3_db_release_memory,
+ sqlite3_errstr,
+ sqlite3_stmt_busy,
+ sqlite3_stmt_readonly,
+ sqlite3_stricmp,
+ sqlite3_uri_boolean,
+ sqlite3_uri_int64,
+ sqlite3_uri_parameter,
+ sqlite3_vsnprintf,
+ sqlite3_wal_checkpoint_v2,
+ /* Version 3.8.7 and later */
+ sqlite3_auto_extension,
+ sqlite3_bind_blob64,
+ sqlite3_bind_text64,
+ sqlite3_cancel_auto_extension,
+ sqlite3_load_extension,
+ sqlite3_malloc64,
+ sqlite3_msize,
+ sqlite3_realloc64,
+ sqlite3_reset_auto_extension,
+ sqlite3_result_blob64,
+ sqlite3_result_text64,
+ sqlite3_strglob,
+ /* Version 3.8.11 and later */
+ (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup,
+ sqlite3_value_free,
+ sqlite3_result_zeroblob64,
+ sqlite3_bind_zeroblob64,
+ /* Version 3.9.0 and later */
+ sqlite3_value_subtype,
+ sqlite3_result_subtype,
+ /* Version 3.10.0 and later */
+ sqlite3_status64,
+ sqlite3_strlike,
+ sqlite3_db_cacheflush,
+ /* Version 3.12.0 and later */
+ sqlite3_system_errno,
+ /* Version 3.14.0 and later */
+ sqlite3_trace_v2,
+ sqlite3_expanded_sql,
+ /* Version 3.18.0 and later */
+ sqlite3_set_last_insert_rowid,
+ /* Version 3.20.0 and later */
+ sqlite3_prepare_v3,
+ sqlite3_prepare16_v3,
+ sqlite3_bind_pointer,
+ sqlite3_result_pointer,
+ sqlite3_value_pointer,
+ /* Version 3.22.0 and later */
+ sqlite3_vtab_nochange,
+ sqlite3_value_nochange,
+ sqlite3_vtab_collation,
+ /* Version 3.24.0 and later */
+ sqlite3_keyword_count,
+ sqlite3_keyword_name,
+ sqlite3_keyword_check,
+ sqlite3_str_new,
+ sqlite3_str_finish,
+ sqlite3_str_appendf,
+ sqlite3_str_vappendf,
+ sqlite3_str_append,
+ sqlite3_str_appendall,
+ sqlite3_str_appendchar,
+ sqlite3_str_reset,
+ sqlite3_str_errcode,
+ sqlite3_str_length,
+ sqlite3_str_value,
+ /* Version 3.25.0 and later */
+ sqlite3_create_window_function,
+ /* Version 3.26.0 and later */
+#ifdef SQLITE_ENABLE_NORMALIZE
+ sqlite3_normalized_sql,
+#else
+ 0,
+#endif
+ /* Version 3.28.0 and later */
+ sqlite3_stmt_isexplain,
+ sqlite3_value_frombind,
+ /* Version 3.30.0 and later */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_drop_modules,
+#else
+ 0,
+#endif
+ /* Version 3.31.0 and later */
+ sqlite3_hard_heap_limit64,
+ sqlite3_uri_key,
+ sqlite3_filename_database,
+ sqlite3_filename_journal,
+ sqlite3_filename_wal,
+ /* Version 3.32.0 and later */
+ sqlite3_create_filename,
+ sqlite3_free_filename,
+ sqlite3_database_file_object,
+ /* Version 3.34.0 and later */
+ sqlite3_txn_state,
+ /* Version 3.36.1 and later */
+ sqlite3_changes64,
+ sqlite3_total_changes64,
+ /* Version 3.37.0 and later */
+ sqlite3_autovacuum_pages,
+ /* Version 3.38.0 and later */
+ sqlite3_error_offset,
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_vtab_rhs_value,
+ sqlite3_vtab_distinct,
+ sqlite3_vtab_in,
+ sqlite3_vtab_in_first,
+ sqlite3_vtab_in_next,
+#else
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#endif
+ /* Version 3.39.0 and later */
+#ifndef SQLITE_OMIT_DESERIALIZE
+ sqlite3_deserialize,
+ sqlite3_serialize,
+#else
+ 0,
+ 0,
+#endif
+ sqlite3_db_name,
+ /* Version 3.40.0 and later */
+ sqlite3_value_encoding,
+ /* Version 3.41.0 and later */
+ sqlite3_is_interrupted,
+ /* Version 3.43.0 and later */
+ sqlite3_stmt_explain,
+ /* Version 3.44.0 and later */
+ sqlite3_get_clientdata,
+ sqlite3_set_clientdata
+};
+
+/* True if x is the directory separator character
+*/
+#if SQLITE_OS_WIN
+# define DirSep(X) ((X)=='/'||(X)=='\\')
+#else
+# define DirSep(X) ((X)=='/')
+#endif
+
+/*
+** Attempt to load an SQLite extension library contained in the file
+** zFile. The entry point is zProc. zProc may be 0 in which case a
+** default entry point name (sqlite3_extension_init) is used. Use
+** of the default name is recommended.
+**
+** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
+**
+** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
+** error message text. The calling function should free this memory
+** by calling sqlite3DbFree(db, ).
+*/
+static int sqlite3LoadExtension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ sqlite3_vfs *pVfs = db->pVfs;
+ void *handle;
+ sqlite3_loadext_entry xInit;
+ char *zErrmsg = 0;
+ const char *zEntry;
+ char *zAltEntry = 0;
+ void **aHandle;
+ u64 nMsg = strlen(zFile);
+ int ii;
+ int rc;
+
+ /* Shared library endings to try if zFile cannot be loaded as written */
+ static const char *azEndings[] = {
+#if SQLITE_OS_WIN
+ "dll"
+#elif defined(__APPLE__)
+ "dylib"
+#else
+ "so"
+#endif
+ };
+
+
+ if( pzErrMsg ) *pzErrMsg = 0;
+
+ /* Ticket #1863. To avoid a creating security problems for older
+ ** applications that relink against newer versions of SQLite, the
+ ** ability to run load_extension is turned off by default. One
+ ** must call either sqlite3_enable_load_extension(db) or
+ ** sqlite3_db_config(db, SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, 1, 0)
+ ** to turn on extension loading.
+ */
+ if( (db->flags & SQLITE_LoadExtension)==0 ){
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("not authorized");
+ }
+ return SQLITE_ERROR;
+ }
+
+ zEntry = zProc ? zProc : "sqlite3_extension_init";
+
+ /* tag-20210611-1. Some dlopen() implementations will segfault if given
+ ** an oversize filename. Most filesystems have a pathname limit of 4K,
+ ** so limit the extension filename length to about twice that.
+ ** https://sqlite.org/forum/forumpost/08a0d6d9bf
+ **
+ ** Later (2023-03-25): Save an extra 6 bytes for the filename suffix.
+ ** See https://sqlite.org/forum/forumpost/24083b579d.
+ */
+ if( nMsg>SQLITE_MAX_PATHLEN ) goto extension_not_found;
+
+ /* Do not allow sqlite3_load_extension() to link to a copy of the
+ ** running application, by passing in an empty filename. */
+ if( nMsg==0 ) goto extension_not_found;
+
+ handle = sqlite3OsDlOpen(pVfs, zFile);
+#if SQLITE_OS_UNIX || SQLITE_OS_WIN
+ for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
+ char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);
+ if( zAltFile==0 ) return SQLITE_NOMEM_BKPT;
+ if( nMsg+strlen(azEndings[ii])+1<=SQLITE_MAX_PATHLEN ){
+ handle = sqlite3OsDlOpen(pVfs, zAltFile);
+ }
+ sqlite3_free(zAltFile);
+ }
+#endif
+ if( handle==0 ) goto extension_not_found;
+ xInit = (sqlite3_loadext_entry)sqlite3OsDlSym(pVfs, handle, zEntry);
+
+ /* If no entry point was specified and the default legacy
+ ** entry point name "sqlite3_extension_init" was not found, then
+ ** construct an entry point name "sqlite3_X_init" where the X is
+ ** replaced by the lowercase value of every ASCII alphabetic
+ ** character in the filename after the last "/" upto the first ".",
+ ** and eliding the first three characters if they are "lib".
+ ** Examples:
+ **
+ ** /usr/local/lib/libExample5.4.3.so ==> sqlite3_example_init
+ ** C:/lib/mathfuncs.dll ==> sqlite3_mathfuncs_init
+ */
+ if( xInit==0 && zProc==0 ){
+ int iFile, iEntry, c;
+ int ncFile = sqlite3Strlen30(zFile);
+ zAltEntry = sqlite3_malloc64(ncFile+30);
+ if( zAltEntry==0 ){
+ sqlite3OsDlClose(pVfs, handle);
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(zAltEntry, "sqlite3_", 8);
+ for(iFile=ncFile-1; iFile>=0 && !DirSep(zFile[iFile]); iFile--){}
+ iFile++;
+ if( sqlite3_strnicmp(zFile+iFile, "lib", 3)==0 ) iFile += 3;
+ for(iEntry=8; (c = zFile[iFile])!=0 && c!='.'; iFile++){
+ if( sqlite3Isalpha(c) ){
+ zAltEntry[iEntry++] = (char)sqlite3UpperToLower[(unsigned)c];
+ }
+ }
+ memcpy(zAltEntry+iEntry, "_init", 6);
+ zEntry = zAltEntry;
+ xInit = (sqlite3_loadext_entry)sqlite3OsDlSym(pVfs, handle, zEntry);
+ }
+ if( xInit==0 ){
+ if( pzErrMsg ){
+ nMsg += strlen(zEntry) + 300;
+ *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
+ if( zErrmsg ){
+ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */
+ sqlite3_snprintf((int)nMsg, zErrmsg,
+ "no entry point [%s] in shared library [%s]", zEntry, zFile);
+ sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
+ }
+ }
+ sqlite3OsDlClose(pVfs, handle);
+ sqlite3_free(zAltEntry);
+ return SQLITE_ERROR;
+ }
+ sqlite3_free(zAltEntry);
+ rc = xInit(db, &zErrmsg, &sqlite3Apis);
+ if( rc ){
+ if( rc==SQLITE_OK_LOAD_PERMANENTLY ) return SQLITE_OK;
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
+ }
+ sqlite3_free(zErrmsg);
+ sqlite3OsDlClose(pVfs, handle);
+ return SQLITE_ERROR;
+ }
+
+ /* Append the new shared library handle to the db->aExtension array. */
+ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
+ if( aHandle==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( db->nExtension>0 ){
+ memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
+ }
+ sqlite3DbFree(db, db->aExtension);
+ db->aExtension = aHandle;
+
+ db->aExtension[db->nExtension++] = handle;
+ return SQLITE_OK;
+
+extension_not_found:
+ if( pzErrMsg ){
+ nMsg += 300;
+ *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
+ if( zErrmsg ){
+ assert( nMsg<0x7fffffff ); /* zErrmsg would be NULL if not so */
+ sqlite3_snprintf((int)nMsg, zErrmsg,
+ "unable to open shared library [%.*s]", SQLITE_MAX_PATHLEN, zFile);
+ sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
+ }
+ }
+ return SQLITE_ERROR;
+}
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Call this routine when the database connection is closing in order
+** to clean up loaded extensions
+*/
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
+ int i;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nExtension; i++){
+ sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
+ }
+ sqlite3DbFree(db, db->aExtension);
+}
+
+/*
+** Enable or disable extension loading. Extension loading is disabled by
+** default so as not to open security holes in older applications.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( onoff ){
+ db->flags |= SQLITE_LoadExtension|SQLITE_LoadExtFunc;
+ }else{
+ db->flags &= ~(u64)(SQLITE_LoadExtension|SQLITE_LoadExtFunc);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#endif /* !defined(SQLITE_OMIT_LOAD_EXTENSION) */
+
+/*
+** The following object holds the list of automatically loaded
+** extensions.
+**
+** This list is shared across threads. The SQLITE_MUTEX_STATIC_MAIN
+** mutex must be held while accessing this list.
+*/
+typedef struct sqlite3AutoExtList sqlite3AutoExtList;
+static SQLITE_WSD struct sqlite3AutoExtList {
+ u32 nExt; /* Number of entries in aExt[] */
+ void (**aExt)(void); /* Pointers to the extension init functions */
+} sqlite3Autoext = { 0, 0 };
+
+/* The "wsdAutoext" macro will resolve to the autoextension
+** state vector. If writable static data is unsupported on the target,
+** we have to locate the state vector at run-time. In the more common
+** case where writable static data is supported, wsdStat can refer directly
+** to the "sqlite3Autoext" state vector declared above.
+*/
+#ifdef SQLITE_OMIT_WSD
+# define wsdAutoextInit \
+ sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
+# define wsdAutoext x[0]
+#else
+# define wsdAutoextInit
+# define wsdAutoext sqlite3Autoext
+#endif
+
+
+/*
+** Register a statically linked extension that is automatically
+** loaded by every new database connection.
+*/
+SQLITE_API int sqlite3_auto_extension(
+ void (*xInit)(void)
+){
+ int rc = SQLITE_OK;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( xInit==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ){
+ return rc;
+ }else
+#endif
+ {
+ u32 i;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<wsdAutoext.nExt; i++){
+ if( wsdAutoext.aExt[i]==xInit ) break;
+ }
+ if( i==wsdAutoext.nExt ){
+ u64 nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
+ void (**aNew)(void);
+ aNew = sqlite3_realloc64(wsdAutoext.aExt, nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ wsdAutoext.aExt = aNew;
+ wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
+ wsdAutoext.nExt++;
+ }
+ }
+ sqlite3_mutex_leave(mutex);
+ assert( (rc&0xff)==rc );
+ return rc;
+ }
+}
+
+/*
+** Cancel a prior call to sqlite3_auto_extension. Remove xInit from the
+** set of routines that is invoked for each new database connection, if it
+** is currently on the list. If xInit is not on the list, then this
+** routine is a no-op.
+**
+** Return 1 if xInit was found on the list and removed. Return 0 if xInit
+** was not on the list.
+*/
+SQLITE_API int sqlite3_cancel_auto_extension(
+ void (*xInit)(void)
+){
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ int i;
+ int n = 0;
+ wsdAutoextInit;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( xInit==0 ) return 0;
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(i=(int)wsdAutoext.nExt-1; i>=0; i--){
+ if( wsdAutoext.aExt[i]==xInit ){
+ wsdAutoext.nExt--;
+ wsdAutoext.aExt[i] = wsdAutoext.aExt[wsdAutoext.nExt];
+ n++;
+ break;
+ }
+ }
+ sqlite3_mutex_leave(mutex);
+ return n;
+}
+
+/*
+** Reset the automatic extension loading mechanism.
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void){
+#ifndef SQLITE_OMIT_AUTOINIT
+ if( sqlite3_initialize()==SQLITE_OK )
+#endif
+ {
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+ wsdAutoextInit;
+ sqlite3_mutex_enter(mutex);
+ sqlite3_free(wsdAutoext.aExt);
+ wsdAutoext.aExt = 0;
+ wsdAutoext.nExt = 0;
+ sqlite3_mutex_leave(mutex);
+ }
+}
+
+/*
+** Load all automatic extensions.
+**
+** If anything goes wrong, set an error in the database connection.
+*/
+SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){
+ u32 i;
+ int go = 1;
+ int rc;
+ sqlite3_loadext_entry xInit;
+
+ wsdAutoextInit;
+ if( wsdAutoext.nExt==0 ){
+ /* Common case: early out without every having to acquire a mutex */
+ return;
+ }
+ for(i=0; go; i++){
+ char *zErrmsg;
+#if SQLITE_THREADSAFE
+ sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
+#endif
+#ifdef SQLITE_OMIT_LOAD_EXTENSION
+ const sqlite3_api_routines *pThunk = 0;
+#else
+ const sqlite3_api_routines *pThunk = &sqlite3Apis;
+#endif
+ sqlite3_mutex_enter(mutex);
+ if( i>=wsdAutoext.nExt ){
+ xInit = 0;
+ go = 0;
+ }else{
+ xInit = (sqlite3_loadext_entry)wsdAutoext.aExt[i];
+ }
+ sqlite3_mutex_leave(mutex);
+ zErrmsg = 0;
+ if( xInit && (rc = xInit(db, &zErrmsg, pThunk))!=0 ){
+ sqlite3ErrorWithMsg(db, rc,
+ "automatic extension loading failed: %s", zErrmsg);
+ go = 0;
+ }
+ sqlite3_free(zErrmsg);
+ }
+}
+
+/************** End of loadext.c *********************************************/
+/************** Begin file pragma.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the PRAGMA command.
+*/
+/* #include "sqliteInt.h" */
+
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
+# if defined(__APPLE__)
+# define SQLITE_ENABLE_LOCKING_STYLE 1
+# else
+# define SQLITE_ENABLE_LOCKING_STYLE 0
+# endif
+#endif
+
+/***************************************************************************
+** The "pragma.h" include file is an automatically generated file that
+** that includes the PragType_XXXX macro definitions and the aPragmaName[]
+** object. This ensures that the aPragmaName[] table is arranged in
+** lexicographical order to facility a binary search of the pragma name.
+** Do not edit pragma.h directly. Edit and rerun the script in at
+** ../tool/mkpragmatab.tcl. */
+/************** Include pragma.h in the middle of pragma.c *******************/
+/************** Begin file pragma.h ******************************************/
+/* DO NOT EDIT!
+** This file is automatically generated by the script at
+** ../tool/mkpragmatab.tcl. To update the set of pragmas, edit
+** that script and rerun it.
+*/
+
+/* The various pragma types */
+#define PragTyp_ACTIVATE_EXTENSIONS 0
+#define PragTyp_ANALYSIS_LIMIT 1
+#define PragTyp_HEADER_VALUE 2
+#define PragTyp_AUTO_VACUUM 3
+#define PragTyp_FLAG 4
+#define PragTyp_BUSY_TIMEOUT 5
+#define PragTyp_CACHE_SIZE 6
+#define PragTyp_CACHE_SPILL 7
+#define PragTyp_CASE_SENSITIVE_LIKE 8
+#define PragTyp_COLLATION_LIST 9
+#define PragTyp_COMPILE_OPTIONS 10
+#define PragTyp_DATA_STORE_DIRECTORY 11
+#define PragTyp_DATABASE_LIST 12
+#define PragTyp_DEFAULT_CACHE_SIZE 13
+#define PragTyp_ENCODING 14
+#define PragTyp_FOREIGN_KEY_CHECK 15
+#define PragTyp_FOREIGN_KEY_LIST 16
+#define PragTyp_FUNCTION_LIST 17
+#define PragTyp_HARD_HEAP_LIMIT 18
+#define PragTyp_INCREMENTAL_VACUUM 19
+#define PragTyp_INDEX_INFO 20
+#define PragTyp_INDEX_LIST 21
+#define PragTyp_INTEGRITY_CHECK 22
+#define PragTyp_JOURNAL_MODE 23
+#define PragTyp_JOURNAL_SIZE_LIMIT 24
+#define PragTyp_LOCK_PROXY_FILE 25
+#define PragTyp_LOCKING_MODE 26
+#define PragTyp_PAGE_COUNT 27
+#define PragTyp_MMAP_SIZE 28
+#define PragTyp_MODULE_LIST 29
+#define PragTyp_OPTIMIZE 30
+#define PragTyp_PAGE_SIZE 31
+#define PragTyp_PRAGMA_LIST 32
+#define PragTyp_SECURE_DELETE 33
+#define PragTyp_SHRINK_MEMORY 34
+#define PragTyp_SOFT_HEAP_LIMIT 35
+#define PragTyp_SYNCHRONOUS 36
+#define PragTyp_TABLE_INFO 37
+#define PragTyp_TABLE_LIST 38
+#define PragTyp_TEMP_STORE 39
+#define PragTyp_TEMP_STORE_DIRECTORY 40
+#define PragTyp_THREADS 41
+#define PragTyp_WAL_AUTOCHECKPOINT 42
+#define PragTyp_WAL_CHECKPOINT 43
+#define PragTyp_LOCK_STATUS 44
+#define PragTyp_STATS 45
+
+/* Property flags associated with various pragma. */
+#define PragFlg_NeedSchema 0x01 /* Force schema load before running */
+#define PragFlg_NoColumns 0x02 /* OP_ResultRow called with zero columns */
+#define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */
+#define PragFlg_ReadOnly 0x08 /* Read-only HEADER_VALUE */
+#define PragFlg_Result0 0x10 /* Acts as query when no argument */
+#define PragFlg_Result1 0x20 /* Acts as query when has one argument */
+#define PragFlg_SchemaOpt 0x40 /* Schema restricts name search if present */
+#define PragFlg_SchemaReq 0x80 /* Schema required - "main" is default */
+
+/* Names of columns for pragmas that return multi-column result
+** or that return single-column results where the name of the
+** result column is different from the name of the pragma
+*/
+static const char *const pragCName[] = {
+ /* 0 */ "id", /* Used by: foreign_key_list */
+ /* 1 */ "seq",
+ /* 2 */ "table",
+ /* 3 */ "from",
+ /* 4 */ "to",
+ /* 5 */ "on_update",
+ /* 6 */ "on_delete",
+ /* 7 */ "match",
+ /* 8 */ "cid", /* Used by: table_xinfo */
+ /* 9 */ "name",
+ /* 10 */ "type",
+ /* 11 */ "notnull",
+ /* 12 */ "dflt_value",
+ /* 13 */ "pk",
+ /* 14 */ "hidden",
+ /* table_info reuses 8 */
+ /* 15 */ "schema", /* Used by: table_list */
+ /* 16 */ "name",
+ /* 17 */ "type",
+ /* 18 */ "ncol",
+ /* 19 */ "wr",
+ /* 20 */ "strict",
+ /* 21 */ "seqno", /* Used by: index_xinfo */
+ /* 22 */ "cid",
+ /* 23 */ "name",
+ /* 24 */ "desc",
+ /* 25 */ "coll",
+ /* 26 */ "key",
+ /* 27 */ "name", /* Used by: function_list */
+ /* 28 */ "builtin",
+ /* 29 */ "type",
+ /* 30 */ "enc",
+ /* 31 */ "narg",
+ /* 32 */ "flags",
+ /* 33 */ "tbl", /* Used by: stats */
+ /* 34 */ "idx",
+ /* 35 */ "wdth",
+ /* 36 */ "hght",
+ /* 37 */ "flgs",
+ /* 38 */ "seq", /* Used by: index_list */
+ /* 39 */ "name",
+ /* 40 */ "unique",
+ /* 41 */ "origin",
+ /* 42 */ "partial",
+ /* 43 */ "table", /* Used by: foreign_key_check */
+ /* 44 */ "rowid",
+ /* 45 */ "parent",
+ /* 46 */ "fkid",
+ /* index_info reuses 21 */
+ /* 47 */ "seq", /* Used by: database_list */
+ /* 48 */ "name",
+ /* 49 */ "file",
+ /* 50 */ "busy", /* Used by: wal_checkpoint */
+ /* 51 */ "log",
+ /* 52 */ "checkpointed",
+ /* collation_list reuses 38 */
+ /* 53 */ "database", /* Used by: lock_status */
+ /* 54 */ "status",
+ /* 55 */ "cache_size", /* Used by: default_cache_size */
+ /* module_list pragma_list reuses 9 */
+ /* 56 */ "timeout", /* Used by: busy_timeout */
+};
+
+/* Definitions of all built-in pragmas */
+typedef struct PragmaName {
+ const char *const zName; /* Name of pragma */
+ u8 ePragTyp; /* PragTyp_XXX value */
+ u8 mPragFlg; /* Zero or more PragFlg_XXX values */
+ u8 iPragCName; /* Start of column names in pragCName[] */
+ u8 nPragCName; /* Num of col names. 0 means use pragma name */
+ u64 iArg; /* Extra argument */
+} PragmaName;
+static const PragmaName aPragmaName[] = {
+#if defined(SQLITE_ENABLE_CEROD)
+ {/* zName: */ "activate_extensions",
+ /* ePragTyp: */ PragTyp_ACTIVATE_EXTENSIONS,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+ {/* zName: */ "analysis_limit",
+ /* ePragTyp: */ PragTyp_ANALYSIS_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "application_id",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_APPLICATION_ID },
+#endif
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+ {/* zName: */ "auto_vacuum",
+ /* ePragTyp: */ PragTyp_AUTO_VACUUM,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_AUTOMATIC_INDEX)
+ {/* zName: */ "automatic_index",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_AutoIndex },
+#endif
+#endif
+ {/* zName: */ "busy_timeout",
+ /* ePragTyp: */ PragTyp_BUSY_TIMEOUT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 56, 1,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "cache_size",
+ /* ePragTyp: */ PragTyp_CACHE_SIZE,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "cache_spill",
+ /* ePragTyp: */ PragTyp_CACHE_SPILL,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA)
+ {/* zName: */ "case_sensitive_like",
+ /* ePragTyp: */ PragTyp_CASE_SENSITIVE_LIKE,
+ /* ePragFlg: */ PragFlg_NoColumns,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+ {/* zName: */ "cell_size_check",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_CellSizeCk },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "checkpoint_fullfsync",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_CkptFullFSync },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "collation_list",
+ /* ePragTyp: */ PragTyp_COLLATION_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 38, 2,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS)
+ {/* zName: */ "compile_options",
+ /* ePragTyp: */ PragTyp_COMPILE_OPTIONS,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "count_changes",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_CountRows },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN
+ {/* zName: */ "data_store_directory",
+ /* ePragTyp: */ PragTyp_DATA_STORE_DIRECTORY,
+ /* ePragFlg: */ PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "data_version",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_DATA_VERSION },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "database_list",
+ /* ePragTyp: */ PragTyp_DATABASE_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 47, 3,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
+ {/* zName: */ "default_cache_size",
+ /* ePragTyp: */ PragTyp_DEFAULT_CACHE_SIZE,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 55, 1,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+ {/* zName: */ "defer_foreign_keys",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_DeferFKs },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "empty_result_callbacks",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_NullCallback },
+#endif
+#if !defined(SQLITE_OMIT_UTF16)
+ {/* zName: */ "encoding",
+ /* ePragTyp: */ PragTyp_ENCODING,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+ {/* zName: */ "foreign_key_check",
+ /* ePragTyp: */ PragTyp_FOREIGN_KEY_CHECK,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 43, 4,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FOREIGN_KEY)
+ {/* zName: */ "foreign_key_list",
+ /* ePragTyp: */ PragTyp_FOREIGN_KEY_LIST,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 0, 8,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
+ {/* zName: */ "foreign_keys",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ForeignKeys },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "freelist_count",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_ReadOnly|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_FREE_PAGE_COUNT },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "full_column_names",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_FullColNames },
+ {/* zName: */ "fullfsync",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_FullFSync },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+#if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
+ {/* zName: */ "function_list",
+ /* ePragTyp: */ PragTyp_FUNCTION_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 27, 6,
+ /* iArg: */ 0 },
+#endif
+#endif
+ {/* zName: */ "hard_heap_limit",
+ /* ePragTyp: */ PragTyp_HARD_HEAP_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if !defined(SQLITE_OMIT_CHECK)
+ {/* zName: */ "ignore_check_constraints",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_IgnoreChecks },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+ {/* zName: */ "incremental_vacuum",
+ /* ePragTyp: */ PragTyp_INCREMENTAL_VACUUM,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_NoColumns,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "index_info",
+ /* ePragTyp: */ PragTyp_INDEX_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 21, 3,
+ /* iArg: */ 0 },
+ {/* zName: */ "index_list",
+ /* ePragTyp: */ PragTyp_INDEX_LIST,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 38, 5,
+ /* iArg: */ 0 },
+ {/* zName: */ "index_xinfo",
+ /* ePragTyp: */ PragTyp_INDEX_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 21, 6,
+ /* iArg: */ 1 },
+#endif
+#if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
+ {/* zName: */ "integrity_check",
+ /* ePragTyp: */ PragTyp_INTEGRITY_CHECK,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "journal_mode",
+ /* ePragTyp: */ PragTyp_JOURNAL_MODE,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "journal_size_limit",
+ /* ePragTyp: */ PragTyp_JOURNAL_SIZE_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "legacy_alter_table",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_LegacyAlter },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE
+ {/* zName: */ "lock_proxy_file",
+ /* ePragTyp: */ PragTyp_LOCK_PROXY_FILE,
+ /* ePragFlg: */ PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ {/* zName: */ "lock_status",
+ /* ePragTyp: */ PragTyp_LOCK_STATUS,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 53, 2,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "locking_mode",
+ /* ePragTyp: */ PragTyp_LOCKING_MODE,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "max_page_count",
+ /* ePragTyp: */ PragTyp_PAGE_COUNT,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "mmap_size",
+ /* ePragTyp: */ PragTyp_MMAP_SIZE,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+#if !defined(SQLITE_OMIT_VIRTUALTABLE)
+#if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
+ {/* zName: */ "module_list",
+ /* ePragTyp: */ PragTyp_MODULE_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 9, 1,
+ /* iArg: */ 0 },
+#endif
+#endif
+#endif
+ {/* zName: */ "optimize",
+ /* ePragTyp: */ PragTyp_OPTIMIZE,
+ /* ePragFlg: */ PragFlg_Result1|PragFlg_NeedSchema,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "page_count",
+ /* ePragTyp: */ PragTyp_PAGE_COUNT,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "page_size",
+ /* ePragTyp: */ PragTyp_PAGE_SIZE,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if defined(SQLITE_DEBUG)
+ {/* zName: */ "parser_trace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ParserTrace },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_INTROSPECTION_PRAGMAS)
+ {/* zName: */ "pragma_list",
+ /* ePragTyp: */ PragTyp_PRAGMA_LIST,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 9, 1,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "query_only",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_QueryOnly },
+#endif
+#if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
+ {/* zName: */ "quick_check",
+ /* ePragTyp: */ PragTyp_INTEGRITY_CHECK,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "read_uncommitted",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ReadUncommit },
+ {/* zName: */ "recursive_triggers",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_RecTriggers },
+ {/* zName: */ "reverse_unordered_selects",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ReverseOrder },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "schema_version",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_SCHEMA_VERSION },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "secure_delete",
+ /* ePragTyp: */ PragTyp_SECURE_DELETE,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "short_column_names",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_ShortColNames },
+#endif
+ {/* zName: */ "shrink_memory",
+ /* ePragTyp: */ PragTyp_SHRINK_MEMORY,
+ /* ePragFlg: */ PragFlg_NoColumns,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "soft_heap_limit",
+ /* ePragTyp: */ PragTyp_SOFT_HEAP_LIMIT,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if defined(SQLITE_DEBUG)
+ {/* zName: */ "sql_trace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_SqlTrace },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG)
+ {/* zName: */ "stats",
+ /* ePragTyp: */ PragTyp_STATS,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
+ /* ColNames: */ 33, 5,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "synchronous",
+ /* ePragTyp: */ PragTyp_SYNCHRONOUS,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
+ {/* zName: */ "table_info",
+ /* ePragTyp: */ PragTyp_TABLE_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 8, 6,
+ /* iArg: */ 0 },
+ {/* zName: */ "table_list",
+ /* ePragTyp: */ PragTyp_TABLE_LIST,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1,
+ /* ColNames: */ 15, 6,
+ /* iArg: */ 0 },
+ {/* zName: */ "table_xinfo",
+ /* ePragTyp: */ PragTyp_TABLE_INFO,
+ /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
+ /* ColNames: */ 8, 7,
+ /* iArg: */ 1 },
+#endif
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ {/* zName: */ "temp_store",
+ /* ePragTyp: */ PragTyp_TEMP_STORE,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "temp_store_directory",
+ /* ePragTyp: */ PragTyp_TEMP_STORE_DIRECTORY,
+ /* ePragFlg: */ PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#endif
+ {/* zName: */ "threads",
+ /* ePragTyp: */ PragTyp_THREADS,
+ /* ePragFlg: */ PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "trusted_schema",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_TrustedSchema },
+#endif
+#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
+ {/* zName: */ "user_version",
+ /* ePragTyp: */ PragTyp_HEADER_VALUE,
+ /* ePragFlg: */ PragFlg_NoColumns1|PragFlg_Result0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ BTREE_USER_VERSION },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+#if defined(SQLITE_DEBUG)
+ {/* zName: */ "vdbe_addoptrace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeAddopTrace },
+ {/* zName: */ "vdbe_debug",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_SqlTrace|SQLITE_VdbeListing|SQLITE_VdbeTrace },
+ {/* zName: */ "vdbe_eqp",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeEQP },
+ {/* zName: */ "vdbe_listing",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeListing },
+ {/* zName: */ "vdbe_trace",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_VdbeTrace },
+#endif
+#endif
+#if !defined(SQLITE_OMIT_WAL)
+ {/* zName: */ "wal_autocheckpoint",
+ /* ePragTyp: */ PragTyp_WAL_AUTOCHECKPOINT,
+ /* ePragFlg: */ 0,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ 0 },
+ {/* zName: */ "wal_checkpoint",
+ /* ePragTyp: */ PragTyp_WAL_CHECKPOINT,
+ /* ePragFlg: */ PragFlg_NeedSchema,
+ /* ColNames: */ 50, 3,
+ /* iArg: */ 0 },
+#endif
+#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
+ {/* zName: */ "writable_schema",
+ /* ePragTyp: */ PragTyp_FLAG,
+ /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1,
+ /* ColNames: */ 0, 0,
+ /* iArg: */ SQLITE_WriteSchema|SQLITE_NoSchemaError },
+#endif
+};
+/* Number of pragmas: 68 on by default, 78 total. */
+
+/************** End of pragma.h **********************************************/
+/************** Continuing where we left off in pragma.c *********************/
+
+/*
+** Interpret the given string as a safety level. Return 0 for OFF,
+** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
+** unrecognized string argument. The FULL and EXTRA option is disallowed
+** if the omitFull parameter it 1.
+**
+** Note that the values returned are one less that the values that
+** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
+** to support legacy SQL code. The safety level used to be boolean
+** and older scripts may have used numbers 0 for OFF and 1 for ON.
+*/
+static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
+ /* 123456789 123456789 123 */
+ static const char zText[] = "onoffalseyestruextrafull";
+ static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
+ static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
+ static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
+ /* on no off false yes true extra full */
+ int i, n;
+ if( sqlite3Isdigit(*z) ){
+ return (u8)sqlite3Atoi(z);
+ }
+ n = sqlite3Strlen30(z);
+ for(i=0; i<ArraySize(iLength); i++){
+ if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
+ && (!omitFull || iValue[i]<=1)
+ ){
+ return iValue[i];
+ }
+ }
+ return dflt;
+}
+
+/*
+** Interpret the given string as a boolean value.
+*/
+SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z, u8 dflt){
+ return getSafetyLevel(z,1,dflt)!=0;
+}
+
+/* The sqlite3GetBoolean() function is used by other modules but the
+** remainder of this file is specific to PRAGMA processing. So omit
+** the rest of the file if PRAGMAs are omitted from the build.
+*/
+#if !defined(SQLITE_OMIT_PRAGMA)
+
+/*
+** Interpret the given string as a locking mode value.
+*/
+static int getLockingMode(const char *z){
+ if( z ){
+ if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
+ if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
+ }
+ return PAGER_LOCKINGMODE_QUERY;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Interpret the given string as an auto-vacuum mode value.
+**
+** The following strings, "none", "full" and "incremental" are
+** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
+*/
+static int getAutoVacuum(const char *z){
+ int i;
+ if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
+ if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
+ if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
+ i = sqlite3Atoi(z);
+ return (u8)((i>=0&&i<=2)?i:0);
+}
+#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** Interpret the given string as a temp db location. Return 1 for file
+** backed temporary databases, 2 for the Red-Black tree in memory database
+** and 0 to use the compile-time default.
+*/
+static int getTempStore(const char *z){
+ if( z[0]>='0' && z[0]<='2' ){
+ return z[0] - '0';
+ }else if( sqlite3StrICmp(z, "file")==0 ){
+ return 1;
+ }else if( sqlite3StrICmp(z, "memory")==0 ){
+ return 2;
+ }else{
+ return 0;
+ }
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** Invalidate temp storage, either when the temp storage is changed
+** from default, or when 'file' and the temp_store_directory has changed
+*/
+static int invalidateTempStorage(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ if( db->aDb[1].pBt!=0 ){
+ if( !db->autoCommit
+ || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE
+ ){
+ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
+ "from within a transaction");
+ return SQLITE_ERROR;
+ }
+ sqlite3BtreeClose(db->aDb[1].pBt);
+ db->aDb[1].pBt = 0;
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ return SQLITE_OK;
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** If the TEMP database is open, close it and mark the database schema
+** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
+** or DEFAULT_TEMP_STORE pragmas.
+*/
+static int changeTempStorage(Parse *pParse, const char *zStorageType){
+ int ts = getTempStore(zStorageType);
+ sqlite3 *db = pParse->db;
+ if( db->temp_store==ts ) return SQLITE_OK;
+ if( invalidateTempStorage( pParse ) != SQLITE_OK ){
+ return SQLITE_ERROR;
+ }
+ db->temp_store = (u8)ts;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+/*
+** Set result column names for a pragma.
+*/
+static void setPragmaResultColumnNames(
+ Vdbe *v, /* The query under construction */
+ const PragmaName *pPragma /* The pragma */
+){
+ u8 n = pPragma->nPragCName;
+ sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
+ if( n==0 ){
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
+ }else{
+ int i, j;
+ for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
+ }
+ }
+}
+
+/*
+** Generate code to return a single integer value.
+*/
+static void returnSingleInt(Vdbe *v, i64 value){
+ sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+}
+
+/*
+** Generate code to return a single text value.
+*/
+static void returnSingleText(
+ Vdbe *v, /* Prepared statement under construction */
+ const char *zValue /* Value to be returned */
+){
+ if( zValue ){
+ sqlite3VdbeLoadString(v, 1, (const char*)zValue);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+}
+
+
+/*
+** Set the safety_level and pager flags for pager iDb. Or if iDb<0
+** set these values for all pagers.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+static void setAllPagerFlags(sqlite3 *db){
+ if( db->autoCommit ){
+ Db *pDb = db->aDb;
+ int n = db->nDb;
+ assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
+ assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
+ assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
+ assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
+ == PAGER_FLAGS_MASK );
+ assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
+ while( (n--) > 0 ){
+ if( pDb->pBt ){
+ sqlite3BtreeSetPagerFlags(pDb->pBt,
+ pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
+ }
+ pDb++;
+ }
+ }
+}
+#else
+# define setAllPagerFlags(X) /* no-op */
+#endif
+
+
+/*
+** Return a human-readable name for a constraint resolution action.
+*/
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+static const char *actionName(u8 action){
+ const char *zName;
+ switch( action ){
+ case OE_SetNull: zName = "SET NULL"; break;
+ case OE_SetDflt: zName = "SET DEFAULT"; break;
+ case OE_Cascade: zName = "CASCADE"; break;
+ case OE_Restrict: zName = "RESTRICT"; break;
+ default: zName = "NO ACTION";
+ assert( action==OE_None ); break;
+ }
+ return zName;
+}
+#endif
+
+
+/*
+** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
+** defined in pager.h. This function returns the associated lowercase
+** journal-mode name.
+*/
+SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){
+ static char * const azModeName[] = {
+ "delete", "persist", "off", "truncate", "memory"
+#ifndef SQLITE_OMIT_WAL
+ , "wal"
+#endif
+ };
+ assert( PAGER_JOURNALMODE_DELETE==0 );
+ assert( PAGER_JOURNALMODE_PERSIST==1 );
+ assert( PAGER_JOURNALMODE_OFF==2 );
+ assert( PAGER_JOURNALMODE_TRUNCATE==3 );
+ assert( PAGER_JOURNALMODE_MEMORY==4 );
+ assert( PAGER_JOURNALMODE_WAL==5 );
+ assert( eMode>=0 && eMode<=ArraySize(azModeName) );
+
+ if( eMode==ArraySize(azModeName) ) return 0;
+ return azModeName[eMode];
+}
+
+/*
+** Locate a pragma in the aPragmaName[] array.
+*/
+static const PragmaName *pragmaLocate(const char *zName){
+ int upr, lwr, mid = 0, rc;
+ lwr = 0;
+ upr = ArraySize(aPragmaName)-1;
+ while( lwr<=upr ){
+ mid = (lwr+upr)/2;
+ rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
+ if( rc==0 ) break;
+ if( rc<0 ){
+ upr = mid - 1;
+ }else{
+ lwr = mid + 1;
+ }
+ }
+ return lwr>upr ? 0 : &aPragmaName[mid];
+}
+
+/*
+** Create zero or more entries in the output for the SQL functions
+** defined by FuncDef p.
+*/
+static void pragmaFunclistLine(
+ Vdbe *v, /* The prepared statement being created */
+ FuncDef *p, /* A particular function definition */
+ int isBuiltin, /* True if this is a built-in function */
+ int showInternFuncs /* True if showing internal functions */
+){
+ u32 mask =
+ SQLITE_DETERMINISTIC |
+ SQLITE_DIRECTONLY |
+ SQLITE_SUBTYPE |
+ SQLITE_INNOCUOUS |
+ SQLITE_FUNC_INTERNAL
+ ;
+ if( showInternFuncs ) mask = 0xffffffff;
+ for(; p; p=p->pNext){
+ const char *zType;
+ static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
+
+ assert( SQLITE_FUNC_ENCMASK==0x3 );
+ assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
+ assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
+ assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
+
+ if( p->xSFunc==0 ) continue;
+ if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
+ && showInternFuncs==0
+ ){
+ continue;
+ }
+ if( p->xValue!=0 ){
+ zType = "w";
+ }else if( p->xFinalize!=0 ){
+ zType = "a";
+ }else{
+ zType = "s";
+ }
+ sqlite3VdbeMultiLoad(v, 1, "sissii",
+ p->zName, isBuiltin,
+ zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
+ p->nArg,
+ (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
+ );
+ }
+}
+
+
+/*
+** Helper subroutine for PRAGMA integrity_check:
+**
+** Generate code to output a single-column result row with a value of the
+** string held in register 3. Decrement the result count in register 1
+** and halt if the maximum number of result rows have been issued.
+*/
+static int integrityCheckResultRow(Vdbe *v){
+ int addr;
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
+ addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp0(v, OP_Halt);
+ return addr;
+}
+
+/*
+** Process a pragma statement.
+**
+** Pragmas are of this form:
+**
+** PRAGMA [schema.]id [= value]
+**
+** The identifier might also be a string. The value is a string, and
+** identifier, or a number. If minusFlag is true, then the value is
+** a number that was preceded by a minus sign.
+**
+** If the left side is "database.id" then pId1 is the database name
+** and pId2 is the id. If the left side is just "id" then pId1 is the
+** id and pId2 is any empty string.
+*/
+SQLITE_PRIVATE void sqlite3Pragma(
+ Parse *pParse,
+ Token *pId1, /* First part of [schema.]id field */
+ Token *pId2, /* Second part of [schema.]id field, or NULL */
+ Token *pValue, /* Token for <value>, or NULL */
+ int minusFlag /* True if a '-' sign preceded <value> */
+){
+ char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
+ char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
+ const char *zDb = 0; /* The database name */
+ Token *pId; /* Pointer to <id> token */
+ char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
+ int iDb; /* Database index for <database> */
+ int rc; /* return value form SQLITE_FCNTL_PRAGMA */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Db *pDb; /* The specific database being pragmaed */
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
+ const PragmaName *pPragma; /* The pragma */
+
+ if( v==0 ) return;
+ sqlite3VdbeRunOnlyOnce(v);
+ pParse->nMem = 2;
+
+ /* Interpret the [schema.] part of the pragma statement. iDb is the
+ ** index of the database this pragma is being applied to in db.aDb[]. */
+ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
+ if( iDb<0 ) return;
+ pDb = &db->aDb[iDb];
+
+ /* If the temp database has been explicitly named as part of the
+ ** pragma, make sure it is open.
+ */
+ if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
+ return;
+ }
+
+ zLeft = sqlite3NameFromToken(db, pId);
+ if( !zLeft ) return;
+ if( minusFlag ){
+ zRight = sqlite3MPrintf(db, "-%T", pValue);
+ }else{
+ zRight = sqlite3NameFromToken(db, pValue);
+ }
+
+ assert( pId2 );
+ zDb = pId2->n>0 ? pDb->zDbSName : 0;
+ if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
+ goto pragma_out;
+ }
+
+ /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
+ ** connection. If it returns SQLITE_OK, then assume that the VFS
+ ** handled the pragma and generate a no-op prepared statement.
+ **
+ ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
+ ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
+ ** object corresponding to the database file to which the pragma
+ ** statement refers.
+ **
+ ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
+ ** file control is an array of pointers to strings (char**) in which the
+ ** second element of the array is the name of the pragma and the third
+ ** element is the argument to the pragma or NULL if the pragma has no
+ ** argument.
+ */
+ aFcntl[0] = 0;
+ aFcntl[1] = zLeft;
+ aFcntl[2] = zRight;
+ aFcntl[3] = 0;
+ db->busyHandler.nBusy = 0;
+ rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
+ returnSingleText(v, aFcntl[0]);
+ sqlite3_free(aFcntl[0]);
+ goto pragma_out;
+ }
+ if( rc!=SQLITE_NOTFOUND ){
+ if( aFcntl[0] ){
+ sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
+ sqlite3_free(aFcntl[0]);
+ }
+ pParse->nErr++;
+ pParse->rc = rc;
+ goto pragma_out;
+ }
+
+ /* Locate the pragma in the lookup table */
+ pPragma = pragmaLocate(zLeft);
+ if( pPragma==0 ){
+ /* IMP: R-43042-22504 No error messages are generated if an
+ ** unknown pragma is issued. */
+ goto pragma_out;
+ }
+
+ /* Make sure the database schema is loaded if the pragma requires that */
+ if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ }
+
+ /* Register the result column names for pragmas that return results */
+ if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
+ && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
+ ){
+ setPragmaResultColumnNames(v, pPragma);
+ }
+
+ /* Jump to the appropriate pragma handler */
+ switch( pPragma->ePragTyp ){
+
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
+ /*
+ ** PRAGMA [schema.]default_cache_size
+ ** PRAGMA [schema.]default_cache_size=N
+ **
+ ** The first form reports the current persistent setting for the
+ ** page cache size. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets both the current
+ ** page cache size value and the persistent page cache size value
+ ** stored in the database file.
+ **
+ ** Older versions of SQLite would set the default cache size to a
+ ** negative number to indicate synchronous=OFF. These days, synchronous
+ ** is always on by default regardless of the sign of the default cache
+ ** size. But continue to take the absolute value of the default cache
+ ** size of historical compatibility.
+ */
+ case PragTyp_DEFAULT_CACHE_SIZE: {
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList getCacheSize[] = {
+ { OP_Transaction, 0, 0, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
+ { OP_IfPos, 1, 8, 0},
+ { OP_Integer, 0, 2, 0},
+ { OP_Subtract, 1, 2, 1},
+ { OP_IfPos, 1, 8, 0},
+ { OP_Integer, 0, 1, 0}, /* 6 */
+ { OP_Noop, 0, 0, 0},
+ { OP_ResultRow, 1, 1, 0},
+ };
+ VdbeOp *aOp;
+ sqlite3VdbeUsesBtree(v, iDb);
+ if( !zRight ){
+ pParse->nMem += 2;
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
+ }else{
+ int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+ break;
+ }
+#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
+
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
+ /*
+ ** PRAGMA [schema.]page_size
+ ** PRAGMA [schema.]page_size=N
+ **
+ ** The first form reports the current setting for the
+ ** database page size in bytes. The second form sets the
+ ** database page size value. The value can only be set if
+ ** the database has not yet been created.
+ */
+ case PragTyp_PAGE_SIZE: {
+ Btree *pBt = pDb->pBt;
+ assert( pBt!=0 );
+ if( !zRight ){
+ int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
+ returnSingleInt(v, size);
+ }else{
+ /* Malloc may fail when setting the page-size, as there is an internal
+ ** buffer that the pager module resizes using sqlite3_realloc().
+ */
+ db->nextPagesize = sqlite3Atoi(zRight);
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
+ sqlite3OomFault(db);
+ }
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]secure_delete
+ ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
+ **
+ ** The first form reports the current setting for the
+ ** secure_delete flag. The second form changes the secure_delete
+ ** flag setting and reports the new value.
+ */
+ case PragTyp_SECURE_DELETE: {
+ Btree *pBt = pDb->pBt;
+ int b = -1;
+ assert( pBt!=0 );
+ if( zRight ){
+ if( sqlite3_stricmp(zRight, "fast")==0 ){
+ b = 2;
+ }else{
+ b = sqlite3GetBoolean(zRight, 0);
+ }
+ }
+ if( pId2->n==0 && b>=0 ){
+ int ii;
+ for(ii=0; ii<db->nDb; ii++){
+ sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
+ }
+ }
+ b = sqlite3BtreeSecureDelete(pBt, b);
+ returnSingleInt(v, b);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]max_page_count
+ ** PRAGMA [schema.]max_page_count=N
+ **
+ ** The first form reports the current setting for the
+ ** maximum number of pages in the database file. The
+ ** second form attempts to change this setting. Both
+ ** forms return the current setting.
+ **
+ ** The absolute value of N is used. This is undocumented and might
+ ** change. The only purpose is to provide an easy way to test
+ ** the sqlite3AbsInt32() function.
+ **
+ ** PRAGMA [schema.]page_count
+ **
+ ** Return the number of pages in the specified database.
+ */
+ case PragTyp_PAGE_COUNT: {
+ int iReg;
+ i64 x = 0;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ iReg = ++pParse->nMem;
+ if( sqlite3Tolower(zLeft[0])=='p' ){
+ sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
+ }else{
+ if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
+ if( x<0 ) x = 0;
+ else if( x>0xfffffffe ) x = 0xfffffffe;
+ }else{
+ x = 0;
+ }
+ sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]locking_mode
+ ** PRAGMA [schema.]locking_mode = (normal|exclusive)
+ */
+ case PragTyp_LOCKING_MODE: {
+ const char *zRet = "normal";
+ int eMode = getLockingMode(zRight);
+
+ if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
+ /* Simple "PRAGMA locking_mode;" statement. This is a query for
+ ** the current default locking mode (which may be different to
+ ** the locking-mode of the main database).
+ */
+ eMode = db->dfltLockMode;
+ }else{
+ Pager *pPager;
+ if( pId2->n==0 ){
+ /* This indicates that no database name was specified as part
+ ** of the PRAGMA command. In this case the locking-mode must be
+ ** set on all attached databases, as well as the main db file.
+ **
+ ** Also, the sqlite3.dfltLockMode variable is set so that
+ ** any subsequently attached databases also use the specified
+ ** locking mode.
+ */
+ int ii;
+ assert(pDb==&db->aDb[0]);
+ for(ii=2; ii<db->nDb; ii++){
+ pPager = sqlite3BtreePager(db->aDb[ii].pBt);
+ sqlite3PagerLockingMode(pPager, eMode);
+ }
+ db->dfltLockMode = (u8)eMode;
+ }
+ pPager = sqlite3BtreePager(pDb->pBt);
+ eMode = sqlite3PagerLockingMode(pPager, eMode);
+ }
+
+ assert( eMode==PAGER_LOCKINGMODE_NORMAL
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
+ if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
+ zRet = "exclusive";
+ }
+ returnSingleText(v, zRet);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]journal_mode
+ ** PRAGMA [schema.]journal_mode =
+ ** (delete|persist|off|truncate|memory|wal|off)
+ */
+ case PragTyp_JOURNAL_MODE: {
+ int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
+ int ii; /* Loop counter */
+
+ if( zRight==0 ){
+ /* If there is no "=MODE" part of the pragma, do a query for the
+ ** current mode */
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }else{
+ const char *zMode;
+ int n = sqlite3Strlen30(zRight);
+ for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
+ if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
+ }
+ if( !zMode ){
+ /* If the "=MODE" part does not match any known journal mode,
+ ** then do a query */
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }
+ if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
+ /* Do not allow journal-mode "OFF" in defensive since the database
+ ** can become corrupted using ordinary SQL when the journal is off */
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }
+ }
+ if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
+ /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
+ iDb = 0;
+ pId2->n = 1;
+ }
+ for(ii=db->nDb-1; ii>=0; ii--){
+ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
+ sqlite3VdbeUsesBtree(v, ii);
+ sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]journal_size_limit
+ ** PRAGMA [schema.]journal_size_limit=N
+ **
+ ** Get or set the size limit on rollback journal files.
+ */
+ case PragTyp_JOURNAL_SIZE_LIMIT: {
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ i64 iLimit = -2;
+ if( zRight ){
+ sqlite3DecOrHexToI64(zRight, &iLimit);
+ if( iLimit<-1 ) iLimit = -1;
+ }
+ iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
+ returnSingleInt(v, iLimit);
+ break;
+ }
+
+#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
+
+ /*
+ ** PRAGMA [schema.]auto_vacuum
+ ** PRAGMA [schema.]auto_vacuum=N
+ **
+ ** Get or set the value of the database 'auto-vacuum' parameter.
+ ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ case PragTyp_AUTO_VACUUM: {
+ Btree *pBt = pDb->pBt;
+ assert( pBt!=0 );
+ if( !zRight ){
+ returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
+ }else{
+ int eAuto = getAutoVacuum(zRight);
+ assert( eAuto>=0 && eAuto<=2 );
+ db->nextAutovac = (u8)eAuto;
+ /* Call SetAutoVacuum() to set initialize the internal auto and
+ ** incr-vacuum flags. This is required in case this connection
+ ** creates the database file. It is important that it is created
+ ** as an auto-vacuum capable db.
+ */
+ rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
+ if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
+ /* When setting the auto_vacuum mode to either "full" or
+ ** "incremental", write the value of meta[6] in the database
+ ** file. Before writing to meta[6], check that meta[3] indicates
+ ** that this really is an auto-vacuum capable database.
+ */
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList setMeta6[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
+ { OP_If, 1, 0, 0}, /* 2 */
+ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
+ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
+ };
+ VdbeOp *aOp;
+ int iAddr = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[2].p2 = iAddr+4;
+ aOp[4].p1 = iDb;
+ aOp[4].p3 = eAuto - 1;
+ sqlite3VdbeUsesBtree(v, iDb);
+ }
+ }
+ break;
+ }
+#endif
+
+ /*
+ ** PRAGMA [schema.]incremental_vacuum(N)
+ **
+ ** Do N steps of incremental vacuuming on a database.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ case PragTyp_INCREMENTAL_VACUUM: {
+ int iLimit = 0, addr;
+ if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
+ iLimit = 0x7fffffff;
+ }
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
+ addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
+ sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
+ sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr);
+ break;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ /*
+ ** PRAGMA [schema.]cache_size
+ ** PRAGMA [schema.]cache_size=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache size. The second form sets the local
+ ** page cache size value. If N is positive then that is the
+ ** number of pages in the cache. If N is negative, then the
+ ** number of pages is adjusted so that the cache uses -N kibibytes
+ ** of memory.
+ */
+ case PragTyp_CACHE_SIZE: {
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( !zRight ){
+ returnSingleInt(v, pDb->pSchema->cache_size);
+ }else{
+ int size = sqlite3Atoi(zRight);
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]cache_spill
+ ** PRAGMA cache_spill=BOOLEAN
+ ** PRAGMA [schema.]cache_spill=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache spill size. The second form turns cache spill on
+ ** or off. When turning cache spill on, the size is set to the
+ ** current cache_size. The third form sets a spill size that
+ ** may be different form the cache size.
+ ** If N is positive then that is the
+ ** number of pages in the cache. If N is negative, then the
+ ** number of pages is adjusted so that the cache uses -N kibibytes
+ ** of memory.
+ **
+ ** If the number of cache_spill pages is less then the number of
+ ** cache_size pages, no spilling occurs until the page count exceeds
+ ** the number of cache_size pages.
+ **
+ ** The cache_spill=BOOLEAN setting applies to all attached schemas,
+ ** not just the schema specified.
+ */
+ case PragTyp_CACHE_SPILL: {
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( !zRight ){
+ returnSingleInt(v,
+ (db->flags & SQLITE_CacheSpill)==0 ? 0 :
+ sqlite3BtreeSetSpillSize(pDb->pBt,0));
+ }else{
+ int size = 1;
+ if( sqlite3GetInt32(zRight, &size) ){
+ sqlite3BtreeSetSpillSize(pDb->pBt, size);
+ }
+ if( sqlite3GetBoolean(zRight, size!=0) ){
+ db->flags |= SQLITE_CacheSpill;
+ }else{
+ db->flags &= ~(u64)SQLITE_CacheSpill;
+ }
+ setAllPagerFlags(db);
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA [schema.]mmap_size(N)
+ **
+ ** Used to set mapping size limit. The mapping size limit is
+ ** used to limit the aggregate size of all memory mapped regions of the
+ ** database file. If this parameter is set to zero, then memory mapping
+ ** is not used at all. If N is negative, then the default memory map
+ ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
+ ** The parameter N is measured in bytes.
+ **
+ ** This value is advisory. The underlying VFS is free to memory map
+ ** as little or as much as it wants. Except, if N is set to 0 then the
+ ** upper layers will never invoke the xFetch interfaces to the VFS.
+ */
+ case PragTyp_MMAP_SIZE: {
+ sqlite3_int64 sz;
+#if SQLITE_MAX_MMAP_SIZE>0
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( zRight ){
+ int ii;
+ sqlite3DecOrHexToI64(zRight, &sz);
+ if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
+ if( pId2->n==0 ) db->szMmap = sz;
+ for(ii=db->nDb-1; ii>=0; ii--){
+ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
+ sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
+ }
+ }
+ }
+ sz = -1;
+ rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
+#else
+ sz = 0;
+ rc = SQLITE_OK;
+#endif
+ if( rc==SQLITE_OK ){
+ returnSingleInt(v, sz);
+ }else if( rc!=SQLITE_NOTFOUND ){
+ pParse->nErr++;
+ pParse->rc = rc;
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA temp_store
+ ** PRAGMA temp_store = "default"|"memory"|"file"
+ **
+ ** Return or set the local value of the temp_store flag. Changing
+ ** the local value does not make changes to the disk file and the default
+ ** value will be restored the next time the database is opened.
+ **
+ ** Note that it is possible for the library compile-time options to
+ ** override this setting
+ */
+ case PragTyp_TEMP_STORE: {
+ if( !zRight ){
+ returnSingleInt(v, db->temp_store);
+ }else{
+ changeTempStorage(pParse, zRight);
+ }
+ break;
+ }
+
+ /*
+ ** PRAGMA temp_store_directory
+ ** PRAGMA temp_store_directory = ""|"directory_name"
+ **
+ ** Return or set the local value of the temp_store_directory flag. Changing
+ ** the value sets a specific directory to be used for temporary files.
+ ** Setting to a null string reverts to the default temporary directory search.
+ ** If temporary directory is changed, then invalidateTempStorage.
+ **
+ */
+ case PragTyp_TEMP_STORE_DIRECTORY: {
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( !zRight ){
+ returnSingleText(v, sqlite3_temp_directory);
+ }else{
+#ifndef SQLITE_OMIT_WSD
+ if( zRight[0] ){
+ int res;
+ rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
+ if( rc!=SQLITE_OK || res==0 ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ goto pragma_out;
+ }
+ }
+ if( SQLITE_TEMP_STORE==0
+ || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
+ || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
+ ){
+ invalidateTempStorage(pParse);
+ }
+ sqlite3_free(sqlite3_temp_directory);
+ if( zRight[0] ){
+ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
+ }else{
+ sqlite3_temp_directory = 0;
+ }
+#endif /* SQLITE_OMIT_WSD */
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ break;
+ }
+
+#if SQLITE_OS_WIN
+ /*
+ ** PRAGMA data_store_directory
+ ** PRAGMA data_store_directory = ""|"directory_name"
+ **
+ ** Return or set the local value of the data_store_directory flag. Changing
+ ** the value sets a specific directory to be used for database files that
+ ** were specified with a relative pathname. Setting to a null string reverts
+ ** to the default database directory, which for database files specified with
+ ** a relative path will probably be based on the current directory for the
+ ** process. Database file specified with an absolute path are not impacted
+ ** by this setting, regardless of its value.
+ **
+ */
+ case PragTyp_DATA_STORE_DIRECTORY: {
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ if( !zRight ){
+ returnSingleText(v, sqlite3_data_directory);
+ }else{
+#ifndef SQLITE_OMIT_WSD
+ if( zRight[0] ){
+ int res;
+ rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
+ if( rc!=SQLITE_OK || res==0 ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ goto pragma_out;
+ }
+ }
+ sqlite3_free(sqlite3_data_directory);
+ if( zRight[0] ){
+ sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
+ }else{
+ sqlite3_data_directory = 0;
+ }
+#endif /* SQLITE_OMIT_WSD */
+ }
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
+ break;
+ }
+#endif
+
+#if SQLITE_ENABLE_LOCKING_STYLE
+ /*
+ ** PRAGMA [schema.]lock_proxy_file
+ ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
+ **
+ ** Return or set the value of the lock_proxy_file flag. Changing
+ ** the value sets a specific file to be used for database access locks.
+ **
+ */
+ case PragTyp_LOCK_PROXY_FILE: {
+ if( !zRight ){
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ char *proxy_file_path = NULL;
+ sqlite3_file *pFile = sqlite3PagerFile(pPager);
+ sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
+ &proxy_file_path);
+ returnSingleText(v, proxy_file_path);
+ }else{
+ Pager *pPager = sqlite3BtreePager(pDb->pBt);
+ sqlite3_file *pFile = sqlite3PagerFile(pPager);
+ int res;
+ if( zRight[0] ){
+ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
+ zRight);
+ } else {
+ res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
+ NULL);
+ }
+ if( res!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
+ goto pragma_out;
+ }
+ }
+ break;
+ }
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+ /*
+ ** PRAGMA [schema.]synchronous
+ ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
+ **
+ ** Return or set the local value of the synchronous flag. Changing
+ ** the local value does not make changes to the disk file and the
+ ** default value will be restored the next time the database is
+ ** opened.
+ */
+ case PragTyp_SYNCHRONOUS: {
+ if( !zRight ){
+ returnSingleInt(v, pDb->safety_level-1);
+ }else{
+ if( !db->autoCommit ){
+ sqlite3ErrorMsg(pParse,
+ "Safety level may not be changed inside a transaction");
+ }else if( iDb!=1 ){
+ int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
+ if( iLevel==0 ) iLevel = 1;
+ pDb->safety_level = iLevel;
+ pDb->bSyncSet = 1;
+ setAllPagerFlags(db);
+ }
+ }
+ break;
+ }
+#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_FLAG_PRAGMAS
+ case PragTyp_FLAG: {
+ if( zRight==0 ){
+ setPragmaResultColumnNames(v, pPragma);
+ returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
+ }else{
+ u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
+ if( db->autoCommit==0 ){
+ /* Foreign key support may not be enabled or disabled while not
+ ** in auto-commit mode. */
+ mask &= ~(SQLITE_ForeignKeys);
+ }
+#if SQLITE_USER_AUTHENTICATION
+ if( db->auth.authLevel==UAUTH_User ){
+ /* Do not allow non-admin users to modify the schema arbitrarily */
+ mask &= ~(SQLITE_WriteSchema);
+ }
+#endif
+
+ if( sqlite3GetBoolean(zRight, 0) ){
+ if( (mask & SQLITE_WriteSchema)==0
+ || (db->flags & SQLITE_Defensive)==0
+ ){
+ db->flags |= mask;
+ }
+ }else{
+ db->flags &= ~mask;
+ if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
+ if( (mask & SQLITE_WriteSchema)!=0
+ && sqlite3_stricmp(zRight, "reset")==0
+ ){
+ /* IMP: R-60817-01178 If the argument is "RESET" then schema
+ ** writing is disabled (as with "PRAGMA writable_schema=OFF") and,
+ ** in addition, the schema is reloaded. */
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ }
+
+ /* Many of the flag-pragmas modify the code generated by the SQL
+ ** compiler (eg. count_changes). So add an opcode to expire all
+ ** compiled SQL statements after modifying a pragma value.
+ */
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ setAllPagerFlags(db);
+ }
+ break;
+ }
+#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
+
+#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
+ /*
+ ** PRAGMA table_info(<table>)
+ **
+ ** Return a single row for each column of the named table. The columns of
+ ** the returned data set are:
+ **
+ ** cid: Column id (numbered from left to right, starting at 0)
+ ** name: Column name
+ ** type: Column declaration type.
+ ** notnull: True if 'NOT NULL' is part of column declaration
+ ** dflt_value: The default value for the column, if any.
+ ** pk: Non-zero for PK fields.
+ */
+ case PragTyp_TABLE_INFO: if( zRight ){
+ Table *pTab;
+ sqlite3CodeVerifyNamedSchema(pParse, zDb);
+ pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
+ if( pTab ){
+ int i, k;
+ int nHidden = 0;
+ Column *pCol;
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ pParse->nMem = 7;
+ sqlite3ViewGetColumnNames(pParse, pTab);
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
+ int isHidden = 0;
+ const Expr *pColExpr;
+ if( pCol->colFlags & COLFLAG_NOINSERT ){
+ if( pPragma->iArg==0 ){
+ nHidden++;
+ continue;
+ }
+ if( pCol->colFlags & COLFLAG_VIRTUAL ){
+ isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
+ }else if( pCol->colFlags & COLFLAG_STORED ){
+ isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
+ }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
+ isHidden = 1; /* HIDDEN */
+ }
+ }
+ if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
+ k = 0;
+ }else if( pPk==0 ){
+ k = 1;
+ }else{
+ for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
+ }
+ pColExpr = sqlite3ColumnExpr(pTab,pCol);
+ assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 );
+ assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue)
+ || isHidden>=2 );
+ sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
+ i-nHidden,
+ pCol->zCnName,
+ sqlite3ColumnType(pCol,""),
+ pCol->notNull ? 1 : 0,
+ (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken,
+ k,
+ isHidden);
+ }
+ }
+ }
+ break;
+
+ /*
+ ** PRAGMA table_list
+ **
+ ** Return a single row for each table, virtual table, or view in the
+ ** entire schema.
+ **
+ ** schema: Name of attached database hold this table
+ ** name: Name of the table itself
+ ** type: "table", "view", "virtual", "shadow"
+ ** ncol: Number of columns
+ ** wr: True for a WITHOUT ROWID table
+ ** strict: True for a STRICT table
+ */
+ case PragTyp_TABLE_LIST: {
+ int ii;
+ pParse->nMem = 6;
+ sqlite3CodeVerifyNamedSchema(pParse, zDb);
+ for(ii=0; ii<db->nDb; ii++){
+ HashElem *k;
+ Hash *pHash;
+ int initNCol;
+ if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue;
+
+ /* Ensure that the Table.nCol field is initialized for all views
+ ** and virtual tables. Each time we initialize a Table.nCol value
+ ** for a table, that can potentially disrupt the hash table, so restart
+ ** the initialization scan.
+ */
+ pHash = &db->aDb[ii].pSchema->tblHash;
+ initNCol = sqliteHashCount(pHash);
+ while( initNCol-- ){
+ for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){
+ Table *pTab;
+ if( k==0 ){ initNCol = 0; break; }
+ pTab = sqliteHashData(k);
+ if( pTab->nCol==0 ){
+ char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName);
+ if( zSql ){
+ sqlite3_stmt *pDummy = 0;
+ (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0);
+ (void)sqlite3_finalize(pDummy);
+ sqlite3DbFree(db, zSql);
+ }
+ if( db->mallocFailed ){
+ sqlite3ErrorMsg(db->pParse, "out of memory");
+ db->pParse->rc = SQLITE_NOMEM_BKPT;
+ }
+ pHash = &db->aDb[ii].pSchema->tblHash;
+ break;
+ }
+ }
+ }
+
+ for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){
+ Table *pTab = sqliteHashData(k);
+ const char *zType;
+ if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue;
+ if( IsView(pTab) ){
+ zType = "view";
+ }else if( IsVirtual(pTab) ){
+ zType = "virtual";
+ }else if( pTab->tabFlags & TF_Shadow ){
+ zType = "shadow";
+ }else{
+ zType = "table";
+ }
+ sqlite3VdbeMultiLoad(v, 1, "sssiii",
+ db->aDb[ii].zDbSName,
+ sqlite3PreferredTableName(pTab->zName),
+ zType,
+ pTab->nCol,
+ (pTab->tabFlags & TF_WithoutRowid)!=0,
+ (pTab->tabFlags & TF_Strict)!=0
+ );
+ }
+ }
+ }
+ break;
+
+#ifdef SQLITE_DEBUG
+ case PragTyp_STATS: {
+ Index *pIdx;
+ HashElem *i;
+ pParse->nMem = 5;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ sqlite3VdbeMultiLoad(v, 1, "ssiii",
+ sqlite3PreferredTableName(pTab->zName),
+ 0,
+ pTab->szTabRow,
+ pTab->nRowLogEst,
+ pTab->tabFlags);
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3VdbeMultiLoad(v, 2, "siiiX",
+ pIdx->zName,
+ pIdx->szIdxRow,
+ pIdx->aiRowLogEst[0],
+ pIdx->hasStat1);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
+ }
+ }
+ }
+ break;
+#endif
+
+ case PragTyp_INDEX_INFO: if( zRight ){
+ Index *pIdx;
+ Table *pTab;
+ pIdx = sqlite3FindIndex(db, zRight, zDb);
+ if( pIdx==0 ){
+ /* If there is no index named zRight, check to see if there is a
+ ** WITHOUT ROWID table named zRight, and if there is, show the
+ ** structure of the PRIMARY KEY index for that table. */
+ pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
+ if( pTab && !HasRowid(pTab) ){
+ pIdx = sqlite3PrimaryKeyIndex(pTab);
+ }
+ }
+ if( pIdx ){
+ int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
+ int i;
+ int mx;
+ if( pPragma->iArg ){
+ /* PRAGMA index_xinfo (newer version with more rows and columns) */
+ mx = pIdx->nColumn;
+ pParse->nMem = 6;
+ }else{
+ /* PRAGMA index_info (legacy version) */
+ mx = pIdx->nKeyCol;
+ pParse->nMem = 3;
+ }
+ pTab = pIdx->pTable;
+ sqlite3CodeVerifySchema(pParse, iIdxDb);
+ assert( pParse->nMem<=pPragma->nPragCName );
+ for(i=0; i<mx; i++){
+ i16 cnum = pIdx->aiColumn[i];
+ sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
+ cnum<0 ? 0 : pTab->aCol[cnum].zCnName);
+ if( pPragma->iArg ){
+ sqlite3VdbeMultiLoad(v, 4, "isiX",
+ pIdx->aSortOrder[i],
+ pIdx->azColl[i],
+ i<pIdx->nKeyCol);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
+ }
+ }
+ }
+ break;
+
+ case PragTyp_INDEX_LIST: if( zRight ){
+ Index *pIdx;
+ Table *pTab;
+ int i;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab ){
+ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pParse->nMem = 5;
+ sqlite3CodeVerifySchema(pParse, iTabDb);
+ for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
+ const char *azOrigin[] = { "c", "u", "pk" };
+ sqlite3VdbeMultiLoad(v, 1, "isisi",
+ i,
+ pIdx->zName,
+ IsUniqueIndex(pIdx),
+ azOrigin[pIdx->idxType],
+ pIdx->pPartIdxWhere!=0);
+ }
+ }
+ }
+ break;
+
+ case PragTyp_DATABASE_LIST: {
+ int i;
+ pParse->nMem = 3;
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt==0 ) continue;
+ assert( db->aDb[i].zDbSName!=0 );
+ sqlite3VdbeMultiLoad(v, 1, "iss",
+ i,
+ db->aDb[i].zDbSName,
+ sqlite3BtreeGetFilename(db->aDb[i].pBt));
+ }
+ }
+ break;
+
+ case PragTyp_COLLATION_LIST: {
+ int i = 0;
+ HashElem *p;
+ pParse->nMem = 2;
+ for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
+ CollSeq *pColl = (CollSeq *)sqliteHashData(p);
+ sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
+ }
+ }
+ break;
+
+#ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
+ case PragTyp_FUNCTION_LIST: {
+ int i;
+ HashElem *j;
+ FuncDef *p;
+ int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
+ pParse->nMem = 6;
+ for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
+ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ pragmaFunclistLine(v, p, 1, showInternFunc);
+ }
+ }
+ for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
+ p = (FuncDef*)sqliteHashData(j);
+ assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
+ pragmaFunclistLine(v, p, 0, showInternFunc);
+ }
+ }
+ break;
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case PragTyp_MODULE_LIST: {
+ HashElem *j;
+ pParse->nMem = 1;
+ for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
+ Module *pMod = (Module*)sqliteHashData(j);
+ sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ case PragTyp_PRAGMA_LIST: {
+ int i;
+ for(i=0; i<ArraySize(aPragmaName); i++){
+ sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
+ }
+ }
+ break;
+#endif /* SQLITE_INTROSPECTION_PRAGMAS */
+
+#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
+ FKey *pFK;
+ Table *pTab;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab && IsOrdinaryTable(pTab) ){
+ pFK = pTab->u.tab.pFKey;
+ if( pFK ){
+ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ int i = 0;
+ pParse->nMem = 8;
+ sqlite3CodeVerifySchema(pParse, iTabDb);
+ while(pFK){
+ int j;
+ for(j=0; j<pFK->nCol; j++){
+ sqlite3VdbeMultiLoad(v, 1, "iissssss",
+ i,
+ j,
+ pFK->zTo,
+ pTab->aCol[pFK->aCol[j].iFrom].zCnName,
+ pFK->aCol[j].zCol,
+ actionName(pFK->aAction[1]), /* ON UPDATE */
+ actionName(pFK->aAction[0]), /* ON DELETE */
+ "NONE");
+ }
+ ++i;
+ pFK = pFK->pNextFrom;
+ }
+ }
+ }
+ }
+ break;
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+#ifndef SQLITE_OMIT_TRIGGER
+ case PragTyp_FOREIGN_KEY_CHECK: {
+ FKey *pFK; /* A foreign key constraint */
+ Table *pTab; /* Child table contain "REFERENCES" keyword */
+ Table *pParent; /* Parent table that child points to */
+ Index *pIdx; /* Index in the parent table */
+ int i; /* Loop counter: Foreign key number for pTab */
+ int j; /* Loop counter: Field of the foreign key */
+ HashElem *k; /* Loop counter: Next table in schema */
+ int x; /* result variable */
+ int regResult; /* 3 registers to hold a result row */
+ int regRow; /* Registers to hold a row from pTab */
+ int addrTop; /* Top of a loop checking foreign keys */
+ int addrOk; /* Jump here if the key is OK */
+ int *aiCols; /* child to parent column mapping */
+
+ regResult = pParse->nMem+1;
+ pParse->nMem += 4;
+ regRow = ++pParse->nMem;
+ k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
+ while( k ){
+ if( zRight ){
+ pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
+ k = 0;
+ }else{
+ pTab = (Table*)sqliteHashData(k);
+ k = sqliteHashNext(k);
+ }
+ if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zDb = db->aDb[iDb].zDbSName;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ sqlite3TouchRegister(pParse, pTab->nCol+regRow);
+ sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, regResult, pTab->zName);
+ assert( IsOrdinaryTable(pTab) );
+ for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
+ pParent = sqlite3FindTable(db, pFK->zTo, zDb);
+ if( pParent==0 ) continue;
+ pIdx = 0;
+ sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
+ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
+ if( x==0 ){
+ if( pIdx==0 ){
+ sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ }
+ }else{
+ k = 0;
+ break;
+ }
+ }
+ assert( pParse->nErr>0 || pFK==0 );
+ if( pFK ) break;
+ if( pParse->nTab<i ) pParse->nTab = i;
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
+ assert( IsOrdinaryTable(pTab) );
+ for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
+ pParent = sqlite3FindTable(db, pFK->zTo, zDb);
+ pIdx = 0;
+ aiCols = 0;
+ if( pParent ){
+ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
+ assert( x==0 || db->mallocFailed );
+ }
+ addrOk = sqlite3VdbeMakeLabel(pParse);
+
+ /* Generate code to read the child key values into registers
+ ** regRow..regRow+n. If any of the child key values are NULL, this
+ ** row cannot cause an FK violation. Jump directly to addrOk in
+ ** this case. */
+ sqlite3TouchRegister(pParse, regRow + pFK->nCol);
+ for(j=0; j<pFK->nCol; j++){
+ int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
+ }
+
+ /* Generate code to query the parent index for a matching parent
+ ** key. If a match is found, jump to addrOk. */
+ if( pIdx ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0,
+ sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
+ sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol);
+ VdbeCoverage(v);
+ }else if( pParent ){
+ int jmp = sqlite3VdbeCurrentAddr(v)+2;
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrOk);
+ assert( pFK->nCol==1 || db->mallocFailed );
+ }
+
+ /* Generate code to report an FK violation to the caller. */
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
+ }
+ sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
+ sqlite3VdbeResolveLabel(v, addrOk);
+ sqlite3DbFree(db, aiCols);
+ }
+ sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrTop);
+ }
+ }
+ break;
+#endif /* !defined(SQLITE_OMIT_TRIGGER) */
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+
+#ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
+ /* Reinstall the LIKE and GLOB functions. The variant of LIKE
+ ** used will be case sensitive or not depending on the RHS.
+ */
+ case PragTyp_CASE_SENSITIVE_LIKE: {
+ if( zRight ){
+ sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
+
+#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
+# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
+#endif
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+ /* PRAGMA integrity_check
+ ** PRAGMA integrity_check(N)
+ ** PRAGMA quick_check
+ ** PRAGMA quick_check(N)
+ **
+ ** Verify the integrity of the database.
+ **
+ ** The "quick_check" is reduced version of
+ ** integrity_check designed to detect most database corruption
+ ** without the overhead of cross-checking indexes. Quick_check
+ ** is linear time whereas integrity_check is O(NlogN).
+ **
+ ** The maximum number of errors is 100 by default. A different default
+ ** can be specified using a numeric parameter N.
+ **
+ ** Or, the parameter N can be the name of a table. In that case, only
+ ** the one table named is verified. The freelist is only verified if
+ ** the named table is "sqlite_schema" (or one of its aliases).
+ **
+ ** All schemas are checked by default. To check just a single
+ ** schema, use the form:
+ **
+ ** PRAGMA schema.integrity_check;
+ */
+ case PragTyp_INTEGRITY_CHECK: {
+ int i, j, addr, mxErr;
+ Table *pObjTab = 0; /* Check only this one table, if not NULL */
+
+ int isQuick = (sqlite3Tolower(zLeft[0])=='q');
+
+ /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
+ ** then iDb is set to the index of the database identified by <db>.
+ ** In this case, the integrity of database iDb only is verified by
+ ** the VDBE created below.
+ **
+ ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
+ ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
+ ** to -1 here, to indicate that the VDBE should verify the integrity
+ ** of all attached databases. */
+ assert( iDb>=0 );
+ assert( iDb==0 || pId2->z );
+ if( pId2->z==0 ) iDb = -1;
+
+ /* Initialize the VDBE program */
+ pParse->nMem = 6;
+
+ /* Set the maximum error count */
+ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
+ if( zRight ){
+ if( sqlite3GetInt32(zRight, &mxErr) ){
+ if( mxErr<=0 ){
+ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
+ }
+ }else{
+ pObjTab = sqlite3LocateTable(pParse, 0, zRight,
+ iDb>=0 ? db->aDb[iDb].zDbSName : 0);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
+
+ /* Do an integrity check on each database file */
+ for(i=0; i<db->nDb; i++){
+ HashElem *x; /* For looping over tables in the schema */
+ Hash *pTbls; /* Set of all tables in the schema */
+ int *aRoot; /* Array of root page numbers of all btrees */
+ int cnt = 0; /* Number of entries in aRoot[] */
+ int mxIdx = 0; /* Maximum number of indexes for any table */
+
+ if( OMIT_TEMPDB && i==1 ) continue;
+ if( iDb>=0 && i!=iDb ) continue;
+
+ sqlite3CodeVerifySchema(pParse, i);
+ pParse->okConstFactor = 0; /* tag-20230327-1 */
+
+ /* Do an integrity check of the B-Tree
+ **
+ ** Begin by finding the root pages numbers
+ ** for all tables and indices in the database.
+ */
+ assert( sqlite3SchemaMutexHeld(db, i, 0) );
+ pTbls = &db->aDb[i].pSchema->tblHash;
+ for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x); /* Current table */
+ Index *pIdx; /* An index on pTab */
+ int nIdx; /* Number of indexes on pTab */
+ if( pObjTab && pObjTab!=pTab ) continue;
+ if( HasRowid(pTab) ) cnt++;
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
+ if( nIdx>mxIdx ) mxIdx = nIdx;
+ }
+ if( cnt==0 ) continue;
+ if( pObjTab ) cnt++;
+ aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
+ if( aRoot==0 ) break;
+ cnt = 0;
+ if( pObjTab ) aRoot[++cnt] = 0;
+ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx;
+ if( pObjTab && pObjTab!=pTab ) continue;
+ if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ aRoot[++cnt] = pIdx->tnum;
+ }
+ }
+ aRoot[0] = cnt;
+
+ /* Make sure sufficient number of registers have been allocated */
+ sqlite3TouchRegister(pParse, 8+mxIdx);
+ sqlite3ClearTempRegCache(pParse);
+
+ /* Do the b-tree integrity checks */
+ sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
+ sqlite3VdbeChangeP5(v, (u8)i);
+ addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
+ sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
+ P4_DYNAMIC);
+ sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, addr);
+
+ /* Make sure all the indices are constructed correctly.
+ */
+ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx, *pPk;
+ Index *pPrior = 0; /* Previous index */
+ int loopTop;
+ int iDataCur, iIdxCur;
+ int r1 = -1;
+ int bStrict; /* True for a STRICT table */
+ int r2; /* Previous key for WITHOUT ROWID tables */
+ int mxCol; /* Maximum non-virtual column number */
+
+ if( pObjTab && pObjTab!=pTab ) continue;
+ if( !IsOrdinaryTable(pTab) ){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_vtab *pVTab;
+ int a1;
+ if( !IsVirtual(pTab) ) continue;
+ if( pTab->nCol<=0 ){
+ const char *zMod = pTab->u.vtab.azArg[0];
+ if( sqlite3HashFind(&db->aModule, zMod)==0 ) continue;
+ }
+ sqlite3ViewGetColumnNames(pParse, pTab);
+ if( pTab->u.vtab.p==0 ) continue;
+ pVTab = pTab->u.vtab.p->pVtab;
+ if( NEVER(pVTab==0) ) continue;
+ if( NEVER(pVTab->pModule==0) ) continue;
+ if( pVTab->pModule->iVersion<4 ) continue;
+ if( pVTab->pModule->xIntegrity==0 ) continue;
+ sqlite3VdbeAddOp3(v, OP_VCheck, i, 3, isQuick);
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ a1 = sqlite3VdbeAddOp1(v, OP_IsNull, 3); VdbeCoverage(v);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, a1);
+#endif
+ continue;
+ }
+ if( isQuick || HasRowid(pTab) ){
+ pPk = 0;
+ r2 = 0;
+ }else{
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1);
+ }
+ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
+ 1, 0, &iDataCur, &iIdxCur);
+ /* reg[7] counts the number of entries in the table.
+ ** reg[8+i] counts the number of entries in the i-th index
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
+ }
+ assert( pParse->nMem>=8+j );
+ assert( sqlite3NoTempsInRange(pParse,1,7+j) );
+ sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
+ loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
+
+ /* Fetch the right-most column from the table. This will cause
+ ** the entire record header to be parsed and sanity checked. It
+ ** will also prepopulate the cursor column cache that is used
+ ** by the OP_IsType code, so it is a required step.
+ */
+ assert( !IsVirtual(pTab) );
+ if( HasRowid(pTab) ){
+ mxCol = -1;
+ for(j=0; j<pTab->nCol; j++){
+ if( (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)==0 ) mxCol++;
+ }
+ if( mxCol==pTab->iPKey ) mxCol--;
+ }else{
+ /* COLFLAG_VIRTUAL columns are not included in the WITHOUT ROWID
+ ** PK index column-count, so there is no need to account for them
+ ** in this case. */
+ mxCol = sqlite3PrimaryKeyIndex(pTab)->nColumn-1;
+ }
+ if( mxCol>=0 ){
+ sqlite3VdbeAddOp3(v, OP_Column, iDataCur, mxCol, 3);
+ sqlite3VdbeTypeofColumn(v, 3);
+ }
+
+ if( !isQuick ){
+ if( pPk ){
+ /* Verify WITHOUT ROWID keys are in ascending order */
+ int a1;
+ char *zErr;
+ a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v);
+ zErr = sqlite3MPrintf(db,
+ "row not in PRIMARY KEY order for %s",
+ pTab->zName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, a1);
+ sqlite3VdbeJumpHere(v, a1+1);
+ for(j=0; j<pPk->nKeyCol; j++){
+ sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j);
+ }
+ }
+ }
+ /* Verify datatypes for all columns:
+ **
+ ** (1) NOT NULL columns may not contain a NULL
+ ** (2) Datatype must be exact for non-ANY columns in STRICT tables
+ ** (3) Datatype for TEXT columns in non-STRICT tables must be
+ ** NULL, TEXT, or BLOB.
+ ** (4) Datatype for numeric columns in non-STRICT tables must not
+ ** be a TEXT value that can be losslessly converted to numeric.
+ */
+ bStrict = (pTab->tabFlags & TF_Strict)!=0;
+ for(j=0; j<pTab->nCol; j++){
+ char *zErr;
+ Column *pCol = pTab->aCol + j; /* The column to be checked */
+ int labelError; /* Jump here to report an error */
+ int labelOk; /* Jump here if all looks ok */
+ int p1, p3, p4; /* Operands to the OP_IsType opcode */
+ int doTypeCheck; /* Check datatypes (besides NOT NULL) */
+
+ if( j==pTab->iPKey ) continue;
+ if( bStrict ){
+ doTypeCheck = pCol->eCType>COLTYPE_ANY;
+ }else{
+ doTypeCheck = pCol->affinity>SQLITE_AFF_BLOB;
+ }
+ if( pCol->notNull==0 && !doTypeCheck ) continue;
+
+ /* Compute the operands that will be needed for OP_IsType */
+ p4 = SQLITE_NULL;
+ if( pCol->colFlags & COLFLAG_VIRTUAL ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
+ p1 = -1;
+ p3 = 3;
+ }else{
+ if( pCol->iDflt ){
+ sqlite3_value *pDfltValue = 0;
+ sqlite3ValueFromExpr(db, sqlite3ColumnExpr(pTab,pCol), ENC(db),
+ pCol->affinity, &pDfltValue);
+ if( pDfltValue ){
+ p4 = sqlite3_value_type(pDfltValue);
+ sqlite3ValueFree(pDfltValue);
+ }
+ }
+ p1 = iDataCur;
+ if( !HasRowid(pTab) ){
+ testcase( j!=sqlite3TableColumnToStorage(pTab, j) );
+ p3 = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), j);
+ }else{
+ p3 = sqlite3TableColumnToStorage(pTab,j);
+ testcase( p3!=j);
+ }
+ }
+
+ labelError = sqlite3VdbeMakeLabel(pParse);
+ labelOk = sqlite3VdbeMakeLabel(pParse);
+ if( pCol->notNull ){
+ /* (1) NOT NULL columns may not contain a NULL */
+ int jmp3;
+ int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
+ VdbeCoverage(v);
+ if( p1<0 ){
+ sqlite3VdbeChangeP5(v, 0x0f); /* INT, REAL, TEXT, or BLOB */
+ jmp3 = jmp2;
+ }else{
+ sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */
+ /* OP_IsType does not detect NaN values in the database file
+ ** which should be treated as a NULL. So if the header type
+ ** is REAL, we have to load the actual data using OP_Column
+ ** to reliably determine if the value is a NULL. */
+ sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3);
+ jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk);
+ VdbeCoverage(v);
+ }
+ zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
+ pCol->zCnName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ if( doTypeCheck ){
+ sqlite3VdbeGoto(v, labelError);
+ sqlite3VdbeJumpHere(v, jmp2);
+ sqlite3VdbeJumpHere(v, jmp3);
+ }else{
+ /* VDBE byte code will fall thru */
+ }
+ }
+ if( bStrict && doTypeCheck ){
+ /* (2) Datatype must be exact for non-ANY columns in STRICT tables*/
+ static unsigned char aStdTypeMask[] = {
+ 0x1f, /* ANY */
+ 0x18, /* BLOB */
+ 0x11, /* INT */
+ 0x11, /* INTEGER */
+ 0x13, /* REAL */
+ 0x14 /* TEXT */
+ };
+ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
+ assert( pCol->eCType>=1 && pCol->eCType<=sizeof(aStdTypeMask) );
+ sqlite3VdbeChangeP5(v, aStdTypeMask[pCol->eCType-1]);
+ VdbeCoverage(v);
+ zErr = sqlite3MPrintf(db, "non-%s value in %s.%s",
+ sqlite3StdType[pCol->eCType-1],
+ pTab->zName, pTab->aCol[j].zCnName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ }else if( !bStrict && pCol->affinity==SQLITE_AFF_TEXT ){
+ /* (3) Datatype for TEXT columns in non-STRICT tables must be
+ ** NULL, TEXT, or BLOB. */
+ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
+ sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */
+ VdbeCoverage(v);
+ zErr = sqlite3MPrintf(db, "NUMERIC value in %s.%s",
+ pTab->zName, pTab->aCol[j].zCnName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ }else if( !bStrict && pCol->affinity>=SQLITE_AFF_NUMERIC ){
+ /* (4) Datatype for numeric columns in non-STRICT tables must not
+ ** be a TEXT value that can be converted to numeric. */
+ sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
+ sqlite3VdbeChangeP5(v, 0x1b); /* NULL, INT, FLOAT, or BLOB */
+ VdbeCoverage(v);
+ if( p1>=0 ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
+ }
+ sqlite3VdbeAddOp4(v, OP_Affinity, 3, 1, 0, "C", P4_STATIC);
+ sqlite3VdbeAddOp4Int(v, OP_IsType, -1, labelOk, 3, p4);
+ sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */
+ VdbeCoverage(v);
+ zErr = sqlite3MPrintf(db, "TEXT value in %s.%s",
+ pTab->zName, pTab->aCol[j].zCnName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ }
+ sqlite3VdbeResolveLabel(v, labelError);
+ integrityCheckResultRow(v);
+ sqlite3VdbeResolveLabel(v, labelOk);
+ }
+ /* Verify CHECK constraints */
+ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
+ ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
+ if( db->mallocFailed==0 ){
+ int addrCkFault = sqlite3VdbeMakeLabel(pParse);
+ int addrCkOk = sqlite3VdbeMakeLabel(pParse);
+ char *zErr;
+ int k;
+ pParse->iSelfTab = iDataCur + 1;
+ for(k=pCheck->nExpr-1; k>0; k--){
+ sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
+ }
+ sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
+ SQLITE_JUMPIFNULL);
+ sqlite3VdbeResolveLabel(v, addrCkFault);
+ pParse->iSelfTab = 0;
+ zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
+ pTab->zName);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
+ integrityCheckResultRow(v);
+ sqlite3VdbeResolveLabel(v, addrCkOk);
+ }
+ sqlite3ExprListDelete(db, pCheck);
+ }
+ if( !isQuick ){ /* Omit the remaining tests for quick_check */
+ /* Validate index entries for the current row */
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ int jmp2, jmp3, jmp4, jmp5, label6;
+ int kk;
+ int ckUniq = sqlite3VdbeMakeLabel(pParse);
+ if( pPk==pIdx ) continue;
+ r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
+ pPrior, r1);
+ pPrior = pIdx;
+ sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
+ /* Verify that an index entry exists for the current table row */
+ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
+ pIdx->nColumn); VdbeCoverage(v);
+ sqlite3VdbeLoadString(v, 3, "row ");
+ sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
+ sqlite3VdbeLoadString(v, 4, " missing from index ");
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
+ jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
+ jmp4 = integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, jmp2);
+
+ /* The OP_IdxRowid opcode is an optimized version of OP_Column
+ ** that extracts the rowid off the end of the index record.
+ ** But it only works correctly if index record does not have
+ ** any extra bytes at the end. Verify that this is the case. */
+ if( HasRowid(pTab) ){
+ int jmp7;
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur+j, 3);
+ jmp7 = sqlite3VdbeAddOp3(v, OP_Eq, 3, 0, r1+pIdx->nColumn-1);
+ VdbeCoverageNeverNull(v);
+ sqlite3VdbeLoadString(v, 3,
+ "rowid not at end-of-record for row ");
+ sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
+ sqlite3VdbeLoadString(v, 4, " of index ");
+ sqlite3VdbeGoto(v, jmp5-1);
+ sqlite3VdbeJumpHere(v, jmp7);
+ }
+
+ /* Any indexed columns with non-BINARY collations must still hold
+ ** the exact same text value as the table. */
+ label6 = 0;
+ for(kk=0; kk<pIdx->nKeyCol; kk++){
+ if( pIdx->azColl[kk]==sqlite3StrBINARY ) continue;
+ if( label6==0 ) label6 = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+j, kk, 3);
+ sqlite3VdbeAddOp3(v, OP_Ne, 3, label6, r1+kk); VdbeCoverage(v);
+ }
+ if( label6 ){
+ int jmp6 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeResolveLabel(v, label6);
+ sqlite3VdbeLoadString(v, 3, "row ");
+ sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
+ sqlite3VdbeLoadString(v, 4, " values differ from index ");
+ sqlite3VdbeGoto(v, jmp5-1);
+ sqlite3VdbeJumpHere(v, jmp6);
+ }
+
+ /* For UNIQUE indexes, verify that only one entry exists with the
+ ** current key. The entry is unique if (1) any column is NULL
+ ** or (2) the next entry has a different key */
+ if( IsUniqueIndex(pIdx) ){
+ int uniqOk = sqlite3VdbeMakeLabel(pParse);
+ int jmp6;
+ for(kk=0; kk<pIdx->nKeyCol; kk++){
+ int iCol = pIdx->aiColumn[kk];
+ assert( iCol!=XN_ROWID && iCol<pTab->nCol );
+ if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
+ VdbeCoverage(v);
+ }
+ jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, uniqOk);
+ sqlite3VdbeJumpHere(v, jmp6);
+ sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
+ pIdx->nKeyCol); VdbeCoverage(v);
+ sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
+ sqlite3VdbeGoto(v, jmp5);
+ sqlite3VdbeResolveLabel(v, uniqOk);
+ }
+ sqlite3VdbeJumpHere(v, jmp4);
+ sqlite3ResolvePartIdxLabel(pParse, jmp3);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, loopTop-1);
+ if( !isQuick ){
+ sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ if( pPk==pIdx ) continue;
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
+ addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
+ sqlite3VdbeLoadString(v, 4, pIdx->zName);
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
+ integrityCheckResultRow(v);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ if( pPk ){
+ sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol);
+ }
+ }
+ }
+ }
+ {
+ static const int iLn = VDBE_OFFSET_LINENO(2);
+ static const VdbeOpList endCode[] = {
+ { OP_AddImm, 1, 0, 0}, /* 0 */
+ { OP_IfNotZero, 1, 4, 0}, /* 1 */
+ { OP_String8, 0, 3, 0}, /* 2 */
+ { OP_ResultRow, 3, 1, 0}, /* 3 */
+ { OP_Halt, 0, 0, 0}, /* 4 */
+ { OP_String8, 0, 3, 0}, /* 5 */
+ { OP_Goto, 0, 3, 0}, /* 6 */
+ };
+ VdbeOp *aOp;
+
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
+ if( aOp ){
+ aOp[0].p2 = 1-mxErr;
+ aOp[2].p4type = P4_STATIC;
+ aOp[2].p4.z = "ok";
+ aOp[5].p4type = P4_STATIC;
+ aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
+ }
+ sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_UTF16
+ /*
+ ** PRAGMA encoding
+ ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
+ **
+ ** In its first form, this pragma returns the encoding of the main
+ ** database. If the database is not initialized, it is initialized now.
+ **
+ ** The second form of this pragma is a no-op if the main database file
+ ** has not already been initialized. In this case it sets the default
+ ** encoding that will be used for the main database file if a new file
+ ** is created. If an existing main database file is opened, then the
+ ** default text encoding for the existing database is used.
+ **
+ ** In all cases new databases created using the ATTACH command are
+ ** created to use the same default text encoding as the main database. If
+ ** the main database has not been initialized and/or created when ATTACH
+ ** is executed, this is done before the ATTACH operation.
+ **
+ ** In the second form this pragma sets the text encoding to be used in
+ ** new database files created using this database handle. It is only
+ ** useful if invoked immediately after the main database i
+ */
+ case PragTyp_ENCODING: {
+ static const struct EncName {
+ char *zName;
+ u8 enc;
+ } encnames[] = {
+ { "UTF8", SQLITE_UTF8 },
+ { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
+ { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
+ { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
+ { "UTF16le", SQLITE_UTF16LE },
+ { "UTF16be", SQLITE_UTF16BE },
+ { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
+ { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
+ { 0, 0 }
+ };
+ const struct EncName *pEnc;
+ if( !zRight ){ /* "PRAGMA encoding" */
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
+ assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
+ assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
+ returnSingleText(v, encnames[ENC(pParse->db)].zName);
+ }else{ /* "PRAGMA encoding = XXX" */
+ /* Only change the value of sqlite.enc if the database handle is not
+ ** initialized. If the main database exists, the new sqlite.enc value
+ ** will be overwritten when the schema is next loaded. If it does not
+ ** already exists, it will be created to use the new encoding value.
+ */
+ if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
+ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
+ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
+ u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
+ SCHEMA_ENC(db) = enc;
+ sqlite3SetTextEncoding(db, enc);
+ break;
+ }
+ }
+ if( !pEnc->zName ){
+ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
+ }
+ }
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
+ /*
+ ** PRAGMA [schema.]schema_version
+ ** PRAGMA [schema.]schema_version = <integer>
+ **
+ ** PRAGMA [schema.]user_version
+ ** PRAGMA [schema.]user_version = <integer>
+ **
+ ** PRAGMA [schema.]freelist_count
+ **
+ ** PRAGMA [schema.]data_version
+ **
+ ** PRAGMA [schema.]application_id
+ ** PRAGMA [schema.]application_id = <integer>
+ **
+ ** The pragma's schema_version and user_version are used to set or get
+ ** the value of the schema-version and user-version, respectively. Both
+ ** the schema-version and the user-version are 32-bit signed integers
+ ** stored in the database header.
+ **
+ ** The schema-cookie is usually only manipulated internally by SQLite. It
+ ** is incremented by SQLite whenever the database schema is modified (by
+ ** creating or dropping a table or index). The schema version is used by
+ ** SQLite each time a query is executed to ensure that the internal cache
+ ** of the schema used when compiling the SQL query matches the schema of
+ ** the database against which the compiled query is actually executed.
+ ** Subverting this mechanism by using "PRAGMA schema_version" to modify
+ ** the schema-version is potentially dangerous and may lead to program
+ ** crashes or database corruption. Use with caution!
+ **
+ ** The user-version is not used internally by SQLite. It may be used by
+ ** applications for any purpose.
+ */
+ case PragTyp_HEADER_VALUE: {
+ int iCookie = pPragma->iArg; /* Which cookie to read or write */
+ sqlite3VdbeUsesBtree(v, iDb);
+ if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
+ /* Write the specified cookie value */
+ static const VdbeOpList setCookie[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_SetCookie, 0, 0, 0}, /* 1 */
+ };
+ VdbeOp *aOp;
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[1].p2 = iCookie;
+ aOp[1].p3 = sqlite3Atoi(zRight);
+ aOp[1].p5 = 1;
+ if( iCookie==BTREE_SCHEMA_VERSION && (db->flags & SQLITE_Defensive)!=0 ){
+ /* Do not allow the use of PRAGMA schema_version=VALUE in defensive
+ ** mode. Change the OP_SetCookie opcode into a no-op. */
+ aOp[1].opcode = OP_Noop;
+ }
+ }else{
+ /* Read the specified cookie value */
+ static const VdbeOpList readCookie[] = {
+ { OP_Transaction, 0, 0, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, 0}, /* 1 */
+ { OP_ResultRow, 1, 1, 0}
+ };
+ VdbeOp *aOp;
+ sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
+ aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
+ if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
+ aOp[0].p1 = iDb;
+ aOp[1].p1 = iDb;
+ aOp[1].p3 = iCookie;
+ sqlite3VdbeReusable(v);
+ }
+ }
+ break;
+#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ /*
+ ** PRAGMA compile_options
+ **
+ ** Return the names of all compile-time options used in this build,
+ ** one option per row.
+ */
+ case PragTyp_COMPILE_OPTIONS: {
+ int i = 0;
+ const char *zOpt;
+ pParse->nMem = 1;
+ while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
+ sqlite3VdbeLoadString(v, 1, zOpt);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+ sqlite3VdbeReusable(v);
+ }
+ break;
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+#ifndef SQLITE_OMIT_WAL
+ /*
+ ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
+ **
+ ** Checkpoint the database.
+ */
+ case PragTyp_WAL_CHECKPOINT: {
+ int iBt = (pId2->z?iDb:SQLITE_MAX_DB);
+ int eMode = SQLITE_CHECKPOINT_PASSIVE;
+ if( zRight ){
+ if( sqlite3StrICmp(zRight, "full")==0 ){
+ eMode = SQLITE_CHECKPOINT_FULL;
+ }else if( sqlite3StrICmp(zRight, "restart")==0 ){
+ eMode = SQLITE_CHECKPOINT_RESTART;
+ }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
+ eMode = SQLITE_CHECKPOINT_TRUNCATE;
+ }
+ }
+ pParse->nMem = 3;
+ sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
+ }
+ break;
+
+ /*
+ ** PRAGMA wal_autocheckpoint
+ ** PRAGMA wal_autocheckpoint = N
+ **
+ ** Configure a database connection to automatically checkpoint a database
+ ** after accumulating N frames in the log. Or query for the current value
+ ** of N.
+ */
+ case PragTyp_WAL_AUTOCHECKPOINT: {
+ if( zRight ){
+ sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
+ }
+ returnSingleInt(v,
+ db->xWalCallback==sqlite3WalDefaultHook ?
+ SQLITE_PTR_TO_INT(db->pWalArg) : 0);
+ }
+ break;
+#endif
+
+ /*
+ ** PRAGMA shrink_memory
+ **
+ ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
+ ** connection on which it is invoked to free up as much memory as it
+ ** can, by calling sqlite3_db_release_memory().
+ */
+ case PragTyp_SHRINK_MEMORY: {
+ sqlite3_db_release_memory(db);
+ break;
+ }
+
+ /*
+ ** PRAGMA optimize
+ ** PRAGMA optimize(MASK)
+ ** PRAGMA schema.optimize
+ ** PRAGMA schema.optimize(MASK)
+ **
+ ** Attempt to optimize the database. All schemas are optimized in the first
+ ** two forms, and only the specified schema is optimized in the latter two.
+ **
+ ** The details of optimizations performed by this pragma are expected
+ ** to change and improve over time. Applications should anticipate that
+ ** this pragma will perform new optimizations in future releases.
+ **
+ ** The optional argument is a bitmask of optimizations to perform:
+ **
+ ** 0x0001 Debugging mode. Do not actually perform any optimizations
+ ** but instead return one line of text for each optimization
+ ** that would have been done. Off by default.
+ **
+ ** 0x0002 Run ANALYZE on tables that might benefit. On by default.
+ ** See below for additional information.
+ **
+ ** 0x0004 (Not yet implemented) Record usage and performance
+ ** information from the current session in the
+ ** database file so that it will be available to "optimize"
+ ** pragmas run by future database connections.
+ **
+ ** 0x0008 (Not yet implemented) Create indexes that might have
+ ** been helpful to recent queries
+ **
+ ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
+ ** of the optimizations listed above except Debug Mode, including new
+ ** optimizations that have not yet been invented. If new optimizations are
+ ** ever added that should be off by default, those off-by-default
+ ** optimizations will have bitmasks of 0x10000 or larger.
+ **
+ ** DETERMINATION OF WHEN TO RUN ANALYZE
+ **
+ ** In the current implementation, a table is analyzed if only if all of
+ ** the following are true:
+ **
+ ** (1) MASK bit 0x02 is set.
+ **
+ ** (2) The query planner used sqlite_stat1-style statistics for one or
+ ** more indexes of the table at some point during the lifetime of
+ ** the current connection.
+ **
+ ** (3) One or more indexes of the table are currently unanalyzed OR
+ ** the number of rows in the table has increased by 25 times or more
+ ** since the last time ANALYZE was run.
+ **
+ ** The rules for when tables are analyzed are likely to change in
+ ** future releases.
+ */
+ case PragTyp_OPTIMIZE: {
+ int iDbLast; /* Loop termination point for the schema loop */
+ int iTabCur; /* Cursor for a table whose size needs checking */
+ HashElem *k; /* Loop over tables of a schema */
+ Schema *pSchema; /* The current schema */
+ Table *pTab; /* A table in the schema */
+ Index *pIdx; /* An index of the table */
+ LogEst szThreshold; /* Size threshold above which reanalysis needed */
+ char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
+ u32 opMask; /* Mask of operations to perform */
+
+ if( zRight ){
+ opMask = (u32)sqlite3Atoi(zRight);
+ if( (opMask & 0x02)==0 ) break;
+ }else{
+ opMask = 0xfffe;
+ }
+ iTabCur = pParse->nTab++;
+ for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
+ if( iDb==1 ) continue;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ pSchema = db->aDb[iDb].pSchema;
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ pTab = (Table*)sqliteHashData(k);
+
+ /* If table pTab has not been used in a way that would benefit from
+ ** having analysis statistics during the current session, then skip it.
+ ** This also has the effect of skipping virtual tables and views */
+ if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
+
+ /* Reanalyze if the table is 25 times larger than the last analysis */
+ szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( !pIdx->hasStat1 ){
+ szThreshold = 0; /* Always analyze if any index lacks statistics */
+ break;
+ }
+ }
+ if( szThreshold ){
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
+ sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
+ VdbeCoverage(v);
+ }
+ zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
+ db->aDb[iDb].zDbSName, pTab->zName);
+ if( opMask & 0x01 ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
+ }else{
+ sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
+ }
+ }
+ }
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ break;
+ }
+
+ /*
+ ** PRAGMA busy_timeout
+ ** PRAGMA busy_timeout = N
+ **
+ ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
+ ** if one is set. If no busy handler or a different busy handler is set
+ ** then 0 is returned. Setting the busy_timeout to 0 or negative
+ ** disables the timeout.
+ */
+ /*case PragTyp_BUSY_TIMEOUT*/ default: {
+ assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
+ if( zRight ){
+ sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
+ }
+ returnSingleInt(v, db->busyTimeout);
+ break;
+ }
+
+ /*
+ ** PRAGMA soft_heap_limit
+ ** PRAGMA soft_heap_limit = N
+ **
+ ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
+ ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
+ ** specified and is a non-negative integer.
+ ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
+ ** returns the same integer that would be returned by the
+ ** sqlite3_soft_heap_limit64(-1) C-language function.
+ */
+ case PragTyp_SOFT_HEAP_LIMIT: {
+ sqlite3_int64 N;
+ if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
+ sqlite3_soft_heap_limit64(N);
+ }
+ returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
+ break;
+ }
+
+ /*
+ ** PRAGMA hard_heap_limit
+ ** PRAGMA hard_heap_limit = N
+ **
+ ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
+ ** limit. The hard heap limit can be activated or lowered by this
+ ** pragma, but not raised or deactivated. Only the
+ ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
+ ** the hard heap limit. This allows an application to set a heap limit
+ ** constraint that cannot be relaxed by an untrusted SQL script.
+ */
+ case PragTyp_HARD_HEAP_LIMIT: {
+ sqlite3_int64 N;
+ if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
+ sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
+ if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
+ }
+ returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
+ break;
+ }
+
+ /*
+ ** PRAGMA threads
+ ** PRAGMA threads = N
+ **
+ ** Configure the maximum number of worker threads. Return the new
+ ** maximum, which might be less than requested.
+ */
+ case PragTyp_THREADS: {
+ sqlite3_int64 N;
+ if( zRight
+ && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
+ && N>=0
+ ){
+ sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
+ }
+ returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
+ break;
+ }
+
+ /*
+ ** PRAGMA analysis_limit
+ ** PRAGMA analysis_limit = N
+ **
+ ** Configure the maximum number of rows that ANALYZE will examine
+ ** in each index that it looks at. Return the new limit.
+ */
+ case PragTyp_ANALYSIS_LIMIT: {
+ sqlite3_int64 N;
+ if( zRight
+ && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */
+ && N>=0
+ ){
+ db->nAnalysisLimit = (int)(N&0x7fffffff);
+ }
+ returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */
+ break;
+ }
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /*
+ ** Report the current state of file logs for all databases
+ */
+ case PragTyp_LOCK_STATUS: {
+ static const char *const azLockName[] = {
+ "unlocked", "shared", "reserved", "pending", "exclusive"
+ };
+ int i;
+ pParse->nMem = 2;
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt;
+ const char *zState = "unknown";
+ int j;
+ if( db->aDb[i].zDbSName==0 ) continue;
+ pBt = db->aDb[i].pBt;
+ if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
+ zState = "closed";
+ }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
+ SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
+ zState = azLockName[j];
+ }
+ sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
+ }
+ break;
+ }
+#endif
+
+#if defined(SQLITE_ENABLE_CEROD)
+ case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
+ if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
+ sqlite3_activate_cerod(&zRight[6]);
+ }
+ }
+ break;
+#endif
+
+ } /* End of the PRAGMA switch */
+
+ /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
+ ** purpose is to execute assert() statements to verify that if the
+ ** PragFlg_NoColumns1 flag is set and the caller specified an argument
+ ** to the PRAGMA, the implementation has not added any OP_ResultRow
+ ** instructions to the VM. */
+ if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
+ sqlite3VdbeVerifyNoResultRow(v);
+ }
+
+pragma_out:
+ sqlite3DbFree(db, zLeft);
+ sqlite3DbFree(db, zRight);
+}
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*****************************************************************************
+** Implementation of an eponymous virtual table that runs a pragma.
+**
+*/
+typedef struct PragmaVtab PragmaVtab;
+typedef struct PragmaVtabCursor PragmaVtabCursor;
+struct PragmaVtab {
+ sqlite3_vtab base; /* Base class. Must be first */
+ sqlite3 *db; /* The database connection to which it belongs */
+ const PragmaName *pName; /* Name of the pragma */
+ u8 nHidden; /* Number of hidden columns */
+ u8 iHidden; /* Index of the first hidden column */
+};
+struct PragmaVtabCursor {
+ sqlite3_vtab_cursor base; /* Base class. Must be first */
+ sqlite3_stmt *pPragma; /* The pragma statement to run */
+ sqlite_int64 iRowid; /* Current rowid */
+ char *azArg[2]; /* Value of the argument and schema */
+};
+
+/*
+** Pragma virtual table module xConnect method.
+*/
+static int pragmaVtabConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ const PragmaName *pPragma = (const PragmaName*)pAux;
+ PragmaVtab *pTab = 0;
+ int rc;
+ int i, j;
+ char cSep = '(';
+ StrAccum acc;
+ char zBuf[200];
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+ sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
+ sqlite3_str_appendall(&acc, "CREATE TABLE x");
+ for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
+ sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
+ cSep = ',';
+ }
+ if( i==0 ){
+ sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
+ i++;
+ }
+ j = 0;
+ if( pPragma->mPragFlg & PragFlg_Result1 ){
+ sqlite3_str_appendall(&acc, ",arg HIDDEN");
+ j++;
+ }
+ if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
+ sqlite3_str_appendall(&acc, ",schema HIDDEN");
+ j++;
+ }
+ sqlite3_str_append(&acc, ")", 1);
+ sqlite3StrAccumFinish(&acc);
+ assert( strlen(zBuf) < sizeof(zBuf)-1 );
+ rc = sqlite3_declare_vtab(db, zBuf);
+ if( rc==SQLITE_OK ){
+ pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
+ if( pTab==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pTab, 0, sizeof(PragmaVtab));
+ pTab->pName = pPragma;
+ pTab->db = db;
+ pTab->iHidden = i;
+ pTab->nHidden = j;
+ }
+ }else{
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+
+ *ppVtab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** Pragma virtual table module xDisconnect method.
+*/
+static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
+ PragmaVtab *pTab = (PragmaVtab*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/* Figure out the best index to use to search a pragma virtual table.
+**
+** There are not really any index choices. But we want to encourage the
+** query planner to give == constraints on as many hidden parameters as
+** possible, and especially on the first hidden parameter. So return a
+** high cost if hidden parameters are unconstrained.
+*/
+static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ PragmaVtab *pTab = (PragmaVtab*)tab;
+ const struct sqlite3_index_constraint *pConstraint;
+ int i, j;
+ int seen[2];
+
+ pIdxInfo->estimatedCost = (double)1;
+ if( pTab->nHidden==0 ){ return SQLITE_OK; }
+ pConstraint = pIdxInfo->aConstraint;
+ seen[0] = 0;
+ seen[1] = 0;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ if( pConstraint->usable==0 ) continue;
+ if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
+ if( pConstraint->iColumn < pTab->iHidden ) continue;
+ j = pConstraint->iColumn - pTab->iHidden;
+ assert( j < 2 );
+ seen[j] = i+1;
+ }
+ if( seen[0]==0 ){
+ pIdxInfo->estimatedCost = (double)2147483647;
+ pIdxInfo->estimatedRows = 2147483647;
+ return SQLITE_OK;
+ }
+ j = seen[0]-1;
+ pIdxInfo->aConstraintUsage[j].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[j].omit = 1;
+ if( seen[1]==0 ) return SQLITE_OK;
+ pIdxInfo->estimatedCost = (double)20;
+ pIdxInfo->estimatedRows = 20;
+ j = seen[1]-1;
+ pIdxInfo->aConstraintUsage[j].argvIndex = 2;
+ pIdxInfo->aConstraintUsage[j].omit = 1;
+ return SQLITE_OK;
+}
+
+/* Create a new cursor for the pragma virtual table */
+static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
+ PragmaVtabCursor *pCsr;
+ pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
+ if( pCsr==0 ) return SQLITE_NOMEM;
+ memset(pCsr, 0, sizeof(PragmaVtabCursor));
+ pCsr->base.pVtab = pVtab;
+ *ppCursor = &pCsr->base;
+ return SQLITE_OK;
+}
+
+/* Clear all content from pragma virtual table cursor. */
+static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
+ int i;
+ sqlite3_finalize(pCsr->pPragma);
+ pCsr->pPragma = 0;
+ for(i=0; i<ArraySize(pCsr->azArg); i++){
+ sqlite3_free(pCsr->azArg[i]);
+ pCsr->azArg[i] = 0;
+ }
+}
+
+/* Close a pragma virtual table cursor */
+static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
+ pragmaVtabCursorClear(pCsr);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/* Advance the pragma virtual table cursor to the next row */
+static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ /* Increment the xRowid value */
+ pCsr->iRowid++;
+ assert( pCsr->pPragma );
+ if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
+ rc = sqlite3_finalize(pCsr->pPragma);
+ pCsr->pPragma = 0;
+ pragmaVtabCursorClear(pCsr);
+ }
+ return rc;
+}
+
+/*
+** Pragma virtual table module xFilter method.
+*/
+static int pragmaVtabFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
+ int rc;
+ int i, j;
+ StrAccum acc;
+ char *zSql;
+
+ UNUSED_PARAMETER(idxNum);
+ UNUSED_PARAMETER(idxStr);
+ pragmaVtabCursorClear(pCsr);
+ j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
+ for(i=0; i<argc; i++, j++){
+ const char *zText = (const char*)sqlite3_value_text(argv[i]);
+ assert( j<ArraySize(pCsr->azArg) );
+ assert( pCsr->azArg[j]==0 );
+ if( zText ){
+ pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
+ if( pCsr->azArg[j]==0 ){
+ return SQLITE_NOMEM;
+ }
+ }
+ }
+ sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
+ sqlite3_str_appendall(&acc, "PRAGMA ");
+ if( pCsr->azArg[1] ){
+ sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
+ }
+ sqlite3_str_appendall(&acc, pTab->pName->zName);
+ if( pCsr->azArg[0] ){
+ sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
+ }
+ zSql = sqlite3StrAccumFinish(&acc);
+ if( zSql==0 ) return SQLITE_NOMEM;
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK ){
+ pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
+ return rc;
+ }
+ return pragmaVtabNext(pVtabCursor);
+}
+
+/*
+** Pragma virtual table module xEof method.
+*/
+static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ return (pCsr->pPragma==0);
+}
+
+/* The xColumn method simply returns the corresponding column from
+** the PRAGMA.
+*/
+static int pragmaVtabColumn(
+ sqlite3_vtab_cursor *pVtabCursor,
+ sqlite3_context *ctx,
+ int i
+){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
+ if( i<pTab->iHidden ){
+ sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
+ }else{
+ sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Pragma virtual table module xRowid method.
+*/
+static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
+ PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
+ *p = pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/* The pragma virtual table object */
+static const sqlite3_module pragmaVtabModule = {
+ 0, /* iVersion */
+ 0, /* xCreate - create a table */
+ pragmaVtabConnect, /* xConnect - connect to an existing table */
+ pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
+ pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
+ 0, /* xDestroy - Drop a table */
+ pragmaVtabOpen, /* xOpen - open a cursor */
+ pragmaVtabClose, /* xClose - close a cursor */
+ pragmaVtabFilter, /* xFilter - configure scan constraints */
+ pragmaVtabNext, /* xNext - advance a cursor */
+ pragmaVtabEof, /* xEof */
+ pragmaVtabColumn, /* xColumn - read data */
+ pragmaVtabRowid, /* xRowid - read data */
+ 0, /* xUpdate - write data */
+ 0, /* xBegin - begin transaction */
+ 0, /* xSync - sync transaction */
+ 0, /* xCommit - commit transaction */
+ 0, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ 0, /* xRename - rename the table */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+};
+
+/*
+** Check to see if zTabName is really the name of a pragma. If it is,
+** then register an eponymous virtual table for that pragma and return
+** a pointer to the Module object for the new virtual table.
+*/
+SQLITE_PRIVATE Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
+ const PragmaName *pName;
+ assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
+ pName = pragmaLocate(zName+7);
+ if( pName==0 ) return 0;
+ if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
+ assert( sqlite3HashFind(&db->aModule, zName)==0 );
+ return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
+}
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#endif /* SQLITE_OMIT_PRAGMA */
+
+/************** End of pragma.c **********************************************/
+/************** Begin file prepare.c *****************************************/
+/*
+** 2005 May 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation of the sqlite3_prepare()
+** interface, and routines that contribute to loading the database schema
+** from disk.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** Fill the InitData structure with an error message that indicates
+** that the database is corrupt.
+*/
+static void corruptSchema(
+ InitData *pData, /* Initialization context */
+ char **azObj, /* Type and name of object being parsed */
+ const char *zExtra /* Error information */
+){
+ sqlite3 *db = pData->db;
+ if( db->mallocFailed ){
+ pData->rc = SQLITE_NOMEM_BKPT;
+ }else if( pData->pzErrMsg[0]!=0 ){
+ /* A error message has already been generated. Do not overwrite it */
+ }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){
+ static const char *azAlterType[] = {
+ "rename",
+ "drop column",
+ "add column"
+ };
+ *pData->pzErrMsg = sqlite3MPrintf(db,
+ "error in %s %s after %s: %s", azObj[0], azObj[1],
+ azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1],
+ zExtra
+ );
+ pData->rc = SQLITE_ERROR;
+ }else if( db->flags & SQLITE_WriteSchema ){
+ pData->rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ char *z;
+ const char *zObj = azObj[1] ? azObj[1] : "?";
+ z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj);
+ if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra);
+ *pData->pzErrMsg = z;
+ pData->rc = SQLITE_CORRUPT_BKPT;
+ }
+}
+
+/*
+** Check to see if any sibling index (another index on the same table)
+** of pIndex has the same root page number, and if it does, return true.
+** This would indicate a corrupt schema.
+*/
+SQLITE_PRIVATE int sqlite3IndexHasDuplicateRootPage(Index *pIndex){
+ Index *p;
+ for(p=pIndex->pTable->pIndex; p; p=p->pNext){
+ if( p->tnum==pIndex->tnum && p!=pIndex ) return 1;
+ }
+ return 0;
+}
+
+/* forward declaration */
+static int sqlite3Prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ Vdbe *pReprepare, /* VM being reprepared */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+);
+
+
+/*
+** This is the callback routine for the code that initializes the
+** database. See sqlite3Init() below for additional information.
+** This routine is also called from the OP_ParseSchema opcode of the VDBE.
+**
+** Each callback contains the following information:
+**
+** argv[0] = type of object: "table", "index", "trigger", or "view".
+** argv[1] = name of thing being created
+** argv[2] = associated table if an index or trigger
+** argv[3] = root page number for table or index. 0 for trigger or view.
+** argv[4] = SQL text for the CREATE statement.
+**
+*/
+SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
+ InitData *pData = (InitData*)pInit;
+ sqlite3 *db = pData->db;
+ int iDb = pData->iDb;
+
+ assert( argc==5 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+ assert( sqlite3_mutex_held(db->mutex) );
+ db->mDbFlags |= DBFLAG_EncodingFixed;
+ if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
+ pData->nInitRow++;
+ if( db->mallocFailed ){
+ corruptSchema(pData, argv, 0);
+ return 1;
+ }
+
+ assert( iDb>=0 && iDb<db->nDb );
+ if( argv[3]==0 ){
+ corruptSchema(pData, argv, 0);
+ }else if( argv[4]
+ && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]]
+ && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){
+ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
+ ** But because db->init.busy is set to 1, no VDBE code is generated
+ ** or executed. All the parser does is build the internal data
+ ** structures that describe the table, index, or view.
+ **
+ ** No other valid SQL statement, other than the variable CREATE statements,
+ ** can begin with the letters "C" and "R". Thus, it is not possible run
+ ** any other kind of statement while parsing the schema, even a corrupt
+ ** schema.
+ */
+ int rc;
+ u8 saved_iDb = db->init.iDb;
+ sqlite3_stmt *pStmt;
+ TESTONLY(int rcp); /* Return code from sqlite3_prepare() */
+
+ assert( db->init.busy );
+ db->init.iDb = iDb;
+ if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0
+ || (db->init.newTnum>pData->mxPage && pData->mxPage>0)
+ ){
+ if( sqlite3Config.bExtraSchemaChecks ){
+ corruptSchema(pData, argv, "invalid rootpage");
+ }
+ }
+ db->init.orphanTrigger = 0;
+ db->init.azInit = (const char**)argv;
+ pStmt = 0;
+ TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0);
+ rc = db->errCode;
+ assert( (rc&0xFF)==(rcp&0xFF) );
+ db->init.iDb = saved_iDb;
+ /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */
+ if( SQLITE_OK!=rc ){
+ if( db->init.orphanTrigger ){
+ assert( iDb==1 );
+ }else{
+ if( rc > pData->rc ) pData->rc = rc;
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
+ corruptSchema(pData, argv, sqlite3_errmsg(db));
+ }
+ }
+ }
+ db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
+ sqlite3_finalize(pStmt);
+ }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){
+ corruptSchema(pData, argv, 0);
+ }else{
+ /* If the SQL column is blank it means this is an index that
+ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
+ ** constraint for a CREATE TABLE. The index should have already
+ ** been created when we processed the CREATE TABLE. All we have
+ ** to do here is record the root page number for that index.
+ */
+ Index *pIndex;
+ pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName);
+ if( pIndex==0 ){
+ corruptSchema(pData, argv, "orphan index");
+ }else
+ if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0
+ || pIndex->tnum<2
+ || pIndex->tnum>pData->mxPage
+ || sqlite3IndexHasDuplicateRootPage(pIndex)
+ ){
+ if( sqlite3Config.bExtraSchemaChecks ){
+ corruptSchema(pData, argv, "invalid rootpage");
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Attempt to read the database schema and initialize internal
+** data structures for a single database file. The index of the
+** database file is given by iDb. iDb==0 is used for the main
+** database. iDb==1 should never be used. iDb>=2 is used for
+** auxiliary databases. Return one of the SQLITE_ error codes to
+** indicate success or failure.
+*/
+SQLITE_PRIVATE int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){
+ int rc;
+ int i;
+#ifndef SQLITE_OMIT_DEPRECATED
+ int size;
+#endif
+ Db *pDb;
+ char const *azArg[6];
+ int meta[5];
+ InitData initData;
+ const char *zSchemaTabName;
+ int openedTransaction = 0;
+ int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed);
+
+ assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+
+ db->init.busy = 1;
+
+ /* Construct the in-memory representation schema tables (sqlite_schema or
+ ** sqlite_temp_schema) by invoking the parser directly. The appropriate
+ ** table name will be inserted automatically by the parser so we can just
+ ** use the abbreviation "x" here. The parser will also automatically tag
+ ** the schema table as read-only. */
+ azArg[0] = "table";
+ azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb);
+ azArg[2] = azArg[1];
+ azArg[3] = "1";
+ azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text,"
+ "rootpage int,sql text)";
+ azArg[5] = 0;
+ initData.db = db;
+ initData.iDb = iDb;
+ initData.rc = SQLITE_OK;
+ initData.pzErrMsg = pzErrMsg;
+ initData.mInitFlags = mFlags;
+ initData.nInitRow = 0;
+ initData.mxPage = 0;
+ sqlite3InitCallback(&initData, 5, (char **)azArg, 0);
+ db->mDbFlags &= mask;
+ if( initData.rc ){
+ rc = initData.rc;
+ goto error_out;
+ }
+
+ /* Create a cursor to hold the database open
+ */
+ pDb = &db->aDb[iDb];
+ if( pDb->pBt==0 ){
+ assert( iDb==1 );
+ DbSetProperty(db, 1, DB_SchemaLoaded);
+ rc = SQLITE_OK;
+ goto error_out;
+ }
+
+ /* If there is not already a read-only (or read-write) transaction opened
+ ** on the b-tree database, open one now. If a transaction is opened, it
+ ** will be closed before this function returns. */
+ sqlite3BtreeEnter(pDb->pBt);
+ if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){
+ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0);
+ if( rc!=SQLITE_OK ){
+ sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc));
+ goto initone_error_out;
+ }
+ openedTransaction = 1;
+ }
+
+ /* Get the database meta information.
+ **
+ ** Meta values are as follows:
+ ** meta[0] Schema cookie. Changes with each schema change.
+ ** meta[1] File format of schema layer.
+ ** meta[2] Size of the page cache.
+ ** meta[3] Largest rootpage (auto/incr_vacuum mode)
+ ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
+ ** meta[5] User version
+ ** meta[6] Incremental vacuum mode
+ ** meta[7] unused
+ ** meta[8] unused
+ ** meta[9] unused
+ **
+ ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
+ ** the possible values of meta[4].
+ */
+ for(i=0; i<ArraySize(meta); i++){
+ sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
+ }
+ if( (db->flags & SQLITE_ResetDatabase)!=0 ){
+ memset(meta, 0, sizeof(meta));
+ }
+ pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
+
+ /* If opening a non-empty database, check the text encoding. For the
+ ** main database, set sqlite3.enc to the encoding of the main database.
+ ** For an attached db, it is an error if the encoding is not the same
+ ** as sqlite3.enc.
+ */
+ if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */
+ if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
+ u8 encoding;
+#ifndef SQLITE_OMIT_UTF16
+ /* If opening the main database, set ENC(db). */
+ encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
+ if( encoding==0 ) encoding = SQLITE_UTF8;
+#else
+ encoding = SQLITE_UTF8;
+#endif
+ if( db->nVdbeActive>0 && encoding!=ENC(db)
+ && (db->mDbFlags & DBFLAG_Vacuum)==0
+ ){
+ rc = SQLITE_LOCKED;
+ goto initone_error_out;
+ }else{
+ sqlite3SetTextEncoding(db, encoding);
+ }
+ }else{
+ /* If opening an attached database, the encoding much match ENC(db) */
+ if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){
+ sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
+ " text encoding as main database");
+ rc = SQLITE_ERROR;
+ goto initone_error_out;
+ }
+ }
+ }
+ pDb->pSchema->enc = ENC(db);
+
+ if( pDb->pSchema->cache_size==0 ){
+#ifndef SQLITE_OMIT_DEPRECATED
+ size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
+ if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
+ pDb->pSchema->cache_size = size;
+#else
+ pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE;
+#endif
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+
+ /*
+ ** file_format==1 Version 3.0.0.
+ ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
+ ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
+ ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
+ */
+ pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
+ if( pDb->pSchema->file_format==0 ){
+ pDb->pSchema->file_format = 1;
+ }
+ if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
+ sqlite3SetString(pzErrMsg, db, "unsupported file format");
+ rc = SQLITE_ERROR;
+ goto initone_error_out;
+ }
+
+ /* Ticket #2804: When we open a database in the newer file format,
+ ** clear the legacy_file_format pragma flag so that a VACUUM will
+ ** not downgrade the database and thus invalidate any descending
+ ** indices that the user might have created.
+ */
+ if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
+ db->flags &= ~(u64)SQLITE_LegacyFileFmt;
+ }
+
+ /* Read the schema information out of the schema tables
+ */
+ assert( db->init.busy );
+ initData.mxPage = sqlite3BtreeLastPage(pDb->pBt);
+ {
+ char *zSql;
+ zSql = sqlite3MPrintf(db,
+ "SELECT*FROM\"%w\".%s ORDER BY rowid",
+ db->aDb[iDb].zDbSName, zSchemaTabName);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ sqlite3_xauth xAuth;
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+ }
+#endif
+ if( rc==SQLITE_OK ) rc = initData.rc;
+ sqlite3DbFree(db, zSql);
+#ifndef SQLITE_OMIT_ANALYZE
+ if( rc==SQLITE_OK ){
+ sqlite3AnalysisLoad(db, iDb);
+ }
+#endif
+ }
+ assert( pDb == &(db->aDb[iDb]) );
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM_BKPT;
+ sqlite3ResetAllSchemasOfConnection(db);
+ pDb = &db->aDb[iDb];
+ }else
+ if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){
+ /* Hack: If the SQLITE_NoSchemaError flag is set, then consider
+ ** the schema loaded, even if errors (other than OOM) occurred. In
+ ** this situation the current sqlite3_prepare() operation will fail,
+ ** but the following one will attempt to compile the supplied statement
+ ** against whatever subset of the schema was loaded before the error
+ ** occurred.
+ **
+ ** The primary purpose of this is to allow access to the sqlite_schema
+ ** table even when its contents have been corrupted.
+ */
+ DbSetProperty(db, iDb, DB_SchemaLoaded);
+ rc = SQLITE_OK;
+ }
+
+ /* Jump here for an error that occurs after successfully allocating
+ ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
+ ** before that point, jump to error_out.
+ */
+initone_error_out:
+ if( openedTransaction ){
+ sqlite3BtreeCommit(pDb->pBt);
+ }
+ sqlite3BtreeLeave(pDb->pBt);
+
+error_out:
+ if( rc ){
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ sqlite3ResetOneSchema(db, iDb);
+ }
+ db->init.busy = 0;
+ return rc;
+}
+
+/*
+** Initialize all database files - the main database file, the file
+** used to store temporary tables, and any additional database files
+** created using ATTACH statements. Return a success code. If an
+** error occurs, write an error message into *pzErrMsg.
+**
+** After a database is initialized, the DB_SchemaLoaded bit is set
+** bit is set in the flags field of the Db structure.
+*/
+SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
+ int i, rc;
+ int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange);
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) );
+ assert( db->init.busy==0 );
+ ENC(db) = SCHEMA_ENC(db);
+ assert( db->nDb>0 );
+ /* Do the main schema first */
+ if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){
+ rc = sqlite3InitOne(db, 0, pzErrMsg, 0);
+ if( rc ) return rc;
+ }
+ /* All other schemas after the main schema. The "temp" schema must be last */
+ for(i=db->nDb-1; i>0; i--){
+ assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) );
+ if( !DbHasProperty(db, i, DB_SchemaLoaded) ){
+ rc = sqlite3InitOne(db, i, pzErrMsg, 0);
+ if( rc ) return rc;
+ }
+ }
+ if( commit_internal ){
+ sqlite3CommitInternalChanges(db);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This routine is a no-op if the database schema is already initialized.
+** Otherwise, the schema is loaded. An error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
+ int rc = SQLITE_OK;
+ sqlite3 *db = pParse->db;
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( !db->init.busy ){
+ rc = sqlite3Init(db, &pParse->zErrMsg);
+ if( rc!=SQLITE_OK ){
+ pParse->rc = rc;
+ pParse->nErr++;
+ }else if( db->noSharedCache ){
+ db->mDbFlags |= DBFLAG_SchemaKnownOk;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Check schema cookies in all databases. If any cookie is out
+** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies
+** make no changes to pParse->rc.
+*/
+static void schemaIsValid(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ int iDb;
+ int rc;
+ int cookie;
+
+ assert( pParse->checkSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(iDb=0; iDb<db->nDb; iDb++){
+ int openedTransaction = 0; /* True if a transaction is opened */
+ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */
+ if( pBt==0 ) continue;
+
+ /* If there is not already a read-only (or read-write) transaction opened
+ ** on the b-tree database, open one now. If a transaction is opened, it
+ ** will be closed immediately after reading the meta-value. */
+ if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ sqlite3OomFault(db);
+ pParse->rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ) return;
+ openedTransaction = 1;
+ }
+
+ /* Read the schema cookie from the database. If it does not match the
+ ** value stored as part of the in-memory schema representation,
+ ** set Parse.rc to SQLITE_SCHEMA. */
+ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
+ if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA;
+ sqlite3ResetOneSchema(db, iDb);
+ }
+
+ /* Close the transaction, if one was opened. */
+ if( openedTransaction ){
+ sqlite3BtreeCommit(pBt);
+ }
+ }
+}
+
+/*
+** Convert a schema pointer into the iDb index that indicates
+** which database file in db->aDb[] the schema refers to.
+**
+** If the same database is attached more than once, the first
+** attached database is returned.
+*/
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
+ int i = -32768;
+
+ /* If pSchema is NULL, then return -32768. This happens when code in
+ ** expr.c is trying to resolve a reference to a transient table (i.e. one
+ ** created by a sub-select). In this case the return value of this
+ ** function should never be used.
+ **
+ ** We return -32768 instead of the more usual -1 simply because using
+ ** -32768 as the incorrect index into db->aDb[] is much
+ ** more likely to cause a segfault than -1 (of course there are assert()
+ ** statements too, but it never hurts to play the odds) and
+ ** -32768 will still fit into a 16-bit signed integer.
+ */
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( pSchema ){
+ for(i=0; 1; i++){
+ assert( i<db->nDb );
+ if( db->aDb[i].pSchema==pSchema ){
+ break;
+ }
+ }
+ assert( i>=0 && i<db->nDb );
+ }
+ return i;
+}
+
+/*
+** Free all memory allocations in the pParse object
+*/
+SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ assert( db!=0 );
+ assert( db->pParse==pParse );
+ assert( pParse->nested==0 );
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock);
+#endif
+ while( pParse->pCleanup ){
+ ParseCleanup *pCleanup = pParse->pCleanup;
+ pParse->pCleanup = pCleanup->pNext;
+ pCleanup->xCleanup(db, pCleanup->pPtr);
+ sqlite3DbNNFreeNN(db, pCleanup);
+ }
+ if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel);
+ if( pParse->pConstExpr ){
+ sqlite3ExprListDelete(db, pParse->pConstExpr);
+ }
+ assert( db->lookaside.bDisable >= pParse->disableLookaside );
+ db->lookaside.bDisable -= pParse->disableLookaside;
+ db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue;
+ assert( pParse->db->pParse==pParse );
+ db->pParse = pParse->pOuterParse;
+}
+
+/*
+** Add a new cleanup operation to a Parser. The cleanup should happen when
+** the parser object is destroyed. But, beware: the cleanup might happen
+** immediately.
+**
+** Use this mechanism for uncommon cleanups. There is a higher setup
+** cost for this mechanism (an extra malloc), so it should not be used
+** for common cleanups that happen on most calls. But for less
+** common cleanups, we save a single NULL-pointer comparison in
+** sqlite3ParseObjectReset(), which reduces the total CPU cycle count.
+**
+** If a memory allocation error occurs, then the cleanup happens immediately.
+** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the
+** pParse->earlyCleanup flag is set in that case. Calling code show verify
+** that test cases exist for which this happens, to guard against possible
+** use-after-free errors following an OOM. The preferred way to do this is
+** to immediately follow the call to this routine with:
+**
+** testcase( pParse->earlyCleanup );
+**
+** This routine returns a copy of its pPtr input (the third parameter)
+** except if an early cleanup occurs, in which case it returns NULL. So
+** another way to check for early cleanup is to check the return value.
+** Or, stop using the pPtr parameter with this call and use only its
+** return value thereafter. Something like this:
+**
+** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj);
+*/
+SQLITE_PRIVATE void *sqlite3ParserAddCleanup(
+ Parse *pParse, /* Destroy when this Parser finishes */
+ void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */
+ void *pPtr /* Pointer to object to be cleaned up */
+){
+ ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup));
+ if( pCleanup ){
+ pCleanup->pNext = pParse->pCleanup;
+ pParse->pCleanup = pCleanup;
+ pCleanup->pPtr = pPtr;
+ pCleanup->xCleanup = xCleanup;
+ }else{
+ xCleanup(pParse->db, pPtr);
+ pPtr = 0;
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+ pParse->earlyCleanup = 1;
+#endif
+ }
+ return pPtr;
+}
+
+/*
+** Turn bulk memory into a valid Parse object and link that Parse object
+** into database connection db.
+**
+** Call sqlite3ParseObjectReset() to undo this operation.
+**
+** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which
+** is generated by Lemon.
+*/
+SQLITE_PRIVATE void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){
+ memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ);
+ memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
+ assert( db->pParse!=pParse );
+ pParse->pOuterParse = db->pParse;
+ db->pParse = pParse;
+ pParse->db = db;
+ if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory");
+}
+
+/*
+** Maximum number of times that we will try again to prepare a statement
+** that returns SQLITE_ERROR_RETRY.
+*/
+#ifndef SQLITE_MAX_PREPARE_RETRY
+# define SQLITE_MAX_PREPARE_RETRY 25
+#endif
+
+/*
+** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
+*/
+static int sqlite3Prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ Vdbe *pReprepare, /* VM being reprepared */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc = SQLITE_OK; /* Result code */
+ int i; /* Loop counter */
+ Parse sParse; /* Parsing context */
+
+ /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */
+ memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ);
+ memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ);
+ sParse.pOuterParse = db->pParse;
+ db->pParse = &sParse;
+ sParse.db = db;
+ if( pReprepare ){
+ sParse.pReprepare = pReprepare;
+ sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare);
+ }else{
+ assert( sParse.pReprepare==0 );
+ }
+ assert( ppStmt && *ppStmt==0 );
+ if( db->mallocFailed ){
+ sqlite3ErrorMsg(&sParse, "out of memory");
+ db->errCode = rc = SQLITE_NOMEM;
+ goto end_prepare;
+ }
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ /* For a long-term use prepared statement avoid the use of
+ ** lookaside memory.
+ */
+ if( prepFlags & SQLITE_PREPARE_PERSISTENT ){
+ sParse.disableLookaside++;
+ DisableLookaside;
+ }
+ sParse.prepFlags = prepFlags & 0xff;
+
+ /* Check to verify that it is possible to get a read lock on all
+ ** database schemas. The inability to get a read lock indicates that
+ ** some other database connection is holding a write-lock, which in
+ ** turn means that the other connection has made uncommitted changes
+ ** to the schema.
+ **
+ ** Were we to proceed and prepare the statement against the uncommitted
+ ** schema changes and if those schema changes are subsequently rolled
+ ** back and different changes are made in their place, then when this
+ ** prepared statement goes to run the schema cookie would fail to detect
+ ** the schema change. Disaster would follow.
+ **
+ ** This thread is currently holding mutexes on all Btrees (because
+ ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
+ ** is not possible for another thread to start a new schema change
+ ** while this routine is running. Hence, we do not need to hold
+ ** locks on the schema, we just need to make sure nobody else is
+ ** holding them.
+ **
+ ** Note that setting READ_UNCOMMITTED overrides most lock detection,
+ ** but it does *not* override schema lock detection, so this all still
+ ** works even if READ_UNCOMMITTED is set.
+ */
+ if( !db->noSharedCache ){
+ for(i=0; i<db->nDb; i++) {
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ assert( sqlite3BtreeHoldsMutex(pBt) );
+ rc = sqlite3BtreeSchemaLocked(pBt);
+ if( rc ){
+ const char *zDb = db->aDb[i].zDbSName;
+ sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb);
+ testcase( db->flags & SQLITE_ReadUncommit );
+ goto end_prepare;
+ }
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( db->pDisconnect ) sqlite3VtabUnlockList(db);
+#endif
+
+ if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
+ char *zSqlCopy;
+ int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+ testcase( nBytes==mxLen );
+ testcase( nBytes==mxLen+1 );
+ if( nBytes>mxLen ){
+ sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long");
+ rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
+ goto end_prepare;
+ }
+ zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
+ if( zSqlCopy ){
+ sqlite3RunParser(&sParse, zSqlCopy);
+ sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
+ sqlite3DbFree(db, zSqlCopy);
+ }else{
+ sParse.zTail = &zSql[nBytes];
+ }
+ }else{
+ sqlite3RunParser(&sParse, zSql);
+ }
+ assert( 0==sParse.nQueryLoop );
+
+ if( pzTail ){
+ *pzTail = sParse.zTail;
+ }
+
+ if( db->init.busy==0 ){
+ sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags);
+ }
+ if( db->mallocFailed ){
+ sParse.rc = SQLITE_NOMEM_BKPT;
+ sParse.checkSchema = 0;
+ }
+ if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){
+ if( sParse.checkSchema && db->init.busy==0 ){
+ schemaIsValid(&sParse);
+ }
+ if( sParse.pVdbe ){
+ sqlite3VdbeFinalize(sParse.pVdbe);
+ }
+ assert( 0==(*ppStmt) );
+ rc = sParse.rc;
+ if( sParse.zErrMsg ){
+ sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg);
+ sqlite3DbFree(db, sParse.zErrMsg);
+ }else{
+ sqlite3Error(db, rc);
+ }
+ }else{
+ assert( sParse.zErrMsg==0 );
+ *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
+ rc = SQLITE_OK;
+ sqlite3ErrorClear(db);
+ }
+
+
+ /* Delete any TriggerPrg structures allocated while parsing this statement. */
+ while( sParse.pTriggerPrg ){
+ TriggerPrg *pT = sParse.pTriggerPrg;
+ sParse.pTriggerPrg = pT->pNext;
+ sqlite3DbFree(db, pT);
+ }
+
+end_prepare:
+
+ sqlite3ParseObjectReset(&sParse);
+ return rc;
+}
+static int sqlite3LockAndPrepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ Vdbe *pOld, /* VM being reprepared */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ int cnt = 0;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppStmt = 0;
+ if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ do{
+ /* Make multiple attempts to compile the SQL, until it either succeeds
+ ** or encounters a permanent error. A schema problem after one schema
+ ** reset is considered a permanent error. */
+ rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail);
+ assert( rc==SQLITE_OK || *ppStmt==0 );
+ if( rc==SQLITE_OK || db->mallocFailed ) break;
+ }while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY)
+ || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) );
+ sqlite3BtreeLeaveAll(db);
+ rc = sqlite3ApiExit(db, rc);
+ assert( (rc&db->errMask)==rc );
+ db->busyHandler.nBusy = 0;
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** Rerun the compilation of a statement after a schema change.
+**
+** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
+** if the statement cannot be recompiled because another connection has
+** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error
+** occurs, return SQLITE_SCHEMA.
+*/
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
+ int rc;
+ sqlite3_stmt *pNew;
+ const char *zSql;
+ sqlite3 *db;
+ u8 prepFlags;
+
+ assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
+ zSql = sqlite3_sql((sqlite3_stmt *)p);
+ assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
+ db = sqlite3VdbeDb(p);
+ assert( sqlite3_mutex_held(db->mutex) );
+ prepFlags = sqlite3VdbePrepareFlags(p);
+ rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0);
+ if( rc ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ assert( pNew==0 );
+ return rc;
+ }else{
+ assert( pNew!=0 );
+ }
+ sqlite3VdbeSwap((Vdbe*)pNew, p);
+ sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
+ sqlite3VdbeResetStepResult((Vdbe*)pNew);
+ sqlite3VdbeFinalize((Vdbe*)pNew);
+ return SQLITE_OK;
+}
+
+
+/*
+** Two versions of the official API. Legacy and new use. In the legacy
+** version, the original SQL text is not saved in the prepared statement
+** and so if a schema change occurs, SQLITE_SCHEMA is returned by
+** sqlite3_step(). In the new version, the original SQL text is retained
+** and the statement is automatically recompiled if an schema change
+** occurs.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works
+ ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags
+ ** parameter.
+ **
+ ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0,
+ ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
+ return rc;
+}
+SQLITE_API int sqlite3_prepare_v3(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from
+ ** sqlite3_prepare_v2() only in having the extra prepFlags parameter,
+ ** which is a bit array consisting of zero or more of the
+ ** SQLITE_PREPARE_* flags.
+ **
+ ** Proof by comparison to the implementation of sqlite3_prepare_v2()
+ ** directly above. */
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,
+ SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
+ 0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );
+ return rc;
+}
+
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
+*/
+static int sqlite3Prepare16(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ /* This function currently works by first transforming the UTF-16
+ ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
+ ** tricky bit is figuring out the pointer to return in *pzTail.
+ */
+ char *zSql8;
+ const char *zTail8 = 0;
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppStmt = 0;
+ if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( nBytes>=0 ){
+ int sz;
+ const char *z = (const char*)zSql;
+ for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
+ nBytes = sz;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
+ if( zSql8 ){
+ rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8);
+ }
+
+ if( zTail8 && pzTail ){
+ /* If sqlite3_prepare returns a tail pointer, we calculate the
+ ** equivalent pointer into the UTF-16 string by counting the unicode
+ ** characters between zSql8 and zTail8, and then returning a pointer
+ ** the same number of characters into the UTF-16 string.
+ */
+ int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
+ *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
+ }
+ sqlite3DbFree(db, zSql8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Two versions of the official API. Legacy and new use. In the legacy
+** version, the original SQL text is not saved in the prepared statement
+** and so if a schema change occurs, SQLITE_SCHEMA is returned by
+** sqlite3_step(). In the new version, the original SQL text is retained
+** and the statement is automatically recompiled if an schema change
+** occurs.
+*/
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare16_v3(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-16 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,
+ SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK),
+ ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_UTF16 */
+
+/************** End of prepare.c *********************************************/
+/************** Begin file select.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+*/
+/* #include "sqliteInt.h" */
+
+/*
+** An instance of the following object is used to record information about
+** how to process the DISTINCT keyword, to simplify passing that information
+** into the selectInnerLoop() routine.
+*/
+typedef struct DistinctCtx DistinctCtx;
+struct DistinctCtx {
+ u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
+ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
+ int tabTnct; /* Ephemeral table used for DISTINCT processing */
+ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
+};
+
+/*
+** An instance of the following object is used to record information about
+** the ORDER BY (or GROUP BY) clause of query is being coded.
+**
+** The aDefer[] array is used by the sorter-references optimization. For
+** example, assuming there is no index that can be used for the ORDER BY,
+** for the query:
+**
+** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
+**
+** it may be more efficient to add just the "a" values to the sorter, and
+** retrieve the associated "bigblob" values directly from table t1 as the
+** 10 smallest "a" values are extracted from the sorter.
+**
+** When the sorter-reference optimization is used, there is one entry in the
+** aDefer[] array for each database table that may be read as values are
+** extracted from the sorter.
+*/
+typedef struct SortCtx SortCtx;
+struct SortCtx {
+ ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
+ int nOBSat; /* Number of ORDER BY terms satisfied by indices */
+ int iECursor; /* Cursor number for the sorter */
+ int regReturn; /* Register holding block-output return address */
+ int labelBkOut; /* Start label for the block-output subroutine */
+ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
+ int labelDone; /* Jump here when done, ex: LIMIT reached */
+ int labelOBLopt; /* Jump here when sorter is full */
+ u8 sortFlags; /* Zero or more SORTFLAG_* bits */
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ u8 nDefer; /* Number of valid entries in aDefer[] */
+ struct DeferredCsr {
+ Table *pTab; /* Table definition */
+ int iCsr; /* Cursor number for table */
+ int nKey; /* Number of PK columns for table pTab (>=1) */
+ } aDefer[4];
+#endif
+ struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrPush; /* First instruction to push data into sorter */
+ int addrPushEnd; /* Last instruction that pushes data into sorter */
+#endif
+};
+#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
+
+/*
+** Delete all the content of a Select structure. Deallocate the structure
+** itself depending on the value of bFree
+**
+** If bFree==1, call sqlite3DbFree() on the p object.
+** If bFree==0, Leave the first Select object unfreed
+*/
+static void clearSelect(sqlite3 *db, Select *p, int bFree){
+ assert( db!=0 );
+ while( p ){
+ Select *pPrior = p->pPrior;
+ sqlite3ExprListDelete(db, p->pEList);
+ sqlite3SrcListDelete(db, p->pSrc);
+ sqlite3ExprDelete(db, p->pWhere);
+ sqlite3ExprListDelete(db, p->pGroupBy);
+ sqlite3ExprDelete(db, p->pHaving);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3ExprDelete(db, p->pLimit);
+ if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
+ sqlite3WindowListDelete(db, p->pWinDefn);
+ }
+ while( p->pWin ){
+ assert( p->pWin->ppThis==&p->pWin );
+ sqlite3WindowUnlinkFromSelect(p->pWin);
+ }
+#endif
+ if( bFree ) sqlite3DbNNFreeNN(db, p);
+ p = pPrior;
+ bFree = 1;
+ }
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+ pDest->eDest = (u8)eDest;
+ pDest->iSDParm = iParm;
+ pDest->iSDParm2 = 0;
+ pDest->zAffSdst = 0;
+ pDest->iSdst = 0;
+ pDest->nSdst = 0;
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+SQLITE_PRIVATE Select *sqlite3SelectNew(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ u32 selFlags, /* Flag parameters, such as SF_Distinct */
+ Expr *pLimit /* LIMIT value. NULL means not used */
+){
+ Select *pNew, *pAllocated;
+ Select standin;
+ pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
+ if( pNew==0 ){
+ assert( pParse->db->mallocFailed );
+ pNew = &standin;
+ }
+ if( pEList==0 ){
+ pEList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3Expr(pParse->db,TK_ASTERISK,0));
+ }
+ pNew->pEList = pEList;
+ pNew->op = TK_SELECT;
+ pNew->selFlags = selFlags;
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
+ pNew->selId = ++pParse->nSelect;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->nSelectRow = 0;
+ if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->pPrior = 0;
+ pNew->pNext = 0;
+ pNew->pLimit = pLimit;
+ pNew->pWith = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNew->pWin = 0;
+ pNew->pWinDefn = 0;
+#endif
+ if( pParse->db->mallocFailed ) {
+ clearSelect(pParse->db, pNew, pNew!=&standin);
+ pAllocated = 0;
+ }else{
+ assert( pNew->pSrc!=0 || pParse->nErr>0 );
+ }
+ return pAllocated;
+}
+
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
+ if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
+}
+
+/*
+** Return a pointer to the right-most SELECT statement in a compound.
+*/
+static Select *findRightmost(Select *p){
+ while( p->pNext ) p = p->pNext;
+ return p;
+}
+
+/*
+** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_CROSS
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+**
+** These are the valid join types:
+**
+**
+** pA pB pC Return Value
+** ------- ----- ----- ------------
+** CROSS - - JT_CROSS
+** INNER - - JT_INNER
+** LEFT - - JT_LEFT|JT_OUTER
+** LEFT OUTER - JT_LEFT|JT_OUTER
+** RIGHT - - JT_RIGHT|JT_OUTER
+** RIGHT OUTER - JT_RIGHT|JT_OUTER
+** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
+** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
+** NATURAL INNER - JT_NATURAL|JT_INNER
+** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
+** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
+** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
+** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
+** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
+** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
+**
+** To preserve historical compatibly, SQLite also accepts a variety
+** of other non-standard and in many cases nonsensical join types.
+** This routine makes as much sense at it can from the nonsense join
+** type and returns a result. Examples of accepted nonsense join types
+** include but are not limited to:
+**
+** INNER CROSS JOIN -> same as JOIN
+** NATURAL CROSS JOIN -> same as NATURAL JOIN
+** OUTER LEFT JOIN -> same as LEFT JOIN
+** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
+** LEFT RIGHT JOIN -> same as FULL JOIN
+** RIGHT OUTER FULL JOIN -> same as FULL JOIN
+** CROSS CROSS CROSS JOIN -> same as JOIN
+**
+** The only restrictions on the join type name are:
+**
+** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
+** or "FULL".
+**
+** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
+** or "FULL".
+**
+** * If "OUTER" is present then there must also be one of
+** "LEFT", "RIGHT", or "FULL"
+*/
+SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ /* 0123456789 123456789 123456789 123 */
+ static const char zKeyText[] = "naturaleftouterightfullinnercross";
+ static const struct {
+ u8 i; /* Beginning of keyword text in zKeyText[] */
+ u8 nChar; /* Length of the keyword in characters */
+ u8 code; /* Join type mask */
+ } aKeyword[] = {
+ /* (0) natural */ { 0, 7, JT_NATURAL },
+ /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
+ /* (2) outer */ { 10, 5, JT_OUTER },
+ /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
+ /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ /* (5) inner */ { 23, 5, JT_INNER },
+ /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<ArraySize(aKeyword); j++){
+ if( p->n==aKeyword[j].nChar
+ && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
+ jointype |= aKeyword[j].code;
+ break;
+ }
+ }
+ testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
+ if( j>=ArraySize(aKeyword) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0 ||
+ (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
+ ){
+ const char *zSp1 = " ";
+ const char *zSp2 = " ";
+ if( pB==0 ){ zSp1++; }
+ if( pC==0 ){ zSp2++; }
+ sqlite3ErrorMsg(pParse, "unknown join type: "
+ "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+SQLITE_PRIVATE int sqlite3ColumnIndex(Table *pTab, const char *zCol){
+ int i;
+ u8 h = sqlite3StrIHash(zCol);
+ Column *pCol;
+ for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
+ if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Mark a subquery result column as having been used.
+*/
+SQLITE_PRIVATE void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
+ assert( pItem!=0 );
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ if( pItem->fg.isNestedFrom ){
+ ExprList *pResults;
+ assert( pItem->pSelect!=0 );
+ pResults = pItem->pSelect->pEList;
+ assert( pResults!=0 );
+ assert( iCol>=0 && iCol<pResults->nExpr );
+ pResults->a[iCol].fg.bUsed = 1;
+ }
+}
+
+/*
+** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
+** table that has a column named zCol. The search is left-to-right.
+** The first match found is returned.
+**
+** When found, set *piTab and *piCol to the table index and column index
+** of the matching column and return TRUE.
+**
+** If not found, return FALSE.
+*/
+static int tableAndColumnIndex(
+ SrcList *pSrc, /* Array of tables to search */
+ int iStart, /* First member of pSrc->a[] to check */
+ int iEnd, /* Last member of pSrc->a[] to check */
+ const char *zCol, /* Name of the column we are looking for */
+ int *piTab, /* Write index of pSrc->a[] here */
+ int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
+ int bIgnoreHidden /* Ignore hidden columns */
+){
+ int i; /* For looping over tables in pSrc */
+ int iCol; /* Index of column matching zCol */
+
+ assert( iEnd<pSrc->nSrc );
+ assert( iStart>=0 );
+ assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
+
+ for(i=iStart; i<=iEnd; i++){
+ iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
+ if( iCol>=0
+ && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
+ ){
+ if( piTab ){
+ sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
+ *piTab = i;
+ *piCol = iCol;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Set the EP_OuterON property on all terms of the given expression.
+** And set the Expr.w.iJoin to iTable for every term in the
+** expression.
+**
+** The EP_OuterON property is used on terms of an expression to tell
+** the OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.w.iJoin tells the WHERE clause processing that the
+** expression depends on table w.iJoin even if that table is not
+** explicitly mentioned in the expression. That information is needed
+** for cases like this:
+**
+** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join. In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5. If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+SQLITE_PRIVATE void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
+ assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
+ while( p ){
+ ExprSetProperty(p, joinFlag);
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(p, EP_NoReduce);
+ p->w.iJoin = iTable;
+ if( p->op==TK_FUNCTION ){
+ assert( ExprUseXList(p) );
+ if( p->x.pList ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
+ }
+ }
+ }
+ sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
+ p = p->pRight;
+ }
+}
+
+/* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
+** is simplified into an ordinary JOIN, and when an ON expression is
+** "pushed down" into the WHERE clause of a subquery.
+**
+** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
+** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
+** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
+**
+** If nullable is true, that means that Expr p might evaluate to NULL even
+** if it is a reference to a NOT NULL column. This can happen, for example,
+** if the table that p references is on the left side of a RIGHT JOIN.
+** If nullable is true, then take care to not remove the EP_CanBeNull bit.
+** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
+*/
+static void unsetJoinExpr(Expr *p, int iTable, int nullable){
+ while( p ){
+ if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
+ ExprClearProperty(p, EP_OuterON|EP_InnerON);
+ if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
+ }
+ if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
+ ExprClearProperty(p, EP_CanBeNull);
+ }
+ if( p->op==TK_FUNCTION ){
+ assert( ExprUseXList(p) );
+ assert( p->pLeft==0 );
+ if( p->x.pList ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
+ }
+ }
+ }
+ unsetJoinExpr(p->pLeft, iTable, nullable);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+**
+** * A NATURAL join is converted into a USING join. After that, we
+** do not need to be concerned with NATURAL joins and we only have
+** think about USING joins.
+**
+** * ON and USING clauses result in extra terms being added to the
+** WHERE clause to enforce the specified constraints. The extra
+** WHERE clause terms will be tagged with EP_OuterON or
+** EP_InnerON so that we know that they originated in ON/USING.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc. The right-most
+** table is the last entry. The join operator is held in the entry to
+** the right. Thus entry 1 contains the join operator for the join between
+** entries 0 and 1. Any ON or USING clauses associated with the join are
+** also attached to the right entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqlite3ProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc; /* All tables in the FROM clause */
+ int i, j; /* Loop counters */
+ SrcItem *pLeft; /* Left table being joined */
+ SrcItem *pRight; /* Right table being joined */
+
+ pSrc = p->pSrc;
+ pLeft = &pSrc->a[0];
+ pRight = &pLeft[1];
+ for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+ Table *pRightTab = pRight->pTab;
+ u32 joinType;
+
+ if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
+ joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
+
+ /* If this is a NATURAL join, synthesize an appropriate USING clause
+ ** to specify which columns should be joined.
+ */
+ if( pRight->fg.jointype & JT_NATURAL ){
+ IdList *pUsing = 0;
+ if( pRight->fg.isUsing || pRight->u3.pOn ){
+ sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ return 1;
+ }
+ for(j=0; j<pRightTab->nCol; j++){
+ char *zName; /* Name of column in the right table */
+
+ if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
+ zName = pRightTab->aCol[j].zCnName;
+ if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
+ pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
+ if( pUsing ){
+ assert( pUsing->nId>0 );
+ assert( pUsing->a[pUsing->nId-1].zName==0 );
+ pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
+ }
+ }
+ }
+ if( pUsing ){
+ pRight->fg.isUsing = 1;
+ pRight->fg.isSynthUsing = 1;
+ pRight->u3.pUsing = pUsing;
+ }
+ if( pParse->nErr ) return 1;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pRight->fg.isUsing ){
+ IdList *pList = pRight->u3.pUsing;
+ sqlite3 *db = pParse->db;
+ assert( pList!=0 );
+ for(j=0; j<pList->nId; j++){
+ char *zName; /* Name of the term in the USING clause */
+ int iLeft; /* Table on the left with matching column name */
+ int iLeftCol; /* Column number of matching column on the left */
+ int iRightCol; /* Column number of matching column on the right */
+ Expr *pE1; /* Reference to the column on the LEFT of the join */
+ Expr *pE2; /* Reference to the column on the RIGHT of the join */
+ Expr *pEq; /* Equality constraint. pE1 == pE2 */
+
+ zName = pList->a[j].zName;
+ iRightCol = sqlite3ColumnIndex(pRightTab, zName);
+ if( iRightCol<0
+ || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
+ pRight->fg.isSynthUsing)==0
+ ){
+ sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+ "not present in both tables", zName);
+ return 1;
+ }
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
+ sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
+ if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ /* This branch runs if the query contains one or more RIGHT or FULL
+ ** JOINs. If only a single table on the left side of this join
+ ** contains the zName column, then this branch is a no-op.
+ ** But if there are two or more tables on the left side
+ ** of the join, construct a coalesce() function that gathers all
+ ** such tables. Raise an error if more than one of those references
+ ** to zName is not also within a prior USING clause.
+ **
+ ** We really ought to raise an error if there are two or more
+ ** non-USING references to zName on the left of an INNER or LEFT
+ ** JOIN. But older versions of SQLite do not do that, so we avoid
+ ** adding a new error so as to not break legacy applications.
+ */
+ ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
+ static const Token tkCoalesce = { "coalesce", 8 };
+ while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
+ pRight->fg.isSynthUsing)!=0 ){
+ if( pSrc->a[iLeft].fg.isUsing==0
+ || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
+ ){
+ sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
+ zName);
+ break;
+ }
+ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
+ sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
+ }
+ if( pFuncArgs ){
+ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
+ pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
+ }
+ }
+ pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
+ sqlite3SrcItemColumnUsed(pRight, iRightCol);
+ pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
+ assert( pE2!=0 || pEq==0 );
+ if( pEq ){
+ ExprSetProperty(pEq, joinType);
+ assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(pEq, EP_NoReduce);
+ pEq->w.iJoin = pE2->iTable;
+ }
+ p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
+ }
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** an AND operator.
+ */
+ else if( pRight->u3.pOn ){
+ sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
+ p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
+ pRight->u3.pOn = 0;
+ pRight->fg.isOn = 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** An instance of this object holds information (beyond pParse and pSelect)
+** needed to load the next result row that is to be added to the sorter.
+*/
+typedef struct RowLoadInfo RowLoadInfo;
+struct RowLoadInfo {
+ int regResult; /* Store results in array of registers here */
+ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ ExprList *pExtra; /* Extra columns needed by sorter refs */
+ int regExtraResult; /* Where to load the extra columns */
+#endif
+};
+
+/*
+** This routine does the work of loading query data into an array of
+** registers so that it can be added to the sorter.
+*/
+static void innerLoopLoadRow(
+ Parse *pParse, /* Statement under construction */
+ Select *pSelect, /* The query being coded */
+ RowLoadInfo *pInfo /* Info needed to complete the row load */
+){
+ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
+ 0, pInfo->ecelFlags);
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pInfo->pExtra ){
+ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
+ sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
+ }
+#endif
+}
+
+/*
+** Code the OP_MakeRecord instruction that generates the entry to be
+** added into the sorter.
+**
+** Return the register in which the result is stored.
+*/
+static int makeSorterRecord(
+ Parse *pParse,
+ SortCtx *pSort,
+ Select *pSelect,
+ int regBase,
+ int nBase
+){
+ int nOBSat = pSort->nOBSat;
+ Vdbe *v = pParse->pVdbe;
+ int regOut = ++pParse->nMem;
+ if( pSort->pDeferredRowLoad ){
+ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
+ return regOut;
+}
+
+/*
+** Generate code that will push the record in registers regData
+** through regData+nData-1 onto the sorter.
+*/
+static void pushOntoSorter(
+ Parse *pParse, /* Parser context */
+ SortCtx *pSort, /* Information about the ORDER BY clause */
+ Select *pSelect, /* The whole SELECT statement */
+ int regData, /* First register holding data to be sorted */
+ int regOrigData, /* First register holding data before packing */
+ int nData, /* Number of elements in the regData data array */
+ int nPrefixReg /* No. of reg prior to regData available for use */
+){
+ Vdbe *v = pParse->pVdbe; /* Stmt under construction */
+ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
+ int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
+ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
+ int regBase; /* Regs for sorter record */
+ int regRecord = 0; /* Assembled sorter record */
+ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
+ int op; /* Opcode to add sorter record to sorter */
+ int iLimit; /* LIMIT counter */
+ int iSkip = 0; /* End of the sorter insert loop */
+
+ assert( bSeq==0 || bSeq==1 );
+
+ /* Three cases:
+ ** (1) The data to be sorted has already been packed into a Record
+ ** by a prior OP_MakeRecord. In this case nData==1 and regData
+ ** will be completely unrelated to regOrigData.
+ ** (2) All output columns are included in the sort record. In that
+ ** case regData==regOrigData.
+ ** (3) Some output columns are omitted from the sort record due to
+ ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
+ ** SQLITE_ECEL_OMITREF optimization, or due to the
+ ** SortCtx.pDeferredRowLoad optimization. In any of these cases
+ ** regOrigData is 0 to prevent this routine from trying to copy
+ ** values that might not yet exist.
+ */
+ assert( nData==1 || regData==regOrigData || regOrigData==0 );
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ pSort->addrPush = sqlite3VdbeCurrentAddr(v);
+#endif
+
+ if( nPrefixReg ){
+ assert( nPrefixReg==nExpr+bSeq );
+ regBase = regData - nPrefixReg;
+ }else{
+ regBase = pParse->nMem + 1;
+ pParse->nMem += nBase;
+ }
+ assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
+ iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
+ pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
+ SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
+ if( bSeq ){
+ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
+ }
+ if( nPrefixReg==0 && nData>0 ){
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
+ }
+ if( nOBSat>0 ){
+ int regPrevKey; /* The first nOBSat columns of the previous row */
+ int addrFirst; /* Address of the OP_IfNot opcode */
+ int addrJmp; /* Address of the OP_Jump opcode */
+ VdbeOp *pOp; /* Opcode that opens the sorter */
+ int nKey; /* Number of sorting key columns, including OP_Sequence */
+ KeyInfo *pKI; /* Original KeyInfo on the sorter table */
+
+ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
+ regPrevKey = pParse->nMem+1;
+ pParse->nMem += pSort->nOBSat;
+ nKey = nExpr - pSort->nOBSat + bSeq;
+ if( bSeq ){
+ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
+ }else{
+ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
+ }
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
+ pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
+ if( pParse->db->mallocFailed ) return;
+ pOp->p2 = nKey + nData;
+ pKI = pOp->p4.pKeyInfo;
+ memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
+ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
+ testcase( pKI->nAllField > pKI->nKeyField+2 );
+ pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
+ pKI->nAllField-pKI->nKeyField-1);
+ pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
+ addrJmp = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
+ pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
+ pSort->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
+ if( iLimit ){
+ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeJumpHere(v, addrFirst);
+ sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
+ sqlite3VdbeJumpHere(v, addrJmp);
+ }
+ if( iLimit ){
+ /* At this point the values for the new sorter entry are stored
+ ** in an array of registers. They need to be composed into a record
+ ** and inserted into the sorter if either (a) there are currently
+ ** less than LIMIT+OFFSET items or (b) the new record is smaller than
+ ** the largest record currently in the sorter. If (b) is true and there
+ ** are already LIMIT+OFFSET items in the sorter, delete the largest
+ ** entry before inserting the new one. This way there are never more
+ ** than LIMIT+OFFSET items in the sorter.
+ **
+ ** If the new record does not need to be inserted into the sorter,
+ ** jump to the next iteration of the loop. If the pSort->labelOBLopt
+ ** value is not zero, then it is a label of where to jump. Otherwise,
+ ** just bypass the row insert logic. See the header comment on the
+ ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
+ */
+ int iCsr = pSort->iECursor;
+ sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
+ iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
+ iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
+ }
+ if( regRecord==0 ){
+ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
+ }
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ op = OP_SorterInsert;
+ }else{
+ op = OP_IdxInsert;
+ }
+ sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
+ regBase+nOBSat, nBase-nOBSat);
+ if( iSkip ){
+ sqlite3VdbeChangeP2(v, iSkip,
+ pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
+ }
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1;
+#endif
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+ Vdbe *v, /* Generate code into this VM */
+ int iOffset, /* Register holding the offset counter */
+ int iContinue /* Jump here to skip the current record */
+){
+ if( iOffset>0 ){
+ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
+ VdbeComment((v, "OFFSET"));
+ }
+}
+
+/*
+** Add code that will check to make sure the array of registers starting at
+** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
+** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
+** are available. Which is used depends on the value of parameter eTnctType,
+** as follows:
+**
+** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
+** Build an ephemeral table that contains all entries seen before and
+** skip entries which have been seen before.
+**
+** Parameter iTab is the cursor number of an ephemeral table that must
+** be opened before the VM code generated by this routine is executed.
+** The ephemeral cursor table is queried for a record identical to the
+** record formed by the current array of registers. If one is found,
+** jump to VM address addrRepeat. Otherwise, insert a new record into
+** the ephemeral cursor and proceed.
+**
+** The returned value in this case is a copy of parameter iTab.
+**
+** WHERE_DISTINCT_ORDERED:
+** In this case rows are being delivered sorted order. The ephemeral
+** table is not required. Instead, the current set of values
+** is compared against previous row. If they match, the new row
+** is not distinct and control jumps to VM address addrRepeat. Otherwise,
+** the VM program proceeds with processing the new row.
+**
+** The returned value in this case is the register number of the first
+** in an array of registers used to store the previous result row so that
+** it can be compared to the next. The caller must ensure that this
+** register is initialized to NULL. (The fixDistinctOpenEph() routine
+** will take care of this initialization.)
+**
+** WHERE_DISTINCT_UNIQUE:
+** In this case it has already been determined that the rows are distinct.
+** No special action is required. The return value is zero.
+**
+** Parameter pEList is the list of expressions used to generated the
+** contents of each row. It is used by this routine to determine (a)
+** how many elements there are in the array of registers and (b) the
+** collation sequences that should be used for the comparisons if
+** eTnctType is WHERE_DISTINCT_ORDERED.
+*/
+static int codeDistinct(
+ Parse *pParse, /* Parsing and code generating context */
+ int eTnctType, /* WHERE_DISTINCT_* value */
+ int iTab, /* A sorting index used to test for distinctness */
+ int addrRepeat, /* Jump to here if not distinct */
+ ExprList *pEList, /* Expression for each element */
+ int regElem /* First element */
+){
+ int iRet = 0;
+ int nResultCol = pEList->nExpr;
+ Vdbe *v = pParse->pVdbe;
+
+ switch( eTnctType ){
+ case WHERE_DISTINCT_ORDERED: {
+ int i;
+ int iJump; /* Jump destination */
+ int regPrev; /* Previous row content */
+
+ /* Allocate space for the previous row */
+ iRet = regPrev = pParse->nMem+1;
+ pParse->nMem += nResultCol;
+
+ iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
+ for(i=0; i<nResultCol; i++){
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
+ if( i<nResultCol-1 ){
+ sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
+ VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ }
+ assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
+ sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
+ break;
+ }
+
+ case WHERE_DISTINCT_UNIQUE: {
+ /* nothing to do */
+ break;
+ }
+
+ default: {
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3ReleaseTempReg(pParse, r1);
+ iRet = iTab;
+ break;
+ }
+ }
+
+ return iRet;
+}
+
+/*
+** This routine runs after codeDistinct(). It makes necessary
+** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
+** routine made use of. This processing must be done separately since
+** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
+** laid down.
+**
+** WHERE_DISTINCT_NOOP:
+** WHERE_DISTINCT_UNORDERED:
+**
+** No adjustments necessary. This function is a no-op.
+**
+** WHERE_DISTINCT_UNIQUE:
+**
+** The ephemeral table is not needed. So change the
+** OP_OpenEphemeral opcode into an OP_Noop.
+**
+** WHERE_DISTINCT_ORDERED:
+**
+** The ephemeral table is not needed. But we do need register
+** iVal to be initialized to NULL. So change the OP_OpenEphemeral
+** into an OP_Null on the iVal register.
+*/
+static void fixDistinctOpenEph(
+ Parse *pParse, /* Parsing and code generating context */
+ int eTnctType, /* WHERE_DISTINCT_* value */
+ int iVal, /* Value returned by codeDistinct() */
+ int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
+){
+ if( pParse->nErr==0
+ && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
+ ){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
+ if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
+ sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
+ }
+ if( eTnctType==WHERE_DISTINCT_ORDERED ){
+ /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
+ ** bit on the first register of the previous value. This will cause the
+ ** OP_Ne added in codeDistinct() to always fail on the first iteration of
+ ** the loop even if the first row is all NULLs. */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
+ pOp->opcode = OP_Null;
+ pOp->p1 = 1;
+ pOp->p2 = iVal;
+ }
+ }
+}
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+/*
+** This function is called as part of inner-loop generation for a SELECT
+** statement with an ORDER BY that is not optimized by an index. It
+** determines the expressions, if any, that the sorter-reference
+** optimization should be used for. The sorter-reference optimization
+** is used for SELECT queries like:
+**
+** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
+**
+** If the optimization is used for expression "bigblob", then instead of
+** storing values read from that column in the sorter records, the PK of
+** the row from table t1 is stored instead. Then, as records are extracted from
+** the sorter to return to the user, the required value of bigblob is
+** retrieved directly from table t1. If the values are very large, this
+** can be more efficient than storing them directly in the sorter records.
+**
+** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
+** for which the sorter-reference optimization should be enabled.
+** Additionally, the pSort->aDefer[] array is populated with entries
+** for all cursors required to evaluate all selected expressions. Finally.
+** output variable (*ppExtra) is set to an expression list containing
+** expressions for all extra PK values that should be stored in the
+** sorter records.
+*/
+static void selectExprDefer(
+ Parse *pParse, /* Leave any error here */
+ SortCtx *pSort, /* Sorter context */
+ ExprList *pEList, /* Expressions destined for sorter */
+ ExprList **ppExtra /* Expressions to append to sorter record */
+){
+ int i;
+ int nDefer = 0;
+ ExprList *pExtra = 0;
+ for(i=0; i<pEList->nExpr; i++){
+ struct ExprList_item *pItem = &pEList->a[i];
+ if( pItem->u.x.iOrderByCol==0 ){
+ Expr *pExpr = pItem->pExpr;
+ Table *pTab;
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iColumn>=0
+ && ALWAYS( ExprUseYTab(pExpr) )
+ && (pTab = pExpr->y.pTab)!=0
+ && IsOrdinaryTable(pTab)
+ && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
+ ){
+ int j;
+ for(j=0; j<nDefer; j++){
+ if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
+ }
+ if( j==nDefer ){
+ if( nDefer==ArraySize(pSort->aDefer) ){
+ continue;
+ }else{
+ int nKey = 1;
+ int k;
+ Index *pPk = 0;
+ if( !HasRowid(pTab) ){
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ nKey = pPk->nKeyCol;
+ }
+ for(k=0; k<nKey; k++){
+ Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
+ if( pNew ){
+ pNew->iTable = pExpr->iTable;
+ assert( ExprUseYTab(pNew) );
+ pNew->y.pTab = pExpr->y.pTab;
+ pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
+ pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
+ }
+ }
+ pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
+ pSort->aDefer[nDefer].iCsr = pExpr->iTable;
+ pSort->aDefer[nDefer].nKey = nKey;
+ nDefer++;
+ }
+ }
+ pItem->fg.bSorterRef = 1;
+ }
+ }
+ }
+ pSort->nDefer = (u8)nDefer;
+ *ppExtra = pExtra;
+}
+#endif
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab is negative, then the p->pEList expressions
+** are evaluated in order to get the data for this row. If srcTab is
+** zero or more, then data is pulled from srcTab and p->pEList is used only
+** to get the number of columns and the collation sequence for each column.
+*/
+static void selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ int srcTab, /* Pull data from this table if non-negative */
+ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
+ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
+ SelectDest *pDest, /* How to dispose of the results */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak /* Jump here to break out of the inner loop */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int hasDistinct; /* True if the DISTINCT keyword is present */
+ int eDest = pDest->eDest; /* How to dispose of results */
+ int iParm = pDest->iSDParm; /* First argument to disposal method */
+ int nResultCol; /* Number of result columns */
+ int nPrefixReg = 0; /* Number of extra registers before regResult */
+ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
+
+ /* Usually, regResult is the first cell in an array of memory cells
+ ** containing the current result row. In this case regOrig is set to the
+ ** same value. However, if the results are being sent to the sorter, the
+ ** values for any expressions that are also part of the sort-key are omitted
+ ** from this array. In this case regOrig is set to zero. */
+ int regResult; /* Start of memory holding current results */
+ int regOrig; /* Start of memory holding full result (or 0) */
+
+ assert( v );
+ assert( p->pEList!=0 );
+ hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
+ if( pSort && pSort->pOrderBy==0 ) pSort = 0;
+ if( pSort==0 && !hasDistinct ){
+ assert( iContinue!=0 );
+ codeOffset(v, p->iOffset, iContinue);
+ }
+
+ /* Pull the requested columns.
+ */
+ nResultCol = p->pEList->nExpr;
+
+ if( pDest->iSdst==0 ){
+ if( pSort ){
+ nPrefixReg = pSort->pOrderBy->nExpr;
+ if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
+ pParse->nMem += nPrefixReg;
+ }
+ pDest->iSdst = pParse->nMem+1;
+ pParse->nMem += nResultCol;
+ }else if( pDest->iSdst+nResultCol > pParse->nMem ){
+ /* This is an error condition that can result, for example, when a SELECT
+ ** on the right-hand side of an INSERT contains more result columns than
+ ** there are columns in the table on the left. The error will be caught
+ ** and reported later. But we need to make sure enough memory is allocated
+ ** to avoid other spurious errors in the meantime. */
+ pParse->nMem += nResultCol;
+ }
+ pDest->nSdst = nResultCol;
+ regOrig = regResult = pDest->iSdst;
+ if( srcTab>=0 ){
+ for(i=0; i<nResultCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
+ VdbeComment((v, "%s", p->pEList->a[i].zEName));
+ }
+ }else if( eDest!=SRT_Exists ){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ ExprList *pExtra = 0;
+#endif
+ /* If the destination is an EXISTS(...) expression, the actual
+ ** values returned by the SELECT are not required.
+ */
+ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
+ ExprList *pEList;
+ if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
+ ecelFlags = SQLITE_ECEL_DUP;
+ }else{
+ ecelFlags = 0;
+ }
+ if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
+ /* For each expression in p->pEList that is a copy of an expression in
+ ** the ORDER BY clause (pSort->pOrderBy), set the associated
+ ** iOrderByCol value to one more than the index of the ORDER BY
+ ** expression within the sort-key that pushOntoSorter() will generate.
+ ** This allows the p->pEList field to be omitted from the sorted record,
+ ** saving space and CPU cycles. */
+ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
+
+ for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
+ int j;
+ if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
+ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
+ }
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ selectExprDefer(pParse, pSort, p->pEList, &pExtra);
+ if( pExtra && pParse->db->mallocFailed==0 ){
+ /* If there are any extra PK columns to add to the sorter records,
+ ** allocate extra memory cells and adjust the OpenEphemeral
+ ** instruction to account for the larger records. This is only
+ ** required if there are one or more WITHOUT ROWID tables with
+ ** composite primary keys in the SortCtx.aDefer[] array. */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
+ pOp->p2 += (pExtra->nExpr - pSort->nDefer);
+ pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
+ pParse->nMem += pExtra->nExpr;
+ }
+#endif
+
+ /* Adjust nResultCol to account for columns that are omitted
+ ** from the sorter by the optimizations in this branch */
+ pEList = p->pEList;
+ for(i=0; i<pEList->nExpr; i++){
+ if( pEList->a[i].u.x.iOrderByCol>0
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ || pEList->a[i].fg.bSorterRef
+#endif
+ ){
+ nResultCol--;
+ regOrig = 0;
+ }
+ }
+
+ testcase( regOrig );
+ testcase( eDest==SRT_Set );
+ testcase( eDest==SRT_Mem );
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ assert( eDest==SRT_Set || eDest==SRT_Mem
+ || eDest==SRT_Coroutine || eDest==SRT_Output
+ || eDest==SRT_Upfrom );
+ }
+ sRowLoadInfo.regResult = regResult;
+ sRowLoadInfo.ecelFlags = ecelFlags;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ sRowLoadInfo.pExtra = pExtra;
+ sRowLoadInfo.regExtraResult = regResult + nResultCol;
+ if( pExtra ) nResultCol += pExtra->nExpr;
+#endif
+ if( p->iLimit
+ && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
+ && nPrefixReg>0
+ ){
+ assert( pSort!=0 );
+ assert( hasDistinct==0 );
+ pSort->pDeferredRowLoad = &sRowLoadInfo;
+ regOrig = 0;
+ }else{
+ innerLoopLoadRow(pParse, p, &sRowLoadInfo);
+ }
+ }
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( hasDistinct ){
+ int eType = pDistinct->eTnctType;
+ int iTab = pDistinct->tabTnct;
+ assert( nResultCol==p->pEList->nExpr );
+ iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
+ fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
+ if( pSort==0 ){
+ codeOffset(v, p->iOffset, iContinue);
+ }
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ case SRT_Union: {
+ int r1;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
+ break;
+ }
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Fifo:
+ case SRT_DistFifo:
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ testcase( eDest==SRT_Fifo );
+ testcase( eDest==SRT_DistFifo );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
+#if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
+ /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
+ ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
+ ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
+ ** This does not affect operation in any way - it just allows MakeRecord
+ ** to process OPFLAG_NOCHANGE values without an assert() failing. */
+ if( eDest==SRT_Table && pDest->iSDParm2 ){
+ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
+ }
+#endif
+#ifndef SQLITE_OMIT_CTE
+ if( eDest==SRT_DistFifo ){
+ /* If the destination is DistFifo, then cursor (iParm+1) is open
+ ** on an ephemeral index. If the current row is already present
+ ** in the index, do not write it to the output. If not, add the
+ ** current row to the index and proceed with writing it to the
+ ** output table as well. */
+ int addr = sqlite3VdbeCurrentAddr(v) + 4;
+ sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
+ assert( pSort==0 );
+ }
+#endif
+ if( pSort ){
+ assert( regResult==regOrig );
+ pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
+ }else{
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
+ break;
+ }
+
+ case SRT_Upfrom: {
+ if( pSort ){
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ int i2 = pDest->iSDParm2;
+ int r1 = sqlite3GetTempReg(pParse);
+
+ /* If the UPDATE FROM join is an aggregate that matches no rows, it
+ ** might still be trying to return one row, because that is what
+ ** aggregates do. Don't record that empty row in the output table. */
+ sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
+
+ sqlite3VdbeAddOp3(v, OP_MakeRecord,
+ regResult+(i2<0), nResultCol-(i2<0), r1);
+ if( i2<0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
+ }
+ }
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ if( pSort ){
+ /* At first glance you would think we could optimize out the
+ ** ORDER BY in this case since the order of entries in the set
+ ** does not matter. But there might be a LIMIT clause, in which
+ ** case the order does matter */
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
+ r1, pDest->zAffSdst, nResultCol);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ break;
+ }
+
+
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell or array of
+ ** memory cells and break out of the scan loop.
+ */
+ case SRT_Mem: {
+ if( pSort ){
+ assert( nResultCol<=pDest->nSdst );
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ assert( nResultCol==pDest->nSdst );
+ assert( regResult==iParm );
+ /* The LIMIT clause will jump out of the loop for us */
+ }
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ case SRT_Coroutine: /* Send data to a co-routine */
+ case SRT_Output: { /* Return the results */
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ if( pSort ){
+ pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
+ nPrefixReg);
+ }else if( eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
+ }
+ break;
+ }
+
+#ifndef SQLITE_OMIT_CTE
+ /* Write the results into a priority queue that is order according to
+ ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
+ ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
+ ** pSO->nExpr columns, then make sure all keys are unique by adding a
+ ** final OP_Sequence column. The last column is the record as a blob.
+ */
+ case SRT_DistQueue:
+ case SRT_Queue: {
+ int nKey;
+ int r1, r2, r3;
+ int addrTest = 0;
+ ExprList *pSO;
+ pSO = pDest->pOrderBy;
+ assert( pSO );
+ nKey = pSO->nExpr;
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempRange(pParse, nKey+2);
+ r3 = r2+nKey+1;
+ if( eDest==SRT_DistQueue ){
+ /* If the destination is DistQueue, then cursor (iParm+1) is open
+ ** on a second ephemeral index that holds all values every previously
+ ** added to the queue. */
+ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
+ regResult, nResultCol);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
+ if( eDest==SRT_DistQueue ){
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
+ for(i=0; i<nKey; i++){
+ sqlite3VdbeAddOp2(v, OP_SCopy,
+ regResult + pSO->a[i].u.x.iOrderByCol - 1,
+ r2+i);
+ }
+ sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
+ if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempRange(pParse, r2, nKey+2);
+ break;
+ }
+#endif /* SQLITE_OMIT_CTE */
+
+
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ break;
+ }
+#endif
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached. Except, if
+ ** there is a sorter, in which case the sorter has already limited
+ ** the output for us.
+ */
+ if( pSort==0 && p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
+ }
+}
+
+/*
+** Allocate a KeyInfo object sufficient for an index of N key columns and
+** X extra columns.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
+ int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
+ KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
+ if( p ){
+ p->aSortFlags = (u8*)&p->aColl[N+X];
+ p->nKeyField = (u16)N;
+ p->nAllField = (u16)(N+X);
+ p->enc = ENC(db);
+ p->db = db;
+ p->nRef = 1;
+ memset(&p[1], 0, nExtra);
+ }else{
+ return (KeyInfo*)sqlite3OomFault(db);
+ }
+ return p;
+}
+
+/*
+** Deallocate a KeyInfo object
+*/
+SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){
+ if( p ){
+ assert( p->db!=0 );
+ assert( p->nRef>0 );
+ p->nRef--;
+ if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
+ }
+}
+
+/*
+** Make a new pointer to a KeyInfo object
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
+ if( p ){
+ assert( p->nRef>0 );
+ p->nRef++;
+ }
+ return p;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return TRUE if a KeyInfo object can be change. The KeyInfo object
+** can only be changed if this is just a single reference to the object.
+**
+** This routine is used only inside of assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
+#endif /* SQLITE_DEBUG */
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause. If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtained from malloc. The calling
+** function is responsible for seeing that this structure is eventually
+** freed.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* Form the KeyInfo object from this ExprList */
+ int iStart, /* Begin with this column of pList */
+ int nExtra /* Add this many extra columns to the end */
+){
+ int nExpr;
+ KeyInfo *pInfo;
+ struct ExprList_item *pItem;
+ sqlite3 *db = pParse->db;
+ int i;
+
+ nExpr = pList->nExpr;
+ pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
+ if( pInfo ){
+ assert( sqlite3KeyInfoIsWriteable(pInfo) );
+ for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
+ pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
+ pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
+ }
+ }
+ return pInfo;
+}
+
+/*
+** Name of the connection operator, used for error messages.
+*/
+SQLITE_PRIVATE const char *sqlite3SelectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
+** is a no-op. Otherwise, it adds a single row of output to the EQP result,
+** where the caption is of the form:
+**
+** "USE TEMP B-TREE FOR xxx"
+**
+** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
+** is determined by the zUsage argument.
+*/
+static void explainTempTable(Parse *pParse, const char *zUsage){
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
+}
+
+/*
+** Assign expression b to lvalue a. A second, no-op, version of this macro
+** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
+** in sqlite3Select() to assign values to structure member variables that
+** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
+** code with #ifndef directives.
+*/
+# define explainSetInteger(a, b) a = b
+
+#else
+/* No-op versions of the explainXXX() functions and macros. */
+# define explainTempTable(y,z)
+# define explainSetInteger(y,z)
+#endif
+
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SortCtx *pSort, /* Information on the ORDER BY clause */
+ int nColumn, /* Number of columns of data */
+ SelectDest *pDest /* Write the sorted results here */
+){
+ Vdbe *v = pParse->pVdbe; /* The prepared statement */
+ int addrBreak = pSort->labelDone; /* Jump here to exit loop */
+ int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
+ int addr; /* Top of output loop. Jump for Next. */
+ int addrOnce = 0;
+ int iTab;
+ ExprList *pOrderBy = pSort->pOrderBy;
+ int eDest = pDest->eDest;
+ int iParm = pDest->iSDParm;
+ int regRow;
+ int regRowid;
+ int iCol;
+ int nKey; /* Number of key columns in sorter record */
+ int iSortTab; /* Sorter cursor to read from */
+ int i;
+ int bSeq; /* True if sorter record includes seq. no. */
+ int nRefKey = 0;
+ struct ExprList_item *aOutEx = p->pEList->a;
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrExplain; /* Address of OP_Explain instruction */
+#endif
+
+ ExplainQueryPlan2(addrExplain, (pParse, 0,
+ "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"")
+ );
+ sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd);
+ sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush);
+
+
+ assert( addrBreak<0 );
+ if( pSort->labelBkOut ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
+ sqlite3VdbeGoto(v, addrBreak);
+ sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
+ }
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ /* Open any cursors needed for sorter-reference expressions */
+ for(i=0; i<pSort->nDefer; i++){
+ Table *pTab = pSort->aDefer[i].pTab;
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
+ nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
+ }
+#endif
+
+ iTab = pSort->iECursor;
+ if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
+ if( eDest==SRT_Mem && p->iOffset ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
+ }
+ regRowid = 0;
+ regRow = pDest->iSdst;
+ }else{
+ regRowid = sqlite3GetTempReg(pParse);
+ if( eDest==SRT_EphemTab || eDest==SRT_Table ){
+ regRow = sqlite3GetTempReg(pParse);
+ nColumn = 0;
+ }else{
+ regRow = sqlite3GetTempRange(pParse, nColumn);
+ }
+ }
+ nKey = pOrderBy->nExpr - pSort->nOBSat;
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ int regSortOut = ++pParse->nMem;
+ iSortTab = pParse->nTab++;
+ if( pSort->labelBkOut ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
+ nKey+1+nColumn+nRefKey);
+ if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
+ VdbeCoverage(v);
+ assert( p->iLimit==0 && p->iOffset==0 );
+ sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
+ bSeq = 0;
+ }else{
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
+ codeOffset(v, p->iOffset, addrContinue);
+ iSortTab = iTab;
+ bSeq = 1;
+ if( p->iOffset>0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ }
+ }
+ for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( aOutEx[i].fg.bSorterRef ) continue;
+#endif
+ if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pSort->nDefer ){
+ int iKey = iCol+1;
+ int regKey = sqlite3GetTempRange(pParse, nRefKey);
+
+ for(i=0; i<pSort->nDefer; i++){
+ int iCsr = pSort->aDefer[i].iCsr;
+ Table *pTab = pSort->aDefer[i].pTab;
+ int nKey = pSort->aDefer[i].nKey;
+
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
+ sqlite3VdbeCurrentAddr(v)+1, regKey);
+ }else{
+ int k;
+ int iJmp;
+ assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
+ for(k=0; k<nKey; k++){
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
+ }
+ iJmp = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
+ sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
+ }
+ }
+ sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
+ }
+#endif
+ for(i=nColumn-1; i>=0; i--){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( aOutEx[i].fg.bSorterRef ){
+ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
+ }else
+#endif
+ {
+ int iRead;
+ if( aOutEx[i].u.x.iOrderByCol ){
+ iRead = aOutEx[i].u.x.iOrderByCol-1;
+ }else{
+ iRead = iCol--;
+ }
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
+ VdbeComment((v, "%s", aOutEx[i].zEName));
+ }
+ }
+ sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
+ switch( eDest ){
+ case SRT_Table:
+ case SRT_EphemTab: {
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case SRT_Set: {
+ assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
+ pDest->zAffSdst, nColumn);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
+ break;
+ }
+ case SRT_Mem: {
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+ case SRT_Upfrom: {
+ int i2 = pDest->iSDParm2;
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
+ if( i2<0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
+ }
+ break;
+ }
+ default: {
+ assert( eDest==SRT_Output || eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ testcase( eDest==SRT_Coroutine );
+ if( eDest==SRT_Output ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
+ }else{
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ }
+ break;
+ }
+ }
+ if( regRowid ){
+ if( eDest==SRT_Set ){
+ sqlite3ReleaseTempRange(pParse, regRow, nColumn);
+ }else{
+ sqlite3ReleaseTempReg(pParse, regRow);
+ }
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ }
+ /* The bottom of the loop
+ */
+ sqlite3VdbeResolveLabel(v, addrContinue);
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
+ }
+ sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1);
+ if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is
+** considered a column by this function.
+**
+** SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl);
+** SELECT abc FROM (SELECT col AS abc FROM tbl);
+**
+** The declaration type for any expression other than a column is NULL.
+**
+** This routine has either 3 or 6 parameters depending on whether or not
+** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
+*/
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
+#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
+# define columnType(A,B,C,D,E) columnTypeImpl(A,B)
+#endif
+static const char *columnTypeImpl(
+ NameContext *pNC,
+#ifndef SQLITE_ENABLE_COLUMN_METADATA
+ Expr *pExpr
+#else
+ Expr *pExpr,
+ const char **pzOrigDb,
+ const char **pzOrigTab,
+ const char **pzOrigCol
+#endif
+){
+ char const *zType = 0;
+ int j;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ char const *zOrigDb = 0;
+ char const *zOrigTab = 0;
+ char const *zOrigCol = 0;
+#endif
+
+ assert( pExpr!=0 );
+ assert( pNC->pSrcList!=0 );
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ /* The expression is a column. Locate the table the column is being
+ ** extracted from in NameContext.pSrcList. This table may be real
+ ** database table or a subquery.
+ */
+ Table *pTab = 0; /* Table structure column is extracted from */
+ Select *pS = 0; /* Select the column is extracted from */
+ int iCol = pExpr->iColumn; /* Index of column in pTab */
+ while( pNC && !pTab ){
+ SrcList *pTabList = pNC->pSrcList;
+ for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+ if( j<pTabList->nSrc ){
+ pTab = pTabList->a[j].pTab;
+ pS = pTabList->a[j].pSelect;
+ }else{
+ pNC = pNC->pNext;
+ }
+ }
+
+ if( pTab==0 ){
+ /* At one time, code such as "SELECT new.x" within a trigger would
+ ** cause this condition to run. Since then, we have restructured how
+ ** trigger code is generated and so this condition is no longer
+ ** possible. However, it can still be true for statements like
+ ** the following:
+ **
+ ** CREATE TABLE t1(col INTEGER);
+ ** SELECT (SELECT t1.col) FROM FROM t1;
+ **
+ ** when columnType() is called on the expression "t1.col" in the
+ ** sub-select. In this case, set the column type to NULL, even
+ ** though it should really be "INTEGER".
+ **
+ ** This is not a problem, as the column type of "t1.col" is never
+ ** used. When columnType() is called on the expression
+ ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
+ ** branch below. */
+ break;
+ }
+
+ assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
+ if( pS ){
+ /* The "table" is actually a sub-select or a view in the FROM clause
+ ** of the SELECT statement. Return the declaration type and origin
+ ** data for the result-set column of the sub-select.
+ */
+ if( iCol<pS->pEList->nExpr
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ && iCol>=0
+#else
+ && ALWAYS(iCol>=0)
+#endif
+ ){
+ /* If iCol is less than zero, then the expression requests the
+ ** rowid of the sub-select or view. This expression is legal (see
+ ** test case misc2.2.2) - it always evaluates to NULL.
+ */
+ NameContext sNC;
+ Expr *p = pS->pEList->a[iCol].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
+ }
+ }else{
+ /* A real table or a CTE table */
+ assert( !pS );
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ zOrigCol = "rowid";
+ }else{
+ zOrigCol = pTab->aCol[iCol].zCnName;
+ zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
+ }
+ zOrigTab = pTab->zName;
+ if( pNC->pParse && pTab->pSchema ){
+ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+ zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
+ }
+#else
+ assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ }else{
+ zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
+ }
+#endif
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT: {
+ /* The expression is a sub-select. Return the declaration type and
+ ** origin info for the single column in the result set of the SELECT
+ ** statement.
+ */
+ NameContext sNC;
+ Select *pS;
+ Expr *p;
+ assert( ExprUseXSelect(pExpr) );
+ pS = pExpr->x.pSelect;
+ p = pS->pEList->a[0].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+ break;
+ }
+#endif
+ }
+
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ if( pzOrigDb ){
+ assert( pzOrigTab && pzOrigCol );
+ *pzOrigDb = zOrigDb;
+ *pzOrigTab = zOrigTab;
+ *pzOrigCol = zOrigCol;
+ }
+#endif
+ return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+#ifndef SQLITE_OMIT_DECLTYPE
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ NameContext sNC;
+ sNC.pSrcList = pTabList;
+ sNC.pParse = pParse;
+ sNC.pNext = 0;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ const char *zOrigDb = 0;
+ const char *zOrigTab = 0;
+ const char *zOrigCol = 0;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+ /* The vdbe must make its own copy of the column-type and other
+ ** column specific strings, in case the schema is reset before this
+ ** virtual machine is deleted.
+ */
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
+#else
+ zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
+ }
+#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
+}
+
+
+/*
+** Compute the column names for a SELECT statement.
+**
+** The only guarantee that SQLite makes about column names is that if the
+** column has an AS clause assigning it a name, that will be the name used.
+** That is the only documented guarantee. However, countless applications
+** developed over the years have made baseless assumptions about column names
+** and will break if those assumptions changes. Hence, use extreme caution
+** when modifying this routine to avoid breaking legacy.
+**
+** See Also: sqlite3ColumnsFromExprList()
+**
+** The PRAGMA short_column_names and PRAGMA full_column_names settings are
+** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
+** applications should operate this way. Nevertheless, we need to support the
+** other modes for legacy:
+**
+** short=OFF, full=OFF: Column name is the text of the expression has it
+** originally appears in the SELECT statement. In
+** other words, the zSpan of the result expression.
+**
+** short=ON, full=OFF: (This is the default setting). If the result
+** refers directly to a table column, then the
+** result column name is just the table column
+** name: COLUMN. Otherwise use zSpan.
+**
+** full=ON, short=ANY: If the result refers directly to a table column,
+** then the result column name with the table name
+** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
+*/
+SQLITE_PRIVATE void sqlite3GenerateColumnNames(
+ Parse *pParse, /* Parser context */
+ Select *pSelect /* Generate column names for this SELECT statement */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ Table *pTab;
+ SrcList *pTabList;
+ ExprList *pEList;
+ sqlite3 *db = pParse->db;
+ int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
+ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
+
+ if( pParse->colNamesSet ) return;
+ /* Column names are determined by the left-most term of a compound select */
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
+ pTabList = pSelect->pSrc;
+ pEList = pSelect->pEList;
+ assert( v!=0 );
+ assert( pTabList!=0 );
+ pParse->colNamesSet = 1;
+ fullName = (db->flags & SQLITE_FullColNames)!=0;
+ srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
+ sqlite3VdbeSetNumCols(v, pEList->nExpr);
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+
+ assert( p!=0 );
+ assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
+ assert( p->op!=TK_COLUMN
+ || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
+ if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
+ /* An AS clause always takes first priority */
+ char *zName = pEList->a[i].zEName;
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
+ }else if( srcName && p->op==TK_COLUMN ){
+ char *zCol;
+ int iCol = p->iColumn;
+ pTab = p->y.pTab;
+ assert( pTab!=0 );
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "rowid";
+ }else{
+ zCol = pTab->aCol[iCol].zCnName;
+ }
+ if( fullName ){
+ char *zName = 0;
+ zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
+ }else{
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
+ }
+ }else{
+ const char *z = pEList->a[i].zEName;
+ z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
+ }
+ }
+ generateColumnTypes(pParse, pTabList, pEList);
+}
+
+/*
+** Given an expression list (which is really the list of expressions
+** that form the result set of a SELECT statement) compute appropriate
+** column names for a table that would hold the expression list.
+**
+** All column names will be unique.
+**
+** Only the column names are computed. Column.zType, Column.zColl,
+** and other fields of Column are zeroed.
+**
+** Return SQLITE_OK on success. If a memory allocation error occurs,
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
+**
+** The only guarantee that SQLite makes about column names is that if the
+** column has an AS clause assigning it a name, that will be the name used.
+** That is the only documented guarantee. However, countless applications
+** developed over the years have made baseless assumptions about column names
+** and will break if those assumptions changes. Hence, use extreme caution
+** when modifying this routine to avoid breaking legacy.
+**
+** See Also: sqlite3GenerateColumnNames()
+*/
+SQLITE_PRIVATE int sqlite3ColumnsFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* Expr list from which to derive column names */
+ i16 *pnCol, /* Write the number of columns here */
+ Column **paCol /* Write the new column list here */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ int i, j; /* Loop counters */
+ u32 cnt; /* Index added to make the name unique */
+ Column *aCol, *pCol; /* For looping over result columns */
+ int nCol; /* Number of columns in the result set */
+ char *zName; /* Column name */
+ int nName; /* Size of name in zName[] */
+ Hash ht; /* Hash table of column names */
+ Table *pTab;
+
+ sqlite3HashInit(&ht);
+ if( pEList ){
+ nCol = pEList->nExpr;
+ aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
+ testcase( aCol==0 );
+ if( NEVER(nCol>32767) ) nCol = 32767;
+ }else{
+ nCol = 0;
+ aCol = 0;
+ }
+ assert( nCol==(i16)nCol );
+ *pnCol = nCol;
+ *paCol = aCol;
+
+ for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){
+ struct ExprList_item *pX = &pEList->a[i];
+ struct ExprList_item *pCollide;
+ /* Get an appropriate name for the column
+ */
+ if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
+ /* If the column contains an "AS <name>" phrase, use <name> as the name */
+ }else{
+ Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
+ while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
+ pColExpr = pColExpr->pRight;
+ assert( pColExpr!=0 );
+ }
+ if( pColExpr->op==TK_COLUMN
+ && ALWAYS( ExprUseYTab(pColExpr) )
+ && ALWAYS( pColExpr->y.pTab!=0 )
+ ){
+ /* For columns use the column name name */
+ int iCol = pColExpr->iColumn;
+ pTab = pColExpr->y.pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
+ }else if( pColExpr->op==TK_ID ){
+ assert( !ExprHasProperty(pColExpr, EP_IntValue) );
+ zName = pColExpr->u.zToken;
+ }else{
+ /* Use the original text of the column expression as its name */
+ assert( zName==pX->zEName ); /* pointer comparison intended */
+ }
+ }
+ if( zName && !sqlite3IsTrueOrFalse(zName) ){
+ zName = sqlite3DbStrDup(db, zName);
+ }else{
+ zName = sqlite3MPrintf(db,"column%d",i+1);
+ }
+
+ /* Make sure the column name is unique. If the name is not unique,
+ ** append an integer to the name so that it becomes unique.
+ */
+ cnt = 0;
+ while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
+ if( pCollide->fg.bUsingTerm ){
+ pCol->colFlags |= COLFLAG_NOEXPAND;
+ }
+ nName = sqlite3Strlen30(zName);
+ if( nName>0 ){
+ for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
+ if( zName[j]==':' ) nName = j;
+ }
+ zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
+ sqlite3ProgressCheck(pParse);
+ if( cnt>3 ){
+ sqlite3_randomness(sizeof(cnt), &cnt);
+ }
+ }
+ pCol->zCnName = zName;
+ pCol->hName = sqlite3StrIHash(zName);
+ if( pX->fg.bNoExpand ){
+ pCol->colFlags |= COLFLAG_NOEXPAND;
+ }
+ sqlite3ColumnPropertiesFromName(0, pCol);
+ if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
+ sqlite3OomFault(db);
+ }
+ }
+ sqlite3HashClear(&ht);
+ if( pParse->nErr ){
+ for(j=0; j<i; j++){
+ sqlite3DbFree(db, aCol[j].zCnName);
+ }
+ sqlite3DbFree(db, aCol);
+ *paCol = 0;
+ *pnCol = 0;
+ return pParse->rc;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** pTab is a transient Table object that represents a subquery of some
+** kind (maybe a parenthesized subquery in the FROM clause of a larger
+** query, or a VIEW, or a CTE). This routine computes type information
+** for that Table object based on the Select object that implements the
+** subquery. For the purposes of this routine, "type information" means:
+**
+** * The datatype name, as it might appear in a CREATE TABLE statement
+** * Which collating sequence to use for the column
+** * The affinity of the column
+*/
+SQLITE_PRIVATE void sqlite3SubqueryColumnTypes(
+ Parse *pParse, /* Parsing contexts */
+ Table *pTab, /* Add column type information to this table */
+ Select *pSelect, /* SELECT used to determine types and collations */
+ char aff /* Default affinity. */
+){
+ sqlite3 *db = pParse->db;
+ Column *pCol;
+ CollSeq *pColl;
+ int i,j;
+ Expr *p;
+ struct ExprList_item *a;
+ NameContext sNC;
+
+ assert( pSelect!=0 );
+ assert( (pSelect->selFlags & SF_Resolved)!=0 );
+ assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 );
+ assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB );
+ if( db->mallocFailed || IN_RENAME_OBJECT ) return;
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ a = pSelect->pEList->a;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pSrcList = pSelect->pSrc;
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
+ const char *zType;
+ i64 n;
+ pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
+ p = a[i].pExpr;
+ /* pCol->szEst = ... // Column size est for SELECT tables never used */
+ pCol->affinity = sqlite3ExprAffinity(p);
+ if( pCol->affinity<=SQLITE_AFF_NONE ){
+ pCol->affinity = aff;
+ }
+ if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){
+ int m = 0;
+ Select *pS2;
+ for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){
+ m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
+ }
+ if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){
+ pCol->affinity = SQLITE_AFF_BLOB;
+ }else
+ if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){
+ pCol->affinity = SQLITE_AFF_BLOB;
+ }
+ if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){
+ pCol->affinity = SQLITE_AFF_FLEXNUM;
+ }
+ }
+ zType = columnType(&sNC, p, 0, 0, 0);
+ if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){
+ if( pCol->affinity==SQLITE_AFF_NUMERIC
+ || pCol->affinity==SQLITE_AFF_FLEXNUM
+ ){
+ zType = "NUM";
+ }else{
+ zType = 0;
+ for(j=1; j<SQLITE_N_STDTYPE; j++){
+ if( sqlite3StdTypeAffinity[j]==pCol->affinity ){
+ zType = sqlite3StdType[j];
+ break;
+ }
+ }
+ }
+ }
+ if( zType ){
+ i64 m = sqlite3Strlen30(zType);
+ n = sqlite3Strlen30(pCol->zCnName);
+ pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
+ pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
+ if( pCol->zCnName ){
+ memcpy(&pCol->zCnName[n+1], zType, m+1);
+ pCol->colFlags |= COLFLAG_HASTYPE;
+ }
+ }
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ if( pColl ){
+ assert( pTab->pIndex==0 );
+ sqlite3ColumnSetColl(db, pCol, pColl->zName);
+ }
+ }
+ pTab->szTabRow = 1; /* Any non-zero value works */
+}
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
+ Table *pTab;
+ sqlite3 *db = pParse->db;
+ u64 savedFlags;
+
+ savedFlags = db->flags;
+ db->flags &= ~(u64)SQLITE_FullColNames;
+ db->flags |= SQLITE_ShortColNames;
+ sqlite3SelectPrep(pParse, pSelect, 0);
+ db->flags = savedFlags;
+ if( pParse->nErr ) return 0;
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ pTab->nTabRef = 1;
+ pTab->zName = 0;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+ sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
+ sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff);
+ pTab->iPKey = -1;
+ if( db->mallocFailed ){
+ sqlite3DeleteTable(db, pTab);
+ return 0;
+ }
+ return pTab;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
+ if( pParse->pVdbe ){
+ return pParse->pVdbe;
+ }
+ if( pParse->pToplevel==0
+ && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
+ ){
+ pParse->okConstFactor = 1;
+ }
+ return sqlite3VdbeCreate(pParse);
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
+** are the integer memory register numbers for counters used to compute
+** the limit and offset. If there is no limit and/or offset, then
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
+** and iOffset should have been preset to appropriate default values (zero)
+** prior to calling this routine.
+**
+** The iOffset register (if it exists) is initialized to the value
+** of the OFFSET. The iLimit register is initialized to LIMIT. Register
+** iOffset+1 is initialized to LIMIT+OFFSET.
+**
+** Only if pLimit->pLeft!=0 do the limit registers get
+** redefined. The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+ Vdbe *v = 0;
+ int iLimit = 0;
+ int iOffset;
+ int n;
+ Expr *pLimit = p->pLimit;
+
+ if( p->iLimit ) return;
+
+ /*
+ ** "LIMIT -1" always shows all rows. There is some
+ ** controversy about what the correct behavior should be.
+ ** The current implementation interprets "LIMIT 0" to mean
+ ** no rows.
+ */
+ if( pLimit ){
+ assert( pLimit->op==TK_LIMIT );
+ assert( pLimit->pLeft!=0 );
+ p->iLimit = iLimit = ++pParse->nMem;
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
+ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ if( n==0 ){
+ sqlite3VdbeGoto(v, iBreak);
+ }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
+ p->nSelectRow = sqlite3LogEst((u64)n);
+ p->selFlags |= SF_FixedLimit;
+ }
+ }else{
+ sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
+ VdbeComment((v, "LIMIT counter"));
+ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
+ }
+ if( pLimit->pRight ){
+ p->iOffset = iOffset = ++pParse->nMem;
+ pParse->nMem++; /* Allocate an extra register for limit+offset */
+ sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
+ VdbeComment((v, "OFFSET counter"));
+ sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
+ VdbeComment((v, "LIMIT+OFFSET"));
+ }
+ }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p". Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+ CollSeq *pRet;
+ if( p->pPrior ){
+ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+ }else{
+ pRet = 0;
+ }
+ assert( iCol>=0 );
+ /* iCol must be less than p->pEList->nExpr. Otherwise an error would
+ ** have been thrown during name resolution and we would not have gotten
+ ** this far */
+ if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
+ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+ }
+ return pRet;
+}
+
+/*
+** The select statement passed as the second parameter is a compound SELECT
+** with an ORDER BY clause. This function allocates and returns a KeyInfo
+** structure suitable for implementing the ORDER BY.
+**
+** Space to hold the KeyInfo structure is obtained from malloc. The calling
+** function is responsible for ensuring that this structure is eventually
+** freed.
+*/
+static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
+ ExprList *pOrderBy = p->pOrderBy;
+ int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
+ sqlite3 *db = pParse->db;
+ KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
+ if( pRet ){
+ int i;
+ for(i=0; i<nOrderBy; i++){
+ struct ExprList_item *pItem = &pOrderBy->a[i];
+ Expr *pTerm = pItem->pExpr;
+ CollSeq *pColl;
+
+ if( pTerm->flags & EP_Collate ){
+ pColl = sqlite3ExprCollSeq(pParse, pTerm);
+ }else{
+ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
+ if( pColl==0 ) pColl = db->pDfltColl;
+ pOrderBy->a[i].pExpr =
+ sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
+ }
+ assert( sqlite3KeyInfoIsWriteable(pRet) );
+ pRet->aColl[i] = pColl;
+ pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
+ }
+ }
+
+ return pRet;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** This routine generates VDBE code to compute the content of a WITH RECURSIVE
+** query of the form:
+**
+** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
+** \___________/ \_______________/
+** p->pPrior p
+**
+**
+** There is exactly one reference to the recursive-table in the FROM clause
+** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
+**
+** The setup-query runs once to generate an initial set of rows that go
+** into a Queue table. Rows are extracted from the Queue table one by
+** one. Each row extracted from Queue is output to pDest. Then the single
+** extracted row (now in the iCurrent table) becomes the content of the
+** recursive-table for a recursive-query run. The output of the recursive-query
+** is added back into the Queue table. Then another row is extracted from Queue
+** and the iteration continues until the Queue table is empty.
+**
+** If the compound query operator is UNION then no duplicate rows are ever
+** inserted into the Queue table. The iDistinct table keeps a copy of all rows
+** that have ever been inserted into Queue and causes duplicates to be
+** discarded. If the operator is UNION ALL, then duplicates are allowed.
+**
+** If the query has an ORDER BY, then entries in the Queue table are kept in
+** ORDER BY order and the first entry is extracted for each cycle. Without
+** an ORDER BY, the Queue table is just a FIFO.
+**
+** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
+** have been output to pDest. A LIMIT of zero means to output no rows and a
+** negative LIMIT means to output all rows. If there is also an OFFSET clause
+** with a positive value, then the first OFFSET outputs are discarded rather
+** than being sent to pDest. The LIMIT count does not begin until after OFFSET
+** rows have been skipped.
+*/
+static void generateWithRecursiveQuery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The recursive SELECT to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
+ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
+ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
+ Select *pSetup; /* The setup query */
+ Select *pFirstRec; /* Left-most recursive term */
+ int addrTop; /* Top of the loop */
+ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
+ int iCurrent = 0; /* The Current table */
+ int regCurrent; /* Register holding Current table */
+ int iQueue; /* The Queue table */
+ int iDistinct = 0; /* To ensure unique results if UNION */
+ int eDest = SRT_Fifo; /* How to write to Queue */
+ SelectDest destQueue; /* SelectDest targeting the Queue table */
+ int i; /* Loop counter */
+ int rc; /* Result code */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Expr *pLimit; /* Saved LIMIT and OFFSET */
+ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ){
+ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
+ return;
+ }
+#endif
+
+ /* Obtain authorization to do a recursive query */
+ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
+
+ /* Process the LIMIT and OFFSET clauses, if they exist */
+ addrBreak = sqlite3VdbeMakeLabel(pParse);
+ p->nSelectRow = 320; /* 4 billion rows */
+ computeLimitRegisters(pParse, p, addrBreak);
+ pLimit = p->pLimit;
+ regLimit = p->iLimit;
+ regOffset = p->iOffset;
+ p->pLimit = 0;
+ p->iLimit = p->iOffset = 0;
+ pOrderBy = p->pOrderBy;
+
+ /* Locate the cursor number of the Current table */
+ for(i=0; ALWAYS(i<pSrc->nSrc); i++){
+ if( pSrc->a[i].fg.isRecursive ){
+ iCurrent = pSrc->a[i].iCursor;
+ break;
+ }
+ }
+
+ /* Allocate cursors numbers for Queue and Distinct. The cursor number for
+ ** the Distinct table must be exactly one greater than Queue in order
+ ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
+ iQueue = pParse->nTab++;
+ if( p->op==TK_UNION ){
+ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
+ iDistinct = pParse->nTab++;
+ }else{
+ eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
+ }
+ sqlite3SelectDestInit(&destQueue, eDest, iQueue);
+
+ /* Allocate cursors for Current, Queue, and Distinct. */
+ regCurrent = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
+ if( pOrderBy ){
+ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
+ (char*)pKeyInfo, P4_KEYINFO);
+ destQueue.pOrderBy = pOrderBy;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
+ }
+ VdbeComment((v, "Queue table"));
+ if( iDistinct ){
+ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
+ p->selFlags |= SF_UsesEphemeral;
+ }
+
+ /* Detach the ORDER BY clause from the compound SELECT */
+ p->pOrderBy = 0;
+
+ /* Figure out how many elements of the compound SELECT are part of the
+ ** recursive query. Make sure no recursive elements use aggregate
+ ** functions. Mark the recursive elements as UNION ALL even if they
+ ** are really UNION because the distinctness will be enforced by the
+ ** iDistinct table. pFirstRec is left pointing to the left-most
+ ** recursive term of the CTE.
+ */
+ for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
+ if( pFirstRec->selFlags & SF_Aggregate ){
+ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
+ goto end_of_recursive_query;
+ }
+ pFirstRec->op = TK_ALL;
+ if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
+ }
+
+ /* Store the results of the setup-query in Queue. */
+ pSetup = pFirstRec->pPrior;
+ pSetup->pNext = 0;
+ ExplainQueryPlan((pParse, 1, "SETUP"));
+ rc = sqlite3Select(pParse, pSetup, &destQueue);
+ pSetup->pNext = p;
+ if( rc ) goto end_of_recursive_query;
+
+ /* Find the next row in the Queue and output that row */
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
+
+ /* Transfer the next row in Queue over to Current */
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
+ if( pOrderBy ){
+ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
+ }
+ sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
+
+ /* Output the single row in Current */
+ addrCont = sqlite3VdbeMakeLabel(pParse);
+ codeOffset(v, regOffset, addrCont);
+ selectInnerLoop(pParse, p, iCurrent,
+ 0, 0, pDest, addrCont, addrBreak);
+ if( regLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeResolveLabel(v, addrCont);
+
+ /* Execute the recursive SELECT taking the single row in Current as
+ ** the value for the recursive-table. Store the results in the Queue.
+ */
+ pFirstRec->pPrior = 0;
+ ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
+ sqlite3Select(pParse, p, &destQueue);
+ assert( pFirstRec->pPrior==0 );
+ pFirstRec->pPrior = pSetup;
+
+ /* Keep running the loop until the Queue is empty */
+ sqlite3VdbeGoto(v, addrTop);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+
+end_of_recursive_query:
+ sqlite3ExprListDelete(pParse->db, p->pOrderBy);
+ p->pOrderBy = pOrderBy;
+ p->pLimit = pLimit;
+ return;
+}
+#endif /* SQLITE_OMIT_CTE */
+
+/* Forward references */
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+);
+
+/*
+** Handle the special case of a compound-select that originates from a
+** VALUES clause. By handling this as a special case, we avoid deep
+** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
+** on a VALUES clause.
+**
+** Because the Select object originates from a VALUES clause:
+** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
+** (2) All terms are UNION ALL
+** (3) There is no ORDER BY clause
+**
+** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
+** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
+** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
+** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
+*/
+static int multiSelectValues(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int nRow = 1;
+ int rc = 0;
+ int bShowAll = p->pLimit==0;
+ assert( p->selFlags & SF_MultiValue );
+ do{
+ assert( p->selFlags & SF_Values );
+ assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
+ assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ) return -1;
+#endif
+ if( p->pPrior==0 ) break;
+ assert( p->pPrior->pNext==p );
+ p = p->pPrior;
+ nRow += bShowAll;
+ }while(1);
+ ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
+ nRow==1 ? "" : "S"));
+ while( p ){
+ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
+ if( !bShowAll ) break;
+ p->nSelectRow = nRow;
+ p = p->pNext;
+ }
+ return rc;
+}
+
+/*
+** Return true if the SELECT statement which is known to be the recursive
+** part of a recursive CTE still has its anchor terms attached. If the
+** anchor terms have already been removed, then return false.
+*/
+static int hasAnchor(Select *p){
+ while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
+ return p!=0;
+}
+
+/*
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int rc = SQLITE_OK; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest dest; /* Alternative data destination */
+ Select *pDelete = 0; /* Chain of simple selects to delete */
+ sqlite3 *db; /* Database connection */
+
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
+ ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+ */
+ assert( p && p->pPrior ); /* Calling function guarantees this much */
+ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
+ assert( p->selFlags & SF_Compound );
+ db = pParse->db;
+ pPrior = p->pPrior;
+ dest = *pDest;
+ assert( pPrior->pOrderBy==0 );
+ assert( pPrior->pLimit==0 );
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 ); /* The VDBE already created by calling function */
+
+ /* Create the destination temporary table if necessary
+ */
+ if( dest.eDest==SRT_EphemTab ){
+ assert( p->pEList );
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
+ dest.eDest = SRT_Table;
+ }
+
+ /* Special handling for a compound-select that originates as a VALUES clause.
+ */
+ if( p->selFlags & SF_MultiValue ){
+ rc = multiSelectValues(pParse, p, &dest);
+ if( rc>=0 ) goto multi_select_end;
+ rc = SQLITE_OK;
+ }
+
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ assert( p->pEList->nExpr==pPrior->pEList->nExpr );
+
+#ifndef SQLITE_OMIT_CTE
+ if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
+ generateWithRecursiveQuery(pParse, p, &dest);
+ }else
+#endif
+
+ /* Compound SELECTs that have an ORDER BY clause are handled separately.
+ */
+ if( p->pOrderBy ){
+ return multiSelectOrderBy(pParse, p, pDest);
+ }else{
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( pPrior->pPrior==0 ){
+ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
+ ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
+ }
+#endif
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ switch( p->op ){
+ case TK_ALL: {
+ int addr = 0;
+ int nLimit = 0; /* Initialize to suppress harmless compiler warning */
+ assert( !pPrior->pLimit );
+ pPrior->iLimit = p->iLimit;
+ pPrior->iOffset = p->iOffset;
+ pPrior->pLimit = p->pLimit;
+ TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &dest);
+ pPrior->pLimit = 0;
+ if( rc ){
+ goto multi_select_end;
+ }
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ if( p->iOffset ){
+ sqlite3VdbeAddOp3(v, OP_OffsetLimit,
+ p->iLimit, p->iOffset+1, p->iOffset);
+ }
+ }
+ ExplainQueryPlan((pParse, 1, "UNION ALL"));
+ TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n"));
+ rc = sqlite3Select(pParse, p, &dest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ if( p->pLimit
+ && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
+ && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
+ ){
+ p->nSelectRow = sqlite3LogEst((u64)nLimit);
+ }
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temp table holding result */
+ u8 op = 0; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ Expr *pLimit; /* Saved values of p->nLimit */
+ int addr;
+ SelectDest uniondest;
+
+ testcase( p->op==TK_EXCEPT );
+ testcase( p->op==TK_UNION );
+ priorOp = SRT_Union;
+ if( dest.eDest==priorOp ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ assert( p->pLimit==0 ); /* Not allowed on leftward elements */
+ unionTab = dest.iSDParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ findRightmost(p)->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+ }
+
+
+ /* Code the SELECT statements to our left
+ */
+ assert( !pPrior->pOrderBy );
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+ TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &uniondest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT statement
+ */
+ if( p->op==TK_EXCEPT ){
+ op = SRT_Except;
+ }else{
+ assert( p->op==TK_UNION );
+ op = SRT_Union;
+ }
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ uniondest.eDest = op;
+ ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
+ sqlite3SelectOpName(p->op)));
+ TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
+ rc = sqlite3Select(pParse, p, &uniondest);
+ testcase( rc!=SQLITE_OK );
+ assert( p->pOrderBy==0 );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->pOrderBy = 0;
+ if( p->op==TK_UNION ){
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+ p->iLimit = 0;
+ p->iOffset = 0;
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
+ assert( p->pEList || db->mallocFailed );
+ if( dest.eDest!=priorOp && db->mallocFailed==0 ){
+ int iCont, iBreak, iStart;
+ iBreak = sqlite3VdbeMakeLabel(pParse);
+ iCont = sqlite3VdbeMakeLabel(pParse);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
+ iStart = sqlite3VdbeCurrentAddr(v);
+ selectInnerLoop(pParse, p, unionTab,
+ 0, 0, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
+ }
+ break;
+ }
+ default: assert( p->op==TK_INTERSECT ); {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+ Expr *pLimit;
+ int addr;
+ SelectDest intersectdest;
+ int r1;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ findRightmost(p)->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+ TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &intersectdest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
+ assert( p->addrOpenEphm[1] == -1 );
+ p->addrOpenEphm[1] = addr;
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ intersectdest.iSDParm = tab2;
+ ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
+ sqlite3SelectOpName(p->op)));
+ TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n"));
+ rc = sqlite3Select(pParse, p, &intersectdest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ if( p->nSelectRow>pPrior->nSelectRow ){
+ p->nSelectRow = pPrior->nSelectRow;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ if( rc ) break;
+ assert( p->pEList );
+ iBreak = sqlite3VdbeMakeLabel(pParse);
+ iCont = sqlite3VdbeMakeLabel(pParse);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
+ r1 = sqlite3GetTempReg(pParse);
+ iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, r1);
+ selectInnerLoop(pParse, p, tab1,
+ 0, 0, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
+ break;
+ }
+ }
+
+ #ifndef SQLITE_OMIT_EXPLAIN
+ if( p->pNext==0 ){
+ ExplainQueryPlanPop(pParse);
+ }
+ #endif
+ }
+ if( pParse->nErr ) goto multi_select_end;
+
+ /* Compute collating sequences used by
+ ** temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables.
+ **
+ ** This section is run by the right-most SELECT statement only.
+ ** SELECT statements to the left always skip this part. The right-most
+ ** SELECT might also skip this part if it has no ORDER BY clause and
+ ** no temp tables are required.
+ */
+ if( p->selFlags & SF_UsesEphemeral ){
+ int i; /* Loop counter */
+ KeyInfo *pKeyInfo; /* Collating sequence for the result set */
+ Select *pLoop; /* For looping through SELECT statements */
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
+ int nCol; /* Number of columns in result set */
+
+ assert( p->pNext==0 );
+ assert( p->pEList!=0 );
+ nCol = p->pEList->nExpr;
+ pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
+ if( !pKeyInfo ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto multi_select_end;
+ }
+ for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+ *apColl = multiSelectCollSeq(pParse, p, i);
+ if( 0==*apColl ){
+ *apColl = db->pDfltColl;
+ }
+ }
+
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+ for(i=0; i<2; i++){
+ int addr = pLoop->addrOpenEphm[i];
+ if( addr<0 ){
+ /* If [0] is unused then [1] is also unused. So we can
+ ** always safely abort as soon as the first unused slot is found */
+ assert( pLoop->addrOpenEphm[1]<0 );
+ break;
+ }
+ sqlite3VdbeChangeP2(v, addr, nCol);
+ sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
+ P4_KEYINFO);
+ pLoop->addrOpenEphm[i] = -1;
+ }
+ }
+ sqlite3KeyInfoUnref(pKeyInfo);
+ }
+
+multi_select_end:
+ pDest->iSdst = dest.iSdst;
+ pDest->nSdst = dest.nSdst;
+ if( pDelete ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3SelectDelete,
+ pDelete);
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Error message for when two or more terms of a compound select have different
+** size result sets.
+*/
+SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
+ if( p->selFlags & SF_Values ){
+ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
+ }else{
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns",
+ sqlite3SelectOpName(p->op));
+ }
+}
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statement.
+**
+** The data to be output is contained in pIn->iSdst. There are
+** pIn->nSdst columns to be output. pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is the first register in a vector that
+** records the previous output. mem[regPrev] is a flag that is false
+** if there has been no previous output. If regPrev>0 then code is
+** generated to suppress duplicates. pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SelectDest *pIn, /* Coroutine supplying data */
+ SelectDest *pDest, /* Where to send the data */
+ int regReturn, /* The return address register */
+ int regPrev, /* Previous result register. No uniqueness if 0 */
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */
+ int iBreak /* Jump here if we hit the LIMIT */
+){
+ Vdbe *v = pParse->pVdbe;
+ int iContinue;
+ int addr;
+
+ addr = sqlite3VdbeCurrentAddr(v);
+ iContinue = sqlite3VdbeMakeLabel(pParse);
+
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
+ */
+ if( regPrev ){
+ int addr1, addr2;
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
+ addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+ }
+ if( pParse->db->mallocFailed ) return 0;
+
+ /* Suppress the first OFFSET entries if there is an OFFSET clause
+ */
+ codeOffset(v, p->iOffset, iContinue);
+
+ assert( pDest->eDest!=SRT_Exists );
+ assert( pDest->eDest!=SRT_Table );
+ switch( pDest->eDest ){
+ /* Store the result as data using a unique key.
+ */
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)".
+ */
+ case SRT_Set: {
+ int r1;
+ testcase( pIn->nSdst>1 );
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
+ r1, pDest->zAffSdst, pIn->nSdst);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
+ pIn->iSdst, pIn->nSdst);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop. Note that the select might return multiple columns
+ ** if it is the RHS of a row-value IN operator.
+ */
+ case SRT_Mem: {
+ testcase( pIn->nSdst>1 );
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
+ /* The LIMIT clause will jump out of the loop for us */
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* The results are stored in a sequence of registers
+ ** starting at pDest->iSdst. Then the co-routine yields.
+ */
+ case SRT_Coroutine: {
+ if( pDest->iSdst==0 ){
+ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
+ pDest->nSdst = pIn->nSdst;
+ }
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ break;
+ }
+
+ /* If none of the above, then the result destination must be
+ ** SRT_Output. This routine is never called with any other
+ ** destination other than the ones handled above or SRT_Output.
+ **
+ ** For SRT_Output, results are stored in a sequence of registers.
+ ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
+ ** return the next row of result.
+ */
+ default: {
+ assert( pDest->eDest==SRT_Output );
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
+ break;
+ }
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
+ }
+
+ /* Generate the subroutine return
+ */
+ sqlite3VdbeResolveLabel(v, iContinue);
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+ return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+** <selectA> <operator> <selectB> ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines. Then run the co-routines in parallel and merge the results
+** into the output. In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+** outA: Move the output of the selectA coroutine into the output
+** of the compound query.
+**
+** outB: Move the output of the selectB coroutine into the output
+** of the compound query. (Only generated for UNION and
+** UNION ALL. EXCEPT and INSERTSECT never output a row that
+** appears only in B.)
+**
+** AltB: Called when there is data from both coroutines and A<B.
+**
+** AeqB: Called when there is data from both coroutines and A==B.
+**
+** AgtB: Called when there is data from both coroutines and A>B.
+**
+** EofA: Called when data is exhausted from selectA.
+**
+** EofB: Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which
+** <operator> is used:
+**
+**
+** UNION ALL UNION EXCEPT INTERSECT
+** ------------- ----------------- -------------- -----------------
+** AltB: outA, nextA outA, nextA outA, nextA nextA
+**
+** AeqB: outA, nextA nextA nextA outA, nextA
+**
+** AgtB: outB, nextB outB, nextB nextB nextB
+**
+** EofA: outB, nextB outB, nextB halt halt
+**
+** EofB: outA, nextA outA, nextA outA, nextA halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine. The regPrev register set holds the previously
+** output value. A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom. Like this:
+**
+** goto Init
+** coA: coroutine for left query (A)
+** coB: coroutine for right query (B)
+** outA: output one row of A
+** outB: output one row of B (UNION and UNION ALL only)
+** EofA: ...
+** EofB: ...
+** AltB: ...
+** AeqB: ...
+** AgtB: ...
+** Init: initialize coroutine registers
+** yield coA
+** if eof(A) goto EofA
+** yield coB
+** if eof(B) goto EofB
+** Cmpr: Compare A, B
+** Jump AltB, AeqB, AgtB
+** End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return. EofA and EofB loop
+** until all data is exhausted then jump to the "end" label. AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int i, j; /* Loop counters */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Select *pSplit; /* Left-most SELECT in the right-hand group */
+ int nSelect; /* Number of SELECT statements in the compound */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest destA; /* Destination for coroutine A */
+ SelectDest destB; /* Destination for coroutine B */
+ int regAddrA; /* Address register for select-A coroutine */
+ int regAddrB; /* Address register for select-B coroutine */
+ int addrSelectA; /* Address of the select-A coroutine */
+ int addrSelectB; /* Address of the select-B coroutine */
+ int regOutA; /* Address register for the output-A subroutine */
+ int regOutB; /* Address register for the output-B subroutine */
+ int addrOutA; /* Address of the output-A subroutine */
+ int addrOutB = 0; /* Address of the output-B subroutine */
+ int addrEofA; /* Address of the select-A-exhausted subroutine */
+ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
+ int addrEofB; /* Address of the select-B-exhausted subroutine */
+ int addrAltB; /* Address of the A<B subroutine */
+ int addrAeqB; /* Address of the A==B subroutine */
+ int addrAgtB; /* Address of the A>B subroutine */
+ int regLimitA; /* Limit register for select-A */
+ int regLimitB; /* Limit register for select-A */
+ int regPrev; /* A range of registers to hold previous output */
+ int savedLimit; /* Saved value of p->iLimit */
+ int savedOffset; /* Saved value of p->iOffset */
+ int labelCmpr; /* Label for the start of the merge algorithm */
+ int labelEnd; /* Label for the end of the overall SELECT stmt */
+ int addr1; /* Jump instructions that get retargeted */
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
+
+ assert( p->pOrderBy!=0 );
+ assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
+ labelEnd = sqlite3VdbeMakeLabel(pParse);
+ labelCmpr = sqlite3VdbeMakeLabel(pParse);
+
+
+ /* Patch up the ORDER BY clause
+ */
+ op = p->op;
+ assert( p->pPrior->pOrderBy==0 );
+ pOrderBy = p->pOrderBy;
+ assert( pOrderBy );
+ nOrderBy = pOrderBy->nExpr;
+
+ /* For operators other than UNION ALL we have to make sure that
+ ** the ORDER BY clause covers every term of the result set. Add
+ ** terms to the ORDER BY clause as necessary.
+ */
+ if( op!=TK_ALL ){
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+ struct ExprList_item *pItem;
+ for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
+ assert( pItem!=0 );
+ assert( pItem->u.x.iOrderByCol>0 );
+ if( pItem->u.x.iOrderByCol==i ) break;
+ }
+ if( j==nOrderBy ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return SQLITE_NOMEM_BKPT;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = i;
+ p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
+ if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
+ }
+ }
+ }
+
+ /* Compute the comparison permutation and keyinfo that is used with
+ ** the permutation used to determine if the next
+ ** row of results comes from selectA or selectB. Also add explicit
+ ** collations to the ORDER BY clause terms so that when the subqueries
+ ** to the right and the left are evaluated, they use the correct
+ ** collation.
+ */
+ aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
+ if( aPermute ){
+ struct ExprList_item *pItem;
+ aPermute[0] = nOrderBy;
+ for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
+ assert( pItem!=0 );
+ assert( pItem->u.x.iOrderByCol>0 );
+ assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
+ aPermute[i] = pItem->u.x.iOrderByCol - 1;
+ }
+ pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
+ }else{
+ pKeyMerge = 0;
+ }
+
+ /* Allocate a range of temporary registers and the KeyInfo needed
+ ** for the logic that removes duplicate result rows when the
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+ */
+ if( op==TK_ALL ){
+ regPrev = 0;
+ }else{
+ int nExpr = p->pEList->nExpr;
+ assert( nOrderBy>=nExpr || db->mallocFailed );
+ regPrev = pParse->nMem+1;
+ pParse->nMem += nExpr+1;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+ pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
+ if( pKeyDup ){
+ assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
+ for(i=0; i<nExpr; i++){
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+ pKeyDup->aSortFlags[i] = 0;
+ }
+ }
+ }
+
+ /* Separate the left and the right query from one another
+ */
+ nSelect = 1;
+ if( (op==TK_ALL || op==TK_UNION)
+ && OptimizationEnabled(db, SQLITE_BalancedMerge)
+ ){
+ for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
+ nSelect++;
+ assert( pSplit->pPrior->pNext==pSplit );
+ }
+ }
+ if( nSelect<=3 ){
+ pSplit = p;
+ }else{
+ pSplit = p;
+ for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
+ }
+ pPrior = pSplit->pPrior;
+ assert( pPrior!=0 );
+ pSplit->pPrior = 0;
+ pPrior->pNext = 0;
+ assert( p->pOrderBy == pOrderBy );
+ assert( pOrderBy!=0 || db->mallocFailed );
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
+ sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
+ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
+
+ /* Compute the limit registers */
+ computeLimitRegisters(pParse, p, labelEnd);
+ if( p->iLimit && op==TK_ALL ){
+ regLimitA = ++pParse->nMem;
+ regLimitB = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+ regLimitA);
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+ }else{
+ regLimitA = regLimitB = 0;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = 0;
+
+ regAddrA = ++pParse->nMem;
+ regAddrB = ++pParse->nMem;
+ regOutA = ++pParse->nMem;
+ regOutB = ++pParse->nMem;
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+ ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
+
+ /* Generate a coroutine to evaluate the SELECT statement to the
+ ** left of the compound operator - the "A" select.
+ */
+ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
+ addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
+ VdbeComment((v, "left SELECT"));
+ pPrior->iLimit = regLimitA;
+ ExplainQueryPlan((pParse, 1, "LEFT"));
+ sqlite3Select(pParse, pPrior, &destA);
+ sqlite3VdbeEndCoroutine(v, regAddrA);
+ sqlite3VdbeJumpHere(v, addr1);
+
+ /* Generate a coroutine to evaluate the SELECT statement on
+ ** the right - the "B" select
+ */
+ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
+ addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
+ VdbeComment((v, "right SELECT"));
+ savedLimit = p->iLimit;
+ savedOffset = p->iOffset;
+ p->iLimit = regLimitB;
+ p->iOffset = 0;
+ ExplainQueryPlan((pParse, 1, "RIGHT"));
+ sqlite3Select(pParse, p, &destB);
+ p->iLimit = savedLimit;
+ p->iOffset = savedOffset;
+ sqlite3VdbeEndCoroutine(v, regAddrB);
+
+ /* Generate a subroutine that outputs the current row of the A
+ ** select as the next output row of the compound select.
+ */
+ VdbeNoopComment((v, "Output routine for A"));
+ addrOutA = generateOutputSubroutine(pParse,
+ p, &destA, pDest, regOutA,
+ regPrev, pKeyDup, labelEnd);
+
+ /* Generate a subroutine that outputs the current row of the B
+ ** select as the next output row of the compound select.
+ */
+ if( op==TK_ALL || op==TK_UNION ){
+ VdbeNoopComment((v, "Output routine for B"));
+ addrOutB = generateOutputSubroutine(pParse,
+ p, &destB, pDest, regOutB,
+ regPrev, pKeyDup, labelEnd);
+ }
+ sqlite3KeyInfoUnref(pKeyDup);
+
+ /* Generate a subroutine to run when the results from select A
+ ** are exhausted and only data in select B remains.
+ */
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){
+ addrEofA_noB = addrEofA = labelEnd;
+ }else{
+ VdbeNoopComment((v, "eof-A subroutine"));
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
+ VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrEofA);
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ }
+
+ /* Generate a subroutine to run when the results from select B
+ ** are exhausted and only data in select A remains.
+ */
+ if( op==TK_INTERSECT ){
+ addrEofB = addrEofA;
+ if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
+ }else{
+ VdbeNoopComment((v, "eof-B subroutine"));
+ addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrEofB);
+ }
+
+ /* Generate code to handle the case of A<B
+ */
+ VdbeNoopComment((v, "A-lt-B subroutine"));
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+
+ /* Generate code to handle the case of A==B
+ */
+ if( op==TK_ALL ){
+ addrAeqB = addrAltB;
+ }else if( op==TK_INTERSECT ){
+ addrAeqB = addrAltB;
+ addrAltB++;
+ }else{
+ VdbeNoopComment((v, "A-eq-B subroutine"));
+ addrAeqB =
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+ }
+
+ /* Generate code to handle the case of A>B
+ */
+ VdbeNoopComment((v, "A-gt-B subroutine"));
+ addrAgtB = sqlite3VdbeCurrentAddr(v);
+ if( op==TK_ALL || op==TK_UNION ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ }
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+
+ /* This code runs once to initialize everything.
+ */
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
+
+ /* Implement the main merge loop
+ */
+ sqlite3VdbeResolveLabel(v, labelCmpr);
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
+ (char*)pKeyMerge, P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
+
+ /* Jump to the this point in order to terminate the query.
+ */
+ sqlite3VdbeResolveLabel(v, labelEnd);
+
+ /* Make arrangements to free the 2nd and subsequent arms of the compound
+ ** after the parse has finished */
+ if( pSplit->pPrior ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
+ }
+ pSplit->pPrior = pPrior;
+ pPrior->pNext = pSplit;
+ sqlite3ExprListDelete(db, pPrior->pOrderBy);
+ pPrior->pOrderBy = 0;
+
+ /*** TBD: Insert subroutine calls to close cursors on incomplete
+ **** subqueries ****/
+ ExplainQueryPlanPop(pParse);
+ return pParse->nErr!=0;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+
+/* An instance of the SubstContext object describes an substitution edit
+** to be performed on a parse tree.
+**
+** All references to columns in table iTable are to be replaced by corresponding
+** expressions in pEList.
+**
+** ## About "isOuterJoin":
+**
+** The isOuterJoin column indicates that the replacement will occur into a
+** position in the parent that NULL-able due to an OUTER JOIN. Either the
+** target slot in the parent is the right operand of a LEFT JOIN, or one of
+** the left operands of a RIGHT JOIN. In either case, we need to potentially
+** bypass the substituted expression with OP_IfNullRow.
+**
+** Suppose the original expression is an integer constant. Even though the table
+** has the nullRow flag set, because the expression is an integer constant,
+** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
+** that checks to see if the nullRow flag is set on the table. If the nullRow
+** flag is set, then the value in the register is set to NULL and the original
+** expression is bypassed. If the nullRow flag is not set, then the original
+** expression runs to populate the register.
+**
+** Example where this is needed:
+**
+** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
+** CREATE TABLE t2(x INT UNIQUE);
+**
+** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
+**
+** When the subquery on the right side of the LEFT JOIN is flattened, we
+** have to add OP_IfNullRow in front of the OP_Integer that implements the
+** "m" value of the subquery so that a NULL will be loaded instead of 59
+** when processing a non-matched row of the left.
+*/
+typedef struct SubstContext {
+ Parse *pParse; /* The parsing context */
+ int iTable; /* Replace references to this table */
+ int iNewTable; /* New table number */
+ int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
+ ExprList *pEList; /* Replacement expressions */
+ ExprList *pCList; /* Collation sequences for replacement expr */
+} SubstContext;
+
+/* Forward Declarations */
+static void substExprList(SubstContext*, ExprList*);
+static void substSelect(SubstContext*, Select*, int);
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.)
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine makes the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static Expr *substExpr(
+ SubstContext *pSubst, /* Description of the substitution */
+ Expr *pExpr /* Expr in which substitution occurs */
+){
+ if( pExpr==0 ) return 0;
+ if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
+ && pExpr->w.iJoin==pSubst->iTable
+ ){
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ pExpr->w.iJoin = pSubst->iNewTable;
+ }
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pSubst->iTable
+ && !ExprHasProperty(pExpr, EP_FixedCol)
+ ){
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ if( pExpr->iColumn<0 ){
+ pExpr->op = TK_NULL;
+ }else
+#endif
+ {
+ Expr *pNew;
+ int iColumn;
+ Expr *pCopy;
+ Expr ifNullRow;
+ iColumn = pExpr->iColumn;
+ assert( iColumn>=0 );
+ assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
+ assert( pExpr->pRight==0 );
+ pCopy = pSubst->pEList->a[iColumn].pExpr;
+ if( sqlite3ExprIsVector(pCopy) ){
+ sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
+ }else{
+ sqlite3 *db = pSubst->pParse->db;
+ if( pSubst->isOuterJoin
+ && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable)
+ ){
+ memset(&ifNullRow, 0, sizeof(ifNullRow));
+ ifNullRow.op = TK_IF_NULL_ROW;
+ ifNullRow.pLeft = pCopy;
+ ifNullRow.iTable = pSubst->iNewTable;
+ ifNullRow.iColumn = -99;
+ ifNullRow.flags = EP_IfNullRow;
+ pCopy = &ifNullRow;
+ }
+ testcase( ExprHasProperty(pCopy, EP_Subquery) );
+ pNew = sqlite3ExprDup(db, pCopy, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pNew);
+ return pExpr;
+ }
+ if( pSubst->isOuterJoin ){
+ ExprSetProperty(pNew, EP_CanBeNull);
+ }
+ if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
+ sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
+ pExpr->flags & (EP_OuterON|EP_InnerON));
+ }
+ sqlite3ExprDelete(db, pExpr);
+ pExpr = pNew;
+ if( pExpr->op==TK_TRUEFALSE ){
+ pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
+ pExpr->op = TK_INTEGER;
+ ExprSetProperty(pExpr, EP_IntValue);
+ }
+
+ /* Ensure that the expression now has an implicit collation sequence,
+ ** just as it did when it was a column of a view or sub-query. */
+ {
+ CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
+ CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
+ pSubst->pCList->a[iColumn].pExpr
+ );
+ if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
+ pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
+ (pColl ? pColl->zName : "BINARY")
+ );
+ }
+ }
+ ExprClearProperty(pExpr, EP_Collate);
+ }
+ }
+ }else{
+ if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
+ pExpr->iTable = pSubst->iNewTable;
+ }
+ pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
+ pExpr->pRight = substExpr(pSubst, pExpr->pRight);
+ if( ExprUseXSelect(pExpr) ){
+ substSelect(pSubst, pExpr->x.pSelect, 1);
+ }else{
+ substExprList(pSubst, pExpr->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ Window *pWin = pExpr->y.pWin;
+ pWin->pFilter = substExpr(pSubst, pWin->pFilter);
+ substExprList(pSubst, pWin->pPartition);
+ substExprList(pSubst, pWin->pOrderBy);
+ }
+#endif
+ }
+ return pExpr;
+}
+static void substExprList(
+ SubstContext *pSubst, /* Description of the substitution */
+ ExprList *pList /* List to scan and in which to make substitutes */
+){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
+ }
+}
+static void substSelect(
+ SubstContext *pSubst, /* Description of the substitution */
+ Select *p, /* SELECT statement in which to make substitutions */
+ int doPrior /* Do substitutes on p->pPrior too */
+){
+ SrcList *pSrc;
+ SrcItem *pItem;
+ int i;
+ if( !p ) return;
+ do{
+ substExprList(pSubst, p->pEList);
+ substExprList(pSubst, p->pGroupBy);
+ substExprList(pSubst, p->pOrderBy);
+ p->pHaving = substExpr(pSubst, p->pHaving);
+ p->pWhere = substExpr(pSubst, p->pWhere);
+ pSrc = p->pSrc;
+ assert( pSrc!=0 );
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ substSelect(pSubst, pItem->pSelect, 1);
+ if( pItem->fg.isTabFunc ){
+ substExprList(pSubst, pItem->u1.pFuncArg);
+ }
+ }
+ }while( doPrior && (p = p->pPrior)!=0 );
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** pSelect is a SELECT statement and pSrcItem is one item in the FROM
+** clause of that SELECT.
+**
+** This routine scans the entire SELECT statement and recomputes the
+** pSrcItem->colUsed mask.
+*/
+static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
+ SrcItem *pItem;
+ if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
+ pItem = pWalker->u.pSrcItem;
+ if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
+ if( pExpr->iColumn<0 ) return WRC_Continue;
+ pItem->colUsed |= sqlite3ExprColUsed(pExpr);
+ return WRC_Continue;
+}
+static void recomputeColumnsUsed(
+ Select *pSelect, /* The complete SELECT statement */
+ SrcItem *pSrcItem /* Which FROM clause item to recompute */
+){
+ Walker w;
+ if( NEVER(pSrcItem->pTab==0) ) return;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = recomputeColumnsUsedExpr;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.u.pSrcItem = pSrcItem;
+ pSrcItem->colUsed = 0;
+ sqlite3WalkSelect(&w, pSelect);
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** Assign new cursor numbers to each of the items in pSrc. For each
+** new cursor number assigned, set an entry in the aCsrMap[] array
+** to map the old cursor number to the new:
+**
+** aCsrMap[iOld+1] = iNew;
+**
+** The array is guaranteed by the caller to be large enough for all
+** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
+**
+** If pSrc contains any sub-selects, call this routine recursively
+** on the FROM clause of each such sub-select, with iExcept set to -1.
+*/
+static void srclistRenumberCursors(
+ Parse *pParse, /* Parse context */
+ int *aCsrMap, /* Array to store cursor mappings in */
+ SrcList *pSrc, /* FROM clause to renumber */
+ int iExcept /* FROM clause item to skip */
+){
+ int i;
+ SrcItem *pItem;
+ for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
+ if( i!=iExcept ){
+ Select *p;
+ assert( pItem->iCursor < aCsrMap[0] );
+ if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
+ aCsrMap[pItem->iCursor+1] = pParse->nTab++;
+ }
+ pItem->iCursor = aCsrMap[pItem->iCursor+1];
+ for(p=pItem->pSelect; p; p=p->pPrior){
+ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
+ }
+ }
+ }
+}
+
+/*
+** *piCursor is a cursor number. Change it if it needs to be mapped.
+*/
+static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
+ int *aCsrMap = pWalker->u.aiCol;
+ int iCsr = *piCursor;
+ if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
+ *piCursor = aCsrMap[iCsr+1];
+ }
+}
+
+/*
+** Expression walker callback used by renumberCursors() to update
+** Expr objects to match newly assigned cursor numbers.
+*/
+static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
+ int op = pExpr->op;
+ if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
+ renumberCursorDoMapping(pWalker, &pExpr->iTable);
+ }
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
+** of the SELECT statement passed as the second argument, and to each
+** cursor in the FROM clause of any FROM clause sub-selects, recursively.
+** Except, do not assign a new cursor number to the iExcept'th element in
+** the FROM clause of (*p). Update all expressions and other references
+** to refer to the new cursor numbers.
+**
+** Argument aCsrMap is an array that may be used for temporary working
+** space. Two guarantees are made by the caller:
+**
+** * the array is larger than the largest cursor number used within the
+** select statement passed as an argument, and
+**
+** * the array entries for all cursor numbers that do *not* appear in
+** FROM clauses of the select statement as described above are
+** initialized to zero.
+*/
+static void renumberCursors(
+ Parse *pParse, /* Parse context */
+ Select *p, /* Select to renumber cursors within */
+ int iExcept, /* FROM clause item to skip */
+ int *aCsrMap /* Working space */
+){
+ Walker w;
+ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
+ memset(&w, 0, sizeof(w));
+ w.u.aiCol = aCsrMap;
+ w.xExprCallback = renumberCursorsCb;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ sqlite3WalkSelect(&w, p);
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** If pSel is not part of a compound SELECT, return a pointer to its
+** expression list. Otherwise, return a pointer to the expression list
+** of the leftmost SELECT in the compound.
+*/
+static ExprList *findLeftmostExprlist(Select *pSel){
+ while( pSel->pPrior ){
+ pSel = pSel->pPrior;
+ }
+ return pSel->pEList;
+}
+
+/*
+** Return true if any of the result-set columns in the compound query
+** have incompatible affinities on one or more arms of the compound.
+*/
+static int compoundHasDifferentAffinities(Select *p){
+ int ii;
+ ExprList *pList;
+ assert( p!=0 );
+ assert( p->pEList!=0 );
+ assert( p->pPrior!=0 );
+ pList = p->pEList;
+ for(ii=0; ii<pList->nExpr; ii++){
+ char aff;
+ Select *pSub1;
+ assert( pList->a[ii].pExpr!=0 );
+ aff = sqlite3ExprAffinity(pList->a[ii].pExpr);
+ for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){
+ assert( pSub1->pEList!=0 );
+ assert( pSub1->pEList->nExpr>ii );
+ assert( pSub1->pEList->a[ii].pExpr!=0 );
+ if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** This routine attempts to flatten subqueries as a performance optimization.
+** This routine returns 1 if it makes changes and 0 if no flattening occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simplification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is subject to the following constraints:
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** The subquery and the outer query cannot both be aggregates.
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** (2) If the subquery is an aggregate then
+** (2a) the outer query must not be a join and
+** (2b) the outer query must not use subqueries
+** other than the one FROM-clause subquery that is a candidate
+** for flattening. (This is due to ticket [2f7170d73bf9abf80]
+** from 2015-02-09.)
+**
+** (3) If the subquery is the right operand of a LEFT JOIN then
+** (3a) the subquery may not be a join and
+** (3b) the FROM clause of the subquery may not contain a virtual
+** table and
+** (**) Was: "The outer query may not have a GROUP BY." This case
+** is now managed correctly
+** (3d) the outer query may not be DISTINCT.
+** See also (26) for restrictions on RIGHT JOIN.
+**
+** (4) The subquery can not be DISTINCT.
+**
+** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
+** sub-queries that were excluded from this optimization. Restriction
+** (4) has since been expanded to exclude all DISTINCT subqueries.
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** If the subquery is aggregate, the outer query may not be DISTINCT.
+**
+** (7) The subquery must have a FROM clause. TODO: For subqueries without
+** A FROM clause, consider adding a FROM clause with the special
+** table sqlite_once that consists of a single row containing a
+** single NULL.
+**
+** (8) If the subquery uses LIMIT then the outer query may not be a join.
+**
+** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
+**
+** (**) Restriction (10) was removed from the code on 2005-02-05 but we
+** accidentally carried the comment forward until 2014-09-15. Original
+** constraint: "If the subquery is aggregate then the outer query
+** may not use LIMIT."
+**
+** (11) The subquery and the outer query may not both have ORDER BY clauses.
+**
+** (**) Not implemented. Subsumed into restriction (3). Was previously
+** a separate restriction deriving from ticket #350.
+**
+** (13) The subquery and outer query may not both use LIMIT.
+**
+** (14) The subquery may not use OFFSET.
+**
+** (15) If the outer query is part of a compound select, then the
+** subquery may not use LIMIT.
+** (See ticket #2339 and ticket [02a8e81d44]).
+**
+** (16) If the outer query is aggregate, then the subquery may not
+** use ORDER BY. (Ticket #2942) This used to not matter
+** until we introduced the group_concat() function.
+**
+** (17) If the subquery is a compound select, then
+** (17a) all compound operators must be a UNION ALL, and
+** (17b) no terms within the subquery compound may be aggregate
+** or DISTINCT, and
+** (17c) every term within the subquery compound must have a FROM clause
+** (17d) the outer query may not be
+** (17d1) aggregate, or
+** (17d2) DISTINCT
+** (17e) the subquery may not contain window functions, and
+** (17f) the subquery must not be the RHS of a LEFT JOIN.
+** (17g) either the subquery is the first element of the outer
+** query or there are no RIGHT or FULL JOINs in any arm
+** of the subquery. (This is a duplicate of condition (27b).)
+** (17h) The corresponding result set expressions in all arms of the
+** compound must have the same affinity.
+**
+** The parent and sub-query may contain WHERE clauses. Subject to
+** rules (11), (13) and (14), they may also contain ORDER BY,
+** LIMIT and OFFSET clauses. The subquery cannot use any compound
+** operator other than UNION ALL because all the other compound
+** operators have an implied DISTINCT which is disallowed by
+** restriction (4).
+**
+** Also, each component of the sub-query must return the same number
+** of result columns. This is actually a requirement for any compound
+** SELECT statement, but all the code here does is make sure that no
+** such (illegal) sub-query is flattened. The caller will detect the
+** syntax error and return a detailed message.
+**
+** (18) If the sub-query is a compound select, then all terms of the
+** ORDER BY clause of the parent must be copies of a term returned
+** by the parent query.
+**
+** (19) If the subquery uses LIMIT then the outer query may not
+** have a WHERE clause.
+**
+** (20) If the sub-query is a compound select, then it must not use
+** an ORDER BY clause. Ticket #3773. We could relax this constraint
+** somewhat by saying that the terms of the ORDER BY clause must
+** appear as unmodified result columns in the outer query. But we
+** have other optimizations in mind to deal with that case.
+**
+** (21) If the subquery uses LIMIT then the outer query may not be
+** DISTINCT. (See ticket [752e1646fc]).
+**
+** (22) The subquery may not be a recursive CTE.
+**
+** (23) If the outer query is a recursive CTE, then the sub-query may not be
+** a compound query. This restriction is because transforming the
+** parent to a compound query confuses the code that handles
+** recursive queries in multiSelect().
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** The subquery may not be an aggregate that uses the built-in min() or
+** or max() functions. (Without this restriction, a query like:
+** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
+** return the value X for which Y was maximal.)
+**
+** (25) If either the subquery or the parent query contains a window
+** function in the select list or ORDER BY clause, flattening
+** is not attempted.
+**
+** (26) The subquery may not be the right operand of a RIGHT JOIN.
+** See also (3) for restrictions on LEFT JOIN.
+**
+** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
+** is the first element of the parent query. Two subcases:
+** (27a) the subquery is not a compound query.
+** (27b) the subquery is a compound query and the RIGHT JOIN occurs
+** in any arm of the compound query. (See also (17g).)
+**
+** (28) The subquery is not a MATERIALIZED CTE. (This is handled
+** in the caller before ever reaching this routine.)
+**
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg /* True if outer SELECT uses aggregate functions */
+){
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ Select *pParent; /* Current UNION ALL term of the other query */
+ Select *pSub; /* The inner query or "subquery" */
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
+ int iNewParent = -1;/* Replacement table for iParent */
+ int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
+ int i; /* Loop counter */
+ Expr *pWhere; /* The WHERE clause */
+ SrcItem *pSubitem; /* The subquery */
+ sqlite3 *db = pParse->db;
+ Walker w; /* Walker to persist agginfo data */
+ int *aCsrMap = 0;
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ assert( p!=0 );
+ assert( p->pPrior==0 );
+ if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSubitem = &pSrc->a[iFrom];
+ iParent = pSubitem->iCursor;
+ pSub = pSubitem->pSelect;
+ assert( pSub!=0 );
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
+#endif
+
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+ ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
+ ** because they could be computed at compile-time. But when LIMIT and OFFSET
+ ** became arbitrary expressions, we were forced to add restrictions (13)
+ ** and (14). */
+ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
+ if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
+ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
+ return 0; /* Restriction (15) */
+ }
+ if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
+ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
+ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
+ return 0; /* Restrictions (8)(9) */
+ }
+ if( p->pOrderBy && pSub->pOrderBy ){
+ return 0; /* Restriction (11) */
+ }
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
+ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
+ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
+ return 0; /* Restriction (21) */
+ }
+ if( pSub->selFlags & (SF_Recursive) ){
+ return 0; /* Restrictions (22) */
+ }
+
+ /*
+ ** If the subquery is the right operand of a LEFT JOIN, then the
+ ** subquery may not be a join itself (3a). Example of why this is not
+ ** allowed:
+ **
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
+ **
+ ** which is not at all the same thing.
+ **
+ ** See also tickets #306, #350, and #3300.
+ */
+ if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
+ if( pSubSrc->nSrc>1 /* (3a) */
+ || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
+ || (p->selFlags & SF_Distinct)!=0 /* (3d) */
+ || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
+ ){
+ return 0;
+ }
+ isOuterJoin = 1;
+ }
+
+ assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
+ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ return 0; /* Restriction (27a) */
+ }
+
+ /* Condition (28) is blocked by the caller */
+ assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes );
+
+ /* Restriction (17): If the sub-query is a compound SELECT, then it must
+ ** use only the UNION ALL operator. And none of the simple select queries
+ ** that make up the compound SELECT are allowed to be aggregate or distinct
+ ** queries.
+ */
+ if( pSub->pPrior ){
+ int ii;
+ if( pSub->pOrderBy ){
+ return 0; /* Restriction (20) */
+ }
+ if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
+ return 0; /* (17d1), (17d2), or (17f) */
+ }
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ assert( pSub->pSrc!=0 );
+ assert( (pSub->selFlags & SF_Recursive)==0 );
+ assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
+ if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
+ || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
+ || pSub1->pSrc->nSrc<1 /* (17c) */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ || pSub1->pWin /* (17e) */
+#endif
+ ){
+ return 0;
+ }
+ if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ /* Without this restriction, the JT_LTORJ flag would end up being
+ ** omitted on left-hand tables of the right join that is being
+ ** flattened. */
+ return 0; /* Restrictions (17g), (27b) */
+ }
+ testcase( pSub1->pSrc->nSrc>1 );
+ }
+
+ /* Restriction (18). */
+ if( p->pOrderBy ){
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
+ }
+ }
+
+ /* Restriction (23) */
+ if( (p->selFlags & SF_Recursive) ) return 0;
+
+ /* Restriction (17h) */
+ if( compoundHasDifferentAffinities(pSub) ) return 0;
+
+ if( pSrc->nSrc>1 ){
+ if( pParse->nSelect>500 ) return 0;
+ if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
+ aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
+ if( aCsrMap ) aCsrMap[0] = pParse->nTab;
+ }
+ }
+
+ /***** If we reach this point, flattening is permitted. *****/
+ TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n",
+ pSub->selId, pSub, iFrom));
+
+ /* Authorize the subquery */
+ pParse->zAuthContext = pSubitem->zName;
+ TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+ testcase( i==SQLITE_DENY );
+ pParse->zAuthContext = zSavedAuthContext;
+
+ /* Delete the transient structures associated with the subquery */
+ pSub1 = pSubitem->pSelect;
+ sqlite3DbFree(db, pSubitem->zDatabase);
+ sqlite3DbFree(db, pSubitem->zName);
+ sqlite3DbFree(db, pSubitem->zAlias);
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ pSubitem->pSelect = 0;
+ assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
+
+ /* If the sub-query is a compound SELECT statement, then (by restrictions
+ ** 17 and 18 above) it must be a UNION ALL and the parent query must
+ ** be of the form:
+ **
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
+ **
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+ ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
+ ** OFFSET clauses and joins them to the left-hand-side of the original
+ ** using UNION ALL operators. In this case N is the number of simple
+ ** select statements in the compound sub-query.
+ **
+ ** Example:
+ **
+ ** SELECT a+1 FROM (
+ ** SELECT x FROM tab
+ ** UNION ALL
+ ** SELECT y FROM tab
+ ** UNION ALL
+ ** SELECT abs(z*2) FROM tab2
+ ** ) WHERE a!=5 ORDER BY 1
+ **
+ ** Transformed into:
+ **
+ ** SELECT x+1 FROM tab WHERE x+1!=5
+ ** UNION ALL
+ ** SELECT y+1 FROM tab WHERE y+1!=5
+ ** UNION ALL
+ ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
+ ** ORDER BY 1
+ **
+ ** We call this the "compound-subquery flattening".
+ */
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+ Select *pNew;
+ ExprList *pOrderBy = p->pOrderBy;
+ Expr *pLimit = p->pLimit;
+ Select *pPrior = p->pPrior;
+ Table *pItemTab = pSubitem->pTab;
+ pSubitem->pTab = 0;
+ p->pOrderBy = 0;
+ p->pPrior = 0;
+ p->pLimit = 0;
+ pNew = sqlite3SelectDup(db, p, 0);
+ p->pLimit = pLimit;
+ p->pOrderBy = pOrderBy;
+ p->op = TK_ALL;
+ pSubitem->pTab = pItemTab;
+ if( pNew==0 ){
+ p->pPrior = pPrior;
+ }else{
+ pNew->selId = ++pParse->nSelect;
+ if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
+ renumberCursors(pParse, pNew, iFrom, aCsrMap);
+ }
+ pNew->pPrior = pPrior;
+ if( pPrior ) pPrior->pNext = pNew;
+ pNew->pNext = p;
+ p->pPrior = pNew;
+ TREETRACE(0x4,pParse,p,("compound-subquery flattener"
+ " creates %u as peer\n",pNew->selId));
+ }
+ assert( pSubitem->pSelect==0 );
+ }
+ sqlite3DbFree(db, aCsrMap);
+ if( db->mallocFailed ){
+ pSubitem->pSelect = pSub1;
+ return 1;
+ }
+
+ /* Defer deleting the Table object associated with the
+ ** subquery until code generation is
+ ** complete, since there may still exist Expr.pTab entries that
+ ** refer to the subquery even after flattening. Ticket #3346.
+ **
+ ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
+ */
+ if( ALWAYS(pSubitem->pTab!=0) ){
+ Table *pTabToDel = pSubitem->pTab;
+ if( pTabToDel->nTabRef==1 ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ sqlite3ParserAddCleanup(pToplevel,
+ (void(*)(sqlite3*,void*))sqlite3DeleteTable,
+ pTabToDel);
+ testcase( pToplevel->earlyCleanup );
+ }else{
+ pTabToDel->nTabRef--;
+ }
+ pSubitem->pTab = 0;
+ }
+
+ /* The following loop runs once for each term in a compound-subquery
+ ** flattening (as described above). If we are doing a different kind
+ ** of flattening - a flattening other than a compound-subquery flattening -
+ ** then this loop only runs once.
+ **
+ ** This loop moves all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ pSub = pSub1;
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
+ int nSubSrc;
+ u8 jointype = 0;
+ u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
+ assert( pSub!=0 );
+ pSubSrc = pSub->pSrc; /* FROM clause of subquery */
+ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
+ pSrc = pParent->pSrc; /* FROM clause of the outer query */
+
+ if( pParent==p ){
+ jointype = pSubitem->fg.jointype; /* First time through the loop */
+ }
+
+ /* The subquery uses a single slot of the FROM clause of the outer
+ ** query. If the subquery has more than one element in its FROM clause,
+ ** then expand the outer query to make space for it to hold all elements
+ ** of the subquery.
+ **
+ ** Example:
+ **
+ ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
+ **
+ ** The outer query has 3 slots in its FROM clause. One slot of the
+ ** outer query (the middle slot) is used by the subquery. The next
+ ** block of code will expand the outer query FROM clause to 4 slots.
+ ** The middle slot is expanded to two slots in order to make space
+ ** for the two elements in the FROM clause of the subquery.
+ */
+ if( nSubSrc>1 ){
+ pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
+ if( pSrc==0 ) break;
+ pParent->pSrc = pSrc;
+ }
+
+ /* Transfer the FROM clause terms from the subquery into the
+ ** outer query.
+ */
+ for(i=0; i<nSubSrc; i++){
+ SrcItem *pItem = &pSrc->a[i+iFrom];
+ if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
+ assert( pItem->fg.isTabFunc==0 );
+ *pItem = pSubSrc->a[i];
+ pItem->fg.jointype |= ltorj;
+ iNewParent = pSubSrc->a[i].iCursor;
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+ }
+ pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
+ pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
+ /* At this point, any non-zero iOrderByCol values indicate that the
+ ** ORDER BY column expression is identical to the iOrderByCol'th
+ ** expression returned by SELECT statement pSub. Since these values
+ ** do not necessarily correspond to columns in SELECT statement pParent,
+ ** zero them before transferring the ORDER BY clause.
+ **
+ ** Not doing this may cause an error if a subsequent call to this
+ ** function attempts to flatten a compound sub-query into pParent
+ ** (the only way this can happen is if the compound sub-query is
+ ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
+ ExprList *pOrderBy = pSub->pOrderBy;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].u.x.iOrderByCol = 0;
+ }
+ assert( pParent->pOrderBy==0 );
+ pParent->pOrderBy = pOrderBy;
+ pSub->pOrderBy = 0;
+ }
+ pWhere = pSub->pWhere;
+ pSub->pWhere = 0;
+ if( isOuterJoin>0 ){
+ sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
+ }
+ if( pWhere ){
+ if( pParent->pWhere ){
+ pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
+ }else{
+ pParent->pWhere = pWhere;
+ }
+ }
+ if( db->mallocFailed==0 ){
+ SubstContext x;
+ x.pParse = pParse;
+ x.iTable = iParent;
+ x.iNewTable = iNewParent;
+ x.isOuterJoin = isOuterJoin;
+ x.pEList = pSub->pEList;
+ x.pCList = findLeftmostExprlist(pSub);
+ substSelect(&x, pParent, 0);
+ }
+
+ /* The flattened query is a compound if either the inner or the
+ ** outer query is a compound. */
+ pParent->selFlags |= pSub->selFlags & SF_Compound;
+ assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
+
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ pParent->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
+ }
+
+ /* Recompute the SrcItem.colUsed masks for the flattened
+ ** tables. */
+ for(i=0; i<nSubSrc; i++){
+ recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
+ }
+ }
+
+ /* Finally, delete what is left of the subquery and return success.
+ */
+ sqlite3AggInfoPersistWalkerInit(&w, pParse);
+ sqlite3WalkSelect(&w,pSub1);
+ sqlite3SelectDelete(db, pSub1);
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x4 ){
+ TREETRACE(0x4,pParse,p,("After flattening:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ return 1;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** A structure to keep track of all of the column values that are fixed to
+** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
+*/
+typedef struct WhereConst WhereConst;
+struct WhereConst {
+ Parse *pParse; /* Parsing context */
+ u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
+ int nConst; /* Number for COLUMN=CONSTANT terms */
+ int nChng; /* Number of times a constant is propagated */
+ int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
+ u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
+ ** Either EP_OuterON or EP_InnerON|EP_OuterON */
+ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
+};
+
+/*
+** Add a new entry to the pConst object. Except, do not add duplicate
+** pColumn entries. Also, do not add if doing so would not be appropriate.
+**
+** The caller guarantees the pColumn is a column and pValue is a constant.
+** This routine has to do some additional checks before completing the
+** insert.
+*/
+static void constInsert(
+ WhereConst *pConst, /* The WhereConst into which we are inserting */
+ Expr *pColumn, /* The COLUMN part of the constraint */
+ Expr *pValue, /* The VALUE part of the constraint */
+ Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
+){
+ int i;
+ assert( pColumn->op==TK_COLUMN );
+ assert( sqlite3ExprIsConstant(pValue) );
+
+ if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
+ if( sqlite3ExprAffinity(pValue)!=0 ) return;
+ if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
+ return;
+ }
+
+ /* 2018-10-25 ticket [cf5ed20f]
+ ** Make sure the same pColumn is not inserted more than once */
+ for(i=0; i<pConst->nConst; i++){
+ const Expr *pE2 = pConst->apExpr[i*2];
+ assert( pE2->op==TK_COLUMN );
+ if( pE2->iTable==pColumn->iTable
+ && pE2->iColumn==pColumn->iColumn
+ ){
+ return; /* Already present. Return without doing anything. */
+ }
+ }
+ if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
+ pConst->bHasAffBlob = 1;
+ }
+
+ pConst->nConst++;
+ pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
+ pConst->nConst*2*sizeof(Expr*));
+ if( pConst->apExpr==0 ){
+ pConst->nConst = 0;
+ }else{
+ pConst->apExpr[pConst->nConst*2-2] = pColumn;
+ pConst->apExpr[pConst->nConst*2-1] = pValue;
+ }
+}
+
+/*
+** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
+** is a constant expression and where the term must be true because it
+** is part of the AND-connected terms of the expression. For each term
+** found, add it to the pConst structure.
+*/
+static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
+ Expr *pRight, *pLeft;
+ if( NEVER(pExpr==0) ) return;
+ if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ return;
+ }
+ if( pExpr->op==TK_AND ){
+ findConstInWhere(pConst, pExpr->pRight);
+ findConstInWhere(pConst, pExpr->pLeft);
+ return;
+ }
+ if( pExpr->op!=TK_EQ ) return;
+ pRight = pExpr->pRight;
+ pLeft = pExpr->pLeft;
+ assert( pRight!=0 );
+ assert( pLeft!=0 );
+ if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
+ constInsert(pConst,pRight,pLeft,pExpr);
+ }
+ if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
+ constInsert(pConst,pLeft,pRight,pExpr);
+ }
+}
+
+/*
+** This is a helper function for Walker callback propagateConstantExprRewrite().
+**
+** Argument pExpr is a candidate expression to be replaced by a value. If
+** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
+** then overwrite it with the corresponding value. Except, do not do so
+** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
+** is SQLITE_AFF_BLOB.
+*/
+static int propagateConstantExprRewriteOne(
+ WhereConst *pConst,
+ Expr *pExpr,
+ int bIgnoreAffBlob
+){
+ int i;
+ if( pConst->pOomFault[0] ) return WRC_Prune;
+ if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
+ if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
+ testcase( ExprHasProperty(pExpr, EP_FixedCol) );
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ return WRC_Continue;
+ }
+ for(i=0; i<pConst->nConst; i++){
+ Expr *pColumn = pConst->apExpr[i*2];
+ if( pColumn==pExpr ) continue;
+ if( pColumn->iTable!=pExpr->iTable ) continue;
+ if( pColumn->iColumn!=pExpr->iColumn ) continue;
+ if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
+ break;
+ }
+ /* A match is found. Add the EP_FixedCol property */
+ pConst->nChng++;
+ ExprClearProperty(pExpr, EP_Leaf);
+ ExprSetProperty(pExpr, EP_FixedCol);
+ assert( pExpr->pLeft==0 );
+ pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
+ if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
+ break;
+ }
+ return WRC_Prune;
+}
+
+/*
+** This is a Walker expression callback. pExpr is a node from the WHERE
+** clause of a SELECT statement. This function examines pExpr to see if
+** any substitutions based on the contents of pWalker->u.pConst should
+** be made to pExpr or its immediate children.
+**
+** A substitution is made if:
+**
+** + pExpr is a column with an affinity other than BLOB that matches
+** one of the columns in pWalker->u.pConst, or
+**
+** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
+** uses an affinity other than TEXT and one of its immediate
+** children is a column that matches one of the columns in
+** pWalker->u.pConst.
+*/
+static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
+ WhereConst *pConst = pWalker->u.pConst;
+ assert( TK_GT==TK_EQ+1 );
+ assert( TK_LE==TK_EQ+2 );
+ assert( TK_LT==TK_EQ+3 );
+ assert( TK_GE==TK_EQ+4 );
+ if( pConst->bHasAffBlob ){
+ if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
+ || pExpr->op==TK_IS
+ ){
+ propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
+ if( pConst->pOomFault[0] ) return WRC_Prune;
+ if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
+ propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
+ }
+ }
+ }
+ return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
+}
+
+/*
+** The WHERE-clause constant propagation optimization.
+**
+** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
+** CONSTANT=COLUMN that are top-level AND-connected terms that are not
+** part of a ON clause from a LEFT JOIN, then throughout the query
+** replace all other occurrences of COLUMN with CONSTANT.
+**
+** For example, the query:
+**
+** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
+**
+** Is transformed into
+**
+** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
+**
+** Return true if any transformations where made and false if not.
+**
+** Implementation note: Constant propagation is tricky due to affinity
+** and collating sequence interactions. Consider this example:
+**
+** CREATE TABLE t1(a INT,b TEXT);
+** INSERT INTO t1 VALUES(123,'0123');
+** SELECT * FROM t1 WHERE a=123 AND b=a;
+** SELECT * FROM t1 WHERE a=123 AND b=123;
+**
+** The two SELECT statements above should return different answers. b=a
+** is always true because the comparison uses numeric affinity, but b=123
+** is false because it uses text affinity and '0123' is not the same as '123'.
+** To work around this, the expression tree is not actually changed from
+** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
+** and the "123" value is hung off of the pLeft pointer. Code generator
+** routines know to generate the constant "123" instead of looking up the
+** column value. Also, to avoid collation problems, this optimization is
+** only attempted if the "a=123" term uses the default BINARY collation.
+**
+** 2021-05-25 forum post 6a06202608: Another troublesome case is...
+**
+** CREATE TABLE t1(x);
+** INSERT INTO t1 VALUES(10.0);
+** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
+**
+** The query should return no rows, because the t1.x value is '10.0' not '10'
+** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
+** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
+** resulting in a false positive. To avoid this, constant propagation for
+** columns with BLOB affinity is only allowed if the constant is used with
+** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
+** type conversions to occur. See logic associated with the bHasAffBlob flag
+** for details.
+*/
+static int propagateConstants(
+ Parse *pParse, /* The parsing context */
+ Select *p /* The query in which to propagate constants */
+){
+ WhereConst x;
+ Walker w;
+ int nChng = 0;
+ x.pParse = pParse;
+ x.pOomFault = &pParse->db->mallocFailed;
+ do{
+ x.nConst = 0;
+ x.nChng = 0;
+ x.apExpr = 0;
+ x.bHasAffBlob = 0;
+ if( ALWAYS(p->pSrc!=0)
+ && p->pSrc->nSrc>0
+ && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
+ ){
+ /* Do not propagate constants on any ON clause if there is a
+ ** RIGHT JOIN anywhere in the query */
+ x.mExcludeOn = EP_InnerON | EP_OuterON;
+ }else{
+ /* Do not propagate constants through the ON clause of a LEFT JOIN */
+ x.mExcludeOn = EP_OuterON;
+ }
+ findConstInWhere(&x, p->pWhere);
+ if( x.nConst ){
+ memset(&w, 0, sizeof(w));
+ w.pParse = pParse;
+ w.xExprCallback = propagateConstantExprRewrite;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = 0;
+ w.walkerDepth = 0;
+ w.u.pConst = &x;
+ sqlite3WalkExpr(&w, p->pWhere);
+ sqlite3DbFree(x.pParse->db, x.apExpr);
+ nChng += x.nChng;
+ }
+ }while( x.nChng );
+ return nChng;
+}
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+# if !defined(SQLITE_OMIT_WINDOWFUNC)
+/*
+** This function is called to determine whether or not it is safe to
+** push WHERE clause expression pExpr down to FROM clause sub-query
+** pSubq, which contains at least one window function. Return 1
+** if it is safe and the expression should be pushed down, or 0
+** otherwise.
+**
+** It is only safe to push the expression down if it consists only
+** of constants and copies of expressions that appear in the PARTITION
+** BY clause of all window function used by the sub-query. It is safe
+** to filter out entire partitions, but not rows within partitions, as
+** this may change the results of the window functions.
+**
+** At the time this function is called it is guaranteed that
+**
+** * the sub-query uses only one distinct window frame, and
+** * that the window frame has a PARTITION BY clause.
+*/
+static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
+ assert( pSubq->pWin->pPartition );
+ assert( (pSubq->selFlags & SF_MultiPart)==0 );
+ assert( pSubq->pPrior==0 );
+ return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
+}
+# endif /* SQLITE_OMIT_WINDOWFUNC */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** Make copies of relevant WHERE clause terms of the outer query into
+** the WHERE clause of subquery. Example:
+**
+** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
+**
+** Transformed into:
+**
+** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
+** WHERE x=5 AND y=10;
+**
+** The hope is that the terms added to the inner query will make it more
+** efficient.
+**
+** Do not attempt this optimization if:
+**
+** (1) (** This restriction was removed on 2017-09-29. We used to
+** disallow this optimization for aggregate subqueries, but now
+** it is allowed by putting the extra terms on the HAVING clause.
+** The added HAVING clause is pointless if the subquery lacks
+** a GROUP BY clause. But such a HAVING clause is also harmless
+** so there does not appear to be any reason to add extra logic
+** to suppress it. **)
+**
+** (2) The inner query is the recursive part of a common table expression.
+**
+** (3) The inner query has a LIMIT clause (since the changes to the WHERE
+** clause would change the meaning of the LIMIT).
+**
+** (4) The inner query is the right operand of a LEFT JOIN and the
+** expression to be pushed down does not come from the ON clause
+** on that LEFT JOIN.
+**
+** (5) The WHERE clause expression originates in the ON or USING clause
+** of a LEFT JOIN where iCursor is not the right-hand table of that
+** left join. An example:
+**
+** SELECT *
+** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
+** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
+** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
+**
+** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
+** But if the (b2=2) term were to be pushed down into the bb subquery,
+** then the (1,1,NULL) row would be suppressed.
+**
+** (6) Window functions make things tricky as changes to the WHERE clause
+** of the inner query could change the window over which window
+** functions are calculated. Therefore, do not attempt the optimization
+** if:
+**
+** (6a) The inner query uses multiple incompatible window partitions.
+**
+** (6b) The inner query is a compound and uses window-functions.
+**
+** (6c) The WHERE clause does not consist entirely of constants and
+** copies of expressions found in the PARTITION BY clause of
+** all window-functions used by the sub-query. It is safe to
+** filter out entire partitions, as this does not change the
+** window over which any window-function is calculated.
+**
+** (7) The inner query is a Common Table Expression (CTE) that should
+** be materialized. (This restriction is implemented in the calling
+** routine.)
+**
+** (8) If the subquery is a compound that uses UNION, INTERSECT,
+** or EXCEPT, then all of the result set columns for all arms of
+** the compound must use the BINARY collating sequence.
+**
+** (9) All three of the following are true:
+**
+** (9a) The WHERE clause expression originates in the ON or USING clause
+** of a join (either an INNER or an OUTER join), and
+**
+** (9b) The subquery is to the right of the ON/USING clause
+**
+** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
+** clause and the subquery.
+**
+** Without this restriction, the push-down optimization might move
+** the ON/USING filter expression from the left side of a RIGHT JOIN
+** over to the right side, which leads to incorrect answers. See
+** also restriction (6) in sqlite3ExprIsSingleTableConstraint().
+**
+** (10) The inner query is not the right-hand table of a RIGHT JOIN.
+**
+** (11) The subquery is not a VALUES clause
+**
+** Return 0 if no changes are made and non-zero if one or more WHERE clause
+** terms are duplicated into the subquery.
+*/
+static int pushDownWhereTerms(
+ Parse *pParse, /* Parse context (for malloc() and error reporting) */
+ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
+ Expr *pWhere, /* The WHERE clause of the outer query */
+ SrcList *pSrcList, /* The complete from clause of the outer query */
+ int iSrc /* Which FROM clause term to try to push into */
+){
+ Expr *pNew;
+ SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */
+ int nChng = 0;
+ pSrc = &pSrcList->a[iSrc];
+ if( pWhere==0 ) return 0;
+ if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){
+ return 0; /* restrictions (2) and (11) */
+ }
+ if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){
+ return 0; /* restrictions (10) */
+ }
+
+ if( pSubq->pPrior ){
+ Select *pSel;
+ int notUnionAll = 0;
+ for(pSel=pSubq; pSel; pSel=pSel->pPrior){
+ u8 op = pSel->op;
+ assert( op==TK_ALL || op==TK_SELECT
+ || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
+ if( op!=TK_ALL && op!=TK_SELECT ){
+ notUnionAll = 1;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSel->pWin ) return 0; /* restriction (6b) */
+#endif
+ }
+ if( notUnionAll ){
+ /* If any of the compound arms are connected using UNION, INTERSECT,
+ ** or EXCEPT, then we must ensure that none of the columns use a
+ ** non-BINARY collating sequence. */
+ for(pSel=pSubq; pSel; pSel=pSel->pPrior){
+ int ii;
+ const ExprList *pList = pSel->pEList;
+ assert( pList!=0 );
+ for(ii=0; ii<pList->nExpr; ii++){
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr);
+ if( !sqlite3IsBinary(pColl) ){
+ return 0; /* Restriction (8) */
+ }
+ }
+ }
+ }
+ }else{
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
+#endif
+ }
+
+#ifdef SQLITE_DEBUG
+ /* Only the first term of a compound can have a WITH clause. But make
+ ** sure no other terms are marked SF_Recursive in case something changes
+ ** in the future.
+ */
+ {
+ Select *pX;
+ for(pX=pSubq; pX; pX=pX->pPrior){
+ assert( (pX->selFlags & (SF_Recursive))==0 );
+ }
+ }
+#endif
+
+ if( pSubq->pLimit!=0 ){
+ return 0; /* restriction (3) */
+ }
+ while( pWhere->op==TK_AND ){
+ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc);
+ pWhere = pWhere->pLeft;
+ }
+
+#if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
+ if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */
+ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */
+ ){
+ int jj;
+ for(jj=0; jj<iSrc; jj++){
+ if( pWhere->w.iJoin==pSrcList->a[jj].iCursor ){
+ /* If we reach this point, both (9a) and (9b) are satisfied.
+ ** The following loop checks (9c):
+ */
+ for(jj++; jj<iSrc; jj++){
+ if( (pSrcList->a[jj].fg.jointype & JT_RIGHT)!=0 ){
+ return 0; /* restriction (9) */
+ }
+ }
+ }
+ }
+ }
+ if( isLeftJoin
+ && (ExprHasProperty(pWhere,EP_OuterON)==0
+ || pWhere->w.iJoin!=iCursor)
+ ){
+ return 0; /* restriction (4) */
+ }
+ if( ExprHasProperty(pWhere,EP_OuterON)
+ && pWhere->w.iJoin!=iCursor
+ ){
+ return 0; /* restriction (5) */
+ }
+#endif
+
+ if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc) ){
+ nChng++;
+ pSubq->selFlags |= SF_PushDown;
+ while( pSubq ){
+ SubstContext x;
+ pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
+ unsetJoinExpr(pNew, -1, 1);
+ x.pParse = pParse;
+ x.iTable = pSrc->iCursor;
+ x.iNewTable = pSrc->iCursor;
+ x.isOuterJoin = 0;
+ x.pEList = pSubq->pEList;
+ x.pCList = findLeftmostExprlist(pSubq);
+ pNew = substExpr(&x, pNew);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
+ /* Restriction 6c has prevented push-down in this case */
+ sqlite3ExprDelete(pParse->db, pNew);
+ nChng--;
+ break;
+ }
+#endif
+ if( pSubq->selFlags & SF_Aggregate ){
+ pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
+ }else{
+ pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
+ }
+ pSubq = pSubq->pPrior;
+ }
+ }
+ return nChng;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** Check to see if a subquery contains result-set columns that are
+** never used. If it does, change the value of those result-set columns
+** to NULL so that they do not cause unnecessary work to compute.
+**
+** Return the number of column that were changed to NULL.
+*/
+static int disableUnusedSubqueryResultColumns(SrcItem *pItem){
+ int nCol;
+ Select *pSub; /* The subquery to be simplified */
+ Select *pX; /* For looping over compound elements of pSub */
+ Table *pTab; /* The table that describes the subquery */
+ int j; /* Column number */
+ int nChng = 0; /* Number of columns converted to NULL */
+ Bitmask colUsed; /* Columns that may not be NULLed out */
+
+ assert( pItem!=0 );
+ if( pItem->fg.isCorrelated || pItem->fg.isCte ){
+ return 0;
+ }
+ assert( pItem->pTab!=0 );
+ pTab = pItem->pTab;
+ assert( pItem->pSelect!=0 );
+ pSub = pItem->pSelect;
+ assert( pSub->pEList->nExpr==pTab->nCol );
+ for(pX=pSub; pX; pX=pX->pPrior){
+ if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){
+ testcase( pX->selFlags & SF_Distinct );
+ testcase( pX->selFlags & SF_Aggregate );
+ return 0;
+ }
+ if( pX->pPrior && pX->op!=TK_ALL ){
+ /* This optimization does not work for compound subqueries that
+ ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
+ return 0;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pX->pWin ){
+ /* This optimization does not work for subqueries that use window
+ ** functions. */
+ return 0;
+ }
+#endif
+ }
+ colUsed = pItem->colUsed;
+ if( pSub->pOrderBy ){
+ ExprList *pList = pSub->pOrderBy;
+ for(j=0; j<pList->nExpr; j++){
+ u16 iCol = pList->a[j].u.x.iOrderByCol;
+ if( iCol>0 ){
+ iCol--;
+ colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
+ }
+ }
+ }
+ nCol = pTab->nCol;
+ for(j=0; j<nCol; j++){
+ Bitmask m = j<BMS-1 ? MASKBIT(j) : TOPBIT;
+ if( (m & colUsed)!=0 ) continue;
+ for(pX=pSub; pX; pX=pX->pPrior) {
+ Expr *pY = pX->pEList->a[j].pExpr;
+ if( pY->op==TK_NULL ) continue;
+ pY->op = TK_NULL;
+ ExprClearProperty(pY, EP_Skip|EP_Unlikely);
+ pX->selFlags |= SF_PushDown;
+ nChng++;
+ }
+ }
+ return nChng;
+}
+
+
+/*
+** The pFunc is the only aggregate function in the query. Check to see
+** if the query is a candidate for the min/max optimization.
+**
+** If the query is a candidate for the min/max optimization, then set
+** *ppMinMax to be an ORDER BY clause to be used for the optimization
+** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
+** whether pFunc is a min() or max() function.
+**
+** If the query is not a candidate for the min/max optimization, return
+** WHERE_ORDERBY_NORMAL (which must be zero).
+**
+** This routine must be called after aggregate functions have been
+** located but before their arguments have been subjected to aggregate
+** analysis.
+*/
+static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
+ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
+ ExprList *pEList; /* Arguments to agg function */
+ const char *zFunc; /* Name of aggregate function pFunc */
+ ExprList *pOrderBy;
+ u8 sortFlags = 0;
+
+ assert( *ppMinMax==0 );
+ assert( pFunc->op==TK_AGG_FUNCTION );
+ assert( !IsWindowFunc(pFunc) );
+ assert( ExprUseXList(pFunc) );
+ pEList = pFunc->x.pList;
+ if( pEList==0
+ || pEList->nExpr!=1
+ || ExprHasProperty(pFunc, EP_WinFunc)
+ || OptimizationDisabled(db, SQLITE_MinMaxOpt)
+ ){
+ return eRet;
+ }
+ assert( !ExprHasProperty(pFunc, EP_IntValue) );
+ zFunc = pFunc->u.zToken;
+ if( sqlite3StrICmp(zFunc, "min")==0 ){
+ eRet = WHERE_ORDERBY_MIN;
+ if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
+ sortFlags = KEYINFO_ORDER_BIGNULL;
+ }
+ }else if( sqlite3StrICmp(zFunc, "max")==0 ){
+ eRet = WHERE_ORDERBY_MAX;
+ sortFlags = KEYINFO_ORDER_DESC;
+ }else{
+ return eRet;
+ }
+ *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
+ assert( pOrderBy!=0 || db->mallocFailed );
+ if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
+ return eRet;
+}
+
+/*
+** The select statement passed as the first argument is an aggregate query.
+** The second argument is the associated aggregate-info object. This
+** function tests if the SELECT is of the form:
+**
+** SELECT count(*) FROM <tbl>
+**
+** where table is a database table, not a sub-select or view. If the query
+** does match this pattern, then a pointer to the Table object representing
+** <tbl> is returned. Otherwise, NULL is returned.
+**
+** This routine checks to see if it is safe to use the count optimization.
+** A correct answer is still obtained (though perhaps more slowly) if
+** this routine returns NULL when it could have returned a table pointer.
+** But returning the pointer when NULL should have been returned can
+** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
+*/
+static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
+ Table *pTab;
+ Expr *pExpr;
+
+ assert( !p->pGroupBy );
+
+ if( p->pWhere
+ || p->pEList->nExpr!=1
+ || p->pSrc->nSrc!=1
+ || p->pSrc->a[0].pSelect
+ || pAggInfo->nFunc!=1
+ || p->pHaving
+ ){
+ return 0;
+ }
+ pTab = p->pSrc->a[0].pTab;
+ assert( pTab!=0 );
+ assert( !IsView(pTab) );
+ if( !IsOrdinaryTable(pTab) ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ assert( pExpr!=0 );
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( pExpr->pAggInfo!=pAggInfo ) return 0;
+ if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
+ assert( pAggInfo->aFunc[0].pFExpr==pExpr );
+ testcase( ExprHasProperty(pExpr, EP_Distinct) );
+ testcase( ExprHasProperty(pExpr, EP_WinFunc) );
+ if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
+
+ return pTab;
+}
+
+/*
+** If the source-list item passed as an argument was augmented with an
+** INDEXED BY clause, then try to locate the specified index. If there
+** was such a clause and the named index cannot be found, return
+** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
+** pFrom->pIndex and return SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
+ Table *pTab = pFrom->pTab;
+ char *zIndexedBy = pFrom->u1.zIndexedBy;
+ Index *pIdx;
+ assert( pTab!=0 );
+ assert( pFrom->fg.isIndexedBy!=0 );
+
+ for(pIdx=pTab->pIndex;
+ pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
+ pIdx=pIdx->pNext
+ );
+ if( !pIdx ){
+ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
+ pParse->checkSchema = 1;
+ return SQLITE_ERROR;
+ }
+ assert( pFrom->fg.isCte==0 );
+ pFrom->u2.pIBIndex = pIdx;
+ return SQLITE_OK;
+}
+
+/*
+** Detect compound SELECT statements that use an ORDER BY clause with
+** an alternative collating sequence.
+**
+** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
+**
+** These are rewritten as a subquery:
+**
+** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
+** ORDER BY ... COLLATE ...
+**
+** This transformation is necessary because the multiSelectOrderBy() routine
+** above that generates the code for a compound SELECT with an ORDER BY clause
+** uses a merge algorithm that requires the same collating sequence on the
+** result columns as on the ORDER BY clause. See ticket
+** http://www.sqlite.org/src/info/6709574d2a
+**
+** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
+** The UNION ALL operator works fine with multiSelectOrderBy() even when
+** there are COLLATE terms in the ORDER BY.
+*/
+static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
+ int i;
+ Select *pNew;
+ Select *pX;
+ sqlite3 *db;
+ struct ExprList_item *a;
+ SrcList *pNewSrc;
+ Parse *pParse;
+ Token dummy;
+
+ if( p->pPrior==0 ) return WRC_Continue;
+ if( p->pOrderBy==0 ) return WRC_Continue;
+ for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
+ if( pX==0 ) return WRC_Continue;
+ a = p->pOrderBy->a;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ /* If iOrderByCol is already non-zero, then it has already been matched
+ ** to a result column of the SELECT statement. This occurs when the
+ ** SELECT is rewritten for window-functions processing and then passed
+ ** to sqlite3SelectPrep() and similar a second time. The rewriting done
+ ** by this function is not required in this case. */
+ if( a[0].u.x.iOrderByCol ) return WRC_Continue;
+#endif
+ for(i=p->pOrderBy->nExpr-1; i>=0; i--){
+ if( a[i].pExpr->flags & EP_Collate ) break;
+ }
+ if( i<0 ) return WRC_Continue;
+
+ /* If we reach this point, that means the transformation is required. */
+
+ pParse = pWalker->pParse;
+ db = pParse->db;
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+ if( pNew==0 ) return WRC_Abort;
+ memset(&dummy, 0, sizeof(dummy));
+ pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
+ if( pNewSrc==0 ) return WRC_Abort;
+ *pNew = *p;
+ p->pSrc = pNewSrc;
+ p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
+ p->op = TK_SELECT;
+ p->pWhere = 0;
+ pNew->pGroupBy = 0;
+ pNew->pHaving = 0;
+ pNew->pOrderBy = 0;
+ p->pPrior = 0;
+ p->pNext = 0;
+ p->pWith = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ p->pWinDefn = 0;
+#endif
+ p->selFlags &= ~SF_Compound;
+ assert( (p->selFlags & SF_Converted)==0 );
+ p->selFlags |= SF_Converted;
+ assert( pNew->pPrior!=0 );
+ pNew->pPrior->pNext = pNew;
+ pNew->pLimit = 0;
+ return WRC_Continue;
+}
+
+/*
+** Check to see if the FROM clause term pFrom has table-valued function
+** arguments. If it does, leave an error message in pParse and return
+** non-zero, since pFrom is not allowed to be a table-valued function.
+*/
+static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
+ if( pFrom->fg.isTabFunc ){
+ sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
+ return 1;
+ }
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** Argument pWith (which may be NULL) points to a linked list of nested
+** WITH contexts, from inner to outermost. If the table identified by
+** FROM clause element pItem is really a common-table-expression (CTE)
+** then return a pointer to the CTE definition for that table. Otherwise
+** return NULL.
+**
+** If a non-NULL value is returned, set *ppContext to point to the With
+** object that the returned CTE belongs to.
+*/
+static struct Cte *searchWith(
+ With *pWith, /* Current innermost WITH clause */
+ SrcItem *pItem, /* FROM clause element to resolve */
+ With **ppContext /* OUT: WITH clause return value belongs to */
+){
+ const char *zName = pItem->zName;
+ With *p;
+ assert( pItem->zDatabase==0 );
+ assert( zName!=0 );
+ for(p=pWith; p; p=p->pOuter){
+ int i;
+ for(i=0; i<p->nCte; i++){
+ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
+ *ppContext = p;
+ return &p->a[i];
+ }
+ }
+ if( p->bView ) break;
+ }
+ return 0;
+}
+
+/* The code generator maintains a stack of active WITH clauses
+** with the inner-most WITH clause being at the top of the stack.
+**
+** This routine pushes the WITH clause passed as the second argument
+** onto the top of the stack. If argument bFree is true, then this
+** WITH clause will never be popped from the stack but should instead
+** be freed along with the Parse object. In other cases, when
+** bFree==0, the With object will be freed along with the SELECT
+** statement with which it is associated.
+**
+** This routine returns a copy of pWith. Or, if bFree is true and
+** the pWith object is destroyed immediately due to an OOM condition,
+** then this routine return NULL.
+**
+** If bFree is true, do not continue to use the pWith pointer after
+** calling this routine, Instead, use only the return value.
+*/
+SQLITE_PRIVATE With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
+ if( pWith ){
+ if( bFree ){
+ pWith = (With*)sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3WithDelete,
+ pWith);
+ if( pWith==0 ) return 0;
+ }
+ if( pParse->nErr==0 ){
+ assert( pParse->pWith!=pWith );
+ pWith->pOuter = pParse->pWith;
+ pParse->pWith = pWith;
+ }
+ }
+ return pWith;
+}
+
+/*
+** This function checks if argument pFrom refers to a CTE declared by
+** a WITH clause on the stack currently maintained by the parser (on the
+** pParse->pWith linked list). And if currently processing a CTE
+** CTE expression, through routine checks to see if the reference is
+** a recursive reference to the CTE.
+**
+** If pFrom matches a CTE according to either of these two above, pFrom->pTab
+** and other fields are populated accordingly.
+**
+** Return 0 if no match is found.
+** Return 1 if a match is found.
+** Return 2 if an error condition is detected.
+*/
+static int resolveFromTermToCte(
+ Parse *pParse, /* The parsing context */
+ Walker *pWalker, /* Current tree walker */
+ SrcItem *pFrom /* The FROM clause term to check */
+){
+ Cte *pCte; /* Matched CTE (or NULL if no match) */
+ With *pWith; /* The matching WITH */
+
+ assert( pFrom->pTab==0 );
+ if( pParse->pWith==0 ){
+ /* There are no WITH clauses in the stack. No match is possible */
+ return 0;
+ }
+ if( pParse->nErr ){
+ /* Prior errors might have left pParse->pWith in a goofy state, so
+ ** go no further. */
+ return 0;
+ }
+ if( pFrom->zDatabase!=0 ){
+ /* The FROM term contains a schema qualifier (ex: main.t1) and so
+ ** it cannot possibly be a CTE reference. */
+ return 0;
+ }
+ if( pFrom->fg.notCte ){
+ /* The FROM term is specifically excluded from matching a CTE.
+ ** (1) It is part of a trigger that used to have zDatabase but had
+ ** zDatabase removed by sqlite3FixTriggerStep().
+ ** (2) This is the first term in the FROM clause of an UPDATE.
+ */
+ return 0;
+ }
+ pCte = searchWith(pParse->pWith, pFrom, &pWith);
+ if( pCte ){
+ sqlite3 *db = pParse->db;
+ Table *pTab;
+ ExprList *pEList;
+ Select *pSel;
+ Select *pLeft; /* Left-most SELECT statement */
+ Select *pRecTerm; /* Left-most recursive term */
+ int bMayRecursive; /* True if compound joined by UNION [ALL] */
+ With *pSavedWith; /* Initial value of pParse->pWith */
+ int iRecTab = -1; /* Cursor for recursive table */
+ CteUse *pCteUse;
+
+ /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
+ ** recursive reference to CTE pCte. Leave an error in pParse and return
+ ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
+ ** In this case, proceed. */
+ if( pCte->zCteErr ){
+ sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
+ return 2;
+ }
+ if( cannotBeFunction(pParse, pFrom) ) return 2;
+
+ assert( pFrom->pTab==0 );
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return 2;
+ pCteUse = pCte->pUse;
+ if( pCteUse==0 ){
+ pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
+ if( pCteUse==0
+ || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
+ ){
+ sqlite3DbFree(db, pTab);
+ return 2;
+ }
+ pCteUse->eM10d = pCte->eM10d;
+ }
+ pFrom->pTab = pTab;
+ pTab->nTabRef = 1;
+ pTab->zName = sqlite3DbStrDup(db, pCte->zName);
+ pTab->iPKey = -1;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
+ pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
+ if( db->mallocFailed ) return 2;
+ pFrom->pSelect->selFlags |= SF_CopyCte;
+ assert( pFrom->pSelect );
+ if( pFrom->fg.isIndexedBy ){
+ sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
+ return 2;
+ }
+ pFrom->fg.isCte = 1;
+ pFrom->u2.pCteUse = pCteUse;
+ pCteUse->nUse++;
+
+ /* Check if this is a recursive CTE. */
+ pRecTerm = pSel = pFrom->pSelect;
+ bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
+ while( bMayRecursive && pRecTerm->op==pSel->op ){
+ int i;
+ SrcList *pSrc = pRecTerm->pSrc;
+ assert( pRecTerm->pPrior!=0 );
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *pItem = &pSrc->a[i];
+ if( pItem->zDatabase==0
+ && pItem->zName!=0
+ && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
+ ){
+ pItem->pTab = pTab;
+ pTab->nTabRef++;
+ pItem->fg.isRecursive = 1;
+ if( pRecTerm->selFlags & SF_Recursive ){
+ sqlite3ErrorMsg(pParse,
+ "multiple references to recursive table: %s", pCte->zName
+ );
+ return 2;
+ }
+ pRecTerm->selFlags |= SF_Recursive;
+ if( iRecTab<0 ) iRecTab = pParse->nTab++;
+ pItem->iCursor = iRecTab;
+ }
+ }
+ if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
+ pRecTerm = pRecTerm->pPrior;
+ }
+
+ pCte->zCteErr = "circular reference: %s";
+ pSavedWith = pParse->pWith;
+ pParse->pWith = pWith;
+ if( pSel->selFlags & SF_Recursive ){
+ int rc;
+ assert( pRecTerm!=0 );
+ assert( (pRecTerm->selFlags & SF_Recursive)==0 );
+ assert( pRecTerm->pNext!=0 );
+ assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
+ assert( pRecTerm->pWith==0 );
+ pRecTerm->pWith = pSel->pWith;
+ rc = sqlite3WalkSelect(pWalker, pRecTerm);
+ pRecTerm->pWith = 0;
+ if( rc ){
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ }else{
+ if( sqlite3WalkSelect(pWalker, pSel) ){
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ }
+ pParse->pWith = pWith;
+
+ for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
+ pEList = pLeft->pEList;
+ if( pCte->pCols ){
+ if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
+ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
+ pCte->zName, pEList->nExpr, pCte->pCols->nExpr
+ );
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ pEList = pCte->pCols;
+ }
+
+ sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
+ if( bMayRecursive ){
+ if( pSel->selFlags & SF_Recursive ){
+ pCte->zCteErr = "multiple recursive references: %s";
+ }else{
+ pCte->zCteErr = "recursive reference in a subquery: %s";
+ }
+ sqlite3WalkSelect(pWalker, pSel);
+ }
+ pCte->zCteErr = 0;
+ pParse->pWith = pSavedWith;
+ return 1; /* Success */
+ }
+ return 0; /* No match */
+}
+#endif
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** If the SELECT passed as the second argument has an associated WITH
+** clause, pop it from the stack stored as part of the Parse object.
+**
+** This function is used as the xSelectCallback2() callback by
+** sqlite3SelectExpand() when walking a SELECT tree to resolve table
+** names and other FROM clause elements.
+*/
+SQLITE_PRIVATE void sqlite3SelectPopWith(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
+ With *pWith = findRightmost(p)->pWith;
+ if( pWith!=0 ){
+ assert( pParse->pWith==pWith || pParse->nErr );
+ pParse->pWith = pWith->pOuter;
+ }
+ }
+}
+#endif
+
+/*
+** The SrcItem structure passed as the second argument represents a
+** sub-query in the FROM clause of a SELECT statement. This function
+** allocates and populates the SrcItem.pTab object. If successful,
+** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
+** SQLITE_NOMEM.
+*/
+SQLITE_PRIVATE int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
+ Select *pSel = pFrom->pSelect;
+ Table *pTab;
+
+ assert( pSel );
+ pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
+ if( pTab==0 ) return SQLITE_NOMEM;
+ pTab->nTabRef = 1;
+ if( pFrom->zAlias ){
+ pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
+ }else{
+ pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
+ }
+ while( pSel->pPrior ){ pSel = pSel->pPrior; }
+ sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
+ pTab->iPKey = -1;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
+ /* The usual case - do not allow ROWID on a subquery */
+ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
+#else
+ pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
+#endif
+ return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
+}
+
+
+/*
+** Check the N SrcItem objects to the right of pBase. (N might be zero!)
+** If any of those SrcItem objects have a USING clause containing zName
+** then return true.
+**
+** If N is zero, or none of the N SrcItem objects to the right of pBase
+** contains a USING clause, or if none of the USING clauses contain zName,
+** then return false.
+*/
+static int inAnyUsingClause(
+ const char *zName, /* Name we are looking for */
+ SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
+ int N /* How many SrcItems to check */
+){
+ while( N>0 ){
+ N--;
+ pBase++;
+ if( pBase->fg.isUsing==0 ) continue;
+ if( NEVER(pBase->u3.pUsing==0) ) continue;
+ if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+
+/*
+** This routine is a Walker callback for "expanding" a SELECT statement.
+** "Expanding" means to do the following:
+**
+** (1) Make sure VDBE cursor numbers have been assigned to every
+** element of the FROM clause.
+**
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines FROM clause. When views appear in the FROM clause,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the persistent representation
+** of the view.
+**
+** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (4) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+*/
+static int selectExpander(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i, j, k, rc;
+ SrcList *pTabList;
+ ExprList *pEList;
+ SrcItem *pFrom;
+ sqlite3 *db = pParse->db;
+ Expr *pE, *pRight, *pExpr;
+ u16 selFlags = p->selFlags;
+ u32 elistFlags = 0;
+
+ p->selFlags |= SF_Expanded;
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+ assert( p->pSrc!=0 );
+ if( (selFlags & SF_Expanded)!=0 ){
+ return WRC_Prune;
+ }
+ if( pWalker->eCode ){
+ /* Renumber selId because it has been copied from a view */
+ p->selId = ++pParse->nSelect;
+ }
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+ if( pParse->pWith && (p->selFlags & SF_View) ){
+ if( p->pWith==0 ){
+ p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
+ if( p->pWith==0 ){
+ return WRC_Abort;
+ }
+ }
+ p->pWith->bView = 1;
+ }
+ sqlite3WithPush(pParse, p->pWith, 0);
+
+ /* Make sure cursor numbers have been assigned to all entries in
+ ** the FROM clause of the SELECT statement.
+ */
+ sqlite3SrcListAssignCursors(pParse, pTabList);
+
+ /* Look up every table named in the FROM clause of the select. If
+ ** an entry of the FROM clause is a subquery instead of a table or view,
+ ** then create a transient table structure to describe the subquery.
+ */
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab;
+ assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
+ if( pFrom->pTab ) continue;
+ assert( pFrom->fg.isRecursive==0 );
+ if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Select *pSel = pFrom->pSelect;
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pSel!=0 );
+ assert( pFrom->pTab==0 );
+ if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
+ if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
+#endif
+#ifndef SQLITE_OMIT_CTE
+ }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
+ if( rc>1 ) return WRC_Abort;
+ pTab = pFrom->pTab;
+ assert( pTab!=0 );
+#endif
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
+ if( pTab==0 ) return WRC_Abort;
+ if( pTab->nTabRef>=0xffff ){
+ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
+ pTab->zName);
+ pFrom->pTab = 0;
+ return WRC_Abort;
+ }
+ pTab->nTabRef++;
+ if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+ if( !IsOrdinaryTable(pTab) ){
+ i16 nCol;
+ u8 eCodeOrig = pWalker->eCode;
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
+ assert( pFrom->pSelect==0 );
+ if( IsView(pTab) ){
+ if( (db->flags & SQLITE_EnableView)==0
+ && pTab->pSchema!=db->aDb[1].pSchema
+ ){
+ sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
+ pTab->zName);
+ }
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( ALWAYS(IsVirtual(pTab))
+ && pFrom->fg.fromDDL
+ && ALWAYS(pTab->u.vtab.p!=0)
+ && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
+ ){
+ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
+ pTab->zName);
+ }
+ assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
+#endif
+ nCol = pTab->nCol;
+ pTab->nCol = -1;
+ pWalker->eCode = 1; /* Turn on Select.selId renumbering */
+ sqlite3WalkSelect(pWalker, pFrom->pSelect);
+ pWalker->eCode = eCodeOrig;
+ pTab->nCol = nCol;
+ }
+#endif
+ }
+
+ /* Locate the index named by the INDEXED BY clause, if any. */
+ if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ assert( db->mallocFailed==0 || pParse->nErr!=0 );
+ if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
+ return WRC_Abort;
+ }
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ASTERISK operator for each "*" that it found in the column
+ ** list. The following code just has to locate the TK_ASTERISK
+ ** expressions and expand each one to the list of all columns in
+ ** all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ASTERISK ) break;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
+ if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
+ elistFlags |= pE->flags;
+ }
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ int flags = pParse->db->flags;
+ int longNames = (flags & SQLITE_FullColNames)!=0
+ && (flags & SQLITE_ShortColNames)==0;
+
+ for(k=0; k<pEList->nExpr; k++){
+ pE = a[k].pExpr;
+ elistFlags |= pE->flags;
+ pRight = pE->pRight;
+ assert( pE->op!=TK_DOT || pRight!=0 );
+ if( pE->op!=TK_ASTERISK
+ && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
+ ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
+ if( pNew ){
+ pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
+ pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
+ a[k].zEName = 0;
+ }
+ a[k].pExpr = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ char *zTName = 0; /* text of name of TABLE */
+ int iErrOfst;
+ if( pE->op==TK_DOT ){
+ assert( (selFlags & SF_NestedFrom)==0 );
+ assert( pE->pLeft!=0 );
+ assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
+ zTName = pE->pLeft->u.zToken;
+ assert( ExprUseWOfst(pE->pLeft) );
+ iErrOfst = pE->pRight->w.iOfst;
+ }else{
+ assert( ExprUseWOfst(pE) );
+ iErrOfst = pE->w.iOfst;
+ }
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ int nAdd; /* Number of cols including rowid */
+ Table *pTab = pFrom->pTab; /* Table for this data source */
+ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
+ char *zTabName; /* AS name for this data source */
+ const char *zSchemaName = 0; /* Schema name for this data source */
+ int iDb; /* Schema index for this data src */
+ IdList *pUsing; /* USING clause for pFrom[1] */
+
+ if( (zTabName = pFrom->zAlias)==0 ){
+ zTabName = pTab->zName;
+ }
+ if( db->mallocFailed ) break;
+ assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
+ if( pFrom->fg.isNestedFrom ){
+ assert( pFrom->pSelect!=0 );
+ pNestedFrom = pFrom->pSelect->pEList;
+ assert( pNestedFrom!=0 );
+ assert( pNestedFrom->nExpr==pTab->nCol );
+ assert( VisibleRowid(pTab)==0 );
+ }else{
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
+ continue;
+ }
+ pNestedFrom = 0;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
+ }
+ if( i+1<pTabList->nSrc
+ && pFrom[1].fg.isUsing
+ && (selFlags & SF_NestedFrom)!=0
+ ){
+ int ii;
+ pUsing = pFrom[1].u3.pUsing;
+ for(ii=0; ii<pUsing->nId; ii++){
+ const char *zUName = pUsing->a[ii].zName;
+ pRight = sqlite3Expr(db, TK_ID, zUName);
+ sqlite3ExprSetErrorOffset(pRight, iErrOfst);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
+ if( pNew ){
+ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
+ assert( pX->zEName==0 );
+ pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
+ pX->fg.eEName = ENAME_TAB;
+ pX->fg.bUsingTerm = 1;
+ }
+ }
+ }else{
+ pUsing = 0;
+ }
+
+ nAdd = pTab->nCol + (VisibleRowid(pTab) && (selFlags&SF_NestedFrom));
+ for(j=0; j<nAdd; j++){
+ const char *zName;
+ struct ExprList_item *pX; /* Newly added ExprList term */
+
+ if( j==pTab->nCol ){
+ zName = sqlite3RowidAlias(pTab);
+ if( zName==0 ) continue;
+ }else{
+ zName = pTab->aCol[j].zCnName;
+
+ /* If pTab is actually an SF_NestedFrom sub-select, do not
+ ** expand any ENAME_ROWID columns. */
+ if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){
+ continue;
+ }
+
+ if( zTName
+ && pNestedFrom
+ && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0
+ ){
+ continue;
+ }
+
+ /* If a column is marked as 'hidden', omit it from the expanded
+ ** result-set list unless the SELECT has the SF_IncludeHidden
+ ** bit set.
+ */
+ if( (p->selFlags & SF_IncludeHidden)==0
+ && IsHiddenColumn(&pTab->aCol[j])
+ ){
+ continue;
+ }
+ if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
+ && zTName==0
+ && (selFlags & (SF_NestedFrom))==0
+ ){
+ continue;
+ }
+ }
+ assert( zName );
+ tableSeen = 1;
+
+ if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
+ if( pFrom->fg.isUsing
+ && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
+ ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ }
+ pRight = sqlite3Expr(db, TK_ID, zName);
+ if( (pTabList->nSrc>1
+ && ( (pFrom->fg.jointype & JT_LTORJ)==0
+ || (selFlags & SF_NestedFrom)!=0
+ || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
+ )
+ )
+ || IN_RENAME_OBJECT
+ ){
+ Expr *pLeft;
+ pLeft = sqlite3Expr(db, TK_ID, zTabName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
+ if( IN_RENAME_OBJECT && pE->pLeft ){
+ sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
+ }
+ if( zSchemaName ){
+ pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
+ }
+ }else{
+ pExpr = pRight;
+ }
+ sqlite3ExprSetErrorOffset(pExpr, iErrOfst);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
+ if( pNew==0 ){
+ break; /* OOM */
+ }
+ pX = &pNew->a[pNew->nExpr-1];
+ assert( pX->zEName==0 );
+ if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
+ if( pNestedFrom ){
+ pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
+ testcase( pX->zEName==0 );
+ }else{
+ pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
+ zSchemaName, zTabName, zName);
+ testcase( pX->zEName==0 );
+ }
+ pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB);
+ if( (pFrom->fg.isUsing
+ && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
+ || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
+ || (j<pTab->nCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND))
+ ){
+ pX->fg.bNoExpand = 1;
+ }
+ }else if( longNames ){
+ pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
+ pX->fg.eEName = ENAME_NAME;
+ }else{
+ pX->zEName = sqlite3DbStrDup(db, zName);
+ pX->fg.eEName = ENAME_NAME;
+ }
+ }
+ }
+ if( !tableSeen ){
+ if( zTName ){
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+ }else{
+ sqlite3ErrorMsg(pParse, "no tables specified");
+ }
+ }
+ }
+ }
+ sqlite3ExprListDelete(db, pEList);
+ p->pEList = pNew;
+ }
+ if( p->pEList ){
+ if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns in result set");
+ return WRC_Abort;
+ }
+ if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
+ p->selFlags |= SF_ComplexResult;
+ }
+ }
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x8 ){
+ TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ return WRC_Continue;
+}
+
+#if SQLITE_DEBUG
+/*
+** Always assert. This xSelectCallback2 implementation proves that the
+** xSelectCallback2 is never invoked.
+*/
+SQLITE_PRIVATE void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ assert( 0 );
+}
+#endif
+/*
+** This routine "expands" a SELECT statement and all of its subqueries.
+** For additional information on what it means to "expand" a SELECT
+** statement, see the comment on the selectExpand worker callback above.
+**
+** Expanding a SELECT statement is the first step in processing a
+** SELECT statement. The SELECT statement must be expanded before
+** name resolution is performed.
+**
+** If anything goes wrong, an error message is written into pParse.
+** The calling function can detect the problem by looking at pParse->nErr
+** and/or pParse->db->mallocFailed.
+*/
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
+ Walker w;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.pParse = pParse;
+ if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
+ w.xSelectCallback = convertCompoundSelectToSubquery;
+ w.xSelectCallback2 = 0;
+ sqlite3WalkSelect(&w, pSelect);
+ }
+ w.xSelectCallback = selectExpander;
+ w.xSelectCallback2 = sqlite3SelectPopWith;
+ w.eCode = 0;
+ sqlite3WalkSelect(&w, pSelect);
+}
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
+** interface.
+**
+** For each FROM-clause subquery, add Column.zType, Column.zColl, and
+** Column.affinity information to the Table structure that represents
+** the result set of that subquery.
+**
+** The Table structure that represents the result set was constructed
+** by selectExpander() but the type and collation and affinity information
+** was omitted at that point because identifiers had not yet been resolved.
+** This routine is called after identifier resolution.
+*/
+static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
+ Parse *pParse;
+ int i;
+ SrcList *pTabList;
+ SrcItem *pFrom;
+
+ assert( p->selFlags & SF_Resolved );
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ p->selFlags |= SF_HasTypeInfo;
+ pParse = pWalker->pParse;
+ pTabList = p->pSrc;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ assert( pTab!=0 );
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ Select *pSel = pFrom->pSelect;
+ if( pSel ){
+ sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE);
+ }
+ }
+ }
+}
+#endif
+
+
+/*
+** This routine adds datatype and collating sequence information to
+** the Table structures of all FROM-clause subqueries in a
+** SELECT statement.
+**
+** Use this routine after name resolution.
+*/
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Walker w;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = selectAddSubqueryTypeInfo;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+#endif
+}
+
+
+/*
+** This routine sets up a SELECT statement for processing. The
+** following is accomplished:
+**
+** * VDBE Cursor numbers are assigned to all FROM-clause terms.
+** * Ephemeral Table objects are created for all FROM-clause subqueries.
+** * ON and USING clauses are shifted into WHERE statements
+** * Wildcards "*" and "TABLE.*" in result sets are expanded.
+** * Identifiers in expression are matched to tables.
+**
+** This routine acts recursively on all subqueries within the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3SelectPrep(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for container */
+){
+ assert( p!=0 || pParse->db->mallocFailed );
+ assert( pParse->db->pParse==pParse );
+ if( pParse->db->mallocFailed ) return;
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ sqlite3SelectExpand(pParse, p);
+ if( pParse->nErr ) return;
+ sqlite3ResolveSelectNames(pParse, p, pOuterNC);
+ if( pParse->nErr ) return;
+ sqlite3SelectAddTypeInfo(pParse, p);
+}
+
+#if TREETRACE_ENABLED
+/*
+** Display all information about an AggInfo object
+*/
+static void printAggInfo(AggInfo *pAggInfo){
+ int ii;
+ for(ii=0; ii<pAggInfo->nColumn; ii++){
+ struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
+ sqlite3DebugPrintf(
+ "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
+ " iSorterColumn=%d %s\n",
+ ii, pCol->pTab ? pCol->pTab->zName : "NULL",
+ pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
+ pCol->iSorterColumn,
+ ii>=pAggInfo->nAccumulator ? "" : " Accumulator");
+ sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
+ }
+ for(ii=0; ii<pAggInfo->nFunc; ii++){
+ sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
+ ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii);
+ sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
+ }
+}
+#endif /* TREETRACE_ENABLED */
+
+/*
+** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
+** entries for columns that are arguments to aggregate functions but which
+** are not otherwise used.
+**
+** The aCol[] entries in AggInfo prior to nAccumulator are columns that
+** are referenced outside of aggregate functions. These might be columns
+** that are part of the GROUP by clause, for example. Other database engines
+** would throw an error if there is a column reference that is not in the
+** GROUP BY clause and that is not part of an aggregate function argument.
+** But SQLite allows this.
+**
+** The aCol[] entries beginning with the aCol[nAccumulator] and following
+** are column references that are used exclusively as arguments to
+** aggregate functions. This routine is responsible for computing
+** (or recomputing) those aCol[] entries.
+*/
+static void analyzeAggFuncArgs(
+ AggInfo *pAggInfo,
+ NameContext *pNC
+){
+ int i;
+ assert( pAggInfo!=0 );
+ assert( pAggInfo->iFirstReg==0 );
+ pNC->ncFlags |= NC_InAggFunc;
+ for(i=0; i<pAggInfo->nFunc; i++){
+ Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
+ assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION );
+ assert( ExprUseXList(pExpr) );
+ sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList);
+ if( pExpr->pLeft ){
+ assert( pExpr->pLeft->op==TK_ORDER );
+ assert( ExprUseXList(pExpr->pLeft) );
+ sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( !IsWindowFunc(pExpr) );
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter);
+ }
+#endif
+ }
+ pNC->ncFlags &= ~NC_InAggFunc;
+}
+
+/*
+** An index on expressions is being used in the inner loop of an
+** aggregate query with a GROUP BY clause. This routine attempts
+** to adjust the AggInfo object to take advantage of index and to
+** perhaps use the index as a covering index.
+**
+*/
+static void optimizeAggregateUseOfIndexedExpr(
+ Parse *pParse, /* Parsing context */
+ Select *pSelect, /* The SELECT statement being processed */
+ AggInfo *pAggInfo, /* The aggregate info */
+ NameContext *pNC /* Name context used to resolve agg-func args */
+){
+ assert( pAggInfo->iFirstReg==0 );
+ assert( pSelect!=0 );
+ assert( pSelect->pGroupBy!=0 );
+ pAggInfo->nColumn = pAggInfo->nAccumulator;
+ if( ALWAYS(pAggInfo->nSortingColumn>0) ){
+ int mx = pSelect->pGroupBy->nExpr - 1;
+ int j, k;
+ for(j=0; j<pAggInfo->nColumn; j++){
+ k = pAggInfo->aCol[j].iSorterColumn;
+ if( k>mx ) mx = k;
+ }
+ pAggInfo->nSortingColumn = mx+1;
+ }
+ analyzeAggFuncArgs(pAggInfo, pNC);
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x20 ){
+ IndexedExpr *pIEpr;
+ TREETRACE(0x20, pParse, pSelect,
+ ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
+ sqlite3TreeViewSelect(0, pSelect, 0);
+ for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
+ printf("data-cursor=%d index={%d,%d}\n",
+ pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol);
+ sqlite3TreeViewExpr(0, pIEpr->pExpr, 0);
+ }
+ printAggInfo(pAggInfo);
+ }
+#else
+ UNUSED_PARAMETER(pSelect);
+ UNUSED_PARAMETER(pParse);
+#endif
+}
+
+/*
+** Walker callback for aggregateConvertIndexedExprRefToColumn().
+*/
+static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){
+ AggInfo *pAggInfo;
+ struct AggInfo_col *pCol;
+ UNUSED_PARAMETER(pWalker);
+ if( pExpr->pAggInfo==0 ) return WRC_Continue;
+ if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue;
+ if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue;
+ if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue;
+ pAggInfo = pExpr->pAggInfo;
+ if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue;
+ assert( pExpr->iAgg>=0 );
+ pCol = &pAggInfo->aCol[pExpr->iAgg];
+ pExpr->op = TK_AGG_COLUMN;
+ pExpr->iTable = pCol->iTable;
+ pExpr->iColumn = pCol->iColumn;
+ ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely);
+ return WRC_Prune;
+}
+
+/*
+** Convert every pAggInfo->aFunc[].pExpr such that any node within
+** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
+** opcode.
+*/
+static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){
+ int i;
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = aggregateIdxEprRefToColCallback;
+ for(i=0; i<pAggInfo->nFunc; i++){
+ sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr);
+ }
+}
+
+
+/*
+** Allocate a block of registers so that there is one register for each
+** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
+** register in this block is stored in pAggInfo->iFirstReg.
+**
+** This routine may only be called once for each AggInfo object. Prior
+** to calling this routine:
+**
+** * The aCol[] and aFunc[] arrays may be modified
+** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
+**
+** After calling this routine:
+**
+** * The aCol[] and aFunc[] arrays are fixed
+** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
+**
+*/
+static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){
+ assert( pAggInfo!=0 );
+ assert( pAggInfo->iFirstReg==0 );
+ pAggInfo->iFirstReg = pParse->nMem + 1;
+ pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc;
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate. This
+** routine generates code that stores NULLs in all of those memory
+** cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pFunc;
+ int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
+ assert( pAggInfo->iFirstReg>0 );
+ assert( pParse->db->pParse==pParse );
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ if( nReg==0 ) return;
+ if( pParse->nErr ) return;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg,
+ pAggInfo->iFirstReg+nReg-1);
+ for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+ if( pFunc->iDistinct>=0 ){
+ Expr *pE = pFunc->pFExpr;
+ assert( ExprUseXList(pE) );
+ if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
+ "argument");
+ pFunc->iDistinct = -1;
+ }else{
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
+ pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
+ pFunc->pFunc->zName));
+ }
+ }
+ if( pFunc->iOBTab>=0 ){
+ ExprList *pOBList;
+ KeyInfo *pKeyInfo;
+ int nExtra = 0;
+ assert( pFunc->pFExpr->pLeft!=0 );
+ assert( pFunc->pFExpr->pLeft->op==TK_ORDER );
+ assert( ExprUseXList(pFunc->pFExpr->pLeft) );
+ pOBList = pFunc->pFExpr->pLeft->x.pList;
+ if( !pFunc->bOBUnique ){
+ nExtra++; /* One extra column for the OP_Sequence */
+ }
+ if( pFunc->bOBPayload ){
+ /* extra columns for the function arguments */
+ assert( ExprUseXList(pFunc->pFExpr) );
+ nExtra += pFunc->pFExpr->x.pList->nExpr;
+ }
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra);
+ if( !pFunc->bOBUnique && pParse->nErr==0 ){
+ pKeyInfo->nKeyField++;
+ }
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pFunc->iOBTab, pOBList->nExpr+nExtra, 0,
+ (char*)pKeyInfo, P4_KEYINFO);
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
+ pFunc->pFunc->zName));
+ }
+ }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ ExprList *pList;
+ assert( ExprUseXList(pF->pFExpr) );
+ pList = pF->pFExpr->x.pList;
+ if( pF->iOBTab>=0 ){
+ /* For an ORDER BY aggregate, calls to OP_AggStep where deferred and
+ ** all content was stored in emphermal table pF->iOBTab. Extract that
+ ** content now (in ORDER BY order) and make all calls to OP_AggStep
+ ** before doing the OP_AggFinal call. */
+ int iTop; /* Start of loop for extracting columns */
+ int nArg; /* Number of columns to extract */
+ int nKey; /* Key columns to be skipped */
+ int regAgg; /* Extract into this array */
+ int j; /* Loop counter */
+
+ nArg = pList->nExpr;
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+
+ if( pF->bOBPayload==0 ){
+ nKey = 0;
+ }else{
+ assert( pF->pFExpr->pLeft!=0 );
+ assert( ExprUseXList(pF->pFExpr->pLeft) );
+ assert( pF->pFExpr->pLeft->x.pList!=0 );
+ nKey = pF->pFExpr->pLeft->x.pList->nExpr;
+ if( ALWAYS(!pF->bOBUnique) ) nKey++;
+ }
+ iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v);
+ for(j=nArg-1; j>=0; j--){
+ sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j);
+ }
+ sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, iTop);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ }
+ sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i),
+ pList ? pList->nExpr : 0);
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ }
+}
+
+/*
+** Generate code that will update the accumulator memory cells for an
+** aggregate based on the current cursor position.
+**
+** If regAcc is non-zero and there are no min() or max() aggregates
+** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
+** registers if register regAcc contains 0. The caller will take care
+** of setting and clearing regAcc.
+**
+** For an ORDER BY aggregate, the actual accumulator memory cell update
+** is deferred until after all input rows have been received, so that they
+** can be run in the requested order. In that case, instead of invoking
+** OP_AggStep to update the accumulator, just add the arguments that would
+** have been passed into OP_AggStep into the sorting ephemeral table
+** (along with the appropriate sort key).
+*/
+static void updateAccumulator(
+ Parse *pParse,
+ int regAcc,
+ AggInfo *pAggInfo,
+ int eDistinctType
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int regHit = 0;
+ int addrHitTest = 0;
+ struct AggInfo_func *pF;
+ struct AggInfo_col *pC;
+
+ assert( pAggInfo->iFirstReg>0 );
+ if( pParse->nErr ) return;
+ pAggInfo->directMode = 1;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ int nArg;
+ int addrNext = 0;
+ int regAgg;
+ int regAggSz = 0;
+ int regDistinct = 0;
+ ExprList *pList;
+ assert( ExprUseXList(pF->pFExpr) );
+ assert( !IsWindowFunc(pF->pFExpr) );
+ pList = pF->pFExpr->x.pList;
+ if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
+ Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
+ if( pAggInfo->nAccumulator
+ && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
+ && regAcc
+ ){
+ /* If regAcc==0, there there exists some min() or max() function
+ ** without a FILTER clause that will ensure the magnet registers
+ ** are populated. */
+ if( regHit==0 ) regHit = ++pParse->nMem;
+ /* If this is the first row of the group (regAcc contains 0), clear the
+ ** "magnet" register regHit so that the accumulator registers
+ ** are populated if the FILTER clause jumps over the the
+ ** invocation of min() or max() altogether. Or, if this is not
+ ** the first row (regAcc contains 1), set the magnet register so that
+ ** the accumulators are not populated unless the min()/max() is invoked
+ ** and indicates that they should be. */
+ sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
+ }
+ addrNext = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
+ }
+ if( pF->iOBTab>=0 ){
+ /* Instead of invoking AggStep, we must push the arguments that would
+ ** have been passed to AggStep onto the sorting table. */
+ int jj; /* Registered used so far in building the record */
+ ExprList *pOBList; /* The ORDER BY clause */
+ assert( pList!=0 );
+ nArg = pList->nExpr;
+ assert( nArg>0 );
+ assert( pF->pFExpr->pLeft!=0 );
+ assert( pF->pFExpr->pLeft->op==TK_ORDER );
+ assert( ExprUseXList(pF->pFExpr->pLeft) );
+ pOBList = pF->pFExpr->pLeft->x.pList;
+ assert( pOBList!=0 );
+ assert( pOBList->nExpr>0 );
+ regAggSz = pOBList->nExpr;
+ if( !pF->bOBUnique ){
+ regAggSz++; /* One register for OP_Sequence */
+ }
+ if( pF->bOBPayload ){
+ regAggSz += nArg;
+ }
+ regAggSz++; /* One extra register to hold result of MakeRecord */
+ regAgg = sqlite3GetTempRange(pParse, regAggSz);
+ regDistinct = regAgg;
+ sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP);
+ jj = pOBList->nExpr;
+ if( !pF->bOBUnique ){
+ sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj);
+ jj++;
+ }
+ if( pF->bOBPayload ){
+ regDistinct = regAgg+jj;
+ sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP);
+ }
+ }else if( pList ){
+ nArg = pList->nExpr;
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+ regDistinct = regAgg;
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
+ }else{
+ nArg = 0;
+ regAgg = 0;
+ }
+ if( pF->iDistinct>=0 && pList ){
+ if( addrNext==0 ){
+ addrNext = sqlite3VdbeMakeLabel(pParse);
+ }
+ pF->iDistinct = codeDistinct(pParse, eDistinctType,
+ pF->iDistinct, addrNext, pList, regDistinct);
+ }
+ if( pF->iOBTab>=0 ){
+ /* Insert a new record into the ORDER BY table */
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1,
+ regAgg+regAggSz-1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1,
+ regAgg, regAggSz-1);
+ sqlite3ReleaseTempRange(pParse, regAgg, regAggSz);
+ }else{
+ /* Invoke the AggStep function */
+ if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ CollSeq *pColl = 0;
+ struct ExprList_item *pItem;
+ int j;
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
+ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0,
+ (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ }
+ if( addrNext ){
+ sqlite3VdbeResolveLabel(v, addrNext);
+ }
+ }
+ if( regHit==0 && pAggInfo->nAccumulator ){
+ regHit = regAcc;
+ }
+ if( regHit ){
+ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
+ }
+ for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+ sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i));
+ }
+
+ pAggInfo->directMode = 0;
+ if( addrHitTest ){
+ sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
+ }
+}
+
+/*
+** Add a single OP_Explain instruction to the VDBE to explain a simple
+** count(*) query ("SELECT count(*) FROM pTab").
+*/
+#ifndef SQLITE_OMIT_EXPLAIN
+static void explainSimpleCount(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being queried */
+ Index *pIdx /* Index used to optimize scan, or NULL */
+){
+ if( pParse->explain==2 ){
+ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
+ sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
+ pTab->zName,
+ bCover ? " USING COVERING INDEX " : "",
+ bCover ? pIdx->zName : ""
+ );
+ }
+}
+#else
+# define explainSimpleCount(a,b,c)
+#endif
+
+/*
+** sqlite3WalkExpr() callback used by havingToWhere().
+**
+** If the node passed to the callback is a TK_AND node, return
+** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
+**
+** Otherwise, return WRC_Prune. In this case, also check if the
+** sub-expression matches the criteria for being moved to the WHERE
+** clause. If so, add it to the WHERE clause and replace the sub-expression
+** within the HAVING expression with a constant "1".
+*/
+static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op!=TK_AND ){
+ Select *pS = pWalker->u.pSelect;
+ /* This routine is called before the HAVING clause of the current
+ ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
+ ** here, it indicates that the expression is a correlated reference to a
+ ** column from an outer aggregate query, or an aggregate function that
+ ** belongs to an outer query. Do not move the expression to the WHERE
+ ** clause in this obscure case, as doing so may corrupt the outer Select
+ ** statements AggInfo structure. */
+ if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
+ && ExprAlwaysFalse(pExpr)==0
+ && pExpr->pAggInfo==0
+ ){
+ sqlite3 *db = pWalker->pParse->db;
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
+ if( pNew ){
+ Expr *pWhere = pS->pWhere;
+ SWAP(Expr, *pNew, *pExpr);
+ pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
+ pS->pWhere = pNew;
+ pWalker->eCode = 1;
+ }
+ }
+ return WRC_Prune;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Transfer eligible terms from the HAVING clause of a query, which is
+** processed after grouping, to the WHERE clause, which is processed before
+** grouping. For example, the query:
+**
+** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
+**
+** can be rewritten as:
+**
+** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
+**
+** A term of the HAVING expression is eligible for transfer if it consists
+** entirely of constants and expressions that are also GROUP BY terms that
+** use the "BINARY" collation sequence.
+*/
+static void havingToWhere(Parse *pParse, Select *p){
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(sWalker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = havingToWhereExprCb;
+ sWalker.u.pSelect = p;
+ sqlite3WalkExpr(&sWalker, p->pHaving);
+#if TREETRACE_ENABLED
+ if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
+ TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+}
+
+/*
+** Check to see if the pThis entry of pTabList is a self-join of another view.
+** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
+** but stopping before iEnd.
+**
+** If pThis is a self-join, then return the SrcItem for the first other
+** instance of that view found. If pThis is not a self-join then return 0.
+*/
+static SrcItem *isSelfJoinView(
+ SrcList *pTabList, /* Search for self-joins in this FROM clause */
+ SrcItem *pThis, /* Search for prior reference to this subquery */
+ int iFirst, int iEnd /* Range of FROM-clause entries to search. */
+){
+ SrcItem *pItem;
+ assert( pThis->pSelect!=0 );
+ if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
+ while( iFirst<iEnd ){
+ Select *pS1;
+ pItem = &pTabList->a[iFirst++];
+ if( pItem->pSelect==0 ) continue;
+ if( pItem->fg.viaCoroutine ) continue;
+ if( pItem->zName==0 ) continue;
+ assert( pItem->pTab!=0 );
+ assert( pThis->pTab!=0 );
+ if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
+ if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
+ pS1 = pItem->pSelect;
+ if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
+ /* The query flattener left two different CTE tables with identical
+ ** names in the same FROM clause. */
+ continue;
+ }
+ if( pItem->pSelect->selFlags & SF_PushDown ){
+ /* The view was modified by some other optimization such as
+ ** pushDownWhereTerms() */
+ continue;
+ }
+ return pItem;
+ }
+ return 0;
+}
+
+/*
+** Deallocate a single AggInfo object
+*/
+static void agginfoFree(sqlite3 *db, AggInfo *p){
+ sqlite3DbFree(db, p->aCol);
+ sqlite3DbFree(db, p->aFunc);
+ sqlite3DbFreeNN(db, p);
+}
+
+/*
+** Attempt to transform a query of the form
+**
+** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
+**
+** Into this:
+**
+** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
+**
+** The transformation only works if all of the following are true:
+**
+** * The subquery is a UNION ALL of two or more terms
+** * The subquery does not have a LIMIT clause
+** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
+** * The outer query is a simple count(*) with no WHERE clause or other
+** extraneous syntax.
+**
+** Return TRUE if the optimization is undertaken.
+*/
+static int countOfViewOptimization(Parse *pParse, Select *p){
+ Select *pSub, *pPrior;
+ Expr *pExpr;
+ Expr *pCount;
+ sqlite3 *db;
+ if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
+ if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
+ if( p->pWhere ) return 0;
+ if( p->pHaving ) return 0;
+ if( p->pGroupBy ) return 0;
+ if( p->pOrderBy ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
+ assert( ExprUseUToken(pExpr) );
+ if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
+ assert( ExprUseXList(pExpr) );
+ if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
+ if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
+ if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */
+ pSub = p->pSrc->a[0].pSelect;
+ if( pSub==0 ) return 0; /* The FROM is a subquery */
+ if( pSub->pPrior==0 ) return 0; /* Must be a compound */
+ if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */
+ do{
+ if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
+ if( pSub->pWhere ) return 0; /* No WHERE clause */
+ if( pSub->pLimit ) return 0; /* No LIMIT clause */
+ if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
+ assert( pSub->pHaving==0 ); /* Due to the previous */
+ pSub = pSub->pPrior; /* Repeat over compound */
+ }while( pSub );
+
+ /* If we reach this point then it is OK to perform the transformation */
+
+ db = pParse->db;
+ pCount = pExpr;
+ pExpr = 0;
+ pSub = p->pSrc->a[0].pSelect;
+ p->pSrc->a[0].pSelect = 0;
+ sqlite3SrcListDelete(db, p->pSrc);
+ p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
+ while( pSub ){
+ Expr *pTerm;
+ pPrior = pSub->pPrior;
+ pSub->pPrior = 0;
+ pSub->pNext = 0;
+ pSub->selFlags |= SF_Aggregate;
+ pSub->selFlags &= ~SF_Compound;
+ pSub->nSelectRow = 0;
+ sqlite3ExprListDelete(db, pSub->pEList);
+ pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
+ pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
+ pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
+ sqlite3PExprAddSelect(pParse, pTerm, pSub);
+ if( pExpr==0 ){
+ pExpr = pTerm;
+ }else{
+ pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
+ }
+ pSub = pPrior;
+ }
+ p->pEList->a[0].pExpr = pExpr;
+ p->selFlags &= ~SF_Aggregate;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x200 ){
+ TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ return 1;
+}
+
+/*
+** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
+** as pSrcItem but has the same alias as p0, then return true.
+** Otherwise return false.
+*/
+static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *p1 = &pSrc->a[i];
+ if( p1==p0 ) continue;
+ if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
+ return 1;
+ }
+ if( p1->pSelect
+ && (p1->pSelect->selFlags & SF_NestedFrom)!=0
+ && sameSrcAlias(p0, p1->pSelect->pSrc)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
+** be implemented as a co-routine. The i-th entry is guaranteed to be
+** a subquery.
+**
+** The subquery is implemented as a co-routine if all of the following are
+** true:
+**
+** (1) The subquery will likely be implemented in the outer loop of
+** the query. This will be the case if any one of the following
+** conditions hold:
+** (a) The subquery is the only term in the FROM clause
+** (b) The subquery is the left-most term and a CROSS JOIN or similar
+** requires it to be the outer loop
+** (c) All of the following are true:
+** (i) The subquery is the left-most subquery in the FROM clause
+** (ii) There is nothing that would prevent the subquery from
+** being used as the outer loop if the sqlite3WhereBegin()
+** routine nominates it to that position.
+** (iii) The query is not a UPDATE ... FROM
+** (2) The subquery is not a CTE that should be materialized because
+** (a) the AS MATERIALIZED keyword is used, or
+** (b) the CTE is used multiple times and does not have the
+** NOT MATERIALIZED keyword
+** (3) The subquery is not part of a left operand for a RIGHT JOIN
+** (4) The SQLITE_Coroutine optimization disable flag is not set
+** (5) The subquery is not self-joined
+*/
+static int fromClauseTermCanBeCoroutine(
+ Parse *pParse, /* Parsing context */
+ SrcList *pTabList, /* FROM clause */
+ int i, /* Which term of the FROM clause holds the subquery */
+ int selFlags /* Flags on the SELECT statement */
+){
+ SrcItem *pItem = &pTabList->a[i];
+ if( pItem->fg.isCte ){
+ const CteUse *pCteUse = pItem->u2.pCteUse;
+ if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */
+ if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */
+ }
+ if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */
+ if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */
+ if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){
+ return 0; /* (5) */
+ }
+ if( i==0 ){
+ if( pTabList->nSrc==1 ) return 1; /* (1a) */
+ if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */
+ if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
+ return 1;
+ }
+ if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
+ while( 1 /*exit-by-break*/ ){
+ if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */
+ if( i==0 ) break;
+ i--;
+ pItem--;
+ if( pItem->pSelect!=0 ) return 0; /* (1c-i) */
+ }
+ return 1;
+}
+
+/*
+** Generate code for the SELECT statement given in the p argument.
+**
+** The results are returned according to the SelectDest structure.
+** See comments in sqliteInt.h for further information.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+*/
+SQLITE_PRIVATE int sqlite3Select(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ SelectDest *pDest /* What to do with the query results */
+){
+ int i, j; /* Loop counters */
+ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
+ Vdbe *v; /* The virtual machine under construction */
+ int isAgg; /* True for select lists like "count(*)" */
+ ExprList *pEList = 0; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ AggInfo *pAggInfo = 0; /* Aggregate information */
+ int rc = 1; /* Value to return from this function */
+ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
+ SortCtx sSort; /* Info on how to code the ORDER BY clause */
+ int iEnd; /* Address of the end of the query */
+ sqlite3 *db; /* The database connection */
+ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
+ u8 minMaxFlag; /* Flag for min/max queries */
+
+ db = pParse->db;
+ assert( pParse==db->pParse );
+ v = sqlite3GetVdbe(pParse);
+ if( p==0 || pParse->nErr ){
+ return 1;
+ }
+ assert( db->mallocFailed==0 );
+ if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+#if TREETRACE_ENABLED
+ TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain));
+ if( sqlite3TreeTrace & 0x10000 ){
+ if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
+ __FILE__, __LINE__);
+ }
+ sqlite3ShowSelect(p);
+ }
+#endif
+
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
+ if( IgnorableDistinct(pDest) ){
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
+ pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
+ /* All of these destinations are also able to ignore the ORDER BY clause */
+ if( p->pOrderBy ){
+#if TREETRACE_ENABLED
+ TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n"));
+ if( sqlite3TreeTrace & 0x800 ){
+ sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
+ }
+#endif
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ p->pOrderBy);
+ testcase( pParse->earlyCleanup );
+ p->pOrderBy = 0;
+ }
+ p->selFlags &= ~SF_Distinct;
+ p->selFlags |= SF_NoopOrderBy;
+ }
+ sqlite3SelectPrep(pParse, p, 0);
+ if( pParse->nErr ){
+ goto select_end;
+ }
+ assert( db->mallocFailed==0 );
+ assert( p->pEList!=0 );
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10 ){
+ TREETRACE(0x10,pParse,p, ("after name resolution:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ /* If the SF_UFSrcCheck flag is set, then this function is being called
+ ** as part of populating the temp table for an UPDATE...FROM statement.
+ ** In this case, it is an error if the target object (pSrc->a[0]) name
+ ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
+ **
+ ** Postgres disallows this case too. The reason is that some other
+ ** systems handle this case differently, and not all the same way,
+ ** which is just confusing. To avoid this, we follow PG's lead and
+ ** disallow it altogether. */
+ if( p->selFlags & SF_UFSrcCheck ){
+ SrcItem *p0 = &p->pSrc->a[0];
+ if( sameSrcAlias(p0, p->pSrc) ){
+ sqlite3ErrorMsg(pParse,
+ "target object/alias may not appear in FROM clause: %s",
+ p0->zAlias ? p0->zAlias : p0->pTab->zName
+ );
+ goto select_end;
+ }
+
+ /* Clear the SF_UFSrcCheck flag. The check has already been performed,
+ ** and leaving this flag set can cause errors if a compound sub-query
+ ** in p->pSrc is flattened into this query and this function called
+ ** again as part of compound SELECT processing. */
+ p->selFlags &= ~SF_UFSrcCheck;
+ }
+
+ if( pDest->eDest==SRT_Output ){
+ sqlite3GenerateColumnNames(pParse, p);
+ }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( sqlite3WindowRewrite(pParse, p) ){
+ assert( pParse->nErr );
+ goto select_end;
+ }
+#if TREETRACE_ENABLED
+ if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){
+ TREETRACE(0x40,pParse,p, ("after window rewrite:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ pTabList = p->pSrc;
+ isAgg = (p->selFlags & SF_Aggregate)!=0;
+ memset(&sSort, 0, sizeof(sSort));
+ sSort.pOrderBy = p->pOrderBy;
+
+ /* Try to do various optimizations (flattening subqueries, and strength
+ ** reduction of join operators) in the FROM clause up into the main query
+ */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
+ SrcItem *pItem = &pTabList->a[i];
+ Select *pSub = pItem->pSelect;
+ Table *pTab = pItem->pTab;
+
+ /* The expander should have already created transient Table objects
+ ** even for FROM clause elements such as subqueries that do not correspond
+ ** to a real table */
+ assert( pTab!=0 );
+
+ /* Try to simplify joins:
+ **
+ ** LEFT JOIN -> JOIN
+ ** RIGHT JOIN -> JOIN
+ ** FULL JOIN -> RIGHT JOIN
+ **
+ ** If terms of the i-th table are used in the WHERE clause in such a
+ ** way that the i-th table cannot be the NULL row of a join, then
+ ** perform the appropriate simplification. This is called
+ ** "OUTER JOIN strength reduction" in the SQLite documentation.
+ */
+ if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0
+ && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor,
+ pItem->fg.jointype & JT_LTORJ)
+ && OptimizationEnabled(db, SQLITE_SimplifyJoin)
+ ){
+ if( pItem->fg.jointype & JT_LEFT ){
+ if( pItem->fg.jointype & JT_RIGHT ){
+ TREETRACE(0x1000,pParse,p,
+ ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i));
+ pItem->fg.jointype &= ~JT_LEFT;
+ }else{
+ TREETRACE(0x1000,pParse,p,
+ ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
+ pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
+ }
+ }
+ if( pItem->fg.jointype & JT_LTORJ ){
+ for(j=i+1; j<pTabList->nSrc; j++){
+ SrcItem *pI2 = &pTabList->a[j];
+ if( pI2->fg.jointype & JT_RIGHT ){
+ if( pI2->fg.jointype & JT_LEFT ){
+ TREETRACE(0x1000,pParse,p,
+ ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j));
+ pI2->fg.jointype &= ~JT_RIGHT;
+ }else{
+ TREETRACE(0x1000,pParse,p,
+ ("RIGHT-JOIN simplifies to JOIN on term %d\n",j));
+ pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER);
+ }
+ }
+ }
+ for(j=pTabList->nSrc-1; j>=i; j--){
+ pTabList->a[j].fg.jointype &= ~JT_LTORJ;
+ if( pTabList->a[j].fg.jointype & JT_RIGHT ) break;
+ }
+ }
+ assert( pItem->iCursor>=0 );
+ unsetJoinExpr(p->pWhere, pItem->iCursor,
+ pTabList->a[0].fg.jointype & JT_LTORJ);
+ }
+
+ /* No further action if this term of the FROM clause is not a subquery */
+ if( pSub==0 ) continue;
+
+ /* Catch mismatch in the declared columns of a view and the number of
+ ** columns in the SELECT on the RHS */
+ if( pTab->nCol!=pSub->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
+ pTab->nCol, pTab->zName, pSub->pEList->nExpr);
+ goto select_end;
+ }
+
+ /* Do not attempt the usual optimizations (flattening and ORDER BY
+ ** elimination) on a MATERIALIZED common table expression because
+ ** a MATERIALIZED common table expression is an optimization fence.
+ */
+ if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){
+ continue;
+ }
+
+ /* Do not try to flatten an aggregate subquery.
+ **
+ ** Flattening an aggregate subquery is only possible if the outer query
+ ** is not a join. But if the outer query is not a join, then the subquery
+ ** will be implemented as a co-routine and there is no advantage to
+ ** flattening in that case.
+ */
+ if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
+ assert( pSub->pGroupBy==0 );
+
+ /* If a FROM-clause subquery has an ORDER BY clause that is not
+ ** really doing anything, then delete it now so that it does not
+ ** interfere with query flattening. See the discussion at
+ ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
+ **
+ ** Beware of these cases where the ORDER BY clause may not be safely
+ ** omitted:
+ **
+ ** (1) There is also a LIMIT clause
+ ** (2) The subquery was added to help with window-function
+ ** processing
+ ** (3) The subquery is in the FROM clause of an UPDATE
+ ** (4) The outer query uses an aggregate function other than
+ ** the built-in count(), min(), or max().
+ ** (5) The ORDER BY isn't going to accomplish anything because
+ ** one of:
+ ** (a) The outer query has a different ORDER BY clause
+ ** (b) The subquery is part of a join
+ ** See forum post 062d576715d277c8
+ **
+ ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
+ */
+ if( pSub->pOrderBy!=0
+ && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
+ && pSub->pLimit==0 /* Condition (1) */
+ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
+ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
+ && OptimizationEnabled(db, SQLITE_OmitOrderBy)
+ ){
+ TREETRACE(0x800,pParse,p,
+ ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ pSub->pOrderBy);
+ pSub->pOrderBy = 0;
+ }
+
+ /* If the outer query contains a "complex" result set (that is,
+ ** if the result set of the outer query uses functions or subqueries)
+ ** and if the subquery contains an ORDER BY clause and if
+ ** it will be implemented as a co-routine, then do not flatten. This
+ ** restriction allows SQL constructs like this:
+ **
+ ** SELECT expensive_function(x)
+ ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
+ **
+ ** The expensive_function() is only computed on the 10 rows that
+ ** are output, rather than every row of the table.
+ **
+ ** The requirement that the outer query have a complex result set
+ ** means that flattening does occur on simpler SQL constraints without
+ ** the expensive_function() like:
+ **
+ ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
+ */
+ if( pSub->pOrderBy!=0
+ && i==0
+ && (p->selFlags & SF_ComplexResult)!=0
+ && (pTabList->nSrc==1
+ || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
+ ){
+ continue;
+ }
+
+ if( flattenSubquery(pParse, p, i, isAgg) ){
+ if( pParse->nErr ) goto select_end;
+ /* This subquery can be absorbed into its parent. */
+ i = -1;
+ }
+ pTabList = p->pSrc;
+ if( db->mallocFailed ) goto select_end;
+ if( !IgnorableOrderby(pDest) ){
+ sSort.pOrderBy = p->pOrderBy;
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* Handle compound SELECT statements using the separate multiSelect()
+ ** procedure.
+ */
+ if( p->pPrior ){
+ rc = multiSelect(pParse, p, pDest);
+#if TREETRACE_ENABLED
+ TREETRACE(0x400,pParse,p,("end compound-select processing\n"));
+ if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
+ return rc;
+ }
+#endif
+
+ /* Do the WHERE-clause constant propagation optimization if this is
+ ** a join. No need to speed time on this operation for non-join queries
+ ** as the equivalent optimization will be handled by query planner in
+ ** sqlite3WhereBegin().
+ */
+ if( p->pWhere!=0
+ && p->pWhere->op==TK_AND
+ && OptimizationEnabled(db, SQLITE_PropagateConst)
+ && propagateConstants(pParse, p)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x2000 ){
+ TREETRACE(0x2000,pParse,p,("After constant propagation:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }else{
+ TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n"));
+ }
+
+ if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
+ && countOfViewOptimization(pParse, p)
+ ){
+ if( db->mallocFailed ) goto select_end;
+ pTabList = p->pSrc;
+ }
+
+ /* For each term in the FROM clause, do two things:
+ ** (1) Authorized unreferenced tables
+ ** (2) Generate code for all sub-queries
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ SrcItem *pItem = &pTabList->a[i];
+ SrcItem *pPrior;
+ SelectDest dest;
+ Select *pSub;
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ const char *zSavedAuthContext;
+#endif
+
+ /* Issue SQLITE_READ authorizations with a fake column name for any
+ ** tables that are referenced but from which no values are extracted.
+ ** Examples of where these kinds of null SQLITE_READ authorizations
+ ** would occur:
+ **
+ ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
+ ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
+ **
+ ** The fake column name is an empty string. It is possible for a table to
+ ** have a column named by the empty string, in which case there is no way to
+ ** distinguish between an unreferenced table and an actual reference to the
+ ** "" column. The original design was for the fake column name to be a NULL,
+ ** which would be unambiguous. But legacy authorization callbacks might
+ ** assume the column name is non-NULL and segfault. The use of an empty
+ ** string for the fake column name seems safer.
+ */
+ if( pItem->colUsed==0 && pItem->zName!=0 ){
+ sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
+ }
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ /* Generate code for all sub-queries in the FROM clause
+ */
+ pSub = pItem->pSelect;
+ if( pSub==0 ) continue;
+
+ /* The code for a subquery should only be generated once. */
+ assert( pItem->addrFillSub==0 );
+
+ /* Increment Parse.nHeight by the height of the largest expression
+ ** tree referred to by this, the parent select. The child select
+ ** may contain expression trees of at most
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+ ** more conservative than necessary, but much easier than enforcing
+ ** an exact limit.
+ */
+ pParse->nHeight += sqlite3SelectExprHeight(p);
+
+ /* Make copies of constant WHERE-clause terms in the outer query down
+ ** inside the subquery. This can help the subquery to run more efficiently.
+ */
+ if( OptimizationEnabled(db, SQLITE_PushDown)
+ && (pItem->fg.isCte==0
+ || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
+ && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x4000 ){
+ TREETRACE(0x4000,pParse,p,
+ ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
+ }else{
+ TREETRACE(0x4000,pParse,p,("Push-down not possible\n"));
+ }
+
+ /* Convert unused result columns of the subquery into simple NULL
+ ** expressions, to avoid unneeded searching and computation.
+ */
+ if( OptimizationEnabled(db, SQLITE_NullUnusedCols)
+ && disableUnusedSubqueryResultColumns(pItem)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x4000 ){
+ TREETRACE(0x4000,pParse,p,
+ ("Change unused result columns to NULL for subquery %d:\n",
+ pSub->selId));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }
+
+ zSavedAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = pItem->zName;
+
+ /* Generate code to implement the subquery
+ */
+ if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){
+ /* Implement a co-routine that will return a single row of the result
+ ** set on each invocation.
+ */
+ int addrTop = sqlite3VdbeCurrentAddr(v)+1;
+
+ pItem->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
+ VdbeComment((v, "%!S", pItem));
+ pItem->addrFillSub = addrTop;
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
+ ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->pTab->nRowLogEst = pSub->nSelectRow;
+ pItem->fg.viaCoroutine = 1;
+ pItem->regResult = dest.iSdst;
+ sqlite3VdbeEndCoroutine(v, pItem->regReturn);
+ sqlite3VdbeJumpHere(v, addrTop-1);
+ sqlite3ClearTempRegCache(pParse);
+ }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
+ /* This is a CTE for which materialization code has already been
+ ** generated. Invoke the subroutine to compute the materialization,
+ ** the make the pItem->iCursor be a copy of the ephemeral table that
+ ** holds the result of the materialization. */
+ CteUse *pCteUse = pItem->u2.pCteUse;
+ sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
+ if( pItem->iCursor!=pCteUse->iCur ){
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
+ VdbeComment((v, "%!S", pItem));
+ }
+ pSub->nSelectRow = pCteUse->nRowEst;
+ }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){
+ /* This view has already been materialized by a prior entry in
+ ** this same FROM clause. Reuse it. */
+ if( pPrior->addrFillSub ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
+ }
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
+ pSub->nSelectRow = pPrior->pSelect->nSelectRow;
+ }else{
+ /* Materialize the view. If the view is not correlated, generate a
+ ** subroutine to do the materialization so that subsequent uses of
+ ** the same view can reuse the materialization. */
+ int topAddr;
+ int onceAddr = 0;
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrExplain;
+#endif
+
+ pItem->regReturn = ++pParse->nMem;
+ topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
+ pItem->addrFillSub = topAddr+1;
+ pItem->fg.isMaterialized = 1;
+ if( pItem->fg.isCorrelated==0 ){
+ /* If the subquery is not correlated and if we are not inside of
+ ** a trigger, then we only need to compute the value of the subquery
+ ** once. */
+ onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ VdbeComment((v, "materialize %!S", pItem));
+ }else{
+ VdbeNoopComment((v, "materialize %!S", pItem));
+ }
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+
+ ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem));
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->pTab->nRowLogEst = pSub->nSelectRow;
+ if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
+ sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
+ VdbeComment((v, "end %!S", pItem));
+ sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
+ sqlite3VdbeJumpHere(v, topAddr);
+ sqlite3ClearTempRegCache(pParse);
+ if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
+ CteUse *pCteUse = pItem->u2.pCteUse;
+ pCteUse->addrM9e = pItem->addrFillSub;
+ pCteUse->regRtn = pItem->regReturn;
+ pCteUse->iCur = pItem->iCursor;
+ pCteUse->nRowEst = pSub->nSelectRow;
+ }
+ }
+ if( db->mallocFailed ) goto select_end;
+ pParse->nHeight -= sqlite3SelectExprHeight(p);
+ pParse->zAuthContext = zSavedAuthContext;
+#endif
+ }
+
+ /* Various elements of the SELECT copied into local variables for
+ ** convenience */
+ pEList = p->pEList;
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x8000 ){
+ TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
+ ** if the select-list is the same as the ORDER BY list, then this query
+ ** can be rewritten as a GROUP BY. In other words, this:
+ **
+ ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
+ **
+ ** is transformed to:
+ **
+ ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
+ **
+ ** The second form is preferred as a single index (or temp-table) may be
+ ** used for both the ORDER BY and DISTINCT processing. As originally
+ ** written the query must use a temp-table for at least one of the ORDER
+ ** BY and DISTINCT, and an index or separate temp-table for the other.
+ */
+ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
+ && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ && p->pWin==0
+#endif
+ ){
+ p->selFlags &= ~SF_Distinct;
+ pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
+ p->selFlags |= SF_Aggregate;
+ /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
+ ** the sDistinct.isTnct is still set. Hence, isTnct represents the
+ ** original setting of the SF_Distinct flag, not the current setting */
+ assert( sDistinct.isTnct );
+ sDistinct.isTnct = 2;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x20000 ){
+ TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }
+
+ /* If there is an ORDER BY clause, then create an ephemeral index to
+ ** do the sorting. But this sorting ephemeral index might end up
+ ** being unused if the data can be extracted in pre-sorted order.
+ ** If that is the case, then the OP_OpenEphemeral instruction will be
+ ** changed to an OP_Noop once we figure out that the sorting index is
+ ** not needed. The sSort.addrSortIndex variable is used to facilitate
+ ** that change.
+ */
+ if( sSort.pOrderBy ){
+ KeyInfo *pKeyInfo;
+ pKeyInfo = sqlite3KeyInfoFromExprList(
+ pParse, sSort.pOrderBy, 0, pEList->nExpr);
+ sSort.iECursor = pParse->nTab++;
+ sSort.addrSortIndex =
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
+ (char*)pKeyInfo, P4_KEYINFO
+ );
+ }else{
+ sSort.addrSortIndex = -1;
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( pDest->eDest==SRT_EphemTab ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
+ if( p->selFlags & SF_NestedFrom ){
+ /* Delete or NULL-out result columns that will never be used */
+ int ii;
+ for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
+ sqlite3ExprDelete(db, pEList->a[ii].pExpr);
+ sqlite3DbFree(db, pEList->a[ii].zEName);
+ pEList->nExpr--;
+ }
+ for(ii=0; ii<pEList->nExpr; ii++){
+ if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
+ }
+ }
+ }
+
+ /* Set the limiter.
+ */
+ iEnd = sqlite3VdbeMakeLabel(pParse);
+ if( (p->selFlags & SF_FixedLimit)==0 ){
+ p->nSelectRow = 320; /* 4 billion rows */
+ }
+ if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
+ if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
+ sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
+ sSort.sortFlags |= SORTFLAG_UseSorter;
+ }
+
+ /* Open an ephemeral index to use for the distinct set.
+ */
+ if( p->selFlags & SF_Distinct ){
+ sDistinct.tabTnct = pParse->nTab++;
+ sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sDistinct.tabTnct, 0, 0,
+ (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
+ P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
+ sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
+ }else{
+ sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
+ }
+
+ if( !isAgg && pGroupBy==0 ){
+ /* No aggregate functions and no GROUP BY clause */
+ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
+ | (p->selFlags & SF_FixedLimit);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin = p->pWin; /* Main window object (or NULL) */
+ if( pWin ){
+ sqlite3WindowCodeInit(pParse, p);
+ }
+#endif
+ assert( WHERE_USE_LIMIT==SF_FixedLimit );
+
+
+ /* Begin the database scan. */
+ TREETRACE(0x2,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
+ p->pEList, p, wctrlFlags, p->nSelectRow);
+ if( pWInfo==0 ) goto select_end;
+ if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
+ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
+ }
+ if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
+ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
+ }
+ if( sSort.pOrderBy ){
+ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
+ sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
+ if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
+ sSort.pOrderBy = 0;
+ }
+ }
+ TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
+
+ /* If sorting index that was created by a prior OP_OpenEphemeral
+ ** instruction ended up not being needed, then change the OP_OpenEphemeral
+ ** into an OP_Noop.
+ */
+ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
+ }
+
+ assert( p->pEList==pEList );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ int addrGosub = sqlite3VdbeMakeLabel(pParse);
+ int iCont = sqlite3VdbeMakeLabel(pParse);
+ int iBreak = sqlite3VdbeMakeLabel(pParse);
+ int regGosub = ++pParse->nMem;
+
+ sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
+
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
+ sqlite3VdbeResolveLabel(v, addrGosub);
+ VdbeNoopComment((v, "inner-loop subroutine"));
+ sSort.labelOBLopt = 0;
+ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp1(v, OP_Return, regGosub);
+ VdbeComment((v, "end inner-loop subroutine"));
+ sqlite3VdbeResolveLabel(v, iBreak);
+ }else
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ {
+ /* Use the standard inner loop. */
+ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
+ sqlite3WhereContinueLabel(pWInfo),
+ sqlite3WhereBreakLabel(pWInfo));
+
+ /* End the database scan loop.
+ */
+ TREETRACE(0x2,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ }
+ }else{
+ /* This case when there exist aggregate functions or a GROUP BY clause
+ ** or both */
+ NameContext sNC; /* Name context for processing aggregate information */
+ int iAMem; /* First Mem address for storing current GROUP BY */
+ int iBMem; /* First Mem address for previous GROUP BY */
+ int iUseFlag; /* Mem address holding flag indicating that at least
+ ** one row of the input to the aggregator has been
+ ** processed */
+ int iAbortFlag; /* Mem address which causes query abort if positive */
+ int groupBySort; /* Rows come from source in GROUP BY order */
+ int addrEnd; /* End of processing for this SELECT */
+ int sortPTab = 0; /* Pseudotable used to decode sorting results */
+ int sortOut = 0; /* Output register from the sorter */
+ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
+
+ /* Remove any and all aliases between the result set and the
+ ** GROUP BY clause.
+ */
+ if( pGroupBy ){
+ int k; /* Loop counter */
+ struct ExprList_item *pItem; /* For looping over expression in a list */
+
+ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
+ pItem->u.x.iAlias = 0;
+ }
+ for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
+ pItem->u.x.iAlias = 0;
+ }
+ assert( 66==sqlite3LogEst(100) );
+ if( p->nSelectRow>66 ) p->nSelectRow = 66;
+
+ /* If there is both a GROUP BY and an ORDER BY clause and they are
+ ** identical, then it may be possible to disable the ORDER BY clause
+ ** on the grounds that the GROUP BY will cause elements to come out
+ ** in the correct order. It also may not - the GROUP BY might use a
+ ** database index that causes rows to be grouped together as required
+ ** but not actually sorted. Either way, record the fact that the
+ ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
+ ** variable. */
+ if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
+ int ii;
+ /* The GROUP BY processing doesn't care whether rows are delivered in
+ ** ASC or DESC order - only that each group is returned contiguously.
+ ** So set the ASC/DESC flags in the GROUP BY to match those in the
+ ** ORDER BY to maximize the chances of rows being delivered in an
+ ** order that makes the ORDER BY redundant. */
+ for(ii=0; ii<pGroupBy->nExpr; ii++){
+ u8 sortFlags;
+ sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
+ pGroupBy->a[ii].fg.sortFlags = sortFlags;
+ }
+ if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
+ orderByGrp = 1;
+ }
+ }
+ }else{
+ assert( 0==sqlite3LogEst(1) );
+ p->nSelectRow = 0;
+ }
+
+ /* Create a label to jump to when we want to abort the query */
+ addrEnd = sqlite3VdbeMakeLabel(pParse);
+
+ /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+ ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+ ** SELECT statement.
+ */
+ pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
+ if( pAggInfo ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
+ testcase( pParse->earlyCleanup );
+ }
+ if( db->mallocFailed ){
+ goto select_end;
+ }
+ pAggInfo->selId = p->selId;
+#ifdef SQLITE_DEBUG
+ pAggInfo->pSelect = p;
+#endif
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.uNC.pAggInfo = pAggInfo;
+ VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
+ pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
+ pAggInfo->pGroupBy = pGroupBy;
+ sqlite3ExprAnalyzeAggList(&sNC, pEList);
+ sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
+ if( pHaving ){
+ if( pGroupBy ){
+ assert( pWhere==p->pWhere );
+ assert( pHaving==p->pHaving );
+ assert( pGroupBy==p->pGroupBy );
+ havingToWhere(pParse, p);
+ pWhere = p->pWhere;
+ }
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
+ }
+ pAggInfo->nAccumulator = pAggInfo->nColumn;
+ if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
+ minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
+ }else{
+ minMaxFlag = WHERE_ORDERBY_NORMAL;
+ }
+ analyzeAggFuncArgs(pAggInfo, &sNC);
+ if( db->mallocFailed ) goto select_end;
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x20 ){
+ TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
+ sqlite3TreeViewSelect(0, p, 0);
+ if( minMaxFlag ){
+ sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
+ sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
+ }
+ printAggInfo(pAggInfo);
+ }
+#endif
+
+
+ /* Processing for aggregates with GROUP BY is very different and
+ ** much more complex than aggregates without a GROUP BY.
+ */
+ if( pGroupBy ){
+ KeyInfo *pKeyInfo; /* Keying information for the group by clause */
+ int addr1; /* A-vs-B comparison jump */
+ int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int regOutputRow; /* Return address register for output subroutine */
+ int addrSetAbort; /* Set the abort flag and return */
+ int addrTopOfLoop; /* Top of the input loop */
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+ int addrReset; /* Subroutine for resetting the accumulator */
+ int regReset; /* Return address register for reset subroutine */
+ ExprList *pDistinct = 0;
+ u16 distFlag = 0;
+ int eDist = WHERE_DISTINCT_NOOP;
+
+ if( pAggInfo->nFunc==1
+ && pAggInfo->aFunc[0].iDistinct>=0
+ && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
+ && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
+ && pAggInfo->aFunc[0].pFExpr->x.pList!=0
+ ){
+ Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
+ pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
+ distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
+ }
+
+ /* If there is a GROUP BY clause we might need a sorting index to
+ ** implement it. Allocate that sorting index now. If it turns out
+ ** that we do not need it after all, the OP_SorterOpen instruction
+ ** will be converted into a Noop.
+ */
+ pAggInfo->sortingIdx = pParse->nTab++;
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
+ 0, pAggInfo->nColumn);
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
+ pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
+ 0, (char*)pKeyInfo, P4_KEYINFO);
+
+ /* Initialize memory locations used by GROUP BY aggregate processing
+ */
+ iUseFlag = ++pParse->nMem;
+ iAbortFlag = ++pParse->nMem;
+ regOutputRow = ++pParse->nMem;
+ addrOutputRow = sqlite3VdbeMakeLabel(pParse);
+ regReset = ++pParse->nMem;
+ addrReset = sqlite3VdbeMakeLabel(pParse);
+ iAMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ iBMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+ VdbeComment((v, "clear abort flag"));
+ sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
+
+ /* Begin a loop that will extract all source rows in GROUP BY order.
+ ** This might involve two separate loops with an OP_Sort in between, or
+ ** it might be a single loop that uses an index to extract information
+ ** in the right order to begin with.
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ TREETRACE(0x2,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
+ p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
+ | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
+ );
+ if( pWInfo==0 ){
+ sqlite3ExprListDelete(db, pDistinct);
+ goto select_end;
+ }
+ if( pParse->pIdxEpr ){
+ optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC);
+ }
+ assignAggregateRegisters(pParse, pAggInfo);
+ eDist = sqlite3WhereIsDistinct(pWInfo);
+ TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
+ if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
+ /* The optimizer is able to deliver rows in group by order so
+ ** we do not have to sort. The OP_OpenEphemeral table will be
+ ** cancelled later because we still need to use the pKeyInfo
+ */
+ groupBySort = 0;
+ }else{
+ /* Rows are coming out in undetermined order. We have to push
+ ** each row into a sorting index, terminate the first loop,
+ ** then loop over the sorting index in order to get the output
+ ** in sorted order
+ */
+ int regBase;
+ int regRecord;
+ int nCol;
+ int nGroupBy;
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrExp; /* Address of OP_Explain instruction */
+#endif
+ ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s",
+ (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
+ "DISTINCT" : "GROUP BY"
+ ));
+
+ groupBySort = 1;
+ nGroupBy = pGroupBy->nExpr;
+ nCol = nGroupBy;
+ j = nGroupBy;
+ for(i=0; i<pAggInfo->nColumn; i++){
+ if( pAggInfo->aCol[i].iSorterColumn>=j ){
+ nCol++;
+ j++;
+ }
+ }
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
+ j = nGroupBy;
+ pAggInfo->directMode = 1;
+ for(i=0; i<pAggInfo->nColumn; i++){
+ struct AggInfo_col *pCol = &pAggInfo->aCol[i];
+ if( pCol->iSorterColumn>=j ){
+ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
+ j++;
+ }
+ }
+ pAggInfo->directMode = 0;
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
+ sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ TREETRACE(0x2,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
+ sortOut = sqlite3GetTempReg(pParse);
+ sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0);
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
+ sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
+ VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
+ pAggInfo->useSortingIdx = 1;
+ sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab);
+ sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx);
+ }
+
+ /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
+ ** that are indexed (and that were previously identified and tagged
+ ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
+ ** must now be converted into a TK_AGG_COLUMN node so that the value
+ ** is correctly pulled from the index rather than being recomputed. */
+ if( pParse->pIdxEpr ){
+ aggregateConvertIndexedExprRefToColumn(pAggInfo);
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x20 ){
+ TREETRACE(0x20, pParse, p,
+ ("AggInfo function expressions converted to reference index\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ printAggInfo(pAggInfo);
+ }
+#endif
+ }
+
+ /* If the index or temporary table used by the GROUP BY sort
+ ** will naturally deliver rows in the order required by the ORDER BY
+ ** clause, cancel the ephemeral table open coded earlier.
+ **
+ ** This is an optimization - the correct answer should result regardless.
+ ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
+ ** disable this optimization for testing purposes. */
+ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
+ && (groupBySort || sqlite3WhereIsSorted(pWInfo))
+ ){
+ sSort.pOrderBy = 0;
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
+ }
+
+ /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+ ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+ ** Then compare the current GROUP BY terms against the GROUP BY terms
+ ** from the previous row currently stored in a0, a1, a2...
+ */
+ addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
+ sortOut, sortPTab);
+ }
+ for(j=0; j<pGroupBy->nExpr; j++){
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
+ }else{
+ pAggInfo->directMode = 1;
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
+ }
+ }
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
+ addr1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
+
+ /* Generate code that runs whenever the GROUP BY changes.
+ ** Changes in the GROUP BY are detected by the previous code
+ ** block. If there were no changes, this block is skipped.
+ **
+ ** This code copies current group by terms in b0,b1,b2,...
+ ** over to a0,a1,a2. It then calls the output subroutine
+ ** and resets the aggregate accumulator registers in preparation
+ ** for the next GROUP BY batch.
+ */
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output one row"));
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
+ VdbeComment((v, "check abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ VdbeComment((v, "reset accumulator"));
+
+ /* Update the aggregate accumulators based on the content of
+ ** the current row
+ */
+ sqlite3VdbeJumpHere(v, addr1);
+ updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+ VdbeComment((v, "indicate data in accumulator"));
+
+ /* End of the loop
+ */
+ if( groupBySort ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
+ VdbeCoverage(v);
+ }else{
+ TREETRACE(0x2,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeChangeToNoop(v, addrSortingIdx);
+ }
+ sqlite3ExprListDelete(db, pDistinct);
+
+ /* Output the final row of result
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output final row"));
+
+ /* Jump over the subroutines
+ */
+ sqlite3VdbeGoto(v, addrEnd);
+
+ /* Generate a subroutine that outputs a single row of the result
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag
+ ** is less than or equal to zero, the subroutine is a no-op. If
+ ** the processing calls for the query to abort, this subroutine
+ ** increments the iAbortFlag memory location before returning in
+ ** order to signal the caller to abort.
+ */
+ addrSetAbort = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+ VdbeComment((v, "set abort flag"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ sqlite3VdbeResolveLabel(v, addrOutputRow);
+ addrOutputRow = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+ VdbeCoverage(v);
+ VdbeComment((v, "Groupby result generator entry point"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ finalizeAggFunctions(pParse, pAggInfo);
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, -1, &sSort,
+ &sDistinct, pDest,
+ addrOutputRow+1, addrSetAbort);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ VdbeComment((v, "end groupby result generator"));
+
+ /* Generate a subroutine that will reset the group-by accumulator
+ */
+ sqlite3VdbeResolveLabel(v, addrReset);
+ resetAccumulator(pParse, pAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+ VdbeComment((v, "indicate accumulator empty"));
+ sqlite3VdbeAddOp1(v, OP_Return, regReset);
+
+ if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
+ struct AggInfo_func *pF = &pAggInfo->aFunc[0];
+ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
+ }
+ } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
+ else {
+ Table *pTab;
+ if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
+ /* If isSimpleCount() returns a pointer to a Table structure, then
+ ** the SQL statement is of the form:
+ **
+ ** SELECT count(*) FROM <tbl>
+ **
+ ** where the Table structure returned represents table <tbl>.
+ **
+ ** This statement is so common that it is optimized specially. The
+ ** OP_Count instruction is executed either on the intkey table that
+ ** contains the data for table <tbl> or on one of its indexes. It
+ ** is better to execute the op on an index, as indexes are almost
+ ** always spread across less pages than their corresponding tables.
+ */
+ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
+ Index *pIdx; /* Iterator variable */
+ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
+ Index *pBest = 0; /* Best index found so far */
+ Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
+
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ /* Search for the index that has the lowest scan cost.
+ **
+ ** (2011-04-15) Do not do a full scan of an unordered index.
+ **
+ ** (2013-10-03) Do not count the entries in a partial index.
+ **
+ ** In practice the KeyInfo structure will not be used. It is only
+ ** passed to keep OP_OpenRead happy.
+ */
+ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
+ if( !p->pSrc->a[0].fg.notIndexed ){
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->bUnordered==0
+ && pIdx->szIdxRow<pTab->szTabRow
+ && pIdx->pPartIdxWhere==0
+ && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
+ ){
+ pBest = pIdx;
+ }
+ }
+ }
+ if( pBest ){
+ iRoot = pBest->tnum;
+ pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
+ }
+
+ /* Open a read-only cursor, execute the OP_Count, close the cursor. */
+ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
+ }
+ assignAggregateRegisters(pParse, pAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0));
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ explainSimpleCount(pParse, pTab, pBest);
+ }else{
+ int regAcc = 0; /* "populate accumulators" flag */
+ ExprList *pDistinct = 0;
+ u16 distFlag = 0;
+ int eDist;
+
+ /* If there are accumulator registers but no min() or max() functions
+ ** without FILTER clauses, allocate register regAcc. Register regAcc
+ ** will contain 0 the first time the inner loop runs, and 1 thereafter.
+ ** The code generated by updateAccumulator() uses this to ensure
+ ** that the accumulator registers are (a) updated only once if
+ ** there are no min() or max functions or (b) always updated for the
+ ** first row visited by the aggregate, so that they are updated at
+ ** least once even if the FILTER clause means the min() or max()
+ ** function visits zero rows. */
+ if( pAggInfo->nAccumulator ){
+ for(i=0; i<pAggInfo->nFunc; i++){
+ if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
+ continue;
+ }
+ if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
+ break;
+ }
+ }
+ if( i==pAggInfo->nFunc ){
+ regAcc = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
+ }
+ }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
+ assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
+ pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
+ distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
+ }
+ assignAggregateRegisters(pParse, pAggInfo);
+
+ /* This case runs if the aggregate has no GROUP BY clause. The
+ ** processing is much simpler since there is only a single row
+ ** of output.
+ */
+ assert( p->pGroupBy==0 );
+ resetAccumulator(pParse, pAggInfo);
+
+ /* If this query is a candidate for the min/max optimization, then
+ ** minMaxFlag will have been previously set to either
+ ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
+ ** be an appropriate ORDER BY expression for the optimization.
+ */
+ assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
+ assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
+
+ TREETRACE(0x2,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
+ pDistinct, p, minMaxFlag|distFlag, 0);
+ if( pWInfo==0 ){
+ goto select_end;
+ }
+ TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
+ eDist = sqlite3WhereIsDistinct(pWInfo);
+ updateAccumulator(pParse, regAcc, pAggInfo, eDist);
+ if( eDist!=WHERE_DISTINCT_NOOP ){
+ struct AggInfo_func *pF = pAggInfo->aFunc;
+ if( pF ){
+ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
+ }
+ }
+
+ if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
+ if( minMaxFlag ){
+ sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
+ }
+ TREETRACE(0x2,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ finalizeAggFunctions(pParse, pAggInfo);
+ }
+
+ sSort.pOrderBy = 0;
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, -1, 0, 0,
+ pDest, addrEnd, addrEnd);
+ }
+ sqlite3VdbeResolveLabel(v, addrEnd);
+
+ } /* endif aggregate query */
+
+ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
+ explainTempTable(pParse, "DISTINCT");
+ }
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( sSort.pOrderBy ){
+ assert( p->pEList==pEList );
+ generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
+ }
+
+ /* Jump here to skip this query
+ */
+ sqlite3VdbeResolveLabel(v, iEnd);
+
+ /* The SELECT has been coded. If there is an error in the Parse structure,
+ ** set the return code to 1. Otherwise 0. */
+ rc = (pParse->nErr>0);
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+ assert( db->mallocFailed==0 || db->mallocFailed==1 );
+ assert( db->mallocFailed==0 || pParse->nErr!=0 );
+ sqlite3ExprListDelete(db, pMinMaxOrderBy);
+#ifdef SQLITE_DEBUG
+ if( pAggInfo && !db->mallocFailed ){
+ for(i=0; i<pAggInfo->nColumn; i++){
+ Expr *pExpr = pAggInfo->aCol[i].pCExpr;
+ if( pExpr==0 ) continue;
+ assert( pExpr->pAggInfo==pAggInfo );
+ assert( pExpr->iAgg==i );
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->pAggInfo==pAggInfo );
+ assert( pExpr->iAgg==i );
+ }
+ }
+#endif
+
+#if TREETRACE_ENABLED
+ TREETRACE(0x1,pParse,p,("end processing\n"));
+ if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ ExplainQueryPlanPop(pParse);
+ return rc;
+}
+
+/************** End of select.c **********************************************/
+/************** Begin file table.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the sqlite3_get_table() and sqlite3_free_table()
+** interface routines. These are just wrappers around the main
+** interface routine of sqlite3_exec().
+**
+** These routines are in a separate files so that they will not be linked
+** if they are not used.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_GET_TABLE
+
+/*
+** This structure is used to pass data from sqlite3_get_table() through
+** to the callback function is uses to build the result.
+*/
+typedef struct TabResult {
+ char **azResult; /* Accumulated output */
+ char *zErrMsg; /* Error message text, if an error occurs */
+ u32 nAlloc; /* Slots allocated for azResult[] */
+ u32 nRow; /* Number of rows in the result */
+ u32 nColumn; /* Number of columns in the result */
+ u32 nData; /* Slots used in azResult[]. (nRow+1)*nColumn */
+ int rc; /* Return code from sqlite3_exec() */
+} TabResult;
+
+/*
+** This routine is called once for each row in the result table. Its job
+** is to fill in the TabResult structure appropriately, allocating new
+** memory as necessary.
+*/
+static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
+ TabResult *p = (TabResult*)pArg; /* Result accumulator */
+ int need; /* Slots needed in p->azResult[] */
+ int i; /* Loop counter */
+ char *z; /* A single column of result */
+
+ /* Make sure there is enough space in p->azResult to hold everything
+ ** we need to remember from this invocation of the callback.
+ */
+ if( p->nRow==0 && argv!=0 ){
+ need = nCol*2;
+ }else{
+ need = nCol;
+ }
+ if( p->nData + need > p->nAlloc ){
+ char **azNew;
+ p->nAlloc = p->nAlloc*2 + need;
+ azNew = sqlite3Realloc( p->azResult, sizeof(char*)*p->nAlloc );
+ if( azNew==0 ) goto malloc_failed;
+ p->azResult = azNew;
+ }
+
+ /* If this is the first row, then generate an extra row containing
+ ** the names of all columns.
+ */
+ if( p->nRow==0 ){
+ p->nColumn = nCol;
+ for(i=0; i<nCol; i++){
+ z = sqlite3_mprintf("%s", colv[i]);
+ if( z==0 ) goto malloc_failed;
+ p->azResult[p->nData++] = z;
+ }
+ }else if( (int)p->nColumn!=nCol ){
+ sqlite3_free(p->zErrMsg);
+ p->zErrMsg = sqlite3_mprintf(
+ "sqlite3_get_table() called with two or more incompatible queries"
+ );
+ p->rc = SQLITE_ERROR;
+ return 1;
+ }
+
+ /* Copy over the row data
+ */
+ if( argv!=0 ){
+ for(i=0; i<nCol; i++){
+ if( argv[i]==0 ){
+ z = 0;
+ }else{
+ int n = sqlite3Strlen30(argv[i])+1;
+ z = sqlite3_malloc64( n );
+ if( z==0 ) goto malloc_failed;
+ memcpy(z, argv[i], n);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ p->nRow++;
+ }
+ return 0;
+
+malloc_failed:
+ p->rc = SQLITE_NOMEM_BKPT;
+ return 1;
+}
+
+/*
+** Query the database. But instead of invoking a callback for each row,
+** malloc() for space to hold the result and return the entire results
+** at the conclusion of the call.
+**
+** The result that is written to ***pazResult is held in memory obtained
+** from malloc(). But the caller cannot free this memory directly.
+** Instead, the entire table should be passed to sqlite3_free_table() when
+** the calling procedure is finished using it.
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ char ***pazResult, /* Write the result table here */
+ int *pnRow, /* Write the number of rows in the result here */
+ int *pnColumn, /* Write the number of columns of result here */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc;
+ TabResult res;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || pazResult==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *pazResult = 0;
+ if( pnColumn ) *pnColumn = 0;
+ if( pnRow ) *pnRow = 0;
+ if( pzErrMsg ) *pzErrMsg = 0;
+ res.zErrMsg = 0;
+ res.nRow = 0;
+ res.nColumn = 0;
+ res.nData = 1;
+ res.nAlloc = 20;
+ res.rc = SQLITE_OK;
+ res.azResult = sqlite3_malloc64(sizeof(char*)*res.nAlloc );
+ if( res.azResult==0 ){
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM_BKPT;
+ }
+ res.azResult[0] = 0;
+ rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
+ assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
+ res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
+ if( (rc&0xff)==SQLITE_ABORT ){
+ sqlite3_free_table(&res.azResult[1]);
+ if( res.zErrMsg ){
+ if( pzErrMsg ){
+ sqlite3_free(*pzErrMsg);
+ *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
+ }
+ sqlite3_free(res.zErrMsg);
+ }
+ db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
+ return res.rc;
+ }
+ sqlite3_free(res.zErrMsg);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free_table(&res.azResult[1]);
+ return rc;
+ }
+ if( res.nAlloc>res.nData ){
+ char **azNew;
+ azNew = sqlite3Realloc( res.azResult, sizeof(char*)*res.nData );
+ if( azNew==0 ){
+ sqlite3_free_table(&res.azResult[1]);
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM_BKPT;
+ }
+ res.azResult = azNew;
+ }
+ *pazResult = &res.azResult[1];
+ if( pnColumn ) *pnColumn = res.nColumn;
+ if( pnRow ) *pnRow = res.nRow;
+ return rc;
+}
+
+/*
+** This routine frees the space the sqlite3_get_table() malloced.
+*/
+SQLITE_API void sqlite3_free_table(
+ char **azResult /* Result returned from sqlite3_get_table() */
+){
+ if( azResult ){
+ int i, n;
+ azResult--;
+ assert( azResult!=0 );
+ n = SQLITE_PTR_TO_INT(azResult[0]);
+ for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
+ sqlite3_free(azResult);
+ }
+}
+
+#endif /* SQLITE_OMIT_GET_TABLE */
+
+/************** End of table.c ***********************************************/
+/************** Begin file trigger.c *****************************************/
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation for TRIGGERs
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_TRIGGER
+/*
+** Delete a linked list of TriggerStep structures.
+*/
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
+ while( pTriggerStep ){
+ TriggerStep * pTmp = pTriggerStep;
+ pTriggerStep = pTriggerStep->pNext;
+
+ sqlite3ExprDelete(db, pTmp->pWhere);
+ sqlite3ExprListDelete(db, pTmp->pExprList);
+ sqlite3SelectDelete(db, pTmp->pSelect);
+ sqlite3IdListDelete(db, pTmp->pIdList);
+ sqlite3UpsertDelete(db, pTmp->pUpsert);
+ sqlite3SrcListDelete(db, pTmp->pFrom);
+ sqlite3DbFree(db, pTmp->zSpan);
+
+ sqlite3DbFree(db, pTmp);
+ }
+}
+
+/*
+** Given table pTab, return a list of all the triggers attached to
+** the table. The list is connected by Trigger.pNext pointers.
+**
+** All of the triggers on pTab that are in the same database as pTab
+** are already attached to pTab->pTrigger. But there might be additional
+** triggers on pTab in the TEMP schema. This routine prepends all
+** TEMP triggers on pTab to the beginning of the pTab->pTrigger list
+** and returns the combined list.
+**
+** To state it another way: This routine returns a list of all triggers
+** that fire off of pTab. The list will include any TEMP triggers on
+** pTab as well as the triggers lised in pTab->pTrigger.
+*/
+SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
+ Schema *pTmpSchema; /* Schema of the pTab table */
+ Trigger *pList; /* List of triggers to return */
+ HashElem *p; /* Loop variable for TEMP triggers */
+
+ assert( pParse->disableTriggers==0 );
+ pTmpSchema = pParse->db->aDb[1].pSchema;
+ p = sqliteHashFirst(&pTmpSchema->trigHash);
+ pList = pTab->pTrigger;
+ while( p ){
+ Trigger *pTrig = (Trigger *)sqliteHashData(p);
+ if( pTrig->pTabSchema==pTab->pSchema
+ && pTrig->table
+ && 0==sqlite3StrICmp(pTrig->table, pTab->zName)
+ && (pTrig->pTabSchema!=pTmpSchema || pTrig->bReturning)
+ ){
+ pTrig->pNext = pList;
+ pList = pTrig;
+ }else if( pTrig->op==TK_RETURNING ){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ assert( pParse->db->pVtabCtx==0 );
+#endif
+ assert( pParse->bReturning );
+ assert( &(pParse->u1.pReturning->retTrig) == pTrig );
+ pTrig->table = pTab->zName;
+ pTrig->pTabSchema = pTab->pSchema;
+ pTrig->pNext = pList;
+ pList = pTrig;
+ }
+ p = sqliteHashNext(p);
+ }
+#if 0
+ if( pList ){
+ Trigger *pX;
+ printf("Triggers for %s:", pTab->zName);
+ for(pX=pList; pX; pX=pX->pNext){
+ printf(" %s", pX->zName);
+ }
+ printf("\n");
+ fflush(stdout);
+ }
+#endif
+ return pList;
+}
+
+/*
+** This is called by the parser when it sees a CREATE TRIGGER statement
+** up to the point of the BEGIN before the trigger actions. A Trigger
+** structure is generated based on the information available and stored
+** in pParse->pNewTrigger. After the trigger actions have been parsed, the
+** sqlite3FinishTrigger() function is called to complete the trigger
+** construction process.
+*/
+SQLITE_PRIVATE void sqlite3BeginTrigger(
+ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
+ Token *pName1, /* The name of the trigger */
+ Token *pName2, /* The name of the trigger */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
+ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
+ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
+ SrcList *pTableName,/* The name of the table/view the trigger applies to */
+ Expr *pWhen, /* WHEN clause */
+ int isTemp, /* True if the TEMPORARY keyword is present */
+ int noErr /* Suppress errors if the trigger already exists */
+){
+ Trigger *pTrigger = 0; /* The new trigger */
+ Table *pTab; /* Table that the trigger fires off of */
+ char *zName = 0; /* Name of the trigger */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb; /* The database to store the trigger in */
+ Token *pName; /* The unqualified db name */
+ DbFixer sFix; /* State vector for the DB fixer */
+
+ assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
+ assert( pName2!=0 );
+ assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
+ assert( op>0 && op<0xff );
+ if( isTemp ){
+ /* If TEMP was specified, then the trigger name may not be qualified. */
+ if( pName2->n>0 ){
+ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
+ goto trigger_cleanup;
+ }
+ iDb = 1;
+ pName = pName1;
+ }else{
+ /* Figure out the db that the trigger will be created in */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ){
+ goto trigger_cleanup;
+ }
+ }
+ if( !pTableName || db->mallocFailed ){
+ goto trigger_cleanup;
+ }
+
+ /* A long-standing parser bug is that this syntax was allowed:
+ **
+ ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab ....
+ ** ^^^^^^^^
+ **
+ ** To maintain backwards compatibility, ignore the database
+ ** name on pTableName if we are reparsing out of the schema table
+ */
+ if( db->init.busy && iDb!=1 ){
+ sqlite3DbFree(db, pTableName->a[0].zDatabase);
+ pTableName->a[0].zDatabase = 0;
+ }
+
+ /* If the trigger name was unqualified, and the table is a temp table,
+ ** then set iDb to 1 to create the trigger in the temporary database.
+ ** If sqlite3SrcListLookup() returns 0, indicating the table does not
+ ** exist, the error is caught by the block below.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTableName);
+ if( db->init.busy==0 && pName2->n==0 && pTab
+ && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
+
+ /* Ensure the table name matches database name and that the table exists */
+ if( db->mallocFailed ) goto trigger_cleanup;
+ assert( pTableName->nSrc==1 );
+ sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName);
+ if( sqlite3FixSrcList(&sFix, pTableName) ){
+ goto trigger_cleanup;
+ }
+ pTab = sqlite3SrcListLookup(pParse, pTableName);
+ if( !pTab ){
+ /* The table does not exist. */
+ goto trigger_orphan_error;
+ }
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
+ goto trigger_orphan_error;
+ }
+ if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
+ sqlite3ErrorMsg(pParse, "cannot create triggers on shadow tables");
+ goto trigger_orphan_error;
+ }
+
+ /* Check that the trigger name is not reserved and that no trigger of the
+ ** specified name exists */
+ zName = sqlite3NameFromToken(db, pName);
+ if( zName==0 ){
+ assert( db->mallocFailed );
+ goto trigger_cleanup;
+ }
+ if( sqlite3CheckObjectName(pParse, zName, "trigger", pTab->zName) ){
+ goto trigger_cleanup;
+ }
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ if( !IN_RENAME_OBJECT ){
+ if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),zName) ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
+ }else{
+ assert( !db->init.busy );
+ sqlite3CodeVerifySchema(pParse, iDb);
+ VVA_ONLY( pParse->ifNotExists = 1; )
+ }
+ goto trigger_cleanup;
+ }
+ }
+
+ /* Do not create a trigger on a system table */
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
+ sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
+ goto trigger_cleanup;
+ }
+
+ /* INSTEAD of triggers are only for views and views only support INSTEAD
+ ** of triggers.
+ */
+ if( IsView(pTab) && tr_tm!=TK_INSTEAD ){
+ sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
+ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName->a);
+ goto trigger_orphan_error;
+ }
+ if( !IsView(pTab) && tr_tm==TK_INSTEAD ){
+ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
+ " trigger on table: %S", pTableName->a);
+ goto trigger_orphan_error;
+ }
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( !IN_RENAME_OBJECT ){
+ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ int code = SQLITE_CREATE_TRIGGER;
+ const char *zDb = db->aDb[iTabDb].zDbSName;
+ const char *zDbTrig = isTemp ? db->aDb[1].zDbSName : zDb;
+ if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
+ if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
+ goto trigger_cleanup;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
+ goto trigger_cleanup;
+ }
+ }
+#endif
+
+ /* INSTEAD OF triggers can only appear on views and BEFORE triggers
+ ** cannot appear on views. So we might as well translate every
+ ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
+ ** elsewhere.
+ */
+ if (tr_tm == TK_INSTEAD){
+ tr_tm = TK_BEFORE;
+ }
+
+ /* Build the Trigger object */
+ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
+ if( pTrigger==0 ) goto trigger_cleanup;
+ pTrigger->zName = zName;
+ zName = 0;
+ pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
+ pTrigger->pSchema = db->aDb[iDb].pSchema;
+ pTrigger->pTabSchema = pTab->pSchema;
+ pTrigger->op = (u8)op;
+ pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, pTrigger->table, pTableName->a[0].zName);
+ pTrigger->pWhen = pWhen;
+ pWhen = 0;
+ }else{
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
+ }
+ pTrigger->pColumns = pColumns;
+ pColumns = 0;
+ assert( pParse->pNewTrigger==0 );
+ pParse->pNewTrigger = pTrigger;
+
+trigger_cleanup:
+ sqlite3DbFree(db, zName);
+ sqlite3SrcListDelete(db, pTableName);
+ sqlite3IdListDelete(db, pColumns);
+ sqlite3ExprDelete(db, pWhen);
+ if( !pParse->pNewTrigger ){
+ sqlite3DeleteTrigger(db, pTrigger);
+ }else{
+ assert( pParse->pNewTrigger==pTrigger );
+ }
+ return;
+
+trigger_orphan_error:
+ if( db->init.iDb==1 ){
+ /* Ticket #3810.
+ ** Normally, whenever a table is dropped, all associated triggers are
+ ** dropped too. But if a TEMP trigger is created on a non-TEMP table
+ ** and the table is dropped by a different database connection, the
+ ** trigger is not visible to the database connection that does the
+ ** drop so the trigger cannot be dropped. This results in an
+ ** "orphaned trigger" - a trigger whose associated table is missing.
+ **
+ ** 2020-11-05 see also https://sqlite.org/forum/forumpost/157dc791df
+ */
+ db->init.orphanTrigger = 1;
+ }
+ goto trigger_cleanup;
+}
+
+/*
+** This routine is called after all of the trigger actions have been parsed
+** in order to complete the process of building the trigger.
+*/
+SQLITE_PRIVATE void sqlite3FinishTrigger(
+ Parse *pParse, /* Parser context */
+ TriggerStep *pStepList, /* The triggered program */
+ Token *pAll /* Token that describes the complete CREATE TRIGGER */
+){
+ Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */
+ char *zName; /* Name of trigger */
+ sqlite3 *db = pParse->db; /* The database */
+ DbFixer sFix; /* Fixer object */
+ int iDb; /* Database containing the trigger */
+ Token nameToken; /* Trigger name for error reporting */
+
+ pParse->pNewTrigger = 0;
+ if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
+ zName = pTrig->zName;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
+ pTrig->step_list = pStepList;
+ while( pStepList ){
+ pStepList->pTrig = pTrig;
+ pStepList = pStepList->pNext;
+ }
+ sqlite3TokenInit(&nameToken, pTrig->zName);
+ sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken);
+ if( sqlite3FixTriggerStep(&sFix, pTrig->step_list)
+ || sqlite3FixExpr(&sFix, pTrig->pWhen)
+ ){
+ goto triggerfinish_cleanup;
+ }
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( IN_RENAME_OBJECT ){
+ assert( !db->init.busy );
+ pParse->pNewTrigger = pTrig;
+ pTrig = 0;
+ }else
+#endif
+
+ /* if we are not initializing,
+ ** build the sqlite_schema entry
+ */
+ if( !db->init.busy ){
+ Vdbe *v;
+ char *z;
+
+ /* If this is a new CREATE TABLE statement, and if shadow tables
+ ** are read-only, and the trigger makes a change to a shadow table,
+ ** then raise an error - do not allow the trigger to be created. */
+ if( sqlite3ReadOnlyShadowTables(db) ){
+ TriggerStep *pStep;
+ for(pStep=pTrig->step_list; pStep; pStep=pStep->pNext){
+ if( pStep->zTarget!=0
+ && sqlite3ShadowTableName(db, pStep->zTarget)
+ ){
+ sqlite3ErrorMsg(pParse,
+ "trigger \"%s\" may not write to shadow table \"%s\"",
+ pTrig->zName, pStep->zTarget);
+ goto triggerfinish_cleanup;
+ }
+ }
+ }
+
+ /* Make an entry in the sqlite_schema table */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto triggerfinish_cleanup;
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
+ testcase( z==0 );
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q." LEGACY_SCHEMA_TABLE
+ " VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
+ db->aDb[iDb].zDbSName, zName,
+ pTrig->table, z);
+ sqlite3DbFree(db, z);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddParseSchemaOp(v, iDb,
+ sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName), 0);
+ }
+
+ if( db->init.busy ){
+ Trigger *pLink = pTrig;
+ Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ assert( pLink!=0 );
+ pTrig = sqlite3HashInsert(pHash, zName, pTrig);
+ if( pTrig ){
+ sqlite3OomFault(db);
+ }else if( pLink->pSchema==pLink->pTabSchema ){
+ Table *pTab;
+ pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table);
+ assert( pTab!=0 );
+ pLink->pNext = pTab->pTrigger;
+ pTab->pTrigger = pLink;
+ }
+ }
+
+triggerfinish_cleanup:
+ sqlite3DeleteTrigger(db, pTrig);
+ assert( IN_RENAME_OBJECT || !pParse->pNewTrigger );
+ sqlite3DeleteTriggerStep(db, pStepList);
+}
+
+/*
+** Duplicate a range of text from an SQL statement, then convert all
+** whitespace characters into ordinary space characters.
+*/
+static char *triggerSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
+ char *z = sqlite3DbSpanDup(db, zStart, zEnd);
+ int i;
+ if( z ) for(i=0; z[i]; i++) if( sqlite3Isspace(z[i]) ) z[i] = ' ';
+ return z;
+}
+
+/*
+** Turn a SELECT statement (that the pSelect parameter points to) into
+** a trigger step. Return a pointer to a TriggerStep structure.
+**
+** The parser calls this routine when it finds a SELECT statement in
+** body of a TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(
+ sqlite3 *db, /* Database connection */
+ Select *pSelect, /* The SELECT statement */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
+ if( pTriggerStep==0 ) {
+ sqlite3SelectDelete(db, pSelect);
+ return 0;
+ }
+ pTriggerStep->op = TK_SELECT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->orconf = OE_Default;
+ pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd);
+ return pTriggerStep;
+}
+
+/*
+** Allocate space to hold a new trigger step. The allocated space
+** holds both the TriggerStep object and the TriggerStep.target.z string.
+**
+** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
+*/
+static TriggerStep *triggerStepAllocate(
+ Parse *pParse, /* Parser context */
+ u8 op, /* Trigger opcode */
+ Token *pName, /* The target name */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ if( pParse->nErr ) return 0;
+ pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1);
+ if( pTriggerStep ){
+ char *z = (char*)&pTriggerStep[1];
+ memcpy(z, pName->z, pName->n);
+ sqlite3Dequote(z);
+ pTriggerStep->zTarget = z;
+ pTriggerStep->op = op;
+ pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenMap(pParse, pTriggerStep->zTarget, pName);
+ }
+ }
+ return pTriggerStep;
+}
+
+/*
+** Build a trigger step out of an INSERT statement. Return a pointer
+** to the new trigger step.
+**
+** The parser calls this routine when it sees an INSERT inside the
+** body of a trigger.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
+ Parse *pParse, /* Parser */
+ Token *pTableName, /* Name of the table into which we insert */
+ IdList *pColumn, /* List of columns in pTableName to insert into */
+ Select *pSelect, /* A SELECT statement that supplies values */
+ u8 orconf, /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
+ Upsert *pUpsert, /* ON CONFLICT clauses for upsert */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ assert(pSelect != 0 || db->mallocFailed);
+
+ pTriggerStep = triggerStepAllocate(pParse, TK_INSERT, pTableName,zStart,zEnd);
+ if( pTriggerStep ){
+ if( IN_RENAME_OBJECT ){
+ pTriggerStep->pSelect = pSelect;
+ pSelect = 0;
+ }else{
+ pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
+ }
+ pTriggerStep->pIdList = pColumn;
+ pTriggerStep->pUpsert = pUpsert;
+ pTriggerStep->orconf = orconf;
+ if( pUpsert ){
+ sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget);
+ }
+ }else{
+ testcase( pColumn );
+ sqlite3IdListDelete(db, pColumn);
+ testcase( pUpsert );
+ sqlite3UpsertDelete(db, pUpsert);
+ }
+ sqlite3SelectDelete(db, pSelect);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements an UPDATE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees an UPDATE statement inside the body of a CREATE TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
+ Parse *pParse, /* Parser */
+ Token *pTableName, /* Name of the table to be updated */
+ SrcList *pFrom, /* FROM clause for an UPDATE-FROM, or NULL */
+ ExprList *pEList, /* The SET clause: list of column and new values */
+ Expr *pWhere, /* The WHERE clause */
+ u8 orconf, /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ pTriggerStep = triggerStepAllocate(pParse, TK_UPDATE, pTableName,zStart,zEnd);
+ if( pTriggerStep ){
+ if( IN_RENAME_OBJECT ){
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->pFrom = pFrom;
+ pEList = 0;
+ pWhere = 0;
+ pFrom = 0;
+ }else{
+ pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
+ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ pTriggerStep->pFrom = sqlite3SrcListDup(db, pFrom, EXPRDUP_REDUCE);
+ }
+ pTriggerStep->orconf = orconf;
+ }
+ sqlite3ExprListDelete(db, pEList);
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3SrcListDelete(db, pFrom);
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements a DELETE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees a DELETE statement inside the body of a CREATE TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
+ Parse *pParse, /* Parser */
+ Token *pTableName, /* The table from which rows are deleted */
+ Expr *pWhere, /* The WHERE clause */
+ const char *zStart, /* Start of SQL text */
+ const char *zEnd /* End of SQL text */
+){
+ sqlite3 *db = pParse->db;
+ TriggerStep *pTriggerStep;
+
+ pTriggerStep = triggerStepAllocate(pParse, TK_DELETE, pTableName,zStart,zEnd);
+ if( pTriggerStep ){
+ if( IN_RENAME_OBJECT ){
+ pTriggerStep->pWhere = pWhere;
+ pWhere = 0;
+ }else{
+ pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
+ }
+ pTriggerStep->orconf = OE_Default;
+ }
+ sqlite3ExprDelete(db, pWhere);
+ return pTriggerStep;
+}
+
+/*
+** Recursively delete a Trigger structure
+*/
+SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
+ if( pTrigger==0 || pTrigger->bReturning ) return;
+ sqlite3DeleteTriggerStep(db, pTrigger->step_list);
+ sqlite3DbFree(db, pTrigger->zName);
+ sqlite3DbFree(db, pTrigger->table);
+ sqlite3ExprDelete(db, pTrigger->pWhen);
+ sqlite3IdListDelete(db, pTrigger->pColumns);
+ sqlite3DbFree(db, pTrigger);
+}
+
+/*
+** This function is called to drop a trigger from the database schema.
+**
+** This may be called directly from the parser and therefore identifies
+** the trigger by name. The sqlite3DropTriggerPtr() routine does the
+** same job as this routine except it takes a pointer to the trigger
+** instead of the trigger name.
+**/
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
+ Trigger *pTrigger = 0;
+ int i;
+ const char *zDb;
+ const char *zName;
+ sqlite3 *db = pParse->db;
+
+ if( db->mallocFailed ) goto drop_trigger_cleanup;
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto drop_trigger_cleanup;
+ }
+
+ assert( pName->nSrc==1 );
+ zDb = pName->a[0].zDatabase;
+ zName = pName->a[0].zName;
+ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
+ assert( sqlite3SchemaMutexHeld(db, j, 0) );
+ pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName);
+ if( pTrigger ) break;
+ }
+ if( !pTrigger ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName->a);
+ }else{
+ sqlite3CodeVerifyNamedSchema(pParse, zDb);
+ }
+ pParse->checkSchema = 1;
+ goto drop_trigger_cleanup;
+ }
+ sqlite3DropTriggerPtr(pParse, pTrigger);
+
+drop_trigger_cleanup:
+ sqlite3SrcListDelete(db, pName);
+}
+
+/*
+** Return a pointer to the Table structure for the table that a trigger
+** is set on.
+*/
+static Table *tableOfTrigger(Trigger *pTrigger){
+ return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table);
+}
+
+
+/*
+** Drop a trigger given a pointer to that trigger.
+*/
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
+ Table *pTable;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+ pTable = tableOfTrigger(pTrigger);
+ assert( (pTable && pTable->pSchema==pTrigger->pSchema) || iDb==1 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( pTable ){
+ int code = SQLITE_DROP_TRIGGER;
+ const char *zDb = db->aDb[iDb].zDbSName;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
+ if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) ||
+ sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ return;
+ }
+ }
+#endif
+
+ /* Generate code to destroy the database record of the trigger.
+ */
+ if( (v = sqlite3GetVdbe(pParse))!=0 ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='trigger'",
+ db->aDb[iDb].zDbSName, pTrigger->zName
+ );
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
+ }
+}
+
+/*
+** Remove a trigger from the hash tables of the sqlite* pointer.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
+ Trigger *pTrigger;
+ Hash *pHash;
+
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ pHash = &(db->aDb[iDb].pSchema->trigHash);
+ pTrigger = sqlite3HashInsert(pHash, zName, 0);
+ if( ALWAYS(pTrigger) ){
+ if( pTrigger->pSchema==pTrigger->pTabSchema ){
+ Table *pTab = tableOfTrigger(pTrigger);
+ if( pTab ){
+ Trigger **pp;
+ for(pp=&pTab->pTrigger; *pp; pp=&((*pp)->pNext)){
+ if( *pp==pTrigger ){
+ *pp = (*pp)->pNext;
+ break;
+ }
+ }
+ }
+ }
+ sqlite3DeleteTrigger(db, pTrigger);
+ db->mDbFlags |= DBFLAG_SchemaChange;
+ }
+}
+
+/*
+** pEList is the SET clause of an UPDATE statement. Each entry
+** in pEList is of the format <id>=<expr>. If any of the entries
+** in pEList have an <id> which matches an identifier in pIdList,
+** then return TRUE. If pIdList==NULL, then it is considered a
+** wildcard that matches anything. Likewise if pEList==NULL then
+** it matches anything so always return true. Return false only
+** if there is no match.
+*/
+static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){
+ int e;
+ if( pIdList==0 || NEVER(pEList==0) ) return 1;
+ for(e=0; e<pEList->nExpr; e++){
+ if( sqlite3IdListIndex(pIdList, pEList->a[e].zEName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Return true if any TEMP triggers exist
+*/
+static int tempTriggersExist(sqlite3 *db){
+ if( NEVER(db->aDb[1].pSchema==0) ) return 0;
+ if( sqliteHashFirst(&db->aDb[1].pSchema->trigHash)==0 ) return 0;
+ return 1;
+}
+
+/*
+** Return a list of all triggers on table pTab if there exists at least
+** one trigger that must be fired when an operation of type 'op' is
+** performed on the table, and, if that operation is an UPDATE, if at
+** least one of the columns in pChanges is being modified.
+*/
+static SQLITE_NOINLINE Trigger *triggersReallyExist(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* The table the contains the triggers */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ ExprList *pChanges, /* Columns that change in an UPDATE statement */
+ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+){
+ int mask = 0;
+ Trigger *pList = 0;
+ Trigger *p;
+
+ pList = sqlite3TriggerList(pParse, pTab);
+ assert( pList==0 || IsVirtual(pTab)==0
+ || (pList->bReturning && pList->pNext==0) );
+ if( pList!=0 ){
+ p = pList;
+ if( (pParse->db->flags & SQLITE_EnableTrigger)==0
+ && pTab->pTrigger!=0
+ ){
+ /* The SQLITE_DBCONFIG_ENABLE_TRIGGER setting is off. That means that
+ ** only TEMP triggers are allowed. Truncate the pList so that it
+ ** includes only TEMP triggers */
+ if( pList==pTab->pTrigger ){
+ pList = 0;
+ goto exit_triggers_exist;
+ }
+ while( ALWAYS(p->pNext) && p->pNext!=pTab->pTrigger ) p = p->pNext;
+ p->pNext = 0;
+ p = pList;
+ }
+ do{
+ if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){
+ mask |= p->tr_tm;
+ }else if( p->op==TK_RETURNING ){
+ /* The first time a RETURNING trigger is seen, the "op" value tells
+ ** us what time of trigger it should be. */
+ assert( sqlite3IsToplevel(pParse) );
+ p->op = op;
+ if( IsVirtual(pTab) ){
+ if( op!=TK_INSERT ){
+ sqlite3ErrorMsg(pParse,
+ "%s RETURNING is not available on virtual tables",
+ op==TK_DELETE ? "DELETE" : "UPDATE");
+ }
+ p->tr_tm = TRIGGER_BEFORE;
+ }else{
+ p->tr_tm = TRIGGER_AFTER;
+ }
+ mask |= p->tr_tm;
+ }else if( p->bReturning && p->op==TK_INSERT && op==TK_UPDATE
+ && sqlite3IsToplevel(pParse) ){
+ /* Also fire a RETURNING trigger for an UPSERT */
+ mask |= p->tr_tm;
+ }
+ p = p->pNext;
+ }while( p );
+ }
+exit_triggers_exist:
+ if( pMask ){
+ *pMask = mask;
+ }
+ return (mask ? pList : 0);
+}
+SQLITE_PRIVATE Trigger *sqlite3TriggersExist(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* The table the contains the triggers */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ ExprList *pChanges, /* Columns that change in an UPDATE statement */
+ int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+){
+ assert( pTab!=0 );
+ if( (pTab->pTrigger==0 && !tempTriggersExist(pParse->db))
+ || pParse->disableTriggers
+ ){
+ if( pMask ) *pMask = 0;
+ return 0;
+ }
+ return triggersReallyExist(pParse,pTab,op,pChanges,pMask);
+}
+
+/*
+** Convert the pStep->zTarget string into a SrcList and return a pointer
+** to that SrcList.
+**
+** This routine adds a specific database name, if needed, to the target when
+** forming the SrcList. This prevents a trigger in one database from
+** referring to a target in another database. An exception is when the
+** trigger is in TEMP in which case it can refer to any other database it
+** wants.
+*/
+SQLITE_PRIVATE SrcList *sqlite3TriggerStepSrc(
+ Parse *pParse, /* The parsing context */
+ TriggerStep *pStep /* The trigger containing the target token */
+){
+ sqlite3 *db = pParse->db;
+ SrcList *pSrc; /* SrcList to be returned */
+ char *zName = sqlite3DbStrDup(db, pStep->zTarget);
+ pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ assert( pSrc==0 || pSrc->nSrc==1 );
+ assert( zName || pSrc==0 );
+ if( pSrc ){
+ Schema *pSchema = pStep->pTrig->pSchema;
+ pSrc->a[0].zName = zName;
+ if( pSchema!=db->aDb[1].pSchema ){
+ pSrc->a[0].pSchema = pSchema;
+ }
+ if( pStep->pFrom ){
+ SrcList *pDup = sqlite3SrcListDup(db, pStep->pFrom, 0);
+ if( pDup && pDup->nSrc>1 && !IN_RENAME_OBJECT ){
+ Select *pSubquery;
+ Token as;
+ pSubquery = sqlite3SelectNew(pParse,0,pDup,0,0,0,0,SF_NestedFrom,0);
+ as.n = 0;
+ as.z = 0;
+ pDup = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0);
+ }
+ pSrc = sqlite3SrcListAppendList(pParse, pSrc, pDup);
+ }
+ }else{
+ sqlite3DbFree(db, zName);
+ }
+ return pSrc;
+}
+
+/*
+** Return true if the pExpr term from the RETURNING clause argument
+** list is of the form "*". Raise an error if the terms if of the
+** form "table.*".
+*/
+static int isAsteriskTerm(
+ Parse *pParse, /* Parsing context */
+ Expr *pTerm /* A term in the RETURNING clause */
+){
+ assert( pTerm!=0 );
+ if( pTerm->op==TK_ASTERISK ) return 1;
+ if( pTerm->op!=TK_DOT ) return 0;
+ assert( pTerm->pRight!=0 );
+ assert( pTerm->pLeft!=0 );
+ if( pTerm->pRight->op!=TK_ASTERISK ) return 0;
+ sqlite3ErrorMsg(pParse, "RETURNING may not use \"TABLE.*\" wildcards");
+ return 1;
+}
+
+/* The input list pList is the list of result set terms from a RETURNING
+** clause. The table that we are returning from is pTab.
+**
+** This routine makes a copy of the pList, and at the same time expands
+** any "*" wildcards to be the complete set of columns from pTab.
+*/
+static ExprList *sqlite3ExpandReturning(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* The arguments to RETURNING */
+ Table *pTab /* The table being updated */
+){
+ ExprList *pNew = 0;
+ sqlite3 *db = pParse->db;
+ int i;
+
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pOldExpr = pList->a[i].pExpr;
+ if( NEVER(pOldExpr==0) ) continue;
+ if( isAsteriskTerm(pParse, pOldExpr) ){
+ int jj;
+ for(jj=0; jj<pTab->nCol; jj++){
+ Expr *pNewExpr;
+ if( IsHiddenColumn(pTab->aCol+jj) ) continue;
+ pNewExpr = sqlite3Expr(db, TK_ID, pTab->aCol[jj].zCnName);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr);
+ if( !db->mallocFailed ){
+ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1];
+ pItem->zEName = sqlite3DbStrDup(db, pTab->aCol[jj].zCnName);
+ pItem->fg.eEName = ENAME_NAME;
+ }
+ }
+ }else{
+ Expr *pNewExpr = sqlite3ExprDup(db, pOldExpr, 0);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pNewExpr);
+ if( !db->mallocFailed && ALWAYS(pList->a[i].zEName!=0) ){
+ struct ExprList_item *pItem = &pNew->a[pNew->nExpr-1];
+ pItem->zEName = sqlite3DbStrDup(db, pList->a[i].zEName);
+ pItem->fg.eEName = pList->a[i].fg.eEName;
+ }
+ }
+ }
+ return pNew;
+}
+
+/*
+** Generate code for the RETURNING trigger. Unlike other triggers
+** that invoke a subprogram in the bytecode, the code for RETURNING
+** is generated in-line.
+*/
+static void codeReturningTrigger(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* The trigger step that defines the RETURNING */
+ Table *pTab, /* The table to code triggers from */
+ int regIn /* The first in an array of registers */
+){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+ ExprList *pNew;
+ Returning *pReturning;
+ Select sSelect;
+ SrcList sFrom;
+
+ assert( v!=0 );
+ if( !pParse->bReturning ){
+ /* This RETURNING trigger must be for a different statement as
+ ** this statement lacks a RETURNING clause. */
+ return;
+ }
+ assert( db->pParse==pParse );
+ pReturning = pParse->u1.pReturning;
+ if( pTrigger != &(pReturning->retTrig) ){
+ /* This RETURNING trigger is for a different statement */
+ return;
+ }
+ memset(&sSelect, 0, sizeof(sSelect));
+ memset(&sFrom, 0, sizeof(sFrom));
+ sSelect.pEList = sqlite3ExprListDup(db, pReturning->pReturnEL, 0);
+ sSelect.pSrc = &sFrom;
+ sFrom.nSrc = 1;
+ sFrom.a[0].pTab = pTab;
+ sFrom.a[0].iCursor = -1;
+ sqlite3SelectPrep(pParse, &sSelect, 0);
+ if( pParse->nErr==0 ){
+ assert( db->mallocFailed==0 );
+ sqlite3GenerateColumnNames(pParse, &sSelect);
+ }
+ sqlite3ExprListDelete(db, sSelect.pEList);
+ pNew = sqlite3ExpandReturning(pParse, pReturning->pReturnEL, pTab);
+ if( pParse->nErr==0 ){
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ if( pReturning->nRetCol==0 ){
+ pReturning->nRetCol = pNew->nExpr;
+ pReturning->iRetCur = pParse->nTab++;
+ }
+ sNC.pParse = pParse;
+ sNC.uNC.iBaseReg = regIn;
+ sNC.ncFlags = NC_UBaseReg;
+ pParse->eTriggerOp = pTrigger->op;
+ pParse->pTriggerTab = pTab;
+ if( sqlite3ResolveExprListNames(&sNC, pNew)==SQLITE_OK
+ && ALWAYS(!db->mallocFailed)
+ ){
+ int i;
+ int nCol = pNew->nExpr;
+ int reg = pParse->nMem+1;
+ pParse->nMem += nCol+2;
+ pReturning->iRetReg = reg;
+ for(i=0; i<nCol; i++){
+ Expr *pCol = pNew->a[i].pExpr;
+ assert( pCol!=0 ); /* Due to !db->mallocFailed ~9 lines above */
+ sqlite3ExprCodeFactorable(pParse, pCol, reg+i);
+ if( sqlite3ExprAffinity(pCol)==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, reg+i);
+ }
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, i, reg+i);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pReturning->iRetCur, reg+i+1);
+ sqlite3VdbeAddOp3(v, OP_Insert, pReturning->iRetCur, reg+i, reg+i+1);
+ }
+ }
+ sqlite3ExprListDelete(db, pNew);
+ pParse->eTriggerOp = 0;
+ pParse->pTriggerTab = 0;
+}
+
+
+
+/*
+** Generate VDBE code for the statements inside the body of a single
+** trigger.
+*/
+static int codeTriggerProgram(
+ Parse *pParse, /* The parser context */
+ TriggerStep *pStepList, /* List of statements inside the trigger body */
+ int orconf /* Conflict algorithm. (OE_Abort, etc) */
+){
+ TriggerStep *pStep;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+
+ assert( pParse->pTriggerTab && pParse->pToplevel );
+ assert( pStepList );
+ assert( v!=0 );
+ for(pStep=pStepList; pStep; pStep=pStep->pNext){
+ /* Figure out the ON CONFLICT policy that will be used for this step
+ ** of the trigger program. If the statement that caused this trigger
+ ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use
+ ** the ON CONFLICT policy that was specified as part of the trigger
+ ** step statement. Example:
+ **
+ ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN;
+ ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
+ ** END;
+ **
+ ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy
+ ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy
+ */
+ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
+ assert( pParse->okConstFactor==0 );
+
+#ifndef SQLITE_OMIT_TRACE
+ if( pStep->zSpan ){
+ sqlite3VdbeAddOp4(v, OP_Trace, 0x7fffffff, 1, 0,
+ sqlite3MPrintf(db, "-- %s", pStep->zSpan),
+ P4_DYNAMIC);
+ }
+#endif
+
+ switch( pStep->op ){
+ case TK_UPDATE: {
+ sqlite3Update(pParse,
+ sqlite3TriggerStepSrc(pParse, pStep),
+ sqlite3ExprListDup(db, pStep->pExprList, 0),
+ sqlite3ExprDup(db, pStep->pWhere, 0),
+ pParse->eOrconf, 0, 0, 0
+ );
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ break;
+ }
+ case TK_INSERT: {
+ sqlite3Insert(pParse,
+ sqlite3TriggerStepSrc(pParse, pStep),
+ sqlite3SelectDup(db, pStep->pSelect, 0),
+ sqlite3IdListDup(db, pStep->pIdList),
+ pParse->eOrconf,
+ sqlite3UpsertDup(db, pStep->pUpsert)
+ );
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ break;
+ }
+ case TK_DELETE: {
+ sqlite3DeleteFrom(pParse,
+ sqlite3TriggerStepSrc(pParse, pStep),
+ sqlite3ExprDup(db, pStep->pWhere, 0), 0, 0
+ );
+ sqlite3VdbeAddOp0(v, OP_ResetCount);
+ break;
+ }
+ default: assert( pStep->op==TK_SELECT ); {
+ SelectDest sDest;
+ Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0);
+ sqlite3SelectDestInit(&sDest, SRT_Discard, 0);
+ sqlite3Select(pParse, pSelect, &sDest);
+ sqlite3SelectDelete(db, pSelect);
+ break;
+ }
+ }
+ }
+
+ return 0;
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/*
+** This function is used to add VdbeComment() annotations to a VDBE
+** program. It is not used in production code, only for debugging.
+*/
+static const char *onErrorText(int onError){
+ switch( onError ){
+ case OE_Abort: return "abort";
+ case OE_Rollback: return "rollback";
+ case OE_Fail: return "fail";
+ case OE_Replace: return "replace";
+ case OE_Ignore: return "ignore";
+ case OE_Default: return "default";
+ }
+ return "n/a";
+}
+#endif
+
+/*
+** Parse context structure pFrom has just been used to create a sub-vdbe
+** (trigger program). If an error has occurred, transfer error information
+** from pFrom to pTo.
+*/
+static void transferParseError(Parse *pTo, Parse *pFrom){
+ assert( pFrom->zErrMsg==0 || pFrom->nErr );
+ assert( pTo->zErrMsg==0 || pTo->nErr );
+ if( pTo->nErr==0 ){
+ pTo->zErrMsg = pFrom->zErrMsg;
+ pTo->nErr = pFrom->nErr;
+ pTo->rc = pFrom->rc;
+ }else{
+ sqlite3DbFree(pFrom->db, pFrom->zErrMsg);
+ }
+}
+
+/*
+** Create and populate a new TriggerPrg object with a sub-program
+** implementing trigger pTrigger with ON CONFLICT policy orconf.
+*/
+static TriggerPrg *codeRowTrigger(
+ Parse *pParse, /* Current parse context */
+ Trigger *pTrigger, /* Trigger to code */
+ Table *pTab, /* The table pTrigger is attached to */
+ int orconf /* ON CONFLICT policy to code trigger program with */
+){
+ Parse *pTop = sqlite3ParseToplevel(pParse);
+ sqlite3 *db = pParse->db; /* Database handle */
+ TriggerPrg *pPrg; /* Value to return */
+ Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */
+ Vdbe *v; /* Temporary VM */
+ NameContext sNC; /* Name context for sub-vdbe */
+ SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */
+ int iEndTrigger = 0; /* Label to jump to if WHEN is false */
+ Parse sSubParse; /* Parse context for sub-vdbe */
+
+ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
+ assert( pTop->pVdbe );
+
+ /* Allocate the TriggerPrg and SubProgram objects. To ensure that they
+ ** are freed if an error occurs, link them into the Parse.pTriggerPrg
+ ** list of the top-level Parse object sooner rather than later. */
+ pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg));
+ if( !pPrg ) return 0;
+ pPrg->pNext = pTop->pTriggerPrg;
+ pTop->pTriggerPrg = pPrg;
+ pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
+ if( !pProgram ) return 0;
+ sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram);
+ pPrg->pTrigger = pTrigger;
+ pPrg->orconf = orconf;
+ pPrg->aColmask[0] = 0xffffffff;
+ pPrg->aColmask[1] = 0xffffffff;
+
+ /* Allocate and populate a new Parse context to use for coding the
+ ** trigger sub-program. */
+ sqlite3ParseObjectInit(&sSubParse, db);
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = &sSubParse;
+ sSubParse.pTriggerTab = pTab;
+ sSubParse.pToplevel = pTop;
+ sSubParse.zAuthContext = pTrigger->zName;
+ sSubParse.eTriggerOp = pTrigger->op;
+ sSubParse.nQueryLoop = pParse->nQueryLoop;
+ sSubParse.prepFlags = pParse->prepFlags;
+
+ v = sqlite3GetVdbe(&sSubParse);
+ if( v ){
+ VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)",
+ pTrigger->zName, onErrorText(orconf),
+ (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
+ (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
+ (pTrigger->op==TK_INSERT ? "INSERT" : ""),
+ (pTrigger->op==TK_DELETE ? "DELETE" : ""),
+ pTab->zName
+ ));
+#ifndef SQLITE_OMIT_TRACE
+ if( pTrigger->zName ){
+ sqlite3VdbeChangeP4(v, -1,
+ sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
+ );
+ }
+#endif
+
+ /* If one was specified, code the WHEN clause. If it evaluates to false
+ ** (or NULL) the sub-vdbe is immediately halted by jumping to the
+ ** OP_Halt inserted at the end of the program. */
+ if( pTrigger->pWhen ){
+ pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
+ if( db->mallocFailed==0
+ && SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen)
+ ){
+ iEndTrigger = sqlite3VdbeMakeLabel(&sSubParse);
+ sqlite3ExprIfFalse(&sSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL);
+ }
+ sqlite3ExprDelete(db, pWhen);
+ }
+
+ /* Code the trigger program into the sub-vdbe. */
+ codeTriggerProgram(&sSubParse, pTrigger->step_list, orconf);
+
+ /* Insert an OP_Halt at the end of the sub-program. */
+ if( iEndTrigger ){
+ sqlite3VdbeResolveLabel(v, iEndTrigger);
+ }
+ sqlite3VdbeAddOp0(v, OP_Halt);
+ VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf)));
+ transferParseError(pParse, &sSubParse);
+
+ if( pParse->nErr==0 ){
+ assert( db->mallocFailed==0 );
+ pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg);
+ }
+ pProgram->nMem = sSubParse.nMem;
+ pProgram->nCsr = sSubParse.nTab;
+ pProgram->token = (void *)pTrigger;
+ pPrg->aColmask[0] = sSubParse.oldmask;
+ pPrg->aColmask[1] = sSubParse.newmask;
+ sqlite3VdbeDelete(v);
+ }else{
+ transferParseError(pParse, &sSubParse);
+ }
+
+ assert( !sSubParse.pTriggerPrg && !sSubParse.nMaxArg );
+ sqlite3ParseObjectReset(&sSubParse);
+ return pPrg;
+}
+
+/*
+** Return a pointer to a TriggerPrg object containing the sub-program for
+** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such
+** TriggerPrg object exists, a new object is allocated and populated before
+** being returned.
+*/
+static TriggerPrg *getRowTrigger(
+ Parse *pParse, /* Current parse context */
+ Trigger *pTrigger, /* Trigger to code */
+ Table *pTab, /* The table trigger pTrigger is attached to */
+ int orconf /* ON CONFLICT algorithm. */
+){
+ Parse *pRoot = sqlite3ParseToplevel(pParse);
+ TriggerPrg *pPrg;
+
+ assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
+
+ /* It may be that this trigger has already been coded (or is in the
+ ** process of being coded). If this is the case, then an entry with
+ ** a matching TriggerPrg.pTrigger field will be present somewhere
+ ** in the Parse.pTriggerPrg list. Search for such an entry. */
+ for(pPrg=pRoot->pTriggerPrg;
+ pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf);
+ pPrg=pPrg->pNext
+ );
+
+ /* If an existing TriggerPrg could not be located, create a new one. */
+ if( !pPrg ){
+ pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf);
+ pParse->db->errByteOffset = -1;
+ }
+
+ return pPrg;
+}
+
+/*
+** Generate code for the trigger program associated with trigger p on
+** table pTab. The reg, orconf and ignoreJump parameters passed to this
+** function are the same as those described in the header function for
+** sqlite3CodeRowTrigger()
+*/
+SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(
+ Parse *pParse, /* Parse context */
+ Trigger *p, /* Trigger to code */
+ Table *pTab, /* The table to code triggers from */
+ int reg, /* Reg array containing OLD.* and NEW.* values */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
+){
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */
+ TriggerPrg *pPrg;
+ pPrg = getRowTrigger(pParse, p, pTab, orconf);
+ assert( pPrg || pParse->nErr );
+
+ /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program
+ ** is a pointer to the sub-vdbe containing the trigger program. */
+ if( pPrg ){
+ int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));
+
+ sqlite3VdbeAddOp4(v, OP_Program, reg, ignoreJump, ++pParse->nMem,
+ (const char *)pPrg->pProgram, P4_SUBPROGRAM);
+ VdbeComment(
+ (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));
+
+ /* Set the P5 operand of the OP_Program instruction to non-zero if
+ ** recursive invocation of this trigger program is disallowed. Recursive
+ ** invocation is disallowed if (a) the sub-program is really a trigger,
+ ** not a foreign key action, and (b) the flag to enable recursive triggers
+ ** is clear. */
+ sqlite3VdbeChangeP5(v, (u8)bRecursive);
+ }
+}
+
+/*
+** This is called to code the required FOR EACH ROW triggers for an operation
+** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE)
+** is given by the op parameter. The tr_tm parameter determines whether the
+** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then
+** parameter pChanges is passed the list of columns being modified.
+**
+** If there are no triggers that fire at the specified time for the specified
+** operation on pTab, this function is a no-op.
+**
+** The reg argument is the address of the first in an array of registers
+** that contain the values substituted for the new.* and old.* references
+** in the trigger program. If N is the number of columns in table pTab
+** (a copy of pTab->nCol), then registers are populated as follows:
+**
+** Register Contains
+** ------------------------------------------------------
+** reg+0 OLD.rowid
+** reg+1 OLD.* value of left-most column of pTab
+** ... ...
+** reg+N OLD.* value of right-most column of pTab
+** reg+N+1 NEW.rowid
+** reg+N+2 NEW.* value of left-most column of pTab
+** ... ...
+** reg+N+N+1 NEW.* value of right-most column of pTab
+**
+** For ON DELETE triggers, the registers containing the NEW.* values will
+** never be accessed by the trigger program, so they are not allocated or
+** populated by the caller (there is no data to populate them with anyway).
+** Similarly, for ON INSERT triggers the values stored in the OLD.* registers
+** are never accessed, and so are not allocated by the caller. So, for an
+** ON INSERT trigger, the value passed to this function as parameter reg
+** is not a readable register, although registers (reg+N) through
+** (reg+N+N+1) are.
+**
+** Parameter orconf is the default conflict resolution algorithm for the
+** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump
+** is the instruction that control should jump to if a trigger program
+** raises an IGNORE exception.
+*/
+SQLITE_PRIVATE void sqlite3CodeRowTrigger(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* List of triggers on table pTab */
+ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int reg, /* The first in an array of registers (see above) */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
+){
+ Trigger *p; /* Used to iterate through pTrigger list */
+
+ assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE );
+ assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER );
+ assert( (op==TK_UPDATE)==(pChanges!=0) );
+
+ for(p=pTrigger; p; p=p->pNext){
+
+ /* Sanity checking: The schema for the trigger and for the table are
+ ** always defined. The trigger must be in the same schema as the table
+ ** or else it must be a TEMP trigger. */
+ assert( p->pSchema!=0 );
+ assert( p->pTabSchema!=0 );
+ assert( p->pSchema==p->pTabSchema
+ || p->pSchema==pParse->db->aDb[1].pSchema );
+
+ /* Determine whether we should code this trigger. One of two choices:
+ ** 1. The trigger is an exact match to the current DML statement
+ ** 2. This is a RETURNING trigger for INSERT but we are currently
+ ** doing the UPDATE part of an UPSERT.
+ */
+ if( (p->op==op || (p->bReturning && p->op==TK_INSERT && op==TK_UPDATE))
+ && p->tr_tm==tr_tm
+ && checkColumnOverlap(p->pColumns, pChanges)
+ ){
+ if( !p->bReturning ){
+ sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump);
+ }else if( sqlite3IsToplevel(pParse) ){
+ codeReturningTrigger(pParse, p, pTab, reg);
+ }
+ }
+ }
+}
+
+/*
+** Triggers may access values stored in the old.* or new.* pseudo-table.
+** This function returns a 32-bit bitmask indicating which columns of the
+** old.* or new.* tables actually are used by triggers. This information
+** may be used by the caller, for example, to avoid having to load the entire
+** old.* record into memory when executing an UPDATE or DELETE command.
+**
+** Bit 0 of the returned mask is set if the left-most column of the
+** table may be accessed using an [old|new].<col> reference. Bit 1 is set if
+** the second leftmost column value is required, and so on. If there
+** are more than 32 columns in the table, and at least one of the columns
+** with an index greater than 32 may be accessed, 0xffffffff is returned.
+**
+** It is not possible to determine if the old.rowid or new.rowid column is
+** accessed by triggers. The caller must always assume that it is.
+**
+** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned
+** applies to the old.* table. If 1, the new.* table.
+**
+** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE
+** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only
+** included in the returned mask if the TRIGGER_BEFORE bit is set in the
+** tr_tm parameter. Similarly, values accessed by AFTER triggers are only
+** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm.
+*/
+SQLITE_PRIVATE u32 sqlite3TriggerColmask(
+ Parse *pParse, /* Parse context */
+ Trigger *pTrigger, /* List of triggers on table pTab */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int isNew, /* 1 for new.* ref mask, 0 for old.* ref mask */
+ int tr_tm, /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int orconf /* Default ON CONFLICT policy for trigger steps */
+){
+ const int op = pChanges ? TK_UPDATE : TK_DELETE;
+ u32 mask = 0;
+ Trigger *p;
+
+ assert( isNew==1 || isNew==0 );
+ if( IsView(pTab) ){
+ return 0xffffffff;
+ }
+ for(p=pTrigger; p; p=p->pNext){
+ if( p->op==op
+ && (tr_tm&p->tr_tm)
+ && checkColumnOverlap(p->pColumns,pChanges)
+ ){
+ if( p->bReturning ){
+ mask = 0xffffffff;
+ }else{
+ TriggerPrg *pPrg;
+ pPrg = getRowTrigger(pParse, p, pTab, orconf);
+ if( pPrg ){
+ mask |= pPrg->aColmask[isNew];
+ }
+ }
+ }
+ }
+
+ return mask;
+}
+
+#endif /* !defined(SQLITE_OMIT_TRIGGER) */
+
+/************** End of trigger.c *********************************************/
+/************** Begin file update.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle UPDATE statements.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Forward declaration */
+static void updateVirtualTable(
+ Parse *pParse, /* The parsing context */
+ SrcList *pSrc, /* The virtual table to be modified */
+ Table *pTab, /* The virtual table */
+ ExprList *pChanges, /* The columns to change in the UPDATE statement */
+ Expr *pRowidExpr, /* Expression used to recompute the rowid */
+ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
+ Expr *pWhere, /* WHERE clause of the UPDATE statement */
+ int onError /* ON CONFLICT strategy */
+);
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** The most recently coded instruction was an OP_Column to retrieve the
+** i-th column of table pTab. This routine sets the P4 parameter of the
+** OP_Column to the default value, if any.
+**
+** The default value of a column is specified by a DEFAULT clause in the
+** column definition. This was either supplied by the user when the table
+** was created, or added later to the table definition by an ALTER TABLE
+** command. If the latter, then the row-records in the table btree on disk
+** may not contain a value for the column and the default value, taken
+** from the P4 parameter of the OP_Column instruction, is returned instead.
+** If the former, then all row-records are guaranteed to include a value
+** for the column and the P4 value is not required.
+**
+** Column definitions created by an ALTER TABLE command may only have
+** literal default values specified: a number, null or a string. (If a more
+** complicated default expression value was provided, it is evaluated
+** when the ALTER TABLE is executed and one of the literal values written
+** into the sqlite_schema table.)
+**
+** Therefore, the P4 parameter is only required if the default value for
+** the column is a literal number, string or null. The sqlite3ValueFromExpr()
+** function is capable of transforming these types of expressions into
+** sqlite3_value objects.
+**
+** If column as REAL affinity and the table is an ordinary b-tree table
+** (not a virtual table) then the value might have been stored as an
+** integer. In that case, add an OP_RealAffinity opcode to make sure
+** it has been converted into REAL.
+*/
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
+ Column *pCol;
+ assert( pTab!=0 );
+ assert( pTab->nCol>i );
+ pCol = &pTab->aCol[i];
+ if( pCol->iDflt ){
+ sqlite3_value *pValue = 0;
+ u8 enc = ENC(sqlite3VdbeDb(v));
+ assert( !IsView(pTab) );
+ VdbeComment((v, "%s.%s", pTab->zName, pCol->zCnName));
+ assert( i<pTab->nCol );
+ sqlite3ValueFromExpr(sqlite3VdbeDb(v),
+ sqlite3ColumnExpr(pTab,pCol), enc,
+ pCol->affinity, &pValue);
+ if( pValue ){
+ sqlite3VdbeAppendP4(v, pValue, P4_MEM);
+ }
+ }
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( pCol->affinity==SQLITE_AFF_REAL && !IsVirtual(pTab) ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
+ }
+#endif
+}
+
+/*
+** Check to see if column iCol of index pIdx references any of the
+** columns defined by aXRef and chngRowid. Return true if it does
+** and false if not. This is an optimization. False-positives are a
+** performance degradation, but false-negatives can result in a corrupt
+** index and incorrect answers.
+**
+** aXRef[j] will be non-negative if column j of the original table is
+** being updated. chngRowid will be true if the rowid of the table is
+** being updated.
+*/
+static int indexColumnIsBeingUpdated(
+ Index *pIdx, /* The index to check */
+ int iCol, /* Which column of the index to check */
+ int *aXRef, /* aXRef[j]>=0 if column j is being updated */
+ int chngRowid /* true if the rowid is being updated */
+){
+ i16 iIdxCol = pIdx->aiColumn[iCol];
+ assert( iIdxCol!=XN_ROWID ); /* Cannot index rowid */
+ if( iIdxCol>=0 ){
+ return aXRef[iIdxCol]>=0;
+ }
+ assert( iIdxCol==XN_EXPR );
+ assert( pIdx->aColExpr!=0 );
+ assert( pIdx->aColExpr->a[iCol].pExpr!=0 );
+ return sqlite3ExprReferencesUpdatedColumn(pIdx->aColExpr->a[iCol].pExpr,
+ aXRef,chngRowid);
+}
+
+/*
+** Check to see if index pIdx is a partial index whose conditional
+** expression might change values due to an UPDATE. Return true if
+** the index is subject to change and false if the index is guaranteed
+** to be unchanged. This is an optimization. False-positives are a
+** performance degradation, but false-negatives can result in a corrupt
+** index and incorrect answers.
+**
+** aXRef[j] will be non-negative if column j of the original table is
+** being updated. chngRowid will be true if the rowid of the table is
+** being updated.
+*/
+static int indexWhereClauseMightChange(
+ Index *pIdx, /* The index to check */
+ int *aXRef, /* aXRef[j]>=0 if column j is being updated */
+ int chngRowid /* true if the rowid is being updated */
+){
+ if( pIdx->pPartIdxWhere==0 ) return 0;
+ return sqlite3ExprReferencesUpdatedColumn(pIdx->pPartIdxWhere,
+ aXRef, chngRowid);
+}
+
+/*
+** Allocate and return a pointer to an expression of type TK_ROW with
+** Expr.iColumn set to value (iCol+1). The resolver will modify the
+** expression to be a TK_COLUMN reading column iCol of the first
+** table in the source-list (pSrc->a[0]).
+*/
+static Expr *exprRowColumn(Parse *pParse, int iCol){
+ Expr *pRet = sqlite3PExpr(pParse, TK_ROW, 0, 0);
+ if( pRet ) pRet->iColumn = iCol+1;
+ return pRet;
+}
+
+/*
+** Assuming both the pLimit and pOrderBy parameters are NULL, this function
+** generates VM code to run the query:
+**
+** SELECT <other-columns>, pChanges FROM pTabList WHERE pWhere
+**
+** and write the results to the ephemeral table already opened as cursor
+** iEph. None of pChanges, pTabList or pWhere are modified or consumed by
+** this function, they must be deleted by the caller.
+**
+** Or, if pLimit and pOrderBy are not NULL, and pTab is not a view:
+**
+** SELECT <other-columns>, pChanges FROM pTabList
+** WHERE pWhere
+** GROUP BY <other-columns>
+** ORDER BY pOrderBy LIMIT pLimit
+**
+** If pTab is a view, the GROUP BY clause is omitted.
+**
+** Exactly how results are written to table iEph, and exactly what
+** the <other-columns> in the query above are is determined by the type
+** of table pTabList->a[0].pTab.
+**
+** If the table is a WITHOUT ROWID table, then argument pPk must be its
+** PRIMARY KEY. In this case <other-columns> are the primary key columns
+** of the table, in order. The results of the query are written to ephemeral
+** table iEph as index keys, using OP_IdxInsert.
+**
+** If the table is actually a view, then <other-columns> are all columns of
+** the view. The results are written to the ephemeral table iEph as records
+** with automatically assigned integer keys.
+**
+** If the table is a virtual or ordinary intkey table, then <other-columns>
+** is its rowid. For a virtual table, the results are written to iEph as
+** records with automatically assigned integer keys For intkey tables, the
+** rowid value in <other-columns> is used as the integer key, and the
+** remaining fields make up the table record.
+*/
+static void updateFromSelect(
+ Parse *pParse, /* Parse context */
+ int iEph, /* Cursor for open eph. table */
+ Index *pPk, /* PK if table 0 is WITHOUT ROWID */
+ ExprList *pChanges, /* List of expressions to return */
+ SrcList *pTabList, /* List of tables to select from */
+ Expr *pWhere, /* WHERE clause for query */
+ ExprList *pOrderBy, /* ORDER BY clause */
+ Expr *pLimit /* LIMIT clause */
+){
+ int i;
+ SelectDest dest;
+ Select *pSelect = 0;
+ ExprList *pList = 0;
+ ExprList *pGrp = 0;
+ Expr *pLimit2 = 0;
+ ExprList *pOrderBy2 = 0;
+ sqlite3 *db = pParse->db;
+ Table *pTab = pTabList->a[0].pTab;
+ SrcList *pSrc;
+ Expr *pWhere2;
+ int eDest;
+
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( pOrderBy && pLimit==0 ) {
+ sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on UPDATE");
+ return;
+ }
+ pOrderBy2 = sqlite3ExprListDup(db, pOrderBy, 0);
+ pLimit2 = sqlite3ExprDup(db, pLimit, 0);
+#else
+ UNUSED_PARAMETER(pOrderBy);
+ UNUSED_PARAMETER(pLimit);
+#endif
+
+ pSrc = sqlite3SrcListDup(db, pTabList, 0);
+ pWhere2 = sqlite3ExprDup(db, pWhere, 0);
+
+ assert( pTabList->nSrc>1 );
+ if( pSrc ){
+ assert( pSrc->a[0].fg.notCte );
+ pSrc->a[0].iCursor = -1;
+ pSrc->a[0].pTab->nTabRef--;
+ pSrc->a[0].pTab = 0;
+ }
+ if( pPk ){
+ for(i=0; i<pPk->nKeyCol; i++){
+ Expr *pNew = exprRowColumn(pParse, pPk->aiColumn[i]);
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( pLimit ){
+ pGrp = sqlite3ExprListAppend(pParse, pGrp, sqlite3ExprDup(db, pNew, 0));
+ }
+#endif
+ pList = sqlite3ExprListAppend(pParse, pList, pNew);
+ }
+ eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom;
+ }else if( IsView(pTab) ){
+ for(i=0; i<pTab->nCol; i++){
+ pList = sqlite3ExprListAppend(pParse, pList, exprRowColumn(pParse, i));
+ }
+ eDest = SRT_Table;
+ }else{
+ eDest = IsVirtual(pTab) ? SRT_Table : SRT_Upfrom;
+ pList = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0));
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( pLimit ){
+ pGrp = sqlite3ExprListAppend(pParse, 0, sqlite3PExpr(pParse,TK_ROW,0,0));
+ }
+#endif
+ }
+ assert( pChanges!=0 || pParse->db->mallocFailed );
+ if( pChanges ){
+ for(i=0; i<pChanges->nExpr; i++){
+ pList = sqlite3ExprListAppend(pParse, pList,
+ sqlite3ExprDup(db, pChanges->a[i].pExpr, 0)
+ );
+ }
+ }
+ pSelect = sqlite3SelectNew(pParse, pList,
+ pSrc, pWhere2, pGrp, 0, pOrderBy2,
+ SF_UFSrcCheck|SF_IncludeHidden|SF_UpdateFrom, pLimit2
+ );
+ if( pSelect ) pSelect->selFlags |= SF_OrderByReqd;
+ sqlite3SelectDestInit(&dest, eDest, iEph);
+ dest.iSDParm2 = (pPk ? pPk->nKeyCol : -1);
+ sqlite3Select(pParse, pSelect, &dest);
+ sqlite3SelectDelete(db, pSelect);
+}
+
+/*
+** Process an UPDATE statement.
+**
+** UPDATE OR IGNORE tbl SET a=b, c=d FROM tbl2... WHERE e<5 AND f NOT NULL;
+** \_______/ \_/ \______/ \_____/ \________________/
+** onError | pChanges | pWhere
+** \_______________________/
+** pTabList
+*/
+SQLITE_PRIVATE void sqlite3Update(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table in which we should change things */
+ ExprList *pChanges, /* Things to be changed */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ int onError, /* How to handle constraint errors */
+ ExprList *pOrderBy, /* ORDER BY clause. May be null */
+ Expr *pLimit, /* LIMIT clause. May be null */
+ Upsert *pUpsert /* ON CONFLICT clause, or null */
+){
+ int i, j, k; /* Loop counters */
+ Table *pTab; /* The table to be updated */
+ int addrTop = 0; /* VDBE instruction address of the start of the loop */
+ WhereInfo *pWInfo = 0; /* Information about the WHERE clause */
+ Vdbe *v; /* The virtual database engine */
+ Index *pIdx; /* For looping over indices */
+ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */
+ int nIdx; /* Number of indices that need updating */
+ int nAllIdx; /* Total number of indexes */
+ int iBaseCur; /* Base cursor number */
+ int iDataCur; /* Cursor for the canonical data btree */
+ int iIdxCur; /* Cursor for the first index */
+ sqlite3 *db; /* The database structure */
+ int *aRegIdx = 0; /* Registers for to each index and the main table */
+ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
+ ** an expression for the i-th column of the table.
+ ** aXRef[i]==-1 if the i-th column is not changed. */
+ u8 *aToOpen; /* 1 for tables and indices to be opened */
+ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */
+ u8 chngRowid; /* Rowid changed in a normal table */
+ u8 chngKey; /* Either chngPk or chngRowid */
+ Expr *pRowidExpr = 0; /* Expression defining the new record number */
+ int iRowidExpr = -1; /* Index of "rowid=" (or IPK) assignment in pChanges */
+ AuthContext sContext; /* The authorization context */
+ NameContext sNC; /* The name-context to resolve expressions in */
+ int iDb; /* Database containing the table being updated */
+ int eOnePass; /* ONEPASS_XXX value from where.c */
+ int hasFK; /* True if foreign key processing is required */
+ int labelBreak; /* Jump here to break out of UPDATE loop */
+ int labelContinue; /* Jump here to continue next step of UPDATE loop */
+ int flags; /* Flags for sqlite3WhereBegin() */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True when updating a view (INSTEAD OF trigger) */
+ Trigger *pTrigger; /* List of triggers on pTab, if required */
+ int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
+#endif
+ int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */
+ int iEph = 0; /* Ephemeral table holding all primary key values */
+ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */
+ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */
+ int addrOpen = 0; /* Address of OP_OpenEphemeral */
+ int iPk = 0; /* First of nPk cells holding PRIMARY KEY value */
+ i16 nPk = 0; /* Number of components of the PRIMARY KEY */
+ int bReplace = 0; /* True if REPLACE conflict resolution might happen */
+ int bFinishSeek = 1; /* The OP_FinishSeek opcode is needed */
+ int nChangeFrom = 0; /* If there is a FROM, pChanges->nExpr, else 0 */
+
+ /* Register Allocations */
+ int regRowCount = 0; /* A count of rows changed */
+ int regOldRowid = 0; /* The old rowid */
+ int regNewRowid = 0; /* The new rowid */
+ int regNew = 0; /* Content of the NEW.* table in triggers */
+ int regOld = 0; /* Content of OLD.* table in triggers */
+ int regRowSet = 0; /* Rowset of rows to be updated */
+ int regKey = 0; /* composite PRIMARY KEY value */
+
+ memset(&sContext, 0, sizeof(sContext));
+ db = pParse->db;
+ assert( db->pParse==pParse );
+ if( pParse->nErr ){
+ goto update_cleanup;
+ }
+ assert( db->mallocFailed==0 );
+
+ /* Locate the table which we want to update.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto update_cleanup;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+
+ /* Figure out if we have any triggers and if the table being
+ ** updated is a view.
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask);
+ isView = IsView(pTab);
+ assert( pTrigger || tmask==0 );
+#else
+# define pTrigger 0
+# define isView 0
+# define tmask 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Update() at %s:%d", __FILE__, __LINE__);
+ sqlite3TreeViewUpdate(pParse->pWith, pTabList, pChanges, pWhere,
+ onError, pOrderBy, pLimit, pUpsert, pTrigger);
+ }
+#endif
+
+ /* If there was a FROM clause, set nChangeFrom to the number of expressions
+ ** in the change-list. Otherwise, set it to 0. There cannot be a FROM
+ ** clause if this function is being called to generate code for part of
+ ** an UPSERT statement. */
+ nChangeFrom = (pTabList->nSrc>1) ? pChanges->nExpr : 0;
+ assert( nChangeFrom==0 || pUpsert==0 );
+
+#ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
+ if( !isView && nChangeFrom==0 ){
+ pWhere = sqlite3LimitWhere(
+ pParse, pTabList, pWhere, pOrderBy, pLimit, "UPDATE"
+ );
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto update_cleanup;
+ }
+ if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){
+ goto update_cleanup;
+ }
+
+ /* Allocate a cursors for the main database table and for all indices.
+ ** The index cursors might not be used, but if they are used they
+ ** need to occur right after the database cursor. So go ahead and
+ ** allocate enough space, just in case.
+ */
+ iBaseCur = iDataCur = pParse->nTab++;
+ iIdxCur = iDataCur+1;
+ pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
+ testcase( pPk!=0 && pPk!=pTab->pIndex );
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
+ if( pPk==pIdx ){
+ iDataCur = pParse->nTab;
+ }
+ pParse->nTab++;
+ }
+ if( pUpsert ){
+ /* On an UPSERT, reuse the same cursors already opened by INSERT */
+ iDataCur = pUpsert->iDataCur;
+ iIdxCur = pUpsert->iIdxCur;
+ pParse->nTab = iBaseCur;
+ }
+ pTabList->a[0].iCursor = iDataCur;
+
+ /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].
+ ** Initialize aXRef[] and aToOpen[] to their default values.
+ */
+ aXRef = sqlite3DbMallocRawNN(db, sizeof(int) * (pTab->nCol+nIdx+1) + nIdx+2 );
+ if( aXRef==0 ) goto update_cleanup;
+ aRegIdx = aXRef+pTab->nCol;
+ aToOpen = (u8*)(aRegIdx+nIdx+1);
+ memset(aToOpen, 1, nIdx+1);
+ aToOpen[nIdx+1] = 0;
+ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
+
+ /* Initialize the name-context */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.uNC.pUpsert = pUpsert;
+ sNC.ncFlags = NC_UUpsert;
+
+ /* Begin generating code. */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto update_cleanup;
+
+ /* Resolve the column names in all the expressions of the
+ ** of the UPDATE statement. Also find the column index
+ ** for each column to be updated in the pChanges array. For each
+ ** column to be updated, make sure we have authorization to change
+ ** that column.
+ */
+ chngRowid = chngPk = 0;
+ for(i=0; i<pChanges->nExpr; i++){
+ u8 hCol = sqlite3StrIHash(pChanges->a[i].zEName);
+ /* If this is an UPDATE with a FROM clause, do not resolve expressions
+ ** here. The call to sqlite3Select() below will do that. */
+ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
+ goto update_cleanup;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ if( pTab->aCol[j].hName==hCol
+ && sqlite3StrICmp(pTab->aCol[j].zCnName, pChanges->a[i].zEName)==0
+ ){
+ if( j==pTab->iPKey ){
+ chngRowid = 1;
+ pRowidExpr = pChanges->a[i].pExpr;
+ iRowidExpr = i;
+ }else if( pPk && (pTab->aCol[j].colFlags & COLFLAG_PRIMKEY)!=0 ){
+ chngPk = 1;
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ else if( pTab->aCol[j].colFlags & COLFLAG_GENERATED ){
+ testcase( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL );
+ testcase( pTab->aCol[j].colFlags & COLFLAG_STORED );
+ sqlite3ErrorMsg(pParse,
+ "cannot UPDATE generated column \"%s\"",
+ pTab->aCol[j].zCnName);
+ goto update_cleanup;
+ }
+#endif
+ aXRef[j] = i;
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( pPk==0 && sqlite3IsRowid(pChanges->a[i].zEName) ){
+ j = -1;
+ chngRowid = 1;
+ pRowidExpr = pChanges->a[i].pExpr;
+ iRowidExpr = i;
+ }else{
+ sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zEName);
+ pParse->checkSchema = 1;
+ goto update_cleanup;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int rc;
+ rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
+ j<0 ? "ROWID" : pTab->aCol[j].zCnName,
+ db->aDb[iDb].zDbSName);
+ if( rc==SQLITE_DENY ){
+ goto update_cleanup;
+ }else if( rc==SQLITE_IGNORE ){
+ aXRef[j] = -1;
+ }
+ }
+#endif
+ }
+ assert( (chngRowid & chngPk)==0 );
+ assert( chngRowid==0 || chngRowid==1 );
+ assert( chngPk==0 || chngPk==1 );
+ chngKey = chngRowid + chngPk;
+
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ /* Mark generated columns as changing if their generator expressions
+ ** reference any changing column. The actual aXRef[] value for
+ ** generated expressions is not used, other than to check to see that it
+ ** is non-negative, so the value of aXRef[] for generated columns can be
+ ** set to any non-negative number. We use 99999 so that the value is
+ ** obvious when looking at aXRef[] in a symbolic debugger.
+ */
+ if( pTab->tabFlags & TF_HasGenerated ){
+ int bProgress;
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ do{
+ bProgress = 0;
+ for(i=0; i<pTab->nCol; i++){
+ if( aXRef[i]>=0 ) continue;
+ if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 ) continue;
+ if( sqlite3ExprReferencesUpdatedColumn(
+ sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
+ aXRef, chngRowid)
+ ){
+ aXRef[i] = 99999;
+ bProgress = 1;
+ }
+ }
+ }while( bProgress );
+ }
+#endif
+
+ /* The SET expressions are not actually used inside the WHERE loop.
+ ** So reset the colUsed mask. Unless this is a virtual table. In that
+ ** case, set all bits of the colUsed mask (to ensure that the virtual
+ ** table implementation makes all columns available).
+ */
+ pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0;
+
+ hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);
+
+ /* There is one entry in the aRegIdx[] array for each index on the table
+ ** being updated. Fill in aRegIdx[] with a register number that will hold
+ ** the key for accessing each index.
+ */
+ if( onError==OE_Replace ) bReplace = 1;
+ for(nAllIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nAllIdx++){
+ int reg;
+ if( chngKey || hasFK>1 || pIdx==pPk
+ || indexWhereClauseMightChange(pIdx,aXRef,chngRowid)
+ ){
+ reg = ++pParse->nMem;
+ pParse->nMem += pIdx->nColumn;
+ }else{
+ reg = 0;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( indexColumnIsBeingUpdated(pIdx, i, aXRef, chngRowid) ){
+ reg = ++pParse->nMem;
+ pParse->nMem += pIdx->nColumn;
+ if( onError==OE_Default && pIdx->onError==OE_Replace ){
+ bReplace = 1;
+ }
+ break;
+ }
+ }
+ }
+ if( reg==0 ) aToOpen[nAllIdx+1] = 0;
+ aRegIdx[nAllIdx] = reg;
+ }
+ aRegIdx[nAllIdx] = ++pParse->nMem; /* Register storing the table record */
+ if( bReplace ){
+ /* If REPLACE conflict resolution might be invoked, open cursors on all
+ ** indexes in case they are needed to delete records. */
+ memset(aToOpen, 1, nIdx+1);
+ }
+
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, pTrigger || hasFK, iDb);
+
+ /* Allocate required registers. */
+ if( !IsVirtual(pTab) ){
+ /* For now, regRowSet and aRegIdx[nAllIdx] share the same register.
+ ** If regRowSet turns out to be needed, then aRegIdx[nAllIdx] will be
+ ** reallocated. aRegIdx[nAllIdx] is the register in which the main
+ ** table record is written. regRowSet holds the RowSet for the
+ ** two-pass update algorithm. */
+ assert( aRegIdx[nAllIdx]==pParse->nMem );
+ regRowSet = aRegIdx[nAllIdx];
+ regOldRowid = regNewRowid = ++pParse->nMem;
+ if( chngPk || pTrigger || hasFK ){
+ regOld = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol;
+ }
+ if( chngKey || pTrigger || hasFK ){
+ regNewRowid = ++pParse->nMem;
+ }
+ regNew = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol;
+ }
+
+ /* Start the view context. */
+ if( isView ){
+ sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* If we are trying to update a view, realize that view into
+ ** an ephemeral table.
+ */
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+ if( nChangeFrom==0 && isView ){
+ sqlite3MaterializeView(pParse, pTab,
+ pWhere, pOrderBy, pLimit, iDataCur
+ );
+ pOrderBy = 0;
+ pLimit = 0;
+ }
+#endif
+
+ /* Resolve the column names in all the expressions in the
+ ** WHERE clause.
+ */
+ if( nChangeFrom==0 && sqlite3ResolveExprNames(&sNC, pWhere) ){
+ goto update_cleanup;
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Virtual tables must be handled separately */
+ if( IsVirtual(pTab) ){
+ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
+ pWhere, onError);
+ goto update_cleanup;
+ }
+#endif
+
+ /* Jump to labelBreak to abandon further processing of this UPDATE */
+ labelContinue = labelBreak = sqlite3VdbeMakeLabel(pParse);
+
+ /* Not an UPSERT. Normal processing. Begin by
+ ** initialize the count of updated rows */
+ if( (db->flags&SQLITE_CountRows)!=0
+ && !pParse->pTriggerTab
+ && !pParse->nested
+ && !pParse->bReturning
+ && pUpsert==0
+ ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
+ }
+
+ if( nChangeFrom==0 && HasRowid(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
+ iEph = pParse->nTab++;
+ addrOpen = sqlite3VdbeAddOp3(v, OP_OpenEphemeral, iEph, 0, regRowSet);
+ }else{
+ assert( pPk!=0 || HasRowid(pTab) );
+ nPk = pPk ? pPk->nKeyCol : 0;
+ iPk = pParse->nMem+1;
+ pParse->nMem += nPk;
+ pParse->nMem += nChangeFrom;
+ regKey = ++pParse->nMem;
+ if( pUpsert==0 ){
+ int nEphCol = nPk + nChangeFrom + (isView ? pTab->nCol : 0);
+ iEph = pParse->nTab++;
+ if( pPk ) sqlite3VdbeAddOp3(v, OP_Null, 0, iPk, iPk+nPk-1);
+ addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nEphCol);
+ if( pPk ){
+ KeyInfo *pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pPk);
+ if( pKeyInfo ){
+ pKeyInfo->nAllField = nEphCol;
+ sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
+ }
+ }
+ if( nChangeFrom ){
+ updateFromSelect(
+ pParse, iEph, pPk, pChanges, pTabList, pWhere, pOrderBy, pLimit
+ );
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( isView ) iDataCur = iEph;
+#endif
+ }
+ }
+ }
+
+ if( nChangeFrom ){
+ sqlite3MultiWrite(pParse);
+ eOnePass = ONEPASS_OFF;
+ nKey = nPk;
+ regKey = iPk;
+ }else{
+ if( pUpsert ){
+ /* If this is an UPSERT, then all cursors have already been opened by
+ ** the outer INSERT and the data cursor should be pointing at the row
+ ** that is to be updated. So bypass the code that searches for the
+ ** row(s) to be updated.
+ */
+ pWInfo = 0;
+ eOnePass = ONEPASS_SINGLE;
+ sqlite3ExprIfFalse(pParse, pWhere, labelBreak, SQLITE_JUMPIFNULL);
+ bFinishSeek = 0;
+ }else{
+ /* Begin the database scan.
+ **
+ ** Do not consider a single-pass strategy for a multi-row update if
+ ** there is anything that might disrupt the cursor being used to do
+ ** the UPDATE:
+ ** (1) This is a nested UPDATE
+ ** (2) There are triggers
+ ** (3) There are FOREIGN KEY constraints
+ ** (4) There are REPLACE conflict handlers
+ ** (5) There are subqueries in the WHERE clause
+ */
+ flags = WHERE_ONEPASS_DESIRED;
+ if( !pParse->nested
+ && !pTrigger
+ && !hasFK
+ && !chngKey
+ && !bReplace
+ && (pWhere==0 || !ExprHasProperty(pWhere, EP_Subquery))
+ ){
+ flags |= WHERE_ONEPASS_MULTIROW;
+ }
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,0,0,flags,iIdxCur);
+ if( pWInfo==0 ) goto update_cleanup;
+
+ /* A one-pass strategy that might update more than one row may not
+ ** be used if any column of the index used for the scan is being
+ ** updated. Otherwise, if there is an index on "b", statements like
+ ** the following could create an infinite loop:
+ **
+ ** UPDATE t1 SET b=b+1 WHERE b>?
+ **
+ ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI
+ ** strategy that uses an index for which one or more columns are being
+ ** updated. */
+ eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
+ bFinishSeek = sqlite3WhereUsesDeferredSeek(pWInfo);
+ if( eOnePass!=ONEPASS_SINGLE ){
+ sqlite3MultiWrite(pParse);
+ if( eOnePass==ONEPASS_MULTI ){
+ int iCur = aiCurOnePass[1];
+ if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){
+ eOnePass = ONEPASS_OFF;
+ }
+ assert( iCur!=iDataCur || !HasRowid(pTab) );
+ }
+ }
+ }
+
+ if( HasRowid(pTab) ){
+ /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF
+ ** mode, write the rowid into the FIFO. In either of the one-pass modes,
+ ** leave it in register regOldRowid. */
+ sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
+ if( eOnePass==ONEPASS_OFF ){
+ aRegIdx[nAllIdx] = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_Insert, iEph, regRowSet, regOldRowid);
+ }else{
+ if( ALWAYS(addrOpen) ) sqlite3VdbeChangeToNoop(v, addrOpen);
+ }
+ }else{
+ /* Read the PK of the current row into an array of registers. In
+ ** ONEPASS_OFF mode, serialize the array into a record and store it in
+ ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change
+ ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table
+ ** is not required) and leave the PK fields in the array of registers. */
+ for(i=0; i<nPk; i++){
+ assert( pPk->aiColumn[i]>=0 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur,
+ pPk->aiColumn[i], iPk+i);
+ }
+ if( eOnePass ){
+ if( addrOpen ) sqlite3VdbeChangeToNoop(v, addrOpen);
+ nKey = nPk;
+ regKey = iPk;
+ }else{
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
+ sqlite3IndexAffinityStr(db, pPk), nPk);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk);
+ }
+ }
+ }
+
+ if( pUpsert==0 ){
+ if( nChangeFrom==0 && eOnePass!=ONEPASS_MULTI ){
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ if( !isView ){
+ int addrOnce = 0;
+ int iNotUsed1 = 0;
+ int iNotUsed2 = 0;
+
+ /* Open every index that needs updating. */
+ if( eOnePass!=ONEPASS_OFF ){
+ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
+ if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
+ }
+
+ if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur,
+ aToOpen, &iNotUsed1, &iNotUsed2);
+ if( addrOnce ){
+ sqlite3VdbeJumpHereOrPopInst(v, addrOnce);
+ }
+ }
+
+ /* Top of the update loop */
+ if( eOnePass!=ONEPASS_OFF ){
+ if( aiCurOnePass[0]!=iDataCur
+ && aiCurOnePass[1]!=iDataCur
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ && !isView
+#endif
+ ){
+ assert( pPk );
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey,nKey);
+ VdbeCoverage(v);
+ }
+ if( eOnePass!=ONEPASS_SINGLE ){
+ labelContinue = sqlite3VdbeMakeLabel(pParse);
+ }
+ sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
+ VdbeCoverageIf(v, pPk==0);
+ VdbeCoverageIf(v, pPk!=0);
+ }else if( pPk || nChangeFrom ){
+ labelContinue = sqlite3VdbeMakeLabel(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
+ addrTop = sqlite3VdbeCurrentAddr(v);
+ if( nChangeFrom ){
+ if( !isView ){
+ if( pPk ){
+ for(i=0; i<nPk; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, i, iPk+i);
+ }
+ sqlite3VdbeAddOp4Int(
+ v, OP_NotFound, iDataCur, labelContinue, iPk, nPk
+ ); VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rowid, iEph, regOldRowid);
+ sqlite3VdbeAddOp3(
+ v, OP_NotExists, iDataCur, labelContinue, regOldRowid
+ ); VdbeCoverage(v);
+ }
+ }
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey);
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey,0);
+ VdbeCoverage(v);
+ }
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
+ labelContinue = sqlite3VdbeMakeLabel(pParse);
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rowid, iEph, regOldRowid);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
+ VdbeCoverage(v);
+ }
+ }
+
+ /* If the rowid value will change, set register regNewRowid to
+ ** contain the new value. If the rowid is not being modified,
+ ** then regNewRowid is the same register as regOldRowid, which is
+ ** already populated. */
+ assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid );
+ if( chngRowid ){
+ assert( iRowidExpr>=0 );
+ if( nChangeFrom==0 ){
+ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, iRowidExpr, regNewRowid);
+ }
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v);
+ }
+
+ /* Compute the old pre-UPDATE content of the row being changed, if that
+ ** information is needed */
+ if( chngPk || hasFK || pTrigger ){
+ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0);
+ oldmask |= sqlite3TriggerColmask(pParse,
+ pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError
+ );
+ for(i=0; i<pTab->nCol; i++){
+ u32 colFlags = pTab->aCol[i].colFlags;
+ k = sqlite3TableColumnToStorage(pTab, i) + regOld;
+ if( oldmask==0xffffffff
+ || (i<32 && (oldmask & MASKBIT32(i))!=0)
+ || (colFlags & COLFLAG_PRIMKEY)!=0
+ ){
+ testcase( oldmask!=0xffffffff && i==31 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, k);
+ }
+ }
+ if( chngRowid==0 && pPk==0 ){
+ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
+ }
+ }
+
+ /* Populate the array of registers beginning at regNew with the new
+ ** row data. This array is used to check constants, create the new
+ ** table and index records, and as the values for any new.* references
+ ** made by triggers.
+ **
+ ** If there are one or more BEFORE triggers, then do not populate the
+ ** registers associated with columns that are (a) not modified by
+ ** this UPDATE statement and (b) not accessed by new.* references. The
+ ** values for registers not modified by the UPDATE must be reloaded from
+ ** the database after the BEFORE triggers are fired anyway (as the trigger
+ ** may have modified them). So not loading those that are not going to
+ ** be used eliminates some redundant opcodes.
+ */
+ newmask = sqlite3TriggerColmask(
+ pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError
+ );
+ for(i=0, k=regNew; i<pTab->nCol; i++, k++){
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, k);
+ }else if( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)!=0 ){
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--;
+ }else{
+ j = aXRef[i];
+ if( j>=0 ){
+ if( nChangeFrom ){
+ int nOff = (isView ? pTab->nCol : nPk);
+ assert( eOnePass==ONEPASS_OFF );
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, nOff+j, k);
+ }else{
+ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, k);
+ }
+ }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){
+ /* This branch loads the value of a column that will not be changed
+ ** into a register. This is done if there are no BEFORE triggers, or
+ ** if there are one or more BEFORE triggers that use this value via
+ ** a new.* reference in a trigger program.
+ */
+ testcase( i==31 );
+ testcase( i==32 );
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k);
+ bFinishSeek = 0;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, k);
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pTab->tabFlags & TF_HasGenerated ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ sqlite3ComputeGeneratedColumns(pParse, regNew, pTab);
+ }
+#endif
+
+ /* Fire any BEFORE UPDATE triggers. This happens before constraints are
+ ** verified. One could argue that this is wrong.
+ */
+ if( tmask&TRIGGER_BEFORE ){
+ sqlite3TableAffinity(v, pTab, regNew);
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
+ TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue);
+
+ if( !isView ){
+ /* The row-trigger may have deleted the row being updated. In this
+ ** case, jump to the next row. No updates or AFTER triggers are
+ ** required. This behavior - what happens when the row being updated
+ ** is deleted or renamed by a BEFORE trigger - is left undefined in the
+ ** documentation.
+ */
+ if( pPk ){
+ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey);
+ VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid);
+ VdbeCoverage(v);
+ }
+
+ /* After-BEFORE-trigger-reload-loop:
+ ** If it did not delete it, the BEFORE trigger may still have modified
+ ** some of the columns of the row being updated. Load the values for
+ ** all columns not modified by the update statement into their registers
+ ** in case this has happened. Only unmodified columns are reloaded.
+ ** The values computed for modified columns use the values before the
+ ** BEFORE trigger runs. See test case trigger1-18.0 (added 2018-04-26)
+ ** for an example.
+ */
+ for(i=0, k=regNew; i<pTab->nCol; i++, k++){
+ if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
+ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) k--;
+ }else if( aXRef[i]<0 && i!=pTab->iPKey ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, k);
+ }
+ }
+#ifndef SQLITE_OMIT_GENERATED_COLUMNS
+ if( pTab->tabFlags & TF_HasGenerated ){
+ testcase( pTab->tabFlags & TF_HasVirtual );
+ testcase( pTab->tabFlags & TF_HasStored );
+ sqlite3ComputeGeneratedColumns(pParse, regNew, pTab);
+ }
+#endif
+ }
+ }
+
+ if( !isView ){
+ /* Do constraint checks. */
+ assert( regOldRowid>0 );
+ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
+ regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
+ aXRef, 0);
+
+ /* If REPLACE conflict handling may have been used, or if the PK of the
+ ** row is changing, then the GenerateConstraintChecks() above may have
+ ** moved cursor iDataCur. Reseek it. */
+ if( bReplace || chngKey ){
+ if( pPk ){
+ sqlite3VdbeAddOp4Int(v, OP_NotFound,iDataCur,labelContinue,regKey,nKey);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue,regOldRowid);
+ }
+ VdbeCoverage(v);
+ }
+
+ /* Do FK constraint checks. */
+ if( hasFK ){
+ sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
+ }
+
+ /* Delete the index entries associated with the current record. */
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx, -1);
+
+ /* We must run the OP_FinishSeek opcode to resolve a prior
+ ** OP_DeferredSeek if there is any possibility that there have been
+ ** no OP_Column opcodes since the OP_DeferredSeek was issued. But
+ ** we want to avoid the OP_FinishSeek if possible, as running it
+ ** costs CPU cycles. */
+ if( bFinishSeek ){
+ sqlite3VdbeAddOp1(v, OP_FinishSeek, iDataCur);
+ }
+
+ /* If changing the rowid value, or if there are foreign key constraints
+ ** to process, delete the old record. Otherwise, add a noop OP_Delete
+ ** to invoke the pre-update hook.
+ **
+ ** That (regNew==regnewRowid+1) is true is also important for the
+ ** pre-update hook. If the caller invokes preupdate_new(), the returned
+ ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
+ ** is the column index supplied by the user.
+ */
+ assert( regNew==regNewRowid+1 );
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
+ OPFLAG_ISUPDATE | ((hasFK>1 || chngKey) ? 0 : OPFLAG_ISNOOP),
+ regNewRowid
+ );
+ if( eOnePass==ONEPASS_MULTI ){
+ assert( hasFK==0 && chngKey==0 );
+ sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
+ }
+ if( !pParse->nested ){
+ sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
+ }
+#else
+ if( hasFK>1 || chngKey ){
+ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
+ }
+#endif
+
+ if( hasFK ){
+ sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey);
+ }
+
+ /* Insert the new index entries and the new record. */
+ sqlite3CompleteInsertion(
+ pParse, pTab, iDataCur, iIdxCur, regNewRowid, aRegIdx,
+ OPFLAG_ISUPDATE | (eOnePass==ONEPASS_MULTI ? OPFLAG_SAVEPOSITION : 0),
+ 0, 0
+ );
+
+ /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
+ ** handle rows (possibly in other tables) that refer via a foreign key
+ ** to the row just updated. */
+ if( hasFK ){
+ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
+ }
+ }
+
+ /* Increment the row counter
+ */
+ if( regRowCount ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
+ }
+
+ if( pTrigger ){
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
+ TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);
+ }
+
+ /* Repeat the above with the next record to be updated, until
+ ** all record selected by the WHERE clause have been updated.
+ */
+ if( eOnePass==ONEPASS_SINGLE ){
+ /* Nothing to do at end-of-loop for a single-pass */
+ }else if( eOnePass==ONEPASS_MULTI ){
+ sqlite3VdbeResolveLabel(v, labelContinue);
+ sqlite3WhereEnd(pWInfo);
+ }else{
+ sqlite3VdbeResolveLabel(v, labelContinue);
+ sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v);
+ }
+ sqlite3VdbeResolveLabel(v, labelBreak);
+
+ /* Update the sqlite_sequence table by storing the content of the
+ ** maximum rowid counter values recorded while inserting into
+ ** autoincrement tables.
+ */
+ if( pParse->nested==0 && pParse->pTriggerTab==0 && pUpsert==0 ){
+ sqlite3AutoincrementEnd(pParse);
+ }
+
+ /*
+ ** Return the number of rows that were changed, if we are tracking
+ ** that information.
+ */
+ if( regRowCount ){
+ sqlite3CodeChangeCount(v, regRowCount, "rows updated");
+ }
+
+update_cleanup:
+ sqlite3AuthContextPop(&sContext);
+ sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */
+ sqlite3SrcListDelete(db, pTabList);
+ sqlite3ExprListDelete(db, pChanges);
+ sqlite3ExprDelete(db, pWhere);
+#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
+ sqlite3ExprListDelete(db, pOrderBy);
+ sqlite3ExprDelete(db, pLimit);
+#endif
+ return;
+}
+/* Make sure "isView" and other macros defined above are undefined. Otherwise
+** they may interfere with compilation of other functions in this file
+** (or in another file, if this file becomes part of the amalgamation). */
+#ifdef isView
+ #undef isView
+#endif
+#ifdef pTrigger
+ #undef pTrigger
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Generate code for an UPDATE of a virtual table.
+**
+** There are two possible strategies - the default and the special
+** "onepass" strategy. Onepass is only used if the virtual table
+** implementation indicates that pWhere may match at most one row.
+**
+** The default strategy is to create an ephemeral table that contains
+** for each row to be changed:
+**
+** (A) The original rowid of that row.
+** (B) The revised rowid for the row.
+** (C) The content of every column in the row.
+**
+** Then loop through the contents of this ephemeral table executing a
+** VUpdate for each row. When finished, drop the ephemeral table.
+**
+** The "onepass" strategy does not use an ephemeral table. Instead, it
+** stores the same values (A, B and C above) in a register array and
+** makes a single invocation of VUpdate.
+*/
+static void updateVirtualTable(
+ Parse *pParse, /* The parsing context */
+ SrcList *pSrc, /* The virtual table to be modified */
+ Table *pTab, /* The virtual table */
+ ExprList *pChanges, /* The columns to change in the UPDATE statement */
+ Expr *pRowid, /* Expression used to recompute the rowid */
+ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
+ Expr *pWhere, /* WHERE clause of the UPDATE statement */
+ int onError /* ON CONFLICT strategy */
+){
+ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
+ int ephemTab; /* Table holding the result of the SELECT */
+ int i; /* Loop counter */
+ sqlite3 *db = pParse->db; /* Database connection */
+ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab);
+ WhereInfo *pWInfo = 0;
+ int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */
+ int regArg; /* First register in VUpdate arg array */
+ int regRec; /* Register in which to assemble record */
+ int regRowid; /* Register for ephemeral table rowid */
+ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */
+ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */
+ int eOnePass; /* True to use onepass strategy */
+ int addr; /* Address of OP_OpenEphemeral */
+
+ /* Allocate nArg registers in which to gather the arguments for VUpdate. Then
+ ** create and open the ephemeral table in which the records created from
+ ** these arguments will be temporarily stored. */
+ assert( v );
+ ephemTab = pParse->nTab++;
+ addr= sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, nArg);
+ regArg = pParse->nMem + 1;
+ pParse->nMem += nArg;
+ if( pSrc->nSrc>1 ){
+ Index *pPk = 0;
+ Expr *pRow;
+ ExprList *pList;
+ if( HasRowid(pTab) ){
+ if( pRowid ){
+ pRow = sqlite3ExprDup(db, pRowid, 0);
+ }else{
+ pRow = sqlite3PExpr(pParse, TK_ROW, 0, 0);
+ }
+ }else{
+ i16 iPk; /* PRIMARY KEY column */
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->nKeyCol==1 );
+ iPk = pPk->aiColumn[0];
+ if( aXRef[iPk]>=0 ){
+ pRow = sqlite3ExprDup(db, pChanges->a[aXRef[iPk]].pExpr, 0);
+ }else{
+ pRow = exprRowColumn(pParse, iPk);
+ }
+ }
+ pList = sqlite3ExprListAppend(pParse, 0, pRow);
+
+ for(i=0; i<pTab->nCol; i++){
+ if( aXRef[i]>=0 ){
+ pList = sqlite3ExprListAppend(pParse, pList,
+ sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0)
+ );
+ }else{
+ Expr *pRowExpr = exprRowColumn(pParse, i);
+ if( pRowExpr ) pRowExpr->op2 = OPFLAG_NOCHNG;
+ pList = sqlite3ExprListAppend(pParse, pList, pRowExpr);
+ }
+ }
+
+ updateFromSelect(pParse, ephemTab, pPk, pList, pSrc, pWhere, 0, 0);
+ sqlite3ExprListDelete(db, pList);
+ eOnePass = ONEPASS_OFF;
+ }else{
+ regRec = ++pParse->nMem;
+ regRowid = ++pParse->nMem;
+
+ /* Start scanning the virtual table */
+ pWInfo = sqlite3WhereBegin(
+ pParse, pSrc, pWhere, 0, 0, 0, WHERE_ONEPASS_DESIRED, 0
+ );
+ if( pWInfo==0 ) return;
+
+ /* Populate the argument registers. */
+ for(i=0; i<pTab->nCol; i++){
+ assert( (pTab->aCol[i].colFlags & COLFLAG_GENERATED)==0 );
+ if( aXRef[i]>=0 ){
+ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i);
+ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG);/* For sqlite3_vtab_nochange() */
+ }
+ }
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg);
+ if( pRowid ){
+ sqlite3ExprCode(pParse, pRowid, regArg+1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg+1);
+ }
+ }else{
+ Index *pPk; /* PRIMARY KEY index */
+ i16 iPk; /* PRIMARY KEY column */
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ assert( pPk!=0 );
+ assert( pPk->nKeyCol==1 );
+ iPk = pPk->aiColumn[0];
+ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1);
+ }
+
+ eOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy);
+
+ /* There is no ONEPASS_MULTI on virtual tables */
+ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
+
+ if( eOnePass ){
+ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded
+ ** above. */
+ sqlite3VdbeChangeToNoop(v, addr);
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ }else{
+ /* Create a record from the argument register contents and insert it into
+ ** the ephemeral table. */
+ sqlite3MultiWrite(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec);
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_NULL_TRIM)
+ /* Signal an assert() within OP_MakeRecord that it is allowed to
+ ** accept no-change records with serial_type 10 */
+ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
+#endif
+ sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid);
+ }
+ }
+
+
+ if( eOnePass==ONEPASS_OFF ){
+ /* End the virtual table scan */
+ if( pSrc->nSrc==1 ){
+ sqlite3WhereEnd(pWInfo);
+ }
+
+ /* Begin scanning through the ephemeral table. */
+ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v);
+
+ /* Extract arguments from the current row of the ephemeral table and
+ ** invoke the VUpdate method. */
+ for(i=0; i<nArg; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i);
+ }
+ }
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, nArg, regArg, pVTab, P4_VTAB);
+ sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
+ sqlite3MayAbort(pParse);
+
+ /* End of the ephemeral table scan. Or, if using the onepass strategy,
+ ** jump to here if the scan visited zero rows. */
+ if( eOnePass==ONEPASS_OFF ){
+ sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
+ }else{
+ sqlite3WhereEnd(pWInfo);
+ }
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/************** End of update.c **********************************************/
+/************** Begin file upsert.c ******************************************/
+/*
+** 2018-04-12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement various aspects of UPSERT
+** processing and handling of the Upsert object.
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_UPSERT
+/*
+** Free a list of Upsert objects
+*/
+static void SQLITE_NOINLINE upsertDelete(sqlite3 *db, Upsert *p){
+ do{
+ Upsert *pNext = p->pNextUpsert;
+ sqlite3ExprListDelete(db, p->pUpsertTarget);
+ sqlite3ExprDelete(db, p->pUpsertTargetWhere);
+ sqlite3ExprListDelete(db, p->pUpsertSet);
+ sqlite3ExprDelete(db, p->pUpsertWhere);
+ sqlite3DbFree(db, p->pToFree);
+ sqlite3DbFree(db, p);
+ p = pNext;
+ }while( p );
+}
+SQLITE_PRIVATE void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){
+ if( p ) upsertDelete(db, p);
+}
+
+
+/*
+** Duplicate an Upsert object.
+*/
+SQLITE_PRIVATE Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){
+ if( p==0 ) return 0;
+ return sqlite3UpsertNew(db,
+ sqlite3ExprListDup(db, p->pUpsertTarget, 0),
+ sqlite3ExprDup(db, p->pUpsertTargetWhere, 0),
+ sqlite3ExprListDup(db, p->pUpsertSet, 0),
+ sqlite3ExprDup(db, p->pUpsertWhere, 0),
+ sqlite3UpsertDup(db, p->pNextUpsert)
+ );
+}
+
+/*
+** Create a new Upsert object.
+*/
+SQLITE_PRIVATE Upsert *sqlite3UpsertNew(
+ sqlite3 *db, /* Determines which memory allocator to use */
+ ExprList *pTarget, /* Target argument to ON CONFLICT, or NULL */
+ Expr *pTargetWhere, /* Optional WHERE clause on the target */
+ ExprList *pSet, /* UPDATE columns, or NULL for a DO NOTHING */
+ Expr *pWhere, /* WHERE clause for the ON CONFLICT UPDATE */
+ Upsert *pNext /* Next ON CONFLICT clause in the list */
+){
+ Upsert *pNew;
+ pNew = sqlite3DbMallocZero(db, sizeof(Upsert));
+ if( pNew==0 ){
+ sqlite3ExprListDelete(db, pTarget);
+ sqlite3ExprDelete(db, pTargetWhere);
+ sqlite3ExprListDelete(db, pSet);
+ sqlite3ExprDelete(db, pWhere);
+ sqlite3UpsertDelete(db, pNext);
+ return 0;
+ }else{
+ pNew->pUpsertTarget = pTarget;
+ pNew->pUpsertTargetWhere = pTargetWhere;
+ pNew->pUpsertSet = pSet;
+ pNew->pUpsertWhere = pWhere;
+ pNew->isDoUpdate = pSet!=0;
+ pNew->pNextUpsert = pNext;
+ }
+ return pNew;
+}
+
+/*
+** Analyze the ON CONFLICT clause described by pUpsert. Resolve all
+** symbols in the conflict-target.
+**
+** Return SQLITE_OK if everything works, or an error code is something
+** is wrong.
+*/
+SQLITE_PRIVATE int sqlite3UpsertAnalyzeTarget(
+ Parse *pParse, /* The parsing context */
+ SrcList *pTabList, /* Table into which we are inserting */
+ Upsert *pUpsert /* The ON CONFLICT clauses */
+){
+ Table *pTab; /* That table into which we are inserting */
+ int rc; /* Result code */
+ int iCursor; /* Cursor used by pTab */
+ Index *pIdx; /* One of the indexes of pTab */
+ ExprList *pTarget; /* The conflict-target clause */
+ Expr *pTerm; /* One term of the conflict-target clause */
+ NameContext sNC; /* Context for resolving symbolic names */
+ Expr sCol[2]; /* Index column converted into an Expr */
+ int nClause = 0; /* Counter of ON CONFLICT clauses */
+
+ assert( pTabList->nSrc==1 );
+ assert( pTabList->a[0].pTab!=0 );
+ assert( pUpsert!=0 );
+ assert( pUpsert->pUpsertTarget!=0 );
+
+ /* Resolve all symbolic names in the conflict-target clause, which
+ ** includes both the list of columns and the optional partial-index
+ ** WHERE clause.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ for(; pUpsert && pUpsert->pUpsertTarget;
+ pUpsert=pUpsert->pNextUpsert, nClause++){
+ rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
+ if( rc ) return rc;
+ rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
+ if( rc ) return rc;
+
+ /* Check to see if the conflict target matches the rowid. */
+ pTab = pTabList->a[0].pTab;
+ pTarget = pUpsert->pUpsertTarget;
+ iCursor = pTabList->a[0].iCursor;
+ if( HasRowid(pTab)
+ && pTarget->nExpr==1
+ && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN
+ && pTerm->iColumn==XN_ROWID
+ ){
+ /* The conflict-target is the rowid of the primary table */
+ assert( pUpsert->pUpsertIdx==0 );
+ continue;
+ }
+
+ /* Initialize sCol[0..1] to be an expression parse tree for a
+ ** single column of an index. The sCol[0] node will be the TK_COLLATE
+ ** operator and sCol[1] will be the TK_COLUMN operator. Code below
+ ** will populate the specific collation and column number values
+ ** prior to comparing against the conflict-target expression.
+ */
+ memset(sCol, 0, sizeof(sCol));
+ sCol[0].op = TK_COLLATE;
+ sCol[0].pLeft = &sCol[1];
+ sCol[1].op = TK_COLUMN;
+ sCol[1].iTable = pTabList->a[0].iCursor;
+
+ /* Check for matches against other indexes */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int ii, jj, nn;
+ if( !IsUniqueIndex(pIdx) ) continue;
+ if( pTarget->nExpr!=pIdx->nKeyCol ) continue;
+ if( pIdx->pPartIdxWhere ){
+ if( pUpsert->pUpsertTargetWhere==0 ) continue;
+ if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere,
+ pIdx->pPartIdxWhere, iCursor)!=0 ){
+ continue;
+ }
+ }
+ nn = pIdx->nKeyCol;
+ for(ii=0; ii<nn; ii++){
+ Expr *pExpr;
+ sCol[0].u.zToken = (char*)pIdx->azColl[ii];
+ if( pIdx->aiColumn[ii]==XN_EXPR ){
+ assert( pIdx->aColExpr!=0 );
+ assert( pIdx->aColExpr->nExpr>ii );
+ assert( pIdx->bHasExpr );
+ pExpr = pIdx->aColExpr->a[ii].pExpr;
+ if( pExpr->op!=TK_COLLATE ){
+ sCol[0].pLeft = pExpr;
+ pExpr = &sCol[0];
+ }
+ }else{
+ sCol[0].pLeft = &sCol[1];
+ sCol[1].iColumn = pIdx->aiColumn[ii];
+ pExpr = &sCol[0];
+ }
+ for(jj=0; jj<nn; jj++){
+ if( sqlite3ExprCompare(0,pTarget->a[jj].pExpr,pExpr,iCursor)<2 ){
+ break; /* Column ii of the index matches column jj of target */
+ }
+ }
+ if( jj>=nn ){
+ /* The target contains no match for column jj of the index */
+ break;
+ }
+ }
+ if( ii<nn ){
+ /* Column ii of the index did not match any term of the conflict target.
+ ** Continue the search with the next index. */
+ continue;
+ }
+ pUpsert->pUpsertIdx = pIdx;
+ break;
+ }
+ if( pUpsert->pUpsertIdx==0 ){
+ char zWhich[16];
+ if( nClause==0 && pUpsert->pNextUpsert==0 ){
+ zWhich[0] = 0;
+ }else{
+ sqlite3_snprintf(sizeof(zWhich),zWhich,"%r ", nClause+1);
+ }
+ sqlite3ErrorMsg(pParse, "%sON CONFLICT clause does not match any "
+ "PRIMARY KEY or UNIQUE constraint", zWhich);
+ return SQLITE_ERROR;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return true if pUpsert is the last ON CONFLICT clause with a
+** conflict target, or if pUpsert is followed by another ON CONFLICT
+** clause that targets the INTEGER PRIMARY KEY.
+*/
+SQLITE_PRIVATE int sqlite3UpsertNextIsIPK(Upsert *pUpsert){
+ Upsert *pNext;
+ if( NEVER(pUpsert==0) ) return 0;
+ pNext = pUpsert->pNextUpsert;
+ if( pNext==0 ) return 1;
+ if( pNext->pUpsertTarget==0 ) return 1;
+ if( pNext->pUpsertIdx==0 ) return 1;
+ return 0;
+}
+
+/*
+** Given the list of ON CONFLICT clauses described by pUpsert, and
+** a particular index pIdx, return a pointer to the particular ON CONFLICT
+** clause that applies to the index. Or, if the index is not subject to
+** any ON CONFLICT clause, return NULL.
+*/
+SQLITE_PRIVATE Upsert *sqlite3UpsertOfIndex(Upsert *pUpsert, Index *pIdx){
+ while(
+ pUpsert
+ && pUpsert->pUpsertTarget!=0
+ && pUpsert->pUpsertIdx!=pIdx
+ ){
+ pUpsert = pUpsert->pNextUpsert;
+ }
+ return pUpsert;
+}
+
+/*
+** Generate bytecode that does an UPDATE as part of an upsert.
+**
+** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK.
+** In this case parameter iCur is a cursor open on the table b-tree that
+** currently points to the conflicting table row. Otherwise, if pIdx
+** is not NULL, then pIdx is the constraint that failed and iCur is a
+** cursor points to the conflicting row.
+*/
+SQLITE_PRIVATE void sqlite3UpsertDoUpdate(
+ Parse *pParse, /* The parsing and code-generating context */
+ Upsert *pUpsert, /* The ON CONFLICT clause for the upsert */
+ Table *pTab, /* The table being updated */
+ Index *pIdx, /* The UNIQUE constraint that failed */
+ int iCur /* Cursor for pIdx (or pTab if pIdx==NULL) */
+){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+ SrcList *pSrc; /* FROM clause for the UPDATE */
+ int iDataCur;
+ int i;
+ Upsert *pTop = pUpsert;
+
+ assert( v!=0 );
+ assert( pUpsert!=0 );
+ iDataCur = pUpsert->iDataCur;
+ pUpsert = sqlite3UpsertOfIndex(pTop, pIdx);
+ VdbeNoopComment((v, "Begin DO UPDATE of UPSERT"));
+ if( pIdx && iCur!=iDataCur ){
+ if( HasRowid(pTab) ){
+ int regRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ int nPk = pPk->nKeyCol;
+ int iPk = pParse->nMem+1;
+ pParse->nMem += nPk;
+ for(i=0; i<nPk; i++){
+ int k;
+ assert( pPk->aiColumn[i]>=0 );
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i);
+ VdbeComment((v, "%s.%s", pIdx->zName,
+ pTab->aCol[pPk->aiColumn[i]].zCnName));
+ }
+ sqlite3VdbeVerifyAbortable(v, OE_Abort);
+ i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0,
+ "corrupt database", P4_STATIC);
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeJumpHere(v, i);
+ }
+ }
+ /* pUpsert does not own pTop->pUpsertSrc - the outer INSERT statement does.
+ ** So we have to make a copy before passing it down into sqlite3Update() */
+ pSrc = sqlite3SrcListDup(db, pTop->pUpsertSrc, 0);
+ /* excluded.* columns of type REAL need to be converted to a hard real */
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, pTop->regData+i);
+ }
+ }
+ sqlite3Update(pParse, pSrc, sqlite3ExprListDup(db,pUpsert->pUpsertSet,0),
+ sqlite3ExprDup(db,pUpsert->pUpsertWhere,0), OE_Abort, 0, 0, pUpsert);
+ VdbeNoopComment((v, "End DO UPDATE of UPSERT"));
+}
+
+#endif /* SQLITE_OMIT_UPSERT */
+
+/************** End of upsert.c **********************************************/
+/************** Begin file vacuum.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the VACUUM command.
+**
+** Most of the code in this file may be omitted by defining the
+** SQLITE_OMIT_VACUUM macro.
+*/
+/* #include "sqliteInt.h" */
+/* #include "vdbeInt.h" */
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+
+/*
+** Execute zSql on database db.
+**
+** If zSql returns rows, then each row will have exactly one
+** column. (This will only happen if zSql begins with "SELECT".)
+** Take each row of result and call execSql() again recursively.
+**
+** The execSqlF() routine does the same thing, except it accepts
+** a format string as its third argument
+*/
+static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
+ sqlite3_stmt *pStmt;
+ int rc;
+
+ /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
+ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
+ assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
+ /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX,
+ ** or INSERT. Historically there have been attacks that first
+ ** corrupt the sqlite_schema.sql field with other kinds of statements
+ ** then run VACUUM to get those statements to execute at inappropriate
+ ** times. */
+ if( zSubSql
+ && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0)
+ ){
+ rc = execSql(db, pzErrMsg, zSubSql);
+ if( rc!=SQLITE_OK ) break;
+ }
+ }
+ assert( rc!=SQLITE_ROW );
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ if( rc ){
+ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
+ }
+ (void)sqlite3_finalize(pStmt);
+ return rc;
+}
+static int execSqlF(sqlite3 *db, char **pzErrMsg, const char *zSql, ...){
+ char *z;
+ va_list ap;
+ int rc;
+ va_start(ap, zSql);
+ z = sqlite3VMPrintf(db, zSql, ap);
+ va_end(ap);
+ if( z==0 ) return SQLITE_NOMEM;
+ rc = execSql(db, pzErrMsg, z);
+ sqlite3DbFree(db, z);
+ return rc;
+}
+
+/*
+** The VACUUM command is used to clean up the database,
+** collapse free space, etc. It is modelled after the VACUUM command
+** in PostgreSQL. The VACUUM command works as follows:
+**
+** (1) Create a new transient database file
+** (2) Copy all content from the database being vacuumed into
+** the new transient database file
+** (3) Copy content from the transient database back into the
+** original database.
+**
+** The transient database requires temporary disk space approximately
+** equal to the size of the original database. The copy operation of
+** step (3) requires additional temporary disk space approximately equal
+** to the size of the original database for the rollback journal.
+** Hence, temporary disk space that is approximately 2x the size of the
+** original database is required. Every page of the database is written
+** approximately 3 times: Once for step (2) and twice for step (3).
+** Two writes per page are required in step (3) because the original
+** database content must be written into the rollback journal prior to
+** overwriting the database with the vacuumed content.
+**
+** Only 1x temporary space and only 1x writes would be required if
+** the copy of step (3) were replaced by deleting the original database
+** and renaming the transient database as the original. But that will
+** not work if other processes are attached to the original database.
+** And a power loss in between deleting the original and renaming the
+** transient would cause the database file to appear to be deleted
+** following reboot.
+*/
+SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse, Token *pNm, Expr *pInto){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int iDb = 0;
+ if( v==0 ) goto build_vacuum_end;
+ if( pParse->nErr ) goto build_vacuum_end;
+ if( pNm ){
+#ifndef SQLITE_BUG_COMPATIBLE_20160819
+ /* Default behavior: Report an error if the argument to VACUUM is
+ ** not recognized */
+ iDb = sqlite3TwoPartName(pParse, pNm, pNm, &pNm);
+ if( iDb<0 ) goto build_vacuum_end;
+#else
+ /* When SQLITE_BUG_COMPATIBLE_20160819 is defined, unrecognized arguments
+ ** to VACUUM are silently ignored. This is a back-out of a bug fix that
+ ** occurred on 2016-08-19 (https://www.sqlite.org/src/info/083f9e6270).
+ ** The buggy behavior is required for binary compatibility with some
+ ** legacy applications. */
+ iDb = sqlite3FindDb(pParse->db, pNm);
+ if( iDb<0 ) iDb = 0;
+#endif
+ }
+ if( iDb!=1 ){
+ int iIntoReg = 0;
+ if( pInto && sqlite3ResolveSelfReference(pParse,0,0,pInto,0)==0 ){
+ iIntoReg = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pInto, iIntoReg);
+ }
+ sqlite3VdbeAddOp2(v, OP_Vacuum, iDb, iIntoReg);
+ sqlite3VdbeUsesBtree(v, iDb);
+ }
+build_vacuum_end:
+ sqlite3ExprDelete(pParse->db, pInto);
+ return;
+}
+
+/*
+** This routine implements the OP_Vacuum opcode of the VDBE.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3RunVacuum(
+ char **pzErrMsg, /* Write error message here */
+ sqlite3 *db, /* Database connection */
+ int iDb, /* Which attached DB to vacuum */
+ sqlite3_value *pOut /* Write results here, if not NULL. VACUUM INTO */
+){
+ int rc = SQLITE_OK; /* Return code from service routines */
+ Btree *pMain; /* The database being vacuumed */
+ Btree *pTemp; /* The temporary database we vacuum into */
+ u32 saved_mDbFlags; /* Saved value of db->mDbFlags */
+ u64 saved_flags; /* Saved value of db->flags */
+ i64 saved_nChange; /* Saved value of db->nChange */
+ i64 saved_nTotalChange; /* Saved value of db->nTotalChange */
+ u32 saved_openFlags; /* Saved value of db->openFlags */
+ u8 saved_mTrace; /* Saved trace settings */
+ Db *pDb = 0; /* Database to detach at end of vacuum */
+ int isMemDb; /* True if vacuuming a :memory: database */
+ int nRes; /* Bytes of reserved space at the end of each page */
+ int nDb; /* Number of attached databases */
+ const char *zDbMain; /* Schema name of database to vacuum */
+ const char *zOut; /* Name of output file */
+ u32 pgflags = PAGER_SYNCHRONOUS_OFF; /* sync flags for output db */
+
+ if( !db->autoCommit ){
+ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
+ return SQLITE_ERROR; /* IMP: R-12218-18073 */
+ }
+ if( db->nVdbeActive>1 ){
+ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
+ return SQLITE_ERROR; /* IMP: R-15610-35227 */
+ }
+ saved_openFlags = db->openFlags;
+ if( pOut ){
+ if( sqlite3_value_type(pOut)!=SQLITE_TEXT ){
+ sqlite3SetString(pzErrMsg, db, "non-text filename");
+ return SQLITE_ERROR;
+ }
+ zOut = (const char*)sqlite3_value_text(pOut);
+ db->openFlags &= ~SQLITE_OPEN_READONLY;
+ db->openFlags |= SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
+ }else{
+ zOut = "";
+ }
+
+ /* Save the current value of the database flags so that it can be
+ ** restored before returning. Then set the writable-schema flag, and
+ ** disable CHECK and foreign key constraints. */
+ saved_flags = db->flags;
+ saved_mDbFlags = db->mDbFlags;
+ saved_nChange = db->nChange;
+ saved_nTotalChange = db->nTotalChange;
+ saved_mTrace = db->mTrace;
+ db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
+ db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum;
+ db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder
+ | SQLITE_Defensive | SQLITE_CountRows);
+ db->mTrace = 0;
+
+ zDbMain = db->aDb[iDb].zDbSName;
+ pMain = db->aDb[iDb].pBt;
+ isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));
+
+ /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
+ ** can be set to 'off' for this file, as it is not recovered if a crash
+ ** occurs anyway. The integrity of the database is maintained by a
+ ** (possibly synchronous) transaction opened on the main database before
+ ** sqlite3BtreeCopyFile() is called.
+ **
+ ** An optimization would be to use a non-journaled pager.
+ ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
+ ** that actually made the VACUUM run slower. Very little journalling
+ ** actually occurs when doing a vacuum since the vacuum_db is initially
+ ** empty. Only the journal header is written. Apparently it takes more
+ ** time to parse and run the PRAGMA to turn journalling off than it does
+ ** to write the journal header file.
+ */
+ nDb = db->nDb;
+ rc = execSqlF(db, pzErrMsg, "ATTACH %Q AS vacuum_db", zOut);
+ db->openFlags = saved_openFlags;
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ assert( (db->nDb-1)==nDb );
+ pDb = &db->aDb[nDb];
+ assert( strcmp(pDb->zDbSName,"vacuum_db")==0 );
+ pTemp = pDb->pBt;
+ if( pOut ){
+ sqlite3_file *id = sqlite3PagerFile(sqlite3BtreePager(pTemp));
+ i64 sz = 0;
+ if( id->pMethods!=0 && (sqlite3OsFileSize(id, &sz)!=SQLITE_OK || sz>0) ){
+ rc = SQLITE_ERROR;
+ sqlite3SetString(pzErrMsg, db, "output file already exists");
+ goto end_of_vacuum;
+ }
+ db->mDbFlags |= DBFLAG_VacuumInto;
+
+ /* For a VACUUM INTO, the pager-flags are set to the same values as
+ ** they are for the database being vacuumed, except that PAGER_CACHESPILL
+ ** is always set. */
+ pgflags = db->aDb[iDb].safety_level | (db->flags & PAGER_FLAGS_MASK);
+ }
+ nRes = sqlite3BtreeGetRequestedReserve(pMain);
+
+ sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size);
+ sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain,0));
+ sqlite3BtreeSetPagerFlags(pTemp, pgflags|PAGER_CACHESPILL);
+
+ /* Begin a transaction and take an exclusive lock on the main database
+ ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below,
+ ** to ensure that we do not try to change the page-size on a WAL database.
+ */
+ rc = execSql(db, pzErrMsg, "BEGIN");
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeBeginTrans(pMain, pOut==0 ? 2 : 0, 0);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Do not attempt to change the page size for a WAL database */
+ if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain))
+ ==PAGER_JOURNALMODE_WAL
+ && pOut==0
+ ){
+ db->nextPagesize = 0;
+ }
+
+ if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
+ || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
+ || NEVER(db->mallocFailed)
+ ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto end_of_vacuum;
+ }
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
+ sqlite3BtreeGetAutoVacuum(pMain));
+#endif
+
+ /* Query the schema of the main database. Create a mirror schema
+ ** in the temporary database.
+ */
+ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */
+ rc = execSqlF(db, pzErrMsg,
+ "SELECT sql FROM \"%w\".sqlite_schema"
+ " WHERE type='table'AND name<>'sqlite_sequence'"
+ " AND coalesce(rootpage,1)>0",
+ zDbMain
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = execSqlF(db, pzErrMsg,
+ "SELECT sql FROM \"%w\".sqlite_schema"
+ " WHERE type='index'",
+ zDbMain
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ db->init.iDb = 0;
+
+ /* Loop through the tables in the main database. For each, do
+ ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy
+ ** the contents to the temporary database.
+ */
+ rc = execSqlF(db, pzErrMsg,
+ "SELECT'INSERT INTO vacuum_db.'||quote(name)"
+ "||' SELECT*FROM\"%w\".'||quote(name)"
+ "FROM vacuum_db.sqlite_schema "
+ "WHERE type='table'AND coalesce(rootpage,1)>0",
+ zDbMain
+ );
+ assert( (db->mDbFlags & DBFLAG_Vacuum)!=0 );
+ db->mDbFlags &= ~DBFLAG_Vacuum;
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Copy the triggers, views, and virtual tables from the main database
+ ** over to the temporary database. None of these objects has any
+ ** associated storage, so all we have to do is copy their entries
+ ** from the schema table.
+ */
+ rc = execSqlF(db, pzErrMsg,
+ "INSERT INTO vacuum_db.sqlite_schema"
+ " SELECT*FROM \"%w\".sqlite_schema"
+ " WHERE type IN('view','trigger')"
+ " OR(type='table'AND rootpage=0)",
+ zDbMain
+ );
+ if( rc ) goto end_of_vacuum;
+
+ /* At this point, there is a write transaction open on both the
+ ** vacuum database and the main database. Assuming no error occurs,
+ ** both transactions are closed by this block - the main database
+ ** transaction by sqlite3BtreeCopyFile() and the other by an explicit
+ ** call to sqlite3BtreeCommit().
+ */
+ {
+ u32 meta;
+ int i;
+
+ /* This array determines which meta meta values are preserved in the
+ ** vacuum. Even entries are the meta value number and odd entries
+ ** are an increment to apply to the meta value after the vacuum.
+ ** The increment is used to increase the schema cookie so that other
+ ** connections to the same database will know to reread the schema.
+ */
+ static const unsigned char aCopy[] = {
+ BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */
+ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */
+ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */
+ BTREE_USER_VERSION, 0, /* Preserve the user version */
+ BTREE_APPLICATION_ID, 0, /* Preserve the application id */
+ };
+
+ assert( SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pTemp) );
+ assert( pOut!=0 || SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pMain) );
+
+ /* Copy Btree meta values */
+ for(i=0; i<ArraySize(aCopy); i+=2){
+ /* GetMeta() and UpdateMeta() cannot fail in this context because
+ ** we already have page 1 loaded into cache and marked dirty. */
+ sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
+ rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
+ if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum;
+ }
+
+ if( pOut==0 ){
+ rc = sqlite3BtreeCopyFile(pMain, pTemp);
+ }
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeCommit(pTemp);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pOut==0 ){
+ sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
+ }
+#endif
+ }
+
+ assert( rc==SQLITE_OK );
+ if( pOut==0 ){
+ nRes = sqlite3BtreeGetRequestedReserve(pTemp);
+ rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1);
+ }
+
+end_of_vacuum:
+ /* Restore the original value of db->flags */
+ db->init.iDb = 0;
+ db->mDbFlags = saved_mDbFlags;
+ db->flags = saved_flags;
+ db->nChange = saved_nChange;
+ db->nTotalChange = saved_nTotalChange;
+ db->mTrace = saved_mTrace;
+ sqlite3BtreeSetPageSize(pMain, -1, 0, 1);
+
+ /* Currently there is an SQL level transaction open on the vacuum
+ ** database. No locks are held on any other files (since the main file
+ ** was committed at the btree level). So it safe to end the transaction
+ ** by manually setting the autoCommit flag to true and detaching the
+ ** vacuum database. The vacuum_db journal file is deleted when the pager
+ ** is closed by the DETACH.
+ */
+ db->autoCommit = 1;
+
+ if( pDb ){
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ pDb->pSchema = 0;
+ }
+
+ /* This both clears the schemas and reduces the size of the db->aDb[]
+ ** array. */
+ sqlite3ResetAllSchemasOfConnection(db);
+
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
+
+/************** End of vacuum.c **********************************************/
+/************** Begin file vtab.c ********************************************/
+/*
+** 2006 June 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to help implement virtual tables.
+*/
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* #include "sqliteInt.h" */
+
+/*
+** Before a virtual table xCreate() or xConnect() method is invoked, the
+** sqlite3.pVtabCtx member variable is set to point to an instance of
+** this struct allocated on the stack. It is used by the implementation of
+** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
+** are invoked only from within xCreate and xConnect methods.
+*/
+struct VtabCtx {
+ VTable *pVTable; /* The virtual table being constructed */
+ Table *pTab; /* The Table object to which the virtual table belongs */
+ VtabCtx *pPrior; /* Parent context (if any) */
+ int bDeclared; /* True after sqlite3_declare_vtab() is called */
+};
+
+/*
+** Construct and install a Module object for a virtual table. When this
+** routine is called, it is guaranteed that all appropriate locks are held
+** and the module is not already part of the connection.
+**
+** If there already exists a module with zName, replace it with the new one.
+** If pModule==0, then delete the module zName if it exists.
+*/
+SQLITE_PRIVATE Module *sqlite3VtabCreateModule(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+ Module *pMod;
+ Module *pDel;
+ char *zCopy;
+ if( pModule==0 ){
+ zCopy = (char*)zName;
+ pMod = 0;
+ }else{
+ int nName = sqlite3Strlen30(zName);
+ pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1);
+ if( pMod==0 ){
+ sqlite3OomFault(db);
+ return 0;
+ }
+ zCopy = (char *)(&pMod[1]);
+ memcpy(zCopy, zName, nName+1);
+ pMod->zName = zCopy;
+ pMod->pModule = pModule;
+ pMod->pAux = pAux;
+ pMod->xDestroy = xDestroy;
+ pMod->pEpoTab = 0;
+ pMod->nRefModule = 1;
+ }
+ pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
+ if( pDel ){
+ if( pDel==pMod ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, pDel);
+ pMod = 0;
+ }else{
+ sqlite3VtabEponymousTableClear(db, pDel);
+ sqlite3VtabModuleUnref(db, pDel);
+ }
+ }
+ return pMod;
+}
+
+/*
+** The actual function that does the work of creating a new module.
+** This function implements the sqlite3_create_module() and
+** sqlite3_create_module_v2() interfaces.
+*/
+static int createModule(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+ int rc = SQLITE_OK;
+
+ sqlite3_mutex_enter(db->mutex);
+ (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy);
+ rc = sqlite3ApiExit(db, rc);
+ if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux /* Context pointer for xCreate/xConnect */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ return createModule(db, zName, pModule, pAux, 0);
+}
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ return createModule(db, zName, pModule, pAux, xDestroy);
+}
+
+/*
+** External API to drop all virtual-table modules, except those named
+** on the azNames list.
+*/
+SQLITE_API int sqlite3_drop_modules(sqlite3 *db, const char** azNames){
+ HashElem *pThis, *pNext;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){
+ Module *pMod = (Module*)sqliteHashData(pThis);
+ pNext = sqliteHashNext(pThis);
+ if( azNames ){
+ int ii;
+ for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){}
+ if( azNames[ii]!=0 ) continue;
+ }
+ createModule(db, pMod->zName, 0, 0, 0);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Decrement the reference count on a Module object. Destroy the
+** module when the reference count reaches zero.
+*/
+SQLITE_PRIVATE void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){
+ assert( pMod->nRefModule>0 );
+ pMod->nRefModule--;
+ if( pMod->nRefModule==0 ){
+ if( pMod->xDestroy ){
+ pMod->xDestroy(pMod->pAux);
+ }
+ assert( pMod->pEpoTab==0 );
+ sqlite3DbFree(db, pMod);
+ }
+}
+
+/*
+** Lock the virtual table so that it cannot be disconnected.
+** Locks nest. Every lock should have a corresponding unlock.
+** If an unlock is omitted, resources leaks will occur.
+**
+** If a disconnect is attempted while a virtual table is locked,
+** the disconnect is deferred until all locks have been removed.
+*/
+SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){
+ pVTab->nRef++;
+}
+
+
+/*
+** pTab is a pointer to a Table structure representing a virtual-table.
+** Return a pointer to the VTable object used by connection db to access
+** this virtual-table, if one has been created, or NULL otherwise.
+*/
+SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
+ VTable *pVtab;
+ assert( IsVirtual(pTab) );
+ for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
+ return pVtab;
+}
+
+/*
+** Decrement the ref-count on a virtual table object. When the ref-count
+** reaches zero, call the xDisconnect() method to delete the object.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
+ sqlite3 *db = pVTab->db;
+
+ assert( db );
+ assert( pVTab->nRef>0 );
+ assert( db->eOpenState==SQLITE_STATE_OPEN
+ || db->eOpenState==SQLITE_STATE_ZOMBIE );
+
+ pVTab->nRef--;
+ if( pVTab->nRef==0 ){
+ sqlite3_vtab *p = pVTab->pVtab;
+ if( p ){
+ p->pModule->xDisconnect(p);
+ }
+ sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod);
+ sqlite3DbFree(db, pVTab);
+ }
+}
+
+/*
+** Table p is a virtual table. This function moves all elements in the
+** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated
+** database connections to be disconnected at the next opportunity.
+** Except, if argument db is not NULL, then the entry associated with
+** connection db is left in the p->u.vtab.p list.
+*/
+static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
+ VTable *pRet = 0;
+ VTable *pVTable;
+
+ assert( IsVirtual(p) );
+ pVTable = p->u.vtab.p;
+ p->u.vtab.p = 0;
+
+ /* Assert that the mutex (if any) associated with the BtShared database
+ ** that contains table p is held by the caller. See header comments
+ ** above function sqlite3VtabUnlockList() for an explanation of why
+ ** this makes it safe to access the sqlite3.pDisconnect list of any
+ ** database connection that may have an entry in the p->u.vtab.p list.
+ */
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
+
+ while( pVTable ){
+ sqlite3 *db2 = pVTable->db;
+ VTable *pNext = pVTable->pNext;
+ assert( db2 );
+ if( db2==db ){
+ pRet = pVTable;
+ p->u.vtab.p = pRet;
+ pRet->pNext = 0;
+ }else{
+ pVTable->pNext = db2->pDisconnect;
+ db2->pDisconnect = pVTable;
+ }
+ pVTable = pNext;
+ }
+
+ assert( !db || pRet );
+ return pRet;
+}
+
+/*
+** Table *p is a virtual table. This function removes the VTable object
+** for table *p associated with database connection db from the linked
+** list in p->pVTab. It also decrements the VTable ref count. This is
+** used when closing database connection db to free all of its VTable
+** objects without disturbing the rest of the Schema object (which may
+** be being used by other shared-cache connections).
+*/
+SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
+ VTable **ppVTab;
+
+ assert( IsVirtual(p) );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){
+ if( (*ppVTab)->db==db ){
+ VTable *pVTab = *ppVTab;
+ *ppVTab = pVTab->pNext;
+ sqlite3VtabUnlock(pVTab);
+ break;
+ }
+ }
+}
+
+
+/*
+** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
+**
+** This function may only be called when the mutexes associated with all
+** shared b-tree databases opened using connection db are held by the
+** caller. This is done to protect the sqlite3.pDisconnect list. The
+** sqlite3.pDisconnect list is accessed only as follows:
+**
+** 1) By this function. In this case, all BtShared mutexes and the mutex
+** associated with the database handle itself must be held.
+**
+** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
+** the sqlite3.pDisconnect list. In this case either the BtShared mutex
+** associated with the database the virtual table is stored in is held
+** or, if the virtual table is stored in a non-sharable database, then
+** the database handle mutex is held.
+**
+** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
+** by multiple threads. It is thread-safe.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){
+ VTable *p = db->pDisconnect;
+
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ if( p ){
+ db->pDisconnect = 0;
+ sqlite3ExpirePreparedStatements(db, 0);
+ do {
+ VTable *pNext = p->pNext;
+ sqlite3VtabUnlock(p);
+ p = pNext;
+ }while( p );
+ }
+}
+
+/*
+** Clear any and all virtual-table information from the Table record.
+** This routine is called, for example, just before deleting the Table
+** record.
+**
+** Since it is a virtual-table, the Table structure contains a pointer
+** to the head of a linked list of VTable structures. Each VTable
+** structure is associated with a single sqlite3* user of the schema.
+** The reference count of the VTable structure associated with database
+** connection db is decremented immediately (which may lead to the
+** structure being xDisconnected and free). Any other VTable structures
+** in the list are moved to the sqlite3.pDisconnect list of the associated
+** database connection.
+*/
+SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){
+ assert( IsVirtual(p) );
+ assert( db!=0 );
+ if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
+ if( p->u.vtab.azArg ){
+ int i;
+ for(i=0; i<p->u.vtab.nArg; i++){
+ if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]);
+ }
+ sqlite3DbFree(db, p->u.vtab.azArg);
+ }
+}
+
+/*
+** Add a new module argument to pTable->u.vtab.azArg[].
+** The string is not copied - the pointer is stored. The
+** string will be freed automatically when the table is
+** deleted.
+*/
+static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){
+ sqlite3_int64 nBytes;
+ char **azModuleArg;
+ sqlite3 *db = pParse->db;
+
+ assert( IsVirtual(pTable) );
+ nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg);
+ if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName);
+ }
+ azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes);
+ if( azModuleArg==0 ){
+ sqlite3DbFree(db, zArg);
+ }else{
+ int i = pTable->u.vtab.nArg++;
+ azModuleArg[i] = zArg;
+ azModuleArg[i+1] = 0;
+ pTable->u.vtab.azArg = azModuleArg;
+ }
+}
+
+/*
+** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
+** statement. The module name has been parsed, but the optional list
+** of parameters that follow the module name are still pending.
+*/
+SQLITE_PRIVATE void sqlite3VtabBeginParse(
+ Parse *pParse, /* Parsing context */
+ Token *pName1, /* Name of new table, or database name */
+ Token *pName2, /* Name of new table or NULL */
+ Token *pModuleName, /* Name of the module for the virtual table */
+ int ifNotExists /* No error if the table already exists */
+){
+ Table *pTable; /* The new virtual table */
+ sqlite3 *db; /* Database connection */
+
+ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
+ pTable = pParse->pNewTable;
+ if( pTable==0 ) return;
+ assert( 0==pTable->pIndex );
+ pTable->eTabType = TABTYP_VTAB;
+
+ db = pParse->db;
+
+ assert( pTable->u.vtab.nArg==0 );
+ addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName));
+ addModuleArgument(pParse, pTable, 0);
+ addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName));
+ assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
+ || (pParse->sNameToken.z==pName1->z && pName2->z==0)
+ );
+ pParse->sNameToken.n = (int)(
+ &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
+ );
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Creating a virtual table invokes the authorization callback twice.
+ ** The first invocation, to obtain permission to INSERT a row into the
+ ** sqlite_schema table, has already been made by sqlite3StartTable().
+ ** The second call, to obtain permission to create the table, is made now.
+ */
+ if( pTable->u.vtab.azArg ){
+ int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
+ assert( iDb>=0 ); /* The database the table is being created in */
+ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
+ pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName);
+ }
+#endif
+}
+
+/*
+** This routine takes the module argument that has been accumulating
+** in pParse->zArg[] and appends it to the list of arguments on the
+** virtual table currently under construction in pParse->pTable.
+*/
+static void addArgumentToVtab(Parse *pParse){
+ if( pParse->sArg.z && pParse->pNewTable ){
+ const char *z = (const char*)pParse->sArg.z;
+ int n = pParse->sArg.n;
+ sqlite3 *db = pParse->db;
+ addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
+ }
+}
+
+/*
+** The parser calls this routine after the CREATE VIRTUAL TABLE statement
+** has been completely parsed.
+*/
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
+ Table *pTab = pParse->pNewTable; /* The table being constructed */
+ sqlite3 *db = pParse->db; /* The database connection */
+
+ if( pTab==0 ) return;
+ assert( IsVirtual(pTab) );
+ addArgumentToVtab(pParse);
+ pParse->sArg.z = 0;
+ if( pTab->u.vtab.nArg<1 ) return;
+
+ /* If the CREATE VIRTUAL TABLE statement is being entered for the
+ ** first time (in other words if the virtual table is actually being
+ ** created now instead of just being read out of sqlite_schema) then
+ ** do additional initialization work and store the statement text
+ ** in the sqlite_schema table.
+ */
+ if( !db->init.busy ){
+ char *zStmt;
+ char *zWhere;
+ int iDb;
+ int iReg;
+ Vdbe *v;
+
+ sqlite3MayAbort(pParse);
+
+ /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
+ if( pEnd ){
+ pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
+ }
+ zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
+
+ /* A slot for the record has already been allocated in the
+ ** schema table. We just need to update that slot with all
+ ** the information we've collected.
+ **
+ ** The VM register number pParse->regRowid holds the rowid of an
+ ** entry in the sqlite_schema table that was created for this vtab
+ ** by sqlite3StartTable().
+ */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q." LEGACY_SCHEMA_TABLE " "
+ "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
+ "WHERE rowid=#%d",
+ db->aDb[iDb].zDbSName,
+ pTab->zName,
+ pTab->zName,
+ zStmt,
+ pParse->regRowid
+ );
+ v = sqlite3GetVdbe(pParse);
+ sqlite3ChangeCookie(pParse, iDb);
+
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt);
+ sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0);
+ sqlite3DbFree(db, zStmt);
+
+ iReg = ++pParse->nMem;
+ sqlite3VdbeLoadString(v, iReg, pTab->zName);
+ sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
+ }else{
+ /* If we are rereading the sqlite_schema table create the in-memory
+ ** record of the table. */
+ Table *pOld;
+ Schema *pSchema = pTab->pSchema;
+ const char *zName = pTab->zName;
+ assert( zName!=0 );
+ sqlite3MarkAllShadowTablesOf(db, pTab);
+ pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
+ if( pOld ){
+ sqlite3OomFault(db);
+ assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
+ return;
+ }
+ pParse->pNewTable = 0;
+ }
+}
+
+/*
+** The parser calls this routine when it sees the first token
+** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
+ addArgumentToVtab(pParse);
+ pParse->sArg.z = 0;
+ pParse->sArg.n = 0;
+}
+
+/*
+** The parser calls this routine for each token after the first token
+** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
+ Token *pArg = &pParse->sArg;
+ if( pArg->z==0 ){
+ pArg->z = p->z;
+ pArg->n = p->n;
+ }else{
+ assert(pArg->z <= p->z);
+ pArg->n = (int)(&p->z[p->n] - pArg->z);
+ }
+}
+
+/*
+** Invoke a virtual table constructor (either xCreate or xConnect). The
+** pointer to the function to invoke is passed as the fourth parameter
+** to this procedure.
+*/
+static int vtabCallConstructor(
+ sqlite3 *db,
+ Table *pTab,
+ Module *pMod,
+ int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
+ char **pzErr
+){
+ VtabCtx sCtx;
+ VTable *pVTable;
+ int rc;
+ const char *const*azArg;
+ int nArg = pTab->u.vtab.nArg;
+ char *zErr = 0;
+ char *zModuleName;
+ int iDb;
+ VtabCtx *pCtx;
+
+ assert( IsVirtual(pTab) );
+ azArg = (const char *const*)pTab->u.vtab.azArg;
+
+ /* Check that the virtual-table is not already being initialized */
+ for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
+ if( pCtx->pTab==pTab ){
+ *pzErr = sqlite3MPrintf(db,
+ "vtable constructor called recursively: %s", pTab->zName
+ );
+ return SQLITE_LOCKED;
+ }
+ }
+
+ zModuleName = sqlite3DbStrDup(db, pTab->zName);
+ if( !zModuleName ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ pVTable = sqlite3MallocZero(sizeof(VTable));
+ if( !pVTable ){
+ sqlite3OomFault(db);
+ sqlite3DbFree(db, zModuleName);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pVTable->db = db;
+ pVTable->pMod = pMod;
+ pVTable->eVtabRisk = SQLITE_VTABRISK_Normal;
+
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName;
+
+ /* Invoke the virtual table constructor */
+ assert( &db->pVtabCtx );
+ assert( xConstruct );
+ sCtx.pTab = pTab;
+ sCtx.pVTable = pVTable;
+ sCtx.pPrior = db->pVtabCtx;
+ sCtx.bDeclared = 0;
+ db->pVtabCtx = &sCtx;
+ pTab->nTabRef++;
+ rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
+ sqlite3DeleteTable(db, pTab);
+ db->pVtabCtx = sCtx.pPrior;
+ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
+ assert( sCtx.pTab==pTab );
+
+ if( SQLITE_OK!=rc ){
+ if( zErr==0 ){
+ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
+ }else {
+ *pzErr = sqlite3MPrintf(db, "%s", zErr);
+ sqlite3_free(zErr);
+ }
+ sqlite3DbFree(db, pVTable);
+ }else if( ALWAYS(pVTable->pVtab) ){
+ /* Justification of ALWAYS(): A correct vtab constructor must allocate
+ ** the sqlite3_vtab object if successful. */
+ memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
+ pVTable->pVtab->pModule = pMod->pModule;
+ pMod->nRefModule++;
+ pVTable->nRef = 1;
+ if( sCtx.bDeclared==0 ){
+ const char *zFormat = "vtable constructor did not declare schema: %s";
+ *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
+ sqlite3VtabUnlock(pVTable);
+ rc = SQLITE_ERROR;
+ }else{
+ int iCol;
+ u16 oooHidden = 0;
+ /* If everything went according to plan, link the new VTable structure
+ ** into the linked list headed by pTab->u.vtab.p. Then loop through the
+ ** columns of the table to see if any of them contain the token "hidden".
+ ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
+ ** the type string. */
+ pVTable->pNext = pTab->u.vtab.p;
+ pTab->u.vtab.p = pVTable;
+
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
+ int nType;
+ int i = 0;
+ nType = sqlite3Strlen30(zType);
+ for(i=0; i<nType; i++){
+ if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
+ && (i==0 || zType[i-1]==' ')
+ && (zType[i+6]=='\0' || zType[i+6]==' ')
+ ){
+ break;
+ }
+ }
+ if( i<nType ){
+ int j;
+ int nDel = 6 + (zType[i+6] ? 1 : 0);
+ for(j=i; (j+nDel)<=nType; j++){
+ zType[j] = zType[j+nDel];
+ }
+ if( zType[i]=='\0' && i>0 ){
+ assert(zType[i-1]==' ');
+ zType[i-1] = '\0';
+ }
+ pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
+ pTab->tabFlags |= TF_HasHidden;
+ oooHidden = TF_OOOHidden;
+ }else{
+ pTab->tabFlags |= oooHidden;
+ }
+ }
+ }
+ }
+
+ sqlite3DbFree(db, zModuleName);
+ return rc;
+}
+
+/*
+** This function is invoked by the parser to call the xConnect() method
+** of the virtual table pTab. If an error occurs, an error code is returned
+** and an error left in pParse.
+**
+** This call is a no-op if table pTab is not a virtual table.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
+ sqlite3 *db = pParse->db;
+ const char *zMod;
+ Module *pMod;
+ int rc;
+
+ assert( pTab );
+ assert( IsVirtual(pTab) );
+ if( sqlite3GetVTable(db, pTab) ){
+ return SQLITE_OK;
+ }
+
+ /* Locate the required virtual table module */
+ zMod = pTab->u.vtab.azArg[0];
+ pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
+
+ if( !pMod ){
+ const char *zModule = pTab->u.vtab.azArg[0];
+ sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
+ rc = SQLITE_ERROR;
+ }else{
+ char *zErr = 0;
+ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "%s", zErr);
+ pParse->rc = rc;
+ }
+ sqlite3DbFree(db, zErr);
+ }
+
+ return rc;
+}
+/*
+** Grow the db->aVTrans[] array so that there is room for at least one
+** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
+*/
+static int growVTrans(sqlite3 *db){
+ const int ARRAY_INCR = 5;
+
+ /* Grow the sqlite3.aVTrans array if required */
+ if( (db->nVTrans%ARRAY_INCR)==0 ){
+ VTable **aVTrans;
+ sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)*
+ ((sqlite3_int64)db->nVTrans + ARRAY_INCR);
+ aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
+ if( !aVTrans ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
+ db->aVTrans = aVTrans;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
+** have already been reserved using growVTrans().
+*/
+static void addToVTrans(sqlite3 *db, VTable *pVTab){
+ /* Add pVtab to the end of sqlite3.aVTrans */
+ db->aVTrans[db->nVTrans++] = pVTab;
+ sqlite3VtabLock(pVTab);
+}
+
+/*
+** This function is invoked by the vdbe to call the xCreate method
+** of the virtual table named zTab in database iDb.
+**
+** If an error occurs, *pzErr is set to point to an English language
+** description of the error and an SQLITE_XXX error code is returned.
+** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
+ int rc = SQLITE_OK;
+ Table *pTab;
+ Module *pMod;
+ const char *zMod;
+
+ pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
+ assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p );
+
+ /* Locate the required virtual table module */
+ zMod = pTab->u.vtab.azArg[0];
+ pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
+
+ /* If the module has been registered and includes a Create method,
+ ** invoke it now. If the module has not been registered, return an
+ ** error. Otherwise, do nothing.
+ */
+ if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
+ *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
+ rc = SQLITE_ERROR;
+ }else{
+ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
+ }
+
+ /* Justification of ALWAYS(): The xConstructor method is required to
+ ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
+ if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
+ rc = growVTrans(db);
+ if( rc==SQLITE_OK ){
+ addToVTrans(db, sqlite3GetVTable(db, pTab));
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is used to set the schema of a virtual table. It is only
+** valid to call this function from within the xCreate() or xConnect() of a
+** virtual table module.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
+ VtabCtx *pCtx;
+ int rc = SQLITE_OK;
+ Table *pTab;
+ Parse sParse;
+ int initBusy;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pCtx = db->pVtabCtx;
+ if( !pCtx || pCtx->bDeclared ){
+ sqlite3Error(db, SQLITE_MISUSE_BKPT);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_MISUSE_BKPT;
+ }
+ pTab = pCtx->pTab;
+ assert( IsVirtual(pTab) );
+
+ sqlite3ParseObjectInit(&sParse, db);
+ sParse.eParseMode = PARSE_MODE_DECLARE_VTAB;
+ sParse.disableTriggers = 1;
+ /* We should never be able to reach this point while loading the
+ ** schema. Nevertheless, defend against that (turn off db->init.busy)
+ ** in case a bug arises. */
+ assert( db->init.busy==0 );
+ initBusy = db->init.busy;
+ db->init.busy = 0;
+ sParse.nQueryLoop = 1;
+ if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable)
+ && ALWAYS(sParse.pNewTable!=0)
+ && ALWAYS(!db->mallocFailed)
+ && IsOrdinaryTable(sParse.pNewTable)
+ ){
+ assert( sParse.zErrMsg==0 );
+ if( !pTab->aCol ){
+ Table *pNew = sParse.pNewTable;
+ Index *pIdx;
+ pTab->aCol = pNew->aCol;
+ sqlite3ExprListDelete(db, pNew->u.tab.pDfltList);
+ pTab->nNVCol = pTab->nCol = pNew->nCol;
+ pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
+ pNew->nCol = 0;
+ pNew->aCol = 0;
+ assert( pTab->pIndex==0 );
+ assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 );
+ if( !HasRowid(pNew)
+ && pCtx->pVTable->pMod->pModule->xUpdate!=0
+ && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1
+ ){
+ /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0)
+ ** or else must have a single-column PRIMARY KEY */
+ rc = SQLITE_ERROR;
+ }
+ pIdx = pNew->pIndex;
+ if( pIdx ){
+ assert( pIdx->pNext==0 );
+ pTab->pIndex = pIdx;
+ pNew->pIndex = 0;
+ pIdx->pTable = pTab;
+ }
+ }
+ pCtx->bDeclared = 1;
+ }else{
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR,
+ (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg);
+ sqlite3DbFree(db, sParse.zErrMsg);
+ rc = SQLITE_ERROR;
+ }
+ sParse.eParseMode = PARSE_MODE_NORMAL;
+
+ if( sParse.pVdbe ){
+ sqlite3VdbeFinalize(sParse.pVdbe);
+ }
+ sqlite3DeleteTable(db, sParse.pNewTable);
+ sqlite3ParseObjectReset(&sParse);
+ db->init.busy = initBusy;
+
+ assert( (rc&0xff)==rc );
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This function is invoked by the vdbe to call the xDestroy method
+** of the virtual table named zTab in database iDb. This occurs
+** when a DROP TABLE is mentioned.
+**
+** This call is a no-op if zTab is not a virtual table.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
+ int rc = SQLITE_OK;
+ Table *pTab;
+
+ pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
+ if( ALWAYS(pTab!=0)
+ && ALWAYS(IsVirtual(pTab))
+ && ALWAYS(pTab->u.vtab.p!=0)
+ ){
+ VTable *p;
+ int (*xDestroy)(sqlite3_vtab *);
+ for(p=pTab->u.vtab.p; p; p=p->pNext){
+ assert( p->pVtab );
+ if( p->pVtab->nRef>0 ){
+ return SQLITE_LOCKED;
+ }
+ }
+ p = vtabDisconnectAll(db, pTab);
+ xDestroy = p->pMod->pModule->xDestroy;
+ if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect;
+ assert( xDestroy!=0 );
+ pTab->nTabRef++;
+ rc = xDestroy(p->pVtab);
+ /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
+ if( rc==SQLITE_OK ){
+ assert( pTab->u.vtab.p==p && p->pNext==0 );
+ p->pVtab = 0;
+ pTab->u.vtab.p = 0;
+ sqlite3VtabUnlock(p);
+ }
+ sqlite3DeleteTable(db, pTab);
+ }
+
+ return rc;
+}
+
+/*
+** This function invokes either the xRollback or xCommit method
+** of each of the virtual tables in the sqlite3.aVTrans array. The method
+** called is identified by the second argument, "offset", which is
+** the offset of the method to call in the sqlite3_module structure.
+**
+** The array is cleared after invoking the callbacks.
+*/
+static void callFinaliser(sqlite3 *db, int offset){
+ int i;
+ if( db->aVTrans ){
+ VTable **aVTrans = db->aVTrans;
+ db->aVTrans = 0;
+ for(i=0; i<db->nVTrans; i++){
+ VTable *pVTab = aVTrans[i];
+ sqlite3_vtab *p = pVTab->pVtab;
+ if( p ){
+ int (*x)(sqlite3_vtab *);
+ x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
+ if( x ) x(p);
+ }
+ pVTab->iSavepoint = 0;
+ sqlite3VtabUnlock(pVTab);
+ }
+ sqlite3DbFree(db, aVTrans);
+ db->nVTrans = 0;
+ }
+}
+
+/*
+** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
+** array. Return the error code for the first error that occurs, or
+** SQLITE_OK if all xSync operations are successful.
+**
+** If an error message is available, leave it in p->zErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
+ int i;
+ int rc = SQLITE_OK;
+ VTable **aVTrans = db->aVTrans;
+
+ db->aVTrans = 0;
+ for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
+ int (*x)(sqlite3_vtab *);
+ sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
+ if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
+ rc = x(pVtab);
+ sqlite3VtabImportErrmsg(p, pVtab);
+ }
+ }
+ db->aVTrans = aVTrans;
+ return rc;
+}
+
+/*
+** Invoke the xRollback method of all virtual tables in the
+** sqlite3.aVTrans array. Then clear the array itself.
+*/
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xRollback));
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xCommit method of all virtual tables in the
+** sqlite3.aVTrans array. Then clear the array itself.
+*/
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xCommit));
+ return SQLITE_OK;
+}
+
+/*
+** If the virtual table pVtab supports the transaction interface
+** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
+** not currently open, invoke the xBegin method now.
+**
+** If the xBegin call is successful, place the sqlite3_vtab pointer
+** in the sqlite3.aVTrans array.
+*/
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
+ int rc = SQLITE_OK;
+ const sqlite3_module *pModule;
+
+ /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
+ ** than zero, then this function is being called from within a
+ ** virtual module xSync() callback. It is illegal to write to
+ ** virtual module tables in this case, so return SQLITE_LOCKED.
+ */
+ if( sqlite3VtabInSync(db) ){
+ return SQLITE_LOCKED;
+ }
+ if( !pVTab ){
+ return SQLITE_OK;
+ }
+ pModule = pVTab->pVtab->pModule;
+
+ if( pModule->xBegin ){
+ int i;
+
+ /* If pVtab is already in the aVTrans array, return early */
+ for(i=0; i<db->nVTrans; i++){
+ if( db->aVTrans[i]==pVTab ){
+ return SQLITE_OK;
+ }
+ }
+
+ /* Invoke the xBegin method. If successful, add the vtab to the
+ ** sqlite3.aVTrans[] array. */
+ rc = growVTrans(db);
+ if( rc==SQLITE_OK ){
+ rc = pModule->xBegin(pVTab->pVtab);
+ if( rc==SQLITE_OK ){
+ int iSvpt = db->nStatement + db->nSavepoint;
+ addToVTrans(db, pVTab);
+ if( iSvpt && pModule->xSavepoint ){
+ pVTab->iSavepoint = iSvpt;
+ rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
+ }
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
+** virtual tables that currently have an open transaction. Pass iSavepoint
+** as the second argument to the virtual table method invoked.
+**
+** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
+** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
+** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
+** an open transaction is invoked.
+**
+** If any virtual table method returns an error code other than SQLITE_OK,
+** processing is abandoned and the error returned to the caller of this
+** function immediately. If all calls to virtual table methods are successful,
+** SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
+ int rc = SQLITE_OK;
+
+ assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
+ assert( iSavepoint>=-1 );
+ if( db->aVTrans ){
+ int i;
+ for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
+ VTable *pVTab = db->aVTrans[i];
+ const sqlite3_module *pMod = pVTab->pMod->pModule;
+ if( pVTab->pVtab && pMod->iVersion>=2 ){
+ int (*xMethod)(sqlite3_vtab *, int);
+ sqlite3VtabLock(pVTab);
+ switch( op ){
+ case SAVEPOINT_BEGIN:
+ xMethod = pMod->xSavepoint;
+ pVTab->iSavepoint = iSavepoint+1;
+ break;
+ case SAVEPOINT_ROLLBACK:
+ xMethod = pMod->xRollbackTo;
+ break;
+ default:
+ xMethod = pMod->xRelease;
+ break;
+ }
+ if( xMethod && pVTab->iSavepoint>iSavepoint ){
+ u64 savedFlags = (db->flags & SQLITE_Defensive);
+ db->flags &= ~(u64)SQLITE_Defensive;
+ rc = xMethod(pVTab->pVtab, iSavepoint);
+ db->flags |= savedFlags;
+ }
+ sqlite3VtabUnlock(pVTab);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** The first parameter (pDef) is a function implementation. The
+** second parameter (pExpr) is the first argument to this function.
+** If pExpr is a column in a virtual table, then let the virtual
+** table implementation have an opportunity to overload the function.
+**
+** This routine is used to allow virtual table implementations to
+** overload MATCH, LIKE, GLOB, and REGEXP operators.
+**
+** Return either the pDef argument (indicating no change) or a
+** new FuncDef structure that is marked as ephemeral using the
+** SQLITE_FUNC_EPHEM flag.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
+ sqlite3 *db, /* Database connection for reporting malloc problems */
+ FuncDef *pDef, /* Function to possibly overload */
+ int nArg, /* Number of arguments to the function */
+ Expr *pExpr /* First argument to the function */
+){
+ Table *pTab;
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pMod;
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
+ void *pArg = 0;
+ FuncDef *pNew;
+ int rc = 0;
+
+ /* Check to see the left operand is a column in a virtual table */
+ if( NEVER(pExpr==0) ) return pDef;
+ if( pExpr->op!=TK_COLUMN ) return pDef;
+ assert( ExprUseYTab(pExpr) );
+ pTab = pExpr->y.pTab;
+ if( NEVER(pTab==0) ) return pDef;
+ if( !IsVirtual(pTab) ) return pDef;
+ pVtab = sqlite3GetVTable(db, pTab)->pVtab;
+ assert( pVtab!=0 );
+ assert( pVtab->pModule!=0 );
+ pMod = (sqlite3_module *)pVtab->pModule;
+ if( pMod->xFindFunction==0 ) return pDef;
+
+ /* Call the xFindFunction method on the virtual table implementation
+ ** to see if the implementation wants to overload this function.
+ **
+ ** Though undocumented, we have historically always invoked xFindFunction
+ ** with an all lower-case function name. Continue in this tradition to
+ ** avoid any chance of an incompatibility.
+ */
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=0; pDef->zName[i]; i++){
+ unsigned char x = (unsigned char)pDef->zName[i];
+ assert( x==sqlite3UpperToLower[x] );
+ }
+ }
+#endif
+ rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
+ if( rc==0 ){
+ return pDef;
+ }
+
+ /* Create a new ephemeral function definition for the overloaded
+ ** function */
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
+ + sqlite3Strlen30(pDef->zName) + 1);
+ if( pNew==0 ){
+ return pDef;
+ }
+ *pNew = *pDef;
+ pNew->zName = (const char*)&pNew[1];
+ memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
+ pNew->xSFunc = xSFunc;
+ pNew->pUserData = pArg;
+ pNew->funcFlags |= SQLITE_FUNC_EPHEM;
+ return pNew;
+}
+
+/*
+** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
+** array so that an OP_VBegin will get generated for it. Add pTab to the
+** array if it is missing. If pTab is already in the array, this routine
+** is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ int i, n;
+ Table **apVtabLock;
+
+ assert( IsVirtual(pTab) );
+ for(i=0; i<pToplevel->nVtabLock; i++){
+ if( pTab==pToplevel->apVtabLock[i] ) return;
+ }
+ n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
+ apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n);
+ if( apVtabLock ){
+ pToplevel->apVtabLock = apVtabLock;
+ pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
+ }else{
+ sqlite3OomFault(pToplevel->db);
+ }
+}
+
+/*
+** Check to see if virtual table module pMod can be have an eponymous
+** virtual table instance. If it can, create one if one does not already
+** exist. Return non-zero if either the eponymous virtual table instance
+** exists when this routine returns or if an attempt to create it failed
+** and an error message was left in pParse.
+**
+** An eponymous virtual table instance is one that is named after its
+** module, and more importantly, does not require a CREATE VIRTUAL TABLE
+** statement in order to come into existence. Eponymous virtual table
+** instances always exist. They cannot be DROP-ed.
+**
+** Any virtual table module for which xConnect and xCreate are the same
+** method can have an eponymous virtual table instance.
+*/
+SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
+ const sqlite3_module *pModule = pMod->pModule;
+ Table *pTab;
+ char *zErr = 0;
+ int rc;
+ sqlite3 *db = pParse->db;
+ if( pMod->pEpoTab ) return 1;
+ if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return 0;
+ pTab->zName = sqlite3DbStrDup(db, pMod->zName);
+ if( pTab->zName==0 ){
+ sqlite3DbFree(db, pTab);
+ return 0;
+ }
+ pMod->pEpoTab = pTab;
+ pTab->nTabRef = 1;
+ pTab->eTabType = TABTYP_VTAB;
+ pTab->pSchema = db->aDb[0].pSchema;
+ assert( pTab->u.vtab.nArg==0 );
+ pTab->iPKey = -1;
+ pTab->tabFlags |= TF_Eponymous;
+ addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
+ addModuleArgument(pParse, pTab, 0);
+ addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
+ rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
+ if( rc ){
+ sqlite3ErrorMsg(pParse, "%s", zErr);
+ sqlite3DbFree(db, zErr);
+ sqlite3VtabEponymousTableClear(db, pMod);
+ }
+ return 1;
+}
+
+/*
+** Erase the eponymous virtual table instance associated with
+** virtual table module pMod, if it exists.
+*/
+SQLITE_PRIVATE void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
+ Table *pTab = pMod->pEpoTab;
+ if( pTab!=0 ){
+ /* Mark the table as Ephemeral prior to deleting it, so that the
+ ** sqlite3DeleteTable() routine will know that it is not stored in
+ ** the schema. */
+ pTab->tabFlags |= TF_Ephemeral;
+ sqlite3DeleteTable(db, pTab);
+ pMod->pEpoTab = 0;
+ }
+}
+
+/*
+** Return the ON CONFLICT resolution mode in effect for the virtual
+** table update operation currently in progress.
+**
+** The results of this routine are undefined unless it is called from
+** within an xUpdate method.
+*/
+SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){
+ static const unsigned char aMap[] = {
+ SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
+ };
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
+ assert( OE_Ignore==4 && OE_Replace==5 );
+ assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
+ return (int)aMap[db->vtabOnConflict-1];
+}
+
+/*
+** Call from within the xCreate() or xConnect() methods to provide
+** the SQLite core with additional information about the behavior
+** of the virtual table being implemented.
+*/
+SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){
+ va_list ap;
+ int rc = SQLITE_OK;
+ VtabCtx *p;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ p = db->pVtabCtx;
+ if( !p ){
+ rc = SQLITE_MISUSE_BKPT;
+ }else{
+ assert( p->pTab==0 || IsVirtual(p->pTab) );
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
+ p->pVTable->bConstraint = (u8)va_arg(ap, int);
+ break;
+ }
+ case SQLITE_VTAB_INNOCUOUS: {
+ p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low;
+ break;
+ }
+ case SQLITE_VTAB_DIRECTONLY: {
+ p->pVTable->eVtabRisk = SQLITE_VTABRISK_High;
+ break;
+ }
+ case SQLITE_VTAB_USES_ALL_SCHEMAS: {
+ p->pVTable->bAllSchemas = 1;
+ break;
+ }
+ default: {
+ rc = SQLITE_MISUSE_BKPT;
+ break;
+ }
+ }
+ va_end(ap);
+ }
+
+ if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/************** End of vtab.c ************************************************/
+/************** Begin file wherecode.c ***************************************/
+/*
+** 2015-06-06
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements.
+**
+** This file was split off from where.c on 2015-06-06 in order to reduce the
+** size of where.c and make it easier to edit. This file contains the routines
+** that actually generate the bulk of the WHERE loop code. The original where.c
+** file retains the code that does query planning and analysis.
+*/
+/* #include "sqliteInt.h" */
+/************** Include whereInt.h in the middle of wherecode.c **************/
+/************** Begin file whereInt.h ****************************************/
+/*
+** 2013-11-12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains structure and macro definitions for the query
+** planner logic in "where.c". These definitions are broken out into
+** a separate source file for easier editing.
+*/
+#ifndef SQLITE_WHEREINT_H
+#define SQLITE_WHEREINT_H
+
+
+/* Forward references
+*/
+typedef struct WhereClause WhereClause;
+typedef struct WhereMaskSet WhereMaskSet;
+typedef struct WhereOrInfo WhereOrInfo;
+typedef struct WhereAndInfo WhereAndInfo;
+typedef struct WhereLevel WhereLevel;
+typedef struct WhereLoop WhereLoop;
+typedef struct WherePath WherePath;
+typedef struct WhereTerm WhereTerm;
+typedef struct WhereLoopBuilder WhereLoopBuilder;
+typedef struct WhereScan WhereScan;
+typedef struct WhereOrCost WhereOrCost;
+typedef struct WhereOrSet WhereOrSet;
+typedef struct WhereMemBlock WhereMemBlock;
+typedef struct WhereRightJoin WhereRightJoin;
+
+/*
+** This object is a header on a block of allocated memory that will be
+** automatically freed when its WInfo object is destructed.
+*/
+struct WhereMemBlock {
+ WhereMemBlock *pNext; /* Next block in the chain */
+ u64 sz; /* Bytes of space */
+};
+
+/*
+** Extra information attached to a WhereLevel that is a RIGHT JOIN.
+*/
+struct WhereRightJoin {
+ int iMatch; /* Cursor used to determine prior matched rows */
+ int regBloom; /* Bloom filter for iRJMatch */
+ int regReturn; /* Return register for the interior subroutine */
+ int addrSubrtn; /* Starting address for the interior subroutine */
+ int endSubrtn; /* The last opcode in the interior subroutine */
+};
+
+/*
+** This object contains information needed to implement a single nested
+** loop in WHERE clause.
+**
+** Contrast this object with WhereLoop. This object describes the
+** implementation of the loop. WhereLoop describes the algorithm.
+** This object contains a pointer to the WhereLoop algorithm as one of
+** its elements.
+**
+** The WhereInfo object contains a single instance of this object for
+** each term in the FROM clause (which is to say, for each of the
+** nested loops as implemented). The order of WhereLevel objects determines
+** the loop nested order, with WhereInfo.a[0] being the outer loop and
+** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop.
+*/
+struct WhereLevel {
+ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
+ int iTabCur; /* The VDBE cursor used to access the table */
+ int iIdxCur; /* The VDBE cursor used to access pIdx */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrNxt; /* Jump here to start the next IN combination */
+ int addrSkip; /* Jump here for next iteration of skip-scan */
+ int addrCont; /* Jump here to continue with the next loop cycle */
+ int addrFirst; /* First instruction of interior of the loop */
+ int addrBody; /* Beginning of the body of this loop */
+ int regBignull; /* big-null flag reg. True if a NULL-scan is needed */
+ int addrBignull; /* Jump here for next part of big-null scan */
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ u32 iLikeRepCntr; /* LIKE range processing counter register (times 2) */
+ int addrLikeRep; /* LIKE range processing address */
+#endif
+ int regFilter; /* Bloom filter */
+ WhereRightJoin *pRJ; /* Extra information for RIGHT JOIN */
+ u8 iFrom; /* Which entry in the FROM clause */
+ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */
+ int p1, p2; /* Operands of the opcode used to end the loop */
+ union { /* Information that depends on pWLoop->wsFlags */
+ struct {
+ int nIn; /* Number of entries in aInLoop[] */
+ struct InLoop {
+ int iCur; /* The VDBE cursor used by this IN operator */
+ int addrInTop; /* Top of the IN loop */
+ int iBase; /* Base register of multi-key index record */
+ int nPrefix; /* Number of prior entries in the key */
+ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */
+ } *aInLoop; /* Information about each nested IN operator */
+ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
+ Index *pCoveringIdx; /* Possible covering index for WHERE_MULTI_OR */
+ } u;
+ struct WhereLoop *pWLoop; /* The selected WhereLoop object */
+ Bitmask notReady; /* FROM entries not usable at this level */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrVisit; /* Address at which row is visited */
+#endif
+};
+
+/*
+** Each instance of this object represents an algorithm for evaluating one
+** term of a join. Every term of the FROM clause will have at least
+** one corresponding WhereLoop object (unless INDEXED BY constraints
+** prevent a query solution - which is an error) and many terms of the
+** FROM clause will have multiple WhereLoop objects, each describing a
+** potential way of implementing that FROM-clause term, together with
+** dependencies and cost estimates for using the chosen algorithm.
+**
+** Query planning consists of building up a collection of these WhereLoop
+** objects, then computing a particular sequence of WhereLoop objects, with
+** one WhereLoop object per FROM clause term, that satisfy all dependencies
+** and that minimize the overall cost.
+*/
+struct WhereLoop {
+ Bitmask prereq; /* Bitmask of other loops that must run first */
+ Bitmask maskSelf; /* Bitmask identifying table iTab */
+#ifdef SQLITE_DEBUG
+ char cId; /* Symbolic ID of this loop for debugging use */
+#endif
+ u8 iTab; /* Position in FROM clause of table for this loop */
+ u8 iSortIdx; /* Sorting index number. 0==None */
+ LogEst rSetup; /* One-time setup cost (ex: create transient index) */
+ LogEst rRun; /* Cost of running each loop */
+ LogEst nOut; /* Estimated number of output rows */
+ union {
+ struct { /* Information for internal btree tables */
+ u16 nEq; /* Number of equality constraints */
+ u16 nBtm; /* Size of BTM vector */
+ u16 nTop; /* Size of TOP vector */
+ u16 nDistinctCol; /* Index columns used to sort for DISTINCT */
+ Index *pIndex; /* Index used, or NULL */
+ } btree;
+ struct { /* Information for virtual tables */
+ int idxNum; /* Index number */
+ u32 needFree : 1; /* True if sqlite3_free(idxStr) is needed */
+ u32 bOmitOffset : 1; /* True to let virtual table handle offset */
+ i8 isOrdered; /* True if satisfies ORDER BY */
+ u16 omitMask; /* Terms that may be omitted */
+ char *idxStr; /* Index identifier string */
+ u32 mHandleIn; /* Terms to handle as IN(...) instead of == */
+ } vtab;
+ } u;
+ u32 wsFlags; /* WHERE_* flags describing the plan */
+ u16 nLTerm; /* Number of entries in aLTerm[] */
+ u16 nSkip; /* Number of NULL aLTerm[] entries */
+ /**** whereLoopXfer() copies fields above ***********************/
+# define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
+ u16 nLSlot; /* Number of slots allocated for aLTerm[] */
+ WhereTerm **aLTerm; /* WhereTerms used */
+ WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
+ WhereTerm *aLTermSpace[3]; /* Initial aLTerm[] space */
+};
+
+/* This object holds the prerequisites and the cost of running a
+** subquery on one operand of an OR operator in the WHERE clause.
+** See WhereOrSet for additional information
+*/
+struct WhereOrCost {
+ Bitmask prereq; /* Prerequisites */
+ LogEst rRun; /* Cost of running this subquery */
+ LogEst nOut; /* Number of outputs for this subquery */
+};
+
+/* The WhereOrSet object holds a set of possible WhereOrCosts that
+** correspond to the subquery(s) of OR-clause processing. Only the
+** best N_OR_COST elements are retained.
+*/
+#define N_OR_COST 3
+struct WhereOrSet {
+ u16 n; /* Number of valid a[] entries */
+ WhereOrCost a[N_OR_COST]; /* Set of best costs */
+};
+
+/*
+** Each instance of this object holds a sequence of WhereLoop objects
+** that implement some or all of a query plan.
+**
+** Think of each WhereLoop object as a node in a graph with arcs
+** showing dependencies and costs for travelling between nodes. (That is
+** not a completely accurate description because WhereLoop costs are a
+** vector, not a scalar, and because dependencies are many-to-one, not
+** one-to-one as are graph nodes. But it is a useful visualization aid.)
+** Then a WherePath object is a path through the graph that visits some
+** or all of the WhereLoop objects once.
+**
+** The "solver" works by creating the N best WherePath objects of length
+** 1. Then using those as a basis to compute the N best WherePath objects
+** of length 2. And so forth until the length of WherePaths equals the
+** number of nodes in the FROM clause. The best (lowest cost) WherePath
+** at the end is the chosen query plan.
+*/
+struct WherePath {
+ Bitmask maskLoop; /* Bitmask of all WhereLoop objects in this path */
+ Bitmask revLoop; /* aLoop[]s that should be reversed for ORDER BY */
+ LogEst nRow; /* Estimated number of rows generated by this path */
+ LogEst rCost; /* Total cost of this path */
+ LogEst rUnsorted; /* Total cost of this path ignoring sorting costs */
+ i8 isOrdered; /* No. of ORDER BY terms satisfied. -1 for unknown */
+ WhereLoop **aLoop; /* Array of WhereLoop objects implementing this path */
+};
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by AND operators,
+** usually, or sometimes subexpressions separated by OR.
+**
+** All WhereTerms are collected into a single WhereClause structure.
+** The following identity holds:
+**
+** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
+**
+** When a term is of the form:
+**
+** X <op> <expr>
+**
+** where X is a column name and <op> is one of certain operators,
+** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
+** cursor number and column number for X. WhereTerm.eOperator records
+** the <op> using a bitmask encoding defined by WO_xxx below. The
+** use of a bitmask encoding for the operator allows us to search
+** quickly for terms that match any of several different operators.
+**
+** A WhereTerm might also be two or more subterms connected by OR:
+**
+** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
+**
+** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR
+** and the WhereTerm.u.pOrInfo field points to auxiliary information that
+** is collected about the OR clause.
+**
+** If a term in the WHERE clause does not match either of the two previous
+** categories, then eOperator==0. The WhereTerm.pExpr field is still set
+** to the original subexpression content and wtFlags is set up appropriately
+** but no other fields in the WhereTerm object are meaningful.
+**
+** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
+** but they do so indirectly. A single WhereMaskSet structure translates
+** cursor number into bits and the translated bit is stored in the prereq
+** fields. The translation is used in order to maximize the number of
+** bits that will fit in a Bitmask. The VDBE cursor numbers might be
+** spread out over the non-negative integers. For example, the cursor
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
+** translates these sparse cursor numbers into consecutive integers
+** beginning with 0 in order to make the best possible use of the available
+** bits in the Bitmask. So, in the example above, the cursor numbers
+** would be mapped into integers 0 through 7.
+**
+** The number of terms in a join is limited by the number of bits
+** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
+** is only able to process joins with 64 or fewer tables.
+*/
+struct WhereTerm {
+ Expr *pExpr; /* Pointer to the subexpression that is this term */
+ WhereClause *pWC; /* The clause this term is part of */
+ LogEst truthProb; /* Probability of truth for this expression */
+ u16 wtFlags; /* TERM_xxx bit flags. See below */
+ u16 eOperator; /* A WO_xx value describing <op> */
+ u8 nChild; /* Number of children that must disable us */
+ u8 eMatchOp; /* Op for vtab MATCH/LIKE/GLOB/REGEXP terms */
+ int iParent; /* Disable pWC->a[iParent] when this term disabled */
+ int leftCursor; /* Cursor number of X in "X <op> <expr>" */
+ union {
+ struct {
+ int leftColumn; /* Column number of X in "X <op> <expr>" */
+ int iField; /* Field in (?,?,?) IN (SELECT...) vector */
+ } x; /* Opcode other than OP_OR or OP_AND */
+ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */
+ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
+ } u;
+ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
+ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
+};
+
+/*
+** Allowed values of WhereTerm.wtFlags
+*/
+#define TERM_DYNAMIC 0x0001 /* Need to call sqlite3ExprDelete(db, pExpr) */
+#define TERM_VIRTUAL 0x0002 /* Added by the optimizer. Do not code */
+#define TERM_CODED 0x0004 /* This term is already coded */
+#define TERM_COPIED 0x0008 /* Has a child */
+#define TERM_ORINFO 0x0010 /* Need to free the WhereTerm.u.pOrInfo object */
+#define TERM_ANDINFO 0x0020 /* Need to free the WhereTerm.u.pAndInfo obj */
+#define TERM_OK 0x0040 /* Used during OR-clause processing */
+#define TERM_VNULL 0x0080 /* Manufactured x>NULL or x<=NULL term */
+#define TERM_LIKEOPT 0x0100 /* Virtual terms from the LIKE optimization */
+#define TERM_LIKECOND 0x0200 /* Conditionally this LIKE operator term */
+#define TERM_LIKE 0x0400 /* The original LIKE operator */
+#define TERM_IS 0x0800 /* Term.pExpr is an IS operator */
+#define TERM_VARSELECT 0x1000 /* Term.pExpr contains a correlated sub-query */
+#define TERM_HEURTRUTH 0x2000 /* Heuristic truthProb used */
+#ifdef SQLITE_ENABLE_STAT4
+# define TERM_HIGHTRUTH 0x4000 /* Term excludes few rows */
+#else
+# define TERM_HIGHTRUTH 0 /* Only used with STAT4 */
+#endif
+#define TERM_SLICE 0x8000 /* One slice of a row-value/vector comparison */
+
+/*
+** An instance of the WhereScan object is used as an iterator for locating
+** terms in the WHERE clause that are useful to the query planner.
+*/
+struct WhereScan {
+ WhereClause *pOrigWC; /* Original, innermost WhereClause */
+ WhereClause *pWC; /* WhereClause currently being scanned */
+ const char *zCollName; /* Required collating sequence, if not NULL */
+ Expr *pIdxExpr; /* Search for this index expression */
+ int k; /* Resume scanning at this->pWC->a[this->k] */
+ u32 opMask; /* Acceptable operators */
+ char idxaff; /* Must match this affinity, if zCollName!=NULL */
+ unsigned char iEquiv; /* Current slot in aiCur[] and aiColumn[] */
+ unsigned char nEquiv; /* Number of entries in aiCur[] and aiColumn[] */
+ int aiCur[11]; /* Cursors in the equivalence class */
+ i16 aiColumn[11]; /* Corresponding column number in the eq-class */
+};
+
+/*
+** An instance of the following structure holds all information about a
+** WHERE clause. Mostly this is a container for one or more WhereTerms.
+**
+** Explanation of pOuter: For a WHERE clause of the form
+**
+** a AND ((b AND c) OR (d AND e)) AND f
+**
+** There are separate WhereClause objects for the whole clause and for
+** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the
+** subclauses points to the WhereClause object for the whole clause.
+*/
+struct WhereClause {
+ WhereInfo *pWInfo; /* WHERE clause processing context */
+ WhereClause *pOuter; /* Outer conjunction */
+ u8 op; /* Split operator. TK_AND or TK_OR */
+ u8 hasOr; /* True if any a[].eOperator is WO_OR */
+ int nTerm; /* Number of terms */
+ int nSlot; /* Number of entries in a[] */
+ int nBase; /* Number of terms through the last non-Virtual */
+ WhereTerm *a; /* Each a[] describes a term of the WHERE clause */
+#if defined(SQLITE_SMALL_STACK)
+ WhereTerm aStatic[1]; /* Initial static space for a[] */
+#else
+ WhereTerm aStatic[8]; /* Initial static space for a[] */
+#endif
+};
+
+/*
+** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereOrInfo {
+ WhereClause wc; /* Decomposition into subterms */
+ Bitmask indexable; /* Bitmask of all indexable tables in the clause */
+};
+
+/*
+** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
+** a dynamically allocated instance of the following structure.
+*/
+struct WhereAndInfo {
+ WhereClause wc; /* The subexpression broken out */
+};
+
+/*
+** An instance of the following structure keeps track of a mapping
+** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
+**
+** The VDBE cursor numbers are small integers contained in
+** SrcItem.iCursor and Expr.iTable fields. For any given WHERE
+** clause, the cursor numbers might not begin with 0 and they might
+** contain gaps in the numbering sequence. But we want to make maximum
+** use of the bits in our bitmasks. This structure provides a mapping
+** from the sparse cursor numbers into consecutive integers beginning
+** with 0.
+**
+** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
+** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
+**
+** For example, if the WHERE clause expression used these VDBE
+** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
+** would map those cursor numbers into bits 0 through 5.
+**
+** Note that the mapping is not necessarily ordered. In the example
+** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
+** 57->5, 73->4. Or one of 719 other combinations might be used. It
+** does not really matter. What is important is that sparse cursor
+** numbers all get mapped into bit numbers that begin with 0 and contain
+** no gaps.
+*/
+struct WhereMaskSet {
+ int bVarSelect; /* Used by sqlite3WhereExprUsage() */
+ int n; /* Number of assigned cursor values */
+ int ix[BMS]; /* Cursor assigned to each bit */
+};
+
+/*
+** This object is a convenience wrapper holding all information needed
+** to construct WhereLoop objects for a particular query.
+*/
+struct WhereLoopBuilder {
+ WhereInfo *pWInfo; /* Information about this WHERE */
+ WhereClause *pWC; /* WHERE clause terms */
+ WhereLoop *pNew; /* Template WhereLoop */
+ WhereOrSet *pOrSet; /* Record best loops here, if not NULL */
+#ifdef SQLITE_ENABLE_STAT4
+ UnpackedRecord *pRec; /* Probe for stat4 (if required) */
+ int nRecValid; /* Number of valid fields currently in pRec */
+#endif
+ unsigned char bldFlags1; /* First set of SQLITE_BLDF_* flags */
+ unsigned char bldFlags2; /* Second set of SQLITE_BLDF_* flags */
+ unsigned int iPlanLimit; /* Search limiter */
+};
+
+/* Allowed values for WhereLoopBuider.bldFlags */
+#define SQLITE_BLDF1_INDEXED 0x0001 /* An index is used */
+#define SQLITE_BLDF1_UNIQUE 0x0002 /* All keys of a UNIQUE index used */
+
+#define SQLITE_BLDF2_2NDPASS 0x0004 /* Second builder pass needed */
+
+/* The WhereLoopBuilder.iPlanLimit is used to limit the number of
+** index+constraint combinations the query planner will consider for a
+** particular query. If this parameter is unlimited, then certain
+** pathological queries can spend excess time in the sqlite3WhereBegin()
+** routine. The limit is high enough that is should not impact real-world
+** queries.
+**
+** SQLITE_QUERY_PLANNER_LIMIT is the baseline limit. The limit is
+** increased by SQLITE_QUERY_PLANNER_LIMIT_INCR before each term of the FROM
+** clause is processed, so that every table in a join is guaranteed to be
+** able to propose a some index+constraint combinations even if the initial
+** baseline limit was exhausted by prior tables of the join.
+*/
+#ifndef SQLITE_QUERY_PLANNER_LIMIT
+# define SQLITE_QUERY_PLANNER_LIMIT 20000
+#endif
+#ifndef SQLITE_QUERY_PLANNER_LIMIT_INCR
+# define SQLITE_QUERY_PLANNER_LIMIT_INCR 1000
+#endif
+
+/*
+** The WHERE clause processing routine has two halves. The
+** first part does the start of the WHERE loop and the second
+** half does the tail of the WHERE loop. An instance of
+** this structure is returned by the first half and passed
+** into the second half to give some continuity.
+**
+** An instance of this object holds the complete state of the query
+** planner.
+*/
+struct WhereInfo {
+ Parse *pParse; /* Parsing and code generating context */
+ SrcList *pTabList; /* List of tables in the join */
+ ExprList *pOrderBy; /* The ORDER BY clause or NULL */
+ ExprList *pResultSet; /* Result set of the query */
+#if WHERETRACE_ENABLED
+ Expr *pWhere; /* The complete WHERE clause */
+#endif
+ Select *pSelect; /* The entire SELECT statement containing WHERE */
+ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */
+ int iContinue; /* Jump here to continue with next record */
+ int iBreak; /* Jump here to break out of the loop */
+ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */
+ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
+ LogEst iLimit; /* LIMIT if wctrlFlags has WHERE_USE_LIMIT */
+ u8 nLevel; /* Number of nested loop */
+ i8 nOBSat; /* Number of ORDER BY terms satisfied by indices */
+ u8 eOnePass; /* ONEPASS_OFF, or _SINGLE, or _MULTI */
+ u8 eDistinct; /* One of the WHERE_DISTINCT_* values */
+ unsigned bDeferredSeek :1; /* Uses OP_DeferredSeek */
+ unsigned untestedTerms :1; /* Not all WHERE terms resolved by outer loop */
+ unsigned bOrderedInnerLoop:1;/* True if only the inner-most loop is ordered */
+ unsigned sorted :1; /* True if really sorted (not just grouped) */
+ LogEst nRowOut; /* Estimated number of output rows */
+ int iTop; /* The very beginning of the WHERE loop */
+ int iEndWhere; /* End of the WHERE clause itself */
+ WhereLoop *pLoops; /* List of all WhereLoop objects */
+ WhereMemBlock *pMemToFree;/* Memory to free when this object destroyed */
+ Bitmask revMask; /* Mask of ORDER BY terms that need reversing */
+ WhereClause sWC; /* Decomposition of the WHERE clause */
+ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */
+ WhereLevel a[1]; /* Information about each nest loop in WHERE */
+};
+
+/*
+** Private interfaces - callable only by other where.c routines.
+**
+** where.c:
+*/
+SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet*,int);
+#ifdef WHERETRACE_ENABLED
+SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC);
+SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm);
+SQLITE_PRIVATE void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC);
+#endif
+SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u32 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+);
+SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte);
+SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte);
+
+/* wherecode.c: */
+#ifndef SQLITE_OMIT_EXPLAIN
+SQLITE_PRIVATE int sqlite3WhereExplainOneScan(
+ Parse *pParse, /* Parse context */
+ SrcList *pTabList, /* Table list this loop refers to */
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
+);
+SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter(
+ const Parse *pParse, /* Parse context */
+ const WhereInfo *pWInfo, /* WHERE clause */
+ const WhereLevel *pLevel /* Bloom filter on this level */
+);
+#else
+# define sqlite3WhereExplainOneScan(u,v,w,x) 0
+# define sqlite3WhereExplainBloomFilter(u,v,w) 0
+#endif /* SQLITE_OMIT_EXPLAIN */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+SQLITE_PRIVATE void sqlite3WhereAddScanStatus(
+ Vdbe *v, /* Vdbe to add scanstatus entry to */
+ SrcList *pSrclist, /* FROM clause pLvl reads data from */
+ WhereLevel *pLvl, /* Level to add scanstatus() entry for */
+ int addrExplain /* Address of OP_Explain (or 0) */
+);
+#else
+# define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d)
+#endif
+SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
+ Parse *pParse, /* Parsing context */
+ Vdbe *v, /* Prepared statement under construction */
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ WhereLevel *pLevel, /* The current level pointer */
+ Bitmask notReady /* Which tables are currently available */
+);
+SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
+ WhereInfo *pWInfo,
+ int iLevel,
+ WhereLevel *pLevel
+);
+
+/* whereexpr.c: */
+SQLITE_PRIVATE void sqlite3WhereClauseInit(WhereClause*,WhereInfo*);
+SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause*);
+SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause*,Expr*,u8);
+SQLITE_PRIVATE void sqlite3WhereAddLimit(WhereClause*, Select*);
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*);
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet*, Expr*);
+SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*);
+SQLITE_PRIVATE void sqlite3WhereExprAnalyze(SrcList*, WhereClause*);
+SQLITE_PRIVATE void sqlite3WhereTabFuncArgs(Parse*, SrcItem*, WhereClause*);
+
+
+
+
+
+/*
+** Bitmasks for the operators on WhereTerm objects. These are all
+** operators that are of interest to the query planner. An
+** OR-ed combination of these values can be used when searching for
+** particular WhereTerms within a WhereClause.
+**
+** Value constraints:
+** WO_EQ == SQLITE_INDEX_CONSTRAINT_EQ
+** WO_LT == SQLITE_INDEX_CONSTRAINT_LT
+** WO_LE == SQLITE_INDEX_CONSTRAINT_LE
+** WO_GT == SQLITE_INDEX_CONSTRAINT_GT
+** WO_GE == SQLITE_INDEX_CONSTRAINT_GE
+*/
+#define WO_IN 0x0001
+#define WO_EQ 0x0002
+#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
+#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
+#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
+#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
+#define WO_AUX 0x0040 /* Op useful to virtual tables only */
+#define WO_IS 0x0080
+#define WO_ISNULL 0x0100
+#define WO_OR 0x0200 /* Two or more OR-connected terms */
+#define WO_AND 0x0400 /* Two or more AND-connected terms */
+#define WO_EQUIV 0x0800 /* Of the form A==B, both columns */
+#define WO_NOOP 0x1000 /* This term does not restrict search space */
+#define WO_ROWVAL 0x2000 /* A row-value term */
+
+#define WO_ALL 0x3fff /* Mask of all possible WO_* values */
+#define WO_SINGLE 0x01ff /* Mask of all non-compound WO_* values */
+
+/*
+** These are definitions of bits in the WhereLoop.wsFlags field.
+** The particular combination of bits in each WhereLoop help to
+** determine the algorithm that WhereLoop represents.
+*/
+#define WHERE_COLUMN_EQ 0x00000001 /* x=EXPR */
+#define WHERE_COLUMN_RANGE 0x00000002 /* x<EXPR and/or x>EXPR */
+#define WHERE_COLUMN_IN 0x00000004 /* x IN (...) */
+#define WHERE_COLUMN_NULL 0x00000008 /* x IS NULL */
+#define WHERE_CONSTRAINT 0x0000000f /* Any of the WHERE_COLUMN_xxx values */
+#define WHERE_TOP_LIMIT 0x00000010 /* x<EXPR or x<=EXPR constraint */
+#define WHERE_BTM_LIMIT 0x00000020 /* x>EXPR or x>=EXPR constraint */
+#define WHERE_BOTH_LIMIT 0x00000030 /* Both x>EXPR and x<EXPR */
+#define WHERE_IDX_ONLY 0x00000040 /* Use index only - omit table */
+#define WHERE_IPK 0x00000100 /* x is the INTEGER PRIMARY KEY */
+#define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */
+#define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */
+#define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */
+#define WHERE_ONEROW 0x00001000 /* Selects no more than one row */
+#define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */
+#define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */
+#define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */
+#define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/
+#define WHERE_PARTIALIDX 0x00020000 /* The automatic index is partial */
+#define WHERE_IN_EARLYOUT 0x00040000 /* Perhaps quit IN loops early */
+#define WHERE_BIGNULL_SORT 0x00080000 /* Column nEq of index is BIGNULL */
+#define WHERE_IN_SEEKSCAN 0x00100000 /* Seek-scan optimization for IN */
+#define WHERE_TRANSCONS 0x00200000 /* Uses a transitive constraint */
+#define WHERE_BLOOMFILTER 0x00400000 /* Consider using a Bloom-filter */
+#define WHERE_SELFCULL 0x00800000 /* nOut reduced by extra WHERE terms */
+#define WHERE_OMIT_OFFSET 0x01000000 /* Set offset counter to zero */
+ /* 0x02000000 -- available for reuse */
+#define WHERE_EXPRIDX 0x04000000 /* Uses an index-on-expressions */
+
+#endif /* !defined(SQLITE_WHEREINT_H) */
+
+/************** End of whereInt.h ********************************************/
+/************** Continuing where we left off in wherecode.c ******************/
+
+#ifndef SQLITE_OMIT_EXPLAIN
+
+/*
+** Return the name of the i-th column of the pIdx index.
+*/
+static const char *explainIndexColumnName(Index *pIdx, int i){
+ i = pIdx->aiColumn[i];
+ if( i==XN_EXPR ) return "<expr>";
+ if( i==XN_ROWID ) return "rowid";
+ return pIdx->pTable->aCol[i].zCnName;
+}
+
+/*
+** This routine is a helper for explainIndexRange() below
+**
+** pStr holds the text of an expression that we are building up one term
+** at a time. This routine adds a new term to the end of the expression.
+** Terms are separated by AND so add the "AND" text for second and subsequent
+** terms only.
+*/
+static void explainAppendTerm(
+ StrAccum *pStr, /* The text expression being built */
+ Index *pIdx, /* Index to read column names from */
+ int nTerm, /* Number of terms */
+ int iTerm, /* Zero-based index of first term. */
+ int bAnd, /* Non-zero to append " AND " */
+ const char *zOp /* Name of the operator */
+){
+ int i;
+
+ assert( nTerm>=1 );
+ if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
+
+ if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
+ for(i=0; i<nTerm; i++){
+ if( i ) sqlite3_str_append(pStr, ",", 1);
+ sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
+ }
+ if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
+
+ sqlite3_str_append(pStr, zOp, 1);
+
+ if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
+ for(i=0; i<nTerm; i++){
+ if( i ) sqlite3_str_append(pStr, ",", 1);
+ sqlite3_str_append(pStr, "?", 1);
+ }
+ if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
+}
+
+/*
+** Argument pLevel describes a strategy for scanning table pTab. This
+** function appends text to pStr that describes the subset of table
+** rows scanned by the strategy in the form of an SQL expression.
+**
+** For example, if the query:
+**
+** SELECT * FROM t1 WHERE a=1 AND b>2;
+**
+** is run and there is an index on (a, b), then this function returns a
+** string similar to:
+**
+** "a=? AND b>?"
+*/
+static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
+ Index *pIndex = pLoop->u.btree.pIndex;
+ u16 nEq = pLoop->u.btree.nEq;
+ u16 nSkip = pLoop->nSkip;
+ int i, j;
+
+ if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
+ sqlite3_str_append(pStr, " (", 2);
+ for(i=0; i<nEq; i++){
+ const char *z = explainIndexColumnName(pIndex, i);
+ if( i ) sqlite3_str_append(pStr, " AND ", 5);
+ sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
+ }
+
+ j = i;
+ if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
+ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
+ i = 1;
+ }
+ if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
+ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
+ }
+ sqlite3_str_append(pStr, ")", 1);
+}
+
+/*
+** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
+** command, or if stmt_scanstatus_v2() stats are enabled, or if SQLITE_DEBUG
+** was defined at compile-time. If it is not a no-op, a single OP_Explain
+** opcode is added to the output to describe the table scan strategy in pLevel.
+**
+** If an OP_Explain opcode is added to the VM, its address is returned.
+** Otherwise, if no OP_Explain is coded, zero is returned.
+*/
+SQLITE_PRIVATE int sqlite3WhereExplainOneScan(
+ Parse *pParse, /* Parse context */
+ SrcList *pTabList, /* Table list this loop refers to */
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
+){
+ int ret = 0;
+#if !defined(SQLITE_DEBUG)
+ if( sqlite3ParseToplevel(pParse)->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
+#endif
+ {
+ SrcItem *pItem = &pTabList->a[pLevel->iFrom];
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */
+ sqlite3 *db = pParse->db; /* Database handle */
+ int isSearch; /* True for a SEARCH. False for SCAN. */
+ WhereLoop *pLoop; /* The controlling WhereLoop object */
+ u32 flags; /* Flags that describe this loop */
+ char *zMsg; /* Text to add to EQP output */
+ StrAccum str; /* EQP output string */
+ char zBuf[100]; /* Initial space for EQP output string */
+
+ pLoop = pLevel->pWLoop;
+ flags = pLoop->wsFlags;
+ if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
+
+ isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
+ || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
+ || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
+
+ sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
+ str.printfFlags = SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
+ if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
+ const char *zFmt = 0;
+ Index *pIdx;
+
+ assert( pLoop->u.btree.pIndex!=0 );
+ pIdx = pLoop->u.btree.pIndex;
+ assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
+ if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
+ if( isSearch ){
+ zFmt = "PRIMARY KEY";
+ }
+ }else if( flags & WHERE_PARTIALIDX ){
+ zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
+ }else if( flags & WHERE_AUTO_INDEX ){
+ zFmt = "AUTOMATIC COVERING INDEX";
+ }else if( flags & WHERE_IDX_ONLY ){
+ zFmt = "COVERING INDEX %s";
+ }else{
+ zFmt = "INDEX %s";
+ }
+ if( zFmt ){
+ sqlite3_str_append(&str, " USING ", 7);
+ sqlite3_str_appendf(&str, zFmt, pIdx->zName);
+ explainIndexRange(&str, pLoop);
+ }
+ }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
+ char cRangeOp;
+#if 0 /* Better output, but breaks many tests */
+ const Table *pTab = pItem->pTab;
+ const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
+ "rowid";
+#else
+ const char *zRowid = "rowid";
+#endif
+ sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
+ if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
+ cRangeOp = '=';
+ }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
+ sqlite3_str_appendf(&str, ">? AND %s", zRowid);
+ cRangeOp = '<';
+ }else if( flags&WHERE_BTM_LIMIT ){
+ cRangeOp = '>';
+ }else{
+ assert( flags&WHERE_TOP_LIMIT);
+ cRangeOp = '<';
+ }
+ sqlite3_str_appendf(&str, "%c?)", cRangeOp);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
+ sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
+ pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
+ }
+#endif
+ if( pItem->fg.jointype & JT_LEFT ){
+ sqlite3_str_appendf(&str, " LEFT-JOIN");
+ }
+#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
+ if( pLoop->nOut>=10 ){
+ sqlite3_str_appendf(&str, " (~%llu rows)",
+ sqlite3LogEstToInt(pLoop->nOut));
+ }else{
+ sqlite3_str_append(&str, " (~1 row)", 9);
+ }
+#endif
+ zMsg = sqlite3StrAccumFinish(&str);
+ sqlite3ExplainBreakpoint("",zMsg);
+ ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
+ pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
+ }
+ return ret;
+}
+
+/*
+** Add a single OP_Explain opcode that describes a Bloom filter.
+**
+** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
+** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
+** required and this routine is a no-op.
+**
+** If an OP_Explain opcode is added to the VM, its address is returned.
+** Otherwise, if no OP_Explain is coded, zero is returned.
+*/
+SQLITE_PRIVATE int sqlite3WhereExplainBloomFilter(
+ const Parse *pParse, /* Parse context */
+ const WhereInfo *pWInfo, /* WHERE clause */
+ const WhereLevel *pLevel /* Bloom filter on this level */
+){
+ int ret = 0;
+ SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */
+ sqlite3 *db = pParse->db; /* Database handle */
+ char *zMsg; /* Text to add to EQP output */
+ int i; /* Loop counter */
+ WhereLoop *pLoop; /* The where loop */
+ StrAccum str; /* EQP output string */
+ char zBuf[100]; /* Initial space for EQP output string */
+
+ sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
+ str.printfFlags = SQLITE_PRINTF_INTERNAL;
+ sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
+ pLoop = pLevel->pWLoop;
+ if( pLoop->wsFlags & WHERE_IPK ){
+ const Table *pTab = pItem->pTab;
+ if( pTab->iPKey>=0 ){
+ sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
+ }else{
+ sqlite3_str_appendf(&str, "rowid=?");
+ }
+ }else{
+ for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
+ const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
+ if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
+ sqlite3_str_appendf(&str, "%s=?", z);
+ }
+ }
+ sqlite3_str_append(&str, ")", 1);
+ zMsg = sqlite3StrAccumFinish(&str);
+ ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
+ pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
+
+ sqlite3VdbeScanStatus(v, sqlite3VdbeCurrentAddr(v)-1, 0, 0, 0, 0);
+ return ret;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+/*
+** Configure the VM passed as the first argument with an
+** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
+** implement level pLvl. Argument pSrclist is a pointer to the FROM
+** clause that the scan reads data from.
+**
+** If argument addrExplain is not 0, it must be the address of an
+** OP_Explain instruction that describes the same loop.
+*/
+SQLITE_PRIVATE void sqlite3WhereAddScanStatus(
+ Vdbe *v, /* Vdbe to add scanstatus entry to */
+ SrcList *pSrclist, /* FROM clause pLvl reads data from */
+ WhereLevel *pLvl, /* Level to add scanstatus() entry for */
+ int addrExplain /* Address of OP_Explain (or 0) */
+){
+ if( IS_STMT_SCANSTATUS( sqlite3VdbeDb(v) ) ){
+ const char *zObj = 0;
+ WhereLoop *pLoop = pLvl->pWLoop;
+ int wsFlags = pLoop->wsFlags;
+ int viaCoroutine = 0;
+
+ if( (wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
+ zObj = pLoop->u.btree.pIndex->zName;
+ }else{
+ zObj = pSrclist->a[pLvl->iFrom].zName;
+ viaCoroutine = pSrclist->a[pLvl->iFrom].fg.viaCoroutine;
+ }
+ sqlite3VdbeScanStatus(
+ v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
+ );
+
+ if( viaCoroutine==0 ){
+ if( (wsFlags & (WHERE_MULTI_OR|WHERE_AUTO_INDEX))==0 ){
+ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iTabCur);
+ }
+ if( wsFlags & WHERE_INDEXED ){
+ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iIdxCur);
+ }
+ }else{
+ int addr = pSrclist->a[pLvl->iFrom].addrFillSub;
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, addr-1);
+ assert( sqlite3VdbeDb(v)->mallocFailed || pOp->opcode==OP_InitCoroutine );
+ assert( sqlite3VdbeDb(v)->mallocFailed || pOp->p2>addr );
+ sqlite3VdbeScanStatusRange(v, addrExplain, addr, pOp->p2-1);
+ }
+ }
+}
+#endif
+
+
+/*
+** Disable a term in the WHERE clause. Except, do not disable the term
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON
+** or USING clause of that join.
+**
+** Consider the term t2.z='ok' in the following queries:
+**
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
+**
+** The t2.z='ok' is disabled in the in (2) because it originates
+** in the ON clause. The term is disabled in (3) because it is not part
+** of a LEFT OUTER JOIN. In (1), the term is not disabled.
+**
+** Disabling a term causes that term to not be tested in the inner loop
+** of the join. Disabling is an optimization. When terms are satisfied
+** by indices, we disable them to prevent redundant tests in the inner
+** loop. We would get the correct results if nothing were ever disabled,
+** but joins might run a little slower. The trick is to disable as much
+** as we can without disabling too much. If we disabled in (1), we'd get
+** the wrong answer. See ticket #813.
+**
+** If all the children of a term are disabled, then that term is also
+** automatically disabled. In this way, terms get disabled if derived
+** virtual terms are tested first. For example:
+**
+** x GLOB 'abc*' AND x>='abc' AND x<'acd'
+** \___________/ \______/ \_____/
+** parent child1 child2
+**
+** Only the parent term was in the original WHERE clause. The child1
+** and child2 terms were added by the LIKE optimization. If both of
+** the virtual child terms are valid, then testing of the parent can be
+** skipped.
+**
+** Usually the parent term is marked as TERM_CODED. But if the parent
+** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
+** The TERM_LIKECOND marking indicates that the term should be coded inside
+** a conditional such that is only evaluated on the second pass of a
+** LIKE-optimization loop, when scanning BLOBs instead of strings.
+*/
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
+ int nLoop = 0;
+ assert( pTerm!=0 );
+ while( (pTerm->wtFlags & TERM_CODED)==0
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
+ && (pLevel->notReady & pTerm->prereqAll)==0
+ ){
+ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
+ pTerm->wtFlags |= TERM_LIKECOND;
+ }else{
+ pTerm->wtFlags |= TERM_CODED;
+ }
+#ifdef WHERETRACE_ENABLED
+ if( (sqlite3WhereTrace & 0x4001)==0x4001 ){
+ sqlite3DebugPrintf("DISABLE-");
+ sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
+ }
+#endif
+ if( pTerm->iParent<0 ) break;
+ pTerm = &pTerm->pWC->a[pTerm->iParent];
+ assert( pTerm!=0 );
+ pTerm->nChild--;
+ if( pTerm->nChild!=0 ) break;
+ nLoop++;
+ }
+}
+
+/*
+** Code an OP_Affinity opcode to apply the column affinity string zAff
+** to the n registers starting at base.
+**
+** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
+** are no-ops) at the beginning and end of zAff are ignored. If all entries
+** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
+**
+** This routine makes its own copy of zAff so that the caller is free
+** to modify zAff after this routine returns.
+*/
+static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
+ Vdbe *v = pParse->pVdbe;
+ if( zAff==0 ){
+ assert( pParse->db->mallocFailed );
+ return;
+ }
+ assert( v!=0 );
+
+ /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
+ ** entries at the beginning and end of the affinity string.
+ */
+ assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
+ while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
+ n--;
+ base++;
+ zAff++;
+ }
+ while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
+ n--;
+ }
+
+ /* Code the OP_Affinity opcode if there is anything left to do. */
+ if( n>0 ){
+ sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
+ }
+}
+
+/*
+** Expression pRight, which is the RHS of a comparison operation, is
+** either a vector of n elements or, if n==1, a scalar expression.
+** Before the comparison operation, affinity zAff is to be applied
+** to the pRight values. This function modifies characters within the
+** affinity string to SQLITE_AFF_BLOB if either:
+**
+** * the comparison will be performed with no affinity, or
+** * the affinity change in zAff is guaranteed not to change the value.
+*/
+static void updateRangeAffinityStr(
+ Expr *pRight, /* RHS of comparison */
+ int n, /* Number of vector elements in comparison */
+ char *zAff /* Affinity string to modify */
+){
+ int i;
+ for(i=0; i<n; i++){
+ Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
+ if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
+ || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
+ ){
+ zAff[i] = SQLITE_AFF_BLOB;
+ }
+ }
+}
+
+
+/*
+** pX is an expression of the form: (vector) IN (SELECT ...)
+** In other words, it is a vector IN operator with a SELECT clause on the
+** LHS. But not all terms in the vector are indexable and the terms might
+** not be in the correct order for indexing.
+**
+** This routine makes a copy of the input pX expression and then adjusts
+** the vector on the LHS with corresponding changes to the SELECT so that
+** the vector contains only index terms and those terms are in the correct
+** order. The modified IN expression is returned. The caller is responsible
+** for deleting the returned expression.
+**
+** Example:
+**
+** CREATE TABLE t1(a,b,c,d,e,f);
+** CREATE INDEX t1x1 ON t1(e,c);
+** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
+** \_______________________________________/
+** The pX expression
+**
+** Since only columns e and c can be used with the index, in that order,
+** the modified IN expression that is returned will be:
+**
+** (e,c) IN (SELECT z,x FROM t2)
+**
+** The reduced pX is different from the original (obviously) and thus is
+** only used for indexing, to improve performance. The original unaltered
+** IN expression must also be run on each output row for correctness.
+*/
+static Expr *removeUnindexableInClauseTerms(
+ Parse *pParse, /* The parsing context */
+ int iEq, /* Look at loop terms starting here */
+ WhereLoop *pLoop, /* The current loop */
+ Expr *pX /* The IN expression to be reduced */
+){
+ sqlite3 *db = pParse->db;
+ Select *pSelect; /* Pointer to the SELECT on the RHS */
+ Expr *pNew;
+ pNew = sqlite3ExprDup(db, pX, 0);
+ if( db->mallocFailed==0 ){
+ for(pSelect=pNew->x.pSelect; pSelect; pSelect=pSelect->pPrior){
+ ExprList *pOrigRhs; /* Original unmodified RHS */
+ ExprList *pOrigLhs = 0; /* Original unmodified LHS */
+ ExprList *pRhs = 0; /* New RHS after modifications */
+ ExprList *pLhs = 0; /* New LHS after mods */
+ int i; /* Loop counter */
+
+ assert( ExprUseXSelect(pNew) );
+ pOrigRhs = pSelect->pEList;
+ assert( pNew->pLeft!=0 );
+ assert( ExprUseXList(pNew->pLeft) );
+ if( pSelect==pNew->x.pSelect ){
+ pOrigLhs = pNew->pLeft->x.pList;
+ }
+ for(i=iEq; i<pLoop->nLTerm; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ int iField;
+ assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
+ iField = pLoop->aLTerm[i]->u.x.iField - 1;
+ if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
+ pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
+ pOrigRhs->a[iField].pExpr = 0;
+ if( pOrigLhs ){
+ assert( pOrigLhs->a[iField].pExpr!=0 );
+ pLhs = sqlite3ExprListAppend(pParse,pLhs,pOrigLhs->a[iField].pExpr);
+ pOrigLhs->a[iField].pExpr = 0;
+ }
+ }
+ }
+ sqlite3ExprListDelete(db, pOrigRhs);
+ if( pOrigLhs ){
+ sqlite3ExprListDelete(db, pOrigLhs);
+ pNew->pLeft->x.pList = pLhs;
+ }
+ pSelect->pEList = pRhs;
+ if( pLhs && pLhs->nExpr==1 ){
+ /* Take care here not to generate a TK_VECTOR containing only a
+ ** single value. Since the parser never creates such a vector, some
+ ** of the subroutines do not handle this case. */
+ Expr *p = pLhs->a[0].pExpr;
+ pLhs->a[0].pExpr = 0;
+ sqlite3ExprDelete(db, pNew->pLeft);
+ pNew->pLeft = p;
+ }
+ if( pSelect->pOrderBy ){
+ /* If the SELECT statement has an ORDER BY clause, zero the
+ ** iOrderByCol variables. These are set to non-zero when an
+ ** ORDER BY term exactly matches one of the terms of the
+ ** result-set. Since the result-set of the SELECT statement may
+ ** have been modified or reordered, these variables are no longer
+ ** set correctly. Since setting them is just an optimization,
+ ** it's easiest just to zero them here. */
+ ExprList *pOrderBy = pSelect->pOrderBy;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].u.x.iOrderByCol = 0;
+ }
+ }
+
+#if 0
+ printf("For indexing, change the IN expr:\n");
+ sqlite3TreeViewExpr(0, pX, 0);
+ printf("Into:\n");
+ sqlite3TreeViewExpr(0, pNew, 0);
+#endif
+ }
+ }
+ return pNew;
+}
+
+
+/*
+** Generate code for a single equality term of the WHERE clause. An equality
+** term can be either X=expr or X IN (...). pTerm is the term to be
+** coded.
+**
+** The current value for the constraint is left in a register, the index
+** of which is returned. An attempt is made store the result in iTarget but
+** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
+** constraint is a TK_EQ or TK_IS, then the current value might be left in
+** some other register and it is the caller's responsibility to compensate.
+**
+** For a constraint of the form X=expr, the expression is evaluated in
+** straight-line code. For constraints of the form X IN (...)
+** this routine sets up a loop that will iterate over all values of X.
+*/
+static int codeEqualityTerm(
+ Parse *pParse, /* The parsing context */
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
+ WhereLevel *pLevel, /* The level of the FROM clause we are working on */
+ int iEq, /* Index of the equality term within this level */
+ int bRev, /* True for reverse-order IN operations */
+ int iTarget /* Attempt to leave results in this register */
+){
+ Expr *pX = pTerm->pExpr;
+ Vdbe *v = pParse->pVdbe;
+ int iReg; /* Register holding results */
+
+ assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
+ assert( iTarget>0 );
+ if( pX->op==TK_EQ || pX->op==TK_IS ){
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
+ }else if( pX->op==TK_ISNULL ){
+ iReg = iTarget;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
+#ifndef SQLITE_OMIT_SUBQUERY
+ }else{
+ int eType = IN_INDEX_NOOP;
+ int iTab;
+ struct InLoop *pIn;
+ WhereLoop *pLoop = pLevel->pWLoop;
+ int i;
+ int nEq = 0;
+ int *aiMap = 0;
+
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
+ && pLoop->u.btree.pIndex!=0
+ && pLoop->u.btree.pIndex->aSortOrder[iEq]
+ ){
+ testcase( iEq==0 );
+ testcase( bRev );
+ bRev = !bRev;
+ }
+ assert( pX->op==TK_IN );
+ iReg = iTarget;
+
+ for(i=0; i<iEq; i++){
+ if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
+ disableTerm(pLevel, pTerm);
+ return iTarget;
+ }
+ }
+ for(i=iEq;i<pLoop->nLTerm; i++){
+ assert( pLoop->aLTerm[i]!=0 );
+ if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
+ }
+
+ iTab = 0;
+ if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
+ }else{
+ Expr *pExpr = pTerm->pExpr;
+ if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
+ sqlite3 *db = pParse->db;
+ pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
+ if( !db->mallocFailed ){
+ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
+ pExpr->iTable = iTab;
+ }
+ sqlite3ExprDelete(db, pX);
+ }else{
+ int n = sqlite3ExprVectorSize(pX->pLeft);
+ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n));
+ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
+ }
+ pX = pExpr;
+ }
+
+ if( eType==IN_INDEX_INDEX_DESC ){
+ testcase( bRev );
+ bRev = !bRev;
+ }
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
+ VdbeCoverageIf(v, bRev);
+ VdbeCoverageIf(v, !bRev);
+
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
+ pLoop->wsFlags |= WHERE_IN_ABLE;
+ if( pLevel->u.in.nIn==0 ){
+ pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
+ }
+ if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
+ pLoop->wsFlags |= WHERE_IN_EARLYOUT;
+ }
+
+ i = pLevel->u.in.nIn;
+ pLevel->u.in.nIn += nEq;
+ pLevel->u.in.aInLoop =
+ sqlite3WhereRealloc(pTerm->pWC->pWInfo,
+ pLevel->u.in.aInLoop,
+ sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
+ pIn = pLevel->u.in.aInLoop;
+ if( pIn ){
+ int iMap = 0; /* Index in aiMap[] */
+ pIn += i;
+ for(i=iEq;i<pLoop->nLTerm; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ int iOut = iReg + i - iEq;
+ if( eType==IN_INDEX_ROWID ){
+ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
+ }else{
+ int iCol = aiMap ? aiMap[iMap++] : 0;
+ pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
+ }
+ sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
+ if( i==iEq ){
+ pIn->iCur = iTab;
+ pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
+ if( iEq>0 ){
+ pIn->iBase = iReg - i;
+ pIn->nPrefix = i;
+ }else{
+ pIn->nPrefix = 0;
+ }
+ }else{
+ pIn->eEndLoopOp = OP_Noop;
+ }
+ pIn++;
+ }
+ }
+ testcase( iEq>0
+ && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
+ && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
+ if( iEq>0
+ && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
+ ){
+ sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
+ }
+ }else{
+ pLevel->u.in.nIn = 0;
+ }
+ sqlite3DbFree(pParse->db, aiMap);
+#endif
+ }
+
+ /* As an optimization, try to disable the WHERE clause term that is
+ ** driving the index as it will always be true. The correct answer is
+ ** obtained regardless, but we might get the answer with fewer CPU cycles
+ ** by omitting the term.
+ **
+ ** But do not disable the term unless we are certain that the term is
+ ** not a transitive constraint. For an example of where that does not
+ ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
+ */
+ if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
+ || (pTerm->eOperator & WO_EQUIV)==0
+ ){
+ disableTerm(pLevel, pTerm);
+ }
+
+ return iReg;
+}
+
+/*
+** Generate code that will evaluate all == and IN constraints for an
+** index scan.
+**
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
+** The index has as many as three equality constraints, but in this
+** example, the third "c" value is an inequality. So only two
+** constraints are coded. This routine will generate code to evaluate
+** a==5 and b IN (1,2,3). The current values for a and b will be stored
+** in consecutive registers and the index of the first register is returned.
+**
+** In the example above nEq==2. But this subroutine works for any value
+** of nEq including 0. If nEq==0, this routine is nearly a no-op.
+** The only thing it does is allocate the pLevel->iMem memory cell and
+** compute the affinity string.
+**
+** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
+** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
+** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
+** occurs after the nEq quality constraints.
+**
+** This routine allocates a range of nEq+nExtraReg memory cells and returns
+** the index of the first memory cell in that range. The code that
+** calls this routine will use that memory range to store keys for
+** start and termination conditions of the loop.
+** key value of the loop. If one or more IN operators appear, then
+** this routine allocates an additional nEq memory cells for internal
+** use.
+**
+** Before returning, *pzAff is set to point to a buffer containing a
+** copy of the column affinity string of the index allocated using
+** sqlite3DbMalloc(). Except, entries in the copy of the string associated
+** with equality constraints that use BLOB or NONE affinity are set to
+** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
+**
+** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
+** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
+**
+** In the example above, the index on t1(a) has TEXT affinity. But since
+** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
+** no conversion should be attempted before using a t2.b value as part of
+** a key to search the index. Hence the first byte in the returned affinity
+** string in this example would be set to SQLITE_AFF_BLOB.
+*/
+static int codeAllEqualityTerms(
+ Parse *pParse, /* Parsing context */
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
+ int bRev, /* Reverse the order of IN operators */
+ int nExtraReg, /* Number of extra registers to allocate */
+ char **pzAff /* OUT: Set to point to affinity string */
+){
+ u16 nEq; /* The number of == or IN constraints to code */
+ u16 nSkip; /* Number of left-most columns to skip */
+ Vdbe *v = pParse->pVdbe; /* The vm under construction */
+ Index *pIdx; /* The index being used for this loop */
+ WhereTerm *pTerm; /* A single constraint term */
+ WhereLoop *pLoop; /* The WhereLoop object */
+ int j; /* Loop counter */
+ int regBase; /* Base register */
+ int nReg; /* Number of registers to allocate */
+ char *zAff; /* Affinity string to return */
+
+ /* This module is only called on query plans that use an index. */
+ pLoop = pLevel->pWLoop;
+ assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ nEq = pLoop->u.btree.nEq;
+ nSkip = pLoop->nSkip;
+ pIdx = pLoop->u.btree.pIndex;
+ assert( pIdx!=0 );
+
+ /* Figure out how many memory cells we will need then allocate them.
+ */
+ regBase = pParse->nMem + 1;
+ nReg = nEq + nExtraReg;
+ pParse->nMem += nReg;
+
+ zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
+ assert( zAff!=0 || pParse->db->mallocFailed );
+
+ if( nSkip ){
+ int iIdxCur = pLevel->iIdxCur;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
+ sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
+ j = sqlite3VdbeAddOp0(v, OP_Goto);
+ assert( pLevel->addrSkip==0 );
+ pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
+ iIdxCur, 0, regBase, nSkip);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ sqlite3VdbeJumpHere(v, j);
+ for(j=0; j<nSkip; j++){
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
+ testcase( pIdx->aiColumn[j]==XN_EXPR );
+ VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
+ }
+ }
+
+ /* Evaluate the equality constraints
+ */
+ assert( zAff==0 || (int)strlen(zAff)>=nEq );
+ for(j=nSkip; j<nEq; j++){
+ int r1;
+ pTerm = pLoop->aLTerm[j];
+ assert( pTerm!=0 );
+ /* The following testcase is true for indices with redundant columns.
+ ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
+ testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
+ if( r1!=regBase+j ){
+ if( nReg==1 ){
+ sqlite3ReleaseTempReg(pParse, regBase);
+ regBase = r1;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
+ }
+ }
+ if( pTerm->eOperator & WO_IN ){
+ if( pTerm->pExpr->flags & EP_xIsSelect ){
+ /* No affinity ever needs to be (or should be) applied to a value
+ ** from the RHS of an "? IN (SELECT ...)" expression. The
+ ** sqlite3FindInIndex() routine has already ensured that the
+ ** affinity of the comparison has been applied to the value. */
+ if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
+ }
+ }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
+ Expr *pRight = pTerm->pExpr->pRight;
+ if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
+ VdbeCoverage(v);
+ }
+ if( pParse->nErr==0 ){
+ assert( pParse->db->mallocFailed==0 );
+ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
+ zAff[j] = SQLITE_AFF_BLOB;
+ }
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
+ zAff[j] = SQLITE_AFF_BLOB;
+ }
+ }
+ }
+ }
+ *pzAff = zAff;
+ return regBase;
+}
+
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+/*
+** If the most recently coded instruction is a constant range constraint
+** (a string literal) that originated from the LIKE optimization, then
+** set P3 and P5 on the OP_String opcode so that the string will be cast
+** to a BLOB at appropriate times.
+**
+** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
+** expression: "x>='ABC' AND x<'abd'". But this requires that the range
+** scan loop run twice, once for strings and a second time for BLOBs.
+** The OP_String opcodes on the second pass convert the upper and lower
+** bound string constants to blobs. This routine makes the necessary changes
+** to the OP_String opcodes for that to happen.
+**
+** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
+** only the one pass through the string space is required, so this routine
+** becomes a no-op.
+*/
+static void whereLikeOptimizationStringFixup(
+ Vdbe *v, /* prepared statement under construction */
+ WhereLevel *pLevel, /* The loop that contains the LIKE operator */
+ WhereTerm *pTerm /* The upper or lower bound just coded */
+){
+ if( pTerm->wtFlags & TERM_LIKEOPT ){
+ VdbeOp *pOp;
+ assert( pLevel->iLikeRepCntr>0 );
+ pOp = sqlite3VdbeGetLastOp(v);
+ assert( pOp!=0 );
+ assert( pOp->opcode==OP_String8
+ || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
+ pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
+ pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
+ }
+}
+#else
+# define whereLikeOptimizationStringFixup(A,B,C)
+#endif
+
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+/*
+** Information is passed from codeCursorHint() down to individual nodes of
+** the expression tree (by sqlite3WalkExpr()) using an instance of this
+** structure.
+*/
+struct CCurHint {
+ int iTabCur; /* Cursor for the main table */
+ int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
+ Index *pIdx; /* The index used to access the table */
+};
+
+/*
+** This function is called for every node of an expression that is a candidate
+** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
+** the table CCurHint.iTabCur, verify that the same column can be
+** accessed through the index. If it cannot, then set pWalker->eCode to 1.
+*/
+static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
+ struct CCurHint *pHint = pWalker->u.pCCurHint;
+ assert( pHint->pIdx!=0 );
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pHint->iTabCur
+ && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
+ ){
+ pWalker->eCode = 1;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Test whether or not expression pExpr, which was part of a WHERE clause,
+** should be included in the cursor-hint for a table that is on the rhs
+** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
+** expression is not suitable.
+**
+** An expression is unsuitable if it might evaluate to non NULL even if
+** a TK_COLUMN node that does affect the value of the expression is set
+** to NULL. For example:
+**
+** col IS NULL
+** col IS NOT NULL
+** coalesce(col, 1)
+** CASE WHEN col THEN 0 ELSE 1 END
+*/
+static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_IS
+ || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
+ || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
+ ){
+ pWalker->eCode = 1;
+ }else if( pExpr->op==TK_FUNCTION ){
+ int d1;
+ char d2[4];
+ if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
+ pWalker->eCode = 1;
+ }
+ }
+
+ return WRC_Continue;
+}
+
+
+/*
+** This function is called on every node of an expression tree used as an
+** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
+** that accesses any table other than the one identified by
+** CCurHint.iTabCur, then do the following:
+**
+** 1) allocate a register and code an OP_Column instruction to read
+** the specified column into the new register, and
+**
+** 2) transform the expression node to a TK_REGISTER node that reads
+** from the newly populated register.
+**
+** Also, if the node is a TK_COLUMN that does access the table identified
+** by pCCurHint.iTabCur, and an index is being used (which we will
+** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
+** an access of the index rather than the original table.
+*/
+static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
+ int rc = WRC_Continue;
+ int reg;
+ struct CCurHint *pHint = pWalker->u.pCCurHint;
+ if( pExpr->op==TK_COLUMN ){
+ if( pExpr->iTable!=pHint->iTabCur ){
+ reg = ++pWalker->pParse->nMem; /* Register for column value */
+ reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg);
+ pExpr->op = TK_REGISTER;
+ pExpr->iTable = reg;
+ }else if( pHint->pIdx!=0 ){
+ pExpr->iTable = pHint->iIdxCur;
+ pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
+ assert( pExpr->iColumn>=0 );
+ }
+ }else if( pExpr->pAggInfo ){
+ rc = WRC_Prune;
+ reg = ++pWalker->pParse->nMem; /* Register for column value */
+ reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg);
+ pExpr->op = TK_REGISTER;
+ pExpr->iTable = reg;
+ }else if( pExpr->op==TK_TRUEFALSE ){
+ /* Do not walk disabled expressions. tag-20230504-1 */
+ return WRC_Prune;
+ }
+ return rc;
+}
+
+/*
+** Insert an OP_CursorHint instruction if it is appropriate to do so.
+*/
+static void codeCursorHint(
+ SrcItem *pTabItem, /* FROM clause item */
+ WhereInfo *pWInfo, /* The where clause */
+ WhereLevel *pLevel, /* Which loop to provide hints for */
+ WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
+){
+ Parse *pParse = pWInfo->pParse;
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ Expr *pExpr = 0;
+ WhereLoop *pLoop = pLevel->pWLoop;
+ int iCur;
+ WhereClause *pWC;
+ WhereTerm *pTerm;
+ int i, j;
+ struct CCurHint sHint;
+ Walker sWalker;
+
+ if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
+ iCur = pLevel->iTabCur;
+ assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
+ sHint.iTabCur = iCur;
+ sHint.iIdxCur = pLevel->iIdxCur;
+ sHint.pIdx = pLoop->u.btree.pIndex;
+ memset(&sWalker, 0, sizeof(sWalker));
+ sWalker.pParse = pParse;
+ sWalker.u.pCCurHint = &sHint;
+ pWC = &pWInfo->sWC;
+ for(i=0; i<pWC->nBase; i++){
+ pTerm = &pWC->a[i];
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( pTerm->prereqAll & pLevel->notReady ) continue;
+
+ /* Any terms specified as part of the ON(...) clause for any LEFT
+ ** JOIN for which the current table is not the rhs are omitted
+ ** from the cursor-hint.
+ **
+ ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
+ ** that were specified as part of the WHERE clause must be excluded.
+ ** This is to address the following:
+ **
+ ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
+ **
+ ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
+ ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
+ ** pushed down to the cursor, this row is filtered out, causing
+ ** SQLite to synthesize a row of NULL values. Which does match the
+ ** WHERE clause, and so the query returns a row. Which is incorrect.
+ **
+ ** For the same reason, WHERE terms such as:
+ **
+ ** WHERE 1 = (t2.c IS NULL)
+ **
+ ** are also excluded. See codeCursorHintIsOrFunction() for details.
+ */
+ if( pTabItem->fg.jointype & JT_LEFT ){
+ Expr *pExpr = pTerm->pExpr;
+ if( !ExprHasProperty(pExpr, EP_OuterON)
+ || pExpr->w.iJoin!=pTabItem->iCursor
+ ){
+ sWalker.eCode = 0;
+ sWalker.xExprCallback = codeCursorHintIsOrFunction;
+ sqlite3WalkExpr(&sWalker, pTerm->pExpr);
+ if( sWalker.eCode ) continue;
+ }
+ }else{
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
+ }
+
+ /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
+ ** the cursor. These terms are not needed as hints for a pure range
+ ** scan (that has no == terms) so omit them. */
+ if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
+ for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
+ if( j<pLoop->nLTerm ) continue;
+ }
+
+ /* No subqueries or non-deterministic functions allowed */
+ if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
+
+ /* For an index scan, make sure referenced columns are actually in
+ ** the index. */
+ if( sHint.pIdx!=0 ){
+ sWalker.eCode = 0;
+ sWalker.xExprCallback = codeCursorHintCheckExpr;
+ sqlite3WalkExpr(&sWalker, pTerm->pExpr);
+ if( sWalker.eCode ) continue;
+ }
+
+ /* If we survive all prior tests, that means this term is worth hinting */
+ pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
+ }
+ if( pExpr!=0 ){
+ sWalker.xExprCallback = codeCursorHintFixExpr;
+ if( pParse->nErr==0 ) sqlite3WalkExpr(&sWalker, pExpr);
+ sqlite3VdbeAddOp4(v, OP_CursorHint,
+ (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
+ (const char*)pExpr, P4_EXPR);
+ }
+}
+#else
+# define codeCursorHint(A,B,C,D) /* No-op */
+#endif /* SQLITE_ENABLE_CURSOR_HINTS */
+
+/*
+** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
+** a rowid value just read from cursor iIdxCur, open on index pIdx. This
+** function generates code to do a deferred seek of cursor iCur to the
+** rowid stored in register iRowid.
+**
+** Normally, this is just:
+**
+** OP_DeferredSeek $iCur $iRowid
+**
+** Which causes a seek on $iCur to the row with rowid $iRowid.
+**
+** However, if the scan currently being coded is a branch of an OR-loop and
+** the statement currently being coded is a SELECT, then additional information
+** is added that might allow OP_Column to omit the seek and instead do its
+** lookup on the index, thus avoiding an expensive seek operation. To
+** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
+** and P4 is set to an array of integers containing one entry for each column
+** in the table. For each table column, if the column is the i'th
+** column of the index, then the corresponding array entry is set to (i+1).
+** If the column does not appear in the index at all, the array entry is set
+** to 0. The OP_Column opcode can check this array to see if the column it
+** wants is in the index and if it is, it will substitute the index cursor
+** and column number and continue with those new values, rather than seeking
+** the table cursor.
+*/
+static void codeDeferredSeek(
+ WhereInfo *pWInfo, /* Where clause context */
+ Index *pIdx, /* Index scan is using */
+ int iCur, /* Cursor for IPK b-tree */
+ int iIdxCur /* Index cursor */
+){
+ Parse *pParse = pWInfo->pParse; /* Parse context */
+ Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
+
+ assert( iIdxCur>0 );
+ assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
+
+ pWInfo->bDeferredSeek = 1;
+ sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
+ if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
+ && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
+ ){
+ int i;
+ Table *pTab = pIdx->pTable;
+ u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
+ if( ai ){
+ ai[0] = pTab->nCol;
+ for(i=0; i<pIdx->nColumn-1; i++){
+ int x1, x2;
+ assert( pIdx->aiColumn[i]<pTab->nCol );
+ x1 = pIdx->aiColumn[i];
+ x2 = sqlite3TableColumnToStorage(pTab, x1);
+ testcase( x1!=x2 );
+ if( x1>=0 ) ai[x2+1] = i+1;
+ }
+ sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
+ }
+ }
+}
+
+/*
+** If the expression passed as the second argument is a vector, generate
+** code to write the first nReg elements of the vector into an array
+** of registers starting with iReg.
+**
+** If the expression is not a vector, then nReg must be passed 1. In
+** this case, generate code to evaluate the expression and leave the
+** result in register iReg.
+*/
+static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
+ assert( nReg>0 );
+ if( p && sqlite3ExprIsVector(p) ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( ExprUseXSelect(p) ){
+ Vdbe *v = pParse->pVdbe;
+ int iSelect;
+ assert( p->op==TK_SELECT );
+ iSelect = sqlite3CodeSubselect(pParse, p);
+ sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
+ }else
+#endif
+ {
+ int i;
+ const ExprList *pList;
+ assert( ExprUseXList(p) );
+ pList = p->x.pList;
+ assert( nReg<=pList->nExpr );
+ for(i=0; i<nReg; i++){
+ sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
+ }
+ }
+ }else{
+ assert( nReg==1 || pParse->nErr );
+ sqlite3ExprCode(pParse, p, iReg);
+ }
+}
+
+/*
+** The pTruth expression is always true because it is the WHERE clause
+** a partial index that is driving a query loop. Look through all of the
+** WHERE clause terms on the query, and if any of those terms must be
+** true because pTruth is true, then mark those WHERE clause terms as
+** coded.
+*/
+static void whereApplyPartialIndexConstraints(
+ Expr *pTruth,
+ int iTabCur,
+ WhereClause *pWC
+){
+ int i;
+ WhereTerm *pTerm;
+ while( pTruth->op==TK_AND ){
+ whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
+ pTruth = pTruth->pRight;
+ }
+ for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ Expr *pExpr;
+ if( pTerm->wtFlags & TERM_CODED ) continue;
+ pExpr = pTerm->pExpr;
+ if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+}
+
+/*
+** This routine is called right after An OP_Filter has been generated and
+** before the corresponding index search has been performed. This routine
+** checks to see if there are additional Bloom filters in inner loops that
+** can be checked prior to doing the index lookup. If there are available
+** inner-loop Bloom filters, then evaluate those filters now, before the
+** index lookup. The idea is that a Bloom filter check is way faster than
+** an index lookup, and the Bloom filter might return false, meaning that
+** the index lookup can be skipped.
+**
+** We know that an inner loop uses a Bloom filter because it has the
+** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked,
+** then clear the WhereLevel.regFilter value to prevent the Bloom filter
+** from being checked a second time when the inner loop is evaluated.
+*/
+static SQLITE_NOINLINE void filterPullDown(
+ Parse *pParse, /* Parsing context */
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ int addrNxt, /* Jump here to bypass inner loops */
+ Bitmask notReady /* Loops that are not ready */
+){
+ while( ++iLevel < pWInfo->nLevel ){
+ WhereLevel *pLevel = &pWInfo->a[iLevel];
+ WhereLoop *pLoop = pLevel->pWLoop;
+ if( pLevel->regFilter==0 ) continue;
+ if( pLevel->pWLoop->nSkip ) continue;
+ /* ,--- Because sqlite3ConstructBloomFilter() has will not have set
+ ** vvvvv--' pLevel->regFilter if this were true. */
+ if( NEVER(pLoop->prereq & notReady) ) continue;
+ assert( pLevel->addrBrk==0 );
+ pLevel->addrBrk = addrNxt;
+ if( pLoop->wsFlags & WHERE_IPK ){
+ WhereTerm *pTerm = pLoop->aLTerm[0];
+ int regRowid;
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ regRowid = sqlite3GetTempReg(pParse);
+ regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt);
+ VdbeCoverage(pParse->pVdbe);
+ sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
+ addrNxt, regRowid, 1);
+ VdbeCoverage(pParse->pVdbe);
+ }else{
+ u16 nEq = pLoop->u.btree.nEq;
+ int r1;
+ char *zStartAff;
+
+ assert( pLoop->wsFlags & WHERE_INDEXED );
+ assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
+ r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
+ codeApplyAffinity(pParse, r1, nEq, zStartAff);
+ sqlite3DbFree(pParse->db, zStartAff);
+ sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
+ addrNxt, r1, nEq);
+ VdbeCoverage(pParse->pVdbe);
+ }
+ pLevel->regFilter = 0;
+ pLevel->addrBrk = 0;
+ }
+}
+
+/*
+** Generate code for the start of the iLevel-th loop in the WHERE clause
+** implementation described by pWInfo.
+*/
+SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
+ Parse *pParse, /* Parsing context */
+ Vdbe *v, /* Prepared statement under construction */
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */
+ int iLevel, /* Which level of pWInfo->a[] should be coded */
+ WhereLevel *pLevel, /* The current level pointer */
+ Bitmask notReady /* Which tables are currently available */
+){
+ int j, k; /* Loop counters */
+ int iCur; /* The VDBE cursor for the table */
+ int addrNxt; /* Where to jump to continue with the next IN case */
+ int bRev; /* True if we need to scan in reverse order */
+ WhereLoop *pLoop; /* The WhereLoop object being coded */
+ WhereClause *pWC; /* Decomposition of the entire WHERE clause */
+ WhereTerm *pTerm; /* A WHERE clause term */
+ sqlite3 *db; /* Database connection */
+ SrcItem *pTabItem; /* FROM clause term being coded */
+ int addrBrk; /* Jump here to break out of the loop */
+ int addrHalt; /* addrBrk for the outermost loop */
+ int addrCont; /* Jump here to continue with next cycle */
+ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
+ int iReleaseReg = 0; /* Temp register to free before returning */
+ Index *pIdx = 0; /* Index used by loop (if any) */
+ int iLoop; /* Iteration of constraint generator loop */
+
+ pWC = &pWInfo->sWC;
+ db = pParse->db;
+ pLoop = pLevel->pWLoop;
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ iCur = pTabItem->iCursor;
+ pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
+ bRev = (pWInfo->revMask>>iLevel)&1;
+ VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
+#if WHERETRACE_ENABLED /* 0x4001 */
+ if( sqlite3WhereTrace & 0x1 ){
+ sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
+ iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
+ if( sqlite3WhereTrace & 0x1000 ){
+ sqlite3WhereLoopPrint(pLoop, pWC);
+ }
+ }
+ if( (sqlite3WhereTrace & 0x4001)==0x4001 ){
+ if( iLevel==0 ){
+ sqlite3DebugPrintf("WHERE clause being coded:\n");
+ sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
+ }
+ sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
+ sqlite3WhereClausePrint(pWC);
+ }
+#endif
+
+ /* Create labels for the "break" and "continue" instructions
+ ** for the current loop. Jump to addrBrk to break out of a loop.
+ ** Jump to cont to go immediately to the next iteration of the
+ ** loop.
+ **
+ ** When there is an IN operator, we also have a "addrNxt" label that
+ ** means to continue with the next IN value combination. When
+ ** there are no IN operators in the constraints, the "addrNxt" label
+ ** is the same as "addrBrk".
+ */
+ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
+ addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
+ || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
+ );
+ if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
+ pLevel->iLeftJoin = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
+ VdbeComment((v, "init LEFT JOIN no-match flag"));
+ }
+
+ /* Compute a safe address to jump to if we discover that the table for
+ ** this loop is empty and can never contribute content. */
+ for(j=iLevel; j>0; j--){
+ if( pWInfo->a[j].iLeftJoin ) break;
+ if( pWInfo->a[j].pRJ ) break;
+ }
+ addrHalt = pWInfo->a[j].addrBrk;
+
+ /* Special case of a FROM clause subquery implemented as a co-routine */
+ if( pTabItem->fg.viaCoroutine ){
+ int regYield = pTabItem->regReturn;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
+ pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
+ VdbeCoverage(v);
+ VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
+ pLevel->op = OP_Goto;
+ }else
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ /* Case 1: The table is a virtual-table. Use the VFilter and VNext
+ ** to access the data.
+ */
+ int iReg; /* P3 Value for OP_VFilter */
+ int addrNotFound;
+ int nConstraint = pLoop->nLTerm;
+
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2);
+ addrNotFound = pLevel->addrBrk;
+ for(j=0; j<nConstraint; j++){
+ int iTarget = iReg+j+2;
+ pTerm = pLoop->aLTerm[j];
+ if( NEVER(pTerm==0) ) continue;
+ if( pTerm->eOperator & WO_IN ){
+ if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
+ int iTab = pParse->nTab++;
+ int iCache = ++pParse->nMem;
+ sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
+ sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
+ }else{
+ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
+ addrNotFound = pLevel->addrNxt;
+ }
+ }else{
+ Expr *pRight = pTerm->pExpr->pRight;
+ codeExprOrVector(pParse, pRight, iTarget, 1);
+ if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
+ && pLoop->u.vtab.bOmitOffset
+ ){
+ assert( pTerm->eOperator==WO_AUX );
+ assert( pWInfo->pSelect!=0 );
+ assert( pWInfo->pSelect->iOffset>0 );
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pSelect->iOffset);
+ VdbeComment((v,"Zero OFFSET counter"));
+ }
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
+ sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
+ pLoop->u.vtab.idxStr,
+ pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
+ VdbeCoverage(v);
+ pLoop->u.vtab.needFree = 0;
+ /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
+ ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
+ if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
+ pLevel->p1 = iCur;
+ pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
+
+ for(j=0; j<nConstraint; j++){
+ pTerm = pLoop->aLTerm[j];
+ if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
+ disableTerm(pLevel, pTerm);
+ continue;
+ }
+ if( (pTerm->eOperator & WO_IN)!=0
+ && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
+ && !db->mallocFailed
+ ){
+ Expr *pCompare; /* The comparison operator */
+ Expr *pRight; /* RHS of the comparison */
+ VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
+ int iIn; /* IN loop corresponding to the j-th constraint */
+
+ /* Reload the constraint value into reg[iReg+j+2]. The same value
+ ** was loaded into the same register prior to the OP_VFilter, but
+ ** the xFilter implementation might have changed the datatype or
+ ** encoding of the value in the register, so it *must* be reloaded.
+ */
+ for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
+ pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
+ if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
+ || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
+ ){
+ testcase( pOp->opcode==OP_Rowid );
+ sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
+ break;
+ }
+ }
+
+ /* Generate code that will continue to the next row if
+ ** the IN constraint is not satisfied
+ */
+ pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
+ if( !db->mallocFailed ){
+ int iFld = pTerm->u.x.iField;
+ Expr *pLeft = pTerm->pExpr->pLeft;
+ assert( pLeft!=0 );
+ if( iFld>0 ){
+ assert( pLeft->op==TK_VECTOR );
+ assert( ExprUseXList(pLeft) );
+ assert( iFld<=pLeft->x.pList->nExpr );
+ pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
+ }else{
+ pCompare->pLeft = pLeft;
+ }
+ pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pRight ){
+ pRight->iTable = iReg+j+2;
+ sqlite3ExprIfFalse(
+ pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
+ );
+ }
+ pCompare->pLeft = 0;
+ }
+ sqlite3ExprDelete(db, pCompare);
+ }
+ }
+
+ /* These registers need to be preserved in case there is an IN operator
+ ** loop. So we could deallocate the registers here (and potentially
+ ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
+ ** simpler and safer to simply not reuse the registers.
+ **
+ ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
+ */
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ if( (pLoop->wsFlags & WHERE_IPK)!=0
+ && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
+ ){
+ /* Case 2: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ assert( pLoop->u.btree.nEq==1 );
+ pTerm = pLoop->aLTerm[0];
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ iReleaseReg = ++pParse->nMem;
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
+ if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
+ addrNxt = pLevel->addrNxt;
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
+ iRowidReg, 1);
+ VdbeCoverage(v);
+ filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
+ }
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
+ VdbeCoverage(v);
+ pLevel->op = OP_Noop;
+ }else if( (pLoop->wsFlags & WHERE_IPK)!=0
+ && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
+ ){
+ /* Case 3: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+ int memEndValue = 0;
+ WhereTerm *pStart, *pEnd;
+
+ j = 0;
+ pStart = pEnd = 0;
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
+ assert( pStart!=0 || pEnd!=0 );
+ if( bRev ){
+ pTerm = pStart;
+ pStart = pEnd;
+ pEnd = pTerm;
+ }
+ codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
+ if( pStart ){
+ Expr *pX; /* The expression that defines the start bound */
+ int r1, rTemp; /* Registers for holding the start boundary */
+ int op; /* Cursor seek operation */
+
+ /* The following constant maps TK_xx codes into corresponding
+ ** seek opcodes. It depends on a particular ordering of TK_xx
+ */
+ const u8 aMoveOp[] = {
+ /* TK_GT */ OP_SeekGT,
+ /* TK_LE */ OP_SeekLE,
+ /* TK_LT */ OP_SeekLT,
+ /* TK_GE */ OP_SeekGE
+ };
+ assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
+ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
+ assert( TK_GE==TK_GT+3 ); /* ... is correct. */
+
+ assert( (pStart->wtFlags & TERM_VNULL)==0 );
+ testcase( pStart->wtFlags & TERM_VIRTUAL );
+ pX = pStart->pExpr;
+ assert( pX!=0 );
+ testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
+ if( sqlite3ExprIsVector(pX->pRight) ){
+ r1 = rTemp = sqlite3GetTempReg(pParse);
+ codeExprOrVector(pParse, pX->pRight, r1, 1);
+ testcase( pX->op==TK_GT );
+ testcase( pX->op==TK_GE );
+ testcase( pX->op==TK_LT );
+ testcase( pX->op==TK_LE );
+ op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
+ assert( pX->op!=TK_GT || op==OP_SeekGE );
+ assert( pX->op!=TK_GE || op==OP_SeekGE );
+ assert( pX->op!=TK_LT || op==OP_SeekLE );
+ assert( pX->op!=TK_LE || op==OP_SeekLE );
+ }else{
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
+ disableTerm(pLevel, pStart);
+ op = aMoveOp[(pX->op - TK_GT)];
+ }
+ sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
+ VdbeComment((v, "pk"));
+ VdbeCoverageIf(v, pX->op==TK_GT);
+ VdbeCoverageIf(v, pX->op==TK_LE);
+ VdbeCoverageIf(v, pX->op==TK_LT);
+ VdbeCoverageIf(v, pX->op==TK_GE);
+ sqlite3ReleaseTempReg(pParse, rTemp);
+ }else{
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ }
+ if( pEnd ){
+ Expr *pX;
+ pX = pEnd->pExpr;
+ assert( pX!=0 );
+ assert( (pEnd->wtFlags & TERM_VNULL)==0 );
+ testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
+ testcase( pEnd->wtFlags & TERM_VIRTUAL );
+ memEndValue = ++pParse->nMem;
+ codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
+ if( 0==sqlite3ExprIsVector(pX->pRight)
+ && (pX->op==TK_LT || pX->op==TK_GT)
+ ){
+ testOp = bRev ? OP_Le : OP_Ge;
+ }else{
+ testOp = bRev ? OP_Lt : OP_Gt;
+ }
+ if( 0==sqlite3ExprIsVector(pX->pRight) ){
+ disableTerm(pLevel, pEnd);
+ }
+ }
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ assert( pLevel->p5==0 );
+ if( testOp!=OP_Noop ){
+ iRowidReg = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
+ sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
+ VdbeCoverageIf(v, testOp==OP_Le);
+ VdbeCoverageIf(v, testOp==OP_Lt);
+ VdbeCoverageIf(v, testOp==OP_Ge);
+ VdbeCoverageIf(v, testOp==OP_Gt);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
+ }
+ }else if( pLoop->wsFlags & WHERE_INDEXED ){
+ /* Case 4: A scan using an index.
+ **
+ ** The WHERE clause may contain zero or more equality
+ ** terms ("==" or "IN" operators) that refer to the N
+ ** left-most columns of the index. It may also contain
+ ** inequality constraints (>, <, >= or <=) on the indexed
+ ** column that immediately follows the N equalities. Only
+ ** the right-most column can be an inequality - the rest must
+ ** use the "==" and "IN" operators. For example, if the
+ ** index is on (x,y,z), then the following clauses are all
+ ** optimized:
+ **
+ ** x=5
+ ** x=5 AND y=10
+ ** x=5 AND y<10
+ ** x=5 AND y>5 AND y<10
+ ** x=5 AND y=5 AND z<=10
+ **
+ ** The z<10 term of the following cannot be used, only
+ ** the x=5 term:
+ **
+ ** x=5 AND z<10
+ **
+ ** N may be zero if there are inequality constraints.
+ ** If there are no inequality constraints, then N is at
+ ** least one.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ static const u8 aStartOp[] = {
+ 0,
+ 0,
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */
+ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
+ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
+ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
+ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
+ };
+ static const u8 aEndOp[] = {
+ OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
+ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
+ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
+ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
+ };
+ u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
+ u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
+ u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
+ int regBase; /* Base register holding constraint values */
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
+ int startEq; /* True if range start uses ==, >= or <= */
+ int endEq; /* True if range end uses ==, >= or <= */
+ int start_constraints; /* Start of range is constrained */
+ int nConstraint; /* Number of constraint terms */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int nExtraReg = 0; /* Number of extra registers needed */
+ int op; /* Instruction opcode */
+ char *zStartAff; /* Affinity for start of range constraint */
+ char *zEndAff = 0; /* Affinity for end of range constraint */
+ u8 bSeekPastNull = 0; /* True to seek past initial nulls */
+ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
+ int omitTable; /* True if we use the index only */
+ int regBignull = 0; /* big-null flag register */
+ int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */
+
+ pIdx = pLoop->u.btree.pIndex;
+ iIdxCur = pLevel->iIdxCur;
+ assert( nEq>=pLoop->nSkip );
+
+ /* Find any inequality constraint terms for the start and end
+ ** of the range.
+ */
+ j = nEq;
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
+ pRangeStart = pLoop->aLTerm[j++];
+ nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
+ /* Like optimization range constraints always occur in pairs */
+ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
+ (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
+ }
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
+ pRangeEnd = pLoop->aLTerm[j++];
+ nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
+ assert( pRangeStart!=0 ); /* LIKE opt constraints */
+ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
+ pLevel->iLikeRepCntr = (u32)++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
+ VdbeComment((v, "LIKE loop counter"));
+ pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
+ /* iLikeRepCntr actually stores 2x the counter register number. The
+ ** bottom bit indicates whether the search order is ASC or DESC. */
+ testcase( bRev );
+ testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
+ assert( (bRev & ~1)==0 );
+ pLevel->iLikeRepCntr <<=1;
+ pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
+ }
+#endif
+ if( pRangeStart==0 ){
+ j = pIdx->aiColumn[nEq];
+ if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
+ bSeekPastNull = 1;
+ }
+ }
+ }
+ assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
+
+ /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
+ ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
+ ** FIRST). In both cases separate ordered scans are made of those
+ ** index entries for which the column is null and for those for which
+ ** it is not. For an ASC sort, the non-NULL entries are scanned first.
+ ** For DESC, NULL entries are scanned first.
+ */
+ if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
+ && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
+ ){
+ assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
+ assert( pRangeEnd==0 && pRangeStart==0 );
+ testcase( pLoop->nSkip>0 );
+ nExtraReg = 1;
+ bSeekPastNull = 1;
+ pLevel->regBignull = regBignull = ++pParse->nMem;
+ if( pLevel->iLeftJoin ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
+ }
+ pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
+ }
+
+ /* If we are doing a reverse order scan on an ascending index, or
+ ** a forward order scan on a descending index, interchange the
+ ** start and end terms (pRangeStart and pRangeEnd).
+ */
+ if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart);
+ SWAP(u8, bSeekPastNull, bStopAtNull);
+ SWAP(u8, nBtm, nTop);
+ }
+
+ if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
+ /* In case OP_SeekScan is used, ensure that the index cursor does not
+ ** point to a valid row for the first iteration of this loop. */
+ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
+ }
+
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and store the values of those terms in an array of registers
+ ** starting at regBase.
+ */
+ codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
+ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
+ assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
+ if( zStartAff && nTop ){
+ zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
+ }
+ addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
+
+ testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
+ testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
+ testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
+ testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
+ start_constraints = pRangeStart || nEq>0;
+
+ /* Seek the index cursor to the start of the range. */
+ nConstraint = nEq;
+ if( pRangeStart ){
+ Expr *pRight = pRangeStart->pExpr->pRight;
+ codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
+ whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
+ if( (pRangeStart->wtFlags & TERM_VNULL)==0
+ && sqlite3ExprCanBeNull(pRight)
+ ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
+ VdbeCoverage(v);
+ }
+ if( zStartAff ){
+ updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
+ }
+ nConstraint += nBtm;
+ testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
+ if( sqlite3ExprIsVector(pRight)==0 ){
+ disableTerm(pLevel, pRangeStart);
+ }else{
+ startEq = 1;
+ }
+ bSeekPastNull = 0;
+ }else if( bSeekPastNull ){
+ startEq = 0;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ start_constraints = 1;
+ nConstraint++;
+ }else if( regBignull ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ start_constraints = 1;
+ nConstraint++;
+ }
+ codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
+ if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
+ /* The skip-scan logic inside the call to codeAllEqualityConstraints()
+ ** above has already left the cursor sitting on the correct row,
+ ** so no further seeking is needed */
+ }else{
+ if( regBignull ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
+ VdbeComment((v, "NULL-scan pass ctr"));
+ }
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
+ regBase, nEq);
+ VdbeCoverage(v);
+ filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
+ }
+
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
+ assert( op!=0 );
+ if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
+ assert( regBignull==0 );
+ /* TUNING: The OP_SeekScan opcode seeks to reduce the number
+ ** of expensive seek operations by replacing a single seek with
+ ** 1 or more step operations. The question is, how many steps
+ ** should we try before giving up and going with a seek. The cost
+ ** of a seek is proportional to the logarithm of the of the number
+ ** of entries in the tree, so basing the number of steps to try
+ ** on the estimated number of rows in the btree seems like a good
+ ** guess. */
+ addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
+ (pIdx->aiRowLogEst[0]+9)/10);
+ if( pRangeStart || pRangeEnd ){
+ sqlite3VdbeChangeP5(v, 1);
+ sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1);
+ addrSeekScan = 0;
+ }
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
+ VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
+ VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
+ VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
+ VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
+ VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
+
+ assert( bSeekPastNull==0 || bStopAtNull==0 );
+ if( regBignull ){
+ assert( bSeekPastNull==1 || bStopAtNull==1 );
+ assert( bSeekPastNull==!bStopAtNull );
+ assert( bStopAtNull==startEq );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
+ op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
+ nConstraint-startEq);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
+ VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
+ VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
+ VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
+ assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
+ }
+ }
+
+ /* Load the value for the inequality constraint at the end of the
+ ** range (if any).
+ */
+ nConstraint = nEq;
+ assert( pLevel->p2==0 );
+ if( pRangeEnd ){
+ Expr *pRight = pRangeEnd->pExpr->pRight;
+ assert( addrSeekScan==0 );
+ codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
+ whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
+ if( (pRangeEnd->wtFlags & TERM_VNULL)==0
+ && sqlite3ExprCanBeNull(pRight)
+ ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
+ VdbeCoverage(v);
+ }
+ if( zEndAff ){
+ updateRangeAffinityStr(pRight, nTop, zEndAff);
+ codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
+ }else{
+ assert( pParse->db->mallocFailed );
+ }
+ nConstraint += nTop;
+ testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
+
+ if( sqlite3ExprIsVector(pRight)==0 ){
+ disableTerm(pLevel, pRangeEnd);
+ }else{
+ endEq = 1;
+ }
+ }else if( bStopAtNull ){
+ if( regBignull==0 ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ endEq = 0;
+ }
+ nConstraint++;
+ }
+ if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff);
+ if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff);
+
+ /* Top of the loop body */
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ /* Check if the index cursor is past the end of the range. */
+ if( nConstraint ){
+ if( regBignull ){
+ /* Except, skip the end-of-range check while doing the NULL-scan */
+ sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
+ VdbeComment((v, "If NULL-scan 2nd pass"));
+ VdbeCoverage(v);
+ }
+ op = aEndOp[bRev*2 + endEq];
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
+ testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
+ testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
+ testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
+ testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
+ if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
+ }
+ if( regBignull ){
+ /* During a NULL-scan, check to see if we have reached the end of
+ ** the NULLs */
+ assert( bSeekPastNull==!bStopAtNull );
+ assert( bSeekPastNull+bStopAtNull==1 );
+ assert( nConstraint+bSeekPastNull>0 );
+ sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeComment((v, "If NULL-scan 1st pass"));
+ VdbeCoverage(v);
+ op = aEndOp[bRev*2 + bSeekPastNull];
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
+ nConstraint+bSeekPastNull);
+ testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
+ testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
+ testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
+ testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
+ }
+
+ if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
+ sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
+ }
+
+ /* Seek the table cursor, if required */
+ omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
+ && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
+ if( omitTable ){
+ /* pIdx is a covering index. No need to access the main table. */
+ }else if( HasRowid(pIdx->pTable) ){
+ codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
+ }else if( iCur!=iIdxCur ){
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
+ iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ for(j=0; j<pPk->nKeyCol; j++){
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
+ }
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
+ iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
+ }
+
+ if( pLevel->iLeftJoin==0 ){
+ /* If a partial index is driving the loop, try to eliminate WHERE clause
+ ** terms from the query that must be true due to the WHERE clause of
+ ** the partial index.
+ **
+ ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
+ ** for a LEFT JOIN.
+ */
+ if( pIdx->pPartIdxWhere ){
+ whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
+ }
+ }else{
+ testcase( pIdx->pPartIdxWhere );
+ /* The following assert() is not a requirement, merely an observation:
+ ** The OR-optimization doesn't work for the right hand table of
+ ** a LEFT JOIN: */
+ assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
+ }
+
+ /* Record the instruction used to terminate the loop. */
+ if( pLoop->wsFlags & WHERE_ONEROW ){
+ pLevel->op = OP_Noop;
+ }else if( bRev ){
+ pLevel->op = OP_Prev;
+ }else{
+ pLevel->op = OP_Next;
+ }
+ pLevel->p1 = iIdxCur;
+ pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }else{
+ assert( pLevel->p5==0 );
+ }
+ if( omitTable ) pIdx = 0;
+ }else
+
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION
+ if( pLoop->wsFlags & WHERE_MULTI_OR ){
+ /* Case 5: Two or more separately indexed terms connected by OR
+ **
+ ** Example:
+ **
+ ** CREATE TABLE t1(a,b,c,d);
+ ** CREATE INDEX i1 ON t1(a);
+ ** CREATE INDEX i2 ON t1(b);
+ ** CREATE INDEX i3 ON t1(c);
+ **
+ ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
+ **
+ ** In the example, there are three indexed terms connected by OR.
+ ** The top of the loop looks like this:
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ **
+ ** Then, for each indexed term, the following. The arguments to
+ ** RowSetTest are such that the rowid of the current row is inserted
+ ** into the RowSet. If it is already present, control skips the
+ ** Gosub opcode and jumps straight to the code generated by WhereEnd().
+ **
+ ** sqlite3WhereBegin(<term>)
+ ** RowSetTest # Insert rowid into rowset
+ ** Gosub 2 A
+ ** sqlite3WhereEnd()
+ **
+ ** Following the above, code to terminate the loop. Label A, the target
+ ** of the Gosub above, jumps to the instruction right after the Goto.
+ **
+ ** Null 1 # Zero the rowset in reg 1
+ ** Goto B # The loop is finished.
+ **
+ ** A: <loop body> # Return data, whatever.
+ **
+ ** Return 2 # Jump back to the Gosub
+ **
+ ** B: <after the loop>
+ **
+ ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
+ ** use an ephemeral index instead of a RowSet to record the primary
+ ** keys of the rows we have already seen.
+ **
+ */
+ WhereClause *pOrWc; /* The OR-clause broken out into subterms */
+ SrcList *pOrTab; /* Shortened table list or OR-clause generation */
+ Index *pCov = 0; /* Potential covering index (or NULL) */
+ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
+
+ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
+ int regRowset = 0; /* Register for RowSet object */
+ int regRowid = 0; /* Register holding rowid */
+ int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
+ int iRetInit; /* Address of regReturn init */
+ int untestedTerms = 0; /* Some terms not completely tested */
+ int ii; /* Loop counter */
+ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
+ Table *pTab = pTabItem->pTab;
+
+ pTerm = pLoop->aLTerm[0];
+ assert( pTerm!=0 );
+ assert( pTerm->eOperator & WO_OR );
+ assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
+ pOrWc = &pTerm->u.pOrInfo->wc;
+ pLevel->op = OP_Return;
+ pLevel->p1 = regReturn;
+
+ /* Set up a new SrcList in pOrTab containing the table being scanned
+ ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
+ ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
+ */
+ if( pWInfo->nLevel>1 ){
+ int nNotReady; /* The number of notReady tables */
+ SrcItem *origSrc; /* Original list of tables */
+ nNotReady = pWInfo->nLevel - iLevel - 1;
+ pOrTab = sqlite3DbMallocRawNN(db,
+ sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
+ if( pOrTab==0 ) return notReady;
+ pOrTab->nAlloc = (u8)(nNotReady + 1);
+ pOrTab->nSrc = pOrTab->nAlloc;
+ memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
+ origSrc = pWInfo->pTabList->a;
+ for(k=1; k<=nNotReady; k++){
+ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
+ }
+ }else{
+ pOrTab = pWInfo->pTabList;
+ }
+
+ /* Initialize the rowset register to contain NULL. An SQL NULL is
+ ** equivalent to an empty rowset. Or, create an ephemeral index
+ ** capable of holding primary keys in the case of a WITHOUT ROWID.
+ **
+ ** Also initialize regReturn to contain the address of the instruction
+ ** immediately following the OP_Return at the bottom of the loop. This
+ ** is required in a few obscure LEFT JOIN cases where control jumps
+ ** over the top of the loop into the body of it. In this case the
+ ** correct response for the end-of-loop code (the OP_Return) is to
+ ** fall through to the next instruction, just as an OP_Next does if
+ ** called on an uninitialized cursor.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ if( HasRowid(pTab) ){
+ regRowset = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ regRowset = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+ regRowid = ++pParse->nMem;
+ }
+ iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
+
+ /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
+ ** Then for every term xN, evaluate as the subexpression: xN AND y
+ ** That way, terms in y that are factored into the disjunction will
+ ** be picked up by the recursive calls to sqlite3WhereBegin() below.
+ **
+ ** Actually, each subexpression is converted to "xN AND w" where w is
+ ** the "interesting" terms of z - terms that did not originate in the
+ ** ON or USING clause of a LEFT JOIN, and terms that are usable as
+ ** indices.
+ **
+ ** This optimization also only applies if the (x1 OR x2 OR ...) term
+ ** is not contained in the ON clause of a LEFT JOIN.
+ ** See ticket http://www.sqlite.org/src/info/f2369304e4
+ **
+ ** 2022-02-04: Do not push down slices of a row-value comparison.
+ ** In other words, "w" or "y" may not be a slice of a vector. Otherwise,
+ ** the initialization of the right-hand operand of the vector comparison
+ ** might not occur, or might occur only in an OR branch that is not
+ ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
+ **
+ ** 2022-03-03: Do not push down expressions that involve subqueries.
+ ** The subquery might get coded as a subroutine. Any table-references
+ ** in the subquery might be resolved to index-references for the index on
+ ** the OR branch in which the subroutine is coded. But if the subroutine
+ ** is invoked from a different OR branch that uses a different index, such
+ ** index-references will not work. tag-20220303a
+ ** https://sqlite.org/forum/forumpost/36937b197273d403
+ */
+ if( pWC->nTerm>1 ){
+ int iTerm;
+ for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
+ Expr *pExpr = pWC->a[iTerm].pExpr;
+ if( &pWC->a[iTerm] == pTerm ) continue;
+ testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
+ testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
+ testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
+ if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
+ continue;
+ }
+ if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
+ if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
+ }
+ if( pAndExpr ){
+ /* The extra 0x10000 bit on the opcode is masked off and does not
+ ** become part of the new Expr.op. However, it does make the
+ ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
+ ** prevents sqlite3PExpr() from applying the AND short-circuit
+ ** optimization, which we do not want here. */
+ pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
+ }
+ }
+
+ /* Run a separate WHERE clause for each term of the OR clause. After
+ ** eliminating duplicates from other WHERE clauses, the action for each
+ ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
+ */
+ ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
+ for(ii=0; ii<pOrWc->nTerm; ii++){
+ WhereTerm *pOrTerm = &pOrWc->a[ii];
+ if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */
+ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
+ Expr *pDelete; /* Local copy of OR clause term */
+ int jmp1 = 0; /* Address of jump operation */
+ testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
+ && !ExprHasProperty(pOrExpr, EP_OuterON)
+ ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
+ pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDelete);
+ continue;
+ }
+ if( pAndExpr ){
+ pAndExpr->pLeft = pOrExpr;
+ pOrExpr = pAndExpr;
+ }
+ /* Loop through table entries that match term pOrTerm. */
+ ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
+ WHERETRACE(0xffffffff, ("Subplan for OR-clause:\n"));
+ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
+ WHERE_OR_SUBCLAUSE, iCovCur);
+ assert( pSubWInfo || pParse->nErr );
+ if( pSubWInfo ){
+ WhereLoop *pSubLoop;
+ int addrExplain = sqlite3WhereExplainOneScan(
+ pParse, pOrTab, &pSubWInfo->a[0], 0
+ );
+ sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
+
+ /* This is the sub-WHERE clause body. First skip over
+ ** duplicate rows from prior sub-WHERE clauses, and record the
+ ** rowid (or PRIMARY KEY) for the current row so that the same
+ ** row will be skipped in subsequent sub-WHERE clauses.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
+ if( HasRowid(pTab) ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
+ jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
+ regRowid, iSet);
+ VdbeCoverage(v);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ int nPk = pPk->nKeyCol;
+ int iPk;
+ int r;
+
+ /* Read the PK into an array of temp registers. */
+ r = sqlite3GetTempRange(pParse, nPk);
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
+ }
+
+ /* Check if the temp table already contains this key. If so,
+ ** the row has already been included in the result set and
+ ** can be ignored (by jumping past the Gosub below). Otherwise,
+ ** insert the key into the temp table and proceed with processing
+ ** the row.
+ **
+ ** Use some of the same optimizations as OP_RowSetTest: If iSet
+ ** is zero, assume that the key cannot already be present in
+ ** the temp table. And if iSet is -1, assume that there is no
+ ** need to insert the key into the temp table, as it will never
+ ** be tested for. */
+ if( iSet ){
+ jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
+ VdbeCoverage(v);
+ }
+ if( iSet>=0 ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
+ r, nPk);
+ if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
+
+ /* Release the array of temp registers */
+ sqlite3ReleaseTempRange(pParse, r, nPk);
+ }
+ }
+
+ /* Invoke the main loop body as a subroutine */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
+
+ /* Jump here (skipping the main loop body subroutine) if the
+ ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
+ if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
+
+ /* The pSubWInfo->untestedTerms flag means that this OR term
+ ** contained one or more AND term from a notReady table. The
+ ** terms from the notReady table could not be tested and will
+ ** need to be tested later.
+ */
+ if( pSubWInfo->untestedTerms ) untestedTerms = 1;
+
+ /* If all of the OR-connected terms are optimized using the same
+ ** index, and the index is opened using the same cursor number
+ ** by each call to sqlite3WhereBegin() made by this loop, it may
+ ** be possible to use that index as a covering index.
+ **
+ ** If the call to sqlite3WhereBegin() above resulted in a scan that
+ ** uses an index, and this is either the first OR-connected term
+ ** processed or the index is the same as that used by all previous
+ ** terms, set pCov to the candidate covering index. Otherwise, set
+ ** pCov to NULL to indicate that no candidate covering index will
+ ** be available.
+ */
+ pSubLoop = pSubWInfo->a[0].pWLoop;
+ assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
+ if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
+ && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
+ && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
+ ){
+ assert( pSubWInfo->a[0].iIdxCur==iCovCur );
+ pCov = pSubLoop->u.btree.pIndex;
+ }else{
+ pCov = 0;
+ }
+ if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
+ pWInfo->bDeferredSeek = 1;
+ }
+
+ /* Finish the loop through table entries that match term pOrTerm. */
+ sqlite3WhereEnd(pSubWInfo);
+ ExplainQueryPlanPop(pParse);
+ }
+ sqlite3ExprDelete(db, pDelete);
+ }
+ }
+ ExplainQueryPlanPop(pParse);
+ assert( pLevel->pWLoop==pLoop );
+ assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
+ assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
+ pLevel->u.pCoveringIdx = pCov;
+ if( pCov ) pLevel->iIdxCur = iCovCur;
+ if( pAndExpr ){
+ pAndExpr->pLeft = 0;
+ sqlite3ExprDelete(db, pAndExpr);
+ }
+ sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeGoto(v, pLevel->addrBrk);
+ sqlite3VdbeResolveLabel(v, iLoopBody);
+
+ /* Set the P2 operand of the OP_Return opcode that will end the current
+ ** loop to point to this spot, which is the top of the next containing
+ ** loop. The byte-code formatter will use that P2 value as a hint to
+ ** indent everything in between the this point and the final OP_Return.
+ ** See tag-20220407a in vdbe.c and shell.c */
+ assert( pLevel->op==OP_Return );
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); }
+ if( !untestedTerms ) disableTerm(pLevel, pTerm);
+ }else
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+
+ {
+ /* Case 6: There is no usable index. We must do a complete
+ ** scan of the entire table.
+ */
+ static const u8 aStep[] = { OP_Next, OP_Prev };
+ static const u8 aStart[] = { OP_Rewind, OP_Last };
+ assert( bRev==0 || bRev==1 );
+ if( pTabItem->fg.isRecursive ){
+ /* Tables marked isRecursive have only a single row that is stored in
+ ** a pseudo-cursor. No need to Rewind or Next such cursors. */
+ pLevel->op = OP_Noop;
+ }else{
+ codeCursorHint(pTabItem, pWInfo, pLevel, 0);
+ pLevel->op = aStep[bRev];
+ pLevel->p1 = iCur;
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
+ VdbeCoverageIf(v, bRev==0);
+ VdbeCoverageIf(v, bRev!=0);
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
+ }
+ }
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
+#endif
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ **
+ ** This loop may run between one and three times, depending on the
+ ** constraints to be generated. The value of stack variable iLoop
+ ** determines the constraints coded by each iteration, as follows:
+ **
+ ** iLoop==1: Code only expressions that are entirely covered by pIdx.
+ ** iLoop==2: Code remaining expressions that do not contain correlated
+ ** sub-queries.
+ ** iLoop==3: Code all remaining expressions.
+ **
+ ** An effort is made to skip unnecessary iterations of the loop.
+ */
+ iLoop = (pIdx ? 1 : 2);
+ do{
+ int iNext = 0; /* Next value for iLoop */
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
+ Expr *pE;
+ int skipLikeAddr = 0;
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
+ testcase( pWInfo->untestedTerms==0
+ && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
+ pWInfo->untestedTerms = 1;
+ continue;
+ }
+ pE = pTerm->pExpr;
+ assert( pE!=0 );
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
+ if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
+ /* Defer processing WHERE clause constraints until after outer
+ ** join processing. tag-20220513a */
+ continue;
+ }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
+ && !ExprHasProperty(pE,EP_OuterON) ){
+ continue;
+ }else{
+ Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
+ if( m & pLevel->notReady ){
+ /* An ON clause that is not ripe */
+ continue;
+ }
+ }
+ }
+ if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
+ iNext = 2;
+ continue;
+ }
+ if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
+ if( iNext==0 ) iNext = 3;
+ continue;
+ }
+
+ if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
+ /* If the TERM_LIKECOND flag is set, that means that the range search
+ ** is sufficient to guarantee that the LIKE operator is true, so we
+ ** can skip the call to the like(A,B) function. But this only works
+ ** for strings. So do not skip the call to the function on the pass
+ ** that compares BLOBs. */
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ continue;
+#else
+ u32 x = pLevel->iLikeRepCntr;
+ if( x>0 ){
+ skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
+ VdbeCoverageIf(v, (x&1)==1);
+ VdbeCoverageIf(v, (x&1)==0);
+ }
+#endif
+ }
+#ifdef WHERETRACE_ENABLED /* 0xffffffff */
+ if( sqlite3WhereTrace ){
+ VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
+ pWC->nTerm-j, pTerm, iLoop));
+ }
+ if( sqlite3WhereTrace & 0x4000 ){
+ sqlite3DebugPrintf("Coding auxiliary constraint:\n");
+ sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
+ }
+#endif
+ sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
+ if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ iLoop = iNext;
+ }while( iLoop>0 );
+
+ /* Insert code to test for implied constraints based on transitivity
+ ** of the "==" operator.
+ **
+ ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
+ ** and we are coding the t1 loop and the t2 loop has not yet coded,
+ ** then we cannot use the "t1.a=t2.b" constraint, but we can code
+ ** the implied "t1.a=123" constraint.
+ */
+ for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
+ Expr *pE, sEAlt;
+ WhereTerm *pAlt;
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
+ if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
+ if( pTerm->leftCursor!=iCur ) continue;
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
+ pE = pTerm->pExpr;
+#ifdef WHERETRACE_ENABLED /* 0x4001 */
+ if( (sqlite3WhereTrace & 0x4001)==0x4001 ){
+ sqlite3DebugPrintf("Coding transitive constraint:\n");
+ sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
+ }
+#endif
+ assert( !ExprHasProperty(pE, EP_OuterON) );
+ assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
+ WO_EQ|WO_IN|WO_IS, 0);
+ if( pAlt==0 ) continue;
+ if( pAlt->wtFlags & (TERM_CODED) ) continue;
+ if( (pAlt->eOperator & WO_IN)
+ && ExprUseXSelect(pAlt->pExpr)
+ && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
+ ){
+ continue;
+ }
+ testcase( pAlt->eOperator & WO_EQ );
+ testcase( pAlt->eOperator & WO_IS );
+ testcase( pAlt->eOperator & WO_IN );
+ VdbeModuleComment((v, "begin transitive constraint"));
+ sEAlt = *pAlt->pExpr;
+ sEAlt.pLeft = pE->pLeft;
+ sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
+ pAlt->wtFlags |= TERM_CODED;
+ }
+
+ /* For a RIGHT OUTER JOIN, record the fact that the current row has
+ ** been matched at least once.
+ */
+ if( pLevel->pRJ ){
+ Table *pTab;
+ int nPk;
+ int r;
+ int jmp1 = 0;
+ WhereRightJoin *pRJ = pLevel->pRJ;
+
+ /* pTab is the right-hand table of the RIGHT JOIN. Generate code that
+ ** will record that the current row of that table has been matched at
+ ** least once. This is accomplished by storing the PK for the row in
+ ** both the iMatch index and the regBloom Bloom filter.
+ */
+ pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
+ if( HasRowid(pTab) ){
+ r = sqlite3GetTempRange(pParse, 2);
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
+ nPk = 1;
+ }else{
+ int iPk;
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ nPk = pPk->nKeyCol;
+ r = sqlite3GetTempRange(pParse, nPk+1);
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
+ }
+ }
+ jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
+ VdbeCoverage(v);
+ VdbeComment((v, "match against %s", pTab->zName));
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3VdbeJumpHere(v, jmp1);
+ sqlite3ReleaseTempRange(pParse, r, nPk+1);
+ }
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
+ VdbeComment((v, "record LEFT JOIN hit"));
+ if( pLevel->pRJ==0 ){
+ goto code_outer_join_constraints; /* WHERE clause constraints */
+ }
+ }
+
+ if( pLevel->pRJ ){
+ /* Create a subroutine used to process all interior loops and code
+ ** of the RIGHT JOIN. During normal operation, the subroutine will
+ ** be in-line with the rest of the code. But at the end, a separate
+ ** loop will run that invokes this subroutine for unmatched rows
+ ** of pTab, with all tables to left begin set to NULL.
+ */
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
+ pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
+ assert( pParse->withinRJSubrtn < 255 );
+ pParse->withinRJSubrtn++;
+
+ /* WHERE clause constraints must be deferred until after outer join
+ ** row elimination has completed, since WHERE clause constraints apply
+ ** to the results of the OUTER JOIN. The following loop generates the
+ ** appropriate WHERE clause constraint checks. tag-20220513a.
+ */
+ code_outer_join_constraints:
+ for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
+ testcase( pTerm->wtFlags & TERM_VIRTUAL );
+ testcase( pTerm->wtFlags & TERM_CODED );
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
+ assert( pWInfo->untestedTerms );
+ continue;
+ }
+ if( pTabItem->fg.jointype & JT_LTORJ ) continue;
+ assert( pTerm->pExpr );
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+
+#if WHERETRACE_ENABLED /* 0x4001 */
+ if( sqlite3WhereTrace & 0x4000 ){
+ sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
+ iLevel);
+ sqlite3WhereClausePrint(pWC);
+ }
+ if( sqlite3WhereTrace & 0x1 ){
+ sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
+ iLevel, (u64)pLevel->notReady);
+ }
+#endif
+ return pLevel->notReady;
+}
+
+/*
+** Generate the code for the loop that finds all non-matched terms
+** for a RIGHT JOIN.
+*/
+SQLITE_PRIVATE SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
+ WhereInfo *pWInfo,
+ int iLevel,
+ WhereLevel *pLevel
+){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ Expr *pSubWhere = 0;
+ WhereClause *pWC = &pWInfo->sWC;
+ WhereInfo *pSubWInfo;
+ WhereLoop *pLoop = pLevel->pWLoop;
+ SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ SrcList sFrom;
+ Bitmask mAll = 0;
+ int k;
+
+ ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
+ sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
+ pRJ->regReturn);
+ for(k=0; k<iLevel; k++){
+ int iIdxCur;
+ mAll |= pWInfo->a[k].pWLoop->maskSelf;
+ sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
+ iIdxCur = pWInfo->a[k].iIdxCur;
+ if( iIdxCur ){
+ sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
+ }
+ }
+ if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
+ mAll |= pLoop->maskSelf;
+ for(k=0; k<pWC->nTerm; k++){
+ WhereTerm *pTerm = &pWC->a[k];
+ if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
+ && pTerm->eOperator!=WO_ROWVAL
+ ){
+ break;
+ }
+ if( pTerm->prereqAll & ~mAll ) continue;
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
+ pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
+ sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
+ }
+ }
+ sFrom.nSrc = 1;
+ sFrom.nAlloc = 1;
+ memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
+ sFrom.a[0].fg.jointype = 0;
+ assert( pParse->withinRJSubrtn < 100 );
+ pParse->withinRJSubrtn++;
+ pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
+ WHERE_RIGHT_JOIN, 0);
+ if( pSubWInfo ){
+ int iCur = pLevel->iTabCur;
+ int r = ++pParse->nMem;
+ int nPk;
+ int jmp;
+ int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
+ Table *pTab = pTabItem->pTab;
+ if( HasRowid(pTab) ){
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
+ nPk = 1;
+ }else{
+ int iPk;
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ nPk = pPk->nKeyCol;
+ pParse->nMem += nPk - 1;
+ for(iPk=0; iPk<nPk; iPk++){
+ int iCol = pPk->aiColumn[iPk];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
+ }
+ }
+ jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, jmp);
+ sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
+ sqlite3WhereEnd(pSubWInfo);
+ }
+ sqlite3ExprDelete(pParse->db, pSubWhere);
+ ExplainQueryPlanPop(pParse);
+ assert( pParse->withinRJSubrtn>0 );
+ pParse->withinRJSubrtn--;
+}
+
+/************** End of wherecode.c *******************************************/
+/************** Begin file whereexpr.c ***************************************/
+/*
+** 2015-06-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements.
+**
+** This file was originally part of where.c but was split out to improve
+** readability and editability. This file contains utility routines for
+** analyzing Expr objects in the WHERE clause.
+*/
+/* #include "sqliteInt.h" */
+/* #include "whereInt.h" */
+
+/* Forward declarations */
+static void exprAnalyze(SrcList*, WhereClause*, int);
+
+/*
+** Deallocate all memory associated with a WhereOrInfo object.
+*/
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
+ sqlite3WhereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Deallocate all memory associated with a WhereAndInfo object.
+*/
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
+ sqlite3WhereClauseClear(&p->wc);
+ sqlite3DbFree(db, p);
+}
+
+/*
+** Add a single new WhereTerm entry to the WhereClause object pWC.
+** The new WhereTerm object is constructed from Expr p and with wtFlags.
+** The index in pWC->a[] of the new WhereTerm is returned on success.
+** 0 is returned if the new WhereTerm could not be added due to a memory
+** allocation error. The memory allocation failure will be recorded in
+** the db->mallocFailed flag so that higher-level functions can detect it.
+**
+** This routine will increase the size of the pWC->a[] array as necessary.
+**
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
+** for freeing the expression p is assumed by the WhereClause object pWC.
+** This is true even if this routine fails to allocate a new WhereTerm.
+**
+** WARNING: This routine might reallocate the space used to store
+** WhereTerms. All pointers to WhereTerms should be invalidated after
+** calling this routine. Such pointers may be reinitialized by referencing
+** the pWC->a[] array.
+*/
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
+ WhereTerm *pTerm;
+ int idx;
+ testcase( wtFlags & TERM_VIRTUAL );
+ if( pWC->nTerm>=pWC->nSlot ){
+ WhereTerm *pOld = pWC->a;
+ sqlite3 *db = pWC->pWInfo->pParse->db;
+ pWC->a = sqlite3WhereMalloc(pWC->pWInfo, sizeof(pWC->a[0])*pWC->nSlot*2 );
+ if( pWC->a==0 ){
+ if( wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, p);
+ }
+ pWC->a = pOld;
+ return 0;
+ }
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
+ pWC->nSlot = pWC->nSlot*2;
+ }
+ pTerm = &pWC->a[idx = pWC->nTerm++];
+ if( (wtFlags & TERM_VIRTUAL)==0 ) pWC->nBase = pWC->nTerm;
+ if( p && ExprHasProperty(p, EP_Unlikely) ){
+ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
+ }else{
+ pTerm->truthProb = 1;
+ }
+ pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
+ pTerm->wtFlags = wtFlags;
+ pTerm->pWC = pWC;
+ pTerm->iParent = -1;
+ memset(&pTerm->eOperator, 0,
+ sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
+ return idx;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause term. The allowed operators are
+** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
+*/
+static int allowedOp(int op){
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE );
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE );
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE );
+ assert( TK_GE==TK_EQ+4 );
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
+}
+
+/*
+** Commute a comparison operator. Expressions of the form "X op Y"
+** are converted into "Y op X".
+*/
+static u16 exprCommute(Parse *pParse, Expr *pExpr){
+ if( pExpr->pLeft->op==TK_VECTOR
+ || pExpr->pRight->op==TK_VECTOR
+ || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
+ sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
+ ){
+ pExpr->flags ^= EP_Commuted;
+ }
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
+ if( pExpr->op>=TK_GT ){
+ assert( TK_LT==TK_GT+2 );
+ assert( TK_GE==TK_LE+2 );
+ assert( TK_GT>TK_EQ );
+ assert( TK_GT<TK_LE );
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+ }
+ return 0;
+}
+
+/*
+** Translate from TK_xx operator to WO_xx bitmask.
+*/
+static u16 operatorMask(int op){
+ u16 c;
+ assert( allowedOp(op) );
+ if( op==TK_IN ){
+ c = WO_IN;
+ }else if( op==TK_ISNULL ){
+ c = WO_ISNULL;
+ }else if( op==TK_IS ){
+ c = WO_IS;
+ }else{
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
+ c = (u16)(WO_EQ<<(op-TK_EQ));
+ }
+ assert( op!=TK_ISNULL || c==WO_ISNULL );
+ assert( op!=TK_IN || c==WO_IN );
+ assert( op!=TK_EQ || c==WO_EQ );
+ assert( op!=TK_LT || c==WO_LT );
+ assert( op!=TK_LE || c==WO_LE );
+ assert( op!=TK_GT || c==WO_GT );
+ assert( op!=TK_GE || c==WO_GE );
+ assert( op!=TK_IS || c==WO_IS );
+ return c;
+}
+
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+/*
+** Check to see if the given expression is a LIKE or GLOB operator that
+** can be optimized using inequality constraints. Return TRUE if it is
+** so and false if not.
+**
+** In order for the operator to be optimizible, the RHS must be a string
+** literal that does not begin with a wildcard. The LHS must be a column
+** that may only be NULL, a string, or a BLOB, never a number. (This means
+** that virtual tables cannot participate in the LIKE optimization.) The
+** collating sequence for the column on the LHS must be appropriate for
+** the operator.
+*/
+static int isLikeOrGlob(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pExpr, /* Test this expression */
+ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
+ int *pisComplete, /* True if the only wildcard is % in the last character */
+ int *pnoCase /* True if uppercase is equivalent to lowercase */
+){
+ const u8 *z = 0; /* String on RHS of LIKE operator */
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
+ ExprList *pList; /* List of operands to the LIKE operator */
+ u8 c; /* One character in z[] */
+ int cnt; /* Number of non-wildcard prefix characters */
+ u8 wc[4]; /* Wildcard characters */
+ sqlite3 *db = pParse->db; /* Database connection */
+ sqlite3_value *pVal = 0;
+ int op; /* Opcode of pRight */
+ int rc; /* Result code to return */
+
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
+ return 0;
+ }
+#ifdef SQLITE_EBCDIC
+ if( *pnoCase ) return 0;
+#endif
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ pLeft = pList->a[1].pExpr;
+
+ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
+ op = pRight->op;
+ if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
+ Vdbe *pReprepare = pParse->pReprepare;
+ int iCol = pRight->iColumn;
+ pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
+ if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
+ z = sqlite3_value_text(pVal);
+ }
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
+ assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
+ }else if( op==TK_STRING ){
+ assert( !ExprHasProperty(pRight, EP_IntValue) );
+ z = (u8*)pRight->u.zToken;
+ }
+ if( z ){
+
+ /* Count the number of prefix characters prior to the first wildcard */
+ cnt = 0;
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
+ cnt++;
+ if( c==wc[3] && z[cnt]!=0 ) cnt++;
+ }
+
+ /* The optimization is possible only if (1) the pattern does not begin
+ ** with a wildcard and if (2) the non-wildcard prefix does not end with
+ ** an (illegal 0xff) character, or (3) the pattern does not consist of
+ ** a single escape character. The second condition is necessary so
+ ** that we can increment the prefix key to find an upper bound for the
+ ** range search. The third is because the caller assumes that the pattern
+ ** consists of at least one character after all escapes have been
+ ** removed. */
+ if( (cnt>1 || (cnt>0 && z[0]!=wc[3])) && 255!=(u8)z[cnt-1] ){
+ Expr *pPrefix;
+
+ /* A "complete" match if the pattern ends with "*" or "%" */
+ *pisComplete = c==wc[0] && z[cnt+1]==0;
+
+ /* Get the pattern prefix. Remove all escapes from the prefix. */
+ pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
+ if( pPrefix ){
+ int iFrom, iTo;
+ char *zNew;
+ assert( !ExprHasProperty(pPrefix, EP_IntValue) );
+ zNew = pPrefix->u.zToken;
+ zNew[cnt] = 0;
+ for(iFrom=iTo=0; iFrom<cnt; iFrom++){
+ if( zNew[iFrom]==wc[3] ) iFrom++;
+ zNew[iTo++] = zNew[iFrom];
+ }
+ zNew[iTo] = 0;
+ assert( iTo>0 );
+
+ /* If the LHS is not an ordinary column with TEXT affinity, then the
+ ** pattern prefix boundaries (both the start and end boundaries) must
+ ** not look like a number. Otherwise the pattern might be treated as
+ ** a number, which will invalidate the LIKE optimization.
+ **
+ ** Getting this right has been a persistent source of bugs in the
+ ** LIKE optimization. See, for example:
+ ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
+ ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
+ ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
+ ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
+ ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
+ */
+ if( pLeft->op!=TK_COLUMN
+ || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
+ || (ALWAYS( ExprUseYTab(pLeft) )
+ && ALWAYS(pLeft->y.pTab)
+ && IsVirtual(pLeft->y.pTab)) /* Might be numeric */
+ ){
+ int isNum;
+ double rDummy;
+ isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
+ if( isNum<=0 ){
+ if( iTo==1 && zNew[0]=='-' ){
+ isNum = +1;
+ }else{
+ zNew[iTo-1]++;
+ isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
+ zNew[iTo-1]--;
+ }
+ }
+ if( isNum>0 ){
+ sqlite3ExprDelete(db, pPrefix);
+ sqlite3ValueFree(pVal);
+ return 0;
+ }
+ }
+ }
+ *ppPrefix = pPrefix;
+
+ /* If the RHS pattern is a bound parameter, make arrangements to
+ ** reprepare the statement when that parameter is rebound */
+ if( op==TK_VARIABLE ){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeSetVarmask(v, pRight->iColumn);
+ assert( !ExprHasProperty(pRight, EP_IntValue) );
+ if( *pisComplete && pRight->u.zToken[1] ){
+ /* If the rhs of the LIKE expression is a variable, and the current
+ ** value of the variable means there is no need to invoke the LIKE
+ ** function, then no OP_Variable will be added to the program.
+ ** This causes problems for the sqlite3_bind_parameter_name()
+ ** API. To work around them, add a dummy OP_Variable here.
+ */
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3ExprCodeTarget(pParse, pRight, r1);
+ sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ }
+ }else{
+ z = 0;
+ }
+ }
+
+ rc = (z!=0);
+ sqlite3ValueFree(pVal);
+ return rc;
+}
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Check to see if the pExpr expression is a form that needs to be passed
+** to the xBestIndex method of virtual tables. Forms of interest include:
+**
+** Expression Virtual Table Operator
+** ----------------------- ---------------------------------
+** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH
+** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB
+** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE
+** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP
+** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE
+** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE
+** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT
+** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT
+** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL
+**
+** In every case, "column" must be a column of a virtual table. If there
+** is a match, set *ppLeft to the "column" expression, set *ppRight to the
+** "expr" expression (even though in forms (6) and (8) the column is on the
+** right and the expression is on the left). Also set *peOp2 to the
+** appropriate virtual table operator. The return value is 1 or 2 if there
+** is a match. The usual return is 1, but if the RHS is also a column
+** of virtual table in forms (5) or (7) then return 2.
+**
+** If the expression matches none of the patterns above, return 0.
+*/
+static int isAuxiliaryVtabOperator(
+ sqlite3 *db, /* Parsing context */
+ Expr *pExpr, /* Test this expression */
+ unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */
+ Expr **ppLeft, /* Column expression to left of MATCH/op2 */
+ Expr **ppRight /* Expression to left of MATCH/op2 */
+){
+ if( pExpr->op==TK_FUNCTION ){
+ static const struct Op2 {
+ const char *zOp;
+ unsigned char eOp2;
+ } aOp[] = {
+ { "match", SQLITE_INDEX_CONSTRAINT_MATCH },
+ { "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
+ { "like", SQLITE_INDEX_CONSTRAINT_LIKE },
+ { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
+ };
+ ExprList *pList;
+ Expr *pCol; /* Column reference */
+ int i;
+
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ if( pList==0 || pList->nExpr!=2 ){
+ return 0;
+ }
+
+ /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
+ ** virtual table on their second argument, which is the same as
+ ** the left-hand side operand in their in-fix form.
+ **
+ ** vtab_column MATCH expression
+ ** MATCH(expression,vtab_column)
+ */
+ pCol = pList->a[1].pExpr;
+ assert( pCol->op!=TK_COLUMN || (ExprUseYTab(pCol) && pCol->y.pTab!=0) );
+ if( ExprIsVtab(pCol) ){
+ for(i=0; i<ArraySize(aOp); i++){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
+ *peOp2 = aOp[i].eOp2;
+ *ppRight = pList->a[0].pExpr;
+ *ppLeft = pCol;
+ return 1;
+ }
+ }
+ }
+
+ /* We can also match against the first column of overloaded
+ ** functions where xFindFunction returns a value of at least
+ ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
+ **
+ ** OVERLOADED(vtab_column,expression)
+ **
+ ** Historically, xFindFunction expected to see lower-case function
+ ** names. But for this use case, xFindFunction is expected to deal
+ ** with function names in an arbitrary case.
+ */
+ pCol = pList->a[0].pExpr;
+ assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
+ assert( pCol->op!=TK_COLUMN || (ExprUseYTab(pCol) && pCol->y.pTab!=0) );
+ if( ExprIsVtab(pCol) ){
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pMod;
+ void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
+ void *pNotUsed;
+ pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
+ assert( pVtab!=0 );
+ assert( pVtab->pModule!=0 );
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pMod = (sqlite3_module *)pVtab->pModule;
+ if( pMod->xFindFunction!=0 ){
+ i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
+ if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
+ *peOp2 = i;
+ *ppRight = pList->a[1].pExpr;
+ *ppLeft = pCol;
+ return 1;
+ }
+ }
+ }
+ }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
+ int res = 0;
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ assert( pLeft->op!=TK_COLUMN || (ExprUseYTab(pLeft) && pLeft->y.pTab!=0) );
+ if( ExprIsVtab(pLeft) ){
+ res++;
+ }
+ assert( pRight==0 || pRight->op!=TK_COLUMN
+ || (ExprUseYTab(pRight) && pRight->y.pTab!=0) );
+ if( pRight && ExprIsVtab(pRight) ){
+ res++;
+ SWAP(Expr*, pLeft, pRight);
+ }
+ *ppLeft = pLeft;
+ *ppRight = pRight;
+ if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
+ if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
+ if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
+ return res;
+ }
+ return 0;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** If the pBase expression originated in the ON or USING clause of
+** a join, then transfer the appropriate markings over to derived.
+*/
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
+ if( pDerived && ExprHasProperty(pBase, EP_OuterON|EP_InnerON) ){
+ pDerived->flags |= pBase->flags & (EP_OuterON|EP_InnerON);
+ pDerived->w.iJoin = pBase->w.iJoin;
+ }
+}
+
+/*
+** Mark term iChild as being a child of term iParent
+*/
+static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
+ pWC->a[iChild].iParent = iParent;
+ pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
+ pWC->a[iParent].nChild++;
+}
+
+/*
+** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
+** a conjunction, then return just pTerm when N==0. If N is exceeds
+** the number of available subterms, return NULL.
+*/
+static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
+ if( pTerm->eOperator!=WO_AND ){
+ return N==0 ? pTerm : 0;
+ }
+ if( N<pTerm->u.pAndInfo->wc.nTerm ){
+ return &pTerm->u.pAndInfo->wc.a[N];
+ }
+ return 0;
+}
+
+/*
+** Subterms pOne and pTwo are contained within WHERE clause pWC. The
+** two subterms are in disjunction - they are OR-ed together.
+**
+** If these two terms are both of the form: "A op B" with the same
+** A and B values but different operators and if the operators are
+** compatible (if one is = and the other is <, for example) then
+** add a new virtual AND term to pWC that is the combination of the
+** two.
+**
+** Some examples:
+**
+** x<y OR x=y --> x<=y
+** x=y OR x=y --> x=y
+** x<=y OR x<y --> x<=y
+**
+** The following is NOT generated:
+**
+** x<y OR x>y --> x!=y
+*/
+static void whereCombineDisjuncts(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* The complete WHERE clause */
+ WhereTerm *pOne, /* First disjunct */
+ WhereTerm *pTwo /* Second disjunct */
+){
+ u16 eOp = pOne->eOperator | pTwo->eOperator;
+ sqlite3 *db; /* Database connection (for malloc) */
+ Expr *pNew; /* New virtual expression */
+ int op; /* Operator for the combined expression */
+ int idxNew; /* Index in pWC of the next virtual term */
+
+ if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return;
+ if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
+ if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
+ if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
+ && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
+ assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
+ assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
+ if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
+ if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
+ /* If we reach this point, it means the two subterms can be combined */
+ if( (eOp & (eOp-1))!=0 ){
+ if( eOp & (WO_LT|WO_LE) ){
+ eOp = WO_LE;
+ }else{
+ assert( eOp & (WO_GT|WO_GE) );
+ eOp = WO_GE;
+ }
+ }
+ db = pWC->pWInfo->pParse->db;
+ pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
+ if( pNew==0 ) return;
+ for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
+ pNew->op = op;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pWC, idxNew);
+}
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Analyze a term that consists of two or more OR-connected
+** subterms. So in:
+**
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
+** ^^^^^^^^^^^^^^^^^^^^
+**
+** This routine analyzes terms such as the middle term in the above example.
+** A WhereOrTerm object is computed and attached to the term under
+** analysis, regardless of the outcome of the analysis. Hence:
+**
+** WhereTerm.wtFlags |= TERM_ORINFO
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
+**
+** The term being analyzed must have two or more of OR-connected subterms.
+** A single subterm might be a set of AND-connected sub-subterms.
+** Examples of terms under analysis:
+**
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
+** (B) x=expr1 OR expr2=x OR x=expr3
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
+** (F) x>A OR (x=A AND y>=B)
+**
+** CASE 1:
+**
+** If all subterms are of the form T.C=expr for some single column of C and
+** a single table T (as shown in example B above) then create a new virtual
+** term that is an equivalent IN expression. In other words, if the term
+** being analyzed is:
+**
+** x = expr1 OR expr2 = x OR x = expr3
+**
+** then create a new virtual term like this:
+**
+** x IN (expr1,expr2,expr3)
+**
+** CASE 2:
+**
+** If there are exactly two disjuncts and one side has x>A and the other side
+** has x=A (for the same x and A) then add a new virtual conjunct term to the
+** WHERE clause of the form "x>=A". Example:
+**
+** x>A OR (x=A AND y>B) adds: x>=A
+**
+** The added conjunct can sometimes be helpful in query planning.
+**
+** CASE 3:
+**
+** If all subterms are indexable by a single table T, then set
+**
+** WhereTerm.eOperator = WO_OR
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
+**
+** A subterm is "indexable" if it is of the form
+** "T.C <op> <expr>" where C is any column of table T and
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
+** A subterm is also indexable if it is an AND of two or more
+** subsubterms at least one of which is indexable. Indexable AND
+** subterms have their eOperator set to WO_AND and they have
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
+**
+** From another point of view, "indexable" means that the subterm could
+** potentially be used with an index if an appropriate index exists.
+** This analysis does not consider whether or not the index exists; that
+** is decided elsewhere. This analysis only looks at whether subterms
+** appropriate for indexing exist.
+**
+** All examples A through E above satisfy case 3. But if a term
+** also satisfies case 1 (such as B) we know that the optimizer will
+** always prefer case 1, so in that case we pretend that case 3 is not
+** satisfied.
+**
+** It might be the case that multiple tables are indexable. For example,
+** (E) above is indexable on tables P, Q, and R.
+**
+** Terms that satisfy case 3 are candidates for lookup by using
+** separate indices to find rowids for each subterm and composing
+** the union of all rowids using a RowSet object. This is similar
+** to "bitmap indices" in other database engines.
+**
+** OTHERWISE:
+**
+** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
+** zero. This term is not useful for search.
+*/
+static void exprAnalyzeOrTerm(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the complete WHERE clause */
+ int idxTerm /* Index of the OR-term to be analyzed */
+){
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
+ Parse *pParse = pWInfo->pParse; /* Parser context */
+ sqlite3 *db = pParse->db; /* Database connection */
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */
+ int i; /* Loop counters */
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
+
+ /*
+ ** Break the OR clause into its separate subterms. The subterms are
+ ** stored in a WhereClause structure containing within the WhereOrInfo
+ ** object that is attached to the original OR clause term.
+ */
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
+ assert( pExpr->op==TK_OR );
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
+ if( pOrInfo==0 ) return;
+ pTerm->wtFlags |= TERM_ORINFO;
+ pOrWc = &pOrInfo->wc;
+ memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
+ sqlite3WhereClauseInit(pOrWc, pWInfo);
+ sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
+ sqlite3WhereExprAnalyze(pSrc, pOrWc);
+ if( db->mallocFailed ) return;
+ assert( pOrWc->nTerm>=2 );
+
+ /*
+ ** Compute the set of tables that might satisfy cases 1 or 3.
+ */
+ indexable = ~(Bitmask)0;
+ chngToIN = ~(Bitmask)0;
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
+ WhereAndInfo *pAndInfo;
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
+ chngToIN = 0;
+ pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
+ if( pAndInfo ){
+ WhereClause *pAndWC;
+ WhereTerm *pAndTerm;
+ int j;
+ Bitmask b = 0;
+ pOrTerm->u.pAndInfo = pAndInfo;
+ pOrTerm->wtFlags |= TERM_ANDINFO;
+ pOrTerm->eOperator = WO_AND;
+ pOrTerm->leftCursor = -1;
+ pAndWC = &pAndInfo->wc;
+ memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
+ sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
+ sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
+ sqlite3WhereExprAnalyze(pSrc, pAndWC);
+ pAndWC->pOuter = pWC;
+ if( !db->mallocFailed ){
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
+ assert( pAndTerm->pExpr );
+ if( allowedOp(pAndTerm->pExpr->op)
+ || pAndTerm->eOperator==WO_AUX
+ ){
+ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
+ }
+ }
+ }
+ indexable &= b;
+ }
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){
+ /* Skip this term for now. We revisit it when we process the
+ ** corresponding TERM_VIRTUAL term */
+ }else{
+ Bitmask b;
+ b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
+ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
+ }
+ indexable &= b;
+ if( (pOrTerm->eOperator & WO_EQ)==0 ){
+ chngToIN = 0;
+ }else{
+ chngToIN &= b;
+ }
+ }
+ }
+
+ /*
+ ** Record the set of tables that satisfy case 3. The set might be
+ ** empty.
+ */
+ pOrInfo->indexable = indexable;
+ pTerm->eOperator = WO_OR;
+ pTerm->leftCursor = -1;
+ if( indexable ){
+ pWC->hasOr = 1;
+ }
+
+ /* For a two-way OR, attempt to implementation case 2.
+ */
+ if( indexable && pOrWc->nTerm==2 ){
+ int iOne = 0;
+ WhereTerm *pOne;
+ while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
+ int iTwo = 0;
+ WhereTerm *pTwo;
+ while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
+ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
+ }
+ }
+ }
+
+ /*
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But
+ ** we have to do some additional checking to see if case 1 really
+ ** is satisfied.
+ **
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
+ ** that there is no possibility of transforming the OR clause into an
+ ** IN operator because one or more terms in the OR clause contain
+ ** something other than == on a column in the single table. The 1-bit
+ ** case means that every term of the OR clause is of the form
+ ** "table.column=expr" for some single table. The one bit that is set
+ ** will correspond to the common table. We still need to check to make
+ ** sure the same column is used on all terms. The 2-bit case is when
+ ** the all terms are of the form "table1.column=table2.column". It
+ ** might be possible to form an IN operator with either table1.column
+ ** or table2.column as the LHS if either is common to every term of
+ ** the OR clause.
+ **
+ ** Note that terms of the form "table.column1=table.column2" (the
+ ** same table on both sizes of the ==) cannot be optimized.
+ */
+ if( chngToIN ){
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */
+ int iColumn = -1; /* Column index on lhs of IN operator */
+ int iCursor = -1; /* Table cursor common to all terms */
+ int j = 0; /* Loop counter */
+
+ /* Search for a table and column that appears on one side or the
+ ** other of the == operator in every subterm. That table and column
+ ** will be recorded in iCursor and iColumn. There might not be any
+ ** such table and column. Set okToChngToIN if an appropriate table
+ ** and column is found but leave okToChngToIN false if not found.
+ */
+ for(j=0; j<2 && !okToChngToIN; j++){
+ Expr *pLeft = 0;
+ pOrTerm = pOrWc->a;
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
+ assert( pOrTerm->eOperator & WO_EQ );
+ pOrTerm->wtFlags &= ~TERM_OK;
+ if( pOrTerm->leftCursor==iCursor ){
+ /* This is the 2-bit case and we are on the second iteration and
+ ** current term is from the first iteration. So skip this term. */
+ assert( j==1 );
+ continue;
+ }
+ if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
+ pOrTerm->leftCursor))==0 ){
+ /* This term must be of the form t1.a==t2.b where t2 is in the
+ ** chngToIN set but t1 is not. This term will be either preceded
+ ** or followed by an inverted copy (t2.b==t1.a). Skip this term
+ ** and use its inversion. */
+ testcase( pOrTerm->wtFlags & TERM_COPIED );
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
+ continue;
+ }
+ assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iColumn = pOrTerm->u.x.leftColumn;
+ iCursor = pOrTerm->leftCursor;
+ pLeft = pOrTerm->pExpr->pLeft;
+ break;
+ }
+ if( i<0 ){
+ /* No candidate table+column was found. This can only occur
+ ** on the second iteration */
+ assert( j==1 );
+ assert( IsPowerOfTwo(chngToIN) );
+ assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
+ break;
+ }
+ testcase( j==1 );
+
+ /* We have found a candidate table and column. Check to see if that
+ ** table and column is common to every term in the OR clause */
+ okToChngToIN = 1;
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){
+ assert( pOrTerm->eOperator & WO_EQ );
+ assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
+ if( pOrTerm->leftCursor!=iCursor ){
+ pOrTerm->wtFlags &= ~TERM_OK;
+ }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR
+ && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
+ )){
+ okToChngToIN = 0;
+ }else{
+ int affLeft, affRight;
+ /* If the right-hand side is also a column, then the affinities
+ ** of both right and left sides must be such that no type
+ ** conversions are required on the right. (Ticket #2249)
+ */
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
+ if( affRight!=0 && affRight!=affLeft ){
+ okToChngToIN = 0;
+ }else{
+ pOrTerm->wtFlags |= TERM_OK;
+ }
+ }
+ }
+ }
+
+ /* At this point, okToChngToIN is true if original pTerm satisfies
+ ** case 1. In that case, construct a new virtual term that is
+ ** pTerm converted into an IN operator.
+ */
+ if( okToChngToIN ){
+ Expr *pDup; /* A transient duplicate expression */
+ ExprList *pList = 0; /* The RHS of the IN operator */
+ Expr *pLeft = 0; /* The LHS of the IN operator */
+ Expr *pNew; /* The complete IN operator */
+
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
+ if( (pOrTerm->wtFlags & TERM_OK)==0 ) continue;
+ assert( pOrTerm->eOperator & WO_EQ );
+ assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
+ assert( pOrTerm->leftCursor==iCursor );
+ assert( pOrTerm->u.x.leftColumn==iColumn );
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
+ pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
+ pLeft = pOrTerm->pExpr->pLeft;
+ }
+ assert( pLeft!=0 );
+ pDup = sqlite3ExprDup(db, pLeft, 0);
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
+ if( pNew ){
+ int idxNew;
+ transferJoinMarkings(pNew, pExpr);
+ assert( ExprUseXList(pNew) );
+ pNew->x.pList = pList;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */
+ markTermAsChild(pWC, idxNew, idxTerm);
+ }else{
+ sqlite3ExprListDelete(db, pList);
+ }
+ }
+ }
+}
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
+
+/*
+** We already know that pExpr is a binary operator where both operands are
+** column references. This routine checks to see if pExpr is an equivalence
+** relation:
+** 1. The SQLITE_Transitive optimization must be enabled
+** 2. Must be either an == or an IS operator
+** 3. Not originating in the ON clause of an OUTER JOIN
+** 4. The affinities of A and B must be compatible
+** 5a. Both operands use the same collating sequence OR
+** 5b. The overall collating sequence is BINARY
+** If this routine returns TRUE, that means that the RHS can be substituted
+** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
+** This is an optimization. No harm comes from returning 0. But if 1 is
+** returned when it should not be, then incorrect answers might result.
+*/
+static int termIsEquivalence(Parse *pParse, Expr *pExpr){
+ char aff1, aff2;
+ CollSeq *pColl;
+ if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
+ if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
+ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;
+ aff1 = sqlite3ExprAffinity(pExpr->pLeft);
+ aff2 = sqlite3ExprAffinity(pExpr->pRight);
+ if( aff1!=aff2
+ && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
+ ){
+ return 0;
+ }
+ pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
+ if( sqlite3IsBinary(pColl) ) return 1;
+ return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
+}
+
+/*
+** Recursively walk the expressions of a SELECT statement and generate
+** a bitmask indicating which tables are used in that expression
+** tree.
+*/
+static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
+ Bitmask mask = 0;
+ while( pS ){
+ SrcList *pSrc = pS->pSrc;
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
+ mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
+ mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
+ if( ALWAYS(pSrc!=0) ){
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
+ if( pSrc->a[i].fg.isUsing==0 ){
+ mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].u3.pOn);
+ }
+ if( pSrc->a[i].fg.isTabFunc ){
+ mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
+ }
+ }
+ }
+ pS = pS->pPrior;
+ }
+ return mask;
+}
+
+/*
+** Expression pExpr is one operand of a comparison operator that might
+** be useful for indexing. This routine checks to see if pExpr appears
+** in any index. Return TRUE (1) if pExpr is an indexed term and return
+** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor
+** number of the table that is indexed and aiCurCol[1] to the column number
+** of the column that is indexed, or XN_EXPR (-2) if an expression is being
+** indexed.
+**
+** If pExpr is a TK_COLUMN column reference, then this routine always returns
+** true even if that particular column is not indexed, because the column
+** might be added to an automatic index later.
+*/
+static SQLITE_NOINLINE int exprMightBeIndexed2(
+ SrcList *pFrom, /* The FROM clause */
+ int *aiCurCol, /* Write the referenced table cursor and column here */
+ Expr *pExpr, /* An operand of a comparison operator */
+ int j /* Start looking with the j-th pFrom entry */
+){
+ Index *pIdx;
+ int i;
+ int iCur;
+ do{
+ iCur = pFrom->a[j].iCursor;
+ for(pIdx=pFrom->a[j].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->aColExpr==0 ) continue;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
+ assert( pIdx->bHasExpr );
+ if( sqlite3ExprCompareSkip(pExpr,pIdx->aColExpr->a[i].pExpr,iCur)==0
+ && pExpr->op!=TK_STRING
+ ){
+ aiCurCol[0] = iCur;
+ aiCurCol[1] = XN_EXPR;
+ return 1;
+ }
+ }
+ }
+ }while( ++j < pFrom->nSrc );
+ return 0;
+}
+static int exprMightBeIndexed(
+ SrcList *pFrom, /* The FROM clause */
+ int *aiCurCol, /* Write the referenced table cursor & column here */
+ Expr *pExpr, /* An operand of a comparison operator */
+ int op /* The specific comparison operator */
+){
+ int i;
+
+ /* If this expression is a vector to the left or right of a
+ ** inequality constraint (>, <, >= or <=), perform the processing
+ ** on the first element of the vector. */
+ assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
+ assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
+ assert( op<=TK_GE );
+ if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
+ assert( ExprUseXList(pExpr) );
+ pExpr = pExpr->x.pList->a[0].pExpr;
+ }
+
+ if( pExpr->op==TK_COLUMN ){
+ aiCurCol[0] = pExpr->iTable;
+ aiCurCol[1] = pExpr->iColumn;
+ return 1;
+ }
+
+ for(i=0; i<pFrom->nSrc; i++){
+ Index *pIdx;
+ for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->aColExpr ){
+ return exprMightBeIndexed2(pFrom,aiCurCol,pExpr,i);
+ }
+ }
+ }
+ return 0;
+}
+
+
+/*
+** The input to this routine is an WhereTerm structure with only the
+** "pExpr" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the WhereTerm
+** structure.
+**
+** If the expression is of the form "<expr> <op> X" it gets commuted
+** to the standard form of "X <op> <expr>".
+**
+** If the expression is of the form "X <op> Y" where both X and Y are
+** columns, then the original expression is unchanged and a new virtual
+** term of the form "Y <op> X" is added to the WHERE clause and
+** analyzed separately. The original term is marked with TERM_COPIED
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
+** is a commuted copy of a prior term.) The original term has nChild=1
+** and the copy has idxParent set to the index of the original term.
+*/
+static void exprAnalyze(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the WHERE clause */
+ int idxTerm /* Index of the term to be analyzed */
+){
+ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
+ WhereTerm *pTerm; /* The term to be analyzed */
+ WhereMaskSet *pMaskSet; /* Set of table index masks */
+ Expr *pExpr; /* The expression to be analyzed */
+ Bitmask prereqLeft; /* Prerequisites of the pExpr->pLeft */
+ Bitmask prereqAll; /* Prerequisites of pExpr */
+ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
+ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
+ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
+ int noCase = 0; /* uppercase equivalent to lowercase */
+ int op; /* Top-level operator. pExpr->op */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection */
+ unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */
+ int nLeft; /* Number of elements on left side vector */
+
+ if( db->mallocFailed ){
+ return;
+ }
+ assert( pWC->nTerm > idxTerm );
+ pTerm = &pWC->a[idxTerm];
+ pMaskSet = &pWInfo->sMaskSet;
+ pExpr = pTerm->pExpr;
+ assert( pExpr!=0 ); /* Because malloc() has not failed */
+ assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
+ pMaskSet->bVarSelect = 0;
+ prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
+ op = pExpr->op;
+ if( op==TK_IN ){
+ assert( pExpr->pRight==0 );
+ if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
+ if( ExprUseXSelect(pExpr) ){
+ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
+ }else{
+ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
+ }
+ prereqAll = prereqLeft | pTerm->prereqRight;
+ }else{
+ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
+ if( pExpr->pLeft==0
+ || ExprHasProperty(pExpr, EP_xIsSelect|EP_IfNullRow)
+ || pExpr->x.pList!=0
+ ){
+ prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
+ }else{
+ prereqAll = prereqLeft | pTerm->prereqRight;
+ }
+ }
+ if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
+
+#ifdef SQLITE_DEBUG
+ if( prereqAll!=sqlite3WhereExprUsageNN(pMaskSet, pExpr) ){
+ printf("\n*** Incorrect prereqAll computed for:\n");
+ sqlite3TreeViewExpr(0,pExpr,0);
+ assert( 0 );
+ }
+#endif
+
+ if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) ){
+ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->w.iJoin);
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ prereqAll |= x;
+ extraRight = x-1; /* ON clause terms may not be used with an index
+ ** on left table of a LEFT JOIN. Ticket #3015 */
+ if( (prereqAll>>1)>=x ){
+ sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
+ return;
+ }
+ }else if( (prereqAll>>1)>=x ){
+ /* The ON clause of an INNER JOIN references a table to its right.
+ ** Most other SQL database engines raise an error. But SQLite versions
+ ** 3.0 through 3.38 just put the ON clause constraint into the WHERE
+ ** clause and carried on. Beginning with 3.39, raise an error only
+ ** if there is a RIGHT or FULL JOIN in the query. This makes SQLite
+ ** more like other systems, and also preserves legacy. */
+ if( ALWAYS(pSrc->nSrc>0) && (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
+ return;
+ }
+ ExprClearProperty(pExpr, EP_InnerON);
+ }
+ }
+ pTerm->prereqAll = prereqAll;
+ pTerm->leftCursor = -1;
+ pTerm->iParent = -1;
+ pTerm->eOperator = 0;
+ if( allowedOp(op) ){
+ int aiCurCol[2];
+ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
+ Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
+ u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
+
+ if( pTerm->u.x.iField>0 ){
+ assert( op==TK_IN );
+ assert( pLeft->op==TK_VECTOR );
+ assert( ExprUseXList(pLeft) );
+ pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr;
+ }
+
+ if( exprMightBeIndexed(pSrc, aiCurCol, pLeft, op) ){
+ pTerm->leftCursor = aiCurCol[0];
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ pTerm->u.x.leftColumn = aiCurCol[1];
+ pTerm->eOperator = operatorMask(op) & opMask;
+ }
+ if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
+ if( pRight
+ && exprMightBeIndexed(pSrc, aiCurCol, pRight, op)
+ && !ExprHasProperty(pRight, EP_FixedCol)
+ ){
+ WhereTerm *pNew;
+ Expr *pDup;
+ u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
+ assert( pTerm->u.x.iField==0 );
+ if( pTerm->leftCursor>=0 ){
+ int idxNew;
+ pDup = sqlite3ExprDup(db, pExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ return;
+ }
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
+ if( idxNew==0 ) return;
+ pNew = &pWC->a[idxNew];
+ markTermAsChild(pWC, idxNew, idxTerm);
+ if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_COPIED;
+
+ if( termIsEquivalence(pParse, pDup) ){
+ pTerm->eOperator |= WO_EQUIV;
+ eExtraOp = WO_EQUIV;
+ }
+ }else{
+ pDup = pExpr;
+ pNew = pTerm;
+ }
+ pNew->wtFlags |= exprCommute(pParse, pDup);
+ pNew->leftCursor = aiCurCol[0];
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ pNew->u.x.leftColumn = aiCurCol[1];
+ testcase( (prereqLeft | extraRight) != prereqLeft );
+ pNew->prereqRight = prereqLeft | extraRight;
+ pNew->prereqAll = prereqAll;
+ pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
+ }else
+ if( op==TK_ISNULL
+ && !ExprHasProperty(pExpr,EP_OuterON)
+ && 0==sqlite3ExprCanBeNull(pLeft)
+ ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pExpr->op = TK_TRUEFALSE; /* See tag-20230504-1 */
+ pExpr->u.zToken = "false";
+ ExprSetProperty(pExpr, EP_IsFalse);
+ pTerm->prereqAll = 0;
+ pTerm->eOperator = 0;
+ }
+ }
+
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ /* If a term is the BETWEEN operator, create two new virtual terms
+ ** that define the range that the BETWEEN implements. For example:
+ **
+ ** a BETWEEN b AND c
+ **
+ ** is converted into:
+ **
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
+ **
+ ** The two new terms are added onto the end of the WhereClause object.
+ ** The new terms are "dynamic" and are children of the original BETWEEN
+ ** term. That means that if the BETWEEN term is coded, the children are
+ ** skipped. Or, if the children are satisfied by an index, the original
+ ** BETWEEN term is skipped.
+ */
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
+ ExprList *pList;
+ int i;
+ static const u8 ops[] = {TK_GE, TK_LE};
+ assert( ExprUseXList(pExpr) );
+ pList = pExpr->x.pList;
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ for(i=0; i<2; i++){
+ Expr *pNewExpr;
+ int idxNew;
+ pNewExpr = sqlite3PExpr(pParse, ops[i],
+ sqlite3ExprDup(db, pExpr->pLeft, 0),
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0));
+ transferJoinMarkings(pNewExpr, pExpr);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ markTermAsChild(pWC, idxNew, idxTerm);
+ }
+ }
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+ /* Analyze a term that is composed of two or more subterms connected by
+ ** an OR operator.
+ */
+ else if( pExpr->op==TK_OR ){
+ assert( pWC->op==TK_AND );
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+ /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently
+ ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
+ ** virtual term of that form.
+ **
+ ** The virtual term must be tagged with TERM_VNULL.
+ */
+ else if( pExpr->op==TK_NOTNULL ){
+ if( pExpr->pLeft->op==TK_COLUMN
+ && pExpr->pLeft->iColumn>=0
+ && !ExprHasProperty(pExpr, EP_OuterON)
+ ){
+ Expr *pNewExpr;
+ Expr *pLeft = pExpr->pLeft;
+ int idxNew;
+ WhereTerm *pNewTerm;
+
+ pNewExpr = sqlite3PExpr(pParse, TK_GT,
+ sqlite3ExprDup(db, pLeft, 0),
+ sqlite3ExprAlloc(db, TK_NULL, 0, 0));
+
+ idxNew = whereClauseInsert(pWC, pNewExpr,
+ TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
+ if( idxNew ){
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = 0;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->u.x.leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_GT;
+ markTermAsChild(pWC, idxNew, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ }
+ }
+
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+ /* Add constraints to reduce the search space on a LIKE or GLOB
+ ** operator.
+ **
+ ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
+ **
+ ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
+ **
+ ** The last character of the prefix "abc" is incremented to form the
+ ** termination condition "abd". If case is not significant (the default
+ ** for LIKE) then the lower-bound is made all uppercase and the upper-
+ ** bound is made all lowercase so that the bounds also work when comparing
+ ** BLOBs.
+ */
+ else if( pExpr->op==TK_FUNCTION
+ && pWC->op==TK_AND
+ && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
+ ){
+ Expr *pLeft; /* LHS of LIKE/GLOB operator */
+ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
+ Expr *pNewExpr1;
+ Expr *pNewExpr2;
+ int idxNew1;
+ int idxNew2;
+ const char *zCollSeqName; /* Name of collating sequence */
+ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
+
+ assert( ExprUseXList(pExpr) );
+ pLeft = pExpr->x.pList->a[1].pExpr;
+ pStr2 = sqlite3ExprDup(db, pStr1, 0);
+ assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) );
+ assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) );
+
+
+ /* Convert the lower bound to upper-case and the upper bound to
+ ** lower-case (upper-case is less than lower-case in ASCII) so that
+ ** the range constraints also work for BLOBs
+ */
+ if( noCase && !pParse->db->mallocFailed ){
+ int i;
+ char c;
+ pTerm->wtFlags |= TERM_LIKE;
+ for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
+ pStr1->u.zToken[i] = sqlite3Toupper(c);
+ pStr2->u.zToken[i] = sqlite3Tolower(c);
+ }
+ }
+
+ if( !db->mallocFailed ){
+ u8 c, *pC; /* Last character before the first wildcard */
+ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
+ c = *pC;
+ if( noCase ){
+ /* The point is to increment the last character before the first
+ ** wildcard. But if we increment '@', that will push it into the
+ ** alphabetic range where case conversions will mess up the
+ ** inequality. To avoid this, make sure to also run the full
+ ** LIKE on all candidate expressions by clearing the isComplete flag
+ */
+ if( c=='A'-1 ) isComplete = 0;
+ c = sqlite3UpperToLower[c];
+ }
+ *pC = c + 1;
+ }
+ zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
+ pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
+ sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
+ pStr1);
+ transferJoinMarkings(pNewExpr1, pExpr);
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
+ testcase( idxNew1==0 );
+ pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
+ sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
+ pStr2);
+ transferJoinMarkings(pNewExpr2, pExpr);
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
+ testcase( idxNew2==0 );
+ exprAnalyze(pSrc, pWC, idxNew1);
+ exprAnalyze(pSrc, pWC, idxNew2);
+ pTerm = &pWC->a[idxTerm];
+ if( isComplete ){
+ markTermAsChild(pWC, idxNew1, idxTerm);
+ markTermAsChild(pWC, idxNew2, idxTerm);
+ }
+ }
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+ /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
+ ** new terms for each component comparison - "a = ?" and "b = ?". The
+ ** new terms completely replace the original vector comparison, which is
+ ** no longer used.
+ **
+ ** This is only required if at least one side of the comparison operation
+ ** is not a sub-select.
+ **
+ ** tag-20220128a
+ */
+ if( (pExpr->op==TK_EQ || pExpr->op==TK_IS)
+ && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
+ && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
+ && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
+ || (pExpr->pRight->flags & EP_xIsSelect)==0)
+ && pWC->op==TK_AND
+ ){
+ int i;
+ for(i=0; i<nLeft; i++){
+ int idxNew;
+ Expr *pNew;
+ Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i, nLeft);
+ Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft);
+
+ pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
+ transferJoinMarkings(pNew, pExpr);
+ idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_SLICE);
+ exprAnalyze(pSrc, pWC, idxNew);
+ }
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */
+ pTerm->eOperator = WO_ROWVAL;
+ }
+
+ /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
+ ** a virtual term for each vector component. The expression object
+ ** used by each such virtual term is pExpr (the full vector IN(...)
+ ** expression). The WhereTerm.u.x.iField variable identifies the index within
+ ** the vector on the LHS that the virtual term represents.
+ **
+ ** This only works if the RHS is a simple SELECT (not a compound) that does
+ ** not use window functions.
+ */
+ else if( pExpr->op==TK_IN
+ && pTerm->u.x.iField==0
+ && pExpr->pLeft->op==TK_VECTOR
+ && ALWAYS( ExprUseXSelect(pExpr) )
+ && (pExpr->x.pSelect->pPrior==0 || (pExpr->x.pSelect->selFlags & SF_Values))
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ && pExpr->x.pSelect->pWin==0
+#endif
+ && pWC->op==TK_AND
+ ){
+ int i;
+ for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
+ int idxNew;
+ idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL|TERM_SLICE);
+ pWC->a[idxNew].u.x.iField = i+1;
+ exprAnalyze(pSrc, pWC, idxNew);
+ markTermAsChild(pWC, idxNew, idxTerm);
+ }
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Add a WO_AUX auxiliary term to the constraint set if the
+ ** current expression is of the form "column OP expr" where OP
+ ** is an operator that gets passed into virtual tables but which is
+ ** not normally optimized for ordinary tables. In other words, OP
+ ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
+ ** This information is used by the xBestIndex methods of
+ ** virtual tables. The native query optimizer does not attempt
+ ** to do anything with MATCH functions.
+ */
+ else if( pWC->op==TK_AND ){
+ Expr *pRight = 0, *pLeft = 0;
+ int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
+ while( res-- > 0 ){
+ int idxNew;
+ WhereTerm *pNewTerm;
+ Bitmask prereqColumn, prereqExpr;
+
+ prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
+ prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
+ if( (prereqExpr & prereqColumn)==0 ){
+ Expr *pNewExpr;
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
+ 0, sqlite3ExprDup(db, pRight, 0));
+ if( ExprHasProperty(pExpr, EP_OuterON) && pNewExpr ){
+ ExprSetProperty(pNewExpr, EP_OuterON);
+ pNewExpr->w.iJoin = pExpr->w.iJoin;
+ }
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ testcase( idxNew==0 );
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = prereqExpr;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->u.x.leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_AUX;
+ pNewTerm->eMatchOp = eOp2;
+ markTermAsChild(pWC, idxNew, idxTerm);
+ pTerm = &pWC->a[idxTerm];
+ pTerm->wtFlags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ SWAP(Expr*, pLeft, pRight);
+ }
+ }
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive
+ ** an index for tables to the left of the join.
+ */
+ testcase( pTerm!=&pWC->a[idxTerm] );
+ pTerm = &pWC->a[idxTerm];
+ pTerm->prereqRight |= extraRight;
+}
+
+/***************************************************************************
+** Routines with file scope above. Interface to the rest of the where.c
+** subsystem follows.
+***************************************************************************/
+
+/*
+** This routine identifies subexpressions in the WHERE clause where
+** each subexpression is separated by the AND operator or some other
+** operator specified in the op parameter. The WhereClause structure
+** is filled with pointers to subexpressions. For example:
+**
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
+** \________/ \_______________/ \________________/
+** slot[0] slot[1] slot[2]
+**
+** The original WHERE clause in pExpr is unaltered. All this routine
+** does is make slot[] entries point to substructure within pExpr.
+**
+** In the previous sentence and in the diagram, "slot[]" refers to
+** the WhereClause.a[] array. The slot[] array grows as needed to contain
+** all terms of the WHERE clause.
+*/
+SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
+ Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
+ pWC->op = op;
+ assert( pE2!=0 || pExpr==0 );
+ if( pE2==0 ) return;
+ if( pE2->op!=op ){
+ whereClauseInsert(pWC, pExpr, 0);
+ }else{
+ sqlite3WhereSplit(pWC, pE2->pLeft, op);
+ sqlite3WhereSplit(pWC, pE2->pRight, op);
+ }
+}
+
+/*
+** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or
+** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the
+** where-clause passed as the first argument. The value for the term
+** is found in register iReg.
+**
+** In the common case where the value is a simple integer
+** (example: "LIMIT 5 OFFSET 10") then the expression codes as a
+** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value().
+** If not, then it codes as a TK_REGISTER expression.
+*/
+static void whereAddLimitExpr(
+ WhereClause *pWC, /* Add the constraint to this WHERE clause */
+ int iReg, /* Register that will hold value of the limit/offset */
+ Expr *pExpr, /* Expression that defines the limit/offset */
+ int iCsr, /* Cursor to which the constraint applies */
+ int eMatchOp /* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */
+){
+ Parse *pParse = pWC->pWInfo->pParse;
+ sqlite3 *db = pParse->db;
+ Expr *pNew;
+ int iVal = 0;
+
+ if( sqlite3ExprIsInteger(pExpr, &iVal) && iVal>=0 ){
+ Expr *pVal = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pVal==0 ) return;
+ ExprSetProperty(pVal, EP_IntValue);
+ pVal->u.iValue = iVal;
+ pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal);
+ }else{
+ Expr *pVal = sqlite3Expr(db, TK_REGISTER, 0);
+ if( pVal==0 ) return;
+ pVal->iTable = iReg;
+ pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal);
+ }
+ if( pNew ){
+ WhereTerm *pTerm;
+ int idx;
+ idx = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_VIRTUAL);
+ pTerm = &pWC->a[idx];
+ pTerm->leftCursor = iCsr;
+ pTerm->eOperator = WO_AUX;
+ pTerm->eMatchOp = eMatchOp;
+ }
+}
+
+/*
+** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the
+** SELECT statement passed as the second argument. These terms are only
+** added if:
+**
+** 1. The SELECT statement has a LIMIT clause, and
+** 2. The SELECT statement is not an aggregate or DISTINCT query, and
+** 3. The SELECT statement has exactly one object in its from clause, and
+** that object is a virtual table, and
+** 4. There are no terms in the WHERE clause that will not be passed
+** to the virtual table xBestIndex method.
+** 5. The ORDER BY clause, if any, will be made available to the xBestIndex
+** method.
+**
+** LIMIT and OFFSET terms are ignored by most of the planner code. They
+** exist only so that they may be passed to the xBestIndex method of the
+** single virtual table in the FROM clause of the SELECT.
+*/
+SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3WhereAddLimit(WhereClause *pWC, Select *p){
+ assert( p!=0 && p->pLimit!=0 ); /* 1 -- checked by caller */
+ if( p->pGroupBy==0
+ && (p->selFlags & (SF_Distinct|SF_Aggregate))==0 /* 2 */
+ && (p->pSrc->nSrc==1 && IsVirtual(p->pSrc->a[0].pTab)) /* 3 */
+ ){
+ ExprList *pOrderBy = p->pOrderBy;
+ int iCsr = p->pSrc->a[0].iCursor;
+ int ii;
+
+ /* Check condition (4). Return early if it is not met. */
+ for(ii=0; ii<pWC->nTerm; ii++){
+ if( pWC->a[ii].wtFlags & TERM_CODED ){
+ /* This term is a vector operation that has been decomposed into
+ ** other, subsequent terms. It can be ignored. See tag-20220128a */
+ assert( pWC->a[ii].wtFlags & TERM_VIRTUAL );
+ assert( pWC->a[ii].eOperator==WO_ROWVAL );
+ continue;
+ }
+ if( pWC->a[ii].nChild ){
+ /* If this term has child terms, then they are also part of the
+ ** pWC->a[] array. So this term can be ignored, as a LIMIT clause
+ ** will only be added if each of the child terms passes the
+ ** (leftCursor==iCsr) test below. */
+ continue;
+ }
+ if( pWC->a[ii].leftCursor!=iCsr ) return;
+ }
+
+ /* Check condition (5). Return early if it is not met. */
+ if( pOrderBy ){
+ for(ii=0; ii<pOrderBy->nExpr; ii++){
+ Expr *pExpr = pOrderBy->a[ii].pExpr;
+ if( pExpr->op!=TK_COLUMN ) return;
+ if( pExpr->iTable!=iCsr ) return;
+ if( pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) return;
+ }
+ }
+
+ /* All conditions are met. Add the terms to the where-clause object. */
+ assert( p->pLimit->op==TK_LIMIT );
+ whereAddLimitExpr(pWC, p->iLimit, p->pLimit->pLeft,
+ iCsr, SQLITE_INDEX_CONSTRAINT_LIMIT);
+ if( p->iOffset>0 ){
+ whereAddLimitExpr(pWC, p->iOffset, p->pLimit->pRight,
+ iCsr, SQLITE_INDEX_CONSTRAINT_OFFSET);
+ }
+ }
+}
+
+/*
+** Initialize a preallocated WhereClause structure.
+*/
+SQLITE_PRIVATE void sqlite3WhereClauseInit(
+ WhereClause *pWC, /* The WhereClause to be initialized */
+ WhereInfo *pWInfo /* The WHERE processing context */
+){
+ pWC->pWInfo = pWInfo;
+ pWC->hasOr = 0;
+ pWC->pOuter = 0;
+ pWC->nTerm = 0;
+ pWC->nBase = 0;
+ pWC->nSlot = ArraySize(pWC->aStatic);
+ pWC->a = pWC->aStatic;
+}
+
+/*
+** Deallocate a WhereClause structure. The WhereClause structure
+** itself is not freed. This routine is the inverse of
+** sqlite3WhereClauseInit().
+*/
+SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){
+ sqlite3 *db = pWC->pWInfo->pParse->db;
+ assert( pWC->nTerm>=pWC->nBase );
+ if( pWC->nTerm>0 ){
+ WhereTerm *a = pWC->a;
+ WhereTerm *aLast = &pWC->a[pWC->nTerm-1];
+#ifdef SQLITE_DEBUG
+ int i;
+ /* Verify that every term past pWC->nBase is virtual */
+ for(i=pWC->nBase; i<pWC->nTerm; i++){
+ assert( (pWC->a[i].wtFlags & TERM_VIRTUAL)!=0 );
+ }
+#endif
+ while(1){
+ assert( a->eMatchOp==0 || a->eOperator==WO_AUX );
+ if( a->wtFlags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(db, a->pExpr);
+ }
+ if( a->wtFlags & (TERM_ORINFO|TERM_ANDINFO) ){
+ if( a->wtFlags & TERM_ORINFO ){
+ assert( (a->wtFlags & TERM_ANDINFO)==0 );
+ whereOrInfoDelete(db, a->u.pOrInfo);
+ }else{
+ assert( (a->wtFlags & TERM_ANDINFO)!=0 );
+ whereAndInfoDelete(db, a->u.pAndInfo);
+ }
+ }
+ if( a==aLast ) break;
+ a++;
+ }
+ }
+}
+
+
+/*
+** These routines walk (recursively) an expression tree and generate
+** a bitmask indicating which tables are used in that expression
+** tree.
+**
+** sqlite3WhereExprUsage(MaskSet, Expr) ->
+**
+** Return a Bitmask of all tables referenced by Expr. Expr can be
+** be NULL, in which case 0 is returned.
+**
+** sqlite3WhereExprUsageNN(MaskSet, Expr) ->
+**
+** Same as sqlite3WhereExprUsage() except that Expr must not be
+** NULL. The "NN" suffix on the name stands for "Not Null".
+**
+** sqlite3WhereExprListUsage(MaskSet, ExprList) ->
+**
+** Return a Bitmask of all tables referenced by every expression
+** in the expression list ExprList. ExprList can be NULL, in which
+** case 0 is returned.
+**
+** sqlite3WhereExprUsageFull(MaskSet, ExprList) ->
+**
+** Internal use only. Called only by sqlite3WhereExprUsageNN() for
+** complex expressions that require pushing register values onto
+** the stack. Many calls to sqlite3WhereExprUsageNN() do not need
+** the more complex analysis done by this routine. Hence, the
+** computations done by this routine are broken out into a separate
+** "no-inline" function to avoid the stack push overhead in the
+** common case where it is not needed.
+*/
+static SQLITE_NOINLINE Bitmask sqlite3WhereExprUsageFull(
+ WhereMaskSet *pMaskSet,
+ Expr *p
+){
+ Bitmask mask;
+ mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
+ if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
+ if( p->pRight ){
+ mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
+ assert( p->x.pList==0 );
+ }else if( ExprUseXSelect(p) ){
+ if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
+ mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
+ }else if( p->x.pList ){
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){
+ assert( p->y.pWin!=0 );
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
+ mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
+ mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
+ }
+#endif
+ return mask;
+}
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
+ if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
+ return sqlite3WhereGetMask(pMaskSet, p->iTable);
+ }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
+ assert( p->op!=TK_IF_NULL_ROW );
+ return 0;
+ }
+ return sqlite3WhereExprUsageFull(pMaskSet, p);
+}
+SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
+ return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
+}
+SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
+ int i;
+ Bitmask mask = 0;
+ if( pList ){
+ for(i=0; i<pList->nExpr; i++){
+ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+
+
+/*
+** Call exprAnalyze on all terms in a WHERE clause.
+**
+** Note that exprAnalyze() might add new virtual terms onto the
+** end of the WHERE clause. We do not want to analyze these new
+** virtual terms, so start analyzing at the end and work forward
+** so that the added virtual terms are never processed.
+*/
+SQLITE_PRIVATE void sqlite3WhereExprAnalyze(
+ SrcList *pTabList, /* the FROM clause */
+ WhereClause *pWC /* the WHERE clause to be analyzed */
+){
+ int i;
+ for(i=pWC->nTerm-1; i>=0; i--){
+ exprAnalyze(pTabList, pWC, i);
+ }
+}
+
+/*
+** For table-valued-functions, transform the function arguments into
+** new WHERE clause terms.
+**
+** Each function argument translates into an equality constraint against
+** a HIDDEN column in the table.
+*/
+SQLITE_PRIVATE void sqlite3WhereTabFuncArgs(
+ Parse *pParse, /* Parsing context */
+ SrcItem *pItem, /* The FROM clause term to process */
+ WhereClause *pWC /* Xfer function arguments to here */
+){
+ Table *pTab;
+ int j, k;
+ ExprList *pArgs;
+ Expr *pColRef;
+ Expr *pTerm;
+ if( pItem->fg.isTabFunc==0 ) return;
+ pTab = pItem->pTab;
+ assert( pTab!=0 );
+ pArgs = pItem->u1.pFuncArg;
+ if( pArgs==0 ) return;
+ for(j=k=0; j<pArgs->nExpr; j++){
+ Expr *pRhs;
+ u32 joinType;
+ while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
+ if( k>=pTab->nCol ){
+ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
+ pTab->zName, j);
+ return;
+ }
+ pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
+ if( pColRef==0 ) return;
+ pColRef->iTable = pItem->iCursor;
+ pColRef->iColumn = k++;
+ assert( ExprUseYTab(pColRef) );
+ pColRef->y.pTab = pTab;
+ pItem->colUsed |= sqlite3ExprColUsed(pColRef);
+ pRhs = sqlite3PExpr(pParse, TK_UPLUS,
+ sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
+ pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
+ if( pItem->fg.jointype & (JT_LEFT|JT_RIGHT) ){
+ testcase( pItem->fg.jointype & JT_LEFT ); /* testtag-20230227a */
+ testcase( pItem->fg.jointype & JT_RIGHT ); /* testtag-20230227b */
+ joinType = EP_OuterON;
+ }else{
+ testcase( pItem->fg.jointype & JT_LTORJ ); /* testtag-20230227c */
+ joinType = EP_InnerON;
+ }
+ sqlite3SetJoinExpr(pTerm, pItem->iCursor, joinType);
+ whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
+ }
+}
+
+/************** End of whereexpr.c *******************************************/
+/************** Begin file where.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. This module is responsible for
+** generating the code that loops through a table looking for applicable
+** rows. Indices are selected and used to speed the search when doing
+** so is applicable. Because this module is responsible for selecting
+** indices, you might also think of this module as the "query optimizer".
+*/
+/* #include "sqliteInt.h" */
+/* #include "whereInt.h" */
+
+/*
+** Extra information appended to the end of sqlite3_index_info but not
+** visible to the xBestIndex function, at least not directly. The
+** sqlite3_vtab_collation() interface knows how to reach it, however.
+**
+** This object is not an API and can be changed from one release to the
+** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
+** agree on the structure, all will be well.
+*/
+typedef struct HiddenIndexInfo HiddenIndexInfo;
+struct HiddenIndexInfo {
+ WhereClause *pWC; /* The Where clause being analyzed */
+ Parse *pParse; /* The parsing context */
+ int eDistinct; /* Value to return from sqlite3_vtab_distinct() */
+ u32 mIn; /* Mask of terms that are <col> IN (...) */
+ u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */
+ sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST
+ ** because extra space is allocated to hold up
+ ** to nTerm such values */
+};
+
+/* Forward declaration of methods */
+static int whereLoopResize(sqlite3*, WhereLoop*, int);
+
+/*
+** Return the estimated number of output rows from a WHERE clause
+*/
+SQLITE_PRIVATE LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
+ return pWInfo->nRowOut;
+}
+
+/*
+** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
+** WHERE clause returns outputs for DISTINCT processing.
+*/
+SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
+ return pWInfo->eDistinct;
+}
+
+/*
+** Return the number of ORDER BY terms that are satisfied by the
+** WHERE clause. A return of 0 means that the output must be
+** completely sorted. A return equal to the number of ORDER BY
+** terms means that no sorting is needed at all. A return that
+** is positive but less than the number of ORDER BY terms means that
+** block sorting is required.
+*/
+SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
+ return pWInfo->nOBSat<0 ? 0 : pWInfo->nOBSat;
+}
+
+/*
+** In the ORDER BY LIMIT optimization, if the inner-most loop is known
+** to emit rows in increasing order, and if the last row emitted by the
+** inner-most loop did not fit within the sorter, then we can skip all
+** subsequent rows for the current iteration of the inner loop (because they
+** will not fit in the sorter either) and continue with the second inner
+** loop - the loop immediately outside the inner-most.
+**
+** When a row does not fit in the sorter (because the sorter already
+** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
+** label returned by this function.
+**
+** If the ORDER BY LIMIT optimization applies, the jump destination should
+** be the continuation for the second-inner-most loop. If the ORDER BY
+** LIMIT optimization does not apply, then the jump destination should
+** be the continuation for the inner-most loop.
+**
+** It is always safe for this routine to return the continuation of the
+** inner-most loop, in the sense that a correct answer will result.
+** Returning the continuation the second inner loop is an optimization
+** that might make the code run a little faster, but should not change
+** the final answer.
+*/
+SQLITE_PRIVATE int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
+ WhereLevel *pInner;
+ if( !pWInfo->bOrderedInnerLoop ){
+ /* The ORDER BY LIMIT optimization does not apply. Jump to the
+ ** continuation of the inner-most loop. */
+ return pWInfo->iContinue;
+ }
+ pInner = &pWInfo->a[pWInfo->nLevel-1];
+ assert( pInner->addrNxt!=0 );
+ return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
+}
+
+/*
+** While generating code for the min/max optimization, after handling
+** the aggregate-step call to min() or max(), check to see if any
+** additional looping is required. If the output order is such that
+** we are certain that the correct answer has already been found, then
+** code an OP_Goto to by pass subsequent processing.
+**
+** Any extra OP_Goto that is coded here is an optimization. The
+** correct answer should be obtained regardless. This OP_Goto just
+** makes the answer appear faster.
+*/
+SQLITE_PRIVATE void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
+ WhereLevel *pInner;
+ int i;
+ if( !pWInfo->bOrderedInnerLoop ) return;
+ if( pWInfo->nOBSat==0 ) return;
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ pInner = &pWInfo->a[i];
+ if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
+ sqlite3VdbeGoto(v, pInner->addrNxt);
+ return;
+ }
+ }
+ sqlite3VdbeGoto(v, pWInfo->iBreak);
+}
+
+/*
+** Return the VDBE address or label to jump to in order to continue
+** immediately with the next row of a WHERE clause.
+*/
+SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
+ assert( pWInfo->iContinue!=0 );
+ return pWInfo->iContinue;
+}
+
+/*
+** Return the VDBE address or label to jump to in order to break
+** out of a WHERE loop.
+*/
+SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
+ return pWInfo->iBreak;
+}
+
+/*
+** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
+** operate directly on the rowids returned by a WHERE clause. Return
+** ONEPASS_SINGLE (1) if the statement can operation directly because only
+** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
+** optimization can be used on multiple
+**
+** If the ONEPASS optimization is used (if this routine returns true)
+** then also write the indices of open cursors used by ONEPASS
+** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
+** table and iaCur[1] gets the cursor used by an auxiliary index.
+** Either value may be -1, indicating that cursor is not used.
+** Any cursors returned will have been opened for writing.
+**
+** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
+** unable to use the ONEPASS optimization.
+*/
+SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
+ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
+ sqlite3DebugPrintf("%s cursors: %d %d\n",
+ pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
+ aiCur[0], aiCur[1]);
+ }
+#endif
+ return pWInfo->eOnePass;
+}
+
+/*
+** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
+** the data cursor to the row selected by the index cursor.
+*/
+SQLITE_PRIVATE int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
+ return pWInfo->bDeferredSeek;
+}
+
+/*
+** Move the content of pSrc into pDest
+*/
+static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
+ pDest->n = pSrc->n;
+ memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
+}
+
+/*
+** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
+**
+** The new entry might overwrite an existing entry, or it might be
+** appended, or it might be discarded. Do whatever is the right thing
+** so that pSet keeps the N_OR_COST best entries seen so far.
+*/
+static int whereOrInsert(
+ WhereOrSet *pSet, /* The WhereOrSet to be updated */
+ Bitmask prereq, /* Prerequisites of the new entry */
+ LogEst rRun, /* Run-cost of the new entry */
+ LogEst nOut /* Number of outputs for the new entry */
+){
+ u16 i;
+ WhereOrCost *p;
+ for(i=pSet->n, p=pSet->a; i>0; i--, p++){
+ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
+ goto whereOrInsert_done;
+ }
+ if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
+ return 0;
+ }
+ }
+ if( pSet->n<N_OR_COST ){
+ p = &pSet->a[pSet->n++];
+ p->nOut = nOut;
+ }else{
+ p = pSet->a;
+ for(i=1; i<pSet->n; i++){
+ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
+ }
+ if( p->rRun<=rRun ) return 0;
+ }
+whereOrInsert_done:
+ p->prereq = prereq;
+ p->rRun = rRun;
+ if( p->nOut>nOut ) p->nOut = nOut;
+ return 1;
+}
+
+/*
+** Return the bitmask for the given cursor number. Return 0 if
+** iCursor is not in the set.
+*/
+SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
+ int i;
+ assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
+ assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
+ assert( iCursor>=-1 );
+ if( pMaskSet->ix[0]==iCursor ){
+ return 1;
+ }
+ for(i=1; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ){
+ return MASKBIT(i);
+ }
+ }
+ return 0;
+}
+
+/* Allocate memory that is automatically freed when pWInfo is freed.
+*/
+SQLITE_PRIVATE void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
+ WhereMemBlock *pBlock;
+ pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
+ if( pBlock ){
+ pBlock->pNext = pWInfo->pMemToFree;
+ pBlock->sz = nByte;
+ pWInfo->pMemToFree = pBlock;
+ pBlock++;
+ }
+ return (void*)pBlock;
+}
+SQLITE_PRIVATE void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
+ void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
+ if( pNew && pOld ){
+ WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
+ pOldBlk--;
+ assert( pOldBlk->sz<nByte );
+ memcpy(pNew, pOld, pOldBlk->sz);
+ }
+ return pNew;
+}
+
+/*
+** Create a new mask for cursor iCursor.
+**
+** There is one cursor per table in the FROM clause. The number of
+** tables in the FROM clause is limited by a test early in the
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
+** array will never overflow.
+*/
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
+}
+
+/*
+** If the right-hand branch of the expression is a TK_COLUMN, then return
+** a pointer to the right-hand branch. Otherwise, return NULL.
+*/
+static Expr *whereRightSubexprIsColumn(Expr *p){
+ p = sqlite3ExprSkipCollateAndLikely(p->pRight);
+ if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
+ return p;
+ }
+ return 0;
+}
+
+/*
+** Advance to the next WhereTerm that matches according to the criteria
+** established when the pScan object was initialized by whereScanInit().
+** Return NULL if there are no more matching WhereTerms.
+*/
+static WhereTerm *whereScanNext(WhereScan *pScan){
+ int iCur; /* The cursor on the LHS of the term */
+ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
+ Expr *pX; /* An expression being tested */
+ WhereClause *pWC; /* Shorthand for pScan->pWC */
+ WhereTerm *pTerm; /* The term being tested */
+ int k = pScan->k; /* Where to start scanning */
+
+ assert( pScan->iEquiv<=pScan->nEquiv );
+ pWC = pScan->pWC;
+ while(1){
+ iColumn = pScan->aiColumn[pScan->iEquiv-1];
+ iCur = pScan->aiCur[pScan->iEquiv-1];
+ assert( pWC!=0 );
+ assert( iCur>=0 );
+ do{
+ for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
+ if( pTerm->leftCursor==iCur
+ && pTerm->u.x.leftColumn==iColumn
+ && (iColumn!=XN_EXPR
+ || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
+ pScan->pIdxExpr,iCur)==0)
+ && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
+ ){
+ if( (pTerm->eOperator & WO_EQUIV)!=0
+ && pScan->nEquiv<ArraySize(pScan->aiCur)
+ && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
+ ){
+ int j;
+ for(j=0; j<pScan->nEquiv; j++){
+ if( pScan->aiCur[j]==pX->iTable
+ && pScan->aiColumn[j]==pX->iColumn ){
+ break;
+ }
+ }
+ if( j==pScan->nEquiv ){
+ pScan->aiCur[j] = pX->iTable;
+ pScan->aiColumn[j] = pX->iColumn;
+ pScan->nEquiv++;
+ }
+ }
+ if( (pTerm->eOperator & pScan->opMask)!=0 ){
+ /* Verify the affinity and collating sequence match */
+ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
+ CollSeq *pColl;
+ Parse *pParse = pWC->pWInfo->pParse;
+ pX = pTerm->pExpr;
+ if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
+ continue;
+ }
+ assert(pX->pLeft);
+ pColl = sqlite3ExprCompareCollSeq(pParse, pX);
+ if( pColl==0 ) pColl = pParse->db->pDfltColl;
+ if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
+ continue;
+ }
+ }
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
+ && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
+ && pX->op==TK_COLUMN
+ && pX->iTable==pScan->aiCur[0]
+ && pX->iColumn==pScan->aiColumn[0]
+ ){
+ testcase( pTerm->eOperator & WO_IS );
+ continue;
+ }
+ pScan->pWC = pWC;
+ pScan->k = k+1;
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x20000 ){
+ int ii;
+ sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
+ pTerm, pScan->nEquiv);
+ for(ii=0; ii<pScan->nEquiv; ii++){
+ sqlite3DebugPrintf(" {%d:%d}",
+ pScan->aiCur[ii], pScan->aiColumn[ii]);
+ }
+ sqlite3DebugPrintf("\n");
+ }
+#endif
+ return pTerm;
+ }
+ }
+ }
+ pWC = pWC->pOuter;
+ k = 0;
+ }while( pWC!=0 );
+ if( pScan->iEquiv>=pScan->nEquiv ) break;
+ pWC = pScan->pOrigWC;
+ k = 0;
+ pScan->iEquiv++;
+ }
+ return 0;
+}
+
+/*
+** This is whereScanInit() for the case of an index on an expression.
+** It is factored out into a separate tail-recursion subroutine so that
+** the normal whereScanInit() routine, which is a high-runner, does not
+** need to push registers onto the stack as part of its prologue.
+*/
+static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
+ pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
+ return whereScanNext(pScan);
+}
+
+/*
+** Initialize a WHERE clause scanner object. Return a pointer to the
+** first match. Return NULL if there are no matches.
+**
+** The scanner will be searching the WHERE clause pWC. It will look
+** for terms of the form "X <op> <expr>" where X is column iColumn of table
+** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
+** must be one of the indexes of table iCur.
+**
+** The <op> must be one of the operators described by opMask.
+**
+** If the search is for X and the WHERE clause contains terms of the
+** form X=Y then this routine might also return terms of the form
+** "Y <op> <expr>". The number of levels of transitivity is limited,
+** but is enough to handle most commonly occurring SQL statements.
+**
+** If X is not the INTEGER PRIMARY KEY then X must be compatible with
+** index pIdx.
+*/
+static WhereTerm *whereScanInit(
+ WhereScan *pScan, /* The WhereScan object being initialized */
+ WhereClause *pWC, /* The WHERE clause to be scanned */
+ int iCur, /* Cursor to scan for */
+ int iColumn, /* Column to scan for */
+ u32 opMask, /* Operator(s) to scan for */
+ Index *pIdx /* Must be compatible with this index */
+){
+ pScan->pOrigWC = pWC;
+ pScan->pWC = pWC;
+ pScan->pIdxExpr = 0;
+ pScan->idxaff = 0;
+ pScan->zCollName = 0;
+ pScan->opMask = opMask;
+ pScan->k = 0;
+ pScan->aiCur[0] = iCur;
+ pScan->nEquiv = 1;
+ pScan->iEquiv = 1;
+ if( pIdx ){
+ int j = iColumn;
+ iColumn = pIdx->aiColumn[j];
+ if( iColumn==pIdx->pTable->iPKey ){
+ iColumn = XN_ROWID;
+ }else if( iColumn>=0 ){
+ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
+ pScan->zCollName = pIdx->azColl[j];
+ }else if( iColumn==XN_EXPR ){
+ pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
+ pScan->zCollName = pIdx->azColl[j];
+ pScan->aiColumn[0] = XN_EXPR;
+ return whereScanInitIndexExpr(pScan);
+ }
+ }else if( iColumn==XN_EXPR ){
+ return 0;
+ }
+ pScan->aiColumn[0] = iColumn;
+ return whereScanNext(pScan);
+}
+
+/*
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
+** where X is a reference to the iColumn of table iCur or of index pIdx
+** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
+** the op parameter. Return a pointer to the term. Return 0 if not found.
+**
+** If pIdx!=0 then it must be one of the indexes of table iCur.
+** Search for terms matching the iColumn-th column of pIdx
+** rather than the iColumn-th column of table iCur.
+**
+** The term returned might by Y=<expr> if there is another constraint in
+** the WHERE clause that specifies that X=Y. Any such constraints will be
+** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
+** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
+** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
+** other equivalent values. Hence a search for X will return <expr> if X=A1
+** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
+**
+** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
+** then try for the one with no dependencies on <expr> - in other words where
+** <expr> is a constant expression of some kind. Only return entries of
+** the form "X <op> Y" where Y is a column in another table if no terms of
+** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
+** exist, try to return a term that does not use WO_EQUIV.
+*/
+SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u32 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+){
+ WhereTerm *pResult = 0;
+ WhereTerm *p;
+ WhereScan scan;
+
+ p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
+ op &= WO_EQ|WO_IS;
+ while( p ){
+ if( (p->prereqRight & notReady)==0 ){
+ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
+ testcase( p->eOperator & WO_IS );
+ return p;
+ }
+ if( pResult==0 ) pResult = p;
+ }
+ p = whereScanNext(&scan);
+ }
+ return pResult;
+}
+
+/*
+** This function searches pList for an entry that matches the iCol-th column
+** of index pIdx.
+**
+** If such an expression is found, its index in pList->a[] is returned. If
+** no expression is found, -1 is returned.
+*/
+static int findIndexCol(
+ Parse *pParse, /* Parse context */
+ ExprList *pList, /* Expression list to search */
+ int iBase, /* Cursor for table associated with pIdx */
+ Index *pIdx, /* Index to match column of */
+ int iCol /* Column of index to match */
+){
+ int i;
+ const char *zColl = pIdx->azColl[iCol];
+
+ for(i=0; i<pList->nExpr; i++){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
+ if( ALWAYS(p!=0)
+ && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
+ && p->iColumn==pIdx->aiColumn[iCol]
+ && p->iTable==iBase
+ ){
+ CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
+ if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
+ return i;
+ }
+ }
+ }
+
+ return -1;
+}
+
+/*
+** Return TRUE if the iCol-th column of index pIdx is NOT NULL
+*/
+static int indexColumnNotNull(Index *pIdx, int iCol){
+ int j;
+ assert( pIdx!=0 );
+ assert( iCol>=0 && iCol<pIdx->nColumn );
+ j = pIdx->aiColumn[iCol];
+ if( j>=0 ){
+ return pIdx->pTable->aCol[j].notNull;
+ }else if( j==(-1) ){
+ return 1;
+ }else{
+ assert( j==(-2) );
+ return 0; /* Assume an indexed expression can always yield a NULL */
+
+ }
+}
+
+/*
+** Return true if the DISTINCT expression-list passed as the third argument
+** is redundant.
+**
+** A DISTINCT list is redundant if any subset of the columns in the
+** DISTINCT list are collectively unique and individually non-null.
+*/
+static int isDistinctRedundant(
+ Parse *pParse, /* Parsing context */
+ SrcList *pTabList, /* The FROM clause */
+ WhereClause *pWC, /* The WHERE clause */
+ ExprList *pDistinct /* The result set that needs to be DISTINCT */
+){
+ Table *pTab;
+ Index *pIdx;
+ int i;
+ int iBase;
+
+ /* If there is more than one table or sub-select in the FROM clause of
+ ** this query, then it will not be possible to show that the DISTINCT
+ ** clause is redundant. */
+ if( pTabList->nSrc!=1 ) return 0;
+ iBase = pTabList->a[0].iCursor;
+ pTab = pTabList->a[0].pTab;
+
+ /* If any of the expressions is an IPK column on table iBase, then return
+ ** true. Note: The (p->iTable==iBase) part of this test may be false if the
+ ** current SELECT is a correlated sub-query.
+ */
+ for(i=0; i<pDistinct->nExpr; i++){
+ Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
+ if( NEVER(p==0) ) continue;
+ if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
+ if( p->iTable==iBase && p->iColumn<0 ) return 1;
+ }
+
+ /* Loop through all indices on the table, checking each to see if it makes
+ ** the DISTINCT qualifier redundant. It does so if:
+ **
+ ** 1. The index is itself UNIQUE, and
+ **
+ ** 2. All of the columns in the index are either part of the pDistinct
+ ** list, or else the WHERE clause contains a term of the form "col=X",
+ ** where X is a constant value. The collation sequences of the
+ ** comparison and select-list expressions must match those of the index.
+ **
+ ** 3. All of those index columns for which the WHERE clause does not
+ ** contain a "col=X" term are subject to a NOT NULL constraint.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( !IsUniqueIndex(pIdx) ) continue;
+ if( pIdx->pPartIdxWhere ) continue;
+ for(i=0; i<pIdx->nKeyCol; i++){
+ if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
+ if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
+ if( indexColumnNotNull(pIdx, i)==0 ) break;
+ }
+ }
+ if( i==pIdx->nKeyCol ){
+ /* This index implies that the DISTINCT qualifier is redundant. */
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+
+/*
+** Estimate the logarithm of the input value to base 2.
+*/
+static LogEst estLog(LogEst N){
+ return N<=10 ? 0 : sqlite3LogEst(N) - 33;
+}
+
+/*
+** Convert OP_Column opcodes to OP_Copy in previously generated code.
+**
+** This routine runs over generated VDBE code and translates OP_Column
+** opcodes into OP_Copy when the table is being accessed via co-routine
+** instead of via table lookup.
+**
+** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
+** cursor iTabCur are transformed into OP_Sequence opcode for the
+** iAutoidxCur cursor, in order to generate unique rowids for the
+** automatic index being generated.
+*/
+static void translateColumnToCopy(
+ Parse *pParse, /* Parsing context */
+ int iStart, /* Translate from this opcode to the end */
+ int iTabCur, /* OP_Column/OP_Rowid references to this table */
+ int iRegister, /* The first column is in this register */
+ int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
+){
+ Vdbe *v = pParse->pVdbe;
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ if( pParse->db->mallocFailed ) return;
+ for(; iStart<iEnd; iStart++, pOp++){
+ if( pOp->p1!=iTabCur ) continue;
+ if( pOp->opcode==OP_Column ){
+ pOp->opcode = OP_Copy;
+ pOp->p1 = pOp->p2 + iRegister;
+ pOp->p2 = pOp->p3;
+ pOp->p3 = 0;
+ pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->opcode = OP_Sequence;
+ pOp->p1 = iAutoidxCur;
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ if( iAutoidxCur==0 ){
+ pOp->opcode = OP_Null;
+ pOp->p3 = 0;
+ }
+#endif
+ }
+ }
+}
+
+/*
+** Two routines for printing the content of an sqlite3_index_info
+** structure. Used for testing and debugging only. If neither
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
+** are no-ops.
+*/
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
+static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
+ int i;
+ if( (sqlite3WhereTrace & 0x10)==0 ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(
+ " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
+ i,
+ p->aConstraint[i].iColumn,
+ p->aConstraint[i].iTermOffset,
+ p->aConstraint[i].op,
+ p->aConstraint[i].usable,
+ sqlite3_vtab_collation(p,i));
+ }
+ for(i=0; i<p->nOrderBy; i++){
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
+ i,
+ p->aOrderBy[i].iColumn,
+ p->aOrderBy[i].desc);
+ }
+}
+static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
+ int i;
+ if( (sqlite3WhereTrace & 0x10)==0 ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
+ i,
+ p->aConstraintUsage[i].argvIndex,
+ p->aConstraintUsage[i].omit);
+ }
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
+ sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
+}
+#else
+#define whereTraceIndexInfoInputs(A)
+#define whereTraceIndexInfoOutputs(A)
+#endif
+
+/*
+** We know that pSrc is an operand of an outer join. Return true if
+** pTerm is a constraint that is compatible with that join.
+**
+** pTerm must be EP_OuterON if pSrc is the right operand of an
+** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc
+** is the left operand of a RIGHT join.
+**
+** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
+** for an example of a WHERE clause constraints that may not be used on
+** the right table of a RIGHT JOIN because the constraint implies a
+** not-NULL condition on the left table of the RIGHT JOIN.
+*/
+static int constraintCompatibleWithOuterJoin(
+ const WhereTerm *pTerm, /* WHERE clause term to check */
+ const SrcItem *pSrc /* Table we are trying to access */
+){
+ assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
+ testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
+ testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
+ testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
+ || pTerm->pExpr->w.iJoin != pSrc->iCursor
+ ){
+ return 0;
+ }
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
+ && ExprHasProperty(pTerm->pExpr, EP_InnerON)
+ ){
+ return 0;
+ }
+ return 1;
+}
+
+
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+/*
+** Return TRUE if the WHERE clause term pTerm is of a form where it
+** could be used with an index to access pSrc, assuming an appropriate
+** index existed.
+*/
+static int termCanDriveIndex(
+ const WhereTerm *pTerm, /* WHERE clause term to check */
+ const SrcItem *pSrc, /* Table we are trying to access */
+ const Bitmask notReady /* Tables in outer loops of the join */
+){
+ char aff;
+ if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
+ if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
+ assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
+ && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
+ ){
+ return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */
+ }
+ if( (pTerm->prereqRight & notReady)!=0 ) return 0;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ if( pTerm->u.x.leftColumn<0 ) return 0;
+ aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
+ testcase( pTerm->pExpr->op==TK_IS );
+ return 1;
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+/*
+** Argument pIdx represents an automatic index that the current statement
+** will create and populate. Add an OP_Explain with text of the form:
+**
+** CREATE AUTOMATIC INDEX ON <table>(<cols>) [WHERE <expr>]
+**
+** This is only required if sqlite3_stmt_scanstatus() is enabled, to
+** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP
+** values with. In order to avoid breaking legacy code and test cases,
+** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command.
+*/
+static void explainAutomaticIndex(
+ Parse *pParse,
+ Index *pIdx, /* Automatic index to explain */
+ int bPartial, /* True if pIdx is a partial index */
+ int *pAddrExplain /* OUT: Address of OP_Explain */
+){
+ if( IS_STMT_SCANSTATUS(pParse->db) && pParse->explain!=2 ){
+ Table *pTab = pIdx->pTable;
+ const char *zSep = "";
+ char *zText = 0;
+ int ii = 0;
+ sqlite3_str *pStr = sqlite3_str_new(pParse->db);
+ sqlite3_str_appendf(pStr,"CREATE AUTOMATIC INDEX ON %s(", pTab->zName);
+ assert( pIdx->nColumn>1 );
+ assert( pIdx->aiColumn[pIdx->nColumn-1]==XN_ROWID );
+ for(ii=0; ii<(pIdx->nColumn-1); ii++){
+ const char *zName = 0;
+ int iCol = pIdx->aiColumn[ii];
+
+ zName = pTab->aCol[iCol].zCnName;
+ sqlite3_str_appendf(pStr, "%s%s", zSep, zName);
+ zSep = ", ";
+ }
+ zText = sqlite3_str_finish(pStr);
+ if( zText==0 ){
+ sqlite3OomFault(pParse->db);
+ }else{
+ *pAddrExplain = sqlite3VdbeExplain(
+ pParse, 0, "%s)%s", zText, (bPartial ? " WHERE <expr>" : "")
+ );
+ sqlite3_free(zText);
+ }
+ }
+}
+#else
+# define explainAutomaticIndex(a,b,c,d)
+#endif
+
+/*
+** Generate code to construct the Index object for an automatic index
+** and to set up the WhereLevel object pLevel so that the code generator
+** makes use of the automatic index.
+*/
+static SQLITE_NOINLINE void constructAutomaticIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ const Bitmask notReady, /* Mask of cursors that are not available */
+ WhereLevel *pLevel /* Write new index here */
+){
+ int nKeyCol; /* Number of columns in the constructed index */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ WhereTerm *pWCEnd; /* End of pWC->a[] */
+ Index *pIdx; /* Object describing the transient index */
+ Vdbe *v; /* Prepared statement under construction */
+ int addrInit; /* Address of the initialization bypass jump */
+ Table *pTable; /* The table being indexed */
+ int addrTop; /* Top of the index fill loop */
+ int regRecord; /* Register holding an index record */
+ int n; /* Column counter */
+ int i; /* Loop counter */
+ int mxBitCol; /* Maximum column in pSrc->colUsed */
+ CollSeq *pColl; /* Collating sequence to on a column */
+ WhereLoop *pLoop; /* The Loop object */
+ char *zNotUsed; /* Extra space on the end of pIdx */
+ Bitmask idxCols; /* Bitmap of columns used for indexing */
+ Bitmask extraCols; /* Bitmap of additional columns */
+ u8 sentWarning = 0; /* True if a warning has been issued */
+ u8 useBloomFilter = 0; /* True to also add a Bloom filter */
+ Expr *pPartial = 0; /* Partial Index Expression */
+ int iContinue = 0; /* Jump here to skip excluded rows */
+ SrcList *pTabList; /* The complete FROM clause */
+ SrcItem *pSrc; /* The FROM clause term to get the next index */
+ int addrCounter = 0; /* Address where integer counter is initialized */
+ int regBase; /* Array of registers where record is assembled */
+#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
+ int addrExp = 0; /* Address of OP_Explain */
+#endif
+
+ /* Generate code to skip over the creation and initialization of the
+ ** transient index on 2nd and subsequent iterations of the loop. */
+ v = pParse->pVdbe;
+ assert( v!=0 );
+ addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+
+ /* Count the number of columns that will be added to the index
+ ** and used to match WHERE clause constraints */
+ nKeyCol = 0;
+ pTabList = pWC->pWInfo->pTabList;
+ pSrc = &pTabList->a[pLevel->iFrom];
+ pTable = pSrc->pTab;
+ pWCEnd = &pWC->a[pWC->nTerm];
+ pLoop = pLevel->pWLoop;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ Expr *pExpr = pTerm->pExpr;
+ /* Make the automatic index a partial index if there are terms in the
+ ** WHERE clause (or the ON clause of a LEFT join) that constrain which
+ ** rows of the target table (pSrc) that can be used. */
+ if( (pTerm->wtFlags & TERM_VIRTUAL)==0
+ && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom)
+ ){
+ pPartial = sqlite3ExprAnd(pParse, pPartial,
+ sqlite3ExprDup(pParse->db, pExpr, 0));
+ }
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol;
+ Bitmask cMask;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iCol = pTerm->u.x.leftColumn;
+ cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
+ testcase( iCol==BMS );
+ testcase( iCol==BMS-1 );
+ if( !sentWarning ){
+ sqlite3_log(SQLITE_WARNING_AUTOINDEX,
+ "automatic index on %s(%s)", pTable->zName,
+ pTable->aCol[iCol].zCnName);
+ sentWarning = 1;
+ }
+ if( (idxCols & cMask)==0 ){
+ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
+ goto end_auto_index_create;
+ }
+ pLoop->aLTerm[nKeyCol++] = pTerm;
+ idxCols |= cMask;
+ }
+ }
+ }
+ assert( nKeyCol>0 || pParse->db->mallocFailed );
+ pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
+ pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
+ | WHERE_AUTO_INDEX;
+
+ /* Count the number of additional columns needed to create a
+ ** covering index. A "covering index" is an index that contains all
+ ** columns that are needed by the query. With a covering index, the
+ ** original table never needs to be accessed. Automatic indices must
+ ** be a covering index because the index will not be updated if the
+ ** original table changes and the index and table cannot both be used
+ ** if they go out of sync.
+ */
+ if( IsView(pTable) ){
+ extraCols = ALLBITS;
+ }else{
+ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
+ }
+ mxBitCol = MIN(BMS-1,pTable->nCol);
+ testcase( pTable->nCol==BMS-1 );
+ testcase( pTable->nCol==BMS-2 );
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & MASKBIT(i) ) nKeyCol++;
+ }
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){
+ nKeyCol += pTable->nCol - BMS + 1;
+ }
+
+ /* Construct the Index object to describe this index */
+ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
+ if( pIdx==0 ) goto end_auto_index_create;
+ pLoop->u.btree.pIndex = pIdx;
+ pIdx->zName = "auto-index";
+ pIdx->pTable = pTable;
+ n = 0;
+ idxCols = 0;
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){
+ int iCol;
+ Bitmask cMask;
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ iCol = pTerm->u.x.leftColumn;
+ cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
+ testcase( iCol==BMS-1 );
+ testcase( iCol==BMS );
+ if( (idxCols & cMask)==0 ){
+ Expr *pX = pTerm->pExpr;
+ idxCols |= cMask;
+ pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
+ pColl = sqlite3ExprCompareCollSeq(pParse, pX);
+ assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
+ pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
+ n++;
+ if( ALWAYS(pX->pLeft!=0)
+ && sqlite3ExprAffinity(pX->pLeft)!=SQLITE_AFF_TEXT
+ ){
+ /* TUNING: only use a Bloom filter on an automatic index
+ ** if one or more key columns has the ability to hold numeric
+ ** values, since strings all have the same hash in the Bloom
+ ** filter implementation and hence a Bloom filter on a text column
+ ** is not usually helpful. */
+ useBloomFilter = 1;
+ }
+ }
+ }
+ }
+ assert( (u32)n==pLoop->u.btree.nEq );
+
+ /* Add additional columns needed to make the automatic index into
+ ** a covering index */
+ for(i=0; i<mxBitCol; i++){
+ if( extraCols & MASKBIT(i) ){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+ n++;
+ }
+ }
+ if( pSrc->colUsed & MASKBIT(BMS-1) ){
+ for(i=BMS-1; i<pTable->nCol; i++){
+ pIdx->aiColumn[n] = i;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+ n++;
+ }
+ }
+ assert( n==nKeyCol );
+ pIdx->aiColumn[n] = XN_ROWID;
+ pIdx->azColl[n] = sqlite3StrBINARY;
+
+ /* Create the automatic index */
+ explainAutomaticIndex(pParse, pIdx, pPartial!=0, &addrExp);
+ assert( pLevel->iIdxCur>=0 );
+ pLevel->iIdxCur = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "for %s", pTable->zName));
+ if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){
+ sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel);
+ pLevel->regFilter = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
+ }
+
+ /* Fill the automatic index with content */
+ assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] );
+ if( pSrc->fg.viaCoroutine ){
+ int regYield = pSrc->regReturn;
+ addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub);
+ addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
+ VdbeCoverage(v);
+ VdbeComment((v, "next row of %s", pSrc->pTab->zName));
+ }else{
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
+ }
+ if( pPartial ){
+ iContinue = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
+ pLoop->wsFlags |= WHERE_PARTIALIDX;
+ }
+ regRecord = sqlite3GetTempReg(pParse);
+ regBase = sqlite3GenerateIndexKey(
+ pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
+ );
+ if( pLevel->regFilter ){
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
+ regBase, pLoop->u.btree.nEq);
+ }
+ sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
+ if( pSrc->fg.viaCoroutine ){
+ sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
+ testcase( pParse->db->mallocFailed );
+ assert( pLevel->iIdxCur>0 );
+ translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
+ pSrc->regResult, pLevel->iIdxCur);
+ sqlite3VdbeGoto(v, addrTop);
+ pSrc->fg.viaCoroutine = 0;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
+ sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
+ }
+ sqlite3VdbeJumpHere(v, addrTop);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+
+ /* Jump here when skipping the initialization */
+ sqlite3VdbeJumpHere(v, addrInit);
+ sqlite3VdbeScanStatusRange(v, addrExp, addrExp, -1);
+
+end_auto_index_create:
+ sqlite3ExprDelete(pParse->db, pPartial);
+}
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+/*
+** Generate bytecode that will initialize a Bloom filter that is appropriate
+** for pLevel.
+**
+** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
+** flag set, initialize a Bloomfilter for them as well. Except don't do
+** this recursive initialization if the SQLITE_BloomPulldown optimization has
+** been turned off.
+**
+** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
+** from the loop, but the regFilter value is set to a register that implements
+** the Bloom filter. When regFilter is positive, the
+** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
+** and skip the subsequence B-Tree seek if the Bloom filter indicates that
+** no matching rows exist.
+**
+** This routine may only be called if it has previously been determined that
+** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
+** is set.
+*/
+static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ int iLevel, /* Index in pWInfo->a[] that is pLevel */
+ WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */
+ Bitmask notReady /* Loops that are not ready */
+){
+ int addrOnce; /* Address of opening OP_Once */
+ int addrTop; /* Address of OP_Rewind */
+ int addrCont; /* Jump here to skip a row */
+ const WhereTerm *pTerm; /* For looping over WHERE clause terms */
+ const WhereTerm *pWCEnd; /* Last WHERE clause term */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */
+ WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */
+ int iCur; /* Cursor for table getting the filter */
+ IndexedExpr *saved_pIdxEpr; /* saved copy of Parse.pIdxEpr */
+ IndexedExpr *saved_pIdxPartExpr; /* saved copy of Parse.pIdxPartExpr */
+
+ saved_pIdxEpr = pParse->pIdxEpr;
+ saved_pIdxPartExpr = pParse->pIdxPartExpr;
+ pParse->pIdxEpr = 0;
+ pParse->pIdxPartExpr = 0;
+
+ assert( pLoop!=0 );
+ assert( v!=0 );
+ assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 );
+
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ do{
+ const SrcList *pTabList;
+ const SrcItem *pItem;
+ const Table *pTab;
+ u64 sz;
+ int iSrc;
+ sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
+ addrCont = sqlite3VdbeMakeLabel(pParse);
+ iCur = pLevel->iTabCur;
+ pLevel->regFilter = ++pParse->nMem;
+
+ /* The Bloom filter is a Blob held in a register. Initialize it
+ ** to zero-filled blob of at least 80K bits, but maybe more if the
+ ** estimated size of the table is larger. We could actually
+ ** measure the size of the table at run-time using OP_Count with
+ ** P3==1 and use that value to initialize the blob. But that makes
+ ** testing complicated. By basing the blob size on the value in the
+ ** sqlite_stat1 table, testing is much easier.
+ */
+ pTabList = pWInfo->pTabList;
+ iSrc = pLevel->iFrom;
+ pItem = &pTabList->a[iSrc];
+ assert( pItem!=0 );
+ pTab = pItem->pTab;
+ assert( pTab!=0 );
+ sz = sqlite3LogEstToInt(pTab->nRowLogEst);
+ if( sz<10000 ){
+ sz = 10000;
+ }else if( sz>10000000 ){
+ sz = 10000000;
+ }
+ sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
+
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
+ pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
+ for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
+ Expr *pExpr = pTerm->pExpr;
+ if( (pTerm->wtFlags & TERM_VIRTUAL)==0
+ && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc)
+ ){
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
+ }
+ }
+ if( pLoop->wsFlags & WHERE_IPK ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }else{
+ Index *pIdx = pLoop->u.btree.pIndex;
+ int n = pLoop->u.btree.nEq;
+ int r1 = sqlite3GetTempRange(pParse, n);
+ int jj;
+ for(jj=0; jj<n; jj++){
+ assert( pIdx->pTable==pItem->pTab );
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iCur, jj, r1+jj);
+ }
+ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
+ sqlite3ReleaseTempRange(pParse, r1, n);
+ }
+ sqlite3VdbeResolveLabel(v, addrCont);
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrTop);
+ pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
+ if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
+ while( ++iLevel < pWInfo->nLevel ){
+ const SrcItem *pTabItem;
+ pLevel = &pWInfo->a[iLevel];
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
+ if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
+ pLoop = pLevel->pWLoop;
+ if( NEVER(pLoop==0) ) continue;
+ if( pLoop->prereq & notReady ) continue;
+ if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
+ ==WHERE_BLOOMFILTER
+ ){
+ /* This is a candidate for bloom-filter pull-down (early evaluation).
+ ** The test that WHERE_COLUMN_IN is omitted is important, as we are
+ ** not able to do early evaluation of bloom filters that make use of
+ ** the IN operator */
+ break;
+ }
+ }
+ }while( iLevel < pWInfo->nLevel );
+ sqlite3VdbeJumpHere(v, addrOnce);
+ pParse->pIdxEpr = saved_pIdxEpr;
+ pParse->pIdxPartExpr = saved_pIdxPartExpr;
+}
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Allocate and populate an sqlite3_index_info structure. It is the
+** responsibility of the caller to eventually release the structure
+** by passing the pointer returned by this function to freeIndexInfo().
+*/
+static sqlite3_index_info *allocateIndexInfo(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ WhereClause *pWC, /* The WHERE clause being analyzed */
+ Bitmask mUnusable, /* Ignore terms with these prereqs */
+ SrcItem *pSrc, /* The FROM clause term that is the vtab */
+ u16 *pmNoOmit /* Mask of terms not to omit */
+){
+ int i, j;
+ int nTerm;
+ Parse *pParse = pWInfo->pParse;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_orderby *pIdxOrderBy;
+ struct sqlite3_index_constraint_usage *pUsage;
+ struct HiddenIndexInfo *pHidden;
+ WhereTerm *pTerm;
+ int nOrderBy;
+ sqlite3_index_info *pIdxInfo;
+ u16 mNoOmit = 0;
+ const Table *pTab;
+ int eDistinct = 0;
+ ExprList *pOrderBy = pWInfo->pOrderBy;
+
+ assert( pSrc!=0 );
+ pTab = pSrc->pTab;
+ assert( pTab!=0 );
+ assert( IsVirtual(pTab) );
+
+ /* Find all WHERE clause constraints referring to this virtual table.
+ ** Mark each term with the TERM_OK flag. Set nTerm to the number of
+ ** terms found.
+ */
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ pTerm->wtFlags &= ~TERM_OK;
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ if( pTerm->prereqRight & mUnusable ) continue;
+ assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
+ testcase( pTerm->eOperator & WO_IN );
+ testcase( pTerm->eOperator & WO_ISNULL );
+ testcase( pTerm->eOperator & WO_IS );
+ testcase( pTerm->eOperator & WO_ALL );
+ if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
+ if( pTerm->wtFlags & TERM_VNULL ) continue;
+
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ assert( pTerm->u.x.leftColumn>=XN_ROWID );
+ assert( pTerm->u.x.leftColumn<pTab->nCol );
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
+ && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
+ ){
+ continue;
+ }
+ nTerm++;
+ pTerm->wtFlags |= TERM_OK;
+ }
+
+ /* If the ORDER BY clause contains only columns in the current
+ ** virtual table then allocate space for the aOrderBy part of
+ ** the sqlite3_index_info structure.
+ */
+ nOrderBy = 0;
+ if( pOrderBy ){
+ int n = pOrderBy->nExpr;
+ for(i=0; i<n; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ Expr *pE2;
+
+ /* Skip over constant terms in the ORDER BY clause */
+ if( sqlite3ExprIsConstant(pExpr) ){
+ continue;
+ }
+
+ /* Virtual tables are unable to deal with NULLS FIRST */
+ if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
+
+ /* First case - a direct column references without a COLLATE operator */
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
+ assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
+ continue;
+ }
+
+ /* 2nd case - a column reference with a COLLATE operator. Only match
+ ** of the COLLATE operator matches the collation of the column. */
+ if( pExpr->op==TK_COLLATE
+ && (pE2 = pExpr->pLeft)->op==TK_COLUMN
+ && pE2->iTable==pSrc->iCursor
+ ){
+ const char *zColl; /* The collating sequence name */
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ assert( pExpr->u.zToken!=0 );
+ assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
+ pExpr->iColumn = pE2->iColumn;
+ if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */
+ zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
+ if( zColl==0 ) zColl = sqlite3StrBINARY;
+ if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
+ }
+
+ /* No matches cause a break out of the loop */
+ break;
+ }
+ if( i==n ){
+ nOrderBy = n;
+ if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
+ eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
+ }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
+ eDistinct = 1;
+ }
+ }
+ }
+
+ /* Allocate the sqlite3_index_info structure
+ */
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
+ + sizeof(sqlite3_value*)*nTerm );
+ if( pIdxInfo==0 ){
+ sqlite3ErrorMsg(pParse, "out of memory");
+ return 0;
+ }
+ pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
+ pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
+ pIdxInfo->aConstraint = pIdxCons;
+ pIdxInfo->aOrderBy = pIdxOrderBy;
+ pIdxInfo->aConstraintUsage = pUsage;
+ pHidden->pWC = pWC;
+ pHidden->pParse = pParse;
+ pHidden->eDistinct = eDistinct;
+ pHidden->mIn = 0;
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ u16 op;
+ if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
+ pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
+ pIdxCons[j].iTermOffset = i;
+ op = pTerm->eOperator & WO_ALL;
+ if( op==WO_IN ){
+ if( (pTerm->wtFlags & TERM_SLICE)==0 ){
+ pHidden->mIn |= SMASKBIT32(j);
+ }
+ op = WO_EQ;
+ }
+ if( op==WO_AUX ){
+ pIdxCons[j].op = pTerm->eMatchOp;
+ }else if( op & (WO_ISNULL|WO_IS) ){
+ if( op==WO_ISNULL ){
+ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
+ }else{
+ pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
+ }
+ }else{
+ pIdxCons[j].op = (u8)op;
+ /* The direct assignment in the previous line is possible only because
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
+ ** following asserts verify this fact. */
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
+ assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
+
+ if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
+ && sqlite3ExprIsVector(pTerm->pExpr->pRight)
+ ){
+ testcase( j!=i );
+ if( j<16 ) mNoOmit |= (1 << j);
+ if( op==WO_LT ) pIdxCons[j].op = WO_LE;
+ if( op==WO_GT ) pIdxCons[j].op = WO_GE;
+ }
+ }
+
+ j++;
+ }
+ assert( j==nTerm );
+ pIdxInfo->nConstraint = j;
+ for(i=j=0; i<nOrderBy; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ if( sqlite3ExprIsConstant(pExpr) ) continue;
+ assert( pExpr->op==TK_COLUMN
+ || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
+ && pExpr->iColumn==pExpr->pLeft->iColumn) );
+ pIdxOrderBy[j].iColumn = pExpr->iColumn;
+ pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
+ j++;
+ }
+ pIdxInfo->nOrderBy = j;
+
+ *pmNoOmit = mNoOmit;
+ return pIdxInfo;
+}
+
+/*
+** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
+** and possibly modified by xBestIndex methods.
+*/
+static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden;
+ int i;
+ assert( pIdxInfo!=0 );
+ pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ assert( pHidden->pParse!=0 );
+ assert( pHidden->pParse->db==db );
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
+ pHidden->aRhs[i] = 0;
+ }
+ sqlite3DbFree(db, pIdxInfo);
+}
+
+/*
+** The table object reference passed as the second argument to this function
+** must represent a virtual table. This function invokes the xBestIndex()
+** method of the virtual table with the sqlite3_index_info object that
+** comes in as the 3rd argument to this function.
+**
+** If an error occurs, pParse is populated with an error message and an
+** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
+** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
+** the current configuration of "unusable" flags in sqlite3_index_info can
+** not result in a valid plan.
+**
+** Whether or not an error is returned, it is the responsibility of the
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
+** that this is required.
+*/
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
+ int rc;
+
+ whereTraceIndexInfoInputs(p);
+ pParse->db->nSchemaLock++;
+ rc = pVtab->pModule->xBestIndex(pVtab, p);
+ pParse->db->nSchemaLock--;
+ whereTraceIndexInfoOutputs(p);
+
+ if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(pParse->db);
+ }else if( !pVtab->zErrMsg ){
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }else{
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
+ }
+ }
+ if( pTab->u.vtab.p->bAllSchemas ){
+ sqlite3VtabUsesAllSchemas(pParse);
+ }
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = 0;
+ return rc;
+}
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the location of a particular key among all keys in an
+** index. Store the results in aStat as follows:
+**
+** aStat[0] Est. number of rows less than pRec
+** aStat[1] Est. number of rows equal to pRec
+**
+** Return the index of the sample that is the smallest sample that
+** is greater than or equal to pRec. Note that this index is not an index
+** into the aSample[] array - it is an index into a virtual set of samples
+** based on the contents of aSample[] and the number of fields in record
+** pRec.
+*/
+static int whereKeyStats(
+ Parse *pParse, /* Database connection */
+ Index *pIdx, /* Index to consider domain of */
+ UnpackedRecord *pRec, /* Vector of values to consider */
+ int roundUp, /* Round up if true. Round down if false */
+ tRowcnt *aStat /* OUT: stats written here */
+){
+ IndexSample *aSample = pIdx->aSample;
+ int iCol; /* Index of required stats in anEq[] etc. */
+ int i; /* Index of first sample >= pRec */
+ int iSample; /* Smallest sample larger than or equal to pRec */
+ int iMin = 0; /* Smallest sample not yet tested */
+ int iTest; /* Next sample to test */
+ int res; /* Result of comparison operation */
+ int nField; /* Number of fields in pRec */
+ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
+
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( pParse );
+#endif
+ assert( pRec!=0 );
+ assert( pIdx->nSample>0 );
+ assert( pRec->nField>0 );
+
+
+ /* Do a binary search to find the first sample greater than or equal
+ ** to pRec. If pRec contains a single field, the set of samples to search
+ ** is simply the aSample[] array. If the samples in aSample[] contain more
+ ** than one fields, all fields following the first are ignored.
+ **
+ ** If pRec contains N fields, where N is more than one, then as well as the
+ ** samples in aSample[] (truncated to N fields), the search also has to
+ ** consider prefixes of those samples. For example, if the set of samples
+ ** in aSample is:
+ **
+ ** aSample[0] = (a, 5)
+ ** aSample[1] = (a, 10)
+ ** aSample[2] = (b, 5)
+ ** aSample[3] = (c, 100)
+ ** aSample[4] = (c, 105)
+ **
+ ** Then the search space should ideally be the samples above and the
+ ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
+ ** the code actually searches this set:
+ **
+ ** 0: (a)
+ ** 1: (a, 5)
+ ** 2: (a, 10)
+ ** 3: (a, 10)
+ ** 4: (b)
+ ** 5: (b, 5)
+ ** 6: (c)
+ ** 7: (c, 100)
+ ** 8: (c, 105)
+ ** 9: (c, 105)
+ **
+ ** For each sample in the aSample[] array, N samples are present in the
+ ** effective sample array. In the above, samples 0 and 1 are based on
+ ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
+ **
+ ** Often, sample i of each block of N effective samples has (i+1) fields.
+ ** Except, each sample may be extended to ensure that it is greater than or
+ ** equal to the previous sample in the array. For example, in the above,
+ ** sample 2 is the first sample of a block of N samples, so at first it
+ ** appears that it should be 1 field in size. However, that would make it
+ ** smaller than sample 1, so the binary search would not work. As a result,
+ ** it is extended to two fields. The duplicates that this creates do not
+ ** cause any problems.
+ */
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
+ nField = pIdx->nKeyCol;
+ }else{
+ nField = pIdx->nColumn;
+ }
+ nField = MIN(pRec->nField, nField);
+ iCol = 0;
+ iSample = pIdx->nSample * nField;
+ do{
+ int iSamp; /* Index in aSample[] of test sample */
+ int n; /* Number of fields in test sample */
+
+ iTest = (iMin+iSample)/2;
+ iSamp = iTest / nField;
+ if( iSamp>0 ){
+ /* The proposed effective sample is a prefix of sample aSample[iSamp].
+ ** Specifically, the shortest prefix of at least (1 + iTest%nField)
+ ** fields that is greater than the previous effective sample. */
+ for(n=(iTest % nField) + 1; n<nField; n++){
+ if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
+ }
+ }else{
+ n = iTest + 1;
+ }
+
+ pRec->nField = n;
+ res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
+ if( res<0 ){
+ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
+ iMin = iTest+1;
+ }else if( res==0 && n<nField ){
+ iLower = aSample[iSamp].anLt[n-1];
+ iMin = iTest+1;
+ res = -1;
+ }else{
+ iSample = iTest;
+ iCol = n-1;
+ }
+ }while( res && iMin<iSample );
+ i = iSample / nField;
+
+#ifdef SQLITE_DEBUG
+ /* The following assert statements check that the binary search code
+ ** above found the right answer. This block serves no purpose other
+ ** than to invoke the asserts. */
+ if( pParse->db->mallocFailed==0 ){
+ if( res==0 ){
+ /* If (res==0) is true, then pRec must be equal to sample i. */
+ assert( i<pIdx->nSample );
+ assert( iCol==nField-1 );
+ pRec->nField = nField;
+ assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
+ || pParse->db->mallocFailed
+ );
+ }else{
+ /* Unless i==pIdx->nSample, indicating that pRec is larger than
+ ** all samples in the aSample[] array, pRec must be smaller than the
+ ** (iCol+1) field prefix of sample i. */
+ assert( i<=pIdx->nSample && i>=0 );
+ pRec->nField = iCol+1;
+ assert( i==pIdx->nSample
+ || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
+ || pParse->db->mallocFailed );
+
+ /* if i==0 and iCol==0, then record pRec is smaller than all samples
+ ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
+ ** be greater than or equal to the (iCol) field prefix of sample i.
+ ** If (i>0), then pRec must also be greater than sample (i-1). */
+ if( iCol>0 ){
+ pRec->nField = iCol;
+ assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
+ || pParse->db->mallocFailed || CORRUPT_DB );
+ }
+ if( i>0 ){
+ pRec->nField = nField;
+ assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
+ || pParse->db->mallocFailed || CORRUPT_DB );
+ }
+ }
+ }
+#endif /* ifdef SQLITE_DEBUG */
+
+ if( res==0 ){
+ /* Record pRec is equal to sample i */
+ assert( iCol==nField-1 );
+ aStat[0] = aSample[i].anLt[iCol];
+ aStat[1] = aSample[i].anEq[iCol];
+ }else{
+ /* At this point, the (iCol+1) field prefix of aSample[i] is the first
+ ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
+ ** is larger than all samples in the array. */
+ tRowcnt iUpper, iGap;
+ if( i>=pIdx->nSample ){
+ iUpper = pIdx->nRowEst0;
+ }else{
+ iUpper = aSample[i].anLt[iCol];
+ }
+
+ if( iLower>=iUpper ){
+ iGap = 0;
+ }else{
+ iGap = iUpper - iLower;
+ }
+ if( roundUp ){
+ iGap = (iGap*2)/3;
+ }else{
+ iGap = iGap/3;
+ }
+ aStat[0] = iLower + iGap;
+ aStat[1] = pIdx->aAvgEq[nField-1];
+ }
+
+ /* Restore the pRec->nField value before returning. */
+ pRec->nField = nField;
+ return i;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** If it is not NULL, pTerm is a term that provides an upper or lower
+** bound on a range scan. Without considering pTerm, it is estimated
+** that the scan will visit nNew rows. This function returns the number
+** estimated to be visited after taking pTerm into account.
+**
+** If the user explicitly specified a likelihood() value for this term,
+** then the return value is the likelihood multiplied by the number of
+** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
+** has a likelihood of 0.50, and any other term a likelihood of 0.25.
+*/
+static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
+ LogEst nRet = nNew;
+ if( pTerm ){
+ if( pTerm->truthProb<=0 ){
+ nRet += pTerm->truthProb;
+ }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
+ nRet -= 20; assert( 20==sqlite3LogEst(4) );
+ }
+ }
+ return nRet;
+}
+
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Return the affinity for a single column of an index.
+*/
+SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
+ assert( iCol>=0 && iCol<pIdx->nColumn );
+ if( !pIdx->zColAff ){
+ if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
+ }
+ assert( pIdx->zColAff[iCol]!=0 );
+ return pIdx->zColAff[iCol];
+}
+#endif
+
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** This function is called to estimate the number of rows visited by a
+** range-scan on a skip-scan index. For example:
+**
+** CREATE INDEX i1 ON t1(a, b, c);
+** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
+**
+** Value pLoop->nOut is currently set to the estimated number of rows
+** visited for scanning (a=? AND b=?). This function reduces that estimate
+** by some factor to account for the (c BETWEEN ? AND ?) expression based
+** on the stat4 data for the index. this scan will be performed multiple
+** times (once for each (a,b) combination that matches a=?) is dealt with
+** by the caller.
+**
+** It does this by scanning through all stat4 samples, comparing values
+** extracted from pLower and pUpper with the corresponding column in each
+** sample. If L and U are the number of samples found to be less than or
+** equal to the values extracted from pLower and pUpper respectively, and
+** N is the total number of samples, the pLoop->nOut value is adjusted
+** as follows:
+**
+** nOut = nOut * ( min(U - L, 1) / N )
+**
+** If pLower is NULL, or a value cannot be extracted from the term, L is
+** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
+** U is set to N.
+**
+** Normally, this function sets *pbDone to 1 before returning. However,
+** if no value can be extracted from either pLower or pUpper (and so the
+** estimate of the number of rows delivered remains unchanged), *pbDone
+** is left as is.
+**
+** If an error occurs, an SQLite error code is returned. Otherwise,
+** SQLITE_OK.
+*/
+static int whereRangeSkipScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop, /* Update the .nOut value of this loop */
+ int *pbDone /* Set to true if at least one expr. value extracted */
+){
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+ sqlite3 *db = pParse->db;
+ int nLower = -1;
+ int nUpper = p->nSample+1;
+ int rc = SQLITE_OK;
+ u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
+ CollSeq *pColl;
+
+ sqlite3_value *p1 = 0; /* Value extracted from pLower */
+ sqlite3_value *p2 = 0; /* Value extracted from pUpper */
+ sqlite3_value *pVal = 0; /* Value extracted from record */
+
+ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
+ if( pLower ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
+ nLower = 0;
+ }
+ if( pUpper && rc==SQLITE_OK ){
+ rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
+ nUpper = p2 ? 0 : p->nSample;
+ }
+
+ if( p1 || p2 ){
+ int i;
+ int nDiff;
+ for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
+ rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
+ if( rc==SQLITE_OK && p1 ){
+ int res = sqlite3MemCompare(p1, pVal, pColl);
+ if( res>=0 ) nLower++;
+ }
+ if( rc==SQLITE_OK && p2 ){
+ int res = sqlite3MemCompare(p2, pVal, pColl);
+ if( res>=0 ) nUpper++;
+ }
+ }
+ nDiff = (nUpper - nLower);
+ if( nDiff<=0 ) nDiff = 1;
+
+ /* If there is both an upper and lower bound specified, and the
+ ** comparisons indicate that they are close together, use the fallback
+ ** method (assume that the scan visits 1/64 of the rows) for estimating
+ ** the number of rows visited. Otherwise, estimate the number of rows
+ ** using the method described in the header comment for this function. */
+ if( nDiff!=1 || pUpper==0 || pLower==0 ){
+ int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
+ pLoop->nOut -= nAdjust;
+ *pbDone = 1;
+ WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
+ nLower, nUpper, nAdjust*-1, pLoop->nOut));
+ }
+
+ }else{
+ assert( *pbDone==0 );
+ }
+
+ sqlite3ValueFree(p1);
+ sqlite3ValueFree(p2);
+ sqlite3ValueFree(pVal);
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** This function is used to estimate the number of rows that will be visited
+** by scanning an index for a range of values. The range may have an upper
+** bound, a lower bound, or both. The WHERE clause terms that set the upper
+** and lower bounds are represented by pLower and pUpper respectively. For
+** example, assuming that index p is on t1(a):
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+** |_____| |_____|
+** | |
+** pLower pUpper
+**
+** If either of the upper or lower bound is not present, then NULL is passed in
+** place of the corresponding WhereTerm.
+**
+** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
+** column subject to the range constraint. Or, equivalently, the number of
+** equality constraints optimized by the proposed index scan. For example,
+** assuming index p is on t1(a, b), and the SQL query is:
+**
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
+**
+** then nEq is set to 1 (as the range restricted column, b, is the second
+** left-most column of the index). Or, if the query is:
+**
+** ... FROM t1 WHERE a > ? AND a < ? ...
+**
+** then nEq is set to 0.
+**
+** When this function is called, *pnOut is set to the sqlite3LogEst() of the
+** number of rows that the index scan is expected to visit without
+** considering the range constraints. If nEq is 0, then *pnOut is the number of
+** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
+** to account for the range constraints pLower and pUpper.
+**
+** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
+** used, a single range inequality reduces the search space by a factor of 4.
+** and a pair of constraints (x>? AND x<?) reduces the expected number of
+** rows visited by a factor of 64.
+*/
+static int whereRangeScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
+ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
+){
+ int rc = SQLITE_OK;
+ int nOut = pLoop->nOut;
+ LogEst nNew;
+
+#ifdef SQLITE_ENABLE_STAT4
+ Index *p = pLoop->u.btree.pIndex;
+ int nEq = pLoop->u.btree.nEq;
+
+ if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
+ && OptimizationEnabled(pParse->db, SQLITE_Stat4)
+ ){
+ if( nEq==pBuilder->nRecValid ){
+ UnpackedRecord *pRec = pBuilder->pRec;
+ tRowcnt a[2];
+ int nBtm = pLoop->u.btree.nBtm;
+ int nTop = pLoop->u.btree.nTop;
+
+ /* Variable iLower will be set to the estimate of the number of rows in
+ ** the index that are less than the lower bound of the range query. The
+ ** lower bound being the concatenation of $P and $L, where $P is the
+ ** key-prefix formed by the nEq values matched against the nEq left-most
+ ** columns of the index, and $L is the value in pLower.
+ **
+ ** Or, if pLower is NULL or $L cannot be extracted from it (because it
+ ** is not a simple variable or literal value), the lower bound of the
+ ** range is $P. Due to a quirk in the way whereKeyStats() works, even
+ ** if $L is available, whereKeyStats() is called for both ($P) and
+ ** ($P:$L) and the larger of the two returned values is used.
+ **
+ ** Similarly, iUpper is to be set to the estimate of the number of rows
+ ** less than the upper bound of the range query. Where the upper bound
+ ** is either ($P) or ($P:$U). Again, even if $U is available, both values
+ ** of iUpper are requested of whereKeyStats() and the smaller used.
+ **
+ ** The number of rows between the two bounds is then just iUpper-iLower.
+ */
+ tRowcnt iLower; /* Rows less than the lower bound */
+ tRowcnt iUpper; /* Rows less than the upper bound */
+ int iLwrIdx = -2; /* aSample[] for the lower bound */
+ int iUprIdx = -1; /* aSample[] for the upper bound */
+
+ if( pRec ){
+ testcase( pRec->nField!=pBuilder->nRecValid );
+ pRec->nField = pBuilder->nRecValid;
+ }
+ /* Determine iLower and iUpper using ($P) only. */
+ if( nEq==0 ){
+ iLower = 0;
+ iUpper = p->nRowEst0;
+ }else{
+ /* Note: this call could be optimized away - since the same values must
+ ** have been requested when testing key $P in whereEqualScanEst(). */
+ whereKeyStats(pParse, p, pRec, 0, a);
+ iLower = a[0];
+ iUpper = a[0] + a[1];
+ }
+
+ assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
+ assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
+ assert( p->aSortOrder!=0 );
+ if( p->aSortOrder[nEq] ){
+ /* The roles of pLower and pUpper are swapped for a DESC index */
+ SWAP(WhereTerm*, pLower, pUpper);
+ SWAP(int, nBtm, nTop);
+ }
+
+ /* If possible, improve on the iLower estimate using ($P:$L). */
+ if( pLower ){
+ int n; /* Values extracted from pExpr */
+ Expr *pExpr = pLower->pExpr->pRight;
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
+ if( rc==SQLITE_OK && n ){
+ tRowcnt iNew;
+ u16 mask = WO_GT|WO_LE;
+ if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
+ iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
+ iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
+ if( iNew>iLower ) iLower = iNew;
+ nOut--;
+ pLower = 0;
+ }
+ }
+
+ /* If possible, improve on the iUpper estimate using ($P:$U). */
+ if( pUpper ){
+ int n; /* Values extracted from pExpr */
+ Expr *pExpr = pUpper->pExpr->pRight;
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
+ if( rc==SQLITE_OK && n ){
+ tRowcnt iNew;
+ u16 mask = WO_GT|WO_LE;
+ if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
+ iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
+ iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
+ if( iNew<iUpper ) iUpper = iNew;
+ nOut--;
+ pUpper = 0;
+ }
+ }
+
+ pBuilder->pRec = pRec;
+ if( rc==SQLITE_OK ){
+ if( iUpper>iLower ){
+ nNew = sqlite3LogEst(iUpper - iLower);
+ /* TUNING: If both iUpper and iLower are derived from the same
+ ** sample, then assume they are 4x more selective. This brings
+ ** the estimated selectivity more in line with what it would be
+ ** if estimated without the use of STAT4 tables. */
+ if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
+ }else{
+ nNew = 10; assert( 10==sqlite3LogEst(2) );
+ }
+ if( nNew<nOut ){
+ nOut = nNew;
+ }
+ WHERETRACE(0x20, ("STAT4 range scan: %u..%u est=%d\n",
+ (u32)iLower, (u32)iUpper, nOut));
+ }
+ }else{
+ int bDone = 0;
+ rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
+ if( bDone ) return rc;
+ }
+ }
+#else
+ UNUSED_PARAMETER(pParse);
+ UNUSED_PARAMETER(pBuilder);
+ assert( pLower || pUpper );
+#endif
+ assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 || pParse->nErr>0 );
+ nNew = whereRangeAdjust(pLower, nOut);
+ nNew = whereRangeAdjust(pUpper, nNew);
+
+ /* TUNING: If there is both an upper and lower limit and neither limit
+ ** has an application-defined likelihood(), assume the range is
+ ** reduced by an additional 75%. This means that, by default, an open-ended
+ ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
+ ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
+ ** match 1/64 of the index. */
+ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
+ nNew -= 20;
+ }
+
+ nOut -= (pLower!=0) + (pUpper!=0);
+ if( nNew<10 ) nNew = 10;
+ if( nNew<nOut ) nOut = nNew;
+#if defined(WHERETRACE_ENABLED)
+ if( pLoop->nOut>nOut ){
+ WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n",
+ pLoop->nOut, nOut));
+ }
+#endif
+ pLoop->nOut = (LogEst)nOut;
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the number of rows that will be returned based on
+** an equality constraint x=VALUE and where that VALUE occurs in
+** the histogram data. This only works when x is the left-most
+** column of an index and sqlite_stat4 histogram data is available
+** for that index. When pExpr==NULL that means the constraint is
+** "x IS NULL" instead of "x=VALUE".
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereEqualScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
+ tRowcnt *pnRow /* Write the revised row estimate here */
+){
+ Index *p = pBuilder->pNew->u.btree.pIndex;
+ int nEq = pBuilder->pNew->u.btree.nEq;
+ UnpackedRecord *pRec = pBuilder->pRec;
+ int rc; /* Subfunction return code */
+ tRowcnt a[2]; /* Statistics */
+ int bOk;
+
+ assert( nEq>=1 );
+ assert( nEq<=p->nColumn );
+ assert( p->aSample!=0 );
+ assert( p->nSample>0 );
+ assert( pBuilder->nRecValid<nEq );
+
+ /* If values are not available for all fields of the index to the left
+ ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
+ if( pBuilder->nRecValid<(nEq-1) ){
+ return SQLITE_NOTFOUND;
+ }
+
+ /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
+ ** below would return the same value. */
+ if( nEq>=p->nColumn ){
+ *pnRow = 1;
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
+ pBuilder->pRec = pRec;
+ if( rc!=SQLITE_OK ) return rc;
+ if( bOk==0 ) return SQLITE_NOTFOUND;
+ pBuilder->nRecValid = nEq;
+
+ whereKeyStats(pParse, p, pRec, 0, a);
+ WHERETRACE(0x20,("equality scan regions %s(%d): %d\n",
+ p->zName, nEq-1, (int)a[1]));
+ *pnRow = a[1];
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Estimate the number of rows that will be returned based on
+** an IN constraint where the right-hand side of the IN operator
+** is a list of values. Example:
+**
+** WHERE x IN (1,2,3,4)
+**
+** Write the estimated row count into *pnRow and return SQLITE_OK.
+** If unable to make an estimate, leave *pnRow unchanged and return
+** non-zero.
+**
+** This routine can fail if it is unable to load a collating sequence
+** required for string comparison, or if unable to allocate memory
+** for a UTF conversion required for comparison. The error is stored
+** in the pParse structure.
+*/
+static int whereInScanEst(
+ Parse *pParse, /* Parsing & code generating context */
+ WhereLoopBuilder *pBuilder,
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
+ tRowcnt *pnRow /* Write the revised row estimate here */
+){
+ Index *p = pBuilder->pNew->u.btree.pIndex;
+ i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
+ int nRecValid = pBuilder->nRecValid;
+ int rc = SQLITE_OK; /* Subfunction return code */
+ tRowcnt nEst; /* Number of rows for a single term */
+ tRowcnt nRowEst = 0; /* New estimate of the number of rows */
+ int i; /* Loop counter */
+
+ assert( p->aSample!=0 );
+ for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
+ nEst = nRow0;
+ rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
+ nRowEst += nEst;
+ pBuilder->nRecValid = nRecValid;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( nRowEst > (tRowcnt)nRow0 ) nRowEst = nRow0;
+ *pnRow = nRowEst;
+ WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst));
+ }
+ assert( pBuilder->nRecValid==nRecValid );
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Print the content of a WhereTerm object
+*/
+SQLITE_PRIVATE void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
+ if( pTerm==0 ){
+ sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
+ }else{
+ char zType[8];
+ char zLeft[50];
+ memcpy(zType, "....", 5);
+ if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
+ if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
+ if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
+ if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
+ if( pTerm->eOperator & WO_SINGLE ){
+ assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
+ pTerm->leftCursor, pTerm->u.x.leftColumn);
+ }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
+ pTerm->u.pOrInfo->indexable);
+ }else{
+ sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
+ }
+ sqlite3DebugPrintf(
+ "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
+ iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
+ /* The 0x10000 .wheretrace flag causes extra information to be
+ ** shown about each Term */
+ if( sqlite3WhereTrace & 0x10000 ){
+ sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
+ pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
+ }
+ if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
+ sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
+ }
+ if( pTerm->iParent>=0 ){
+ sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
+ }
+ sqlite3DebugPrintf("\n");
+ sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
+ }
+}
+#endif
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Show the complete content of a WhereClause
+*/
+SQLITE_PRIVATE void sqlite3WhereClausePrint(WhereClause *pWC){
+ int i;
+ for(i=0; i<pWC->nTerm; i++){
+ sqlite3WhereTermPrint(&pWC->a[i], i);
+ }
+}
+#endif
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Print a WhereLoop object for debugging purposes
+*/
+SQLITE_PRIVATE void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
+ WhereInfo *pWInfo = pWC->pWInfo;
+ int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
+ SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
+ Table *pTab = pItem->pTab;
+ Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
+ sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
+ p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
+ sqlite3DebugPrintf(" %12s",
+ pItem->zAlias ? pItem->zAlias : pTab->zName);
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
+ const char *zName;
+ if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
+ if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
+ int i = sqlite3Strlen30(zName) - 1;
+ while( zName[i]!='_' ) i--;
+ zName += i;
+ }
+ sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
+ }else{
+ sqlite3DebugPrintf("%20s","");
+ }
+ }else{
+ char *z;
+ if( p->u.vtab.idxStr ){
+ z = sqlite3_mprintf("(%d,\"%s\",%#x)",
+ p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
+ }else{
+ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
+ }
+ sqlite3DebugPrintf(" %-19s", z);
+ sqlite3_free(z);
+ }
+ if( p->wsFlags & WHERE_SKIPSCAN ){
+ sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
+ }else{
+ sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
+ }
+ sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
+ if( p->nLTerm && (sqlite3WhereTrace & 0x4000)!=0 ){
+ int i;
+ for(i=0; i<p->nLTerm; i++){
+ sqlite3WhereTermPrint(p->aLTerm[i], i);
+ }
+ }
+}
+#endif
+
+/*
+** Convert bulk memory into a valid WhereLoop that can be passed
+** to whereLoopClear harmlessly.
+*/
+static void whereLoopInit(WhereLoop *p){
+ p->aLTerm = p->aLTermSpace;
+ p->nLTerm = 0;
+ p->nLSlot = ArraySize(p->aLTermSpace);
+ p->wsFlags = 0;
+}
+
+/*
+** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
+*/
+static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
+ if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
+ sqlite3_free(p->u.vtab.idxStr);
+ p->u.vtab.needFree = 0;
+ p->u.vtab.idxStr = 0;
+ }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
+ sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
+ sqlite3DbFreeNN(db, p->u.btree.pIndex);
+ p->u.btree.pIndex = 0;
+ }
+ }
+}
+
+/*
+** Deallocate internal memory used by a WhereLoop object. Leave the
+** object in an initialized state, as if it had been newly allocated.
+*/
+static void whereLoopClear(sqlite3 *db, WhereLoop *p){
+ if( p->aLTerm!=p->aLTermSpace ){
+ sqlite3DbFreeNN(db, p->aLTerm);
+ p->aLTerm = p->aLTermSpace;
+ p->nLSlot = ArraySize(p->aLTermSpace);
+ }
+ whereLoopClearUnion(db, p);
+ p->nLTerm = 0;
+ p->wsFlags = 0;
+}
+
+/*
+** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
+*/
+static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
+ WhereTerm **paNew;
+ if( p->nLSlot>=n ) return SQLITE_OK;
+ n = (n+7)&~7;
+ paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
+ if( paNew==0 ) return SQLITE_NOMEM_BKPT;
+ memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
+ if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
+ p->aLTerm = paNew;
+ p->nLSlot = n;
+ return SQLITE_OK;
+}
+
+/*
+** Transfer content from the second pLoop into the first.
+*/
+static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
+ whereLoopClearUnion(db, pTo);
+ if( pFrom->nLTerm > pTo->nLSlot
+ && whereLoopResize(db, pTo, pFrom->nLTerm)
+ ){
+ memset(pTo, 0, WHERE_LOOP_XFER_SZ);
+ return SQLITE_NOMEM_BKPT;
+ }
+ memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
+ memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
+ if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
+ pFrom->u.vtab.needFree = 0;
+ }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
+ pFrom->u.btree.pIndex = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Delete a WhereLoop object
+*/
+static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
+ assert( db!=0 );
+ whereLoopClear(db, p);
+ sqlite3DbNNFreeNN(db, p);
+}
+
+/*
+** Free a WhereInfo structure
+*/
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
+ assert( pWInfo!=0 );
+ assert( db!=0 );
+ sqlite3WhereClauseClear(&pWInfo->sWC);
+ while( pWInfo->pLoops ){
+ WhereLoop *p = pWInfo->pLoops;
+ pWInfo->pLoops = p->pNextLoop;
+ whereLoopDelete(db, p);
+ }
+ while( pWInfo->pMemToFree ){
+ WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
+ sqlite3DbNNFreeNN(db, pWInfo->pMemToFree);
+ pWInfo->pMemToFree = pNext;
+ }
+ sqlite3DbNNFreeNN(db, pWInfo);
+}
+
+/*
+** Return TRUE if all of the following are true:
+**
+** (1) X has the same or lower cost, or returns the same or fewer rows,
+** than Y.
+** (2) X uses fewer WHERE clause terms than Y
+** (3) Every WHERE clause term used by X is also used by Y
+** (4) X skips at least as many columns as Y
+** (5) If X is a covering index, than Y is too
+**
+** Conditions (2) and (3) mean that X is a "proper subset" of Y.
+** If X is a proper subset of Y then Y is a better choice and ought
+** to have a lower cost. This routine returns TRUE when that cost
+** relationship is inverted and needs to be adjusted. Constraint (4)
+** was added because if X uses skip-scan less than Y it still might
+** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
+** was added because a covering index probably deserves to have a lower cost
+** than a non-covering index even if it is a proper subset.
+*/
+static int whereLoopCheaperProperSubset(
+ const WhereLoop *pX, /* First WhereLoop to compare */
+ const WhereLoop *pY /* Compare against this WhereLoop */
+){
+ int i, j;
+ if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
+ return 0; /* X is not a subset of Y */
+ }
+ if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
+ if( pY->nSkip > pX->nSkip ) return 0;
+ for(i=pX->nLTerm-1; i>=0; i--){
+ if( pX->aLTerm[i]==0 ) continue;
+ for(j=pY->nLTerm-1; j>=0; j--){
+ if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
+ }
+ if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
+ }
+ if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
+ && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
+ return 0; /* Constraint (5) */
+ }
+ return 1; /* All conditions meet */
+}
+
+/*
+** Try to adjust the cost and number of output rows of WhereLoop pTemplate
+** upwards or downwards so that:
+**
+** (1) pTemplate costs less than any other WhereLoops that are a proper
+** subset of pTemplate
+**
+** (2) pTemplate costs more than any other WhereLoops for which pTemplate
+** is a proper subset.
+**
+** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
+** WHERE clause terms than Y and that every WHERE clause term used by X is
+** also used by Y.
+*/
+static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
+ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
+ for(; p; p=p->pNextLoop){
+ if( p->iTab!=pTemplate->iTab ) continue;
+ if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
+ if( whereLoopCheaperProperSubset(p, pTemplate) ){
+ /* Adjust pTemplate cost downward so that it is cheaper than its
+ ** subset p. */
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
+ pTemplate->rRun, pTemplate->nOut,
+ MIN(p->rRun, pTemplate->rRun),
+ MIN(p->nOut - 1, pTemplate->nOut)));
+ pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
+ pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
+ }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
+ /* Adjust pTemplate cost upward so that it is costlier than p since
+ ** pTemplate is a proper subset of p */
+ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
+ pTemplate->rRun, pTemplate->nOut,
+ MAX(p->rRun, pTemplate->rRun),
+ MAX(p->nOut + 1, pTemplate->nOut)));
+ pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
+ pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
+ }
+ }
+}
+
+/*
+** Search the list of WhereLoops in *ppPrev looking for one that can be
+** replaced by pTemplate.
+**
+** Return NULL if pTemplate does not belong on the WhereLoop list.
+** In other words if pTemplate ought to be dropped from further consideration.
+**
+** If pX is a WhereLoop that pTemplate can replace, then return the
+** link that points to pX.
+**
+** If pTemplate cannot replace any existing element of the list but needs
+** to be added to the list as a new entry, then return a pointer to the
+** tail of the list.
+*/
+static WhereLoop **whereLoopFindLesser(
+ WhereLoop **ppPrev,
+ const WhereLoop *pTemplate
+){
+ WhereLoop *p;
+ for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
+ if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
+ /* If either the iTab or iSortIdx values for two WhereLoop are different
+ ** then those WhereLoops need to be considered separately. Neither is
+ ** a candidate to replace the other. */
+ continue;
+ }
+ /* In the current implementation, the rSetup value is either zero
+ ** or the cost of building an automatic index (NlogN) and the NlogN
+ ** is the same for compatible WhereLoops. */
+ assert( p->rSetup==0 || pTemplate->rSetup==0
+ || p->rSetup==pTemplate->rSetup );
+
+ /* whereLoopAddBtree() always generates and inserts the automatic index
+ ** case first. Hence compatible candidate WhereLoops never have a larger
+ ** rSetup. Call this SETUP-INVARIANT */
+ assert( p->rSetup>=pTemplate->rSetup );
+
+ /* Any loop using an application-defined index (or PRIMARY KEY or
+ ** UNIQUE constraint) with one or more == constraints is better
+ ** than an automatic index. Unless it is a skip-scan. */
+ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
+ && (pTemplate->nSkip)==0
+ && (pTemplate->wsFlags & WHERE_INDEXED)!=0
+ && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
+ && (p->prereq & pTemplate->prereq)==pTemplate->prereq
+ ){
+ break;
+ }
+
+ /* If existing WhereLoop p is better than pTemplate, pTemplate can be
+ ** discarded. WhereLoop p is better if:
+ ** (1) p has no more dependencies than pTemplate, and
+ ** (2) p has an equal or lower cost than pTemplate
+ */
+ if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
+ && p->rSetup<=pTemplate->rSetup /* (2a) */
+ && p->rRun<=pTemplate->rRun /* (2b) */
+ && p->nOut<=pTemplate->nOut /* (2c) */
+ ){
+ return 0; /* Discard pTemplate */
+ }
+
+ /* If pTemplate is always better than p, then cause p to be overwritten
+ ** with pTemplate. pTemplate is better than p if:
+ ** (1) pTemplate has no more dependencies than p, and
+ ** (2) pTemplate has an equal or lower cost than p.
+ */
+ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
+ && p->rRun>=pTemplate->rRun /* (2a) */
+ && p->nOut>=pTemplate->nOut /* (2b) */
+ ){
+ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
+ break; /* Cause p to be overwritten by pTemplate */
+ }
+ }
+ return ppPrev;
+}
+
+/*
+** Insert or replace a WhereLoop entry using the template supplied.
+**
+** An existing WhereLoop entry might be overwritten if the new template
+** is better and has fewer dependencies. Or the template will be ignored
+** and no insert will occur if an existing WhereLoop is faster and has
+** fewer dependencies than the template. Otherwise a new WhereLoop is
+** added based on the template.
+**
+** If pBuilder->pOrSet is not NULL then we care about only the
+** prerequisites and rRun and nOut costs of the N best loops. That
+** information is gathered in the pBuilder->pOrSet object. This special
+** processing mode is used only for OR clause processing.
+**
+** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
+** still might overwrite similar loops with the new template if the
+** new template is better. Loops may be overwritten if the following
+** conditions are met:
+**
+** (1) They have the same iTab.
+** (2) They have the same iSortIdx.
+** (3) The template has same or fewer dependencies than the current loop
+** (4) The template has the same or lower cost than the current loop
+*/
+static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
+ WhereLoop **ppPrev, *p;
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ sqlite3 *db = pWInfo->pParse->db;
+ int rc;
+
+ /* Stop the search once we hit the query planner search limit */
+ if( pBuilder->iPlanLimit==0 ){
+ WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
+ if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
+ return SQLITE_DONE;
+ }
+ pBuilder->iPlanLimit--;
+
+ whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
+
+ /* If pBuilder->pOrSet is defined, then only keep track of the costs
+ ** and prereqs.
+ */
+ if( pBuilder->pOrSet!=0 ){
+ if( pTemplate->nLTerm ){
+#if WHERETRACE_ENABLED
+ u16 n = pBuilder->pOrSet->n;
+ int x =
+#endif
+ whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
+ pTemplate->nOut);
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ }
+ return SQLITE_OK;
+ }
+
+ /* Look for an existing WhereLoop to replace with pTemplate
+ */
+ ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
+
+ if( ppPrev==0 ){
+ /* There already exists a WhereLoop on the list that is better
+ ** than pTemplate, so just ignore pTemplate */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(" skip: ");
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ return SQLITE_OK;
+ }else{
+ p = *ppPrev;
+ }
+
+ /* If we reach this point it means that either p[] should be overwritten
+ ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
+ ** WhereLoop and insert it.
+ */
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ if( p!=0 ){
+ sqlite3DebugPrintf("replace: ");
+ sqlite3WhereLoopPrint(p, pBuilder->pWC);
+ sqlite3DebugPrintf(" with: ");
+ }else{
+ sqlite3DebugPrintf(" add: ");
+ }
+ sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
+ }
+#endif
+ if( p==0 ){
+ /* Allocate a new WhereLoop to add to the end of the list */
+ *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ whereLoopInit(p);
+ p->pNextLoop = 0;
+ }else{
+ /* We will be overwriting WhereLoop p[]. But before we do, first
+ ** go through the rest of the list and delete any other entries besides
+ ** p[] that are also supplanted by pTemplate */
+ WhereLoop **ppTail = &p->pNextLoop;
+ WhereLoop *pToDel;
+ while( *ppTail ){
+ ppTail = whereLoopFindLesser(ppTail, pTemplate);
+ if( ppTail==0 ) break;
+ pToDel = *ppTail;
+ if( pToDel==0 ) break;
+ *ppTail = pToDel->pNextLoop;
+#if WHERETRACE_ENABLED /* 0x8 */
+ if( sqlite3WhereTrace & 0x8 ){
+ sqlite3DebugPrintf(" delete: ");
+ sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
+ }
+#endif
+ whereLoopDelete(db, pToDel);
+ }
+ }
+ rc = whereLoopXfer(db, p, pTemplate);
+ if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
+ Index *pIndex = p->u.btree.pIndex;
+ if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
+ p->u.btree.pIndex = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Adjust the WhereLoop.nOut value downward to account for terms of the
+** WHERE clause that reference the loop but which are not used by an
+** index.
+*
+** For every WHERE clause term that is not used by the index
+** and which has a truth probability assigned by one of the likelihood(),
+** likely(), or unlikely() SQL functions, reduce the estimated number
+** of output rows by the probability specified.
+**
+** TUNING: For every WHERE clause term that is not used by the index
+** and which does not have an assigned truth probability, heuristics
+** described below are used to try to estimate the truth probability.
+** TODO --> Perhaps this is something that could be improved by better
+** table statistics.
+**
+** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
+** value corresponds to -1 in LogEst notation, so this means decrement
+** the WhereLoop.nOut field for every such WHERE clause term.
+**
+** Heuristic 2: If there exists one or more WHERE clause terms of the
+** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
+** final output row estimate is no greater than 1/4 of the total number
+** of rows in the table. In other words, assume that x==EXPR will filter
+** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
+** "x" column is boolean or else -1 or 0 or 1 is a common default value
+** on the "x" column and so in that case only cap the output row estimate
+** at 1/2 instead of 1/4.
+*/
+static void whereLoopOutputAdjust(
+ WhereClause *pWC, /* The WHERE clause */
+ WhereLoop *pLoop, /* The loop to adjust downward */
+ LogEst nRow /* Number of rows in the entire table */
+){
+ WhereTerm *pTerm, *pX;
+ Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
+ int i, j;
+ LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
+
+ assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
+ for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
+ assert( pTerm!=0 );
+ if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
+ if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
+ if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
+ for(j=pLoop->nLTerm-1; j>=0; j--){
+ pX = pLoop->aLTerm[j];
+ if( pX==0 ) continue;
+ if( pX==pTerm ) break;
+ if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
+ }
+ if( j<0 ){
+ sqlite3ProgressCheck(pWC->pWInfo->pParse);
+ if( pLoop->maskSelf==pTerm->prereqAll ){
+ /* If there are extra terms in the WHERE clause not used by an index
+ ** that depend only on the table being scanned, and that will tend to
+ ** cause many rows to be omitted, then mark that table as
+ ** "self-culling".
+ **
+ ** 2022-03-24: Self-culling only applies if either the extra terms
+ ** are straight comparison operators that are non-true with NULL
+ ** operand, or if the loop is not an OUTER JOIN.
+ */
+ if( (pTerm->eOperator & 0x3f)!=0
+ || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
+ & (JT_LEFT|JT_LTORJ))==0
+ ){
+ pLoop->wsFlags |= WHERE_SELFCULL;
+ }
+ }
+ if( pTerm->truthProb<=0 ){
+ /* If a truth probability is specified using the likelihood() hints,
+ ** then use the probability provided by the application. */
+ pLoop->nOut += pTerm->truthProb;
+ }else{
+ /* In the absence of explicit truth probabilities, use heuristics to
+ ** guess a reasonable truth probability. */
+ pLoop->nOut--;
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
+ && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
+ ){
+ Expr *pRight = pTerm->pExpr->pRight;
+ int k = 0;
+ testcase( pTerm->pExpr->op==TK_IS );
+ if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
+ k = 10;
+ }else{
+ k = 20;
+ }
+ if( iReduce<k ){
+ pTerm->wtFlags |= TERM_HEURTRUTH;
+ iReduce = k;
+ }
+ }
+ }
+ }
+ }
+ if( pLoop->nOut > nRow-iReduce ){
+ pLoop->nOut = nRow - iReduce;
+ }
+}
+
+/*
+** Term pTerm is a vector range comparison operation. The first comparison
+** in the vector can be optimized using column nEq of the index. This
+** function returns the total number of vector elements that can be used
+** as part of the range comparison.
+**
+** For example, if the query is:
+**
+** WHERE a = ? AND (b, c, d) > (?, ?, ?)
+**
+** and the index:
+**
+** CREATE INDEX ... ON (a, b, c, d, e)
+**
+** then this function would be invoked with nEq=1. The value returned in
+** this case is 3.
+*/
+static int whereRangeVectorLen(
+ Parse *pParse, /* Parsing context */
+ int iCur, /* Cursor open on pIdx */
+ Index *pIdx, /* The index to be used for a inequality constraint */
+ int nEq, /* Number of prior equality constraints on same index */
+ WhereTerm *pTerm /* The vector inequality constraint */
+){
+ int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
+ int i;
+
+ nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
+ for(i=1; i<nCmp; i++){
+ /* Test if comparison i of pTerm is compatible with column (i+nEq)
+ ** of the index. If not, exit the loop. */
+ char aff; /* Comparison affinity */
+ char idxaff = 0; /* Indexed columns affinity */
+ CollSeq *pColl; /* Comparison collation sequence */
+ Expr *pLhs, *pRhs;
+
+ assert( ExprUseXList(pTerm->pExpr->pLeft) );
+ pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
+ pRhs = pTerm->pExpr->pRight;
+ if( ExprUseXSelect(pRhs) ){
+ pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
+ }else{
+ pRhs = pRhs->x.pList->a[i].pExpr;
+ }
+
+ /* Check that the LHS of the comparison is a column reference to
+ ** the right column of the right source table. And that the sort
+ ** order of the index column is the same as the sort order of the
+ ** leftmost index column. */
+ if( pLhs->op!=TK_COLUMN
+ || pLhs->iTable!=iCur
+ || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
+ || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
+ ){
+ break;
+ }
+
+ testcase( pLhs->iColumn==XN_ROWID );
+ aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
+ idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
+ if( aff!=idxaff ) break;
+
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
+ if( pColl==0 ) break;
+ if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
+ }
+ return i;
+}
+
+/*
+** Adjust the cost C by the costMult factor T. This only occurs if
+** compiled with -DSQLITE_ENABLE_COSTMULT
+*/
+#ifdef SQLITE_ENABLE_COSTMULT
+# define ApplyCostMultiplier(C,T) C += T
+#else
+# define ApplyCostMultiplier(C,T)
+#endif
+
+/*
+** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
+** index pIndex. Try to match one more.
+**
+** When this function is called, pBuilder->pNew->nOut contains the
+** number of rows expected to be visited by filtering using the nEq
+** terms only. If it is modified, this value is restored before this
+** function returns.
+**
+** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
+** a fake index used for the INTEGER PRIMARY KEY.
+*/
+static int whereLoopAddBtreeIndex(
+ WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
+ SrcItem *pSrc, /* FROM clause term being analyzed */
+ Index *pProbe, /* An index on pSrc */
+ LogEst nInMul /* log(Number of iterations due to IN) */
+){
+ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */
+ Parse *pParse = pWInfo->pParse; /* Parsing context */
+ sqlite3 *db = pParse->db; /* Database connection malloc context */
+ WhereLoop *pNew; /* Template WhereLoop under construction */
+ WhereTerm *pTerm; /* A WhereTerm under consideration */
+ int opMask; /* Valid operators for constraints */
+ WhereScan scan; /* Iterator for WHERE terms */
+ Bitmask saved_prereq; /* Original value of pNew->prereq */
+ u16 saved_nLTerm; /* Original value of pNew->nLTerm */
+ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
+ u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
+ u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
+ u16 saved_nSkip; /* Original value of pNew->nSkip */
+ u32 saved_wsFlags; /* Original value of pNew->wsFlags */
+ LogEst saved_nOut; /* Original value of pNew->nOut */
+ int rc = SQLITE_OK; /* Return code */
+ LogEst rSize; /* Number of rows in the table */
+ LogEst rLogSize; /* Logarithm of table size */
+ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
+
+ pNew = pBuilder->pNew;
+ assert( db->mallocFailed==0 || pParse->nErr>0 );
+ if( pParse->nErr ){
+ return pParse->rc;
+ }
+ WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
+ pProbe->pTable->zName,pProbe->zName,
+ pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
+
+ assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
+ if( pNew->wsFlags & WHERE_BTM_LIMIT ){
+ opMask = WO_LT|WO_LE;
+ }else{
+ assert( pNew->u.btree.nBtm==0 );
+ opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
+ }
+ if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
+
+ assert( pNew->u.btree.nEq<pProbe->nColumn );
+ assert( pNew->u.btree.nEq<pProbe->nKeyCol
+ || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
+
+ saved_nEq = pNew->u.btree.nEq;
+ saved_nBtm = pNew->u.btree.nBtm;
+ saved_nTop = pNew->u.btree.nTop;
+ saved_nSkip = pNew->nSkip;
+ saved_nLTerm = pNew->nLTerm;
+ saved_wsFlags = pNew->wsFlags;
+ saved_prereq = pNew->prereq;
+ saved_nOut = pNew->nOut;
+ pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
+ opMask, pProbe);
+ pNew->rSetup = 0;
+ rSize = pProbe->aiRowLogEst[0];
+ rLogSize = estLog(rSize);
+ for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
+ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
+ LogEst rCostIdx;
+ LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
+ int nIn = 0;
+#ifdef SQLITE_ENABLE_STAT4
+ int nRecValid = pBuilder->nRecValid;
+#endif
+ if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
+ && indexColumnNotNull(pProbe, saved_nEq)
+ ){
+ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
+ }
+ if( pTerm->prereqRight & pNew->maskSelf ) continue;
+
+ /* Do not allow the upper bound of a LIKE optimization range constraint
+ ** to mix with a lower range bound from some other source */
+ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
+
+ if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
+ && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
+ ){
+ continue;
+ }
+ if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
+ pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
+ }else{
+ pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
+ }
+ pNew->wsFlags = saved_wsFlags;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->u.btree.nBtm = saved_nBtm;
+ pNew->u.btree.nTop = saved_nTop;
+ pNew->nLTerm = saved_nLTerm;
+ if( pNew->nLTerm>=pNew->nLSlot
+ && whereLoopResize(db, pNew, pNew->nLTerm+1)
+ ){
+ break; /* OOM while trying to enlarge the pNew->aLTerm array */
+ }
+ pNew->aLTerm[pNew->nLTerm++] = pTerm;
+ pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
+
+ assert( nInMul==0
+ || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
+ || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
+ || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
+ );
+
+ if( eOp & WO_IN ){
+ Expr *pExpr = pTerm->pExpr;
+ if( ExprUseXSelect(pExpr) ){
+ /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
+ int i;
+ nIn = 46; assert( 46==sqlite3LogEst(25) );
+
+ /* The expression may actually be of the form (x, y) IN (SELECT...).
+ ** In this case there is a separate term for each of (x) and (y).
+ ** However, the nIn multiplier should only be applied once, not once
+ ** for each such term. The following loop checks that pTerm is the
+ ** first such term in use, and sets nIn back to 0 if it is not. */
+ for(i=0; i<pNew->nLTerm-1; i++){
+ if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
+ }
+ }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
+ /* "x IN (value, value, ...)" */
+ nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
+ }
+ if( pProbe->hasStat1 && rLogSize>=10 ){
+ LogEst M, logK, x;
+ /* Let:
+ ** N = the total number of rows in the table
+ ** K = the number of entries on the RHS of the IN operator
+ ** M = the number of rows in the table that match terms to the
+ ** to the left in the same index. If the IN operator is on
+ ** the left-most index column, M==N.
+ **
+ ** Given the definitions above, it is better to omit the IN operator
+ ** from the index lookup and instead do a scan of the M elements,
+ ** testing each scanned row against the IN operator separately, if:
+ **
+ ** M*log(K) < K*log(N)
+ **
+ ** Our estimates for M, K, and N might be inaccurate, so we build in
+ ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
+ ** with the index, as using an index has better worst-case behavior.
+ ** If we do not have real sqlite_stat1 data, always prefer to use
+ ** the index. Do not bother with this optimization on very small
+ ** tables (less than 2 rows) as it is pointless in that case.
+ */
+ M = pProbe->aiRowLogEst[saved_nEq];
+ logK = estLog(nIn);
+ /* TUNING v----- 10 to bias toward indexed IN */
+ x = M + logK + 10 - (nIn + rLogSize);
+ if( x>=0 ){
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
+ "prefers indexed lookup\n",
+ saved_nEq, M, logK, nIn, rLogSize, x));
+ }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
+ " nInMul=%d) prefers skip-scan\n",
+ saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
+ pNew->wsFlags |= WHERE_IN_SEEKSCAN;
+ }else{
+ WHERETRACE(0x40,
+ ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
+ " nInMul=%d) prefers normal scan\n",
+ saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
+ continue;
+ }
+ }
+ pNew->wsFlags |= WHERE_COLUMN_IN;
+ }else if( eOp & (WO_EQ|WO_IS) ){
+ int iCol = pProbe->aiColumn[saved_nEq];
+ pNew->wsFlags |= WHERE_COLUMN_EQ;
+ assert( saved_nEq==pNew->u.btree.nEq );
+ if( iCol==XN_ROWID
+ || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
+ ){
+ if( iCol==XN_ROWID || pProbe->uniqNotNull
+ || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
+ ){
+ pNew->wsFlags |= WHERE_ONEROW;
+ }else{
+ pNew->wsFlags |= WHERE_UNQ_WANTED;
+ }
+ }
+ if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
+ }else if( eOp & WO_ISNULL ){
+ pNew->wsFlags |= WHERE_COLUMN_NULL;
+ }else{
+ int nVecLen = whereRangeVectorLen(
+ pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
+ );
+ if( eOp & (WO_GT|WO_GE) ){
+ testcase( eOp & WO_GT );
+ testcase( eOp & WO_GE );
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
+ pNew->u.btree.nBtm = nVecLen;
+ pBtm = pTerm;
+ pTop = 0;
+ if( pTerm->wtFlags & TERM_LIKEOPT ){
+ /* Range constraints that come from the LIKE optimization are
+ ** always used in pairs. */
+ pTop = &pTerm[1];
+ assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
+ assert( pTop->wtFlags & TERM_LIKEOPT );
+ assert( pTop->eOperator==WO_LT );
+ if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
+ pNew->aLTerm[pNew->nLTerm++] = pTop;
+ pNew->wsFlags |= WHERE_TOP_LIMIT;
+ pNew->u.btree.nTop = 1;
+ }
+ }else{
+ assert( eOp & (WO_LT|WO_LE) );
+ testcase( eOp & WO_LT );
+ testcase( eOp & WO_LE );
+ pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
+ pNew->u.btree.nTop = nVecLen;
+ pTop = pTerm;
+ pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
+ pNew->aLTerm[pNew->nLTerm-2] : 0;
+ }
+ }
+
+ /* At this point pNew->nOut is set to the number of rows expected to
+ ** be visited by the index scan before considering term pTerm, or the
+ ** values of nIn and nInMul. In other words, assuming that all
+ ** "x IN(...)" terms are replaced with "x = ?". This block updates
+ ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
+ assert( pNew->nOut==saved_nOut );
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ /* Adjust nOut using stat4 data. Or, if there is no stat4
+ ** data, using some other estimate. */
+ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
+ }else{
+ int nEq = ++pNew->u.btree.nEq;
+ assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
+
+ assert( pNew->nOut==saved_nOut );
+ if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
+ assert( (eOp & WO_IN) || nIn==0 );
+ testcase( eOp & WO_IN );
+ pNew->nOut += pTerm->truthProb;
+ pNew->nOut -= nIn;
+ }else{
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt nOut = 0;
+ if( nInMul==0
+ && pProbe->nSample
+ && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
+ && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
+ && OptimizationEnabled(db, SQLITE_Stat4)
+ ){
+ Expr *pExpr = pTerm->pExpr;
+ if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
+ testcase( eOp & WO_EQ );
+ testcase( eOp & WO_IS );
+ testcase( eOp & WO_ISNULL );
+ rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
+ }else{
+ rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
+ }
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
+ if( nOut ){
+ pNew->nOut = sqlite3LogEst(nOut);
+ if( nEq==1
+ /* TUNING: Mark terms as "low selectivity" if they seem likely
+ ** to be true for half or more of the rows in the table.
+ ** See tag-202002240-1 */
+ && pNew->nOut+10 > pProbe->aiRowLogEst[0]
+ ){
+#if WHERETRACE_ENABLED /* 0x01 */
+ if( sqlite3WhereTrace & 0x20 ){
+ sqlite3DebugPrintf(
+ "STAT4 determines term has low selectivity:\n");
+ sqlite3WhereTermPrint(pTerm, 999);
+ }
+#endif
+ pTerm->wtFlags |= TERM_HIGHTRUTH;
+ if( pTerm->wtFlags & TERM_HEURTRUTH ){
+ /* If the term has previously been used with an assumption of
+ ** higher selectivity, then set the flag to rerun the
+ ** loop computations. */
+ pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
+ }
+ }
+ if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
+ pNew->nOut -= nIn;
+ }
+ }
+ if( nOut==0 )
+#endif
+ {
+ pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
+ if( eOp & WO_ISNULL ){
+ /* TUNING: If there is no likelihood() value, assume that a
+ ** "col IS NULL" expression matches twice as many rows
+ ** as (col=?). */
+ pNew->nOut += 10;
+ }
+ }
+ }
+ }
+
+ /* Set rCostIdx to the cost of visiting selected rows in index. Add
+ ** it to pNew->rRun, which is currently set to the cost of the index
+ ** seek only. Then, if this is a non-covering index, add the cost of
+ ** visiting the rows in the main table. */
+ assert( pSrc->pTab->szTabRow>0 );
+ if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
+ /* The pProbe->szIdxRow is low for an IPK table since the interior
+ ** pages are small. Thus szIdxRow gives a good estimate of seek cost.
+ ** But the leaf pages are full-size, so pProbe->szIdxRow would badly
+ ** under-estimate the scanning cost. */
+ rCostIdx = pNew->nOut + 16;
+ }else{
+ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
+ }
+ pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
+ if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK|WHERE_EXPRIDX))==0 ){
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
+ }
+ ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
+
+ nOutUnadjusted = pNew->nOut;
+ pNew->rRun += nInMul + nIn;
+ pNew->nOut += nInMul + nIn;
+ whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
+ rc = whereLoopInsert(pBuilder, pNew);
+
+ if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
+ pNew->nOut = saved_nOut;
+ }else{
+ pNew->nOut = nOutUnadjusted;
+ }
+
+ if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
+ && pNew->u.btree.nEq<pProbe->nColumn
+ && (pNew->u.btree.nEq<pProbe->nKeyCol ||
+ pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
+ ){
+ if( pNew->u.btree.nEq>3 ){
+ sqlite3ProgressCheck(pParse);
+ }
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
+ }
+ pNew->nOut = saved_nOut;
+#ifdef SQLITE_ENABLE_STAT4
+ pBuilder->nRecValid = nRecValid;
+#endif
+ }
+ pNew->prereq = saved_prereq;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->u.btree.nBtm = saved_nBtm;
+ pNew->u.btree.nTop = saved_nTop;
+ pNew->nSkip = saved_nSkip;
+ pNew->wsFlags = saved_wsFlags;
+ pNew->nOut = saved_nOut;
+ pNew->nLTerm = saved_nLTerm;
+
+ /* Consider using a skip-scan if there are no WHERE clause constraints
+ ** available for the left-most terms of the index, and if the average
+ ** number of repeats in the left-most terms is at least 18.
+ **
+ ** The magic number 18 is selected on the basis that scanning 17 rows
+ ** is almost always quicker than an index seek (even though if the index
+ ** contains fewer than 2^17 rows we assume otherwise in other parts of
+ ** the code). And, even if it is not, it should not be too much slower.
+ ** On the other hand, the extra seeks could end up being significantly
+ ** more expensive. */
+ assert( 42==sqlite3LogEst(18) );
+ if( saved_nEq==saved_nSkip
+ && saved_nEq+1<pProbe->nKeyCol
+ && saved_nEq==pNew->nLTerm
+ && pProbe->noSkipScan==0
+ && pProbe->hasStat1!=0
+ && OptimizationEnabled(db, SQLITE_SkipScan)
+ && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
+ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
+ ){
+ LogEst nIter;
+ pNew->u.btree.nEq++;
+ pNew->nSkip++;
+ pNew->aLTerm[pNew->nLTerm++] = 0;
+ pNew->wsFlags |= WHERE_SKIPSCAN;
+ nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
+ pNew->nOut -= nIter;
+ /* TUNING: Because uncertainties in the estimates for skip-scan queries,
+ ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
+ nIter += 5;
+ whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
+ pNew->nOut = saved_nOut;
+ pNew->u.btree.nEq = saved_nEq;
+ pNew->nSkip = saved_nSkip;
+ pNew->wsFlags = saved_wsFlags;
+ }
+
+ WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
+ pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
+ return rc;
+}
+
+/*
+** Return True if it is possible that pIndex might be useful in
+** implementing the ORDER BY clause in pBuilder.
+**
+** Return False if pBuilder does not contain an ORDER BY clause or
+** if there is no way for pIndex to be useful in implementing that
+** ORDER BY clause.
+*/
+static int indexMightHelpWithOrderBy(
+ WhereLoopBuilder *pBuilder,
+ Index *pIndex,
+ int iCursor
+){
+ ExprList *pOB;
+ ExprList *aColExpr;
+ int ii, jj;
+
+ if( pIndex->bUnordered ) return 0;
+ if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
+ for(ii=0; ii<pOB->nExpr; ii++){
+ Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
+ if( NEVER(pExpr==0) ) continue;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
+ if( pExpr->iColumn<0 ) return 1;
+ for(jj=0; jj<pIndex->nKeyCol; jj++){
+ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
+ }
+ }else if( (aColExpr = pIndex->aColExpr)!=0 ){
+ for(jj=0; jj<pIndex->nKeyCol; jj++){
+ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
+ if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/* Check to see if a partial index with pPartIndexWhere can be used
+** in the current query. Return true if it can be and false if not.
+*/
+static int whereUsablePartialIndex(
+ int iTab, /* The table for which we want an index */
+ u8 jointype, /* The JT_* flags on the join */
+ WhereClause *pWC, /* The WHERE clause of the query */
+ Expr *pWhere /* The WHERE clause from the partial index */
+){
+ int i;
+ WhereTerm *pTerm;
+ Parse *pParse;
+
+ if( jointype & JT_LTORJ ) return 0;
+ pParse = pWC->pWInfo->pParse;
+ while( pWhere->op==TK_AND ){
+ if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
+ pWhere = pWhere->pRight;
+ }
+ if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
+ for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ Expr *pExpr;
+ pExpr = pTerm->pExpr;
+ if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
+ && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
+ && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
+ && (pTerm->wtFlags & TERM_VNULL)==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** pIdx is an index containing expressions. Check it see if any of the
+** expressions in the index match the pExpr expression.
+*/
+static int exprIsCoveredByIndex(
+ const Expr *pExpr,
+ const Index *pIdx,
+ int iTabCur
+){
+ int i;
+ for(i=0; i<pIdx->nColumn; i++){
+ if( pIdx->aiColumn[i]==XN_EXPR
+ && sqlite3ExprCompare(0, pExpr, pIdx->aColExpr->a[i].pExpr, iTabCur)==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Structure passed to the whereIsCoveringIndex Walker callback.
+*/
+typedef struct CoveringIndexCheck CoveringIndexCheck;
+struct CoveringIndexCheck {
+ Index *pIdx; /* The index */
+ int iTabCur; /* Cursor number for the corresponding table */
+ u8 bExpr; /* Uses an indexed expression */
+ u8 bUnidx; /* Uses an unindexed column not within an indexed expr */
+};
+
+/*
+** Information passed in is pWalk->u.pCovIdxCk. Call it pCk.
+**
+** If the Expr node references the table with cursor pCk->iTabCur, then
+** make sure that column is covered by the index pCk->pIdx. We know that
+** all columns less than 63 (really BMS-1) are covered, so we don't need
+** to check them. But we do need to check any column at 63 or greater.
+**
+** If the index does not cover the column, then set pWalk->eCode to
+** non-zero and return WRC_Abort to stop the search.
+**
+** If this node does not disprove that the index can be a covering index,
+** then just return WRC_Continue, to continue the search.
+**
+** If pCk->pIdx contains indexed expressions and one of those expressions
+** matches pExpr, then prune the search.
+*/
+static int whereIsCoveringIndexWalkCallback(Walker *pWalk, Expr *pExpr){
+ int i; /* Loop counter */
+ const Index *pIdx; /* The index of interest */
+ const i16 *aiColumn; /* Columns contained in the index */
+ u16 nColumn; /* Number of columns in the index */
+ CoveringIndexCheck *pCk; /* Info about this search */
+
+ pCk = pWalk->u.pCovIdxCk;
+ pIdx = pCk->pIdx;
+ if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) ){
+ /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/
+ if( pExpr->iTable!=pCk->iTabCur ) return WRC_Continue;
+ pIdx = pWalk->u.pCovIdxCk->pIdx;
+ aiColumn = pIdx->aiColumn;
+ nColumn = pIdx->nColumn;
+ for(i=0; i<nColumn; i++){
+ if( aiColumn[i]==pExpr->iColumn ) return WRC_Continue;
+ }
+ pCk->bUnidx = 1;
+ return WRC_Abort;
+ }else if( pIdx->bHasExpr
+ && exprIsCoveredByIndex(pExpr, pIdx, pWalk->u.pCovIdxCk->iTabCur) ){
+ pCk->bExpr = 1;
+ return WRC_Prune;
+ }
+ return WRC_Continue;
+}
+
+
+/*
+** pIdx is an index that covers all of the low-number columns used by
+** pWInfo->pSelect (columns from 0 through 62) or an index that has
+** expressions terms. Hence, we cannot determine whether or not it is
+** a covering index by using the colUsed bitmasks. We have to do a search
+** to see if the index is covering. This routine does that search.
+**
+** The return value is one of these:
+**
+** 0 The index is definitely not a covering index
+**
+** WHERE_IDX_ONLY The index is definitely a covering index
+**
+** WHERE_EXPRIDX The index is likely a covering index, but it is
+** difficult to determine precisely because of the
+** expressions that are indexed. Score it as a
+** covering index, but still keep the main table open
+** just in case we need it.
+**
+** This routine is an optimization. It is always safe to return zero.
+** But returning one of the other two values when zero should have been
+** returned can lead to incorrect bytecode and assertion faults.
+*/
+static SQLITE_NOINLINE u32 whereIsCoveringIndex(
+ WhereInfo *pWInfo, /* The WHERE clause context */
+ Index *pIdx, /* Index that is being tested */
+ int iTabCur /* Cursor for the table being indexed */
+){
+ int i, rc;
+ struct CoveringIndexCheck ck;
+ Walker w;
+ if( pWInfo->pSelect==0 ){
+ /* We don't have access to the full query, so we cannot check to see
+ ** if pIdx is covering. Assume it is not. */
+ return 0;
+ }
+ if( pIdx->bHasExpr==0 ){
+ for(i=0; i<pIdx->nColumn; i++){
+ if( pIdx->aiColumn[i]>=BMS-1 ) break;
+ }
+ if( i>=pIdx->nColumn ){
+ /* pIdx does not index any columns greater than 62, but we know from
+ ** colMask that columns greater than 62 are used, so this is not a
+ ** covering index */
+ return 0;
+ }
+ }
+ ck.pIdx = pIdx;
+ ck.iTabCur = iTabCur;
+ ck.bExpr = 0;
+ ck.bUnidx = 0;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = whereIsCoveringIndexWalkCallback;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.u.pCovIdxCk = &ck;
+ sqlite3WalkSelect(&w, pWInfo->pSelect);
+ if( ck.bUnidx ){
+ rc = 0;
+ }else if( ck.bExpr ){
+ rc = WHERE_EXPRIDX;
+ }else{
+ rc = WHERE_IDX_ONLY;
+ }
+ return rc;
+}
+
+/*
+** This is an sqlite3ParserAddCleanup() callback that is invoked to
+** free the Parse->pIdxEpr list when the Parse object is destroyed.
+*/
+static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){
+ IndexedExpr **pp = (IndexedExpr**)pObject;
+ while( *pp!=0 ){
+ IndexedExpr *p = *pp;
+ *pp = p->pIENext;
+ sqlite3ExprDelete(db, p->pExpr);
+ sqlite3DbFreeNN(db, p);
+ }
+}
+
+/*
+** This function is called for a partial index - one with a WHERE clause - in
+** two scenarios. In both cases, it determines whether or not the WHERE
+** clause on the index implies that a column of the table may be safely
+** replaced by a constant expression. For example, in the following
+** SELECT:
+**
+** CREATE INDEX i1 ON t1(b, c) WHERE a=<expr>;
+** SELECT a, b, c FROM t1 WHERE a=<expr> AND b=?;
+**
+** The "a" in the select-list may be replaced by <expr>, iff:
+**
+** (a) <expr> is a constant expression, and
+** (b) The (a=<expr>) comparison uses the BINARY collation sequence, and
+** (c) Column "a" has an affinity other than NONE or BLOB.
+**
+** If argument pItem is NULL, then pMask must not be NULL. In this case this
+** function is being called as part of determining whether or not pIdx
+** is a covering index. This function clears any bits in (*pMask)
+** corresponding to columns that may be replaced by constants as described
+** above.
+**
+** Otherwise, if pItem is not NULL, then this function is being called
+** as part of coding a loop that uses index pIdx. In this case, add entries
+** to the Parse.pIdxPartExpr list for each column that can be replaced
+** by a constant.
+*/
+static void wherePartIdxExpr(
+ Parse *pParse, /* Parse context */
+ Index *pIdx, /* Partial index being processed */
+ Expr *pPart, /* WHERE clause being processed */
+ Bitmask *pMask, /* Mask to clear bits in */
+ int iIdxCur, /* Cursor number for index */
+ SrcItem *pItem /* The FROM clause entry for the table */
+){
+ assert( pItem==0 || (pItem->fg.jointype & JT_RIGHT)==0 );
+ assert( (pItem==0 || pMask==0) && (pMask!=0 || pItem!=0) );
+
+ if( pPart->op==TK_AND ){
+ wherePartIdxExpr(pParse, pIdx, pPart->pRight, pMask, iIdxCur, pItem);
+ pPart = pPart->pLeft;
+ }
+
+ if( (pPart->op==TK_EQ || pPart->op==TK_IS) ){
+ Expr *pLeft = pPart->pLeft;
+ Expr *pRight = pPart->pRight;
+ u8 aff;
+
+ if( pLeft->op!=TK_COLUMN ) return;
+ if( !sqlite3ExprIsConstant(pRight) ) return;
+ if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse, pPart)) ) return;
+ if( pLeft->iColumn<0 ) return;
+ aff = pIdx->pTable->aCol[pLeft->iColumn].affinity;
+ if( aff>=SQLITE_AFF_TEXT ){
+ if( pItem ){
+ sqlite3 *db = pParse->db;
+ IndexedExpr *p = (IndexedExpr*)sqlite3DbMallocRaw(db, sizeof(*p));
+ if( p ){
+ int bNullRow = (pItem->fg.jointype&(JT_LEFT|JT_LTORJ))!=0;
+ p->pExpr = sqlite3ExprDup(db, pRight, 0);
+ p->iDataCur = pItem->iCursor;
+ p->iIdxCur = iIdxCur;
+ p->iIdxCol = pLeft->iColumn;
+ p->bMaybeNullRow = bNullRow;
+ p->pIENext = pParse->pIdxPartExpr;
+ p->aff = aff;
+ pParse->pIdxPartExpr = p;
+ if( p->pIENext==0 ){
+ void *pArg = (void*)&pParse->pIdxPartExpr;
+ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg);
+ }
+ }
+ }else if( pLeft->iColumn<(BMS-1) ){
+ *pMask &= ~((Bitmask)1 << pLeft->iColumn);
+ }
+ }
+ }
+}
+
+
+/*
+** Add all WhereLoop objects for a single table of the join where the table
+** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
+** a b-tree table, not a virtual table.
+**
+** The costs (WhereLoop.rRun) of the b-tree loops added by this function
+** are calculated as follows:
+**
+** For a full scan, assuming the table (or index) contains nRow rows:
+**
+** cost = nRow * 3.0 // full-table scan
+** cost = nRow * K // scan of covering index
+** cost = nRow * (K+3.0) // scan of non-covering index
+**
+** where K is a value between 1.1 and 3.0 set based on the relative
+** estimated average size of the index and table records.
+**
+** For an index scan, where nVisit is the number of index rows visited
+** by the scan, and nSeek is the number of seek operations required on
+** the index b-tree:
+**
+** cost = nSeek * (log(nRow) + K * nVisit) // covering index
+** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
+**
+** Normally, nSeek is 1. nSeek values greater than 1 come about if the
+** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
+** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
+**
+** The estimated values (nRow, nVisit, nSeek) often contain a large amount
+** of uncertainty. For this reason, scoring is designed to pick plans that
+** "do the least harm" if the estimates are inaccurate. For example, a
+** log(nRow) factor is omitted from a non-covering index scan in order to
+** bias the scoring in favor of using an index, since the worst-case
+** performance of using an index is far better than the worst-case performance
+** of a full table scan.
+*/
+static int whereLoopAddBtree(
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */
+ Bitmask mPrereq /* Extra prerequisites for using this table */
+){
+ WhereInfo *pWInfo; /* WHERE analysis context */
+ Index *pProbe; /* An index we are evaluating */
+ Index sPk; /* A fake index object for the primary key */
+ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
+ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
+ SrcList *pTabList; /* The FROM clause */
+ SrcItem *pSrc; /* The FROM clause btree term to add */
+ WhereLoop *pNew; /* Template WhereLoop object */
+ int rc = SQLITE_OK; /* Return code */
+ int iSortIdx = 1; /* Index number */
+ int b; /* A boolean value */
+ LogEst rSize; /* number of rows in the table */
+ WhereClause *pWC; /* The parsed WHERE clause */
+ Table *pTab; /* Table being queried */
+
+ pNew = pBuilder->pNew;
+ pWInfo = pBuilder->pWInfo;
+ pTabList = pWInfo->pTabList;
+ pSrc = pTabList->a + pNew->iTab;
+ pTab = pSrc->pTab;
+ pWC = pBuilder->pWC;
+ assert( !IsVirtual(pSrc->pTab) );
+
+ if( pSrc->fg.isIndexedBy ){
+ assert( pSrc->fg.isCte==0 );
+ /* An INDEXED BY clause specifies a particular index to use */
+ pProbe = pSrc->u2.pIBIndex;
+ }else if( !HasRowid(pTab) ){
+ pProbe = pTab->pIndex;
+ }else{
+ /* There is no INDEXED BY clause. Create a fake Index object in local
+ ** variable sPk to represent the rowid primary key index. Make this
+ ** fake index the first in a chain of Index objects with all of the real
+ ** indices to follow */
+ Index *pFirst; /* First of real indices on the table */
+ memset(&sPk, 0, sizeof(Index));
+ sPk.nKeyCol = 1;
+ sPk.nColumn = 1;
+ sPk.aiColumn = &aiColumnPk;
+ sPk.aiRowLogEst = aiRowEstPk;
+ sPk.onError = OE_Replace;
+ sPk.pTable = pTab;
+ sPk.szIdxRow = 3; /* TUNING: Interior rows of IPK table are very small */
+ sPk.idxType = SQLITE_IDXTYPE_IPK;
+ aiRowEstPk[0] = pTab->nRowLogEst;
+ aiRowEstPk[1] = 0;
+ pFirst = pSrc->pTab->pIndex;
+ if( pSrc->fg.notIndexed==0 ){
+ /* The real indices of the table are only considered if the
+ ** NOT INDEXED qualifier is omitted from the FROM clause */
+ sPk.pNext = pFirst;
+ }
+ pProbe = &sPk;
+ }
+ rSize = pTab->nRowLogEst;
+
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ /* Automatic indexes */
+ if( !pBuilder->pOrSet /* Not part of an OR optimization */
+ && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
+ && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
+ && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
+ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
+ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
+ && !pSrc->fg.isCorrelated /* Not a correlated subquery */
+ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
+ && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
+ ){
+ /* Generate auto-index WhereLoops */
+ LogEst rLogSize; /* Logarithm of the number of rows in the table */
+ WhereTerm *pTerm;
+ WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
+ rLogSize = estLog(rSize);
+ for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
+ if( pTerm->prereqRight & pNew->maskSelf ) continue;
+ if( termCanDriveIndex(pTerm, pSrc, 0) ){
+ pNew->u.btree.nEq = 1;
+ pNew->nSkip = 0;
+ pNew->u.btree.pIndex = 0;
+ pNew->nLTerm = 1;
+ pNew->aLTerm[0] = pTerm;
+ /* TUNING: One-time cost for computing the automatic index is
+ ** estimated to be X*N*log2(N) where N is the number of rows in
+ ** the table being indexed and where X is 7 (LogEst=28) for normal
+ ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
+ ** of X is smaller for views and subqueries so that the query planner
+ ** will be more aggressive about generating automatic indexes for
+ ** those objects, since there is no opportunity to add schema
+ ** indexes on subqueries and views. */
+ pNew->rSetup = rLogSize + rSize;
+ if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
+ pNew->rSetup += 28;
+ }else{
+ pNew->rSetup -= 25; /* Greatly reduced setup cost for auto indexes
+ ** on ephemeral materializations of views */
+ }
+ ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
+ if( pNew->rSetup<0 ) pNew->rSetup = 0;
+ /* TUNING: Each index lookup yields 20 rows in the table. This
+ ** is more than the usual guess of 10 rows, since we have no way
+ ** of knowing how selective the index will ultimately be. It would
+ ** not be unreasonable to make this value much larger. */
+ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
+ pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
+ pNew->wsFlags = WHERE_AUTO_INDEX;
+ pNew->prereq = mPrereq | pTerm->prereqRight;
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ }
+ }
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
+
+ /* Loop over all indices. If there was an INDEXED BY clause, then only
+ ** consider index pProbe. */
+ for(; rc==SQLITE_OK && pProbe;
+ pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
+ ){
+ if( pProbe->pPartIdxWhere!=0
+ && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
+ pProbe->pPartIdxWhere)
+ ){
+ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
+ continue; /* Partial index inappropriate for this query */
+ }
+ if( pProbe->bNoQuery ) continue;
+ rSize = pProbe->aiRowLogEst[0];
+ pNew->u.btree.nEq = 0;
+ pNew->u.btree.nBtm = 0;
+ pNew->u.btree.nTop = 0;
+ pNew->nSkip = 0;
+ pNew->nLTerm = 0;
+ pNew->iSortIdx = 0;
+ pNew->rSetup = 0;
+ pNew->prereq = mPrereq;
+ pNew->nOut = rSize;
+ pNew->u.btree.pIndex = pProbe;
+ b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
+
+ /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
+ assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
+ if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
+ /* Integer primary key index */
+ pNew->wsFlags = WHERE_IPK;
+
+ /* Full table scan */
+ pNew->iSortIdx = b ? iSortIdx : 0;
+ /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
+ ** extra cost designed to discourage the use of full table scans,
+ ** since index lookups have better worst-case performance if our
+ ** stat guesses are wrong. Reduce the 3.0 penalty slightly
+ ** (to 2.75) if we have valid STAT4 information for the table.
+ ** At 2.75, a full table scan is preferred over using an index on
+ ** a column with just two distinct values where each value has about
+ ** an equal number of appearances. Without STAT4 data, we still want
+ ** to use an index in that case, since the constraint might be for
+ ** the scarcer of the two values, and in that case an index lookup is
+ ** better.
+ */
+#ifdef SQLITE_ENABLE_STAT4
+ pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
+#else
+ pNew->rRun = rSize + 16;
+#endif
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
+ whereLoopOutputAdjust(pWC, pNew, rSize);
+ rc = whereLoopInsert(pBuilder, pNew);
+ pNew->nOut = rSize;
+ if( rc ) break;
+ }else{
+ Bitmask m;
+ if( pProbe->isCovering ){
+ m = 0;
+ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
+ }else{
+ m = pSrc->colUsed & pProbe->colNotIdxed;
+ if( pProbe->pPartIdxWhere ){
+ wherePartIdxExpr(
+ pWInfo->pParse, pProbe, pProbe->pPartIdxWhere, &m, 0, 0
+ );
+ }
+ pNew->wsFlags = WHERE_INDEXED;
+ if( m==TOPBIT || (pProbe->bHasExpr && !pProbe->bHasVCol && m!=0) ){
+ u32 isCov = whereIsCoveringIndex(pWInfo, pProbe, pSrc->iCursor);
+ if( isCov==0 ){
+ WHERETRACE(0x200,
+ ("-> %s is not a covering index"
+ " according to whereIsCoveringIndex()\n", pProbe->zName));
+ assert( m!=0 );
+ }else{
+ m = 0;
+ pNew->wsFlags |= isCov;
+ if( isCov & WHERE_IDX_ONLY ){
+ WHERETRACE(0x200,
+ ("-> %s is a covering expression index"
+ " according to whereIsCoveringIndex()\n", pProbe->zName));
+ }else{
+ assert( isCov==WHERE_EXPRIDX );
+ WHERETRACE(0x200,
+ ("-> %s might be a covering expression index"
+ " according to whereIsCoveringIndex()\n", pProbe->zName));
+ }
+ }
+ }else if( m==0 ){
+ WHERETRACE(0x200,
+ ("-> %s a covering index according to bitmasks\n",
+ pProbe->zName, m==0 ? "is" : "is not"));
+ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
+ }
+ }
+
+ /* Full scan via index */
+ if( b
+ || !HasRowid(pTab)
+ || pProbe->pPartIdxWhere!=0
+ || pSrc->fg.isIndexedBy
+ || ( m==0
+ && pProbe->bUnordered==0
+ && (pProbe->szIdxRow<pTab->szTabRow)
+ && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
+ && sqlite3GlobalConfig.bUseCis
+ && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
+ )
+ ){
+ pNew->iSortIdx = b ? iSortIdx : 0;
+
+ /* The cost of visiting the index rows is N*K, where K is
+ ** between 1.1 and 3.0, depending on the relative sizes of the
+ ** index and table rows. */
+ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
+ if( m!=0 ){
+ /* If this is a non-covering index scan, add in the cost of
+ ** doing table lookups. The cost will be 3x the number of
+ ** lookups. Take into account WHERE clause terms that can be
+ ** satisfied using just the index, and that do not require a
+ ** table lookup. */
+ LogEst nLookup = rSize + 16; /* Base cost: N*3 */
+ int ii;
+ int iCur = pSrc->iCursor;
+ WhereClause *pWC2 = &pWInfo->sWC;
+ for(ii=0; ii<pWC2->nTerm; ii++){
+ WhereTerm *pTerm = &pWC2->a[ii];
+ if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
+ break;
+ }
+ /* pTerm can be evaluated using just the index. So reduce
+ ** the expected number of table lookups accordingly */
+ if( pTerm->truthProb<=0 ){
+ nLookup += pTerm->truthProb;
+ }else{
+ nLookup--;
+ if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
+ }
+ }
+
+ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
+ }
+ ApplyCostMultiplier(pNew->rRun, pTab->costMult);
+ whereLoopOutputAdjust(pWC, pNew, rSize);
+ if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
+ /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
+ ** because the cursor used to access the index might not be
+ ** positioned to the correct row during the right-join no-match
+ ** loop. */
+ }else{
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ pNew->nOut = rSize;
+ if( rc ) break;
+ }
+ }
+
+ pBuilder->bldFlags1 = 0;
+ rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
+ if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
+ /* If a non-unique index is used, or if a prefix of the key for
+ ** unique index is used (making the index functionally non-unique)
+ ** then the sqlite_stat1 data becomes important for scoring the
+ ** plan */
+ pTab->tabFlags |= TF_StatsUsed;
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3Stat4ProbeFree(pBuilder->pRec);
+ pBuilder->nRecValid = 0;
+ pBuilder->pRec = 0;
+#endif
+ }
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+/*
+** Return true if pTerm is a virtual table LIMIT or OFFSET term.
+*/
+static int isLimitTerm(WhereTerm *pTerm){
+ assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
+ return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
+ && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
+}
+
+/*
+** Argument pIdxInfo is already populated with all constraints that may
+** be used by the virtual table identified by pBuilder->pNew->iTab. This
+** function marks a subset of those constraints usable, invokes the
+** xBestIndex method and adds the returned plan to pBuilder.
+**
+** A constraint is marked usable if:
+**
+** * Argument mUsable indicates that its prerequisites are available, and
+**
+** * It is not one of the operators specified in the mExclude mask passed
+** as the fourth argument (which in practice is either WO_IN or 0).
+**
+** Argument mPrereq is a mask of tables that must be scanned before the
+** virtual table in question. These are added to the plans prerequisites
+** before it is added to pBuilder.
+**
+** Output parameter *pbIn is set to true if the plan added to pBuilder
+** uses one or more WO_IN terms, or false otherwise.
+*/
+static int whereLoopAddVirtualOne(
+ WhereLoopBuilder *pBuilder,
+ Bitmask mPrereq, /* Mask of tables that must be used. */
+ Bitmask mUsable, /* Mask of usable tables */
+ u16 mExclude, /* Exclude terms using these operators */
+ sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
+ u16 mNoOmit, /* Do not omit these constraints */
+ int *pbIn, /* OUT: True if plan uses an IN(...) op */
+ int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */
+){
+ WhereClause *pWC = pBuilder->pWC;
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
+ int i;
+ int mxTerm;
+ int rc = SQLITE_OK;
+ WhereLoop *pNew = pBuilder->pNew;
+ Parse *pParse = pBuilder->pWInfo->pParse;
+ SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
+ int nConstraint = pIdxInfo->nConstraint;
+
+ assert( (mUsable & mPrereq)==mPrereq );
+ *pbIn = 0;
+ pNew->prereq = mPrereq;
+
+ /* Set the usable flag on the subset of constraints identified by
+ ** arguments mUsable and mExclude. */
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<nConstraint; i++, pIdxCons++){
+ WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
+ pIdxCons->usable = 0;
+ if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
+ && (pTerm->eOperator & mExclude)==0
+ && (pbRetryLimit || !isLimitTerm(pTerm))
+ ){
+ pIdxCons->usable = 1;
+ }
+ }
+
+ /* Initialize the output fields of the sqlite3_index_info structure */
+ memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
+ assert( pIdxInfo->needToFreeIdxStr==0 );
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->idxNum = 0;
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
+ pIdxInfo->estimatedRows = 25;
+ pIdxInfo->idxFlags = 0;
+ pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
+ pHidden->mHandleIn = 0;
+
+ /* Invoke the virtual table xBestIndex() method */
+ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
+ if( rc ){
+ if( rc==SQLITE_CONSTRAINT ){
+ /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
+ ** that the particular combination of parameters provided is unusable.
+ ** Make no entries in the loop table.
+ */
+ WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n"));
+ return SQLITE_OK;
+ }
+ return rc;
+ }
+
+ mxTerm = -1;
+ assert( pNew->nLSlot>=nConstraint );
+ memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
+ memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ for(i=0; i<nConstraint; i++, pIdxCons++){
+ int iTerm;
+ if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
+ WhereTerm *pTerm;
+ int j = pIdxCons->iTermOffset;
+ if( iTerm>=nConstraint
+ || j<0
+ || j>=pWC->nTerm
+ || pNew->aLTerm[iTerm]!=0
+ || pIdxCons->usable==0
+ ){
+ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
+ testcase( pIdxInfo->needToFreeIdxStr );
+ return SQLITE_ERROR;
+ }
+ testcase( iTerm==nConstraint-1 );
+ testcase( j==0 );
+ testcase( j==pWC->nTerm-1 );
+ pTerm = &pWC->a[j];
+ pNew->prereq |= pTerm->prereqRight;
+ assert( iTerm<pNew->nLSlot );
+ pNew->aLTerm[iTerm] = pTerm;
+ if( iTerm>mxTerm ) mxTerm = iTerm;
+ testcase( iTerm==15 );
+ testcase( iTerm==16 );
+ if( pUsage[i].omit ){
+ if( i<16 && ((1<<i)&mNoOmit)==0 ){
+ testcase( i!=iTerm );
+ pNew->u.vtab.omitMask |= 1<<iTerm;
+ }else{
+ testcase( i!=iTerm );
+ }
+ if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
+ pNew->u.vtab.bOmitOffset = 1;
+ }
+ }
+ if( SMASKBIT32(i) & pHidden->mHandleIn ){
+ pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
+ }else if( (pTerm->eOperator & WO_IN)!=0 ){
+ /* A virtual table that is constrained by an IN clause may not
+ ** consume the ORDER BY clause because (1) the order of IN terms
+ ** is not necessarily related to the order of output terms and
+ ** (2) Multiple outputs from a single IN value will not merge
+ ** together. */
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
+ *pbIn = 1; assert( (mExclude & WO_IN)==0 );
+ }
+
+ assert( pbRetryLimit || !isLimitTerm(pTerm) );
+ if( isLimitTerm(pTerm) && *pbIn ){
+ /* If there is an IN(...) term handled as an == (separate call to
+ ** xFilter for each value on the RHS of the IN) and a LIMIT or
+ ** OFFSET term handled as well, the plan is unusable. Set output
+ ** variable *pbRetryLimit to true to tell the caller to retry with
+ ** LIMIT and OFFSET disabled. */
+ if( pIdxInfo->needToFreeIdxStr ){
+ sqlite3_free(pIdxInfo->idxStr);
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->needToFreeIdxStr = 0;
+ }
+ *pbRetryLimit = 1;
+ return SQLITE_OK;
+ }
+ }
+ }
+
+ pNew->nLTerm = mxTerm+1;
+ for(i=0; i<=mxTerm; i++){
+ if( pNew->aLTerm[i]==0 ){
+ /* The non-zero argvIdx values must be contiguous. Raise an
+ ** error if they are not */
+ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
+ testcase( pIdxInfo->needToFreeIdxStr );
+ return SQLITE_ERROR;
+ }
+ }
+ assert( pNew->nLTerm<=pNew->nLSlot );
+ pNew->u.vtab.idxNum = pIdxInfo->idxNum;
+ pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
+ pIdxInfo->needToFreeIdxStr = 0;
+ pNew->u.vtab.idxStr = pIdxInfo->idxStr;
+ pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
+ pIdxInfo->nOrderBy : 0);
+ pNew->rSetup = 0;
+ pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
+ pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
+
+ /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
+ ** that the scan will visit at most one row. Clear it otherwise. */
+ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
+ pNew->wsFlags |= WHERE_ONEROW;
+ }else{
+ pNew->wsFlags &= ~WHERE_ONEROW;
+ }
+ rc = whereLoopInsert(pBuilder, pNew);
+ if( pNew->u.vtab.needFree ){
+ sqlite3_free(pNew->u.vtab.idxStr);
+ pNew->u.vtab.needFree = 0;
+ }
+ WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
+ *pbIn, (sqlite3_uint64)mPrereq,
+ (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
+
+ return rc;
+}
+
+/*
+** Return the collating sequence for a constraint passed into xBestIndex.
+**
+** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
+** This routine depends on there being a HiddenIndexInfo structure immediately
+** following the sqlite3_index_info structure.
+**
+** Return a pointer to the collation name:
+**
+** 1. If there is an explicit COLLATE operator on the constraint, return it.
+**
+** 2. Else, if the column has an alternative collation, return that.
+**
+** 3. Otherwise, return "BINARY".
+*/
+SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ const char *zRet = 0;
+ if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
+ CollSeq *pC = 0;
+ int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
+ Expr *pX = pHidden->pWC->a[iTerm].pExpr;
+ if( pX->pLeft ){
+ pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
+ }
+ zRet = (pC ? pC->zName : sqlite3StrBINARY);
+ }
+ return zRet;
+}
+
+/*
+** Return true if constraint iCons is really an IN(...) constraint, or
+** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
+** or clear (if bHandle==0) the flag to handle it using an iterator.
+*/
+SQLITE_API int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ u32 m = SMASKBIT32(iCons);
+ if( m & pHidden->mIn ){
+ if( bHandle==0 ){
+ pHidden->mHandleIn &= ~m;
+ }else if( bHandle>0 ){
+ pHidden->mHandleIn |= m;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** This interface is callable from within the xBestIndex callback only.
+**
+** If possible, set (*ppVal) to point to an object containing the value
+** on the right-hand-side of constraint iCons.
+*/
+SQLITE_API int sqlite3_vtab_rhs_value(
+ sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */
+ int iCons, /* Constraint for which RHS is wanted */
+ sqlite3_value **ppVal /* Write value extracted here */
+){
+ HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
+ sqlite3_value *pVal = 0;
+ int rc = SQLITE_OK;
+ if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
+ rc = SQLITE_MISUSE_BKPT; /* EV: R-30545-25046 */
+ }else{
+ if( pH->aRhs[iCons]==0 ){
+ WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
+ rc = sqlite3ValueFromExpr(
+ pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
+ SQLITE_AFF_BLOB, &pH->aRhs[iCons]
+ );
+ testcase( rc!=SQLITE_OK );
+ }
+ pVal = pH->aRhs[iCons];
+ }
+ *ppVal = pVal;
+
+ if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */
+ rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */
+ }
+
+ return rc;
+}
+
+/*
+** Return true if ORDER BY clause may be handled as DISTINCT.
+*/
+SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
+ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
+ assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
+ return pHidden->eDistinct;
+}
+
+/*
+** Cause the prepared statement that is associated with a call to
+** xBestIndex to potentially use all schemas. If the statement being
+** prepared is read-only, then just start read transactions on all
+** schemas. But if this is a write operation, start writes on all
+** schemas.
+**
+** This is used by the (built-in) sqlite_dbpage virtual table.
+*/
+SQLITE_PRIVATE void sqlite3VtabUsesAllSchemas(Parse *pParse){
+ int nDb = pParse->db->nDb;
+ int i;
+ for(i=0; i<nDb; i++){
+ sqlite3CodeVerifySchema(pParse, i);
+ }
+ if( DbMaskNonZero(pParse->writeMask) ){
+ for(i=0; i<nDb; i++){
+ sqlite3BeginWriteOperation(pParse, 0, i);
+ }
+ }
+}
+
+/*
+** Add all WhereLoop objects for a table of the join identified by
+** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
+**
+** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
+** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
+** entries that occur before the virtual table in the FROM clause and are
+** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
+** mUnusable mask contains all FROM clause entries that occur after the
+** virtual table and are separated from it by at least one LEFT or
+** CROSS JOIN.
+**
+** For example, if the query were:
+**
+** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
+**
+** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
+**
+** All the tables in mPrereq must be scanned before the current virtual
+** table. So any terms for which all prerequisites are satisfied by
+** mPrereq may be specified as "usable" in all calls to xBestIndex.
+** Conversely, all tables in mUnusable must be scanned after the current
+** virtual table, so any terms for which the prerequisites overlap with
+** mUnusable should always be configured as "not-usable" for xBestIndex.
+*/
+static int whereLoopAddVirtual(
+ WhereLoopBuilder *pBuilder, /* WHERE clause information */
+ Bitmask mPrereq, /* Tables that must be scanned before this one */
+ Bitmask mUnusable /* Tables that must be scanned after this one */
+){
+ int rc = SQLITE_OK; /* Return code */
+ WhereInfo *pWInfo; /* WHERE analysis context */
+ Parse *pParse; /* The parsing context */
+ WhereClause *pWC; /* The WHERE clause */
+ SrcItem *pSrc; /* The FROM clause term to search */
+ sqlite3_index_info *p; /* Object to pass to xBestIndex() */
+ int nConstraint; /* Number of constraints in p */
+ int bIn; /* True if plan uses IN(...) operator */
+ WhereLoop *pNew;
+ Bitmask mBest; /* Tables used by best possible plan */
+ u16 mNoOmit;
+ int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */
+
+ assert( (mPrereq & mUnusable)==0 );
+ pWInfo = pBuilder->pWInfo;
+ pParse = pWInfo->pParse;
+ pWC = pBuilder->pWC;
+ pNew = pBuilder->pNew;
+ pSrc = &pWInfo->pTabList->a[pNew->iTab];
+ assert( IsVirtual(pSrc->pTab) );
+ p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
+ if( p==0 ) return SQLITE_NOMEM_BKPT;
+ pNew->rSetup = 0;
+ pNew->wsFlags = WHERE_VIRTUALTABLE;
+ pNew->nLTerm = 0;
+ pNew->u.vtab.needFree = 0;
+ nConstraint = p->nConstraint;
+ if( whereLoopResize(pParse->db, pNew, nConstraint) ){
+ freeIndexInfo(pParse->db, p);
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* First call xBestIndex() with all constraints usable. */
+ WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
+ WHERETRACE(0x800, (" VirtualOne: all usable\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
+ );
+ if( bRetry ){
+ assert( rc==SQLITE_OK );
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
+ );
+ }
+
+ /* If the call to xBestIndex() with all terms enabled produced a plan
+ ** that does not require any source tables (IOW: a plan with mBest==0)
+ ** and does not use an IN(...) operator, then there is no point in making
+ ** any further calls to xBestIndex() since they will all return the same
+ ** result (if the xBestIndex() implementation is sane). */
+ if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
+ int seenZero = 0; /* True if a plan with no prereqs seen */
+ int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
+ Bitmask mPrev = 0;
+ Bitmask mBestNoIn = 0;
+
+ /* If the plan produced by the earlier call uses an IN(...) term, call
+ ** xBestIndex again, this time with IN(...) terms disabled. */
+ if( bIn ){
+ WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
+ assert( bIn==0 );
+ mBestNoIn = pNew->prereq & ~mPrereq;
+ if( mBestNoIn==0 ){
+ seenZero = 1;
+ seenZeroNoIN = 1;
+ }
+ }
+
+ /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
+ ** in the set of terms that apply to the current virtual table. */
+ while( rc==SQLITE_OK ){
+ int i;
+ Bitmask mNext = ALLBITS;
+ assert( mNext>0 );
+ for(i=0; i<nConstraint; i++){
+ Bitmask mThis = (
+ pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
+ );
+ if( mThis>mPrev && mThis<mNext ) mNext = mThis;
+ }
+ mPrev = mNext;
+ if( mNext==ALLBITS ) break;
+ if( mNext==mBest || mNext==mBestNoIn ) continue;
+ WHERETRACE(0x800, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
+ (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
+ if( pNew->prereq==mPrereq ){
+ seenZero = 1;
+ if( bIn==0 ) seenZeroNoIN = 1;
+ }
+ }
+
+ /* If the calls to xBestIndex() in the above loop did not find a plan
+ ** that requires no source tables at all (i.e. one guaranteed to be
+ ** usable), make a call here with all source tables disabled */
+ if( rc==SQLITE_OK && seenZero==0 ){
+ WHERETRACE(0x800, (" VirtualOne: all disabled\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
+ if( bIn==0 ) seenZeroNoIN = 1;
+ }
+
+ /* If the calls to xBestIndex() have so far failed to find a plan
+ ** that requires no source tables at all and does not use an IN(...)
+ ** operator, make a final call to obtain one here. */
+ if( rc==SQLITE_OK && seenZeroNoIN==0 ){
+ WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n"));
+ rc = whereLoopAddVirtualOne(
+ pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
+ }
+ }
+
+ if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
+ freeIndexInfo(pParse->db, p);
+ WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
+ return rc;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** Add WhereLoop entries to handle OR terms. This works for either
+** btrees or virtual tables.
+*/
+static int whereLoopAddOr(
+ WhereLoopBuilder *pBuilder,
+ Bitmask mPrereq,
+ Bitmask mUnusable
+){
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ WhereClause *pWC;
+ WhereLoop *pNew;
+ WhereTerm *pTerm, *pWCEnd;
+ int rc = SQLITE_OK;
+ int iCur;
+ WhereClause tempWC;
+ WhereLoopBuilder sSubBuild;
+ WhereOrSet sSum, sCur;
+ SrcItem *pItem;
+
+ pWC = pBuilder->pWC;
+ pWCEnd = pWC->a + pWC->nTerm;
+ pNew = pBuilder->pNew;
+ memset(&sSum, 0, sizeof(sSum));
+ pItem = pWInfo->pTabList->a + pNew->iTab;
+ iCur = pItem->iCursor;
+
+ /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
+ if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
+
+ for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
+ if( (pTerm->eOperator & WO_OR)!=0
+ && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
+ ){
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
+ WhereTerm *pOrTerm;
+ int once = 1;
+ int i, j;
+
+ sSubBuild = *pBuilder;
+ sSubBuild.pOrSet = &sCur;
+
+ WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm));
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
+ if( (pOrTerm->eOperator & WO_AND)!=0 ){
+ sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
+ }else if( pOrTerm->leftCursor==iCur ){
+ tempWC.pWInfo = pWC->pWInfo;
+ tempWC.pOuter = pWC;
+ tempWC.op = TK_AND;
+ tempWC.nTerm = 1;
+ tempWC.nBase = 1;
+ tempWC.a = pOrTerm;
+ sSubBuild.pWC = &tempWC;
+ }else{
+ continue;
+ }
+ sCur.n = 0;
+#ifdef WHERETRACE_ENABLED
+ WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n",
+ (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
+ if( sqlite3WhereTrace & 0x20000 ){
+ sqlite3WhereClausePrint(sSubBuild.pWC);
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pItem->pTab) ){
+ rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
+ }else
+#endif
+ {
+ rc = whereLoopAddBtree(&sSubBuild, mPrereq);
+ }
+ if( rc==SQLITE_OK ){
+ rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
+ }
+ testcase( rc==SQLITE_NOMEM && sCur.n>0 );
+ testcase( rc==SQLITE_DONE );
+ if( sCur.n==0 ){
+ sSum.n = 0;
+ break;
+ }else if( once ){
+ whereOrMove(&sSum, &sCur);
+ once = 0;
+ }else{
+ WhereOrSet sPrev;
+ whereOrMove(&sPrev, &sSum);
+ sSum.n = 0;
+ for(i=0; i<sPrev.n; i++){
+ for(j=0; j<sCur.n; j++){
+ whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
+ sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
+ sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
+ }
+ }
+ }
+ }
+ pNew->nLTerm = 1;
+ pNew->aLTerm[0] = pTerm;
+ pNew->wsFlags = WHERE_MULTI_OR;
+ pNew->rSetup = 0;
+ pNew->iSortIdx = 0;
+ memset(&pNew->u, 0, sizeof(pNew->u));
+ for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
+ /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
+ ** of all sub-scans required by the OR-scan. However, due to rounding
+ ** errors, it may be that the cost of the OR-scan is equal to its
+ ** most expensive sub-scan. Add the smallest possible penalty
+ ** (equivalent to multiplying the cost by 1.07) to ensure that
+ ** this does not happen. Otherwise, for WHERE clauses such as the
+ ** following where there is an index on "y":
+ **
+ ** WHERE likelihood(x=?, 0.99) OR y=?
+ **
+ ** the planner may elect to "OR" together a full-table scan and an
+ ** index lookup. And other similarly odd results. */
+ pNew->rRun = sSum.a[i].rRun + 1;
+ pNew->nOut = sSum.a[i].nOut;
+ pNew->prereq = sSum.a[i].prereq;
+ rc = whereLoopInsert(pBuilder, pNew);
+ }
+ WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm));
+ }
+ }
+ return rc;
+}
+
+/*
+** Add all WhereLoop objects for all tables
+*/
+static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
+ WhereInfo *pWInfo = pBuilder->pWInfo;
+ Bitmask mPrereq = 0;
+ Bitmask mPrior = 0;
+ int iTab;
+ SrcList *pTabList = pWInfo->pTabList;
+ SrcItem *pItem;
+ SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
+ sqlite3 *db = pWInfo->pParse->db;
+ int rc = SQLITE_OK;
+ int bFirstPastRJ = 0;
+ int hasRightJoin = 0;
+ WhereLoop *pNew;
+
+
+ /* Loop over the tables in the join, from left to right */
+ pNew = pBuilder->pNew;
+
+ /* Verify that pNew has already been initialized */
+ assert( pNew->nLTerm==0 );
+ assert( pNew->wsFlags==0 );
+ assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
+ assert( pNew->aLTerm!=0 );
+
+ pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
+ for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
+ Bitmask mUnusable = 0;
+ pNew->iTab = iTab;
+ pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
+ pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
+ if( bFirstPastRJ
+ || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
+ ){
+ /* Add prerequisites to prevent reordering of FROM clause terms
+ ** across CROSS joins and outer joins. The bFirstPastRJ boolean
+ ** prevents the right operand of a RIGHT JOIN from being swapped with
+ ** other elements even further to the right.
+ **
+ ** The JT_LTORJ case and the hasRightJoin flag work together to
+ ** prevent FROM-clause terms from moving from the right side of
+ ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
+ ** is itself on the left side of a RIGHT JOIN.
+ */
+ if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
+ mPrereq |= mPrior;
+ bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
+ }else if( !hasRightJoin ){
+ mPrereq = 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pItem->pTab) ){
+ SrcItem *p;
+ for(p=&pItem[1]; p<pEnd; p++){
+ if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
+ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
+ }
+ }
+ rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+ {
+ rc = whereLoopAddBtree(pBuilder, mPrereq);
+ }
+ if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
+ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
+ }
+ mPrior |= pNew->maskSelf;
+ if( rc || db->mallocFailed ){
+ if( rc==SQLITE_DONE ){
+ /* We hit the query planner search limit set by iPlanLimit */
+ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
+ rc = SQLITE_OK;
+ }else{
+ break;
+ }
+ }
+ }
+
+ whereLoopClear(db, pNew);
+ return rc;
+}
+
+/*
+** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
+** parameters) to see if it outputs rows in the requested ORDER BY
+** (or GROUP BY) without requiring a separate sort operation. Return N:
+**
+** N>0: N terms of the ORDER BY clause are satisfied
+** N==0: No terms of the ORDER BY clause are satisfied
+** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
+**
+** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
+** strict. With GROUP BY and DISTINCT the only requirement is that
+** equivalent rows appear immediately adjacent to one another. GROUP BY
+** and DISTINCT do not require rows to appear in any particular order as long
+** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
+** the pOrderBy terms can be matched in any order. With ORDER BY, the
+** pOrderBy terms must be matched in strict left-to-right order.
+*/
+static i8 wherePathSatisfiesOrderBy(
+ WhereInfo *pWInfo, /* The WHERE clause */
+ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
+ WherePath *pPath, /* The WherePath to check */
+ u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
+ u16 nLoop, /* Number of entries in pPath->aLoop[] */
+ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
+ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
+){
+ u8 revSet; /* True if rev is known */
+ u8 rev; /* Composite sort order */
+ u8 revIdx; /* Index sort order */
+ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
+ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
+ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
+ u16 eqOpMask; /* Allowed equality operators */
+ u16 nKeyCol; /* Number of key columns in pIndex */
+ u16 nColumn; /* Total number of ordered columns in the index */
+ u16 nOrderBy; /* Number terms in the ORDER BY clause */
+ int iLoop; /* Index of WhereLoop in pPath being processed */
+ int i, j; /* Loop counters */
+ int iCur; /* Cursor number for current WhereLoop */
+ int iColumn; /* A column number within table iCur */
+ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
+ WhereTerm *pTerm; /* A single term of the WHERE clause */
+ Expr *pOBExpr; /* An expression from the ORDER BY clause */
+ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
+ Index *pIndex; /* The index associated with pLoop */
+ sqlite3 *db = pWInfo->pParse->db; /* Database connection */
+ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
+ Bitmask obDone; /* Mask of all ORDER BY terms */
+ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
+ Bitmask ready; /* Mask of inner loops */
+
+ /*
+ ** We say the WhereLoop is "one-row" if it generates no more than one
+ ** row of output. A WhereLoop is one-row if all of the following are true:
+ ** (a) All index columns match with WHERE_COLUMN_EQ.
+ ** (b) The index is unique
+ ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
+ ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
+ **
+ ** We say the WhereLoop is "order-distinct" if the set of columns from
+ ** that WhereLoop that are in the ORDER BY clause are different for every
+ ** row of the WhereLoop. Every one-row WhereLoop is automatically
+ ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
+ ** is not order-distinct. To be order-distinct is not quite the same as being
+ ** UNIQUE since a UNIQUE column or index can have multiple rows that
+ ** are NULL and NULL values are equivalent for the purpose of order-distinct.
+ ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
+ **
+ ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
+ ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
+ ** automatically order-distinct.
+ */
+
+ assert( pOrderBy!=0 );
+ if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
+
+ nOrderBy = pOrderBy->nExpr;
+ testcase( nOrderBy==BMS-1 );
+ if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
+ isOrderDistinct = 1;
+ obDone = MASKBIT(nOrderBy)-1;
+ orderDistinctMask = 0;
+ ready = 0;
+ eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
+ if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
+ eqOpMask |= WO_IN;
+ }
+ for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
+ if( iLoop>0 ) ready |= pLoop->maskSelf;
+ if( iLoop<nLoop ){
+ pLoop = pPath->aLoop[iLoop];
+ if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
+ }else{
+ pLoop = pLast;
+ }
+ if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
+ if( pLoop->u.vtab.isOrdered
+ && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
+ ){
+ obSat = obDone;
+ }
+ break;
+ }else if( wctrlFlags & WHERE_DISTINCTBY ){
+ pLoop->u.btree.nDistinctCol = 0;
+ }
+ iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
+
+ /* Mark off any ORDER BY term X that is a column in the table of
+ ** the current loop for which there is term in the WHERE
+ ** clause of the form X IS NULL or X=? that reference only outer
+ ** loops.
+ */
+ for(i=0; i<nOrderBy; i++){
+ if( MASKBIT(i) & obSat ) continue;
+ pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
+ if( NEVER(pOBExpr==0) ) continue;
+ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
+ if( pOBExpr->iTable!=iCur ) continue;
+ pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
+ ~ready, eqOpMask, 0);
+ if( pTerm==0 ) continue;
+ if( pTerm->eOperator==WO_IN ){
+ /* IN terms are only valid for sorting in the ORDER BY LIMIT
+ ** optimization, and then only if they are actually used
+ ** by the query plan */
+ assert( wctrlFlags &
+ (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
+ for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
+ if( j>=pLoop->nLTerm ) continue;
+ }
+ if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
+ Parse *pParse = pWInfo->pParse;
+ CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
+ CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
+ assert( pColl1 );
+ if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
+ continue;
+ }
+ testcase( pTerm->pExpr->op==TK_IS );
+ }
+ obSat |= MASKBIT(i);
+ }
+
+ if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
+ if( pLoop->wsFlags & WHERE_IPK ){
+ pIndex = 0;
+ nKeyCol = 0;
+ nColumn = 1;
+ }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
+ return 0;
+ }else{
+ nKeyCol = pIndex->nKeyCol;
+ nColumn = pIndex->nColumn;
+ assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
+ assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
+ || !HasRowid(pIndex->pTable));
+ /* All relevant terms of the index must also be non-NULL in order
+ ** for isOrderDistinct to be true. So the isOrderDistint value
+ ** computed here might be a false positive. Corrections will be
+ ** made at tag-20210426-1 below */
+ isOrderDistinct = IsUniqueIndex(pIndex)
+ && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
+ }
+
+ /* Loop through all columns of the index and deal with the ones
+ ** that are not constrained by == or IN.
+ */
+ rev = revSet = 0;
+ distinctColumns = 0;
+ for(j=0; j<nColumn; j++){
+ u8 bOnce = 1; /* True to run the ORDER BY search loop */
+
+ assert( j>=pLoop->u.btree.nEq
+ || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
+ );
+ if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
+ u16 eOp = pLoop->aLTerm[j]->eOperator;
+
+ /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
+ ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
+ ** terms imply that the index is not UNIQUE NOT NULL in which case
+ ** the loop need to be marked as not order-distinct because it can
+ ** have repeated NULL rows.
+ **
+ ** If the current term is a column of an ((?,?) IN (SELECT...))
+ ** expression for which the SELECT returns more than one column,
+ ** check that it is the only column used by this loop. Otherwise,
+ ** if it is one of two or more, none of the columns can be
+ ** considered to match an ORDER BY term.
+ */
+ if( (eOp & eqOpMask)!=0 ){
+ if( eOp & (WO_ISNULL|WO_IS) ){
+ testcase( eOp & WO_ISNULL );
+ testcase( eOp & WO_IS );
+ testcase( isOrderDistinct );
+ isOrderDistinct = 0;
+ }
+ continue;
+ }else if( ALWAYS(eOp & WO_IN) ){
+ /* ALWAYS() justification: eOp is an equality operator due to the
+ ** j<pLoop->u.btree.nEq constraint above. Any equality other
+ ** than WO_IN is captured by the previous "if". So this one
+ ** always has to be WO_IN. */
+ Expr *pX = pLoop->aLTerm[j]->pExpr;
+ for(i=j+1; i<pLoop->u.btree.nEq; i++){
+ if( pLoop->aLTerm[i]->pExpr==pX ){
+ assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
+ bOnce = 0;
+ break;
+ }
+ }
+ }
+ }
+
+ /* Get the column number in the table (iColumn) and sort order
+ ** (revIdx) for the j-th column of the index.
+ */
+ if( pIndex ){
+ iColumn = pIndex->aiColumn[j];
+ revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
+ if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
+ }else{
+ iColumn = XN_ROWID;
+ revIdx = 0;
+ }
+
+ /* An unconstrained column that might be NULL means that this
+ ** WhereLoop is not well-ordered. tag-20210426-1
+ */
+ if( isOrderDistinct ){
+ if( iColumn>=0
+ && j>=pLoop->u.btree.nEq
+ && pIndex->pTable->aCol[iColumn].notNull==0
+ ){
+ isOrderDistinct = 0;
+ }
+ if( iColumn==XN_EXPR ){
+ isOrderDistinct = 0;
+ }
+ }
+
+ /* Find the ORDER BY term that corresponds to the j-th column
+ ** of the index and mark that ORDER BY term off
+ */
+ isMatch = 0;
+ for(i=0; bOnce && i<nOrderBy; i++){
+ if( MASKBIT(i) & obSat ) continue;
+ pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
+ testcase( wctrlFlags & WHERE_GROUPBY );
+ testcase( wctrlFlags & WHERE_DISTINCTBY );
+ if( NEVER(pOBExpr==0) ) continue;
+ if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
+ if( iColumn>=XN_ROWID ){
+ if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
+ if( pOBExpr->iTable!=iCur ) continue;
+ if( pOBExpr->iColumn!=iColumn ) continue;
+ }else{
+ Expr *pIxExpr = pIndex->aColExpr->a[j].pExpr;
+ if( sqlite3ExprCompareSkip(pOBExpr, pIxExpr, iCur) ){
+ continue;
+ }
+ }
+ if( iColumn!=XN_ROWID ){
+ pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
+ if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
+ }
+ if( wctrlFlags & WHERE_DISTINCTBY ){
+ pLoop->u.btree.nDistinctCol = j+1;
+ }
+ isMatch = 1;
+ break;
+ }
+ if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
+ /* Make sure the sort order is compatible in an ORDER BY clause.
+ ** Sort order is irrelevant for a GROUP BY clause. */
+ if( revSet ){
+ if( (rev ^ revIdx)
+ != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
+ ){
+ isMatch = 0;
+ }
+ }else{
+ rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
+ if( rev ) *pRevMask |= MASKBIT(iLoop);
+ revSet = 1;
+ }
+ }
+ if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
+ if( j==pLoop->u.btree.nEq ){
+ pLoop->wsFlags |= WHERE_BIGNULL_SORT;
+ }else{
+ isMatch = 0;
+ }
+ }
+ if( isMatch ){
+ if( iColumn==XN_ROWID ){
+ testcase( distinctColumns==0 );
+ distinctColumns = 1;
+ }
+ obSat |= MASKBIT(i);
+ }else{
+ /* No match found */
+ if( j==0 || j<nKeyCol ){
+ testcase( isOrderDistinct!=0 );
+ isOrderDistinct = 0;
+ }
+ break;
+ }
+ } /* end Loop over all index columns */
+ if( distinctColumns ){
+ testcase( isOrderDistinct==0 );
+ isOrderDistinct = 1;
+ }
+ } /* end-if not one-row */
+
+ /* Mark off any other ORDER BY terms that reference pLoop */
+ if( isOrderDistinct ){
+ orderDistinctMask |= pLoop->maskSelf;
+ for(i=0; i<nOrderBy; i++){
+ Expr *p;
+ Bitmask mTerm;
+ if( MASKBIT(i) & obSat ) continue;
+ p = pOrderBy->a[i].pExpr;
+ mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
+ if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
+ if( (mTerm&~orderDistinctMask)==0 ){
+ obSat |= MASKBIT(i);
+ }
+ }
+ }
+ } /* End the loop over all WhereLoops from outer-most down to inner-most */
+ if( obSat==obDone ) return (i8)nOrderBy;
+ if( !isOrderDistinct ){
+ for(i=nOrderBy-1; i>0; i--){
+ Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
+ if( (obSat&m)==m ) return i;
+ }
+ return 0;
+ }
+ return -1;
+}
+
+
+/*
+** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
+** the planner assumes that the specified pOrderBy list is actually a GROUP
+** BY clause - and so any order that groups rows as required satisfies the
+** request.
+**
+** Normally, in this case it is not possible for the caller to determine
+** whether or not the rows are really being delivered in sorted order, or
+** just in some other order that provides the required grouping. However,
+** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
+** this function may be called on the returned WhereInfo object. It returns
+** true if the rows really will be sorted in the specified order, or false
+** otherwise.
+**
+** For example, assuming:
+**
+** CREATE INDEX i1 ON t1(x, Y);
+**
+** then
+**
+** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
+** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
+*/
+SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo *pWInfo){
+ assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
+ assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
+ return pWInfo->sorted;
+}
+
+#ifdef WHERETRACE_ENABLED
+/* For debugging use only: */
+static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
+ static char zName[65];
+ int i;
+ for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
+ if( pLast ) zName[i++] = pLast->cId;
+ zName[i] = 0;
+ return zName;
+}
+#endif
+
+/*
+** Return the cost of sorting nRow rows, assuming that the keys have
+** nOrderby columns and that the first nSorted columns are already in
+** order.
+*/
+static LogEst whereSortingCost(
+ WhereInfo *pWInfo, /* Query planning context */
+ LogEst nRow, /* Estimated number of rows to sort */
+ int nOrderBy, /* Number of ORDER BY clause terms */
+ int nSorted /* Number of initial ORDER BY terms naturally in order */
+){
+ /* Estimated cost of a full external sort, where N is
+ ** the number of rows to sort is:
+ **
+ ** cost = (K * N * log(N)).
+ **
+ ** Or, if the order-by clause has X terms but only the last Y
+ ** terms are out of order, then block-sorting will reduce the
+ ** sorting cost to:
+ **
+ ** cost = (K * N * log(N)) * (Y/X)
+ **
+ ** The constant K is at least 2.0 but will be larger if there are a
+ ** large number of columns to be sorted, as the sorting time is
+ ** proportional to the amount of content to be sorted. The algorithm
+ ** does not currently distinguish between fat columns (BLOBs and TEXTs)
+ ** and skinny columns (INTs). It just uses the number of columns as
+ ** an approximation for the row width.
+ **
+ ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort
+ ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert.
+ */
+ LogEst rSortCost, nCol;
+ assert( pWInfo->pSelect!=0 );
+ assert( pWInfo->pSelect->pEList!=0 );
+ /* TUNING: sorting cost proportional to the number of output columns: */
+ nCol = sqlite3LogEst((pWInfo->pSelect->pEList->nExpr+59)/30);
+ rSortCost = nRow + nCol;
+ if( nSorted>0 ){
+ /* Scale the result by (Y/X) */
+ rSortCost += sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
+ }
+
+ /* Multiple by log(M) where M is the number of output rows.
+ ** Use the LIMIT for M if it is smaller. Or if this sort is for
+ ** a DISTINCT operator, M will be the number of distinct output
+ ** rows, so fudge it downwards a bit.
+ */
+ if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 ){
+ rSortCost += 10; /* TUNING: Extra 2.0x if using LIMIT */
+ if( nSorted!=0 ){
+ rSortCost += 6; /* TUNING: Extra 1.5x if also using partial sort */
+ }
+ if( pWInfo->iLimit<nRow ){
+ nRow = pWInfo->iLimit;
+ }
+ }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
+ /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
+ ** reduces the number of output rows by a factor of 2 */
+ if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
+ }
+ rSortCost += estLog(nRow);
+ return rSortCost;
+}
+
+/*
+** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
+** attempts to find the lowest cost path that visits each WhereLoop
+** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
+**
+** Assume that the total number of output rows that will need to be sorted
+** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
+** costs if nRowEst==0.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
+** error occurs.
+*/
+static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
+ int mxChoice; /* Maximum number of simultaneous paths tracked */
+ int nLoop; /* Number of terms in the join */
+ Parse *pParse; /* Parsing context */
+ int iLoop; /* Loop counter over the terms of the join */
+ int ii, jj; /* Loop counters */
+ int mxI = 0; /* Index of next entry to replace */
+ int nOrderBy; /* Number of ORDER BY clause terms */
+ LogEst mxCost = 0; /* Maximum cost of a set of paths */
+ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
+ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
+ WherePath *aFrom; /* All nFrom paths at the previous level */
+ WherePath *aTo; /* The nTo best paths at the current level */
+ WherePath *pFrom; /* An element of aFrom[] that we are working on */
+ WherePath *pTo; /* An element of aTo[] that we are working on */
+ WhereLoop *pWLoop; /* One of the WhereLoop objects */
+ WhereLoop **pX; /* Used to divy up the pSpace memory */
+ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
+ char *pSpace; /* Temporary memory used by this routine */
+ int nSpace; /* Bytes of space allocated at pSpace */
+
+ pParse = pWInfo->pParse;
+ nLoop = pWInfo->nLevel;
+ /* TUNING: For simple queries, only the best path is tracked.
+ ** For 2-way joins, the 5 best paths are followed.
+ ** For joins of 3 or more tables, track the 10 best paths */
+ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
+ assert( nLoop<=pWInfo->pTabList->nSrc );
+ WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n",
+ nRowEst, pParse->nQueryLoop));
+
+ /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
+ ** case the purpose of this call is to estimate the number of rows returned
+ ** by the overall query. Once this estimate has been obtained, the caller
+ ** will invoke this function a second time, passing the estimate as the
+ ** nRowEst parameter. */
+ if( pWInfo->pOrderBy==0 || nRowEst==0 ){
+ nOrderBy = 0;
+ }else{
+ nOrderBy = pWInfo->pOrderBy->nExpr;
+ }
+
+ /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
+ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
+ nSpace += sizeof(LogEst) * nOrderBy;
+ pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace);
+ if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
+ aTo = (WherePath*)pSpace;
+ aFrom = aTo+mxChoice;
+ memset(aFrom, 0, sizeof(aFrom[0]));
+ pX = (WhereLoop**)(aFrom+mxChoice);
+ for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
+ pFrom->aLoop = pX;
+ }
+ if( nOrderBy ){
+ /* If there is an ORDER BY clause and it is not being ignored, set up
+ ** space for the aSortCost[] array. Each element of the aSortCost array
+ ** is either zero - meaning it has not yet been initialized - or the
+ ** cost of sorting nRowEst rows of data where the first X terms of
+ ** the ORDER BY clause are already in order, where X is the array
+ ** index. */
+ aSortCost = (LogEst*)pX;
+ memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
+ }
+ assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
+ assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
+
+ /* Seed the search with a single WherePath containing zero WhereLoops.
+ **
+ ** TUNING: Do not let the number of iterations go above 28. If the cost
+ ** of computing an automatic index is not paid back within the first 28
+ ** rows, then do not use the automatic index. */
+ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
+ nFrom = 1;
+ assert( aFrom[0].isOrdered==0 );
+ if( nOrderBy ){
+ /* If nLoop is zero, then there are no FROM terms in the query. Since
+ ** in this case the query may return a maximum of one row, the results
+ ** are already in the requested order. Set isOrdered to nOrderBy to
+ ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
+ ** -1, indicating that the result set may or may not be ordered,
+ ** depending on the loops added to the current plan. */
+ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
+ }
+
+ /* Compute successively longer WherePaths using the previous generation
+ ** of WherePaths as the basis for the next. Keep track of the mxChoice
+ ** best paths at each generation */
+ for(iLoop=0; iLoop<nLoop; iLoop++){
+ nTo = 0;
+ for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
+ for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
+ LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
+ LogEst rCost; /* Cost of path (pFrom+pWLoop) */
+ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
+ i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */
+ Bitmask maskNew; /* Mask of src visited by (..) */
+ Bitmask revMask; /* Mask of rev-order loops for (..) */
+
+ if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
+ if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
+ if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
+ /* Do not use an automatic index if the this loop is expected
+ ** to run less than 1.25 times. It is tempting to also exclude
+ ** automatic index usage on an outer loop, but sometimes an automatic
+ ** index is useful in the outer loop of a correlated subquery. */
+ assert( 10==sqlite3LogEst(2) );
+ continue;
+ }
+
+ /* At this point, pWLoop is a candidate to be the next loop.
+ ** Compute its cost */
+ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
+ rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
+ nOut = pFrom->nRow + pWLoop->nOut;
+ maskNew = pFrom->maskLoop | pWLoop->maskSelf;
+ isOrdered = pFrom->isOrdered;
+ if( isOrdered<0 ){
+ revMask = 0;
+ isOrdered = wherePathSatisfiesOrderBy(pWInfo,
+ pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
+ iLoop, pWLoop, &revMask);
+ }else{
+ revMask = pFrom->revLoop;
+ }
+ if( isOrdered>=0 && isOrdered<nOrderBy ){
+ if( aSortCost[isOrdered]==0 ){
+ aSortCost[isOrdered] = whereSortingCost(
+ pWInfo, nRowEst, nOrderBy, isOrdered
+ );
+ }
+ /* TUNING: Add a small extra penalty (3) to sorting as an
+ ** extra encouragement to the query planner to select a plan
+ ** where the rows emerge in the correct order without any sorting
+ ** required. */
+ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 3;
+
+ WHERETRACE(0x002,
+ ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
+ aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
+ rUnsorted, rCost));
+ }else{
+ rCost = rUnsorted;
+ rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
+ }
+
+ /* Check to see if pWLoop should be added to the set of
+ ** mxChoice best-so-far paths.
+ **
+ ** First look for an existing path among best-so-far paths
+ ** that covers the same set of loops and has the same isOrdered
+ ** setting as the current path candidate.
+ **
+ ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
+ ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
+ ** of legal values for isOrdered, -1..64.
+ */
+ for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
+ if( pTo->maskLoop==maskNew
+ && ((pTo->isOrdered^isOrdered)&0x80)==0
+ ){
+ testcase( jj==nTo-1 );
+ break;
+ }
+ }
+ if( jj>=nTo ){
+ /* None of the existing best-so-far paths match the candidate. */
+ if( nTo>=mxChoice
+ && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
+ ){
+ /* The current candidate is no better than any of the mxChoice
+ ** paths currently in the best-so-far buffer. So discard
+ ** this candidate as not viable. */
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ }
+#endif
+ continue;
+ }
+ /* If we reach this points it means that the new candidate path
+ ** needs to be added to the set of best-so-far paths. */
+ if( nTo<mxChoice ){
+ /* Increase the size of the aTo set by one */
+ jj = nTo++;
+ }else{
+ /* New path replaces the prior worst to keep count below mxChoice */
+ jj = mxI;
+ }
+ pTo = &aTo[jj];
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ }
+#endif
+ }else{
+ /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
+ ** same set of loops and has the same isOrdered setting as the
+ ** candidate path. Check to see if the candidate should replace
+ ** pTo or if the candidate should be skipped.
+ **
+ ** The conditional is an expanded vector comparison equivalent to:
+ ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
+ */
+ if( pTo->rCost<rCost
+ || (pTo->rCost==rCost
+ && (pTo->nRow<nOut
+ || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
+ )
+ )
+ ){
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf(
+ "Skip %s cost=%-3d,%3d,%3d order=%c",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
+ }
+#endif
+ /* Discard the candidate path from further consideration */
+ testcase( pTo->rCost==rCost );
+ continue;
+ }
+ testcase( pTo->rCost==rCost+1 );
+ /* Control reaches here if the candidate path is better than the
+ ** pTo path. Replace pTo with the candidate. */
+#ifdef WHERETRACE_ENABLED /* 0x4 */
+ if( sqlite3WhereTrace&0x4 ){
+ sqlite3DebugPrintf(
+ "Update %s cost=%-3d,%3d,%3d order=%c",
+ wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
+ isOrdered>=0 ? isOrdered+'0' : '?');
+ sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
+ }
+#endif
+ }
+ /* pWLoop is a winner. Add it to the set of best so far */
+ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
+ pTo->revLoop = revMask;
+ pTo->nRow = nOut;
+ pTo->rCost = rCost;
+ pTo->rUnsorted = rUnsorted;
+ pTo->isOrdered = isOrdered;
+ memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
+ pTo->aLoop[iLoop] = pWLoop;
+ if( nTo>=mxChoice ){
+ mxI = 0;
+ mxCost = aTo[0].rCost;
+ mxUnsorted = aTo[0].nRow;
+ for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
+ if( pTo->rCost>mxCost
+ || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
+ ){
+ mxCost = pTo->rCost;
+ mxUnsorted = pTo->rUnsorted;
+ mxI = jj;
+ }
+ }
+ }
+ }
+ }
+
+#ifdef WHERETRACE_ENABLED /* >=2 */
+ if( sqlite3WhereTrace & 0x02 ){
+ sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
+ for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
+ sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
+ wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
+ pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
+ if( pTo->isOrdered>0 ){
+ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
+ }else{
+ sqlite3DebugPrintf("\n");
+ }
+ }
+ }
+#endif
+
+ /* Swap the roles of aFrom and aTo for the next generation */
+ pFrom = aTo;
+ aTo = aFrom;
+ aFrom = pFrom;
+ nFrom = nTo;
+ }
+
+ if( nFrom==0 ){
+ sqlite3ErrorMsg(pParse, "no query solution");
+ sqlite3StackFreeNN(pParse->db, pSpace);
+ return SQLITE_ERROR;
+ }
+
+ /* Find the lowest cost path. pFrom will be left pointing to that path */
+ pFrom = aFrom;
+ for(ii=1; ii<nFrom; ii++){
+ if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
+ }
+ assert( pWInfo->nLevel==nLoop );
+ /* Load the lowest cost path into pWInfo */
+ for(iLoop=0; iLoop<nLoop; iLoop++){
+ WhereLevel *pLevel = pWInfo->a + iLoop;
+ pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
+ pLevel->iFrom = pWLoop->iTab;
+ pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
+ }
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
+ && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
+ && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
+ && nRowEst
+ ){
+ Bitmask notUsed;
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
+ WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
+ if( rc==pWInfo->pResultSet->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ }
+ pWInfo->bOrderedInnerLoop = 0;
+ if( pWInfo->pOrderBy ){
+ pWInfo->nOBSat = pFrom->isOrdered;
+ if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
+ if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
+ pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
+ }
+ if( pWInfo->pSelect->pOrderBy
+ && pWInfo->nOBSat > pWInfo->pSelect->pOrderBy->nExpr ){
+ pWInfo->nOBSat = pWInfo->pSelect->pOrderBy->nExpr;
+ }
+ }else{
+ pWInfo->revMask = pFrom->revLoop;
+ if( pWInfo->nOBSat<=0 ){
+ pWInfo->nOBSat = 0;
+ if( nLoop>0 ){
+ u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
+ if( (wsFlags & WHERE_ONEROW)==0
+ && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
+ ){
+ Bitmask m = 0;
+ int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
+ WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
+ testcase( wsFlags & WHERE_IPK );
+ testcase( wsFlags & WHERE_COLUMN_IN );
+ if( rc==pWInfo->pOrderBy->nExpr ){
+ pWInfo->bOrderedInnerLoop = 1;
+ pWInfo->revMask = m;
+ }
+ }
+ }
+ }else if( nLoop
+ && pWInfo->nOBSat==1
+ && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
+ ){
+ pWInfo->bOrderedInnerLoop = 1;
+ }
+ }
+ if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
+ && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
+ ){
+ Bitmask revMask = 0;
+ int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
+ pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
+ );
+ assert( pWInfo->sorted==0 );
+ if( nOrder==pWInfo->pOrderBy->nExpr ){
+ pWInfo->sorted = 1;
+ pWInfo->revMask = revMask;
+ }
+ }
+ }
+
+
+ pWInfo->nRowOut = pFrom->nRow;
+
+ /* Free temporary memory and return success */
+ sqlite3StackFreeNN(pParse->db, pSpace);
+ return SQLITE_OK;
+}
+
+/*
+** Most queries use only a single table (they are not joins) and have
+** simple == constraints against indexed fields. This routine attempts
+** to plan those simple cases using much less ceremony than the
+** general-purpose query planner, and thereby yield faster sqlite3_prepare()
+** times for the common case.
+**
+** Return non-zero on success, if this query can be handled by this
+** no-frills query planner. Return zero if this query needs the
+** general-purpose query planner.
+*/
+static int whereShortCut(WhereLoopBuilder *pBuilder){
+ WhereInfo *pWInfo;
+ SrcItem *pItem;
+ WhereClause *pWC;
+ WhereTerm *pTerm;
+ WhereLoop *pLoop;
+ int iCur;
+ int j;
+ Table *pTab;
+ Index *pIdx;
+ WhereScan scan;
+
+ pWInfo = pBuilder->pWInfo;
+ if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
+ assert( pWInfo->pTabList->nSrc>=1 );
+ pItem = pWInfo->pTabList->a;
+ pTab = pItem->pTab;
+ if( IsVirtual(pTab) ) return 0;
+ if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
+ testcase( pItem->fg.isIndexedBy );
+ testcase( pItem->fg.notIndexed );
+ return 0;
+ }
+ iCur = pItem->iCursor;
+ pWC = &pWInfo->sWC;
+ pLoop = pBuilder->pNew;
+ pLoop->wsFlags = 0;
+ pLoop->nSkip = 0;
+ pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
+ while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
+ if( pTerm ){
+ testcase( pTerm->eOperator & WO_IS );
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
+ pLoop->aLTerm[0] = pTerm;
+ pLoop->nLTerm = 1;
+ pLoop->u.btree.nEq = 1;
+ /* TUNING: Cost of a rowid lookup is 10 */
+ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
+ }else{
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int opMask;
+ assert( pLoop->aLTermSpace==pLoop->aLTerm );
+ if( !IsUniqueIndex(pIdx)
+ || pIdx->pPartIdxWhere!=0
+ || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
+ ) continue;
+ opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
+ for(j=0; j<pIdx->nKeyCol; j++){
+ pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
+ while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
+ if( pTerm==0 ) break;
+ testcase( pTerm->eOperator & WO_IS );
+ pLoop->aLTerm[j] = pTerm;
+ }
+ if( j!=pIdx->nKeyCol ) continue;
+ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
+ if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
+ pLoop->wsFlags |= WHERE_IDX_ONLY;
+ }
+ pLoop->nLTerm = j;
+ pLoop->u.btree.nEq = j;
+ pLoop->u.btree.pIndex = pIdx;
+ /* TUNING: Cost of a unique index lookup is 15 */
+ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
+ break;
+ }
+ }
+ if( pLoop->wsFlags ){
+ pLoop->nOut = (LogEst)1;
+ pWInfo->a[0].pWLoop = pLoop;
+ assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
+ pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
+ pWInfo->a[0].iTabCur = iCur;
+ pWInfo->nRowOut = 1;
+ if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
+ if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+ if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
+#ifdef SQLITE_DEBUG
+ pLoop->cId = '0';
+#endif
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x02 ){
+ sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
+ }
+#endif
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Helper function for exprIsDeterministic().
+*/
+static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
+ pWalker->eCode = 0;
+ return WRC_Abort;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Return true if the expression contains no non-deterministic SQL
+** functions. Do not consider non-deterministic SQL functions that are
+** part of sub-select statements.
+*/
+static int exprIsDeterministic(Expr *p){
+ Walker w;
+ memset(&w, 0, sizeof(w));
+ w.eCode = 1;
+ w.xExprCallback = exprNodeIsDeterministic;
+ w.xSelectCallback = sqlite3SelectWalkFail;
+ sqlite3WalkExpr(&w, p);
+ return w.eCode;
+}
+
+
+#ifdef WHERETRACE_ENABLED
+/*
+** Display all WhereLoops in pWInfo
+*/
+static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
+ if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
+ WhereLoop *p;
+ int i;
+ static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
+ "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
+ for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
+ p->cId = zLabel[i%(sizeof(zLabel)-1)];
+ sqlite3WhereLoopPrint(p, pWC);
+ }
+ }
+}
+# define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
+#else
+# define WHERETRACE_ALL_LOOPS(W,C)
+#endif
+
+/* Attempt to omit tables from a join that do not affect the result.
+** For a table to not affect the result, the following must be true:
+**
+** 1) The query must not be an aggregate.
+** 2) The table must be the RHS of a LEFT JOIN.
+** 3) Either the query must be DISTINCT, or else the ON or USING clause
+** must contain a constraint that limits the scan of the table to
+** at most a single row.
+** 4) The table must not be referenced by any part of the query apart
+** from its own USING or ON clause.
+** 5) The table must not have an inner-join ON or USING clause if there is
+** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause
+** might move from the right side to the left side of the RIGHT JOIN.
+** Note: Due to (2), this condition can only arise if the table is
+** the right-most table of a subquery that was flattened into the
+** main query and that subquery was the right-hand operand of an
+** inner join that held an ON or USING clause.
+**
+** For example, given:
+**
+** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
+** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
+** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
+**
+** then table t2 can be omitted from the following:
+**
+** SELECT v1, v3 FROM t1
+** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
+** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
+**
+** or from:
+**
+** SELECT DISTINCT v1, v3 FROM t1
+** LEFT JOIN t2
+** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
+*/
+static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
+ WhereInfo *pWInfo,
+ Bitmask notReady
+){
+ int i;
+ Bitmask tabUsed;
+ int hasRightJoin;
+
+ /* Preconditions checked by the caller */
+ assert( pWInfo->nLevel>=2 );
+ assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
+
+ /* These two preconditions checked by the caller combine to guarantee
+ ** condition (1) of the header comment */
+ assert( pWInfo->pResultSet!=0 );
+ assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
+
+ tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
+ if( pWInfo->pOrderBy ){
+ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
+ }
+ hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0;
+ for(i=pWInfo->nLevel-1; i>=1; i--){
+ WhereTerm *pTerm, *pEnd;
+ SrcItem *pItem;
+ WhereLoop *pLoop;
+ pLoop = pWInfo->a[i].pWLoop;
+ pItem = &pWInfo->pTabList->a[pLoop->iTab];
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
+ && (pLoop->wsFlags & WHERE_ONEROW)==0
+ ){
+ continue;
+ }
+ if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
+ pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
+ for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
+ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
+ || pTerm->pExpr->w.iJoin!=pItem->iCursor
+ ){
+ break;
+ }
+ }
+ if( hasRightJoin
+ && ExprHasProperty(pTerm->pExpr, EP_InnerON)
+ && pTerm->pExpr->w.iJoin==pItem->iCursor
+ ){
+ break; /* restriction (5) */
+ }
+ }
+ if( pTerm<pEnd ) continue;
+ WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop->cId));
+ notReady &= ~pLoop->maskSelf;
+ for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
+ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
+ pTerm->wtFlags |= TERM_CODED;
+ }
+ }
+ if( i!=pWInfo->nLevel-1 ){
+ int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
+ memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
+ }
+ pWInfo->nLevel--;
+ assert( pWInfo->nLevel>0 );
+ }
+ return notReady;
+}
+
+/*
+** Check to see if there are any SEARCH loops that might benefit from
+** using a Bloom filter. Consider a Bloom filter if:
+**
+** (1) The SEARCH happens more than N times where N is the number
+** of rows in the table that is being considered for the Bloom
+** filter.
+** (2) Some searches are expected to find zero rows. (This is determined
+** by the WHERE_SELFCULL flag on the term.)
+** (3) Bloom-filter processing is not disabled. (Checked by the
+** caller.)
+** (4) The size of the table being searched is known by ANALYZE.
+**
+** This block of code merely checks to see if a Bloom filter would be
+** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
+** WhereLoop. The implementation of the Bloom filter comes further
+** down where the code for each WhereLoop is generated.
+*/
+static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
+ const WhereInfo *pWInfo
+){
+ int i;
+ LogEst nSearch = 0;
+
+ assert( pWInfo->nLevel>=2 );
+ assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
+ for(i=0; i<pWInfo->nLevel; i++){
+ WhereLoop *pLoop = pWInfo->a[i].pWLoop;
+ const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
+ SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
+ Table *pTab = pItem->pTab;
+ if( (pTab->tabFlags & TF_HasStat1)==0 ) break;
+ pTab->tabFlags |= TF_StatsUsed;
+ if( i>=1
+ && (pLoop->wsFlags & reqFlags)==reqFlags
+ /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
+ && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
+ ){
+ if( nSearch > pTab->nRowLogEst ){
+ testcase( pItem->fg.jointype & JT_LEFT );
+ pLoop->wsFlags |= WHERE_BLOOMFILTER;
+ pLoop->wsFlags &= ~WHERE_IDX_ONLY;
+ WHERETRACE(0xffffffff, (
+ "-> use Bloom-filter on loop %c because there are ~%.1e "
+ "lookups into %s which has only ~%.1e rows\n",
+ pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
+ (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
+ }
+ }
+ nSearch += pLoop->nOut;
+ }
+}
+
+/*
+** The index pIdx is used by a query and contains one or more expressions.
+** In other words pIdx is an index on an expression. iIdxCur is the cursor
+** number for the index and iDataCur is the cursor number for the corresponding
+** table.
+**
+** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for
+** each of the expressions in the index so that the expression code generator
+** will know to replace occurrences of the indexed expression with
+** references to the corresponding column of the index.
+*/
+static SQLITE_NOINLINE void whereAddIndexedExpr(
+ Parse *pParse, /* Add IndexedExpr entries to pParse->pIdxEpr */
+ Index *pIdx, /* The index-on-expression that contains the expressions */
+ int iIdxCur, /* Cursor number for pIdx */
+ SrcItem *pTabItem /* The FROM clause entry for the table */
+){
+ int i;
+ IndexedExpr *p;
+ Table *pTab;
+ assert( pIdx->bHasExpr );
+ pTab = pIdx->pTable;
+ for(i=0; i<pIdx->nColumn; i++){
+ Expr *pExpr;
+ int j = pIdx->aiColumn[i];
+ int bMaybeNullRow;
+ if( j==XN_EXPR ){
+ pExpr = pIdx->aColExpr->a[i].pExpr;
+ testcase( pTabItem->fg.jointype & JT_LEFT );
+ testcase( pTabItem->fg.jointype & JT_RIGHT );
+ testcase( pTabItem->fg.jointype & JT_LTORJ );
+ bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0;
+ }else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){
+ pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]);
+ bMaybeNullRow = 0;
+ }else{
+ continue;
+ }
+ if( sqlite3ExprIsConstant(pExpr) ) continue;
+ p = sqlite3DbMallocRaw(pParse->db, sizeof(IndexedExpr));
+ if( p==0 ) break;
+ p->pIENext = pParse->pIdxEpr;
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x200 ){
+ sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur, i);
+ if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(pExpr);
+ }
+#endif
+ p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
+ p->iDataCur = pTabItem->iCursor;
+ p->iIdxCur = iIdxCur;
+ p->iIdxCol = i;
+ p->bMaybeNullRow = bMaybeNullRow;
+ if( sqlite3IndexAffinityStr(pParse->db, pIdx) ){
+ p->aff = pIdx->zColAff[i];
+ }
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+ p->zIdxName = pIdx->zName;
+#endif
+ pParse->pIdxEpr = p;
+ if( p->pIENext==0 ){
+ void *pArg = (void*)&pParse->pIdxEpr;
+ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg);
+ }
+ }
+}
+
+/*
+** Set the reverse-scan order mask to one for all tables in the query
+** with the exception of MATERIALIZED common table expressions that have
+** their own internal ORDER BY clauses.
+**
+** This implements the PRAGMA reverse_unordered_selects=ON setting.
+** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER).
+*/
+static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){
+ int ii;
+ for(ii=0; ii<pWInfo->pTabList->nSrc; ii++){
+ SrcItem *pItem = &pWInfo->pTabList->a[ii];
+ if( !pItem->fg.isCte
+ || pItem->u2.pCteUse->eM10d!=M10d_Yes
+ || NEVER(pItem->pSelect==0)
+ || pItem->pSelect->pOrderBy==0
+ ){
+ pWInfo->revMask |= MASKBIT(ii);
+ }
+ }
+}
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an opaque structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqlite3WhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqlite3WhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqlite3WhereEnd()
+** end /
+**
+** Note that the loops might not be nested in the order in which they
+** appear in the FROM clause if a different order is better able to make
+** use of indices. Note also that when the IN operator appears in
+** the WHERE clause, it might result in additional nested loops for
+** scanning through all values on the right-hand side of the IN.
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqlite3WhereEnd() generates the code to close them.
+**
+** The code that sqlite3WhereBegin() generates leaves the cursors named
+** in pTabList pointing at their appropriate entries. The [...] code
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract
+** data from the various tables of the loop.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptually coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
+** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
+**
+** The iIdxCur parameter is the cursor number of an index. If
+** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
+** to use for OR clause processing. The WHERE clause should use this
+** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
+** the first cursor in an array of cursors for all indices. iIdxCur should
+** be used to compute the appropriate cursor depending on which index is
+** used.
+*/
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
+ ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
+ Select *pSelect, /* The entire SELECT statement */
+ u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
+ int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
+ ** If WHERE_USE_LIMIT, then the limit amount */
+){
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
+ int nTabList; /* Number of elements in pTabList */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ Bitmask notReady; /* Cursors that are not yet positioned */
+ WhereLoopBuilder sWLB; /* The WhereLoop builder */
+ WhereMaskSet *pMaskSet; /* The expression mask set */
+ WhereLevel *pLevel; /* A single level in pWInfo->a[] */
+ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
+ int ii; /* Loop counter */
+ sqlite3 *db; /* Database connection */
+ int rc; /* Return code */
+ u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
+
+ assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
+ (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
+ ));
+
+ /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
+ assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
+ || (wctrlFlags & WHERE_USE_LIMIT)==0 );
+
+ /* Variable initialization */
+ db = pParse->db;
+ memset(&sWLB, 0, sizeof(sWLB));
+
+ /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
+ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
+ if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
+
+ /* The number of tables in the FROM clause is limited by the number of
+ ** bits in a Bitmask
+ */
+ testcase( pTabList->nSrc==BMS );
+ if( pTabList->nSrc>BMS ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
+ return 0;
+ }
+
+ /* This function normally generates a nested loop for all tables in
+ ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
+ ** only generate code for the first table in pTabList and assume that
+ ** any cursors associated with subsequent tables are uninitialized.
+ */
+ nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value. A single allocation is used to store the WhereInfo
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on
+ ** some architectures. Hence the ROUND8() below.
+ */
+ nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
+ pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
+ if( db->mallocFailed ){
+ sqlite3DbFree(db, pWInfo);
+ pWInfo = 0;
+ goto whereBeginError;
+ }
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->pOrderBy = pOrderBy;
+#if WHERETRACE_ENABLED
+ pWInfo->pWhere = pWhere;
+#endif
+ pWInfo->pResultSet = pResultSet;
+ pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
+ pWInfo->nLevel = nTabList;
+ pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
+ pWInfo->wctrlFlags = wctrlFlags;
+ pWInfo->iLimit = iAuxArg;
+ pWInfo->savedNQueryLoop = pParse->nQueryLoop;
+ pWInfo->pSelect = pSelect;
+ memset(&pWInfo->nOBSat, 0,
+ offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
+ memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
+ assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
+ pMaskSet = &pWInfo->sMaskSet;
+ pMaskSet->n = 0;
+ pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
+ ** a valid cursor number, to avoid an initial
+ ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
+ sWLB.pWInfo = pWInfo;
+ sWLB.pWC = &pWInfo->sWC;
+ sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
+ assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
+ whereLoopInit(sWLB.pNew);
+#ifdef SQLITE_DEBUG
+ sWLB.pNew->cId = '*';
+#endif
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator.
+ */
+ sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
+ sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
+
+ /* Special case: No FROM clause
+ */
+ if( nTabList==0 ){
+ if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
+ if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
+ && OptimizationEnabled(db, SQLITE_DistinctOpt)
+ ){
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }
+ ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
+ }else{
+ /* Assign a bit from the bitmask to every term in the FROM clause.
+ **
+ ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
+ **
+ ** The rule of the previous sentence ensures that if X is the bitmask for
+ ** a table T, then X-1 is the bitmask for all other tables to the left of T.
+ ** Knowing the bitmask for all tables to the left of a left join is
+ ** important. Ticket #3015.
+ **
+ ** Note that bitmasks are created for all pTabList->nSrc tables in
+ ** pTabList, not just the first nTabList tables. nTabList is normally
+ ** equal to pTabList->nSrc but might be shortened to 1 if the
+ ** WHERE_OR_SUBCLAUSE flag is set.
+ */
+ ii = 0;
+ do{
+ createMask(pMaskSet, pTabList->a[ii].iCursor);
+ sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
+ }while( (++ii)<pTabList->nSrc );
+ #ifdef SQLITE_DEBUG
+ {
+ Bitmask mx = 0;
+ for(ii=0; ii<pTabList->nSrc; ii++){
+ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
+ assert( m>=mx );
+ mx = m;
+ }
+ }
+ #endif
+ }
+
+ /* Analyze all of the subexpressions. */
+ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
+ if( pSelect && pSelect->pLimit ){
+ sqlite3WhereAddLimit(&pWInfo->sWC, pSelect);
+ }
+ if( pParse->nErr ) goto whereBeginError;
+
+ /* The False-WHERE-Term-Bypass optimization:
+ **
+ ** If there are WHERE terms that are false, then no rows will be output,
+ ** so skip over all of the code generated here.
+ **
+ ** Conditions:
+ **
+ ** (1) The WHERE term must not refer to any tables in the join.
+ ** (2) The term must not come from an ON clause on the
+ ** right-hand side of a LEFT or FULL JOIN.
+ ** (3) The term must not come from an ON clause, or there must be
+ ** no RIGHT or FULL OUTER joins in pTabList.
+ ** (4) If the expression contains non-deterministic functions
+ ** that are not within a sub-select. This is not required
+ ** for correctness but rather to preserves SQLite's legacy
+ ** behaviour in the following two cases:
+ **
+ ** WHERE random()>0; -- eval random() once per row
+ ** WHERE (SELECT random())>0; -- eval random() just once overall
+ **
+ ** Note that the Where term need not be a constant in order for this
+ ** optimization to apply, though it does need to be constant relative to
+ ** the current subquery (condition 1). The term might include variables
+ ** from outer queries so that the value of the term changes from one
+ ** invocation of the current subquery to the next.
+ */
+ for(ii=0; ii<sWLB.pWC->nBase; ii++){
+ WhereTerm *pT = &sWLB.pWC->a[ii]; /* A term of the WHERE clause */
+ Expr *pX; /* The expression of pT */
+ if( pT->wtFlags & TERM_VIRTUAL ) continue;
+ pX = pT->pExpr;
+ assert( pX!=0 );
+ assert( pT->prereqAll!=0 || !ExprHasProperty(pX, EP_OuterON) );
+ if( pT->prereqAll==0 /* Conditions (1) and (2) */
+ && (nTabList==0 || exprIsDeterministic(pX)) /* Condition (4) */
+ && !(ExprHasProperty(pX, EP_InnerON) /* Condition (3) */
+ && (pTabList->a[0].fg.jointype & JT_LTORJ)!=0 )
+ ){
+ sqlite3ExprIfFalse(pParse, pX, pWInfo->iBreak, SQLITE_JUMPIFNULL);
+ pT->wtFlags |= TERM_CODED;
+ }
+ }
+
+ if( wctrlFlags & WHERE_WANT_DISTINCT ){
+ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
+ /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
+ ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
+ wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
+ }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
+ /* The DISTINCT marking is pointless. Ignore it. */
+ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
+ }else if( pOrderBy==0 ){
+ /* Try to ORDER BY the result set to make distinct processing easier */
+ pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
+ pWInfo->pOrderBy = pResultSet;
+ }
+ }
+
+ /* Construct the WhereLoop objects */
+#if defined(WHERETRACE_ENABLED)
+ if( sqlite3WhereTrace & 0xffffffff ){
+ sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
+ if( wctrlFlags & WHERE_USE_LIMIT ){
+ sqlite3DebugPrintf(", limit: %d", iAuxArg);
+ }
+ sqlite3DebugPrintf(")\n");
+ if( sqlite3WhereTrace & 0x8000 ){
+ Select sSelect;
+ memset(&sSelect, 0, sizeof(sSelect));
+ sSelect.selFlags = SF_WhereBegin;
+ sSelect.pSrc = pTabList;
+ sSelect.pWhere = pWhere;
+ sSelect.pOrderBy = pOrderBy;
+ sSelect.pEList = pResultSet;
+ sqlite3TreeViewSelect(0, &sSelect, 0);
+ }
+ if( sqlite3WhereTrace & 0x4000 ){ /* Display all WHERE clause terms */
+ sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
+ sqlite3WhereClausePrint(sWLB.pWC);
+ }
+ }
+#endif
+
+ if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
+ rc = whereLoopAddAll(&sWLB);
+ if( rc ) goto whereBeginError;
+
+#ifdef SQLITE_ENABLE_STAT4
+ /* If one or more WhereTerm.truthProb values were used in estimating
+ ** loop parameters, but then those truthProb values were subsequently
+ ** changed based on STAT4 information while computing subsequent loops,
+ ** then we need to rerun the whole loop building process so that all
+ ** loops will be built using the revised truthProb values. */
+ if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
+ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
+ WHERETRACE(0xffffffff,
+ ("**** Redo all loop computations due to"
+ " TERM_HIGHTRUTH changes ****\n"));
+ while( pWInfo->pLoops ){
+ WhereLoop *p = pWInfo->pLoops;
+ pWInfo->pLoops = p->pNextLoop;
+ whereLoopDelete(db, p);
+ }
+ rc = whereLoopAddAll(&sWLB);
+ if( rc ) goto whereBeginError;
+ }
+#endif
+ WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
+
+ wherePathSolver(pWInfo, 0);
+ if( db->mallocFailed ) goto whereBeginError;
+ if( pWInfo->pOrderBy ){
+ wherePathSolver(pWInfo, pWInfo->nRowOut+1);
+ if( db->mallocFailed ) goto whereBeginError;
+ }
+
+ /* TUNING: Assume that a DISTINCT clause on a subquery reduces
+ ** the output size by a factor of 8 (LogEst -30).
+ */
+ if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){
+ WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n",
+ pWInfo->nRowOut, pWInfo->nRowOut-30));
+ pWInfo->nRowOut -= 30;
+ }
+
+ }
+ assert( pWInfo->pTabList!=0 );
+ if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
+ whereReverseScanOrder(pWInfo);
+ }
+ if( pParse->nErr ){
+ goto whereBeginError;
+ }
+ assert( db->mallocFailed==0 );
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace ){
+ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
+ if( pWInfo->nOBSat>0 ){
+ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
+ }
+ switch( pWInfo->eDistinct ){
+ case WHERE_DISTINCT_UNIQUE: {
+ sqlite3DebugPrintf(" DISTINCT=unique");
+ break;
+ }
+ case WHERE_DISTINCT_ORDERED: {
+ sqlite3DebugPrintf(" DISTINCT=ordered");
+ break;
+ }
+ case WHERE_DISTINCT_UNORDERED: {
+ sqlite3DebugPrintf(" DISTINCT=unordered");
+ break;
+ }
+ }
+ sqlite3DebugPrintf("\n");
+ for(ii=0; ii<pWInfo->nLevel; ii++){
+ sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
+ }
+ }
+#endif
+
+ /* Attempt to omit tables from a join that do not affect the result.
+ ** See the comment on whereOmitNoopJoin() for further information.
+ **
+ ** This query optimization is factored out into a separate "no-inline"
+ ** procedure to keep the sqlite3WhereBegin() procedure from becoming
+ ** too large. If sqlite3WhereBegin() becomes too large, that prevents
+ ** some C-compiler optimizers from in-lining the
+ ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
+ ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
+ */
+ notReady = ~(Bitmask)0;
+ if( pWInfo->nLevel>=2
+ && pResultSet!=0 /* these two combine to guarantee */
+ && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
+ && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
+ ){
+ notReady = whereOmitNoopJoin(pWInfo, notReady);
+ nTabList = pWInfo->nLevel;
+ assert( nTabList>0 );
+ }
+
+ /* Check to see if there are any SEARCH loops that might benefit from
+ ** using a Bloom filter.
+ */
+ if( pWInfo->nLevel>=2
+ && OptimizationEnabled(db, SQLITE_BloomFilter)
+ ){
+ whereCheckIfBloomFilterIsUseful(pWInfo);
+ }
+
+#if defined(WHERETRACE_ENABLED)
+ if( sqlite3WhereTrace & 0x4000 ){ /* Display all terms of the WHERE clause */
+ sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
+ sqlite3WhereClausePrint(sWLB.pWC);
+ }
+ WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n"));
+#endif
+ pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
+
+ /* If the caller is an UPDATE or DELETE statement that is requesting
+ ** to use a one-pass algorithm, determine if this is appropriate.
+ **
+ ** A one-pass approach can be used if the caller has requested one
+ ** and either (a) the scan visits at most one row or (b) each
+ ** of the following are true:
+ **
+ ** * the caller has indicated that a one-pass approach can be used
+ ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
+ ** * the table is not a virtual table, and
+ ** * either the scan does not use the OR optimization or the caller
+ ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
+ ** for DELETE).
+ **
+ ** The last qualification is because an UPDATE statement uses
+ ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
+ ** use a one-pass approach, and this is not set accurately for scans
+ ** that use the OR optimization.
+ */
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
+ int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
+ int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
+ assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
+ if( bOnerow || (
+ 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
+ && !IsVirtual(pTabList->a[0].pTab)
+ && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
+ && OptimizationEnabled(db, SQLITE_OnePass)
+ )){
+ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
+ if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
+ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
+ bFordelete = OPFLAG_FORDELETE;
+ }
+ pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
+ }
+ }
+ }
+
+ /* Open all tables in the pTabList and any indices selected for
+ ** searching those tables.
+ */
+ for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
+ Table *pTab; /* Table to open */
+ int iDb; /* Index of database containing table/index */
+ SrcItem *pTabItem;
+
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ pTab = pTabItem->pTab;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pLoop = pLevel->pWLoop;
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
+ /* Do nothing */
+ }else
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
+ int iCur = pTabItem->iCursor;
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
+ }else if( IsVirtual(pTab) ){
+ /* noop */
+ }else
+#endif
+ if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
+ || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
+ ){
+ int op = OP_OpenRead;
+ if( pWInfo->eOnePass!=ONEPASS_OFF ){
+ op = OP_OpenWrite;
+ pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
+ };
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
+ assert( pTabItem->iCursor==pLevel->iTabCur );
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
+ testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
+ if( pWInfo->eOnePass==ONEPASS_OFF
+ && pTab->nCol<BMS
+ && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
+ && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
+ ){
+ /* If we know that only a prefix of the record will be used,
+ ** it is advantageous to reduce the "column count" field in
+ ** the P4 operand of the OP_OpenRead/Write opcode. */
+ Bitmask b = pTabItem->colUsed;
+ int n = 0;
+ for(; b; b=b>>1, n++){}
+ sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
+ assert( n<=pTab->nCol );
+ }
+#ifdef SQLITE_ENABLE_CURSOR_HINTS
+ if( pLoop->u.btree.pIndex!=0 && (pTab->tabFlags & TF_WithoutRowid)==0 ){
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
+ }else
+#endif
+ {
+ sqlite3VdbeChangeP5(v, bFordelete);
+ }
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
+ (const u8*)&pTabItem->colUsed, P4_INT64);
+#endif
+ }else{
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ }
+ if( pLoop->wsFlags & WHERE_INDEXED ){
+ Index *pIx = pLoop->u.btree.pIndex;
+ int iIndexCur;
+ int op = OP_OpenRead;
+ /* iAuxArg is always set to a positive value if ONEPASS is possible */
+ assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
+ && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
+ ){
+ /* This is one term of an OR-optimization using the PRIMARY KEY of a
+ ** WITHOUT ROWID table. No need for a separate index */
+ iIndexCur = pLevel->iTabCur;
+ op = 0;
+ }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
+ Index *pJ = pTabItem->pTab->pIndex;
+ iIndexCur = iAuxArg;
+ assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
+ while( ALWAYS(pJ) && pJ!=pIx ){
+ iIndexCur++;
+ pJ = pJ->pNext;
+ }
+ op = OP_OpenWrite;
+ pWInfo->aiCurOnePass[1] = iIndexCur;
+ }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
+ iIndexCur = iAuxArg;
+ op = OP_ReopenIdx;
+ }else{
+ iIndexCur = pParse->nTab++;
+ if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){
+ whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem);
+ }
+ if( pIx->pPartIdxWhere && (pTabItem->fg.jointype & JT_RIGHT)==0 ){
+ wherePartIdxExpr(
+ pParse, pIx, pIx->pPartIdxWhere, 0, iIndexCur, pTabItem
+ );
+ }
+ }
+ pLevel->iIdxCur = iIndexCur;
+ assert( pIx!=0 );
+ assert( pIx->pSchema==pTab->pSchema );
+ assert( iIndexCur>=0 );
+ if( op ){
+ sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
+ && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
+ && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
+ && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
+ && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
+ && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
+ ){
+ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
+ }
+ VdbeComment((v, "%s", pIx->zName));
+#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
+ {
+ u64 colUsed = 0;
+ int ii, jj;
+ for(ii=0; ii<pIx->nColumn; ii++){
+ jj = pIx->aiColumn[ii];
+ if( jj<0 ) continue;
+ if( jj>63 ) jj = 63;
+ if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
+ colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
+ }
+ sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
+ (u8*)&colUsed, P4_INT64);
+ }
+#endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
+ }
+ }
+ if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
+ if( (pTabItem->fg.jointype & JT_RIGHT)!=0
+ && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
+ ){
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ pRJ->iMatch = pParse->nTab++;
+ pRJ->regBloom = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
+ pRJ->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
+ assert( pTab==pTabItem->pTab );
+ if( HasRowid(pTab) ){
+ KeyInfo *pInfo;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
+ pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
+ if( pInfo ){
+ pInfo->aColl[0] = 0;
+ pInfo->aSortFlags[0] = 0;
+ sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
+ }
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk);
+ }
+ pLoop->wsFlags &= ~WHERE_IDX_ONLY;
+ /* The nature of RIGHT JOIN processing is such that it messes up
+ ** the output order. So omit any ORDER BY/GROUP BY elimination
+ ** optimizations. We need to do an actual sort for RIGHT JOIN. */
+ pWInfo->nOBSat = 0;
+ pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
+ }
+ }
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
+ if( db->mallocFailed ) goto whereBeginError;
+
+ /* Generate the code to do the search. Each iteration of the for
+ ** loop below generates code for a single nested loop of the VM
+ ** program.
+ */
+ for(ii=0; ii<nTabList; ii++){
+ int addrExplain;
+ int wsFlags;
+ SrcItem *pSrc;
+ if( pParse->nErr ) goto whereBeginError;
+ pLevel = &pWInfo->a[ii];
+ wsFlags = pLevel->pWLoop->wsFlags;
+ pSrc = &pTabList->a[pLevel->iFrom];
+ if( pSrc->fg.isMaterialized ){
+ if( pSrc->fg.isCorrelated ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
+ }else{
+ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
+ sqlite3VdbeJumpHere(v, iOnce);
+ }
+ }
+ assert( pTabList == pWInfo->pTabList );
+ if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
+ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
+ constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel);
+#endif
+ }else{
+ sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
+ }
+ if( db->mallocFailed ) goto whereBeginError;
+ }
+ addrExplain = sqlite3WhereExplainOneScan(
+ pParse, pTabList, pLevel, wctrlFlags
+ );
+ pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
+ notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
+ pWInfo->iContinue = pLevel->addrCont;
+ if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
+ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
+ }
+ }
+
+ /* Done. */
+ VdbeModuleComment((v, "Begin WHERE-core"));
+ pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
+ return pWInfo;
+
+ /* Jump here if malloc fails */
+whereBeginError:
+ if( pWInfo ){
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ }
+ return 0;
+}
+
+/*
+** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
+** index rather than the main table. In SQLITE_DEBUG mode, we want
+** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
+** does that.
+*/
+#ifndef SQLITE_DEBUG
+# define OpcodeRewriteTrace(D,K,P) /* no-op */
+#else
+# define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
+ static void sqlite3WhereOpcodeRewriteTrace(
+ sqlite3 *db,
+ int pc,
+ VdbeOp *pOp
+ ){
+ if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
+ sqlite3VdbePrintOp(0, pc, pOp);
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if cursor iCur is opened by instruction k of the
+** bytecode. Used inside of assert() only.
+*/
+static int cursorIsOpen(Vdbe *v, int iCur, int k){
+ while( k>=0 ){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
+ if( pOp->p1!=iCur ) continue;
+ if( pOp->opcode==OP_Close ) return 0;
+ if( pOp->opcode==OP_OpenRead ) return 1;
+ if( pOp->opcode==OP_OpenWrite ) return 1;
+ if( pOp->opcode==OP_OpenDup ) return 1;
+ if( pOp->opcode==OP_OpenAutoindex ) return 1;
+ if( pOp->opcode==OP_OpenEphemeral ) return 1;
+ }
+ return 0;
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqlite3WhereBegin() for additional information.
+*/
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Parse *pParse = pWInfo->pParse;
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ WhereLoop *pLoop;
+ SrcList *pTabList = pWInfo->pTabList;
+ sqlite3 *db = pParse->db;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ int nRJ = 0;
+
+ /* Generate loop termination code.
+ */
+ VdbeModuleComment((v, "End WHERE-core"));
+ for(i=pWInfo->nLevel-1; i>=0; i--){
+ int addr;
+ pLevel = &pWInfo->a[i];
+ if( pLevel->pRJ ){
+ /* Terminate the subroutine that forms the interior of the loop of
+ ** the RIGHT JOIN table */
+ WhereRightJoin *pRJ = pLevel->pRJ;
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ pLevel->addrCont = 0;
+ pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
+ VdbeCoverage(v);
+ nRJ++;
+ }
+ pLoop = pLevel->pWLoop;
+ if( pLevel->op!=OP_Noop ){
+#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ int addrSeek = 0;
+ Index *pIdx;
+ int n;
+ if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
+ && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
+ && (pLoop->wsFlags & WHERE_INDEXED)!=0
+ && (pIdx = pLoop->u.btree.pIndex)->hasStat1
+ && (n = pLoop->u.btree.nDistinctCol)>0
+ && pIdx->aiRowLogEst[n]>=36
+ ){
+ int r1 = pParse->nMem+1;
+ int j, op;
+ for(j=0; j<n; j++){
+ sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
+ }
+ pParse->nMem += n+1;
+ op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
+ addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
+ VdbeCoverageIf(v, op==OP_SeekLT);
+ VdbeCoverageIf(v, op==OP_SeekGT);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
+ }
+#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
+ /* The common case: Advance to the next row */
+ if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
+ sqlite3VdbeChangeP5(v, pLevel->p5);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, pLevel->op==OP_Next);
+ VdbeCoverageIf(v, pLevel->op==OP_Prev);
+ VdbeCoverageIf(v, pLevel->op==OP_VNext);
+ if( pLevel->regBignull ){
+ sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
+ VdbeCoverage(v);
+ }
+#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
+ if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
+#endif
+ }else if( pLevel->addrCont ){
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont);
+ }
+ if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
+ struct InLoop *pIn;
+ int j;
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
+ assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
+ || pParse->db->mallocFailed );
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ if( pIn->eEndLoopOp!=OP_Noop ){
+ if( pIn->nPrefix ){
+ int bEarlyOut =
+ (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
+ && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
+ if( pLevel->iLeftJoin ){
+ /* For LEFT JOIN queries, cursor pIn->iCur may not have been
+ ** opened yet. This occurs for WHERE clauses such as
+ ** "a = ? AND b IN (...)", where the index is on (a, b). If
+ ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
+ ** never have been coded, but the body of the loop run to
+ ** return the null-row. So, if the cursor is not open yet,
+ ** jump over the OP_Next or OP_Prev instruction about to
+ ** be coded. */
+ sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
+ sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
+ VdbeCoverage(v);
+ }
+ if( bEarlyOut ){
+ sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
+ sqlite3VdbeCurrentAddr(v)+2,
+ pIn->iBase, pIn->nPrefix);
+ VdbeCoverage(v);
+ /* Retarget the OP_IsNull against the left operand of IN so
+ ** it jumps past the OP_IfNoHope. This is because the
+ ** OP_IsNull also bypasses the OP_Affinity opcode that is
+ ** required by OP_IfNoHope. */
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
+ }
+ }
+ sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
+ VdbeCoverage(v);
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
+ VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
+ }
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
+ }
+ }
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
+ if( pLevel->pRJ ){
+ sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
+ VdbeCoverage(v);
+ }
+ if( pLevel->addrSkip ){
+ sqlite3VdbeGoto(v, pLevel->addrSkip);
+ VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip);
+ sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
+ }
+#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( pLevel->addrLikeRep ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
+ pLevel->addrLikeRep);
+ VdbeCoverage(v);
+ }
+#endif
+ if( pLevel->iLeftJoin ){
+ int ws = pLoop->wsFlags;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
+ assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
+ if( (ws & WHERE_IDX_ONLY)==0 ){
+ assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
+ }
+ if( (ws & WHERE_INDEXED)
+ || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
+ ){
+ if( ws & WHERE_MULTI_OR ){
+ Index *pIx = pLevel->u.pCoveringIdx;
+ int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
+ sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIx);
+ }
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
+ }
+ if( pLevel->op==OP_Return ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
+ }else{
+ sqlite3VdbeGoto(v, pLevel->addrFirst);
+ }
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
+ pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
+ }
+
+ assert( pWInfo->nLevel<=pTabList->nSrc );
+ for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
+ int k, last;
+ VdbeOp *pOp, *pLastOp;
+ Index *pIdx = 0;
+ SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
+ Table *pTab = pTabItem->pTab;
+ assert( pTab!=0 );
+ pLoop = pLevel->pWLoop;
+
+ /* Do RIGHT JOIN processing. Generate code that will output the
+ ** unmatched rows of the right operand of the RIGHT JOIN with
+ ** all of the columns of the left operand set to NULL.
+ */
+ if( pLevel->pRJ ){
+ sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
+ continue;
+ }
+
+ /* For a co-routine, change all OP_Column references to the table of
+ ** the co-routine into OP_Copy of result contained in a register.
+ ** OP_Rowid becomes OP_Null.
+ */
+ if( pTabItem->fg.viaCoroutine ){
+ testcase( pParse->db->mallocFailed );
+ translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
+ pTabItem->regResult, 0);
+ continue;
+ }
+
+ /* If this scan uses an index, make VDBE code substitutions to read data
+ ** from the index instead of from the table where possible. In some cases
+ ** this optimization prevents the table from ever being read, which can
+ ** yield a significant performance boost.
+ **
+ ** Calls to the code generator in between sqlite3WhereBegin and
+ ** sqlite3WhereEnd will have created code that references the table
+ ** directly. This loop scans all that code looking for opcodes
+ ** that reference the table and converts them into opcodes that
+ ** reference the index.
+ */
+ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
+ pIdx = pLoop->u.btree.pIndex;
+ }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
+ pIdx = pLevel->u.pCoveringIdx;
+ }
+ if( pIdx
+ && !db->mallocFailed
+ ){
+ if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
+ last = iEnd;
+ }else{
+ last = pWInfo->iEndWhere;
+ }
+ if( pIdx->bHasExpr ){
+ IndexedExpr *p = pParse->pIdxEpr;
+ while( p ){
+ if( p->iIdxCur==pLevel->iIdxCur ){
+#ifdef WHERETRACE_ENABLED
+ if( sqlite3WhereTrace & 0x200 ){
+ sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n",
+ p->iIdxCur, p->iIdxCol);
+ if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(p->pExpr);
+ }
+#endif
+ p->iDataCur = -1;
+ p->iIdxCur = -1;
+ }
+ p = p->pIENext;
+ }
+ }
+ k = pLevel->addrBody + 1;
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeAddopTrace ){
+ printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n",
+ pLevel->iTabCur, pLevel->iIdxCur, k, last-1);
+ }
+ /* Proof that the "+1" on the k value above is safe */
+ pOp = sqlite3VdbeGetOp(v, k - 1);
+ assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
+ assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
+ assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
+#endif
+ pOp = sqlite3VdbeGetOp(v, k);
+ pLastOp = pOp + (last - k);
+ assert( pOp<=pLastOp );
+ do{
+ if( pOp->p1!=pLevel->iTabCur ){
+ /* no-op */
+ }else if( pOp->opcode==OP_Column
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ || pOp->opcode==OP_Offset
+#endif
+ ){
+ int x = pOp->p2;
+ assert( pIdx->pTable==pTab );
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ if( pOp->opcode==OP_Offset ){
+ /* Do not need to translate the column number */
+ }else
+#endif
+ if( !HasRowid(pTab) ){
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab);
+ x = pPk->aiColumn[x];
+ assert( x>=0 );
+ }else{
+ testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
+ x = sqlite3StorageColumnToTable(pTab,x);
+ }
+ x = sqlite3TableColumnToIndex(pIdx, x);
+ if( x>=0 ){
+ pOp->p2 = x;
+ pOp->p1 = pLevel->iIdxCur;
+ OpcodeRewriteTrace(db, k, pOp);
+ }else{
+ /* Unable to translate the table reference into an index
+ ** reference. Verify that this is harmless - that the
+ ** table being referenced really is open.
+ */
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || cursorIsOpen(v,pOp->p1,k)
+ || pOp->opcode==OP_Offset
+ );
+#else
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || cursorIsOpen(v,pOp->p1,k)
+ );
+#endif
+ }
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->p1 = pLevel->iIdxCur;
+ pOp->opcode = OP_IdxRowid;
+ OpcodeRewriteTrace(db, k, pOp);
+ }else if( pOp->opcode==OP_IfNullRow ){
+ pOp->p1 = pLevel->iIdxCur;
+ OpcodeRewriteTrace(db, k, pOp);
+ }
+#ifdef SQLITE_DEBUG
+ k++;
+#endif
+ }while( (++pOp)<pLastOp );
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
+#endif
+ }
+ }
+
+ /* The "break" point is here, just past the end of the outer loop.
+ ** Set it.
+ */
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
+
+ /* Final cleanup
+ */
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop;
+ whereInfoFree(db, pWInfo);
+ pParse->withinRJSubrtn -= nRJ;
+ return;
+}
+
+/************** End of where.c ***********************************************/
+/************** Begin file window.c ******************************************/
+/*
+** 2018 May 08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+/* #include "sqliteInt.h" */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+
+/*
+** SELECT REWRITING
+**
+** Any SELECT statement that contains one or more window functions in
+** either the select list or ORDER BY clause (the only two places window
+** functions may be used) is transformed by function sqlite3WindowRewrite()
+** in order to support window function processing. For example, with the
+** schema:
+**
+** CREATE TABLE t1(a, b, c, d, e, f, g);
+**
+** the statement:
+**
+** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
+**
+** is transformed to:
+**
+** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
+** SELECT a, e, c, d, b FROM t1 ORDER BY c, d
+** ) ORDER BY e;
+**
+** The flattening optimization is disabled when processing this transformed
+** SELECT statement. This allows the implementation of the window function
+** (in this case max()) to process rows sorted in order of (c, d), which
+** makes things easier for obvious reasons. More generally:
+**
+** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
+** the sub-query.
+**
+** * ORDER BY, LIMIT and OFFSET remain part of the parent query.
+**
+** * Terminals from each of the expression trees that make up the
+** select-list and ORDER BY expressions in the parent query are
+** selected by the sub-query. For the purposes of the transformation,
+** terminals are column references and aggregate functions.
+**
+** If there is more than one window function in the SELECT that uses
+** the same window declaration (the OVER bit), then a single scan may
+** be used to process more than one window function. For example:
+**
+** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
+** min(e) OVER (PARTITION BY c ORDER BY d)
+** FROM t1;
+**
+** is transformed in the same way as the example above. However:
+**
+** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
+** min(e) OVER (PARTITION BY a ORDER BY b)
+** FROM t1;
+**
+** Must be transformed to:
+**
+** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
+** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
+** SELECT a, e, c, d, b FROM t1 ORDER BY a, b
+** ) ORDER BY c, d
+** ) ORDER BY e;
+**
+** so that both min() and max() may process rows in the order defined by
+** their respective window declarations.
+**
+** INTERFACE WITH SELECT.C
+**
+** When processing the rewritten SELECT statement, code in select.c calls
+** sqlite3WhereBegin() to begin iterating through the results of the
+** sub-query, which is always implemented as a co-routine. It then calls
+** sqlite3WindowCodeStep() to process rows and finish the scan by calling
+** sqlite3WhereEnd().
+**
+** sqlite3WindowCodeStep() generates VM code so that, for each row returned
+** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
+** When the sub-routine is invoked:
+**
+** * The results of all window-functions for the row are stored
+** in the associated Window.regResult registers.
+**
+** * The required terminal values are stored in the current row of
+** temp table Window.iEphCsr.
+**
+** In some cases, depending on the window frame and the specific window
+** functions invoked, sqlite3WindowCodeStep() caches each entire partition
+** in a temp table before returning any rows. In other cases it does not.
+** This detail is encapsulated within this file, the code generated by
+** select.c is the same in either case.
+**
+** BUILT-IN WINDOW FUNCTIONS
+**
+** This implementation features the following built-in window functions:
+**
+** row_number()
+** rank()
+** dense_rank()
+** percent_rank()
+** cume_dist()
+** ntile(N)
+** lead(expr [, offset [, default]])
+** lag(expr [, offset [, default]])
+** first_value(expr)
+** last_value(expr)
+** nth_value(expr, N)
+**
+** These are the same built-in window functions supported by Postgres.
+** Although the behaviour of aggregate window functions (functions that
+** can be used as either aggregates or window functions) allows them to
+** be implemented using an API, built-in window functions are much more
+** esoteric. Additionally, some window functions (e.g. nth_value())
+** may only be implemented by caching the entire partition in memory.
+** As such, some built-in window functions use the same API as aggregate
+** window functions and some are implemented directly using VDBE
+** instructions. Additionally, for those functions that use the API, the
+** window frame is sometimes modified before the SELECT statement is
+** rewritten. For example, regardless of the specified window frame, the
+** row_number() function always uses:
+**
+** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+**
+** See sqlite3WindowUpdate() for details.
+**
+** As well as some of the built-in window functions, aggregate window
+** functions min() and max() are implemented using VDBE instructions if
+** the start of the window frame is declared as anything other than
+** UNBOUNDED PRECEDING.
+*/
+
+/*
+** Implementation of built-in window function row_number(). Assumes that the
+** window frame has been coerced to:
+**
+** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+*/
+static void row_numberStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ) (*p)++;
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void row_numberValueFunc(sqlite3_context *pCtx){
+ i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ sqlite3_result_int64(pCtx, (p ? *p : 0));
+}
+
+/*
+** Context object type used by rank(), dense_rank(), percent_rank() and
+** cume_dist().
+*/
+struct CallCount {
+ i64 nValue;
+ i64 nStep;
+ i64 nTotal;
+};
+
+/*
+** Implementation of built-in window function dense_rank(). Assumes that
+** the window frame has been set to:
+**
+** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+*/
+static void dense_rankStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ) p->nStep = 1;
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void dense_rankValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ if( p->nStep ){
+ p->nValue++;
+ p->nStep = 0;
+ }
+ sqlite3_result_int64(pCtx, p->nValue);
+ }
+}
+
+/*
+** Implementation of built-in window function nth_value(). This
+** implementation is used in "slow mode" only - when the EXCLUDE clause
+** is not set to the default value "NO OTHERS".
+*/
+struct NthValueCtx {
+ i64 nStep;
+ sqlite3_value *pValue;
+};
+static void nth_valueStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ i64 iVal;
+ switch( sqlite3_value_numeric_type(apArg[1]) ){
+ case SQLITE_INTEGER:
+ iVal = sqlite3_value_int64(apArg[1]);
+ break;
+ case SQLITE_FLOAT: {
+ double fVal = sqlite3_value_double(apArg[1]);
+ if( ((i64)fVal)!=fVal ) goto error_out;
+ iVal = (i64)fVal;
+ break;
+ }
+ default:
+ goto error_out;
+ }
+ if( iVal<=0 ) goto error_out;
+
+ p->nStep++;
+ if( iVal==p->nStep ){
+ p->pValue = sqlite3_value_dup(apArg[0]);
+ if( !p->pValue ){
+ sqlite3_result_error_nomem(pCtx);
+ }
+ }
+ }
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+ return;
+
+ error_out:
+ sqlite3_result_error(
+ pCtx, "second argument to nth_value must be a positive integer", -1
+ );
+}
+static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
+ if( p && p->pValue ){
+ sqlite3_result_value(pCtx, p->pValue);
+ sqlite3_value_free(p->pValue);
+ p->pValue = 0;
+ }
+}
+#define nth_valueInvFunc noopStepFunc
+#define nth_valueValueFunc noopValueFunc
+
+static void first_valueStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->pValue==0 ){
+ p->pValue = sqlite3_value_dup(apArg[0]);
+ if( !p->pValue ){
+ sqlite3_result_error_nomem(pCtx);
+ }
+ }
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void first_valueFinalizeFunc(sqlite3_context *pCtx){
+ struct NthValueCtx *p;
+ p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->pValue ){
+ sqlite3_result_value(pCtx, p->pValue);
+ sqlite3_value_free(p->pValue);
+ p->pValue = 0;
+ }
+}
+#define first_valueInvFunc noopStepFunc
+#define first_valueValueFunc noopValueFunc
+
+/*
+** Implementation of built-in window function rank(). Assumes that
+** the window frame has been set to:
+**
+** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
+*/
+static void rankStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nStep++;
+ if( p->nValue==0 ){
+ p->nValue = p->nStep;
+ }
+ }
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+}
+static void rankValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ sqlite3_result_int64(pCtx, p->nValue);
+ p->nValue = 0;
+ }
+}
+
+/*
+** Implementation of built-in window function percent_rank(). Assumes that
+** the window frame has been set to:
+**
+** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
+*/
+static void percent_rankStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nTotal++;
+ }
+}
+static void percent_rankInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ p->nStep++;
+}
+static void percent_rankValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nValue = p->nStep;
+ if( p->nTotal>1 ){
+ double r = (double)p->nValue / (double)(p->nTotal-1);
+ sqlite3_result_double(pCtx, r);
+ }else{
+ sqlite3_result_double(pCtx, 0.0);
+ }
+ }
+}
+#define percent_rankFinalizeFunc percent_rankValueFunc
+
+/*
+** Implementation of built-in window function cume_dist(). Assumes that
+** the window frame has been set to:
+**
+** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
+*/
+static void cume_distStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ p->nTotal++;
+ }
+}
+static void cume_distInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct CallCount *p;
+ UNUSED_PARAMETER(nArg); assert( nArg==0 );
+ UNUSED_PARAMETER(apArg);
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ p->nStep++;
+}
+static void cume_distValueFunc(sqlite3_context *pCtx){
+ struct CallCount *p;
+ p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
+ if( p ){
+ double r = (double)(p->nStep) / (double)(p->nTotal);
+ sqlite3_result_double(pCtx, r);
+ }
+}
+#define cume_distFinalizeFunc cume_distValueFunc
+
+/*
+** Context object for ntile() window function.
+*/
+struct NtileCtx {
+ i64 nTotal; /* Total rows in partition */
+ i64 nParam; /* Parameter passed to ntile(N) */
+ i64 iRow; /* Current row */
+};
+
+/*
+** Implementation of ntile(). This assumes that the window frame has
+** been coerced to:
+**
+** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
+*/
+static void ntileStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NtileCtx *p;
+ assert( nArg==1 ); UNUSED_PARAMETER(nArg);
+ p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ if( p->nTotal==0 ){
+ p->nParam = sqlite3_value_int64(apArg[0]);
+ if( p->nParam<=0 ){
+ sqlite3_result_error(
+ pCtx, "argument of ntile must be a positive integer", -1
+ );
+ }
+ }
+ p->nTotal++;
+ }
+}
+static void ntileInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct NtileCtx *p;
+ assert( nArg==1 ); UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+ p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ p->iRow++;
+}
+static void ntileValueFunc(sqlite3_context *pCtx){
+ struct NtileCtx *p;
+ p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->nParam>0 ){
+ int nSize = (p->nTotal / p->nParam);
+ if( nSize==0 ){
+ sqlite3_result_int64(pCtx, p->iRow+1);
+ }else{
+ i64 nLarge = p->nTotal - p->nParam*nSize;
+ i64 iSmall = nLarge*(nSize+1);
+ i64 iRow = p->iRow;
+
+ assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
+
+ if( iRow<iSmall ){
+ sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
+ }else{
+ sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
+ }
+ }
+ }
+}
+#define ntileFinalizeFunc ntileValueFunc
+
+/*
+** Context object for last_value() window function.
+*/
+struct LastValueCtx {
+ sqlite3_value *pVal;
+ int nVal;
+};
+
+/*
+** Implementation of last_value().
+*/
+static void last_valueStepFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct LastValueCtx *p;
+ UNUSED_PARAMETER(nArg);
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p ){
+ sqlite3_value_free(p->pVal);
+ p->pVal = sqlite3_value_dup(apArg[0]);
+ if( p->pVal==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ p->nVal++;
+ }
+ }
+}
+static void last_valueInvFunc(
+ sqlite3_context *pCtx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ struct LastValueCtx *p;
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(apArg);
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( ALWAYS(p) ){
+ p->nVal--;
+ if( p->nVal==0 ){
+ sqlite3_value_free(p->pVal);
+ p->pVal = 0;
+ }
+ }
+}
+static void last_valueValueFunc(sqlite3_context *pCtx){
+ struct LastValueCtx *p;
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
+ if( p && p->pVal ){
+ sqlite3_result_value(pCtx, p->pVal);
+ }
+}
+static void last_valueFinalizeFunc(sqlite3_context *pCtx){
+ struct LastValueCtx *p;
+ p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
+ if( p && p->pVal ){
+ sqlite3_result_value(pCtx, p->pVal);
+ sqlite3_value_free(p->pVal);
+ p->pVal = 0;
+ }
+}
+
+/*
+** Static names for the built-in window function names. These static
+** names are used, rather than string literals, so that FuncDef objects
+** can be associated with a particular window function by direct
+** comparison of the zName pointer. Example:
+**
+** if( pFuncDef->zName==row_valueName ){ ... }
+*/
+static const char row_numberName[] = "row_number";
+static const char dense_rankName[] = "dense_rank";
+static const char rankName[] = "rank";
+static const char percent_rankName[] = "percent_rank";
+static const char cume_distName[] = "cume_dist";
+static const char ntileName[] = "ntile";
+static const char last_valueName[] = "last_value";
+static const char nth_valueName[] = "nth_value";
+static const char first_valueName[] = "first_value";
+static const char leadName[] = "lead";
+static const char lagName[] = "lag";
+
+/*
+** No-op implementations of xStep() and xFinalize(). Used as place-holders
+** for built-in window functions that never call those interfaces.
+**
+** The noopValueFunc() is called but is expected to do nothing. The
+** noopStepFunc() is never called, and so it is marked with NO_TEST to
+** let the test coverage routine know not to expect this function to be
+** invoked.
+*/
+static void noopStepFunc( /*NO_TEST*/
+ sqlite3_context *p, /*NO_TEST*/
+ int n, /*NO_TEST*/
+ sqlite3_value **a /*NO_TEST*/
+){ /*NO_TEST*/
+ UNUSED_PARAMETER(p); /*NO_TEST*/
+ UNUSED_PARAMETER(n); /*NO_TEST*/
+ UNUSED_PARAMETER(a); /*NO_TEST*/
+ assert(0); /*NO_TEST*/
+} /*NO_TEST*/
+static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
+
+/* Window functions that use all window interfaces: xStep, xFinal,
+** xValue, and xInverse */
+#define WINDOWFUNCALL(name,nArg,extra) { \
+ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
+ name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \
+ name ## InvFunc, name ## Name, {0} \
+}
+
+/* Window functions that are implemented using bytecode and thus have
+** no-op routines for their methods */
+#define WINDOWFUNCNOOP(name,nArg,extra) { \
+ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
+ noopStepFunc, noopValueFunc, noopValueFunc, \
+ noopStepFunc, name ## Name, {0} \
+}
+
+/* Window functions that use all window interfaces: xStep, the
+** same routine for xFinalize and xValue and which never call
+** xInverse. */
+#define WINDOWFUNCX(name,nArg,extra) { \
+ nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
+ name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \
+ noopStepFunc, name ## Name, {0} \
+}
+
+
+/*
+** Register those built-in window functions that are not also aggregates.
+*/
+SQLITE_PRIVATE void sqlite3WindowFunctions(void){
+ static FuncDef aWindowFuncs[] = {
+ WINDOWFUNCX(row_number, 0, 0),
+ WINDOWFUNCX(dense_rank, 0, 0),
+ WINDOWFUNCX(rank, 0, 0),
+ WINDOWFUNCALL(percent_rank, 0, 0),
+ WINDOWFUNCALL(cume_dist, 0, 0),
+ WINDOWFUNCALL(ntile, 1, 0),
+ WINDOWFUNCALL(last_value, 1, 0),
+ WINDOWFUNCALL(nth_value, 2, 0),
+ WINDOWFUNCALL(first_value, 1, 0),
+ WINDOWFUNCNOOP(lead, 1, 0),
+ WINDOWFUNCNOOP(lead, 2, 0),
+ WINDOWFUNCNOOP(lead, 3, 0),
+ WINDOWFUNCNOOP(lag, 1, 0),
+ WINDOWFUNCNOOP(lag, 2, 0),
+ WINDOWFUNCNOOP(lag, 3, 0),
+ };
+ sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
+}
+
+static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
+ Window *p;
+ for(p=pList; p; p=p->pNextWin){
+ if( sqlite3StrICmp(p->zName, zName)==0 ) break;
+ }
+ if( p==0 ){
+ sqlite3ErrorMsg(pParse, "no such window: %s", zName);
+ }
+ return p;
+}
+
+/*
+** This function is called immediately after resolving the function name
+** for a window function within a SELECT statement. Argument pList is a
+** linked list of WINDOW definitions for the current SELECT statement.
+** Argument pFunc is the function definition just resolved and pWin
+** is the Window object representing the associated OVER clause. This
+** function updates the contents of pWin as follows:
+**
+** * If the OVER clause referred to a named window (as in "max(x) OVER win"),
+** search list pList for a matching WINDOW definition, and update pWin
+** accordingly. If no such WINDOW clause can be found, leave an error
+** in pParse.
+**
+** * If the function is a built-in window function that requires the
+** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
+** of this file), pWin is updated here.
+*/
+SQLITE_PRIVATE void sqlite3WindowUpdate(
+ Parse *pParse,
+ Window *pList, /* List of named windows for this SELECT */
+ Window *pWin, /* Window frame to update */
+ FuncDef *pFunc /* Window function definition */
+){
+ if( pWin->zName && pWin->eFrmType==0 ){
+ Window *p = windowFind(pParse, pList, pWin->zName);
+ if( p==0 ) return;
+ pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
+ pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
+ pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
+ pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
+ pWin->eStart = p->eStart;
+ pWin->eEnd = p->eEnd;
+ pWin->eFrmType = p->eFrmType;
+ pWin->eExclude = p->eExclude;
+ }else{
+ sqlite3WindowChain(pParse, pWin, pList);
+ }
+ if( (pWin->eFrmType==TK_RANGE)
+ && (pWin->pStart || pWin->pEnd)
+ && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
+ ){
+ sqlite3ErrorMsg(pParse,
+ "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
+ );
+ }else
+ if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
+ sqlite3 *db = pParse->db;
+ if( pWin->pFilter ){
+ sqlite3ErrorMsg(pParse,
+ "FILTER clause may only be used with aggregate window functions"
+ );
+ }else{
+ struct WindowUpdate {
+ const char *zFunc;
+ int eFrmType;
+ int eStart;
+ int eEnd;
+ } aUp[] = {
+ { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
+ { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
+ { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
+ { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED },
+ { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
+ { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED },
+ { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED },
+ { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
+ };
+ int i;
+ for(i=0; i<ArraySize(aUp); i++){
+ if( pFunc->zName==aUp[i].zFunc ){
+ sqlite3ExprDelete(db, pWin->pStart);
+ sqlite3ExprDelete(db, pWin->pEnd);
+ pWin->pEnd = pWin->pStart = 0;
+ pWin->eFrmType = aUp[i].eFrmType;
+ pWin->eStart = aUp[i].eStart;
+ pWin->eEnd = aUp[i].eEnd;
+ pWin->eExclude = 0;
+ if( pWin->eStart==TK_FOLLOWING ){
+ pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
+ }
+ break;
+ }
+ }
+ }
+ }
+ pWin->pWFunc = pFunc;
+}
+
+/*
+** Context object passed through sqlite3WalkExprList() to
+** selectWindowRewriteExprCb() by selectWindowRewriteEList().
+*/
+typedef struct WindowRewrite WindowRewrite;
+struct WindowRewrite {
+ Window *pWin;
+ SrcList *pSrc;
+ ExprList *pSub;
+ Table *pTab;
+ Select *pSubSelect; /* Current sub-select, if any */
+};
+
+/*
+** Callback function used by selectWindowRewriteEList(). If necessary,
+** this function appends to the output expression-list and updates
+** expression (*ppExpr) in place.
+*/
+static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
+ struct WindowRewrite *p = pWalker->u.pRewrite;
+ Parse *pParse = pWalker->pParse;
+ assert( p!=0 );
+ assert( p->pWin!=0 );
+
+ /* If this function is being called from within a scalar sub-select
+ ** that used by the SELECT statement being processed, only process
+ ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
+ ** not process aggregates or window functions at all, as they belong
+ ** to the scalar sub-select. */
+ if( p->pSubSelect ){
+ if( pExpr->op!=TK_COLUMN ){
+ return WRC_Continue;
+ }else{
+ int nSrc = p->pSrc->nSrc;
+ int i;
+ for(i=0; i<nSrc; i++){
+ if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
+ }
+ if( i==nSrc ) return WRC_Continue;
+ }
+ }
+
+ switch( pExpr->op ){
+
+ case TK_FUNCTION:
+ if( !ExprHasProperty(pExpr, EP_WinFunc) ){
+ break;
+ }else{
+ Window *pWin;
+ for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
+ if( pExpr->y.pWin==pWin ){
+ assert( pWin->pOwner==pExpr );
+ return WRC_Prune;
+ }
+ }
+ }
+ /* no break */ deliberate_fall_through
+
+ case TK_IF_NULL_ROW:
+ case TK_AGG_FUNCTION:
+ case TK_COLUMN: {
+ int iCol = -1;
+ if( pParse->db->mallocFailed ) return WRC_Abort;
+ if( p->pSub ){
+ int i;
+ for(i=0; i<p->pSub->nExpr; i++){
+ if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
+ iCol = i;
+ break;
+ }
+ }
+ }
+ if( iCol<0 ){
+ Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
+ if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
+ p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
+ }
+ if( p->pSub ){
+ int f = pExpr->flags & EP_Collate;
+ assert( ExprHasProperty(pExpr, EP_Static)==0 );
+ ExprSetProperty(pExpr, EP_Static);
+ sqlite3ExprDelete(pParse->db, pExpr);
+ ExprClearProperty(pExpr, EP_Static);
+ memset(pExpr, 0, sizeof(Expr));
+
+ pExpr->op = TK_COLUMN;
+ pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
+ pExpr->iTable = p->pWin->iEphCsr;
+ pExpr->y.pTab = p->pTab;
+ pExpr->flags = f;
+ }
+ if( pParse->db->mallocFailed ) return WRC_Abort;
+ break;
+ }
+
+ default: /* no-op */
+ break;
+ }
+
+ return WRC_Continue;
+}
+static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
+ struct WindowRewrite *p = pWalker->u.pRewrite;
+ Select *pSave = p->pSubSelect;
+ if( pSave==pSelect ){
+ return WRC_Continue;
+ }else{
+ p->pSubSelect = pSelect;
+ sqlite3WalkSelect(pWalker, pSelect);
+ p->pSubSelect = pSave;
+ }
+ return WRC_Prune;
+}
+
+
+/*
+** Iterate through each expression in expression-list pEList. For each:
+**
+** * TK_COLUMN,
+** * aggregate function, or
+** * window function with a Window object that is not a member of the
+** Window list passed as the second argument (pWin).
+**
+** Append the node to output expression-list (*ppSub). And replace it
+** with a TK_COLUMN that reads the (N-1)th element of table
+** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
+** appending the new one.
+*/
+static void selectWindowRewriteEList(
+ Parse *pParse,
+ Window *pWin,
+ SrcList *pSrc,
+ ExprList *pEList, /* Rewrite expressions in this list */
+ Table *pTab,
+ ExprList **ppSub /* IN/OUT: Sub-select expression-list */
+){
+ Walker sWalker;
+ WindowRewrite sRewrite;
+
+ assert( pWin!=0 );
+ memset(&sWalker, 0, sizeof(Walker));
+ memset(&sRewrite, 0, sizeof(WindowRewrite));
+
+ sRewrite.pSub = *ppSub;
+ sRewrite.pWin = pWin;
+ sRewrite.pSrc = pSrc;
+ sRewrite.pTab = pTab;
+
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = selectWindowRewriteExprCb;
+ sWalker.xSelectCallback = selectWindowRewriteSelectCb;
+ sWalker.u.pRewrite = &sRewrite;
+
+ (void)sqlite3WalkExprList(&sWalker, pEList);
+
+ *ppSub = sRewrite.pSub;
+}
+
+/*
+** Append a copy of each expression in expression-list pAppend to
+** expression list pList. Return a pointer to the result list.
+*/
+static ExprList *exprListAppendList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ ExprList *pAppend, /* List of values to append. Might be NULL */
+ int bIntToNull
+){
+ if( pAppend ){
+ int i;
+ int nInit = pList ? pList->nExpr : 0;
+ for(i=0; i<pAppend->nExpr; i++){
+ sqlite3 *db = pParse->db;
+ Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pDup);
+ break;
+ }
+ if( bIntToNull ){
+ int iDummy;
+ Expr *pSub;
+ pSub = sqlite3ExprSkipCollateAndLikely(pDup);
+ if( sqlite3ExprIsInteger(pSub, &iDummy) ){
+ pSub->op = TK_NULL;
+ pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
+ pSub->u.zToken = 0;
+ }
+ }
+ pList = sqlite3ExprListAppend(pParse, pList, pDup);
+ if( pList ) pList->a[nInit+i].fg.sortFlags = pAppend->a[i].fg.sortFlags;
+ }
+ }
+ return pList;
+}
+
+/*
+** When rewriting a query, if the new subquery in the FROM clause
+** contains TK_AGG_FUNCTION nodes that refer to an outer query,
+** then we have to increase the Expr->op2 values of those nodes
+** due to the extra subquery layer that was added.
+**
+** See also the incrAggDepth() routine in resolve.c
+*/
+static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_AGG_FUNCTION
+ && pExpr->op2>=pWalker->walkerDepth
+ ){
+ pExpr->op2++;
+ }
+ return WRC_Continue;
+}
+
+static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ sqlite3ErrorMsg(pWalker->pParse,
+ "misuse of aggregate: %s()", pExpr->u.zToken);
+ }
+ return WRC_Continue;
+}
+
+/*
+** If the SELECT statement passed as the second argument does not invoke
+** any SQL window functions, this function is a no-op. Otherwise, it
+** rewrites the SELECT statement so that window function xStep functions
+** are invoked in the correct order as described under "SELECT REWRITING"
+** at the top of this file.
+*/
+SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){
+ int rc = SQLITE_OK;
+ if( p->pWin
+ && p->pPrior==0
+ && ALWAYS((p->selFlags & SF_WinRewrite)==0)
+ && ALWAYS(!IN_RENAME_OBJECT)
+ ){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ sqlite3 *db = pParse->db;
+ Select *pSub = 0; /* The subquery */
+ SrcList *pSrc = p->pSrc;
+ Expr *pWhere = p->pWhere;
+ ExprList *pGroupBy = p->pGroupBy;
+ Expr *pHaving = p->pHaving;
+ ExprList *pSort = 0;
+
+ ExprList *pSublist = 0; /* Expression list for sub-query */
+ Window *pMWin = p->pWin; /* Main window object */
+ Window *pWin; /* Window object iterator */
+ Table *pTab;
+ Walker w;
+
+ u32 selFlags = p->selFlags;
+
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ){
+ return sqlite3ErrorToParser(db, SQLITE_NOMEM);
+ }
+ sqlite3AggInfoPersistWalkerInit(&w, pParse);
+ sqlite3WalkSelect(&w, p);
+ if( (p->selFlags & SF_Aggregate)==0 ){
+ w.xExprCallback = disallowAggregatesInOrderByCb;
+ w.xSelectCallback = 0;
+ sqlite3WalkExprList(&w, p->pOrderBy);
+ }
+
+ p->pSrc = 0;
+ p->pWhere = 0;
+ p->pGroupBy = 0;
+ p->pHaving = 0;
+ p->selFlags &= ~SF_Aggregate;
+ p->selFlags |= SF_WinRewrite;
+
+ /* Create the ORDER BY clause for the sub-select. This is the concatenation
+ ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
+ ** redundant, remove the ORDER BY from the parent SELECT. */
+ pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
+ pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
+ if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
+ int nSave = pSort->nExpr;
+ pSort->nExpr = p->pOrderBy->nExpr;
+ if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ p->pOrderBy = 0;
+ }
+ pSort->nExpr = nSave;
+ }
+
+ /* Assign a cursor number for the ephemeral table used to buffer rows.
+ ** The OpenEphemeral instruction is coded later, after it is known how
+ ** many columns the table will have. */
+ pMWin->iEphCsr = pParse->nTab++;
+ pParse->nTab += 3;
+
+ selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
+ selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
+ pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
+
+ /* Append the PARTITION BY and ORDER BY expressions to the to the
+ ** sub-select expression list. They are required to figure out where
+ ** boundaries for partitions and sets of peer rows lie. */
+ pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
+ pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
+
+ /* Append the arguments passed to each window function to the
+ ** sub-select expression list. Also allocate two registers for each
+ ** window function - one for the accumulator, another for interim
+ ** results. */
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ ExprList *pArgs;
+ assert( ExprUseXList(pWin->pOwner) );
+ assert( pWin->pWFunc!=0 );
+ pArgs = pWin->pOwner->x.pList;
+ if( pWin->pWFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
+ selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
+ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
+ pWin->bExprArgs = 1;
+ }else{
+ pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
+ pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
+ }
+ if( pWin->pFilter ){
+ Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
+ pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
+ }
+ pWin->regAccum = ++pParse->nMem;
+ pWin->regResult = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ }
+
+ /* If there is no ORDER BY or PARTITION BY clause, and the window
+ ** function accepts zero arguments, and there are no other columns
+ ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
+ ** that pSublist is still NULL here. Add a constant expression here to
+ ** keep everything legal in this case.
+ */
+ if( pSublist==0 ){
+ pSublist = sqlite3ExprListAppend(pParse, 0,
+ sqlite3Expr(db, TK_INTEGER, "0")
+ );
+ }
+
+ pSub = sqlite3SelectNew(
+ pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
+ );
+ TREETRACE(0x40,pParse,pSub,
+ ("New window-function subquery in FROM clause of (%u/%p)\n",
+ p->selId, p));
+ p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
+ assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside
+ ** of sqlite3DbMallocRawNN() called from
+ ** sqlite3SrcListAppend() */
+ if( p->pSrc ){
+ Table *pTab2;
+ p->pSrc->a[0].pSelect = pSub;
+ p->pSrc->a[0].fg.isCorrelated = 1;
+ sqlite3SrcListAssignCursors(pParse, p->pSrc);
+ pSub->selFlags |= SF_Expanded|SF_OrderByReqd;
+ pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
+ pSub->selFlags |= (selFlags & SF_Aggregate);
+ if( pTab2==0 ){
+ /* Might actually be some other kind of error, but in that case
+ ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
+ ** the correct error message regardless. */
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pTab, pTab2, sizeof(Table));
+ pTab->tabFlags |= TF_Ephemeral;
+ p->pSrc->a[0].pTab = pTab;
+ pTab = pTab2;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
+ w.xSelectCallback = sqlite3WalkerDepthIncrease;
+ w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
+ sqlite3WalkSelect(&w, pSub);
+ }
+ }else{
+ sqlite3SelectDelete(db, pSub);
+ }
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+
+ /* Defer deleting the temporary table pTab because if an error occurred,
+ ** there could still be references to that table embedded in the
+ ** result-set or ORDER BY clause of the SELECT statement p. */
+ sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab);
+ }
+
+ assert( rc==SQLITE_OK || pParse->nErr!=0 );
+ return rc;
+}
+
+/*
+** Unlink the Window object from the Select to which it is attached,
+** if it is attached.
+*/
+SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window *p){
+ if( p->ppThis ){
+ *p->ppThis = p->pNextWin;
+ if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
+ p->ppThis = 0;
+ }
+}
+
+/*
+** Free the Window object passed as the second argument.
+*/
+SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3 *db, Window *p){
+ if( p ){
+ sqlite3WindowUnlinkFromSelect(p);
+ sqlite3ExprDelete(db, p->pFilter);
+ sqlite3ExprListDelete(db, p->pPartition);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3ExprDelete(db, p->pEnd);
+ sqlite3ExprDelete(db, p->pStart);
+ sqlite3DbFree(db, p->zName);
+ sqlite3DbFree(db, p->zBase);
+ sqlite3DbFree(db, p);
+ }
+}
+
+/*
+** Free the linked list of Window objects starting at the second argument.
+*/
+SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p){
+ while( p ){
+ Window *pNext = p->pNextWin;
+ sqlite3WindowDelete(db, p);
+ p = pNext;
+ }
+}
+
+/*
+** The argument expression is an PRECEDING or FOLLOWING offset. The
+** value should be a non-negative integer. If the value is not a
+** constant, change it to NULL. The fact that it is then a non-negative
+** integer will be caught later. But it is important not to leave
+** variable values in the expression tree.
+*/
+static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
+ if( 0==sqlite3ExprIsConstant(pExpr) ){
+ if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
+ sqlite3ExprDelete(pParse->db, pExpr);
+ pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
+ }
+ return pExpr;
+}
+
+/*
+** Allocate and return a new Window object describing a Window Definition.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowAlloc(
+ Parse *pParse, /* Parsing context */
+ int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
+ int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
+ Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */
+ int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
+ Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */
+ u8 eExclude /* EXCLUDE clause */
+){
+ Window *pWin = 0;
+ int bImplicitFrame = 0;
+
+ /* Parser assures the following: */
+ assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
+ assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
+ || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
+ assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
+ || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
+ assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
+ assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
+
+ if( eType==0 ){
+ bImplicitFrame = 1;
+ eType = TK_RANGE;
+ }
+
+ /* Additionally, the
+ ** starting boundary type may not occur earlier in the following list than
+ ** the ending boundary type:
+ **
+ ** UNBOUNDED PRECEDING
+ ** <expr> PRECEDING
+ ** CURRENT ROW
+ ** <expr> FOLLOWING
+ ** UNBOUNDED FOLLOWING
+ **
+ ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
+ ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
+ ** frame boundary.
+ */
+ if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
+ || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
+ ){
+ sqlite3ErrorMsg(pParse, "unsupported frame specification");
+ goto windowAllocErr;
+ }
+
+ pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
+ if( pWin==0 ) goto windowAllocErr;
+ pWin->eFrmType = eType;
+ pWin->eStart = eStart;
+ pWin->eEnd = eEnd;
+ if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
+ eExclude = TK_NO;
+ }
+ pWin->eExclude = eExclude;
+ pWin->bImplicitFrame = bImplicitFrame;
+ pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
+ pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
+ return pWin;
+
+windowAllocErr:
+ sqlite3ExprDelete(pParse->db, pEnd);
+ sqlite3ExprDelete(pParse->db, pStart);
+ return 0;
+}
+
+/*
+** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
+** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
+** equivalent nul-terminated string.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowAssemble(
+ Parse *pParse,
+ Window *pWin,
+ ExprList *pPartition,
+ ExprList *pOrderBy,
+ Token *pBase
+){
+ if( pWin ){
+ pWin->pPartition = pPartition;
+ pWin->pOrderBy = pOrderBy;
+ if( pBase ){
+ pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
+ }
+ }else{
+ sqlite3ExprListDelete(pParse->db, pPartition);
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ }
+ return pWin;
+}
+
+/*
+** Window *pWin has just been created from a WINDOW clause. Token pBase
+** is the base window. Earlier windows from the same WINDOW clause are
+** stored in the linked list starting at pWin->pNextWin. This function
+** either updates *pWin according to the base specification, or else
+** leaves an error in pParse.
+*/
+SQLITE_PRIVATE void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
+ if( pWin->zBase ){
+ sqlite3 *db = pParse->db;
+ Window *pExist = windowFind(pParse, pList, pWin->zBase);
+ if( pExist ){
+ const char *zErr = 0;
+ /* Check for errors */
+ if( pWin->pPartition ){
+ zErr = "PARTITION clause";
+ }else if( pExist->pOrderBy && pWin->pOrderBy ){
+ zErr = "ORDER BY clause";
+ }else if( pExist->bImplicitFrame==0 ){
+ zErr = "frame specification";
+ }
+ if( zErr ){
+ sqlite3ErrorMsg(pParse,
+ "cannot override %s of window: %s", zErr, pWin->zBase
+ );
+ }else{
+ pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
+ if( pExist->pOrderBy ){
+ assert( pWin->pOrderBy==0 );
+ pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
+ }
+ sqlite3DbFree(db, pWin->zBase);
+ pWin->zBase = 0;
+ }
+ }
+ }
+}
+
+/*
+** Attach window object pWin to expression p.
+*/
+SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
+ if( p ){
+ assert( p->op==TK_FUNCTION );
+ assert( pWin );
+ assert( ExprIsFullSize(p) );
+ p->y.pWin = pWin;
+ ExprSetProperty(p, EP_WinFunc|EP_FullSize);
+ pWin->pOwner = p;
+ if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
+ sqlite3ErrorMsg(pParse,
+ "DISTINCT is not supported for window functions"
+ );
+ }
+ }else{
+ sqlite3WindowDelete(pParse->db, pWin);
+ }
+}
+
+/*
+** Possibly link window pWin into the list at pSel->pWin (window functions
+** to be processed as part of SELECT statement pSel). The window is linked
+** in if either (a) there are no other windows already linked to this
+** SELECT, or (b) the windows already linked use a compatible window frame.
+*/
+SQLITE_PRIVATE void sqlite3WindowLink(Select *pSel, Window *pWin){
+ if( pSel ){
+ if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
+ pWin->pNextWin = pSel->pWin;
+ if( pSel->pWin ){
+ pSel->pWin->ppThis = &pWin->pNextWin;
+ }
+ pSel->pWin = pWin;
+ pWin->ppThis = &pSel->pWin;
+ }else{
+ if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
+ pSel->selFlags |= SF_MultiPart;
+ }
+ }
+ }
+}
+
+/*
+** Return 0 if the two window objects are identical, 1 if they are
+** different, or 2 if it cannot be determined if the objects are identical
+** or not. Identical window objects can be processed in a single scan.
+*/
+SQLITE_PRIVATE int sqlite3WindowCompare(
+ const Parse *pParse,
+ const Window *p1,
+ const Window *p2,
+ int bFilter
+){
+ int res;
+ if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
+ if( p1->eFrmType!=p2->eFrmType ) return 1;
+ if( p1->eStart!=p2->eStart ) return 1;
+ if( p1->eEnd!=p2->eEnd ) return 1;
+ if( p1->eExclude!=p2->eExclude ) return 1;
+ if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
+ if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
+ if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
+ return res;
+ }
+ if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
+ return res;
+ }
+ if( bFilter ){
+ if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
+ return res;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** This is called by code in select.c before it calls sqlite3WhereBegin()
+** to begin iterating through the sub-query results. It is used to allocate
+** and initialize registers and cursors used by sqlite3WindowCodeStep().
+*/
+SQLITE_PRIVATE void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
+ int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
+ Window *pMWin = pSelect->pWin;
+ Window *pWin;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
+
+ /* Allocate registers to use for PARTITION BY values, if any. Initialize
+ ** said registers to NULL. */
+ if( pMWin->pPartition ){
+ int nExpr = pMWin->pPartition->nExpr;
+ pMWin->regPart = pParse->nMem+1;
+ pParse->nMem += nExpr;
+ sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
+ }
+
+ pMWin->regOne = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
+
+ if( pMWin->eExclude ){
+ pMWin->regStartRowid = ++pParse->nMem;
+ pMWin->regEndRowid = ++pParse->nMem;
+ pMWin->csrApp = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
+ return;
+ }
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *p = pWin->pWFunc;
+ if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
+ /* The inline versions of min() and max() require a single ephemeral
+ ** table and 3 registers. The registers are used as follows:
+ **
+ ** regApp+0: slot to copy min()/max() argument to for MakeRecord
+ ** regApp+1: integer value used to ensure keys are unique
+ ** regApp+2: output of MakeRecord
+ */
+ ExprList *pList;
+ KeyInfo *pKeyInfo;
+ assert( ExprUseXList(pWin->pOwner) );
+ pList = pWin->pOwner->x.pList;
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
+ pWin->csrApp = pParse->nTab++;
+ pWin->regApp = pParse->nMem+1;
+ pParse->nMem += 3;
+ if( pKeyInfo && pWin->pWFunc->zName[1]=='i' ){
+ assert( pKeyInfo->aSortFlags[0]==0 );
+ pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
+ }
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
+ sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
+ }
+ else if( p->zName==nth_valueName || p->zName==first_valueName ){
+ /* Allocate two registers at pWin->regApp. These will be used to
+ ** store the start and end index of the current frame. */
+ pWin->regApp = pParse->nMem+1;
+ pWin->csrApp = pParse->nTab++;
+ pParse->nMem += 2;
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
+ }
+ else if( p->zName==leadName || p->zName==lagName ){
+ pWin->csrApp = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
+ }
+ }
+}
+
+#define WINDOW_STARTING_INT 0
+#define WINDOW_ENDING_INT 1
+#define WINDOW_NTH_VALUE_INT 2
+#define WINDOW_STARTING_NUM 3
+#define WINDOW_ENDING_NUM 4
+
+/*
+** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
+** value of the second argument to nth_value() (eCond==2) has just been
+** evaluated and the result left in register reg. This function generates VM
+** code to check that the value is a non-negative integer and throws an
+** exception if it is not.
+*/
+static void windowCheckValue(Parse *pParse, int reg, int eCond){
+ static const char *azErr[] = {
+ "frame starting offset must be a non-negative integer",
+ "frame ending offset must be a non-negative integer",
+ "second argument to nth_value must be a positive integer",
+ "frame starting offset must be a non-negative number",
+ "frame ending offset must be a non-negative number",
+ };
+ static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int regZero = sqlite3GetTempReg(pParse);
+ assert( eCond>=0 && eCond<ArraySize(azErr) );
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
+ if( eCond>=WINDOW_STARTING_NUM ){
+ int regString = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
+ sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
+ VdbeCoverage(v);
+ assert( eCond==3 || eCond==4 );
+ VdbeCoverageIf(v, eCond==3);
+ VdbeCoverageIf(v, eCond==4);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ assert( eCond==0 || eCond==1 || eCond==2 );
+ VdbeCoverageIf(v, eCond==0);
+ VdbeCoverageIf(v, eCond==1);
+ VdbeCoverageIf(v, eCond==2);
+ }
+ sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
+ VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
+ VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */
+ VdbeCoverageNeverNullIf(v, eCond==2);
+ VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
+ VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */
+ sqlite3MayAbort(pParse);
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
+ sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
+ sqlite3ReleaseTempReg(pParse, regZero);
+}
+
+/*
+** Return the number of arguments passed to the window-function associated
+** with the object passed as the only argument to this function.
+*/
+static int windowArgCount(Window *pWin){
+ const ExprList *pList;
+ assert( ExprUseXList(pWin->pOwner) );
+ pList = pWin->pOwner->x.pList;
+ return (pList ? pList->nExpr : 0);
+}
+
+typedef struct WindowCodeArg WindowCodeArg;
+typedef struct WindowCsrAndReg WindowCsrAndReg;
+
+/*
+** See comments above struct WindowCodeArg.
+*/
+struct WindowCsrAndReg {
+ int csr; /* Cursor number */
+ int reg; /* First in array of peer values */
+};
+
+/*
+** A single instance of this structure is allocated on the stack by
+** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
+** routines. This is to reduce the number of arguments required by each
+** helper function.
+**
+** regArg:
+** Each window function requires an accumulator register (just as an
+** ordinary aggregate function does). This variable is set to the first
+** in an array of accumulator registers - one for each window function
+** in the WindowCodeArg.pMWin list.
+**
+** eDelete:
+** The window functions implementation sometimes caches the input rows
+** that it processes in a temporary table. If it is not zero, this
+** variable indicates when rows may be removed from the temp table (in
+** order to reduce memory requirements - it would always be safe just
+** to leave them there). Possible values for eDelete are:
+**
+** WINDOW_RETURN_ROW:
+** An input row can be discarded after it is returned to the caller.
+**
+** WINDOW_AGGINVERSE:
+** An input row can be discarded after the window functions xInverse()
+** callbacks have been invoked in it.
+**
+** WINDOW_AGGSTEP:
+** An input row can be discarded after the window functions xStep()
+** callbacks have been invoked in it.
+**
+** start,current,end
+** Consider a window-frame similar to the following:
+**
+** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
+**
+** The windows functions implementation caches the input rows in a temp
+** table, sorted by "a, b" (it actually populates the cache lazily, and
+** aggressively removes rows once they are no longer required, but that's
+** a mere detail). It keeps three cursors open on the temp table. One
+** (current) that points to the next row to return to the query engine
+** once its window function values have been calculated. Another (end)
+** points to the next row to call the xStep() method of each window function
+** on (so that it is 2 groups ahead of current). And a third (start) that
+** points to the next row to call the xInverse() method of each window
+** function on.
+**
+** Each cursor (start, current and end) consists of a VDBE cursor
+** (WindowCsrAndReg.csr) and an array of registers (starting at
+** WindowCodeArg.reg) that always contains a copy of the peer values
+** read from the corresponding cursor.
+**
+** Depending on the window-frame in question, all three cursors may not
+** be required. In this case both WindowCodeArg.csr and reg are set to
+** 0.
+*/
+struct WindowCodeArg {
+ Parse *pParse; /* Parse context */
+ Window *pMWin; /* First in list of functions being processed */
+ Vdbe *pVdbe; /* VDBE object */
+ int addrGosub; /* OP_Gosub to this address to return one row */
+ int regGosub; /* Register used with OP_Gosub(addrGosub) */
+ int regArg; /* First in array of accumulator registers */
+ int eDelete; /* See above */
+ int regRowid;
+
+ WindowCsrAndReg start;
+ WindowCsrAndReg current;
+ WindowCsrAndReg end;
+};
+
+/*
+** Generate VM code to read the window frames peer values from cursor csr into
+** an array of registers starting at reg.
+*/
+static void windowReadPeerValues(
+ WindowCodeArg *p,
+ int csr,
+ int reg
+){
+ Window *pMWin = p->pMWin;
+ ExprList *pOrderBy = pMWin->pOrderBy;
+ if( pOrderBy ){
+ Vdbe *v = sqlite3GetVdbe(p->pParse);
+ ExprList *pPart = pMWin->pPartition;
+ int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
+ int i;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
+ }
+ }
+}
+
+/*
+** Generate VM code to invoke either xStep() (if bInverse is 0) or
+** xInverse (if bInverse is non-zero) for each window function in the
+** linked list starting at pMWin. Or, for built-in window functions
+** that do not use the standard function API, generate the required
+** inline VM code.
+**
+** If argument csr is greater than or equal to 0, then argument reg is
+** the first register in an array of registers guaranteed to be large
+** enough to hold the array of arguments for each function. In this case
+** the arguments are extracted from the current row of csr into the
+** array of registers before invoking OP_AggStep or OP_AggInverse
+**
+** Or, if csr is less than zero, then the array of registers at reg is
+** already populated with all columns from the current row of the sub-query.
+**
+** If argument regPartSize is non-zero, then it is a register containing the
+** number of rows in the current partition.
+*/
+static void windowAggStep(
+ WindowCodeArg *p,
+ Window *pMWin, /* Linked list of window functions */
+ int csr, /* Read arguments from this cursor */
+ int bInverse, /* True to invoke xInverse instead of xStep */
+ int reg /* Array of registers */
+){
+ Parse *pParse = p->pParse;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ Window *pWin;
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ int regArg;
+ int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
+ int i;
+
+ assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
+
+ /* All OVER clauses in the same window function aggregate step must
+ ** be the same. */
+ assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
+
+ for(i=0; i<nArg; i++){
+ if( i!=1 || pFunc->zName!=nth_valueName ){
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
+ }
+ }
+ regArg = reg;
+
+ if( pMWin->regStartRowid==0
+ && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
+ && (pWin->eStart!=TK_UNBOUNDED)
+ ){
+ int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
+ VdbeCoverage(v);
+ if( bInverse==0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
+ VdbeCoverageNeverTaken(v);
+ sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ }
+ sqlite3VdbeJumpHere(v, addrIsNull);
+ }else if( pWin->regApp ){
+ assert( pFunc->zName==nth_valueName
+ || pFunc->zName==first_valueName
+ );
+ assert( bInverse==0 || bInverse==1 );
+ sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
+ }else if( pFunc->xSFunc!=noopStepFunc ){
+ int addrIf = 0;
+ if( pWin->pFilter ){
+ int regTmp;
+ assert( ExprUseXList(pWin->pOwner) );
+ assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
+ assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 );
+ regTmp = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
+ addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, regTmp);
+ }
+
+ if( pWin->bExprArgs ){
+ int iOp = sqlite3VdbeCurrentAddr(v);
+ int iEnd;
+
+ assert( ExprUseXList(pWin->pOwner) );
+ nArg = pWin->pOwner->x.pList->nExpr;
+ regArg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
+
+ for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp);
+ if( pOp->opcode==OP_Column && pOp->p1==pMWin->iEphCsr ){
+ pOp->p1 = csr;
+ }
+ }
+ }
+ if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ CollSeq *pColl;
+ assert( nArg>0 );
+ assert( ExprUseXList(pWin->pOwner) );
+ pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
+ bInverse, regArg, pWin->regAccum);
+ sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ if( pWin->bExprArgs ){
+ sqlite3ReleaseTempRange(pParse, regArg, nArg);
+ }
+ if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
+ }
+ }
+}
+
+/*
+** Values that may be passed as the second argument to windowCodeOp().
+*/
+#define WINDOW_RETURN_ROW 1
+#define WINDOW_AGGINVERSE 2
+#define WINDOW_AGGSTEP 3
+
+/*
+** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
+** (bFin==1) for each window function in the linked list starting at
+** pMWin. Or, for built-in window-functions that do not use the standard
+** API, generate the equivalent VM code.
+*/
+static void windowAggFinal(WindowCodeArg *p, int bFin){
+ Parse *pParse = p->pParse;
+ Window *pMWin = p->pMWin;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ Window *pWin;
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ if( pMWin->regStartRowid==0
+ && (pWin->pWFunc->funcFlags & SQLITE_FUNC_MINMAX)
+ && (pWin->eStart!=TK_UNBOUNDED)
+ ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
+ sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
+ }else if( pWin->regApp ){
+ assert( pMWin->regStartRowid==0 );
+ }else{
+ int nArg = windowArgCount(pWin);
+ if( bFin ){
+ sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
+ sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF);
+ sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
+ sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF);
+ }
+ }
+ }
+}
+
+/*
+** Generate code to calculate the current values of all window functions in the
+** p->pMWin list by doing a full scan of the current window frame. Store the
+** results in the Window.regResult registers, ready to return the upper
+** layer.
+*/
+static void windowFullScan(WindowCodeArg *p){
+ Window *pWin;
+ Parse *pParse = p->pParse;
+ Window *pMWin = p->pMWin;
+ Vdbe *v = p->pVdbe;
+
+ int regCRowid = 0; /* Current rowid value */
+ int regCPeer = 0; /* Current peer values */
+ int regRowid = 0; /* AggStep rowid value */
+ int regPeer = 0; /* AggStep peer values */
+
+ int nPeer;
+ int lblNext;
+ int lblBrk;
+ int addrNext;
+ int csr;
+
+ VdbeModuleComment((v, "windowFullScan begin"));
+
+ assert( pMWin!=0 );
+ csr = pMWin->csrApp;
+ nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
+
+ lblNext = sqlite3VdbeMakeLabel(pParse);
+ lblBrk = sqlite3VdbeMakeLabel(pParse);
+
+ regCRowid = sqlite3GetTempReg(pParse);
+ regRowid = sqlite3GetTempReg(pParse);
+ if( nPeer ){
+ regCPeer = sqlite3GetTempRange(pParse, nPeer);
+ regPeer = sqlite3GetTempRange(pParse, nPeer);
+ }
+
+ sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
+ windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ }
+
+ sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
+ VdbeCoverage(v);
+ addrNext = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
+ VdbeCoverageNeverNull(v);
+
+ if( pMWin->eExclude==TK_CURRENT ){
+ sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
+ VdbeCoverageNeverNull(v);
+ }else if( pMWin->eExclude!=TK_NO ){
+ int addr;
+ int addrEq = 0;
+ KeyInfo *pKeyInfo = 0;
+
+ if( pMWin->pOrderBy ){
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
+ }
+ if( pMWin->eExclude==TK_TIES ){
+ addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
+ VdbeCoverageNeverNull(v);
+ }
+ if( pKeyInfo ){
+ windowReadPeerValues(p, csr, regPeer);
+ sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
+ sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
+ addr = sqlite3VdbeCurrentAddr(v)+1;
+ sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
+ VdbeCoverageEqNe(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
+ }
+ if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
+ }
+
+ windowAggStep(p, pMWin, csr, 0, p->regArg);
+
+ sqlite3VdbeResolveLabel(v, lblNext);
+ sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addrNext-1);
+ sqlite3VdbeJumpHere(v, addrNext+1);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regCRowid);
+ if( nPeer ){
+ sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
+ sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
+ }
+
+ windowAggFinal(p, 1);
+ VdbeModuleComment((v, "windowFullScan end"));
+}
+
+/*
+** Invoke the sub-routine at regGosub (generated by code in select.c) to
+** return the current row of Window.iEphCsr. If all window functions are
+** aggregate window functions that use the standard API, a single
+** OP_Gosub instruction is all that this routine generates. Extra VM code
+** for per-row processing is only generated for the following built-in window
+** functions:
+**
+** nth_value()
+** first_value()
+** lag()
+** lead()
+*/
+static void windowReturnOneRow(WindowCodeArg *p){
+ Window *pMWin = p->pMWin;
+ Vdbe *v = p->pVdbe;
+
+ if( pMWin->regStartRowid ){
+ windowFullScan(p);
+ }else{
+ Parse *pParse = p->pParse;
+ Window *pWin;
+
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ assert( ExprUseXList(pWin->pOwner) );
+ if( pFunc->zName==nth_valueName
+ || pFunc->zName==first_valueName
+ ){
+ int csr = pWin->csrApp;
+ int lbl = sqlite3VdbeMakeLabel(pParse);
+ int tmpReg = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
+
+ if( pFunc->zName==nth_valueName ){
+ sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
+ windowCheckValue(pParse, tmpReg, 2);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
+ }
+ sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
+ sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
+ VdbeCoverageNeverNull(v);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
+ VdbeCoverageNeverTaken(v);
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
+ sqlite3VdbeResolveLabel(v, lbl);
+ sqlite3ReleaseTempReg(pParse, tmpReg);
+ }
+ else if( pFunc->zName==leadName || pFunc->zName==lagName ){
+ int nArg = pWin->pOwner->x.pList->nExpr;
+ int csr = pWin->csrApp;
+ int lbl = sqlite3VdbeMakeLabel(pParse);
+ int tmpReg = sqlite3GetTempReg(pParse);
+ int iEph = pMWin->iEphCsr;
+
+ if( nArg<3 ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
+ }
+ sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
+ if( nArg<2 ){
+ int val = (pFunc->zName==leadName ? 1 : -1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
+ }else{
+ int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
+ int tmpReg2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
+ sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
+ sqlite3ReleaseTempReg(pParse, tmpReg2);
+ }
+
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
+ sqlite3VdbeResolveLabel(v, lbl);
+ sqlite3ReleaseTempReg(pParse, tmpReg);
+ }
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
+}
+
+/*
+** Generate code to set the accumulator register for each window function
+** in the linked list passed as the second argument to NULL. And perform
+** any equivalent initialization required by any built-in window functions
+** in the list.
+*/
+static int windowInitAccum(Parse *pParse, Window *pMWin){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int regArg;
+ int nArg = 0;
+ Window *pWin;
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ assert( pWin->regAccum );
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
+ nArg = MAX(nArg, windowArgCount(pWin));
+ if( pMWin->regStartRowid==0 ){
+ if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
+ }
+
+ if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
+ assert( pWin->eStart!=TK_UNBOUNDED );
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
+ }
+ }
+ }
+ regArg = pParse->nMem+1;
+ pParse->nMem += nArg;
+ return regArg;
+}
+
+/*
+** Return true if the current frame should be cached in the ephemeral table,
+** even if there are no xInverse() calls required.
+*/
+static int windowCacheFrame(Window *pMWin){
+ Window *pWin;
+ if( pMWin->regStartRowid ) return 1;
+ for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
+ FuncDef *pFunc = pWin->pWFunc;
+ if( (pFunc->zName==nth_valueName)
+ || (pFunc->zName==first_valueName)
+ || (pFunc->zName==leadName)
+ || (pFunc->zName==lagName)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** regOld and regNew are each the first register in an array of size
+** pOrderBy->nExpr. This function generates code to compare the two
+** arrays of registers using the collation sequences and other comparison
+** parameters specified by pOrderBy.
+**
+** If the two arrays are not equal, the contents of regNew is copied to
+** regOld and control falls through. Otherwise, if the contents of the arrays
+** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
+*/
+static void windowIfNewPeer(
+ Parse *pParse,
+ ExprList *pOrderBy,
+ int regNew, /* First in array of new values */
+ int regOld, /* First in array of old values */
+ int addr /* Jump here */
+){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( pOrderBy ){
+ int nVal = pOrderBy->nExpr;
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
+ sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
+ sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump,
+ sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
+ );
+ VdbeCoverageEqNe(v);
+ sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
+ }
+}
+
+/*
+** This function is called as part of generating VM programs for RANGE
+** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
+** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
+** code equivalent to:
+**
+** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
+**
+** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
+** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
+**
+** If the sort-order for the ORDER BY term in the window is DESC, then the
+** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
+** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
+** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
+** is OP_Ge, the generated code is equivalent to:
+**
+** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
+**
+** A special type of arithmetic is used such that if csr1.peerVal is not
+** a numeric type (real or integer), then the result of the addition
+** or subtraction is a a copy of csr1.peerVal.
+*/
+static void windowCodeRangeTest(
+ WindowCodeArg *p,
+ int op, /* OP_Ge, OP_Gt, or OP_Le */
+ int csr1, /* Cursor number for cursor 1 */
+ int regVal, /* Register containing non-negative number */
+ int csr2, /* Cursor number for cursor 2 */
+ int lbl /* Jump destination if condition is true */
+){
+ Parse *pParse = p->pParse;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */
+ int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */
+ int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */
+ int regString = ++pParse->nMem; /* Reg. for constant value '' */
+ int arith = OP_Add; /* OP_Add or OP_Subtract */
+ int addrGe; /* Jump destination */
+ int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */
+ CollSeq *pColl;
+
+ /* Read the peer-value from each cursor into a register */
+ windowReadPeerValues(p, csr1, reg1);
+ windowReadPeerValues(p, csr2, reg2);
+
+ assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
+ assert( pOrderBy && pOrderBy->nExpr==1 );
+ if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_DESC ){
+ switch( op ){
+ case OP_Ge: op = OP_Le; break;
+ case OP_Gt: op = OP_Lt; break;
+ default: assert( op==OP_Le ); op = OP_Ge; break;
+ }
+ arith = OP_Subtract;
+ }
+
+ VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
+ reg1, (arith==OP_Add ? "+" : "-"), regVal,
+ ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
+ ));
+
+ /* If the BIGNULL flag is set for the ORDER BY, then it is required to
+ ** consider NULL values to be larger than all other values, instead of
+ ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
+ ** (and adding that capability causes a performance regression), so
+ ** instead if the BIGNULL flag is set then cases where either reg1 or
+ ** reg2 are NULL are handled separately in the following block. The code
+ ** generated is equivalent to:
+ **
+ ** if( reg1 IS NULL ){
+ ** if( op==OP_Ge ) goto lbl;
+ ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
+ ** if( op==OP_Le && reg2 IS NULL ) goto lbl;
+ ** }else if( reg2 IS NULL ){
+ ** if( op==OP_Le ) goto lbl;
+ ** }
+ **
+ ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
+ ** not taken, control jumps over the comparison operator coded below this
+ ** block. */
+ if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_BIGNULL ){
+ /* This block runs if reg1 contains a NULL. */
+ int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
+ switch( op ){
+ case OP_Ge:
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
+ break;
+ case OP_Gt:
+ sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
+ VdbeCoverage(v);
+ break;
+ case OP_Le:
+ sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
+ VdbeCoverage(v);
+ break;
+ default: assert( op==OP_Lt ); /* no-op */ break;
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
+
+ /* This block runs if reg1 is not NULL, but reg2 is. */
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp2(v, OP_IsNull, reg2,
+ (op==OP_Gt || op==OP_Ge) ? addrDone : lbl);
+ VdbeCoverage(v);
+ }
+
+ /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
+ ** This block adds (or subtracts for DESC) the numeric value in regVal
+ ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
+ ** then leave reg1 as it is. In pseudo-code, this is implemented as:
+ **
+ ** if( reg1>='' ) goto addrGe;
+ ** reg1 = reg1 +/- regVal
+ ** addrGe:
+ **
+ ** Since all strings and blobs are greater-than-or-equal-to an empty string,
+ ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
+ ** then the arithmetic is performed, but since adding or subtracting from
+ ** NULL is always NULL anyway, this case is handled as required too. */
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
+ addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
+ VdbeCoverage(v);
+ if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
+ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
+ sqlite3VdbeJumpHere(v, addrGe);
+
+ /* Compare registers reg2 and reg1, taking the jump if required. Note that
+ ** control skips over this test if the BIGNULL flag is set and either
+ ** reg1 or reg2 contain a NULL value. */
+ sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
+ pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
+ sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ sqlite3VdbeResolveLabel(v, addrDone);
+
+ assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
+ testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
+ testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
+ testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
+ testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
+ sqlite3ReleaseTempReg(pParse, reg1);
+ sqlite3ReleaseTempReg(pParse, reg2);
+
+ VdbeModuleComment((v, "CodeRangeTest: end"));
+}
+
+/*
+** Helper function for sqlite3WindowCodeStep(). Each call to this function
+** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
+** operation. Refer to the header comment for sqlite3WindowCodeStep() for
+** details.
+*/
+static int windowCodeOp(
+ WindowCodeArg *p, /* Context object */
+ int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
+ int regCountdown, /* Register for OP_IfPos countdown */
+ int jumpOnEof /* Jump here if stepped cursor reaches EOF */
+){
+ int csr, reg;
+ Parse *pParse = p->pParse;
+ Window *pMWin = p->pMWin;
+ int ret = 0;
+ Vdbe *v = p->pVdbe;
+ int addrContinue = 0;
+ int bPeer = (pMWin->eFrmType!=TK_ROWS);
+
+ int lblDone = sqlite3VdbeMakeLabel(pParse);
+ int addrNextRange = 0;
+
+ /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
+ ** starts with UNBOUNDED PRECEDING. */
+ if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
+ assert( regCountdown==0 && jumpOnEof==0 );
+ return 0;
+ }
+
+ if( regCountdown>0 ){
+ if( pMWin->eFrmType==TK_RANGE ){
+ addrNextRange = sqlite3VdbeCurrentAddr(v);
+ assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
+ if( op==WINDOW_AGGINVERSE ){
+ if( pMWin->eStart==TK_FOLLOWING ){
+ windowCodeRangeTest(
+ p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
+ );
+ }else{
+ windowCodeRangeTest(
+ p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
+ );
+ }
+ }else{
+ windowCodeRangeTest(
+ p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
+ );
+ }
+ }else{
+ sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
+ VdbeCoverage(v);
+ }
+ }
+
+ if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
+ windowAggFinal(p, 0);
+ }
+ addrContinue = sqlite3VdbeCurrentAddr(v);
+
+ /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
+ ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
+ ** start cursor does not advance past the end cursor within the
+ ** temporary table. It otherwise might, if (a>b). Also ensure that,
+ ** if the input cursor is still finding new rows, that the end
+ ** cursor does not go past it to EOF. */
+ if( pMWin->eStart==pMWin->eEnd && regCountdown
+ && pMWin->eFrmType==TK_RANGE
+ ){
+ int regRowid1 = sqlite3GetTempReg(pParse);
+ int regRowid2 = sqlite3GetTempReg(pParse);
+ if( op==WINDOW_AGGINVERSE ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
+ sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
+ sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
+ VdbeCoverage(v);
+ }else if( p->regRowid ){
+ sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1);
+ sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1);
+ VdbeCoverageNeverNull(v);
+ }
+ sqlite3ReleaseTempReg(pParse, regRowid1);
+ sqlite3ReleaseTempReg(pParse, regRowid2);
+ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
+ }
+
+ switch( op ){
+ case WINDOW_RETURN_ROW:
+ csr = p->current.csr;
+ reg = p->current.reg;
+ windowReturnOneRow(p);
+ break;
+
+ case WINDOW_AGGINVERSE:
+ csr = p->start.csr;
+ reg = p->start.reg;
+ if( pMWin->regStartRowid ){
+ assert( pMWin->regEndRowid );
+ sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
+ }else{
+ windowAggStep(p, pMWin, csr, 1, p->regArg);
+ }
+ break;
+
+ default:
+ assert( op==WINDOW_AGGSTEP );
+ csr = p->end.csr;
+ reg = p->end.reg;
+ if( pMWin->regStartRowid ){
+ assert( pMWin->regEndRowid );
+ sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
+ }else{
+ windowAggStep(p, pMWin, csr, 0, p->regArg);
+ }
+ break;
+ }
+
+ if( op==p->eDelete ){
+ sqlite3VdbeAddOp1(v, OP_Delete, csr);
+ sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
+ }
+
+ if( jumpOnEof ){
+ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
+ VdbeCoverage(v);
+ ret = sqlite3VdbeAddOp0(v, OP_Goto);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
+ VdbeCoverage(v);
+ if( bPeer ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
+ }
+ }
+
+ if( bPeer ){
+ int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
+ int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
+ windowReadPeerValues(p, csr, regTmp);
+ windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
+ sqlite3ReleaseTempRange(pParse, regTmp, nReg);
+ }
+
+ if( addrNextRange ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
+ }
+ sqlite3VdbeResolveLabel(v, lblDone);
+ return ret;
+}
+
+
+/*
+** Allocate and return a duplicate of the Window object indicated by the
+** third argument. Set the Window.pOwner field of the new object to
+** pOwner.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
+ Window *pNew = 0;
+ if( ALWAYS(p) ){
+ pNew = sqlite3DbMallocZero(db, sizeof(Window));
+ if( pNew ){
+ pNew->zName = sqlite3DbStrDup(db, p->zName);
+ pNew->zBase = sqlite3DbStrDup(db, p->zBase);
+ pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
+ pNew->pWFunc = p->pWFunc;
+ pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
+ pNew->eFrmType = p->eFrmType;
+ pNew->eEnd = p->eEnd;
+ pNew->eStart = p->eStart;
+ pNew->eExclude = p->eExclude;
+ pNew->regResult = p->regResult;
+ pNew->regAccum = p->regAccum;
+ pNew->iArgCol = p->iArgCol;
+ pNew->iEphCsr = p->iEphCsr;
+ pNew->bExprArgs = p->bExprArgs;
+ pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
+ pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
+ pNew->pOwner = pOwner;
+ pNew->bImplicitFrame = p->bImplicitFrame;
+ }
+ }
+ return pNew;
+}
+
+/*
+** Return a copy of the linked list of Window objects passed as the
+** second argument.
+*/
+SQLITE_PRIVATE Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
+ Window *pWin;
+ Window *pRet = 0;
+ Window **pp = &pRet;
+
+ for(pWin=p; pWin; pWin=pWin->pNextWin){
+ *pp = sqlite3WindowDup(db, 0, pWin);
+ if( *pp==0 ) break;
+ pp = &((*pp)->pNextWin);
+ }
+
+ return pRet;
+}
+
+/*
+** Return true if it can be determined at compile time that expression
+** pExpr evaluates to a value that, when cast to an integer, is greater
+** than zero. False otherwise.
+**
+** If an OOM error occurs, this function sets the Parse.db.mallocFailed
+** flag and returns zero.
+*/
+static int windowExprGtZero(Parse *pParse, Expr *pExpr){
+ int ret = 0;
+ sqlite3 *db = pParse->db;
+ sqlite3_value *pVal = 0;
+ sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
+ if( pVal && sqlite3_value_int(pVal)>0 ){
+ ret = 1;
+ }
+ sqlite3ValueFree(pVal);
+ return ret;
+}
+
+/*
+** sqlite3WhereBegin() has already been called for the SELECT statement
+** passed as the second argument when this function is invoked. It generates
+** code to populate the Window.regResult register for each window function
+** and invoke the sub-routine at instruction addrGosub once for each row.
+** sqlite3WhereEnd() is always called before returning.
+**
+** This function handles several different types of window frames, which
+** require slightly different processing. The following pseudo code is
+** used to implement window frames of the form:
+**
+** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
+**
+** Other window frame types use variants of the following:
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+**
+** if( first row of partition ){
+** // Rewind three cursors, all open on the eph table.
+** Rewind(csrEnd);
+** Rewind(csrStart);
+** Rewind(csrCurrent);
+**
+** regEnd = <expr2> // FOLLOWING expression
+** regStart = <expr1> // PRECEDING expression
+** }else{
+** // First time this branch is taken, the eph table contains two
+** // rows. The first row in the partition, which all three cursors
+** // currently point to, and the following row.
+** AGGSTEP
+** if( (regEnd--)<=0 ){
+** RETURN_ROW
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** }
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** RETURN ROW
+** if( csrCurrent is EOF ) break;
+** if( (regStart--)<=0 ){
+** AggInverse(csrStart)
+** Next(csrStart)
+** }
+** }
+**
+** The pseudo-code above uses the following shorthand:
+**
+** AGGSTEP: invoke the aggregate xStep() function for each window function
+** with arguments read from the current row of cursor csrEnd, then
+** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
+**
+** RETURN_ROW: return a row to the caller based on the contents of the
+** current row of csrCurrent and the current state of all
+** aggregates. Then step cursor csrCurrent forward one row.
+**
+** AGGINVERSE: invoke the aggregate xInverse() function for each window
+** functions with arguments read from the current row of cursor
+** csrStart. Then step csrStart forward one row.
+**
+** There are two other ROWS window frames that are handled significantly
+** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
+** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
+** cases because they change the order in which the three cursors (csrStart,
+** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
+** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
+** three.
+**
+** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** if( (regEnd--)<=0 ){
+** AGGSTEP
+** }
+** RETURN_ROW
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** }
+** }
+** }
+** flush:
+** if( (regEnd--)<=0 ){
+** AGGSTEP
+** }
+** RETURN_ROW
+**
+**
+** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = regEnd - <expr1>
+** }else{
+** AGGSTEP
+** if( (regEnd--)<=0 ){
+** RETURN_ROW
+** }
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** if( (regEnd--)<=0 ){
+** RETURN_ROW
+** if( eof ) break;
+** }
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** if( eof ) break
+** }
+** }
+** while( !eof csrCurrent ){
+** RETURN_ROW
+** }
+**
+** For the most part, the patterns above are adapted to support UNBOUNDED by
+** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
+** CURRENT ROW by assuming that it is equivalent to "0 PRECEDING/FOLLOWING".
+** This is optimized of course - branches that will never be taken and
+** conditions that are always true are omitted from the VM code. The only
+** exceptional case is:
+**
+** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regStart = <expr1>
+** }else{
+** AGGSTEP
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** if( (regStart--)<=0 ){
+** AGGINVERSE
+** if( eof ) break
+** }
+** RETURN_ROW
+** }
+** while( !eof csrCurrent ){
+** RETURN_ROW
+** }
+**
+** Also requiring special handling are the cases:
+**
+** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
+** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
+**
+** when (expr1 < expr2). This is detected at runtime, not by this function.
+** To handle this case, the pseudo-code programs depicted above are modified
+** slightly to be:
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** if( regEnd < regStart ){
+** RETURN_ROW
+** delete eph table contents
+** continue
+** }
+** ...
+**
+** The new "continue" statement in the above jumps to the next iteration
+** of the outer loop - the one started by sqlite3WhereBegin().
+**
+** The various GROUPS cases are implemented using the same patterns as
+** ROWS. The VM code is modified slightly so that:
+**
+** 1. The else branch in the main loop is only taken if the row just
+** added to the ephemeral table is the start of a new group. In
+** other words, it becomes:
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else if( new group ){
+** ...
+** }
+** }
+**
+** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
+** AGGINVERSE step processes the current row of the relevant cursor and
+** all subsequent rows belonging to the same group.
+**
+** RANGE window frames are a little different again. As for GROUPS, the
+** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
+** deal in groups instead of rows. As for ROWS and GROUPS, there are three
+** basic cases:
+**
+** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** AGGSTEP
+** while( (csrCurrent.key + regEnd) < csrEnd.key ){
+** RETURN_ROW
+** while( csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** RETURN ROW
+** if( csrCurrent is EOF ) break;
+** while( csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** }
+** }
+**
+** In the above notation, "csr.key" means the current value of the ORDER BY
+** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
+** or <expr PRECEDING) read from cursor csr.
+**
+** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
+** AGGSTEP
+** }
+** while( (csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** RETURN_ROW
+** }
+** }
+** flush:
+** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
+** AGGSTEP
+** }
+** while( (csrStart.key + regStart) < csrCurrent.key ){
+** AGGINVERSE
+** }
+** RETURN_ROW
+**
+** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
+**
+** ... loop started by sqlite3WhereBegin() ...
+** if( new partition ){
+** Gosub flush
+** }
+** Insert new row into eph table.
+** if( first row of partition ){
+** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
+** regEnd = <expr2>
+** regStart = <expr1>
+** }else{
+** AGGSTEP
+** while( (csrCurrent.key + regEnd) < csrEnd.key ){
+** while( (csrCurrent.key + regStart) > csrStart.key ){
+** AGGINVERSE
+** }
+** RETURN_ROW
+** }
+** }
+** }
+** flush:
+** AGGSTEP
+** while( 1 ){
+** while( (csrCurrent.key + regStart) > csrStart.key ){
+** AGGINVERSE
+** if( eof ) break "while( 1 )" loop.
+** }
+** RETURN_ROW
+** }
+** while( !eof csrCurrent ){
+** RETURN_ROW
+** }
+**
+** The text above leaves out many details. Refer to the code and comments
+** below for a more complete picture.
+*/
+SQLITE_PRIVATE void sqlite3WindowCodeStep(
+ Parse *pParse, /* Parse context */
+ Select *p, /* Rewritten SELECT statement */
+ WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */
+ int regGosub, /* Register for OP_Gosub */
+ int addrGosub /* OP_Gosub here to return each row */
+){
+ Window *pMWin = p->pWin;
+ ExprList *pOrderBy = pMWin->pOrderBy;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int csrWrite; /* Cursor used to write to eph. table */
+ int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */
+ int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */
+ int iInput; /* To iterate through sub cols */
+ int addrNe; /* Address of OP_Ne */
+ int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */
+ int addrInteger = 0; /* Address of OP_Integer */
+ int addrEmpty; /* Address of OP_Rewind in flush: */
+ int regNew; /* Array of registers holding new input row */
+ int regRecord; /* regNew array in record form */
+ int regNewPeer = 0; /* Peer values for new row (part of regNew) */
+ int regPeer = 0; /* Peer values for current row */
+ int regFlushPart = 0; /* Register for "Gosub flush_partition" */
+ WindowCodeArg s; /* Context object for sub-routines */
+ int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */
+ int regStart = 0; /* Value of <expr> PRECEDING */
+ int regEnd = 0; /* Value of <expr> FOLLOWING */
+
+ assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
+ || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
+ );
+ assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
+ || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
+ );
+ assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
+ || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
+ || pMWin->eExclude==TK_NO
+ );
+
+ lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
+
+ /* Fill in the context object */
+ memset(&s, 0, sizeof(WindowCodeArg));
+ s.pParse = pParse;
+ s.pMWin = pMWin;
+ s.pVdbe = v;
+ s.regGosub = regGosub;
+ s.addrGosub = addrGosub;
+ s.current.csr = pMWin->iEphCsr;
+ csrWrite = s.current.csr+1;
+ s.start.csr = s.current.csr+2;
+ s.end.csr = s.current.csr+3;
+
+ /* Figure out when rows may be deleted from the ephemeral table. There
+ ** are four options - they may never be deleted (eDelete==0), they may
+ ** be deleted as soon as they are no longer part of the window frame
+ ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
+ ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
+ ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
+ switch( pMWin->eStart ){
+ case TK_FOLLOWING:
+ if( pMWin->eFrmType!=TK_RANGE
+ && windowExprGtZero(pParse, pMWin->pStart)
+ ){
+ s.eDelete = WINDOW_RETURN_ROW;
+ }
+ break;
+ case TK_UNBOUNDED:
+ if( windowCacheFrame(pMWin)==0 ){
+ if( pMWin->eEnd==TK_PRECEDING ){
+ if( pMWin->eFrmType!=TK_RANGE
+ && windowExprGtZero(pParse, pMWin->pEnd)
+ ){
+ s.eDelete = WINDOW_AGGSTEP;
+ }
+ }else{
+ s.eDelete = WINDOW_RETURN_ROW;
+ }
+ }
+ break;
+ default:
+ s.eDelete = WINDOW_AGGINVERSE;
+ break;
+ }
+
+ /* Allocate registers for the array of values from the sub-query, the
+ ** same values in record form, and the rowid used to insert said record
+ ** into the ephemeral table. */
+ regNew = pParse->nMem+1;
+ pParse->nMem += nInput;
+ regRecord = ++pParse->nMem;
+ s.regRowid = ++pParse->nMem;
+
+ /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
+ ** clause, allocate registers to store the results of evaluating each
+ ** <expr>. */
+ if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
+ regStart = ++pParse->nMem;
+ }
+ if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
+ regEnd = ++pParse->nMem;
+ }
+
+ /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
+ ** registers to store copies of the ORDER BY expressions (peer values)
+ ** for the main loop, and for each cursor (start, current and end). */
+ if( pMWin->eFrmType!=TK_ROWS ){
+ int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
+ regNewPeer = regNew + pMWin->nBufferCol;
+ if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
+ regPeer = pParse->nMem+1; pParse->nMem += nPeer;
+ s.start.reg = pParse->nMem+1; pParse->nMem += nPeer;
+ s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
+ s.end.reg = pParse->nMem+1; pParse->nMem += nPeer;
+ }
+
+ /* Load the column values for the row returned by the sub-select
+ ** into an array of registers starting at regNew. Assemble them into
+ ** a record in register regRecord. */
+ for(iInput=0; iInput<nInput; iInput++){
+ sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
+
+ /* An input row has just been read into an array of registers starting
+ ** at regNew. If the window has a PARTITION clause, this block generates
+ ** VM code to check if the input row is the start of a new partition.
+ ** If so, it does an OP_Gosub to an address to be filled in later. The
+ ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
+ if( pMWin->pPartition ){
+ int addr;
+ ExprList *pPart = pMWin->pPartition;
+ int nPart = pPart->nExpr;
+ int regNewPart = regNew + pMWin->nBufferCol;
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
+
+ regFlushPart = ++pParse->nMem;
+ addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
+ sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
+ VdbeCoverageEqNe(v);
+ addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
+ VdbeComment((v, "call flush_partition"));
+ sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
+ }
+
+ /* Insert the new row into the ephemeral table */
+ sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid);
+ addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid);
+ VdbeCoverageNeverNull(v);
+
+ /* This block is run for the first row of each partition */
+ s.regArg = windowInitAccum(pParse, pMWin);
+
+ if( regStart ){
+ sqlite3ExprCode(pParse, pMWin->pStart, regStart);
+ windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
+ }
+ if( regEnd ){
+ sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
+ windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
+ }
+
+ if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
+ int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
+ int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
+ VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
+ VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */
+ windowAggFinal(&s, 0);
+ sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr);
+ windowReturnOneRow(&s);
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
+ sqlite3VdbeJumpHere(v, addrGe);
+ }
+ if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
+ assert( pMWin->eEnd==TK_FOLLOWING );
+ sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
+ }
+
+ if( pMWin->eStart!=TK_UNBOUNDED ){
+ sqlite3VdbeAddOp1(v, OP_Rewind, s.start.csr);
+ }
+ sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr);
+ sqlite3VdbeAddOp1(v, OP_Rewind, s.end.csr);
+ if( regPeer && pOrderBy ){
+ sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
+ sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
+ sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
+ sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
+ }
+
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
+
+ sqlite3VdbeJumpHere(v, addrNe);
+
+ /* Beginning of the block executed for the second and subsequent rows. */
+ if( regPeer ){
+ windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
+ }
+ if( pMWin->eStart==TK_FOLLOWING ){
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ if( pMWin->eEnd!=TK_UNBOUNDED ){
+ if( pMWin->eFrmType==TK_RANGE ){
+ int lbl = sqlite3VdbeMakeLabel(pParse);
+ int addrNext = sqlite3VdbeCurrentAddr(v);
+ windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
+ sqlite3VdbeResolveLabel(v, lbl);
+ }else{
+ windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ }
+ }
+ }else
+ if( pMWin->eEnd==TK_PRECEDING ){
+ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
+ windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
+ if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ }else{
+ int addr = 0;
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ if( pMWin->eEnd!=TK_UNBOUNDED ){
+ if( pMWin->eFrmType==TK_RANGE ){
+ int lbl = 0;
+ addr = sqlite3VdbeCurrentAddr(v);
+ if( regEnd ){
+ lbl = sqlite3VdbeMakeLabel(pParse);
+ windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
+ }
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ if( regEnd ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
+ sqlite3VdbeResolveLabel(v, lbl);
+ }
+ }else{
+ if( regEnd ){
+ addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
+ VdbeCoverage(v);
+ }
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ if( regEnd ) sqlite3VdbeJumpHere(v, addr);
+ }
+ }
+ }
+
+ /* End of the main input loop */
+ sqlite3VdbeResolveLabel(v, lblWhereEnd);
+ sqlite3WhereEnd(pWInfo);
+
+ /* Fall through */
+ if( pMWin->pPartition ){
+ addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
+ sqlite3VdbeJumpHere(v, addrGosubFlush);
+ }
+
+ s.regRowid = 0;
+ addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
+ VdbeCoverage(v);
+ if( pMWin->eEnd==TK_PRECEDING ){
+ int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
+ windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
+ if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
+ }else if( pMWin->eStart==TK_FOLLOWING ){
+ int addrStart;
+ int addrBreak1;
+ int addrBreak2;
+ int addrBreak3;
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ if( pMWin->eFrmType==TK_RANGE ){
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
+ addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
+ }else
+ if( pMWin->eEnd==TK_UNBOUNDED ){
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
+ addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
+ }else{
+ assert( pMWin->eEnd==TK_FOLLOWING );
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
+ addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
+ sqlite3VdbeJumpHere(v, addrBreak2);
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
+ sqlite3VdbeJumpHere(v, addrBreak1);
+ sqlite3VdbeJumpHere(v, addrBreak3);
+ }else{
+ int addrBreak;
+ int addrStart;
+ windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
+ addrStart = sqlite3VdbeCurrentAddr(v);
+ addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
+ windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
+ sqlite3VdbeJumpHere(v, addrBreak);
+ }
+ sqlite3VdbeJumpHere(v, addrEmpty);
+
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
+ if( pMWin->pPartition ){
+ if( pMWin->regStartRowid ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
+ }
+ sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
+ sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
+ }
+}
+
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/************** End of window.c **********************************************/
+/************** Begin file parse.c *******************************************/
+/* This file is automatically generated by Lemon from input grammar
+** source file "parse.y".
+*/
+/*
+** 2001-09-15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains SQLite's SQL parser.
+**
+** The canonical source code to this file ("parse.y") is a Lemon grammar
+** file that specifies the input grammar and actions to take while parsing.
+** That input file is processed by Lemon to generate a C-language
+** implementation of a parser for the given grammar. You might be reading
+** this comment as part of the translated C-code. Edits should be made
+** to the original parse.y sources.
+*/
+
+/* #include "sqliteInt.h" */
+
+/*
+** Disable all error recovery processing in the parser push-down
+** automaton.
+*/
+#define YYNOERRORRECOVERY 1
+
+/*
+** Make yytestcase() the same as testcase()
+*/
+#define yytestcase(X) testcase(X)
+
+/*
+** Indicate that sqlite3ParserFree() will never be called with a null
+** pointer.
+*/
+#define YYPARSEFREENEVERNULL 1
+
+/*
+** In the amalgamation, the parse.c file generated by lemon and the
+** tokenize.c file are concatenated. In that case, sqlite3RunParser()
+** has access to the the size of the yyParser object and so the parser
+** engine can be allocated from stack. In that case, only the
+** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
+** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
+** omitted.
+*/
+#ifdef SQLITE_AMALGAMATION
+# define sqlite3Parser_ENGINEALWAYSONSTACK 1
+#endif
+
+/*
+** Alternative datatype for the argument to the malloc() routine passed
+** into sqlite3ParserAlloc(). The default is size_t.
+*/
+#define YYMALLOCARGTYPE u64
+
+/*
+** An instance of the following structure describes the event of a
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
+**
+** UPDATE ON (a,b,c)
+**
+** Then the "b" IdList records the list "a,b,c".
+*/
+struct TrigEvent { int a; IdList * b; };
+
+struct FrameBound { int eType; Expr *pExpr; };
+
+/*
+** Disable lookaside memory allocation for objects that might be
+** shared across database connections.
+*/
+static void disableLookaside(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ pParse->disableLookaside++;
+ DisableLookaside;
+}
+
+#if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \
+ && defined(SQLITE_UDL_CAPABLE_PARSER)
+/*
+** Issue an error message if an ORDER BY or LIMIT clause occurs on an
+** UPDATE or DELETE statement.
+*/
+static void updateDeleteLimitError(
+ Parse *pParse,
+ ExprList *pOrderBy,
+ Expr *pLimit
+){
+ if( pOrderBy ){
+ sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\"");
+ }else{
+ sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\"");
+ }
+ sqlite3ExprListDelete(pParse->db, pOrderBy);
+ sqlite3ExprDelete(pParse->db, pLimit);
+}
+#endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */
+
+
+ /*
+ ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
+ ** all elements in the list. And make sure list length does not exceed
+ ** SQLITE_LIMIT_COMPOUND_SELECT.
+ */
+ static void parserDoubleLinkSelect(Parse *pParse, Select *p){
+ assert( p!=0 );
+ if( p->pPrior ){
+ Select *pNext = 0, *pLoop = p;
+ int mxSelect, cnt = 1;
+ while(1){
+ pLoop->pNext = pNext;
+ pLoop->selFlags |= SF_Compound;
+ pNext = pLoop;
+ pLoop = pLoop->pPrior;
+ if( pLoop==0 ) break;
+ cnt++;
+ if( pLoop->pOrderBy || pLoop->pLimit ){
+ sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
+ pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT",
+ sqlite3SelectOpName(pNext->op));
+ break;
+ }
+ }
+ if( (p->selFlags & SF_MultiValue)==0 &&
+ (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
+ cnt>mxSelect
+ ){
+ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+ }
+ }
+ }
+
+ /* Attach a With object describing the WITH clause to a Select
+ ** object describing the query for which the WITH clause is a prefix.
+ */
+ static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){
+ if( pSelect ){
+ pSelect->pWith = pWith;
+ parserDoubleLinkSelect(pParse, pSelect);
+ }else{
+ sqlite3WithDelete(pParse->db, pWith);
+ }
+ return pSelect;
+ }
+
+
+ /* Construct a new Expr object from a single token */
+ static Expr *tokenExpr(Parse *pParse, int op, Token t){
+ Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
+ if( p ){
+ /* memset(p, 0, sizeof(Expr)); */
+ p->op = (u8)op;
+ p->affExpr = 0;
+ p->flags = EP_Leaf;
+ ExprClearVVAProperties(p);
+ /* p->iAgg = -1; // Not required */
+ p->pLeft = p->pRight = 0;
+ p->pAggInfo = 0;
+ memset(&p->x, 0, sizeof(p->x));
+ memset(&p->y, 0, sizeof(p->y));
+ p->op2 = 0;
+ p->iTable = 0;
+ p->iColumn = 0;
+ p->u.zToken = (char*)&p[1];
+ memcpy(p->u.zToken, t.z, t.n);
+ p->u.zToken[t.n] = 0;
+ p->w.iOfst = (int)(t.z - pParse->zTail);
+ if( sqlite3Isquote(p->u.zToken[0]) ){
+ sqlite3DequoteExpr(p);
+ }
+#if SQLITE_MAX_EXPR_DEPTH>0
+ p->nHeight = 1;
+#endif
+ if( IN_RENAME_OBJECT ){
+ return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t);
+ }
+ }
+ return p;
+ }
+
+
+ /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
+ ** unary TK_ISNULL or TK_NOTNULL expression. */
+ static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
+ sqlite3 *db = pParse->db;
+ if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){
+ pA->op = (u8)op;
+ sqlite3ExprDelete(db, pA->pRight);
+ pA->pRight = 0;
+ }
+ }
+
+ /* Add a single new term to an ExprList that is used to store a
+ ** list of identifiers. Report an error if the ID list contains
+ ** a COLLATE clause or an ASC or DESC keyword, except ignore the
+ ** error while parsing a legacy schema.
+ */
+ static ExprList *parserAddExprIdListTerm(
+ Parse *pParse,
+ ExprList *pPrior,
+ Token *pIdToken,
+ int hasCollate,
+ int sortOrder
+ ){
+ ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
+ if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
+ && pParse->db->init.busy==0
+ ){
+ sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
+ pIdToken->n, pIdToken->z);
+ }
+ sqlite3ExprListSetName(pParse, p, pIdToken, 1);
+ return p;
+ }
+
+#if TK_SPAN>255
+# error too many tokens in the grammar
+#endif
+/**************** End of %include directives **********************************/
+/* These constants specify the various numeric values for terminal symbols.
+***************** Begin token definitions *************************************/
+#ifndef TK_SEMI
+#define TK_SEMI 1
+#define TK_EXPLAIN 2
+#define TK_QUERY 3
+#define TK_PLAN 4
+#define TK_BEGIN 5
+#define TK_TRANSACTION 6
+#define TK_DEFERRED 7
+#define TK_IMMEDIATE 8
+#define TK_EXCLUSIVE 9
+#define TK_COMMIT 10
+#define TK_END 11
+#define TK_ROLLBACK 12
+#define TK_SAVEPOINT 13
+#define TK_RELEASE 14
+#define TK_TO 15
+#define TK_TABLE 16
+#define TK_CREATE 17
+#define TK_IF 18
+#define TK_NOT 19
+#define TK_EXISTS 20
+#define TK_TEMP 21
+#define TK_LP 22
+#define TK_RP 23
+#define TK_AS 24
+#define TK_COMMA 25
+#define TK_WITHOUT 26
+#define TK_ABORT 27
+#define TK_ACTION 28
+#define TK_AFTER 29
+#define TK_ANALYZE 30
+#define TK_ASC 31
+#define TK_ATTACH 32
+#define TK_BEFORE 33
+#define TK_BY 34
+#define TK_CASCADE 35
+#define TK_CAST 36
+#define TK_CONFLICT 37
+#define TK_DATABASE 38
+#define TK_DESC 39
+#define TK_DETACH 40
+#define TK_EACH 41
+#define TK_FAIL 42
+#define TK_OR 43
+#define TK_AND 44
+#define TK_IS 45
+#define TK_MATCH 46
+#define TK_LIKE_KW 47
+#define TK_BETWEEN 48
+#define TK_IN 49
+#define TK_ISNULL 50
+#define TK_NOTNULL 51
+#define TK_NE 52
+#define TK_EQ 53
+#define TK_GT 54
+#define TK_LE 55
+#define TK_LT 56
+#define TK_GE 57
+#define TK_ESCAPE 58
+#define TK_ID 59
+#define TK_COLUMNKW 60
+#define TK_DO 61
+#define TK_FOR 62
+#define TK_IGNORE 63
+#define TK_INITIALLY 64
+#define TK_INSTEAD 65
+#define TK_NO 66
+#define TK_KEY 67
+#define TK_OF 68
+#define TK_OFFSET 69
+#define TK_PRAGMA 70
+#define TK_RAISE 71
+#define TK_RECURSIVE 72
+#define TK_REPLACE 73
+#define TK_RESTRICT 74
+#define TK_ROW 75
+#define TK_ROWS 76
+#define TK_TRIGGER 77
+#define TK_VACUUM 78
+#define TK_VIEW 79
+#define TK_VIRTUAL 80
+#define TK_WITH 81
+#define TK_NULLS 82
+#define TK_FIRST 83
+#define TK_LAST 84
+#define TK_CURRENT 85
+#define TK_FOLLOWING 86
+#define TK_PARTITION 87
+#define TK_PRECEDING 88
+#define TK_RANGE 89
+#define TK_UNBOUNDED 90
+#define TK_EXCLUDE 91
+#define TK_GROUPS 92
+#define TK_OTHERS 93
+#define TK_TIES 94
+#define TK_GENERATED 95
+#define TK_ALWAYS 96
+#define TK_MATERIALIZED 97
+#define TK_REINDEX 98
+#define TK_RENAME 99
+#define TK_CTIME_KW 100
+#define TK_ANY 101
+#define TK_BITAND 102
+#define TK_BITOR 103
+#define TK_LSHIFT 104
+#define TK_RSHIFT 105
+#define TK_PLUS 106
+#define TK_MINUS 107
+#define TK_STAR 108
+#define TK_SLASH 109
+#define TK_REM 110
+#define TK_CONCAT 111
+#define TK_PTR 112
+#define TK_COLLATE 113
+#define TK_BITNOT 114
+#define TK_ON 115
+#define TK_INDEXED 116
+#define TK_STRING 117
+#define TK_JOIN_KW 118
+#define TK_CONSTRAINT 119
+#define TK_DEFAULT 120
+#define TK_NULL 121
+#define TK_PRIMARY 122
+#define TK_UNIQUE 123
+#define TK_CHECK 124
+#define TK_REFERENCES 125
+#define TK_AUTOINCR 126
+#define TK_INSERT 127
+#define TK_DELETE 128
+#define TK_UPDATE 129
+#define TK_SET 130
+#define TK_DEFERRABLE 131
+#define TK_FOREIGN 132
+#define TK_DROP 133
+#define TK_UNION 134
+#define TK_ALL 135
+#define TK_EXCEPT 136
+#define TK_INTERSECT 137
+#define TK_SELECT 138
+#define TK_VALUES 139
+#define TK_DISTINCT 140
+#define TK_DOT 141
+#define TK_FROM 142
+#define TK_JOIN 143
+#define TK_USING 144
+#define TK_ORDER 145
+#define TK_GROUP 146
+#define TK_HAVING 147
+#define TK_LIMIT 148
+#define TK_WHERE 149
+#define TK_RETURNING 150
+#define TK_INTO 151
+#define TK_NOTHING 152
+#define TK_FLOAT 153
+#define TK_BLOB 154
+#define TK_INTEGER 155
+#define TK_VARIABLE 156
+#define TK_CASE 157
+#define TK_WHEN 158
+#define TK_THEN 159
+#define TK_ELSE 160
+#define TK_INDEX 161
+#define TK_ALTER 162
+#define TK_ADD 163
+#define TK_WINDOW 164
+#define TK_OVER 165
+#define TK_FILTER 166
+#define TK_COLUMN 167
+#define TK_AGG_FUNCTION 168
+#define TK_AGG_COLUMN 169
+#define TK_TRUEFALSE 170
+#define TK_ISNOT 171
+#define TK_FUNCTION 172
+#define TK_UMINUS 173
+#define TK_UPLUS 174
+#define TK_TRUTH 175
+#define TK_REGISTER 176
+#define TK_VECTOR 177
+#define TK_SELECT_COLUMN 178
+#define TK_IF_NULL_ROW 179
+#define TK_ASTERISK 180
+#define TK_SPAN 181
+#define TK_ERROR 182
+#define TK_SPACE 183
+#define TK_ILLEGAL 184
+#endif
+/**************** End token definitions ***************************************/
+
+/* The next sections is a series of control #defines.
+** various aspects of the generated parser.
+** YYCODETYPE is the data type used to store the integer codes
+** that represent terminal and non-terminal symbols.
+** "unsigned char" is used if there are fewer than
+** 256 symbols. Larger types otherwise.
+** YYNOCODE is a number of type YYCODETYPE that is not used for
+** any terminal or nonterminal symbol.
+** YYFALLBACK If defined, this indicates that one or more tokens
+** (also known as: "terminal symbols") have fall-back
+** values which should be used if the original symbol
+** would not parse. This permits keywords to sometimes
+** be used as identifiers, for example.
+** YYACTIONTYPE is the data type used for "action codes" - numbers
+** that indicate what to do in response to the next
+** token.
+** sqlite3ParserTOKENTYPE is the data type used for minor type for terminal
+** symbols. Background: A "minor type" is a semantic
+** value associated with a terminal or non-terminal
+** symbols. For example, for an "ID" terminal symbol,
+** the minor type might be the name of the identifier.
+** Each non-terminal can have a different minor type.
+** Terminal symbols all have the same minor type, though.
+** This macros defines the minor type for terminal
+** symbols.
+** YYMINORTYPE is the data type used for all minor types.
+** This is typically a union of many types, one of
+** which is sqlite3ParserTOKENTYPE. The entry in the union
+** for terminal symbols is called "yy0".
+** YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
+** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
+** sqlite3ParserARG_PARAM Code to pass %extra_argument as a subroutine parameter
+** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
+** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
+** sqlite3ParserCTX_* As sqlite3ParserARG_ except for %extra_context
+** YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+** YYNSTATE the combined number of states.
+** YYNRULE the number of rules in the grammar
+** YYNTOKEN Number of terminal symbols
+** YY_MAX_SHIFT Maximum value for shift actions
+** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
+** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
+** YY_ERROR_ACTION The yy_action[] code for syntax error
+** YY_ACCEPT_ACTION The yy_action[] code for accept
+** YY_NO_ACTION The yy_action[] code for no-op
+** YY_MIN_REDUCE Minimum value for reduce actions
+** YY_MAX_REDUCE Maximum value for reduce actions
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/************* Begin control #defines *****************************************/
+#define YYCODETYPE unsigned short int
+#define YYNOCODE 319
+#define YYACTIONTYPE unsigned short int
+#define YYWILDCARD 101
+#define sqlite3ParserTOKENTYPE Token
+typedef union {
+ int yyinit;
+ sqlite3ParserTOKENTYPE yy0;
+ TriggerStep* yy33;
+ Window* yy41;
+ Select* yy47;
+ SrcList* yy131;
+ struct TrigEvent yy180;
+ struct {int value; int mask;} yy231;
+ IdList* yy254;
+ u32 yy285;
+ ExprList* yy322;
+ Cte* yy385;
+ int yy394;
+ Upsert* yy444;
+ u8 yy516;
+ With* yy521;
+ const char* yy522;
+ Expr* yy528;
+ OnOrUsing yy561;
+ struct FrameBound yy595;
+} YYMINORTYPE;
+#ifndef YYSTACKDEPTH
+#define YYSTACKDEPTH 100
+#endif
+#define sqlite3ParserARG_SDECL
+#define sqlite3ParserARG_PDECL
+#define sqlite3ParserARG_PARAM
+#define sqlite3ParserARG_FETCH
+#define sqlite3ParserARG_STORE
+#define sqlite3ParserCTX_SDECL Parse *pParse;
+#define sqlite3ParserCTX_PDECL ,Parse *pParse
+#define sqlite3ParserCTX_PARAM ,pParse
+#define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse;
+#define sqlite3ParserCTX_STORE yypParser->pParse=pParse;
+#define YYFALLBACK 1
+#define YYNSTATE 579
+#define YYNRULE 405
+#define YYNRULE_WITH_ACTION 340
+#define YYNTOKEN 185
+#define YY_MAX_SHIFT 578
+#define YY_MIN_SHIFTREDUCE 838
+#define YY_MAX_SHIFTREDUCE 1242
+#define YY_ERROR_ACTION 1243
+#define YY_ACCEPT_ACTION 1244
+#define YY_NO_ACTION 1245
+#define YY_MIN_REDUCE 1246
+#define YY_MAX_REDUCE 1650
+/************* End control #defines *******************************************/
+#define YY_NLOOKAHEAD ((int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])))
+
+/* Define the yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef yytestcase
+# define yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
+** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE.
+**
+** N == YY_ERROR_ACTION A syntax error has occurred.
+**
+** N == YY_ACCEPT_ACTION The parser accepts its input.
+**
+** N == YY_NO_ACTION No such action. Denotes unused
+** slots in the yy_action[] table.
+**
+** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE
+** and YY_MAX_REDUCE
+**
+** The action table is constructed as a single large table named yy_action[].
+** Given state S and lookahead X, the action is computed as either:
+**
+** (A) N = yy_action[ yy_shift_ofst[S] + X ]
+** (B) N = yy_default[S]
+**
+** The (A) formula is preferred. The B formula is used instead if
+** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X.
+**
+** The formulas above are for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the yy_reduce_ofst[] array is used in place of
+** the yy_shift_ofst[] array.
+**
+** The following are the tables generated in this section:
+**
+** yy_action[] A single table containing all actions.
+** yy_lookahead[] A table containing the lookahead for each entry in
+** yy_action. Used to detect hash collisions.
+** yy_shift_ofst[] For each state, the offset into yy_action for
+** shifting terminals.
+** yy_reduce_ofst[] For each state, the offset into yy_action for
+** shifting non-terminals after a reduce.
+** yy_default[] Default action for each state.
+**
+*********** Begin parsing tables **********************************************/
+#define YY_ACTTAB_COUNT (2100)
+static const YYACTIONTYPE yy_action[] = {
+ /* 0 */ 572, 210, 572, 119, 116, 231, 572, 119, 116, 231,
+ /* 10 */ 572, 1317, 379, 1296, 410, 566, 566, 566, 572, 411,
+ /* 20 */ 380, 1317, 1279, 42, 42, 42, 42, 210, 1529, 72,
+ /* 30 */ 72, 974, 421, 42, 42, 495, 305, 281, 305, 975,
+ /* 40 */ 399, 72, 72, 126, 127, 81, 1217, 1217, 1054, 1057,
+ /* 50 */ 1044, 1044, 124, 124, 125, 125, 125, 125, 480, 411,
+ /* 60 */ 1244, 1, 1, 578, 2, 1248, 554, 119, 116, 231,
+ /* 70 */ 319, 484, 147, 484, 528, 119, 116, 231, 533, 1330,
+ /* 80 */ 419, 527, 143, 126, 127, 81, 1217, 1217, 1054, 1057,
+ /* 90 */ 1044, 1044, 124, 124, 125, 125, 125, 125, 119, 116,
+ /* 100 */ 231, 329, 123, 123, 123, 123, 122, 122, 121, 121,
+ /* 110 */ 121, 120, 117, 448, 286, 286, 286, 286, 446, 446,
+ /* 120 */ 446, 1568, 378, 1570, 1193, 377, 1164, 569, 1164, 569,
+ /* 130 */ 411, 1568, 541, 261, 228, 448, 102, 146, 453, 318,
+ /* 140 */ 563, 242, 123, 123, 123, 123, 122, 122, 121, 121,
+ /* 150 */ 121, 120, 117, 448, 126, 127, 81, 1217, 1217, 1054,
+ /* 160 */ 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, 143,
+ /* 170 */ 296, 1193, 341, 452, 121, 121, 121, 120, 117, 448,
+ /* 180 */ 128, 1193, 1194, 1193, 149, 445, 444, 572, 120, 117,
+ /* 190 */ 448, 125, 125, 125, 125, 118, 123, 123, 123, 123,
+ /* 200 */ 122, 122, 121, 121, 121, 120, 117, 448, 458, 114,
+ /* 210 */ 13, 13, 550, 123, 123, 123, 123, 122, 122, 121,
+ /* 220 */ 121, 121, 120, 117, 448, 424, 318, 563, 1193, 1194,
+ /* 230 */ 1193, 150, 1225, 411, 1225, 125, 125, 125, 125, 123,
+ /* 240 */ 123, 123, 123, 122, 122, 121, 121, 121, 120, 117,
+ /* 250 */ 448, 469, 344, 1041, 1041, 1055, 1058, 126, 127, 81,
+ /* 260 */ 1217, 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125,
+ /* 270 */ 125, 125, 1282, 526, 224, 1193, 572, 411, 226, 519,
+ /* 280 */ 177, 83, 84, 123, 123, 123, 123, 122, 122, 121,
+ /* 290 */ 121, 121, 120, 117, 448, 1010, 16, 16, 1193, 134,
+ /* 300 */ 134, 126, 127, 81, 1217, 1217, 1054, 1057, 1044, 1044,
+ /* 310 */ 124, 124, 125, 125, 125, 125, 123, 123, 123, 123,
+ /* 320 */ 122, 122, 121, 121, 121, 120, 117, 448, 1045, 550,
+ /* 330 */ 1193, 375, 1193, 1194, 1193, 254, 1438, 401, 508, 505,
+ /* 340 */ 504, 112, 564, 570, 4, 929, 929, 435, 503, 342,
+ /* 350 */ 464, 330, 362, 396, 1238, 1193, 1194, 1193, 567, 572,
+ /* 360 */ 123, 123, 123, 123, 122, 122, 121, 121, 121, 120,
+ /* 370 */ 117, 448, 286, 286, 371, 1581, 1607, 445, 444, 155,
+ /* 380 */ 411, 449, 72, 72, 1289, 569, 1222, 1193, 1194, 1193,
+ /* 390 */ 86, 1224, 273, 561, 547, 520, 520, 572, 99, 1223,
+ /* 400 */ 6, 1281, 476, 143, 126, 127, 81, 1217, 1217, 1054,
+ /* 410 */ 1057, 1044, 1044, 124, 124, 125, 125, 125, 125, 554,
+ /* 420 */ 13, 13, 1031, 511, 1225, 1193, 1225, 553, 110, 110,
+ /* 430 */ 224, 572, 1239, 177, 572, 429, 111, 199, 449, 573,
+ /* 440 */ 449, 432, 1555, 1019, 327, 555, 1193, 272, 289, 370,
+ /* 450 */ 514, 365, 513, 259, 72, 72, 547, 72, 72, 361,
+ /* 460 */ 318, 563, 1613, 123, 123, 123, 123, 122, 122, 121,
+ /* 470 */ 121, 121, 120, 117, 448, 1019, 1019, 1021, 1022, 28,
+ /* 480 */ 286, 286, 1193, 1194, 1193, 1159, 572, 1612, 411, 904,
+ /* 490 */ 192, 554, 358, 569, 554, 940, 537, 521, 1159, 437,
+ /* 500 */ 415, 1159, 556, 1193, 1194, 1193, 572, 548, 548, 52,
+ /* 510 */ 52, 216, 126, 127, 81, 1217, 1217, 1054, 1057, 1044,
+ /* 520 */ 1044, 124, 124, 125, 125, 125, 125, 1193, 478, 136,
+ /* 530 */ 136, 411, 286, 286, 1493, 509, 122, 122, 121, 121,
+ /* 540 */ 121, 120, 117, 448, 1010, 569, 522, 219, 545, 545,
+ /* 550 */ 318, 563, 143, 6, 536, 126, 127, 81, 1217, 1217,
+ /* 560 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125,
+ /* 570 */ 1557, 123, 123, 123, 123, 122, 122, 121, 121, 121,
+ /* 580 */ 120, 117, 448, 489, 1193, 1194, 1193, 486, 283, 1270,
+ /* 590 */ 960, 254, 1193, 375, 508, 505, 504, 1193, 342, 574,
+ /* 600 */ 1193, 574, 411, 294, 503, 960, 879, 193, 484, 318,
+ /* 610 */ 563, 386, 292, 382, 123, 123, 123, 123, 122, 122,
+ /* 620 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217,
+ /* 630 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 640 */ 125, 411, 396, 1139, 1193, 872, 101, 286, 286, 1193,
+ /* 650 */ 1194, 1193, 375, 1096, 1193, 1194, 1193, 1193, 1194, 1193,
+ /* 660 */ 569, 459, 33, 375, 235, 126, 127, 81, 1217, 1217,
+ /* 670 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125,
+ /* 680 */ 1437, 962, 572, 230, 961, 123, 123, 123, 123, 122,
+ /* 690 */ 122, 121, 121, 121, 120, 117, 448, 1159, 230, 1193,
+ /* 700 */ 158, 1193, 1194, 1193, 1556, 13, 13, 303, 960, 1233,
+ /* 710 */ 1159, 154, 411, 1159, 375, 1584, 1177, 5, 371, 1581,
+ /* 720 */ 431, 1239, 3, 960, 123, 123, 123, 123, 122, 122,
+ /* 730 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217,
+ /* 740 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 750 */ 125, 411, 210, 571, 1193, 1032, 1193, 1194, 1193, 1193,
+ /* 760 */ 390, 855, 156, 1555, 376, 404, 1101, 1101, 492, 572,
+ /* 770 */ 469, 344, 1322, 1322, 1555, 126, 127, 81, 1217, 1217,
+ /* 780 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125,
+ /* 790 */ 130, 572, 13, 13, 532, 123, 123, 123, 123, 122,
+ /* 800 */ 122, 121, 121, 121, 120, 117, 448, 304, 572, 457,
+ /* 810 */ 229, 1193, 1194, 1193, 13, 13, 1193, 1194, 1193, 1300,
+ /* 820 */ 467, 1270, 411, 1320, 1320, 1555, 1015, 457, 456, 436,
+ /* 830 */ 301, 72, 72, 1268, 123, 123, 123, 123, 122, 122,
+ /* 840 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217,
+ /* 850 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 860 */ 125, 411, 384, 1076, 1159, 286, 286, 421, 314, 280,
+ /* 870 */ 280, 287, 287, 461, 408, 407, 1539, 1159, 569, 572,
+ /* 880 */ 1159, 1196, 569, 409, 569, 126, 127, 81, 1217, 1217,
+ /* 890 */ 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125, 125,
+ /* 900 */ 457, 1485, 13, 13, 1541, 123, 123, 123, 123, 122,
+ /* 910 */ 122, 121, 121, 121, 120, 117, 448, 202, 572, 462,
+ /* 920 */ 1587, 578, 2, 1248, 843, 844, 845, 1563, 319, 409,
+ /* 930 */ 147, 6, 411, 257, 256, 255, 208, 1330, 9, 1196,
+ /* 940 */ 264, 72, 72, 1436, 123, 123, 123, 123, 122, 122,
+ /* 950 */ 121, 121, 121, 120, 117, 448, 126, 127, 81, 1217,
+ /* 960 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 970 */ 125, 572, 286, 286, 572, 1213, 411, 577, 315, 1248,
+ /* 980 */ 421, 371, 1581, 356, 319, 569, 147, 495, 529, 1644,
+ /* 990 */ 397, 935, 495, 1330, 71, 71, 934, 72, 72, 242,
+ /* 1000 */ 1328, 105, 81, 1217, 1217, 1054, 1057, 1044, 1044, 124,
+ /* 1010 */ 124, 125, 125, 125, 125, 123, 123, 123, 123, 122,
+ /* 1020 */ 122, 121, 121, 121, 120, 117, 448, 1117, 286, 286,
+ /* 1030 */ 1422, 452, 1528, 1213, 443, 286, 286, 1492, 1355, 313,
+ /* 1040 */ 478, 569, 1118, 454, 351, 495, 354, 1266, 569, 209,
+ /* 1050 */ 572, 418, 179, 572, 1031, 242, 385, 1119, 523, 123,
+ /* 1060 */ 123, 123, 123, 122, 122, 121, 121, 121, 120, 117,
+ /* 1070 */ 448, 1020, 108, 72, 72, 1019, 13, 13, 915, 572,
+ /* 1080 */ 1498, 572, 286, 286, 98, 530, 1537, 452, 916, 1334,
+ /* 1090 */ 1329, 203, 411, 286, 286, 569, 152, 211, 1498, 1500,
+ /* 1100 */ 426, 569, 56, 56, 57, 57, 569, 1019, 1019, 1021,
+ /* 1110 */ 447, 572, 411, 531, 12, 297, 126, 127, 81, 1217,
+ /* 1120 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 1130 */ 125, 572, 411, 867, 15, 15, 126, 127, 81, 1217,
+ /* 1140 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 1150 */ 125, 373, 529, 264, 44, 44, 126, 115, 81, 1217,
+ /* 1160 */ 1217, 1054, 1057, 1044, 1044, 124, 124, 125, 125, 125,
+ /* 1170 */ 125, 1498, 478, 1271, 417, 123, 123, 123, 123, 122,
+ /* 1180 */ 122, 121, 121, 121, 120, 117, 448, 205, 1213, 495,
+ /* 1190 */ 430, 867, 468, 322, 495, 123, 123, 123, 123, 122,
+ /* 1200 */ 122, 121, 121, 121, 120, 117, 448, 572, 557, 1140,
+ /* 1210 */ 1642, 1422, 1642, 543, 572, 123, 123, 123, 123, 122,
+ /* 1220 */ 122, 121, 121, 121, 120, 117, 448, 572, 1422, 572,
+ /* 1230 */ 13, 13, 542, 323, 1325, 411, 334, 58, 58, 349,
+ /* 1240 */ 1422, 1170, 326, 286, 286, 549, 1213, 300, 895, 530,
+ /* 1250 */ 45, 45, 59, 59, 1140, 1643, 569, 1643, 565, 417,
+ /* 1260 */ 127, 81, 1217, 1217, 1054, 1057, 1044, 1044, 124, 124,
+ /* 1270 */ 125, 125, 125, 125, 1367, 373, 500, 290, 1193, 512,
+ /* 1280 */ 1366, 427, 394, 394, 393, 275, 391, 896, 1138, 852,
+ /* 1290 */ 478, 258, 1422, 1170, 463, 1159, 12, 331, 428, 333,
+ /* 1300 */ 1117, 460, 236, 258, 325, 460, 544, 1544, 1159, 1098,
+ /* 1310 */ 491, 1159, 324, 1098, 440, 1118, 335, 516, 123, 123,
+ /* 1320 */ 123, 123, 122, 122, 121, 121, 121, 120, 117, 448,
+ /* 1330 */ 1119, 318, 563, 1138, 572, 1193, 1194, 1193, 112, 564,
+ /* 1340 */ 201, 4, 238, 433, 935, 490, 285, 228, 1517, 934,
+ /* 1350 */ 170, 560, 572, 142, 1516, 567, 572, 60, 60, 572,
+ /* 1360 */ 416, 572, 441, 572, 535, 302, 875, 8, 487, 572,
+ /* 1370 */ 237, 572, 416, 572, 485, 61, 61, 572, 449, 62,
+ /* 1380 */ 62, 332, 63, 63, 46, 46, 47, 47, 361, 572,
+ /* 1390 */ 561, 572, 48, 48, 50, 50, 51, 51, 572, 295,
+ /* 1400 */ 64, 64, 482, 295, 539, 412, 471, 1031, 572, 538,
+ /* 1410 */ 318, 563, 65, 65, 66, 66, 409, 475, 572, 1031,
+ /* 1420 */ 572, 14, 14, 875, 1020, 110, 110, 409, 1019, 572,
+ /* 1430 */ 474, 67, 67, 111, 455, 449, 573, 449, 98, 317,
+ /* 1440 */ 1019, 132, 132, 133, 133, 572, 1561, 572, 974, 409,
+ /* 1450 */ 6, 1562, 68, 68, 1560, 6, 975, 572, 6, 1559,
+ /* 1460 */ 1019, 1019, 1021, 6, 346, 218, 101, 531, 53, 53,
+ /* 1470 */ 69, 69, 1019, 1019, 1021, 1022, 28, 1586, 1181, 451,
+ /* 1480 */ 70, 70, 290, 87, 215, 31, 1363, 394, 394, 393,
+ /* 1490 */ 275, 391, 350, 109, 852, 107, 572, 112, 564, 483,
+ /* 1500 */ 4, 1212, 572, 239, 153, 572, 39, 236, 1299, 325,
+ /* 1510 */ 112, 564, 1298, 4, 567, 572, 32, 324, 572, 54,
+ /* 1520 */ 54, 572, 1135, 353, 398, 165, 165, 567, 166, 166,
+ /* 1530 */ 572, 291, 355, 572, 17, 357, 572, 449, 77, 77,
+ /* 1540 */ 1313, 55, 55, 1297, 73, 73, 572, 238, 470, 561,
+ /* 1550 */ 449, 472, 364, 135, 135, 170, 74, 74, 142, 163,
+ /* 1560 */ 163, 374, 561, 539, 572, 321, 572, 886, 540, 137,
+ /* 1570 */ 137, 339, 1353, 422, 298, 237, 539, 572, 1031, 572,
+ /* 1580 */ 340, 538, 101, 369, 110, 110, 162, 131, 131, 164,
+ /* 1590 */ 164, 1031, 111, 368, 449, 573, 449, 110, 110, 1019,
+ /* 1600 */ 157, 157, 141, 141, 572, 111, 572, 449, 573, 449,
+ /* 1610 */ 412, 288, 1019, 572, 882, 318, 563, 572, 219, 572,
+ /* 1620 */ 241, 1012, 477, 263, 263, 894, 893, 140, 140, 138,
+ /* 1630 */ 138, 1019, 1019, 1021, 1022, 28, 139, 139, 525, 455,
+ /* 1640 */ 76, 76, 78, 78, 1019, 1019, 1021, 1022, 28, 1181,
+ /* 1650 */ 451, 572, 1083, 290, 112, 564, 1575, 4, 394, 394,
+ /* 1660 */ 393, 275, 391, 572, 1023, 852, 572, 479, 345, 263,
+ /* 1670 */ 101, 567, 882, 1376, 75, 75, 1421, 501, 236, 260,
+ /* 1680 */ 325, 112, 564, 359, 4, 101, 43, 43, 324, 49,
+ /* 1690 */ 49, 901, 902, 161, 449, 101, 977, 978, 567, 1079,
+ /* 1700 */ 1349, 260, 965, 932, 263, 114, 561, 1095, 517, 1095,
+ /* 1710 */ 1083, 1094, 865, 1094, 151, 933, 1144, 114, 238, 1361,
+ /* 1720 */ 558, 449, 1023, 559, 1426, 1278, 170, 1269, 1257, 142,
+ /* 1730 */ 1601, 1256, 1258, 561, 1594, 1031, 496, 278, 213, 1346,
+ /* 1740 */ 310, 110, 110, 939, 311, 312, 237, 11, 234, 111,
+ /* 1750 */ 221, 449, 573, 449, 293, 395, 1019, 1408, 337, 1403,
+ /* 1760 */ 1396, 338, 1031, 299, 343, 1413, 1412, 481, 110, 110,
+ /* 1770 */ 506, 402, 225, 1296, 206, 367, 111, 1358, 449, 573,
+ /* 1780 */ 449, 412, 1359, 1019, 1489, 1488, 318, 563, 1019, 1019,
+ /* 1790 */ 1021, 1022, 28, 562, 207, 220, 80, 564, 389, 4,
+ /* 1800 */ 1597, 1357, 552, 1356, 1233, 181, 267, 232, 1536, 1534,
+ /* 1810 */ 455, 1230, 420, 567, 82, 1019, 1019, 1021, 1022, 28,
+ /* 1820 */ 86, 217, 85, 1494, 190, 175, 183, 465, 185, 466,
+ /* 1830 */ 36, 1409, 186, 187, 188, 499, 449, 244, 37, 99,
+ /* 1840 */ 400, 1415, 1414, 488, 1417, 194, 473, 403, 561, 1483,
+ /* 1850 */ 248, 92, 1505, 494, 198, 279, 112, 564, 250, 4,
+ /* 1860 */ 348, 497, 405, 352, 1259, 251, 252, 515, 1316, 434,
+ /* 1870 */ 1315, 1314, 94, 567, 1307, 886, 1306, 1031, 226, 406,
+ /* 1880 */ 1611, 1610, 438, 110, 110, 1580, 1286, 524, 439, 308,
+ /* 1890 */ 266, 111, 1285, 449, 573, 449, 449, 309, 1019, 366,
+ /* 1900 */ 1284, 1609, 265, 1566, 1565, 442, 372, 1381, 561, 129,
+ /* 1910 */ 550, 1380, 10, 1470, 383, 106, 316, 551, 100, 35,
+ /* 1920 */ 534, 575, 212, 1339, 381, 387, 1187, 1338, 274, 276,
+ /* 1930 */ 1019, 1019, 1021, 1022, 28, 277, 413, 1031, 576, 1254,
+ /* 1940 */ 388, 1521, 1249, 110, 110, 167, 1522, 168, 148, 1520,
+ /* 1950 */ 1519, 111, 306, 449, 573, 449, 222, 223, 1019, 839,
+ /* 1960 */ 169, 79, 450, 214, 414, 233, 320, 145, 1093, 1091,
+ /* 1970 */ 328, 182, 171, 1212, 918, 184, 240, 336, 243, 1107,
+ /* 1980 */ 189, 172, 173, 423, 425, 88, 180, 191, 89, 90,
+ /* 1990 */ 1019, 1019, 1021, 1022, 28, 91, 174, 1110, 245, 1106,
+ /* 2000 */ 246, 159, 18, 247, 347, 1099, 263, 195, 1227, 493,
+ /* 2010 */ 249, 196, 38, 854, 498, 368, 253, 360, 897, 197,
+ /* 2020 */ 502, 93, 19, 20, 507, 884, 363, 510, 95, 307,
+ /* 2030 */ 160, 96, 518, 97, 1175, 1060, 1146, 40, 21, 227,
+ /* 2040 */ 176, 1145, 282, 284, 969, 200, 963, 114, 262, 1165,
+ /* 2050 */ 22, 23, 24, 1161, 1169, 25, 1163, 1150, 34, 26,
+ /* 2060 */ 1168, 546, 27, 204, 101, 103, 104, 1074, 7, 1061,
+ /* 2070 */ 1059, 1063, 1116, 1064, 1115, 268, 269, 29, 41, 270,
+ /* 2080 */ 1024, 866, 113, 30, 568, 392, 1183, 144, 178, 1182,
+ /* 2090 */ 271, 928, 1245, 1245, 1245, 1245, 1245, 1245, 1245, 1602,
+};
+static const YYCODETYPE yy_lookahead[] = {
+ /* 0 */ 193, 193, 193, 274, 275, 276, 193, 274, 275, 276,
+ /* 10 */ 193, 223, 219, 225, 206, 210, 211, 212, 193, 19,
+ /* 20 */ 219, 233, 216, 216, 217, 216, 217, 193, 295, 216,
+ /* 30 */ 217, 31, 193, 216, 217, 193, 228, 213, 230, 39,
+ /* 40 */ 206, 216, 217, 43, 44, 45, 46, 47, 48, 49,
+ /* 50 */ 50, 51, 52, 53, 54, 55, 56, 57, 193, 19,
+ /* 60 */ 185, 186, 187, 188, 189, 190, 253, 274, 275, 276,
+ /* 70 */ 195, 193, 197, 193, 261, 274, 275, 276, 253, 204,
+ /* 80 */ 238, 204, 81, 43, 44, 45, 46, 47, 48, 49,
+ /* 90 */ 50, 51, 52, 53, 54, 55, 56, 57, 274, 275,
+ /* 100 */ 276, 262, 102, 103, 104, 105, 106, 107, 108, 109,
+ /* 110 */ 110, 111, 112, 113, 239, 240, 239, 240, 210, 211,
+ /* 120 */ 212, 314, 315, 314, 59, 316, 86, 252, 88, 252,
+ /* 130 */ 19, 314, 315, 256, 257, 113, 25, 72, 296, 138,
+ /* 140 */ 139, 266, 102, 103, 104, 105, 106, 107, 108, 109,
+ /* 150 */ 110, 111, 112, 113, 43, 44, 45, 46, 47, 48,
+ /* 160 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 81,
+ /* 170 */ 292, 59, 292, 298, 108, 109, 110, 111, 112, 113,
+ /* 180 */ 69, 116, 117, 118, 72, 106, 107, 193, 111, 112,
+ /* 190 */ 113, 54, 55, 56, 57, 58, 102, 103, 104, 105,
+ /* 200 */ 106, 107, 108, 109, 110, 111, 112, 113, 120, 25,
+ /* 210 */ 216, 217, 145, 102, 103, 104, 105, 106, 107, 108,
+ /* 220 */ 109, 110, 111, 112, 113, 231, 138, 139, 116, 117,
+ /* 230 */ 118, 164, 153, 19, 155, 54, 55, 56, 57, 102,
+ /* 240 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
+ /* 250 */ 113, 128, 129, 46, 47, 48, 49, 43, 44, 45,
+ /* 260 */ 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
+ /* 270 */ 56, 57, 216, 193, 25, 59, 193, 19, 165, 166,
+ /* 280 */ 193, 67, 24, 102, 103, 104, 105, 106, 107, 108,
+ /* 290 */ 109, 110, 111, 112, 113, 73, 216, 217, 59, 216,
+ /* 300 */ 217, 43, 44, 45, 46, 47, 48, 49, 50, 51,
+ /* 310 */ 52, 53, 54, 55, 56, 57, 102, 103, 104, 105,
+ /* 320 */ 106, 107, 108, 109, 110, 111, 112, 113, 121, 145,
+ /* 330 */ 59, 193, 116, 117, 118, 119, 273, 204, 122, 123,
+ /* 340 */ 124, 19, 20, 134, 22, 136, 137, 19, 132, 127,
+ /* 350 */ 128, 129, 24, 22, 23, 116, 117, 118, 36, 193,
+ /* 360 */ 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ /* 370 */ 112, 113, 239, 240, 311, 312, 215, 106, 107, 241,
+ /* 380 */ 19, 59, 216, 217, 223, 252, 115, 116, 117, 118,
+ /* 390 */ 151, 120, 26, 71, 193, 308, 309, 193, 149, 128,
+ /* 400 */ 313, 216, 269, 81, 43, 44, 45, 46, 47, 48,
+ /* 410 */ 49, 50, 51, 52, 53, 54, 55, 56, 57, 253,
+ /* 420 */ 216, 217, 100, 95, 153, 59, 155, 261, 106, 107,
+ /* 430 */ 25, 193, 101, 193, 193, 231, 114, 25, 116, 117,
+ /* 440 */ 118, 113, 304, 121, 193, 204, 59, 119, 120, 121,
+ /* 450 */ 122, 123, 124, 125, 216, 217, 193, 216, 217, 131,
+ /* 460 */ 138, 139, 230, 102, 103, 104, 105, 106, 107, 108,
+ /* 470 */ 109, 110, 111, 112, 113, 153, 154, 155, 156, 157,
+ /* 480 */ 239, 240, 116, 117, 118, 76, 193, 23, 19, 25,
+ /* 490 */ 22, 253, 23, 252, 253, 108, 87, 204, 89, 261,
+ /* 500 */ 198, 92, 261, 116, 117, 118, 193, 306, 307, 216,
+ /* 510 */ 217, 150, 43, 44, 45, 46, 47, 48, 49, 50,
+ /* 520 */ 51, 52, 53, 54, 55, 56, 57, 59, 193, 216,
+ /* 530 */ 217, 19, 239, 240, 283, 23, 106, 107, 108, 109,
+ /* 540 */ 110, 111, 112, 113, 73, 252, 253, 142, 308, 309,
+ /* 550 */ 138, 139, 81, 313, 145, 43, 44, 45, 46, 47,
+ /* 560 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 570 */ 307, 102, 103, 104, 105, 106, 107, 108, 109, 110,
+ /* 580 */ 111, 112, 113, 281, 116, 117, 118, 285, 23, 193,
+ /* 590 */ 25, 119, 59, 193, 122, 123, 124, 59, 127, 203,
+ /* 600 */ 59, 205, 19, 268, 132, 25, 23, 22, 193, 138,
+ /* 610 */ 139, 249, 204, 251, 102, 103, 104, 105, 106, 107,
+ /* 620 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 630 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 640 */ 57, 19, 22, 23, 59, 23, 25, 239, 240, 116,
+ /* 650 */ 117, 118, 193, 11, 116, 117, 118, 116, 117, 118,
+ /* 660 */ 252, 269, 22, 193, 15, 43, 44, 45, 46, 47,
+ /* 670 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 680 */ 273, 143, 193, 118, 143, 102, 103, 104, 105, 106,
+ /* 690 */ 107, 108, 109, 110, 111, 112, 113, 76, 118, 59,
+ /* 700 */ 241, 116, 117, 118, 304, 216, 217, 292, 143, 60,
+ /* 710 */ 89, 241, 19, 92, 193, 193, 23, 22, 311, 312,
+ /* 720 */ 231, 101, 22, 143, 102, 103, 104, 105, 106, 107,
+ /* 730 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 740 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 750 */ 57, 19, 193, 193, 59, 23, 116, 117, 118, 59,
+ /* 760 */ 201, 21, 241, 304, 193, 206, 127, 128, 129, 193,
+ /* 770 */ 128, 129, 235, 236, 304, 43, 44, 45, 46, 47,
+ /* 780 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 790 */ 22, 193, 216, 217, 193, 102, 103, 104, 105, 106,
+ /* 800 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 193,
+ /* 810 */ 193, 116, 117, 118, 216, 217, 116, 117, 118, 226,
+ /* 820 */ 80, 193, 19, 235, 236, 304, 23, 211, 212, 231,
+ /* 830 */ 204, 216, 217, 205, 102, 103, 104, 105, 106, 107,
+ /* 840 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 850 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 860 */ 57, 19, 193, 123, 76, 239, 240, 193, 253, 239,
+ /* 870 */ 240, 239, 240, 244, 106, 107, 193, 89, 252, 193,
+ /* 880 */ 92, 59, 252, 254, 252, 43, 44, 45, 46, 47,
+ /* 890 */ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ /* 900 */ 284, 161, 216, 217, 193, 102, 103, 104, 105, 106,
+ /* 910 */ 107, 108, 109, 110, 111, 112, 113, 231, 193, 244,
+ /* 920 */ 187, 188, 189, 190, 7, 8, 9, 309, 195, 254,
+ /* 930 */ 197, 313, 19, 127, 128, 129, 262, 204, 22, 117,
+ /* 940 */ 24, 216, 217, 273, 102, 103, 104, 105, 106, 107,
+ /* 950 */ 108, 109, 110, 111, 112, 113, 43, 44, 45, 46,
+ /* 960 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 970 */ 57, 193, 239, 240, 193, 59, 19, 188, 253, 190,
+ /* 980 */ 193, 311, 312, 16, 195, 252, 197, 193, 19, 301,
+ /* 990 */ 302, 135, 193, 204, 216, 217, 140, 216, 217, 266,
+ /* 1000 */ 204, 159, 45, 46, 47, 48, 49, 50, 51, 52,
+ /* 1010 */ 53, 54, 55, 56, 57, 102, 103, 104, 105, 106,
+ /* 1020 */ 107, 108, 109, 110, 111, 112, 113, 12, 239, 240,
+ /* 1030 */ 193, 298, 238, 117, 253, 239, 240, 238, 259, 260,
+ /* 1040 */ 193, 252, 27, 193, 77, 193, 79, 204, 252, 262,
+ /* 1050 */ 193, 299, 300, 193, 100, 266, 278, 42, 204, 102,
+ /* 1060 */ 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
+ /* 1070 */ 113, 117, 159, 216, 217, 121, 216, 217, 63, 193,
+ /* 1080 */ 193, 193, 239, 240, 115, 116, 193, 298, 73, 240,
+ /* 1090 */ 238, 231, 19, 239, 240, 252, 22, 24, 211, 212,
+ /* 1100 */ 263, 252, 216, 217, 216, 217, 252, 153, 154, 155,
+ /* 1110 */ 253, 193, 19, 144, 213, 268, 43, 44, 45, 46,
+ /* 1120 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 1130 */ 57, 193, 19, 59, 216, 217, 43, 44, 45, 46,
+ /* 1140 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 1150 */ 57, 193, 19, 24, 216, 217, 43, 44, 45, 46,
+ /* 1160 */ 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ /* 1170 */ 57, 284, 193, 208, 209, 102, 103, 104, 105, 106,
+ /* 1180 */ 107, 108, 109, 110, 111, 112, 113, 286, 59, 193,
+ /* 1190 */ 232, 117, 291, 193, 193, 102, 103, 104, 105, 106,
+ /* 1200 */ 107, 108, 109, 110, 111, 112, 113, 193, 204, 22,
+ /* 1210 */ 23, 193, 25, 66, 193, 102, 103, 104, 105, 106,
+ /* 1220 */ 107, 108, 109, 110, 111, 112, 113, 193, 193, 193,
+ /* 1230 */ 216, 217, 85, 193, 238, 19, 16, 216, 217, 238,
+ /* 1240 */ 193, 94, 193, 239, 240, 231, 117, 268, 35, 116,
+ /* 1250 */ 216, 217, 216, 217, 22, 23, 252, 25, 208, 209,
+ /* 1260 */ 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ /* 1270 */ 54, 55, 56, 57, 193, 193, 19, 5, 59, 66,
+ /* 1280 */ 193, 263, 10, 11, 12, 13, 14, 74, 101, 17,
+ /* 1290 */ 193, 46, 193, 146, 193, 76, 213, 77, 263, 79,
+ /* 1300 */ 12, 260, 30, 46, 32, 264, 87, 193, 89, 29,
+ /* 1310 */ 263, 92, 40, 33, 232, 27, 193, 108, 102, 103,
+ /* 1320 */ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
+ /* 1330 */ 42, 138, 139, 101, 193, 116, 117, 118, 19, 20,
+ /* 1340 */ 255, 22, 70, 130, 135, 65, 256, 257, 193, 140,
+ /* 1350 */ 78, 63, 193, 81, 193, 36, 193, 216, 217, 193,
+ /* 1360 */ 115, 193, 263, 193, 145, 268, 59, 48, 193, 193,
+ /* 1370 */ 98, 193, 115, 193, 291, 216, 217, 193, 59, 216,
+ /* 1380 */ 217, 161, 216, 217, 216, 217, 216, 217, 131, 193,
+ /* 1390 */ 71, 193, 216, 217, 216, 217, 216, 217, 193, 260,
+ /* 1400 */ 216, 217, 19, 264, 85, 133, 244, 100, 193, 90,
+ /* 1410 */ 138, 139, 216, 217, 216, 217, 254, 244, 193, 100,
+ /* 1420 */ 193, 216, 217, 116, 117, 106, 107, 254, 121, 193,
+ /* 1430 */ 115, 216, 217, 114, 162, 116, 117, 118, 115, 244,
+ /* 1440 */ 121, 216, 217, 216, 217, 193, 309, 193, 31, 254,
+ /* 1450 */ 313, 309, 216, 217, 309, 313, 39, 193, 313, 309,
+ /* 1460 */ 153, 154, 155, 313, 193, 150, 25, 144, 216, 217,
+ /* 1470 */ 216, 217, 153, 154, 155, 156, 157, 0, 1, 2,
+ /* 1480 */ 216, 217, 5, 149, 150, 22, 193, 10, 11, 12,
+ /* 1490 */ 13, 14, 193, 158, 17, 160, 193, 19, 20, 116,
+ /* 1500 */ 22, 25, 193, 24, 22, 193, 24, 30, 226, 32,
+ /* 1510 */ 19, 20, 226, 22, 36, 193, 53, 40, 193, 216,
+ /* 1520 */ 217, 193, 23, 193, 25, 216, 217, 36, 216, 217,
+ /* 1530 */ 193, 99, 193, 193, 22, 193, 193, 59, 216, 217,
+ /* 1540 */ 193, 216, 217, 193, 216, 217, 193, 70, 129, 71,
+ /* 1550 */ 59, 129, 193, 216, 217, 78, 216, 217, 81, 216,
+ /* 1560 */ 217, 193, 71, 85, 193, 133, 193, 126, 90, 216,
+ /* 1570 */ 217, 152, 258, 61, 152, 98, 85, 193, 100, 193,
+ /* 1580 */ 23, 90, 25, 121, 106, 107, 23, 216, 217, 216,
+ /* 1590 */ 217, 100, 114, 131, 116, 117, 118, 106, 107, 121,
+ /* 1600 */ 216, 217, 216, 217, 193, 114, 193, 116, 117, 118,
+ /* 1610 */ 133, 22, 121, 193, 59, 138, 139, 193, 142, 193,
+ /* 1620 */ 141, 23, 23, 25, 25, 120, 121, 216, 217, 216,
+ /* 1630 */ 217, 153, 154, 155, 156, 157, 216, 217, 19, 162,
+ /* 1640 */ 216, 217, 216, 217, 153, 154, 155, 156, 157, 1,
+ /* 1650 */ 2, 193, 59, 5, 19, 20, 318, 22, 10, 11,
+ /* 1660 */ 12, 13, 14, 193, 59, 17, 193, 23, 23, 25,
+ /* 1670 */ 25, 36, 117, 193, 216, 217, 193, 23, 30, 25,
+ /* 1680 */ 32, 19, 20, 23, 22, 25, 216, 217, 40, 216,
+ /* 1690 */ 217, 7, 8, 23, 59, 25, 83, 84, 36, 23,
+ /* 1700 */ 193, 25, 23, 23, 25, 25, 71, 153, 145, 155,
+ /* 1710 */ 117, 153, 23, 155, 25, 23, 97, 25, 70, 193,
+ /* 1720 */ 193, 59, 117, 236, 193, 193, 78, 193, 193, 81,
+ /* 1730 */ 141, 193, 193, 71, 193, 100, 288, 287, 242, 255,
+ /* 1740 */ 255, 106, 107, 108, 255, 255, 98, 243, 297, 114,
+ /* 1750 */ 214, 116, 117, 118, 245, 191, 121, 271, 293, 267,
+ /* 1760 */ 267, 246, 100, 246, 245, 271, 271, 293, 106, 107,
+ /* 1770 */ 220, 271, 229, 225, 249, 219, 114, 259, 116, 117,
+ /* 1780 */ 118, 133, 259, 121, 219, 219, 138, 139, 153, 154,
+ /* 1790 */ 155, 156, 157, 280, 249, 243, 19, 20, 245, 22,
+ /* 1800 */ 196, 259, 140, 259, 60, 297, 141, 297, 200, 200,
+ /* 1810 */ 162, 38, 200, 36, 294, 153, 154, 155, 156, 157,
+ /* 1820 */ 151, 150, 294, 283, 22, 43, 234, 18, 237, 200,
+ /* 1830 */ 270, 272, 237, 237, 237, 18, 59, 199, 270, 149,
+ /* 1840 */ 246, 272, 272, 200, 234, 234, 246, 246, 71, 246,
+ /* 1850 */ 199, 158, 290, 62, 22, 200, 19, 20, 199, 22,
+ /* 1860 */ 289, 221, 221, 200, 200, 199, 199, 115, 218, 64,
+ /* 1870 */ 218, 218, 22, 36, 227, 126, 227, 100, 165, 221,
+ /* 1880 */ 224, 224, 24, 106, 107, 312, 218, 305, 113, 282,
+ /* 1890 */ 91, 114, 220, 116, 117, 118, 59, 282, 121, 218,
+ /* 1900 */ 218, 218, 200, 317, 317, 82, 221, 265, 71, 148,
+ /* 1910 */ 145, 265, 22, 277, 200, 158, 279, 140, 147, 25,
+ /* 1920 */ 146, 202, 248, 250, 249, 247, 13, 250, 194, 194,
+ /* 1930 */ 153, 154, 155, 156, 157, 6, 303, 100, 192, 192,
+ /* 1940 */ 246, 213, 192, 106, 107, 207, 213, 207, 222, 213,
+ /* 1950 */ 213, 114, 222, 116, 117, 118, 214, 214, 121, 4,
+ /* 1960 */ 207, 213, 3, 22, 303, 15, 163, 16, 23, 23,
+ /* 1970 */ 139, 151, 130, 25, 20, 142, 24, 16, 144, 1,
+ /* 1980 */ 142, 130, 130, 61, 37, 53, 300, 151, 53, 53,
+ /* 1990 */ 153, 154, 155, 156, 157, 53, 130, 116, 34, 1,
+ /* 2000 */ 141, 5, 22, 115, 161, 68, 25, 68, 75, 41,
+ /* 2010 */ 141, 115, 24, 20, 19, 131, 125, 23, 28, 22,
+ /* 2020 */ 67, 22, 22, 22, 67, 59, 24, 96, 22, 67,
+ /* 2030 */ 23, 149, 22, 25, 23, 23, 23, 22, 34, 141,
+ /* 2040 */ 37, 97, 23, 23, 116, 22, 143, 25, 34, 75,
+ /* 2050 */ 34, 34, 34, 88, 75, 34, 86, 23, 22, 34,
+ /* 2060 */ 93, 24, 34, 25, 25, 142, 142, 23, 44, 23,
+ /* 2070 */ 23, 23, 23, 11, 23, 25, 22, 22, 22, 141,
+ /* 2080 */ 23, 23, 22, 22, 25, 15, 1, 23, 25, 1,
+ /* 2090 */ 141, 135, 319, 319, 319, 319, 319, 319, 319, 141,
+ /* 2100 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2110 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2120 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2130 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2140 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2150 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2160 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2170 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2180 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2190 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2200 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2210 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2220 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2230 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2240 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2250 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2260 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2270 */ 319, 319, 319, 319, 319, 319, 319, 319, 319, 319,
+ /* 2280 */ 319, 319, 319, 319, 319,
+};
+#define YY_SHIFT_COUNT (578)
+#define YY_SHIFT_MIN (0)
+#define YY_SHIFT_MAX (2088)
+static const unsigned short int yy_shift_ofst[] = {
+ /* 0 */ 1648, 1477, 1272, 322, 322, 1, 1319, 1478, 1491, 1837,
+ /* 10 */ 1837, 1837, 471, 0, 0, 214, 1093, 1837, 1837, 1837,
+ /* 20 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 30 */ 1837, 271, 271, 1219, 1219, 216, 88, 1, 1, 1,
+ /* 40 */ 1, 1, 40, 111, 258, 361, 469, 512, 583, 622,
+ /* 50 */ 693, 732, 803, 842, 913, 1073, 1093, 1093, 1093, 1093,
+ /* 60 */ 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093, 1093,
+ /* 70 */ 1093, 1093, 1093, 1093, 1113, 1093, 1216, 957, 957, 1635,
+ /* 80 */ 1662, 1777, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 90 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 100 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 110 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 120 */ 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837, 1837,
+ /* 130 */ 1837, 137, 181, 181, 181, 181, 181, 181, 181, 94,
+ /* 140 */ 430, 66, 65, 112, 366, 533, 533, 740, 1257, 533,
+ /* 150 */ 533, 79, 79, 533, 412, 412, 412, 77, 412, 123,
+ /* 160 */ 113, 113, 113, 22, 22, 2100, 2100, 328, 328, 328,
+ /* 170 */ 239, 468, 468, 468, 468, 1015, 1015, 409, 366, 1187,
+ /* 180 */ 1232, 533, 533, 533, 533, 533, 533, 533, 533, 533,
+ /* 190 */ 533, 533, 533, 533, 533, 533, 533, 533, 533, 533,
+ /* 200 */ 533, 969, 621, 621, 533, 642, 788, 788, 1133, 1133,
+ /* 210 */ 822, 822, 67, 1193, 2100, 2100, 2100, 2100, 2100, 2100,
+ /* 220 */ 2100, 1307, 954, 954, 585, 472, 640, 387, 695, 538,
+ /* 230 */ 541, 700, 533, 533, 533, 533, 533, 533, 533, 533,
+ /* 240 */ 533, 533, 222, 533, 533, 533, 533, 533, 533, 533,
+ /* 250 */ 533, 533, 533, 533, 533, 1213, 1213, 1213, 533, 533,
+ /* 260 */ 533, 565, 533, 533, 533, 916, 1147, 533, 533, 1288,
+ /* 270 */ 533, 533, 533, 533, 533, 533, 533, 533, 639, 1280,
+ /* 280 */ 209, 1129, 1129, 1129, 1129, 580, 209, 209, 1209, 768,
+ /* 290 */ 917, 649, 1315, 1334, 405, 1334, 1383, 249, 1315, 1315,
+ /* 300 */ 249, 1315, 405, 1383, 1441, 464, 1245, 1417, 1417, 1417,
+ /* 310 */ 1323, 1323, 1323, 1323, 184, 184, 1335, 1476, 856, 1482,
+ /* 320 */ 1744, 1744, 1665, 1665, 1773, 1773, 1665, 1669, 1671, 1802,
+ /* 330 */ 1782, 1809, 1809, 1809, 1809, 1665, 1817, 1690, 1671, 1671,
+ /* 340 */ 1690, 1802, 1782, 1690, 1782, 1690, 1665, 1817, 1693, 1791,
+ /* 350 */ 1665, 1817, 1832, 1665, 1817, 1665, 1817, 1832, 1752, 1752,
+ /* 360 */ 1752, 1805, 1850, 1850, 1832, 1752, 1749, 1752, 1805, 1752,
+ /* 370 */ 1752, 1713, 1858, 1775, 1775, 1832, 1665, 1799, 1799, 1823,
+ /* 380 */ 1823, 1761, 1765, 1890, 1665, 1757, 1761, 1771, 1774, 1690,
+ /* 390 */ 1894, 1913, 1913, 1929, 1929, 1929, 2100, 2100, 2100, 2100,
+ /* 400 */ 2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100,
+ /* 410 */ 2100, 207, 1220, 331, 620, 967, 806, 1074, 1499, 1432,
+ /* 420 */ 1463, 1479, 1419, 1422, 1557, 1512, 1598, 1599, 1644, 1645,
+ /* 430 */ 1654, 1660, 1555, 1505, 1684, 1462, 1670, 1563, 1619, 1593,
+ /* 440 */ 1676, 1679, 1613, 1680, 1554, 1558, 1689, 1692, 1605, 1589,
+ /* 450 */ 1955, 1959, 1941, 1803, 1950, 1951, 1945, 1946, 1831, 1820,
+ /* 460 */ 1842, 1948, 1948, 1952, 1833, 1954, 1834, 1961, 1978, 1838,
+ /* 470 */ 1851, 1948, 1852, 1922, 1947, 1948, 1836, 1932, 1935, 1936,
+ /* 480 */ 1942, 1866, 1881, 1964, 1859, 1998, 1996, 1980, 1888, 1843,
+ /* 490 */ 1937, 1981, 1939, 1933, 1968, 1869, 1896, 1988, 1993, 1995,
+ /* 500 */ 1884, 1891, 1997, 1953, 1999, 2000, 1994, 2001, 1957, 1966,
+ /* 510 */ 2002, 1931, 1990, 2006, 1962, 2003, 2007, 2004, 1882, 2010,
+ /* 520 */ 2011, 2012, 2008, 2013, 2015, 1944, 1898, 2019, 2020, 1928,
+ /* 530 */ 2014, 2023, 1903, 2022, 2016, 2017, 2018, 2021, 1965, 1974,
+ /* 540 */ 1970, 2024, 1979, 1967, 2025, 2034, 2036, 2037, 2038, 2039,
+ /* 550 */ 2028, 1923, 1924, 2044, 2022, 2046, 2047, 2048, 2049, 2050,
+ /* 560 */ 2051, 2054, 2062, 2055, 2056, 2057, 2058, 2060, 2061, 2059,
+ /* 570 */ 1956, 1938, 1949, 1958, 2063, 2064, 2070, 2085, 2088,
+};
+#define YY_REDUCE_COUNT (410)
+#define YY_REDUCE_MIN (-271)
+#define YY_REDUCE_MAX (1753)
+static const short yy_reduce_ofst[] = {
+ /* 0 */ -125, 733, 789, 241, 293, -123, -193, -191, -183, -187,
+ /* 10 */ 166, 238, 133, -207, -199, -267, -176, -6, 204, 489,
+ /* 20 */ 576, 598, -175, 686, 860, 615, 725, 1014, 778, 781,
+ /* 30 */ 857, 616, 887, 87, 240, -192, 408, 626, 796, 843,
+ /* 40 */ 854, 1004, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 50 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 60 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 70 */ -271, -271, -271, -271, -271, -271, -271, -271, -271, 80,
+ /* 80 */ 83, 313, 886, 888, 918, 938, 1021, 1034, 1036, 1141,
+ /* 90 */ 1159, 1163, 1166, 1168, 1170, 1176, 1178, 1180, 1184, 1196,
+ /* 100 */ 1198, 1205, 1215, 1225, 1227, 1236, 1252, 1254, 1264, 1303,
+ /* 110 */ 1309, 1312, 1322, 1325, 1328, 1337, 1340, 1343, 1353, 1371,
+ /* 120 */ 1373, 1384, 1386, 1411, 1413, 1420, 1424, 1426, 1458, 1470,
+ /* 130 */ 1473, -271, -271, -271, -271, -271, -271, -271, -271, -271,
+ /* 140 */ -271, -271, 138, 459, 396, -158, 470, 302, -212, 521,
+ /* 150 */ 201, -195, -92, 559, 630, 632, 630, -271, 632, 901,
+ /* 160 */ 63, 407, 670, -271, -271, -271, -271, 161, 161, 161,
+ /* 170 */ 251, 335, 847, 979, 1097, 537, 588, 618, 628, 688,
+ /* 180 */ 688, -166, -161, 674, 787, 794, 799, 852, 996, -122,
+ /* 190 */ 837, -120, 1018, 1035, 415, 1047, 1001, 958, 1082, 400,
+ /* 200 */ 1099, 779, 1137, 1142, 263, 1083, 1145, 1150, 1041, 1139,
+ /* 210 */ 965, 1050, 362, 849, 752, 629, 675, 1162, 1173, 1090,
+ /* 220 */ 1195, -194, 56, 185, -135, 232, 522, 560, 571, 601,
+ /* 230 */ 617, 669, 683, 711, 850, 893, 1000, 1040, 1049, 1081,
+ /* 240 */ 1087, 1101, 392, 1114, 1123, 1155, 1161, 1175, 1271, 1293,
+ /* 250 */ 1299, 1330, 1339, 1342, 1347, 593, 1282, 1286, 1350, 1359,
+ /* 260 */ 1368, 1314, 1480, 1483, 1507, 1085, 1338, 1526, 1527, 1487,
+ /* 270 */ 1531, 560, 1532, 1534, 1535, 1538, 1539, 1541, 1448, 1450,
+ /* 280 */ 1496, 1484, 1485, 1489, 1490, 1314, 1496, 1496, 1504, 1536,
+ /* 290 */ 1564, 1451, 1486, 1492, 1509, 1493, 1465, 1515, 1494, 1495,
+ /* 300 */ 1517, 1500, 1519, 1474, 1550, 1543, 1548, 1556, 1565, 1566,
+ /* 310 */ 1518, 1523, 1542, 1544, 1525, 1545, 1513, 1553, 1552, 1604,
+ /* 320 */ 1508, 1510, 1608, 1609, 1520, 1528, 1612, 1540, 1559, 1560,
+ /* 330 */ 1592, 1591, 1595, 1596, 1597, 1629, 1638, 1594, 1569, 1570,
+ /* 340 */ 1600, 1568, 1610, 1601, 1611, 1603, 1643, 1651, 1562, 1571,
+ /* 350 */ 1655, 1659, 1640, 1663, 1666, 1664, 1667, 1641, 1650, 1652,
+ /* 360 */ 1653, 1647, 1656, 1657, 1658, 1668, 1672, 1681, 1649, 1682,
+ /* 370 */ 1683, 1573, 1582, 1607, 1615, 1685, 1702, 1586, 1587, 1642,
+ /* 380 */ 1646, 1673, 1675, 1636, 1714, 1637, 1677, 1674, 1678, 1694,
+ /* 390 */ 1719, 1734, 1735, 1746, 1747, 1750, 1633, 1661, 1686, 1738,
+ /* 400 */ 1728, 1733, 1736, 1737, 1740, 1726, 1730, 1742, 1743, 1748,
+ /* 410 */ 1753,
+};
+static const YYACTIONTYPE yy_default[] = {
+ /* 0 */ 1648, 1648, 1648, 1478, 1243, 1354, 1243, 1243, 1243, 1478,
+ /* 10 */ 1478, 1478, 1243, 1384, 1384, 1531, 1276, 1243, 1243, 1243,
+ /* 20 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1477, 1243,
+ /* 30 */ 1243, 1243, 1243, 1564, 1564, 1243, 1243, 1243, 1243, 1243,
+ /* 40 */ 1243, 1243, 1243, 1393, 1243, 1400, 1243, 1243, 1243, 1243,
+ /* 50 */ 1243, 1479, 1480, 1243, 1243, 1243, 1530, 1532, 1495, 1407,
+ /* 60 */ 1406, 1405, 1404, 1513, 1372, 1398, 1391, 1395, 1474, 1475,
+ /* 70 */ 1473, 1626, 1480, 1479, 1243, 1394, 1442, 1458, 1441, 1243,
+ /* 80 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 90 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 100 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 110 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 120 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 130 */ 1243, 1450, 1457, 1456, 1455, 1464, 1454, 1451, 1444, 1443,
+ /* 140 */ 1445, 1446, 1243, 1243, 1267, 1243, 1243, 1264, 1318, 1243,
+ /* 150 */ 1243, 1243, 1243, 1243, 1550, 1549, 1243, 1447, 1243, 1276,
+ /* 160 */ 1435, 1434, 1433, 1461, 1448, 1460, 1459, 1538, 1600, 1599,
+ /* 170 */ 1496, 1243, 1243, 1243, 1243, 1243, 1243, 1564, 1243, 1243,
+ /* 180 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 190 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 200 */ 1243, 1374, 1564, 1564, 1243, 1276, 1564, 1564, 1375, 1375,
+ /* 210 */ 1272, 1272, 1378, 1243, 1545, 1345, 1345, 1345, 1345, 1354,
+ /* 220 */ 1345, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 230 */ 1243, 1243, 1243, 1243, 1243, 1243, 1535, 1533, 1243, 1243,
+ /* 240 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 250 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 260 */ 1243, 1243, 1243, 1243, 1243, 1350, 1243, 1243, 1243, 1243,
+ /* 270 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1593, 1243, 1508,
+ /* 280 */ 1332, 1350, 1350, 1350, 1350, 1352, 1333, 1331, 1344, 1277,
+ /* 290 */ 1250, 1640, 1410, 1399, 1351, 1399, 1637, 1397, 1410, 1410,
+ /* 300 */ 1397, 1410, 1351, 1637, 1293, 1615, 1288, 1384, 1384, 1384,
+ /* 310 */ 1374, 1374, 1374, 1374, 1378, 1378, 1476, 1351, 1344, 1243,
+ /* 320 */ 1640, 1640, 1360, 1360, 1639, 1639, 1360, 1496, 1623, 1419,
+ /* 330 */ 1321, 1327, 1327, 1327, 1327, 1360, 1261, 1397, 1623, 1623,
+ /* 340 */ 1397, 1419, 1321, 1397, 1321, 1397, 1360, 1261, 1512, 1634,
+ /* 350 */ 1360, 1261, 1486, 1360, 1261, 1360, 1261, 1486, 1319, 1319,
+ /* 360 */ 1319, 1308, 1243, 1243, 1486, 1319, 1293, 1319, 1308, 1319,
+ /* 370 */ 1319, 1582, 1243, 1490, 1490, 1486, 1360, 1574, 1574, 1387,
+ /* 380 */ 1387, 1392, 1378, 1481, 1360, 1243, 1392, 1390, 1388, 1397,
+ /* 390 */ 1311, 1596, 1596, 1592, 1592, 1592, 1645, 1645, 1545, 1608,
+ /* 400 */ 1276, 1276, 1276, 1276, 1608, 1295, 1295, 1277, 1277, 1276,
+ /* 410 */ 1608, 1243, 1243, 1243, 1243, 1243, 1243, 1603, 1243, 1540,
+ /* 420 */ 1497, 1364, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 430 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1551, 1243,
+ /* 440 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1424,
+ /* 450 */ 1243, 1246, 1542, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 460 */ 1243, 1401, 1402, 1365, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 470 */ 1243, 1416, 1243, 1243, 1243, 1411, 1243, 1243, 1243, 1243,
+ /* 480 */ 1243, 1243, 1243, 1243, 1636, 1243, 1243, 1243, 1243, 1243,
+ /* 490 */ 1243, 1511, 1510, 1243, 1243, 1362, 1243, 1243, 1243, 1243,
+ /* 500 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1291,
+ /* 510 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 520 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 530 */ 1243, 1243, 1243, 1389, 1243, 1243, 1243, 1243, 1243, 1243,
+ /* 540 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1579, 1379,
+ /* 550 */ 1243, 1243, 1243, 1243, 1627, 1243, 1243, 1243, 1243, 1243,
+ /* 560 */ 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1243, 1619,
+ /* 570 */ 1335, 1425, 1243, 1428, 1265, 1243, 1255, 1243, 1243,
+};
+/********** End of lemon-generated parsing tables *****************************/
+
+/* The next table maps tokens (terminal symbols) into fallback tokens.
+** If a construct like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammar, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+**
+** This feature can be used, for example, to cause some keywords in a language
+** to revert to identifiers if they keyword does not apply in the context where
+** it appears.
+*/
+#ifdef YYFALLBACK
+static const YYCODETYPE yyFallback[] = {
+ 0, /* $ => nothing */
+ 0, /* SEMI => nothing */
+ 59, /* EXPLAIN => ID */
+ 59, /* QUERY => ID */
+ 59, /* PLAN => ID */
+ 59, /* BEGIN => ID */
+ 0, /* TRANSACTION => nothing */
+ 59, /* DEFERRED => ID */
+ 59, /* IMMEDIATE => ID */
+ 59, /* EXCLUSIVE => ID */
+ 0, /* COMMIT => nothing */
+ 59, /* END => ID */
+ 59, /* ROLLBACK => ID */
+ 59, /* SAVEPOINT => ID */
+ 59, /* RELEASE => ID */
+ 0, /* TO => nothing */
+ 0, /* TABLE => nothing */
+ 0, /* CREATE => nothing */
+ 59, /* IF => ID */
+ 0, /* NOT => nothing */
+ 0, /* EXISTS => nothing */
+ 59, /* TEMP => ID */
+ 0, /* LP => nothing */
+ 0, /* RP => nothing */
+ 0, /* AS => nothing */
+ 0, /* COMMA => nothing */
+ 59, /* WITHOUT => ID */
+ 59, /* ABORT => ID */
+ 59, /* ACTION => ID */
+ 59, /* AFTER => ID */
+ 59, /* ANALYZE => ID */
+ 59, /* ASC => ID */
+ 59, /* ATTACH => ID */
+ 59, /* BEFORE => ID */
+ 59, /* BY => ID */
+ 59, /* CASCADE => ID */
+ 59, /* CAST => ID */
+ 59, /* CONFLICT => ID */
+ 59, /* DATABASE => ID */
+ 59, /* DESC => ID */
+ 59, /* DETACH => ID */
+ 59, /* EACH => ID */
+ 59, /* FAIL => ID */
+ 0, /* OR => nothing */
+ 0, /* AND => nothing */
+ 0, /* IS => nothing */
+ 59, /* MATCH => ID */
+ 59, /* LIKE_KW => ID */
+ 0, /* BETWEEN => nothing */
+ 0, /* IN => nothing */
+ 0, /* ISNULL => nothing */
+ 0, /* NOTNULL => nothing */
+ 0, /* NE => nothing */
+ 0, /* EQ => nothing */
+ 0, /* GT => nothing */
+ 0, /* LE => nothing */
+ 0, /* LT => nothing */
+ 0, /* GE => nothing */
+ 0, /* ESCAPE => nothing */
+ 0, /* ID => nothing */
+ 59, /* COLUMNKW => ID */
+ 59, /* DO => ID */
+ 59, /* FOR => ID */
+ 59, /* IGNORE => ID */
+ 59, /* INITIALLY => ID */
+ 59, /* INSTEAD => ID */
+ 59, /* NO => ID */
+ 59, /* KEY => ID */
+ 59, /* OF => ID */
+ 59, /* OFFSET => ID */
+ 59, /* PRAGMA => ID */
+ 59, /* RAISE => ID */
+ 59, /* RECURSIVE => ID */
+ 59, /* REPLACE => ID */
+ 59, /* RESTRICT => ID */
+ 59, /* ROW => ID */
+ 59, /* ROWS => ID */
+ 59, /* TRIGGER => ID */
+ 59, /* VACUUM => ID */
+ 59, /* VIEW => ID */
+ 59, /* VIRTUAL => ID */
+ 59, /* WITH => ID */
+ 59, /* NULLS => ID */
+ 59, /* FIRST => ID */
+ 59, /* LAST => ID */
+ 59, /* CURRENT => ID */
+ 59, /* FOLLOWING => ID */
+ 59, /* PARTITION => ID */
+ 59, /* PRECEDING => ID */
+ 59, /* RANGE => ID */
+ 59, /* UNBOUNDED => ID */
+ 59, /* EXCLUDE => ID */
+ 59, /* GROUPS => ID */
+ 59, /* OTHERS => ID */
+ 59, /* TIES => ID */
+ 59, /* GENERATED => ID */
+ 59, /* ALWAYS => ID */
+ 59, /* MATERIALIZED => ID */
+ 59, /* REINDEX => ID */
+ 59, /* RENAME => ID */
+ 59, /* CTIME_KW => ID */
+ 0, /* ANY => nothing */
+ 0, /* BITAND => nothing */
+ 0, /* BITOR => nothing */
+ 0, /* LSHIFT => nothing */
+ 0, /* RSHIFT => nothing */
+ 0, /* PLUS => nothing */
+ 0, /* MINUS => nothing */
+ 0, /* STAR => nothing */
+ 0, /* SLASH => nothing */
+ 0, /* REM => nothing */
+ 0, /* CONCAT => nothing */
+ 0, /* PTR => nothing */
+ 0, /* COLLATE => nothing */
+ 0, /* BITNOT => nothing */
+ 0, /* ON => nothing */
+ 0, /* INDEXED => nothing */
+ 0, /* STRING => nothing */
+ 0, /* JOIN_KW => nothing */
+ 0, /* CONSTRAINT => nothing */
+ 0, /* DEFAULT => nothing */
+ 0, /* NULL => nothing */
+ 0, /* PRIMARY => nothing */
+ 0, /* UNIQUE => nothing */
+ 0, /* CHECK => nothing */
+ 0, /* REFERENCES => nothing */
+ 0, /* AUTOINCR => nothing */
+ 0, /* INSERT => nothing */
+ 0, /* DELETE => nothing */
+ 0, /* UPDATE => nothing */
+ 0, /* SET => nothing */
+ 0, /* DEFERRABLE => nothing */
+ 0, /* FOREIGN => nothing */
+ 0, /* DROP => nothing */
+ 0, /* UNION => nothing */
+ 0, /* ALL => nothing */
+ 0, /* EXCEPT => nothing */
+ 0, /* INTERSECT => nothing */
+ 0, /* SELECT => nothing */
+ 0, /* VALUES => nothing */
+ 0, /* DISTINCT => nothing */
+ 0, /* DOT => nothing */
+ 0, /* FROM => nothing */
+ 0, /* JOIN => nothing */
+ 0, /* USING => nothing */
+ 0, /* ORDER => nothing */
+ 0, /* GROUP => nothing */
+ 0, /* HAVING => nothing */
+ 0, /* LIMIT => nothing */
+ 0, /* WHERE => nothing */
+ 0, /* RETURNING => nothing */
+ 0, /* INTO => nothing */
+ 0, /* NOTHING => nothing */
+ 0, /* FLOAT => nothing */
+ 0, /* BLOB => nothing */
+ 0, /* INTEGER => nothing */
+ 0, /* VARIABLE => nothing */
+ 0, /* CASE => nothing */
+ 0, /* WHEN => nothing */
+ 0, /* THEN => nothing */
+ 0, /* ELSE => nothing */
+ 0, /* INDEX => nothing */
+ 0, /* ALTER => nothing */
+ 0, /* ADD => nothing */
+ 0, /* WINDOW => nothing */
+ 0, /* OVER => nothing */
+ 0, /* FILTER => nothing */
+ 0, /* COLUMN => nothing */
+ 0, /* AGG_FUNCTION => nothing */
+ 0, /* AGG_COLUMN => nothing */
+ 0, /* TRUEFALSE => nothing */
+ 0, /* ISNOT => nothing */
+ 0, /* FUNCTION => nothing */
+ 0, /* UMINUS => nothing */
+ 0, /* UPLUS => nothing */
+ 0, /* TRUTH => nothing */
+ 0, /* REGISTER => nothing */
+ 0, /* VECTOR => nothing */
+ 0, /* SELECT_COLUMN => nothing */
+ 0, /* IF_NULL_ROW => nothing */
+ 0, /* ASTERISK => nothing */
+ 0, /* SPAN => nothing */
+ 0, /* ERROR => nothing */
+ 0, /* SPACE => nothing */
+ 0, /* ILLEGAL => nothing */
+};
+#endif /* YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+**
+** After the "shift" half of a SHIFTREDUCE action, the stateno field
+** actually contains the reduce action for the second half of the
+** SHIFTREDUCE.
+*/
+struct yyStackEntry {
+ YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
+ YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct yyStackEntry yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct yyParser {
+ yyStackEntry *yytos; /* Pointer to top element of the stack */
+#ifdef YYTRACKMAXSTACKDEPTH
+ int yyhwm; /* High-water mark of the stack */
+#endif
+#ifndef YYNOERRORRECOVERY
+ int yyerrcnt; /* Shifts left before out of the error */
+#endif
+ sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
+ sqlite3ParserCTX_SDECL /* A place to hold %extra_context */
+#if YYSTACKDEPTH<=0
+ int yystksz; /* Current side of the stack */
+ yyStackEntry *yystack; /* The parser's stack */
+ yyStackEntry yystk0; /* First stack entry */
+#else
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
+ yyStackEntry *yystackEnd; /* Last entry in the stack */
+#endif
+};
+typedef struct yyParser yyParser;
+
+/* #include <assert.h> */
+#ifndef NDEBUG
+/* #include <stdio.h> */
+static FILE *yyTraceFILE = 0;
+static char *yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ yyTraceFILE = TraceFILE;
+ yyTracePrompt = zTracePrompt;
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#if defined(YYCOVERAGE) || !defined(NDEBUG)
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const yyTokenName[] = {
+ /* 0 */ "$",
+ /* 1 */ "SEMI",
+ /* 2 */ "EXPLAIN",
+ /* 3 */ "QUERY",
+ /* 4 */ "PLAN",
+ /* 5 */ "BEGIN",
+ /* 6 */ "TRANSACTION",
+ /* 7 */ "DEFERRED",
+ /* 8 */ "IMMEDIATE",
+ /* 9 */ "EXCLUSIVE",
+ /* 10 */ "COMMIT",
+ /* 11 */ "END",
+ /* 12 */ "ROLLBACK",
+ /* 13 */ "SAVEPOINT",
+ /* 14 */ "RELEASE",
+ /* 15 */ "TO",
+ /* 16 */ "TABLE",
+ /* 17 */ "CREATE",
+ /* 18 */ "IF",
+ /* 19 */ "NOT",
+ /* 20 */ "EXISTS",
+ /* 21 */ "TEMP",
+ /* 22 */ "LP",
+ /* 23 */ "RP",
+ /* 24 */ "AS",
+ /* 25 */ "COMMA",
+ /* 26 */ "WITHOUT",
+ /* 27 */ "ABORT",
+ /* 28 */ "ACTION",
+ /* 29 */ "AFTER",
+ /* 30 */ "ANALYZE",
+ /* 31 */ "ASC",
+ /* 32 */ "ATTACH",
+ /* 33 */ "BEFORE",
+ /* 34 */ "BY",
+ /* 35 */ "CASCADE",
+ /* 36 */ "CAST",
+ /* 37 */ "CONFLICT",
+ /* 38 */ "DATABASE",
+ /* 39 */ "DESC",
+ /* 40 */ "DETACH",
+ /* 41 */ "EACH",
+ /* 42 */ "FAIL",
+ /* 43 */ "OR",
+ /* 44 */ "AND",
+ /* 45 */ "IS",
+ /* 46 */ "MATCH",
+ /* 47 */ "LIKE_KW",
+ /* 48 */ "BETWEEN",
+ /* 49 */ "IN",
+ /* 50 */ "ISNULL",
+ /* 51 */ "NOTNULL",
+ /* 52 */ "NE",
+ /* 53 */ "EQ",
+ /* 54 */ "GT",
+ /* 55 */ "LE",
+ /* 56 */ "LT",
+ /* 57 */ "GE",
+ /* 58 */ "ESCAPE",
+ /* 59 */ "ID",
+ /* 60 */ "COLUMNKW",
+ /* 61 */ "DO",
+ /* 62 */ "FOR",
+ /* 63 */ "IGNORE",
+ /* 64 */ "INITIALLY",
+ /* 65 */ "INSTEAD",
+ /* 66 */ "NO",
+ /* 67 */ "KEY",
+ /* 68 */ "OF",
+ /* 69 */ "OFFSET",
+ /* 70 */ "PRAGMA",
+ /* 71 */ "RAISE",
+ /* 72 */ "RECURSIVE",
+ /* 73 */ "REPLACE",
+ /* 74 */ "RESTRICT",
+ /* 75 */ "ROW",
+ /* 76 */ "ROWS",
+ /* 77 */ "TRIGGER",
+ /* 78 */ "VACUUM",
+ /* 79 */ "VIEW",
+ /* 80 */ "VIRTUAL",
+ /* 81 */ "WITH",
+ /* 82 */ "NULLS",
+ /* 83 */ "FIRST",
+ /* 84 */ "LAST",
+ /* 85 */ "CURRENT",
+ /* 86 */ "FOLLOWING",
+ /* 87 */ "PARTITION",
+ /* 88 */ "PRECEDING",
+ /* 89 */ "RANGE",
+ /* 90 */ "UNBOUNDED",
+ /* 91 */ "EXCLUDE",
+ /* 92 */ "GROUPS",
+ /* 93 */ "OTHERS",
+ /* 94 */ "TIES",
+ /* 95 */ "GENERATED",
+ /* 96 */ "ALWAYS",
+ /* 97 */ "MATERIALIZED",
+ /* 98 */ "REINDEX",
+ /* 99 */ "RENAME",
+ /* 100 */ "CTIME_KW",
+ /* 101 */ "ANY",
+ /* 102 */ "BITAND",
+ /* 103 */ "BITOR",
+ /* 104 */ "LSHIFT",
+ /* 105 */ "RSHIFT",
+ /* 106 */ "PLUS",
+ /* 107 */ "MINUS",
+ /* 108 */ "STAR",
+ /* 109 */ "SLASH",
+ /* 110 */ "REM",
+ /* 111 */ "CONCAT",
+ /* 112 */ "PTR",
+ /* 113 */ "COLLATE",
+ /* 114 */ "BITNOT",
+ /* 115 */ "ON",
+ /* 116 */ "INDEXED",
+ /* 117 */ "STRING",
+ /* 118 */ "JOIN_KW",
+ /* 119 */ "CONSTRAINT",
+ /* 120 */ "DEFAULT",
+ /* 121 */ "NULL",
+ /* 122 */ "PRIMARY",
+ /* 123 */ "UNIQUE",
+ /* 124 */ "CHECK",
+ /* 125 */ "REFERENCES",
+ /* 126 */ "AUTOINCR",
+ /* 127 */ "INSERT",
+ /* 128 */ "DELETE",
+ /* 129 */ "UPDATE",
+ /* 130 */ "SET",
+ /* 131 */ "DEFERRABLE",
+ /* 132 */ "FOREIGN",
+ /* 133 */ "DROP",
+ /* 134 */ "UNION",
+ /* 135 */ "ALL",
+ /* 136 */ "EXCEPT",
+ /* 137 */ "INTERSECT",
+ /* 138 */ "SELECT",
+ /* 139 */ "VALUES",
+ /* 140 */ "DISTINCT",
+ /* 141 */ "DOT",
+ /* 142 */ "FROM",
+ /* 143 */ "JOIN",
+ /* 144 */ "USING",
+ /* 145 */ "ORDER",
+ /* 146 */ "GROUP",
+ /* 147 */ "HAVING",
+ /* 148 */ "LIMIT",
+ /* 149 */ "WHERE",
+ /* 150 */ "RETURNING",
+ /* 151 */ "INTO",
+ /* 152 */ "NOTHING",
+ /* 153 */ "FLOAT",
+ /* 154 */ "BLOB",
+ /* 155 */ "INTEGER",
+ /* 156 */ "VARIABLE",
+ /* 157 */ "CASE",
+ /* 158 */ "WHEN",
+ /* 159 */ "THEN",
+ /* 160 */ "ELSE",
+ /* 161 */ "INDEX",
+ /* 162 */ "ALTER",
+ /* 163 */ "ADD",
+ /* 164 */ "WINDOW",
+ /* 165 */ "OVER",
+ /* 166 */ "FILTER",
+ /* 167 */ "COLUMN",
+ /* 168 */ "AGG_FUNCTION",
+ /* 169 */ "AGG_COLUMN",
+ /* 170 */ "TRUEFALSE",
+ /* 171 */ "ISNOT",
+ /* 172 */ "FUNCTION",
+ /* 173 */ "UMINUS",
+ /* 174 */ "UPLUS",
+ /* 175 */ "TRUTH",
+ /* 176 */ "REGISTER",
+ /* 177 */ "VECTOR",
+ /* 178 */ "SELECT_COLUMN",
+ /* 179 */ "IF_NULL_ROW",
+ /* 180 */ "ASTERISK",
+ /* 181 */ "SPAN",
+ /* 182 */ "ERROR",
+ /* 183 */ "SPACE",
+ /* 184 */ "ILLEGAL",
+ /* 185 */ "input",
+ /* 186 */ "cmdlist",
+ /* 187 */ "ecmd",
+ /* 188 */ "cmdx",
+ /* 189 */ "explain",
+ /* 190 */ "cmd",
+ /* 191 */ "transtype",
+ /* 192 */ "trans_opt",
+ /* 193 */ "nm",
+ /* 194 */ "savepoint_opt",
+ /* 195 */ "create_table",
+ /* 196 */ "create_table_args",
+ /* 197 */ "createkw",
+ /* 198 */ "temp",
+ /* 199 */ "ifnotexists",
+ /* 200 */ "dbnm",
+ /* 201 */ "columnlist",
+ /* 202 */ "conslist_opt",
+ /* 203 */ "table_option_set",
+ /* 204 */ "select",
+ /* 205 */ "table_option",
+ /* 206 */ "columnname",
+ /* 207 */ "carglist",
+ /* 208 */ "typetoken",
+ /* 209 */ "typename",
+ /* 210 */ "signed",
+ /* 211 */ "plus_num",
+ /* 212 */ "minus_num",
+ /* 213 */ "scanpt",
+ /* 214 */ "scantok",
+ /* 215 */ "ccons",
+ /* 216 */ "term",
+ /* 217 */ "expr",
+ /* 218 */ "onconf",
+ /* 219 */ "sortorder",
+ /* 220 */ "autoinc",
+ /* 221 */ "eidlist_opt",
+ /* 222 */ "refargs",
+ /* 223 */ "defer_subclause",
+ /* 224 */ "generated",
+ /* 225 */ "refarg",
+ /* 226 */ "refact",
+ /* 227 */ "init_deferred_pred_opt",
+ /* 228 */ "conslist",
+ /* 229 */ "tconscomma",
+ /* 230 */ "tcons",
+ /* 231 */ "sortlist",
+ /* 232 */ "eidlist",
+ /* 233 */ "defer_subclause_opt",
+ /* 234 */ "orconf",
+ /* 235 */ "resolvetype",
+ /* 236 */ "raisetype",
+ /* 237 */ "ifexists",
+ /* 238 */ "fullname",
+ /* 239 */ "selectnowith",
+ /* 240 */ "oneselect",
+ /* 241 */ "wqlist",
+ /* 242 */ "multiselect_op",
+ /* 243 */ "distinct",
+ /* 244 */ "selcollist",
+ /* 245 */ "from",
+ /* 246 */ "where_opt",
+ /* 247 */ "groupby_opt",
+ /* 248 */ "having_opt",
+ /* 249 */ "orderby_opt",
+ /* 250 */ "limit_opt",
+ /* 251 */ "window_clause",
+ /* 252 */ "values",
+ /* 253 */ "nexprlist",
+ /* 254 */ "sclp",
+ /* 255 */ "as",
+ /* 256 */ "seltablist",
+ /* 257 */ "stl_prefix",
+ /* 258 */ "joinop",
+ /* 259 */ "on_using",
+ /* 260 */ "indexed_by",
+ /* 261 */ "exprlist",
+ /* 262 */ "xfullname",
+ /* 263 */ "idlist",
+ /* 264 */ "indexed_opt",
+ /* 265 */ "nulls",
+ /* 266 */ "with",
+ /* 267 */ "where_opt_ret",
+ /* 268 */ "setlist",
+ /* 269 */ "insert_cmd",
+ /* 270 */ "idlist_opt",
+ /* 271 */ "upsert",
+ /* 272 */ "returning",
+ /* 273 */ "filter_over",
+ /* 274 */ "likeop",
+ /* 275 */ "between_op",
+ /* 276 */ "in_op",
+ /* 277 */ "paren_exprlist",
+ /* 278 */ "case_operand",
+ /* 279 */ "case_exprlist",
+ /* 280 */ "case_else",
+ /* 281 */ "uniqueflag",
+ /* 282 */ "collate",
+ /* 283 */ "vinto",
+ /* 284 */ "nmnum",
+ /* 285 */ "trigger_decl",
+ /* 286 */ "trigger_cmd_list",
+ /* 287 */ "trigger_time",
+ /* 288 */ "trigger_event",
+ /* 289 */ "foreach_clause",
+ /* 290 */ "when_clause",
+ /* 291 */ "trigger_cmd",
+ /* 292 */ "trnm",
+ /* 293 */ "tridxby",
+ /* 294 */ "database_kw_opt",
+ /* 295 */ "key_opt",
+ /* 296 */ "add_column_fullname",
+ /* 297 */ "kwcolumn_opt",
+ /* 298 */ "create_vtab",
+ /* 299 */ "vtabarglist",
+ /* 300 */ "vtabarg",
+ /* 301 */ "vtabargtoken",
+ /* 302 */ "lp",
+ /* 303 */ "anylist",
+ /* 304 */ "wqitem",
+ /* 305 */ "wqas",
+ /* 306 */ "windowdefn_list",
+ /* 307 */ "windowdefn",
+ /* 308 */ "window",
+ /* 309 */ "frame_opt",
+ /* 310 */ "part_opt",
+ /* 311 */ "filter_clause",
+ /* 312 */ "over_clause",
+ /* 313 */ "range_or_rows",
+ /* 314 */ "frame_bound",
+ /* 315 */ "frame_bound_s",
+ /* 316 */ "frame_bound_e",
+ /* 317 */ "frame_exclude_opt",
+ /* 318 */ "frame_exclude",
+};
+#endif /* defined(YYCOVERAGE) || !defined(NDEBUG) */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const yyRuleName[] = {
+ /* 0 */ "explain ::= EXPLAIN",
+ /* 1 */ "explain ::= EXPLAIN QUERY PLAN",
+ /* 2 */ "cmdx ::= cmd",
+ /* 3 */ "cmd ::= BEGIN transtype trans_opt",
+ /* 4 */ "transtype ::=",
+ /* 5 */ "transtype ::= DEFERRED",
+ /* 6 */ "transtype ::= IMMEDIATE",
+ /* 7 */ "transtype ::= EXCLUSIVE",
+ /* 8 */ "cmd ::= COMMIT|END trans_opt",
+ /* 9 */ "cmd ::= ROLLBACK trans_opt",
+ /* 10 */ "cmd ::= SAVEPOINT nm",
+ /* 11 */ "cmd ::= RELEASE savepoint_opt nm",
+ /* 12 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm",
+ /* 13 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm",
+ /* 14 */ "createkw ::= CREATE",
+ /* 15 */ "ifnotexists ::=",
+ /* 16 */ "ifnotexists ::= IF NOT EXISTS",
+ /* 17 */ "temp ::= TEMP",
+ /* 18 */ "temp ::=",
+ /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP table_option_set",
+ /* 20 */ "create_table_args ::= AS select",
+ /* 21 */ "table_option_set ::=",
+ /* 22 */ "table_option_set ::= table_option_set COMMA table_option",
+ /* 23 */ "table_option ::= WITHOUT nm",
+ /* 24 */ "table_option ::= nm",
+ /* 25 */ "columnname ::= nm typetoken",
+ /* 26 */ "typetoken ::=",
+ /* 27 */ "typetoken ::= typename LP signed RP",
+ /* 28 */ "typetoken ::= typename LP signed COMMA signed RP",
+ /* 29 */ "typename ::= typename ID|STRING",
+ /* 30 */ "scanpt ::=",
+ /* 31 */ "scantok ::=",
+ /* 32 */ "ccons ::= CONSTRAINT nm",
+ /* 33 */ "ccons ::= DEFAULT scantok term",
+ /* 34 */ "ccons ::= DEFAULT LP expr RP",
+ /* 35 */ "ccons ::= DEFAULT PLUS scantok term",
+ /* 36 */ "ccons ::= DEFAULT MINUS scantok term",
+ /* 37 */ "ccons ::= DEFAULT scantok ID|INDEXED",
+ /* 38 */ "ccons ::= NOT NULL onconf",
+ /* 39 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
+ /* 40 */ "ccons ::= UNIQUE onconf",
+ /* 41 */ "ccons ::= CHECK LP expr RP",
+ /* 42 */ "ccons ::= REFERENCES nm eidlist_opt refargs",
+ /* 43 */ "ccons ::= defer_subclause",
+ /* 44 */ "ccons ::= COLLATE ID|STRING",
+ /* 45 */ "generated ::= LP expr RP",
+ /* 46 */ "generated ::= LP expr RP ID",
+ /* 47 */ "autoinc ::=",
+ /* 48 */ "autoinc ::= AUTOINCR",
+ /* 49 */ "refargs ::=",
+ /* 50 */ "refargs ::= refargs refarg",
+ /* 51 */ "refarg ::= MATCH nm",
+ /* 52 */ "refarg ::= ON INSERT refact",
+ /* 53 */ "refarg ::= ON DELETE refact",
+ /* 54 */ "refarg ::= ON UPDATE refact",
+ /* 55 */ "refact ::= SET NULL",
+ /* 56 */ "refact ::= SET DEFAULT",
+ /* 57 */ "refact ::= CASCADE",
+ /* 58 */ "refact ::= RESTRICT",
+ /* 59 */ "refact ::= NO ACTION",
+ /* 60 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
+ /* 61 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
+ /* 62 */ "init_deferred_pred_opt ::=",
+ /* 63 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
+ /* 64 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
+ /* 65 */ "conslist_opt ::=",
+ /* 66 */ "tconscomma ::= COMMA",
+ /* 67 */ "tcons ::= CONSTRAINT nm",
+ /* 68 */ "tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf",
+ /* 69 */ "tcons ::= UNIQUE LP sortlist RP onconf",
+ /* 70 */ "tcons ::= CHECK LP expr RP onconf",
+ /* 71 */ "tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt",
+ /* 72 */ "defer_subclause_opt ::=",
+ /* 73 */ "onconf ::=",
+ /* 74 */ "onconf ::= ON CONFLICT resolvetype",
+ /* 75 */ "orconf ::=",
+ /* 76 */ "orconf ::= OR resolvetype",
+ /* 77 */ "resolvetype ::= IGNORE",
+ /* 78 */ "resolvetype ::= REPLACE",
+ /* 79 */ "cmd ::= DROP TABLE ifexists fullname",
+ /* 80 */ "ifexists ::= IF EXISTS",
+ /* 81 */ "ifexists ::=",
+ /* 82 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select",
+ /* 83 */ "cmd ::= DROP VIEW ifexists fullname",
+ /* 84 */ "cmd ::= select",
+ /* 85 */ "select ::= WITH wqlist selectnowith",
+ /* 86 */ "select ::= WITH RECURSIVE wqlist selectnowith",
+ /* 87 */ "select ::= selectnowith",
+ /* 88 */ "selectnowith ::= selectnowith multiselect_op oneselect",
+ /* 89 */ "multiselect_op ::= UNION",
+ /* 90 */ "multiselect_op ::= UNION ALL",
+ /* 91 */ "multiselect_op ::= EXCEPT|INTERSECT",
+ /* 92 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
+ /* 93 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt",
+ /* 94 */ "values ::= VALUES LP nexprlist RP",
+ /* 95 */ "values ::= values COMMA LP nexprlist RP",
+ /* 96 */ "distinct ::= DISTINCT",
+ /* 97 */ "distinct ::= ALL",
+ /* 98 */ "distinct ::=",
+ /* 99 */ "sclp ::=",
+ /* 100 */ "selcollist ::= sclp scanpt expr scanpt as",
+ /* 101 */ "selcollist ::= sclp scanpt STAR",
+ /* 102 */ "selcollist ::= sclp scanpt nm DOT STAR",
+ /* 103 */ "as ::= AS nm",
+ /* 104 */ "as ::=",
+ /* 105 */ "from ::=",
+ /* 106 */ "from ::= FROM seltablist",
+ /* 107 */ "stl_prefix ::= seltablist joinop",
+ /* 108 */ "stl_prefix ::=",
+ /* 109 */ "seltablist ::= stl_prefix nm dbnm as on_using",
+ /* 110 */ "seltablist ::= stl_prefix nm dbnm as indexed_by on_using",
+ /* 111 */ "seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using",
+ /* 112 */ "seltablist ::= stl_prefix LP select RP as on_using",
+ /* 113 */ "seltablist ::= stl_prefix LP seltablist RP as on_using",
+ /* 114 */ "dbnm ::=",
+ /* 115 */ "dbnm ::= DOT nm",
+ /* 116 */ "fullname ::= nm",
+ /* 117 */ "fullname ::= nm DOT nm",
+ /* 118 */ "xfullname ::= nm",
+ /* 119 */ "xfullname ::= nm DOT nm",
+ /* 120 */ "xfullname ::= nm DOT nm AS nm",
+ /* 121 */ "xfullname ::= nm AS nm",
+ /* 122 */ "joinop ::= COMMA|JOIN",
+ /* 123 */ "joinop ::= JOIN_KW JOIN",
+ /* 124 */ "joinop ::= JOIN_KW nm JOIN",
+ /* 125 */ "joinop ::= JOIN_KW nm nm JOIN",
+ /* 126 */ "on_using ::= ON expr",
+ /* 127 */ "on_using ::= USING LP idlist RP",
+ /* 128 */ "on_using ::=",
+ /* 129 */ "indexed_opt ::=",
+ /* 130 */ "indexed_by ::= INDEXED BY nm",
+ /* 131 */ "indexed_by ::= NOT INDEXED",
+ /* 132 */ "orderby_opt ::=",
+ /* 133 */ "orderby_opt ::= ORDER BY sortlist",
+ /* 134 */ "sortlist ::= sortlist COMMA expr sortorder nulls",
+ /* 135 */ "sortlist ::= expr sortorder nulls",
+ /* 136 */ "sortorder ::= ASC",
+ /* 137 */ "sortorder ::= DESC",
+ /* 138 */ "sortorder ::=",
+ /* 139 */ "nulls ::= NULLS FIRST",
+ /* 140 */ "nulls ::= NULLS LAST",
+ /* 141 */ "nulls ::=",
+ /* 142 */ "groupby_opt ::=",
+ /* 143 */ "groupby_opt ::= GROUP BY nexprlist",
+ /* 144 */ "having_opt ::=",
+ /* 145 */ "having_opt ::= HAVING expr",
+ /* 146 */ "limit_opt ::=",
+ /* 147 */ "limit_opt ::= LIMIT expr",
+ /* 148 */ "limit_opt ::= LIMIT expr OFFSET expr",
+ /* 149 */ "limit_opt ::= LIMIT expr COMMA expr",
+ /* 150 */ "cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret",
+ /* 151 */ "where_opt ::=",
+ /* 152 */ "where_opt ::= WHERE expr",
+ /* 153 */ "where_opt_ret ::=",
+ /* 154 */ "where_opt_ret ::= WHERE expr",
+ /* 155 */ "where_opt_ret ::= RETURNING selcollist",
+ /* 156 */ "where_opt_ret ::= WHERE expr RETURNING selcollist",
+ /* 157 */ "cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret",
+ /* 158 */ "setlist ::= setlist COMMA nm EQ expr",
+ /* 159 */ "setlist ::= setlist COMMA LP idlist RP EQ expr",
+ /* 160 */ "setlist ::= nm EQ expr",
+ /* 161 */ "setlist ::= LP idlist RP EQ expr",
+ /* 162 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert",
+ /* 163 */ "cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning",
+ /* 164 */ "upsert ::=",
+ /* 165 */ "upsert ::= RETURNING selcollist",
+ /* 166 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert",
+ /* 167 */ "upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert",
+ /* 168 */ "upsert ::= ON CONFLICT DO NOTHING returning",
+ /* 169 */ "upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning",
+ /* 170 */ "returning ::= RETURNING selcollist",
+ /* 171 */ "insert_cmd ::= INSERT orconf",
+ /* 172 */ "insert_cmd ::= REPLACE",
+ /* 173 */ "idlist_opt ::=",
+ /* 174 */ "idlist_opt ::= LP idlist RP",
+ /* 175 */ "idlist ::= idlist COMMA nm",
+ /* 176 */ "idlist ::= nm",
+ /* 177 */ "expr ::= LP expr RP",
+ /* 178 */ "expr ::= ID|INDEXED|JOIN_KW",
+ /* 179 */ "expr ::= nm DOT nm",
+ /* 180 */ "expr ::= nm DOT nm DOT nm",
+ /* 181 */ "term ::= NULL|FLOAT|BLOB",
+ /* 182 */ "term ::= STRING",
+ /* 183 */ "term ::= INTEGER",
+ /* 184 */ "expr ::= VARIABLE",
+ /* 185 */ "expr ::= expr COLLATE ID|STRING",
+ /* 186 */ "expr ::= CAST LP expr AS typetoken RP",
+ /* 187 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP",
+ /* 188 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP",
+ /* 189 */ "expr ::= ID|INDEXED|JOIN_KW LP STAR RP",
+ /* 190 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over",
+ /* 191 */ "expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over",
+ /* 192 */ "expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over",
+ /* 193 */ "term ::= CTIME_KW",
+ /* 194 */ "expr ::= LP nexprlist COMMA expr RP",
+ /* 195 */ "expr ::= expr AND expr",
+ /* 196 */ "expr ::= expr OR expr",
+ /* 197 */ "expr ::= expr LT|GT|GE|LE expr",
+ /* 198 */ "expr ::= expr EQ|NE expr",
+ /* 199 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
+ /* 200 */ "expr ::= expr PLUS|MINUS expr",
+ /* 201 */ "expr ::= expr STAR|SLASH|REM expr",
+ /* 202 */ "expr ::= expr CONCAT expr",
+ /* 203 */ "likeop ::= NOT LIKE_KW|MATCH",
+ /* 204 */ "expr ::= expr likeop expr",
+ /* 205 */ "expr ::= expr likeop expr ESCAPE expr",
+ /* 206 */ "expr ::= expr ISNULL|NOTNULL",
+ /* 207 */ "expr ::= expr NOT NULL",
+ /* 208 */ "expr ::= expr IS expr",
+ /* 209 */ "expr ::= expr IS NOT expr",
+ /* 210 */ "expr ::= expr IS NOT DISTINCT FROM expr",
+ /* 211 */ "expr ::= expr IS DISTINCT FROM expr",
+ /* 212 */ "expr ::= NOT expr",
+ /* 213 */ "expr ::= BITNOT expr",
+ /* 214 */ "expr ::= PLUS|MINUS expr",
+ /* 215 */ "expr ::= expr PTR expr",
+ /* 216 */ "between_op ::= BETWEEN",
+ /* 217 */ "between_op ::= NOT BETWEEN",
+ /* 218 */ "expr ::= expr between_op expr AND expr",
+ /* 219 */ "in_op ::= IN",
+ /* 220 */ "in_op ::= NOT IN",
+ /* 221 */ "expr ::= expr in_op LP exprlist RP",
+ /* 222 */ "expr ::= LP select RP",
+ /* 223 */ "expr ::= expr in_op LP select RP",
+ /* 224 */ "expr ::= expr in_op nm dbnm paren_exprlist",
+ /* 225 */ "expr ::= EXISTS LP select RP",
+ /* 226 */ "expr ::= CASE case_operand case_exprlist case_else END",
+ /* 227 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
+ /* 228 */ "case_exprlist ::= WHEN expr THEN expr",
+ /* 229 */ "case_else ::= ELSE expr",
+ /* 230 */ "case_else ::=",
+ /* 231 */ "case_operand ::=",
+ /* 232 */ "exprlist ::=",
+ /* 233 */ "nexprlist ::= nexprlist COMMA expr",
+ /* 234 */ "nexprlist ::= expr",
+ /* 235 */ "paren_exprlist ::=",
+ /* 236 */ "paren_exprlist ::= LP exprlist RP",
+ /* 237 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt",
+ /* 238 */ "uniqueflag ::= UNIQUE",
+ /* 239 */ "uniqueflag ::=",
+ /* 240 */ "eidlist_opt ::=",
+ /* 241 */ "eidlist_opt ::= LP eidlist RP",
+ /* 242 */ "eidlist ::= eidlist COMMA nm collate sortorder",
+ /* 243 */ "eidlist ::= nm collate sortorder",
+ /* 244 */ "collate ::=",
+ /* 245 */ "collate ::= COLLATE ID|STRING",
+ /* 246 */ "cmd ::= DROP INDEX ifexists fullname",
+ /* 247 */ "cmd ::= VACUUM vinto",
+ /* 248 */ "cmd ::= VACUUM nm vinto",
+ /* 249 */ "vinto ::= INTO expr",
+ /* 250 */ "vinto ::=",
+ /* 251 */ "cmd ::= PRAGMA nm dbnm",
+ /* 252 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
+ /* 253 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
+ /* 254 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
+ /* 255 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP",
+ /* 256 */ "plus_num ::= PLUS INTEGER|FLOAT",
+ /* 257 */ "minus_num ::= MINUS INTEGER|FLOAT",
+ /* 258 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END",
+ /* 259 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
+ /* 260 */ "trigger_time ::= BEFORE|AFTER",
+ /* 261 */ "trigger_time ::= INSTEAD OF",
+ /* 262 */ "trigger_time ::=",
+ /* 263 */ "trigger_event ::= DELETE|INSERT",
+ /* 264 */ "trigger_event ::= UPDATE",
+ /* 265 */ "trigger_event ::= UPDATE OF idlist",
+ /* 266 */ "when_clause ::=",
+ /* 267 */ "when_clause ::= WHEN expr",
+ /* 268 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
+ /* 269 */ "trigger_cmd_list ::= trigger_cmd SEMI",
+ /* 270 */ "trnm ::= nm DOT nm",
+ /* 271 */ "tridxby ::= INDEXED BY nm",
+ /* 272 */ "tridxby ::= NOT INDEXED",
+ /* 273 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt",
+ /* 274 */ "trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt",
+ /* 275 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt",
+ /* 276 */ "trigger_cmd ::= scanpt select scanpt",
+ /* 277 */ "expr ::= RAISE LP IGNORE RP",
+ /* 278 */ "expr ::= RAISE LP raisetype COMMA nm RP",
+ /* 279 */ "raisetype ::= ROLLBACK",
+ /* 280 */ "raisetype ::= ABORT",
+ /* 281 */ "raisetype ::= FAIL",
+ /* 282 */ "cmd ::= DROP TRIGGER ifexists fullname",
+ /* 283 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
+ /* 284 */ "cmd ::= DETACH database_kw_opt expr",
+ /* 285 */ "key_opt ::=",
+ /* 286 */ "key_opt ::= KEY expr",
+ /* 287 */ "cmd ::= REINDEX",
+ /* 288 */ "cmd ::= REINDEX nm dbnm",
+ /* 289 */ "cmd ::= ANALYZE",
+ /* 290 */ "cmd ::= ANALYZE nm dbnm",
+ /* 291 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
+ /* 292 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist",
+ /* 293 */ "cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm",
+ /* 294 */ "add_column_fullname ::= fullname",
+ /* 295 */ "cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm",
+ /* 296 */ "cmd ::= create_vtab",
+ /* 297 */ "cmd ::= create_vtab LP vtabarglist RP",
+ /* 298 */ "create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm",
+ /* 299 */ "vtabarg ::=",
+ /* 300 */ "vtabargtoken ::= ANY",
+ /* 301 */ "vtabargtoken ::= lp anylist RP",
+ /* 302 */ "lp ::= LP",
+ /* 303 */ "with ::= WITH wqlist",
+ /* 304 */ "with ::= WITH RECURSIVE wqlist",
+ /* 305 */ "wqas ::= AS",
+ /* 306 */ "wqas ::= AS MATERIALIZED",
+ /* 307 */ "wqas ::= AS NOT MATERIALIZED",
+ /* 308 */ "wqitem ::= nm eidlist_opt wqas LP select RP",
+ /* 309 */ "wqlist ::= wqitem",
+ /* 310 */ "wqlist ::= wqlist COMMA wqitem",
+ /* 311 */ "windowdefn_list ::= windowdefn_list COMMA windowdefn",
+ /* 312 */ "windowdefn ::= nm AS LP window RP",
+ /* 313 */ "window ::= PARTITION BY nexprlist orderby_opt frame_opt",
+ /* 314 */ "window ::= nm PARTITION BY nexprlist orderby_opt frame_opt",
+ /* 315 */ "window ::= ORDER BY sortlist frame_opt",
+ /* 316 */ "window ::= nm ORDER BY sortlist frame_opt",
+ /* 317 */ "window ::= nm frame_opt",
+ /* 318 */ "frame_opt ::=",
+ /* 319 */ "frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt",
+ /* 320 */ "frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt",
+ /* 321 */ "range_or_rows ::= RANGE|ROWS|GROUPS",
+ /* 322 */ "frame_bound_s ::= frame_bound",
+ /* 323 */ "frame_bound_s ::= UNBOUNDED PRECEDING",
+ /* 324 */ "frame_bound_e ::= frame_bound",
+ /* 325 */ "frame_bound_e ::= UNBOUNDED FOLLOWING",
+ /* 326 */ "frame_bound ::= expr PRECEDING|FOLLOWING",
+ /* 327 */ "frame_bound ::= CURRENT ROW",
+ /* 328 */ "frame_exclude_opt ::=",
+ /* 329 */ "frame_exclude_opt ::= EXCLUDE frame_exclude",
+ /* 330 */ "frame_exclude ::= NO OTHERS",
+ /* 331 */ "frame_exclude ::= CURRENT ROW",
+ /* 332 */ "frame_exclude ::= GROUP|TIES",
+ /* 333 */ "window_clause ::= WINDOW windowdefn_list",
+ /* 334 */ "filter_over ::= filter_clause over_clause",
+ /* 335 */ "filter_over ::= over_clause",
+ /* 336 */ "filter_over ::= filter_clause",
+ /* 337 */ "over_clause ::= OVER LP window RP",
+ /* 338 */ "over_clause ::= OVER nm",
+ /* 339 */ "filter_clause ::= FILTER LP WHERE expr RP",
+ /* 340 */ "input ::= cmdlist",
+ /* 341 */ "cmdlist ::= cmdlist ecmd",
+ /* 342 */ "cmdlist ::= ecmd",
+ /* 343 */ "ecmd ::= SEMI",
+ /* 344 */ "ecmd ::= cmdx SEMI",
+ /* 345 */ "ecmd ::= explain cmdx SEMI",
+ /* 346 */ "trans_opt ::=",
+ /* 347 */ "trans_opt ::= TRANSACTION",
+ /* 348 */ "trans_opt ::= TRANSACTION nm",
+ /* 349 */ "savepoint_opt ::= SAVEPOINT",
+ /* 350 */ "savepoint_opt ::=",
+ /* 351 */ "cmd ::= create_table create_table_args",
+ /* 352 */ "table_option_set ::= table_option",
+ /* 353 */ "columnlist ::= columnlist COMMA columnname carglist",
+ /* 354 */ "columnlist ::= columnname carglist",
+ /* 355 */ "nm ::= ID|INDEXED|JOIN_KW",
+ /* 356 */ "nm ::= STRING",
+ /* 357 */ "typetoken ::= typename",
+ /* 358 */ "typename ::= ID|STRING",
+ /* 359 */ "signed ::= plus_num",
+ /* 360 */ "signed ::= minus_num",
+ /* 361 */ "carglist ::= carglist ccons",
+ /* 362 */ "carglist ::=",
+ /* 363 */ "ccons ::= NULL onconf",
+ /* 364 */ "ccons ::= GENERATED ALWAYS AS generated",
+ /* 365 */ "ccons ::= AS generated",
+ /* 366 */ "conslist_opt ::= COMMA conslist",
+ /* 367 */ "conslist ::= conslist tconscomma tcons",
+ /* 368 */ "conslist ::= tcons",
+ /* 369 */ "tconscomma ::=",
+ /* 370 */ "defer_subclause_opt ::= defer_subclause",
+ /* 371 */ "resolvetype ::= raisetype",
+ /* 372 */ "selectnowith ::= oneselect",
+ /* 373 */ "oneselect ::= values",
+ /* 374 */ "sclp ::= selcollist COMMA",
+ /* 375 */ "as ::= ID|STRING",
+ /* 376 */ "indexed_opt ::= indexed_by",
+ /* 377 */ "returning ::=",
+ /* 378 */ "expr ::= term",
+ /* 379 */ "likeop ::= LIKE_KW|MATCH",
+ /* 380 */ "case_operand ::= expr",
+ /* 381 */ "exprlist ::= nexprlist",
+ /* 382 */ "nmnum ::= plus_num",
+ /* 383 */ "nmnum ::= nm",
+ /* 384 */ "nmnum ::= ON",
+ /* 385 */ "nmnum ::= DELETE",
+ /* 386 */ "nmnum ::= DEFAULT",
+ /* 387 */ "plus_num ::= INTEGER|FLOAT",
+ /* 388 */ "foreach_clause ::=",
+ /* 389 */ "foreach_clause ::= FOR EACH ROW",
+ /* 390 */ "trnm ::= nm",
+ /* 391 */ "tridxby ::=",
+ /* 392 */ "database_kw_opt ::= DATABASE",
+ /* 393 */ "database_kw_opt ::=",
+ /* 394 */ "kwcolumn_opt ::=",
+ /* 395 */ "kwcolumn_opt ::= COLUMNKW",
+ /* 396 */ "vtabarglist ::= vtabarg",
+ /* 397 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
+ /* 398 */ "vtabarg ::= vtabarg vtabargtoken",
+ /* 399 */ "anylist ::=",
+ /* 400 */ "anylist ::= anylist LP anylist RP",
+ /* 401 */ "anylist ::= anylist ANY",
+ /* 402 */ "with ::=",
+ /* 403 */ "windowdefn_list ::= windowdefn",
+ /* 404 */ "window ::= frame_opt",
+};
+#endif /* NDEBUG */
+
+
+#if YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack. Return the number
+** of errors. Return 0 on success.
+*/
+static int yyGrowStack(yyParser *p){
+ int newSize;
+ int idx;
+ yyStackEntry *pNew;
+
+ newSize = p->yystksz*2 + 100;
+ idx = p->yytos ? (int)(p->yytos - p->yystack) : 0;
+ if( p->yystack==&p->yystk0 ){
+ pNew = malloc(newSize*sizeof(pNew[0]));
+ if( pNew ) pNew[0] = p->yystk0;
+ }else{
+ pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
+ }
+ if( pNew ){
+ p->yystack = pNew;
+ p->yytos = &p->yystack[idx];
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n",
+ yyTracePrompt, p->yystksz, newSize);
+ }
+#endif
+ p->yystksz = newSize;
+ }
+ return pNew==0;
+}
+#endif
+
+/* Datatype of the argument to the memory allocated passed as the
+** second argument to sqlite3ParserAlloc() below. This can be changed by
+** putting an appropriate #define in the %include section of the input
+** grammar.
+*/
+#ifndef YYMALLOCARGTYPE
+# define YYMALLOCARGTYPE size_t
+#endif
+
+/* Initialize a new parser that has already been allocated.
+*/
+SQLITE_PRIVATE void sqlite3ParserInit(void *yypRawParser sqlite3ParserCTX_PDECL){
+ yyParser *yypParser = (yyParser*)yypRawParser;
+ sqlite3ParserCTX_STORE
+#ifdef YYTRACKMAXSTACKDEPTH
+ yypParser->yyhwm = 0;
+#endif
+#if YYSTACKDEPTH<=0
+ yypParser->yytos = NULL;
+ yypParser->yystack = NULL;
+ yypParser->yystksz = 0;
+ if( yyGrowStack(yypParser) ){
+ yypParser->yystack = &yypParser->yystk0;
+ yypParser->yystksz = 1;
+ }
+#endif
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ yypParser->yytos = yypParser->yystack;
+ yypParser->yystack[0].stateno = 0;
+ yypParser->yystack[0].major = 0;
+#if YYSTACKDEPTH>0
+ yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1];
+#endif
+}
+
+#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqlite3Parser and sqlite3ParserFree.
+*/
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE) sqlite3ParserCTX_PDECL){
+ yyParser *yypParser;
+ yypParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
+ if( yypParser ){
+ sqlite3ParserCTX_STORE
+ sqlite3ParserInit(yypParser sqlite3ParserCTX_PARAM);
+ }
+ return (void*)yypParser;
+}
+#endif /* sqlite3Parser_ENGINEALWAYSONSTACK */
+
+
+/* The following function deletes the "minor type" or semantic value
+** associated with a symbol. The symbol can be either a terminal
+** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
+** a pointer to the value to be deleted. The code used to do the
+** deletions is derived from the %destructor and/or %token_destructor
+** directives of the input grammar.
+*/
+static void yy_destructor(
+ yyParser *yypParser, /* The parser */
+ YYCODETYPE yymajor, /* Type code for object to destroy */
+ YYMINORTYPE *yypminor /* The object to be destroyed */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+ switch( yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are *not* used
+ ** inside the C code.
+ */
+/********* Begin destructor definitions ***************************************/
+ case 204: /* select */
+ case 239: /* selectnowith */
+ case 240: /* oneselect */
+ case 252: /* values */
+{
+sqlite3SelectDelete(pParse->db, (yypminor->yy47));
+}
+ break;
+ case 216: /* term */
+ case 217: /* expr */
+ case 246: /* where_opt */
+ case 248: /* having_opt */
+ case 267: /* where_opt_ret */
+ case 278: /* case_operand */
+ case 280: /* case_else */
+ case 283: /* vinto */
+ case 290: /* when_clause */
+ case 295: /* key_opt */
+ case 311: /* filter_clause */
+{
+sqlite3ExprDelete(pParse->db, (yypminor->yy528));
+}
+ break;
+ case 221: /* eidlist_opt */
+ case 231: /* sortlist */
+ case 232: /* eidlist */
+ case 244: /* selcollist */
+ case 247: /* groupby_opt */
+ case 249: /* orderby_opt */
+ case 253: /* nexprlist */
+ case 254: /* sclp */
+ case 261: /* exprlist */
+ case 268: /* setlist */
+ case 277: /* paren_exprlist */
+ case 279: /* case_exprlist */
+ case 310: /* part_opt */
+{
+sqlite3ExprListDelete(pParse->db, (yypminor->yy322));
+}
+ break;
+ case 238: /* fullname */
+ case 245: /* from */
+ case 256: /* seltablist */
+ case 257: /* stl_prefix */
+ case 262: /* xfullname */
+{
+sqlite3SrcListDelete(pParse->db, (yypminor->yy131));
+}
+ break;
+ case 241: /* wqlist */
+{
+sqlite3WithDelete(pParse->db, (yypminor->yy521));
+}
+ break;
+ case 251: /* window_clause */
+ case 306: /* windowdefn_list */
+{
+sqlite3WindowListDelete(pParse->db, (yypminor->yy41));
+}
+ break;
+ case 263: /* idlist */
+ case 270: /* idlist_opt */
+{
+sqlite3IdListDelete(pParse->db, (yypminor->yy254));
+}
+ break;
+ case 273: /* filter_over */
+ case 307: /* windowdefn */
+ case 308: /* window */
+ case 309: /* frame_opt */
+ case 312: /* over_clause */
+{
+sqlite3WindowDelete(pParse->db, (yypminor->yy41));
+}
+ break;
+ case 286: /* trigger_cmd_list */
+ case 291: /* trigger_cmd */
+{
+sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy33));
+}
+ break;
+ case 288: /* trigger_event */
+{
+sqlite3IdListDelete(pParse->db, (yypminor->yy180).b);
+}
+ break;
+ case 314: /* frame_bound */
+ case 315: /* frame_bound_s */
+ case 316: /* frame_bound_e */
+{
+sqlite3ExprDelete(pParse->db, (yypminor->yy595).pExpr);
+}
+ break;
+/********* End destructor definitions *****************************************/
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+*/
+static void yy_pop_parser_stack(yyParser *pParser){
+ yyStackEntry *yytos;
+ assert( pParser->yytos!=0 );
+ assert( pParser->yytos > pParser->yystack );
+ yytos = pParser->yytos--;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sPopping %s\n",
+ yyTracePrompt,
+ yyTokenName[yytos->major]);
+ }
+#endif
+ yy_destructor(pParser, yytos->major, &yytos->minor);
+}
+
+/*
+** Clear all secondary memory allocations from the parser
+*/
+SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){
+ yyParser *pParser = (yyParser*)p;
+ while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser);
+#if YYSTACKDEPTH<=0
+ if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack);
+#endif
+}
+
+#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
+/*
+** Deallocate and destroy a parser. Destructors are called for
+** all stack elements before shutting the parser down.
+**
+** If the YYPARSEFREENEVERNULL macro exists (for example because it
+** is defined in a %include section of the input grammar) then it is
+** assumed that the input pointer is never NULL.
+*/
+SQLITE_PRIVATE void sqlite3ParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+#ifndef YYPARSEFREENEVERNULL
+ if( p==0 ) return;
+#endif
+ sqlite3ParserFinalize(p);
+ (*freeProc)(p);
+}
+#endif /* sqlite3Parser_ENGINEALWAYSONSTACK */
+
+/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef YYTRACKMAXSTACKDEPTH
+SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
+ yyParser *pParser = (yyParser*)p;
+ return pParser->yyhwm;
+}
+#endif
+
+/* This array of booleans keeps track of the parser statement
+** coverage. The element yycoverage[X][Y] is set when the parser
+** is in state X and has a lookahead token Y. In a well-tested
+** systems, every element of this matrix should end up being set.
+*/
+#if defined(YYCOVERAGE)
+static unsigned char yycoverage[YYNSTATE][YYNTOKEN];
+#endif
+
+/*
+** Write into out a description of every state/lookahead combination that
+**
+** (1) has not been used by the parser, and
+** (2) is not a syntax error.
+**
+** Return the number of missed state/lookahead combinations.
+*/
+#if defined(YYCOVERAGE)
+SQLITE_PRIVATE int sqlite3ParserCoverage(FILE *out){
+ int stateno, iLookAhead, i;
+ int nMissed = 0;
+ for(stateno=0; stateno<YYNSTATE; stateno++){
+ i = yy_shift_ofst[stateno];
+ for(iLookAhead=0; iLookAhead<YYNTOKEN; iLookAhead++){
+ if( yy_lookahead[i+iLookAhead]!=iLookAhead ) continue;
+ if( yycoverage[stateno][iLookAhead]==0 ) nMissed++;
+ if( out ){
+ fprintf(out,"State %d lookahead %s %s\n", stateno,
+ yyTokenName[iLookAhead],
+ yycoverage[stateno][iLookAhead] ? "ok" : "missed");
+ }
+ }
+ }
+ return nMissed;
+}
+#endif
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+*/
+static YYACTIONTYPE yy_find_shift_action(
+ YYCODETYPE iLookAhead, /* The look-ahead token */
+ YYACTIONTYPE stateno /* Current state number */
+){
+ int i;
+
+ if( stateno>YY_MAX_SHIFT ) return stateno;
+ assert( stateno <= YY_SHIFT_COUNT );
+#if defined(YYCOVERAGE)
+ yycoverage[stateno][iLookAhead] = 1;
+#endif
+ do{
+ i = yy_shift_ofst[stateno];
+ assert( i>=0 );
+ assert( i<=YY_ACTTAB_COUNT );
+ assert( i+YYNTOKEN<=(int)YY_NLOOKAHEAD );
+ assert( iLookAhead!=YYNOCODE );
+ assert( iLookAhead < YYNTOKEN );
+ i += iLookAhead;
+ assert( i<(int)YY_NLOOKAHEAD );
+ if( yy_lookahead[i]!=iLookAhead ){
+#ifdef YYFALLBACK
+ YYCODETYPE iFallback; /* Fallback token */
+ assert( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0]) );
+ iFallback = yyFallback[iLookAhead];
+ if( iFallback!=0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
+ }
+#endif
+ assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
+ iLookAhead = iFallback;
+ continue;
+ }
+#endif
+#ifdef YYWILDCARD
+ {
+ int j = i - iLookAhead + YYWILDCARD;
+ assert( j<(int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])) );
+ if( yy_lookahead[j]==YYWILDCARD && iLookAhead>0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead],
+ yyTokenName[YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return yy_action[j];
+ }
+ }
+#endif /* YYWILDCARD */
+ return yy_default[stateno];
+ }else{
+ assert( i>=0 && i<(int)(sizeof(yy_action)/sizeof(yy_action[0])) );
+ return yy_action[i];
+ }
+ }while(1);
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+*/
+static YYACTIONTYPE yy_find_reduce_action(
+ YYACTIONTYPE stateno, /* Current state number */
+ YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef YYERRORSYMBOL
+ if( stateno>YY_REDUCE_COUNT ){
+ return yy_default[stateno];
+ }
+#else
+ assert( stateno<=YY_REDUCE_COUNT );
+#endif
+ i = yy_reduce_ofst[stateno];
+ assert( iLookAhead!=YYNOCODE );
+ i += iLookAhead;
+#ifdef YYERRORSYMBOL
+ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
+ return yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<YY_ACTTAB_COUNT );
+ assert( yy_lookahead[i]==iLookAhead );
+#endif
+ return yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void yyStackOverflow(yyParser *yypParser){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+/******** Begin %stack_overflow code ******************************************/
+
+ sqlite3ErrorMsg(pParse, "parser stack overflow");
+/******** End %stack_overflow code ********************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument var */
+ sqlite3ParserCTX_STORE
+}
+
+/*
+** Print tracing information for a SHIFT action
+*/
+#ifndef NDEBUG
+static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){
+ if( yyTraceFILE ){
+ if( yyNewState<YYNSTATE ){
+ fprintf(yyTraceFILE,"%s%s '%s', go to state %d\n",
+ yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major],
+ yyNewState);
+ }else{
+ fprintf(yyTraceFILE,"%s%s '%s', pending reduce %d\n",
+ yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major],
+ yyNewState - YY_MIN_REDUCE);
+ }
+ }
+}
+#else
+# define yyTraceShift(X,Y,Z)
+#endif
+
+/*
+** Perform a shift action.
+*/
+static void yy_shift(
+ yyParser *yypParser, /* The parser to be shifted */
+ YYACTIONTYPE yyNewState, /* The new state to shift in */
+ YYCODETYPE yyMajor, /* The major token to shift in */
+ sqlite3ParserTOKENTYPE yyMinor /* The minor token to shift in */
+){
+ yyStackEntry *yytos;
+ yypParser->yytos++;
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
+ yypParser->yyhwm++;
+ assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) );
+ }
+#endif
+#if YYSTACKDEPTH>0
+ if( yypParser->yytos>yypParser->yystackEnd ){
+ yypParser->yytos--;
+ yyStackOverflow(yypParser);
+ return;
+ }
+#else
+ if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){
+ if( yyGrowStack(yypParser) ){
+ yypParser->yytos--;
+ yyStackOverflow(yypParser);
+ return;
+ }
+ }
+#endif
+ if( yyNewState > YY_MAX_SHIFT ){
+ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
+ }
+ yytos = yypParser->yytos;
+ yytos->stateno = yyNewState;
+ yytos->major = yyMajor;
+ yytos->minor.yy0 = yyMinor;
+ yyTraceShift(yypParser, yyNewState, "Shift");
+}
+
+/* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side
+** of that rule */
+static const YYCODETYPE yyRuleInfoLhs[] = {
+ 189, /* (0) explain ::= EXPLAIN */
+ 189, /* (1) explain ::= EXPLAIN QUERY PLAN */
+ 188, /* (2) cmdx ::= cmd */
+ 190, /* (3) cmd ::= BEGIN transtype trans_opt */
+ 191, /* (4) transtype ::= */
+ 191, /* (5) transtype ::= DEFERRED */
+ 191, /* (6) transtype ::= IMMEDIATE */
+ 191, /* (7) transtype ::= EXCLUSIVE */
+ 190, /* (8) cmd ::= COMMIT|END trans_opt */
+ 190, /* (9) cmd ::= ROLLBACK trans_opt */
+ 190, /* (10) cmd ::= SAVEPOINT nm */
+ 190, /* (11) cmd ::= RELEASE savepoint_opt nm */
+ 190, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
+ 195, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */
+ 197, /* (14) createkw ::= CREATE */
+ 199, /* (15) ifnotexists ::= */
+ 199, /* (16) ifnotexists ::= IF NOT EXISTS */
+ 198, /* (17) temp ::= TEMP */
+ 198, /* (18) temp ::= */
+ 196, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */
+ 196, /* (20) create_table_args ::= AS select */
+ 203, /* (21) table_option_set ::= */
+ 203, /* (22) table_option_set ::= table_option_set COMMA table_option */
+ 205, /* (23) table_option ::= WITHOUT nm */
+ 205, /* (24) table_option ::= nm */
+ 206, /* (25) columnname ::= nm typetoken */
+ 208, /* (26) typetoken ::= */
+ 208, /* (27) typetoken ::= typename LP signed RP */
+ 208, /* (28) typetoken ::= typename LP signed COMMA signed RP */
+ 209, /* (29) typename ::= typename ID|STRING */
+ 213, /* (30) scanpt ::= */
+ 214, /* (31) scantok ::= */
+ 215, /* (32) ccons ::= CONSTRAINT nm */
+ 215, /* (33) ccons ::= DEFAULT scantok term */
+ 215, /* (34) ccons ::= DEFAULT LP expr RP */
+ 215, /* (35) ccons ::= DEFAULT PLUS scantok term */
+ 215, /* (36) ccons ::= DEFAULT MINUS scantok term */
+ 215, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */
+ 215, /* (38) ccons ::= NOT NULL onconf */
+ 215, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */
+ 215, /* (40) ccons ::= UNIQUE onconf */
+ 215, /* (41) ccons ::= CHECK LP expr RP */
+ 215, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */
+ 215, /* (43) ccons ::= defer_subclause */
+ 215, /* (44) ccons ::= COLLATE ID|STRING */
+ 224, /* (45) generated ::= LP expr RP */
+ 224, /* (46) generated ::= LP expr RP ID */
+ 220, /* (47) autoinc ::= */
+ 220, /* (48) autoinc ::= AUTOINCR */
+ 222, /* (49) refargs ::= */
+ 222, /* (50) refargs ::= refargs refarg */
+ 225, /* (51) refarg ::= MATCH nm */
+ 225, /* (52) refarg ::= ON INSERT refact */
+ 225, /* (53) refarg ::= ON DELETE refact */
+ 225, /* (54) refarg ::= ON UPDATE refact */
+ 226, /* (55) refact ::= SET NULL */
+ 226, /* (56) refact ::= SET DEFAULT */
+ 226, /* (57) refact ::= CASCADE */
+ 226, /* (58) refact ::= RESTRICT */
+ 226, /* (59) refact ::= NO ACTION */
+ 223, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+ 223, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ 227, /* (62) init_deferred_pred_opt ::= */
+ 227, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ 227, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+ 202, /* (65) conslist_opt ::= */
+ 229, /* (66) tconscomma ::= COMMA */
+ 230, /* (67) tcons ::= CONSTRAINT nm */
+ 230, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
+ 230, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */
+ 230, /* (70) tcons ::= CHECK LP expr RP onconf */
+ 230, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
+ 233, /* (72) defer_subclause_opt ::= */
+ 218, /* (73) onconf ::= */
+ 218, /* (74) onconf ::= ON CONFLICT resolvetype */
+ 234, /* (75) orconf ::= */
+ 234, /* (76) orconf ::= OR resolvetype */
+ 235, /* (77) resolvetype ::= IGNORE */
+ 235, /* (78) resolvetype ::= REPLACE */
+ 190, /* (79) cmd ::= DROP TABLE ifexists fullname */
+ 237, /* (80) ifexists ::= IF EXISTS */
+ 237, /* (81) ifexists ::= */
+ 190, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
+ 190, /* (83) cmd ::= DROP VIEW ifexists fullname */
+ 190, /* (84) cmd ::= select */
+ 204, /* (85) select ::= WITH wqlist selectnowith */
+ 204, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */
+ 204, /* (87) select ::= selectnowith */
+ 239, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */
+ 242, /* (89) multiselect_op ::= UNION */
+ 242, /* (90) multiselect_op ::= UNION ALL */
+ 242, /* (91) multiselect_op ::= EXCEPT|INTERSECT */
+ 240, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+ 240, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */
+ 252, /* (94) values ::= VALUES LP nexprlist RP */
+ 252, /* (95) values ::= values COMMA LP nexprlist RP */
+ 243, /* (96) distinct ::= DISTINCT */
+ 243, /* (97) distinct ::= ALL */
+ 243, /* (98) distinct ::= */
+ 254, /* (99) sclp ::= */
+ 244, /* (100) selcollist ::= sclp scanpt expr scanpt as */
+ 244, /* (101) selcollist ::= sclp scanpt STAR */
+ 244, /* (102) selcollist ::= sclp scanpt nm DOT STAR */
+ 255, /* (103) as ::= AS nm */
+ 255, /* (104) as ::= */
+ 245, /* (105) from ::= */
+ 245, /* (106) from ::= FROM seltablist */
+ 257, /* (107) stl_prefix ::= seltablist joinop */
+ 257, /* (108) stl_prefix ::= */
+ 256, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */
+ 256, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */
+ 256, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */
+ 256, /* (112) seltablist ::= stl_prefix LP select RP as on_using */
+ 256, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */
+ 200, /* (114) dbnm ::= */
+ 200, /* (115) dbnm ::= DOT nm */
+ 238, /* (116) fullname ::= nm */
+ 238, /* (117) fullname ::= nm DOT nm */
+ 262, /* (118) xfullname ::= nm */
+ 262, /* (119) xfullname ::= nm DOT nm */
+ 262, /* (120) xfullname ::= nm DOT nm AS nm */
+ 262, /* (121) xfullname ::= nm AS nm */
+ 258, /* (122) joinop ::= COMMA|JOIN */
+ 258, /* (123) joinop ::= JOIN_KW JOIN */
+ 258, /* (124) joinop ::= JOIN_KW nm JOIN */
+ 258, /* (125) joinop ::= JOIN_KW nm nm JOIN */
+ 259, /* (126) on_using ::= ON expr */
+ 259, /* (127) on_using ::= USING LP idlist RP */
+ 259, /* (128) on_using ::= */
+ 264, /* (129) indexed_opt ::= */
+ 260, /* (130) indexed_by ::= INDEXED BY nm */
+ 260, /* (131) indexed_by ::= NOT INDEXED */
+ 249, /* (132) orderby_opt ::= */
+ 249, /* (133) orderby_opt ::= ORDER BY sortlist */
+ 231, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */
+ 231, /* (135) sortlist ::= expr sortorder nulls */
+ 219, /* (136) sortorder ::= ASC */
+ 219, /* (137) sortorder ::= DESC */
+ 219, /* (138) sortorder ::= */
+ 265, /* (139) nulls ::= NULLS FIRST */
+ 265, /* (140) nulls ::= NULLS LAST */
+ 265, /* (141) nulls ::= */
+ 247, /* (142) groupby_opt ::= */
+ 247, /* (143) groupby_opt ::= GROUP BY nexprlist */
+ 248, /* (144) having_opt ::= */
+ 248, /* (145) having_opt ::= HAVING expr */
+ 250, /* (146) limit_opt ::= */
+ 250, /* (147) limit_opt ::= LIMIT expr */
+ 250, /* (148) limit_opt ::= LIMIT expr OFFSET expr */
+ 250, /* (149) limit_opt ::= LIMIT expr COMMA expr */
+ 190, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */
+ 246, /* (151) where_opt ::= */
+ 246, /* (152) where_opt ::= WHERE expr */
+ 267, /* (153) where_opt_ret ::= */
+ 267, /* (154) where_opt_ret ::= WHERE expr */
+ 267, /* (155) where_opt_ret ::= RETURNING selcollist */
+ 267, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */
+ 190, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */
+ 268, /* (158) setlist ::= setlist COMMA nm EQ expr */
+ 268, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */
+ 268, /* (160) setlist ::= nm EQ expr */
+ 268, /* (161) setlist ::= LP idlist RP EQ expr */
+ 190, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */
+ 190, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */
+ 271, /* (164) upsert ::= */
+ 271, /* (165) upsert ::= RETURNING selcollist */
+ 271, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */
+ 271, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */
+ 271, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */
+ 271, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */
+ 272, /* (170) returning ::= RETURNING selcollist */
+ 269, /* (171) insert_cmd ::= INSERT orconf */
+ 269, /* (172) insert_cmd ::= REPLACE */
+ 270, /* (173) idlist_opt ::= */
+ 270, /* (174) idlist_opt ::= LP idlist RP */
+ 263, /* (175) idlist ::= idlist COMMA nm */
+ 263, /* (176) idlist ::= nm */
+ 217, /* (177) expr ::= LP expr RP */
+ 217, /* (178) expr ::= ID|INDEXED|JOIN_KW */
+ 217, /* (179) expr ::= nm DOT nm */
+ 217, /* (180) expr ::= nm DOT nm DOT nm */
+ 216, /* (181) term ::= NULL|FLOAT|BLOB */
+ 216, /* (182) term ::= STRING */
+ 216, /* (183) term ::= INTEGER */
+ 217, /* (184) expr ::= VARIABLE */
+ 217, /* (185) expr ::= expr COLLATE ID|STRING */
+ 217, /* (186) expr ::= CAST LP expr AS typetoken RP */
+ 217, /* (187) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */
+ 217, /* (188) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP */
+ 217, /* (189) expr ::= ID|INDEXED|JOIN_KW LP STAR RP */
+ 217, /* (190) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */
+ 217, /* (191) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over */
+ 217, /* (192) expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */
+ 216, /* (193) term ::= CTIME_KW */
+ 217, /* (194) expr ::= LP nexprlist COMMA expr RP */
+ 217, /* (195) expr ::= expr AND expr */
+ 217, /* (196) expr ::= expr OR expr */
+ 217, /* (197) expr ::= expr LT|GT|GE|LE expr */
+ 217, /* (198) expr ::= expr EQ|NE expr */
+ 217, /* (199) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
+ 217, /* (200) expr ::= expr PLUS|MINUS expr */
+ 217, /* (201) expr ::= expr STAR|SLASH|REM expr */
+ 217, /* (202) expr ::= expr CONCAT expr */
+ 274, /* (203) likeop ::= NOT LIKE_KW|MATCH */
+ 217, /* (204) expr ::= expr likeop expr */
+ 217, /* (205) expr ::= expr likeop expr ESCAPE expr */
+ 217, /* (206) expr ::= expr ISNULL|NOTNULL */
+ 217, /* (207) expr ::= expr NOT NULL */
+ 217, /* (208) expr ::= expr IS expr */
+ 217, /* (209) expr ::= expr IS NOT expr */
+ 217, /* (210) expr ::= expr IS NOT DISTINCT FROM expr */
+ 217, /* (211) expr ::= expr IS DISTINCT FROM expr */
+ 217, /* (212) expr ::= NOT expr */
+ 217, /* (213) expr ::= BITNOT expr */
+ 217, /* (214) expr ::= PLUS|MINUS expr */
+ 217, /* (215) expr ::= expr PTR expr */
+ 275, /* (216) between_op ::= BETWEEN */
+ 275, /* (217) between_op ::= NOT BETWEEN */
+ 217, /* (218) expr ::= expr between_op expr AND expr */
+ 276, /* (219) in_op ::= IN */
+ 276, /* (220) in_op ::= NOT IN */
+ 217, /* (221) expr ::= expr in_op LP exprlist RP */
+ 217, /* (222) expr ::= LP select RP */
+ 217, /* (223) expr ::= expr in_op LP select RP */
+ 217, /* (224) expr ::= expr in_op nm dbnm paren_exprlist */
+ 217, /* (225) expr ::= EXISTS LP select RP */
+ 217, /* (226) expr ::= CASE case_operand case_exprlist case_else END */
+ 279, /* (227) case_exprlist ::= case_exprlist WHEN expr THEN expr */
+ 279, /* (228) case_exprlist ::= WHEN expr THEN expr */
+ 280, /* (229) case_else ::= ELSE expr */
+ 280, /* (230) case_else ::= */
+ 278, /* (231) case_operand ::= */
+ 261, /* (232) exprlist ::= */
+ 253, /* (233) nexprlist ::= nexprlist COMMA expr */
+ 253, /* (234) nexprlist ::= expr */
+ 277, /* (235) paren_exprlist ::= */
+ 277, /* (236) paren_exprlist ::= LP exprlist RP */
+ 190, /* (237) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
+ 281, /* (238) uniqueflag ::= UNIQUE */
+ 281, /* (239) uniqueflag ::= */
+ 221, /* (240) eidlist_opt ::= */
+ 221, /* (241) eidlist_opt ::= LP eidlist RP */
+ 232, /* (242) eidlist ::= eidlist COMMA nm collate sortorder */
+ 232, /* (243) eidlist ::= nm collate sortorder */
+ 282, /* (244) collate ::= */
+ 282, /* (245) collate ::= COLLATE ID|STRING */
+ 190, /* (246) cmd ::= DROP INDEX ifexists fullname */
+ 190, /* (247) cmd ::= VACUUM vinto */
+ 190, /* (248) cmd ::= VACUUM nm vinto */
+ 283, /* (249) vinto ::= INTO expr */
+ 283, /* (250) vinto ::= */
+ 190, /* (251) cmd ::= PRAGMA nm dbnm */
+ 190, /* (252) cmd ::= PRAGMA nm dbnm EQ nmnum */
+ 190, /* (253) cmd ::= PRAGMA nm dbnm LP nmnum RP */
+ 190, /* (254) cmd ::= PRAGMA nm dbnm EQ minus_num */
+ 190, /* (255) cmd ::= PRAGMA nm dbnm LP minus_num RP */
+ 211, /* (256) plus_num ::= PLUS INTEGER|FLOAT */
+ 212, /* (257) minus_num ::= MINUS INTEGER|FLOAT */
+ 190, /* (258) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
+ 285, /* (259) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+ 287, /* (260) trigger_time ::= BEFORE|AFTER */
+ 287, /* (261) trigger_time ::= INSTEAD OF */
+ 287, /* (262) trigger_time ::= */
+ 288, /* (263) trigger_event ::= DELETE|INSERT */
+ 288, /* (264) trigger_event ::= UPDATE */
+ 288, /* (265) trigger_event ::= UPDATE OF idlist */
+ 290, /* (266) when_clause ::= */
+ 290, /* (267) when_clause ::= WHEN expr */
+ 286, /* (268) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+ 286, /* (269) trigger_cmd_list ::= trigger_cmd SEMI */
+ 292, /* (270) trnm ::= nm DOT nm */
+ 293, /* (271) tridxby ::= INDEXED BY nm */
+ 293, /* (272) tridxby ::= NOT INDEXED */
+ 291, /* (273) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */
+ 291, /* (274) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */
+ 291, /* (275) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */
+ 291, /* (276) trigger_cmd ::= scanpt select scanpt */
+ 217, /* (277) expr ::= RAISE LP IGNORE RP */
+ 217, /* (278) expr ::= RAISE LP raisetype COMMA nm RP */
+ 236, /* (279) raisetype ::= ROLLBACK */
+ 236, /* (280) raisetype ::= ABORT */
+ 236, /* (281) raisetype ::= FAIL */
+ 190, /* (282) cmd ::= DROP TRIGGER ifexists fullname */
+ 190, /* (283) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+ 190, /* (284) cmd ::= DETACH database_kw_opt expr */
+ 295, /* (285) key_opt ::= */
+ 295, /* (286) key_opt ::= KEY expr */
+ 190, /* (287) cmd ::= REINDEX */
+ 190, /* (288) cmd ::= REINDEX nm dbnm */
+ 190, /* (289) cmd ::= ANALYZE */
+ 190, /* (290) cmd ::= ANALYZE nm dbnm */
+ 190, /* (291) cmd ::= ALTER TABLE fullname RENAME TO nm */
+ 190, /* (292) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */
+ 190, /* (293) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */
+ 296, /* (294) add_column_fullname ::= fullname */
+ 190, /* (295) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */
+ 190, /* (296) cmd ::= create_vtab */
+ 190, /* (297) cmd ::= create_vtab LP vtabarglist RP */
+ 298, /* (298) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
+ 300, /* (299) vtabarg ::= */
+ 301, /* (300) vtabargtoken ::= ANY */
+ 301, /* (301) vtabargtoken ::= lp anylist RP */
+ 302, /* (302) lp ::= LP */
+ 266, /* (303) with ::= WITH wqlist */
+ 266, /* (304) with ::= WITH RECURSIVE wqlist */
+ 305, /* (305) wqas ::= AS */
+ 305, /* (306) wqas ::= AS MATERIALIZED */
+ 305, /* (307) wqas ::= AS NOT MATERIALIZED */
+ 304, /* (308) wqitem ::= nm eidlist_opt wqas LP select RP */
+ 241, /* (309) wqlist ::= wqitem */
+ 241, /* (310) wqlist ::= wqlist COMMA wqitem */
+ 306, /* (311) windowdefn_list ::= windowdefn_list COMMA windowdefn */
+ 307, /* (312) windowdefn ::= nm AS LP window RP */
+ 308, /* (313) window ::= PARTITION BY nexprlist orderby_opt frame_opt */
+ 308, /* (314) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */
+ 308, /* (315) window ::= ORDER BY sortlist frame_opt */
+ 308, /* (316) window ::= nm ORDER BY sortlist frame_opt */
+ 308, /* (317) window ::= nm frame_opt */
+ 309, /* (318) frame_opt ::= */
+ 309, /* (319) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */
+ 309, /* (320) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */
+ 313, /* (321) range_or_rows ::= RANGE|ROWS|GROUPS */
+ 315, /* (322) frame_bound_s ::= frame_bound */
+ 315, /* (323) frame_bound_s ::= UNBOUNDED PRECEDING */
+ 316, /* (324) frame_bound_e ::= frame_bound */
+ 316, /* (325) frame_bound_e ::= UNBOUNDED FOLLOWING */
+ 314, /* (326) frame_bound ::= expr PRECEDING|FOLLOWING */
+ 314, /* (327) frame_bound ::= CURRENT ROW */
+ 317, /* (328) frame_exclude_opt ::= */
+ 317, /* (329) frame_exclude_opt ::= EXCLUDE frame_exclude */
+ 318, /* (330) frame_exclude ::= NO OTHERS */
+ 318, /* (331) frame_exclude ::= CURRENT ROW */
+ 318, /* (332) frame_exclude ::= GROUP|TIES */
+ 251, /* (333) window_clause ::= WINDOW windowdefn_list */
+ 273, /* (334) filter_over ::= filter_clause over_clause */
+ 273, /* (335) filter_over ::= over_clause */
+ 273, /* (336) filter_over ::= filter_clause */
+ 312, /* (337) over_clause ::= OVER LP window RP */
+ 312, /* (338) over_clause ::= OVER nm */
+ 311, /* (339) filter_clause ::= FILTER LP WHERE expr RP */
+ 185, /* (340) input ::= cmdlist */
+ 186, /* (341) cmdlist ::= cmdlist ecmd */
+ 186, /* (342) cmdlist ::= ecmd */
+ 187, /* (343) ecmd ::= SEMI */
+ 187, /* (344) ecmd ::= cmdx SEMI */
+ 187, /* (345) ecmd ::= explain cmdx SEMI */
+ 192, /* (346) trans_opt ::= */
+ 192, /* (347) trans_opt ::= TRANSACTION */
+ 192, /* (348) trans_opt ::= TRANSACTION nm */
+ 194, /* (349) savepoint_opt ::= SAVEPOINT */
+ 194, /* (350) savepoint_opt ::= */
+ 190, /* (351) cmd ::= create_table create_table_args */
+ 203, /* (352) table_option_set ::= table_option */
+ 201, /* (353) columnlist ::= columnlist COMMA columnname carglist */
+ 201, /* (354) columnlist ::= columnname carglist */
+ 193, /* (355) nm ::= ID|INDEXED|JOIN_KW */
+ 193, /* (356) nm ::= STRING */
+ 208, /* (357) typetoken ::= typename */
+ 209, /* (358) typename ::= ID|STRING */
+ 210, /* (359) signed ::= plus_num */
+ 210, /* (360) signed ::= minus_num */
+ 207, /* (361) carglist ::= carglist ccons */
+ 207, /* (362) carglist ::= */
+ 215, /* (363) ccons ::= NULL onconf */
+ 215, /* (364) ccons ::= GENERATED ALWAYS AS generated */
+ 215, /* (365) ccons ::= AS generated */
+ 202, /* (366) conslist_opt ::= COMMA conslist */
+ 228, /* (367) conslist ::= conslist tconscomma tcons */
+ 228, /* (368) conslist ::= tcons */
+ 229, /* (369) tconscomma ::= */
+ 233, /* (370) defer_subclause_opt ::= defer_subclause */
+ 235, /* (371) resolvetype ::= raisetype */
+ 239, /* (372) selectnowith ::= oneselect */
+ 240, /* (373) oneselect ::= values */
+ 254, /* (374) sclp ::= selcollist COMMA */
+ 255, /* (375) as ::= ID|STRING */
+ 264, /* (376) indexed_opt ::= indexed_by */
+ 272, /* (377) returning ::= */
+ 217, /* (378) expr ::= term */
+ 274, /* (379) likeop ::= LIKE_KW|MATCH */
+ 278, /* (380) case_operand ::= expr */
+ 261, /* (381) exprlist ::= nexprlist */
+ 284, /* (382) nmnum ::= plus_num */
+ 284, /* (383) nmnum ::= nm */
+ 284, /* (384) nmnum ::= ON */
+ 284, /* (385) nmnum ::= DELETE */
+ 284, /* (386) nmnum ::= DEFAULT */
+ 211, /* (387) plus_num ::= INTEGER|FLOAT */
+ 289, /* (388) foreach_clause ::= */
+ 289, /* (389) foreach_clause ::= FOR EACH ROW */
+ 292, /* (390) trnm ::= nm */
+ 293, /* (391) tridxby ::= */
+ 294, /* (392) database_kw_opt ::= DATABASE */
+ 294, /* (393) database_kw_opt ::= */
+ 297, /* (394) kwcolumn_opt ::= */
+ 297, /* (395) kwcolumn_opt ::= COLUMNKW */
+ 299, /* (396) vtabarglist ::= vtabarg */
+ 299, /* (397) vtabarglist ::= vtabarglist COMMA vtabarg */
+ 300, /* (398) vtabarg ::= vtabarg vtabargtoken */
+ 303, /* (399) anylist ::= */
+ 303, /* (400) anylist ::= anylist LP anylist RP */
+ 303, /* (401) anylist ::= anylist ANY */
+ 266, /* (402) with ::= */
+ 306, /* (403) windowdefn_list ::= windowdefn */
+ 308, /* (404) window ::= frame_opt */
+};
+
+/* For rule J, yyRuleInfoNRhs[J] contains the negative of the number
+** of symbols on the right-hand side of that rule. */
+static const signed char yyRuleInfoNRhs[] = {
+ -1, /* (0) explain ::= EXPLAIN */
+ -3, /* (1) explain ::= EXPLAIN QUERY PLAN */
+ -1, /* (2) cmdx ::= cmd */
+ -3, /* (3) cmd ::= BEGIN transtype trans_opt */
+ 0, /* (4) transtype ::= */
+ -1, /* (5) transtype ::= DEFERRED */
+ -1, /* (6) transtype ::= IMMEDIATE */
+ -1, /* (7) transtype ::= EXCLUSIVE */
+ -2, /* (8) cmd ::= COMMIT|END trans_opt */
+ -2, /* (9) cmd ::= ROLLBACK trans_opt */
+ -2, /* (10) cmd ::= SAVEPOINT nm */
+ -3, /* (11) cmd ::= RELEASE savepoint_opt nm */
+ -5, /* (12) cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
+ -6, /* (13) create_table ::= createkw temp TABLE ifnotexists nm dbnm */
+ -1, /* (14) createkw ::= CREATE */
+ 0, /* (15) ifnotexists ::= */
+ -3, /* (16) ifnotexists ::= IF NOT EXISTS */
+ -1, /* (17) temp ::= TEMP */
+ 0, /* (18) temp ::= */
+ -5, /* (19) create_table_args ::= LP columnlist conslist_opt RP table_option_set */
+ -2, /* (20) create_table_args ::= AS select */
+ 0, /* (21) table_option_set ::= */
+ -3, /* (22) table_option_set ::= table_option_set COMMA table_option */
+ -2, /* (23) table_option ::= WITHOUT nm */
+ -1, /* (24) table_option ::= nm */
+ -2, /* (25) columnname ::= nm typetoken */
+ 0, /* (26) typetoken ::= */
+ -4, /* (27) typetoken ::= typename LP signed RP */
+ -6, /* (28) typetoken ::= typename LP signed COMMA signed RP */
+ -2, /* (29) typename ::= typename ID|STRING */
+ 0, /* (30) scanpt ::= */
+ 0, /* (31) scantok ::= */
+ -2, /* (32) ccons ::= CONSTRAINT nm */
+ -3, /* (33) ccons ::= DEFAULT scantok term */
+ -4, /* (34) ccons ::= DEFAULT LP expr RP */
+ -4, /* (35) ccons ::= DEFAULT PLUS scantok term */
+ -4, /* (36) ccons ::= DEFAULT MINUS scantok term */
+ -3, /* (37) ccons ::= DEFAULT scantok ID|INDEXED */
+ -3, /* (38) ccons ::= NOT NULL onconf */
+ -5, /* (39) ccons ::= PRIMARY KEY sortorder onconf autoinc */
+ -2, /* (40) ccons ::= UNIQUE onconf */
+ -4, /* (41) ccons ::= CHECK LP expr RP */
+ -4, /* (42) ccons ::= REFERENCES nm eidlist_opt refargs */
+ -1, /* (43) ccons ::= defer_subclause */
+ -2, /* (44) ccons ::= COLLATE ID|STRING */
+ -3, /* (45) generated ::= LP expr RP */
+ -4, /* (46) generated ::= LP expr RP ID */
+ 0, /* (47) autoinc ::= */
+ -1, /* (48) autoinc ::= AUTOINCR */
+ 0, /* (49) refargs ::= */
+ -2, /* (50) refargs ::= refargs refarg */
+ -2, /* (51) refarg ::= MATCH nm */
+ -3, /* (52) refarg ::= ON INSERT refact */
+ -3, /* (53) refarg ::= ON DELETE refact */
+ -3, /* (54) refarg ::= ON UPDATE refact */
+ -2, /* (55) refact ::= SET NULL */
+ -2, /* (56) refact ::= SET DEFAULT */
+ -1, /* (57) refact ::= CASCADE */
+ -1, /* (58) refact ::= RESTRICT */
+ -2, /* (59) refact ::= NO ACTION */
+ -3, /* (60) defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+ -2, /* (61) defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ 0, /* (62) init_deferred_pred_opt ::= */
+ -2, /* (63) init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ -2, /* (64) init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+ 0, /* (65) conslist_opt ::= */
+ -1, /* (66) tconscomma ::= COMMA */
+ -2, /* (67) tcons ::= CONSTRAINT nm */
+ -7, /* (68) tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
+ -5, /* (69) tcons ::= UNIQUE LP sortlist RP onconf */
+ -5, /* (70) tcons ::= CHECK LP expr RP onconf */
+ -10, /* (71) tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
+ 0, /* (72) defer_subclause_opt ::= */
+ 0, /* (73) onconf ::= */
+ -3, /* (74) onconf ::= ON CONFLICT resolvetype */
+ 0, /* (75) orconf ::= */
+ -2, /* (76) orconf ::= OR resolvetype */
+ -1, /* (77) resolvetype ::= IGNORE */
+ -1, /* (78) resolvetype ::= REPLACE */
+ -4, /* (79) cmd ::= DROP TABLE ifexists fullname */
+ -2, /* (80) ifexists ::= IF EXISTS */
+ 0, /* (81) ifexists ::= */
+ -9, /* (82) cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
+ -4, /* (83) cmd ::= DROP VIEW ifexists fullname */
+ -1, /* (84) cmd ::= select */
+ -3, /* (85) select ::= WITH wqlist selectnowith */
+ -4, /* (86) select ::= WITH RECURSIVE wqlist selectnowith */
+ -1, /* (87) select ::= selectnowith */
+ -3, /* (88) selectnowith ::= selectnowith multiselect_op oneselect */
+ -1, /* (89) multiselect_op ::= UNION */
+ -2, /* (90) multiselect_op ::= UNION ALL */
+ -1, /* (91) multiselect_op ::= EXCEPT|INTERSECT */
+ -9, /* (92) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+ -10, /* (93) oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */
+ -4, /* (94) values ::= VALUES LP nexprlist RP */
+ -5, /* (95) values ::= values COMMA LP nexprlist RP */
+ -1, /* (96) distinct ::= DISTINCT */
+ -1, /* (97) distinct ::= ALL */
+ 0, /* (98) distinct ::= */
+ 0, /* (99) sclp ::= */
+ -5, /* (100) selcollist ::= sclp scanpt expr scanpt as */
+ -3, /* (101) selcollist ::= sclp scanpt STAR */
+ -5, /* (102) selcollist ::= sclp scanpt nm DOT STAR */
+ -2, /* (103) as ::= AS nm */
+ 0, /* (104) as ::= */
+ 0, /* (105) from ::= */
+ -2, /* (106) from ::= FROM seltablist */
+ -2, /* (107) stl_prefix ::= seltablist joinop */
+ 0, /* (108) stl_prefix ::= */
+ -5, /* (109) seltablist ::= stl_prefix nm dbnm as on_using */
+ -6, /* (110) seltablist ::= stl_prefix nm dbnm as indexed_by on_using */
+ -8, /* (111) seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */
+ -6, /* (112) seltablist ::= stl_prefix LP select RP as on_using */
+ -6, /* (113) seltablist ::= stl_prefix LP seltablist RP as on_using */
+ 0, /* (114) dbnm ::= */
+ -2, /* (115) dbnm ::= DOT nm */
+ -1, /* (116) fullname ::= nm */
+ -3, /* (117) fullname ::= nm DOT nm */
+ -1, /* (118) xfullname ::= nm */
+ -3, /* (119) xfullname ::= nm DOT nm */
+ -5, /* (120) xfullname ::= nm DOT nm AS nm */
+ -3, /* (121) xfullname ::= nm AS nm */
+ -1, /* (122) joinop ::= COMMA|JOIN */
+ -2, /* (123) joinop ::= JOIN_KW JOIN */
+ -3, /* (124) joinop ::= JOIN_KW nm JOIN */
+ -4, /* (125) joinop ::= JOIN_KW nm nm JOIN */
+ -2, /* (126) on_using ::= ON expr */
+ -4, /* (127) on_using ::= USING LP idlist RP */
+ 0, /* (128) on_using ::= */
+ 0, /* (129) indexed_opt ::= */
+ -3, /* (130) indexed_by ::= INDEXED BY nm */
+ -2, /* (131) indexed_by ::= NOT INDEXED */
+ 0, /* (132) orderby_opt ::= */
+ -3, /* (133) orderby_opt ::= ORDER BY sortlist */
+ -5, /* (134) sortlist ::= sortlist COMMA expr sortorder nulls */
+ -3, /* (135) sortlist ::= expr sortorder nulls */
+ -1, /* (136) sortorder ::= ASC */
+ -1, /* (137) sortorder ::= DESC */
+ 0, /* (138) sortorder ::= */
+ -2, /* (139) nulls ::= NULLS FIRST */
+ -2, /* (140) nulls ::= NULLS LAST */
+ 0, /* (141) nulls ::= */
+ 0, /* (142) groupby_opt ::= */
+ -3, /* (143) groupby_opt ::= GROUP BY nexprlist */
+ 0, /* (144) having_opt ::= */
+ -2, /* (145) having_opt ::= HAVING expr */
+ 0, /* (146) limit_opt ::= */
+ -2, /* (147) limit_opt ::= LIMIT expr */
+ -4, /* (148) limit_opt ::= LIMIT expr OFFSET expr */
+ -4, /* (149) limit_opt ::= LIMIT expr COMMA expr */
+ -6, /* (150) cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */
+ 0, /* (151) where_opt ::= */
+ -2, /* (152) where_opt ::= WHERE expr */
+ 0, /* (153) where_opt_ret ::= */
+ -2, /* (154) where_opt_ret ::= WHERE expr */
+ -2, /* (155) where_opt_ret ::= RETURNING selcollist */
+ -4, /* (156) where_opt_ret ::= WHERE expr RETURNING selcollist */
+ -9, /* (157) cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */
+ -5, /* (158) setlist ::= setlist COMMA nm EQ expr */
+ -7, /* (159) setlist ::= setlist COMMA LP idlist RP EQ expr */
+ -3, /* (160) setlist ::= nm EQ expr */
+ -5, /* (161) setlist ::= LP idlist RP EQ expr */
+ -7, /* (162) cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */
+ -8, /* (163) cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */
+ 0, /* (164) upsert ::= */
+ -2, /* (165) upsert ::= RETURNING selcollist */
+ -12, /* (166) upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */
+ -9, /* (167) upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */
+ -5, /* (168) upsert ::= ON CONFLICT DO NOTHING returning */
+ -8, /* (169) upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */
+ -2, /* (170) returning ::= RETURNING selcollist */
+ -2, /* (171) insert_cmd ::= INSERT orconf */
+ -1, /* (172) insert_cmd ::= REPLACE */
+ 0, /* (173) idlist_opt ::= */
+ -3, /* (174) idlist_opt ::= LP idlist RP */
+ -3, /* (175) idlist ::= idlist COMMA nm */
+ -1, /* (176) idlist ::= nm */
+ -3, /* (177) expr ::= LP expr RP */
+ -1, /* (178) expr ::= ID|INDEXED|JOIN_KW */
+ -3, /* (179) expr ::= nm DOT nm */
+ -5, /* (180) expr ::= nm DOT nm DOT nm */
+ -1, /* (181) term ::= NULL|FLOAT|BLOB */
+ -1, /* (182) term ::= STRING */
+ -1, /* (183) term ::= INTEGER */
+ -1, /* (184) expr ::= VARIABLE */
+ -3, /* (185) expr ::= expr COLLATE ID|STRING */
+ -6, /* (186) expr ::= CAST LP expr AS typetoken RP */
+ -5, /* (187) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */
+ -8, /* (188) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP */
+ -4, /* (189) expr ::= ID|INDEXED|JOIN_KW LP STAR RP */
+ -6, /* (190) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */
+ -9, /* (191) expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over */
+ -5, /* (192) expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */
+ -1, /* (193) term ::= CTIME_KW */
+ -5, /* (194) expr ::= LP nexprlist COMMA expr RP */
+ -3, /* (195) expr ::= expr AND expr */
+ -3, /* (196) expr ::= expr OR expr */
+ -3, /* (197) expr ::= expr LT|GT|GE|LE expr */
+ -3, /* (198) expr ::= expr EQ|NE expr */
+ -3, /* (199) expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
+ -3, /* (200) expr ::= expr PLUS|MINUS expr */
+ -3, /* (201) expr ::= expr STAR|SLASH|REM expr */
+ -3, /* (202) expr ::= expr CONCAT expr */
+ -2, /* (203) likeop ::= NOT LIKE_KW|MATCH */
+ -3, /* (204) expr ::= expr likeop expr */
+ -5, /* (205) expr ::= expr likeop expr ESCAPE expr */
+ -2, /* (206) expr ::= expr ISNULL|NOTNULL */
+ -3, /* (207) expr ::= expr NOT NULL */
+ -3, /* (208) expr ::= expr IS expr */
+ -4, /* (209) expr ::= expr IS NOT expr */
+ -6, /* (210) expr ::= expr IS NOT DISTINCT FROM expr */
+ -5, /* (211) expr ::= expr IS DISTINCT FROM expr */
+ -2, /* (212) expr ::= NOT expr */
+ -2, /* (213) expr ::= BITNOT expr */
+ -2, /* (214) expr ::= PLUS|MINUS expr */
+ -3, /* (215) expr ::= expr PTR expr */
+ -1, /* (216) between_op ::= BETWEEN */
+ -2, /* (217) between_op ::= NOT BETWEEN */
+ -5, /* (218) expr ::= expr between_op expr AND expr */
+ -1, /* (219) in_op ::= IN */
+ -2, /* (220) in_op ::= NOT IN */
+ -5, /* (221) expr ::= expr in_op LP exprlist RP */
+ -3, /* (222) expr ::= LP select RP */
+ -5, /* (223) expr ::= expr in_op LP select RP */
+ -5, /* (224) expr ::= expr in_op nm dbnm paren_exprlist */
+ -4, /* (225) expr ::= EXISTS LP select RP */
+ -5, /* (226) expr ::= CASE case_operand case_exprlist case_else END */
+ -5, /* (227) case_exprlist ::= case_exprlist WHEN expr THEN expr */
+ -4, /* (228) case_exprlist ::= WHEN expr THEN expr */
+ -2, /* (229) case_else ::= ELSE expr */
+ 0, /* (230) case_else ::= */
+ 0, /* (231) case_operand ::= */
+ 0, /* (232) exprlist ::= */
+ -3, /* (233) nexprlist ::= nexprlist COMMA expr */
+ -1, /* (234) nexprlist ::= expr */
+ 0, /* (235) paren_exprlist ::= */
+ -3, /* (236) paren_exprlist ::= LP exprlist RP */
+ -12, /* (237) cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
+ -1, /* (238) uniqueflag ::= UNIQUE */
+ 0, /* (239) uniqueflag ::= */
+ 0, /* (240) eidlist_opt ::= */
+ -3, /* (241) eidlist_opt ::= LP eidlist RP */
+ -5, /* (242) eidlist ::= eidlist COMMA nm collate sortorder */
+ -3, /* (243) eidlist ::= nm collate sortorder */
+ 0, /* (244) collate ::= */
+ -2, /* (245) collate ::= COLLATE ID|STRING */
+ -4, /* (246) cmd ::= DROP INDEX ifexists fullname */
+ -2, /* (247) cmd ::= VACUUM vinto */
+ -3, /* (248) cmd ::= VACUUM nm vinto */
+ -2, /* (249) vinto ::= INTO expr */
+ 0, /* (250) vinto ::= */
+ -3, /* (251) cmd ::= PRAGMA nm dbnm */
+ -5, /* (252) cmd ::= PRAGMA nm dbnm EQ nmnum */
+ -6, /* (253) cmd ::= PRAGMA nm dbnm LP nmnum RP */
+ -5, /* (254) cmd ::= PRAGMA nm dbnm EQ minus_num */
+ -6, /* (255) cmd ::= PRAGMA nm dbnm LP minus_num RP */
+ -2, /* (256) plus_num ::= PLUS INTEGER|FLOAT */
+ -2, /* (257) minus_num ::= MINUS INTEGER|FLOAT */
+ -5, /* (258) cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
+ -11, /* (259) trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+ -1, /* (260) trigger_time ::= BEFORE|AFTER */
+ -2, /* (261) trigger_time ::= INSTEAD OF */
+ 0, /* (262) trigger_time ::= */
+ -1, /* (263) trigger_event ::= DELETE|INSERT */
+ -1, /* (264) trigger_event ::= UPDATE */
+ -3, /* (265) trigger_event ::= UPDATE OF idlist */
+ 0, /* (266) when_clause ::= */
+ -2, /* (267) when_clause ::= WHEN expr */
+ -3, /* (268) trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+ -2, /* (269) trigger_cmd_list ::= trigger_cmd SEMI */
+ -3, /* (270) trnm ::= nm DOT nm */
+ -3, /* (271) tridxby ::= INDEXED BY nm */
+ -2, /* (272) tridxby ::= NOT INDEXED */
+ -9, /* (273) trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */
+ -8, /* (274) trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */
+ -6, /* (275) trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */
+ -3, /* (276) trigger_cmd ::= scanpt select scanpt */
+ -4, /* (277) expr ::= RAISE LP IGNORE RP */
+ -6, /* (278) expr ::= RAISE LP raisetype COMMA nm RP */
+ -1, /* (279) raisetype ::= ROLLBACK */
+ -1, /* (280) raisetype ::= ABORT */
+ -1, /* (281) raisetype ::= FAIL */
+ -4, /* (282) cmd ::= DROP TRIGGER ifexists fullname */
+ -6, /* (283) cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+ -3, /* (284) cmd ::= DETACH database_kw_opt expr */
+ 0, /* (285) key_opt ::= */
+ -2, /* (286) key_opt ::= KEY expr */
+ -1, /* (287) cmd ::= REINDEX */
+ -3, /* (288) cmd ::= REINDEX nm dbnm */
+ -1, /* (289) cmd ::= ANALYZE */
+ -3, /* (290) cmd ::= ANALYZE nm dbnm */
+ -6, /* (291) cmd ::= ALTER TABLE fullname RENAME TO nm */
+ -7, /* (292) cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */
+ -6, /* (293) cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */
+ -1, /* (294) add_column_fullname ::= fullname */
+ -8, /* (295) cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */
+ -1, /* (296) cmd ::= create_vtab */
+ -4, /* (297) cmd ::= create_vtab LP vtabarglist RP */
+ -8, /* (298) create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
+ 0, /* (299) vtabarg ::= */
+ -1, /* (300) vtabargtoken ::= ANY */
+ -3, /* (301) vtabargtoken ::= lp anylist RP */
+ -1, /* (302) lp ::= LP */
+ -2, /* (303) with ::= WITH wqlist */
+ -3, /* (304) with ::= WITH RECURSIVE wqlist */
+ -1, /* (305) wqas ::= AS */
+ -2, /* (306) wqas ::= AS MATERIALIZED */
+ -3, /* (307) wqas ::= AS NOT MATERIALIZED */
+ -6, /* (308) wqitem ::= nm eidlist_opt wqas LP select RP */
+ -1, /* (309) wqlist ::= wqitem */
+ -3, /* (310) wqlist ::= wqlist COMMA wqitem */
+ -3, /* (311) windowdefn_list ::= windowdefn_list COMMA windowdefn */
+ -5, /* (312) windowdefn ::= nm AS LP window RP */
+ -5, /* (313) window ::= PARTITION BY nexprlist orderby_opt frame_opt */
+ -6, /* (314) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */
+ -4, /* (315) window ::= ORDER BY sortlist frame_opt */
+ -5, /* (316) window ::= nm ORDER BY sortlist frame_opt */
+ -2, /* (317) window ::= nm frame_opt */
+ 0, /* (318) frame_opt ::= */
+ -3, /* (319) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */
+ -6, /* (320) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */
+ -1, /* (321) range_or_rows ::= RANGE|ROWS|GROUPS */
+ -1, /* (322) frame_bound_s ::= frame_bound */
+ -2, /* (323) frame_bound_s ::= UNBOUNDED PRECEDING */
+ -1, /* (324) frame_bound_e ::= frame_bound */
+ -2, /* (325) frame_bound_e ::= UNBOUNDED FOLLOWING */
+ -2, /* (326) frame_bound ::= expr PRECEDING|FOLLOWING */
+ -2, /* (327) frame_bound ::= CURRENT ROW */
+ 0, /* (328) frame_exclude_opt ::= */
+ -2, /* (329) frame_exclude_opt ::= EXCLUDE frame_exclude */
+ -2, /* (330) frame_exclude ::= NO OTHERS */
+ -2, /* (331) frame_exclude ::= CURRENT ROW */
+ -1, /* (332) frame_exclude ::= GROUP|TIES */
+ -2, /* (333) window_clause ::= WINDOW windowdefn_list */
+ -2, /* (334) filter_over ::= filter_clause over_clause */
+ -1, /* (335) filter_over ::= over_clause */
+ -1, /* (336) filter_over ::= filter_clause */
+ -4, /* (337) over_clause ::= OVER LP window RP */
+ -2, /* (338) over_clause ::= OVER nm */
+ -5, /* (339) filter_clause ::= FILTER LP WHERE expr RP */
+ -1, /* (340) input ::= cmdlist */
+ -2, /* (341) cmdlist ::= cmdlist ecmd */
+ -1, /* (342) cmdlist ::= ecmd */
+ -1, /* (343) ecmd ::= SEMI */
+ -2, /* (344) ecmd ::= cmdx SEMI */
+ -3, /* (345) ecmd ::= explain cmdx SEMI */
+ 0, /* (346) trans_opt ::= */
+ -1, /* (347) trans_opt ::= TRANSACTION */
+ -2, /* (348) trans_opt ::= TRANSACTION nm */
+ -1, /* (349) savepoint_opt ::= SAVEPOINT */
+ 0, /* (350) savepoint_opt ::= */
+ -2, /* (351) cmd ::= create_table create_table_args */
+ -1, /* (352) table_option_set ::= table_option */
+ -4, /* (353) columnlist ::= columnlist COMMA columnname carglist */
+ -2, /* (354) columnlist ::= columnname carglist */
+ -1, /* (355) nm ::= ID|INDEXED|JOIN_KW */
+ -1, /* (356) nm ::= STRING */
+ -1, /* (357) typetoken ::= typename */
+ -1, /* (358) typename ::= ID|STRING */
+ -1, /* (359) signed ::= plus_num */
+ -1, /* (360) signed ::= minus_num */
+ -2, /* (361) carglist ::= carglist ccons */
+ 0, /* (362) carglist ::= */
+ -2, /* (363) ccons ::= NULL onconf */
+ -4, /* (364) ccons ::= GENERATED ALWAYS AS generated */
+ -2, /* (365) ccons ::= AS generated */
+ -2, /* (366) conslist_opt ::= COMMA conslist */
+ -3, /* (367) conslist ::= conslist tconscomma tcons */
+ -1, /* (368) conslist ::= tcons */
+ 0, /* (369) tconscomma ::= */
+ -1, /* (370) defer_subclause_opt ::= defer_subclause */
+ -1, /* (371) resolvetype ::= raisetype */
+ -1, /* (372) selectnowith ::= oneselect */
+ -1, /* (373) oneselect ::= values */
+ -2, /* (374) sclp ::= selcollist COMMA */
+ -1, /* (375) as ::= ID|STRING */
+ -1, /* (376) indexed_opt ::= indexed_by */
+ 0, /* (377) returning ::= */
+ -1, /* (378) expr ::= term */
+ -1, /* (379) likeop ::= LIKE_KW|MATCH */
+ -1, /* (380) case_operand ::= expr */
+ -1, /* (381) exprlist ::= nexprlist */
+ -1, /* (382) nmnum ::= plus_num */
+ -1, /* (383) nmnum ::= nm */
+ -1, /* (384) nmnum ::= ON */
+ -1, /* (385) nmnum ::= DELETE */
+ -1, /* (386) nmnum ::= DEFAULT */
+ -1, /* (387) plus_num ::= INTEGER|FLOAT */
+ 0, /* (388) foreach_clause ::= */
+ -3, /* (389) foreach_clause ::= FOR EACH ROW */
+ -1, /* (390) trnm ::= nm */
+ 0, /* (391) tridxby ::= */
+ -1, /* (392) database_kw_opt ::= DATABASE */
+ 0, /* (393) database_kw_opt ::= */
+ 0, /* (394) kwcolumn_opt ::= */
+ -1, /* (395) kwcolumn_opt ::= COLUMNKW */
+ -1, /* (396) vtabarglist ::= vtabarg */
+ -3, /* (397) vtabarglist ::= vtabarglist COMMA vtabarg */
+ -2, /* (398) vtabarg ::= vtabarg vtabargtoken */
+ 0, /* (399) anylist ::= */
+ -4, /* (400) anylist ::= anylist LP anylist RP */
+ -2, /* (401) anylist ::= anylist ANY */
+ 0, /* (402) with ::= */
+ -1, /* (403) windowdefn_list ::= windowdefn */
+ -1, /* (404) window ::= frame_opt */
+};
+
+static void yy_accept(yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+**
+** The yyLookahead and yyLookaheadToken parameters provide reduce actions
+** access to the lookahead token (if any). The yyLookahead will be YYNOCODE
+** if the lookahead token has already been consumed. As this procedure is
+** only called from one place, optimizing compilers will in-line it, which
+** means that the extra parameters have no performance impact.
+*/
+static YYACTIONTYPE yy_reduce(
+ yyParser *yypParser, /* The parser */
+ unsigned int yyruleno, /* Number of the rule by which to reduce */
+ int yyLookahead, /* Lookahead token, or YYNOCODE if none */
+ sqlite3ParserTOKENTYPE yyLookaheadToken /* Value of the lookahead token */
+ sqlite3ParserCTX_PDECL /* %extra_context */
+){
+ int yygoto; /* The next state */
+ YYACTIONTYPE yyact; /* The next action */
+ yyStackEntry *yymsp; /* The top of the parser's stack */
+ int yysize; /* Amount to pop the stack */
+ sqlite3ParserARG_FETCH
+ (void)yyLookahead;
+ (void)yyLookaheadToken;
+ yymsp = yypParser->yytos;
+
+ switch( yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+/********** Begin reduce actions **********************************************/
+ YYMINORTYPE yylhsminor;
+ case 0: /* explain ::= EXPLAIN */
+{ if( pParse->pReprepare==0 ) pParse->explain = 1; }
+ break;
+ case 1: /* explain ::= EXPLAIN QUERY PLAN */
+{ if( pParse->pReprepare==0 ) pParse->explain = 2; }
+ break;
+ case 2: /* cmdx ::= cmd */
+{ sqlite3FinishCoding(pParse); }
+ break;
+ case 3: /* cmd ::= BEGIN transtype trans_opt */
+{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy394);}
+ break;
+ case 4: /* transtype ::= */
+{yymsp[1].minor.yy394 = TK_DEFERRED;}
+ break;
+ case 5: /* transtype ::= DEFERRED */
+ case 6: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==6);
+ case 7: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==7);
+ case 321: /* range_or_rows ::= RANGE|ROWS|GROUPS */ yytestcase(yyruleno==321);
+{yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/}
+ break;
+ case 8: /* cmd ::= COMMIT|END trans_opt */
+ case 9: /* cmd ::= ROLLBACK trans_opt */ yytestcase(yyruleno==9);
+{sqlite3EndTransaction(pParse,yymsp[-1].major);}
+ break;
+ case 10: /* cmd ::= SAVEPOINT nm */
+{
+ sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0);
+}
+ break;
+ case 11: /* cmd ::= RELEASE savepoint_opt nm */
+{
+ sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0);
+}
+ break;
+ case 12: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
+{
+ sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
+}
+ break;
+ case 13: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
+{
+ sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy394,0,0,yymsp[-2].minor.yy394);
+}
+ break;
+ case 14: /* createkw ::= CREATE */
+{disableLookaside(pParse);}
+ break;
+ case 15: /* ifnotexists ::= */
+ case 18: /* temp ::= */ yytestcase(yyruleno==18);
+ case 47: /* autoinc ::= */ yytestcase(yyruleno==47);
+ case 62: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==62);
+ case 72: /* defer_subclause_opt ::= */ yytestcase(yyruleno==72);
+ case 81: /* ifexists ::= */ yytestcase(yyruleno==81);
+ case 98: /* distinct ::= */ yytestcase(yyruleno==98);
+ case 244: /* collate ::= */ yytestcase(yyruleno==244);
+{yymsp[1].minor.yy394 = 0;}
+ break;
+ case 16: /* ifnotexists ::= IF NOT EXISTS */
+{yymsp[-2].minor.yy394 = 1;}
+ break;
+ case 17: /* temp ::= TEMP */
+{yymsp[0].minor.yy394 = pParse->db->init.busy==0;}
+ break;
+ case 19: /* create_table_args ::= LP columnlist conslist_opt RP table_option_set */
+{
+ sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy285,0);
+}
+ break;
+ case 20: /* create_table_args ::= AS select */
+{
+ sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy47);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47);
+}
+ break;
+ case 21: /* table_option_set ::= */
+{yymsp[1].minor.yy285 = 0;}
+ break;
+ case 22: /* table_option_set ::= table_option_set COMMA table_option */
+{yylhsminor.yy285 = yymsp[-2].minor.yy285|yymsp[0].minor.yy285;}
+ yymsp[-2].minor.yy285 = yylhsminor.yy285;
+ break;
+ case 23: /* table_option ::= WITHOUT nm */
+{
+ if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){
+ yymsp[-1].minor.yy285 = TF_WithoutRowid | TF_NoVisibleRowid;
+ }else{
+ yymsp[-1].minor.yy285 = 0;
+ sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
+ }
+}
+ break;
+ case 24: /* table_option ::= nm */
+{
+ if( yymsp[0].minor.yy0.n==6 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"strict",6)==0 ){
+ yylhsminor.yy285 = TF_Strict;
+ }else{
+ yylhsminor.yy285 = 0;
+ sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
+ }
+}
+ yymsp[0].minor.yy285 = yylhsminor.yy285;
+ break;
+ case 25: /* columnname ::= nm typetoken */
+{sqlite3AddColumn(pParse,yymsp[-1].minor.yy0,yymsp[0].minor.yy0);}
+ break;
+ case 26: /* typetoken ::= */
+ case 65: /* conslist_opt ::= */ yytestcase(yyruleno==65);
+ case 104: /* as ::= */ yytestcase(yyruleno==104);
+{yymsp[1].minor.yy0.n = 0; yymsp[1].minor.yy0.z = 0;}
+ break;
+ case 27: /* typetoken ::= typename LP signed RP */
+{
+ yymsp[-3].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z);
+}
+ break;
+ case 28: /* typetoken ::= typename LP signed COMMA signed RP */
+{
+ yymsp[-5].minor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z);
+}
+ break;
+ case 29: /* typename ::= typename ID|STRING */
+{yymsp[-1].minor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);}
+ break;
+ case 30: /* scanpt ::= */
+{
+ assert( yyLookahead!=YYNOCODE );
+ yymsp[1].minor.yy522 = yyLookaheadToken.z;
+}
+ break;
+ case 31: /* scantok ::= */
+{
+ assert( yyLookahead!=YYNOCODE );
+ yymsp[1].minor.yy0 = yyLookaheadToken;
+}
+ break;
+ case 32: /* ccons ::= CONSTRAINT nm */
+ case 67: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==67);
+{pParse->constraintName = yymsp[0].minor.yy0;}
+ break;
+ case 33: /* ccons ::= DEFAULT scantok term */
+{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-1].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);}
+ break;
+ case 34: /* ccons ::= DEFAULT LP expr RP */
+{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z+1,yymsp[0].minor.yy0.z);}
+ break;
+ case 35: /* ccons ::= DEFAULT PLUS scantok term */
+{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy528,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);}
+ break;
+ case 36: /* ccons ::= DEFAULT MINUS scantok term */
+{
+ Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy528, 0);
+ sqlite3AddDefaultValue(pParse,p,yymsp[-2].minor.yy0.z,&yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n]);
+}
+ break;
+ case 37: /* ccons ::= DEFAULT scantok ID|INDEXED */
+{
+ Expr *p = tokenExpr(pParse, TK_STRING, yymsp[0].minor.yy0);
+ if( p ){
+ sqlite3ExprIdToTrueFalse(p);
+ testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
+ }
+ sqlite3AddDefaultValue(pParse,p,yymsp[0].minor.yy0.z,yymsp[0].minor.yy0.z+yymsp[0].minor.yy0.n);
+}
+ break;
+ case 38: /* ccons ::= NOT NULL onconf */
+{sqlite3AddNotNull(pParse, yymsp[0].minor.yy394);}
+ break;
+ case 39: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
+{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy394,yymsp[0].minor.yy394,yymsp[-2].minor.yy394);}
+ break;
+ case 40: /* ccons ::= UNIQUE onconf */
+{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy394,0,0,0,0,
+ SQLITE_IDXTYPE_UNIQUE);}
+ break;
+ case 41: /* ccons ::= CHECK LP expr RP */
+{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy528,yymsp[-2].minor.yy0.z,yymsp[0].minor.yy0.z);}
+ break;
+ case 42: /* ccons ::= REFERENCES nm eidlist_opt refargs */
+{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy322,yymsp[0].minor.yy394);}
+ break;
+ case 43: /* ccons ::= defer_subclause */
+{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy394);}
+ break;
+ case 44: /* ccons ::= COLLATE ID|STRING */
+{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
+ break;
+ case 45: /* generated ::= LP expr RP */
+{sqlite3AddGenerated(pParse,yymsp[-1].minor.yy528,0);}
+ break;
+ case 46: /* generated ::= LP expr RP ID */
+{sqlite3AddGenerated(pParse,yymsp[-2].minor.yy528,&yymsp[0].minor.yy0);}
+ break;
+ case 48: /* autoinc ::= AUTOINCR */
+{yymsp[0].minor.yy394 = 1;}
+ break;
+ case 49: /* refargs ::= */
+{ yymsp[1].minor.yy394 = OE_None*0x0101; /* EV: R-19803-45884 */}
+ break;
+ case 50: /* refargs ::= refargs refarg */
+{ yymsp[-1].minor.yy394 = (yymsp[-1].minor.yy394 & ~yymsp[0].minor.yy231.mask) | yymsp[0].minor.yy231.value; }
+ break;
+ case 51: /* refarg ::= MATCH nm */
+{ yymsp[-1].minor.yy231.value = 0; yymsp[-1].minor.yy231.mask = 0x000000; }
+ break;
+ case 52: /* refarg ::= ON INSERT refact */
+{ yymsp[-2].minor.yy231.value = 0; yymsp[-2].minor.yy231.mask = 0x000000; }
+ break;
+ case 53: /* refarg ::= ON DELETE refact */
+{ yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394; yymsp[-2].minor.yy231.mask = 0x0000ff; }
+ break;
+ case 54: /* refarg ::= ON UPDATE refact */
+{ yymsp[-2].minor.yy231.value = yymsp[0].minor.yy394<<8; yymsp[-2].minor.yy231.mask = 0x00ff00; }
+ break;
+ case 55: /* refact ::= SET NULL */
+{ yymsp[-1].minor.yy394 = OE_SetNull; /* EV: R-33326-45252 */}
+ break;
+ case 56: /* refact ::= SET DEFAULT */
+{ yymsp[-1].minor.yy394 = OE_SetDflt; /* EV: R-33326-45252 */}
+ break;
+ case 57: /* refact ::= CASCADE */
+{ yymsp[0].minor.yy394 = OE_Cascade; /* EV: R-33326-45252 */}
+ break;
+ case 58: /* refact ::= RESTRICT */
+{ yymsp[0].minor.yy394 = OE_Restrict; /* EV: R-33326-45252 */}
+ break;
+ case 59: /* refact ::= NO ACTION */
+{ yymsp[-1].minor.yy394 = OE_None; /* EV: R-33326-45252 */}
+ break;
+ case 60: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+{yymsp[-2].minor.yy394 = 0;}
+ break;
+ case 61: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ case 76: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==76);
+ case 171: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==171);
+{yymsp[-1].minor.yy394 = yymsp[0].minor.yy394;}
+ break;
+ case 63: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ case 80: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==80);
+ case 217: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==217);
+ case 220: /* in_op ::= NOT IN */ yytestcase(yyruleno==220);
+ case 245: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==245);
+{yymsp[-1].minor.yy394 = 1;}
+ break;
+ case 64: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+{yymsp[-1].minor.yy394 = 0;}
+ break;
+ case 66: /* tconscomma ::= COMMA */
+{pParse->constraintName.n = 0;}
+ break;
+ case 68: /* tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
+{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy322,yymsp[0].minor.yy394,yymsp[-2].minor.yy394,0);}
+ break;
+ case 69: /* tcons ::= UNIQUE LP sortlist RP onconf */
+{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy322,yymsp[0].minor.yy394,0,0,0,0,
+ SQLITE_IDXTYPE_UNIQUE);}
+ break;
+ case 70: /* tcons ::= CHECK LP expr RP onconf */
+{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy528,yymsp[-3].minor.yy0.z,yymsp[-1].minor.yy0.z);}
+ break;
+ case 71: /* tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
+{
+ sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy322, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[-1].minor.yy394);
+ sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy394);
+}
+ break;
+ case 73: /* onconf ::= */
+ case 75: /* orconf ::= */ yytestcase(yyruleno==75);
+{yymsp[1].minor.yy394 = OE_Default;}
+ break;
+ case 74: /* onconf ::= ON CONFLICT resolvetype */
+{yymsp[-2].minor.yy394 = yymsp[0].minor.yy394;}
+ break;
+ case 77: /* resolvetype ::= IGNORE */
+{yymsp[0].minor.yy394 = OE_Ignore;}
+ break;
+ case 78: /* resolvetype ::= REPLACE */
+ case 172: /* insert_cmd ::= REPLACE */ yytestcase(yyruleno==172);
+{yymsp[0].minor.yy394 = OE_Replace;}
+ break;
+ case 79: /* cmd ::= DROP TABLE ifexists fullname */
+{
+ sqlite3DropTable(pParse, yymsp[0].minor.yy131, 0, yymsp[-1].minor.yy394);
+}
+ break;
+ case 82: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
+{
+ sqlite3CreateView(pParse, &yymsp[-8].minor.yy0, &yymsp[-4].minor.yy0, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[0].minor.yy47, yymsp[-7].minor.yy394, yymsp[-5].minor.yy394);
+}
+ break;
+ case 83: /* cmd ::= DROP VIEW ifexists fullname */
+{
+ sqlite3DropTable(pParse, yymsp[0].minor.yy131, 1, yymsp[-1].minor.yy394);
+}
+ break;
+ case 84: /* cmd ::= select */
+{
+ SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0};
+ sqlite3Select(pParse, yymsp[0].minor.yy47, &dest);
+ sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy47);
+}
+ break;
+ case 85: /* select ::= WITH wqlist selectnowith */
+{yymsp[-2].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);}
+ break;
+ case 86: /* select ::= WITH RECURSIVE wqlist selectnowith */
+{yymsp[-3].minor.yy47 = attachWithToSelect(pParse,yymsp[0].minor.yy47,yymsp[-1].minor.yy521);}
+ break;
+ case 87: /* select ::= selectnowith */
+{
+ Select *p = yymsp[0].minor.yy47;
+ if( p ){
+ parserDoubleLinkSelect(pParse, p);
+ }
+}
+ break;
+ case 88: /* selectnowith ::= selectnowith multiselect_op oneselect */
+{
+ Select *pRhs = yymsp[0].minor.yy47;
+ Select *pLhs = yymsp[-2].minor.yy47;
+ if( pRhs && pRhs->pPrior ){
+ SrcList *pFrom;
+ Token x;
+ x.n = 0;
+ parserDoubleLinkSelect(pParse, pRhs);
+ pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0);
+ pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
+ }
+ if( pRhs ){
+ pRhs->op = (u8)yymsp[-1].minor.yy394;
+ pRhs->pPrior = pLhs;
+ if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
+ pRhs->selFlags &= ~SF_MultiValue;
+ if( yymsp[-1].minor.yy394!=TK_ALL ) pParse->hasCompound = 1;
+ }else{
+ sqlite3SelectDelete(pParse->db, pLhs);
+ }
+ yymsp[-2].minor.yy47 = pRhs;
+}
+ break;
+ case 89: /* multiselect_op ::= UNION */
+ case 91: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==91);
+{yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-OP*/}
+ break;
+ case 90: /* multiselect_op ::= UNION ALL */
+{yymsp[-1].minor.yy394 = TK_ALL;}
+ break;
+ case 92: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+{
+ yymsp[-8].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy322,yymsp[-5].minor.yy131,yymsp[-4].minor.yy528,yymsp[-3].minor.yy322,yymsp[-2].minor.yy528,yymsp[-1].minor.yy322,yymsp[-7].minor.yy394,yymsp[0].minor.yy528);
+}
+ break;
+ case 93: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt window_clause orderby_opt limit_opt */
+{
+ yymsp[-9].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-7].minor.yy322,yymsp[-6].minor.yy131,yymsp[-5].minor.yy528,yymsp[-4].minor.yy322,yymsp[-3].minor.yy528,yymsp[-1].minor.yy322,yymsp[-8].minor.yy394,yymsp[0].minor.yy528);
+ if( yymsp[-9].minor.yy47 ){
+ yymsp[-9].minor.yy47->pWinDefn = yymsp[-2].minor.yy41;
+ }else{
+ sqlite3WindowListDelete(pParse->db, yymsp[-2].minor.yy41);
+ }
+}
+ break;
+ case 94: /* values ::= VALUES LP nexprlist RP */
+{
+ yymsp[-3].minor.yy47 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values,0);
+}
+ break;
+ case 95: /* values ::= values COMMA LP nexprlist RP */
+{
+ Select *pRight, *pLeft = yymsp[-4].minor.yy47;
+ pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values|SF_MultiValue,0);
+ if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
+ if( pRight ){
+ pRight->op = TK_ALL;
+ pRight->pPrior = pLeft;
+ yymsp[-4].minor.yy47 = pRight;
+ }else{
+ yymsp[-4].minor.yy47 = pLeft;
+ }
+}
+ break;
+ case 96: /* distinct ::= DISTINCT */
+{yymsp[0].minor.yy394 = SF_Distinct;}
+ break;
+ case 97: /* distinct ::= ALL */
+{yymsp[0].minor.yy394 = SF_All;}
+ break;
+ case 99: /* sclp ::= */
+ case 132: /* orderby_opt ::= */ yytestcase(yyruleno==132);
+ case 142: /* groupby_opt ::= */ yytestcase(yyruleno==142);
+ case 232: /* exprlist ::= */ yytestcase(yyruleno==232);
+ case 235: /* paren_exprlist ::= */ yytestcase(yyruleno==235);
+ case 240: /* eidlist_opt ::= */ yytestcase(yyruleno==240);
+{yymsp[1].minor.yy322 = 0;}
+ break;
+ case 100: /* selcollist ::= sclp scanpt expr scanpt as */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[-2].minor.yy528);
+ if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[0].minor.yy0, 1);
+ sqlite3ExprListSetSpan(pParse,yymsp[-4].minor.yy322,yymsp[-3].minor.yy522,yymsp[-1].minor.yy522);
+}
+ break;
+ case 101: /* selcollist ::= sclp scanpt STAR */
+{
+ Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
+ sqlite3ExprSetErrorOffset(p, (int)(yymsp[0].minor.yy0.z - pParse->zTail));
+ yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, p);
+}
+ break;
+ case 102: /* selcollist ::= sclp scanpt nm DOT STAR */
+{
+ Expr *pRight, *pLeft, *pDot;
+ pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
+ sqlite3ExprSetErrorOffset(pRight, (int)(yymsp[0].minor.yy0.z - pParse->zTail));
+ pLeft = tokenExpr(pParse, TK_ID, yymsp[-2].minor.yy0);
+ pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, pDot);
+}
+ break;
+ case 103: /* as ::= AS nm */
+ case 115: /* dbnm ::= DOT nm */ yytestcase(yyruleno==115);
+ case 256: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==256);
+ case 257: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==257);
+{yymsp[-1].minor.yy0 = yymsp[0].minor.yy0;}
+ break;
+ case 105: /* from ::= */
+ case 108: /* stl_prefix ::= */ yytestcase(yyruleno==108);
+{yymsp[1].minor.yy131 = 0;}
+ break;
+ case 106: /* from ::= FROM seltablist */
+{
+ yymsp[-1].minor.yy131 = yymsp[0].minor.yy131;
+ sqlite3SrcListShiftJoinType(pParse,yymsp[-1].minor.yy131);
+}
+ break;
+ case 107: /* stl_prefix ::= seltablist joinop */
+{
+ if( ALWAYS(yymsp[-1].minor.yy131 && yymsp[-1].minor.yy131->nSrc>0) ) yymsp[-1].minor.yy131->a[yymsp[-1].minor.yy131->nSrc-1].fg.jointype = (u8)yymsp[0].minor.yy394;
+}
+ break;
+ case 109: /* seltablist ::= stl_prefix nm dbnm as on_using */
+{
+ yymsp[-4].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-4].minor.yy131,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561);
+}
+ break;
+ case 110: /* seltablist ::= stl_prefix nm dbnm as indexed_by on_using */
+{
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,0,&yymsp[0].minor.yy561);
+ sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-1].minor.yy0);
+}
+ break;
+ case 111: /* seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_using */
+{
+ yymsp[-7].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-7].minor.yy131,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561);
+ sqlite3SrcListFuncArgs(pParse, yymsp[-7].minor.yy131, yymsp[-3].minor.yy322);
+}
+ break;
+ case 112: /* seltablist ::= stl_prefix LP select RP as on_using */
+{
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,yymsp[-3].minor.yy47,&yymsp[0].minor.yy561);
+ }
+ break;
+ case 113: /* seltablist ::= stl_prefix LP seltablist RP as on_using */
+{
+ if( yymsp[-5].minor.yy131==0 && yymsp[-1].minor.yy0.n==0 && yymsp[0].minor.yy561.pOn==0 && yymsp[0].minor.yy561.pUsing==0 ){
+ yymsp[-5].minor.yy131 = yymsp[-3].minor.yy131;
+ }else if( ALWAYS(yymsp[-3].minor.yy131!=0) && yymsp[-3].minor.yy131->nSrc==1 ){
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,0,&yymsp[0].minor.yy561);
+ if( yymsp[-5].minor.yy131 ){
+ SrcItem *pNew = &yymsp[-5].minor.yy131->a[yymsp[-5].minor.yy131->nSrc-1];
+ SrcItem *pOld = yymsp[-3].minor.yy131->a;
+ pNew->zName = pOld->zName;
+ pNew->zDatabase = pOld->zDatabase;
+ pNew->pSelect = pOld->pSelect;
+ if( pNew->pSelect && (pNew->pSelect->selFlags & SF_NestedFrom)!=0 ){
+ pNew->fg.isNestedFrom = 1;
+ }
+ if( pOld->fg.isTabFunc ){
+ pNew->u1.pFuncArg = pOld->u1.pFuncArg;
+ pOld->u1.pFuncArg = 0;
+ pOld->fg.isTabFunc = 0;
+ pNew->fg.isTabFunc = 1;
+ }
+ pOld->zName = pOld->zDatabase = 0;
+ pOld->pSelect = 0;
+ }
+ sqlite3SrcListDelete(pParse->db, yymsp[-3].minor.yy131);
+ }else{
+ Select *pSubquery;
+ sqlite3SrcListShiftJoinType(pParse,yymsp[-3].minor.yy131);
+ pSubquery = sqlite3SelectNew(pParse,0,yymsp[-3].minor.yy131,0,0,0,0,SF_NestedFrom,0);
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy131,0,0,&yymsp[-1].minor.yy0,pSubquery,&yymsp[0].minor.yy561);
+ }
+ }
+ break;
+ case 114: /* dbnm ::= */
+ case 129: /* indexed_opt ::= */ yytestcase(yyruleno==129);
+{yymsp[1].minor.yy0.z=0; yymsp[1].minor.yy0.n=0;}
+ break;
+ case 116: /* fullname ::= nm */
+{
+ yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0);
+ if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0);
+}
+ yymsp[0].minor.yy131 = yylhsminor.yy131;
+ break;
+ case 117: /* fullname ::= nm DOT nm */
+{
+ yylhsminor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
+ if( IN_RENAME_OBJECT && yylhsminor.yy131 ) sqlite3RenameTokenMap(pParse, yylhsminor.yy131->a[0].zName, &yymsp[0].minor.yy0);
+}
+ yymsp[-2].minor.yy131 = yylhsminor.yy131;
+ break;
+ case 118: /* xfullname ::= nm */
+{yymsp[0].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[0].minor.yy0,0); /*A-overwrites-X*/}
+ break;
+ case 119: /* xfullname ::= nm DOT nm */
+{yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/}
+ break;
+ case 120: /* xfullname ::= nm DOT nm AS nm */
+{
+ yymsp[-4].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,&yymsp[-2].minor.yy0); /*A-overwrites-X*/
+ if( yymsp[-4].minor.yy131 ) yymsp[-4].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0);
+}
+ break;
+ case 121: /* xfullname ::= nm AS nm */
+{
+ yymsp[-2].minor.yy131 = sqlite3SrcListAppend(pParse,0,&yymsp[-2].minor.yy0,0); /*A-overwrites-X*/
+ if( yymsp[-2].minor.yy131 ) yymsp[-2].minor.yy131->a[0].zAlias = sqlite3NameFromToken(pParse->db, &yymsp[0].minor.yy0);
+}
+ break;
+ case 122: /* joinop ::= COMMA|JOIN */
+{ yymsp[0].minor.yy394 = JT_INNER; }
+ break;
+ case 123: /* joinop ::= JOIN_KW JOIN */
+{yymsp[-1].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); /*X-overwrites-A*/}
+ break;
+ case 124: /* joinop ::= JOIN_KW nm JOIN */
+{yymsp[-2].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); /*X-overwrites-A*/}
+ break;
+ case 125: /* joinop ::= JOIN_KW nm nm JOIN */
+{yymsp[-3].minor.yy394 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0);/*X-overwrites-A*/}
+ break;
+ case 126: /* on_using ::= ON expr */
+{yymsp[-1].minor.yy561.pOn = yymsp[0].minor.yy528; yymsp[-1].minor.yy561.pUsing = 0;}
+ break;
+ case 127: /* on_using ::= USING LP idlist RP */
+{yymsp[-3].minor.yy561.pOn = 0; yymsp[-3].minor.yy561.pUsing = yymsp[-1].minor.yy254;}
+ break;
+ case 128: /* on_using ::= */
+{yymsp[1].minor.yy561.pOn = 0; yymsp[1].minor.yy561.pUsing = 0;}
+ break;
+ case 130: /* indexed_by ::= INDEXED BY nm */
+{yymsp[-2].minor.yy0 = yymsp[0].minor.yy0;}
+ break;
+ case 131: /* indexed_by ::= NOT INDEXED */
+{yymsp[-1].minor.yy0.z=0; yymsp[-1].minor.yy0.n=1;}
+ break;
+ case 133: /* orderby_opt ::= ORDER BY sortlist */
+ case 143: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==143);
+{yymsp[-2].minor.yy322 = yymsp[0].minor.yy322;}
+ break;
+ case 134: /* sortlist ::= sortlist COMMA expr sortorder nulls */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322,yymsp[-2].minor.yy528);
+ sqlite3ExprListSetSortOrder(yymsp[-4].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394);
+}
+ break;
+ case 135: /* sortlist ::= expr sortorder nulls */
+{
+ yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[-2].minor.yy528); /*A-overwrites-Y*/
+ sqlite3ExprListSetSortOrder(yymsp[-2].minor.yy322,yymsp[-1].minor.yy394,yymsp[0].minor.yy394);
+}
+ break;
+ case 136: /* sortorder ::= ASC */
+{yymsp[0].minor.yy394 = SQLITE_SO_ASC;}
+ break;
+ case 137: /* sortorder ::= DESC */
+{yymsp[0].minor.yy394 = SQLITE_SO_DESC;}
+ break;
+ case 138: /* sortorder ::= */
+ case 141: /* nulls ::= */ yytestcase(yyruleno==141);
+{yymsp[1].minor.yy394 = SQLITE_SO_UNDEFINED;}
+ break;
+ case 139: /* nulls ::= NULLS FIRST */
+{yymsp[-1].minor.yy394 = SQLITE_SO_ASC;}
+ break;
+ case 140: /* nulls ::= NULLS LAST */
+{yymsp[-1].minor.yy394 = SQLITE_SO_DESC;}
+ break;
+ case 144: /* having_opt ::= */
+ case 146: /* limit_opt ::= */ yytestcase(yyruleno==146);
+ case 151: /* where_opt ::= */ yytestcase(yyruleno==151);
+ case 153: /* where_opt_ret ::= */ yytestcase(yyruleno==153);
+ case 230: /* case_else ::= */ yytestcase(yyruleno==230);
+ case 231: /* case_operand ::= */ yytestcase(yyruleno==231);
+ case 250: /* vinto ::= */ yytestcase(yyruleno==250);
+{yymsp[1].minor.yy528 = 0;}
+ break;
+ case 145: /* having_opt ::= HAVING expr */
+ case 152: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==152);
+ case 154: /* where_opt_ret ::= WHERE expr */ yytestcase(yyruleno==154);
+ case 229: /* case_else ::= ELSE expr */ yytestcase(yyruleno==229);
+ case 249: /* vinto ::= INTO expr */ yytestcase(yyruleno==249);
+{yymsp[-1].minor.yy528 = yymsp[0].minor.yy528;}
+ break;
+ case 147: /* limit_opt ::= LIMIT expr */
+{yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,0);}
+ break;
+ case 148: /* limit_opt ::= LIMIT expr OFFSET expr */
+{yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);}
+ break;
+ case 149: /* limit_opt ::= LIMIT expr COMMA expr */
+{yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_LIMIT,yymsp[0].minor.yy528,yymsp[-2].minor.yy528);}
+ break;
+ case 150: /* cmd ::= with DELETE FROM xfullname indexed_opt where_opt_ret */
+{
+ sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy131, &yymsp[-1].minor.yy0);
+ sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy131,yymsp[0].minor.yy528,0,0);
+}
+ break;
+ case 155: /* where_opt_ret ::= RETURNING selcollist */
+{sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-1].minor.yy528 = 0;}
+ break;
+ case 156: /* where_opt_ret ::= WHERE expr RETURNING selcollist */
+{sqlite3AddReturning(pParse,yymsp[0].minor.yy322); yymsp[-3].minor.yy528 = yymsp[-2].minor.yy528;}
+ break;
+ case 157: /* cmd ::= with UPDATE orconf xfullname indexed_opt SET setlist from where_opt_ret */
+{
+ sqlite3SrcListIndexedBy(pParse, yymsp[-5].minor.yy131, &yymsp[-4].minor.yy0);
+ sqlite3ExprListCheckLength(pParse,yymsp[-2].minor.yy322,"set list");
+ if( yymsp[-1].minor.yy131 ){
+ SrcList *pFromClause = yymsp[-1].minor.yy131;
+ if( pFromClause->nSrc>1 ){
+ Select *pSubquery;
+ Token as;
+ pSubquery = sqlite3SelectNew(pParse,0,pFromClause,0,0,0,0,SF_NestedFrom,0);
+ as.n = 0;
+ as.z = 0;
+ pFromClause = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0);
+ }
+ yymsp[-5].minor.yy131 = sqlite3SrcListAppendList(pParse, yymsp[-5].minor.yy131, pFromClause);
+ }
+ sqlite3Update(pParse,yymsp[-5].minor.yy131,yymsp[-2].minor.yy322,yymsp[0].minor.yy528,yymsp[-6].minor.yy394,0,0,0);
+}
+ break;
+ case 158: /* setlist ::= setlist COMMA nm EQ expr */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[0].minor.yy528);
+ sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, 1);
+}
+ break;
+ case 159: /* setlist ::= setlist COMMA LP idlist RP EQ expr */
+{
+ yymsp[-6].minor.yy322 = sqlite3ExprListAppendVector(pParse, yymsp[-6].minor.yy322, yymsp[-3].minor.yy254, yymsp[0].minor.yy528);
+}
+ break;
+ case 160: /* setlist ::= nm EQ expr */
+{
+ yylhsminor.yy322 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy528);
+ sqlite3ExprListSetName(pParse, yylhsminor.yy322, &yymsp[-2].minor.yy0, 1);
+}
+ yymsp[-2].minor.yy322 = yylhsminor.yy322;
+ break;
+ case 161: /* setlist ::= LP idlist RP EQ expr */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppendVector(pParse, 0, yymsp[-3].minor.yy254, yymsp[0].minor.yy528);
+}
+ break;
+ case 162: /* cmd ::= with insert_cmd INTO xfullname idlist_opt select upsert */
+{
+ sqlite3Insert(pParse, yymsp[-3].minor.yy131, yymsp[-1].minor.yy47, yymsp[-2].minor.yy254, yymsp[-5].minor.yy394, yymsp[0].minor.yy444);
+}
+ break;
+ case 163: /* cmd ::= with insert_cmd INTO xfullname idlist_opt DEFAULT VALUES returning */
+{
+ sqlite3Insert(pParse, yymsp[-4].minor.yy131, 0, yymsp[-3].minor.yy254, yymsp[-6].minor.yy394, 0);
+}
+ break;
+ case 164: /* upsert ::= */
+{ yymsp[1].minor.yy444 = 0; }
+ break;
+ case 165: /* upsert ::= RETURNING selcollist */
+{ yymsp[-1].minor.yy444 = 0; sqlite3AddReturning(pParse,yymsp[0].minor.yy322); }
+ break;
+ case 166: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO UPDATE SET setlist where_opt upsert */
+{ yymsp[-11].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-8].minor.yy322,yymsp[-6].minor.yy528,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,yymsp[0].minor.yy444);}
+ break;
+ case 167: /* upsert ::= ON CONFLICT LP sortlist RP where_opt DO NOTHING upsert */
+{ yymsp[-8].minor.yy444 = sqlite3UpsertNew(pParse->db,yymsp[-5].minor.yy322,yymsp[-3].minor.yy528,0,0,yymsp[0].minor.yy444); }
+ break;
+ case 168: /* upsert ::= ON CONFLICT DO NOTHING returning */
+{ yymsp[-4].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,0,0,0); }
+ break;
+ case 169: /* upsert ::= ON CONFLICT DO UPDATE SET setlist where_opt returning */
+{ yymsp[-7].minor.yy444 = sqlite3UpsertNew(pParse->db,0,0,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528,0);}
+ break;
+ case 170: /* returning ::= RETURNING selcollist */
+{sqlite3AddReturning(pParse,yymsp[0].minor.yy322);}
+ break;
+ case 173: /* idlist_opt ::= */
+{yymsp[1].minor.yy254 = 0;}
+ break;
+ case 174: /* idlist_opt ::= LP idlist RP */
+{yymsp[-2].minor.yy254 = yymsp[-1].minor.yy254;}
+ break;
+ case 175: /* idlist ::= idlist COMMA nm */
+{yymsp[-2].minor.yy254 = sqlite3IdListAppend(pParse,yymsp[-2].minor.yy254,&yymsp[0].minor.yy0);}
+ break;
+ case 176: /* idlist ::= nm */
+{yymsp[0].minor.yy254 = sqlite3IdListAppend(pParse,0,&yymsp[0].minor.yy0); /*A-overwrites-Y*/}
+ break;
+ case 177: /* expr ::= LP expr RP */
+{yymsp[-2].minor.yy528 = yymsp[-1].minor.yy528;}
+ break;
+ case 178: /* expr ::= ID|INDEXED|JOIN_KW */
+{yymsp[0].minor.yy528=tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0); /*A-overwrites-X*/}
+ break;
+ case 179: /* expr ::= nm DOT nm */
+{
+ Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0);
+ Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0);
+ yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
+}
+ yymsp[-2].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 180: /* expr ::= nm DOT nm DOT nm */
+{
+ Expr *temp1 = tokenExpr(pParse,TK_ID,yymsp[-4].minor.yy0);
+ Expr *temp2 = tokenExpr(pParse,TK_ID,yymsp[-2].minor.yy0);
+ Expr *temp3 = tokenExpr(pParse,TK_ID,yymsp[0].minor.yy0);
+ Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
+ if( IN_RENAME_OBJECT ){
+ sqlite3RenameTokenRemap(pParse, 0, temp1);
+ }
+ yylhsminor.yy528 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
+}
+ yymsp[-4].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 181: /* term ::= NULL|FLOAT|BLOB */
+ case 182: /* term ::= STRING */ yytestcase(yyruleno==182);
+{yymsp[0].minor.yy528=tokenExpr(pParse,yymsp[0].major,yymsp[0].minor.yy0); /*A-overwrites-X*/}
+ break;
+ case 183: /* term ::= INTEGER */
+{
+ yylhsminor.yy528 = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &yymsp[0].minor.yy0, 1);
+ if( yylhsminor.yy528 ) yylhsminor.yy528->w.iOfst = (int)(yymsp[0].minor.yy0.z - pParse->zTail);
+}
+ yymsp[0].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 184: /* expr ::= VARIABLE */
+{
+ if( !(yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1])) ){
+ u32 n = yymsp[0].minor.yy0.n;
+ yymsp[0].minor.yy528 = tokenExpr(pParse, TK_VARIABLE, yymsp[0].minor.yy0);
+ sqlite3ExprAssignVarNumber(pParse, yymsp[0].minor.yy528, n);
+ }else{
+ /* When doing a nested parse, one can include terms in an expression
+ ** that look like this: #1 #2 ... These terms refer to registers
+ ** in the virtual machine. #N is the N-th register. */
+ Token t = yymsp[0].minor.yy0; /*A-overwrites-X*/
+ assert( t.n>=2 );
+ if( pParse->nested==0 ){
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
+ yymsp[0].minor.yy528 = 0;
+ }else{
+ yymsp[0].minor.yy528 = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
+ if( yymsp[0].minor.yy528 ) sqlite3GetInt32(&t.z[1], &yymsp[0].minor.yy528->iTable);
+ }
+ }
+}
+ break;
+ case 185: /* expr ::= expr COLLATE ID|STRING */
+{
+ yymsp[-2].minor.yy528 = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy528, &yymsp[0].minor.yy0, 1);
+}
+ break;
+ case 186: /* expr ::= CAST LP expr AS typetoken RP */
+{
+ yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_CAST, &yymsp[-1].minor.yy0, 1);
+ sqlite3ExprAttachSubtrees(pParse->db, yymsp[-5].minor.yy528, yymsp[-3].minor.yy528, 0);
+}
+ break;
+ case 187: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0, yymsp[-2].minor.yy394);
+}
+ yymsp[-4].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 188: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-4].minor.yy322, &yymsp[-7].minor.yy0, yymsp[-5].minor.yy394);
+ sqlite3ExprAddFunctionOrderBy(pParse, yylhsminor.yy528, yymsp[-1].minor.yy322);
+}
+ yymsp[-7].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 189: /* expr ::= ID|INDEXED|JOIN_KW LP STAR RP */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0, 0);
+}
+ yymsp[-3].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 190: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist RP filter_over */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-2].minor.yy322, &yymsp[-5].minor.yy0, yymsp[-3].minor.yy394);
+ sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41);
+}
+ yymsp[-5].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 191: /* expr ::= ID|INDEXED|JOIN_KW LP distinct exprlist ORDER BY sortlist RP filter_over */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, yymsp[-5].minor.yy322, &yymsp[-8].minor.yy0, yymsp[-6].minor.yy394);
+ sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41);
+ sqlite3ExprAddFunctionOrderBy(pParse, yylhsminor.yy528, yymsp[-2].minor.yy322);
+}
+ yymsp[-8].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 192: /* expr ::= ID|INDEXED|JOIN_KW LP STAR RP filter_over */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[-4].minor.yy0, 0);
+ sqlite3WindowAttach(pParse, yylhsminor.yy528, yymsp[0].minor.yy41);
+}
+ yymsp[-4].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 193: /* term ::= CTIME_KW */
+{
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0, 0);
+}
+ yymsp[0].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 194: /* expr ::= LP nexprlist COMMA expr RP */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
+ if( yymsp[-4].minor.yy528 ){
+ yymsp[-4].minor.yy528->x.pList = pList;
+ if( ALWAYS(pList->nExpr) ){
+ yymsp[-4].minor.yy528->flags |= pList->a[0].pExpr->flags & EP_Propagate;
+ }
+ }else{
+ sqlite3ExprListDelete(pParse->db, pList);
+ }
+}
+ break;
+ case 195: /* expr ::= expr AND expr */
+{yymsp[-2].minor.yy528=sqlite3ExprAnd(pParse,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);}
+ break;
+ case 196: /* expr ::= expr OR expr */
+ case 197: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==197);
+ case 198: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==198);
+ case 199: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==199);
+ case 200: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==200);
+ case 201: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==201);
+ case 202: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==202);
+{yymsp[-2].minor.yy528=sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);}
+ break;
+ case 203: /* likeop ::= NOT LIKE_KW|MATCH */
+{yymsp[-1].minor.yy0=yymsp[0].minor.yy0; yymsp[-1].minor.yy0.n|=0x80000000; /*yymsp[-1].minor.yy0-overwrite-yymsp[0].minor.yy0*/}
+ break;
+ case 204: /* expr ::= expr likeop expr */
+{
+ ExprList *pList;
+ int bNot = yymsp[-1].minor.yy0.n & 0x80000000;
+ yymsp[-1].minor.yy0.n &= 0x7fffffff;
+ pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy528);
+ yymsp[-2].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0);
+ if( bNot ) yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-2].minor.yy528, 0);
+ if( yymsp[-2].minor.yy528 ) yymsp[-2].minor.yy528->flags |= EP_InfixFunc;
+}
+ break;
+ case 205: /* expr ::= expr likeop expr ESCAPE expr */
+{
+ ExprList *pList;
+ int bNot = yymsp[-3].minor.yy0.n & 0x80000000;
+ yymsp[-3].minor.yy0.n &= 0x7fffffff;
+ pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy0, 0);
+ if( bNot ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528 ) yymsp[-4].minor.yy528->flags |= EP_InfixFunc;
+}
+ break;
+ case 206: /* expr ::= expr ISNULL|NOTNULL */
+{yymsp[-1].minor.yy528 = sqlite3PExpr(pParse,yymsp[0].major,yymsp[-1].minor.yy528,0);}
+ break;
+ case 207: /* expr ::= expr NOT NULL */
+{yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_NOTNULL,yymsp[-2].minor.yy528,0);}
+ break;
+ case 208: /* expr ::= expr IS expr */
+{
+ yymsp[-2].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-2].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-2].minor.yy528, TK_ISNULL);
+}
+ break;
+ case 209: /* expr ::= expr IS NOT expr */
+{
+ yymsp[-3].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-3].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-3].minor.yy528, TK_NOTNULL);
+}
+ break;
+ case 210: /* expr ::= expr IS NOT DISTINCT FROM expr */
+{
+ yymsp[-5].minor.yy528 = sqlite3PExpr(pParse,TK_IS,yymsp[-5].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-5].minor.yy528, TK_ISNULL);
+}
+ break;
+ case 211: /* expr ::= expr IS DISTINCT FROM expr */
+{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse,TK_ISNOT,yymsp[-4].minor.yy528,yymsp[0].minor.yy528);
+ binaryToUnaryIfNull(pParse, yymsp[0].minor.yy528, yymsp[-4].minor.yy528, TK_NOTNULL);
+}
+ break;
+ case 212: /* expr ::= NOT expr */
+ case 213: /* expr ::= BITNOT expr */ yytestcase(yyruleno==213);
+{yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy528, 0);/*A-overwrites-B*/}
+ break;
+ case 214: /* expr ::= PLUS|MINUS expr */
+{
+ yymsp[-1].minor.yy528 = sqlite3PExpr(pParse, yymsp[-1].major==TK_PLUS ? TK_UPLUS : TK_UMINUS, yymsp[0].minor.yy528, 0);
+ /*A-overwrites-B*/
+}
+ break;
+ case 215: /* expr ::= expr PTR expr */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse, 0, yymsp[-2].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse, pList, yymsp[0].minor.yy528);
+ yylhsminor.yy528 = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy0, 0);
+}
+ yymsp[-2].minor.yy528 = yylhsminor.yy528;
+ break;
+ case 216: /* between_op ::= BETWEEN */
+ case 219: /* in_op ::= IN */ yytestcase(yyruleno==219);
+{yymsp[0].minor.yy394 = 0;}
+ break;
+ case 218: /* expr ::= expr between_op expr AND expr */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528 ){
+ yymsp[-4].minor.yy528->x.pList = pList;
+ }else{
+ sqlite3ExprListDelete(pParse->db, pList);
+ }
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+}
+ break;
+ case 221: /* expr ::= expr in_op LP exprlist RP */
+{
+ if( yymsp[-1].minor.yy322==0 ){
+ /* Expressions of the form
+ **
+ ** expr1 IN ()
+ ** expr1 NOT IN ()
+ **
+ ** simplify to constants 0 (false) and 1 (true), respectively,
+ ** regardless of the value of expr1.
+ */
+ sqlite3ExprUnmapAndDelete(pParse, yymsp[-4].minor.yy528);
+ yymsp[-4].minor.yy528 = sqlite3Expr(pParse->db, TK_STRING, yymsp[-3].minor.yy394 ? "true" : "false");
+ if( yymsp[-4].minor.yy528 ) sqlite3ExprIdToTrueFalse(yymsp[-4].minor.yy528);
+ }else{
+ Expr *pRHS = yymsp[-1].minor.yy322->a[0].pExpr;
+ if( yymsp[-1].minor.yy322->nExpr==1 && sqlite3ExprIsConstant(pRHS) && yymsp[-4].minor.yy528->op!=TK_VECTOR ){
+ yymsp[-1].minor.yy322->a[0].pExpr = 0;
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
+ pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_EQ, yymsp[-4].minor.yy528, pRHS);
+ }else if( yymsp[-1].minor.yy322->nExpr==1 && pRHS->op==TK_SELECT ){
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pRHS->x.pSelect);
+ pRHS->x.pSelect = 0;
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
+ }else{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528==0 ){
+ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
+ }else if( yymsp[-4].minor.yy528->pLeft->op==TK_VECTOR ){
+ int nExpr = yymsp[-4].minor.yy528->pLeft->x.pList->nExpr;
+ Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, yymsp[-1].minor.yy322);
+ if( pSelectRHS ){
+ parserDoubleLinkSelect(pParse, pSelectRHS);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelectRHS);
+ }
+ }else{
+ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy322;
+ sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528);
+ }
+ }
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ }
+ }
+ break;
+ case 222: /* expr ::= LP select RP */
+{
+ yymsp[-2].minor.yy528 = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-2].minor.yy528, yymsp[-1].minor.yy47);
+ }
+ break;
+ case 223: /* expr ::= expr in_op LP select RP */
+{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, yymsp[-1].minor.yy47);
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ }
+ break;
+ case 224: /* expr ::= expr in_op nm dbnm paren_exprlist */
+{
+ SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0);
+ Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
+ if( yymsp[0].minor.yy322 ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, yymsp[0].minor.yy322);
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy528, 0);
+ sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy528, pSelect);
+ if( yymsp[-3].minor.yy394 ) yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_NOT, yymsp[-4].minor.yy528, 0);
+ }
+ break;
+ case 225: /* expr ::= EXISTS LP select RP */
+{
+ Expr *p;
+ p = yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
+ sqlite3PExprAddSelect(pParse, p, yymsp[-1].minor.yy47);
+ }
+ break;
+ case 226: /* expr ::= CASE case_operand case_exprlist case_else END */
+{
+ yymsp[-4].minor.yy528 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy528, 0);
+ if( yymsp[-4].minor.yy528 ){
+ yymsp[-4].minor.yy528->x.pList = yymsp[-1].minor.yy528 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[-1].minor.yy528) : yymsp[-2].minor.yy322;
+ sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy528);
+ }else{
+ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy322);
+ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528);
+ }
+}
+ break;
+ case 227: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
+{
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[-2].minor.yy528);
+ yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[0].minor.yy528);
+}
+ break;
+ case 228: /* case_exprlist ::= WHEN expr THEN expr */
+{
+ yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy528);
+ yymsp[-3].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322, yymsp[0].minor.yy528);
+}
+ break;
+ case 233: /* nexprlist ::= nexprlist COMMA expr */
+{yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[0].minor.yy528);}
+ break;
+ case 234: /* nexprlist ::= expr */
+{yymsp[0].minor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy528); /*A-overwrites-Y*/}
+ break;
+ case 236: /* paren_exprlist ::= LP exprlist RP */
+ case 241: /* eidlist_opt ::= LP eidlist RP */ yytestcase(yyruleno==241);
+{yymsp[-2].minor.yy322 = yymsp[-1].minor.yy322;}
+ break;
+ case 237: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
+{
+ sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0,
+ sqlite3SrcListAppend(pParse,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy322, yymsp[-10].minor.yy394,
+ &yymsp[-11].minor.yy0, yymsp[0].minor.yy528, SQLITE_SO_ASC, yymsp[-8].minor.yy394, SQLITE_IDXTYPE_APPDEF);
+ if( IN_RENAME_OBJECT && pParse->pNewIndex ){
+ sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &yymsp[-4].minor.yy0);
+ }
+}
+ break;
+ case 238: /* uniqueflag ::= UNIQUE */
+ case 280: /* raisetype ::= ABORT */ yytestcase(yyruleno==280);
+{yymsp[0].minor.yy394 = OE_Abort;}
+ break;
+ case 239: /* uniqueflag ::= */
+{yymsp[1].minor.yy394 = OE_None;}
+ break;
+ case 242: /* eidlist ::= eidlist COMMA nm collate sortorder */
+{
+ yymsp[-4].minor.yy322 = parserAddExprIdListTerm(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394);
+}
+ break;
+ case 243: /* eidlist ::= nm collate sortorder */
+{
+ yymsp[-2].minor.yy322 = parserAddExprIdListTerm(pParse, 0, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy394, yymsp[0].minor.yy394); /*A-overwrites-Y*/
+}
+ break;
+ case 246: /* cmd ::= DROP INDEX ifexists fullname */
+{sqlite3DropIndex(pParse, yymsp[0].minor.yy131, yymsp[-1].minor.yy394);}
+ break;
+ case 247: /* cmd ::= VACUUM vinto */
+{sqlite3Vacuum(pParse,0,yymsp[0].minor.yy528);}
+ break;
+ case 248: /* cmd ::= VACUUM nm vinto */
+{sqlite3Vacuum(pParse,&yymsp[-1].minor.yy0,yymsp[0].minor.yy528);}
+ break;
+ case 251: /* cmd ::= PRAGMA nm dbnm */
+{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
+ break;
+ case 252: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
+ break;
+ case 253: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
+ break;
+ case 254: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
+ break;
+ case 255: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
+ break;
+ case 258: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
+{
+ Token all;
+ all.z = yymsp[-3].minor.yy0.z;
+ all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
+ sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy33, &all);
+}
+ break;
+ case 259: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+{
+ sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy394, yymsp[-4].minor.yy180.a, yymsp[-4].minor.yy180.b, yymsp[-2].minor.yy131, yymsp[0].minor.yy528, yymsp[-10].minor.yy394, yymsp[-8].minor.yy394);
+ yymsp[-10].minor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0); /*A-overwrites-T*/
+}
+ break;
+ case 260: /* trigger_time ::= BEFORE|AFTER */
+{ yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/ }
+ break;
+ case 261: /* trigger_time ::= INSTEAD OF */
+{ yymsp[-1].minor.yy394 = TK_INSTEAD;}
+ break;
+ case 262: /* trigger_time ::= */
+{ yymsp[1].minor.yy394 = TK_BEFORE; }
+ break;
+ case 263: /* trigger_event ::= DELETE|INSERT */
+ case 264: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==264);
+{yymsp[0].minor.yy180.a = yymsp[0].major; /*A-overwrites-X*/ yymsp[0].minor.yy180.b = 0;}
+ break;
+ case 265: /* trigger_event ::= UPDATE OF idlist */
+{yymsp[-2].minor.yy180.a = TK_UPDATE; yymsp[-2].minor.yy180.b = yymsp[0].minor.yy254;}
+ break;
+ case 266: /* when_clause ::= */
+ case 285: /* key_opt ::= */ yytestcase(yyruleno==285);
+{ yymsp[1].minor.yy528 = 0; }
+ break;
+ case 267: /* when_clause ::= WHEN expr */
+ case 286: /* key_opt ::= KEY expr */ yytestcase(yyruleno==286);
+{ yymsp[-1].minor.yy528 = yymsp[0].minor.yy528; }
+ break;
+ case 268: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+{
+ assert( yymsp[-2].minor.yy33!=0 );
+ yymsp[-2].minor.yy33->pLast->pNext = yymsp[-1].minor.yy33;
+ yymsp[-2].minor.yy33->pLast = yymsp[-1].minor.yy33;
+}
+ break;
+ case 269: /* trigger_cmd_list ::= trigger_cmd SEMI */
+{
+ assert( yymsp[-1].minor.yy33!=0 );
+ yymsp[-1].minor.yy33->pLast = yymsp[-1].minor.yy33;
+}
+ break;
+ case 270: /* trnm ::= nm DOT nm */
+{
+ yymsp[-2].minor.yy0 = yymsp[0].minor.yy0;
+ sqlite3ErrorMsg(pParse,
+ "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
+ "statements within triggers");
+}
+ break;
+ case 271: /* tridxby ::= INDEXED BY nm */
+{
+ sqlite3ErrorMsg(pParse,
+ "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
+ "within triggers");
+}
+ break;
+ case 272: /* tridxby ::= NOT INDEXED */
+{
+ sqlite3ErrorMsg(pParse,
+ "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
+ "within triggers");
+}
+ break;
+ case 273: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist from where_opt scanpt */
+{yylhsminor.yy33 = sqlite3TriggerUpdateStep(pParse, &yymsp[-6].minor.yy0, yymsp[-2].minor.yy131, yymsp[-3].minor.yy322, yymsp[-1].minor.yy528, yymsp[-7].minor.yy394, yymsp[-8].minor.yy0.z, yymsp[0].minor.yy522);}
+ yymsp[-8].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 274: /* trigger_cmd ::= scanpt insert_cmd INTO trnm idlist_opt select upsert scanpt */
+{
+ yylhsminor.yy33 = sqlite3TriggerInsertStep(pParse,&yymsp[-4].minor.yy0,yymsp[-3].minor.yy254,yymsp[-2].minor.yy47,yymsp[-6].minor.yy394,yymsp[-1].minor.yy444,yymsp[-7].minor.yy522,yymsp[0].minor.yy522);/*yylhsminor.yy33-overwrites-yymsp[-6].minor.yy394*/
+}
+ yymsp[-7].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 275: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt scanpt */
+{yylhsminor.yy33 = sqlite3TriggerDeleteStep(pParse, &yymsp[-3].minor.yy0, yymsp[-1].minor.yy528, yymsp[-5].minor.yy0.z, yymsp[0].minor.yy522);}
+ yymsp[-5].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 276: /* trigger_cmd ::= scanpt select scanpt */
+{yylhsminor.yy33 = sqlite3TriggerSelectStep(pParse->db, yymsp[-1].minor.yy47, yymsp[-2].minor.yy522, yymsp[0].minor.yy522); /*yylhsminor.yy33-overwrites-yymsp[-1].minor.yy47*/}
+ yymsp[-2].minor.yy33 = yylhsminor.yy33;
+ break;
+ case 277: /* expr ::= RAISE LP IGNORE RP */
+{
+ yymsp[-3].minor.yy528 = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
+ if( yymsp[-3].minor.yy528 ){
+ yymsp[-3].minor.yy528->affExpr = OE_Ignore;
+ }
+}
+ break;
+ case 278: /* expr ::= RAISE LP raisetype COMMA nm RP */
+{
+ yymsp[-5].minor.yy528 = sqlite3ExprAlloc(pParse->db, TK_RAISE, &yymsp[-1].minor.yy0, 1);
+ if( yymsp[-5].minor.yy528 ) {
+ yymsp[-5].minor.yy528->affExpr = (char)yymsp[-3].minor.yy394;
+ }
+}
+ break;
+ case 279: /* raisetype ::= ROLLBACK */
+{yymsp[0].minor.yy394 = OE_Rollback;}
+ break;
+ case 281: /* raisetype ::= FAIL */
+{yymsp[0].minor.yy394 = OE_Fail;}
+ break;
+ case 282: /* cmd ::= DROP TRIGGER ifexists fullname */
+{
+ sqlite3DropTrigger(pParse,yymsp[0].minor.yy131,yymsp[-1].minor.yy394);
+}
+ break;
+ case 283: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+{
+ sqlite3Attach(pParse, yymsp[-3].minor.yy528, yymsp[-1].minor.yy528, yymsp[0].minor.yy528);
+}
+ break;
+ case 284: /* cmd ::= DETACH database_kw_opt expr */
+{
+ sqlite3Detach(pParse, yymsp[0].minor.yy528);
+}
+ break;
+ case 287: /* cmd ::= REINDEX */
+{sqlite3Reindex(pParse, 0, 0);}
+ break;
+ case 288: /* cmd ::= REINDEX nm dbnm */
+{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
+ break;
+ case 289: /* cmd ::= ANALYZE */
+{sqlite3Analyze(pParse, 0, 0);}
+ break;
+ case 290: /* cmd ::= ANALYZE nm dbnm */
+{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
+ break;
+ case 291: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
+{
+ sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy131,&yymsp[0].minor.yy0);
+}
+ break;
+ case 292: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt columnname carglist */
+{
+ yymsp[-1].minor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-1].minor.yy0.z) + pParse->sLastToken.n;
+ sqlite3AlterFinishAddColumn(pParse, &yymsp[-1].minor.yy0);
+}
+ break;
+ case 293: /* cmd ::= ALTER TABLE fullname DROP kwcolumn_opt nm */
+{
+ sqlite3AlterDropColumn(pParse, yymsp[-3].minor.yy131, &yymsp[0].minor.yy0);
+}
+ break;
+ case 294: /* add_column_fullname ::= fullname */
+{
+ disableLookaside(pParse);
+ sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy131);
+}
+ break;
+ case 295: /* cmd ::= ALTER TABLE fullname RENAME kwcolumn_opt nm TO nm */
+{
+ sqlite3AlterRenameColumn(pParse, yymsp[-5].minor.yy131, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0);
+}
+ break;
+ case 296: /* cmd ::= create_vtab */
+{sqlite3VtabFinishParse(pParse,0);}
+ break;
+ case 297: /* cmd ::= create_vtab LP vtabarglist RP */
+{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
+ break;
+ case 298: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
+{
+ sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy394);
+}
+ break;
+ case 299: /* vtabarg ::= */
+{sqlite3VtabArgInit(pParse);}
+ break;
+ case 300: /* vtabargtoken ::= ANY */
+ case 301: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==301);
+ case 302: /* lp ::= LP */ yytestcase(yyruleno==302);
+{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
+ break;
+ case 303: /* with ::= WITH wqlist */
+ case 304: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==304);
+{ sqlite3WithPush(pParse, yymsp[0].minor.yy521, 1); }
+ break;
+ case 305: /* wqas ::= AS */
+{yymsp[0].minor.yy516 = M10d_Any;}
+ break;
+ case 306: /* wqas ::= AS MATERIALIZED */
+{yymsp[-1].minor.yy516 = M10d_Yes;}
+ break;
+ case 307: /* wqas ::= AS NOT MATERIALIZED */
+{yymsp[-2].minor.yy516 = M10d_No;}
+ break;
+ case 308: /* wqitem ::= nm eidlist_opt wqas LP select RP */
+{
+ yymsp[-5].minor.yy385 = sqlite3CteNew(pParse, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy322, yymsp[-1].minor.yy47, yymsp[-3].minor.yy516); /*A-overwrites-X*/
+}
+ break;
+ case 309: /* wqlist ::= wqitem */
+{
+ yymsp[0].minor.yy521 = sqlite3WithAdd(pParse, 0, yymsp[0].minor.yy385); /*A-overwrites-X*/
+}
+ break;
+ case 310: /* wqlist ::= wqlist COMMA wqitem */
+{
+ yymsp[-2].minor.yy521 = sqlite3WithAdd(pParse, yymsp[-2].minor.yy521, yymsp[0].minor.yy385);
+}
+ break;
+ case 311: /* windowdefn_list ::= windowdefn_list COMMA windowdefn */
+{
+ assert( yymsp[0].minor.yy41!=0 );
+ sqlite3WindowChain(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy41);
+ yymsp[0].minor.yy41->pNextWin = yymsp[-2].minor.yy41;
+ yylhsminor.yy41 = yymsp[0].minor.yy41;
+}
+ yymsp[-2].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 312: /* windowdefn ::= nm AS LP window RP */
+{
+ if( ALWAYS(yymsp[-1].minor.yy41) ){
+ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[-4].minor.yy0.z, yymsp[-4].minor.yy0.n);
+ }
+ yylhsminor.yy41 = yymsp[-1].minor.yy41;
+}
+ yymsp[-4].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 313: /* window ::= PARTITION BY nexprlist orderby_opt frame_opt */
+{
+ yymsp[-4].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, 0);
+}
+ break;
+ case 314: /* window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, &yymsp[-5].minor.yy0);
+}
+ yymsp[-5].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 315: /* window ::= ORDER BY sortlist frame_opt */
+{
+ yymsp[-3].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, 0);
+}
+ break;
+ case 316: /* window ::= nm ORDER BY sortlist frame_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0);
+}
+ yymsp[-4].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 317: /* window ::= nm frame_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, 0, &yymsp[-1].minor.yy0);
+}
+ yymsp[-1].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 318: /* frame_opt ::= */
+{
+ yymsp[1].minor.yy41 = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0);
+}
+ break;
+ case 319: /* frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-2].minor.yy394, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, TK_CURRENT, 0, yymsp[0].minor.yy516);
+}
+ yymsp[-2].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 320: /* frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */
+{
+ yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-5].minor.yy394, yymsp[-3].minor.yy595.eType, yymsp[-3].minor.yy595.pExpr, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, yymsp[0].minor.yy516);
+}
+ yymsp[-5].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 322: /* frame_bound_s ::= frame_bound */
+ case 324: /* frame_bound_e ::= frame_bound */ yytestcase(yyruleno==324);
+{yylhsminor.yy595 = yymsp[0].minor.yy595;}
+ yymsp[0].minor.yy595 = yylhsminor.yy595;
+ break;
+ case 323: /* frame_bound_s ::= UNBOUNDED PRECEDING */
+ case 325: /* frame_bound_e ::= UNBOUNDED FOLLOWING */ yytestcase(yyruleno==325);
+ case 327: /* frame_bound ::= CURRENT ROW */ yytestcase(yyruleno==327);
+{yylhsminor.yy595.eType = yymsp[-1].major; yylhsminor.yy595.pExpr = 0;}
+ yymsp[-1].minor.yy595 = yylhsminor.yy595;
+ break;
+ case 326: /* frame_bound ::= expr PRECEDING|FOLLOWING */
+{yylhsminor.yy595.eType = yymsp[0].major; yylhsminor.yy595.pExpr = yymsp[-1].minor.yy528;}
+ yymsp[-1].minor.yy595 = yylhsminor.yy595;
+ break;
+ case 328: /* frame_exclude_opt ::= */
+{yymsp[1].minor.yy516 = 0;}
+ break;
+ case 329: /* frame_exclude_opt ::= EXCLUDE frame_exclude */
+{yymsp[-1].minor.yy516 = yymsp[0].minor.yy516;}
+ break;
+ case 330: /* frame_exclude ::= NO OTHERS */
+ case 331: /* frame_exclude ::= CURRENT ROW */ yytestcase(yyruleno==331);
+{yymsp[-1].minor.yy516 = yymsp[-1].major; /*A-overwrites-X*/}
+ break;
+ case 332: /* frame_exclude ::= GROUP|TIES */
+{yymsp[0].minor.yy516 = yymsp[0].major; /*A-overwrites-X*/}
+ break;
+ case 333: /* window_clause ::= WINDOW windowdefn_list */
+{ yymsp[-1].minor.yy41 = yymsp[0].minor.yy41; }
+ break;
+ case 334: /* filter_over ::= filter_clause over_clause */
+{
+ if( yymsp[0].minor.yy41 ){
+ yymsp[0].minor.yy41->pFilter = yymsp[-1].minor.yy528;
+ }else{
+ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528);
+ }
+ yylhsminor.yy41 = yymsp[0].minor.yy41;
+}
+ yymsp[-1].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 335: /* filter_over ::= over_clause */
+{
+ yylhsminor.yy41 = yymsp[0].minor.yy41;
+}
+ yymsp[0].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 336: /* filter_over ::= filter_clause */
+{
+ yylhsminor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
+ if( yylhsminor.yy41 ){
+ yylhsminor.yy41->eFrmType = TK_FILTER;
+ yylhsminor.yy41->pFilter = yymsp[0].minor.yy528;
+ }else{
+ sqlite3ExprDelete(pParse->db, yymsp[0].minor.yy528);
+ }
+}
+ yymsp[0].minor.yy41 = yylhsminor.yy41;
+ break;
+ case 337: /* over_clause ::= OVER LP window RP */
+{
+ yymsp[-3].minor.yy41 = yymsp[-1].minor.yy41;
+ assert( yymsp[-3].minor.yy41!=0 );
+}
+ break;
+ case 338: /* over_clause ::= OVER nm */
+{
+ yymsp[-1].minor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
+ if( yymsp[-1].minor.yy41 ){
+ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n);
+ }
+}
+ break;
+ case 339: /* filter_clause ::= FILTER LP WHERE expr RP */
+{ yymsp[-4].minor.yy528 = yymsp[-1].minor.yy528; }
+ break;
+ default:
+ /* (340) input ::= cmdlist */ yytestcase(yyruleno==340);
+ /* (341) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==341);
+ /* (342) cmdlist ::= ecmd (OPTIMIZED OUT) */ assert(yyruleno!=342);
+ /* (343) ecmd ::= SEMI */ yytestcase(yyruleno==343);
+ /* (344) ecmd ::= cmdx SEMI */ yytestcase(yyruleno==344);
+ /* (345) ecmd ::= explain cmdx SEMI (NEVER REDUCES) */ assert(yyruleno!=345);
+ /* (346) trans_opt ::= */ yytestcase(yyruleno==346);
+ /* (347) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==347);
+ /* (348) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==348);
+ /* (349) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==349);
+ /* (350) savepoint_opt ::= */ yytestcase(yyruleno==350);
+ /* (351) cmd ::= create_table create_table_args */ yytestcase(yyruleno==351);
+ /* (352) table_option_set ::= table_option (OPTIMIZED OUT) */ assert(yyruleno!=352);
+ /* (353) columnlist ::= columnlist COMMA columnname carglist */ yytestcase(yyruleno==353);
+ /* (354) columnlist ::= columnname carglist */ yytestcase(yyruleno==354);
+ /* (355) nm ::= ID|INDEXED|JOIN_KW */ yytestcase(yyruleno==355);
+ /* (356) nm ::= STRING */ yytestcase(yyruleno==356);
+ /* (357) typetoken ::= typename */ yytestcase(yyruleno==357);
+ /* (358) typename ::= ID|STRING */ yytestcase(yyruleno==358);
+ /* (359) signed ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=359);
+ /* (360) signed ::= minus_num (OPTIMIZED OUT) */ assert(yyruleno!=360);
+ /* (361) carglist ::= carglist ccons */ yytestcase(yyruleno==361);
+ /* (362) carglist ::= */ yytestcase(yyruleno==362);
+ /* (363) ccons ::= NULL onconf */ yytestcase(yyruleno==363);
+ /* (364) ccons ::= GENERATED ALWAYS AS generated */ yytestcase(yyruleno==364);
+ /* (365) ccons ::= AS generated */ yytestcase(yyruleno==365);
+ /* (366) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==366);
+ /* (367) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==367);
+ /* (368) conslist ::= tcons (OPTIMIZED OUT) */ assert(yyruleno!=368);
+ /* (369) tconscomma ::= */ yytestcase(yyruleno==369);
+ /* (370) defer_subclause_opt ::= defer_subclause (OPTIMIZED OUT) */ assert(yyruleno!=370);
+ /* (371) resolvetype ::= raisetype (OPTIMIZED OUT) */ assert(yyruleno!=371);
+ /* (372) selectnowith ::= oneselect (OPTIMIZED OUT) */ assert(yyruleno!=372);
+ /* (373) oneselect ::= values */ yytestcase(yyruleno==373);
+ /* (374) sclp ::= selcollist COMMA */ yytestcase(yyruleno==374);
+ /* (375) as ::= ID|STRING */ yytestcase(yyruleno==375);
+ /* (376) indexed_opt ::= indexed_by (OPTIMIZED OUT) */ assert(yyruleno!=376);
+ /* (377) returning ::= */ yytestcase(yyruleno==377);
+ /* (378) expr ::= term (OPTIMIZED OUT) */ assert(yyruleno!=378);
+ /* (379) likeop ::= LIKE_KW|MATCH */ yytestcase(yyruleno==379);
+ /* (380) case_operand ::= expr */ yytestcase(yyruleno==380);
+ /* (381) exprlist ::= nexprlist */ yytestcase(yyruleno==381);
+ /* (382) nmnum ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=382);
+ /* (383) nmnum ::= nm (OPTIMIZED OUT) */ assert(yyruleno!=383);
+ /* (384) nmnum ::= ON */ yytestcase(yyruleno==384);
+ /* (385) nmnum ::= DELETE */ yytestcase(yyruleno==385);
+ /* (386) nmnum ::= DEFAULT */ yytestcase(yyruleno==386);
+ /* (387) plus_num ::= INTEGER|FLOAT */ yytestcase(yyruleno==387);
+ /* (388) foreach_clause ::= */ yytestcase(yyruleno==388);
+ /* (389) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==389);
+ /* (390) trnm ::= nm */ yytestcase(yyruleno==390);
+ /* (391) tridxby ::= */ yytestcase(yyruleno==391);
+ /* (392) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==392);
+ /* (393) database_kw_opt ::= */ yytestcase(yyruleno==393);
+ /* (394) kwcolumn_opt ::= */ yytestcase(yyruleno==394);
+ /* (395) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==395);
+ /* (396) vtabarglist ::= vtabarg */ yytestcase(yyruleno==396);
+ /* (397) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==397);
+ /* (398) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==398);
+ /* (399) anylist ::= */ yytestcase(yyruleno==399);
+ /* (400) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==400);
+ /* (401) anylist ::= anylist ANY */ yytestcase(yyruleno==401);
+ /* (402) with ::= */ yytestcase(yyruleno==402);
+ /* (403) windowdefn_list ::= windowdefn (OPTIMIZED OUT) */ assert(yyruleno!=403);
+ /* (404) window ::= frame_opt (OPTIMIZED OUT) */ assert(yyruleno!=404);
+ break;
+/********** End reduce actions ************************************************/
+ };
+ assert( yyruleno<sizeof(yyRuleInfoLhs)/sizeof(yyRuleInfoLhs[0]) );
+ yygoto = yyRuleInfoLhs[yyruleno];
+ yysize = yyRuleInfoNRhs[yyruleno];
+ yyact = yy_find_reduce_action(yymsp[yysize].stateno,(YYCODETYPE)yygoto);
+
+ /* There are no SHIFTREDUCE actions on nonterminals because the table
+ ** generator has simplified them to pure REDUCE actions. */
+ assert( !(yyact>YY_MAX_SHIFT && yyact<=YY_MAX_SHIFTREDUCE) );
+
+ /* It is not possible for a REDUCE to be followed by an error */
+ assert( yyact!=YY_ERROR_ACTION );
+
+ yymsp += yysize+1;
+ yypParser->yytos = yymsp;
+ yymsp->stateno = (YYACTIONTYPE)yyact;
+ yymsp->major = (YYCODETYPE)yygoto;
+ yyTraceShift(yypParser, yyact, "... then shift");
+ return yyact;
+}
+
+/*
+** The following code executes when the parse fails
+*/
+#ifndef YYNOERRORRECOVERY
+static void yy_parse_failed(
+ yyParser *yypParser /* The parser */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+/************ Begin %parse_failure code ***************************************/
+/************ End %parse_failure code *****************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3ParserCTX_STORE
+}
+#endif /* YYNOERRORRECOVERY */
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void yy_syntax_error(
+ yyParser *yypParser, /* The parser */
+ int yymajor, /* The major type of the error token */
+ sqlite3ParserTOKENTYPE yyminor /* The minor type of the error token */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#define TOKEN yyminor
+/************ Begin %syntax_error code ****************************************/
+
+ UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
+ if( TOKEN.z[0] ){
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
+ }else{
+ sqlite3ErrorMsg(pParse, "incomplete input");
+ }
+/************ End %syntax_error code ******************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3ParserCTX_STORE
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void yy_accept(
+ yyParser *yypParser /* The parser */
+){
+ sqlite3ParserARG_FETCH
+ sqlite3ParserCTX_FETCH
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
+ }
+#endif
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ assert( yypParser->yytos==yypParser->yystack );
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+/*********** Begin %parse_accept code *****************************************/
+/*********** End %parse_accept code *******************************************/
+ sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3ParserCTX_STORE
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqlite3ParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+SQLITE_PRIVATE void sqlite3Parser(
+ void *yyp, /* The parser */
+ int yymajor, /* The major token code number */
+ sqlite3ParserTOKENTYPE yyminor /* The value for the token */
+ sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ YYMINORTYPE yyminorunion;
+ YYACTIONTYPE yyact; /* The parser action. */
+#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
+ int yyendofinput; /* True if we are at the end of input */
+#endif
+#ifdef YYERRORSYMBOL
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
+#endif
+ yyParser *yypParser = (yyParser*)yyp; /* The parser */
+ sqlite3ParserCTX_FETCH
+ sqlite3ParserARG_STORE
+
+ assert( yypParser->yytos!=0 );
+#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
+ yyendofinput = (yymajor==0);
+#endif
+
+ yyact = yypParser->yytos->stateno;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ if( yyact < YY_MIN_REDUCE ){
+ fprintf(yyTraceFILE,"%sInput '%s' in state %d\n",
+ yyTracePrompt,yyTokenName[yymajor],yyact);
+ }else{
+ fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
+ yyTracePrompt,yyTokenName[yymajor],yyact-YY_MIN_REDUCE);
+ }
+ }
+#endif
+
+ while(1){ /* Exit by "break" */
+ assert( yypParser->yytos>=yypParser->yystack );
+ assert( yyact==yypParser->yytos->stateno );
+ yyact = yy_find_shift_action((YYCODETYPE)yymajor,yyact);
+ if( yyact >= YY_MIN_REDUCE ){
+ unsigned int yyruleno = yyact - YY_MIN_REDUCE; /* Reduce by this rule */
+#ifndef NDEBUG
+ assert( yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) );
+ if( yyTraceFILE ){
+ int yysize = yyRuleInfoNRhs[yyruleno];
+ if( yysize ){
+ fprintf(yyTraceFILE, "%sReduce %d [%s]%s, pop back to state %d.\n",
+ yyTracePrompt,
+ yyruleno, yyRuleName[yyruleno],
+ yyruleno<YYNRULE_WITH_ACTION ? "" : " without external action",
+ yypParser->yytos[yysize].stateno);
+ }else{
+ fprintf(yyTraceFILE, "%sReduce %d [%s]%s.\n",
+ yyTracePrompt, yyruleno, yyRuleName[yyruleno],
+ yyruleno<YYNRULE_WITH_ACTION ? "" : " without external action");
+ }
+ }
+#endif /* NDEBUG */
+
+ /* Check that the stack is large enough to grow by a single entry
+ ** if the RHS of the rule is empty. This ensures that there is room
+ ** enough on the stack to push the LHS value */
+ if( yyRuleInfoNRhs[yyruleno]==0 ){
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
+ yypParser->yyhwm++;
+ assert( yypParser->yyhwm ==
+ (int)(yypParser->yytos - yypParser->yystack));
+ }
+#endif
+#if YYSTACKDEPTH>0
+ if( yypParser->yytos>=yypParser->yystackEnd ){
+ yyStackOverflow(yypParser);
+ break;
+ }
+#else
+ if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){
+ if( yyGrowStack(yypParser) ){
+ yyStackOverflow(yypParser);
+ break;
+ }
+ }
+#endif
+ }
+ yyact = yy_reduce(yypParser,yyruleno,yymajor,yyminor sqlite3ParserCTX_PARAM);
+ }else if( yyact <= YY_MAX_SHIFTREDUCE ){
+ yy_shift(yypParser,yyact,(YYCODETYPE)yymajor,yyminor);
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt--;
+#endif
+ break;
+ }else if( yyact==YY_ACCEPT_ACTION ){
+ yypParser->yytos--;
+ yy_accept(yypParser);
+ return;
+ }else{
+ assert( yyact == YY_ERROR_ACTION );
+ yyminorunion.yy0 = yyminor;
+#ifdef YYERRORSYMBOL
+ int yymx;
+#endif
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
+ }
+#endif
+#ifdef YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( yypParser->yyerrcnt<0 ){
+ yy_syntax_error(yypParser,yymajor,yyminor);
+ }
+ yymx = yypParser->yytos->major;
+ if( yymx==YYERRORSYMBOL || yyerrorhit ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
+ yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+ yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion);
+ yymajor = YYNOCODE;
+ }else{
+ while( yypParser->yytos > yypParser->yystack ){
+ yyact = yy_find_reduce_action(yypParser->yytos->stateno,
+ YYERRORSYMBOL);
+ if( yyact<=YY_MAX_SHIFTREDUCE ) break;
+ yy_pop_parser_stack(yypParser);
+ }
+ if( yypParser->yytos <= yypParser->yystack || yymajor==0 ){
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ yy_parse_failed(yypParser);
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ yymajor = YYNOCODE;
+ }else if( yymx!=YYERRORSYMBOL ){
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor);
+ }
+ }
+ yypParser->yyerrcnt = 3;
+ yyerrorhit = 1;
+ if( yymajor==YYNOCODE ) break;
+ yyact = yypParser->yytos->stateno;
+#elif defined(YYNOERRORRECOVERY)
+ /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ yy_syntax_error(yypParser,yymajor, yyminor);
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ break;
+#else /* YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( yypParser->yyerrcnt<=0 ){
+ yy_syntax_error(yypParser,yymajor, yyminor);
+ }
+ yypParser->yyerrcnt = 3;
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ if( yyendofinput ){
+ yy_parse_failed(yypParser);
+#ifndef YYNOERRORRECOVERY
+ yypParser->yyerrcnt = -1;
+#endif
+ }
+ break;
+#endif
+ }
+ }
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ yyStackEntry *i;
+ char cDiv = '[';
+ fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
+ for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){
+ fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]);
+ cDiv = ' ';
+ }
+ fprintf(yyTraceFILE,"]\n");
+ }
+#endif
+ return;
+}
+
+/*
+** Return the fallback token corresponding to canonical token iToken, or
+** 0 if iToken has no fallback.
+*/
+SQLITE_PRIVATE int sqlite3ParserFallback(int iToken){
+#ifdef YYFALLBACK
+ assert( iToken<(int)(sizeof(yyFallback)/sizeof(yyFallback[0])) );
+ return yyFallback[iToken];
+#else
+ (void)iToken;
+ return 0;
+#endif
+}
+
+/************** End of parse.c ***********************************************/
+/************** Begin file tokenize.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that splits an SQL input string up into
+** individual tokens and sends those tokens one-by-one over to the
+** parser for analysis.
+*/
+/* #include "sqliteInt.h" */
+/* #include <stdlib.h> */
+
+/* Character classes for tokenizing
+**
+** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented
+** using a lookup table, whereas a switch() directly on c uses a binary search.
+** The lookup table is much faster. To maximize speed, and to ensure that
+** a lookup table is used, all of the classes need to be small integers and
+** all of them need to be used within the switch.
+*/
+#define CC_X 0 /* The letter 'x', or start of BLOB literal */
+#define CC_KYWD0 1 /* First letter of a keyword */
+#define CC_KYWD 2 /* Alphabetics or '_'. Usable in a keyword */
+#define CC_DIGIT 3 /* Digits */
+#define CC_DOLLAR 4 /* '$' */
+#define CC_VARALPHA 5 /* '@', '#', ':'. Alphabetic SQL variables */
+#define CC_VARNUM 6 /* '?'. Numeric SQL variables */
+#define CC_SPACE 7 /* Space characters */
+#define CC_QUOTE 8 /* '"', '\'', or '`'. String literals, quoted ids */
+#define CC_QUOTE2 9 /* '['. [...] style quoted ids */
+#define CC_PIPE 10 /* '|'. Bitwise OR or concatenate */
+#define CC_MINUS 11 /* '-'. Minus or SQL-style comment */
+#define CC_LT 12 /* '<'. Part of < or <= or <> */
+#define CC_GT 13 /* '>'. Part of > or >= */
+#define CC_EQ 14 /* '='. Part of = or == */
+#define CC_BANG 15 /* '!'. Part of != */
+#define CC_SLASH 16 /* '/'. / or c-style comment */
+#define CC_LP 17 /* '(' */
+#define CC_RP 18 /* ')' */
+#define CC_SEMI 19 /* ';' */
+#define CC_PLUS 20 /* '+' */
+#define CC_STAR 21 /* '*' */
+#define CC_PERCENT 22 /* '%' */
+#define CC_COMMA 23 /* ',' */
+#define CC_AND 24 /* '&' */
+#define CC_TILDA 25 /* '~' */
+#define CC_DOT 26 /* '.' */
+#define CC_ID 27 /* unicode characters usable in IDs */
+#define CC_ILLEGAL 28 /* Illegal character */
+#define CC_NUL 29 /* 0x00 */
+#define CC_BOM 30 /* First byte of UTF8 BOM: 0xEF 0xBB 0xBF */
+
+static const unsigned char aiClass[] = {
+#ifdef SQLITE_ASCII
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
+/* 0x */ 29, 28, 28, 28, 28, 28, 28, 28, 28, 7, 7, 28, 7, 7, 28, 28,
+/* 1x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 2x */ 7, 15, 8, 5, 4, 22, 24, 8, 17, 18, 21, 20, 23, 11, 26, 16,
+/* 3x */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 19, 12, 14, 13, 6,
+/* 4x */ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+/* 5x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 9, 28, 28, 28, 2,
+/* 6x */ 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+/* 7x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 28, 10, 28, 25, 28,
+/* 8x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* 9x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Ax */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Bx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Cx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Dx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+/* Ex */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 30,
+/* Fx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27
+#endif
+#ifdef SQLITE_EBCDIC
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
+/* 0x */ 29, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 7, 7, 28, 28,
+/* 1x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 2x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 3x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+/* 4x */ 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 26, 12, 17, 20, 10,
+/* 5x */ 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 15, 4, 21, 18, 19, 28,
+/* 6x */ 11, 16, 28, 28, 28, 28, 28, 28, 28, 28, 28, 23, 22, 2, 13, 6,
+/* 7x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 8, 5, 5, 5, 8, 14, 8,
+/* 8x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* 9x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* Ax */ 28, 25, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28,
+/* Bx */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 9, 28, 28, 28, 28, 28,
+/* Cx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* Dx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28,
+/* Ex */ 28, 28, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28,
+/* Fx */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 28, 28, 28, 28, 28, 28,
+#endif
+};
+
+/*
+** The charMap() macro maps alphabetic characters (only) into their
+** lower-case ASCII equivalent. On ASCII machines, this is just
+** an upper-to-lower case map. On EBCDIC machines we also need
+** to adjust the encoding. The mapping is only valid for alphabetics
+** which are the only characters for which this feature is used.
+**
+** Used by keywordhash.h
+*/
+#ifdef SQLITE_ASCII
+# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
+#endif
+#ifdef SQLITE_EBCDIC
+# define charMap(X) ebcdicToAscii[(unsigned char)X]
+const unsigned char ebcdicToAscii[] = {
+/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
+ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
+ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
+ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
+ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
+ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
+ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
+};
+#endif
+
+/*
+** The sqlite3KeywordCode function looks up an identifier to determine if
+** it is a keyword. If it is a keyword, the token code of that keyword is
+** returned. If the input is not a keyword, TK_ID is returned.
+**
+** The implementation of this routine was generated by a program,
+** mkkeywordhash.c, located in the tool subdirectory of the distribution.
+** The output of the mkkeywordhash.c program is written into a file
+** named keywordhash.h and then included into this source file by
+** the #include below.
+*/
+/************** Include keywordhash.h in the middle of tokenize.c ************/
+/************** Begin file keywordhash.h *************************************/
+/***** This file contains automatically generated code ******
+**
+** The code in this file has been automatically generated by
+**
+** sqlite/tool/mkkeywordhash.c
+**
+** The code in this file implements a function that determines whether
+** or not a given identifier is really an SQL keyword. The same thing
+** might be implemented more directly using a hand-written hash table.
+** But by using this automatically generated code, the size of the code
+** is substantially reduced. This is important for embedded applications
+** on platforms with limited memory.
+*/
+/* Hash score: 231 */
+/* zKWText[] encodes 1007 bytes of keyword text in 667 bytes */
+/* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */
+/* ABLEFTHENDEFERRABLELSEXCLUDELETEMPORARYISNULLSAVEPOINTERSECT */
+/* IESNOTNULLIKEXCEPTRANSACTIONATURALTERAISEXCLUSIVEXISTS */
+/* CONSTRAINTOFFSETRIGGERANGENERATEDETACHAVINGLOBEGINNEREFERENCES */
+/* UNIQUERYWITHOUTERELEASEATTACHBETWEENOTHINGROUPSCASCADEFAULT */
+/* CASECOLLATECREATECURRENT_DATEIMMEDIATEJOINSERTMATCHPLANALYZE */
+/* PRAGMATERIALIZEDEFERREDISTINCTUPDATEVALUESVIRTUALWAYSWHENWHERE */
+/* CURSIVEABORTAFTERENAMEANDROPARTITIONAUTOINCREMENTCASTCOLUMN */
+/* COMMITCONFLICTCROSSCURRENT_TIMESTAMPRECEDINGFAILASTFILTER */
+/* EPLACEFIRSTFOLLOWINGFROMFULLIMITIFORDERESTRICTOTHERSOVER */
+/* ETURNINGRIGHTROLLBACKROWSUNBOUNDEDUNIONUSINGVACUUMVIEWINDOWBY */
+/* INITIALLYPRIMARY */
+static const char zKWText[666] = {
+ 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
+ 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
+ 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
+ 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
+ 'E','R','R','A','B','L','E','L','S','E','X','C','L','U','D','E','L','E',
+ 'T','E','M','P','O','R','A','R','Y','I','S','N','U','L','L','S','A','V',
+ 'E','P','O','I','N','T','E','R','S','E','C','T','I','E','S','N','O','T',
+ 'N','U','L','L','I','K','E','X','C','E','P','T','R','A','N','S','A','C',
+ 'T','I','O','N','A','T','U','R','A','L','T','E','R','A','I','S','E','X',
+ 'C','L','U','S','I','V','E','X','I','S','T','S','C','O','N','S','T','R',
+ 'A','I','N','T','O','F','F','S','E','T','R','I','G','G','E','R','A','N',
+ 'G','E','N','E','R','A','T','E','D','E','T','A','C','H','A','V','I','N',
+ 'G','L','O','B','E','G','I','N','N','E','R','E','F','E','R','E','N','C',
+ 'E','S','U','N','I','Q','U','E','R','Y','W','I','T','H','O','U','T','E',
+ 'R','E','L','E','A','S','E','A','T','T','A','C','H','B','E','T','W','E',
+ 'E','N','O','T','H','I','N','G','R','O','U','P','S','C','A','S','C','A',
+ 'D','E','F','A','U','L','T','C','A','S','E','C','O','L','L','A','T','E',
+ 'C','R','E','A','T','E','C','U','R','R','E','N','T','_','D','A','T','E',
+ 'I','M','M','E','D','I','A','T','E','J','O','I','N','S','E','R','T','M',
+ 'A','T','C','H','P','L','A','N','A','L','Y','Z','E','P','R','A','G','M',
+ 'A','T','E','R','I','A','L','I','Z','E','D','E','F','E','R','R','E','D',
+ 'I','S','T','I','N','C','T','U','P','D','A','T','E','V','A','L','U','E',
+ 'S','V','I','R','T','U','A','L','W','A','Y','S','W','H','E','N','W','H',
+ 'E','R','E','C','U','R','S','I','V','E','A','B','O','R','T','A','F','T',
+ 'E','R','E','N','A','M','E','A','N','D','R','O','P','A','R','T','I','T',
+ 'I','O','N','A','U','T','O','I','N','C','R','E','M','E','N','T','C','A',
+ 'S','T','C','O','L','U','M','N','C','O','M','M','I','T','C','O','N','F',
+ 'L','I','C','T','C','R','O','S','S','C','U','R','R','E','N','T','_','T',
+ 'I','M','E','S','T','A','M','P','R','E','C','E','D','I','N','G','F','A',
+ 'I','L','A','S','T','F','I','L','T','E','R','E','P','L','A','C','E','F',
+ 'I','R','S','T','F','O','L','L','O','W','I','N','G','F','R','O','M','F',
+ 'U','L','L','I','M','I','T','I','F','O','R','D','E','R','E','S','T','R',
+ 'I','C','T','O','T','H','E','R','S','O','V','E','R','E','T','U','R','N',
+ 'I','N','G','R','I','G','H','T','R','O','L','L','B','A','C','K','R','O',
+ 'W','S','U','N','B','O','U','N','D','E','D','U','N','I','O','N','U','S',
+ 'I','N','G','V','A','C','U','U','M','V','I','E','W','I','N','D','O','W',
+ 'B','Y','I','N','I','T','I','A','L','L','Y','P','R','I','M','A','R','Y',
+};
+/* aKWHash[i] is the hash value for the i-th keyword */
+static const unsigned char aKWHash[127] = {
+ 84, 92, 134, 82, 105, 29, 0, 0, 94, 0, 85, 72, 0,
+ 53, 35, 86, 15, 0, 42, 97, 54, 89, 135, 19, 0, 0,
+ 140, 0, 40, 129, 0, 22, 107, 0, 9, 0, 0, 123, 80,
+ 0, 78, 6, 0, 65, 103, 147, 0, 136, 115, 0, 0, 48,
+ 0, 90, 24, 0, 17, 0, 27, 70, 23, 26, 5, 60, 142,
+ 110, 122, 0, 73, 91, 71, 145, 61, 120, 74, 0, 49, 0,
+ 11, 41, 0, 113, 0, 0, 0, 109, 10, 111, 116, 125, 14,
+ 50, 124, 0, 100, 0, 18, 121, 144, 56, 130, 139, 88, 83,
+ 37, 30, 126, 0, 0, 108, 51, 131, 128, 0, 34, 0, 0,
+ 132, 0, 98, 38, 39, 0, 20, 45, 117, 93,
+};
+/* aKWNext[] forms the hash collision chain. If aKWHash[i]==0
+** then the i-th keyword has no more hash collisions. Otherwise,
+** the next keyword with the same hash is aKWHash[i]-1. */
+static const unsigned char aKWNext[148] = {0,
+ 0, 0, 0, 0, 4, 0, 43, 0, 0, 106, 114, 0, 0,
+ 0, 2, 0, 0, 143, 0, 0, 0, 13, 0, 0, 0, 0,
+ 141, 0, 0, 119, 52, 0, 0, 137, 12, 0, 0, 62, 0,
+ 138, 0, 133, 0, 0, 36, 0, 0, 28, 77, 0, 0, 0,
+ 0, 59, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 69, 0, 0, 0, 0, 0, 146, 3, 0, 58, 0, 1,
+ 75, 0, 0, 0, 31, 0, 0, 0, 0, 0, 127, 0, 104,
+ 0, 64, 66, 63, 0, 0, 0, 0, 0, 46, 0, 16, 8,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 101, 0,
+ 112, 21, 7, 67, 0, 79, 96, 118, 0, 0, 68, 0, 0,
+ 99, 44, 0, 55, 0, 76, 0, 95, 32, 33, 57, 25, 0,
+ 102, 0, 0, 87,
+};
+/* aKWLen[i] is the length (in bytes) of the i-th keyword */
+static const unsigned char aKWLen[148] = {0,
+ 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6,
+ 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 7,
+ 6, 9, 4, 2, 6, 5, 9, 9, 4, 7, 3, 2, 4,
+ 4, 6, 11, 6, 2, 7, 5, 5, 9, 6, 10, 4, 6,
+ 2, 3, 7, 5, 9, 6, 6, 4, 5, 5, 10, 6, 5,
+ 7, 4, 5, 7, 6, 7, 7, 6, 5, 7, 3, 7, 4,
+ 7, 6, 12, 9, 4, 6, 5, 4, 7, 6, 12, 8, 8,
+ 2, 6, 6, 7, 6, 4, 5, 9, 5, 5, 6, 3, 4,
+ 9, 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 9,
+ 4, 4, 6, 7, 5, 9, 4, 4, 5, 2, 5, 8, 6,
+ 4, 9, 5, 8, 4, 3, 9, 5, 5, 6, 4, 6, 2,
+ 2, 9, 3, 7,
+};
+/* aKWOffset[i] is the index into zKWText[] of the start of
+** the text for the i-th keyword. */
+static const unsigned short int aKWOffset[148] = {0,
+ 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33,
+ 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81,
+ 86, 90, 90, 94, 99, 101, 105, 111, 119, 123, 123, 123, 126,
+ 129, 132, 137, 142, 146, 147, 152, 156, 160, 168, 174, 181, 184,
+ 184, 187, 189, 195, 198, 206, 211, 216, 219, 222, 226, 236, 239,
+ 244, 244, 248, 252, 259, 265, 271, 277, 277, 283, 284, 288, 295,
+ 299, 306, 312, 324, 333, 335, 341, 346, 348, 355, 359, 370, 377,
+ 378, 385, 391, 397, 402, 408, 412, 415, 424, 429, 433, 439, 441,
+ 444, 453, 455, 457, 466, 470, 476, 482, 490, 495, 495, 495, 511,
+ 520, 523, 527, 532, 539, 544, 553, 557, 560, 565, 567, 571, 579,
+ 585, 588, 597, 602, 610, 610, 614, 623, 628, 633, 639, 642, 645,
+ 648, 650, 655, 659,
+};
+/* aKWCode[i] is the parser symbol code for the i-th keyword */
+static const unsigned char aKWCode[148] = {0,
+ TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE,
+ TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN,
+ TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD,
+ TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE,
+ TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE,
+ TK_EXCLUDE, TK_DELETE, TK_TEMP, TK_TEMP, TK_OR,
+ TK_ISNULL, TK_NULLS, TK_SAVEPOINT, TK_INTERSECT, TK_TIES,
+ TK_NOTNULL, TK_NOT, TK_NO, TK_NULL, TK_LIKE_KW,
+ TK_EXCEPT, TK_TRANSACTION,TK_ACTION, TK_ON, TK_JOIN_KW,
+ TK_ALTER, TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_CONSTRAINT,
+ TK_INTO, TK_OFFSET, TK_OF, TK_SET, TK_TRIGGER,
+ TK_RANGE, TK_GENERATED, TK_DETACH, TK_HAVING, TK_LIKE_KW,
+ TK_BEGIN, TK_JOIN_KW, TK_REFERENCES, TK_UNIQUE, TK_QUERY,
+ TK_WITHOUT, TK_WITH, TK_JOIN_KW, TK_RELEASE, TK_ATTACH,
+ TK_BETWEEN, TK_NOTHING, TK_GROUPS, TK_GROUP, TK_CASCADE,
+ TK_ASC, TK_DEFAULT, TK_CASE, TK_COLLATE, TK_CREATE,
+ TK_CTIME_KW, TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH,
+ TK_PLAN, TK_ANALYZE, TK_PRAGMA, TK_MATERIALIZED, TK_DEFERRED,
+ TK_DISTINCT, TK_IS, TK_UPDATE, TK_VALUES, TK_VIRTUAL,
+ TK_ALWAYS, TK_WHEN, TK_WHERE, TK_RECURSIVE, TK_ABORT,
+ TK_AFTER, TK_RENAME, TK_AND, TK_DROP, TK_PARTITION,
+ TK_AUTOINCR, TK_TO, TK_IN, TK_CAST, TK_COLUMNKW,
+ TK_COMMIT, TK_CONFLICT, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW,
+ TK_CURRENT, TK_PRECEDING, TK_FAIL, TK_LAST, TK_FILTER,
+ TK_REPLACE, TK_FIRST, TK_FOLLOWING, TK_FROM, TK_JOIN_KW,
+ TK_LIMIT, TK_IF, TK_ORDER, TK_RESTRICT, TK_OTHERS,
+ TK_OVER, TK_RETURNING, TK_JOIN_KW, TK_ROLLBACK, TK_ROWS,
+ TK_ROW, TK_UNBOUNDED, TK_UNION, TK_USING, TK_VACUUM,
+ TK_VIEW, TK_WINDOW, TK_DO, TK_BY, TK_INITIALLY,
+ TK_ALL, TK_PRIMARY,
+};
+/* Hash table decoded:
+** 0: INSERT
+** 1: IS
+** 2: ROLLBACK TRIGGER
+** 3: IMMEDIATE
+** 4: PARTITION
+** 5: TEMP
+** 6:
+** 7:
+** 8: VALUES WITHOUT
+** 9:
+** 10: MATCH
+** 11: NOTHING
+** 12:
+** 13: OF
+** 14: TIES IGNORE
+** 15: PLAN
+** 16: INSTEAD INDEXED
+** 17:
+** 18: TRANSACTION RIGHT
+** 19: WHEN
+** 20: SET HAVING
+** 21: MATERIALIZED IF
+** 22: ROWS
+** 23: SELECT
+** 24:
+** 25:
+** 26: VACUUM SAVEPOINT
+** 27:
+** 28: LIKE UNION VIRTUAL REFERENCES
+** 29: RESTRICT
+** 30:
+** 31: THEN REGEXP
+** 32: TO
+** 33:
+** 34: BEFORE
+** 35:
+** 36:
+** 37: FOLLOWING COLLATE CASCADE
+** 38: CREATE
+** 39:
+** 40: CASE REINDEX
+** 41: EACH
+** 42:
+** 43: QUERY
+** 44: AND ADD
+** 45: PRIMARY ANALYZE
+** 46:
+** 47: ROW ASC DETACH
+** 48: CURRENT_TIME CURRENT_DATE
+** 49:
+** 50:
+** 51: EXCLUSIVE TEMPORARY
+** 52:
+** 53: DEFERRED
+** 54: DEFERRABLE
+** 55:
+** 56: DATABASE
+** 57:
+** 58: DELETE VIEW GENERATED
+** 59: ATTACH
+** 60: END
+** 61: EXCLUDE
+** 62: ESCAPE DESC
+** 63: GLOB
+** 64: WINDOW ELSE
+** 65: COLUMN
+** 66: FIRST
+** 67:
+** 68: GROUPS ALL
+** 69: DISTINCT DROP KEY
+** 70: BETWEEN
+** 71: INITIALLY
+** 72: BEGIN
+** 73: FILTER CHECK ACTION
+** 74: GROUP INDEX
+** 75:
+** 76: EXISTS DEFAULT
+** 77:
+** 78: FOR CURRENT_TIMESTAMP
+** 79: EXCEPT
+** 80:
+** 81: CROSS
+** 82:
+** 83:
+** 84:
+** 85: CAST
+** 86: FOREIGN AUTOINCREMENT
+** 87: COMMIT
+** 88: CURRENT AFTER ALTER
+** 89: FULL FAIL CONFLICT
+** 90: EXPLAIN
+** 91: CONSTRAINT
+** 92: FROM ALWAYS
+** 93:
+** 94: ABORT
+** 95:
+** 96: AS DO
+** 97: REPLACE WITH RELEASE
+** 98: BY RENAME
+** 99: RANGE RAISE
+** 100: OTHERS
+** 101: USING NULLS
+** 102: PRAGMA
+** 103: JOIN ISNULL OFFSET
+** 104: NOT
+** 105: OR LAST LEFT
+** 106: LIMIT
+** 107:
+** 108:
+** 109: IN
+** 110: INTO
+** 111: OVER RECURSIVE
+** 112: ORDER OUTER
+** 113:
+** 114: INTERSECT UNBOUNDED
+** 115:
+** 116:
+** 117: RETURNING ON
+** 118:
+** 119: WHERE
+** 120: NO INNER
+** 121: NULL
+** 122:
+** 123: TABLE
+** 124: NATURAL NOTNULL
+** 125: PRECEDING
+** 126: UPDATE UNIQUE
+*/
+/* Check to see if z[0..n-1] is a keyword. If it is, write the
+** parser symbol code for that keyword into *pType. Always
+** return the integer n (the length of the token). */
+static int keywordCode(const char *z, int n, int *pType){
+ int i, j;
+ const char *zKW;
+ assert( n>=2 );
+ i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n*1) % 127;
+ for(i=(int)aKWHash[i]; i>0; i=aKWNext[i]){
+ if( aKWLen[i]!=n ) continue;
+ zKW = &zKWText[aKWOffset[i]];
+#ifdef SQLITE_ASCII
+ if( (z[0]&~0x20)!=zKW[0] ) continue;
+ if( (z[1]&~0x20)!=zKW[1] ) continue;
+ j = 2;
+ while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }
+#endif
+#ifdef SQLITE_EBCDIC
+ if( toupper(z[0])!=zKW[0] ) continue;
+ if( toupper(z[1])!=zKW[1] ) continue;
+ j = 2;
+ while( j<n && toupper(z[j])==zKW[j] ){ j++; }
+#endif
+ if( j<n ) continue;
+ testcase( i==1 ); /* REINDEX */
+ testcase( i==2 ); /* INDEXED */
+ testcase( i==3 ); /* INDEX */
+ testcase( i==4 ); /* DESC */
+ testcase( i==5 ); /* ESCAPE */
+ testcase( i==6 ); /* EACH */
+ testcase( i==7 ); /* CHECK */
+ testcase( i==8 ); /* KEY */
+ testcase( i==9 ); /* BEFORE */
+ testcase( i==10 ); /* FOREIGN */
+ testcase( i==11 ); /* FOR */
+ testcase( i==12 ); /* IGNORE */
+ testcase( i==13 ); /* REGEXP */
+ testcase( i==14 ); /* EXPLAIN */
+ testcase( i==15 ); /* INSTEAD */
+ testcase( i==16 ); /* ADD */
+ testcase( i==17 ); /* DATABASE */
+ testcase( i==18 ); /* AS */
+ testcase( i==19 ); /* SELECT */
+ testcase( i==20 ); /* TABLE */
+ testcase( i==21 ); /* LEFT */
+ testcase( i==22 ); /* THEN */
+ testcase( i==23 ); /* END */
+ testcase( i==24 ); /* DEFERRABLE */
+ testcase( i==25 ); /* ELSE */
+ testcase( i==26 ); /* EXCLUDE */
+ testcase( i==27 ); /* DELETE */
+ testcase( i==28 ); /* TEMPORARY */
+ testcase( i==29 ); /* TEMP */
+ testcase( i==30 ); /* OR */
+ testcase( i==31 ); /* ISNULL */
+ testcase( i==32 ); /* NULLS */
+ testcase( i==33 ); /* SAVEPOINT */
+ testcase( i==34 ); /* INTERSECT */
+ testcase( i==35 ); /* TIES */
+ testcase( i==36 ); /* NOTNULL */
+ testcase( i==37 ); /* NOT */
+ testcase( i==38 ); /* NO */
+ testcase( i==39 ); /* NULL */
+ testcase( i==40 ); /* LIKE */
+ testcase( i==41 ); /* EXCEPT */
+ testcase( i==42 ); /* TRANSACTION */
+ testcase( i==43 ); /* ACTION */
+ testcase( i==44 ); /* ON */
+ testcase( i==45 ); /* NATURAL */
+ testcase( i==46 ); /* ALTER */
+ testcase( i==47 ); /* RAISE */
+ testcase( i==48 ); /* EXCLUSIVE */
+ testcase( i==49 ); /* EXISTS */
+ testcase( i==50 ); /* CONSTRAINT */
+ testcase( i==51 ); /* INTO */
+ testcase( i==52 ); /* OFFSET */
+ testcase( i==53 ); /* OF */
+ testcase( i==54 ); /* SET */
+ testcase( i==55 ); /* TRIGGER */
+ testcase( i==56 ); /* RANGE */
+ testcase( i==57 ); /* GENERATED */
+ testcase( i==58 ); /* DETACH */
+ testcase( i==59 ); /* HAVING */
+ testcase( i==60 ); /* GLOB */
+ testcase( i==61 ); /* BEGIN */
+ testcase( i==62 ); /* INNER */
+ testcase( i==63 ); /* REFERENCES */
+ testcase( i==64 ); /* UNIQUE */
+ testcase( i==65 ); /* QUERY */
+ testcase( i==66 ); /* WITHOUT */
+ testcase( i==67 ); /* WITH */
+ testcase( i==68 ); /* OUTER */
+ testcase( i==69 ); /* RELEASE */
+ testcase( i==70 ); /* ATTACH */
+ testcase( i==71 ); /* BETWEEN */
+ testcase( i==72 ); /* NOTHING */
+ testcase( i==73 ); /* GROUPS */
+ testcase( i==74 ); /* GROUP */
+ testcase( i==75 ); /* CASCADE */
+ testcase( i==76 ); /* ASC */
+ testcase( i==77 ); /* DEFAULT */
+ testcase( i==78 ); /* CASE */
+ testcase( i==79 ); /* COLLATE */
+ testcase( i==80 ); /* CREATE */
+ testcase( i==81 ); /* CURRENT_DATE */
+ testcase( i==82 ); /* IMMEDIATE */
+ testcase( i==83 ); /* JOIN */
+ testcase( i==84 ); /* INSERT */
+ testcase( i==85 ); /* MATCH */
+ testcase( i==86 ); /* PLAN */
+ testcase( i==87 ); /* ANALYZE */
+ testcase( i==88 ); /* PRAGMA */
+ testcase( i==89 ); /* MATERIALIZED */
+ testcase( i==90 ); /* DEFERRED */
+ testcase( i==91 ); /* DISTINCT */
+ testcase( i==92 ); /* IS */
+ testcase( i==93 ); /* UPDATE */
+ testcase( i==94 ); /* VALUES */
+ testcase( i==95 ); /* VIRTUAL */
+ testcase( i==96 ); /* ALWAYS */
+ testcase( i==97 ); /* WHEN */
+ testcase( i==98 ); /* WHERE */
+ testcase( i==99 ); /* RECURSIVE */
+ testcase( i==100 ); /* ABORT */
+ testcase( i==101 ); /* AFTER */
+ testcase( i==102 ); /* RENAME */
+ testcase( i==103 ); /* AND */
+ testcase( i==104 ); /* DROP */
+ testcase( i==105 ); /* PARTITION */
+ testcase( i==106 ); /* AUTOINCREMENT */
+ testcase( i==107 ); /* TO */
+ testcase( i==108 ); /* IN */
+ testcase( i==109 ); /* CAST */
+ testcase( i==110 ); /* COLUMN */
+ testcase( i==111 ); /* COMMIT */
+ testcase( i==112 ); /* CONFLICT */
+ testcase( i==113 ); /* CROSS */
+ testcase( i==114 ); /* CURRENT_TIMESTAMP */
+ testcase( i==115 ); /* CURRENT_TIME */
+ testcase( i==116 ); /* CURRENT */
+ testcase( i==117 ); /* PRECEDING */
+ testcase( i==118 ); /* FAIL */
+ testcase( i==119 ); /* LAST */
+ testcase( i==120 ); /* FILTER */
+ testcase( i==121 ); /* REPLACE */
+ testcase( i==122 ); /* FIRST */
+ testcase( i==123 ); /* FOLLOWING */
+ testcase( i==124 ); /* FROM */
+ testcase( i==125 ); /* FULL */
+ testcase( i==126 ); /* LIMIT */
+ testcase( i==127 ); /* IF */
+ testcase( i==128 ); /* ORDER */
+ testcase( i==129 ); /* RESTRICT */
+ testcase( i==130 ); /* OTHERS */
+ testcase( i==131 ); /* OVER */
+ testcase( i==132 ); /* RETURNING */
+ testcase( i==133 ); /* RIGHT */
+ testcase( i==134 ); /* ROLLBACK */
+ testcase( i==135 ); /* ROWS */
+ testcase( i==136 ); /* ROW */
+ testcase( i==137 ); /* UNBOUNDED */
+ testcase( i==138 ); /* UNION */
+ testcase( i==139 ); /* USING */
+ testcase( i==140 ); /* VACUUM */
+ testcase( i==141 ); /* VIEW */
+ testcase( i==142 ); /* WINDOW */
+ testcase( i==143 ); /* DO */
+ testcase( i==144 ); /* BY */
+ testcase( i==145 ); /* INITIALLY */
+ testcase( i==146 ); /* ALL */
+ testcase( i==147 ); /* PRIMARY */
+ *pType = aKWCode[i];
+ break;
+ }
+ return n;
+}
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
+ int id = TK_ID;
+ if( n>=2 ) keywordCode((char*)z, n, &id);
+ return id;
+}
+#define SQLITE_N_KEYWORD 147
+SQLITE_API int sqlite3_keyword_name(int i,const char **pzName,int *pnName){
+ if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR;
+ i++;
+ *pzName = zKWText + aKWOffset[i];
+ *pnName = aKWLen[i];
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }
+SQLITE_API int sqlite3_keyword_check(const char *zName, int nName){
+ return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);
+}
+
+/************** End of keywordhash.h *****************************************/
+/************** Continuing where we left off in tokenize.c *******************/
+
+
+/*
+** If X is a character that can be used in an identifier then
+** IdChar(X) will be true. Otherwise it is false.
+**
+** For ASCII, any character with the high-order bit set is
+** allowed in an identifier. For 7-bit characters,
+** sqlite3IsIdChar[X] must be 1.
+**
+** For EBCDIC, the rules are more complex but have the same
+** end result.
+**
+** Ticket #1066. the SQL standard does not allow '$' in the
+** middle of identifiers. But many SQL implementations do.
+** SQLite will allow '$' in identifiers for compatibility.
+** But the feature is undocumented.
+*/
+#ifdef SQLITE_ASCII
+#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
+};
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+
+/* Make the IdChar function accessible from ctime.c and alter.c */
+SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** Return the id of the next token in string (*pz). Before returning, set
+** (*pz) to point to the byte following the parsed token.
+*/
+static int getToken(const unsigned char **pz){
+ const unsigned char *z = *pz;
+ int t; /* Token type to return */
+ do {
+ z += sqlite3GetToken(z, &t);
+ }while( t==TK_SPACE );
+ if( t==TK_ID
+ || t==TK_STRING
+ || t==TK_JOIN_KW
+ || t==TK_WINDOW
+ || t==TK_OVER
+ || sqlite3ParserFallback(t)==TK_ID
+ ){
+ t = TK_ID;
+ }
+ *pz = z;
+ return t;
+}
+
+/*
+** The following three functions are called immediately after the tokenizer
+** reads the keywords WINDOW, OVER and FILTER, respectively, to determine
+** whether the token should be treated as a keyword or an SQL identifier.
+** This cannot be handled by the usual lemon %fallback method, due to
+** the ambiguity in some constructions. e.g.
+**
+** SELECT sum(x) OVER ...
+**
+** In the above, "OVER" might be a keyword, or it might be an alias for the
+** sum(x) expression. If a "%fallback ID OVER" directive were added to
+** grammar, then SQLite would always treat "OVER" as an alias, making it
+** impossible to call a window-function without a FILTER clause.
+**
+** WINDOW is treated as a keyword if:
+**
+** * the following token is an identifier, or a keyword that can fallback
+** to being an identifier, and
+** * the token after than one is TK_AS.
+**
+** OVER is a keyword if:
+**
+** * the previous token was TK_RP, and
+** * the next token is either TK_LP or an identifier.
+**
+** FILTER is a keyword if:
+**
+** * the previous token was TK_RP, and
+** * the next token is TK_LP.
+*/
+static int analyzeWindowKeyword(const unsigned char *z){
+ int t;
+ t = getToken(&z);
+ if( t!=TK_ID ) return TK_ID;
+ t = getToken(&z);
+ if( t!=TK_AS ) return TK_ID;
+ return TK_WINDOW;
+}
+static int analyzeOverKeyword(const unsigned char *z, int lastToken){
+ if( lastToken==TK_RP ){
+ int t = getToken(&z);
+ if( t==TK_LP || t==TK_ID ) return TK_OVER;
+ }
+ return TK_ID;
+}
+static int analyzeFilterKeyword(const unsigned char *z, int lastToken){
+ if( lastToken==TK_RP && getToken(&z)==TK_LP ){
+ return TK_FILTER;
+ }
+ return TK_ID;
+}
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Return the length (in bytes) of the token that begins at z[0].
+** Store the token type in *tokenType before returning.
+*/
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
+ int i, c;
+ switch( aiClass[*z] ){ /* Switch on the character-class of the first byte
+ ** of the token. See the comment on the CC_ defines
+ ** above. */
+ case CC_SPACE: {
+ testcase( z[0]==' ' );
+ testcase( z[0]=='\t' );
+ testcase( z[0]=='\n' );
+ testcase( z[0]=='\f' );
+ testcase( z[0]=='\r' );
+ for(i=1; sqlite3Isspace(z[i]); i++){}
+ *tokenType = TK_SPACE;
+ return i;
+ }
+ case CC_MINUS: {
+ if( z[1]=='-' ){
+ for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
+ *tokenType = TK_SPACE; /* IMP: R-22934-25134 */
+ return i;
+ }else if( z[1]=='>' ){
+ *tokenType = TK_PTR;
+ return 2 + (z[2]=='>');
+ }
+ *tokenType = TK_MINUS;
+ return 1;
+ }
+ case CC_LP: {
+ *tokenType = TK_LP;
+ return 1;
+ }
+ case CC_RP: {
+ *tokenType = TK_RP;
+ return 1;
+ }
+ case CC_SEMI: {
+ *tokenType = TK_SEMI;
+ return 1;
+ }
+ case CC_PLUS: {
+ *tokenType = TK_PLUS;
+ return 1;
+ }
+ case CC_STAR: {
+ *tokenType = TK_STAR;
+ return 1;
+ }
+ case CC_SLASH: {
+ if( z[1]!='*' || z[2]==0 ){
+ *tokenType = TK_SLASH;
+ return 1;
+ }
+ for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
+ if( c ) i++;
+ *tokenType = TK_SPACE; /* IMP: R-22934-25134 */
+ return i;
+ }
+ case CC_PERCENT: {
+ *tokenType = TK_REM;
+ return 1;
+ }
+ case CC_EQ: {
+ *tokenType = TK_EQ;
+ return 1 + (z[1]=='=');
+ }
+ case CC_LT: {
+ if( (c=z[1])=='=' ){
+ *tokenType = TK_LE;
+ return 2;
+ }else if( c=='>' ){
+ *tokenType = TK_NE;
+ return 2;
+ }else if( c=='<' ){
+ *tokenType = TK_LSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_LT;
+ return 1;
+ }
+ }
+ case CC_GT: {
+ if( (c=z[1])=='=' ){
+ *tokenType = TK_GE;
+ return 2;
+ }else if( c=='>' ){
+ *tokenType = TK_RSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_GT;
+ return 1;
+ }
+ }
+ case CC_BANG: {
+ if( z[1]!='=' ){
+ *tokenType = TK_ILLEGAL;
+ return 1;
+ }else{
+ *tokenType = TK_NE;
+ return 2;
+ }
+ }
+ case CC_PIPE: {
+ if( z[1]!='|' ){
+ *tokenType = TK_BITOR;
+ return 1;
+ }else{
+ *tokenType = TK_CONCAT;
+ return 2;
+ }
+ }
+ case CC_COMMA: {
+ *tokenType = TK_COMMA;
+ return 1;
+ }
+ case CC_AND: {
+ *tokenType = TK_BITAND;
+ return 1;
+ }
+ case CC_TILDA: {
+ *tokenType = TK_BITNOT;
+ return 1;
+ }
+ case CC_QUOTE: {
+ int delim = z[0];
+ testcase( delim=='`' );
+ testcase( delim=='\'' );
+ testcase( delim=='"' );
+ for(i=1; (c=z[i])!=0; i++){
+ if( c==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ if( c=='\'' ){
+ *tokenType = TK_STRING;
+ return i+1;
+ }else if( c!=0 ){
+ *tokenType = TK_ID;
+ return i+1;
+ }else{
+ *tokenType = TK_ILLEGAL;
+ return i;
+ }
+ }
+ case CC_DOT: {
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( !sqlite3Isdigit(z[1]) )
+#endif
+ {
+ *tokenType = TK_DOT;
+ return 1;
+ }
+ /* If the next character is a digit, this is a floating point
+ ** number that begins with ".". Fall thru into the next case */
+ /* no break */ deliberate_fall_through
+ }
+ case CC_DIGIT: {
+ testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' );
+ testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' );
+ testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' );
+ testcase( z[0]=='9' ); testcase( z[0]=='.' );
+ *tokenType = TK_INTEGER;
+#ifndef SQLITE_OMIT_HEX_INTEGER
+ if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){
+ for(i=3; sqlite3Isxdigit(z[i]); i++){}
+ return i;
+ }
+#endif
+ for(i=0; sqlite3Isdigit(z[i]); i++){}
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( z[i]=='.' ){
+ i++;
+ while( sqlite3Isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+ if( (z[i]=='e' || z[i]=='E') &&
+ ( sqlite3Isdigit(z[i+1])
+ || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
+ )
+ ){
+ i += 2;
+ while( sqlite3Isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+#endif
+ while( IdChar(z[i]) ){
+ *tokenType = TK_ILLEGAL;
+ i++;
+ }
+ return i;
+ }
+ case CC_QUOTE2: {
+ for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
+ *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
+ return i;
+ }
+ case CC_VARNUM: {
+ *tokenType = TK_VARIABLE;
+ for(i=1; sqlite3Isdigit(z[i]); i++){}
+ return i;
+ }
+ case CC_DOLLAR:
+ case CC_VARALPHA: {
+ int n = 0;
+ testcase( z[0]=='$' ); testcase( z[0]=='@' );
+ testcase( z[0]==':' ); testcase( z[0]=='#' );
+ *tokenType = TK_VARIABLE;
+ for(i=1; (c=z[i])!=0; i++){
+ if( IdChar(c) ){
+ n++;
+#ifndef SQLITE_OMIT_TCL_VARIABLE
+ }else if( c=='(' && n>0 ){
+ do{
+ i++;
+ }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
+ if( c==')' ){
+ i++;
+ }else{
+ *tokenType = TK_ILLEGAL;
+ }
+ break;
+ }else if( c==':' && z[i+1]==':' ){
+ i++;
+#endif
+ }else{
+ break;
+ }
+ }
+ if( n==0 ) *tokenType = TK_ILLEGAL;
+ return i;
+ }
+ case CC_KYWD0: {
+ if( aiClass[z[1]]>CC_KYWD ){ i = 1; break; }
+ for(i=2; aiClass[z[i]]<=CC_KYWD; i++){}
+ if( IdChar(z[i]) ){
+ /* This token started out using characters that can appear in keywords,
+ ** but z[i] is a character not allowed within keywords, so this must
+ ** be an identifier instead */
+ i++;
+ break;
+ }
+ *tokenType = TK_ID;
+ return keywordCode((char*)z, i, tokenType);
+ }
+ case CC_X: {
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ testcase( z[0]=='x' ); testcase( z[0]=='X' );
+ if( z[1]=='\'' ){
+ *tokenType = TK_BLOB;
+ for(i=2; sqlite3Isxdigit(z[i]); i++){}
+ if( z[i]!='\'' || i%2 ){
+ *tokenType = TK_ILLEGAL;
+ while( z[i] && z[i]!='\'' ){ i++; }
+ }
+ if( z[i] ) i++;
+ return i;
+ }
+#endif
+ /* If it is not a BLOB literal, then it must be an ID, since no
+ ** SQL keywords start with the letter 'x'. Fall through */
+ /* no break */ deliberate_fall_through
+ }
+ case CC_KYWD:
+ case CC_ID: {
+ i = 1;
+ break;
+ }
+ case CC_BOM: {
+ if( z[1]==0xbb && z[2]==0xbf ){
+ *tokenType = TK_SPACE;
+ return 3;
+ }
+ i = 1;
+ break;
+ }
+ case CC_NUL: {
+ *tokenType = TK_ILLEGAL;
+ return 0;
+ }
+ default: {
+ *tokenType = TK_ILLEGAL;
+ return 1;
+ }
+ }
+ while( IdChar(z[i]) ){ i++; }
+ *tokenType = TK_ID;
+ return i;
+}
+
+/*
+** Run the parser on the given SQL string.
+*/
+SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql){
+ int nErr = 0; /* Number of errors encountered */
+ void *pEngine; /* The LEMON-generated LALR(1) parser */
+ int n = 0; /* Length of the next token token */
+ int tokenType; /* type of the next token */
+ int lastTokenParsed = -1; /* type of the previous token */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int mxSqlLen; /* Max length of an SQL string */
+ Parse *pParentParse = 0; /* Outer parse context, if any */
+#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
+ yyParser sEngine; /* Space to hold the Lemon-generated Parser object */
+#endif
+ VVA_ONLY( u8 startedWithOom = db->mallocFailed );
+
+ assert( zSql!=0 );
+ mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+ if( db->nVdbeActive==0 ){
+ AtomicStore(&db->u1.isInterrupted, 0);
+ }
+ pParse->rc = SQLITE_OK;
+ pParse->zTail = zSql;
+#ifdef SQLITE_DEBUG
+ if( db->flags & SQLITE_ParserTrace ){
+ printf("parser: [[[%s]]]\n", zSql);
+ sqlite3ParserTrace(stdout, "parser: ");
+ }else{
+ sqlite3ParserTrace(0, 0);
+ }
+#endif
+#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
+ pEngine = &sEngine;
+ sqlite3ParserInit(pEngine, pParse);
+#else
+ pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse);
+ if( pEngine==0 ){
+ sqlite3OomFault(db);
+ return SQLITE_NOMEM_BKPT;
+ }
+#endif
+ assert( pParse->pNewTable==0 );
+ assert( pParse->pNewTrigger==0 );
+ assert( pParse->nVar==0 );
+ assert( pParse->pVList==0 );
+ pParentParse = db->pParse;
+ db->pParse = pParse;
+ while( 1 ){
+ n = sqlite3GetToken((u8*)zSql, &tokenType);
+ mxSqlLen -= n;
+ if( mxSqlLen<0 ){
+ pParse->rc = SQLITE_TOOBIG;
+ pParse->nErr++;
+ break;
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( tokenType>=TK_WINDOW ){
+ assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER
+ || tokenType==TK_ILLEGAL || tokenType==TK_WINDOW
+ );
+#else
+ if( tokenType>=TK_SPACE ){
+ assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ if( AtomicLoad(&db->u1.isInterrupted) ){
+ pParse->rc = SQLITE_INTERRUPT;
+ pParse->nErr++;
+ break;
+ }
+ if( tokenType==TK_SPACE ){
+ zSql += n;
+ continue;
+ }
+ if( zSql[0]==0 ){
+ /* Upon reaching the end of input, call the parser two more times
+ ** with tokens TK_SEMI and 0, in that order. */
+ if( lastTokenParsed==TK_SEMI ){
+ tokenType = 0;
+ }else if( lastTokenParsed==0 ){
+ break;
+ }else{
+ tokenType = TK_SEMI;
+ }
+ n = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ }else if( tokenType==TK_WINDOW ){
+ assert( n==6 );
+ tokenType = analyzeWindowKeyword((const u8*)&zSql[6]);
+ }else if( tokenType==TK_OVER ){
+ assert( n==4 );
+ tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed);
+ }else if( tokenType==TK_FILTER ){
+ assert( n==6 );
+ tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed);
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ }else{
+ Token x;
+ x.z = zSql;
+ x.n = n;
+ sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"", &x);
+ break;
+ }
+ }
+ pParse->sLastToken.z = zSql;
+ pParse->sLastToken.n = n;
+ sqlite3Parser(pEngine, tokenType, pParse->sLastToken);
+ lastTokenParsed = tokenType;
+ zSql += n;
+ assert( db->mallocFailed==0 || pParse->rc!=SQLITE_OK || startedWithOom );
+ if( pParse->rc!=SQLITE_OK ) break;
+ }
+ assert( nErr==0 );
+#ifdef YYTRACKMAXSTACKDEPTH
+ sqlite3_mutex_enter(sqlite3MallocMutex());
+ sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
+ sqlite3ParserStackPeak(pEngine)
+ );
+ sqlite3_mutex_leave(sqlite3MallocMutex());
+#endif /* YYDEBUG */
+#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
+ sqlite3ParserFinalize(pEngine);
+#else
+ sqlite3ParserFree(pEngine, sqlite3_free);
+#endif
+ if( db->mallocFailed ){
+ pParse->rc = SQLITE_NOMEM_BKPT;
+ }
+ if( pParse->zErrMsg || (pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE) ){
+ if( pParse->zErrMsg==0 ){
+ pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
+ }
+ sqlite3_log(pParse->rc, "%s in \"%s\"", pParse->zErrMsg, pParse->zTail);
+ nErr++;
+ }
+ pParse->zTail = zSql;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_free(pParse->apVtabLock);
+#endif
+
+ if( pParse->pNewTable && !IN_SPECIAL_PARSE ){
+ /* If the pParse->declareVtab flag is set, do not delete any table
+ ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
+ ** will take responsibility for freeing the Table structure.
+ */
+ sqlite3DeleteTable(db, pParse->pNewTable);
+ }
+ if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){
+ sqlite3DeleteTrigger(db, pParse->pNewTrigger);
+ }
+ if( pParse->pVList ) sqlite3DbNNFreeNN(db, pParse->pVList);
+ db->pParse = pParentParse;
+ assert( nErr==0 || pParse->rc!=SQLITE_OK );
+ return nErr;
+}
+
+
+#ifdef SQLITE_ENABLE_NORMALIZE
+/*
+** Insert a single space character into pStr if the current string
+** ends with an identifier
+*/
+static void addSpaceSeparator(sqlite3_str *pStr){
+ if( pStr->nChar && sqlite3IsIdChar(pStr->zText[pStr->nChar-1]) ){
+ sqlite3_str_append(pStr, " ", 1);
+ }
+}
+
+/*
+** Compute a normalization of the SQL given by zSql[0..nSql-1]. Return
+** the normalization in space obtained from sqlite3DbMalloc(). Or return
+** NULL if anything goes wrong or if zSql is NULL.
+*/
+SQLITE_PRIVATE char *sqlite3Normalize(
+ Vdbe *pVdbe, /* VM being reprepared */
+ const char *zSql /* The original SQL string */
+){
+ sqlite3 *db; /* The database connection */
+ int i; /* Next unread byte of zSql[] */
+ int n; /* length of current token */
+ int tokenType; /* type of current token */
+ int prevType = 0; /* Previous non-whitespace token */
+ int nParen; /* Number of nested levels of parentheses */
+ int iStartIN; /* Start of RHS of IN operator in z[] */
+ int nParenAtIN; /* Value of nParent at start of RHS of IN operator */
+ u32 j; /* Bytes of normalized SQL generated so far */
+ sqlite3_str *pStr; /* The normalized SQL string under construction */
+
+ db = sqlite3VdbeDb(pVdbe);
+ tokenType = -1;
+ nParen = iStartIN = nParenAtIN = 0;
+ pStr = sqlite3_str_new(db);
+ assert( pStr!=0 ); /* sqlite3_str_new() never returns NULL */
+ for(i=0; zSql[i] && pStr->accError==0; i+=n){
+ if( tokenType!=TK_SPACE ){
+ prevType = tokenType;
+ }
+ n = sqlite3GetToken((unsigned char*)zSql+i, &tokenType);
+ if( NEVER(n<=0) ) break;
+ switch( tokenType ){
+ case TK_SPACE: {
+ break;
+ }
+ case TK_NULL: {
+ if( prevType==TK_IS || prevType==TK_NOT ){
+ sqlite3_str_append(pStr, " NULL", 5);
+ break;
+ }
+ /* Fall through */
+ }
+ case TK_STRING:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_VARIABLE:
+ case TK_BLOB: {
+ sqlite3_str_append(pStr, "?", 1);
+ break;
+ }
+ case TK_LP: {
+ nParen++;
+ if( prevType==TK_IN ){
+ iStartIN = pStr->nChar;
+ nParenAtIN = nParen;
+ }
+ sqlite3_str_append(pStr, "(", 1);
+ break;
+ }
+ case TK_RP: {
+ if( iStartIN>0 && nParen==nParenAtIN ){
+ assert( pStr->nChar>=(u32)iStartIN );
+ pStr->nChar = iStartIN+1;
+ sqlite3_str_append(pStr, "?,?,?", 5);
+ iStartIN = 0;
+ }
+ nParen--;
+ sqlite3_str_append(pStr, ")", 1);
+ break;
+ }
+ case TK_ID: {
+ iStartIN = 0;
+ j = pStr->nChar;
+ if( sqlite3Isquote(zSql[i]) ){
+ char *zId = sqlite3DbStrNDup(db, zSql+i, n);
+ int nId;
+ int eType = 0;
+ if( zId==0 ) break;
+ sqlite3Dequote(zId);
+ if( zSql[i]=='"' && sqlite3VdbeUsesDoubleQuotedString(pVdbe, zId) ){
+ sqlite3_str_append(pStr, "?", 1);
+ sqlite3DbFree(db, zId);
+ break;
+ }
+ nId = sqlite3Strlen30(zId);
+ if( sqlite3GetToken((u8*)zId, &eType)==nId && eType==TK_ID ){
+ addSpaceSeparator(pStr);
+ sqlite3_str_append(pStr, zId, nId);
+ }else{
+ sqlite3_str_appendf(pStr, "\"%w\"", zId);
+ }
+ sqlite3DbFree(db, zId);
+ }else{
+ addSpaceSeparator(pStr);
+ sqlite3_str_append(pStr, zSql+i, n);
+ }
+ while( j<pStr->nChar ){
+ pStr->zText[j] = sqlite3Tolower(pStr->zText[j]);
+ j++;
+ }
+ break;
+ }
+ case TK_SELECT: {
+ iStartIN = 0;
+ /* fall through */
+ }
+ default: {
+ if( sqlite3IsIdChar(zSql[i]) ) addSpaceSeparator(pStr);
+ j = pStr->nChar;
+ sqlite3_str_append(pStr, zSql+i, n);
+ while( j<pStr->nChar ){
+ pStr->zText[j] = sqlite3Toupper(pStr->zText[j]);
+ j++;
+ }
+ break;
+ }
+ }
+ }
+ if( tokenType!=TK_SEMI ) sqlite3_str_append(pStr, ";", 1);
+ return sqlite3_str_finish(pStr);
+}
+#endif /* SQLITE_ENABLE_NORMALIZE */
+
+/************** End of tokenize.c ********************************************/
+/************** Begin file complete.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that implements the sqlite3_complete() API.
+** This code used to be part of the tokenizer.c source file. But by
+** separating it out, the code will be automatically omitted from
+** static links that do not use it.
+*/
+/* #include "sqliteInt.h" */
+#ifndef SQLITE_OMIT_COMPLETE
+
+/*
+** This is defined in tokenize.c. We just have to import the definition.
+*/
+#ifndef SQLITE_AMALGAMATION
+#ifdef SQLITE_ASCII
+#define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+#endif /* SQLITE_AMALGAMATION */
+
+
+/*
+** Token types used by the sqlite3_complete() routine. See the header
+** comments on that procedure for additional information.
+*/
+#define tkSEMI 0
+#define tkWS 1
+#define tkOTHER 2
+#ifndef SQLITE_OMIT_TRIGGER
+#define tkEXPLAIN 3
+#define tkCREATE 4
+#define tkTEMP 5
+#define tkTRIGGER 6
+#define tkEND 7
+#endif
+
+/*
+** Return TRUE if the given SQL string ends in a semicolon.
+**
+** Special handling is require for CREATE TRIGGER statements.
+** Whenever the CREATE TRIGGER keywords are seen, the statement
+** must end with ";END;".
+**
+** This implementation uses a state machine with 8 states:
+**
+** (0) INVALID We have not yet seen a non-whitespace character.
+**
+** (1) START At the beginning or end of an SQL statement. This routine
+** returns 1 if it ends in the START state and 0 if it ends
+** in any other state.
+**
+** (2) NORMAL We are in the middle of statement which ends with a single
+** semicolon.
+**
+** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
+** a statement.
+**
+** (4) CREATE The keyword CREATE has been seen at the beginning of a
+** statement, possibly preceded by EXPLAIN and/or followed by
+** TEMP or TEMPORARY
+**
+** (5) TRIGGER We are in the middle of a trigger definition that must be
+** ended by a semicolon, the keyword END, and another semicolon.
+**
+** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at
+** the end of a trigger definition.
+**
+** (7) END We've seen the ";END" of the ";END;" that occurs at the end
+** of a trigger definition.
+**
+** Transitions between states above are determined by tokens extracted
+** from the input. The following tokens are significant:
+**
+** (0) tkSEMI A semicolon.
+** (1) tkWS Whitespace.
+** (2) tkOTHER Any other SQL token.
+** (3) tkEXPLAIN The "explain" keyword.
+** (4) tkCREATE The "create" keyword.
+** (5) tkTEMP The "temp" or "temporary" keyword.
+** (6) tkTRIGGER The "trigger" keyword.
+** (7) tkEND The "end" keyword.
+**
+** Whitespace never causes a state transition and is always ignored.
+** This means that a SQL string of all whitespace is invalid.
+**
+** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
+** to recognize the end of a trigger can be omitted. All we have to do
+** is look for a semicolon that is not part of an string or comment.
+*/
+SQLITE_API int sqlite3_complete(const char *zSql){
+ u8 state = 0; /* Current state, using numbers defined in header comment */
+ u8 token; /* Value of the next token */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* A complex statement machine used to detect the end of a CREATE TRIGGER
+ ** statement. This is the normal case.
+ */
+ static const u8 trans[8][8] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
+ /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, },
+ /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, },
+ /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, },
+ /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, },
+ /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, },
+ /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, },
+ /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, },
+ /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, },
+ };
+#else
+ /* If triggers are not supported by this compile then the statement machine
+ ** used to detect the end of a statement is much simpler
+ */
+ static const u8 trans[3][3] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER */
+ /* 0 INVALID: */ { 1, 0, 2, },
+ /* 1 START: */ { 1, 1, 2, },
+ /* 2 NORMAL: */ { 1, 2, 2, },
+ };
+#endif /* SQLITE_OMIT_TRIGGER */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zSql==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ while( *zSql ){
+ switch( *zSql ){
+ case ';': { /* A semicolon */
+ token = tkSEMI;
+ break;
+ }
+ case ' ':
+ case '\r':
+ case '\t':
+ case '\n':
+ case '\f': { /* White space is ignored */
+ token = tkWS;
+ break;
+ }
+ case '/': { /* C-style comments */
+ if( zSql[1]!='*' ){
+ token = tkOTHER;
+ break;
+ }
+ zSql += 2;
+ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
+ if( zSql[0]==0 ) return 0;
+ zSql++;
+ token = tkWS;
+ break;
+ }
+ case '-': { /* SQL-style comments from "--" to end of line */
+ if( zSql[1]!='-' ){
+ token = tkOTHER;
+ break;
+ }
+ while( *zSql && *zSql!='\n' ){ zSql++; }
+ if( *zSql==0 ) return state==1;
+ token = tkWS;
+ break;
+ }
+ case '[': { /* Microsoft-style identifiers in [...] */
+ zSql++;
+ while( *zSql && *zSql!=']' ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ case '`': /* Grave-accent quoted symbols used by MySQL */
+ case '"': /* single- and double-quoted strings */
+ case '\'': {
+ int c = *zSql;
+ zSql++;
+ while( *zSql && *zSql!=c ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ default: {
+#ifdef SQLITE_EBCDIC
+ unsigned char c;
+#endif
+ if( IdChar((u8)*zSql) ){
+ /* Keywords and unquoted identifiers */
+ int nId;
+ for(nId=1; IdChar(zSql[nId]); nId++){}
+#ifdef SQLITE_OMIT_TRIGGER
+ token = tkOTHER;
+#else
+ switch( *zSql ){
+ case 'c': case 'C': {
+ if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
+ token = tkCREATE;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 't': case 'T': {
+ if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
+ token = tkTRIGGER;
+ }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
+ token = tkTEMP;
+ }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
+ token = tkTEMP;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 'e': case 'E': {
+ if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
+ token = tkEND;
+ }else
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
+ token = tkEXPLAIN;
+ }else
+#endif
+ {
+ token = tkOTHER;
+ }
+ break;
+ }
+ default: {
+ token = tkOTHER;
+ break;
+ }
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ zSql += nId-1;
+ }else{
+ /* Operators and special symbols */
+ token = tkOTHER;
+ }
+ break;
+ }
+ }
+ state = trans[state][token];
+ zSql++;
+ }
+ return state==1;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine is the same as the sqlite3_complete() routine described
+** above, except that the parameter is required to be UTF-16 encoded, not
+** UTF-8.
+*/
+SQLITE_API int sqlite3_complete16(const void *zSql){
+ sqlite3_value *pVal;
+ char const *zSql8;
+ int rc;
+
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zSql8 ){
+ rc = sqlite3_complete(zSql8);
+ }else{
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3ValueFree(pVal);
+ return rc & 0xff;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_COMPLETE */
+
+/************** End of complete.c ********************************************/
+/************** Begin file main.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+*/
+/* #include "sqliteInt.h" */
+
+#ifdef SQLITE_ENABLE_FTS3
+/************** Include fts3.h in the middle of main.c ***********************/
+/************** Begin file fts3.h ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
+*/
+/* #include "sqlite3.h" */
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of fts3.h ************************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+/************** Include rtree.h in the middle of main.c **********************/
+/************** Begin file rtree.h *******************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** RTREE library. All it does is declare the sqlite3RtreeInit() interface.
+*/
+/* #include "sqlite3.h" */
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# undef SQLITE_ENABLE_RTREE
+#endif
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of rtree.h ***********************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+#if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS)
+/************** Include sqliteicu.h in the middle of main.c ******************/
+/************** Begin file sqliteicu.h ***************************************/
+/*
+** 2008 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** ICU extension. All it does is declare the sqlite3IcuInit() interface.
+*/
+/* #include "sqlite3.h" */
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of sqliteicu.h *******************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+
+/*
+** This is an extension initializer that is a no-op and always
+** succeeds, except that it fails if the fault-simulation is set
+** to 500.
+*/
+static int sqlite3TestExtInit(sqlite3 *db){
+ (void)db;
+ return sqlite3FaultSim(500);
+}
+
+
+/*
+** Forward declarations of external module initializer functions
+** for modules that need them.
+*/
+#ifdef SQLITE_ENABLE_FTS5
+SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3*);
+#endif
+#ifdef SQLITE_ENABLE_STMTVTAB
+SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3*);
+#endif
+#ifdef SQLITE_EXTRA_AUTOEXT
+int SQLITE_EXTRA_AUTOEXT(sqlite3*);
+#endif
+/*
+** An array of pointers to extension initializer functions for
+** built-in extensions.
+*/
+static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = {
+#ifdef SQLITE_ENABLE_FTS3
+ sqlite3Fts3Init,
+#endif
+#ifdef SQLITE_ENABLE_FTS5
+ sqlite3Fts5Init,
+#endif
+#if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS)
+ sqlite3IcuInit,
+#endif
+#ifdef SQLITE_ENABLE_RTREE
+ sqlite3RtreeInit,
+#endif
+#ifdef SQLITE_ENABLE_DBPAGE_VTAB
+ sqlite3DbpageRegister,
+#endif
+#ifdef SQLITE_ENABLE_DBSTAT_VTAB
+ sqlite3DbstatRegister,
+#endif
+ sqlite3TestExtInit,
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
+ sqlite3JsonTableFunctions,
+#endif
+#ifdef SQLITE_ENABLE_STMTVTAB
+ sqlite3StmtVtabInit,
+#endif
+#ifdef SQLITE_ENABLE_BYTECODE_VTAB
+ sqlite3VdbeBytecodeVtabInit,
+#endif
+#ifdef SQLITE_EXTRA_AUTOEXT
+ SQLITE_EXTRA_AUTOEXT,
+#endif
+};
+
+#ifndef SQLITE_AMALGAMATION
+/* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
+** contains the text of SQLITE_VERSION macro.
+*/
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+#endif
+
+/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
+** a pointer to the to the sqlite3_version[] string constant.
+*/
+SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
+
+/* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a
+** pointer to a string constant whose value is the same as the
+** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using
+** an edited copy of the amalgamation, then the last four characters of
+** the hash might be different from SQLITE_SOURCE_ID.
+*/
+/* SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } */
+
+/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
+** returns an integer equal to SQLITE_VERSION_NUMBER.
+*/
+SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
+
+/* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
+** zero if and only if SQLite was compiled with mutexing code omitted due to
+** the SQLITE_THREADSAFE compile-time option being set to 0.
+*/
+SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
+
+/*
+** When compiling the test fixture or with debugging enabled (on Win32),
+** this variable being set to non-zero will cause OSTRACE macros to emit
+** extra diagnostic information.
+*/
+#ifdef SQLITE_HAVE_OS_TRACE
+# ifndef SQLITE_DEBUG_OS_TRACE
+# define SQLITE_DEBUG_OS_TRACE 0
+# endif
+ int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
+#endif
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** If the following function pointer is not NULL and if
+** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
+** I/O active are written using this function. These messages
+** are intended for debugging activity only.
+*/
+SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0;
+#endif
+
+/*
+** If the following global variable points to a string which is the
+** name of a directory, then that directory will be used to store
+** temporary files.
+**
+** See also the "PRAGMA temp_store_directory" SQL command.
+*/
+SQLITE_API char *sqlite3_temp_directory = 0;
+
+/*
+** If the following global variable points to a string which is the
+** name of a directory, then that directory will be used to store
+** all database files specified with a relative pathname.
+**
+** See also the "PRAGMA data_store_directory" SQL command.
+*/
+SQLITE_API char *sqlite3_data_directory = 0;
+
+/*
+** Determine whether or not high-precision (long double) floating point
+** math works correctly on CPU currently running.
+*/
+static SQLITE_NOINLINE int hasHighPrecisionDouble(int rc){
+ if( sizeof(LONGDOUBLE_TYPE)<=8 ){
+ /* If the size of "long double" is not more than 8, then
+ ** high-precision math is not possible. */
+ return 0;
+ }else{
+ /* Just because sizeof(long double)>8 does not mean that the underlying
+ ** hardware actually supports high-precision floating point. For example,
+ ** clearing the 0x100 bit in the floating-point control word on Intel
+ ** processors will make long double work like double, even though long
+ ** double takes up more space. The only way to determine if long double
+ ** actually works is to run an experiment. */
+ LONGDOUBLE_TYPE a, b, c;
+ rc++;
+ a = 1.0+rc*0.1;
+ b = 1.0e+18+rc*25.0;
+ c = a+b;
+ return b!=c;
+ }
+}
+
+
+/*
+** Initialize SQLite.
+**
+** This routine must be called to initialize the memory allocation,
+** VFS, and mutex subsystems prior to doing any serious work with
+** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
+** this routine will be called automatically by key routines such as
+** sqlite3_open().
+**
+** This routine is a no-op except on its very first call for the process,
+** or for the first call after a call to sqlite3_shutdown.
+**
+** The first thread to call this routine runs the initialization to
+** completion. If subsequent threads call this routine before the first
+** thread has finished the initialization process, then the subsequent
+** threads must block until the first thread finishes with the initialization.
+**
+** The first thread might call this routine recursively. Recursive
+** calls to this routine should not block, of course. Otherwise the
+** initialization process would never complete.
+**
+** Let X be the first thread to enter this routine. Let Y be some other
+** thread. Then while the initial invocation of this routine by X is
+** incomplete, it is required that:
+**
+** * Calls to this routine from Y must block until the outer-most
+** call by X completes.
+**
+** * Recursive calls to this routine from thread X return immediately
+** without blocking.
+*/
+SQLITE_API int sqlite3_initialize(void){
+ MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */
+ int rc; /* Result code */
+#ifdef SQLITE_EXTRA_INIT
+ int bRunExtraInit = 0; /* Extra initialization needed */
+#endif
+
+#ifdef SQLITE_OMIT_WSD
+ rc = sqlite3_wsd_init(4096, 24);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+#endif
+
+ /* If the following assert() fails on some obscure processor/compiler
+ ** combination, the work-around is to set the correct pointer
+ ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */
+ assert( SQLITE_PTRSIZE==sizeof(char*) );
+
+ /* If SQLite is already completely initialized, then this call
+ ** to sqlite3_initialize() should be a no-op. But the initialization
+ ** must be complete. So isInit must not be set until the very end
+ ** of this routine.
+ */
+ if( sqlite3GlobalConfig.isInit ){
+ sqlite3MemoryBarrier();
+ return SQLITE_OK;
+ }
+
+ /* Make sure the mutex subsystem is initialized. If unable to
+ ** initialize the mutex subsystem, return early with the error.
+ ** If the system is so sick that we are unable to allocate a mutex,
+ ** there is not much SQLite is going to be able to do.
+ **
+ ** The mutex subsystem must take care of serializing its own
+ ** initialization.
+ */
+ rc = sqlite3MutexInit();
+ if( rc ) return rc;
+
+ /* Initialize the malloc() system and the recursive pInitMutex mutex.
+ ** This operation is protected by the STATIC_MAIN mutex. Note that
+ ** MutexAlloc() is called for a static mutex prior to initializing the
+ ** malloc subsystem - this implies that the allocation of a static
+ ** mutex must not require support from the malloc subsystem.
+ */
+ MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
+ sqlite3_mutex_enter(pMainMtx);
+ sqlite3GlobalConfig.isMutexInit = 1;
+ if( !sqlite3GlobalConfig.isMallocInit ){
+ rc = sqlite3MallocInit();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.isMallocInit = 1;
+ if( !sqlite3GlobalConfig.pInitMutex ){
+ sqlite3GlobalConfig.pInitMutex =
+ sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.nRefInitMutex++;
+ }
+ sqlite3_mutex_leave(pMainMtx);
+
+ /* If rc is not SQLITE_OK at this point, then either the malloc
+ ** subsystem could not be initialized or the system failed to allocate
+ ** the pInitMutex mutex. Return an error in either case. */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Do the rest of the initialization under the recursive mutex so
+ ** that we will be able to handle recursive calls into
+ ** sqlite3_initialize(). The recursive calls normally come through
+ ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
+ ** recursive calls might also be possible.
+ **
+ ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
+ ** to the xInit method, so the xInit method need not be threadsafe.
+ **
+ ** The following mutex is what serializes access to the appdef pcache xInit
+ ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the
+ ** call to sqlite3PcacheInitialize().
+ */
+ sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
+ if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
+ sqlite3GlobalConfig.inProgress = 1;
+#ifdef SQLITE_ENABLE_SQLLOG
+ {
+ extern void sqlite3_init_sqllog(void);
+ sqlite3_init_sqllog();
+ }
+#endif
+ memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions));
+ sqlite3RegisterBuiltinFunctions();
+ if( sqlite3GlobalConfig.isPCacheInit==0 ){
+ rc = sqlite3PcacheInitialize();
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3GlobalConfig.isPCacheInit = 1;
+ rc = sqlite3OsInit();
+ }
+#ifndef SQLITE_OMIT_DESERIALIZE
+ if( rc==SQLITE_OK ){
+ rc = sqlite3MemdbInit();
+ }
+#endif
+ if( rc==SQLITE_OK ){
+ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
+ sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
+ sqlite3MemoryBarrier();
+ sqlite3GlobalConfig.isInit = 1;
+#ifdef SQLITE_EXTRA_INIT
+ bRunExtraInit = 1;
+#endif
+ }
+ sqlite3GlobalConfig.inProgress = 0;
+ }
+ sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
+
+ /* Go back under the static mutex and clean up the recursive
+ ** mutex to prevent a resource leak.
+ */
+ sqlite3_mutex_enter(pMainMtx);
+ sqlite3GlobalConfig.nRefInitMutex--;
+ if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
+ assert( sqlite3GlobalConfig.nRefInitMutex==0 );
+ sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
+ sqlite3GlobalConfig.pInitMutex = 0;
+ }
+ sqlite3_mutex_leave(pMainMtx);
+
+ /* The following is just a sanity check to make sure SQLite has
+ ** been compiled correctly. It is important to run this code, but
+ ** we don't want to run it too often and soak up CPU cycles for no
+ ** reason. So we run it once during initialization.
+ */
+#ifndef NDEBUG
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ /* This section of code's only "output" is via assert() statements. */
+ if( rc==SQLITE_OK ){
+ u64 x = (((u64)1)<<63)-1;
+ double y;
+ assert(sizeof(x)==8);
+ assert(sizeof(x)==sizeof(y));
+ memcpy(&y, &x, 8);
+ assert( sqlite3IsNaN(y) );
+ }
+#endif
+#endif
+
+ /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
+ ** compile-time option.
+ */
+#ifdef SQLITE_EXTRA_INIT
+ if( bRunExtraInit ){
+ int SQLITE_EXTRA_INIT(const char*);
+ rc = SQLITE_EXTRA_INIT(0);
+ }
+#endif
+
+ /* Experimentally determine if high-precision floating point is
+ ** available. */
+#ifndef SQLITE_OMIT_WSD
+ sqlite3Config.bUseLongDouble = hasHighPrecisionDouble(rc);
+#endif
+
+ return rc;
+}
+
+/*
+** Undo the effects of sqlite3_initialize(). Must not be called while
+** there are outstanding database connections or memory allocations or
+** while any part of SQLite is otherwise in use in any thread. This
+** routine is not threadsafe. But it is safe to invoke this routine
+** on when SQLite is already shut down. If SQLite is already shut down
+** when this routine is invoked, then this routine is a harmless no-op.
+*/
+SQLITE_API int sqlite3_shutdown(void){
+#ifdef SQLITE_OMIT_WSD
+ int rc = sqlite3_wsd_init(4096, 24);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+#endif
+
+ if( sqlite3GlobalConfig.isInit ){
+#ifdef SQLITE_EXTRA_SHUTDOWN
+ void SQLITE_EXTRA_SHUTDOWN(void);
+ SQLITE_EXTRA_SHUTDOWN();
+#endif
+ sqlite3_os_end();
+ sqlite3_reset_auto_extension();
+ sqlite3GlobalConfig.isInit = 0;
+ }
+ if( sqlite3GlobalConfig.isPCacheInit ){
+ sqlite3PcacheShutdown();
+ sqlite3GlobalConfig.isPCacheInit = 0;
+ }
+ if( sqlite3GlobalConfig.isMallocInit ){
+ sqlite3MallocEnd();
+ sqlite3GlobalConfig.isMallocInit = 0;
+
+#ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
+ /* The heap subsystem has now been shutdown and these values are supposed
+ ** to be NULL or point to memory that was obtained from sqlite3_malloc(),
+ ** which would rely on that heap subsystem; therefore, make sure these
+ ** values cannot refer to heap memory that was just invalidated when the
+ ** heap subsystem was shutdown. This is only done if the current call to
+ ** this function resulted in the heap subsystem actually being shutdown.
+ */
+ sqlite3_data_directory = 0;
+ sqlite3_temp_directory = 0;
+#endif
+ }
+ if( sqlite3GlobalConfig.isMutexInit ){
+ sqlite3MutexEnd();
+ sqlite3GlobalConfig.isMutexInit = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** This API allows applications to modify the global configuration of
+** the SQLite library at run-time.
+**
+** This routine should only be called when there are no outstanding
+** database connections or memory allocations. This routine is not
+** threadsafe. Failure to heed these warnings can lead to unpredictable
+** behavior.
+*/
+SQLITE_API int sqlite3_config(int op, ...){
+ va_list ap;
+ int rc = SQLITE_OK;
+
+ /* sqlite3_config() normally returns SQLITE_MISUSE if it is invoked while
+ ** the SQLite library is in use. Except, a few selected opcodes
+ ** are allowed.
+ */
+ if( sqlite3GlobalConfig.isInit ){
+ static const u64 mAnytimeConfigOption = 0
+ | MASKBIT64( SQLITE_CONFIG_LOG )
+ | MASKBIT64( SQLITE_CONFIG_PCACHE_HDRSZ )
+ ;
+ if( op<0 || op>63 || (MASKBIT64(op) & mAnytimeConfigOption)==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ testcase( op==SQLITE_CONFIG_LOG );
+ testcase( op==SQLITE_CONFIG_PCACHE_HDRSZ );
+ }
+
+ va_start(ap, op);
+ switch( op ){
+
+ /* Mutex configuration options are only available in a threadsafe
+ ** compile.
+ */
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */
+ case SQLITE_CONFIG_SINGLETHREAD: {
+ /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to
+ ** Single-thread. */
+ sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */
+ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
+ case SQLITE_CONFIG_MULTITHREAD: {
+ /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to
+ ** Multi-thread. */
+ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */
+ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
+ case SQLITE_CONFIG_SERIALIZED: {
+ /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to
+ ** Serialized. */
+ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */
+ sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
+ case SQLITE_CONFIG_MUTEX: {
+ /* Specify an alternative mutex implementation */
+ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
+ break;
+ }
+#endif
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */
+ case SQLITE_CONFIG_GETMUTEX: {
+ /* Retrieve the current mutex implementation */
+ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_MALLOC: {
+ /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a
+ ** single argument which is a pointer to an instance of the
+ ** sqlite3_mem_methods structure. The argument specifies alternative
+ ** low-level memory allocation routines to be used in place of the memory
+ ** allocation routines built into SQLite. */
+ sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
+ break;
+ }
+ case SQLITE_CONFIG_GETMALLOC: {
+ /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a
+ ** single argument which is a pointer to an instance of the
+ ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is
+ ** filled with the currently defined memory allocation routines. */
+ if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
+ *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
+ break;
+ }
+ case SQLITE_CONFIG_MEMSTATUS: {
+ assert( !sqlite3GlobalConfig.isInit ); /* Cannot change at runtime */
+ /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes
+ ** single argument of type int, interpreted as a boolean, which enables
+ ** or disables the collection of memory allocation statistics. */
+ sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_SMALL_MALLOC: {
+ sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_PAGECACHE: {
+ /* EVIDENCE-OF: R-18761-36601 There are three arguments to
+ ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem),
+ ** the size of each page cache line (sz), and the number of cache lines
+ ** (N). */
+ sqlite3GlobalConfig.pPage = va_arg(ap, void*);
+ sqlite3GlobalConfig.szPage = va_arg(ap, int);
+ sqlite3GlobalConfig.nPage = va_arg(ap, int);
+ break;
+ }
+ case SQLITE_CONFIG_PCACHE_HDRSZ: {
+ /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes
+ ** a single parameter which is a pointer to an integer and writes into
+ ** that integer the number of extra bytes per page required for each page
+ ** in SQLITE_CONFIG_PAGECACHE. */
+ *va_arg(ap, int*) =
+ sqlite3HeaderSizeBtree() +
+ sqlite3HeaderSizePcache() +
+ sqlite3HeaderSizePcache1();
+ break;
+ }
+
+ case SQLITE_CONFIG_PCACHE: {
+ /* no-op */
+ break;
+ }
+ case SQLITE_CONFIG_GETPCACHE: {
+ /* now an error */
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ case SQLITE_CONFIG_PCACHE2: {
+ /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a
+ ** single argument which is a pointer to an sqlite3_pcache_methods2
+ ** object. This object specifies the interface to a custom page cache
+ ** implementation. */
+ sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
+ break;
+ }
+ case SQLITE_CONFIG_GETPCACHE2: {
+ /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a
+ ** single argument which is a pointer to an sqlite3_pcache_methods2
+ ** object. SQLite copies of the current page cache implementation into
+ ** that object. */
+ if( sqlite3GlobalConfig.pcache2.xInit==0 ){
+ sqlite3PCacheSetDefault();
+ }
+ *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
+ break;
+ }
+
+/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
+** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
+** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
+#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
+ case SQLITE_CONFIG_HEAP: {
+ /* EVIDENCE-OF: R-19854-42126 There are three arguments to
+ ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
+ ** number of bytes in the memory buffer, and the minimum allocation size.
+ */
+ sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
+ sqlite3GlobalConfig.nHeap = va_arg(ap, int);
+ sqlite3GlobalConfig.mnReq = va_arg(ap, int);
+
+ if( sqlite3GlobalConfig.mnReq<1 ){
+ sqlite3GlobalConfig.mnReq = 1;
+ }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
+ /* cap min request size at 2^12 */
+ sqlite3GlobalConfig.mnReq = (1<<12);
+ }
+
+ if( sqlite3GlobalConfig.pHeap==0 ){
+ /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer)
+ ** is NULL, then SQLite reverts to using its default memory allocator
+ ** (the system malloc() implementation), undoing any prior invocation of
+ ** SQLITE_CONFIG_MALLOC.
+ **
+ ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to
+ ** revert to its default implementation when sqlite3_initialize() is run
+ */
+ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
+ }else{
+ /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the
+ ** alternative memory allocator is engaged to handle all of SQLites
+ ** memory allocation needs. */
+#ifdef SQLITE_ENABLE_MEMSYS3
+ sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
+#endif
+#ifdef SQLITE_ENABLE_MEMSYS5
+ sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
+#endif
+ }
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_LOOKASIDE: {
+ sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
+ sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
+ break;
+ }
+
+ /* Record a pointer to the logger function and its first argument.
+ ** The default is NULL. Logging is disabled if the function pointer is
+ ** NULL.
+ */
+ case SQLITE_CONFIG_LOG: {
+ /* MSVC is picky about pulling func ptrs from va lists.
+ ** http://support.microsoft.com/kb/47961
+ ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
+ */
+ typedef void(*LOGFUNC_t)(void*,int,const char*);
+ LOGFUNC_t xLog = va_arg(ap, LOGFUNC_t);
+ void *pLogArg = va_arg(ap, void*);
+ AtomicStore(&sqlite3GlobalConfig.xLog, xLog);
+ AtomicStore(&sqlite3GlobalConfig.pLogArg, pLogArg);
+ break;
+ }
+
+ /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
+ ** can be changed at start-time using the
+ ** sqlite3_config(SQLITE_CONFIG_URI,1) or
+ ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
+ */
+ case SQLITE_CONFIG_URI: {
+ /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single
+ ** argument of type int. If non-zero, then URI handling is globally
+ ** enabled. If the parameter is zero, then URI handling is globally
+ ** disabled. */
+ int bOpenUri = va_arg(ap, int);
+ AtomicStore(&sqlite3GlobalConfig.bOpenUri, bOpenUri);
+ break;
+ }
+
+ case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
+ /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN
+ ** option takes a single integer argument which is interpreted as a
+ ** boolean in order to enable or disable the use of covering indices for
+ ** full table scans in the query optimizer. */
+ sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
+ break;
+ }
+
+#ifdef SQLITE_ENABLE_SQLLOG
+ case SQLITE_CONFIG_SQLLOG: {
+ typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
+ sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
+ sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_MMAP_SIZE: {
+ /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit
+ ** integer (sqlite3_int64) values that are the default mmap size limit
+ ** (the default setting for PRAGMA mmap_size) and the maximum allowed
+ ** mmap size limit. */
+ sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
+ sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
+ /* EVIDENCE-OF: R-53367-43190 If either argument to this option is
+ ** negative, then that argument is changed to its compile-time default.
+ **
+ ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
+ ** silently truncated if necessary so that it does not exceed the
+ ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
+ ** compile-time option.
+ */
+ if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
+ mxMmap = SQLITE_MAX_MMAP_SIZE;
+ }
+ if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
+ if( szMmap>mxMmap) szMmap = mxMmap;
+ sqlite3GlobalConfig.mxMmap = mxMmap;
+ sqlite3GlobalConfig.szMmap = szMmap;
+ break;
+ }
+
+#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */
+ case SQLITE_CONFIG_WIN32_HEAPSIZE: {
+ /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit
+ ** unsigned integer value that specifies the maximum size of the created
+ ** heap. */
+ sqlite3GlobalConfig.nHeap = va_arg(ap, int);
+ break;
+ }
+#endif
+
+ case SQLITE_CONFIG_PMASZ: {
+ sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int);
+ break;
+ }
+
+ case SQLITE_CONFIG_STMTJRNL_SPILL: {
+ sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int);
+ break;
+ }
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ case SQLITE_CONFIG_SORTERREF_SIZE: {
+ int iVal = va_arg(ap, int);
+ if( iVal<0 ){
+ iVal = SQLITE_DEFAULT_SORTERREF_SIZE;
+ }
+ sqlite3GlobalConfig.szSorterRef = (u32)iVal;
+ break;
+ }
+#endif /* SQLITE_ENABLE_SORTER_REFERENCES */
+
+#ifndef SQLITE_OMIT_DESERIALIZE
+ case SQLITE_CONFIG_MEMDB_MAXSIZE: {
+ sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64);
+ break;
+ }
+#endif /* SQLITE_OMIT_DESERIALIZE */
+
+ default: {
+ rc = SQLITE_ERROR;
+ break;
+ }
+ }
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Set up the lookaside buffers for a database connection.
+** Return SQLITE_OK on success.
+** If lookaside is already active, return SQLITE_BUSY.
+**
+** The sz parameter is the number of bytes in each lookaside slot.
+** The cnt parameter is the number of slots. If pStart is NULL the
+** space for the lookaside memory is obtained from sqlite3_malloc().
+** If pStart is not NULL then it is sz*cnt bytes of memory to use for
+** the lookaside memory.
+*/
+static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
+#ifndef SQLITE_OMIT_LOOKASIDE
+ void *pStart;
+ sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt;
+ int nBig; /* Number of full-size slots */
+ int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */
+
+ if( sqlite3LookasideUsed(db,0)>0 ){
+ return SQLITE_BUSY;
+ }
+ /* Free any existing lookaside buffer for this handle before
+ ** allocating a new one so we don't have to have space for
+ ** both at the same time.
+ */
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
+ ** than a pointer to be useful.
+ */
+ sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
+ if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
+ if( cnt<0 ) cnt = 0;
+ if( sz==0 || cnt==0 ){
+ sz = 0;
+ pStart = 0;
+ }else if( pBuf==0 ){
+ sqlite3BeginBenignMalloc();
+ pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */
+ sqlite3EndBenignMalloc();
+ if( pStart ) szAlloc = sqlite3MallocSize(pStart);
+ }else{
+ pStart = pBuf;
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ if( sz>=LOOKASIDE_SMALL*3 ){
+ nBig = szAlloc/(3*LOOKASIDE_SMALL+sz);
+ nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL;
+ }else if( sz>=LOOKASIDE_SMALL*2 ){
+ nBig = szAlloc/(LOOKASIDE_SMALL+sz);
+ nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL;
+ }else
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ if( sz>0 ){
+ nBig = szAlloc/sz;
+ nSm = 0;
+ }else{
+ nBig = nSm = 0;
+ }
+ db->lookaside.pStart = pStart;
+ db->lookaside.pInit = 0;
+ db->lookaside.pFree = 0;
+ db->lookaside.sz = (u16)sz;
+ db->lookaside.szTrue = (u16)sz;
+ if( pStart ){
+ int i;
+ LookasideSlot *p;
+ assert( sz > (int)sizeof(LookasideSlot*) );
+ p = (LookasideSlot*)pStart;
+ for(i=0; i<nBig; i++){
+ p->pNext = db->lookaside.pInit;
+ db->lookaside.pInit = p;
+ p = (LookasideSlot*)&((u8*)p)[sz];
+ }
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ db->lookaside.pSmallInit = 0;
+ db->lookaside.pSmallFree = 0;
+ db->lookaside.pMiddle = p;
+ for(i=0; i<nSm; i++){
+ p->pNext = db->lookaside.pSmallInit;
+ db->lookaside.pSmallInit = p;
+ p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL];
+ }
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ assert( ((uptr)p)<=szAlloc + (uptr)pStart );
+ db->lookaside.pEnd = p;
+ db->lookaside.bDisable = 0;
+ db->lookaside.bMalloced = pBuf==0 ?1:0;
+ db->lookaside.nSlot = nBig+nSm;
+ }else{
+ db->lookaside.pStart = 0;
+#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
+ db->lookaside.pSmallInit = 0;
+ db->lookaside.pSmallFree = 0;
+ db->lookaside.pMiddle = 0;
+#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
+ db->lookaside.pEnd = 0;
+ db->lookaside.bDisable = 1;
+ db->lookaside.sz = 0;
+ db->lookaside.bMalloced = 0;
+ db->lookaside.nSlot = 0;
+ }
+ db->lookaside.pTrueEnd = db->lookaside.pEnd;
+ assert( sqlite3LookasideUsed(db,0)==0 );
+#endif /* SQLITE_OMIT_LOOKASIDE */
+ return SQLITE_OK;
+}
+
+/*
+** Return the mutex associated with a database connection.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->mutex;
+}
+
+/*
+** Free up as much memory as we can from the given database
+** connection.
+*/
+SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){
+ int i;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ sqlite3PagerShrink(pPager);
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Flush any dirty pages in the pager-cache for any attached database
+** to disk.
+*/
+SQLITE_API int sqlite3_db_cacheflush(sqlite3 *db){
+ int i;
+ int rc = SQLITE_OK;
+ int bSeenBusy = 0;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ rc = sqlite3PagerFlush(pPager);
+ if( rc==SQLITE_BUSY ){
+ bSeenBusy = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ sqlite3BtreeLeaveAll(db);
+ sqlite3_mutex_leave(db->mutex);
+ return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc);
+}
+
+/*
+** Configuration settings for an individual database connection
+*/
+SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
+ va_list ap;
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ va_start(ap, op);
+ switch( op ){
+ case SQLITE_DBCONFIG_MAINDBNAME: {
+ /* IMP: R-06824-28531 */
+ /* IMP: R-36257-52125 */
+ db->aDb[0].zDbSName = va_arg(ap,char*);
+ rc = SQLITE_OK;
+ break;
+ }
+ case SQLITE_DBCONFIG_LOOKASIDE: {
+ void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
+ int sz = va_arg(ap, int); /* IMP: R-47871-25994 */
+ int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */
+ rc = setupLookaside(db, pBuf, sz, cnt);
+ break;
+ }
+ default: {
+ static const struct {
+ int op; /* The opcode */
+ u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */
+ } aFlagOp[] = {
+ { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys },
+ { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger },
+ { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView },
+ { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer },
+ { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension },
+ { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose },
+ { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG },
+ { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP },
+ { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase },
+ { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive },
+ { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema|
+ SQLITE_NoSchemaError },
+ { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter },
+ { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL },
+ { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML },
+ { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt },
+ { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema },
+ { SQLITE_DBCONFIG_STMT_SCANSTATUS, SQLITE_StmtScanStatus },
+ { SQLITE_DBCONFIG_REVERSE_SCANORDER, SQLITE_ReverseOrder },
+ };
+ unsigned int i;
+ rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
+ for(i=0; i<ArraySize(aFlagOp); i++){
+ if( aFlagOp[i].op==op ){
+ int onoff = va_arg(ap, int);
+ int *pRes = va_arg(ap, int*);
+ u64 oldFlags = db->flags;
+ if( onoff>0 ){
+ db->flags |= aFlagOp[i].mask;
+ }else if( onoff==0 ){
+ db->flags &= ~(u64)aFlagOp[i].mask;
+ }
+ if( oldFlags!=db->flags ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ }
+ if( pRes ){
+ *pRes = (db->flags & aFlagOp[i].mask)!=0;
+ }
+ rc = SQLITE_OK;
+ break;
+ }
+ }
+ break;
+ }
+ }
+ va_end(ap);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This is the default collating function named "BINARY" which is always
+** available.
+*/
+static int binCollFunc(
+ void *NotUsed,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ int rc, n;
+ UNUSED_PARAMETER(NotUsed);
+ n = nKey1<nKey2 ? nKey1 : nKey2;
+ /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares
+ ** strings byte by byte using the memcmp() function from the standard C
+ ** library. */
+ assert( pKey1 && pKey2 );
+ rc = memcmp(pKey1, pKey2, n);
+ if( rc==0 ){
+ rc = nKey1 - nKey2;
+ }
+ return rc;
+}
+
+/*
+** This is the collating function named "RTRIM" which is always
+** available. Ignore trailing spaces.
+*/
+static int rtrimCollFunc(
+ void *pUser,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ const u8 *pK1 = (const u8*)pKey1;
+ const u8 *pK2 = (const u8*)pKey2;
+ while( nKey1 && pK1[nKey1-1]==' ' ) nKey1--;
+ while( nKey2 && pK2[nKey2-1]==' ' ) nKey2--;
+ return binCollFunc(pUser, nKey1, pKey1, nKey2, pKey2);
+}
+
+/*
+** Return true if CollSeq is the default built-in BINARY.
+*/
+SQLITE_PRIVATE int sqlite3IsBinary(const CollSeq *p){
+ assert( p==0 || p->xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 );
+ return p==0 || p->xCmp==binCollFunc;
+}
+
+/*
+** Another built-in collating sequence: NOCASE.
+**
+** This collating sequence is intended to be used for "case independent
+** comparison". SQLite's knowledge of upper and lower case equivalents
+** extends only to the 26 characters used in the English language.
+**
+** At the moment there is only a UTF-8 implementation.
+*/
+static int nocaseCollatingFunc(
+ void *NotUsed,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ int r = sqlite3StrNICmp(
+ (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
+ UNUSED_PARAMETER(NotUsed);
+ if( 0==r ){
+ r = nKey1-nKey2;
+ }
+ return r;
+}
+
+/*
+** Return the ROWID of the most recent insert
+*/
+SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->lastRowid;
+}
+
+/*
+** Set the value returned by the sqlite3_last_insert_rowid() API function.
+*/
+SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->lastRowid = iRowid;
+ sqlite3_mutex_leave(db->mutex);
+}
+
+/*
+** Return the number of changes in the most recent call to sqlite3_exec().
+*/
+SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->nChange;
+}
+SQLITE_API int sqlite3_changes(sqlite3 *db){
+ return (int)sqlite3_changes64(db);
+}
+
+/*
+** Return the number of changes since the database handle was opened.
+*/
+SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->nTotalChange;
+}
+SQLITE_API int sqlite3_total_changes(sqlite3 *db){
+ return (int)sqlite3_total_changes64(db);
+}
+
+/*
+** Close all open savepoints. This function only manipulates fields of the
+** database handle object, it does not close any savepoints that may be open
+** at the b-tree/pager level.
+*/
+SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){
+ while( db->pSavepoint ){
+ Savepoint *pTmp = db->pSavepoint;
+ db->pSavepoint = pTmp->pNext;
+ sqlite3DbFree(db, pTmp);
+ }
+ db->nSavepoint = 0;
+ db->nStatement = 0;
+ db->isTransactionSavepoint = 0;
+}
+
+/*
+** Invoke the destructor function associated with FuncDef p, if any. Except,
+** if this is not the last copy of the function, do not invoke it. Multiple
+** copies of a single function are created when create_function() is called
+** with SQLITE_ANY as the encoding.
+*/
+static void functionDestroy(sqlite3 *db, FuncDef *p){
+ FuncDestructor *pDestructor;
+ assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
+ pDestructor = p->u.pDestructor;
+ if( pDestructor ){
+ pDestructor->nRef--;
+ if( pDestructor->nRef==0 ){
+ pDestructor->xDestroy(pDestructor->pUserData);
+ sqlite3DbFree(db, pDestructor);
+ }
+ }
+}
+
+/*
+** Disconnect all sqlite3_vtab objects that belong to database connection
+** db. This is called when db is being closed.
+*/
+static void disconnectAllVtab(sqlite3 *db){
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ int i;
+ HashElem *p;
+ sqlite3BtreeEnterAll(db);
+ for(i=0; i<db->nDb; i++){
+ Schema *pSchema = db->aDb[i].pSchema;
+ if( pSchema ){
+ for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
+ Table *pTab = (Table *)sqliteHashData(p);
+ if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
+ }
+ }
+ }
+ for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){
+ Module *pMod = (Module *)sqliteHashData(p);
+ if( pMod->pEpoTab ){
+ sqlite3VtabDisconnect(db, pMod->pEpoTab);
+ }
+ }
+ sqlite3VtabUnlockList(db);
+ sqlite3BtreeLeaveAll(db);
+#else
+ UNUSED_PARAMETER(db);
+#endif
+}
+
+/*
+** Return TRUE if database connection db has unfinalized prepared
+** statements or unfinished sqlite3_backup objects.
+*/
+static int connectionIsBusy(sqlite3 *db){
+ int j;
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( db->pVdbe ) return 1;
+ for(j=0; j<db->nDb; j++){
+ Btree *pBt = db->aDb[j].pBt;
+ if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Close an existing SQLite database
+*/
+static int sqlite3Close(sqlite3 *db, int forceZombie){
+ if( !db ){
+ /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or
+ ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */
+ return SQLITE_OK;
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mTrace & SQLITE_TRACE_CLOSE ){
+ db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0);
+ }
+
+ /* Force xDisconnect calls on all virtual tables */
+ disconnectAllVtab(db);
+
+ /* If a transaction is open, the disconnectAllVtab() call above
+ ** will not have called the xDisconnect() method on any virtual
+ ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
+ ** call will do so. We need to do this before the check for active
+ ** SQL statements below, as the v-table implementation may be storing
+ ** some prepared statements internally.
+ */
+ sqlite3VtabRollback(db);
+
+ /* Legacy behavior (sqlite3_close() behavior) is to return
+ ** SQLITE_BUSY if the connection can not be closed immediately.
+ */
+ if( !forceZombie && connectionIsBusy(db) ){
+ sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized "
+ "statements or unfinished backups");
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_BUSY;
+ }
+
+#ifdef SQLITE_ENABLE_SQLLOG
+ if( sqlite3GlobalConfig.xSqllog ){
+ /* Closing the handle. Fourth parameter is passed the value 2. */
+ sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2);
+ }
+#endif
+
+ while( db->pDbData ){
+ DbClientData *p = db->pDbData;
+ db->pDbData = p->pNext;
+ assert( p->pData!=0 );
+ if( p->xDestructor ) p->xDestructor(p->pData);
+ sqlite3_free(p);
+ }
+
+ /* Convert the connection into a zombie and then close it.
+ */
+ db->eOpenState = SQLITE_STATE_ZOMBIE;
+ sqlite3LeaveMutexAndCloseZombie(db);
+ return SQLITE_OK;
+}
+
+/*
+** Return the transaction state for a single databse, or the maximum
+** transaction state over all attached databases if zSchema is null.
+*/
+SQLITE_API int sqlite3_txn_state(sqlite3 *db, const char *zSchema){
+ int iDb, nDb;
+ int iTxn = -1;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return -1;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( zSchema ){
+ nDb = iDb = sqlite3FindDbName(db, zSchema);
+ if( iDb<0 ) nDb--;
+ }else{
+ iDb = 0;
+ nDb = db->nDb-1;
+ }
+ for(; iDb<=nDb; iDb++){
+ Btree *pBt = db->aDb[iDb].pBt;
+ int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE;
+ if( x>iTxn ) iTxn = x;
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return iTxn;
+}
+
+/*
+** Two variations on the public interface for closing a database
+** connection. The sqlite3_close() version returns SQLITE_BUSY and
+** leaves the connection open if there are unfinalized prepared
+** statements or unfinished sqlite3_backups. The sqlite3_close_v2()
+** version forces the connection to become a zombie if there are
+** unclosed resources, and arranges for deallocation when the last
+** prepare statement or sqlite3_backup closes.
+*/
+SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
+SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }
+
+
+/*
+** Close the mutex on database connection db.
+**
+** Furthermore, if database connection db is a zombie (meaning that there
+** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
+** every sqlite3_stmt has now been finalized and every sqlite3_backup has
+** finished, then free all resources.
+*/
+SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
+ HashElem *i; /* Hash table iterator */
+ int j;
+
+ /* If there are outstanding sqlite3_stmt or sqlite3_backup objects
+ ** or if the connection has not yet been closed by sqlite3_close_v2(),
+ ** then just leave the mutex and return.
+ */
+ if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){
+ sqlite3_mutex_leave(db->mutex);
+ return;
+ }
+
+ /* If we reach this point, it means that the database connection has
+ ** closed all sqlite3_stmt and sqlite3_backup objects and has been
+ ** passed to sqlite3_close (meaning that it is a zombie). Therefore,
+ ** go ahead and free all resources.
+ */
+
+ /* If a transaction is open, roll it back. This also ensures that if
+ ** any database schemas have been modified by an uncommitted transaction
+ ** they are reset. And that the required b-tree mutex is held to make
+ ** the pager rollback and schema reset an atomic operation. */
+ sqlite3RollbackAll(db, SQLITE_OK);
+
+ /* Free any outstanding Savepoint structures. */
+ sqlite3CloseSavepoints(db);
+
+ /* Close all database connections */
+ for(j=0; j<db->nDb; j++){
+ struct Db *pDb = &db->aDb[j];
+ if( pDb->pBt ){
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ if( j!=1 ){
+ pDb->pSchema = 0;
+ }
+ }
+ }
+ /* Clear the TEMP schema separately and last */
+ if( db->aDb[1].pSchema ){
+ sqlite3SchemaClear(db->aDb[1].pSchema);
+ }
+ sqlite3VtabUnlockList(db);
+
+ /* Free up the array of auxiliary databases */
+ sqlite3CollapseDatabaseArray(db);
+ assert( db->nDb<=2 );
+ assert( db->aDb==db->aDbStatic );
+
+ /* Tell the code in notify.c that the connection no longer holds any
+ ** locks and does not require any further unlock-notify callbacks.
+ */
+ sqlite3ConnectionClosed(db);
+
+ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
+ FuncDef *pNext, *p;
+ p = sqliteHashData(i);
+ do{
+ functionDestroy(db, p);
+ pNext = p->pNext;
+ sqlite3DbFree(db, p);
+ p = pNext;
+ }while( p );
+ }
+ sqlite3HashClear(&db->aFunc);
+ for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
+ CollSeq *pColl = (CollSeq *)sqliteHashData(i);
+ /* Invoke any destructors registered for collation sequence user data. */
+ for(j=0; j<3; j++){
+ if( pColl[j].xDel ){
+ pColl[j].xDel(pColl[j].pUser);
+ }
+ }
+ sqlite3DbFree(db, pColl);
+ }
+ sqlite3HashClear(&db->aCollSeq);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
+ Module *pMod = (Module *)sqliteHashData(i);
+ sqlite3VtabEponymousTableClear(db, pMod);
+ sqlite3VtabModuleUnref(db, pMod);
+ }
+ sqlite3HashClear(&db->aModule);
+#endif
+
+ sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */
+ sqlite3ValueFree(db->pErr);
+ sqlite3CloseExtensions(db);
+#if SQLITE_USER_AUTHENTICATION
+ sqlite3_free(db->auth.zAuthUser);
+ sqlite3_free(db->auth.zAuthPW);
+#endif
+
+ db->eOpenState = SQLITE_STATE_ERROR;
+
+ /* The temp-database schema is allocated differently from the other schema
+ ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
+ ** So it needs to be freed here. Todo: Why not roll the temp schema into
+ ** the same sqliteMalloc() as the one that allocates the database
+ ** structure?
+ */
+ sqlite3DbFree(db, db->aDb[1].pSchema);
+ if( db->xAutovacDestr ){
+ db->xAutovacDestr(db->pAutovacPagesArg);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ db->eOpenState = SQLITE_STATE_CLOSED;
+ sqlite3_mutex_free(db->mutex);
+ assert( sqlite3LookasideUsed(db,0)==0 );
+ if( db->lookaside.bMalloced ){
+ sqlite3_free(db->lookaside.pStart);
+ }
+ sqlite3_free(db);
+}
+
+/*
+** Rollback all database files. If tripCode is not SQLITE_OK, then
+** any write cursors are invalidated ("tripped" - as in "tripping a circuit
+** breaker") and made to return tripCode if there are any further
+** attempts to use that cursor. Read cursors remain open and valid
+** but are "saved" in case the table pages are moved around.
+*/
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){
+ int i;
+ int inTrans = 0;
+ int schemaChange;
+ assert( sqlite3_mutex_held(db->mutex) );
+ sqlite3BeginBenignMalloc();
+
+ /* Obtain all b-tree mutexes before making any calls to BtreeRollback().
+ ** This is important in case the transaction being rolled back has
+ ** modified the database schema. If the b-tree mutexes are not taken
+ ** here, then another shared-cache connection might sneak in between
+ ** the database rollback and schema reset, which can cause false
+ ** corruption reports in some cases. */
+ sqlite3BtreeEnterAll(db);
+ schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0;
+
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p ){
+ if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){
+ inTrans = 1;
+ }
+ sqlite3BtreeRollback(p, tripCode, !schemaChange);
+ }
+ }
+ sqlite3VtabRollback(db);
+ sqlite3EndBenignMalloc();
+
+ if( schemaChange ){
+ sqlite3ExpirePreparedStatements(db, 0);
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ sqlite3BtreeLeaveAll(db);
+
+ /* Any deferred constraint violations have now been resolved. */
+ db->nDeferredCons = 0;
+ db->nDeferredImmCons = 0;
+ db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly);
+
+ /* If one has been configured, invoke the rollback-hook callback */
+ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
+ db->xRollbackCallback(db->pRollbackArg);
+ }
+}
+
+/*
+** Return a static string containing the name corresponding to the error code
+** specified in the argument.
+*/
+#if defined(SQLITE_NEED_ERR_NAME)
+SQLITE_PRIVATE const char *sqlite3ErrName(int rc){
+ const char *zName = 0;
+ int i, origRc = rc;
+ for(i=0; i<2 && zName==0; i++, rc &= 0xff){
+ switch( rc ){
+ case SQLITE_OK: zName = "SQLITE_OK"; break;
+ case SQLITE_ERROR: zName = "SQLITE_ERROR"; break;
+ case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break;
+ case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break;
+ case SQLITE_PERM: zName = "SQLITE_PERM"; break;
+ case SQLITE_ABORT: zName = "SQLITE_ABORT"; break;
+ case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break;
+ case SQLITE_BUSY: zName = "SQLITE_BUSY"; break;
+ case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break;
+ case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break;
+ case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break;
+ case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
+ case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break;
+ case SQLITE_READONLY: zName = "SQLITE_READONLY"; break;
+ case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break;
+ case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break;
+ case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break;
+ case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break;
+ case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break;
+ case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break;
+ case SQLITE_IOERR: zName = "SQLITE_IOERR"; break;
+ case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break;
+ case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break;
+ case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break;
+ case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break;
+ case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break;
+ case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break;
+ case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break;
+ case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break;
+ case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break;
+ case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break;
+ case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break;
+ case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break;
+ case SQLITE_IOERR_CHECKRESERVEDLOCK:
+ zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
+ case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break;
+ case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break;
+ case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break;
+ case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break;
+ case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break;
+ case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break;
+ case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break;
+ case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break;
+ case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
+ case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break;
+ case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break;
+ case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break;
+ case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break;
+ case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break;
+ case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break;
+ case SQLITE_FULL: zName = "SQLITE_FULL"; break;
+ case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break;
+ case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
+ case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break;
+ case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break;
+ case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break;
+ case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break;
+ case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break;
+ case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break;
+ case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break;
+ case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break;
+ case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break;
+ case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
+ case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
+ case SQLITE_CONSTRAINT_FOREIGNKEY:
+ zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break;
+ case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break;
+ case SQLITE_CONSTRAINT_PRIMARYKEY:
+ zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break;
+ case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break;
+ case SQLITE_CONSTRAINT_COMMITHOOK:
+ zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break;
+ case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break;
+ case SQLITE_CONSTRAINT_FUNCTION:
+ zName = "SQLITE_CONSTRAINT_FUNCTION"; break;
+ case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break;
+ case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break;
+ case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break;
+ case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break;
+ case SQLITE_AUTH: zName = "SQLITE_AUTH"; break;
+ case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break;
+ case SQLITE_RANGE: zName = "SQLITE_RANGE"; break;
+ case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break;
+ case SQLITE_ROW: zName = "SQLITE_ROW"; break;
+ case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break;
+ case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
+ case SQLITE_NOTICE_RECOVER_ROLLBACK:
+ zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
+ case SQLITE_NOTICE_RBU: zName = "SQLITE_NOTICE_RBU"; break;
+ case SQLITE_WARNING: zName = "SQLITE_WARNING"; break;
+ case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break;
+ case SQLITE_DONE: zName = "SQLITE_DONE"; break;
+ }
+ }
+ if( zName==0 ){
+ static char zBuf[50];
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
+ zName = zBuf;
+ }
+ return zName;
+}
+#endif
+
+/*
+** Return a static string that describes the kind of error specified in the
+** argument.
+*/
+SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
+ static const char* const aMsg[] = {
+ /* SQLITE_OK */ "not an error",
+ /* SQLITE_ERROR */ "SQL logic error",
+ /* SQLITE_INTERNAL */ 0,
+ /* SQLITE_PERM */ "access permission denied",
+ /* SQLITE_ABORT */ "query aborted",
+ /* SQLITE_BUSY */ "database is locked",
+ /* SQLITE_LOCKED */ "database table is locked",
+ /* SQLITE_NOMEM */ "out of memory",
+ /* SQLITE_READONLY */ "attempt to write a readonly database",
+ /* SQLITE_INTERRUPT */ "interrupted",
+ /* SQLITE_IOERR */ "disk I/O error",
+ /* SQLITE_CORRUPT */ "database disk image is malformed",
+ /* SQLITE_NOTFOUND */ "unknown operation",
+ /* SQLITE_FULL */ "database or disk is full",
+ /* SQLITE_CANTOPEN */ "unable to open database file",
+ /* SQLITE_PROTOCOL */ "locking protocol",
+ /* SQLITE_EMPTY */ 0,
+ /* SQLITE_SCHEMA */ "database schema has changed",
+ /* SQLITE_TOOBIG */ "string or blob too big",
+ /* SQLITE_CONSTRAINT */ "constraint failed",
+ /* SQLITE_MISMATCH */ "datatype mismatch",
+ /* SQLITE_MISUSE */ "bad parameter or other API misuse",
+#ifdef SQLITE_DISABLE_LFS
+ /* SQLITE_NOLFS */ "large file support is disabled",
+#else
+ /* SQLITE_NOLFS */ 0,
+#endif
+ /* SQLITE_AUTH */ "authorization denied",
+ /* SQLITE_FORMAT */ 0,
+ /* SQLITE_RANGE */ "column index out of range",
+ /* SQLITE_NOTADB */ "file is not a database",
+ /* SQLITE_NOTICE */ "notification message",
+ /* SQLITE_WARNING */ "warning message",
+ };
+ const char *zErr = "unknown error";
+ switch( rc ){
+ case SQLITE_ABORT_ROLLBACK: {
+ zErr = "abort due to ROLLBACK";
+ break;
+ }
+ case SQLITE_ROW: {
+ zErr = "another row available";
+ break;
+ }
+ case SQLITE_DONE: {
+ zErr = "no more rows available";
+ break;
+ }
+ default: {
+ rc &= 0xff;
+ if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
+ zErr = aMsg[rc];
+ }
+ break;
+ }
+ }
+ return zErr;
+}
+
+/*
+** This routine implements a busy callback that sleeps and tries
+** again until a timeout value is reached. The timeout value is
+** an integer number of milliseconds passed in as the first
+** argument.
+**
+** Return non-zero to retry the lock. Return zero to stop trying
+** and cause SQLite to return SQLITE_BUSY.
+*/
+static int sqliteDefaultBusyCallback(
+ void *ptr, /* Database connection */
+ int count /* Number of times table has been busy */
+){
+#if SQLITE_OS_WIN || !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP
+ /* This case is for systems that have support for sleeping for fractions of
+ ** a second. Examples: All windows systems, unix systems with nanosleep() */
+ static const u8 delays[] =
+ { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
+ static const u8 totals[] =
+ { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
+# define NDELAY ArraySize(delays)
+ sqlite3 *db = (sqlite3 *)ptr;
+ int tmout = db->busyTimeout;
+ int delay, prior;
+
+ assert( count>=0 );
+ if( count < NDELAY ){
+ delay = delays[count];
+ prior = totals[count];
+ }else{
+ delay = delays[NDELAY-1];
+ prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
+ }
+ if( prior + delay > tmout ){
+ delay = tmout - prior;
+ if( delay<=0 ) return 0;
+ }
+ sqlite3OsSleep(db->pVfs, delay*1000);
+ return 1;
+#else
+ /* This case for unix systems that lack usleep() support. Sleeping
+ ** must be done in increments of whole seconds */
+ sqlite3 *db = (sqlite3 *)ptr;
+ int tmout = ((sqlite3 *)ptr)->busyTimeout;
+ if( (count+1)*1000 > tmout ){
+ return 0;
+ }
+ sqlite3OsSleep(db->pVfs, 1000000);
+ return 1;
+#endif
+}
+
+/*
+** Invoke the given busy handler.
+**
+** This routine is called when an operation failed to acquire a
+** lock on VFS file pFile.
+**
+** If this routine returns non-zero, the lock is retried. If it
+** returns 0, the operation aborts with an SQLITE_BUSY error.
+*/
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
+ int rc;
+ if( p->xBusyHandler==0 || p->nBusy<0 ) return 0;
+ rc = p->xBusyHandler(p->pBusyArg, p->nBusy);
+ if( rc==0 ){
+ p->nBusy = -1;
+ }else{
+ p->nBusy++;
+ }
+ return rc;
+}
+
+/*
+** This routine sets the busy callback for an Sqlite database to the
+** given callback function with the given argument.
+*/
+SQLITE_API int sqlite3_busy_handler(
+ sqlite3 *db,
+ int (*xBusy)(void*,int),
+ void *pArg
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->busyHandler.xBusyHandler = xBusy;
+ db->busyHandler.pBusyArg = pArg;
+ db->busyHandler.nBusy = 0;
+ db->busyTimeout = 0;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+/*
+** This routine sets the progress callback for an Sqlite database to the
+** given callback function with the given argument. The progress callback will
+** be invoked every nOps opcodes.
+*/
+SQLITE_API void sqlite3_progress_handler(
+ sqlite3 *db,
+ int nOps,
+ int (*xProgress)(void*),
+ void *pArg
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( nOps>0 ){
+ db->xProgress = xProgress;
+ db->nProgressOps = (unsigned)nOps;
+ db->pProgressArg = pArg;
+ }else{
+ db->xProgress = 0;
+ db->nProgressOps = 0;
+ db->pProgressArg = 0;
+ }
+ sqlite3_mutex_leave(db->mutex);
+}
+#endif
+
+
+/*
+** This routine installs a default busy handler that waits for the
+** specified number of milliseconds before returning 0.
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ if( ms>0 ){
+ sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback,
+ (void*)db);
+ db->busyTimeout = ms;
+ }else{
+ sqlite3_busy_handler(db, 0, 0);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Cause any pending operation to stop at its earliest opportunity.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db)
+ && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE)
+ ){
+ (void)SQLITE_MISUSE_BKPT;
+ return;
+ }
+#endif
+ AtomicStore(&db->u1.isInterrupted, 1);
+}
+
+/*
+** Return true or false depending on whether or not an interrupt is
+** pending on connection db.
+*/
+SQLITE_API int sqlite3_is_interrupted(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db)
+ && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE)
+ ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return AtomicLoad(&db->u1.isInterrupted)!=0;
+}
+
+/*
+** This function is exactly the same as sqlite3_create_function(), except
+** that it is designed to be called by internal code. The difference is
+** that if a malloc() fails in sqlite3_create_function(), an error code
+** is returned and the mallocFailed flag cleared.
+*/
+SQLITE_PRIVATE int sqlite3CreateFunc(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int enc,
+ void *pUserData,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value **),
+ FuncDestructor *pDestructor
+){
+ FuncDef *p;
+ int extraFlags;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( xValue==0 || xSFunc==0 );
+ if( zFunctionName==0 /* Must have a valid name */
+ || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */
+ || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */
+ || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */
+ || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG)
+ || (255<sqlite3Strlen30(zFunctionName))
+ ){
+ return SQLITE_MISUSE_BKPT;
+ }
+
+ assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
+ assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY );
+ extraFlags = enc & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY|
+ SQLITE_SUBTYPE|SQLITE_INNOCUOUS);
+ enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
+
+ /* The SQLITE_INNOCUOUS flag is the same bit as SQLITE_FUNC_UNSAFE. But
+ ** the meaning is inverted. So flip the bit. */
+ assert( SQLITE_FUNC_UNSAFE==SQLITE_INNOCUOUS );
+ extraFlags ^= SQLITE_FUNC_UNSAFE; /* tag-20230109-1 */
+
+
+#ifndef SQLITE_OMIT_UTF16
+ /* If SQLITE_UTF16 is specified as the encoding type, transform this
+ ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
+ ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
+ **
+ ** If SQLITE_ANY is specified, add three versions of the function
+ ** to the hash table.
+ */
+ switch( enc ){
+ case SQLITE_UTF16:
+ enc = SQLITE_UTF16NATIVE;
+ break;
+ case SQLITE_ANY: {
+ int rc;
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg,
+ (SQLITE_UTF8|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1 */
+ pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg,
+ (SQLITE_UTF16LE|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1*/
+ pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ enc = SQLITE_UTF16BE;
+ break;
+ }
+ case SQLITE_UTF8:
+ case SQLITE_UTF16LE:
+ case SQLITE_UTF16BE:
+ break;
+ default:
+ enc = SQLITE_UTF8;
+ break;
+ }
+#else
+ enc = SQLITE_UTF8;
+#endif
+
+ /* Check if an existing function is being overridden or deleted. If so,
+ ** and there are active VMs, then return SQLITE_BUSY. If a function
+ ** is being overridden/deleted but there are no active VMs, allow the
+ ** operation to continue but invalidate all precompiled statements.
+ */
+ p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0);
+ if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){
+ if( db->nVdbeActive ){
+ sqlite3ErrorWithMsg(db, SQLITE_BUSY,
+ "unable to delete/modify user-function due to active statements");
+ assert( !db->mallocFailed );
+ return SQLITE_BUSY;
+ }else{
+ sqlite3ExpirePreparedStatements(db, 0);
+ }
+ }else if( xSFunc==0 && xFinal==0 ){
+ /* Trying to delete a function that does not exist. This is a no-op.
+ ** https://sqlite.org/forum/forumpost/726219164b */
+ return SQLITE_OK;
+ }
+
+ p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1);
+ assert(p || db->mallocFailed);
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* If an older version of the function with a configured destructor is
+ ** being replaced invoke the destructor function here. */
+ functionDestroy(db, p);
+
+ if( pDestructor ){
+ pDestructor->nRef++;
+ }
+ p->u.pDestructor = pDestructor;
+ p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
+ testcase( p->funcFlags & SQLITE_DETERMINISTIC );
+ testcase( p->funcFlags & SQLITE_DIRECTONLY );
+ p->xSFunc = xSFunc ? xSFunc : xStep;
+ p->xFinalize = xFinal;
+ p->xValue = xValue;
+ p->xInverse = xInverse;
+ p->pUserData = pUserData;
+ p->nArg = (u16)nArg;
+ return SQLITE_OK;
+}
+
+/*
+** Worker function used by utf-8 APIs that create new functions:
+**
+** sqlite3_create_function()
+** sqlite3_create_function_v2()
+** sqlite3_create_window_function()
+*/
+static int createFunctionApi(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*)
+){
+ int rc = SQLITE_ERROR;
+ FuncDestructor *pArg = 0;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( xDestroy ){
+ pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor));
+ if( !pArg ){
+ sqlite3OomFault(db);
+ xDestroy(p);
+ goto out;
+ }
+ pArg->nRef = 0;
+ pArg->xDestroy = xDestroy;
+ pArg->pUserData = p;
+ }
+ rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p,
+ xSFunc, xStep, xFinal, xValue, xInverse, pArg
+ );
+ if( pArg && pArg->nRef==0 ){
+ assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) );
+ xDestroy(p);
+ sqlite3_free(pArg);
+ }
+
+ out:
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Create new user functions.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*)
+){
+ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep,
+ xFinal, 0, 0, 0);
+}
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xDestroy)(void *)
+){
+ return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep,
+ xFinal, 0, 0, xDestroy);
+}
+SQLITE_API int sqlite3_create_window_function(
+ sqlite3 *db,
+ const char *zFunc,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value **),
+ void (*xDestroy)(void *)
+){
+ return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep,
+ xFinal, xValue, xInverse, xDestroy);
+}
+
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *p,
+ void (*xSFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+){
+ int rc;
+ char *zFunc8;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
+ rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0);
+ sqlite3DbFree(db, zFunc8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif
+
+
+/*
+** The following is the implementation of an SQL function that always
+** fails with an error message stating that the function is used in the
+** wrong context. The sqlite3_overload_function() API might construct
+** SQL function that use this routine so that the functions will exist
+** for name resolution but are actually overloaded by the xFindFunction
+** method of virtual tables.
+*/
+static void sqlite3InvalidFunction(
+ sqlite3_context *context, /* The function calling context */
+ int NotUsed, /* Number of arguments to the function */
+ sqlite3_value **NotUsed2 /* Value of each argument */
+){
+ const char *zName = (const char*)sqlite3_user_data(context);
+ char *zErr;
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ zErr = sqlite3_mprintf(
+ "unable to use function %s in the requested context", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+}
+
+/*
+** Declare that a function has been overloaded by a virtual table.
+**
+** If the function already exists as a regular global function, then
+** this routine is a no-op. If the function does not exist, then create
+** a new one that always throws a run-time error.
+**
+** When virtual tables intend to provide an overloaded function, they
+** should call this routine to make sure the global function exists.
+** A global function must exist in order for name resolution to work
+** properly.
+*/
+SQLITE_API int sqlite3_overload_function(
+ sqlite3 *db,
+ const char *zName,
+ int nArg
+){
+ int rc;
+ char *zCopy;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0;
+ sqlite3_mutex_leave(db->mutex);
+ if( rc ) return SQLITE_OK;
+ zCopy = sqlite3_mprintf("%s", zName);
+ if( zCopy==0 ) return SQLITE_NOMEM;
+ return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8,
+ zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free);
+}
+
+#ifndef SQLITE_OMIT_TRACE
+/*
+** Register a trace function. The pArg from the previously registered trace
+** is returned.
+**
+** A NULL trace function means that no tracing is executes. A non-NULL
+** trace is a pointer to a function that is invoked at the start of each
+** SQL statement.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){
+ void *pOld;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pTraceArg;
+ db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0;
+ db->trace.xLegacy = xTrace;
+ db->pTraceArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+#endif /* SQLITE_OMIT_DEPRECATED */
+
+/* Register a trace callback using the version-2 interface.
+*/
+SQLITE_API int sqlite3_trace_v2(
+ sqlite3 *db, /* Trace this connection */
+ unsigned mTrace, /* Mask of events to be traced */
+ int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */
+ void *pArg /* Context */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( mTrace==0 ) xTrace = 0;
+ if( xTrace==0 ) mTrace = 0;
+ db->mTrace = mTrace;
+ db->trace.xV2 = xTrace;
+ db->pTraceArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** Register a profile function. The pArg from the previously registered
+** profile function is returned.
+**
+** A NULL profile function means that no profiling is executes. A non-NULL
+** profile is a pointer to a function that is invoked at the conclusion of
+** each SQL statement that is run.
+*/
+SQLITE_API void *sqlite3_profile(
+ sqlite3 *db,
+ void (*xProfile)(void*,const char*,sqlite_uint64),
+ void *pArg
+){
+ void *pOld;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pProfileArg;
+ db->xProfile = xProfile;
+ db->pProfileArg = pArg;
+ db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK;
+ if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+#endif /* SQLITE_OMIT_DEPRECATED */
+#endif /* SQLITE_OMIT_TRACE */
+
+/*
+** Register a function to be invoked when a transaction commits.
+** If the invoked function returns non-zero, then the commit becomes a
+** rollback.
+*/
+SQLITE_API void *sqlite3_commit_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ int (*xCallback)(void*), /* Function to invoke on each commit */
+ void *pArg /* Argument to the function */
+){
+ void *pOld;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pCommitArg;
+ db->xCommitCallback = xCallback;
+ db->pCommitArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+
+/*
+** Register a callback to be invoked each time a row is updated,
+** inserted or deleted using this database connection.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
+ void *pArg /* Argument to the function */
+){
+ void *pRet;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pUpdateArg;
+ db->xUpdateCallback = xCallback;
+ db->pUpdateArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+
+/*
+** Register a callback to be invoked each time a transaction is rolled
+** back by this database connection.
+*/
+SQLITE_API void *sqlite3_rollback_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void (*xCallback)(void*), /* Callback function */
+ void *pArg /* Argument to the function */
+){
+ void *pRet;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pRollbackArg;
+ db->xRollbackCallback = xCallback;
+ db->pRollbackArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+/*
+** Register a callback to be invoked each time a row is updated,
+** inserted or deleted using this database connection.
+*/
+SQLITE_API void *sqlite3_preupdate_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void(*xCallback)( /* Callback function */
+ void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64),
+ void *pArg /* First callback argument */
+){
+ void *pRet;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( db==0 ){
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pPreUpdateArg;
+ db->xPreUpdateCallback = xCallback;
+ db->pPreUpdateArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
+
+/*
+** Register a function to be invoked prior to each autovacuum that
+** determines the number of pages to vacuum.
+*/
+SQLITE_API int sqlite3_autovacuum_pages(
+ sqlite3 *db, /* Attach the hook to this database */
+ unsigned int (*xCallback)(void*,const char*,u32,u32,u32),
+ void *pArg, /* Argument to the function */
+ void (*xDestructor)(void*) /* Destructor for pArg */
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ if( xDestructor ) xDestructor(pArg);
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( db->xAutovacDestr ){
+ db->xAutovacDestr(db->pAutovacPagesArg);
+ }
+ db->xAutovacPages = xCallback;
+ db->pAutovacPagesArg = pArg;
+ db->xAutovacDestr = xDestructor;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
+** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
+** is greater than sqlite3.pWalArg cast to an integer (the value configured by
+** wal_autocheckpoint()).
+*/
+SQLITE_PRIVATE int sqlite3WalDefaultHook(
+ void *pClientData, /* Argument */
+ sqlite3 *db, /* Connection */
+ const char *zDb, /* Database */
+ int nFrame /* Size of WAL */
+){
+ if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
+ sqlite3BeginBenignMalloc();
+ sqlite3_wal_checkpoint(db, zDb);
+ sqlite3EndBenignMalloc();
+ }
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_WAL */
+
+/*
+** Configure an sqlite3_wal_hook() callback to automatically checkpoint
+** a database after committing a transaction if there are nFrame or
+** more frames in the log file. Passing zero or a negative value as the
+** nFrame parameter disables automatic checkpoints entirely.
+**
+** The callback registered by this function replaces any existing callback
+** registered using sqlite3_wal_hook(). Likewise, registering a callback
+** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
+** configured by this function.
+*/
+SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
+#ifdef SQLITE_OMIT_WAL
+ UNUSED_PARAMETER(db);
+ UNUSED_PARAMETER(nFrame);
+#else
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ if( nFrame>0 ){
+ sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
+ }else{
+ sqlite3_wal_hook(db, 0, 0);
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Register a callback to be invoked each time a transaction is written
+** into the write-ahead-log by this database connection.
+*/
+SQLITE_API void *sqlite3_wal_hook(
+ sqlite3 *db, /* Attach the hook to this db handle */
+ int(*xCallback)(void *, sqlite3*, const char*, int),
+ void *pArg /* First argument passed to xCallback() */
+){
+#ifndef SQLITE_OMIT_WAL
+ void *pRet;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pWalArg;
+ db->xWalCallback = xCallback;
+ db->pWalArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+#else
+ return 0;
+#endif
+}
+
+/*
+** Checkpoint database zDb.
+*/
+SQLITE_API int sqlite3_wal_checkpoint_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of attached database (or NULL) */
+ int eMode, /* SQLITE_CHECKPOINT_* value */
+ int *pnLog, /* OUT: Size of WAL log in frames */
+ int *pnCkpt /* OUT: Total number of frames checkpointed */
+){
+#ifdef SQLITE_OMIT_WAL
+ return SQLITE_OK;
+#else
+ int rc; /* Return code */
+ int iDb; /* Schema to checkpoint */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+
+ /* Initialize the output variables to -1 in case an error occurs. */
+ if( pnLog ) *pnLog = -1;
+ if( pnCkpt ) *pnCkpt = -1;
+
+ assert( SQLITE_CHECKPOINT_PASSIVE==0 );
+ assert( SQLITE_CHECKPOINT_FULL==1 );
+ assert( SQLITE_CHECKPOINT_RESTART==2 );
+ assert( SQLITE_CHECKPOINT_TRUNCATE==3 );
+ if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){
+ /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint
+ ** mode: */
+ return SQLITE_MISUSE_BKPT;
+ }
+
+ sqlite3_mutex_enter(db->mutex);
+ if( zDb && zDb[0] ){
+ iDb = sqlite3FindDbName(db, zDb);
+ }else{
+ iDb = SQLITE_MAX_DB; /* This means process all schemas */
+ }
+ if( iDb<0 ){
+ rc = SQLITE_ERROR;
+ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb);
+ }else{
+ db->busyHandler.nBusy = 0;
+ rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
+ sqlite3Error(db, rc);
+ }
+ rc = sqlite3ApiExit(db, rc);
+
+ /* If there are no active statements, clear the interrupt flag at this
+ ** point. */
+ if( db->nVdbeActive==0 ){
+ AtomicStore(&db->u1.isInterrupted, 0);
+ }
+
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+#endif
+}
+
+
+/*
+** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
+** to contains a zero-length string, all attached databases are
+** checkpointed.
+*/
+SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
+ /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to
+ ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */
+ return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0);
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Run a checkpoint on database iDb. This is a no-op if database iDb is
+** not currently open in WAL mode.
+**
+** If a transaction is open on the database being checkpointed, this
+** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
+** an error occurs while running the checkpoint, an SQLite error code is
+** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
+**
+** The mutex on database handle db should be held by the caller. The mutex
+** associated with the specific b-tree being checkpointed is taken by
+** this function while the checkpoint is running.
+**
+** If iDb is passed SQLITE_MAX_DB then all attached databases are
+** checkpointed. If an error is encountered it is returned immediately -
+** no attempt is made to checkpoint any remaining databases.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART
+** or TRUNCATE.
+*/
+SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* Used to iterate through attached dbs */
+ int bBusy = 0; /* True if SQLITE_BUSY has been encountered */
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( !pnLog || *pnLog==-1 );
+ assert( !pnCkpt || *pnCkpt==-1 );
+ testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */
+ testcase( iDb==SQLITE_MAX_DB );
+
+ for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
+ if( i==iDb || iDb==SQLITE_MAX_DB ){
+ rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
+ pnLog = 0;
+ pnCkpt = 0;
+ if( rc==SQLITE_BUSY ){
+ bBusy = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
+}
+#endif /* SQLITE_OMIT_WAL */
+
+/*
+** This function returns true if main-memory should be used instead of
+** a temporary file for transient pager files and statement journals.
+** The value returned depends on the value of db->temp_store (runtime
+** parameter) and the compile time value of SQLITE_TEMP_STORE. The
+** following table describes the relationship between these two values
+** and this functions return value.
+**
+** SQLITE_TEMP_STORE db->temp_store Location of temporary database
+** ----------------- -------------- ------------------------------
+** 0 any file (return 0)
+** 1 1 file (return 0)
+** 1 2 memory (return 1)
+** 1 0 file (return 0)
+** 2 1 file (return 0)
+** 2 2 memory (return 1)
+** 2 0 memory (return 1)
+** 3 any memory (return 1)
+*/
+SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){
+#if SQLITE_TEMP_STORE==1
+ return ( db->temp_store==2 );
+#endif
+#if SQLITE_TEMP_STORE==2
+ return ( db->temp_store!=1 );
+#endif
+#if SQLITE_TEMP_STORE==3
+ UNUSED_PARAMETER(db);
+ return 1;
+#endif
+#if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
+ UNUSED_PARAMETER(db);
+ return 0;
+#endif
+}
+
+/*
+** Return UTF-8 encoded English language explanation of the most recent
+** error.
+*/
+SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
+ const char *z;
+ if( !db ){
+ return sqlite3ErrStr(SQLITE_NOMEM_BKPT);
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
+ }
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mallocFailed ){
+ z = sqlite3ErrStr(SQLITE_NOMEM_BKPT);
+ }else{
+ testcase( db->pErr==0 );
+ z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0;
+ assert( !db->mallocFailed );
+ if( z==0 ){
+ z = sqlite3ErrStr(db->errCode);
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return z;
+}
+
+/*
+** Return the byte offset of the most recent error
+*/
+SQLITE_API int sqlite3_error_offset(sqlite3 *db){
+ int iOffset = -1;
+ if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){
+ sqlite3_mutex_enter(db->mutex);
+ iOffset = db->errByteOffset;
+ sqlite3_mutex_leave(db->mutex);
+ }
+ return iOffset;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Return UTF-16 encoded English language explanation of the most recent
+** error.
+*/
+SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
+ static const u16 outOfMem[] = {
+ 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
+ };
+ static const u16 misuse[] = {
+ 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ',
+ 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ',
+ 'm', 'i', 's', 'u', 's', 'e', 0
+ };
+
+ const void *z;
+ if( !db ){
+ return (void *)outOfMem;
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return (void *)misuse;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ if( db->mallocFailed ){
+ z = (void *)outOfMem;
+ }else{
+ z = sqlite3_value_text16(db->pErr);
+ if( z==0 ){
+ sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode));
+ z = sqlite3_value_text16(db->pErr);
+ }
+ /* A malloc() may have failed within the call to sqlite3_value_text16()
+ ** above. If this is the case, then the db->mallocFailed flag needs to
+ ** be cleared before returning. Do this directly, instead of via
+ ** sqlite3ApiExit(), to avoid setting the database handle error message.
+ */
+ sqlite3OomClear(db);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return z;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the most recent error code generated by an SQLite routine. If NULL is
+** passed to this function, we assume a malloc() failed during sqlite3_open().
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( !db || db->mallocFailed ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ return db->errCode & db->errMask;
+}
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+ if( !db || db->mallocFailed ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ return db->errCode;
+}
+SQLITE_API int sqlite3_system_errno(sqlite3 *db){
+ return db ? db->iSysErrno : 0;
+}
+
+/*
+** Return a string that describes the kind of error specified in the
+** argument. For now, this simply calls the internal sqlite3ErrStr()
+** function.
+*/
+SQLITE_API const char *sqlite3_errstr(int rc){
+ return sqlite3ErrStr(rc);
+}
+
+/*
+** Create a new collating function for database "db". The name is zName
+** and the encoding is enc.
+*/
+static int createCollation(
+ sqlite3* db,
+ const char *zName,
+ u8 enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
+){
+ CollSeq *pColl;
+ int enc2;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ /* If SQLITE_UTF16 is specified as the encoding type, transform this
+ ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
+ ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
+ */
+ enc2 = enc;
+ testcase( enc2==SQLITE_UTF16 );
+ testcase( enc2==SQLITE_UTF16_ALIGNED );
+ if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
+ enc2 = SQLITE_UTF16NATIVE;
+ }
+ if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
+ return SQLITE_MISUSE_BKPT;
+ }
+
+ /* Check if this call is removing or replacing an existing collation
+ ** sequence. If so, and there are active VMs, return busy. If there
+ ** are no active VMs, invalidate any pre-compiled statements.
+ */
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
+ if( pColl && pColl->xCmp ){
+ if( db->nVdbeActive ){
+ sqlite3ErrorWithMsg(db, SQLITE_BUSY,
+ "unable to delete/modify collation sequence due to active statements");
+ return SQLITE_BUSY;
+ }
+ sqlite3ExpirePreparedStatements(db, 0);
+
+ /* If collation sequence pColl was created directly by a call to
+ ** sqlite3_create_collation, and not generated by synthCollSeq(),
+ ** then any copies made by synthCollSeq() need to be invalidated.
+ ** Also, collation destructor - CollSeq.xDel() - function may need
+ ** to be called.
+ */
+ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
+ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName);
+ int j;
+ for(j=0; j<3; j++){
+ CollSeq *p = &aColl[j];
+ if( p->enc==pColl->enc ){
+ if( p->xDel ){
+ p->xDel(p->pUser);
+ }
+ p->xCmp = 0;
+ }
+ }
+ }
+ }
+
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
+ if( pColl==0 ) return SQLITE_NOMEM_BKPT;
+ pColl->xCmp = xCompare;
+ pColl->pUser = pCtx;
+ pColl->xDel = xDel;
+ pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
+ sqlite3Error(db, SQLITE_OK);
+ return SQLITE_OK;
+}
+
+
+/*
+** This array defines hard upper bounds on limit values. The
+** initializer must be kept in sync with the SQLITE_LIMIT_*
+** #defines in sqlite3.h.
+*/
+static const int aHardLimit[] = {
+ SQLITE_MAX_LENGTH,
+ SQLITE_MAX_SQL_LENGTH,
+ SQLITE_MAX_COLUMN,
+ SQLITE_MAX_EXPR_DEPTH,
+ SQLITE_MAX_COMPOUND_SELECT,
+ SQLITE_MAX_VDBE_OP,
+ SQLITE_MAX_FUNCTION_ARG,
+ SQLITE_MAX_ATTACHED,
+ SQLITE_MAX_LIKE_PATTERN_LENGTH,
+ SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */
+ SQLITE_MAX_TRIGGER_DEPTH,
+ SQLITE_MAX_WORKER_THREADS,
+};
+
+/*
+** Make sure the hard limits are set to reasonable values
+*/
+#if SQLITE_MAX_LENGTH<100
+# error SQLITE_MAX_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH<100
+# error SQLITE_MAX_SQL_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
+# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
+#endif
+#if SQLITE_MAX_COMPOUND_SELECT<2
+# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
+#endif
+#if SQLITE_MAX_VDBE_OP<40
+# error SQLITE_MAX_VDBE_OP must be at least 40
+#endif
+#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127
+# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127
+#endif
+#if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125
+# error SQLITE_MAX_ATTACHED must be between 0 and 125
+#endif
+#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
+# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
+#endif
+#if SQLITE_MAX_COLUMN>32767
+# error SQLITE_MAX_COLUMN must not exceed 32767
+#endif
+#if SQLITE_MAX_TRIGGER_DEPTH<1
+# error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
+#endif
+#if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50
+# error SQLITE_MAX_WORKER_THREADS must be between 0 and 50
+#endif
+
+
+/*
+** Change the value of a limit. Report the old value.
+** If an invalid limit index is supplied, report -1.
+** Make no changes but still report the old value if the
+** new limit is negative.
+**
+** A new lower limit does not shrink existing constructs.
+** It merely prevents new constructs that exceed the limit
+** from forming.
+*/
+SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
+ int oldLimit;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return -1;
+ }
+#endif
+
+ /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
+ ** there is a hard upper bound set at compile-time by a C preprocessor
+ ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
+ ** "_MAX_".)
+ */
+ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
+ assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
+ assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
+ assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
+ assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
+ assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
+ assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
+ SQLITE_MAX_LIKE_PATTERN_LENGTH );
+ assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
+ assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
+ assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS );
+ assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) );
+
+
+ if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
+ return -1;
+ }
+ oldLimit = db->aLimit[limitId];
+ if( newLimit>=0 ){ /* IMP: R-52476-28732 */
+ if( newLimit>aHardLimit[limitId] ){
+ newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */
+ }else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){
+ newLimit = 1;
+ }
+ db->aLimit[limitId] = newLimit;
+ }
+ return oldLimit; /* IMP: R-53341-35419 */
+}
+
+/*
+** This function is used to parse both URIs and non-URI filenames passed by the
+** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
+** URIs specified as part of ATTACH statements.
+**
+** The first argument to this function is the name of the VFS to use (or
+** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
+** query parameter. The second argument contains the URI (or non-URI filename)
+** itself. When this function is called the *pFlags variable should contain
+** the default flags to open the database handle with. The value stored in
+** *pFlags may be updated before returning if the URI filename contains
+** "cache=xxx" or "mode=xxx" query parameters.
+**
+** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
+** the VFS that should be used to open the database file. *pzFile is set to
+** point to a buffer containing the name of the file to open. The value
+** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter()
+** and is in the same format as names created using sqlite3_create_filename().
+** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on
+** the value returned in *pzFile to avoid a memory leak.
+**
+** If an error occurs, then an SQLite error code is returned and *pzErrMsg
+** may be set to point to a buffer containing an English language error
+** message. It is the responsibility of the caller to eventually release
+** this buffer by calling sqlite3_free().
+*/
+SQLITE_PRIVATE int sqlite3ParseUri(
+ const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */
+ const char *zUri, /* Nul-terminated URI to parse */
+ unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */
+ sqlite3_vfs **ppVfs, /* OUT: VFS to use */
+ char **pzFile, /* OUT: Filename component of URI */
+ char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */
+){
+ int rc = SQLITE_OK;
+ unsigned int flags = *pFlags;
+ const char *zVfs = zDefaultVfs;
+ char *zFile;
+ char c;
+ int nUri = sqlite3Strlen30(zUri);
+
+ assert( *pzErrMsg==0 );
+
+ if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */
+ || AtomicLoad(&sqlite3GlobalConfig.bOpenUri)) /* IMP: R-51689-46548 */
+ && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
+ ){
+ char *zOpt;
+ int eState; /* Parser state when parsing URI */
+ int iIn; /* Input character index */
+ int iOut = 0; /* Output character index */
+ u64 nByte = nUri+8; /* Bytes of space to allocate */
+
+ /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
+ ** method that there may be extra parameters following the file-name. */
+ flags |= SQLITE_OPEN_URI;
+
+ for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
+ zFile = sqlite3_malloc64(nByte);
+ if( !zFile ) return SQLITE_NOMEM_BKPT;
+
+ memset(zFile, 0, 4); /* 4-byte of 0x00 is the start of DB name marker */
+ zFile += 4;
+
+ iIn = 5;
+#ifdef SQLITE_ALLOW_URI_AUTHORITY
+ if( strncmp(zUri+5, "///", 3)==0 ){
+ iIn = 7;
+ /* The following condition causes URIs with five leading / characters
+ ** like file://///host/path to be converted into UNCs like //host/path.
+ ** The correct URI for that UNC has only two or four leading / characters
+ ** file://host/path or file:////host/path. But 5 leading slashes is a
+ ** common error, we are told, so we handle it as a special case. */
+ if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; }
+ }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){
+ iIn = 16;
+ }
+#else
+ /* Discard the scheme and authority segments of the URI. */
+ if( zUri[5]=='/' && zUri[6]=='/' ){
+ iIn = 7;
+ while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
+ if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
+ *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
+ iIn-7, &zUri[7]);
+ rc = SQLITE_ERROR;
+ goto parse_uri_out;
+ }
+ }
+#endif
+
+ /* Copy the filename and any query parameters into the zFile buffer.
+ ** Decode %HH escape codes along the way.
+ **
+ ** Within this loop, variable eState may be set to 0, 1 or 2, depending
+ ** on the parsing context. As follows:
+ **
+ ** 0: Parsing file-name.
+ ** 1: Parsing name section of a name=value query parameter.
+ ** 2: Parsing value section of a name=value query parameter.
+ */
+ eState = 0;
+ while( (c = zUri[iIn])!=0 && c!='#' ){
+ iIn++;
+ if( c=='%'
+ && sqlite3Isxdigit(zUri[iIn])
+ && sqlite3Isxdigit(zUri[iIn+1])
+ ){
+ int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
+ octet += sqlite3HexToInt(zUri[iIn++]);
+
+ assert( octet>=0 && octet<256 );
+ if( octet==0 ){
+#ifndef SQLITE_ENABLE_URI_00_ERROR
+ /* This branch is taken when "%00" appears within the URI. In this
+ ** case we ignore all text in the remainder of the path, name or
+ ** value currently being parsed. So ignore the current character
+ ** and skip to the next "?", "=" or "&", as appropriate. */
+ while( (c = zUri[iIn])!=0 && c!='#'
+ && (eState!=0 || c!='?')
+ && (eState!=1 || (c!='=' && c!='&'))
+ && (eState!=2 || c!='&')
+ ){
+ iIn++;
+ }
+ continue;
+#else
+ /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */
+ *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri");
+ rc = SQLITE_ERROR;
+ goto parse_uri_out;
+#endif
+ }
+ c = octet;
+ }else if( eState==1 && (c=='&' || c=='=') ){
+ if( zFile[iOut-1]==0 ){
+ /* An empty option name. Ignore this option altogether. */
+ while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
+ continue;
+ }
+ if( c=='&' ){
+ zFile[iOut++] = '\0';
+ }else{
+ eState = 2;
+ }
+ c = 0;
+ }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
+ c = 0;
+ eState = 1;
+ }
+ zFile[iOut++] = c;
+ }
+ if( eState==1 ) zFile[iOut++] = '\0';
+ memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */
+
+ /* Check if there were any options specified that should be interpreted
+ ** here. Options that are interpreted here include "vfs" and those that
+ ** correspond to flags that may be passed to the sqlite3_open_v2()
+ ** method. */
+ zOpt = &zFile[sqlite3Strlen30(zFile)+1];
+ while( zOpt[0] ){
+ int nOpt = sqlite3Strlen30(zOpt);
+ char *zVal = &zOpt[nOpt+1];
+ int nVal = sqlite3Strlen30(zVal);
+
+ if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
+ zVfs = zVal;
+ }else{
+ struct OpenMode {
+ const char *z;
+ int mode;
+ } *aMode = 0;
+ char *zModeType = 0;
+ int mask = 0;
+ int limit = 0;
+
+ if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
+ static struct OpenMode aCacheMode[] = {
+ { "shared", SQLITE_OPEN_SHAREDCACHE },
+ { "private", SQLITE_OPEN_PRIVATECACHE },
+ { 0, 0 }
+ };
+
+ mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
+ aMode = aCacheMode;
+ limit = mask;
+ zModeType = "cache";
+ }
+ if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
+ static struct OpenMode aOpenMode[] = {
+ { "ro", SQLITE_OPEN_READONLY },
+ { "rw", SQLITE_OPEN_READWRITE },
+ { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
+ { "memory", SQLITE_OPEN_MEMORY },
+ { 0, 0 }
+ };
+
+ mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE
+ | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY;
+ aMode = aOpenMode;
+ limit = mask & flags;
+ zModeType = "access";
+ }
+
+ if( aMode ){
+ int i;
+ int mode = 0;
+ for(i=0; aMode[i].z; i++){
+ const char *z = aMode[i].z;
+ if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
+ mode = aMode[i].mode;
+ break;
+ }
+ }
+ if( mode==0 ){
+ *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
+ rc = SQLITE_ERROR;
+ goto parse_uri_out;
+ }
+ if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){
+ *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
+ zModeType, zVal);
+ rc = SQLITE_PERM;
+ goto parse_uri_out;
+ }
+ flags = (flags & ~mask) | mode;
+ }
+ }
+
+ zOpt = &zVal[nVal+1];
+ }
+
+ }else{
+ zFile = sqlite3_malloc64(nUri+8);
+ if( !zFile ) return SQLITE_NOMEM_BKPT;
+ memset(zFile, 0, 4);
+ zFile += 4;
+ if( nUri ){
+ memcpy(zFile, zUri, nUri);
+ }
+ memset(zFile+nUri, 0, 4);
+ flags &= ~SQLITE_OPEN_URI;
+ }
+
+ *ppVfs = sqlite3_vfs_find(zVfs);
+ if( *ppVfs==0 ){
+ *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
+ rc = SQLITE_ERROR;
+ }
+ parse_uri_out:
+ if( rc!=SQLITE_OK ){
+ sqlite3_free_filename(zFile);
+ zFile = 0;
+ }
+ *pFlags = flags;
+ *pzFile = zFile;
+ return rc;
+}
+
+/*
+** This routine does the core work of extracting URI parameters from a
+** database filename for the sqlite3_uri_parameter() interface.
+*/
+static const char *uriParameter(const char *zFilename, const char *zParam){
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ while( ALWAYS(zFilename!=0) && zFilename[0] ){
+ int x = strcmp(zFilename, zParam);
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ if( x==0 ) return zFilename;
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ }
+ return 0;
+}
+
+
+
+/*
+** This routine does the work of opening a database on behalf of
+** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
+** is UTF-8 encoded.
+*/
+static int openDatabase(
+ const char *zFilename, /* Database filename UTF-8 encoded */
+ sqlite3 **ppDb, /* OUT: Returned database handle */
+ unsigned int flags, /* Operational flags */
+ const char *zVfs /* Name of the VFS to use */
+){
+ sqlite3 *db; /* Store allocated handle here */
+ int rc; /* Return code */
+ int isThreadsafe; /* True for threadsafe connections */
+ char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */
+ char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */
+ int i; /* Loop counter */
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppDb = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+
+ if( sqlite3GlobalConfig.bCoreMutex==0 ){
+ isThreadsafe = 0;
+ }else if( flags & SQLITE_OPEN_NOMUTEX ){
+ isThreadsafe = 0;
+ }else if( flags & SQLITE_OPEN_FULLMUTEX ){
+ isThreadsafe = 1;
+ }else{
+ isThreadsafe = sqlite3GlobalConfig.bFullMutex;
+ }
+
+ if( flags & SQLITE_OPEN_PRIVATECACHE ){
+ flags &= ~SQLITE_OPEN_SHAREDCACHE;
+ }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
+ flags |= SQLITE_OPEN_SHAREDCACHE;
+ }
+
+ /* Remove harmful bits from the flags parameter
+ **
+ ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
+ ** dealt with in the previous code block. Besides these, the only
+ ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
+ ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
+ ** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved
+ ** bits. Silently mask off all other flags.
+ */
+ flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_MAIN_DB |
+ SQLITE_OPEN_TEMP_DB |
+ SQLITE_OPEN_TRANSIENT_DB |
+ SQLITE_OPEN_MAIN_JOURNAL |
+ SQLITE_OPEN_TEMP_JOURNAL |
+ SQLITE_OPEN_SUBJOURNAL |
+ SQLITE_OPEN_SUPER_JOURNAL |
+ SQLITE_OPEN_NOMUTEX |
+ SQLITE_OPEN_FULLMUTEX |
+ SQLITE_OPEN_WAL
+ );
+
+ /* Allocate the sqlite data structure */
+ db = sqlite3MallocZero( sizeof(sqlite3) );
+ if( db==0 ) goto opendb_out;
+ if( isThreadsafe
+#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
+ || sqlite3GlobalConfig.bCoreMutex
+#endif
+ ){
+ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
+ if( db->mutex==0 ){
+ sqlite3_free(db);
+ db = 0;
+ goto opendb_out;
+ }
+ if( isThreadsafe==0 ){
+ sqlite3MutexWarnOnContention(db->mutex);
+ }
+ }
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff;
+ db->nDb = 2;
+ db->eOpenState = SQLITE_STATE_BUSY;
+ db->aDb = db->aDbStatic;
+ db->lookaside.bDisable = 1;
+ db->lookaside.sz = 0;
+
+ assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
+ memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
+ db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS;
+ db->autoCommit = 1;
+ db->nextAutovac = -1;
+ db->szMmap = sqlite3GlobalConfig.szMmap;
+ db->nextPagesize = 0;
+ db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */
+#ifdef SQLITE_ENABLE_SORTER_MMAP
+ /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map
+ ** the temporary files used to do external sorts (see code in vdbesort.c)
+ ** is disabled. It can still be used either by defining
+ ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the
+ ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */
+ db->nMaxSorterMmap = 0x7FFFFFFF;
+#endif
+ db->flags |= SQLITE_ShortColNames
+ | SQLITE_EnableTrigger
+ | SQLITE_EnableView
+ | SQLITE_CacheSpill
+#if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0
+ | SQLITE_TrustedSchema
+#endif
+/* The SQLITE_DQS compile-time option determines the default settings
+** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML.
+**
+** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML
+** ---------- ----------------------- -----------------------
+** undefined on on
+** 3 on on
+** 2 on off
+** 1 off on
+** 0 off off
+**
+** Legacy behavior is 3 (double-quoted string literals are allowed anywhere)
+** and so that is the default. But developers are encouraged to use
+** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible.
+*/
+#if !defined(SQLITE_DQS)
+# define SQLITE_DQS 3
+#endif
+#if (SQLITE_DQS&1)==1
+ | SQLITE_DqsDML
+#endif
+#if (SQLITE_DQS&2)==2
+ | SQLITE_DqsDDL
+#endif
+
+#if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
+ | SQLITE_AutoIndex
+#endif
+#if SQLITE_DEFAULT_CKPTFULLFSYNC
+ | SQLITE_CkptFullFSync
+#endif
+#if SQLITE_DEFAULT_FILE_FORMAT<4
+ | SQLITE_LegacyFileFmt
+#endif
+#ifdef SQLITE_ENABLE_LOAD_EXTENSION
+ | SQLITE_LoadExtension
+#endif
+#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+ | SQLITE_RecTriggers
+#endif
+#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
+ | SQLITE_ForeignKeys
+#endif
+#if defined(SQLITE_REVERSE_UNORDERED_SELECTS)
+ | SQLITE_ReverseOrder
+#endif
+#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
+ | SQLITE_CellSizeCk
+#endif
+#if defined(SQLITE_ENABLE_FTS3_TOKENIZER)
+ | SQLITE_Fts3Tokenizer
+#endif
+#if defined(SQLITE_ENABLE_QPSG)
+ | SQLITE_EnableQPSG
+#endif
+#if defined(SQLITE_DEFAULT_DEFENSIVE)
+ | SQLITE_Defensive
+#endif
+#if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE)
+ | SQLITE_LegacyAlter
+#endif
+#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
+ | SQLITE_StmtScanStatus
+#endif
+ ;
+ sqlite3HashInit(&db->aCollSeq);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3HashInit(&db->aModule);
+#endif
+
+ /* Add the default collation sequence BINARY. BINARY works for both UTF-8
+ ** and UTF-16, so add a version for each to avoid any unnecessary
+ ** conversions. The only error that can occur here is a malloc() failure.
+ **
+ ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
+ ** functions:
+ */
+ createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0);
+ createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0);
+ createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0);
+ createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
+ createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0);
+ if( db->mallocFailed ){
+ goto opendb_out;
+ }
+
+#if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL)
+ /* Process magic filenames ":localStorage:" and ":sessionStorage:" */
+ if( zFilename && zFilename[0]==':' ){
+ if( strcmp(zFilename, ":localStorage:")==0 ){
+ zFilename = "file:local?vfs=kvvfs";
+ flags |= SQLITE_OPEN_URI;
+ }else if( strcmp(zFilename, ":sessionStorage:")==0 ){
+ zFilename = "file:session?vfs=kvvfs";
+ flags |= SQLITE_OPEN_URI;
+ }
+ }
+#endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */
+
+ /* Parse the filename/URI argument
+ **
+ ** Only allow sensible combinations of bits in the flags argument.
+ ** Throw an error if any non-sense combination is used. If we
+ ** do not block illegal combinations here, it could trigger
+ ** assert() statements in deeper layers. Sensible combinations
+ ** are:
+ **
+ ** 1: SQLITE_OPEN_READONLY
+ ** 2: SQLITE_OPEN_READWRITE
+ ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
+ */
+ db->openFlags = flags;
+ assert( SQLITE_OPEN_READONLY == 0x01 );
+ assert( SQLITE_OPEN_READWRITE == 0x02 );
+ assert( SQLITE_OPEN_CREATE == 0x04 );
+ testcase( (1<<(flags&7))==0x02 ); /* READONLY */
+ testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
+ testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
+ if( ((1<<(flags&7)) & 0x46)==0 ){
+ rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */
+ }else{
+ rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
+ }
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
+ sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
+ sqlite3_free(zErrMsg);
+ goto opendb_out;
+ }
+ assert( db->pVfs!=0 );
+#if SQLITE_OS_KV || defined(SQLITE_OS_KV_OPTIONAL)
+ if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){
+ db->temp_store = 2;
+ }
+#endif
+
+ /* Open the backend database driver */
+ rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
+ flags | SQLITE_OPEN_MAIN_DB);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_IOERR_NOMEM ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3Error(db, rc);
+ goto opendb_out;
+ }
+ sqlite3BtreeEnter(db->aDb[0].pBt);
+ db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
+ if( !db->mallocFailed ){
+ sqlite3SetTextEncoding(db, SCHEMA_ENC(db));
+ }
+ sqlite3BtreeLeave(db->aDb[0].pBt);
+ db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
+
+ /* The default safety_level for the main database is FULL; for the temp
+ ** database it is OFF. This matches the pager layer defaults.
+ */
+ db->aDb[0].zDbSName = "main";
+ db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1;
+ db->aDb[1].zDbSName = "temp";
+ db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF;
+
+ db->eOpenState = SQLITE_STATE_OPEN;
+ if( db->mallocFailed ){
+ goto opendb_out;
+ }
+
+ /* Register all built-in functions, but do not attempt to read the
+ ** database schema yet. This is delayed until the first time the database
+ ** is accessed.
+ */
+ sqlite3Error(db, SQLITE_OK);
+ sqlite3RegisterPerConnectionBuiltinFunctions(db);
+ rc = sqlite3_errcode(db);
+
+
+ /* Load compiled-in extensions */
+ for(i=0; rc==SQLITE_OK && i<ArraySize(sqlite3BuiltinExtensions); i++){
+ rc = sqlite3BuiltinExtensions[i](db);
+ }
+
+ /* Load automatic extensions - extensions that have been registered
+ ** using the sqlite3_automatic_extension() API.
+ */
+ if( rc==SQLITE_OK ){
+ sqlite3AutoLoadExtensions(db);
+ rc = sqlite3_errcode(db);
+ if( rc!=SQLITE_OK ){
+ goto opendb_out;
+ }
+ }
+
+#ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS
+ /* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time
+ ** option gives access to internal functions by default.
+ ** Testing use only!!! */
+ db->mDbFlags |= DBFLAG_InternalFunc;
+#endif
+
+ /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
+ ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
+ ** mode. Doing nothing at all also makes NORMAL the default.
+ */
+#ifdef SQLITE_DEFAULT_LOCKING_MODE
+ db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
+ sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
+ SQLITE_DEFAULT_LOCKING_MODE);
+#endif
+
+ if( rc ) sqlite3Error(db, rc);
+
+ /* Enable the lookaside-malloc subsystem */
+ setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
+ sqlite3GlobalConfig.nLookaside);
+
+ sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
+
+opendb_out:
+ if( db ){
+ assert( db->mutex!=0 || isThreadsafe==0
+ || sqlite3GlobalConfig.bFullMutex==0 );
+ sqlite3_mutex_leave(db->mutex);
+ }
+ rc = sqlite3_errcode(db);
+ assert( db!=0 || (rc&0xff)==SQLITE_NOMEM );
+ if( (rc&0xff)==SQLITE_NOMEM ){
+ sqlite3_close(db);
+ db = 0;
+ }else if( rc!=SQLITE_OK ){
+ db->eOpenState = SQLITE_STATE_SICK;
+ }
+ *ppDb = db;
+#ifdef SQLITE_ENABLE_SQLLOG
+ if( sqlite3GlobalConfig.xSqllog ){
+ /* Opening a db handle. Fourth parameter is passed 0. */
+ void *pArg = sqlite3GlobalConfig.pSqllogArg;
+ sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
+ }
+#endif
+ sqlite3_free_filename(zOpen);
+ return rc;
+}
+
+
+/*
+** Open a new database handle.
+*/
+SQLITE_API int sqlite3_open(
+ const char *zFilename,
+ sqlite3 **ppDb
+){
+ return openDatabase(zFilename, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+}
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+){
+ return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Open a new database handle.
+*/
+SQLITE_API int sqlite3_open16(
+ const void *zFilename,
+ sqlite3 **ppDb
+){
+ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
+ sqlite3_value *pVal;
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ *ppDb = 0;
+#ifndef SQLITE_OMIT_AUTOINIT
+ rc = sqlite3_initialize();
+ if( rc ) return rc;
+#endif
+ if( zFilename==0 ) zFilename = "\000\000";
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zFilename8 ){
+ rc = openDatabase(zFilename8, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+ assert( *ppDb || rc==SQLITE_NOMEM );
+ if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
+ SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE;
+ }
+ }else{
+ rc = SQLITE_NOMEM_BKPT;
+ }
+ sqlite3ValueFree(pVal);
+
+ return rc & 0xff;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
+ return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0);
+}
+
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
+){
+ int rc;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3* db,
+ const void *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
+ int rc = SQLITE_OK;
+ char *zName8;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
+ if( zName8 ){
+ rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
+ sqlite3DbFree(db, zName8);
+ }
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Register a collation sequence factory callback with the database handle
+** db. Replace any previously installed collation sequence factory.
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3 *db,
+ void *pCollNeededArg,
+ void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->xCollNeeded = xCollNeeded;
+ db->xCollNeeded16 = 0;
+ db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Register a collation sequence factory callback with the database handle
+** db. Replace any previously installed collation sequence factory.
+*/
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3 *db,
+ void *pCollNeededArg,
+ void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
+){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->xCollNeeded = 0;
+ db->xCollNeeded16 = xCollNeeded16;
+ db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Find existing client data.
+*/
+SQLITE_API void *sqlite3_get_clientdata(sqlite3 *db, const char *zName){
+ DbClientData *p;
+ sqlite3_mutex_enter(db->mutex);
+ for(p=db->pDbData; p; p=p->pNext){
+ if( strcmp(p->zName, zName)==0 ){
+ void *pResult = p->pData;
+ sqlite3_mutex_leave(db->mutex);
+ return pResult;
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return 0;
+}
+
+/*
+** Add new client data to a database connection.
+*/
+SQLITE_API int sqlite3_set_clientdata(
+ sqlite3 *db, /* Attach client data to this connection */
+ const char *zName, /* Name of the client data */
+ void *pData, /* The client data itself */
+ void (*xDestructor)(void*) /* Destructor */
+){
+ DbClientData *p, **pp;
+ sqlite3_mutex_enter(db->mutex);
+ pp = &db->pDbData;
+ for(p=db->pDbData; p && strcmp(p->zName,zName); p=p->pNext){
+ pp = &p->pNext;
+ }
+ if( p ){
+ assert( p->pData!=0 );
+ if( p->xDestructor ) p->xDestructor(p->pData);
+ if( pData==0 ){
+ *pp = p->pNext;
+ sqlite3_free(p);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+ }
+ }else if( pData==0 ){
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+ }else{
+ size_t n = strlen(zName);
+ p = sqlite3_malloc64( sizeof(DbClientData)+n+1 );
+ if( p==0 ){
+ if( xDestructor ) xDestructor(pData);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_NOMEM;
+ }
+ memcpy(p->zName, zName, n+1);
+ p->pNext = db->pDbData;
+ db->pDbData = p;
+ }
+ p->pData = pData;
+ p->xDestructor = xDestructor;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** This function is now an anachronism. It used to be used to recover from a
+** malloc() failure, but SQLite now does this automatically.
+*/
+SQLITE_API int sqlite3_global_recover(void){
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Test to see whether or not the database connection is in autocommit
+** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
+** by default. Autocommit is disabled by a BEGIN statement and reenabled
+** by the next COMMIT or ROLLBACK.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ return db->autoCommit;
+}
+
+/*
+** The following routines are substitutes for constants SQLITE_CORRUPT,
+** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error
+** constants. They serve two purposes:
+**
+** 1. Serve as a convenient place to set a breakpoint in a debugger
+** to detect when version error conditions occurs.
+**
+** 2. Invoke sqlite3_log() to provide the source code location where
+** a low-level error is first detected.
+*/
+SQLITE_PRIVATE int sqlite3ReportError(int iErr, int lineno, const char *zType){
+ sqlite3_log(iErr, "%s at line %d of [%.10s]",
+ zType, lineno, 20+sqlite3_sourceid());
+ return iErr;
+}
+SQLITE_PRIVATE int sqlite3CorruptError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption");
+}
+SQLITE_PRIVATE int sqlite3MisuseError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse");
+}
+SQLITE_PRIVATE int sqlite3CantopenError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file");
+}
+#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO)
+SQLITE_PRIVATE int sqlite3CorruptPgnoError(int lineno, Pgno pgno){
+ char zMsg[100];
+ sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno);
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
+}
+#endif
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3NomemError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM");
+}
+SQLITE_PRIVATE int sqlite3IoerrnomemError(int lineno){
+ testcase( sqlite3GlobalConfig.xLog!=0 );
+ return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error");
+}
+#endif
+
+#ifndef SQLITE_OMIT_DEPRECATED
+/*
+** This is a convenience routine that makes sure that all thread-specific
+** data for this thread has been deallocated.
+**
+** SQLite no longer uses thread-specific data so this routine is now a
+** no-op. It is retained for historical compatibility.
+*/
+SQLITE_API void sqlite3_thread_cleanup(void){
+}
+#endif
+
+/*
+** Return meta information about a specific column of a database table.
+** See comment in sqlite3.h (sqlite.h.in) for details.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+){
+ int rc;
+ char *zErrMsg = 0;
+ Table *pTab = 0;
+ Column *pCol = 0;
+ int iCol = 0;
+ char const *zDataType = 0;
+ char const *zCollSeq = 0;
+ int notnull = 0;
+ int primarykey = 0;
+ int autoinc = 0;
+
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+
+ /* Ensure the database schema has been loaded */
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ rc = sqlite3Init(db, &zErrMsg);
+ if( SQLITE_OK!=rc ){
+ goto error_out;
+ }
+
+ /* Locate the table in question */
+ pTab = sqlite3FindTable(db, zTableName, zDbName);
+ if( !pTab || IsView(pTab) ){
+ pTab = 0;
+ goto error_out;
+ }
+
+ /* Find the column for which info is requested */
+ if( zColumnName==0 ){
+ /* Query for existence of table only */
+ }else{
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ pCol = &pTab->aCol[iCol];
+ if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){
+ iCol = pTab->iPKey;
+ pCol = iCol>=0 ? &pTab->aCol[iCol] : 0;
+ }else{
+ pTab = 0;
+ goto error_out;
+ }
+ }
+ }
+
+ /* The following block stores the meta information that will be returned
+ ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
+ ** and autoinc. At this point there are two possibilities:
+ **
+ ** 1. The specified column name was rowid", "oid" or "_rowid_"
+ ** and there is no explicitly declared IPK column.
+ **
+ ** 2. The table is not a view and the column name identified an
+ ** explicitly declared column. Copy meta information from *pCol.
+ */
+ if( pCol ){
+ zDataType = sqlite3ColumnType(pCol,0);
+ zCollSeq = sqlite3ColumnColl(pCol);
+ notnull = pCol->notNull!=0;
+ primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
+ autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
+ }else{
+ zDataType = "INTEGER";
+ primarykey = 1;
+ }
+ if( !zCollSeq ){
+ zCollSeq = sqlite3StrBINARY;
+ }
+
+error_out:
+ sqlite3BtreeLeaveAll(db);
+
+ /* Whether the function call succeeded or failed, set the output parameters
+ ** to whatever their local counterparts contain. If an error did occur,
+ ** this has the effect of zeroing all output parameters.
+ */
+ if( pzDataType ) *pzDataType = zDataType;
+ if( pzCollSeq ) *pzCollSeq = zCollSeq;
+ if( pNotNull ) *pNotNull = notnull;
+ if( pPrimaryKey ) *pPrimaryKey = primarykey;
+ if( pAutoinc ) *pAutoinc = autoinc;
+
+ if( SQLITE_OK==rc && !pTab ){
+ sqlite3DbFree(db, zErrMsg);
+ zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
+ zColumnName);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg);
+ sqlite3DbFree(db, zErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+SQLITE_API int sqlite3_sleep(int ms){
+ sqlite3_vfs *pVfs;
+ int rc;
+ pVfs = sqlite3_vfs_find(0);
+ if( pVfs==0 ) return 0;
+
+ /* This function works in milliseconds, but the underlying OsSleep()
+ ** API uses microseconds. Hence the 1000's.
+ */
+ rc = (sqlite3OsSleep(pVfs, ms<0 ? 0 : 1000*ms)/1000);
+ return rc;
+}
+
+/*
+** Enable or disable the extended result codes.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = onoff ? 0xffffffff : 0xff;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xFileControl method on a particular database.
+*/
+SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
+ int rc = SQLITE_ERROR;
+ Btree *pBtree;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ pBtree = sqlite3DbNameToBtree(db, zDbName);
+ if( pBtree ){
+ Pager *pPager;
+ sqlite3_file *fd;
+ sqlite3BtreeEnter(pBtree);
+ pPager = sqlite3BtreePager(pBtree);
+ assert( pPager!=0 );
+ fd = sqlite3PagerFile(pPager);
+ assert( fd!=0 );
+ if( op==SQLITE_FCNTL_FILE_POINTER ){
+ *(sqlite3_file**)pArg = fd;
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_VFS_POINTER ){
+ *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager);
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){
+ *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager);
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_DATA_VERSION ){
+ *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager);
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){
+ int iNew = *(int*)pArg;
+ *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree);
+ if( iNew>=0 && iNew<=255 ){
+ sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0);
+ }
+ rc = SQLITE_OK;
+ }else if( op==SQLITE_FCNTL_RESET_CACHE ){
+ sqlite3BtreeClearCache(pBtree);
+ rc = SQLITE_OK;
+ }else{
+ int nSave = db->busyHandler.nBusy;
+ rc = sqlite3OsFileControl(fd, op, pArg);
+ db->busyHandler.nBusy = nSave;
+ }
+ sqlite3BtreeLeave(pBtree);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Interface to the testing logic.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...){
+ int rc = 0;
+#ifdef SQLITE_UNTESTABLE
+ UNUSED_PARAMETER(op);
+#else
+ va_list ap;
+ va_start(ap, op);
+ switch( op ){
+
+ /*
+ ** Save the current state of the PRNG.
+ */
+ case SQLITE_TESTCTRL_PRNG_SAVE: {
+ sqlite3PrngSaveState();
+ break;
+ }
+
+ /*
+ ** Restore the state of the PRNG to the last state saved using
+ ** PRNG_SAVE. If PRNG_SAVE has never before been called, then
+ ** this verb acts like PRNG_RESET.
+ */
+ case SQLITE_TESTCTRL_PRNG_RESTORE: {
+ sqlite3PrngRestoreState();
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db);
+ **
+ ** Control the seed for the pseudo-random number generator (PRNG) that
+ ** is built into SQLite. Cases:
+ **
+ ** x!=0 && db!=0 Seed the PRNG to the current value of the
+ ** schema cookie in the main database for db, or
+ ** x if the schema cookie is zero. This case
+ ** is convenient to use with database fuzzers
+ ** as it allows the fuzzer some control over the
+ ** the PRNG seed.
+ **
+ ** x!=0 && db==0 Seed the PRNG to the value of x.
+ **
+ ** x==0 && db==0 Revert to default behavior of using the
+ ** xRandomness method on the primary VFS.
+ **
+ ** This test-control also resets the PRNG so that the new seed will
+ ** be used for the next call to sqlite3_randomness().
+ */
+#ifndef SQLITE_OMIT_WSD
+ case SQLITE_TESTCTRL_PRNG_SEED: {
+ int x = va_arg(ap, int);
+ int y;
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ assert( db==0 || db->aDb[0].pSchema!=0 );
+ if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; }
+ sqlite3Config.iPrngSeed = x;
+ sqlite3_randomness(0,0);
+ break;
+ }
+#endif
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_FK_NO_ACTION, sqlite3 *db, int b);
+ **
+ ** If b is true, then activate the SQLITE_FkNoAction setting. If b is
+ ** false then clearn that setting. If the SQLITE_FkNoAction setting is
+ ** abled, all foreign key ON DELETE and ON UPDATE actions behave as if
+ ** they were NO ACTION, regardless of how they are defined.
+ **
+ ** NB: One must usually run "PRAGMA writable_schema=RESET" after
+ ** using this test-control, before it will take full effect. failing
+ ** to reset the schema can result in some unexpected behavior.
+ */
+ case SQLITE_TESTCTRL_FK_NO_ACTION: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ int b = va_arg(ap, int);
+ if( b ){
+ db->flags |= SQLITE_FkNoAction;
+ }else{
+ db->flags &= ~SQLITE_FkNoAction;
+ }
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(BITVEC_TEST, size, program)
+ **
+ ** Run a test against a Bitvec object of size. The program argument
+ ** is an array of integers that defines the test. Return -1 on a
+ ** memory allocation error, 0 on success, or non-zero for an error.
+ ** See the sqlite3BitvecBuiltinTest() for additional information.
+ */
+ case SQLITE_TESTCTRL_BITVEC_TEST: {
+ int sz = va_arg(ap, int);
+ int *aProg = va_arg(ap, int*);
+ rc = sqlite3BitvecBuiltinTest(sz, aProg);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(FAULT_INSTALL, xCallback)
+ **
+ ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called,
+ ** if xCallback is not NULL.
+ **
+ ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0)
+ ** is called immediately after installing the new callback and the return
+ ** value from sqlite3FaultSim(0) becomes the return from
+ ** sqlite3_test_control().
+ */
+ case SQLITE_TESTCTRL_FAULT_INSTALL: {
+ /* A bug in MSVC prevents it from understanding pointers to functions
+ ** types in the second argument to va_arg(). Work around the problem
+ ** using a typedef.
+ ** http://support.microsoft.com/kb/47961 <-- dead hyperlink
+ ** Search at http://web.archive.org/ to find the 2015-03-16 archive
+ ** of the link above to see the original text.
+ ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int));
+ */
+ typedef int(*sqlite3FaultFuncType)(int);
+ sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType);
+ rc = sqlite3FaultSim(0);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
+ **
+ ** Register hooks to call to indicate which malloc() failures
+ ** are benign.
+ */
+ case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
+ typedef void (*void_function)(void);
+ void_function xBenignBegin;
+ void_function xBenignEnd;
+ xBenignBegin = va_arg(ap, void_function);
+ xBenignEnd = va_arg(ap, void_function);
+ sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
+ **
+ ** Set the PENDING byte to the value in the argument, if X>0.
+ ** Make no changes if X==0. Return the value of the pending byte
+ ** as it existing before this routine was called.
+ **
+ ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in
+ ** an incompatible database file format. Changing the PENDING byte
+ ** while any database connection is open results in undefined and
+ ** deleterious behavior.
+ */
+ case SQLITE_TESTCTRL_PENDING_BYTE: {
+ rc = PENDING_BYTE;
+#ifndef SQLITE_OMIT_WSD
+ {
+ unsigned int newVal = va_arg(ap, unsigned int);
+ if( newVal ) sqlite3PendingByte = newVal;
+ }
+#endif
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
+ **
+ ** This action provides a run-time test to see whether or not
+ ** assert() was enabled at compile-time. If X is true and assert()
+ ** is enabled, then the return value is true. If X is true and
+ ** assert() is disabled, then the return value is zero. If X is
+ ** false and assert() is enabled, then the assertion fires and the
+ ** process aborts. If X is false and assert() is disabled, then the
+ ** return value is zero.
+ */
+ case SQLITE_TESTCTRL_ASSERT: {
+ volatile int x = 0;
+ assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 );
+ rc = x;
+#if defined(SQLITE_DEBUG)
+ /* Invoke these debugging routines so that the compiler does not
+ ** issue "defined but not used" warnings. */
+ if( x==9999 ){
+ sqlite3ShowExpr(0);
+ sqlite3ShowExpr(0);
+ sqlite3ShowExprList(0);
+ sqlite3ShowIdList(0);
+ sqlite3ShowSrcList(0);
+ sqlite3ShowWith(0);
+ sqlite3ShowUpsert(0);
+#ifndef SQLITE_OMIT_TRIGGER
+ sqlite3ShowTriggerStep(0);
+ sqlite3ShowTriggerStepList(0);
+ sqlite3ShowTrigger(0);
+ sqlite3ShowTriggerList(0);
+#endif
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ sqlite3ShowWindow(0);
+ sqlite3ShowWinFunc(0);
+#endif
+ sqlite3ShowSelect(0);
+ }
+#endif
+ break;
+ }
+
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
+ **
+ ** This action provides a run-time test to see how the ALWAYS and
+ ** NEVER macros were defined at compile-time.
+ **
+ ** The return value is ALWAYS(X) if X is true, or 0 if X is false.
+ **
+ ** The recommended test is X==2. If the return value is 2, that means
+ ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
+ ** default setting. If the return value is 1, then ALWAYS() is either
+ ** hard-coded to true or else it asserts if its argument is false.
+ ** The first behavior (hard-coded to true) is the case if
+ ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
+ ** behavior (assert if the argument to ALWAYS() is false) is the case if
+ ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
+ **
+ ** The run-time test procedure might look something like this:
+ **
+ ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
+ ** // ALWAYS() and NEVER() are no-op pass-through macros
+ ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
+ ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
+ ** }else{
+ ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0.
+ ** }
+ */
+ case SQLITE_TESTCTRL_ALWAYS: {
+ int x = va_arg(ap,int);
+ rc = x ? ALWAYS(x) : 0;
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER);
+ **
+ ** The integer returned reveals the byte-order of the computer on which
+ ** SQLite is running:
+ **
+ ** 1 big-endian, determined at run-time
+ ** 10 little-endian, determined at run-time
+ ** 432101 big-endian, determined at compile-time
+ ** 123410 little-endian, determined at compile-time
+ */
+ case SQLITE_TESTCTRL_BYTEORDER: {
+ rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN;
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
+ **
+ ** Enable or disable various optimizations for testing purposes. The
+ ** argument N is a bitmask of optimizations to be disabled. For normal
+ ** operation N should be 0. The idea is that a test program (like the
+ ** SQL Logic Test or SLT test module) can run the same SQL multiple times
+ ** with various optimizations disabled to verify that the same answer
+ ** is obtained in every case.
+ */
+ case SQLITE_TESTCTRL_OPTIMIZATIONS: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ db->dbOptFlags = va_arg(ap, u32);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt);
+ **
+ ** If parameter onoff is 1, subsequent calls to localtime() fail.
+ ** If 2, then invoke xAlt() instead of localtime(). If 0, normal
+ ** processing.
+ **
+ ** xAlt arguments are void pointers, but they really want to be:
+ **
+ ** int xAlt(const time_t*, struct tm*);
+ **
+ ** xAlt should write results in to struct tm object of its 2nd argument
+ ** and return zero on success, or return non-zero on failure.
+ */
+ case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
+ sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
+ if( sqlite3GlobalConfig.bLocaltimeFault==2 ){
+ typedef int(*sqlite3LocaltimeType)(const void*,void*);
+ sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType);
+ }else{
+ sqlite3GlobalConfig.xAltLocaltime = 0;
+ }
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*);
+ **
+ ** Toggle the ability to use internal functions on or off for
+ ** the database connection given in the argument.
+ */
+ case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ db->mDbFlags ^= DBFLAG_InternalFunc;
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
+ **
+ ** Set or clear a flag that indicates that the database file is always well-
+ ** formed and never corrupt. This flag is clear by default, indicating that
+ ** database files might have arbitrary corruption. Setting the flag during
+ ** testing causes certain assert() statements in the code to be activated
+ ** that demonstrate invariants on well-formed database files.
+ */
+ case SQLITE_TESTCTRL_NEVER_CORRUPT: {
+ sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int);
+ **
+ ** Set or clear a flag that causes SQLite to verify that type, name,
+ ** and tbl_name fields of the sqlite_schema table. This is normally
+ ** on, but it is sometimes useful to turn it off for testing.
+ **
+ ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the
+ ** verification of rootpage numbers when parsing the schema. This
+ ** is useful to make it easier to reach strange internal error states
+ ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled
+ ** in production.
+ */
+ case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: {
+ sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int);
+ break;
+ }
+
+ /* Set the threshold at which OP_Once counters reset back to zero.
+ ** By default this is 0x7ffffffe (over 2 billion), but that value is
+ ** too big to test in a reasonable amount of time, so this control is
+ ** provided to set a small and easily reachable reset value.
+ */
+ case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: {
+ sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
+ **
+ ** Set the VDBE coverage callback function to xCallback with context
+ ** pointer ptr.
+ */
+ case SQLITE_TESTCTRL_VDBE_COVERAGE: {
+#ifdef SQLITE_VDBE_COVERAGE
+ typedef void (*branch_callback)(void*,unsigned int,
+ unsigned char,unsigned char);
+ sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
+ sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
+#endif
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */
+ case SQLITE_TESTCTRL_SORTER_MMAP: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ db->nMaxSorterMmap = va_arg(ap, int);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT);
+ **
+ ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
+ ** not.
+ */
+ case SQLITE_TESTCTRL_ISINIT: {
+ if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum);
+ **
+ ** This test control is used to create imposter tables. "db" is a pointer
+ ** to the database connection. dbName is the database name (ex: "main" or
+ ** "temp") which will receive the imposter. "onOff" turns imposter mode on
+ ** or off. "tnum" is the root page of the b-tree to which the imposter
+ ** table should connect.
+ **
+ ** Enable imposter mode only when the schema has already been parsed. Then
+ ** run a single CREATE TABLE statement to construct the imposter table in
+ ** the parsed schema. Then turn imposter mode back off again.
+ **
+ ** If onOff==0 and tnum>0 then reset the schema for all databases, causing
+ ** the schema to be reparsed the next time it is needed. This has the
+ ** effect of erasing all imposter tables.
+ */
+ case SQLITE_TESTCTRL_IMPOSTER: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ int iDb;
+ sqlite3_mutex_enter(db->mutex);
+ iDb = sqlite3FindDbName(db, va_arg(ap,const char*));
+ if( iDb>=0 ){
+ db->init.iDb = iDb;
+ db->init.busy = db->init.imposterTable = va_arg(ap,int);
+ db->init.newTnum = va_arg(ap,int);
+ if( db->init.busy==0 && db->init.newTnum>0 ){
+ sqlite3ResetAllSchemasOfConnection(db);
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ break;
+ }
+
+#if defined(YYCOVERAGE)
+ /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out)
+ **
+ ** This test control (only available when SQLite is compiled with
+ ** -DYYCOVERAGE) writes a report onto "out" that shows all
+ ** state/lookahead combinations in the parser state machine
+ ** which are never exercised. If any state is missed, make the
+ ** return code SQLITE_ERROR.
+ */
+ case SQLITE_TESTCTRL_PARSER_COVERAGE: {
+ FILE *out = va_arg(ap, FILE*);
+ if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR;
+ break;
+ }
+#endif /* defined(YYCOVERAGE) */
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*);
+ **
+ ** This test-control causes the most recent sqlite3_result_int64() value
+ ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally,
+ ** MEM_IntReal values only arise during an INSERT operation of integer
+ ** values into a REAL column, so they can be challenging to test. This
+ ** test-control enables us to write an intreal() SQL function that can
+ ** inject an intreal() value at arbitrary places in an SQL statement,
+ ** for testing purposes.
+ */
+ case SQLITE_TESTCTRL_RESULT_INTREAL: {
+ sqlite3_context *pCtx = va_arg(ap, sqlite3_context*);
+ sqlite3ResultIntReal(pCtx);
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT,
+ ** sqlite3 *db, // Database connection
+ ** u64 *pnSeek // Write seek count here
+ ** );
+ **
+ ** This test-control queries the seek-counter on the "main" database
+ ** file. The seek-counter is written into *pnSeek and is then reset.
+ ** The seek-count is only available if compiled with SQLITE_DEBUG.
+ */
+ case SQLITE_TESTCTRL_SEEK_COUNT: {
+ sqlite3 *db = va_arg(ap, sqlite3*);
+ u64 *pn = va_arg(ap, sqlite3_uint64*);
+ *pn = sqlite3BtreeSeekCount(db->aDb->pBt);
+ (void)db; /* Silence harmless unused variable warning */
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr)
+ **
+ ** "ptr" is a pointer to a u32.
+ **
+ ** op==0 Store the current sqlite3TreeTrace in *ptr
+ ** op==1 Set sqlite3TreeTrace to the value *ptr
+ ** op==2 Store the current sqlite3WhereTrace in *ptr
+ ** op==3 Set sqlite3WhereTrace to the value *ptr
+ */
+ case SQLITE_TESTCTRL_TRACEFLAGS: {
+ int opTrace = va_arg(ap, int);
+ u32 *ptr = va_arg(ap, u32*);
+ switch( opTrace ){
+ case 0: *ptr = sqlite3TreeTrace; break;
+ case 1: sqlite3TreeTrace = *ptr; break;
+ case 2: *ptr = sqlite3WhereTrace; break;
+ case 3: sqlite3WhereTrace = *ptr; break;
+ }
+ break;
+ }
+
+ /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST,
+ ** double fIn, // Input value
+ ** int *pLogEst, // sqlite3LogEstFromDouble(fIn)
+ ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst)
+ ** int *pLogEst2 // sqlite3LogEst(*pInt)
+ ** );
+ **
+ ** Test access for the LogEst conversion routines.
+ */
+ case SQLITE_TESTCTRL_LOGEST: {
+ double rIn = va_arg(ap, double);
+ LogEst rLogEst = sqlite3LogEstFromDouble(rIn);
+ int *pI1 = va_arg(ap,int*);
+ u64 *pU64 = va_arg(ap,u64*);
+ int *pI2 = va_arg(ap,int*);
+ *pI1 = rLogEst;
+ *pU64 = sqlite3LogEstToInt(rLogEst);
+ *pI2 = sqlite3LogEst(*pU64);
+ break;
+ }
+
+#if !defined(SQLITE_OMIT_WSD)
+ /* sqlite3_test_control(SQLITE_TESTCTRL_USELONGDOUBLE, int X);
+ **
+ ** X<0 Make no changes to the bUseLongDouble. Just report value.
+ ** X==0 Disable bUseLongDouble
+ ** X==1 Enable bUseLongDouble
+ ** X>=2 Set bUseLongDouble to its default value for this platform
+ */
+ case SQLITE_TESTCTRL_USELONGDOUBLE: {
+ int b = va_arg(ap, int);
+ if( b>=2 ) b = hasHighPrecisionDouble(b);
+ if( b>=0 ) sqlite3Config.bUseLongDouble = b>0;
+ rc = sqlite3Config.bUseLongDouble!=0;
+ break;
+ }
+#endif
+
+
+#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD)
+ /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue)
+ **
+ ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value
+ ** of the id-th tuning parameter to *piValue. If "id" is between -1
+ ** and -SQLITE_NTUNE, then write the current value of the (-id)-th
+ ** tuning parameter into *piValue.
+ **
+ ** Tuning parameters are for use during transient development builds,
+ ** to help find the best values for constants in the query planner.
+ ** Access tuning parameters using the Tuning(ID) macro. Set the
+ ** parameters in the CLI using ".testctrl tune ID VALUE".
+ **
+ ** Transient use only. Tuning parameters should not be used in
+ ** checked-in code.
+ */
+ case SQLITE_TESTCTRL_TUNE: {
+ int id = va_arg(ap, int);
+ int *piValue = va_arg(ap, int*);
+ if( id>0 && id<=SQLITE_NTUNE ){
+ Tuning(id) = *piValue;
+ }else if( id<0 && id>=-SQLITE_NTUNE ){
+ *piValue = Tuning(-id);
+ }else{
+ rc = SQLITE_NOTFOUND;
+ }
+ break;
+ }
+#endif
+ }
+ va_end(ap);
+#endif /* SQLITE_UNTESTABLE */
+ return rc;
+}
+
+/*
+** The Pager stores the Database filename, Journal filename, and WAL filename
+** consecutively in memory, in that order. The database filename is prefixed
+** by four zero bytes. Locate the start of the database filename by searching
+** backwards for the first byte following four consecutive zero bytes.
+**
+** This only works if the filename passed in was obtained from the Pager.
+*/
+static const char *databaseName(const char *zName){
+ while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){
+ zName--;
+ }
+ return zName;
+}
+
+/*
+** Append text z[] to the end of p[]. Return a pointer to the first
+** character after then zero terminator on the new text in p[].
+*/
+static char *appendText(char *p, const char *z){
+ size_t n = strlen(z);
+ memcpy(p, z, n+1);
+ return p+n+1;
+}
+
+/*
+** Allocate memory to hold names for a database, journal file, WAL file,
+** and query parameters. The pointer returned is valid for use by
+** sqlite3_filename_database() and sqlite3_uri_parameter() and related
+** functions.
+**
+** Memory layout must be compatible with that generated by the pager
+** and expected by sqlite3_uri_parameter() and databaseName().
+*/
+SQLITE_API const char *sqlite3_create_filename(
+ const char *zDatabase,
+ const char *zJournal,
+ const char *zWal,
+ int nParam,
+ const char **azParam
+){
+ sqlite3_int64 nByte;
+ int i;
+ char *pResult, *p;
+ nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10;
+ for(i=0; i<nParam*2; i++){
+ nByte += strlen(azParam[i])+1;
+ }
+ pResult = p = sqlite3_malloc64( nByte );
+ if( p==0 ) return 0;
+ memset(p, 0, 4);
+ p += 4;
+ p = appendText(p, zDatabase);
+ for(i=0; i<nParam*2; i++){
+ p = appendText(p, azParam[i]);
+ }
+ *(p++) = 0;
+ p = appendText(p, zJournal);
+ p = appendText(p, zWal);
+ *(p++) = 0;
+ *(p++) = 0;
+ assert( (sqlite3_int64)(p - pResult)==nByte );
+ return pResult + 4;
+}
+
+/*
+** Free memory obtained from sqlite3_create_filename(). It is a severe
+** error to call this routine with any parameter other than a pointer
+** previously obtained from sqlite3_create_filename() or a NULL pointer.
+*/
+SQLITE_API void sqlite3_free_filename(const char *p){
+ if( p==0 ) return;
+ p = databaseName(p);
+ sqlite3_free((char*)p - 4);
+}
+
+
+/*
+** This is a utility routine, useful to VFS implementations, that checks
+** to see if a database file was a URI that contained a specific query
+** parameter, and if so obtains the value of the query parameter.
+**
+** The zFilename argument is the filename pointer passed into the xOpen()
+** method of a VFS implementation. The zParam argument is the name of the
+** query parameter we seek. This routine returns the value of the zParam
+** parameter if it exists. If the parameter does not exist, this routine
+** returns a NULL pointer.
+*/
+SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
+ if( zFilename==0 || zParam==0 ) return 0;
+ zFilename = databaseName(zFilename);
+ return uriParameter(zFilename, zParam);
+}
+
+/*
+** Return a pointer to the name of Nth query parameter of the filename.
+*/
+SQLITE_API const char *sqlite3_uri_key(const char *zFilename, int N){
+ if( zFilename==0 || N<0 ) return 0;
+ zFilename = databaseName(zFilename);
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ while( ALWAYS(zFilename) && zFilename[0] && (N--)>0 ){
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ }
+ return zFilename[0] ? zFilename : 0;
+}
+
+/*
+** Return a boolean value for a query parameter.
+*/
+SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
+ const char *z = sqlite3_uri_parameter(zFilename, zParam);
+ bDflt = bDflt!=0;
+ return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
+}
+
+/*
+** Return a 64-bit integer value for a query parameter.
+*/
+SQLITE_API sqlite3_int64 sqlite3_uri_int64(
+ const char *zFilename, /* Filename as passed to xOpen */
+ const char *zParam, /* URI parameter sought */
+ sqlite3_int64 bDflt /* return if parameter is missing */
+){
+ const char *z = sqlite3_uri_parameter(zFilename, zParam);
+ sqlite3_int64 v;
+ if( z && sqlite3DecOrHexToI64(z, &v)==0 ){
+ bDflt = v;
+ }
+ return bDflt;
+}
+
+/*
+** Translate a filename that was handed to a VFS routine into the corresponding
+** database, journal, or WAL file.
+**
+** It is an error to pass this routine a filename string that was not
+** passed into the VFS from the SQLite core. Doing so is similar to
+** passing free() a pointer that was not obtained from malloc() - it is
+** an error that we cannot easily detect but that will likely cause memory
+** corruption.
+*/
+SQLITE_API const char *sqlite3_filename_database(const char *zFilename){
+ if( zFilename==0 ) return 0;
+ return databaseName(zFilename);
+}
+SQLITE_API const char *sqlite3_filename_journal(const char *zFilename){
+ if( zFilename==0 ) return 0;
+ zFilename = databaseName(zFilename);
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ while( ALWAYS(zFilename) && zFilename[0] ){
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ zFilename += sqlite3Strlen30(zFilename) + 1;
+ }
+ return zFilename + 1;
+}
+SQLITE_API const char *sqlite3_filename_wal(const char *zFilename){
+#ifdef SQLITE_OMIT_WAL
+ return 0;
+#else
+ zFilename = sqlite3_filename_journal(zFilename);
+ if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1;
+ return zFilename;
+#endif
+}
+
+/*
+** Return the Btree pointer identified by zDbName. Return NULL if not found.
+*/
+SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
+ int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0;
+ return iDb<0 ? 0 : db->aDb[iDb].pBt;
+}
+
+/*
+** Return the name of the N-th database schema. Return NULL if N is out
+** of range.
+*/
+SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N){
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ if( N<0 || N>=db->nDb ){
+ return 0;
+ }else{
+ return db->aDb[N].zDbSName;
+ }
+}
+
+/*
+** Return the filename of the database associated with a database
+** connection.
+*/
+SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
+ Btree *pBt;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+ pBt = sqlite3DbNameToBtree(db, zDbName);
+ return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
+}
+
+/*
+** Return 1 if database is read-only or 0 if read/write. Return -1 if
+** no such database exists.
+*/
+SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
+ Btree *pBt;
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ (void)SQLITE_MISUSE_BKPT;
+ return -1;
+ }
+#endif
+ pBt = sqlite3DbNameToBtree(db, zDbName);
+ return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** Obtain a snapshot handle for the snapshot of database zDb currently
+** being read by handle db.
+*/
+SQLITE_API int sqlite3_snapshot_get(
+ sqlite3 *db,
+ const char *zDb,
+ sqlite3_snapshot **ppSnapshot
+){
+ int rc = SQLITE_ERROR;
+#ifndef SQLITE_OMIT_WAL
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+
+ if( db->autoCommit==0 ){
+ int iDb = sqlite3FindDbName(db, zDb);
+ if( iDb==0 || iDb>1 ){
+ Btree *pBt = db->aDb[iDb].pBt;
+ if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot);
+ }
+ }
+ }
+ }
+
+ sqlite3_mutex_leave(db->mutex);
+#endif /* SQLITE_OMIT_WAL */
+ return rc;
+}
+
+/*
+** Open a read-transaction on the snapshot identified by pSnapshot.
+*/
+SQLITE_API int sqlite3_snapshot_open(
+ sqlite3 *db,
+ const char *zDb,
+ sqlite3_snapshot *pSnapshot
+){
+ int rc = SQLITE_ERROR;
+#ifndef SQLITE_OMIT_WAL
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ if( db->autoCommit==0 ){
+ int iDb;
+ iDb = sqlite3FindDbName(db, zDb);
+ if( iDb==0 || iDb>1 ){
+ Btree *pBt = db->aDb[iDb].pBt;
+ if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){
+ Pager *pPager = sqlite3BtreePager(pBt);
+ int bUnlock = 0;
+ if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){
+ if( db->nVdbeActive==0 ){
+ rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot);
+ if( rc==SQLITE_OK ){
+ bUnlock = 1;
+ rc = sqlite3BtreeCommit(pBt);
+ }
+ }
+ }else{
+ rc = SQLITE_OK;
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ sqlite3PagerSnapshotOpen(pPager, 0);
+ }
+ if( bUnlock ){
+ sqlite3PagerSnapshotUnlock(pPager);
+ }
+ }
+ }
+ }
+
+ sqlite3_mutex_leave(db->mutex);
+#endif /* SQLITE_OMIT_WAL */
+ return rc;
+}
+
+/*
+** Recover as many snapshots as possible from the wal file associated with
+** schema zDb of database db.
+*/
+SQLITE_API int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){
+ int rc = SQLITE_ERROR;
+#ifndef SQLITE_OMIT_WAL
+ int iDb;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE_BKPT;
+ }
+#endif
+
+ sqlite3_mutex_enter(db->mutex);
+ iDb = sqlite3FindDbName(db, zDb);
+ if( iDb==0 || iDb>1 ){
+ Btree *pBt = db->aDb[iDb].pBt;
+ if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){
+ rc = sqlite3BtreeBeginTrans(pBt, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt));
+ sqlite3BtreeCommit(pBt);
+ }
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+#endif /* SQLITE_OMIT_WAL */
+ return rc;
+}
+
+/*
+** Free a snapshot handle obtained from sqlite3_snapshot_get().
+*/
+SQLITE_API void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){
+ sqlite3_free(pSnapshot);
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+/*
+** Given the name of a compile-time option, return true if that option
+** was used and false if not.
+**
+** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
+** is not required for a match.
+*/
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
+ int i, n;
+ int nOpt;
+ const char **azCompileOpt;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( zOptName==0 ){
+ (void)SQLITE_MISUSE_BKPT;
+ return 0;
+ }
+#endif
+
+ azCompileOpt = sqlite3CompileOptions(&nOpt);
+
+ if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
+ n = sqlite3Strlen30(zOptName);
+
+ /* Since nOpt is normally in single digits, a linear search is
+ ** adequate. No need for a binary search. */
+ for(i=0; i<nOpt; i++){
+ if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
+ && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Return the N-th compile-time option string. If N is out of range,
+** return a NULL pointer.
+*/
+SQLITE_API const char *sqlite3_compileoption_get(int N){
+ int nOpt;
+ const char **azCompileOpt;
+ azCompileOpt = sqlite3CompileOptions(&nOpt);
+ if( N>=0 && N<nOpt ){
+ return azCompileOpt[N];
+ }
+ return 0;
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/************** End of main.c ************************************************/
+/************** Begin file notify.c ******************************************/
+/*
+** 2009 March 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of the sqlite3_unlock_notify()
+** API method and its associated functionality.
+*/
+/* #include "sqliteInt.h" */
+/* #include "btreeInt.h" */
+
+/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
+#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
+
+/*
+** Public interfaces:
+**
+** sqlite3ConnectionBlocked()
+** sqlite3ConnectionUnlocked()
+** sqlite3ConnectionClosed()
+** sqlite3_unlock_notify()
+*/
+
+#define assertMutexHeld() \
+ assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) )
+
+/*
+** Head of a linked list of all sqlite3 objects created by this process
+** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection
+** is not NULL. This variable may only accessed while the STATIC_MAIN
+** mutex is held.
+*/
+static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0;
+
+#ifndef NDEBUG
+/*
+** This function is a complex assert() that verifies the following
+** properties of the blocked connections list:
+**
+** 1) Each entry in the list has a non-NULL value for either
+** pUnlockConnection or pBlockingConnection, or both.
+**
+** 2) All entries in the list that share a common value for
+** xUnlockNotify are grouped together.
+**
+** 3) If the argument db is not NULL, then none of the entries in the
+** blocked connections list have pUnlockConnection or pBlockingConnection
+** set to db. This is used when closing connection db.
+*/
+static void checkListProperties(sqlite3 *db){
+ sqlite3 *p;
+ for(p=sqlite3BlockedList; p; p=p->pNextBlocked){
+ int seen = 0;
+ sqlite3 *p2;
+
+ /* Verify property (1) */
+ assert( p->pUnlockConnection || p->pBlockingConnection );
+
+ /* Verify property (2) */
+ for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){
+ if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
+ assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
+ assert( db==0 || p->pUnlockConnection!=db );
+ assert( db==0 || p->pBlockingConnection!=db );
+ }
+ }
+}
+#else
+# define checkListProperties(x)
+#endif
+
+/*
+** Remove connection db from the blocked connections list. If connection
+** db is not currently a part of the list, this function is a no-op.
+*/
+static void removeFromBlockedList(sqlite3 *db){
+ sqlite3 **pp;
+ assertMutexHeld();
+ for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){
+ if( *pp==db ){
+ *pp = (*pp)->pNextBlocked;
+ break;
+ }
+ }
+}
+
+/*
+** Add connection db to the blocked connections list. It is assumed
+** that it is not already a part of the list.
+*/
+static void addToBlockedList(sqlite3 *db){
+ sqlite3 **pp;
+ assertMutexHeld();
+ for(
+ pp=&sqlite3BlockedList;
+ *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify;
+ pp=&(*pp)->pNextBlocked
+ );
+ db->pNextBlocked = *pp;
+ *pp = db;
+}
+
+/*
+** Obtain the STATIC_MAIN mutex.
+*/
+static void enterMutex(void){
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+ checkListProperties(0);
+}
+
+/*
+** Release the STATIC_MAIN mutex.
+*/
+static void leaveMutex(void){
+ assertMutexHeld();
+ checkListProperties(0);
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
+}
+
+/*
+** Register an unlock-notify callback.
+**
+** This is called after connection "db" has attempted some operation
+** but has received an SQLITE_LOCKED error because another connection
+** (call it pOther) in the same process was busy using the same shared
+** cache. pOther is found by looking at db->pBlockingConnection.
+**
+** If there is no blocking connection, the callback is invoked immediately,
+** before this routine returns.
+**
+** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
+** a deadlock.
+**
+** Otherwise, make arrangements to invoke xNotify when pOther drops
+** its locks.
+**
+** Each call to this routine overrides any prior callbacks registered
+** on the same "db". If xNotify==0 then any prior callbacks are immediately
+** cancelled.
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *db,
+ void (*xNotify)(void **, int),
+ void *pArg
+){
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_ENABLE_API_ARMOR
+ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
+#endif
+ sqlite3_mutex_enter(db->mutex);
+ enterMutex();
+
+ if( xNotify==0 ){
+ removeFromBlockedList(db);
+ db->pBlockingConnection = 0;
+ db->pUnlockConnection = 0;
+ db->xUnlockNotify = 0;
+ db->pUnlockArg = 0;
+ }else if( 0==db->pBlockingConnection ){
+ /* The blocking transaction has been concluded. Or there never was a
+ ** blocking transaction. In either case, invoke the notify callback
+ ** immediately.
+ */
+ xNotify(&pArg, 1);
+ }else{
+ sqlite3 *p;
+
+ for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
+ if( p ){
+ rc = SQLITE_LOCKED; /* Deadlock detected. */
+ }else{
+ db->pUnlockConnection = db->pBlockingConnection;
+ db->xUnlockNotify = xNotify;
+ db->pUnlockArg = pArg;
+ removeFromBlockedList(db);
+ addToBlockedList(db);
+ }
+ }
+
+ leaveMutex();
+ assert( !db->mallocFailed );
+ sqlite3ErrorWithMsg(db, rc, (rc?"database is deadlocked":0));
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This function is called while stepping or preparing a statement
+** associated with connection db. The operation will return SQLITE_LOCKED
+** to the user because it requires a lock that will not be available
+** until connection pBlocker concludes its current transaction.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){
+ enterMutex();
+ if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
+ addToBlockedList(db);
+ }
+ db->pBlockingConnection = pBlocker;
+ leaveMutex();
+}
+
+/*
+** This function is called when
+** the transaction opened by database db has just finished. Locks held
+** by database connection db have been released.
+**
+** This function loops through each entry in the blocked connections
+** list and does the following:
+**
+** 1) If the sqlite3.pBlockingConnection member of a list entry is
+** set to db, then set pBlockingConnection=0.
+**
+** 2) If the sqlite3.pUnlockConnection member of a list entry is
+** set to db, then invoke the configured unlock-notify callback and
+** set pUnlockConnection=0.
+**
+** 3) If the two steps above mean that pBlockingConnection==0 and
+** pUnlockConnection==0, remove the entry from the blocked connections
+** list.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){
+ void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
+ int nArg = 0; /* Number of entries in aArg[] */
+ sqlite3 **pp; /* Iterator variable */
+ void **aArg; /* Arguments to the unlock callback */
+ void **aDyn = 0; /* Dynamically allocated space for aArg[] */
+ void *aStatic[16]; /* Starter space for aArg[]. No malloc required */
+
+ aArg = aStatic;
+ enterMutex(); /* Enter STATIC_MAIN mutex */
+
+ /* This loop runs once for each entry in the blocked-connections list. */
+ for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){
+ sqlite3 *p = *pp;
+
+ /* Step 1. */
+ if( p->pBlockingConnection==db ){
+ p->pBlockingConnection = 0;
+ }
+
+ /* Step 2. */
+ if( p->pUnlockConnection==db ){
+ assert( p->xUnlockNotify );
+ if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
+ xUnlockNotify(aArg, nArg);
+ nArg = 0;
+ }
+
+ sqlite3BeginBenignMalloc();
+ assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
+ assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
+ if( (!aDyn && nArg==(int)ArraySize(aStatic))
+ || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*)))
+ ){
+ /* The aArg[] array needs to grow. */
+ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
+ if( pNew ){
+ memcpy(pNew, aArg, nArg*sizeof(void *));
+ sqlite3_free(aDyn);
+ aDyn = aArg = pNew;
+ }else{
+ /* This occurs when the array of context pointers that need to
+ ** be passed to the unlock-notify callback is larger than the
+ ** aStatic[] array allocated on the stack and the attempt to
+ ** allocate a larger array from the heap has failed.
+ **
+ ** This is a difficult situation to handle. Returning an error
+ ** code to the caller is insufficient, as even if an error code
+ ** is returned the transaction on connection db will still be
+ ** closed and the unlock-notify callbacks on blocked connections
+ ** will go unissued. This might cause the application to wait
+ ** indefinitely for an unlock-notify callback that will never
+ ** arrive.
+ **
+ ** Instead, invoke the unlock-notify callback with the context
+ ** array already accumulated. We can then clear the array and
+ ** begin accumulating any further context pointers without
+ ** requiring any dynamic allocation. This is sub-optimal because
+ ** it means that instead of one callback with a large array of
+ ** context pointers the application will receive two or more
+ ** callbacks with smaller arrays of context pointers, which will
+ ** reduce the applications ability to prioritize multiple
+ ** connections. But it is the best that can be done under the
+ ** circumstances.
+ */
+ xUnlockNotify(aArg, nArg);
+ nArg = 0;
+ }
+ }
+ sqlite3EndBenignMalloc();
+
+ aArg[nArg++] = p->pUnlockArg;
+ xUnlockNotify = p->xUnlockNotify;
+ p->pUnlockConnection = 0;
+ p->xUnlockNotify = 0;
+ p->pUnlockArg = 0;
+ }
+
+ /* Step 3. */
+ if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
+ /* Remove connection p from the blocked connections list. */
+ *pp = p->pNextBlocked;
+ p->pNextBlocked = 0;
+ }else{
+ pp = &p->pNextBlocked;
+ }
+ }
+
+ if( nArg!=0 ){
+ xUnlockNotify(aArg, nArg);
+ }
+ sqlite3_free(aDyn);
+ leaveMutex(); /* Leave STATIC_MAIN mutex */
+}
+
+/*
+** This is called when the database connection passed as an argument is
+** being closed. The connection is removed from the blocked list.
+*/
+SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){
+ sqlite3ConnectionUnlocked(db);
+ enterMutex();
+ removeFromBlockedList(db);
+ checkListProperties(db);
+ leaveMutex();
+}
+#endif
+
+/************** End of notify.c **********************************************/
+/************** Begin file fts3.c ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+
+/* The full-text index is stored in a series of b+tree (-like)
+** structures called segments which map terms to doclists. The
+** structures are like b+trees in layout, but are constructed from the
+** bottom up in optimal fashion and are not updatable. Since trees
+** are built from the bottom up, things will be described from the
+** bottom up.
+**
+**
+**** Varints ****
+** The basic unit of encoding is a variable-length integer called a
+** varint. We encode variable-length integers in little-endian order
+** using seven bits * per byte as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** and so on.
+**
+** This is similar in concept to how sqlite encodes "varints" but
+** the encoding is not the same. SQLite varints are big-endian
+** are are limited to 9 bytes in length whereas FTS3 varints are
+** little-endian and can be up to 10 bytes in length (in theory).
+**
+** Example encodings:
+**
+** 1: 0x01
+** 127: 0x7f
+** 128: 0x81 0x00
+**
+**
+**** Document lists ****
+** A doclist (document list) holds a docid-sorted list of hits for a
+** given term. Doclists hold docids and associated token positions.
+** A docid is the unique integer identifier for a single document.
+** A position is the index of a word within the document. The first
+** word of the document has a position of 0.
+**
+** FTS3 used to optionally store character offsets using a compile-time
+** option. But that functionality is no longer supported.
+**
+** A doclist is stored like this:
+**
+** array {
+** varint docid; (delta from previous doclist)
+** array { (position list for column 0)
+** varint position; (2 more than the delta from previous position)
+** }
+** array {
+** varint POS_COLUMN; (marks start of position list for new column)
+** varint column; (index of new column)
+** array {
+** varint position; (2 more than the delta from previous position)
+** }
+** }
+** varint POS_END; (marks end of positions for this document.
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory. A "position" is an index of a token in the token stream
+** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
+** in the same logical place as the position element, and act as sentinals
+** ending a position list array. POS_END is 0. POS_COLUMN is 1.
+** The positions numbers are not stored literally but rather as two more
+** than the difference from the prior position, or the just the position plus
+** 2 for the first position. Example:
+**
+** label: A B C D E F G H I J K
+** value: 123 5 9 1 1 14 35 0 234 72 0
+**
+** The 123 value is the first docid. For column zero in this document
+** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
+** at D signals the start of a new column; the 1 at E indicates that the
+** new column is column number 1. There are two positions at 12 and 45
+** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
+** 234 at I is the delta to next docid (357). It has one position 70
+** (72-2) and then terminates with the 0 at K.
+**
+** A "position-list" is the list of positions for multiple columns for
+** a single docid. A "column-list" is the set of positions for a single
+** column. Hence, a position-list consists of one or more column-lists,
+** a document record consists of a docid followed by a position-list and
+** a doclist consists of one or more document records.
+**
+** A bare doclist omits the position information, becoming an
+** array of varint-encoded docids.
+**
+**** Segment leaf nodes ****
+** Segment leaf nodes store terms and doclists, ordered by term. Leaf
+** nodes are written using LeafWriter, and read using LeafReader (to
+** iterate through a single leaf node's data) and LeavesReader (to
+** iterate through a segment's entire leaf layer). Leaf nodes have
+** the format:
+**
+** varint iHeight; (height from leaf level, always 0)
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of prefix shared with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix];(unshared suffix of next term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory.
+**
+** Leaf nodes are broken into blocks which are stored contiguously in
+** the %_segments table in sorted order. This means that when the end
+** of a node is reached, the next term is in the node with the next
+** greater node id.
+**
+** New data is spilled to a new leaf node when the current node
+** exceeds LEAF_MAX bytes (default 2048). New data which itself is
+** larger than STANDALONE_MIN (default 1024) is placed in a standalone
+** node (a leaf node with a single term and doclist). The goal of
+** these settings is to pack together groups of small doclists while
+** making it efficient to directly access large doclists. The
+** assumption is that large doclists represent terms which are more
+** likely to be query targets.
+**
+** TODO(shess) It may be useful for blocking decisions to be more
+** dynamic. For instance, it may make more sense to have a 2.5k leaf
+** node rather than splitting into 2k and .5k nodes. My intuition is
+** that this might extend through 2x or 4x the pagesize.
+**
+**
+**** Segment interior nodes ****
+** Segment interior nodes store blockids for subtree nodes and terms
+** to describe what data is stored by the each subtree. Interior
+** nodes are written using InteriorWriter, and read using
+** InteriorReader. InteriorWriters are created as needed when
+** SegmentWriter creates new leaf nodes, or when an interior node
+** itself grows too big and must be split. The format of interior
+** nodes:
+**
+** varint iHeight; (height from leaf level, always >0)
+** varint iBlockid; (block id of node's leftmost subtree)
+** optional {
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of shared prefix with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix]; (unshared suffix of next term)
+** }
+** }
+**
+** Here, optional { X } means an optional element, while array { X }
+** means zero or more occurrences of X, adjacent in memory.
+**
+** An interior node encodes n terms separating n+1 subtrees. The
+** subtree blocks are contiguous, so only the first subtree's blockid
+** is encoded. The subtree at iBlockid will contain all terms less
+** than the first term encoded (or all terms if no term is encoded).
+** Otherwise, for terms greater than or equal to pTerm[i] but less
+** than pTerm[i+1], the subtree for that term will be rooted at
+** iBlockid+i. Interior nodes only store enough term data to
+** distinguish adjacent children (if the rightmost term of the left
+** child is "something", and the leftmost term of the right child is
+** "wicked", only "w" is stored).
+**
+** New data is spilled to a new interior node at the same height when
+** the current node exceeds INTERIOR_MAX bytes (default 2048).
+** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
+** interior nodes and making the tree too skinny. The interior nodes
+** at a given height are naturally tracked by interior nodes at
+** height+1, and so on.
+**
+**
+**** Segment directory ****
+** The segment directory in table %_segdir stores meta-information for
+** merging and deleting segments, and also the root node of the
+** segment's tree.
+**
+** The root node is the top node of the segment's tree after encoding
+** the entire segment, restricted to ROOT_MAX bytes (default 1024).
+** This could be either a leaf node or an interior node. If the top
+** node requires more than ROOT_MAX bytes, it is flushed to %_segments
+** and a new root interior node is generated (which should always fit
+** within ROOT_MAX because it only needs space for 2 varints, the
+** height and the blockid of the previous root).
+**
+** The meta-information in the segment directory is:
+** level - segment level (see below)
+** idx - index within level
+** - (level,idx uniquely identify a segment)
+** start_block - first leaf node
+** leaves_end_block - last leaf node
+** end_block - last block (including interior nodes)
+** root - contents of root node
+**
+** If the root node is a leaf node, then start_block,
+** leaves_end_block, and end_block are all 0.
+**
+**
+**** Segment merging ****
+** To amortize update costs, segments are grouped into levels and
+** merged in batches. Each increase in level represents exponentially
+** more documents.
+**
+** New documents (actually, document updates) are tokenized and
+** written individually (using LeafWriter) to a level 0 segment, with
+** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
+** level 0 segments are merged into a single level 1 segment. Level 1
+** is populated like level 0, and eventually MERGE_COUNT level 1
+** segments are merged to a single level 2 segment (representing
+** MERGE_COUNT^2 updates), and so on.
+**
+** A segment merge traverses all segments at a given level in
+** parallel, performing a straightforward sorted merge. Since segment
+** leaf nodes are written in to the %_segments table in order, this
+** merge traverses the underlying sqlite disk structures efficiently.
+** After the merge, all segment blocks from the merged level are
+** deleted.
+**
+** MERGE_COUNT controls how often we merge segments. 16 seems to be
+** somewhat of a sweet spot for insertion performance. 32 and 64 show
+** very similar performance numbers to 16 on insertion, though they're
+** a tiny bit slower (perhaps due to more overhead in merge-time
+** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
+** 16, 2 about 66% slower than 16.
+**
+** At query time, high MERGE_COUNT increases the number of segments
+** which need to be scanned and merged. For instance, with 100k docs
+** inserted:
+**
+** MERGE_COUNT segments
+** 16 25
+** 8 12
+** 4 10
+** 2 6
+**
+** This appears to have only a moderate impact on queries for very
+** frequent terms (which are somewhat dominated by segment merge
+** costs), and infrequent and non-existent terms still seem to be fast
+** even with many segments.
+**
+** TODO(shess) That said, it would be nice to have a better query-side
+** argument for MERGE_COUNT of 16. Also, it is possible/likely that
+** optimizations to things like doclist merging will swing the sweet
+** spot around.
+**
+**
+**
+**** Handling of deletions and updates ****
+** Since we're using a segmented structure, with no docid-oriented
+** index into the term index, we clearly cannot simply update the term
+** index when a document is deleted or updated. For deletions, we
+** write an empty doclist (varint(docid) varint(POS_END)), for updates
+** we simply write the new doclist. Segment merges overwrite older
+** data for a particular docid with newer data, so deletes or updates
+** will eventually overtake the earlier data and knock it out. The
+** query logic likewise merges doclists so that newer data knocks out
+** older data.
+*/
+
+/************** Include fts3Int.h in the middle of fts3.c ********************/
+/************** Begin file fts3Int.h *****************************************/
+/*
+** 2009 Nov 12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+#ifndef _FTSINT_H
+#define _FTSINT_H
+
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+/* FTS3/FTS4 require virtual tables */
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# undef SQLITE_ENABLE_FTS3
+# undef SQLITE_ENABLE_FTS4
+#endif
+
+/*
+** FTS4 is really an extension for FTS3. It is enabled using the
+** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all
+** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
+*/
+#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
+# define SQLITE_ENABLE_FTS3
+#endif
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* If not building as part of the core, include sqlite3ext.h. */
+#ifndef SQLITE_CORE
+/* # include "sqlite3ext.h" */
+SQLITE_EXTENSION_INIT3
+#endif
+
+/* #include "sqlite3.h" */
+/************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/
+/************** Begin file fts3_tokenizer.h **********************************/
+/*
+** 2006 July 10
+**
+** The author disclaims copyright to this source code.
+**
+*************************************************************************
+** Defines the interface to tokenizers used by fulltext-search. There
+** are three basic components:
+**
+** sqlite3_tokenizer_module is a singleton defining the tokenizer
+** interface functions. This is essentially the class structure for
+** tokenizers.
+**
+** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
+** including customization information defined at creation time.
+**
+** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
+** tokens from a particular input.
+*/
+#ifndef _FTS3_TOKENIZER_H_
+#define _FTS3_TOKENIZER_H_
+
+/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
+** If tokenizers are to be allowed to call sqlite3_*() functions, then
+** we will need a way to register the API consistently.
+*/
+/* #include "sqlite3.h" */
+
+/*
+** Structures used by the tokenizer interface. When a new tokenizer
+** implementation is registered, the caller provides a pointer to
+** an sqlite3_tokenizer_module containing pointers to the callback
+** functions that make up an implementation.
+**
+** When an fts3 table is created, it passes any arguments passed to
+** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
+** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
+** implementation. The xCreate() function in turn returns an
+** sqlite3_tokenizer structure representing the specific tokenizer to
+** be used for the fts3 table (customized by the tokenizer clause arguments).
+**
+** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
+** method is called. It returns an sqlite3_tokenizer_cursor object
+** that may be used to tokenize a specific input buffer based on
+** the tokenization rules supplied by a specific sqlite3_tokenizer
+** object.
+*/
+typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
+typedef struct sqlite3_tokenizer sqlite3_tokenizer;
+typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
+
+struct sqlite3_tokenizer_module {
+
+ /*
+ ** Structure version. Should always be set to 0 or 1.
+ */
+ int iVersion;
+
+ /*
+ ** Create a new tokenizer. The values in the argv[] array are the
+ ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
+ ** TABLE statement that created the fts3 table. For example, if
+ ** the following SQL is executed:
+ **
+ ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
+ **
+ ** then argc is set to 2, and the argv[] array contains pointers
+ ** to the strings "arg1" and "arg2".
+ **
+ ** This method should return either SQLITE_OK (0), or an SQLite error
+ ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
+ ** to point at the newly created tokenizer structure. The generic
+ ** sqlite3_tokenizer.pModule variable should not be initialized by
+ ** this callback. The caller will do so.
+ */
+ int (*xCreate)(
+ int argc, /* Size of argv array */
+ const char *const*argv, /* Tokenizer argument strings */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+ );
+
+ /*
+ ** Destroy an existing tokenizer. The fts3 module calls this method
+ ** exactly once for each successful call to xCreate().
+ */
+ int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
+
+ /*
+ ** Create a tokenizer cursor to tokenize an input buffer. The caller
+ ** is responsible for ensuring that the input buffer remains valid
+ ** until the cursor is closed (using the xClose() method).
+ */
+ int (*xOpen)(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
+ const char *pInput, int nBytes, /* Input buffer */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
+ );
+
+ /*
+ ** Destroy an existing tokenizer cursor. The fts3 module calls this
+ ** method exactly once for each successful call to xOpen().
+ */
+ int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
+
+ /*
+ ** Retrieve the next token from the tokenizer cursor pCursor. This
+ ** method should either return SQLITE_OK and set the values of the
+ ** "OUT" variables identified below, or SQLITE_DONE to indicate that
+ ** the end of the buffer has been reached, or an SQLite error code.
+ **
+ ** *ppToken should be set to point at a buffer containing the
+ ** normalized version of the token (i.e. after any case-folding and/or
+ ** stemming has been performed). *pnBytes should be set to the length
+ ** of this buffer in bytes. The input text that generated the token is
+ ** identified by the byte offsets returned in *piStartOffset and
+ ** *piEndOffset. *piStartOffset should be set to the index of the first
+ ** byte of the token in the input buffer. *piEndOffset should be set
+ ** to the index of the first byte just past the end of the token in
+ ** the input buffer.
+ **
+ ** The buffer *ppToken is set to point at is managed by the tokenizer
+ ** implementation. It is only required to be valid until the next call
+ ** to xNext() or xClose().
+ */
+ /* TODO(shess) current implementation requires pInput to be
+ ** nul-terminated. This should either be fixed, or pInput/nBytes
+ ** should be converted to zInput.
+ */
+ int (*xNext)(
+ sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
+ const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
+ int *piStartOffset, /* OUT: Byte offset of token in input buffer */
+ int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
+ int *piPosition /* OUT: Number of tokens returned before this one */
+ );
+
+ /***********************************************************************
+ ** Methods below this point are only available if iVersion>=1.
+ */
+
+ /*
+ ** Configure the language id of a tokenizer cursor.
+ */
+ int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid);
+};
+
+struct sqlite3_tokenizer {
+ const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+struct sqlite3_tokenizer_cursor {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+int fts3_global_term_cnt(int iTerm, int iCol);
+int fts3_term_cnt(int iTerm, int iCol);
+
+
+#endif /* _FTS3_TOKENIZER_H_ */
+
+/************** End of fts3_tokenizer.h **************************************/
+/************** Continuing where we left off in fts3Int.h ********************/
+/************** Include fts3_hash.h in the middle of fts3Int.h ***************/
+/************** Begin file fts3_hash.h ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implementation
+** used in SQLite. We've modified it slightly to serve as a standalone
+** hash table implementation for the full-text indexing module.
+**
+*/
+#ifndef _FTS3_HASH_H_
+#define _FTS3_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct Fts3Hash Fts3Hash;
+typedef struct Fts3HashElem Fts3HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct Fts3Hash {
+ char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ Fts3HashElem *first; /* The first element of the array */
+ int htsize; /* Number of buckets in the hash table */
+ struct _fts3ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ Fts3HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct Fts3HashElem {
+ Fts3HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 2 different modes of operation for a hash table:
+**
+** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is respected in comparisons.
+**
+** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
+*/
+#define FTS3_HASH_STRING 1
+#define FTS3_HASH_BINARY 2
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*);
+SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int);
+
+/*
+** Shorthand for the functions above
+*/
+#define fts3HashInit sqlite3Fts3HashInit
+#define fts3HashInsert sqlite3Fts3HashInsert
+#define fts3HashFind sqlite3Fts3HashFind
+#define fts3HashClear sqlite3Fts3HashClear
+#define fts3HashFindElem sqlite3Fts3HashFindElem
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Fts3Hash h;
+** Fts3HashElem *p;
+** ...
+** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
+** SomeStructure *pData = fts3HashData(p);
+** // do something with pData
+** }
+*/
+#define fts3HashFirst(H) ((H)->first)
+#define fts3HashNext(E) ((E)->next)
+#define fts3HashData(E) ((E)->data)
+#define fts3HashKey(E) ((E)->pKey)
+#define fts3HashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define fts3HashCount(H) ((H)->count)
+
+#endif /* _FTS3_HASH_H_ */
+
+/************** End of fts3_hash.h *******************************************/
+/************** Continuing where we left off in fts3Int.h ********************/
+
+/*
+** This constant determines the maximum depth of an FTS expression tree
+** that the library will create and use. FTS uses recursion to perform
+** various operations on the query tree, so the disadvantage of a large
+** limit is that it may allow very large queries to use large amounts
+** of stack space (perhaps causing a stack overflow).
+*/
+#ifndef SQLITE_FTS3_MAX_EXPR_DEPTH
+# define SQLITE_FTS3_MAX_EXPR_DEPTH 12
+#endif
+
+
+/*
+** This constant controls how often segments are merged. Once there are
+** FTS3_MERGE_COUNT segments of level N, they are merged into a single
+** segment of level N+1.
+*/
+#define FTS3_MERGE_COUNT 16
+
+/*
+** This is the maximum amount of data (in bytes) to store in the
+** Fts3Table.pendingTerms hash table. Normally, the hash table is
+** populated as documents are inserted/updated/deleted in a transaction
+** and used to create a new segment when the transaction is committed.
+** However if this limit is reached midway through a transaction, a new
+** segment is created and the hash table cleared immediately.
+*/
+#define FTS3_MAX_PENDING_DATA (1*1024*1024)
+
+/*
+** Macro to return the number of elements in an array. SQLite has a
+** similar macro called ArraySize(). Use a different name to avoid
+** a collision when building an amalgamation with built-in FTS3.
+*/
+#define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))
+
+
+#ifndef MIN
+# define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
+#ifndef MAX
+# define MAX(x,y) ((x)>(y)?(x):(y))
+#endif
+
+/*
+** Maximum length of a varint encoded integer. The varint format is different
+** from that used by SQLite, so the maximum length is 10, not 9.
+*/
+#define FTS3_VARINT_MAX 10
+
+#define FTS3_BUFFER_PADDING 8
+
+/*
+** FTS4 virtual tables may maintain multiple indexes - one index of all terms
+** in the document set and zero or more prefix indexes. All indexes are stored
+** as one or more b+-trees in the %_segments and %_segdir tables.
+**
+** It is possible to determine which index a b+-tree belongs to based on the
+** value stored in the "%_segdir.level" column. Given this value L, the index
+** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with
+** level values between 0 and 1023 (inclusive) belong to index 0, all levels
+** between 1024 and 2047 to index 1, and so on.
+**
+** It is considered impossible for an index to use more than 1024 levels. In
+** theory though this may happen, but only after at least
+** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables.
+*/
+#define FTS3_SEGDIR_MAXLEVEL 1024
+#define FTS3_SEGDIR_MAXLEVEL_STR "1024"
+
+/*
+** The testcase() macro is only used by the amalgamation. If undefined,
+** make it a no-op.
+*/
+#ifndef testcase
+# define testcase(X)
+#endif
+
+/*
+** Terminator values for position-lists and column-lists.
+*/
+#define POS_COLUMN (1) /* Column-list terminator */
+#define POS_END (0) /* Position-list terminator */
+
+/*
+** The assert_fts3_nc() macro is similar to the assert() macro, except that it
+** is used for assert() conditions that are true only if it can be
+** guranteed that the database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API extern int sqlite3_fts3_may_be_corrupt;
+# define assert_fts3_nc(x) assert(sqlite3_fts3_may_be_corrupt || (x))
+#else
+# define assert_fts3_nc(x) assert(x)
+#endif
+
+/*
+** This section provides definitions to allow the
+** FTS3 extension to be compiled outside of the
+** amalgamation.
+*/
+#ifndef SQLITE_AMALGAMATION
+/*
+** Macros indicating that conditional expressions are always true or
+** false.
+*/
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+/*
+** Internal types used by SQLite.
+*/
+typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */
+typedef short int i16; /* 2-byte (or larger) signed integer */
+typedef unsigned int u32; /* 4-byte unsigned integer */
+typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */
+typedef sqlite3_int64 i64; /* 8-byte signed integer */
+
+/*
+** Macro used to suppress compiler warnings for unused parameters.
+*/
+#define UNUSED_PARAMETER(x) (void)(x)
+
+/*
+** Activate assert() only if SQLITE_TEST is enabled.
+*/
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+/*
+** The TESTONLY macro is used to enclose variable declarations or
+** other bits of code that are needed to support the arguments
+** within testcase() and assert() macros.
+*/
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+# define TESTONLY(X) X
+#else
+# define TESTONLY(X)
+#endif
+
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+#define deliberate_fall_through
+
+#endif /* SQLITE_AMALGAMATION */
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3Fts3Corrupt(void);
+# define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt()
+#else
+# define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB
+#endif
+
+typedef struct Fts3Table Fts3Table;
+typedef struct Fts3Cursor Fts3Cursor;
+typedef struct Fts3Expr Fts3Expr;
+typedef struct Fts3Phrase Fts3Phrase;
+typedef struct Fts3PhraseToken Fts3PhraseToken;
+
+typedef struct Fts3Doclist Fts3Doclist;
+typedef struct Fts3SegFilter Fts3SegFilter;
+typedef struct Fts3DeferredToken Fts3DeferredToken;
+typedef struct Fts3SegReader Fts3SegReader;
+typedef struct Fts3MultiSegReader Fts3MultiSegReader;
+
+typedef struct MatchinfoBuffer MatchinfoBuffer;
+
+/*
+** A connection to a fulltext index is an instance of the following
+** structure. The xCreate and xConnect methods create an instance
+** of this structure and xDestroy and xDisconnect free that instance.
+** All other methods receive a pointer to the structure as one of their
+** arguments.
+*/
+struct Fts3Table {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ sqlite3 *db; /* The database connection */
+ const char *zDb; /* logical database name */
+ const char *zName; /* virtual table name */
+ int nColumn; /* number of named columns in virtual table */
+ char **azColumn; /* column names. malloced */
+ u8 *abNotindexed; /* True for 'notindexed' columns */
+ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
+ char *zContentTbl; /* content=xxx option, or NULL */
+ char *zLanguageid; /* languageid=xxx option, or NULL */
+ int nAutoincrmerge; /* Value configured by 'automerge' */
+ u32 nLeafAdd; /* Number of leaf blocks added this trans */
+ int bLock; /* Used to prevent recursive content= tbls */
+
+ /* Precompiled statements used by the implementation. Each of these
+ ** statements is run and reset within a single virtual table API call.
+ */
+ sqlite3_stmt *aStmt[40];
+ sqlite3_stmt *pSeekStmt; /* Cache for fts3CursorSeekStmt() */
+
+ char *zReadExprlist;
+ char *zWriteExprlist;
+
+ int nNodeSize; /* Soft limit for node size */
+ u8 bFts4; /* True for FTS4, false for FTS3 */
+ u8 bHasStat; /* True if %_stat table exists (2==unknown) */
+ u8 bHasDocsize; /* True if %_docsize table exists */
+ u8 bDescIdx; /* True if doclists are in reverse order */
+ u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */
+ int nPgsz; /* Page size for host database */
+ char *zSegmentsTbl; /* Name of %_segments table */
+ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */
+ int iSavepoint;
+
+ /*
+ ** The following array of hash tables is used to buffer pending index
+ ** updates during transactions. All pending updates buffered at any one
+ ** time must share a common language-id (see the FTS4 langid= feature).
+ ** The current language id is stored in variable iPrevLangid.
+ **
+ ** A single FTS4 table may have multiple full-text indexes. For each index
+ ** there is an entry in the aIndex[] array. Index 0 is an index of all the
+ ** terms that appear in the document set. Each subsequent index in aIndex[]
+ ** is an index of prefixes of a specific length.
+ **
+ ** Variable nPendingData contains an estimate the memory consumed by the
+ ** pending data structures, including hash table overhead, but not including
+ ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash
+ ** tables are flushed to disk. Variable iPrevDocid is the docid of the most
+ ** recently inserted record.
+ */
+ int nIndex; /* Size of aIndex[] */
+ struct Fts3Index {
+ int nPrefix; /* Prefix length (0 for main terms index) */
+ Fts3Hash hPending; /* Pending terms table for this index */
+ } *aIndex;
+ int nMaxPendingData; /* Max pending data before flush to disk */
+ int nPendingData; /* Current bytes of pending data */
+ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */
+ int iPrevLangid; /* Langid of recently inserted document */
+ int bPrevDelete; /* True if last operation was a delete */
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
+ /* State variables used for validating that the transaction control
+ ** methods of the virtual table are called at appropriate times. These
+ ** values do not contribute to FTS functionality; they are used for
+ ** verifying the operation of the SQLite core.
+ */
+ int inTransaction; /* True after xBegin but before xCommit/xRollback */
+ int mxSavepoint; /* Largest valid xSavepoint integer */
+#endif
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /* True to disable the incremental doclist optimization. This is controled
+ ** by special insert command 'test-no-incr-doclist'. */
+ int bNoIncrDoclist;
+
+ /* Number of segments in a level */
+ int nMergeCount;
+#endif
+};
+
+/* Macro to find the number of segments to merge */
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+# define MergeCount(P) ((P)->nMergeCount)
+#else
+# define MergeCount(P) FTS3_MERGE_COUNT
+#endif
+
+/*
+** When the core wants to read from the virtual table, it creates a
+** virtual table cursor (an instance of the following structure) using
+** the xOpen method. Cursors are destroyed using the xClose method.
+*/
+struct Fts3Cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ i16 eSearch; /* Search strategy (see below) */
+ u8 isEof; /* True if at End Of Results */
+ u8 isRequireSeek; /* True if must seek pStmt to %_content row */
+ u8 bSeekStmt; /* True if pStmt is a seek */
+ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
+ Fts3Expr *pExpr; /* Parsed MATCH query string */
+ int iLangid; /* Language being queried for */
+ int nPhrase; /* Number of matchable phrases in query */
+ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */
+ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */
+ char *pNextId; /* Pointer into the body of aDoclist */
+ char *aDoclist; /* List of docids for full-text queries */
+ int nDoclist; /* Size of buffer at aDoclist */
+ u8 bDesc; /* True to sort in descending order */
+ int eEvalmode; /* An FTS3_EVAL_XX constant */
+ int nRowAvg; /* Average size of database rows, in pages */
+ sqlite3_int64 nDoc; /* Documents in table */
+ i64 iMinDocid; /* Minimum docid to return */
+ i64 iMaxDocid; /* Maximum docid to return */
+ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */
+ MatchinfoBuffer *pMIBuffer; /* Buffer for matchinfo data */
+};
+
+#define FTS3_EVAL_FILTER 0
+#define FTS3_EVAL_NEXT 1
+#define FTS3_EVAL_MATCHINFO 2
+
+/*
+** The Fts3Cursor.eSearch member is always set to one of the following.
+** Actualy, Fts3Cursor.eSearch can be greater than or equal to
+** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index
+** of the column to be searched. For example, in
+**
+** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d);
+** SELECT docid FROM ex1 WHERE b MATCH 'one two three';
+**
+** Because the LHS of the MATCH operator is 2nd column "b",
+** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a,
+** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1"
+** indicating that all columns should be searched,
+** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
+*/
+#define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */
+#define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */
+#define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */
+
+/*
+** The lower 16-bits of the sqlite3_index_info.idxNum value set by
+** the xBestIndex() method contains the Fts3Cursor.eSearch value described
+** above. The upper 16-bits contain a combination of the following
+** bits, used to describe extra constraints on full-text searches.
+*/
+#define FTS3_HAVE_LANGID 0x00010000 /* languageid=? */
+#define FTS3_HAVE_DOCID_GE 0x00020000 /* docid>=? */
+#define FTS3_HAVE_DOCID_LE 0x00040000 /* docid<=? */
+
+struct Fts3Doclist {
+ char *aAll; /* Array containing doclist (or NULL) */
+ int nAll; /* Size of a[] in bytes */
+ char *pNextDocid; /* Pointer to next docid */
+
+ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */
+ int bFreeList; /* True if pList should be sqlite3_free()d */
+ char *pList; /* Pointer to position list following iDocid */
+ int nList; /* Length of position list */
+};
+
+/*
+** A "phrase" is a sequence of one or more tokens that must match in
+** sequence. A single token is the base case and the most common case.
+** For a sequence of tokens contained in double-quotes (i.e. "one two three")
+** nToken will be the number of tokens in the string.
+*/
+struct Fts3PhraseToken {
+ char *z; /* Text of the token */
+ int n; /* Number of bytes in buffer z */
+ int isPrefix; /* True if token ends with a "*" character */
+ int bFirst; /* True if token must appear at position 0 */
+
+ /* Variables above this point are populated when the expression is
+ ** parsed (by code in fts3_expr.c). Below this point the variables are
+ ** used when evaluating the expression. */
+ Fts3DeferredToken *pDeferred; /* Deferred token object for this token */
+ Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */
+};
+
+struct Fts3Phrase {
+ /* Cache of doclist for this phrase. */
+ Fts3Doclist doclist;
+ int bIncr; /* True if doclist is loaded incrementally */
+ int iDoclistToken;
+
+ /* Used by sqlite3Fts3EvalPhrasePoslist() if this is a descendent of an
+ ** OR condition. */
+ char *pOrPoslist;
+ i64 iOrDocid;
+
+ /* Variables below this point are populated by fts3_expr.c when parsing
+ ** a MATCH expression. Everything above is part of the evaluation phase.
+ */
+ int nToken; /* Number of tokens in the phrase */
+ int iColumn; /* Index of column this phrase must match */
+ Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
+};
+
+/*
+** A tree of these objects forms the RHS of a MATCH operator.
+**
+** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist
+** points to a malloced buffer, size nDoclist bytes, containing the results
+** of this phrase query in FTS3 doclist format. As usual, the initial
+** "Length" field found in doclists stored on disk is omitted from this
+** buffer.
+**
+** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global
+** matchinfo data. If it is not NULL, it points to an array of size nCol*3,
+** where nCol is the number of columns in the queried FTS table. The array
+** is populated as follows:
+**
+** aMI[iCol*3 + 0] = Undefined
+** aMI[iCol*3 + 1] = Number of occurrences
+** aMI[iCol*3 + 2] = Number of rows containing at least one instance
+**
+** The aMI array is allocated using sqlite3_malloc(). It should be freed
+** when the expression node is.
+*/
+struct Fts3Expr {
+ int eType; /* One of the FTSQUERY_XXX values defined below */
+ int nNear; /* Valid if eType==FTSQUERY_NEAR */
+ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
+ Fts3Expr *pLeft; /* Left operand */
+ Fts3Expr *pRight; /* Right operand */
+ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
+
+ /* The following are used by the fts3_eval.c module. */
+ sqlite3_int64 iDocid; /* Current docid */
+ u8 bEof; /* True this expression is at EOF already */
+ u8 bStart; /* True if iDocid is valid */
+ u8 bDeferred; /* True if this expression is entirely deferred */
+
+ /* The following are used by the fts3_snippet.c module. */
+ int iPhrase; /* Index of this phrase in matchinfo() results */
+ u32 *aMI; /* See above */
+};
+
+/*
+** Candidate values for Fts3Query.eType. Note that the order of the first
+** four values is in order of precedence when parsing expressions. For
+** example, the following:
+**
+** "a OR b AND c NOT d NEAR e"
+**
+** is equivalent to:
+**
+** "a OR (b AND (c NOT (d NEAR e)))"
+*/
+#define FTSQUERY_NEAR 1
+#define FTSQUERY_NOT 2
+#define FTSQUERY_AND 3
+#define FTSQUERY_OR 4
+#define FTSQUERY_PHRASE 5
+
+
+/* fts3_write.c */
+SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
+SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *);
+SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *);
+SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *);
+SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64,
+ sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
+SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
+ Fts3Table*,int,const char*,int,int,Fts3SegReader**);
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *);
+SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
+SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);
+
+SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
+SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);
+
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
+SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
+SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
+SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);
+#else
+# define sqlite3Fts3FreeDeferredTokens(x)
+# define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK
+# define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK
+# define sqlite3Fts3FreeDeferredDoclists(x)
+# define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK
+#endif
+
+SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *);
+SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *);
+
+/* Special values interpreted by sqlite3SegReaderCursor() */
+#define FTS3_SEGCURSOR_PENDING -1
+#define FTS3_SEGCURSOR_ALL -2
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*);
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *);
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *);
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(Fts3Table *,
+ int, int, int, const char *, int, int, int, Fts3MultiSegReader *);
+
+/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
+#define FTS3_SEGMENT_REQUIRE_POS 0x00000001
+#define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002
+#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
+#define FTS3_SEGMENT_PREFIX 0x00000008
+#define FTS3_SEGMENT_SCAN 0x00000010
+#define FTS3_SEGMENT_FIRST 0x00000020
+
+/* Type passed as 4th argument to SegmentReaderIterate() */
+struct Fts3SegFilter {
+ const char *zTerm;
+ int nTerm;
+ int iCol;
+ int flags;
+};
+
+struct Fts3MultiSegReader {
+ /* Used internally by sqlite3Fts3SegReaderXXX() calls */
+ Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */
+ int nSegment; /* Size of apSegment array */
+ int nAdvance; /* How many seg-readers to advance */
+ Fts3SegFilter *pFilter; /* Pointer to filter object */
+ char *aBuffer; /* Buffer to merge doclists in */
+ i64 nBuffer; /* Allocated size of aBuffer[] in bytes */
+
+ int iColFilter; /* If >=0, filter for this column */
+ int bRestart;
+
+ /* Used by fts3.c only. */
+ int nCost; /* Cost of running iterator */
+ int bLookup; /* True if a lookup of a single entry. */
+
+ /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
+ char *zTerm; /* Pointer to term buffer */
+ int nTerm; /* Size of zTerm in bytes */
+ char *aDoclist; /* Pointer to doclist buffer */
+ int nDoclist; /* Size of aDoclist[] in bytes */
+};
+
+SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table*,int,int);
+
+#define fts3GetVarint32(p, piVal) ( \
+ (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \
+)
+
+/* fts3.c */
+SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char**,const char*,...);
+SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64);
+SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
+SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *, sqlite_uint64 *);
+SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded(const char*,const char*,sqlite3_int64*);
+SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *);
+SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64);
+SQLITE_PRIVATE void sqlite3Fts3Dequote(char *);
+SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*);
+SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *);
+SQLITE_PRIVATE int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *);
+SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int*, Fts3Table*);
+SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc);
+SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut);
+
+/* fts3_tokenizer.c */
+SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *);
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
+SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *,
+ sqlite3_tokenizer **, char **
+);
+SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char);
+
+/* fts3_snippet.c */
+SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*);
+SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *,
+ const char *, const char *, int, int
+);
+SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *);
+SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p);
+
+/* fts3_expr.c */
+SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
+ char **, int, int, int, const char *, int, Fts3Expr **, char **
+);
+SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash*);
+SQLITE_PRIVATE int sqlite3Fts3InitTerm(sqlite3 *db);
+#endif
+SQLITE_PRIVATE void *sqlite3Fts3MallocZero(i64 nByte);
+
+SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
+ sqlite3_tokenizer_cursor **
+);
+
+/* fts3_aux.c */
+SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db);
+
+SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);
+
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart(
+ Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
+ Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
+SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **);
+SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);
+
+/* fts3_tokenize_vtab.c */
+SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *, void(*xDestroy)(void*));
+
+/* fts3_unicode2.c (functions generated by parsing unicode text files) */
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int);
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int);
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int);
+#endif
+
+SQLITE_PRIVATE int sqlite3Fts3ExprIterate(Fts3Expr*, int (*x)(Fts3Expr*,int,void*), void*);
+
+#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
+#endif /* _FTSINT_H */
+
+/************** End of fts3Int.h *********************************************/
+/************** Continuing where we left off in fts3.c ***********************/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
+# define SQLITE_CORE 1
+#endif
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stddef.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+/* #include <stdarg.h> */
+
+/* #include "fts3.h" */
+#ifndef SQLITE_CORE
+/* # include "sqlite3ext.h" */
+ SQLITE_EXTENSION_INIT1
+#endif
+
+typedef struct Fts3HashWrapper Fts3HashWrapper;
+struct Fts3HashWrapper {
+ Fts3Hash hash; /* Hash table */
+ int nRef; /* Number of pointers to this object */
+};
+
+static int fts3EvalNext(Fts3Cursor *pCsr);
+static int fts3EvalStart(Fts3Cursor *pCsr);
+static int fts3TermSegReaderCursor(
+ Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
+
+/*
+** This variable is set to false when running tests for which the on disk
+** structures should not be corrupt. Otherwise, true. If it is false, extra
+** assert() conditions in the fts3 code are activated - conditions that are
+** only true if it is guaranteed that the fts3 database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API int sqlite3_fts3_may_be_corrupt = 1;
+#endif
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
+** The number of bytes written is returned.
+*/
+SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
+ unsigned char *q = (unsigned char *) p;
+ sqlite_uint64 vu = v;
+ do{
+ *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
+ vu >>= 7;
+ }while( vu!=0 );
+ q[-1] &= 0x7f; /* turn off high bit in final byte */
+ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
+ return (int) (q - (unsigned char *)p);
+}
+
+#define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
+ v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \
+ if( (v & mask2)==0 ){ var = v; return ret; }
+#define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
+ v = (*ptr++); \
+ if( (v & mask2)==0 ){ var = v; return ret; }
+
+SQLITE_PRIVATE int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){
+ const unsigned char *p = (const unsigned char*)pBuf;
+ const unsigned char *pStart = p;
+ u32 a;
+ u64 b;
+ int shift;
+
+ GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1);
+ GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2);
+ GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3);
+ GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
+ b = (a & 0x0FFFFFFF );
+
+ for(shift=28; shift<=63; shift+=7){
+ u64 c = *p++;
+ b += (c&0x7F) << shift;
+ if( (c & 0x80)==0 ) break;
+ }
+ *v = b;
+ return (int)(p - pStart);
+}
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read, or 0 on error.
+** The value is stored in *v.
+*/
+SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
+ return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v);
+}
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0] and
+** not extending past pEnd[-1].
+** Return the number of bytes read, or 0 on error.
+** The value is stored in *v.
+*/
+SQLITE_PRIVATE int sqlite3Fts3GetVarintBounded(
+ const char *pBuf,
+ const char *pEnd,
+ sqlite_int64 *v
+){
+ const unsigned char *p = (const unsigned char*)pBuf;
+ const unsigned char *pStart = p;
+ const unsigned char *pX = (const unsigned char*)pEnd;
+ u64 b = 0;
+ int shift;
+ for(shift=0; shift<=63; shift+=7){
+ u64 c = p<pX ? *p : 0;
+ p++;
+ b += (c&0x7F) << shift;
+ if( (c & 0x80)==0 ) break;
+ }
+ *v = b;
+ return (int)(p - pStart);
+}
+
+/*
+** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
+** a non-negative 32-bit integer before it is returned.
+*/
+SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){
+ const unsigned char *ptr = (const unsigned char*)p;
+ u32 a;
+
+#ifndef fts3GetVarint32
+ GETVARINT_INIT(a, ptr, 0, 0x00, 0x80, *pi, 1);
+#else
+ a = (*ptr++);
+ assert( a & 0x80 );
+#endif
+
+ GETVARINT_STEP(a, ptr, 7, 0x7F, 0x4000, *pi, 2);
+ GETVARINT_STEP(a, ptr, 14, 0x3FFF, 0x200000, *pi, 3);
+ GETVARINT_STEP(a, ptr, 21, 0x1FFFFF, 0x10000000, *pi, 4);
+ a = (a & 0x0FFFFFFF );
+ *pi = (int)(a | ((u32)(*ptr & 0x07) << 28));
+ assert( 0==(a & 0x80000000) );
+ assert( *pi>=0 );
+ return 5;
+}
+
+/*
+** Return the number of bytes required to encode v as a varint
+*/
+SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){
+ int i = 0;
+ do{
+ i++;
+ v >>= 7;
+ }while( v!=0 );
+ return i;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+**
+*/
+SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){
+ char quote; /* Quote character (if any ) */
+
+ quote = z[0];
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
+ int iIn = 1; /* Index of next byte to read from input */
+ int iOut = 0; /* Index of next byte to write to output */
+
+ /* If the first byte was a '[', then the close-quote character is a ']' */
+ if( quote=='[' ) quote = ']';
+
+ while( z[iIn] ){
+ if( z[iIn]==quote ){
+ if( z[iIn+1]!=quote ) break;
+ z[iOut++] = quote;
+ iIn += 2;
+ }else{
+ z[iOut++] = z[iIn++];
+ }
+ }
+ z[iOut] = '\0';
+ }
+}
+
+/*
+** Read a single varint from the doclist at *pp and advance *pp to point
+** to the first byte past the end of the varint. Add the value of the varint
+** to *pVal.
+*/
+static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
+ sqlite3_int64 iVal;
+ *pp += sqlite3Fts3GetVarint(*pp, &iVal);
+ *pVal += iVal;
+}
+
+/*
+** When this function is called, *pp points to the first byte following a
+** varint that is part of a doclist (or position-list, or any other list
+** of varints). This function moves *pp to point to the start of that varint,
+** and sets *pVal by the varint value.
+**
+** Argument pStart points to the first byte of the doclist that the
+** varint is part of.
+*/
+static void fts3GetReverseVarint(
+ char **pp,
+ char *pStart,
+ sqlite3_int64 *pVal
+){
+ sqlite3_int64 iVal;
+ char *p;
+
+ /* Pointer p now points at the first byte past the varint we are
+ ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
+ ** clear on character p[-1]. */
+ for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
+ p++;
+ *pp = p;
+
+ sqlite3Fts3GetVarint(p, &iVal);
+ *pVal = iVal;
+}
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ int i;
+
+ assert( p->nPendingData==0 );
+ assert( p->pSegments==0 );
+
+ /* Free any prepared statements held */
+ sqlite3_finalize(p->pSeekStmt);
+ for(i=0; i<SizeofArray(p->aStmt); i++){
+ sqlite3_finalize(p->aStmt[i]);
+ }
+ sqlite3_free(p->zSegmentsTbl);
+ sqlite3_free(p->zReadExprlist);
+ sqlite3_free(p->zWriteExprlist);
+ sqlite3_free(p->zContentTbl);
+ sqlite3_free(p->zLanguageid);
+
+ /* Invoke the tokenizer destructor to free the tokenizer. */
+ p->pTokenizer->pModule->xDestroy(p->pTokenizer);
+
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into *pzErr
+*/
+SQLITE_PRIVATE void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){
+ va_list ap;
+ sqlite3_free(*pzErr);
+ va_start(ap, zFormat);
+ *pzErr = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** Construct one or more SQL statements from the format string given
+** and then evaluate those statements. The success code is written
+** into *pRc.
+**
+** If *pRc is initially non-zero then this routine is a no-op.
+*/
+static void fts3DbExec(
+ int *pRc, /* Success code */
+ sqlite3 *db, /* Database in which to run SQL */
+ const char *zFormat, /* Format string for SQL */
+ ... /* Arguments to the format string */
+){
+ va_list ap;
+ char *zSql;
+ if( *pRc ) return;
+ va_start(ap, zFormat);
+ zSql = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ if( zSql==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts3DestroyMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ int rc = SQLITE_OK; /* Return code */
+ const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
+ sqlite3 *db = p->db; /* Database handle */
+
+ /* Drop the shadow tables */
+ fts3DbExec(&rc, db,
+ "DROP TABLE IF EXISTS %Q.'%q_segments';"
+ "DROP TABLE IF EXISTS %Q.'%q_segdir';"
+ "DROP TABLE IF EXISTS %Q.'%q_docsize';"
+ "DROP TABLE IF EXISTS %Q.'%q_stat';"
+ "%s DROP TABLE IF EXISTS %Q.'%q_content';",
+ zDb, p->zName,
+ zDb, p->zName,
+ zDb, p->zName,
+ zDb, p->zName,
+ (p->zContentTbl ? "--" : ""), zDb,p->zName
+ );
+
+ /* If everything has worked, invoke fts3DisconnectMethod() to free the
+ ** memory associated with the Fts3Table structure and return SQLITE_OK.
+ ** Otherwise, return an SQLite error code.
+ */
+ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
+}
+
+
+/*
+** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
+** passed as the first argument. This is done as part of the xConnect()
+** and xCreate() methods.
+**
+** If *pRc is non-zero when this function is called, it is a no-op.
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
+** before returning.
+*/
+static void fts3DeclareVtab(int *pRc, Fts3Table *p){
+ if( *pRc==SQLITE_OK ){
+ int i; /* Iterator variable */
+ int rc; /* Return code */
+ char *zSql; /* SQL statement passed to declare_vtab() */
+ char *zCols; /* List of user defined columns */
+ const char *zLanguageid;
+
+ zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
+ sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+ sqlite3_vtab_config(p->db, SQLITE_VTAB_INNOCUOUS);
+
+ /* Create a list of user columns for the virtual table */
+ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
+ for(i=1; zCols && i<p->nColumn; i++){
+ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
+ }
+
+ /* Create the whole "CREATE TABLE" statement to pass to SQLite */
+ zSql = sqlite3_mprintf(
+ "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
+ zCols, p->zName, zLanguageid
+ );
+ if( !zCols || !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_declare_vtab(p->db, zSql);
+ }
+
+ sqlite3_free(zSql);
+ sqlite3_free(zCols);
+ *pRc = rc;
+ }
+}
+
+/*
+** Create the %_stat table if it does not already exist.
+*/
+SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
+ fts3DbExec(pRc, p->db,
+ "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
+ "(id INTEGER PRIMARY KEY, value BLOB);",
+ p->zDb, p->zName
+ );
+ if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
+}
+
+/*
+** Create the backing store tables (%_content, %_segments and %_segdir)
+** required by the FTS3 table passed as the only argument. This is done
+** as part of the vtab xCreate() method.
+**
+** If the p->bHasDocsize boolean is true (indicating that this is an
+** FTS4 table, not an FTS3 table) then also create the %_docsize and
+** %_stat tables required by FTS4.
+*/
+static int fts3CreateTables(Fts3Table *p){
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* Iterator variable */
+ sqlite3 *db = p->db; /* The database connection */
+
+ if( p->zContentTbl==0 ){
+ const char *zLanguageid = p->zLanguageid;
+ char *zContentCols; /* Columns of %_content table */
+
+ /* Create a list of user columns for the content table */
+ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
+ for(i=0; zContentCols && i<p->nColumn; i++){
+ char *z = p->azColumn[i];
+ zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
+ }
+ if( zLanguageid && zContentCols ){
+ zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
+ }
+ if( zContentCols==0 ) rc = SQLITE_NOMEM;
+
+ /* Create the content table */
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_content'(%s)",
+ p->zDb, p->zName, zContentCols
+ );
+ sqlite3_free(zContentCols);
+ }
+
+ /* Create other tables */
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
+ p->zDb, p->zName
+ );
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_segdir'("
+ "level INTEGER,"
+ "idx INTEGER,"
+ "start_block INTEGER,"
+ "leaves_end_block INTEGER,"
+ "end_block INTEGER,"
+ "root BLOB,"
+ "PRIMARY KEY(level, idx)"
+ ");",
+ p->zDb, p->zName
+ );
+ if( p->bHasDocsize ){
+ fts3DbExec(&rc, db,
+ "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
+ p->zDb, p->zName
+ );
+ }
+ assert( p->bHasStat==p->bFts4 );
+ if( p->bHasStat ){
+ sqlite3Fts3CreateStatTable(&rc, p);
+ }
+ return rc;
+}
+
+/*
+** Store the current database page-size in bytes in p->nPgsz.
+**
+** If *pRc is non-zero when this function is called, it is a no-op.
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
+** before returning.
+*/
+static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
+ if( *pRc==SQLITE_OK ){
+ int rc; /* Return code */
+ char *zSql; /* SQL text "PRAGMA %Q.page_size" */
+ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
+
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pStmt);
+ p->nPgsz = sqlite3_column_int(pStmt, 0);
+ rc = sqlite3_finalize(pStmt);
+ }else if( rc==SQLITE_AUTH ){
+ p->nPgsz = 1024;
+ rc = SQLITE_OK;
+ }
+ }
+ assert( p->nPgsz>0 || rc!=SQLITE_OK );
+ sqlite3_free(zSql);
+ *pRc = rc;
+ }
+}
+
+/*
+** "Special" FTS4 arguments are column specifications of the following form:
+**
+** <key> = <value>
+**
+** There may not be whitespace surrounding the "=" character. The <value>
+** term may be quoted, but the <key> may not.
+*/
+static int fts3IsSpecialColumn(
+ const char *z,
+ int *pnKey,
+ char **pzValue
+){
+ char *zValue;
+ const char *zCsr = z;
+
+ while( *zCsr!='=' ){
+ if( *zCsr=='\0' ) return 0;
+ zCsr++;
+ }
+
+ *pnKey = (int)(zCsr-z);
+ zValue = sqlite3_mprintf("%s", &zCsr[1]);
+ if( zValue ){
+ sqlite3Fts3Dequote(zValue);
+ }
+ *pzValue = zValue;
+ return 1;
+}
+
+/*
+** Append the output of a printf() style formatting to an existing string.
+*/
+static void fts3Appendf(
+ int *pRc, /* IN/OUT: Error code */
+ char **pz, /* IN/OUT: Pointer to string buffer */
+ const char *zFormat, /* Printf format string to append */
+ ... /* Arguments for printf format string */
+){
+ if( *pRc==SQLITE_OK ){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ if( z && *pz ){
+ char *z2 = sqlite3_mprintf("%s%s", *pz, z);
+ sqlite3_free(z);
+ z = z2;
+ }
+ if( z==0 ) *pRc = SQLITE_NOMEM;
+ sqlite3_free(*pz);
+ *pz = z;
+ }
+}
+
+/*
+** Return a copy of input string zInput enclosed in double-quotes (") and
+** with all double quote characters escaped. For example:
+**
+** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
+**
+** The pointer returned points to memory obtained from sqlite3_malloc(). It
+** is the callers responsibility to call sqlite3_free() to release this
+** memory.
+*/
+static char *fts3QuoteId(char const *zInput){
+ sqlite3_int64 nRet;
+ char *zRet;
+ nRet = 2 + (int)strlen(zInput)*2 + 1;
+ zRet = sqlite3_malloc64(nRet);
+ if( zRet ){
+ int i;
+ char *z = zRet;
+ *(z++) = '"';
+ for(i=0; zInput[i]; i++){
+ if( zInput[i]=='"' ) *(z++) = '"';
+ *(z++) = zInput[i];
+ }
+ *(z++) = '"';
+ *(z++) = '\0';
+ }
+ return zRet;
+}
+
+/*
+** Return a list of comma separated SQL expressions and a FROM clause that
+** could be used in a SELECT statement such as the following:
+**
+** SELECT <list of expressions> FROM %_content AS x ...
+**
+** to return the docid, followed by each column of text data in order
+** from left to write. If parameter zFunc is not NULL, then instead of
+** being returned directly each column of text data is passed to an SQL
+** function named zFunc first. For example, if zFunc is "unzip" and the
+** table has the three user-defined columns "a", "b", and "c", the following
+** string is returned:
+**
+** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
+**
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
+** is the responsibility of the caller to eventually free it.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
+** no error occurs, *pRc is left unmodified.
+*/
+static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
+ char *zRet = 0;
+ char *zFree = 0;
+ char *zFunction;
+ int i;
+
+ if( p->zContentTbl==0 ){
+ if( !zFunc ){
+ zFunction = "";
+ }else{
+ zFree = zFunction = fts3QuoteId(zFunc);
+ }
+ fts3Appendf(pRc, &zRet, "docid");
+ for(i=0; i<p->nColumn; i++){
+ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
+ }
+ if( p->zLanguageid ){
+ fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
+ }
+ sqlite3_free(zFree);
+ }else{
+ fts3Appendf(pRc, &zRet, "rowid");
+ for(i=0; i<p->nColumn; i++){
+ fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
+ }
+ if( p->zLanguageid ){
+ fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
+ }
+ }
+ fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
+ p->zDb,
+ (p->zContentTbl ? p->zContentTbl : p->zName),
+ (p->zContentTbl ? "" : "_content")
+ );
+ return zRet;
+}
+
+/*
+** Return a list of N comma separated question marks, where N is the number
+** of columns in the %_content table (one for the docid plus one for each
+** user-defined text column).
+**
+** If argument zFunc is not NULL, then all but the first question mark
+** is preceded by zFunc and an open bracket, and followed by a closed
+** bracket. For example, if zFunc is "zip" and the FTS3 table has three
+** user-defined text columns, the following string is returned:
+**
+** "?, zip(?), zip(?), zip(?)"
+**
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
+** is the responsibility of the caller to eventually free it.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
+** no error occurs, *pRc is left unmodified.
+*/
+static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
+ char *zRet = 0;
+ char *zFree = 0;
+ char *zFunction;
+ int i;
+
+ if( !zFunc ){
+ zFunction = "";
+ }else{
+ zFree = zFunction = fts3QuoteId(zFunc);
+ }
+ fts3Appendf(pRc, &zRet, "?");
+ for(i=0; i<p->nColumn; i++){
+ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
+ }
+ if( p->zLanguageid ){
+ fts3Appendf(pRc, &zRet, ", ?");
+ }
+ sqlite3_free(zFree);
+ return zRet;
+}
+
+/*
+** Buffer z contains a positive integer value encoded as utf-8 text.
+** Decode this value and store it in *pnOut, returning the number of bytes
+** consumed. If an overflow error occurs return a negative value.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ReadInt(const char *z, int *pnOut){
+ u64 iVal = 0;
+ int i;
+ for(i=0; z[i]>='0' && z[i]<='9'; i++){
+ iVal = iVal*10 + (z[i] - '0');
+ if( iVal>0x7FFFFFFF ) return -1;
+ }
+ *pnOut = (int)iVal;
+ return i;
+}
+
+/*
+** This function interprets the string at (*pp) as a non-negative integer
+** value. It reads the integer and sets *pnOut to the value read, then
+** sets *pp to point to the byte immediately following the last byte of
+** the integer value.
+**
+** Only decimal digits ('0'..'9') may be part of an integer value.
+**
+** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
+** the output value undefined. Otherwise SQLITE_OK is returned.
+**
+** This function is used when parsing the "prefix=" FTS4 parameter.
+*/
+static int fts3GobbleInt(const char **pp, int *pnOut){
+ const int MAX_NPREFIX = 10000000;
+ int nInt = 0; /* Output value */
+ int nByte;
+ nByte = sqlite3Fts3ReadInt(*pp, &nInt);
+ if( nInt>MAX_NPREFIX ){
+ nInt = 0;
+ }
+ if( nByte==0 ){
+ return SQLITE_ERROR;
+ }
+ *pnOut = nInt;
+ *pp += nByte;
+ return SQLITE_OK;
+}
+
+/*
+** This function is called to allocate an array of Fts3Index structures
+** representing the indexes maintained by the current FTS table. FTS tables
+** always maintain the main "terms" index, but may also maintain one or
+** more "prefix" indexes, depending on the value of the "prefix=" parameter
+** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
+**
+** Argument zParam is passed the value of the "prefix=" option if one was
+** specified, or NULL otherwise.
+**
+** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
+** the allocated array. *pnIndex is set to the number of elements in the
+** array. If an error does occur, an SQLite error code is returned.
+**
+** Regardless of whether or not an error is returned, it is the responsibility
+** of the caller to call sqlite3_free() on the output array to free it.
+*/
+static int fts3PrefixParameter(
+ const char *zParam, /* ABC in prefix=ABC parameter to parse */
+ int *pnIndex, /* OUT: size of *apIndex[] array */
+ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
+){
+ struct Fts3Index *aIndex; /* Allocated array */
+ int nIndex = 1; /* Number of entries in array */
+
+ if( zParam && zParam[0] ){
+ const char *p;
+ nIndex++;
+ for(p=zParam; *p; p++){
+ if( *p==',' ) nIndex++;
+ }
+ }
+
+ aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex);
+ *apIndex = aIndex;
+ if( !aIndex ){
+ return SQLITE_NOMEM;
+ }
+
+ memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
+ if( zParam ){
+ const char *p = zParam;
+ int i;
+ for(i=1; i<nIndex; i++){
+ int nPrefix = 0;
+ if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
+ assert( nPrefix>=0 );
+ if( nPrefix==0 ){
+ nIndex--;
+ i--;
+ }else{
+ aIndex[i].nPrefix = nPrefix;
+ }
+ p++;
+ }
+ }
+
+ *pnIndex = nIndex;
+ return SQLITE_OK;
+}
+
+/*
+** This function is called when initializing an FTS4 table that uses the
+** content=xxx option. It determines the number of and names of the columns
+** of the new FTS4 table.
+**
+** The third argument passed to this function is the value passed to the
+** config=xxx option (i.e. "xxx"). This function queries the database for
+** a table of that name. If found, the output variables are populated
+** as follows:
+**
+** *pnCol: Set to the number of columns table xxx has,
+**
+** *pnStr: Set to the total amount of space required to store a copy
+** of each columns name, including the nul-terminator.
+**
+** *pazCol: Set to point to an array of *pnCol strings. Each string is
+** the name of the corresponding column in table xxx. The array
+** and its contents are allocated using a single allocation. It
+** is the responsibility of the caller to free this allocation
+** by eventually passing the *pazCol value to sqlite3_free().
+**
+** If the table cannot be found, an error code is returned and the output
+** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
+** returned (and the output variables are undefined).
+*/
+static int fts3ContentColumns(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
+ const char *zTbl, /* Name of content table */
+ const char ***pazCol, /* OUT: Malloc'd array of column names */
+ int *pnCol, /* OUT: Size of array *pazCol */
+ int *pnStr, /* OUT: Bytes of string content */
+ char **pzErr /* OUT: error message */
+){
+ int rc = SQLITE_OK; /* Return code */
+ char *zSql; /* "SELECT *" statement on zTbl */
+ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
+
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
+ }
+ }
+ sqlite3_free(zSql);
+
+ if( rc==SQLITE_OK ){
+ const char **azCol; /* Output array */
+ sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */
+ int nCol; /* Number of table columns */
+ int i; /* Used to iterate through columns */
+
+ /* Loop through the returned columns. Set nStr to the number of bytes of
+ ** space required to store a copy of each column name, including the
+ ** nul-terminator byte. */
+ nCol = sqlite3_column_count(pStmt);
+ for(i=0; i<nCol; i++){
+ const char *zCol = sqlite3_column_name(pStmt, i);
+ nStr += strlen(zCol) + 1;
+ }
+
+ /* Allocate and populate the array to return. */
+ azCol = (const char **)sqlite3_malloc64(sizeof(char *) * nCol + nStr);
+ if( azCol==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *p = (char *)&azCol[nCol];
+ for(i=0; i<nCol; i++){
+ const char *zCol = sqlite3_column_name(pStmt, i);
+ int n = (int)strlen(zCol)+1;
+ memcpy(p, zCol, n);
+ azCol[i] = p;
+ p += n;
+ }
+ }
+ sqlite3_finalize(pStmt);
+
+ /* Set the output variables. */
+ *pnCol = nCol;
+ *pnStr = nStr;
+ *pazCol = azCol;
+ }
+
+ return rc;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts3" or "fts4")
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> "column name" and other module argument fields.
+*/
+static int fts3InitVtab(
+ int isCreate, /* True for xCreate, false for xConnect */
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Hash table containing tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash;
+ Fts3Table *p = 0; /* Pointer to allocated vtab */
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* Iterator variable */
+ sqlite3_int64 nByte; /* Size of allocation used for *p */
+ int iCol; /* Column index */
+ int nString = 0; /* Bytes required to hold all column names */
+ int nCol = 0; /* Number of columns in the FTS table */
+ char *zCsr; /* Space for holding column names */
+ int nDb; /* Bytes required to hold database name */
+ int nName; /* Bytes required to hold table name */
+ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
+ const char **aCol; /* Array of column names */
+ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
+
+ int nIndex = 0; /* Size of aIndex[] array */
+ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
+
+ /* The results of parsing supported FTS4 key=value options: */
+ int bNoDocsize = 0; /* True to omit %_docsize table */
+ int bDescIdx = 0; /* True to store descending indexes */
+ char *zPrefix = 0; /* Prefix parameter value (or NULL) */
+ char *zCompress = 0; /* compress=? parameter (or NULL) */
+ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
+ char *zContent = 0; /* content=? parameter (or NULL) */
+ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
+ char **azNotindexed = 0; /* The set of notindexed= columns */
+ int nNotindexed = 0; /* Size of azNotindexed[] array */
+
+ assert( strlen(argv[0])==4 );
+ assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
+ || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
+ );
+
+ nDb = (int)strlen(argv[1]) + 1;
+ nName = (int)strlen(argv[2]) + 1;
+
+ nByte = sizeof(const char *) * (argc-2);
+ aCol = (const char **)sqlite3_malloc64(nByte);
+ if( aCol ){
+ memset((void*)aCol, 0, nByte);
+ azNotindexed = (char **)sqlite3_malloc64(nByte);
+ }
+ if( azNotindexed ){
+ memset(azNotindexed, 0, nByte);
+ }
+ if( !aCol || !azNotindexed ){
+ rc = SQLITE_NOMEM;
+ goto fts3_init_out;
+ }
+
+ /* Loop through all of the arguments passed by the user to the FTS3/4
+ ** module (i.e. all the column names and special arguments). This loop
+ ** does the following:
+ **
+ ** + Figures out the number of columns the FTSX table will have, and
+ ** the number of bytes of space that must be allocated to store copies
+ ** of the column names.
+ **
+ ** + If there is a tokenizer specification included in the arguments,
+ ** initializes the tokenizer pTokenizer.
+ */
+ for(i=3; rc==SQLITE_OK && i<argc; i++){
+ char const *z = argv[i];
+ int nKey;
+ char *zVal;
+
+ /* Check if this is a tokenizer specification */
+ if( !pTokenizer
+ && strlen(z)>8
+ && 0==sqlite3_strnicmp(z, "tokenize", 8)
+ && 0==sqlite3Fts3IsIdChar(z[8])
+ ){
+ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
+ }
+
+ /* Check if it is an FTS4 special argument. */
+ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
+ struct Fts4Option {
+ const char *zOpt;
+ int nOpt;
+ } aFts4Opt[] = {
+ { "matchinfo", 9 }, /* 0 -> MATCHINFO */
+ { "prefix", 6 }, /* 1 -> PREFIX */
+ { "compress", 8 }, /* 2 -> COMPRESS */
+ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
+ { "order", 5 }, /* 4 -> ORDER */
+ { "content", 7 }, /* 5 -> CONTENT */
+ { "languageid", 10 }, /* 6 -> LANGUAGEID */
+ { "notindexed", 10 } /* 7 -> NOTINDEXED */
+ };
+
+ int iOpt;
+ if( !zVal ){
+ rc = SQLITE_NOMEM;
+ }else{
+ for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
+ struct Fts4Option *pOp = &aFts4Opt[iOpt];
+ if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
+ break;
+ }
+ }
+ switch( iOpt ){
+ case 0: /* MATCHINFO */
+ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
+ rc = SQLITE_ERROR;
+ }
+ bNoDocsize = 1;
+ break;
+
+ case 1: /* PREFIX */
+ sqlite3_free(zPrefix);
+ zPrefix = zVal;
+ zVal = 0;
+ break;
+
+ case 2: /* COMPRESS */
+ sqlite3_free(zCompress);
+ zCompress = zVal;
+ zVal = 0;
+ break;
+
+ case 3: /* UNCOMPRESS */
+ sqlite3_free(zUncompress);
+ zUncompress = zVal;
+ zVal = 0;
+ break;
+
+ case 4: /* ORDER */
+ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
+ && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
+ ){
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
+ rc = SQLITE_ERROR;
+ }
+ bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
+ break;
+
+ case 5: /* CONTENT */
+ sqlite3_free(zContent);
+ zContent = zVal;
+ zVal = 0;
+ break;
+
+ case 6: /* LANGUAGEID */
+ assert( iOpt==6 );
+ sqlite3_free(zLanguageid);
+ zLanguageid = zVal;
+ zVal = 0;
+ break;
+
+ case 7: /* NOTINDEXED */
+ azNotindexed[nNotindexed++] = zVal;
+ zVal = 0;
+ break;
+
+ default:
+ assert( iOpt==SizeofArray(aFts4Opt) );
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
+ rc = SQLITE_ERROR;
+ break;
+ }
+ sqlite3_free(zVal);
+ }
+ }
+
+ /* Otherwise, the argument is a column name. */
+ else {
+ nString += (int)(strlen(z) + 1);
+ aCol[nCol++] = z;
+ }
+ }
+
+ /* If a content=xxx option was specified, the following:
+ **
+ ** 1. Ignore any compress= and uncompress= options.
+ **
+ ** 2. If no column names were specified as part of the CREATE VIRTUAL
+ ** TABLE statement, use all columns from the content table.
+ */
+ if( rc==SQLITE_OK && zContent ){
+ sqlite3_free(zCompress);
+ sqlite3_free(zUncompress);
+ zCompress = 0;
+ zUncompress = 0;
+ if( nCol==0 ){
+ sqlite3_free((void*)aCol);
+ aCol = 0;
+ rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr);
+
+ /* If a languageid= option was specified, remove the language id
+ ** column from the aCol[] array. */
+ if( rc==SQLITE_OK && zLanguageid ){
+ int j;
+ for(j=0; j<nCol; j++){
+ if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
+ int k;
+ for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
+ nCol--;
+ break;
+ }
+ }
+ }
+ }
+ }
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+
+ if( nCol==0 ){
+ assert( nString==0 );
+ aCol[0] = "content";
+ nString = 8;
+ nCol = 1;
+ }
+
+ if( pTokenizer==0 ){
+ rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+ }
+ assert( pTokenizer );
+
+ rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
+ if( rc==SQLITE_ERROR ){
+ assert( zPrefix );
+ sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix);
+ }
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+
+ /* Allocate and populate the Fts3Table structure. */
+ nByte = sizeof(Fts3Table) + /* Fts3Table */
+ nCol * sizeof(char *) + /* azColumn */
+ nIndex * sizeof(struct Fts3Index) + /* aIndex */
+ nCol * sizeof(u8) + /* abNotindexed */
+ nName + /* zName */
+ nDb + /* zDb */
+ nString; /* Space for azColumn strings */
+ p = (Fts3Table*)sqlite3_malloc64(nByte);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ goto fts3_init_out;
+ }
+ memset(p, 0, nByte);
+ p->db = db;
+ p->nColumn = nCol;
+ p->nPendingData = 0;
+ p->azColumn = (char **)&p[1];
+ p->pTokenizer = pTokenizer;
+ p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
+ p->bHasDocsize = (isFts4 && bNoDocsize==0);
+ p->bHasStat = (u8)isFts4;
+ p->bFts4 = (u8)isFts4;
+ p->bDescIdx = (u8)bDescIdx;
+ p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */
+ p->zContentTbl = zContent;
+ p->zLanguageid = zLanguageid;
+ zContent = 0;
+ zLanguageid = 0;
+ TESTONLY( p->inTransaction = -1 );
+ TESTONLY( p->mxSavepoint = -1 );
+
+ p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
+ memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
+ p->nIndex = nIndex;
+ for(i=0; i<nIndex; i++){
+ fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
+ }
+ p->abNotindexed = (u8 *)&p->aIndex[nIndex];
+
+ /* Fill in the zName and zDb fields of the vtab structure. */
+ zCsr = (char *)&p->abNotindexed[nCol];
+ p->zName = zCsr;
+ memcpy(zCsr, argv[2], nName);
+ zCsr += nName;
+ p->zDb = zCsr;
+ memcpy(zCsr, argv[1], nDb);
+ zCsr += nDb;
+
+ /* Fill in the azColumn array */
+ for(iCol=0; iCol<nCol; iCol++){
+ char *z;
+ int n = 0;
+ z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
+ if( n>0 ){
+ memcpy(zCsr, z, n);
+ }
+ zCsr[n] = '\0';
+ sqlite3Fts3Dequote(zCsr);
+ p->azColumn[iCol] = zCsr;
+ zCsr += n+1;
+ assert( zCsr <= &((char *)p)[nByte] );
+ }
+
+ /* Fill in the abNotindexed array */
+ for(iCol=0; iCol<nCol; iCol++){
+ int n = (int)strlen(p->azColumn[iCol]);
+ for(i=0; i<nNotindexed; i++){
+ char *zNot = azNotindexed[i];
+ if( zNot && n==(int)strlen(zNot)
+ && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
+ ){
+ p->abNotindexed[iCol] = 1;
+ sqlite3_free(zNot);
+ azNotindexed[i] = 0;
+ }
+ }
+ }
+ for(i=0; i<nNotindexed; i++){
+ if( azNotindexed[i] ){
+ sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
+ char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
+ rc = SQLITE_ERROR;
+ sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss);
+ }
+ p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
+ p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
+ if( rc!=SQLITE_OK ) goto fts3_init_out;
+
+ /* If this is an xCreate call, create the underlying tables in the
+ ** database. TODO: For xConnect(), it could verify that said tables exist.
+ */
+ if( isCreate ){
+ rc = fts3CreateTables(p);
+ }
+
+ /* Check to see if a legacy fts3 table has been "upgraded" by the
+ ** addition of a %_stat table so that it can use incremental merge.
+ */
+ if( !isFts4 && !isCreate ){
+ p->bHasStat = 2;
+ }
+
+ /* Figure out the page-size for the database. This is required in order to
+ ** estimate the cost of loading large doclists from the database. */
+ fts3DatabasePageSize(&rc, p);
+ p->nNodeSize = p->nPgsz-35;
+
+#if defined(SQLITE_DEBUG)||defined(SQLITE_TEST)
+ p->nMergeCount = FTS3_MERGE_COUNT;
+#endif
+
+ /* Declare the table schema to SQLite. */
+ fts3DeclareVtab(&rc, p);
+
+fts3_init_out:
+ sqlite3_free(zPrefix);
+ sqlite3_free(aIndex);
+ sqlite3_free(zCompress);
+ sqlite3_free(zUncompress);
+ sqlite3_free(zContent);
+ sqlite3_free(zLanguageid);
+ for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
+ sqlite3_free((void *)aCol);
+ sqlite3_free((void *)azNotindexed);
+ if( rc!=SQLITE_OK ){
+ if( p ){
+ fts3DisconnectMethod((sqlite3_vtab *)p);
+ }else if( pTokenizer ){
+ pTokenizer->pModule->xDestroy(pTokenizer);
+ }
+ }else{
+ assert( p->pSegments==0 );
+ *ppVTab = &p->base;
+ }
+ return rc;
+}
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts3InitVtab().
+*/
+static int fts3ConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts3CreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support estimatedRows. In that case this function is a no-op.
+*/
+static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
+#if SQLITE_VERSION_NUMBER>=3008002
+ if( sqlite3_libversion_number()>=3008002 ){
+ pIdxInfo->estimatedRows = nRow;
+ }
+#endif
+}
+
+/*
+** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support index-info flags. In that case this function is a no-op.
+*/
+static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){
+#if SQLITE_VERSION_NUMBER>=3008012
+ if( sqlite3_libversion_number()>=3008012 ){
+ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
+ }
+#endif
+}
+
+/*
+** Implementation of the xBestIndex method for FTS3 tables. There
+** are three possible strategies, in order of preference:
+**
+** 1. Direct lookup by rowid or docid.
+** 2. Full-text search using a MATCH operator on a non-docid column.
+** 3. Linear scan of %_content table.
+*/
+static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ Fts3Table *p = (Fts3Table *)pVTab;
+ int i; /* Iterator variable */
+ int iCons = -1; /* Index of constraint to use */
+
+ int iLangidCons = -1; /* Index of langid=x constraint, if present */
+ int iDocidGe = -1; /* Index of docid>=x constraint, if present */
+ int iDocidLe = -1; /* Index of docid<=x constraint, if present */
+ int iIdx;
+
+ if( p->bLock ){
+ return SQLITE_ERROR;
+ }
+
+ /* By default use a full table scan. This is an expensive option,
+ ** so search through the constraints to see if a more efficient
+ ** strategy is possible.
+ */
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
+ pInfo->estimatedCost = 5000000;
+ for(i=0; i<pInfo->nConstraint; i++){
+ int bDocid; /* True if this constraint is on docid */
+ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
+ if( pCons->usable==0 ){
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ /* There exists an unusable MATCH constraint. This means that if
+ ** the planner does elect to use the results of this call as part
+ ** of the overall query plan the user will see an "unable to use
+ ** function MATCH in the requested context" error. To discourage
+ ** this, return a very high cost here. */
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
+ pInfo->estimatedCost = 1e50;
+ fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
+ return SQLITE_OK;
+ }
+ continue;
+ }
+
+ bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
+
+ /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
+ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
+ pInfo->idxNum = FTS3_DOCID_SEARCH;
+ pInfo->estimatedCost = 1.0;
+ iCons = i;
+ }
+
+ /* A MATCH constraint. Use a full-text search.
+ **
+ ** If there is more than one MATCH constraint available, use the first
+ ** one encountered. If there is both a MATCH constraint and a direct
+ ** rowid/docid lookup, prefer the MATCH strategy. This is done even
+ ** though the rowid/docid lookup is faster than a MATCH query, selecting
+ ** it would lead to an "unable to use function MATCH in the requested
+ ** context" error.
+ */
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
+ && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
+ ){
+ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
+ pInfo->estimatedCost = 2.0;
+ iCons = i;
+ }
+
+ /* Equality constraint on the langid column */
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
+ && pCons->iColumn==p->nColumn + 2
+ ){
+ iLangidCons = i;
+ }
+
+ if( bDocid ){
+ switch( pCons->op ){
+ case SQLITE_INDEX_CONSTRAINT_GE:
+ case SQLITE_INDEX_CONSTRAINT_GT:
+ iDocidGe = i;
+ break;
+
+ case SQLITE_INDEX_CONSTRAINT_LE:
+ case SQLITE_INDEX_CONSTRAINT_LT:
+ iDocidLe = i;
+ break;
+ }
+ }
+ }
+
+ /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
+ if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo);
+
+ iIdx = 1;
+ if( iCons>=0 ){
+ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
+ pInfo->aConstraintUsage[iCons].omit = 1;
+ }
+ if( iLangidCons>=0 ){
+ pInfo->idxNum |= FTS3_HAVE_LANGID;
+ pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
+ }
+ if( iDocidGe>=0 ){
+ pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
+ pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
+ }
+ if( iDocidLe>=0 ){
+ pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
+ pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
+ }
+
+ /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
+ ** docid) order. Both ascending and descending are possible.
+ */
+ if( pInfo->nOrderBy==1 ){
+ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
+ if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
+ if( pOrder->desc ){
+ pInfo->idxStr = "DESC";
+ }else{
+ pInfo->idxStr = "ASC";
+ }
+ pInfo->orderByConsumed = 1;
+ }
+ }
+
+ assert( p->pSegments==0 );
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
+
+ UNUSED_PARAMETER(pVTab);
+
+ /* Allocate a buffer large enough for an Fts3Cursor structure. If the
+ ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
+ ** if the allocation fails, return SQLITE_NOMEM.
+ */
+ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
+ if( !pCsr ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(Fts3Cursor));
+ return SQLITE_OK;
+}
+
+/*
+** Finalize the statement handle at pCsr->pStmt.
+**
+** Or, if that statement handle is one created by fts3CursorSeekStmt(),
+** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
+** pointer there instead of finalizing it.
+*/
+static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
+ if( pCsr->bSeekStmt ){
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+ if( p->pSeekStmt==0 ){
+ p->pSeekStmt = pCsr->pStmt;
+ sqlite3_reset(pCsr->pStmt);
+ pCsr->pStmt = 0;
+ }
+ pCsr->bSeekStmt = 0;
+ }
+ sqlite3_finalize(pCsr->pStmt);
+}
+
+/*
+** Free all resources currently held by the cursor passed as the only
+** argument.
+*/
+static void fts3ClearCursor(Fts3Cursor *pCsr){
+ fts3CursorFinalizeStmt(pCsr);
+ sqlite3Fts3FreeDeferredTokens(pCsr);
+ sqlite3_free(pCsr->aDoclist);
+ sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
+ sqlite3Fts3ExprFree(pCsr->pExpr);
+ memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
+}
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ fts3ClearCursor(pCsr);
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
+** compose and prepare an SQL statement of the form:
+**
+** "SELECT <columns> FROM %_content WHERE rowid = ?"
+**
+** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
+** it. If an error occurs, return an SQLite error code.
+*/
+static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
+ int rc = SQLITE_OK;
+ if( pCsr->pStmt==0 ){
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+ char *zSql;
+ if( p->pSeekStmt ){
+ pCsr->pStmt = p->pSeekStmt;
+ p->pSeekStmt = 0;
+ }else{
+ zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
+ if( !zSql ) return SQLITE_NOMEM;
+ p->bLock++;
+ rc = sqlite3_prepare_v3(
+ p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
+ );
+ p->bLock--;
+ sqlite3_free(zSql);
+ }
+ if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
+ }
+ return rc;
+}
+
+/*
+** Position the pCsr->pStmt statement so that it is on the row
+** of the %_content table that contains the last match. Return
+** SQLITE_OK on success.
+*/
+static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
+ int rc = SQLITE_OK;
+ if( pCsr->isRequireSeek ){
+ rc = fts3CursorSeekStmt(pCsr);
+ if( rc==SQLITE_OK ){
+ Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab;
+ pTab->bLock++;
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
+ pCsr->isRequireSeek = 0;
+ if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
+ pTab->bLock--;
+ return SQLITE_OK;
+ }else{
+ pTab->bLock--;
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
+ /* If no row was found and no error has occurred, then the %_content
+ ** table is missing a row that is present in the full-text index.
+ ** The data structures are corrupt. */
+ rc = FTS_CORRUPT_VTAB;
+ pCsr->isEof = 1;
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK && pContext ){
+ sqlite3_result_error_code(pContext, rc);
+ }
+ return rc;
+}
+
+/*
+** This function is used to process a single interior node when searching
+** a b-tree for a term or term prefix. The node data is passed to this
+** function via the zNode/nNode parameters. The term to search for is
+** passed in zTerm/nTerm.
+**
+** If piFirst is not NULL, then this function sets *piFirst to the blockid
+** of the child node that heads the sub-tree that may contain the term.
+**
+** If piLast is not NULL, then *piLast is set to the right-most child node
+** that heads a sub-tree that may contain a term for which zTerm/nTerm is
+** a prefix.
+**
+** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
+*/
+static int fts3ScanInteriorNode(
+ const char *zTerm, /* Term to select leaves for */
+ int nTerm, /* Size of term zTerm in bytes */
+ const char *zNode, /* Buffer containing segment interior node */
+ int nNode, /* Size of buffer at zNode */
+ sqlite3_int64 *piFirst, /* OUT: Selected child node */
+ sqlite3_int64 *piLast /* OUT: Selected child node */
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *zCsr = zNode; /* Cursor to iterate through node */
+ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
+ char *zBuffer = 0; /* Buffer to load terms into */
+ i64 nAlloc = 0; /* Size of allocated buffer */
+ int isFirstTerm = 1; /* True when processing first term on page */
+ u64 iChild; /* Block id of child node to descend to */
+ int nBuffer = 0; /* Total term size */
+
+ /* Skip over the 'height' varint that occurs at the start of every
+ ** interior node. Then load the blockid of the left-child of the b-tree
+ ** node into variable iChild.
+ **
+ ** Even if the data structure on disk is corrupted, this (reading two
+ ** varints from the buffer) does not risk an overread. If zNode is a
+ ** root node, then the buffer comes from a SELECT statement. SQLite does
+ ** not make this guarantee explicitly, but in practice there are always
+ ** either more than 20 bytes of allocated space following the nNode bytes of
+ ** contents, or two zero bytes. Or, if the node is read from the %_segments
+ ** table, then there are always 20 bytes of zeroed padding following the
+ ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
+ */
+ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
+ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
+ if( zCsr>zEnd ){
+ return FTS_CORRUPT_VTAB;
+ }
+
+ while( zCsr<zEnd && (piFirst || piLast) ){
+ int cmp; /* memcmp() result */
+ int nSuffix; /* Size of term suffix */
+ int nPrefix = 0; /* Size of term prefix */
+
+ /* Load the next term on the node into zBuffer. Use realloc() to expand
+ ** the size of zBuffer if required. */
+ if( !isFirstTerm ){
+ zCsr += fts3GetVarint32(zCsr, &nPrefix);
+ if( nPrefix>nBuffer ){
+ rc = FTS_CORRUPT_VTAB;
+ goto finish_scan;
+ }
+ }
+ isFirstTerm = 0;
+ zCsr += fts3GetVarint32(zCsr, &nSuffix);
+
+ assert( nPrefix>=0 && nSuffix>=0 );
+ if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ goto finish_scan;
+ }
+ if( (i64)nPrefix+nSuffix>nAlloc ){
+ char *zNew;
+ nAlloc = ((i64)nPrefix+nSuffix) * 2;
+ zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc);
+ if( !zNew ){
+ rc = SQLITE_NOMEM;
+ goto finish_scan;
+ }
+ zBuffer = zNew;
+ }
+ assert( zBuffer );
+ memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
+ nBuffer = nPrefix + nSuffix;
+ zCsr += nSuffix;
+
+ /* Compare the term we are searching for with the term just loaded from
+ ** the interior node. If the specified term is greater than or equal
+ ** to the term from the interior node, then all terms on the sub-tree
+ ** headed by node iChild are smaller than zTerm. No need to search
+ ** iChild.
+ **
+ ** If the interior node term is larger than the specified term, then
+ ** the tree headed by iChild may contain the specified term.
+ */
+ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
+ if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
+ *piFirst = (i64)iChild;
+ piFirst = 0;
+ }
+
+ if( piLast && cmp<0 ){
+ *piLast = (i64)iChild;
+ piLast = 0;
+ }
+
+ iChild++;
+ };
+
+ if( piFirst ) *piFirst = (i64)iChild;
+ if( piLast ) *piLast = (i64)iChild;
+
+ finish_scan:
+ sqlite3_free(zBuffer);
+ return rc;
+}
+
+
+/*
+** The buffer pointed to by argument zNode (size nNode bytes) contains an
+** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
+** contains a term. This function searches the sub-tree headed by the zNode
+** node for the range of leaf nodes that may contain the specified term
+** or terms for which the specified term is a prefix.
+**
+** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
+** left-most leaf node in the tree that may contain the specified term.
+** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
+** right-most leaf node that may contain a term for which the specified
+** term is a prefix.
+**
+** It is possible that the range of returned leaf nodes does not contain
+** the specified term or any terms for which it is a prefix. However, if the
+** segment does contain any such terms, they are stored within the identified
+** range. Because this function only inspects interior segment nodes (and
+** never loads leaf nodes into memory), it is not possible to be sure.
+**
+** If an error occurs, an error code other than SQLITE_OK is returned.
+*/
+static int fts3SelectLeaf(
+ Fts3Table *p, /* Virtual table handle */
+ const char *zTerm, /* Term to select leaves for */
+ int nTerm, /* Size of term zTerm in bytes */
+ const char *zNode, /* Buffer containing segment interior node */
+ int nNode, /* Size of buffer at zNode */
+ sqlite3_int64 *piLeaf, /* Selected leaf node */
+ sqlite3_int64 *piLeaf2 /* Selected leaf node */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int iHeight; /* Height of this node in tree */
+
+ assert( piLeaf || piLeaf2 );
+
+ fts3GetVarint32(zNode, &iHeight);
+ rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
+ assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
+
+ if( rc==SQLITE_OK && iHeight>1 ){
+ char *zBlob = 0; /* Blob read from %_segments table */
+ int nBlob = 0; /* Size of zBlob in bytes */
+
+ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
+ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
+ }
+ sqlite3_free(zBlob);
+ piLeaf = 0;
+ zBlob = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int iNewHeight = 0;
+ fts3GetVarint32(zBlob, &iNewHeight);
+ if( iNewHeight>=iHeight ){
+ rc = FTS_CORRUPT_VTAB;
+ }else{
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
+ }
+ }
+ sqlite3_free(zBlob);
+ }
+
+ return rc;
+}
+
+/*
+** This function is used to create delta-encoded serialized lists of FTS3
+** varints. Each call to this function appends a single varint to a list.
+*/
+static void fts3PutDeltaVarint(
+ char **pp, /* IN/OUT: Output pointer */
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
+ sqlite3_int64 iVal /* Write this value to the list */
+){
+ assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
+ *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
+ *piPrev = iVal;
+}
+
+/*
+** When this function is called, *ppPoslist is assumed to point to the
+** start of a position-list. After it returns, *ppPoslist points to the
+** first byte after the position-list.
+**
+** A position list is list of positions (delta encoded) and columns for
+** a single document record of a doclist. So, in other words, this
+** routine advances *ppPoslist so that it points to the next docid in
+** the doclist, or to the first byte past the end of the doclist.
+**
+** If pp is not NULL, then the contents of the position list are copied
+** to *pp. *pp is set to point to the first byte past the last byte copied
+** before this function returns.
+*/
+static void fts3PoslistCopy(char **pp, char **ppPoslist){
+ char *pEnd = *ppPoslist;
+ char c = 0;
+
+ /* The end of a position list is marked by a zero encoded as an FTS3
+ ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
+ ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
+ ** of some other, multi-byte, value.
+ **
+ ** The following while-loop moves pEnd to point to the first byte that is not
+ ** immediately preceded by a byte with the 0x80 bit set. Then increments
+ ** pEnd once more so that it points to the byte immediately following the
+ ** last byte in the position-list.
+ */
+ while( *pEnd | c ){
+ c = *pEnd++ & 0x80;
+ testcase( c!=0 && (*pEnd)==0 );
+ }
+ pEnd++; /* Advance past the POS_END terminator byte */
+
+ if( pp ){
+ int n = (int)(pEnd - *ppPoslist);
+ char *p = *pp;
+ memcpy(p, *ppPoslist, n);
+ p += n;
+ *pp = p;
+ }
+ *ppPoslist = pEnd;
+}
+
+/*
+** When this function is called, *ppPoslist is assumed to point to the
+** start of a column-list. After it returns, *ppPoslist points to the
+** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
+**
+** A column-list is list of delta-encoded positions for a single column
+** within a single document within a doclist.
+**
+** The column-list is terminated either by a POS_COLUMN varint (1) or
+** a POS_END varint (0). This routine leaves *ppPoslist pointing to
+** the POS_COLUMN or POS_END that terminates the column-list.
+**
+** If pp is not NULL, then the contents of the column-list are copied
+** to *pp. *pp is set to point to the first byte past the last byte copied
+** before this function returns. The POS_COLUMN or POS_END terminator
+** is not copied into *pp.
+*/
+static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
+ char *pEnd = *ppPoslist;
+ char c = 0;
+
+ /* A column-list is terminated by either a 0x01 or 0x00 byte that is
+ ** not part of a multi-byte varint.
+ */
+ while( 0xFE & (*pEnd | c) ){
+ c = *pEnd++ & 0x80;
+ testcase( c!=0 && ((*pEnd)&0xfe)==0 );
+ }
+ if( pp ){
+ int n = (int)(pEnd - *ppPoslist);
+ char *p = *pp;
+ memcpy(p, *ppPoslist, n);
+ p += n;
+ *pp = p;
+ }
+ *ppPoslist = pEnd;
+}
+
+/*
+** Value used to signify the end of an position-list. This must be
+** as large or larger than any value that might appear on the
+** position-list, even a position list that has been corrupted.
+*/
+#define POSITION_LIST_END LARGEST_INT64
+
+/*
+** This function is used to help parse position-lists. When this function is
+** called, *pp may point to the start of the next varint in the position-list
+** being parsed, or it may point to 1 byte past the end of the position-list
+** (in which case **pp will be a terminator bytes POS_END (0) or
+** (1)).
+**
+** If *pp points past the end of the current position-list, set *pi to
+** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
+** increment the current value of *pi by the value read, and set *pp to
+** point to the next value before returning.
+**
+** Before calling this routine *pi must be initialized to the value of
+** the previous position, or zero if we are reading the first position
+** in the position-list. Because positions are delta-encoded, the value
+** of the previous position is needed in order to compute the value of
+** the next position.
+*/
+static void fts3ReadNextPos(
+ char **pp, /* IN/OUT: Pointer into position-list buffer */
+ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
+){
+ if( (**pp)&0xFE ){
+ int iVal;
+ *pp += fts3GetVarint32((*pp), &iVal);
+ *pi += iVal;
+ *pi -= 2;
+ }else{
+ *pi = POSITION_LIST_END;
+ }
+}
+
+/*
+** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
+** the value of iCol encoded as a varint to *pp. This will start a new
+** column list.
+**
+** Set *pp to point to the byte just after the last byte written before
+** returning (do not modify it if iCol==0). Return the total number of bytes
+** written (0 if iCol==0).
+*/
+static int fts3PutColNumber(char **pp, int iCol){
+ int n = 0; /* Number of bytes written */
+ if( iCol ){
+ char *p = *pp; /* Output pointer */
+ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
+ *p = 0x01;
+ *pp = &p[n];
+ }
+ return n;
+}
+
+/*
+** Compute the union of two position lists. The output written
+** into *pp contains all positions of both *pp1 and *pp2 in sorted
+** order and with any duplicates removed. All pointers are
+** updated appropriately. The caller is responsible for insuring
+** that there is enough space in *pp to hold the complete output.
+*/
+static int fts3PoslistMerge(
+ char **pp, /* Output buffer */
+ char **pp1, /* Left input list */
+ char **pp2 /* Right input list */
+){
+ char *p = *pp;
+ char *p1 = *pp1;
+ char *p2 = *pp2;
+
+ while( *p1 || *p2 ){
+ int iCol1; /* The current column index in pp1 */
+ int iCol2; /* The current column index in pp2 */
+
+ if( *p1==POS_COLUMN ){
+ fts3GetVarint32(&p1[1], &iCol1);
+ if( iCol1==0 ) return FTS_CORRUPT_VTAB;
+ }
+ else if( *p1==POS_END ) iCol1 = 0x7fffffff;
+ else iCol1 = 0;
+
+ if( *p2==POS_COLUMN ){
+ fts3GetVarint32(&p2[1], &iCol2);
+ if( iCol2==0 ) return FTS_CORRUPT_VTAB;
+ }
+ else if( *p2==POS_END ) iCol2 = 0x7fffffff;
+ else iCol2 = 0;
+
+ if( iCol1==iCol2 ){
+ sqlite3_int64 i1 = 0; /* Last position from pp1 */
+ sqlite3_int64 i2 = 0; /* Last position from pp2 */
+ sqlite3_int64 iPrev = 0;
+ int n = fts3PutColNumber(&p, iCol1);
+ p1 += n;
+ p2 += n;
+
+ /* At this point, both p1 and p2 point to the start of column-lists
+ ** for the same column (the column with index iCol1 and iCol2).
+ ** A column-list is a list of non-negative delta-encoded varints, each
+ ** incremented by 2 before being stored. Each list is terminated by a
+ ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
+ ** and writes the results to buffer p. p is left pointing to the byte
+ ** after the list written. No terminator (POS_END or POS_COLUMN) is
+ ** written to the output.
+ */
+ fts3GetDeltaVarint(&p1, &i1);
+ fts3GetDeltaVarint(&p2, &i2);
+ if( i1<2 || i2<2 ){
+ break;
+ }
+ do {
+ fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
+ iPrev -= 2;
+ if( i1==i2 ){
+ fts3ReadNextPos(&p1, &i1);
+ fts3ReadNextPos(&p2, &i2);
+ }else if( i1<i2 ){
+ fts3ReadNextPos(&p1, &i1);
+ }else{
+ fts3ReadNextPos(&p2, &i2);
+ }
+ }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
+ }else if( iCol1<iCol2 ){
+ p1 += fts3PutColNumber(&p, iCol1);
+ fts3ColumnlistCopy(&p, &p1);
+ }else{
+ p2 += fts3PutColNumber(&p, iCol2);
+ fts3ColumnlistCopy(&p, &p2);
+ }
+ }
+
+ *p++ = POS_END;
+ *pp = p;
+ *pp1 = p1 + 1;
+ *pp2 = p2 + 1;
+ return SQLITE_OK;
+}
+
+/*
+** This function is used to merge two position lists into one. When it is
+** called, *pp1 and *pp2 must both point to position lists. A position-list is
+** the part of a doclist that follows each document id. For example, if a row
+** contains:
+**
+** 'a b c'|'x y z'|'a b b a'
+**
+** Then the position list for this row for token 'b' would consist of:
+**
+** 0x02 0x01 0x02 0x03 0x03 0x00
+**
+** When this function returns, both *pp1 and *pp2 are left pointing to the
+** byte following the 0x00 terminator of their respective position lists.
+**
+** If isSaveLeft is 0, an entry is added to the output position list for
+** each position in *pp2 for which there exists one or more positions in
+** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
+** when the *pp1 token appears before the *pp2 token, but not more than nToken
+** slots before it.
+**
+** e.g. nToken==1 searches for adjacent positions.
+*/
+static int fts3PoslistPhraseMerge(
+ char **pp, /* IN/OUT: Preallocated output buffer */
+ int nToken, /* Maximum difference in token positions */
+ int isSaveLeft, /* Save the left position */
+ int isExact, /* If *pp1 is exactly nTokens before *pp2 */
+ char **pp1, /* IN/OUT: Left input list */
+ char **pp2 /* IN/OUT: Right input list */
+){
+ char *p = *pp;
+ char *p1 = *pp1;
+ char *p2 = *pp2;
+ int iCol1 = 0;
+ int iCol2 = 0;
+
+ /* Never set both isSaveLeft and isExact for the same invocation. */
+ assert( isSaveLeft==0 || isExact==0 );
+
+ assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 );
+ if( *p1==POS_COLUMN ){
+ p1++;
+ p1 += fts3GetVarint32(p1, &iCol1);
+ }
+ if( *p2==POS_COLUMN ){
+ p2++;
+ p2 += fts3GetVarint32(p2, &iCol2);
+ }
+
+ while( 1 ){
+ if( iCol1==iCol2 ){
+ char *pSave = p;
+ sqlite3_int64 iPrev = 0;
+ sqlite3_int64 iPos1 = 0;
+ sqlite3_int64 iPos2 = 0;
+
+ if( iCol1 ){
+ *p++ = POS_COLUMN;
+ p += sqlite3Fts3PutVarint(p, iCol1);
+ }
+
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
+ if( iPos1<0 || iPos2<0 ) break;
+
+ while( 1 ){
+ if( iPos2==iPos1+nToken
+ || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
+ ){
+ sqlite3_int64 iSave;
+ iSave = isSaveLeft ? iPos1 : iPos2;
+ fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
+ pSave = 0;
+ assert( p );
+ }
+ if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
+ if( (*p2&0xFE)==0 ) break;
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
+ }else{
+ if( (*p1&0xFE)==0 ) break;
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
+ }
+ }
+
+ if( pSave ){
+ assert( pp && p );
+ p = pSave;
+ }
+
+ fts3ColumnlistCopy(0, &p1);
+ fts3ColumnlistCopy(0, &p2);
+ assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
+ if( 0==*p1 || 0==*p2 ) break;
+
+ p1++;
+ p1 += fts3GetVarint32(p1, &iCol1);
+ p2++;
+ p2 += fts3GetVarint32(p2, &iCol2);
+ }
+
+ /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
+ ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
+ ** end of the position list, or the 0x01 that precedes the next
+ ** column-number in the position list.
+ */
+ else if( iCol1<iCol2 ){
+ fts3ColumnlistCopy(0, &p1);
+ if( 0==*p1 ) break;
+ p1++;
+ p1 += fts3GetVarint32(p1, &iCol1);
+ }else{
+ fts3ColumnlistCopy(0, &p2);
+ if( 0==*p2 ) break;
+ p2++;
+ p2 += fts3GetVarint32(p2, &iCol2);
+ }
+ }
+
+ fts3PoslistCopy(0, &p2);
+ fts3PoslistCopy(0, &p1);
+ *pp1 = p1;
+ *pp2 = p2;
+ if( *pp==p ){
+ return 0;
+ }
+ *p++ = 0x00;
+ *pp = p;
+ return 1;
+}
+
+/*
+** Merge two position-lists as required by the NEAR operator. The argument
+** position lists correspond to the left and right phrases of an expression
+** like:
+**
+** "phrase 1" NEAR "phrase number 2"
+**
+** Position list *pp1 corresponds to the left-hand side of the NEAR
+** expression and *pp2 to the right. As usual, the indexes in the position
+** lists are the offsets of the last token in each phrase (tokens "1" and "2"
+** in the example above).
+**
+** The output position list - written to *pp - is a copy of *pp2 with those
+** entries that are not sufficiently NEAR entries in *pp1 removed.
+*/
+static int fts3PoslistNearMerge(
+ char **pp, /* Output buffer */
+ char *aTmp, /* Temporary buffer space */
+ int nRight, /* Maximum difference in token positions */
+ int nLeft, /* Maximum difference in token positions */
+ char **pp1, /* IN/OUT: Left input list */
+ char **pp2 /* IN/OUT: Right input list */
+){
+ char *p1 = *pp1;
+ char *p2 = *pp2;
+
+ char *pTmp1 = aTmp;
+ char *pTmp2;
+ char *aTmp2;
+ int res = 1;
+
+ fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
+ aTmp2 = pTmp2 = pTmp1;
+ *pp1 = p1;
+ *pp2 = p2;
+ fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
+ if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
+ fts3PoslistMerge(pp, &aTmp, &aTmp2);
+ }else if( pTmp1!=aTmp ){
+ fts3PoslistCopy(pp, &aTmp);
+ }else if( pTmp2!=aTmp2 ){
+ fts3PoslistCopy(pp, &aTmp2);
+ }else{
+ res = 0;
+ }
+
+ return res;
+}
+
+/*
+** An instance of this function is used to merge together the (potentially
+** large number of) doclists for each term that matches a prefix query.
+** See function fts3TermSelectMerge() for details.
+*/
+typedef struct TermSelect TermSelect;
+struct TermSelect {
+ char *aaOutput[16]; /* Malloc'd output buffers */
+ int anOutput[16]; /* Size each output buffer in bytes */
+};
+
+/*
+** This function is used to read a single varint from a buffer. Parameter
+** pEnd points 1 byte past the end of the buffer. When this function is
+** called, if *pp points to pEnd or greater, then the end of the buffer
+** has been reached. In this case *pp is set to 0 and the function returns.
+**
+** If *pp does not point to or past pEnd, then a single varint is read
+** from *pp. *pp is then set to point 1 byte past the end of the read varint.
+**
+** If bDescIdx is false, the value read is added to *pVal before returning.
+** If it is true, the value read is subtracted from *pVal before this
+** function returns.
+*/
+static void fts3GetDeltaVarint3(
+ char **pp, /* IN/OUT: Point to read varint from */
+ char *pEnd, /* End of buffer */
+ int bDescIdx, /* True if docids are descending */
+ sqlite3_int64 *pVal /* IN/OUT: Integer value */
+){
+ if( *pp>=pEnd ){
+ *pp = 0;
+ }else{
+ u64 iVal;
+ *pp += sqlite3Fts3GetVarintU(*pp, &iVal);
+ if( bDescIdx ){
+ *pVal = (i64)((u64)*pVal - iVal);
+ }else{
+ *pVal = (i64)((u64)*pVal + iVal);
+ }
+ }
+}
+
+/*
+** This function is used to write a single varint to a buffer. The varint
+** is written to *pp. Before returning, *pp is set to point 1 byte past the
+** end of the value written.
+**
+** If *pbFirst is zero when this function is called, the value written to
+** the buffer is that of parameter iVal.
+**
+** If *pbFirst is non-zero when this function is called, then the value
+** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
+** (if bDescIdx is non-zero).
+**
+** Before returning, this function always sets *pbFirst to 1 and *piPrev
+** to the value of parameter iVal.
+*/
+static void fts3PutDeltaVarint3(
+ char **pp, /* IN/OUT: Output pointer */
+ int bDescIdx, /* True for descending docids */
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
+ int *pbFirst, /* IN/OUT: True after first int written */
+ sqlite3_int64 iVal /* Write this value to the list */
+){
+ sqlite3_uint64 iWrite;
+ if( bDescIdx==0 || *pbFirst==0 ){
+ assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev );
+ iWrite = (u64)iVal - (u64)*piPrev;
+ }else{
+ assert_fts3_nc( *piPrev>=iVal );
+ iWrite = (u64)*piPrev - (u64)iVal;
+ }
+ assert( *pbFirst || *piPrev==0 );
+ assert_fts3_nc( *pbFirst==0 || iWrite>0 );
+ *pp += sqlite3Fts3PutVarint(*pp, iWrite);
+ *piPrev = iVal;
+ *pbFirst = 1;
+}
+
+
+/*
+** This macro is used by various functions that merge doclists. The two
+** arguments are 64-bit docid values. If the value of the stack variable
+** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
+** Otherwise, (i2-i1).
+**
+** Using this makes it easier to write code that can merge doclists that are
+** sorted in either ascending or descending order.
+*/
+/* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */
+#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1)))
+
+/*
+** This function does an "OR" merge of two doclists (output contains all
+** positions contained in either argument doclist). If the docids in the
+** input doclists are sorted in ascending order, parameter bDescDoclist
+** should be false. If they are sorted in ascending order, it should be
+** passed a non-zero value.
+**
+** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
+** containing the output doclist and SQLITE_OK is returned. In this case
+** *pnOut is set to the number of bytes in the output doclist.
+**
+** If an error occurs, an SQLite error code is returned. The output values
+** are undefined in this case.
+*/
+static int fts3DoclistOrMerge(
+ int bDescDoclist, /* True if arguments are desc */
+ char *a1, int n1, /* First doclist */
+ char *a2, int n2, /* Second doclist */
+ char **paOut, int *pnOut /* OUT: Malloc'd doclist */
+){
+ int rc = SQLITE_OK;
+ sqlite3_int64 i1 = 0;
+ sqlite3_int64 i2 = 0;
+ sqlite3_int64 iPrev = 0;
+ char *pEnd1 = &a1[n1];
+ char *pEnd2 = &a2[n2];
+ char *p1 = a1;
+ char *p2 = a2;
+ char *p;
+ char *aOut;
+ int bFirstOut = 0;
+
+ *paOut = 0;
+ *pnOut = 0;
+
+ /* Allocate space for the output. Both the input and output doclists
+ ** are delta encoded. If they are in ascending order (bDescDoclist==0),
+ ** then the first docid in each list is simply encoded as a varint. For
+ ** each subsequent docid, the varint stored is the difference between the
+ ** current and previous docid (a positive number - since the list is in
+ ** ascending order).
+ **
+ ** The first docid written to the output is therefore encoded using the
+ ** same number of bytes as it is in whichever of the input lists it is
+ ** read from. And each subsequent docid read from the same input list
+ ** consumes either the same or less bytes as it did in the input (since
+ ** the difference between it and the previous value in the output must
+ ** be a positive value less than or equal to the delta value read from
+ ** the input list). The same argument applies to all but the first docid
+ ** read from the 'other' list. And to the contents of all position lists
+ ** that will be copied and merged from the input to the output.
+ **
+ ** However, if the first docid copied to the output is a negative number,
+ ** then the encoding of the first docid from the 'other' input list may
+ ** be larger in the output than it was in the input (since the delta value
+ ** may be a larger positive integer than the actual docid).
+ **
+ ** The space required to store the output is therefore the sum of the
+ ** sizes of the two inputs, plus enough space for exactly one of the input
+ ** docids to grow.
+ **
+ ** A symetric argument may be made if the doclists are in descending
+ ** order.
+ */
+ aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING);
+ if( !aOut ) return SQLITE_NOMEM;
+
+ p = aOut;
+ fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
+ while( p1 || p2 ){
+ sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
+
+ if( p2 && p1 && iDiff==0 ){
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
+ rc = fts3PoslistMerge(&p, &p1, &p2);
+ if( rc ) break;
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }else if( !p2 || (p1 && iDiff<0) ){
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
+ fts3PoslistCopy(&p, &p1);
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ }else{
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
+ fts3PoslistCopy(&p, &p2);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }
+
+ assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) );
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(aOut);
+ p = aOut = 0;
+ }else{
+ assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );
+ memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING);
+ }
+ *paOut = aOut;
+ *pnOut = (int)(p-aOut);
+ return rc;
+}
+
+/*
+** This function does a "phrase" merge of two doclists. In a phrase merge,
+** the output contains a copy of each position from the right-hand input
+** doclist for which there is a position in the left-hand input doclist
+** exactly nDist tokens before it.
+**
+** If the docids in the input doclists are sorted in ascending order,
+** parameter bDescDoclist should be false. If they are sorted in ascending
+** order, it should be passed a non-zero value.
+**
+** The right-hand input doclist is overwritten by this function.
+*/
+static int fts3DoclistPhraseMerge(
+ int bDescDoclist, /* True if arguments are desc */
+ int nDist, /* Distance from left to right (1=adjacent) */
+ char *aLeft, int nLeft, /* Left doclist */
+ char **paRight, int *pnRight /* IN/OUT: Right/output doclist */
+){
+ sqlite3_int64 i1 = 0;
+ sqlite3_int64 i2 = 0;
+ sqlite3_int64 iPrev = 0;
+ char *aRight = *paRight;
+ char *pEnd1 = &aLeft[nLeft];
+ char *pEnd2 = &aRight[*pnRight];
+ char *p1 = aLeft;
+ char *p2 = aRight;
+ char *p;
+ int bFirstOut = 0;
+ char *aOut;
+
+ assert( nDist>0 );
+ if( bDescDoclist ){
+ aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX);
+ if( aOut==0 ) return SQLITE_NOMEM;
+ }else{
+ aOut = aRight;
+ }
+ p = aOut;
+
+ fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
+
+ while( p1 && p2 ){
+ sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
+ if( iDiff==0 ){
+ char *pSave = p;
+ sqlite3_int64 iPrevSave = iPrev;
+ int bFirstOutSave = bFirstOut;
+
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
+ if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
+ p = pSave;
+ iPrev = iPrevSave;
+ bFirstOut = bFirstOutSave;
+ }
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }else if( iDiff<0 ){
+ fts3PoslistCopy(0, &p1);
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
+ }else{
+ fts3PoslistCopy(0, &p2);
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
+ }
+ }
+
+ *pnRight = (int)(p - aOut);
+ if( bDescDoclist ){
+ sqlite3_free(aRight);
+ *paRight = aOut;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Argument pList points to a position list nList bytes in size. This
+** function checks to see if the position list contains any entries for
+** a token in position 0 (of any column). If so, it writes argument iDelta
+** to the output buffer pOut, followed by a position list consisting only
+** of the entries from pList at position 0, and terminated by an 0x00 byte.
+** The value returned is the number of bytes written to pOut (if any).
+*/
+SQLITE_PRIVATE int sqlite3Fts3FirstFilter(
+ sqlite3_int64 iDelta, /* Varint that may be written to pOut */
+ char *pList, /* Position list (no 0x00 term) */
+ int nList, /* Size of pList in bytes */
+ char *pOut /* Write output here */
+){
+ int nOut = 0;
+ int bWritten = 0; /* True once iDelta has been written */
+ char *p = pList;
+ char *pEnd = &pList[nList];
+
+ if( *p!=0x01 ){
+ if( *p==0x02 ){
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
+ pOut[nOut++] = 0x02;
+ bWritten = 1;
+ }
+ fts3ColumnlistCopy(0, &p);
+ }
+
+ while( p<pEnd ){
+ sqlite3_int64 iCol;
+ p++;
+ p += sqlite3Fts3GetVarint(p, &iCol);
+ if( *p==0x02 ){
+ if( bWritten==0 ){
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
+ bWritten = 1;
+ }
+ pOut[nOut++] = 0x01;
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
+ pOut[nOut++] = 0x02;
+ }
+ fts3ColumnlistCopy(0, &p);
+ }
+ if( bWritten ){
+ pOut[nOut++] = 0x00;
+ }
+
+ return nOut;
+}
+
+
+/*
+** Merge all doclists in the TermSelect.aaOutput[] array into a single
+** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
+** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
+**
+** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
+** the responsibility of the caller to free any doclists left in the
+** TermSelect.aaOutput[] array.
+*/
+static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
+ char *aOut = 0;
+ int nOut = 0;
+ int i;
+
+ /* Loop through the doclists in the aaOutput[] array. Merge them all
+ ** into a single doclist.
+ */
+ for(i=0; i<SizeofArray(pTS->aaOutput); i++){
+ if( pTS->aaOutput[i] ){
+ if( !aOut ){
+ aOut = pTS->aaOutput[i];
+ nOut = pTS->anOutput[i];
+ pTS->aaOutput[i] = 0;
+ }else{
+ int nNew;
+ char *aNew;
+
+ int rc = fts3DoclistOrMerge(p->bDescIdx,
+ pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
+ );
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(aOut);
+ return rc;
+ }
+
+ sqlite3_free(pTS->aaOutput[i]);
+ sqlite3_free(aOut);
+ pTS->aaOutput[i] = 0;
+ aOut = aNew;
+ nOut = nNew;
+ }
+ }
+ }
+
+ pTS->aaOutput[0] = aOut;
+ pTS->anOutput[0] = nOut;
+ return SQLITE_OK;
+}
+
+/*
+** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
+** as the first argument. The merge is an "OR" merge (see function
+** fts3DoclistOrMerge() for details).
+**
+** This function is called with the doclist for each term that matches
+** a queried prefix. It merges all these doclists into one, the doclist
+** for the specified prefix. Since there can be a very large number of
+** doclists to merge, the merging is done pair-wise using the TermSelect
+** object.
+**
+** This function returns SQLITE_OK if the merge is successful, or an
+** SQLite error code (SQLITE_NOMEM) if an error occurs.
+*/
+static int fts3TermSelectMerge(
+ Fts3Table *p, /* FTS table handle */
+ TermSelect *pTS, /* TermSelect object to merge into */
+ char *aDoclist, /* Pointer to doclist */
+ int nDoclist /* Size of aDoclist in bytes */
+){
+ if( pTS->aaOutput[0]==0 ){
+ /* If this is the first term selected, copy the doclist to the output
+ ** buffer using memcpy().
+ **
+ ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
+ ** allocation. This is so as to ensure that the buffer is big enough
+ ** to hold the current doclist AND'd with any other doclist. If the
+ ** doclists are stored in order=ASC order, this padding would not be
+ ** required (since the size of [doclistA AND doclistB] is always less
+ ** than or equal to the size of [doclistA] in that case). But this is
+ ** not true for order=DESC. For example, a doclist containing (1, -1)
+ ** may be smaller than (-1), as in the first example the -1 may be stored
+ ** as a single-byte delta, whereas in the second it must be stored as a
+ ** FTS3_VARINT_MAX byte varint.
+ **
+ ** Similar padding is added in the fts3DoclistOrMerge() function.
+ */
+ pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1);
+ pTS->anOutput[0] = nDoclist;
+ if( pTS->aaOutput[0] ){
+ memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
+ memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }else{
+ char *aMerge = aDoclist;
+ int nMerge = nDoclist;
+ int iOut;
+
+ for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
+ if( pTS->aaOutput[iOut]==0 ){
+ assert( iOut>0 );
+ pTS->aaOutput[iOut] = aMerge;
+ pTS->anOutput[iOut] = nMerge;
+ break;
+ }else{
+ char *aNew;
+ int nNew;
+
+ int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
+ pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
+ );
+ if( rc!=SQLITE_OK ){
+ if( aMerge!=aDoclist ) sqlite3_free(aMerge);
+ return rc;
+ }
+
+ if( aMerge!=aDoclist ) sqlite3_free(aMerge);
+ sqlite3_free(pTS->aaOutput[iOut]);
+ pTS->aaOutput[iOut] = 0;
+
+ aMerge = aNew;
+ nMerge = nNew;
+ if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
+ pTS->aaOutput[iOut] = aMerge;
+ pTS->anOutput[iOut] = nMerge;
+ }
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
+*/
+static int fts3SegReaderCursorAppend(
+ Fts3MultiSegReader *pCsr,
+ Fts3SegReader *pNew
+){
+ if( (pCsr->nSegment%16)==0 ){
+ Fts3SegReader **apNew;
+ sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
+ apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte);
+ if( !apNew ){
+ sqlite3Fts3SegReaderFree(pNew);
+ return SQLITE_NOMEM;
+ }
+ pCsr->apSegment = apNew;
+ }
+ pCsr->apSegment[pCsr->nSegment++] = pNew;
+ return SQLITE_OK;
+}
+
+/*
+** Add seg-reader objects to the Fts3MultiSegReader object passed as the
+** 8th argument.
+**
+** This function returns SQLITE_OK if successful, or an SQLite error code
+** otherwise.
+*/
+static int fts3SegReaderCursor(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language id */
+ int iIndex, /* Index to search (from 0 to p->nIndex-1) */
+ int iLevel, /* Level of segments to scan */
+ const char *zTerm, /* Term to query for */
+ int nTerm, /* Size of zTerm in bytes */
+ int isPrefix, /* True for a prefix search */
+ int isScan, /* True to scan from zTerm to EOF */
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */
+){
+ int rc = SQLITE_OK; /* Error code */
+ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
+ int rc2; /* Result of sqlite3_reset() */
+
+ /* If iLevel is less than 0 and this is not a scan, include a seg-reader
+ ** for the pending-terms. If this is a scan, then this call must be being
+ ** made by an fts4aux module, not an FTS table. In this case calling
+ ** Fts3SegReaderPending might segfault, as the data structures used by
+ ** fts4aux are not completely populated. So it's easiest to filter these
+ ** calls out here. */
+ if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){
+ Fts3SegReader *pSeg = 0;
+ rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
+ if( rc==SQLITE_OK && pSeg ){
+ rc = fts3SegReaderCursorAppend(pCsr, pSeg);
+ }
+ }
+
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
+ Fts3SegReader *pSeg = 0;
+
+ /* Read the values returned by the SELECT into local variables. */
+ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
+ sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
+ sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
+ int nRoot = sqlite3_column_bytes(pStmt, 4);
+ char const *zRoot = sqlite3_column_blob(pStmt, 4);
+
+ /* If zTerm is not NULL, and this segment is not stored entirely on its
+ ** root node, the range of leaves scanned can be reduced. Do this. */
+ if( iStartBlock && zTerm && zRoot ){
+ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
+ if( rc!=SQLITE_OK ) goto finished;
+ if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
+ }
+
+ rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
+ (isPrefix==0 && isScan==0),
+ iStartBlock, iLeavesEndBlock,
+ iEndBlock, zRoot, nRoot, &pSeg
+ );
+ if( rc!=SQLITE_OK ) goto finished;
+ rc = fts3SegReaderCursorAppend(pCsr, pSeg);
+ }
+ }
+
+ finished:
+ rc2 = sqlite3_reset(pStmt);
+ if( rc==SQLITE_DONE ) rc = rc2;
+
+ return rc;
+}
+
+/*
+** Set up a cursor object for iterating through a full-text index or a
+** single level therein.
+*/
+SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language-id to search */
+ int iIndex, /* Index to search (from 0 to p->nIndex-1) */
+ int iLevel, /* Level of segments to scan */
+ const char *zTerm, /* Term to query for */
+ int nTerm, /* Size of zTerm in bytes */
+ int isPrefix, /* True for a prefix search */
+ int isScan, /* True to scan from zTerm to EOF */
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */
+){
+ assert( iIndex>=0 && iIndex<p->nIndex );
+ assert( iLevel==FTS3_SEGCURSOR_ALL
+ || iLevel==FTS3_SEGCURSOR_PENDING
+ || iLevel>=0
+ );
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
+ assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
+ assert( isPrefix==0 || isScan==0 );
+
+ memset(pCsr, 0, sizeof(Fts3MultiSegReader));
+ return fts3SegReaderCursor(
+ p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
+ );
+}
+
+/*
+** In addition to its current configuration, have the Fts3MultiSegReader
+** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3SegReaderCursorAddZero(
+ Fts3Table *p, /* FTS virtual table handle */
+ int iLangid,
+ const char *zTerm, /* Term to scan doclist of */
+ int nTerm, /* Number of bytes in zTerm */
+ Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
+){
+ return fts3SegReaderCursor(p,
+ iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
+ );
+}
+
+/*
+** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
+** if isPrefix is true, to scan the doclist for all terms for which
+** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
+** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
+** an SQLite error code.
+**
+** It is the responsibility of the caller to free this object by eventually
+** passing it to fts3SegReaderCursorFree()
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+** Output parameter *ppSegcsr is set to 0 if an error occurs.
+*/
+static int fts3TermSegReaderCursor(
+ Fts3Cursor *pCsr, /* Virtual table cursor handle */
+ const char *zTerm, /* Term to query for */
+ int nTerm, /* Size of zTerm in bytes */
+ int isPrefix, /* True for a prefix search */
+ Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
+){
+ Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
+ int rc = SQLITE_NOMEM; /* Return code */
+
+ pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
+ if( pSegcsr ){
+ int i;
+ int bFound = 0; /* True once an index has been found */
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+
+ if( isPrefix ){
+ for(i=1; bFound==0 && i<p->nIndex; i++){
+ if( p->aIndex[i].nPrefix==nTerm ){
+ bFound = 1;
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
+ i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
+ );
+ pSegcsr->bLookup = 1;
+ }
+ }
+
+ for(i=1; bFound==0 && i<p->nIndex; i++){
+ if( p->aIndex[i].nPrefix==nTerm+1 ){
+ bFound = 1;
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
+ i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
+ );
+ if( rc==SQLITE_OK ){
+ rc = fts3SegReaderCursorAddZero(
+ p, pCsr->iLangid, zTerm, nTerm, pSegcsr
+ );
+ }
+ }
+ }
+ }
+
+ if( bFound==0 ){
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
+ 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
+ );
+ pSegcsr->bLookup = !isPrefix;
+ }
+ }
+
+ *ppSegcsr = pSegcsr;
+ return rc;
+}
+
+/*
+** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
+*/
+static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
+ sqlite3Fts3SegReaderFinish(pSegcsr);
+ sqlite3_free(pSegcsr);
+}
+
+/*
+** This function retrieves the doclist for the specified term (or term
+** prefix) from the database.
+*/
+static int fts3TermSelect(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3PhraseToken *pTok, /* Token to query for */
+ int iColumn, /* Column to query (or -ve for all columns) */
+ int *pnOut, /* OUT: Size of buffer at *ppOut */
+ char **ppOut /* OUT: Malloced result buffer */
+){
+ int rc; /* Return code */
+ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
+ TermSelect tsc; /* Object for pair-wise doclist merging */
+ Fts3SegFilter filter; /* Segment term filter configuration */
+
+ pSegcsr = pTok->pSegcsr;
+ memset(&tsc, 0, sizeof(TermSelect));
+
+ filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
+ | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
+ | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
+ | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
+ filter.iCol = iColumn;
+ filter.zTerm = pTok->z;
+ filter.nTerm = pTok->n;
+
+ rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
+ while( SQLITE_OK==rc
+ && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
+ ){
+ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts3TermSelectFinishMerge(p, &tsc);
+ }
+ if( rc==SQLITE_OK ){
+ *ppOut = tsc.aaOutput[0];
+ *pnOut = tsc.anOutput[0];
+ }else{
+ int i;
+ for(i=0; i<SizeofArray(tsc.aaOutput); i++){
+ sqlite3_free(tsc.aaOutput[i]);
+ }
+ }
+
+ fts3SegReaderCursorFree(pSegcsr);
+ pTok->pSegcsr = 0;
+ return rc;
+}
+
+/*
+** This function counts the total number of docids in the doclist stored
+** in buffer aList[], size nList bytes.
+**
+** If the isPoslist argument is true, then it is assumed that the doclist
+** contains a position-list following each docid. Otherwise, it is assumed
+** that the doclist is simply a list of docids stored as delta encoded
+** varints.
+*/
+static int fts3DoclistCountDocids(char *aList, int nList){
+ int nDoc = 0; /* Return value */
+ if( aList ){
+ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
+ char *p = aList; /* Cursor */
+ while( p<aEnd ){
+ nDoc++;
+ while( (*p++)&0x80 ); /* Skip docid varint */
+ fts3PoslistCopy(0, &p); /* Skip over position list */
+ }
+ }
+
+ return nDoc;
+}
+
+/*
+** Advance the cursor to the next row in the %_content table that
+** matches the search criteria. For a MATCH search, this will be
+** the next row that matches. For a full-table scan, this will be
+** simply the next row in the %_content table. For a docid lookup,
+** this routine simply sets the EOF flag.
+**
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
+** even if we reach end-of-file. The fts3EofMethod() will be called
+** subsequently to determine whether or not an EOF was hit.
+*/
+static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
+ int rc;
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
+ if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
+ Fts3Table *pTab = (Fts3Table*)pCursor->pVtab;
+ pTab->bLock++;
+ if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
+ pCsr->isEof = 1;
+ rc = sqlite3_reset(pCsr->pStmt);
+ }else{
+ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
+ rc = SQLITE_OK;
+ }
+ pTab->bLock--;
+ }else{
+ rc = fts3EvalNext((Fts3Cursor *)pCursor);
+ }
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ return rc;
+}
+
+/*
+** If the numeric type of argument pVal is "integer", then return it
+** converted to a 64-bit signed integer. Otherwise, return a copy of
+** the second parameter, iDefault.
+*/
+static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
+ if( pVal ){
+ int eType = sqlite3_value_numeric_type(pVal);
+ if( eType==SQLITE_INTEGER ){
+ return sqlite3_value_int64(pVal);
+ }
+ }
+ return iDefault;
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
+** the %_content table.
+**
+** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
+** in the %_content table.
+**
+** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
+** column on the left-hand side of the MATCH operator is column
+** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
+** side of the MATCH operator.
+*/
+static int fts3FilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ int rc = SQLITE_OK;
+ char *zSql; /* SQL statement used to access %_content */
+ int eSearch;
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab;
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
+
+ sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */
+ sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */
+ sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */
+ sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */
+ int iIdx;
+
+ UNUSED_PARAMETER(idxStr);
+ UNUSED_PARAMETER(nVal);
+
+ if( p->bLock ){
+ return SQLITE_ERROR;
+ }
+
+ eSearch = (idxNum & 0x0000FFFF);
+ assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
+ assert( p->pSegments==0 );
+
+ /* Collect arguments into local variables */
+ iIdx = 0;
+ if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
+ if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
+ if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
+ if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
+ assert( iIdx==nVal );
+
+ /* In case the cursor has been used before, clear it now. */
+ fts3ClearCursor(pCsr);
+
+ /* Set the lower and upper bounds on docids to return */
+ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
+ pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
+
+ if( idxStr ){
+ pCsr->bDesc = (idxStr[0]=='D');
+ }else{
+ pCsr->bDesc = p->bDescIdx;
+ }
+ pCsr->eSearch = (i16)eSearch;
+
+ if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
+ int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
+ const char *zQuery = (const char *)sqlite3_value_text(pCons);
+
+ if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
+ return SQLITE_NOMEM;
+ }
+
+ pCsr->iLangid = 0;
+ if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
+
+ assert( p->base.zErrMsg==0 );
+ rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
+ p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
+ &p->base.zErrMsg
+ );
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ rc = fts3EvalStart(pCsr);
+ sqlite3Fts3SegmentsClose(p);
+ if( rc!=SQLITE_OK ) return rc;
+ pCsr->pNextId = pCsr->aDoclist;
+ pCsr->iPrevId = 0;
+ }
+
+ /* Compile a SELECT statement for this cursor. For a full-table-scan, the
+ ** statement loops through all rows of the %_content table. For a
+ ** full-text query or docid lookup, the statement retrieves a single
+ ** row by docid.
+ */
+ if( eSearch==FTS3_FULLSCAN_SEARCH ){
+ if( pDocidGe || pDocidLe ){
+ zSql = sqlite3_mprintf(
+ "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
+ p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
+ (pCsr->bDesc ? "DESC" : "ASC")
+ );
+ }else{
+ zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
+ p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
+ );
+ }
+ if( zSql ){
+ p->bLock++;
+ rc = sqlite3_prepare_v3(
+ p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
+ );
+ p->bLock--;
+ sqlite3_free(zSql);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }else if( eSearch==FTS3_DOCID_SEARCH ){
+ rc = fts3CursorSeekStmt(pCsr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
+ }
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ return fts3NextMethod(pCursor);
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3Cursor *pCsr = (Fts3Cursor*)pCursor;
+ if( pCsr->isEof ){
+ fts3ClearCursor(pCsr);
+ pCsr->isEof = 1;
+ }
+ return pCsr->isEof;
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts3
+** exposes %_content.docid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
+ *pRowid = pCsr->iPrevId;
+ return SQLITE_OK;
+}
+
+/*
+** This is the xColumn method, called by SQLite to request a value from
+** the row that the supplied cursor currently points to.
+**
+** If:
+**
+** (iCol < p->nColumn) -> The value of the iCol'th user column.
+** (iCol == p->nColumn) -> Magic column with the same name as the table.
+** (iCol == p->nColumn+1) -> Docid column
+** (iCol == p->nColumn+2) -> Langid column
+*/
+static int fts3ColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ int rc = SQLITE_OK; /* Return Code */
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab;
+
+ /* The column value supplied by SQLite must be in range. */
+ assert( iCol>=0 && iCol<=p->nColumn+2 );
+
+ switch( iCol-p->nColumn ){
+ case 0:
+ /* The special 'table-name' column */
+ sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0);
+ break;
+
+ case 1:
+ /* The docid column */
+ sqlite3_result_int64(pCtx, pCsr->iPrevId);
+ break;
+
+ case 2:
+ if( pCsr->pExpr ){
+ sqlite3_result_int64(pCtx, pCsr->iLangid);
+ break;
+ }else if( p->zLanguageid==0 ){
+ sqlite3_result_int(pCtx, 0);
+ break;
+ }else{
+ iCol = p->nColumn;
+ /* no break */ deliberate_fall_through
+ }
+
+ default:
+ /* A user column. Or, if this is a full-table scan, possibly the
+ ** language-id column. Seek the cursor. */
+ rc = fts3CursorSeek(0, pCsr);
+ if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
+ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
+ }
+ break;
+ }
+
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
+ return rc;
+}
+
+/*
+** This function is the implementation of the xUpdate callback used by
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
+** inserted, updated or deleted.
+*/
+static int fts3UpdateMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
+}
+
+/*
+** Implementation of xSync() method. Flush the contents of the pending-terms
+** hash-table to the database.
+*/
+static int fts3SyncMethod(sqlite3_vtab *pVtab){
+
+ /* Following an incremental-merge operation, assuming that the input
+ ** segments are not completely consumed (the usual case), they are updated
+ ** in place to remove the entries that have already been merged. This
+ ** involves updating the leaf block that contains the smallest unmerged
+ ** entry and each block (if any) between the leaf and the root node. So
+ ** if the height of the input segment b-trees is N, and input segments
+ ** are merged eight at a time, updating the input segments at the end
+ ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
+ ** small - often between 0 and 2. So the overhead of the incremental
+ ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
+ ** dwarfing the actual productive work accomplished, the incremental merge
+ ** is only attempted if it will write at least 64 leaf blocks. Hence
+ ** nMinMerge.
+ **
+ ** Of course, updating the input segments also involves deleting a bunch
+ ** of blocks from the segments table. But this is not considered overhead
+ ** as it would also be required by a crisis-merge that used the same input
+ ** segments.
+ */
+ const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
+
+ Fts3Table *p = (Fts3Table*)pVtab;
+ int rc;
+ i64 iLastRowid = sqlite3_last_insert_rowid(p->db);
+
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc==SQLITE_OK
+ && p->nLeafAdd>(nMinMerge/16)
+ && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
+ ){
+ int mxLevel = 0; /* Maximum relative level value in db */
+ int A; /* Incr-merge parameter A */
+
+ rc = sqlite3Fts3MaxLevel(p, &mxLevel);
+ assert( rc==SQLITE_OK || mxLevel==0 );
+ A = p->nLeafAdd * mxLevel;
+ A += (A/2);
+ if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
+ }
+ sqlite3Fts3SegmentsClose(p);
+ sqlite3_set_last_insert_rowid(p->db, iLastRowid);
+ return rc;
+}
+
+/*
+** If it is currently unknown whether or not the FTS table has an %_stat
+** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
+** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
+** if an error occurs.
+*/
+static int fts3SetHasStat(Fts3Table *p){
+ int rc = SQLITE_OK;
+ if( p->bHasStat==2 ){
+ char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
+ if( zTbl ){
+ int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);
+ sqlite3_free(zTbl);
+ p->bHasStat = (res==SQLITE_OK);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ return rc;
+}
+
+/*
+** Implementation of xBegin() method.
+*/
+static int fts3BeginMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table*)pVtab;
+ int rc;
+ UNUSED_PARAMETER(pVtab);
+ assert( p->pSegments==0 );
+ assert( p->nPendingData==0 );
+ assert( p->inTransaction!=1 );
+ p->nLeafAdd = 0;
+ rc = fts3SetHasStat(p);
+#ifdef SQLITE_DEBUG
+ if( rc==SQLITE_OK ){
+ p->inTransaction = 1;
+ p->mxSavepoint = -1;
+ }
+#endif
+ return rc;
+}
+
+/*
+** Implementation of xCommit() method. This is a no-op. The contents of
+** the pending-terms hash-table have already been flushed into the database
+** by fts3SyncMethod().
+*/
+static int fts3CommitMethod(sqlite3_vtab *pVtab){
+ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
+ UNUSED_PARAMETER(pVtab);
+ assert( p->nPendingData==0 );
+ assert( p->inTransaction!=0 );
+ assert( p->pSegments==0 );
+ TESTONLY( p->inTransaction = 0 );
+ TESTONLY( p->mxSavepoint = -1; );
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xRollback(). Discard the contents of the pending-terms
+** hash-table. Any changes made to the database are reverted by SQLite.
+*/
+static int fts3RollbackMethod(sqlite3_vtab *pVtab){
+ Fts3Table *p = (Fts3Table*)pVtab;
+ sqlite3Fts3PendingTermsClear(p);
+ assert( p->inTransaction!=0 );
+ TESTONLY( p->inTransaction = 0 );
+ TESTONLY( p->mxSavepoint = -1; );
+ return SQLITE_OK;
+}
+
+/*
+** When called, *ppPoslist must point to the byte immediately following the
+** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
+** moves *ppPoslist so that it instead points to the first byte of the
+** same position list.
+*/
+static void fts3ReversePoslist(char *pStart, char **ppPoslist){
+ char *p = &(*ppPoslist)[-2];
+ char c = 0;
+
+ /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
+ while( p>pStart && (c=*p--)==0 );
+
+ /* Search backwards for a varint with value zero (the end of the previous
+ ** poslist). This is an 0x00 byte preceded by some byte that does not
+ ** have the 0x80 bit set. */
+ while( p>pStart && (*p & 0x80) | c ){
+ c = *p--;
+ }
+ assert( p==pStart || c==0 );
+
+ /* At this point p points to that preceding byte without the 0x80 bit
+ ** set. So to find the start of the poslist, skip forward 2 bytes then
+ ** over a varint.
+ **
+ ** Normally. The other case is that p==pStart and the poslist to return
+ ** is the first in the doclist. In this case do not skip forward 2 bytes.
+ ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
+ ** is required for cases where the first byte of a doclist and the
+ ** doclist is empty. For example, if the first docid is 10, a doclist
+ ** that begins with:
+ **
+ ** 0x0A 0x00 <next docid delta varint>
+ */
+ if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; }
+ while( *p++&0x80 );
+ *ppPoslist = p;
+}
+
+/*
+** Helper function used by the implementation of the overloaded snippet(),
+** offsets() and optimize() SQL functions.
+**
+** If the value passed as the third argument is a blob of size
+** sizeof(Fts3Cursor*), then the blob contents are copied to the
+** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
+** message is written to context pContext and SQLITE_ERROR returned. The
+** string passed via zFunc is used as part of the error message.
+*/
+static int fts3FunctionArg(
+ sqlite3_context *pContext, /* SQL function call context */
+ const char *zFunc, /* Function name */
+ sqlite3_value *pVal, /* argv[0] passed to function */
+ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
+){
+ int rc;
+ *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor");
+ if( (*ppCsr)!=0 ){
+ rc = SQLITE_OK;
+ }else{
+ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
+ sqlite3_result_error(pContext, zErr, -1);
+ sqlite3_free(zErr);
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Implementation of the snippet() function for FTS3
+*/
+static void fts3SnippetFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of apVal[] array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
+ const char *zStart = "<b>";
+ const char *zEnd = "</b>";
+ const char *zEllipsis = "<b>...</b>";
+ int iCol = -1;
+ int nToken = 15; /* Default number of tokens in snippet */
+
+ /* There must be at least one argument passed to this function (otherwise
+ ** the non-overloaded version would have been called instead of this one).
+ */
+ assert( nVal>=1 );
+
+ if( nVal>6 ){
+ sqlite3_result_error(pContext,
+ "wrong number of arguments to function snippet()", -1);
+ return;
+ }
+ if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
+
+ switch( nVal ){
+ case 6: nToken = sqlite3_value_int(apVal[5]);
+ /* no break */ deliberate_fall_through
+ case 5: iCol = sqlite3_value_int(apVal[4]);
+ /* no break */ deliberate_fall_through
+ case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
+ /* no break */ deliberate_fall_through
+ case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
+ /* no break */ deliberate_fall_through
+ case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
+ }
+ if( !zEllipsis || !zEnd || !zStart ){
+ sqlite3_result_error_nomem(pContext);
+ }else if( nToken==0 ){
+ sqlite3_result_text(pContext, "", -1, SQLITE_STATIC);
+ }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
+ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
+ }
+}
+
+/*
+** Implementation of the offsets() function for FTS3
+*/
+static void fts3OffsetsFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of argument array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
+
+ UNUSED_PARAMETER(nVal);
+
+ assert( nVal==1 );
+ if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
+ assert( pCsr );
+ if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
+ sqlite3Fts3Offsets(pContext, pCsr);
+ }
+}
+
+/*
+** Implementation of the special optimize() function for FTS3. This
+** function merges all segments in the database to a single segment.
+** Example usage is:
+**
+** SELECT optimize(t) FROM t LIMIT 1;
+**
+** where 't' is the name of an FTS3 table.
+*/
+static void fts3OptimizeFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of argument array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ int rc; /* Return code */
+ Fts3Table *p; /* Virtual table handle */
+ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
+
+ UNUSED_PARAMETER(nVal);
+
+ assert( nVal==1 );
+ if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
+ p = (Fts3Table *)pCursor->base.pVtab;
+ assert( p );
+
+ rc = sqlite3Fts3Optimize(p);
+
+ switch( rc ){
+ case SQLITE_OK:
+ sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
+ break;
+ case SQLITE_DONE:
+ sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
+ break;
+ default:
+ sqlite3_result_error_code(pContext, rc);
+ break;
+ }
+}
+
+/*
+** Implementation of the matchinfo() function for FTS3
+*/
+static void fts3MatchinfoFunc(
+ sqlite3_context *pContext, /* SQLite function call context */
+ int nVal, /* Size of argument array */
+ sqlite3_value **apVal /* Array of arguments */
+){
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
+ assert( nVal==1 || nVal==2 );
+ if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
+ const char *zArg = 0;
+ if( nVal>1 ){
+ zArg = (const char *)sqlite3_value_text(apVal[1]);
+ }
+ sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
+ }
+}
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fts3FindFunctionMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Number of SQL function arguments */
+ const char *zName, /* Name of SQL function */
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
+ void **ppArg /* Unused */
+){
+ struct Overloaded {
+ const char *zName;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } aOverload[] = {
+ { "snippet", fts3SnippetFunc },
+ { "offsets", fts3OffsetsFunc },
+ { "optimize", fts3OptimizeFunc },
+ { "matchinfo", fts3MatchinfoFunc },
+ };
+ int i; /* Iterator variable */
+
+ UNUSED_PARAMETER(pVtab);
+ UNUSED_PARAMETER(nArg);
+ UNUSED_PARAMETER(ppArg);
+
+ for(i=0; i<SizeofArray(aOverload); i++){
+ if( strcmp(zName, aOverload[i].zName)==0 ){
+ *pxFunc = aOverload[i].xFunc;
+ return 1;
+ }
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+/*
+** Implementation of FTS3 xRename method. Rename an fts3 table.
+*/
+static int fts3RenameMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ const char *zName /* New name of table */
+){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ sqlite3 *db = p->db; /* Database connection */
+ int rc; /* Return Code */
+
+ /* At this point it must be known if the %_stat table exists or not.
+ ** So bHasStat may not be 2. */
+ rc = fts3SetHasStat(p);
+
+ /* As it happens, the pending terms table is always empty here. This is
+ ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
+ ** always opens a savepoint transaction. And the xSavepoint() method
+ ** flushes the pending terms table. But leave the (no-op) call to
+ ** PendingTermsFlush() in in case that changes.
+ */
+ assert( p->nPendingData==0 );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ }
+
+ p->bIgnoreSavepoint = 1;
+
+ if( p->zContentTbl==0 ){
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
+ p->zDb, p->zName, zName
+ );
+ }
+
+ if( p->bHasDocsize ){
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
+ p->zDb, p->zName, zName
+ );
+ }
+ if( p->bHasStat ){
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
+ p->zDb, p->zName, zName
+ );
+ }
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
+ p->zDb, p->zName, zName
+ );
+ fts3DbExec(&rc, db,
+ "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
+ p->zDb, p->zName, zName
+ );
+
+ p->bIgnoreSavepoint = 0;
+ return rc;
+}
+
+/*
+** The xSavepoint() method.
+**
+** Flush the contents of the pending-terms table to disk.
+*/
+static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ int rc = SQLITE_OK;
+ Fts3Table *pTab = (Fts3Table*)pVtab;
+ assert( pTab->inTransaction );
+ assert( pTab->mxSavepoint<=iSavepoint );
+ TESTONLY( pTab->mxSavepoint = iSavepoint );
+
+ if( pTab->bIgnoreSavepoint==0 ){
+ if( fts3HashCount(&pTab->aIndex[0].hPending)>0 ){
+ char *zSql = sqlite3_mprintf("INSERT INTO %Q.%Q(%Q) VALUES('flush')",
+ pTab->zDb, pTab->zName, pTab->zName
+ );
+ if( zSql ){
+ pTab->bIgnoreSavepoint = 1;
+ rc = sqlite3_exec(pTab->db, zSql, 0, 0, 0);
+ pTab->bIgnoreSavepoint = 0;
+ sqlite3_free(zSql);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pTab->iSavepoint = iSavepoint+1;
+ }
+ }
+ return rc;
+}
+
+/*
+** The xRelease() method.
+**
+** This is a no-op.
+*/
+static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts3Table *pTab = (Fts3Table*)pVtab;
+ assert( pTab->inTransaction );
+ assert( pTab->mxSavepoint >= iSavepoint );
+ TESTONLY( pTab->mxSavepoint = iSavepoint-1 );
+ pTab->iSavepoint = iSavepoint;
+ return SQLITE_OK;
+}
+
+/*
+** The xRollbackTo() method.
+**
+** Discard the contents of the pending terms table.
+*/
+static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts3Table *pTab = (Fts3Table*)pVtab;
+ UNUSED_PARAMETER(iSavepoint);
+ assert( pTab->inTransaction );
+ TESTONLY( pTab->mxSavepoint = iSavepoint );
+ if( (iSavepoint+1)<=pTab->iSavepoint ){
+ sqlite3Fts3PendingTermsClear(pTab);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return true if zName is the extension on one of the shadow tables used
+** by this module.
+*/
+static int fts3ShadowName(const char *zName){
+ static const char *azName[] = {
+ "content", "docsize", "segdir", "segments", "stat",
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
+ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Implementation of the xIntegrity() method on the FTS3/FTS4 virtual
+** table.
+*/
+static int fts3Integrity(
+ sqlite3_vtab *pVtab, /* The virtual table to be checked */
+ const char *zSchema, /* Name of schema in which pVtab lives */
+ const char *zTabname, /* Name of the pVTab table */
+ int isQuick, /* True if this is a quick_check */
+ char **pzErr /* Write error message here */
+){
+ Fts3Table *p = (Fts3Table*)pVtab;
+ char *zSql;
+ int rc;
+ char *zErr = 0;
+
+ assert( pzErr!=0 );
+ assert( *pzErr==0 );
+ UNUSED_PARAMETER(isQuick);
+ zSql = sqlite3_mprintf(
+ "INSERT INTO \"%w\".\"%w\"(\"%w\") VALUES('integrity-check');",
+ zSchema, zTabname, zTabname);
+ if( zSql==0 ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_exec(p->db, zSql, 0, 0, &zErr);
+ sqlite3_free(zSql);
+ if( (rc&0xff)==SQLITE_CORRUPT ){
+ *pzErr = sqlite3_mprintf("malformed inverted index for FTS%d table %s.%s",
+ p->bFts4 ? 4 : 3, zSchema, zTabname);
+ }else if( rc!=SQLITE_OK ){
+ *pzErr = sqlite3_mprintf("unable to validate the inverted index for"
+ " FTS%d table %s.%s: %s",
+ p->bFts4 ? 4 : 3, zSchema, zTabname, zErr);
+ }
+ sqlite3_free(zErr);
+ return SQLITE_OK;
+}
+
+
+
+static const sqlite3_module fts3Module = {
+ /* iVersion */ 4,
+ /* xCreate */ fts3CreateMethod,
+ /* xConnect */ fts3ConnectMethod,
+ /* xBestIndex */ fts3BestIndexMethod,
+ /* xDisconnect */ fts3DisconnectMethod,
+ /* xDestroy */ fts3DestroyMethod,
+ /* xOpen */ fts3OpenMethod,
+ /* xClose */ fts3CloseMethod,
+ /* xFilter */ fts3FilterMethod,
+ /* xNext */ fts3NextMethod,
+ /* xEof */ fts3EofMethod,
+ /* xColumn */ fts3ColumnMethod,
+ /* xRowid */ fts3RowidMethod,
+ /* xUpdate */ fts3UpdateMethod,
+ /* xBegin */ fts3BeginMethod,
+ /* xSync */ fts3SyncMethod,
+ /* xCommit */ fts3CommitMethod,
+ /* xRollback */ fts3RollbackMethod,
+ /* xFindFunction */ fts3FindFunctionMethod,
+ /* xRename */ fts3RenameMethod,
+ /* xSavepoint */ fts3SavepointMethod,
+ /* xRelease */ fts3ReleaseMethod,
+ /* xRollbackTo */ fts3RollbackToMethod,
+ /* xShadowName */ fts3ShadowName,
+ /* xIntegrity */ fts3Integrity,
+};
+
+/*
+** This function is registered as the module destructor (called when an
+** FTS3 enabled database connection is closed). It frees the memory
+** allocated for the tokenizer hash table.
+*/
+static void hashDestroy(void *p){
+ Fts3HashWrapper *pHash = (Fts3HashWrapper *)p;
+ pHash->nRef--;
+ if( pHash->nRef<=0 ){
+ sqlite3Fts3HashClear(&pHash->hash);
+ sqlite3_free(pHash);
+ }
+}
+
+/*
+** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
+** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
+** respectively. The following three forward declarations are for functions
+** declared in these files used to retrieve the respective implementations.
+**
+** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
+** to by the argument to point to the "simple" tokenizer implementation.
+** And so on.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
+#endif
+#ifdef SQLITE_ENABLE_ICU
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+#endif
+
+/*
+** Initialize the fts3 extension. If this extension is built as part
+** of the sqlite library, then this function is called directly by
+** SQLite. If fts3 is built as a dynamically loadable extension, this
+** function is called by the sqlite3_extension_init() entry point.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
+ int rc = SQLITE_OK;
+ Fts3HashWrapper *pHash = 0;
+ const sqlite3_tokenizer_module *pSimple = 0;
+ const sqlite3_tokenizer_module *pPorter = 0;
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+ const sqlite3_tokenizer_module *pUnicode = 0;
+#endif
+
+#ifdef SQLITE_ENABLE_ICU
+ const sqlite3_tokenizer_module *pIcu = 0;
+ sqlite3Fts3IcuTokenizerModule(&pIcu);
+#endif
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+ sqlite3Fts3UnicodeTokenizer(&pUnicode);
+#endif
+
+#ifdef SQLITE_TEST
+ rc = sqlite3Fts3InitTerm(db);
+ if( rc!=SQLITE_OK ) return rc;
+#endif
+
+ rc = sqlite3Fts3InitAux(db);
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3Fts3SimpleTokenizerModule(&pSimple);
+ sqlite3Fts3PorterTokenizerModule(&pPorter);
+
+ /* Allocate and initialize the hash-table used to store tokenizers. */
+ pHash = sqlite3_malloc(sizeof(Fts3HashWrapper));
+ if( !pHash ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1);
+ pHash->nRef = 0;
+ }
+
+ /* Load the built-in tokenizers into the hash table */
+ if( rc==SQLITE_OK ){
+ if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple)
+ || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter)
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+ || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode)
+#endif
+#ifdef SQLITE_ENABLE_ICU
+ || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu))
+#endif
+ ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+#ifdef SQLITE_TEST
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash);
+ }
+#endif
+
+ /* Create the virtual table wrapper around the hash-table and overload
+ ** the four scalar functions. If this is successful, register the
+ ** module with sqlite.
+ */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer"))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
+ ){
+ pHash->nRef++;
+ rc = sqlite3_create_module_v2(
+ db, "fts3", &fts3Module, (void *)pHash, hashDestroy
+ );
+ if( rc==SQLITE_OK ){
+ pHash->nRef++;
+ rc = sqlite3_create_module_v2(
+ db, "fts4", &fts3Module, (void *)pHash, hashDestroy
+ );
+ }
+ if( rc==SQLITE_OK ){
+ pHash->nRef++;
+ rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy);
+ }
+ return rc;
+ }
+
+
+ /* An error has occurred. Delete the hash table and return the error code. */
+ assert( rc!=SQLITE_OK );
+ if( pHash ){
+ sqlite3Fts3HashClear(&pHash->hash);
+ sqlite3_free(pHash);
+ }
+ return rc;
+}
+
+/*
+** Allocate an Fts3MultiSegReader for each token in the expression headed
+** by pExpr.
+**
+** An Fts3SegReader object is a cursor that can seek or scan a range of
+** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
+** Fts3SegReader objects internally to provide an interface to seek or scan
+** within the union of all segments of a b-tree. Hence the name.
+**
+** If the allocated Fts3MultiSegReader just seeks to a single entry in a
+** segment b-tree (if the term is not a prefix or it is a prefix for which
+** there exists prefix b-tree of the right length) then it may be traversed
+** and merged incrementally. Otherwise, it has to be merged into an in-memory
+** doclist and then traversed.
+*/
+static void fts3EvalAllocateReaders(
+ Fts3Cursor *pCsr, /* FTS cursor handle */
+ Fts3Expr *pExpr, /* Allocate readers for this expression */
+ int *pnToken, /* OUT: Total number of tokens in phrase. */
+ int *pnOr, /* OUT: Total number of OR nodes in expr. */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( pExpr && SQLITE_OK==*pRc ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ int i;
+ int nToken = pExpr->pPhrase->nToken;
+ *pnToken += nToken;
+ for(i=0; i<nToken; i++){
+ Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
+ int rc = fts3TermSegReaderCursor(pCsr,
+ pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
+ );
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return;
+ }
+ }
+ assert( pExpr->pPhrase->iDoclistToken==0 );
+ pExpr->pPhrase->iDoclistToken = -1;
+ }else{
+ *pnOr += (pExpr->eType==FTSQUERY_OR);
+ fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
+ fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
+ }
+ }
+}
+
+/*
+** Arguments pList/nList contain the doclist for token iToken of phrase p.
+** It is merged into the main doclist stored in p->doclist.aAll/nAll.
+**
+** This function assumes that pList points to a buffer allocated using
+** sqlite3_malloc(). This function takes responsibility for eventually
+** freeing the buffer.
+**
+** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
+*/
+static int fts3EvalPhraseMergeToken(
+ Fts3Table *pTab, /* FTS Table pointer */
+ Fts3Phrase *p, /* Phrase to merge pList/nList into */
+ int iToken, /* Token pList/nList corresponds to */
+ char *pList, /* Pointer to doclist */
+ int nList /* Number of bytes in pList */
+){
+ int rc = SQLITE_OK;
+ assert( iToken!=p->iDoclistToken );
+
+ if( pList==0 ){
+ sqlite3_free(p->doclist.aAll);
+ p->doclist.aAll = 0;
+ p->doclist.nAll = 0;
+ }
+
+ else if( p->iDoclistToken<0 ){
+ p->doclist.aAll = pList;
+ p->doclist.nAll = nList;
+ }
+
+ else if( p->doclist.aAll==0 ){
+ sqlite3_free(pList);
+ }
+
+ else {
+ char *pLeft;
+ char *pRight;
+ int nLeft;
+ int nRight;
+ int nDiff;
+
+ if( p->iDoclistToken<iToken ){
+ pLeft = p->doclist.aAll;
+ nLeft = p->doclist.nAll;
+ pRight = pList;
+ nRight = nList;
+ nDiff = iToken - p->iDoclistToken;
+ }else{
+ pRight = p->doclist.aAll;
+ nRight = p->doclist.nAll;
+ pLeft = pList;
+ nLeft = nList;
+ nDiff = p->iDoclistToken - iToken;
+ }
+
+ rc = fts3DoclistPhraseMerge(
+ pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
+ );
+ sqlite3_free(pLeft);
+ p->doclist.aAll = pRight;
+ p->doclist.nAll = nRight;
+ }
+
+ if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
+ return rc;
+}
+
+/*
+** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
+** does not take deferred tokens into account.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3EvalPhraseLoad(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Phrase *p /* Phrase object */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int iToken;
+ int rc = SQLITE_OK;
+
+ for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
+ Fts3PhraseToken *pToken = &p->aToken[iToken];
+ assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
+
+ if( pToken->pSegcsr ){
+ int nThis = 0;
+ char *pThis = 0;
+ rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
+ if( rc==SQLITE_OK ){
+ rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
+ }
+ }
+ assert( pToken->pSegcsr==0 );
+ }
+
+ return rc;
+}
+
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+/*
+** This function is called on each phrase after the position lists for
+** any deferred tokens have been loaded into memory. It updates the phrases
+** current position list to include only those positions that are really
+** instances of the phrase (after considering deferred tokens). If this
+** means that the phrase does not appear in the current row, doclist.pList
+** and doclist.nList are both zeroed.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
+ int iToken; /* Used to iterate through phrase tokens */
+ char *aPoslist = 0; /* Position list for deferred tokens */
+ int nPoslist = 0; /* Number of bytes in aPoslist */
+ int iPrev = -1; /* Token number of previous deferred token */
+ char *aFree = (pPhrase->doclist.bFreeList ? pPhrase->doclist.pList : 0);
+
+ for(iToken=0; iToken<pPhrase->nToken; iToken++){
+ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
+ Fts3DeferredToken *pDeferred = pToken->pDeferred;
+
+ if( pDeferred ){
+ char *pList;
+ int nList;
+ int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( pList==0 ){
+ sqlite3_free(aPoslist);
+ sqlite3_free(aFree);
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ return SQLITE_OK;
+
+ }else if( aPoslist==0 ){
+ aPoslist = pList;
+ nPoslist = nList;
+
+ }else{
+ char *aOut = pList;
+ char *p1 = aPoslist;
+ char *p2 = aOut;
+
+ assert( iPrev>=0 );
+ fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
+ sqlite3_free(aPoslist);
+ aPoslist = pList;
+ nPoslist = (int)(aOut - aPoslist);
+ if( nPoslist==0 ){
+ sqlite3_free(aPoslist);
+ sqlite3_free(aFree);
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ return SQLITE_OK;
+ }
+ }
+ iPrev = iToken;
+ }
+ }
+
+ if( iPrev>=0 ){
+ int nMaxUndeferred = pPhrase->iDoclistToken;
+ if( nMaxUndeferred<0 ){
+ pPhrase->doclist.pList = aPoslist;
+ pPhrase->doclist.nList = nPoslist;
+ pPhrase->doclist.iDocid = pCsr->iPrevId;
+ pPhrase->doclist.bFreeList = 1;
+ }else{
+ int nDistance;
+ char *p1;
+ char *p2;
+ char *aOut;
+
+ if( nMaxUndeferred>iPrev ){
+ p1 = aPoslist;
+ p2 = pPhrase->doclist.pList;
+ nDistance = nMaxUndeferred - iPrev;
+ }else{
+ p1 = pPhrase->doclist.pList;
+ p2 = aPoslist;
+ nDistance = iPrev - nMaxUndeferred;
+ }
+
+ aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING);
+ if( !aOut ){
+ sqlite3_free(aPoslist);
+ return SQLITE_NOMEM;
+ }
+
+ pPhrase->doclist.pList = aOut;
+ assert( p1 && p2 );
+ if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
+ pPhrase->doclist.bFreeList = 1;
+ pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
+ }else{
+ sqlite3_free(aOut);
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ }
+ sqlite3_free(aPoslist);
+ }
+ }
+
+ if( pPhrase->doclist.pList!=aFree ) sqlite3_free(aFree);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_DISABLE_FTS4_DEFERRED */
+
+/*
+** Maximum number of tokens a phrase may have to be considered for the
+** incremental doclists strategy.
+*/
+#define MAX_INCR_PHRASE_TOKENS 4
+
+/*
+** This function is called for each Fts3Phrase in a full-text query
+** expression to initialize the mechanism for returning rows. Once this
+** function has been called successfully on an Fts3Phrase, it may be
+** used with fts3EvalPhraseNext() to iterate through the matching docids.
+**
+** If parameter bOptOk is true, then the phrase may (or may not) use the
+** incremental loading strategy. Otherwise, the entire doclist is loaded into
+** memory within this call.
+**
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
+*/
+static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK; /* Error code */
+ int i;
+
+ /* Determine if doclists may be loaded from disk incrementally. This is
+ ** possible if the bOptOk argument is true, the FTS doclists will be
+ ** scanned in forward order, and the phrase consists of
+ ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
+ ** tokens or prefix tokens that cannot use a prefix-index. */
+ int bHaveIncr = 0;
+ int bIncrOk = (bOptOk
+ && pCsr->bDesc==pTab->bDescIdx
+ && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ && pTab->bNoIncrDoclist==0
+#endif
+ );
+ for(i=0; bIncrOk==1 && i<p->nToken; i++){
+ Fts3PhraseToken *pToken = &p->aToken[i];
+ if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
+ bIncrOk = 0;
+ }
+ if( pToken->pSegcsr ) bHaveIncr = 1;
+ }
+
+ if( bIncrOk && bHaveIncr ){
+ /* Use the incremental approach. */
+ int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
+ for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
+ Fts3PhraseToken *pToken = &p->aToken[i];
+ Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
+ if( pSegcsr ){
+ rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
+ }
+ }
+ p->bIncr = 1;
+ }else{
+ /* Load the full doclist for the phrase into memory. */
+ rc = fts3EvalPhraseLoad(pCsr, p);
+ p->bIncr = 0;
+ }
+
+ assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
+ return rc;
+}
+
+/*
+** This function is used to iterate backwards (from the end to start)
+** through doclists. It is used by this module to iterate through phrase
+** doclists in reverse and by the fts3_write.c module to iterate through
+** pending-terms lists when writing to databases with "order=desc".
+**
+** The doclist may be sorted in ascending (parameter bDescIdx==0) or
+** descending (parameter bDescIdx==1) order of docid. Regardless, this
+** function iterates from the end of the doclist to the beginning.
+*/
+SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(
+ int bDescIdx, /* True if the doclist is desc */
+ char *aDoclist, /* Pointer to entire doclist */
+ int nDoclist, /* Length of aDoclist in bytes */
+ char **ppIter, /* IN/OUT: Iterator pointer */
+ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
+ int *pnList, /* OUT: List length pointer */
+ u8 *pbEof /* OUT: End-of-file flag */
+){
+ char *p = *ppIter;
+
+ assert( nDoclist>0 );
+ assert( *pbEof==0 );
+ assert_fts3_nc( p || *piDocid==0 );
+ assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
+
+ if( p==0 ){
+ sqlite3_int64 iDocid = 0;
+ char *pNext = 0;
+ char *pDocid = aDoclist;
+ char *pEnd = &aDoclist[nDoclist];
+ int iMul = 1;
+
+ while( pDocid<pEnd ){
+ sqlite3_int64 iDelta;
+ pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
+ iDocid += (iMul * iDelta);
+ pNext = pDocid;
+ fts3PoslistCopy(0, &pDocid);
+ while( pDocid<pEnd && *pDocid==0 ) pDocid++;
+ iMul = (bDescIdx ? -1 : 1);
+ }
+
+ *pnList = (int)(pEnd - pNext);
+ *ppIter = pNext;
+ *piDocid = iDocid;
+ }else{
+ int iMul = (bDescIdx ? -1 : 1);
+ sqlite3_int64 iDelta;
+ fts3GetReverseVarint(&p, aDoclist, &iDelta);
+ *piDocid -= (iMul * iDelta);
+
+ if( p==aDoclist ){
+ *pbEof = 1;
+ }else{
+ char *pSave = p;
+ fts3ReversePoslist(aDoclist, &p);
+ *pnList = (int)(pSave - p);
+ }
+ *ppIter = p;
+ }
+}
+
+/*
+** Iterate forwards through a doclist.
+*/
+SQLITE_PRIVATE void sqlite3Fts3DoclistNext(
+ int bDescIdx, /* True if the doclist is desc */
+ char *aDoclist, /* Pointer to entire doclist */
+ int nDoclist, /* Length of aDoclist in bytes */
+ char **ppIter, /* IN/OUT: Iterator pointer */
+ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
+ u8 *pbEof /* OUT: End-of-file flag */
+){
+ char *p = *ppIter;
+
+ assert( nDoclist>0 );
+ assert( *pbEof==0 );
+ assert_fts3_nc( p || *piDocid==0 );
+ assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
+
+ if( p==0 ){
+ p = aDoclist;
+ p += sqlite3Fts3GetVarint(p, piDocid);
+ }else{
+ fts3PoslistCopy(0, &p);
+ while( p<&aDoclist[nDoclist] && *p==0 ) p++;
+ if( p>=&aDoclist[nDoclist] ){
+ *pbEof = 1;
+ }else{
+ sqlite3_int64 iVar;
+ p += sqlite3Fts3GetVarint(p, &iVar);
+ *piDocid += ((bDescIdx ? -1 : 1) * iVar);
+ }
+ }
+
+ *ppIter = p;
+}
+
+/*
+** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
+** to true if EOF is reached.
+*/
+static void fts3EvalDlPhraseNext(
+ Fts3Table *pTab,
+ Fts3Doclist *pDL,
+ u8 *pbEof
+){
+ char *pIter; /* Used to iterate through aAll */
+ char *pEnd; /* 1 byte past end of aAll */
+
+ if( pDL->pNextDocid ){
+ pIter = pDL->pNextDocid;
+ assert( pDL->aAll!=0 || pIter==0 );
+ }else{
+ pIter = pDL->aAll;
+ }
+
+ if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){
+ /* We have already reached the end of this doclist. EOF. */
+ *pbEof = 1;
+ }else{
+ sqlite3_int64 iDelta;
+ pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
+ if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
+ pDL->iDocid += iDelta;
+ }else{
+ pDL->iDocid -= iDelta;
+ }
+ pDL->pList = pIter;
+ fts3PoslistCopy(0, &pIter);
+ pDL->nList = (int)(pIter - pDL->pList);
+
+ /* pIter now points just past the 0x00 that terminates the position-
+ ** list for document pDL->iDocid. However, if this position-list was
+ ** edited in place by fts3EvalNearTrim(), then pIter may not actually
+ ** point to the start of the next docid value. The following line deals
+ ** with this case by advancing pIter past the zero-padding added by
+ ** fts3EvalNearTrim(). */
+ while( pIter<pEnd && *pIter==0 ) pIter++;
+
+ pDL->pNextDocid = pIter;
+ assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
+ *pbEof = 0;
+ }
+}
+
+/*
+** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
+*/
+typedef struct TokenDoclist TokenDoclist;
+struct TokenDoclist {
+ int bIgnore;
+ sqlite3_int64 iDocid;
+ char *pList;
+ int nList;
+};
+
+/*
+** Token pToken is an incrementally loaded token that is part of a
+** multi-token phrase. Advance it to the next matching document in the
+** database and populate output variable *p with the details of the new
+** entry. Or, if the iterator has reached EOF, set *pbEof to true.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK.
+*/
+static int incrPhraseTokenNext(
+ Fts3Table *pTab, /* Virtual table handle */
+ Fts3Phrase *pPhrase, /* Phrase to advance token of */
+ int iToken, /* Specific token to advance */
+ TokenDoclist *p, /* OUT: Docid and doclist for new entry */
+ u8 *pbEof /* OUT: True if iterator is at EOF */
+){
+ int rc = SQLITE_OK;
+
+ if( pPhrase->iDoclistToken==iToken ){
+ assert( p->bIgnore==0 );
+ assert( pPhrase->aToken[iToken].pSegcsr==0 );
+ fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
+ p->pList = pPhrase->doclist.pList;
+ p->nList = pPhrase->doclist.nList;
+ p->iDocid = pPhrase->doclist.iDocid;
+ }else{
+ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
+ assert( pToken->pDeferred==0 );
+ assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
+ if( pToken->pSegcsr ){
+ assert( p->bIgnore==0 );
+ rc = sqlite3Fts3MsrIncrNext(
+ pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
+ );
+ if( p->pList==0 ) *pbEof = 1;
+ }else{
+ p->bIgnore = 1;
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** The phrase iterator passed as the second argument:
+**
+** * features at least one token that uses an incremental doclist, and
+**
+** * does not contain any deferred tokens.
+**
+** Advance it to the next matching documnent in the database and populate
+** the Fts3Doclist.pList and nList fields.
+**
+** If there is no "next" entry and no error occurs, then *pbEof is set to
+** 1 before returning. Otherwise, if no error occurs and the iterator is
+** successfully advanced, *pbEof is set to 0.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK.
+*/
+static int fts3EvalIncrPhraseNext(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Phrase *p, /* Phrase object to advance to next docid */
+ u8 *pbEof /* OUT: Set to 1 if EOF */
+){
+ int rc = SQLITE_OK;
+ Fts3Doclist *pDL = &p->doclist;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ u8 bEof = 0;
+
+ /* This is only called if it is guaranteed that the phrase has at least
+ ** one incremental token. In which case the bIncr flag is set. */
+ assert( p->bIncr==1 );
+
+ if( p->nToken==1 ){
+ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
+ &pDL->iDocid, &pDL->pList, &pDL->nList
+ );
+ if( pDL->pList==0 ) bEof = 1;
+ }else{
+ int bDescDoclist = pCsr->bDesc;
+ struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
+
+ memset(a, 0, sizeof(a));
+ assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
+ assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
+
+ while( bEof==0 ){
+ int bMaxSet = 0;
+ sqlite3_int64 iMax = 0; /* Largest docid for all iterators */
+ int i; /* Used to iterate through tokens */
+
+ /* Advance the iterator for each token in the phrase once. */
+ for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
+ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
+ if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
+ iMax = a[i].iDocid;
+ bMaxSet = 1;
+ }
+ }
+ assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
+ assert( rc!=SQLITE_OK || bMaxSet );
+
+ /* Keep advancing iterators until they all point to the same document */
+ for(i=0; i<p->nToken; i++){
+ while( rc==SQLITE_OK && bEof==0
+ && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
+ ){
+ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
+ if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
+ iMax = a[i].iDocid;
+ i = 0;
+ }
+ }
+ }
+
+ /* Check if the current entries really are a phrase match */
+ if( bEof==0 ){
+ int nList = 0;
+ int nByte = a[p->nToken-1].nList;
+ char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING);
+ if( !aDoclist ) return SQLITE_NOMEM;
+ memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
+ memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);
+
+ for(i=0; i<(p->nToken-1); i++){
+ if( a[i].bIgnore==0 ){
+ char *pL = a[i].pList;
+ char *pR = aDoclist;
+ char *pOut = aDoclist;
+ int nDist = p->nToken-1-i;
+ int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
+ if( res==0 ) break;
+ nList = (int)(pOut - aDoclist);
+ }
+ }
+ if( i==(p->nToken-1) ){
+ pDL->iDocid = iMax;
+ pDL->pList = aDoclist;
+ pDL->nList = nList;
+ pDL->bFreeList = 1;
+ break;
+ }
+ sqlite3_free(aDoclist);
+ }
+ }
+ }
+
+ *pbEof = bEof;
+ return rc;
+}
+
+/*
+** Attempt to move the phrase iterator to point to the next matching docid.
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK.
+**
+** If there is no "next" entry and no error occurs, then *pbEof is set to
+** 1 before returning. Otherwise, if no error occurs and the iterator is
+** successfully advanced, *pbEof is set to 0.
+*/
+static int fts3EvalPhraseNext(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Phrase *p, /* Phrase object to advance to next docid */
+ u8 *pbEof /* OUT: Set to 1 if EOF */
+){
+ int rc = SQLITE_OK;
+ Fts3Doclist *pDL = &p->doclist;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+
+ if( p->bIncr ){
+ rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
+ }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
+ sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
+ &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
+ );
+ pDL->pList = pDL->pNextDocid;
+ }else{
+ fts3EvalDlPhraseNext(pTab, pDL, pbEof);
+ }
+
+ return rc;
+}
+
+/*
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
+** expression. Also the Fts3Expr.bDeferred variable is set to true for any
+** expressions for which all descendent tokens are deferred.
+**
+** If parameter bOptOk is zero, then it is guaranteed that the
+** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
+** each phrase in the expression (subject to deferred token processing).
+** Or, if bOptOk is non-zero, then one or more tokens within the expression
+** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
+**
+** If an error occurs within this function, *pRc is set to an SQLite error
+** code before returning.
+*/
+static void fts3EvalStartReaders(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pExpr, /* Expression to initialize phrases in */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( pExpr && SQLITE_OK==*pRc ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ int nToken = pExpr->pPhrase->nToken;
+ if( nToken ){
+ int i;
+ for(i=0; i<nToken; i++){
+ if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
+ }
+ pExpr->bDeferred = (i==nToken);
+ }
+ *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
+ }else{
+ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
+ fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
+ pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
+ }
+ }
+}
+
+/*
+** An array of the following structures is assembled as part of the process
+** of selecting tokens to defer before the query starts executing (as part
+** of the xFilter() method). There is one element in the array for each
+** token in the FTS expression.
+**
+** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
+** to phrases that are connected only by AND and NEAR operators (not OR or
+** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
+** separately. The root of a tokens AND/NEAR cluster is stored in
+** Fts3TokenAndCost.pRoot.
+*/
+typedef struct Fts3TokenAndCost Fts3TokenAndCost;
+struct Fts3TokenAndCost {
+ Fts3Phrase *pPhrase; /* The phrase the token belongs to */
+ int iToken; /* Position of token in phrase */
+ Fts3PhraseToken *pToken; /* The token itself */
+ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
+ int nOvfl; /* Number of overflow pages to load doclist */
+ int iCol; /* The column the token must match */
+};
+
+/*
+** This function is used to populate an allocated Fts3TokenAndCost array.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, if an error occurs during execution, *pRc is set to an
+** SQLite error code.
+*/
+static void fts3EvalTokenCosts(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
+ Fts3Expr *pExpr, /* Expression to consider */
+ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
+ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==SQLITE_OK ){
+ if( pExpr->eType==FTSQUERY_PHRASE ){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ int i;
+ for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
+ Fts3TokenAndCost *pTC = (*ppTC)++;
+ pTC->pPhrase = pPhrase;
+ pTC->iToken = i;
+ pTC->pRoot = pRoot;
+ pTC->pToken = &pPhrase->aToken[i];
+ pTC->iCol = pPhrase->iColumn;
+ *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
+ }
+ }else if( pExpr->eType!=FTSQUERY_NOT ){
+ assert( pExpr->eType==FTSQUERY_OR
+ || pExpr->eType==FTSQUERY_AND
+ || pExpr->eType==FTSQUERY_NEAR
+ );
+ assert( pExpr->pLeft && pExpr->pRight );
+ if( pExpr->eType==FTSQUERY_OR ){
+ pRoot = pExpr->pLeft;
+ **ppOr = pRoot;
+ (*ppOr)++;
+ }
+ fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
+ if( pExpr->eType==FTSQUERY_OR ){
+ pRoot = pExpr->pRight;
+ **ppOr = pRoot;
+ (*ppOr)++;
+ }
+ fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
+ }
+ }
+}
+
+/*
+** Determine the average document (row) size in pages. If successful,
+** write this value to *pnPage and return SQLITE_OK. Otherwise, return
+** an SQLite error code.
+**
+** The average document size in pages is calculated by first calculating
+** determining the average size in bytes, B. If B is less than the amount
+** of data that will fit on a single leaf page of an intkey table in
+** this database, then the average docsize is 1. Otherwise, it is 1 plus
+** the number of overflow pages consumed by a record B bytes in size.
+*/
+static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
+ int rc = SQLITE_OK;
+ if( pCsr->nRowAvg==0 ){
+ /* The average document size, which is required to calculate the cost
+ ** of each doclist, has not yet been determined. Read the required
+ ** data from the %_stat table to calculate it.
+ **
+ ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
+ ** varints, where nCol is the number of columns in the FTS3 table.
+ ** The first varint is the number of documents currently stored in
+ ** the table. The following nCol varints contain the total amount of
+ ** data stored in all rows of each column of the table, from left
+ ** to right.
+ */
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
+ sqlite3_stmt *pStmt;
+ sqlite3_int64 nDoc = 0;
+ sqlite3_int64 nByte = 0;
+ const char *pEnd;
+ const char *a;
+
+ rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ a = sqlite3_column_blob(pStmt, 0);
+ testcase( a==0 ); /* If %_stat.value set to X'' */
+ if( a ){
+ pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
+ while( a<pEnd ){
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nByte);
+ }
+ }
+ if( nDoc==0 || nByte==0 ){
+ sqlite3_reset(pStmt);
+ return FTS_CORRUPT_VTAB;
+ }
+
+ pCsr->nDoc = nDoc;
+ pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
+ assert( pCsr->nRowAvg>0 );
+ rc = sqlite3_reset(pStmt);
+ }
+
+ *pnPage = pCsr->nRowAvg;
+ return rc;
+}
+
+/*
+** This function is called to select the tokens (if any) that will be
+** deferred. The array aTC[] has already been populated when this is
+** called.
+**
+** This function is called once for each AND/NEAR cluster in the
+** expression. Each invocation determines which tokens to defer within
+** the cluster with root node pRoot. See comments above the definition
+** of struct Fts3TokenAndCost for more details.
+**
+** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
+** called on each token to defer. Otherwise, an SQLite error code is
+** returned.
+*/
+static int fts3EvalSelectDeferred(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pRoot, /* Consider tokens with this root node */
+ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
+ int nTC /* Number of entries in aTC[] */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int nDocSize = 0; /* Number of pages per doc loaded */
+ int rc = SQLITE_OK; /* Return code */
+ int ii; /* Iterator variable for various purposes */
+ int nOvfl = 0; /* Total overflow pages used by doclists */
+ int nToken = 0; /* Total number of tokens in cluster */
+
+ int nMinEst = 0; /* The minimum count for any phrase so far. */
+ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
+
+ /* Tokens are never deferred for FTS tables created using the content=xxx
+ ** option. The reason being that it is not guaranteed that the content
+ ** table actually contains the same data as the index. To prevent this from
+ ** causing any problems, the deferred token optimization is completely
+ ** disabled for content=xxx tables. */
+ if( pTab->zContentTbl ){
+ return SQLITE_OK;
+ }
+
+ /* Count the tokens in this AND/NEAR cluster. If none of the doclists
+ ** associated with the tokens spill onto overflow pages, or if there is
+ ** only 1 token, exit early. No tokens to defer in this case. */
+ for(ii=0; ii<nTC; ii++){
+ if( aTC[ii].pRoot==pRoot ){
+ nOvfl += aTC[ii].nOvfl;
+ nToken++;
+ }
+ }
+ if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
+
+ /* Obtain the average docsize (in pages). */
+ rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
+ assert( rc!=SQLITE_OK || nDocSize>0 );
+
+
+ /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
+ ** of the number of overflow pages that will be loaded by the pager layer
+ ** to retrieve the entire doclist for the token from the full-text index.
+ ** Load the doclists for tokens that are either:
+ **
+ ** a. The cheapest token in the entire query (i.e. the one visited by the
+ ** first iteration of this loop), or
+ **
+ ** b. Part of a multi-token phrase.
+ **
+ ** After each token doclist is loaded, merge it with the others from the
+ ** same phrase and count the number of documents that the merged doclist
+ ** contains. Set variable "nMinEst" to the smallest number of documents in
+ ** any phrase doclist for which 1 or more token doclists have been loaded.
+ ** Let nOther be the number of other phrases for which it is certain that
+ ** one or more tokens will not be deferred.
+ **
+ ** Then, for each token, defer it if loading the doclist would result in
+ ** loading N or more overflow pages into memory, where N is computed as:
+ **
+ ** (nMinEst + 4^nOther - 1) / (4^nOther)
+ */
+ for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
+ int iTC; /* Used to iterate through aTC[] array. */
+ Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
+
+ /* Set pTC to point to the cheapest remaining token. */
+ for(iTC=0; iTC<nTC; iTC++){
+ if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
+ && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
+ ){
+ pTC = &aTC[iTC];
+ }
+ }
+ assert( pTC );
+
+ if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
+ /* The number of overflow pages to load for this (and therefore all
+ ** subsequent) tokens is greater than the estimated number of pages
+ ** that will be loaded if all subsequent tokens are deferred.
+ */
+ Fts3PhraseToken *pToken = pTC->pToken;
+ rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
+ fts3SegReaderCursorFree(pToken->pSegcsr);
+ pToken->pSegcsr = 0;
+ }else{
+ /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
+ ** for-loop. Except, limit the value to 2^24 to prevent it from
+ ** overflowing the 32-bit integer it is stored in. */
+ if( ii<12 ) nLoad4 = nLoad4*4;
+
+ if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
+ /* Either this is the cheapest token in the entire query, or it is
+ ** part of a multi-token phrase. Either way, the entire doclist will
+ ** (eventually) be loaded into memory. It may as well be now. */
+ Fts3PhraseToken *pToken = pTC->pToken;
+ int nList = 0;
+ char *pList = 0;
+ rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
+ assert( rc==SQLITE_OK || pList==0 );
+ if( rc==SQLITE_OK ){
+ rc = fts3EvalPhraseMergeToken(
+ pTab, pTC->pPhrase, pTC->iToken,pList,nList
+ );
+ }
+ if( rc==SQLITE_OK ){
+ int nCount;
+ nCount = fts3DoclistCountDocids(
+ pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
+ );
+ if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
+ }
+ }
+ }
+ pTC->pToken = 0;
+ }
+
+ return rc;
+}
+
+/*
+** This function is called from within the xFilter method. It initializes
+** the full-text query currently stored in pCsr->pExpr. To iterate through
+** the results of a query, the caller does:
+**
+** fts3EvalStart(pCsr);
+** while( 1 ){
+** fts3EvalNext(pCsr);
+** if( pCsr->bEof ) break;
+** ... return row pCsr->iPrevId to the caller ...
+** }
+*/
+static int fts3EvalStart(Fts3Cursor *pCsr){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int nToken = 0;
+ int nOr = 0;
+
+ /* Allocate a MultiSegReader for each token in the expression. */
+ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
+
+ /* Determine which, if any, tokens in the expression should be deferred. */
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+ if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
+ Fts3TokenAndCost *aTC;
+ aTC = (Fts3TokenAndCost *)sqlite3_malloc64(
+ sizeof(Fts3TokenAndCost) * nToken
+ + sizeof(Fts3Expr *) * nOr * 2
+ );
+
+ if( !aTC ){
+ rc = SQLITE_NOMEM;
+ }else{
+ Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken];
+ int ii;
+ Fts3TokenAndCost *pTC = aTC;
+ Fts3Expr **ppOr = apOr;
+
+ fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
+ nToken = (int)(pTC-aTC);
+ nOr = (int)(ppOr-apOr);
+
+ if( rc==SQLITE_OK ){
+ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
+ for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
+ rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
+ }
+ }
+
+ sqlite3_free(aTC);
+ }
+ }
+#endif
+
+ fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
+ return rc;
+}
+
+/*
+** Invalidate the current position list for phrase pPhrase.
+*/
+static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
+ if( pPhrase->doclist.bFreeList ){
+ sqlite3_free(pPhrase->doclist.pList);
+ }
+ pPhrase->doclist.pList = 0;
+ pPhrase->doclist.nList = 0;
+ pPhrase->doclist.bFreeList = 0;
+}
+
+/*
+** This function is called to edit the position list associated with
+** the phrase object passed as the fifth argument according to a NEAR
+** condition. For example:
+**
+** abc NEAR/5 "def ghi"
+**
+** Parameter nNear is passed the NEAR distance of the expression (5 in
+** the example above). When this function is called, *paPoslist points to
+** the position list, and *pnToken is the number of phrase tokens in the
+** phrase on the other side of the NEAR operator to pPhrase. For example,
+** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
+** the position list associated with phrase "abc".
+**
+** All positions in the pPhrase position list that are not sufficiently
+** close to a position in the *paPoslist position list are removed. If this
+** leaves 0 positions, zero is returned. Otherwise, non-zero.
+**
+** Before returning, *paPoslist is set to point to the position lsit
+** associated with pPhrase. And *pnToken is set to the number of tokens in
+** pPhrase.
+*/
+static int fts3EvalNearTrim(
+ int nNear, /* NEAR distance. As in "NEAR/nNear". */
+ char *aTmp, /* Temporary space to use */
+ char **paPoslist, /* IN/OUT: Position list */
+ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
+ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
+){
+ int nParam1 = nNear + pPhrase->nToken;
+ int nParam2 = nNear + *pnToken;
+ int nNew;
+ char *p2;
+ char *pOut;
+ int res;
+
+ assert( pPhrase->doclist.pList );
+
+ p2 = pOut = pPhrase->doclist.pList;
+ res = fts3PoslistNearMerge(
+ &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
+ );
+ if( res ){
+ nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
+ assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 );
+ if( nNew>=0 && nNew<=pPhrase->doclist.nList ){
+ assert( pPhrase->doclist.pList[nNew]=='\0' );
+ memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
+ pPhrase->doclist.nList = nNew;
+ }
+ *paPoslist = pPhrase->doclist.pList;
+ *pnToken = pPhrase->nToken;
+ }
+
+ return res;
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
+** Otherwise, it advances the expression passed as the second argument to
+** point to the next matching row in the database. Expressions iterate through
+** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
+** or descending if it is non-zero.
+**
+** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
+** successful, the following variables in pExpr are set:
+**
+** Fts3Expr.bEof (non-zero if EOF - there is no next row)
+** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
+**
+** If the expression is of type FTSQUERY_PHRASE, and the expression is not
+** at EOF, then the following variables are populated with the position list
+** for the phrase for the visited row:
+**
+** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
+** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
+**
+** It says above that this function advances the expression to the next
+** matching row. This is usually true, but there are the following exceptions:
+**
+** 1. Deferred tokens are not taken into account. If a phrase consists
+** entirely of deferred tokens, it is assumed to match every row in
+** the db. In this case the position-list is not populated at all.
+**
+** Or, if a phrase contains one or more deferred tokens and one or
+** more non-deferred tokens, then the expression is advanced to the
+** next possible match, considering only non-deferred tokens. In other
+** words, if the phrase is "A B C", and "B" is deferred, the expression
+** is advanced to the next row that contains an instance of "A * C",
+** where "*" may match any single token. The position list in this case
+** is populated as for "A * C" before returning.
+**
+** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
+** advanced to point to the next row that matches "x AND y".
+**
+** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
+** really a match, taking into account deferred tokens and NEAR operators.
+*/
+static void fts3EvalNextRow(
+ Fts3Cursor *pCsr, /* FTS Cursor handle */
+ Fts3Expr *pExpr, /* Expr. to advance to next matching row */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==SQLITE_OK && pExpr->bEof==0 ){
+ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
+ pExpr->bStart = 1;
+
+ switch( pExpr->eType ){
+ case FTSQUERY_NEAR:
+ case FTSQUERY_AND: {
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+ assert( !pLeft->bDeferred || !pRight->bDeferred );
+
+ if( pLeft->bDeferred ){
+ /* LHS is entirely deferred. So we assume it matches every row.
+ ** Advance the RHS iterator to find the next row visited. */
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ pExpr->iDocid = pRight->iDocid;
+ pExpr->bEof = pRight->bEof;
+ }else if( pRight->bDeferred ){
+ /* RHS is entirely deferred. So we assume it matches every row.
+ ** Advance the LHS iterator to find the next row visited. */
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ pExpr->iDocid = pLeft->iDocid;
+ pExpr->bEof = pLeft->bEof;
+ }else{
+ /* Neither the RHS or LHS are deferred. */
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
+ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
+ if( iDiff==0 ) break;
+ if( iDiff<0 ){
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ }else{
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+ }
+ pExpr->iDocid = pLeft->iDocid;
+ pExpr->bEof = (pLeft->bEof || pRight->bEof);
+ if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
+ assert( pRight->eType==FTSQUERY_PHRASE );
+ if( pRight->pPhrase->doclist.aAll ){
+ Fts3Doclist *pDl = &pRight->pPhrase->doclist;
+ while( *pRc==SQLITE_OK && pRight->bEof==0 ){
+ memset(pDl->pList, 0, pDl->nList);
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+ }
+ if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
+ Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
+ while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
+ memset(pDl->pList, 0, pDl->nList);
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ }
+ }
+ pRight->bEof = pLeft->bEof = 1;
+ }
+ }
+ break;
+ }
+
+ case FTSQUERY_OR: {
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+ sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
+
+ assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
+ assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid );
+
+ if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ }else if( pLeft->bEof || iCmp>0 ){
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }else{
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+
+ pExpr->bEof = (pLeft->bEof && pRight->bEof);
+ iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
+ if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
+ pExpr->iDocid = pLeft->iDocid;
+ }else{
+ pExpr->iDocid = pRight->iDocid;
+ }
+
+ break;
+ }
+
+ case FTSQUERY_NOT: {
+ Fts3Expr *pLeft = pExpr->pLeft;
+ Fts3Expr *pRight = pExpr->pRight;
+
+ if( pRight->bStart==0 ){
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ assert( *pRc!=SQLITE_OK || pRight->bStart );
+ }
+
+ fts3EvalNextRow(pCsr, pLeft, pRc);
+ if( pLeft->bEof==0 ){
+ while( !*pRc
+ && !pRight->bEof
+ && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
+ ){
+ fts3EvalNextRow(pCsr, pRight, pRc);
+ }
+ }
+ pExpr->iDocid = pLeft->iDocid;
+ pExpr->bEof = pLeft->bEof;
+ break;
+ }
+
+ default: {
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ fts3EvalInvalidatePoslist(pPhrase);
+ *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
+ pExpr->iDocid = pPhrase->doclist.iDocid;
+ break;
+ }
+ }
+ }
+}
+
+/*
+** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
+** cluster, then this function returns 1 immediately.
+**
+** Otherwise, it checks if the current row really does match the NEAR
+** expression, using the data currently stored in the position lists
+** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
+**
+** If the current row is a match, the position list associated with each
+** phrase in the NEAR expression is edited in place to contain only those
+** phrase instances sufficiently close to their peers to satisfy all NEAR
+** constraints. In this case it returns 1. If the NEAR expression does not
+** match the current row, 0 is returned. The position lists may or may not
+** be edited if 0 is returned.
+*/
+static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
+ int res = 1;
+
+ /* The following block runs if pExpr is the root of a NEAR query.
+ ** For example, the query:
+ **
+ ** "w" NEAR "x" NEAR "y" NEAR "z"
+ **
+ ** which is represented in tree form as:
+ **
+ ** |
+ ** +--NEAR--+ <-- root of NEAR query
+ ** | |
+ ** +--NEAR--+ "z"
+ ** | |
+ ** +--NEAR--+ "y"
+ ** | |
+ ** "w" "x"
+ **
+ ** The right-hand child of a NEAR node is always a phrase. The
+ ** left-hand child may be either a phrase or a NEAR node. There are
+ ** no exceptions to this - it's the way the parser in fts3_expr.c works.
+ */
+ if( *pRc==SQLITE_OK
+ && pExpr->eType==FTSQUERY_NEAR
+ && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
+ ){
+ Fts3Expr *p;
+ sqlite3_int64 nTmp = 0; /* Bytes of temp space */
+ char *aTmp; /* Temp space for PoslistNearMerge() */
+
+ /* Allocate temporary working space. */
+ for(p=pExpr; p->pLeft; p=p->pLeft){
+ assert( p->pRight->pPhrase->doclist.nList>0 );
+ nTmp += p->pRight->pPhrase->doclist.nList;
+ }
+ nTmp += p->pPhrase->doclist.nList;
+ aTmp = sqlite3_malloc64(nTmp*2);
+ if( !aTmp ){
+ *pRc = SQLITE_NOMEM;
+ res = 0;
+ }else{
+ char *aPoslist = p->pPhrase->doclist.pList;
+ int nToken = p->pPhrase->nToken;
+
+ for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
+ Fts3Phrase *pPhrase = p->pRight->pPhrase;
+ int nNear = p->nNear;
+ res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
+ }
+
+ aPoslist = pExpr->pRight->pPhrase->doclist.pList;
+ nToken = pExpr->pRight->pPhrase->nToken;
+ for(p=pExpr->pLeft; p && res; p=p->pLeft){
+ int nNear;
+ Fts3Phrase *pPhrase;
+ assert( p->pParent && p->pParent->pLeft==p );
+ nNear = p->pParent->nNear;
+ pPhrase = (
+ p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
+ );
+ res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
+ }
+ }
+
+ sqlite3_free(aTmp);
+ }
+
+ return res;
+}
+
+/*
+** This function is a helper function for sqlite3Fts3EvalTestDeferred().
+** Assuming no error occurs or has occurred, It returns non-zero if the
+** expression passed as the second argument matches the row that pCsr
+** currently points to, or zero if it does not.
+**
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** If an error occurs during execution of this function, *pRc is set to
+** the appropriate SQLite error code. In this case the returned value is
+** undefined.
+*/
+static int fts3EvalTestExpr(
+ Fts3Cursor *pCsr, /* FTS cursor handle */
+ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
+ int *pRc /* IN/OUT: Error code */
+){
+ int bHit = 1; /* Return value */
+ if( *pRc==SQLITE_OK ){
+ switch( pExpr->eType ){
+ case FTSQUERY_NEAR:
+ case FTSQUERY_AND:
+ bHit = (
+ fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
+ && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
+ && fts3EvalNearTest(pExpr, pRc)
+ );
+
+ /* If the NEAR expression does not match any rows, zero the doclist for
+ ** all phrases involved in the NEAR. This is because the snippet(),
+ ** offsets() and matchinfo() functions are not supposed to recognize
+ ** any instances of phrases that are part of unmatched NEAR queries.
+ ** For example if this expression:
+ **
+ ** ... MATCH 'a OR (b NEAR c)'
+ **
+ ** is matched against a row containing:
+ **
+ ** 'a b d e'
+ **
+ ** then any snippet() should ony highlight the "a" term, not the "b"
+ ** (as "b" is part of a non-matching NEAR clause).
+ */
+ if( bHit==0
+ && pExpr->eType==FTSQUERY_NEAR
+ && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
+ ){
+ Fts3Expr *p;
+ for(p=pExpr; p->pPhrase==0; p=p->pLeft){
+ if( p->pRight->iDocid==pCsr->iPrevId ){
+ fts3EvalInvalidatePoslist(p->pRight->pPhrase);
+ }
+ }
+ if( p->iDocid==pCsr->iPrevId ){
+ fts3EvalInvalidatePoslist(p->pPhrase);
+ }
+ }
+
+ break;
+
+ case FTSQUERY_OR: {
+ int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
+ int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
+ bHit = bHit1 || bHit2;
+ break;
+ }
+
+ case FTSQUERY_NOT:
+ bHit = (
+ fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
+ && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
+ );
+ break;
+
+ default: {
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+ if( pCsr->pDeferred && (pExpr->bDeferred || (
+ pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.pList
+ ))){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ if( pExpr->bDeferred ){
+ fts3EvalInvalidatePoslist(pPhrase);
+ }
+ *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
+ bHit = (pPhrase->doclist.pList!=0);
+ pExpr->iDocid = pCsr->iPrevId;
+ }else
+#endif
+ {
+ bHit = (
+ pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId
+ && pExpr->pPhrase->doclist.nList>0
+ );
+ }
+ break;
+ }
+ }
+ }
+ return bHit;
+}
+
+/*
+** This function is called as the second part of each xNext operation when
+** iterating through the results of a full-text query. At this point the
+** cursor points to a row that matches the query expression, with the
+** following caveats:
+**
+** * Up until this point, "NEAR" operators in the expression have been
+** treated as "AND".
+**
+** * Deferred tokens have not yet been considered.
+**
+** If *pRc is not SQLITE_OK when this function is called, it immediately
+** returns 0. Otherwise, it tests whether or not after considering NEAR
+** operators and deferred tokens the current row is still a match for the
+** expression. It returns 1 if both of the following are true:
+**
+** 1. *pRc is SQLITE_OK when this function returns, and
+**
+** 2. After scanning the current FTS table row for the deferred tokens,
+** it is determined that the row does *not* match the query.
+**
+** Or, if no error occurs and it seems the current row does match the FTS
+** query, return 0.
+*/
+SQLITE_PRIVATE int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){
+ int rc = *pRc;
+ int bMiss = 0;
+ if( rc==SQLITE_OK ){
+
+ /* If there are one or more deferred tokens, load the current row into
+ ** memory and scan it to determine the position list for each deferred
+ ** token. Then, see if this row is really a match, considering deferred
+ ** tokens and NEAR operators (neither of which were taken into account
+ ** earlier, by fts3EvalNextRow()).
+ */
+ if( pCsr->pDeferred ){
+ rc = fts3CursorSeek(0, pCsr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
+ }
+ }
+ bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
+
+ /* Free the position-lists accumulated for each deferred token above. */
+ sqlite3Fts3FreeDeferredDoclists(pCsr);
+ *pRc = rc;
+ }
+ return (rc==SQLITE_OK && bMiss);
+}
+
+/*
+** Advance to the next document that matches the FTS expression in
+** Fts3Cursor.pExpr.
+*/
+static int fts3EvalNext(Fts3Cursor *pCsr){
+ int rc = SQLITE_OK; /* Return Code */
+ Fts3Expr *pExpr = pCsr->pExpr;
+ assert( pCsr->isEof==0 );
+ if( pExpr==0 ){
+ pCsr->isEof = 1;
+ }else{
+ do {
+ if( pCsr->isRequireSeek==0 ){
+ sqlite3_reset(pCsr->pStmt);
+ }
+ assert( sqlite3_data_count(pCsr->pStmt)==0 );
+ fts3EvalNextRow(pCsr, pExpr, &rc);
+ pCsr->isEof = pExpr->bEof;
+ pCsr->isRequireSeek = 1;
+ pCsr->isMatchinfoNeeded = 1;
+ pCsr->iPrevId = pExpr->iDocid;
+ }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) );
+ }
+
+ /* Check if the cursor is past the end of the docid range specified
+ ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
+ if( rc==SQLITE_OK && (
+ (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
+ || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
+ )){
+ pCsr->isEof = 1;
+ }
+
+ return rc;
+}
+
+/*
+** Restart interation for expression pExpr so that the next call to
+** fts3EvalNext() visits the first row. Do not allow incremental
+** loading or merging of phrase doclists for this iteration.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is
+** a no-op. If an error occurs within this function, *pRc is set to an
+** SQLite error code before returning.
+*/
+static void fts3EvalRestart(
+ Fts3Cursor *pCsr,
+ Fts3Expr *pExpr,
+ int *pRc
+){
+ if( pExpr && *pRc==SQLITE_OK ){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+
+ if( pPhrase ){
+ fts3EvalInvalidatePoslist(pPhrase);
+ if( pPhrase->bIncr ){
+ int i;
+ for(i=0; i<pPhrase->nToken; i++){
+ Fts3PhraseToken *pToken = &pPhrase->aToken[i];
+ assert( pToken->pDeferred==0 );
+ if( pToken->pSegcsr ){
+ sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
+ }
+ }
+ *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
+ }
+ pPhrase->doclist.pNextDocid = 0;
+ pPhrase->doclist.iDocid = 0;
+ pPhrase->pOrPoslist = 0;
+ }
+
+ pExpr->iDocid = 0;
+ pExpr->bEof = 0;
+ pExpr->bStart = 0;
+
+ fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
+ fts3EvalRestart(pCsr, pExpr->pRight, pRc);
+ }
+}
+
+/*
+** After allocating the Fts3Expr.aMI[] array for each phrase in the
+** expression rooted at pExpr, the cursor iterates through all rows matched
+** by pExpr, calling this function for each row. This function increments
+** the values in Fts3Expr.aMI[] according to the position-list currently
+** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
+** expression nodes.
+*/
+static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){
+ if( pExpr ){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ if( pPhrase && pPhrase->doclist.pList ){
+ int iCol = 0;
+ char *p = pPhrase->doclist.pList;
+
+ do{
+ u8 c = 0;
+ int iCnt = 0;
+ while( 0xFE & (*p | c) ){
+ if( (c&0x80)==0 ) iCnt++;
+ c = *p++ & 0x80;
+ }
+
+ /* aMI[iCol*3 + 1] = Number of occurrences
+ ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
+ */
+ pExpr->aMI[iCol*3 + 1] += iCnt;
+ pExpr->aMI[iCol*3 + 2] += (iCnt>0);
+ if( *p==0x00 ) break;
+ p++;
+ p += fts3GetVarint32(p, &iCol);
+ }while( iCol<nCol );
+ }
+
+ fts3EvalUpdateCounts(pExpr->pLeft, nCol);
+ fts3EvalUpdateCounts(pExpr->pRight, nCol);
+ }
+}
+
+/*
+** This is an sqlite3Fts3ExprIterate() callback. If the Fts3Expr.aMI[] array
+** has not yet been allocated, allocate and zero it. Otherwise, just zero
+** it.
+*/
+static int fts3AllocateMSI(Fts3Expr *pExpr, int iPhrase, void *pCtx){
+ Fts3Table *pTab = (Fts3Table*)pCtx;
+ UNUSED_PARAMETER(iPhrase);
+ if( pExpr->aMI==0 ){
+ pExpr->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32));
+ if( pExpr->aMI==0 ) return SQLITE_NOMEM;
+ }
+ memset(pExpr->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
+ return SQLITE_OK;
+}
+
+/*
+** Expression pExpr must be of type FTSQUERY_PHRASE.
+**
+** If it is not already allocated and populated, this function allocates and
+** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
+** of a NEAR expression, then it also allocates and populates the same array
+** for all other phrases that are part of the NEAR expression.
+**
+** SQLITE_OK is returned if the aMI[] array is successfully allocated and
+** populated. Otherwise, if an error occurs, an SQLite error code is returned.
+*/
+static int fts3EvalGatherStats(
+ Fts3Cursor *pCsr, /* Cursor object */
+ Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pExpr->eType==FTSQUERY_PHRASE );
+ if( pExpr->aMI==0 ){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ Fts3Expr *pRoot; /* Root of NEAR expression */
+
+ sqlite3_int64 iPrevId = pCsr->iPrevId;
+ sqlite3_int64 iDocid;
+ u8 bEof;
+
+ /* Find the root of the NEAR expression */
+ pRoot = pExpr;
+ while( pRoot->pParent
+ && (pRoot->pParent->eType==FTSQUERY_NEAR || pRoot->bDeferred)
+ ){
+ pRoot = pRoot->pParent;
+ }
+ iDocid = pRoot->iDocid;
+ bEof = pRoot->bEof;
+ assert( pRoot->bStart );
+
+ /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
+ rc = sqlite3Fts3ExprIterate(pRoot, fts3AllocateMSI, (void*)pTab);
+ if( rc!=SQLITE_OK ) return rc;
+ fts3EvalRestart(pCsr, pRoot, &rc);
+
+ while( pCsr->isEof==0 && rc==SQLITE_OK ){
+
+ do {
+ /* Ensure the %_content statement is reset. */
+ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
+ assert( sqlite3_data_count(pCsr->pStmt)==0 );
+
+ /* Advance to the next document */
+ fts3EvalNextRow(pCsr, pRoot, &rc);
+ pCsr->isEof = pRoot->bEof;
+ pCsr->isRequireSeek = 1;
+ pCsr->isMatchinfoNeeded = 1;
+ pCsr->iPrevId = pRoot->iDocid;
+ }while( pCsr->isEof==0
+ && pRoot->eType==FTSQUERY_NEAR
+ && sqlite3Fts3EvalTestDeferred(pCsr, &rc)
+ );
+
+ if( rc==SQLITE_OK && pCsr->isEof==0 ){
+ fts3EvalUpdateCounts(pRoot, pTab->nColumn);
+ }
+ }
+
+ pCsr->isEof = 0;
+ pCsr->iPrevId = iPrevId;
+
+ if( bEof ){
+ pRoot->bEof = bEof;
+ }else{
+ /* Caution: pRoot may iterate through docids in ascending or descending
+ ** order. For this reason, even though it seems more defensive, the
+ ** do loop can not be written:
+ **
+ ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
+ */
+ fts3EvalRestart(pCsr, pRoot, &rc);
+ do {
+ fts3EvalNextRow(pCsr, pRoot, &rc);
+ assert_fts3_nc( pRoot->bEof==0 );
+ if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB;
+ }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is used by the matchinfo() module to query a phrase
+** expression node for the following information:
+**
+** 1. The total number of occurrences of the phrase in each column of
+** the FTS table (considering all rows), and
+**
+** 2. For each column, the number of rows in the table for which the
+** column contains at least one instance of the phrase.
+**
+** If no error occurs, SQLITE_OK is returned and the values for each column
+** written into the array aiOut as follows:
+**
+** aiOut[iCol*3 + 1] = Number of occurrences
+** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
+**
+** Caveats:
+**
+** * If a phrase consists entirely of deferred tokens, then all output
+** values are set to the number of documents in the table. In other
+** words we assume that very common tokens occur exactly once in each
+** column of each row of the table.
+**
+** * If a phrase contains some deferred tokens (and some non-deferred
+** tokens), count the potential occurrence identified by considering
+** the non-deferred tokens instead of actual phrase occurrences.
+**
+** * If the phrase is part of a NEAR expression, then only phrase instances
+** that meet the NEAR constraint are included in the counts.
+*/
+SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(
+ Fts3Cursor *pCsr, /* FTS cursor handle */
+ Fts3Expr *pExpr, /* Phrase expression */
+ u32 *aiOut /* Array to write results into (see above) */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int iCol;
+
+ if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
+ assert( pCsr->nDoc>0 );
+ for(iCol=0; iCol<pTab->nColumn; iCol++){
+ aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
+ aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
+ }
+ }else{
+ rc = fts3EvalGatherStats(pCsr, pExpr);
+ if( rc==SQLITE_OK ){
+ assert( pExpr->aMI );
+ for(iCol=0; iCol<pTab->nColumn; iCol++){
+ aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
+ aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The expression pExpr passed as the second argument to this function
+** must be of type FTSQUERY_PHRASE.
+**
+** The returned value is either NULL or a pointer to a buffer containing
+** a position-list indicating the occurrences of the phrase in column iCol
+** of the current row.
+**
+** More specifically, the returned buffer contains 1 varint for each
+** occurrence of the phrase in the column, stored using the normal (delta+2)
+** compression and is terminated by either an 0x01 or 0x00 byte. For example,
+** if the requested column contains "a b X c d X X" and the position-list
+** for 'X' is requested, the buffer returned may contain:
+**
+** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
+**
+** This function works regardless of whether or not the phrase is deferred,
+** incremental, or neither.
+*/
+SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(
+ Fts3Cursor *pCsr, /* FTS3 cursor object */
+ Fts3Expr *pExpr, /* Phrase to return doclist for */
+ int iCol, /* Column to return position list for */
+ char **ppOut /* OUT: Pointer to position list */
+){
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ char *pIter;
+ int iThis;
+ sqlite3_int64 iDocid;
+
+ /* If this phrase is applies specifically to some column other than
+ ** column iCol, return a NULL pointer. */
+ *ppOut = 0;
+ assert( iCol>=0 && iCol<pTab->nColumn );
+ if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
+ return SQLITE_OK;
+ }
+
+ iDocid = pExpr->iDocid;
+ pIter = pPhrase->doclist.pList;
+ if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
+ int rc = SQLITE_OK;
+ int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
+ int bOr = 0;
+ u8 bTreeEof = 0;
+ Fts3Expr *p; /* Used to iterate from pExpr to root */
+ Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */
+ Fts3Expr *pRun; /* Closest non-deferred ancestor of pNear */
+ int bMatch;
+
+ /* Check if this phrase descends from an OR expression node. If not,
+ ** return NULL. Otherwise, the entry that corresponds to docid
+ ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
+ ** tree that the node is part of has been marked as EOF, but the node
+ ** itself is not EOF, then it may point to an earlier entry. */
+ pNear = pExpr;
+ for(p=pExpr->pParent; p; p=p->pParent){
+ if( p->eType==FTSQUERY_OR ) bOr = 1;
+ if( p->eType==FTSQUERY_NEAR ) pNear = p;
+ if( p->bEof ) bTreeEof = 1;
+ }
+ if( bOr==0 ) return SQLITE_OK;
+ pRun = pNear;
+ while( pRun->bDeferred ){
+ assert( pRun->pParent );
+ pRun = pRun->pParent;
+ }
+
+ /* This is the descendent of an OR node. In this case we cannot use
+ ** an incremental phrase. Load the entire doclist for the phrase
+ ** into memory in this case. */
+ if( pPhrase->bIncr ){
+ int bEofSave = pRun->bEof;
+ fts3EvalRestart(pCsr, pRun, &rc);
+ while( rc==SQLITE_OK && !pRun->bEof ){
+ fts3EvalNextRow(pCsr, pRun, &rc);
+ if( bEofSave==0 && pRun->iDocid==iDocid ) break;
+ }
+ assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
+ if( rc==SQLITE_OK && pRun->bEof!=bEofSave ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+ }
+ if( bTreeEof ){
+ while( rc==SQLITE_OK && !pRun->bEof ){
+ fts3EvalNextRow(pCsr, pRun, &rc);
+ }
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ bMatch = 1;
+ for(p=pNear; p; p=p->pLeft){
+ u8 bEof = 0;
+ Fts3Expr *pTest = p;
+ Fts3Phrase *pPh;
+ assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE );
+ if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight;
+ assert( pTest->eType==FTSQUERY_PHRASE );
+ pPh = pTest->pPhrase;
+
+ pIter = pPh->pOrPoslist;
+ iDocid = pPh->iOrDocid;
+ if( pCsr->bDesc==bDescDoclist ){
+ bEof = !pPh->doclist.nAll ||
+ (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll));
+ while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
+ sqlite3Fts3DoclistNext(
+ bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
+ &pIter, &iDocid, &bEof
+ );
+ }
+ }else{
+ bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll);
+ while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
+ int dummy;
+ sqlite3Fts3DoclistPrev(
+ bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
+ &pIter, &iDocid, &dummy, &bEof
+ );
+ }
+ }
+ pPh->pOrPoslist = pIter;
+ pPh->iOrDocid = iDocid;
+ if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0;
+ }
+
+ if( bMatch ){
+ pIter = pPhrase->pOrPoslist;
+ }else{
+ pIter = 0;
+ }
+ }
+ if( pIter==0 ) return SQLITE_OK;
+
+ if( *pIter==0x01 ){
+ pIter++;
+ pIter += fts3GetVarint32(pIter, &iThis);
+ }else{
+ iThis = 0;
+ }
+ while( iThis<iCol ){
+ fts3ColumnlistCopy(0, &pIter);
+ if( *pIter==0x00 ) return SQLITE_OK;
+ pIter++;
+ pIter += fts3GetVarint32(pIter, &iThis);
+ }
+ if( *pIter==0x00 ){
+ pIter = 0;
+ }
+
+ *ppOut = ((iCol==iThis)?pIter:0);
+ return SQLITE_OK;
+}
+
+/*
+** Free all components of the Fts3Phrase structure that were allocated by
+** the eval module. Specifically, this means to free:
+**
+** * the contents of pPhrase->doclist, and
+** * any Fts3MultiSegReader objects held by phrase tokens.
+*/
+SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
+ if( pPhrase ){
+ int i;
+ sqlite3_free(pPhrase->doclist.aAll);
+ fts3EvalInvalidatePoslist(pPhrase);
+ memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
+ for(i=0; i<pPhrase->nToken; i++){
+ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
+ pPhrase->aToken[i].pSegcsr = 0;
+ }
+ }
+}
+
+
+/*
+** Return SQLITE_CORRUPT_VTAB.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3Fts3Corrupt(){
+ return SQLITE_CORRUPT_VTAB;
+}
+#endif
+
+#if !SQLITE_CORE
+/*
+** Initialize API pointer table, if required.
+*/
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_fts3_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3Fts3Init(db);
+}
+#endif
+
+#endif
+
+/************** End of fts3.c ************************************************/
+/************** Begin file fts3_aux.c ****************************************/
+/*
+** 2011 Jan 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+typedef struct Fts3auxTable Fts3auxTable;
+typedef struct Fts3auxCursor Fts3auxCursor;
+
+struct Fts3auxTable {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ Fts3Table *pFts3Tab;
+};
+
+struct Fts3auxCursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ Fts3MultiSegReader csr; /* Must be right after "base" */
+ Fts3SegFilter filter;
+ char *zStop;
+ int nStop; /* Byte-length of string zStop */
+ int iLangid; /* Language id to query */
+ int isEof; /* True if cursor is at EOF */
+ sqlite3_int64 iRowid; /* Current rowid */
+
+ int iCol; /* Current value of 'col' column */
+ int nStat; /* Size of aStat[] array */
+ struct Fts3auxColstats {
+ sqlite3_int64 nDoc; /* 'documents' values for current csr row */
+ sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */
+ } *aStat;
+};
+
+/*
+** Schema of the terms table.
+*/
+#define FTS3_AUX_SCHEMA \
+ "CREATE TABLE x(term, col, documents, occurrences, languageid HIDDEN)"
+
+/*
+** This function does all the work for both the xConnect and xCreate methods.
+** These tables have no persistent representation of their own, so xConnect
+** and xCreate are identical operations.
+*/
+static int fts3auxConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pUnused, /* Unused */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ char const *zDb; /* Name of database (e.g. "main") */
+ char const *zFts3; /* Name of fts3 table */
+ int nDb; /* Result of strlen(zDb) */
+ int nFts3; /* Result of strlen(zFts3) */
+ sqlite3_int64 nByte; /* Bytes of space to allocate here */
+ int rc; /* value returned by declare_vtab() */
+ Fts3auxTable *p; /* Virtual table object to return */
+
+ UNUSED_PARAMETER(pUnused);
+
+ /* The user should invoke this in one of two forms:
+ **
+ ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table);
+ ** CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table-db, fts4-table);
+ */
+ if( argc!=4 && argc!=5 ) goto bad_args;
+
+ zDb = argv[1];
+ nDb = (int)strlen(zDb);
+ if( argc==5 ){
+ if( nDb==4 && 0==sqlite3_strnicmp("temp", zDb, 4) ){
+ zDb = argv[3];
+ nDb = (int)strlen(zDb);
+ zFts3 = argv[4];
+ }else{
+ goto bad_args;
+ }
+ }else{
+ zFts3 = argv[3];
+ }
+ nFts3 = (int)strlen(zFts3);
+
+ rc = sqlite3_declare_vtab(db, FTS3_AUX_SCHEMA);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
+ p = (Fts3auxTable *)sqlite3_malloc64(nByte);
+ if( !p ) return SQLITE_NOMEM;
+ memset(p, 0, nByte);
+
+ p->pFts3Tab = (Fts3Table *)&p[1];
+ p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
+ p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
+ p->pFts3Tab->db = db;
+ p->pFts3Tab->nIndex = 1;
+
+ memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
+ memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
+ sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
+
+ *ppVtab = (sqlite3_vtab *)p;
+ return SQLITE_OK;
+
+ bad_args:
+ sqlite3Fts3ErrMsg(pzErr, "invalid arguments to fts4aux constructor");
+ return SQLITE_ERROR;
+}
+
+/*
+** This function does the work for both the xDisconnect and xDestroy methods.
+** These tables have no persistent representation of their own, so xDisconnect
+** and xDestroy are identical operations.
+*/
+static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts3auxTable *p = (Fts3auxTable *)pVtab;
+ Fts3Table *pFts3 = p->pFts3Tab;
+ int i;
+
+ /* Free any prepared statements held */
+ for(i=0; i<SizeofArray(pFts3->aStmt); i++){
+ sqlite3_finalize(pFts3->aStmt[i]);
+ }
+ sqlite3_free(pFts3->zSegmentsTbl);
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+#define FTS4AUX_EQ_CONSTRAINT 1
+#define FTS4AUX_GE_CONSTRAINT 2
+#define FTS4AUX_LE_CONSTRAINT 4
+
+/*
+** xBestIndex - Analyze a WHERE and ORDER BY clause.
+*/
+static int fts3auxBestIndexMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ int iEq = -1;
+ int iGe = -1;
+ int iLe = -1;
+ int iLangid = -1;
+ int iNext = 1; /* Next free argvIndex value */
+
+ UNUSED_PARAMETER(pVTab);
+
+ /* This vtab delivers always results in "ORDER BY term ASC" order. */
+ if( pInfo->nOrderBy==1
+ && pInfo->aOrderBy[0].iColumn==0
+ && pInfo->aOrderBy[0].desc==0
+ ){
+ pInfo->orderByConsumed = 1;
+ }
+
+ /* Search for equality and range constraints on the "term" column.
+ ** And equality constraints on the hidden "languageid" column. */
+ for(i=0; i<pInfo->nConstraint; i++){
+ if( pInfo->aConstraint[i].usable ){
+ int op = pInfo->aConstraint[i].op;
+ int iCol = pInfo->aConstraint[i].iColumn;
+
+ if( iCol==0 ){
+ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i;
+ if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i;
+ }
+ if( iCol==4 ){
+ if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iLangid = i;
+ }
+ }
+ }
+
+ if( iEq>=0 ){
+ pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT;
+ pInfo->aConstraintUsage[iEq].argvIndex = iNext++;
+ pInfo->estimatedCost = 5;
+ }else{
+ pInfo->idxNum = 0;
+ pInfo->estimatedCost = 20000;
+ if( iGe>=0 ){
+ pInfo->idxNum += FTS4AUX_GE_CONSTRAINT;
+ pInfo->aConstraintUsage[iGe].argvIndex = iNext++;
+ pInfo->estimatedCost /= 2;
+ }
+ if( iLe>=0 ){
+ pInfo->idxNum += FTS4AUX_LE_CONSTRAINT;
+ pInfo->aConstraintUsage[iLe].argvIndex = iNext++;
+ pInfo->estimatedCost /= 2;
+ }
+ }
+ if( iLangid>=0 ){
+ pInfo->aConstraintUsage[iLangid].argvIndex = iNext++;
+ pInfo->estimatedCost--;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** xOpen - Open a cursor.
+*/
+static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts3auxCursor *pCsr; /* Pointer to cursor object to return */
+
+ UNUSED_PARAMETER(pVTab);
+
+ pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor));
+ if( !pCsr ) return SQLITE_NOMEM;
+ memset(pCsr, 0, sizeof(Fts3auxCursor));
+
+ *ppCsr = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** xClose - Close a cursor.
+*/
+static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+
+ sqlite3Fts3SegmentsClose(pFts3);
+ sqlite3Fts3SegReaderFinish(&pCsr->csr);
+ sqlite3_free((void *)pCsr->filter.zTerm);
+ sqlite3_free(pCsr->zStop);
+ sqlite3_free(pCsr->aStat);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){
+ if( nSize>pCsr->nStat ){
+ struct Fts3auxColstats *aNew;
+ aNew = (struct Fts3auxColstats *)sqlite3_realloc64(pCsr->aStat,
+ sizeof(struct Fts3auxColstats) * nSize
+ );
+ if( aNew==0 ) return SQLITE_NOMEM;
+ memset(&aNew[pCsr->nStat], 0,
+ sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat)
+ );
+ pCsr->aStat = aNew;
+ pCsr->nStat = nSize;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** xNext - Advance the cursor to the next row, if any.
+*/
+static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
+ int rc;
+
+ /* Increment our pretend rowid value. */
+ pCsr->iRowid++;
+
+ for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){
+ if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK;
+ }
+
+ rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
+ if( rc==SQLITE_ROW ){
+ int i = 0;
+ int nDoclist = pCsr->csr.nDoclist;
+ char *aDoclist = pCsr->csr.aDoclist;
+ int iCol;
+
+ int eState = 0;
+
+ if( pCsr->zStop ){
+ int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm;
+ int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n);
+ if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){
+ pCsr->isEof = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM;
+ memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat);
+ iCol = 0;
+ rc = SQLITE_OK;
+
+ while( i<nDoclist ){
+ sqlite3_int64 v = 0;
+
+ i += sqlite3Fts3GetVarint(&aDoclist[i], &v);
+ switch( eState ){
+ /* State 0. In this state the integer just read was a docid. */
+ case 0:
+ pCsr->aStat[0].nDoc++;
+ eState = 1;
+ iCol = 0;
+ break;
+
+ /* State 1. In this state we are expecting either a 1, indicating
+ ** that the following integer will be a column number, or the
+ ** start of a position list for column 0.
+ **
+ ** The only difference between state 1 and state 2 is that if the
+ ** integer encountered in state 1 is not 0 or 1, then we need to
+ ** increment the column 0 "nDoc" count for this term.
+ */
+ case 1:
+ assert( iCol==0 );
+ if( v>1 ){
+ pCsr->aStat[1].nDoc++;
+ }
+ eState = 2;
+ /* fall through */
+
+ case 2:
+ if( v==0 ){ /* 0x00. Next integer will be a docid. */
+ eState = 0;
+ }else if( v==1 ){ /* 0x01. Next integer will be a column number. */
+ eState = 3;
+ }else{ /* 2 or greater. A position. */
+ pCsr->aStat[iCol+1].nOcc++;
+ pCsr->aStat[0].nOcc++;
+ }
+ break;
+
+ /* State 3. The integer just read is a column number. */
+ default: assert( eState==3 );
+ iCol = (int)v;
+ if( iCol<1 ){
+ rc = SQLITE_CORRUPT_VTAB;
+ break;
+ }
+ if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM;
+ pCsr->aStat[iCol+1].nDoc++;
+ eState = 2;
+ break;
+ }
+ }
+
+ pCsr->iCol = 0;
+ }else{
+ pCsr->isEof = 1;
+ }
+ return rc;
+}
+
+/*
+** xFilter - Initialize a cursor to point at the start of its data.
+*/
+static int fts3auxFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
+ int rc;
+ int isScan = 0;
+ int iLangVal = 0; /* Language id to query */
+
+ int iEq = -1; /* Index of term=? value in apVal */
+ int iGe = -1; /* Index of term>=? value in apVal */
+ int iLe = -1; /* Index of term<=? value in apVal */
+ int iLangid = -1; /* Index of languageid=? value in apVal */
+ int iNext = 0;
+
+ UNUSED_PARAMETER(nVal);
+ UNUSED_PARAMETER(idxStr);
+
+ assert( idxStr==0 );
+ assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
+ || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
+ || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
+ );
+
+ if( idxNum==FTS4AUX_EQ_CONSTRAINT ){
+ iEq = iNext++;
+ }else{
+ isScan = 1;
+ if( idxNum & FTS4AUX_GE_CONSTRAINT ){
+ iGe = iNext++;
+ }
+ if( idxNum & FTS4AUX_LE_CONSTRAINT ){
+ iLe = iNext++;
+ }
+ }
+ if( iNext<nVal ){
+ iLangid = iNext++;
+ }
+
+ /* In case this cursor is being reused, close and zero it. */
+ testcase(pCsr->filter.zTerm);
+ sqlite3Fts3SegReaderFinish(&pCsr->csr);
+ sqlite3_free((void *)pCsr->filter.zTerm);
+ sqlite3_free(pCsr->aStat);
+ sqlite3_free(pCsr->zStop);
+ memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
+
+ pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
+ if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
+
+ if( iEq>=0 || iGe>=0 ){
+ const unsigned char *zStr = sqlite3_value_text(apVal[0]);
+ assert( (iEq==0 && iGe==-1) || (iEq==-1 && iGe==0) );
+ if( zStr ){
+ pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr);
+ if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM;
+ pCsr->filter.nTerm = (int)strlen(pCsr->filter.zTerm);
+ }
+ }
+
+ if( iLe>=0 ){
+ pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iLe]));
+ if( pCsr->zStop==0 ) return SQLITE_NOMEM;
+ pCsr->nStop = (int)strlen(pCsr->zStop);
+ }
+
+ if( iLangid>=0 ){
+ iLangVal = sqlite3_value_int(apVal[iLangid]);
+
+ /* If the user specified a negative value for the languageid, use zero
+ ** instead. This works, as the "languageid=?" constraint will also
+ ** be tested by the VDBE layer. The test will always be false (since
+ ** this module will not return a row with a negative languageid), and
+ ** so the overall query will return zero rows. */
+ if( iLangVal<0 ) iLangVal = 0;
+ }
+ pCsr->iLangid = iLangVal;
+
+ rc = sqlite3Fts3SegReaderCursor(pFts3, iLangVal, 0, FTS3_SEGCURSOR_ALL,
+ pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
+ }
+
+ if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);
+ return rc;
+}
+
+/*
+** xEof - Return true if the cursor is at EOF, or false otherwise.
+*/
+static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ return pCsr->isEof;
+}
+
+/*
+** xColumn - Return a column value.
+*/
+static int fts3auxColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts3auxCursor *p = (Fts3auxCursor *)pCursor;
+
+ assert( p->isEof==0 );
+ switch( iCol ){
+ case 0: /* term */
+ sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
+ break;
+
+ case 1: /* col */
+ if( p->iCol ){
+ sqlite3_result_int(pCtx, p->iCol-1);
+ }else{
+ sqlite3_result_text(pCtx, "*", -1, SQLITE_STATIC);
+ }
+ break;
+
+ case 2: /* documents */
+ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nDoc);
+ break;
+
+ case 3: /* occurrences */
+ sqlite3_result_int64(pCtx, p->aStat[p->iCol].nOcc);
+ break;
+
+ default: /* languageid */
+ assert( iCol==4 );
+ sqlite3_result_int(pCtx, p->iLangid);
+ break;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** xRowid - Return the current rowid for the cursor.
+*/
+static int fts3auxRowidMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite_int64 *pRowid /* OUT: Rowid value */
+){
+ Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
+ *pRowid = pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Register the fts3aux module with database connection db. Return SQLITE_OK
+** if successful or an error code if sqlite3_create_module() fails.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){
+ static const sqlite3_module fts3aux_module = {
+ 0, /* iVersion */
+ fts3auxConnectMethod, /* xCreate */
+ fts3auxConnectMethod, /* xConnect */
+ fts3auxBestIndexMethod, /* xBestIndex */
+ fts3auxDisconnectMethod, /* xDisconnect */
+ fts3auxDisconnectMethod, /* xDestroy */
+ fts3auxOpenMethod, /* xOpen */
+ fts3auxCloseMethod, /* xClose */
+ fts3auxFilterMethod, /* xFilter */
+ fts3auxNextMethod, /* xNext */
+ fts3auxEofMethod, /* xEof */
+ fts3auxColumnMethod, /* xColumn */
+ fts3auxRowidMethod, /* xRowid */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindFunction */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+ };
+ int rc; /* Return code */
+
+ rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_aux.c ********************************************/
+/************** Begin file fts3_expr.c ***************************************/
+/*
+** 2008 Nov 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This module contains code that implements a parser for fts3 query strings
+** (the right-hand argument to the MATCH operator). Because the supported
+** syntax is relatively simple, the whole tokenizer/parser system is
+** hand-coded.
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/*
+** By default, this module parses the legacy syntax that has been
+** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
+** is defined, then it uses the new syntax. The differences between
+** the new and the old syntaxes are:
+**
+** a) The new syntax supports parenthesis. The old does not.
+**
+** b) The new syntax supports the AND and NOT operators. The old does not.
+**
+** c) The old syntax supports the "-" token qualifier. This is not
+** supported by the new syntax (it is replaced by the NOT operator).
+**
+** d) When using the old syntax, the OR operator has a greater precedence
+** than an implicit AND. When using the new, both implicity and explicit
+** AND operators have a higher precedence than OR.
+**
+** If compiled with SQLITE_TEST defined, then this module exports the
+** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
+** to zero causes the module to use the old syntax. If it is set to
+** non-zero the new syntax is activated. This is so both syntaxes can
+** be tested using a single build of testfixture.
+**
+** The following describes the syntax supported by the fts3 MATCH
+** operator in a similar format to that used by the lemon parser
+** generator. This module does not use actually lemon, it uses a
+** custom parser.
+**
+** query ::= andexpr (OR andexpr)*.
+**
+** andexpr ::= notexpr (AND? notexpr)*.
+**
+** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
+** notexpr ::= LP query RP.
+**
+** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
+**
+** distance_opt ::= .
+** distance_opt ::= / INTEGER.
+**
+** phrase ::= TOKEN.
+** phrase ::= COLUMN:TOKEN.
+** phrase ::= "TOKEN TOKEN TOKEN...".
+*/
+
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_fts3_enable_parentheses = 0;
+#else
+# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
+# define sqlite3_fts3_enable_parentheses 1
+# else
+# define sqlite3_fts3_enable_parentheses 0
+# endif
+#endif
+
+/*
+** Default span for NEAR operators.
+*/
+#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+/*
+** isNot:
+** This variable is used by function getNextNode(). When getNextNode() is
+** called, it sets ParseContext.isNot to true if the 'next node' is a
+** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the
+** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to
+** zero.
+*/
+typedef struct ParseContext ParseContext;
+struct ParseContext {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
+ int iLangid; /* Language id used with tokenizer */
+ const char **azCol; /* Array of column names for fts3 table */
+ int bFts4; /* True to allow FTS4-only syntax */
+ int nCol; /* Number of entries in azCol[] */
+ int iDefaultCol; /* Default column to query */
+ int isNot; /* True if getNextNode() sees a unary - */
+ sqlite3_context *pCtx; /* Write error message here */
+ int nNest; /* Number of nested brackets */
+};
+
+/*
+** This function is equivalent to the standard isspace() function.
+**
+** The standard isspace() can be awkward to use safely, because although it
+** is defined to accept an argument of type int, its behavior when passed
+** an integer that falls outside of the range of the unsigned char type
+** is undefined (and sometimes, "undefined" means segfault). This wrapper
+** is defined to accept an argument of type char, and always returns 0 for
+** any values that fall outside of the range of the unsigned char type (i.e.
+** negative values).
+*/
+static int fts3isspace(char c){
+ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
+}
+
+/*
+** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
+** zero the memory before returning a pointer to it. If unsuccessful,
+** return NULL.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3MallocZero(sqlite3_int64 nByte){
+ void *pRet = sqlite3_malloc64(nByte);
+ if( pRet ) memset(pRet, 0, nByte);
+ return pRet;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(
+ sqlite3_tokenizer *pTokenizer,
+ int iLangid,
+ const char *z,
+ int n,
+ sqlite3_tokenizer_cursor **ppCsr
+){
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ sqlite3_tokenizer_cursor *pCsr = 0;
+ int rc;
+
+ rc = pModule->xOpen(pTokenizer, z, n, &pCsr);
+ assert( rc==SQLITE_OK || pCsr==0 );
+ if( rc==SQLITE_OK ){
+ pCsr->pTokenizer = pTokenizer;
+ if( pModule->iVersion>=1 ){
+ rc = pModule->xLanguageid(pCsr, iLangid);
+ if( rc!=SQLITE_OK ){
+ pModule->xClose(pCsr);
+ pCsr = 0;
+ }
+ }
+ }
+ *ppCsr = pCsr;
+ return rc;
+}
+
+/*
+** Function getNextNode(), which is called by fts3ExprParse(), may itself
+** call fts3ExprParse(). So this forward declaration is required.
+*/
+static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
+
+/*
+** Extract the next token from buffer z (length n) using the tokenizer
+** and other information (column names etc.) in pParse. Create an Fts3Expr
+** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
+** single token and set *ppExpr to point to it. If the end of the buffer is
+** reached before a token is found, set *ppExpr to zero. It is the
+** responsibility of the caller to eventually deallocate the allocated
+** Fts3Expr structure (if any) by passing it to sqlite3_free().
+**
+** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
+** fails.
+*/
+static int getNextToken(
+ ParseContext *pParse, /* fts3 query parse context */
+ int iCol, /* Value for Fts3Phrase.iColumn */
+ const char *z, int n, /* Input string */
+ Fts3Expr **ppExpr, /* OUT: expression */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ int rc;
+ sqlite3_tokenizer_cursor *pCursor;
+ Fts3Expr *pRet = 0;
+ int i = 0;
+
+ /* Set variable i to the maximum number of bytes of input to tokenize. */
+ for(i=0; i<n; i++){
+ if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break;
+ if( z[i]=='"' ) break;
+ }
+
+ *pnConsumed = i;
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
+ if( rc==SQLITE_OK ){
+ const char *zToken;
+ int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;
+ sqlite3_int64 nByte; /* total space to allocate */
+
+ rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
+ if( rc==SQLITE_OK ){
+ nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
+ pRet = (Fts3Expr *)sqlite3Fts3MallocZero(nByte);
+ if( !pRet ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pRet->eType = FTSQUERY_PHRASE;
+ pRet->pPhrase = (Fts3Phrase *)&pRet[1];
+ pRet->pPhrase->nToken = 1;
+ pRet->pPhrase->iColumn = iCol;
+ pRet->pPhrase->aToken[0].n = nToken;
+ pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
+ memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
+
+ if( iEnd<n && z[iEnd]=='*' ){
+ pRet->pPhrase->aToken[0].isPrefix = 1;
+ iEnd++;
+ }
+
+ while( 1 ){
+ if( !sqlite3_fts3_enable_parentheses
+ && iStart>0 && z[iStart-1]=='-'
+ ){
+ pParse->isNot = 1;
+ iStart--;
+ }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){
+ pRet->pPhrase->aToken[0].bFirst = 1;
+ iStart--;
+ }else{
+ break;
+ }
+ }
+
+ }
+ *pnConsumed = iEnd;
+ }else if( i && rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+
+ pModule->xClose(pCursor);
+ }
+
+ *ppExpr = pRet;
+ return rc;
+}
+
+
+/*
+** Enlarge a memory allocation. If an out-of-memory allocation occurs,
+** then free the old allocation.
+*/
+static void *fts3ReallocOrFree(void *pOrig, sqlite3_int64 nNew){
+ void *pRet = sqlite3_realloc64(pOrig, nNew);
+ if( !pRet ){
+ sqlite3_free(pOrig);
+ }
+ return pRet;
+}
+
+/*
+** Buffer zInput, length nInput, contains the contents of a quoted string
+** that appeared as part of an fts3 query expression. Neither quote character
+** is included in the buffer. This function attempts to tokenize the entire
+** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
+** containing the results.
+**
+** If successful, SQLITE_OK is returned and *ppExpr set to point at the
+** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
+** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
+** to 0.
+*/
+static int getNextString(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *zInput, int nInput, /* Input string */
+ Fts3Expr **ppExpr /* OUT: expression */
+){
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ int rc;
+ Fts3Expr *p = 0;
+ sqlite3_tokenizer_cursor *pCursor = 0;
+ char *zTemp = 0;
+ int nTemp = 0;
+
+ const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
+ int nToken = 0;
+
+ /* The final Fts3Expr data structure, including the Fts3Phrase,
+ ** Fts3PhraseToken structures token buffers are all stored as a single
+ ** allocation so that the expression can be freed with a single call to
+ ** sqlite3_free(). Setting this up requires a two pass approach.
+ **
+ ** The first pass, in the block below, uses a tokenizer cursor to iterate
+ ** through the tokens in the expression. This pass uses fts3ReallocOrFree()
+ ** to assemble data in two dynamic buffers:
+ **
+ ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase
+ ** structure, followed by the array of Fts3PhraseToken
+ ** structures. This pass only populates the Fts3PhraseToken array.
+ **
+ ** Buffer zTemp: Contains copies of all tokens.
+ **
+ ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below,
+ ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase
+ ** structures.
+ */
+ rc = sqlite3Fts3OpenTokenizer(
+ pTokenizer, pParse->iLangid, zInput, nInput, &pCursor);
+ if( rc==SQLITE_OK ){
+ int ii;
+ for(ii=0; rc==SQLITE_OK; ii++){
+ const char *zByte;
+ int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0;
+ rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos);
+ if( rc==SQLITE_OK ){
+ Fts3PhraseToken *pToken;
+
+ p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken));
+ if( !p ) goto no_mem;
+
+ zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte);
+ if( !zTemp ) goto no_mem;
+
+ assert( nToken==ii );
+ pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii];
+ memset(pToken, 0, sizeof(Fts3PhraseToken));
+
+ memcpy(&zTemp[nTemp], zByte, nByte);
+ nTemp += nByte;
+
+ pToken->n = nByte;
+ pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*');
+ pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^');
+ nToken = ii+1;
+ }
+ }
+
+ pModule->xClose(pCursor);
+ pCursor = 0;
+ }
+
+ if( rc==SQLITE_DONE ){
+ int jj;
+ char *zBuf = 0;
+
+ p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp);
+ if( !p ) goto no_mem;
+ memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p);
+ p->eType = FTSQUERY_PHRASE;
+ p->pPhrase = (Fts3Phrase *)&p[1];
+ p->pPhrase->iColumn = pParse->iDefaultCol;
+ p->pPhrase->nToken = nToken;
+
+ zBuf = (char *)&p->pPhrase->aToken[nToken];
+ if( zTemp ){
+ memcpy(zBuf, zTemp, nTemp);
+ sqlite3_free(zTemp);
+ }else{
+ assert( nTemp==0 );
+ }
+
+ for(jj=0; jj<p->pPhrase->nToken; jj++){
+ p->pPhrase->aToken[jj].z = zBuf;
+ zBuf += p->pPhrase->aToken[jj].n;
+ }
+ rc = SQLITE_OK;
+ }
+
+ *ppExpr = p;
+ return rc;
+no_mem:
+
+ if( pCursor ){
+ pModule->xClose(pCursor);
+ }
+ sqlite3_free(zTemp);
+ sqlite3_free(p);
+ *ppExpr = 0;
+ return SQLITE_NOMEM;
+}
+
+/*
+** The output variable *ppExpr is populated with an allocated Fts3Expr
+** structure, or set to 0 if the end of the input buffer is reached.
+**
+** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
+** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
+** If SQLITE_ERROR is returned, pContext is populated with an error message.
+*/
+static int getNextNode(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *z, int n, /* Input string */
+ Fts3Expr **ppExpr, /* OUT: expression */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ static const struct Fts3Keyword {
+ char *z; /* Keyword text */
+ unsigned char n; /* Length of the keyword */
+ unsigned char parenOnly; /* Only valid in paren mode */
+ unsigned char eType; /* Keyword code */
+ } aKeyword[] = {
+ { "OR" , 2, 0, FTSQUERY_OR },
+ { "AND", 3, 1, FTSQUERY_AND },
+ { "NOT", 3, 1, FTSQUERY_NOT },
+ { "NEAR", 4, 0, FTSQUERY_NEAR }
+ };
+ int ii;
+ int iCol;
+ int iColLen;
+ int rc;
+ Fts3Expr *pRet = 0;
+
+ const char *zInput = z;
+ int nInput = n;
+
+ pParse->isNot = 0;
+
+ /* Skip over any whitespace before checking for a keyword, an open or
+ ** close bracket, or a quoted string.
+ */
+ while( nInput>0 && fts3isspace(*zInput) ){
+ nInput--;
+ zInput++;
+ }
+ if( nInput==0 ){
+ return SQLITE_DONE;
+ }
+
+ /* See if we are dealing with a keyword. */
+ for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
+ const struct Fts3Keyword *pKey = &aKeyword[ii];
+
+ if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
+ continue;
+ }
+
+ if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
+ int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
+ int nKey = pKey->n;
+ char cNext;
+
+ /* If this is a "NEAR" keyword, check for an explicit nearness. */
+ if( pKey->eType==FTSQUERY_NEAR ){
+ assert( nKey==4 );
+ if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
+ nKey += 1+sqlite3Fts3ReadInt(&zInput[nKey+1], &nNear);
+ }
+ }
+
+ /* At this point this is probably a keyword. But for that to be true,
+ ** the next byte must contain either whitespace, an open or close
+ ** parenthesis, a quote character, or EOF.
+ */
+ cNext = zInput[nKey];
+ if( fts3isspace(cNext)
+ || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
+ ){
+ pRet = (Fts3Expr *)sqlite3Fts3MallocZero(sizeof(Fts3Expr));
+ if( !pRet ){
+ return SQLITE_NOMEM;
+ }
+ pRet->eType = pKey->eType;
+ pRet->nNear = nNear;
+ *ppExpr = pRet;
+ *pnConsumed = (int)((zInput - z) + nKey);
+ return SQLITE_OK;
+ }
+
+ /* Turns out that wasn't a keyword after all. This happens if the
+ ** user has supplied a token such as "ORacle". Continue.
+ */
+ }
+ }
+
+ /* See if we are dealing with a quoted phrase. If this is the case, then
+ ** search for the closing quote and pass the whole string to getNextString()
+ ** for processing. This is easy to do, as fts3 has no syntax for escaping
+ ** a quote character embedded in a string.
+ */
+ if( *zInput=='"' ){
+ for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
+ *pnConsumed = (int)((zInput - z) + ii + 1);
+ if( ii==nInput ){
+ return SQLITE_ERROR;
+ }
+ return getNextString(pParse, &zInput[1], ii-1, ppExpr);
+ }
+
+ if( sqlite3_fts3_enable_parentheses ){
+ if( *zInput=='(' ){
+ int nConsumed = 0;
+ pParse->nNest++;
+#if !defined(SQLITE_MAX_EXPR_DEPTH)
+ if( pParse->nNest>1000 ) return SQLITE_ERROR;
+#elif SQLITE_MAX_EXPR_DEPTH>0
+ if( pParse->nNest>SQLITE_MAX_EXPR_DEPTH ) return SQLITE_ERROR;
+#endif
+ rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed);
+ *pnConsumed = (int)(zInput - z) + 1 + nConsumed;
+ return rc;
+ }else if( *zInput==')' ){
+ pParse->nNest--;
+ *pnConsumed = (int)((zInput - z) + 1);
+ *ppExpr = 0;
+ return SQLITE_DONE;
+ }
+ }
+
+ /* If control flows to this point, this must be a regular token, or
+ ** the end of the input. Read a regular token using the sqlite3_tokenizer
+ ** interface. Before doing so, figure out if there is an explicit
+ ** column specifier for the token.
+ **
+ ** TODO: Strangely, it is not possible to associate a column specifier
+ ** with a quoted phrase, only with a single token. Not sure if this was
+ ** an implementation artifact or an intentional decision when fts3 was
+ ** first implemented. Whichever it was, this module duplicates the
+ ** limitation.
+ */
+ iCol = pParse->iDefaultCol;
+ iColLen = 0;
+ for(ii=0; ii<pParse->nCol; ii++){
+ const char *zStr = pParse->azCol[ii];
+ int nStr = (int)strlen(zStr);
+ if( nInput>nStr && zInput[nStr]==':'
+ && sqlite3_strnicmp(zStr, zInput, nStr)==0
+ ){
+ iCol = ii;
+ iColLen = (int)((zInput - z) + nStr + 1);
+ break;
+ }
+ }
+ rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
+ *pnConsumed += iColLen;
+ return rc;
+}
+
+/*
+** The argument is an Fts3Expr structure for a binary operator (any type
+** except an FTSQUERY_PHRASE). Return an integer value representing the
+** precedence of the operator. Lower values have a higher precedence (i.e.
+** group more tightly). For example, in the C language, the == operator
+** groups more tightly than ||, and would therefore have a higher precedence.
+**
+** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
+** is defined), the order of the operators in precedence from highest to
+** lowest is:
+**
+** NEAR
+** NOT
+** AND (including implicit ANDs)
+** OR
+**
+** Note that when using the old query syntax, the OR operator has a higher
+** precedence than the AND operator.
+*/
+static int opPrecedence(Fts3Expr *p){
+ assert( p->eType!=FTSQUERY_PHRASE );
+ if( sqlite3_fts3_enable_parentheses ){
+ return p->eType;
+ }else if( p->eType==FTSQUERY_NEAR ){
+ return 1;
+ }else if( p->eType==FTSQUERY_OR ){
+ return 2;
+ }
+ assert( p->eType==FTSQUERY_AND );
+ return 3;
+}
+
+/*
+** Argument ppHead contains a pointer to the current head of a query
+** expression tree being parsed. pPrev is the expression node most recently
+** inserted into the tree. This function adds pNew, which is always a binary
+** operator node, into the expression tree based on the relative precedence
+** of pNew and the existing nodes of the tree. This may result in the head
+** of the tree changing, in which case *ppHead is set to the new root node.
+*/
+static void insertBinaryOperator(
+ Fts3Expr **ppHead, /* Pointer to the root node of a tree */
+ Fts3Expr *pPrev, /* Node most recently inserted into the tree */
+ Fts3Expr *pNew /* New binary node to insert into expression tree */
+){
+ Fts3Expr *pSplit = pPrev;
+ while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
+ pSplit = pSplit->pParent;
+ }
+
+ if( pSplit->pParent ){
+ assert( pSplit->pParent->pRight==pSplit );
+ pSplit->pParent->pRight = pNew;
+ pNew->pParent = pSplit->pParent;
+ }else{
+ *ppHead = pNew;
+ }
+ pNew->pLeft = pSplit;
+ pSplit->pParent = pNew;
+}
+
+/*
+** Parse the fts3 query expression found in buffer z, length n. This function
+** returns either when the end of the buffer is reached or an unmatched
+** closing bracket - ')' - is encountered.
+**
+** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
+** parsed form of the expression and *pnConsumed is set to the number of
+** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
+** (out of memory error) or SQLITE_ERROR (parse error) is returned.
+*/
+static int fts3ExprParse(
+ ParseContext *pParse, /* fts3 query parse context */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */
+ int *pnConsumed /* OUT: Number of bytes consumed */
+){
+ Fts3Expr *pRet = 0;
+ Fts3Expr *pPrev = 0;
+ Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
+ int nIn = n;
+ const char *zIn = z;
+ int rc = SQLITE_OK;
+ int isRequirePhrase = 1;
+
+ while( rc==SQLITE_OK ){
+ Fts3Expr *p = 0;
+ int nByte = 0;
+
+ rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
+ assert( nByte>0 || (rc!=SQLITE_OK && p==0) );
+ if( rc==SQLITE_OK ){
+ if( p ){
+ int isPhrase;
+
+ if( !sqlite3_fts3_enable_parentheses
+ && p->eType==FTSQUERY_PHRASE && pParse->isNot
+ ){
+ /* Create an implicit NOT operator. */
+ Fts3Expr *pNot = sqlite3Fts3MallocZero(sizeof(Fts3Expr));
+ if( !pNot ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_NOMEM;
+ goto exprparse_out;
+ }
+ pNot->eType = FTSQUERY_NOT;
+ pNot->pRight = p;
+ p->pParent = pNot;
+ if( pNotBranch ){
+ pNot->pLeft = pNotBranch;
+ pNotBranch->pParent = pNot;
+ }
+ pNotBranch = pNot;
+ p = pPrev;
+ }else{
+ int eType = p->eType;
+ isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
+
+ /* The isRequirePhrase variable is set to true if a phrase or
+ ** an expression contained in parenthesis is required. If a
+ ** binary operator (AND, OR, NOT or NEAR) is encounted when
+ ** isRequirePhrase is set, this is a syntax error.
+ */
+ if( !isPhrase && isRequirePhrase ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_ERROR;
+ goto exprparse_out;
+ }
+
+ if( isPhrase && !isRequirePhrase ){
+ /* Insert an implicit AND operator. */
+ Fts3Expr *pAnd;
+ assert( pRet && pPrev );
+ pAnd = sqlite3Fts3MallocZero(sizeof(Fts3Expr));
+ if( !pAnd ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_NOMEM;
+ goto exprparse_out;
+ }
+ pAnd->eType = FTSQUERY_AND;
+ insertBinaryOperator(&pRet, pPrev, pAnd);
+ pPrev = pAnd;
+ }
+
+ /* This test catches attempts to make either operand of a NEAR
+ ** operator something other than a phrase. For example, either of
+ ** the following:
+ **
+ ** (bracketed expression) NEAR phrase
+ ** phrase NEAR (bracketed expression)
+ **
+ ** Return an error in either case.
+ */
+ if( pPrev && (
+ (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
+ || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
+ )){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_ERROR;
+ goto exprparse_out;
+ }
+
+ if( isPhrase ){
+ if( pRet ){
+ assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
+ pPrev->pRight = p;
+ p->pParent = pPrev;
+ }else{
+ pRet = p;
+ }
+ }else{
+ insertBinaryOperator(&pRet, pPrev, p);
+ }
+ isRequirePhrase = !isPhrase;
+ }
+ pPrev = p;
+ }
+ assert( nByte>0 );
+ }
+ assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
+ nIn -= nByte;
+ zIn += nByte;
+ }
+
+ if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
+ if( !pRet ){
+ rc = SQLITE_ERROR;
+ }else{
+ Fts3Expr *pIter = pNotBranch;
+ while( pIter->pLeft ){
+ pIter = pIter->pLeft;
+ }
+ pIter->pLeft = pRet;
+ pRet->pParent = pIter;
+ pRet = pNotBranch;
+ }
+ }
+ }
+ *pnConsumed = n - nIn;
+
+exprparse_out:
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRet);
+ sqlite3Fts3ExprFree(pNotBranch);
+ pRet = 0;
+ }
+ *ppExpr = pRet;
+ return rc;
+}
+
+/*
+** Return SQLITE_ERROR if the maximum depth of the expression tree passed
+** as the only argument is more than nMaxDepth.
+*/
+static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){
+ int rc = SQLITE_OK;
+ if( p ){
+ if( nMaxDepth<0 ){
+ rc = SQLITE_TOOBIG;
+ }else{
+ rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1);
+ if( rc==SQLITE_OK ){
+ rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** This function attempts to transform the expression tree at (*pp) to
+** an equivalent but more balanced form. The tree is modified in place.
+** If successful, SQLITE_OK is returned and (*pp) set to point to the
+** new root expression node.
+**
+** nMaxDepth is the maximum allowable depth of the balanced sub-tree.
+**
+** Otherwise, if an error occurs, an SQLite error code is returned and
+** expression (*pp) freed.
+*/
+static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){
+ int rc = SQLITE_OK; /* Return code */
+ Fts3Expr *pRoot = *pp; /* Initial root node */
+ Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */
+ int eType = pRoot->eType; /* Type of node in this tree */
+
+ if( nMaxDepth==0 ){
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){
+ Fts3Expr **apLeaf;
+ apLeaf = (Fts3Expr **)sqlite3_malloc64(sizeof(Fts3Expr *) * nMaxDepth);
+ if( 0==apLeaf ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth);
+ }
+
+ if( rc==SQLITE_OK ){
+ int i;
+ Fts3Expr *p;
+
+ /* Set $p to point to the left-most leaf in the tree of eType nodes. */
+ for(p=pRoot; p->eType==eType; p=p->pLeft){
+ assert( p->pParent==0 || p->pParent->pLeft==p );
+ assert( p->pLeft && p->pRight );
+ }
+
+ /* This loop runs once for each leaf in the tree of eType nodes. */
+ while( 1 ){
+ int iLvl;
+ Fts3Expr *pParent = p->pParent; /* Current parent of p */
+
+ assert( pParent==0 || pParent->pLeft==p );
+ p->pParent = 0;
+ if( pParent ){
+ pParent->pLeft = 0;
+ }else{
+ pRoot = 0;
+ }
+ rc = fts3ExprBalance(&p, nMaxDepth-1);
+ if( rc!=SQLITE_OK ) break;
+
+ for(iLvl=0; p && iLvl<nMaxDepth; iLvl++){
+ if( apLeaf[iLvl]==0 ){
+ apLeaf[iLvl] = p;
+ p = 0;
+ }else{
+ assert( pFree );
+ pFree->pLeft = apLeaf[iLvl];
+ pFree->pRight = p;
+ pFree->pLeft->pParent = pFree;
+ pFree->pRight->pParent = pFree;
+
+ p = pFree;
+ pFree = pFree->pParent;
+ p->pParent = 0;
+ apLeaf[iLvl] = 0;
+ }
+ }
+ if( p ){
+ sqlite3Fts3ExprFree(p);
+ rc = SQLITE_TOOBIG;
+ break;
+ }
+
+ /* If that was the last leaf node, break out of the loop */
+ if( pParent==0 ) break;
+
+ /* Set $p to point to the next leaf in the tree of eType nodes */
+ for(p=pParent->pRight; p->eType==eType; p=p->pLeft);
+
+ /* Remove pParent from the original tree. */
+ assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent );
+ pParent->pRight->pParent = pParent->pParent;
+ if( pParent->pParent ){
+ pParent->pParent->pLeft = pParent->pRight;
+ }else{
+ assert( pParent==pRoot );
+ pRoot = pParent->pRight;
+ }
+
+ /* Link pParent into the free node list. It will be used as an
+ ** internal node of the new tree. */
+ pParent->pParent = pFree;
+ pFree = pParent;
+ }
+
+ if( rc==SQLITE_OK ){
+ p = 0;
+ for(i=0; i<nMaxDepth; i++){
+ if( apLeaf[i] ){
+ if( p==0 ){
+ p = apLeaf[i];
+ p->pParent = 0;
+ }else{
+ assert( pFree!=0 );
+ pFree->pRight = p;
+ pFree->pLeft = apLeaf[i];
+ pFree->pLeft->pParent = pFree;
+ pFree->pRight->pParent = pFree;
+
+ p = pFree;
+ pFree = pFree->pParent;
+ p->pParent = 0;
+ }
+ }
+ }
+ pRoot = p;
+ }else{
+ /* An error occurred. Delete the contents of the apLeaf[] array
+ ** and pFree list. Everything else is cleaned up by the call to
+ ** sqlite3Fts3ExprFree(pRoot) below. */
+ Fts3Expr *pDel;
+ for(i=0; i<nMaxDepth; i++){
+ sqlite3Fts3ExprFree(apLeaf[i]);
+ }
+ while( (pDel=pFree)!=0 ){
+ pFree = pDel->pParent;
+ sqlite3_free(pDel);
+ }
+ }
+
+ assert( pFree==0 );
+ sqlite3_free( apLeaf );
+ }
+ }else if( eType==FTSQUERY_NOT ){
+ Fts3Expr *pLeft = pRoot->pLeft;
+ Fts3Expr *pRight = pRoot->pRight;
+
+ pRoot->pLeft = 0;
+ pRoot->pRight = 0;
+ pLeft->pParent = 0;
+ pRight->pParent = 0;
+
+ rc = fts3ExprBalance(&pLeft, nMaxDepth-1);
+ if( rc==SQLITE_OK ){
+ rc = fts3ExprBalance(&pRight, nMaxDepth-1);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRight);
+ sqlite3Fts3ExprFree(pLeft);
+ }else{
+ assert( pLeft && pRight );
+ pRoot->pLeft = pLeft;
+ pLeft->pParent = pRoot;
+ pRoot->pRight = pRight;
+ pRight->pParent = pRoot;
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(pRoot);
+ pRoot = 0;
+ }
+ *pp = pRoot;
+ return rc;
+}
+
+/*
+** This function is similar to sqlite3Fts3ExprParse(), with the following
+** differences:
+**
+** 1. It does not do expression rebalancing.
+** 2. It does not check that the expression does not exceed the
+** maximum allowable depth.
+** 3. Even if it fails, *ppExpr may still be set to point to an
+** expression tree. It should be deleted using sqlite3Fts3ExprFree()
+** in this case.
+*/
+static int fts3ExprParseUnbalanced(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
+ int iLangid, /* Language id for tokenizer */
+ char **azCol, /* Array of column names for fts3 table */
+ int bFts4, /* True to allow FTS4-only syntax */
+ int nCol, /* Number of entries in azCol[] */
+ int iDefaultCol, /* Default column to query */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr /* OUT: Parsed query structure */
+){
+ int nParsed;
+ int rc;
+ ParseContext sParse;
+
+ memset(&sParse, 0, sizeof(ParseContext));
+ sParse.pTokenizer = pTokenizer;
+ sParse.iLangid = iLangid;
+ sParse.azCol = (const char **)azCol;
+ sParse.nCol = nCol;
+ sParse.iDefaultCol = iDefaultCol;
+ sParse.bFts4 = bFts4;
+ if( z==0 ){
+ *ppExpr = 0;
+ return SQLITE_OK;
+ }
+ if( n<0 ){
+ n = (int)strlen(z);
+ }
+ rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
+ assert( rc==SQLITE_OK || *ppExpr==0 );
+
+ /* Check for mismatched parenthesis */
+ if( rc==SQLITE_OK && sParse.nNest ){
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+/*
+** Parameters z and n contain a pointer to and length of a buffer containing
+** an fts3 query expression, respectively. This function attempts to parse the
+** query expression and create a tree of Fts3Expr structures representing the
+** parsed expression. If successful, *ppExpr is set to point to the head
+** of the parsed expression tree and SQLITE_OK is returned. If an error
+** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
+** error) is returned and *ppExpr is set to 0.
+**
+** If parameter n is a negative number, then z is assumed to point to a
+** nul-terminated string and the length is determined using strlen().
+**
+** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
+** use to normalize query tokens while parsing the expression. The azCol[]
+** array, which is assumed to contain nCol entries, should contain the names
+** of each column in the target fts3 table, in order from left to right.
+** Column names must be nul-terminated strings.
+**
+** The iDefaultCol parameter should be passed the index of the table column
+** that appears on the left-hand-side of the MATCH operator (the default
+** column to match against for tokens for which a column name is not explicitly
+** specified as part of the query string), or -1 if tokens may by default
+** match any table column.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ExprParse(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
+ int iLangid, /* Language id for tokenizer */
+ char **azCol, /* Array of column names for fts3 table */
+ int bFts4, /* True to allow FTS4-only syntax */
+ int nCol, /* Number of entries in azCol[] */
+ int iDefaultCol, /* Default column to query */
+ const char *z, int n, /* Text of MATCH query */
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */
+ char **pzErr /* OUT: Error message (sqlite3_malloc) */
+){
+ int rc = fts3ExprParseUnbalanced(
+ pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr
+ );
+
+ /* Rebalance the expression. And check that its depth does not exceed
+ ** SQLITE_FTS3_MAX_EXPR_DEPTH. */
+ if( rc==SQLITE_OK && *ppExpr ){
+ rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
+ if( rc==SQLITE_OK ){
+ rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ExprFree(*ppExpr);
+ *ppExpr = 0;
+ if( rc==SQLITE_TOOBIG ){
+ sqlite3Fts3ErrMsg(pzErr,
+ "FTS expression tree is too large (maximum depth %d)",
+ SQLITE_FTS3_MAX_EXPR_DEPTH
+ );
+ rc = SQLITE_ERROR;
+ }else if( rc==SQLITE_ERROR ){
+ sqlite3Fts3ErrMsg(pzErr, "malformed MATCH expression: [%s]", z);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Free a single node of an expression tree.
+*/
+static void fts3FreeExprNode(Fts3Expr *p){
+ assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 );
+ sqlite3Fts3EvalPhraseCleanup(p->pPhrase);
+ sqlite3_free(p->aMI);
+ sqlite3_free(p);
+}
+
+/*
+** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
+**
+** This function would be simpler if it recursively called itself. But
+** that would mean passing a sufficiently large expression to ExprParse()
+** could cause a stack overflow.
+*/
+SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *pDel){
+ Fts3Expr *p;
+ assert( pDel==0 || pDel->pParent==0 );
+ for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){
+ assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft );
+ }
+ while( p ){
+ Fts3Expr *pParent = p->pParent;
+ fts3FreeExprNode(p);
+ if( pParent && p==pParent->pLeft && pParent->pRight ){
+ p = pParent->pRight;
+ while( p && (p->pLeft || p->pRight) ){
+ assert( p==p->pParent->pRight || p==p->pParent->pLeft );
+ p = (p->pLeft ? p->pLeft : p->pRight);
+ }
+ }else{
+ p = pParent;
+ }
+ }
+}
+
+/****************************************************************************
+*****************************************************************************
+** Everything after this point is just test code.
+*/
+
+#ifdef SQLITE_TEST
+
+/* #include <stdio.h> */
+
+/*
+** Return a pointer to a buffer containing a text representation of the
+** expression passed as the first argument. The buffer is obtained from
+** sqlite3_malloc(). It is the responsibility of the caller to use
+** sqlite3_free() to release the memory. If an OOM condition is encountered,
+** NULL is returned.
+**
+** If the second argument is not NULL, then its contents are prepended to
+** the returned expression text and then freed using sqlite3_free().
+*/
+static char *exprToString(Fts3Expr *pExpr, char *zBuf){
+ if( pExpr==0 ){
+ return sqlite3_mprintf("");
+ }
+ switch( pExpr->eType ){
+ case FTSQUERY_PHRASE: {
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ int i;
+ zBuf = sqlite3_mprintf(
+ "%zPHRASE %d 0", zBuf, pPhrase->iColumn);
+ for(i=0; zBuf && i<pPhrase->nToken; i++){
+ zBuf = sqlite3_mprintf("%z %.*s%s", zBuf,
+ pPhrase->aToken[i].n, pPhrase->aToken[i].z,
+ (pPhrase->aToken[i].isPrefix?"+":"")
+ );
+ }
+ return zBuf;
+ }
+
+ case FTSQUERY_NEAR:
+ zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear);
+ break;
+ case FTSQUERY_NOT:
+ zBuf = sqlite3_mprintf("%zNOT ", zBuf);
+ break;
+ case FTSQUERY_AND:
+ zBuf = sqlite3_mprintf("%zAND ", zBuf);
+ break;
+ case FTSQUERY_OR:
+ zBuf = sqlite3_mprintf("%zOR ", zBuf);
+ break;
+ }
+
+ if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf);
+ if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf);
+ if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf);
+
+ if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf);
+ if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf);
+
+ return zBuf;
+}
+
+/*
+** This is the implementation of a scalar SQL function used to test the
+** expression parser. It should be called as follows:
+**
+** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
+**
+** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
+** to parse the query expression (see README.tokenizers). The second argument
+** is the query expression to parse. Each subsequent argument is the name
+** of a column of the fts3 table that the query expression may refer to.
+** For example:
+**
+** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
+*/
+static void fts3ExprTestCommon(
+ int bRebalance,
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_tokenizer *pTokenizer = 0;
+ int rc;
+ char **azCol = 0;
+ const char *zExpr;
+ int nExpr;
+ int nCol;
+ int ii;
+ Fts3Expr *pExpr;
+ char *zBuf = 0;
+ Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context);
+ const char *zTokenizer = 0;
+ char *zErr = 0;
+
+ if( argc<3 ){
+ sqlite3_result_error(context,
+ "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
+ );
+ return;
+ }
+
+ zTokenizer = (const char*)sqlite3_value_text(argv[0]);
+ rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_error(context, zErr, -1);
+ }
+ sqlite3_free(zErr);
+ return;
+ }
+
+ zExpr = (const char *)sqlite3_value_text(argv[1]);
+ nExpr = sqlite3_value_bytes(argv[1]);
+ nCol = argc-2;
+ azCol = (char **)sqlite3_malloc64(nCol*sizeof(char *));
+ if( !azCol ){
+ sqlite3_result_error_nomem(context);
+ goto exprtest_out;
+ }
+ for(ii=0; ii<nCol; ii++){
+ azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
+ }
+
+ if( bRebalance ){
+ char *zDummy = 0;
+ rc = sqlite3Fts3ExprParse(
+ pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
+ );
+ assert( rc==SQLITE_OK || pExpr==0 );
+ sqlite3_free(zDummy);
+ }else{
+ rc = fts3ExprParseUnbalanced(
+ pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr
+ );
+ }
+
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
+ sqlite3Fts3ExprFree(pExpr);
+ sqlite3_result_error(context, "Error parsing expression", -1);
+ }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zBuf);
+ }
+
+ sqlite3Fts3ExprFree(pExpr);
+
+exprtest_out:
+ if( pTokenizer ){
+ rc = pTokenizer->pModule->xDestroy(pTokenizer);
+ }
+ sqlite3_free(azCol);
+}
+
+static void fts3ExprTest(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3ExprTestCommon(0, context, argc, argv);
+}
+static void fts3ExprTestRebalance(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3ExprTestCommon(1, context, argc, argv);
+}
+
+/*
+** Register the query expression parser test function fts3_exprtest()
+** with database connection db.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){
+ int rc = sqlite3_create_function(
+ db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "fts3_exprtest_rebalance",
+ -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0
+ );
+ }
+ return rc;
+}
+
+#endif
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_expr.c *******************************************/
+/************** Begin file fts3_hash.c ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables used in SQLite.
+** We've modified it slightly to serve as a standalone hash table
+** implementation for the full-text indexing module.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <string.h> */
+
+/* #include "fts3_hash.h" */
+
+/*
+** Malloc and Free functions
+*/
+static void *fts3HashMalloc(sqlite3_int64 n){
+ void *p = sqlite3_malloc64(n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+static void fts3HashFree(void *p){
+ sqlite3_free(p);
+}
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants
+** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){
+ assert( pNew!=0 );
+ assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
+ pNew->keyClass = keyClass;
+ pNew->copyKey = copyKey;
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){
+ Fts3HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ fts3HashFree(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ Fts3HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_STRING
+*/
+static int fts3StrHash(const void *pKey, int nKey){
+ const char *z = (const char *)pKey;
+ unsigned h = 0;
+ if( nKey<=0 ) nKey = (int) strlen(z);
+ while( nKey > 0 ){
+ h = (h<<3) ^ h ^ *z++;
+ nKey--;
+ }
+ return (int)(h & 0x7fffffff);
+}
+static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return strncmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_BINARY
+*/
+static int fts3BinHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ return h & 0x7fffffff;
+}
+static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "ftsHashFunction". The function takes a
+** single parameter "keyClass". The return value of ftsHashFunction()
+** is a pointer to another function. Specifically, the return value
+** of ftsHashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*ftsHashFunction(int keyClass))(const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrHash;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinHash;
+ }
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrCompare;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinCompare;
+ }
+}
+
+/* Link an element into the hash table
+*/
+static void fts3HashInsertElement(
+ Fts3Hash *pH, /* The complete hash table */
+ struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
+ Fts3HashElem *pNew /* The element to be inserted */
+){
+ Fts3HashElem *pHead; /* First element already in pEntry */
+ pHead = pEntry->chain;
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+ pEntry->count++;
+ pEntry->chain = pNew;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqliteMalloc() fails.
+**
+** Return non-zero if a memory allocation error occurs.
+*/
+static int fts3Rehash(Fts3Hash *pH, int new_size){
+ struct _fts3ht *new_ht; /* The new hash table */
+ Fts3HashElem *elem, *next_elem; /* For looping over existing elements */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( (new_size & (new_size-1))==0 );
+ new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
+ if( new_ht==0 ) return 1;
+ fts3HashFree(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = ftsHashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ fts3HashInsertElement(pH, &new_ht[h], elem);
+ }
+ return 0;
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static Fts3HashElem *fts3FindElementByHash(
+ const Fts3Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ Fts3HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ struct _fts3ht *pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ xCompare = ftsCompareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void fts3RemoveElementByHash(
+ Fts3Hash *pH, /* The pH containing "elem" */
+ Fts3HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ struct _fts3ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ pEntry->count--;
+ if( pEntry->count<=0 ){
+ pEntry->chain = 0;
+ }
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree( elem );
+ pH->count--;
+ if( pH->count<=0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ fts3HashClear(pH);
+ }
+}
+
+SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(
+ const Fts3Hash *pH,
+ const void *pKey,
+ int nKey
+){
+ int h; /* A hash on key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
+}
+
+/*
+** Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
+ Fts3HashElem *pElem; /* The element that matches key (if any) */
+
+ pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey);
+ return pElem ? pElem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
+ Fts3Hash *pH, /* The hash table to insert into */
+ const void *pKey, /* The key */
+ int nKey, /* Number of bytes in the key */
+ void *data /* The data */
+){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ Fts3HashElem *elem; /* Used to loop thru the element list */
+ Fts3HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = fts3FindElementByHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ fts3RemoveElementByHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ if( (pH->htsize==0 && fts3Rehash(pH,8))
+ || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2))
+ ){
+ pH->count = 0;
+ return data;
+ }
+ assert( pH->htsize>0 );
+ new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = fts3HashMalloc( nKey );
+ if( new_elem->pKey==0 ){
+ fts3HashFree(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ assert( pH->htsize>0 );
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ fts3HashInsertElement(pH, &pH->ht[h], new_elem);
+ new_elem->data = data;
+ return 0;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_hash.c *******************************************/
+/************** Begin file fts3_porter.c *************************************/
+/*
+** 2006 September 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Implementation of the full-text-search tokenizer that implements
+** a Porter stemmer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+
+/* #include "fts3_tokenizer.h" */
+
+/*
+** Class derived from sqlite3_tokenizer
+*/
+typedef struct porter_tokenizer {
+ sqlite3_tokenizer base; /* Base class */
+} porter_tokenizer;
+
+/*
+** Class derived from sqlite3_tokenizer_cursor
+*/
+typedef struct porter_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *zInput; /* input we are tokenizing */
+ int nInput; /* size of the input */
+ int iOffset; /* current position in zInput */
+ int iToken; /* index of next token to be returned */
+ char *zToken; /* storage for current token */
+ int nAllocated; /* space allocated to zToken buffer */
+} porter_tokenizer_cursor;
+
+
+/*
+** Create a new tokenizer instance.
+*/
+static int porterCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ porter_tokenizer *t;
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int porterDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is zInput[0..nInput-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int porterOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, int nInput, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ porter_tokenizer_cursor *c;
+
+ UNUSED_PARAMETER(pTokenizer);
+
+ c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->zInput = zInput;
+ if( zInput==0 ){
+ c->nInput = 0;
+ }else if( nInput<0 ){
+ c->nInput = (int)strlen(zInput);
+ }else{
+ c->nInput = nInput;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->zToken = NULL; /* no space allocated, yet. */
+ c->nAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** porterOpen() above.
+*/
+static int porterClose(sqlite3_tokenizer_cursor *pCursor){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->zToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+/*
+** Vowel or consonant
+*/
+static const char cType[] = {
+ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
+ 1, 1, 1, 2, 1
+};
+
+/*
+** isConsonant() and isVowel() determine if their first character in
+** the string they point to is a consonant or a vowel, according
+** to Porter ruls.
+**
+** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
+** 'Y' is a consonant unless it follows another consonant,
+** in which case it is a vowel.
+**
+** In these routine, the letters are in reverse order. So the 'y' rule
+** is that 'y' is a consonant unless it is followed by another
+** consonent.
+*/
+static int isVowel(const char*);
+static int isConsonant(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return j;
+ return z[1]==0 || isVowel(z + 1);
+}
+static int isVowel(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return 1-j;
+ return isConsonant(z + 1);
+}
+
+/*
+** Let any sequence of one or more vowels be represented by V and let
+** C be sequence of one or more consonants. Then every word can be
+** represented as:
+**
+** [C] (VC){m} [V]
+**
+** In prose: A word is an optional consonant followed by zero or
+** vowel-consonant pairs followed by an optional vowel. "m" is the
+** number of vowel consonant pairs. This routine computes the value
+** of m for the first i bytes of a word.
+**
+** Return true if the m-value for z is 1 or more. In other words,
+** return true if z contains at least one vowel that is followed
+** by a consonant.
+**
+** In this routine z[] is in reverse order. So we are really looking
+** for an instance of a consonant followed by a vowel.
+*/
+static int m_gt_0(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/* Like mgt0 above except we are looking for a value of m which is
+** exactly 1
+*/
+static int m_eq_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 1;
+ while( isConsonant(z) ){ z++; }
+ return *z==0;
+}
+
+/* Like mgt0 above except we are looking for a value of m>1 instead
+** or m>0
+*/
+static int m_gt_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if there is a vowel anywhere within z[0..n-1]
+*/
+static int hasVowel(const char *z){
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if the word ends in a double consonant.
+**
+** The text is reversed here. So we are really looking at
+** the first two characters of z[].
+*/
+static int doubleConsonant(const char *z){
+ return isConsonant(z) && z[0]==z[1];
+}
+
+/*
+** Return TRUE if the word ends with three letters which
+** are consonant-vowel-consonent and where the final consonant
+** is not 'w', 'x', or 'y'.
+**
+** The word is reversed here. So we are really checking the
+** first three letters and the first one cannot be in [wxy].
+*/
+static int star_oh(const char *z){
+ return
+ isConsonant(z) &&
+ z[0]!='w' && z[0]!='x' && z[0]!='y' &&
+ isVowel(z+1) &&
+ isConsonant(z+2);
+}
+
+/*
+** If the word ends with zFrom and xCond() is true for the stem
+** of the word that preceeds the zFrom ending, then change the
+** ending to zTo.
+**
+** The input word *pz and zFrom are both in reverse order. zTo
+** is in normal order.
+**
+** Return TRUE if zFrom matches. Return FALSE if zFrom does not
+** match. Not that TRUE is returned even if xCond() fails and
+** no substitution occurs.
+*/
+static int stem(
+ char **pz, /* The word being stemmed (Reversed) */
+ const char *zFrom, /* If the ending matches this... (Reversed) */
+ const char *zTo, /* ... change the ending to this (not reversed) */
+ int (*xCond)(const char*) /* Condition that must be true */
+){
+ char *z = *pz;
+ while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
+ if( *zFrom!=0 ) return 0;
+ if( xCond && !xCond(z) ) return 1;
+ while( *zTo ){
+ *(--z) = *(zTo++);
+ }
+ *pz = z;
+ return 1;
+}
+
+/*
+** This is the fallback stemmer used when the porter stemmer is
+** inappropriate. The input word is copied into the output with
+** US-ASCII case folding. If the input word is too long (more
+** than 20 bytes if it contains no digits or more than 6 bytes if
+** it contains digits) then word is truncated to 20 or 6 bytes
+** by taking 10 or 3 bytes from the beginning and end.
+*/
+static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, mx, j;
+ int hasDigit = 0;
+ for(i=0; i<nIn; i++){
+ char c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zOut[i] = c - 'A' + 'a';
+ }else{
+ if( c>='0' && c<='9' ) hasDigit = 1;
+ zOut[i] = c;
+ }
+ }
+ mx = hasDigit ? 3 : 10;
+ if( nIn>mx*2 ){
+ for(j=mx, i=nIn-mx; i<nIn; i++, j++){
+ zOut[j] = zOut[i];
+ }
+ i = j;
+ }
+ zOut[i] = 0;
+ *pnOut = i;
+}
+
+
+/*
+** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
+** zOut is at least big enough to hold nIn bytes. Write the actual
+** size of the output word (exclusive of the '\0' terminator) into *pnOut.
+**
+** Any upper-case characters in the US-ASCII character set ([A-Z])
+** are converted to lower case. Upper-case UTF characters are
+** unchanged.
+**
+** Words that are longer than about 20 bytes are stemmed by retaining
+** a few bytes from the beginning and the end of the word. If the
+** word contains digits, 3 bytes are taken from the beginning and
+** 3 bytes from the end. For long words without digits, 10 bytes
+** are taken from each end. US-ASCII case folding still applies.
+**
+** If the input word contains not digits but does characters not
+** in [a-zA-Z] then no stemming is attempted and this routine just
+** copies the input into the input into the output with US-ASCII
+** case folding.
+**
+** Stemming never increases the length of the word. So there is
+** no chance of overflowing the zOut buffer.
+*/
+static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, j;
+ char zReverse[28];
+ char *z, *z2;
+ if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){
+ /* The word is too big or too small for the porter stemmer.
+ ** Fallback to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
+ char c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zReverse[j] = c + 'a' - 'A';
+ }else if( c>='a' && c<='z' ){
+ zReverse[j] = c;
+ }else{
+ /* The use of a character not in [a-zA-Z] means that we fallback
+ ** to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ }
+ memset(&zReverse[sizeof(zReverse)-5], 0, 5);
+ z = &zReverse[j+1];
+
+
+ /* Step 1a */
+ if( z[0]=='s' ){
+ if(
+ !stem(&z, "sess", "ss", 0) &&
+ !stem(&z, "sei", "i", 0) &&
+ !stem(&z, "ss", "ss", 0)
+ ){
+ z++;
+ }
+ }
+
+ /* Step 1b */
+ z2 = z;
+ if( stem(&z, "dee", "ee", m_gt_0) ){
+ /* Do nothing. The work was all in the test */
+ }else if(
+ (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
+ && z!=z2
+ ){
+ if( stem(&z, "ta", "ate", 0) ||
+ stem(&z, "lb", "ble", 0) ||
+ stem(&z, "zi", "ize", 0) ){
+ /* Do nothing. The work was all in the test */
+ }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
+ z++;
+ }else if( m_eq_1(z) && star_oh(z) ){
+ *(--z) = 'e';
+ }
+ }
+
+ /* Step 1c */
+ if( z[0]=='y' && hasVowel(z+1) ){
+ z[0] = 'i';
+ }
+
+ /* Step 2 */
+ switch( z[1] ){
+ case 'a':
+ if( !stem(&z, "lanoita", "ate", m_gt_0) ){
+ stem(&z, "lanoit", "tion", m_gt_0);
+ }
+ break;
+ case 'c':
+ if( !stem(&z, "icne", "ence", m_gt_0) ){
+ stem(&z, "icna", "ance", m_gt_0);
+ }
+ break;
+ case 'e':
+ stem(&z, "rezi", "ize", m_gt_0);
+ break;
+ case 'g':
+ stem(&z, "igol", "log", m_gt_0);
+ break;
+ case 'l':
+ if( !stem(&z, "ilb", "ble", m_gt_0)
+ && !stem(&z, "illa", "al", m_gt_0)
+ && !stem(&z, "iltne", "ent", m_gt_0)
+ && !stem(&z, "ile", "e", m_gt_0)
+ ){
+ stem(&z, "ilsuo", "ous", m_gt_0);
+ }
+ break;
+ case 'o':
+ if( !stem(&z, "noitazi", "ize", m_gt_0)
+ && !stem(&z, "noita", "ate", m_gt_0)
+ ){
+ stem(&z, "rota", "ate", m_gt_0);
+ }
+ break;
+ case 's':
+ if( !stem(&z, "msila", "al", m_gt_0)
+ && !stem(&z, "ssenevi", "ive", m_gt_0)
+ && !stem(&z, "ssenluf", "ful", m_gt_0)
+ ){
+ stem(&z, "ssensuo", "ous", m_gt_0);
+ }
+ break;
+ case 't':
+ if( !stem(&z, "itila", "al", m_gt_0)
+ && !stem(&z, "itivi", "ive", m_gt_0)
+ ){
+ stem(&z, "itilib", "ble", m_gt_0);
+ }
+ break;
+ }
+
+ /* Step 3 */
+ switch( z[0] ){
+ case 'e':
+ if( !stem(&z, "etaci", "ic", m_gt_0)
+ && !stem(&z, "evita", "", m_gt_0)
+ ){
+ stem(&z, "ezila", "al", m_gt_0);
+ }
+ break;
+ case 'i':
+ stem(&z, "itici", "ic", m_gt_0);
+ break;
+ case 'l':
+ if( !stem(&z, "laci", "ic", m_gt_0) ){
+ stem(&z, "luf", "", m_gt_0);
+ }
+ break;
+ case 's':
+ stem(&z, "ssen", "", m_gt_0);
+ break;
+ }
+
+ /* Step 4 */
+ switch( z[1] ){
+ case 'a':
+ if( z[0]=='l' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'c':
+ if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'e':
+ if( z[0]=='r' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'i':
+ if( z[0]=='c' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'l':
+ if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'n':
+ if( z[0]=='t' ){
+ if( z[2]=='a' ){
+ if( m_gt_1(z+3) ){
+ z += 3;
+ }
+ }else if( z[2]=='e' ){
+ if( !stem(&z, "tneme", "", m_gt_1)
+ && !stem(&z, "tnem", "", m_gt_1)
+ ){
+ stem(&z, "tne", "", m_gt_1);
+ }
+ }
+ }
+ break;
+ case 'o':
+ if( z[0]=='u' ){
+ if( m_gt_1(z+2) ){
+ z += 2;
+ }
+ }else if( z[3]=='s' || z[3]=='t' ){
+ stem(&z, "noi", "", m_gt_1);
+ }
+ break;
+ case 's':
+ if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 't':
+ if( !stem(&z, "eta", "", m_gt_1) ){
+ stem(&z, "iti", "", m_gt_1);
+ }
+ break;
+ case 'u':
+ if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 'v':
+ case 'z':
+ if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ }
+
+ /* Step 5a */
+ if( z[0]=='e' ){
+ if( m_gt_1(z+1) ){
+ z++;
+ }else if( m_eq_1(z+1) && !star_oh(z+1) ){
+ z++;
+ }
+ }
+
+ /* Step 5b */
+ if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
+ z++;
+ }
+
+ /* z[] is now the stemmed word in reverse order. Flip it back
+ ** around into forward order and return.
+ */
+ *pnOut = i = (int)strlen(z);
+ zOut[i] = 0;
+ while( *z ){
+ zOut[--i] = *(z++);
+ }
+}
+
+/*
+** Characters that can be part of a token. We assume any character
+** whose value is greater than 0x80 (any UTF character) can be
+** part of a token. In other words, delimiters all must have
+** values of 0x7f or lower.
+*/
+static const char porterIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to porterOpen().
+*/
+static int porterNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
+ const char **pzToken, /* OUT: *pzToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ const char *z = c->zInput;
+
+ while( c->iOffset<c->nInput ){
+ int iStartOffset, ch;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int n = c->iOffset-iStartOffset;
+ if( n>c->nAllocated ){
+ char *pNew;
+ c->nAllocated = n+20;
+ pNew = sqlite3_realloc64(c->zToken, c->nAllocated);
+ if( !pNew ) return SQLITE_NOMEM;
+ c->zToken = pNew;
+ }
+ porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
+ *pzToken = c->zToken;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the porter-stemmer tokenizer
+*/
+static const sqlite3_tokenizer_module porterTokenizerModule = {
+ 0,
+ porterCreate,
+ porterDestroy,
+ porterOpen,
+ porterClose,
+ porterNext,
+ 0
+};
+
+/*
+** Allocate a new porter tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &porterTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_porter.c *****************************************/
+/************** Begin file fts3_tokenizer.c **********************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is part of an SQLite module implementing full-text search.
+** This particular file implements the generic tokenizer interface.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <string.h> */
+
+/*
+** Return true if the two-argument version of fts3_tokenizer()
+** has been activated via a prior call to sqlite3_db_config(db,
+** SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, 1, 0);
+*/
+static int fts3TokenizerEnabled(sqlite3_context *context){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int isEnabled = 0;
+ sqlite3_db_config(db,SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER,-1,&isEnabled);
+ return isEnabled;
+}
+
+/*
+** Implementation of the SQL scalar function for accessing the underlying
+** hash table. This function may be called as follows:
+**
+** SELECT <function-name>(<key-name>);
+** SELECT <function-name>(<key-name>, <pointer>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
+**
+** If the <pointer> argument is specified, it must be a blob value
+** containing a pointer to be stored as the hash data corresponding
+** to the string <key-name>. If <pointer> is not specified, then
+** the string <key-name> must already exist in the has table. Otherwise,
+** an error is returned.
+**
+** Whether or not the <pointer> argument is specified, the value returned
+** is a blob containing the pointer stored as the hash data corresponding
+** to string <key-name> (after the hash-table is updated, if applicable).
+*/
+static void fts3TokenizerFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ Fts3Hash *pHash;
+ void *pPtr = 0;
+ const unsigned char *zName;
+ int nName;
+
+ assert( argc==1 || argc==2 );
+
+ pHash = (Fts3Hash *)sqlite3_user_data(context);
+
+ zName = sqlite3_value_text(argv[0]);
+ nName = sqlite3_value_bytes(argv[0])+1;
+
+ if( argc==2 ){
+ if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[1]) ){
+ void *pOld;
+ int n = sqlite3_value_bytes(argv[1]);
+ if( zName==0 || n!=sizeof(pPtr) ){
+ sqlite3_result_error(context, "argument type mismatch", -1);
+ return;
+ }
+ pPtr = *(void **)sqlite3_value_blob(argv[1]);
+ pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
+ if( pOld==pPtr ){
+ sqlite3_result_error(context, "out of memory", -1);
+ }
+ }else{
+ sqlite3_result_error(context, "fts3tokenize disabled", -1);
+ return;
+ }
+ }else{
+ if( zName ){
+ pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
+ }
+ if( !pPtr ){
+ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ }
+ if( fts3TokenizerEnabled(context) || sqlite3_value_frombind(argv[0]) ){
+ sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
+ }
+}
+
+SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){
+ static const char isFtsIdChar[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+ };
+ return (c&0x80 || isFtsIdChar[(int)(c)]);
+}
+
+SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
+ const char *z1;
+ const char *z2 = 0;
+
+ /* Find the start of the next token. */
+ z1 = zStr;
+ while( z2==0 ){
+ char c = *z1;
+ switch( c ){
+ case '\0': return 0; /* No more tokens here */
+ case '\'':
+ case '"':
+ case '`': {
+ z2 = z1;
+ while( *++z2 && (*z2!=c || *++z2==c) );
+ break;
+ }
+ case '[':
+ z2 = &z1[1];
+ while( *z2 && z2[0]!=']' ) z2++;
+ if( *z2 ) z2++;
+ break;
+
+ default:
+ if( sqlite3Fts3IsIdChar(*z1) ){
+ z2 = &z1[1];
+ while( sqlite3Fts3IsIdChar(*z2) ) z2++;
+ }else{
+ z1++;
+ }
+ }
+ }
+
+ *pn = (int)(z2-z1);
+ return z1;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(
+ Fts3Hash *pHash, /* Tokenizer hash table */
+ const char *zArg, /* Tokenizer name */
+ sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */
+ char **pzErr /* OUT: Set to malloced error message */
+){
+ int rc;
+ char *z = (char *)zArg;
+ int n = 0;
+ char *zCopy;
+ char *zEnd; /* Pointer to nul-term of zCopy */
+ sqlite3_tokenizer_module *m;
+
+ zCopy = sqlite3_mprintf("%s", zArg);
+ if( !zCopy ) return SQLITE_NOMEM;
+ zEnd = &zCopy[strlen(zCopy)];
+
+ z = (char *)sqlite3Fts3NextToken(zCopy, &n);
+ if( z==0 ){
+ assert( n==0 );
+ z = zCopy;
+ }
+ z[n] = '\0';
+ sqlite3Fts3Dequote(z);
+
+ m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
+ if( !m ){
+ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", z);
+ rc = SQLITE_ERROR;
+ }else{
+ char const **aArg = 0;
+ int iArg = 0;
+ z = &z[n+1];
+ while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){
+ sqlite3_int64 nNew = sizeof(char *)*(iArg+1);
+ char const **aNew = (const char **)sqlite3_realloc64((void *)aArg, nNew);
+ if( !aNew ){
+ sqlite3_free(zCopy);
+ sqlite3_free((void *)aArg);
+ return SQLITE_NOMEM;
+ }
+ aArg = aNew;
+ aArg[iArg++] = z;
+ z[n] = '\0';
+ sqlite3Fts3Dequote(z);
+ z = &z[n+1];
+ }
+ rc = m->xCreate(iArg, aArg, ppTok);
+ assert( rc!=SQLITE_OK || *ppTok );
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer");
+ }else{
+ (*ppTok)->pModule = m;
+ }
+ sqlite3_free((void *)aArg);
+ }
+
+ sqlite3_free(zCopy);
+ return rc;
+}
+
+
+#ifdef SQLITE_TEST
+
+#if defined(INCLUDE_SQLITE_TCL_H)
+# include "sqlite_tcl.h"
+#else
+# include "tcl.h"
+#endif
+/* #include <string.h> */
+
+/*
+** Implementation of a special SQL scalar function for testing tokenizers
+** designed to be used in concert with the Tcl testing framework. This
+** function must be called with two or more arguments:
+**
+** SELECT <function-name>(<key-name>, ..., <input-string>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
+** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
+**
+** The return value is a string that may be interpreted as a Tcl
+** list. For each token in the <input-string>, three elements are
+** added to the returned list. The first is the token position, the
+** second is the token text (folded, stemmed, etc.) and the third is the
+** substring of <input-string> associated with the token. For example,
+** using the built-in "simple" tokenizer:
+**
+** SELECT fts_tokenizer_test('simple', 'I don't see how');
+**
+** will return the string:
+**
+** "{0 i I 1 dont don't 2 see see 3 how how}"
+**
+*/
+static void testFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ Fts3Hash *pHash;
+ sqlite3_tokenizer_module *p;
+ sqlite3_tokenizer *pTokenizer = 0;
+ sqlite3_tokenizer_cursor *pCsr = 0;
+
+ const char *zErr = 0;
+
+ const char *zName;
+ int nName;
+ const char *zInput;
+ int nInput;
+
+ const char *azArg[64];
+
+ const char *zToken;
+ int nToken = 0;
+ int iStart = 0;
+ int iEnd = 0;
+ int iPos = 0;
+ int i;
+
+ Tcl_Obj *pRet;
+
+ if( argc<2 ){
+ sqlite3_result_error(context, "insufficient arguments", -1);
+ return;
+ }
+
+ nName = sqlite3_value_bytes(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[0]);
+ nInput = sqlite3_value_bytes(argv[argc-1]);
+ zInput = (const char *)sqlite3_value_text(argv[argc-1]);
+
+ pHash = (Fts3Hash *)sqlite3_user_data(context);
+ p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
+
+ if( !p ){
+ char *zErr2 = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr2, -1);
+ sqlite3_free(zErr2);
+ return;
+ }
+
+ pRet = Tcl_NewObj();
+ Tcl_IncrRefCount(pRet);
+
+ for(i=1; i<argc-1; i++){
+ azArg[i-1] = (const char *)sqlite3_value_text(argv[i]);
+ }
+
+ if( SQLITE_OK!=p->xCreate(argc-2, azArg, &pTokenizer) ){
+ zErr = "error in xCreate()";
+ goto finish;
+ }
+ pTokenizer->pModule = p;
+ if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){
+ zErr = "error in xOpen()";
+ goto finish;
+ }
+
+ while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ zToken = &zInput[iStart];
+ nToken = iEnd-iStart;
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ }
+
+ if( SQLITE_OK!=p->xClose(pCsr) ){
+ zErr = "error in xClose()";
+ goto finish;
+ }
+ if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
+ zErr = "error in xDestroy()";
+ goto finish;
+ }
+
+finish:
+ if( zErr ){
+ sqlite3_result_error(context, zErr, -1);
+ }else{
+ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
+ }
+ Tcl_DecrRefCount(pRet);
+}
+
+static
+int registerTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module *p
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
+
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
+ sqlite3_step(pStmt);
+
+ return sqlite3_finalize(pStmt);
+}
+
+
+static
+int queryTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module **pp
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?)";
+
+ *pp = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB
+ && sqlite3_column_bytes(pStmt, 0)==sizeof(*pp)
+ ){
+ memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
+ }
+ }
+
+ return sqlite3_finalize(pStmt);
+}
+
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+
+/*
+** Implementation of the scalar function fts3_tokenizer_internal_test().
+** This function is used for testing only, it is not included in the
+** build unless SQLITE_TEST is defined.
+**
+** The purpose of this is to test that the fts3_tokenizer() function
+** can be used as designed by the C-code in the queryTokenizer and
+** registerTokenizer() functions above. These two functions are repeated
+** in the README.tokenizer file as an example, so it is important to
+** test them.
+**
+** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
+** function with no arguments. An assert() will fail if a problem is
+** detected. i.e.:
+**
+** SELECT fts3_tokenizer_internal_test();
+**
+*/
+static void intTestFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int rc;
+ const sqlite3_tokenizer_module *p1;
+ const sqlite3_tokenizer_module *p2;
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
+
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+
+ /* Test the query function */
+ sqlite3Fts3SimpleTokenizerModule(&p1);
+ rc = queryTokenizer(db, "simple", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p1==p2 );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_ERROR );
+ assert( p2==0 );
+ assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
+
+ /* Test the storage function */
+ if( fts3TokenizerEnabled(context) ){
+ rc = registerTokenizer(db, "nosuchtokenizer", p1);
+ assert( rc==SQLITE_OK );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p2==p1 );
+ }
+
+ sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
+}
+
+#endif
+
+/*
+** Set up SQL objects in database db used to access the contents of
+** the hash table pointed to by argument pHash. The hash table must
+** been initialized to use string keys, and to take a private copy
+** of the key when a value is inserted. i.e. by a call similar to:
+**
+** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
+**
+** This function adds a scalar function (see header comment above
+** fts3TokenizerFunc() in this file for details) and, if ENABLE_TABLE is
+** defined at compilation time, a temporary virtual table (see header
+** comment above struct HashTableVtab) to the database schema. Both
+** provide read/write access to the contents of *pHash.
+**
+** The third argument to this function, zName, is used as the name
+** of both the scalar and, if created, the virtual table.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
+ sqlite3 *db,
+ Fts3Hash *pHash,
+ const char *zName
+){
+ int rc = SQLITE_OK;
+ void *p = (void *)pHash;
+ const int any = SQLITE_UTF8|SQLITE_DIRECTONLY;
+
+#ifdef SQLITE_TEST
+ char *zTest = 0;
+ char *zTest2 = 0;
+ void *pdb = (void *)db;
+ zTest = sqlite3_mprintf("%s_test", zName);
+ zTest2 = sqlite3_mprintf("%s_internal_test", zName);
+ if( !zTest || !zTest2 ){
+ rc = SQLITE_NOMEM;
+ }
+#endif
+
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zName, 1, any, p, fts3TokenizerFunc, 0, 0);
+ }
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zName, 2, any, p, fts3TokenizerFunc, 0, 0);
+ }
+#ifdef SQLITE_TEST
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0);
+ }
+ if( SQLITE_OK==rc ){
+ rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0);
+ }
+#endif
+
+#ifdef SQLITE_TEST
+ sqlite3_free(zTest);
+ sqlite3_free(zTest2);
+#endif
+
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer.c **************************************/
+/************** Begin file fts3_tokenizer1.c *********************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Implementation of the "simple" full-text-search tokenizer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+
+/* #include "fts3_tokenizer.h" */
+
+typedef struct simple_tokenizer {
+ sqlite3_tokenizer base;
+ char delim[128]; /* flag ASCII delimiters */
+} simple_tokenizer;
+
+typedef struct simple_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *pInput; /* input we are tokenizing */
+ int nBytes; /* size of the input */
+ int iOffset; /* current position in pInput */
+ int iToken; /* index of next token to be returned */
+ char *pToken; /* storage for current token */
+ int nTokenAllocated; /* space allocated to zToken buffer */
+} simple_tokenizer_cursor;
+
+
+static int simpleDelim(simple_tokenizer *t, unsigned char c){
+ return c<0x80 && t->delim[c];
+}
+static int fts3_isalnum(int x){
+ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
+}
+
+/*
+** Create a new tokenizer instance.
+*/
+static int simpleCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ simple_tokenizer *t;
+
+ t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+
+ /* TODO(shess) Delimiters need to remain the same from run to run,
+ ** else we need to reindex. One solution would be a meta-table to
+ ** track such information in the database, then we'd only want this
+ ** information on the initial create.
+ */
+ if( argc>1 ){
+ int i, n = (int)strlen(argv[1]);
+ for(i=0; i<n; i++){
+ unsigned char ch = argv[1][i];
+ /* We explicitly don't support UTF-8 delimiters for now. */
+ if( ch>=0x80 ){
+ sqlite3_free(t);
+ return SQLITE_ERROR;
+ }
+ t->delim[ch] = 1;
+ }
+ } else {
+ /* Mark non-alphanumeric ASCII characters as delimiters */
+ int i;
+ for(i=1; i<0x80; i++){
+ t->delim[i] = !fts3_isalnum(i) ? -1 : 0;
+ }
+ }
+
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int simpleOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *pInput, int nBytes, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ simple_tokenizer_cursor *c;
+
+ UNUSED_PARAMETER(pTokenizer);
+
+ c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->pInput = pInput;
+ if( pInput==0 ){
+ c->nBytes = 0;
+ }else if( nBytes<0 ){
+ c->nBytes = (int)strlen(pInput);
+ }else{
+ c->nBytes = nBytes;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->pToken = NULL; /* no space allocated, yet. */
+ c->nTokenAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** simpleOpen() above.
+*/
+static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->pToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to simpleOpen().
+*/
+static int simpleNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
+ unsigned char *p = (unsigned char *)c->pInput;
+
+ while( c->iOffset<c->nBytes ){
+ int iStartOffset;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int i, n = c->iOffset-iStartOffset;
+ if( n>c->nTokenAllocated ){
+ char *pNew;
+ c->nTokenAllocated = n+20;
+ pNew = sqlite3_realloc64(c->pToken, c->nTokenAllocated);
+ if( !pNew ) return SQLITE_NOMEM;
+ c->pToken = pNew;
+ }
+ for(i=0; i<n; i++){
+ /* TODO(shess) This needs expansion to handle UTF-8
+ ** case-insensitivity.
+ */
+ unsigned char ch = p[iStartOffset+i];
+ c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch);
+ }
+ *ppToken = c->pToken;
+ *pnBytes = n;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module simpleTokenizerModule = {
+ 0,
+ simpleCreate,
+ simpleDestroy,
+ simpleOpen,
+ simpleClose,
+ simpleNext,
+ 0,
+};
+
+/*
+** Allocate a new simple tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &simpleTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer1.c *************************************/
+/************** Begin file fts3_tokenize_vtab.c ******************************/
+/*
+** 2013 Apr 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code for the "fts3tokenize" virtual table module.
+** An fts3tokenize virtual table is created as follows:
+**
+** CREATE VIRTUAL TABLE <tbl> USING fts3tokenize(
+** <tokenizer-name>, <arg-1>, ...
+** );
+**
+** The table created has the following schema:
+**
+** CREATE TABLE <tbl>(input, token, start, end, position)
+**
+** When queried, the query must include a WHERE clause of type:
+**
+** input = <string>
+**
+** The virtual table module tokenizes this <string>, using the FTS3
+** tokenizer specified by the arguments to the CREATE VIRTUAL TABLE
+** statement and returns one row for each token in the result. With
+** fields set as follows:
+**
+** input: Always set to a copy of <string>
+** token: A token from the input.
+** start: Byte offset of the token within the input <string>.
+** end: Byte offset of the byte immediately following the end of the
+** token within the input string.
+** pos: Token offset of token within input.
+**
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+typedef struct Fts3tokTable Fts3tokTable;
+typedef struct Fts3tokCursor Fts3tokCursor;
+
+/*
+** Virtual table structure.
+*/
+struct Fts3tokTable {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ const sqlite3_tokenizer_module *pMod;
+ sqlite3_tokenizer *pTok;
+};
+
+/*
+** Virtual table cursor structure.
+*/
+struct Fts3tokCursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ char *zInput; /* Input string */
+ sqlite3_tokenizer_cursor *pCsr; /* Cursor to iterate through zInput */
+ int iRowid; /* Current 'rowid' value */
+ const char *zToken; /* Current 'token' value */
+ int nToken; /* Size of zToken in bytes */
+ int iStart; /* Current 'start' value */
+ int iEnd; /* Current 'end' value */
+ int iPos; /* Current 'pos' value */
+};
+
+/*
+** Query FTS for the tokenizer implementation named zName.
+*/
+static int fts3tokQueryTokenizer(
+ Fts3Hash *pHash,
+ const char *zName,
+ const sqlite3_tokenizer_module **pp,
+ char **pzErr
+){
+ sqlite3_tokenizer_module *p;
+ int nName = (int)strlen(zName);
+
+ p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
+ if( !p ){
+ sqlite3Fts3ErrMsg(pzErr, "unknown tokenizer: %s", zName);
+ return SQLITE_ERROR;
+ }
+
+ *pp = p;
+ return SQLITE_OK;
+}
+
+/*
+** The second argument, argv[], is an array of pointers to nul-terminated
+** strings. This function makes a copy of the array and strings into a
+** single block of memory. It then dequotes any of the strings that appear
+** to be quoted.
+**
+** If successful, output parameter *pazDequote is set to point at the
+** array of dequoted strings and SQLITE_OK is returned. The caller is
+** responsible for eventually calling sqlite3_free() to free the array
+** in this case. Or, if an error occurs, an SQLite error code is returned.
+** The final value of *pazDequote is undefined in this case.
+*/
+static int fts3tokDequoteArray(
+ int argc, /* Number of elements in argv[] */
+ const char * const *argv, /* Input array */
+ char ***pazDequote /* Output array */
+){
+ int rc = SQLITE_OK; /* Return code */
+ if( argc==0 ){
+ *pazDequote = 0;
+ }else{
+ int i;
+ int nByte = 0;
+ char **azDequote;
+
+ for(i=0; i<argc; i++){
+ nByte += (int)(strlen(argv[i]) + 1);
+ }
+
+ *pazDequote = azDequote = sqlite3_malloc64(sizeof(char *)*argc + nByte);
+ if( azDequote==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *pSpace = (char *)&azDequote[argc];
+ for(i=0; i<argc; i++){
+ int n = (int)strlen(argv[i]);
+ azDequote[i] = pSpace;
+ memcpy(pSpace, argv[i], n+1);
+ sqlite3Fts3Dequote(pSpace);
+ pSpace += (n+1);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Schema of the tokenizer table.
+*/
+#define FTS3_TOK_SCHEMA "CREATE TABLE x(input, token, start, end, position)"
+
+/*
+** This function does all the work for both the xConnect and xCreate methods.
+** These tables have no persistent representation of their own, so xConnect
+** and xCreate are identical operations.
+**
+** argv[0]: module name
+** argv[1]: database name
+** argv[2]: table name
+** argv[3]: first argument (tokenizer name)
+*/
+static int fts3tokConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pHash, /* Hash table of tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ Fts3tokTable *pTab = 0;
+ const sqlite3_tokenizer_module *pMod = 0;
+ sqlite3_tokenizer *pTok = 0;
+ int rc;
+ char **azDequote = 0;
+ int nDequote;
+
+ rc = sqlite3_declare_vtab(db, FTS3_TOK_SCHEMA);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nDequote = argc-3;
+ rc = fts3tokDequoteArray(nDequote, &argv[3], &azDequote);
+
+ if( rc==SQLITE_OK ){
+ const char *zModule;
+ if( nDequote<1 ){
+ zModule = "simple";
+ }else{
+ zModule = azDequote[0];
+ }
+ rc = fts3tokQueryTokenizer((Fts3Hash*)pHash, zModule, &pMod, pzErr);
+ }
+
+ assert( (rc==SQLITE_OK)==(pMod!=0) );
+ if( rc==SQLITE_OK ){
+ const char * const *azArg = 0;
+ if( nDequote>1 ) azArg = (const char * const *)&azDequote[1];
+ rc = pMod->xCreate((nDequote>1 ? nDequote-1 : 0), azArg, &pTok);
+ }
+
+ if( rc==SQLITE_OK ){
+ pTab = (Fts3tokTable *)sqlite3_malloc(sizeof(Fts3tokTable));
+ if( pTab==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ memset(pTab, 0, sizeof(Fts3tokTable));
+ pTab->pMod = pMod;
+ pTab->pTok = pTok;
+ *ppVtab = &pTab->base;
+ }else{
+ if( pTok ){
+ pMod->xDestroy(pTok);
+ }
+ }
+
+ sqlite3_free(azDequote);
+ return rc;
+}
+
+/*
+** This function does the work for both the xDisconnect and xDestroy methods.
+** These tables have no persistent representation of their own, so xDisconnect
+** and xDestroy are identical operations.
+*/
+static int fts3tokDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts3tokTable *pTab = (Fts3tokTable *)pVtab;
+
+ pTab->pMod->xDestroy(pTab->pTok);
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** xBestIndex - Analyze a WHERE and ORDER BY clause.
+*/
+static int fts3tokBestIndexMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ UNUSED_PARAMETER(pVTab);
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ if( pInfo->aConstraint[i].usable
+ && pInfo->aConstraint[i].iColumn==0
+ && pInfo->aConstraint[i].op==SQLITE_INDEX_CONSTRAINT_EQ
+ ){
+ pInfo->idxNum = 1;
+ pInfo->aConstraintUsage[i].argvIndex = 1;
+ pInfo->aConstraintUsage[i].omit = 1;
+ pInfo->estimatedCost = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ pInfo->idxNum = 0;
+ assert( pInfo->estimatedCost>1000000.0 );
+
+ return SQLITE_OK;
+}
+
+/*
+** xOpen - Open a cursor.
+*/
+static int fts3tokOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts3tokCursor *pCsr;
+ UNUSED_PARAMETER(pVTab);
+
+ pCsr = (Fts3tokCursor *)sqlite3_malloc(sizeof(Fts3tokCursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(Fts3tokCursor));
+
+ *ppCsr = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Reset the tokenizer cursor passed as the only argument. As if it had
+** just been returned by fts3tokOpenMethod().
+*/
+static void fts3tokResetCursor(Fts3tokCursor *pCsr){
+ if( pCsr->pCsr ){
+ Fts3tokTable *pTab = (Fts3tokTable *)(pCsr->base.pVtab);
+ pTab->pMod->xClose(pCsr->pCsr);
+ pCsr->pCsr = 0;
+ }
+ sqlite3_free(pCsr->zInput);
+ pCsr->zInput = 0;
+ pCsr->zToken = 0;
+ pCsr->nToken = 0;
+ pCsr->iStart = 0;
+ pCsr->iEnd = 0;
+ pCsr->iPos = 0;
+ pCsr->iRowid = 0;
+}
+
+/*
+** xClose - Close a cursor.
+*/
+static int fts3tokCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+
+ fts3tokResetCursor(pCsr);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** xNext - Advance the cursor to the next row, if any.
+*/
+static int fts3tokNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab);
+ int rc; /* Return code */
+
+ pCsr->iRowid++;
+ rc = pTab->pMod->xNext(pCsr->pCsr,
+ &pCsr->zToken, &pCsr->nToken,
+ &pCsr->iStart, &pCsr->iEnd, &pCsr->iPos
+ );
+
+ if( rc!=SQLITE_OK ){
+ fts3tokResetCursor(pCsr);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+
+ return rc;
+}
+
+/*
+** xFilter - Initialize a cursor to point at the start of its data.
+*/
+static int fts3tokFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ int rc = SQLITE_ERROR;
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab);
+ UNUSED_PARAMETER(idxStr);
+ UNUSED_PARAMETER(nVal);
+
+ fts3tokResetCursor(pCsr);
+ if( idxNum==1 ){
+ const char *zByte = (const char *)sqlite3_value_text(apVal[0]);
+ int nByte = sqlite3_value_bytes(apVal[0]);
+ pCsr->zInput = sqlite3_malloc64(nByte+1);
+ if( pCsr->zInput==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( nByte>0 ) memcpy(pCsr->zInput, zByte, nByte);
+ pCsr->zInput[nByte] = 0;
+ rc = pTab->pMod->xOpen(pTab->pTok, pCsr->zInput, nByte, &pCsr->pCsr);
+ if( rc==SQLITE_OK ){
+ pCsr->pCsr->pTokenizer = pTab->pTok;
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ) return rc;
+ return fts3tokNextMethod(pCursor);
+}
+
+/*
+** xEof - Return true if the cursor is at EOF, or false otherwise.
+*/
+static int fts3tokEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ return (pCsr->zToken==0);
+}
+
+/*
+** xColumn - Return a column value.
+*/
+static int fts3tokColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+
+ /* CREATE TABLE x(input, token, start, end, position) */
+ switch( iCol ){
+ case 0:
+ sqlite3_result_text(pCtx, pCsr->zInput, -1, SQLITE_TRANSIENT);
+ break;
+ case 1:
+ sqlite3_result_text(pCtx, pCsr->zToken, pCsr->nToken, SQLITE_TRANSIENT);
+ break;
+ case 2:
+ sqlite3_result_int(pCtx, pCsr->iStart);
+ break;
+ case 3:
+ sqlite3_result_int(pCtx, pCsr->iEnd);
+ break;
+ default:
+ assert( iCol==4 );
+ sqlite3_result_int(pCtx, pCsr->iPos);
+ break;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** xRowid - Return the current rowid for the cursor.
+*/
+static int fts3tokRowidMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite_int64 *pRowid /* OUT: Rowid value */
+){
+ Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
+ *pRowid = (sqlite3_int64)pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Register the fts3tok module with database connection db. Return SQLITE_OK
+** if successful or an error code if sqlite3_create_module() fails.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3 *db, Fts3Hash *pHash, void(*xDestroy)(void*)){
+ static const sqlite3_module fts3tok_module = {
+ 0, /* iVersion */
+ fts3tokConnectMethod, /* xCreate */
+ fts3tokConnectMethod, /* xConnect */
+ fts3tokBestIndexMethod, /* xBestIndex */
+ fts3tokDisconnectMethod, /* xDisconnect */
+ fts3tokDisconnectMethod, /* xDestroy */
+ fts3tokOpenMethod, /* xOpen */
+ fts3tokCloseMethod, /* xClose */
+ fts3tokFilterMethod, /* xFilter */
+ fts3tokNextMethod, /* xNext */
+ fts3tokEofMethod, /* xEof */
+ fts3tokColumnMethod, /* xColumn */
+ fts3tokRowidMethod, /* xRowid */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindFunction */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+ };
+ int rc; /* Return code */
+
+ rc = sqlite3_create_module_v2(
+ db, "fts3tokenize", &fts3tok_module, (void*)pHash, xDestroy
+ );
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenize_vtab.c **********************************/
+/************** Begin file fts3_write.c **************************************/
+/*
+** 2009 Oct 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file is part of the SQLite FTS3 extension module. Specifically,
+** this file contains code to insert, update and delete rows from FTS3
+** tables. It also contains code to merge FTS3 b-tree segments. Some
+** of the sub-routines used to merge segments are also used by the query
+** code in fts3.c.
+*/
+
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+
+#define FTS_MAX_APPENDABLE_HEIGHT 16
+
+/*
+** When full-text index nodes are loaded from disk, the buffer that they
+** are loaded into has the following number of bytes of padding at the end
+** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
+** of 920 bytes is allocated for it.
+**
+** This means that if we have a pointer into a buffer containing node data,
+** it is always safe to read up to two varints from it without risking an
+** overread, even if the node data is corrupted.
+*/
+#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
+
+/*
+** Under certain circumstances, b-tree nodes (doclists) can be loaded into
+** memory incrementally instead of all at once. This can be a big performance
+** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
+** method before retrieving all query results (as may happen, for example,
+** if a query has a LIMIT clause).
+**
+** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
+** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
+** The code is written so that the hard lower-limit for each of these values
+** is 1. Clearly such small values would be inefficient, but can be useful
+** for testing purposes.
+**
+** If this module is built with SQLITE_TEST defined, these constants may
+** be overridden at runtime for testing purposes. File fts3_test.c contains
+** a Tcl interface to read and write the values.
+*/
+#ifdef SQLITE_TEST
+int test_fts3_node_chunksize = (4*1024);
+int test_fts3_node_chunk_threshold = (4*1024)*4;
+# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
+# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
+#else
+# define FTS3_NODE_CHUNKSIZE (4*1024)
+# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
+#endif
+
+/*
+** The values that may be meaningfully bound to the :1 parameter in
+** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
+*/
+#define FTS_STAT_DOCTOTAL 0
+#define FTS_STAT_INCRMERGEHINT 1
+#define FTS_STAT_AUTOINCRMERGE 2
+
+/*
+** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
+** and incremental merge operation that takes place. This is used for
+** debugging FTS only, it should not usually be turned on in production
+** systems.
+*/
+#ifdef FTS3_LOG_MERGES
+static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
+ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
+}
+#else
+#define fts3LogMerge(x, y)
+#endif
+
+
+typedef struct PendingList PendingList;
+typedef struct SegmentNode SegmentNode;
+typedef struct SegmentWriter SegmentWriter;
+
+/*
+** An instance of the following data structure is used to build doclists
+** incrementally. See function fts3PendingListAppend() for details.
+*/
+struct PendingList {
+ int nData;
+ char *aData;
+ int nSpace;
+ sqlite3_int64 iLastDocid;
+ sqlite3_int64 iLastCol;
+ sqlite3_int64 iLastPos;
+};
+
+
+/*
+** Each cursor has a (possibly empty) linked list of the following objects.
+*/
+struct Fts3DeferredToken {
+ Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
+ int iCol; /* Column token must occur in */
+ Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
+ PendingList *pList; /* Doclist is assembled here */
+};
+
+/*
+** An instance of this structure is used to iterate through the terms on
+** a contiguous set of segment b-tree leaf nodes. Although the details of
+** this structure are only manipulated by code in this file, opaque handles
+** of type Fts3SegReader* are also used by code in fts3.c to iterate through
+** terms when querying the full-text index. See functions:
+**
+** sqlite3Fts3SegReaderNew()
+** sqlite3Fts3SegReaderFree()
+** sqlite3Fts3SegReaderIterate()
+**
+** Methods used to manipulate Fts3SegReader structures:
+**
+** fts3SegReaderNext()
+** fts3SegReaderFirstDocid()
+** fts3SegReaderNextDocid()
+*/
+struct Fts3SegReader {
+ int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
+ u8 bLookup; /* True for a lookup only */
+ u8 rootOnly; /* True for a root-only reader */
+
+ sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
+ sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
+ sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
+ sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
+
+ char *aNode; /* Pointer to node data (or NULL) */
+ int nNode; /* Size of buffer at aNode (or 0) */
+ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
+ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
+
+ Fts3HashElem **ppNextElem;
+
+ /* Variables set by fts3SegReaderNext(). These may be read directly
+ ** by the caller. They are valid from the time SegmentReaderNew() returns
+ ** until SegmentReaderNext() returns something other than SQLITE_OK
+ ** (i.e. SQLITE_DONE).
+ */
+ int nTerm; /* Number of bytes in current term */
+ char *zTerm; /* Pointer to current term */
+ int nTermAlloc; /* Allocated size of zTerm buffer */
+ char *aDoclist; /* Pointer to doclist of current entry */
+ int nDoclist; /* Size of doclist in current entry */
+
+ /* The following variables are used by fts3SegReaderNextDocid() to iterate
+ ** through the current doclist (aDoclist/nDoclist).
+ */
+ char *pOffsetList;
+ int nOffsetList; /* For descending pending seg-readers only */
+ sqlite3_int64 iDocid;
+};
+
+#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
+#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
+
+/*
+** An instance of this structure is used to create a segment b-tree in the
+** database. The internal details of this type are only accessed by the
+** following functions:
+**
+** fts3SegWriterAdd()
+** fts3SegWriterFlush()
+** fts3SegWriterFree()
+*/
+struct SegmentWriter {
+ SegmentNode *pTree; /* Pointer to interior tree structure */
+ sqlite3_int64 iFirst; /* First slot in %_segments written */
+ sqlite3_int64 iFree; /* Next free slot in %_segments */
+ char *zTerm; /* Pointer to previous term buffer */
+ int nTerm; /* Number of bytes in zTerm */
+ int nMalloc; /* Size of malloc'd buffer at zMalloc */
+ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
+ int nSize; /* Size of allocation at aData */
+ int nData; /* Bytes of data in aData */
+ char *aData; /* Pointer to block from malloc() */
+ i64 nLeafData; /* Number of bytes of leaf data written */
+};
+
+/*
+** Type SegmentNode is used by the following three functions to create
+** the interior part of the segment b+-tree structures (everything except
+** the leaf nodes). These functions and type are only ever used by code
+** within the fts3SegWriterXXX() family of functions described above.
+**
+** fts3NodeAddTerm()
+** fts3NodeWrite()
+** fts3NodeFree()
+**
+** When a b+tree is written to the database (either as a result of a merge
+** or the pending-terms table being flushed), leaves are written into the
+** database file as soon as they are completely populated. The interior of
+** the tree is assembled in memory and written out only once all leaves have
+** been populated and stored. This is Ok, as the b+-tree fanout is usually
+** very large, meaning that the interior of the tree consumes relatively
+** little memory.
+*/
+struct SegmentNode {
+ SegmentNode *pParent; /* Parent node (or NULL for root node) */
+ SegmentNode *pRight; /* Pointer to right-sibling */
+ SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
+ int nEntry; /* Number of terms written to node so far */
+ char *zTerm; /* Pointer to previous term buffer */
+ int nTerm; /* Number of bytes in zTerm */
+ int nMalloc; /* Size of malloc'd buffer at zMalloc */
+ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
+ int nData; /* Bytes of valid data so far */
+ char *aData; /* Node data */
+};
+
+/*
+** Valid values for the second argument to fts3SqlStmt().
+*/
+#define SQL_DELETE_CONTENT 0
+#define SQL_IS_EMPTY 1
+#define SQL_DELETE_ALL_CONTENT 2
+#define SQL_DELETE_ALL_SEGMENTS 3
+#define SQL_DELETE_ALL_SEGDIR 4
+#define SQL_DELETE_ALL_DOCSIZE 5
+#define SQL_DELETE_ALL_STAT 6
+#define SQL_SELECT_CONTENT_BY_ROWID 7
+#define SQL_NEXT_SEGMENT_INDEX 8
+#define SQL_INSERT_SEGMENTS 9
+#define SQL_NEXT_SEGMENTS_ID 10
+#define SQL_INSERT_SEGDIR 11
+#define SQL_SELECT_LEVEL 12
+#define SQL_SELECT_LEVEL_RANGE 13
+#define SQL_SELECT_LEVEL_COUNT 14
+#define SQL_SELECT_SEGDIR_MAX_LEVEL 15
+#define SQL_DELETE_SEGDIR_LEVEL 16
+#define SQL_DELETE_SEGMENTS_RANGE 17
+#define SQL_CONTENT_INSERT 18
+#define SQL_DELETE_DOCSIZE 19
+#define SQL_REPLACE_DOCSIZE 20
+#define SQL_SELECT_DOCSIZE 21
+#define SQL_SELECT_STAT 22
+#define SQL_REPLACE_STAT 23
+
+#define SQL_SELECT_ALL_PREFIX_LEVEL 24
+#define SQL_DELETE_ALL_TERMS_SEGDIR 25
+#define SQL_DELETE_SEGDIR_RANGE 26
+#define SQL_SELECT_ALL_LANGID 27
+#define SQL_FIND_MERGE_LEVEL 28
+#define SQL_MAX_LEAF_NODE_ESTIMATE 29
+#define SQL_DELETE_SEGDIR_ENTRY 30
+#define SQL_SHIFT_SEGDIR_ENTRY 31
+#define SQL_SELECT_SEGDIR 32
+#define SQL_CHOMP_SEGDIR 33
+#define SQL_SEGMENT_IS_APPENDABLE 34
+#define SQL_SELECT_INDEXES 35
+#define SQL_SELECT_MXLEVEL 36
+
+#define SQL_SELECT_LEVEL_RANGE2 37
+#define SQL_UPDATE_LEVEL_IDX 38
+#define SQL_UPDATE_LEVEL 39
+
+/*
+** This function is used to obtain an SQLite prepared statement handle
+** for the statement identified by the second argument. If successful,
+** *pp is set to the requested statement handle and SQLITE_OK returned.
+** Otherwise, an SQLite error code is returned and *pp is set to 0.
+**
+** If argument apVal is not NULL, then it must point to an array with
+** at least as many entries as the requested statement has bound
+** parameters. The values are bound to the statements parameters before
+** returning.
+*/
+static int fts3SqlStmt(
+ Fts3Table *p, /* Virtual table handle */
+ int eStmt, /* One of the SQL_XXX constants above */
+ sqlite3_stmt **pp, /* OUT: Statement handle */
+ sqlite3_value **apVal /* Values to bind to statement */
+){
+ const char *azSql[] = {
+/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
+/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
+/* 2 */ "DELETE FROM %Q.'%q_content'",
+/* 3 */ "DELETE FROM %Q.'%q_segments'",
+/* 4 */ "DELETE FROM %Q.'%q_segdir'",
+/* 5 */ "DELETE FROM %Q.'%q_docsize'",
+/* 6 */ "DELETE FROM %Q.'%q_stat'",
+/* 7 */ "SELECT %s WHERE rowid=?",
+/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
+/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
+/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
+/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
+
+ /* Return segments in order from oldest to newest.*/
+/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
+ "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
+/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
+ "ORDER BY level DESC, idx ASC",
+
+/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
+/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
+
+/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
+/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
+/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
+/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
+/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
+/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
+/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
+/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
+/* 24 */ "",
+/* 25 */ "",
+
+/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
+/* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
+
+/* This statement is used to determine which level to read the input from
+** when performing an incremental merge. It returns the absolute level number
+** of the oldest level in the db that contains at least ? segments. Or,
+** if no level in the FTS index contains more than ? segments, the statement
+** returns zero rows. */
+/* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
+ " GROUP BY level HAVING cnt>=?"
+ " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1",
+
+/* Estimate the upper limit on the number of leaf nodes in a new segment
+** created by merging the oldest :2 segments from absolute level :1. See
+** function sqlite3Fts3Incrmerge() for details. */
+/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
+ " FROM (SELECT * FROM %Q.'%q_segdir' "
+ " WHERE level = ? ORDER BY idx ASC LIMIT ?"
+ " )",
+
+/* SQL_DELETE_SEGDIR_ENTRY
+** Delete the %_segdir entry on absolute level :1 with index :2. */
+/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
+
+/* SQL_SHIFT_SEGDIR_ENTRY
+** Modify the idx value for the segment with idx=:3 on absolute level :2
+** to :1. */
+/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
+
+/* SQL_SELECT_SEGDIR
+** Read a single entry from the %_segdir table. The entry from absolute
+** level :1 with index value :2. */
+/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
+ "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
+
+/* SQL_CHOMP_SEGDIR
+** Update the start_block (:1) and root (:2) fields of the %_segdir
+** entry located on absolute level :3 with index :4. */
+/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
+ "WHERE level = ? AND idx = ?",
+
+/* SQL_SEGMENT_IS_APPENDABLE
+** Return a single row if the segment with end_block=? is appendable. Or
+** no rows otherwise. */
+/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
+
+/* SQL_SELECT_INDEXES
+** Return the list of valid segment indexes for absolute level ? */
+/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
+
+/* SQL_SELECT_MXLEVEL
+** Return the largest relative level in the FTS index or indexes. */
+/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
+
+ /* Return segments in order from oldest to newest.*/
+/* 37 */ "SELECT level, idx, end_block "
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
+ "ORDER BY level DESC, idx ASC",
+
+ /* Update statements used while promoting segments */
+/* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
+ "WHERE level=? AND idx=?",
+/* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
+
+ };
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt;
+
+ assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
+ assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
+
+ pStmt = p->aStmt[eStmt];
+ if( !pStmt ){
+ int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
+ char *zSql;
+ if( eStmt==SQL_CONTENT_INSERT ){
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
+ }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
+ f &= ~SQLITE_PREPARE_NO_VTAB;
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
+ }else{
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
+ }
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL);
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ p->aStmt[eStmt] = pStmt;
+ }
+ }
+ if( apVal ){
+ int i;
+ int nParam = sqlite3_bind_parameter_count(pStmt);
+ for(i=0; rc==SQLITE_OK && i<nParam; i++){
+ rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
+ }
+ }
+ *pp = pStmt;
+ return rc;
+}
+
+
+static int fts3SelectDocsize(
+ Fts3Table *pTab, /* FTS3 table handle */
+ sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
+ int rc; /* Return code */
+
+ rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, iDocid);
+ rc = sqlite3_step(pStmt);
+ if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
+ rc = sqlite3_reset(pStmt);
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
+ pStmt = 0;
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+
+ *ppStmt = pStmt;
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(
+ Fts3Table *pTab, /* Fts3 table handle */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ sqlite3_stmt *pStmt = 0;
+ int rc;
+ rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
+ if( sqlite3_step(pStmt)!=SQLITE_ROW
+ || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
+ ){
+ rc = sqlite3_reset(pStmt);
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
+ pStmt = 0;
+ }
+ }
+ *ppStmt = pStmt;
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(
+ Fts3Table *pTab, /* Fts3 table handle */
+ sqlite3_int64 iDocid, /* Docid to read size data for */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ return fts3SelectDocsize(pTab, iDocid, ppStmt);
+}
+
+/*
+** Similar to fts3SqlStmt(). Except, after binding the parameters in
+** array apVal[] to the SQL statement identified by eStmt, the statement
+** is executed.
+**
+** Returns SQLITE_OK if the statement is successfully executed, or an
+** SQLite error code otherwise.
+*/
+static void fts3SqlExec(
+ int *pRC, /* Result code */
+ Fts3Table *p, /* The FTS3 table */
+ int eStmt, /* Index of statement to evaluate */
+ sqlite3_value **apVal /* Parameters to bind */
+){
+ sqlite3_stmt *pStmt;
+ int rc;
+ if( *pRC ) return;
+ rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ }
+ *pRC = rc;
+}
+
+
+/*
+** This function ensures that the caller has obtained an exclusive
+** shared-cache table-lock on the %_segdir table. This is required before
+** writing data to the fts3 table. If this lock is not acquired first, then
+** the caller may end up attempting to take this lock as part of committing
+** a transaction, causing SQLite to return SQLITE_LOCKED or
+** LOCKED_SHAREDCACHEto a COMMIT command.
+**
+** It is best to avoid this because if FTS3 returns any error when
+** committing a transaction, the whole transaction will be rolled back.
+** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
+** It can still happen if the user locks the underlying tables directly
+** instead of accessing them via FTS.
+*/
+static int fts3Writelock(Fts3Table *p){
+ int rc = SQLITE_OK;
+
+ if( p->nPendingData==0 ){
+ sqlite3_stmt *pStmt;
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_null(pStmt, 1);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** FTS maintains a separate indexes for each language-id (a 32-bit integer).
+** Within each language id, a separate index is maintained to store the
+** document terms, and each configured prefix size (configured the FTS
+** "prefix=" option). And each index consists of multiple levels ("relative
+** levels").
+**
+** All three of these values (the language id, the specific index and the
+** level within the index) are encoded in 64-bit integer values stored
+** in the %_segdir table on disk. This function is used to convert three
+** separate component values into the single 64-bit integer value that
+** can be used to query the %_segdir table.
+**
+** Specifically, each language-id/index combination is allocated 1024
+** 64-bit integer level values ("absolute levels"). The main terms index
+** for language-id 0 is allocate values 0-1023. The first prefix index
+** (if any) for language-id 0 is allocated values 1024-2047. And so on.
+** Language 1 indexes are allocated immediately following language 0.
+**
+** So, for a system with nPrefix prefix indexes configured, the block of
+** absolute levels that corresponds to language-id iLangid and index
+** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
+*/
+static sqlite3_int64 getAbsoluteLevel(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language id */
+ int iIndex, /* Index in p->aIndex[] */
+ int iLevel /* Level of segments */
+){
+ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
+ assert_fts3_nc( iLangid>=0 );
+ assert( p->nIndex>0 );
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
+ return iBase + iLevel;
+}
+
+/*
+** Set *ppStmt to a statement handle that may be used to iterate through
+** all rows in the %_segdir table, from oldest to newest. If successful,
+** return SQLITE_OK. If an error occurs while preparing the statement,
+** return an SQLite error code.
+**
+** There is only ever one instance of this SQL statement compiled for
+** each FTS3 table.
+**
+** The statement returns the following columns from the %_segdir table:
+**
+** 0: idx
+** 1: start_block
+** 2: leaves_end_block
+** 3: end_block
+** 4: root
+*/
+SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(
+ Fts3Table *p, /* FTS3 table */
+ int iLangid, /* Language being queried */
+ int iIndex, /* Index for p->aIndex[] */
+ int iLevel, /* Level to select (relative level) */
+ sqlite3_stmt **ppStmt /* OUT: Compiled statement */
+){
+ int rc;
+ sqlite3_stmt *pStmt = 0;
+
+ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ if( iLevel<0 ){
+ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
+ sqlite3_bind_int64(pStmt, 2,
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
+ );
+ }
+ }else{
+ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
+ }
+ }
+ *ppStmt = pStmt;
+ return rc;
+}
+
+
+/*
+** Append a single varint to a PendingList buffer. SQLITE_OK is returned
+** if successful, or an SQLite error code otherwise.
+**
+** This function also serves to allocate the PendingList structure itself.
+** For example, to create a new PendingList structure containing two
+** varints:
+**
+** PendingList *p = 0;
+** fts3PendingListAppendVarint(&p, 1);
+** fts3PendingListAppendVarint(&p, 2);
+*/
+static int fts3PendingListAppendVarint(
+ PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
+ sqlite3_int64 i /* Value to append to data */
+){
+ PendingList *p = *pp;
+
+ /* Allocate or grow the PendingList as required. */
+ if( !p ){
+ p = sqlite3_malloc64(sizeof(*p) + 100);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ p->nSpace = 100;
+ p->aData = (char *)&p[1];
+ p->nData = 0;
+ }
+ else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
+ i64 nNew = p->nSpace * 2;
+ p = sqlite3_realloc64(p, sizeof(*p) + nNew);
+ if( !p ){
+ sqlite3_free(*pp);
+ *pp = 0;
+ return SQLITE_NOMEM;
+ }
+ p->nSpace = (int)nNew;
+ p->aData = (char *)&p[1];
+ }
+
+ /* Append the new serialized varint to the end of the list. */
+ p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
+ p->aData[p->nData] = '\0';
+ *pp = p;
+ return SQLITE_OK;
+}
+
+/*
+** Add a docid/column/position entry to a PendingList structure. Non-zero
+** is returned if the structure is sqlite3_realloced as part of adding
+** the entry. Otherwise, zero.
+**
+** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
+** Zero is always returned in this case. Otherwise, if no OOM error occurs,
+** it is set to SQLITE_OK.
+*/
+static int fts3PendingListAppend(
+ PendingList **pp, /* IN/OUT: PendingList structure */
+ sqlite3_int64 iDocid, /* Docid for entry to add */
+ sqlite3_int64 iCol, /* Column for entry to add */
+ sqlite3_int64 iPos, /* Position of term for entry to add */
+ int *pRc /* OUT: Return code */
+){
+ PendingList *p = *pp;
+ int rc = SQLITE_OK;
+
+ assert( !p || p->iLastDocid<=iDocid );
+
+ if( !p || p->iLastDocid!=iDocid ){
+ u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0);
+ if( p ){
+ assert( p->nData<p->nSpace );
+ assert( p->aData[p->nData]==0 );
+ p->nData++;
+ }
+ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
+ goto pendinglistappend_out;
+ }
+ p->iLastCol = -1;
+ p->iLastPos = 0;
+ p->iLastDocid = iDocid;
+ }
+ if( iCol>0 && p->iLastCol!=iCol ){
+ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
+ || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
+ ){
+ goto pendinglistappend_out;
+ }
+ p->iLastCol = iCol;
+ p->iLastPos = 0;
+ }
+ if( iCol>=0 ){
+ assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
+ rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
+ if( rc==SQLITE_OK ){
+ p->iLastPos = iPos;
+ }
+ }
+
+ pendinglistappend_out:
+ *pRc = rc;
+ if( p!=*pp ){
+ *pp = p;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Free a PendingList object allocated by fts3PendingListAppend().
+*/
+static void fts3PendingListDelete(PendingList *pList){
+ sqlite3_free(pList);
+}
+
+/*
+** Add an entry to one of the pending-terms hash tables.
+*/
+static int fts3PendingTermsAddOne(
+ Fts3Table *p,
+ int iCol,
+ int iPos,
+ Fts3Hash *pHash, /* Pending terms hash table to add entry to */
+ const char *zToken,
+ int nToken
+){
+ PendingList *pList;
+ int rc = SQLITE_OK;
+
+ pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
+ if( pList ){
+ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
+ }
+ if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
+ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
+ /* Malloc failed while inserting the new entry. This can only
+ ** happen if there was no previous entry for this token.
+ */
+ assert( 0==fts3HashFind(pHash, zToken, nToken) );
+ sqlite3_free(pList);
+ rc = SQLITE_NOMEM;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
+ }
+ return rc;
+}
+
+/*
+** Tokenize the nul-terminated string zText and add all tokens to the
+** pending-terms hash-table. The docid used is that currently stored in
+** p->iPrevDocid, and the column is specified by argument iCol.
+**
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
+*/
+static int fts3PendingTermsAdd(
+ Fts3Table *p, /* Table into which text will be inserted */
+ int iLangid, /* Language id to use */
+ const char *zText, /* Text of document to be inserted */
+ int iCol, /* Column into which text is being inserted */
+ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
+){
+ int rc;
+ int iStart = 0;
+ int iEnd = 0;
+ int iPos = 0;
+ int nWord = 0;
+
+ char const *zToken;
+ int nToken = 0;
+
+ sqlite3_tokenizer *pTokenizer = p->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
+ sqlite3_tokenizer_cursor *pCsr;
+ int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
+ const char**,int*,int*,int*,int*);
+
+ assert( pTokenizer && pModule );
+
+ /* If the user has inserted a NULL value, this function may be called with
+ ** zText==0. In this case, add zero token entries to the hash table and
+ ** return early. */
+ if( zText==0 ){
+ *pnWord = 0;
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ xNext = pModule->xNext;
+ while( SQLITE_OK==rc
+ && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
+ ){
+ int i;
+ if( iPos>=nWord ) nWord = iPos+1;
+
+ /* Positions cannot be negative; we use -1 as a terminator internally.
+ ** Tokens must have a non-zero length.
+ */
+ if( iPos<0 || !zToken || nToken<=0 ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ /* Add the term to the terms index */
+ rc = fts3PendingTermsAddOne(
+ p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
+ );
+
+ /* Add the term to each of the prefix indexes that it is not too
+ ** short for. */
+ for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
+ struct Fts3Index *pIndex = &p->aIndex[i];
+ if( nToken<pIndex->nPrefix ) continue;
+ rc = fts3PendingTermsAddOne(
+ p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
+ );
+ }
+ }
+
+ pModule->xClose(pCsr);
+ *pnWord += nWord;
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc);
+}
+
+/*
+** Calling this function indicates that subsequent calls to
+** fts3PendingTermsAdd() are to add term/position-list pairs for the
+** contents of the document with docid iDocid.
+*/
+static int fts3PendingTermsDocid(
+ Fts3Table *p, /* Full-text table handle */
+ int bDelete, /* True if this op is a delete */
+ int iLangid, /* Language id of row being written */
+ sqlite_int64 iDocid /* Docid of row being written */
+){
+ assert( iLangid>=0 );
+ assert( bDelete==1 || bDelete==0 );
+
+ /* TODO(shess) Explore whether partially flushing the buffer on
+ ** forced-flush would provide better performance. I suspect that if
+ ** we ordered the doclists by size and flushed the largest until the
+ ** buffer was half empty, that would let the less frequent terms
+ ** generate longer doclists.
+ */
+ if( iDocid<p->iPrevDocid
+ || (iDocid==p->iPrevDocid && p->bPrevDelete==0)
+ || p->iPrevLangid!=iLangid
+ || p->nPendingData>p->nMaxPendingData
+ ){
+ int rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ p->iPrevDocid = iDocid;
+ p->iPrevLangid = iLangid;
+ p->bPrevDelete = bDelete;
+ return SQLITE_OK;
+}
+
+/*
+** Discard the contents of the pending-terms hash tables.
+*/
+SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){
+ int i;
+ for(i=0; i<p->nIndex; i++){
+ Fts3HashElem *pElem;
+ Fts3Hash *pHash = &p->aIndex[i].hPending;
+ for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
+ PendingList *pList = (PendingList *)fts3HashData(pElem);
+ fts3PendingListDelete(pList);
+ }
+ fts3HashClear(pHash);
+ }
+ p->nPendingData = 0;
+}
+
+/*
+** This function is called by the xUpdate() method as part of an INSERT
+** operation. It adds entries for each term in the new record to the
+** pendingTerms hash table.
+**
+** Argument apVal is the same as the similarly named argument passed to
+** fts3InsertData(). Parameter iDocid is the docid of the new row.
+*/
+static int fts3InsertTerms(
+ Fts3Table *p,
+ int iLangid,
+ sqlite3_value **apVal,
+ u32 *aSz
+){
+ int i; /* Iterator variable */
+ for(i=2; i<p->nColumn+2; i++){
+ int iCol = i-2;
+ if( p->abNotindexed[iCol]==0 ){
+ const char *zText = (const char *)sqlite3_value_text(apVal[i]);
+ int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is called by the xUpdate() method for an INSERT operation.
+** The apVal parameter is passed a copy of the apVal argument passed by
+** SQLite to the xUpdate() method. i.e:
+**
+** apVal[0] Not used for INSERT.
+** apVal[1] rowid
+** apVal[2] Left-most user-defined column
+** ...
+** apVal[p->nColumn+1] Right-most user-defined column
+** apVal[p->nColumn+2] Hidden column with same name as table
+** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
+** apVal[p->nColumn+4] Hidden languageid column
+*/
+static int fts3InsertData(
+ Fts3Table *p, /* Full-text table */
+ sqlite3_value **apVal, /* Array of values to insert */
+ sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
+){
+ int rc; /* Return code */
+ sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
+
+ if( p->zContentTbl ){
+ sqlite3_value *pRowid = apVal[p->nColumn+3];
+ if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
+ pRowid = apVal[1];
+ }
+ if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
+ return SQLITE_CONSTRAINT;
+ }
+ *piDocid = sqlite3_value_int64(pRowid);
+ return SQLITE_OK;
+ }
+
+ /* Locate the statement handle used to insert data into the %_content
+ ** table. The SQL for this statement is:
+ **
+ ** INSERT INTO %_content VALUES(?, ?, ?, ...)
+ **
+ ** The statement features N '?' variables, where N is the number of user
+ ** defined columns in the FTS3 table, plus one for the docid field.
+ */
+ rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
+ if( rc==SQLITE_OK && p->zLanguageid ){
+ rc = sqlite3_bind_int(
+ pContentInsert, p->nColumn+2,
+ sqlite3_value_int(apVal[p->nColumn+4])
+ );
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* There is a quirk here. The users INSERT statement may have specified
+ ** a value for the "rowid" field, for the "docid" field, or for both.
+ ** Which is a problem, since "rowid" and "docid" are aliases for the
+ ** same value. For example:
+ **
+ ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
+ **
+ ** In FTS3, this is an error. It is an error to specify non-NULL values
+ ** for both docid and some other rowid alias.
+ */
+ if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
+ if( SQLITE_NULL==sqlite3_value_type(apVal[0])
+ && SQLITE_NULL!=sqlite3_value_type(apVal[1])
+ ){
+ /* A rowid/docid conflict. */
+ return SQLITE_ERROR;
+ }
+ rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* Execute the statement to insert the record. Set *piDocid to the
+ ** new docid value.
+ */
+ sqlite3_step(pContentInsert);
+ rc = sqlite3_reset(pContentInsert);
+
+ *piDocid = sqlite3_last_insert_rowid(p->db);
+ return rc;
+}
+
+
+
+/*
+** Remove all data from the FTS3 table. Clear the hash table containing
+** pending terms.
+*/
+static int fts3DeleteAll(Fts3Table *p, int bContent){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* Discard the contents of the pending-terms hash table. */
+ sqlite3Fts3PendingTermsClear(p);
+
+ /* Delete everything from the shadow tables. Except, leave %_content as
+ ** is if bContent is false. */
+ assert( p->zContentTbl==0 || bContent==0 );
+ if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
+ if( p->bHasDocsize ){
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
+ }
+ if( p->bHasStat ){
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
+ }
+ return rc;
+}
+
+/*
+**
+*/
+static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
+ int iLangid = 0;
+ if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
+ return iLangid;
+}
+
+/*
+** The first element in the apVal[] array is assumed to contain the docid
+** (an integer) of a row about to be deleted. Remove all terms from the
+** full-text index.
+*/
+static void fts3DeleteTerms(
+ int *pRC, /* Result code */
+ Fts3Table *p, /* The FTS table to delete from */
+ sqlite3_value *pRowid, /* The docid to be deleted */
+ u32 *aSz, /* Sizes of deleted document written here */
+ int *pbFound /* OUT: Set to true if row really does exist */
+){
+ int rc;
+ sqlite3_stmt *pSelect;
+
+ assert( *pbFound==0 );
+ if( *pRC ) return;
+ rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){
+ int i;
+ int iLangid = langidFromSelect(p, pSelect);
+ i64 iDocid = sqlite3_column_int64(pSelect, 0);
+ rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid);
+ for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
+ int iCol = i-1;
+ if( p->abNotindexed[iCol]==0 ){
+ const char *zText = (const char *)sqlite3_column_text(pSelect, i);
+ rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
+ aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_reset(pSelect);
+ *pRC = rc;
+ return;
+ }
+ *pbFound = 1;
+ }
+ rc = sqlite3_reset(pSelect);
+ }else{
+ sqlite3_reset(pSelect);
+ }
+ *pRC = rc;
+}
+
+/*
+** Forward declaration to account for the circular dependency between
+** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
+*/
+static int fts3SegmentMerge(Fts3Table *, int, int, int);
+
+/*
+** This function allocates a new level iLevel index in the segdir table.
+** Usually, indexes are allocated within a level sequentially starting
+** with 0, so the allocated index is one greater than the value returned
+** by:
+**
+** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
+**
+** However, if there are already FTS3_MERGE_COUNT indexes at the requested
+** level, they are merged into a single level (iLevel+1) segment and the
+** allocated index is 0.
+**
+** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
+** returned. Otherwise, an SQLite error code is returned.
+*/
+static int fts3AllocateSegdirIdx(
+ Fts3Table *p,
+ int iLangid, /* Language id */
+ int iIndex, /* Index for p->aIndex */
+ int iLevel,
+ int *piIdx
+){
+ int rc; /* Return Code */
+ sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
+ int iNext = 0; /* Result of query pNextIdx */
+
+ assert( iLangid>=0 );
+ assert( p->nIndex>=1 );
+
+ /* Set variable iNext to the next available segdir index at level iLevel. */
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(
+ pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
+ );
+ if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
+ iNext = sqlite3_column_int(pNextIdx, 0);
+ }
+ rc = sqlite3_reset(pNextIdx);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
+ ** full, merge all segments in level iLevel into a single iLevel+1
+ ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
+ ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
+ */
+ if( iNext>=MergeCount(p) ){
+ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
+ rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
+ *piIdx = 0;
+ }else{
+ *piIdx = iNext;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The %_segments table is declared as follows:
+**
+** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
+**
+** This function reads data from a single row of the %_segments table. The
+** specific row is identified by the iBlockid parameter. If paBlob is not
+** NULL, then a buffer is allocated using sqlite3_malloc() and populated
+** with the contents of the blob stored in the "block" column of the
+** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
+** to the size of the blob in bytes before returning.
+**
+** If an error occurs, or the table does not contain the specified row,
+** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
+** paBlob is non-NULL, then it is the responsibility of the caller to
+** eventually free the returned buffer.
+**
+** This function may leave an open sqlite3_blob* handle in the
+** Fts3Table.pSegments variable. This handle is reused by subsequent calls
+** to this function. The handle may be closed by calling the
+** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
+** performance improvement, but the blob handle should always be closed
+** before control is returned to the user (to prevent a lock being held
+** on the database file for longer than necessary). Thus, any virtual table
+** method (xFilter etc.) that may directly or indirectly call this function
+** must call sqlite3Fts3SegmentsClose() before returning.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ReadBlock(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
+ char **paBlob, /* OUT: Blob data in malloc'd buffer */
+ int *pnBlob, /* OUT: Size of blob data */
+ int *pnLoad /* OUT: Bytes actually loaded */
+){
+ int rc; /* Return code */
+
+ /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
+ assert( pnBlob );
+
+ if( p->pSegments ){
+ rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
+ }else{
+ if( 0==p->zSegmentsTbl ){
+ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
+ if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
+ }
+ rc = sqlite3_blob_open(
+ p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ int nByte = sqlite3_blob_bytes(p->pSegments);
+ *pnBlob = nByte;
+ if( paBlob ){
+ char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING);
+ if( !aByte ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
+ nByte = FTS3_NODE_CHUNKSIZE;
+ *pnLoad = nByte;
+ }
+ rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
+ memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(aByte);
+ aByte = 0;
+ }
+ }
+ *paBlob = aByte;
+ }
+ }else if( rc==SQLITE_ERROR ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+
+ return rc;
+}
+
+/*
+** Close the blob handle at p->pSegments, if it is open. See comments above
+** the sqlite3Fts3ReadBlock() function for details.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){
+ sqlite3_blob_close(p->pSegments);
+ p->pSegments = 0;
+}
+
+static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
+ int nRead; /* Number of bytes to read */
+ int rc; /* Return code */
+
+ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
+ rc = sqlite3_blob_read(
+ pReader->pBlob,
+ &pReader->aNode[pReader->nPopulate],
+ nRead,
+ pReader->nPopulate
+ );
+
+ if( rc==SQLITE_OK ){
+ pReader->nPopulate += nRead;
+ memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
+ if( pReader->nPopulate==pReader->nNode ){
+ sqlite3_blob_close(pReader->pBlob);
+ pReader->pBlob = 0;
+ pReader->nPopulate = 0;
+ }
+ }
+ return rc;
+}
+
+static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
+ int rc = SQLITE_OK;
+ assert( !pReader->pBlob
+ || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
+ );
+ while( pReader->pBlob && rc==SQLITE_OK
+ && (pFrom - pReader->aNode + nByte)>pReader->nPopulate
+ ){
+ rc = fts3SegReaderIncrRead(pReader);
+ }
+ return rc;
+}
+
+/*
+** Set an Fts3SegReader cursor to point at EOF.
+*/
+static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
+ if( !fts3SegReaderIsRootOnly(pSeg) ){
+ sqlite3_free(pSeg->aNode);
+ sqlite3_blob_close(pSeg->pBlob);
+ pSeg->pBlob = 0;
+ }
+ pSeg->aNode = 0;
+}
+
+/*
+** Move the iterator passed as the first argument to the next term in the
+** segment. If successful, SQLITE_OK is returned. If there is no next term,
+** SQLITE_DONE. Otherwise, an SQLite error code.
+*/
+static int fts3SegReaderNext(
+ Fts3Table *p,
+ Fts3SegReader *pReader,
+ int bIncr
+){
+ int rc; /* Return code of various sub-routines */
+ char *pNext; /* Cursor variable */
+ int nPrefix; /* Number of bytes in term prefix */
+ int nSuffix; /* Number of bytes in term suffix */
+
+ if( !pReader->aDoclist ){
+ pNext = pReader->aNode;
+ }else{
+ pNext = &pReader->aDoclist[pReader->nDoclist];
+ }
+
+ if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
+
+ if( fts3SegReaderIsPending(pReader) ){
+ Fts3HashElem *pElem = *(pReader->ppNextElem);
+ sqlite3_free(pReader->aNode);
+ pReader->aNode = 0;
+ if( pElem ){
+ char *aCopy;
+ PendingList *pList = (PendingList *)fts3HashData(pElem);
+ int nCopy = pList->nData+1;
+
+ int nTerm = fts3HashKeysize(pElem);
+ if( (nTerm+1)>pReader->nTermAlloc ){
+ sqlite3_free(pReader->zTerm);
+ pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2);
+ if( !pReader->zTerm ) return SQLITE_NOMEM;
+ pReader->nTermAlloc = (nTerm+1)*2;
+ }
+ memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm);
+ pReader->zTerm[nTerm] = '\0';
+ pReader->nTerm = nTerm;
+
+ aCopy = (char*)sqlite3_malloc64(nCopy);
+ if( !aCopy ) return SQLITE_NOMEM;
+ memcpy(aCopy, pList->aData, nCopy);
+ pReader->nNode = pReader->nDoclist = nCopy;
+ pReader->aNode = pReader->aDoclist = aCopy;
+ pReader->ppNextElem++;
+ assert( pReader->aNode );
+ }
+ return SQLITE_OK;
+ }
+
+ fts3SegReaderSetEof(pReader);
+
+ /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
+ ** blocks have already been traversed. */
+#ifdef CORRUPT_DB
+ assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB );
+#endif
+ if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
+ return SQLITE_OK;
+ }
+
+ rc = sqlite3Fts3ReadBlock(
+ p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
+ (bIncr ? &pReader->nPopulate : 0)
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ assert( pReader->pBlob==0 );
+ if( bIncr && pReader->nPopulate<pReader->nNode ){
+ pReader->pBlob = p->pSegments;
+ p->pSegments = 0;
+ }
+ pNext = pReader->aNode;
+ }
+
+ assert( !fts3SegReaderIsPending(pReader) );
+
+ rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
+ ** safe (no risk of overread) even if the node data is corrupted. */
+ pNext += fts3GetVarint32(pNext, &nPrefix);
+ pNext += fts3GetVarint32(pNext, &nSuffix);
+ if( nSuffix<=0
+ || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix
+ || nPrefix>pReader->nTerm
+ ){
+ return FTS_CORRUPT_VTAB;
+ }
+
+ /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
+ ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
+ ** overflow - hence the (i64) casts. */
+ if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){
+ i64 nNew = ((i64)nPrefix+nSuffix)*2;
+ char *zNew = sqlite3_realloc64(pReader->zTerm, nNew);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pReader->zTerm = zNew;
+ pReader->nTermAlloc = nNew;
+ }
+
+ rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
+ if( rc!=SQLITE_OK ) return rc;
+
+ memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
+ pReader->nTerm = nPrefix+nSuffix;
+ pNext += nSuffix;
+ pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
+ pReader->aDoclist = pNext;
+ pReader->pOffsetList = 0;
+
+ /* Check that the doclist does not appear to extend past the end of the
+ ** b-tree node. And that the final byte of the doclist is 0x00. If either
+ ** of these statements is untrue, then the data structure is corrupt.
+ */
+ if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode)
+ || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
+ || pReader->nDoclist==0
+ ){
+ return FTS_CORRUPT_VTAB;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Set the SegReader to point to the first docid in the doclist associated
+** with the current term.
+*/
+static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
+ int rc = SQLITE_OK;
+ assert( pReader->aDoclist );
+ assert( !pReader->pOffsetList );
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
+ u8 bEof = 0;
+ pReader->iDocid = 0;
+ pReader->nOffsetList = 0;
+ sqlite3Fts3DoclistPrev(0,
+ pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
+ &pReader->iDocid, &pReader->nOffsetList, &bEof
+ );
+ }else{
+ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
+ if( rc==SQLITE_OK ){
+ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
+ pReader->pOffsetList = &pReader->aDoclist[n];
+ }
+ }
+ return rc;
+}
+
+/*
+** Advance the SegReader to point to the next docid in the doclist
+** associated with the current term.
+**
+** If arguments ppOffsetList and pnOffsetList are not NULL, then
+** *ppOffsetList is set to point to the first column-offset list
+** in the doclist entry (i.e. immediately past the docid varint).
+** *pnOffsetList is set to the length of the set of column-offset
+** lists, not including the nul-terminator byte. For example:
+*/
+static int fts3SegReaderNextDocid(
+ Fts3Table *pTab,
+ Fts3SegReader *pReader, /* Reader to advance to next docid */
+ char **ppOffsetList, /* OUT: Pointer to current position-list */
+ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
+){
+ int rc = SQLITE_OK;
+ char *p = pReader->pOffsetList;
+ char c = 0;
+
+ assert( p );
+
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
+ /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
+ ** Pending-terms doclists are always built up in ascending order, so
+ ** we have to iterate through them backwards here. */
+ u8 bEof = 0;
+ if( ppOffsetList ){
+ *ppOffsetList = pReader->pOffsetList;
+ *pnOffsetList = pReader->nOffsetList - 1;
+ }
+ sqlite3Fts3DoclistPrev(0,
+ pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
+ &pReader->nOffsetList, &bEof
+ );
+ if( bEof ){
+ pReader->pOffsetList = 0;
+ }else{
+ pReader->pOffsetList = p;
+ }
+ }else{
+ char *pEnd = &pReader->aDoclist[pReader->nDoclist];
+
+ /* Pointer p currently points at the first byte of an offset list. The
+ ** following block advances it to point one byte past the end of
+ ** the same offset list. */
+ while( 1 ){
+
+ /* The following line of code (and the "p++" below the while() loop) is
+ ** normally all that is required to move pointer p to the desired
+ ** position. The exception is if this node is being loaded from disk
+ ** incrementally and pointer "p" now points to the first byte past
+ ** the populated part of pReader->aNode[].
+ */
+ while( *p | c ) c = *p++ & 0x80;
+ assert( *p==0 );
+
+ if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
+ rc = fts3SegReaderIncrRead(pReader);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ p++;
+
+ /* If required, populate the output variables with a pointer to and the
+ ** size of the previous offset-list.
+ */
+ if( ppOffsetList ){
+ *ppOffsetList = pReader->pOffsetList;
+ *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
+ }
+
+ /* List may have been edited in place by fts3EvalNearTrim() */
+ while( p<pEnd && *p==0 ) p++;
+
+ /* If there are no more entries in the doclist, set pOffsetList to
+ ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
+ ** Fts3SegReader.pOffsetList to point to the next offset list before
+ ** returning.
+ */
+ if( p>=pEnd ){
+ pReader->pOffsetList = 0;
+ }else{
+ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
+ if( rc==SQLITE_OK ){
+ u64 iDelta;
+ pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta);
+ if( pTab->bDescIdx ){
+ pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta);
+ }else{
+ pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta);
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(
+ Fts3Cursor *pCsr,
+ Fts3MultiSegReader *pMsr,
+ int *pnOvfl
+){
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
+ int nOvfl = 0;
+ int ii;
+ int rc = SQLITE_OK;
+ int pgsz = p->nPgsz;
+
+ assert( p->bFts4 );
+ assert( pgsz>0 );
+
+ for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
+ Fts3SegReader *pReader = pMsr->apSegment[ii];
+ if( !fts3SegReaderIsPending(pReader)
+ && !fts3SegReaderIsRootOnly(pReader)
+ ){
+ sqlite3_int64 jj;
+ for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
+ int nBlob;
+ rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
+ if( rc!=SQLITE_OK ) break;
+ if( (nBlob+35)>pgsz ){
+ nOvfl += (nBlob + 34)/pgsz;
+ }
+ }
+ }
+ }
+ *pnOvfl = nOvfl;
+ return rc;
+}
+
+/*
+** Free all allocations associated with the iterator passed as the
+** second argument.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
+ if( pReader ){
+ sqlite3_free(pReader->zTerm);
+ if( !fts3SegReaderIsRootOnly(pReader) ){
+ sqlite3_free(pReader->aNode);
+ }
+ sqlite3_blob_close(pReader->pBlob);
+ }
+ sqlite3_free(pReader);
+}
+
+/*
+** Allocate a new SegReader object.
+*/
+SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(
+ int iAge, /* Segment "age". */
+ int bLookup, /* True for a lookup only */
+ sqlite3_int64 iStartLeaf, /* First leaf to traverse */
+ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
+ sqlite3_int64 iEndBlock, /* Final block of segment */
+ const char *zRoot, /* Buffer containing root node */
+ int nRoot, /* Size of buffer containing root node */
+ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
+){
+ Fts3SegReader *pReader; /* Newly allocated SegReader object */
+ int nExtra = 0; /* Bytes to allocate segment root node */
+
+ assert( zRoot!=0 || nRoot==0 );
+#ifdef CORRUPT_DB
+ assert( zRoot!=0 || CORRUPT_DB );
+#endif
+
+ if( iStartLeaf==0 ){
+ if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
+ nExtra = nRoot + FTS3_NODE_PADDING;
+ }
+
+ pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra);
+ if( !pReader ){
+ return SQLITE_NOMEM;
+ }
+ memset(pReader, 0, sizeof(Fts3SegReader));
+ pReader->iIdx = iAge;
+ pReader->bLookup = bLookup!=0;
+ pReader->iStartBlock = iStartLeaf;
+ pReader->iLeafEndBlock = iEndLeaf;
+ pReader->iEndBlock = iEndBlock;
+
+ if( nExtra ){
+ /* The entire segment is stored in the root node. */
+ pReader->aNode = (char *)&pReader[1];
+ pReader->rootOnly = 1;
+ pReader->nNode = nRoot;
+ if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot);
+ memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
+ }else{
+ pReader->iCurrentBlock = iStartLeaf-1;
+ }
+ *ppReader = pReader;
+ return SQLITE_OK;
+}
+
+/*
+** This is a comparison function used as a qsort() callback when sorting
+** an array of pending terms by term. This occurs as part of flushing
+** the contents of the pending-terms hash table to the database.
+*/
+static int SQLITE_CDECL fts3CompareElemByTerm(
+ const void *lhs,
+ const void *rhs
+){
+ char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
+ char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
+ int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
+ int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
+
+ int n = (n1<n2 ? n1 : n2);
+ int c = memcmp(z1, z2, n);
+ if( c==0 ){
+ c = n1 - n2;
+ }
+ return c;
+}
+
+/*
+** This function is used to allocate an Fts3SegReader that iterates through
+** a subset of the terms stored in the Fts3Table.pendingTerms array.
+**
+** If the isPrefixIter parameter is zero, then the returned SegReader iterates
+** through each term in the pending-terms table. Or, if isPrefixIter is
+** non-zero, it iterates through each term and its prefixes. For example, if
+** the pending terms hash table contains the terms "sqlite", "mysql" and
+** "firebird", then the iterator visits the following 'terms' (in the order
+** shown):
+**
+** f fi fir fire fireb firebi firebir firebird
+** m my mys mysq mysql
+** s sq sql sqli sqlit sqlite
+**
+** Whereas if isPrefixIter is zero, the terms visited are:
+**
+** firebird mysql sqlite
+*/
+SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
+ Fts3Table *p, /* Virtual table handle */
+ int iIndex, /* Index for p->aIndex */
+ const char *zTerm, /* Term to search for */
+ int nTerm, /* Size of buffer zTerm */
+ int bPrefix, /* True for a prefix iterator */
+ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
+){
+ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
+ Fts3HashElem *pE; /* Iterator variable */
+ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
+ int nElem = 0; /* Size of array at aElem */
+ int rc = SQLITE_OK; /* Return Code */
+ Fts3Hash *pHash;
+
+ pHash = &p->aIndex[iIndex].hPending;
+ if( bPrefix ){
+ int nAlloc = 0; /* Size of allocated array at aElem */
+
+ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
+ char *zKey = (char *)fts3HashKey(pE);
+ int nKey = fts3HashKeysize(pE);
+ if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
+ if( nElem==nAlloc ){
+ Fts3HashElem **aElem2;
+ nAlloc += 16;
+ aElem2 = (Fts3HashElem **)sqlite3_realloc64(
+ aElem, nAlloc*sizeof(Fts3HashElem *)
+ );
+ if( !aElem2 ){
+ rc = SQLITE_NOMEM;
+ nElem = 0;
+ break;
+ }
+ aElem = aElem2;
+ }
+
+ aElem[nElem++] = pE;
+ }
+ }
+
+ /* If more than one term matches the prefix, sort the Fts3HashElem
+ ** objects in term order using qsort(). This uses the same comparison
+ ** callback as is used when flushing terms to disk.
+ */
+ if( nElem>1 ){
+ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
+ }
+
+ }else{
+ /* The query is a simple term lookup that matches at most one term in
+ ** the index. All that is required is a straight hash-lookup.
+ **
+ ** Because the stack address of pE may be accessed via the aElem pointer
+ ** below, the "Fts3HashElem *pE" must be declared so that it is valid
+ ** within this entire function, not just this "else{...}" block.
+ */
+ pE = fts3HashFindElem(pHash, zTerm, nTerm);
+ if( pE ){
+ aElem = &pE;
+ nElem = 1;
+ }
+ }
+
+ if( nElem>0 ){
+ sqlite3_int64 nByte;
+ nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
+ pReader = (Fts3SegReader *)sqlite3_malloc64(nByte);
+ if( !pReader ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pReader, 0, nByte);
+ pReader->iIdx = 0x7FFFFFFF;
+ pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
+ memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
+ }
+ }
+
+ if( bPrefix ){
+ sqlite3_free(aElem);
+ }
+ *ppReader = pReader;
+ return rc;
+}
+
+/*
+** Compare the entries pointed to by two Fts3SegReader structures.
+** Comparison is as follows:
+**
+** 1) EOF is greater than not EOF.
+**
+** 2) The current terms (if any) are compared using memcmp(). If one
+** term is a prefix of another, the longer term is considered the
+** larger.
+**
+** 3) By segment age. An older segment is considered larger.
+*/
+static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
+ int rc;
+ if( pLhs->aNode && pRhs->aNode ){
+ int rc2 = pLhs->nTerm - pRhs->nTerm;
+ if( rc2<0 ){
+ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
+ }else{
+ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
+ }
+ if( rc==0 ){
+ rc = rc2;
+ }
+ }else{
+ rc = (pLhs->aNode==0) - (pRhs->aNode==0);
+ }
+ if( rc==0 ){
+ rc = pRhs->iIdx - pLhs->iIdx;
+ }
+ assert_fts3_nc( rc!=0 );
+ return rc;
+}
+
+/*
+** A different comparison function for SegReader structures. In this
+** version, it is assumed that each SegReader points to an entry in
+** a doclist for identical terms. Comparison is made as follows:
+**
+** 1) EOF (end of doclist in this case) is greater than not EOF.
+**
+** 2) By current docid.
+**
+** 3) By segment age. An older segment is considered larger.
+*/
+static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
+ if( rc==0 ){
+ if( pLhs->iDocid==pRhs->iDocid ){
+ rc = pRhs->iIdx - pLhs->iIdx;
+ }else{
+ rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
+ }
+ }
+ assert( pLhs->aNode && pRhs->aNode );
+ return rc;
+}
+static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
+ if( rc==0 ){
+ if( pLhs->iDocid==pRhs->iDocid ){
+ rc = pRhs->iIdx - pLhs->iIdx;
+ }else{
+ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
+ }
+ }
+ assert( pLhs->aNode && pRhs->aNode );
+ return rc;
+}
+
+/*
+** Compare the term that the Fts3SegReader object passed as the first argument
+** points to with the term specified by arguments zTerm and nTerm.
+**
+** If the pSeg iterator is already at EOF, return 0. Otherwise, return
+** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
+** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
+*/
+static int fts3SegReaderTermCmp(
+ Fts3SegReader *pSeg, /* Segment reader object */
+ const char *zTerm, /* Term to compare to */
+ int nTerm /* Size of term zTerm in bytes */
+){
+ int res = 0;
+ if( pSeg->aNode ){
+ if( pSeg->nTerm>nTerm ){
+ res = memcmp(pSeg->zTerm, zTerm, nTerm);
+ }else{
+ res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
+ }
+ if( res==0 ){
+ res = pSeg->nTerm-nTerm;
+ }
+ }
+ return res;
+}
+
+/*
+** Argument apSegment is an array of nSegment elements. It is known that
+** the final (nSegment-nSuspect) members are already in sorted order
+** (according to the comparison function provided). This function shuffles
+** the array around until all entries are in sorted order.
+*/
+static void fts3SegReaderSort(
+ Fts3SegReader **apSegment, /* Array to sort entries of */
+ int nSegment, /* Size of apSegment array */
+ int nSuspect, /* Unsorted entry count */
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
+){
+ int i; /* Iterator variable */
+
+ assert( nSuspect<=nSegment );
+
+ if( nSuspect==nSegment ) nSuspect--;
+ for(i=nSuspect-1; i>=0; i--){
+ int j;
+ for(j=i; j<(nSegment-1); j++){
+ Fts3SegReader *pTmp;
+ if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
+ pTmp = apSegment[j+1];
+ apSegment[j+1] = apSegment[j];
+ apSegment[j] = pTmp;
+ }
+ }
+
+#ifndef NDEBUG
+ /* Check that the list really is sorted now. */
+ for(i=0; i<(nSuspect-1); i++){
+ assert( xCmp(apSegment[i], apSegment[i+1])<0 );
+ }
+#endif
+}
+
+/*
+** Insert a record into the %_segments table.
+*/
+static int fts3WriteSegment(
+ Fts3Table *p, /* Virtual table handle */
+ sqlite3_int64 iBlock, /* Block id for new block */
+ char *z, /* Pointer to buffer containing block data */
+ int n /* Size of buffer z in bytes */
+){
+ sqlite3_stmt *pStmt;
+ int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, iBlock);
+ sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ sqlite3_bind_null(pStmt, 2);
+ }
+ return rc;
+}
+
+/*
+** Find the largest relative level number in the table. If successful, set
+** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
+** set *pnMax to zero and return an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
+ int rc;
+ int mxLevel = 0;
+ sqlite3_stmt *pStmt = 0;
+
+ rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ mxLevel = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+ *pnMax = mxLevel;
+ return rc;
+}
+
+/*
+** Insert a record into the %_segdir table.
+*/
+static int fts3WriteSegdir(
+ Fts3Table *p, /* Virtual table handle */
+ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
+ int iIdx, /* Value for "idx" field */
+ sqlite3_int64 iStartBlock, /* Value for "start_block" field */
+ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
+ sqlite3_int64 iEndBlock, /* Value for "end_block" field */
+ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */
+ char *zRoot, /* Blob value for "root" field */
+ int nRoot /* Number of bytes in buffer zRoot */
+){
+ sqlite3_stmt *pStmt;
+ int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pStmt, 1, iLevel);
+ sqlite3_bind_int(pStmt, 2, iIdx);
+ sqlite3_bind_int64(pStmt, 3, iStartBlock);
+ sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
+ if( nLeafData==0 ){
+ sqlite3_bind_int64(pStmt, 5, iEndBlock);
+ }else{
+ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
+ if( !zEnd ) return SQLITE_NOMEM;
+ sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
+ }
+ sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ sqlite3_bind_null(pStmt, 6);
+ }
+ return rc;
+}
+
+/*
+** Return the size of the common prefix (if any) shared by zPrev and
+** zNext, in bytes. For example,
+**
+** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
+** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
+** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
+*/
+static int fts3PrefixCompress(
+ const char *zPrev, /* Buffer containing previous term */
+ int nPrev, /* Size of buffer zPrev in bytes */
+ const char *zNext, /* Buffer containing next term */
+ int nNext /* Size of buffer zNext in bytes */
+){
+ int n;
+ for(n=0; n<nPrev && n<nNext && zPrev[n]==zNext[n]; n++);
+ assert_fts3_nc( n<nNext );
+ return n;
+}
+
+/*
+** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
+** (according to memcmp) than the previous term.
+*/
+static int fts3NodeAddTerm(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
+ int isCopyTerm, /* True if zTerm/nTerm is transient */
+ const char *zTerm, /* Pointer to buffer containing term */
+ int nTerm /* Size of term in bytes */
+){
+ SegmentNode *pTree = *ppTree;
+ int rc;
+ SegmentNode *pNew;
+
+ /* First try to append the term to the current node. Return early if
+ ** this is possible.
+ */
+ if( pTree ){
+ int nData = pTree->nData; /* Current size of node in bytes */
+ int nReq = nData; /* Required space after adding zTerm */
+ int nPrefix; /* Number of bytes of prefix compression */
+ int nSuffix; /* Suffix length */
+
+ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
+ nSuffix = nTerm-nPrefix;
+
+ /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
+ ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
+ ** compared with BINARY collation. This indicates corruption. */
+ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+
+ nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
+ if( nReq<=p->nNodeSize || !pTree->zTerm ){
+
+ if( nReq>p->nNodeSize ){
+ /* An unusual case: this is the first term to be added to the node
+ ** and the static node buffer (p->nNodeSize bytes) is not large
+ ** enough. Use a separately malloced buffer instead This wastes
+ ** p->nNodeSize bytes, but since this scenario only comes about when
+ ** the database contain two terms that share a prefix of almost 2KB,
+ ** this is not expected to be a serious problem.
+ */
+ assert( pTree->aData==(char *)&pTree[1] );
+ pTree->aData = (char *)sqlite3_malloc64(nReq);
+ if( !pTree->aData ){
+ return SQLITE_NOMEM;
+ }
+ }
+
+ if( pTree->zTerm ){
+ /* There is no prefix-length field for first term in a node */
+ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
+ }
+
+ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
+ memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
+ pTree->nData = nData + nSuffix;
+ pTree->nEntry++;
+
+ if( isCopyTerm ){
+ if( pTree->nMalloc<nTerm ){
+ char *zNew = sqlite3_realloc64(pTree->zMalloc, (i64)nTerm*2);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pTree->nMalloc = nTerm*2;
+ pTree->zMalloc = zNew;
+ }
+ pTree->zTerm = pTree->zMalloc;
+ memcpy(pTree->zTerm, zTerm, nTerm);
+ pTree->nTerm = nTerm;
+ }else{
+ pTree->zTerm = (char *)zTerm;
+ pTree->nTerm = nTerm;
+ }
+ return SQLITE_OK;
+ }
+ }
+
+ /* If control flows to here, it was not possible to append zTerm to the
+ ** current node. Create a new node (a right-sibling of the current node).
+ ** If this is the first node in the tree, the term is added to it.
+ **
+ ** Otherwise, the term is not added to the new node, it is left empty for
+ ** now. Instead, the term is inserted into the parent of pTree. If pTree
+ ** has no parent, one is created here.
+ */
+ pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize);
+ if( !pNew ){
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(SegmentNode));
+ pNew->nData = 1 + FTS3_VARINT_MAX;
+ pNew->aData = (char *)&pNew[1];
+
+ if( pTree ){
+ SegmentNode *pParent = pTree->pParent;
+ rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
+ if( pTree->pParent==0 ){
+ pTree->pParent = pParent;
+ }
+ pTree->pRight = pNew;
+ pNew->pLeftmost = pTree->pLeftmost;
+ pNew->pParent = pParent;
+ pNew->zMalloc = pTree->zMalloc;
+ pNew->nMalloc = pTree->nMalloc;
+ pTree->zMalloc = 0;
+ }else{
+ pNew->pLeftmost = pNew;
+ rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
+ }
+
+ *ppTree = pNew;
+ return rc;
+}
+
+/*
+** Helper function for fts3NodeWrite().
+*/
+static int fts3TreeFinishNode(
+ SegmentNode *pTree,
+ int iHeight,
+ sqlite3_int64 iLeftChild
+){
+ int nStart;
+ assert( iHeight>=1 && iHeight<128 );
+ nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
+ pTree->aData[nStart] = (char)iHeight;
+ sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
+ return nStart;
+}
+
+/*
+** Write the buffer for the segment node pTree and all of its peers to the
+** database. Then call this function recursively to write the parent of
+** pTree and its peers to the database.
+**
+** Except, if pTree is a root node, do not write it to the database. Instead,
+** set output variables *paRoot and *pnRoot to contain the root node.
+**
+** If successful, SQLITE_OK is returned and output variable *piLast is
+** set to the largest blockid written to the database (or zero if no
+** blocks were written to the db). Otherwise, an SQLite error code is
+** returned.
+*/
+static int fts3NodeWrite(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentNode *pTree, /* SegmentNode handle */
+ int iHeight, /* Height of this node in tree */
+ sqlite3_int64 iLeaf, /* Block id of first leaf node */
+ sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
+ sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
+ char **paRoot, /* OUT: Data for root node */
+ int *pnRoot /* OUT: Size of root node in bytes */
+){
+ int rc = SQLITE_OK;
+
+ if( !pTree->pParent ){
+ /* Root node of the tree. */
+ int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
+ *piLast = iFree-1;
+ *pnRoot = pTree->nData - nStart;
+ *paRoot = &pTree->aData[nStart];
+ }else{
+ SegmentNode *pIter;
+ sqlite3_int64 iNextFree = iFree;
+ sqlite3_int64 iNextLeaf = iLeaf;
+ for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
+ int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
+ int nWrite = pIter->nData - nStart;
+
+ rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
+ iNextFree++;
+ iNextLeaf += (pIter->nEntry+1);
+ }
+ if( rc==SQLITE_OK ){
+ assert( iNextLeaf==iFree );
+ rc = fts3NodeWrite(
+ p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Free all memory allocations associated with the tree pTree.
+*/
+static void fts3NodeFree(SegmentNode *pTree){
+ if( pTree ){
+ SegmentNode *p = pTree->pLeftmost;
+ fts3NodeFree(p->pParent);
+ while( p ){
+ SegmentNode *pRight = p->pRight;
+ if( p->aData!=(char *)&p[1] ){
+ sqlite3_free(p->aData);
+ }
+ assert( pRight==0 || p->zMalloc==0 );
+ sqlite3_free(p->zMalloc);
+ sqlite3_free(p);
+ p = pRight;
+ }
+ }
+}
+
+/*
+** Add a term to the segment being constructed by the SegmentWriter object
+** *ppWriter. When adding the first term to a segment, *ppWriter should
+** be passed NULL. This function will allocate a new SegmentWriter object
+** and return it via the input/output variable *ppWriter in this case.
+**
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
+*/
+static int fts3SegWriterAdd(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
+ int isCopyTerm, /* True if buffer zTerm must be copied */
+ const char *zTerm, /* Pointer to buffer containing term */
+ int nTerm, /* Size of term in bytes */
+ const char *aDoclist, /* Pointer to buffer containing doclist */
+ int nDoclist /* Size of doclist in bytes */
+){
+ int nPrefix; /* Size of term prefix in bytes */
+ int nSuffix; /* Size of term suffix in bytes */
+ i64 nReq; /* Number of bytes required on leaf page */
+ int nData;
+ SegmentWriter *pWriter = *ppWriter;
+
+ if( !pWriter ){
+ int rc;
+ sqlite3_stmt *pStmt;
+
+ /* Allocate the SegmentWriter structure */
+ pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter));
+ if( !pWriter ) return SQLITE_NOMEM;
+ memset(pWriter, 0, sizeof(SegmentWriter));
+ *ppWriter = pWriter;
+
+ /* Allocate a buffer in which to accumulate data */
+ pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize);
+ if( !pWriter->aData ) return SQLITE_NOMEM;
+ pWriter->nSize = p->nNodeSize;
+
+ /* Find the next free blockid in the %_segments table */
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ pWriter->iFree = sqlite3_column_int64(pStmt, 0);
+ pWriter->iFirst = pWriter->iFree;
+ }
+ rc = sqlite3_reset(pStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ nData = pWriter->nData;
+
+ nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
+ nSuffix = nTerm-nPrefix;
+
+ /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
+ ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
+ ** compared with BINARY collation. This indicates corruption. */
+ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+
+ /* Figure out how many bytes are required by this new entry */
+ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
+ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
+ nSuffix + /* Term suffix */
+ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
+ nDoclist; /* Doclist data */
+
+ if( nData>0 && nData+nReq>p->nNodeSize ){
+ int rc;
+
+ /* The current leaf node is full. Write it out to the database. */
+ if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB;
+ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
+ if( rc!=SQLITE_OK ) return rc;
+ p->nLeafAdd++;
+
+ /* Add the current term to the interior node tree. The term added to
+ ** the interior tree must:
+ **
+ ** a) be greater than the largest term on the leaf node just written
+ ** to the database (still available in pWriter->zTerm), and
+ **
+ ** b) be less than or equal to the term about to be added to the new
+ ** leaf node (zTerm/nTerm).
+ **
+ ** In other words, it must be the prefix of zTerm 1 byte longer than
+ ** the common prefix (if any) of zTerm and pWriter->zTerm.
+ */
+ assert( nPrefix<nTerm );
+ rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
+ if( rc!=SQLITE_OK ) return rc;
+
+ nData = 0;
+ pWriter->nTerm = 0;
+
+ nPrefix = 0;
+ nSuffix = nTerm;
+ nReq = 1 + /* varint containing prefix size */
+ sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
+ nTerm + /* Term suffix */
+ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
+ nDoclist; /* Doclist data */
+ }
+
+ /* Increase the total number of bytes written to account for the new entry. */
+ pWriter->nLeafData += nReq;
+
+ /* If the buffer currently allocated is too small for this entry, realloc
+ ** the buffer to make it large enough.
+ */
+ if( nReq>pWriter->nSize ){
+ char *aNew = sqlite3_realloc64(pWriter->aData, nReq);
+ if( !aNew ) return SQLITE_NOMEM;
+ pWriter->aData = aNew;
+ pWriter->nSize = nReq;
+ }
+ assert( nData+nReq<=pWriter->nSize );
+
+ /* Append the prefix-compressed term and doclist to the buffer. */
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
+ assert( nSuffix>0 );
+ memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
+ nData += nSuffix;
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
+ assert( nDoclist>0 );
+ memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
+ pWriter->nData = nData + nDoclist;
+
+ /* Save the current term so that it can be used to prefix-compress the next.
+ ** If the isCopyTerm parameter is true, then the buffer pointed to by
+ ** zTerm is transient, so take a copy of the term data. Otherwise, just
+ ** store a copy of the pointer.
+ */
+ if( isCopyTerm ){
+ if( nTerm>pWriter->nMalloc ){
+ char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pWriter->nMalloc = nTerm*2;
+ pWriter->zMalloc = zNew;
+ pWriter->zTerm = zNew;
+ }
+ assert( pWriter->zTerm==pWriter->zMalloc );
+ assert( nTerm>0 );
+ memcpy(pWriter->zTerm, zTerm, nTerm);
+ }else{
+ pWriter->zTerm = (char *)zTerm;
+ }
+ pWriter->nTerm = nTerm;
+
+ return SQLITE_OK;
+}
+
+/*
+** Flush all data associated with the SegmentWriter object pWriter to the
+** database. This function must be called after all terms have been added
+** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
+** returned. Otherwise, an SQLite error code.
+*/
+static int fts3SegWriterFlush(
+ Fts3Table *p, /* Virtual table handle */
+ SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
+ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
+ int iIdx /* Value for 'idx' column of %_segdir */
+){
+ int rc; /* Return code */
+ if( pWriter->pTree ){
+ sqlite3_int64 iLast = 0; /* Largest block id written to database */
+ sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
+ char *zRoot = NULL; /* Pointer to buffer containing root node */
+ int nRoot = 0; /* Size of buffer zRoot */
+
+ iLastLeaf = pWriter->iFree;
+ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
+ if( rc==SQLITE_OK ){
+ rc = fts3NodeWrite(p, pWriter->pTree, 1,
+ pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3WriteSegdir(p, iLevel, iIdx,
+ pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
+ }
+ }else{
+ /* The entire tree fits on the root node. Write it to the segdir table. */
+ rc = fts3WriteSegdir(p, iLevel, iIdx,
+ 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
+ }
+ p->nLeafAdd++;
+ return rc;
+}
+
+/*
+** Release all memory held by the SegmentWriter object passed as the
+** first argument.
+*/
+static void fts3SegWriterFree(SegmentWriter *pWriter){
+ if( pWriter ){
+ sqlite3_free(pWriter->aData);
+ sqlite3_free(pWriter->zMalloc);
+ fts3NodeFree(pWriter->pTree);
+ sqlite3_free(pWriter);
+ }
+}
+
+/*
+** The first value in the apVal[] array is assumed to contain an integer.
+** This function tests if there exist any documents with docid values that
+** are different from that integer. i.e. if deleting the document with docid
+** pRowid would mean the FTS3 table were empty.
+**
+** If successful, *pisEmpty is set to true if the table is empty except for
+** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
+** error occurs, an SQLite error code is returned.
+*/
+static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
+ sqlite3_stmt *pStmt;
+ int rc;
+ if( p->zContentTbl ){
+ /* If using the content=xxx option, assume the table is never empty */
+ *pisEmpty = 0;
+ rc = SQLITE_OK;
+ }else{
+ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *pisEmpty = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+ }
+ return rc;
+}
+
+/*
+** Set *pnMax to the largest segment level in the database for the index
+** iIndex.
+**
+** Segment levels are stored in the 'level' column of the %_segdir table.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if not.
+*/
+static int fts3SegmentMaxLevel(
+ Fts3Table *p,
+ int iLangid,
+ int iIndex,
+ sqlite3_int64 *pnMax
+){
+ sqlite3_stmt *pStmt;
+ int rc;
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ /* Set pStmt to the compiled version of:
+ **
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
+ **
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
+ */
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
+ sqlite3_bind_int64(pStmt, 2,
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
+ );
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *pnMax = sqlite3_column_int64(pStmt, 0);
+ }
+ return sqlite3_reset(pStmt);
+}
+
+/*
+** iAbsLevel is an absolute level that may be assumed to exist within
+** the database. This function checks if it is the largest level number
+** within its index. Assuming no error occurs, *pbMax is set to 1 if
+** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
+** is returned. If an error occurs, an error code is returned and the
+** final value of *pbMax is undefined.
+*/
+static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
+
+ /* Set pStmt to the compiled version of:
+ **
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
+ **
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
+ */
+ sqlite3_stmt *pStmt;
+ int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
+ sqlite3_bind_int64(pStmt, 2,
+ (((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
+ );
+
+ *pbMax = 0;
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
+ }
+ return sqlite3_reset(pStmt);
+}
+
+/*
+** Delete all entries in the %_segments table associated with the segment
+** opened with seg-reader pSeg. This function does not affect the contents
+** of the %_segdir table.
+*/
+static int fts3DeleteSegment(
+ Fts3Table *p, /* FTS table handle */
+ Fts3SegReader *pSeg /* Segment to delete */
+){
+ int rc = SQLITE_OK; /* Return code */
+ if( pSeg->iStartBlock ){
+ sqlite3_stmt *pDelete; /* SQL statement to delete rows */
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
+ sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
+ sqlite3_step(pDelete);
+ rc = sqlite3_reset(pDelete);
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is used after merging multiple segments into a single large
+** segment to delete the old, now redundant, segment b-trees. Specifically,
+** it:
+**
+** 1) Deletes all %_segments entries for the segments associated with
+** each of the SegReader objects in the array passed as the third
+** argument, and
+**
+** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
+** entries regardless of level if (iLevel<0).
+**
+** SQLITE_OK is returned if successful, otherwise an SQLite error code.
+*/
+static int fts3DeleteSegdir(
+ Fts3Table *p, /* Virtual table handle */
+ int iLangid, /* Language id */
+ int iIndex, /* Index for p->aIndex */
+ int iLevel, /* Level of %_segdir entries to delete */
+ Fts3SegReader **apSegment, /* Array of SegReader objects */
+ int nReader /* Size of array apSegment */
+){
+ int rc = SQLITE_OK; /* Return Code */
+ int i; /* Iterator variable */
+ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
+
+ for(i=0; rc==SQLITE_OK && i<nReader; i++){
+ rc = fts3DeleteSegment(p, apSegment[i]);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
+ if( iLevel==FTS3_SEGCURSOR_ALL ){
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
+ sqlite3_bind_int64(pDelete, 2,
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
+ );
+ }
+ }else{
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(
+ pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pDelete);
+ rc = sqlite3_reset(pDelete);
+ }
+
+ return rc;
+}
+
+/*
+** When this function is called, buffer *ppList (size *pnList bytes) contains
+** a position list that may (or may not) feature multiple columns. This
+** function adjusts the pointer *ppList and the length *pnList so that they
+** identify the subset of the position list that corresponds to column iCol.
+**
+** If there are no entries in the input position list for column iCol, then
+** *pnList is set to zero before returning.
+**
+** If parameter bZero is non-zero, then any part of the input list following
+** the end of the output list is zeroed before returning.
+*/
+static void fts3ColumnFilter(
+ int iCol, /* Column to filter on */
+ int bZero, /* Zero out anything following *ppList */
+ char **ppList, /* IN/OUT: Pointer to position list */
+ int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
+){
+ char *pList = *ppList;
+ int nList = *pnList;
+ char *pEnd = &pList[nList];
+ int iCurrent = 0;
+ char *p = pList;
+
+ assert( iCol>=0 );
+ while( 1 ){
+ char c = 0;
+ while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
+
+ if( iCol==iCurrent ){
+ nList = (int)(p - pList);
+ break;
+ }
+
+ nList -= (int)(p - pList);
+ pList = p;
+ if( nList<=0 ){
+ break;
+ }
+ p = &pList[1];
+ p += fts3GetVarint32(p, &iCurrent);
+ }
+
+ if( bZero && (pEnd - &pList[nList])>0){
+ memset(&pList[nList], 0, pEnd - &pList[nList]);
+ }
+ *ppList = pList;
+ *pnList = nList;
+}
+
+/*
+** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
+** existing data). Grow the buffer if required.
+**
+** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
+** trying to resize the buffer, return SQLITE_NOMEM.
+*/
+static int fts3MsrBufferData(
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
+ char *pList,
+ i64 nList
+){
+ if( (nList+FTS3_NODE_PADDING)>pMsr->nBuffer ){
+ char *pNew;
+ int nNew = nList*2 + FTS3_NODE_PADDING;
+ pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, nNew);
+ if( !pNew ) return SQLITE_NOMEM;
+ pMsr->aBuffer = pNew;
+ pMsr->nBuffer = nNew;
+ }
+
+ assert( nList>0 );
+ memcpy(pMsr->aBuffer, pList, nList);
+ memset(&pMsr->aBuffer[nList], 0, FTS3_NODE_PADDING);
+ return SQLITE_OK;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
+ sqlite3_int64 *piDocid, /* OUT: Docid value */
+ char **paPoslist, /* OUT: Pointer to position list */
+ int *pnPoslist /* OUT: Size of position list in bytes */
+){
+ int nMerge = pMsr->nAdvance;
+ Fts3SegReader **apSegment = pMsr->apSegment;
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
+ );
+
+ if( nMerge==0 ){
+ *paPoslist = 0;
+ return SQLITE_OK;
+ }
+
+ while( 1 ){
+ Fts3SegReader *pSeg;
+ pSeg = pMsr->apSegment[0];
+
+ if( pSeg->pOffsetList==0 ){
+ *paPoslist = 0;
+ break;
+ }else{
+ int rc;
+ char *pList;
+ int nList;
+ int j;
+ sqlite3_int64 iDocid = apSegment[0]->iDocid;
+
+ rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
+ j = 1;
+ while( rc==SQLITE_OK
+ && j<nMerge
+ && apSegment[j]->pOffsetList
+ && apSegment[j]->iDocid==iDocid
+ ){
+ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
+ j++;
+ }
+ if( rc!=SQLITE_OK ) return rc;
+ fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
+
+ if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
+ rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
+ pList = pMsr->aBuffer;
+ }
+
+ if( pMsr->iColFilter>=0 ){
+ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
+ }
+
+ if( nList>0 ){
+ *paPoslist = pList;
+ *piDocid = iDocid;
+ *pnPoslist = nList;
+ break;
+ }
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+static int fts3SegReaderStart(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr, /* Cursor object */
+ const char *zTerm, /* Term searched for (or NULL) */
+ int nTerm /* Length of zTerm in bytes */
+){
+ int i;
+ int nSeg = pCsr->nSegment;
+
+ /* If the Fts3SegFilter defines a specific term (or term prefix) to search
+ ** for, then advance each segment iterator until it points to a term of
+ ** equal or greater value than the specified term. This prevents many
+ ** unnecessary merge/sort operations for the case where single segment
+ ** b-tree leaf nodes contain more than one term.
+ */
+ for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
+ int res = 0;
+ Fts3SegReader *pSeg = pCsr->apSegment[i];
+ do {
+ int rc = fts3SegReaderNext(p, pSeg, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
+
+ if( pSeg->bLookup && res!=0 ){
+ fts3SegReaderSetEof(pSeg);
+ }
+ }
+ fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
+
+ return SQLITE_OK;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr, /* Cursor object */
+ Fts3SegFilter *pFilter /* Restrictions on range of iteration */
+){
+ pCsr->pFilter = pFilter;
+ return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
+}
+
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr, /* Cursor object */
+ int iCol, /* Column to match on. */
+ const char *zTerm, /* Term to iterate through a doclist for */
+ int nTerm /* Number of bytes in zTerm */
+){
+ int i;
+ int rc;
+ int nSegment = pCsr->nSegment;
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
+ );
+
+ assert( pCsr->pFilter==0 );
+ assert( zTerm && nTerm>0 );
+
+ /* Advance each segment iterator until it points to the term zTerm/nTerm. */
+ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Determine how many of the segments actually point to zTerm/nTerm. */
+ for(i=0; i<nSegment; i++){
+ Fts3SegReader *pSeg = pCsr->apSegment[i];
+ if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
+ break;
+ }
+ }
+ pCsr->nAdvance = i;
+
+ /* Advance each of the segments to point to the first docid. */
+ for(i=0; i<pCsr->nAdvance; i++){
+ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
+
+ assert( iCol<0 || iCol<p->nColumn );
+ pCsr->iColFilter = iCol;
+
+ return SQLITE_OK;
+}
+
+/*
+** This function is called on a MultiSegReader that has been started using
+** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
+** have been made. Calling this function puts the MultiSegReader in such
+** a state that if the next two calls are:
+**
+** sqlite3Fts3SegReaderStart()
+** sqlite3Fts3SegReaderStep()
+**
+** then the entire doclist for the term is available in
+** MultiSegReader.aDoclist/nDoclist.
+*/
+SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
+ int i; /* Used to iterate through segment-readers */
+
+ assert( pCsr->zTerm==0 );
+ assert( pCsr->nTerm==0 );
+ assert( pCsr->aDoclist==0 );
+ assert( pCsr->nDoclist==0 );
+
+ pCsr->nAdvance = 0;
+ pCsr->bRestart = 1;
+ for(i=0; i<pCsr->nSegment; i++){
+ pCsr->apSegment[i]->pOffsetList = 0;
+ pCsr->apSegment[i]->nOffsetList = 0;
+ pCsr->apSegment[i]->iDocid = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){
+ if( nReq>pCsr->nBuffer ){
+ char *aNew;
+ pCsr->nBuffer = nReq*2;
+ aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer);
+ if( !aNew ){
+ return SQLITE_NOMEM;
+ }
+ pCsr->aBuffer = aNew;
+ }
+ return SQLITE_OK;
+}
+
+
+SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(
+ Fts3Table *p, /* Virtual table handle */
+ Fts3MultiSegReader *pCsr /* Cursor object */
+){
+ int rc = SQLITE_OK;
+
+ int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
+ int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
+ int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
+ int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
+ int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
+ int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
+
+ Fts3SegReader **apSegment = pCsr->apSegment;
+ int nSegment = pCsr->nSegment;
+ Fts3SegFilter *pFilter = pCsr->pFilter;
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
+ );
+
+ if( pCsr->nSegment==0 ) return SQLITE_OK;
+
+ do {
+ int nMerge;
+ int i;
+
+ /* Advance the first pCsr->nAdvance entries in the apSegment[] array
+ ** forward. Then sort the list in order of current term again.
+ */
+ for(i=0; i<pCsr->nAdvance; i++){
+ Fts3SegReader *pSeg = apSegment[i];
+ if( pSeg->bLookup ){
+ fts3SegReaderSetEof(pSeg);
+ }else{
+ rc = fts3SegReaderNext(p, pSeg, 0);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
+ pCsr->nAdvance = 0;
+
+ /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
+ assert( rc==SQLITE_OK );
+ if( apSegment[0]->aNode==0 ) break;
+
+ pCsr->nTerm = apSegment[0]->nTerm;
+ pCsr->zTerm = apSegment[0]->zTerm;
+
+ /* If this is a prefix-search, and if the term that apSegment[0] points
+ ** to does not share a suffix with pFilter->zTerm/nTerm, then all
+ ** required callbacks have been made. In this case exit early.
+ **
+ ** Similarly, if this is a search for an exact match, and the first term
+ ** of segment apSegment[0] is not a match, exit early.
+ */
+ if( pFilter->zTerm && !isScan ){
+ if( pCsr->nTerm<pFilter->nTerm
+ || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
+ || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
+ ){
+ break;
+ }
+ }
+
+ nMerge = 1;
+ while( nMerge<nSegment
+ && apSegment[nMerge]->aNode
+ && apSegment[nMerge]->nTerm==pCsr->nTerm
+ && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
+ ){
+ nMerge++;
+ }
+
+ assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
+ if( nMerge==1
+ && !isIgnoreEmpty
+ && !isFirst
+ && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
+ ){
+ pCsr->nDoclist = apSegment[0]->nDoclist;
+ if( fts3SegReaderIsPending(apSegment[0]) ){
+ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist,
+ (i64)pCsr->nDoclist);
+ pCsr->aDoclist = pCsr->aBuffer;
+ }else{
+ pCsr->aDoclist = apSegment[0]->aDoclist;
+ }
+ if( rc==SQLITE_OK ) rc = SQLITE_ROW;
+ }else{
+ int nDoclist = 0; /* Size of doclist */
+ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
+
+ /* The current term of the first nMerge entries in the array
+ ** of Fts3SegReader objects is the same. The doclists must be merged
+ ** and a single term returned with the merged doclist.
+ */
+ for(i=0; i<nMerge; i++){
+ fts3SegReaderFirstDocid(p, apSegment[i]);
+ }
+ fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
+ while( apSegment[0]->pOffsetList ){
+ int j; /* Number of segments that share a docid */
+ char *pList = 0;
+ int nList = 0;
+ int nByte;
+ sqlite3_int64 iDocid = apSegment[0]->iDocid;
+ fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
+ j = 1;
+ while( j<nMerge
+ && apSegment[j]->pOffsetList
+ && apSegment[j]->iDocid==iDocid
+ ){
+ fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
+ j++;
+ }
+
+ if( isColFilter ){
+ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
+ }
+
+ if( !isIgnoreEmpty || nList>0 ){
+
+ /* Calculate the 'docid' delta value to write into the merged
+ ** doclist. */
+ sqlite3_int64 iDelta;
+ if( p->bDescIdx && nDoclist>0 ){
+ if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB;
+ iDelta = (i64)((u64)iPrev - (u64)iDocid);
+ }else{
+ if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
+ iDelta = (i64)((u64)iDocid - (u64)iPrev);
+ }
+
+ nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
+
+ rc = fts3GrowSegReaderBuffer(pCsr,
+ (i64)nByte+nDoclist+FTS3_NODE_PADDING);
+ if( rc ) return rc;
+
+ if( isFirst ){
+ char *a = &pCsr->aBuffer[nDoclist];
+ int nWrite;
+
+ nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
+ if( nWrite ){
+ iPrev = iDocid;
+ nDoclist += nWrite;
+ }
+ }else{
+ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
+ iPrev = iDocid;
+ if( isRequirePos ){
+ memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
+ nDoclist += nList;
+ pCsr->aBuffer[nDoclist++] = '\0';
+ }
+ }
+ }
+
+ fts3SegReaderSort(apSegment, nMerge, j, xCmp);
+ }
+ if( nDoclist>0 ){
+ rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING);
+ if( rc ) return rc;
+ memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING);
+ pCsr->aDoclist = pCsr->aBuffer;
+ pCsr->nDoclist = nDoclist;
+ rc = SQLITE_ROW;
+ }
+ }
+ pCsr->nAdvance = nMerge;
+ }while( rc==SQLITE_OK );
+
+ return rc;
+}
+
+
+SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(
+ Fts3MultiSegReader *pCsr /* Cursor object */
+){
+ if( pCsr ){
+ int i;
+ for(i=0; i<pCsr->nSegment; i++){
+ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
+ }
+ sqlite3_free(pCsr->apSegment);
+ sqlite3_free(pCsr->aBuffer);
+
+ pCsr->nSegment = 0;
+ pCsr->apSegment = 0;
+ pCsr->aBuffer = 0;
+ }
+}
+
+/*
+** Decode the "end_block" field, selected by column iCol of the SELECT
+** statement passed as the first argument.
+**
+** The "end_block" field may contain either an integer, or a text field
+** containing the text representation of two non-negative integers separated
+** by one or more space (0x20) characters. In the first case, set *piEndBlock
+** to the integer value and *pnByte to zero before returning. In the second,
+** set *piEndBlock to the first value and *pnByte to the second.
+*/
+static void fts3ReadEndBlockField(
+ sqlite3_stmt *pStmt,
+ int iCol,
+ i64 *piEndBlock,
+ i64 *pnByte
+){
+ const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
+ if( zText ){
+ int i;
+ int iMul = 1;
+ u64 iVal = 0;
+ for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
+ iVal = iVal*10 + (zText[i] - '0');
+ }
+ *piEndBlock = (i64)iVal;
+ while( zText[i]==' ' ) i++;
+ iVal = 0;
+ if( zText[i]=='-' ){
+ i++;
+ iMul = -1;
+ }
+ for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
+ iVal = iVal*10 + (zText[i] - '0');
+ }
+ *pnByte = ((i64)iVal * (i64)iMul);
+ }
+}
+
+
+/*
+** A segment of size nByte bytes has just been written to absolute level
+** iAbsLevel. Promote any segments that should be promoted as a result.
+*/
+static int fts3PromoteSegments(
+ Fts3Table *p, /* FTS table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level just updated */
+ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */
+){
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pRange;
+
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
+
+ if( rc==SQLITE_OK ){
+ int bOk = 0;
+ i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
+ i64 nLimit = (nByte*3)/2;
+
+ /* Loop through all entries in the %_segdir table corresponding to
+ ** segments in this index on levels greater than iAbsLevel. If there is
+ ** at least one such segment, and it is possible to determine that all
+ ** such segments are smaller than nLimit bytes in size, they will be
+ ** promoted to level iAbsLevel. */
+ sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
+ sqlite3_bind_int64(pRange, 2, iLast);
+ while( SQLITE_ROW==sqlite3_step(pRange) ){
+ i64 nSize = 0, dummy;
+ fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
+ if( nSize<=0 || nSize>nLimit ){
+ /* If nSize==0, then the %_segdir.end_block field does not not
+ ** contain a size value. This happens if it was written by an
+ ** old version of FTS. In this case it is not possible to determine
+ ** the size of the segment, and so segment promotion does not
+ ** take place. */
+ bOk = 0;
+ break;
+ }
+ bOk = 1;
+ }
+ rc = sqlite3_reset(pRange);
+
+ if( bOk ){
+ int iIdx = 0;
+ sqlite3_stmt *pUpdate1 = 0;
+ sqlite3_stmt *pUpdate2 = 0;
+
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
+ }
+
+ if( rc==SQLITE_OK ){
+
+ /* Loop through all %_segdir entries for segments in this index with
+ ** levels equal to or greater than iAbsLevel. As each entry is visited,
+ ** updated it to set (level = -1) and (idx = N), where N is 0 for the
+ ** oldest segment in the range, 1 for the next oldest, and so on.
+ **
+ ** In other words, move all segments being promoted to level -1,
+ ** setting the "idx" fields as appropriate to keep them in the same
+ ** order. The contents of level -1 (which is never used, except
+ ** transiently here), will be moved back to level iAbsLevel below. */
+ sqlite3_bind_int64(pRange, 1, iAbsLevel);
+ while( SQLITE_ROW==sqlite3_step(pRange) ){
+ sqlite3_bind_int(pUpdate1, 1, iIdx++);
+ sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
+ sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
+ sqlite3_step(pUpdate1);
+ rc = sqlite3_reset(pUpdate1);
+ if( rc!=SQLITE_OK ){
+ sqlite3_reset(pRange);
+ break;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_reset(pRange);
+ }
+
+ /* Move level -1 to level iAbsLevel */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
+ sqlite3_step(pUpdate2);
+ rc = sqlite3_reset(pUpdate2);
+ }
+ }
+ }
+
+
+ return rc;
+}
+
+/*
+** Merge all level iLevel segments in the database into a single
+** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
+** single segment with a level equal to the numerically largest level
+** currently present in the database.
+**
+** If this function is called with iLevel<0, but there is only one
+** segment in the database, SQLITE_DONE is returned immediately.
+** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
+** an SQLite error code is returned.
+*/
+static int fts3SegmentMerge(
+ Fts3Table *p,
+ int iLangid, /* Language id to merge */
+ int iIndex, /* Index in p->aIndex[] to merge */
+ int iLevel /* Level to merge */
+){
+ int rc; /* Return code */
+ int iIdx = 0; /* Index of new segment */
+ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
+ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
+ Fts3SegFilter filter; /* Segment term filter condition */
+ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
+ int bIgnoreEmpty = 0; /* True to ignore empty segments */
+ i64 iMaxLevel = 0; /* Max level number for this index/langid */
+
+ assert( iLevel==FTS3_SEGCURSOR_ALL
+ || iLevel==FTS3_SEGCURSOR_PENDING
+ || iLevel>=0
+ );
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
+ assert( iIndex>=0 && iIndex<p->nIndex );
+
+ rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
+ if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
+
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){
+ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
+ if( rc!=SQLITE_OK ) goto finished;
+ }
+
+ if( iLevel==FTS3_SEGCURSOR_ALL ){
+ /* This call is to merge all segments in the database to a single
+ ** segment. The level of the new segment is equal to the numerically
+ ** greatest segment level currently present in the database for this
+ ** index. The idx of the new segment is always 0. */
+ if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){
+ rc = SQLITE_DONE;
+ goto finished;
+ }
+ iNewLevel = iMaxLevel;
+ bIgnoreEmpty = 1;
+
+ }else{
+ /* This call is to merge all segments at level iLevel. find the next
+ ** available segment index at level iLevel+1. The call to
+ ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
+ ** a single iLevel+2 segment if necessary. */
+ assert( FTS3_SEGCURSOR_PENDING==-1 );
+ iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
+ rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
+ bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
+ }
+ if( rc!=SQLITE_OK ) goto finished;
+
+ assert( csr.nSegment>0 );
+ assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
+ assert_fts3_nc(
+ iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL)
+ );
+
+ memset(&filter, 0, sizeof(Fts3SegFilter));
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS;
+ filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
+
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
+ while( SQLITE_OK==rc ){
+ rc = sqlite3Fts3SegReaderStep(p, &csr);
+ if( rc!=SQLITE_ROW ) break;
+ rc = fts3SegWriterAdd(p, &pWriter, 1,
+ csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
+ }
+ if( rc!=SQLITE_OK ) goto finished;
+ assert_fts3_nc( pWriter || bIgnoreEmpty );
+
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){
+ rc = fts3DeleteSegdir(
+ p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
+ );
+ if( rc!=SQLITE_OK ) goto finished;
+ }
+ if( pWriter ){
+ rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
+ if( rc==SQLITE_OK ){
+ if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
+ rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
+ }
+ }
+ }
+
+ finished:
+ fts3SegWriterFree(pWriter);
+ sqlite3Fts3SegReaderFinish(&csr);
+ return rc;
+}
+
+
+/*
+** Flush the contents of pendingTerms to level 0 segments.
+*/
+SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
+ int rc = SQLITE_OK;
+ int i;
+
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
+ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+
+ /* Determine the auto-incr-merge setting if unknown. If enabled,
+ ** estimate the number of leaf blocks of content to be written
+ */
+ if( rc==SQLITE_OK && p->bHasStat
+ && p->nAutoincrmerge==0xff && p->nLeafAdd>0
+ ){
+ sqlite3_stmt *pStmt = 0;
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
+ rc = sqlite3_step(pStmt);
+ if( rc==SQLITE_ROW ){
+ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
+ if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
+ }else if( rc==SQLITE_DONE ){
+ p->nAutoincrmerge = 0;
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3Fts3PendingTermsClear(p);
+ }
+ return rc;
+}
+
+/*
+** Encode N integers as varints into a blob.
+*/
+static void fts3EncodeIntArray(
+ int N, /* The number of integers to encode */
+ u32 *a, /* The integer values */
+ char *zBuf, /* Write the BLOB here */
+ int *pNBuf /* Write number of bytes if zBuf[] used here */
+){
+ int i, j;
+ for(i=j=0; i<N; i++){
+ j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
+ }
+ *pNBuf = j;
+}
+
+/*
+** Decode a blob of varints into N integers
+*/
+static void fts3DecodeIntArray(
+ int N, /* The number of integers to decode */
+ u32 *a, /* Write the integer values */
+ const char *zBuf, /* The BLOB containing the varints */
+ int nBuf /* size of the BLOB */
+){
+ int i = 0;
+ if( nBuf && (zBuf[nBuf-1]&0x80)==0 ){
+ int j;
+ for(i=j=0; i<N && j<nBuf; i++){
+ sqlite3_int64 x;
+ j += sqlite3Fts3GetVarint(&zBuf[j], &x);
+ a[i] = (u32)(x & 0xffffffff);
+ }
+ }
+ while( i<N ) a[i++] = 0;
+}
+
+/*
+** Insert the sizes (in tokens) for each column of the document
+** with docid equal to p->iPrevDocid. The sizes are encoded as
+** a blob of varints.
+*/
+static void fts3InsertDocsize(
+ int *pRC, /* Result code */
+ Fts3Table *p, /* Table into which to insert */
+ u32 *aSz /* Sizes of each column, in tokens */
+){
+ char *pBlob; /* The BLOB encoding of the document size */
+ int nBlob; /* Number of bytes in the BLOB */
+ sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
+ int rc; /* Result code from subfunctions */
+
+ if( *pRC ) return;
+ pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn );
+ if( pBlob==0 ){
+ *pRC = SQLITE_NOMEM;
+ return;
+ }
+ fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
+ rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
+ if( rc ){
+ sqlite3_free(pBlob);
+ *pRC = rc;
+ return;
+ }
+ sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
+ sqlite3_step(pStmt);
+ *pRC = sqlite3_reset(pStmt);
+}
+
+/*
+** Record 0 of the %_stat table contains a blob consisting of N varints,
+** where N is the number of user defined columns in the fts3 table plus
+** two. If nCol is the number of user defined columns, then values of the
+** varints are set as follows:
+**
+** Varint 0: Total number of rows in the table.
+**
+** Varint 1..nCol: For each column, the total number of tokens stored in
+** the column for all rows of the table.
+**
+** Varint 1+nCol: The total size, in bytes, of all text values in all
+** columns of all rows of the table.
+**
+*/
+static void fts3UpdateDocTotals(
+ int *pRC, /* The result code */
+ Fts3Table *p, /* Table being updated */
+ u32 *aSzIns, /* Size increases */
+ u32 *aSzDel, /* Size decreases */
+ int nChng /* Change in the number of documents */
+){
+ char *pBlob; /* Storage for BLOB written into %_stat */
+ int nBlob; /* Size of BLOB written into %_stat */
+ u32 *a; /* Array of integers that becomes the BLOB */
+ sqlite3_stmt *pStmt; /* Statement for reading and writing */
+ int i; /* Loop counter */
+ int rc; /* Result code from subfunctions */
+
+ const int nStat = p->nColumn+2;
+
+ if( *pRC ) return;
+ a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat );
+ if( a==0 ){
+ *pRC = SQLITE_NOMEM;
+ return;
+ }
+ pBlob = (char*)&a[nStat];
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
+ if( rc ){
+ sqlite3_free(a);
+ *pRC = rc;
+ return;
+ }
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
+ if( sqlite3_step(pStmt)==SQLITE_ROW ){
+ fts3DecodeIntArray(nStat, a,
+ sqlite3_column_blob(pStmt, 0),
+ sqlite3_column_bytes(pStmt, 0));
+ }else{
+ memset(a, 0, sizeof(u32)*(nStat) );
+ }
+ rc = sqlite3_reset(pStmt);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(a);
+ *pRC = rc;
+ return;
+ }
+ if( nChng<0 && a[0]<(u32)(-nChng) ){
+ a[0] = 0;
+ }else{
+ a[0] += nChng;
+ }
+ for(i=0; i<p->nColumn+1; i++){
+ u32 x = a[i+1];
+ if( x+aSzIns[i] < aSzDel[i] ){
+ x = 0;
+ }else{
+ x = x + aSzIns[i] - aSzDel[i];
+ }
+ a[i+1] = x;
+ }
+ fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
+ if( rc ){
+ sqlite3_free(a);
+ *pRC = rc;
+ return;
+ }
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
+ sqlite3_step(pStmt);
+ *pRC = sqlite3_reset(pStmt);
+ sqlite3_bind_null(pStmt, 2);
+ sqlite3_free(a);
+}
+
+/*
+** Merge the entire database so that there is one segment for each
+** iIndex/iLangid combination.
+*/
+static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
+ int bSeenDone = 0;
+ int rc;
+ sqlite3_stmt *pAllLangid = 0;
+
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
+ sqlite3_bind_int(pAllLangid, 2, p->nIndex);
+ while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
+ int i;
+ int iLangid = sqlite3_column_int(pAllLangid, 0);
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
+ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
+ if( rc==SQLITE_DONE ){
+ bSeenDone = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ rc2 = sqlite3_reset(pAllLangid);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ sqlite3Fts3SegmentsClose(p);
+
+ return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
+}
+
+/*
+** This function is called when the user executes the following statement:
+**
+** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
+**
+** The entire FTS index is discarded and rebuilt. If the table is one
+** created using the content=xxx option, then the new index is based on
+** the current contents of the xxx table. Otherwise, it is rebuilt based
+** on the contents of the %_content table.
+*/
+static int fts3DoRebuild(Fts3Table *p){
+ int rc; /* Return Code */
+
+ rc = fts3DeleteAll(p, 0);
+ if( rc==SQLITE_OK ){
+ u32 *aSz = 0;
+ u32 *aSzIns = 0;
+ u32 *aSzDel = 0;
+ sqlite3_stmt *pStmt = 0;
+ int nEntry = 0;
+
+ /* Compose and prepare an SQL statement to loop through the content table */
+ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3;
+ aSz = (u32 *)sqlite3_malloc64(nByte);
+ if( aSz==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(aSz, 0, nByte);
+ aSzIns = &aSz[p->nColumn+1];
+ aSzDel = &aSzIns[p->nColumn+1];
+ }
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ int iCol;
+ int iLangid = langidFromSelect(p, pStmt);
+ rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0));
+ memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
+ if( p->abNotindexed[iCol]==0 ){
+ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
+ rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
+ aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
+ }
+ }
+ if( p->bHasDocsize ){
+ fts3InsertDocsize(&rc, p, aSz);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_finalize(pStmt);
+ pStmt = 0;
+ }else{
+ nEntry++;
+ for(iCol=0; iCol<=p->nColumn; iCol++){
+ aSzIns[iCol] += aSz[iCol];
+ }
+ }
+ }
+ if( p->bFts4 ){
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
+ }
+ sqlite3_free(aSz);
+
+ if( pStmt ){
+ int rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** This function opens a cursor used to read the input data for an
+** incremental merge operation. Specifically, it opens a cursor to scan
+** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
+** level iAbsLevel.
+*/
+static int fts3IncrmergeCsr(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level to open */
+ int nSeg, /* Number of segments to merge */
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */
+){
+ int rc; /* Return Code */
+ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
+ sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */
+
+ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
+ memset(pCsr, 0, sizeof(*pCsr));
+ nByte = sizeof(Fts3SegReader *) * nSeg;
+ pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte);
+
+ if( pCsr->apSegment==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->apSegment, 0, nByte);
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
+ }
+ if( rc==SQLITE_OK ){
+ int i;
+ int rc2;
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel);
+ assert( pCsr->nSegment==0 );
+ for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
+ rc = sqlite3Fts3SegReaderNew(i, 0,
+ sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
+ sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
+ sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
+ sqlite3_column_blob(pStmt, 4), /* segdir.root */
+ sqlite3_column_bytes(pStmt, 4), /* segdir.root */
+ &pCsr->apSegment[i]
+ );
+ pCsr->nSegment++;
+ }
+ rc2 = sqlite3_reset(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ return rc;
+}
+
+typedef struct IncrmergeWriter IncrmergeWriter;
+typedef struct NodeWriter NodeWriter;
+typedef struct Blob Blob;
+typedef struct NodeReader NodeReader;
+
+/*
+** An instance of the following structure is used as a dynamic buffer
+** to build up nodes or other blobs of data in.
+**
+** The function blobGrowBuffer() is used to extend the allocation.
+*/
+struct Blob {
+ char *a; /* Pointer to allocation */
+ int n; /* Number of valid bytes of data in a[] */
+ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
+};
+
+/*
+** This structure is used to build up buffers containing segment b-tree
+** nodes (blocks).
+*/
+struct NodeWriter {
+ sqlite3_int64 iBlock; /* Current block id */
+ Blob key; /* Last key written to the current block */
+ Blob block; /* Current block image */
+};
+
+/*
+** An object of this type contains the state required to create or append
+** to an appendable b-tree segment.
+*/
+struct IncrmergeWriter {
+ int nLeafEst; /* Space allocated for leaf blocks */
+ int nWork; /* Number of leaf pages flushed */
+ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
+ int iIdx; /* Index of *output* segment in iAbsLevel+1 */
+ sqlite3_int64 iStart; /* Block number of first allocated block */
+ sqlite3_int64 iEnd; /* Block number of last allocated block */
+ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */
+ u8 bNoLeafData; /* If true, store 0 for segment size */
+ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
+};
+
+/*
+** An object of the following type is used to read data from a single
+** FTS segment node. See the following functions:
+**
+** nodeReaderInit()
+** nodeReaderNext()
+** nodeReaderRelease()
+*/
+struct NodeReader {
+ const char *aNode;
+ int nNode;
+ int iOff; /* Current offset within aNode[] */
+
+ /* Output variables. Containing the current node entry. */
+ sqlite3_int64 iChild; /* Pointer to child node */
+ Blob term; /* Current term */
+ const char *aDoclist; /* Pointer to doclist */
+ int nDoclist; /* Size of doclist in bytes */
+};
+
+/*
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, if the allocation at pBlob->a is not already at least nMin
+** bytes in size, extend (realloc) it to be so.
+**
+** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
+** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
+** to reflect the new size of the pBlob->a[] buffer.
+*/
+static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
+ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
+ int nAlloc = nMin;
+ char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc);
+ if( a ){
+ pBlob->nAlloc = nAlloc;
+ pBlob->a = a;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+/*
+** Attempt to advance the node-reader object passed as the first argument to
+** the next entry on the node.
+**
+** Return an error code if an error occurs (SQLITE_NOMEM is possible).
+** Otherwise return SQLITE_OK. If there is no next entry on the node
+** (e.g. because the current entry is the last) set NodeReader->aNode to
+** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
+** variables for the new entry.
+*/
+static int nodeReaderNext(NodeReader *p){
+ int bFirst = (p->term.n==0); /* True for first term on the node */
+ int nPrefix = 0; /* Bytes to copy from previous term */
+ int nSuffix = 0; /* Bytes to append to the prefix */
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( p->aNode );
+ if( p->iChild && bFirst==0 ) p->iChild++;
+ if( p->iOff>=p->nNode ){
+ /* EOF */
+ p->aNode = 0;
+ }else{
+ if( bFirst==0 ){
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
+ }
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
+
+ if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){
+ return FTS_CORRUPT_VTAB;
+ }
+ blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
+ if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){
+ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
+ p->term.n = nPrefix+nSuffix;
+ p->iOff += nSuffix;
+ if( p->iChild==0 ){
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
+ if( (p->nNode-p->iOff)<p->nDoclist ){
+ return FTS_CORRUPT_VTAB;
+ }
+ p->aDoclist = &p->aNode[p->iOff];
+ p->iOff += p->nDoclist;
+ }
+ }
+ }
+
+ assert_fts3_nc( p->iOff<=p->nNode );
+ return rc;
+}
+
+/*
+** Release all dynamic resources held by node-reader object *p.
+*/
+static void nodeReaderRelease(NodeReader *p){
+ sqlite3_free(p->term.a);
+}
+
+/*
+** Initialize a node-reader object to read the node in buffer aNode/nNode.
+**
+** If successful, SQLITE_OK is returned and the NodeReader object set to
+** point to the first entry on the node (if any). Otherwise, an SQLite
+** error code is returned.
+*/
+static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
+ memset(p, 0, sizeof(NodeReader));
+ p->aNode = aNode;
+ p->nNode = nNode;
+
+ /* Figure out if this is a leaf or an internal node. */
+ if( aNode && aNode[0] ){
+ /* An internal node. */
+ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
+ }else{
+ p->iOff = 1;
+ }
+
+ return aNode ? nodeReaderNext(p) : SQLITE_OK;
+}
+
+/*
+** This function is called while writing an FTS segment each time a leaf o
+** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
+** to be greater than the largest key on the node just written, but smaller
+** than or equal to the first key that will be written to the next leaf
+** node.
+**
+** The block id of the leaf node just written to disk may be found in
+** (pWriter->aNodeWriter[0].iBlock) when this function is called.
+*/
+static int fts3IncrmergePush(
+ Fts3Table *p, /* Fts3 table handle */
+ IncrmergeWriter *pWriter, /* Writer object */
+ const char *zTerm, /* Term to write to internal node */
+ int nTerm /* Bytes at zTerm */
+){
+ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
+ int iLayer;
+
+ assert( nTerm>0 );
+ for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
+ sqlite3_int64 iNextPtr = 0;
+ NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
+ int rc = SQLITE_OK;
+ int nPrefix;
+ int nSuffix;
+ int nSpace;
+
+ /* Figure out how much space the key will consume if it is written to
+ ** the current node of layer iLayer. Due to the prefix compression,
+ ** the space required changes depending on which node the key is to
+ ** be added to. */
+ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
+ nSuffix = nTerm - nPrefix;
+ if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+ nSpace = sqlite3Fts3VarintLen(nPrefix);
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
+
+ if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
+ /* If the current node of layer iLayer contains zero keys, or if adding
+ ** the key to it will not cause it to grow to larger than nNodeSize
+ ** bytes in size, write the key here. */
+
+ Blob *pBlk = &pNode->block;
+ if( pBlk->n==0 ){
+ blobGrowBuffer(pBlk, p->nNodeSize, &rc);
+ if( rc==SQLITE_OK ){
+ pBlk->a[0] = (char)iLayer;
+ pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
+ }
+ }
+ blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
+ blobGrowBuffer(&pNode->key, nTerm, &rc);
+
+ if( rc==SQLITE_OK ){
+ if( pNode->key.n ){
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
+ }
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
+ assert( nPrefix+nSuffix<=nTerm );
+ assert( nPrefix>=0 );
+ memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
+ pBlk->n += nSuffix;
+
+ memcpy(pNode->key.a, zTerm, nTerm);
+ pNode->key.n = nTerm;
+ }
+ }else{
+ /* Otherwise, flush the current node of layer iLayer to disk.
+ ** Then allocate a new, empty sibling node. The key will be written
+ ** into the parent of this node. */
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
+
+ assert( pNode->block.nAlloc>=p->nNodeSize );
+ pNode->block.a[0] = (char)iLayer;
+ pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
+
+ iNextPtr = pNode->iBlock;
+ pNode->iBlock++;
+ pNode->key.n = 0;
+ }
+
+ if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
+ iPtr = iNextPtr;
+ }
+
+ assert( 0 );
+ return 0;
+}
+
+/*
+** Append a term and (optionally) doclist to the FTS segment node currently
+** stored in blob *pNode. The node need not contain any terms, but the
+** header must be written before this function is called.
+**
+** A node header is a single 0x00 byte for a leaf node, or a height varint
+** followed by the left-hand-child varint for an internal node.
+**
+** The term to be appended is passed via arguments zTerm/nTerm. For a
+** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
+** node, both aDoclist and nDoclist must be passed 0.
+**
+** If the size of the value in blob pPrev is zero, then this is the first
+** term written to the node. Otherwise, pPrev contains a copy of the
+** previous term. Before this function returns, it is updated to contain a
+** copy of zTerm/nTerm.
+**
+** It is assumed that the buffer associated with pNode is already large
+** enough to accommodate the new entry. The buffer associated with pPrev
+** is extended by this function if requrired.
+**
+** If an error (i.e. OOM condition) occurs, an SQLite error code is
+** returned. Otherwise, SQLITE_OK.
+*/
+static int fts3AppendToNode(
+ Blob *pNode, /* Current node image to append to */
+ Blob *pPrev, /* Buffer containing previous term written */
+ const char *zTerm, /* New term to write */
+ int nTerm, /* Size of zTerm in bytes */
+ const char *aDoclist, /* Doclist (or NULL) to write */
+ int nDoclist /* Size of aDoclist in bytes */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int bFirst = (pPrev->n==0); /* True if this is the first term written */
+ int nPrefix; /* Size of term prefix in bytes */
+ int nSuffix; /* Size of term suffix in bytes */
+
+ /* Node must have already been started. There must be a doclist for a
+ ** leaf node, and there must not be a doclist for an internal node. */
+ assert( pNode->n>0 );
+ assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) );
+
+ blobGrowBuffer(pPrev, nTerm, &rc);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( pPrev!=0 );
+ assert( pPrev->a!=0 );
+
+ nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
+ nSuffix = nTerm - nPrefix;
+ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+ memcpy(pPrev->a, zTerm, nTerm);
+ pPrev->n = nTerm;
+
+ if( bFirst==0 ){
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
+ }
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
+ memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
+ pNode->n += nSuffix;
+
+ if( aDoclist ){
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
+ memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
+ pNode->n += nDoclist;
+ }
+
+ assert( pNode->n<=pNode->nAlloc );
+
+ return SQLITE_OK;
+}
+
+/*
+** Append the current term and doclist pointed to by cursor pCsr to the
+** appendable b-tree segment opened for writing by pWriter.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int fts3IncrmergeAppend(
+ Fts3Table *p, /* Fts3 table handle */
+ IncrmergeWriter *pWriter, /* Writer object */
+ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
+){
+ const char *zTerm = pCsr->zTerm;
+ int nTerm = pCsr->nTerm;
+ const char *aDoclist = pCsr->aDoclist;
+ int nDoclist = pCsr->nDoclist;
+ int rc = SQLITE_OK; /* Return code */
+ int nSpace; /* Total space in bytes required on leaf */
+ int nPrefix; /* Size of prefix shared with previous term */
+ int nSuffix; /* Size of suffix (nTerm - nPrefix) */
+ NodeWriter *pLeaf; /* Object used to write leaf nodes */
+
+ pLeaf = &pWriter->aNodeWriter[0];
+ nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
+ nSuffix = nTerm - nPrefix;
+ if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
+
+ nSpace = sqlite3Fts3VarintLen(nPrefix);
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
+
+ /* If the current block is not empty, and if adding this term/doclist
+ ** to the current block would make it larger than Fts3Table.nNodeSize bytes,
+ ** and if there is still room for another leaf page, write this block out to
+ ** the database. */
+ if( pLeaf->block.n>0
+ && (pLeaf->block.n + nSpace)>p->nNodeSize
+ && pLeaf->iBlock < (pWriter->iStart + pWriter->nLeafEst)
+ ){
+ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
+ pWriter->nWork++;
+
+ /* Add the current term to the parent node. The term added to the
+ ** parent must:
+ **
+ ** a) be greater than the largest term on the leaf node just written
+ ** to the database (still available in pLeaf->key), and
+ **
+ ** b) be less than or equal to the term about to be added to the new
+ ** leaf node (zTerm/nTerm).
+ **
+ ** In other words, it must be the prefix of zTerm 1 byte longer than
+ ** the common prefix (if any) of zTerm and pWriter->zTerm.
+ */
+ if( rc==SQLITE_OK ){
+ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
+ }
+
+ /* Advance to the next output block */
+ pLeaf->iBlock++;
+ pLeaf->key.n = 0;
+ pLeaf->block.n = 0;
+
+ nSuffix = nTerm;
+ nSpace = 1;
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
+ }
+
+ pWriter->nLeafData += nSpace;
+ blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
+ if( rc==SQLITE_OK ){
+ if( pLeaf->block.n==0 ){
+ pLeaf->block.n = 1;
+ pLeaf->block.a[0] = '\0';
+ }
+ rc = fts3AppendToNode(
+ &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
+ );
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to release all dynamic resources held by the
+** merge-writer object pWriter, and if no error has occurred, to flush
+** all outstanding node buffers held by pWriter to disk.
+**
+** If *pRc is not SQLITE_OK when this function is called, then no attempt
+** is made to write any data to disk. Instead, this function serves only
+** to release outstanding resources.
+**
+** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
+** flushing buffers to disk, *pRc is set to an SQLite error code before
+** returning.
+*/
+static void fts3IncrmergeRelease(
+ Fts3Table *p, /* FTS3 table handle */
+ IncrmergeWriter *pWriter, /* Merge-writer object */
+ int *pRc /* IN/OUT: Error code */
+){
+ int i; /* Used to iterate through non-root layers */
+ int iRoot; /* Index of root in pWriter->aNodeWriter */
+ NodeWriter *pRoot; /* NodeWriter for root node */
+ int rc = *pRc; /* Error code */
+
+ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
+ ** root node. If the segment fits entirely on a single leaf node, iRoot
+ ** will be set to 0. If the root node is the parent of the leaves, iRoot
+ ** will be 1. And so on. */
+ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
+ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
+ if( pNode->block.n>0 ) break;
+ assert( *pRc || pNode->block.nAlloc==0 );
+ assert( *pRc || pNode->key.nAlloc==0 );
+ sqlite3_free(pNode->block.a);
+ sqlite3_free(pNode->key.a);
+ }
+
+ /* Empty output segment. This is a no-op. */
+ if( iRoot<0 ) return;
+
+ /* The entire output segment fits on a single node. Normally, this means
+ ** the node would be stored as a blob in the "root" column of the %_segdir
+ ** table. However, this is not permitted in this case. The problem is that
+ ** space has already been reserved in the %_segments table, and so the
+ ** start_block and end_block fields of the %_segdir table must be populated.
+ ** And, by design or by accident, released versions of FTS cannot handle
+ ** segments that fit entirely on the root node with start_block!=0.
+ **
+ ** Instead, create a synthetic root node that contains nothing but a
+ ** pointer to the single content node. So that the segment consists of a
+ ** single leaf and a single interior (root) node.
+ **
+ ** Todo: Better might be to defer allocating space in the %_segments
+ ** table until we are sure it is needed.
+ */
+ if( iRoot==0 ){
+ Blob *pBlock = &pWriter->aNodeWriter[1].block;
+ blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
+ if( rc==SQLITE_OK ){
+ pBlock->a[0] = 0x01;
+ pBlock->n = 1 + sqlite3Fts3PutVarint(
+ &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
+ );
+ }
+ iRoot = 1;
+ }
+ pRoot = &pWriter->aNodeWriter[iRoot];
+
+ /* Flush all currently outstanding nodes to disk. */
+ for(i=0; i<iRoot; i++){
+ NodeWriter *pNode = &pWriter->aNodeWriter[i];
+ if( pNode->block.n>0 && rc==SQLITE_OK ){
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
+ }
+ sqlite3_free(pNode->block.a);
+ sqlite3_free(pNode->key.a);
+ }
+
+ /* Write the %_segdir record. */
+ if( rc==SQLITE_OK ){
+ rc = fts3WriteSegdir(p,
+ pWriter->iAbsLevel+1, /* level */
+ pWriter->iIdx, /* idx */
+ pWriter->iStart, /* start_block */
+ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
+ pWriter->iEnd, /* end_block */
+ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */
+ pRoot->block.a, pRoot->block.n /* root */
+ );
+ }
+ sqlite3_free(pRoot->block.a);
+ sqlite3_free(pRoot->key.a);
+
+ *pRc = rc;
+}
+
+/*
+** Compare the term in buffer zLhs (size in bytes nLhs) with that in
+** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
+** the other, it is considered to be smaller than the other.
+**
+** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
+** if it is greater.
+*/
+static int fts3TermCmp(
+ const char *zLhs, int nLhs, /* LHS of comparison */
+ const char *zRhs, int nRhs /* RHS of comparison */
+){
+ int nCmp = MIN(nLhs, nRhs);
+ int res;
+
+ if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){
+ res = memcmp(zLhs, zRhs, nCmp);
+ }else{
+ res = 0;
+ }
+ if( res==0 ) res = nLhs - nRhs;
+
+ return res;
+}
+
+
+/*
+** Query to see if the entry in the %_segments table with blockid iEnd is
+** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
+** returning. Otherwise, set *pbRes to 0.
+**
+** Or, if an error occurs while querying the database, return an SQLite
+** error code. The final value of *pbRes is undefined in this case.
+**
+** This is used to test if a segment is an "appendable" segment. If it
+** is, then a NULL entry has been inserted into the %_segments table
+** with blockid %_segdir.end_block.
+*/
+static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
+ int bRes = 0; /* Result to set *pbRes to */
+ sqlite3_stmt *pCheck = 0; /* Statement to query database with */
+ int rc; /* Return code */
+
+ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pCheck, 1, iEnd);
+ if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
+ rc = sqlite3_reset(pCheck);
+ }
+
+ *pbRes = bRes;
+ return rc;
+}
+
+/*
+** This function is called when initializing an incremental-merge operation.
+** It checks if the existing segment with index value iIdx at absolute level
+** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
+** merge-writer object *pWriter is initialized to write to it.
+**
+** An existing segment can be appended to by an incremental merge if:
+**
+** * It was initially created as an appendable segment (with all required
+** space pre-allocated), and
+**
+** * The first key read from the input (arguments zKey and nKey) is
+** greater than the largest key currently stored in the potential
+** output segment.
+*/
+static int fts3IncrmergeLoad(
+ Fts3Table *p, /* Fts3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
+ int iIdx, /* Index of candidate output segment */
+ const char *zKey, /* First key to write */
+ int nKey, /* Number of bytes in nKey */
+ IncrmergeWriter *pWriter /* Populate this object */
+){
+ int rc; /* Return code */
+ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
+ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
+ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
+ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
+ int nRoot = 0; /* Size of aRoot[] in bytes */
+ int rc2; /* Return code from sqlite3_reset() */
+ int bAppendable = 0; /* Set to true if segment is appendable */
+
+ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
+ sqlite3_bind_int(pSelect, 2, iIdx);
+ if( sqlite3_step(pSelect)==SQLITE_ROW ){
+ iStart = sqlite3_column_int64(pSelect, 1);
+ iLeafEnd = sqlite3_column_int64(pSelect, 2);
+ fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
+ if( pWriter->nLeafData<0 ){
+ pWriter->nLeafData = pWriter->nLeafData * -1;
+ }
+ pWriter->bNoLeafData = (pWriter->nLeafData==0);
+ nRoot = sqlite3_column_bytes(pSelect, 4);
+ aRoot = sqlite3_column_blob(pSelect, 4);
+ if( aRoot==0 ){
+ sqlite3_reset(pSelect);
+ return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB;
+ }
+ }else{
+ return sqlite3_reset(pSelect);
+ }
+
+ /* Check for the zero-length marker in the %_segments table */
+ rc = fts3IsAppendable(p, iEnd, &bAppendable);
+
+ /* Check that zKey/nKey is larger than the largest key the candidate */
+ if( rc==SQLITE_OK && bAppendable ){
+ char *aLeaf = 0;
+ int nLeaf = 0;
+
+ rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
+ if( rc==SQLITE_OK ){
+ NodeReader reader;
+ for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
+ rc==SQLITE_OK && reader.aNode;
+ rc = nodeReaderNext(&reader)
+ ){
+ assert( reader.aNode );
+ }
+ if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
+ bAppendable = 0;
+ }
+ nodeReaderRelease(&reader);
+ }
+ sqlite3_free(aLeaf);
+ }
+
+ if( rc==SQLITE_OK && bAppendable ){
+ /* It is possible to append to this segment. Set up the IncrmergeWriter
+ ** object to do so. */
+ int i;
+ int nHeight = (int)aRoot[0];
+ NodeWriter *pNode;
+ if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){
+ sqlite3_reset(pSelect);
+ return FTS_CORRUPT_VTAB;
+ }
+
+ pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
+ pWriter->iStart = iStart;
+ pWriter->iEnd = iEnd;
+ pWriter->iAbsLevel = iAbsLevel;
+ pWriter->iIdx = iIdx;
+
+ for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
+ }
+
+ pNode = &pWriter->aNodeWriter[nHeight];
+ pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
+ blobGrowBuffer(&pNode->block,
+ MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc
+ );
+ if( rc==SQLITE_OK ){
+ memcpy(pNode->block.a, aRoot, nRoot);
+ pNode->block.n = nRoot;
+ memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING);
+ }
+
+ for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
+ NodeReader reader;
+ memset(&reader, 0, sizeof(reader));
+ pNode = &pWriter->aNodeWriter[i];
+
+ if( pNode->block.a){
+ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
+ while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
+ blobGrowBuffer(&pNode->key, reader.term.n, &rc);
+ if( rc==SQLITE_OK ){
+ assert_fts3_nc( reader.term.n>0 || reader.aNode==0 );
+ if( reader.term.n>0 ){
+ memcpy(pNode->key.a, reader.term.a, reader.term.n);
+ }
+ pNode->key.n = reader.term.n;
+ if( i>0 ){
+ char *aBlock = 0;
+ int nBlock = 0;
+ pNode = &pWriter->aNodeWriter[i-1];
+ pNode->iBlock = reader.iChild;
+ rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0);
+ blobGrowBuffer(&pNode->block,
+ MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc
+ );
+ if( rc==SQLITE_OK ){
+ memcpy(pNode->block.a, aBlock, nBlock);
+ pNode->block.n = nBlock;
+ memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING);
+ }
+ sqlite3_free(aBlock);
+ }
+ }
+ }
+ nodeReaderRelease(&reader);
+ }
+ }
+
+ rc2 = sqlite3_reset(pSelect);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ return rc;
+}
+
+/*
+** Determine the largest segment index value that exists within absolute
+** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
+** one before returning SQLITE_OK. Or, if there are no segments at all
+** within level iAbsLevel, set *piIdx to zero.
+**
+** If an error occurs, return an SQLite error code. The final value of
+** *piIdx is undefined in this case.
+*/
+static int fts3IncrmergeOutputIdx(
+ Fts3Table *p, /* FTS Table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
+ int *piIdx /* OUT: Next free index at iAbsLevel+1 */
+){
+ int rc;
+ sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
+
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
+ sqlite3_step(pOutputIdx);
+ *piIdx = sqlite3_column_int(pOutputIdx, 0);
+ rc = sqlite3_reset(pOutputIdx);
+ }
+
+ return rc;
+}
+
+/*
+** Allocate an appendable output segment on absolute level iAbsLevel+1
+** with idx value iIdx.
+**
+** In the %_segdir table, a segment is defined by the values in three
+** columns:
+**
+** start_block
+** leaves_end_block
+** end_block
+**
+** When an appendable segment is allocated, it is estimated that the
+** maximum number of leaf blocks that may be required is the sum of the
+** number of leaf blocks consumed by the input segments, plus the number
+** of input segments, multiplied by two. This value is stored in stack
+** variable nLeafEst.
+**
+** A total of 16*nLeafEst blocks are allocated when an appendable segment
+** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
+** array of leaf nodes starts at the first block allocated. The array
+** of interior nodes that are parents of the leaf nodes start at block
+** (start_block + (1 + end_block - start_block) / 16). And so on.
+**
+** In the actual code below, the value "16" is replaced with the
+** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
+*/
+static int fts3IncrmergeWriter(
+ Fts3Table *p, /* Fts3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
+ int iIdx, /* Index of new output segment */
+ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
+ IncrmergeWriter *pWriter /* Populate this object */
+){
+ int rc; /* Return Code */
+ int i; /* Iterator variable */
+ int nLeafEst = 0; /* Blocks allocated for leaf nodes */
+ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
+ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
+
+ /* Calculate nLeafEst. */
+ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
+ sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
+ if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
+ nLeafEst = sqlite3_column_int(pLeafEst, 0);
+ }
+ rc = sqlite3_reset(pLeafEst);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Calculate the first block to use in the output segment */
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
+ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
+ pWriter->iEnd = pWriter->iStart - 1;
+ pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
+ }
+ rc = sqlite3_reset(pFirstBlock);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Insert the marker in the %_segments table to make sure nobody tries
+ ** to steal the space just allocated. This is also used to identify
+ ** appendable segments. */
+ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pWriter->iAbsLevel = iAbsLevel;
+ pWriter->nLeafEst = nLeafEst;
+ pWriter->iIdx = iIdx;
+
+ /* Set up the array of NodeWriter objects */
+ for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Remove an entry from the %_segdir table. This involves running the
+** following two statements:
+**
+** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
+** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
+**
+** The DELETE statement removes the specific %_segdir level. The UPDATE
+** statement ensures that the remaining segments have contiguously allocated
+** idx values.
+*/
+static int fts3RemoveSegdirEntry(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
+ int iIdx /* Index of %_segdir entry to delete */
+){
+ int rc; /* Return code */
+ sqlite3_stmt *pDelete = 0; /* DELETE statement */
+
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDelete, 1, iAbsLevel);
+ sqlite3_bind_int(pDelete, 2, iIdx);
+ sqlite3_step(pDelete);
+ rc = sqlite3_reset(pDelete);
+ }
+
+ return rc;
+}
+
+/*
+** One or more segments have just been removed from absolute level iAbsLevel.
+** Update the 'idx' values of the remaining segments in the level so that
+** the idx values are a contiguous sequence starting from 0.
+*/
+static int fts3RepackSegdirLevel(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel /* Absolute level to repack */
+){
+ int rc; /* Return code */
+ int *aIdx = 0; /* Array of remaining idx values */
+ int nIdx = 0; /* Valid entries in aIdx[] */
+ int nAlloc = 0; /* Allocated size of aIdx[] */
+ int i; /* Iterator variable */
+ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
+ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel);
+ while( SQLITE_ROW==sqlite3_step(pSelect) ){
+ if( nIdx>=nAlloc ){
+ int *aNew;
+ nAlloc += 16;
+ aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int));
+ if( !aNew ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ aIdx = aNew;
+ }
+ aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
+ }
+ rc2 = sqlite3_reset(pSelect);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
+ }
+
+ assert( p->bIgnoreSavepoint==0 );
+ p->bIgnoreSavepoint = 1;
+ for(i=0; rc==SQLITE_OK && i<nIdx; i++){
+ if( aIdx[i]!=i ){
+ sqlite3_bind_int(pUpdate, 3, aIdx[i]);
+ sqlite3_bind_int(pUpdate, 1, i);
+ sqlite3_step(pUpdate);
+ rc = sqlite3_reset(pUpdate);
+ }
+ }
+ p->bIgnoreSavepoint = 0;
+
+ sqlite3_free(aIdx);
+ return rc;
+}
+
+static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
+ pNode->a[0] = (char)iHeight;
+ if( iChild ){
+ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
+ pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
+ }else{
+ assert( pNode->nAlloc>=1 );
+ pNode->n = 1;
+ }
+}
+
+/*
+** The first two arguments are a pointer to and the size of a segment b-tree
+** node. The node may be a leaf or an internal node.
+**
+** This function creates a new node image in blob object *pNew by copying
+** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
+** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
+*/
+static int fts3TruncateNode(
+ const char *aNode, /* Current node image */
+ int nNode, /* Size of aNode in bytes */
+ Blob *pNew, /* OUT: Write new node image here */
+ const char *zTerm, /* Omit all terms smaller than this */
+ int nTerm, /* Size of zTerm in bytes */
+ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
+){
+ NodeReader reader; /* Reader object */
+ Blob prev = {0, 0, 0}; /* Previous term written to new node */
+ int rc = SQLITE_OK; /* Return code */
+ int bLeaf; /* True for a leaf node */
+
+ if( nNode<1 ) return FTS_CORRUPT_VTAB;
+ bLeaf = aNode[0]=='\0';
+
+ /* Allocate required output space */
+ blobGrowBuffer(pNew, nNode, &rc);
+ if( rc!=SQLITE_OK ) return rc;
+ pNew->n = 0;
+
+ /* Populate new node buffer */
+ for(rc = nodeReaderInit(&reader, aNode, nNode);
+ rc==SQLITE_OK && reader.aNode;
+ rc = nodeReaderNext(&reader)
+ ){
+ if( pNew->n==0 ){
+ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
+ if( res<0 || (bLeaf==0 && res==0) ) continue;
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild);
+ *piBlock = reader.iChild;
+ }
+ rc = fts3AppendToNode(
+ pNew, &prev, reader.term.a, reader.term.n,
+ reader.aDoclist, reader.nDoclist
+ );
+ if( rc!=SQLITE_OK ) break;
+ }
+ if( pNew->n==0 ){
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild);
+ *piBlock = reader.iChild;
+ }
+ assert( pNew->n<=pNew->nAlloc );
+
+ nodeReaderRelease(&reader);
+ sqlite3_free(prev.a);
+ return rc;
+}
+
+/*
+** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
+** level iAbsLevel. This may involve deleting entries from the %_segments
+** table, and modifying existing entries in both the %_segments and %_segdir
+** tables.
+**
+** SQLITE_OK is returned if the segment is updated successfully. Or an
+** SQLite error code otherwise.
+*/
+static int fts3TruncateSegment(
+ Fts3Table *p, /* FTS3 table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
+ int iIdx, /* Index within level of segment to modify */
+ const char *zTerm, /* Remove terms smaller than this */
+ int nTerm /* Number of bytes in buffer zTerm */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Blob root = {0,0,0}; /* New root page image */
+ Blob block = {0,0,0}; /* Buffer used for any other block */
+ sqlite3_int64 iBlock = 0; /* Block id */
+ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
+ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
+ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
+
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
+ if( rc==SQLITE_OK ){
+ int rc2; /* sqlite3_reset() return code */
+ sqlite3_bind_int64(pFetch, 1, iAbsLevel);
+ sqlite3_bind_int(pFetch, 2, iIdx);
+ if( SQLITE_ROW==sqlite3_step(pFetch) ){
+ const char *aRoot = sqlite3_column_blob(pFetch, 4);
+ int nRoot = sqlite3_column_bytes(pFetch, 4);
+ iOldStart = sqlite3_column_int64(pFetch, 1);
+ rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
+ }
+ rc2 = sqlite3_reset(pFetch);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ while( rc==SQLITE_OK && iBlock ){
+ char *aBlock = 0;
+ int nBlock = 0;
+ iNewStart = iBlock;
+
+ rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
+ }
+ sqlite3_free(aBlock);
+ }
+
+ /* Variable iNewStart now contains the first valid leaf node. */
+ if( rc==SQLITE_OK && iNewStart ){
+ sqlite3_stmt *pDel = 0;
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iOldStart);
+ sqlite3_bind_int64(pDel, 2, iNewStart-1);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_stmt *pChomp = 0;
+ rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pChomp, 1, iNewStart);
+ sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
+ sqlite3_bind_int64(pChomp, 3, iAbsLevel);
+ sqlite3_bind_int(pChomp, 4, iIdx);
+ sqlite3_step(pChomp);
+ rc = sqlite3_reset(pChomp);
+ sqlite3_bind_null(pChomp, 2);
+ }
+ }
+
+ sqlite3_free(root.a);
+ sqlite3_free(block.a);
+ return rc;
+}
+
+/*
+** This function is called after an incrmental-merge operation has run to
+** merge (or partially merge) two or more segments from absolute level
+** iAbsLevel.
+**
+** Each input segment is either removed from the db completely (if all of
+** its data was copied to the output segment by the incrmerge operation)
+** or modified in place so that it no longer contains those entries that
+** have been duplicated in the output segment.
+*/
+static int fts3IncrmergeChomp(
+ Fts3Table *p, /* FTS table handle */
+ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
+ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
+ int *pnRem /* Number of segments not deleted */
+){
+ int i;
+ int nRem = 0;
+ int rc = SQLITE_OK;
+
+ for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
+ Fts3SegReader *pSeg = 0;
+ int j;
+
+ /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
+ ** somewhere in the pCsr->apSegment[] array. */
+ for(j=0; ALWAYS(j<pCsr->nSegment); j++){
+ pSeg = pCsr->apSegment[j];
+ if( pSeg->iIdx==i ) break;
+ }
+ assert( j<pCsr->nSegment && pSeg->iIdx==i );
+
+ if( pSeg->aNode==0 ){
+ /* Seg-reader is at EOF. Remove the entire input segment. */
+ rc = fts3DeleteSegment(p, pSeg);
+ if( rc==SQLITE_OK ){
+ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
+ }
+ *pnRem = 0;
+ }else{
+ /* The incremental merge did not copy all the data from this
+ ** segment to the upper level. The segment is modified in place
+ ** so that it contains no keys smaller than zTerm/nTerm. */
+ const char *zTerm = pSeg->zTerm;
+ int nTerm = pSeg->nTerm;
+ rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
+ nRem++;
+ }
+ }
+
+ if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
+ rc = fts3RepackSegdirLevel(p, iAbsLevel);
+ }
+
+ *pnRem = nRem;
+ return rc;
+}
+
+/*
+** Store an incr-merge hint in the database.
+*/
+static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
+ sqlite3_stmt *pReplace = 0;
+ int rc; /* Return code */
+
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
+ sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ sqlite3_bind_null(pReplace, 2);
+ }
+
+ return rc;
+}
+
+/*
+** Load an incr-merge hint from the database. The incr-merge hint, if one
+** exists, is stored in the rowid==1 row of the %_stat table.
+**
+** If successful, populate blob *pHint with the value read from the %_stat
+** table and return SQLITE_OK. Otherwise, if an error occurs, return an
+** SQLite error code.
+*/
+static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
+ sqlite3_stmt *pSelect = 0;
+ int rc;
+
+ pHint->n = 0;
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){
+ const char *aHint = sqlite3_column_blob(pSelect, 0);
+ int nHint = sqlite3_column_bytes(pSelect, 0);
+ if( aHint ){
+ blobGrowBuffer(pHint, nHint, &rc);
+ if( rc==SQLITE_OK ){
+ if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint);
+ pHint->n = nHint;
+ }
+ }
+ }
+ rc2 = sqlite3_reset(pSelect);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ return rc;
+}
+
+/*
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
+** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
+** consists of two varints, the absolute level number of the input segments
+** and the number of input segments.
+**
+** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
+** set *pRc to an SQLite error code before returning.
+*/
+static void fts3IncrmergeHintPush(
+ Blob *pHint, /* Hint blob to append to */
+ i64 iAbsLevel, /* First varint to store in hint */
+ int nInput, /* Second varint to store in hint */
+ int *pRc /* IN/OUT: Error code */
+){
+ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
+ if( *pRc==SQLITE_OK ){
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
+ }
+}
+
+/*
+** Read the last entry (most recently pushed) from the hint blob *pHint
+** and then remove the entry. Write the two values read to *piAbsLevel and
+** *pnInput before returning.
+**
+** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
+** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
+*/
+static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
+ const int nHint = pHint->n;
+ int i;
+
+ i = pHint->n-1;
+ if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB;
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
+ if( i==0 ) return FTS_CORRUPT_VTAB;
+ i--;
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
+
+ pHint->n = i;
+ i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
+ i += fts3GetVarint32(&pHint->a[i], pnInput);
+ assert( i<=nHint );
+ if( i!=nHint ) return FTS_CORRUPT_VTAB;
+
+ return SQLITE_OK;
+}
+
+
+/*
+** Attempt an incremental merge that writes nMerge leaf blocks.
+**
+** Incremental merges happen nMin segments at a time. The segments
+** to be merged are the nMin oldest segments (the ones with the smallest
+** values for the _segdir.idx field) in the highest level that contains
+** at least nMin segments. Multiple merges might occur in an attempt to
+** write the quota of nMerge leaf blocks.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
+ int rc; /* Return code */
+ int nRem = nMerge; /* Number of leaf pages yet to be written */
+ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
+ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
+ IncrmergeWriter *pWriter; /* Writer object */
+ int nSeg = 0; /* Number of input segments */
+ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
+ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
+ int bDirtyHint = 0; /* True if blob 'hint' has been modified */
+
+ /* Allocate space for the cursor, filter and writer objects */
+ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
+ pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc);
+ if( !pWriter ) return SQLITE_NOMEM;
+ pFilter = (Fts3SegFilter *)&pWriter[1];
+ pCsr = (Fts3MultiSegReader *)&pFilter[1];
+
+ rc = fts3IncrmergeHintLoad(p, &hint);
+ while( rc==SQLITE_OK && nRem>0 ){
+ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
+ sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
+ int bUseHint = 0; /* True if attempting to append */
+ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
+
+ /* Search the %_segdir table for the absolute level with the smallest
+ ** relative level number that contains at least nMin segments, if any.
+ ** If one is found, set iAbsLevel to the absolute level number and
+ ** nSeg to nMin. If no level with at least nMin segments can be found,
+ ** set nSeg to -1.
+ */
+ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
+ sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin));
+ if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
+ iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
+ nSeg = sqlite3_column_int(pFindLevel, 1);
+ assert( nSeg>=2 );
+ }else{
+ nSeg = -1;
+ }
+ rc = sqlite3_reset(pFindLevel);
+
+ /* If the hint read from the %_stat table is not empty, check if the
+ ** last entry in it specifies a relative level smaller than or equal
+ ** to the level identified by the block above (if any). If so, this
+ ** iteration of the loop will work on merging at the hinted level.
+ */
+ if( rc==SQLITE_OK && hint.n ){
+ int nHint = hint.n;
+ sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
+ int nHintSeg = 0; /* Hint number of segments */
+
+ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
+ if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
+ /* Based on the scan in the block above, it is known that there
+ ** are no levels with a relative level smaller than that of
+ ** iAbsLevel with more than nSeg segments, or if nSeg is -1,
+ ** no levels with more than nMin segments. Use this to limit the
+ ** value of nHintSeg to avoid a large memory allocation in case the
+ ** merge-hint is corrupt*/
+ iAbsLevel = iHintAbsLevel;
+ nSeg = MIN(MAX(nMin,nSeg), nHintSeg);
+ bUseHint = 1;
+ bDirtyHint = 1;
+ }else{
+ /* This undoes the effect of the HintPop() above - so that no entry
+ ** is removed from the hint blob. */
+ hint.n = nHint;
+ }
+ }
+
+ /* If nSeg is less that zero, then there is no level with at least
+ ** nMin segments and no hint in the %_stat table. No work to do.
+ ** Exit early in this case. */
+ if( nSeg<=0 ) break;
+
+ assert( nMod<=0x7FFFFFFF );
+ if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){
+ rc = FTS_CORRUPT_VTAB;
+ break;
+ }
+
+ /* Open a cursor to iterate through the contents of the oldest nSeg
+ ** indexes of absolute level iAbsLevel. If this cursor is opened using
+ ** the 'hint' parameters, it is possible that there are less than nSeg
+ ** segments available in level iAbsLevel. In this case, no work is
+ ** done on iAbsLevel - fall through to the next iteration of the loop
+ ** to start work on some other level. */
+ memset(pWriter, 0, nAlloc);
+ pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
+
+ if( rc==SQLITE_OK ){
+ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
+ assert( bUseHint==1 || bUseHint==0 );
+ if( iIdx==0 || (bUseHint && iIdx==1) ){
+ int bIgnore = 0;
+ rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
+ if( bIgnore ){
+ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
+ }
+ if( SQLITE_OK==rc && pCsr->nSegment==nSeg
+ && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
+ ){
+ int bEmpty = 0;
+ rc = sqlite3Fts3SegReaderStep(p, pCsr);
+ if( rc==SQLITE_OK ){
+ bEmpty = 1;
+ }else if( rc!=SQLITE_ROW ){
+ sqlite3Fts3SegReaderFinish(pCsr);
+ break;
+ }
+ if( bUseHint && iIdx>0 ){
+ const char *zKey = pCsr->zTerm;
+ int nKey = pCsr->nTerm;
+ rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
+ }else{
+ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
+ }
+
+ if( rc==SQLITE_OK && pWriter->nLeafEst ){
+ fts3LogMerge(nSeg, iAbsLevel);
+ if( bEmpty==0 ){
+ do {
+ rc = fts3IncrmergeAppend(p, pWriter, pCsr);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
+ if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
+ }while( rc==SQLITE_ROW );
+ }
+
+ /* Update or delete the input segments */
+ if( rc==SQLITE_OK ){
+ nRem -= (1 + pWriter->nWork);
+ rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
+ if( nSeg!=0 ){
+ bDirtyHint = 1;
+ fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
+ }
+ }
+ }
+
+ if( nSeg!=0 ){
+ pWriter->nLeafData = pWriter->nLeafData * -1;
+ }
+ fts3IncrmergeRelease(p, pWriter, &rc);
+ if( nSeg==0 && pWriter->bNoLeafData==0 ){
+ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
+ }
+ }
+
+ sqlite3Fts3SegReaderFinish(pCsr);
+ }
+
+ /* Write the hint values into the %_stat table for the next incr-merger */
+ if( bDirtyHint && rc==SQLITE_OK ){
+ rc = fts3IncrmergeHintStore(p, &hint);
+ }
+
+ sqlite3_free(pWriter);
+ sqlite3_free(hint.a);
+ return rc;
+}
+
+/*
+** Convert the text beginning at *pz into an integer and return
+** its value. Advance *pz to point to the first character past
+** the integer.
+**
+** This function used for parameters to merge= and incrmerge=
+** commands.
+*/
+static int fts3Getint(const char **pz){
+ const char *z = *pz;
+ int i = 0;
+ while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0';
+ *pz = z;
+ return i;
+}
+
+/*
+** Process statements of the form:
+**
+** INSERT INTO table(table) VALUES('merge=A,B');
+**
+** A and B are integers that decode to be the number of leaf pages
+** written for the merge, and the minimum number of segments on a level
+** before it will be selected for a merge, respectively.
+*/
+static int fts3DoIncrmerge(
+ Fts3Table *p, /* FTS3 table handle */
+ const char *zParam /* Nul-terminated string containing "A,B" */
+){
+ int rc;
+ int nMin = (MergeCount(p) / 2);
+ int nMerge = 0;
+ const char *z = zParam;
+
+ /* Read the first integer value */
+ nMerge = fts3Getint(&z);
+
+ /* If the first integer value is followed by a ',', read the second
+ ** integer value. */
+ if( z[0]==',' && z[1]!='\0' ){
+ z++;
+ nMin = fts3Getint(&z);
+ }
+
+ if( z[0]!='\0' || nMin<2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ rc = SQLITE_OK;
+ if( !p->bHasStat ){
+ assert( p->bFts4==0 );
+ sqlite3Fts3CreateStatTable(&rc, p);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
+ }
+ sqlite3Fts3SegmentsClose(p);
+ }
+ return rc;
+}
+
+/*
+** Process statements of the form:
+**
+** INSERT INTO table(table) VALUES('automerge=X');
+**
+** where X is an integer. X==0 means to turn automerge off. X!=0 means
+** turn it on. The setting is persistent.
+*/
+static int fts3DoAutoincrmerge(
+ Fts3Table *p, /* FTS3 table handle */
+ const char *zParam /* Nul-terminated string containing boolean */
+){
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt = 0;
+ p->nAutoincrmerge = fts3Getint(&zParam);
+ if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){
+ p->nAutoincrmerge = 8;
+ }
+ if( !p->bHasStat ){
+ assert( p->bFts4==0 );
+ sqlite3Fts3CreateStatTable(&rc, p);
+ if( rc ) return rc;
+ }
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
+ if( rc ) return rc;
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
+ sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
+ sqlite3_step(pStmt);
+ rc = sqlite3_reset(pStmt);
+ return rc;
+}
+
+/*
+** Return a 64-bit checksum for the FTS index entry specified by the
+** arguments to this function.
+*/
+static u64 fts3ChecksumEntry(
+ const char *zTerm, /* Pointer to buffer containing term */
+ int nTerm, /* Size of zTerm in bytes */
+ int iLangid, /* Language id for current row */
+ int iIndex, /* Index (0..Fts3Table.nIndex-1) */
+ i64 iDocid, /* Docid for current row. */
+ int iCol, /* Column number */
+ int iPos /* Position */
+){
+ int i;
+ u64 ret = (u64)iDocid;
+
+ ret += (ret<<3) + iLangid;
+ ret += (ret<<3) + iIndex;
+ ret += (ret<<3) + iCol;
+ ret += (ret<<3) + iPos;
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
+
+ return ret;
+}
+
+/*
+** Return a checksum of all entries in the FTS index that correspond to
+** language id iLangid. The checksum is calculated by XORing the checksums
+** of each individual entry (see fts3ChecksumEntry()) together.
+**
+** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
+** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
+** return value is undefined in this case.
+*/
+static u64 fts3ChecksumIndex(
+ Fts3Table *p, /* FTS3 table handle */
+ int iLangid, /* Language id to return cksum for */
+ int iIndex, /* Index to cksum (0..p->nIndex-1) */
+ int *pRc /* OUT: Return code */
+){
+ Fts3SegFilter filter;
+ Fts3MultiSegReader csr;
+ int rc;
+ u64 cksum = 0;
+
+ if( *pRc ) return 0;
+
+ memset(&filter, 0, sizeof(filter));
+ memset(&csr, 0, sizeof(csr));
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
+ filter.flags |= FTS3_SEGMENT_SCAN;
+
+ rc = sqlite3Fts3SegReaderCursor(
+ p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
+ }
+
+ if( rc==SQLITE_OK ){
+ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
+ char *pCsr = csr.aDoclist;
+ char *pEnd = &pCsr[csr.nDoclist];
+
+ i64 iDocid = 0;
+ i64 iCol = 0;
+ u64 iPos = 0;
+
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
+ while( pCsr<pEnd ){
+ u64 iVal = 0;
+ pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
+ if( pCsr<pEnd ){
+ if( iVal==0 || iVal==1 ){
+ iCol = 0;
+ iPos = 0;
+ if( iVal ){
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
+ }else{
+ pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
+ if( p->bDescIdx ){
+ iDocid = (i64)((u64)iDocid - iVal);
+ }else{
+ iDocid = (i64)((u64)iDocid + iVal);
+ }
+ }
+ }else{
+ iPos += (iVal - 2);
+ cksum = cksum ^ fts3ChecksumEntry(
+ csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
+ (int)iCol, (int)iPos
+ );
+ }
+ }
+ }
+ }
+ }
+ sqlite3Fts3SegReaderFinish(&csr);
+
+ *pRc = rc;
+ return cksum;
+}
+
+/*
+** Check if the contents of the FTS index match the current contents of the
+** content table. If no error occurs and the contents do match, set *pbOk
+** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
+** to false before returning.
+**
+** If an error occurs (e.g. an OOM or IO error), return an SQLite error
+** code. The final value of *pbOk is undefined in this case.
+*/
+static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
+ int rc = SQLITE_OK; /* Return code */
+ u64 cksum1 = 0; /* Checksum based on FTS index contents */
+ u64 cksum2 = 0; /* Checksum based on %_content contents */
+ sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
+
+ /* This block calculates the checksum according to the FTS index. */
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
+ sqlite3_bind_int(pAllLangid, 2, p->nIndex);
+ while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
+ int iLangid = sqlite3_column_int(pAllLangid, 0);
+ int i;
+ for(i=0; i<p->nIndex; i++){
+ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
+ }
+ }
+ rc2 = sqlite3_reset(pAllLangid);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ /* This block calculates the checksum according to the %_content table */
+ if( rc==SQLITE_OK ){
+ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
+ sqlite3_stmt *pStmt = 0;
+ char *zSql;
+
+ zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iDocid = sqlite3_column_int64(pStmt, 0);
+ int iLang = langidFromSelect(p, pStmt);
+ int iCol;
+
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
+ if( p->abNotindexed[iCol]==0 ){
+ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
+ sqlite3_tokenizer_cursor *pT = 0;
+
+ rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT);
+ while( rc==SQLITE_OK ){
+ char const *zToken; /* Buffer containing token */
+ int nToken = 0; /* Number of bytes in token */
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */
+ int iPos = 0; /* Position of token in zText */
+
+ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
+ if( rc==SQLITE_OK ){
+ int i;
+ cksum2 = cksum2 ^ fts3ChecksumEntry(
+ zToken, nToken, iLang, 0, iDocid, iCol, iPos
+ );
+ for(i=1; i<p->nIndex; i++){
+ if( p->aIndex[i].nPrefix<=nToken ){
+ cksum2 = cksum2 ^ fts3ChecksumEntry(
+ zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
+ );
+ }
+ }
+ }
+ }
+ if( pT ) pModule->xClose(pT);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+ }
+ }
+
+ sqlite3_finalize(pStmt);
+ }
+
+ *pbOk = (cksum1==cksum2);
+ return rc;
+}
+
+/*
+** Run the integrity-check. If no error occurs and the current contents of
+** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
+** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
+**
+** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
+** error code.
+**
+** The integrity-check works as follows. For each token and indexed token
+** prefix in the document set, a 64-bit checksum is calculated (by code
+** in fts3ChecksumEntry()) based on the following:
+**
+** + The index number (0 for the main index, 1 for the first prefix
+** index etc.),
+** + The token (or token prefix) text itself,
+** + The language-id of the row it appears in,
+** + The docid of the row it appears in,
+** + The column it appears in, and
+** + The tokens position within that column.
+**
+** The checksums for all entries in the index are XORed together to create
+** a single checksum for the entire index.
+**
+** The integrity-check code calculates the same checksum in two ways:
+**
+** 1. By scanning the contents of the FTS index, and
+** 2. By scanning and tokenizing the content table.
+**
+** If the two checksums are identical, the integrity-check is deemed to have
+** passed.
+*/
+static int fts3DoIntegrityCheck(
+ Fts3Table *p /* FTS3 table handle */
+){
+ int rc;
+ int bOk = 0;
+ rc = fts3IntegrityCheck(p, &bOk);
+ if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB;
+ return rc;
+}
+
+/*
+** Handle a 'special' INSERT of the form:
+**
+** "INSERT INTO tbl(tbl) VALUES(<expr>)"
+**
+** Argument pVal contains the result of <expr>. Currently the only
+** meaningful value to insert is the text 'optimize'.
+*/
+static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
+ int rc = SQLITE_ERROR; /* Return Code */
+ const char *zVal = (const char *)sqlite3_value_text(pVal);
+ int nVal = sqlite3_value_bytes(pVal);
+
+ if( !zVal ){
+ return SQLITE_NOMEM;
+ }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
+ rc = fts3DoOptimize(p, 0);
+ }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
+ rc = fts3DoRebuild(p);
+ }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
+ rc = fts3DoIntegrityCheck(p);
+ }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
+ rc = fts3DoIncrmerge(p, &zVal[6]);
+ }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
+ rc = fts3DoAutoincrmerge(p, &zVal[10]);
+ }else if( nVal==5 && 0==sqlite3_strnicmp(zVal, "flush", 5) ){
+ rc = sqlite3Fts3PendingTermsFlush(p);
+ }
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ else{
+ int v;
+ if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
+ v = atoi(&zVal[9]);
+ if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v;
+ rc = SQLITE_OK;
+ }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
+ v = atoi(&zVal[11]);
+ if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v;
+ rc = SQLITE_OK;
+ }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){
+ p->bNoIncrDoclist = atoi(&zVal[21]);
+ rc = SQLITE_OK;
+ }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){
+ v = atoi(&zVal[11]);
+ if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v;
+ rc = SQLITE_OK;
+ }
+ }
+#endif
+ return rc;
+}
+
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED
+/*
+** Delete all cached deferred doclists. Deferred doclists are cached
+** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
+ Fts3DeferredToken *pDef;
+ for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
+ fts3PendingListDelete(pDef->pList);
+ pDef->pList = 0;
+ }
+}
+
+/*
+** Free all entries in the pCsr->pDeffered list. Entries are added to
+** this list using sqlite3Fts3DeferToken().
+*/
+SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
+ Fts3DeferredToken *pDef;
+ Fts3DeferredToken *pNext;
+ for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
+ pNext = pDef->pNext;
+ fts3PendingListDelete(pDef->pList);
+ sqlite3_free(pDef);
+ }
+ pCsr->pDeferred = 0;
+}
+
+/*
+** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
+** based on the row that pCsr currently points to.
+**
+** A deferred-doclist is like any other doclist with position information
+** included, except that it only contains entries for a single row of the
+** table, not for all rows.
+*/
+SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
+ int rc = SQLITE_OK; /* Return code */
+ if( pCsr->pDeferred ){
+ int i; /* Used to iterate through table columns */
+ sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
+ Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
+
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
+ sqlite3_tokenizer *pT = p->pTokenizer;
+ sqlite3_tokenizer_module const *pModule = pT->pModule;
+
+ assert( pCsr->isRequireSeek==0 );
+ iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
+
+ for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
+ if( p->abNotindexed[i]==0 ){
+ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
+ sqlite3_tokenizer_cursor *pTC = 0;
+
+ rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
+ while( rc==SQLITE_OK ){
+ char const *zToken; /* Buffer containing token */
+ int nToken = 0; /* Number of bytes in token */
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */
+ int iPos = 0; /* Position of token in zText */
+
+ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
+ Fts3PhraseToken *pPT = pDef->pToken;
+ if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
+ && (pPT->bFirst==0 || iPos==0)
+ && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
+ && (0==memcmp(zToken, pPT->z, pPT->n))
+ ){
+ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
+ }
+ }
+ }
+ if( pTC ) pModule->xClose(pTC);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ }
+ }
+
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
+ if( pDef->pList ){
+ rc = fts3PendingListAppendVarint(&pDef->pList, 0);
+ }
+ }
+ }
+
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(
+ Fts3DeferredToken *p,
+ char **ppData,
+ int *pnData
+){
+ char *pRet;
+ int nSkip;
+ sqlite3_int64 dummy;
+
+ *ppData = 0;
+ *pnData = 0;
+
+ if( p->pList==0 ){
+ return SQLITE_OK;
+ }
+
+ pRet = (char *)sqlite3_malloc64(p->pList->nData);
+ if( !pRet ) return SQLITE_NOMEM;
+
+ nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
+ *pnData = p->pList->nData - nSkip;
+ *ppData = pRet;
+
+ memcpy(pRet, &p->pList->aData[nSkip], *pnData);
+ return SQLITE_OK;
+}
+
+/*
+** Add an entry for token pToken to the pCsr->pDeferred list.
+*/
+SQLITE_PRIVATE int sqlite3Fts3DeferToken(
+ Fts3Cursor *pCsr, /* Fts3 table cursor */
+ Fts3PhraseToken *pToken, /* Token to defer */
+ int iCol /* Column that token must appear in (or -1) */
+){
+ Fts3DeferredToken *pDeferred;
+ pDeferred = sqlite3_malloc64(sizeof(*pDeferred));
+ if( !pDeferred ){
+ return SQLITE_NOMEM;
+ }
+ memset(pDeferred, 0, sizeof(*pDeferred));
+ pDeferred->pToken = pToken;
+ pDeferred->pNext = pCsr->pDeferred;
+ pDeferred->iCol = iCol;
+ pCsr->pDeferred = pDeferred;
+
+ assert( pToken->pDeferred==0 );
+ pToken->pDeferred = pDeferred;
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** SQLite value pRowid contains the rowid of a row that may or may not be
+** present in the FTS3 table. If it is, delete it and adjust the contents
+** of subsiduary data structures accordingly.
+*/
+static int fts3DeleteByRowid(
+ Fts3Table *p,
+ sqlite3_value *pRowid,
+ int *pnChng, /* IN/OUT: Decrement if row is deleted */
+ u32 *aSzDel
+){
+ int rc = SQLITE_OK; /* Return code */
+ int bFound = 0; /* True if *pRowid really is in the table */
+
+ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
+ if( bFound && rc==SQLITE_OK ){
+ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
+ rc = fts3IsEmpty(p, pRowid, &isEmpty);
+ if( rc==SQLITE_OK ){
+ if( isEmpty ){
+ /* Deleting this row means the whole table is empty. In this case
+ ** delete the contents of all three tables and throw away any
+ ** data in the pendingTerms hash table. */
+ rc = fts3DeleteAll(p, 1);
+ *pnChng = 0;
+ memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
+ }else{
+ *pnChng = *pnChng - 1;
+ if( p->zContentTbl==0 ){
+ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
+ }
+ if( p->bHasDocsize ){
+ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function does the work for the xUpdate method of FTS3 virtual
+** tables. The schema of the virtual table being:
+**
+** CREATE TABLE <table name>(
+** <user columns>,
+** <table name> HIDDEN,
+** docid HIDDEN,
+** <langid> HIDDEN
+** );
+**
+**
+*/
+SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(
+ sqlite3_vtab *pVtab, /* FTS3 vtab object */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ Fts3Table *p = (Fts3Table *)pVtab;
+ int rc = SQLITE_OK; /* Return Code */
+ u32 *aSzIns = 0; /* Sizes of inserted documents */
+ u32 *aSzDel = 0; /* Sizes of deleted documents */
+ int nChng = 0; /* Net change in number of documents */
+ int bInsertDone = 0;
+
+ /* At this point it must be known if the %_stat table exists or not.
+ ** So bHasStat may not be 2. */
+ assert( p->bHasStat==0 || p->bHasStat==1 );
+
+ assert( p->pSegments==0 );
+ assert(
+ nArg==1 /* DELETE operations */
+ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
+ );
+
+ /* Check for a "special" INSERT operation. One of the form:
+ **
+ ** INSERT INTO xyz(xyz) VALUES('command');
+ */
+ if( nArg>1
+ && sqlite3_value_type(apVal[0])==SQLITE_NULL
+ && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
+ ){
+ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
+ goto update_out;
+ }
+
+ if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
+ rc = SQLITE_CONSTRAINT;
+ goto update_out;
+ }
+
+ /* Allocate space to hold the change in document sizes */
+ aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2);
+ if( aSzDel==0 ){
+ rc = SQLITE_NOMEM;
+ goto update_out;
+ }
+ aSzIns = &aSzDel[p->nColumn+1];
+ memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
+
+ rc = fts3Writelock(p);
+ if( rc!=SQLITE_OK ) goto update_out;
+
+ /* If this is an INSERT operation, or an UPDATE that modifies the rowid
+ ** value, then this operation requires constraint handling.
+ **
+ ** If the on-conflict mode is REPLACE, this means that the existing row
+ ** should be deleted from the database before inserting the new row. Or,
+ ** if the on-conflict mode is other than REPLACE, then this method must
+ ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
+ ** modify the database file.
+ */
+ if( nArg>1 && p->zContentTbl==0 ){
+ /* Find the value object that holds the new rowid value. */
+ sqlite3_value *pNewRowid = apVal[3+p->nColumn];
+ if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
+ pNewRowid = apVal[1];
+ }
+
+ if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
+ sqlite3_value_type(apVal[0])==SQLITE_NULL
+ || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
+ )){
+ /* The new rowid is not NULL (in this case the rowid will be
+ ** automatically assigned and there is no chance of a conflict), and
+ ** the statement is either an INSERT or an UPDATE that modifies the
+ ** rowid column. So if the conflict mode is REPLACE, then delete any
+ ** existing row with rowid=pNewRowid.
+ **
+ ** Or, if the conflict mode is not REPLACE, insert the new record into
+ ** the %_content table. If we hit the duplicate rowid constraint (or any
+ ** other error) while doing so, return immediately.
+ **
+ ** This branch may also run if pNewRowid contains a value that cannot
+ ** be losslessly converted to an integer. In this case, the eventual
+ ** call to fts3InsertData() (either just below or further on in this
+ ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
+ ** invoked, it will delete zero rows (since no row will have
+ ** docid=$pNewRowid if $pNewRowid is not an integer value).
+ */
+ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
+ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
+ }else{
+ rc = fts3InsertData(p, apVal, pRowid);
+ bInsertDone = 1;
+ }
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ goto update_out;
+ }
+
+ /* If this is a DELETE or UPDATE operation, remove the old record. */
+ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
+ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
+ rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
+ }
+
+ /* If this is an INSERT or UPDATE operation, insert the new record. */
+ if( nArg>1 && rc==SQLITE_OK ){
+ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
+ if( bInsertDone==0 ){
+ rc = fts3InsertData(p, apVal, pRowid);
+ if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid);
+ }
+ if( rc==SQLITE_OK ){
+ assert( p->iPrevDocid==*pRowid );
+ rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
+ }
+ if( p->bHasDocsize ){
+ fts3InsertDocsize(&rc, p, aSzIns);
+ }
+ nChng++;
+ }
+
+ if( p->bFts4 ){
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
+ }
+
+ update_out:
+ sqlite3_free(aSzDel);
+ sqlite3Fts3SegmentsClose(p);
+ return rc;
+}
+
+/*
+** Flush any data in the pending-terms hash table to disk. If successful,
+** merge all segments in the database (including the new segment, if
+** there was any data to flush) into a single segment.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){
+ int rc;
+ rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3DoOptimize(p, 1);
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){
+ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
+ if( rc2!=SQLITE_OK ) rc = rc2;
+ }else{
+ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
+ sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
+ }
+ }
+ sqlite3Fts3SegmentsClose(p);
+ return rc;
+}
+
+#endif
+
+/************** End of fts3_write.c ******************************************/
+/************** Begin file fts3_snippet.c ************************************/
+/*
+** 2009 Oct 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+#ifndef SQLITE_AMALGAMATION
+typedef sqlite3_int64 i64;
+#endif
+
+/*
+** Characters that may appear in the second argument to matchinfo().
+*/
+#define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */
+#define FTS3_MATCHINFO_NCOL 'c' /* 1 value */
+#define FTS3_MATCHINFO_NDOC 'n' /* 1 value */
+#define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */
+#define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */
+#define FTS3_MATCHINFO_LCS 's' /* nCol values */
+#define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */
+#define FTS3_MATCHINFO_LHITS 'y' /* nCol*nPhrase values */
+#define FTS3_MATCHINFO_LHITS_BM 'b' /* nCol*nPhrase values */
+
+/*
+** The default value for the second argument to matchinfo().
+*/
+#define FTS3_MATCHINFO_DEFAULT "pcx"
+
+
+/*
+** Used as an sqlite3Fts3ExprIterate() context when loading phrase doclists to
+** Fts3Expr.aDoclist[]/nDoclist.
+*/
+typedef struct LoadDoclistCtx LoadDoclistCtx;
+struct LoadDoclistCtx {
+ Fts3Cursor *pCsr; /* FTS3 Cursor */
+ int nPhrase; /* Number of phrases seen so far */
+ int nToken; /* Number of tokens seen so far */
+};
+
+/*
+** The following types are used as part of the implementation of the
+** fts3BestSnippet() routine.
+*/
+typedef struct SnippetIter SnippetIter;
+typedef struct SnippetPhrase SnippetPhrase;
+typedef struct SnippetFragment SnippetFragment;
+
+struct SnippetIter {
+ Fts3Cursor *pCsr; /* Cursor snippet is being generated from */
+ int iCol; /* Extract snippet from this column */
+ int nSnippet; /* Requested snippet length (in tokens) */
+ int nPhrase; /* Number of phrases in query */
+ SnippetPhrase *aPhrase; /* Array of size nPhrase */
+ int iCurrent; /* First token of current snippet */
+};
+
+struct SnippetPhrase {
+ int nToken; /* Number of tokens in phrase */
+ char *pList; /* Pointer to start of phrase position list */
+ i64 iHead; /* Next value in position list */
+ char *pHead; /* Position list data following iHead */
+ i64 iTail; /* Next value in trailing position list */
+ char *pTail; /* Position list data following iTail */
+};
+
+struct SnippetFragment {
+ int iCol; /* Column snippet is extracted from */
+ int iPos; /* Index of first token in snippet */
+ u64 covered; /* Mask of query phrases covered */
+ u64 hlmask; /* Mask of snippet terms to highlight */
+};
+
+/*
+** This type is used as an sqlite3Fts3ExprIterate() context object while
+** accumulating the data returned by the matchinfo() function.
+*/
+typedef struct MatchInfo MatchInfo;
+struct MatchInfo {
+ Fts3Cursor *pCursor; /* FTS3 Cursor */
+ int nCol; /* Number of columns in table */
+ int nPhrase; /* Number of matchable phrases in query */
+ sqlite3_int64 nDoc; /* Number of docs in database */
+ char flag;
+ u32 *aMatchinfo; /* Pre-allocated buffer */
+};
+
+/*
+** An instance of this structure is used to manage a pair of buffers, each
+** (nElem * sizeof(u32)) bytes in size. See the MatchinfoBuffer code below
+** for details.
+*/
+struct MatchinfoBuffer {
+ u8 aRef[3];
+ int nElem;
+ int bGlobal; /* Set if global data is loaded */
+ char *zMatchinfo;
+ u32 aMatchinfo[1];
+};
+
+
+/*
+** The snippet() and offsets() functions both return text values. An instance
+** of the following structure is used to accumulate those values while the
+** functions are running. See fts3StringAppend() for details.
+*/
+typedef struct StrBuffer StrBuffer;
+struct StrBuffer {
+ char *z; /* Pointer to buffer containing string */
+ int n; /* Length of z in bytes (excl. nul-term) */
+ int nAlloc; /* Allocated size of buffer z in bytes */
+};
+
+
+/*************************************************************************
+** Start of MatchinfoBuffer code.
+*/
+
+/*
+** Allocate a two-slot MatchinfoBuffer object.
+*/
+static MatchinfoBuffer *fts3MIBufferNew(size_t nElem, const char *zMatchinfo){
+ MatchinfoBuffer *pRet;
+ sqlite3_int64 nByte = sizeof(u32) * (2*(sqlite3_int64)nElem + 1)
+ + sizeof(MatchinfoBuffer);
+ sqlite3_int64 nStr = strlen(zMatchinfo);
+
+ pRet = sqlite3Fts3MallocZero(nByte + nStr+1);
+ if( pRet ){
+ pRet->aMatchinfo[0] = (u8*)(&pRet->aMatchinfo[1]) - (u8*)pRet;
+ pRet->aMatchinfo[1+nElem] = pRet->aMatchinfo[0]
+ + sizeof(u32)*((int)nElem+1);
+ pRet->nElem = (int)nElem;
+ pRet->zMatchinfo = ((char*)pRet) + nByte;
+ memcpy(pRet->zMatchinfo, zMatchinfo, nStr+1);
+ pRet->aRef[0] = 1;
+ }
+
+ return pRet;
+}
+
+static void fts3MIBufferFree(void *p){
+ MatchinfoBuffer *pBuf = (MatchinfoBuffer*)((u8*)p - ((u32*)p)[-1]);
+
+ assert( (u32*)p==&pBuf->aMatchinfo[1]
+ || (u32*)p==&pBuf->aMatchinfo[pBuf->nElem+2]
+ );
+ if( (u32*)p==&pBuf->aMatchinfo[1] ){
+ pBuf->aRef[1] = 0;
+ }else{
+ pBuf->aRef[2] = 0;
+ }
+
+ if( pBuf->aRef[0]==0 && pBuf->aRef[1]==0 && pBuf->aRef[2]==0 ){
+ sqlite3_free(pBuf);
+ }
+}
+
+static void (*fts3MIBufferAlloc(MatchinfoBuffer *p, u32 **paOut))(void*){
+ void (*xRet)(void*) = 0;
+ u32 *aOut = 0;
+
+ if( p->aRef[1]==0 ){
+ p->aRef[1] = 1;
+ aOut = &p->aMatchinfo[1];
+ xRet = fts3MIBufferFree;
+ }
+ else if( p->aRef[2]==0 ){
+ p->aRef[2] = 1;
+ aOut = &p->aMatchinfo[p->nElem+2];
+ xRet = fts3MIBufferFree;
+ }else{
+ aOut = (u32*)sqlite3_malloc64(p->nElem * sizeof(u32));
+ if( aOut ){
+ xRet = sqlite3_free;
+ if( p->bGlobal ) memcpy(aOut, &p->aMatchinfo[1], p->nElem*sizeof(u32));
+ }
+ }
+
+ *paOut = aOut;
+ return xRet;
+}
+
+static void fts3MIBufferSetGlobal(MatchinfoBuffer *p){
+ p->bGlobal = 1;
+ memcpy(&p->aMatchinfo[2+p->nElem], &p->aMatchinfo[1], p->nElem*sizeof(u32));
+}
+
+/*
+** Free a MatchinfoBuffer object allocated using fts3MIBufferNew()
+*/
+SQLITE_PRIVATE void sqlite3Fts3MIBufferFree(MatchinfoBuffer *p){
+ if( p ){
+ assert( p->aRef[0]==1 );
+ p->aRef[0] = 0;
+ if( p->aRef[0]==0 && p->aRef[1]==0 && p->aRef[2]==0 ){
+ sqlite3_free(p);
+ }
+ }
+}
+
+/*
+** End of MatchinfoBuffer code.
+*************************************************************************/
+
+
+/*
+** This function is used to help iterate through a position-list. A position
+** list is a list of unique integers, sorted from smallest to largest. Each
+** element of the list is represented by an FTS3 varint that takes the value
+** of the difference between the current element and the previous one plus
+** two. For example, to store the position-list:
+**
+** 4 9 113
+**
+** the three varints:
+**
+** 6 7 106
+**
+** are encoded.
+**
+** When this function is called, *pp points to the start of an element of
+** the list. *piPos contains the value of the previous entry in the list.
+** After it returns, *piPos contains the value of the next element of the
+** list and *pp is advanced to the following varint.
+*/
+static void fts3GetDeltaPosition(char **pp, i64 *piPos){
+ int iVal;
+ *pp += fts3GetVarint32(*pp, &iVal);
+ *piPos += (iVal-2);
+}
+
+/*
+** Helper function for sqlite3Fts3ExprIterate() (see below).
+*/
+static int fts3ExprIterate2(
+ Fts3Expr *pExpr, /* Expression to iterate phrases of */
+ int *piPhrase, /* Pointer to phrase counter */
+ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
+ void *pCtx /* Second argument to pass to callback */
+){
+ int rc; /* Return code */
+ int eType = pExpr->eType; /* Type of expression node pExpr */
+
+ if( eType!=FTSQUERY_PHRASE ){
+ assert( pExpr->pLeft && pExpr->pRight );
+ rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx);
+ if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){
+ rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx);
+ }
+ }else{
+ rc = x(pExpr, *piPhrase, pCtx);
+ (*piPhrase)++;
+ }
+ return rc;
+}
+
+/*
+** Iterate through all phrase nodes in an FTS3 query, except those that
+** are part of a sub-tree that is the right-hand-side of a NOT operator.
+** For each phrase node found, the supplied callback function is invoked.
+**
+** If the callback function returns anything other than SQLITE_OK,
+** the iteration is abandoned and the error code returned immediately.
+** Otherwise, SQLITE_OK is returned after a callback has been made for
+** all eligible phrase nodes.
+*/
+SQLITE_PRIVATE int sqlite3Fts3ExprIterate(
+ Fts3Expr *pExpr, /* Expression to iterate phrases of */
+ int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
+ void *pCtx /* Second argument to pass to callback */
+){
+ int iPhrase = 0; /* Variable used as the phrase counter */
+ return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
+}
+
+/*
+** This is an sqlite3Fts3ExprIterate() callback used while loading the
+** doclists for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
+** fts3ExprLoadDoclists().
+*/
+static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ int rc = SQLITE_OK;
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;
+
+ UNUSED_PARAMETER(iPhrase);
+
+ p->nPhrase++;
+ p->nToken += pPhrase->nToken;
+
+ return rc;
+}
+
+/*
+** Load the doclists for each phrase in the query associated with FTS3 cursor
+** pCsr.
+**
+** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable
+** phrases in the expression (all phrases except those directly or
+** indirectly descended from the right-hand-side of a NOT operator). If
+** pnToken is not NULL, then it is set to the number of tokens in all
+** matchable phrases of the expression.
+*/
+static int fts3ExprLoadDoclists(
+ Fts3Cursor *pCsr, /* Fts3 cursor for current query */
+ int *pnPhrase, /* OUT: Number of phrases in query */
+ int *pnToken /* OUT: Number of tokens in query */
+){
+ int rc; /* Return Code */
+ LoadDoclistCtx sCtx = {0,0,0}; /* Context for sqlite3Fts3ExprIterate() */
+ sCtx.pCsr = pCsr;
+ rc = sqlite3Fts3ExprIterate(pCsr->pExpr,fts3ExprLoadDoclistsCb,(void*)&sCtx);
+ if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
+ if( pnToken ) *pnToken = sCtx.nToken;
+ return rc;
+}
+
+static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ (*(int *)ctx)++;
+ pExpr->iPhrase = iPhrase;
+ return SQLITE_OK;
+}
+static int fts3ExprPhraseCount(Fts3Expr *pExpr){
+ int nPhrase = 0;
+ (void)sqlite3Fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase);
+ return nPhrase;
+}
+
+/*
+** Advance the position list iterator specified by the first two
+** arguments so that it points to the first element with a value greater
+** than or equal to parameter iNext.
+*/
+static void fts3SnippetAdvance(char **ppIter, i64 *piIter, int iNext){
+ char *pIter = *ppIter;
+ if( pIter ){
+ i64 iIter = *piIter;
+
+ while( iIter<iNext ){
+ if( 0==(*pIter & 0xFE) ){
+ iIter = -1;
+ pIter = 0;
+ break;
+ }
+ fts3GetDeltaPosition(&pIter, &iIter);
+ }
+
+ *piIter = iIter;
+ *ppIter = pIter;
+ }
+}
+
+/*
+** Advance the snippet iterator to the next candidate snippet.
+*/
+static int fts3SnippetNextCandidate(SnippetIter *pIter){
+ int i; /* Loop counter */
+
+ if( pIter->iCurrent<0 ){
+ /* The SnippetIter object has just been initialized. The first snippet
+ ** candidate always starts at offset 0 (even if this candidate has a
+ ** score of 0.0).
+ */
+ pIter->iCurrent = 0;
+
+ /* Advance the 'head' iterator of each phrase to the first offset that
+ ** is greater than or equal to (iNext+nSnippet).
+ */
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet);
+ }
+ }else{
+ int iStart;
+ int iEnd = 0x7FFFFFFF;
+
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ if( pPhrase->pHead && pPhrase->iHead<iEnd ){
+ iEnd = pPhrase->iHead;
+ }
+ }
+ if( iEnd==0x7FFFFFFF ){
+ return 1;
+ }
+
+ pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1;
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1);
+ fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart);
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Retrieve information about the current candidate snippet of snippet
+** iterator pIter.
+*/
+static void fts3SnippetDetails(
+ SnippetIter *pIter, /* Snippet iterator */
+ u64 mCovered, /* Bitmask of phrases already covered */
+ int *piToken, /* OUT: First token of proposed snippet */
+ int *piScore, /* OUT: "Score" for this snippet */
+ u64 *pmCover, /* OUT: Bitmask of phrases covered */
+ u64 *pmHighlight /* OUT: Bitmask of terms to highlight */
+){
+ int iStart = pIter->iCurrent; /* First token of snippet */
+ int iScore = 0; /* Score of this snippet */
+ int i; /* Loop counter */
+ u64 mCover = 0; /* Mask of phrases covered by this snippet */
+ u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */
+
+ for(i=0; i<pIter->nPhrase; i++){
+ SnippetPhrase *pPhrase = &pIter->aPhrase[i];
+ if( pPhrase->pTail ){
+ char *pCsr = pPhrase->pTail;
+ i64 iCsr = pPhrase->iTail;
+
+ while( iCsr<(iStart+pIter->nSnippet) && iCsr>=iStart ){
+ int j;
+ u64 mPhrase = (u64)1 << (i%64);
+ u64 mPos = (u64)1 << (iCsr - iStart);
+ assert( iCsr>=iStart && (iCsr - iStart)<=64 );
+ assert( i>=0 );
+ if( (mCover|mCovered)&mPhrase ){
+ iScore++;
+ }else{
+ iScore += 1000;
+ }
+ mCover |= mPhrase;
+
+ for(j=0; j<pPhrase->nToken; j++){
+ mHighlight |= (mPos>>j);
+ }
+
+ if( 0==(*pCsr & 0x0FE) ) break;
+ fts3GetDeltaPosition(&pCsr, &iCsr);
+ }
+ }
+ }
+
+ /* Set the output variables before returning. */
+ *piToken = iStart;
+ *piScore = iScore;
+ *pmCover = mCover;
+ *pmHighlight = mHighlight;
+}
+
+/*
+** This function is an sqlite3Fts3ExprIterate() callback used by
+** fts3BestSnippet(). Each invocation populates an element of the
+** SnippetIter.aPhrase[] array.
+*/
+static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ SnippetIter *p = (SnippetIter *)ctx;
+ SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
+ char *pCsr;
+ int rc;
+
+ pPhrase->nToken = pExpr->pPhrase->nToken;
+ rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr);
+ assert( rc==SQLITE_OK || pCsr==0 );
+ if( pCsr ){
+ i64 iFirst = 0;
+ pPhrase->pList = pCsr;
+ fts3GetDeltaPosition(&pCsr, &iFirst);
+ if( iFirst<0 ){
+ rc = FTS_CORRUPT_VTAB;
+ }else{
+ pPhrase->pHead = pCsr;
+ pPhrase->pTail = pCsr;
+ pPhrase->iHead = iFirst;
+ pPhrase->iTail = iFirst;
+ }
+ }else{
+ assert( rc!=SQLITE_OK || (
+ pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0
+ ));
+ }
+
+ return rc;
+}
+
+/*
+** Select the fragment of text consisting of nFragment contiguous tokens
+** from column iCol that represent the "best" snippet. The best snippet
+** is the snippet with the highest score, where scores are calculated
+** by adding:
+**
+** (a) +1 point for each occurrence of a matchable phrase in the snippet.
+**
+** (b) +1000 points for the first occurrence of each matchable phrase in
+** the snippet for which the corresponding mCovered bit is not set.
+**
+** The selected snippet parameters are stored in structure *pFragment before
+** returning. The score of the selected snippet is stored in *piScore
+** before returning.
+*/
+static int fts3BestSnippet(
+ int nSnippet, /* Desired snippet length */
+ Fts3Cursor *pCsr, /* Cursor to create snippet for */
+ int iCol, /* Index of column to create snippet from */
+ u64 mCovered, /* Mask of phrases already covered */
+ u64 *pmSeen, /* IN/OUT: Mask of phrases seen */
+ SnippetFragment *pFragment, /* OUT: Best snippet found */
+ int *piScore /* OUT: Score of snippet pFragment */
+){
+ int rc; /* Return Code */
+ int nList; /* Number of phrases in expression */
+ SnippetIter sIter; /* Iterates through snippet candidates */
+ sqlite3_int64 nByte; /* Number of bytes of space to allocate */
+ int iBestScore = -1; /* Best snippet score found so far */
+ int i; /* Loop counter */
+
+ memset(&sIter, 0, sizeof(sIter));
+
+ /* Iterate through the phrases in the expression to count them. The same
+ ** callback makes sure the doclists are loaded for each phrase.
+ */
+ rc = fts3ExprLoadDoclists(pCsr, &nList, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Now that it is known how many phrases there are, allocate and zero
+ ** the required space using malloc().
+ */
+ nByte = sizeof(SnippetPhrase) * nList;
+ sIter.aPhrase = (SnippetPhrase *)sqlite3Fts3MallocZero(nByte);
+ if( !sIter.aPhrase ){
+ return SQLITE_NOMEM;
+ }
+
+ /* Initialize the contents of the SnippetIter object. Then iterate through
+ ** the set of phrases in the expression to populate the aPhrase[] array.
+ */
+ sIter.pCsr = pCsr;
+ sIter.iCol = iCol;
+ sIter.nSnippet = nSnippet;
+ sIter.nPhrase = nList;
+ sIter.iCurrent = -1;
+ rc = sqlite3Fts3ExprIterate(
+ pCsr->pExpr, fts3SnippetFindPositions, (void*)&sIter
+ );
+ if( rc==SQLITE_OK ){
+
+ /* Set the *pmSeen output variable. */
+ for(i=0; i<nList; i++){
+ if( sIter.aPhrase[i].pHead ){
+ *pmSeen |= (u64)1 << (i%64);
+ }
+ }
+
+ /* Loop through all candidate snippets. Store the best snippet in
+ ** *pFragment. Store its associated 'score' in iBestScore.
+ */
+ pFragment->iCol = iCol;
+ while( !fts3SnippetNextCandidate(&sIter) ){
+ int iPos;
+ int iScore;
+ u64 mCover;
+ u64 mHighlite;
+ fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover,&mHighlite);
+ assert( iScore>=0 );
+ if( iScore>iBestScore ){
+ pFragment->iPos = iPos;
+ pFragment->hlmask = mHighlite;
+ pFragment->covered = mCover;
+ iBestScore = iScore;
+ }
+ }
+
+ *piScore = iBestScore;
+ }
+ sqlite3_free(sIter.aPhrase);
+ return rc;
+}
+
+
+/*
+** Append a string to the string-buffer passed as the first argument.
+**
+** If nAppend is negative, then the length of the string zAppend is
+** determined using strlen().
+*/
+static int fts3StringAppend(
+ StrBuffer *pStr, /* Buffer to append to */
+ const char *zAppend, /* Pointer to data to append to buffer */
+ int nAppend /* Size of zAppend in bytes (or -1) */
+){
+ if( nAppend<0 ){
+ nAppend = (int)strlen(zAppend);
+ }
+
+ /* If there is insufficient space allocated at StrBuffer.z, use realloc()
+ ** to grow the buffer until so that it is big enough to accomadate the
+ ** appended data.
+ */
+ if( pStr->n+nAppend+1>=pStr->nAlloc ){
+ sqlite3_int64 nAlloc = pStr->nAlloc+(sqlite3_int64)nAppend+100;
+ char *zNew = sqlite3_realloc64(pStr->z, nAlloc);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pStr->z = zNew;
+ pStr->nAlloc = nAlloc;
+ }
+ assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) );
+
+ /* Append the data to the string buffer. */
+ memcpy(&pStr->z[pStr->n], zAppend, nAppend);
+ pStr->n += nAppend;
+ pStr->z[pStr->n] = '\0';
+
+ return SQLITE_OK;
+}
+
+/*
+** The fts3BestSnippet() function often selects snippets that end with a
+** query term. That is, the final term of the snippet is always a term
+** that requires highlighting. For example, if 'X' is a highlighted term
+** and '.' is a non-highlighted term, BestSnippet() may select:
+**
+** ........X.....X
+**
+** This function "shifts" the beginning of the snippet forward in the
+** document so that there are approximately the same number of
+** non-highlighted terms to the right of the final highlighted term as there
+** are to the left of the first highlighted term. For example, to this:
+**
+** ....X.....X....
+**
+** This is done as part of extracting the snippet text, not when selecting
+** the snippet. Snippet selection is done based on doclists only, so there
+** is no way for fts3BestSnippet() to know whether or not the document
+** actually contains terms that follow the final highlighted term.
+*/
+static int fts3SnippetShift(
+ Fts3Table *pTab, /* FTS3 table snippet comes from */
+ int iLangid, /* Language id to use in tokenizing */
+ int nSnippet, /* Number of tokens desired for snippet */
+ const char *zDoc, /* Document text to extract snippet from */
+ int nDoc, /* Size of buffer zDoc in bytes */
+ int *piPos, /* IN/OUT: First token of snippet */
+ u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */
+){
+ u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */
+
+ if( hlmask ){
+ int nLeft; /* Tokens to the left of first highlight */
+ int nRight; /* Tokens to the right of last highlight */
+ int nDesired; /* Ideal number of tokens to shift forward */
+
+ for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++);
+ for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++);
+ assert( (nSnippet-1-nRight)<=63 && (nSnippet-1-nRight)>=0 );
+ nDesired = (nLeft-nRight)/2;
+
+ /* Ideally, the start of the snippet should be pushed forward in the
+ ** document nDesired tokens. This block checks if there are actually
+ ** nDesired tokens to the right of the snippet. If so, *piPos and
+ ** *pHlMask are updated to shift the snippet nDesired tokens to the
+ ** right. Otherwise, the snippet is shifted by the number of tokens
+ ** available.
+ */
+ if( nDesired>0 ){
+ int nShift; /* Number of tokens to shift snippet by */
+ int iCurrent = 0; /* Token counter */
+ int rc; /* Return Code */
+ sqlite3_tokenizer_module *pMod;
+ sqlite3_tokenizer_cursor *pC;
+ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
+
+ /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired)
+ ** or more tokens in zDoc/nDoc.
+ */
+ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){
+ const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0;
+ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent);
+ }
+ pMod->xClose(pC);
+ if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; }
+
+ nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet;
+ assert( nShift<=nDesired );
+ if( nShift>0 ){
+ *piPos += nShift;
+ *pHlmask = hlmask >> nShift;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Extract the snippet text for fragment pFragment from cursor pCsr and
+** append it to string buffer pOut.
+*/
+static int fts3SnippetText(
+ Fts3Cursor *pCsr, /* FTS3 Cursor */
+ SnippetFragment *pFragment, /* Snippet to extract */
+ int iFragment, /* Fragment number */
+ int isLast, /* True for final fragment in snippet */
+ int nSnippet, /* Number of tokens in extracted snippet */
+ const char *zOpen, /* String inserted before highlighted term */
+ const char *zClose, /* String inserted after highlighted term */
+ const char *zEllipsis, /* String inserted between snippets */
+ StrBuffer *pOut /* Write output here */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc; /* Return code */
+ const char *zDoc; /* Document text to extract snippet from */
+ int nDoc; /* Size of zDoc in bytes */
+ int iCurrent = 0; /* Current token number of document */
+ int iEnd = 0; /* Byte offset of end of current token */
+ int isShiftDone = 0; /* True after snippet is shifted */
+ int iPos = pFragment->iPos; /* First token of snippet */
+ u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */
+ int iCol = pFragment->iCol+1; /* Query column to extract text from */
+ sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */
+ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */
+
+ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol);
+ if( zDoc==0 ){
+ if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){
+ return SQLITE_NOMEM;
+ }
+ return SQLITE_OK;
+ }
+ nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol);
+
+ /* Open a token cursor on the document. */
+ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
+ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ while( rc==SQLITE_OK ){
+ const char *ZDUMMY; /* Dummy argument used with tokenizer */
+ int DUMMY1 = -1; /* Dummy argument used with tokenizer */
+ int iBegin = 0; /* Offset in zDoc of start of token */
+ int iFin = 0; /* Offset in zDoc of end of token */
+ int isHighlight = 0; /* True for highlighted terms */
+
+ /* Variable DUMMY1 is initialized to a negative value above. Elsewhere
+ ** in the FTS code the variable that the third argument to xNext points to
+ ** is initialized to zero before the first (*but not necessarily
+ ** subsequent*) call to xNext(). This is done for a particular application
+ ** that needs to know whether or not the tokenizer is being used for
+ ** snippet generation or for some other purpose.
+ **
+ ** Extreme care is required when writing code to depend on this
+ ** initialization. It is not a documented part of the tokenizer interface.
+ ** If a tokenizer is used directly by any code outside of FTS, this
+ ** convention might not be respected. */
+ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ /* Special case - the last token of the snippet is also the last token
+ ** of the column. Append any punctuation that occurred between the end
+ ** of the previous token and the end of the document to the output.
+ ** Then break out of the loop. */
+ rc = fts3StringAppend(pOut, &zDoc[iEnd], -1);
+ }
+ break;
+ }
+ if( iCurrent<iPos ){ continue; }
+
+ if( !isShiftDone ){
+ int n = nDoc - iBegin;
+ rc = fts3SnippetShift(
+ pTab, pCsr->iLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask
+ );
+ isShiftDone = 1;
+
+ /* Now that the shift has been done, check if the initial "..." are
+ ** required. They are required if (a) this is not the first fragment,
+ ** or (b) this fragment does not begin at position 0 of its column.
+ */
+ if( rc==SQLITE_OK ){
+ if( iPos>0 || iFragment>0 ){
+ rc = fts3StringAppend(pOut, zEllipsis, -1);
+ }else if( iBegin ){
+ rc = fts3StringAppend(pOut, zDoc, iBegin);
+ }
+ }
+ if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
+ }
+
+ if( iCurrent>=(iPos+nSnippet) ){
+ if( isLast ){
+ rc = fts3StringAppend(pOut, zEllipsis, -1);
+ }
+ break;
+ }
+
+ /* Set isHighlight to true if this term should be highlighted. */
+ isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0;
+
+ if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd);
+ if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1);
+ if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin);
+ if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1);
+
+ iEnd = iFin;
+ }
+
+ pMod->xClose(pC);
+ return rc;
+}
+
+
+/*
+** This function is used to count the entries in a column-list (a
+** delta-encoded list of term offsets within a single column of a single
+** row). When this function is called, *ppCollist should point to the
+** beginning of the first varint in the column-list (the varint that
+** contains the position of the first matching term in the column data).
+** Before returning, *ppCollist is set to point to the first byte after
+** the last varint in the column-list (either the 0x00 signifying the end
+** of the position-list, or the 0x01 that precedes the column number of
+** the next column in the position-list).
+**
+** The number of elements in the column-list is returned.
+*/
+static int fts3ColumnlistCount(char **ppCollist){
+ char *pEnd = *ppCollist;
+ char c = 0;
+ int nEntry = 0;
+
+ /* A column-list is terminated by either a 0x01 or 0x00. */
+ while( 0xFE & (*pEnd | c) ){
+ c = *pEnd++ & 0x80;
+ if( !c ) nEntry++;
+ }
+
+ *ppCollist = pEnd;
+ return nEntry;
+}
+
+/*
+** This function gathers 'y' or 'b' data for a single phrase.
+*/
+static int fts3ExprLHits(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ MatchInfo *p /* Matchinfo context */
+){
+ Fts3Table *pTab = (Fts3Table *)p->pCursor->base.pVtab;
+ int iStart;
+ Fts3Phrase *pPhrase = pExpr->pPhrase;
+ char *pIter = pPhrase->doclist.pList;
+ int iCol = 0;
+
+ assert( p->flag==FTS3_MATCHINFO_LHITS_BM || p->flag==FTS3_MATCHINFO_LHITS );
+ if( p->flag==FTS3_MATCHINFO_LHITS ){
+ iStart = pExpr->iPhrase * p->nCol;
+ }else{
+ iStart = pExpr->iPhrase * ((p->nCol + 31) / 32);
+ }
+
+ if( pIter ) while( 1 ){
+ int nHit = fts3ColumnlistCount(&pIter);
+ if( (pPhrase->iColumn>=pTab->nColumn || pPhrase->iColumn==iCol) ){
+ if( p->flag==FTS3_MATCHINFO_LHITS ){
+ p->aMatchinfo[iStart + iCol] = (u32)nHit;
+ }else if( nHit ){
+ p->aMatchinfo[iStart + (iCol+1)/32] |= (1 << (iCol&0x1F));
+ }
+ }
+ assert( *pIter==0x00 || *pIter==0x01 );
+ if( *pIter!=0x01 ) break;
+ pIter++;
+ pIter += fts3GetVarint32(pIter, &iCol);
+ if( iCol>=p->nCol ) return FTS_CORRUPT_VTAB;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Gather the results for matchinfo directives 'y' and 'b'.
+*/
+static int fts3ExprLHitGather(
+ Fts3Expr *pExpr,
+ MatchInfo *p
+){
+ int rc = SQLITE_OK;
+ assert( (pExpr->pLeft==0)==(pExpr->pRight==0) );
+ if( pExpr->bEof==0 && pExpr->iDocid==p->pCursor->iPrevId ){
+ if( pExpr->pLeft ){
+ rc = fts3ExprLHitGather(pExpr->pLeft, p);
+ if( rc==SQLITE_OK ) rc = fts3ExprLHitGather(pExpr->pRight, p);
+ }else{
+ rc = fts3ExprLHits(pExpr, p);
+ }
+ }
+ return rc;
+}
+
+/*
+** sqlite3Fts3ExprIterate() callback used to collect the "global" matchinfo
+** stats for a single query.
+**
+** sqlite3Fts3ExprIterate() callback to load the 'global' elements of a
+** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements
+** of the matchinfo array that are constant for all rows returned by the
+** current query.
+**
+** Argument pCtx is actually a pointer to a struct of type MatchInfo. This
+** function populates Matchinfo.aMatchinfo[] as follows:
+**
+** for(iCol=0; iCol<nCol; iCol++){
+** aMatchinfo[3*iPhrase*nCol + 3*iCol + 1] = X;
+** aMatchinfo[3*iPhrase*nCol + 3*iCol + 2] = Y;
+** }
+**
+** where X is the number of matches for phrase iPhrase is column iCol of all
+** rows of the table. Y is the number of rows for which column iCol contains
+** at least one instance of phrase iPhrase.
+**
+** If the phrase pExpr consists entirely of deferred tokens, then all X and
+** Y values are set to nDoc, where nDoc is the number of documents in the
+** file system. This is done because the full-text index doclist is required
+** to calculate these values properly, and the full-text index doclist is
+** not available for deferred tokens.
+*/
+static int fts3ExprGlobalHitsCb(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ int iPhrase, /* Phrase number (numbered from zero) */
+ void *pCtx /* Pointer to MatchInfo structure */
+){
+ MatchInfo *p = (MatchInfo *)pCtx;
+ return sqlite3Fts3EvalPhraseStats(
+ p->pCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol]
+ );
+}
+
+/*
+** sqlite3Fts3ExprIterate() callback used to collect the "local" part of the
+** FTS3_MATCHINFO_HITS array. The local stats are those elements of the
+** array that are different for each row returned by the query.
+*/
+static int fts3ExprLocalHitsCb(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ int iPhrase, /* Phrase number */
+ void *pCtx /* Pointer to MatchInfo structure */
+){
+ int rc = SQLITE_OK;
+ MatchInfo *p = (MatchInfo *)pCtx;
+ int iStart = iPhrase * p->nCol * 3;
+ int i;
+
+ for(i=0; i<p->nCol && rc==SQLITE_OK; i++){
+ char *pCsr;
+ rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr);
+ if( pCsr ){
+ p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr);
+ }else{
+ p->aMatchinfo[iStart+i*3] = 0;
+ }
+ }
+
+ return rc;
+}
+
+static int fts3MatchinfoCheck(
+ Fts3Table *pTab,
+ char cArg,
+ char **pzErr
+){
+ if( (cArg==FTS3_MATCHINFO_NPHRASE)
+ || (cArg==FTS3_MATCHINFO_NCOL)
+ || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4)
+ || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4)
+ || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize)
+ || (cArg==FTS3_MATCHINFO_LCS)
+ || (cArg==FTS3_MATCHINFO_HITS)
+ || (cArg==FTS3_MATCHINFO_LHITS)
+ || (cArg==FTS3_MATCHINFO_LHITS_BM)
+ ){
+ return SQLITE_OK;
+ }
+ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo request: %c", cArg);
+ return SQLITE_ERROR;
+}
+
+static size_t fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
+ size_t nVal; /* Number of integers output by cArg */
+
+ switch( cArg ){
+ case FTS3_MATCHINFO_NDOC:
+ case FTS3_MATCHINFO_NPHRASE:
+ case FTS3_MATCHINFO_NCOL:
+ nVal = 1;
+ break;
+
+ case FTS3_MATCHINFO_AVGLENGTH:
+ case FTS3_MATCHINFO_LENGTH:
+ case FTS3_MATCHINFO_LCS:
+ nVal = pInfo->nCol;
+ break;
+
+ case FTS3_MATCHINFO_LHITS:
+ nVal = pInfo->nCol * pInfo->nPhrase;
+ break;
+
+ case FTS3_MATCHINFO_LHITS_BM:
+ nVal = pInfo->nPhrase * ((pInfo->nCol + 31) / 32);
+ break;
+
+ default:
+ assert( cArg==FTS3_MATCHINFO_HITS );
+ nVal = pInfo->nCol * pInfo->nPhrase * 3;
+ break;
+ }
+
+ return nVal;
+}
+
+static int fts3MatchinfoSelectDoctotal(
+ Fts3Table *pTab,
+ sqlite3_stmt **ppStmt,
+ sqlite3_int64 *pnDoc,
+ const char **paLen,
+ const char **ppEnd
+){
+ sqlite3_stmt *pStmt;
+ const char *a;
+ const char *pEnd;
+ sqlite3_int64 nDoc;
+ int n;
+
+
+ if( !*ppStmt ){
+ int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ pStmt = *ppStmt;
+ assert( sqlite3_data_count(pStmt)==1 );
+
+ n = sqlite3_column_bytes(pStmt, 0);
+ a = sqlite3_column_blob(pStmt, 0);
+ if( a==0 ){
+ return FTS_CORRUPT_VTAB;
+ }
+ pEnd = a + n;
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
+ if( nDoc<=0 || a>pEnd ){
+ return FTS_CORRUPT_VTAB;
+ }
+ *pnDoc = nDoc;
+
+ if( paLen ) *paLen = a;
+ if( ppEnd ) *ppEnd = pEnd;
+ return SQLITE_OK;
+}
+
+/*
+** An instance of the following structure is used to store state while
+** iterating through a multi-column position-list corresponding to the
+** hits for a single phrase on a single row in order to calculate the
+** values for a matchinfo() FTS3_MATCHINFO_LCS request.
+*/
+typedef struct LcsIterator LcsIterator;
+struct LcsIterator {
+ Fts3Expr *pExpr; /* Pointer to phrase expression */
+ int iPosOffset; /* Tokens count up to end of this phrase */
+ char *pRead; /* Cursor used to iterate through aDoclist */
+ int iPos; /* Current position */
+};
+
+/*
+** If LcsIterator.iCol is set to the following value, the iterator has
+** finished iterating through all offsets for all columns.
+*/
+#define LCS_ITERATOR_FINISHED 0x7FFFFFFF;
+
+static int fts3MatchinfoLcsCb(
+ Fts3Expr *pExpr, /* Phrase expression node */
+ int iPhrase, /* Phrase number (numbered from zero) */
+ void *pCtx /* Pointer to MatchInfo structure */
+){
+ LcsIterator *aIter = (LcsIterator *)pCtx;
+ aIter[iPhrase].pExpr = pExpr;
+ return SQLITE_OK;
+}
+
+/*
+** Advance the iterator passed as an argument to the next position. Return
+** 1 if the iterator is at EOF or if it now points to the start of the
+** position list for the next column.
+*/
+static int fts3LcsIteratorAdvance(LcsIterator *pIter){
+ char *pRead;
+ sqlite3_int64 iRead;
+ int rc = 0;
+
+ if( NEVER(pIter==0) ) return 1;
+ pRead = pIter->pRead;
+ pRead += sqlite3Fts3GetVarint(pRead, &iRead);
+ if( iRead==0 || iRead==1 ){
+ pRead = 0;
+ rc = 1;
+ }else{
+ pIter->iPos += (int)(iRead-2);
+ }
+
+ pIter->pRead = pRead;
+ return rc;
+}
+
+/*
+** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag.
+**
+** If the call is successful, the longest-common-substring lengths for each
+** column are written into the first nCol elements of the pInfo->aMatchinfo[]
+** array before returning. SQLITE_OK is returned in this case.
+**
+** Otherwise, if an error occurs, an SQLite error code is returned and the
+** data written to the first nCol elements of pInfo->aMatchinfo[] is
+** undefined.
+*/
+static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
+ LcsIterator *aIter;
+ int i;
+ int iCol;
+ int nToken = 0;
+ int rc = SQLITE_OK;
+
+ /* Allocate and populate the array of LcsIterator objects. The array
+ ** contains one element for each matchable phrase in the query.
+ **/
+ aIter = sqlite3Fts3MallocZero(sizeof(LcsIterator) * pCsr->nPhrase);
+ if( !aIter ) return SQLITE_NOMEM;
+ (void)sqlite3Fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);
+
+ for(i=0; i<pInfo->nPhrase; i++){
+ LcsIterator *pIter = &aIter[i];
+ nToken -= pIter->pExpr->pPhrase->nToken;
+ pIter->iPosOffset = nToken;
+ }
+
+ for(iCol=0; iCol<pInfo->nCol; iCol++){
+ int nLcs = 0; /* LCS value for this column */
+ int nLive = 0; /* Number of iterators in aIter not at EOF */
+
+ for(i=0; i<pInfo->nPhrase; i++){
+ LcsIterator *pIt = &aIter[i];
+ rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead);
+ if( rc!=SQLITE_OK ) goto matchinfo_lcs_out;
+ if( pIt->pRead ){
+ pIt->iPos = pIt->iPosOffset;
+ fts3LcsIteratorAdvance(pIt);
+ if( pIt->pRead==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ goto matchinfo_lcs_out;
+ }
+ nLive++;
+ }
+ }
+
+ while( nLive>0 ){
+ LcsIterator *pAdv = 0; /* The iterator to advance by one position */
+ int nThisLcs = 0; /* LCS for the current iterator positions */
+
+ for(i=0; i<pInfo->nPhrase; i++){
+ LcsIterator *pIter = &aIter[i];
+ if( pIter->pRead==0 ){
+ /* This iterator is already at EOF for this column. */
+ nThisLcs = 0;
+ }else{
+ if( pAdv==0 || pIter->iPos<pAdv->iPos ){
+ pAdv = pIter;
+ }
+ if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){
+ nThisLcs++;
+ }else{
+ nThisLcs = 1;
+ }
+ if( nThisLcs>nLcs ) nLcs = nThisLcs;
+ }
+ }
+ if( fts3LcsIteratorAdvance(pAdv) ) nLive--;
+ }
+
+ pInfo->aMatchinfo[iCol] = nLcs;
+ }
+
+ matchinfo_lcs_out:
+ sqlite3_free(aIter);
+ return rc;
+}
+
+/*
+** Populate the buffer pInfo->aMatchinfo[] with an array of integers to
+** be returned by the matchinfo() function. Argument zArg contains the
+** format string passed as the second argument to matchinfo (or the
+** default value "pcx" if no second argument was specified). The format
+** string has already been validated and the pInfo->aMatchinfo[] array
+** is guaranteed to be large enough for the output.
+**
+** If bGlobal is true, then populate all fields of the matchinfo() output.
+** If it is false, then assume that those fields that do not change between
+** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS)
+** have already been populated.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs. If a value other than SQLITE_OK is returned, the state the
+** pInfo->aMatchinfo[] buffer is left in is undefined.
+*/
+static int fts3MatchinfoValues(
+ Fts3Cursor *pCsr, /* FTS3 cursor object */
+ int bGlobal, /* True to grab the global stats */
+ MatchInfo *pInfo, /* Matchinfo context object */
+ const char *zArg /* Matchinfo format string */
+){
+ int rc = SQLITE_OK;
+ int i;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ sqlite3_stmt *pSelect = 0;
+
+ for(i=0; rc==SQLITE_OK && zArg[i]; i++){
+ pInfo->flag = zArg[i];
+ switch( zArg[i] ){
+ case FTS3_MATCHINFO_NPHRASE:
+ if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase;
+ break;
+
+ case FTS3_MATCHINFO_NCOL:
+ if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol;
+ break;
+
+ case FTS3_MATCHINFO_NDOC:
+ if( bGlobal ){
+ sqlite3_int64 nDoc = 0;
+ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0, 0);
+ pInfo->aMatchinfo[0] = (u32)nDoc;
+ }
+ break;
+
+ case FTS3_MATCHINFO_AVGLENGTH:
+ if( bGlobal ){
+ sqlite3_int64 nDoc; /* Number of rows in table */
+ const char *a; /* Aggregate column length array */
+ const char *pEnd; /* First byte past end of length array */
+
+ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a, &pEnd);
+ if( rc==SQLITE_OK ){
+ int iCol;
+ for(iCol=0; iCol<pInfo->nCol; iCol++){
+ u32 iVal;
+ sqlite3_int64 nToken;
+ a += sqlite3Fts3GetVarint(a, &nToken);
+ if( a>pEnd ){
+ rc = SQLITE_CORRUPT_VTAB;
+ break;
+ }
+ iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc);
+ pInfo->aMatchinfo[iCol] = iVal;
+ }
+ }
+ }
+ break;
+
+ case FTS3_MATCHINFO_LENGTH: {
+ sqlite3_stmt *pSelectDocsize = 0;
+ rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize);
+ if( rc==SQLITE_OK ){
+ int iCol;
+ const char *a = sqlite3_column_blob(pSelectDocsize, 0);
+ const char *pEnd = a + sqlite3_column_bytes(pSelectDocsize, 0);
+ for(iCol=0; iCol<pInfo->nCol; iCol++){
+ sqlite3_int64 nToken;
+ a += sqlite3Fts3GetVarintBounded(a, pEnd, &nToken);
+ if( a>pEnd ){
+ rc = SQLITE_CORRUPT_VTAB;
+ break;
+ }
+ pInfo->aMatchinfo[iCol] = (u32)nToken;
+ }
+ }
+ sqlite3_reset(pSelectDocsize);
+ break;
+ }
+
+ case FTS3_MATCHINFO_LCS:
+ rc = fts3ExprLoadDoclists(pCsr, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = fts3MatchinfoLcs(pCsr, pInfo);
+ }
+ break;
+
+ case FTS3_MATCHINFO_LHITS_BM:
+ case FTS3_MATCHINFO_LHITS: {
+ size_t nZero = fts3MatchinfoSize(pInfo, zArg[i]) * sizeof(u32);
+ memset(pInfo->aMatchinfo, 0, nZero);
+ rc = fts3ExprLHitGather(pCsr->pExpr, pInfo);
+ break;
+ }
+
+ default: {
+ Fts3Expr *pExpr;
+ assert( zArg[i]==FTS3_MATCHINFO_HITS );
+ pExpr = pCsr->pExpr;
+ rc = fts3ExprLoadDoclists(pCsr, 0, 0);
+ if( rc!=SQLITE_OK ) break;
+ if( bGlobal ){
+ if( pCsr->pDeferred ){
+ rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc,0,0);
+ if( rc!=SQLITE_OK ) break;
+ }
+ rc = sqlite3Fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo);
+ sqlite3Fts3EvalTestDeferred(pCsr, &rc);
+ if( rc!=SQLITE_OK ) break;
+ }
+ (void)sqlite3Fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo);
+ break;
+ }
+ }
+
+ pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]);
+ }
+
+ sqlite3_reset(pSelect);
+ return rc;
+}
+
+
+/*
+** Populate pCsr->aMatchinfo[] with data for the current row. The
+** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32).
+*/
+static void fts3GetMatchinfo(
+ sqlite3_context *pCtx, /* Return results here */
+ Fts3Cursor *pCsr, /* FTS3 Cursor object */
+ const char *zArg /* Second argument to matchinfo() function */
+){
+ MatchInfo sInfo;
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int bGlobal = 0; /* Collect 'global' stats as well as local */
+
+ u32 *aOut = 0;
+ void (*xDestroyOut)(void*) = 0;
+
+ memset(&sInfo, 0, sizeof(MatchInfo));
+ sInfo.pCursor = pCsr;
+ sInfo.nCol = pTab->nColumn;
+
+ /* If there is cached matchinfo() data, but the format string for the
+ ** cache does not match the format string for this request, discard
+ ** the cached data. */
+ if( pCsr->pMIBuffer && strcmp(pCsr->pMIBuffer->zMatchinfo, zArg) ){
+ sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
+ pCsr->pMIBuffer = 0;
+ }
+
+ /* If Fts3Cursor.pMIBuffer is NULL, then this is the first time the
+ ** matchinfo function has been called for this query. In this case
+ ** allocate the array used to accumulate the matchinfo data and
+ ** initialize those elements that are constant for every row.
+ */
+ if( pCsr->pMIBuffer==0 ){
+ size_t nMatchinfo = 0; /* Number of u32 elements in match-info */
+ int i; /* Used to iterate through zArg */
+
+ /* Determine the number of phrases in the query */
+ pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr);
+ sInfo.nPhrase = pCsr->nPhrase;
+
+ /* Determine the number of integers in the buffer returned by this call. */
+ for(i=0; zArg[i]; i++){
+ char *zErr = 0;
+ if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]);
+ }
+
+ /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */
+ pCsr->pMIBuffer = fts3MIBufferNew(nMatchinfo, zArg);
+ if( !pCsr->pMIBuffer ) rc = SQLITE_NOMEM;
+
+ pCsr->isMatchinfoNeeded = 1;
+ bGlobal = 1;
+ }
+
+ if( rc==SQLITE_OK ){
+ xDestroyOut = fts3MIBufferAlloc(pCsr->pMIBuffer, &aOut);
+ if( xDestroyOut==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sInfo.aMatchinfo = aOut;
+ sInfo.nPhrase = pCsr->nPhrase;
+ rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg);
+ if( bGlobal ){
+ fts3MIBufferSetGlobal(pCsr->pMIBuffer);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ if( xDestroyOut ) xDestroyOut(aOut);
+ }else{
+ int n = pCsr->pMIBuffer->nElem * sizeof(u32);
+ sqlite3_result_blob(pCtx, aOut, n, xDestroyOut);
+ }
+}
+
+/*
+** Implementation of snippet() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3Snippet(
+ sqlite3_context *pCtx, /* SQLite function call context */
+ Fts3Cursor *pCsr, /* Cursor object */
+ const char *zStart, /* Snippet start text - "<b>" */
+ const char *zEnd, /* Snippet end text - "</b>" */
+ const char *zEllipsis, /* Snippet ellipsis text - "<b>...</b>" */
+ int iCol, /* Extract snippet from this column */
+ int nToken /* Approximate number of tokens in snippet */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ int rc = SQLITE_OK;
+ int i;
+ StrBuffer res = {0, 0, 0};
+
+ /* The returned text includes up to four fragments of text extracted from
+ ** the data in the current row. The first iteration of the for(...) loop
+ ** below attempts to locate a single fragment of text nToken tokens in
+ ** size that contains at least one instance of all phrases in the query
+ ** expression that appear in the current row. If such a fragment of text
+ ** cannot be found, the second iteration of the loop attempts to locate
+ ** a pair of fragments, and so on.
+ */
+ int nSnippet = 0; /* Number of fragments in this snippet */
+ SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */
+ int nFToken = -1; /* Number of tokens in each fragment */
+
+ if( !pCsr->pExpr ){
+ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
+ return;
+ }
+
+ /* Limit the snippet length to 64 tokens. */
+ if( nToken<-64 ) nToken = -64;
+ if( nToken>+64 ) nToken = +64;
+
+ for(nSnippet=1; 1; nSnippet++){
+
+ int iSnip; /* Loop counter 0..nSnippet-1 */
+ u64 mCovered = 0; /* Bitmask of phrases covered by snippet */
+ u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */
+
+ if( nToken>=0 ){
+ nFToken = (nToken+nSnippet-1) / nSnippet;
+ }else{
+ nFToken = -1 * nToken;
+ }
+
+ for(iSnip=0; iSnip<nSnippet; iSnip++){
+ int iBestScore = -1; /* Best score of columns checked so far */
+ int iRead; /* Used to iterate through columns */
+ SnippetFragment *pFragment = &aSnippet[iSnip];
+
+ memset(pFragment, 0, sizeof(*pFragment));
+
+ /* Loop through all columns of the table being considered for snippets.
+ ** If the iCol argument to this function was negative, this means all
+ ** columns of the FTS3 table. Otherwise, only column iCol is considered.
+ */
+ for(iRead=0; iRead<pTab->nColumn; iRead++){
+ SnippetFragment sF = {0, 0, 0, 0};
+ int iS = 0;
+ if( iCol>=0 && iRead!=iCol ) continue;
+
+ /* Find the best snippet of nFToken tokens in column iRead. */
+ rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
+ if( rc!=SQLITE_OK ){
+ goto snippet_out;
+ }
+ if( iS>iBestScore ){
+ *pFragment = sF;
+ iBestScore = iS;
+ }
+ }
+
+ mCovered |= pFragment->covered;
+ }
+
+ /* If all query phrases seen by fts3BestSnippet() are present in at least
+ ** one of the nSnippet snippet fragments, break out of the loop.
+ */
+ assert( (mCovered&mSeen)==mCovered );
+ if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break;
+ }
+
+ assert( nFToken>0 );
+
+ for(i=0; i<nSnippet && rc==SQLITE_OK; i++){
+ rc = fts3SnippetText(pCsr, &aSnippet[i],
+ i, (i==nSnippet-1), nFToken, zStart, zEnd, zEllipsis, &res
+ );
+ }
+
+ snippet_out:
+ sqlite3Fts3SegmentsClose(pTab);
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ sqlite3_free(res.z);
+ }else{
+ sqlite3_result_text(pCtx, res.z, -1, sqlite3_free);
+ }
+}
+
+
+typedef struct TermOffset TermOffset;
+typedef struct TermOffsetCtx TermOffsetCtx;
+
+struct TermOffset {
+ char *pList; /* Position-list */
+ i64 iPos; /* Position just read from pList */
+ i64 iOff; /* Offset of this term from read positions */
+};
+
+struct TermOffsetCtx {
+ Fts3Cursor *pCsr;
+ int iCol; /* Column of table to populate aTerm for */
+ int iTerm;
+ sqlite3_int64 iDocid;
+ TermOffset *aTerm;
+};
+
+/*
+** This function is an sqlite3Fts3ExprIterate() callback used by sqlite3Fts3Offsets().
+*/
+static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){
+ TermOffsetCtx *p = (TermOffsetCtx *)ctx;
+ int nTerm; /* Number of tokens in phrase */
+ int iTerm; /* For looping through nTerm phrase terms */
+ char *pList; /* Pointer to position list for phrase */
+ i64 iPos = 0; /* First position in position-list */
+ int rc;
+
+ UNUSED_PARAMETER(iPhrase);
+ rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pList);
+ nTerm = pExpr->pPhrase->nToken;
+ if( pList ){
+ fts3GetDeltaPosition(&pList, &iPos);
+ assert_fts3_nc( iPos>=0 );
+ }
+
+ for(iTerm=0; iTerm<nTerm; iTerm++){
+ TermOffset *pT = &p->aTerm[p->iTerm++];
+ pT->iOff = nTerm-iTerm-1;
+ pT->pList = pList;
+ pT->iPos = iPos;
+ }
+
+ return rc;
+}
+
+/*
+** Implementation of offsets() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3Offsets(
+ sqlite3_context *pCtx, /* SQLite function call context */
+ Fts3Cursor *pCsr /* Cursor object */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule;
+ int rc; /* Return Code */
+ int nToken; /* Number of tokens in query */
+ int iCol; /* Column currently being processed */
+ StrBuffer res = {0, 0, 0}; /* Result string */
+ TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */
+
+ if( !pCsr->pExpr ){
+ sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
+ return;
+ }
+
+ memset(&sCtx, 0, sizeof(sCtx));
+ assert( pCsr->isRequireSeek==0 );
+
+ /* Count the number of terms in the query */
+ rc = fts3ExprLoadDoclists(pCsr, 0, &nToken);
+ if( rc!=SQLITE_OK ) goto offsets_out;
+
+ /* Allocate the array of TermOffset iterators. */
+ sCtx.aTerm = (TermOffset *)sqlite3Fts3MallocZero(sizeof(TermOffset)*nToken);
+ if( 0==sCtx.aTerm ){
+ rc = SQLITE_NOMEM;
+ goto offsets_out;
+ }
+ sCtx.iDocid = pCsr->iPrevId;
+ sCtx.pCsr = pCsr;
+
+ /* Loop through the table columns, appending offset information to
+ ** string-buffer res for each column.
+ */
+ for(iCol=0; iCol<pTab->nColumn; iCol++){
+ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */
+ const char *ZDUMMY; /* Dummy argument used with xNext() */
+ int NDUMMY = 0; /* Dummy argument used with xNext() */
+ int iStart = 0;
+ int iEnd = 0;
+ int iCurrent = 0;
+ const char *zDoc;
+ int nDoc;
+
+ /* Initialize the contents of sCtx.aTerm[] for column iCol. This
+ ** operation may fail if the database contains corrupt records.
+ */
+ sCtx.iCol = iCol;
+ sCtx.iTerm = 0;
+ rc = sqlite3Fts3ExprIterate(
+ pCsr->pExpr, fts3ExprTermOffsetInit, (void*)&sCtx
+ );
+ if( rc!=SQLITE_OK ) goto offsets_out;
+
+ /* Retreive the text stored in column iCol. If an SQL NULL is stored
+ ** in column iCol, jump immediately to the next iteration of the loop.
+ ** If an OOM occurs while retrieving the data (this can happen if SQLite
+ ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM
+ ** to the caller.
+ */
+ zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1);
+ nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
+ if( zDoc==0 ){
+ if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){
+ continue;
+ }
+ rc = SQLITE_NOMEM;
+ goto offsets_out;
+ }
+
+ /* Initialize a tokenizer iterator to iterate through column iCol. */
+ rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid,
+ zDoc, nDoc, &pC
+ );
+ if( rc!=SQLITE_OK ) goto offsets_out;
+
+ rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
+ while( rc==SQLITE_OK ){
+ int i; /* Used to loop through terms */
+ int iMinPos = 0x7FFFFFFF; /* Position of next token */
+ TermOffset *pTerm = 0; /* TermOffset associated with next token */
+
+ for(i=0; i<nToken; i++){
+ TermOffset *pT = &sCtx.aTerm[i];
+ if( pT->pList && (pT->iPos-pT->iOff)<iMinPos ){
+ iMinPos = pT->iPos-pT->iOff;
+ pTerm = pT;
+ }
+ }
+
+ if( !pTerm ){
+ /* All offsets for this column have been gathered. */
+ rc = SQLITE_DONE;
+ }else{
+ assert_fts3_nc( iCurrent<=iMinPos );
+ if( 0==(0xFE&*pTerm->pList) ){
+ pTerm->pList = 0;
+ }else{
+ fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos);
+ }
+ while( rc==SQLITE_OK && iCurrent<iMinPos ){
+ rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
+ }
+ if( rc==SQLITE_OK ){
+ char aBuffer[64];
+ sqlite3_snprintf(sizeof(aBuffer), aBuffer,
+ "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart
+ );
+ rc = fts3StringAppend(&res, aBuffer, -1);
+ }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){
+ rc = FTS_CORRUPT_VTAB;
+ }
+ }
+ }
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+
+ pMod->xClose(pC);
+ if( rc!=SQLITE_OK ) goto offsets_out;
+ }
+
+ offsets_out:
+ sqlite3_free(sCtx.aTerm);
+ assert( rc!=SQLITE_DONE );
+ sqlite3Fts3SegmentsClose(pTab);
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ sqlite3_free(res.z);
+ }else{
+ sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free);
+ }
+ return;
+}
+
+/*
+** Implementation of matchinfo() function.
+*/
+SQLITE_PRIVATE void sqlite3Fts3Matchinfo(
+ sqlite3_context *pContext, /* Function call context */
+ Fts3Cursor *pCsr, /* FTS3 table cursor */
+ const char *zArg /* Second arg to matchinfo() function */
+){
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
+ const char *zFormat;
+
+ if( zArg ){
+ zFormat = zArg;
+ }else{
+ zFormat = FTS3_MATCHINFO_DEFAULT;
+ }
+
+ if( !pCsr->pExpr ){
+ sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC);
+ return;
+ }else{
+ /* Retrieve matchinfo() data. */
+ fts3GetMatchinfo(pContext, pCsr, zFormat);
+ sqlite3Fts3SegmentsClose(pTab);
+ }
+}
+
+#endif
+
+/************** End of fts3_snippet.c ****************************************/
+/************** Begin file fts3_unicode.c ************************************/
+/*
+** 2012 May 24
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Implementation of the "unicode" full-text-search tokenizer.
+*/
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+/* #include <stdio.h> */
+/* #include <string.h> */
+
+/* #include "fts3_tokenizer.h" */
+
+/*
+** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
+** from the sqlite3 source file utf.c. If this file is compiled as part
+** of the amalgamation, they are not required.
+*/
+#ifndef SQLITE_AMALGAMATION
+
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (u8)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \
+ } \
+}
+
+#endif /* ifndef SQLITE_AMALGAMATION */
+
+typedef struct unicode_tokenizer unicode_tokenizer;
+typedef struct unicode_cursor unicode_cursor;
+
+struct unicode_tokenizer {
+ sqlite3_tokenizer base;
+ int eRemoveDiacritic;
+ int nException;
+ int *aiException;
+};
+
+struct unicode_cursor {
+ sqlite3_tokenizer_cursor base;
+ const unsigned char *aInput; /* Input text being tokenized */
+ int nInput; /* Size of aInput[] in bytes */
+ int iOff; /* Current offset within aInput[] */
+ int iToken; /* Index of next token to be returned */
+ char *zToken; /* storage for current token */
+ int nAlloc; /* space allocated at zToken */
+};
+
+
+/*
+** Destroy a tokenizer allocated by unicodeCreate().
+*/
+static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){
+ if( pTokenizer ){
+ unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer;
+ sqlite3_free(p->aiException);
+ sqlite3_free(p);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE
+** statement has specified that the tokenizer for this table shall consider
+** all characters in string zIn/nIn to be separators (if bAlnum==0) or
+** token characters (if bAlnum==1).
+**
+** For each codepoint in the zIn/nIn string, this function checks if the
+** sqlite3FtsUnicodeIsalnum() function already returns the desired result.
+** If so, no action is taken. Otherwise, the codepoint is added to the
+** unicode_tokenizer.aiException[] array. For the purposes of tokenization,
+** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all
+** codepoints in the aiException[] array.
+**
+** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic()
+** identifies as a diacritic) occurs in the zIn/nIn string it is ignored.
+** It is not possible to change the behavior of the tokenizer with respect
+** to these codepoints.
+*/
+static int unicodeAddExceptions(
+ unicode_tokenizer *p, /* Tokenizer to add exceptions to */
+ int bAlnum, /* Replace Isalnum() return value with this */
+ const char *zIn, /* Array of characters to make exceptions */
+ int nIn /* Length of z in bytes */
+){
+ const unsigned char *z = (const unsigned char *)zIn;
+ const unsigned char *zTerm = &z[nIn];
+ unsigned int iCode;
+ int nEntry = 0;
+
+ assert( bAlnum==0 || bAlnum==1 );
+
+ while( z<zTerm ){
+ READ_UTF8(z, zTerm, iCode);
+ assert( (sqlite3FtsUnicodeIsalnum((int)iCode) & 0xFFFFFFFE)==0 );
+ if( sqlite3FtsUnicodeIsalnum((int)iCode)!=bAlnum
+ && sqlite3FtsUnicodeIsdiacritic((int)iCode)==0
+ ){
+ nEntry++;
+ }
+ }
+
+ if( nEntry ){
+ int *aNew; /* New aiException[] array */
+ int nNew; /* Number of valid entries in array aNew[] */
+
+ aNew = sqlite3_realloc64(p->aiException,(p->nException+nEntry)*sizeof(int));
+ if( aNew==0 ) return SQLITE_NOMEM;
+ nNew = p->nException;
+
+ z = (const unsigned char *)zIn;
+ while( z<zTerm ){
+ READ_UTF8(z, zTerm, iCode);
+ if( sqlite3FtsUnicodeIsalnum((int)iCode)!=bAlnum
+ && sqlite3FtsUnicodeIsdiacritic((int)iCode)==0
+ ){
+ int i, j;
+ for(i=0; i<nNew && aNew[i]<(int)iCode; i++);
+ for(j=nNew; j>i; j--) aNew[j] = aNew[j-1];
+ aNew[i] = (int)iCode;
+ nNew++;
+ }
+ }
+ p->aiException = aNew;
+ p->nException = nNew;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Return true if the p->aiException[] array contains the value iCode.
+*/
+static int unicodeIsException(unicode_tokenizer *p, int iCode){
+ if( p->nException>0 ){
+ int *a = p->aiException;
+ int iLo = 0;
+ int iHi = p->nException-1;
+
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( iCode==a[iTest] ){
+ return 1;
+ }else if( iCode>a[iTest] ){
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Return true if, for the purposes of tokenization, codepoint iCode is
+** considered a token character (not a separator).
+*/
+static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){
+ assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
+ return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode);
+}
+
+/*
+** Create a new tokenizer instance.
+*/
+static int unicodeCreate(
+ int nArg, /* Size of array argv[] */
+ const char * const *azArg, /* Tokenizer creation arguments */
+ sqlite3_tokenizer **pp /* OUT: New tokenizer handle */
+){
+ unicode_tokenizer *pNew; /* New tokenizer object */
+ int i;
+ int rc = SQLITE_OK;
+
+ pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
+ if( pNew==NULL ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(unicode_tokenizer));
+ pNew->eRemoveDiacritic = 1;
+
+ for(i=0; rc==SQLITE_OK && i<nArg; i++){
+ const char *z = azArg[i];
+ int n = (int)strlen(z);
+
+ if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
+ pNew->eRemoveDiacritic = 1;
+ }
+ else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
+ pNew->eRemoveDiacritic = 0;
+ }
+ else if( n==19 && memcmp("remove_diacritics=2", z, 19)==0 ){
+ pNew->eRemoveDiacritic = 2;
+ }
+ else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){
+ rc = unicodeAddExceptions(pNew, 1, &z[11], n-11);
+ }
+ else if( n>=11 && memcmp("separators=", z, 11)==0 ){
+ rc = unicodeAddExceptions(pNew, 0, &z[11], n-11);
+ }
+ else{
+ /* Unrecognized argument */
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ unicodeDestroy((sqlite3_tokenizer *)pNew);
+ pNew = 0;
+ }
+ *pp = (sqlite3_tokenizer *)pNew;
+ return rc;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int unicodeOpen(
+ sqlite3_tokenizer *p, /* The tokenizer */
+ const char *aInput, /* Input string */
+ int nInput, /* Size of string aInput in bytes */
+ sqlite3_tokenizer_cursor **pp /* OUT: New cursor object */
+){
+ unicode_cursor *pCsr;
+
+ pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(unicode_cursor));
+
+ pCsr->aInput = (const unsigned char *)aInput;
+ if( aInput==0 ){
+ pCsr->nInput = 0;
+ pCsr->aInput = (const unsigned char*)"";
+ }else if( nInput<0 ){
+ pCsr->nInput = (int)strlen(aInput);
+ }else{
+ pCsr->nInput = nInput;
+ }
+
+ *pp = &pCsr->base;
+ UNUSED_PARAMETER(p);
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** simpleOpen() above.
+*/
+static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){
+ unicode_cursor *pCsr = (unicode_cursor *) pCursor;
+ sqlite3_free(pCsr->zToken);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to simpleOpen().
+*/
+static int unicodeNext(
+ sqlite3_tokenizer_cursor *pC, /* Cursor returned by simpleOpen */
+ const char **paToken, /* OUT: Token text */
+ int *pnToken, /* OUT: Number of bytes at *paToken */
+ int *piStart, /* OUT: Starting offset of token */
+ int *piEnd, /* OUT: Ending offset of token */
+ int *piPos /* OUT: Position integer of token */
+){
+ unicode_cursor *pCsr = (unicode_cursor *)pC;
+ unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer);
+ unsigned int iCode = 0;
+ char *zOut;
+ const unsigned char *z = &pCsr->aInput[pCsr->iOff];
+ const unsigned char *zStart = z;
+ const unsigned char *zEnd;
+ const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput];
+
+ /* Scan past any delimiter characters before the start of the next token.
+ ** Return SQLITE_DONE early if this takes us all the way to the end of
+ ** the input. */
+ while( z<zTerm ){
+ READ_UTF8(z, zTerm, iCode);
+ if( unicodeIsAlnum(p, (int)iCode) ) break;
+ zStart = z;
+ }
+ if( zStart>=zTerm ) return SQLITE_DONE;
+
+ zOut = pCsr->zToken;
+ do {
+ int iOut;
+
+ /* Grow the output buffer if required. */
+ if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){
+ char *zNew = sqlite3_realloc64(pCsr->zToken, pCsr->nAlloc+64);
+ if( !zNew ) return SQLITE_NOMEM;
+ zOut = &zNew[zOut - pCsr->zToken];
+ pCsr->zToken = zNew;
+ pCsr->nAlloc += 64;
+ }
+
+ /* Write the folded case of the last character read to the output */
+ zEnd = z;
+ iOut = sqlite3FtsUnicodeFold((int)iCode, p->eRemoveDiacritic);
+ if( iOut ){
+ WRITE_UTF8(zOut, iOut);
+ }
+
+ /* If the cursor is not at EOF, read the next character */
+ if( z>=zTerm ) break;
+ READ_UTF8(z, zTerm, iCode);
+ }while( unicodeIsAlnum(p, (int)iCode)
+ || sqlite3FtsUnicodeIsdiacritic((int)iCode)
+ );
+
+ /* Set the output variables and return. */
+ pCsr->iOff = (int)(z - pCsr->aInput);
+ *paToken = pCsr->zToken;
+ *pnToken = (int)(zOut - pCsr->zToken);
+ *piStart = (int)(zStart - pCsr->aInput);
+ *piEnd = (int)(zEnd - pCsr->aInput);
+ *piPos = pCsr->iToken++;
+ return SQLITE_OK;
+}
+
+/*
+** Set *ppModule to a pointer to the sqlite3_tokenizer_module
+** structure for the unicode tokenizer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){
+ static const sqlite3_tokenizer_module module = {
+ 0,
+ unicodeCreate,
+ unicodeDestroy,
+ unicodeOpen,
+ unicodeClose,
+ unicodeNext,
+ 0,
+ };
+ *ppModule = &module;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+#endif /* ifndef SQLITE_DISABLE_FTS3_UNICODE */
+
+/************** End of fts3_unicode.c ****************************************/
+/************** Begin file fts3_unicode2.c ***********************************/
+/*
+** 2012-05-25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/*
+** DO NOT EDIT THIS MACHINE GENERATED FILE.
+*/
+
+#ifndef SQLITE_DISABLE_FTS3_UNICODE
+#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
+
+/* #include <assert.h> */
+
+/*
+** Return true if the argument corresponds to a unicode codepoint
+** classified as either a letter or a number. Otherwise false.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int c){
+ /* Each unsigned integer in the following array corresponds to a contiguous
+ ** range of unicode codepoints that are not either letters or numbers (i.e.
+ ** codepoints for which this function should return 0).
+ **
+ ** The most significant 22 bits in each 32-bit value contain the first
+ ** codepoint in the range. The least significant 10 bits are used to store
+ ** the size of the range (always at least 1). In other words, the value
+ ** ((C<<22) + N) represents a range of N codepoints starting with codepoint
+ ** C. It is not possible to represent a range larger than 1023 codepoints
+ ** using this format.
+ */
+ static const unsigned int aEntry[] = {
+ 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07,
+ 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01,
+ 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401,
+ 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01,
+ 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01,
+ 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802,
+ 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F,
+ 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401,
+ 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804,
+ 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403,
+ 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812,
+ 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001,
+ 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802,
+ 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805,
+ 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401,
+ 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03,
+ 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807,
+ 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001,
+ 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01,
+ 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804,
+ 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001,
+ 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802,
+ 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01,
+ 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06,
+ 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007,
+ 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006,
+ 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417,
+ 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14,
+ 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07,
+ 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01,
+ 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001,
+ 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802,
+ 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F,
+ 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002,
+ 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802,
+ 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006,
+ 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D,
+ 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802,
+ 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027,
+ 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403,
+ 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805,
+ 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04,
+ 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401,
+ 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005,
+ 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B,
+ 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A,
+ 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001,
+ 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59,
+ 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807,
+ 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01,
+ 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E,
+ 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100,
+ 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10,
+ 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402,
+ 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804,
+ 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012,
+ 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004,
+ 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002,
+ 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803,
+ 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07,
+ 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02,
+ 0x037FFC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802,
+ 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013,
+ 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06,
+ 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003,
+ 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01,
+ 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403,
+ 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009,
+ 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003,
+ 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003,
+ 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E,
+ 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046,
+ 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401,
+ 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401,
+ 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F,
+ 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C,
+ 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002,
+ 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025,
+ 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6,
+ 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46,
+ 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
+ 0x380400F0,
+ };
+ static const unsigned int aAscii[4] = {
+ 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
+ };
+
+ if( (unsigned int)c<128 ){
+ return ( (aAscii[c >> 5] & ((unsigned int)1 << (c & 0x001F)))==0 );
+ }else if( (unsigned int)c<(1<<22) ){
+ unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
+ int iRes = 0;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aEntry[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( aEntry[0]<key );
+ assert( key>=aEntry[iRes] );
+ return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
+ }
+ return 1;
+}
+
+
+/*
+** If the argument is a codepoint corresponding to a lowercase letter
+** in the ASCII range with a diacritic added, return the codepoint
+** of the ASCII letter only. For example, if passed 235 - "LATIN
+** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
+** E"). The resuls of passing a codepoint that corresponds to an
+** uppercase letter are undefined.
+*/
+static int remove_diacritic(int c, int bComplex){
+ unsigned short aDia[] = {
+ 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995,
+ 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286,
+ 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732,
+ 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336,
+ 3456, 3696, 3712, 3728, 3744, 3766, 3832, 3896,
+ 3912, 3928, 3944, 3968, 4008, 4040, 4056, 4106,
+ 4138, 4170, 4202, 4234, 4266, 4296, 4312, 4344,
+ 4408, 4424, 4442, 4472, 4488, 4504, 6148, 6198,
+ 6264, 6280, 6360, 6429, 6505, 6529, 61448, 61468,
+ 61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704,
+ 61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914,
+ 61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218,
+ 62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554,
+ 62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766,
+ 62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118,
+ 63182, 63242, 63274, 63310, 63368, 63390,
+ };
+#define HIBIT ((unsigned char)0x80)
+ unsigned char aChar[] = {
+ '\0', 'a', 'c', 'e', 'i', 'n',
+ 'o', 'u', 'y', 'y', 'a', 'c',
+ 'd', 'e', 'e', 'g', 'h', 'i',
+ 'j', 'k', 'l', 'n', 'o', 'r',
+ 's', 't', 'u', 'u', 'w', 'y',
+ 'z', 'o', 'u', 'a', 'i', 'o',
+ 'u', 'u'|HIBIT, 'a'|HIBIT, 'g', 'k', 'o',
+ 'o'|HIBIT, 'j', 'g', 'n', 'a'|HIBIT, 'a',
+ 'e', 'i', 'o', 'r', 'u', 's',
+ 't', 'h', 'a', 'e', 'o'|HIBIT, 'o',
+ 'o'|HIBIT, 'y', '\0', '\0', '\0', '\0',
+ '\0', '\0', '\0', '\0', 'a', 'b',
+ 'c'|HIBIT, 'd', 'd', 'e'|HIBIT, 'e', 'e'|HIBIT,
+ 'f', 'g', 'h', 'h', 'i', 'i'|HIBIT,
+ 'k', 'l', 'l'|HIBIT, 'l', 'm', 'n',
+ 'o'|HIBIT, 'p', 'r', 'r'|HIBIT, 'r', 's',
+ 's'|HIBIT, 't', 'u', 'u'|HIBIT, 'v', 'w',
+ 'w', 'x', 'y', 'z', 'h', 't',
+ 'w', 'y', 'a', 'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT,
+ 'e', 'e'|HIBIT, 'e'|HIBIT, 'i', 'o', 'o'|HIBIT,
+ 'o'|HIBIT, 'o'|HIBIT, 'u', 'u'|HIBIT, 'u'|HIBIT, 'y',
+ };
+
+ unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
+ int iRes = 0;
+ int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aDia[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( key>=aDia[iRes] );
+ if( bComplex==0 && (aChar[iRes] & 0x80) ) return c;
+ return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F);
+}
+
+
+/*
+** Return true if the argument interpreted as a unicode codepoint
+** is a diacritical modifier character.
+*/
+SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int c){
+ unsigned int mask0 = 0x08029FDF;
+ unsigned int mask1 = 0x000361F8;
+ if( c<768 || c>817 ) return 0;
+ return (c < 768+32) ?
+ (mask0 & ((unsigned int)1 << (c-768))) :
+ (mask1 & ((unsigned int)1 << (c-768-32)));
+}
+
+
+/*
+** Interpret the argument as a unicode codepoint. If the codepoint
+** is an upper case character that has a lower case equivalent,
+** return the codepoint corresponding to the lower case version.
+** Otherwise, return a copy of the argument.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int c, int eRemoveDiacritic){
+ /* Each entry in the following array defines a rule for folding a range
+ ** of codepoints to lower case. The rule applies to a range of nRange
+ ** codepoints starting at codepoint iCode.
+ **
+ ** If the least significant bit in flags is clear, then the rule applies
+ ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
+ ** need to be folded). Or, if it is set, then the rule only applies to
+ ** every second codepoint in the range, starting with codepoint C.
+ **
+ ** The 7 most significant bits in flags are an index into the aiOff[]
+ ** array. If a specific codepoint C does require folding, then its lower
+ ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
+ **
+ ** The contents of this array are generated by parsing the CaseFolding.txt
+ ** file distributed as part of the "Unicode Character Database". See
+ ** http://www.unicode.org for details.
+ */
+ static const struct TableEntry {
+ unsigned short iCode;
+ unsigned char flags;
+ unsigned char nRange;
+ } aEntry[] = {
+ {65, 14, 26}, {181, 64, 1}, {192, 14, 23},
+ {216, 14, 7}, {256, 1, 48}, {306, 1, 6},
+ {313, 1, 16}, {330, 1, 46}, {376, 116, 1},
+ {377, 1, 6}, {383, 104, 1}, {385, 50, 1},
+ {386, 1, 4}, {390, 44, 1}, {391, 0, 1},
+ {393, 42, 2}, {395, 0, 1}, {398, 32, 1},
+ {399, 38, 1}, {400, 40, 1}, {401, 0, 1},
+ {403, 42, 1}, {404, 46, 1}, {406, 52, 1},
+ {407, 48, 1}, {408, 0, 1}, {412, 52, 1},
+ {413, 54, 1}, {415, 56, 1}, {416, 1, 6},
+ {422, 60, 1}, {423, 0, 1}, {425, 60, 1},
+ {428, 0, 1}, {430, 60, 1}, {431, 0, 1},
+ {433, 58, 2}, {435, 1, 4}, {439, 62, 1},
+ {440, 0, 1}, {444, 0, 1}, {452, 2, 1},
+ {453, 0, 1}, {455, 2, 1}, {456, 0, 1},
+ {458, 2, 1}, {459, 1, 18}, {478, 1, 18},
+ {497, 2, 1}, {498, 1, 4}, {502, 122, 1},
+ {503, 134, 1}, {504, 1, 40}, {544, 110, 1},
+ {546, 1, 18}, {570, 70, 1}, {571, 0, 1},
+ {573, 108, 1}, {574, 68, 1}, {577, 0, 1},
+ {579, 106, 1}, {580, 28, 1}, {581, 30, 1},
+ {582, 1, 10}, {837, 36, 1}, {880, 1, 4},
+ {886, 0, 1}, {902, 18, 1}, {904, 16, 3},
+ {908, 26, 1}, {910, 24, 2}, {913, 14, 17},
+ {931, 14, 9}, {962, 0, 1}, {975, 4, 1},
+ {976, 140, 1}, {977, 142, 1}, {981, 146, 1},
+ {982, 144, 1}, {984, 1, 24}, {1008, 136, 1},
+ {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1},
+ {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1},
+ {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32},
+ {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1},
+ {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38},
+ {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1},
+ {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1},
+ {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6},
+ {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6},
+ {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8},
+ {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2},
+ {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1},
+ {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2},
+ {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2},
+ {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2},
+ {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1},
+ {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16},
+ {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47},
+ {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1},
+ {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1},
+ {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1},
+ {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2},
+ {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1},
+ {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14},
+ {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1},
+ {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1},
+ {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1},
+ {65313, 14, 26},
+ };
+ static const unsigned short aiOff[] = {
+ 1, 2, 8, 15, 16, 26, 28, 32,
+ 37, 38, 40, 48, 63, 64, 69, 71,
+ 79, 80, 116, 202, 203, 205, 206, 207,
+ 209, 210, 211, 213, 214, 217, 218, 219,
+ 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721,
+ 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
+ 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
+ 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
+ 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
+ 65514, 65521, 65527, 65528, 65529,
+ };
+
+ int ret = c;
+
+ assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
+
+ if( c<128 ){
+ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
+ }else if( c<65536 ){
+ const struct TableEntry *p;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ int iRes = -1;
+
+ assert( c>aEntry[0].iCode );
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ int cmp = (c - aEntry[iTest].iCode);
+ if( cmp>=0 ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+
+ assert( iRes>=0 && c>=aEntry[iRes].iCode );
+ p = &aEntry[iRes];
+ if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
+ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
+ assert( ret>0 );
+ }
+
+ if( eRemoveDiacritic ){
+ ret = remove_diacritic(ret, eRemoveDiacritic==2);
+ }
+ }
+
+ else if( c>=66560 && c<66600 ){
+ ret = c + 40;
+ }
+
+ return ret;
+}
+#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
+#endif /* !defined(SQLITE_DISABLE_FTS3_UNICODE) */
+
+/************** End of fts3_unicode2.c ***************************************/
+/************** Begin file json.c ********************************************/
+/*
+** 2015-08-12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This SQLite JSON functions.
+**
+** This file began as an extension in ext/misc/json1.c in 2015. That
+** extension proved so useful that it has now been moved into the core.
+**
+** For the time being, all JSON is stored as pure text. (We might add
+** a JSONB type in the future which stores a binary encoding of JSON in
+** a BLOB, but there is no support for JSONB in the current implementation.
+** This implementation parses JSON text at 250 MB/s, so it is hard to see
+** how JSONB might improve on that.)
+*/
+#ifndef SQLITE_OMIT_JSON
+/* #include "sqliteInt.h" */
+
+/*
+** Growing our own isspace() routine this way is twice as fast as
+** the library isspace() function, resulting in a 7% overall performance
+** increase for the parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os).
+*/
+static const char jsonIsSpace[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+};
+#define fast_isspace(x) (jsonIsSpace[(unsigned char)x])
+
+/*
+** Characters that are special to JSON. Control charaters,
+** '"' and '\\'.
+*/
+static const char jsonIsOk[256] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
+};
+
+
+#if !defined(SQLITE_DEBUG) && !defined(SQLITE_COVERAGE_TEST)
+# define VVA(X)
+#else
+# define VVA(X) X
+#endif
+
+/* Objects */
+typedef struct JsonString JsonString;
+typedef struct JsonNode JsonNode;
+typedef struct JsonParse JsonParse;
+typedef struct JsonCleanup JsonCleanup;
+
+/* An instance of this object represents a JSON string
+** under construction. Really, this is a generic string accumulator
+** that can be and is used to create strings other than JSON.
+*/
+struct JsonString {
+ sqlite3_context *pCtx; /* Function context - put error messages here */
+ char *zBuf; /* Append JSON content here */
+ u64 nAlloc; /* Bytes of storage available in zBuf[] */
+ u64 nUsed; /* Bytes of zBuf[] currently used */
+ u8 bStatic; /* True if zBuf is static space */
+ u8 bErr; /* True if an error has been encountered */
+ char zSpace[100]; /* Initial static space */
+};
+
+/* A deferred cleanup task. A list of JsonCleanup objects might be
+** run when the JsonParse object is destroyed.
+*/
+struct JsonCleanup {
+ JsonCleanup *pJCNext; /* Next in a list */
+ void (*xOp)(void*); /* Routine to run */
+ void *pArg; /* Argument to xOp() */
+};
+
+/* JSON type values
+*/
+#define JSON_SUBST 0 /* Special edit node. Uses u.iPrev */
+#define JSON_NULL 1
+#define JSON_TRUE 2
+#define JSON_FALSE 3
+#define JSON_INT 4
+#define JSON_REAL 5
+#define JSON_STRING 6
+#define JSON_ARRAY 7
+#define JSON_OBJECT 8
+
+/* The "subtype" set for JSON values */
+#define JSON_SUBTYPE 74 /* Ascii for "J" */
+
+/*
+** Names of the various JSON types:
+*/
+static const char * const jsonType[] = {
+ "subst",
+ "null", "true", "false", "integer", "real", "text", "array", "object"
+};
+
+/* Bit values for the JsonNode.jnFlag field
+*/
+#define JNODE_RAW 0x01 /* Content is raw, not JSON encoded */
+#define JNODE_ESCAPE 0x02 /* Content is text with \ escapes */
+#define JNODE_REMOVE 0x04 /* Do not output */
+#define JNODE_REPLACE 0x08 /* Target of a JSON_SUBST node */
+#define JNODE_APPEND 0x10 /* More ARRAY/OBJECT entries at u.iAppend */
+#define JNODE_LABEL 0x20 /* Is a label of an object */
+#define JNODE_JSON5 0x40 /* Node contains JSON5 enhancements */
+
+
+/* A single node of parsed JSON. An array of these nodes describes
+** a parse of JSON + edits.
+**
+** Use the json_parse() SQL function (available when compiled with
+** -DSQLITE_DEBUG) to see a dump of complete JsonParse objects, including
+** a complete listing and decoding of the array of JsonNodes.
+*/
+struct JsonNode {
+ u8 eType; /* One of the JSON_ type values */
+ u8 jnFlags; /* JNODE flags */
+ u8 eU; /* Which union element to use */
+ u32 n; /* Bytes of content for INT, REAL or STRING
+ ** Number of sub-nodes for ARRAY and OBJECT
+ ** Node that SUBST applies to */
+ union {
+ const char *zJContent; /* 1: Content for INT, REAL, and STRING */
+ u32 iAppend; /* 2: More terms for ARRAY and OBJECT */
+ u32 iKey; /* 3: Key for ARRAY objects in json_tree() */
+ u32 iPrev; /* 4: Previous SUBST node, or 0 */
+ } u;
+};
+
+
+/* A parsed and possibly edited JSON string. Lifecycle:
+**
+** 1. JSON comes in and is parsed into an array aNode[]. The original
+** JSON text is stored in zJson.
+**
+** 2. Zero or more changes are made (via json_remove() or json_replace()
+** or similar) to the aNode[] array.
+**
+** 3. A new, edited and mimified JSON string is generated from aNode
+** and stored in zAlt. The JsonParse object always owns zAlt.
+**
+** Step 1 always happens. Step 2 and 3 may or may not happen, depending
+** on the operation.
+**
+** aNode[].u.zJContent entries typically point into zJson. Hence zJson
+** must remain valid for the lifespan of the parse. For edits,
+** aNode[].u.zJContent might point to malloced space other than zJson.
+** Entries in pClup are responsible for freeing that extra malloced space.
+**
+** When walking the parse tree in aNode[], edits are ignored if useMod is
+** false.
+*/
+struct JsonParse {
+ u32 nNode; /* Number of slots of aNode[] used */
+ u32 nAlloc; /* Number of slots of aNode[] allocated */
+ JsonNode *aNode; /* Array of nodes containing the parse */
+ char *zJson; /* Original JSON string (before edits) */
+ char *zAlt; /* Revised and/or mimified JSON */
+ u32 *aUp; /* Index of parent of each node */
+ JsonCleanup *pClup;/* Cleanup operations prior to freeing this object */
+ u16 iDepth; /* Nesting depth */
+ u8 nErr; /* Number of errors seen */
+ u8 oom; /* Set to true if out of memory */
+ u8 bJsonIsRCStr; /* True if zJson is an RCStr */
+ u8 hasNonstd; /* True if input uses non-standard features like JSON5 */
+ u8 useMod; /* Actually use the edits contain inside aNode */
+ u8 hasMod; /* aNode contains edits from the original zJson */
+ u32 nJPRef; /* Number of references to this object */
+ int nJson; /* Length of the zJson string in bytes */
+ int nAlt; /* Length of alternative JSON string zAlt, in bytes */
+ u32 iErr; /* Error location in zJson[] */
+ u32 iSubst; /* Last JSON_SUBST entry in aNode[] */
+ u32 iHold; /* Age of this entry in the cache for LRU replacement */
+};
+
+/*
+** Maximum nesting depth of JSON for this implementation.
+**
+** This limit is needed to avoid a stack overflow in the recursive
+** descent parser. A depth of 1000 is far deeper than any sane JSON
+** should go. Historical note: This limit was 2000 prior to version 3.42.0
+*/
+#define JSON_MAX_DEPTH 1000
+
+/**************************************************************************
+** Utility routines for dealing with JsonString objects
+**************************************************************************/
+
+/* Set the JsonString object to an empty string
+*/
+static void jsonZero(JsonString *p){
+ p->zBuf = p->zSpace;
+ p->nAlloc = sizeof(p->zSpace);
+ p->nUsed = 0;
+ p->bStatic = 1;
+}
+
+/* Initialize the JsonString object
+*/
+static void jsonInit(JsonString *p, sqlite3_context *pCtx){
+ p->pCtx = pCtx;
+ p->bErr = 0;
+ jsonZero(p);
+}
+
+/* Free all allocated memory and reset the JsonString object back to its
+** initial state.
+*/
+static void jsonReset(JsonString *p){
+ if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf);
+ jsonZero(p);
+}
+
+/* Report an out-of-memory (OOM) condition
+*/
+static void jsonOom(JsonString *p){
+ p->bErr = 1;
+ sqlite3_result_error_nomem(p->pCtx);
+ jsonReset(p);
+}
+
+/* Enlarge pJson->zBuf so that it can hold at least N more bytes.
+** Return zero on success. Return non-zero on an OOM error
+*/
+static int jsonGrow(JsonString *p, u32 N){
+ u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10;
+ char *zNew;
+ if( p->bStatic ){
+ if( p->bErr ) return 1;
+ zNew = sqlite3RCStrNew(nTotal);
+ if( zNew==0 ){
+ jsonOom(p);
+ return SQLITE_NOMEM;
+ }
+ memcpy(zNew, p->zBuf, (size_t)p->nUsed);
+ p->zBuf = zNew;
+ p->bStatic = 0;
+ }else{
+ p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal);
+ if( p->zBuf==0 ){
+ p->bErr = 1;
+ jsonZero(p);
+ return SQLITE_NOMEM;
+ }
+ }
+ p->nAlloc = nTotal;
+ return SQLITE_OK;
+}
+
+/* Append N bytes from zIn onto the end of the JsonString string.
+*/
+static SQLITE_NOINLINE void jsonAppendExpand(
+ JsonString *p,
+ const char *zIn,
+ u32 N
+){
+ assert( N>0 );
+ if( jsonGrow(p,N) ) return;
+ memcpy(p->zBuf+p->nUsed, zIn, N);
+ p->nUsed += N;
+}
+static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){
+ if( N==0 ) return;
+ if( N+p->nUsed >= p->nAlloc ){
+ jsonAppendExpand(p,zIn,N);
+ }else{
+ memcpy(p->zBuf+p->nUsed, zIn, N);
+ p->nUsed += N;
+ }
+}
+static void jsonAppendRawNZ(JsonString *p, const char *zIn, u32 N){
+ assert( N>0 );
+ if( N+p->nUsed >= p->nAlloc ){
+ jsonAppendExpand(p,zIn,N);
+ }else{
+ memcpy(p->zBuf+p->nUsed, zIn, N);
+ p->nUsed += N;
+ }
+}
+
+
+/* Append formatted text (not to exceed N bytes) to the JsonString.
+*/
+static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){
+ va_list ap;
+ if( (p->nUsed + N >= p->nAlloc) && jsonGrow(p, N) ) return;
+ va_start(ap, zFormat);
+ sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap);
+ va_end(ap);
+ p->nUsed += (int)strlen(p->zBuf+p->nUsed);
+}
+
+/* Append a single character
+*/
+static SQLITE_NOINLINE void jsonAppendCharExpand(JsonString *p, char c){
+ if( jsonGrow(p,1) ) return;
+ p->zBuf[p->nUsed++] = c;
+}
+static void jsonAppendChar(JsonString *p, char c){
+ if( p->nUsed>=p->nAlloc ){
+ jsonAppendCharExpand(p,c);
+ }else{
+ p->zBuf[p->nUsed++] = c;
+ }
+}
+
+/* Try to force the string to be a zero-terminated RCStr string.
+**
+** Return true on success. Return false if an OOM prevents this
+** from happening.
+*/
+static int jsonForceRCStr(JsonString *p){
+ jsonAppendChar(p, 0);
+ if( p->bErr ) return 0;
+ p->nUsed--;
+ if( p->bStatic==0 ) return 1;
+ p->nAlloc = 0;
+ p->nUsed++;
+ jsonGrow(p, p->nUsed);
+ p->nUsed--;
+ return p->bStatic==0;
+}
+
+
+/* Append a comma separator to the output buffer, if the previous
+** character is not '[' or '{'.
+*/
+static void jsonAppendSeparator(JsonString *p){
+ char c;
+ if( p->nUsed==0 ) return;
+ c = p->zBuf[p->nUsed-1];
+ if( c=='[' || c=='{' ) return;
+ jsonAppendChar(p, ',');
+}
+
+/* Append the N-byte string in zIn to the end of the JsonString string
+** under construction. Enclose the string in "..." and escape
+** any double-quotes or backslash characters contained within the
+** string.
+*/
+static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
+ u32 i;
+ if( zIn==0 || ((N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0) ) return;
+ p->zBuf[p->nUsed++] = '"';
+ for(i=0; i<N; i++){
+ unsigned char c = ((unsigned const char*)zIn)[i];
+ if( jsonIsOk[c] ){
+ p->zBuf[p->nUsed++] = c;
+ }else if( c=='"' || c=='\\' ){
+ json_simple_escape:
+ if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return;
+ p->zBuf[p->nUsed++] = '\\';
+ p->zBuf[p->nUsed++] = c;
+ }else if( c=='\'' ){
+ p->zBuf[p->nUsed++] = c;
+ }else{
+ static const char aSpecial[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ assert( sizeof(aSpecial)==32 );
+ assert( aSpecial['\b']=='b' );
+ assert( aSpecial['\f']=='f' );
+ assert( aSpecial['\n']=='n' );
+ assert( aSpecial['\r']=='r' );
+ assert( aSpecial['\t']=='t' );
+ assert( c>=0 && c<sizeof(aSpecial) );
+ if( aSpecial[c] ){
+ c = aSpecial[c];
+ goto json_simple_escape;
+ }
+ if( (p->nUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return;
+ p->zBuf[p->nUsed++] = '\\';
+ p->zBuf[p->nUsed++] = 'u';
+ p->zBuf[p->nUsed++] = '0';
+ p->zBuf[p->nUsed++] = '0';
+ p->zBuf[p->nUsed++] = "0123456789abcdef"[c>>4];
+ p->zBuf[p->nUsed++] = "0123456789abcdef"[c&0xf];
+ }
+ }
+ p->zBuf[p->nUsed++] = '"';
+ assert( p->nUsed<p->nAlloc );
+}
+
+/*
+** The zIn[0..N] string is a JSON5 string literal. Append to p a translation
+** of the string literal that standard JSON and that omits all JSON5
+** features.
+*/
+static void jsonAppendNormalizedString(JsonString *p, const char *zIn, u32 N){
+ u32 i;
+ jsonAppendChar(p, '"');
+ zIn++;
+ N -= 2;
+ while( N>0 ){
+ for(i=0; i<N && zIn[i]!='\\'; i++){}
+ if( i>0 ){
+ jsonAppendRawNZ(p, zIn, i);
+ zIn += i;
+ N -= i;
+ if( N==0 ) break;
+ }
+ assert( zIn[0]=='\\' );
+ switch( (u8)zIn[1] ){
+ case '\'':
+ jsonAppendChar(p, '\'');
+ break;
+ case 'v':
+ jsonAppendRawNZ(p, "\\u0009", 6);
+ break;
+ case 'x':
+ jsonAppendRawNZ(p, "\\u00", 4);
+ jsonAppendRawNZ(p, &zIn[2], 2);
+ zIn += 2;
+ N -= 2;
+ break;
+ case '0':
+ jsonAppendRawNZ(p, "\\u0000", 6);
+ break;
+ case '\r':
+ if( zIn[2]=='\n' ){
+ zIn++;
+ N--;
+ }
+ break;
+ case '\n':
+ break;
+ case 0xe2:
+ assert( N>=4 );
+ assert( 0x80==(u8)zIn[2] );
+ assert( 0xa8==(u8)zIn[3] || 0xa9==(u8)zIn[3] );
+ zIn += 2;
+ N -= 2;
+ break;
+ default:
+ jsonAppendRawNZ(p, zIn, 2);
+ break;
+ }
+ zIn += 2;
+ N -= 2;
+ }
+ jsonAppendChar(p, '"');
+}
+
+/*
+** The zIn[0..N] string is a JSON5 integer literal. Append to p a translation
+** of the string literal that standard JSON and that omits all JSON5
+** features.
+*/
+static void jsonAppendNormalizedInt(JsonString *p, const char *zIn, u32 N){
+ if( zIn[0]=='+' ){
+ zIn++;
+ N--;
+ }else if( zIn[0]=='-' ){
+ jsonAppendChar(p, '-');
+ zIn++;
+ N--;
+ }
+ if( zIn[0]=='0' && (zIn[1]=='x' || zIn[1]=='X') ){
+ sqlite3_int64 i = 0;
+ int rc = sqlite3DecOrHexToI64(zIn, &i);
+ if( rc<=1 ){
+ jsonPrintf(100,p,"%lld",i);
+ }else{
+ assert( rc==2 );
+ jsonAppendRawNZ(p, "9.0e999", 7);
+ }
+ return;
+ }
+ assert( N>0 );
+ jsonAppendRawNZ(p, zIn, N);
+}
+
+/*
+** The zIn[0..N] string is a JSON5 real literal. Append to p a translation
+** of the string literal that standard JSON and that omits all JSON5
+** features.
+*/
+static void jsonAppendNormalizedReal(JsonString *p, const char *zIn, u32 N){
+ u32 i;
+ if( zIn[0]=='+' ){
+ zIn++;
+ N--;
+ }else if( zIn[0]=='-' ){
+ jsonAppendChar(p, '-');
+ zIn++;
+ N--;
+ }
+ if( zIn[0]=='.' ){
+ jsonAppendChar(p, '0');
+ }
+ for(i=0; i<N; i++){
+ if( zIn[i]=='.' && (i+1==N || !sqlite3Isdigit(zIn[i+1])) ){
+ i++;
+ jsonAppendRaw(p, zIn, i);
+ zIn += i;
+ N -= i;
+ jsonAppendChar(p, '0');
+ break;
+ }
+ }
+ if( N>0 ){
+ jsonAppendRawNZ(p, zIn, N);
+ }
+}
+
+
+
+/*
+** Append a function parameter value to the JSON string under
+** construction.
+*/
+static void jsonAppendValue(
+ JsonString *p, /* Append to this JSON string */
+ sqlite3_value *pValue /* Value to append */
+){
+ switch( sqlite3_value_type(pValue) ){
+ case SQLITE_NULL: {
+ jsonAppendRawNZ(p, "null", 4);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ jsonPrintf(100, p, "%!0.15g", sqlite3_value_double(pValue));
+ break;
+ }
+ case SQLITE_INTEGER: {
+ const char *z = (const char*)sqlite3_value_text(pValue);
+ u32 n = (u32)sqlite3_value_bytes(pValue);
+ jsonAppendRaw(p, z, n);
+ break;
+ }
+ case SQLITE_TEXT: {
+ const char *z = (const char*)sqlite3_value_text(pValue);
+ u32 n = (u32)sqlite3_value_bytes(pValue);
+ if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){
+ jsonAppendRaw(p, z, n);
+ }else{
+ jsonAppendString(p, z, n);
+ }
+ break;
+ }
+ default: {
+ if( p->bErr==0 ){
+ sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
+ p->bErr = 2;
+ jsonReset(p);
+ }
+ break;
+ }
+ }
+}
+
+
+/* Make the JSON in p the result of the SQL function.
+**
+** The JSON string is reset.
+*/
+static void jsonResult(JsonString *p){
+ if( p->bErr==0 ){
+ if( p->bStatic ){
+ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed,
+ SQLITE_TRANSIENT, SQLITE_UTF8);
+ }else if( jsonForceRCStr(p) ){
+ sqlite3RCStrRef(p->zBuf);
+ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed,
+ sqlite3RCStrUnref,
+ SQLITE_UTF8);
+ }
+ }
+ if( p->bErr==1 ){
+ sqlite3_result_error_nomem(p->pCtx);
+ }
+ jsonReset(p);
+}
+
+/**************************************************************************
+** Utility routines for dealing with JsonNode and JsonParse objects
+**************************************************************************/
+
+/*
+** Return the number of consecutive JsonNode slots need to represent
+** the parsed JSON at pNode. The minimum answer is 1. For ARRAY and
+** OBJECT types, the number might be larger.
+**
+** Appended elements are not counted. The value returned is the number
+** by which the JsonNode counter should increment in order to go to the
+** next peer value.
+*/
+static u32 jsonNodeSize(JsonNode *pNode){
+ return pNode->eType>=JSON_ARRAY ? pNode->n+1 : 1;
+}
+
+/*
+** Reclaim all memory allocated by a JsonParse object. But do not
+** delete the JsonParse object itself.
+*/
+static void jsonParseReset(JsonParse *pParse){
+ while( pParse->pClup ){
+ JsonCleanup *pTask = pParse->pClup;
+ pParse->pClup = pTask->pJCNext;
+ pTask->xOp(pTask->pArg);
+ sqlite3_free(pTask);
+ }
+ assert( pParse->nJPRef<=1 );
+ if( pParse->aNode ){
+ sqlite3_free(pParse->aNode);
+ pParse->aNode = 0;
+ }
+ pParse->nNode = 0;
+ pParse->nAlloc = 0;
+ if( pParse->aUp ){
+ sqlite3_free(pParse->aUp);
+ pParse->aUp = 0;
+ }
+ if( pParse->bJsonIsRCStr ){
+ sqlite3RCStrUnref(pParse->zJson);
+ pParse->zJson = 0;
+ pParse->bJsonIsRCStr = 0;
+ }
+ if( pParse->zAlt ){
+ sqlite3RCStrUnref(pParse->zAlt);
+ pParse->zAlt = 0;
+ }
+}
+
+/*
+** Free a JsonParse object that was obtained from sqlite3_malloc().
+**
+** Note that destroying JsonParse might call sqlite3RCStrUnref() to
+** destroy the zJson value. The RCStr object might recursively invoke
+** JsonParse to destroy this pParse object again. Take care to ensure
+** that this recursive destructor sequence terminates harmlessly.
+*/
+static void jsonParseFree(JsonParse *pParse){
+ if( pParse->nJPRef>1 ){
+ pParse->nJPRef--;
+ }else{
+ jsonParseReset(pParse);
+ sqlite3_free(pParse);
+ }
+}
+
+/*
+** Add a cleanup task to the JsonParse object.
+**
+** If an OOM occurs, the cleanup operation happens immediately
+** and this function returns SQLITE_NOMEM.
+*/
+static int jsonParseAddCleanup(
+ JsonParse *pParse, /* Add the cleanup task to this parser */
+ void(*xOp)(void*), /* The cleanup task */
+ void *pArg /* Argument to the cleanup */
+){
+ JsonCleanup *pTask = sqlite3_malloc64( sizeof(*pTask) );
+ if( pTask==0 ){
+ pParse->oom = 1;
+ xOp(pArg);
+ return SQLITE_ERROR;
+ }
+ pTask->pJCNext = pParse->pClup;
+ pParse->pClup = pTask;
+ pTask->xOp = xOp;
+ pTask->pArg = pArg;
+ return SQLITE_OK;
+}
+
+/*
+** Convert the JsonNode pNode into a pure JSON string and
+** append to pOut. Subsubstructure is also included. Return
+** the number of JsonNode objects that are encoded.
+*/
+static void jsonRenderNode(
+ JsonParse *pParse, /* the complete parse of the JSON */
+ JsonNode *pNode, /* The node to render */
+ JsonString *pOut /* Write JSON here */
+){
+ assert( pNode!=0 );
+ while( (pNode->jnFlags & JNODE_REPLACE)!=0 && pParse->useMod ){
+ u32 idx = (u32)(pNode - pParse->aNode);
+ u32 i = pParse->iSubst;
+ while( 1 /*exit-by-break*/ ){
+ assert( i<pParse->nNode );
+ assert( pParse->aNode[i].eType==JSON_SUBST );
+ assert( pParse->aNode[i].eU==4 );
+ assert( pParse->aNode[i].u.iPrev<i );
+ if( pParse->aNode[i].n==idx ){
+ pNode = &pParse->aNode[i+1];
+ break;
+ }
+ i = pParse->aNode[i].u.iPrev;
+ }
+ }
+ switch( pNode->eType ){
+ default: {
+ assert( pNode->eType==JSON_NULL );
+ jsonAppendRawNZ(pOut, "null", 4);
+ break;
+ }
+ case JSON_TRUE: {
+ jsonAppendRawNZ(pOut, "true", 4);
+ break;
+ }
+ case JSON_FALSE: {
+ jsonAppendRawNZ(pOut, "false", 5);
+ break;
+ }
+ case JSON_STRING: {
+ assert( pNode->eU==1 );
+ if( pNode->jnFlags & JNODE_RAW ){
+ if( pNode->jnFlags & JNODE_LABEL ){
+ jsonAppendChar(pOut, '"');
+ jsonAppendRaw(pOut, pNode->u.zJContent, pNode->n);
+ jsonAppendChar(pOut, '"');
+ }else{
+ jsonAppendString(pOut, pNode->u.zJContent, pNode->n);
+ }
+ }else if( pNode->jnFlags & JNODE_JSON5 ){
+ jsonAppendNormalizedString(pOut, pNode->u.zJContent, pNode->n);
+ }else{
+ assert( pNode->n>0 );
+ jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n);
+ }
+ break;
+ }
+ case JSON_REAL: {
+ assert( pNode->eU==1 );
+ if( pNode->jnFlags & JNODE_JSON5 ){
+ jsonAppendNormalizedReal(pOut, pNode->u.zJContent, pNode->n);
+ }else{
+ assert( pNode->n>0 );
+ jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n);
+ }
+ break;
+ }
+ case JSON_INT: {
+ assert( pNode->eU==1 );
+ if( pNode->jnFlags & JNODE_JSON5 ){
+ jsonAppendNormalizedInt(pOut, pNode->u.zJContent, pNode->n);
+ }else{
+ assert( pNode->n>0 );
+ jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n);
+ }
+ break;
+ }
+ case JSON_ARRAY: {
+ u32 j = 1;
+ jsonAppendChar(pOut, '[');
+ for(;;){
+ while( j<=pNode->n ){
+ if( (pNode[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){
+ jsonAppendSeparator(pOut);
+ jsonRenderNode(pParse, &pNode[j], pOut);
+ }
+ j += jsonNodeSize(&pNode[j]);
+ }
+ if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
+ if( pParse->useMod==0 ) break;
+ assert( pNode->eU==2 );
+ pNode = &pParse->aNode[pNode->u.iAppend];
+ j = 1;
+ }
+ jsonAppendChar(pOut, ']');
+ break;
+ }
+ case JSON_OBJECT: {
+ u32 j = 1;
+ jsonAppendChar(pOut, '{');
+ for(;;){
+ while( j<=pNode->n ){
+ if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){
+ jsonAppendSeparator(pOut);
+ jsonRenderNode(pParse, &pNode[j], pOut);
+ jsonAppendChar(pOut, ':');
+ jsonRenderNode(pParse, &pNode[j+1], pOut);
+ }
+ j += 1 + jsonNodeSize(&pNode[j+1]);
+ }
+ if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
+ if( pParse->useMod==0 ) break;
+ assert( pNode->eU==2 );
+ pNode = &pParse->aNode[pNode->u.iAppend];
+ j = 1;
+ }
+ jsonAppendChar(pOut, '}');
+ break;
+ }
+ }
+}
+
+/*
+** Return a JsonNode and all its descendants as a JSON string.
+*/
+static void jsonReturnJson(
+ JsonParse *pParse, /* The complete JSON */
+ JsonNode *pNode, /* Node to return */
+ sqlite3_context *pCtx, /* Return value for this function */
+ int bGenerateAlt /* Also store the rendered text in zAlt */
+){
+ JsonString s;
+ if( pParse->oom ){
+ sqlite3_result_error_nomem(pCtx);
+ return;
+ }
+ if( pParse->nErr==0 ){
+ jsonInit(&s, pCtx);
+ jsonRenderNode(pParse, pNode, &s);
+ if( bGenerateAlt && pParse->zAlt==0 && jsonForceRCStr(&s) ){
+ pParse->zAlt = sqlite3RCStrRef(s.zBuf);
+ pParse->nAlt = s.nUsed;
+ }
+ jsonResult(&s);
+ sqlite3_result_subtype(pCtx, JSON_SUBTYPE);
+ }
+}
+
+/*
+** Translate a single byte of Hex into an integer.
+** This routine only works if h really is a valid hexadecimal
+** character: 0..9a..fA..F
+*/
+static u8 jsonHexToInt(int h){
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
+#ifdef SQLITE_EBCDIC
+ h += 9*(1&~(h>>4));
+#else
+ h += 9*(1&(h>>6));
+#endif
+ return (u8)(h & 0xf);
+}
+
+/*
+** Convert a 4-byte hex string into an integer
+*/
+static u32 jsonHexToInt4(const char *z){
+ u32 v;
+ assert( sqlite3Isxdigit(z[0]) );
+ assert( sqlite3Isxdigit(z[1]) );
+ assert( sqlite3Isxdigit(z[2]) );
+ assert( sqlite3Isxdigit(z[3]) );
+ v = (jsonHexToInt(z[0])<<12)
+ + (jsonHexToInt(z[1])<<8)
+ + (jsonHexToInt(z[2])<<4)
+ + jsonHexToInt(z[3]);
+ return v;
+}
+
+/*
+** Make the JsonNode the return value of the function.
+*/
+static void jsonReturn(
+ JsonParse *pParse, /* Complete JSON parse tree */
+ JsonNode *pNode, /* Node to return */
+ sqlite3_context *pCtx /* Return value for this function */
+){
+ switch( pNode->eType ){
+ default: {
+ assert( pNode->eType==JSON_NULL );
+ sqlite3_result_null(pCtx);
+ break;
+ }
+ case JSON_TRUE: {
+ sqlite3_result_int(pCtx, 1);
+ break;
+ }
+ case JSON_FALSE: {
+ sqlite3_result_int(pCtx, 0);
+ break;
+ }
+ case JSON_INT: {
+ sqlite3_int64 i = 0;
+ int rc;
+ int bNeg = 0;
+ const char *z;
+
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ if( z[0]=='-' ){ z++; bNeg = 1; }
+ else if( z[0]=='+' ){ z++; }
+ rc = sqlite3DecOrHexToI64(z, &i);
+ if( rc<=1 ){
+ sqlite3_result_int64(pCtx, bNeg ? -i : i);
+ }else if( rc==3 && bNeg ){
+ sqlite3_result_int64(pCtx, SMALLEST_INT64);
+ }else{
+ goto to_double;
+ }
+ break;
+ }
+ case JSON_REAL: {
+ double r;
+ const char *z;
+ assert( pNode->eU==1 );
+ to_double:
+ z = pNode->u.zJContent;
+ sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8);
+ sqlite3_result_double(pCtx, r);
+ break;
+ }
+ case JSON_STRING: {
+ if( pNode->jnFlags & JNODE_RAW ){
+ assert( pNode->eU==1 );
+ sqlite3_result_text(pCtx, pNode->u.zJContent, pNode->n,
+ SQLITE_TRANSIENT);
+ }else if( (pNode->jnFlags & JNODE_ESCAPE)==0 ){
+ /* JSON formatted without any backslash-escapes */
+ assert( pNode->eU==1 );
+ sqlite3_result_text(pCtx, pNode->u.zJContent+1, pNode->n-2,
+ SQLITE_TRANSIENT);
+ }else{
+ /* Translate JSON formatted string into raw text */
+ u32 i;
+ u32 n = pNode->n;
+ const char *z;
+ char *zOut;
+ u32 j;
+ u32 nOut = n;
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ zOut = sqlite3_malloc( nOut+1 );
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ break;
+ }
+ for(i=1, j=0; i<n-1; i++){
+ char c = z[i];
+ if( c=='\\' ){
+ c = z[++i];
+ if( c=='u' ){
+ u32 v = jsonHexToInt4(z+i+1);
+ i += 4;
+ if( v==0 ) break;
+ if( v<=0x7f ){
+ zOut[j++] = (char)v;
+ }else if( v<=0x7ff ){
+ zOut[j++] = (char)(0xc0 | (v>>6));
+ zOut[j++] = 0x80 | (v&0x3f);
+ }else{
+ u32 vlo;
+ if( (v&0xfc00)==0xd800
+ && i<n-6
+ && z[i+1]=='\\'
+ && z[i+2]=='u'
+ && ((vlo = jsonHexToInt4(z+i+3))&0xfc00)==0xdc00
+ ){
+ /* We have a surrogate pair */
+ v = ((v&0x3ff)<<10) + (vlo&0x3ff) + 0x10000;
+ i += 6;
+ zOut[j++] = 0xf0 | (v>>18);
+ zOut[j++] = 0x80 | ((v>>12)&0x3f);
+ zOut[j++] = 0x80 | ((v>>6)&0x3f);
+ zOut[j++] = 0x80 | (v&0x3f);
+ }else{
+ zOut[j++] = 0xe0 | (v>>12);
+ zOut[j++] = 0x80 | ((v>>6)&0x3f);
+ zOut[j++] = 0x80 | (v&0x3f);
+ }
+ }
+ continue;
+ }else if( c=='b' ){
+ c = '\b';
+ }else if( c=='f' ){
+ c = '\f';
+ }else if( c=='n' ){
+ c = '\n';
+ }else if( c=='r' ){
+ c = '\r';
+ }else if( c=='t' ){
+ c = '\t';
+ }else if( c=='v' ){
+ c = '\v';
+ }else if( c=='\'' || c=='"' || c=='/' || c=='\\' ){
+ /* pass through unchanged */
+ }else if( c=='0' ){
+ c = 0;
+ }else if( c=='x' ){
+ c = (jsonHexToInt(z[i+1])<<4) | jsonHexToInt(z[i+2]);
+ i += 2;
+ }else if( c=='\r' && z[i+1]=='\n' ){
+ i++;
+ continue;
+ }else if( 0xe2==(u8)c ){
+ assert( 0x80==(u8)z[i+1] );
+ assert( 0xa8==(u8)z[i+2] || 0xa9==(u8)z[i+2] );
+ i += 2;
+ continue;
+ }else{
+ continue;
+ }
+ } /* end if( c=='\\' ) */
+ zOut[j++] = c;
+ } /* end for() */
+ zOut[j] = 0;
+ sqlite3_result_text(pCtx, zOut, j, sqlite3_free);
+ }
+ break;
+ }
+ case JSON_ARRAY:
+ case JSON_OBJECT: {
+ jsonReturnJson(pParse, pNode, pCtx, 0);
+ break;
+ }
+ }
+}
+
+/* Forward reference */
+static int jsonParseAddNode(JsonParse*,u32,u32,const char*);
+
+/*
+** A macro to hint to the compiler that a function should not be
+** inlined.
+*/
+#if defined(__GNUC__)
+# define JSON_NOINLINE __attribute__((noinline))
+#elif defined(_MSC_VER) && _MSC_VER>=1310
+# define JSON_NOINLINE __declspec(noinline)
+#else
+# define JSON_NOINLINE
+#endif
+
+
+/*
+** Add a single node to pParse->aNode after first expanding the
+** size of the aNode array. Return the index of the new node.
+**
+** If an OOM error occurs, set pParse->oom and return -1.
+*/
+static JSON_NOINLINE int jsonParseAddNodeExpand(
+ JsonParse *pParse, /* Append the node to this object */
+ u32 eType, /* Node type */
+ u32 n, /* Content size or sub-node count */
+ const char *zContent /* Content */
+){
+ u32 nNew;
+ JsonNode *pNew;
+ assert( pParse->nNode>=pParse->nAlloc );
+ if( pParse->oom ) return -1;
+ nNew = pParse->nAlloc*2 + 10;
+ pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew);
+ if( pNew==0 ){
+ pParse->oom = 1;
+ return -1;
+ }
+ pParse->nAlloc = sqlite3_msize(pNew)/sizeof(JsonNode);
+ pParse->aNode = pNew;
+ assert( pParse->nNode<pParse->nAlloc );
+ return jsonParseAddNode(pParse, eType, n, zContent);
+}
+
+/*
+** Create a new JsonNode instance based on the arguments and append that
+** instance to the JsonParse. Return the index in pParse->aNode[] of the
+** new node, or -1 if a memory allocation fails.
+*/
+static int jsonParseAddNode(
+ JsonParse *pParse, /* Append the node to this object */
+ u32 eType, /* Node type */
+ u32 n, /* Content size or sub-node count */
+ const char *zContent /* Content */
+){
+ JsonNode *p;
+ assert( pParse->aNode!=0 || pParse->nNode>=pParse->nAlloc );
+ if( pParse->nNode>=pParse->nAlloc ){
+ return jsonParseAddNodeExpand(pParse, eType, n, zContent);
+ }
+ assert( pParse->aNode!=0 );
+ p = &pParse->aNode[pParse->nNode];
+ assert( p!=0 );
+ p->eType = (u8)(eType & 0xff);
+ p->jnFlags = (u8)(eType >> 8);
+ VVA( p->eU = zContent ? 1 : 0 );
+ p->n = n;
+ p->u.zJContent = zContent;
+ return pParse->nNode++;
+}
+
+/*
+** Add an array of new nodes to the current pParse->aNode array.
+** Return the index of the first node added.
+**
+** If an OOM error occurs, set pParse->oom.
+*/
+static void jsonParseAddNodeArray(
+ JsonParse *pParse, /* Append the node to this object */
+ JsonNode *aNode, /* Array of nodes to add */
+ u32 nNode /* Number of elements in aNew */
+){
+ assert( aNode!=0 );
+ assert( nNode>=1 );
+ if( pParse->nNode + nNode > pParse->nAlloc ){
+ u32 nNew = pParse->nNode + nNode;
+ JsonNode *aNew = sqlite3_realloc64(pParse->aNode, nNew*sizeof(JsonNode));
+ if( aNew==0 ){
+ pParse->oom = 1;
+ return;
+ }
+ pParse->nAlloc = sqlite3_msize(aNew)/sizeof(JsonNode);
+ pParse->aNode = aNew;
+ }
+ memcpy(&pParse->aNode[pParse->nNode], aNode, nNode*sizeof(JsonNode));
+ pParse->nNode += nNode;
+}
+
+/*
+** Add a new JSON_SUBST node. The node immediately following
+** this new node will be the substitute content for iNode.
+*/
+static int jsonParseAddSubstNode(
+ JsonParse *pParse, /* Add the JSON_SUBST here */
+ u32 iNode /* References this node */
+){
+ int idx = jsonParseAddNode(pParse, JSON_SUBST, iNode, 0);
+ if( pParse->oom ) return -1;
+ pParse->aNode[iNode].jnFlags |= JNODE_REPLACE;
+ pParse->aNode[idx].eU = 4;
+ pParse->aNode[idx].u.iPrev = pParse->iSubst;
+ pParse->iSubst = idx;
+ pParse->hasMod = 1;
+ pParse->useMod = 1;
+ return idx;
+}
+
+/*
+** Return true if z[] begins with 2 (or more) hexadecimal digits
+*/
+static int jsonIs2Hex(const char *z){
+ return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]);
+}
+
+/*
+** Return true if z[] begins with 4 (or more) hexadecimal digits
+*/
+static int jsonIs4Hex(const char *z){
+ return jsonIs2Hex(z) && jsonIs2Hex(&z[2]);
+}
+
+/*
+** Return the number of bytes of JSON5 whitespace at the beginning of
+** the input string z[].
+**
+** JSON5 whitespace consists of any of the following characters:
+**
+** Unicode UTF-8 Name
+** U+0009 09 horizontal tab
+** U+000a 0a line feed
+** U+000b 0b vertical tab
+** U+000c 0c form feed
+** U+000d 0d carriage return
+** U+0020 20 space
+** U+00a0 c2 a0 non-breaking space
+** U+1680 e1 9a 80 ogham space mark
+** U+2000 e2 80 80 en quad
+** U+2001 e2 80 81 em quad
+** U+2002 e2 80 82 en space
+** U+2003 e2 80 83 em space
+** U+2004 e2 80 84 three-per-em space
+** U+2005 e2 80 85 four-per-em space
+** U+2006 e2 80 86 six-per-em space
+** U+2007 e2 80 87 figure space
+** U+2008 e2 80 88 punctuation space
+** U+2009 e2 80 89 thin space
+** U+200a e2 80 8a hair space
+** U+2028 e2 80 a8 line separator
+** U+2029 e2 80 a9 paragraph separator
+** U+202f e2 80 af narrow no-break space (NNBSP)
+** U+205f e2 81 9f medium mathematical space (MMSP)
+** U+3000 e3 80 80 ideographical space
+** U+FEFF ef bb bf byte order mark
+**
+** In addition, comments between '/', '*' and '*', '/' and
+** from '/', '/' to end-of-line are also considered to be whitespace.
+*/
+static int json5Whitespace(const char *zIn){
+ int n = 0;
+ const u8 *z = (u8*)zIn;
+ while( 1 /*exit by "goto whitespace_done"*/ ){
+ switch( z[n] ){
+ case 0x09:
+ case 0x0a:
+ case 0x0b:
+ case 0x0c:
+ case 0x0d:
+ case 0x20: {
+ n++;
+ break;
+ }
+ case '/': {
+ if( z[n+1]=='*' && z[n+2]!=0 ){
+ int j;
+ for(j=n+3; z[j]!='/' || z[j-1]!='*'; j++){
+ if( z[j]==0 ) goto whitespace_done;
+ }
+ n = j+1;
+ break;
+ }else if( z[n+1]=='/' ){
+ int j;
+ char c;
+ for(j=n+2; (c = z[j])!=0; j++){
+ if( c=='\n' || c=='\r' ) break;
+ if( 0xe2==(u8)c && 0x80==(u8)z[j+1]
+ && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2])
+ ){
+ j += 2;
+ break;
+ }
+ }
+ n = j;
+ if( z[n] ) n++;
+ break;
+ }
+ goto whitespace_done;
+ }
+ case 0xc2: {
+ if( z[n+1]==0xa0 ){
+ n += 2;
+ break;
+ }
+ goto whitespace_done;
+ }
+ case 0xe1: {
+ if( z[n+1]==0x9a && z[n+2]==0x80 ){
+ n += 3;
+ break;
+ }
+ goto whitespace_done;
+ }
+ case 0xe2: {
+ if( z[n+1]==0x80 ){
+ u8 c = z[n+2];
+ if( c<0x80 ) goto whitespace_done;
+ if( c<=0x8a || c==0xa8 || c==0xa9 || c==0xaf ){
+ n += 3;
+ break;
+ }
+ }else if( z[n+1]==0x81 && z[n+2]==0x9f ){
+ n += 3;
+ break;
+ }
+ goto whitespace_done;
+ }
+ case 0xe3: {
+ if( z[n+1]==0x80 && z[n+2]==0x80 ){
+ n += 3;
+ break;
+ }
+ goto whitespace_done;
+ }
+ case 0xef: {
+ if( z[n+1]==0xbb && z[n+2]==0xbf ){
+ n += 3;
+ break;
+ }
+ goto whitespace_done;
+ }
+ default: {
+ goto whitespace_done;
+ }
+ }
+ }
+ whitespace_done:
+ return n;
+}
+
+/*
+** Extra floating-point literals to allow in JSON.
+*/
+static const struct NanInfName {
+ char c1;
+ char c2;
+ char n;
+ char eType;
+ char nRepl;
+ char *zMatch;
+ char *zRepl;
+} aNanInfName[] = {
+ { 'i', 'I', 3, JSON_REAL, 7, "inf", "9.0e999" },
+ { 'i', 'I', 8, JSON_REAL, 7, "infinity", "9.0e999" },
+ { 'n', 'N', 3, JSON_NULL, 4, "NaN", "null" },
+ { 'q', 'Q', 4, JSON_NULL, 4, "QNaN", "null" },
+ { 's', 'S', 4, JSON_NULL, 4, "SNaN", "null" },
+};
+
+/*
+** Parse a single JSON value which begins at pParse->zJson[i]. Return the
+** index of the first character past the end of the value parsed.
+**
+** Special return values:
+**
+** 0 End of input
+** -1 Syntax error
+** -2 '}' seen
+** -3 ']' seen
+** -4 ',' seen
+** -5 ':' seen
+*/
+static int jsonParseValue(JsonParse *pParse, u32 i){
+ char c;
+ u32 j;
+ int iThis;
+ int x;
+ JsonNode *pNode;
+ const char *z = pParse->zJson;
+json_parse_restart:
+ switch( (u8)z[i] ){
+ case '{': {
+ /* Parse object */
+ iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
+ if( iThis<0 ) return -1;
+ if( ++pParse->iDepth > JSON_MAX_DEPTH ){
+ pParse->iErr = i;
+ return -1;
+ }
+ for(j=i+1;;j++){
+ u32 nNode = pParse->nNode;
+ x = jsonParseValue(pParse, j);
+ if( x<=0 ){
+ if( x==(-2) ){
+ j = pParse->iErr;
+ if( pParse->nNode!=(u32)iThis+1 ) pParse->hasNonstd = 1;
+ break;
+ }
+ j += json5Whitespace(&z[j]);
+ if( sqlite3JsonId1(z[j])
+ || (z[j]=='\\' && z[j+1]=='u' && jsonIs4Hex(&z[j+2]))
+ ){
+ int k = j+1;
+ while( (sqlite3JsonId2(z[k]) && json5Whitespace(&z[k])==0)
+ || (z[k]=='\\' && z[k+1]=='u' && jsonIs4Hex(&z[k+2]))
+ ){
+ k++;
+ }
+ jsonParseAddNode(pParse, JSON_STRING | (JNODE_RAW<<8), k-j, &z[j]);
+ pParse->hasNonstd = 1;
+ x = k;
+ }else{
+ if( x!=-1 ) pParse->iErr = j;
+ return -1;
+ }
+ }
+ if( pParse->oom ) return -1;
+ pNode = &pParse->aNode[nNode];
+ if( pNode->eType!=JSON_STRING ){
+ pParse->iErr = j;
+ return -1;
+ }
+ pNode->jnFlags |= JNODE_LABEL;
+ j = x;
+ if( z[j]==':' ){
+ j++;
+ }else{
+ if( fast_isspace(z[j]) ){
+ do{ j++; }while( fast_isspace(z[j]) );
+ if( z[j]==':' ){
+ j++;
+ goto parse_object_value;
+ }
+ }
+ x = jsonParseValue(pParse, j);
+ if( x!=(-5) ){
+ if( x!=(-1) ) pParse->iErr = j;
+ return -1;
+ }
+ j = pParse->iErr+1;
+ }
+ parse_object_value:
+ x = jsonParseValue(pParse, j);
+ if( x<=0 ){
+ if( x!=(-1) ) pParse->iErr = j;
+ return -1;
+ }
+ j = x;
+ if( z[j]==',' ){
+ continue;
+ }else if( z[j]=='}' ){
+ break;
+ }else{
+ if( fast_isspace(z[j]) ){
+ do{ j++; }while( fast_isspace(z[j]) );
+ if( z[j]==',' ){
+ continue;
+ }else if( z[j]=='}' ){
+ break;
+ }
+ }
+ x = jsonParseValue(pParse, j);
+ if( x==(-4) ){
+ j = pParse->iErr;
+ continue;
+ }
+ if( x==(-2) ){
+ j = pParse->iErr;
+ break;
+ }
+ }
+ pParse->iErr = j;
+ return -1;
+ }
+ pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
+ pParse->iDepth--;
+ return j+1;
+ }
+ case '[': {
+ /* Parse array */
+ iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
+ if( iThis<0 ) return -1;
+ if( ++pParse->iDepth > JSON_MAX_DEPTH ){
+ pParse->iErr = i;
+ return -1;
+ }
+ memset(&pParse->aNode[iThis].u, 0, sizeof(pParse->aNode[iThis].u));
+ for(j=i+1;;j++){
+ x = jsonParseValue(pParse, j);
+ if( x<=0 ){
+ if( x==(-3) ){
+ j = pParse->iErr;
+ if( pParse->nNode!=(u32)iThis+1 ) pParse->hasNonstd = 1;
+ break;
+ }
+ if( x!=(-1) ) pParse->iErr = j;
+ return -1;
+ }
+ j = x;
+ if( z[j]==',' ){
+ continue;
+ }else if( z[j]==']' ){
+ break;
+ }else{
+ if( fast_isspace(z[j]) ){
+ do{ j++; }while( fast_isspace(z[j]) );
+ if( z[j]==',' ){
+ continue;
+ }else if( z[j]==']' ){
+ break;
+ }
+ }
+ x = jsonParseValue(pParse, j);
+ if( x==(-4) ){
+ j = pParse->iErr;
+ continue;
+ }
+ if( x==(-3) ){
+ j = pParse->iErr;
+ break;
+ }
+ }
+ pParse->iErr = j;
+ return -1;
+ }
+ pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1;
+ pParse->iDepth--;
+ return j+1;
+ }
+ case '\'': {
+ u8 jnFlags;
+ char cDelim;
+ pParse->hasNonstd = 1;
+ jnFlags = JNODE_JSON5;
+ goto parse_string;
+ case '"':
+ /* Parse string */
+ jnFlags = 0;
+ parse_string:
+ cDelim = z[i];
+ for(j=i+1; 1; j++){
+ if( jsonIsOk[(unsigned char)z[j]] ) continue;
+ c = z[j];
+ if( c==cDelim ){
+ break;
+ }else if( c=='\\' ){
+ c = z[++j];
+ if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
+ || c=='n' || c=='r' || c=='t'
+ || (c=='u' && jsonIs4Hex(&z[j+1])) ){
+ jnFlags |= JNODE_ESCAPE;
+ }else if( c=='\'' || c=='0' || c=='v' || c=='\n'
+ || (0xe2==(u8)c && 0x80==(u8)z[j+1]
+ && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2]))
+ || (c=='x' && jsonIs2Hex(&z[j+1])) ){
+ jnFlags |= (JNODE_ESCAPE|JNODE_JSON5);
+ pParse->hasNonstd = 1;
+ }else if( c=='\r' ){
+ if( z[j+1]=='\n' ) j++;
+ jnFlags |= (JNODE_ESCAPE|JNODE_JSON5);
+ pParse->hasNonstd = 1;
+ }else{
+ pParse->iErr = j;
+ return -1;
+ }
+ }else if( c<=0x1f ){
+ /* Control characters are not allowed in strings */
+ pParse->iErr = j;
+ return -1;
+ }
+ }
+ jsonParseAddNode(pParse, JSON_STRING | (jnFlags<<8), j+1-i, &z[i]);
+ return j+1;
+ }
+ case 't': {
+ if( strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){
+ jsonParseAddNode(pParse, JSON_TRUE, 0, 0);
+ return i+4;
+ }
+ pParse->iErr = i;
+ return -1;
+ }
+ case 'f': {
+ if( strncmp(z+i,"false",5)==0 && !sqlite3Isalnum(z[i+5]) ){
+ jsonParseAddNode(pParse, JSON_FALSE, 0, 0);
+ return i+5;
+ }
+ pParse->iErr = i;
+ return -1;
+ }
+ case '+': {
+ u8 seenDP, seenE, jnFlags;
+ pParse->hasNonstd = 1;
+ jnFlags = JNODE_JSON5;
+ goto parse_number;
+ case '.':
+ if( sqlite3Isdigit(z[i+1]) ){
+ pParse->hasNonstd = 1;
+ jnFlags = JNODE_JSON5;
+ seenE = 0;
+ seenDP = JSON_REAL;
+ goto parse_number_2;
+ }
+ pParse->iErr = i;
+ return -1;
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ /* Parse number */
+ jnFlags = 0;
+ parse_number:
+ seenDP = JSON_INT;
+ seenE = 0;
+ assert( '-' < '0' );
+ assert( '+' < '0' );
+ assert( '.' < '0' );
+ c = z[i];
+
+ if( c<='0' ){
+ if( c=='0' ){
+ if( (z[i+1]=='x' || z[i+1]=='X') && sqlite3Isxdigit(z[i+2]) ){
+ assert( seenDP==JSON_INT );
+ pParse->hasNonstd = 1;
+ jnFlags |= JNODE_JSON5;
+ for(j=i+3; sqlite3Isxdigit(z[j]); j++){}
+ goto parse_number_finish;
+ }else if( sqlite3Isdigit(z[i+1]) ){
+ pParse->iErr = i+1;
+ return -1;
+ }
+ }else{
+ if( !sqlite3Isdigit(z[i+1]) ){
+ /* JSON5 allows for "+Infinity" and "-Infinity" using exactly
+ ** that case. SQLite also allows these in any case and it allows
+ ** "+inf" and "-inf". */
+ if( (z[i+1]=='I' || z[i+1]=='i')
+ && sqlite3StrNICmp(&z[i+1], "inf",3)==0
+ ){
+ pParse->hasNonstd = 1;
+ if( z[i]=='-' ){
+ jsonParseAddNode(pParse, JSON_REAL, 8, "-9.0e999");
+ }else{
+ jsonParseAddNode(pParse, JSON_REAL, 7, "9.0e999");
+ }
+ return i + (sqlite3StrNICmp(&z[i+4],"inity",5)==0 ? 9 : 4);
+ }
+ if( z[i+1]=='.' ){
+ pParse->hasNonstd = 1;
+ jnFlags |= JNODE_JSON5;
+ goto parse_number_2;
+ }
+ pParse->iErr = i;
+ return -1;
+ }
+ if( z[i+1]=='0' ){
+ if( sqlite3Isdigit(z[i+2]) ){
+ pParse->iErr = i+1;
+ return -1;
+ }else if( (z[i+2]=='x' || z[i+2]=='X') && sqlite3Isxdigit(z[i+3]) ){
+ pParse->hasNonstd = 1;
+ jnFlags |= JNODE_JSON5;
+ for(j=i+4; sqlite3Isxdigit(z[j]); j++){}
+ goto parse_number_finish;
+ }
+ }
+ }
+ }
+ parse_number_2:
+ for(j=i+1;; j++){
+ c = z[j];
+ if( sqlite3Isdigit(c) ) continue;
+ if( c=='.' ){
+ if( seenDP==JSON_REAL ){
+ pParse->iErr = j;
+ return -1;
+ }
+ seenDP = JSON_REAL;
+ continue;
+ }
+ if( c=='e' || c=='E' ){
+ if( z[j-1]<'0' ){
+ if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){
+ pParse->hasNonstd = 1;
+ jnFlags |= JNODE_JSON5;
+ }else{
+ pParse->iErr = j;
+ return -1;
+ }
+ }
+ if( seenE ){
+ pParse->iErr = j;
+ return -1;
+ }
+ seenDP = JSON_REAL;
+ seenE = 1;
+ c = z[j+1];
+ if( c=='+' || c=='-' ){
+ j++;
+ c = z[j+1];
+ }
+ if( c<'0' || c>'9' ){
+ pParse->iErr = j;
+ return -1;
+ }
+ continue;
+ }
+ break;
+ }
+ if( z[j-1]<'0' ){
+ if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){
+ pParse->hasNonstd = 1;
+ jnFlags |= JNODE_JSON5;
+ }else{
+ pParse->iErr = j;
+ return -1;
+ }
+ }
+ parse_number_finish:
+ jsonParseAddNode(pParse, seenDP | (jnFlags<<8), j - i, &z[i]);
+ return j;
+ }
+ case '}': {
+ pParse->iErr = i;
+ return -2; /* End of {...} */
+ }
+ case ']': {
+ pParse->iErr = i;
+ return -3; /* End of [...] */
+ }
+ case ',': {
+ pParse->iErr = i;
+ return -4; /* List separator */
+ }
+ case ':': {
+ pParse->iErr = i;
+ return -5; /* Object label/value separator */
+ }
+ case 0: {
+ return 0; /* End of file */
+ }
+ case 0x09:
+ case 0x0a:
+ case 0x0d:
+ case 0x20: {
+ do{
+ i++;
+ }while( fast_isspace(z[i]) );
+ goto json_parse_restart;
+ }
+ case 0x0b:
+ case 0x0c:
+ case '/':
+ case 0xc2:
+ case 0xe1:
+ case 0xe2:
+ case 0xe3:
+ case 0xef: {
+ j = json5Whitespace(&z[i]);
+ if( j>0 ){
+ i += j;
+ pParse->hasNonstd = 1;
+ goto json_parse_restart;
+ }
+ pParse->iErr = i;
+ return -1;
+ }
+ case 'n': {
+ if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){
+ jsonParseAddNode(pParse, JSON_NULL, 0, 0);
+ return i+4;
+ }
+ /* fall-through into the default case that checks for NaN */
+ }
+ default: {
+ u32 k;
+ int nn;
+ c = z[i];
+ for(k=0; k<sizeof(aNanInfName)/sizeof(aNanInfName[0]); k++){
+ if( c!=aNanInfName[k].c1 && c!=aNanInfName[k].c2 ) continue;
+ nn = aNanInfName[k].n;
+ if( sqlite3StrNICmp(&z[i], aNanInfName[k].zMatch, nn)!=0 ){
+ continue;
+ }
+ if( sqlite3Isalnum(z[i+nn]) ) continue;
+ jsonParseAddNode(pParse, aNanInfName[k].eType,
+ aNanInfName[k].nRepl, aNanInfName[k].zRepl);
+ pParse->hasNonstd = 1;
+ return i + nn;
+ }
+ pParse->iErr = i;
+ return -1; /* Syntax error */
+ }
+ } /* End switch(z[i]) */
+}
+
+/*
+** Parse a complete JSON string. Return 0 on success or non-zero if there
+** are any errors. If an error occurs, free all memory held by pParse,
+** but not pParse itself.
+**
+** pParse must be initialized to an empty parse object prior to calling
+** this routine.
+*/
+static int jsonParse(
+ JsonParse *pParse, /* Initialize and fill this JsonParse object */
+ sqlite3_context *pCtx /* Report errors here */
+){
+ int i;
+ const char *zJson = pParse->zJson;
+ i = jsonParseValue(pParse, 0);
+ if( pParse->oom ) i = -1;
+ if( i>0 ){
+ assert( pParse->iDepth==0 );
+ while( fast_isspace(zJson[i]) ) i++;
+ if( zJson[i] ){
+ i += json5Whitespace(&zJson[i]);
+ if( zJson[i] ){
+ jsonParseReset(pParse);
+ return 1;
+ }
+ pParse->hasNonstd = 1;
+ }
+ }
+ if( i<=0 ){
+ if( pCtx!=0 ){
+ if( pParse->oom ){
+ sqlite3_result_error_nomem(pCtx);
+ }else{
+ sqlite3_result_error(pCtx, "malformed JSON", -1);
+ }
+ }
+ jsonParseReset(pParse);
+ return 1;
+ }
+ return 0;
+}
+
+
+/* Mark node i of pParse as being a child of iParent. Call recursively
+** to fill in all the descendants of node i.
+*/
+static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){
+ JsonNode *pNode = &pParse->aNode[i];
+ u32 j;
+ pParse->aUp[i] = iParent;
+ switch( pNode->eType ){
+ case JSON_ARRAY: {
+ for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j)){
+ jsonParseFillInParentage(pParse, i+j, i);
+ }
+ break;
+ }
+ case JSON_OBJECT: {
+ for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j+1)+1){
+ pParse->aUp[i+j] = i;
+ jsonParseFillInParentage(pParse, i+j+1, i);
+ }
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+}
+
+/*
+** Compute the parentage of all nodes in a completed parse.
+*/
+static int jsonParseFindParents(JsonParse *pParse){
+ u32 *aUp;
+ assert( pParse->aUp==0 );
+ aUp = pParse->aUp = sqlite3_malloc64( sizeof(u32)*pParse->nNode );
+ if( aUp==0 ){
+ pParse->oom = 1;
+ return SQLITE_NOMEM;
+ }
+ jsonParseFillInParentage(pParse, 0, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Magic number used for the JSON parse cache in sqlite3_get_auxdata()
+*/
+#define JSON_CACHE_ID (-429938) /* First cache entry */
+#define JSON_CACHE_SZ 4 /* Max number of cache entries */
+
+/*
+** Obtain a complete parse of the JSON found in the pJson argument
+**
+** Use the sqlite3_get_auxdata() cache to find a preexisting parse
+** if it is available. If the cache is not available or if it
+** is no longer valid, parse the JSON again and return the new parse.
+** Also register the new parse so that it will be available for
+** future sqlite3_get_auxdata() calls.
+**
+** If an error occurs and pErrCtx!=0 then report the error on pErrCtx
+** and return NULL.
+**
+** The returned pointer (if it is not NULL) is owned by the cache in
+** most cases, not the caller. The caller does NOT need to invoke
+** jsonParseFree(), in most cases.
+**
+** Except, if an error occurs and pErrCtx==0 then return the JsonParse
+** object with JsonParse.nErr non-zero and the caller will own the JsonParse
+** object. In that case, it will be the responsibility of the caller to
+** invoke jsonParseFree(). To summarize:
+**
+** pErrCtx!=0 || p->nErr==0 ==> Return value p is owned by the
+** cache. Call does not need to
+** free it.
+**
+** pErrCtx==0 && p->nErr!=0 ==> Return value is owned by the caller
+** and so the caller must free it.
+*/
+static JsonParse *jsonParseCached(
+ sqlite3_context *pCtx, /* Context to use for cache search */
+ sqlite3_value *pJson, /* Function param containing JSON text */
+ sqlite3_context *pErrCtx, /* Write parse errors here if not NULL */
+ int bUnedited /* No prior edits allowed */
+){
+ char *zJson = (char*)sqlite3_value_text(pJson);
+ int nJson = sqlite3_value_bytes(pJson);
+ JsonParse *p;
+ JsonParse *pMatch = 0;
+ int iKey;
+ int iMinKey = 0;
+ u32 iMinHold = 0xffffffff;
+ u32 iMaxHold = 0;
+ int bJsonRCStr;
+
+ if( zJson==0 ) return 0;
+ for(iKey=0; iKey<JSON_CACHE_SZ; iKey++){
+ p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iKey);
+ if( p==0 ){
+ iMinKey = iKey;
+ break;
+ }
+ if( pMatch==0
+ && p->nJson==nJson
+ && (p->hasMod==0 || bUnedited==0)
+ && (p->zJson==zJson || memcmp(p->zJson,zJson,nJson)==0)
+ ){
+ p->nErr = 0;
+ p->useMod = 0;
+ pMatch = p;
+ }else
+ if( pMatch==0
+ && p->zAlt!=0
+ && bUnedited==0
+ && p->nAlt==nJson
+ && memcmp(p->zAlt, zJson, nJson)==0
+ ){
+ p->nErr = 0;
+ p->useMod = 1;
+ pMatch = p;
+ }else if( p->iHold<iMinHold ){
+ iMinHold = p->iHold;
+ iMinKey = iKey;
+ }
+ if( p->iHold>iMaxHold ){
+ iMaxHold = p->iHold;
+ }
+ }
+ if( pMatch ){
+ /* The input JSON text was found in the cache. Use the preexisting
+ ** parse of this JSON */
+ pMatch->nErr = 0;
+ pMatch->iHold = iMaxHold+1;
+ assert( pMatch->nJPRef>0 ); /* pMatch is owned by the cache */
+ return pMatch;
+ }
+
+ /* The input JSON was not found anywhere in the cache. We will need
+ ** to parse it ourselves and generate a new JsonParse object.
+ */
+ bJsonRCStr = sqlite3ValueIsOfClass(pJson,sqlite3RCStrUnref);
+ p = sqlite3_malloc64( sizeof(*p) + (bJsonRCStr ? 0 : nJson+1) );
+ if( p==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return 0;
+ }
+ memset(p, 0, sizeof(*p));
+ if( bJsonRCStr ){
+ p->zJson = sqlite3RCStrRef(zJson);
+ p->bJsonIsRCStr = 1;
+ }else{
+ p->zJson = (char*)&p[1];
+ memcpy(p->zJson, zJson, nJson+1);
+ }
+ p->nJPRef = 1;
+ if( jsonParse(p, pErrCtx) ){
+ if( pErrCtx==0 ){
+ p->nErr = 1;
+ assert( p->nJPRef==1 ); /* Caller will own the new JsonParse object p */
+ return p;
+ }
+ jsonParseFree(p);
+ return 0;
+ }
+ p->nJson = nJson;
+ p->iHold = iMaxHold+1;
+ /* Transfer ownership of the new JsonParse to the cache */
+ sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p,
+ (void(*)(void*))jsonParseFree);
+ return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey);
+}
+
+/*
+** Compare the OBJECT label at pNode against zKey,nKey. Return true on
+** a match.
+*/
+static int jsonLabelCompare(const JsonNode *pNode, const char *zKey, u32 nKey){
+ assert( pNode->eU==1 );
+ if( pNode->jnFlags & JNODE_RAW ){
+ if( pNode->n!=nKey ) return 0;
+ return strncmp(pNode->u.zJContent, zKey, nKey)==0;
+ }else{
+ if( pNode->n!=nKey+2 ) return 0;
+ return strncmp(pNode->u.zJContent+1, zKey, nKey)==0;
+ }
+}
+static int jsonSameLabel(const JsonNode *p1, const JsonNode *p2){
+ if( p1->jnFlags & JNODE_RAW ){
+ return jsonLabelCompare(p2, p1->u.zJContent, p1->n);
+ }else if( p2->jnFlags & JNODE_RAW ){
+ return jsonLabelCompare(p1, p2->u.zJContent, p2->n);
+ }else{
+ return p1->n==p2->n && strncmp(p1->u.zJContent,p2->u.zJContent,p1->n)==0;
+ }
+}
+
+/* forward declaration */
+static JsonNode *jsonLookupAppend(JsonParse*,const char*,int*,const char**);
+
+/*
+** Search along zPath to find the node specified. Return a pointer
+** to that node, or NULL if zPath is malformed or if there is no such
+** node.
+**
+** If pApnd!=0, then try to append new nodes to complete zPath if it is
+** possible to do so and if no existing node corresponds to zPath. If
+** new nodes are appended *pApnd is set to 1.
+*/
+static JsonNode *jsonLookupStep(
+ JsonParse *pParse, /* The JSON to search */
+ u32 iRoot, /* Begin the search at this node */
+ const char *zPath, /* The path to search */
+ int *pApnd, /* Append nodes to complete path if not NULL */
+ const char **pzErr /* Make *pzErr point to any syntax error in zPath */
+){
+ u32 i, j, nKey;
+ const char *zKey;
+ JsonNode *pRoot;
+ if( pParse->oom ) return 0;
+ pRoot = &pParse->aNode[iRoot];
+ if( pRoot->jnFlags & (JNODE_REPLACE|JNODE_REMOVE) && pParse->useMod ){
+ while( (pRoot->jnFlags & JNODE_REPLACE)!=0 ){
+ u32 idx = (u32)(pRoot - pParse->aNode);
+ i = pParse->iSubst;
+ while( 1 /*exit-by-break*/ ){
+ assert( i<pParse->nNode );
+ assert( pParse->aNode[i].eType==JSON_SUBST );
+ assert( pParse->aNode[i].eU==4 );
+ assert( pParse->aNode[i].u.iPrev<i );
+ if( pParse->aNode[i].n==idx ){
+ pRoot = &pParse->aNode[i+1];
+ iRoot = i+1;
+ break;
+ }
+ i = pParse->aNode[i].u.iPrev;
+ }
+ }
+ if( pRoot->jnFlags & JNODE_REMOVE ){
+ return 0;
+ }
+ }
+ if( zPath[0]==0 ) return pRoot;
+ if( zPath[0]=='.' ){
+ if( pRoot->eType!=JSON_OBJECT ) return 0;
+ zPath++;
+ if( zPath[0]=='"' ){
+ zKey = zPath + 1;
+ for(i=1; zPath[i] && zPath[i]!='"'; i++){}
+ nKey = i-1;
+ if( zPath[i] ){
+ i++;
+ }else{
+ *pzErr = zPath;
+ return 0;
+ }
+ testcase( nKey==0 );
+ }else{
+ zKey = zPath;
+ for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){}
+ nKey = i;
+ if( nKey==0 ){
+ *pzErr = zPath;
+ return 0;
+ }
+ }
+ j = 1;
+ for(;;){
+ while( j<=pRoot->n ){
+ if( jsonLabelCompare(pRoot+j, zKey, nKey) ){
+ return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr);
+ }
+ j++;
+ j += jsonNodeSize(&pRoot[j]);
+ }
+ if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;
+ if( pParse->useMod==0 ) break;
+ assert( pRoot->eU==2 );
+ iRoot = pRoot->u.iAppend;
+ pRoot = &pParse->aNode[iRoot];
+ j = 1;
+ }
+ if( pApnd ){
+ u32 iStart, iLabel;
+ JsonNode *pNode;
+ assert( pParse->useMod );
+ iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0);
+ iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
+ zPath += i;
+ pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
+ if( pParse->oom ) return 0;
+ if( pNode ){
+ pRoot = &pParse->aNode[iRoot];
+ assert( pRoot->eU==0 );
+ pRoot->u.iAppend = iStart;
+ pRoot->jnFlags |= JNODE_APPEND;
+ VVA( pRoot->eU = 2 );
+ pParse->aNode[iLabel].jnFlags |= JNODE_RAW;
+ }
+ return pNode;
+ }
+ }else if( zPath[0]=='[' ){
+ i = 0;
+ j = 1;
+ while( sqlite3Isdigit(zPath[j]) ){
+ i = i*10 + zPath[j] - '0';
+ j++;
+ }
+ if( j<2 || zPath[j]!=']' ){
+ if( zPath[1]=='#' ){
+ JsonNode *pBase = pRoot;
+ int iBase = iRoot;
+ if( pRoot->eType!=JSON_ARRAY ) return 0;
+ for(;;){
+ while( j<=pBase->n ){
+ if( (pBase[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i++;
+ j += jsonNodeSize(&pBase[j]);
+ }
+ if( (pBase->jnFlags & JNODE_APPEND)==0 ) break;
+ if( pParse->useMod==0 ) break;
+ assert( pBase->eU==2 );
+ iBase = pBase->u.iAppend;
+ pBase = &pParse->aNode[iBase];
+ j = 1;
+ }
+ j = 2;
+ if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){
+ unsigned int x = 0;
+ j = 3;
+ do{
+ x = x*10 + zPath[j] - '0';
+ j++;
+ }while( sqlite3Isdigit(zPath[j]) );
+ if( x>i ) return 0;
+ i -= x;
+ }
+ if( zPath[j]!=']' ){
+ *pzErr = zPath;
+ return 0;
+ }
+ }else{
+ *pzErr = zPath;
+ return 0;
+ }
+ }
+ if( pRoot->eType!=JSON_ARRAY ) return 0;
+ zPath += j + 1;
+ j = 1;
+ for(;;){
+ while( j<=pRoot->n
+ && (i>0 || ((pRoot[j].jnFlags & JNODE_REMOVE)!=0 && pParse->useMod))
+ ){
+ if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i--;
+ j += jsonNodeSize(&pRoot[j]);
+ }
+ if( i==0 && j<=pRoot->n ) break;
+ if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;
+ if( pParse->useMod==0 ) break;
+ assert( pRoot->eU==2 );
+ iRoot = pRoot->u.iAppend;
+ pRoot = &pParse->aNode[iRoot];
+ j = 1;
+ }
+ if( j<=pRoot->n ){
+ return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr);
+ }
+ if( i==0 && pApnd ){
+ u32 iStart;
+ JsonNode *pNode;
+ assert( pParse->useMod );
+ iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0);
+ pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
+ if( pParse->oom ) return 0;
+ if( pNode ){
+ pRoot = &pParse->aNode[iRoot];
+ assert( pRoot->eU==0 );
+ pRoot->u.iAppend = iStart;
+ pRoot->jnFlags |= JNODE_APPEND;
+ VVA( pRoot->eU = 2 );
+ }
+ return pNode;
+ }
+ }else{
+ *pzErr = zPath;
+ }
+ return 0;
+}
+
+/*
+** Append content to pParse that will complete zPath. Return a pointer
+** to the inserted node, or return NULL if the append fails.
+*/
+static JsonNode *jsonLookupAppend(
+ JsonParse *pParse, /* Append content to the JSON parse */
+ const char *zPath, /* Description of content to append */
+ int *pApnd, /* Set this flag to 1 */
+ const char **pzErr /* Make this point to any syntax error */
+){
+ *pApnd = 1;
+ if( zPath[0]==0 ){
+ jsonParseAddNode(pParse, JSON_NULL, 0, 0);
+ return pParse->oom ? 0 : &pParse->aNode[pParse->nNode-1];
+ }
+ if( zPath[0]=='.' ){
+ jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
+ }else if( strncmp(zPath,"[0]",3)==0 ){
+ jsonParseAddNode(pParse, JSON_ARRAY, 0, 0);
+ }else{
+ return 0;
+ }
+ if( pParse->oom ) return 0;
+ return jsonLookupStep(pParse, pParse->nNode-1, zPath, pApnd, pzErr);
+}
+
+/*
+** Return the text of a syntax error message on a JSON path. Space is
+** obtained from sqlite3_malloc().
+*/
+static char *jsonPathSyntaxError(const char *zErr){
+ return sqlite3_mprintf("JSON path error near '%q'", zErr);
+}
+
+/*
+** Do a node lookup using zPath. Return a pointer to the node on success.
+** Return NULL if not found or if there is an error.
+**
+** On an error, write an error message into pCtx and increment the
+** pParse->nErr counter.
+**
+** If pApnd!=NULL then try to append missing nodes and set *pApnd = 1 if
+** nodes are appended.
+*/
+static JsonNode *jsonLookup(
+ JsonParse *pParse, /* The JSON to search */
+ const char *zPath, /* The path to search */
+ int *pApnd, /* Append nodes to complete path if not NULL */
+ sqlite3_context *pCtx /* Report errors here, if not NULL */
+){
+ const char *zErr = 0;
+ JsonNode *pNode = 0;
+ char *zMsg;
+
+ if( zPath==0 ) return 0;
+ if( zPath[0]!='$' ){
+ zErr = zPath;
+ goto lookup_err;
+ }
+ zPath++;
+ pNode = jsonLookupStep(pParse, 0, zPath, pApnd, &zErr);
+ if( zErr==0 ) return pNode;
+
+lookup_err:
+ pParse->nErr++;
+ assert( zErr!=0 && pCtx!=0 );
+ zMsg = jsonPathSyntaxError(zErr);
+ if( zMsg ){
+ sqlite3_result_error(pCtx, zMsg, -1);
+ sqlite3_free(zMsg);
+ }else{
+ sqlite3_result_error_nomem(pCtx);
+ }
+ return 0;
+}
+
+
+/*
+** Report the wrong number of arguments for json_insert(), json_replace()
+** or json_set().
+*/
+static void jsonWrongNumArgs(
+ sqlite3_context *pCtx,
+ const char *zFuncName
+){
+ char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments",
+ zFuncName);
+ sqlite3_result_error(pCtx, zMsg, -1);
+ sqlite3_free(zMsg);
+}
+
+/*
+** Mark all NULL entries in the Object passed in as JNODE_REMOVE.
+*/
+static void jsonRemoveAllNulls(JsonNode *pNode){
+ int i, n;
+ assert( pNode->eType==JSON_OBJECT );
+ n = pNode->n;
+ for(i=2; i<=n; i += jsonNodeSize(&pNode[i])+1){
+ switch( pNode[i].eType ){
+ case JSON_NULL:
+ pNode[i].jnFlags |= JNODE_REMOVE;
+ break;
+ case JSON_OBJECT:
+ jsonRemoveAllNulls(&pNode[i]);
+ break;
+ }
+ }
+}
+
+
+/****************************************************************************
+** SQL functions used for testing and debugging
+****************************************************************************/
+
+#if SQLITE_DEBUG
+/*
+** Print N node entries.
+*/
+static void jsonDebugPrintNodeEntries(
+ JsonNode *aNode, /* First node entry to print */
+ int N /* Number of node entries to print */
+){
+ int i;
+ for(i=0; i<N; i++){
+ const char *zType;
+ if( aNode[i].jnFlags & JNODE_LABEL ){
+ zType = "label";
+ }else{
+ zType = jsonType[aNode[i].eType];
+ }
+ printf("node %4u: %-7s n=%-5d", i, zType, aNode[i].n);
+ if( (aNode[i].jnFlags & ~JNODE_LABEL)!=0 ){
+ u8 f = aNode[i].jnFlags;
+ if( f & JNODE_RAW ) printf(" RAW");
+ if( f & JNODE_ESCAPE ) printf(" ESCAPE");
+ if( f & JNODE_REMOVE ) printf(" REMOVE");
+ if( f & JNODE_REPLACE ) printf(" REPLACE");
+ if( f & JNODE_APPEND ) printf(" APPEND");
+ if( f & JNODE_JSON5 ) printf(" JSON5");
+ }
+ switch( aNode[i].eU ){
+ case 1: printf(" zJContent=[%.*s]\n",
+ aNode[i].n, aNode[i].u.zJContent); break;
+ case 2: printf(" iAppend=%u\n", aNode[i].u.iAppend); break;
+ case 3: printf(" iKey=%u\n", aNode[i].u.iKey); break;
+ case 4: printf(" iPrev=%u\n", aNode[i].u.iPrev); break;
+ default: printf("\n");
+ }
+ }
+}
+#endif /* SQLITE_DEBUG */
+
+
+#if 0 /* 1 for debugging. 0 normally. Requires -DSQLITE_DEBUG too */
+static void jsonDebugPrintParse(JsonParse *p){
+ jsonDebugPrintNodeEntries(p->aNode, p->nNode);
+}
+static void jsonDebugPrintNode(JsonNode *pNode){
+ jsonDebugPrintNodeEntries(pNode, jsonNodeSize(pNode));
+}
+#else
+ /* The usual case */
+# define jsonDebugPrintNode(X)
+# define jsonDebugPrintParse(X)
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** SQL function: json_parse(JSON)
+**
+** Parse JSON using jsonParseCached(). Then print a dump of that
+** parse on standard output. Return the mimified JSON result, just
+** like the json() function.
+*/
+static void jsonParseFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+
+ assert( argc==1 );
+ p = jsonParseCached(ctx, argv[0], ctx, 0);
+ if( p==0 ) return;
+ printf("nNode = %u\n", p->nNode);
+ printf("nAlloc = %u\n", p->nAlloc);
+ printf("nJson = %d\n", p->nJson);
+ printf("nAlt = %d\n", p->nAlt);
+ printf("nErr = %u\n", p->nErr);
+ printf("oom = %u\n", p->oom);
+ printf("hasNonstd = %u\n", p->hasNonstd);
+ printf("useMod = %u\n", p->useMod);
+ printf("hasMod = %u\n", p->hasMod);
+ printf("nJPRef = %u\n", p->nJPRef);
+ printf("iSubst = %u\n", p->iSubst);
+ printf("iHold = %u\n", p->iHold);
+ jsonDebugPrintNodeEntries(p->aNode, p->nNode);
+ jsonReturnJson(p, p->aNode, ctx, 1);
+}
+
+/*
+** The json_test1(JSON) function return true (1) if the input is JSON
+** text generated by another json function. It returns (0) if the input
+** is not known to be JSON.
+*/
+static void jsonTest1Func(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE);
+}
+#endif /* SQLITE_DEBUG */
+
+/****************************************************************************
+** Scalar SQL function implementations
+****************************************************************************/
+
+/*
+** Implementation of the json_QUOTE(VALUE) function. Return a JSON value
+** corresponding to the SQL value input. Mostly this means putting
+** double-quotes around strings and returning the unquoted string "null"
+** when given a NULL input.
+*/
+static void jsonQuoteFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString jx;
+ UNUSED_PARAMETER(argc);
+
+ jsonInit(&jx, ctx);
+ jsonAppendValue(&jx, argv[0]);
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+
+/*
+** Implementation of the json_array(VALUE,...) function. Return a JSON
+** array that contains all values given in arguments. Or if any argument
+** is a BLOB, throw an error.
+*/
+static void jsonArrayFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ JsonString jx;
+
+ jsonInit(&jx, ctx);
+ jsonAppendChar(&jx, '[');
+ for(i=0; i<argc; i++){
+ jsonAppendSeparator(&jx);
+ jsonAppendValue(&jx, argv[i]);
+ }
+ jsonAppendChar(&jx, ']');
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+
+
+/*
+** json_array_length(JSON)
+** json_array_length(JSON, PATH)
+**
+** Return the number of elements in the top-level JSON array.
+** Return 0 if the input is not a well-formed JSON array.
+*/
+static void jsonArrayLengthFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ sqlite3_int64 n = 0;
+ u32 i;
+ JsonNode *pNode;
+
+ p = jsonParseCached(ctx, argv[0], ctx, 0);
+ if( p==0 ) return;
+ assert( p->nNode );
+ if( argc==2 ){
+ const char *zPath = (const char*)sqlite3_value_text(argv[1]);
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ }else{
+ pNode = p->aNode;
+ }
+ if( pNode==0 ){
+ return;
+ }
+ if( pNode->eType==JSON_ARRAY ){
+ while( 1 /*exit-by-break*/ ){
+ i = 1;
+ while( i<=pNode->n ){
+ if( (pNode[i].jnFlags & JNODE_REMOVE)==0 ) n++;
+ i += jsonNodeSize(&pNode[i]);
+ }
+ if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
+ if( p->useMod==0 ) break;
+ assert( pNode->eU==2 );
+ pNode = &p->aNode[pNode->u.iAppend];
+ }
+ }
+ sqlite3_result_int64(ctx, n);
+}
+
+/*
+** Bit values for the flags passed into jsonExtractFunc() or
+** jsonSetFunc() via the user-data value.
+*/
+#define JSON_JSON 0x01 /* Result is always JSON */
+#define JSON_SQL 0x02 /* Result is always SQL */
+#define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */
+#define JSON_ISSET 0x04 /* json_set(), not json_insert() */
+
+/*
+** json_extract(JSON, PATH, ...)
+** "->"(JSON,PATH)
+** "->>"(JSON,PATH)
+**
+** Return the element described by PATH. Return NULL if that PATH element
+** is not found.
+**
+** If JSON_JSON is set or if more that one PATH argument is supplied then
+** always return a JSON representation of the result. If JSON_SQL is set,
+** then always return an SQL representation of the result. If neither flag
+** is present and argc==2, then return JSON for objects and arrays and SQL
+** for all other values.
+**
+** When multiple PATH arguments are supplied, the result is a JSON array
+** containing the result of each PATH.
+**
+** Abbreviated JSON path expressions are allows if JSON_ABPATH, for
+** compatibility with PG.
+*/
+static void jsonExtractFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
+ JsonString jx;
+
+ if( argc<2 ) return;
+ p = jsonParseCached(ctx, argv[0], ctx, 0);
+ if( p==0 ) return;
+ if( argc==2 ){
+ /* With a single PATH argument */
+ zPath = (const char*)sqlite3_value_text(argv[1]);
+ if( zPath==0 ) return;
+ if( flags & JSON_ABPATH ){
+ if( zPath[0]!='$' || (zPath[1]!='.' && zPath[1]!='[' && zPath[1]!=0) ){
+ /* The -> and ->> operators accept abbreviated PATH arguments. This
+ ** is mostly for compatibility with PostgreSQL, but also for
+ ** convenience.
+ **
+ ** NUMBER ==> $[NUMBER] // PG compatible
+ ** LABEL ==> $.LABEL // PG compatible
+ ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience
+ */
+ jsonInit(&jx, ctx);
+ if( sqlite3Isdigit(zPath[0]) ){
+ jsonAppendRawNZ(&jx, "$[", 2);
+ jsonAppendRaw(&jx, zPath, (int)strlen(zPath));
+ jsonAppendRawNZ(&jx, "]", 2);
+ }else{
+ jsonAppendRawNZ(&jx, "$.", 1 + (zPath[0]!='['));
+ jsonAppendRaw(&jx, zPath, (int)strlen(zPath));
+ jsonAppendChar(&jx, 0);
+ }
+ pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx);
+ jsonReset(&jx);
+ }else{
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ }
+ if( pNode ){
+ if( flags & JSON_JSON ){
+ jsonReturnJson(p, pNode, ctx, 0);
+ }else{
+ jsonReturn(p, pNode, ctx);
+ sqlite3_result_subtype(ctx, 0);
+ }
+ }
+ }else{
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ if( p->nErr==0 && pNode ) jsonReturn(p, pNode, ctx);
+ }
+ }else{
+ /* Two or more PATH arguments results in a JSON array with each
+ ** element of the array being the value selected by one of the PATHs */
+ int i;
+ jsonInit(&jx, ctx);
+ jsonAppendChar(&jx, '[');
+ for(i=1; i<argc; i++){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ if( p->nErr ) break;
+ jsonAppendSeparator(&jx);
+ if( pNode ){
+ jsonRenderNode(p, pNode, &jx);
+ }else{
+ jsonAppendRawNZ(&jx, "null", 4);
+ }
+ }
+ if( i==argc ){
+ jsonAppendChar(&jx, ']');
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+ }
+ jsonReset(&jx);
+ }
+}
+
+/* This is the RFC 7396 MergePatch algorithm.
+*/
+static JsonNode *jsonMergePatch(
+ JsonParse *pParse, /* The JSON parser that contains the TARGET */
+ u32 iTarget, /* Node of the TARGET in pParse */
+ JsonNode *pPatch /* The PATCH */
+){
+ u32 i, j;
+ u32 iRoot;
+ JsonNode *pTarget;
+ if( pPatch->eType!=JSON_OBJECT ){
+ return pPatch;
+ }
+ assert( iTarget<pParse->nNode );
+ pTarget = &pParse->aNode[iTarget];
+ assert( (pPatch->jnFlags & JNODE_APPEND)==0 );
+ if( pTarget->eType!=JSON_OBJECT ){
+ jsonRemoveAllNulls(pPatch);
+ return pPatch;
+ }
+ iRoot = iTarget;
+ for(i=1; i<pPatch->n; i += jsonNodeSize(&pPatch[i+1])+1){
+ u32 nKey;
+ const char *zKey;
+ assert( pPatch[i].eType==JSON_STRING );
+ assert( pPatch[i].jnFlags & JNODE_LABEL );
+ assert( pPatch[i].eU==1 );
+ nKey = pPatch[i].n;
+ zKey = pPatch[i].u.zJContent;
+ for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){
+ assert( pTarget[j].eType==JSON_STRING );
+ assert( pTarget[j].jnFlags & JNODE_LABEL );
+ if( jsonSameLabel(&pPatch[i], &pTarget[j]) ){
+ if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_REPLACE) ) break;
+ if( pPatch[i+1].eType==JSON_NULL ){
+ pTarget[j+1].jnFlags |= JNODE_REMOVE;
+ }else{
+ JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]);
+ if( pNew==0 ) return 0;
+ if( pNew!=&pParse->aNode[iTarget+j+1] ){
+ jsonParseAddSubstNode(pParse, iTarget+j+1);
+ jsonParseAddNodeArray(pParse, pNew, jsonNodeSize(pNew));
+ }
+ pTarget = &pParse->aNode[iTarget];
+ }
+ break;
+ }
+ }
+ if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){
+ int iStart;
+ JsonNode *pApnd;
+ u32 nApnd;
+ iStart = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
+ jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
+ pApnd = &pPatch[i+1];
+ if( pApnd->eType==JSON_OBJECT ) jsonRemoveAllNulls(pApnd);
+ nApnd = jsonNodeSize(pApnd);
+ jsonParseAddNodeArray(pParse, pApnd, jsonNodeSize(pApnd));
+ if( pParse->oom ) return 0;
+ pParse->aNode[iStart].n = 1+nApnd;
+ pParse->aNode[iRoot].jnFlags |= JNODE_APPEND;
+ pParse->aNode[iRoot].u.iAppend = iStart;
+ VVA( pParse->aNode[iRoot].eU = 2 );
+ iRoot = iStart;
+ pTarget = &pParse->aNode[iTarget];
+ }
+ }
+ return pTarget;
+}
+
+/*
+** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON
+** object that is the result of running the RFC 7396 MergePatch() algorithm
+** on the two arguments.
+*/
+static void jsonPatchFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *pX; /* The JSON that is being patched */
+ JsonParse *pY; /* The patch */
+ JsonNode *pResult; /* The result of the merge */
+
+ UNUSED_PARAMETER(argc);
+ pX = jsonParseCached(ctx, argv[0], ctx, 1);
+ if( pX==0 ) return;
+ assert( pX->hasMod==0 );
+ pX->hasMod = 1;
+ pY = jsonParseCached(ctx, argv[1], ctx, 1);
+ if( pY==0 ) return;
+ pX->useMod = 1;
+ pY->useMod = 1;
+ pResult = jsonMergePatch(pX, 0, pY->aNode);
+ assert( pResult!=0 || pX->oom );
+ if( pResult && pX->oom==0 ){
+ jsonDebugPrintParse(pX);
+ jsonDebugPrintNode(pResult);
+ jsonReturnJson(pX, pResult, ctx, 0);
+ }else{
+ sqlite3_result_error_nomem(ctx);
+ }
+}
+
+
+/*
+** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON
+** object that contains all name/value given in arguments. Or if any name
+** is not a string or if any value is a BLOB, throw an error.
+*/
+static void jsonObjectFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ JsonString jx;
+ const char *z;
+ u32 n;
+
+ if( argc&1 ){
+ sqlite3_result_error(ctx, "json_object() requires an even number "
+ "of arguments", -1);
+ return;
+ }
+ jsonInit(&jx, ctx);
+ jsonAppendChar(&jx, '{');
+ for(i=0; i<argc; i+=2){
+ if( sqlite3_value_type(argv[i])!=SQLITE_TEXT ){
+ sqlite3_result_error(ctx, "json_object() labels must be TEXT", -1);
+ jsonReset(&jx);
+ return;
+ }
+ jsonAppendSeparator(&jx);
+ z = (const char*)sqlite3_value_text(argv[i]);
+ n = (u32)sqlite3_value_bytes(argv[i]);
+ jsonAppendString(&jx, z, n);
+ jsonAppendChar(&jx, ':');
+ jsonAppendValue(&jx, argv[i+1]);
+ }
+ jsonAppendChar(&jx, '}');
+ jsonResult(&jx);
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+
+
+/*
+** json_remove(JSON, PATH, ...)
+**
+** Remove the named elements from JSON and return the result. malformed
+** JSON or PATH arguments result in an error.
+*/
+static void jsonRemoveFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *pParse; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ u32 i;
+
+ if( argc<1 ) return;
+ pParse = jsonParseCached(ctx, argv[0], ctx, argc>1);
+ if( pParse==0 ) return;
+ for(i=1; i<(u32)argc; i++){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ if( zPath==0 ) goto remove_done;
+ pNode = jsonLookup(pParse, zPath, 0, ctx);
+ if( pParse->nErr ) goto remove_done;
+ if( pNode ){
+ pNode->jnFlags |= JNODE_REMOVE;
+ pParse->hasMod = 1;
+ pParse->useMod = 1;
+ }
+ }
+ if( (pParse->aNode[0].jnFlags & JNODE_REMOVE)==0 ){
+ jsonReturnJson(pParse, pParse->aNode, ctx, 1);
+ }
+remove_done:
+ jsonDebugPrintParse(p);
+}
+
+/*
+** Substitute the value at iNode with the pValue parameter.
+*/
+static void jsonReplaceNode(
+ sqlite3_context *pCtx,
+ JsonParse *p,
+ int iNode,
+ sqlite3_value *pValue
+){
+ int idx = jsonParseAddSubstNode(p, iNode);
+ if( idx<=0 ){
+ assert( p->oom );
+ return;
+ }
+ switch( sqlite3_value_type(pValue) ){
+ case SQLITE_NULL: {
+ jsonParseAddNode(p, JSON_NULL, 0, 0);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ char *z = sqlite3_mprintf("%!0.15g", sqlite3_value_double(pValue));
+ int n;
+ if( z==0 ){
+ p->oom = 1;
+ break;
+ }
+ n = sqlite3Strlen30(z);
+ jsonParseAddNode(p, JSON_REAL, n, z);
+ jsonParseAddCleanup(p, sqlite3_free, z);
+ break;
+ }
+ case SQLITE_INTEGER: {
+ char *z = sqlite3_mprintf("%lld", sqlite3_value_int64(pValue));
+ int n;
+ if( z==0 ){
+ p->oom = 1;
+ break;
+ }
+ n = sqlite3Strlen30(z);
+ jsonParseAddNode(p, JSON_INT, n, z);
+ jsonParseAddCleanup(p, sqlite3_free, z);
+
+ break;
+ }
+ case SQLITE_TEXT: {
+ const char *z = (const char*)sqlite3_value_text(pValue);
+ u32 n = (u32)sqlite3_value_bytes(pValue);
+ if( z==0 ){
+ p->oom = 1;
+ break;
+ }
+ if( sqlite3_value_subtype(pValue)!=JSON_SUBTYPE ){
+ char *zCopy = sqlite3_malloc64( n+1 );
+ int k;
+ if( zCopy ){
+ memcpy(zCopy, z, n);
+ zCopy[n] = 0;
+ jsonParseAddCleanup(p, sqlite3_free, zCopy);
+ }else{
+ p->oom = 1;
+ sqlite3_result_error_nomem(pCtx);
+ }
+ k = jsonParseAddNode(p, JSON_STRING, n, zCopy);
+ assert( k>0 || p->oom );
+ if( p->oom==0 ) p->aNode[k].jnFlags |= JNODE_RAW;
+ }else{
+ JsonParse *pPatch = jsonParseCached(pCtx, pValue, pCtx, 1);
+ if( pPatch==0 ){
+ p->oom = 1;
+ break;
+ }
+ jsonParseAddNodeArray(p, pPatch->aNode, pPatch->nNode);
+ /* The nodes copied out of pPatch and into p likely contain
+ ** u.zJContent pointers into pPatch->zJson. So preserve the
+ ** content of pPatch until p is destroyed. */
+ assert( pPatch->nJPRef>=1 );
+ pPatch->nJPRef++;
+ jsonParseAddCleanup(p, (void(*)(void*))jsonParseFree, pPatch);
+ }
+ break;
+ }
+ default: {
+ jsonParseAddNode(p, JSON_NULL, 0, 0);
+ sqlite3_result_error(pCtx, "JSON cannot hold BLOB values", -1);
+ p->nErr++;
+ break;
+ }
+ }
+}
+
+/*
+** json_replace(JSON, PATH, VALUE, ...)
+**
+** Replace the value at PATH with VALUE. If PATH does not already exist,
+** this routine is a no-op. If JSON or PATH is malformed, throw an error.
+*/
+static void jsonReplaceFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *pParse; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ u32 i;
+
+ if( argc<1 ) return;
+ if( (argc&1)==0 ) {
+ jsonWrongNumArgs(ctx, "replace");
+ return;
+ }
+ pParse = jsonParseCached(ctx, argv[0], ctx, argc>1);
+ if( pParse==0 ) return;
+ pParse->nJPRef++;
+ for(i=1; i<(u32)argc; i+=2){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ pParse->useMod = 1;
+ pNode = jsonLookup(pParse, zPath, 0, ctx);
+ if( pParse->nErr ) goto replace_err;
+ if( pNode ){
+ jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]);
+ }
+ }
+ jsonReturnJson(pParse, pParse->aNode, ctx, 1);
+replace_err:
+ jsonDebugPrintParse(pParse);
+ jsonParseFree(pParse);
+}
+
+
+/*
+** json_set(JSON, PATH, VALUE, ...)
+**
+** Set the value at PATH to VALUE. Create the PATH if it does not already
+** exist. Overwrite existing values that do exist.
+** If JSON or PATH is malformed, throw an error.
+**
+** json_insert(JSON, PATH, VALUE, ...)
+**
+** Create PATH and initialize it to VALUE. If PATH already exists, this
+** routine is a no-op. If JSON or PATH is malformed, throw an error.
+*/
+static void jsonSetFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *pParse; /* The parse */
+ JsonNode *pNode;
+ const char *zPath;
+ u32 i;
+ int bApnd;
+ int bIsSet = sqlite3_user_data(ctx)!=0;
+
+ if( argc<1 ) return;
+ if( (argc&1)==0 ) {
+ jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
+ return;
+ }
+ pParse = jsonParseCached(ctx, argv[0], ctx, argc>1);
+ if( pParse==0 ) return;
+ pParse->nJPRef++;
+ for(i=1; i<(u32)argc; i+=2){
+ zPath = (const char*)sqlite3_value_text(argv[i]);
+ bApnd = 0;
+ pParse->useMod = 1;
+ pNode = jsonLookup(pParse, zPath, &bApnd, ctx);
+ if( pParse->oom ){
+ sqlite3_result_error_nomem(ctx);
+ goto jsonSetDone;
+ }else if( pParse->nErr ){
+ goto jsonSetDone;
+ }else if( pNode && (bApnd || bIsSet) ){
+ jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]);
+ }
+ }
+ jsonDebugPrintParse(pParse);
+ jsonReturnJson(pParse, pParse->aNode, ctx, 1);
+jsonSetDone:
+ jsonParseFree(pParse);
+}
+
+/*
+** json_type(JSON)
+** json_type(JSON, PATH)
+**
+** Return the top-level "type" of a JSON string. json_type() raises an
+** error if either the JSON or PATH inputs are not well-formed.
+*/
+static void jsonTypeFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ const char *zPath;
+ JsonNode *pNode;
+
+ p = jsonParseCached(ctx, argv[0], ctx, 0);
+ if( p==0 ) return;
+ if( argc==2 ){
+ zPath = (const char*)sqlite3_value_text(argv[1]);
+ pNode = jsonLookup(p, zPath, 0, ctx);
+ }else{
+ pNode = p->aNode;
+ }
+ if( pNode ){
+ sqlite3_result_text(ctx, jsonType[pNode->eType], -1, SQLITE_STATIC);
+ }
+}
+
+/*
+** json_valid(JSON)
+**
+** Return 1 if JSON is a well-formed canonical JSON string according
+** to RFC-7159. Return 0 otherwise.
+*/
+static void jsonValidFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ UNUSED_PARAMETER(argc);
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
+#ifdef SQLITE_LEGACY_JSON_VALID
+ /* Incorrect legacy behavior was to return FALSE for a NULL input */
+ sqlite3_result_int(ctx, 0);
+#endif
+ return;
+ }
+ p = jsonParseCached(ctx, argv[0], 0, 0);
+ if( p==0 || p->oom ){
+ sqlite3_result_error_nomem(ctx);
+ sqlite3_free(p);
+ }else{
+ sqlite3_result_int(ctx, p->nErr==0 && (p->hasNonstd==0 || p->useMod));
+ if( p->nErr ) jsonParseFree(p);
+ }
+}
+
+/*
+** json_error_position(JSON)
+**
+** If the argument is not an interpretable JSON string, then return the 1-based
+** character position at which the parser first recognized that the input
+** was in error. The left-most character is 1. If the string is valid
+** JSON, then return 0.
+**
+** Note that json_valid() is only true for strictly conforming canonical JSON.
+** But this routine returns zero if the input contains extension. Thus:
+**
+** (1) If the input X is strictly conforming canonical JSON:
+**
+** json_valid(X) returns true
+** json_error_position(X) returns 0
+**
+** (2) If the input X is JSON but it includes extension (such as JSON5) that
+** are not part of RFC-8259:
+**
+** json_valid(X) returns false
+** json_error_position(X) return 0
+**
+** (3) If the input X cannot be interpreted as JSON even taking extensions
+** into account:
+**
+** json_valid(X) return false
+** json_error_position(X) returns 1 or more
+*/
+static void jsonErrorFunc(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonParse *p; /* The parse */
+ UNUSED_PARAMETER(argc);
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ p = jsonParseCached(ctx, argv[0], 0, 0);
+ if( p==0 || p->oom ){
+ sqlite3_result_error_nomem(ctx);
+ sqlite3_free(p);
+ }else if( p->nErr==0 ){
+ sqlite3_result_int(ctx, 0);
+ }else{
+ int n = 1;
+ u32 i;
+ const char *z = (const char*)sqlite3_value_text(argv[0]);
+ for(i=0; i<p->iErr && ALWAYS(z[i]); i++){
+ if( (z[i]&0xc0)!=0x80 ) n++;
+ }
+ sqlite3_result_int(ctx, n);
+ jsonParseFree(p);
+ }
+}
+
+
+/****************************************************************************
+** Aggregate SQL function implementations
+****************************************************************************/
+/*
+** json_group_array(VALUE)
+**
+** Return a JSON array composed of all values in the aggregate.
+*/
+static void jsonArrayStep(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString *pStr;
+ UNUSED_PARAMETER(argc);
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
+ if( pStr ){
+ if( pStr->zBuf==0 ){
+ jsonInit(pStr, ctx);
+ jsonAppendChar(pStr, '[');
+ }else if( pStr->nUsed>1 ){
+ jsonAppendChar(pStr, ',');
+ }
+ pStr->pCtx = ctx;
+ jsonAppendValue(pStr, argv[0]);
+ }
+}
+static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){
+ JsonString *pStr;
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
+ if( pStr ){
+ pStr->pCtx = ctx;
+ jsonAppendChar(pStr, ']');
+ if( pStr->bErr ){
+ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
+ assert( pStr->bStatic );
+ }else if( isFinal ){
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
+ pStr->bStatic ? SQLITE_TRANSIENT :
+ sqlite3RCStrUnref);
+ pStr->bStatic = 1;
+ }else{
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
+ pStr->nUsed--;
+ }
+ }else{
+ sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC);
+ }
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+static void jsonArrayValue(sqlite3_context *ctx){
+ jsonArrayCompute(ctx, 0);
+}
+static void jsonArrayFinal(sqlite3_context *ctx){
+ jsonArrayCompute(ctx, 1);
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+/*
+** This method works for both json_group_array() and json_group_object().
+** It works by removing the first element of the group by searching forward
+** to the first comma (",") that is not within a string and deleting all
+** text through that comma.
+*/
+static void jsonGroupInverse(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned int i;
+ int inStr = 0;
+ int nNest = 0;
+ char *z;
+ char c;
+ JsonString *pStr;
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(argv);
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
+#ifdef NEVER
+ /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will
+ ** always have been called to initialize it */
+ if( NEVER(!pStr) ) return;
+#endif
+ z = pStr->zBuf;
+ for(i=1; i<pStr->nUsed && ((c = z[i])!=',' || inStr || nNest); i++){
+ if( c=='"' ){
+ inStr = !inStr;
+ }else if( c=='\\' ){
+ i++;
+ }else if( !inStr ){
+ if( c=='{' || c=='[' ) nNest++;
+ if( c=='}' || c==']' ) nNest--;
+ }
+ }
+ if( i<pStr->nUsed ){
+ pStr->nUsed -= i;
+ memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1);
+ z[pStr->nUsed] = 0;
+ }else{
+ pStr->nUsed = 1;
+ }
+}
+#else
+# define jsonGroupInverse 0
+#endif
+
+
+/*
+** json_group_obj(NAME,VALUE)
+**
+** Return a JSON object composed of all names and values in the aggregate.
+*/
+static void jsonObjectStep(
+ sqlite3_context *ctx,
+ int argc,
+ sqlite3_value **argv
+){
+ JsonString *pStr;
+ const char *z;
+ u32 n;
+ UNUSED_PARAMETER(argc);
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
+ if( pStr ){
+ if( pStr->zBuf==0 ){
+ jsonInit(pStr, ctx);
+ jsonAppendChar(pStr, '{');
+ }else if( pStr->nUsed>1 ){
+ jsonAppendChar(pStr, ',');
+ }
+ pStr->pCtx = ctx;
+ z = (const char*)sqlite3_value_text(argv[0]);
+ n = (u32)sqlite3_value_bytes(argv[0]);
+ jsonAppendString(pStr, z, n);
+ jsonAppendChar(pStr, ':');
+ jsonAppendValue(pStr, argv[1]);
+ }
+}
+static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){
+ JsonString *pStr;
+ pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
+ if( pStr ){
+ jsonAppendChar(pStr, '}');
+ if( pStr->bErr ){
+ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
+ assert( pStr->bStatic );
+ }else if( isFinal ){
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
+ pStr->bStatic ? SQLITE_TRANSIENT :
+ sqlite3RCStrUnref);
+ pStr->bStatic = 1;
+ }else{
+ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
+ pStr->nUsed--;
+ }
+ }else{
+ sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC);
+ }
+ sqlite3_result_subtype(ctx, JSON_SUBTYPE);
+}
+static void jsonObjectValue(sqlite3_context *ctx){
+ jsonObjectCompute(ctx, 0);
+}
+static void jsonObjectFinal(sqlite3_context *ctx){
+ jsonObjectCompute(ctx, 1);
+}
+
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/****************************************************************************
+** The json_each virtual table
+****************************************************************************/
+typedef struct JsonEachCursor JsonEachCursor;
+struct JsonEachCursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ u32 iRowid; /* The rowid */
+ u32 iBegin; /* The first node of the scan */
+ u32 i; /* Index in sParse.aNode[] of current row */
+ u32 iEnd; /* EOF when i equals or exceeds this value */
+ u8 eType; /* Type of top-level element */
+ u8 bRecursive; /* True for json_tree(). False for json_each() */
+ char *zJson; /* Input JSON */
+ char *zRoot; /* Path by which to filter zJson */
+ JsonParse sParse; /* Parse of the input JSON */
+};
+
+/* Constructor for the json_each virtual table */
+static int jsonEachConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ sqlite3_vtab *pNew;
+ int rc;
+
+/* Column numbers */
+#define JEACH_KEY 0
+#define JEACH_VALUE 1
+#define JEACH_TYPE 2
+#define JEACH_ATOM 3
+#define JEACH_ID 4
+#define JEACH_PARENT 5
+#define JEACH_FULLKEY 6
+#define JEACH_PATH 7
+/* The xBestIndex method assumes that the JSON and ROOT columns are
+** the last two columns in the table. Should this ever changes, be
+** sure to update the xBestIndex method. */
+#define JEACH_JSON 8
+#define JEACH_ROOT 9
+
+ UNUSED_PARAMETER(pzErr);
+ UNUSED_PARAMETER(argv);
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(pAux);
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path,"
+ "json HIDDEN,root HIDDEN)");
+ if( rc==SQLITE_OK ){
+ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(*pNew));
+ sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
+ }
+ return rc;
+}
+
+/* destructor for json_each virtual table */
+static int jsonEachDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/* constructor for a JsonEachCursor object for json_each(). */
+static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ JsonEachCursor *pCur;
+
+ UNUSED_PARAMETER(p);
+ pCur = sqlite3_malloc( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ *ppCursor = &pCur->base;
+ return SQLITE_OK;
+}
+
+/* constructor for a JsonEachCursor object for json_tree(). */
+static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ int rc = jsonEachOpenEach(p, ppCursor);
+ if( rc==SQLITE_OK ){
+ JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor;
+ pCur->bRecursive = 1;
+ }
+ return rc;
+}
+
+/* Reset a JsonEachCursor back to its original state. Free any memory
+** held. */
+static void jsonEachCursorReset(JsonEachCursor *p){
+ sqlite3_free(p->zRoot);
+ jsonParseReset(&p->sParse);
+ p->iRowid = 0;
+ p->i = 0;
+ p->iEnd = 0;
+ p->eType = 0;
+ p->zJson = 0;
+ p->zRoot = 0;
+}
+
+/* Destructor for a jsonEachCursor object */
+static int jsonEachClose(sqlite3_vtab_cursor *cur){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ jsonEachCursorReset(p);
+ sqlite3_free(cur);
+ return SQLITE_OK;
+}
+
+/* Return TRUE if the jsonEachCursor object has been advanced off the end
+** of the JSON object */
+static int jsonEachEof(sqlite3_vtab_cursor *cur){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ return p->i >= p->iEnd;
+}
+
+/* Advance the cursor to the next element for json_tree() */
+static int jsonEachNext(sqlite3_vtab_cursor *cur){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ if( p->bRecursive ){
+ if( p->sParse.aNode[p->i].jnFlags & JNODE_LABEL ) p->i++;
+ p->i++;
+ p->iRowid++;
+ if( p->i<p->iEnd ){
+ u32 iUp = p->sParse.aUp[p->i];
+ JsonNode *pUp = &p->sParse.aNode[iUp];
+ p->eType = pUp->eType;
+ if( pUp->eType==JSON_ARRAY ){
+ assert( pUp->eU==0 || pUp->eU==3 );
+ testcase( pUp->eU==3 );
+ VVA( pUp->eU = 3 );
+ if( iUp==p->i-1 ){
+ pUp->u.iKey = 0;
+ }else{
+ pUp->u.iKey++;
+ }
+ }
+ }
+ }else{
+ switch( p->eType ){
+ case JSON_ARRAY: {
+ p->i += jsonNodeSize(&p->sParse.aNode[p->i]);
+ p->iRowid++;
+ break;
+ }
+ case JSON_OBJECT: {
+ p->i += 1 + jsonNodeSize(&p->sParse.aNode[p->i+1]);
+ p->iRowid++;
+ break;
+ }
+ default: {
+ p->i = p->iEnd;
+ break;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Append an object label to the JSON Path being constructed
+** in pStr.
+*/
+static void jsonAppendObjectPathElement(
+ JsonString *pStr,
+ JsonNode *pNode
+){
+ int jj, nn;
+ const char *z;
+ assert( pNode->eType==JSON_STRING );
+ assert( pNode->jnFlags & JNODE_LABEL );
+ assert( pNode->eU==1 );
+ z = pNode->u.zJContent;
+ nn = pNode->n;
+ if( (pNode->jnFlags & JNODE_RAW)==0 ){
+ assert( nn>=2 );
+ assert( z[0]=='"' || z[0]=='\'' );
+ assert( z[nn-1]=='"' || z[0]=='\'' );
+ if( nn>2 && sqlite3Isalpha(z[1]) ){
+ for(jj=2; jj<nn-1 && sqlite3Isalnum(z[jj]); jj++){}
+ if( jj==nn-1 ){
+ z++;
+ nn -= 2;
+ }
+ }
+ }
+ jsonPrintf(nn+2, pStr, ".%.*s", nn, z);
+}
+
+/* Append the name of the path for element i to pStr
+*/
+static void jsonEachComputePath(
+ JsonEachCursor *p, /* The cursor */
+ JsonString *pStr, /* Write the path here */
+ u32 i /* Path to this element */
+){
+ JsonNode *pNode, *pUp;
+ u32 iUp;
+ if( i==0 ){
+ jsonAppendChar(pStr, '$');
+ return;
+ }
+ iUp = p->sParse.aUp[i];
+ jsonEachComputePath(p, pStr, iUp);
+ pNode = &p->sParse.aNode[i];
+ pUp = &p->sParse.aNode[iUp];
+ if( pUp->eType==JSON_ARRAY ){
+ assert( pUp->eU==3 || (pUp->eU==0 && pUp->u.iKey==0) );
+ testcase( pUp->eU==0 );
+ jsonPrintf(30, pStr, "[%d]", pUp->u.iKey);
+ }else{
+ assert( pUp->eType==JSON_OBJECT );
+ if( (pNode->jnFlags & JNODE_LABEL)==0 ) pNode--;
+ jsonAppendObjectPathElement(pStr, pNode);
+ }
+}
+
+/* Return the value of a column */
+static int jsonEachColumn(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ JsonNode *pThis = &p->sParse.aNode[p->i];
+ switch( i ){
+ case JEACH_KEY: {
+ if( p->i==0 ) break;
+ if( p->eType==JSON_OBJECT ){
+ jsonReturn(&p->sParse, pThis, ctx);
+ }else if( p->eType==JSON_ARRAY ){
+ u32 iKey;
+ if( p->bRecursive ){
+ if( p->iRowid==0 ) break;
+ assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 );
+ iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey;
+ }else{
+ iKey = p->iRowid;
+ }
+ sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
+ }
+ break;
+ }
+ case JEACH_VALUE: {
+ if( pThis->jnFlags & JNODE_LABEL ) pThis++;
+ jsonReturn(&p->sParse, pThis, ctx);
+ break;
+ }
+ case JEACH_TYPE: {
+ if( pThis->jnFlags & JNODE_LABEL ) pThis++;
+ sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
+ break;
+ }
+ case JEACH_ATOM: {
+ if( pThis->jnFlags & JNODE_LABEL ) pThis++;
+ if( pThis->eType>=JSON_ARRAY ) break;
+ jsonReturn(&p->sParse, pThis, ctx);
+ break;
+ }
+ case JEACH_ID: {
+ sqlite3_result_int64(ctx,
+ (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0));
+ break;
+ }
+ case JEACH_PARENT: {
+ if( p->i>p->iBegin && p->bRecursive ){
+ sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
+ }
+ break;
+ }
+ case JEACH_FULLKEY: {
+ JsonString x;
+ jsonInit(&x, ctx);
+ if( p->bRecursive ){
+ jsonEachComputePath(p, &x, p->i);
+ }else{
+ if( p->zRoot ){
+ jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot));
+ }else{
+ jsonAppendChar(&x, '$');
+ }
+ if( p->eType==JSON_ARRAY ){
+ jsonPrintf(30, &x, "[%d]", p->iRowid);
+ }else if( p->eType==JSON_OBJECT ){
+ jsonAppendObjectPathElement(&x, pThis);
+ }
+ }
+ jsonResult(&x);
+ break;
+ }
+ case JEACH_PATH: {
+ if( p->bRecursive ){
+ JsonString x;
+ jsonInit(&x, ctx);
+ jsonEachComputePath(p, &x, p->sParse.aUp[p->i]);
+ jsonResult(&x);
+ break;
+ }
+ /* For json_each() path and root are the same so fall through
+ ** into the root case */
+ /* no break */ deliberate_fall_through
+ }
+ default: {
+ const char *zRoot = p->zRoot;
+ if( zRoot==0 ) zRoot = "$";
+ sqlite3_result_text(ctx, zRoot, -1, SQLITE_STATIC);
+ break;
+ }
+ case JEACH_JSON: {
+ assert( i==JEACH_JSON );
+ sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_STATIC);
+ break;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Return the current rowid value */
+static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ *pRowid = p->iRowid;
+ return SQLITE_OK;
+}
+
+/* The query strategy is to look for an equality constraint on the json
+** column. Without such a constraint, the table cannot operate. idxNum is
+** 1 if the constraint is found, 3 if the constraint and zRoot are found,
+** and 0 otherwise.
+*/
+static int jsonEachBestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ int i; /* Loop counter or computed array index */
+ int aIdx[2]; /* Index of constraints for JSON and ROOT */
+ int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */
+ int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */
+ const struct sqlite3_index_constraint *pConstraint;
+
+ /* This implementation assumes that JSON and ROOT are the last two
+ ** columns in the table */
+ assert( JEACH_ROOT == JEACH_JSON+1 );
+ UNUSED_PARAMETER(tab);
+ aIdx[0] = aIdx[1] = -1;
+ pConstraint = pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ int iCol;
+ int iMask;
+ if( pConstraint->iColumn < JEACH_JSON ) continue;
+ iCol = pConstraint->iColumn - JEACH_JSON;
+ assert( iCol==0 || iCol==1 );
+ testcase( iCol==0 );
+ iMask = 1 << iCol;
+ if( pConstraint->usable==0 ){
+ unusableMask |= iMask;
+ }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ aIdx[iCol] = i;
+ idxMask |= iMask;
+ }
+ }
+ if( pIdxInfo->nOrderBy>0
+ && pIdxInfo->aOrderBy[0].iColumn<0
+ && pIdxInfo->aOrderBy[0].desc==0
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ }
+
+ if( (unusableMask & ~idxMask)!=0 ){
+ /* If there are any unusable constraints on JSON or ROOT, then reject
+ ** this entire plan */
+ return SQLITE_CONSTRAINT;
+ }
+ if( aIdx[0]<0 ){
+ /* No JSON input. Leave estimatedCost at the huge value that it was
+ ** initialized to to discourage the query planner from selecting this
+ ** plan. */
+ pIdxInfo->idxNum = 0;
+ }else{
+ pIdxInfo->estimatedCost = 1.0;
+ i = aIdx[0];
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ if( aIdx[1]<0 ){
+ pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */
+ }else{
+ i = aIdx[1];
+ pIdxInfo->aConstraintUsage[i].argvIndex = 2;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Start a search on a new JSON string */
+static int jsonEachFilter(
+ sqlite3_vtab_cursor *cur,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ JsonEachCursor *p = (JsonEachCursor*)cur;
+ const char *z;
+ const char *zRoot = 0;
+ sqlite3_int64 n;
+
+ UNUSED_PARAMETER(idxStr);
+ UNUSED_PARAMETER(argc);
+ jsonEachCursorReset(p);
+ if( idxNum==0 ) return SQLITE_OK;
+ z = (const char*)sqlite3_value_text(argv[0]);
+ if( z==0 ) return SQLITE_OK;
+ memset(&p->sParse, 0, sizeof(p->sParse));
+ p->sParse.nJPRef = 1;
+ if( sqlite3ValueIsOfClass(argv[0], sqlite3RCStrUnref) ){
+ p->sParse.zJson = sqlite3RCStrRef((char*)z);
+ }else{
+ n = sqlite3_value_bytes(argv[0]);
+ p->sParse.zJson = sqlite3RCStrNew( n+1 );
+ if( p->sParse.zJson==0 ) return SQLITE_NOMEM;
+ memcpy(p->sParse.zJson, z, (size_t)n+1);
+ }
+ p->sParse.bJsonIsRCStr = 1;
+ p->zJson = p->sParse.zJson;
+ if( jsonParse(&p->sParse, 0) ){
+ int rc = SQLITE_NOMEM;
+ if( p->sParse.oom==0 ){
+ sqlite3_free(cur->pVtab->zErrMsg);
+ cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON");
+ if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR;
+ }
+ jsonEachCursorReset(p);
+ return rc;
+ }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){
+ jsonEachCursorReset(p);
+ return SQLITE_NOMEM;
+ }else{
+ JsonNode *pNode = 0;
+ if( idxNum==3 ){
+ const char *zErr = 0;
+ zRoot = (const char*)sqlite3_value_text(argv[1]);
+ if( zRoot==0 ) return SQLITE_OK;
+ n = sqlite3_value_bytes(argv[1]);
+ p->zRoot = sqlite3_malloc64( n+1 );
+ if( p->zRoot==0 ) return SQLITE_NOMEM;
+ memcpy(p->zRoot, zRoot, (size_t)n+1);
+ if( zRoot[0]!='$' ){
+ zErr = zRoot;
+ }else{
+ pNode = jsonLookupStep(&p->sParse, 0, p->zRoot+1, 0, &zErr);
+ }
+ if( zErr ){
+ sqlite3_free(cur->pVtab->zErrMsg);
+ cur->pVtab->zErrMsg = jsonPathSyntaxError(zErr);
+ jsonEachCursorReset(p);
+ return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
+ }else if( pNode==0 ){
+ return SQLITE_OK;
+ }
+ }else{
+ pNode = p->sParse.aNode;
+ }
+ p->iBegin = p->i = (int)(pNode - p->sParse.aNode);
+ p->eType = pNode->eType;
+ if( p->eType>=JSON_ARRAY ){
+ assert( pNode->eU==0 );
+ VVA( pNode->eU = 3 );
+ pNode->u.iKey = 0;
+ p->iEnd = p->i + pNode->n + 1;
+ if( p->bRecursive ){
+ p->eType = p->sParse.aNode[p->sParse.aUp[p->i]].eType;
+ if( p->i>0 && (p->sParse.aNode[p->i-1].jnFlags & JNODE_LABEL)!=0 ){
+ p->i--;
+ }
+ }else{
+ p->i++;
+ }
+ }else{
+ p->iEnd = p->i+1;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* The methods of the json_each virtual table */
+static sqlite3_module jsonEachModule = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ jsonEachConnect, /* xConnect */
+ jsonEachBestIndex, /* xBestIndex */
+ jsonEachDisconnect, /* xDisconnect */
+ 0, /* xDestroy */
+ jsonEachOpenEach, /* xOpen - open a cursor */
+ jsonEachClose, /* xClose - close a cursor */
+ jsonEachFilter, /* xFilter - configure scan constraints */
+ jsonEachNext, /* xNext - advance a cursor */
+ jsonEachEof, /* xEof - check for end of scan */
+ jsonEachColumn, /* xColumn - read data */
+ jsonEachRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+};
+
+/* The methods of the json_tree virtual table. */
+static sqlite3_module jsonTreeModule = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ jsonEachConnect, /* xConnect */
+ jsonEachBestIndex, /* xBestIndex */
+ jsonEachDisconnect, /* xDisconnect */
+ 0, /* xDestroy */
+ jsonEachOpenTree, /* xOpen - open a cursor */
+ jsonEachClose, /* xClose - close a cursor */
+ jsonEachFilter, /* xFilter - configure scan constraints */
+ jsonEachNext, /* xNext - advance a cursor */
+ jsonEachEof, /* xEof - check for end of scan */
+ jsonEachColumn, /* xColumn - read data */
+ jsonEachRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+};
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+#endif /* !defined(SQLITE_OMIT_JSON) */
+
+/*
+** Register JSON functions.
+*/
+SQLITE_PRIVATE void sqlite3RegisterJsonFunctions(void){
+#ifndef SQLITE_OMIT_JSON
+ static FuncDef aJsonFunc[] = {
+ JFUNCTION(json, 1, 0, jsonRemoveFunc),
+ JFUNCTION(json_array, -1, 0, jsonArrayFunc),
+ JFUNCTION(json_array_length, 1, 0, jsonArrayLengthFunc),
+ JFUNCTION(json_array_length, 2, 0, jsonArrayLengthFunc),
+ JFUNCTION(json_error_position,1, 0, jsonErrorFunc),
+ JFUNCTION(json_extract, -1, 0, jsonExtractFunc),
+ JFUNCTION(->, 2, JSON_JSON, jsonExtractFunc),
+ JFUNCTION(->>, 2, JSON_SQL, jsonExtractFunc),
+ JFUNCTION(json_insert, -1, 0, jsonSetFunc),
+ JFUNCTION(json_object, -1, 0, jsonObjectFunc),
+ JFUNCTION(json_patch, 2, 0, jsonPatchFunc),
+ JFUNCTION(json_quote, 1, 0, jsonQuoteFunc),
+ JFUNCTION(json_remove, -1, 0, jsonRemoveFunc),
+ JFUNCTION(json_replace, -1, 0, jsonReplaceFunc),
+ JFUNCTION(json_set, -1, JSON_ISSET, jsonSetFunc),
+ JFUNCTION(json_type, 1, 0, jsonTypeFunc),
+ JFUNCTION(json_type, 2, 0, jsonTypeFunc),
+ JFUNCTION(json_valid, 1, 0, jsonValidFunc),
+#if SQLITE_DEBUG
+ JFUNCTION(json_parse, 1, 0, jsonParseFunc),
+ JFUNCTION(json_test1, 1, 0, jsonTest1Func),
+#endif
+ WAGGREGATE(json_group_array, 1, 0, 0,
+ jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse,
+ SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC),
+ WAGGREGATE(json_group_object, 2, 0, 0,
+ jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse,
+ SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC)
+ };
+ sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc));
+#endif
+}
+
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
+/*
+** Register the JSON table-valued functions
+*/
+SQLITE_PRIVATE int sqlite3JsonTableFunctions(sqlite3 *db){
+ int rc = SQLITE_OK;
+ static const struct {
+ const char *zName;
+ sqlite3_module *pModule;
+ } aMod[] = {
+ { "json_each", &jsonEachModule },
+ { "json_tree", &jsonTreeModule },
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
+ rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);
+ }
+ return rc;
+}
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) */
+
+/************** End of json.c ************************************************/
+/************** Begin file rtree.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code for implementations of the r-tree and r*-tree
+** algorithms packaged as an SQLite virtual table module.
+*/
+
+/*
+** Database Format of R-Tree Tables
+** --------------------------------
+**
+** The data structure for a single virtual r-tree table is stored in three
+** native SQLite tables declared as follows. In each case, the '%' character
+** in the table name is replaced with the user-supplied name of the r-tree
+** table.
+**
+** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
+**
+** The data for each node of the r-tree structure is stored in the %_node
+** table. For each node that is not the root node of the r-tree, there is
+** an entry in the %_parent table associating the node with its parent.
+** And for each row of data in the table, there is an entry in the %_rowid
+** table that maps from the entries rowid to the id of the node that it
+** is stored on. If the r-tree contains auxiliary columns, those are stored
+** on the end of the %_rowid table.
+**
+** The root node of an r-tree always exists, even if the r-tree table is
+** empty. The nodeno of the root node is always 1. All other nodes in the
+** table must be the same size as the root node. The content of each node
+** is formatted as follows:
+**
+** 1. If the node is the root node (node 1), then the first 2 bytes
+** of the node contain the tree depth as a big-endian integer.
+** For non-root nodes, the first 2 bytes are left unused.
+**
+** 2. The next 2 bytes contain the number of entries currently
+** stored in the node.
+**
+** 3. The remainder of the node contains the node entries. Each entry
+** consists of a single 8-byte integer followed by an even number
+** of 4-byte coordinates. For leaf nodes the integer is the rowid
+** of a record. For internal nodes it is the node number of a
+** child page.
+*/
+
+#if !defined(SQLITE_CORE) \
+ || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
+
+#ifndef SQLITE_CORE
+/* #include "sqlite3ext.h" */
+ SQLITE_EXTENSION_INIT1
+#else
+/* #include "sqlite3.h" */
+#endif
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */
+
+/*
+** If building separately, we will need some setup that is normally
+** found in sqliteInt.h
+*/
+#if !defined(SQLITE_AMALGAMATION)
+#include "sqlite3rtree.h"
+typedef sqlite3_int64 i64;
+typedef sqlite3_uint64 u64;
+typedef unsigned char u8;
+typedef unsigned short u16;
+typedef unsigned int u32;
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+#endif /* !defined(SQLITE_AMALGAMATION) */
+
+/* Macro to check for 4-byte alignment. Only used inside of assert() */
+#ifdef SQLITE_DEBUG
+# define FOUR_BYTE_ALIGNED(X) ((((char*)(X) - (char*)0) & 3)==0)
+#endif
+
+/* #include <string.h> */
+/* #include <stdio.h> */
+/* #include <assert.h> */
+/* #include <stdlib.h> */
+
+/* The following macro is used to suppress compiler warnings.
+*/
+#ifndef UNUSED_PARAMETER
+# define UNUSED_PARAMETER(x) (void)(x)
+#endif
+
+typedef struct Rtree Rtree;
+typedef struct RtreeCursor RtreeCursor;
+typedef struct RtreeNode RtreeNode;
+typedef struct RtreeCell RtreeCell;
+typedef struct RtreeConstraint RtreeConstraint;
+typedef struct RtreeMatchArg RtreeMatchArg;
+typedef struct RtreeGeomCallback RtreeGeomCallback;
+typedef union RtreeCoord RtreeCoord;
+typedef struct RtreeSearchPoint RtreeSearchPoint;
+
+/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
+#define RTREE_MAX_DIMENSIONS 5
+
+/* Maximum number of auxiliary columns */
+#define RTREE_MAX_AUX_COLUMN 100
+
+/* Size of hash table Rtree.aHash. This hash table is not expected to
+** ever contain very many entries, so a fixed number of buckets is
+** used.
+*/
+#define HASHSIZE 97
+
+/* The xBestIndex method of this virtual table requires an estimate of
+** the number of rows in the virtual table to calculate the costs of
+** various strategies. If possible, this estimate is loaded from the
+** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
+** Otherwise, if no sqlite_stat1 entry is available, use
+** RTREE_DEFAULT_ROWEST.
+*/
+#define RTREE_DEFAULT_ROWEST 1048576
+#define RTREE_MIN_ROWEST 100
+
+/*
+** An rtree virtual-table object.
+*/
+struct Rtree {
+ sqlite3_vtab base; /* Base class. Must be first */
+ sqlite3 *db; /* Host database connection */
+ int iNodeSize; /* Size in bytes of each node in the node table */
+ u8 nDim; /* Number of dimensions */
+ u8 nDim2; /* Twice the number of dimensions */
+ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
+ u8 nBytesPerCell; /* Bytes consumed per cell */
+ u8 inWrTrans; /* True if inside write transaction */
+ u8 nAux; /* # of auxiliary columns in %_rowid */
+#ifdef SQLITE_ENABLE_GEOPOLY
+ u8 nAuxNotNull; /* Number of initial not-null aux columns */
+#endif
+#ifdef SQLITE_DEBUG
+ u8 bCorrupt; /* Shadow table corruption detected */
+#endif
+ int iDepth; /* Current depth of the r-tree structure */
+ char *zDb; /* Name of database containing r-tree table */
+ char *zName; /* Name of r-tree table */
+ char *zNodeName; /* Name of the %_node table */
+ u32 nBusy; /* Current number of users of this structure */
+ i64 nRowEst; /* Estimated number of rows in this table */
+ u32 nCursor; /* Number of open cursors */
+ u32 nNodeRef; /* Number RtreeNodes with positive nRef */
+ char *zReadAuxSql; /* SQL for statement to read aux data */
+
+ /* List of nodes removed during a CondenseTree operation. List is
+ ** linked together via the pointer normally used for hash chains -
+ ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
+ ** headed by the node (leaf nodes have RtreeNode.iNode==0).
+ */
+ RtreeNode *pDeleted;
+
+ /* Blob I/O on xxx_node */
+ sqlite3_blob *pNodeBlob;
+
+ /* Statements to read/write/delete a record from xxx_node */
+ sqlite3_stmt *pWriteNode;
+ sqlite3_stmt *pDeleteNode;
+
+ /* Statements to read/write/delete a record from xxx_rowid */
+ sqlite3_stmt *pReadRowid;
+ sqlite3_stmt *pWriteRowid;
+ sqlite3_stmt *pDeleteRowid;
+
+ /* Statements to read/write/delete a record from xxx_parent */
+ sqlite3_stmt *pReadParent;
+ sqlite3_stmt *pWriteParent;
+ sqlite3_stmt *pDeleteParent;
+
+ /* Statement for writing to the "aux:" fields, if there are any */
+ sqlite3_stmt *pWriteAux;
+
+ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
+};
+
+/* Possible values for Rtree.eCoordType: */
+#define RTREE_COORD_REAL32 0
+#define RTREE_COORD_INT32 1
+
+/*
+** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
+** only deal with integer coordinates. No floating point operations
+** will be done.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+ typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */
+ typedef int RtreeValue; /* Low accuracy coordinate */
+# define RTREE_ZERO 0
+#else
+ typedef double RtreeDValue; /* High accuracy coordinate */
+ typedef float RtreeValue; /* Low accuracy coordinate */
+# define RTREE_ZERO 0.0
+#endif
+
+/*
+** Set the Rtree.bCorrupt flag
+*/
+#ifdef SQLITE_DEBUG
+# define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1)
+#else
+# define RTREE_IS_CORRUPT(X)
+#endif
+
+/*
+** When doing a search of an r-tree, instances of the following structure
+** record intermediate results from the tree walk.
+**
+** The id is always a node-id. For iLevel>=1 the id is the node-id of
+** the node that the RtreeSearchPoint represents. When iLevel==0, however,
+** the id is of the parent node and the cell that RtreeSearchPoint
+** represents is the iCell-th entry in the parent node.
+*/
+struct RtreeSearchPoint {
+ RtreeDValue rScore; /* The score for this node. Smallest goes first. */
+ sqlite3_int64 id; /* Node ID */
+ u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */
+ u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */
+ u8 iCell; /* Cell index within the node */
+};
+
+/*
+** The minimum number of cells allowed for a node is a third of the
+** maximum. In Gutman's notation:
+**
+** m = M/3
+**
+** If an R*-tree "Reinsert" operation is required, the same number of
+** cells are removed from the overfull node and reinserted into the tree.
+*/
+#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
+#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
+#define RTREE_MAXCELLS 51
+
+/*
+** The smallest possible node-size is (512-64)==448 bytes. And the largest
+** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
+** Therefore all non-root nodes must contain at least 3 entries. Since
+** 3^40 is greater than 2^64, an r-tree structure always has a depth of
+** 40 or less.
+*/
+#define RTREE_MAX_DEPTH 40
+
+
+/*
+** Number of entries in the cursor RtreeNode cache. The first entry is
+** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
+** entries cache the RtreeNode for the first elements of the priority queue.
+*/
+#define RTREE_CACHE_SZ 5
+
+/*
+** An rtree cursor object.
+*/
+struct RtreeCursor {
+ sqlite3_vtab_cursor base; /* Base class. Must be first */
+ u8 atEOF; /* True if at end of search */
+ u8 bPoint; /* True if sPoint is valid */
+ u8 bAuxValid; /* True if pReadAux is valid */
+ int iStrategy; /* Copy of idxNum search parameter */
+ int nConstraint; /* Number of entries in aConstraint */
+ RtreeConstraint *aConstraint; /* Search constraints. */
+ int nPointAlloc; /* Number of slots allocated for aPoint[] */
+ int nPoint; /* Number of slots used in aPoint[] */
+ int mxLevel; /* iLevel value for root of the tree */
+ RtreeSearchPoint *aPoint; /* Priority queue for search points */
+ sqlite3_stmt *pReadAux; /* Statement to read aux-data */
+ RtreeSearchPoint sPoint; /* Cached next search point */
+ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
+ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */
+};
+
+/* Return the Rtree of a RtreeCursor */
+#define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
+
+/*
+** A coordinate can be either a floating point number or a integer. All
+** coordinates within a single R-Tree are always of the same time.
+*/
+union RtreeCoord {
+ RtreeValue f; /* Floating point value */
+ int i; /* Integer value */
+ u32 u; /* Unsigned for byte-order conversions */
+};
+
+/*
+** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
+** formatted as a RtreeDValue (double or int64). This macro assumes that local
+** variable pRtree points to the Rtree structure associated with the
+** RtreeCoord.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+# define DCOORD(coord) ((RtreeDValue)coord.i)
+#else
+# define DCOORD(coord) ( \
+ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
+ ((double)coord.f) : \
+ ((double)coord.i) \
+ )
+#endif
+
+/*
+** A search constraint.
+*/
+struct RtreeConstraint {
+ int iCoord; /* Index of constrained coordinate */
+ int op; /* Constraining operation */
+ union {
+ RtreeDValue rValue; /* Constraint value. */
+ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
+ int (*xQueryFunc)(sqlite3_rtree_query_info*);
+ } u;
+ sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */
+};
+
+/* Possible values for RtreeConstraint.op */
+#define RTREE_EQ 0x41 /* A */
+#define RTREE_LE 0x42 /* B */
+#define RTREE_LT 0x43 /* C */
+#define RTREE_GE 0x44 /* D */
+#define RTREE_GT 0x45 /* E */
+#define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
+#define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
+
+/* Special operators available only on cursors. Needs to be consecutive
+** with the normal values above, but must be less than RTREE_MATCH. These
+** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or
+** x<'xyz' (RTREE_TRUE) */
+#define RTREE_TRUE 0x3f /* ? */
+#define RTREE_FALSE 0x40 /* @ */
+
+/*
+** An rtree structure node.
+*/
+struct RtreeNode {
+ RtreeNode *pParent; /* Parent node */
+ i64 iNode; /* The node number */
+ int nRef; /* Number of references to this node */
+ int isDirty; /* True if the node needs to be written to disk */
+ u8 *zData; /* Content of the node, as should be on disk */
+ RtreeNode *pNext; /* Next node in this hash collision chain */
+};
+
+/* Return the number of cells in a node */
+#define NCELL(pNode) readInt16(&(pNode)->zData[2])
+
+/*
+** A single cell from a node, deserialized
+*/
+struct RtreeCell {
+ i64 iRowid; /* Node or entry ID */
+ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */
+};
+
+
+/*
+** This object becomes the sqlite3_user_data() for the SQL functions
+** that are created by sqlite3_rtree_geometry_callback() and
+** sqlite3_rtree_query_callback() and which appear on the right of MATCH
+** operators in order to constrain a search.
+**
+** xGeom and xQueryFunc are the callback functions. Exactly one of
+** xGeom and xQueryFunc fields is non-NULL, depending on whether the
+** SQL function was created using sqlite3_rtree_geometry_callback() or
+** sqlite3_rtree_query_callback().
+**
+** This object is deleted automatically by the destructor mechanism in
+** sqlite3_create_function_v2().
+*/
+struct RtreeGeomCallback {
+ int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
+ int (*xQueryFunc)(sqlite3_rtree_query_info*);
+ void (*xDestructor)(void*);
+ void *pContext;
+};
+
+/*
+** An instance of this structure (in the form of a BLOB) is returned by
+** the SQL functions that sqlite3_rtree_geometry_callback() and
+** sqlite3_rtree_query_callback() create, and is read as the right-hand
+** operand to the MATCH operator of an R-Tree.
+*/
+struct RtreeMatchArg {
+ u32 iSize; /* Size of this object */
+ RtreeGeomCallback cb; /* Info about the callback functions */
+ int nParam; /* Number of parameters to the SQL function */
+ sqlite3_value **apSqlParam; /* Original SQL parameter values */
+ RtreeDValue aParam[1]; /* Values for parameters to the SQL function */
+};
+
+#ifndef MAX
+# define MAX(x,y) ((x) < (y) ? (y) : (x))
+#endif
+#ifndef MIN
+# define MIN(x,y) ((x) > (y) ? (y) : (x))
+#endif
+
+/* What version of GCC is being used. 0 means GCC is not being used .
+** Note that the GCC_VERSION macro will also be set correctly when using
+** clang, since clang works hard to be gcc compatible. So the gcc
+** optimizations will also work when compiling with clang.
+*/
+#ifndef GCC_VERSION
+#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
+#else
+# define GCC_VERSION 0
+#endif
+#endif
+
+/* The testcase() macro should already be defined in the amalgamation. If
+** it is not, make it a no-op.
+*/
+#ifndef SQLITE_AMALGAMATION
+# if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
+ unsigned int sqlite3RtreeTestcase = 0;
+# define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; }
+# else
+# define testcase(X)
+# endif
+#endif
+
+/*
+** Make sure that the compiler intrinsics we desire are enabled when
+** compiling with an appropriate version of MSVC unless prevented by
+** the SQLITE_DISABLE_INTRINSIC define.
+*/
+#if !defined(SQLITE_DISABLE_INTRINSIC)
+# if defined(_MSC_VER) && _MSC_VER>=1400
+# if !defined(_WIN32_WCE)
+/* # include <intrin.h> */
+# pragma intrinsic(_byteswap_ulong)
+# pragma intrinsic(_byteswap_uint64)
+# else
+/* # include <cmnintrin.h> */
+# endif
+# endif
+#endif
+
+/*
+** Macros to determine whether the machine is big or little endian,
+** and whether or not that determination is run-time or compile-time.
+**
+** For best performance, an attempt is made to guess at the byte-order
+** using C-preprocessor macros. If that is unsuccessful, or if
+** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
+** at run-time.
+*/
+#ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */
+# if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__
+# define SQLITE_BYTEORDER 4321
+# elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
+# define SQLITE_BYTEORDER 1234
+# elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1
+# define SQLITE_BYTEORDER 4321
+# elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
+ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
+ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
+# define SQLITE_BYTEORDER 1234
+# elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__)
+# define SQLITE_BYTEORDER 4321
+# else
+# define SQLITE_BYTEORDER 0
+# endif
+#endif
+
+
+/* What version of MSVC is being used. 0 means MSVC is not being used */
+#ifndef MSVC_VERSION
+#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define MSVC_VERSION _MSC_VER
+#else
+# define MSVC_VERSION 0
+#endif
+#endif
+
+/*
+** Functions to deserialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The deserialized value is returned.
+*/
+static int readInt16(u8 *p){
+ return (p[0]<<8) + p[1];
+}
+static void readCoord(u8 *p, RtreeCoord *pCoord){
+ assert( FOUR_BYTE_ALIGNED(p) );
+#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ pCoord->u = _byteswap_ulong(*(u32*)p);
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ pCoord->u = __builtin_bswap32(*(u32*)p);
+#elif SQLITE_BYTEORDER==4321
+ pCoord->u = *(u32*)p;
+#else
+ pCoord->u = (
+ (((u32)p[0]) << 24) +
+ (((u32)p[1]) << 16) +
+ (((u32)p[2]) << 8) +
+ (((u32)p[3]) << 0)
+ );
+#endif
+}
+static i64 readInt64(u8 *p){
+#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ u64 x;
+ memcpy(&x, p, 8);
+ return (i64)_byteswap_uint64(x);
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ u64 x;
+ memcpy(&x, p, 8);
+ return (i64)__builtin_bswap64(x);
+#elif SQLITE_BYTEORDER==4321
+ i64 x;
+ memcpy(&x, p, 8);
+ return x;
+#else
+ return (i64)(
+ (((u64)p[0]) << 56) +
+ (((u64)p[1]) << 48) +
+ (((u64)p[2]) << 40) +
+ (((u64)p[3]) << 32) +
+ (((u64)p[4]) << 24) +
+ (((u64)p[5]) << 16) +
+ (((u64)p[6]) << 8) +
+ (((u64)p[7]) << 0)
+ );
+#endif
+}
+
+/*
+** Functions to serialize a 16 bit integer, 32 bit real number and
+** 64 bit integer. The value returned is the number of bytes written
+** to the argument buffer (always 2, 4 and 8 respectively).
+*/
+static void writeInt16(u8 *p, int i){
+ p[0] = (i>> 8)&0xFF;
+ p[1] = (i>> 0)&0xFF;
+}
+static int writeCoord(u8 *p, RtreeCoord *pCoord){
+ u32 i;
+ assert( FOUR_BYTE_ALIGNED(p) );
+ assert( sizeof(RtreeCoord)==4 );
+ assert( sizeof(u32)==4 );
+#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ i = __builtin_bswap32(pCoord->u);
+ memcpy(p, &i, 4);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ i = _byteswap_ulong(pCoord->u);
+ memcpy(p, &i, 4);
+#elif SQLITE_BYTEORDER==4321
+ i = pCoord->u;
+ memcpy(p, &i, 4);
+#else
+ i = pCoord->u;
+ p[0] = (i>>24)&0xFF;
+ p[1] = (i>>16)&0xFF;
+ p[2] = (i>> 8)&0xFF;
+ p[3] = (i>> 0)&0xFF;
+#endif
+ return 4;
+}
+static int writeInt64(u8 *p, i64 i){
+#if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+ i = (i64)__builtin_bswap64((u64)i);
+ memcpy(p, &i, 8);
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+ i = (i64)_byteswap_uint64((u64)i);
+ memcpy(p, &i, 8);
+#elif SQLITE_BYTEORDER==4321
+ memcpy(p, &i, 8);
+#else
+ p[0] = (i>>56)&0xFF;
+ p[1] = (i>>48)&0xFF;
+ p[2] = (i>>40)&0xFF;
+ p[3] = (i>>32)&0xFF;
+ p[4] = (i>>24)&0xFF;
+ p[5] = (i>>16)&0xFF;
+ p[6] = (i>> 8)&0xFF;
+ p[7] = (i>> 0)&0xFF;
+#endif
+ return 8;
+}
+
+/*
+** Increment the reference count of node p.
+*/
+static void nodeReference(RtreeNode *p){
+ if( p ){
+ assert( p->nRef>0 );
+ p->nRef++;
+ }
+}
+
+/*
+** Clear the content of node p (set all bytes to 0x00).
+*/
+static void nodeZero(Rtree *pRtree, RtreeNode *p){
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2);
+ p->isDirty = 1;
+}
+
+/*
+** Given a node number iNode, return the corresponding key to use
+** in the Rtree.aHash table.
+*/
+static unsigned int nodeHash(i64 iNode){
+ return ((unsigned)iNode) % HASHSIZE;
+}
+
+/*
+** Search the node hash table for node iNode. If found, return a pointer
+** to it. Otherwise, return 0.
+*/
+static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
+ RtreeNode *p;
+ for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
+ return p;
+}
+
+/*
+** Add node pNode to the node hash table.
+*/
+static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
+ int iHash;
+ assert( pNode->pNext==0 );
+ iHash = nodeHash(pNode->iNode);
+ pNode->pNext = pRtree->aHash[iHash];
+ pRtree->aHash[iHash] = pNode;
+}
+
+/*
+** Remove node pNode from the node hash table.
+*/
+static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode **pp;
+ if( pNode->iNode!=0 ){
+ pp = &pRtree->aHash[nodeHash(pNode->iNode)];
+ for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
+ *pp = pNode->pNext;
+ pNode->pNext = 0;
+ }
+}
+
+/*
+** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
+** indicating that node has not yet been assigned a node number. It is
+** assigned a node number when nodeWrite() is called to write the
+** node contents out to the database.
+*/
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
+ RtreeNode *pNode;
+ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize);
+ if( pNode ){
+ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pRtree->nNodeRef++;
+ pNode->pParent = pParent;
+ pNode->isDirty = 1;
+ nodeReference(pParent);
+ }
+ return pNode;
+}
+
+/*
+** Clear the Rtree.pNodeBlob object
+*/
+static void nodeBlobReset(Rtree *pRtree){
+ if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
+ sqlite3_blob *pBlob = pRtree->pNodeBlob;
+ pRtree->pNodeBlob = 0;
+ sqlite3_blob_close(pBlob);
+ }
+}
+
+/*
+** Obtain a reference to an r-tree node.
+*/
+static int nodeAcquire(
+ Rtree *pRtree, /* R-tree structure */
+ i64 iNode, /* Node number to load */
+ RtreeNode *pParent, /* Either the parent node or NULL */
+ RtreeNode **ppNode /* OUT: Acquired node */
+){
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = 0;
+
+ /* Check if the requested node is already in the hash table. If so,
+ ** increase its reference count and return it.
+ */
+ if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){
+ if( pParent && pParent!=pNode->pParent ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+ pNode->nRef++;
+ *ppNode = pNode;
+ return SQLITE_OK;
+ }
+
+ if( pRtree->pNodeBlob ){
+ sqlite3_blob *pBlob = pRtree->pNodeBlob;
+ pRtree->pNodeBlob = 0;
+ rc = sqlite3_blob_reopen(pBlob, iNode);
+ pRtree->pNodeBlob = pBlob;
+ if( rc ){
+ nodeBlobReset(pRtree);
+ if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
+ }
+ }
+ if( pRtree->pNodeBlob==0 ){
+ rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, pRtree->zNodeName,
+ "data", iNode, 0,
+ &pRtree->pNodeBlob);
+ }
+ if( rc ){
+ nodeBlobReset(pRtree);
+ *ppNode = 0;
+ /* If unable to open an sqlite3_blob on the desired row, that can only
+ ** be because the shadow tables hold erroneous data. */
+ if( rc==SQLITE_ERROR ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){
+ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize);
+ if( !pNode ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pNode->pParent = pParent;
+ pNode->zData = (u8 *)&pNode[1];
+ pNode->nRef = 1;
+ pRtree->nNodeRef++;
+ pNode->iNode = iNode;
+ pNode->isDirty = 0;
+ pNode->pNext = 0;
+ rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
+ pRtree->iNodeSize, 0);
+ }
+ }
+
+ /* If the root node was just loaded, set pRtree->iDepth to the height
+ ** of the r-tree structure. A height of zero means all data is stored on
+ ** the root node. A height of one means the children of the root node
+ ** are the leaves, and so on. If the depth as specified on the root node
+ ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
+ */
+ if( rc==SQLITE_OK && pNode && iNode==1 ){
+ pRtree->iDepth = readInt16(pNode->zData);
+ if( pRtree->iDepth>RTREE_MAX_DEPTH ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ }
+
+ /* If no error has occurred so far, check if the "number of entries"
+ ** field on the node is too large. If so, set the return code to
+ ** SQLITE_CORRUPT_VTAB.
+ */
+ if( pNode && rc==SQLITE_OK ){
+ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pNode!=0 ){
+ nodeReference(pParent);
+ nodeHashInsert(pRtree, pNode);
+ }else{
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ }
+ *ppNode = pNode;
+ }else{
+ if( pNode ){
+ pRtree->nNodeRef--;
+ sqlite3_free(pNode);
+ }
+ *ppNode = 0;
+ }
+
+ return rc;
+}
+
+/*
+** Overwrite cell iCell of node pNode with the contents of pCell.
+*/
+static void nodeOverwriteCell(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node into which the cell is to be written */
+ RtreeCell *pCell, /* The cell to write */
+ int iCell /* Index into pNode into which pCell is written */
+){
+ int ii;
+ u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ p += writeInt64(p, pCell->iRowid);
+ for(ii=0; ii<pRtree->nDim2; ii++){
+ p += writeCoord(p, &pCell->aCoord[ii]);
+ }
+ pNode->isDirty = 1;
+}
+
+/*
+** Remove the cell with index iCell from node pNode.
+*/
+static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
+ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
+ u8 *pSrc = &pDst[pRtree->nBytesPerCell];
+ int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
+ memmove(pDst, pSrc, nByte);
+ writeInt16(&pNode->zData[2], NCELL(pNode)-1);
+ pNode->isDirty = 1;
+}
+
+/*
+** Insert the contents of cell pCell into node pNode. If the insert
+** is successful, return SQLITE_OK.
+**
+** If there is not enough free space in pNode, return SQLITE_FULL.
+*/
+static int nodeInsertCell(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* Write new cell into this node */
+ RtreeCell *pCell /* The cell to be inserted */
+){
+ int nCell; /* Current number of cells in pNode */
+ int nMaxCell; /* Maximum number of cells for pNode */
+
+ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
+ nCell = NCELL(pNode);
+
+ assert( nCell<=nMaxCell );
+ if( nCell<nMaxCell ){
+ nodeOverwriteCell(pRtree, pNode, pCell, nCell);
+ writeInt16(&pNode->zData[2], nCell+1);
+ pNode->isDirty = 1;
+ }
+
+ return (nCell==nMaxCell);
+}
+
+/*
+** If the node is dirty, write it out to the database.
+*/
+static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode->isDirty ){
+ sqlite3_stmt *p = pRtree->pWriteNode;
+ if( pNode->iNode ){
+ sqlite3_bind_int64(p, 1, pNode->iNode);
+ }else{
+ sqlite3_bind_null(p, 1);
+ }
+ sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
+ sqlite3_step(p);
+ pNode->isDirty = 0;
+ rc = sqlite3_reset(p);
+ sqlite3_bind_null(p, 2);
+ if( pNode->iNode==0 && rc==SQLITE_OK ){
+ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
+ nodeHashInsert(pRtree, pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a reference to a node. If the node is dirty and the reference
+** count drops to zero, the node data is written to the database.
+*/
+static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
+ int rc = SQLITE_OK;
+ if( pNode ){
+ assert( pNode->nRef>0 );
+ assert( pRtree->nNodeRef>0 );
+ pNode->nRef--;
+ if( pNode->nRef==0 ){
+ pRtree->nNodeRef--;
+ if( pNode->iNode==1 ){
+ pRtree->iDepth = -1;
+ }
+ if( pNode->pParent ){
+ rc = nodeRelease(pRtree, pNode->pParent);
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeWrite(pRtree, pNode);
+ }
+ nodeHashDelete(pRtree, pNode);
+ sqlite3_free(pNode);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the 64-bit integer value associated with cell iCell of
+** node pNode. If pNode is a leaf node, this is a rowid. If it is
+** an internal node, then the 64-bit integer is a child page number.
+*/
+static i64 nodeGetRowid(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node from which to extract the ID */
+ int iCell /* The cell index from which to extract the ID */
+){
+ assert( iCell<NCELL(pNode) );
+ return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
+}
+
+/*
+** Return coordinate iCoord from cell iCell in node pNode.
+*/
+static void nodeGetCoord(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node from which to extract a coordinate */
+ int iCell, /* The index of the cell within the node */
+ int iCoord, /* Which coordinate to extract */
+ RtreeCoord *pCoord /* OUT: Space to write result to */
+){
+ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
+}
+
+/*
+** Deserialize cell iCell of node pNode. Populate the structure pointed
+** to by pCell with the results.
+*/
+static void nodeGetCell(
+ Rtree *pRtree, /* The overall R-Tree */
+ RtreeNode *pNode, /* The node containing the cell to be read */
+ int iCell, /* Index of the cell within the node */
+ RtreeCell *pCell /* OUT: Write the cell contents here */
+){
+ u8 *pData;
+ RtreeCoord *pCoord;
+ int ii = 0;
+ pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
+ pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
+ pCoord = pCell->aCoord;
+ do{
+ readCoord(pData, &pCoord[ii]);
+ readCoord(pData+4, &pCoord[ii+1]);
+ pData += 8;
+ ii += 2;
+ }while( ii<pRtree->nDim2 );
+}
+
+
+/* Forward declaration for the function that does the work of
+** the virtual table module xCreate() and xConnect() methods.
+*/
+static int rtreeInit(
+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
+);
+
+/*
+** Rtree virtual table module xCreate method.
+*/
+static int rtreeCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
+}
+
+/*
+** Rtree virtual table module xConnect method.
+*/
+static int rtreeConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
+}
+
+/*
+** Increment the r-tree reference count.
+*/
+static void rtreeReference(Rtree *pRtree){
+ pRtree->nBusy++;
+}
+
+/*
+** Decrement the r-tree reference count. When the reference count reaches
+** zero the structure is deleted.
+*/
+static void rtreeRelease(Rtree *pRtree){
+ pRtree->nBusy--;
+ if( pRtree->nBusy==0 ){
+ pRtree->inWrTrans = 0;
+ assert( pRtree->nCursor==0 );
+ nodeBlobReset(pRtree);
+ assert( pRtree->nNodeRef==0 || pRtree->bCorrupt );
+ sqlite3_finalize(pRtree->pWriteNode);
+ sqlite3_finalize(pRtree->pDeleteNode);
+ sqlite3_finalize(pRtree->pReadRowid);
+ sqlite3_finalize(pRtree->pWriteRowid);
+ sqlite3_finalize(pRtree->pDeleteRowid);
+ sqlite3_finalize(pRtree->pReadParent);
+ sqlite3_finalize(pRtree->pWriteParent);
+ sqlite3_finalize(pRtree->pDeleteParent);
+ sqlite3_finalize(pRtree->pWriteAux);
+ sqlite3_free(pRtree->zReadAuxSql);
+ sqlite3_free(pRtree);
+ }
+}
+
+/*
+** Rtree virtual table module xDisconnect method.
+*/
+static int rtreeDisconnect(sqlite3_vtab *pVtab){
+ rtreeRelease((Rtree *)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xDestroy method.
+*/
+static int rtreeDestroy(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc;
+ char *zCreate = sqlite3_mprintf(
+ "DROP TABLE '%q'.'%q_node';"
+ "DROP TABLE '%q'.'%q_rowid';"
+ "DROP TABLE '%q'.'%q_parent';",
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName,
+ pRtree->zDb, pRtree->zName
+ );
+ if( !zCreate ){
+ rc = SQLITE_NOMEM;
+ }else{
+ nodeBlobReset(pRtree);
+ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ }
+ if( rc==SQLITE_OK ){
+ rtreeRelease(pRtree);
+ }
+
+ return rc;
+}
+
+/*
+** Rtree virtual table module xOpen method.
+*/
+static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ int rc = SQLITE_NOMEM;
+ Rtree *pRtree = (Rtree *)pVTab;
+ RtreeCursor *pCsr;
+
+ pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor));
+ if( pCsr ){
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = pVTab;
+ rc = SQLITE_OK;
+ pRtree->nCursor++;
+ }
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+
+ return rc;
+}
+
+
+/*
+** Reset a cursor back to its initial state.
+*/
+static void resetCursor(RtreeCursor *pCsr){
+ Rtree *pRtree = (Rtree *)(pCsr->base.pVtab);
+ int ii;
+ sqlite3_stmt *pStmt;
+ if( pCsr->aConstraint ){
+ int i; /* Used to iterate through constraint array */
+ for(i=0; i<pCsr->nConstraint; i++){
+ sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
+ if( pInfo ){
+ if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
+ sqlite3_free(pInfo);
+ }
+ }
+ sqlite3_free(pCsr->aConstraint);
+ pCsr->aConstraint = 0;
+ }
+ for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
+ sqlite3_free(pCsr->aPoint);
+ pStmt = pCsr->pReadAux;
+ memset(pCsr, 0, sizeof(RtreeCursor));
+ pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
+ pCsr->pReadAux = pStmt;
+
+}
+
+/*
+** Rtree virtual table module xClose method.
+*/
+static int rtreeClose(sqlite3_vtab_cursor *cur){
+ Rtree *pRtree = (Rtree *)(cur->pVtab);
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ assert( pRtree->nCursor>0 );
+ resetCursor(pCsr);
+ sqlite3_finalize(pCsr->pReadAux);
+ sqlite3_free(pCsr);
+ pRtree->nCursor--;
+ nodeBlobReset(pRtree);
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xEof method.
+**
+** Return non-zero if the cursor does not currently point to a valid
+** record (i.e if the scan has finished), or zero otherwise.
+*/
+static int rtreeEof(sqlite3_vtab_cursor *cur){
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ return pCsr->atEOF;
+}
+
+/*
+** Convert raw bits from the on-disk RTree record into a coordinate value.
+** The on-disk format is big-endian and needs to be converted for little-
+** endian platforms. The on-disk record stores integer coordinates if
+** eInt is true and it stores 32-bit floating point records if eInt is
+** false. a[] is the four bytes of the on-disk record to be decoded.
+** Store the results in "r".
+**
+** There are five versions of this macro. The last one is generic. The
+** other four are various architectures-specific optimizations.
+*/
+#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ c.u = _byteswap_ulong(*(u32*)a); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ c.u = __builtin_bswap32(*(u32*)a); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#elif SQLITE_BYTEORDER==1234
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ memcpy(&c.u,a,4); \
+ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
+ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#elif SQLITE_BYTEORDER==4321
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ memcpy(&c.u,a,4); \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#else
+#define RTREE_DECODE_COORD(eInt, a, r) { \
+ RtreeCoord c; /* Coordinate decoded */ \
+ c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
+ +((u32)a[2]<<8) + a[3]; \
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
+}
+#endif
+
+/*
+** Check the RTree node or entry given by pCellData and p against the MATCH
+** constraint pConstraint.
+*/
+static int rtreeCallbackConstraint(
+ RtreeConstraint *pConstraint, /* The constraint to test */
+ int eInt, /* True if RTree holding integer coordinates */
+ u8 *pCellData, /* Raw cell content */
+ RtreeSearchPoint *pSearch, /* Container of this cell */
+ sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */
+ int *peWithin /* OUT: visibility of the cell */
+){
+ sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
+ int nCoord = pInfo->nCoord; /* No. of coordinates */
+ int rc; /* Callback return code */
+ RtreeCoord c; /* Translator union */
+ sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */
+
+ assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
+ assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
+
+ if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
+ pInfo->iRowid = readInt64(pCellData);
+ }
+ pCellData += 8;
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( eInt==0 ){
+ switch( nCoord ){
+ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f;
+ readCoord(pCellData+32, &c); aCoord[8] = c.f;
+ case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f;
+ readCoord(pCellData+24, &c); aCoord[6] = c.f;
+ case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f;
+ readCoord(pCellData+16, &c); aCoord[4] = c.f;
+ case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f;
+ readCoord(pCellData+8, &c); aCoord[2] = c.f;
+ default: readCoord(pCellData+4, &c); aCoord[1] = c.f;
+ readCoord(pCellData, &c); aCoord[0] = c.f;
+ }
+ }else
+#endif
+ {
+ switch( nCoord ){
+ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i;
+ readCoord(pCellData+32, &c); aCoord[8] = c.i;
+ case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i;
+ readCoord(pCellData+24, &c); aCoord[6] = c.i;
+ case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i;
+ readCoord(pCellData+16, &c); aCoord[4] = c.i;
+ case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i;
+ readCoord(pCellData+8, &c); aCoord[2] = c.i;
+ default: readCoord(pCellData+4, &c); aCoord[1] = c.i;
+ readCoord(pCellData, &c); aCoord[0] = c.i;
+ }
+ }
+ if( pConstraint->op==RTREE_MATCH ){
+ int eWithin = 0;
+ rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
+ nCoord, aCoord, &eWithin);
+ if( eWithin==0 ) *peWithin = NOT_WITHIN;
+ *prScore = RTREE_ZERO;
+ }else{
+ pInfo->aCoord = aCoord;
+ pInfo->iLevel = pSearch->iLevel - 1;
+ pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
+ pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
+ rc = pConstraint->u.xQueryFunc(pInfo);
+ if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
+ if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
+ *prScore = pInfo->rScore;
+ }
+ }
+ return rc;
+}
+
+/*
+** Check the internal RTree node given by pCellData against constraint p.
+** If this constraint cannot be satisfied by any child within the node,
+** set *peWithin to NOT_WITHIN.
+*/
+static void rtreeNonleafConstraint(
+ RtreeConstraint *p, /* The constraint to test */
+ int eInt, /* True if RTree holds integer coordinates */
+ u8 *pCellData, /* Raw cell content as appears on disk */
+ int *peWithin /* Adjust downward, as appropriate */
+){
+ sqlite3_rtree_dbl val; /* Coordinate value convert to a double */
+
+ /* p->iCoord might point to either a lower or upper bound coordinate
+ ** in a coordinate pair. But make pCellData point to the lower bound.
+ */
+ pCellData += 8 + 4*(p->iCoord&0xfe);
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE
+ || p->op==RTREE_FALSE );
+ assert( FOUR_BYTE_ALIGNED(pCellData) );
+ switch( p->op ){
+ case RTREE_TRUE: return; /* Always satisfied */
+ case RTREE_FALSE: break; /* Never satisfied */
+ case RTREE_EQ:
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the lower bound of the coordinate pair */
+ if( p->u.rValue>=val ){
+ pCellData += 4;
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the upper bound of the coordinate pair */
+ if( p->u.rValue<=val ) return;
+ }
+ break;
+ case RTREE_LE:
+ case RTREE_LT:
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the lower bound of the coordinate pair */
+ if( p->u.rValue>=val ) return;
+ break;
+
+ default:
+ pCellData += 4;
+ RTREE_DECODE_COORD(eInt, pCellData, val);
+ /* val now holds the upper bound of the coordinate pair */
+ if( p->u.rValue<=val ) return;
+ break;
+ }
+ *peWithin = NOT_WITHIN;
+}
+
+/*
+** Check the leaf RTree cell given by pCellData against constraint p.
+** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
+** If the constraint is satisfied, leave *peWithin unchanged.
+**
+** The constraint is of the form: xN op $val
+**
+** The op is given by p->op. The xN is p->iCoord-th coordinate in
+** pCellData. $val is given by p->u.rValue.
+*/
+static void rtreeLeafConstraint(
+ RtreeConstraint *p, /* The constraint to test */
+ int eInt, /* True if RTree holds integer coordinates */
+ u8 *pCellData, /* Raw cell content as appears on disk */
+ int *peWithin /* Adjust downward, as appropriate */
+){
+ RtreeDValue xN; /* Coordinate value converted to a double */
+
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
+ || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE
+ || p->op==RTREE_FALSE );
+ pCellData += 8 + p->iCoord*4;
+ assert( FOUR_BYTE_ALIGNED(pCellData) );
+ RTREE_DECODE_COORD(eInt, pCellData, xN);
+ switch( p->op ){
+ case RTREE_TRUE: return; /* Always satisfied */
+ case RTREE_FALSE: break; /* Never satisfied */
+ case RTREE_LE: if( xN <= p->u.rValue ) return; break;
+ case RTREE_LT: if( xN < p->u.rValue ) return; break;
+ case RTREE_GE: if( xN >= p->u.rValue ) return; break;
+ case RTREE_GT: if( xN > p->u.rValue ) return; break;
+ default: if( xN == p->u.rValue ) return; break;
+ }
+ *peWithin = NOT_WITHIN;
+}
+
+/*
+** One of the cells in node pNode is guaranteed to have a 64-bit
+** integer value equal to iRowid. Return the index of this cell.
+*/
+static int nodeRowidIndex(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ i64 iRowid,
+ int *piIndex
+){
+ int ii;
+ int nCell = NCELL(pNode);
+ assert( nCell<200 );
+ for(ii=0; ii<nCell; ii++){
+ if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
+ *piIndex = ii;
+ return SQLITE_OK;
+ }
+ }
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+}
+
+/*
+** Return the index of the cell containing a pointer to node pNode
+** in its parent. If pNode is the root node, return -1.
+*/
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
+ RtreeNode *pParent = pNode->pParent;
+ if( ALWAYS(pParent) ){
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
+ }else{
+ *piIndex = -1;
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Compare two search points. Return negative, zero, or positive if the first
+** is less than, equal to, or greater than the second.
+**
+** The rScore is the primary key. Smaller rScore values come first.
+** If the rScore is a tie, then use iLevel as the tie breaker with smaller
+** iLevel values coming first. In this way, if rScore is the same for all
+** SearchPoints, then iLevel becomes the deciding factor and the result
+** is a depth-first search, which is the desired default behavior.
+*/
+static int rtreeSearchPointCompare(
+ const RtreeSearchPoint *pA,
+ const RtreeSearchPoint *pB
+){
+ if( pA->rScore<pB->rScore ) return -1;
+ if( pA->rScore>pB->rScore ) return +1;
+ if( pA->iLevel<pB->iLevel ) return -1;
+ if( pA->iLevel>pB->iLevel ) return +1;
+ return 0;
+}
+
+/*
+** Interchange two search points in a cursor.
+*/
+static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
+ RtreeSearchPoint t = p->aPoint[i];
+ assert( i<j );
+ p->aPoint[i] = p->aPoint[j];
+ p->aPoint[j] = t;
+ i++; j++;
+ if( i<RTREE_CACHE_SZ ){
+ if( j>=RTREE_CACHE_SZ ){
+ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
+ p->aNode[i] = 0;
+ }else{
+ RtreeNode *pTemp = p->aNode[i];
+ p->aNode[i] = p->aNode[j];
+ p->aNode[j] = pTemp;
+ }
+ }
+}
+
+/*
+** Return the search point with the lowest current score.
+*/
+static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
+ return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
+}
+
+/*
+** Get the RtreeNode for the search point with the lowest score.
+*/
+static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
+ sqlite3_int64 id;
+ int ii = 1 - pCur->bPoint;
+ assert( ii==0 || ii==1 );
+ assert( pCur->bPoint || pCur->nPoint );
+ if( pCur->aNode[ii]==0 ){
+ assert( pRC!=0 );
+ id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
+ *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
+ }
+ return pCur->aNode[ii];
+}
+
+/*
+** Push a new element onto the priority queue
+*/
+static RtreeSearchPoint *rtreeEnqueue(
+ RtreeCursor *pCur, /* The cursor */
+ RtreeDValue rScore, /* Score for the new search point */
+ u8 iLevel /* Level for the new search point */
+){
+ int i, j;
+ RtreeSearchPoint *pNew;
+ if( pCur->nPoint>=pCur->nPointAlloc ){
+ int nNew = pCur->nPointAlloc*2 + 8;
+ pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
+ if( pNew==0 ) return 0;
+ pCur->aPoint = pNew;
+ pCur->nPointAlloc = nNew;
+ }
+ i = pCur->nPoint++;
+ pNew = pCur->aPoint + i;
+ pNew->rScore = rScore;
+ pNew->iLevel = iLevel;
+ assert( iLevel<=RTREE_MAX_DEPTH );
+ while( i>0 ){
+ RtreeSearchPoint *pParent;
+ j = (i-1)/2;
+ pParent = pCur->aPoint + j;
+ if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
+ rtreeSearchPointSwap(pCur, j, i);
+ i = j;
+ pNew = pParent;
+ }
+ return pNew;
+}
+
+/*
+** Allocate a new RtreeSearchPoint and return a pointer to it. Return
+** NULL if malloc fails.
+*/
+static RtreeSearchPoint *rtreeSearchPointNew(
+ RtreeCursor *pCur, /* The cursor */
+ RtreeDValue rScore, /* Score for the new search point */
+ u8 iLevel /* Level for the new search point */
+){
+ RtreeSearchPoint *pNew, *pFirst;
+ pFirst = rtreeSearchPointFirst(pCur);
+ pCur->anQueue[iLevel]++;
+ if( pFirst==0
+ || pFirst->rScore>rScore
+ || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
+ ){
+ if( pCur->bPoint ){
+ int ii;
+ pNew = rtreeEnqueue(pCur, rScore, iLevel);
+ if( pNew==0 ) return 0;
+ ii = (int)(pNew - pCur->aPoint) + 1;
+ assert( ii==1 );
+ if( ALWAYS(ii<RTREE_CACHE_SZ) ){
+ assert( pCur->aNode[ii]==0 );
+ pCur->aNode[ii] = pCur->aNode[0];
+ }else{
+ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
+ }
+ pCur->aNode[0] = 0;
+ *pNew = pCur->sPoint;
+ }
+ pCur->sPoint.rScore = rScore;
+ pCur->sPoint.iLevel = iLevel;
+ pCur->bPoint = 1;
+ return &pCur->sPoint;
+ }else{
+ return rtreeEnqueue(pCur, rScore, iLevel);
+ }
+}
+
+#if 0
+/* Tracing routines for the RtreeSearchPoint queue */
+static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
+ if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
+ printf(" %d.%05lld.%02d %g %d",
+ p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
+ );
+ idx++;
+ if( idx<RTREE_CACHE_SZ ){
+ printf(" %p\n", pCur->aNode[idx]);
+ }else{
+ printf("\n");
+ }
+}
+static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
+ int ii;
+ printf("=== %9s ", zPrefix);
+ if( pCur->bPoint ){
+ tracePoint(&pCur->sPoint, -1, pCur);
+ }
+ for(ii=0; ii<pCur->nPoint; ii++){
+ if( ii>0 || pCur->bPoint ) printf(" ");
+ tracePoint(&pCur->aPoint[ii], ii, pCur);
+ }
+}
+# define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
+#else
+# define RTREE_QUEUE_TRACE(A,B) /* no-op */
+#endif
+
+/* Remove the search point with the lowest current score.
+*/
+static void rtreeSearchPointPop(RtreeCursor *p){
+ int i, j, k, n;
+ i = 1 - p->bPoint;
+ assert( i==0 || i==1 );
+ if( p->aNode[i] ){
+ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
+ p->aNode[i] = 0;
+ }
+ if( p->bPoint ){
+ p->anQueue[p->sPoint.iLevel]--;
+ p->bPoint = 0;
+ }else if( ALWAYS(p->nPoint) ){
+ p->anQueue[p->aPoint[0].iLevel]--;
+ n = --p->nPoint;
+ p->aPoint[0] = p->aPoint[n];
+ if( n<RTREE_CACHE_SZ-1 ){
+ p->aNode[1] = p->aNode[n+1];
+ p->aNode[n+1] = 0;
+ }
+ i = 0;
+ while( (j = i*2+1)<n ){
+ k = j+1;
+ if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
+ if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
+ rtreeSearchPointSwap(p, i, k);
+ i = k;
+ }else{
+ break;
+ }
+ }else{
+ if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
+ rtreeSearchPointSwap(p, i, j);
+ i = j;
+ }else{
+ break;
+ }
+ }
+ }
+ }
+}
+
+
+/*
+** Continue the search on cursor pCur until the front of the queue
+** contains an entry suitable for returning as a result-set row,
+** or until the RtreeSearchPoint queue is empty, indicating that the
+** query has completed.
+*/
+static int rtreeStepToLeaf(RtreeCursor *pCur){
+ RtreeSearchPoint *p;
+ Rtree *pRtree = RTREE_OF_CURSOR(pCur);
+ RtreeNode *pNode;
+ int eWithin;
+ int rc = SQLITE_OK;
+ int nCell;
+ int nConstraint = pCur->nConstraint;
+ int ii;
+ int eInt;
+ RtreeSearchPoint x;
+
+ eInt = pRtree->eCoordType==RTREE_COORD_INT32;
+ while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
+ u8 *pCellData;
+ pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
+ if( rc ) return rc;
+ nCell = NCELL(pNode);
+ assert( nCell<200 );
+ pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
+ while( p->iCell<nCell ){
+ sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
+ eWithin = FULLY_WITHIN;
+ for(ii=0; ii<nConstraint; ii++){
+ RtreeConstraint *pConstraint = pCur->aConstraint + ii;
+ if( pConstraint->op>=RTREE_MATCH ){
+ rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
+ &rScore, &eWithin);
+ if( rc ) return rc;
+ }else if( p->iLevel==1 ){
+ rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
+ }else{
+ rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
+ }
+ if( eWithin==NOT_WITHIN ){
+ p->iCell++;
+ pCellData += pRtree->nBytesPerCell;
+ break;
+ }
+ }
+ if( eWithin==NOT_WITHIN ) continue;
+ p->iCell++;
+ x.iLevel = p->iLevel - 1;
+ if( x.iLevel ){
+ x.id = readInt64(pCellData);
+ for(ii=0; ii<pCur->nPoint; ii++){
+ if( pCur->aPoint[ii].id==x.id ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+ }
+ x.iCell = 0;
+ }else{
+ x.id = p->id;
+ x.iCell = p->iCell - 1;
+ }
+ if( p->iCell>=nCell ){
+ RTREE_QUEUE_TRACE(pCur, "POP-S:");
+ rtreeSearchPointPop(pCur);
+ }
+ if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
+ p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
+ if( p==0 ) return SQLITE_NOMEM;
+ p->eWithin = (u8)eWithin;
+ p->id = x.id;
+ p->iCell = x.iCell;
+ RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
+ break;
+ }
+ if( p->iCell>=nCell ){
+ RTREE_QUEUE_TRACE(pCur, "POP-Se:");
+ rtreeSearchPointPop(pCur);
+ }
+ }
+ pCur->atEOF = p==0;
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xNext method.
+*/
+static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ /* Move to the next entry that matches the configured constraints. */
+ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
+ if( pCsr->bAuxValid ){
+ pCsr->bAuxValid = 0;
+ sqlite3_reset(pCsr->pReadAux);
+ }
+ rtreeSearchPointPop(pCsr);
+ rc = rtreeStepToLeaf(pCsr);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xRowid method.
+*/
+static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
+ if( rc==SQLITE_OK && ALWAYS(p) ){
+ *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
+ }
+ return rc;
+}
+
+/*
+** Rtree virtual table module xColumn method.
+*/
+static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
+ RtreeCoord c;
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
+
+ if( rc ) return rc;
+ if( NEVER(p==0) ) return SQLITE_OK;
+ if( i==0 ){
+ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
+ }else if( i<=pRtree->nDim2 ){
+ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ sqlite3_result_double(ctx, c.f);
+ }else
+#endif
+ {
+ assert( pRtree->eCoordType==RTREE_COORD_INT32 );
+ sqlite3_result_int(ctx, c.i);
+ }
+ }else{
+ if( !pCsr->bAuxValid ){
+ if( pCsr->pReadAux==0 ){
+ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
+ &pCsr->pReadAux, 0);
+ if( rc ) return rc;
+ }
+ sqlite3_bind_int64(pCsr->pReadAux, 1,
+ nodeGetRowid(pRtree, pNode, p->iCell));
+ rc = sqlite3_step(pCsr->pReadAux);
+ if( rc==SQLITE_ROW ){
+ pCsr->bAuxValid = 1;
+ }else{
+ sqlite3_reset(pCsr->pReadAux);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+ }
+ }
+ sqlite3_result_value(ctx,
+ sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1));
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Use nodeAcquire() to obtain the leaf node containing the record with
+** rowid iRowid. If successful, set *ppLeaf to point to the node and
+** return SQLITE_OK. If there is no such record in the table, set
+** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
+** to zero and return an SQLite error code.
+*/
+static int findLeafNode(
+ Rtree *pRtree, /* RTree to search */
+ i64 iRowid, /* The rowid searching for */
+ RtreeNode **ppLeaf, /* Write the node here */
+ sqlite3_int64 *piNode /* Write the node-id here */
+){
+ int rc;
+ *ppLeaf = 0;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
+ if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
+ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
+ if( piNode ) *piNode = iNode;
+ rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
+ sqlite3_reset(pRtree->pReadRowid);
+ }else{
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ }
+ return rc;
+}
+
+/*
+** This function is called to configure the RtreeConstraint object passed
+** as the second argument for a MATCH constraint. The value passed as the
+** first argument to this function is the right-hand operand to the MATCH
+** operator.
+*/
+static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
+ RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */
+ sqlite3_rtree_query_info *pInfo; /* Callback information */
+
+ pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg");
+ if( pSrc==0 ) return SQLITE_ERROR;
+ pInfo = (sqlite3_rtree_query_info*)
+ sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize );
+ if( !pInfo ) return SQLITE_NOMEM;
+ memset(pInfo, 0, sizeof(*pInfo));
+ pBlob = (RtreeMatchArg*)&pInfo[1];
+ memcpy(pBlob, pSrc, pSrc->iSize);
+ pInfo->pContext = pBlob->cb.pContext;
+ pInfo->nParam = pBlob->nParam;
+ pInfo->aParam = pBlob->aParam;
+ pInfo->apSqlParam = pBlob->apSqlParam;
+
+ if( pBlob->cb.xGeom ){
+ pCons->u.xGeom = pBlob->cb.xGeom;
+ }else{
+ pCons->op = RTREE_QUERY;
+ pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
+ }
+ pCons->pInfo = pInfo;
+ return SQLITE_OK;
+}
+
+/*
+** Rtree virtual table module xFilter method.
+*/
+static int rtreeFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ RtreeNode *pRoot = 0;
+ int ii;
+ int rc = SQLITE_OK;
+ int iCell = 0;
+
+ rtreeReference(pRtree);
+
+ /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
+ resetCursor(pCsr);
+
+ pCsr->iStrategy = idxNum;
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ RtreeSearchPoint *p; /* Search point for the leaf */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ i64 iNode = 0;
+ int eType = sqlite3_value_numeric_type(argv[0]);
+ if( eType==SQLITE_INTEGER
+ || (eType==SQLITE_FLOAT && sqlite3_value_double(argv[0])==iRowid)
+ ){
+ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
+ }else{
+ rc = SQLITE_OK;
+ pLeaf = 0;
+ }
+ if( rc==SQLITE_OK && pLeaf!=0 ){
+ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
+ assert( p!=0 ); /* Always returns pCsr->sPoint */
+ pCsr->aNode[0] = pLeaf;
+ p->id = iNode;
+ p->eWithin = PARTLY_WITHIN;
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
+ p->iCell = (u8)iCell;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
+ }else{
+ pCsr->atEOF = 1;
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ if( rc==SQLITE_OK && argc>0 ){
+ pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc);
+ pCsr->nConstraint = argc;
+ if( !pCsr->aConstraint ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
+ memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
+ assert( (idxStr==0 && argc==0)
+ || (idxStr && (int)strlen(idxStr)==argc*2) );
+ for(ii=0; ii<argc; ii++){
+ RtreeConstraint *p = &pCsr->aConstraint[ii];
+ int eType = sqlite3_value_numeric_type(argv[ii]);
+ p->op = idxStr[ii*2];
+ p->iCoord = idxStr[ii*2+1]-'0';
+ if( p->op>=RTREE_MATCH ){
+ /* A MATCH operator. The right-hand-side must be a blob that
+ ** can be cast into an RtreeMatchArg object. One created using
+ ** an sqlite3_rtree_geometry_callback() SQL user function.
+ */
+ rc = deserializeGeometry(argv[ii], p);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ p->pInfo->nCoord = pRtree->nDim2;
+ p->pInfo->anQueue = pCsr->anQueue;
+ p->pInfo->mxLevel = pRtree->iDepth + 1;
+ }else if( eType==SQLITE_INTEGER ){
+ sqlite3_int64 iVal = sqlite3_value_int64(argv[ii]);
+#ifdef SQLITE_RTREE_INT_ONLY
+ p->u.rValue = iVal;
+#else
+ p->u.rValue = (double)iVal;
+ if( iVal>=((sqlite3_int64)1)<<48
+ || iVal<=-(((sqlite3_int64)1)<<48)
+ ){
+ if( p->op==RTREE_LT ) p->op = RTREE_LE;
+ if( p->op==RTREE_GT ) p->op = RTREE_GE;
+ }
+#endif
+ }else if( eType==SQLITE_FLOAT ){
+#ifdef SQLITE_RTREE_INT_ONLY
+ p->u.rValue = sqlite3_value_int64(argv[ii]);
+#else
+ p->u.rValue = sqlite3_value_double(argv[ii]);
+#endif
+ }else{
+ p->u.rValue = RTREE_ZERO;
+ if( eType==SQLITE_NULL ){
+ p->op = RTREE_FALSE;
+ }else if( p->op==RTREE_LT || p->op==RTREE_LE ){
+ p->op = RTREE_TRUE;
+ }else{
+ p->op = RTREE_FALSE;
+ }
+ }
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ RtreeSearchPoint *pNew;
+ assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */
+ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
+ if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */
+ return SQLITE_NOMEM;
+ }
+ pNew->id = 1;
+ pNew->iCell = 0;
+ pNew->eWithin = PARTLY_WITHIN;
+ assert( pCsr->bPoint==1 );
+ pCsr->aNode[0] = pRoot;
+ pRoot = 0;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
+ rc = rtreeStepToLeaf(pCsr);
+ }
+ }
+
+ nodeRelease(pRtree, pRoot);
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 Unused Direct lookup by rowid.
+** 2 See below R-tree query or full-table scan.
+** ------------------------------------------------
+**
+** If strategy 1 is used, then idxStr is not meaningful. If strategy
+** 2 is used, idxStr is formatted to contain 2 bytes for each
+** constraint used. The first two bytes of idxStr correspond to
+** the constraint in sqlite3_index_info.aConstraintUsage[] with
+** (argvIndex==1) etc.
+**
+** The first of each pair of bytes in idxStr identifies the constraint
+** operator as follows:
+**
+** Operator Byte Value
+** ----------------------
+** = 0x41 ('A')
+** <= 0x42 ('B')
+** < 0x43 ('C')
+** >= 0x44 ('D')
+** > 0x45 ('E')
+** MATCH 0x46 ('F')
+** ----------------------
+**
+** The second of each pair of bytes identifies the coordinate column
+** to which the constraint applies. The leftmost coordinate column
+** is 'a', the second from the left 'b' etc.
+*/
+static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ Rtree *pRtree = (Rtree*)tab;
+ int rc = SQLITE_OK;
+ int ii;
+ int bMatch = 0; /* True if there exists a MATCH constraint */
+ i64 nRow; /* Estimated rows returned by this scan */
+
+ int iIdx = 0;
+ char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
+ memset(zIdxStr, 0, sizeof(zIdxStr));
+
+ /* Check if there exists a MATCH constraint - even an unusable one. If there
+ ** is, do not consider the lookup-by-rowid plan as using such a plan would
+ ** require the VDBE to evaluate the MATCH constraint, which is not currently
+ ** possible. */
+ for(ii=0; ii<pIdxInfo->nConstraint; ii++){
+ if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ bMatch = 1;
+ }
+ }
+
+ assert( pIdxInfo->idxStr==0 );
+ for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+
+ if( bMatch==0 && p->usable
+ && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ
+ ){
+ /* We have an equality constraint on the rowid. Use strategy 1. */
+ int jj;
+ for(jj=0; jj<ii; jj++){
+ pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
+ pIdxInfo->aConstraintUsage[jj].omit = 0;
+ }
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[jj].omit = 1;
+
+ /* This strategy involves a two rowid lookups on an B-Tree structures
+ ** and then a linear search of an R-Tree node. This should be
+ ** considered almost as quick as a direct rowid lookup (for which
+ ** sqlite uses an internal cost of 0.0). It is expected to return
+ ** a single row.
+ */
+ pIdxInfo->estimatedCost = 30.0;
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
+ return SQLITE_OK;
+ }
+
+ if( p->usable
+ && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2)
+ || p->op==SQLITE_INDEX_CONSTRAINT_MATCH)
+ ){
+ u8 op;
+ u8 doOmit = 1;
+ switch( p->op ){
+ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; doOmit = 0; break;
+ case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; doOmit = 0; break;
+ case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
+ case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; doOmit = 0; break;
+ case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
+ case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break;
+ default: op = 0; break;
+ }
+ if( op ){
+ zIdxStr[iIdx++] = op;
+ zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0');
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
+ pIdxInfo->aConstraintUsage[ii].omit = doOmit;
+ }
+ }
+ }
+
+ pIdxInfo->idxNum = 2;
+ pIdxInfo->needToFreeIdxStr = 1;
+ if( iIdx>0 ){
+ pIdxInfo->idxStr = sqlite3_malloc( iIdx+1 );
+ if( pIdxInfo->idxStr==0 ){
+ return SQLITE_NOMEM;
+ }
+ memcpy(pIdxInfo->idxStr, zIdxStr, iIdx+1);
+ }
+
+ nRow = pRtree->nRowEst >> (iIdx/2);
+ pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
+ pIdxInfo->estimatedRows = nRow;
+
+ return rc;
+}
+
+/*
+** Return the N-dimensional volumn of the cell stored in *p.
+*/
+static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
+ RtreeDValue area = (RtreeDValue)1;
+ assert( pRtree->nDim>=1 && pRtree->nDim<=5 );
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ switch( pRtree->nDim ){
+ case 5: area = p->aCoord[9].f - p->aCoord[8].f;
+ case 4: area *= p->aCoord[7].f - p->aCoord[6].f;
+ case 3: area *= p->aCoord[5].f - p->aCoord[4].f;
+ case 2: area *= p->aCoord[3].f - p->aCoord[2].f;
+ default: area *= p->aCoord[1].f - p->aCoord[0].f;
+ }
+ }else
+#endif
+ {
+ switch( pRtree->nDim ){
+ case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i;
+ case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i;
+ case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i;
+ case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i;
+ default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i;
+ }
+ }
+ return area;
+}
+
+/*
+** Return the margin length of cell p. The margin length is the sum
+** of the objects size in each dimension.
+*/
+static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
+ RtreeDValue margin = 0;
+ int ii = pRtree->nDim2 - 2;
+ do{
+ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
+ ii -= 2;
+ }while( ii>=0 );
+ return margin;
+}
+
+/*
+** Store the union of cells p1 and p2 in p1.
+*/
+static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii = 0;
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ do{
+ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
+ p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
+ ii += 2;
+ }while( ii<pRtree->nDim2 );
+ }else{
+ do{
+ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
+ p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
+ ii += 2;
+ }while( ii<pRtree->nDim2 );
+ }
+}
+
+/*
+** Return true if the area covered by p2 is a subset of the area covered
+** by p1. False otherwise.
+*/
+static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
+ int ii;
+ if( pRtree->eCoordType==RTREE_COORD_INT32 ){
+ for(ii=0; ii<pRtree->nDim2; ii+=2){
+ RtreeCoord *a1 = &p1->aCoord[ii];
+ RtreeCoord *a2 = &p2->aCoord[ii];
+ if( a2[0].i<a1[0].i || a2[1].i>a1[1].i ) return 0;
+ }
+ }else{
+ for(ii=0; ii<pRtree->nDim2; ii+=2){
+ RtreeCoord *a1 = &p1->aCoord[ii];
+ RtreeCoord *a2 = &p2->aCoord[ii];
+ if( a2[0].f<a1[0].f || a2[1].f>a1[1].f ) return 0;
+ }
+ }
+ return 1;
+}
+
+static RtreeDValue cellOverlap(
+ Rtree *pRtree,
+ RtreeCell *p,
+ RtreeCell *aCell,
+ int nCell
+){
+ int ii;
+ RtreeDValue overlap = RTREE_ZERO;
+ for(ii=0; ii<nCell; ii++){
+ int jj;
+ RtreeDValue o = (RtreeDValue)1;
+ for(jj=0; jj<pRtree->nDim2; jj+=2){
+ RtreeDValue x1, x2;
+ x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
+ x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
+ if( x2<x1 ){
+ o = (RtreeDValue)0;
+ break;
+ }else{
+ o = o * (x2-x1);
+ }
+ }
+ overlap += o;
+ }
+ return overlap;
+}
+
+
+/*
+** This function implements the ChooseLeaf algorithm from Gutman[84].
+** ChooseSubTree in r*tree terminology.
+*/
+static int ChooseLeaf(
+ Rtree *pRtree, /* Rtree table */
+ RtreeCell *pCell, /* Cell to insert into rtree */
+ int iHeight, /* Height of sub-tree rooted at pCell */
+ RtreeNode **ppLeaf /* OUT: Selected leaf page */
+){
+ int rc;
+ int ii;
+ RtreeNode *pNode = 0;
+ rc = nodeAcquire(pRtree, 1, 0, &pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
+ int iCell;
+ sqlite3_int64 iBest = 0;
+ int bFound = 0;
+ RtreeDValue fMinGrowth = RTREE_ZERO;
+ RtreeDValue fMinArea = RTREE_ZERO;
+ int nCell = NCELL(pNode);
+ RtreeNode *pChild = 0;
+
+ /* First check to see if there is are any cells in pNode that completely
+ ** contains pCell. If two or more cells in pNode completely contain pCell
+ ** then pick the smallest.
+ */
+ for(iCell=0; iCell<nCell; iCell++){
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, iCell, &cell);
+ if( cellContains(pRtree, &cell, pCell) ){
+ RtreeDValue area = cellArea(pRtree, &cell);
+ if( bFound==0 || area<fMinArea ){
+ iBest = cell.iRowid;
+ fMinArea = area;
+ bFound = 1;
+ }
+ }
+ }
+ if( !bFound ){
+ /* No cells of pNode will completely contain pCell. So pick the
+ ** cell of pNode that grows by the least amount when pCell is added.
+ ** Break ties by selecting the smaller cell.
+ */
+ for(iCell=0; iCell<nCell; iCell++){
+ RtreeCell cell;
+ RtreeDValue growth;
+ RtreeDValue area;
+ nodeGetCell(pRtree, pNode, iCell, &cell);
+ area = cellArea(pRtree, &cell);
+ cellUnion(pRtree, &cell, pCell);
+ growth = cellArea(pRtree, &cell)-area;
+ if( iCell==0
+ || growth<fMinGrowth
+ || (growth==fMinGrowth && area<fMinArea)
+ ){
+ fMinGrowth = growth;
+ fMinArea = area;
+ iBest = cell.iRowid;
+ }
+ }
+ }
+
+ rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
+ nodeRelease(pRtree, pNode);
+ pNode = pChild;
+ }
+
+ *ppLeaf = pNode;
+ return rc;
+}
+
+/*
+** A cell with the same content as pCell has just been inserted into
+** the node pNode. This function updates the bounding box cells in
+** all ancestor elements.
+*/
+static int AdjustTree(
+ Rtree *pRtree, /* Rtree table */
+ RtreeNode *pNode, /* Adjust ancestry of this node. */
+ RtreeCell *pCell /* This cell was just inserted */
+){
+ RtreeNode *p = pNode;
+ int cnt = 0;
+ int rc;
+ while( p->pParent ){
+ RtreeNode *pParent = p->pParent;
+ RtreeCell cell;
+ int iCell;
+
+ cnt++;
+ if( NEVER(cnt>100) ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+ rc = nodeParentIndex(pRtree, p, &iCell);
+ if( NEVER(rc!=SQLITE_OK) ){
+ RTREE_IS_CORRUPT(pRtree);
+ return SQLITE_CORRUPT_VTAB;
+ }
+
+ nodeGetCell(pRtree, pParent, iCell, &cell);
+ if( !cellContains(pRtree, &cell, pCell) ){
+ cellUnion(pRtree, &cell, pCell);
+ nodeOverwriteCell(pRtree, pParent, &cell, iCell);
+ }
+
+ p = pParent;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
+*/
+static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
+ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
+ sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
+ sqlite3_step(pRtree->pWriteRowid);
+ return sqlite3_reset(pRtree->pWriteRowid);
+}
+
+/*
+** Write mapping (iNode->iPar) to the <rtree>_parent table.
+*/
+static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
+ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
+ sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
+ sqlite3_step(pRtree->pWriteParent);
+ return sqlite3_reset(pRtree->pWriteParent);
+}
+
+static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
+
+
+
+/*
+** Arguments aIdx, aCell and aSpare all point to arrays of size
+** nIdx. The aIdx array contains the set of integers from 0 to
+** (nIdx-1) in no particular order. This function sorts the values
+** in aIdx according to dimension iDim of the cells in aCell. The
+** minimum value of dimension iDim is considered first, the
+** maximum used to break ties.
+**
+** The aSpare array is used as temporary working space by the
+** sorting algorithm.
+*/
+static void SortByDimension(
+ Rtree *pRtree,
+ int *aIdx,
+ int nIdx,
+ int iDim,
+ RtreeCell *aCell,
+ int *aSpare
+){
+ if( nIdx>1 ){
+
+ int iLeft = 0;
+ int iRight = 0;
+
+ int nLeft = nIdx/2;
+ int nRight = nIdx-nLeft;
+ int *aLeft = aIdx;
+ int *aRight = &aIdx[nLeft];
+
+ SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
+ SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
+
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft);
+ aLeft = aSpare;
+ while( iLeft<nLeft || iRight<nRight ){
+ RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
+ RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
+ RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
+ RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
+ if( (iLeft!=nLeft) && ((iRight==nRight)
+ || (xleft1<xright1)
+ || (xleft1==xright1 && xleft2<xright2)
+ )){
+ aIdx[iLeft+iRight] = aLeft[iLeft];
+ iLeft++;
+ }else{
+ aIdx[iLeft+iRight] = aRight[iRight];
+ iRight++;
+ }
+ }
+
+#if 0
+ /* Check that the sort worked */
+ {
+ int jj;
+ for(jj=1; jj<nIdx; jj++){
+ RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
+ RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
+ RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
+ RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
+ assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
+ }
+ }
+#endif
+ }
+}
+
+/*
+** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
+*/
+static int splitNodeStartree(
+ Rtree *pRtree,
+ RtreeCell *aCell,
+ int nCell,
+ RtreeNode *pLeft,
+ RtreeNode *pRight,
+ RtreeCell *pBboxLeft,
+ RtreeCell *pBboxRight
+){
+ int **aaSorted;
+ int *aSpare;
+ int ii;
+
+ int iBestDim = 0;
+ int iBestSplit = 0;
+ RtreeDValue fBestMargin = RTREE_ZERO;
+
+ sqlite3_int64 nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
+
+ aaSorted = (int **)sqlite3_malloc64(nByte);
+ if( !aaSorted ){
+ return SQLITE_NOMEM;
+ }
+
+ aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
+ memset(aaSorted, 0, nByte);
+ for(ii=0; ii<pRtree->nDim; ii++){
+ int jj;
+ aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
+ for(jj=0; jj<nCell; jj++){
+ aaSorted[ii][jj] = jj;
+ }
+ SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
+ }
+
+ for(ii=0; ii<pRtree->nDim; ii++){
+ RtreeDValue margin = RTREE_ZERO;
+ RtreeDValue fBestOverlap = RTREE_ZERO;
+ RtreeDValue fBestArea = RTREE_ZERO;
+ int iBestLeft = 0;
+ int nLeft;
+
+ for(
+ nLeft=RTREE_MINCELLS(pRtree);
+ nLeft<=(nCell-RTREE_MINCELLS(pRtree));
+ nLeft++
+ ){
+ RtreeCell left;
+ RtreeCell right;
+ int kk;
+ RtreeDValue overlap;
+ RtreeDValue area;
+
+ memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
+ memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
+ for(kk=1; kk<(nCell-1); kk++){
+ if( kk<nLeft ){
+ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
+ }else{
+ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
+ }
+ }
+ margin += cellMargin(pRtree, &left);
+ margin += cellMargin(pRtree, &right);
+ overlap = cellOverlap(pRtree, &left, &right, 1);
+ area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
+ if( (nLeft==RTREE_MINCELLS(pRtree))
+ || (overlap<fBestOverlap)
+ || (overlap==fBestOverlap && area<fBestArea)
+ ){
+ iBestLeft = nLeft;
+ fBestOverlap = overlap;
+ fBestArea = area;
+ }
+ }
+
+ if( ii==0 || margin<fBestMargin ){
+ iBestDim = ii;
+ fBestMargin = margin;
+ iBestSplit = iBestLeft;
+ }
+ }
+
+ memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
+ memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
+ for(ii=0; ii<nCell; ii++){
+ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
+ RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
+ RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
+ nodeInsertCell(pRtree, pTarget, pCell);
+ cellUnion(pRtree, pBbox, pCell);
+ }
+
+ sqlite3_free(aaSorted);
+ return SQLITE_OK;
+}
+
+
+static int updateMapping(
+ Rtree *pRtree,
+ i64 iRowid,
+ RtreeNode *pNode,
+ int iHeight
+){
+ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
+ xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
+ RtreeNode *p;
+ for(p=pNode; p; p=p->pParent){
+ if( p==pChild ) return SQLITE_CORRUPT_VTAB;
+ }
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( NEVER(pNode==0) ) return SQLITE_ERROR;
+ return xSetMapping(pRtree, iRowid, pNode->iNode);
+}
+
+static int SplitNode(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int i;
+ int newCellIsRight = 0;
+
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+ RtreeCell *aCell;
+ int *aiUsed;
+
+ RtreeNode *pLeft = 0;
+ RtreeNode *pRight = 0;
+
+ RtreeCell leftbbox;
+ RtreeCell rightbbox;
+
+ /* Allocate an array and populate it with a copy of pCell and
+ ** all cells from node pLeft. Then zero the original node.
+ */
+ aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
+ if( !aCell ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+ aiUsed = (int *)&aCell[nCell+1];
+ memset(aiUsed, 0, sizeof(int)*(nCell+1));
+ for(i=0; i<nCell; i++){
+ nodeGetCell(pRtree, pNode, i, &aCell[i]);
+ }
+ nodeZero(pRtree, pNode);
+ memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
+ nCell++;
+
+ if( pNode->iNode==1 ){
+ pRight = nodeNew(pRtree, pNode);
+ pLeft = nodeNew(pRtree, pNode);
+ pRtree->iDepth++;
+ pNode->isDirty = 1;
+ writeInt16(pNode->zData, pRtree->iDepth);
+ }else{
+ pLeft = pNode;
+ pRight = nodeNew(pRtree, pLeft->pParent);
+ pLeft->nRef++;
+ }
+
+ if( !pLeft || !pRight ){
+ rc = SQLITE_NOMEM;
+ goto splitnode_out;
+ }
+
+ memset(pLeft->zData, 0, pRtree->iNodeSize);
+ memset(pRight->zData, 0, pRtree->iNodeSize);
+
+ rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
+ &leftbbox, &rightbbox);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+
+ /* Ensure both child nodes have node numbers assigned to them by calling
+ ** nodeWrite(). Node pRight always needs a node number, as it was created
+ ** by nodeNew() above. But node pLeft sometimes already has a node number.
+ ** In this case avoid the all to nodeWrite().
+ */
+ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
+ || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
+ ){
+ goto splitnode_out;
+ }
+
+ rightbbox.iRowid = pRight->iNode;
+ leftbbox.iRowid = pLeft->iNode;
+
+ if( pNode->iNode==1 ){
+ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }else{
+ RtreeNode *pParent = pLeft->pParent;
+ int iCell;
+ rc = nodeParentIndex(pRtree, pLeft, &iCell);
+ if( ALWAYS(rc==SQLITE_OK) ){
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
+ rc = AdjustTree(pRtree, pParent, &leftbbox);
+ assert( rc==SQLITE_OK );
+ }
+ if( NEVER(rc!=SQLITE_OK) ){
+ goto splitnode_out;
+ }
+ }
+ if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
+ goto splitnode_out;
+ }
+
+ for(i=0; i<NCELL(pRight); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pRight, i);
+ rc = updateMapping(pRtree, iRowid, pRight, iHeight);
+ if( iRowid==pCell->iRowid ){
+ newCellIsRight = 1;
+ }
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ if( pNode->iNode==1 ){
+ for(i=0; i<NCELL(pLeft); i++){
+ i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
+ rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
+ if( rc!=SQLITE_OK ){
+ goto splitnode_out;
+ }
+ }
+ }else if( newCellIsRight==0 ){
+ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRight);
+ pRight = 0;
+ }
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pLeft);
+ pLeft = 0;
+ }
+
+splitnode_out:
+ nodeRelease(pRtree, pRight);
+ nodeRelease(pRtree, pLeft);
+ sqlite3_free(aCell);
+ return rc;
+}
+
+/*
+** If node pLeaf is not the root of the r-tree and its pParent pointer is
+** still NULL, load all ancestor nodes of pLeaf into memory and populate
+** the pLeaf->pParent chain all the way up to the root node.
+**
+** This operation is required when a row is deleted (or updated - an update
+** is implemented as a delete followed by an insert). SQLite provides the
+** rowid of the row to delete, which can be used to find the leaf on which
+** the entry resides (argument pLeaf). Once the leaf is located, this
+** function is called to determine its ancestry.
+*/
+static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
+ int rc = SQLITE_OK;
+ RtreeNode *pChild = pLeaf;
+ while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
+ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
+ rc = sqlite3_step(pRtree->pReadParent);
+ if( rc==SQLITE_ROW ){
+ RtreeNode *pTest; /* Used to test for reference loops */
+ i64 iNode; /* Node number of parent node */
+
+ /* Before setting pChild->pParent, test that we are not creating a
+ ** loop of references (as we would if, say, pChild==pParent). We don't
+ ** want to do this as it leads to a memory leak when trying to delete
+ ** the referenced counted node structures.
+ */
+ iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
+ for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
+ if( pTest==0 ){
+ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
+ }
+ }
+ rc = sqlite3_reset(pRtree->pReadParent);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK && !pChild->pParent ){
+ RTREE_IS_CORRUPT(pRtree);
+ rc = SQLITE_CORRUPT_VTAB;
+ }
+ pChild = pChild->pParent;
+ }
+ return rc;
+}
+
+static int deleteCell(Rtree *, RtreeNode *, int, int);
+
+static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
+ int rc;
+ int rc2;
+ RtreeNode *pParent = 0;
+ int iCell;
+
+ assert( pNode->nRef==1 );
+
+ /* Remove the entry in the parent cell. */
+ rc = nodeParentIndex(pRtree, pNode, &iCell);
+ if( rc==SQLITE_OK ){
+ pParent = pNode->pParent;
+ pNode->pParent = 0;
+ rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
+ testcase( rc!=SQLITE_OK );
+ }
+ rc2 = nodeRelease(pRtree, pParent);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Remove the xxx_node entry. */
+ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteNode);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
+ return rc;
+ }
+
+ /* Remove the xxx_parent entry. */
+ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
+ sqlite3_step(pRtree->pDeleteParent);
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
+ return rc;
+ }
+
+ /* Remove the node from the in-memory hash table and link it into
+ ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
+ */
+ nodeHashDelete(pRtree, pNode);
+ pNode->iNode = iHeight;
+ pNode->pNext = pRtree->pDeleted;
+ pNode->nRef++;
+ pRtree->pDeleted = pNode;
+
+ return SQLITE_OK;
+}
+
+static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
+ RtreeNode *pParent = pNode->pParent;
+ int rc = SQLITE_OK;
+ if( pParent ){
+ int ii;
+ int nCell = NCELL(pNode);
+ RtreeCell box; /* Bounding box for pNode */
+ nodeGetCell(pRtree, pNode, 0, &box);
+ for(ii=1; ii<nCell; ii++){
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+ cellUnion(pRtree, &box, &cell);
+ }
+ box.iRowid = pNode->iNode;
+ rc = nodeParentIndex(pRtree, pNode, &ii);
+ if( rc==SQLITE_OK ){
+ nodeOverwriteCell(pRtree, pParent, &box, ii);
+ rc = fixBoundingBox(pRtree, pParent);
+ }
+ }
+ return rc;
+}
+
+/*
+** Delete the cell at index iCell of node pNode. After removing the
+** cell, adjust the r-tree data structure if required.
+*/
+static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
+ RtreeNode *pParent;
+ int rc;
+
+ if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
+ return rc;
+ }
+
+ /* Remove the cell from the node. This call just moves bytes around
+ ** the in-memory node image, so it cannot fail.
+ */
+ nodeDeleteCell(pRtree, pNode, iCell);
+
+ /* If the node is not the tree root and now has less than the minimum
+ ** number of cells, remove it from the tree. Otherwise, update the
+ ** cell in the parent node so that it tightly contains the updated
+ ** node.
+ */
+ pParent = pNode->pParent;
+ assert( pParent || pNode->iNode==1 );
+ if( pParent ){
+ if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
+ rc = removeNode(pRtree, pNode, iHeight);
+ }else{
+ rc = fixBoundingBox(pRtree, pNode);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Insert cell pCell into node pNode. Node pNode is the head of a
+** subtree iHeight high (leaf nodes have iHeight==0).
+*/
+static int rtreeInsertCell(
+ Rtree *pRtree,
+ RtreeNode *pNode,
+ RtreeCell *pCell,
+ int iHeight
+){
+ int rc = SQLITE_OK;
+ if( iHeight>0 ){
+ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
+ if( pChild ){
+ nodeRelease(pRtree, pChild->pParent);
+ nodeReference(pNode);
+ pChild->pParent = pNode;
+ }
+ }
+ if( nodeInsertCell(pRtree, pNode, pCell) ){
+ rc = SplitNode(pRtree, pNode, pCell, iHeight);
+ }else{
+ rc = AdjustTree(pRtree, pNode, pCell);
+ if( ALWAYS(rc==SQLITE_OK) ){
+ if( iHeight==0 ){
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }else{
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
+ }
+ }
+ }
+ return rc;
+}
+
+static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
+ int ii;
+ int rc = SQLITE_OK;
+ int nCell = NCELL(pNode);
+
+ for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
+ RtreeNode *pInsert;
+ RtreeCell cell;
+ nodeGetCell(pRtree, pNode, ii, &cell);
+
+ /* Find a node to store this cell in. pNode->iNode currently contains
+ ** the height of the sub-tree headed by the cell.
+ */
+ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
+ rc2 = nodeRelease(pRtree, pInsert);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Select a currently unused rowid for a new r-tree record.
+*/
+static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){
+ int rc;
+ sqlite3_bind_null(pRtree->pWriteRowid, 1);
+ sqlite3_bind_null(pRtree->pWriteRowid, 2);
+ sqlite3_step(pRtree->pWriteRowid);
+ rc = sqlite3_reset(pRtree->pWriteRowid);
+ *piRowid = sqlite3_last_insert_rowid(pRtree->db);
+ return rc;
+}
+
+/*
+** Remove the entry with rowid=iDelete from the r-tree structure.
+*/
+static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
+ int rc; /* Return code */
+ RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */
+ int iCell; /* Index of iDelete cell in pLeaf */
+ RtreeNode *pRoot = 0; /* Root node of rtree structure */
+
+
+ /* Obtain a reference to the root node to initialize Rtree.iDepth */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+
+ /* Obtain a reference to the leaf node that contains the entry
+ ** about to be deleted.
+ */
+ if( rc==SQLITE_OK ){
+ rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
+ }
+
+#ifdef CORRUPT_DB
+ assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB );
+#endif
+
+ /* Delete the cell in question from the leaf node. */
+ if( rc==SQLITE_OK && pLeaf ){
+ int rc2;
+ rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
+ if( rc==SQLITE_OK ){
+ rc = deleteCell(pRtree, pLeaf, iCell, 0);
+ }
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+
+ /* Delete the corresponding entry in the <rtree>_rowid table. */
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
+ sqlite3_step(pRtree->pDeleteRowid);
+ rc = sqlite3_reset(pRtree->pDeleteRowid);
+ }
+
+ /* Check if the root node now has exactly one child. If so, remove
+ ** it, schedule the contents of the child for reinsertion and
+ ** reduce the tree height by one.
+ **
+ ** This is equivalent to copying the contents of the child into
+ ** the root node (the operation that Gutman's paper says to perform
+ ** in this scenario).
+ */
+ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
+ int rc2;
+ RtreeNode *pChild = 0;
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); /* tag-20210916a */
+ if( rc==SQLITE_OK ){
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
+ }
+ rc2 = nodeRelease(pRtree, pChild);
+ if( rc==SQLITE_OK ) rc = rc2;
+ if( rc==SQLITE_OK ){
+ pRtree->iDepth--;
+ writeInt16(pRoot->zData, pRtree->iDepth);
+ pRoot->isDirty = 1;
+ }
+ }
+
+ /* Re-insert the contents of any underfull nodes removed from the tree. */
+ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
+ if( rc==SQLITE_OK ){
+ rc = reinsertNodeContent(pRtree, pLeaf);
+ }
+ pRtree->pDeleted = pLeaf->pNext;
+ pRtree->nNodeRef--;
+ sqlite3_free(pLeaf);
+ }
+
+ /* Release the reference to the root node. */
+ if( rc==SQLITE_OK ){
+ rc = nodeRelease(pRtree, pRoot);
+ }else{
+ nodeRelease(pRtree, pRoot);
+ }
+
+ return rc;
+}
+
+/*
+** Rounding constants for float->double conversion.
+*/
+#define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
+#define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
+
+#if !defined(SQLITE_RTREE_INT_ONLY)
+/*
+** Convert an sqlite3_value into an RtreeValue (presumably a float)
+** while taking care to round toward negative or positive, respectively.
+*/
+static RtreeValue rtreeValueDown(sqlite3_value *v){
+ double d = sqlite3_value_double(v);
+ float f = (float)d;
+ if( f>d ){
+ f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
+ }
+ return f;
+}
+static RtreeValue rtreeValueUp(sqlite3_value *v){
+ double d = sqlite3_value_double(v);
+ float f = (float)d;
+ if( f<d ){
+ f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
+ }
+ return f;
+}
+#endif /* !defined(SQLITE_RTREE_INT_ONLY) */
+
+/*
+** A constraint has failed while inserting a row into an rtree table.
+** Assuming no OOM error occurs, this function sets the error message
+** (at pRtree->base.zErrMsg) to an appropriate value and returns
+** SQLITE_CONSTRAINT.
+**
+** Parameter iCol is the index of the leftmost column involved in the
+** constraint failure. If it is 0, then the constraint that failed is
+** the unique constraint on the id column. Otherwise, it is the rtree
+** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
+**
+** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
+*/
+static int rtreeConstraintError(Rtree *pRtree, int iCol){
+ sqlite3_stmt *pStmt = 0;
+ char *zSql;
+ int rc;
+
+ assert( iCol==0 || iCol%2 );
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+
+ if( rc==SQLITE_OK ){
+ if( iCol==0 ){
+ const char *zCol = sqlite3_column_name(pStmt, 0);
+ pRtree->base.zErrMsg = sqlite3_mprintf(
+ "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol
+ );
+ }else{
+ const char *zCol1 = sqlite3_column_name(pStmt, iCol);
+ const char *zCol2 = sqlite3_column_name(pStmt, iCol+1);
+ pRtree->base.zErrMsg = sqlite3_mprintf(
+ "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2
+ );
+ }
+ }
+
+ sqlite3_finalize(pStmt);
+ return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc);
+}
+
+
+
+/*
+** The xUpdate method for rtree module virtual tables.
+*/
+static int rtreeUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **aData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+ RtreeCell cell; /* New cell to insert if nData>1 */
+ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
+
+ if( pRtree->nNodeRef ){
+ /* Unable to write to the btree while another cursor is reading from it,
+ ** since the write might do a rebalance which would disrupt the read
+ ** cursor. */
+ return SQLITE_LOCKED_VTAB;
+ }
+ rtreeReference(pRtree);
+ assert(nData>=1);
+
+ memset(&cell, 0, sizeof(cell));
+
+ /* Constraint handling. A write operation on an r-tree table may return
+ ** SQLITE_CONSTRAINT for two reasons:
+ **
+ ** 1. A duplicate rowid value, or
+ ** 2. The supplied data violates the "x2>=x1" constraint.
+ **
+ ** In the first case, if the conflict-handling mode is REPLACE, then
+ ** the conflicting row can be removed before proceeding. In the second
+ ** case, SQLITE_CONSTRAINT must be returned regardless of the
+ ** conflict-handling mode specified by the user.
+ */
+ if( nData>1 ){
+ int ii;
+ int nn = nData - 4;
+
+ if( nn > pRtree->nDim2 ) nn = pRtree->nDim2;
+ /* Populate the cell.aCoord[] array. The first coordinate is aData[3].
+ **
+ ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
+ ** with "column" that are interpreted as table constraints.
+ ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
+ ** This problem was discovered after years of use, so we silently ignore
+ ** these kinds of misdeclared tables to avoid breaking any legacy.
+ */
+
+#ifndef SQLITE_RTREE_INT_ONLY
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
+ for(ii=0; ii<nn; ii+=2){
+ cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]);
+ cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]);
+ if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
+ rc = rtreeConstraintError(pRtree, ii+1);
+ goto constraint;
+ }
+ }
+ }else
+#endif
+ {
+ for(ii=0; ii<nn; ii+=2){
+ cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]);
+ cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]);
+ if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
+ rc = rtreeConstraintError(pRtree, ii+1);
+ goto constraint;
+ }
+ }
+ }
+
+ /* If a rowid value was supplied, check if it is already present in
+ ** the table. If so, the constraint has failed. */
+ if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){
+ cell.iRowid = sqlite3_value_int64(aData[2]);
+ if( sqlite3_value_type(aData[0])==SQLITE_NULL
+ || sqlite3_value_int64(aData[0])!=cell.iRowid
+ ){
+ int steprc;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ steprc = sqlite3_step(pRtree->pReadRowid);
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ if( SQLITE_ROW==steprc ){
+ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
+ rc = rtreeDeleteRowid(pRtree, cell.iRowid);
+ }else{
+ rc = rtreeConstraintError(pRtree, 0);
+ goto constraint;
+ }
+ }
+ }
+ bHaveRowid = 1;
+ }
+ }
+
+ /* If aData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){
+ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0]));
+ }
+
+ /* If the aData[] array contains more than one element, elements
+ ** (aData[2]..aData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 ){
+ /* Insert the new record into the r-tree */
+ RtreeNode *pLeaf = 0;
+
+ /* Figure out the rowid of the new row. */
+ if( bHaveRowid==0 ){
+ rc = rtreeNewRowid(pRtree, &cell.iRowid);
+ }
+ *pRowid = cell.iRowid;
+
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ if( rc==SQLITE_OK && pRtree->nAux ){
+ sqlite3_stmt *pUp = pRtree->pWriteAux;
+ int jj;
+ sqlite3_bind_int64(pUp, 1, *pRowid);
+ for(jj=0; jj<pRtree->nAux; jj++){
+ sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]);
+ }
+ sqlite3_step(pUp);
+ rc = sqlite3_reset(pUp);
+ }
+ }
+
+constraint:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Called when a transaction starts.
+*/
+static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ assert( pRtree->inWrTrans==0 );
+ pRtree->inWrTrans++;
+ return SQLITE_OK;
+}
+
+/*
+** Called when a transaction completes (either by COMMIT or ROLLBACK).
+** The sqlite3_blob object should be released at this point.
+*/
+static int rtreeEndTransaction(sqlite3_vtab *pVtab){
+ Rtree *pRtree = (Rtree *)pVtab;
+ pRtree->inWrTrans = 0;
+ nodeBlobReset(pRtree);
+ return SQLITE_OK;
+}
+
+/*
+** The xRename method for rtree module virtual tables.
+*/
+static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
+ "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
+ "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ , pRtree->zDb, pRtree->zName, zNewName
+ );
+ if( zSql ){
+ nodeBlobReset(pRtree);
+ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+/*
+** The xSavepoint method.
+**
+** This module does not need to do anything to support savepoints. However,
+** it uses this hook to close any open blob handle. This is done because a
+** DROP TABLE command - which fortunately always opens a savepoint - cannot
+** succeed if there are any open blob handles. i.e. if the blob handle were
+** not closed here, the following would fail:
+**
+** BEGIN;
+** INSERT INTO rtree...
+** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED
+** COMMIT;
+*/
+static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){
+ Rtree *pRtree = (Rtree *)pVtab;
+ u8 iwt = pRtree->inWrTrans;
+ UNUSED_PARAMETER(iSavepoint);
+ pRtree->inWrTrans = 0;
+ nodeBlobReset(pRtree);
+ pRtree->inWrTrans = iwt;
+ return SQLITE_OK;
+}
+
+/*
+** This function populates the pRtree->nRowEst variable with an estimate
+** of the number of rows in the virtual table. If possible, this is based
+** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
+*/
+static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
+ const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
+ char *zSql;
+ sqlite3_stmt *p;
+ int rc;
+ i64 nRow = RTREE_MIN_ROWEST;
+
+ rc = sqlite3_table_column_metadata(
+ db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0
+ );
+ if( rc!=SQLITE_OK ){
+ pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
+ return rc==SQLITE_ERROR ? SQLITE_OK : rc;
+ }
+ zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
+ if( rc==SQLITE_OK ){
+ if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
+ rc = sqlite3_finalize(p);
+ }
+ sqlite3_free(zSql);
+ }
+ pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
+ return rc;
+}
+
+
+/*
+** Return true if zName is the extension on one of the shadow tables used
+** by this module.
+*/
+static int rtreeShadowName(const char *zName){
+ static const char *azName[] = {
+ "node", "parent", "rowid"
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
+ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+/* Forward declaration */
+static int rtreeIntegrity(sqlite3_vtab*, const char*, const char*, int, char**);
+
+static sqlite3_module rtreeModule = {
+ 4, /* iVersion */
+ rtreeCreate, /* xCreate - create a table */
+ rtreeConnect, /* xConnect - connect to an existing table */
+ rtreeBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ rtreeFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ rtreeColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ rtreeUpdate, /* xUpdate - write data */
+ rtreeBeginTransaction, /* xBegin - begin transaction */
+ rtreeEndTransaction, /* xSync - sync transaction */
+ rtreeEndTransaction, /* xCommit - commit transaction */
+ rtreeEndTransaction, /* xRollback - rollback transaction */
+ 0, /* xFindFunction - function overloading */
+ rtreeRename, /* xRename - rename the table */
+ rtreeSavepoint, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ rtreeShadowName, /* xShadowName */
+ rtreeIntegrity /* xIntegrity */
+};
+
+static int rtreeSqlInit(
+ Rtree *pRtree,
+ sqlite3 *db,
+ const char *zDb,
+ const char *zPrefix,
+ int isCreate
+){
+ int rc = SQLITE_OK;
+
+ #define N_STATEMENT 8
+ static const char *azSql[N_STATEMENT] = {
+ /* Write the xxx_node table */
+ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
+ "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",
+
+ /* Read and write the xxx_rowid table */
+ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
+ "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
+ "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",
+
+ /* Read and write the xxx_parent table */
+ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
+ "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
+ "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
+ };
+ sqlite3_stmt **appStmt[N_STATEMENT];
+ int i;
+ const int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
+
+ pRtree->db = db;
+
+ if( isCreate ){
+ char *zCreate;
+ sqlite3_str *p = sqlite3_str_new(db);
+ int ii;
+ sqlite3_str_appendf(p,
+ "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
+ zDb, zPrefix);
+ for(ii=0; ii<pRtree->nAux; ii++){
+ sqlite3_str_appendf(p,",a%d",ii);
+ }
+ sqlite3_str_appendf(p,
+ ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
+ zDb, zPrefix);
+ sqlite3_str_appendf(p,
+ "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
+ zDb, zPrefix);
+ sqlite3_str_appendf(p,
+ "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
+ zDb, zPrefix, pRtree->iNodeSize);
+ zCreate = sqlite3_str_finish(p);
+ if( !zCreate ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_exec(db, zCreate, 0, 0, 0);
+ sqlite3_free(zCreate);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ appStmt[0] = &pRtree->pWriteNode;
+ appStmt[1] = &pRtree->pDeleteNode;
+ appStmt[2] = &pRtree->pReadRowid;
+ appStmt[3] = &pRtree->pWriteRowid;
+ appStmt[4] = &pRtree->pDeleteRowid;
+ appStmt[5] = &pRtree->pReadParent;
+ appStmt[6] = &pRtree->pWriteParent;
+ appStmt[7] = &pRtree->pDeleteParent;
+
+ rc = rtreeQueryStat1(db, pRtree);
+ for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
+ char *zSql;
+ const char *zFormat;
+ if( i!=3 || pRtree->nAux==0 ){
+ zFormat = azSql[i];
+ }else {
+ /* An UPSERT is very slightly slower than REPLACE, but it is needed
+ ** if there are auxiliary columns */
+ zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
+ "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
+ }
+ zSql = sqlite3_mprintf(zFormat, zDb, zPrefix);
+ if( zSql ){
+ rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ sqlite3_free(zSql);
+ }
+ if( pRtree->nAux ){
+ pRtree->zReadAuxSql = sqlite3_mprintf(
+ "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
+ zDb, zPrefix);
+ if( pRtree->zReadAuxSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_str *p = sqlite3_str_new(db);
+ int ii;
+ char *zSql;
+ sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix);
+ for(ii=0; ii<pRtree->nAux; ii++){
+ if( ii ) sqlite3_str_append(p, ",", 1);
+#ifdef SQLITE_ENABLE_GEOPOLY
+ if( ii<pRtree->nAuxNotNull ){
+ sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii);
+ }else
+#endif
+ {
+ sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2);
+ }
+ }
+ sqlite3_str_appendf(p, " WHERE rowid=?1");
+ zSql = sqlite3_str_finish(p);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0);
+ sqlite3_free(zSql);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The second argument to this function contains the text of an SQL statement
+** that returns a single integer value. The statement is compiled and executed
+** using database connection db. If successful, the integer value returned
+** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
+** code is returned and the value of *piVal after returning is not defined.
+*/
+static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
+ int rc = SQLITE_NOMEM;
+ if( zSql ){
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ *piVal = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is called from within the xConnect() or xCreate() method to
+** determine the node-size used by the rtree table being created or connected
+** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
+** Otherwise, an SQLite error code is returned.
+**
+** If this function is being called as part of an xConnect(), then the rtree
+** table already exists. In this case the node-size is determined by inspecting
+** the root node of the tree.
+**
+** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
+** This ensures that each node is stored on a single database page. If the
+** database page-size is so large that more than RTREE_MAXCELLS entries
+** would fit in a single node, use a smaller node-size.
+*/
+static int getNodeSize(
+ sqlite3 *db, /* Database handle */
+ Rtree *pRtree, /* Rtree handle */
+ int isCreate, /* True for xCreate, false for xConnect */
+ char **pzErr /* OUT: Error message, if any */
+){
+ int rc;
+ char *zSql;
+ if( isCreate ){
+ int iPageSize = 0;
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
+ rc = getIntFromStmt(db, zSql, &iPageSize);
+ if( rc==SQLITE_OK ){
+ pRtree->iNodeSize = iPageSize-64;
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
+ }
+ }else{
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ }else{
+ zSql = sqlite3_mprintf(
+ "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
+ pRtree->zDb, pRtree->zName
+ );
+ rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
+ if( rc!=SQLITE_OK ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }else if( pRtree->iNodeSize<(512-64) ){
+ rc = SQLITE_CORRUPT_VTAB;
+ RTREE_IS_CORRUPT(pRtree);
+ *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
+ pRtree->zName);
+ }
+ }
+
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** Return the length of a token
+*/
+static int rtreeTokenLength(const char *z){
+ int dummy = 0;
+ return sqlite3GetToken((const unsigned char*)z,&dummy);
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the r-tree virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int rtreeInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* One of the RTREE_COORD_* constants */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc = SQLITE_OK;
+ Rtree *pRtree;
+ int nDb; /* Length of string argv[1] */
+ int nName; /* Length of string argv[2] */
+ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
+ sqlite3_str *pSql;
+ char *zSql;
+ int ii = 4;
+ int iErr;
+
+ const char *aErrMsg[] = {
+ 0, /* 0 */
+ "Wrong number of columns for an rtree table", /* 1 */
+ "Too few columns for an rtree table", /* 2 */
+ "Too many columns for an rtree table", /* 3 */
+ "Auxiliary rtree columns must be last" /* 4 */
+ };
+
+ assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */
+ if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]);
+ return SQLITE_ERROR;
+ }
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+ sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
+
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = (int)strlen(argv[1]);
+ nName = (int)strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName*2+8);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName*2+8);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->zNodeName = &pRtree->zName[nName+1];
+ pRtree->eCoordType = (u8)eCoordType;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+ memcpy(pRtree->zNodeName, argv[2], nName);
+ memcpy(&pRtree->zNodeName[nName], "_node", 6);
+
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ pSql = sqlite3_str_new(db);
+ sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT",
+ rtreeTokenLength(argv[3]), argv[3]);
+ for(ii=4; ii<argc; ii++){
+ const char *zArg = argv[ii];
+ if( zArg[0]=='+' ){
+ pRtree->nAux++;
+ sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1);
+ }else if( pRtree->nAux>0 ){
+ break;
+ }else{
+ static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"};
+ pRtree->nDim2++;
+ sqlite3_str_appendf(pSql, azFormat[eCoordType],
+ rtreeTokenLength(zArg), zArg);
+ }
+ }
+ sqlite3_str_appendf(pSql, ");");
+ zSql = sqlite3_str_finish(pSql);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else if( ii<argc ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[4]);
+ rc = SQLITE_ERROR;
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ sqlite3_free(zSql);
+ if( rc ) goto rtreeInit_fail;
+ pRtree->nDim = pRtree->nDim2/2;
+ if( pRtree->nDim<1 ){
+ iErr = 2;
+ }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){
+ iErr = 3;
+ }else if( pRtree->nDim2 % 2 ){
+ iErr = 1;
+ }else{
+ iErr = 0;
+ }
+ if( iErr ){
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
+ goto rtreeInit_fail;
+ }
+ pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
+
+ /* Figure out the node size to use. */
+ rc = getNodeSize(db, pRtree, isCreate, pzErr);
+ if( rc ) goto rtreeInit_fail;
+ rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
+ if( rc ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ goto rtreeInit_fail;
+ }
+
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ return SQLITE_OK;
+
+rtreeInit_fail:
+ if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
+ assert( *ppVtab==0 );
+ assert( pRtree->nBusy==1 );
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+
+/*
+** Implementation of a scalar function that decodes r-tree nodes to
+** human readable strings. This can be used for debugging and analysis.
+**
+** The scalar function takes two arguments: (1) the number of dimensions
+** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
+** an r-tree node. For a two-dimensional r-tree structure called "rt", to
+** deserialize all nodes, a statement like:
+**
+** SELECT rtreenode(2, data) FROM rt_node;
+**
+** The human readable string takes the form of a Tcl list with one
+** entry for each cell in the r-tree node. Each entry is itself a
+** list, containing the 8-byte rowid/pageno followed by the
+** <num-dimension>*2 coordinates.
+*/
+static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ RtreeNode node;
+ Rtree tree;
+ int ii;
+ int nData;
+ int errCode;
+ sqlite3_str *pOut;
+
+ UNUSED_PARAMETER(nArg);
+ memset(&node, 0, sizeof(RtreeNode));
+ memset(&tree, 0, sizeof(Rtree));
+ tree.nDim = (u8)sqlite3_value_int(apArg[0]);
+ if( tree.nDim<1 || tree.nDim>5 ) return;
+ tree.nDim2 = tree.nDim*2;
+ tree.nBytesPerCell = 8 + 8 * tree.nDim;
+ node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
+ if( node.zData==0 ) return;
+ nData = sqlite3_value_bytes(apArg[1]);
+ if( nData<4 ) return;
+ if( nData<NCELL(&node)*tree.nBytesPerCell ) return;
+
+ pOut = sqlite3_str_new(0);
+ for(ii=0; ii<NCELL(&node); ii++){
+ RtreeCell cell;
+ int jj;
+
+ nodeGetCell(&tree, &node, ii, &cell);
+ if( ii>0 ) sqlite3_str_append(pOut, " ", 1);
+ sqlite3_str_appendf(pOut, "{%lld", cell.iRowid);
+ for(jj=0; jj<tree.nDim2; jj++){
+#ifndef SQLITE_RTREE_INT_ONLY
+ sqlite3_str_appendf(pOut, " %g", (double)cell.aCoord[jj].f);
+#else
+ sqlite3_str_appendf(pOut, " %d", cell.aCoord[jj].i);
+#endif
+ }
+ sqlite3_str_append(pOut, "}", 1);
+ }
+ errCode = sqlite3_str_errcode(pOut);
+ sqlite3_result_text(ctx, sqlite3_str_finish(pOut), -1, sqlite3_free);
+ sqlite3_result_error_code(ctx, errCode);
+}
+
+/* This routine implements an SQL function that returns the "depth" parameter
+** from the front of a blob that is an r-tree node. For example:
+**
+** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
+**
+** The depth value is 0 for all nodes other than the root node, and the root
+** node always has nodeno=1, so the example above is the primary use for this
+** routine. This routine is intended for testing and analysis only.
+*/
+static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
+ UNUSED_PARAMETER(nArg);
+ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
+ || sqlite3_value_bytes(apArg[0])<2
+
+ ){
+ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
+ }else{
+ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
+ if( zBlob ){
+ sqlite3_result_int(ctx, readInt16(zBlob));
+ }else{
+ sqlite3_result_error_nomem(ctx);
+ }
+ }
+}
+
+/*
+** Context object passed between the various routines that make up the
+** implementation of integrity-check function rtreecheck().
+*/
+typedef struct RtreeCheck RtreeCheck;
+struct RtreeCheck {
+ sqlite3 *db; /* Database handle */
+ const char *zDb; /* Database containing rtree table */
+ const char *zTab; /* Name of rtree table */
+ int bInt; /* True for rtree_i32 table */
+ int nDim; /* Number of dimensions for this rtree tbl */
+ sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */
+ sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */
+ int nLeaf; /* Number of leaf cells in table */
+ int nNonLeaf; /* Number of non-leaf cells in table */
+ int rc; /* Return code */
+ char *zReport; /* Message to report */
+ int nErr; /* Number of lines in zReport */
+};
+
+#define RTREE_CHECK_MAX_ERROR 100
+
+/*
+** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
+** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
+*/
+static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){
+ int rc = sqlite3_reset(pStmt);
+ if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc;
+}
+
+/*
+** The second and subsequent arguments to this function are a format string
+** and printf style arguments. This function formats the string and attempts
+** to compile it as an SQL statement.
+**
+** If successful, a pointer to the new SQL statement is returned. Otherwise,
+** NULL is returned and an error code left in RtreeCheck.rc.
+*/
+static sqlite3_stmt *rtreeCheckPrepare(
+ RtreeCheck *pCheck, /* RtreeCheck object */
+ const char *zFmt, ... /* Format string and trailing args */
+){
+ va_list ap;
+ char *z;
+ sqlite3_stmt *pRet = 0;
+
+ va_start(ap, zFmt);
+ z = sqlite3_vmprintf(zFmt, ap);
+
+ if( pCheck->rc==SQLITE_OK ){
+ if( z==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }else{
+ pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0);
+ }
+ }
+
+ sqlite3_free(z);
+ va_end(ap);
+ return pRet;
+}
+
+/*
+** The second and subsequent arguments to this function are a printf()
+** style format string and arguments. This function formats the string and
+** appends it to the report being accumuated in pCheck.
+*/
+static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){
+ va_list ap;
+ va_start(ap, zFmt);
+ if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){
+ char *z = sqlite3_vmprintf(zFmt, ap);
+ if( z==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }else{
+ pCheck->zReport = sqlite3_mprintf("%z%s%z",
+ pCheck->zReport, (pCheck->zReport ? "\n" : ""), z
+ );
+ if( pCheck->zReport==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }
+ }
+ pCheck->nErr++;
+ }
+ va_end(ap);
+}
+
+/*
+** This function is a no-op if there is already an error code stored
+** in the RtreeCheck object indicated by the first argument. NULL is
+** returned in this case.
+**
+** Otherwise, the contents of rtree table node iNode are loaded from
+** the database and copied into a buffer obtained from sqlite3_malloc().
+** If no error occurs, a pointer to the buffer is returned and (*pnNode)
+** is set to the size of the buffer in bytes.
+**
+** Or, if an error does occur, NULL is returned and an error code left
+** in the RtreeCheck object. The final value of *pnNode is undefined in
+** this case.
+*/
+static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){
+ u8 *pRet = 0; /* Return value */
+
+ if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){
+ pCheck->pGetNode = rtreeCheckPrepare(pCheck,
+ "SELECT data FROM %Q.'%q_node' WHERE nodeno=?",
+ pCheck->zDb, pCheck->zTab
+ );
+ }
+
+ if( pCheck->rc==SQLITE_OK ){
+ sqlite3_bind_int64(pCheck->pGetNode, 1, iNode);
+ if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){
+ int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0);
+ const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0);
+ pRet = sqlite3_malloc64(nNode);
+ if( pRet==0 ){
+ pCheck->rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pRet, pNode, nNode);
+ *pnNode = nNode;
+ }
+ }
+ rtreeCheckReset(pCheck, pCheck->pGetNode);
+ if( pCheck->rc==SQLITE_OK && pRet==0 ){
+ rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode);
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
+** (if bLeaf==1) table contains a specified entry. The schemas of the
+** two tables are:
+**
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
+**
+** In both cases, this function checks that there exists an entry with
+** IPK value iKey and the second column set to iVal.
+**
+*/
+static void rtreeCheckMapping(
+ RtreeCheck *pCheck, /* RtreeCheck object */
+ int bLeaf, /* True for a leaf cell, false for interior */
+ i64 iKey, /* Key for mapping */
+ i64 iVal /* Expected value for mapping */
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char *azSql[2] = {
+ "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1",
+ "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1"
+ };
+
+ assert( bLeaf==0 || bLeaf==1 );
+ if( pCheck->aCheckMapping[bLeaf]==0 ){
+ pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck,
+ azSql[bLeaf], pCheck->zDb, pCheck->zTab
+ );
+ }
+ if( pCheck->rc!=SQLITE_OK ) return;
+
+ pStmt = pCheck->aCheckMapping[bLeaf];
+ sqlite3_bind_int64(pStmt, 1, iKey);
+ rc = sqlite3_step(pStmt);
+ if( rc==SQLITE_DONE ){
+ rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table",
+ iKey, iVal, (bLeaf ? "%_rowid" : "%_parent")
+ );
+ }else if( rc==SQLITE_ROW ){
+ i64 ii = sqlite3_column_int64(pStmt, 0);
+ if( ii!=iVal ){
+ rtreeCheckAppendMsg(pCheck,
+ "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
+ iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal
+ );
+ }
+ }
+ rtreeCheckReset(pCheck, pStmt);
+}
+
+/*
+** Argument pCell points to an array of coordinates stored on an rtree page.
+** This function checks that the coordinates are internally consistent (no
+** x1>x2 conditions) and adds an error message to the RtreeCheck object
+** if they are not.
+**
+** Additionally, if pParent is not NULL, then it is assumed to point to
+** the array of coordinates on the parent page that bound the page
+** containing pCell. In this case it is also verified that the two
+** sets of coordinates are mutually consistent and an error message added
+** to the RtreeCheck object if they are not.
+*/
+static void rtreeCheckCellCoord(
+ RtreeCheck *pCheck,
+ i64 iNode, /* Node id to use in error messages */
+ int iCell, /* Cell number to use in error messages */
+ u8 *pCell, /* Pointer to cell coordinates */
+ u8 *pParent /* Pointer to parent coordinates */
+){
+ RtreeCoord c1, c2;
+ RtreeCoord p1, p2;
+ int i;
+
+ for(i=0; i<pCheck->nDim; i++){
+ readCoord(&pCell[4*2*i], &c1);
+ readCoord(&pCell[4*(2*i + 1)], &c2);
+
+ /* printf("%e, %e\n", c1.u.f, c2.u.f); */
+ if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){
+ rtreeCheckAppendMsg(pCheck,
+ "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode
+ );
+ }
+
+ if( pParent ){
+ readCoord(&pParent[4*2*i], &p1);
+ readCoord(&pParent[4*(2*i + 1)], &p2);
+
+ if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f)
+ || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f)
+ ){
+ rtreeCheckAppendMsg(pCheck,
+ "Dimension %d of cell %d on node %lld is corrupt relative to parent"
+ , i, iCell, iNode
+ );
+ }
+ }
+ }
+}
+
+/*
+** Run rtreecheck() checks on node iNode, which is at depth iDepth within
+** the r-tree structure. Argument aParent points to the array of coordinates
+** that bound node iNode on the parent node.
+**
+** If any problems are discovered, an error message is appended to the
+** report accumulated in the RtreeCheck object.
+*/
+static void rtreeCheckNode(
+ RtreeCheck *pCheck,
+ int iDepth, /* Depth of iNode (0==leaf) */
+ u8 *aParent, /* Buffer containing parent coords */
+ i64 iNode /* Node to check */
+){
+ u8 *aNode = 0;
+ int nNode = 0;
+
+ assert( iNode==1 || aParent!=0 );
+ assert( pCheck->nDim>0 );
+
+ aNode = rtreeCheckGetNode(pCheck, iNode, &nNode);
+ if( aNode ){
+ if( nNode<4 ){
+ rtreeCheckAppendMsg(pCheck,
+ "Node %lld is too small (%d bytes)", iNode, nNode
+ );
+ }else{
+ int nCell; /* Number of cells on page */
+ int i; /* Used to iterate through cells */
+ if( aParent==0 ){
+ iDepth = readInt16(aNode);
+ if( iDepth>RTREE_MAX_DEPTH ){
+ rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth);
+ sqlite3_free(aNode);
+ return;
+ }
+ }
+ nCell = readInt16(&aNode[2]);
+ if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){
+ rtreeCheckAppendMsg(pCheck,
+ "Node %lld is too small for cell count of %d (%d bytes)",
+ iNode, nCell, nNode
+ );
+ }else{
+ for(i=0; i<nCell; i++){
+ u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)];
+ i64 iVal = readInt64(pCell);
+ rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent);
+
+ if( iDepth>0 ){
+ rtreeCheckMapping(pCheck, 0, iVal, iNode);
+ rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal);
+ pCheck->nNonLeaf++;
+ }else{
+ rtreeCheckMapping(pCheck, 1, iVal, iNode);
+ pCheck->nLeaf++;
+ }
+ }
+ }
+ }
+ sqlite3_free(aNode);
+ }
+}
+
+/*
+** The second argument to this function must be either "_rowid" or
+** "_parent". This function checks that the number of entries in the
+** %_rowid or %_parent table is exactly nExpect. If not, it adds
+** an error message to the report in the RtreeCheck object indicated
+** by the first argument.
+*/
+static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){
+ if( pCheck->rc==SQLITE_OK ){
+ sqlite3_stmt *pCount;
+ pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'",
+ pCheck->zDb, pCheck->zTab, zTbl
+ );
+ if( pCount ){
+ if( sqlite3_step(pCount)==SQLITE_ROW ){
+ i64 nActual = sqlite3_column_int64(pCount, 0);
+ if( nActual!=nExpect ){
+ rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table"
+ " - expected %lld, actual %lld" , zTbl, nExpect, nActual
+ );
+ }
+ }
+ pCheck->rc = sqlite3_finalize(pCount);
+ }
+ }
+}
+
+/*
+** This function does the bulk of the work for the rtree integrity-check.
+** It is called by rtreecheck(), which is the SQL function implementation.
+*/
+static int rtreeCheckTable(
+ sqlite3 *db, /* Database handle to access db through */
+ const char *zDb, /* Name of db ("main", "temp" etc.) */
+ const char *zTab, /* Name of rtree table to check */
+ char **pzReport /* OUT: sqlite3_malloc'd report text */
+){
+ RtreeCheck check; /* Common context for various routines */
+ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */
+ int nAux = 0; /* Number of extra columns. */
+
+ /* Initialize the context object */
+ memset(&check, 0, sizeof(check));
+ check.db = db;
+ check.zDb = zDb;
+ check.zTab = zTab;
+
+ /* Find the number of auxiliary columns */
+ if( check.rc==SQLITE_OK ){
+ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab);
+ if( pStmt ){
+ nAux = sqlite3_column_count(pStmt) - 2;
+ sqlite3_finalize(pStmt);
+ }else
+ if( check.rc!=SQLITE_NOMEM ){
+ check.rc = SQLITE_OK;
+ }
+ }
+
+ /* Find number of dimensions in the rtree table. */
+ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab);
+ if( pStmt ){
+ int rc;
+ check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2;
+ if( check.nDim<1 ){
+ rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree");
+ }else if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER);
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc!=SQLITE_CORRUPT ) check.rc = rc;
+ }
+
+ /* Do the actual integrity-check */
+ if( check.nDim>=1 ){
+ if( check.rc==SQLITE_OK ){
+ rtreeCheckNode(&check, 0, 0, 1);
+ }
+ rtreeCheckCount(&check, "_rowid", check.nLeaf);
+ rtreeCheckCount(&check, "_parent", check.nNonLeaf);
+ }
+
+ /* Finalize SQL statements used by the integrity-check */
+ sqlite3_finalize(check.pGetNode);
+ sqlite3_finalize(check.aCheckMapping[0]);
+ sqlite3_finalize(check.aCheckMapping[1]);
+
+ *pzReport = check.zReport;
+ return check.rc;
+}
+
+/*
+** Implementation of the xIntegrity method for Rtree.
+*/
+static int rtreeIntegrity(
+ sqlite3_vtab *pVtab, /* The virtual table to check */
+ const char *zSchema, /* Schema in which the virtual table lives */
+ const char *zName, /* Name of the virtual table */
+ int isQuick, /* True for a quick_check */
+ char **pzErr /* Write results here */
+){
+ Rtree *pRtree = (Rtree*)pVtab;
+ int rc;
+ assert( pzErr!=0 && *pzErr==0 );
+ UNUSED_PARAMETER(zSchema);
+ UNUSED_PARAMETER(zName);
+ UNUSED_PARAMETER(isQuick);
+ rc = rtreeCheckTable(pRtree->db, pRtree->zDb, pRtree->zName, pzErr);
+ if( rc==SQLITE_OK && *pzErr ){
+ *pzErr = sqlite3_mprintf("In RTree %s.%s:\n%z",
+ pRtree->zDb, pRtree->zName, *pzErr);
+ }
+ return rc;
+}
+
+/*
+** Usage:
+**
+** rtreecheck(<rtree-table>);
+** rtreecheck(<database>, <rtree-table>);
+**
+** Invoking this SQL function runs an integrity-check on the named rtree
+** table. The integrity-check verifies the following:
+**
+** 1. For each cell in the r-tree structure (%_node table), that:
+**
+** a) for each dimension, (coord1 <= coord2).
+**
+** b) unless the cell is on the root node, that the cell is bounded
+** by the parent cell on the parent node.
+**
+** c) for leaf nodes, that there is an entry in the %_rowid
+** table corresponding to the cell's rowid value that
+** points to the correct node.
+**
+** d) for cells on non-leaf nodes, that there is an entry in the
+** %_parent table mapping from the cell's child node to the
+** node that it resides on.
+**
+** 2. That there are the same number of entries in the %_rowid table
+** as there are leaf cells in the r-tree structure, and that there
+** is a leaf cell that corresponds to each entry in the %_rowid table.
+**
+** 3. That there are the same number of entries in the %_parent table
+** as there are non-leaf cells in the r-tree structure, and that
+** there is a non-leaf cell that corresponds to each entry in the
+** %_parent table.
+*/
+static void rtreecheck(
+ sqlite3_context *ctx,
+ int nArg,
+ sqlite3_value **apArg
+){
+ if( nArg!=1 && nArg!=2 ){
+ sqlite3_result_error(ctx,
+ "wrong number of arguments to function rtreecheck()", -1
+ );
+ }else{
+ int rc;
+ char *zReport = 0;
+ const char *zDb = (const char*)sqlite3_value_text(apArg[0]);
+ const char *zTab;
+ if( nArg==1 ){
+ zTab = zDb;
+ zDb = "main";
+ }else{
+ zTab = (const char*)sqlite3_value_text(apArg[1]);
+ }
+ rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(ctx, rc);
+ }
+ sqlite3_free(zReport);
+ }
+}
+
+/* Conditionally include the geopoly code */
+#ifdef SQLITE_ENABLE_GEOPOLY
+/************** Include geopoly.c in the middle of rtree.c *******************/
+/************** Begin file geopoly.c *****************************************/
+/*
+** 2018-05-25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file implements an alternative R-Tree virtual table that
+** uses polygons to express the boundaries of 2-dimensional objects.
+**
+** This file is #include-ed onto the end of "rtree.c" so that it has
+** access to all of the R-Tree internals.
+*/
+/* #include <stdlib.h> */
+
+/* Enable -DGEOPOLY_ENABLE_DEBUG for debugging facilities */
+#ifdef GEOPOLY_ENABLE_DEBUG
+ static int geo_debug = 0;
+# define GEODEBUG(X) if(geo_debug)printf X
+#else
+# define GEODEBUG(X)
+#endif
+
+/* Character class routines */
+#ifdef sqlite3Isdigit
+ /* Use the SQLite core versions if this routine is part of the
+ ** SQLite amalgamation */
+# define safe_isdigit(x) sqlite3Isdigit(x)
+# define safe_isalnum(x) sqlite3Isalnum(x)
+# define safe_isxdigit(x) sqlite3Isxdigit(x)
+#else
+ /* Use the standard library for separate compilation */
+#include <ctype.h> /* amalgamator: keep */
+# define safe_isdigit(x) isdigit((unsigned char)(x))
+# define safe_isalnum(x) isalnum((unsigned char)(x))
+# define safe_isxdigit(x) isxdigit((unsigned char)(x))
+#endif
+
+#ifndef JSON_NULL /* The following stuff repeats things found in json1 */
+/*
+** Growing our own isspace() routine this way is twice as fast as
+** the library isspace() function.
+*/
+static const char geopolyIsSpace[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+};
+#define fast_isspace(x) (geopolyIsSpace[(unsigned char)x])
+#endif /* JSON NULL - back to original code */
+
+/* Compiler and version */
+#ifndef GCC_VERSION
+#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
+#else
+# define GCC_VERSION 0
+#endif
+#endif
+#ifndef MSVC_VERSION
+#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
+# define MSVC_VERSION _MSC_VER
+#else
+# define MSVC_VERSION 0
+#endif
+#endif
+
+/* Datatype for coordinates
+*/
+typedef float GeoCoord;
+
+/*
+** Internal representation of a polygon.
+**
+** The polygon consists of a sequence of vertexes. There is a line
+** segment between each pair of vertexes, and one final segment from
+** the last vertex back to the first. (This differs from the GeoJSON
+** standard in which the final vertex is a repeat of the first.)
+**
+** The polygon follows the right-hand rule. The area to the right of
+** each segment is "outside" and the area to the left is "inside".
+**
+** The on-disk representation consists of a 4-byte header followed by
+** the values. The 4-byte header is:
+**
+** encoding (1 byte) 0=big-endian, 1=little-endian
+** nvertex (3 bytes) Number of vertexes as a big-endian integer
+**
+** Enough space is allocated for 4 coordinates, to work around over-zealous
+** warnings coming from some compiler (notably, clang). In reality, the size
+** of each GeoPoly memory allocate is adjusted as necessary so that the
+** GeoPoly.a[] array at the end is the appropriate size.
+*/
+typedef struct GeoPoly GeoPoly;
+struct GeoPoly {
+ int nVertex; /* Number of vertexes */
+ unsigned char hdr[4]; /* Header for on-disk representation */
+ GeoCoord a[8]; /* 2*nVertex values. X (longitude) first, then Y */
+};
+
+/* The size of a memory allocation needed for a GeoPoly object sufficient
+** to hold N coordinate pairs.
+*/
+#define GEOPOLY_SZ(N) (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4))
+
+/* Macros to access coordinates of a GeoPoly.
+** We have to use these macros, rather than just say p->a[i] in order
+** to silence (incorrect) UBSAN warnings if the array index is too large.
+*/
+#define GeoX(P,I) (((GeoCoord*)(P)->a)[(I)*2])
+#define GeoY(P,I) (((GeoCoord*)(P)->a)[(I)*2+1])
+
+
+/*
+** State of a parse of a GeoJSON input.
+*/
+typedef struct GeoParse GeoParse;
+struct GeoParse {
+ const unsigned char *z; /* Unparsed input */
+ int nVertex; /* Number of vertexes in a[] */
+ int nAlloc; /* Space allocated to a[] */
+ int nErr; /* Number of errors encountered */
+ GeoCoord *a; /* Array of vertexes. From sqlite3_malloc64() */
+};
+
+/* Do a 4-byte byte swap */
+static void geopolySwab32(unsigned char *a){
+ unsigned char t = a[0];
+ a[0] = a[3];
+ a[3] = t;
+ t = a[1];
+ a[1] = a[2];
+ a[2] = t;
+}
+
+/* Skip whitespace. Return the next non-whitespace character. */
+static char geopolySkipSpace(GeoParse *p){
+ while( fast_isspace(p->z[0]) ) p->z++;
+ return p->z[0];
+}
+
+/* Parse out a number. Write the value into *pVal if pVal!=0.
+** return non-zero on success and zero if the next token is not a number.
+*/
+static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){
+ char c = geopolySkipSpace(p);
+ const unsigned char *z = p->z;
+ int j = 0;
+ int seenDP = 0;
+ int seenE = 0;
+ if( c=='-' ){
+ j = 1;
+ c = z[j];
+ }
+ if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0;
+ for(;; j++){
+ c = z[j];
+ if( safe_isdigit(c) ) continue;
+ if( c=='.' ){
+ if( z[j-1]=='-' ) return 0;
+ if( seenDP ) return 0;
+ seenDP = 1;
+ continue;
+ }
+ if( c=='e' || c=='E' ){
+ if( z[j-1]<'0' ) return 0;
+ if( seenE ) return -1;
+ seenDP = seenE = 1;
+ c = z[j+1];
+ if( c=='+' || c=='-' ){
+ j++;
+ c = z[j+1];
+ }
+ if( c<'0' || c>'9' ) return 0;
+ continue;
+ }
+ break;
+ }
+ if( z[j-1]<'0' ) return 0;
+ if( pVal ){
+#ifdef SQLITE_AMALGAMATION
+ /* The sqlite3AtoF() routine is much much faster than atof(), if it
+ ** is available */
+ double r;
+ (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8);
+ *pVal = r;
+#else
+ *pVal = (GeoCoord)atof((const char*)p->z);
+#endif
+ }
+ p->z += j;
+ return 1;
+}
+
+/*
+** If the input is a well-formed JSON array of coordinates with at least
+** four coordinates and where each coordinate is itself a two-value array,
+** then convert the JSON into a GeoPoly object and return a pointer to
+** that object.
+**
+** If any error occurs, return NULL.
+*/
+static GeoPoly *geopolyParseJson(const unsigned char *z, int *pRc){
+ GeoParse s;
+ int rc = SQLITE_OK;
+ memset(&s, 0, sizeof(s));
+ s.z = z;
+ if( geopolySkipSpace(&s)=='[' ){
+ s.z++;
+ while( geopolySkipSpace(&s)=='[' ){
+ int ii = 0;
+ char c;
+ s.z++;
+ if( s.nVertex>=s.nAlloc ){
+ GeoCoord *aNew;
+ s.nAlloc = s.nAlloc*2 + 16;
+ aNew = sqlite3_realloc64(s.a, s.nAlloc*sizeof(GeoCoord)*2 );
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ s.nErr++;
+ break;
+ }
+ s.a = aNew;
+ }
+ while( geopolyParseNumber(&s, ii<=1 ? &s.a[s.nVertex*2+ii] : 0) ){
+ ii++;
+ if( ii==2 ) s.nVertex++;
+ c = geopolySkipSpace(&s);
+ s.z++;
+ if( c==',' ) continue;
+ if( c==']' && ii>=2 ) break;
+ s.nErr++;
+ rc = SQLITE_ERROR;
+ goto parse_json_err;
+ }
+ if( geopolySkipSpace(&s)==',' ){
+ s.z++;
+ continue;
+ }
+ break;
+ }
+ if( geopolySkipSpace(&s)==']'
+ && s.nVertex>=4
+ && s.a[0]==s.a[s.nVertex*2-2]
+ && s.a[1]==s.a[s.nVertex*2-1]
+ && (s.z++, geopolySkipSpace(&s)==0)
+ ){
+ GeoPoly *pOut;
+ int x = 1;
+ s.nVertex--; /* Remove the redundant vertex at the end */
+ pOut = sqlite3_malloc64( GEOPOLY_SZ((sqlite3_int64)s.nVertex) );
+ x = 1;
+ if( pOut==0 ) goto parse_json_err;
+ pOut->nVertex = s.nVertex;
+ memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord));
+ pOut->hdr[0] = *(unsigned char*)&x;
+ pOut->hdr[1] = (s.nVertex>>16)&0xff;
+ pOut->hdr[2] = (s.nVertex>>8)&0xff;
+ pOut->hdr[3] = s.nVertex&0xff;
+ sqlite3_free(s.a);
+ if( pRc ) *pRc = SQLITE_OK;
+ return pOut;
+ }else{
+ s.nErr++;
+ rc = SQLITE_ERROR;
+ }
+ }
+parse_json_err:
+ if( pRc ) *pRc = rc;
+ sqlite3_free(s.a);
+ return 0;
+}
+
+/*
+** Given a function parameter, try to interpret it as a polygon, either
+** in the binary format or JSON text. Compute a GeoPoly object and
+** return a pointer to that object. Or if the input is not a well-formed
+** polygon, put an error message in sqlite3_context and return NULL.
+*/
+static GeoPoly *geopolyFuncParam(
+ sqlite3_context *pCtx, /* Context for error messages */
+ sqlite3_value *pVal, /* The value to decode */
+ int *pRc /* Write error here */
+){
+ GeoPoly *p = 0;
+ int nByte;
+ testcase( pCtx==0 );
+ if( sqlite3_value_type(pVal)==SQLITE_BLOB
+ && (nByte = sqlite3_value_bytes(pVal))>=(int)(4+6*sizeof(GeoCoord))
+ ){
+ const unsigned char *a = sqlite3_value_blob(pVal);
+ int nVertex;
+ if( a==0 ){
+ if( pCtx ) sqlite3_result_error_nomem(pCtx);
+ return 0;
+ }
+ nVertex = (a[1]<<16) + (a[2]<<8) + a[3];
+ if( (a[0]==0 || a[0]==1)
+ && (nVertex*2*sizeof(GeoCoord) + 4)==(unsigned int)nByte
+ ){
+ p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) );
+ if( p==0 ){
+ if( pRc ) *pRc = SQLITE_NOMEM;
+ if( pCtx ) sqlite3_result_error_nomem(pCtx);
+ }else{
+ int x = 1;
+ p->nVertex = nVertex;
+ memcpy(p->hdr, a, nByte);
+ if( a[0] != *(unsigned char*)&x ){
+ int ii;
+ for(ii=0; ii<nVertex; ii++){
+ geopolySwab32((unsigned char*)&GeoX(p,ii));
+ geopolySwab32((unsigned char*)&GeoY(p,ii));
+ }
+ p->hdr[0] ^= 1;
+ }
+ }
+ }
+ if( pRc ) *pRc = SQLITE_OK;
+ return p;
+ }else if( sqlite3_value_type(pVal)==SQLITE_TEXT ){
+ const unsigned char *zJson = sqlite3_value_text(pVal);
+ if( zJson==0 ){
+ if( pRc ) *pRc = SQLITE_NOMEM;
+ return 0;
+ }
+ return geopolyParseJson(zJson, pRc);
+ }else{
+ if( pRc ) *pRc = SQLITE_ERROR;
+ return 0;
+ }
+}
+
+/*
+** Implementation of the geopoly_blob(X) function.
+**
+** If the input is a well-formed Geopoly BLOB or JSON string
+** then return the BLOB representation of the polygon. Otherwise
+** return NULL.
+*/
+static void geopolyBlobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ (void)argc;
+ if( p ){
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** SQL function: geopoly_json(X)
+**
+** Interpret X as a polygon and render it as a JSON array
+** of coordinates. Or, if X is not a valid polygon, return NULL.
+*/
+static void geopolyJsonFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ (void)argc;
+ if( p ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_str *x = sqlite3_str_new(db);
+ int i;
+ sqlite3_str_append(x, "[", 1);
+ for(i=0; i<p->nVertex; i++){
+ sqlite3_str_appendf(x, "[%!g,%!g],", GeoX(p,i), GeoY(p,i));
+ }
+ sqlite3_str_appendf(x, "[%!g,%!g]]", GeoX(p,0), GeoY(p,0));
+ sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** SQL function: geopoly_svg(X, ....)
+**
+** Interpret X as a polygon and render it as a SVG <polyline>.
+** Additional arguments are added as attributes to the <polyline>.
+*/
+static void geopolySvgFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p;
+ if( argc<1 ) return;
+ p = geopolyFuncParam(context, argv[0], 0);
+ if( p ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_str *x = sqlite3_str_new(db);
+ int i;
+ char cSep = '\'';
+ sqlite3_str_appendf(x, "<polyline points=");
+ for(i=0; i<p->nVertex; i++){
+ sqlite3_str_appendf(x, "%c%g,%g", cSep, GeoX(p,i), GeoY(p,i));
+ cSep = ' ';
+ }
+ sqlite3_str_appendf(x, " %g,%g'", GeoX(p,0), GeoY(p,0));
+ for(i=1; i<argc; i++){
+ const char *z = (const char*)sqlite3_value_text(argv[i]);
+ if( z && z[0] ){
+ sqlite3_str_appendf(x, " %s", z);
+ }
+ }
+ sqlite3_str_appendf(x, "></polyline>");
+ sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** SQL Function: geopoly_xform(poly, A, B, C, D, E, F)
+**
+** Transform and/or translate a polygon as follows:
+**
+** x1 = A*x0 + B*y0 + E
+** y1 = C*x0 + D*y0 + F
+**
+** For a translation:
+**
+** geopoly_xform(poly, 1, 0, 0, 1, x-offset, y-offset)
+**
+** Rotate by R around the point (0,0):
+**
+** geopoly_xform(poly, cos(R), sin(R), -sin(R), cos(R), 0, 0)
+*/
+static void geopolyXformFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ double A = sqlite3_value_double(argv[1]);
+ double B = sqlite3_value_double(argv[2]);
+ double C = sqlite3_value_double(argv[3]);
+ double D = sqlite3_value_double(argv[4]);
+ double E = sqlite3_value_double(argv[5]);
+ double F = sqlite3_value_double(argv[6]);
+ GeoCoord x1, y1, x0, y0;
+ int ii;
+ (void)argc;
+ if( p ){
+ for(ii=0; ii<p->nVertex; ii++){
+ x0 = GeoX(p,ii);
+ y0 = GeoY(p,ii);
+ x1 = (GeoCoord)(A*x0 + B*y0 + E);
+ y1 = (GeoCoord)(C*x0 + D*y0 + F);
+ GeoX(p,ii) = x1;
+ GeoY(p,ii) = y1;
+ }
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Compute the area enclosed by the polygon.
+**
+** This routine can also be used to detect polygons that rotate in
+** the wrong direction. Polygons are suppose to be counter-clockwise (CCW).
+** This routine returns a negative value for clockwise (CW) polygons.
+*/
+static double geopolyArea(GeoPoly *p){
+ double rArea = 0.0;
+ int ii;
+ for(ii=0; ii<p->nVertex-1; ii++){
+ rArea += (GeoX(p,ii) - GeoX(p,ii+1)) /* (x0 - x1) */
+ * (GeoY(p,ii) + GeoY(p,ii+1)) /* (y0 + y1) */
+ * 0.5;
+ }
+ rArea += (GeoX(p,ii) - GeoX(p,0)) /* (xN - x0) */
+ * (GeoY(p,ii) + GeoY(p,0)) /* (yN + y0) */
+ * 0.5;
+ return rArea;
+}
+
+/*
+** Implementation of the geopoly_area(X) function.
+**
+** If the input is a well-formed Geopoly BLOB then return the area
+** enclosed by the polygon. If the polygon circulates clockwise instead
+** of counterclockwise (as it should) then return the negative of the
+** enclosed area. Otherwise return NULL.
+*/
+static void geopolyAreaFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ (void)argc;
+ if( p ){
+ sqlite3_result_double(context, geopolyArea(p));
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Implementation of the geopoly_ccw(X) function.
+**
+** If the rotation of polygon X is clockwise (incorrect) instead of
+** counter-clockwise (the correct winding order according to RFC7946)
+** then reverse the order of the vertexes in polygon X.
+**
+** In other words, this routine returns a CCW polygon regardless of the
+** winding order of its input.
+**
+** Use this routine to sanitize historical inputs that that sometimes
+** contain polygons that wind in the wrong direction.
+*/
+static void geopolyCcwFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
+ (void)argc;
+ if( p ){
+ if( geopolyArea(p)<0.0 ){
+ int ii, jj;
+ for(ii=1, jj=p->nVertex-1; ii<jj; ii++, jj--){
+ GeoCoord t = GeoX(p,ii);
+ GeoX(p,ii) = GeoX(p,jj);
+ GeoX(p,jj) = t;
+ t = GeoY(p,ii);
+ GeoY(p,ii) = GeoY(p,jj);
+ GeoY(p,jj) = t;
+ }
+ }
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+#define GEOPOLY_PI 3.1415926535897932385
+
+/* Fast approximation for sine(X) for X between -0.5*pi and 2*pi
+*/
+static double geopolySine(double r){
+ assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI );
+ if( r>=1.5*GEOPOLY_PI ){
+ r -= 2.0*GEOPOLY_PI;
+ }
+ if( r>=0.5*GEOPOLY_PI ){
+ return -geopolySine(r-GEOPOLY_PI);
+ }else{
+ double r2 = r*r;
+ double r3 = r2*r;
+ double r5 = r3*r2;
+ return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5;
+ }
+}
+
+/*
+** Function: geopoly_regular(X,Y,R,N)
+**
+** Construct a simple, convex, regular polygon centered at X, Y
+** with circumradius R and with N sides.
+*/
+static void geopolyRegularFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ double x = sqlite3_value_double(argv[0]);
+ double y = sqlite3_value_double(argv[1]);
+ double r = sqlite3_value_double(argv[2]);
+ int n = sqlite3_value_int(argv[3]);
+ int i;
+ GeoPoly *p;
+ (void)argc;
+
+ if( n<3 || r<=0.0 ) return;
+ if( n>1000 ) n = 1000;
+ p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) );
+ if( p==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ i = 1;
+ p->hdr[0] = *(unsigned char*)&i;
+ p->hdr[1] = 0;
+ p->hdr[2] = (n>>8)&0xff;
+ p->hdr[3] = n&0xff;
+ for(i=0; i<n; i++){
+ double rAngle = 2.0*GEOPOLY_PI*i/n;
+ GeoX(p,i) = x - r*geopolySine(rAngle-0.5*GEOPOLY_PI);
+ GeoY(p,i) = y + r*geopolySine(rAngle);
+ }
+ sqlite3_result_blob(context, p->hdr, 4+8*n, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+}
+
+/*
+** If pPoly is a polygon, compute its bounding box. Then:
+**
+** (1) if aCoord!=0 store the bounding box in aCoord, returning NULL
+** (2) otherwise, compute a GeoPoly for the bounding box and return the
+** new GeoPoly
+**
+** If pPoly is NULL but aCoord is not NULL, then compute a new GeoPoly from
+** the bounding box in aCoord and return a pointer to that GeoPoly.
+*/
+static GeoPoly *geopolyBBox(
+ sqlite3_context *context, /* For recording the error */
+ sqlite3_value *pPoly, /* The polygon */
+ RtreeCoord *aCoord, /* Results here */
+ int *pRc /* Error code here */
+){
+ GeoPoly *pOut = 0;
+ GeoPoly *p;
+ float mnX, mxX, mnY, mxY;
+ if( pPoly==0 && aCoord!=0 ){
+ p = 0;
+ mnX = aCoord[0].f;
+ mxX = aCoord[1].f;
+ mnY = aCoord[2].f;
+ mxY = aCoord[3].f;
+ goto geopolyBboxFill;
+ }else{
+ p = geopolyFuncParam(context, pPoly, pRc);
+ }
+ if( p ){
+ int ii;
+ mnX = mxX = GeoX(p,0);
+ mnY = mxY = GeoY(p,0);
+ for(ii=1; ii<p->nVertex; ii++){
+ double r = GeoX(p,ii);
+ if( r<mnX ) mnX = (float)r;
+ else if( r>mxX ) mxX = (float)r;
+ r = GeoY(p,ii);
+ if( r<mnY ) mnY = (float)r;
+ else if( r>mxY ) mxY = (float)r;
+ }
+ if( pRc ) *pRc = SQLITE_OK;
+ if( aCoord==0 ){
+ geopolyBboxFill:
+ pOut = sqlite3_realloc64(p, GEOPOLY_SZ(4));
+ if( pOut==0 ){
+ sqlite3_free(p);
+ if( context ) sqlite3_result_error_nomem(context);
+ if( pRc ) *pRc = SQLITE_NOMEM;
+ return 0;
+ }
+ pOut->nVertex = 4;
+ ii = 1;
+ pOut->hdr[0] = *(unsigned char*)&ii;
+ pOut->hdr[1] = 0;
+ pOut->hdr[2] = 0;
+ pOut->hdr[3] = 4;
+ GeoX(pOut,0) = mnX;
+ GeoY(pOut,0) = mnY;
+ GeoX(pOut,1) = mxX;
+ GeoY(pOut,1) = mnY;
+ GeoX(pOut,2) = mxX;
+ GeoY(pOut,2) = mxY;
+ GeoX(pOut,3) = mnX;
+ GeoY(pOut,3) = mxY;
+ }else{
+ sqlite3_free(p);
+ aCoord[0].f = mnX;
+ aCoord[1].f = mxX;
+ aCoord[2].f = mnY;
+ aCoord[3].f = mxY;
+ }
+ }else if( aCoord ){
+ memset(aCoord, 0, sizeof(RtreeCoord)*4);
+ }
+ return pOut;
+}
+
+/*
+** Implementation of the geopoly_bbox(X) SQL function.
+*/
+static void geopolyBBoxFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p = geopolyBBox(context, argv[0], 0, 0);
+ (void)argc;
+ if( p ){
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** State vector for the geopoly_group_bbox() aggregate function.
+*/
+typedef struct GeoBBox GeoBBox;
+struct GeoBBox {
+ int isInit;
+ RtreeCoord a[4];
+};
+
+
+/*
+** Implementation of the geopoly_group_bbox(X) aggregate SQL function.
+*/
+static void geopolyBBoxStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ RtreeCoord a[4];
+ int rc = SQLITE_OK;
+ (void)argc;
+ (void)geopolyBBox(context, argv[0], a, &rc);
+ if( rc==SQLITE_OK ){
+ GeoBBox *pBBox;
+ pBBox = (GeoBBox*)sqlite3_aggregate_context(context, sizeof(*pBBox));
+ if( pBBox==0 ) return;
+ if( pBBox->isInit==0 ){
+ pBBox->isInit = 1;
+ memcpy(pBBox->a, a, sizeof(RtreeCoord)*4);
+ }else{
+ if( a[0].f < pBBox->a[0].f ) pBBox->a[0] = a[0];
+ if( a[1].f > pBBox->a[1].f ) pBBox->a[1] = a[1];
+ if( a[2].f < pBBox->a[2].f ) pBBox->a[2] = a[2];
+ if( a[3].f > pBBox->a[3].f ) pBBox->a[3] = a[3];
+ }
+ }
+}
+static void geopolyBBoxFinal(
+ sqlite3_context *context
+){
+ GeoPoly *p;
+ GeoBBox *pBBox;
+ pBBox = (GeoBBox*)sqlite3_aggregate_context(context, 0);
+ if( pBBox==0 ) return;
+ p = geopolyBBox(context, 0, pBBox->a, 0);
+ if( p ){
+ sqlite3_result_blob(context, p->hdr,
+ 4+8*p->nVertex, SQLITE_TRANSIENT);
+ sqlite3_free(p);
+ }
+}
+
+
+/*
+** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2).
+** Returns:
+**
+** +2 x0,y0 is on the line segement
+**
+** +1 x0,y0 is beneath line segment
+**
+** 0 x0,y0 is not on or beneath the line segment or the line segment
+** is vertical and x0,y0 is not on the line segment
+**
+** The left-most coordinate min(x1,x2) is not considered to be part of
+** the line segment for the purposes of this analysis.
+*/
+static int pointBeneathLine(
+ double x0, double y0,
+ double x1, double y1,
+ double x2, double y2
+){
+ double y;
+ if( x0==x1 && y0==y1 ) return 2;
+ if( x1<x2 ){
+ if( x0<=x1 || x0>x2 ) return 0;
+ }else if( x1>x2 ){
+ if( x0<=x2 || x0>x1 ) return 0;
+ }else{
+ /* Vertical line segment */
+ if( x0!=x1 ) return 0;
+ if( y0<y1 && y0<y2 ) return 0;
+ if( y0>y1 && y0>y2 ) return 0;
+ return 2;
+ }
+ y = y1 + (y2-y1)*(x0-x1)/(x2-x1);
+ if( y0==y ) return 2;
+ if( y0<y ) return 1;
+ return 0;
+}
+
+/*
+** SQL function: geopoly_contains_point(P,X,Y)
+**
+** Return +2 if point X,Y is within polygon P.
+** Return +1 if point X,Y is on the polygon boundary.
+** Return 0 if point X,Y is outside the polygon
+*/
+static void geopolyContainsPointFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
+ double x0 = sqlite3_value_double(argv[1]);
+ double y0 = sqlite3_value_double(argv[2]);
+ int v = 0;
+ int cnt = 0;
+ int ii;
+ (void)argc;
+
+ if( p1==0 ) return;
+ for(ii=0; ii<p1->nVertex-1; ii++){
+ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii),
+ GeoX(p1,ii+1),GeoY(p1,ii+1));
+ if( v==2 ) break;
+ cnt += v;
+ }
+ if( v!=2 ){
+ v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii),
+ GeoX(p1,0), GeoY(p1,0));
+ }
+ if( v==2 ){
+ sqlite3_result_int(context, 1);
+ }else if( ((v+cnt)&1)==0 ){
+ sqlite3_result_int(context, 0);
+ }else{
+ sqlite3_result_int(context, 2);
+ }
+ sqlite3_free(p1);
+}
+
+/* Forward declaration */
+static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2);
+
+/*
+** SQL function: geopoly_within(P1,P2)
+**
+** Return +2 if P1 and P2 are the same polygon
+** Return +1 if P2 is contained within P1
+** Return 0 if any part of P2 is on the outside of P1
+**
+*/
+static void geopolyWithinFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
+ GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0);
+ (void)argc;
+ if( p1 && p2 ){
+ int x = geopolyOverlap(p1, p2);
+ if( x<0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_int(context, x==2 ? 1 : x==4 ? 2 : 0);
+ }
+ }
+ sqlite3_free(p1);
+ sqlite3_free(p2);
+}
+
+/* Objects used by the overlap algorihm. */
+typedef struct GeoEvent GeoEvent;
+typedef struct GeoSegment GeoSegment;
+typedef struct GeoOverlap GeoOverlap;
+struct GeoEvent {
+ double x; /* X coordinate at which event occurs */
+ int eType; /* 0 for ADD, 1 for REMOVE */
+ GeoSegment *pSeg; /* The segment to be added or removed */
+ GeoEvent *pNext; /* Next event in the sorted list */
+};
+struct GeoSegment {
+ double C, B; /* y = C*x + B */
+ double y; /* Current y value */
+ float y0; /* Initial y value */
+ unsigned char side; /* 1 for p1, 2 for p2 */
+ unsigned int idx; /* Which segment within the side */
+ GeoSegment *pNext; /* Next segment in a list sorted by y */
+};
+struct GeoOverlap {
+ GeoEvent *aEvent; /* Array of all events */
+ GeoSegment *aSegment; /* Array of all segments */
+ int nEvent; /* Number of events */
+ int nSegment; /* Number of segments */
+};
+
+/*
+** Add a single segment and its associated events.
+*/
+static void geopolyAddOneSegment(
+ GeoOverlap *p,
+ GeoCoord x0,
+ GeoCoord y0,
+ GeoCoord x1,
+ GeoCoord y1,
+ unsigned char side,
+ unsigned int idx
+){
+ GeoSegment *pSeg;
+ GeoEvent *pEvent;
+ if( x0==x1 ) return; /* Ignore vertical segments */
+ if( x0>x1 ){
+ GeoCoord t = x0;
+ x0 = x1;
+ x1 = t;
+ t = y0;
+ y0 = y1;
+ y1 = t;
+ }
+ pSeg = p->aSegment + p->nSegment;
+ p->nSegment++;
+ pSeg->C = (y1-y0)/(x1-x0);
+ pSeg->B = y1 - x1*pSeg->C;
+ pSeg->y0 = y0;
+ pSeg->side = side;
+ pSeg->idx = idx;
+ pEvent = p->aEvent + p->nEvent;
+ p->nEvent++;
+ pEvent->x = x0;
+ pEvent->eType = 0;
+ pEvent->pSeg = pSeg;
+ pEvent = p->aEvent + p->nEvent;
+ p->nEvent++;
+ pEvent->x = x1;
+ pEvent->eType = 1;
+ pEvent->pSeg = pSeg;
+}
+
+
+
+/*
+** Insert all segments and events for polygon pPoly.
+*/
+static void geopolyAddSegments(
+ GeoOverlap *p, /* Add segments to this Overlap object */
+ GeoPoly *pPoly, /* Take all segments from this polygon */
+ unsigned char side /* The side of pPoly */
+){
+ unsigned int i;
+ GeoCoord *x;
+ for(i=0; i<(unsigned)pPoly->nVertex-1; i++){
+ x = &GeoX(pPoly,i);
+ geopolyAddOneSegment(p, x[0], x[1], x[2], x[3], side, i);
+ }
+ x = &GeoX(pPoly,i);
+ geopolyAddOneSegment(p, x[0], x[1], pPoly->a[0], pPoly->a[1], side, i);
+}
+
+/*
+** Merge two lists of sorted events by X coordinate
+*/
+static GeoEvent *geopolyEventMerge(GeoEvent *pLeft, GeoEvent *pRight){
+ GeoEvent head, *pLast;
+ head.pNext = 0;
+ pLast = &head;
+ while( pRight && pLeft ){
+ if( pRight->x <= pLeft->x ){
+ pLast->pNext = pRight;
+ pLast = pRight;
+ pRight = pRight->pNext;
+ }else{
+ pLast->pNext = pLeft;
+ pLast = pLeft;
+ pLeft = pLeft->pNext;
+ }
+ }
+ pLast->pNext = pRight ? pRight : pLeft;
+ return head.pNext;
+}
+
+/*
+** Sort an array of nEvent event objects into a list.
+*/
+static GeoEvent *geopolySortEventsByX(GeoEvent *aEvent, int nEvent){
+ int mx = 0;
+ int i, j;
+ GeoEvent *p;
+ GeoEvent *a[50];
+ for(i=0; i<nEvent; i++){
+ p = &aEvent[i];
+ p->pNext = 0;
+ for(j=0; j<mx && a[j]; j++){
+ p = geopolyEventMerge(a[j], p);
+ a[j] = 0;
+ }
+ a[j] = p;
+ if( j>=mx ) mx = j+1;
+ }
+ p = 0;
+ for(i=0; i<mx; i++){
+ p = geopolyEventMerge(a[i], p);
+ }
+ return p;
+}
+
+/*
+** Merge two lists of sorted segments by Y, and then by C.
+*/
+static GeoSegment *geopolySegmentMerge(GeoSegment *pLeft, GeoSegment *pRight){
+ GeoSegment head, *pLast;
+ head.pNext = 0;
+ pLast = &head;
+ while( pRight && pLeft ){
+ double r = pRight->y - pLeft->y;
+ if( r==0.0 ) r = pRight->C - pLeft->C;
+ if( r<0.0 ){
+ pLast->pNext = pRight;
+ pLast = pRight;
+ pRight = pRight->pNext;
+ }else{
+ pLast->pNext = pLeft;
+ pLast = pLeft;
+ pLeft = pLeft->pNext;
+ }
+ }
+ pLast->pNext = pRight ? pRight : pLeft;
+ return head.pNext;
+}
+
+/*
+** Sort a list of GeoSegments in order of increasing Y and in the event of
+** a tie, increasing C (slope).
+*/
+static GeoSegment *geopolySortSegmentsByYAndC(GeoSegment *pList){
+ int mx = 0;
+ int i;
+ GeoSegment *p;
+ GeoSegment *a[50];
+ while( pList ){
+ p = pList;
+ pList = pList->pNext;
+ p->pNext = 0;
+ for(i=0; i<mx && a[i]; i++){
+ p = geopolySegmentMerge(a[i], p);
+ a[i] = 0;
+ }
+ a[i] = p;
+ if( i>=mx ) mx = i+1;
+ }
+ p = 0;
+ for(i=0; i<mx; i++){
+ p = geopolySegmentMerge(a[i], p);
+ }
+ return p;
+}
+
+/*
+** Determine the overlap between two polygons
+*/
+static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2){
+ sqlite3_int64 nVertex = p1->nVertex + p2->nVertex + 2;
+ GeoOverlap *p;
+ sqlite3_int64 nByte;
+ GeoEvent *pThisEvent;
+ double rX;
+ int rc = 0;
+ int needSort = 0;
+ GeoSegment *pActive = 0;
+ GeoSegment *pSeg;
+ unsigned char aOverlap[4];
+
+ nByte = sizeof(GeoEvent)*nVertex*2
+ + sizeof(GeoSegment)*nVertex
+ + sizeof(GeoOverlap);
+ p = sqlite3_malloc64( nByte );
+ if( p==0 ) return -1;
+ p->aEvent = (GeoEvent*)&p[1];
+ p->aSegment = (GeoSegment*)&p->aEvent[nVertex*2];
+ p->nEvent = p->nSegment = 0;
+ geopolyAddSegments(p, p1, 1);
+ geopolyAddSegments(p, p2, 2);
+ pThisEvent = geopolySortEventsByX(p->aEvent, p->nEvent);
+ rX = pThisEvent && pThisEvent->x==0.0 ? -1.0 : 0.0;
+ memset(aOverlap, 0, sizeof(aOverlap));
+ while( pThisEvent ){
+ if( pThisEvent->x!=rX ){
+ GeoSegment *pPrev = 0;
+ int iMask = 0;
+ GEODEBUG(("Distinct X: %g\n", pThisEvent->x));
+ rX = pThisEvent->x;
+ if( needSort ){
+ GEODEBUG(("SORT\n"));
+ pActive = geopolySortSegmentsByYAndC(pActive);
+ needSort = 0;
+ }
+ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
+ if( pPrev ){
+ if( pPrev->y!=pSeg->y ){
+ GEODEBUG(("MASK: %d\n", iMask));
+ aOverlap[iMask] = 1;
+ }
+ }
+ iMask ^= pSeg->side;
+ pPrev = pSeg;
+ }
+ pPrev = 0;
+ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
+ double y = pSeg->C*rX + pSeg->B;
+ GEODEBUG(("Segment %d.%d %g->%g\n", pSeg->side, pSeg->idx, pSeg->y, y));
+ pSeg->y = y;
+ if( pPrev ){
+ if( pPrev->y>pSeg->y && pPrev->side!=pSeg->side ){
+ rc = 1;
+ GEODEBUG(("Crossing: %d.%d and %d.%d\n",
+ pPrev->side, pPrev->idx,
+ pSeg->side, pSeg->idx));
+ goto geopolyOverlapDone;
+ }else if( pPrev->y!=pSeg->y ){
+ GEODEBUG(("MASK: %d\n", iMask));
+ aOverlap[iMask] = 1;
+ }
+ }
+ iMask ^= pSeg->side;
+ pPrev = pSeg;
+ }
+ }
+ GEODEBUG(("%s %d.%d C=%g B=%g\n",
+ pThisEvent->eType ? "RM " : "ADD",
+ pThisEvent->pSeg->side, pThisEvent->pSeg->idx,
+ pThisEvent->pSeg->C,
+ pThisEvent->pSeg->B));
+ if( pThisEvent->eType==0 ){
+ /* Add a segment */
+ pSeg = pThisEvent->pSeg;
+ pSeg->y = pSeg->y0;
+ pSeg->pNext = pActive;
+ pActive = pSeg;
+ needSort = 1;
+ }else{
+ /* Remove a segment */
+ if( pActive==pThisEvent->pSeg ){
+ pActive = ALWAYS(pActive) ? pActive->pNext : 0;
+ }else{
+ for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
+ if( pSeg->pNext==pThisEvent->pSeg ){
+ pSeg->pNext = ALWAYS(pSeg->pNext) ? pSeg->pNext->pNext : 0;
+ break;
+ }
+ }
+ }
+ }
+ pThisEvent = pThisEvent->pNext;
+ }
+ if( aOverlap[3]==0 ){
+ rc = 0;
+ }else if( aOverlap[1]!=0 && aOverlap[2]==0 ){
+ rc = 3;
+ }else if( aOverlap[1]==0 && aOverlap[2]!=0 ){
+ rc = 2;
+ }else if( aOverlap[1]==0 && aOverlap[2]==0 ){
+ rc = 4;
+ }else{
+ rc = 1;
+ }
+
+geopolyOverlapDone:
+ sqlite3_free(p);
+ return rc;
+}
+
+/*
+** SQL function: geopoly_overlap(P1,P2)
+**
+** Determine whether or not P1 and P2 overlap. Return value:
+**
+** 0 The two polygons are disjoint
+** 1 They overlap
+** 2 P1 is completely contained within P2
+** 3 P2 is completely contained within P1
+** 4 P1 and P2 are the same polygon
+** NULL Either P1 or P2 or both are not valid polygons
+*/
+static void geopolyOverlapFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
+ GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0);
+ (void)argc;
+ if( p1 && p2 ){
+ int x = geopolyOverlap(p1, p2);
+ if( x<0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_int(context, x);
+ }
+ }
+ sqlite3_free(p1);
+ sqlite3_free(p2);
+}
+
+/*
+** Enable or disable debugging output
+*/
+static void geopolyDebugFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ (void)context;
+ (void)argc;
+#ifdef GEOPOLY_ENABLE_DEBUG
+ geo_debug = sqlite3_value_int(argv[0]);
+#else
+ (void)argv;
+#endif
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the geopoly virtual table.
+**
+** argv[0] -> module name
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> column names...
+*/
+static int geopolyInit(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* One of the RTREE_COORD_* constants */
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
+ char **pzErr, /* OUT: Error message, if any */
+ int isCreate /* True for xCreate, false for xConnect */
+){
+ int rc = SQLITE_OK;
+ Rtree *pRtree;
+ sqlite3_int64 nDb; /* Length of string argv[1] */
+ sqlite3_int64 nName; /* Length of string argv[2] */
+ sqlite3_str *pSql;
+ char *zSql;
+ int ii;
+ (void)pAux;
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
+ sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
+
+ /* Allocate the sqlite3_vtab structure */
+ nDb = strlen(argv[1]);
+ nName = strlen(argv[2]);
+ pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName*2+8);
+ if( !pRtree ){
+ return SQLITE_NOMEM;
+ }
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName*2+8);
+ pRtree->nBusy = 1;
+ pRtree->base.pModule = &rtreeModule;
+ pRtree->zDb = (char *)&pRtree[1];
+ pRtree->zName = &pRtree->zDb[nDb+1];
+ pRtree->zNodeName = &pRtree->zName[nName+1];
+ pRtree->eCoordType = RTREE_COORD_REAL32;
+ pRtree->nDim = 2;
+ pRtree->nDim2 = 4;
+ memcpy(pRtree->zDb, argv[1], nDb);
+ memcpy(pRtree->zName, argv[2], nName);
+ memcpy(pRtree->zNodeName, argv[2], nName);
+ memcpy(&pRtree->zNodeName[nName], "_node", 6);
+
+
+ /* Create/Connect to the underlying relational database schema. If
+ ** that is successful, call sqlite3_declare_vtab() to configure
+ ** the r-tree table schema.
+ */
+ pSql = sqlite3_str_new(db);
+ sqlite3_str_appendf(pSql, "CREATE TABLE x(_shape");
+ pRtree->nAux = 1; /* Add one for _shape */
+ pRtree->nAuxNotNull = 1; /* The _shape column is always not-null */
+ for(ii=3; ii<argc; ii++){
+ pRtree->nAux++;
+ sqlite3_str_appendf(pSql, ",%s", argv[ii]);
+ }
+ sqlite3_str_appendf(pSql, ");");
+ zSql = sqlite3_str_finish(pSql);
+ if( !zSql ){
+ rc = SQLITE_NOMEM;
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+ sqlite3_free(zSql);
+ if( rc ) goto geopolyInit_fail;
+ pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
+
+ /* Figure out the node size to use. */
+ rc = getNodeSize(db, pRtree, isCreate, pzErr);
+ if( rc ) goto geopolyInit_fail;
+ rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
+ if( rc ){
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ goto geopolyInit_fail;
+ }
+
+ *ppVtab = (sqlite3_vtab *)pRtree;
+ return SQLITE_OK;
+
+geopolyInit_fail:
+ if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
+ assert( *ppVtab==0 );
+ assert( pRtree->nBusy==1 );
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+
+/*
+** GEOPOLY virtual table module xCreate method.
+*/
+static int geopolyCreate(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
+}
+
+/*
+** GEOPOLY virtual table module xConnect method.
+*/
+static int geopolyConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
+}
+
+
+/*
+** GEOPOLY virtual table module xFilter method.
+**
+** Query plans:
+**
+** 1 rowid lookup
+** 2 search for objects overlapping the same bounding box
+** that contains polygon argv[0]
+** 3 search for objects overlapping the same bounding box
+** that contains polygon argv[0]
+** 4 full table scan
+*/
+static int geopolyFilter(
+ sqlite3_vtab_cursor *pVtabCursor, /* The cursor to initialize */
+ int idxNum, /* Query plan */
+ const char *idxStr, /* Not Used */
+ int argc, sqlite3_value **argv /* Parameters to the query plan */
+){
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
+ RtreeNode *pRoot = 0;
+ int rc = SQLITE_OK;
+ int iCell = 0;
+ (void)idxStr;
+
+ rtreeReference(pRtree);
+
+ /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
+ resetCursor(pCsr);
+
+ pCsr->iStrategy = idxNum;
+ if( idxNum==1 ){
+ /* Special case - lookup by rowid. */
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */
+ RtreeSearchPoint *p; /* Search point for the leaf */
+ i64 iRowid = sqlite3_value_int64(argv[0]);
+ i64 iNode = 0;
+ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
+ if( rc==SQLITE_OK && pLeaf!=0 ){
+ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
+ assert( p!=0 ); /* Always returns pCsr->sPoint */
+ pCsr->aNode[0] = pLeaf;
+ p->id = iNode;
+ p->eWithin = PARTLY_WITHIN;
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
+ p->iCell = (u8)iCell;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
+ }else{
+ pCsr->atEOF = 1;
+ }
+ }else{
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
+ ** with the configured constraints.
+ */
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot);
+ if( rc==SQLITE_OK && idxNum<=3 ){
+ RtreeCoord bbox[4];
+ RtreeConstraint *p;
+ assert( argc==1 );
+ assert( argv[0]!=0 );
+ geopolyBBox(0, argv[0], bbox, &rc);
+ if( rc ){
+ goto geopoly_filter_end;
+ }
+ pCsr->aConstraint = p = sqlite3_malloc(sizeof(RtreeConstraint)*4);
+ pCsr->nConstraint = 4;
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*4);
+ memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
+ if( idxNum==2 ){
+ /* Overlap query */
+ p->op = 'B';
+ p->iCoord = 0;
+ p->u.rValue = bbox[1].f;
+ p++;
+ p->op = 'D';
+ p->iCoord = 1;
+ p->u.rValue = bbox[0].f;
+ p++;
+ p->op = 'B';
+ p->iCoord = 2;
+ p->u.rValue = bbox[3].f;
+ p++;
+ p->op = 'D';
+ p->iCoord = 3;
+ p->u.rValue = bbox[2].f;
+ }else{
+ /* Within query */
+ p->op = 'D';
+ p->iCoord = 0;
+ p->u.rValue = bbox[0].f;
+ p++;
+ p->op = 'B';
+ p->iCoord = 1;
+ p->u.rValue = bbox[1].f;
+ p++;
+ p->op = 'D';
+ p->iCoord = 2;
+ p->u.rValue = bbox[2].f;
+ p++;
+ p->op = 'B';
+ p->iCoord = 3;
+ p->u.rValue = bbox[3].f;
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ RtreeSearchPoint *pNew;
+ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ goto geopoly_filter_end;
+ }
+ pNew->id = 1;
+ pNew->iCell = 0;
+ pNew->eWithin = PARTLY_WITHIN;
+ assert( pCsr->bPoint==1 );
+ pCsr->aNode[0] = pRoot;
+ pRoot = 0;
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
+ rc = rtreeStepToLeaf(pCsr);
+ }
+ }
+
+geopoly_filter_end:
+ nodeRelease(pRtree, pRoot);
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Rtree virtual table module xBestIndex method. There are three
+** table scan strategies to choose from (in order from most to
+** least desirable):
+**
+** idxNum idxStr Strategy
+** ------------------------------------------------
+** 1 "rowid" Direct lookup by rowid.
+** 2 "rtree" R-tree overlap query using geopoly_overlap()
+** 3 "rtree" R-tree within query using geopoly_within()
+** 4 "fullscan" full-table scan.
+** ------------------------------------------------
+*/
+static int geopolyBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int ii;
+ int iRowidTerm = -1;
+ int iFuncTerm = -1;
+ int idxNum = 0;
+ (void)tab;
+
+ for(ii=0; ii<pIdxInfo->nConstraint; ii++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
+ if( !p->usable ) continue;
+ if( p->iColumn<0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ iRowidTerm = ii;
+ break;
+ }
+ if( p->iColumn==0 && p->op>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
+ /* p->op==SQLITE_INDEX_CONSTRAINT_FUNCTION for geopoly_overlap()
+ ** p->op==(SQLITE_INDEX_CONTRAINT_FUNCTION+1) for geopoly_within().
+ ** See geopolyFindFunction() */
+ iFuncTerm = ii;
+ idxNum = p->op - SQLITE_INDEX_CONSTRAINT_FUNCTION + 2;
+ }
+ }
+
+ if( iRowidTerm>=0 ){
+ pIdxInfo->idxNum = 1;
+ pIdxInfo->idxStr = "rowid";
+ pIdxInfo->aConstraintUsage[iRowidTerm].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[iRowidTerm].omit = 1;
+ pIdxInfo->estimatedCost = 30.0;
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
+ return SQLITE_OK;
+ }
+ if( iFuncTerm>=0 ){
+ pIdxInfo->idxNum = idxNum;
+ pIdxInfo->idxStr = "rtree";
+ pIdxInfo->aConstraintUsage[iFuncTerm].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[iFuncTerm].omit = 0;
+ pIdxInfo->estimatedCost = 300.0;
+ pIdxInfo->estimatedRows = 10;
+ return SQLITE_OK;
+ }
+ pIdxInfo->idxNum = 4;
+ pIdxInfo->idxStr = "fullscan";
+ pIdxInfo->estimatedCost = 3000000.0;
+ pIdxInfo->estimatedRows = 100000;
+ return SQLITE_OK;
+}
+
+
+/*
+** GEOPOLY virtual table module xColumn method.
+*/
+static int geopolyColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ Rtree *pRtree = (Rtree *)cur->pVtab;
+ RtreeCursor *pCsr = (RtreeCursor *)cur;
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
+ int rc = SQLITE_OK;
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
+
+ if( rc ) return rc;
+ if( p==0 ) return SQLITE_OK;
+ if( i==0 && sqlite3_vtab_nochange(ctx) ) return SQLITE_OK;
+ if( i<=pRtree->nAux ){
+ if( !pCsr->bAuxValid ){
+ if( pCsr->pReadAux==0 ){
+ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
+ &pCsr->pReadAux, 0);
+ if( rc ) return rc;
+ }
+ sqlite3_bind_int64(pCsr->pReadAux, 1,
+ nodeGetRowid(pRtree, pNode, p->iCell));
+ rc = sqlite3_step(pCsr->pReadAux);
+ if( rc==SQLITE_ROW ){
+ pCsr->bAuxValid = 1;
+ }else{
+ sqlite3_reset(pCsr->pReadAux);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+ }
+ }
+ sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i+2));
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** The xUpdate method for GEOPOLY module virtual tables.
+**
+** For DELETE:
+**
+** argv[0] = the rowid to be deleted
+**
+** For INSERT:
+**
+** argv[0] = SQL NULL
+** argv[1] = rowid to insert, or an SQL NULL to select automatically
+** argv[2] = _shape column
+** argv[3] = first application-defined column....
+**
+** For UPDATE:
+**
+** argv[0] = rowid to modify. Never NULL
+** argv[1] = rowid after the change. Never NULL
+** argv[2] = new value for _shape
+** argv[3] = new value for first application-defined column....
+*/
+static int geopolyUpdate(
+ sqlite3_vtab *pVtab,
+ int nData,
+ sqlite3_value **aData,
+ sqlite_int64 *pRowid
+){
+ Rtree *pRtree = (Rtree *)pVtab;
+ int rc = SQLITE_OK;
+ RtreeCell cell; /* New cell to insert if nData>1 */
+ i64 oldRowid; /* The old rowid */
+ int oldRowidValid; /* True if oldRowid is valid */
+ i64 newRowid; /* The new rowid */
+ int newRowidValid; /* True if newRowid is valid */
+ int coordChange = 0; /* Change in coordinates */
+
+ if( pRtree->nNodeRef ){
+ /* Unable to write to the btree while another cursor is reading from it,
+ ** since the write might do a rebalance which would disrupt the read
+ ** cursor. */
+ return SQLITE_LOCKED_VTAB;
+ }
+ rtreeReference(pRtree);
+ assert(nData>=1);
+
+ oldRowidValid = sqlite3_value_type(aData[0])!=SQLITE_NULL;;
+ oldRowid = oldRowidValid ? sqlite3_value_int64(aData[0]) : 0;
+ newRowidValid = nData>1 && sqlite3_value_type(aData[1])!=SQLITE_NULL;
+ newRowid = newRowidValid ? sqlite3_value_int64(aData[1]) : 0;
+ cell.iRowid = newRowid;
+
+ if( nData>1 /* not a DELETE */
+ && (!oldRowidValid /* INSERT */
+ || !sqlite3_value_nochange(aData[2]) /* UPDATE _shape */
+ || oldRowid!=newRowid) /* Rowid change */
+ ){
+ assert( aData[2]!=0 );
+ geopolyBBox(0, aData[2], cell.aCoord, &rc);
+ if( rc ){
+ if( rc==SQLITE_ERROR ){
+ pVtab->zErrMsg =
+ sqlite3_mprintf("_shape does not contain a valid polygon");
+ }
+ goto geopoly_update_end;
+ }
+ coordChange = 1;
+
+ /* If a rowid value was supplied, check if it is already present in
+ ** the table. If so, the constraint has failed. */
+ if( newRowidValid && (!oldRowidValid || oldRowid!=newRowid) ){
+ int steprc;
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
+ steprc = sqlite3_step(pRtree->pReadRowid);
+ rc = sqlite3_reset(pRtree->pReadRowid);
+ if( SQLITE_ROW==steprc ){
+ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
+ rc = rtreeDeleteRowid(pRtree, cell.iRowid);
+ }else{
+ rc = rtreeConstraintError(pRtree, 0);
+ }
+ }
+ }
+ }
+
+ /* If aData[0] is not an SQL NULL value, it is the rowid of a
+ ** record to delete from the r-tree table. The following block does
+ ** just that.
+ */
+ if( rc==SQLITE_OK && (nData==1 || (coordChange && oldRowidValid)) ){
+ rc = rtreeDeleteRowid(pRtree, oldRowid);
+ }
+
+ /* If the aData[] array contains more than one element, elements
+ ** (aData[2]..aData[argc-1]) contain a new record to insert into
+ ** the r-tree structure.
+ */
+ if( rc==SQLITE_OK && nData>1 && coordChange ){
+ /* Insert the new record into the r-tree */
+ RtreeNode *pLeaf = 0;
+ if( !newRowidValid ){
+ rc = rtreeNewRowid(pRtree, &cell.iRowid);
+ }
+ *pRowid = cell.iRowid;
+ if( rc==SQLITE_OK ){
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
+ rc2 = nodeRelease(pRtree, pLeaf);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }
+ }
+
+ /* Change the data */
+ if( rc==SQLITE_OK && nData>1 ){
+ sqlite3_stmt *pUp = pRtree->pWriteAux;
+ int jj;
+ int nChange = 0;
+ sqlite3_bind_int64(pUp, 1, cell.iRowid);
+ assert( pRtree->nAux>=1 );
+ if( sqlite3_value_nochange(aData[2]) ){
+ sqlite3_bind_null(pUp, 2);
+ }else{
+ GeoPoly *p = 0;
+ if( sqlite3_value_type(aData[2])==SQLITE_TEXT
+ && (p = geopolyFuncParam(0, aData[2], &rc))!=0
+ && rc==SQLITE_OK
+ ){
+ sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_bind_value(pUp, 2, aData[2]);
+ }
+ sqlite3_free(p);
+ nChange = 1;
+ }
+ for(jj=1; jj<nData-2; jj++){
+ nChange++;
+ sqlite3_bind_value(pUp, jj+2, aData[jj+2]);
+ }
+ if( nChange ){
+ sqlite3_step(pUp);
+ rc = sqlite3_reset(pUp);
+ }
+ }
+
+geopoly_update_end:
+ rtreeRelease(pRtree);
+ return rc;
+}
+
+/*
+** Report that geopoly_overlap() is an overloaded function suitable
+** for use in xBestIndex.
+*/
+static int geopolyFindFunction(
+ sqlite3_vtab *pVtab,
+ int nArg,
+ const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg
+){
+ (void)pVtab;
+ (void)nArg;
+ if( sqlite3_stricmp(zName, "geopoly_overlap")==0 ){
+ *pxFunc = geopolyOverlapFunc;
+ *ppArg = 0;
+ return SQLITE_INDEX_CONSTRAINT_FUNCTION;
+ }
+ if( sqlite3_stricmp(zName, "geopoly_within")==0 ){
+ *pxFunc = geopolyWithinFunc;
+ *ppArg = 0;
+ return SQLITE_INDEX_CONSTRAINT_FUNCTION+1;
+ }
+ return 0;
+}
+
+
+static sqlite3_module geopolyModule = {
+ 3, /* iVersion */
+ geopolyCreate, /* xCreate - create a table */
+ geopolyConnect, /* xConnect - connect to an existing table */
+ geopolyBestIndex, /* xBestIndex - Determine search strategy */
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */
+ rtreeDestroy, /* xDestroy - Drop a table */
+ rtreeOpen, /* xOpen - open a cursor */
+ rtreeClose, /* xClose - close a cursor */
+ geopolyFilter, /* xFilter - configure scan constraints */
+ rtreeNext, /* xNext - advance a cursor */
+ rtreeEof, /* xEof */
+ geopolyColumn, /* xColumn - read data */
+ rtreeRowid, /* xRowid - read data */
+ geopolyUpdate, /* xUpdate - write data */
+ rtreeBeginTransaction, /* xBegin - begin transaction */
+ rtreeEndTransaction, /* xSync - sync transaction */
+ rtreeEndTransaction, /* xCommit - commit transaction */
+ rtreeEndTransaction, /* xRollback - rollback transaction */
+ geopolyFindFunction, /* xFindFunction - function overloading */
+ rtreeRename, /* xRename - rename the table */
+ rtreeSavepoint, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ rtreeShadowName, /* xShadowName */
+ rtreeIntegrity /* xIntegrity */
+};
+
+static int sqlite3_geopoly_init(sqlite3 *db){
+ int rc = SQLITE_OK;
+ static const struct {
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ signed char nArg;
+ unsigned char bPure;
+ const char *zName;
+ } aFunc[] = {
+ { geopolyAreaFunc, 1, 1, "geopoly_area" },
+ { geopolyBlobFunc, 1, 1, "geopoly_blob" },
+ { geopolyJsonFunc, 1, 1, "geopoly_json" },
+ { geopolySvgFunc, -1, 1, "geopoly_svg" },
+ { geopolyWithinFunc, 2, 1, "geopoly_within" },
+ { geopolyContainsPointFunc, 3, 1, "geopoly_contains_point" },
+ { geopolyOverlapFunc, 2, 1, "geopoly_overlap" },
+ { geopolyDebugFunc, 1, 0, "geopoly_debug" },
+ { geopolyBBoxFunc, 1, 1, "geopoly_bbox" },
+ { geopolyXformFunc, 7, 1, "geopoly_xform" },
+ { geopolyRegularFunc, 4, 1, "geopoly_regular" },
+ { geopolyCcwFunc, 1, 1, "geopoly_ccw" },
+ };
+ static const struct {
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**);
+ void (*xFinal)(sqlite3_context*);
+ const char *zName;
+ } aAgg[] = {
+ { geopolyBBoxStep, geopolyBBoxFinal, "geopoly_group_bbox" },
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
+ int enc;
+ if( aFunc[i].bPure ){
+ enc = SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS;
+ }else{
+ enc = SQLITE_UTF8|SQLITE_DIRECTONLY;
+ }
+ rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
+ enc, 0,
+ aFunc[i].xFunc, 0, 0);
+ }
+ for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
+ rc = sqlite3_create_function(db, aAgg[i].zName, 1,
+ SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS, 0,
+ 0, aAgg[i].xStep, aAgg[i].xFinal);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_module_v2(db, "geopoly", &geopolyModule, 0, 0);
+ }
+ return rc;
+}
+
+/************** End of geopoly.c *********************************************/
+/************** Continuing where we left off in rtree.c **********************/
+#endif
+
+/*
+** Register the r-tree module with database handle db. This creates the
+** virtual table module "rtree" and the debugging/analysis scalar
+** function "rtreenode".
+*/
+SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
+ const int utf8 = SQLITE_UTF8;
+ int rc;
+
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0);
+ }
+ if( rc==SQLITE_OK ){
+#ifdef SQLITE_RTREE_INT_ONLY
+ void *c = (void *)RTREE_COORD_INT32;
+#else
+ void *c = (void *)RTREE_COORD_REAL32;
+#endif
+ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
+ }
+ if( rc==SQLITE_OK ){
+ void *c = (void *)RTREE_COORD_INT32;
+ rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
+ }
+#ifdef SQLITE_ENABLE_GEOPOLY
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_geopoly_init(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** This routine deletes the RtreeGeomCallback object that was attached
+** one of the SQL functions create by sqlite3_rtree_geometry_callback()
+** or sqlite3_rtree_query_callback(). In other words, this routine is the
+** destructor for an RtreeGeomCallback objecct. This routine is called when
+** the corresponding SQL function is deleted.
+*/
+static void rtreeFreeCallback(void *p){
+ RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
+ if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
+ sqlite3_free(p);
+}
+
+/*
+** This routine frees the BLOB that is returned by geomCallback().
+*/
+static void rtreeMatchArgFree(void *pArg){
+ int i;
+ RtreeMatchArg *p = (RtreeMatchArg*)pArg;
+ for(i=0; i<p->nParam; i++){
+ sqlite3_value_free(p->apSqlParam[i]);
+ }
+ sqlite3_free(p);
+}
+
+/*
+** Each call to sqlite3_rtree_geometry_callback() or
+** sqlite3_rtree_query_callback() creates an ordinary SQLite
+** scalar function that is implemented by this routine.
+**
+** All this function does is construct an RtreeMatchArg object that
+** contains the geometry-checking callback routines and a list of
+** parameters to this function, then return that RtreeMatchArg object
+** as a BLOB.
+**
+** The R-Tree MATCH operator will read the returned BLOB, deserialize
+** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
+** out which elements of the R-Tree should be returned by the query.
+*/
+static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
+ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
+ RtreeMatchArg *pBlob;
+ sqlite3_int64 nBlob;
+ int memErr = 0;
+
+ nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
+ + nArg*sizeof(sqlite3_value*);
+ pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob);
+ if( !pBlob ){
+ sqlite3_result_error_nomem(ctx);
+ }else{
+ int i;
+ pBlob->iSize = nBlob;
+ pBlob->cb = pGeomCtx[0];
+ pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
+ pBlob->nParam = nArg;
+ for(i=0; i<nArg; i++){
+ pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);
+ if( pBlob->apSqlParam[i]==0 ) memErr = 1;
+#ifdef SQLITE_RTREE_INT_ONLY
+ pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
+#else
+ pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
+#endif
+ }
+ if( memErr ){
+ sqlite3_result_error_nomem(ctx);
+ rtreeMatchArgFree(pBlob);
+ }else{
+ sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree);
+ }
+ }
+}
+
+/*
+** Register a new geometry function for use with the r-tree MATCH operator.
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db, /* Register SQL function on this connection */
+ const char *zGeom, /* Name of the new SQL function */
+ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
+ void *pContext /* Extra data associated with the callback */
+){
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
+
+ /* Allocate and populate the context object. */
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
+ if( !pGeomCtx ) return SQLITE_NOMEM;
+ pGeomCtx->xGeom = xGeom;
+ pGeomCtx->xQueryFunc = 0;
+ pGeomCtx->xDestructor = 0;
+ pGeomCtx->pContext = pContext;
+ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
+ (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
+ );
+}
+
+/*
+** Register a new 2nd-generation geometry function for use with the
+** r-tree MATCH operator.
+*/
+SQLITE_API int sqlite3_rtree_query_callback(
+ sqlite3 *db, /* Register SQL function on this connection */
+ const char *zQueryFunc, /* Name of new SQL function */
+ int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
+ void *pContext, /* Extra data passed into the callback */
+ void (*xDestructor)(void*) /* Destructor for the extra data */
+){
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
+
+ /* Allocate and populate the context object. */
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
+ if( !pGeomCtx ){
+ if( xDestructor ) xDestructor(pContext);
+ return SQLITE_NOMEM;
+ }
+ pGeomCtx->xGeom = 0;
+ pGeomCtx->xQueryFunc = xQueryFunc;
+ pGeomCtx->xDestructor = xDestructor;
+ pGeomCtx->pContext = pContext;
+ return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY,
+ (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
+ );
+}
+
+#if !SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_rtree_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3RtreeInit(db);
+}
+#endif
+
+#endif
+
+/************** End of rtree.c ***********************************************/
+/************** Begin file icu.c *********************************************/
+/*
+** 2007 May 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
+**
+** This file implements an integration between the ICU library
+** ("International Components for Unicode", an open-source library
+** for handling unicode data) and SQLite. The integration uses
+** ICU to provide the following to SQLite:
+**
+** * An implementation of the SQL regexp() function (and hence REGEXP
+** operator) using the ICU uregex_XX() APIs.
+**
+** * Implementations of the SQL scalar upper() and lower() functions
+** for case mapping.
+**
+** * Integration of ICU and SQLite collation sequences.
+**
+** * An implementation of the LIKE operator that uses ICU to
+** provide case-independent matching.
+*/
+
+#if !defined(SQLITE_CORE) \
+ || defined(SQLITE_ENABLE_ICU) \
+ || defined(SQLITE_ENABLE_ICU_COLLATIONS)
+
+/* Include ICU headers */
+#include <unicode/utypes.h>
+#include <unicode/uregex.h>
+#include <unicode/ustring.h>
+#include <unicode/ucol.h>
+
+/* #include <assert.h> */
+
+#ifndef SQLITE_CORE
+/* #include "sqlite3ext.h" */
+ SQLITE_EXTENSION_INIT1
+#else
+/* #include "sqlite3.h" */
+#endif
+
+/*
+** This function is called when an ICU function called from within
+** the implementation of an SQL scalar function returns an error.
+**
+** The scalar function context passed as the first argument is
+** loaded with an error message based on the following two args.
+*/
+static void icuFunctionError(
+ sqlite3_context *pCtx, /* SQLite scalar function context */
+ const char *zName, /* Name of ICU function that failed */
+ UErrorCode e /* Error code returned by ICU function */
+){
+ char zBuf[128];
+ sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
+ zBuf[127] = '\0';
+ sqlite3_result_error(pCtx, zBuf, -1);
+}
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/*
+** Version of sqlite3_free() that is always a function, never a macro.
+*/
+static void xFree(void *p){
+ sqlite3_free(p);
+}
+
+/*
+** This lookup table is used to help decode the first byte of
+** a multi-byte UTF8 character. It is copied here from SQLite source
+** code file utf8.c.
+*/
+static const unsigned char icuUtf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define SQLITE_ICU_READ_UTF8(zIn, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = icuUtf8Trans1[c-0xc0]; \
+ while( (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ }
+
+#define SQLITE_ICU_SKIP_UTF8(zIn) \
+ assert( *zIn ); \
+ if( *(zIn++)>=0xc0 ){ \
+ while( (*zIn & 0xc0)==0x80 ){zIn++;} \
+ }
+
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a "LIKE" expression. Return true (1) if they are the same and
+** false (0) if they are different.
+*/
+static int icuLikeCompare(
+ const uint8_t *zPattern, /* LIKE pattern */
+ const uint8_t *zString, /* The UTF-8 string to compare against */
+ const UChar32 uEsc /* The escape character */
+){
+ static const uint32_t MATCH_ONE = (uint32_t)'_';
+ static const uint32_t MATCH_ALL = (uint32_t)'%';
+
+ int prevEscape = 0; /* True if the previous character was uEsc */
+
+ while( 1 ){
+
+ /* Read (and consume) the next character from the input pattern. */
+ uint32_t uPattern;
+ SQLITE_ICU_READ_UTF8(zPattern, uPattern);
+ if( uPattern==0 ) break;
+
+ /* There are now 4 possibilities:
+ **
+ ** 1. uPattern is an unescaped match-all character "%",
+ ** 2. uPattern is an unescaped match-one character "_",
+ ** 3. uPattern is an unescaped escape character, or
+ ** 4. uPattern is to be handled as an ordinary character
+ */
+ if( uPattern==MATCH_ALL && !prevEscape && uPattern!=(uint32_t)uEsc ){
+ /* Case 1. */
+ uint8_t c;
+
+ /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
+ ** MATCH_ALL. For each MATCH_ONE, skip one character in the
+ ** test string.
+ */
+ while( (c=*zPattern) == MATCH_ALL || c == MATCH_ONE ){
+ if( c==MATCH_ONE ){
+ if( *zString==0 ) return 0;
+ SQLITE_ICU_SKIP_UTF8(zString);
+ }
+ zPattern++;
+ }
+
+ if( *zPattern==0 ) return 1;
+
+ while( *zString ){
+ if( icuLikeCompare(zPattern, zString, uEsc) ){
+ return 1;
+ }
+ SQLITE_ICU_SKIP_UTF8(zString);
+ }
+ return 0;
+
+ }else if( uPattern==MATCH_ONE && !prevEscape && uPattern!=(uint32_t)uEsc ){
+ /* Case 2. */
+ if( *zString==0 ) return 0;
+ SQLITE_ICU_SKIP_UTF8(zString);
+
+ }else if( uPattern==(uint32_t)uEsc && !prevEscape ){
+ /* Case 3. */
+ prevEscape = 1;
+
+ }else{
+ /* Case 4. */
+ uint32_t uString;
+ SQLITE_ICU_READ_UTF8(zString, uString);
+ uString = (uint32_t)u_foldCase((UChar32)uString, U_FOLD_CASE_DEFAULT);
+ uPattern = (uint32_t)u_foldCase((UChar32)uPattern, U_FOLD_CASE_DEFAULT);
+ if( uString!=uPattern ){
+ return 0;
+ }
+ prevEscape = 0;
+ }
+ }
+
+ return *zString==0;
+}
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B, A). If there is an escape character E,
+**
+** A LIKE B ESCAPE E
+**
+** is mapped to like(B, A, E).
+*/
+static void icuLikeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA = sqlite3_value_text(argv[0]);
+ const unsigned char *zB = sqlite3_value_text(argv[1]);
+ UChar32 uEsc = 0;
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+
+
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ int nE= sqlite3_value_bytes(argv[2]);
+ const unsigned char *zE = sqlite3_value_text(argv[2]);
+ int i = 0;
+ if( zE==0 ) return;
+ U8_NEXT(zE, i, nE, uEsc);
+ if( i!=nE){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ }
+
+ if( zA && zB ){
+ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
+ }
+}
+
+/*
+** Function to delete compiled regexp objects. Registered as
+** a destructor function with sqlite3_set_auxdata().
+*/
+static void icuRegexpDelete(void *p){
+ URegularExpression *pExpr = (URegularExpression *)p;
+ uregex_close(pExpr);
+}
+
+/*
+** Implementation of SQLite REGEXP operator. This scalar function takes
+** two arguments. The first is a regular expression pattern to compile
+** the second is a string to match against that pattern. If either
+** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
+** is 1 if the string matches the pattern, or 0 otherwise.
+**
+** SQLite maps the regexp() function to the regexp() operator such
+** that the following two are equivalent:
+**
+** zString REGEXP zPattern
+** regexp(zPattern, zString)
+**
+** Uses the following ICU regexp APIs:
+**
+** uregex_open()
+** uregex_matches()
+** uregex_close()
+*/
+static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ UErrorCode status = U_ZERO_ERROR;
+ URegularExpression *pExpr;
+ UBool res;
+ const UChar *zString = sqlite3_value_text16(apArg[1]);
+
+ (void)nArg; /* Unused parameter */
+
+ /* If the left hand side of the regexp operator is NULL,
+ ** then the result is also NULL.
+ */
+ if( !zString ){
+ return;
+ }
+
+ pExpr = sqlite3_get_auxdata(p, 0);
+ if( !pExpr ){
+ const UChar *zPattern = sqlite3_value_text16(apArg[0]);
+ if( !zPattern ){
+ return;
+ }
+ pExpr = uregex_open(zPattern, -1, 0, 0, &status);
+
+ if( U_SUCCESS(status) ){
+ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
+ pExpr = sqlite3_get_auxdata(p, 0);
+ }
+ if( !pExpr ){
+ icuFunctionError(p, "uregex_open", status);
+ return;
+ }
+ }
+
+ /* Configure the text that the regular expression operates on. */
+ uregex_setText(pExpr, zString, -1, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_setText", status);
+ return;
+ }
+
+ /* Attempt the match */
+ res = uregex_matches(pExpr, 0, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "uregex_matches", status);
+ return;
+ }
+
+ /* Set the text that the regular expression operates on to a NULL
+ ** pointer. This is not really necessary, but it is tidier than
+ ** leaving the regular expression object configured with an invalid
+ ** pointer after this function returns.
+ */
+ uregex_setText(pExpr, 0, 0, &status);
+
+ /* Return 1 or 0. */
+ sqlite3_result_int(p, res ? 1 : 0);
+}
+
+/*
+** Implementations of scalar functions for case mapping - upper() and
+** lower(). Function upper() converts its input to upper-case (ABC).
+** Function lower() converts to lower-case (abc).
+**
+** ICU provides two types of case mapping, "general" case mapping and
+** "language specific". Refer to ICU documentation for the differences
+** between the two.
+**
+** To utilise "general" case mapping, the upper() or lower() scalar
+** functions are invoked with one argument:
+**
+** upper('ABC') -> 'abc'
+** lower('abc') -> 'ABC'
+**
+** To access ICU "language specific" case mapping, upper() or lower()
+** should be invoked with two arguments. The second argument is the name
+** of the locale to use. Passing an empty string ("") or SQL NULL value
+** as the second argument is the same as invoking the 1 argument version
+** of upper() or lower().
+**
+** lower('I', 'en_us') -> 'i'
+** lower('I', 'tr_tr') -> '\u131' (small dotless i)
+**
+** http://www.icu-project.org/userguide/posix.html#case_mappings
+*/
+static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
+ const UChar *zInput; /* Pointer to input string */
+ UChar *zOutput = 0; /* Pointer to output buffer */
+ int nInput; /* Size of utf-16 input string in bytes */
+ int nOut; /* Size of output buffer in bytes */
+ int cnt;
+ int bToUpper; /* True for toupper(), false for tolower() */
+ UErrorCode status;
+ const char *zLocale = 0;
+
+ assert(nArg==1 || nArg==2);
+ bToUpper = (sqlite3_user_data(p)!=0);
+ if( nArg==2 ){
+ zLocale = (const char *)sqlite3_value_text(apArg[1]);
+ }
+
+ zInput = sqlite3_value_text16(apArg[0]);
+ if( !zInput ){
+ return;
+ }
+ nOut = nInput = sqlite3_value_bytes16(apArg[0]);
+ if( nOut==0 ){
+ sqlite3_result_text16(p, "", 0, SQLITE_STATIC);
+ return;
+ }
+
+ for(cnt=0; cnt<2; cnt++){
+ UChar *zNew = sqlite3_realloc(zOutput, nOut);
+ if( zNew==0 ){
+ sqlite3_free(zOutput);
+ sqlite3_result_error_nomem(p);
+ return;
+ }
+ zOutput = zNew;
+ status = U_ZERO_ERROR;
+ if( bToUpper ){
+ nOut = 2*u_strToUpper(zOutput,nOut/2,zInput,nInput/2,zLocale,&status);
+ }else{
+ nOut = 2*u_strToLower(zOutput,nOut/2,zInput,nInput/2,zLocale,&status);
+ }
+
+ if( U_SUCCESS(status) ){
+ sqlite3_result_text16(p, zOutput, nOut, xFree);
+ }else if( status==U_BUFFER_OVERFLOW_ERROR ){
+ assert( cnt==0 );
+ continue;
+ }else{
+ icuFunctionError(p, bToUpper ? "u_strToUpper" : "u_strToLower", status);
+ }
+ return;
+ }
+ assert( 0 ); /* Unreachable */
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */
+
+/*
+** Collation sequence destructor function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static void icuCollationDel(void *pCtx){
+ UCollator *p = (UCollator *)pCtx;
+ ucol_close(p);
+}
+
+/*
+** Collation sequence comparison function. The pCtx argument points to
+** a UCollator structure previously allocated using ucol_open().
+*/
+static int icuCollationColl(
+ void *pCtx,
+ int nLeft,
+ const void *zLeft,
+ int nRight,
+ const void *zRight
+){
+ UCollationResult res;
+ UCollator *p = (UCollator *)pCtx;
+ res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
+ switch( res ){
+ case UCOL_LESS: return -1;
+ case UCOL_GREATER: return +1;
+ case UCOL_EQUAL: return 0;
+ }
+ assert(!"Unexpected return value from ucol_strcoll()");
+ return 0;
+}
+
+/*
+** Implementation of the scalar function icu_load_collation().
+**
+** This scalar function is used to add ICU collation based collation
+** types to an SQLite database connection. It is intended to be called
+** as follows:
+**
+** SELECT icu_load_collation(<locale>, <collation-name>);
+**
+** Where <locale> is a string containing an ICU locale identifier (i.e.
+** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
+** collation sequence to create.
+*/
+static void icuLoadCollation(
+ sqlite3_context *p,
+ int nArg,
+ sqlite3_value **apArg
+){
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
+ UErrorCode status = U_ZERO_ERROR;
+ const char *zLocale; /* Locale identifier - (eg. "jp_JP") */
+ const char *zName; /* SQL Collation sequence name (eg. "japanese") */
+ UCollator *pUCollator; /* ICU library collation object */
+ int rc; /* Return code from sqlite3_create_collation_x() */
+
+ assert(nArg==2);
+ (void)nArg; /* Unused parameter */
+ zLocale = (const char *)sqlite3_value_text(apArg[0]);
+ zName = (const char *)sqlite3_value_text(apArg[1]);
+
+ if( !zLocale || !zName ){
+ return;
+ }
+
+ pUCollator = ucol_open(zLocale, &status);
+ if( !U_SUCCESS(status) ){
+ icuFunctionError(p, "ucol_open", status);
+ return;
+ }
+ assert(p);
+
+ rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
+ icuCollationColl, icuCollationDel
+ );
+ if( rc!=SQLITE_OK ){
+ ucol_close(pUCollator);
+ sqlite3_result_error(p, "Error registering collation function", -1);
+ }
+}
+
+/*
+** Register the ICU extension functions with database db.
+*/
+SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
+# define SQLITEICU_EXTRAFLAGS (SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS)
+ static const struct IcuScalar {
+ const char *zName; /* Function name */
+ unsigned char nArg; /* Number of arguments */
+ unsigned int enc; /* Optimal text encoding */
+ unsigned char iContext; /* sqlite3_user_data() context */
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } scalars[] = {
+ {"icu_load_collation",2,SQLITE_UTF8|SQLITE_DIRECTONLY,1, icuLoadCollation},
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
+ {"regexp", 2, SQLITE_ANY|SQLITEICU_EXTRAFLAGS, 0, icuRegexpFunc},
+ {"lower", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF16|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"lower", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"lower", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuCaseFunc16},
+ {"upper", 1, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"upper", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 1, icuCaseFunc16},
+ {"like", 2, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc},
+ {"like", 3, SQLITE_UTF8|SQLITEICU_EXTRAFLAGS, 0, icuLikeFunc},
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) */
+ };
+ int rc = SQLITE_OK;
+ int i;
+
+ for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
+ const struct IcuScalar *p = &scalars[i];
+ rc = sqlite3_create_function(
+ db, p->zName, p->nArg, p->enc,
+ p->iContext ? (void*)db : (void*)0,
+ p->xFunc, 0, 0
+ );
+ }
+
+ return rc;
+}
+
+#if !SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_icu_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3IcuInit(db);
+}
+#endif
+
+#endif
+
+/************** End of icu.c *************************************************/
+/************** Begin file fts3_icu.c ****************************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements a tokenizer for fts3 based on the ICU library.
+*/
+/* #include "fts3Int.h" */
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+#ifdef SQLITE_ENABLE_ICU
+
+/* #include <assert.h> */
+/* #include <string.h> */
+/* #include "fts3_tokenizer.h" */
+
+#include <unicode/ubrk.h>
+/* #include <unicode/ucol.h> */
+/* #include <unicode/ustring.h> */
+#include <unicode/utf16.h>
+
+typedef struct IcuTokenizer IcuTokenizer;
+typedef struct IcuCursor IcuCursor;
+
+struct IcuTokenizer {
+ sqlite3_tokenizer base;
+ char *zLocale;
+};
+
+struct IcuCursor {
+ sqlite3_tokenizer_cursor base;
+
+ UBreakIterator *pIter; /* ICU break-iterator object */
+ int nChar; /* Number of UChar elements in pInput */
+ UChar *aChar; /* Copy of input using utf-16 encoding */
+ int *aOffset; /* Offsets of each character in utf-8 input */
+
+ int nBuffer;
+ char *zBuffer;
+
+ int iToken;
+};
+
+/*
+** Create a new tokenizer instance.
+*/
+static int icuCreate(
+ int argc, /* Number of entries in argv[] */
+ const char * const *argv, /* Tokenizer creation arguments */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+){
+ IcuTokenizer *p;
+ int n = 0;
+
+ if( argc>0 ){
+ n = strlen(argv[0])+1;
+ }
+ p = (IcuTokenizer *)sqlite3_malloc64(sizeof(IcuTokenizer)+n);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ memset(p, 0, sizeof(IcuTokenizer));
+
+ if( n ){
+ p->zLocale = (char *)&p[1];
+ memcpy(p->zLocale, argv[0], n);
+ }
+
+ *ppTokenizer = (sqlite3_tokenizer *)p;
+
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int icuDestroy(sqlite3_tokenizer *pTokenizer){
+ IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int icuOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, /* Input string */
+ int nInput, /* Length of zInput in bytes */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
+ IcuCursor *pCsr;
+
+ const int32_t opt = U_FOLD_CASE_DEFAULT;
+ UErrorCode status = U_ZERO_ERROR;
+ int nChar;
+
+ UChar32 c;
+ int iInput = 0;
+ int iOut = 0;
+
+ *ppCursor = 0;
+
+ if( zInput==0 ){
+ nInput = 0;
+ zInput = "";
+ }else if( nInput<0 ){
+ nInput = strlen(zInput);
+ }
+ nChar = nInput+1;
+ pCsr = (IcuCursor *)sqlite3_malloc64(
+ sizeof(IcuCursor) + /* IcuCursor */
+ ((nChar+3)&~3) * sizeof(UChar) + /* IcuCursor.aChar[] */
+ (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */
+ );
+ if( !pCsr ){
+ return SQLITE_NOMEM;
+ }
+ memset(pCsr, 0, sizeof(IcuCursor));
+ pCsr->aChar = (UChar *)&pCsr[1];
+ pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3];
+
+ pCsr->aOffset[iOut] = iInput;
+ U8_NEXT(zInput, iInput, nInput, c);
+ while( c>0 ){
+ int isError = 0;
+ c = u_foldCase(c, opt);
+ U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
+ if( isError ){
+ sqlite3_free(pCsr);
+ return SQLITE_ERROR;
+ }
+ pCsr->aOffset[iOut] = iInput;
+
+ if( iInput<nInput ){
+ U8_NEXT(zInput, iInput, nInput, c);
+ }else{
+ c = 0;
+ }
+ }
+
+ pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
+ if( !U_SUCCESS(status) ){
+ sqlite3_free(pCsr);
+ return SQLITE_ERROR;
+ }
+ pCsr->nChar = iOut;
+
+ ubrk_first(pCsr->pIter);
+ *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to icuOpen().
+*/
+static int icuClose(sqlite3_tokenizer_cursor *pCursor){
+ IcuCursor *pCsr = (IcuCursor *)pCursor;
+ ubrk_close(pCsr->pIter);
+ sqlite3_free(pCsr->zBuffer);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor.
+*/
+static int icuNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ IcuCursor *pCsr = (IcuCursor *)pCursor;
+
+ int iStart = 0;
+ int iEnd = 0;
+ int nByte = 0;
+
+ while( iStart==iEnd ){
+ UChar32 c;
+
+ iStart = ubrk_current(pCsr->pIter);
+ iEnd = ubrk_next(pCsr->pIter);
+ if( iEnd==UBRK_DONE ){
+ return SQLITE_DONE;
+ }
+
+ while( iStart<iEnd ){
+ int iWhite = iStart;
+ U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
+ if( u_isspace(c) ){
+ iStart = iWhite;
+ }else{
+ break;
+ }
+ }
+ assert(iStart<=iEnd);
+ }
+
+ do {
+ UErrorCode status = U_ZERO_ERROR;
+ if( nByte ){
+ char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
+ if( !zNew ){
+ return SQLITE_NOMEM;
+ }
+ pCsr->zBuffer = zNew;
+ pCsr->nBuffer = nByte;
+ }
+
+ u_strToUTF8(
+ pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */
+ &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */
+ &status /* Output success/failure */
+ );
+ } while( nByte>pCsr->nBuffer );
+
+ *ppToken = pCsr->zBuffer;
+ *pnBytes = nByte;
+ *piStartOffset = pCsr->aOffset[iStart];
+ *piEndOffset = pCsr->aOffset[iEnd];
+ *piPosition = pCsr->iToken++;
+
+ return SQLITE_OK;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module icuTokenizerModule = {
+ 0, /* iVersion */
+ icuCreate, /* xCreate */
+ icuDestroy, /* xCreate */
+ icuOpen, /* xOpen */
+ icuClose, /* xClose */
+ icuNext, /* xNext */
+ 0, /* xLanguageid */
+};
+
+/*
+** Set *ppModule to point at the implementation of the ICU tokenizer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &icuTokenizerModule;
+}
+
+#endif /* defined(SQLITE_ENABLE_ICU) */
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_icu.c ********************************************/
+/************** Begin file sqlite3rbu.c **************************************/
+/*
+** 2014 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+**
+** OVERVIEW
+**
+** The RBU extension requires that the RBU update be packaged as an
+** SQLite database. The tables it expects to find are described in
+** sqlite3rbu.h. Essentially, for each table xyz in the target database
+** that the user wishes to write to, a corresponding data_xyz table is
+** created in the RBU database and populated with one row for each row to
+** update, insert or delete from the target table.
+**
+** The update proceeds in three stages:
+**
+** 1) The database is updated. The modified database pages are written
+** to a *-oal file. A *-oal file is just like a *-wal file, except
+** that it is named "<database>-oal" instead of "<database>-wal".
+** Because regular SQLite clients do not look for file named
+** "<database>-oal", they go on using the original database in
+** rollback mode while the *-oal file is being generated.
+**
+** During this stage RBU does not update the database by writing
+** directly to the target tables. Instead it creates "imposter"
+** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses
+** to update each b-tree individually. All updates required by each
+** b-tree are completed before moving on to the next, and all
+** updates are done in sorted key order.
+**
+** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal"
+** location using a call to rename(2). Before doing this the RBU
+** module takes an EXCLUSIVE lock on the database file, ensuring
+** that there are no other active readers.
+**
+** Once the EXCLUSIVE lock is released, any other database readers
+** detect the new *-wal file and read the database in wal mode. At
+** this point they see the new version of the database - including
+** the updates made as part of the RBU update.
+**
+** 3) The new *-wal file is checkpointed. This proceeds in the same way
+** as a regular database checkpoint, except that a single frame is
+** checkpointed each time sqlite3rbu_step() is called. If the RBU
+** handle is closed before the entire *-wal file is checkpointed,
+** the checkpoint progress is saved in the RBU database and the
+** checkpoint can be resumed by another RBU client at some point in
+** the future.
+**
+** POTENTIAL PROBLEMS
+**
+** The rename() call might not be portable. And RBU is not currently
+** syncing the directory after renaming the file.
+**
+** When state is saved, any commit to the *-oal file and the commit to
+** the RBU update database are not atomic. So if the power fails at the
+** wrong moment they might get out of sync. As the main database will be
+** committed before the RBU update database this will likely either just
+** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE
+** constraint violations).
+**
+** If some client does modify the target database mid RBU update, or some
+** other error occurs, the RBU extension will keep throwing errors. It's
+** not really clear how to get out of this state. The system could just
+** by delete the RBU update database and *-oal file and have the device
+** download the update again and start over.
+**
+** At present, for an UPDATE, both the new.* and old.* records are
+** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all
+** fields are collected. This means we're probably writing a lot more
+** data to disk when saving the state of an ongoing update to the RBU
+** update database than is strictly necessary.
+**
+*/
+
+/* #include <assert.h> */
+/* #include <string.h> */
+/* #include <stdio.h> */
+
+/* #include "sqlite3.h" */
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU)
+/************** Include sqlite3rbu.h in the middle of sqlite3rbu.c ***********/
+/************** Begin file sqlite3rbu.h **************************************/
+/*
+** 2014 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the public interface for the RBU extension.
+*/
+
+/*
+** SUMMARY
+**
+** Writing a transaction containing a large number of operations on
+** b-tree indexes that are collectively larger than the available cache
+** memory can be very inefficient.
+**
+** The problem is that in order to update a b-tree, the leaf page (at least)
+** containing the entry being inserted or deleted must be modified. If the
+** working set of leaves is larger than the available cache memory, then a
+** single leaf that is modified more than once as part of the transaction
+** may be loaded from or written to the persistent media multiple times.
+** Additionally, because the index updates are likely to be applied in
+** random order, access to pages within the database is also likely to be in
+** random order, which is itself quite inefficient.
+**
+** One way to improve the situation is to sort the operations on each index
+** by index key before applying them to the b-tree. This leads to an IO
+** pattern that resembles a single linear scan through the index b-tree,
+** and all but guarantees each modified leaf page is loaded and stored
+** exactly once. SQLite uses this trick to improve the performance of
+** CREATE INDEX commands. This extension allows it to be used to improve
+** the performance of large transactions on existing databases.
+**
+** Additionally, this extension allows the work involved in writing the
+** large transaction to be broken down into sub-transactions performed
+** sequentially by separate processes. This is useful if the system cannot
+** guarantee that a single update process will run for long enough to apply
+** the entire update, for example because the update is being applied on a
+** mobile device that is frequently rebooted. Even after the writer process
+** has committed one or more sub-transactions, other database clients continue
+** to read from the original database snapshot. In other words, partially
+** applied transactions are not visible to other clients.
+**
+** "RBU" stands for "Resumable Bulk Update". As in a large database update
+** transmitted via a wireless network to a mobile device. A transaction
+** applied using this extension is hence refered to as an "RBU update".
+**
+**
+** LIMITATIONS
+**
+** An "RBU update" transaction is subject to the following limitations:
+**
+** * The transaction must consist of INSERT, UPDATE and DELETE operations
+** only.
+**
+** * INSERT statements may not use any default values.
+**
+** * UPDATE and DELETE statements must identify their target rows by
+** non-NULL PRIMARY KEY values. Rows with NULL values stored in PRIMARY
+** KEY fields may not be updated or deleted. If the table being written
+** has no PRIMARY KEY, affected rows must be identified by rowid.
+**
+** * UPDATE statements may not modify PRIMARY KEY columns.
+**
+** * No triggers will be fired.
+**
+** * No foreign key violations are detected or reported.
+**
+** * CHECK constraints are not enforced.
+**
+** * No constraint handling mode except for "OR ROLLBACK" is supported.
+**
+**
+** PREPARATION
+**
+** An "RBU update" is stored as a separate SQLite database. A database
+** containing an RBU update is an "RBU database". For each table in the
+** target database to be updated, the RBU database should contain a table
+** named "data_<target name>" containing the same set of columns as the
+** target table, and one more - "rbu_control". The data_% table should
+** have no PRIMARY KEY or UNIQUE constraints, but each column should have
+** the same type as the corresponding column in the target database.
+** The "rbu_control" column should have no type at all. For example, if
+** the target database contains:
+**
+** CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c UNIQUE);
+**
+** Then the RBU database should contain:
+**
+** CREATE TABLE data_t1(a INTEGER, b TEXT, c, rbu_control);
+**
+** The order of the columns in the data_% table does not matter.
+**
+** Instead of a regular table, the RBU database may also contain virtual
+** tables or views named using the data_<target> naming scheme.
+**
+** Instead of the plain data_<target> naming scheme, RBU database tables
+** may also be named data<integer>_<target>, where <integer> is any sequence
+** of zero or more numeric characters (0-9). This can be significant because
+** tables within the RBU database are always processed in order sorted by
+** name. By judicious selection of the <integer> portion of the names
+** of the RBU tables the user can therefore control the order in which they
+** are processed. This can be useful, for example, to ensure that "external
+** content" FTS4 tables are updated before their underlying content tables.
+**
+** If the target database table is a virtual table or a table that has no
+** PRIMARY KEY declaration, the data_% table must also contain a column
+** named "rbu_rowid". This column is mapped to the table's implicit primary
+** key column - "rowid". Virtual tables for which the "rowid" column does
+** not function like a primary key value cannot be updated using RBU. For
+** example, if the target db contains either of the following:
+**
+** CREATE VIRTUAL TABLE x1 USING fts3(a, b);
+** CREATE TABLE x1(a, b)
+**
+** then the RBU database should contain:
+**
+** CREATE TABLE data_x1(a, b, rbu_rowid, rbu_control);
+**
+** All non-hidden columns (i.e. all columns matched by "SELECT *") of the
+** target table must be present in the input table. For virtual tables,
+** hidden columns are optional - they are updated by RBU if present in
+** the input table, or not otherwise. For example, to write to an fts4
+** table with a hidden languageid column such as:
+**
+** CREATE VIRTUAL TABLE ft1 USING fts4(a, b, languageid='langid');
+**
+** Either of the following input table schemas may be used:
+**
+** CREATE TABLE data_ft1(a, b, langid, rbu_rowid, rbu_control);
+** CREATE TABLE data_ft1(a, b, rbu_rowid, rbu_control);
+**
+** For each row to INSERT into the target database as part of the RBU
+** update, the corresponding data_% table should contain a single record
+** with the "rbu_control" column set to contain integer value 0. The
+** other columns should be set to the values that make up the new record
+** to insert.
+**
+** If the target database table has an INTEGER PRIMARY KEY, it is not
+** possible to insert a NULL value into the IPK column. Attempting to
+** do so results in an SQLITE_MISMATCH error.
+**
+** For each row to DELETE from the target database as part of the RBU
+** update, the corresponding data_% table should contain a single record
+** with the "rbu_control" column set to contain integer value 1. The
+** real primary key values of the row to delete should be stored in the
+** corresponding columns of the data_% table. The values stored in the
+** other columns are not used.
+**
+** For each row to UPDATE from the target database as part of the RBU
+** update, the corresponding data_% table should contain a single record
+** with the "rbu_control" column set to contain a value of type text.
+** The real primary key values identifying the row to update should be
+** stored in the corresponding columns of the data_% table row, as should
+** the new values of all columns being update. The text value in the
+** "rbu_control" column must contain the same number of characters as
+** there are columns in the target database table, and must consist entirely
+** of 'x' and '.' characters (or in some special cases 'd' - see below). For
+** each column that is being updated, the corresponding character is set to
+** 'x'. For those that remain as they are, the corresponding character of the
+** rbu_control value should be set to '.'. For example, given the tables
+** above, the update statement:
+**
+** UPDATE t1 SET c = 'usa' WHERE a = 4;
+**
+** is represented by the data_t1 row created by:
+**
+** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..x');
+**
+** Instead of an 'x' character, characters of the rbu_control value specified
+** for UPDATEs may also be set to 'd'. In this case, instead of updating the
+** target table with the value stored in the corresponding data_% column, the
+** user-defined SQL function "rbu_delta()" is invoked and the result stored in
+** the target table column. rbu_delta() is invoked with two arguments - the
+** original value currently stored in the target table column and the
+** value specified in the data_xxx table.
+**
+** For example, this row:
+**
+** INSERT INTO data_t1(a, b, c, rbu_control) VALUES(4, NULL, 'usa', '..d');
+**
+** is similar to an UPDATE statement such as:
+**
+** UPDATE t1 SET c = rbu_delta(c, 'usa') WHERE a = 4;
+**
+** Finally, if an 'f' character appears in place of a 'd' or 's' in an
+** ota_control string, the contents of the data_xxx table column is assumed
+** to be a "fossil delta" - a patch to be applied to a blob value in the
+** format used by the fossil source-code management system. In this case
+** the existing value within the target database table must be of type BLOB.
+** It is replaced by the result of applying the specified fossil delta to
+** itself.
+**
+** If the target database table is a virtual table or a table with no PRIMARY
+** KEY, the rbu_control value should not include a character corresponding
+** to the rbu_rowid value. For example, this:
+**
+** INSERT INTO data_ft1(a, b, rbu_rowid, rbu_control)
+** VALUES(NULL, 'usa', 12, '.x');
+**
+** causes a result similar to:
+**
+** UPDATE ft1 SET b = 'usa' WHERE rowid = 12;
+**
+** The data_xxx tables themselves should have no PRIMARY KEY declarations.
+** However, RBU is more efficient if reading the rows in from each data_xxx
+** table in "rowid" order is roughly the same as reading them sorted by
+** the PRIMARY KEY of the corresponding target database table. In other
+** words, rows should be sorted using the destination table PRIMARY KEY
+** fields before they are inserted into the data_xxx tables.
+**
+** USAGE
+**
+** The API declared below allows an application to apply an RBU update
+** stored on disk to an existing target database. Essentially, the
+** application:
+**
+** 1) Opens an RBU handle using the sqlite3rbu_open() function.
+**
+** 2) Registers any required virtual table modules with the database
+** handle returned by sqlite3rbu_db(). Also, if required, register
+** the rbu_delta() implementation.
+**
+** 3) Calls the sqlite3rbu_step() function one or more times on
+** the new handle. Each call to sqlite3rbu_step() performs a single
+** b-tree operation, so thousands of calls may be required to apply
+** a complete update.
+**
+** 4) Calls sqlite3rbu_close() to close the RBU update handle. If
+** sqlite3rbu_step() has been called enough times to completely
+** apply the update to the target database, then the RBU database
+** is marked as fully applied. Otherwise, the state of the RBU
+** update application is saved in the RBU database for later
+** resumption.
+**
+** See comments below for more detail on APIs.
+**
+** If an update is only partially applied to the target database by the
+** time sqlite3rbu_close() is called, various state information is saved
+** within the RBU database. This allows subsequent processes to automatically
+** resume the RBU update from where it left off.
+**
+** To remove all RBU extension state information, returning an RBU database
+** to its original contents, it is sufficient to drop all tables that begin
+** with the prefix "rbu_"
+**
+** DATABASE LOCKING
+**
+** An RBU update may not be applied to a database in WAL mode. Attempting
+** to do so is an error (SQLITE_ERROR).
+**
+** While an RBU handle is open, a SHARED lock may be held on the target
+** database file. This means it is possible for other clients to read the
+** database, but not to write it.
+**
+** If an RBU update is started and then suspended before it is completed,
+** then an external client writes to the database, then attempting to resume
+** the suspended RBU update is also an error (SQLITE_BUSY).
+*/
+
+#ifndef _SQLITE3RBU_H
+#define _SQLITE3RBU_H
+
+/* #include "sqlite3.h" ** Required for error code definitions ** */
+
+#if 0
+extern "C" {
+#endif
+
+typedef struct sqlite3rbu sqlite3rbu;
+
+/*
+** Open an RBU handle.
+**
+** Argument zTarget is the path to the target database. Argument zRbu is
+** the path to the RBU database. Each call to this function must be matched
+** by a call to sqlite3rbu_close(). When opening the databases, RBU passes
+** the SQLITE_CONFIG_URI flag to sqlite3_open_v2(). So if either zTarget
+** or zRbu begin with "file:", it will be interpreted as an SQLite
+** database URI, not a regular file name.
+**
+** If the zState argument is passed a NULL value, the RBU extension stores
+** the current state of the update (how many rows have been updated, which
+** indexes are yet to be updated etc.) within the RBU database itself. This
+** can be convenient, as it means that the RBU application does not need to
+** organize removing a separate state file after the update is concluded.
+** Or, if zState is non-NULL, it must be a path to a database file in which
+** the RBU extension can store the state of the update.
+**
+** When resuming an RBU update, the zState argument must be passed the same
+** value as when the RBU update was started.
+**
+** Once the RBU update is finished, the RBU extension does not
+** automatically remove any zState database file, even if it created it.
+**
+** By default, RBU uses the default VFS to access the files on disk. To
+** use a VFS other than the default, an SQLite "file:" URI containing a
+** "vfs=..." option may be passed as the zTarget option.
+**
+** IMPORTANT NOTE FOR ZIPVFS USERS: The RBU extension works with all of
+** SQLite's built-in VFSs, including the multiplexor VFS. However it does
+** not work out of the box with zipvfs. Refer to the comment describing
+** the zipvfs_create_vfs() API below for details on using RBU with zipvfs.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_open(
+ const char *zTarget,
+ const char *zRbu,
+ const char *zState
+);
+
+/*
+** Open an RBU handle to perform an RBU vacuum on database file zTarget.
+** An RBU vacuum is similar to SQLite's built-in VACUUM command, except
+** that it can be suspended and resumed like an RBU update.
+**
+** The second argument to this function identifies a database in which
+** to store the state of the RBU vacuum operation if it is suspended. The
+** first time sqlite3rbu_vacuum() is called, to start an RBU vacuum
+** operation, the state database should either not exist or be empty
+** (contain no tables). If an RBU vacuum is suspended by calling
+** sqlite3rbu_close() on the RBU handle before sqlite3rbu_step() has
+** returned SQLITE_DONE, the vacuum state is stored in the state database.
+** The vacuum can be resumed by calling this function to open a new RBU
+** handle specifying the same target and state databases.
+**
+** If the second argument passed to this function is NULL, then the
+** name of the state database is "<database>-vacuum", where <database>
+** is the name of the target database file. In this case, on UNIX, if the
+** state database is not already present in the file-system, it is created
+** with the same permissions as the target db is made.
+**
+** With an RBU vacuum, it is an SQLITE_MISUSE error if the name of the
+** state database ends with "-vactmp". This name is reserved for internal
+** use.
+**
+** This function does not delete the state database after an RBU vacuum
+** is completed, even if it created it. However, if the call to
+** sqlite3rbu_close() returns any value other than SQLITE_OK, the contents
+** of the state tables within the state database are zeroed. This way,
+** the next call to sqlite3rbu_vacuum() opens a handle that starts a
+** new RBU vacuum operation.
+**
+** As with sqlite3rbu_open(), Zipvfs users should rever to the comment
+** describing the sqlite3rbu_create_vfs() API function below for
+** a description of the complications associated with using RBU with
+** zipvfs databases.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_vacuum(
+ const char *zTarget,
+ const char *zState
+);
+
+/*
+** Configure a limit for the amount of temp space that may be used by
+** the RBU handle passed as the first argument. The new limit is specified
+** in bytes by the second parameter. If it is positive, the limit is updated.
+** If the second parameter to this function is passed zero, then the limit
+** is removed entirely. If the second parameter is negative, the limit is
+** not modified (this is useful for querying the current limit).
+**
+** In all cases the returned value is the current limit in bytes (zero
+** indicates unlimited).
+**
+** If the temp space limit is exceeded during operation, an SQLITE_FULL
+** error is returned.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu*, sqlite3_int64);
+
+/*
+** Return the current amount of temp file space, in bytes, currently used by
+** the RBU handle passed as the only argument.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu*);
+
+/*
+** Internally, each RBU connection uses a separate SQLite database
+** connection to access the target and rbu update databases. This
+** API allows the application direct access to these database handles.
+**
+** The first argument passed to this function must be a valid, open, RBU
+** handle. The second argument should be passed zero to access the target
+** database handle, or non-zero to access the rbu update database handle.
+** Accessing the underlying database handles may be useful in the
+** following scenarios:
+**
+** * If any target tables are virtual tables, it may be necessary to
+** call sqlite3_create_module() on the target database handle to
+** register the required virtual table implementations.
+**
+** * If the data_xxx tables in the RBU source database are virtual
+** tables, the application may need to call sqlite3_create_module() on
+** the rbu update db handle to any required virtual table
+** implementations.
+**
+** * If the application uses the "rbu_delta()" feature described above,
+** it must use sqlite3_create_function() or similar to register the
+** rbu_delta() implementation with the target database handle.
+**
+** If an error has occurred, either while opening or stepping the RBU object,
+** this function may return NULL. The error code and message may be collected
+** when sqlite3rbu_close() is called.
+**
+** Database handles returned by this function remain valid until the next
+** call to any sqlite3rbu_xxx() function other than sqlite3rbu_db().
+*/
+SQLITE_API sqlite3 *sqlite3rbu_db(sqlite3rbu*, int bRbu);
+
+/*
+** Do some work towards applying the RBU update to the target db.
+**
+** Return SQLITE_DONE if the update has been completely applied, or
+** SQLITE_OK if no error occurs but there remains work to do to apply
+** the RBU update. If an error does occur, some other error code is
+** returned.
+**
+** Once a call to sqlite3rbu_step() has returned a value other than
+** SQLITE_OK, all subsequent calls on the same RBU handle are no-ops
+** that immediately return the same value.
+*/
+SQLITE_API int sqlite3rbu_step(sqlite3rbu *pRbu);
+
+/*
+** Force RBU to save its state to disk.
+**
+** If a power failure or application crash occurs during an update, following
+** system recovery RBU may resume the update from the point at which the state
+** was last saved. In other words, from the most recent successful call to
+** sqlite3rbu_close() or this function.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+SQLITE_API int sqlite3rbu_savestate(sqlite3rbu *pRbu);
+
+/*
+** Close an RBU handle.
+**
+** If the RBU update has been completely applied, mark the RBU database
+** as fully applied. Otherwise, assuming no error has occurred, save the
+** current state of the RBU update appliation to the RBU database.
+**
+** If an error has already occurred as part of an sqlite3rbu_step()
+** or sqlite3rbu_open() call, or if one occurs within this function, an
+** SQLite error code is returned. Additionally, if pzErrmsg is not NULL,
+** *pzErrmsg may be set to point to a buffer containing a utf-8 formatted
+** English language error message. It is the responsibility of the caller to
+** eventually free any such buffer using sqlite3_free().
+**
+** Otherwise, if no error occurs, this function returns SQLITE_OK if the
+** update has been partially applied, or SQLITE_DONE if it has been
+** completely applied.
+*/
+SQLITE_API int sqlite3rbu_close(sqlite3rbu *pRbu, char **pzErrmsg);
+
+/*
+** Return the total number of key-value operations (inserts, deletes or
+** updates) that have been performed on the target database since the
+** current RBU update was started.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu);
+
+/*
+** Obtain permyriadage (permyriadage is to 10000 as percentage is to 100)
+** progress indications for the two stages of an RBU update. This API may
+** be useful for driving GUI progress indicators and similar.
+**
+** An RBU update is divided into two stages:
+**
+** * Stage 1, in which changes are accumulated in an oal/wal file, and
+** * Stage 2, in which the contents of the wal file are copied into the
+** main database.
+**
+** The update is visible to non-RBU clients during stage 2. During stage 1
+** non-RBU reader clients may see the original database.
+**
+** If this API is called during stage 2 of the update, output variable
+** (*pnOne) is set to 10000 to indicate that stage 1 has finished and (*pnTwo)
+** to a value between 0 and 10000 to indicate the permyriadage progress of
+** stage 2. A value of 5000 indicates that stage 2 is half finished,
+** 9000 indicates that it is 90% finished, and so on.
+**
+** If this API is called during stage 1 of the update, output variable
+** (*pnTwo) is set to 0 to indicate that stage 2 has not yet started. The
+** value to which (*pnOne) is set depends on whether or not the RBU
+** database contains an "rbu_count" table. The rbu_count table, if it
+** exists, must contain the same columns as the following:
+**
+** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
+**
+** There must be one row in the table for each source (data_xxx) table within
+** the RBU database. The 'tbl' column should contain the name of the source
+** table. The 'cnt' column should contain the number of rows within the
+** source table.
+**
+** If the rbu_count table is present and populated correctly and this
+** API is called during stage 1, the *pnOne output variable is set to the
+** permyriadage progress of the same stage. If the rbu_count table does
+** not exist, then (*pnOne) is set to -1 during stage 1. If the rbu_count
+** table exists but is not correctly populated, the value of the *pnOne
+** output variable during stage 1 is undefined.
+*/
+SQLITE_API void sqlite3rbu_bp_progress(sqlite3rbu *pRbu, int *pnOne, int*pnTwo);
+
+/*
+** Obtain an indication as to the current stage of an RBU update or vacuum.
+** This function always returns one of the SQLITE_RBU_STATE_XXX constants
+** defined in this file. Return values should be interpreted as follows:
+**
+** SQLITE_RBU_STATE_OAL:
+** RBU is currently building a *-oal file. The next call to sqlite3rbu_step()
+** may either add further data to the *-oal file, or compute data that will
+** be added by a subsequent call.
+**
+** SQLITE_RBU_STATE_MOVE:
+** RBU has finished building the *-oal file. The next call to sqlite3rbu_step()
+** will move the *-oal file to the equivalent *-wal path. If the current
+** operation is an RBU update, then the updated version of the database
+** file will become visible to ordinary SQLite clients following the next
+** call to sqlite3rbu_step().
+**
+** SQLITE_RBU_STATE_CHECKPOINT:
+** RBU is currently performing an incremental checkpoint. The next call to
+** sqlite3rbu_step() will copy a page of data from the *-wal file into
+** the target database file.
+**
+** SQLITE_RBU_STATE_DONE:
+** The RBU operation has finished. Any subsequent calls to sqlite3rbu_step()
+** will immediately return SQLITE_DONE.
+**
+** SQLITE_RBU_STATE_ERROR:
+** An error has occurred. Any subsequent calls to sqlite3rbu_step() will
+** immediately return the SQLite error code associated with the error.
+*/
+#define SQLITE_RBU_STATE_OAL 1
+#define SQLITE_RBU_STATE_MOVE 2
+#define SQLITE_RBU_STATE_CHECKPOINT 3
+#define SQLITE_RBU_STATE_DONE 4
+#define SQLITE_RBU_STATE_ERROR 5
+
+SQLITE_API int sqlite3rbu_state(sqlite3rbu *pRbu);
+
+/*
+** As part of applying an RBU update or performing an RBU vacuum operation,
+** the system must at one point move the *-oal file to the equivalent *-wal
+** path. Normally, it does this by invoking POSIX function rename(2) directly.
+** Except on WINCE platforms, where it uses win32 API MoveFileW(). This
+** function may be used to register a callback that the RBU module will invoke
+** instead of one of these APIs.
+**
+** If a callback is registered with an RBU handle, it invokes it instead
+** of rename(2) when it needs to move a file within the file-system. The
+** first argument passed to the xRename() callback is a copy of the second
+** argument (pArg) passed to this function. The second is the full path
+** to the file to move and the third the full path to which it should be
+** moved. The callback function should return SQLITE_OK to indicate
+** success. If an error occurs, it should return an SQLite error code.
+** In this case the RBU operation will be abandoned and the error returned
+** to the RBU user.
+**
+** Passing a NULL pointer in place of the xRename argument to this function
+** restores the default behaviour.
+*/
+SQLITE_API void sqlite3rbu_rename_handler(
+ sqlite3rbu *pRbu,
+ void *pArg,
+ int (*xRename)(void *pArg, const char *zOld, const char *zNew)
+);
+
+
+/*
+** Create an RBU VFS named zName that accesses the underlying file-system
+** via existing VFS zParent. Or, if the zParent parameter is passed NULL,
+** then the new RBU VFS uses the default system VFS to access the file-system.
+** The new object is registered as a non-default VFS with SQLite before
+** returning.
+**
+** Part of the RBU implementation uses a custom VFS object. Usually, this
+** object is created and deleted automatically by RBU.
+**
+** The exception is for applications that also use zipvfs. In this case,
+** the custom VFS must be explicitly created by the user before the RBU
+** handle is opened. The RBU VFS should be installed so that the zipvfs
+** VFS uses the RBU VFS, which in turn uses any other VFS layers in use
+** (for example multiplexor) to access the file-system. For example,
+** to assemble an RBU enabled VFS stack that uses both zipvfs and
+** multiplexor (error checking omitted):
+**
+** // Create a VFS named "multiplex" (not the default).
+** sqlite3_multiplex_initialize(0, 0);
+**
+** // Create an rbu VFS named "rbu" that uses multiplexor. If the
+** // second argument were replaced with NULL, the "rbu" VFS would
+** // access the file-system via the system default VFS, bypassing the
+** // multiplexor.
+** sqlite3rbu_create_vfs("rbu", "multiplex");
+**
+** // Create a zipvfs VFS named "zipvfs" that uses rbu.
+** zipvfs_create_vfs_v3("zipvfs", "rbu", 0, xCompressorAlgorithmDetector);
+**
+** // Make zipvfs the default VFS.
+** sqlite3_vfs_register(sqlite3_vfs_find("zipvfs"), 1);
+**
+** Because the default VFS created above includes a RBU functionality, it
+** may be used by RBU clients. Attempting to use RBU with a zipvfs VFS stack
+** that does not include the RBU layer results in an error.
+**
+** The overhead of adding the "rbu" VFS to the system is negligible for
+** non-RBU users. There is no harm in an application accessing the
+** file-system via "rbu" all the time, even if it only uses RBU functionality
+** occasionally.
+*/
+SQLITE_API int sqlite3rbu_create_vfs(const char *zName, const char *zParent);
+
+/*
+** Deregister and destroy an RBU vfs created by an earlier call to
+** sqlite3rbu_create_vfs().
+**
+** VFS objects are not reference counted. If a VFS object is destroyed
+** before all database handles that use it have been closed, the results
+** are undefined.
+*/
+SQLITE_API void sqlite3rbu_destroy_vfs(const char *zName);
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _SQLITE3RBU_H */
+
+/************** End of sqlite3rbu.h ******************************************/
+/************** Continuing where we left off in sqlite3rbu.c *****************/
+
+#if defined(_WIN32_WCE)
+/* #include "windows.h" */
+#endif
+
+/* Maximum number of prepared UPDATE statements held by this module */
+#define SQLITE_RBU_UPDATE_CACHESIZE 16
+
+/* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM
+** to enable checksum verification.
+*/
+#ifndef RBU_ENABLE_DELTA_CKSUM
+# define RBU_ENABLE_DELTA_CKSUM 0
+#endif
+
+/*
+** Swap two objects of type TYPE.
+*/
+#if !defined(SQLITE_AMALGAMATION)
+# define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+#endif
+
+/*
+** Name of the URI option that causes RBU to take an exclusive lock as
+** part of the incremental checkpoint operation.
+*/
+#define RBU_EXCLUSIVE_CHECKPOINT "rbu_exclusive_checkpoint"
+
+
+/*
+** The rbu_state table is used to save the state of a partially applied
+** update so that it can be resumed later. The table consists of integer
+** keys mapped to values as follows:
+**
+** RBU_STATE_STAGE:
+** May be set to integer values 1, 2, 4 or 5. As follows:
+** 1: the *-rbu file is currently under construction.
+** 2: the *-rbu file has been constructed, but not yet moved
+** to the *-wal path.
+** 4: the checkpoint is underway.
+** 5: the rbu update has been checkpointed.
+**
+** RBU_STATE_TBL:
+** Only valid if STAGE==1. The target database name of the table
+** currently being written.
+**
+** RBU_STATE_IDX:
+** Only valid if STAGE==1. The target database name of the index
+** currently being written, or NULL if the main table is currently being
+** updated.
+**
+** RBU_STATE_ROW:
+** Only valid if STAGE==1. Number of rows already processed for the current
+** table/index.
+**
+** RBU_STATE_PROGRESS:
+** Trbul number of sqlite3rbu_step() calls made so far as part of this
+** rbu update.
+**
+** RBU_STATE_CKPT:
+** Valid if STAGE==4. The 64-bit checksum associated with the wal-index
+** header created by recovering the *-wal file. This is used to detect
+** cases when another client appends frames to the *-wal file in the
+** middle of an incremental checkpoint (an incremental checkpoint cannot
+** be continued if this happens).
+**
+** RBU_STATE_COOKIE:
+** Valid if STAGE==1. The current change-counter cookie value in the
+** target db file.
+**
+** RBU_STATE_OALSZ:
+** Valid if STAGE==1. The size in bytes of the *-oal file.
+**
+** RBU_STATE_DATATBL:
+** Only valid if STAGE==1. The RBU database name of the table
+** currently being read.
+*/
+#define RBU_STATE_STAGE 1
+#define RBU_STATE_TBL 2
+#define RBU_STATE_IDX 3
+#define RBU_STATE_ROW 4
+#define RBU_STATE_PROGRESS 5
+#define RBU_STATE_CKPT 6
+#define RBU_STATE_COOKIE 7
+#define RBU_STATE_OALSZ 8
+#define RBU_STATE_PHASEONESTEP 9
+#define RBU_STATE_DATATBL 10
+
+#define RBU_STAGE_OAL 1
+#define RBU_STAGE_MOVE 2
+#define RBU_STAGE_CAPTURE 3
+#define RBU_STAGE_CKPT 4
+#define RBU_STAGE_DONE 5
+
+
+#define RBU_CREATE_STATE \
+ "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)"
+
+typedef struct RbuFrame RbuFrame;
+typedef struct RbuObjIter RbuObjIter;
+typedef struct RbuState RbuState;
+typedef struct RbuSpan RbuSpan;
+typedef struct rbu_vfs rbu_vfs;
+typedef struct rbu_file rbu_file;
+typedef struct RbuUpdateStmt RbuUpdateStmt;
+
+#if !defined(SQLITE_AMALGAMATION)
+typedef unsigned int u32;
+typedef unsigned short u16;
+typedef unsigned char u8;
+typedef sqlite3_int64 i64;
+#endif
+
+/*
+** These values must match the values defined in wal.c for the equivalent
+** locks. These are not magic numbers as they are part of the SQLite file
+** format.
+*/
+#define WAL_LOCK_WRITE 0
+#define WAL_LOCK_CKPT 1
+#define WAL_LOCK_READ0 3
+
+#define SQLITE_FCNTL_RBUCNT 5149216
+
+/*
+** A structure to store values read from the rbu_state table in memory.
+*/
+struct RbuState {
+ int eStage;
+ char *zTbl;
+ char *zDataTbl;
+ char *zIdx;
+ i64 iWalCksum;
+ int nRow;
+ i64 nProgress;
+ u32 iCookie;
+ i64 iOalSz;
+ i64 nPhaseOneStep;
+};
+
+struct RbuUpdateStmt {
+ char *zMask; /* Copy of update mask used with pUpdate */
+ sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */
+ RbuUpdateStmt *pNext;
+};
+
+struct RbuSpan {
+ const char *zSpan;
+ int nSpan;
+};
+
+/*
+** An iterator of this type is used to iterate through all objects in
+** the target database that require updating. For each such table, the
+** iterator visits, in order:
+**
+** * the table itself,
+** * each index of the table (zero or more points to visit), and
+** * a special "cleanup table" state.
+**
+** abIndexed:
+** If the table has no indexes on it, abIndexed is set to NULL. Otherwise,
+** it points to an array of flags nTblCol elements in size. The flag is
+** set for each column that is either a part of the PK or a part of an
+** index. Or clear otherwise.
+**
+** If there are one or more partial indexes on the table, all fields of
+** this array set set to 1. This is because in that case, the module has
+** no way to tell which fields will be required to add and remove entries
+** from the partial indexes.
+**
+*/
+struct RbuObjIter {
+ sqlite3_stmt *pTblIter; /* Iterate through tables */
+ sqlite3_stmt *pIdxIter; /* Index iterator */
+ int nTblCol; /* Size of azTblCol[] array */
+ char **azTblCol; /* Array of unquoted target column names */
+ char **azTblType; /* Array of target column types */
+ int *aiSrcOrder; /* src table col -> target table col */
+ u8 *abTblPk; /* Array of flags, set on target PK columns */
+ u8 *abNotNull; /* Array of flags, set on NOT NULL columns */
+ u8 *abIndexed; /* Array of flags, set on indexed & PK cols */
+ int eType; /* Table type - an RBU_PK_XXX value */
+
+ /* Output variables. zTbl==0 implies EOF. */
+ int bCleanup; /* True in "cleanup" state */
+ const char *zTbl; /* Name of target db table */
+ const char *zDataTbl; /* Name of rbu db table (or null) */
+ const char *zIdx; /* Name of target db index (or null) */
+ int iTnum; /* Root page of current object */
+ int iPkTnum; /* If eType==EXTERNAL, root of PK index */
+ int bUnique; /* Current index is unique */
+ int nIndex; /* Number of aux. indexes on table zTbl */
+
+ /* Statements created by rbuObjIterPrepareAll() */
+ int nCol; /* Number of columns in current object */
+ sqlite3_stmt *pSelect; /* Source data */
+ sqlite3_stmt *pInsert; /* Statement for INSERT operations */
+ sqlite3_stmt *pDelete; /* Statement for DELETE ops */
+ sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */
+ int nIdxCol;
+ RbuSpan *aIdxCol;
+ char *zIdxSql;
+
+ /* Last UPDATE used (for PK b-tree updates only), or NULL. */
+ RbuUpdateStmt *pRbuUpdate;
+};
+
+/*
+** Values for RbuObjIter.eType
+**
+** 0: Table does not exist (error)
+** 1: Table has an implicit rowid.
+** 2: Table has an explicit IPK column.
+** 3: Table has an external PK index.
+** 4: Table is WITHOUT ROWID.
+** 5: Table is a virtual table.
+*/
+#define RBU_PK_NOTABLE 0
+#define RBU_PK_NONE 1
+#define RBU_PK_IPK 2
+#define RBU_PK_EXTERNAL 3
+#define RBU_PK_WITHOUT_ROWID 4
+#define RBU_PK_VTAB 5
+
+
+/*
+** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs
+** one of the following operations.
+*/
+#define RBU_INSERT 1 /* Insert on a main table b-tree */
+#define RBU_DELETE 2 /* Delete a row from a main table b-tree */
+#define RBU_REPLACE 3 /* Delete and then insert a row */
+#define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */
+#define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */
+
+#define RBU_UPDATE 6 /* Update a row in a main table b-tree */
+
+/*
+** A single step of an incremental checkpoint - frame iWalFrame of the wal
+** file should be copied to page iDbPage of the database file.
+*/
+struct RbuFrame {
+ u32 iDbPage;
+ u32 iWalFrame;
+};
+
+/*
+** RBU handle.
+**
+** nPhaseOneStep:
+** If the RBU database contains an rbu_count table, this value is set to
+** a running estimate of the number of b-tree operations required to
+** finish populating the *-oal file. This allows the sqlite3_bp_progress()
+** API to calculate the permyriadage progress of populating the *-oal file
+** using the formula:
+**
+** permyriadage = (10000 * nProgress) / nPhaseOneStep
+**
+** nPhaseOneStep is initialized to the sum of:
+**
+** nRow * (nIndex + 1)
+**
+** for all source tables in the RBU database, where nRow is the number
+** of rows in the source table and nIndex the number of indexes on the
+** corresponding target database table.
+**
+** This estimate is accurate if the RBU update consists entirely of
+** INSERT operations. However, it is inaccurate if:
+**
+** * the RBU update contains any UPDATE operations. If the PK specified
+** for an UPDATE operation does not exist in the target table, then
+** no b-tree operations are required on index b-trees. Or if the
+** specified PK does exist, then (nIndex*2) such operations are
+** required (one delete and one insert on each index b-tree).
+**
+** * the RBU update contains any DELETE operations for which the specified
+** PK does not exist. In this case no operations are required on index
+** b-trees.
+**
+** * the RBU update contains REPLACE operations. These are similar to
+** UPDATE operations.
+**
+** nPhaseOneStep is updated to account for the conditions above during the
+** first pass of each source table. The updated nPhaseOneStep value is
+** stored in the rbu_state table if the RBU update is suspended.
+*/
+struct sqlite3rbu {
+ int eStage; /* Value of RBU_STATE_STAGE field */
+ sqlite3 *dbMain; /* target database handle */
+ sqlite3 *dbRbu; /* rbu database handle */
+ char *zTarget; /* Path to target db */
+ char *zRbu; /* Path to rbu db */
+ char *zState; /* Path to state db (or NULL if zRbu) */
+ char zStateDb[5]; /* Db name for state ("stat" or "main") */
+ int rc; /* Value returned by last rbu_step() call */
+ char *zErrmsg; /* Error message if rc!=SQLITE_OK */
+ int nStep; /* Rows processed for current object */
+ int nProgress; /* Rows processed for all objects */
+ RbuObjIter objiter; /* Iterator for skipping through tbl/idx */
+ const char *zVfsName; /* Name of automatically created rbu vfs */
+ rbu_file *pTargetFd; /* File handle open on target db */
+ int nPagePerSector; /* Pages per sector for pTargetFd */
+ i64 iOalSz;
+ i64 nPhaseOneStep;
+ void *pRenameArg;
+ int (*xRename)(void*, const char*, const char*);
+
+ /* The following state variables are used as part of the incremental
+ ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding
+ ** function rbuSetupCheckpoint() for details. */
+ u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */
+ u32 mLock;
+ int nFrame; /* Entries in aFrame[] array */
+ int nFrameAlloc; /* Allocated size of aFrame[] array */
+ RbuFrame *aFrame;
+ int pgsz;
+ u8 *aBuf;
+ i64 iWalCksum;
+ i64 szTemp; /* Current size of all temp files in use */
+ i64 szTempLimit; /* Total size limit for temp files */
+
+ /* Used in RBU vacuum mode only */
+ int nRbu; /* Number of RBU VFS in the stack */
+ rbu_file *pRbuFd; /* Fd for main db of dbRbu */
+};
+
+/*
+** An rbu VFS is implemented using an instance of this structure.
+**
+** Variable pRbu is only non-NULL for automatically created RBU VFS objects.
+** It is NULL for RBU VFS objects created explicitly using
+** sqlite3rbu_create_vfs(). It is used to track the total amount of temp
+** space used by the RBU handle.
+*/
+struct rbu_vfs {
+ sqlite3_vfs base; /* rbu VFS shim methods */
+ sqlite3_vfs *pRealVfs; /* Underlying VFS */
+ sqlite3_mutex *mutex; /* Mutex to protect pMain */
+ sqlite3rbu *pRbu; /* Owner RBU object */
+ rbu_file *pMain; /* List of main db files */
+ rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */
+};
+
+/*
+** Each file opened by an rbu VFS is represented by an instance of
+** the following structure.
+**
+** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable
+** "sz" is set to the current size of the database file.
+*/
+struct rbu_file {
+ sqlite3_file base; /* sqlite3_file methods */
+ sqlite3_file *pReal; /* Underlying file handle */
+ rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */
+ sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */
+ i64 sz; /* Size of file in bytes (temp only) */
+
+ int openFlags; /* Flags this file was opened with */
+ u32 iCookie; /* Cookie value for main db files */
+ u8 iWriteVer; /* "write-version" value for main db files */
+ u8 bNolock; /* True to fail EXCLUSIVE locks */
+
+ int nShm; /* Number of entries in apShm[] array */
+ char **apShm; /* Array of mmap'd *-shm regions */
+ char *zDel; /* Delete this when closing file */
+
+ const char *zWal; /* Wal filename for this main db file */
+ rbu_file *pWalFd; /* Wal file descriptor for this main db */
+ rbu_file *pMainNext; /* Next MAIN_DB file */
+ rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */
+};
+
+/*
+** True for an RBU vacuum handle, or false otherwise.
+*/
+#define rbuIsVacuum(p) ((p)->zTarget==0)
+
+
+/*************************************************************************
+** The following three functions, found below:
+**
+** rbuDeltaGetInt()
+** rbuDeltaChecksum()
+** rbuDeltaApply()
+**
+** are lifted from the fossil source code (http://fossil-scm.org). They
+** are used to implement the scalar SQL function rbu_fossil_delta().
+*/
+
+/*
+** Read bytes from *pz and convert them into a positive integer. When
+** finished, leave *pz pointing to the first character past the end of
+** the integer. The *pLen parameter holds the length of the string
+** in *pz and is decremented once for each character in the integer.
+*/
+static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){
+ static const signed char zValue[] = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
+ -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36,
+ -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1,
+ };
+ unsigned int v = 0;
+ int c;
+ unsigned char *z = (unsigned char*)*pz;
+ unsigned char *zStart = z;
+ while( (c = zValue[0x7f&*(z++)])>=0 ){
+ v = (v<<6) + c;
+ }
+ z--;
+ *pLen -= z - zStart;
+ *pz = (char*)z;
+ return v;
+}
+
+#if RBU_ENABLE_DELTA_CKSUM
+/*
+** Compute a 32-bit checksum on the N-byte buffer. Return the result.
+*/
+static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){
+ const unsigned char *z = (const unsigned char *)zIn;
+ unsigned sum0 = 0;
+ unsigned sum1 = 0;
+ unsigned sum2 = 0;
+ unsigned sum3 = 0;
+ while(N >= 16){
+ sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
+ sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
+ sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
+ sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
+ z += 16;
+ N -= 16;
+ }
+ while(N >= 4){
+ sum0 += z[0];
+ sum1 += z[1];
+ sum2 += z[2];
+ sum3 += z[3];
+ z += 4;
+ N -= 4;
+ }
+ sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
+ switch(N){
+ case 3: sum3 += (z[2] << 8);
+ case 2: sum3 += (z[1] << 16);
+ case 1: sum3 += (z[0] << 24);
+ default: ;
+ }
+ return sum3;
+}
+#endif
+
+/*
+** Apply a delta.
+**
+** The output buffer should be big enough to hold the whole output
+** file and a NUL terminator at the end. The delta_output_size()
+** routine will determine this size for you.
+**
+** The delta string should be null-terminated. But the delta string
+** may contain embedded NUL characters (if the input and output are
+** binary files) so we also have to pass in the length of the delta in
+** the lenDelta parameter.
+**
+** This function returns the size of the output file in bytes (excluding
+** the final NUL terminator character). Except, if the delta string is
+** malformed or intended for use with a source file other than zSrc,
+** then this routine returns -1.
+**
+** Refer to the delta_create() documentation above for a description
+** of the delta file format.
+*/
+static int rbuDeltaApply(
+ const char *zSrc, /* The source or pattern file */
+ int lenSrc, /* Length of the source file */
+ const char *zDelta, /* Delta to apply to the pattern */
+ int lenDelta, /* Length of the delta */
+ char *zOut /* Write the output into this preallocated buffer */
+){
+ unsigned int limit;
+ unsigned int total = 0;
+#if RBU_ENABLE_DELTA_CKSUM
+ char *zOrigOut = zOut;
+#endif
+
+ limit = rbuDeltaGetInt(&zDelta, &lenDelta);
+ if( *zDelta!='\n' ){
+ /* ERROR: size integer not terminated by "\n" */
+ return -1;
+ }
+ zDelta++; lenDelta--;
+ while( *zDelta && lenDelta>0 ){
+ unsigned int cnt, ofst;
+ cnt = rbuDeltaGetInt(&zDelta, &lenDelta);
+ switch( zDelta[0] ){
+ case '@': {
+ zDelta++; lenDelta--;
+ ofst = rbuDeltaGetInt(&zDelta, &lenDelta);
+ if( lenDelta>0 && zDelta[0]!=',' ){
+ /* ERROR: copy command not terminated by ',' */
+ return -1;
+ }
+ zDelta++; lenDelta--;
+ total += cnt;
+ if( total>limit ){
+ /* ERROR: copy exceeds output file size */
+ return -1;
+ }
+ if( (int)(ofst+cnt) > lenSrc ){
+ /* ERROR: copy extends past end of input */
+ return -1;
+ }
+ memcpy(zOut, &zSrc[ofst], cnt);
+ zOut += cnt;
+ break;
+ }
+ case ':': {
+ zDelta++; lenDelta--;
+ total += cnt;
+ if( total>limit ){
+ /* ERROR: insert command gives an output larger than predicted */
+ return -1;
+ }
+ if( (int)cnt>lenDelta ){
+ /* ERROR: insert count exceeds size of delta */
+ return -1;
+ }
+ memcpy(zOut, zDelta, cnt);
+ zOut += cnt;
+ zDelta += cnt;
+ lenDelta -= cnt;
+ break;
+ }
+ case ';': {
+ zDelta++; lenDelta--;
+ zOut[0] = 0;
+#if RBU_ENABLE_DELTA_CKSUM
+ if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){
+ /* ERROR: bad checksum */
+ return -1;
+ }
+#endif
+ if( total!=limit ){
+ /* ERROR: generated size does not match predicted size */
+ return -1;
+ }
+ return total;
+ }
+ default: {
+ /* ERROR: unknown delta operator */
+ return -1;
+ }
+ }
+ }
+ /* ERROR: unterminated delta */
+ return -1;
+}
+
+static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){
+ int size;
+ size = rbuDeltaGetInt(&zDelta, &lenDelta);
+ if( *zDelta!='\n' ){
+ /* ERROR: size integer not terminated by "\n" */
+ return -1;
+ }
+ return size;
+}
+
+/*
+** End of code taken from fossil.
+*************************************************************************/
+
+/*
+** Implementation of SQL scalar function rbu_fossil_delta().
+**
+** This function applies a fossil delta patch to a blob. Exactly two
+** arguments must be passed to this function. The first is the blob to
+** patch and the second the patch to apply. If no error occurs, this
+** function returns the patched blob.
+*/
+static void rbuFossilDeltaFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *aDelta;
+ int nDelta;
+ const char *aOrig;
+ int nOrig;
+
+ int nOut;
+ int nOut2;
+ char *aOut;
+
+ assert( argc==2 );
+
+ nOrig = sqlite3_value_bytes(argv[0]);
+ aOrig = (const char*)sqlite3_value_blob(argv[0]);
+ nDelta = sqlite3_value_bytes(argv[1]);
+ aDelta = (const char*)sqlite3_value_blob(argv[1]);
+
+ /* Figure out the size of the output */
+ nOut = rbuDeltaOutputSize(aDelta, nDelta);
+ if( nOut<0 ){
+ sqlite3_result_error(context, "corrupt fossil delta", -1);
+ return;
+ }
+
+ aOut = sqlite3_malloc(nOut+1);
+ if( aOut==0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
+ if( nOut2!=nOut ){
+ sqlite3_free(aOut);
+ sqlite3_result_error(context, "corrupt fossil delta", -1);
+ }else{
+ sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
+ }
+ }
+}
+
+
+/*
+** Prepare the SQL statement in buffer zSql against database handle db.
+** If successful, set *ppStmt to point to the new statement and return
+** SQLITE_OK.
+**
+** Otherwise, if an error does occur, set *ppStmt to NULL and return
+** an SQLite error code. Additionally, set output variable *pzErrmsg to
+** point to a buffer containing an error message. It is the responsibility
+** of the caller to (eventually) free this buffer using sqlite3_free().
+*/
+static int prepareAndCollectError(
+ sqlite3 *db,
+ sqlite3_stmt **ppStmt,
+ char **pzErrmsg,
+ const char *zSql
+){
+ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
+ if( rc!=SQLITE_OK ){
+ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ *ppStmt = 0;
+ }
+ return rc;
+}
+
+/*
+** Reset the SQL statement passed as the first argument. Return a copy
+** of the value returned by sqlite3_reset().
+**
+** If an error has occurred, then set *pzErrmsg to point to a buffer
+** containing an error message. It is the responsibility of the caller
+** to eventually free this buffer using sqlite3_free().
+*/
+static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){
+ int rc = sqlite3_reset(pStmt);
+ if( rc!=SQLITE_OK ){
+ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt)));
+ }
+ return rc;
+}
+
+/*
+** Unless it is NULL, argument zSql points to a buffer allocated using
+** sqlite3_malloc containing an SQL statement. This function prepares the SQL
+** statement against database db and frees the buffer. If statement
+** compilation is successful, *ppStmt is set to point to the new statement
+** handle and SQLITE_OK is returned.
+**
+** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code
+** returned. In this case, *pzErrmsg may also be set to point to an error
+** message. It is the responsibility of the caller to free this error message
+** buffer using sqlite3_free().
+**
+** If argument zSql is NULL, this function assumes that an OOM has occurred.
+** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL.
+*/
+static int prepareFreeAndCollectError(
+ sqlite3 *db,
+ sqlite3_stmt **ppStmt,
+ char **pzErrmsg,
+ char *zSql
+){
+ int rc;
+ assert( *pzErrmsg==0 );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ *ppStmt = 0;
+ }else{
+ rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+/*
+** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated
+** by an earlier call to rbuObjIterCacheTableInfo().
+*/
+static void rbuObjIterFreeCols(RbuObjIter *pIter){
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ sqlite3_free(pIter->azTblCol[i]);
+ sqlite3_free(pIter->azTblType[i]);
+ }
+ sqlite3_free(pIter->azTblCol);
+ pIter->azTblCol = 0;
+ pIter->azTblType = 0;
+ pIter->aiSrcOrder = 0;
+ pIter->abTblPk = 0;
+ pIter->abNotNull = 0;
+ pIter->nTblCol = 0;
+ pIter->eType = 0; /* Invalid value */
+}
+
+/*
+** Finalize all statements and free all allocations that are specific to
+** the current object (table/index pair).
+*/
+static void rbuObjIterClearStatements(RbuObjIter *pIter){
+ RbuUpdateStmt *pUp;
+
+ sqlite3_finalize(pIter->pSelect);
+ sqlite3_finalize(pIter->pInsert);
+ sqlite3_finalize(pIter->pDelete);
+ sqlite3_finalize(pIter->pTmpInsert);
+ pUp = pIter->pRbuUpdate;
+ while( pUp ){
+ RbuUpdateStmt *pTmp = pUp->pNext;
+ sqlite3_finalize(pUp->pUpdate);
+ sqlite3_free(pUp);
+ pUp = pTmp;
+ }
+ sqlite3_free(pIter->aIdxCol);
+ sqlite3_free(pIter->zIdxSql);
+
+ pIter->pSelect = 0;
+ pIter->pInsert = 0;
+ pIter->pDelete = 0;
+ pIter->pRbuUpdate = 0;
+ pIter->pTmpInsert = 0;
+ pIter->nCol = 0;
+ pIter->nIdxCol = 0;
+ pIter->aIdxCol = 0;
+ pIter->zIdxSql = 0;
+}
+
+/*
+** Clean up any resources allocated as part of the iterator object passed
+** as the only argument.
+*/
+static void rbuObjIterFinalize(RbuObjIter *pIter){
+ rbuObjIterClearStatements(pIter);
+ sqlite3_finalize(pIter->pTblIter);
+ sqlite3_finalize(pIter->pIdxIter);
+ rbuObjIterFreeCols(pIter);
+ memset(pIter, 0, sizeof(RbuObjIter));
+}
+
+/*
+** Advance the iterator to the next position.
+**
+** If no error occurs, SQLITE_OK is returned and the iterator is left
+** pointing to the next entry. Otherwise, an error code and message is
+** left in the RBU handle passed as the first argument. A copy of the
+** error code is returned.
+*/
+static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){
+ int rc = p->rc;
+ if( rc==SQLITE_OK ){
+
+ /* Free any SQLite statements used while processing the previous object */
+ rbuObjIterClearStatements(pIter);
+ if( pIter->zIdx==0 ){
+ rc = sqlite3_exec(p->dbMain,
+ "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;"
+ "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;"
+ "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;"
+ "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;"
+ , 0, 0, &p->zErrmsg
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ if( pIter->bCleanup ){
+ rbuObjIterFreeCols(pIter);
+ pIter->bCleanup = 0;
+ rc = sqlite3_step(pIter->pTblIter);
+ if( rc!=SQLITE_ROW ){
+ rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg);
+ pIter->zTbl = 0;
+ }else{
+ pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0);
+ pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1);
+ rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM;
+ }
+ }else{
+ if( pIter->zIdx==0 ){
+ sqlite3_stmt *pIdx = pIter->pIdxIter;
+ rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(pIter->pIdxIter);
+ if( rc!=SQLITE_ROW ){
+ rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg);
+ pIter->bCleanup = 1;
+ pIter->zIdx = 0;
+ }else{
+ pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0);
+ pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1);
+ pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2);
+ rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM;
+ }
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ rbuObjIterFinalize(pIter);
+ p->rc = rc;
+ }
+ return rc;
+}
+
+
+/*
+** The implementation of the rbu_target_name() SQL function. This function
+** accepts one or two arguments. The first argument is the name of a table -
+** the name of a table in the RBU database. The second, if it is present, is 1
+** for a view or 0 for a table.
+**
+** For a non-vacuum RBU handle, if the table name matches the pattern:
+**
+** data[0-9]_<name>
+**
+** where <name> is any sequence of 1 or more characters, <name> is returned.
+** Otherwise, if the only argument does not match the above pattern, an SQL
+** NULL is returned.
+**
+** "data_t1" -> "t1"
+** "data0123_t2" -> "t2"
+** "dataAB_t3" -> NULL
+**
+** For an rbu vacuum handle, a copy of the first argument is returned if
+** the second argument is either missing or 0 (not a view).
+*/
+static void rbuTargetNameFunc(
+ sqlite3_context *pCtx,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3rbu *p = sqlite3_user_data(pCtx);
+ const char *zIn;
+ assert( argc==1 || argc==2 );
+
+ zIn = (const char*)sqlite3_value_text(argv[0]);
+ if( zIn ){
+ if( rbuIsVacuum(p) ){
+ assert( argc==2 || argc==1 );
+ if( argc==1 || 0==sqlite3_value_int(argv[1]) ){
+ sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC);
+ }
+ }else{
+ if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){
+ int i;
+ for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++);
+ if( zIn[i]=='_' && zIn[i+1] ){
+ sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC);
+ }
+ }
+ }
+ }
+}
+
+/*
+** Initialize the iterator structure passed as the second argument.
+**
+** If no error occurs, SQLITE_OK is returned and the iterator is left
+** pointing to the first entry. Otherwise, an error code and message is
+** left in the RBU handle passed as the first argument. A copy of the
+** error code is returned.
+*/
+static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){
+ int rc;
+ memset(pIter, 0, sizeof(RbuObjIter));
+
+ rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT rbu_target_name(name, type='view') AS target, name "
+ "FROM sqlite_schema "
+ "WHERE type IN ('table', 'view') AND target IS NOT NULL "
+ " %s "
+ "ORDER BY name"
+ , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : ""));
+
+ if( rc==SQLITE_OK ){
+ rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg,
+ "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' "
+ " FROM main.sqlite_schema "
+ " WHERE type='index' AND tbl_name = ?"
+ );
+ }
+
+ pIter->bCleanup = 1;
+ p->rc = rc;
+ return rbuObjIterNext(p, pIter);
+}
+
+/*
+** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs,
+** an error code is stored in the RBU handle passed as the first argument.
+**
+** If an error has already occurred (p->rc is already set to something other
+** than SQLITE_OK), then this function returns NULL without modifying the
+** stored error code. In this case it still calls sqlite3_free() on any
+** printf() parameters associated with %z conversions.
+*/
+static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){
+ char *zSql = 0;
+ va_list ap;
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( p->rc==SQLITE_OK ){
+ if( zSql==0 ) p->rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_free(zSql);
+ zSql = 0;
+ }
+ va_end(ap);
+ return zSql;
+}
+
+/*
+** Argument zFmt is a sqlite3_mprintf() style format string. The trailing
+** arguments are the usual subsitution values. This function performs
+** the printf() style substitutions and executes the result as an SQL
+** statement on the RBU handles database.
+**
+** If an error occurs, an error code and error message is stored in the
+** RBU handle. If an error has already occurred when this function is
+** called, it is a no-op.
+*/
+static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){
+ va_list ap;
+ char *zSql;
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( p->rc==SQLITE_OK ){
+ if( zSql==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg);
+ }
+ }
+ sqlite3_free(zSql);
+ va_end(ap);
+ return p->rc;
+}
+
+/*
+** Attempt to allocate and return a pointer to a zeroed block of nByte
+** bytes.
+**
+** If an error (i.e. an OOM condition) occurs, return NULL and leave an
+** error code in the rbu handle passed as the first argument. Or, if an
+** error has already occurred when this function is called, return NULL
+** immediately without attempting the allocation or modifying the stored
+** error code.
+*/
+static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){
+ void *pRet = 0;
+ if( p->rc==SQLITE_OK ){
+ assert( nByte>0 );
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, nByte);
+ }
+ }
+ return pRet;
+}
+
+
+/*
+** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
+** there is room for at least nCol elements. If an OOM occurs, store an
+** error code in the RBU handle passed as the first argument.
+*/
+static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
+ sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
+ char **azNew;
+
+ azNew = (char**)rbuMalloc(p, nByte);
+ if( azNew ){
+ pIter->azTblCol = azNew;
+ pIter->azTblType = &azNew[nCol];
+ pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
+ pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol];
+ pIter->abNotNull = (u8*)&pIter->abTblPk[nCol];
+ pIter->abIndexed = (u8*)&pIter->abNotNull[nCol];
+ }
+}
+
+/*
+** The first argument must be a nul-terminated string. This function
+** returns a copy of the string in memory obtained from sqlite3_malloc().
+** It is the responsibility of the caller to eventually free this memory
+** using sqlite3_free().
+**
+** If an OOM condition is encountered when attempting to allocate memory,
+** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise,
+** if the allocation succeeds, (*pRc) is left unchanged.
+*/
+static char *rbuStrndup(const char *zStr, int *pRc){
+ char *zRet = 0;
+
+ if( *pRc==SQLITE_OK ){
+ if( zStr ){
+ size_t nCopy = strlen(zStr) + 1;
+ zRet = (char*)sqlite3_malloc64(nCopy);
+ if( zRet ){
+ memcpy(zRet, zStr, nCopy);
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ }
+
+ return zRet;
+}
+
+/*
+** Finalize the statement passed as the second argument.
+**
+** If the sqlite3_finalize() call indicates that an error occurs, and the
+** rbu handle error code is not already set, set the error code and error
+** message accordingly.
+*/
+static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){
+ sqlite3 *db = sqlite3_db_handle(pStmt);
+ int rc = sqlite3_finalize(pStmt);
+ if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
+ p->rc = rc;
+ p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ }
+}
+
+/* Determine the type of a table.
+**
+** peType is of type (int*), a pointer to an output parameter of type
+** (int). This call sets the output parameter as follows, depending
+** on the type of the table specified by parameters dbName and zTbl.
+**
+** RBU_PK_NOTABLE: No such table.
+** RBU_PK_NONE: Table has an implicit rowid.
+** RBU_PK_IPK: Table has an explicit IPK column.
+** RBU_PK_EXTERNAL: Table has an external PK index.
+** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID.
+** RBU_PK_VTAB: Table is a virtual table.
+**
+** Argument *piPk is also of type (int*), and also points to an output
+** parameter. Unless the table has an external primary key index
+** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or,
+** if the table does have an external primary key index, then *piPk
+** is set to the root page number of the primary key index before
+** returning.
+**
+** ALGORITHM:
+**
+** if( no entry exists in sqlite_schema ){
+** return RBU_PK_NOTABLE
+** }else if( sql for the entry starts with "CREATE VIRTUAL" ){
+** return RBU_PK_VTAB
+** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){
+** if( the index that is the pk exists in sqlite_schema ){
+** *piPK = rootpage of that index.
+** return RBU_PK_EXTERNAL
+** }else{
+** return RBU_PK_WITHOUT_ROWID
+** }
+** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){
+** return RBU_PK_IPK
+** }else{
+** return RBU_PK_NONE
+** }
+*/
+static void rbuTableType(
+ sqlite3rbu *p,
+ const char *zTab,
+ int *peType,
+ int *piTnum,
+ int *piPk
+){
+ /*
+ ** 0) SELECT count(*) FROM sqlite_schema where name=%Q AND IsVirtual(%Q)
+ ** 1) PRAGMA index_list = ?
+ ** 2) SELECT count(*) FROM sqlite_schema where name=%Q
+ ** 3) PRAGMA table_info = ?
+ */
+ sqlite3_stmt *aStmt[4] = {0, 0, 0, 0};
+
+ *peType = RBU_PK_NOTABLE;
+ *piPk = 0;
+
+ assert( p->rc==SQLITE_OK );
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT "
+ " (sql COLLATE nocase BETWEEN 'CREATE VIRTUAL' AND 'CREATE VIRTUAM'),"
+ " rootpage"
+ " FROM sqlite_schema"
+ " WHERE name=%Q", zTab
+ ));
+ if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){
+ /* Either an error, or no such table. */
+ goto rbuTableType_end;
+ }
+ if( sqlite3_column_int(aStmt[0], 0) ){
+ *peType = RBU_PK_VTAB; /* virtual table */
+ goto rbuTableType_end;
+ }
+ *piTnum = sqlite3_column_int(aStmt[0], 1);
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA index_list=%Q",zTab)
+ );
+ if( p->rc ) goto rbuTableType_end;
+ while( sqlite3_step(aStmt[1])==SQLITE_ROW ){
+ const u8 *zOrig = sqlite3_column_text(aStmt[1], 3);
+ const u8 *zIdx = sqlite3_column_text(aStmt[1], 1);
+ if( zOrig && zIdx && zOrig[0]=='p' ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT rootpage FROM sqlite_schema WHERE name = %Q", zIdx
+ ));
+ if( p->rc==SQLITE_OK ){
+ if( sqlite3_step(aStmt[2])==SQLITE_ROW ){
+ *piPk = sqlite3_column_int(aStmt[2], 0);
+ *peType = RBU_PK_EXTERNAL;
+ }else{
+ *peType = RBU_PK_WITHOUT_ROWID;
+ }
+ }
+ goto rbuTableType_end;
+ }
+ }
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA table_info=%Q",zTab)
+ );
+ if( p->rc==SQLITE_OK ){
+ while( sqlite3_step(aStmt[3])==SQLITE_ROW ){
+ if( sqlite3_column_int(aStmt[3],5)>0 ){
+ *peType = RBU_PK_IPK; /* explicit IPK column */
+ goto rbuTableType_end;
+ }
+ }
+ *peType = RBU_PK_NONE;
+ }
+
+rbuTableType_end: {
+ unsigned int i;
+ for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){
+ rbuFinalize(p, aStmt[i]);
+ }
+ }
+}
+
+/*
+** This is a helper function for rbuObjIterCacheTableInfo(). It populates
+** the pIter->abIndexed[] array.
+*/
+static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){
+ sqlite3_stmt *pList = 0;
+ int bIndex = 0;
+
+ if( p->rc==SQLITE_OK ){
+ memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol);
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
+ );
+ }
+
+ pIter->nIndex = 0;
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){
+ const char *zIdx = (const char*)sqlite3_column_text(pList, 1);
+ int bPartial = sqlite3_column_int(pList, 4);
+ sqlite3_stmt *pXInfo = 0;
+ if( zIdx==0 ) break;
+ if( bPartial ){
+ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol);
+ }
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
+ );
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ if( iCid>=0 ) pIter->abIndexed[iCid] = 1;
+ if( iCid==-2 ){
+ memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol);
+ }
+ }
+ rbuFinalize(p, pXInfo);
+ bIndex = 1;
+ pIter->nIndex++;
+ }
+
+ if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
+ /* "PRAGMA index_list" includes the main PK b-tree */
+ pIter->nIndex--;
+ }
+
+ rbuFinalize(p, pList);
+ if( bIndex==0 ) pIter->abIndexed = 0;
+}
+
+
+/*
+** If they are not already populated, populate the pIter->azTblCol[],
+** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to
+** the table (not index) that the iterator currently points to.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. If
+** an error does occur, an error code and error message are also left in
+** the RBU handle.
+*/
+static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){
+ if( pIter->azTblCol==0 ){
+ sqlite3_stmt *pStmt = 0;
+ int nCol = 0;
+ int i; /* for() loop iterator variable */
+ int bRbuRowid = 0; /* If input table has column "rbu_rowid" */
+ int iOrder = 0;
+ int iTnum = 0;
+
+ /* Figure out the type of table this step will deal with. */
+ assert( pIter->eType==0 );
+ rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum);
+ if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl);
+ }
+ if( p->rc ) return p->rc;
+ if( pIter->zIdx==0 ) pIter->iTnum = iTnum;
+
+ assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK
+ || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID
+ || pIter->eType==RBU_PK_VTAB
+ );
+
+ /* Populate the azTblCol[] and nTblCol variables based on the columns
+ ** of the input table. Ignore any input table columns that begin with
+ ** "rbu_". */
+ p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl)
+ );
+ if( p->rc==SQLITE_OK ){
+ nCol = sqlite3_column_count(pStmt);
+ rbuAllocateIterArrays(p, pIter, nCol);
+ }
+ for(i=0; p->rc==SQLITE_OK && i<nCol; i++){
+ const char *zName = (const char*)sqlite3_column_name(pStmt, i);
+ if( sqlite3_strnicmp("rbu_", zName, 4) ){
+ char *zCopy = rbuStrndup(zName, &p->rc);
+ pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol;
+ pIter->azTblCol[pIter->nTblCol++] = zCopy;
+ }
+ else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){
+ bRbuRowid = 1;
+ }
+ }
+ sqlite3_finalize(pStmt);
+ pStmt = 0;
+
+ if( p->rc==SQLITE_OK
+ && rbuIsVacuum(p)==0
+ && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
+ ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf(
+ "table %q %s rbu_rowid column", pIter->zDataTbl,
+ (bRbuRowid ? "may not have" : "requires")
+ );
+ }
+
+ /* Check that all non-HIDDEN columns in the destination table are also
+ ** present in the input table. Populate the abTblPk[], azTblType[] and
+ ** aiTblOrder[] arrays at the same time. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl)
+ );
+ }
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ const char *zName = (const char*)sqlite3_column_text(pStmt, 1);
+ if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */
+ for(i=iOrder; i<pIter->nTblCol; i++){
+ if( 0==strcmp(zName, pIter->azTblCol[i]) ) break;
+ }
+ if( i==pIter->nTblCol ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("column missing from %q: %s",
+ pIter->zDataTbl, zName
+ );
+ }else{
+ int iPk = sqlite3_column_int(pStmt, 5);
+ int bNotNull = sqlite3_column_int(pStmt, 3);
+ const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
+
+ if( i!=iOrder ){
+ SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]);
+ SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]);
+ }
+
+ pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc);
+ assert( iPk>=0 );
+ pIter->abTblPk[iOrder] = (u8)iPk;
+ pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0);
+ iOrder++;
+ }
+ }
+
+ rbuFinalize(p, pStmt);
+ rbuObjIterCacheIndexedCols(p, pIter);
+ assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 );
+ assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 );
+ }
+
+ return p->rc;
+}
+
+/*
+** This function constructs and returns a pointer to a nul-terminated
+** string containing some SQL clause or list based on one or more of the
+** column names currently stored in the pIter->azTblCol[] array.
+*/
+static char *rbuObjIterGetCollist(
+ sqlite3rbu *p, /* RBU object */
+ RbuObjIter *pIter /* Object iterator for column names */
+){
+ char *zList = 0;
+ const char *zSep = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ const char *z = pIter->azTblCol[i];
+ zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z);
+ zSep = ", ";
+ }
+ return zList;
+}
+
+/*
+** Return a comma separated list of the quoted PRIMARY KEY column names,
+** in order, for the current table. Before each column name, add the text
+** zPre. After each column name, add the zPost text. Use zSeparator as
+** the separator text (usually ", ").
+*/
+static char *rbuObjIterGetPkList(
+ sqlite3rbu *p, /* RBU object */
+ RbuObjIter *pIter, /* Object iterator for column names */
+ const char *zPre, /* Before each quoted column name */
+ const char *zSeparator, /* Separator to use between columns */
+ const char *zPost /* After each quoted column name */
+){
+ int iPk = 1;
+ char *zRet = 0;
+ const char *zSep = "";
+ while( 1 ){
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( (int)pIter->abTblPk[i]==iPk ){
+ const char *zCol = pIter->azTblCol[i];
+ zRet = rbuMPrintf(p, "%z%s%s\"%w\"%s", zRet, zSep, zPre, zCol, zPost);
+ zSep = zSeparator;
+ break;
+ }
+ }
+ if( i==pIter->nTblCol ) break;
+ iPk++;
+ }
+ return zRet;
+}
+
+/*
+** This function is called as part of restarting an RBU vacuum within
+** stage 1 of the process (while the *-oal file is being built) while
+** updating a table (not an index). The table may be a rowid table or
+** a WITHOUT ROWID table. It queries the target database to find the
+** largest key that has already been written to the target table and
+** constructs a WHERE clause that can be used to extract the remaining
+** rows from the source table. For a rowid table, the WHERE clause
+** is of the form:
+**
+** "WHERE _rowid_ > ?"
+**
+** and for WITHOUT ROWID tables:
+**
+** "WHERE (key1, key2) > (?, ?)"
+**
+** Instead of "?" placeholders, the actual WHERE clauses created by
+** this function contain literal SQL values.
+*/
+static char *rbuVacuumTableStart(
+ sqlite3rbu *p, /* RBU handle */
+ RbuObjIter *pIter, /* RBU iterator object */
+ int bRowid, /* True for a rowid table */
+ const char *zWrite /* Target table name prefix */
+){
+ sqlite3_stmt *pMax = 0;
+ char *zRet = 0;
+ if( bRowid ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT max(_rowid_) FROM \"%s%w\"", zWrite, pIter->zTbl
+ )
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
+ sqlite3_int64 iMax = sqlite3_column_int64(pMax, 0);
+ zRet = rbuMPrintf(p, " WHERE _rowid_ > %lld ", iMax);
+ }
+ rbuFinalize(p, pMax);
+ }else{
+ char *zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", " DESC");
+ char *zSelect = rbuObjIterGetPkList(p, pIter, "quote(", "||','||", ")");
+ char *zList = rbuObjIterGetPkList(p, pIter, "", ", ", "");
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg,
+ sqlite3_mprintf(
+ "SELECT %s FROM \"%s%w\" ORDER BY %s LIMIT 1",
+ zSelect, zWrite, pIter->zTbl, zOrder
+ )
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
+ const char *zVal = (const char*)sqlite3_column_text(pMax, 0);
+ zRet = rbuMPrintf(p, " WHERE (%s) > (%s) ", zList, zVal);
+ }
+ rbuFinalize(p, pMax);
+ }
+
+ sqlite3_free(zOrder);
+ sqlite3_free(zSelect);
+ sqlite3_free(zList);
+ }
+ return zRet;
+}
+
+/*
+** This function is called as part of restating an RBU vacuum when the
+** current operation is writing content to an index. If possible, it
+** queries the target index b-tree for the largest key already written to
+** it, then composes and returns an expression that can be used in a WHERE
+** clause to select the remaining required rows from the source table.
+** It is only possible to return such an expression if:
+**
+** * The index contains no DESC columns, and
+** * The last key written to the index before the operation was
+** suspended does not contain any NULL values.
+**
+** The expression is of the form:
+**
+** (index-field1, index-field2, ...) > (?, ?, ...)
+**
+** except that the "?" placeholders are replaced with literal values.
+**
+** If the expression cannot be created, NULL is returned. In this case,
+** the caller has to use an OFFSET clause to extract only the required
+** rows from the sourct table, just as it does for an RBU update operation.
+*/
+static char *rbuVacuumIndexStart(
+ sqlite3rbu *p, /* RBU handle */
+ RbuObjIter *pIter /* RBU iterator object */
+){
+ char *zOrder = 0;
+ char *zLhs = 0;
+ char *zSelect = 0;
+ char *zVector = 0;
+ char *zRet = 0;
+ int bFailed = 0;
+ const char *zSep = "";
+ int iCol = 0;
+ sqlite3_stmt *pXInfo = 0;
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
+ );
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
+ const char *zCol;
+ if( sqlite3_column_int(pXInfo, 3) ){
+ bFailed = 1;
+ break;
+ }
+
+ if( iCid<0 ){
+ if( pIter->eType==RBU_PK_IPK ){
+ int i;
+ for(i=0; pIter->abTblPk[i]==0; i++);
+ assert( i<pIter->nTblCol );
+ zCol = pIter->azTblCol[i];
+ }else{
+ zCol = "_rowid_";
+ }
+ }else{
+ zCol = pIter->azTblCol[iCid];
+ }
+
+ zLhs = rbuMPrintf(p, "%z%s \"%w\" COLLATE %Q",
+ zLhs, zSep, zCol, zCollate
+ );
+ zOrder = rbuMPrintf(p, "%z%s \"rbu_imp_%d%w\" COLLATE %Q DESC",
+ zOrder, zSep, iCol, zCol, zCollate
+ );
+ zSelect = rbuMPrintf(p, "%z%s quote(\"rbu_imp_%d%w\")",
+ zSelect, zSep, iCol, zCol
+ );
+ zSep = ", ";
+ iCol++;
+ }
+ rbuFinalize(p, pXInfo);
+ if( bFailed ) goto index_start_out;
+
+ if( p->rc==SQLITE_OK ){
+ sqlite3_stmt *pSel = 0;
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pSel, &p->zErrmsg,
+ sqlite3_mprintf("SELECT %s FROM \"rbu_imp_%w\" ORDER BY %s LIMIT 1",
+ zSelect, pIter->zTbl, zOrder
+ )
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSel) ){
+ zSep = "";
+ for(iCol=0; iCol<pIter->nCol; iCol++){
+ const char *zQuoted = (const char*)sqlite3_column_text(pSel, iCol);
+ if( zQuoted==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else if( zQuoted[0]=='N' ){
+ bFailed = 1;
+ break;
+ }
+ zVector = rbuMPrintf(p, "%z%s%s", zVector, zSep, zQuoted);
+ zSep = ", ";
+ }
+
+ if( !bFailed ){
+ zRet = rbuMPrintf(p, "(%s) > (%s)", zLhs, zVector);
+ }
+ }
+ rbuFinalize(p, pSel);
+ }
+
+ index_start_out:
+ sqlite3_free(zOrder);
+ sqlite3_free(zSelect);
+ sqlite3_free(zVector);
+ sqlite3_free(zLhs);
+ return zRet;
+}
+
+/*
+** This function is used to create a SELECT list (the list of SQL
+** expressions that follows a SELECT keyword) for a SELECT statement
+** used to read from an data_xxx or rbu_tmp_xxx table while updating the
+** index object currently indicated by the iterator object passed as the
+** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used
+** to obtain the required information.
+**
+** If the index is of the following form:
+**
+** CREATE INDEX i1 ON t1(c, b COLLATE nocase);
+**
+** and "t1" is a table with an explicit INTEGER PRIMARY KEY column
+** "ipk", the returned string is:
+**
+** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'"
+**
+** As well as the returned string, three other malloc'd strings are
+** returned via output parameters. As follows:
+**
+** pzImposterCols: ...
+** pzImposterPk: ...
+** pzWhere: ...
+*/
+static char *rbuObjIterGetIndexCols(
+ sqlite3rbu *p, /* RBU object */
+ RbuObjIter *pIter, /* Object iterator for column names */
+ char **pzImposterCols, /* OUT: Columns for imposter table */
+ char **pzImposterPk, /* OUT: Imposter PK clause */
+ char **pzWhere, /* OUT: WHERE clause */
+ int *pnBind /* OUT: Trbul number of columns */
+){
+ int rc = p->rc; /* Error code */
+ int rc2; /* sqlite3_finalize() return code */
+ char *zRet = 0; /* String to return */
+ char *zImpCols = 0; /* String to return via *pzImposterCols */
+ char *zImpPK = 0; /* String to return via *pzImposterPK */
+ char *zWhere = 0; /* String to return via *pzWhere */
+ int nBind = 0; /* Value to return via *pnBind */
+ const char *zCom = ""; /* Set to ", " later on */
+ const char *zAnd = ""; /* Set to " AND " later on */
+ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */
+
+ if( rc==SQLITE_OK ){
+ assert( p->zErrmsg==0 );
+ rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
+ );
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ int bDesc = sqlite3_column_int(pXInfo, 3);
+ const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
+ const char *zCol = 0;
+ const char *zType;
+
+ if( iCid==-2 ){
+ int iSeq = sqlite3_column_int(pXInfo, 0);
+ zRet = sqlite3_mprintf("%z%s(%.*s) COLLATE %Q", zRet, zCom,
+ pIter->aIdxCol[iSeq].nSpan, pIter->aIdxCol[iSeq].zSpan, zCollate
+ );
+ zType = "";
+ }else {
+ if( iCid<0 ){
+ /* An integer primary key. If the table has an explicit IPK, use
+ ** its name. Otherwise, use "rbu_rowid". */
+ if( pIter->eType==RBU_PK_IPK ){
+ int i;
+ for(i=0; pIter->abTblPk[i]==0; i++);
+ assert( i<pIter->nTblCol );
+ zCol = pIter->azTblCol[i];
+ }else if( rbuIsVacuum(p) ){
+ zCol = "_rowid_";
+ }else{
+ zCol = "rbu_rowid";
+ }
+ zType = "INTEGER";
+ }else{
+ zCol = pIter->azTblCol[iCid];
+ zType = pIter->azTblType[iCid];
+ }
+ zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom,zCol,zCollate);
+ }
+
+ if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){
+ const char *zOrder = (bDesc ? " DESC" : "");
+ zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s",
+ zImpPK, zCom, nBind, zCol, zOrder
+ );
+ }
+ zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q",
+ zImpCols, zCom, nBind, zCol, zType, zCollate
+ );
+ zWhere = sqlite3_mprintf(
+ "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol
+ );
+ if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM;
+ zCom = ", ";
+ zAnd = " AND ";
+ nBind++;
+ }
+
+ rc2 = sqlite3_finalize(pXInfo);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zRet);
+ sqlite3_free(zImpCols);
+ sqlite3_free(zImpPK);
+ sqlite3_free(zWhere);
+ zRet = 0;
+ zImpCols = 0;
+ zImpPK = 0;
+ zWhere = 0;
+ p->rc = rc;
+ }
+
+ *pzImposterCols = zImpCols;
+ *pzImposterPk = zImpPK;
+ *pzWhere = zWhere;
+ *pnBind = nBind;
+ return zRet;
+}
+
+/*
+** Assuming the current table columns are "a", "b" and "c", and the zObj
+** paramter is passed "old", return a string of the form:
+**
+** "old.a, old.b, old.b"
+**
+** With the column names escaped.
+**
+** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append
+** the text ", old._rowid_" to the returned value.
+*/
+static char *rbuObjIterGetOldlist(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ const char *zObj
+){
+ char *zList = 0;
+ if( p->rc==SQLITE_OK && pIter->abIndexed ){
+ const char *zS = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( pIter->abIndexed[i] ){
+ const char *zCol = pIter->azTblCol[i];
+ zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol);
+ }else{
+ zList = sqlite3_mprintf("%z%sNULL", zList, zS);
+ }
+ zS = ", ";
+ if( zList==0 ){
+ p->rc = SQLITE_NOMEM;
+ break;
+ }
+ }
+
+ /* For a table with implicit rowids, append "old._rowid_" to the list. */
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj);
+ }
+ }
+ return zList;
+}
+
+/*
+** Return an expression that can be used in a WHERE clause to match the
+** primary key of the current table. For example, if the table is:
+**
+** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c));
+**
+** Return the string:
+**
+** "b = ?1 AND c = ?2"
+*/
+static char *rbuObjIterGetWhere(
+ sqlite3rbu *p,
+ RbuObjIter *pIter
+){
+ char *zList = 0;
+ if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){
+ zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1);
+ }else if( pIter->eType==RBU_PK_EXTERNAL ){
+ const char *zSep = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( pIter->abTblPk[i] ){
+ zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1);
+ zSep = " AND ";
+ }
+ }
+ zList = rbuMPrintf(p,
+ "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList
+ );
+
+ }else{
+ const char *zSep = "";
+ int i;
+ for(i=0; i<pIter->nTblCol; i++){
+ if( pIter->abTblPk[i] ){
+ const char *zCol = pIter->azTblCol[i];
+ zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1);
+ zSep = " AND ";
+ }
+ }
+ }
+ return zList;
+}
+
+/*
+** The SELECT statement iterating through the keys for the current object
+** (p->objiter.pSelect) currently points to a valid row. However, there
+** is something wrong with the rbu_control value in the rbu_control value
+** stored in the (p->nCol+1)'th column. Set the error code and error message
+** of the RBU handle to something reflecting this.
+*/
+static void rbuBadControlError(sqlite3rbu *p){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("invalid rbu_control value");
+}
+
+
+/*
+** Return a nul-terminated string containing the comma separated list of
+** assignments that should be included following the "SET" keyword of
+** an UPDATE statement used to update the table object that the iterator
+** passed as the second argument currently points to if the rbu_control
+** column of the data_xxx table entry is set to zMask.
+**
+** The memory for the returned string is obtained from sqlite3_malloc().
+** It is the responsibility of the caller to eventually free it using
+** sqlite3_free().
+**
+** If an OOM error is encountered when allocating space for the new
+** string, an error code is left in the rbu handle passed as the first
+** argument and NULL is returned. Or, if an error has already occurred
+** when this function is called, NULL is returned immediately, without
+** attempting the allocation or modifying the stored error code.
+*/
+static char *rbuObjIterGetSetlist(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ const char *zMask
+){
+ char *zList = 0;
+ if( p->rc==SQLITE_OK ){
+ int i;
+
+ if( (int)strlen(zMask)!=pIter->nTblCol ){
+ rbuBadControlError(p);
+ }else{
+ const char *zSep = "";
+ for(i=0; i<pIter->nTblCol; i++){
+ char c = zMask[pIter->aiSrcOrder[i]];
+ if( c=='x' ){
+ zList = rbuMPrintf(p, "%z%s\"%w\"=?%d",
+ zList, zSep, pIter->azTblCol[i], i+1
+ );
+ zSep = ", ";
+ }
+ else if( c=='d' ){
+ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)",
+ zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
+ );
+ zSep = ", ";
+ }
+ else if( c=='f' ){
+ zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)",
+ zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
+ );
+ zSep = ", ";
+ }
+ }
+ }
+ }
+ return zList;
+}
+
+/*
+** Return a nul-terminated string consisting of nByte comma separated
+** "?" expressions. For example, if nByte is 3, return a pointer to
+** a buffer containing the string "?,?,?".
+**
+** The memory for the returned string is obtained from sqlite3_malloc().
+** It is the responsibility of the caller to eventually free it using
+** sqlite3_free().
+**
+** If an OOM error is encountered when allocating space for the new
+** string, an error code is left in the rbu handle passed as the first
+** argument and NULL is returned. Or, if an error has already occurred
+** when this function is called, NULL is returned immediately, without
+** attempting the allocation or modifying the stored error code.
+*/
+static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
+ char *zRet = 0;
+ sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1;
+
+ zRet = (char*)rbuMalloc(p, nByte);
+ if( zRet ){
+ int i;
+ for(i=0; i<nBind; i++){
+ zRet[i*2] = '?';
+ zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
+ }
+ }
+ return zRet;
+}
+
+/*
+** The iterator currently points to a table (not index) of type
+** RBU_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY
+** declaration for the corresponding imposter table. For example,
+** if the iterator points to a table created as:
+**
+** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID
+**
+** this function returns:
+**
+** PRIMARY KEY("b", "a" DESC)
+*/
+static char *rbuWithoutRowidPK(sqlite3rbu *p, RbuObjIter *pIter){
+ char *z = 0;
+ assert( pIter->zIdx==0 );
+ if( p->rc==SQLITE_OK ){
+ const char *zSep = "PRIMARY KEY(";
+ sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */
+ sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */
+
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
+ );
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){
+ const char *zOrig = (const char*)sqlite3_column_text(pXList,3);
+ if( zOrig && strcmp(zOrig, "pk")==0 ){
+ const char *zIdx = (const char*)sqlite3_column_text(pXList,1);
+ if( zIdx ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
+ );
+ }
+ break;
+ }
+ }
+ rbuFinalize(p, pXList);
+
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ if( sqlite3_column_int(pXInfo, 5) ){
+ /* int iCid = sqlite3_column_int(pXInfo, 0); */
+ const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2);
+ const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : "";
+ z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc);
+ zSep = ", ";
+ }
+ }
+ z = rbuMPrintf(p, "%z)", z);
+ rbuFinalize(p, pXInfo);
+ }
+ return z;
+}
+
+/*
+** This function creates the second imposter table used when writing to
+** a table b-tree where the table has an external primary key. If the
+** iterator passed as the second argument does not currently point to
+** a table (not index) with an external primary key, this function is a
+** no-op.
+**
+** Assuming the iterator does point to a table with an external PK, this
+** function creates a WITHOUT ROWID imposter table named "rbu_imposter2"
+** used to access that PK index. For example, if the target table is
+** declared as follows:
+**
+** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c));
+**
+** then the imposter table schema is:
+**
+** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID;
+**
+*/
+static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){
+ if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){
+ int tnum = pIter->iPkTnum; /* Root page of PK index */
+ sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */
+ const char *zIdx = 0; /* Name of PK index */
+ sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */
+ const char *zComma = "";
+ char *zCols = 0; /* Used to build up list of table cols */
+ char *zPk = 0; /* Used to build up table PK declaration */
+
+ /* Figure out the name of the primary key index for the current table.
+ ** This is needed for the argument to "PRAGMA index_xinfo". Set
+ ** zIdx to point to a nul-terminated string containing this name. */
+ p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg,
+ "SELECT name FROM sqlite_schema WHERE rootpage = ?"
+ );
+ if( p->rc==SQLITE_OK ){
+ sqlite3_bind_int(pQuery, 1, tnum);
+ if( SQLITE_ROW==sqlite3_step(pQuery) ){
+ zIdx = (const char*)sqlite3_column_text(pQuery, 0);
+ }
+ }
+ if( zIdx ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
+ );
+ }
+ rbuFinalize(p, pQuery);
+
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
+ int bKey = sqlite3_column_int(pXInfo, 5);
+ if( bKey ){
+ int iCid = sqlite3_column_int(pXInfo, 1);
+ int bDesc = sqlite3_column_int(pXInfo, 3);
+ const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
+ zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma,
+ iCid, pIter->azTblType[iCid], zCollate
+ );
+ zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
+ zComma = ", ";
+ }
+ }
+ zCols = rbuMPrintf(p, "%z, id INTEGER", zCols);
+ rbuFinalize(p, pXInfo);
+
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID",
+ zCols, zPk
+ );
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
+ }
+}
+
+/*
+** If an error has already occurred when this function is called, it
+** immediately returns zero (without doing any work). Or, if an error
+** occurs during the execution of this function, it sets the error code
+** in the sqlite3rbu object indicated by the first argument and returns
+** zero.
+**
+** The iterator passed as the second argument is guaranteed to point to
+** a table (not an index) when this function is called. This function
+** attempts to create any imposter table required to write to the main
+** table b-tree of the table before returning. Non-zero is returned if
+** an imposter table are created, or zero otherwise.
+**
+** An imposter table is required in all cases except RBU_PK_VTAB. Only
+** virtual tables are written to directly. The imposter table has the
+** same schema as the actual target table (less any UNIQUE constraints).
+** More precisely, the "same schema" means the same columns, types,
+** collation sequences. For tables that do not have an external PRIMARY
+** KEY, it also means the same PRIMARY KEY declaration.
+*/
+static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){
+ if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){
+ int tnum = pIter->iTnum;
+ const char *zComma = "";
+ char *zSql = 0;
+ int iCol;
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
+
+ for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){
+ const char *zPk = "";
+ const char *zCol = pIter->azTblCol[iCol];
+ const char *zColl = 0;
+
+ p->rc = sqlite3_table_column_metadata(
+ p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0
+ );
+
+ if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){
+ /* If the target table column is an "INTEGER PRIMARY KEY", add
+ ** "PRIMARY KEY" to the imposter table column declaration. */
+ zPk = "PRIMARY KEY ";
+ }
+ zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s",
+ zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
+ (pIter->abNotNull[iCol] ? " NOT NULL" : "")
+ );
+ zComma = ", ";
+ }
+
+ if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
+ char *zPk = rbuWithoutRowidPK(p, pIter);
+ if( zPk ){
+ zSql = rbuMPrintf(p, "%z, %z", zSql, zPk);
+ }
+ }
+
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
+ rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s",
+ pIter->zTbl, zSql,
+ (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "")
+ );
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
+ }
+}
+
+/*
+** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table.
+** Specifically a statement of the form:
+**
+** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...);
+**
+** The number of bound variables is equal to the number of columns in
+** the target table, plus one (for the rbu_control column), plus one more
+** (for the rbu_rowid column) if the target table is an implicit IPK or
+** virtual table.
+*/
+static void rbuObjIterPrepareTmpInsert(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ const char *zCollist,
+ const char *zRbuRowid
+){
+ int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE);
+ char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid);
+ if( zBind ){
+ assert( pIter->pTmpInsert==0 );
+ p->rc = prepareFreeAndCollectError(
+ p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf(
+ "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)",
+ p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind
+ ));
+ }
+}
+
+static void rbuTmpInsertFunc(
+ sqlite3_context *pCtx,
+ int nVal,
+ sqlite3_value **apVal
+){
+ sqlite3rbu *p = sqlite3_user_data(pCtx);
+ int rc = SQLITE_OK;
+ int i;
+
+ assert( sqlite3_value_int(apVal[0])!=0
+ || p->objiter.eType==RBU_PK_EXTERNAL
+ || p->objiter.eType==RBU_PK_NONE
+ );
+ if( sqlite3_value_int(apVal[0])!=0 ){
+ p->nPhaseOneStep += p->objiter.nIndex;
+ }
+
+ for(i=0; rc==SQLITE_OK && i<nVal; i++){
+ rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(p->objiter.pTmpInsert);
+ rc = sqlite3_reset(p->objiter.pTmpInsert);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+
+static char *rbuObjIterGetIndexWhere(sqlite3rbu *p, RbuObjIter *pIter){
+ sqlite3_stmt *pStmt = 0;
+ int rc = p->rc;
+ char *zRet = 0;
+
+ assert( pIter->zIdxSql==0 && pIter->nIdxCol==0 && pIter->aIdxCol==0 );
+
+ if( rc==SQLITE_OK ){
+ rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
+ "SELECT trim(sql) FROM sqlite_schema WHERE type='index' AND name=?"
+ );
+ }
+ if( rc==SQLITE_OK ){
+ int rc2;
+ rc = sqlite3_bind_text(pStmt, 1, pIter->zIdx, -1, SQLITE_STATIC);
+ if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ char *zSql = (char*)sqlite3_column_text(pStmt, 0);
+ if( zSql ){
+ pIter->zIdxSql = zSql = rbuStrndup(zSql, &rc);
+ }
+ if( zSql ){
+ int nParen = 0; /* Number of open parenthesis */
+ int i;
+ int iIdxCol = 0;
+ int nIdxAlloc = 0;
+ for(i=0; zSql[i]; i++){
+ char c = zSql[i];
+
+ /* If necessary, grow the pIter->aIdxCol[] array */
+ if( iIdxCol==nIdxAlloc ){
+ RbuSpan *aIdxCol = (RbuSpan*)sqlite3_realloc(
+ pIter->aIdxCol, (nIdxAlloc+16)*sizeof(RbuSpan)
+ );
+ if( aIdxCol==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ pIter->aIdxCol = aIdxCol;
+ nIdxAlloc += 16;
+ }
+
+ if( c=='(' ){
+ if( nParen==0 ){
+ assert( iIdxCol==0 );
+ pIter->aIdxCol[0].zSpan = &zSql[i+1];
+ }
+ nParen++;
+ }
+ else if( c==')' ){
+ nParen--;
+ if( nParen==0 ){
+ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan;
+ pIter->aIdxCol[iIdxCol++].nSpan = nSpan;
+ i++;
+ break;
+ }
+ }else if( c==',' && nParen==1 ){
+ int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan;
+ pIter->aIdxCol[iIdxCol++].nSpan = nSpan;
+ pIter->aIdxCol[iIdxCol].zSpan = &zSql[i+1];
+ }else if( c=='"' || c=='\'' || c=='`' ){
+ for(i++; 1; i++){
+ if( zSql[i]==c ){
+ if( zSql[i+1]!=c ) break;
+ i++;
+ }
+ }
+ }else if( c=='[' ){
+ for(i++; 1; i++){
+ if( zSql[i]==']' ) break;
+ }
+ }else if( c=='-' && zSql[i+1]=='-' ){
+ for(i=i+2; zSql[i] && zSql[i]!='\n'; i++);
+ if( zSql[i]=='\0' ) break;
+ }else if( c=='/' && zSql[i+1]=='*' ){
+ for(i=i+2; zSql[i] && (zSql[i]!='*' || zSql[i+1]!='/'); i++);
+ if( zSql[i]=='\0' ) break;
+ i++;
+ }
+ }
+ if( zSql[i] ){
+ zRet = rbuStrndup(&zSql[i], &rc);
+ }
+ pIter->nIdxCol = iIdxCol;
+ }
+ }
+
+ rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ p->rc = rc;
+ return zRet;
+}
+
+/*
+** Ensure that the SQLite statement handles required to update the
+** target database object currently indicated by the iterator passed
+** as the second argument are available.
+*/
+static int rbuObjIterPrepareAll(
+ sqlite3rbu *p,
+ RbuObjIter *pIter,
+ int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */
+){
+ assert( pIter->bCleanup==0 );
+ if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){
+ const int tnum = pIter->iTnum;
+ char *zCollist = 0; /* List of indexed columns */
+ char **pz = &p->zErrmsg;
+ const char *zIdx = pIter->zIdx;
+ char *zLimit = 0;
+
+ if( nOffset ){
+ zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset);
+ if( !zLimit ) p->rc = SQLITE_NOMEM;
+ }
+
+ if( zIdx ){
+ const char *zTbl = pIter->zTbl;
+ char *zImposterCols = 0; /* Columns for imposter table */
+ char *zImposterPK = 0; /* Primary key declaration for imposter */
+ char *zWhere = 0; /* WHERE clause on PK columns */
+ char *zBind = 0;
+ char *zPart = 0;
+ int nBind = 0;
+
+ assert( pIter->eType!=RBU_PK_VTAB );
+ zPart = rbuObjIterGetIndexWhere(p, pIter);
+ zCollist = rbuObjIterGetIndexCols(
+ p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind
+ );
+ zBind = rbuObjIterGetBindlist(p, nBind);
+
+ /* Create the imposter table used to write to this index. */
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum);
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID",
+ zTbl, zImposterCols, zImposterPK
+ );
+ sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
+
+ /* Create the statement to insert index entries */
+ pIter->nCol = nBind;
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(
+ p->dbMain, &pIter->pInsert, &p->zErrmsg,
+ sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind)
+ );
+ }
+
+ /* And to delete index entries */
+ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(
+ p->dbMain, &pIter->pDelete, &p->zErrmsg,
+ sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere)
+ );
+ }
+
+ /* Create the SELECT statement to read keys in sorted order */
+ if( p->rc==SQLITE_OK ){
+ char *zSql;
+ if( rbuIsVacuum(p) ){
+ char *zStart = 0;
+ if( nOffset ){
+ zStart = rbuVacuumIndexStart(p, pIter);
+ if( zStart ){
+ sqlite3_free(zLimit);
+ zLimit = 0;
+ }
+ }
+
+ zSql = sqlite3_mprintf(
+ "SELECT %s, 0 AS rbu_control FROM '%q' %s %s %s ORDER BY %s%s",
+ zCollist,
+ pIter->zDataTbl,
+ zPart,
+ (zStart ? (zPart ? "AND" : "WHERE") : ""), zStart,
+ zCollist, zLimit
+ );
+ sqlite3_free(zStart);
+ }else
+
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ zSql = sqlite3_mprintf(
+ "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s ORDER BY %s%s",
+ zCollist, p->zStateDb, pIter->zDataTbl,
+ zPart, zCollist, zLimit
+ );
+ }else{
+ zSql = sqlite3_mprintf(
+ "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s "
+ "UNION ALL "
+ "SELECT %s, rbu_control FROM '%q' "
+ "%s %s typeof(rbu_control)='integer' AND rbu_control!=1 "
+ "ORDER BY %s%s",
+ zCollist, p->zStateDb, pIter->zDataTbl, zPart,
+ zCollist, pIter->zDataTbl,
+ zPart,
+ (zPart ? "AND" : "WHERE"),
+ zCollist, zLimit
+ );
+ }
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbRbu,&pIter->pSelect,pz,zSql);
+ }else{
+ sqlite3_free(zSql);
+ }
+ }
+
+ sqlite3_free(zImposterCols);
+ sqlite3_free(zImposterPK);
+ sqlite3_free(zWhere);
+ sqlite3_free(zBind);
+ sqlite3_free(zPart);
+ }else{
+ int bRbuRowid = (pIter->eType==RBU_PK_VTAB)
+ ||(pIter->eType==RBU_PK_NONE)
+ ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p));
+ const char *zTbl = pIter->zTbl; /* Table this step applies to */
+ const char *zWrite; /* Imposter table name */
+
+ char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid);
+ char *zWhere = rbuObjIterGetWhere(p, pIter);
+ char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old");
+ char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new");
+
+ zCollist = rbuObjIterGetCollist(p, pIter);
+ pIter->nCol = pIter->nTblCol;
+
+ /* Create the imposter table or tables (if required). */
+ rbuCreateImposterTable(p, pIter);
+ rbuCreateImposterTable2(p, pIter);
+ zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_");
+
+ /* Create the INSERT statement to write to the target PK b-tree */
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz,
+ sqlite3_mprintf(
+ "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)",
+ zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings
+ )
+ );
+ }
+
+ /* Create the DELETE statement to write to the target PK b-tree.
+ ** Because it only performs INSERT operations, this is not required for
+ ** an rbu vacuum handle. */
+ if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz,
+ sqlite3_mprintf(
+ "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere
+ )
+ );
+ }
+
+ if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
+ const char *zRbuRowid = "";
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ zRbuRowid = ", rbu_rowid";
+ }
+
+ /* Create the rbu_tmp_xxx table and the triggers to populate it. */
+ rbuMPrintfExec(p, p->dbRbu,
+ "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS "
+ "SELECT *%s FROM '%q' WHERE 0;"
+ , p->zStateDb, pIter->zDataTbl
+ , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "")
+ , pIter->zDataTbl
+ );
+
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(3, %s);"
+ "END;"
+
+ "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(3, %s);"
+ "END;"
+
+ "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(4, %s);"
+ "END;",
+ zWrite, zTbl, zOldlist,
+ zWrite, zTbl, zOldlist,
+ zWrite, zTbl, zNewlist
+ );
+
+ if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
+ rbuMPrintfExec(p, p->dbMain,
+ "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" "
+ "BEGIN "
+ " SELECT rbu_tmp_insert(0, %s);"
+ "END;",
+ zWrite, zTbl, zNewlist
+ );
+ }
+
+ rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid);
+ }
+
+ /* Create the SELECT statement to read keys from data_xxx */
+ if( p->rc==SQLITE_OK ){
+ const char *zRbuRowid = "";
+ char *zStart = 0;
+ char *zOrder = 0;
+ if( bRbuRowid ){
+ zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid";
+ }
+
+ if( rbuIsVacuum(p) ){
+ if( nOffset ){
+ zStart = rbuVacuumTableStart(p, pIter, bRbuRowid, zWrite);
+ if( zStart ){
+ sqlite3_free(zLimit);
+ zLimit = 0;
+ }
+ }
+ if( bRbuRowid ){
+ zOrder = rbuMPrintf(p, "_rowid_");
+ }else{
+ zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", "");
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz,
+ sqlite3_mprintf(
+ "SELECT %s,%s rbu_control%s FROM '%q'%s %s %s %s",
+ zCollist,
+ (rbuIsVacuum(p) ? "0 AS " : ""),
+ zRbuRowid,
+ pIter->zDataTbl, (zStart ? zStart : ""),
+ (zOrder ? "ORDER BY" : ""), zOrder,
+ zLimit
+ )
+ );
+ }
+ sqlite3_free(zStart);
+ sqlite3_free(zOrder);
+ }
+
+ sqlite3_free(zWhere);
+ sqlite3_free(zOldlist);
+ sqlite3_free(zNewlist);
+ sqlite3_free(zBindings);
+ }
+ sqlite3_free(zCollist);
+ sqlite3_free(zLimit);
+ }
+
+ return p->rc;
+}
+
+/*
+** Set output variable *ppStmt to point to an UPDATE statement that may
+** be used to update the imposter table for the main table b-tree of the
+** table object that pIter currently points to, assuming that the
+** rbu_control column of the data_xyz table contains zMask.
+**
+** If the zMask string does not specify any columns to update, then this
+** is not an error. Output variable *ppStmt is set to NULL in this case.
+*/
+static int rbuGetUpdateStmt(
+ sqlite3rbu *p, /* RBU handle */
+ RbuObjIter *pIter, /* Object iterator */
+ const char *zMask, /* rbu_control value ('x.x.') */
+ sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */
+){
+ RbuUpdateStmt **pp;
+ RbuUpdateStmt *pUp = 0;
+ int nUp = 0;
+
+ /* In case an error occurs */
+ *ppStmt = 0;
+
+ /* Search for an existing statement. If one is found, shift it to the front
+ ** of the LRU queue and return immediately. Otherwise, leave nUp pointing
+ ** to the number of statements currently in the cache and pUp to the
+ ** last object in the list. */
+ for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){
+ pUp = *pp;
+ if( strcmp(pUp->zMask, zMask)==0 ){
+ *pp = pUp->pNext;
+ pUp->pNext = pIter->pRbuUpdate;
+ pIter->pRbuUpdate = pUp;
+ *ppStmt = pUp->pUpdate;
+ return SQLITE_OK;
+ }
+ nUp++;
+ }
+ assert( pUp==0 || pUp->pNext==0 );
+
+ if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){
+ for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext));
+ *pp = 0;
+ sqlite3_finalize(pUp->pUpdate);
+ pUp->pUpdate = 0;
+ }else{
+ pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1);
+ }
+
+ if( pUp ){
+ char *zWhere = rbuObjIterGetWhere(p, pIter);
+ char *zSet = rbuObjIterGetSetlist(p, pIter, zMask);
+ char *zUpdate = 0;
+
+ pUp->zMask = (char*)&pUp[1];
+ memcpy(pUp->zMask, zMask, pIter->nTblCol);
+ pUp->pNext = pIter->pRbuUpdate;
+ pIter->pRbuUpdate = pUp;
+
+ if( zSet ){
+ const char *zPrefix = "";
+
+ if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_";
+ zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s",
+ zPrefix, pIter->zTbl, zSet, zWhere
+ );
+ p->rc = prepareFreeAndCollectError(
+ p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate
+ );
+ *ppStmt = pUp->pUpdate;
+ }
+ sqlite3_free(zWhere);
+ sqlite3_free(zSet);
+ }
+
+ return p->rc;
+}
+
+static sqlite3 *rbuOpenDbhandle(
+ sqlite3rbu *p,
+ const char *zName,
+ int bUseVfs
+){
+ sqlite3 *db = 0;
+ if( p->rc==SQLITE_OK ){
+ const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI;
+ p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0);
+ if( p->rc ){
+ p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
+ sqlite3_close(db);
+ db = 0;
+ }
+ }
+ return db;
+}
+
+/*
+** Free an RbuState object allocated by rbuLoadState().
+*/
+static void rbuFreeState(RbuState *p){
+ if( p ){
+ sqlite3_free(p->zTbl);
+ sqlite3_free(p->zDataTbl);
+ sqlite3_free(p->zIdx);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Allocate an RbuState object and load the contents of the rbu_state
+** table into it. Return a pointer to the new object. It is the
+** responsibility of the caller to eventually free the object using
+** sqlite3_free().
+**
+** If an error occurs, leave an error code and message in the rbu handle
+** and return NULL.
+*/
+static RbuState *rbuLoadState(sqlite3rbu *p){
+ RbuState *pRet = 0;
+ sqlite3_stmt *pStmt = 0;
+ int rc;
+ int rc2;
+
+ pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState));
+ if( pRet==0 ) return 0;
+
+ rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb)
+ );
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ switch( sqlite3_column_int(pStmt, 0) ){
+ case RBU_STATE_STAGE:
+ pRet->eStage = sqlite3_column_int(pStmt, 1);
+ if( pRet->eStage!=RBU_STAGE_OAL
+ && pRet->eStage!=RBU_STAGE_MOVE
+ && pRet->eStage!=RBU_STAGE_CKPT
+ ){
+ p->rc = SQLITE_CORRUPT;
+ }
+ break;
+
+ case RBU_STATE_TBL:
+ pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
+ break;
+
+ case RBU_STATE_IDX:
+ pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
+ break;
+
+ case RBU_STATE_ROW:
+ pRet->nRow = sqlite3_column_int(pStmt, 1);
+ break;
+
+ case RBU_STATE_PROGRESS:
+ pRet->nProgress = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_CKPT:
+ pRet->iWalCksum = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_COOKIE:
+ pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_OALSZ:
+ pRet->iOalSz = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_PHASEONESTEP:
+ pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
+ break;
+
+ case RBU_STATE_DATATBL:
+ pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
+ break;
+
+ default:
+ rc = SQLITE_CORRUPT;
+ break;
+ }
+ }
+ rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ p->rc = rc;
+ return pRet;
+}
+
+
+/*
+** Open the database handle and attach the RBU database as "rbu". If an
+** error occurs, leave an error code and message in the RBU handle.
+**
+** If argument dbMain is not NULL, then it is a database handle already
+** open on the target database. Use this handle instead of opening a new
+** one.
+*/
+static void rbuOpenDatabase(sqlite3rbu *p, sqlite3 *dbMain, int *pbRetry){
+ assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
+ assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );
+ assert( dbMain==0 || rbuIsVacuum(p)==0 );
+
+ /* Open the RBU database */
+ p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);
+ p->dbMain = dbMain;
+
+ if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
+ sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
+ if( p->zState==0 ){
+ const char *zFile = sqlite3_db_filename(p->dbRbu, "main");
+ p->zState = rbuMPrintf(p, "file:///%s-vacuum?modeof=%s", zFile, zFile);
+ }
+ }
+
+ /* If using separate RBU and state databases, attach the state database to
+ ** the RBU db handle now. */
+ if( p->zState ){
+ rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState);
+ memcpy(p->zStateDb, "stat", 4);
+ }else{
+ memcpy(p->zStateDb, "main", 4);
+ }
+
+#if 0
+ if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
+ p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0);
+ }
+#endif
+
+ /* If it has not already been created, create the rbu_state table */
+ rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb);
+
+#if 0
+ if( rbuIsVacuum(p) ){
+ if( p->rc==SQLITE_OK ){
+ int rc2;
+ int bOk = 0;
+ sqlite3_stmt *pCnt = 0;
+ p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg,
+ "SELECT count(*) FROM stat.sqlite_schema"
+ );
+ if( p->rc==SQLITE_OK
+ && sqlite3_step(pCnt)==SQLITE_ROW
+ && 1==sqlite3_column_int(pCnt, 0)
+ ){
+ bOk = 1;
+ }
+ rc2 = sqlite3_finalize(pCnt);
+ if( p->rc==SQLITE_OK ) p->rc = rc2;
+
+ if( p->rc==SQLITE_OK && bOk==0 ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("invalid state database");
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
+ }
+ }
+ }
+#endif
+
+ if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
+ int bOpen = 0;
+ int rc;
+ p->nRbu = 0;
+ p->pRbuFd = 0;
+ rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
+ if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
+ if( p->eStage>=RBU_STAGE_MOVE ){
+ bOpen = 1;
+ }else{
+ RbuState *pState = rbuLoadState(p);
+ if( pState ){
+ bOpen = (pState->eStage>=RBU_STAGE_MOVE);
+ rbuFreeState(pState);
+ }
+ }
+ if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
+ }
+
+ p->eStage = 0;
+ if( p->rc==SQLITE_OK && p->dbMain==0 ){
+ if( !rbuIsVacuum(p) ){
+ p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
+ }else if( p->pRbuFd->pWalFd ){
+ if( pbRetry ){
+ p->pRbuFd->bNolock = 0;
+ sqlite3_close(p->dbRbu);
+ sqlite3_close(p->dbMain);
+ p->dbMain = 0;
+ p->dbRbu = 0;
+ *pbRetry = 1;
+ return;
+ }
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
+ }else{
+ char *zTarget;
+ char *zExtra = 0;
+ if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
+ zExtra = &p->zRbu[5];
+ while( *zExtra ){
+ if( *zExtra++=='?' ) break;
+ }
+ if( *zExtra=='\0' ) zExtra = 0;
+ }
+
+ zTarget = sqlite3_mprintf("file:%s-vactmp?rbu_memory=1%s%s",
+ sqlite3_db_filename(p->dbRbu, "main"),
+ (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra)
+ );
+
+ if( zTarget==0 ){
+ p->rc = SQLITE_NOMEM;
+ return;
+ }
+ p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1);
+ sqlite3_free(zTarget);
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_create_function(p->dbMain,
+ "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_create_function(p->dbMain,
+ "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_create_function(p->dbRbu,
+ "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
+ }
+ rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_schema");
+
+ /* Mark the database file just opened as an RBU target database. If
+ ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use.
+ ** This is an error. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
+ }
+
+ if( p->rc==SQLITE_NOTFOUND ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("rbu vfs not found");
+ }
+}
+
+/*
+** This routine is a copy of the sqlite3FileSuffix3() routine from the core.
+** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined.
+**
+** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
+** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
+** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
+** three characters, then shorten the suffix on z[] to be the last three
+** characters of the original suffix.
+**
+** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
+** do the suffix shortening regardless of URI parameter.
+**
+** Examples:
+**
+** test.db-journal => test.nal
+** test.db-wal => test.wal
+** test.db-shm => test.shm
+** test.db-mj7f3319fa => test.9fa
+*/
+static void rbuFileSuffix3(const char *zBase, char *z){
+#ifdef SQLITE_ENABLE_8_3_NAMES
+#if SQLITE_ENABLE_8_3_NAMES<2
+ if( sqlite3_uri_boolean(zBase, "8_3_names", 0) )
+#endif
+ {
+ int i, sz;
+ sz = (int)strlen(z)&0xffffff;
+ for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
+ if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4);
+ }
+#endif
+}
+
+/*
+** Return the current wal-index header checksum for the target database
+** as a 64-bit integer.
+**
+** The checksum is store in the first page of xShmMap memory as an 8-byte
+** blob starting at byte offset 40.
+*/
+static i64 rbuShmChecksum(sqlite3rbu *p){
+ i64 iRet = 0;
+ if( p->rc==SQLITE_OK ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ u32 volatile *ptr;
+ p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr);
+ if( p->rc==SQLITE_OK ){
+ iRet = ((i64)ptr[10] << 32) + ptr[11];
+ }
+ }
+ return iRet;
+}
+
+/*
+** This function is called as part of initializing or reinitializing an
+** incremental checkpoint.
+**
+** It populates the sqlite3rbu.aFrame[] array with the set of
+** (wal frame -> db page) copy operations required to checkpoint the
+** current wal file, and obtains the set of shm locks required to safely
+** perform the copy operations directly on the file-system.
+**
+** If argument pState is not NULL, then the incremental checkpoint is
+** being resumed. In this case, if the checksum of the wal-index-header
+** following recovery is not the same as the checksum saved in the RbuState
+** object, then the rbu handle is set to DONE state. This occurs if some
+** other client appends a transaction to the wal file in the middle of
+** an incremental checkpoint.
+*/
+static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){
+
+ /* If pState is NULL, then the wal file may not have been opened and
+ ** recovered. Running a read-statement here to ensure that doing so
+ ** does not interfere with the "capture" process below. */
+ if( pState==0 ){
+ p->eStage = 0;
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_schema", 0, 0, 0);
+ }
+ }
+
+ /* Assuming no error has occurred, run a "restart" checkpoint with the
+ ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following
+ ** special behaviour in the rbu VFS:
+ **
+ ** * If the exclusive shm WRITER or READ0 lock cannot be obtained,
+ ** the checkpoint fails with SQLITE_BUSY (normally SQLite would
+ ** proceed with running a passive checkpoint instead of failing).
+ **
+ ** * Attempts to read from the *-wal file or write to the database file
+ ** do not perform any IO. Instead, the frame/page combinations that
+ ** would be read/written are recorded in the sqlite3rbu.aFrame[]
+ ** array.
+ **
+ ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER,
+ ** READ0 and CHECKPOINT locks taken as part of the checkpoint are
+ ** no-ops. These locks will not be released until the connection
+ ** is closed.
+ **
+ ** * Attempting to xSync() the database file causes an SQLITE_NOTICE
+ ** error.
+ **
+ ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the
+ ** checkpoint below fails with SQLITE_NOTICE, and leaves the aFrame[]
+ ** array populated with a set of (frame -> page) mappings. Because the
+ ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy
+ ** data from the wal file into the database file according to the
+ ** contents of aFrame[].
+ */
+ if( p->rc==SQLITE_OK ){
+ int rc2;
+ p->eStage = RBU_STAGE_CAPTURE;
+ rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
+ if( rc2!=SQLITE_NOTICE ) p->rc = rc2;
+ }
+
+ if( p->rc==SQLITE_OK && p->nFrame>0 ){
+ p->eStage = RBU_STAGE_CKPT;
+ p->nStep = (pState ? pState->nRow : 0);
+ p->aBuf = rbuMalloc(p, p->pgsz);
+ p->iWalCksum = rbuShmChecksum(p);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){
+ p->rc = SQLITE_DONE;
+ p->eStage = RBU_STAGE_DONE;
+ }else{
+ int nSectorSize;
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
+ assert( p->nPagePerSector==0 );
+ nSectorSize = pDb->pMethods->xSectorSize(pDb);
+ if( nSectorSize>p->pgsz ){
+ p->nPagePerSector = nSectorSize / p->pgsz;
+ }else{
+ p->nPagePerSector = 1;
+ }
+
+ /* Call xSync() on the wal file. This causes SQLite to sync the
+ ** directory in which the target database and the wal file reside, in
+ ** case it has not been synced since the rename() call in
+ ** rbuMoveOalFile(). */
+ p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL);
+ }
+ }
+}
+
+/*
+** Called when iAmt bytes are read from offset iOff of the wal file while
+** the rbu object is in capture mode. Record the frame number of the frame
+** being read in the aFrame[] array.
+*/
+static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){
+ const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0);
+ u32 iFrame;
+
+ if( pRbu->mLock!=mReq ){
+ pRbu->rc = SQLITE_BUSY;
+ return SQLITE_NOTICE_RBU;
+ }
+
+ pRbu->pgsz = iAmt;
+ if( pRbu->nFrame==pRbu->nFrameAlloc ){
+ int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
+ RbuFrame *aNew;
+ aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame));
+ if( aNew==0 ) return SQLITE_NOMEM;
+ pRbu->aFrame = aNew;
+ pRbu->nFrameAlloc = nNew;
+ }
+
+ iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
+ if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;
+ pRbu->aFrame[pRbu->nFrame].iWalFrame = iFrame;
+ pRbu->aFrame[pRbu->nFrame].iDbPage = 0;
+ pRbu->nFrame++;
+ return SQLITE_OK;
+}
+
+/*
+** Called when a page of data is written to offset iOff of the database
+** file while the rbu handle is in capture mode. Record the page number
+** of the page being written in the aFrame[] array.
+*/
+static int rbuCaptureDbWrite(sqlite3rbu *pRbu, i64 iOff){
+ pRbu->aFrame[pRbu->nFrame-1].iDbPage = (u32)(iOff / pRbu->pgsz) + 1;
+ return SQLITE_OK;
+}
+
+/*
+** This is called as part of an incremental checkpoint operation. Copy
+** a single frame of data from the wal file into the database file, as
+** indicated by the RbuFrame object.
+*/
+static void rbuCheckpointFrame(sqlite3rbu *p, RbuFrame *pFrame){
+ sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ i64 iOff;
+
+ assert( p->rc==SQLITE_OK );
+ iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24;
+ p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff);
+ if( p->rc ) return;
+
+ iOff = (i64)(pFrame->iDbPage-1) * p->pgsz;
+ p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff);
+}
+
+/*
+** This value is copied from the definition of ZIPVFS_CTRL_FILE_POINTER
+** in zipvfs.h.
+*/
+#define RBU_ZIPVFS_CTRL_FILE_POINTER 230439
+
+/*
+** Take an EXCLUSIVE lock on the database file. Return SQLITE_OK if
+** successful, or an SQLite error code otherwise.
+*/
+static int rbuLockDatabase(sqlite3 *db){
+ int rc = SQLITE_OK;
+ sqlite3_file *fd = 0;
+
+ sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd);
+ if( fd ){
+ sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd);
+ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED);
+ if( rc==SQLITE_OK ){
+ rc = fd->pMethods->xUnlock(fd, SQLITE_LOCK_NONE);
+ }
+ sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd);
+ }else{
+ sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd);
+ }
+
+ if( rc==SQLITE_OK && fd->pMethods ){
+ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED);
+ if( rc==SQLITE_OK ){
+ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_EXCLUSIVE);
+ }
+ }
+ return rc;
+}
+
+/*
+** Return true if the database handle passed as the only argument
+** was opened with the rbu_exclusive_checkpoint=1 URI parameter
+** specified. Or false otherwise.
+*/
+static int rbuExclusiveCheckpoint(sqlite3 *db){
+ const char *zUri = sqlite3_db_filename(db, 0);
+ return sqlite3_uri_boolean(zUri, RBU_EXCLUSIVE_CHECKPOINT, 0);
+}
+
+#if defined(_WIN32_WCE)
+static LPWSTR rbuWinUtf8ToUnicode(const char *zFilename){
+ int nChar;
+ LPWSTR zWideFilename;
+
+ nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
+ if( nChar==0 ){
+ return 0;
+ }
+ zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) );
+ if( zWideFilename==0 ){
+ return 0;
+ }
+ memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
+ nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
+ nChar);
+ if( nChar==0 ){
+ sqlite3_free(zWideFilename);
+ zWideFilename = 0;
+ }
+ return zWideFilename;
+}
+#endif
+
+/*
+** The RBU handle is currently in RBU_STAGE_OAL state, with a SHARED lock
+** on the database file. This proc moves the *-oal file to the *-wal path,
+** then reopens the database file (this time in vanilla, non-oal, WAL mode).
+** If an error occurs, leave an error code and error message in the rbu
+** handle.
+*/
+static void rbuMoveOalFile(sqlite3rbu *p){
+ const char *zBase = sqlite3_db_filename(p->dbMain, "main");
+ const char *zMove = zBase;
+ char *zOal;
+ char *zWal;
+
+ if( rbuIsVacuum(p) ){
+ zMove = sqlite3_db_filename(p->dbRbu, "main");
+ }
+ zOal = sqlite3_mprintf("%s-oal", zMove);
+ zWal = sqlite3_mprintf("%s-wal", zMove);
+
+ assert( p->eStage==RBU_STAGE_MOVE );
+ assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
+ if( zWal==0 || zOal==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ /* Move the *-oal file to *-wal. At this point connection p->db is
+ ** holding a SHARED lock on the target database file (because it is
+ ** in WAL mode). So no other connection may be writing the db.
+ **
+ ** In order to ensure that there are no database readers, an EXCLUSIVE
+ ** lock is obtained here before the *-oal is moved to *-wal.
+ */
+ sqlite3 *dbMain = 0;
+ rbuFileSuffix3(zBase, zWal);
+ rbuFileSuffix3(zBase, zOal);
+
+ /* Re-open the databases. */
+ rbuObjIterFinalize(&p->objiter);
+ sqlite3_close(p->dbRbu);
+ sqlite3_close(p->dbMain);
+ p->dbMain = 0;
+ p->dbRbu = 0;
+
+ dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
+ if( dbMain ){
+ assert( p->rc==SQLITE_OK );
+ p->rc = rbuLockDatabase(dbMain);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = p->xRename(p->pRenameArg, zOal, zWal);
+ }
+
+ if( p->rc!=SQLITE_OK
+ || rbuIsVacuum(p)
+ || rbuExclusiveCheckpoint(dbMain)==0
+ ){
+ sqlite3_close(dbMain);
+ dbMain = 0;
+ }
+
+ if( p->rc==SQLITE_OK ){
+ rbuOpenDatabase(p, dbMain, 0);
+ rbuSetupCheckpoint(p, 0);
+ }
+ }
+
+ sqlite3_free(zWal);
+ sqlite3_free(zOal);
+}
+
+/*
+** The SELECT statement iterating through the keys for the current object
+** (p->objiter.pSelect) currently points to a valid row. This function
+** determines the type of operation requested by this row and returns
+** one of the following values to indicate the result:
+**
+** * RBU_INSERT
+** * RBU_DELETE
+** * RBU_IDX_DELETE
+** * RBU_UPDATE
+**
+** If RBU_UPDATE is returned, then output variable *pzMask is set to
+** point to the text value indicating the columns to update.
+**
+** If the rbu_control field contains an invalid value, an error code and
+** message are left in the RBU handle and zero returned.
+*/
+static int rbuStepType(sqlite3rbu *p, const char **pzMask){
+ int iCol = p->objiter.nCol; /* Index of rbu_control column */
+ int res = 0; /* Return value */
+
+ switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){
+ case SQLITE_INTEGER: {
+ int iVal = sqlite3_column_int(p->objiter.pSelect, iCol);
+ switch( iVal ){
+ case 0: res = RBU_INSERT; break;
+ case 1: res = RBU_DELETE; break;
+ case 2: res = RBU_REPLACE; break;
+ case 3: res = RBU_IDX_DELETE; break;
+ case 4: res = RBU_IDX_INSERT; break;
+ }
+ break;
+ }
+
+ case SQLITE_TEXT: {
+ const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol);
+ if( z==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ *pzMask = (const char*)z;
+ }
+ res = RBU_UPDATE;
+
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ if( res==0 ){
+ rbuBadControlError(p);
+ }
+ return res;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Assert that column iCol of statement pStmt is named zName.
+*/
+static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){
+ const char *zCol = sqlite3_column_name(pStmt, iCol);
+ assert( 0==sqlite3_stricmp(zName, zCol) );
+}
+#else
+# define assertColumnName(x,y,z)
+#endif
+
+/*
+** Argument eType must be one of RBU_INSERT, RBU_DELETE, RBU_IDX_INSERT or
+** RBU_IDX_DELETE. This function performs the work of a single
+** sqlite3rbu_step() call for the type of operation specified by eType.
+*/
+static void rbuStepOneOp(sqlite3rbu *p, int eType){
+ RbuObjIter *pIter = &p->objiter;
+ sqlite3_value *pVal;
+ sqlite3_stmt *pWriter;
+ int i;
+
+ assert( p->rc==SQLITE_OK );
+ assert( eType!=RBU_DELETE || pIter->zIdx==0 );
+ assert( eType==RBU_DELETE || eType==RBU_IDX_DELETE
+ || eType==RBU_INSERT || eType==RBU_IDX_INSERT
+ );
+
+ /* If this is a delete, decrement nPhaseOneStep by nIndex. If the DELETE
+ ** statement below does actually delete a row, nPhaseOneStep will be
+ ** incremented by the same amount when SQL function rbu_tmp_insert()
+ ** is invoked by the trigger. */
+ if( eType==RBU_DELETE ){
+ p->nPhaseOneStep -= p->objiter.nIndex;
+ }
+
+ if( eType==RBU_IDX_DELETE || eType==RBU_DELETE ){
+ pWriter = pIter->pDelete;
+ }else{
+ pWriter = pIter->pInsert;
+ }
+
+ for(i=0; i<pIter->nCol; i++){
+ /* If this is an INSERT into a table b-tree and the table has an
+ ** explicit INTEGER PRIMARY KEY, check that this is not an attempt
+ ** to write a NULL into the IPK column. That is not permitted. */
+ if( eType==RBU_INSERT
+ && pIter->zIdx==0 && pIter->eType==RBU_PK_IPK && pIter->abTblPk[i]
+ && sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL
+ ){
+ p->rc = SQLITE_MISMATCH;
+ p->zErrmsg = sqlite3_mprintf("datatype mismatch");
+ return;
+ }
+
+ if( eType==RBU_DELETE && pIter->abTblPk[i]==0 ){
+ continue;
+ }
+
+ pVal = sqlite3_column_value(pIter->pSelect, i);
+ p->rc = sqlite3_bind_value(pWriter, i+1, pVal);
+ if( p->rc ) return;
+ }
+ if( pIter->zIdx==0 ){
+ if( pIter->eType==RBU_PK_VTAB
+ || pIter->eType==RBU_PK_NONE
+ || (pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p))
+ ){
+ /* For a virtual table, or a table with no primary key, the
+ ** SELECT statement is:
+ **
+ ** SELECT <cols>, rbu_control, rbu_rowid FROM ....
+ **
+ ** Hence column_value(pIter->nCol+1).
+ */
+ assertColumnName(pIter->pSelect, pIter->nCol+1,
+ rbuIsVacuum(p) ? "rowid" : "rbu_rowid"
+ );
+ pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
+ p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal);
+ }
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_step(pWriter);
+ p->rc = resetAndCollectError(pWriter, &p->zErrmsg);
+ }
+}
+
+/*
+** This function does the work for an sqlite3rbu_step() call.
+**
+** The object-iterator (p->objiter) currently points to a valid object,
+** and the input cursor (p->objiter.pSelect) currently points to a valid
+** input row. Perform whatever processing is required and return.
+**
+** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
+** and message is left in the RBU handle and a copy of the error code
+** returned.
+*/
+static int rbuStep(sqlite3rbu *p){
+ RbuObjIter *pIter = &p->objiter;
+ const char *zMask = 0;
+ int eType = rbuStepType(p, &zMask);
+
+ if( eType ){
+ assert( eType==RBU_INSERT || eType==RBU_DELETE
+ || eType==RBU_REPLACE || eType==RBU_IDX_DELETE
+ || eType==RBU_IDX_INSERT || eType==RBU_UPDATE
+ );
+ assert( eType!=RBU_UPDATE || pIter->zIdx==0 );
+
+ if( pIter->zIdx==0 && (eType==RBU_IDX_DELETE || eType==RBU_IDX_INSERT) ){
+ rbuBadControlError(p);
+ }
+ else if( eType==RBU_REPLACE ){
+ if( pIter->zIdx==0 ){
+ p->nPhaseOneStep += p->objiter.nIndex;
+ rbuStepOneOp(p, RBU_DELETE);
+ }
+ if( p->rc==SQLITE_OK ) rbuStepOneOp(p, RBU_INSERT);
+ }
+ else if( eType!=RBU_UPDATE ){
+ rbuStepOneOp(p, eType);
+ }
+ else{
+ sqlite3_value *pVal;
+ sqlite3_stmt *pUpdate = 0;
+ assert( eType==RBU_UPDATE );
+ p->nPhaseOneStep -= p->objiter.nIndex;
+ rbuGetUpdateStmt(p, pIter, zMask, &pUpdate);
+ if( pUpdate ){
+ int i;
+ for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){
+ char c = zMask[pIter->aiSrcOrder[i]];
+ pVal = sqlite3_column_value(pIter->pSelect, i);
+ if( pIter->abTblPk[i] || c!='.' ){
+ p->rc = sqlite3_bind_value(pUpdate, i+1, pVal);
+ }
+ }
+ if( p->rc==SQLITE_OK
+ && (pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
+ ){
+ /* Bind the rbu_rowid value to column _rowid_ */
+ assertColumnName(pIter->pSelect, pIter->nCol+1, "rbu_rowid");
+ pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
+ p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal);
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_step(pUpdate);
+ p->rc = resetAndCollectError(pUpdate, &p->zErrmsg);
+ }
+ }
+ }
+ }
+ return p->rc;
+}
+
+/*
+** Increment the schema cookie of the main database opened by p->dbMain.
+**
+** Or, if this is an RBU vacuum, set the schema cookie of the main db
+** opened by p->dbMain to one more than the schema cookie of the main
+** db opened by p->dbRbu.
+*/
+static void rbuIncrSchemaCookie(sqlite3rbu *p){
+ if( p->rc==SQLITE_OK ){
+ sqlite3 *dbread = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
+ int iCookie = 1000000;
+ sqlite3_stmt *pStmt;
+
+ p->rc = prepareAndCollectError(dbread, &pStmt, &p->zErrmsg,
+ "PRAGMA schema_version"
+ );
+ if( p->rc==SQLITE_OK ){
+ /* Coverage: it may be that this sqlite3_step() cannot fail. There
+ ** is already a transaction open, so the prepared statement cannot
+ ** throw an SQLITE_SCHEMA exception. The only database page the
+ ** statement reads is page 1, which is guaranteed to be in the cache.
+ ** And no memory allocations are required. */
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ iCookie = sqlite3_column_int(pStmt, 0);
+ }
+ rbuFinalize(p, pStmt);
+ }
+ if( p->rc==SQLITE_OK ){
+ rbuMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1);
+ }
+ }
+}
+
+/*
+** Update the contents of the rbu_state table within the rbu database. The
+** value stored in the RBU_STATE_STAGE column is eStage. All other values
+** are determined by inspecting the rbu handle passed as the first argument.
+*/
+static void rbuSaveState(sqlite3rbu *p, int eStage){
+ if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){
+ sqlite3_stmt *pInsert = 0;
+ rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
+ int rc;
+
+ assert( p->zErrmsg==0 );
+ rc = prepareFreeAndCollectError(p->dbRbu, &pInsert, &p->zErrmsg,
+ sqlite3_mprintf(
+ "INSERT OR REPLACE INTO %s.rbu_state(k, v) VALUES "
+ "(%d, %d), "
+ "(%d, %Q), "
+ "(%d, %Q), "
+ "(%d, %d), "
+ "(%d, %d), "
+ "(%d, %lld), "
+ "(%d, %lld), "
+ "(%d, %lld), "
+ "(%d, %lld), "
+ "(%d, %Q) ",
+ p->zStateDb,
+ RBU_STATE_STAGE, eStage,
+ RBU_STATE_TBL, p->objiter.zTbl,
+ RBU_STATE_IDX, p->objiter.zIdx,
+ RBU_STATE_ROW, p->nStep,
+ RBU_STATE_PROGRESS, p->nProgress,
+ RBU_STATE_CKPT, p->iWalCksum,
+ RBU_STATE_COOKIE, (i64)pFd->iCookie,
+ RBU_STATE_OALSZ, p->iOalSz,
+ RBU_STATE_PHASEONESTEP, p->nPhaseOneStep,
+ RBU_STATE_DATATBL, p->objiter.zDataTbl
+ )
+ );
+ assert( pInsert==0 || rc==SQLITE_OK );
+
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pInsert);
+ rc = sqlite3_finalize(pInsert);
+ }
+ if( rc!=SQLITE_OK ) p->rc = rc;
+ }
+}
+
+
+/*
+** The second argument passed to this function is the name of a PRAGMA
+** setting - "page_size", "auto_vacuum", "user_version" or "application_id".
+** This function executes the following on sqlite3rbu.dbRbu:
+**
+** "PRAGMA main.$zPragma"
+**
+** where $zPragma is the string passed as the second argument, then
+** on sqlite3rbu.dbMain:
+**
+** "PRAGMA main.$zPragma = $val"
+**
+** where $val is the value returned by the first PRAGMA invocation.
+**
+** In short, it copies the value of the specified PRAGMA setting from
+** dbRbu to dbMain.
+*/
+static void rbuCopyPragma(sqlite3rbu *p, const char *zPragma){
+ if( p->rc==SQLITE_OK ){
+ sqlite3_stmt *pPragma = 0;
+ p->rc = prepareFreeAndCollectError(p->dbRbu, &pPragma, &p->zErrmsg,
+ sqlite3_mprintf("PRAGMA main.%s", zPragma)
+ );
+ if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPragma) ){
+ p->rc = rbuMPrintfExec(p, p->dbMain, "PRAGMA main.%s = %d",
+ zPragma, sqlite3_column_int(pPragma, 0)
+ );
+ }
+ rbuFinalize(p, pPragma);
+ }
+}
+
+/*
+** The RBU handle passed as the only argument has just been opened and
+** the state database is empty. If this RBU handle was opened for an
+** RBU vacuum operation, create the schema in the target db.
+*/
+static void rbuCreateTargetSchema(sqlite3rbu *p){
+ sqlite3_stmt *pSql = 0;
+ sqlite3_stmt *pInsert = 0;
+
+ assert( rbuIsVacuum(p) );
+ p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=1", 0,0, &p->zErrmsg);
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
+ "SELECT sql FROM sqlite_schema WHERE sql!='' AND rootpage!=0"
+ " AND name!='sqlite_sequence' "
+ " ORDER BY type DESC"
+ );
+ }
+
+ while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
+ const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
+ p->rc = sqlite3_exec(p->dbMain, zSql, 0, 0, &p->zErrmsg);
+ }
+ rbuFinalize(p, pSql);
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
+ "SELECT * FROM sqlite_schema WHERE rootpage=0 OR rootpage IS NULL"
+ );
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbMain, &pInsert, &p->zErrmsg,
+ "INSERT INTO sqlite_schema VALUES(?,?,?,?,?)"
+ );
+ }
+
+ while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
+ int i;
+ for(i=0; i<5; i++){
+ sqlite3_bind_value(pInsert, i+1, sqlite3_column_value(pSql, i));
+ }
+ sqlite3_step(pInsert);
+ p->rc = sqlite3_reset(pInsert);
+ }
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=0",0,0,&p->zErrmsg);
+ }
+
+ rbuFinalize(p, pSql);
+ rbuFinalize(p, pInsert);
+}
+
+/*
+** Step the RBU object.
+*/
+SQLITE_API int sqlite3rbu_step(sqlite3rbu *p){
+ if( p ){
+ switch( p->eStage ){
+ case RBU_STAGE_OAL: {
+ RbuObjIter *pIter = &p->objiter;
+
+ /* If this is an RBU vacuum operation and the state table was empty
+ ** when this handle was opened, create the target database schema. */
+ if( rbuIsVacuum(p) && p->nProgress==0 && p->rc==SQLITE_OK ){
+ rbuCreateTargetSchema(p);
+ rbuCopyPragma(p, "user_version");
+ rbuCopyPragma(p, "application_id");
+ }
+
+ while( p->rc==SQLITE_OK && pIter->zTbl ){
+
+ if( pIter->bCleanup ){
+ /* Clean up the rbu_tmp_xxx table for the previous table. It
+ ** cannot be dropped as there are currently active SQL statements.
+ ** But the contents can be deleted. */
+ if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
+ rbuMPrintfExec(p, p->dbRbu,
+ "DELETE FROM %s.'rbu_tmp_%q'", p->zStateDb, pIter->zDataTbl
+ );
+ }
+ }else{
+ rbuObjIterPrepareAll(p, pIter, 0);
+
+ /* Advance to the next row to process. */
+ if( p->rc==SQLITE_OK ){
+ int rc = sqlite3_step(pIter->pSelect);
+ if( rc==SQLITE_ROW ){
+ p->nProgress++;
+ p->nStep++;
+ return rbuStep(p);
+ }
+ p->rc = sqlite3_reset(pIter->pSelect);
+ p->nStep = 0;
+ }
+ }
+
+ rbuObjIterNext(p, pIter);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ assert( pIter->zTbl==0 );
+ rbuSaveState(p, RBU_STAGE_MOVE);
+ rbuIncrSchemaCookie(p);
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+ p->eStage = RBU_STAGE_MOVE;
+ }
+ break;
+ }
+
+ case RBU_STAGE_MOVE: {
+ if( p->rc==SQLITE_OK ){
+ rbuMoveOalFile(p);
+ p->nProgress++;
+ }
+ break;
+ }
+
+ case RBU_STAGE_CKPT: {
+ if( p->rc==SQLITE_OK ){
+ if( p->nStep>=p->nFrame ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+
+ /* Sync the db file */
+ p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
+
+ /* Update nBackfill */
+ if( p->rc==SQLITE_OK ){
+ void volatile *ptr;
+ p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr);
+ if( p->rc==SQLITE_OK ){
+ ((u32 volatile*)ptr)[24] = p->iMaxFrame;
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ p->eStage = RBU_STAGE_DONE;
+ p->rc = SQLITE_DONE;
+ }
+ }else{
+ /* At one point the following block copied a single frame from the
+ ** wal file to the database file. So that one call to sqlite3rbu_step()
+ ** checkpointed a single frame.
+ **
+ ** However, if the sector-size is larger than the page-size, and the
+ ** application calls sqlite3rbu_savestate() or close() immediately
+ ** after this step, then rbu_step() again, then a power failure occurs,
+ ** then the database page written here may be damaged. Work around
+ ** this by checkpointing frames until the next page in the aFrame[]
+ ** lies on a different disk sector to the current one. */
+ u32 iSector;
+ do{
+ RbuFrame *pFrame = &p->aFrame[p->nStep];
+ iSector = (pFrame->iDbPage-1) / p->nPagePerSector;
+ rbuCheckpointFrame(p, pFrame);
+ p->nStep++;
+ }while( p->nStep<p->nFrame
+ && iSector==((p->aFrame[p->nStep].iDbPage-1) / p->nPagePerSector)
+ && p->rc==SQLITE_OK
+ );
+ }
+ p->nProgress++;
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ return p->rc;
+ }else{
+ return SQLITE_NOMEM;
+ }
+}
+
+/*
+** Compare strings z1 and z2, returning 0 if they are identical, or non-zero
+** otherwise. Either or both argument may be NULL. Two NULL values are
+** considered equal, and NULL is considered distinct from all other values.
+*/
+static int rbuStrCompare(const char *z1, const char *z2){
+ if( z1==0 && z2==0 ) return 0;
+ if( z1==0 || z2==0 ) return 1;
+ return (sqlite3_stricmp(z1, z2)!=0);
+}
+
+/*
+** This function is called as part of sqlite3rbu_open() when initializing
+** an rbu handle in OAL stage. If the rbu update has not started (i.e.
+** the rbu_state table was empty) it is a no-op. Otherwise, it arranges
+** things so that the next call to sqlite3rbu_step() continues on from
+** where the previous rbu handle left off.
+**
+** If an error occurs, an error code and error message are left in the
+** rbu handle passed as the first argument.
+*/
+static void rbuSetupOal(sqlite3rbu *p, RbuState *pState){
+ assert( p->rc==SQLITE_OK );
+ if( pState->zTbl ){
+ RbuObjIter *pIter = &p->objiter;
+ int rc = SQLITE_OK;
+
+ while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup
+ || rbuStrCompare(pIter->zIdx, pState->zIdx)
+ || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl))
+ || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl))
+ )){
+ rc = rbuObjIterNext(p, pIter);
+ }
+
+ if( rc==SQLITE_OK && !pIter->zTbl ){
+ rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");
+ }
+
+ if( rc==SQLITE_OK ){
+ p->nStep = pState->nRow;
+ rc = rbuObjIterPrepareAll(p, &p->objiter, p->nStep);
+ }
+
+ p->rc = rc;
+ }
+}
+
+/*
+** If there is a "*-oal" file in the file-system corresponding to the
+** target database in the file-system, delete it. If an error occurs,
+** leave an error code and error message in the rbu handle.
+*/
+static void rbuDeleteOalFile(sqlite3rbu *p){
+ char *zOal = rbuMPrintf(p, "%s-oal", p->zTarget);
+ if( zOal ){
+ sqlite3_vfs *pVfs = 0;
+ sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_VFS_POINTER, &pVfs);
+ assert( pVfs && p->rc==SQLITE_OK && p->zErrmsg==0 );
+ pVfs->xDelete(pVfs, zOal, 0);
+ sqlite3_free(zOal);
+ }
+}
+
+/*
+** Allocate a private rbu VFS for the rbu handle passed as the only
+** argument. This VFS will be used unless the call to sqlite3rbu_open()
+** specified a URI with a vfs=? option in place of a target database
+** file name.
+*/
+static void rbuCreateVfs(sqlite3rbu *p){
+ int rnd;
+ char zRnd[64];
+
+ assert( p->rc==SQLITE_OK );
+ sqlite3_randomness(sizeof(int), (void*)&rnd);
+ sqlite3_snprintf(sizeof(zRnd), zRnd, "rbu_vfs_%d", rnd);
+ p->rc = sqlite3rbu_create_vfs(zRnd, 0);
+ if( p->rc==SQLITE_OK ){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd);
+ assert( pVfs );
+ p->zVfsName = pVfs->zName;
+ ((rbu_vfs*)pVfs)->pRbu = p;
+ }
+}
+
+/*
+** Destroy the private VFS created for the rbu handle passed as the only
+** argument by an earlier call to rbuCreateVfs().
+*/
+static void rbuDeleteVfs(sqlite3rbu *p){
+ if( p->zVfsName ){
+ sqlite3rbu_destroy_vfs(p->zVfsName);
+ p->zVfsName = 0;
+ }
+}
+
+/*
+** This user-defined SQL function is invoked with a single argument - the
+** name of a table expected to appear in the target database. It returns
+** the number of auxilliary indexes on the table.
+*/
+static void rbuIndexCntFunc(
+ sqlite3_context *pCtx,
+ int nVal,
+ sqlite3_value **apVal
+){
+ sqlite3rbu *p = (sqlite3rbu*)sqlite3_user_data(pCtx);
+ sqlite3_stmt *pStmt = 0;
+ char *zErrmsg = 0;
+ int rc;
+ sqlite3 *db = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
+
+ assert( nVal==1 );
+
+ rc = prepareFreeAndCollectError(db, &pStmt, &zErrmsg,
+ sqlite3_mprintf("SELECT count(*) FROM sqlite_schema "
+ "WHERE type='index' AND tbl_name = %Q", sqlite3_value_text(apVal[0]))
+ );
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error(pCtx, zErrmsg, -1);
+ }else{
+ int nIndex = 0;
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ nIndex = sqlite3_column_int(pStmt, 0);
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_int(pCtx, nIndex);
+ }else{
+ sqlite3_result_error(pCtx, sqlite3_errmsg(db), -1);
+ }
+ }
+
+ sqlite3_free(zErrmsg);
+}
+
+/*
+** If the RBU database contains the rbu_count table, use it to initialize
+** the sqlite3rbu.nPhaseOneStep variable. The schema of the rbu_count table
+** is assumed to contain the same columns as:
+**
+** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
+**
+** There should be one row in the table for each data_xxx table in the
+** database. The 'tbl' column should contain the name of a data_xxx table,
+** and the cnt column the number of rows it contains.
+**
+** sqlite3rbu.nPhaseOneStep is initialized to the sum of (1 + nIndex) * cnt
+** for all rows in the rbu_count table, where nIndex is the number of
+** indexes on the corresponding target database table.
+*/
+static void rbuInitPhaseOneSteps(sqlite3rbu *p){
+ if( p->rc==SQLITE_OK ){
+ sqlite3_stmt *pStmt = 0;
+ int bExists = 0; /* True if rbu_count exists */
+
+ p->nPhaseOneStep = -1;
+
+ p->rc = sqlite3_create_function(p->dbRbu,
+ "rbu_index_cnt", 1, SQLITE_UTF8, (void*)p, rbuIndexCntFunc, 0, 0
+ );
+
+ /* Check for the rbu_count table. If it does not exist, or if an error
+ ** occurs, nPhaseOneStep will be left set to -1. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ "SELECT 1 FROM sqlite_schema WHERE tbl_name = 'rbu_count'"
+ );
+ }
+ if( p->rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ bExists = 1;
+ }
+ p->rc = sqlite3_finalize(pStmt);
+ }
+
+ if( p->rc==SQLITE_OK && bExists ){
+ p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
+ "SELECT sum(cnt * (1 + rbu_index_cnt(rbu_target_name(tbl))))"
+ "FROM rbu_count"
+ );
+ if( p->rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ p->nPhaseOneStep = sqlite3_column_int64(pStmt, 0);
+ }
+ p->rc = sqlite3_finalize(pStmt);
+ }
+ }
+ }
+}
+
+
+static sqlite3rbu *openRbuHandle(
+ const char *zTarget,
+ const char *zRbu,
+ const char *zState
+){
+ sqlite3rbu *p;
+ size_t nTarget = zTarget ? strlen(zTarget) : 0;
+ size_t nRbu = strlen(zRbu);
+ size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1;
+
+ p = (sqlite3rbu*)sqlite3_malloc64(nByte);
+ if( p ){
+ RbuState *pState = 0;
+
+ /* Create the custom VFS. */
+ memset(p, 0, sizeof(sqlite3rbu));
+ sqlite3rbu_rename_handler(p, 0, 0);
+ rbuCreateVfs(p);
+
+ /* Open the target, RBU and state databases */
+ if( p->rc==SQLITE_OK ){
+ char *pCsr = (char*)&p[1];
+ int bRetry = 0;
+ if( zTarget ){
+ p->zTarget = pCsr;
+ memcpy(p->zTarget, zTarget, nTarget+1);
+ pCsr += nTarget+1;
+ }
+ p->zRbu = pCsr;
+ memcpy(p->zRbu, zRbu, nRbu+1);
+ pCsr += nRbu+1;
+ if( zState ){
+ p->zState = rbuMPrintf(p, "%s", zState);
+ }
+
+ /* If the first attempt to open the database file fails and the bRetry
+ ** flag it set, this means that the db was not opened because it seemed
+ ** to be a wal-mode db. But, this may have happened due to an earlier
+ ** RBU vacuum operation leaving an old wal file in the directory.
+ ** If this is the case, it will have been checkpointed and deleted
+ ** when the handle was closed and a second attempt to open the
+ ** database may succeed. */
+ rbuOpenDatabase(p, 0, &bRetry);
+ if( bRetry ){
+ rbuOpenDatabase(p, 0, 0);
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pState = rbuLoadState(p);
+ assert( pState || p->rc!=SQLITE_OK );
+ if( p->rc==SQLITE_OK ){
+
+ if( pState->eStage==0 ){
+ rbuDeleteOalFile(p);
+ rbuInitPhaseOneSteps(p);
+ p->eStage = RBU_STAGE_OAL;
+ }else{
+ p->eStage = pState->eStage;
+ p->nPhaseOneStep = pState->nPhaseOneStep;
+ }
+ p->nProgress = pState->nProgress;
+ p->iOalSz = pState->iOalSz;
+ }
+ }
+ assert( p->rc!=SQLITE_OK || p->eStage!=0 );
+
+ if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){
+ if( p->eStage==RBU_STAGE_OAL ){
+ p->rc = SQLITE_ERROR;
+ p->zErrmsg = sqlite3_mprintf("cannot update wal mode database");
+ }else if( p->eStage==RBU_STAGE_MOVE ){
+ p->eStage = RBU_STAGE_CKPT;
+ p->nStep = 0;
+ }
+ }
+
+ if( p->rc==SQLITE_OK
+ && (p->eStage==RBU_STAGE_OAL || p->eStage==RBU_STAGE_MOVE)
+ && pState->eStage!=0
+ ){
+ rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
+ if( pFd->iCookie!=pState->iCookie ){
+ /* At this point (pTargetFd->iCookie) contains the value of the
+ ** change-counter cookie (the thing that gets incremented when a
+ ** transaction is committed in rollback mode) currently stored on
+ ** page 1 of the database file. */
+ p->rc = SQLITE_BUSY;
+ p->zErrmsg = sqlite3_mprintf("database modified during rbu %s",
+ (rbuIsVacuum(p) ? "vacuum" : "update")
+ );
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ if( p->eStage==RBU_STAGE_OAL ){
+ sqlite3 *db = p->dbMain;
+ p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, &p->zErrmsg);
+
+ /* Point the object iterator at the first object */
+ if( p->rc==SQLITE_OK ){
+ p->rc = rbuObjIterFirst(p, &p->objiter);
+ }
+
+ /* If the RBU database contains no data_xxx tables, declare the RBU
+ ** update finished. */
+ if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){
+ p->rc = SQLITE_DONE;
+ p->eStage = RBU_STAGE_DONE;
+ }else{
+ if( p->rc==SQLITE_OK && pState->eStage==0 && rbuIsVacuum(p) ){
+ rbuCopyPragma(p, "page_size");
+ rbuCopyPragma(p, "auto_vacuum");
+ }
+
+ /* Open transactions both databases. The *-oal file is opened or
+ ** created at this point. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3_exec(db, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
+ }
+
+ /* Check if the main database is a zipvfs db. If it is, set the upper
+ ** level pager to use "journal_mode=off". This prevents it from
+ ** generating a large journal using a temp file. */
+ if( p->rc==SQLITE_OK ){
+ int frc = sqlite3_file_control(db, "main", SQLITE_FCNTL_ZIPVFS, 0);
+ if( frc==SQLITE_OK ){
+ p->rc = sqlite3_exec(
+ db, "PRAGMA journal_mode=off",0,0,&p->zErrmsg);
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ rbuSetupOal(p, pState);
+ }
+ }
+ }else if( p->eStage==RBU_STAGE_MOVE ){
+ /* no-op */
+ }else if( p->eStage==RBU_STAGE_CKPT ){
+ if( !rbuIsVacuum(p) && rbuExclusiveCheckpoint(p->dbMain) ){
+ /* If the rbu_exclusive_checkpoint=1 URI parameter was specified
+ ** and an incremental checkpoint is being resumed, attempt an
+ ** exclusive lock on the db file. If this fails, so be it. */
+ p->eStage = RBU_STAGE_DONE;
+ rbuLockDatabase(p->dbMain);
+ p->eStage = RBU_STAGE_CKPT;
+ }
+ rbuSetupCheckpoint(p, pState);
+ }else if( p->eStage==RBU_STAGE_DONE ){
+ p->rc = SQLITE_DONE;
+ }else{
+ p->rc = SQLITE_CORRUPT;
+ }
+ }
+
+ rbuFreeState(pState);
+ }
+
+ return p;
+}
+
+/*
+** Allocate and return an RBU handle with all fields zeroed except for the
+** error code, which is set to SQLITE_MISUSE.
+*/
+static sqlite3rbu *rbuMisuseError(void){
+ sqlite3rbu *pRet;
+ pRet = sqlite3_malloc64(sizeof(sqlite3rbu));
+ if( pRet ){
+ memset(pRet, 0, sizeof(sqlite3rbu));
+ pRet->rc = SQLITE_MISUSE;
+ }
+ return pRet;
+}
+
+/*
+** Open and return a new RBU handle.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_open(
+ const char *zTarget,
+ const char *zRbu,
+ const char *zState
+){
+ if( zTarget==0 || zRbu==0 ){ return rbuMisuseError(); }
+ return openRbuHandle(zTarget, zRbu, zState);
+}
+
+/*
+** Open a handle to begin or resume an RBU VACUUM operation.
+*/
+SQLITE_API sqlite3rbu *sqlite3rbu_vacuum(
+ const char *zTarget,
+ const char *zState
+){
+ if( zTarget==0 ){ return rbuMisuseError(); }
+ if( zState ){
+ int n = strlen(zState);
+ if( n>=7 && 0==memcmp("-vactmp", &zState[n-7], 7) ){
+ return rbuMisuseError();
+ }
+ }
+ /* TODO: Check that both arguments are non-NULL */
+ return openRbuHandle(0, zTarget, zState);
+}
+
+/*
+** Return the database handle used by pRbu.
+*/
+SQLITE_API sqlite3 *sqlite3rbu_db(sqlite3rbu *pRbu, int bRbu){
+ sqlite3 *db = 0;
+ if( pRbu ){
+ db = (bRbu ? pRbu->dbRbu : pRbu->dbMain);
+ }
+ return db;
+}
+
+
+/*
+** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
+** then edit any error message string so as to remove all occurrences of
+** the pattern "rbu_imp_[0-9]*".
+*/
+static void rbuEditErrmsg(sqlite3rbu *p){
+ if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
+ unsigned int i;
+ size_t nErrmsg = strlen(p->zErrmsg);
+ for(i=0; i<(nErrmsg-8); i++){
+ if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
+ int nDel = 8;
+ while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
+ memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
+ nErrmsg -= nDel;
+ }
+ }
+ }
+}
+
+/*
+** Close the RBU handle.
+*/
+SQLITE_API int sqlite3rbu_close(sqlite3rbu *p, char **pzErrmsg){
+ int rc;
+ if( p ){
+
+ /* Commit the transaction to the *-oal file. */
+ if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
+ p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+
+ /* Sync the db file if currently doing an incremental checkpoint */
+ if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
+ }
+
+ rbuSaveState(p, p->eStage);
+
+ if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
+ p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
+ }
+
+ /* Close any open statement handles. */
+ rbuObjIterFinalize(&p->objiter);
+
+ /* If this is an RBU vacuum handle and the vacuum has either finished
+ ** successfully or encountered an error, delete the contents of the
+ ** state table. This causes the next call to sqlite3rbu_vacuum()
+ ** specifying the current target and state databases to start a new
+ ** vacuum from scratch. */
+ if( rbuIsVacuum(p) && p->rc!=SQLITE_OK && p->dbRbu ){
+ int rc2 = sqlite3_exec(p->dbRbu, "DELETE FROM stat.rbu_state", 0, 0, 0);
+ if( p->rc==SQLITE_DONE && rc2!=SQLITE_OK ) p->rc = rc2;
+ }
+
+ /* Close the open database handle and VFS object. */
+ sqlite3_close(p->dbRbu);
+ sqlite3_close(p->dbMain);
+ assert( p->szTemp==0 );
+ rbuDeleteVfs(p);
+ sqlite3_free(p->aBuf);
+ sqlite3_free(p->aFrame);
+
+ rbuEditErrmsg(p);
+ rc = p->rc;
+ if( pzErrmsg ){
+ *pzErrmsg = p->zErrmsg;
+ }else{
+ sqlite3_free(p->zErrmsg);
+ }
+ sqlite3_free(p->zState);
+ sqlite3_free(p);
+ }else{
+ rc = SQLITE_NOMEM;
+ *pzErrmsg = 0;
+ }
+ return rc;
+}
+
+/*
+** Return the total number of key-value operations (inserts, deletes or
+** updates) that have been performed on the target database since the
+** current RBU update was started.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu){
+ return pRbu->nProgress;
+}
+
+/*
+** Return permyriadage progress indications for the two main stages of
+** an RBU update.
+*/
+SQLITE_API void sqlite3rbu_bp_progress(sqlite3rbu *p, int *pnOne, int *pnTwo){
+ const int MAX_PROGRESS = 10000;
+ switch( p->eStage ){
+ case RBU_STAGE_OAL:
+ if( p->nPhaseOneStep>0 ){
+ *pnOne = (int)(MAX_PROGRESS * (i64)p->nProgress/(i64)p->nPhaseOneStep);
+ }else{
+ *pnOne = -1;
+ }
+ *pnTwo = 0;
+ break;
+
+ case RBU_STAGE_MOVE:
+ *pnOne = MAX_PROGRESS;
+ *pnTwo = 0;
+ break;
+
+ case RBU_STAGE_CKPT:
+ *pnOne = MAX_PROGRESS;
+ *pnTwo = (int)(MAX_PROGRESS * (i64)p->nStep / (i64)p->nFrame);
+ break;
+
+ case RBU_STAGE_DONE:
+ *pnOne = MAX_PROGRESS;
+ *pnTwo = MAX_PROGRESS;
+ break;
+
+ default:
+ assert( 0 );
+ }
+}
+
+/*
+** Return the current state of the RBU vacuum or update operation.
+*/
+SQLITE_API int sqlite3rbu_state(sqlite3rbu *p){
+ int aRes[] = {
+ 0, SQLITE_RBU_STATE_OAL, SQLITE_RBU_STATE_MOVE,
+ 0, SQLITE_RBU_STATE_CHECKPOINT, SQLITE_RBU_STATE_DONE
+ };
+
+ assert( RBU_STAGE_OAL==1 );
+ assert( RBU_STAGE_MOVE==2 );
+ assert( RBU_STAGE_CKPT==4 );
+ assert( RBU_STAGE_DONE==5 );
+ assert( aRes[RBU_STAGE_OAL]==SQLITE_RBU_STATE_OAL );
+ assert( aRes[RBU_STAGE_MOVE]==SQLITE_RBU_STATE_MOVE );
+ assert( aRes[RBU_STAGE_CKPT]==SQLITE_RBU_STATE_CHECKPOINT );
+ assert( aRes[RBU_STAGE_DONE]==SQLITE_RBU_STATE_DONE );
+
+ if( p->rc!=SQLITE_OK && p->rc!=SQLITE_DONE ){
+ return SQLITE_RBU_STATE_ERROR;
+ }else{
+ assert( p->rc!=SQLITE_DONE || p->eStage==RBU_STAGE_DONE );
+ assert( p->eStage==RBU_STAGE_OAL
+ || p->eStage==RBU_STAGE_MOVE
+ || p->eStage==RBU_STAGE_CKPT
+ || p->eStage==RBU_STAGE_DONE
+ );
+ return aRes[p->eStage];
+ }
+}
+
+SQLITE_API int sqlite3rbu_savestate(sqlite3rbu *p){
+ int rc = p->rc;
+ if( rc==SQLITE_DONE ) return SQLITE_OK;
+
+ assert( p->eStage>=RBU_STAGE_OAL && p->eStage<=RBU_STAGE_DONE );
+ if( p->eStage==RBU_STAGE_OAL ){
+ assert( rc!=SQLITE_DONE );
+ if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, 0);
+ }
+
+ /* Sync the db file */
+ if( rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
+ sqlite3_file *pDb = p->pTargetFd->pReal;
+ rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
+ }
+
+ p->rc = rc;
+ rbuSaveState(p, p->eStage);
+ rc = p->rc;
+
+ if( p->eStage==RBU_STAGE_OAL ){
+ assert( rc!=SQLITE_DONE );
+ if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ const char *zBegin = rbuIsVacuum(p) ? "BEGIN" : "BEGIN IMMEDIATE";
+ rc = sqlite3_exec(p->dbRbu, zBegin, 0, 0, 0);
+ }
+ if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0,0);
+ }
+
+ p->rc = rc;
+ return rc;
+}
+
+/*
+** Default xRename callback for RBU.
+*/
+static int xDefaultRename(void *pArg, const char *zOld, const char *zNew){
+ int rc = SQLITE_OK;
+#if defined(_WIN32_WCE)
+ {
+ LPWSTR zWideOld;
+ LPWSTR zWideNew;
+
+ zWideOld = rbuWinUtf8ToUnicode(zOld);
+ if( zWideOld ){
+ zWideNew = rbuWinUtf8ToUnicode(zNew);
+ if( zWideNew ){
+ if( MoveFileW(zWideOld, zWideNew) ){
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_IOERR;
+ }
+ sqlite3_free(zWideNew);
+ }else{
+ rc = SQLITE_IOERR_NOMEM;
+ }
+ sqlite3_free(zWideOld);
+ }else{
+ rc = SQLITE_IOERR_NOMEM;
+ }
+ }
+#else
+ rc = rename(zOld, zNew) ? SQLITE_IOERR : SQLITE_OK;
+#endif
+ return rc;
+}
+
+SQLITE_API void sqlite3rbu_rename_handler(
+ sqlite3rbu *pRbu,
+ void *pArg,
+ int (*xRename)(void *pArg, const char *zOld, const char *zNew)
+){
+ if( xRename ){
+ pRbu->xRename = xRename;
+ pRbu->pRenameArg = pArg;
+ }else{
+ pRbu->xRename = xDefaultRename;
+ pRbu->pRenameArg = 0;
+ }
+}
+
+/**************************************************************************
+** Beginning of RBU VFS shim methods. The VFS shim modifies the behaviour
+** of a standard VFS in the following ways:
+**
+** 1. Whenever the first page of a main database file is read or
+** written, the value of the change-counter cookie is stored in
+** rbu_file.iCookie. Similarly, the value of the "write-version"
+** database header field is stored in rbu_file.iWriteVer. This ensures
+** that the values are always trustworthy within an open transaction.
+**
+** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (rbu_file.pWalFd)
+** member variable of the associated database file descriptor is set
+** to point to the new file. A mutex protected linked list of all main
+** db fds opened using a particular RBU VFS is maintained at
+** rbu_vfs.pMain to facilitate this.
+**
+** 3. Using a new file-control "SQLITE_FCNTL_RBU", a main db rbu_file
+** object can be marked as the target database of an RBU update. This
+** turns on the following extra special behaviour:
+**
+** 3a. If xAccess() is called to check if there exists a *-wal file
+** associated with an RBU target database currently in RBU_STAGE_OAL
+** stage (preparing the *-oal file), the following special handling
+** applies:
+**
+** * if the *-wal file does exist, return SQLITE_CANTOPEN. An RBU
+** target database may not be in wal mode already.
+**
+** * if the *-wal file does not exist, set the output parameter to
+** non-zero (to tell SQLite that it does exist) anyway.
+**
+** Then, when xOpen() is called to open the *-wal file associated with
+** the RBU target in RBU_STAGE_OAL stage, instead of opening the *-wal
+** file, the rbu vfs opens the corresponding *-oal file instead.
+**
+** 3b. The *-shm pages returned by xShmMap() for a target db file in
+** RBU_STAGE_OAL mode are actually stored in heap memory. This is to
+** avoid creating a *-shm file on disk. Additionally, xShmLock() calls
+** are no-ops on target database files in RBU_STAGE_OAL mode. This is
+** because assert() statements in some VFS implementations fail if
+** xShmLock() is called before xShmMap().
+**
+** 3c. If an EXCLUSIVE lock is attempted on a target database file in any
+** mode except RBU_STAGE_DONE (all work completed and checkpointed), it
+** fails with an SQLITE_BUSY error. This is to stop RBU connections
+** from automatically checkpointing a *-wal (or *-oal) file from within
+** sqlite3_close().
+**
+** 3d. In RBU_STAGE_CAPTURE mode, all xRead() calls on the wal file, and
+** all xWrite() calls on the target database file perform no IO.
+** Instead the frame and page numbers that would be read and written
+** are recorded. Additionally, successful attempts to obtain exclusive
+** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target
+** database file are recorded. xShmLock() calls to unlock the same
+** locks are no-ops (so that once obtained, these locks are never
+** relinquished). Finally, calls to xSync() on the target database
+** file fail with SQLITE_NOTICE errors.
+*/
+
+static void rbuUnlockShm(rbu_file *p){
+ assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
+ if( p->pRbu ){
+ int (*xShmLock)(sqlite3_file*,int,int,int) = p->pReal->pMethods->xShmLock;
+ int i;
+ for(i=0; i<SQLITE_SHM_NLOCK;i++){
+ if( (1<<i) & p->pRbu->mLock ){
+ xShmLock(p->pReal, i, 1, SQLITE_SHM_UNLOCK|SQLITE_SHM_EXCLUSIVE);
+ }
+ }
+ p->pRbu->mLock = 0;
+ }
+}
+
+/*
+*/
+static int rbuUpdateTempSize(rbu_file *pFd, sqlite3_int64 nNew){
+ sqlite3rbu *pRbu = pFd->pRbu;
+ i64 nDiff = nNew - pFd->sz;
+ pRbu->szTemp += nDiff;
+ pFd->sz = nNew;
+ assert( pRbu->szTemp>=0 );
+ if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
+ return SQLITE_OK;
+}
+
+/*
+** Add an item to the main-db lists, if it is not already present.
+**
+** There are two main-db lists. One for all file descriptors, and one
+** for all file descriptors with rbu_file.pDb!=0. If the argument has
+** rbu_file.pDb!=0, then it is assumed to already be present on the
+** main list and is only added to the pDb!=0 list.
+*/
+static void rbuMainlistAdd(rbu_file *p){
+ rbu_vfs *pRbuVfs = p->pRbuVfs;
+ rbu_file *pIter;
+ assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) );
+ sqlite3_mutex_enter(pRbuVfs->mutex);
+ if( p->pRbu==0 ){
+ for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext);
+ p->pMainNext = pRbuVfs->pMain;
+ pRbuVfs->pMain = p;
+ }else{
+ for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){}
+ if( pIter==0 ){
+ p->pMainRbuNext = pRbuVfs->pMainRbu;
+ pRbuVfs->pMainRbu = p;
+ }
+ }
+ sqlite3_mutex_leave(pRbuVfs->mutex);
+}
+
+/*
+** Remove an item from the main-db lists.
+*/
+static void rbuMainlistRemove(rbu_file *p){
+ rbu_file **pp;
+ sqlite3_mutex_enter(p->pRbuVfs->mutex);
+ for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){}
+ if( *pp ) *pp = p->pMainNext;
+ p->pMainNext = 0;
+ for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){}
+ if( *pp ) *pp = p->pMainRbuNext;
+ p->pMainRbuNext = 0;
+ sqlite3_mutex_leave(p->pRbuVfs->mutex);
+}
+
+/*
+** Given that zWal points to a buffer containing a wal file name passed to
+** either the xOpen() or xAccess() VFS method, search the main-db list for
+** a file-handle opened by the same database connection on the corresponding
+** database file.
+**
+** If parameter bRbu is true, only search for file-descriptors with
+** rbu_file.pDb!=0.
+*/
+static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){
+ rbu_file *pDb;
+ sqlite3_mutex_enter(pRbuVfs->mutex);
+ if( bRbu ){
+ for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){}
+ }else{
+ for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
+ }
+ sqlite3_mutex_leave(pRbuVfs->mutex);
+ return pDb;
+}
+
+/*
+** Close an rbu file.
+*/
+static int rbuVfsClose(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file*)pFile;
+ int rc;
+ int i;
+
+ /* Free the contents of the apShm[] array. And the array itself. */
+ for(i=0; i<p->nShm; i++){
+ sqlite3_free(p->apShm[i]);
+ }
+ sqlite3_free(p->apShm);
+ p->apShm = 0;
+ sqlite3_free(p->zDel);
+
+ if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
+ const sqlite3_io_methods *pMeth = p->pReal->pMethods;
+ rbuMainlistRemove(p);
+ rbuUnlockShm(p);
+ if( pMeth->iVersion>1 && pMeth->xShmUnmap ){
+ pMeth->xShmUnmap(p->pReal, 0);
+ }
+ }
+ else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
+ rbuUpdateTempSize(p, 0);
+ }
+ assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p );
+
+ /* Close the underlying file handle */
+ rc = p->pReal->pMethods->xClose(p->pReal);
+ return rc;
+}
+
+
+/*
+** Read and return an unsigned 32-bit big-endian integer from the buffer
+** passed as the only argument.
+*/
+static u32 rbuGetU32(u8 *aBuf){
+ return ((u32)aBuf[0] << 24)
+ + ((u32)aBuf[1] << 16)
+ + ((u32)aBuf[2] << 8)
+ + ((u32)aBuf[3]);
+}
+
+/*
+** Write an unsigned 32-bit value in big-endian format to the supplied
+** buffer.
+*/
+static void rbuPutU32(u8 *aBuf, u32 iVal){
+ aBuf[0] = (iVal >> 24) & 0xFF;
+ aBuf[1] = (iVal >> 16) & 0xFF;
+ aBuf[2] = (iVal >> 8) & 0xFF;
+ aBuf[3] = (iVal >> 0) & 0xFF;
+}
+
+static void rbuPutU16(u8 *aBuf, u16 iVal){
+ aBuf[0] = (iVal >> 8) & 0xFF;
+ aBuf[1] = (iVal >> 0) & 0xFF;
+}
+
+/*
+** Read data from an rbuVfs-file.
+*/
+static int rbuVfsRead(
+ sqlite3_file *pFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc;
+
+ if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
+ assert( p->openFlags & SQLITE_OPEN_WAL );
+ rc = rbuCaptureWalRead(p->pRbu, iOfst, iAmt);
+ }else{
+ if( pRbu && pRbu->eStage==RBU_STAGE_OAL
+ && (p->openFlags & SQLITE_OPEN_WAL)
+ && iOfst>=pRbu->iOalSz
+ ){
+ rc = SQLITE_OK;
+ memset(zBuf, 0, iAmt);
+ }else{
+ rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
+#if 1
+ /* If this is being called to read the first page of the target
+ ** database as part of an rbu vacuum operation, synthesize the
+ ** contents of the first page if it does not yet exist. Otherwise,
+ ** SQLite will not check for a *-wal file. */
+ if( pRbu && rbuIsVacuum(pRbu)
+ && rc==SQLITE_IOERR_SHORT_READ && iOfst==0
+ && (p->openFlags & SQLITE_OPEN_MAIN_DB)
+ && pRbu->rc==SQLITE_OK
+ ){
+ sqlite3_file *pFd = (sqlite3_file*)pRbu->pRbuFd;
+ rc = pFd->pMethods->xRead(pFd, zBuf, iAmt, iOfst);
+ if( rc==SQLITE_OK ){
+ u8 *aBuf = (u8*)zBuf;
+ u32 iRoot = rbuGetU32(&aBuf[52]) ? 1 : 0;
+ rbuPutU32(&aBuf[52], iRoot); /* largest root page number */
+ rbuPutU32(&aBuf[36], 0); /* number of free pages */
+ rbuPutU32(&aBuf[32], 0); /* first page on free list trunk */
+ rbuPutU32(&aBuf[28], 1); /* size of db file in pages */
+ rbuPutU32(&aBuf[24], pRbu->pRbuFd->iCookie+1); /* Change counter */
+
+ if( iAmt>100 ){
+ memset(&aBuf[100], 0, iAmt-100);
+ rbuPutU16(&aBuf[105], iAmt & 0xFFFF);
+ aBuf[100] = 0x0D;
+ }
+ }
+ }
+#endif
+ }
+ if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
+ /* These look like magic numbers. But they are stable, as they are part
+ ** of the definition of the SQLite file format, which may not change. */
+ u8 *pBuf = (u8*)zBuf;
+ p->iCookie = rbuGetU32(&pBuf[24]);
+ p->iWriteVer = pBuf[19];
+ }
+ }
+ return rc;
+}
+
+/*
+** Write data to an rbuVfs-file.
+*/
+static int rbuVfsWrite(
+ sqlite3_file *pFile,
+ const void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc;
+
+ if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
+ assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
+ rc = rbuCaptureDbWrite(p->pRbu, iOfst);
+ }else{
+ if( pRbu ){
+ if( pRbu->eStage==RBU_STAGE_OAL
+ && (p->openFlags & SQLITE_OPEN_WAL)
+ && iOfst>=pRbu->iOalSz
+ ){
+ pRbu->iOalSz = iAmt + iOfst;
+ }else if( p->openFlags & SQLITE_OPEN_DELETEONCLOSE ){
+ i64 szNew = iAmt+iOfst;
+ if( szNew>p->sz ){
+ rc = rbuUpdateTempSize(p, szNew);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }
+ }
+ rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
+ if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
+ /* These look like magic numbers. But they are stable, as they are part
+ ** of the definition of the SQLite file format, which may not change. */
+ u8 *pBuf = (u8*)zBuf;
+ p->iCookie = rbuGetU32(&pBuf[24]);
+ p->iWriteVer = pBuf[19];
+ }
+ }
+ return rc;
+}
+
+/*
+** Truncate an rbuVfs-file.
+*/
+static int rbuVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
+ rbu_file *p = (rbu_file*)pFile;
+ if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
+ int rc = rbuUpdateTempSize(p, size);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ return p->pReal->pMethods->xTruncate(p->pReal, size);
+}
+
+/*
+** Sync an rbuVfs-file.
+*/
+static int rbuVfsSync(sqlite3_file *pFile, int flags){
+ rbu_file *p = (rbu_file *)pFile;
+ if( p->pRbu && p->pRbu->eStage==RBU_STAGE_CAPTURE ){
+ if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
+ return SQLITE_NOTICE_RBU;
+ }
+ return SQLITE_OK;
+ }
+ return p->pReal->pMethods->xSync(p->pReal, flags);
+}
+
+/*
+** Return the current file-size of an rbuVfs-file.
+*/
+static int rbuVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
+ rbu_file *p = (rbu_file *)pFile;
+ int rc;
+ rc = p->pReal->pMethods->xFileSize(p->pReal, pSize);
+
+ /* If this is an RBU vacuum operation and this is the target database,
+ ** pretend that it has at least one page. Otherwise, SQLite will not
+ ** check for the existance of a *-wal file. rbuVfsRead() contains
+ ** similar logic. */
+ if( rc==SQLITE_OK && *pSize==0
+ && p->pRbu && rbuIsVacuum(p->pRbu)
+ && (p->openFlags & SQLITE_OPEN_MAIN_DB)
+ ){
+ *pSize = 1024;
+ }
+ return rc;
+}
+
+/*
+** Lock an rbuVfs-file.
+*/
+static int rbuVfsLock(sqlite3_file *pFile, int eLock){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc = SQLITE_OK;
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( eLock==SQLITE_LOCK_EXCLUSIVE
+ && (p->bNolock || (pRbu && pRbu->eStage!=RBU_STAGE_DONE))
+ ){
+ /* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this
+ ** prevents it from checkpointing the database from sqlite3_close(). */
+ rc = SQLITE_BUSY;
+ }else{
+ rc = p->pReal->pMethods->xLock(p->pReal, eLock);
+ }
+
+ return rc;
+}
+
+/*
+** Unlock an rbuVfs-file.
+*/
+static int rbuVfsUnlock(sqlite3_file *pFile, int eLock){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xUnlock(p->pReal, eLock);
+}
+
+/*
+** Check if another file-handle holds a RESERVED lock on an rbuVfs-file.
+*/
+static int rbuVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
+}
+
+/*
+** File control method. For custom operations on an rbuVfs-file.
+*/
+static int rbuVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
+ rbu_file *p = (rbu_file *)pFile;
+ int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
+ int rc;
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB)
+ || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL)
+ );
+ if( op==SQLITE_FCNTL_RBU ){
+ sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
+
+ /* First try to find another RBU vfs lower down in the vfs stack. If
+ ** one is found, this vfs will operate in pass-through mode. The lower
+ ** level vfs will do the special RBU handling. */
+ rc = xControl(p->pReal, op, pArg);
+
+ if( rc==SQLITE_NOTFOUND ){
+ /* Now search for a zipvfs instance lower down in the VFS stack. If
+ ** one is found, this is an error. */
+ void *dummy = 0;
+ rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_ERROR;
+ pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
+ }else if( rc==SQLITE_NOTFOUND ){
+ pRbu->pTargetFd = p;
+ p->pRbu = pRbu;
+ rbuMainlistAdd(p);
+ if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+ }
+ else if( op==SQLITE_FCNTL_RBUCNT ){
+ sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
+ pRbu->nRbu++;
+ pRbu->pRbuFd = p;
+ p->bNolock = 1;
+ }
+
+ rc = xControl(p->pReal, op, pArg);
+ if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
+ rbu_vfs *pRbuVfs = p->pRbuVfs;
+ char *zIn = *(char**)pArg;
+ char *zOut = sqlite3_mprintf("rbu(%s)/%z", pRbuVfs->base.zName, zIn);
+ *(char**)pArg = zOut;
+ if( zOut==0 ) rc = SQLITE_NOMEM;
+ }
+
+ return rc;
+}
+
+/*
+** Return the sector-size in bytes for an rbuVfs-file.
+*/
+static int rbuVfsSectorSize(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xSectorSize(p->pReal);
+}
+
+/*
+** Return the device characteristic flags supported by an rbuVfs-file.
+*/
+static int rbuVfsDeviceCharacteristics(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file *)pFile;
+ return p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
+}
+
+/*
+** Take or release a shared-memory lock.
+*/
+static int rbuVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
+ rbu_file *p = (rbu_file*)pFile;
+ sqlite3rbu *pRbu = p->pRbu;
+ int rc = SQLITE_OK;
+
+#ifdef SQLITE_AMALGAMATION
+ assert( WAL_CKPT_LOCK==1 );
+#endif
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( pRbu && (
+ pRbu->eStage==RBU_STAGE_OAL
+ || pRbu->eStage==RBU_STAGE_MOVE
+ || pRbu->eStage==RBU_STAGE_DONE
+ )){
+ /* Prevent SQLite from taking a shm-lock on the target file when it
+ ** is supplying heap memory to the upper layer in place of *-shm
+ ** segments. */
+ if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY;
+ }else{
+ int bCapture = 0;
+ if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
+ bCapture = 1;
+ }
+ if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){
+ rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
+ if( bCapture && rc==SQLITE_OK ){
+ pRbu->mLock |= ((1<<n) - 1) << ofst;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file.
+*/
+static int rbuVfsShmMap(
+ sqlite3_file *pFile,
+ int iRegion,
+ int szRegion,
+ int isWrite,
+ void volatile **pp
+){
+ rbu_file *p = (rbu_file*)pFile;
+ int rc = SQLITE_OK;
+ int eStage = (p->pRbu ? p->pRbu->eStage : 0);
+
+ /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
+ ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space
+ ** instead of a file on disk. */
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( eStage==RBU_STAGE_OAL ){
+ sqlite3_int64 nByte = (iRegion+1) * sizeof(char*);
+ char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
+
+ /* This is an RBU connection that uses its own heap memory for the
+ ** pages of the *-shm file. Since no other process can have run
+ ** recovery, the connection must request *-shm pages in order
+ ** from start to finish. */
+ assert( iRegion==p->nShm );
+ if( apNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
+ p->apShm = apNew;
+ p->nShm = iRegion+1;
+ }
+
+ if( rc==SQLITE_OK ){
+ char *pNew = (char*)sqlite3_malloc64(szRegion);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew, 0, szRegion);
+ p->apShm[iRegion] = pNew;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ *pp = p->apShm[iRegion];
+ }else{
+ *pp = 0;
+ }
+ }else{
+ assert( p->apShm==0 );
+ rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
+ }
+
+ return rc;
+}
+
+/*
+** Memory barrier.
+*/
+static void rbuVfsShmBarrier(sqlite3_file *pFile){
+ rbu_file *p = (rbu_file *)pFile;
+ p->pReal->pMethods->xShmBarrier(p->pReal);
+}
+
+/*
+** The xShmUnmap method.
+*/
+static int rbuVfsShmUnmap(sqlite3_file *pFile, int delFlag){
+ rbu_file *p = (rbu_file*)pFile;
+ int rc = SQLITE_OK;
+ int eStage = (p->pRbu ? p->pRbu->eStage : 0);
+
+ assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
+ if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
+ /* no-op */
+ }else{
+ /* Release the checkpointer and writer locks */
+ rbuUnlockShm(p);
+ rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
+ }
+ return rc;
+}
+
+/*
+** Open an rbu file handle.
+*/
+static int rbuVfsOpen(
+ sqlite3_vfs *pVfs,
+ const char *zName,
+ sqlite3_file *pFile,
+ int flags,
+ int *pOutFlags
+){
+ static sqlite3_io_methods rbuvfs_io_methods = {
+ 2, /* iVersion */
+ rbuVfsClose, /* xClose */
+ rbuVfsRead, /* xRead */
+ rbuVfsWrite, /* xWrite */
+ rbuVfsTruncate, /* xTruncate */
+ rbuVfsSync, /* xSync */
+ rbuVfsFileSize, /* xFileSize */
+ rbuVfsLock, /* xLock */
+ rbuVfsUnlock, /* xUnlock */
+ rbuVfsCheckReservedLock, /* xCheckReservedLock */
+ rbuVfsFileControl, /* xFileControl */
+ rbuVfsSectorSize, /* xSectorSize */
+ rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
+ rbuVfsShmMap, /* xShmMap */
+ rbuVfsShmLock, /* xShmLock */
+ rbuVfsShmBarrier, /* xShmBarrier */
+ rbuVfsShmUnmap, /* xShmUnmap */
+ 0, 0 /* xFetch, xUnfetch */
+ };
+ static sqlite3_io_methods rbuvfs_io_methods1 = {
+ 1, /* iVersion */
+ rbuVfsClose, /* xClose */
+ rbuVfsRead, /* xRead */
+ rbuVfsWrite, /* xWrite */
+ rbuVfsTruncate, /* xTruncate */
+ rbuVfsSync, /* xSync */
+ rbuVfsFileSize, /* xFileSize */
+ rbuVfsLock, /* xLock */
+ rbuVfsUnlock, /* xUnlock */
+ rbuVfsCheckReservedLock, /* xCheckReservedLock */
+ rbuVfsFileControl, /* xFileControl */
+ rbuVfsSectorSize, /* xSectorSize */
+ rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
+ 0, 0, 0, 0, 0, 0
+ };
+
+
+
+ rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
+ sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
+ rbu_file *pFd = (rbu_file *)pFile;
+ int rc = SQLITE_OK;
+ const char *zOpen = zName;
+ int oflags = flags;
+
+ memset(pFd, 0, sizeof(rbu_file));
+ pFd->pReal = (sqlite3_file*)&pFd[1];
+ pFd->pRbuVfs = pRbuVfs;
+ pFd->openFlags = flags;
+ if( zName ){
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ /* A main database has just been opened. The following block sets
+ ** (pFd->zWal) to point to a buffer owned by SQLite that contains
+ ** the name of the *-wal file this db connection will use. SQLite
+ ** happens to pass a pointer to this buffer when using xAccess()
+ ** or xOpen() to operate on the *-wal file. */
+ pFd->zWal = sqlite3_filename_wal(zName);
+ }
+ else if( flags & SQLITE_OPEN_WAL ){
+ rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0);
+ if( pDb ){
+ if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
+ /* This call is to open a *-wal file. Intead, open the *-oal. */
+ size_t nOpen;
+ if( rbuIsVacuum(pDb->pRbu) ){
+ zOpen = sqlite3_db_filename(pDb->pRbu->dbRbu, "main");
+ zOpen = sqlite3_filename_wal(zOpen);
+ }
+ nOpen = strlen(zOpen);
+ ((char*)zOpen)[nOpen-3] = 'o';
+ pFd->pRbu = pDb->pRbu;
+ }
+ pDb->pWalFd = pFd;
+ }
+ }
+ }else{
+ pFd->pRbu = pRbuVfs->pRbu;
+ }
+
+ if( oflags & SQLITE_OPEN_MAIN_DB
+ && sqlite3_uri_boolean(zName, "rbu_memory", 0)
+ ){
+ assert( oflags & SQLITE_OPEN_MAIN_DB );
+ oflags = SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ zOpen = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, oflags, pOutFlags);
+ }
+ if( pFd->pReal->pMethods ){
+ const sqlite3_io_methods *pMeth = pFd->pReal->pMethods;
+ /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
+ ** pointer and, if the file is a main database file, link it into the
+ ** mutex protected linked list of all such files. */
+ if( pMeth->iVersion<2 || pMeth->xShmLock==0 ){
+ pFile->pMethods = &rbuvfs_io_methods1;
+ }else{
+ pFile->pMethods = &rbuvfs_io_methods;
+ }
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ rbuMainlistAdd(pFd);
+ }
+ }else{
+ sqlite3_free(pFd->zDel);
+ }
+
+ return rc;
+}
+
+/*
+** Delete the file located at zPath.
+*/
+static int rbuVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xDelete(pRealVfs, zPath, dirSync);
+}
+
+/*
+** Test for access permissions. Return true if the requested permission
+** is available, or false otherwise.
+*/
+static int rbuVfsAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
+ sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
+ int rc;
+
+ rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut);
+
+ /* If this call is to check if a *-wal file associated with an RBU target
+ ** database connection exists, and the RBU update is in RBU_STAGE_OAL,
+ ** the following special handling is activated:
+ **
+ ** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This
+ ** ensures that the RBU extension never tries to update a database
+ ** in wal mode, even if the first page of the database file has
+ ** been damaged.
+ **
+ ** b) if the *-wal file does not exist, claim that it does anyway,
+ ** causing SQLite to call xOpen() to open it. This call will also
+ ** be intercepted (see the rbuVfsOpen() function) and the *-oal
+ ** file opened instead.
+ */
+ if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
+ rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1);
+ if( pDb && pDb->pRbu->eStage==RBU_STAGE_OAL ){
+ assert( pDb->pRbu );
+ if( *pResOut ){
+ rc = SQLITE_CANTOPEN;
+ }else{
+ sqlite3_int64 sz = 0;
+ rc = rbuVfsFileSize(&pDb->base, &sz);
+ *pResOut = (sz>0);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Populate buffer zOut with the full canonical pathname corresponding
+** to the pathname in zPath. zOut is guaranteed to point to a buffer
+** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
+*/
+static int rbuVfsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nOut,
+ char *zOut
+){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut);
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Open the dynamic library located at zPath and return a handle.
+*/
+static void *rbuVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xDlOpen(pRealVfs, zPath);
+}
+
+/*
+** Populate the buffer zErrMsg (size nByte bytes) with a human readable
+** utf-8 string describing the most recent error encountered associated
+** with dynamic libraries.
+*/
+static void rbuVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ pRealVfs->xDlError(pRealVfs, nByte, zErrMsg);
+}
+
+/*
+** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
+*/
+static void (*rbuVfsDlSym(
+ sqlite3_vfs *pVfs,
+ void *pArg,
+ const char *zSym
+))(void){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xDlSym(pRealVfs, pArg, zSym);
+}
+
+/*
+** Close the dynamic library handle pHandle.
+*/
+static void rbuVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ pRealVfs->xDlClose(pRealVfs, pHandle);
+}
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+
+/*
+** Populate the buffer pointed to by zBufOut with nByte bytes of
+** random data.
+*/
+static int rbuVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut);
+}
+
+/*
+** Sleep for nMicro microseconds. Return the number of microseconds
+** actually slept.
+*/
+static int rbuVfsSleep(sqlite3_vfs *pVfs, int nMicro){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xSleep(pRealVfs, nMicro);
+}
+
+/*
+** Return the current time as a Julian Day number in *pTimeOut.
+*/
+static int rbuVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
+ return pRealVfs->xCurrentTime(pRealVfs, pTimeOut);
+}
+
+/*
+** No-op.
+*/
+static int rbuVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){
+ return 0;
+}
+
+/*
+** Deregister and destroy an RBU vfs created by an earlier call to
+** sqlite3rbu_create_vfs().
+*/
+SQLITE_API void sqlite3rbu_destroy_vfs(const char *zName){
+ sqlite3_vfs *pVfs = sqlite3_vfs_find(zName);
+ if( pVfs && pVfs->xOpen==rbuVfsOpen ){
+ sqlite3_mutex_free(((rbu_vfs*)pVfs)->mutex);
+ sqlite3_vfs_unregister(pVfs);
+ sqlite3_free(pVfs);
+ }
+}
+
+/*
+** Create an RBU VFS named zName that accesses the underlying file-system
+** via existing VFS zParent. The new object is registered as a non-default
+** VFS with SQLite before returning.
+*/
+SQLITE_API int sqlite3rbu_create_vfs(const char *zName, const char *zParent){
+
+ /* Template for VFS */
+ static sqlite3_vfs vfs_template = {
+ 1, /* iVersion */
+ 0, /* szOsFile */
+ 0, /* mxPathname */
+ 0, /* pNext */
+ 0, /* zName */
+ 0, /* pAppData */
+ rbuVfsOpen, /* xOpen */
+ rbuVfsDelete, /* xDelete */
+ rbuVfsAccess, /* xAccess */
+ rbuVfsFullPathname, /* xFullPathname */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+ rbuVfsDlOpen, /* xDlOpen */
+ rbuVfsDlError, /* xDlError */
+ rbuVfsDlSym, /* xDlSym */
+ rbuVfsDlClose, /* xDlClose */
+#else
+ 0, 0, 0, 0,
+#endif
+
+ rbuVfsRandomness, /* xRandomness */
+ rbuVfsSleep, /* xSleep */
+ rbuVfsCurrentTime, /* xCurrentTime */
+ rbuVfsGetLastError, /* xGetLastError */
+ 0, /* xCurrentTimeInt64 (version 2) */
+ 0, 0, 0 /* Unimplemented version 3 methods */
+ };
+
+ rbu_vfs *pNew = 0; /* Newly allocated VFS */
+ int rc = SQLITE_OK;
+ size_t nName;
+ size_t nByte;
+
+ nName = strlen(zName);
+ nByte = sizeof(rbu_vfs) + nName + 1;
+ pNew = (rbu_vfs*)sqlite3_malloc64(nByte);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_vfs *pParent; /* Parent VFS */
+ memset(pNew, 0, nByte);
+ pParent = sqlite3_vfs_find(zParent);
+ if( pParent==0 ){
+ rc = SQLITE_NOTFOUND;
+ }else{
+ char *zSpace;
+ memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs));
+ pNew->base.mxPathname = pParent->mxPathname;
+ pNew->base.szOsFile = sizeof(rbu_file) + pParent->szOsFile;
+ pNew->pRealVfs = pParent;
+ pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]);
+ memcpy(zSpace, zName, nName);
+
+ /* Allocate the mutex and register the new VFS (not as the default) */
+ pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
+ if( pNew->mutex==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_vfs_register(&pNew->base, 0);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_mutex_free(pNew->mutex);
+ sqlite3_free(pNew);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Configure the aggregate temp file size limit for this RBU handle.
+*/
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu *pRbu, sqlite3_int64 n){
+ if( n>=0 ){
+ pRbu->szTempLimit = n;
+ }
+ return pRbu->szTempLimit;
+}
+
+SQLITE_API sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu *pRbu){
+ return pRbu->szTemp;
+}
+
+
+/**************************************************************************/
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) */
+
+/************** End of sqlite3rbu.c ******************************************/
+/************** Begin file dbstat.c ******************************************/
+/*
+** 2010 July 12
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains an implementation of the "dbstat" virtual table.
+**
+** The dbstat virtual table is used to extract low-level storage
+** information from an SQLite database in order to implement the
+** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script
+** for an example implementation.
+**
+** Additional information is available on the "dbstat.html" page of the
+** official SQLite documentation.
+*/
+
+/* #include "sqliteInt.h" ** Requires access to internal data structures ** */
+#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
+ && !defined(SQLITE_OMIT_VIRTUALTABLE)
+
+/*
+** The pager and btree modules arrange objects in memory so that there are
+** always approximately 200 bytes of addressable memory following each page
+** buffer. This way small buffer overreads caused by corrupt database pages
+** do not cause undefined behaviour. This module pads each page buffer
+** by the following number of bytes for the same purpose.
+*/
+#define DBSTAT_PAGE_PADDING_BYTES 256
+
+/*
+** Page paths:
+**
+** The value of the 'path' column describes the path taken from the
+** root-node of the b-tree structure to each page. The value of the
+** root-node path is '/'.
+**
+** The value of the path for the left-most child page of the root of
+** a b-tree is '/000/'. (Btrees store content ordered from left to right
+** so the pages to the left have smaller keys than the pages to the right.)
+** The next to left-most child of the root page is
+** '/001', and so on, each sibling page identified by a 3-digit hex
+** value. The children of the 451st left-most sibling have paths such
+** as '/1c2/000/, '/1c2/001/' etc.
+**
+** Overflow pages are specified by appending a '+' character and a
+** six-digit hexadecimal value to the path to the cell they are linked
+** from. For example, the three overflow pages in a chain linked from
+** the left-most cell of the 450th child of the root page are identified
+** by the paths:
+**
+** '/1c2/000+000000' // First page in overflow chain
+** '/1c2/000+000001' // Second page in overflow chain
+** '/1c2/000+000002' // Third page in overflow chain
+**
+** If the paths are sorted using the BINARY collation sequence, then
+** the overflow pages associated with a cell will appear earlier in the
+** sort-order than its child page:
+**
+** '/1c2/000/' // Left-most child of 451st child of root
+*/
+static const char zDbstatSchema[] =
+ "CREATE TABLE x("
+ " name TEXT," /* 0 Name of table or index */
+ " path TEXT," /* 1 Path to page from root (NULL for agg) */
+ " pageno INTEGER," /* 2 Page number (page count for aggregates) */
+ " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */
+ " ncell INTEGER," /* 4 Cells on page (0 for overflow) */
+ " payload INTEGER," /* 5 Bytes of payload on this page */
+ " unused INTEGER," /* 6 Bytes of unused space on this page */
+ " mx_payload INTEGER," /* 7 Largest payload size of all cells */
+ " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */
+ " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */
+ " schema TEXT HIDDEN," /* 10 Database schema being analyzed */
+ " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */
+ ")"
+;
+
+/* Forward reference to data structured used in this module */
+typedef struct StatTable StatTable;
+typedef struct StatCursor StatCursor;
+typedef struct StatPage StatPage;
+typedef struct StatCell StatCell;
+
+/* Size information for a single cell within a btree page */
+struct StatCell {
+ int nLocal; /* Bytes of local payload */
+ u32 iChildPg; /* Child node (or 0 if this is a leaf) */
+ int nOvfl; /* Entries in aOvfl[] */
+ u32 *aOvfl; /* Array of overflow page numbers */
+ int nLastOvfl; /* Bytes of payload on final overflow page */
+ int iOvfl; /* Iterates through aOvfl[] */
+};
+
+/* Size information for a single btree page */
+struct StatPage {
+ u32 iPgno; /* Page number */
+ u8 *aPg; /* Page buffer from sqlite3_malloc() */
+ int iCell; /* Current cell */
+ char *zPath; /* Path to this page */
+
+ /* Variables populated by statDecodePage(): */
+ u8 flags; /* Copy of flags byte */
+ int nCell; /* Number of cells on page */
+ int nUnused; /* Number of unused bytes on page */
+ StatCell *aCell; /* Array of parsed cells */
+ u32 iRightChildPg; /* Right-child page number (or 0) */
+ int nMxPayload; /* Largest payload of any cell on the page */
+};
+
+/* The cursor for scanning the dbstat virtual table */
+struct StatCursor {
+ sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */
+ sqlite3_stmt *pStmt; /* Iterates through set of root pages */
+ u8 isEof; /* After pStmt has returned SQLITE_DONE */
+ u8 isAgg; /* Aggregate results for each table */
+ int iDb; /* Schema used for this query */
+
+ StatPage aPage[32]; /* Pages in path to current page */
+ int iPage; /* Current entry in aPage[] */
+
+ /* Values to return. */
+ u32 iPageno; /* Value of 'pageno' column */
+ char *zName; /* Value of 'name' column */
+ char *zPath; /* Value of 'path' column */
+ char *zPagetype; /* Value of 'pagetype' column */
+ int nPage; /* Number of pages in current btree */
+ int nCell; /* Value of 'ncell' column */
+ int nMxPayload; /* Value of 'mx_payload' column */
+ i64 nUnused; /* Value of 'unused' column */
+ i64 nPayload; /* Value of 'payload' column */
+ i64 iOffset; /* Value of 'pgOffset' column */
+ i64 szPage; /* Value of 'pgSize' column */
+};
+
+/* An instance of the DBSTAT virtual table */
+struct StatTable {
+ sqlite3_vtab base; /* base class. MUST BE FIRST! */
+ sqlite3 *db; /* Database connection that owns this vtab */
+ int iDb; /* Index of database to analyze */
+};
+
+#ifndef get2byte
+# define get2byte(x) ((x)[0]<<8 | (x)[1])
+#endif
+
+/*
+** Connect to or create a new DBSTAT virtual table.
+*/
+static int statConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ StatTable *pTab = 0;
+ int rc = SQLITE_OK;
+ int iDb;
+ (void)pAux;
+
+ if( argc>=4 ){
+ Token nm;
+ sqlite3TokenInit(&nm, (char*)argv[3]);
+ iDb = sqlite3FindDb(db, &nm);
+ if( iDb<0 ){
+ *pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
+ return SQLITE_ERROR;
+ }
+ }else{
+ iDb = 0;
+ }
+ sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
+ rc = sqlite3_declare_vtab(db, zDbstatSchema);
+ if( rc==SQLITE_OK ){
+ pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable));
+ if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+
+ assert( rc==SQLITE_OK || pTab==0 );
+ if( rc==SQLITE_OK ){
+ memset(pTab, 0, sizeof(StatTable));
+ pTab->db = db;
+ pTab->iDb = iDb;
+ }
+
+ *ppVtab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** Disconnect from or destroy the DBSTAT virtual table.
+*/
+static int statDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Compute the best query strategy and return the result in idxNum.
+**
+** idxNum-Bit Meaning
+** ---------- ----------------------------------------------
+** 0x01 There is a schema=? term in the WHERE clause
+** 0x02 There is a name=? term in the WHERE clause
+** 0x04 There is an aggregate=? term in the WHERE clause
+** 0x08 Output should be ordered by name and path
+*/
+static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int i;
+ int iSchema = -1;
+ int iName = -1;
+ int iAgg = -1;
+ (void)tab;
+
+ /* Look for a valid schema=? constraint. If found, change the idxNum to
+ ** 1 and request the value of that constraint be sent to xFilter. And
+ ** lower the cost estimate to encourage the constrained version to be
+ ** used.
+ */
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
+ if( pIdxInfo->aConstraint[i].usable==0 ){
+ /* Force DBSTAT table should always be the right-most table in a join */
+ return SQLITE_CONSTRAINT;
+ }
+ switch( pIdxInfo->aConstraint[i].iColumn ){
+ case 0: { /* name */
+ iName = i;
+ break;
+ }
+ case 10: { /* schema */
+ iSchema = i;
+ break;
+ }
+ case 11: { /* aggregate */
+ iAgg = i;
+ break;
+ }
+ }
+ }
+ i = 0;
+ if( iSchema>=0 ){
+ pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i;
+ pIdxInfo->aConstraintUsage[iSchema].omit = 1;
+ pIdxInfo->idxNum |= 0x01;
+ }
+ if( iName>=0 ){
+ pIdxInfo->aConstraintUsage[iName].argvIndex = ++i;
+ pIdxInfo->idxNum |= 0x02;
+ }
+ if( iAgg>=0 ){
+ pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i;
+ pIdxInfo->idxNum |= 0x04;
+ }
+ pIdxInfo->estimatedCost = 1.0;
+
+ /* Records are always returned in ascending order of (name, path).
+ ** If this will satisfy the client, set the orderByConsumed flag so that
+ ** SQLite does not do an external sort.
+ */
+ if( ( pIdxInfo->nOrderBy==1
+ && pIdxInfo->aOrderBy[0].iColumn==0
+ && pIdxInfo->aOrderBy[0].desc==0
+ ) ||
+ ( pIdxInfo->nOrderBy==2
+ && pIdxInfo->aOrderBy[0].iColumn==0
+ && pIdxInfo->aOrderBy[0].desc==0
+ && pIdxInfo->aOrderBy[1].iColumn==1
+ && pIdxInfo->aOrderBy[1].desc==0
+ )
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ pIdxInfo->idxNum |= 0x08;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Open a new DBSTAT cursor.
+*/
+static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ StatTable *pTab = (StatTable *)pVTab;
+ StatCursor *pCsr;
+
+ pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ memset(pCsr, 0, sizeof(StatCursor));
+ pCsr->base.pVtab = pVTab;
+ pCsr->iDb = pTab->iDb;
+ }
+
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+static void statClearCells(StatPage *p){
+ int i;
+ if( p->aCell ){
+ for(i=0; i<p->nCell; i++){
+ sqlite3_free(p->aCell[i].aOvfl);
+ }
+ sqlite3_free(p->aCell);
+ }
+ p->nCell = 0;
+ p->aCell = 0;
+}
+
+static void statClearPage(StatPage *p){
+ u8 *aPg = p->aPg;
+ statClearCells(p);
+ sqlite3_free(p->zPath);
+ memset(p, 0, sizeof(StatPage));
+ p->aPg = aPg;
+}
+
+static void statResetCsr(StatCursor *pCsr){
+ int i;
+ /* In some circumstances, specifically if an OOM has occurred, the call
+ ** to sqlite3_reset() may cause the pager to be reset (emptied). It is
+ ** important that statClearPage() is called to free any page refs before
+ ** this happens. dbsqlfuzz 9ed3e4e3816219d3509d711636c38542bf3f40b1. */
+ for(i=0; i<ArraySize(pCsr->aPage); i++){
+ statClearPage(&pCsr->aPage[i]);
+ sqlite3_free(pCsr->aPage[i].aPg);
+ pCsr->aPage[i].aPg = 0;
+ }
+ sqlite3_reset(pCsr->pStmt);
+ pCsr->iPage = 0;
+ sqlite3_free(pCsr->zPath);
+ pCsr->zPath = 0;
+ pCsr->isEof = 0;
+}
+
+/* Resize the space-used counters inside of the cursor */
+static void statResetCounts(StatCursor *pCsr){
+ pCsr->nCell = 0;
+ pCsr->nMxPayload = 0;
+ pCsr->nUnused = 0;
+ pCsr->nPayload = 0;
+ pCsr->szPage = 0;
+ pCsr->nPage = 0;
+}
+
+/*
+** Close a DBSTAT cursor.
+*/
+static int statClose(sqlite3_vtab_cursor *pCursor){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ statResetCsr(pCsr);
+ sqlite3_finalize(pCsr->pStmt);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** For a single cell on a btree page, compute the number of bytes of
+** content (payload) stored on that page. That is to say, compute the
+** number of bytes of content not found on overflow pages.
+*/
+static int getLocalPayload(
+ int nUsable, /* Usable bytes per page */
+ u8 flags, /* Page flags */
+ int nTotal /* Total record (payload) size */
+){
+ int nLocal;
+ int nMinLocal;
+ int nMaxLocal;
+
+ if( flags==0x0D ){ /* Table leaf node */
+ nMinLocal = (nUsable - 12) * 32 / 255 - 23;
+ nMaxLocal = nUsable - 35;
+ }else{ /* Index interior and leaf nodes */
+ nMinLocal = (nUsable - 12) * 32 / 255 - 23;
+ nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
+ }
+
+ nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
+ if( nLocal>nMaxLocal ) nLocal = nMinLocal;
+ return nLocal;
+}
+
+/* Populate the StatPage object with information about the all
+** cells found on the page currently under analysis.
+*/
+static int statDecodePage(Btree *pBt, StatPage *p){
+ int nUnused;
+ int iOff;
+ int nHdr;
+ int isLeaf;
+ int szPage;
+
+ u8 *aData = p->aPg;
+ u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];
+
+ p->flags = aHdr[0];
+ if( p->flags==0x0A || p->flags==0x0D ){
+ isLeaf = 1;
+ nHdr = 8;
+ }else if( p->flags==0x05 || p->flags==0x02 ){
+ isLeaf = 0;
+ nHdr = 12;
+ }else{
+ goto statPageIsCorrupt;
+ }
+ if( p->iPgno==1 ) nHdr += 100;
+ p->nCell = get2byte(&aHdr[3]);
+ p->nMxPayload = 0;
+ szPage = sqlite3BtreeGetPageSize(pBt);
+
+ nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
+ nUnused += (int)aHdr[7];
+ iOff = get2byte(&aHdr[1]);
+ while( iOff ){
+ int iNext;
+ if( iOff>=szPage ) goto statPageIsCorrupt;
+ nUnused += get2byte(&aData[iOff+2]);
+ iNext = get2byte(&aData[iOff]);
+ if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt;
+ iOff = iNext;
+ }
+ p->nUnused = nUnused;
+ p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);
+
+ if( p->nCell ){
+ int i; /* Used to iterate through cells */
+ int nUsable; /* Usable bytes per page */
+
+ sqlite3BtreeEnter(pBt);
+ nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
+ sqlite3BtreeLeave(pBt);
+ p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
+ if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
+ memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));
+
+ for(i=0; i<p->nCell; i++){
+ StatCell *pCell = &p->aCell[i];
+
+ iOff = get2byte(&aData[nHdr+i*2]);
+ if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt;
+ if( !isLeaf ){
+ pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
+ iOff += 4;
+ }
+ if( p->flags==0x05 ){
+ /* A table interior node. nPayload==0. */
+ }else{
+ u32 nPayload; /* Bytes of payload total (local+overflow) */
+ int nLocal; /* Bytes of payload stored locally */
+ iOff += getVarint32(&aData[iOff], nPayload);
+ if( p->flags==0x0D ){
+ u64 dummy;
+ iOff += sqlite3GetVarint(&aData[iOff], &dummy);
+ }
+ if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
+ nLocal = getLocalPayload(nUsable, p->flags, nPayload);
+ if( nLocal<0 ) goto statPageIsCorrupt;
+ pCell->nLocal = nLocal;
+ assert( nPayload>=(u32)nLocal );
+ assert( nLocal<=(nUsable-35) );
+ if( nPayload>(u32)nLocal ){
+ int j;
+ int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);
+ if( iOff+nLocal+4>nUsable || nPayload>0x7fffffff ){
+ goto statPageIsCorrupt;
+ }
+ pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
+ pCell->nOvfl = nOvfl;
+ pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
+ if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
+ pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
+ for(j=1; j<nOvfl; j++){
+ int rc;
+ u32 iPrev = pCell->aOvfl[j-1];
+ DbPage *pPg = 0;
+ rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0);
+ if( rc!=SQLITE_OK ){
+ assert( pPg==0 );
+ return rc;
+ }
+ pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
+ sqlite3PagerUnref(pPg);
+ }
+ }
+ }
+ }
+ }
+
+ return SQLITE_OK;
+
+statPageIsCorrupt:
+ p->flags = 0;
+ statClearCells(p);
+ return SQLITE_OK;
+}
+
+/*
+** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
+** the current value of pCsr->iPageno.
+*/
+static void statSizeAndOffset(StatCursor *pCsr){
+ StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab;
+ Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
+ Pager *pPager = sqlite3BtreePager(pBt);
+ sqlite3_file *fd;
+ sqlite3_int64 x[2];
+
+ /* If connected to a ZIPVFS backend, find the page size and
+ ** offset from ZIPVFS.
+ */
+ fd = sqlite3PagerFile(pPager);
+ x[0] = pCsr->iPageno;
+ if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){
+ pCsr->iOffset = x[0];
+ pCsr->szPage += x[1];
+ }else{
+ /* Not ZIPVFS: The default page size and offset */
+ pCsr->szPage += sqlite3BtreeGetPageSize(pBt);
+ pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1);
+ }
+}
+
+/*
+** Load a copy of the page data for page iPg into the buffer belonging
+** to page object pPg. Allocate the buffer if necessary. Return SQLITE_OK
+** if successful, or an SQLite error code otherwise.
+*/
+static int statGetPage(
+ Btree *pBt, /* Load page from this b-tree */
+ u32 iPg, /* Page number to load */
+ StatPage *pPg /* Load page into this object */
+){
+ int pgsz = sqlite3BtreeGetPageSize(pBt);
+ DbPage *pDbPage = 0;
+ int rc;
+
+ if( pPg->aPg==0 ){
+ pPg->aPg = (u8*)sqlite3_malloc(pgsz + DBSTAT_PAGE_PADDING_BYTES);
+ if( pPg->aPg==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&pPg->aPg[pgsz], 0, DBSTAT_PAGE_PADDING_BYTES);
+ }
+
+ rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPg, &pDbPage, 0);
+ if( rc==SQLITE_OK ){
+ const u8 *a = sqlite3PagerGetData(pDbPage);
+ memcpy(pPg->aPg, a, pgsz);
+ sqlite3PagerUnref(pDbPage);
+ }
+
+ return rc;
+}
+
+/*
+** Move a DBSTAT cursor to the next entry. Normally, the next
+** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0),
+** the next entry is the next btree.
+*/
+static int statNext(sqlite3_vtab_cursor *pCursor){
+ int rc;
+ int nPayload;
+ char *z;
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ StatTable *pTab = (StatTable *)pCursor->pVtab;
+ Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
+ Pager *pPager = sqlite3BtreePager(pBt);
+
+ sqlite3_free(pCsr->zPath);
+ pCsr->zPath = 0;
+
+statNextRestart:
+ if( pCsr->iPage<0 ){
+ /* Start measuring space on the next btree */
+ statResetCounts(pCsr);
+ rc = sqlite3_step(pCsr->pStmt);
+ if( rc==SQLITE_ROW ){
+ int nPage;
+ u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
+ sqlite3PagerPagecount(pPager, &nPage);
+ if( nPage==0 ){
+ pCsr->isEof = 1;
+ return sqlite3_reset(pCsr->pStmt);
+ }
+ rc = statGetPage(pBt, iRoot, &pCsr->aPage[0]);
+ pCsr->aPage[0].iPgno = iRoot;
+ pCsr->aPage[0].iCell = 0;
+ if( !pCsr->isAgg ){
+ pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
+ if( z==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ pCsr->iPage = 0;
+ pCsr->nPage = 1;
+ }else{
+ pCsr->isEof = 1;
+ return sqlite3_reset(pCsr->pStmt);
+ }
+ }else{
+ /* Continue analyzing the btree previously started */
+ StatPage *p = &pCsr->aPage[pCsr->iPage];
+ if( !pCsr->isAgg ) statResetCounts(pCsr);
+ while( p->iCell<p->nCell ){
+ StatCell *pCell = &p->aCell[p->iCell];
+ while( pCell->iOvfl<pCell->nOvfl ){
+ int nUsable, iOvfl;
+ sqlite3BtreeEnter(pBt);
+ nUsable = sqlite3BtreeGetPageSize(pBt) -
+ sqlite3BtreeGetReserveNoMutex(pBt);
+ sqlite3BtreeLeave(pBt);
+ pCsr->nPage++;
+ statSizeAndOffset(pCsr);
+ if( pCell->iOvfl<pCell->nOvfl-1 ){
+ pCsr->nPayload += nUsable - 4;
+ }else{
+ pCsr->nPayload += pCell->nLastOvfl;
+ pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl;
+ }
+ iOvfl = pCell->iOvfl;
+ pCell->iOvfl++;
+ if( !pCsr->isAgg ){
+ pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
+ pCsr->iPageno = pCell->aOvfl[iOvfl];
+ pCsr->zPagetype = "overflow";
+ pCsr->zPath = z = sqlite3_mprintf(
+ "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl
+ );
+ return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
+ }
+ }
+ if( p->iRightChildPg ) break;
+ p->iCell++;
+ }
+
+ if( !p->iRightChildPg || p->iCell>p->nCell ){
+ statClearPage(p);
+ pCsr->iPage--;
+ if( pCsr->isAgg && pCsr->iPage<0 ){
+ /* label-statNext-done: When computing aggregate space usage over
+ ** an entire btree, this is the exit point from this function */
+ return SQLITE_OK;
+ }
+ goto statNextRestart; /* Tail recursion */
+ }
+ pCsr->iPage++;
+ if( pCsr->iPage>=ArraySize(pCsr->aPage) ){
+ statResetCsr(pCsr);
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( p==&pCsr->aPage[pCsr->iPage-1] );
+
+ if( p->iCell==p->nCell ){
+ p[1].iPgno = p->iRightChildPg;
+ }else{
+ p[1].iPgno = p->aCell[p->iCell].iChildPg;
+ }
+ rc = statGetPage(pBt, p[1].iPgno, &p[1]);
+ pCsr->nPage++;
+ p[1].iCell = 0;
+ if( !pCsr->isAgg ){
+ p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
+ if( z==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ p->iCell++;
+ }
+
+
+ /* Populate the StatCursor fields with the values to be returned
+ ** by the xColumn() and xRowid() methods.
+ */
+ if( rc==SQLITE_OK ){
+ int i;
+ StatPage *p = &pCsr->aPage[pCsr->iPage];
+ pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
+ pCsr->iPageno = p->iPgno;
+
+ rc = statDecodePage(pBt, p);
+ if( rc==SQLITE_OK ){
+ statSizeAndOffset(pCsr);
+
+ switch( p->flags ){
+ case 0x05: /* table internal */
+ case 0x02: /* index internal */
+ pCsr->zPagetype = "internal";
+ break;
+ case 0x0D: /* table leaf */
+ case 0x0A: /* index leaf */
+ pCsr->zPagetype = "leaf";
+ break;
+ default:
+ pCsr->zPagetype = "corrupted";
+ break;
+ }
+ pCsr->nCell += p->nCell;
+ pCsr->nUnused += p->nUnused;
+ if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload;
+ if( !pCsr->isAgg ){
+ pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath);
+ if( z==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+ nPayload = 0;
+ for(i=0; i<p->nCell; i++){
+ nPayload += p->aCell[i].nLocal;
+ }
+ pCsr->nPayload += nPayload;
+
+ /* If computing aggregate space usage by btree, continue with the
+ ** next page. The loop will exit via the return at label-statNext-done
+ */
+ if( pCsr->isAgg ) goto statNextRestart;
+ }
+ }
+
+ return rc;
+}
+
+static int statEof(sqlite3_vtab_cursor *pCursor){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ return pCsr->isEof;
+}
+
+/* Initialize a cursor according to the query plan idxNum using the
+** arguments in argv[0]. See statBestIndex() for a description of the
+** meaning of the bits in idxNum.
+*/
+static int statFilter(
+ sqlite3_vtab_cursor *pCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ StatTable *pTab = (StatTable*)(pCursor->pVtab);
+ sqlite3_str *pSql; /* Query of btrees to analyze */
+ char *zSql; /* String value of pSql */
+ int iArg = 0; /* Count of argv[] parameters used so far */
+ int rc = SQLITE_OK; /* Result of this operation */
+ const char *zName = 0; /* Only provide analysis of this table */
+ (void)argc;
+ (void)idxStr;
+
+ statResetCsr(pCsr);
+ sqlite3_finalize(pCsr->pStmt);
+ pCsr->pStmt = 0;
+ if( idxNum & 0x01 ){
+ /* schema=? constraint is present. Get its value */
+ const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]);
+ pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
+ if( pCsr->iDb<0 ){
+ pCsr->iDb = 0;
+ pCsr->isEof = 1;
+ return SQLITE_OK;
+ }
+ }else{
+ pCsr->iDb = pTab->iDb;
+ }
+ if( idxNum & 0x02 ){
+ /* name=? constraint is present */
+ zName = (const char*)sqlite3_value_text(argv[iArg++]);
+ }
+ if( idxNum & 0x04 ){
+ /* aggregate=? constraint is present */
+ pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0;
+ }else{
+ pCsr->isAgg = 0;
+ }
+ pSql = sqlite3_str_new(pTab->db);
+ sqlite3_str_appendf(pSql,
+ "SELECT * FROM ("
+ "SELECT 'sqlite_schema' AS name,1 AS rootpage,'table' AS type"
+ " UNION ALL "
+ "SELECT name,rootpage,type"
+ " FROM \"%w\".sqlite_schema WHERE rootpage!=0)",
+ pTab->db->aDb[pCsr->iDb].zDbSName);
+ if( zName ){
+ sqlite3_str_appendf(pSql, "WHERE name=%Q", zName);
+ }
+ if( idxNum & 0x08 ){
+ sqlite3_str_appendf(pSql, " ORDER BY name");
+ }
+ zSql = sqlite3_str_finish(pSql);
+ if( zSql==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
+ sqlite3_free(zSql);
+ }
+
+ if( rc==SQLITE_OK ){
+ pCsr->iPage = -1;
+ rc = statNext(pCursor);
+ }
+ return rc;
+}
+
+static int statColumn(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite3_context *ctx,
+ int i
+){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ switch( i ){
+ case 0: /* name */
+ sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT);
+ break;
+ case 1: /* path */
+ if( !pCsr->isAgg ){
+ sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT);
+ }
+ break;
+ case 2: /* pageno */
+ if( pCsr->isAgg ){
+ sqlite3_result_int64(ctx, pCsr->nPage);
+ }else{
+ sqlite3_result_int64(ctx, pCsr->iPageno);
+ }
+ break;
+ case 3: /* pagetype */
+ if( !pCsr->isAgg ){
+ sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC);
+ }
+ break;
+ case 4: /* ncell */
+ sqlite3_result_int64(ctx, pCsr->nCell);
+ break;
+ case 5: /* payload */
+ sqlite3_result_int64(ctx, pCsr->nPayload);
+ break;
+ case 6: /* unused */
+ sqlite3_result_int64(ctx, pCsr->nUnused);
+ break;
+ case 7: /* mx_payload */
+ sqlite3_result_int64(ctx, pCsr->nMxPayload);
+ break;
+ case 8: /* pgoffset */
+ if( !pCsr->isAgg ){
+ sqlite3_result_int64(ctx, pCsr->iOffset);
+ }
+ break;
+ case 9: /* pgsize */
+ sqlite3_result_int64(ctx, pCsr->szPage);
+ break;
+ case 10: { /* schema */
+ sqlite3 *db = sqlite3_context_db_handle(ctx);
+ int iDb = pCsr->iDb;
+ sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC);
+ break;
+ }
+ default: { /* aggregate */
+ sqlite3_result_int(ctx, pCsr->isAgg);
+ break;
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ StatCursor *pCsr = (StatCursor *)pCursor;
+ *pRowid = pCsr->iPageno;
+ return SQLITE_OK;
+}
+
+/*
+** Invoke this routine to register the "dbstat" virtual table module
+*/
+SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){
+ static sqlite3_module dbstat_module = {
+ 0, /* iVersion */
+ statConnect, /* xCreate */
+ statConnect, /* xConnect */
+ statBestIndex, /* xBestIndex */
+ statDisconnect, /* xDisconnect */
+ statDisconnect, /* xDestroy */
+ statOpen, /* xOpen - open a cursor */
+ statClose, /* xClose - close a cursor */
+ statFilter, /* xFilter - configure scan constraints */
+ statNext, /* xNext - advance a cursor */
+ statEof, /* xEof - check for end of scan */
+ statColumn, /* xColumn - read data */
+ statRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+ };
+ return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
+}
+#elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
+SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
+#endif /* SQLITE_ENABLE_DBSTAT_VTAB */
+
+/************** End of dbstat.c **********************************************/
+/************** Begin file dbpage.c ******************************************/
+/*
+** 2017-10-11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains an implementation of the "sqlite_dbpage" virtual table.
+**
+** The sqlite_dbpage virtual table is used to read or write whole raw
+** pages of the database file. The pager interface is used so that
+** uncommitted changes and changes recorded in the WAL file are correctly
+** retrieved.
+**
+** Usage example:
+**
+** SELECT data FROM sqlite_dbpage('aux1') WHERE pgno=123;
+**
+** This is an eponymous virtual table so it does not need to be created before
+** use. The optional argument to the sqlite_dbpage() table name is the
+** schema for the database file that is to be read. The default schema is
+** "main".
+**
+** The data field of sqlite_dbpage table can be updated. The new
+** value must be a BLOB which is the correct page size, otherwise the
+** update fails. Rows may not be deleted or inserted.
+*/
+
+/* #include "sqliteInt.h" ** Requires access to internal data structures ** */
+#if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
+ && !defined(SQLITE_OMIT_VIRTUALTABLE)
+
+typedef struct DbpageTable DbpageTable;
+typedef struct DbpageCursor DbpageCursor;
+
+struct DbpageCursor {
+ sqlite3_vtab_cursor base; /* Base class. Must be first */
+ int pgno; /* Current page number */
+ int mxPgno; /* Last page to visit on this scan */
+ Pager *pPager; /* Pager being read/written */
+ DbPage *pPage1; /* Page 1 of the database */
+ int iDb; /* Index of database to analyze */
+ int szPage; /* Size of each page in bytes */
+};
+
+struct DbpageTable {
+ sqlite3_vtab base; /* Base class. Must be first */
+ sqlite3 *db; /* The database */
+};
+
+/* Columns */
+#define DBPAGE_COLUMN_PGNO 0
+#define DBPAGE_COLUMN_DATA 1
+#define DBPAGE_COLUMN_SCHEMA 2
+
+
+
+/*
+** Connect to or create a dbpagevfs virtual table.
+*/
+static int dbpageConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ DbpageTable *pTab = 0;
+ int rc = SQLITE_OK;
+ (void)pAux;
+ (void)argc;
+ (void)argv;
+ (void)pzErr;
+
+ sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
+ sqlite3_vtab_config(db, SQLITE_VTAB_USES_ALL_SCHEMAS);
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE x(pgno INTEGER PRIMARY KEY, data BLOB, schema HIDDEN)");
+ if( rc==SQLITE_OK ){
+ pTab = (DbpageTable *)sqlite3_malloc64(sizeof(DbpageTable));
+ if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
+ }
+
+ assert( rc==SQLITE_OK || pTab==0 );
+ if( rc==SQLITE_OK ){
+ memset(pTab, 0, sizeof(DbpageTable));
+ pTab->db = db;
+ }
+
+ *ppVtab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** Disconnect from or destroy a dbpagevfs virtual table.
+*/
+static int dbpageDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** idxNum:
+**
+** 0 schema=main, full table scan
+** 1 schema=main, pgno=?1
+** 2 schema=?1, full table scan
+** 3 schema=?1, pgno=?2
+*/
+static int dbpageBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int i;
+ int iPlan = 0;
+ (void)tab;
+
+ /* If there is a schema= constraint, it must be honored. Report a
+ ** ridiculously large estimated cost if the schema= constraint is
+ ** unavailable
+ */
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i];
+ if( p->iColumn!=DBPAGE_COLUMN_SCHEMA ) continue;
+ if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
+ if( !p->usable ){
+ /* No solution. */
+ return SQLITE_CONSTRAINT;
+ }
+ iPlan = 2;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ break;
+ }
+
+ /* If we reach this point, it means that either there is no schema=
+ ** constraint (in which case we use the "main" schema) or else the
+ ** schema constraint was accepted. Lower the estimated cost accordingly
+ */
+ pIdxInfo->estimatedCost = 1.0e6;
+
+ /* Check for constraints against pgno */
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i];
+ if( p->usable && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
+ pIdxInfo->estimatedCost = 1.0;
+ pIdxInfo->aConstraintUsage[i].argvIndex = iPlan ? 2 : 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ iPlan |= 1;
+ break;
+ }
+ }
+ pIdxInfo->idxNum = iPlan;
+
+ if( pIdxInfo->nOrderBy>=1
+ && pIdxInfo->aOrderBy[0].iColumn<=0
+ && pIdxInfo->aOrderBy[0].desc==0
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Open a new dbpagevfs cursor.
+*/
+static int dbpageOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ DbpageCursor *pCsr;
+
+ pCsr = (DbpageCursor *)sqlite3_malloc64(sizeof(DbpageCursor));
+ if( pCsr==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }else{
+ memset(pCsr, 0, sizeof(DbpageCursor));
+ pCsr->base.pVtab = pVTab;
+ pCsr->pgno = -1;
+ }
+
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr;
+ return SQLITE_OK;
+}
+
+/*
+** Close a dbpagevfs cursor.
+*/
+static int dbpageClose(sqlite3_vtab_cursor *pCursor){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ if( pCsr->pPage1 ) sqlite3PagerUnrefPageOne(pCsr->pPage1);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+/*
+** Move a dbpagevfs cursor to the next entry in the file.
+*/
+static int dbpageNext(sqlite3_vtab_cursor *pCursor){
+ int rc = SQLITE_OK;
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ pCsr->pgno++;
+ return rc;
+}
+
+static int dbpageEof(sqlite3_vtab_cursor *pCursor){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ return pCsr->pgno > pCsr->mxPgno;
+}
+
+/*
+** idxNum:
+**
+** 0 schema=main, full table scan
+** 1 schema=main, pgno=?1
+** 2 schema=?1, full table scan
+** 3 schema=?1, pgno=?2
+**
+** idxStr is not used
+*/
+static int dbpageFilter(
+ sqlite3_vtab_cursor *pCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ DbpageTable *pTab = (DbpageTable *)pCursor->pVtab;
+ int rc;
+ sqlite3 *db = pTab->db;
+ Btree *pBt;
+
+ (void)idxStr;
+
+ /* Default setting is no rows of result */
+ pCsr->pgno = 1;
+ pCsr->mxPgno = 0;
+
+ if( idxNum & 2 ){
+ const char *zSchema;
+ assert( argc>=1 );
+ zSchema = (const char*)sqlite3_value_text(argv[0]);
+ pCsr->iDb = sqlite3FindDbName(db, zSchema);
+ if( pCsr->iDb<0 ) return SQLITE_OK;
+ }else{
+ pCsr->iDb = 0;
+ }
+ pBt = db->aDb[pCsr->iDb].pBt;
+ if( NEVER(pBt==0) ) return SQLITE_OK;
+ pCsr->pPager = sqlite3BtreePager(pBt);
+ pCsr->szPage = sqlite3BtreeGetPageSize(pBt);
+ pCsr->mxPgno = sqlite3BtreeLastPage(pBt);
+ if( idxNum & 1 ){
+ assert( argc>(idxNum>>1) );
+ pCsr->pgno = sqlite3_value_int(argv[idxNum>>1]);
+ if( pCsr->pgno<1 || pCsr->pgno>pCsr->mxPgno ){
+ pCsr->pgno = 1;
+ pCsr->mxPgno = 0;
+ }else{
+ pCsr->mxPgno = pCsr->pgno;
+ }
+ }else{
+ assert( pCsr->pgno==1 );
+ }
+ if( pCsr->pPage1 ) sqlite3PagerUnrefPageOne(pCsr->pPage1);
+ rc = sqlite3PagerGet(pCsr->pPager, 1, &pCsr->pPage1, 0);
+ return rc;
+}
+
+static int dbpageColumn(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite3_context *ctx,
+ int i
+){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ int rc = SQLITE_OK;
+ switch( i ){
+ case 0: { /* pgno */
+ sqlite3_result_int(ctx, pCsr->pgno);
+ break;
+ }
+ case 1: { /* data */
+ DbPage *pDbPage = 0;
+ if( pCsr->pgno==((PENDING_BYTE/pCsr->szPage)+1) ){
+ /* The pending byte page. Assume it is zeroed out. Attempting to
+ ** request this page from the page is an SQLITE_CORRUPT error. */
+ sqlite3_result_zeroblob(ctx, pCsr->szPage);
+ }else{
+ rc = sqlite3PagerGet(pCsr->pPager, pCsr->pgno, (DbPage**)&pDbPage, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_blob(ctx, sqlite3PagerGetData(pDbPage), pCsr->szPage,
+ SQLITE_TRANSIENT);
+ }
+ sqlite3PagerUnref(pDbPage);
+ }
+ break;
+ }
+ default: { /* schema */
+ sqlite3 *db = sqlite3_context_db_handle(ctx);
+ sqlite3_result_text(ctx, db->aDb[pCsr->iDb].zDbSName, -1, SQLITE_STATIC);
+ break;
+ }
+ }
+ return rc;
+}
+
+static int dbpageRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ DbpageCursor *pCsr = (DbpageCursor *)pCursor;
+ *pRowid = pCsr->pgno;
+ return SQLITE_OK;
+}
+
+static int dbpageUpdate(
+ sqlite3_vtab *pVtab,
+ int argc,
+ sqlite3_value **argv,
+ sqlite_int64 *pRowid
+){
+ DbpageTable *pTab = (DbpageTable *)pVtab;
+ Pgno pgno;
+ DbPage *pDbPage = 0;
+ int rc = SQLITE_OK;
+ char *zErr = 0;
+ const char *zSchema;
+ int iDb;
+ Btree *pBt;
+ Pager *pPager;
+ int szPage;
+
+ (void)pRowid;
+ if( pTab->db->flags & SQLITE_Defensive ){
+ zErr = "read-only";
+ goto update_fail;
+ }
+ if( argc==1 ){
+ zErr = "cannot delete";
+ goto update_fail;
+ }
+ pgno = sqlite3_value_int(argv[0]);
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL
+ || (Pgno)sqlite3_value_int(argv[1])!=pgno
+ ){
+ zErr = "cannot insert";
+ goto update_fail;
+ }
+ zSchema = (const char*)sqlite3_value_text(argv[4]);
+ iDb = ALWAYS(zSchema) ? sqlite3FindDbName(pTab->db, zSchema) : -1;
+ if( NEVER(iDb<0) ){
+ zErr = "no such schema";
+ goto update_fail;
+ }
+ pBt = pTab->db->aDb[iDb].pBt;
+ if( NEVER(pgno<1) || NEVER(pBt==0) || NEVER(pgno>sqlite3BtreeLastPage(pBt)) ){
+ zErr = "bad page number";
+ goto update_fail;
+ }
+ szPage = sqlite3BtreeGetPageSize(pBt);
+ if( sqlite3_value_type(argv[3])!=SQLITE_BLOB
+ || sqlite3_value_bytes(argv[3])!=szPage
+ ){
+ zErr = "bad page value";
+ goto update_fail;
+ }
+ pPager = sqlite3BtreePager(pBt);
+ rc = sqlite3PagerGet(pPager, pgno, (DbPage**)&pDbPage, 0);
+ if( rc==SQLITE_OK ){
+ const void *pData = sqlite3_value_blob(argv[3]);
+ assert( pData!=0 || pTab->db->mallocFailed );
+ if( pData
+ && (rc = sqlite3PagerWrite(pDbPage))==SQLITE_OK
+ ){
+ memcpy(sqlite3PagerGetData(pDbPage), pData, szPage);
+ }
+ }
+ sqlite3PagerUnref(pDbPage);
+ return rc;
+
+update_fail:
+ sqlite3_free(pVtab->zErrMsg);
+ pVtab->zErrMsg = sqlite3_mprintf("%s", zErr);
+ return SQLITE_ERROR;
+}
+
+/* Since we do not know in advance which database files will be
+** written by the sqlite_dbpage virtual table, start a write transaction
+** on them all.
+*/
+static int dbpageBegin(sqlite3_vtab *pVtab){
+ DbpageTable *pTab = (DbpageTable *)pVtab;
+ sqlite3 *db = pTab->db;
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ) (void)sqlite3BtreeBeginTrans(pBt, 1, 0);
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Invoke this routine to register the "dbpage" virtual table module
+*/
+SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){
+ static sqlite3_module dbpage_module = {
+ 0, /* iVersion */
+ dbpageConnect, /* xCreate */
+ dbpageConnect, /* xConnect */
+ dbpageBestIndex, /* xBestIndex */
+ dbpageDisconnect, /* xDisconnect */
+ dbpageDisconnect, /* xDestroy */
+ dbpageOpen, /* xOpen - open a cursor */
+ dbpageClose, /* xClose - close a cursor */
+ dbpageFilter, /* xFilter - configure scan constraints */
+ dbpageNext, /* xNext - advance a cursor */
+ dbpageEof, /* xEof - check for end of scan */
+ dbpageColumn, /* xColumn - read data */
+ dbpageRowid, /* xRowid - read data */
+ dbpageUpdate, /* xUpdate */
+ dbpageBegin, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+ };
+ return sqlite3_create_module(db, "sqlite_dbpage", &dbpage_module, 0);
+}
+#elif defined(SQLITE_ENABLE_DBPAGE_VTAB)
+SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){ return SQLITE_OK; }
+#endif /* SQLITE_ENABLE_DBSTAT_VTAB */
+
+/************** End of dbpage.c **********************************************/
+/************** Begin file sqlite3session.c **********************************/
+
+#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
+/* #include "sqlite3session.h" */
+/* #include <assert.h> */
+/* #include <string.h> */
+
+#ifndef SQLITE_AMALGAMATION
+/* # include "sqliteInt.h" */
+/* # include "vdbeInt.h" */
+#endif
+
+typedef struct SessionTable SessionTable;
+typedef struct SessionChange SessionChange;
+typedef struct SessionBuffer SessionBuffer;
+typedef struct SessionInput SessionInput;
+
+/*
+** Minimum chunk size used by streaming versions of functions.
+*/
+#ifndef SESSIONS_STRM_CHUNK_SIZE
+# ifdef SQLITE_TEST
+# define SESSIONS_STRM_CHUNK_SIZE 64
+# else
+# define SESSIONS_STRM_CHUNK_SIZE 1024
+# endif
+#endif
+
+#define SESSIONS_ROWID "_rowid_"
+
+static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE;
+
+typedef struct SessionHook SessionHook;
+struct SessionHook {
+ void *pCtx;
+ int (*xOld)(void*,int,sqlite3_value**);
+ int (*xNew)(void*,int,sqlite3_value**);
+ int (*xCount)(void*);
+ int (*xDepth)(void*);
+};
+
+/*
+** Session handle structure.
+*/
+struct sqlite3_session {
+ sqlite3 *db; /* Database handle session is attached to */
+ char *zDb; /* Name of database session is attached to */
+ int bEnableSize; /* True if changeset_size() enabled */
+ int bEnable; /* True if currently recording */
+ int bIndirect; /* True if all changes are indirect */
+ int bAutoAttach; /* True to auto-attach tables */
+ int bImplicitPK; /* True to handle tables with implicit PK */
+ int rc; /* Non-zero if an error has occurred */
+ void *pFilterCtx; /* First argument to pass to xTableFilter */
+ int (*xTableFilter)(void *pCtx, const char *zTab);
+ i64 nMalloc; /* Number of bytes of data allocated */
+ i64 nMaxChangesetSize;
+ sqlite3_value *pZeroBlob; /* Value containing X'' */
+ sqlite3_session *pNext; /* Next session object on same db. */
+ SessionTable *pTable; /* List of attached tables */
+ SessionHook hook; /* APIs to grab new and old data with */
+};
+
+/*
+** Instances of this structure are used to build strings or binary records.
+*/
+struct SessionBuffer {
+ u8 *aBuf; /* Pointer to changeset buffer */
+ int nBuf; /* Size of buffer aBuf */
+ int nAlloc; /* Size of allocation containing aBuf */
+};
+
+/*
+** An object of this type is used internally as an abstraction for
+** input data. Input data may be supplied either as a single large buffer
+** (e.g. sqlite3changeset_start()) or using a stream function (e.g.
+** sqlite3changeset_start_strm()).
+*/
+struct SessionInput {
+ int bNoDiscard; /* If true, do not discard in InputBuffer() */
+ int iCurrent; /* Offset in aData[] of current change */
+ int iNext; /* Offset in aData[] of next change */
+ u8 *aData; /* Pointer to buffer containing changeset */
+ int nData; /* Number of bytes in aData */
+
+ SessionBuffer buf; /* Current read buffer */
+ int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */
+ void *pIn; /* First argument to xInput */
+ int bEof; /* Set to true after xInput finished */
+};
+
+/*
+** Structure for changeset iterators.
+*/
+struct sqlite3_changeset_iter {
+ SessionInput in; /* Input buffer or stream */
+ SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */
+ int bPatchset; /* True if this is a patchset */
+ int bInvert; /* True to invert changeset */
+ int bSkipEmpty; /* Skip noop UPDATE changes */
+ int rc; /* Iterator error code */
+ sqlite3_stmt *pConflict; /* Points to conflicting row, if any */
+ char *zTab; /* Current table */
+ int nCol; /* Number of columns in zTab */
+ int op; /* Current operation */
+ int bIndirect; /* True if current change was indirect */
+ u8 *abPK; /* Primary key array */
+ sqlite3_value **apValue; /* old.* and new.* values */
+};
+
+/*
+** Each session object maintains a set of the following structures, one
+** for each table the session object is monitoring. The structures are
+** stored in a linked list starting at sqlite3_session.pTable.
+**
+** The keys of the SessionTable.aChange[] hash table are all rows that have
+** been modified in any way since the session object was attached to the
+** table.
+**
+** The data associated with each hash-table entry is a structure containing
+** a subset of the initial values that the modified row contained at the
+** start of the session. Or no initial values if the row was inserted.
+**
+** pDfltStmt:
+** This is only used by the sqlite3changegroup_xxx() APIs, not by
+** regular sqlite3_session objects. It is a SELECT statement that
+** selects the default value for each table column. For example,
+** if the table is
+**
+** CREATE TABLE xx(a DEFAULT 1, b, c DEFAULT 'abc')
+**
+** then this variable is the compiled version of:
+**
+** SELECT 1, NULL, 'abc'
+*/
+struct SessionTable {
+ SessionTable *pNext;
+ char *zName; /* Local name of table */
+ int nCol; /* Number of columns in table zName */
+ int bStat1; /* True if this is sqlite_stat1 */
+ int bRowid; /* True if this table uses rowid for PK */
+ const char **azCol; /* Column names */
+ const char **azDflt; /* Default value expressions */
+ u8 *abPK; /* Array of primary key flags */
+ int nEntry; /* Total number of entries in hash table */
+ int nChange; /* Size of apChange[] array */
+ SessionChange **apChange; /* Hash table buckets */
+ sqlite3_stmt *pDfltStmt;
+};
+
+/*
+** RECORD FORMAT:
+**
+** The following record format is similar to (but not compatible with) that
+** used in SQLite database files. This format is used as part of the
+** change-set binary format, and so must be architecture independent.
+**
+** Unlike the SQLite database record format, each field is self-contained -
+** there is no separation of header and data. Each field begins with a
+** single byte describing its type, as follows:
+**
+** 0x00: Undefined value.
+** 0x01: Integer value.
+** 0x02: Real value.
+** 0x03: Text value.
+** 0x04: Blob value.
+** 0x05: SQL NULL value.
+**
+** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT
+** and so on in sqlite3.h. For undefined and NULL values, the field consists
+** only of the single type byte. For other types of values, the type byte
+** is followed by:
+**
+** Text values:
+** A varint containing the number of bytes in the value (encoded using
+** UTF-8). Followed by a buffer containing the UTF-8 representation
+** of the text value. There is no nul terminator.
+**
+** Blob values:
+** A varint containing the number of bytes in the value, followed by
+** a buffer containing the value itself.
+**
+** Integer values:
+** An 8-byte big-endian integer value.
+**
+** Real values:
+** An 8-byte big-endian IEEE 754-2008 real value.
+**
+** Varint values are encoded in the same way as varints in the SQLite
+** record format.
+**
+** CHANGESET FORMAT:
+**
+** A changeset is a collection of DELETE, UPDATE and INSERT operations on
+** one or more tables. Operations on a single table are grouped together,
+** but may occur in any order (i.e. deletes, updates and inserts are all
+** mixed together).
+**
+** Each group of changes begins with a table header:
+**
+** 1 byte: Constant 0x54 (capital 'T')
+** Varint: Number of columns in the table.
+** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
+** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
+**
+** Followed by one or more changes to the table.
+**
+** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
+** 1 byte: The "indirect-change" flag.
+** old.* record: (delete and update only)
+** new.* record: (insert and update only)
+**
+** The "old.*" and "new.*" records, if present, are N field records in the
+** format described above under "RECORD FORMAT", where N is the number of
+** columns in the table. The i'th field of each record is associated with
+** the i'th column of the table, counting from left to right in the order
+** in which columns were declared in the CREATE TABLE statement.
+**
+** The new.* record that is part of each INSERT change contains the values
+** that make up the new row. Similarly, the old.* record that is part of each
+** DELETE change contains the values that made up the row that was deleted
+** from the database. In the changeset format, the records that are part
+** of INSERT or DELETE changes never contain any undefined (type byte 0x00)
+** fields.
+**
+** Within the old.* record associated with an UPDATE change, all fields
+** associated with table columns that are not PRIMARY KEY columns and are
+** not modified by the UPDATE change are set to "undefined". Other fields
+** are set to the values that made up the row before the UPDATE that the
+** change records took place. Within the new.* record, fields associated
+** with table columns modified by the UPDATE change contain the new
+** values. Fields associated with table columns that are not modified
+** are set to "undefined".
+**
+** PATCHSET FORMAT:
+**
+** A patchset is also a collection of changes. It is similar to a changeset,
+** but leaves undefined those fields that are not useful if no conflict
+** resolution is required when applying the changeset.
+**
+** Each group of changes begins with a table header:
+**
+** 1 byte: Constant 0x50 (capital 'P')
+** Varint: Number of columns in the table.
+** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
+** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
+**
+** Followed by one or more changes to the table.
+**
+** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
+** 1 byte: The "indirect-change" flag.
+** single record: (PK fields for DELETE, PK and modified fields for UPDATE,
+** full record for INSERT).
+**
+** As in the changeset format, each field of the single record that is part
+** of a patchset change is associated with the correspondingly positioned
+** table column, counting from left to right within the CREATE TABLE
+** statement.
+**
+** For a DELETE change, all fields within the record except those associated
+** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the
+** values identifying the row to delete.
+**
+** For an UPDATE change, all fields except those associated with PRIMARY KEY
+** columns and columns that are modified by the UPDATE are set to "undefined".
+** PRIMARY KEY fields contain the values identifying the table row to update,
+** and fields associated with modified columns contain the new column values.
+**
+** The records associated with INSERT changes are in the same format as for
+** changesets. It is not possible for a record associated with an INSERT
+** change to contain a field set to "undefined".
+**
+** REBASE BLOB FORMAT:
+**
+** A rebase blob may be output by sqlite3changeset_apply_v2() and its
+** streaming equivalent for use with the sqlite3_rebaser APIs to rebase
+** existing changesets. A rebase blob contains one entry for each conflict
+** resolved using either the OMIT or REPLACE strategies within the apply_v2()
+** call.
+**
+** The format used for a rebase blob is very similar to that used for
+** changesets. All entries related to a single table are grouped together.
+**
+** Each group of entries begins with a table header in changeset format:
+**
+** 1 byte: Constant 0x54 (capital 'T')
+** Varint: Number of columns in the table.
+** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
+** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
+**
+** Followed by one or more entries associated with the table.
+**
+** 1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09).
+** 1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT.
+** record: (in the record format defined above).
+**
+** In a rebase blob, the first field is set to SQLITE_INSERT if the change
+** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if
+** it was a DELETE. The second field is set to 0x01 if the conflict
+** resolution strategy was REPLACE, or 0x00 if it was OMIT.
+**
+** If the change that caused the conflict was a DELETE, then the single
+** record is a copy of the old.* record from the original changeset. If it
+** was an INSERT, then the single record is a copy of the new.* record. If
+** the conflicting change was an UPDATE, then the single record is a copy
+** of the new.* record with the PK fields filled in based on the original
+** old.* record.
+*/
+
+/*
+** For each row modified during a session, there exists a single instance of
+** this structure stored in a SessionTable.aChange[] hash table.
+*/
+struct SessionChange {
+ u8 op; /* One of UPDATE, DELETE, INSERT */
+ u8 bIndirect; /* True if this change is "indirect" */
+ u16 nRecordField; /* Number of fields in aRecord[] */
+ int nMaxSize; /* Max size of eventual changeset record */
+ int nRecord; /* Number of bytes in buffer aRecord[] */
+ u8 *aRecord; /* Buffer containing old.* record */
+ SessionChange *pNext; /* For hash-table collisions */
+};
+
+/*
+** Write a varint with value iVal into the buffer at aBuf. Return the
+** number of bytes written.
+*/
+static int sessionVarintPut(u8 *aBuf, int iVal){
+ return putVarint32(aBuf, iVal);
+}
+
+/*
+** Return the number of bytes required to store value iVal as a varint.
+*/
+static int sessionVarintLen(int iVal){
+ return sqlite3VarintLen(iVal);
+}
+
+/*
+** Read a varint value from aBuf[] into *piVal. Return the number of
+** bytes read.
+*/
+static int sessionVarintGet(const u8 *aBuf, int *piVal){
+ return getVarint32(aBuf, *piVal);
+}
+
+/* Load an unaligned and unsigned 32-bit integer */
+#define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
+
+/*
+** Read a 64-bit big-endian integer value from buffer aRec[]. Return
+** the value read.
+*/
+static sqlite3_int64 sessionGetI64(u8 *aRec){
+ u64 x = SESSION_UINT32(aRec);
+ u32 y = SESSION_UINT32(aRec+4);
+ x = (x<<32) + y;
+ return (sqlite3_int64)x;
+}
+
+/*
+** Write a 64-bit big-endian integer value to the buffer aBuf[].
+*/
+static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){
+ aBuf[0] = (i>>56) & 0xFF;
+ aBuf[1] = (i>>48) & 0xFF;
+ aBuf[2] = (i>>40) & 0xFF;
+ aBuf[3] = (i>>32) & 0xFF;
+ aBuf[4] = (i>>24) & 0xFF;
+ aBuf[5] = (i>>16) & 0xFF;
+ aBuf[6] = (i>> 8) & 0xFF;
+ aBuf[7] = (i>> 0) & 0xFF;
+}
+
+/*
+** This function is used to serialize the contents of value pValue (see
+** comment titled "RECORD FORMAT" above).
+**
+** If it is non-NULL, the serialized form of the value is written to
+** buffer aBuf. *pnWrite is set to the number of bytes written before
+** returning. Or, if aBuf is NULL, the only thing this function does is
+** set *pnWrite.
+**
+** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs
+** within a call to sqlite3_value_text() (may fail if the db is utf-16))
+** SQLITE_NOMEM is returned.
+*/
+static int sessionSerializeValue(
+ u8 *aBuf, /* If non-NULL, write serialized value here */
+ sqlite3_value *pValue, /* Value to serialize */
+ sqlite3_int64 *pnWrite /* IN/OUT: Increment by bytes written */
+){
+ int nByte; /* Size of serialized value in bytes */
+
+ if( pValue ){
+ int eType; /* Value type (SQLITE_NULL, TEXT etc.) */
+
+ eType = sqlite3_value_type(pValue);
+ if( aBuf ) aBuf[0] = eType;
+
+ switch( eType ){
+ case SQLITE_NULL:
+ nByte = 1;
+ break;
+
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ if( aBuf ){
+ /* TODO: SQLite does something special to deal with mixed-endian
+ ** floating point values (e.g. ARM7). This code probably should
+ ** too. */
+ u64 i;
+ if( eType==SQLITE_INTEGER ){
+ i = (u64)sqlite3_value_int64(pValue);
+ }else{
+ double r;
+ assert( sizeof(double)==8 && sizeof(u64)==8 );
+ r = sqlite3_value_double(pValue);
+ memcpy(&i, &r, 8);
+ }
+ sessionPutI64(&aBuf[1], i);
+ }
+ nByte = 9;
+ break;
+
+ default: {
+ u8 *z;
+ int n;
+ int nVarint;
+
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ if( eType==SQLITE_TEXT ){
+ z = (u8 *)sqlite3_value_text(pValue);
+ }else{
+ z = (u8 *)sqlite3_value_blob(pValue);
+ }
+ n = sqlite3_value_bytes(pValue);
+ if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
+ nVarint = sessionVarintLen(n);
+
+ if( aBuf ){
+ sessionVarintPut(&aBuf[1], n);
+ if( n>0 ) memcpy(&aBuf[nVarint + 1], z, n);
+ }
+
+ nByte = 1 + nVarint + n;
+ break;
+ }
+ }
+ }else{
+ nByte = 1;
+ if( aBuf ) aBuf[0] = '\0';
+ }
+
+ if( pnWrite ) *pnWrite += nByte;
+ return SQLITE_OK;
+}
+
+/*
+** Allocate and return a pointer to a buffer nByte bytes in size. If
+** pSession is not NULL, increase the sqlite3_session.nMalloc variable
+** by the number of bytes allocated.
+*/
+static void *sessionMalloc64(sqlite3_session *pSession, i64 nByte){
+ void *pRet = sqlite3_malloc64(nByte);
+ if( pSession ) pSession->nMalloc += sqlite3_msize(pRet);
+ return pRet;
+}
+
+/*
+** Free buffer pFree, which must have been allocated by an earlier
+** call to sessionMalloc64(). If pSession is not NULL, decrease the
+** sqlite3_session.nMalloc counter by the number of bytes freed.
+*/
+static void sessionFree(sqlite3_session *pSession, void *pFree){
+ if( pSession ) pSession->nMalloc -= sqlite3_msize(pFree);
+ sqlite3_free(pFree);
+}
+
+/*
+** This macro is used to calculate hash key values for data structures. In
+** order to use this macro, the entire data structure must be represented
+** as a series of unsigned integers. In order to calculate a hash-key value
+** for a data structure represented as three such integers, the macro may
+** then be used as follows:
+**
+** int hash_key_value;
+** hash_key_value = HASH_APPEND(0, <value 1>);
+** hash_key_value = HASH_APPEND(hash_key_value, <value 2>);
+** hash_key_value = HASH_APPEND(hash_key_value, <value 3>);
+**
+** In practice, the data structures this macro is used for are the primary
+** key values of modified rows.
+*/
+#define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add)
+
+/*
+** Append the hash of the 64-bit integer passed as the second argument to the
+** hash-key value passed as the first. Return the new hash-key value.
+*/
+static unsigned int sessionHashAppendI64(unsigned int h, i64 i){
+ h = HASH_APPEND(h, i & 0xFFFFFFFF);
+ return HASH_APPEND(h, (i>>32)&0xFFFFFFFF);
+}
+
+/*
+** Append the hash of the blob passed via the second and third arguments to
+** the hash-key value passed as the first. Return the new hash-key value.
+*/
+static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){
+ int i;
+ for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]);
+ return h;
+}
+
+/*
+** Append the hash of the data type passed as the second argument to the
+** hash-key value passed as the first. Return the new hash-key value.
+*/
+static unsigned int sessionHashAppendType(unsigned int h, int eType){
+ return HASH_APPEND(h, eType);
+}
+
+/*
+** This function may only be called from within a pre-update callback.
+** It calculates a hash based on the primary key values of the old.* or
+** new.* row currently available and, assuming no error occurs, writes it to
+** *piHash before returning. If the primary key contains one or more NULL
+** values, *pbNullPK is set to true before returning.
+**
+** If an error occurs, an SQLite error code is returned and the final values
+** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned
+** and the output variables are set as described above.
+*/
+static int sessionPreupdateHash(
+ sqlite3_session *pSession, /* Session object that owns pTab */
+ i64 iRowid,
+ SessionTable *pTab, /* Session table handle */
+ int bNew, /* True to hash the new.* PK */
+ int *piHash, /* OUT: Hash value */
+ int *pbNullPK /* OUT: True if there are NULL values in PK */
+){
+ unsigned int h = 0; /* Hash value to return */
+ int i; /* Used to iterate through columns */
+
+ if( pTab->bRowid ){
+ assert( pTab->nCol-1==pSession->hook.xCount(pSession->hook.pCtx) );
+ h = sessionHashAppendI64(h, iRowid);
+ }else{
+ assert( *pbNullPK==0 );
+ assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) );
+ for(i=0; i<pTab->nCol; i++){
+ if( pTab->abPK[i] ){
+ int rc;
+ int eType;
+ sqlite3_value *pVal;
+
+ if( bNew ){
+ rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal);
+ }else{
+ rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal);
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ eType = sqlite3_value_type(pVal);
+ h = sessionHashAppendType(h, eType);
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ i64 iVal;
+ if( eType==SQLITE_INTEGER ){
+ iVal = sqlite3_value_int64(pVal);
+ }else{
+ double rVal = sqlite3_value_double(pVal);
+ assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
+ memcpy(&iVal, &rVal, 8);
+ }
+ h = sessionHashAppendI64(h, iVal);
+ }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ const u8 *z;
+ int n;
+ if( eType==SQLITE_TEXT ){
+ z = (const u8 *)sqlite3_value_text(pVal);
+ }else{
+ z = (const u8 *)sqlite3_value_blob(pVal);
+ }
+ n = sqlite3_value_bytes(pVal);
+ if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
+ h = sessionHashAppendBlob(h, n, z);
+ }else{
+ assert( eType==SQLITE_NULL );
+ assert( pTab->bStat1==0 || i!=1 );
+ *pbNullPK = 1;
+ }
+ }
+ }
+ }
+
+ *piHash = (h % pTab->nChange);
+ return SQLITE_OK;
+}
+
+/*
+** The buffer that the argument points to contains a serialized SQL value.
+** Return the number of bytes of space occupied by the value (including
+** the type byte).
+*/
+static int sessionSerialLen(const u8 *a){
+ int e;
+ int n;
+ assert( a!=0 );
+ e = *a;
+ if( e==0 || e==0xFF ) return 1;
+ if( e==SQLITE_NULL ) return 1;
+ if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9;
+ return sessionVarintGet(&a[1], &n) + 1 + n;
+}
+
+/*
+** Based on the primary key values stored in change aRecord, calculate a
+** hash key. Assume the has table has nBucket buckets. The hash keys
+** calculated by this function are compatible with those calculated by
+** sessionPreupdateHash().
+**
+** The bPkOnly argument is non-zero if the record at aRecord[] is from
+** a patchset DELETE. In this case the non-PK fields are omitted entirely.
+*/
+static unsigned int sessionChangeHash(
+ SessionTable *pTab, /* Table handle */
+ int bPkOnly, /* Record consists of PK fields only */
+ u8 *aRecord, /* Change record */
+ int nBucket /* Assume this many buckets in hash table */
+){
+ unsigned int h = 0; /* Value to return */
+ int i; /* Used to iterate through columns */
+ u8 *a = aRecord; /* Used to iterate through change record */
+
+ for(i=0; i<pTab->nCol; i++){
+ int eType = *a;
+ int isPK = pTab->abPK[i];
+ if( bPkOnly && isPK==0 ) continue;
+
+ /* It is not possible for eType to be SQLITE_NULL here. The session
+ ** module does not record changes for rows with NULL values stored in
+ ** primary key columns. */
+ assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
+ || eType==SQLITE_TEXT || eType==SQLITE_BLOB
+ || eType==SQLITE_NULL || eType==0
+ );
+ assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) );
+
+ if( isPK ){
+ a++;
+ h = sessionHashAppendType(h, eType);
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ h = sessionHashAppendI64(h, sessionGetI64(a));
+ a += 8;
+ }else{
+ int n;
+ a += sessionVarintGet(a, &n);
+ h = sessionHashAppendBlob(h, n, a);
+ a += n;
+ }
+ }else{
+ a += sessionSerialLen(a);
+ }
+ }
+ return (h % nBucket);
+}
+
+/*
+** Arguments aLeft and aRight are pointers to change records for table pTab.
+** This function returns true if the two records apply to the same row (i.e.
+** have the same values stored in the primary key columns), or false
+** otherwise.
+*/
+static int sessionChangeEqual(
+ SessionTable *pTab, /* Table used for PK definition */
+ int bLeftPkOnly, /* True if aLeft[] contains PK fields only */
+ u8 *aLeft, /* Change record */
+ int bRightPkOnly, /* True if aRight[] contains PK fields only */
+ u8 *aRight /* Change record */
+){
+ u8 *a1 = aLeft; /* Cursor to iterate through aLeft */
+ u8 *a2 = aRight; /* Cursor to iterate through aRight */
+ int iCol; /* Used to iterate through table columns */
+
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( pTab->abPK[iCol] ){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+
+ if( n1!=n2 || memcmp(a1, a2, n1) ){
+ return 0;
+ }
+ a1 += n1;
+ a2 += n2;
+ }else{
+ if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1);
+ if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2);
+ }
+ }
+
+ return 1;
+}
+
+/*
+** Arguments aLeft and aRight both point to buffers containing change
+** records with nCol columns. This function "merges" the two records into
+** a single records which is written to the buffer at *paOut. *paOut is
+** then set to point to one byte after the last byte written before
+** returning.
+**
+** The merging of records is done as follows: For each column, if the
+** aRight record contains a value for the column, copy the value from
+** their. Otherwise, if aLeft contains a value, copy it. If neither
+** record contains a value for a given column, then neither does the
+** output record.
+*/
+static void sessionMergeRecord(
+ u8 **paOut,
+ int nCol,
+ u8 *aLeft,
+ u8 *aRight
+){
+ u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */
+ u8 *a2 = aRight; /* Cursor used to iterate through aRight */
+ u8 *aOut = *paOut; /* Output cursor */
+ int iCol; /* Used to iterate from 0 to nCol */
+
+ for(iCol=0; iCol<nCol; iCol++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( *a2 ){
+ memcpy(aOut, a2, n2);
+ aOut += n2;
+ }else{
+ memcpy(aOut, a1, n1);
+ aOut += n1;
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+
+ *paOut = aOut;
+}
+
+/*
+** This is a helper function used by sessionMergeUpdate().
+**
+** When this function is called, both *paOne and *paTwo point to a value
+** within a change record. Before it returns, both have been advanced so
+** as to point to the next value in the record.
+**
+** If, when this function is called, *paTwo points to a valid value (i.e.
+** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo
+** pointer is returned and *pnVal is set to the number of bytes in the
+** serialized value. Otherwise, a copy of *paOne is returned and *pnVal
+** set to the number of bytes in the value at *paOne. If *paOne points
+** to the "no value" placeholder, *pnVal is set to 1. In other words:
+**
+** if( *paTwo is valid ) return *paTwo;
+** return *paOne;
+**
+*/
+static u8 *sessionMergeValue(
+ u8 **paOne, /* IN/OUT: Left-hand buffer pointer */
+ u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */
+ int *pnVal /* OUT: Bytes in returned value */
+){
+ u8 *a1 = *paOne;
+ u8 *a2 = *paTwo;
+ u8 *pRet = 0;
+ int n1;
+
+ assert( a1 );
+ if( a2 ){
+ int n2 = sessionSerialLen(a2);
+ if( *a2 ){
+ *pnVal = n2;
+ pRet = a2;
+ }
+ *paTwo = &a2[n2];
+ }
+
+ n1 = sessionSerialLen(a1);
+ if( pRet==0 ){
+ *pnVal = n1;
+ pRet = a1;
+ }
+ *paOne = &a1[n1];
+
+ return pRet;
+}
+
+/*
+** This function is used by changeset_concat() to merge two UPDATE changes
+** on the same row.
+*/
+static int sessionMergeUpdate(
+ u8 **paOut, /* IN/OUT: Pointer to output buffer */
+ SessionTable *pTab, /* Table change pertains to */
+ int bPatchset, /* True if records are patchset records */
+ u8 *aOldRecord1, /* old.* record for first change */
+ u8 *aOldRecord2, /* old.* record for second change */
+ u8 *aNewRecord1, /* new.* record for first change */
+ u8 *aNewRecord2 /* new.* record for second change */
+){
+ u8 *aOld1 = aOldRecord1;
+ u8 *aOld2 = aOldRecord2;
+ u8 *aNew1 = aNewRecord1;
+ u8 *aNew2 = aNewRecord2;
+
+ u8 *aOut = *paOut;
+ int i;
+
+ if( bPatchset==0 ){
+ int bRequired = 0;
+
+ assert( aOldRecord1 && aNewRecord1 );
+
+ /* Write the old.* vector first. */
+ for(i=0; i<pTab->nCol; i++){
+ int nOld;
+ u8 *aOld;
+ int nNew;
+ u8 *aNew;
+
+ aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
+ aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
+ if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){
+ if( pTab->abPK[i]==0 ) bRequired = 1;
+ memcpy(aOut, aOld, nOld);
+ aOut += nOld;
+ }else{
+ *(aOut++) = '\0';
+ }
+ }
+
+ if( !bRequired ) return 0;
+ }
+
+ /* Write the new.* vector */
+ aOld1 = aOldRecord1;
+ aOld2 = aOldRecord2;
+ aNew1 = aNewRecord1;
+ aNew2 = aNewRecord2;
+ for(i=0; i<pTab->nCol; i++){
+ int nOld;
+ u8 *aOld;
+ int nNew;
+ u8 *aNew;
+
+ aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
+ aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
+ if( bPatchset==0
+ && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew)))
+ ){
+ *(aOut++) = '\0';
+ }else{
+ memcpy(aOut, aNew, nNew);
+ aOut += nNew;
+ }
+ }
+
+ *paOut = aOut;
+ return 1;
+}
+
+/*
+** This function is only called from within a pre-update-hook callback.
+** It determines if the current pre-update-hook change affects the same row
+** as the change stored in argument pChange. If so, it returns true. Otherwise
+** if the pre-update-hook does not affect the same row as pChange, it returns
+** false.
+*/
+static int sessionPreupdateEqual(
+ sqlite3_session *pSession, /* Session object that owns SessionTable */
+ i64 iRowid, /* Rowid value if pTab->bRowid */
+ SessionTable *pTab, /* Table associated with change */
+ SessionChange *pChange, /* Change to compare to */
+ int op /* Current pre-update operation */
+){
+ int iCol; /* Used to iterate through columns */
+ u8 *a = pChange->aRecord; /* Cursor used to scan change record */
+
+ if( pTab->bRowid ){
+ if( a[0]!=SQLITE_INTEGER ) return 0;
+ return sessionGetI64(&a[1])==iRowid;
+ }
+
+ assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE );
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( !pTab->abPK[iCol] ){
+ a += sessionSerialLen(a);
+ }else{
+ sqlite3_value *pVal; /* Value returned by preupdate_new/old */
+ int rc; /* Error code from preupdate_new/old */
+ int eType = *a++; /* Type of value from change record */
+
+ /* The following calls to preupdate_new() and preupdate_old() can not
+ ** fail. This is because they cache their return values, and by the
+ ** time control flows to here they have already been called once from
+ ** within sessionPreupdateHash(). The first two asserts below verify
+ ** this (that the method has already been called). */
+ if( op==SQLITE_INSERT ){
+ /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */
+ rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal);
+ }else{
+ /* assert( db->pPreUpdate->pUnpacked ); */
+ rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal);
+ }
+ assert( rc==SQLITE_OK );
+ (void)rc; /* Suppress warning about unused variable */
+ if( sqlite3_value_type(pVal)!=eType ) return 0;
+
+ /* A SessionChange object never has a NULL value in a PK column */
+ assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
+ || eType==SQLITE_BLOB || eType==SQLITE_TEXT
+ );
+
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ i64 iVal = sessionGetI64(a);
+ a += 8;
+ if( eType==SQLITE_INTEGER ){
+ if( sqlite3_value_int64(pVal)!=iVal ) return 0;
+ }else{
+ double rVal;
+ assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
+ memcpy(&rVal, &iVal, 8);
+ if( sqlite3_value_double(pVal)!=rVal ) return 0;
+ }
+ }else{
+ int n;
+ const u8 *z;
+ a += sessionVarintGet(a, &n);
+ if( sqlite3_value_bytes(pVal)!=n ) return 0;
+ if( eType==SQLITE_TEXT ){
+ z = sqlite3_value_text(pVal);
+ }else{
+ z = sqlite3_value_blob(pVal);
+ }
+ if( n>0 && memcmp(a, z, n) ) return 0;
+ a += n;
+ }
+ }
+ }
+
+ return 1;
+}
+
+/*
+** If required, grow the hash table used to store changes on table pTab
+** (part of the session pSession). If a fatal OOM error occurs, set the
+** session object to failed and return SQLITE_ERROR. Otherwise, return
+** SQLITE_OK.
+**
+** It is possible that a non-fatal OOM error occurs in this function. In
+** that case the hash-table does not grow, but SQLITE_OK is returned anyway.
+** Growing the hash table in this case is a performance optimization only,
+** it is not required for correct operation.
+*/
+static int sessionGrowHash(
+ sqlite3_session *pSession, /* For memory accounting. May be NULL */
+ int bPatchset,
+ SessionTable *pTab
+){
+ if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
+ int i;
+ SessionChange **apNew;
+ sqlite3_int64 nNew = 2*(sqlite3_int64)(pTab->nChange ? pTab->nChange : 128);
+
+ apNew = (SessionChange**)sessionMalloc64(
+ pSession, sizeof(SessionChange*) * nNew
+ );
+ if( apNew==0 ){
+ if( pTab->nChange==0 ){
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+ }
+ memset(apNew, 0, sizeof(SessionChange *) * nNew);
+
+ for(i=0; i<pTab->nChange; i++){
+ SessionChange *p;
+ SessionChange *pNext;
+ for(p=pTab->apChange[i]; p; p=pNext){
+ int bPkOnly = (p->op==SQLITE_DELETE && bPatchset);
+ int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew);
+ pNext = p->pNext;
+ p->pNext = apNew[iHash];
+ apNew[iHash] = p;
+ }
+ }
+
+ sessionFree(pSession, pTab->apChange);
+ pTab->nChange = nNew;
+ pTab->apChange = apNew;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** This function queries the database for the names of the columns of table
+** zThis, in schema zDb.
+**
+** Otherwise, if they are not NULL, variable *pnCol is set to the number
+** of columns in the database table and variable *pzTab is set to point to a
+** nul-terminated copy of the table name. *pazCol (if not NULL) is set to
+** point to an array of pointers to column names. And *pabPK (again, if not
+** NULL) is set to point to an array of booleans - true if the corresponding
+** column is part of the primary key.
+**
+** For example, if the table is declared as:
+**
+** CREATE TABLE tbl1(w, x DEFAULT 'abc', y, z, PRIMARY KEY(w, z));
+**
+** Then the five output variables are populated as follows:
+**
+** *pnCol = 4
+** *pzTab = "tbl1"
+** *pazCol = {"w", "x", "y", "z"}
+** *pazDflt = {NULL, 'abc', NULL, NULL}
+** *pabPK = {1, 0, 0, 1}
+**
+** All returned buffers are part of the same single allocation, which must
+** be freed using sqlite3_free() by the caller
+*/
+static int sessionTableInfo(
+ sqlite3_session *pSession, /* For memory accounting. May be NULL */
+ sqlite3 *db, /* Database connection */
+ const char *zDb, /* Name of attached database (e.g. "main") */
+ const char *zThis, /* Table name */
+ int *pnCol, /* OUT: number of columns */
+ const char **pzTab, /* OUT: Copy of zThis */
+ const char ***pazCol, /* OUT: Array of column names for table */
+ const char ***pazDflt, /* OUT: Array of default value expressions */
+ u8 **pabPK, /* OUT: Array of booleans - true for PK col */
+ int *pbRowid /* OUT: True if only PK is a rowid */
+){
+ char *zPragma;
+ sqlite3_stmt *pStmt;
+ int rc;
+ sqlite3_int64 nByte;
+ int nDbCol = 0;
+ int nThis;
+ int i;
+ u8 *pAlloc = 0;
+ char **azCol = 0;
+ char **azDflt = 0;
+ u8 *abPK = 0;
+ int bRowid = 0; /* Set to true to use rowid as PK */
+
+ assert( pazCol && pabPK );
+
+ *pazCol = 0;
+ *pabPK = 0;
+ *pnCol = 0;
+ if( pzTab ) *pzTab = 0;
+ if( pazDflt ) *pazDflt = 0;
+
+ nThis = sqlite3Strlen30(zThis);
+ if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){
+ rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ /* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */
+ zPragma = sqlite3_mprintf(
+ "SELECT 0, 'tbl', '', 0, '', 1 UNION ALL "
+ "SELECT 1, 'idx', '', 0, '', 2 UNION ALL "
+ "SELECT 2, 'stat', '', 0, '', 0"
+ );
+ }else if( rc==SQLITE_ERROR ){
+ zPragma = sqlite3_mprintf("");
+ }else{
+ return rc;
+ }
+ }else{
+ zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis);
+ }
+ if( !zPragma ){
+ return SQLITE_NOMEM;
+ }
+
+ rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0);
+ sqlite3_free(zPragma);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ nByte = nThis + 1;
+ bRowid = (pbRowid!=0);
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ nByte += sqlite3_column_bytes(pStmt, 1); /* name */
+ nByte += sqlite3_column_bytes(pStmt, 4); /* dflt_value */
+ nDbCol++;
+ if( sqlite3_column_int(pStmt, 5) ) bRowid = 0; /* pk */
+ }
+ if( nDbCol==0 ) bRowid = 0;
+ nDbCol += bRowid;
+ nByte += strlen(SESSIONS_ROWID);
+ rc = sqlite3_reset(pStmt);
+
+ if( rc==SQLITE_OK ){
+ nByte += nDbCol * (sizeof(const char *)*2 + sizeof(u8) + 1 + 1);
+ pAlloc = sessionMalloc64(pSession, nByte);
+ if( pAlloc==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pAlloc, 0, nByte);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ azCol = (char **)pAlloc;
+ azDflt = (char**)&azCol[nDbCol];
+ pAlloc = (u8 *)&azDflt[nDbCol];
+ abPK = (u8 *)pAlloc;
+ pAlloc = &abPK[nDbCol];
+ if( pzTab ){
+ memcpy(pAlloc, zThis, nThis+1);
+ *pzTab = (char *)pAlloc;
+ pAlloc += nThis+1;
+ }
+
+ i = 0;
+ if( bRowid ){
+ size_t nName = strlen(SESSIONS_ROWID);
+ memcpy(pAlloc, SESSIONS_ROWID, nName+1);
+ azCol[i] = (char*)pAlloc;
+ pAlloc += nName+1;
+ abPK[i] = 1;
+ i++;
+ }
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ int nName = sqlite3_column_bytes(pStmt, 1);
+ int nDflt = sqlite3_column_bytes(pStmt, 4);
+ const unsigned char *zName = sqlite3_column_text(pStmt, 1);
+ const unsigned char *zDflt = sqlite3_column_text(pStmt, 4);
+
+ if( zName==0 ) break;
+ memcpy(pAlloc, zName, nName+1);
+ azCol[i] = (char *)pAlloc;
+ pAlloc += nName+1;
+ if( zDflt ){
+ memcpy(pAlloc, zDflt, nDflt+1);
+ azDflt[i] = (char *)pAlloc;
+ pAlloc += nDflt+1;
+ }else{
+ azDflt[i] = 0;
+ }
+ abPK[i] = sqlite3_column_int(pStmt, 5);
+ i++;
+ }
+ rc = sqlite3_reset(pStmt);
+ }
+
+ /* If successful, populate the output variables. Otherwise, zero them and
+ ** free any allocation made. An error code will be returned in this case.
+ */
+ if( rc==SQLITE_OK ){
+ *pazCol = (const char**)azCol;
+ if( pazDflt ) *pazDflt = (const char**)azDflt;
+ *pabPK = abPK;
+ *pnCol = nDbCol;
+ }else{
+ sessionFree(pSession, azCol);
+ }
+ if( pbRowid ) *pbRowid = bRowid;
+ sqlite3_finalize(pStmt);
+ return rc;
+}
+
+/*
+** This function is called to initialize the SessionTable.nCol, azCol[]
+** abPK[] and azDflt[] members of SessionTable object pTab. If these
+** fields are already initilialized, this function is a no-op.
+**
+** If an error occurs, an error code is stored in sqlite3_session.rc and
+** non-zero returned. Or, if no error occurs but the table has no primary
+** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to
+** indicate that updates on this table should be ignored. SessionTable.abPK
+** is set to NULL in this case.
+*/
+static int sessionInitTable(
+ sqlite3_session *pSession, /* Optional session handle */
+ SessionTable *pTab, /* Table object to initialize */
+ sqlite3 *db, /* Database handle to read schema from */
+ const char *zDb /* Name of db - "main", "temp" etc. */
+){
+ int rc = SQLITE_OK;
+
+ if( pTab->nCol==0 ){
+ u8 *abPK;
+ assert( pTab->azCol==0 || pTab->abPK==0 );
+ rc = sessionTableInfo(pSession, db, zDb,
+ pTab->zName, &pTab->nCol, 0, &pTab->azCol, &pTab->azDflt, &abPK,
+ ((pSession==0 || pSession->bImplicitPK) ? &pTab->bRowid : 0)
+ );
+ if( rc==SQLITE_OK ){
+ int i;
+ for(i=0; i<pTab->nCol; i++){
+ if( abPK[i] ){
+ pTab->abPK = abPK;
+ break;
+ }
+ }
+ if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){
+ pTab->bStat1 = 1;
+ }
+
+ if( pSession && pSession->bEnableSize ){
+ pSession->nMaxChangesetSize += (
+ 1 + sessionVarintLen(pTab->nCol) + pTab->nCol + strlen(pTab->zName)+1
+ );
+ }
+ }
+ }
+
+ if( pSession ){
+ pSession->rc = rc;
+ return (rc || pTab->abPK==0);
+ }
+ return rc;
+}
+
+/*
+** Re-initialize table object pTab.
+*/
+static int sessionReinitTable(sqlite3_session *pSession, SessionTable *pTab){
+ int nCol = 0;
+ const char **azCol = 0;
+ const char **azDflt = 0;
+ u8 *abPK = 0;
+ int bRowid = 0;
+
+ assert( pSession->rc==SQLITE_OK );
+
+ pSession->rc = sessionTableInfo(pSession, pSession->db, pSession->zDb,
+ pTab->zName, &nCol, 0, &azCol, &azDflt, &abPK,
+ (pSession->bImplicitPK ? &bRowid : 0)
+ );
+ if( pSession->rc==SQLITE_OK ){
+ if( pTab->nCol>nCol || pTab->bRowid!=bRowid ){
+ pSession->rc = SQLITE_SCHEMA;
+ }else{
+ int ii;
+ int nOldCol = pTab->nCol;
+ for(ii=0; ii<nCol; ii++){
+ if( ii<pTab->nCol ){
+ if( pTab->abPK[ii]!=abPK[ii] ){
+ pSession->rc = SQLITE_SCHEMA;
+ }
+ }else if( abPK[ii] ){
+ pSession->rc = SQLITE_SCHEMA;
+ }
+ }
+
+ if( pSession->rc==SQLITE_OK ){
+ const char **a = pTab->azCol;
+ pTab->azCol = azCol;
+ pTab->nCol = nCol;
+ pTab->azDflt = azDflt;
+ pTab->abPK = abPK;
+ azCol = a;
+ }
+ if( pSession->bEnableSize ){
+ pSession->nMaxChangesetSize += (nCol - nOldCol);
+ pSession->nMaxChangesetSize += sessionVarintLen(nCol);
+ pSession->nMaxChangesetSize -= sessionVarintLen(nOldCol);
+ }
+ }
+ }
+
+ sqlite3_free((char*)azCol);
+ return pSession->rc;
+}
+
+/*
+** Session-change object (*pp) contains an old.* record with fewer than
+** nCol fields. This function updates it with the default values for
+** the missing fields.
+*/
+static void sessionUpdateOneChange(
+ sqlite3_session *pSession, /* For memory accounting */
+ int *pRc, /* IN/OUT: Error code */
+ SessionChange **pp, /* IN/OUT: Change object to update */
+ int nCol, /* Number of columns now in table */
+ sqlite3_stmt *pDflt /* SELECT <default-values...> */
+){
+ SessionChange *pOld = *pp;
+
+ while( pOld->nRecordField<nCol ){
+ SessionChange *pNew = 0;
+ int nByte = 0;
+ int nIncr = 0;
+ int iField = pOld->nRecordField;
+ int eType = sqlite3_column_type(pDflt, iField);
+ switch( eType ){
+ case SQLITE_NULL:
+ nIncr = 1;
+ break;
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ nIncr = 9;
+ break;
+ default: {
+ int n = sqlite3_column_bytes(pDflt, iField);
+ nIncr = 1 + sessionVarintLen(n) + n;
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ break;
+ }
+ }
+
+ nByte = nIncr + (sizeof(SessionChange) + pOld->nRecord);
+ pNew = sessionMalloc64(pSession, nByte);
+ if( pNew==0 ){
+ *pRc = SQLITE_NOMEM;
+ return;
+ }else{
+ memcpy(pNew, pOld, sizeof(SessionChange));
+ pNew->aRecord = (u8*)&pNew[1];
+ memcpy(pNew->aRecord, pOld->aRecord, pOld->nRecord);
+ pNew->aRecord[pNew->nRecord++] = (u8)eType;
+ switch( eType ){
+ case SQLITE_INTEGER: {
+ i64 iVal = sqlite3_column_int64(pDflt, iField);
+ sessionPutI64(&pNew->aRecord[pNew->nRecord], iVal);
+ pNew->nRecord += 8;
+ break;
+ }
+
+ case SQLITE_FLOAT: {
+ double rVal = sqlite3_column_double(pDflt, iField);
+ i64 iVal = 0;
+ memcpy(&iVal, &rVal, sizeof(rVal));
+ sessionPutI64(&pNew->aRecord[pNew->nRecord], iVal);
+ pNew->nRecord += 8;
+ break;
+ }
+
+ case SQLITE_TEXT: {
+ int n = sqlite3_column_bytes(pDflt, iField);
+ const char *z = (const char*)sqlite3_column_text(pDflt, iField);
+ pNew->nRecord += sessionVarintPut(&pNew->aRecord[pNew->nRecord], n);
+ memcpy(&pNew->aRecord[pNew->nRecord], z, n);
+ pNew->nRecord += n;
+ break;
+ }
+
+ case SQLITE_BLOB: {
+ int n = sqlite3_column_bytes(pDflt, iField);
+ const u8 *z = (const u8*)sqlite3_column_blob(pDflt, iField);
+ pNew->nRecord += sessionVarintPut(&pNew->aRecord[pNew->nRecord], n);
+ memcpy(&pNew->aRecord[pNew->nRecord], z, n);
+ pNew->nRecord += n;
+ break;
+ }
+
+ default:
+ assert( eType==SQLITE_NULL );
+ break;
+ }
+
+ sessionFree(pSession, pOld);
+ *pp = pOld = pNew;
+ pNew->nRecordField++;
+ pNew->nMaxSize += nIncr;
+ if( pSession ){
+ pSession->nMaxChangesetSize += nIncr;
+ }
+ }
+ }
+}
+
+/*
+** Ensure that there is room in the buffer to append nByte bytes of data.
+** If not, use sqlite3_realloc() to grow the buffer so that there is.
+**
+** If successful, return zero. Otherwise, if an OOM condition is encountered,
+** set *pRc to SQLITE_NOMEM and return non-zero.
+*/
+static int sessionBufferGrow(SessionBuffer *p, i64 nByte, int *pRc){
+#define SESSION_MAX_BUFFER_SZ (0x7FFFFF00 - 1)
+ i64 nReq = p->nBuf + nByte;
+ if( *pRc==SQLITE_OK && nReq>p->nAlloc ){
+ u8 *aNew;
+ i64 nNew = p->nAlloc ? p->nAlloc : 128;
+
+ do {
+ nNew = nNew*2;
+ }while( nNew<nReq );
+
+ /* The value of SESSION_MAX_BUFFER_SZ is copied from the implementation
+ ** of sqlite3_realloc64(). Allocations greater than this size in bytes
+ ** always fail. It is used here to ensure that this routine can always
+ ** allocate up to this limit - instead of up to the largest power of
+ ** two smaller than the limit. */
+ if( nNew>SESSION_MAX_BUFFER_SZ ){
+ nNew = SESSION_MAX_BUFFER_SZ;
+ if( nNew<nReq ){
+ *pRc = SQLITE_NOMEM;
+ return 1;
+ }
+ }
+
+ aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew);
+ if( 0==aNew ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ p->aBuf = aNew;
+ p->nAlloc = nNew;
+ }
+ }
+ return (*pRc!=SQLITE_OK);
+}
+
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a string to the buffer. All bytes in the string
+** up to (but not including) the nul-terminator are written to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendStr(
+ SessionBuffer *p,
+ const char *zStr,
+ int *pRc
+){
+ int nStr = sqlite3Strlen30(zStr);
+ if( 0==sessionBufferGrow(p, nStr+1, pRc) ){
+ memcpy(&p->aBuf[p->nBuf], zStr, nStr);
+ p->nBuf += nStr;
+ p->aBuf[p->nBuf] = 0x00;
+ }
+}
+
+/*
+** Format a string using printf() style formatting and then append it to the
+** buffer using sessionAppendString().
+*/
+static void sessionAppendPrintf(
+ SessionBuffer *p, /* Buffer to append to */
+ int *pRc,
+ const char *zFmt,
+ ...
+){
+ if( *pRc==SQLITE_OK ){
+ char *zApp = 0;
+ va_list ap;
+ va_start(ap, zFmt);
+ zApp = sqlite3_vmprintf(zFmt, ap);
+ if( zApp==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ sessionAppendStr(p, zApp, pRc);
+ }
+ va_end(ap);
+ sqlite3_free(zApp);
+ }
+}
+
+/*
+** Prepare a statement against database handle db that SELECTs a single
+** row containing the default values for each column in table pTab. For
+** example, if pTab is declared as:
+**
+** CREATE TABLE pTab(a PRIMARY KEY, b DEFAULT 123, c DEFAULT 'abcd');
+**
+** Then this function prepares and returns the SQL statement:
+**
+** SELECT NULL, 123, 'abcd';
+*/
+static int sessionPrepareDfltStmt(
+ sqlite3 *db, /* Database handle */
+ SessionTable *pTab, /* Table to prepare statement for */
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */
+){
+ SessionBuffer sql = {0,0,0};
+ int rc = SQLITE_OK;
+ const char *zSep = " ";
+ int ii = 0;
+
+ *ppStmt = 0;
+ sessionAppendPrintf(&sql, &rc, "SELECT");
+ for(ii=0; ii<pTab->nCol; ii++){
+ const char *zDflt = pTab->azDflt[ii] ? pTab->azDflt[ii] : "NULL";
+ sessionAppendPrintf(&sql, &rc, "%s%s", zSep, zDflt);
+ zSep = ", ";
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, (const char*)sql.aBuf, -1, ppStmt, 0);
+ }
+ sqlite3_free(sql.aBuf);
+
+ return rc;
+}
+
+/*
+** Table pTab has one or more existing change-records with old.* records
+** with fewer than pTab->nCol columns. This function updates all such
+** change-records with the default values for the missing columns.
+*/
+static int sessionUpdateChanges(sqlite3_session *pSession, SessionTable *pTab){
+ sqlite3_stmt *pStmt = 0;
+ int rc = pSession->rc;
+
+ rc = sessionPrepareDfltStmt(pSession->db, pTab, &pStmt);
+ if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ int ii = 0;
+ SessionChange **pp = 0;
+ for(ii=0; ii<pTab->nChange; ii++){
+ for(pp=&pTab->apChange[ii]; *pp; pp=&((*pp)->pNext)){
+ if( (*pp)->nRecordField!=pTab->nCol ){
+ sessionUpdateOneChange(pSession, &rc, pp, pTab->nCol, pStmt);
+ }
+ }
+ }
+ }
+
+ pSession->rc = rc;
+ rc = sqlite3_finalize(pStmt);
+ if( pSession->rc==SQLITE_OK ) pSession->rc = rc;
+ return pSession->rc;
+}
+
+/*
+** Versions of the four methods in object SessionHook for use with the
+** sqlite_stat1 table. The purpose of this is to substitute a zero-length
+** blob each time a NULL value is read from the "idx" column of the
+** sqlite_stat1 table.
+*/
+typedef struct SessionStat1Ctx SessionStat1Ctx;
+struct SessionStat1Ctx {
+ SessionHook hook;
+ sqlite3_session *pSession;
+};
+static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ sqlite3_value *pVal = 0;
+ int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal);
+ if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
+ pVal = p->pSession->pZeroBlob;
+ }
+ *ppVal = pVal;
+ return rc;
+}
+static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ sqlite3_value *pVal = 0;
+ int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal);
+ if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
+ pVal = p->pSession->pZeroBlob;
+ }
+ *ppVal = pVal;
+ return rc;
+}
+static int sessionStat1Count(void *pCtx){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ return p->hook.xCount(p->hook.pCtx);
+}
+static int sessionStat1Depth(void *pCtx){
+ SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
+ return p->hook.xDepth(p->hook.pCtx);
+}
+
+static int sessionUpdateMaxSize(
+ int op,
+ sqlite3_session *pSession, /* Session object pTab is attached to */
+ SessionTable *pTab, /* Table that change applies to */
+ SessionChange *pC /* Update pC->nMaxSize */
+){
+ i64 nNew = 2;
+ if( pC->op==SQLITE_INSERT ){
+ if( pTab->bRowid ) nNew += 9;
+ if( op!=SQLITE_DELETE ){
+ int ii;
+ for(ii=0; ii<pTab->nCol; ii++){
+ sqlite3_value *p = 0;
+ pSession->hook.xNew(pSession->hook.pCtx, ii, &p);
+ sessionSerializeValue(0, p, &nNew);
+ }
+ }
+ }else if( op==SQLITE_DELETE ){
+ nNew += pC->nRecord;
+ if( sqlite3_preupdate_blobwrite(pSession->db)>=0 ){
+ nNew += pC->nRecord;
+ }
+ }else{
+ int ii;
+ u8 *pCsr = pC->aRecord;
+ if( pTab->bRowid ){
+ nNew += 9 + 1;
+ pCsr += 9;
+ }
+ for(ii=pTab->bRowid; ii<pTab->nCol; ii++){
+ int bChanged = 1;
+ int nOld = 0;
+ int eType;
+ sqlite3_value *p = 0;
+ pSession->hook.xNew(pSession->hook.pCtx, ii-pTab->bRowid, &p);
+ if( p==0 ){
+ return SQLITE_NOMEM;
+ }
+
+ eType = *pCsr++;
+ switch( eType ){
+ case SQLITE_NULL:
+ bChanged = sqlite3_value_type(p)!=SQLITE_NULL;
+ break;
+
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER: {
+ if( eType==sqlite3_value_type(p) ){
+ sqlite3_int64 iVal = sessionGetI64(pCsr);
+ if( eType==SQLITE_INTEGER ){
+ bChanged = (iVal!=sqlite3_value_int64(p));
+ }else{
+ double dVal;
+ memcpy(&dVal, &iVal, 8);
+ bChanged = (dVal!=sqlite3_value_double(p));
+ }
+ }
+ nOld = 8;
+ pCsr += 8;
+ break;
+ }
+
+ default: {
+ int nByte;
+ nOld = sessionVarintGet(pCsr, &nByte);
+ pCsr += nOld;
+ nOld += nByte;
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ if( eType==sqlite3_value_type(p)
+ && nByte==sqlite3_value_bytes(p)
+ && (nByte==0 || 0==memcmp(pCsr, sqlite3_value_blob(p), nByte))
+ ){
+ bChanged = 0;
+ }
+ pCsr += nByte;
+ break;
+ }
+ }
+
+ if( bChanged && pTab->abPK[ii] ){
+ nNew = pC->nRecord + 2;
+ break;
+ }
+
+ if( bChanged ){
+ nNew += 1 + nOld;
+ sessionSerializeValue(0, p, &nNew);
+ }else if( pTab->abPK[ii] ){
+ nNew += 2 + nOld;
+ }else{
+ nNew += 2;
+ }
+ }
+ }
+
+ if( nNew>pC->nMaxSize ){
+ int nIncr = nNew - pC->nMaxSize;
+ pC->nMaxSize = nNew;
+ pSession->nMaxChangesetSize += nIncr;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is only called from with a pre-update-hook reporting a
+** change on table pTab (attached to session pSession). The type of change
+** (UPDATE, INSERT, DELETE) is specified by the first argument.
+**
+** Unless one is already present or an error occurs, an entry is added
+** to the changed-rows hash table associated with table pTab.
+*/
+static void sessionPreupdateOneChange(
+ int op, /* One of SQLITE_UPDATE, INSERT, DELETE */
+ i64 iRowid,
+ sqlite3_session *pSession, /* Session object pTab is attached to */
+ SessionTable *pTab /* Table that change applies to */
+){
+ int iHash;
+ int bNull = 0;
+ int rc = SQLITE_OK;
+ int nExpect = 0;
+ SessionStat1Ctx stat1 = {{0,0,0,0,0},0};
+
+ if( pSession->rc ) return;
+
+ /* Load table details if required */
+ if( sessionInitTable(pSession, pTab, pSession->db, pSession->zDb) ) return;
+
+ /* Check the number of columns in this xPreUpdate call matches the
+ ** number of columns in the table. */
+ nExpect = pSession->hook.xCount(pSession->hook.pCtx);
+ if( (pTab->nCol-pTab->bRowid)<nExpect ){
+ if( sessionReinitTable(pSession, pTab) ) return;
+ if( sessionUpdateChanges(pSession, pTab) ) return;
+ }
+ if( (pTab->nCol-pTab->bRowid)!=nExpect ){
+ pSession->rc = SQLITE_SCHEMA;
+ return;
+ }
+
+ /* Grow the hash table if required */
+ if( sessionGrowHash(pSession, 0, pTab) ){
+ pSession->rc = SQLITE_NOMEM;
+ return;
+ }
+
+ if( pTab->bStat1 ){
+ stat1.hook = pSession->hook;
+ stat1.pSession = pSession;
+ pSession->hook.pCtx = (void*)&stat1;
+ pSession->hook.xNew = sessionStat1New;
+ pSession->hook.xOld = sessionStat1Old;
+ pSession->hook.xCount = sessionStat1Count;
+ pSession->hook.xDepth = sessionStat1Depth;
+ if( pSession->pZeroBlob==0 ){
+ sqlite3_value *p = sqlite3ValueNew(0);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ goto error_out;
+ }
+ sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC);
+ pSession->pZeroBlob = p;
+ }
+ }
+
+ /* Calculate the hash-key for this change. If the primary key of the row
+ ** includes a NULL value, exit early. Such changes are ignored by the
+ ** session module. */
+ rc = sessionPreupdateHash(
+ pSession, iRowid, pTab, op==SQLITE_INSERT, &iHash, &bNull
+ );
+ if( rc!=SQLITE_OK ) goto error_out;
+
+ if( bNull==0 ){
+ /* Search the hash table for an existing record for this row. */
+ SessionChange *pC;
+ for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){
+ if( sessionPreupdateEqual(pSession, iRowid, pTab, pC, op) ) break;
+ }
+
+ if( pC==0 ){
+ /* Create a new change object containing all the old values (if
+ ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK
+ ** values (if this is an INSERT). */
+ sqlite3_int64 nByte; /* Number of bytes to allocate */
+ int i; /* Used to iterate through columns */
+
+ assert( rc==SQLITE_OK );
+ pTab->nEntry++;
+
+ /* Figure out how large an allocation is required */
+ nByte = sizeof(SessionChange);
+ for(i=0; i<(pTab->nCol-pTab->bRowid); i++){
+ sqlite3_value *p = 0;
+ if( op!=SQLITE_INSERT ){
+ TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p);
+ assert( trc==SQLITE_OK );
+ }else if( pTab->abPK[i] ){
+ TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p);
+ assert( trc==SQLITE_OK );
+ }
+
+ /* This may fail if SQLite value p contains a utf-16 string that must
+ ** be converted to utf-8 and an OOM error occurs while doing so. */
+ rc = sessionSerializeValue(0, p, &nByte);
+ if( rc!=SQLITE_OK ) goto error_out;
+ }
+ if( pTab->bRowid ){
+ nByte += 9; /* Size of rowid field - an integer */
+ }
+
+ /* Allocate the change object */
+ pC = (SessionChange*)sessionMalloc64(pSession, nByte);
+ if( !pC ){
+ rc = SQLITE_NOMEM;
+ goto error_out;
+ }else{
+ memset(pC, 0, sizeof(SessionChange));
+ pC->aRecord = (u8 *)&pC[1];
+ }
+
+ /* Populate the change object. None of the preupdate_old(),
+ ** preupdate_new() or SerializeValue() calls below may fail as all
+ ** required values and encodings have already been cached in memory.
+ ** It is not possible for an OOM to occur in this block. */
+ nByte = 0;
+ if( pTab->bRowid ){
+ pC->aRecord[0] = SQLITE_INTEGER;
+ sessionPutI64(&pC->aRecord[1], iRowid);
+ nByte = 9;
+ }
+ for(i=0; i<(pTab->nCol-pTab->bRowid); i++){
+ sqlite3_value *p = 0;
+ if( op!=SQLITE_INSERT ){
+ pSession->hook.xOld(pSession->hook.pCtx, i, &p);
+ }else if( pTab->abPK[i] ){
+ pSession->hook.xNew(pSession->hook.pCtx, i, &p);
+ }
+ sessionSerializeValue(&pC->aRecord[nByte], p, &nByte);
+ }
+
+ /* Add the change to the hash-table */
+ if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){
+ pC->bIndirect = 1;
+ }
+ pC->nRecordField = pTab->nCol;
+ pC->nRecord = nByte;
+ pC->op = op;
+ pC->pNext = pTab->apChange[iHash];
+ pTab->apChange[iHash] = pC;
+
+ }else if( pC->bIndirect ){
+ /* If the existing change is considered "indirect", but this current
+ ** change is "direct", mark the change object as direct. */
+ if( pSession->hook.xDepth(pSession->hook.pCtx)==0
+ && pSession->bIndirect==0
+ ){
+ pC->bIndirect = 0;
+ }
+ }
+
+ assert( rc==SQLITE_OK );
+ if( pSession->bEnableSize ){
+ rc = sessionUpdateMaxSize(op, pSession, pTab, pC);
+ }
+ }
+
+
+ /* If an error has occurred, mark the session object as failed. */
+ error_out:
+ if( pTab->bStat1 ){
+ pSession->hook = stat1.hook;
+ }
+ if( rc!=SQLITE_OK ){
+ pSession->rc = rc;
+ }
+}
+
+static int sessionFindTable(
+ sqlite3_session *pSession,
+ const char *zName,
+ SessionTable **ppTab
+){
+ int rc = SQLITE_OK;
+ int nName = sqlite3Strlen30(zName);
+ SessionTable *pRet;
+
+ /* Search for an existing table */
+ for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){
+ if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break;
+ }
+
+ if( pRet==0 && pSession->bAutoAttach ){
+ /* If there is a table-filter configured, invoke it. If it returns 0,
+ ** do not automatically add the new table. */
+ if( pSession->xTableFilter==0
+ || pSession->xTableFilter(pSession->pFilterCtx, zName)
+ ){
+ rc = sqlite3session_attach(pSession, zName);
+ if( rc==SQLITE_OK ){
+ pRet = pSession->pTable;
+ while( ALWAYS(pRet) && pRet->pNext ){
+ pRet = pRet->pNext;
+ }
+ assert( pRet!=0 );
+ assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) );
+ }
+ }
+ }
+
+ assert( rc==SQLITE_OK || pRet==0 );
+ *ppTab = pRet;
+ return rc;
+}
+
+/*
+** The 'pre-update' hook registered by this module with SQLite databases.
+*/
+static void xPreUpdate(
+ void *pCtx, /* Copy of third arg to preupdate_hook() */
+ sqlite3 *db, /* Database handle */
+ int op, /* SQLITE_UPDATE, DELETE or INSERT */
+ char const *zDb, /* Database name */
+ char const *zName, /* Table name */
+ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
+ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
+){
+ sqlite3_session *pSession;
+ int nDb = sqlite3Strlen30(zDb);
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ (void)iKey1;
+ (void)iKey2;
+
+ for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){
+ SessionTable *pTab;
+
+ /* If this session is attached to a different database ("main", "temp"
+ ** etc.), or if it is not currently enabled, there is nothing to do. Skip
+ ** to the next session object attached to this database. */
+ if( pSession->bEnable==0 ) continue;
+ if( pSession->rc ) continue;
+ if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue;
+
+ pSession->rc = sessionFindTable(pSession, zName, &pTab);
+ if( pTab ){
+ assert( pSession->rc==SQLITE_OK );
+ assert( op==SQLITE_UPDATE || iKey1==iKey2 );
+ sessionPreupdateOneChange(op, iKey1, pSession, pTab);
+ if( op==SQLITE_UPDATE ){
+ sessionPreupdateOneChange(SQLITE_INSERT, iKey2, pSession, pTab);
+ }
+ }
+ }
+}
+
+/*
+** The pre-update hook implementations.
+*/
+static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){
+ return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal);
+}
+static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){
+ return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal);
+}
+static int sessionPreupdateCount(void *pCtx){
+ return sqlite3_preupdate_count((sqlite3*)pCtx);
+}
+static int sessionPreupdateDepth(void *pCtx){
+ return sqlite3_preupdate_depth((sqlite3*)pCtx);
+}
+
+/*
+** Install the pre-update hooks on the session object passed as the only
+** argument.
+*/
+static void sessionPreupdateHooks(
+ sqlite3_session *pSession
+){
+ pSession->hook.pCtx = (void*)pSession->db;
+ pSession->hook.xOld = sessionPreupdateOld;
+ pSession->hook.xNew = sessionPreupdateNew;
+ pSession->hook.xCount = sessionPreupdateCount;
+ pSession->hook.xDepth = sessionPreupdateDepth;
+}
+
+typedef struct SessionDiffCtx SessionDiffCtx;
+struct SessionDiffCtx {
+ sqlite3_stmt *pStmt;
+ int bRowid;
+ int nOldOff;
+};
+
+/*
+** The diff hook implementations.
+*/
+static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){
+ SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
+ *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff+p->bRowid);
+ return SQLITE_OK;
+}
+static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){
+ SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
+ *ppVal = sqlite3_column_value(p->pStmt, iVal+p->bRowid);
+ return SQLITE_OK;
+}
+static int sessionDiffCount(void *pCtx){
+ SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
+ return (p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt)) - p->bRowid;
+}
+static int sessionDiffDepth(void *pCtx){
+ (void)pCtx;
+ return 0;
+}
+
+/*
+** Install the diff hooks on the session object passed as the only
+** argument.
+*/
+static void sessionDiffHooks(
+ sqlite3_session *pSession,
+ SessionDiffCtx *pDiffCtx
+){
+ pSession->hook.pCtx = (void*)pDiffCtx;
+ pSession->hook.xOld = sessionDiffOld;
+ pSession->hook.xNew = sessionDiffNew;
+ pSession->hook.xCount = sessionDiffCount;
+ pSession->hook.xDepth = sessionDiffDepth;
+}
+
+static char *sessionExprComparePK(
+ int nCol,
+ const char *zDb1, const char *zDb2,
+ const char *zTab,
+ const char **azCol, u8 *abPK
+){
+ int i;
+ const char *zSep = "";
+ char *zRet = 0;
+
+ for(i=0; i<nCol; i++){
+ if( abPK[i] ){
+ zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"",
+ zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
+ );
+ zSep = " AND ";
+ if( zRet==0 ) break;
+ }
+ }
+
+ return zRet;
+}
+
+static char *sessionExprCompareOther(
+ int nCol,
+ const char *zDb1, const char *zDb2,
+ const char *zTab,
+ const char **azCol, u8 *abPK
+){
+ int i;
+ const char *zSep = "";
+ char *zRet = 0;
+ int bHave = 0;
+
+ for(i=0; i<nCol; i++){
+ if( abPK[i]==0 ){
+ bHave = 1;
+ zRet = sqlite3_mprintf(
+ "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"",
+ zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
+ );
+ zSep = " OR ";
+ if( zRet==0 ) break;
+ }
+ }
+
+ if( bHave==0 ){
+ assert( zRet==0 );
+ zRet = sqlite3_mprintf("0");
+ }
+
+ return zRet;
+}
+
+static char *sessionSelectFindNew(
+ const char *zDb1, /* Pick rows in this db only */
+ const char *zDb2, /* But not in this one */
+ int bRowid,
+ const char *zTbl, /* Table name */
+ const char *zExpr
+){
+ const char *zSel = (bRowid ? SESSIONS_ROWID ", *" : "*");
+ char *zRet = sqlite3_mprintf(
+ "SELECT %s FROM \"%w\".\"%w\" WHERE NOT EXISTS ("
+ " SELECT 1 FROM \"%w\".\"%w\" WHERE %s"
+ ")",
+ zSel, zDb1, zTbl, zDb2, zTbl, zExpr
+ );
+ return zRet;
+}
+
+static int sessionDiffFindNew(
+ int op,
+ sqlite3_session *pSession,
+ SessionTable *pTab,
+ const char *zDb1,
+ const char *zDb2,
+ char *zExpr
+){
+ int rc = SQLITE_OK;
+ char *zStmt = sessionSelectFindNew(
+ zDb1, zDb2, pTab->bRowid, pTab->zName, zExpr
+ );
+
+ if( zStmt==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pStmt;
+ rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
+ if( rc==SQLITE_OK ){
+ SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
+ pDiffCtx->pStmt = pStmt;
+ pDiffCtx->nOldOff = 0;
+ pDiffCtx->bRowid = pTab->bRowid;
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iRowid = (pTab->bRowid ? sqlite3_column_int64(pStmt, 0) : 0);
+ sessionPreupdateOneChange(op, iRowid, pSession, pTab);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ sqlite3_free(zStmt);
+ }
+
+ return rc;
+}
+
+/*
+** Return a comma-separated list of the fully-qualified (with both database
+** and table name) column names from table pTab. e.g.
+**
+** "main"."t1"."a", "main"."t1"."b", "main"."t1"."c"
+*/
+static char *sessionAllCols(
+ const char *zDb,
+ SessionTable *pTab
+){
+ int ii;
+ char *zRet = 0;
+ for(ii=0; ii<pTab->nCol; ii++){
+ zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"",
+ zRet, (zRet ? ", " : ""), zDb, pTab->zName, pTab->azCol[ii]
+ );
+ if( !zRet ) break;
+ }
+ return zRet;
+}
+
+static int sessionDiffFindModified(
+ sqlite3_session *pSession,
+ SessionTable *pTab,
+ const char *zFrom,
+ const char *zExpr
+){
+ int rc = SQLITE_OK;
+
+ char *zExpr2 = sessionExprCompareOther(pTab->nCol,
+ pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK
+ );
+ if( zExpr2==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *z1 = sessionAllCols(pSession->zDb, pTab);
+ char *z2 = sessionAllCols(zFrom, pTab);
+ char *zStmt = sqlite3_mprintf(
+ "SELECT %s,%s FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)",
+ z1, z2, pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2
+ );
+ if( zStmt==0 || z1==0 || z2==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pStmt;
+ rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
+
+ if( rc==SQLITE_OK ){
+ SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
+ pDiffCtx->pStmt = pStmt;
+ pDiffCtx->nOldOff = pTab->nCol;
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iRowid = (pTab->bRowid ? sqlite3_column_int64(pStmt, 0) : 0);
+ sessionPreupdateOneChange(SQLITE_UPDATE, iRowid, pSession, pTab);
+ }
+ rc = sqlite3_finalize(pStmt);
+ }
+ }
+ sqlite3_free(zStmt);
+ sqlite3_free(z1);
+ sqlite3_free(z2);
+ }
+
+ return rc;
+}
+
+SQLITE_API int sqlite3session_diff(
+ sqlite3_session *pSession,
+ const char *zFrom,
+ const char *zTbl,
+ char **pzErrMsg
+){
+ const char *zDb = pSession->zDb;
+ int rc = pSession->rc;
+ SessionDiffCtx d;
+
+ memset(&d, 0, sizeof(d));
+ sessionDiffHooks(pSession, &d);
+
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ if( pzErrMsg ) *pzErrMsg = 0;
+ if( rc==SQLITE_OK ){
+ char *zExpr = 0;
+ sqlite3 *db = pSession->db;
+ SessionTable *pTo; /* Table zTbl */
+
+ /* Locate and if necessary initialize the target table object */
+ rc = sessionFindTable(pSession, zTbl, &pTo);
+ if( pTo==0 ) goto diff_out;
+ if( sessionInitTable(pSession, pTo, pSession->db, pSession->zDb) ){
+ rc = pSession->rc;
+ goto diff_out;
+ }
+
+ /* Check the table schemas match */
+ if( rc==SQLITE_OK ){
+ int bHasPk = 0;
+ int bMismatch = 0;
+ int nCol; /* Columns in zFrom.zTbl */
+ int bRowid = 0;
+ u8 *abPK;
+ const char **azCol = 0;
+ rc = sessionTableInfo(0, db, zFrom, zTbl, &nCol, 0, &azCol, 0, &abPK,
+ pSession->bImplicitPK ? &bRowid : 0
+ );
+ if( rc==SQLITE_OK ){
+ if( pTo->nCol!=nCol ){
+ bMismatch = 1;
+ }else{
+ int i;
+ for(i=0; i<nCol; i++){
+ if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1;
+ if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1;
+ if( abPK[i] ) bHasPk = 1;
+ }
+ }
+ }
+ sqlite3_free((char*)azCol);
+ if( bMismatch ){
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("table schemas do not match");
+ }
+ rc = SQLITE_SCHEMA;
+ }
+ if( bHasPk==0 ){
+ /* Ignore tables with no primary keys */
+ goto diff_out;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ zExpr = sessionExprComparePK(pTo->nCol,
+ zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK
+ );
+ }
+
+ /* Find new rows */
+ if( rc==SQLITE_OK ){
+ rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr);
+ }
+
+ /* Find old rows */
+ if( rc==SQLITE_OK ){
+ rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr);
+ }
+
+ /* Find modified rows */
+ if( rc==SQLITE_OK ){
+ rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr);
+ }
+
+ sqlite3_free(zExpr);
+ }
+
+ diff_out:
+ sessionPreupdateHooks(pSession);
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return rc;
+}
+
+/*
+** Create a session object. This session object will record changes to
+** database zDb attached to connection db.
+*/
+SQLITE_API int sqlite3session_create(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (e.g. "main") */
+ sqlite3_session **ppSession /* OUT: New session object */
+){
+ sqlite3_session *pNew; /* Newly allocated session object */
+ sqlite3_session *pOld; /* Session object already attached to db */
+ int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */
+
+ /* Zero the output value in case an error occurs. */
+ *ppSession = 0;
+
+ /* Allocate and populate the new session object. */
+ pNew = (sqlite3_session *)sqlite3_malloc64(sizeof(sqlite3_session) + nDb + 1);
+ if( !pNew ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(sqlite3_session));
+ pNew->db = db;
+ pNew->zDb = (char *)&pNew[1];
+ pNew->bEnable = 1;
+ memcpy(pNew->zDb, zDb, nDb+1);
+ sessionPreupdateHooks(pNew);
+
+ /* Add the new session object to the linked list of session objects
+ ** attached to database handle $db. Do this under the cover of the db
+ ** handle mutex. */
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+ pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew);
+ pNew->pNext = pOld;
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+
+ *ppSession = pNew;
+ return SQLITE_OK;
+}
+
+/*
+** Free the list of table objects passed as the first argument. The contents
+** of the changed-rows hash tables are also deleted.
+*/
+static void sessionDeleteTable(sqlite3_session *pSession, SessionTable *pList){
+ SessionTable *pNext;
+ SessionTable *pTab;
+
+ for(pTab=pList; pTab; pTab=pNext){
+ int i;
+ pNext = pTab->pNext;
+ for(i=0; i<pTab->nChange; i++){
+ SessionChange *p;
+ SessionChange *pNextChange;
+ for(p=pTab->apChange[i]; p; p=pNextChange){
+ pNextChange = p->pNext;
+ sessionFree(pSession, p);
+ }
+ }
+ sqlite3_finalize(pTab->pDfltStmt);
+ sessionFree(pSession, (char*)pTab->azCol); /* cast works around VC++ bug */
+ sessionFree(pSession, pTab->apChange);
+ sessionFree(pSession, pTab);
+ }
+}
+
+/*
+** Delete a session object previously allocated using sqlite3session_create().
+*/
+SQLITE_API void sqlite3session_delete(sqlite3_session *pSession){
+ sqlite3 *db = pSession->db;
+ sqlite3_session *pHead;
+ sqlite3_session **pp;
+
+ /* Unlink the session from the linked list of sessions attached to the
+ ** database handle. Hold the db mutex while doing so. */
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+ pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0);
+ for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){
+ if( (*pp)==pSession ){
+ *pp = (*pp)->pNext;
+ if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead);
+ break;
+ }
+ }
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+ sqlite3ValueFree(pSession->pZeroBlob);
+
+ /* Delete all attached table objects. And the contents of their
+ ** associated hash-tables. */
+ sessionDeleteTable(pSession, pSession->pTable);
+
+ /* Assert that all allocations have been freed and then free the
+ ** session object itself. */
+ // assert( pSession->nMalloc==0 );
+ sqlite3_free(pSession);
+}
+
+/*
+** Set a table filter on a Session Object.
+*/
+SQLITE_API void sqlite3session_table_filter(
+ sqlite3_session *pSession,
+ int(*xFilter)(void*, const char*),
+ void *pCtx /* First argument passed to xFilter */
+){
+ pSession->bAutoAttach = 1;
+ pSession->pFilterCtx = pCtx;
+ pSession->xTableFilter = xFilter;
+}
+
+/*
+** Attach a table to a session. All subsequent changes made to the table
+** while the session object is enabled will be recorded.
+**
+** Only tables that have a PRIMARY KEY defined may be attached. It does
+** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias)
+** or not.
+*/
+SQLITE_API int sqlite3session_attach(
+ sqlite3_session *pSession, /* Session object */
+ const char *zName /* Table name */
+){
+ int rc = SQLITE_OK;
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+
+ if( !zName ){
+ pSession->bAutoAttach = 1;
+ }else{
+ SessionTable *pTab; /* New table object (if required) */
+ int nName; /* Number of bytes in string zName */
+
+ /* First search for an existing entry. If one is found, this call is
+ ** a no-op. Return early. */
+ nName = sqlite3Strlen30(zName);
+ for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){
+ if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break;
+ }
+
+ if( !pTab ){
+ /* Allocate new SessionTable object. */
+ int nByte = sizeof(SessionTable) + nName + 1;
+ pTab = (SessionTable*)sessionMalloc64(pSession, nByte);
+ if( !pTab ){
+ rc = SQLITE_NOMEM;
+ }else{
+ /* Populate the new SessionTable object and link it into the list.
+ ** The new object must be linked onto the end of the list, not
+ ** simply added to the start of it in order to ensure that tables
+ ** appear in the correct order when a changeset or patchset is
+ ** eventually generated. */
+ SessionTable **ppTab;
+ memset(pTab, 0, sizeof(SessionTable));
+ pTab->zName = (char *)&pTab[1];
+ memcpy(pTab->zName, zName, nName+1);
+ for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext);
+ *ppTab = pTab;
+ }
+ }
+ }
+
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return rc;
+}
+
+/*
+** Append the value passed as the second argument to the buffer passed
+** as the first.
+**
+** This function is a no-op if *pRc is non-zero when it is called.
+** Otherwise, if an error occurs, *pRc is set to an SQLite error code
+** before returning.
+*/
+static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){
+ int rc = *pRc;
+ if( rc==SQLITE_OK ){
+ sqlite3_int64 nByte = 0;
+ rc = sessionSerializeValue(0, pVal, &nByte);
+ sessionBufferGrow(p, nByte, &rc);
+ if( rc==SQLITE_OK ){
+ rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0);
+ p->nBuf += nByte;
+ }else{
+ *pRc = rc;
+ }
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a single byte to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){
+ if( 0==sessionBufferGrow(p, 1, pRc) ){
+ p->aBuf[p->nBuf++] = v;
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a single varint to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){
+ if( 0==sessionBufferGrow(p, 9, pRc) ){
+ p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v);
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append a blob of data to the buffer.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendBlob(
+ SessionBuffer *p,
+ const u8 *aBlob,
+ int nBlob,
+ int *pRc
+){
+ if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){
+ memcpy(&p->aBuf[p->nBuf], aBlob, nBlob);
+ p->nBuf += nBlob;
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append the string representation of integer iVal
+** to the buffer. No nul-terminator is written.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendInteger(
+ SessionBuffer *p, /* Buffer to append to */
+ int iVal, /* Value to write the string rep. of */
+ int *pRc /* IN/OUT: Error code */
+){
+ char aBuf[24];
+ sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal);
+ sessionAppendStr(p, aBuf, pRc);
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwise, append the string zStr enclosed in quotes (") and
+** with any embedded quote characters escaped to the buffer. No
+** nul-terminator byte is written.
+**
+** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
+** returning.
+*/
+static void sessionAppendIdent(
+ SessionBuffer *p, /* Buffer to a append to */
+ const char *zStr, /* String to quote, escape and append */
+ int *pRc /* IN/OUT: Error code */
+){
+ int nStr = sqlite3Strlen30(zStr)*2 + 2 + 2;
+ if( 0==sessionBufferGrow(p, nStr, pRc) ){
+ char *zOut = (char *)&p->aBuf[p->nBuf];
+ const char *zIn = zStr;
+ *zOut++ = '"';
+ while( *zIn ){
+ if( *zIn=='"' ) *zOut++ = '"';
+ *zOut++ = *(zIn++);
+ }
+ *zOut++ = '"';
+ p->nBuf = (int)((u8 *)zOut - p->aBuf);
+ p->aBuf[p->nBuf] = 0x00;
+ }
+}
+
+/*
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. Otherwse, it appends the serialized version of the value stored
+** in column iCol of the row that SQL statement pStmt currently points
+** to to the buffer.
+*/
+static void sessionAppendCol(
+ SessionBuffer *p, /* Buffer to append to */
+ sqlite3_stmt *pStmt, /* Handle pointing to row containing value */
+ int iCol, /* Column to read value from */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==SQLITE_OK ){
+ int eType = sqlite3_column_type(pStmt, iCol);
+ sessionAppendByte(p, (u8)eType, pRc);
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ sqlite3_int64 i;
+ u8 aBuf[8];
+ if( eType==SQLITE_INTEGER ){
+ i = sqlite3_column_int64(pStmt, iCol);
+ }else{
+ double r = sqlite3_column_double(pStmt, iCol);
+ memcpy(&i, &r, 8);
+ }
+ sessionPutI64(aBuf, i);
+ sessionAppendBlob(p, aBuf, 8, pRc);
+ }
+ if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){
+ u8 *z;
+ int nByte;
+ if( eType==SQLITE_BLOB ){
+ z = (u8 *)sqlite3_column_blob(pStmt, iCol);
+ }else{
+ z = (u8 *)sqlite3_column_text(pStmt, iCol);
+ }
+ nByte = sqlite3_column_bytes(pStmt, iCol);
+ if( z || (eType==SQLITE_BLOB && nByte==0) ){
+ sessionAppendVarint(p, nByte, pRc);
+ sessionAppendBlob(p, z, nByte, pRc);
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ }
+}
+
+/*
+**
+** This function appends an update change to the buffer (see the comments
+** under "CHANGESET FORMAT" at the top of the file). An update change
+** consists of:
+**
+** 1 byte: SQLITE_UPDATE (0x17)
+** n bytes: old.* record (see RECORD FORMAT)
+** m bytes: new.* record (see RECORD FORMAT)
+**
+** The SessionChange object passed as the third argument contains the
+** values that were stored in the row when the session began (the old.*
+** values). The statement handle passed as the second argument points
+** at the current version of the row (the new.* values).
+**
+** If all of the old.* values are equal to their corresponding new.* value
+** (i.e. nothing has changed), then no data at all is appended to the buffer.
+**
+** Otherwise, the old.* record contains all primary key values and the
+** original values of any fields that have been modified. The new.* record
+** contains the new values of only those fields that have been modified.
+*/
+static int sessionAppendUpdate(
+ SessionBuffer *pBuf, /* Buffer to append to */
+ int bPatchset, /* True for "patchset", 0 for "changeset" */
+ sqlite3_stmt *pStmt, /* Statement handle pointing at new row */
+ SessionChange *p, /* Object containing old values */
+ u8 *abPK /* Boolean array - true for PK columns */
+){
+ int rc = SQLITE_OK;
+ SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */
+ int bNoop = 1; /* Set to zero if any values are modified */
+ int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */
+ int i; /* Used to iterate through columns */
+ u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */
+
+ assert( abPK!=0 );
+ sessionAppendByte(pBuf, SQLITE_UPDATE, &rc);
+ sessionAppendByte(pBuf, p->bIndirect, &rc);
+ for(i=0; i<sqlite3_column_count(pStmt); i++){
+ int bChanged = 0;
+ int nAdvance;
+ int eType = *pCsr;
+ switch( eType ){
+ case SQLITE_NULL:
+ nAdvance = 1;
+ if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
+ bChanged = 1;
+ }
+ break;
+
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER: {
+ nAdvance = 9;
+ if( eType==sqlite3_column_type(pStmt, i) ){
+ sqlite3_int64 iVal = sessionGetI64(&pCsr[1]);
+ if( eType==SQLITE_INTEGER ){
+ if( iVal==sqlite3_column_int64(pStmt, i) ) break;
+ }else{
+ double dVal;
+ memcpy(&dVal, &iVal, 8);
+ if( dVal==sqlite3_column_double(pStmt, i) ) break;
+ }
+ }
+ bChanged = 1;
+ break;
+ }
+
+ default: {
+ int n;
+ int nHdr = 1 + sessionVarintGet(&pCsr[1], &n);
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
+ nAdvance = nHdr + n;
+ if( eType==sqlite3_column_type(pStmt, i)
+ && n==sqlite3_column_bytes(pStmt, i)
+ && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n))
+ ){
+ break;
+ }
+ bChanged = 1;
+ }
+ }
+
+ /* If at least one field has been modified, this is not a no-op. */
+ if( bChanged ) bNoop = 0;
+
+ /* Add a field to the old.* record. This is omitted if this module is
+ ** currently generating a patchset. */
+ if( bPatchset==0 ){
+ if( bChanged || abPK[i] ){
+ sessionAppendBlob(pBuf, pCsr, nAdvance, &rc);
+ }else{
+ sessionAppendByte(pBuf, 0, &rc);
+ }
+ }
+
+ /* Add a field to the new.* record. Or the only record if currently
+ ** generating a patchset. */
+ if( bChanged || (bPatchset && abPK[i]) ){
+ sessionAppendCol(&buf2, pStmt, i, &rc);
+ }else{
+ sessionAppendByte(&buf2, 0, &rc);
+ }
+
+ pCsr += nAdvance;
+ }
+
+ if( bNoop ){
+ pBuf->nBuf = nRewind;
+ }else{
+ sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc);
+ }
+ sqlite3_free(buf2.aBuf);
+
+ return rc;
+}
+
+/*
+** Append a DELETE change to the buffer passed as the first argument. Use
+** the changeset format if argument bPatchset is zero, or the patchset
+** format otherwise.
+*/
+static int sessionAppendDelete(
+ SessionBuffer *pBuf, /* Buffer to append to */
+ int bPatchset, /* True for "patchset", 0 for "changeset" */
+ SessionChange *p, /* Object containing old values */
+ int nCol, /* Number of columns in table */
+ u8 *abPK /* Boolean array - true for PK columns */
+){
+ int rc = SQLITE_OK;
+
+ sessionAppendByte(pBuf, SQLITE_DELETE, &rc);
+ sessionAppendByte(pBuf, p->bIndirect, &rc);
+
+ if( bPatchset==0 ){
+ sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc);
+ }else{
+ int i;
+ u8 *a = p->aRecord;
+ for(i=0; i<nCol; i++){
+ u8 *pStart = a;
+ int eType = *a++;
+
+ switch( eType ){
+ case 0:
+ case SQLITE_NULL:
+ assert( abPK[i]==0 );
+ break;
+
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER:
+ a += 8;
+ break;
+
+ default: {
+ int n;
+ a += sessionVarintGet(a, &n);
+ a += n;
+ break;
+ }
+ }
+ if( abPK[i] ){
+ sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc);
+ }
+ }
+ assert( (a - p->aRecord)==p->nRecord );
+ }
+
+ return rc;
+}
+
+/*
+** Formulate and prepare a SELECT statement to retrieve a row from table
+** zTab in database zDb based on its primary key. i.e.
+**
+** SELECT *, <noop-test> FROM zDb.zTab WHERE (pk1, pk2,...) IS (?1, ?2,...)
+**
+** where <noop-test> is:
+**
+** 1 AND (?A OR ?1 IS <column>) AND ...
+**
+** for each non-pk <column>.
+*/
+static int sessionSelectStmt(
+ sqlite3 *db, /* Database handle */
+ int bIgnoreNoop,
+ const char *zDb, /* Database name */
+ const char *zTab, /* Table name */
+ int bRowid,
+ int nCol, /* Number of columns in table */
+ const char **azCol, /* Names of table columns */
+ u8 *abPK, /* PRIMARY KEY array */
+ sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */
+){
+ int rc = SQLITE_OK;
+ char *zSql = 0;
+ const char *zSep = "";
+ const char *zCols = bRowid ? SESSIONS_ROWID ", *" : "*";
+ int nSql = -1;
+ int i;
+
+ SessionBuffer nooptest = {0, 0, 0};
+ SessionBuffer pkfield = {0, 0, 0};
+ SessionBuffer pkvar = {0, 0, 0};
+
+ sessionAppendStr(&nooptest, ", 1", &rc);
+
+ if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){
+ sessionAppendStr(&nooptest, " AND (?6 OR ?3 IS stat)", &rc);
+ sessionAppendStr(&pkfield, "tbl, idx", &rc);
+ sessionAppendStr(&pkvar,
+ "?1, (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", &rc
+ );
+ zCols = "tbl, ?2, stat";
+ }else{
+ for(i=0; i<nCol; i++){
+ if( abPK[i] ){
+ sessionAppendStr(&pkfield, zSep, &rc);
+ sessionAppendStr(&pkvar, zSep, &rc);
+ zSep = ", ";
+ sessionAppendIdent(&pkfield, azCol[i], &rc);
+ sessionAppendPrintf(&pkvar, &rc, "?%d", i+1);
+ }else{
+ sessionAppendPrintf(&nooptest, &rc,
+ " AND (?%d OR ?%d IS %w.%w)", i+1+nCol, i+1, zTab, azCol[i]
+ );
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ zSql = sqlite3_mprintf(
+ "SELECT %s%s FROM %Q.%Q WHERE (%s) IS (%s)",
+ zCols, (bIgnoreNoop ? (char*)nooptest.aBuf : ""),
+ zDb, zTab, (char*)pkfield.aBuf, (char*)pkvar.aBuf
+ );
+ if( zSql==0 ) rc = SQLITE_NOMEM;
+ }
+
+#if 0
+ if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){
+ zSql = sqlite3_mprintf(
+ "SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND "
+ "idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb
+ );
+ if( zSql==0 ) rc = SQLITE_NOMEM;
+ }else{
+ const char *zSep = "";
+ SessionBuffer buf = {0, 0, 0};
+
+ sessionAppendStr(&buf, "SELECT * FROM ", &rc);
+ sessionAppendIdent(&buf, zDb, &rc);
+ sessionAppendStr(&buf, ".", &rc);
+ sessionAppendIdent(&buf, zTab, &rc);
+ sessionAppendStr(&buf, " WHERE ", &rc);
+ for(i=0; i<nCol; i++){
+ if( abPK[i] ){
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, azCol[i], &rc);
+ sessionAppendStr(&buf, " IS ?", &rc);
+ sessionAppendInteger(&buf, i+1, &rc);
+ zSep = " AND ";
+ }
+ }
+ zSql = (char*)buf.aBuf;
+ nSql = buf.nBuf;
+ }
+#endif
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0);
+ }
+ sqlite3_free(zSql);
+ sqlite3_free(nooptest.aBuf);
+ sqlite3_free(pkfield.aBuf);
+ sqlite3_free(pkvar.aBuf);
+ return rc;
+}
+
+/*
+** Bind the PRIMARY KEY values from the change passed in argument pChange
+** to the SELECT statement passed as the first argument. The SELECT statement
+** is as prepared by function sessionSelectStmt().
+**
+** Return SQLITE_OK if all PK values are successfully bound, or an SQLite
+** error code (e.g. SQLITE_NOMEM) otherwise.
+*/
+static int sessionSelectBind(
+ sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */
+ int nCol, /* Number of columns in table */
+ u8 *abPK, /* PRIMARY KEY array */
+ SessionChange *pChange /* Change structure */
+){
+ int i;
+ int rc = SQLITE_OK;
+ u8 *a = pChange->aRecord;
+
+ for(i=0; i<nCol && rc==SQLITE_OK; i++){
+ int eType = *a++;
+
+ switch( eType ){
+ case 0:
+ case SQLITE_NULL:
+ assert( abPK[i]==0 );
+ break;
+
+ case SQLITE_INTEGER: {
+ if( abPK[i] ){
+ i64 iVal = sessionGetI64(a);
+ rc = sqlite3_bind_int64(pSelect, i+1, iVal);
+ }
+ a += 8;
+ break;
+ }
+
+ case SQLITE_FLOAT: {
+ if( abPK[i] ){
+ double rVal;
+ i64 iVal = sessionGetI64(a);
+ memcpy(&rVal, &iVal, 8);
+ rc = sqlite3_bind_double(pSelect, i+1, rVal);
+ }
+ a += 8;
+ break;
+ }
+
+ case SQLITE_TEXT: {
+ int n;
+ a += sessionVarintGet(a, &n);
+ if( abPK[i] ){
+ rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT);
+ }
+ a += n;
+ break;
+ }
+
+ default: {
+ int n;
+ assert( eType==SQLITE_BLOB );
+ a += sessionVarintGet(a, &n);
+ if( abPK[i] ){
+ rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT);
+ }
+ a += n;
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is a no-op if *pRc is set to other than SQLITE_OK when it
+** is called. Otherwise, append a serialized table header (part of the binary
+** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an
+** SQLite error code before returning.
+*/
+static void sessionAppendTableHdr(
+ SessionBuffer *pBuf, /* Append header to this buffer */
+ int bPatchset, /* Use the patchset format if true */
+ SessionTable *pTab, /* Table object to append header for */
+ int *pRc /* IN/OUT: Error code */
+){
+ /* Write a table header */
+ sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc);
+ sessionAppendVarint(pBuf, pTab->nCol, pRc);
+ sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc);
+ sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc);
+}
+
+/*
+** Generate either a changeset (if argument bPatchset is zero) or a patchset
+** (if it is non-zero) based on the current contents of the session object
+** passed as the first argument.
+**
+** If no error occurs, SQLITE_OK is returned and the new changeset/patchset
+** stored in output variables *pnChangeset and *ppChangeset. Or, if an error
+** occurs, an SQLite error code is returned and both output variables set
+** to 0.
+*/
+static int sessionGenerateChangeset(
+ sqlite3_session *pSession, /* Session object */
+ int bPatchset, /* True for patchset, false for changeset */
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut, /* First argument for xOutput */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+){
+ sqlite3 *db = pSession->db; /* Source database handle */
+ SessionTable *pTab; /* Used to iterate through attached tables */
+ SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */
+ int rc; /* Return code */
+
+ assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0) );
+ assert( xOutput!=0 || (pnChangeset!=0 && ppChangeset!=0) );
+
+ /* Zero the output variables in case an error occurs. If this session
+ ** object is already in the error state (sqlite3_session.rc != SQLITE_OK),
+ ** this call will be a no-op. */
+ if( xOutput==0 ){
+ assert( pnChangeset!=0 && ppChangeset!=0 );
+ *pnChangeset = 0;
+ *ppChangeset = 0;
+ }
+
+ if( pSession->rc ) return pSession->rc;
+ rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+
+ for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
+ if( pTab->nEntry ){
+ const char *zName = pTab->zName;
+ int i; /* Used to iterate through hash buckets */
+ sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */
+ int nRewind = buf.nBuf; /* Initial size of write buffer */
+ int nNoop; /* Size of buffer after writing tbl header */
+ int nOldCol = pTab->nCol;
+
+ /* Check the table schema is still Ok. */
+ rc = sessionReinitTable(pSession, pTab);
+ if( rc==SQLITE_OK && pTab->nCol!=nOldCol ){
+ rc = sessionUpdateChanges(pSession, pTab);
+ }
+
+ /* Write a table header */
+ sessionAppendTableHdr(&buf, bPatchset, pTab, &rc);
+
+ /* Build and compile a statement to execute: */
+ if( rc==SQLITE_OK ){
+ rc = sessionSelectStmt(db, 0, pSession->zDb,
+ zName, pTab->bRowid, pTab->nCol, pTab->azCol, pTab->abPK, &pSel
+ );
+ }
+
+ nNoop = buf.nBuf;
+ for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){
+ SessionChange *p; /* Used to iterate through changes */
+
+ for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){
+ rc = sessionSelectBind(pSel, pTab->nCol, pTab->abPK, p);
+ if( rc!=SQLITE_OK ) continue;
+ if( sqlite3_step(pSel)==SQLITE_ROW ){
+ if( p->op==SQLITE_INSERT ){
+ int iCol;
+ sessionAppendByte(&buf, SQLITE_INSERT, &rc);
+ sessionAppendByte(&buf, p->bIndirect, &rc);
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ sessionAppendCol(&buf, pSel, iCol, &rc);
+ }
+ }else{
+ assert( pTab->abPK!=0 );
+ rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, pTab->abPK);
+ }
+ }else if( p->op!=SQLITE_INSERT ){
+ rc = sessionAppendDelete(&buf, bPatchset, p, pTab->nCol,pTab->abPK);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_reset(pSel);
+ }
+
+ /* If the buffer is now larger than sessions_strm_chunk_size, pass
+ ** its contents to the xOutput() callback. */
+ if( xOutput
+ && rc==SQLITE_OK
+ && buf.nBuf>nNoop
+ && buf.nBuf>sessions_strm_chunk_size
+ ){
+ rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
+ nNoop = -1;
+ buf.nBuf = 0;
+ }
+
+ }
+ }
+
+ sqlite3_finalize(pSel);
+ if( buf.nBuf==nNoop ){
+ buf.nBuf = nRewind;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( xOutput==0 ){
+ *pnChangeset = buf.nBuf;
+ *ppChangeset = buf.aBuf;
+ buf.aBuf = 0;
+ }else if( buf.nBuf>0 ){
+ rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
+ }
+ }
+
+ sqlite3_free(buf.aBuf);
+ sqlite3_exec(db, "RELEASE changeset", 0, 0, 0);
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+ return rc;
+}
+
+/*
+** Obtain a changeset object containing all changes recorded by the
+** session object passed as the first argument.
+**
+** It is the responsibility of the caller to eventually free the buffer
+** using sqlite3_free().
+*/
+SQLITE_API int sqlite3session_changeset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+){
+ int rc;
+
+ if( pnChangeset==0 || ppChangeset==0 ) return SQLITE_MISUSE;
+ rc = sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset);
+ assert( rc || pnChangeset==0
+ || pSession->bEnableSize==0 || *pnChangeset<=pSession->nMaxChangesetSize
+ );
+ return rc;
+}
+
+/*
+** Streaming version of sqlite3session_changeset().
+*/
+SQLITE_API int sqlite3session_changeset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ if( xOutput==0 ) return SQLITE_MISUSE;
+ return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0);
+}
+
+/*
+** Streaming version of sqlite3session_patchset().
+*/
+SQLITE_API int sqlite3session_patchset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ if( xOutput==0 ) return SQLITE_MISUSE;
+ return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0);
+}
+
+/*
+** Obtain a patchset object containing all changes recorded by the
+** session object passed as the first argument.
+**
+** It is the responsibility of the caller to eventually free the buffer
+** using sqlite3_free().
+*/
+SQLITE_API int sqlite3session_patchset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppPatchset /* OUT: Buffer containing changeset */
+){
+ if( pnPatchset==0 || ppPatchset==0 ) return SQLITE_MISUSE;
+ return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset);
+}
+
+/*
+** Enable or disable the session object passed as the first argument.
+*/
+SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable){
+ int ret;
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ if( bEnable>=0 ){
+ pSession->bEnable = bEnable;
+ }
+ ret = pSession->bEnable;
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return ret;
+}
+
+/*
+** Enable or disable the session object passed as the first argument.
+*/
+SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){
+ int ret;
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ if( bIndirect>=0 ){
+ pSession->bIndirect = bIndirect;
+ }
+ ret = pSession->bIndirect;
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+ return ret;
+}
+
+/*
+** Return true if there have been no changes to monitored tables recorded
+** by the session object passed as the only argument.
+*/
+SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession){
+ int ret = 0;
+ SessionTable *pTab;
+
+ sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
+ for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){
+ ret = (pTab->nEntry>0);
+ }
+ sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
+
+ return (ret==0);
+}
+
+/*
+** Return the amount of heap memory in use.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession){
+ return pSession->nMalloc;
+}
+
+/*
+** Configure the session object passed as the first argument.
+*/
+SQLITE_API int sqlite3session_object_config(sqlite3_session *pSession, int op, void *pArg){
+ int rc = SQLITE_OK;
+ switch( op ){
+ case SQLITE_SESSION_OBJCONFIG_SIZE: {
+ int iArg = *(int*)pArg;
+ if( iArg>=0 ){
+ if( pSession->pTable ){
+ rc = SQLITE_MISUSE;
+ }else{
+ pSession->bEnableSize = (iArg!=0);
+ }
+ }
+ *(int*)pArg = pSession->bEnableSize;
+ break;
+ }
+
+ case SQLITE_SESSION_OBJCONFIG_ROWID: {
+ int iArg = *(int*)pArg;
+ if( iArg>=0 ){
+ if( pSession->pTable ){
+ rc = SQLITE_MISUSE;
+ }else{
+ pSession->bImplicitPK = (iArg!=0);
+ }
+ }
+ *(int*)pArg = pSession->bImplicitPK;
+ break;
+ }
+
+ default:
+ rc = SQLITE_MISUSE;
+ }
+
+ return rc;
+}
+
+/*
+** Return the maximum size of sqlite3session_changeset() output.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession){
+ return pSession->nMaxChangesetSize;
+}
+
+/*
+** Do the work for either sqlite3changeset_start() or start_strm().
+*/
+static int sessionChangesetStart(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int nChangeset, /* Size of buffer pChangeset in bytes */
+ void *pChangeset, /* Pointer to buffer containing changeset */
+ int bInvert, /* True to invert changeset */
+ int bSkipEmpty /* True to skip empty UPDATE changes */
+){
+ sqlite3_changeset_iter *pRet; /* Iterator to return */
+ int nByte; /* Number of bytes to allocate for iterator */
+
+ assert( xInput==0 || (pChangeset==0 && nChangeset==0) );
+
+ /* Zero the output variable in case an error occurs. */
+ *pp = 0;
+
+ /* Allocate and initialize the iterator structure. */
+ nByte = sizeof(sqlite3_changeset_iter);
+ pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
+ if( !pRet ) return SQLITE_NOMEM;
+ memset(pRet, 0, sizeof(sqlite3_changeset_iter));
+ pRet->in.aData = (u8 *)pChangeset;
+ pRet->in.nData = nChangeset;
+ pRet->in.xInput = xInput;
+ pRet->in.pIn = pIn;
+ pRet->in.bEof = (xInput ? 0 : 1);
+ pRet->bInvert = bInvert;
+ pRet->bSkipEmpty = bSkipEmpty;
+
+ /* Populate the output variable and return success. */
+ *pp = pRet;
+ return SQLITE_OK;
+}
+
+/*
+** Create an iterator used to iterate through the contents of a changeset.
+*/
+SQLITE_API int sqlite3changeset_start(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int nChangeset, /* Size of buffer pChangeset in bytes */
+ void *pChangeset /* Pointer to buffer containing changeset */
+){
+ return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0, 0);
+}
+SQLITE_API int sqlite3changeset_start_v2(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int nChangeset, /* Size of buffer pChangeset in bytes */
+ void *pChangeset, /* Pointer to buffer containing changeset */
+ int flags
+){
+ int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
+ return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert, 0);
+}
+
+/*
+** Streaming version of sqlite3changeset_start().
+*/
+SQLITE_API int sqlite3changeset_start_strm(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+){
+ return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0, 0);
+}
+SQLITE_API int sqlite3changeset_start_v2_strm(
+ sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int flags
+){
+ int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
+ return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert, 0);
+}
+
+/*
+** If the SessionInput object passed as the only argument is a streaming
+** object and the buffer is full, discard some data to free up space.
+*/
+static void sessionDiscardData(SessionInput *pIn){
+ if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){
+ int nMove = pIn->buf.nBuf - pIn->iNext;
+ assert( nMove>=0 );
+ if( nMove>0 ){
+ memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove);
+ }
+ pIn->buf.nBuf -= pIn->iNext;
+ pIn->iNext = 0;
+ pIn->nData = pIn->buf.nBuf;
+ }
+}
+
+/*
+** Ensure that there are at least nByte bytes available in the buffer. Or,
+** if there are not nByte bytes remaining in the input, that all available
+** data is in the buffer.
+**
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+static int sessionInputBuffer(SessionInput *pIn, int nByte){
+ int rc = SQLITE_OK;
+ if( pIn->xInput ){
+ while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){
+ int nNew = sessions_strm_chunk_size;
+
+ if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn);
+ if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){
+ rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew);
+ if( nNew==0 ){
+ pIn->bEof = 1;
+ }else{
+ pIn->buf.nBuf += nNew;
+ }
+ }
+
+ pIn->aData = pIn->buf.aBuf;
+ pIn->nData = pIn->buf.nBuf;
+ }
+ }
+ return rc;
+}
+
+/*
+** When this function is called, *ppRec points to the start of a record
+** that contains nCol values. This function advances the pointer *ppRec
+** until it points to the byte immediately following that record.
+*/
+static void sessionSkipRecord(
+ u8 **ppRec, /* IN/OUT: Record pointer */
+ int nCol /* Number of values in record */
+){
+ u8 *aRec = *ppRec;
+ int i;
+ for(i=0; i<nCol; i++){
+ int eType = *aRec++;
+ if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ int nByte;
+ aRec += sessionVarintGet((u8*)aRec, &nByte);
+ aRec += nByte;
+ }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ aRec += 8;
+ }
+ }
+
+ *ppRec = aRec;
+}
+
+/*
+** This function sets the value of the sqlite3_value object passed as the
+** first argument to a copy of the string or blob held in the aData[]
+** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM
+** error occurs.
+*/
+static int sessionValueSetStr(
+ sqlite3_value *pVal, /* Set the value of this object */
+ u8 *aData, /* Buffer containing string or blob data */
+ int nData, /* Size of buffer aData[] in bytes */
+ u8 enc /* String encoding (0 for blobs) */
+){
+ /* In theory this code could just pass SQLITE_TRANSIENT as the final
+ ** argument to sqlite3ValueSetStr() and have the copy created
+ ** automatically. But doing so makes it difficult to detect any OOM
+ ** error. Hence the code to create the copy externally. */
+ u8 *aCopy = sqlite3_malloc64((sqlite3_int64)nData+1);
+ if( aCopy==0 ) return SQLITE_NOMEM;
+ memcpy(aCopy, aData, nData);
+ sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free);
+ return SQLITE_OK;
+}
+
+/*
+** Deserialize a single record from a buffer in memory. See "RECORD FORMAT"
+** for details.
+**
+** When this function is called, *paChange points to the start of the record
+** to deserialize. Assuming no error occurs, *paChange is set to point to
+** one byte after the end of the same record before this function returns.
+** If the argument abPK is NULL, then the record contains nCol values. Or,
+** if abPK is other than NULL, then the record contains only the PK fields
+** (in other words, it is a patchset DELETE record).
+**
+** If successful, each element of the apOut[] array (allocated by the caller)
+** is set to point to an sqlite3_value object containing the value read
+** from the corresponding position in the record. If that value is not
+** included in the record (i.e. because the record is part of an UPDATE change
+** and the field was not modified), the corresponding element of apOut[] is
+** set to NULL.
+**
+** It is the responsibility of the caller to free all sqlite_value structures
+** using sqlite3_free().
+**
+** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
+** The apOut[] array may have been partially populated in this case.
+*/
+static int sessionReadRecord(
+ SessionInput *pIn, /* Input data */
+ int nCol, /* Number of values in record */
+ u8 *abPK, /* Array of primary key flags, or NULL */
+ sqlite3_value **apOut, /* Write values to this array */
+ int *pbEmpty
+){
+ int i; /* Used to iterate through columns */
+ int rc = SQLITE_OK;
+
+ assert( pbEmpty==0 || *pbEmpty==0 );
+ if( pbEmpty ) *pbEmpty = 1;
+ for(i=0; i<nCol && rc==SQLITE_OK; i++){
+ int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */
+ if( abPK && abPK[i]==0 ) continue;
+ rc = sessionInputBuffer(pIn, 9);
+ if( rc==SQLITE_OK ){
+ if( pIn->iNext>=pIn->nData ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ eType = pIn->aData[pIn->iNext++];
+ assert( apOut[i]==0 );
+ if( eType ){
+ if( pbEmpty ) *pbEmpty = 0;
+ apOut[i] = sqlite3ValueNew(0);
+ if( !apOut[i] ) rc = SQLITE_NOMEM;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ u8 *aVal = &pIn->aData[pIn->iNext];
+ if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ int nByte;
+ pIn->iNext += sessionVarintGet(aVal, &nByte);
+ rc = sessionInputBuffer(pIn, nByte);
+ if( rc==SQLITE_OK ){
+ if( nByte<0 || nByte>pIn->nData-pIn->iNext ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0);
+ rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc);
+ pIn->iNext += nByte;
+ }
+ }
+ }
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ if( (pIn->nData-pIn->iNext)<8 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ sqlite3_int64 v = sessionGetI64(aVal);
+ if( eType==SQLITE_INTEGER ){
+ sqlite3VdbeMemSetInt64(apOut[i], v);
+ }else{
+ double d;
+ memcpy(&d, &v, 8);
+ sqlite3VdbeMemSetDouble(apOut[i], d);
+ }
+ pIn->iNext += 8;
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The input pointer currently points to the second byte of a table-header.
+** Specifically, to the following:
+**
+** + number of columns in table (varint)
+** + array of PK flags (1 byte per column),
+** + table name (nul terminated).
+**
+** This function ensures that all of the above is present in the input
+** buffer (i.e. that it can be accessed without any calls to xInput()).
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
+** The input pointer is not moved.
+*/
+static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){
+ int rc = SQLITE_OK;
+ int nCol = 0;
+ int nRead = 0;
+
+ rc = sessionInputBuffer(pIn, 9);
+ if( rc==SQLITE_OK ){
+ nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol);
+ /* The hard upper limit for the number of columns in an SQLite
+ ** database table is, according to sqliteLimit.h, 32676. So
+ ** consider any table-header that purports to have more than 65536
+ ** columns to be corrupt. This is convenient because otherwise,
+ ** if the (nCol>65536) condition below were omitted, a sufficiently
+ ** large value for nCol may cause nRead to wrap around and become
+ ** negative. Leading to a crash. */
+ if( nCol<0 || nCol>65536 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = sessionInputBuffer(pIn, nRead+nCol+100);
+ nRead += nCol;
+ }
+ }
+
+ while( rc==SQLITE_OK ){
+ while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){
+ nRead++;
+ }
+ if( (pIn->iNext + nRead)<pIn->nData ) break;
+ rc = sessionInputBuffer(pIn, nRead + 100);
+ }
+ *pnByte = nRead+1;
+ return rc;
+}
+
+/*
+** The input pointer currently points to the first byte of the first field
+** of a record consisting of nCol columns. This function ensures the entire
+** record is buffered. It does not move the input pointer.
+**
+** If successful, SQLITE_OK is returned and *pnByte is set to the size of
+** the record in bytes. Otherwise, an SQLite error code is returned. The
+** final value of *pnByte is undefined in this case.
+*/
+static int sessionChangesetBufferRecord(
+ SessionInput *pIn, /* Input data */
+ int nCol, /* Number of columns in record */
+ int *pnByte /* OUT: Size of record in bytes */
+){
+ int rc = SQLITE_OK;
+ int nByte = 0;
+ int i;
+ for(i=0; rc==SQLITE_OK && i<nCol; i++){
+ int eType;
+ rc = sessionInputBuffer(pIn, nByte + 10);
+ if( rc==SQLITE_OK ){
+ eType = pIn->aData[pIn->iNext + nByte++];
+ if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
+ int n;
+ nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n);
+ nByte += n;
+ rc = sessionInputBuffer(pIn, nByte);
+ }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
+ nByte += 8;
+ }
+ }
+ }
+ *pnByte = nByte;
+ return rc;
+}
+
+/*
+** The input pointer currently points to the second byte of a table-header.
+** Specifically, to the following:
+**
+** + number of columns in table (varint)
+** + array of PK flags (1 byte per column),
+** + table name (nul terminated).
+**
+** This function decodes the table-header and populates the p->nCol,
+** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is
+** also allocated or resized according to the new value of p->nCol. The
+** input pointer is left pointing to the byte following the table header.
+**
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code
+** is returned and the final values of the various fields enumerated above
+** are undefined.
+*/
+static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){
+ int rc;
+ int nCopy;
+ assert( p->rc==SQLITE_OK );
+
+ rc = sessionChangesetBufferTblhdr(&p->in, &nCopy);
+ if( rc==SQLITE_OK ){
+ int nByte;
+ int nVarint;
+ nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol);
+ if( p->nCol>0 ){
+ nCopy -= nVarint;
+ p->in.iNext += nVarint;
+ nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy;
+ p->tblhdr.nBuf = 0;
+ sessionBufferGrow(&p->tblhdr, nByte, &rc);
+ }else{
+ rc = SQLITE_CORRUPT_BKPT;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ size_t iPK = sizeof(sqlite3_value*)*p->nCol*2;
+ memset(p->tblhdr.aBuf, 0, iPK);
+ memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy);
+ p->in.iNext += nCopy;
+ }
+
+ p->apValue = (sqlite3_value**)p->tblhdr.aBuf;
+ if( p->apValue==0 ){
+ p->abPK = 0;
+ p->zTab = 0;
+ }else{
+ p->abPK = (u8*)&p->apValue[p->nCol*2];
+ p->zTab = p->abPK ? (char*)&p->abPK[p->nCol] : 0;
+ }
+ return (p->rc = rc);
+}
+
+/*
+** Advance the changeset iterator to the next change. The differences between
+** this function and sessionChangesetNext() are that
+**
+** * If pbEmpty is not NULL and the change is a no-op UPDATE (an UPDATE
+** that modifies no columns), this function sets (*pbEmpty) to 1.
+**
+** * If the iterator is configured to skip no-op UPDATEs,
+** sessionChangesetNext() does that. This function does not.
+*/
+static int sessionChangesetNextOne(
+ sqlite3_changeset_iter *p, /* Changeset iterator */
+ u8 **paRec, /* If non-NULL, store record pointer here */
+ int *pnRec, /* If non-NULL, store size of record here */
+ int *pbNew, /* If non-NULL, true if new table */
+ int *pbEmpty
+){
+ int i;
+ u8 op;
+
+ assert( (paRec==0 && pnRec==0) || (paRec && pnRec) );
+ assert( pbEmpty==0 || *pbEmpty==0 );
+
+ /* If the iterator is in the error-state, return immediately. */
+ if( p->rc!=SQLITE_OK ) return p->rc;
+
+ /* Free the current contents of p->apValue[], if any. */
+ if( p->apValue ){
+ for(i=0; i<p->nCol*2; i++){
+ sqlite3ValueFree(p->apValue[i]);
+ }
+ memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2);
+ }
+
+ /* Make sure the buffer contains at least 10 bytes of input data, or all
+ ** remaining data if there are less than 10 bytes available. This is
+ ** sufficient either for the 'T' or 'P' byte and the varint that follows
+ ** it, or for the two single byte values otherwise. */
+ p->rc = sessionInputBuffer(&p->in, 2);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+
+ /* If the iterator is already at the end of the changeset, return DONE. */
+ if( p->in.iNext>=p->in.nData ){
+ return SQLITE_DONE;
+ }
+
+ sessionDiscardData(&p->in);
+ p->in.iCurrent = p->in.iNext;
+
+ op = p->in.aData[p->in.iNext++];
+ while( op=='T' || op=='P' ){
+ if( pbNew ) *pbNew = 1;
+ p->bPatchset = (op=='P');
+ if( sessionChangesetReadTblhdr(p) ) return p->rc;
+ if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc;
+ p->in.iCurrent = p->in.iNext;
+ if( p->in.iNext>=p->in.nData ) return SQLITE_DONE;
+ op = p->in.aData[p->in.iNext++];
+ }
+
+ if( p->zTab==0 || (p->bPatchset && p->bInvert) ){
+ /* The first record in the changeset is not a table header. Must be a
+ ** corrupt changeset. */
+ assert( p->in.iNext==1 || p->zTab );
+ return (p->rc = SQLITE_CORRUPT_BKPT);
+ }
+
+ p->op = op;
+ p->bIndirect = p->in.aData[p->in.iNext++];
+ if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
+ return (p->rc = SQLITE_CORRUPT_BKPT);
+ }
+
+ if( paRec ){
+ int nVal; /* Number of values to buffer */
+ if( p->bPatchset==0 && op==SQLITE_UPDATE ){
+ nVal = p->nCol * 2;
+ }else if( p->bPatchset && op==SQLITE_DELETE ){
+ nVal = 0;
+ for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++;
+ }else{
+ nVal = p->nCol;
+ }
+ p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+ *paRec = &p->in.aData[p->in.iNext];
+ p->in.iNext += *pnRec;
+ }else{
+ sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue);
+ sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]);
+
+ /* If this is an UPDATE or DELETE, read the old.* record. */
+ if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){
+ u8 *abPK = p->bPatchset ? p->abPK : 0;
+ p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld, 0);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+ }
+
+ /* If this is an INSERT or UPDATE, read the new.* record. */
+ if( p->op!=SQLITE_DELETE ){
+ p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew, pbEmpty);
+ if( p->rc!=SQLITE_OK ) return p->rc;
+ }
+
+ if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){
+ /* If this is an UPDATE that is part of a patchset, then all PK and
+ ** modified fields are present in the new.* record. The old.* record
+ ** is currently completely empty. This block shifts the PK fields from
+ ** new.* to old.*, to accommodate the code that reads these arrays. */
+ for(i=0; i<p->nCol; i++){
+ assert( p->bPatchset==0 || p->apValue[i]==0 );
+ if( p->abPK[i] ){
+ assert( p->apValue[i]==0 );
+ p->apValue[i] = p->apValue[i+p->nCol];
+ if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT);
+ p->apValue[i+p->nCol] = 0;
+ }
+ }
+ }else if( p->bInvert ){
+ if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE;
+ else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT;
+ }
+
+ /* If this is an UPDATE that is part of a changeset, then check that
+ ** there are no fields in the old.* record that are not (a) PK fields,
+ ** or (b) also present in the new.* record.
+ **
+ ** Such records are technically corrupt, but the rebaser was at one
+ ** point generating them. Under most circumstances this is benign, but
+ ** can cause spurious SQLITE_RANGE errors when applying the changeset. */
+ if( p->bPatchset==0 && p->op==SQLITE_UPDATE){
+ for(i=0; i<p->nCol; i++){
+ if( p->abPK[i]==0 && p->apValue[i+p->nCol]==0 ){
+ sqlite3ValueFree(p->apValue[i]);
+ p->apValue[i] = 0;
+ }
+ }
+ }
+ }
+
+ return SQLITE_ROW;
+}
+
+/*
+** Advance the changeset iterator to the next change.
+**
+** If both paRec and pnRec are NULL, then this function works like the public
+** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the
+** sqlite3changeset_new() and old() APIs may be used to query for values.
+**
+** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change
+** record is written to *paRec before returning and the number of bytes in
+** the record to *pnRec.
+**
+** Either way, this function returns SQLITE_ROW if the iterator is
+** successfully advanced to the next change in the changeset, an SQLite
+** error code if an error occurs, or SQLITE_DONE if there are no further
+** changes in the changeset.
+*/
+static int sessionChangesetNext(
+ sqlite3_changeset_iter *p, /* Changeset iterator */
+ u8 **paRec, /* If non-NULL, store record pointer here */
+ int *pnRec, /* If non-NULL, store size of record here */
+ int *pbNew /* If non-NULL, true if new table */
+){
+ int bEmpty;
+ int rc;
+ do {
+ bEmpty = 0;
+ rc = sessionChangesetNextOne(p, paRec, pnRec, pbNew, &bEmpty);
+ }while( rc==SQLITE_ROW && p->bSkipEmpty && bEmpty);
+ return rc;
+}
+
+/*
+** Advance an iterator created by sqlite3changeset_start() to the next
+** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE
+** or SQLITE_CORRUPT.
+**
+** This function may not be called on iterators passed to a conflict handler
+** callback by changeset_apply().
+*/
+SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *p){
+ return sessionChangesetNext(p, 0, 0, 0);
+}
+
+/*
+** The following function extracts information on the current change
+** from a changeset iterator. It may only be called after changeset_next()
+** has returned SQLITE_ROW.
+*/
+SQLITE_API int sqlite3changeset_op(
+ sqlite3_changeset_iter *pIter, /* Iterator handle */
+ const char **pzTab, /* OUT: Pointer to table name */
+ int *pnCol, /* OUT: Number of columns in table */
+ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
+ int *pbIndirect /* OUT: True if change is indirect */
+){
+ *pOp = pIter->op;
+ *pnCol = pIter->nCol;
+ *pzTab = pIter->zTab;
+ if( pbIndirect ) *pbIndirect = pIter->bIndirect;
+ return SQLITE_OK;
+}
+
+/*
+** Return information regarding the PRIMARY KEY and number of columns in
+** the database table affected by the change that pIter currently points
+** to. This function may only be called after changeset_next() returns
+** SQLITE_ROW.
+*/
+SQLITE_API int sqlite3changeset_pk(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
+ int *pnCol /* OUT: Number of entries in output array */
+){
+ *pabPK = pIter->abPK;
+ if( pnCol ) *pnCol = pIter->nCol;
+ return SQLITE_OK;
+}
+
+/*
+** This function may only be called while the iterator is pointing to an
+** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()).
+** Otherwise, SQLITE_MISUSE is returned.
+**
+** It sets *ppValue to point to an sqlite3_value structure containing the
+** iVal'th value in the old.* record. Or, if that particular value is not
+** included in the record (because the change is an UPDATE and the field
+** was not modified and is not a PK column), set *ppValue to NULL.
+**
+** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
+** not modified. Otherwise, SQLITE_OK.
+*/
+SQLITE_API int sqlite3changeset_old(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Index of old.* value to retrieve */
+ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
+){
+ if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){
+ return SQLITE_MISUSE;
+ }
+ if( iVal<0 || iVal>=pIter->nCol ){
+ return SQLITE_RANGE;
+ }
+ *ppValue = pIter->apValue[iVal];
+ return SQLITE_OK;
+}
+
+/*
+** This function may only be called while the iterator is pointing to an
+** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()).
+** Otherwise, SQLITE_MISUSE is returned.
+**
+** It sets *ppValue to point to an sqlite3_value structure containing the
+** iVal'th value in the new.* record. Or, if that particular value is not
+** included in the record (because the change is an UPDATE and the field
+** was not modified), set *ppValue to NULL.
+**
+** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
+** not modified. Otherwise, SQLITE_OK.
+*/
+SQLITE_API int sqlite3changeset_new(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Index of new.* value to retrieve */
+ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
+){
+ if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){
+ return SQLITE_MISUSE;
+ }
+ if( iVal<0 || iVal>=pIter->nCol ){
+ return SQLITE_RANGE;
+ }
+ *ppValue = pIter->apValue[pIter->nCol+iVal];
+ return SQLITE_OK;
+}
+
+/*
+** The following two macros are used internally. They are similar to the
+** sqlite3changeset_new() and sqlite3changeset_old() functions, except that
+** they omit all error checking and return a pointer to the requested value.
+*/
+#define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)]
+#define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)]
+
+/*
+** This function may only be called with a changeset iterator that has been
+** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT
+** conflict-handler function. Otherwise, SQLITE_MISUSE is returned.
+**
+** If successful, *ppValue is set to point to an sqlite3_value structure
+** containing the iVal'th value of the conflicting record.
+**
+** If value iVal is out-of-range or some other error occurs, an SQLite error
+** code is returned. Otherwise, SQLITE_OK.
+*/
+SQLITE_API int sqlite3changeset_conflict(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Index of conflict record value to fetch */
+ sqlite3_value **ppValue /* OUT: Value from conflicting row */
+){
+ if( !pIter->pConflict ){
+ return SQLITE_MISUSE;
+ }
+ if( iVal<0 || iVal>=pIter->nCol ){
+ return SQLITE_RANGE;
+ }
+ *ppValue = sqlite3_column_value(pIter->pConflict, iVal);
+ return SQLITE_OK;
+}
+
+/*
+** This function may only be called with an iterator passed to an
+** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
+** it sets the output variable to the total number of known foreign key
+** violations in the destination database and returns SQLITE_OK.
+**
+** In all other cases this function returns SQLITE_MISUSE.
+*/
+SQLITE_API int sqlite3changeset_fk_conflicts(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int *pnOut /* OUT: Number of FK violations */
+){
+ if( pIter->pConflict || pIter->apValue ){
+ return SQLITE_MISUSE;
+ }
+ *pnOut = pIter->nCol;
+ return SQLITE_OK;
+}
+
+
+/*
+** Finalize an iterator allocated with sqlite3changeset_start().
+**
+** This function may not be called on iterators passed to a conflict handler
+** callback by changeset_apply().
+*/
+SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ int i; /* Used to iterate through p->apValue[] */
+ rc = p->rc;
+ if( p->apValue ){
+ for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]);
+ }
+ sqlite3_free(p->tblhdr.aBuf);
+ sqlite3_free(p->in.buf.aBuf);
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+static int sessionChangesetInvert(
+ SessionInput *pInput, /* Input changeset */
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut,
+ int *pnInverted, /* OUT: Number of bytes in output changeset */
+ void **ppInverted /* OUT: Inverse of pChangeset */
+){
+ int rc = SQLITE_OK; /* Return value */
+ SessionBuffer sOut; /* Output buffer */
+ int nCol = 0; /* Number of cols in current table */
+ u8 *abPK = 0; /* PK array for current table */
+ sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */
+ SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */
+
+ /* Initialize the output buffer */
+ memset(&sOut, 0, sizeof(SessionBuffer));
+
+ /* Zero the output variables in case an error occurs. */
+ if( ppInverted ){
+ *ppInverted = 0;
+ *pnInverted = 0;
+ }
+
+ while( 1 ){
+ u8 eType;
+
+ /* Test for EOF. */
+ if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert;
+ if( pInput->iNext>=pInput->nData ) break;
+ eType = pInput->aData[pInput->iNext];
+
+ switch( eType ){
+ case 'T': {
+ /* A 'table' record consists of:
+ **
+ ** * A constant 'T' character,
+ ** * Number of columns in said table (a varint),
+ ** * An array of nCol bytes (sPK),
+ ** * A nul-terminated table name.
+ */
+ int nByte;
+ int nVar;
+ pInput->iNext++;
+ if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){
+ goto finished_invert;
+ }
+ nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol);
+ sPK.nBuf = 0;
+ sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc);
+ sessionAppendByte(&sOut, eType, &rc);
+ sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
+ if( rc ) goto finished_invert;
+
+ pInput->iNext += nByte;
+ sqlite3_free(apVal);
+ apVal = 0;
+ abPK = sPK.aBuf;
+ break;
+ }
+
+ case SQLITE_INSERT:
+ case SQLITE_DELETE: {
+ int nByte;
+ int bIndirect = pInput->aData[pInput->iNext+1];
+ int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE);
+ pInput->iNext += 2;
+ assert( rc==SQLITE_OK );
+ rc = sessionChangesetBufferRecord(pInput, nCol, &nByte);
+ sessionAppendByte(&sOut, eType2, &rc);
+ sessionAppendByte(&sOut, bIndirect, &rc);
+ sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
+ pInput->iNext += nByte;
+ if( rc ) goto finished_invert;
+ break;
+ }
+
+ case SQLITE_UPDATE: {
+ int iCol;
+
+ if( 0==apVal ){
+ apVal = (sqlite3_value **)sqlite3_malloc64(sizeof(apVal[0])*nCol*2);
+ if( 0==apVal ){
+ rc = SQLITE_NOMEM;
+ goto finished_invert;
+ }
+ memset(apVal, 0, sizeof(apVal[0])*nCol*2);
+ }
+
+ /* Write the header for the new UPDATE change. Same as the original. */
+ sessionAppendByte(&sOut, eType, &rc);
+ sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc);
+
+ /* Read the old.* and new.* records for the update change. */
+ pInput->iNext += 2;
+ rc = sessionReadRecord(pInput, nCol, 0, &apVal[0], 0);
+ if( rc==SQLITE_OK ){
+ rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol], 0);
+ }
+
+ /* Write the new old.* record. Consists of the PK columns from the
+ ** original old.* record, and the other values from the original
+ ** new.* record. */
+ for(iCol=0; iCol<nCol; iCol++){
+ sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)];
+ sessionAppendValue(&sOut, pVal, &rc);
+ }
+
+ /* Write the new new.* record. Consists of a copy of all values
+ ** from the original old.* record, except for the PK columns, which
+ ** are set to "undefined". */
+ for(iCol=0; iCol<nCol; iCol++){
+ sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]);
+ sessionAppendValue(&sOut, pVal, &rc);
+ }
+
+ for(iCol=0; iCol<nCol*2; iCol++){
+ sqlite3ValueFree(apVal[iCol]);
+ }
+ memset(apVal, 0, sizeof(apVal[0])*nCol*2);
+ if( rc!=SQLITE_OK ){
+ goto finished_invert;
+ }
+
+ break;
+ }
+
+ default:
+ rc = SQLITE_CORRUPT_BKPT;
+ goto finished_invert;
+ }
+
+ assert( rc==SQLITE_OK );
+ if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ sOut.nBuf = 0;
+ if( rc!=SQLITE_OK ) goto finished_invert;
+ }
+ }
+
+ assert( rc==SQLITE_OK );
+ if( pnInverted && ALWAYS(ppInverted) ){
+ *pnInverted = sOut.nBuf;
+ *ppInverted = sOut.aBuf;
+ sOut.aBuf = 0;
+ }else if( sOut.nBuf>0 && ALWAYS(xOutput!=0) ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ }
+
+ finished_invert:
+ sqlite3_free(sOut.aBuf);
+ sqlite3_free(apVal);
+ sqlite3_free(sPK.aBuf);
+ return rc;
+}
+
+
+/*
+** Invert a changeset object.
+*/
+SQLITE_API int sqlite3changeset_invert(
+ int nChangeset, /* Number of bytes in input */
+ const void *pChangeset, /* Input changeset */
+ int *pnInverted, /* OUT: Number of bytes in output changeset */
+ void **ppInverted /* OUT: Inverse of pChangeset */
+){
+ SessionInput sInput;
+
+ /* Set up the input stream */
+ memset(&sInput, 0, sizeof(SessionInput));
+ sInput.nData = nChangeset;
+ sInput.aData = (u8*)pChangeset;
+
+ return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted);
+}
+
+/*
+** Streaming version of sqlite3changeset_invert().
+*/
+SQLITE_API int sqlite3changeset_invert_strm(
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ SessionInput sInput;
+ int rc;
+
+ /* Set up the input stream */
+ memset(&sInput, 0, sizeof(SessionInput));
+ sInput.xInput = xInput;
+ sInput.pIn = pIn;
+
+ rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0);
+ sqlite3_free(sInput.buf.aBuf);
+ return rc;
+}
+
+
+typedef struct SessionUpdate SessionUpdate;
+struct SessionUpdate {
+ sqlite3_stmt *pStmt;
+ u32 *aMask;
+ SessionUpdate *pNext;
+};
+
+typedef struct SessionApplyCtx SessionApplyCtx;
+struct SessionApplyCtx {
+ sqlite3 *db;
+ sqlite3_stmt *pDelete; /* DELETE statement */
+ sqlite3_stmt *pInsert; /* INSERT statement */
+ sqlite3_stmt *pSelect; /* SELECT statement */
+ int nCol; /* Size of azCol[] and abPK[] arrays */
+ const char **azCol; /* Array of column names */
+ u8 *abPK; /* Boolean array - true if column is in PK */
+ u32 *aUpdateMask; /* Used by sessionUpdateFind */
+ SessionUpdate *pUp;
+ int bStat1; /* True if table is sqlite_stat1 */
+ int bDeferConstraints; /* True to defer constraints */
+ int bInvertConstraints; /* Invert when iterating constraints buffer */
+ SessionBuffer constraints; /* Deferred constraints are stored here */
+ SessionBuffer rebase; /* Rebase information (if any) here */
+ u8 bRebaseStarted; /* If table header is already in rebase */
+ u8 bRebase; /* True to collect rebase information */
+ u8 bIgnoreNoop; /* True to ignore no-op conflicts */
+ int bRowid;
+};
+
+/* Number of prepared UPDATE statements to cache. */
+#define SESSION_UPDATE_CACHE_SZ 12
+
+/*
+** Find a prepared UPDATE statement suitable for the UPDATE step currently
+** being visited by the iterator. The UPDATE is of the form:
+**
+** UPDATE tbl SET col = ?, col2 = ? WHERE pk1 IS ? AND pk2 IS ?
+*/
+static int sessionUpdateFind(
+ sqlite3_changeset_iter *pIter,
+ SessionApplyCtx *p,
+ int bPatchset,
+ sqlite3_stmt **ppStmt
+){
+ int rc = SQLITE_OK;
+ SessionUpdate *pUp = 0;
+ int nCol = pIter->nCol;
+ int nU32 = (pIter->nCol+33)/32;
+ int ii;
+
+ if( p->aUpdateMask==0 ){
+ p->aUpdateMask = sqlite3_malloc(nU32*sizeof(u32));
+ if( p->aUpdateMask==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ memset(p->aUpdateMask, 0, nU32*sizeof(u32));
+ rc = SQLITE_CORRUPT;
+ for(ii=0; ii<pIter->nCol; ii++){
+ if( sessionChangesetNew(pIter, ii) ){
+ p->aUpdateMask[ii/32] |= (1<<(ii%32));
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( bPatchset ) p->aUpdateMask[nCol/32] |= (1<<(nCol%32));
+
+ if( p->pUp ){
+ int nUp = 0;
+ SessionUpdate **pp = &p->pUp;
+ while( 1 ){
+ nUp++;
+ if( 0==memcmp(p->aUpdateMask, (*pp)->aMask, nU32*sizeof(u32)) ){
+ pUp = *pp;
+ *pp = pUp->pNext;
+ pUp->pNext = p->pUp;
+ p->pUp = pUp;
+ break;
+ }
+
+ if( (*pp)->pNext ){
+ pp = &(*pp)->pNext;
+ }else{
+ if( nUp>=SESSION_UPDATE_CACHE_SZ ){
+ sqlite3_finalize((*pp)->pStmt);
+ sqlite3_free(*pp);
+ *pp = 0;
+ }
+ break;
+ }
+ }
+ }
+
+ if( pUp==0 ){
+ int nByte = sizeof(SessionUpdate) * nU32*sizeof(u32);
+ int bStat1 = (sqlite3_stricmp(pIter->zTab, "sqlite_stat1")==0);
+ pUp = (SessionUpdate*)sqlite3_malloc(nByte);
+ if( pUp==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ const char *zSep = "";
+ SessionBuffer buf;
+
+ memset(&buf, 0, sizeof(buf));
+ pUp->aMask = (u32*)&pUp[1];
+ memcpy(pUp->aMask, p->aUpdateMask, nU32*sizeof(u32));
+
+ sessionAppendStr(&buf, "UPDATE main.", &rc);
+ sessionAppendIdent(&buf, pIter->zTab, &rc);
+ sessionAppendStr(&buf, " SET ", &rc);
+
+ /* Create the assignments part of the UPDATE */
+ for(ii=0; ii<pIter->nCol; ii++){
+ if( p->abPK[ii]==0 && sessionChangesetNew(pIter, ii) ){
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, p->azCol[ii], &rc);
+ sessionAppendStr(&buf, " = ?", &rc);
+ sessionAppendInteger(&buf, ii*2+1, &rc);
+ zSep = ", ";
+ }
+ }
+
+ /* Create the WHERE clause part of the UPDATE */
+ zSep = "";
+ sessionAppendStr(&buf, " WHERE ", &rc);
+ for(ii=0; ii<pIter->nCol; ii++){
+ if( p->abPK[ii] || (bPatchset==0 && sessionChangesetOld(pIter, ii)) ){
+ sessionAppendStr(&buf, zSep, &rc);
+ if( bStat1 && ii==1 ){
+ assert( sqlite3_stricmp(p->azCol[ii], "idx")==0 );
+ sessionAppendStr(&buf,
+ "idx IS CASE "
+ "WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL "
+ "ELSE ?4 END ", &rc
+ );
+ }else{
+ sessionAppendIdent(&buf, p->azCol[ii], &rc);
+ sessionAppendStr(&buf, " IS ?", &rc);
+ sessionAppendInteger(&buf, ii*2+2, &rc);
+ }
+ zSep = " AND ";
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ char *zSql = (char*)buf.aBuf;
+ rc = sqlite3_prepare_v2(p->db, zSql, buf.nBuf, &pUp->pStmt, 0);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pUp);
+ pUp = 0;
+ }else{
+ pUp->pNext = p->pUp;
+ p->pUp = pUp;
+ }
+ sqlite3_free(buf.aBuf);
+ }
+ }
+ }
+
+ assert( (rc==SQLITE_OK)==(pUp!=0) );
+ if( pUp ){
+ *ppStmt = pUp->pStmt;
+ }else{
+ *ppStmt = 0;
+ }
+ return rc;
+}
+
+/*
+** Free all cached UPDATE statements.
+*/
+static void sessionUpdateFree(SessionApplyCtx *p){
+ SessionUpdate *pUp;
+ SessionUpdate *pNext;
+ for(pUp=p->pUp; pUp; pUp=pNext){
+ pNext = pUp->pNext;
+ sqlite3_finalize(pUp->pStmt);
+ sqlite3_free(pUp);
+ }
+ p->pUp = 0;
+ sqlite3_free(p->aUpdateMask);
+ p->aUpdateMask = 0;
+}
+
+/*
+** Formulate a statement to DELETE a row from database db. Assuming a table
+** structure like this:
+**
+** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
+**
+** The DELETE statement looks like this:
+**
+** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4)
+**
+** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require
+** matching b and d values, or 1 otherwise. The second case comes up if the
+** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE.
+**
+** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left
+** pointing to the prepared version of the SQL statement.
+*/
+static int sessionDeleteRow(
+ sqlite3 *db, /* Database handle */
+ const char *zTab, /* Table name */
+ SessionApplyCtx *p /* Session changeset-apply context */
+){
+ int i;
+ const char *zSep = "";
+ int rc = SQLITE_OK;
+ SessionBuffer buf = {0, 0, 0};
+ int nPk = 0;
+
+ sessionAppendStr(&buf, "DELETE FROM main.", &rc);
+ sessionAppendIdent(&buf, zTab, &rc);
+ sessionAppendStr(&buf, " WHERE ", &rc);
+
+ for(i=0; i<p->nCol; i++){
+ if( p->abPK[i] ){
+ nPk++;
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, p->azCol[i], &rc);
+ sessionAppendStr(&buf, " = ?", &rc);
+ sessionAppendInteger(&buf, i+1, &rc);
+ zSep = " AND ";
+ }
+ }
+
+ if( nPk<p->nCol ){
+ sessionAppendStr(&buf, " AND (?", &rc);
+ sessionAppendInteger(&buf, p->nCol+1, &rc);
+ sessionAppendStr(&buf, " OR ", &rc);
+
+ zSep = "";
+ for(i=0; i<p->nCol; i++){
+ if( !p->abPK[i] ){
+ sessionAppendStr(&buf, zSep, &rc);
+ sessionAppendIdent(&buf, p->azCol[i], &rc);
+ sessionAppendStr(&buf, " IS ?", &rc);
+ sessionAppendInteger(&buf, i+1, &rc);
+ zSep = "AND ";
+ }
+ }
+ sessionAppendStr(&buf, ")", &rc);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0);
+ }
+ sqlite3_free(buf.aBuf);
+
+ return rc;
+}
+
+/*
+** Formulate and prepare an SQL statement to query table zTab by primary
+** key. Assuming the following table structure:
+**
+** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
+**
+** The SELECT statement looks like this:
+**
+** SELECT * FROM x WHERE a = ?1 AND c = ?3
+**
+** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left
+** pointing to the prepared version of the SQL statement.
+*/
+static int sessionSelectRow(
+ sqlite3 *db, /* Database handle */
+ const char *zTab, /* Table name */
+ SessionApplyCtx *p /* Session changeset-apply context */
+){
+ /* TODO */
+ return sessionSelectStmt(db, p->bIgnoreNoop,
+ "main", zTab, p->bRowid, p->nCol, p->azCol, p->abPK, &p->pSelect
+ );
+}
+
+/*
+** Formulate and prepare an INSERT statement to add a record to table zTab.
+** For example:
+**
+** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...);
+**
+** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left
+** pointing to the prepared version of the SQL statement.
+*/
+static int sessionInsertRow(
+ sqlite3 *db, /* Database handle */
+ const char *zTab, /* Table name */
+ SessionApplyCtx *p /* Session changeset-apply context */
+){
+ int rc = SQLITE_OK;
+ int i;
+ SessionBuffer buf = {0, 0, 0};
+
+ sessionAppendStr(&buf, "INSERT INTO main.", &rc);
+ sessionAppendIdent(&buf, zTab, &rc);
+ sessionAppendStr(&buf, "(", &rc);
+ for(i=0; i<p->nCol; i++){
+ if( i!=0 ) sessionAppendStr(&buf, ", ", &rc);
+ sessionAppendIdent(&buf, p->azCol[i], &rc);
+ }
+
+ sessionAppendStr(&buf, ") VALUES(?", &rc);
+ for(i=1; i<p->nCol; i++){
+ sessionAppendStr(&buf, ", ?", &rc);
+ }
+ sessionAppendStr(&buf, ")", &rc);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
+ }
+ sqlite3_free(buf.aBuf);
+ return rc;
+}
+
+static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){
+ return sqlite3_prepare_v2(db, zSql, -1, pp, 0);
+}
+
+/*
+** Prepare statements for applying changes to the sqlite_stat1 table.
+** These are similar to those created by sessionSelectRow(),
+** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for
+** other tables.
+*/
+static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){
+ int rc = sessionSelectRow(db, "sqlite_stat1", p);
+ if( rc==SQLITE_OK ){
+ rc = sessionPrepare(db, &p->pInsert,
+ "INSERT INTO main.sqlite_stat1 VALUES(?1, "
+ "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, "
+ "?3)"
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sessionPrepare(db, &p->pDelete,
+ "DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS "
+ "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END "
+ "AND (?4 OR stat IS ?3)"
+ );
+ }
+ return rc;
+}
+
+/*
+** A wrapper around sqlite3_bind_value() that detects an extra problem.
+** See comments in the body of this function for details.
+*/
+static int sessionBindValue(
+ sqlite3_stmt *pStmt, /* Statement to bind value to */
+ int i, /* Parameter number to bind to */
+ sqlite3_value *pVal /* Value to bind */
+){
+ int eType = sqlite3_value_type(pVal);
+ /* COVERAGE: The (pVal->z==0) branch is never true using current versions
+ ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either
+ ** the (pVal->z) variable remains as it was or the type of the value is
+ ** set to SQLITE_NULL. */
+ if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){
+ /* This condition occurs when an earlier OOM in a call to
+ ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within
+ ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */
+ return SQLITE_NOMEM;
+ }
+ return sqlite3_bind_value(pStmt, i, pVal);
+}
+
+/*
+** Iterator pIter must point to an SQLITE_INSERT entry. This function
+** transfers new.* values from the current iterator entry to statement
+** pStmt. The table being inserted into has nCol columns.
+**
+** New.* value $i from the iterator is bound to variable ($i+1) of
+** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1)
+** are transfered to the statement. Otherwise, if abPK is not NULL, it points
+** to an array nCol elements in size. In this case only those values for
+** which abPK[$i] is true are read from the iterator and bound to the
+** statement.
+**
+** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK.
+*/
+static int sessionBindRow(
+ sqlite3_changeset_iter *pIter, /* Iterator to read values from */
+ int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **),
+ int nCol, /* Number of columns */
+ u8 *abPK, /* If not NULL, bind only if true */
+ sqlite3_stmt *pStmt /* Bind values to this statement */
+){
+ int i;
+ int rc = SQLITE_OK;
+
+ /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the
+ ** argument iterator points to a suitable entry. Make sure that xValue
+ ** is one of these to guarantee that it is safe to ignore the return
+ ** in the code below. */
+ assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new );
+
+ for(i=0; rc==SQLITE_OK && i<nCol; i++){
+ if( !abPK || abPK[i] ){
+ sqlite3_value *pVal = 0;
+ (void)xValue(pIter, i, &pVal);
+ if( pVal==0 ){
+ /* The value in the changeset was "undefined". This indicates a
+ ** corrupt changeset blob. */
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = sessionBindValue(pStmt, i+1, pVal);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** SQL statement pSelect is as generated by the sessionSelectRow() function.
+** This function binds the primary key values from the change that changeset
+** iterator pIter points to to the SELECT and attempts to seek to the table
+** entry. If a row is found, the SELECT statement left pointing at the row
+** and SQLITE_ROW is returned. Otherwise, if no row is found and no error
+** has occured, the statement is reset and SQLITE_OK is returned. If an
+** error occurs, the statement is reset and an SQLite error code is returned.
+**
+** If this function returns SQLITE_ROW, the caller must eventually reset()
+** statement pSelect. If any other value is returned, the statement does
+** not require a reset().
+**
+** If the iterator currently points to an INSERT record, bind values from the
+** new.* record to the SELECT statement. Or, if it points to a DELETE or
+** UPDATE, bind values from the old.* record.
+*/
+static int sessionSeekToRow(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ SessionApplyCtx *p
+){
+ sqlite3_stmt *pSelect = p->pSelect;
+ int rc; /* Return code */
+ int nCol; /* Number of columns in table */
+ int op; /* Changset operation (SQLITE_UPDATE etc.) */
+ const char *zDummy; /* Unused */
+
+ sqlite3_clear_bindings(pSelect);
+ sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
+ rc = sessionBindRow(pIter,
+ op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old,
+ nCol, p->abPK, pSelect
+ );
+
+ if( op!=SQLITE_DELETE && p->bIgnoreNoop ){
+ int ii;
+ for(ii=0; rc==SQLITE_OK && ii<nCol; ii++){
+ if( p->abPK[ii]==0 ){
+ sqlite3_value *pVal = 0;
+ sqlite3changeset_new(pIter, ii, &pVal);
+ sqlite3_bind_int(pSelect, ii+1+nCol, (pVal==0));
+ if( pVal ) rc = sessionBindValue(pSelect, ii+1, pVal);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_step(pSelect);
+ if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called from within sqlite3changeset_apply_v2() when
+** a conflict is encountered and resolved using conflict resolution
+** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE)..
+** It adds a conflict resolution record to the buffer in
+** SessionApplyCtx.rebase, which will eventually be returned to the caller
+** of apply_v2() as the "rebase" buffer.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int sessionRebaseAdd(
+ SessionApplyCtx *p, /* Apply context */
+ int eType, /* Conflict resolution (OMIT or REPLACE) */
+ sqlite3_changeset_iter *pIter /* Iterator pointing at current change */
+){
+ int rc = SQLITE_OK;
+ if( p->bRebase ){
+ int i;
+ int eOp = pIter->op;
+ if( p->bRebaseStarted==0 ){
+ /* Append a table-header to the rebase buffer */
+ const char *zTab = pIter->zTab;
+ sessionAppendByte(&p->rebase, 'T', &rc);
+ sessionAppendVarint(&p->rebase, p->nCol, &rc);
+ sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc);
+ sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc);
+ p->bRebaseStarted = 1;
+ }
+
+ assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT );
+ assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE );
+
+ sessionAppendByte(&p->rebase,
+ (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc
+ );
+ sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc);
+ for(i=0; i<p->nCol; i++){
+ sqlite3_value *pVal = 0;
+ if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){
+ sqlite3changeset_old(pIter, i, &pVal);
+ }else{
+ sqlite3changeset_new(pIter, i, &pVal);
+ }
+ sessionAppendValue(&p->rebase, pVal, &rc);
+ }
+ }
+ return rc;
+}
+
+/*
+** Invoke the conflict handler for the change that the changeset iterator
+** currently points to.
+**
+** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT.
+** If argument pbReplace is NULL, then the type of conflict handler invoked
+** depends solely on eType, as follows:
+**
+** eType value Value passed to xConflict
+** -------------------------------------------------
+** CHANGESET_DATA CHANGESET_NOTFOUND
+** CHANGESET_CONFLICT CHANGESET_CONSTRAINT
+**
+** Or, if pbReplace is not NULL, then an attempt is made to find an existing
+** record with the same primary key as the record about to be deleted, updated
+** or inserted. If such a record can be found, it is available to the conflict
+** handler as the "conflicting" record. In this case the type of conflict
+** handler invoked is as follows:
+**
+** eType value PK Record found? Value passed to xConflict
+** ----------------------------------------------------------------
+** CHANGESET_DATA Yes CHANGESET_DATA
+** CHANGESET_DATA No CHANGESET_NOTFOUND
+** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT
+** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT
+**
+** If pbReplace is not NULL, and a record with a matching PK is found, and
+** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace
+** is set to non-zero before returning SQLITE_OK.
+**
+** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is
+** returned. Or, if the conflict handler returns an invalid value,
+** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT,
+** this function returns SQLITE_OK.
+*/
+static int sessionConflictHandler(
+ int eType, /* Either CHANGESET_DATA or CONFLICT */
+ SessionApplyCtx *p, /* changeset_apply() context */
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int(*xConflict)(void *, int, sqlite3_changeset_iter*),
+ void *pCtx, /* First argument for conflict handler */
+ int *pbReplace /* OUT: Set to true if PK row is found */
+){
+ int res = 0; /* Value returned by conflict handler */
+ int rc;
+ int nCol;
+ int op;
+ const char *zDummy;
+
+ sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
+
+ assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA );
+ assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT );
+ assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND );
+
+ /* Bind the new.* PRIMARY KEY values to the SELECT statement. */
+ if( pbReplace ){
+ rc = sessionSeekToRow(pIter, p);
+ }else{
+ rc = SQLITE_OK;
+ }
+
+ if( rc==SQLITE_ROW ){
+ /* There exists another row with the new.* primary key. */
+ if( p->bIgnoreNoop
+ && sqlite3_column_int(p->pSelect, sqlite3_column_count(p->pSelect)-1)
+ ){
+ res = SQLITE_CHANGESET_OMIT;
+ }else{
+ pIter->pConflict = p->pSelect;
+ res = xConflict(pCtx, eType, pIter);
+ pIter->pConflict = 0;
+ }
+ rc = sqlite3_reset(p->pSelect);
+ }else if( rc==SQLITE_OK ){
+ if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){
+ /* Instead of invoking the conflict handler, append the change blob
+ ** to the SessionApplyCtx.constraints buffer. */
+ u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent];
+ int nBlob = pIter->in.iNext - pIter->in.iCurrent;
+ sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc);
+ return SQLITE_OK;
+ }else{
+ /* No other row with the new.* primary key. */
+ res = xConflict(pCtx, eType+1, pIter);
+ if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ switch( res ){
+ case SQLITE_CHANGESET_REPLACE:
+ assert( pbReplace );
+ *pbReplace = 1;
+ break;
+
+ case SQLITE_CHANGESET_OMIT:
+ break;
+
+ case SQLITE_CHANGESET_ABORT:
+ rc = SQLITE_ABORT;
+ break;
+
+ default:
+ rc = SQLITE_MISUSE;
+ break;
+ }
+ if( rc==SQLITE_OK ){
+ rc = sessionRebaseAdd(p, res, pIter);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Attempt to apply the change that the iterator passed as the first argument
+** currently points to to the database. If a conflict is encountered, invoke
+** the conflict handler callback.
+**
+** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If
+** one is encountered, update or delete the row with the matching primary key
+** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs,
+** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry
+** to true before returning. In this case the caller will invoke this function
+** again, this time with pbRetry set to NULL.
+**
+** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is
+** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead.
+** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such
+** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true
+** before retrying. In this case the caller attempts to remove the conflicting
+** row before invoking this function again, this time with pbReplace set
+** to NULL.
+**
+** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function
+** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is
+** returned.
+*/
+static int sessionApplyOneOp(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ SessionApplyCtx *p, /* changeset_apply() context */
+ int(*xConflict)(void *, int, sqlite3_changeset_iter *),
+ void *pCtx, /* First argument for the conflict handler */
+ int *pbReplace, /* OUT: True to remove PK row and retry */
+ int *pbRetry /* OUT: True to retry. */
+){
+ const char *zDummy;
+ int op;
+ int nCol;
+ int rc = SQLITE_OK;
+
+ assert( p->pDelete && p->pInsert && p->pSelect );
+ assert( p->azCol && p->abPK );
+ assert( !pbReplace || *pbReplace==0 );
+
+ sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
+
+ if( op==SQLITE_DELETE ){
+
+ /* Bind values to the DELETE statement. If conflict handling is required,
+ ** bind values for all columns and set bound variable (nCol+1) to true.
+ ** Or, if conflict handling is not required, bind just the PK column
+ ** values and, if it exists, set (nCol+1) to false. Conflict handling
+ ** is not required if:
+ **
+ ** * this is a patchset, or
+ ** * (pbRetry==0), or
+ ** * all columns of the table are PK columns (in this case there is
+ ** no (nCol+1) variable to bind to).
+ */
+ u8 *abPK = (pIter->bPatchset ? p->abPK : 0);
+ rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete);
+ if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){
+ rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK));
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3_step(p->pDelete);
+ rc = sqlite3_reset(p->pDelete);
+ if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 && p->bIgnoreNoop==0 ){
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
+ );
+ }else if( (rc&0xff)==SQLITE_CONSTRAINT ){
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
+ );
+ }
+
+ }else if( op==SQLITE_UPDATE ){
+ int i;
+ sqlite3_stmt *pUp = 0;
+ int bPatchset = (pbRetry==0 || pIter->bPatchset);
+
+ rc = sessionUpdateFind(pIter, p, bPatchset, &pUp);
+
+ /* Bind values to the UPDATE statement. */
+ for(i=0; rc==SQLITE_OK && i<nCol; i++){
+ sqlite3_value *pOld = sessionChangesetOld(pIter, i);
+ sqlite3_value *pNew = sessionChangesetNew(pIter, i);
+ if( p->abPK[i] || (bPatchset==0 && pOld) ){
+ rc = sessionBindValue(pUp, i*2+2, pOld);
+ }
+ if( rc==SQLITE_OK && pNew ){
+ rc = sessionBindValue(pUp, i*2+1, pNew);
+ }
+ }
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict,
+ ** the result will be SQLITE_OK with 0 rows modified. */
+ sqlite3_step(pUp);
+ rc = sqlite3_reset(pUp);
+
+ if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
+ /* A NOTFOUND or DATA error. Search the table to see if it contains
+ ** a row with a matching primary key. If so, this is a DATA conflict.
+ ** Otherwise, if there is no primary key match, it is a NOTFOUND. */
+
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
+ );
+
+ }else if( (rc&0xff)==SQLITE_CONSTRAINT ){
+ /* This is always a CONSTRAINT conflict. */
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
+ );
+ }
+
+ }else{
+ assert( op==SQLITE_INSERT );
+ if( p->bStat1 ){
+ /* Check if there is a conflicting row. For sqlite_stat1, this needs
+ ** to be done using a SELECT, as there is no PRIMARY KEY in the
+ ** database schema to throw an exception if a duplicate is inserted. */
+ rc = sessionSeekToRow(pIter, p);
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_CONSTRAINT;
+ sqlite3_reset(p->pSelect);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert);
+ if( rc!=SQLITE_OK ) return rc;
+
+ sqlite3_step(p->pInsert);
+ rc = sqlite3_reset(p->pInsert);
+ }
+
+ if( (rc&0xff)==SQLITE_CONSTRAINT ){
+ rc = sessionConflictHandler(
+ SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Attempt to apply the change that the iterator passed as the first argument
+** currently points to to the database. If a conflict is encountered, invoke
+** the conflict handler callback.
+**
+** The difference between this function and sessionApplyOne() is that this
+** function handles the case where the conflict-handler is invoked and
+** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be
+** retried in some manner.
+*/
+static int sessionApplyOneWithRetry(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */
+ SessionApplyCtx *pApply, /* Apply context */
+ int(*xConflict)(void*, int, sqlite3_changeset_iter*),
+ void *pCtx /* First argument passed to xConflict */
+){
+ int bReplace = 0;
+ int bRetry = 0;
+ int rc;
+
+ rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry);
+ if( rc==SQLITE_OK ){
+ /* If the bRetry flag is set, the change has not been applied due to an
+ ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and
+ ** a row with the correct PK is present in the db, but one or more other
+ ** fields do not contain the expected values) and the conflict handler
+ ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation,
+ ** but pass NULL as the final argument so that sessionApplyOneOp() ignores
+ ** the SQLITE_CHANGESET_DATA problem. */
+ if( bRetry ){
+ assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE );
+ rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
+ }
+
+ /* If the bReplace flag is set, the change is an INSERT that has not
+ ** been performed because the database already contains a row with the
+ ** specified primary key and the conflict handler returned
+ ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row
+ ** before reattempting the INSERT. */
+ else if( bReplace ){
+ assert( pIter->op==SQLITE_INSERT );
+ rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sessionBindRow(pIter,
+ sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete);
+ sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pApply->pDelete);
+ rc = sqlite3_reset(pApply->pDelete);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Retry the changes accumulated in the pApply->constraints buffer.
+*/
+static int sessionRetryConstraints(
+ sqlite3 *db,
+ int bPatchset,
+ const char *zTab,
+ SessionApplyCtx *pApply,
+ int(*xConflict)(void*, int, sqlite3_changeset_iter*),
+ void *pCtx /* First argument passed to xConflict */
+){
+ int rc = SQLITE_OK;
+
+ while( pApply->constraints.nBuf ){
+ sqlite3_changeset_iter *pIter2 = 0;
+ SessionBuffer cons = pApply->constraints;
+ memset(&pApply->constraints, 0, sizeof(SessionBuffer));
+
+ rc = sessionChangesetStart(
+ &pIter2, 0, 0, cons.nBuf, cons.aBuf, pApply->bInvertConstraints, 1
+ );
+ if( rc==SQLITE_OK ){
+ size_t nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
+ int rc2;
+ pIter2->bPatchset = bPatchset;
+ pIter2->zTab = (char*)zTab;
+ pIter2->nCol = pApply->nCol;
+ pIter2->abPK = pApply->abPK;
+ sessionBufferGrow(&pIter2->tblhdr, nByte, &rc);
+ pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf;
+ if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte);
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){
+ rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx);
+ }
+
+ rc2 = sqlite3changeset_finalize(pIter2);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+ assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 );
+
+ sqlite3_free(cons.aBuf);
+ if( rc!=SQLITE_OK ) break;
+ if( pApply->constraints.nBuf>=cons.nBuf ){
+ /* No progress was made on the last round. */
+ pApply->bDeferConstraints = 0;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Argument pIter is a changeset iterator that has been initialized, but
+** not yet passed to sqlite3changeset_next(). This function applies the
+** changeset to the main database attached to handle "db". The supplied
+** conflict handler callback is invoked to resolve any conflicts encountered
+** while applying the change.
+*/
+static int sessionChangesetApply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ sqlite3_changeset_iter *pIter, /* Changeset to apply */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of fifth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase, /* OUT: Rebase information */
+ int flags /* SESSION_APPLY_XXX flags */
+){
+ int schemaMismatch = 0;
+ int rc = SQLITE_OK; /* Return code */
+ const char *zTab = 0; /* Name of current table */
+ int nTab = 0; /* Result of sqlite3Strlen30(zTab) */
+ SessionApplyCtx sApply; /* changeset_apply() context object */
+ int bPatchset;
+
+ assert( xConflict!=0 );
+
+ pIter->in.bNoDiscard = 1;
+ memset(&sApply, 0, sizeof(sApply));
+ sApply.bRebase = (ppRebase && pnRebase);
+ sApply.bInvertConstraints = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
+ sApply.bIgnoreNoop = !!(flags & SQLITE_CHANGESETAPPLY_IGNORENOOP);
+ sqlite3_mutex_enter(sqlite3_db_mutex(db));
+ if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
+ rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0);
+ }
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){
+ int nCol;
+ int op;
+ const char *zNew;
+
+ sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0);
+
+ if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){
+ u8 *abPK;
+
+ rc = sessionRetryConstraints(
+ db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx
+ );
+ if( rc!=SQLITE_OK ) break;
+
+ sessionUpdateFree(&sApply);
+ sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
+ sqlite3_finalize(sApply.pDelete);
+ sqlite3_finalize(sApply.pInsert);
+ sqlite3_finalize(sApply.pSelect);
+ sApply.db = db;
+ sApply.pDelete = 0;
+ sApply.pInsert = 0;
+ sApply.pSelect = 0;
+ sApply.nCol = 0;
+ sApply.azCol = 0;
+ sApply.abPK = 0;
+ sApply.bStat1 = 0;
+ sApply.bDeferConstraints = 1;
+ sApply.bRebaseStarted = 0;
+ sApply.bRowid = 0;
+ memset(&sApply.constraints, 0, sizeof(SessionBuffer));
+
+ /* If an xFilter() callback was specified, invoke it now. If the
+ ** xFilter callback returns zero, skip this table. If it returns
+ ** non-zero, proceed. */
+ schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew)));
+ if( schemaMismatch ){
+ zTab = sqlite3_mprintf("%s", zNew);
+ if( zTab==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ nTab = (int)strlen(zTab);
+ sApply.azCol = (const char **)zTab;
+ }else{
+ int nMinCol = 0;
+ int i;
+
+ sqlite3changeset_pk(pIter, &abPK, 0);
+ rc = sessionTableInfo(0, db, "main", zNew,
+ &sApply.nCol, &zTab, &sApply.azCol, 0, &sApply.abPK, &sApply.bRowid
+ );
+ if( rc!=SQLITE_OK ) break;
+ for(i=0; i<sApply.nCol; i++){
+ if( sApply.abPK[i] ) nMinCol = i+1;
+ }
+
+ if( sApply.nCol==0 ){
+ schemaMismatch = 1;
+ sqlite3_log(SQLITE_SCHEMA,
+ "sqlite3changeset_apply(): no such table: %s", zTab
+ );
+ }
+ else if( sApply.nCol<nCol ){
+ schemaMismatch = 1;
+ sqlite3_log(SQLITE_SCHEMA,
+ "sqlite3changeset_apply(): table %s has %d columns, "
+ "expected %d or more",
+ zTab, sApply.nCol, nCol
+ );
+ }
+ else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){
+ schemaMismatch = 1;
+ sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): "
+ "primary key mismatch for table %s", zTab
+ );
+ }
+ else{
+ sApply.nCol = nCol;
+ if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){
+ if( (rc = sessionStat1Sql(db, &sApply) ) ){
+ break;
+ }
+ sApply.bStat1 = 1;
+ }else{
+ if( (rc = sessionSelectRow(db, zTab, &sApply))
+ || (rc = sessionDeleteRow(db, zTab, &sApply))
+ || (rc = sessionInsertRow(db, zTab, &sApply))
+ ){
+ break;
+ }
+ sApply.bStat1 = 0;
+ }
+ }
+ nTab = sqlite3Strlen30(zTab);
+ }
+ }
+
+ /* If there is a schema mismatch on the current table, proceed to the
+ ** next change. A log message has already been issued. */
+ if( schemaMismatch ) continue;
+
+ rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx);
+ }
+
+ bPatchset = pIter->bPatchset;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changeset_finalize(pIter);
+ }else{
+ sqlite3changeset_finalize(pIter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx);
+ }
+
+ if( rc==SQLITE_OK ){
+ int nFk, notUsed;
+ sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, &notUsed, 0);
+ if( nFk!=0 ){
+ int res = SQLITE_CHANGESET_ABORT;
+ sqlite3_changeset_iter sIter;
+ memset(&sIter, 0, sizeof(sIter));
+ sIter.nCol = nFk;
+ res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter);
+ if( res!=SQLITE_CHANGESET_OMIT ){
+ rc = SQLITE_CONSTRAINT;
+ }
+ }
+ }
+ sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0);
+
+ if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
+ }else{
+ sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
+ sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
+ }
+ }
+
+ assert( sApply.bRebase || sApply.rebase.nBuf==0 );
+ if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){
+ *ppRebase = (void*)sApply.rebase.aBuf;
+ *pnRebase = sApply.rebase.nBuf;
+ sApply.rebase.aBuf = 0;
+ }
+ sessionUpdateFree(&sApply);
+ sqlite3_finalize(sApply.pInsert);
+ sqlite3_finalize(sApply.pDelete);
+ sqlite3_finalize(sApply.pSelect);
+ sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
+ sqlite3_free((char*)sApply.constraints.aBuf);
+ sqlite3_free((char*)sApply.rebase.aBuf);
+ sqlite3_mutex_leave(sqlite3_db_mutex(db));
+ return rc;
+}
+
+/*
+** Apply the changeset passed via pChangeset/nChangeset to the main
+** database attached to handle "db".
+*/
+SQLITE_API int sqlite3changeset_apply_v2(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+){
+ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
+ int bInv = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
+ int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset, bInv, 1);
+ u64 savedFlag = db->flags & SQLITE_FkNoAction;
+
+ if( flags & SQLITE_CHANGESETAPPLY_FKNOACTION ){
+ db->flags |= ((u64)SQLITE_FkNoAction);
+ db->aDb[0].pSchema->schema_cookie -= 32;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetApply(
+ db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
+ );
+ }
+
+ if( (flags & SQLITE_CHANGESETAPPLY_FKNOACTION) && savedFlag==0 ){
+ assert( db->flags & SQLITE_FkNoAction );
+ db->flags &= ~((u64)SQLITE_FkNoAction);
+ db->aDb[0].pSchema->schema_cookie -= 32;
+ }
+ return rc;
+}
+
+/*
+** Apply the changeset passed via pChangeset/nChangeset to the main database
+** attached to handle "db". Invoke the supplied conflict handler callback
+** to resolve any conflicts encountered while applying the change.
+*/
+SQLITE_API int sqlite3changeset_apply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of fifth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+){
+ return sqlite3changeset_apply_v2(
+ db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0
+ );
+}
+
+/*
+** Apply the changeset passed via xInput/pIn to the main database
+** attached to handle "db". Invoke the supplied conflict handler callback
+** to resolve any conflicts encountered while applying the change.
+*/
+SQLITE_API int sqlite3changeset_apply_v2_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+){
+ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
+ int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
+ int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse, 1);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetApply(
+ db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
+ );
+ }
+ return rc;
+}
+SQLITE_API int sqlite3changeset_apply_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+){
+ return sqlite3changeset_apply_v2_strm(
+ db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0
+ );
+}
+
+/*
+** sqlite3_changegroup handle.
+*/
+struct sqlite3_changegroup {
+ int rc; /* Error code */
+ int bPatch; /* True to accumulate patchsets */
+ SessionTable *pList; /* List of tables in current patch */
+
+ sqlite3 *db; /* Configured by changegroup_schema() */
+ char *zDb; /* Configured by changegroup_schema() */
+};
+
+/*
+** This function is called to merge two changes to the same row together as
+** part of an sqlite3changeset_concat() operation. A new change object is
+** allocated and a pointer to it stored in *ppNew.
+*/
+static int sessionChangeMerge(
+ SessionTable *pTab, /* Table structure */
+ int bRebase, /* True for a rebase hash-table */
+ int bPatchset, /* True for patchsets */
+ SessionChange *pExist, /* Existing change */
+ int op2, /* Second change operation */
+ int bIndirect, /* True if second change is indirect */
+ u8 *aRec, /* Second change record */
+ int nRec, /* Number of bytes in aRec */
+ SessionChange **ppNew /* OUT: Merged change */
+){
+ SessionChange *pNew = 0;
+ int rc = SQLITE_OK;
+ assert( aRec!=0 );
+
+ if( !pExist ){
+ pNew = (SessionChange *)sqlite3_malloc64(sizeof(SessionChange) + nRec);
+ if( !pNew ){
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(SessionChange));
+ pNew->op = op2;
+ pNew->bIndirect = bIndirect;
+ pNew->aRecord = (u8*)&pNew[1];
+ if( bIndirect==0 || bRebase==0 ){
+ pNew->nRecord = nRec;
+ memcpy(pNew->aRecord, aRec, nRec);
+ }else{
+ int i;
+ u8 *pIn = aRec;
+ u8 *pOut = pNew->aRecord;
+ for(i=0; i<pTab->nCol; i++){
+ int nIn = sessionSerialLen(pIn);
+ if( *pIn==0 ){
+ *pOut++ = 0;
+ }else if( pTab->abPK[i]==0 ){
+ *pOut++ = 0xFF;
+ }else{
+ memcpy(pOut, pIn, nIn);
+ pOut += nIn;
+ }
+ pIn += nIn;
+ }
+ pNew->nRecord = pOut - pNew->aRecord;
+ }
+ }else if( bRebase ){
+ if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){
+ *ppNew = pExist;
+ }else{
+ sqlite3_int64 nByte = nRec + pExist->nRecord + sizeof(SessionChange);
+ pNew = (SessionChange*)sqlite3_malloc64(nByte);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ u8 *a1 = pExist->aRecord;
+ u8 *a2 = aRec;
+ u8 *pOut;
+
+ memset(pNew, 0, nByte);
+ pNew->bIndirect = bIndirect || pExist->bIndirect;
+ pNew->op = op2;
+ pOut = pNew->aRecord = (u8*)&pNew[1];
+
+ for(i=0; i<pTab->nCol; i++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){
+ *pOut++ = 0xFF;
+ }else if( *a2==0 ){
+ memcpy(pOut, a1, n1);
+ pOut += n1;
+ }else{
+ memcpy(pOut, a2, n2);
+ pOut += n2;
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+ pNew->nRecord = pOut - pNew->aRecord;
+ }
+ sqlite3_free(pExist);
+ }
+ }else{
+ int op1 = pExist->op;
+
+ /*
+ ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2.
+ ** op1=INSERT, op2=UPDATE -> INSERT.
+ ** op1=INSERT, op2=DELETE -> (none)
+ **
+ ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2.
+ ** op1=UPDATE, op2=UPDATE -> UPDATE.
+ ** op1=UPDATE, op2=DELETE -> DELETE.
+ **
+ ** op1=DELETE, op2=INSERT -> UPDATE.
+ ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2.
+ ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2.
+ */
+ if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT)
+ || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT)
+ || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE)
+ || (op1==SQLITE_DELETE && op2==SQLITE_DELETE)
+ ){
+ pNew = pExist;
+ }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){
+ sqlite3_free(pExist);
+ assert( pNew==0 );
+ }else{
+ u8 *aExist = pExist->aRecord;
+ sqlite3_int64 nByte;
+ u8 *aCsr;
+
+ /* Allocate a new SessionChange object. Ensure that the aRecord[]
+ ** buffer of the new object is large enough to hold any record that
+ ** may be generated by combining the input records. */
+ nByte = sizeof(SessionChange) + pExist->nRecord + nRec;
+ pNew = (SessionChange *)sqlite3_malloc64(nByte);
+ if( !pNew ){
+ sqlite3_free(pExist);
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(SessionChange));
+ pNew->bIndirect = (bIndirect && pExist->bIndirect);
+ aCsr = pNew->aRecord = (u8 *)&pNew[1];
+
+ if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */
+ u8 *a1 = aRec;
+ assert( op2==SQLITE_UPDATE );
+ pNew->op = SQLITE_INSERT;
+ if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol);
+ sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1);
+ }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */
+ assert( op2==SQLITE_INSERT );
+ pNew->op = SQLITE_UPDATE;
+ if( bPatchset ){
+ memcpy(aCsr, aRec, nRec);
+ aCsr += nRec;
+ }else{
+ if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }
+ }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */
+ u8 *a1 = aExist;
+ u8 *a2 = aRec;
+ assert( op1==SQLITE_UPDATE );
+ if( bPatchset==0 ){
+ sessionSkipRecord(&a1, pTab->nCol);
+ sessionSkipRecord(&a2, pTab->nCol);
+ }
+ pNew->op = SQLITE_UPDATE;
+ if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }else{ /* UPDATE + DELETE */
+ assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE );
+ pNew->op = SQLITE_DELETE;
+ if( bPatchset ){
+ memcpy(aCsr, aRec, nRec);
+ aCsr += nRec;
+ }else{
+ sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist);
+ }
+ }
+
+ if( pNew ){
+ pNew->nRecord = (int)(aCsr - pNew->aRecord);
+ }
+ sqlite3_free(pExist);
+ }
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+/*
+** Check if a changeset entry with nCol columns and the PK array passed
+** as the final argument to this function is compatible with SessionTable
+** pTab. If so, return 1. Otherwise, if they are incompatible in some way,
+** return 0.
+*/
+static int sessionChangesetCheckCompat(
+ SessionTable *pTab,
+ int nCol,
+ u8 *abPK
+){
+ if( pTab->azCol && nCol<pTab->nCol ){
+ int ii;
+ for(ii=0; ii<pTab->nCol; ii++){
+ u8 bPK = (ii < nCol) ? abPK[ii] : 0;
+ if( pTab->abPK[ii]!=bPK ) return 0;
+ }
+ return 1;
+ }
+ return (pTab->nCol==nCol && 0==memcmp(abPK, pTab->abPK, nCol));
+}
+
+static int sessionChangesetExtendRecord(
+ sqlite3_changegroup *pGrp,
+ SessionTable *pTab,
+ int nCol,
+ int op,
+ const u8 *aRec,
+ int nRec,
+ SessionBuffer *pOut
+){
+ int rc = SQLITE_OK;
+ int ii = 0;
+
+ assert( pTab->azCol );
+ assert( nCol<pTab->nCol );
+
+ pOut->nBuf = 0;
+ if( op==SQLITE_INSERT || (op==SQLITE_DELETE && pGrp->bPatch==0) ){
+ /* Append the missing default column values to the record. */
+ sessionAppendBlob(pOut, aRec, nRec, &rc);
+ if( rc==SQLITE_OK && pTab->pDfltStmt==0 ){
+ rc = sessionPrepareDfltStmt(pGrp->db, pTab, &pTab->pDfltStmt);
+ }
+ for(ii=nCol; rc==SQLITE_OK && ii<pTab->nCol; ii++){
+ int eType = sqlite3_column_type(pTab->pDfltStmt, ii);
+ sessionAppendByte(pOut, eType, &rc);
+ switch( eType ){
+ case SQLITE_FLOAT:
+ case SQLITE_INTEGER: {
+ i64 iVal;
+ if( eType==SQLITE_INTEGER ){
+ iVal = sqlite3_column_int64(pTab->pDfltStmt, ii);
+ }else{
+ double rVal = sqlite3_column_int64(pTab->pDfltStmt, ii);
+ memcpy(&iVal, &rVal, sizeof(i64));
+ }
+ if( SQLITE_OK==sessionBufferGrow(pOut, 8, &rc) ){
+ sessionPutI64(&pOut->aBuf[pOut->nBuf], iVal);
+ }
+ break;
+ }
+
+ case SQLITE_BLOB:
+ case SQLITE_TEXT: {
+ int n = sqlite3_column_bytes(pTab->pDfltStmt, ii);
+ sessionAppendVarint(pOut, n, &rc);
+ if( eType==SQLITE_TEXT ){
+ const u8 *z = (const u8*)sqlite3_column_text(pTab->pDfltStmt, ii);
+ sessionAppendBlob(pOut, z, n, &rc);
+ }else{
+ const u8 *z = (const u8*)sqlite3_column_blob(pTab->pDfltStmt, ii);
+ sessionAppendBlob(pOut, z, n, &rc);
+ }
+ break;
+ }
+
+ default:
+ assert( eType==SQLITE_NULL );
+ break;
+ }
+ }
+ }else if( op==SQLITE_UPDATE ){
+ /* Append missing "undefined" entries to the old.* record. And, if this
+ ** is an UPDATE, to the new.* record as well. */
+ int iOff = 0;
+ if( pGrp->bPatch==0 ){
+ for(ii=0; ii<nCol; ii++){
+ iOff += sessionSerialLen(&aRec[iOff]);
+ }
+ sessionAppendBlob(pOut, aRec, iOff, &rc);
+ for(ii=0; ii<(pTab->nCol-nCol); ii++){
+ sessionAppendByte(pOut, 0x00, &rc);
+ }
+ }
+
+ sessionAppendBlob(pOut, &aRec[iOff], nRec-iOff, &rc);
+ for(ii=0; ii<(pTab->nCol-nCol); ii++){
+ sessionAppendByte(pOut, 0x00, &rc);
+ }
+ }else{
+ assert( op==SQLITE_DELETE && pGrp->bPatch );
+ sessionAppendBlob(pOut, aRec, nRec, &rc);
+ }
+
+ return rc;
+}
+
+/*
+** Add all changes in the changeset traversed by the iterator passed as
+** the first argument to the changegroup hash tables.
+*/
+static int sessionChangesetToHash(
+ sqlite3_changeset_iter *pIter, /* Iterator to read from */
+ sqlite3_changegroup *pGrp, /* Changegroup object to add changeset to */
+ int bRebase /* True if hash table is for rebasing */
+){
+ u8 *aRec;
+ int nRec;
+ int rc = SQLITE_OK;
+ SessionTable *pTab = 0;
+ SessionBuffer rec = {0, 0, 0};
+
+ while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){
+ const char *zNew;
+ int nCol;
+ int op;
+ int iHash;
+ int bIndirect;
+ SessionChange *pChange;
+ SessionChange *pExist = 0;
+ SessionChange **pp;
+
+ /* Ensure that only changesets, or only patchsets, but not a mixture
+ ** of both, are being combined. It is an error to try to combine a
+ ** changeset and a patchset. */
+ if( pGrp->pList==0 ){
+ pGrp->bPatch = pIter->bPatchset;
+ }else if( pIter->bPatchset!=pGrp->bPatch ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect);
+ if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){
+ /* Search the list for a matching table */
+ int nNew = (int)strlen(zNew);
+ u8 *abPK;
+
+ sqlite3changeset_pk(pIter, &abPK, 0);
+ for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){
+ if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break;
+ }
+ if( !pTab ){
+ SessionTable **ppTab;
+
+ pTab = sqlite3_malloc64(sizeof(SessionTable) + nCol + nNew+1);
+ if( !pTab ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ memset(pTab, 0, sizeof(SessionTable));
+ pTab->nCol = nCol;
+ pTab->abPK = (u8*)&pTab[1];
+ memcpy(pTab->abPK, abPK, nCol);
+ pTab->zName = (char*)&pTab->abPK[nCol];
+ memcpy(pTab->zName, zNew, nNew+1);
+
+ if( pGrp->db ){
+ pTab->nCol = 0;
+ rc = sessionInitTable(0, pTab, pGrp->db, pGrp->zDb);
+ if( rc ){
+ assert( pTab->azCol==0 );
+ sqlite3_free(pTab);
+ break;
+ }
+ }
+
+ /* The new object must be linked on to the end of the list, not
+ ** simply added to the start of it. This is to ensure that the
+ ** tables within the output of sqlite3changegroup_output() are in
+ ** the right order. */
+ for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext);
+ *ppTab = pTab;
+ }
+
+ if( !sessionChangesetCheckCompat(pTab, nCol, abPK) ){
+ rc = SQLITE_SCHEMA;
+ break;
+ }
+ }
+
+ if( nCol<pTab->nCol ){
+ assert( pGrp->db );
+ rc = sessionChangesetExtendRecord(pGrp, pTab, nCol, op, aRec, nRec, &rec);
+ if( rc ) break;
+ aRec = rec.aBuf;
+ nRec = rec.nBuf;
+ }
+
+ if( sessionGrowHash(0, pIter->bPatchset, pTab) ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ iHash = sessionChangeHash(
+ pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange
+ );
+
+ /* Search for existing entry. If found, remove it from the hash table.
+ ** Code below may link it back in.
+ */
+ for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){
+ int bPkOnly1 = 0;
+ int bPkOnly2 = 0;
+ if( pIter->bPatchset ){
+ bPkOnly1 = (*pp)->op==SQLITE_DELETE;
+ bPkOnly2 = op==SQLITE_DELETE;
+ }
+ if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){
+ pExist = *pp;
+ *pp = (*pp)->pNext;
+ pTab->nEntry--;
+ break;
+ }
+ }
+
+ rc = sessionChangeMerge(pTab, bRebase,
+ pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange
+ );
+ if( rc ) break;
+ if( pChange ){
+ pChange->pNext = pTab->apChange[iHash];
+ pTab->apChange[iHash] = pChange;
+ pTab->nEntry++;
+ }
+ }
+
+ sqlite3_free(rec.aBuf);
+ if( rc==SQLITE_OK ) rc = pIter->rc;
+ return rc;
+}
+
+/*
+** Serialize a changeset (or patchset) based on all changesets (or patchsets)
+** added to the changegroup object passed as the first argument.
+**
+** If xOutput is not NULL, then the changeset/patchset is returned to the
+** user via one or more calls to xOutput, as with the other streaming
+** interfaces.
+**
+** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a
+** buffer containing the output changeset before this function returns. In
+** this case (*pnOut) is set to the size of the output buffer in bytes. It
+** is the responsibility of the caller to free the output buffer using
+** sqlite3_free() when it is no longer required.
+**
+** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite
+** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut)
+** are both set to 0 before returning.
+*/
+static int sessionChangegroupOutput(
+ sqlite3_changegroup *pGrp,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut,
+ int *pnOut,
+ void **ppOut
+){
+ int rc = SQLITE_OK;
+ SessionBuffer buf = {0, 0, 0};
+ SessionTable *pTab;
+ assert( xOutput==0 || (ppOut==0 && pnOut==0) );
+
+ /* Create the serialized output changeset based on the contents of the
+ ** hash tables attached to the SessionTable objects in list p->pList.
+ */
+ for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
+ int i;
+ if( pTab->nEntry==0 ) continue;
+
+ sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc);
+ for(i=0; i<pTab->nChange; i++){
+ SessionChange *p;
+ for(p=pTab->apChange[i]; p; p=p->pNext){
+ sessionAppendByte(&buf, p->op, &rc);
+ sessionAppendByte(&buf, p->bIndirect, &rc);
+ sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
+ if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){
+ rc = xOutput(pOut, buf.aBuf, buf.nBuf);
+ buf.nBuf = 0;
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( xOutput ){
+ if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf);
+ }else if( ppOut ){
+ *ppOut = buf.aBuf;
+ if( pnOut ) *pnOut = buf.nBuf;
+ buf.aBuf = 0;
+ }
+ }
+ sqlite3_free(buf.aBuf);
+
+ return rc;
+}
+
+/*
+** Allocate a new, empty, sqlite3_changegroup.
+*/
+SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp){
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_changegroup *p; /* New object */
+ p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup));
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(p, 0, sizeof(sqlite3_changegroup));
+ }
+ *pp = p;
+ return rc;
+}
+
+/*
+** Provide a database schema to the changegroup object.
+*/
+SQLITE_API int sqlite3changegroup_schema(
+ sqlite3_changegroup *pGrp,
+ sqlite3 *db,
+ const char *zDb
+){
+ int rc = SQLITE_OK;
+
+ if( pGrp->pList || pGrp->db ){
+ /* Cannot add a schema after one or more calls to sqlite3changegroup_add(),
+ ** or after sqlite3changegroup_schema() has already been called. */
+ rc = SQLITE_MISUSE;
+ }else{
+ pGrp->zDb = sqlite3_mprintf("%s", zDb);
+ if( pGrp->zDb==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pGrp->db = db;
+ }
+ }
+ return rc;
+}
+
+/*
+** Add the changeset currently stored in buffer pData, size nData bytes,
+** to changeset-group p.
+*/
+SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){
+ sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */
+ int rc; /* Return code */
+
+ rc = sqlite3changeset_start(&pIter, nData, pData);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetToHash(pIter, pGrp, 0);
+ }
+ sqlite3changeset_finalize(pIter);
+ return rc;
+}
+
+/*
+** Obtain a buffer containing a changeset representing the concatenation
+** of all changesets added to the group so far.
+*/
+SQLITE_API int sqlite3changegroup_output(
+ sqlite3_changegroup *pGrp,
+ int *pnData,
+ void **ppData
+){
+ return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData);
+}
+
+/*
+** Streaming versions of changegroup_add().
+*/
+SQLITE_API int sqlite3changegroup_add_strm(
+ sqlite3_changegroup *pGrp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+){
+ sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */
+ int rc; /* Return code */
+
+ rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetToHash(pIter, pGrp, 0);
+ }
+ sqlite3changeset_finalize(pIter);
+ return rc;
+}
+
+/*
+** Streaming versions of changegroup_output().
+*/
+SQLITE_API int sqlite3changegroup_output_strm(
+ sqlite3_changegroup *pGrp,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0);
+}
+
+/*
+** Delete a changegroup object.
+*/
+SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){
+ if( pGrp ){
+ sqlite3_free(pGrp->zDb);
+ sessionDeleteTable(0, pGrp->pList);
+ sqlite3_free(pGrp);
+ }
+}
+
+/*
+** Combine two changesets together.
+*/
+SQLITE_API int sqlite3changeset_concat(
+ int nLeft, /* Number of bytes in lhs input */
+ void *pLeft, /* Lhs input changeset */
+ int nRight /* Number of bytes in rhs input */,
+ void *pRight, /* Rhs input changeset */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: changeset (left <concat> right) */
+){
+ sqlite3_changegroup *pGrp;
+ int rc;
+
+ rc = sqlite3changegroup_new(&pGrp);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add(pGrp, nLeft, pLeft);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add(pGrp, nRight, pRight);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
+ }
+ sqlite3changegroup_delete(pGrp);
+
+ return rc;
+}
+
+/*
+** Streaming version of sqlite3changeset_concat().
+*/
+SQLITE_API int sqlite3changeset_concat_strm(
+ int (*xInputA)(void *pIn, void *pData, int *pnData),
+ void *pInA,
+ int (*xInputB)(void *pIn, void *pData, int *pnData),
+ void *pInB,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ sqlite3_changegroup *pGrp;
+ int rc;
+
+ rc = sqlite3changegroup_new(&pGrp);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut);
+ }
+ sqlite3changegroup_delete(pGrp);
+
+ return rc;
+}
+
+/*
+** Changeset rebaser handle.
+*/
+struct sqlite3_rebaser {
+ sqlite3_changegroup grp; /* Hash table */
+};
+
+/*
+** Buffers a1 and a2 must both contain a sessions module record nCol
+** fields in size. This function appends an nCol sessions module
+** record to buffer pBuf that is a copy of a1, except that for
+** each field that is undefined in a1[], swap in the field from a2[].
+*/
+static void sessionAppendRecordMerge(
+ SessionBuffer *pBuf, /* Buffer to append to */
+ int nCol, /* Number of columns in each record */
+ u8 *a1, int n1, /* Record 1 */
+ u8 *a2, int n2, /* Record 2 */
+ int *pRc /* IN/OUT: error code */
+){
+ sessionBufferGrow(pBuf, n1+n2, pRc);
+ if( *pRc==SQLITE_OK ){
+ int i;
+ u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
+ for(i=0; i<nCol; i++){
+ int nn1 = sessionSerialLen(a1);
+ int nn2 = sessionSerialLen(a2);
+ if( *a1==0 || *a1==0xFF ){
+ memcpy(pOut, a2, nn2);
+ pOut += nn2;
+ }else{
+ memcpy(pOut, a1, nn1);
+ pOut += nn1;
+ }
+ a1 += nn1;
+ a2 += nn2;
+ }
+
+ pBuf->nBuf = pOut-pBuf->aBuf;
+ assert( pBuf->nBuf<=pBuf->nAlloc );
+ }
+}
+
+/*
+** This function is called when rebasing a local UPDATE change against one
+** or more remote UPDATE changes. The aRec/nRec buffer contains the current
+** old.* and new.* records for the change. The rebase buffer (a single
+** record) is in aChange/nChange. The rebased change is appended to buffer
+** pBuf.
+**
+** Rebasing the UPDATE involves:
+**
+** * Removing any changes to fields for which the corresponding field
+** in the rebase buffer is set to "replaced" (type 0xFF). If this
+** means the UPDATE change updates no fields, nothing is appended
+** to the output buffer.
+**
+** * For each field modified by the local change for which the
+** corresponding field in the rebase buffer is not "undefined" (0x00)
+** or "replaced" (0xFF), the old.* value is replaced by the value
+** in the rebase buffer.
+*/
+static void sessionAppendPartialUpdate(
+ SessionBuffer *pBuf, /* Append record here */
+ sqlite3_changeset_iter *pIter, /* Iterator pointed at local change */
+ u8 *aRec, int nRec, /* Local change */
+ u8 *aChange, int nChange, /* Record to rebase against */
+ int *pRc /* IN/OUT: Return Code */
+){
+ sessionBufferGrow(pBuf, 2+nRec+nChange, pRc);
+ if( *pRc==SQLITE_OK ){
+ int bData = 0;
+ u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
+ int i;
+ u8 *a1 = aRec;
+ u8 *a2 = aChange;
+
+ *pOut++ = SQLITE_UPDATE;
+ *pOut++ = pIter->bIndirect;
+ for(i=0; i<pIter->nCol; i++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( pIter->abPK[i] || a2[0]==0 ){
+ if( !pIter->abPK[i] && a1[0] ) bData = 1;
+ memcpy(pOut, a1, n1);
+ pOut += n1;
+ }else if( a2[0]!=0xFF && a1[0] ){
+ bData = 1;
+ memcpy(pOut, a2, n2);
+ pOut += n2;
+ }else{
+ *pOut++ = '\0';
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+ if( bData ){
+ a2 = aChange;
+ for(i=0; i<pIter->nCol; i++){
+ int n1 = sessionSerialLen(a1);
+ int n2 = sessionSerialLen(a2);
+ if( pIter->abPK[i] || a2[0]!=0xFF ){
+ memcpy(pOut, a1, n1);
+ pOut += n1;
+ }else{
+ *pOut++ = '\0';
+ }
+ a1 += n1;
+ a2 += n2;
+ }
+ pBuf->nBuf = (pOut - pBuf->aBuf);
+ }
+ }
+}
+
+/*
+** pIter is configured to iterate through a changeset. This function rebases
+** that changeset according to the current configuration of the rebaser
+** object passed as the first argument. If no error occurs and argument xOutput
+** is not NULL, then the changeset is returned to the caller by invoking
+** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL,
+** then (*ppOut) is set to point to a buffer containing the rebased changeset
+** before this function returns. In this case (*pnOut) is set to the size of
+** the buffer in bytes. It is the responsibility of the caller to eventually
+** free the (*ppOut) buffer using sqlite3_free().
+**
+** If an error occurs, an SQLite error code is returned. If ppOut and
+** pnOut are not NULL, then the two output parameters are set to 0 before
+** returning.
+*/
+static int sessionRebase(
+ sqlite3_rebaser *p, /* Rebaser hash table */
+ sqlite3_changeset_iter *pIter, /* Input data */
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut, /* Context for xOutput callback */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: Inverse of pChangeset */
+){
+ int rc = SQLITE_OK;
+ u8 *aRec = 0;
+ int nRec = 0;
+ int bNew = 0;
+ SessionTable *pTab = 0;
+ SessionBuffer sOut = {0,0,0};
+
+ while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){
+ SessionChange *pChange = 0;
+ int bDone = 0;
+
+ if( bNew ){
+ const char *zTab = pIter->zTab;
+ for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){
+ if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break;
+ }
+ bNew = 0;
+
+ /* A patchset may not be rebased */
+ if( pIter->bPatchset ){
+ rc = SQLITE_ERROR;
+ }
+
+ /* Append a table header to the output for this new table */
+ sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc);
+ sessionAppendVarint(&sOut, pIter->nCol, &rc);
+ sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc);
+ sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc);
+ }
+
+ if( pTab && rc==SQLITE_OK ){
+ int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange);
+
+ for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){
+ if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){
+ break;
+ }
+ }
+ }
+
+ if( pChange ){
+ assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT );
+ switch( pIter->op ){
+ case SQLITE_INSERT:
+ if( pChange->op==SQLITE_INSERT ){
+ bDone = 1;
+ if( pChange->bIndirect==0 ){
+ sessionAppendByte(&sOut, SQLITE_UPDATE, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc);
+ sessionAppendBlob(&sOut, aRec, nRec, &rc);
+ }
+ }
+ break;
+
+ case SQLITE_UPDATE:
+ bDone = 1;
+ if( pChange->op==SQLITE_DELETE ){
+ if( pChange->bIndirect==0 ){
+ u8 *pCsr = aRec;
+ sessionSkipRecord(&pCsr, pIter->nCol);
+ sessionAppendByte(&sOut, SQLITE_INSERT, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendRecordMerge(&sOut, pIter->nCol,
+ pCsr, nRec-(pCsr-aRec),
+ pChange->aRecord, pChange->nRecord, &rc
+ );
+ }
+ }else{
+ sessionAppendPartialUpdate(&sOut, pIter,
+ aRec, nRec, pChange->aRecord, pChange->nRecord, &rc
+ );
+ }
+ break;
+
+ default:
+ assert( pIter->op==SQLITE_DELETE );
+ bDone = 1;
+ if( pChange->op==SQLITE_INSERT ){
+ sessionAppendByte(&sOut, SQLITE_DELETE, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendRecordMerge(&sOut, pIter->nCol,
+ pChange->aRecord, pChange->nRecord, aRec, nRec, &rc
+ );
+ }
+ break;
+ }
+ }
+
+ if( bDone==0 ){
+ sessionAppendByte(&sOut, pIter->op, &rc);
+ sessionAppendByte(&sOut, pIter->bIndirect, &rc);
+ sessionAppendBlob(&sOut, aRec, nRec, &rc);
+ }
+ if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ sOut.nBuf = 0;
+ }
+ if( rc ) break;
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(sOut.aBuf);
+ memset(&sOut, 0, sizeof(sOut));
+ }
+
+ if( rc==SQLITE_OK ){
+ if( xOutput ){
+ if( sOut.nBuf>0 ){
+ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
+ }
+ }else if( ppOut ){
+ *ppOut = (void*)sOut.aBuf;
+ *pnOut = sOut.nBuf;
+ sOut.aBuf = 0;
+ }
+ }
+ sqlite3_free(sOut.aBuf);
+ return rc;
+}
+
+/*
+** Create a new rebaser object.
+*/
+SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew){
+ int rc = SQLITE_OK;
+ sqlite3_rebaser *pNew;
+
+ pNew = sqlite3_malloc(sizeof(sqlite3_rebaser));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew, 0, sizeof(sqlite3_rebaser));
+ }
+ *ppNew = pNew;
+ return rc;
+}
+
+/*
+** Call this one or more times to configure a rebaser.
+*/
+SQLITE_API int sqlite3rebaser_configure(
+ sqlite3_rebaser *p,
+ int nRebase, const void *pRebase
+){
+ sqlite3_changeset_iter *pIter = 0; /* Iterator opened on pData/nData */
+ int rc; /* Return code */
+ rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase);
+ if( rc==SQLITE_OK ){
+ rc = sessionChangesetToHash(pIter, &p->grp, 1);
+ }
+ sqlite3changeset_finalize(pIter);
+ return rc;
+}
+
+/*
+** Rebase a changeset according to current rebaser configuration
+*/
+SQLITE_API int sqlite3rebaser_rebase(
+ sqlite3_rebaser *p,
+ int nIn, const void *pIn,
+ int *pnOut, void **ppOut
+){
+ sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */
+ int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn);
+
+ if( rc==SQLITE_OK ){
+ rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut);
+ sqlite3changeset_finalize(pIter);
+ }
+
+ return rc;
+}
+
+/*
+** Rebase a changeset according to current rebaser configuration
+*/
+SQLITE_API int sqlite3rebaser_rebase_strm(
+ sqlite3_rebaser *p,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+){
+ sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */
+ int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
+
+ if( rc==SQLITE_OK ){
+ rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0);
+ sqlite3changeset_finalize(pIter);
+ }
+
+ return rc;
+}
+
+/*
+** Destroy a rebaser object
+*/
+SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p){
+ if( p ){
+ sessionDeleteTable(0, p->grp.pList);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Global configuration
+*/
+SQLITE_API int sqlite3session_config(int op, void *pArg){
+ int rc = SQLITE_OK;
+ switch( op ){
+ case SQLITE_SESSION_CONFIG_STRMSIZE: {
+ int *pInt = (int*)pArg;
+ if( *pInt>0 ){
+ sessions_strm_chunk_size = *pInt;
+ }
+ *pInt = sessions_strm_chunk_size;
+ break;
+ }
+ default:
+ rc = SQLITE_MISUSE;
+ break;
+ }
+ return rc;
+}
+
+#endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */
+
+/************** End of sqlite3session.c **************************************/
+/************** Begin file fts5.c ********************************************/
+
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5)
+
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+/* #include "sqlite3.h" */
+
+#if 0
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. Returns SQLITE_OK if successful, or an error
+** code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. Any column filter that applies to
+** phrase iPhrase of the current query is included in $p. For each
+** row visited, the callback function passed as the fourth argument
+** is invoked. The context and API objects passed to the callback
+** function may be used to access the properties of each matched row.
+** Invoking Api.xUserData() returns a copy of the pointer passed as
+** the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension function's
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function,
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 2 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and initialize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, using
+** the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By querying the index for all synonyms of each query term
+** separately. In this case, when tokenizing query text, the
+** tokenizer may provide multiple synonyms for a single term
+** within the document. FTS5 then queries the index for each
+** synonym individually. For example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do so would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entries in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is substituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (3)) or query
+** text (method (2)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pUserData,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppUserData,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pUserData,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#if 0
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+#ifndef _FTS5INT_H
+#define _FTS5INT_H
+
+/* #include "fts5.h" */
+/* #include "sqlite3ext.h" */
+SQLITE_EXTENSION_INIT1
+
+/* #include <string.h> */
+/* #include <assert.h> */
+
+#ifndef SQLITE_AMALGAMATION
+
+typedef unsigned char u8;
+typedef unsigned int u32;
+typedef unsigned short u16;
+typedef short i16;
+typedef sqlite3_int64 i64;
+typedef sqlite3_uint64 u64;
+
+#ifndef ArraySize
+# define ArraySize(x) ((int)(sizeof(x) / sizeof(x[0])))
+#endif
+
+#define testcase(x)
+
+#if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
+# define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
+#endif
+#if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
+# define ALWAYS(X) (1)
+# define NEVER(X) (0)
+#elif !defined(NDEBUG)
+# define ALWAYS(X) ((X)?1:(assert(0),0))
+# define NEVER(X) ((X)?(assert(0),1):0)
+#else
+# define ALWAYS(X) (X)
+# define NEVER(X) (X)
+#endif
+
+#define MIN(x,y) (((x) < (y)) ? (x) : (y))
+#define MAX(x,y) (((x) > (y)) ? (x) : (y))
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+*/
+# define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+# define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+#endif
+
+/* Truncate very long tokens to this many bytes. Hard limit is
+** (65536-1-1-4-9)==65521 bytes. The limiting factor is the 16-bit offset
+** field that occurs at the start of each leaf page (see fts5_index.c). */
+#define FTS5_MAX_TOKEN_SIZE 32768
+
+/*
+** Maximum number of prefix indexes on single FTS5 table. This must be
+** less than 32. If it is set to anything large than that, an #error
+** directive in fts5_index.c will cause the build to fail.
+*/
+#define FTS5_MAX_PREFIX_INDEXES 31
+
+/*
+** Maximum segments permitted in a single index
+*/
+#define FTS5_MAX_SEGMENT 2000
+
+#define FTS5_DEFAULT_NEARDIST 10
+#define FTS5_DEFAULT_RANK "bm25"
+
+/* Name of rank and rowid columns */
+#define FTS5_RANK_NAME "rank"
+#define FTS5_ROWID_NAME "rowid"
+
+#ifdef SQLITE_DEBUG
+# define FTS5_CORRUPT sqlite3Fts5Corrupt()
+static int sqlite3Fts5Corrupt(void);
+#else
+# define FTS5_CORRUPT SQLITE_CORRUPT_VTAB
+#endif
+
+/*
+** The assert_nc() macro is similar to the assert() macro, except that it
+** is used for assert() conditions that are true only if it can be
+** guranteed that the database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API extern int sqlite3_fts5_may_be_corrupt;
+# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
+#else
+# define assert_nc(x) assert(x)
+#endif
+
+/*
+** A version of memcmp() that does not cause asan errors if one of the pointer
+** parameters is NULL and the number of bytes to compare is zero.
+*/
+#define fts5Memcmp(s1, s2, n) ((n)<=0 ? 0 : memcmp((s1), (s2), (n)))
+
+/* Mark a function parameter as unused, to suppress nuisance compiler
+** warnings. */
+#ifndef UNUSED_PARAM
+# define UNUSED_PARAM(X) (void)(X)
+#endif
+
+#ifndef UNUSED_PARAM2
+# define UNUSED_PARAM2(X, Y) (void)(X), (void)(Y)
+#endif
+
+typedef struct Fts5Global Fts5Global;
+typedef struct Fts5Colset Fts5Colset;
+
+/* If a NEAR() clump or phrase may only match a specific set of columns,
+** then an object of the following type is used to record the set of columns.
+** Each entry in the aiCol[] array is a column that may be matched.
+**
+** This object is used by fts5_expr.c and fts5_index.c.
+*/
+struct Fts5Colset {
+ int nCol;
+ int aiCol[1];
+};
+
+
+
+/**************************************************************************
+** Interface to code in fts5_config.c. fts5_config.c contains contains code
+** to parse the arguments passed to the CREATE VIRTUAL TABLE statement.
+*/
+
+typedef struct Fts5Config Fts5Config;
+
+/*
+** An instance of the following structure encodes all information that can
+** be gleaned from the CREATE VIRTUAL TABLE statement.
+**
+** And all information loaded from the %_config table.
+**
+** nAutomerge:
+** The minimum number of segments that an auto-merge operation should
+** attempt to merge together. A value of 1 sets the object to use the
+** compile time default. Zero disables auto-merge altogether.
+**
+** bContentlessDelete:
+** True if the contentless_delete option was present in the CREATE
+** VIRTUAL TABLE statement.
+**
+** zContent:
+**
+** zContentRowid:
+** The value of the content_rowid= option, if one was specified. Or
+** the string "rowid" otherwise. This text is not quoted - if it is
+** used as part of an SQL statement it needs to be quoted appropriately.
+**
+** zContentExprlist:
+**
+** pzErrmsg:
+** This exists in order to allow the fts5_index.c module to return a
+** decent error message if it encounters a file-format version it does
+** not understand.
+**
+** bColumnsize:
+** True if the %_docsize table is created.
+**
+** bPrefixIndex:
+** This is only used for debugging. If set to false, any prefix indexes
+** are ignored. This value is configured using:
+**
+** INSERT INTO tbl(tbl, rank) VALUES('prefix-index', $bPrefixIndex);
+**
+*/
+struct Fts5Config {
+ sqlite3 *db; /* Database handle */
+ char *zDb; /* Database holding FTS index (e.g. "main") */
+ char *zName; /* Name of FTS index */
+ int nCol; /* Number of columns */
+ char **azCol; /* Column names */
+ u8 *abUnindexed; /* True for unindexed columns */
+ int nPrefix; /* Number of prefix indexes */
+ int *aPrefix; /* Sizes in bytes of nPrefix prefix indexes */
+ int eContent; /* An FTS5_CONTENT value */
+ int bContentlessDelete; /* "contentless_delete=" option (dflt==0) */
+ char *zContent; /* content table */
+ char *zContentRowid; /* "content_rowid=" option value */
+ int bColumnsize; /* "columnsize=" option value (dflt==1) */
+ int eDetail; /* FTS5_DETAIL_XXX value */
+ char *zContentExprlist;
+ Fts5Tokenizer *pTok;
+ fts5_tokenizer *pTokApi;
+ int bLock; /* True when table is preparing statement */
+ int ePattern; /* FTS_PATTERN_XXX constant */
+
+ /* Values loaded from the %_config table */
+ int iVersion; /* fts5 file format 'version' */
+ int iCookie; /* Incremented when %_config is modified */
+ int pgsz; /* Approximate page size used in %_data */
+ int nAutomerge; /* 'automerge' setting */
+ int nCrisisMerge; /* Maximum allowed segments per level */
+ int nUsermerge; /* 'usermerge' setting */
+ int nHashSize; /* Bytes of memory for in-memory hash */
+ char *zRank; /* Name of rank function */
+ char *zRankArgs; /* Arguments to rank function */
+ int bSecureDelete; /* 'secure-delete' */
+ int nDeleteMerge; /* 'deletemerge' */
+
+ /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
+ char **pzErrmsg;
+
+#ifdef SQLITE_DEBUG
+ int bPrefixIndex; /* True to use prefix-indexes */
+#endif
+};
+
+/* Current expected value of %_config table 'version' field. And
+** the expected version if the 'secure-delete' option has ever been
+** set on the table. */
+#define FTS5_CURRENT_VERSION 4
+#define FTS5_CURRENT_VERSION_SECUREDELETE 5
+
+#define FTS5_CONTENT_NORMAL 0
+#define FTS5_CONTENT_NONE 1
+#define FTS5_CONTENT_EXTERNAL 2
+
+#define FTS5_DETAIL_FULL 0
+#define FTS5_DETAIL_NONE 1
+#define FTS5_DETAIL_COLUMNS 2
+
+#define FTS5_PATTERN_NONE 0
+#define FTS5_PATTERN_LIKE 65 /* matches SQLITE_INDEX_CONSTRAINT_LIKE */
+#define FTS5_PATTERN_GLOB 66 /* matches SQLITE_INDEX_CONSTRAINT_GLOB */
+
+static int sqlite3Fts5ConfigParse(
+ Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
+);
+static void sqlite3Fts5ConfigFree(Fts5Config*);
+
+static int sqlite3Fts5ConfigDeclareVtab(Fts5Config *pConfig);
+
+static int sqlite3Fts5Tokenize(
+ Fts5Config *pConfig, /* FTS5 Configuration object */
+ int flags, /* FTS5_TOKENIZE_* flags */
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+);
+
+static void sqlite3Fts5Dequote(char *z);
+
+/* Load the contents of the %_config table */
+static int sqlite3Fts5ConfigLoad(Fts5Config*, int);
+
+/* Set the value of a single config attribute */
+static int sqlite3Fts5ConfigSetValue(Fts5Config*, const char*, sqlite3_value*, int*);
+
+static int sqlite3Fts5ConfigParseRank(const char*, char**, char**);
+
+/*
+** End of interface to code in fts5_config.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_buffer.c.
+*/
+
+/*
+** Buffer object for the incremental building of string data.
+*/
+typedef struct Fts5Buffer Fts5Buffer;
+struct Fts5Buffer {
+ u8 *p;
+ int n;
+ int nSpace;
+};
+
+static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, u32);
+static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
+static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, u32, const u8*);
+static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
+static void sqlite3Fts5BufferFree(Fts5Buffer*);
+static void sqlite3Fts5BufferZero(Fts5Buffer*);
+static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
+static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);
+
+static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);
+
+#define fts5BufferZero(x) sqlite3Fts5BufferZero(x)
+#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,(i64)c)
+#define fts5BufferFree(a) sqlite3Fts5BufferFree(a)
+#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
+#define fts5BufferSet(a,b,c,d) sqlite3Fts5BufferSet(a,b,c,d)
+
+#define fts5BufferGrow(pRc,pBuf,nn) ( \
+ (u32)((pBuf)->n) + (u32)(nn) <= (u32)((pBuf)->nSpace) ? 0 : \
+ sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
+)
+
+/* Write and decode big-endian 32-bit integer values */
+static void sqlite3Fts5Put32(u8*, int);
+static int sqlite3Fts5Get32(const u8*);
+
+#define FTS5_POS2COLUMN(iPos) (int)(iPos >> 32)
+#define FTS5_POS2OFFSET(iPos) (int)(iPos & 0x7FFFFFFF)
+
+typedef struct Fts5PoslistReader Fts5PoslistReader;
+struct Fts5PoslistReader {
+ /* Variables used only by sqlite3Fts5PoslistIterXXX() functions. */
+ const u8 *a; /* Position list to iterate through */
+ int n; /* Size of buffer at a[] in bytes */
+ int i; /* Current offset in a[] */
+
+ u8 bFlag; /* For client use (any custom purpose) */
+
+ /* Output variables */
+ u8 bEof; /* Set to true at EOF */
+ i64 iPos; /* (iCol<<32) + iPos */
+};
+static int sqlite3Fts5PoslistReaderInit(
+ const u8 *a, int n, /* Poslist buffer to iterate through */
+ Fts5PoslistReader *pIter /* Iterator object to initialize */
+);
+static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);
+
+typedef struct Fts5PoslistWriter Fts5PoslistWriter;
+struct Fts5PoslistWriter {
+ i64 iPrev;
+};
+static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);
+static void sqlite3Fts5PoslistSafeAppend(Fts5Buffer*, i64*, i64);
+
+static int sqlite3Fts5PoslistNext64(
+ const u8 *a, int n, /* Buffer containing poslist */
+ int *pi, /* IN/OUT: Offset within a[] */
+ i64 *piOff /* IN/OUT: Current offset */
+);
+
+/* Malloc utility */
+static void *sqlite3Fts5MallocZero(int *pRc, sqlite3_int64 nByte);
+static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);
+
+/* Character set tests (like isspace(), isalpha() etc.) */
+static int sqlite3Fts5IsBareword(char t);
+
+
+/* Bucket of terms object used by the integrity-check in offsets=0 mode. */
+typedef struct Fts5Termset Fts5Termset;
+static int sqlite3Fts5TermsetNew(Fts5Termset**);
+static int sqlite3Fts5TermsetAdd(Fts5Termset*, int, const char*, int, int *pbPresent);
+static void sqlite3Fts5TermsetFree(Fts5Termset*);
+
+/*
+** End of interface to code in fts5_buffer.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_index.c. fts5_index.c contains contains code
+** to access the data stored in the %_data table.
+*/
+
+typedef struct Fts5Index Fts5Index;
+typedef struct Fts5IndexIter Fts5IndexIter;
+
+struct Fts5IndexIter {
+ i64 iRowid;
+ const u8 *pData;
+ int nData;
+ u8 bEof;
+};
+
+#define sqlite3Fts5IterEof(x) ((x)->bEof)
+
+/*
+** Values used as part of the flags argument passed to IndexQuery().
+*/
+#define FTS5INDEX_QUERY_PREFIX 0x0001 /* Prefix query */
+#define FTS5INDEX_QUERY_DESC 0x0002 /* Docs in descending rowid order */
+#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004 /* Do not use prefix index */
+#define FTS5INDEX_QUERY_SCAN 0x0008 /* Scan query (fts5vocab) */
+
+/* The following are used internally by the fts5_index.c module. They are
+** defined here only to make it easier to avoid clashes with the flags
+** above. */
+#define FTS5INDEX_QUERY_SKIPEMPTY 0x0010
+#define FTS5INDEX_QUERY_NOOUTPUT 0x0020
+#define FTS5INDEX_QUERY_SKIPHASH 0x0040
+
+/*
+** Create/destroy an Fts5Index object.
+*/
+static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
+static int sqlite3Fts5IndexClose(Fts5Index *p);
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 sqlite3Fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ int iIdx,
+ const char *pTerm,
+ int nTerm
+);
+
+/*
+** Argument p points to a buffer containing utf-8 text that is n bytes in
+** size. Return the number of bytes in the nChar character prefix of the
+** buffer, or 0 if there are less than nChar characters in total.
+*/
+static int sqlite3Fts5IndexCharlenToBytelen(
+ const char *p,
+ int nByte,
+ int nChar
+);
+
+/*
+** Open a new iterator to iterate though all rowids that match the
+** specified token or token prefix.
+*/
+static int sqlite3Fts5IndexQuery(
+ Fts5Index *p, /* FTS index to query */
+ const char *pToken, int nToken, /* Token (or prefix) to query for */
+ int flags, /* Mask of FTS5INDEX_QUERY_X flags */
+ Fts5Colset *pColset, /* Match these columns only */
+ Fts5IndexIter **ppIter /* OUT: New iterator object */
+);
+
+/*
+** The various operations on open token or token prefix iterators opened
+** using sqlite3Fts5IndexQuery().
+*/
+static int sqlite3Fts5IterNext(Fts5IndexIter*);
+static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
+
+/*
+** Close an iterator opened by sqlite3Fts5IndexQuery().
+*/
+static void sqlite3Fts5IterClose(Fts5IndexIter*);
+
+/*
+** Close the reader blob handle, if it is open.
+*/
+static void sqlite3Fts5IndexCloseReader(Fts5Index*);
+
+/*
+** This interface is used by the fts5vocab module.
+*/
+static const char *sqlite3Fts5IterTerm(Fts5IndexIter*, int*);
+static int sqlite3Fts5IterNextScan(Fts5IndexIter*);
+static void *sqlite3Fts5StructureRef(Fts5Index*);
+static void sqlite3Fts5StructureRelease(void*);
+static int sqlite3Fts5StructureTest(Fts5Index*, void*);
+
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+static int sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+);
+
+/*
+** Indicate that subsequent calls to sqlite3Fts5IndexWrite() pertain to
+** document iDocid.
+*/
+static int sqlite3Fts5IndexBeginWrite(
+ Fts5Index *p, /* Index to write to */
+ int bDelete, /* True if current operation is a delete */
+ i64 iDocid /* Docid to add or remove data from */
+);
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+** Also close any open blob handles.
+*/
+static int sqlite3Fts5IndexSync(Fts5Index *p);
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+static int sqlite3Fts5IndexRollback(Fts5Index *p);
+
+/*
+** Get or set the "averages" values.
+*/
+static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
+static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);
+
+/*
+** Functions called by the storage module as part of integrity-check.
+*/
+static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum, int bUseCksum);
+
+/*
+** Called during virtual module initialization to register UDF
+** fts5_decode() with SQLite
+*/
+static int sqlite3Fts5IndexInit(sqlite3*);
+
+static int sqlite3Fts5IndexSetCookie(Fts5Index*, int);
+
+/*
+** Return the total number of entries read from the %_data table by
+** this connection since it was created.
+*/
+static int sqlite3Fts5IndexReads(Fts5Index *p);
+
+static int sqlite3Fts5IndexReinit(Fts5Index *p);
+static int sqlite3Fts5IndexOptimize(Fts5Index *p);
+static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge);
+static int sqlite3Fts5IndexReset(Fts5Index *p);
+
+static int sqlite3Fts5IndexLoadConfig(Fts5Index *p);
+
+static int sqlite3Fts5IndexGetOrigin(Fts5Index *p, i64 *piOrigin);
+static int sqlite3Fts5IndexContentlessDelete(Fts5Index *p, i64 iOrigin, i64 iRowid);
+
+/*
+** End of interface to code in fts5_index.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_varint.c.
+*/
+static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v);
+static int sqlite3Fts5GetVarintLen(u32 iVal);
+static u8 sqlite3Fts5GetVarint(const unsigned char*, u64*);
+static int sqlite3Fts5PutVarint(unsigned char *p, u64 v);
+
+#define fts5GetVarint32(a,b) sqlite3Fts5GetVarint32(a,(u32*)&(b))
+#define fts5GetVarint sqlite3Fts5GetVarint
+
+#define fts5FastGetVarint32(a, iOff, nVal) { \
+ nVal = (a)[iOff++]; \
+ if( nVal & 0x80 ){ \
+ iOff--; \
+ iOff += fts5GetVarint32(&(a)[iOff], nVal); \
+ } \
+}
+
+
+/*
+** End of interface to code in fts5_varint.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to code in fts5_main.c.
+*/
+
+/*
+** Virtual-table object.
+*/
+typedef struct Fts5Table Fts5Table;
+struct Fts5Table {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ Fts5Config *pConfig; /* Virtual table configuration */
+ Fts5Index *pIndex; /* Full-text index */
+};
+
+static int sqlite3Fts5GetTokenizer(
+ Fts5Global*,
+ const char **azArg,
+ int nArg,
+ Fts5Config*,
+ char **pzErr
+);
+
+static Fts5Table *sqlite3Fts5TableFromCsrid(Fts5Global*, i64);
+
+static int sqlite3Fts5FlushToDisk(Fts5Table*);
+
+/*
+** End of interface to code in fts5.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_hash.c.
+*/
+typedef struct Fts5Hash Fts5Hash;
+
+/*
+** Create a hash table, free a hash table.
+*/
+static int sqlite3Fts5HashNew(Fts5Config*, Fts5Hash**, int *pnSize);
+static void sqlite3Fts5HashFree(Fts5Hash*);
+
+static int sqlite3Fts5HashWrite(
+ Fts5Hash*,
+ i64 iRowid, /* Rowid for this entry */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ char bByte,
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+);
+
+/*
+** Empty (but do not delete) a hash table.
+*/
+static void sqlite3Fts5HashClear(Fts5Hash*);
+
+/*
+** Return true if the hash is empty, false otherwise.
+*/
+static int sqlite3Fts5HashIsEmpty(Fts5Hash*);
+
+static int sqlite3Fts5HashQuery(
+ Fts5Hash*, /* Hash table to query */
+ int nPre,
+ const char *pTerm, int nTerm, /* Query term */
+ void **ppObj, /* OUT: Pointer to doclist for pTerm */
+ int *pnDoclist /* OUT: Size of doclist in bytes */
+);
+
+static int sqlite3Fts5HashScanInit(
+ Fts5Hash*, /* Hash table to query */
+ const char *pTerm, int nTerm /* Query prefix */
+);
+static void sqlite3Fts5HashScanNext(Fts5Hash*);
+static int sqlite3Fts5HashScanEof(Fts5Hash*);
+static void sqlite3Fts5HashScanEntry(Fts5Hash *,
+ const char **pzTerm, /* OUT: term (nul-terminated) */
+ const u8 **ppDoclist, /* OUT: pointer to doclist */
+ int *pnDoclist /* OUT: size of doclist in bytes */
+);
+
+
+
+/*
+** End of interface to code in fts5_hash.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_storage.c. fts5_storage.c contains contains
+** code to access the data stored in the %_content and %_docsize tables.
+*/
+
+#define FTS5_STMT_SCAN_ASC 0 /* SELECT rowid, * FROM ... ORDER BY 1 ASC */
+#define FTS5_STMT_SCAN_DESC 1 /* SELECT rowid, * FROM ... ORDER BY 1 DESC */
+#define FTS5_STMT_LOOKUP 2 /* SELECT rowid, * FROM ... WHERE rowid=? */
+
+typedef struct Fts5Storage Fts5Storage;
+
+static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
+static int sqlite3Fts5StorageClose(Fts5Storage *p);
+static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);
+
+static int sqlite3Fts5DropAll(Fts5Config*);
+static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);
+
+static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64, sqlite3_value**);
+static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
+static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);
+
+static int sqlite3Fts5StorageIntegrity(Fts5Storage *p, int iArg);
+
+static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
+static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);
+
+static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
+static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
+static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);
+
+static int sqlite3Fts5StorageSync(Fts5Storage *p);
+static int sqlite3Fts5StorageRollback(Fts5Storage *p);
+
+static int sqlite3Fts5StorageConfigValue(
+ Fts5Storage *p, const char*, sqlite3_value*, int
+);
+
+static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
+static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
+static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
+static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);
+static int sqlite3Fts5StorageReset(Fts5Storage *p);
+
+/*
+** End of interface to code in fts5_storage.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to code in fts5_expr.c.
+*/
+typedef struct Fts5Expr Fts5Expr;
+typedef struct Fts5ExprNode Fts5ExprNode;
+typedef struct Fts5Parse Fts5Parse;
+typedef struct Fts5Token Fts5Token;
+typedef struct Fts5ExprPhrase Fts5ExprPhrase;
+typedef struct Fts5ExprNearset Fts5ExprNearset;
+
+struct Fts5Token {
+ const char *p; /* Token text (not NULL terminated) */
+ int n; /* Size of buffer p in bytes */
+};
+
+/* Parse a MATCH expression. */
+static int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig,
+ int bPhraseToAnd,
+ int iCol, /* Column on LHS of MATCH operator */
+ const char *zExpr,
+ Fts5Expr **ppNew,
+ char **pzErr
+);
+static int sqlite3Fts5ExprPattern(
+ Fts5Config *pConfig,
+ int bGlob,
+ int iCol,
+ const char *zText,
+ Fts5Expr **pp
+);
+
+/*
+** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);
+** rc==SQLITE_OK && 0==sqlite3Fts5ExprEof(pExpr);
+** rc = sqlite3Fts5ExprNext(pExpr)
+** ){
+** // The document with rowid iRowid matches the expression!
+** i64 iRowid = sqlite3Fts5ExprRowid(pExpr);
+** }
+*/
+static int sqlite3Fts5ExprFirst(Fts5Expr*, Fts5Index *pIdx, i64 iMin, int bDesc);
+static int sqlite3Fts5ExprNext(Fts5Expr*, i64 iMax);
+static int sqlite3Fts5ExprEof(Fts5Expr*);
+static i64 sqlite3Fts5ExprRowid(Fts5Expr*);
+
+static void sqlite3Fts5ExprFree(Fts5Expr*);
+static int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2);
+
+/* Called during startup to register a UDF with SQLite */
+static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);
+
+static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
+static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
+static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);
+
+typedef struct Fts5PoslistPopulator Fts5PoslistPopulator;
+static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr*, int);
+static int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config*, Fts5Expr*, Fts5PoslistPopulator*, int, const char*, int
+);
+static void sqlite3Fts5ExprCheckPoslists(Fts5Expr*, i64);
+
+static int sqlite3Fts5ExprClonePhrase(Fts5Expr*, int, Fts5Expr**);
+
+static int sqlite3Fts5ExprPhraseCollist(Fts5Expr *, int, const u8 **, int *);
+
+/*******************************************
+** The fts5_expr.c API above this point is used by the other hand-written
+** C code in this module. The interfaces below this point are called by
+** the parser code in fts5parse.y. */
+
+static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);
+
+static Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse,
+ int eType,
+ Fts5ExprNode *pLeft,
+ Fts5ExprNode *pRight,
+ Fts5ExprNearset *pNear
+);
+
+static Fts5ExprNode *sqlite3Fts5ParseImplicitAnd(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pLeft,
+ Fts5ExprNode *pRight
+);
+
+static Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse,
+ Fts5ExprPhrase *pPhrase,
+ Fts5Token *pToken,
+ int bPrefix
+);
+
+static void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase*);
+
+static Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse*,
+ Fts5ExprNearset*,
+ Fts5ExprPhrase*
+);
+
+static Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse*,
+ Fts5Colset*,
+ Fts5Token *
+);
+
+static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
+static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
+static void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);
+
+static void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
+static void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNode*, Fts5Colset*);
+static Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse*, Fts5Colset*);
+static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
+static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);
+
+/*
+** End of interface to code in fts5_expr.c.
+**************************************************************************/
+
+
+
+/**************************************************************************
+** Interface to code in fts5_aux.c.
+*/
+
+static int sqlite3Fts5AuxInit(fts5_api*);
+/*
+** End of interface to code in fts5_aux.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_tokenizer.c.
+*/
+
+static int sqlite3Fts5TokenizerInit(fts5_api*);
+static int sqlite3Fts5TokenizerPattern(
+ int (*xCreate)(void*, const char**, int, Fts5Tokenizer**),
+ Fts5Tokenizer *pTok
+);
+/*
+** End of interface to code in fts5_tokenizer.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_vocab.c.
+*/
+
+static int sqlite3Fts5VocabInit(Fts5Global*, sqlite3*);
+
+/*
+** End of interface to code in fts5_vocab.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to automatically generated code in fts5_unicode2.c.
+*/
+static int sqlite3Fts5UnicodeIsdiacritic(int c);
+static int sqlite3Fts5UnicodeFold(int c, int bRemoveDiacritic);
+
+static int sqlite3Fts5UnicodeCatParse(const char*, u8*);
+static int sqlite3Fts5UnicodeCategory(u32 iCode);
+static void sqlite3Fts5UnicodeAscii(u8*, u8*);
+/*
+** End of interface to code in fts5_unicode2.c.
+**************************************************************************/
+
+#endif
+
+#define FTS5_OR 1
+#define FTS5_AND 2
+#define FTS5_NOT 3
+#define FTS5_TERM 4
+#define FTS5_COLON 5
+#define FTS5_MINUS 6
+#define FTS5_LCP 7
+#define FTS5_RCP 8
+#define FTS5_STRING 9
+#define FTS5_LP 10
+#define FTS5_RP 11
+#define FTS5_CARET 12
+#define FTS5_COMMA 13
+#define FTS5_PLUS 14
+#define FTS5_STAR 15
+
+/* This file is automatically generated by Lemon from input grammar
+** source file "fts5parse.y".
+*/
+/*
+** 2000-05-29
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Driver template for the LEMON parser generator.
+**
+** The "lemon" program processes an LALR(1) input grammar file, then uses
+** this template to construct a parser. The "lemon" program inserts text
+** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
+** interstitial "-" characters) contained in this template is changed into
+** the value of the %name directive from the grammar. Otherwise, the content
+** of this template is copied straight through into the generate parser
+** source file.
+**
+** The following is the concatenation of all %include directives from the
+** input grammar file:
+*/
+/************ Begin %include sections from the grammar ************************/
+
+/* #include "fts5Int.h" */
+/* #include "fts5parse.h" */
+
+/*
+** Disable all error recovery processing in the parser push-down
+** automaton.
+*/
+#define fts5YYNOERRORRECOVERY 1
+
+/*
+** Make fts5yytestcase() the same as testcase()
+*/
+#define fts5yytestcase(X) testcase(X)
+
+/*
+** Indicate that sqlite3ParserFree() will never be called with a null
+** pointer.
+*/
+#define fts5YYPARSEFREENOTNULL 1
+
+/*
+** Alternative datatype for the argument to the malloc() routine passed
+** into sqlite3ParserAlloc(). The default is size_t.
+*/
+#define fts5YYMALLOCARGTYPE u64
+
+/**************** End of %include directives **********************************/
+/* These constants specify the various numeric values for terminal symbols.
+***************** Begin token definitions *************************************/
+#ifndef FTS5_OR
+#define FTS5_OR 1
+#define FTS5_AND 2
+#define FTS5_NOT 3
+#define FTS5_TERM 4
+#define FTS5_COLON 5
+#define FTS5_MINUS 6
+#define FTS5_LCP 7
+#define FTS5_RCP 8
+#define FTS5_STRING 9
+#define FTS5_LP 10
+#define FTS5_RP 11
+#define FTS5_CARET 12
+#define FTS5_COMMA 13
+#define FTS5_PLUS 14
+#define FTS5_STAR 15
+#endif
+/**************** End token definitions ***************************************/
+
+/* The next sections is a series of control #defines.
+** various aspects of the generated parser.
+** fts5YYCODETYPE is the data type used to store the integer codes
+** that represent terminal and non-terminal symbols.
+** "unsigned char" is used if there are fewer than
+** 256 symbols. Larger types otherwise.
+** fts5YYNOCODE is a number of type fts5YYCODETYPE that is not used for
+** any terminal or nonterminal symbol.
+** fts5YYFALLBACK If defined, this indicates that one or more tokens
+** (also known as: "terminal symbols") have fall-back
+** values which should be used if the original symbol
+** would not parse. This permits keywords to sometimes
+** be used as identifiers, for example.
+** fts5YYACTIONTYPE is the data type used for "action codes" - numbers
+** that indicate what to do in response to the next
+** token.
+** sqlite3Fts5ParserFTS5TOKENTYPE is the data type used for minor type for terminal
+** symbols. Background: A "minor type" is a semantic
+** value associated with a terminal or non-terminal
+** symbols. For example, for an "ID" terminal symbol,
+** the minor type might be the name of the identifier.
+** Each non-terminal can have a different minor type.
+** Terminal symbols all have the same minor type, though.
+** This macros defines the minor type for terminal
+** symbols.
+** fts5YYMINORTYPE is the data type used for all minor types.
+** This is typically a union of many types, one of
+** which is sqlite3Fts5ParserFTS5TOKENTYPE. The entry in the union
+** for terminal symbols is called "fts5yy0".
+** fts5YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** sqlite3Fts5ParserARG_SDECL A static variable declaration for the %extra_argument
+** sqlite3Fts5ParserARG_PDECL A parameter declaration for the %extra_argument
+** sqlite3Fts5ParserARG_PARAM Code to pass %extra_argument as a subroutine parameter
+** sqlite3Fts5ParserARG_STORE Code to store %extra_argument into fts5yypParser
+** sqlite3Fts5ParserARG_FETCH Code to extract %extra_argument from fts5yypParser
+** sqlite3Fts5ParserCTX_* As sqlite3Fts5ParserARG_ except for %extra_context
+** fts5YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+** fts5YYNSTATE the combined number of states.
+** fts5YYNRULE the number of rules in the grammar
+** fts5YYNFTS5TOKEN Number of terminal symbols
+** fts5YY_MAX_SHIFT Maximum value for shift actions
+** fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
+** fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
+** fts5YY_ERROR_ACTION The fts5yy_action[] code for syntax error
+** fts5YY_ACCEPT_ACTION The fts5yy_action[] code for accept
+** fts5YY_NO_ACTION The fts5yy_action[] code for no-op
+** fts5YY_MIN_REDUCE Minimum value for reduce actions
+** fts5YY_MAX_REDUCE Maximum value for reduce actions
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/************* Begin control #defines *****************************************/
+#define fts5YYCODETYPE unsigned char
+#define fts5YYNOCODE 27
+#define fts5YYACTIONTYPE unsigned char
+#define sqlite3Fts5ParserFTS5TOKENTYPE Fts5Token
+typedef union {
+ int fts5yyinit;
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yy0;
+ int fts5yy4;
+ Fts5Colset* fts5yy11;
+ Fts5ExprNode* fts5yy24;
+ Fts5ExprNearset* fts5yy46;
+ Fts5ExprPhrase* fts5yy53;
+} fts5YYMINORTYPE;
+#ifndef fts5YYSTACKDEPTH
+#define fts5YYSTACKDEPTH 100
+#endif
+#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
+#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
+#define sqlite3Fts5ParserARG_PARAM ,pParse
+#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse=fts5yypParser->pParse;
+#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse=pParse;
+#define sqlite3Fts5ParserCTX_SDECL
+#define sqlite3Fts5ParserCTX_PDECL
+#define sqlite3Fts5ParserCTX_PARAM
+#define sqlite3Fts5ParserCTX_FETCH
+#define sqlite3Fts5ParserCTX_STORE
+#define fts5YYNSTATE 35
+#define fts5YYNRULE 28
+#define fts5YYNRULE_WITH_ACTION 28
+#define fts5YYNFTS5TOKEN 16
+#define fts5YY_MAX_SHIFT 34
+#define fts5YY_MIN_SHIFTREDUCE 52
+#define fts5YY_MAX_SHIFTREDUCE 79
+#define fts5YY_ERROR_ACTION 80
+#define fts5YY_ACCEPT_ACTION 81
+#define fts5YY_NO_ACTION 82
+#define fts5YY_MIN_REDUCE 83
+#define fts5YY_MAX_REDUCE 110
+/************* End control #defines *******************************************/
+#define fts5YY_NLOOKAHEAD ((int)(sizeof(fts5yy_lookahead)/sizeof(fts5yy_lookahead[0])))
+
+/* Define the fts5yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define fts5yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the fts5yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef fts5yytestcase
+# define fts5yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N <= fts5YY_MAX_SHIFT Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** N between fts5YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
+** and fts5YY_MAX_SHIFTREDUCE reduce by rule N-fts5YY_MIN_SHIFTREDUCE.
+**
+** N == fts5YY_ERROR_ACTION A syntax error has occurred.
+**
+** N == fts5YY_ACCEPT_ACTION The parser accepts its input.
+**
+** N == fts5YY_NO_ACTION No such action. Denotes unused
+** slots in the fts5yy_action[] table.
+**
+** N between fts5YY_MIN_REDUCE Reduce by rule N-fts5YY_MIN_REDUCE
+** and fts5YY_MAX_REDUCE
+**
+** The action table is constructed as a single large table named fts5yy_action[].
+** Given state S and lookahead X, the action is computed as either:
+**
+** (A) N = fts5yy_action[ fts5yy_shift_ofst[S] + X ]
+** (B) N = fts5yy_default[S]
+**
+** The (A) formula is preferred. The B formula is used instead if
+** fts5yy_lookahead[fts5yy_shift_ofst[S]+X] is not equal to X.
+**
+** The formulas above are for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the fts5yy_reduce_ofst[] array is used in place of
+** the fts5yy_shift_ofst[] array.
+**
+** The following are the tables generated in this section:
+**
+** fts5yy_action[] A single table containing all actions.
+** fts5yy_lookahead[] A table containing the lookahead for each entry in
+** fts5yy_action. Used to detect hash collisions.
+** fts5yy_shift_ofst[] For each state, the offset into fts5yy_action for
+** shifting terminals.
+** fts5yy_reduce_ofst[] For each state, the offset into fts5yy_action for
+** shifting non-terminals after a reduce.
+** fts5yy_default[] Default action for each state.
+**
+*********** Begin parsing tables **********************************************/
+#define fts5YY_ACTTAB_COUNT (105)
+static const fts5YYACTIONTYPE fts5yy_action[] = {
+ /* 0 */ 81, 20, 96, 6, 28, 99, 98, 26, 26, 18,
+ /* 10 */ 96, 6, 28, 17, 98, 56, 26, 19, 96, 6,
+ /* 20 */ 28, 14, 98, 14, 26, 31, 92, 96, 6, 28,
+ /* 30 */ 108, 98, 25, 26, 21, 96, 6, 28, 78, 98,
+ /* 40 */ 58, 26, 29, 96, 6, 28, 107, 98, 22, 26,
+ /* 50 */ 24, 16, 12, 11, 1, 13, 13, 24, 16, 23,
+ /* 60 */ 11, 33, 34, 13, 97, 8, 27, 32, 98, 7,
+ /* 70 */ 26, 3, 4, 5, 3, 4, 5, 3, 83, 4,
+ /* 80 */ 5, 3, 63, 5, 3, 62, 12, 2, 86, 13,
+ /* 90 */ 9, 30, 10, 10, 54, 57, 75, 78, 78, 53,
+ /* 100 */ 57, 15, 82, 82, 71,
+};
+static const fts5YYCODETYPE fts5yy_lookahead[] = {
+ /* 0 */ 16, 17, 18, 19, 20, 22, 22, 24, 24, 17,
+ /* 10 */ 18, 19, 20, 7, 22, 9, 24, 17, 18, 19,
+ /* 20 */ 20, 9, 22, 9, 24, 13, 17, 18, 19, 20,
+ /* 30 */ 26, 22, 24, 24, 17, 18, 19, 20, 15, 22,
+ /* 40 */ 9, 24, 17, 18, 19, 20, 26, 22, 21, 24,
+ /* 50 */ 6, 7, 9, 9, 10, 12, 12, 6, 7, 21,
+ /* 60 */ 9, 24, 25, 12, 18, 5, 20, 14, 22, 5,
+ /* 70 */ 24, 3, 1, 2, 3, 1, 2, 3, 0, 1,
+ /* 80 */ 2, 3, 11, 2, 3, 11, 9, 10, 5, 12,
+ /* 90 */ 23, 24, 10, 10, 8, 9, 9, 15, 15, 8,
+ /* 100 */ 9, 9, 27, 27, 11, 27, 27, 27, 27, 27,
+ /* 110 */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ /* 120 */ 27,
+};
+#define fts5YY_SHIFT_COUNT (34)
+#define fts5YY_SHIFT_MIN (0)
+#define fts5YY_SHIFT_MAX (93)
+static const unsigned char fts5yy_shift_ofst[] = {
+ /* 0 */ 44, 44, 44, 44, 44, 44, 51, 77, 43, 12,
+ /* 10 */ 14, 83, 82, 14, 23, 23, 31, 31, 71, 74,
+ /* 20 */ 78, 81, 86, 91, 6, 53, 53, 60, 64, 68,
+ /* 30 */ 53, 87, 92, 53, 93,
+};
+#define fts5YY_REDUCE_COUNT (17)
+#define fts5YY_REDUCE_MIN (-17)
+#define fts5YY_REDUCE_MAX (67)
+static const signed char fts5yy_reduce_ofst[] = {
+ /* 0 */ -16, -8, 0, 9, 17, 25, 46, -17, -17, 37,
+ /* 10 */ 67, 4, 4, 8, 4, 20, 27, 38,
+};
+static const fts5YYACTIONTYPE fts5yy_default[] = {
+ /* 0 */ 80, 80, 80, 80, 80, 80, 95, 80, 80, 105,
+ /* 10 */ 80, 110, 110, 80, 110, 110, 80, 80, 80, 80,
+ /* 20 */ 80, 91, 80, 80, 80, 101, 100, 80, 80, 90,
+ /* 30 */ 103, 80, 80, 104, 80,
+};
+/********** End of lemon-generated parsing tables *****************************/
+
+/* The next table maps tokens (terminal symbols) into fallback tokens.
+** If a construct like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammar, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+**
+** This feature can be used, for example, to cause some keywords in a language
+** to revert to identifiers if they keyword does not apply in the context where
+** it appears.
+*/
+#ifdef fts5YYFALLBACK
+static const fts5YYCODETYPE fts5yyFallback[] = {
+};
+#endif /* fts5YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+**
+** After the "shift" half of a SHIFTREDUCE action, the stateno field
+** actually contains the reduce action for the second half of the
+** SHIFTREDUCE.
+*/
+struct fts5yyStackEntry {
+ fts5YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
+ fts5YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ fts5YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct fts5yyStackEntry fts5yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct fts5yyParser {
+ fts5yyStackEntry *fts5yytos; /* Pointer to top element of the stack */
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ int fts5yyhwm; /* High-water mark of the stack */
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ int fts5yyerrcnt; /* Shifts left before out of the error */
+#endif
+ sqlite3Fts5ParserARG_SDECL /* A place to hold %extra_argument */
+ sqlite3Fts5ParserCTX_SDECL /* A place to hold %extra_context */
+#if fts5YYSTACKDEPTH<=0
+ int fts5yystksz; /* Current side of the stack */
+ fts5yyStackEntry *fts5yystack; /* The parser's stack */
+ fts5yyStackEntry fts5yystk0; /* First stack entry */
+#else
+ fts5yyStackEntry fts5yystack[fts5YYSTACKDEPTH]; /* The parser's stack */
+ fts5yyStackEntry *fts5yystackEnd; /* Last entry in the stack */
+#endif
+};
+typedef struct fts5yyParser fts5yyParser;
+
+/* #include <assert.h> */
+#ifndef NDEBUG
+/* #include <stdio.h> */
+static FILE *fts5yyTraceFILE = 0;
+static char *fts5yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+static void sqlite3Fts5ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ fts5yyTraceFILE = TraceFILE;
+ fts5yyTracePrompt = zTracePrompt;
+ if( fts5yyTraceFILE==0 ) fts5yyTracePrompt = 0;
+ else if( fts5yyTracePrompt==0 ) fts5yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#if defined(fts5YYCOVERAGE) || !defined(NDEBUG)
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const fts5yyTokenName[] = {
+ /* 0 */ "$",
+ /* 1 */ "OR",
+ /* 2 */ "AND",
+ /* 3 */ "NOT",
+ /* 4 */ "TERM",
+ /* 5 */ "COLON",
+ /* 6 */ "MINUS",
+ /* 7 */ "LCP",
+ /* 8 */ "RCP",
+ /* 9 */ "STRING",
+ /* 10 */ "LP",
+ /* 11 */ "RP",
+ /* 12 */ "CARET",
+ /* 13 */ "COMMA",
+ /* 14 */ "PLUS",
+ /* 15 */ "STAR",
+ /* 16 */ "input",
+ /* 17 */ "expr",
+ /* 18 */ "cnearset",
+ /* 19 */ "exprlist",
+ /* 20 */ "colset",
+ /* 21 */ "colsetlist",
+ /* 22 */ "nearset",
+ /* 23 */ "nearphrases",
+ /* 24 */ "phrase",
+ /* 25 */ "neardist_opt",
+ /* 26 */ "star_opt",
+};
+#endif /* defined(fts5YYCOVERAGE) || !defined(NDEBUG) */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const fts5yyRuleName[] = {
+ /* 0 */ "input ::= expr",
+ /* 1 */ "colset ::= MINUS LCP colsetlist RCP",
+ /* 2 */ "colset ::= LCP colsetlist RCP",
+ /* 3 */ "colset ::= STRING",
+ /* 4 */ "colset ::= MINUS STRING",
+ /* 5 */ "colsetlist ::= colsetlist STRING",
+ /* 6 */ "colsetlist ::= STRING",
+ /* 7 */ "expr ::= expr AND expr",
+ /* 8 */ "expr ::= expr OR expr",
+ /* 9 */ "expr ::= expr NOT expr",
+ /* 10 */ "expr ::= colset COLON LP expr RP",
+ /* 11 */ "expr ::= LP expr RP",
+ /* 12 */ "expr ::= exprlist",
+ /* 13 */ "exprlist ::= cnearset",
+ /* 14 */ "exprlist ::= exprlist cnearset",
+ /* 15 */ "cnearset ::= nearset",
+ /* 16 */ "cnearset ::= colset COLON nearset",
+ /* 17 */ "nearset ::= phrase",
+ /* 18 */ "nearset ::= CARET phrase",
+ /* 19 */ "nearset ::= STRING LP nearphrases neardist_opt RP",
+ /* 20 */ "nearphrases ::= phrase",
+ /* 21 */ "nearphrases ::= nearphrases phrase",
+ /* 22 */ "neardist_opt ::=",
+ /* 23 */ "neardist_opt ::= COMMA STRING",
+ /* 24 */ "phrase ::= phrase PLUS STRING star_opt",
+ /* 25 */ "phrase ::= STRING star_opt",
+ /* 26 */ "star_opt ::= STAR",
+ /* 27 */ "star_opt ::=",
+};
+#endif /* NDEBUG */
+
+
+#if fts5YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack. Return the number
+** of errors. Return 0 on success.
+*/
+static int fts5yyGrowStack(fts5yyParser *p){
+ int newSize;
+ int idx;
+ fts5yyStackEntry *pNew;
+
+ newSize = p->fts5yystksz*2 + 100;
+ idx = p->fts5yytos ? (int)(p->fts5yytos - p->fts5yystack) : 0;
+ if( p->fts5yystack==&p->fts5yystk0 ){
+ pNew = malloc(newSize*sizeof(pNew[0]));
+ if( pNew ) pNew[0] = p->fts5yystk0;
+ }else{
+ pNew = realloc(p->fts5yystack, newSize*sizeof(pNew[0]));
+ }
+ if( pNew ){
+ p->fts5yystack = pNew;
+ p->fts5yytos = &p->fts5yystack[idx];
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sStack grows from %d to %d entries.\n",
+ fts5yyTracePrompt, p->fts5yystksz, newSize);
+ }
+#endif
+ p->fts5yystksz = newSize;
+ }
+ return pNew==0;
+}
+#endif
+
+/* Datatype of the argument to the memory allocated passed as the
+** second argument to sqlite3Fts5ParserAlloc() below. This can be changed by
+** putting an appropriate #define in the %include section of the input
+** grammar.
+*/
+#ifndef fts5YYMALLOCARGTYPE
+# define fts5YYMALLOCARGTYPE size_t
+#endif
+
+/* Initialize a new parser that has already been allocated.
+*/
+static void sqlite3Fts5ParserInit(void *fts5yypRawParser sqlite3Fts5ParserCTX_PDECL){
+ fts5yyParser *fts5yypParser = (fts5yyParser*)fts5yypRawParser;
+ sqlite3Fts5ParserCTX_STORE
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ fts5yypParser->fts5yyhwm = 0;
+#endif
+#if fts5YYSTACKDEPTH<=0
+ fts5yypParser->fts5yytos = NULL;
+ fts5yypParser->fts5yystack = NULL;
+ fts5yypParser->fts5yystksz = 0;
+ if( fts5yyGrowStack(fts5yypParser) ){
+ fts5yypParser->fts5yystack = &fts5yypParser->fts5yystk0;
+ fts5yypParser->fts5yystksz = 1;
+ }
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ fts5yypParser->fts5yytos = fts5yypParser->fts5yystack;
+ fts5yypParser->fts5yystack[0].stateno = 0;
+ fts5yypParser->fts5yystack[0].major = 0;
+#if fts5YYSTACKDEPTH>0
+ fts5yypParser->fts5yystackEnd = &fts5yypParser->fts5yystack[fts5YYSTACKDEPTH-1];
+#endif
+}
+
+#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
+*/
+static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(fts5YYMALLOCARGTYPE) sqlite3Fts5ParserCTX_PDECL){
+ fts5yyParser *fts5yypParser;
+ fts5yypParser = (fts5yyParser*)(*mallocProc)( (fts5YYMALLOCARGTYPE)sizeof(fts5yyParser) );
+ if( fts5yypParser ){
+ sqlite3Fts5ParserCTX_STORE
+ sqlite3Fts5ParserInit(fts5yypParser sqlite3Fts5ParserCTX_PARAM);
+ }
+ return (void*)fts5yypParser;
+}
+#endif /* sqlite3Fts5Parser_ENGINEALWAYSONSTACK */
+
+
+/* The following function deletes the "minor type" or semantic value
+** associated with a symbol. The symbol can be either a terminal
+** or nonterminal. "fts5yymajor" is the symbol code, and "fts5yypminor" is
+** a pointer to the value to be deleted. The code used to do the
+** deletions is derived from the %destructor and/or %token_destructor
+** directives of the input grammar.
+*/
+static void fts5yy_destructor(
+ fts5yyParser *fts5yypParser, /* The parser */
+ fts5YYCODETYPE fts5yymajor, /* Type code for object to destroy */
+ fts5YYMINORTYPE *fts5yypminor /* The object to be destroyed */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+ switch( fts5yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are *not* used
+ ** inside the C code.
+ */
+/********* Begin destructor definitions ***************************************/
+ case 16: /* input */
+{
+ (void)pParse;
+}
+ break;
+ case 17: /* expr */
+ case 18: /* cnearset */
+ case 19: /* exprlist */
+{
+ sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy24));
+}
+ break;
+ case 20: /* colset */
+ case 21: /* colsetlist */
+{
+ sqlite3_free((fts5yypminor->fts5yy11));
+}
+ break;
+ case 22: /* nearset */
+ case 23: /* nearphrases */
+{
+ sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy46));
+}
+ break;
+ case 24: /* phrase */
+{
+ sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy53));
+}
+ break;
+/********* End destructor definitions *****************************************/
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+*/
+static void fts5yy_pop_parser_stack(fts5yyParser *pParser){
+ fts5yyStackEntry *fts5yytos;
+ assert( pParser->fts5yytos!=0 );
+ assert( pParser->fts5yytos > pParser->fts5yystack );
+ fts5yytos = pParser->fts5yytos--;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sPopping %s\n",
+ fts5yyTracePrompt,
+ fts5yyTokenName[fts5yytos->major]);
+ }
+#endif
+ fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);
+}
+
+/*
+** Clear all secondary memory allocations from the parser
+*/
+static void sqlite3Fts5ParserFinalize(void *p){
+ fts5yyParser *pParser = (fts5yyParser*)p;
+ while( pParser->fts5yytos>pParser->fts5yystack ) fts5yy_pop_parser_stack(pParser);
+#if fts5YYSTACKDEPTH<=0
+ if( pParser->fts5yystack!=&pParser->fts5yystk0 ) free(pParser->fts5yystack);
+#endif
+}
+
+#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
+/*
+** Deallocate and destroy a parser. Destructors are called for
+** all stack elements before shutting the parser down.
+**
+** If the fts5YYPARSEFREENEVERNULL macro exists (for example because it
+** is defined in a %include section of the input grammar) then it is
+** assumed that the input pointer is never NULL.
+*/
+static void sqlite3Fts5ParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+#ifndef fts5YYPARSEFREENEVERNULL
+ if( p==0 ) return;
+#endif
+ sqlite3Fts5ParserFinalize(p);
+ (*freeProc)(p);
+}
+#endif /* sqlite3Fts5Parser_ENGINEALWAYSONSTACK */
+
+/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+static int sqlite3Fts5ParserStackPeak(void *p){
+ fts5yyParser *pParser = (fts5yyParser*)p;
+ return pParser->fts5yyhwm;
+}
+#endif
+
+/* This array of booleans keeps track of the parser statement
+** coverage. The element fts5yycoverage[X][Y] is set when the parser
+** is in state X and has a lookahead token Y. In a well-tested
+** systems, every element of this matrix should end up being set.
+*/
+#if defined(fts5YYCOVERAGE)
+static unsigned char fts5yycoverage[fts5YYNSTATE][fts5YYNFTS5TOKEN];
+#endif
+
+/*
+** Write into out a description of every state/lookahead combination that
+**
+** (1) has not been used by the parser, and
+** (2) is not a syntax error.
+**
+** Return the number of missed state/lookahead combinations.
+*/
+#if defined(fts5YYCOVERAGE)
+static int sqlite3Fts5ParserCoverage(FILE *out){
+ int stateno, iLookAhead, i;
+ int nMissed = 0;
+ for(stateno=0; stateno<fts5YYNSTATE; stateno++){
+ i = fts5yy_shift_ofst[stateno];
+ for(iLookAhead=0; iLookAhead<fts5YYNFTS5TOKEN; iLookAhead++){
+ if( fts5yy_lookahead[i+iLookAhead]!=iLookAhead ) continue;
+ if( fts5yycoverage[stateno][iLookAhead]==0 ) nMissed++;
+ if( out ){
+ fprintf(out,"State %d lookahead %s %s\n", stateno,
+ fts5yyTokenName[iLookAhead],
+ fts5yycoverage[stateno][iLookAhead] ? "ok" : "missed");
+ }
+ }
+ }
+ return nMissed;
+}
+#endif
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+*/
+static fts5YYACTIONTYPE fts5yy_find_shift_action(
+ fts5YYCODETYPE iLookAhead, /* The look-ahead token */
+ fts5YYACTIONTYPE stateno /* Current state number */
+){
+ int i;
+
+ if( stateno>fts5YY_MAX_SHIFT ) return stateno;
+ assert( stateno <= fts5YY_SHIFT_COUNT );
+#if defined(fts5YYCOVERAGE)
+ fts5yycoverage[stateno][iLookAhead] = 1;
+#endif
+ do{
+ i = fts5yy_shift_ofst[stateno];
+ assert( i>=0 );
+ assert( i<=fts5YY_ACTTAB_COUNT );
+ assert( i+fts5YYNFTS5TOKEN<=(int)fts5YY_NLOOKAHEAD );
+ assert( iLookAhead!=fts5YYNOCODE );
+ assert( iLookAhead < fts5YYNFTS5TOKEN );
+ i += iLookAhead;
+ assert( i<(int)fts5YY_NLOOKAHEAD );
+ if( fts5yy_lookahead[i]!=iLookAhead ){
+#ifdef fts5YYFALLBACK
+ fts5YYCODETYPE iFallback; /* Fallback token */
+ assert( iLookAhead<sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0]) );
+ iFallback = fts5yyFallback[iLookAhead];
+ if( iFallback!=0 ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE, "%sFALLBACK %s => %s\n",
+ fts5yyTracePrompt, fts5yyTokenName[iLookAhead], fts5yyTokenName[iFallback]);
+ }
+#endif
+ assert( fts5yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
+ iLookAhead = iFallback;
+ continue;
+ }
+#endif
+#ifdef fts5YYWILDCARD
+ {
+ int j = i - iLookAhead + fts5YYWILDCARD;
+ assert( j<(int)(sizeof(fts5yy_lookahead)/sizeof(fts5yy_lookahead[0])) );
+ if( fts5yy_lookahead[j]==fts5YYWILDCARD && iLookAhead>0 ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE, "%sWILDCARD %s => %s\n",
+ fts5yyTracePrompt, fts5yyTokenName[iLookAhead],
+ fts5yyTokenName[fts5YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return fts5yy_action[j];
+ }
+ }
+#endif /* fts5YYWILDCARD */
+ return fts5yy_default[stateno];
+ }else{
+ assert( i>=0 && i<(int)(sizeof(fts5yy_action)/sizeof(fts5yy_action[0])) );
+ return fts5yy_action[i];
+ }
+ }while(1);
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+*/
+static fts5YYACTIONTYPE fts5yy_find_reduce_action(
+ fts5YYACTIONTYPE stateno, /* Current state number */
+ fts5YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef fts5YYERRORSYMBOL
+ if( stateno>fts5YY_REDUCE_COUNT ){
+ return fts5yy_default[stateno];
+ }
+#else
+ assert( stateno<=fts5YY_REDUCE_COUNT );
+#endif
+ i = fts5yy_reduce_ofst[stateno];
+ assert( iLookAhead!=fts5YYNOCODE );
+ i += iLookAhead;
+#ifdef fts5YYERRORSYMBOL
+ if( i<0 || i>=fts5YY_ACTTAB_COUNT || fts5yy_lookahead[i]!=iLookAhead ){
+ return fts5yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<fts5YY_ACTTAB_COUNT );
+ assert( fts5yy_lookahead[i]==iLookAhead );
+#endif
+ return fts5yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void fts5yyStackOverflow(fts5yyParser *fts5yypParser){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yytos>fts5yypParser->fts5yystack ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+/******** Begin %stack_overflow code ******************************************/
+
+ sqlite3Fts5ParseError(pParse, "fts5: parser stack overflow");
+/******** End %stack_overflow code ********************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument var */
+ sqlite3Fts5ParserCTX_STORE
+}
+
+/*
+** Print tracing information for a SHIFT action
+*/
+#ifndef NDEBUG
+static void fts5yyTraceShift(fts5yyParser *fts5yypParser, int fts5yyNewState, const char *zTag){
+ if( fts5yyTraceFILE ){
+ if( fts5yyNewState<fts5YYNSTATE ){
+ fprintf(fts5yyTraceFILE,"%s%s '%s', go to state %d\n",
+ fts5yyTracePrompt, zTag, fts5yyTokenName[fts5yypParser->fts5yytos->major],
+ fts5yyNewState);
+ }else{
+ fprintf(fts5yyTraceFILE,"%s%s '%s', pending reduce %d\n",
+ fts5yyTracePrompt, zTag, fts5yyTokenName[fts5yypParser->fts5yytos->major],
+ fts5yyNewState - fts5YY_MIN_REDUCE);
+ }
+ }
+}
+#else
+# define fts5yyTraceShift(X,Y,Z)
+#endif
+
+/*
+** Perform a shift action.
+*/
+static void fts5yy_shift(
+ fts5yyParser *fts5yypParser, /* The parser to be shifted */
+ fts5YYACTIONTYPE fts5yyNewState, /* The new state to shift in */
+ fts5YYCODETYPE fts5yyMajor, /* The major token to shift in */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyMinor /* The minor token to shift in */
+){
+ fts5yyStackEntry *fts5yytos;
+ fts5yypParser->fts5yytos++;
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
+ fts5yypParser->fts5yyhwm++;
+ assert( fts5yypParser->fts5yyhwm == (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack) );
+ }
+#endif
+#if fts5YYSTACKDEPTH>0
+ if( fts5yypParser->fts5yytos>fts5yypParser->fts5yystackEnd ){
+ fts5yypParser->fts5yytos--;
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+#else
+ if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz] ){
+ if( fts5yyGrowStack(fts5yypParser) ){
+ fts5yypParser->fts5yytos--;
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+ }
+#endif
+ if( fts5yyNewState > fts5YY_MAX_SHIFT ){
+ fts5yyNewState += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
+ }
+ fts5yytos = fts5yypParser->fts5yytos;
+ fts5yytos->stateno = fts5yyNewState;
+ fts5yytos->major = fts5yyMajor;
+ fts5yytos->minor.fts5yy0 = fts5yyMinor;
+ fts5yyTraceShift(fts5yypParser, fts5yyNewState, "Shift");
+}
+
+/* For rule J, fts5yyRuleInfoLhs[J] contains the symbol on the left-hand side
+** of that rule */
+static const fts5YYCODETYPE fts5yyRuleInfoLhs[] = {
+ 16, /* (0) input ::= expr */
+ 20, /* (1) colset ::= MINUS LCP colsetlist RCP */
+ 20, /* (2) colset ::= LCP colsetlist RCP */
+ 20, /* (3) colset ::= STRING */
+ 20, /* (4) colset ::= MINUS STRING */
+ 21, /* (5) colsetlist ::= colsetlist STRING */
+ 21, /* (6) colsetlist ::= STRING */
+ 17, /* (7) expr ::= expr AND expr */
+ 17, /* (8) expr ::= expr OR expr */
+ 17, /* (9) expr ::= expr NOT expr */
+ 17, /* (10) expr ::= colset COLON LP expr RP */
+ 17, /* (11) expr ::= LP expr RP */
+ 17, /* (12) expr ::= exprlist */
+ 19, /* (13) exprlist ::= cnearset */
+ 19, /* (14) exprlist ::= exprlist cnearset */
+ 18, /* (15) cnearset ::= nearset */
+ 18, /* (16) cnearset ::= colset COLON nearset */
+ 22, /* (17) nearset ::= phrase */
+ 22, /* (18) nearset ::= CARET phrase */
+ 22, /* (19) nearset ::= STRING LP nearphrases neardist_opt RP */
+ 23, /* (20) nearphrases ::= phrase */
+ 23, /* (21) nearphrases ::= nearphrases phrase */
+ 25, /* (22) neardist_opt ::= */
+ 25, /* (23) neardist_opt ::= COMMA STRING */
+ 24, /* (24) phrase ::= phrase PLUS STRING star_opt */
+ 24, /* (25) phrase ::= STRING star_opt */
+ 26, /* (26) star_opt ::= STAR */
+ 26, /* (27) star_opt ::= */
+};
+
+/* For rule J, fts5yyRuleInfoNRhs[J] contains the negative of the number
+** of symbols on the right-hand side of that rule. */
+static const signed char fts5yyRuleInfoNRhs[] = {
+ -1, /* (0) input ::= expr */
+ -4, /* (1) colset ::= MINUS LCP colsetlist RCP */
+ -3, /* (2) colset ::= LCP colsetlist RCP */
+ -1, /* (3) colset ::= STRING */
+ -2, /* (4) colset ::= MINUS STRING */
+ -2, /* (5) colsetlist ::= colsetlist STRING */
+ -1, /* (6) colsetlist ::= STRING */
+ -3, /* (7) expr ::= expr AND expr */
+ -3, /* (8) expr ::= expr OR expr */
+ -3, /* (9) expr ::= expr NOT expr */
+ -5, /* (10) expr ::= colset COLON LP expr RP */
+ -3, /* (11) expr ::= LP expr RP */
+ -1, /* (12) expr ::= exprlist */
+ -1, /* (13) exprlist ::= cnearset */
+ -2, /* (14) exprlist ::= exprlist cnearset */
+ -1, /* (15) cnearset ::= nearset */
+ -3, /* (16) cnearset ::= colset COLON nearset */
+ -1, /* (17) nearset ::= phrase */
+ -2, /* (18) nearset ::= CARET phrase */
+ -5, /* (19) nearset ::= STRING LP nearphrases neardist_opt RP */
+ -1, /* (20) nearphrases ::= phrase */
+ -2, /* (21) nearphrases ::= nearphrases phrase */
+ 0, /* (22) neardist_opt ::= */
+ -2, /* (23) neardist_opt ::= COMMA STRING */
+ -4, /* (24) phrase ::= phrase PLUS STRING star_opt */
+ -2, /* (25) phrase ::= STRING star_opt */
+ -1, /* (26) star_opt ::= STAR */
+ 0, /* (27) star_opt ::= */
+};
+
+static void fts5yy_accept(fts5yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+**
+** The fts5yyLookahead and fts5yyLookaheadToken parameters provide reduce actions
+** access to the lookahead token (if any). The fts5yyLookahead will be fts5YYNOCODE
+** if the lookahead token has already been consumed. As this procedure is
+** only called from one place, optimizing compilers will in-line it, which
+** means that the extra parameters have no performance impact.
+*/
+static fts5YYACTIONTYPE fts5yy_reduce(
+ fts5yyParser *fts5yypParser, /* The parser */
+ unsigned int fts5yyruleno, /* Number of the rule by which to reduce */
+ int fts5yyLookahead, /* Lookahead token, or fts5YYNOCODE if none */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyLookaheadToken /* Value of the lookahead token */
+ sqlite3Fts5ParserCTX_PDECL /* %extra_context */
+){
+ int fts5yygoto; /* The next state */
+ fts5YYACTIONTYPE fts5yyact; /* The next action */
+ fts5yyStackEntry *fts5yymsp; /* The top of the parser's stack */
+ int fts5yysize; /* Amount to pop the stack */
+ sqlite3Fts5ParserARG_FETCH
+ (void)fts5yyLookahead;
+ (void)fts5yyLookaheadToken;
+ fts5yymsp = fts5yypParser->fts5yytos;
+
+ switch( fts5yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+/********** Begin reduce actions **********************************************/
+ fts5YYMINORTYPE fts5yylhsminor;
+ case 0: /* input ::= expr */
+{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy24); }
+ break;
+ case 1: /* colset ::= MINUS LCP colsetlist RCP */
+{
+ fts5yymsp[-3].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
+}
+ break;
+ case 2: /* colset ::= LCP colsetlist RCP */
+{ fts5yymsp[-2].minor.fts5yy11 = fts5yymsp[-1].minor.fts5yy11; }
+ break;
+ case 3: /* colset ::= STRING */
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+}
+ fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 4: /* colset ::= MINUS STRING */
+{
+ fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+ fts5yymsp[-1].minor.fts5yy11 = sqlite3Fts5ParseColsetInvert(pParse, fts5yymsp[-1].minor.fts5yy11);
+}
+ break;
+ case 5: /* colsetlist ::= colsetlist STRING */
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy11, &fts5yymsp[0].minor.fts5yy0); }
+ fts5yymsp[-1].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 6: /* colsetlist ::= STRING */
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+}
+ fts5yymsp[0].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 7: /* expr ::= expr AND expr */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 8: /* expr ::= expr OR expr */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 9: /* expr ::= expr NOT expr */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24, 0);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 10: /* expr ::= colset COLON LP expr RP */
+{
+ sqlite3Fts5ParseSetColset(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[-4].minor.fts5yy11);
+ fts5yylhsminor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;
+}
+ fts5yymsp[-4].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 11: /* expr ::= LP expr RP */
+{fts5yymsp[-2].minor.fts5yy24 = fts5yymsp[-1].minor.fts5yy24;}
+ break;
+ case 12: /* expr ::= exprlist */
+ case 13: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==13);
+{fts5yylhsminor.fts5yy24 = fts5yymsp[0].minor.fts5yy24;}
+ fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 14: /* exprlist ::= exprlist cnearset */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseImplicitAnd(pParse, fts5yymsp[-1].minor.fts5yy24, fts5yymsp[0].minor.fts5yy24);
+}
+ fts5yymsp[-1].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 15: /* cnearset ::= nearset */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46);
+}
+ fts5yymsp[0].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 16: /* cnearset ::= colset COLON nearset */
+{
+ fts5yylhsminor.fts5yy24 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy46);
+ sqlite3Fts5ParseSetColset(pParse, fts5yylhsminor.fts5yy24, fts5yymsp[-2].minor.fts5yy11);
+}
+ fts5yymsp[-2].minor.fts5yy24 = fts5yylhsminor.fts5yy24;
+ break;
+ case 17: /* nearset ::= phrase */
+{ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53); }
+ fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 18: /* nearset ::= CARET phrase */
+{
+ sqlite3Fts5ParseSetCaret(fts5yymsp[0].minor.fts5yy53);
+ fts5yymsp[-1].minor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53);
+}
+ break;
+ case 19: /* nearset ::= STRING LP nearphrases neardist_opt RP */
+{
+ sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
+ sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy46, &fts5yymsp[-1].minor.fts5yy0);
+ fts5yylhsminor.fts5yy46 = fts5yymsp[-2].minor.fts5yy46;
+}
+ fts5yymsp[-4].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 20: /* nearphrases ::= phrase */
+{
+ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy53);
+}
+ fts5yymsp[0].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 21: /* nearphrases ::= nearphrases phrase */
+{
+ fts5yylhsminor.fts5yy46 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy46, fts5yymsp[0].minor.fts5yy53);
+}
+ fts5yymsp[-1].minor.fts5yy46 = fts5yylhsminor.fts5yy46;
+ break;
+ case 22: /* neardist_opt ::= */
+{ fts5yymsp[1].minor.fts5yy0.p = 0; fts5yymsp[1].minor.fts5yy0.n = 0; }
+ break;
+ case 23: /* neardist_opt ::= COMMA STRING */
+{ fts5yymsp[-1].minor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
+ break;
+ case 24: /* phrase ::= phrase PLUS STRING star_opt */
+{
+ fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy53, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
+}
+ fts5yymsp[-3].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
+ break;
+ case 25: /* phrase ::= STRING star_opt */
+{
+ fts5yylhsminor.fts5yy53 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy4);
+}
+ fts5yymsp[-1].minor.fts5yy53 = fts5yylhsminor.fts5yy53;
+ break;
+ case 26: /* star_opt ::= STAR */
+{ fts5yymsp[0].minor.fts5yy4 = 1; }
+ break;
+ case 27: /* star_opt ::= */
+{ fts5yymsp[1].minor.fts5yy4 = 0; }
+ break;
+ default:
+ break;
+/********** End reduce actions ************************************************/
+ };
+ assert( fts5yyruleno<sizeof(fts5yyRuleInfoLhs)/sizeof(fts5yyRuleInfoLhs[0]) );
+ fts5yygoto = fts5yyRuleInfoLhs[fts5yyruleno];
+ fts5yysize = fts5yyRuleInfoNRhs[fts5yyruleno];
+ fts5yyact = fts5yy_find_reduce_action(fts5yymsp[fts5yysize].stateno,(fts5YYCODETYPE)fts5yygoto);
+
+ /* There are no SHIFTREDUCE actions on nonterminals because the table
+ ** generator has simplified them to pure REDUCE actions. */
+ assert( !(fts5yyact>fts5YY_MAX_SHIFT && fts5yyact<=fts5YY_MAX_SHIFTREDUCE) );
+
+ /* It is not possible for a REDUCE to be followed by an error */
+ assert( fts5yyact!=fts5YY_ERROR_ACTION );
+
+ fts5yymsp += fts5yysize+1;
+ fts5yypParser->fts5yytos = fts5yymsp;
+ fts5yymsp->stateno = (fts5YYACTIONTYPE)fts5yyact;
+ fts5yymsp->major = (fts5YYCODETYPE)fts5yygoto;
+ fts5yyTraceShift(fts5yypParser, fts5yyact, "... then shift");
+ return fts5yyact;
+}
+
+/*
+** The following code executes when the parse fails
+*/
+#ifndef fts5YYNOERRORRECOVERY
+static void fts5yy_parse_failed(
+ fts5yyParser *fts5yypParser /* The parser */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sFail!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yytos>fts5yypParser->fts5yystack ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+/************ Begin %parse_failure code ***************************************/
+/************ End %parse_failure code *****************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3Fts5ParserCTX_STORE
+}
+#endif /* fts5YYNOERRORRECOVERY */
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void fts5yy_syntax_error(
+ fts5yyParser *fts5yypParser, /* The parser */
+ int fts5yymajor, /* The major type of the error token */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyminor /* The minor type of the error token */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#define FTS5TOKEN fts5yyminor
+/************ Begin %syntax_error code ****************************************/
+
+ UNUSED_PARAM(fts5yymajor); /* Silence a compiler warning */
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
+ );
+/************ End %syntax_error code ******************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3Fts5ParserCTX_STORE
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void fts5yy_accept(
+ fts5yyParser *fts5yypParser /* The parser */
+){
+ sqlite3Fts5ParserARG_FETCH
+ sqlite3Fts5ParserCTX_FETCH
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sAccept!\n",fts5yyTracePrompt);
+ }
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ assert( fts5yypParser->fts5yytos==fts5yypParser->fts5yystack );
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+/*********** Begin %parse_accept code *****************************************/
+/*********** End %parse_accept code *******************************************/
+ sqlite3Fts5ParserARG_STORE /* Suppress warning about unused %extra_argument variable */
+ sqlite3Fts5ParserCTX_STORE
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqlite3Fts5ParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+static void sqlite3Fts5Parser(
+ void *fts5yyp, /* The parser */
+ int fts5yymajor, /* The major token code number */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyminor /* The value for the token */
+ sqlite3Fts5ParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ fts5YYMINORTYPE fts5yyminorunion;
+ fts5YYACTIONTYPE fts5yyact; /* The parser action. */
+#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
+ int fts5yyendofinput; /* True if we are at the end of input */
+#endif
+#ifdef fts5YYERRORSYMBOL
+ int fts5yyerrorhit = 0; /* True if fts5yymajor has invoked an error */
+#endif
+ fts5yyParser *fts5yypParser = (fts5yyParser*)fts5yyp; /* The parser */
+ sqlite3Fts5ParserCTX_FETCH
+ sqlite3Fts5ParserARG_STORE
+
+ assert( fts5yypParser->fts5yytos!=0 );
+#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
+ fts5yyendofinput = (fts5yymajor==0);
+#endif
+
+ fts5yyact = fts5yypParser->fts5yytos->stateno;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ if( fts5yyact < fts5YY_MIN_REDUCE ){
+ fprintf(fts5yyTraceFILE,"%sInput '%s' in state %d\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor],fts5yyact);
+ }else{
+ fprintf(fts5yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor],fts5yyact-fts5YY_MIN_REDUCE);
+ }
+ }
+#endif
+
+ while(1){ /* Exit by "break" */
+ assert( fts5yypParser->fts5yytos>=fts5yypParser->fts5yystack );
+ assert( fts5yyact==fts5yypParser->fts5yytos->stateno );
+ fts5yyact = fts5yy_find_shift_action((fts5YYCODETYPE)fts5yymajor,fts5yyact);
+ if( fts5yyact >= fts5YY_MIN_REDUCE ){
+ unsigned int fts5yyruleno = fts5yyact - fts5YY_MIN_REDUCE; /* Reduce by this rule */
+#ifndef NDEBUG
+ assert( fts5yyruleno<(int)(sizeof(fts5yyRuleName)/sizeof(fts5yyRuleName[0])) );
+ if( fts5yyTraceFILE ){
+ int fts5yysize = fts5yyRuleInfoNRhs[fts5yyruleno];
+ if( fts5yysize ){
+ fprintf(fts5yyTraceFILE, "%sReduce %d [%s]%s, pop back to state %d.\n",
+ fts5yyTracePrompt,
+ fts5yyruleno, fts5yyRuleName[fts5yyruleno],
+ fts5yyruleno<fts5YYNRULE_WITH_ACTION ? "" : " without external action",
+ fts5yypParser->fts5yytos[fts5yysize].stateno);
+ }else{
+ fprintf(fts5yyTraceFILE, "%sReduce %d [%s]%s.\n",
+ fts5yyTracePrompt, fts5yyruleno, fts5yyRuleName[fts5yyruleno],
+ fts5yyruleno<fts5YYNRULE_WITH_ACTION ? "" : " without external action");
+ }
+ }
+#endif /* NDEBUG */
+
+ /* Check that the stack is large enough to grow by a single entry
+ ** if the RHS of the rule is empty. This ensures that there is room
+ ** enough on the stack to push the LHS value */
+ if( fts5yyRuleInfoNRhs[fts5yyruleno]==0 ){
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
+ fts5yypParser->fts5yyhwm++;
+ assert( fts5yypParser->fts5yyhwm ==
+ (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack));
+ }
+#endif
+#if fts5YYSTACKDEPTH>0
+ if( fts5yypParser->fts5yytos>=fts5yypParser->fts5yystackEnd ){
+ fts5yyStackOverflow(fts5yypParser);
+ break;
+ }
+#else
+ if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz-1] ){
+ if( fts5yyGrowStack(fts5yypParser) ){
+ fts5yyStackOverflow(fts5yypParser);
+ break;
+ }
+ }
+#endif
+ }
+ fts5yyact = fts5yy_reduce(fts5yypParser,fts5yyruleno,fts5yymajor,fts5yyminor sqlite3Fts5ParserCTX_PARAM);
+ }else if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
+ fts5yy_shift(fts5yypParser,fts5yyact,(fts5YYCODETYPE)fts5yymajor,fts5yyminor);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt--;
+#endif
+ break;
+ }else if( fts5yyact==fts5YY_ACCEPT_ACTION ){
+ fts5yypParser->fts5yytos--;
+ fts5yy_accept(fts5yypParser);
+ return;
+ }else{
+ assert( fts5yyact == fts5YY_ERROR_ACTION );
+ fts5yyminorunion.fts5yy0 = fts5yyminor;
+#ifdef fts5YYERRORSYMBOL
+ int fts5yymx;
+#endif
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sSyntax Error!\n",fts5yyTracePrompt);
+ }
+#endif
+#ifdef fts5YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( fts5yypParser->fts5yyerrcnt<0 ){
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor,fts5yyminor);
+ }
+ fts5yymx = fts5yypParser->fts5yytos->major;
+ if( fts5yymx==fts5YYERRORSYMBOL || fts5yyerrorhit ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sDiscard input token %s\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
+ }
+#endif
+ fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion);
+ fts5yymajor = fts5YYNOCODE;
+ }else{
+ while( fts5yypParser->fts5yytos > fts5yypParser->fts5yystack ){
+ fts5yyact = fts5yy_find_reduce_action(fts5yypParser->fts5yytos->stateno,
+ fts5YYERRORSYMBOL);
+ if( fts5yyact<=fts5YY_MAX_SHIFTREDUCE ) break;
+ fts5yy_pop_parser_stack(fts5yypParser);
+ }
+ if( fts5yypParser->fts5yytos <= fts5yypParser->fts5yystack || fts5yymajor==0 ){
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ fts5yy_parse_failed(fts5yypParser);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ fts5yymajor = fts5YYNOCODE;
+ }else if( fts5yymx!=fts5YYERRORSYMBOL ){
+ fts5yy_shift(fts5yypParser,fts5yyact,fts5YYERRORSYMBOL,fts5yyminor);
+ }
+ }
+ fts5yypParser->fts5yyerrcnt = 3;
+ fts5yyerrorhit = 1;
+ if( fts5yymajor==fts5YYNOCODE ) break;
+ fts5yyact = fts5yypParser->fts5yytos->stateno;
+#elif defined(fts5YYNOERRORRECOVERY)
+ /* If the fts5YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor, fts5yyminor);
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ break;
+#else /* fts5YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( fts5yypParser->fts5yyerrcnt<=0 ){
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor, fts5yyminor);
+ }
+ fts5yypParser->fts5yyerrcnt = 3;
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ if( fts5yyendofinput ){
+ fts5yy_parse_failed(fts5yypParser);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ }
+ break;
+#endif
+ }
+ }
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fts5yyStackEntry *i;
+ char cDiv = '[';
+ fprintf(fts5yyTraceFILE,"%sReturn. Stack=",fts5yyTracePrompt);
+ for(i=&fts5yypParser->fts5yystack[1]; i<=fts5yypParser->fts5yytos; i++){
+ fprintf(fts5yyTraceFILE,"%c%s", cDiv, fts5yyTokenName[i->major]);
+ cDiv = ' ';
+ }
+ fprintf(fts5yyTraceFILE,"]\n");
+ }
+#endif
+ return;
+}
+
+/*
+** Return the fallback token corresponding to canonical token iToken, or
+** 0 if iToken has no fallback.
+*/
+static int sqlite3Fts5ParserFallback(int iToken){
+#ifdef fts5YYFALLBACK
+ assert( iToken<(int)(sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0])) );
+ return fts5yyFallback[iToken];
+#else
+ (void)iToken;
+ return 0;
+#endif
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+/* #include "fts5Int.h" */
+#include <math.h> /* amalgamator: keep */
+
+/*
+** Object used to iterate through all "coalesced phrase instances" in
+** a single column of the current row. If the phrase instances in the
+** column being considered do not overlap, this object simply iterates
+** through them. Or, if they do overlap (share one or more tokens in
+** common), each set of overlapping instances is treated as a single
+** match. See documentation for the highlight() auxiliary function for
+** details.
+**
+** Usage is:
+**
+** for(rc = fts5CInstIterNext(pApi, pFts, iCol, &iter);
+** (rc==SQLITE_OK && 0==fts5CInstIterEof(&iter);
+** rc = fts5CInstIterNext(&iter)
+** ){
+** printf("instance starts at %d, ends at %d\n", iter.iStart, iter.iEnd);
+** }
+**
+*/
+typedef struct CInstIter CInstIter;
+struct CInstIter {
+ const Fts5ExtensionApi *pApi; /* API offered by current FTS version */
+ Fts5Context *pFts; /* First arg to pass to pApi functions */
+ int iCol; /* Column to search */
+ int iInst; /* Next phrase instance index */
+ int nInst; /* Total number of phrase instances */
+
+ /* Output variables */
+ int iStart; /* First token in coalesced phrase instance */
+ int iEnd; /* Last token in coalesced phrase instance */
+};
+
+/*
+** Advance the iterator to the next coalesced phrase instance. Return
+** an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+static int fts5CInstIterNext(CInstIter *pIter){
+ int rc = SQLITE_OK;
+ pIter->iStart = -1;
+ pIter->iEnd = -1;
+
+ while( rc==SQLITE_OK && pIter->iInst<pIter->nInst ){
+ int ip; int ic; int io;
+ rc = pIter->pApi->xInst(pIter->pFts, pIter->iInst, &ip, &ic, &io);
+ if( rc==SQLITE_OK ){
+ if( ic==pIter->iCol ){
+ int iEnd = io - 1 + pIter->pApi->xPhraseSize(pIter->pFts, ip);
+ if( pIter->iStart<0 ){
+ pIter->iStart = io;
+ pIter->iEnd = iEnd;
+ }else if( io<=pIter->iEnd ){
+ if( iEnd>pIter->iEnd ) pIter->iEnd = iEnd;
+ }else{
+ break;
+ }
+ }
+ pIter->iInst++;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Initialize the iterator object indicated by the final parameter to
+** iterate through coalesced phrase instances in column iCol.
+*/
+static int fts5CInstIterInit(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ int iCol,
+ CInstIter *pIter
+){
+ int rc;
+
+ memset(pIter, 0, sizeof(CInstIter));
+ pIter->pApi = pApi;
+ pIter->pFts = pFts;
+ pIter->iCol = iCol;
+ rc = pApi->xInstCount(pFts, &pIter->nInst);
+
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(pIter);
+ }
+
+ return rc;
+}
+
+
+
+/*************************************************************************
+** Start of highlight() implementation.
+*/
+typedef struct HighlightContext HighlightContext;
+struct HighlightContext {
+ /* Constant parameters to fts5HighlightCb() */
+ int iRangeStart; /* First token to include */
+ int iRangeEnd; /* If non-zero, last token to include */
+ const char *zOpen; /* Opening highlight */
+ const char *zClose; /* Closing highlight */
+ const char *zIn; /* Input text */
+ int nIn; /* Size of input text in bytes */
+
+ /* Variables modified by fts5HighlightCb() */
+ CInstIter iter; /* Coalesced Instance Iterator */
+ int iPos; /* Current token offset in zIn[] */
+ int iOff; /* Have copied up to this offset in zIn[] */
+ int bOpen; /* True if highlight is open */
+ char *zOut; /* Output value */
+};
+
+/*
+** Append text to the HighlightContext output string - p->zOut. Argument
+** z points to a buffer containing n bytes of text to append. If n is
+** negative, everything up until the first '\0' is appended to the output.
+**
+** If *pRc is set to any value other than SQLITE_OK when this function is
+** called, it is a no-op. If an error (i.e. an OOM condition) is encountered,
+** *pRc is set to an error code before returning.
+*/
+static void fts5HighlightAppend(
+ int *pRc,
+ HighlightContext *p,
+ const char *z, int n
+){
+ if( *pRc==SQLITE_OK && z ){
+ if( n<0 ) n = (int)strlen(z);
+ p->zOut = sqlite3_mprintf("%z%.*s", p->zOut, n, z);
+ if( p->zOut==0 ) *pRc = SQLITE_NOMEM;
+ }
+}
+
+/*
+** Tokenizer callback used by implementation of highlight() function.
+*/
+static int fts5HighlightCb(
+ void *pContext, /* Pointer to HighlightContext object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStartOff, /* Start byte offset of token */
+ int iEndOff /* End byte offset of token */
+){
+ HighlightContext *p = (HighlightContext*)pContext;
+ int rc = SQLITE_OK;
+ int iPos;
+
+ UNUSED_PARAM2(pToken, nToken);
+
+ if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
+ iPos = p->iPos++;
+
+ if( p->iRangeEnd>=0 ){
+ if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
+ if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;
+ }
+
+ /* If the parenthesis is open, and this token is not part of the current
+ ** phrase, and the starting byte offset of this token is past the point
+ ** that has currently been copied into the output buffer, close the
+ ** parenthesis. */
+ if( p->bOpen
+ && (iPos<=p->iter.iStart || p->iter.iStart<0)
+ && iStartOff>p->iOff
+ ){
+ fts5HighlightAppend(&rc, p, p->zClose, -1);
+ p->bOpen = 0;
+ }
+
+ /* If this is the start of a new phrase, and the highlight is not open:
+ **
+ ** * copy text from the input up to the start of the phrase, and
+ ** * open the highlight.
+ */
+ if( iPos==p->iter.iStart && p->bOpen==0 ){
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iStartOff - p->iOff);
+ fts5HighlightAppend(&rc, p, p->zOpen, -1);
+ p->iOff = iStartOff;
+ p->bOpen = 1;
+ }
+
+ if( iPos==p->iter.iEnd ){
+ if( p->bOpen==0 ){
+ assert( p->iRangeEnd>=0 );
+ fts5HighlightAppend(&rc, p, p->zOpen, -1);
+ p->bOpen = 1;
+ }
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iEndOff - p->iOff);
+ p->iOff = iEndOff;
+
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(&p->iter);
+ }
+ }
+
+ if( iPos==p->iRangeEnd ){
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iEndOff - p->iOff);
+ p->iOff = iEndOff;
+ }
+
+ return rc;
+}
+
+/*
+** Implementation of highlight() function.
+*/
+static void fts5HighlightFunction(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ HighlightContext ctx;
+ int rc;
+ int iCol;
+
+ if( nVal!=3 ){
+ const char *zErr = "wrong number of arguments to function highlight()";
+ sqlite3_result_error(pCtx, zErr, -1);
+ return;
+ }
+
+ iCol = sqlite3_value_int(apVal[0]);
+ memset(&ctx, 0, sizeof(HighlightContext));
+ ctx.zOpen = (const char*)sqlite3_value_text(apVal[1]);
+ ctx.zClose = (const char*)sqlite3_value_text(apVal[2]);
+ ctx.iRangeEnd = -1;
+ rc = pApi->xColumnText(pFts, iCol, &ctx.zIn, &ctx.nIn);
+
+ if( ctx.zIn ){
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterInit(pApi, pFts, iCol, &ctx.iter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xTokenize(pFts, ctx.zIn, ctx.nIn, (void*)&ctx,fts5HighlightCb);
+ }
+ if( ctx.bOpen ){
+ fts5HighlightAppend(&rc, &ctx, ctx.zClose, -1);
+ }
+ fts5HighlightAppend(&rc, &ctx, &ctx.zIn[ctx.iOff], ctx.nIn - ctx.iOff);
+
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)ctx.zOut, -1, SQLITE_TRANSIENT);
+ }
+ sqlite3_free(ctx.zOut);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+/*
+** End of highlight() implementation.
+**************************************************************************/
+
+/*
+** Context object passed to the fts5SentenceFinderCb() function.
+*/
+typedef struct Fts5SFinder Fts5SFinder;
+struct Fts5SFinder {
+ int iPos; /* Current token position */
+ int nFirstAlloc; /* Allocated size of aFirst[] */
+ int nFirst; /* Number of entries in aFirst[] */
+ int *aFirst; /* Array of first token in each sentence */
+ const char *zDoc; /* Document being tokenized */
+};
+
+/*
+** Add an entry to the Fts5SFinder.aFirst[] array. Grow the array if
+** necessary. Return SQLITE_OK if successful, or SQLITE_NOMEM if an
+** error occurs.
+*/
+static int fts5SentenceFinderAdd(Fts5SFinder *p, int iAdd){
+ if( p->nFirstAlloc==p->nFirst ){
+ int nNew = p->nFirstAlloc ? p->nFirstAlloc*2 : 64;
+ int *aNew;
+
+ aNew = (int*)sqlite3_realloc64(p->aFirst, nNew*sizeof(int));
+ if( aNew==0 ) return SQLITE_NOMEM;
+ p->aFirst = aNew;
+ p->nFirstAlloc = nNew;
+ }
+ p->aFirst[p->nFirst++] = iAdd;
+ return SQLITE_OK;
+}
+
+/*
+** This function is an xTokenize() callback used by the auxiliary snippet()
+** function. Its job is to identify tokens that are the first in a sentence.
+** For each such token, an entry is added to the SFinder.aFirst[] array.
+*/
+static int fts5SentenceFinderCb(
+ void *pContext, /* Pointer to HighlightContext object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStartOff, /* Start offset of token */
+ int iEndOff /* End offset of token */
+){
+ int rc = SQLITE_OK;
+
+ UNUSED_PARAM2(pToken, nToken);
+ UNUSED_PARAM(iEndOff);
+
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
+ Fts5SFinder *p = (Fts5SFinder*)pContext;
+ if( p->iPos>0 ){
+ int i;
+ char c = 0;
+ for(i=iStartOff-1; i>=0; i--){
+ c = p->zDoc[i];
+ if( c!=' ' && c!='\t' && c!='\n' && c!='\r' ) break;
+ }
+ if( i!=iStartOff-1 && (c=='.' || c==':') ){
+ rc = fts5SentenceFinderAdd(p, p->iPos);
+ }
+ }else{
+ rc = fts5SentenceFinderAdd(p, 0);
+ }
+ p->iPos++;
+ }
+ return rc;
+}
+
+static int fts5SnippetScore(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ int nDocsize, /* Size of column in tokens */
+ unsigned char *aSeen, /* Array with one element per query phrase */
+ int iCol, /* Column to score */
+ int iPos, /* Starting offset to score */
+ int nToken, /* Max tokens per snippet */
+ int *pnScore, /* OUT: Score */
+ int *piPos /* OUT: Adjusted offset */
+){
+ int rc;
+ int i;
+ int ip = 0;
+ int ic = 0;
+ int iOff = 0;
+ int iFirst = -1;
+ int nInst;
+ int nScore = 0;
+ int iLast = 0;
+ sqlite3_int64 iEnd = (sqlite3_int64)iPos + nToken;
+
+ rc = pApi->xInstCount(pFts, &nInst);
+ for(i=0; i<nInst && rc==SQLITE_OK; i++){
+ rc = pApi->xInst(pFts, i, &ip, &ic, &iOff);
+ if( rc==SQLITE_OK && ic==iCol && iOff>=iPos && iOff<iEnd ){
+ nScore += (aSeen[ip] ? 1 : 1000);
+ aSeen[ip] = 1;
+ if( iFirst<0 ) iFirst = iOff;
+ iLast = iOff + pApi->xPhraseSize(pFts, ip);
+ }
+ }
+
+ *pnScore = nScore;
+ if( piPos ){
+ sqlite3_int64 iAdj = iFirst - (nToken - (iLast-iFirst)) / 2;
+ if( (iAdj+nToken)>nDocsize ) iAdj = nDocsize - nToken;
+ if( iAdj<0 ) iAdj = 0;
+ *piPos = (int)iAdj;
+ }
+
+ return rc;
+}
+
+/*
+** Return the value in pVal interpreted as utf-8 text. Except, if pVal
+** contains a NULL value, return a pointer to a static string zero
+** bytes in length instead of a NULL pointer.
+*/
+static const char *fts5ValueToText(sqlite3_value *pVal){
+ const char *zRet = (const char*)sqlite3_value_text(pVal);
+ return zRet ? zRet : "";
+}
+
+/*
+** Implementation of snippet() function.
+*/
+static void fts5SnippetFunction(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ HighlightContext ctx;
+ int rc = SQLITE_OK; /* Return code */
+ int iCol; /* 1st argument to snippet() */
+ const char *zEllips; /* 4th argument to snippet() */
+ int nToken; /* 5th argument to snippet() */
+ int nInst = 0; /* Number of instance matches this row */
+ int i; /* Used to iterate through instances */
+ int nPhrase; /* Number of phrases in query */
+ unsigned char *aSeen; /* Array of "seen instance" flags */
+ int iBestCol; /* Column containing best snippet */
+ int iBestStart = 0; /* First token of best snippet */
+ int nBestScore = 0; /* Score of best snippet */
+ int nColSize = 0; /* Total size of iBestCol in tokens */
+ Fts5SFinder sFinder; /* Used to find the beginnings of sentences */
+ int nCol;
+
+ if( nVal!=5 ){
+ const char *zErr = "wrong number of arguments to function snippet()";
+ sqlite3_result_error(pCtx, zErr, -1);
+ return;
+ }
+
+ nCol = pApi->xColumnCount(pFts);
+ memset(&ctx, 0, sizeof(HighlightContext));
+ iCol = sqlite3_value_int(apVal[0]);
+ ctx.zOpen = fts5ValueToText(apVal[1]);
+ ctx.zClose = fts5ValueToText(apVal[2]);
+ ctx.iRangeEnd = -1;
+ zEllips = fts5ValueToText(apVal[3]);
+ nToken = sqlite3_value_int(apVal[4]);
+
+ iBestCol = (iCol>=0 ? iCol : 0);
+ nPhrase = pApi->xPhraseCount(pFts);
+ aSeen = sqlite3_malloc(nPhrase);
+ if( aSeen==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ rc = pApi->xInstCount(pFts, &nInst);
+ }
+
+ memset(&sFinder, 0, sizeof(Fts5SFinder));
+ for(i=0; i<nCol; i++){
+ if( iCol<0 || iCol==i ){
+ int nDoc;
+ int nDocsize;
+ int ii;
+ sFinder.iPos = 0;
+ sFinder.nFirst = 0;
+ rc = pApi->xColumnText(pFts, i, &sFinder.zDoc, &nDoc);
+ if( rc!=SQLITE_OK ) break;
+ rc = pApi->xTokenize(pFts,
+ sFinder.zDoc, nDoc, (void*)&sFinder,fts5SentenceFinderCb
+ );
+ if( rc!=SQLITE_OK ) break;
+ rc = pApi->xColumnSize(pFts, i, &nDocsize);
+ if( rc!=SQLITE_OK ) break;
+
+ for(ii=0; rc==SQLITE_OK && ii<nInst; ii++){
+ int ip, ic, io;
+ int iAdj;
+ int nScore;
+ int jj;
+
+ rc = pApi->xInst(pFts, ii, &ip, &ic, &io);
+ if( ic!=i ) continue;
+ if( io>nDocsize ) rc = FTS5_CORRUPT;
+ if( rc!=SQLITE_OK ) continue;
+ memset(aSeen, 0, nPhrase);
+ rc = fts5SnippetScore(pApi, pFts, nDocsize, aSeen, i,
+ io, nToken, &nScore, &iAdj
+ );
+ if( rc==SQLITE_OK && nScore>nBestScore ){
+ nBestScore = nScore;
+ iBestCol = i;
+ iBestStart = iAdj;
+ nColSize = nDocsize;
+ }
+
+ if( rc==SQLITE_OK && sFinder.nFirst && nDocsize>nToken ){
+ for(jj=0; jj<(sFinder.nFirst-1); jj++){
+ if( sFinder.aFirst[jj+1]>io ) break;
+ }
+
+ if( sFinder.aFirst[jj]<io ){
+ memset(aSeen, 0, nPhrase);
+ rc = fts5SnippetScore(pApi, pFts, nDocsize, aSeen, i,
+ sFinder.aFirst[jj], nToken, &nScore, 0
+ );
+
+ nScore += (sFinder.aFirst[jj]==0 ? 120 : 100);
+ if( rc==SQLITE_OK && nScore>nBestScore ){
+ nBestScore = nScore;
+ iBestCol = i;
+ iBestStart = sFinder.aFirst[jj];
+ nColSize = nDocsize;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xColumnText(pFts, iBestCol, &ctx.zIn, &ctx.nIn);
+ }
+ if( rc==SQLITE_OK && nColSize==0 ){
+ rc = pApi->xColumnSize(pFts, iBestCol, &nColSize);
+ }
+ if( ctx.zIn ){
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterInit(pApi, pFts, iBestCol, &ctx.iter);
+ }
+
+ ctx.iRangeStart = iBestStart;
+ ctx.iRangeEnd = iBestStart + nToken - 1;
+
+ if( iBestStart>0 ){
+ fts5HighlightAppend(&rc, &ctx, zEllips, -1);
+ }
+
+ /* Advance iterator ctx.iter so that it points to the first coalesced
+ ** phrase instance at or following position iBestStart. */
+ while( ctx.iter.iStart>=0 && ctx.iter.iStart<iBestStart && rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(&ctx.iter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xTokenize(pFts, ctx.zIn, ctx.nIn, (void*)&ctx,fts5HighlightCb);
+ }
+ if( ctx.bOpen ){
+ fts5HighlightAppend(&rc, &ctx, ctx.zClose, -1);
+ }
+ if( ctx.iRangeEnd>=(nColSize-1) ){
+ fts5HighlightAppend(&rc, &ctx, &ctx.zIn[ctx.iOff], ctx.nIn - ctx.iOff);
+ }else{
+ fts5HighlightAppend(&rc, &ctx, zEllips, -1);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)ctx.zOut, -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ sqlite3_free(ctx.zOut);
+ sqlite3_free(aSeen);
+ sqlite3_free(sFinder.aFirst);
+}
+
+/************************************************************************/
+
+/*
+** The first time the bm25() function is called for a query, an instance
+** of the following structure is allocated and populated.
+*/
+typedef struct Fts5Bm25Data Fts5Bm25Data;
+struct Fts5Bm25Data {
+ int nPhrase; /* Number of phrases in query */
+ double avgdl; /* Average number of tokens in each row */
+ double *aIDF; /* IDF for each phrase */
+ double *aFreq; /* Array used to calculate phrase freq. */
+};
+
+/*
+** Callback used by fts5Bm25GetData() to count the number of rows in the
+** table matched by each individual phrase within the query.
+*/
+static int fts5CountCb(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ void *pUserData /* Pointer to sqlite3_int64 variable */
+){
+ sqlite3_int64 *pn = (sqlite3_int64*)pUserData;
+ UNUSED_PARAM2(pApi, pFts);
+ (*pn)++;
+ return SQLITE_OK;
+}
+
+/*
+** Set *ppData to point to the Fts5Bm25Data object for the current query.
+** If the object has not already been allocated, allocate and populate it
+** now.
+*/
+static int fts5Bm25GetData(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ Fts5Bm25Data **ppData /* OUT: bm25-data object for this query */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Bm25Data *p; /* Object to return */
+
+ p = (Fts5Bm25Data*)pApi->xGetAuxdata(pFts, 0);
+ if( p==0 ){
+ int nPhrase; /* Number of phrases in query */
+ sqlite3_int64 nRow = 0; /* Number of rows in table */
+ sqlite3_int64 nToken = 0; /* Number of tokens in table */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+ int i;
+
+ /* Allocate the Fts5Bm25Data object */
+ nPhrase = pApi->xPhraseCount(pFts);
+ nByte = sizeof(Fts5Bm25Data) + nPhrase*2*sizeof(double);
+ p = (Fts5Bm25Data*)sqlite3_malloc64(nByte);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(p, 0, (size_t)nByte);
+ p->nPhrase = nPhrase;
+ p->aIDF = (double*)&p[1];
+ p->aFreq = &p->aIDF[nPhrase];
+ }
+
+ /* Calculate the average document length for this FTS5 table */
+ if( rc==SQLITE_OK ) rc = pApi->xRowCount(pFts, &nRow);
+ assert( rc!=SQLITE_OK || nRow>0 );
+ if( rc==SQLITE_OK ) rc = pApi->xColumnTotalSize(pFts, -1, &nToken);
+ if( rc==SQLITE_OK ) p->avgdl = (double)nToken / (double)nRow;
+
+ /* Calculate an IDF for each phrase in the query */
+ for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
+ sqlite3_int64 nHit = 0;
+ rc = pApi->xQueryPhrase(pFts, i, (void*)&nHit, fts5CountCb);
+ if( rc==SQLITE_OK ){
+ /* Calculate the IDF (Inverse Document Frequency) for phrase i.
+ ** This is done using the standard BM25 formula as found on wikipedia:
+ **
+ ** IDF = log( (N - nHit + 0.5) / (nHit + 0.5) )
+ **
+ ** where "N" is the total number of documents in the set and nHit
+ ** is the number that contain at least one instance of the phrase
+ ** under consideration.
+ **
+ ** The problem with this is that if (N < 2*nHit), the IDF is
+ ** negative. Which is undesirable. So the mimimum allowable IDF is
+ ** (1e-6) - roughly the same as a term that appears in just over
+ ** half of set of 5,000,000 documents. */
+ double idf = log( (nRow - nHit + 0.5) / (nHit + 0.5) );
+ if( idf<=0.0 ) idf = 1e-6;
+ p->aIDF[i] = idf;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(p);
+ }else{
+ rc = pApi->xSetAuxdata(pFts, p, sqlite3_free);
+ }
+ if( rc!=SQLITE_OK ) p = 0;
+ }
+ *ppData = p;
+ return rc;
+}
+
+/*
+** Implementation of bm25() function.
+*/
+static void fts5Bm25Function(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ const double k1 = 1.2; /* Constant "k1" from BM25 formula */
+ const double b = 0.75; /* Constant "b" from BM25 formula */
+ int rc; /* Error code */
+ double score = 0.0; /* SQL function return value */
+ Fts5Bm25Data *pData; /* Values allocated/calculated once only */
+ int i; /* Iterator variable */
+ int nInst = 0; /* Value returned by xInstCount() */
+ double D = 0.0; /* Total number of tokens in row */
+ double *aFreq = 0; /* Array of phrase freq. for current row */
+
+ /* Calculate the phrase frequency (symbol "f(qi,D)" in the documentation)
+ ** for each phrase in the query for the current row. */
+ rc = fts5Bm25GetData(pApi, pFts, &pData);
+ if( rc==SQLITE_OK ){
+ aFreq = pData->aFreq;
+ memset(aFreq, 0, sizeof(double) * pData->nPhrase);
+ rc = pApi->xInstCount(pFts, &nInst);
+ }
+ for(i=0; rc==SQLITE_OK && i<nInst; i++){
+ int ip; int ic; int io;
+ rc = pApi->xInst(pFts, i, &ip, &ic, &io);
+ if( rc==SQLITE_OK ){
+ double w = (nVal > ic) ? sqlite3_value_double(apVal[ic]) : 1.0;
+ aFreq[ip] += w;
+ }
+ }
+
+ /* Figure out the total size of the current row in tokens. */
+ if( rc==SQLITE_OK ){
+ int nTok;
+ rc = pApi->xColumnSize(pFts, -1, &nTok);
+ D = (double)nTok;
+ }
+
+ /* Determine and return the BM25 score for the current row. Or, if an
+ ** error has occurred, throw an exception. */
+ if( rc==SQLITE_OK ){
+ for(i=0; i<pData->nPhrase; i++){
+ score += pData->aIDF[i] * (
+ ( aFreq[i] * (k1 + 1.0) ) /
+ ( aFreq[i] + k1 * (1 - b + b * D / pData->avgdl) )
+ );
+ }
+ sqlite3_result_double(pCtx, -1.0 * score);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+
+static int sqlite3Fts5AuxInit(fts5_api *pApi){
+ struct Builtin {
+ const char *zFunc; /* Function name (nul-terminated) */
+ void *pUserData; /* User-data pointer */
+ fts5_extension_function xFunc;/* Callback function */
+ void (*xDestroy)(void*); /* Destructor function */
+ } aBuiltin [] = {
+ { "snippet", 0, fts5SnippetFunction, 0 },
+ { "highlight", 0, fts5HighlightFunction, 0 },
+ { "bm25", 0, fts5Bm25Function, 0 },
+ };
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* To iterate through builtin functions */
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
+ rc = pApi->xCreateFunction(pApi,
+ aBuiltin[i].zFunc,
+ aBuiltin[i].pUserData,
+ aBuiltin[i].xFunc,
+ aBuiltin[i].xDestroy
+ );
+ }
+
+ return rc;
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, u32 nByte){
+ if( (u32)pBuf->nSpace<nByte ){
+ u64 nNew = pBuf->nSpace ? pBuf->nSpace : 64;
+ u8 *pNew;
+ while( nNew<nByte ){
+ nNew = nNew * 2;
+ }
+ pNew = sqlite3_realloc64(pBuf->p, nNew);
+ if( pNew==0 ){
+ *pRc = SQLITE_NOMEM;
+ return 1;
+ }else{
+ pBuf->nSpace = (int)nNew;
+ pBuf->p = pNew;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Encode value iVal as an SQLite varint and append it to the buffer object
+** pBuf. If an OOM error occurs, set the error code in p.
+*/
+static void sqlite3Fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
+ if( fts5BufferGrow(pRc, pBuf, 9) ) return;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iVal);
+}
+
+static void sqlite3Fts5Put32(u8 *aBuf, int iVal){
+ aBuf[0] = (iVal>>24) & 0x00FF;
+ aBuf[1] = (iVal>>16) & 0x00FF;
+ aBuf[2] = (iVal>> 8) & 0x00FF;
+ aBuf[3] = (iVal>> 0) & 0x00FF;
+}
+
+static int sqlite3Fts5Get32(const u8 *aBuf){
+ return (int)((((u32)aBuf[0])<<24) + (aBuf[1]<<16) + (aBuf[2]<<8) + aBuf[3]);
+}
+
+/*
+** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void sqlite3Fts5BufferAppendBlob(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ u32 nData,
+ const u8 *pData
+){
+ if( nData ){
+ if( fts5BufferGrow(pRc, pBuf, nData) ) return;
+ memcpy(&pBuf->p[pBuf->n], pData, nData);
+ pBuf->n += nData;
+ }
+}
+
+/*
+** Append the nul-terminated string zStr to the buffer pBuf. This function
+** ensures that the byte following the buffer data is set to 0x00, even
+** though this byte is not included in the pBuf->n count.
+*/
+static void sqlite3Fts5BufferAppendString(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ const char *zStr
+){
+ int nStr = (int)strlen(zStr);
+ sqlite3Fts5BufferAppendBlob(pRc, pBuf, nStr+1, (const u8*)zStr);
+ pBuf->n--;
+}
+
+/*
+** Argument zFmt is a printf() style format string. This function performs
+** the printf() style processing, then appends the results to buffer pBuf.
+**
+** Like sqlite3Fts5BufferAppendString(), this function ensures that the byte
+** following the buffer data is set to 0x00, even though this byte is not
+** included in the pBuf->n count.
+*/
+static void sqlite3Fts5BufferAppendPrintf(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ char *zFmt, ...
+){
+ if( *pRc==SQLITE_OK ){
+ char *zTmp;
+ va_list ap;
+ va_start(ap, zFmt);
+ zTmp = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+
+ if( zTmp==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts5BufferAppendString(pRc, pBuf, zTmp);
+ sqlite3_free(zTmp);
+ }
+ }
+}
+
+static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...){
+ char *zRet = 0;
+ if( *pRc==SQLITE_OK ){
+ va_list ap;
+ va_start(ap, zFmt);
+ zRet = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zRet==0 ){
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ return zRet;
+}
+
+
+/*
+** Free any buffer allocated by pBuf. Zero the structure before returning.
+*/
+static void sqlite3Fts5BufferFree(Fts5Buffer *pBuf){
+ sqlite3_free(pBuf->p);
+ memset(pBuf, 0, sizeof(Fts5Buffer));
+}
+
+/*
+** Zero the contents of the buffer object. But do not free the associated
+** memory allocation.
+*/
+static void sqlite3Fts5BufferZero(Fts5Buffer *pBuf){
+ pBuf->n = 0;
+}
+
+/*
+** Set the buffer to contain nData/pData. If an OOM error occurs, leave an
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void sqlite3Fts5BufferSet(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ int nData,
+ const u8 *pData
+){
+ pBuf->n = 0;
+ sqlite3Fts5BufferAppendBlob(pRc, pBuf, nData, pData);
+}
+
+static int sqlite3Fts5PoslistNext64(
+ const u8 *a, int n, /* Buffer containing poslist */
+ int *pi, /* IN/OUT: Offset within a[] */
+ i64 *piOff /* IN/OUT: Current offset */
+){
+ int i = *pi;
+ if( i>=n ){
+ /* EOF */
+ *piOff = -1;
+ return 1;
+ }else{
+ i64 iOff = *piOff;
+ u32 iVal;
+ fts5FastGetVarint32(a, i, iVal);
+ if( iVal<=1 ){
+ if( iVal==0 ){
+ *pi = i;
+ return 0;
+ }
+ fts5FastGetVarint32(a, i, iVal);
+ iOff = ((i64)iVal) << 32;
+ assert( iOff>=0 );
+ fts5FastGetVarint32(a, i, iVal);
+ if( iVal<2 ){
+ /* This is a corrupt record. So stop parsing it here. */
+ *piOff = -1;
+ return 1;
+ }
+ *piOff = iOff + ((iVal-2) & 0x7FFFFFFF);
+ }else{
+ *piOff = (iOff & (i64)0x7FFFFFFF<<32)+((iOff + (iVal-2)) & 0x7FFFFFFF);
+ }
+ *pi = i;
+ assert_nc( *piOff>=iOff );
+ return 0;
+ }
+}
+
+
+/*
+** Advance the iterator object passed as the only argument. Return true
+** if the iterator reaches EOF, or false otherwise.
+*/
+static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader *pIter){
+ if( sqlite3Fts5PoslistNext64(pIter->a, pIter->n, &pIter->i, &pIter->iPos) ){
+ pIter->bEof = 1;
+ }
+ return pIter->bEof;
+}
+
+static int sqlite3Fts5PoslistReaderInit(
+ const u8 *a, int n, /* Poslist buffer to iterate through */
+ Fts5PoslistReader *pIter /* Iterator object to initialize */
+){
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->a = a;
+ pIter->n = n;
+ sqlite3Fts5PoslistReaderNext(pIter);
+ return pIter->bEof;
+}
+
+/*
+** Append position iPos to the position list being accumulated in buffer
+** pBuf, which must be already be large enough to hold the new data.
+** The previous position written to this list is *piPrev. *piPrev is set
+** to iPos before returning.
+*/
+static void sqlite3Fts5PoslistSafeAppend(
+ Fts5Buffer *pBuf,
+ i64 *piPrev,
+ i64 iPos
+){
+ if( iPos>=*piPrev ){
+ static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
+ if( (iPos & colmask) != (*piPrev & colmask) ){
+ pBuf->p[pBuf->n++] = 1;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
+ *piPrev = (iPos & colmask);
+ }
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-*piPrev)+2);
+ *piPrev = iPos;
+ }
+}
+
+static int sqlite3Fts5PoslistWriterAppend(
+ Fts5Buffer *pBuf,
+ Fts5PoslistWriter *pWriter,
+ i64 iPos
+){
+ int rc = 0; /* Initialized only to suppress erroneous warning from Clang */
+ if( fts5BufferGrow(&rc, pBuf, 5+5+5) ) return rc;
+ sqlite3Fts5PoslistSafeAppend(pBuf, &pWriter->iPrev, iPos);
+ return SQLITE_OK;
+}
+
+static void *sqlite3Fts5MallocZero(int *pRc, sqlite3_int64 nByte){
+ void *pRet = 0;
+ if( *pRc==SQLITE_OK ){
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ if( nByte>0 ) *pRc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, (size_t)nByte);
+ }
+ }
+ return pRet;
+}
+
+/*
+** Return a nul-terminated copy of the string indicated by pIn. If nIn
+** is non-negative, then it is the length of the string in bytes. Otherwise,
+** the length of the string is determined using strlen().
+**
+** It is the responsibility of the caller to eventually free the returned
+** buffer using sqlite3_free(). If an OOM error occurs, NULL is returned.
+*/
+static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn){
+ char *zRet = 0;
+ if( *pRc==SQLITE_OK ){
+ if( nIn<0 ){
+ nIn = (int)strlen(pIn);
+ }
+ zRet = (char*)sqlite3_malloc(nIn+1);
+ if( zRet ){
+ memcpy(zRet, pIn, nIn);
+ zRet[nIn] = '\0';
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ return zRet;
+}
+
+
+/*
+** Return true if character 't' may be part of an FTS5 bareword, or false
+** otherwise. Characters that may be part of barewords:
+**
+** * All non-ASCII characters,
+** * The 52 upper and lower case ASCII characters, and
+** * The 10 integer ASCII characters.
+** * The underscore character "_" (0x5F).
+** * The unicode "subsitute" character (0x1A).
+*/
+static int sqlite3Fts5IsBareword(char t){
+ u8 aBareword[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 .. 0x0F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* 0x10 .. 0x1F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 .. 0x2F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30 .. 0x3F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 .. 0x4F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 0x50 .. 0x5F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 .. 0x6F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 /* 0x70 .. 0x7F */
+ };
+
+ return (t & 0x80) || aBareword[(int)t];
+}
+
+
+/*************************************************************************
+*/
+typedef struct Fts5TermsetEntry Fts5TermsetEntry;
+struct Fts5TermsetEntry {
+ char *pTerm;
+ int nTerm;
+ int iIdx; /* Index (main or aPrefix[] entry) */
+ Fts5TermsetEntry *pNext;
+};
+
+struct Fts5Termset {
+ Fts5TermsetEntry *apHash[512];
+};
+
+static int sqlite3Fts5TermsetNew(Fts5Termset **pp){
+ int rc = SQLITE_OK;
+ *pp = sqlite3Fts5MallocZero(&rc, sizeof(Fts5Termset));
+ return rc;
+}
+
+static int sqlite3Fts5TermsetAdd(
+ Fts5Termset *p,
+ int iIdx,
+ const char *pTerm, int nTerm,
+ int *pbPresent
+){
+ int rc = SQLITE_OK;
+ *pbPresent = 0;
+ if( p ){
+ int i;
+ u32 hash = 13;
+ Fts5TermsetEntry *pEntry;
+
+ /* Calculate a hash value for this term. This is the same hash checksum
+ ** used by the fts5_hash.c module. This is not important for correct
+ ** operation of the module, but is necessary to ensure that some tests
+ ** designed to produce hash table collisions really do work. */
+ for(i=nTerm-1; i>=0; i--){
+ hash = (hash << 3) ^ hash ^ pTerm[i];
+ }
+ hash = (hash << 3) ^ hash ^ iIdx;
+ hash = hash % ArraySize(p->apHash);
+
+ for(pEntry=p->apHash[hash]; pEntry; pEntry=pEntry->pNext){
+ if( pEntry->iIdx==iIdx
+ && pEntry->nTerm==nTerm
+ && memcmp(pEntry->pTerm, pTerm, nTerm)==0
+ ){
+ *pbPresent = 1;
+ break;
+ }
+ }
+
+ if( pEntry==0 ){
+ pEntry = sqlite3Fts5MallocZero(&rc, sizeof(Fts5TermsetEntry) + nTerm);
+ if( pEntry ){
+ pEntry->pTerm = (char*)&pEntry[1];
+ pEntry->nTerm = nTerm;
+ pEntry->iIdx = iIdx;
+ memcpy(pEntry->pTerm, pTerm, nTerm);
+ pEntry->pNext = p->apHash[hash];
+ p->apHash[hash] = pEntry;
+ }
+ }
+ }
+
+ return rc;
+}
+
+static void sqlite3Fts5TermsetFree(Fts5Termset *p){
+ if( p ){
+ u32 i;
+ for(i=0; i<ArraySize(p->apHash); i++){
+ Fts5TermsetEntry *pEntry = p->apHash[i];
+ while( pEntry ){
+ Fts5TermsetEntry *pDel = pEntry;
+ pEntry = pEntry->pNext;
+ sqlite3_free(pDel);
+ }
+ }
+ sqlite3_free(p);
+ }
+}
+
+/*
+** 2014 Jun 09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+
+/* #include "fts5Int.h" */
+
+#define FTS5_DEFAULT_PAGE_SIZE 4050
+#define FTS5_DEFAULT_AUTOMERGE 4
+#define FTS5_DEFAULT_USERMERGE 4
+#define FTS5_DEFAULT_CRISISMERGE 16
+#define FTS5_DEFAULT_HASHSIZE (1024*1024)
+
+#define FTS5_DEFAULT_DELETE_AUTOMERGE 10 /* default 10% */
+
+/* Maximum allowed page size */
+#define FTS5_MAX_PAGE_SIZE (64*1024)
+
+static int fts5_iswhitespace(char x){
+ return (x==' ');
+}
+
+static int fts5_isopenquote(char x){
+ return (x=='"' || x=='\'' || x=='[' || x=='`');
+}
+
+/*
+** Argument pIn points to a character that is part of a nul-terminated
+** string. Return a pointer to the first character following *pIn in
+** the string that is not a white-space character.
+*/
+static const char *fts5ConfigSkipWhitespace(const char *pIn){
+ const char *p = pIn;
+ if( p ){
+ while( fts5_iswhitespace(*p) ){ p++; }
+ }
+ return p;
+}
+
+/*
+** Argument pIn points to a character that is part of a nul-terminated
+** string. Return a pointer to the first character following *pIn in
+** the string that is not a "bareword" character.
+*/
+static const char *fts5ConfigSkipBareword(const char *pIn){
+ const char *p = pIn;
+ while ( sqlite3Fts5IsBareword(*p) ) p++;
+ if( p==pIn ) p = 0;
+ return p;
+}
+
+static int fts5_isdigit(char a){
+ return (a>='0' && a<='9');
+}
+
+
+
+static const char *fts5ConfigSkipLiteral(const char *pIn){
+ const char *p = pIn;
+ switch( *p ){
+ case 'n': case 'N':
+ if( sqlite3_strnicmp("null", p, 4)==0 ){
+ p = &p[4];
+ }else{
+ p = 0;
+ }
+ break;
+
+ case 'x': case 'X':
+ p++;
+ if( *p=='\'' ){
+ p++;
+ while( (*p>='a' && *p<='f')
+ || (*p>='A' && *p<='F')
+ || (*p>='0' && *p<='9')
+ ){
+ p++;
+ }
+ if( *p=='\'' && 0==((p-pIn)%2) ){
+ p++;
+ }else{
+ p = 0;
+ }
+ }else{
+ p = 0;
+ }
+ break;
+
+ case '\'':
+ p++;
+ while( p ){
+ if( *p=='\'' ){
+ p++;
+ if( *p!='\'' ) break;
+ }
+ p++;
+ if( *p==0 ) p = 0;
+ }
+ break;
+
+ default:
+ /* maybe a number */
+ if( *p=='+' || *p=='-' ) p++;
+ while( fts5_isdigit(*p) ) p++;
+
+ /* At this point, if the literal was an integer, the parse is
+ ** finished. Or, if it is a floating point value, it may continue
+ ** with either a decimal point or an 'E' character. */
+ if( *p=='.' && fts5_isdigit(p[1]) ){
+ p += 2;
+ while( fts5_isdigit(*p) ) p++;
+ }
+ if( p==pIn ) p = 0;
+
+ break;
+ }
+
+ return p;
+}
+
+/*
+** The first character of the string pointed to by argument z is guaranteed
+** to be an open-quote character (see function fts5_isopenquote()).
+**
+** This function searches for the corresponding close-quote character within
+** the string and, if found, dequotes the string in place and adds a new
+** nul-terminator byte.
+**
+** If the close-quote is found, the value returned is the byte offset of
+** the character immediately following it. Or, if the close-quote is not
+** found, -1 is returned. If -1 is returned, the buffer is left in an
+** undefined state.
+*/
+static int fts5Dequote(char *z){
+ char q;
+ int iIn = 1;
+ int iOut = 0;
+ q = z[0];
+
+ /* Set stack variable q to the close-quote character */
+ assert( q=='[' || q=='\'' || q=='"' || q=='`' );
+ if( q=='[' ) q = ']';
+
+ while( z[iIn] ){
+ if( z[iIn]==q ){
+ if( z[iIn+1]!=q ){
+ /* Character iIn was the close quote. */
+ iIn++;
+ break;
+ }else{
+ /* Character iIn and iIn+1 form an escaped quote character. Skip
+ ** the input cursor past both and copy a single quote character
+ ** to the output buffer. */
+ iIn += 2;
+ z[iOut++] = q;
+ }
+ }else{
+ z[iOut++] = z[iIn++];
+ }
+ }
+
+ z[iOut] = '\0';
+ return iIn;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+*/
+static void sqlite3Fts5Dequote(char *z){
+ char quote; /* Quote character (if any ) */
+
+ assert( 0==fts5_iswhitespace(z[0]) );
+ quote = z[0];
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
+ fts5Dequote(z);
+ }
+}
+
+
+struct Fts5Enum {
+ const char *zName;
+ int eVal;
+};
+typedef struct Fts5Enum Fts5Enum;
+
+static int fts5ConfigSetEnum(
+ const Fts5Enum *aEnum,
+ const char *zEnum,
+ int *peVal
+){
+ int nEnum = (int)strlen(zEnum);
+ int i;
+ int iVal = -1;
+
+ for(i=0; aEnum[i].zName; i++){
+ if( sqlite3_strnicmp(aEnum[i].zName, zEnum, nEnum)==0 ){
+ if( iVal>=0 ) return SQLITE_ERROR;
+ iVal = aEnum[i].eVal;
+ }
+ }
+
+ *peVal = iVal;
+ return iVal<0 ? SQLITE_ERROR : SQLITE_OK;
+}
+
+/*
+** Parse a "special" CREATE VIRTUAL TABLE directive and update
+** configuration object pConfig as appropriate.
+**
+** If successful, object pConfig is updated and SQLITE_OK returned. If
+** an error occurs, an SQLite error code is returned and an error message
+** may be left in *pzErr. It is the responsibility of the caller to
+** eventually free any such error message using sqlite3_free().
+*/
+static int fts5ConfigParseSpecial(
+ Fts5Global *pGlobal,
+ Fts5Config *pConfig, /* Configuration object to update */
+ const char *zCmd, /* Special command to parse */
+ const char *zArg, /* Argument to parse */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK;
+ int nCmd = (int)strlen(zCmd);
+ if( sqlite3_strnicmp("prefix", zCmd, nCmd)==0 ){
+ const int nByte = sizeof(int) * FTS5_MAX_PREFIX_INDEXES;
+ const char *p;
+ int bFirst = 1;
+ if( pConfig->aPrefix==0 ){
+ pConfig->aPrefix = sqlite3Fts5MallocZero(&rc, nByte);
+ if( rc ) return rc;
+ }
+
+ p = zArg;
+ while( 1 ){
+ int nPre = 0;
+
+ while( p[0]==' ' ) p++;
+ if( bFirst==0 && p[0]==',' ){
+ p++;
+ while( p[0]==' ' ) p++;
+ }else if( p[0]=='\0' ){
+ break;
+ }
+ if( p[0]<'0' || p[0]>'9' ){
+ *pzErr = sqlite3_mprintf("malformed prefix=... directive");
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ if( pConfig->nPrefix==FTS5_MAX_PREFIX_INDEXES ){
+ *pzErr = sqlite3_mprintf(
+ "too many prefix indexes (max %d)", FTS5_MAX_PREFIX_INDEXES
+ );
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
+ nPre = nPre*10 + (p[0] - '0');
+ p++;
+ }
+
+ if( nPre<=0 || nPre>=1000 ){
+ *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ pConfig->aPrefix[pConfig->nPrefix] = nPre;
+ pConfig->nPrefix++;
+ bFirst = 0;
+ }
+ assert( pConfig->nPrefix<=FTS5_MAX_PREFIX_INDEXES );
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("tokenize", zCmd, nCmd)==0 ){
+ const char *p = (const char*)zArg;
+ sqlite3_int64 nArg = strlen(zArg) + 1;
+ char **azArg = sqlite3Fts5MallocZero(&rc, sizeof(char*) * nArg);
+ char *pDel = sqlite3Fts5MallocZero(&rc, nArg * 2);
+ char *pSpace = pDel;
+
+ if( azArg && pSpace ){
+ if( pConfig->pTok ){
+ *pzErr = sqlite3_mprintf("multiple tokenize=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ for(nArg=0; p && *p; nArg++){
+ const char *p2 = fts5ConfigSkipWhitespace(p);
+ if( *p2=='\'' ){
+ p = fts5ConfigSkipLiteral(p2);
+ }else{
+ p = fts5ConfigSkipBareword(p2);
+ }
+ if( p ){
+ memcpy(pSpace, p2, p-p2);
+ azArg[nArg] = pSpace;
+ sqlite3Fts5Dequote(pSpace);
+ pSpace += (p - p2) + 1;
+ p = fts5ConfigSkipWhitespace(p);
+ }
+ }
+ if( p==0 ){
+ *pzErr = sqlite3_mprintf("parse error in tokenize directive");
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5GetTokenizer(pGlobal,
+ (const char**)azArg, (int)nArg, pConfig,
+ pzErr
+ );
+ }
+ }
+ }
+
+ sqlite3_free(azArg);
+ sqlite3_free(pDel);
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("content", zCmd, nCmd)==0 ){
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){
+ *pzErr = sqlite3_mprintf("multiple content=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ if( zArg[0] ){
+ pConfig->eContent = FTS5_CONTENT_EXTERNAL;
+ pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg);
+ }else{
+ pConfig->eContent = FTS5_CONTENT_NONE;
+ }
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("contentless_delete", zCmd, nCmd)==0 ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1]!='\0' ){
+ *pzErr = sqlite3_mprintf("malformed contentless_delete=... directive");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->bContentlessDelete = (zArg[0]=='1');
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){
+ if( pConfig->zContentRowid ){
+ *pzErr = sqlite3_mprintf("multiple content_rowid=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1);
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("columnsize", zCmd, nCmd)==0 ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1]!='\0' ){
+ *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->bColumnsize = (zArg[0]=='1');
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("detail", zCmd, nCmd)==0 ){
+ const Fts5Enum aDetail[] = {
+ { "none", FTS5_DETAIL_NONE },
+ { "full", FTS5_DETAIL_FULL },
+ { "columns", FTS5_DETAIL_COLUMNS },
+ { 0, 0 }
+ };
+
+ if( (rc = fts5ConfigSetEnum(aDetail, zArg, &pConfig->eDetail)) ){
+ *pzErr = sqlite3_mprintf("malformed detail=... directive");
+ }
+ return rc;
+ }
+
+ *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
+ return SQLITE_ERROR;
+}
+
+/*
+** Allocate an instance of the default tokenizer ("simple") at
+** Fts5Config.pTokenizer. Return SQLITE_OK if successful, or an SQLite error
+** code if an error occurs.
+*/
+static int fts5ConfigDefaultTokenizer(Fts5Global *pGlobal, Fts5Config *pConfig){
+ assert( pConfig->pTok==0 && pConfig->pTokApi==0 );
+ return sqlite3Fts5GetTokenizer(pGlobal, 0, 0, pConfig, 0);
+}
+
+/*
+** Gobble up the first bareword or quoted word from the input buffer zIn.
+** Return a pointer to the character immediately following the last in
+** the gobbled word if successful, or a NULL pointer otherwise (failed
+** to find close-quote character).
+**
+** Before returning, set pzOut to point to a new buffer containing a
+** nul-terminated, dequoted copy of the gobbled word. If the word was
+** quoted, *pbQuoted is also set to 1 before returning.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is
+** a no-op (NULL is returned). Otherwise, if an OOM occurs within this
+** function, *pRc is set to SQLITE_NOMEM before returning. *pRc is *not*
+** set if a parse error (failed to find close quote) occurs.
+*/
+static const char *fts5ConfigGobbleWord(
+ int *pRc, /* IN/OUT: Error code */
+ const char *zIn, /* Buffer to gobble string/bareword from */
+ char **pzOut, /* OUT: malloc'd buffer containing str/bw */
+ int *pbQuoted /* OUT: Set to true if dequoting required */
+){
+ const char *zRet = 0;
+
+ sqlite3_int64 nIn = strlen(zIn);
+ char *zOut = sqlite3_malloc64(nIn+1);
+
+ assert( *pRc==SQLITE_OK );
+ *pbQuoted = 0;
+ *pzOut = 0;
+
+ if( zOut==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ memcpy(zOut, zIn, (size_t)(nIn+1));
+ if( fts5_isopenquote(zOut[0]) ){
+ int ii = fts5Dequote(zOut);
+ zRet = &zIn[ii];
+ *pbQuoted = 1;
+ }else{
+ zRet = fts5ConfigSkipBareword(zIn);
+ if( zRet ){
+ zOut[zRet-zIn] = '\0';
+ }
+ }
+ }
+
+ if( zRet==0 ){
+ sqlite3_free(zOut);
+ }else{
+ *pzOut = zOut;
+ }
+
+ return zRet;
+}
+
+static int fts5ConfigParseColumn(
+ Fts5Config *p,
+ char *zCol,
+ char *zArg,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ if( 0==sqlite3_stricmp(zCol, FTS5_RANK_NAME)
+ || 0==sqlite3_stricmp(zCol, FTS5_ROWID_NAME)
+ ){
+ *pzErr = sqlite3_mprintf("reserved fts5 column name: %s", zCol);
+ rc = SQLITE_ERROR;
+ }else if( zArg ){
+ if( 0==sqlite3_stricmp(zArg, "unindexed") ){
+ p->abUnindexed[p->nCol] = 1;
+ }else{
+ *pzErr = sqlite3_mprintf("unrecognized column option: %s", zArg);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ p->azCol[p->nCol++] = zCol;
+ return rc;
+}
+
+/*
+** Populate the Fts5Config.zContentExprlist string.
+*/
+static int fts5ConfigMakeExprlist(Fts5Config *p){
+ int i;
+ int rc = SQLITE_OK;
+ Fts5Buffer buf = {0, 0, 0};
+
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, "T.%Q", p->zContentRowid);
+ if( p->eContent!=FTS5_CONTENT_NONE ){
+ for(i=0; i<p->nCol; i++){
+ if( p->eContent==FTS5_CONTENT_EXTERNAL ){
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, ", T.%Q", p->azCol[i]);
+ }else{
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, ", T.c%d", i);
+ }
+ }
+ }
+
+ assert( p->zContentExprlist==0 );
+ p->zContentExprlist = (char*)buf.p;
+ return rc;
+}
+
+/*
+** Arguments nArg/azArg contain the string arguments passed to the xCreate
+** or xConnect method of the virtual table. This function attempts to
+** allocate an instance of Fts5Config containing the results of parsing
+** those arguments.
+**
+** If successful, SQLITE_OK is returned and *ppOut is set to point to the
+** new Fts5Config object. If an error occurs, an SQLite error code is
+** returned, *ppOut is set to NULL and an error message may be left in
+** *pzErr. It is the responsibility of the caller to eventually free any
+** such error message using sqlite3_free().
+*/
+static int sqlite3Fts5ConfigParse(
+ Fts5Global *pGlobal,
+ sqlite3 *db,
+ int nArg, /* Number of arguments */
+ const char **azArg, /* Array of nArg CREATE VIRTUAL TABLE args */
+ Fts5Config **ppOut, /* OUT: Results of parse */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pRet; /* New object to return */
+ int i;
+ sqlite3_int64 nByte;
+
+ *ppOut = pRet = (Fts5Config*)sqlite3_malloc(sizeof(Fts5Config));
+ if( pRet==0 ) return SQLITE_NOMEM;
+ memset(pRet, 0, sizeof(Fts5Config));
+ pRet->db = db;
+ pRet->iCookie = -1;
+
+ nByte = nArg * (sizeof(char*) + sizeof(u8));
+ pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
+ pRet->abUnindexed = pRet->azCol ? (u8*)&pRet->azCol[nArg] : 0;
+ pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
+ pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
+ pRet->bColumnsize = 1;
+ pRet->eDetail = FTS5_DETAIL_FULL;
+#ifdef SQLITE_DEBUG
+ pRet->bPrefixIndex = 1;
+#endif
+ if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
+ *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
+ rc = SQLITE_ERROR;
+ }
+
+ assert( (pRet->abUnindexed && pRet->azCol) || rc!=SQLITE_OK );
+ for(i=3; rc==SQLITE_OK && i<nArg; i++){
+ const char *zOrig = azArg[i];
+ const char *z;
+ char *zOne = 0;
+ char *zTwo = 0;
+ int bOption = 0;
+ int bMustBeCol = 0;
+
+ z = fts5ConfigGobbleWord(&rc, zOrig, &zOne, &bMustBeCol);
+ z = fts5ConfigSkipWhitespace(z);
+ if( z && *z=='=' ){
+ bOption = 1;
+ assert( zOne!=0 );
+ z++;
+ if( bMustBeCol ) z = 0;
+ }
+ z = fts5ConfigSkipWhitespace(z);
+ if( z && z[0] ){
+ int bDummy;
+ z = fts5ConfigGobbleWord(&rc, z, &zTwo, &bDummy);
+ if( z && z[0] ) z = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( z==0 ){
+ *pzErr = sqlite3_mprintf("parse error in \"%s\"", zOrig);
+ rc = SQLITE_ERROR;
+ }else{
+ if( bOption ){
+ rc = fts5ConfigParseSpecial(pGlobal, pRet,
+ ALWAYS(zOne)?zOne:"",
+ zTwo?zTwo:"",
+ pzErr
+ );
+ }else{
+ rc = fts5ConfigParseColumn(pRet, zOne, zTwo, pzErr);
+ zOne = 0;
+ }
+ }
+ }
+
+ sqlite3_free(zOne);
+ sqlite3_free(zTwo);
+ }
+
+ /* We only allow contentless_delete=1 if the table is indeed contentless. */
+ if( rc==SQLITE_OK
+ && pRet->bContentlessDelete
+ && pRet->eContent!=FTS5_CONTENT_NONE
+ ){
+ *pzErr = sqlite3_mprintf(
+ "contentless_delete=1 requires a contentless table"
+ );
+ rc = SQLITE_ERROR;
+ }
+
+ /* We only allow contentless_delete=1 if columnsize=0 is not present.
+ **
+ ** This restriction may be removed at some point.
+ */
+ if( rc==SQLITE_OK && pRet->bContentlessDelete && pRet->bColumnsize==0 ){
+ *pzErr = sqlite3_mprintf(
+ "contentless_delete=1 is incompatible with columnsize=0"
+ );
+ rc = SQLITE_ERROR;
+ }
+
+ /* If a tokenizer= option was successfully parsed, the tokenizer has
+ ** already been allocated. Otherwise, allocate an instance of the default
+ ** tokenizer (unicode61) now. */
+ if( rc==SQLITE_OK && pRet->pTok==0 ){
+ rc = fts5ConfigDefaultTokenizer(pGlobal, pRet);
+ }
+
+ /* If no zContent option was specified, fill in the default values. */
+ if( rc==SQLITE_OK && pRet->zContent==0 ){
+ const char *zTail = 0;
+ assert( pRet->eContent==FTS5_CONTENT_NORMAL
+ || pRet->eContent==FTS5_CONTENT_NONE
+ );
+ if( pRet->eContent==FTS5_CONTENT_NORMAL ){
+ zTail = "content";
+ }else if( pRet->bColumnsize ){
+ zTail = "docsize";
+ }
+
+ if( zTail ){
+ pRet->zContent = sqlite3Fts5Mprintf(
+ &rc, "%Q.'%q_%s'", pRet->zDb, pRet->zName, zTail
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK && pRet->zContentRowid==0 ){
+ pRet->zContentRowid = sqlite3Fts5Strndup(&rc, "rowid", -1);
+ }
+
+ /* Formulate the zContentExprlist text */
+ if( rc==SQLITE_OK ){
+ rc = fts5ConfigMakeExprlist(pRet);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts5ConfigFree(pRet);
+ *ppOut = 0;
+ }
+ return rc;
+}
+
+/*
+** Free the configuration object passed as the only argument.
+*/
+static void sqlite3Fts5ConfigFree(Fts5Config *pConfig){
+ if( pConfig ){
+ int i;
+ if( pConfig->pTok ){
+ pConfig->pTokApi->xDelete(pConfig->pTok);
+ }
+ sqlite3_free(pConfig->zDb);
+ sqlite3_free(pConfig->zName);
+ for(i=0; i<pConfig->nCol; i++){
+ sqlite3_free(pConfig->azCol[i]);
+ }
+ sqlite3_free(pConfig->azCol);
+ sqlite3_free(pConfig->aPrefix);
+ sqlite3_free(pConfig->zRank);
+ sqlite3_free(pConfig->zRankArgs);
+ sqlite3_free(pConfig->zContent);
+ sqlite3_free(pConfig->zContentRowid);
+ sqlite3_free(pConfig->zContentExprlist);
+ sqlite3_free(pConfig);
+ }
+}
+
+/*
+** Call sqlite3_declare_vtab() based on the contents of the configuration
+** object passed as the only argument. Return SQLITE_OK if successful, or
+** an SQLite error code if an error occurs.
+*/
+static int sqlite3Fts5ConfigDeclareVtab(Fts5Config *pConfig){
+ int i;
+ int rc = SQLITE_OK;
+ char *zSql;
+
+ zSql = sqlite3Fts5Mprintf(&rc, "CREATE TABLE x(");
+ for(i=0; zSql && i<pConfig->nCol; i++){
+ const char *zSep = (i==0?"":", ");
+ zSql = sqlite3Fts5Mprintf(&rc, "%z%s%Q", zSql, zSep, pConfig->azCol[i]);
+ }
+ zSql = sqlite3Fts5Mprintf(&rc, "%z, %Q HIDDEN, %s HIDDEN)",
+ zSql, pConfig->zName, FTS5_RANK_NAME
+ );
+
+ assert( zSql || rc==SQLITE_NOMEM );
+ if( zSql ){
+ rc = sqlite3_declare_vtab(pConfig->db, zSql);
+ sqlite3_free(zSql);
+ }
+
+ return rc;
+}
+
+/*
+** Tokenize the text passed via the second and third arguments.
+**
+** The callback is invoked once for each token in the input text. The
+** arguments passed to it are, in order:
+**
+** void *pCtx // Copy of 4th argument to sqlite3Fts5Tokenize()
+** const char *pToken // Pointer to buffer containing token
+** int nToken // Size of token in bytes
+** int iStart // Byte offset of start of token within input text
+** int iEnd // Byte offset of end of token within input text
+** int iPos // Position of token in input (first token is 0)
+**
+** If the callback returns a non-zero value the tokenization is abandoned
+** and no further callbacks are issued.
+**
+** This function returns SQLITE_OK if successful or an SQLite error code
+** if an error occurs. If the tokenization was abandoned early because
+** the callback returned SQLITE_DONE, this is not an error and this function
+** still returns SQLITE_OK. Or, if the tokenization was abandoned early
+** because the callback returned another non-zero value, it is assumed
+** to be an SQLite error code and returned to the caller.
+*/
+static int sqlite3Fts5Tokenize(
+ Fts5Config *pConfig, /* FTS5 Configuration object */
+ int flags, /* FTS5_TOKENIZE_* flags */
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+){
+ if( pText==0 ) return SQLITE_OK;
+ return pConfig->pTokApi->xTokenize(
+ pConfig->pTok, pCtx, flags, pText, nText, xToken
+ );
+}
+
+/*
+** Argument pIn points to the first character in what is expected to be
+** a comma-separated list of SQL literals followed by a ')' character.
+** If it actually is this, return a pointer to the ')'. Otherwise, return
+** NULL to indicate a parse error.
+*/
+static const char *fts5ConfigSkipArgs(const char *pIn){
+ const char *p = pIn;
+
+ while( 1 ){
+ p = fts5ConfigSkipWhitespace(p);
+ p = fts5ConfigSkipLiteral(p);
+ p = fts5ConfigSkipWhitespace(p);
+ if( p==0 || *p==')' ) break;
+ if( *p!=',' ){
+ p = 0;
+ break;
+ }
+ p++;
+ }
+
+ return p;
+}
+
+/*
+** Parameter zIn contains a rank() function specification. The format of
+** this is:
+**
+** + Bareword (function name)
+** + Open parenthesis - "("
+** + Zero or more SQL literals in a comma separated list
+** + Close parenthesis - ")"
+*/
+static int sqlite3Fts5ConfigParseRank(
+ const char *zIn, /* Input string */
+ char **pzRank, /* OUT: Rank function name */
+ char **pzRankArgs /* OUT: Rank function arguments */
+){
+ const char *p = zIn;
+ const char *pRank;
+ char *zRank = 0;
+ char *zRankArgs = 0;
+ int rc = SQLITE_OK;
+
+ *pzRank = 0;
+ *pzRankArgs = 0;
+
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = fts5ConfigSkipWhitespace(p);
+ pRank = p;
+ p = fts5ConfigSkipBareword(p);
+
+ if( p ){
+ zRank = sqlite3Fts5MallocZero(&rc, 1 + p - pRank);
+ if( zRank ) memcpy(zRank, pRank, p-pRank);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_OK ){
+ p = fts5ConfigSkipWhitespace(p);
+ if( *p!='(' ) rc = SQLITE_ERROR;
+ p++;
+ }
+ if( rc==SQLITE_OK ){
+ const char *pArgs;
+ p = fts5ConfigSkipWhitespace(p);
+ pArgs = p;
+ if( *p!=')' ){
+ p = fts5ConfigSkipArgs(p);
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ zRankArgs = sqlite3Fts5MallocZero(&rc, 1 + p - pArgs);
+ if( zRankArgs ) memcpy(zRankArgs, pArgs, p-pArgs);
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zRank);
+ assert( zRankArgs==0 );
+ }else{
+ *pzRank = zRank;
+ *pzRankArgs = zRankArgs;
+ }
+ return rc;
+}
+
+static int sqlite3Fts5ConfigSetValue(
+ Fts5Config *pConfig,
+ const char *zKey,
+ sqlite3_value *pVal,
+ int *pbBadkey
+){
+ int rc = SQLITE_OK;
+
+ if( 0==sqlite3_stricmp(zKey, "pgsz") ){
+ int pgsz = 0;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ pgsz = sqlite3_value_int(pVal);
+ }
+ if( pgsz<32 || pgsz>FTS5_MAX_PAGE_SIZE ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->pgsz = pgsz;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "hashsize") ){
+ int nHashSize = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nHashSize = sqlite3_value_int(pVal);
+ }
+ if( nHashSize<=0 ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->nHashSize = nHashSize;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "automerge") ){
+ int nAutomerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nAutomerge = sqlite3_value_int(pVal);
+ }
+ if( nAutomerge<0 || nAutomerge>64 ){
+ *pbBadkey = 1;
+ }else{
+ if( nAutomerge==1 ) nAutomerge = FTS5_DEFAULT_AUTOMERGE;
+ pConfig->nAutomerge = nAutomerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "usermerge") ){
+ int nUsermerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nUsermerge = sqlite3_value_int(pVal);
+ }
+ if( nUsermerge<2 || nUsermerge>16 ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->nUsermerge = nUsermerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "crisismerge") ){
+ int nCrisisMerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nCrisisMerge = sqlite3_value_int(pVal);
+ }
+ if( nCrisisMerge<0 ){
+ *pbBadkey = 1;
+ }else{
+ if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
+ if( nCrisisMerge>=FTS5_MAX_SEGMENT ) nCrisisMerge = FTS5_MAX_SEGMENT-1;
+ pConfig->nCrisisMerge = nCrisisMerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "deletemerge") ){
+ int nVal = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nVal = sqlite3_value_int(pVal);
+ }else{
+ *pbBadkey = 1;
+ }
+ if( nVal<0 ) nVal = FTS5_DEFAULT_DELETE_AUTOMERGE;
+ if( nVal>100 ) nVal = 0;
+ pConfig->nDeleteMerge = nVal;
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "rank") ){
+ const char *zIn = (const char*)sqlite3_value_text(pVal);
+ char *zRank;
+ char *zRankArgs;
+ rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs);
+ if( rc==SQLITE_OK ){
+ sqlite3_free(pConfig->zRank);
+ sqlite3_free(pConfig->zRankArgs);
+ pConfig->zRank = zRank;
+ pConfig->zRankArgs = zRankArgs;
+ }else if( rc==SQLITE_ERROR ){
+ rc = SQLITE_OK;
+ *pbBadkey = 1;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "secure-delete") ){
+ int bVal = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ bVal = sqlite3_value_int(pVal);
+ }
+ if( bVal<0 ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->bSecureDelete = (bVal ? 1 : 0);
+ }
+ }else{
+ *pbBadkey = 1;
+ }
+ return rc;
+}
+
+/*
+** Load the contents of the %_config table into memory.
+*/
+static int sqlite3Fts5ConfigLoad(Fts5Config *pConfig, int iCookie){
+ const char *zSelect = "SELECT k, v FROM %Q.'%q_config'";
+ char *zSql;
+ sqlite3_stmt *p = 0;
+ int rc = SQLITE_OK;
+ int iVersion = 0;
+
+ /* Set default values */
+ pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
+ pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
+ pConfig->nUsermerge = FTS5_DEFAULT_USERMERGE;
+ pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
+ pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE;
+ pConfig->nDeleteMerge = FTS5_DEFAULT_DELETE_AUTOMERGE;
+
+ zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
+ sqlite3_free(zSql);
+ }
+
+ assert( rc==SQLITE_OK || p==0 );
+ if( rc==SQLITE_OK ){
+ while( SQLITE_ROW==sqlite3_step(p) ){
+ const char *zK = (const char*)sqlite3_column_text(p, 0);
+ sqlite3_value *pVal = sqlite3_column_value(p, 1);
+ if( 0==sqlite3_stricmp(zK, "version") ){
+ iVersion = sqlite3_value_int(pVal);
+ }else{
+ int bDummy = 0;
+ sqlite3Fts5ConfigSetValue(pConfig, zK, pVal, &bDummy);
+ }
+ }
+ rc = sqlite3_finalize(p);
+ }
+
+ if( rc==SQLITE_OK
+ && iVersion!=FTS5_CURRENT_VERSION
+ && iVersion!=FTS5_CURRENT_VERSION_SECUREDELETE
+ ){
+ rc = SQLITE_ERROR;
+ if( pConfig->pzErrmsg ){
+ assert( 0==*pConfig->pzErrmsg );
+ *pConfig->pzErrmsg = sqlite3_mprintf("invalid fts5 file format "
+ "(found %d, expected %d or %d) - run 'rebuild'",
+ iVersion, FTS5_CURRENT_VERSION, FTS5_CURRENT_VERSION_SECUREDELETE
+ );
+ }
+ }else{
+ pConfig->iVersion = iVersion;
+ }
+
+ if( rc==SQLITE_OK ){
+ pConfig->iCookie = iCookie;
+ }
+ return rc;
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+/* #include "fts5parse.h" */
+
+#ifndef SQLITE_FTS5_MAX_EXPR_DEPTH
+# define SQLITE_FTS5_MAX_EXPR_DEPTH 256
+#endif
+
+/*
+** All token types in the generated fts5parse.h file are greater than 0.
+*/
+#define FTS5_EOF 0
+
+#define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+
+typedef struct Fts5ExprTerm Fts5ExprTerm;
+
+/*
+** Functions generated by lemon from fts5parse.y.
+*/
+static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64));
+static void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*));
+static void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*);
+#ifndef NDEBUG
+/* #include <stdio.h> */
+static void sqlite3Fts5ParserTrace(FILE*, char*);
+#endif
+static int sqlite3Fts5ParserFallback(int);
+
+
+struct Fts5Expr {
+ Fts5Index *pIndex;
+ Fts5Config *pConfig;
+ Fts5ExprNode *pRoot;
+ int bDesc; /* Iterate in descending rowid order */
+ int nPhrase; /* Number of phrases in expression */
+ Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */
+};
+
+/*
+** eType:
+** Expression node type. Always one of:
+**
+** FTS5_AND (nChild, apChild valid)
+** FTS5_OR (nChild, apChild valid)
+** FTS5_NOT (nChild, apChild valid)
+** FTS5_STRING (pNear valid)
+** FTS5_TERM (pNear valid)
+**
+** iHeight:
+** Distance from this node to furthest leaf. This is always 0 for nodes
+** of type FTS5_STRING and FTS5_TERM. For all other nodes it is one
+** greater than the largest child value.
+*/
+struct Fts5ExprNode {
+ int eType; /* Node type */
+ int bEof; /* True at EOF */
+ int bNomatch; /* True if entry is not a match */
+ int iHeight; /* Distance to tree leaf nodes */
+
+ /* Next method for this node. */
+ int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);
+
+ i64 iRowid; /* Current rowid */
+ Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */
+
+ /* Child nodes. For a NOT node, this array always contains 2 entries. For
+ ** AND or OR nodes, it contains 2 or more entries. */
+ int nChild; /* Number of child nodes */
+ Fts5ExprNode *apChild[1]; /* Array of child nodes */
+};
+
+#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)
+
+/*
+** Invoke the xNext method of an Fts5ExprNode object. This macro should be
+** used as if it has the same signature as the xNext() methods themselves.
+*/
+#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))
+
+/*
+** An instance of the following structure represents a single search term
+** or term prefix.
+*/
+struct Fts5ExprTerm {
+ u8 bPrefix; /* True for a prefix term */
+ u8 bFirst; /* True if token must be first in column */
+ char *zTerm; /* nul-terminated term */
+ Fts5IndexIter *pIter; /* Iterator for this term */
+ Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */
+};
+
+/*
+** A phrase. One or more terms that must appear in a contiguous sequence
+** within a document for it to match.
+*/
+struct Fts5ExprPhrase {
+ Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */
+ Fts5Buffer poslist; /* Current position list */
+ int nTerm; /* Number of entries in aTerm[] */
+ Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */
+};
+
+/*
+** One or more phrases that must appear within a certain token distance of
+** each other within each matching document.
+*/
+struct Fts5ExprNearset {
+ int nNear; /* NEAR parameter */
+ Fts5Colset *pColset; /* Columns to search (NULL -> all columns) */
+ int nPhrase; /* Number of entries in aPhrase[] array */
+ Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */
+};
+
+
+/*
+** Parse context.
+*/
+struct Fts5Parse {
+ Fts5Config *pConfig;
+ char *zErr;
+ int rc;
+ int nPhrase; /* Size of apPhrase array */
+ Fts5ExprPhrase **apPhrase; /* Array of all phrases */
+ Fts5ExprNode *pExpr; /* Result of a successful parse */
+ int bPhraseToAnd; /* Convert "a+b" to "a AND b" */
+};
+
+/*
+** Check that the Fts5ExprNode.iHeight variables are set correctly in
+** the expression tree passed as the only argument.
+*/
+#ifndef NDEBUG
+static void assert_expr_depth_ok(int rc, Fts5ExprNode *p){
+ if( rc==SQLITE_OK ){
+ if( p->eType==FTS5_TERM || p->eType==FTS5_STRING || p->eType==0 ){
+ assert( p->iHeight==0 );
+ }else{
+ int ii;
+ int iMaxChild = 0;
+ for(ii=0; ii<p->nChild; ii++){
+ Fts5ExprNode *pChild = p->apChild[ii];
+ iMaxChild = MAX(iMaxChild, pChild->iHeight);
+ assert_expr_depth_ok(SQLITE_OK, pChild);
+ }
+ assert( p->iHeight==iMaxChild+1 );
+ }
+ }
+}
+#else
+# define assert_expr_depth_ok(rc, p)
+#endif
+
+static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){
+ va_list ap;
+ va_start(ap, zFmt);
+ if( pParse->rc==SQLITE_OK ){
+ assert( pParse->zErr==0 );
+ pParse->zErr = sqlite3_vmprintf(zFmt, ap);
+ pParse->rc = SQLITE_ERROR;
+ }
+ va_end(ap);
+}
+
+static int fts5ExprIsspace(char t){
+ return t==' ' || t=='\t' || t=='\n' || t=='\r';
+}
+
+/*
+** Read the first token from the nul-terminated string at *pz.
+*/
+static int fts5ExprGetToken(
+ Fts5Parse *pParse,
+ const char **pz, /* IN/OUT: Pointer into buffer */
+ Fts5Token *pToken
+){
+ const char *z = *pz;
+ int tok;
+
+ /* Skip past any whitespace */
+ while( fts5ExprIsspace(*z) ) z++;
+
+ pToken->p = z;
+ pToken->n = 1;
+ switch( *z ){
+ case '(': tok = FTS5_LP; break;
+ case ')': tok = FTS5_RP; break;
+ case '{': tok = FTS5_LCP; break;
+ case '}': tok = FTS5_RCP; break;
+ case ':': tok = FTS5_COLON; break;
+ case ',': tok = FTS5_COMMA; break;
+ case '+': tok = FTS5_PLUS; break;
+ case '*': tok = FTS5_STAR; break;
+ case '-': tok = FTS5_MINUS; break;
+ case '^': tok = FTS5_CARET; break;
+ case '\0': tok = FTS5_EOF; break;
+
+ case '"': {
+ const char *z2;
+ tok = FTS5_STRING;
+
+ for(z2=&z[1]; 1; z2++){
+ if( z2[0]=='"' ){
+ z2++;
+ if( z2[0]!='"' ) break;
+ }
+ if( z2[0]=='\0' ){
+ sqlite3Fts5ParseError(pParse, "unterminated string");
+ return FTS5_EOF;
+ }
+ }
+ pToken->n = (z2 - z);
+ break;
+ }
+
+ default: {
+ const char *z2;
+ if( sqlite3Fts5IsBareword(z[0])==0 ){
+ sqlite3Fts5ParseError(pParse, "fts5: syntax error near \"%.1s\"", z);
+ return FTS5_EOF;
+ }
+ tok = FTS5_STRING;
+ for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++);
+ pToken->n = (z2 - z);
+ if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR;
+ if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT;
+ if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND;
+ break;
+ }
+ }
+
+ *pz = &pToken->p[pToken->n];
+ return tok;
+}
+
+static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc64((sqlite3_int64)t);}
+static void fts5ParseFree(void *p){ sqlite3_free(p); }
+
+static int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig, /* FTS5 Configuration */
+ int bPhraseToAnd,
+ int iCol,
+ const char *zExpr, /* Expression text */
+ Fts5Expr **ppNew,
+ char **pzErr
+){
+ Fts5Parse sParse;
+ Fts5Token token;
+ const char *z = zExpr;
+ int t; /* Next token type */
+ void *pEngine;
+ Fts5Expr *pNew;
+
+ *ppNew = 0;
+ *pzErr = 0;
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.bPhraseToAnd = bPhraseToAnd;
+ pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc);
+ if( pEngine==0 ){ return SQLITE_NOMEM; }
+ sParse.pConfig = pConfig;
+
+ do {
+ t = fts5ExprGetToken(&sParse, &z, &token);
+ sqlite3Fts5Parser(pEngine, t, token, &sParse);
+ }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
+ sqlite3Fts5ParserFree(pEngine, fts5ParseFree);
+
+ assert_expr_depth_ok(sParse.rc, sParse.pExpr);
+
+ /* If the LHS of the MATCH expression was a user column, apply the
+ ** implicit column-filter. */
+ if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){
+ int n = sizeof(Fts5Colset);
+ Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n);
+ if( pColset ){
+ pColset->nCol = 1;
+ pColset->aiCol[0] = iCol;
+ sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset);
+ }
+ }
+
+ assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
+ if( sParse.rc==SQLITE_OK ){
+ *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
+ if( pNew==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }else{
+ if( !sParse.pExpr ){
+ const int nByte = sizeof(Fts5ExprNode);
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
+ if( pNew->pRoot ){
+ pNew->pRoot->bEof = 1;
+ }
+ }else{
+ pNew->pRoot = sParse.pExpr;
+ }
+ pNew->pIndex = 0;
+ pNew->pConfig = pConfig;
+ pNew->apExprPhrase = sParse.apPhrase;
+ pNew->nPhrase = sParse.nPhrase;
+ pNew->bDesc = 0;
+ sParse.apPhrase = 0;
+ }
+ }else{
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }
+
+ sqlite3_free(sParse.apPhrase);
+ *pzErr = sParse.zErr;
+ return sParse.rc;
+}
+
+/*
+** Assuming that buffer z is at least nByte bytes in size and contains a
+** valid utf-8 string, return the number of characters in the string.
+*/
+static int fts5ExprCountChar(const char *z, int nByte){
+ int nRet = 0;
+ int ii;
+ for(ii=0; ii<nByte; ii++){
+ if( (z[ii] & 0xC0)!=0x80 ) nRet++;
+ }
+ return nRet;
+}
+
+/*
+** This function is only called when using the special 'trigram' tokenizer.
+** Argument zText contains the text of a LIKE or GLOB pattern matched
+** against column iCol. This function creates and compiles an FTS5 MATCH
+** expression that will match a superset of the rows matched by the LIKE or
+** GLOB. If successful, SQLITE_OK is returned. Otherwise, an SQLite error
+** code.
+*/
+static int sqlite3Fts5ExprPattern(
+ Fts5Config *pConfig, int bGlob, int iCol, const char *zText, Fts5Expr **pp
+){
+ i64 nText = strlen(zText);
+ char *zExpr = (char*)sqlite3_malloc64(nText*4 + 1);
+ int rc = SQLITE_OK;
+
+ if( zExpr==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char aSpec[3];
+ int iOut = 0;
+ int i = 0;
+ int iFirst = 0;
+
+ if( bGlob==0 ){
+ aSpec[0] = '_';
+ aSpec[1] = '%';
+ aSpec[2] = 0;
+ }else{
+ aSpec[0] = '*';
+ aSpec[1] = '?';
+ aSpec[2] = '[';
+ }
+
+ while( i<=nText ){
+ if( i==nText
+ || zText[i]==aSpec[0] || zText[i]==aSpec[1] || zText[i]==aSpec[2]
+ ){
+
+ if( fts5ExprCountChar(&zText[iFirst], i-iFirst)>=3 ){
+ int jj;
+ zExpr[iOut++] = '"';
+ for(jj=iFirst; jj<i; jj++){
+ zExpr[iOut++] = zText[jj];
+ if( zText[jj]=='"' ) zExpr[iOut++] = '"';
+ }
+ zExpr[iOut++] = '"';
+ zExpr[iOut++] = ' ';
+ }
+ if( zText[i]==aSpec[2] ){
+ i += 2;
+ if( zText[i-1]=='^' ) i++;
+ while( i<nText && zText[i]!=']' ) i++;
+ }
+ iFirst = i+1;
+ }
+ i++;
+ }
+ if( iOut>0 ){
+ int bAnd = 0;
+ if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ bAnd = 1;
+ if( pConfig->eDetail==FTS5_DETAIL_NONE ){
+ iCol = pConfig->nCol;
+ }
+ }
+ zExpr[iOut] = '\0';
+ rc = sqlite3Fts5ExprNew(pConfig, bAnd, iCol, zExpr, pp,pConfig->pzErrmsg);
+ }else{
+ *pp = 0;
+ }
+ sqlite3_free(zExpr);
+ }
+
+ return rc;
+}
+
+/*
+** Free the expression node object passed as the only argument.
+*/
+static void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){
+ if( p ){
+ int i;
+ for(i=0; i<p->nChild; i++){
+ sqlite3Fts5ParseNodeFree(p->apChild[i]);
+ }
+ sqlite3Fts5ParseNearsetFree(p->pNear);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Free the expression object passed as the only argument.
+*/
+static void sqlite3Fts5ExprFree(Fts5Expr *p){
+ if( p ){
+ sqlite3Fts5ParseNodeFree(p->pRoot);
+ sqlite3_free(p->apExprPhrase);
+ sqlite3_free(p);
+ }
+}
+
+static int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2){
+ Fts5Parse sParse;
+ memset(&sParse, 0, sizeof(sParse));
+
+ if( *pp1 && p2 ){
+ Fts5Expr *p1 = *pp1;
+ int nPhrase = p1->nPhrase + p2->nPhrase;
+
+ p1->pRoot = sqlite3Fts5ParseNode(&sParse, FTS5_AND, p1->pRoot, p2->pRoot,0);
+ p2->pRoot = 0;
+
+ if( sParse.rc==SQLITE_OK ){
+ Fts5ExprPhrase **ap = (Fts5ExprPhrase**)sqlite3_realloc(
+ p1->apExprPhrase, nPhrase * sizeof(Fts5ExprPhrase*)
+ );
+ if( ap==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ memmove(&ap[p2->nPhrase], ap, p1->nPhrase*sizeof(Fts5ExprPhrase*));
+ for(i=0; i<p2->nPhrase; i++){
+ ap[i] = p2->apExprPhrase[i];
+ }
+ p1->nPhrase = nPhrase;
+ p1->apExprPhrase = ap;
+ }
+ }
+ sqlite3_free(p2->apExprPhrase);
+ sqlite3_free(p2);
+ }else if( p2 ){
+ *pp1 = p2;
+ }
+
+ return sParse.rc;
+}
+
+/*
+** Argument pTerm must be a synonym iterator. Return the current rowid
+** that it points to.
+*/
+static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
+ i64 iRet = 0;
+ int bRetValid = 0;
+ Fts5ExprTerm *p;
+
+ assert( pTerm );
+ assert( pTerm->pSynonym );
+ assert( bDesc==0 || bDesc==1 );
+ for(p=pTerm; p; p=p->pSynonym){
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ i64 iRowid = p->pIter->iRowid;
+ if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
+ iRet = iRowid;
+ bRetValid = 1;
+ }
+ }
+ }
+
+ if( pbEof && bRetValid==0 ) *pbEof = 1;
+ return iRet;
+}
+
+/*
+** Argument pTerm must be a synonym iterator.
+*/
+static int fts5ExprSynonymList(
+ Fts5ExprTerm *pTerm,
+ i64 iRowid,
+ Fts5Buffer *pBuf, /* Use this buffer for space if required */
+ u8 **pa, int *pn
+){
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int nIter = 0;
+ int nAlloc = 4;
+ int rc = SQLITE_OK;
+ Fts5ExprTerm *p;
+
+ assert( pTerm->pSynonym );
+ for(p=pTerm; p; p=p->pSynonym){
+ Fts5IndexIter *pIter = p->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
+ if( pIter->nData==0 ) continue;
+ if( nIter==nAlloc ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
+ Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ goto synonym_poslist_out;
+ }
+ memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
+ nAlloc = nAlloc*2;
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ aIter = aNew;
+ }
+ sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
+ assert( aIter[nIter].bEof==0 );
+ nIter++;
+ }
+ }
+
+ if( nIter==1 ){
+ *pa = (u8*)aIter[0].a;
+ *pn = aIter[0].n;
+ }else{
+ Fts5PoslistWriter writer = {0};
+ i64 iPrev = -1;
+ fts5BufferZero(pBuf);
+ while( 1 ){
+ int i;
+ i64 iMin = FTS5_LARGEST_INT64;
+ for(i=0; i<nIter; i++){
+ if( aIter[i].bEof==0 ){
+ if( aIter[i].iPos==iPrev ){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
+ }
+ if( aIter[i].iPos<iMin ){
+ iMin = aIter[i].iPos;
+ }
+ }
+ }
+ if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
+ rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
+ iPrev = iMin;
+ }
+ if( rc==SQLITE_OK ){
+ *pa = pBuf->p;
+ *pn = pBuf->n;
+ }
+ }
+
+ synonym_poslist_out:
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+
+/*
+** All individual term iterators in pPhrase are guaranteed to be valid and
+** pointing to the same rowid when this function is called. This function
+** checks if the current rowid really is a match, and if so populates
+** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch
+** is set to true if this is really a match, or false otherwise.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if the current rowid is
+** not a match.
+*/
+static int fts5ExprPhraseIsMatch(
+ Fts5ExprNode *pNode, /* Node pPhrase belongs to */
+ Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */
+ int *pbMatch /* OUT: Set to true if really a match */
+){
+ Fts5PoslistWriter writer = {0};
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int i;
+ int rc = SQLITE_OK;
+ int bFirst = pPhrase->aTerm[0].bFirst;
+
+ fts5BufferZero(&pPhrase->poslist);
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pPhrase->nTerm>ArraySize(aStatic) ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
+ aIter = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
+ if( !aIter ) return SQLITE_NOMEM;
+ }
+ memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);
+
+ /* Initialize a term iterator for each term in the phrase */
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ int n = 0;
+ int bFlag = 0;
+ u8 *a = 0;
+ if( pTerm->pSynonym ){
+ Fts5Buffer buf = {0, 0, 0};
+ rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
+ if( rc ){
+ sqlite3_free(a);
+ goto ismatch_out;
+ }
+ if( a==buf.p ) bFlag = 1;
+ }else{
+ a = (u8*)pTerm->pIter->pData;
+ n = pTerm->pIter->nData;
+ }
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ aIter[i].bFlag = (u8)bFlag;
+ if( aIter[i].bEof ) goto ismatch_out;
+ }
+
+ while( 1 ){
+ int bMatch;
+ i64 iPos = aIter[0].iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5PoslistReader *pPos = &aIter[i];
+ i64 iAdj = iPos + i;
+ if( pPos->iPos!=iAdj ){
+ bMatch = 0;
+ while( pPos->iPos<iAdj ){
+ if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Append position iPos to the output */
+ if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){
+ rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
+ if( rc!=SQLITE_OK ) goto ismatch_out;
+ }
+
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
+ }
+ }
+
+ ismatch_out:
+ *pbMatch = (pPhrase->poslist.n>0);
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( aIter[i].bFlag ) sqlite3_free((u8*)aIter[i].a);
+ }
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+typedef struct Fts5LookaheadReader Fts5LookaheadReader;
+struct Fts5LookaheadReader {
+ const u8 *a; /* Buffer containing position list */
+ int n; /* Size of buffer a[] in bytes */
+ int i; /* Current offset in position list */
+ i64 iPos; /* Current position */
+ i64 iLookahead; /* Next position */
+};
+
+#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62)
+
+static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){
+ p->iPos = p->iLookahead;
+ if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){
+ p->iLookahead = FTS5_LOOKAHEAD_EOF;
+ }
+ return (p->iPos==FTS5_LOOKAHEAD_EOF);
+}
+
+static int fts5LookaheadReaderInit(
+ const u8 *a, int n, /* Buffer to read position list from */
+ Fts5LookaheadReader *p /* Iterator object to initialize */
+){
+ memset(p, 0, sizeof(Fts5LookaheadReader));
+ p->a = a;
+ p->n = n;
+ fts5LookaheadReaderNext(p);
+ return fts5LookaheadReaderNext(p);
+}
+
+typedef struct Fts5NearTrimmer Fts5NearTrimmer;
+struct Fts5NearTrimmer {
+ Fts5LookaheadReader reader; /* Input iterator */
+ Fts5PoslistWriter writer; /* Writer context */
+ Fts5Buffer *pOut; /* Output poslist */
+};
+
+/*
+** The near-set object passed as the first argument contains more than
+** one phrase. All phrases currently point to the same row. The
+** Fts5ExprPhrase.poslist buffers are populated accordingly. This function
+** tests if the current row contains instances of each phrase sufficiently
+** close together to meet the NEAR constraint. Non-zero is returned if it
+** does, or zero otherwise.
+**
+** If in/out parameter (*pRc) is set to other than SQLITE_OK when this
+** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM)
+** occurs within this function (*pRc) is set accordingly before returning.
+** The return value is undefined in both these cases.
+**
+** If no error occurs and non-zero (a match) is returned, the position-list
+** of each phrase object is edited to contain only those entries that
+** meet the constraint before returning.
+*/
+static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){
+ Fts5NearTrimmer aStatic[4];
+ Fts5NearTrimmer *a = aStatic;
+ Fts5ExprPhrase **apPhrase = pNear->apPhrase;
+
+ int i;
+ int rc = *pRc;
+ int bMatch;
+
+ assert( pNear->nPhrase>1 );
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pNear->nPhrase>ArraySize(aStatic) ){
+ sqlite3_int64 nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
+ a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
+ }else{
+ memset(aStatic, 0, sizeof(aStatic));
+ }
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return 0;
+ }
+
+ /* Initialize a lookahead iterator for each phrase. After passing the
+ ** buffer and buffer size to the lookaside-reader init function, zero
+ ** the phrase poslist buffer. The new poslist for the phrase (containing
+ ** the same entries as the original with some entries removed on account
+ ** of the NEAR constraint) is written over the original even as it is
+ ** being read. This is safe as the entries for the new poslist are a
+ ** subset of the old, so it is not possible for data yet to be read to
+ ** be overwritten. */
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5Buffer *pPoslist = &apPhrase[i]->poslist;
+ fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader);
+ pPoslist->n = 0;
+ a[i].pOut = pPoslist;
+ }
+
+ while( 1 ){
+ int iAdv;
+ i64 iMin;
+ i64 iMax;
+
+ /* This block advances the phrase iterators until they point to a set of
+ ** entries that together comprise a match. */
+ iMax = a[0].reader.iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5LookaheadReader *pPos = &a[i].reader;
+ iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear;
+ if( pPos->iPos<iMin || pPos->iPos>iMax ){
+ bMatch = 0;
+ while( pPos->iPos<iMin ){
+ if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iMax ) iMax = pPos->iPos;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Add an entry to each output position list */
+ for(i=0; i<pNear->nPhrase; i++){
+ i64 iPos = a[i].reader.iPos;
+ Fts5PoslistWriter *pWriter = &a[i].writer;
+ if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){
+ sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos);
+ }
+ }
+
+ iAdv = 0;
+ iMin = a[0].reader.iLookahead;
+ for(i=0; i<pNear->nPhrase; i++){
+ if( a[i].reader.iLookahead < iMin ){
+ iMin = a[i].reader.iLookahead;
+ iAdv = i;
+ }
+ }
+ if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out;
+ }
+
+ ismatch_out: {
+ int bRet = a[0].pOut->n>0;
+ *pRc = rc;
+ if( a!=aStatic ) sqlite3_free(a);
+ return bRet;
+ }
+}
+
+/*
+** Advance iterator pIter until it points to a value equal to or laster
+** than the initial value of *piLast. If this means the iterator points
+** to a value laster than *piLast, update *piLast to the new lastest value.
+**
+** If the iterator reaches EOF, set *pbEof to true before returning. If
+** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
+** are set, return a non-zero value. Otherwise, return zero.
+*/
+static int fts5ExprAdvanceto(
+ Fts5IndexIter *pIter, /* Iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc, /* OUT: Error code */
+ int *pbEof /* OUT: Set to true if EOF */
+){
+ i64 iLast = *piLast;
+ i64 iRowid;
+
+ iRowid = pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
+ if( rc || sqlite3Fts5IterEof(pIter) ){
+ *pRc = rc;
+ *pbEof = 1;
+ return 1;
+ }
+ iRowid = pIter->iRowid;
+ assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
+ }
+ *piLast = iRowid;
+
+ return 0;
+}
+
+static int fts5ExprSynonymAdvanceto(
+ Fts5ExprTerm *pTerm, /* Term iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc /* OUT: Error code */
+){
+ int rc = SQLITE_OK;
+ i64 iLast = *piLast;
+ Fts5ExprTerm *p;
+ int bEof = 0;
+
+ for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 iRowid = p->pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ bEof = 1;
+ }else{
+ *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
+ }
+ return bEof;
+}
+
+
+static int fts5ExprNearTest(
+ int *pRc,
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int rc = *pRc;
+
+ if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprTerm *pTerm;
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ pPhrase->poslist.n = 0;
+ for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ Fts5IndexIter *pIter = pTerm->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 ){
+ if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
+ pPhrase->poslist.n = 1;
+ }
+ }
+ }
+ return pPhrase->poslist.n;
+ }else{
+ int i;
+
+ /* Check that each phrase in the nearset matches the current row.
+ ** Populate the pPhrase->poslist buffers at the same time. If any
+ ** phrase is not a match, break out of the loop early. */
+ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym
+ || pNear->pColset || pPhrase->aTerm[0].bFirst
+ ){
+ int bMatch = 0;
+ rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
+ if( bMatch==0 ) break;
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+ fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
+ }
+ }
+
+ *pRc = rc;
+ if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
+ return 1;
+ }
+ return 0;
+ }
+}
+
+
+/*
+** Initialize all term iterators in the pNear object. If any term is found
+** to match no documents at all, return immediately without initializing any
+** further iterators.
+**
+** If an error occurs, return an SQLite error code. Otherwise, return
+** SQLITE_OK. It is not considered an error if some term matches zero
+** documents.
+*/
+static int fts5ExprNearInitAll(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+
+ assert( pNode->bNomatch==0 );
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm==0 ){
+ pNode->bEof = 1;
+ return SQLITE_OK;
+ }else{
+ int j;
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ Fts5ExprTerm *p;
+ int bHit = 0;
+
+ for(p=pTerm; p; p=p->pSynonym){
+ int rc;
+ if( p->pIter ){
+ sqlite3Fts5IterClose(p->pIter);
+ p->pIter = 0;
+ }
+ rc = sqlite3Fts5IndexQuery(
+ pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm),
+ (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
+ (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
+ pNear->pColset,
+ &p->pIter
+ );
+ assert( (rc==SQLITE_OK)==(p->pIter!=0) );
+ if( rc!=SQLITE_OK ) return rc;
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ bHit = 1;
+ }
+ }
+
+ if( bHit==0 ){
+ pNode->bEof = 1;
+ return SQLITE_OK;
+ }
+ }
+ }
+ }
+
+ pNode->bEof = 0;
+ return SQLITE_OK;
+}
+
+/*
+** If pExpr is an ASC iterator, this function returns a value with the
+** same sign as:
+**
+** (iLhs - iRhs)
+**
+** Otherwise, if this is a DESC iterator, the opposite is returned:
+**
+** (iRhs - iLhs)
+*/
+static int fts5RowidCmp(
+ Fts5Expr *pExpr,
+ i64 iLhs,
+ i64 iRhs
+){
+ assert( pExpr->bDesc==0 || pExpr->bDesc==1 );
+ if( pExpr->bDesc==0 ){
+ if( iLhs<iRhs ) return -1;
+ return (iLhs > iRhs);
+ }else{
+ if( iLhs>iRhs ) return -1;
+ return (iLhs < iRhs);
+ }
+}
+
+static void fts5ExprSetEof(Fts5ExprNode *pNode){
+ int i;
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprSetEof(pNode->apChild[i]);
+ }
+}
+
+static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ pPhrase->poslist.n = 0;
+ }
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprNodeZeroPoslist(pNode->apChild[i]);
+ }
+ }
+}
+
+
+
+/*
+** Compare the values currently indicated by the two nodes as follows:
+**
+** res = (*p1) - (*p2)
+**
+** Nodes that point to values that come later in the iteration order are
+** considered to be larger. Nodes at EOF are the largest of all.
+**
+** This means that if the iteration order is ASC, then numerically larger
+** rowids are considered larger. Or if it is the default DESC, numerically
+** smaller rowids are larger.
+*/
+static int fts5NodeCompare(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *p1,
+ Fts5ExprNode *p2
+){
+ if( p2->bEof ) return -1;
+ if( p1->bEof ) return +1;
+ return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
+}
+
+/*
+** All individual term iterators in pNear are guaranteed to be valid when
+** this function is called. This function checks if all term iterators
+** point to the same rowid, and if not, advances them until they do.
+** If an EOF is reached before this happens, *pbEof is set to true before
+** returning.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if an iterator reaches
+** EOF.
+*/
+static int fts5ExprNodeTest_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
+ int rc = SQLITE_OK;
+ i64 iLast; /* Lastest rowid any iterator points to */
+ int i, j; /* Phrase and token index, respectively */
+ int bMatch; /* True if all terms are at the same rowid */
+ const int bDesc = pExpr->bDesc;
+
+ /* Check that this node should not be FTS5_TERM */
+ assert( pNear->nPhrase>1
+ || pNear->apPhrase[0]->nTerm>1
+ || pNear->apPhrase[0]->aTerm[0].pSynonym
+ || pNear->apPhrase[0]->aTerm[0].bFirst
+ );
+
+ /* Initialize iLast, the "lastest" rowid any iterator points to. If the
+ ** iterator skips through rowids in the default ascending order, this means
+ ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
+ ** means the minimum rowid. */
+ if( pLeft->aTerm[0].pSynonym ){
+ iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
+ }else{
+ iLast = pLeft->aTerm[0].pIter->iRowid;
+ }
+
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ if( pTerm->pSynonym ){
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
+ if( iRowid==iLast ) continue;
+ bMatch = 0;
+ if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
+ pNode->bNomatch = 0;
+ pNode->bEof = 1;
+ return rc;
+ }
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
+ if( pIter->iRowid==iLast || pIter->bEof ) continue;
+ bMatch = 0;
+ if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
+ return rc;
+ }
+ }
+ }
+ }
+ }while( bMatch==0 );
+
+ pNode->iRowid = iLast;
+ pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
+ assert( pNode->bEof==0 || pNode->bNomatch==0 );
+
+ return rc;
+}
+
+/*
+** Advance the first term iterator in the first phrase of pNear. Set output
+** variable *pbEof to true if it reaches EOF or if an error occurs.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5ExprNodeNext_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */
+ int bFromValid,
+ i64 iFrom
+){
+ Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
+ int rc = SQLITE_OK;
+
+ pNode->bNomatch = 0;
+ if( pTerm->pSynonym ){
+ int bEof = 1;
+ Fts5ExprTerm *p;
+
+ /* Find the firstest rowid any synonym points to. */
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
+
+ /* Advance each iterator that currently points to iRowid. Or, if iFrom
+ ** is valid - each iterator that points to a rowid before iFrom. */
+ for(p=pTerm; p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 ii = p->pIter->iRowid;
+ if( ii==iRowid
+ || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc)
+ ){
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(p->pIter);
+ }
+ if( rc!=SQLITE_OK ) break;
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ bEof = 0;
+ }
+ }else{
+ bEof = 0;
+ }
+ }
+ }
+
+ /* Set the EOF flag if either all synonym iterators are at EOF or an
+ ** error has occurred. */
+ pNode->bEof = (rc || bEof);
+ }else{
+ Fts5IndexIter *pIter = pTerm->pIter;
+
+ assert( Fts5NodeIsString(pNode) );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+
+ pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
+ }
+
+ if( pNode->bEof==0 ){
+ assert( rc==SQLITE_OK );
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ }
+
+ return rc;
+}
+
+
+static int fts5ExprNodeTest_TERM(
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */
+){
+ /* As this "NEAR" object is actually a single phrase that consists
+ ** of a single term only, grab pointers into the poslist managed by the
+ ** fts5_index.c iterator object. This is much faster than synthesizing
+ ** a new poslist the way we have to for more complicated phrase or NEAR
+ ** expressions. */
+ Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+
+ assert( pNode->eType==FTS5_TERM );
+ assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
+ assert( pPhrase->aTerm[0].pSynonym==0 );
+
+ pPhrase->poslist.n = pIter->nData;
+ if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pPhrase->poslist.p = (u8*)pIter->pData;
+ }
+ pNode->iRowid = pIter->iRowid;
+ pNode->bNomatch = (pPhrase->poslist.n==0);
+ return SQLITE_OK;
+}
+
+/*
+** xNext() method for a node of type FTS5_TERM.
+*/
+static int fts5ExprNodeNext_TERM(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc;
+ Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
+
+ assert( pNode->bEof==0 );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ }else{
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static void fts5ExprNodeTest_OR(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ Fts5ExprNode *pNext = pNode->apChild[0];
+ int i;
+
+ for(i=1; i<pNode->nChild; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ int cmp = fts5NodeCompare(pExpr, pNext, pChild);
+ if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
+ pNext = pChild;
+ }
+ }
+ pNode->iRowid = pNext->iRowid;
+ pNode->bEof = pNext->bEof;
+ pNode->bNomatch = pNext->bNomatch;
+}
+
+static int fts5ExprNodeNext_OR(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int i;
+ i64 iLast = pNode->iRowid;
+
+ for(i=0; i<pNode->nChild; i++){
+ Fts5ExprNode *p1 = pNode->apChild[i];
+ assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
+ if( p1->bEof==0 ){
+ if( (p1->iRowid==iLast)
+ || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
+ ){
+ int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
+ if( rc!=SQLITE_OK ){
+ pNode->bNomatch = 0;
+ return rc;
+ }
+ }
+ }
+ }
+
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ return SQLITE_OK;
+}
+
+/*
+** Argument pNode is an FTS5_AND node.
+*/
+static int fts5ExprNodeTest_AND(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pAnd /* FTS5_AND node to advance */
+){
+ int iChild;
+ i64 iLast = pAnd->iRowid;
+ int rc = SQLITE_OK;
+ int bMatch;
+
+ assert( pAnd->bEof==0 );
+ do {
+ pAnd->bNomatch = 0;
+ bMatch = 1;
+ for(iChild=0; iChild<pAnd->nChild; iChild++){
+ Fts5ExprNode *pChild = pAnd->apChild[iChild];
+ int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
+ if( cmp>0 ){
+ /* Advance pChild until it points to iLast or laster */
+ rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
+ if( rc!=SQLITE_OK ){
+ pAnd->bNomatch = 0;
+ return rc;
+ }
+ }
+
+ /* If the child node is now at EOF, so is the parent AND node. Otherwise,
+ ** the child node is guaranteed to have advanced at least as far as
+ ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
+ ** new lastest rowid seen so far. */
+ assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
+ if( pChild->bEof ){
+ fts5ExprSetEof(pAnd);
+ bMatch = 1;
+ break;
+ }else if( iLast!=pChild->iRowid ){
+ bMatch = 0;
+ iLast = pChild->iRowid;
+ }
+
+ if( pChild->bNomatch ){
+ pAnd->bNomatch = 1;
+ }
+ }
+ }while( bMatch==0 );
+
+ if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
+ fts5ExprNodeZeroPoslist(pAnd);
+ }
+ pAnd->iRowid = iLast;
+ return SQLITE_OK;
+}
+
+static int fts5ExprNodeNext_AND(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ }else{
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static int fts5ExprNodeTest_NOT(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode /* FTS5_NOT node to advance */
+){
+ int rc = SQLITE_OK;
+ Fts5ExprNode *p1 = pNode->apChild[0];
+ Fts5ExprNode *p2 = pNode->apChild[1];
+ assert( pNode->nChild==2 );
+
+ while( rc==SQLITE_OK && p1->bEof==0 ){
+ int cmp = fts5NodeCompare(pExpr, p1, p2);
+ if( cmp>0 ){
+ rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
+ cmp = fts5NodeCompare(pExpr, p1, p2);
+ }
+ assert( rc!=SQLITE_OK || cmp<=0 );
+ if( cmp || p2->bNomatch ) break;
+ rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
+ }
+ pNode->bEof = p1->bEof;
+ pNode->bNomatch = p1->bNomatch;
+ pNode->iRowid = p1->iRowid;
+ if( p1->bEof ){
+ fts5ExprNodeZeroPoslist(p2);
+ }
+ return rc;
+}
+
+static int fts5ExprNodeNext_NOT(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ }
+ if( rc!=SQLITE_OK ){
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+/*
+** If pNode currently points to a match, this function returns SQLITE_OK
+** without modifying it. Otherwise, pNode is advanced until it does point
+** to a match or EOF is reached.
+*/
+static int fts5ExprNodeTest(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ int rc = SQLITE_OK;
+ if( pNode->bEof==0 ){
+ switch( pNode->eType ){
+
+ case FTS5_STRING: {
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_TERM: {
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_AND: {
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_OR: {
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ break;
+ }
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Set node pNode, which is part of expression pExpr, to point to the first
+** match. If there are no matches, set the Node.bEof flag to indicate EOF.
+**
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+** It is not an error if there are no matches.
+*/
+static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
+ int rc = SQLITE_OK;
+ pNode->bEof = 0;
+ pNode->bNomatch = 0;
+
+ if( Fts5NodeIsString(pNode) ){
+ /* Initialize all term iterators in the NEAR object. */
+ rc = fts5ExprNearInitAll(pExpr, pNode);
+ }else if( pNode->xNext==0 ){
+ pNode->bEof = 1;
+ }else{
+ int i;
+ int nEof = 0;
+ for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
+ assert( pChild->bEof==0 || pChild->bEof==1 );
+ nEof += pChild->bEof;
+ }
+ pNode->iRowid = pNode->apChild[0]->iRowid;
+
+ switch( pNode->eType ){
+ case FTS5_AND:
+ if( nEof>0 ) fts5ExprSetEof(pNode);
+ break;
+
+ case FTS5_OR:
+ if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
+ break;
+
+ default:
+ assert( pNode->eType==FTS5_NOT );
+ pNode->bEof = pNode->apChild[0]->bEof;
+ break;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest(pExpr, pNode);
+ }
+ return rc;
+}
+
+
+/*
+** Begin iterating through the set of documents in index pIdx matched by
+** the MATCH expression passed as the first argument. If the "bDesc"
+** parameter is passed a non-zero value, iteration is in descending rowid
+** order. Or, if it is zero, in ascending order.
+**
+** If iterating in ascending rowid order (bDesc==0), the first document
+** visited is that with the smallest rowid that is larger than or equal
+** to parameter iFirst. Or, if iterating in ascending order (bDesc==1),
+** then the first document visited must have a rowid smaller than or
+** equal to iFirst.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
+ Fts5ExprNode *pRoot = p->pRoot;
+ int rc; /* Return code */
+
+ p->pIndex = pIdx;
+ p->bDesc = bDesc;
+ rc = fts5ExprNodeFirst(p, pRoot);
+
+ /* If not at EOF but the current rowid occurs earlier than iFirst in
+ ** the iteration order, move to document iFirst or later. */
+ if( rc==SQLITE_OK
+ && 0==pRoot->bEof
+ && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0
+ ){
+ rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
+ }
+
+ /* If the iterator is not at a real match, skip forward until it is. */
+ while( pRoot->bNomatch && rc==SQLITE_OK ){
+ assert( pRoot->bEof==0 );
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ }
+ return rc;
+}
+
+/*
+** Move to the next document
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
+ int rc;
+ Fts5ExprNode *pRoot = p->pRoot;
+ assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
+ do {
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
+ }while( pRoot->bNomatch );
+ if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
+ pRoot->bEof = 1;
+ }
+ return rc;
+}
+
+static int sqlite3Fts5ExprEof(Fts5Expr *p){
+ return p->pRoot->bEof;
+}
+
+static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
+ return p->pRoot->iRowid;
+}
+
+static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
+ int rc = SQLITE_OK;
+ *pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n);
+ return rc;
+}
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){
+ if( pPhrase ){
+ int i;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pSyn;
+ Fts5ExprTerm *pNext;
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ sqlite3_free(pTerm->zTerm);
+ sqlite3Fts5IterClose(pTerm->pIter);
+ for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
+ pNext = pSyn->pSynonym;
+ sqlite3Fts5IterClose(pSyn->pIter);
+ fts5BufferFree((Fts5Buffer*)&pSyn[1]);
+ sqlite3_free(pSyn);
+ }
+ }
+ if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
+ sqlite3_free(pPhrase);
+ }
+}
+
+/*
+** Set the "bFirst" flag on the first token of the phrase passed as the
+** only argument.
+*/
+static void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){
+ if( pPhrase && pPhrase->nTerm ){
+ pPhrase->aTerm[0].bFirst = 1;
+ }
+}
+
+/*
+** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
+** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
+** appended to it and the results returned.
+**
+** If an OOM error occurs, both the pNear and pPhrase objects are freed and
+** NULL returned.
+*/
+static Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNearset *pNear, /* Existing nearset, or NULL */
+ Fts5ExprPhrase *pPhrase /* Recently parsed phrase */
+){
+ const int SZALLOC = 8;
+ Fts5ExprNearset *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ if( pPhrase==0 ){
+ return pNear;
+ }
+ if( pNear==0 ){
+ sqlite3_int64 nByte;
+ nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*);
+ pRet = sqlite3_malloc64(nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, (size_t)nByte);
+ }
+ }else if( (pNear->nPhrase % SZALLOC)==0 ){
+ int nNew = pNear->nPhrase + SZALLOC;
+ sqlite3_int64 nByte;
+
+ nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*);
+ pRet = (Fts5ExprNearset*)sqlite3_realloc64(pNear, nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }else{
+ pRet = pNear;
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNearsetFree(pNear);
+ sqlite3Fts5ParsePhraseFree(pPhrase);
+ }else{
+ if( pRet->nPhrase>0 ){
+ Fts5ExprPhrase *pLast = pRet->apPhrase[pRet->nPhrase-1];
+ assert( pParse!=0 );
+ assert( pParse->apPhrase!=0 );
+ assert( pParse->nPhrase>=2 );
+ assert( pLast==pParse->apPhrase[pParse->nPhrase-2] );
+ if( pPhrase->nTerm==0 ){
+ fts5ExprPhraseFree(pPhrase);
+ pRet->nPhrase--;
+ pParse->nPhrase--;
+ pPhrase = pLast;
+ }else if( pLast->nTerm==0 ){
+ fts5ExprPhraseFree(pLast);
+ pParse->apPhrase[pParse->nPhrase-2] = pPhrase;
+ pParse->nPhrase--;
+ pRet->nPhrase--;
+ }
+ }
+ pRet->apPhrase[pRet->nPhrase++] = pPhrase;
+ }
+ return pRet;
+}
+
+typedef struct TokenCtx TokenCtx;
+struct TokenCtx {
+ Fts5ExprPhrase *pPhrase;
+ int rc;
+};
+
+/*
+** Callback for tokenizing terms used by ParseTerm().
+*/
+static int fts5ParseTokenize(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int rc = SQLITE_OK;
+ const int SZALLOC = 8;
+ TokenCtx *pCtx = (TokenCtx*)pContext;
+ Fts5ExprPhrase *pPhrase = pCtx->pPhrase;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ /* If an error has already occurred, this is a no-op */
+ if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+
+ if( pPhrase && pPhrase->nTerm>0 && (tflags & FTS5_TOKEN_COLOCATED) ){
+ Fts5ExprTerm *pSyn;
+ sqlite3_int64 nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
+ pSyn = (Fts5ExprTerm*)sqlite3_malloc64(nByte);
+ if( pSyn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pSyn, 0, (size_t)nByte);
+ pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
+ memcpy(pSyn->zTerm, pToken, nToken);
+ pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
+ pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
+ }
+ }else{
+ Fts5ExprTerm *pTerm;
+ if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
+ Fts5ExprPhrase *pNew;
+ int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0);
+
+ pNew = (Fts5ExprPhrase*)sqlite3_realloc64(pPhrase,
+ sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew
+ );
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase));
+ pCtx->pPhrase = pPhrase = pNew;
+ pNew->nTerm = nNew - SZALLOC;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pTerm = &pPhrase->aTerm[pPhrase->nTerm++];
+ memset(pTerm, 0, sizeof(Fts5ExprTerm));
+ pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken);
+ }
+ }
+
+ pCtx->rc = rc;
+ return rc;
+}
+
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){
+ fts5ExprPhraseFree(pPhrase);
+}
+
+/*
+** Free the phrase object passed as the second argument.
+*/
+static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){
+ if( pNear ){
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ fts5ExprPhraseFree(pNear->apPhrase[i]);
+ }
+ sqlite3_free(pNear->pColset);
+ sqlite3_free(pNear);
+ }
+}
+
+static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){
+ assert( pParse->pExpr==0 );
+ pParse->pExpr = p;
+}
+
+static int parseGrowPhraseArray(Fts5Parse *pParse){
+ if( (pParse->nPhrase % 8)==0 ){
+ sqlite3_int64 nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8);
+ Fts5ExprPhrase **apNew;
+ apNew = (Fts5ExprPhrase**)sqlite3_realloc64(pParse->apPhrase, nByte);
+ if( apNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ return SQLITE_NOMEM;
+ }
+ pParse->apPhrase = apNew;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is called by the parser to process a string token. The
+** string may or may not be quoted. In any case it is tokenized and a
+** phrase object consisting of all tokens returned.
+*/
+static Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprPhrase *pAppend, /* Phrase to append to */
+ Fts5Token *pToken, /* String to tokenize */
+ int bPrefix /* True if there is a trailing "*" */
+){
+ Fts5Config *pConfig = pParse->pConfig;
+ TokenCtx sCtx; /* Context object passed to callback */
+ int rc; /* Tokenize return code */
+ char *z = 0;
+
+ memset(&sCtx, 0, sizeof(TokenCtx));
+ sCtx.pPhrase = pAppend;
+
+ rc = fts5ParseStringFromToken(pToken, &z);
+ if( rc==SQLITE_OK ){
+ int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_PREFIX : 0);
+ int n;
+ sqlite3Fts5Dequote(z);
+ n = (int)strlen(z);
+ rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
+ }
+ sqlite3_free(z);
+ if( rc || (rc = sCtx.rc) ){
+ pParse->rc = rc;
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ sCtx.pPhrase = 0;
+ }else{
+
+ if( pAppend==0 ){
+ if( parseGrowPhraseArray(pParse) ){
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ return 0;
+ }
+ pParse->nPhrase++;
+ }
+
+ if( sCtx.pPhrase==0 ){
+ /* This happens when parsing a token or quoted phrase that contains
+ ** no token characters at all. (e.g ... MATCH '""'). */
+ sCtx.pPhrase = sqlite3Fts5MallocZero(&pParse->rc, sizeof(Fts5ExprPhrase));
+ }else if( sCtx.pPhrase->nTerm ){
+ sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = (u8)bPrefix;
+ }
+ pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase;
+ }
+
+ return sCtx.pPhrase;
+}
+
+/*
+** Create a new FTS5 expression by cloning phrase iPhrase of the
+** expression passed as the second argument.
+*/
+static int sqlite3Fts5ExprClonePhrase(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ Fts5Expr **ppNew
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */
+ Fts5Expr *pNew = 0; /* Expression to return via *ppNew */
+ TokenCtx sCtx = {0,0}; /* Context object for fts5ParseTokenize */
+
+ pOrig = pExpr->apExprPhrase[iPhrase];
+ pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
+ if( rc==SQLITE_OK ){
+ pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNode));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot->pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ Fts5Colset *pColsetOrig = pOrig->pNode->pNear->pColset;
+ if( pColsetOrig ){
+ sqlite3_int64 nByte;
+ Fts5Colset *pColset;
+ nByte = sizeof(Fts5Colset) + (pColsetOrig->nCol-1) * sizeof(int);
+ pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&rc, nByte);
+ if( pColset ){
+ memcpy(pColset, pColsetOrig, (size_t)nByte);
+ }
+ pNew->pRoot->pNear->pColset = pColset;
+ }
+ }
+
+ if( pOrig->nTerm ){
+ int i; /* Used to iterate through phrase terms */
+ for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
+ int tflags = 0;
+ Fts5ExprTerm *p;
+ for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
+ const char *zTerm = p->zTerm;
+ rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
+ 0, 0);
+ tflags = FTS5_TOKEN_COLOCATED;
+ }
+ if( rc==SQLITE_OK ){
+ sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
+ sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst;
+ }
+ }
+ }else{
+ /* This happens when parsing a token or quoted phrase that contains
+ ** no token characters at all. (e.g ... MATCH '""'). */
+ sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase));
+ }
+
+ if( rc==SQLITE_OK && ALWAYS(sCtx.pPhrase) ){
+ /* All the allocations succeeded. Put the expression object together. */
+ pNew->pIndex = pExpr->pIndex;
+ pNew->pConfig = pExpr->pConfig;
+ pNew->nPhrase = 1;
+ pNew->apExprPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->nPhrase = 1;
+ sCtx.pPhrase->pNode = pNew->pRoot;
+
+ if( pOrig->nTerm==1
+ && pOrig->aTerm[0].pSynonym==0
+ && pOrig->aTerm[0].bFirst==0
+ ){
+ pNew->pRoot->eType = FTS5_TERM;
+ pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNew->pRoot->eType = FTS5_STRING;
+ pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
+ }
+ }else{
+ sqlite3Fts5ExprFree(pNew);
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ pNew = 0;
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+
+/*
+** Token pTok has appeared in a MATCH expression where the NEAR operator
+** is expected. If token pTok does not contain "NEAR", store an error
+** in the pParse object.
+*/
+static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){
+ if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p
+ );
+ }
+}
+
+static void sqlite3Fts5ParseSetDistance(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear,
+ Fts5Token *p
+){
+ if( pNear ){
+ int nNear = 0;
+ int i;
+ if( p->n ){
+ for(i=0; i<p->n; i++){
+ char c = (char)p->p[i];
+ if( c<'0' || c>'9' ){
+ sqlite3Fts5ParseError(
+ pParse, "expected integer, got \"%.*s\"", p->n, p->p
+ );
+ return;
+ }
+ nNear = nNear * 10 + (p->p[i] - '0');
+ }
+ }else{
+ nNear = FTS5_DEFAULT_NEARDIST;
+ }
+ pNear->nNear = nNear;
+ }
+}
+
+/*
+** The second argument passed to this function may be NULL, or it may be
+** an existing Fts5Colset object. This function returns a pointer to
+** a new colset object containing the contents of (p) with new value column
+** number iCol appended.
+**
+** If an OOM error occurs, store an error code in pParse and return NULL.
+** The old colset object (if any) is not freed in this case.
+*/
+static Fts5Colset *fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *p, /* Existing colset object */
+ int iCol /* New column to add to colset object */
+){
+ int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */
+ Fts5Colset *pNew; /* New colset object to return */
+
+ assert( pParse->rc==SQLITE_OK );
+ assert( iCol>=0 && iCol<pParse->pConfig->nCol );
+
+ pNew = sqlite3_realloc64(p, sizeof(Fts5Colset) + sizeof(int)*nCol);
+ if( pNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ int *aiCol = pNew->aiCol;
+ int i, j;
+ for(i=0; i<nCol; i++){
+ if( aiCol[i]==iCol ) return pNew;
+ if( aiCol[i]>iCol ) break;
+ }
+ for(j=nCol; j>i; j--){
+ aiCol[j] = aiCol[j-1];
+ }
+ aiCol[i] = iCol;
+ pNew->nCol = nCol+1;
+
+#ifndef NDEBUG
+ /* Check that the array is in order and contains no duplicate entries. */
+ for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] );
+#endif
+ }
+
+ return pNew;
+}
+
+/*
+** Allocate and return an Fts5Colset object specifying the inverse of
+** the colset passed as the second argument. Free the colset passed
+** as the second argument before returning.
+*/
+static Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse *pParse, Fts5Colset *p){
+ Fts5Colset *pRet;
+ int nCol = pParse->pConfig->nCol;
+
+ pRet = (Fts5Colset*)sqlite3Fts5MallocZero(&pParse->rc,
+ sizeof(Fts5Colset) + sizeof(int)*nCol
+ );
+ if( pRet ){
+ int i;
+ int iOld = 0;
+ for(i=0; i<nCol; i++){
+ if( iOld>=p->nCol || p->aiCol[iOld]!=i ){
+ pRet->aiCol[pRet->nCol++] = i;
+ }else{
+ iOld++;
+ }
+ }
+ }
+
+ sqlite3_free(p);
+ return pRet;
+}
+
+static Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *pColset, /* Existing colset object */
+ Fts5Token *p
+){
+ Fts5Colset *pRet = 0;
+ int iCol;
+ char *z; /* Dequoted copy of token p */
+
+ z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n);
+ if( pParse->rc==SQLITE_OK ){
+ Fts5Config *pConfig = pParse->pConfig;
+ sqlite3Fts5Dequote(z);
+ for(iCol=0; iCol<pConfig->nCol; iCol++){
+ if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break;
+ }
+ if( iCol==pConfig->nCol ){
+ sqlite3Fts5ParseError(pParse, "no such column: %s", z);
+ }else{
+ pRet = fts5ParseColset(pParse, pColset, iCol);
+ }
+ sqlite3_free(z);
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3_free(pColset);
+ }
+
+ return pRet;
+}
+
+/*
+** If argument pOrig is NULL, or if (*pRc) is set to anything other than
+** SQLITE_OK when this function is called, NULL is returned.
+**
+** Otherwise, a copy of (*pOrig) is made into memory obtained from
+** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation
+** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned.
+*/
+static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){
+ Fts5Colset *pRet;
+ if( pOrig ){
+ sqlite3_int64 nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int);
+ pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pRet ){
+ memcpy(pRet, pOrig, (size_t)nByte);
+ }
+ }else{
+ pRet = 0;
+ }
+ return pRet;
+}
+
+/*
+** Remove from colset pColset any columns that are not also in colset pMerge.
+*/
+static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){
+ int iIn = 0; /* Next input in pColset */
+ int iMerge = 0; /* Next input in pMerge */
+ int iOut = 0; /* Next output slot in pColset */
+
+ while( iIn<pColset->nCol && iMerge<pMerge->nCol ){
+ int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge];
+ if( iDiff==0 ){
+ pColset->aiCol[iOut++] = pMerge->aiCol[iMerge];
+ iMerge++;
+ iIn++;
+ }else if( iDiff>0 ){
+ iMerge++;
+ }else{
+ iIn++;
+ }
+ }
+ pColset->nCol = iOut;
+}
+
+/*
+** Recursively apply colset pColset to expression node pNode and all of
+** its decendents. If (*ppFree) is not NULL, it contains a spare copy
+** of pColset. This function may use the spare copy and set (*ppFree) to
+** zero, or it may create copies of pColset using fts5CloneColset().
+*/
+static void fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pNode,
+ Fts5Colset *pColset,
+ Fts5Colset **ppFree
+){
+ if( pParse->rc==SQLITE_OK ){
+ assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING
+ || pNode->eType==FTS5_AND || pNode->eType==FTS5_OR
+ || pNode->eType==FTS5_NOT || pNode->eType==FTS5_EOF
+ );
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->pColset ){
+ fts5MergeColset(pNear->pColset, pColset);
+ if( pNear->pColset->nCol==0 ){
+ pNode->eType = FTS5_EOF;
+ pNode->xNext = 0;
+ }
+ }else if( *ppFree ){
+ pNear->pColset = pColset;
+ *ppFree = 0;
+ }else{
+ pNear->pColset = fts5CloneColset(&pParse->rc, pColset);
+ }
+ }else{
+ int i;
+ assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 );
+ for(i=0; i<pNode->nChild; i++){
+ fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree);
+ }
+ }
+ }
+}
+
+/*
+** Apply colset pColset to expression node pExpr and all of its descendents.
+*/
+static void sqlite3Fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNode *pExpr,
+ Fts5Colset *pColset
+){
+ Fts5Colset *pFree = pColset;
+ if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5: column queries are not supported (detail=none)"
+ );
+ }else{
+ fts5ParseSetColset(pParse, pExpr, pColset, &pFree);
+ }
+ sqlite3_free(pFree);
+}
+
+static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
+ switch( pNode->eType ){
+ case FTS5_STRING: {
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1
+ && pNear->apPhrase[0]->aTerm[0].pSynonym==0
+ && pNear->apPhrase[0]->aTerm[0].bFirst==0
+ ){
+ pNode->eType = FTS5_TERM;
+ pNode->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNode->xNext = fts5ExprNodeNext_STRING;
+ }
+ break;
+ };
+
+ case FTS5_OR: {
+ pNode->xNext = fts5ExprNodeNext_OR;
+ break;
+ };
+
+ case FTS5_AND: {
+ pNode->xNext = fts5ExprNodeNext_AND;
+ break;
+ };
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ pNode->xNext = fts5ExprNodeNext_NOT;
+ break;
+ };
+ }
+}
+
+static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
+ int ii = p->nChild;
+ if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
+ int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
+ memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
+ p->nChild += pSub->nChild;
+ sqlite3_free(pSub);
+ }else{
+ p->apChild[p->nChild++] = pSub;
+ }
+ for( ; ii<p->nChild; ii++){
+ p->iHeight = MAX(p->iHeight, p->apChild[ii]->iHeight + 1);
+ }
+}
+
+/*
+** This function is used when parsing LIKE or GLOB patterns against
+** trigram indexes that specify either detail=column or detail=none.
+** It converts a phrase:
+**
+** abc + def + ghi
+**
+** into an AND tree:
+**
+** abc AND def AND ghi
+*/
+static Fts5ExprNode *fts5ParsePhraseToAnd(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear
+){
+ int nTerm = pNear->apPhrase[0]->nTerm;
+ int ii;
+ int nByte;
+ Fts5ExprNode *pRet;
+
+ assert( pNear->nPhrase==1 );
+ assert( pParse->bPhraseToAnd );
+
+ nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+ if( pRet ){
+ pRet->eType = FTS5_AND;
+ pRet->nChild = nTerm;
+ pRet->iHeight = 1;
+ fts5ExprAssignXNext(pRet);
+ pParse->nPhrase--;
+ for(ii=0; ii<nTerm; ii++){
+ Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero(
+ &pParse->rc, sizeof(Fts5ExprPhrase)
+ );
+ if( pPhrase ){
+ if( parseGrowPhraseArray(pParse) ){
+ fts5ExprPhraseFree(pPhrase);
+ }else{
+ pParse->apPhrase[pParse->nPhrase++] = pPhrase;
+ pPhrase->nTerm = 1;
+ pPhrase->aTerm[0].zTerm = sqlite3Fts5Strndup(
+ &pParse->rc, pNear->apPhrase[0]->aTerm[ii].zTerm, -1
+ );
+ pRet->apChild[ii] = sqlite3Fts5ParseNode(pParse, FTS5_STRING,
+ 0, 0, sqlite3Fts5ParseNearset(pParse, 0, pPhrase)
+ );
+ }
+ }
+ }
+
+ if( pParse->rc ){
+ sqlite3Fts5ParseNodeFree(pRet);
+ pRet = 0;
+ }else{
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Allocate and return a new expression object. If anything goes wrong (i.e.
+** OOM error), leave an error code in pParse and return NULL.
+*/
+static Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse, /* Parse context */
+ int eType, /* FTS5_STRING, AND, OR or NOT */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight, /* Right hand child expression */
+ Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */
+){
+ Fts5ExprNode *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ int nChild = 0; /* Number of children of returned node */
+ sqlite3_int64 nByte; /* Bytes of space to allocate for this node */
+
+ assert( (eType!=FTS5_STRING && !pNear)
+ || (eType==FTS5_STRING && !pLeft && !pRight)
+ );
+ if( eType==FTS5_STRING && pNear==0 ) return 0;
+ if( eType!=FTS5_STRING && pLeft==0 ) return pRight;
+ if( eType!=FTS5_STRING && pRight==0 ) return pLeft;
+
+ if( eType==FTS5_STRING
+ && pParse->bPhraseToAnd
+ && pNear->apPhrase[0]->nTerm>1
+ ){
+ pRet = fts5ParsePhraseToAnd(pParse, pNear);
+ }else{
+ if( eType==FTS5_NOT ){
+ nChild = 2;
+ }else if( eType==FTS5_AND || eType==FTS5_OR ){
+ nChild = 2;
+ if( pLeft->eType==eType ) nChild += pLeft->nChild-1;
+ if( pRight->eType==eType ) nChild += pRight->nChild-1;
+ }
+
+ nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+
+ if( pRet ){
+ pRet->eType = eType;
+ pRet->pNear = pNear;
+ fts5ExprAssignXNext(pRet);
+ if( eType==FTS5_STRING ){
+ int iPhrase;
+ for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
+ pNear->apPhrase[iPhrase]->pNode = pRet;
+ if( pNear->apPhrase[iPhrase]->nTerm==0 ){
+ pRet->xNext = 0;
+ pRet->eType = FTS5_EOF;
+ }
+ }
+
+ if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ if( pNear->nPhrase!=1
+ || pPhrase->nTerm>1
+ || (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst)
+ ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5: %s queries are not supported (detail!=full)",
+ pNear->nPhrase==1 ? "phrase": "NEAR"
+ );
+ sqlite3_free(pRet);
+ pRet = 0;
+ }
+ }
+ }else{
+ fts5ExprAddChildren(pRet, pLeft);
+ fts5ExprAddChildren(pRet, pRight);
+ if( pRet->iHeight>SQLITE_FTS5_MAX_EXPR_DEPTH ){
+ sqlite3Fts5ParseError(pParse,
+ "fts5 expression tree is too large (maximum depth %d)",
+ SQLITE_FTS5_MAX_EXPR_DEPTH
+ );
+ sqlite3_free(pRet);
+ pRet = 0;
+ }
+ }
+ }
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ return pRet;
+}
+
+static Fts5ExprNode *sqlite3Fts5ParseImplicitAnd(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight /* Right hand child expression */
+){
+ Fts5ExprNode *pRet = 0;
+ Fts5ExprNode *pPrev;
+
+ if( pParse->rc ){
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ }else{
+
+ assert( pLeft->eType==FTS5_STRING
+ || pLeft->eType==FTS5_TERM
+ || pLeft->eType==FTS5_EOF
+ || pLeft->eType==FTS5_AND
+ );
+ assert( pRight->eType==FTS5_STRING
+ || pRight->eType==FTS5_TERM
+ || pRight->eType==FTS5_EOF
+ );
+
+ if( pLeft->eType==FTS5_AND ){
+ pPrev = pLeft->apChild[pLeft->nChild-1];
+ }else{
+ pPrev = pLeft;
+ }
+ assert( pPrev->eType==FTS5_STRING
+ || pPrev->eType==FTS5_TERM
+ || pPrev->eType==FTS5_EOF
+ );
+
+ if( pRight->eType==FTS5_EOF ){
+ assert( pParse->apPhrase[pParse->nPhrase-1]==pRight->pNear->apPhrase[0] );
+ sqlite3Fts5ParseNodeFree(pRight);
+ pRet = pLeft;
+ pParse->nPhrase--;
+ }
+ else if( pPrev->eType==FTS5_EOF ){
+ Fts5ExprPhrase **ap;
+
+ if( pPrev==pLeft ){
+ pRet = pRight;
+ }else{
+ pLeft->apChild[pLeft->nChild-1] = pRight;
+ pRet = pLeft;
+ }
+
+ ap = &pParse->apPhrase[pParse->nPhrase-1-pRight->pNear->nPhrase];
+ assert( ap[0]==pPrev->pNear->apPhrase[0] );
+ memmove(ap, &ap[1], sizeof(Fts5ExprPhrase*)*pRight->pNear->nPhrase);
+ pParse->nPhrase--;
+
+ sqlite3Fts5ParseNodeFree(pPrev);
+ }
+ else{
+ pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0);
+ }
+ }
+
+ return pRet;
+}
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
+ sqlite3_int64 nByte = 0;
+ Fts5ExprTerm *p;
+ char *zQuoted;
+
+ /* Determine the maximum amount of space required. */
+ for(p=pTerm; p; p=p->pSynonym){
+ nByte += (int)strlen(pTerm->zTerm) * 2 + 3 + 2;
+ }
+ zQuoted = sqlite3_malloc64(nByte);
+
+ if( zQuoted ){
+ int i = 0;
+ for(p=pTerm; p; p=p->pSynonym){
+ char *zIn = p->zTerm;
+ zQuoted[i++] = '"';
+ while( *zIn ){
+ if( *zIn=='"' ) zQuoted[i++] = '"';
+ zQuoted[i++] = *zIn++;
+ }
+ zQuoted[i++] = '"';
+ if( p->pSynonym ) zQuoted[i++] = '|';
+ }
+ if( pTerm->bPrefix ){
+ zQuoted[i++] = ' ';
+ zQuoted[i++] = '*';
+ }
+ zQuoted[i++] = '\0';
+ }
+ return zQuoted;
+}
+
+static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){
+ char *zNew;
+ va_list ap;
+ va_start(ap, zFmt);
+ zNew = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zApp && zNew ){
+ char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew);
+ sqlite3_free(zNew);
+ zNew = zNew2;
+ }
+ sqlite3_free(zApp);
+ return zNew;
+}
+
+/*
+** Compose a tcl-readable representation of expression pExpr. Return a
+** pointer to a buffer containing that representation. It is the
+** responsibility of the caller to at some point free the buffer using
+** sqlite3_free().
+*/
+static char *fts5ExprPrintTcl(
+ Fts5Config *pConfig,
+ const char *zNearsetCmd,
+ Fts5ExprNode *pExpr
+){
+ char *zRet = 0;
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd);
+ if( zRet==0 ) return 0;
+ if( pNear->pColset ){
+ int *aiCol = pNear->pColset->aiCol;
+ int nCol = pNear->pColset->nCol;
+ if( nCol==1 ){
+ zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]);
+ }else{
+ zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]);
+ for(i=1; i<pNear->pColset->nCol; i++){
+ zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]);
+ }
+ zRet = fts5PrintfAppend(zRet, "} ");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ zRet = fts5PrintfAppend(zRet, "--");
+ if( zRet==0 ) return 0;
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+
+ zRet = fts5PrintfAppend(zRet, " {");
+ for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = pPhrase->aTerm[iTerm].zTerm;
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
+ if( pPhrase->aTerm[iTerm].bPrefix ){
+ zRet = fts5PrintfAppend(zRet, "*");
+ }
+ }
+
+ if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
+ if( zRet==0 ) return 0;
+ }
+
+ }else if( pExpr->eType==0 ){
+ zRet = sqlite3_mprintf("{}");
+ }else{
+ char const *zOp = 0;
+ int i;
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = "AND"; break;
+ case FTS5_NOT: zOp = "NOT"; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = "OR";
+ break;
+ }
+
+ zRet = sqlite3_mprintf("%s", zOp);
+ for(i=0; zRet && i<pExpr->nChild; i++){
+ char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]);
+ if( !z ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ zRet = fts5PrintfAppend(zRet, " [%z]", z);
+ }
+ }
+ }
+
+ return zRet;
+}
+
+static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){
+ char *zRet = 0;
+ if( pExpr->eType==0 ){
+ return sqlite3_mprintf("\"\"");
+ }else
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ if( pNear->pColset ){
+ int ii;
+ Fts5Colset *pColset = pNear->pColset;
+ if( pColset->nCol>1 ) zRet = fts5PrintfAppend(zRet, "{");
+ for(ii=0; ii<pColset->nCol; ii++){
+ zRet = fts5PrintfAppend(zRet, "%s%s",
+ pConfig->azCol[pColset->aiCol[ii]], ii==pColset->nCol-1 ? "" : " "
+ );
+ }
+ if( zRet ){
+ zRet = fts5PrintfAppend(zRet, "%s : ", pColset->nCol>1 ? "}" : "");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "NEAR(");
+ if( zRet==0 ) return 0;
+ }
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( i!=0 ){
+ zRet = fts5PrintfAppend(zRet, " ");
+ if( zRet==0 ) return 0;
+ }
+ for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]);
+ if( zTerm ){
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm);
+ sqlite3_free(zTerm);
+ }
+ if( zTerm==0 || zRet==0 ){
+ sqlite3_free(zRet);
+ return 0;
+ }
+ }
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = " AND "; break;
+ case FTS5_NOT: zOp = " NOT "; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = " OR ";
+ break;
+ }
+
+ for(i=0; i<pExpr->nChild; i++){
+ char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]);
+ if( z==0 ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ int e = pExpr->apChild[i]->eType;
+ int b = (e!=FTS5_STRING && e!=FTS5_TERM && e!=FTS5_EOF);
+ zRet = fts5PrintfAppend(zRet, "%s%s%z%s",
+ (i==0 ? "" : zOp),
+ (b?"(":""), z, (b?")":"")
+ );
+ }
+ if( zRet==0 ) break;
+ }
+ }
+
+ return zRet;
+}
+
+/*
+** The implementation of user-defined scalar functions fts5_expr() (bTcl==0)
+** and fts5_expr_tcl() (bTcl!=0).
+*/
+static void fts5ExprFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal, /* Function arguments */
+ int bTcl
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ const char *zExpr = 0;
+ char *zErr = 0;
+ Fts5Expr *pExpr = 0;
+ int rc;
+ int i;
+
+ const char **azConfig; /* Array of arguments for Fts5Config */
+ const char *zNearsetCmd = "nearset";
+ int nConfig; /* Size of azConfig[] */
+ Fts5Config *pConfig = 0;
+ int iArg = 1;
+
+ if( nArg<1 ){
+ zErr = sqlite3_mprintf("wrong number of arguments to function %s",
+ bTcl ? "fts5_expr_tcl" : "fts5_expr"
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+
+ if( bTcl && nArg>1 ){
+ zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]);
+ iArg = 2;
+ }
+
+ nConfig = 3 + (nArg-iArg);
+ azConfig = (const char**)sqlite3_malloc64(sizeof(char*) * nConfig);
+ if( azConfig==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return;
+ }
+ azConfig[0] = 0;
+ azConfig[1] = "main";
+ azConfig[2] = "tbl";
+ for(i=3; iArg<nArg; iArg++){
+ const char *z = (const char*)sqlite3_value_text(apVal[iArg]);
+ azConfig[i++] = (z ? z : "");
+ }
+
+ zExpr = (const char*)sqlite3_value_text(apVal[0]);
+ if( zExpr==0 ) zExpr = "";
+
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprNew(pConfig, 0, pConfig->nCol, zExpr, &pExpr, &zErr);
+ }
+ if( rc==SQLITE_OK ){
+ char *zText;
+ if( pExpr->pRoot->xNext==0 ){
+ zText = sqlite3_mprintf("");
+ }else if( bTcl ){
+ zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
+ }else{
+ zText = fts5ExprPrint(pConfig, pExpr->pRoot);
+ }
+ if( zText==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zText);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ if( zErr ){
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ }
+ sqlite3_free((void *)azConfig);
+ sqlite3Fts5ConfigFree(pConfig);
+ sqlite3Fts5ExprFree(pExpr);
+}
+
+static void fts5ExprFunctionHr(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 0);
+}
+static void fts5ExprFunctionTcl(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 1);
+}
+
+/*
+** The implementation of an SQLite user-defined-function that accepts a
+** single integer as an argument. If the integer is an alpha-numeric
+** unicode code point, 1 is returned. Otherwise 0.
+*/
+static void fts5ExprIsAlnum(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ int iCode;
+ u8 aArr[32];
+ if( nArg!=1 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_isalnum", -1
+ );
+ return;
+ }
+ memset(aArr, 0, sizeof(aArr));
+ sqlite3Fts5UnicodeCatParse("L*", aArr);
+ sqlite3Fts5UnicodeCatParse("N*", aArr);
+ sqlite3Fts5UnicodeCatParse("Co", aArr);
+ iCode = sqlite3_value_int(apVal[0]);
+ sqlite3_result_int(pCtx, aArr[sqlite3Fts5UnicodeCategory((u32)iCode)]);
+}
+
+static void fts5ExprFold(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ if( nArg!=1 && nArg!=2 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_fold", -1
+ );
+ }else{
+ int iCode;
+ int bRemoveDiacritics = 0;
+ iCode = sqlite3_value_int(apVal[0]);
+ if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
+ sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
+ }
+}
+#endif /* if SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+/*
+** This is called during initialization to register the fts5_expr() scalar
+** UDF with the SQLite handle passed as the only argument.
+*/
+static int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+ struct Fts5ExprFunc {
+ const char *z;
+ void (*x)(sqlite3_context*,int,sqlite3_value**);
+ } aFunc[] = {
+ { "fts5_expr", fts5ExprFunctionHr },
+ { "fts5_expr_tcl", fts5ExprFunctionTcl },
+ { "fts5_isalnum", fts5ExprIsAlnum },
+ { "fts5_fold", fts5ExprFold },
+ };
+ int i;
+ int rc = SQLITE_OK;
+ void *pCtx = (void*)pGlobal;
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
+ struct Fts5ExprFunc *p = &aFunc[i];
+ rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
+ }
+#else
+ int rc = SQLITE_OK;
+ UNUSED_PARAM2(pGlobal,db);
+#endif
+
+ /* Avoid warnings indicating that sqlite3Fts5ParserTrace() and
+ ** sqlite3Fts5ParserFallback() are unused */
+#ifndef NDEBUG
+ (void)sqlite3Fts5ParserTrace;
+#endif
+ (void)sqlite3Fts5ParserFallback;
+
+ return rc;
+}
+
+/*
+** Return the number of phrases in expression pExpr.
+*/
+static int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){
+ return (pExpr ? pExpr->nPhrase : 0);
+}
+
+/*
+** Return the number of terms in the iPhrase'th phrase in pExpr.
+*/
+static int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){
+ if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0;
+ return pExpr->apExprPhrase[iPhrase]->nTerm;
+}
+
+/*
+** This function is used to access the current position list for phrase
+** iPhrase.
+*/
+static int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){
+ int nRet;
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){
+ *pa = pPhrase->poslist.p;
+ nRet = pPhrase->poslist.n;
+ }else{
+ *pa = 0;
+ nRet = 0;
+ }
+ return nRet;
+}
+
+struct Fts5PoslistPopulator {
+ Fts5PoslistWriter writer;
+ int bOk; /* True if ok to populate */
+ int bMiss;
+};
+
+/*
+** Clear the position lists associated with all phrases in the expression
+** passed as the first argument. Argument bLive is true if the expression
+** might be pointing to a real entry, otherwise it has just been reset.
+**
+** At present this function is only used for detail=col and detail=none
+** fts5 tables. This implies that all phrases must be at most 1 token
+** in size, as phrase matches are not supported without detail=full.
+*/
+static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
+ Fts5PoslistPopulator *pRet;
+ pRet = sqlite3_malloc64(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ if( pRet ){
+ int i;
+ memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ assert( pExpr->apExprPhrase[i]->nTerm<=1 );
+ if( bLive &&
+ (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
+ ){
+ pRet[i].bMiss = 1;
+ }else{
+ pBuf->n = 0;
+ }
+ }
+ }
+ return pRet;
+}
+
+struct Fts5ExprCtx {
+ Fts5Expr *pExpr;
+ Fts5PoslistPopulator *aPopulator;
+ i64 iOff;
+};
+typedef struct Fts5ExprCtx Fts5ExprCtx;
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static int fts5ExprPopulatePoslistsCb(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Byte offset of token within input text */
+ int iUnused2 /* Byte offset of end of token within input text */
+){
+ Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
+ Fts5Expr *pExpr = p->pExpr;
+ int i;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprTerm *pTerm;
+ if( p->aPopulator[i].bOk==0 ) continue;
+ for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ int nTerm = (int)strlen(pTerm->zTerm);
+ if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix))
+ && memcmp(pTerm->zTerm, pToken, nTerm)==0
+ ){
+ int rc = sqlite3Fts5PoslistWriterAppend(
+ &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
+ );
+ if( rc ) return rc;
+ break;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config *pConfig,
+ Fts5Expr *pExpr,
+ Fts5PoslistPopulator *aPopulator,
+ int iCol,
+ const char *z, int n
+){
+ int i;
+ Fts5ExprCtx sCtx;
+ sCtx.pExpr = pExpr;
+ sCtx.aPopulator = aPopulator;
+ sCtx.iOff = (((i64)iCol) << 32) - 1;
+
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ Fts5Colset *pColset = pNode->pNear->pColset;
+ if( (pColset && 0==fts5ExprColsetTest(pColset, iCol))
+ || aPopulator[i].bMiss
+ ){
+ aPopulator[i].bOk = 0;
+ }else{
+ aPopulator[i].bOk = 1;
+ }
+ }
+
+ return sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
+ );
+}
+
+static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
+ pNode->pNear->apPhrase[0]->poslist.n = 0;
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprClearPoslists(pNode->apChild[i]);
+ }
+ }
+}
+
+static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
+ pNode->iRowid = iRowid;
+ pNode->bEof = 0;
+ switch( pNode->eType ){
+ case FTS5_TERM:
+ case FTS5_STRING:
+ return (pNode->pNear->apPhrase[0]->poslist.n>0);
+
+ case FTS5_AND: {
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ }
+ break;
+ }
+
+ case FTS5_OR: {
+ int i;
+ int bRet = 0;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
+ bRet = 1;
+ }
+ }
+ return bRet;
+ }
+
+ default: {
+ assert( pNode->eType==FTS5_NOT );
+ if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
+ || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
+ ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ break;
+ }
+ }
+ return 1;
+}
+
+static void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
+ fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
+}
+
+/*
+** This function is only called for detail=columns tables.
+*/
+static int sqlite3Fts5ExprPhraseCollist(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ const u8 **ppCollist,
+ int *pnCollist
+){
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ int rc = SQLITE_OK;
+
+ assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
+ assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+
+ if( pNode->bEof==0
+ && pNode->iRowid==pExpr->pRoot->iRowid
+ && pPhrase->poslist.n>0
+ ){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
+ if( pTerm->pSynonym ){
+ Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
+ rc = fts5ExprSynonymList(
+ pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
+ );
+ }else{
+ *ppCollist = pPhrase->aTerm[0].pIter->pData;
+ *pnCollist = pPhrase->aTerm[0].pIter->nData;
+ }
+ }else{
+ *ppCollist = 0;
+ *pnCollist = 0;
+ }
+
+ return rc;
+}
+
+/*
+** 2014 August 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+typedef struct Fts5HashEntry Fts5HashEntry;
+
+/*
+** This file contains the implementation of an in-memory hash table used
+** to accumuluate "term -> doclist" content before it is flused to a level-0
+** segment.
+*/
+
+
+struct Fts5Hash {
+ int eDetail; /* Copy of Fts5Config.eDetail */
+ int *pnByte; /* Pointer to bytes counter */
+ int nEntry; /* Number of entries currently in hash */
+ int nSlot; /* Size of aSlot[] array */
+ Fts5HashEntry *pScan; /* Current ordered scan item */
+ Fts5HashEntry **aSlot; /* Array of hash slots */
+};
+
+/*
+** Each entry in the hash table is represented by an object of the
+** following type. Each object, its key (a nul-terminated string) and
+** its current data are stored in a single memory allocation. The
+** key immediately follows the object in memory. The position list
+** data immediately follows the key data in memory.
+**
+** The data that follows the key is in a similar, but not identical format
+** to the doclist data stored in the database. It is:
+**
+** * Rowid, as a varint
+** * Position list, without 0x00 terminator.
+** * Size of previous position list and rowid, as a 4 byte
+** big-endian integer.
+**
+** iRowidOff:
+** Offset of last rowid written to data area. Relative to first byte of
+** structure.
+**
+** nData:
+** Bytes of data written since iRowidOff.
+*/
+struct Fts5HashEntry {
+ Fts5HashEntry *pHashNext; /* Next hash entry with same hash-key */
+ Fts5HashEntry *pScanNext; /* Next entry in sorted order */
+
+ int nAlloc; /* Total size of allocation */
+ int iSzPoslist; /* Offset of space for 4-byte poslist size */
+ int nData; /* Total bytes of data (incl. structure) */
+ int nKey; /* Length of key in bytes */
+ u8 bDel; /* Set delete-flag @ iSzPoslist */
+ u8 bContent; /* Set content-flag (detail=none mode) */
+ i16 iCol; /* Column of last value written */
+ int iPos; /* Position of last value written */
+ i64 iRowid; /* Rowid of last value written */
+};
+
+/*
+** Eqivalent to:
+**
+** char *fts5EntryKey(Fts5HashEntry *pEntry){ return zKey; }
+*/
+#define fts5EntryKey(p) ( ((char *)(&(p)[1])) )
+
+
+/*
+** Allocate a new hash table.
+*/
+static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
+ int rc = SQLITE_OK;
+ Fts5Hash *pNew;
+
+ *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_int64 nByte;
+ memset(pNew, 0, sizeof(Fts5Hash));
+ pNew->pnByte = pnByte;
+ pNew->eDetail = pConfig->eDetail;
+
+ pNew->nSlot = 1024;
+ nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
+ pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc64(nByte);
+ if( pNew->aSlot==0 ){
+ sqlite3_free(pNew);
+ *ppNew = 0;
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew->aSlot, 0, (size_t)nByte);
+ }
+ }
+ return rc;
+}
+
+/*
+** Free a hash table object.
+*/
+static void sqlite3Fts5HashFree(Fts5Hash *pHash){
+ if( pHash ){
+ sqlite3Fts5HashClear(pHash);
+ sqlite3_free(pHash->aSlot);
+ sqlite3_free(pHash);
+ }
+}
+
+/*
+** Empty (but do not delete) a hash table.
+*/
+static void sqlite3Fts5HashClear(Fts5Hash *pHash){
+ int i;
+ for(i=0; i<pHash->nSlot; i++){
+ Fts5HashEntry *pNext;
+ Fts5HashEntry *pSlot;
+ for(pSlot=pHash->aSlot[i]; pSlot; pSlot=pNext){
+ pNext = pSlot->pHashNext;
+ sqlite3_free(pSlot);
+ }
+ }
+ memset(pHash->aSlot, 0, pHash->nSlot * sizeof(Fts5HashEntry*));
+ pHash->nEntry = 0;
+}
+
+static unsigned int fts5HashKey(int nSlot, const u8 *p, int n){
+ int i;
+ unsigned int h = 13;
+ for(i=n-1; i>=0; i--){
+ h = (h << 3) ^ h ^ p[i];
+ }
+ return (h % nSlot);
+}
+
+static unsigned int fts5HashKey2(int nSlot, u8 b, const u8 *p, int n){
+ int i;
+ unsigned int h = 13;
+ for(i=n-1; i>=0; i--){
+ h = (h << 3) ^ h ^ p[i];
+ }
+ h = (h << 3) ^ h ^ b;
+ return (h % nSlot);
+}
+
+/*
+** Resize the hash table by doubling the number of slots.
+*/
+static int fts5HashResize(Fts5Hash *pHash){
+ int nNew = pHash->nSlot*2;
+ int i;
+ Fts5HashEntry **apNew;
+ Fts5HashEntry **apOld = pHash->aSlot;
+
+ apNew = (Fts5HashEntry**)sqlite3_malloc64(nNew*sizeof(Fts5HashEntry*));
+ if( !apNew ) return SQLITE_NOMEM;
+ memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));
+
+ for(i=0; i<pHash->nSlot; i++){
+ while( apOld[i] ){
+ unsigned int iHash;
+ Fts5HashEntry *p = apOld[i];
+ apOld[i] = p->pHashNext;
+ iHash = fts5HashKey(nNew, (u8*)fts5EntryKey(p),
+ (int)strlen(fts5EntryKey(p)));
+ p->pHashNext = apNew[iHash];
+ apNew[iHash] = p;
+ }
+ }
+
+ sqlite3_free(apOld);
+ pHash->nSlot = nNew;
+ pHash->aSlot = apNew;
+ return SQLITE_OK;
+}
+
+static int fts5HashAddPoslistSize(
+ Fts5Hash *pHash,
+ Fts5HashEntry *p,
+ Fts5HashEntry *p2
+){
+ int nRet = 0;
+ if( p->iSzPoslist ){
+ u8 *pPtr = p2 ? (u8*)p2 : (u8*)p;
+ int nData = p->nData;
+ if( pHash->eDetail==FTS5_DETAIL_NONE ){
+ assert( nData==p->iSzPoslist );
+ if( p->bDel ){
+ pPtr[nData++] = 0x00;
+ if( p->bContent ){
+ pPtr[nData++] = 0x00;
+ }
+ }
+ }else{
+ int nSz = (nData - p->iSzPoslist - 1); /* Size in bytes */
+ int nPos = nSz*2 + p->bDel; /* Value of nPos field */
+
+ assert( p->bDel==0 || p->bDel==1 );
+ if( nPos<=127 ){
+ pPtr[p->iSzPoslist] = (u8)nPos;
+ }else{
+ int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
+ memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
+ sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
+ nData += (nByte-1);
+ }
+ }
+
+ nRet = nData - p->nData;
+ if( p2==0 ){
+ p->iSzPoslist = 0;
+ p->bDel = 0;
+ p->bContent = 0;
+ p->nData = nData;
+ }
+ }
+ return nRet;
+}
+
+/*
+** Add an entry to the in-memory hash table. The key is the concatenation
+** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos).
+**
+** (bByte || pToken) -> (iRowid,iCol,iPos)
+**
+** Or, if iCol is negative, then the value is a delete marker.
+*/
+static int sqlite3Fts5HashWrite(
+ Fts5Hash *pHash,
+ i64 iRowid, /* Rowid for this entry */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ char bByte, /* First byte of token */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ unsigned int iHash;
+ Fts5HashEntry *p;
+ u8 *pPtr;
+ int nIncr = 0; /* Amount to increment (*pHash->pnByte) by */
+ int bNew; /* If non-delete entry should be written */
+
+ bNew = (pHash->eDetail==FTS5_DETAIL_FULL);
+
+ /* Attempt to locate an existing hash entry */
+ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
+ for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
+ char *zKey = fts5EntryKey(p);
+ if( zKey[0]==bByte
+ && p->nKey==nToken
+ && memcmp(&zKey[1], pToken, nToken)==0
+ ){
+ break;
+ }
+ }
+
+ /* If an existing hash entry cannot be found, create a new one. */
+ if( p==0 ){
+ /* Figure out how much space to allocate */
+ char *zKey;
+ sqlite3_int64 nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64;
+ if( nByte<128 ) nByte = 128;
+
+ /* Grow the Fts5Hash.aSlot[] array if necessary. */
+ if( (pHash->nEntry*2)>=pHash->nSlot ){
+ int rc = fts5HashResize(pHash);
+ if( rc!=SQLITE_OK ) return rc;
+ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
+ }
+
+ /* Allocate new Fts5HashEntry and add it to the hash table. */
+ p = (Fts5HashEntry*)sqlite3_malloc64(nByte);
+ if( !p ) return SQLITE_NOMEM;
+ memset(p, 0, sizeof(Fts5HashEntry));
+ p->nAlloc = (int)nByte;
+ zKey = fts5EntryKey(p);
+ zKey[0] = bByte;
+ memcpy(&zKey[1], pToken, nToken);
+ assert( iHash==fts5HashKey(pHash->nSlot, (u8*)zKey, nToken+1) );
+ p->nKey = nToken;
+ zKey[nToken+1] = '\0';
+ p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry);
+ p->pHashNext = pHash->aSlot[iHash];
+ pHash->aSlot[iHash] = p;
+ pHash->nEntry++;
+
+ /* Add the first rowid field to the hash-entry */
+ p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
+ p->iRowid = iRowid;
+
+ p->iSzPoslist = p->nData;
+ if( pHash->eDetail!=FTS5_DETAIL_NONE ){
+ p->nData += 1;
+ p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
+ }
+
+ }else{
+
+ /* Appending to an existing hash-entry. Check that there is enough
+ ** space to append the largest possible new entry. Worst case scenario
+ ** is:
+ **
+ ** + 9 bytes for a new rowid,
+ ** + 4 byte reserved for the "poslist size" varint.
+ ** + 1 byte for a "new column" byte,
+ ** + 3 bytes for a new column number (16-bit max) as a varint,
+ ** + 5 bytes for the new position offset (32-bit max).
+ */
+ if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
+ sqlite3_int64 nNew = p->nAlloc * 2;
+ Fts5HashEntry *pNew;
+ Fts5HashEntry **pp;
+ pNew = (Fts5HashEntry*)sqlite3_realloc64(p, nNew);
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->nAlloc = (int)nNew;
+ for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
+ *pp = pNew;
+ p = pNew;
+ }
+ nIncr -= p->nData;
+ }
+ assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) );
+
+ pPtr = (u8*)p;
+
+ /* If this is a new rowid, append the 4-byte size field for the previous
+ ** entry, and the new rowid for this entry. */
+ if( iRowid!=p->iRowid ){
+ u64 iDiff = (u64)iRowid - (u64)p->iRowid;
+ fts5HashAddPoslistSize(pHash, p, 0);
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iDiff);
+ p->iRowid = iRowid;
+ bNew = 1;
+ p->iSzPoslist = p->nData;
+ if( pHash->eDetail!=FTS5_DETAIL_NONE ){
+ p->nData += 1;
+ p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
+ p->iPos = 0;
+ }
+ }
+
+ if( iCol>=0 ){
+ if( pHash->eDetail==FTS5_DETAIL_NONE ){
+ p->bContent = 1;
+ }else{
+ /* Append a new column value, if necessary */
+ assert_nc( iCol>=p->iCol );
+ if( iCol!=p->iCol ){
+ if( pHash->eDetail==FTS5_DETAIL_FULL ){
+ pPtr[p->nData++] = 0x01;
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
+ p->iCol = (i16)iCol;
+ p->iPos = 0;
+ }else{
+ bNew = 1;
+ p->iCol = (i16)(iPos = iCol);
+ }
+ }
+
+ /* Append the new position offset, if necessary */
+ if( bNew ){
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
+ p->iPos = iPos;
+ }
+ }
+ }else{
+ /* This is a delete. Set the delete flag. */
+ p->bDel = 1;
+ }
+
+ nIncr += p->nData;
+ *pHash->pnByte += nIncr;
+ return SQLITE_OK;
+}
+
+
+/*
+** Arguments pLeft and pRight point to linked-lists of hash-entry objects,
+** each sorted in key order. This function merges the two lists into a
+** single list and returns a pointer to its first element.
+*/
+static Fts5HashEntry *fts5HashEntryMerge(
+ Fts5HashEntry *pLeft,
+ Fts5HashEntry *pRight
+){
+ Fts5HashEntry *p1 = pLeft;
+ Fts5HashEntry *p2 = pRight;
+ Fts5HashEntry *pRet = 0;
+ Fts5HashEntry **ppOut = &pRet;
+
+ while( p1 || p2 ){
+ if( p1==0 ){
+ *ppOut = p2;
+ p2 = 0;
+ }else if( p2==0 ){
+ *ppOut = p1;
+ p1 = 0;
+ }else{
+ int i = 0;
+ char *zKey1 = fts5EntryKey(p1);
+ char *zKey2 = fts5EntryKey(p2);
+ while( zKey1[i]==zKey2[i] ) i++;
+
+ if( ((u8)zKey1[i])>((u8)zKey2[i]) ){
+ /* p2 is smaller */
+ *ppOut = p2;
+ ppOut = &p2->pScanNext;
+ p2 = p2->pScanNext;
+ }else{
+ /* p1 is smaller */
+ *ppOut = p1;
+ ppOut = &p1->pScanNext;
+ p1 = p1->pScanNext;
+ }
+ *ppOut = 0;
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Extract all tokens from hash table iHash and link them into a list
+** in sorted order. The hash table is cleared before returning. It is
+** the responsibility of the caller to free the elements of the returned
+** list.
+*/
+static int fts5HashEntrySort(
+ Fts5Hash *pHash,
+ const char *pTerm, int nTerm, /* Query prefix, if any */
+ Fts5HashEntry **ppSorted
+){
+ const int nMergeSlot = 32;
+ Fts5HashEntry **ap;
+ Fts5HashEntry *pList;
+ int iSlot;
+ int i;
+
+ *ppSorted = 0;
+ ap = sqlite3_malloc64(sizeof(Fts5HashEntry*) * nMergeSlot);
+ if( !ap ) return SQLITE_NOMEM;
+ memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);
+
+ for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
+ Fts5HashEntry *pIter;
+ for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
+ if( pTerm==0
+ || (pIter->nKey+1>=nTerm && 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm))
+ ){
+ Fts5HashEntry *pEntry = pIter;
+ pEntry->pScanNext = 0;
+ for(i=0; ap[i]; i++){
+ pEntry = fts5HashEntryMerge(pEntry, ap[i]);
+ ap[i] = 0;
+ }
+ ap[i] = pEntry;
+ }
+ }
+ }
+
+ pList = 0;
+ for(i=0; i<nMergeSlot; i++){
+ pList = fts5HashEntryMerge(pList, ap[i]);
+ }
+
+ sqlite3_free(ap);
+ *ppSorted = pList;
+ return SQLITE_OK;
+}
+
+/*
+** Query the hash table for a doclist associated with term pTerm/nTerm.
+*/
+static int sqlite3Fts5HashQuery(
+ Fts5Hash *pHash, /* Hash table to query */
+ int nPre,
+ const char *pTerm, int nTerm, /* Query term */
+ void **ppOut, /* OUT: Pointer to new object */
+ int *pnDoclist /* OUT: Size of doclist in bytes */
+){
+ unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm);
+ char *zKey = 0;
+ Fts5HashEntry *p;
+
+ for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
+ zKey = fts5EntryKey(p);
+ assert( p->nKey+1==(int)strlen(zKey) );
+ if( nTerm==p->nKey+1 && memcmp(zKey, pTerm, nTerm)==0 ) break;
+ }
+
+ if( p ){
+ int nHashPre = sizeof(Fts5HashEntry) + nTerm + 1;
+ int nList = p->nData - nHashPre;
+ u8 *pRet = (u8*)(*ppOut = sqlite3_malloc64(nPre + nList + 10));
+ if( pRet ){
+ Fts5HashEntry *pFaux = (Fts5HashEntry*)&pRet[nPre-nHashPre];
+ memcpy(&pRet[nPre], &((u8*)p)[nHashPre], nList);
+ nList += fts5HashAddPoslistSize(pHash, p, pFaux);
+ *pnDoclist = nList;
+ }else{
+ *pnDoclist = 0;
+ return SQLITE_NOMEM;
+ }
+ }else{
+ *ppOut = 0;
+ *pnDoclist = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5HashScanInit(
+ Fts5Hash *p, /* Hash table to query */
+ const char *pTerm, int nTerm /* Query prefix */
+){
+ return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan);
+}
+
+#ifdef SQLITE_DEBUG
+static int fts5HashCount(Fts5Hash *pHash){
+ int nEntry = 0;
+ int ii;
+ for(ii=0; ii<pHash->nSlot; ii++){
+ Fts5HashEntry *p = 0;
+ for(p=pHash->aSlot[ii]; p; p=p->pHashNext){
+ nEntry++;
+ }
+ }
+ return nEntry;
+}
+#endif
+
+/*
+** Return true if the hash table is empty, false otherwise.
+*/
+static int sqlite3Fts5HashIsEmpty(Fts5Hash *pHash){
+ assert( pHash->nEntry==fts5HashCount(pHash) );
+ return pHash->nEntry==0;
+}
+
+static void sqlite3Fts5HashScanNext(Fts5Hash *p){
+ assert( !sqlite3Fts5HashScanEof(p) );
+ p->pScan = p->pScan->pScanNext;
+}
+
+static int sqlite3Fts5HashScanEof(Fts5Hash *p){
+ return (p->pScan==0);
+}
+
+static void sqlite3Fts5HashScanEntry(
+ Fts5Hash *pHash,
+ const char **pzTerm, /* OUT: term (nul-terminated) */
+ const u8 **ppDoclist, /* OUT: pointer to doclist */
+ int *pnDoclist /* OUT: size of doclist in bytes */
+){
+ Fts5HashEntry *p;
+ if( (p = pHash->pScan) ){
+ char *zKey = fts5EntryKey(p);
+ int nTerm = (int)strlen(zKey);
+ fts5HashAddPoslistSize(pHash, p, 0);
+ *pzTerm = zKey;
+ *ppDoclist = (const u8*)&zKey[nTerm+1];
+ *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1);
+ }else{
+ *pzTerm = 0;
+ *ppDoclist = 0;
+ *pnDoclist = 0;
+ }
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Low level access to the FTS index stored in the database file. The
+** routines in this file file implement all read and write access to the
+** %_data table. Other parts of the system access this functionality via
+** the interface defined in fts5Int.h.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** Overview:
+**
+** The %_data table contains all the FTS indexes for an FTS5 virtual table.
+** As well as the main term index, there may be up to 31 prefix indexes.
+** The format is similar to FTS3/4, except that:
+**
+** * all segment b-tree leaf data is stored in fixed size page records
+** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
+** taken to ensure it is possible to iterate in either direction through
+** the entries in a doclist, or to seek to a specific entry within a
+** doclist, without loading it into memory.
+**
+** * large doclists that span many pages have associated "doclist index"
+** records that contain a copy of the first rowid on each page spanned by
+** the doclist. This is used to speed up seek operations, and merges of
+** large doclists with very small doclists.
+**
+** * extra fields in the "structure record" record the state of ongoing
+** incremental merge operations.
+**
+*/
+
+
+#define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
+#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
+
+#define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
+
+#define FTS5_MAIN_PREFIX '0'
+
+#if FTS5_MAX_PREFIX_INDEXES > 31
+# error "FTS5_MAX_PREFIX_INDEXES is too large"
+#endif
+
+#define FTS5_MAX_LEVEL 64
+
+/*
+** There are two versions of the format used for the structure record:
+**
+** 1. the legacy format, that may be read by all fts5 versions, and
+**
+** 2. the V2 format, which is used by contentless_delete=1 databases.
+**
+** Both begin with a 4-byte "configuration cookie" value. Then, a legacy
+** format structure record contains a varint - the number of levels in
+** the structure. Whereas a V2 structure record contains the constant
+** 4 bytes [0xff 0x00 0x00 0x01]. This is unambiguous as the value of a
+** varint has to be at least 16256 to begin with "0xFF". And the default
+** maximum number of levels is 64.
+**
+** See below for more on structure record formats.
+*/
+#define FTS5_STRUCTURE_V2 "\xFF\x00\x00\x01"
+
+/*
+** Details:
+**
+** The %_data table managed by this module,
+**
+** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
+**
+** , contains the following 6 types of records. See the comments surrounding
+** the FTS5_*_ROWID macros below for a description of how %_data rowids are
+** assigned to each fo them.
+**
+** 1. Structure Records:
+**
+** The set of segments that make up an index - the index structure - are
+** recorded in a single record within the %_data table. The record consists
+** of a single 32-bit configuration cookie value followed by a list of
+** SQLite varints.
+**
+** If the structure record is a V2 record, the configuration cookie is
+** followed by the following 4 bytes: [0xFF 0x00 0x00 0x01].
+**
+** Next, the record continues with three varints:
+**
+** + number of levels,
+** + total number of segments on all levels,
+** + value of write counter.
+**
+** Then, for each level from 0 to nMax:
+**
+** + number of input segments in ongoing merge.
+** + total number of segments in level.
+** + for each segment from oldest to newest:
+** + segment id (always > 0)
+** + first leaf page number (often 1, always greater than 0)
+** + final leaf page number
+**
+** Then, for V2 structures only:
+**
+** + lower origin counter value,
+** + upper origin counter value,
+** + the number of tombstone hash pages.
+**
+** 2. The Averages Record:
+**
+** A single record within the %_data table. The data is a list of varints.
+** The first value is the number of rows in the index. Then, for each column
+** from left to right, the total number of tokens in the column for all
+** rows of the table.
+**
+** 3. Segment leaves:
+**
+** TERM/DOCLIST FORMAT:
+**
+** Most of each segment leaf is taken up by term/doclist data. The
+** general format of term/doclist, starting with the first term
+** on the leaf page, is:
+**
+** varint : size of first term
+** blob: first term data
+** doclist: first doclist
+** zero-or-more {
+** varint: number of bytes in common with previous term
+** varint: number of bytes of new term data (nNew)
+** blob: nNew bytes of new term data
+** doclist: next doclist
+** }
+**
+** doclist format:
+**
+** varint: first rowid
+** poslist: first poslist
+** zero-or-more {
+** varint: rowid delta (always > 0)
+** poslist: next poslist
+** }
+**
+** poslist format:
+**
+** varint: size of poslist in bytes multiplied by 2, not including
+** this field. Plus 1 if this entry carries the "delete" flag.
+** collist: collist for column 0
+** zero-or-more {
+** 0x01 byte
+** varint: column number (I)
+** collist: collist for column I
+** }
+**
+** collist format:
+**
+** varint: first offset + 2
+** zero-or-more {
+** varint: offset delta + 2
+** }
+**
+** PAGE FORMAT
+**
+** Each leaf page begins with a 4-byte header containing 2 16-bit
+** unsigned integer fields in big-endian format. They are:
+**
+** * The byte offset of the first rowid on the page, if it exists
+** and occurs before the first term (otherwise 0).
+**
+** * The byte offset of the start of the page footer. If the page
+** footer is 0 bytes in size, then this field is the same as the
+** size of the leaf page in bytes.
+**
+** The page footer consists of a single varint for each term located
+** on the page. Each varint is the byte offset of the current term
+** within the page, delta-compressed against the previous value. In
+** other words, the first varint in the footer is the byte offset of
+** the first term, the second is the byte offset of the second less that
+** of the first, and so on.
+**
+** The term/doclist format described above is accurate if the entire
+** term/doclist data fits on a single leaf page. If this is not the case,
+** the format is changed in two ways:
+**
+** + if the first rowid on a page occurs before the first term, it
+** is stored as a literal value:
+**
+** varint: first rowid
+**
+** + the first term on each page is stored in the same way as the
+** very first term of the segment:
+**
+** varint : size of first term
+** blob: first term data
+**
+** 5. Segment doclist indexes:
+**
+** Doclist indexes are themselves b-trees, however they usually consist of
+** a single leaf record only. The format of each doclist index leaf page
+** is:
+**
+** * Flags byte. Bits are:
+** 0x01: Clear if leaf is also the root page, otherwise set.
+**
+** * Page number of fts index leaf page. As a varint.
+**
+** * First rowid on page indicated by previous field. As a varint.
+**
+** * A list of varints, one for each subsequent termless page. A
+** positive delta if the termless page contains at least one rowid,
+** or an 0x00 byte otherwise.
+**
+** Internal doclist index nodes are:
+**
+** * Flags byte. Bits are:
+** 0x01: Clear for root page, otherwise set.
+**
+** * Page number of first child page. As a varint.
+**
+** * Copy of first rowid on page indicated by previous field. As a varint.
+**
+** * A list of delta-encoded varints - the first rowid on each subsequent
+** child page.
+**
+** 6. Tombstone Hash Page
+**
+** These records are only ever present in contentless_delete=1 tables.
+** There are zero or more of these associated with each segment. They
+** are used to store the tombstone rowids for rows contained in the
+** associated segments.
+**
+** The set of nHashPg tombstone hash pages associated with a single
+** segment together form a single hash table containing tombstone rowids.
+** To find the page of the hash on which a key might be stored:
+**
+** iPg = (rowid % nHashPg)
+**
+** Then, within page iPg, which has nSlot slots:
+**
+** iSlot = (rowid / nHashPg) % nSlot
+**
+** Each tombstone hash page begins with an 8 byte header:
+**
+** 1-byte: Key-size (the size in bytes of each slot). Either 4 or 8.
+** 1-byte: rowid-0-tombstone flag. This flag is only valid on the
+** first tombstone hash page for each segment (iPg=0). If set,
+** the hash table contains rowid 0. If clear, it does not.
+** Rowid 0 is handled specially.
+** 2-bytes: unused.
+** 4-bytes: Big-endian integer containing number of entries on page.
+**
+** Following this are nSlot 4 or 8 byte slots (depending on the key-size
+** in the first byte of the page header). The number of slots may be
+** determined based on the size of the page record and the key-size:
+**
+** nSlot = (nByte - 8) / key-size
+*/
+
+/*
+** Rowids for the averages and structure records in the %_data table.
+*/
+#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
+#define FTS5_STRUCTURE_ROWID 10 /* The structure record */
+
+/*
+** Macros determining the rowids used by segment leaves and dlidx leaves
+** and nodes. All nodes and leaves are stored in the %_data table with large
+** positive rowids.
+**
+** Each segment has a unique non-zero 16-bit id.
+**
+** The rowid for each segment leaf is found by passing the segment id and
+** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered
+** sequentially starting from 1.
+*/
+#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
+#define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
+#define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */
+#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
+
+#define fts5_dri(segid, dlidx, height, pgno) ( \
+ ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
+ ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
+ ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
+ ((i64)(pgno)) \
+)
+
+#define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno)
+#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
+#define FTS5_TOMBSTONE_ROWID(segid,ipg) fts5_dri(segid+(1<<16), 0, 0, ipg)
+
+#ifdef SQLITE_DEBUG
+static int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
+#endif
+
+
+/*
+** Each time a blob is read from the %_data table, it is padded with this
+** many zero bytes. This makes it easier to decode the various record formats
+** without overreading if the records are corrupt.
+*/
+#define FTS5_DATA_ZERO_PADDING 8
+#define FTS5_DATA_PADDING 20
+
+typedef struct Fts5Data Fts5Data;
+typedef struct Fts5DlidxIter Fts5DlidxIter;
+typedef struct Fts5DlidxLvl Fts5DlidxLvl;
+typedef struct Fts5DlidxWriter Fts5DlidxWriter;
+typedef struct Fts5Iter Fts5Iter;
+typedef struct Fts5PageWriter Fts5PageWriter;
+typedef struct Fts5SegIter Fts5SegIter;
+typedef struct Fts5DoclistIter Fts5DoclistIter;
+typedef struct Fts5SegWriter Fts5SegWriter;
+typedef struct Fts5Structure Fts5Structure;
+typedef struct Fts5StructureLevel Fts5StructureLevel;
+typedef struct Fts5StructureSegment Fts5StructureSegment;
+
+struct Fts5Data {
+ u8 *p; /* Pointer to buffer containing record */
+ int nn; /* Size of record in bytes */
+ int szLeaf; /* Size of leaf without page-index */
+};
+
+/*
+** One object per %_data table.
+**
+** nContentlessDelete:
+** The number of contentless delete operations since the most recent
+** call to fts5IndexFlush() or fts5IndexDiscardData(). This is tracked
+** so that extra auto-merge work can be done by fts5IndexFlush() to
+** account for the delete operations.
+*/
+struct Fts5Index {
+ Fts5Config *pConfig; /* Virtual table configuration */
+ char *zDataTbl; /* Name of %_data table */
+ int nWorkUnit; /* Leaf pages in a "unit" of work */
+
+ /*
+ ** Variables related to the accumulation of tokens and doclists within the
+ ** in-memory hash tables before they are flushed to disk.
+ */
+ Fts5Hash *pHash; /* Hash table for in-memory data */
+ int nPendingData; /* Current bytes of pending data */
+ i64 iWriteRowid; /* Rowid for current doc being written */
+ int bDelete; /* Current write is a delete */
+ int nContentlessDelete; /* Number of contentless delete ops */
+ int nPendingRow; /* Number of INSERT in hash table */
+
+ /* Error state. */
+ int rc; /* Current error code */
+
+ /* State used by the fts5DataXXX() functions. */
+ sqlite3_blob *pReader; /* RO incr-blob open on %_data table */
+ sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */
+ sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */
+ sqlite3_stmt *pIdxWriter; /* "INSERT ... %_idx VALUES(?,?,?,?)" */
+ sqlite3_stmt *pIdxDeleter; /* "DELETE FROM %_idx WHERE segid=?" */
+ sqlite3_stmt *pIdxSelect;
+ int nRead; /* Total number of blocks read */
+
+ sqlite3_stmt *pDeleteFromIdx;
+
+ sqlite3_stmt *pDataVersion;
+ i64 iStructVersion; /* data_version when pStruct read */
+ Fts5Structure *pStruct; /* Current db structure (or NULL) */
+};
+
+struct Fts5DoclistIter {
+ u8 *aEof; /* Pointer to 1 byte past end of doclist */
+
+ /* Output variables. aPoslist==0 at EOF */
+ i64 iRowid;
+ u8 *aPoslist;
+ int nPoslist;
+ int nSize;
+};
+
+/*
+** The contents of the "structure" record for each index are represented
+** using an Fts5Structure record in memory. Which uses instances of the
+** other Fts5StructureXXX types as components.
+**
+** nOriginCntr:
+** This value is set to non-zero for structure records created for
+** contentlessdelete=1 tables only. In that case it represents the
+** origin value to apply to the next top-level segment created.
+*/
+struct Fts5StructureSegment {
+ int iSegid; /* Segment id */
+ int pgnoFirst; /* First leaf page number in segment */
+ int pgnoLast; /* Last leaf page number in segment */
+
+ /* contentlessdelete=1 tables only: */
+ u64 iOrigin1;
+ u64 iOrigin2;
+ int nPgTombstone; /* Number of tombstone hash table pages */
+ u64 nEntryTombstone; /* Number of tombstone entries that "count" */
+ u64 nEntry; /* Number of rows in this segment */
+};
+struct Fts5StructureLevel {
+ int nMerge; /* Number of segments in incr-merge */
+ int nSeg; /* Total number of segments on level */
+ Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */
+};
+struct Fts5Structure {
+ int nRef; /* Object reference count */
+ u64 nWriteCounter; /* Total leaves written to level 0 */
+ u64 nOriginCntr; /* Origin value for next top-level segment */
+ int nSegment; /* Total segments in this structure */
+ int nLevel; /* Number of levels in this index */
+ Fts5StructureLevel aLevel[1]; /* Array of nLevel level objects */
+};
+
+/*
+** An object of type Fts5SegWriter is used to write to segments.
+*/
+struct Fts5PageWriter {
+ int pgno; /* Page number for this page */
+ int iPrevPgidx; /* Previous value written into pgidx */
+ Fts5Buffer buf; /* Buffer containing leaf data */
+ Fts5Buffer pgidx; /* Buffer containing page-index */
+ Fts5Buffer term; /* Buffer containing previous term on page */
+};
+struct Fts5DlidxWriter {
+ int pgno; /* Page number for this page */
+ int bPrevValid; /* True if iPrev is valid */
+ i64 iPrev; /* Previous rowid value written to page */
+ Fts5Buffer buf; /* Buffer containing page data */
+};
+struct Fts5SegWriter {
+ int iSegid; /* Segid to write to */
+ Fts5PageWriter writer; /* PageWriter object */
+ i64 iPrevRowid; /* Previous rowid written to current leaf */
+ u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */
+ u8 bFirstRowidInPage; /* True if next rowid is first in page */
+ /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
+ u8 bFirstTermInPage; /* True if next term will be first in leaf */
+ int nLeafWritten; /* Number of leaf pages written */
+ int nEmpty; /* Number of contiguous term-less nodes */
+
+ int nDlidx; /* Allocated size of aDlidx[] array */
+ Fts5DlidxWriter *aDlidx; /* Array of Fts5DlidxWriter objects */
+
+ /* Values to insert into the %_idx table */
+ Fts5Buffer btterm; /* Next term to insert into %_idx table */
+ int iBtPage; /* Page number corresponding to btterm */
+};
+
+typedef struct Fts5CResult Fts5CResult;
+struct Fts5CResult {
+ u16 iFirst; /* aSeg[] index of firstest iterator */
+ u8 bTermEq; /* True if the terms are equal */
+};
+
+/*
+** Object for iterating through a single segment, visiting each term/rowid
+** pair in the segment.
+**
+** pSeg:
+** The segment to iterate through.
+**
+** iLeafPgno:
+** Current leaf page number within segment.
+**
+** iLeafOffset:
+** Byte offset within the current leaf that is the first byte of the
+** position list data (one byte passed the position-list size field).
+**
+** pLeaf:
+** Buffer containing current leaf page data. Set to NULL at EOF.
+**
+** iTermLeafPgno, iTermLeafOffset:
+** Leaf page number containing the last term read from the segment. And
+** the offset immediately following the term data.
+**
+** flags:
+** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
+**
+** FTS5_SEGITER_ONETERM:
+** If set, set the iterator to point to EOF after the current doclist
+** has been exhausted. Do not proceed to the next term in the segment.
+**
+** FTS5_SEGITER_REVERSE:
+** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
+** it is set, iterate through rowid in descending order instead of the
+** default ascending order.
+**
+** iRowidOffset/nRowidOffset/aRowidOffset:
+** These are used if the FTS5_SEGITER_REVERSE flag is set.
+**
+** For each rowid on the page corresponding to the current term, the
+** corresponding aRowidOffset[] entry is set to the byte offset of the
+** start of the "position-list-size" field within the page.
+**
+** iTermIdx:
+** Index of current term on iTermLeafPgno.
+**
+** apTombstone/nTombstone:
+** These are used for contentless_delete=1 tables only. When the cursor
+** is first allocated, the apTombstone[] array is allocated so that it
+** is large enough for all tombstones hash pages associated with the
+** segment. The pages themselves are loaded lazily from the database as
+** they are required.
+*/
+struct Fts5SegIter {
+ Fts5StructureSegment *pSeg; /* Segment to iterate through */
+ int flags; /* Mask of configuration flags */
+ int iLeafPgno; /* Current leaf page number */
+ Fts5Data *pLeaf; /* Current leaf data */
+ Fts5Data *pNextLeaf; /* Leaf page (iLeafPgno+1) */
+ i64 iLeafOffset; /* Byte offset within current leaf */
+ Fts5Data **apTombstone; /* Array of tombstone pages */
+ int nTombstone;
+
+ /* Next method */
+ void (*xNext)(Fts5Index*, Fts5SegIter*, int*);
+
+ /* The page and offset from which the current term was read. The offset
+ ** is the offset of the first rowid in the current doclist. */
+ int iTermLeafPgno;
+ int iTermLeafOffset;
+
+ int iPgidxOff; /* Next offset in pgidx */
+ int iEndofDoclist;
+
+ /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
+ int iRowidOffset; /* Current entry in aRowidOffset[] */
+ int nRowidOffset; /* Allocated size of aRowidOffset[] array */
+ int *aRowidOffset; /* Array of offset to rowid fields */
+
+ Fts5DlidxIter *pDlidx; /* If there is a doclist-index */
+
+ /* Variables populated based on current entry. */
+ Fts5Buffer term; /* Current term */
+ i64 iRowid; /* Current rowid */
+ int nPos; /* Number of bytes in current position list */
+ u8 bDel; /* True if the delete flag is set */
+};
+
+/*
+** Argument is a pointer to an Fts5Data structure that contains a
+** leaf page.
+*/
+#define ASSERT_SZLEAF_OK(x) assert( \
+ (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
+)
+
+#define FTS5_SEGITER_ONETERM 0x01
+#define FTS5_SEGITER_REVERSE 0x02
+
+/*
+** Argument is a pointer to an Fts5Data structure that contains a leaf
+** page. This macro evaluates to true if the leaf contains no terms, or
+** false if it contains at least one term.
+*/
+#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
+
+#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))
+
+#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))
+
+/*
+** Object for iterating through the merged results of one or more segments,
+** visiting each term/rowid pair in the merged data.
+**
+** nSeg is always a power of two greater than or equal to the number of
+** segments that this object is merging data from. Both the aSeg[] and
+** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
+** with zeroed objects - these are handled as if they were iterators opened
+** on empty segments.
+**
+** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
+** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
+** comparison in this context is the index of the iterator that currently
+** points to the smaller term/rowid combination. Iterators at EOF are
+** considered to be greater than all other iterators.
+**
+** aFirst[1] contains the index in aSeg[] of the iterator that points to
+** the smallest key overall. aFirst[0] is unused.
+**
+** poslist:
+** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
+** There is no way to tell if this is populated or not.
+*/
+struct Fts5Iter {
+ Fts5IndexIter base; /* Base class containing output vars */
+
+ Fts5Index *pIndex; /* Index that owns this iterator */
+ Fts5Buffer poslist; /* Buffer containing current poslist */
+ Fts5Colset *pColset; /* Restrict matches to these columns */
+
+ /* Invoked to set output variables. */
+ void (*xSetOutputs)(Fts5Iter*, Fts5SegIter*);
+
+ int nSeg; /* Size of aSeg[] array */
+ int bRev; /* True to iterate in reverse order */
+ u8 bSkipEmpty; /* True to skip deleted entries */
+
+ i64 iSwitchRowid; /* Firstest rowid of other than aFirst[1] */
+ Fts5CResult *aFirst; /* Current merge state (see above) */
+ Fts5SegIter aSeg[1]; /* Array of segment iterators */
+};
+
+
+/*
+** An instance of the following type is used to iterate through the contents
+** of a doclist-index record.
+**
+** pData:
+** Record containing the doclist-index data.
+**
+** bEof:
+** Set to true once iterator has reached EOF.
+**
+** iOff:
+** Set to the current offset within record pData.
+*/
+struct Fts5DlidxLvl {
+ Fts5Data *pData; /* Data for current page of this level */
+ int iOff; /* Current offset into pData */
+ int bEof; /* At EOF already */
+ int iFirstOff; /* Used by reverse iterators */
+
+ /* Output variables */
+ int iLeafPgno; /* Page number of current leaf page */
+ i64 iRowid; /* First rowid on leaf iLeafPgno */
+};
+struct Fts5DlidxIter {
+ int nLvl;
+ int iSegid;
+ Fts5DlidxLvl aLvl[1];
+};
+
+static void fts5PutU16(u8 *aOut, u16 iVal){
+ aOut[0] = (iVal>>8);
+ aOut[1] = (iVal&0xFF);
+}
+
+static u16 fts5GetU16(const u8 *aIn){
+ return ((u16)aIn[0] << 8) + aIn[1];
+}
+
+/*
+** The only argument points to a buffer at least 8 bytes in size. This
+** function interprets the first 8 bytes of the buffer as a 64-bit big-endian
+** unsigned integer and returns the result.
+*/
+static u64 fts5GetU64(u8 *a){
+ return ((u64)a[0] << 56)
+ + ((u64)a[1] << 48)
+ + ((u64)a[2] << 40)
+ + ((u64)a[3] << 32)
+ + ((u64)a[4] << 24)
+ + ((u64)a[5] << 16)
+ + ((u64)a[6] << 8)
+ + ((u64)a[7] << 0);
+}
+
+/*
+** The only argument points to a buffer at least 4 bytes in size. This
+** function interprets the first 4 bytes of the buffer as a 32-bit big-endian
+** unsigned integer and returns the result.
+*/
+static u32 fts5GetU32(const u8 *a){
+ return ((u32)a[0] << 24)
+ + ((u32)a[1] << 16)
+ + ((u32)a[2] << 8)
+ + ((u32)a[3] << 0);
+}
+
+/*
+** Write iVal, formated as a 64-bit big-endian unsigned integer, to the
+** buffer indicated by the first argument.
+*/
+static void fts5PutU64(u8 *a, u64 iVal){
+ a[0] = ((iVal >> 56) & 0xFF);
+ a[1] = ((iVal >> 48) & 0xFF);
+ a[2] = ((iVal >> 40) & 0xFF);
+ a[3] = ((iVal >> 32) & 0xFF);
+ a[4] = ((iVal >> 24) & 0xFF);
+ a[5] = ((iVal >> 16) & 0xFF);
+ a[6] = ((iVal >> 8) & 0xFF);
+ a[7] = ((iVal >> 0) & 0xFF);
+}
+
+/*
+** Write iVal, formated as a 32-bit big-endian unsigned integer, to the
+** buffer indicated by the first argument.
+*/
+static void fts5PutU32(u8 *a, u32 iVal){
+ a[0] = ((iVal >> 24) & 0xFF);
+ a[1] = ((iVal >> 16) & 0xFF);
+ a[2] = ((iVal >> 8) & 0xFF);
+ a[3] = ((iVal >> 0) & 0xFF);
+}
+
+/*
+** Allocate and return a buffer at least nByte bytes in size.
+**
+** If an OOM error is encountered, return NULL and set the error code in
+** the Fts5Index handle passed as the first argument.
+*/
+static void *fts5IdxMalloc(Fts5Index *p, sqlite3_int64 nByte){
+ return sqlite3Fts5MallocZero(&p->rc, nByte);
+}
+
+/*
+** Compare the contents of the pLeft buffer with the pRight/nRight blob.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+#ifdef SQLITE_DEBUG
+static int fts5BufferCompareBlob(
+ Fts5Buffer *pLeft, /* Left hand side of comparison */
+ const u8 *pRight, int nRight /* Right hand side of comparison */
+){
+ int nCmp = MIN(pLeft->n, nRight);
+ int res = memcmp(pLeft->p, pRight, nCmp);
+ return (res==0 ? (pLeft->n - nRight) : res);
+}
+#endif
+
+/*
+** Compare the contents of the two buffers using memcmp(). If one buffer
+** is a prefix of the other, it is considered the lesser.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
+ int nCmp, res;
+ nCmp = MIN(pLeft->n, pRight->n);
+ assert( nCmp<=0 || pLeft->p!=0 );
+ assert( nCmp<=0 || pRight->p!=0 );
+ res = fts5Memcmp(pLeft->p, pRight->p, nCmp);
+ return (res==0 ? (pLeft->n - pRight->n) : res);
+}
+
+static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
+ int ret;
+ fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
+ return ret;
+}
+
+/*
+** Close the read-only blob handle, if it is open.
+*/
+static void sqlite3Fts5IndexCloseReader(Fts5Index *p){
+ if( p->pReader ){
+ sqlite3_blob *pReader = p->pReader;
+ p->pReader = 0;
+ sqlite3_blob_close(pReader);
+ }
+}
+
+/*
+** Retrieve a record from the %_data table.
+**
+** If an error occurs, NULL is returned and an error left in the
+** Fts5Index object.
+*/
+static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){
+ Fts5Data *pRet = 0;
+ if( p->rc==SQLITE_OK ){
+ int rc = SQLITE_OK;
+
+ if( p->pReader ){
+ /* This call may return SQLITE_ABORT if there has been a savepoint
+ ** rollback since it was last used. In this case a new blob handle
+ ** is required. */
+ sqlite3_blob *pBlob = p->pReader;
+ p->pReader = 0;
+ rc = sqlite3_blob_reopen(pBlob, iRowid);
+ assert( p->pReader==0 );
+ p->pReader = pBlob;
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts5IndexCloseReader(p);
+ }
+ if( rc==SQLITE_ABORT ) rc = SQLITE_OK;
+ }
+
+ /* If the blob handle is not open at this point, open it and seek
+ ** to the requested entry. */
+ if( p->pReader==0 && rc==SQLITE_OK ){
+ Fts5Config *pConfig = p->pConfig;
+ rc = sqlite3_blob_open(pConfig->db,
+ pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader
+ );
+ }
+
+ /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
+ ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
+ ** All the reasons those functions might return SQLITE_ERROR - missing
+ ** table, missing row, non-blob/text in block column - indicate
+ ** backing store corruption. */
+ if( rc==SQLITE_ERROR ) rc = FTS5_CORRUPT;
+
+ if( rc==SQLITE_OK ){
+ u8 *aOut = 0; /* Read blob data into this buffer */
+ int nByte = sqlite3_blob_bytes(p->pReader);
+ sqlite3_int64 nAlloc = sizeof(Fts5Data) + nByte + FTS5_DATA_PADDING;
+ pRet = (Fts5Data*)sqlite3_malloc64(nAlloc);
+ if( pRet ){
+ pRet->nn = nByte;
+ aOut = pRet->p = (u8*)&pRet[1];
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pRet);
+ pRet = 0;
+ }else{
+ /* TODO1: Fix this */
+ pRet->p[nByte] = 0x00;
+ pRet->p[nByte+1] = 0x00;
+ pRet->szLeaf = fts5GetU16(&pRet->p[2]);
+ }
+ }
+ p->rc = rc;
+ p->nRead++;
+ }
+
+ assert( (pRet==0)==(p->rc!=SQLITE_OK) );
+ return pRet;
+}
+
+
+/*
+** Release a reference to data record returned by an earlier call to
+** fts5DataRead().
+*/
+static void fts5DataRelease(Fts5Data *pData){
+ sqlite3_free(pData);
+}
+
+static Fts5Data *fts5LeafRead(Fts5Index *p, i64 iRowid){
+ Fts5Data *pRet = fts5DataRead(p, iRowid);
+ if( pRet ){
+ if( pRet->nn<4 || pRet->szLeaf>pRet->nn ){
+ p->rc = FTS5_CORRUPT;
+ fts5DataRelease(pRet);
+ pRet = 0;
+ }
+ }
+ return pRet;
+}
+
+static int fts5IndexPrepareStmt(
+ Fts5Index *p,
+ sqlite3_stmt **ppStmt,
+ char *zSql
+){
+ if( p->rc==SQLITE_OK ){
+ if( zSql ){
+ p->rc = sqlite3_prepare_v3(p->pConfig->db, zSql, -1,
+ SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB,
+ ppStmt, 0);
+ }else{
+ p->rc = SQLITE_NOMEM;
+ }
+ }
+ sqlite3_free(zSql);
+ return p->rc;
+}
+
+
+/*
+** INSERT OR REPLACE a record into the %_data table.
+*/
+static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pWriter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pWriter, sqlite3_mprintf(
+ "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)",
+ pConfig->zDb, pConfig->zName
+ ));
+ if( p->rc ) return;
+ }
+
+ sqlite3_bind_int64(p->pWriter, 1, iRowid);
+ sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC);
+ sqlite3_step(p->pWriter);
+ p->rc = sqlite3_reset(p->pWriter);
+ sqlite3_bind_null(p->pWriter, 2);
+}
+
+/*
+** Execute the following SQL:
+**
+** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
+*/
+static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pDeleter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql = sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?",
+ pConfig->zDb, pConfig->zName
+ );
+ if( fts5IndexPrepareStmt(p, &p->pDeleter, zSql) ) return;
+ }
+
+ sqlite3_bind_int64(p->pDeleter, 1, iFirst);
+ sqlite3_bind_int64(p->pDeleter, 2, iLast);
+ sqlite3_step(p->pDeleter);
+ p->rc = sqlite3_reset(p->pDeleter);
+}
+
+/*
+** Remove all records associated with segment iSegid.
+*/
+static void fts5DataRemoveSegment(Fts5Index *p, Fts5StructureSegment *pSeg){
+ int iSegid = pSeg->iSegid;
+ i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0);
+ i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1;
+ fts5DataDelete(p, iFirst, iLast);
+
+ if( pSeg->nPgTombstone ){
+ i64 iTomb1 = FTS5_TOMBSTONE_ROWID(iSegid, 0);
+ i64 iTomb2 = FTS5_TOMBSTONE_ROWID(iSegid, pSeg->nPgTombstone-1);
+ fts5DataDelete(p, iTomb1, iTomb2);
+ }
+ if( p->pIdxDeleter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_bind_int(p->pIdxDeleter, 1, iSegid);
+ sqlite3_step(p->pIdxDeleter);
+ p->rc = sqlite3_reset(p->pIdxDeleter);
+ }
+}
+
+/*
+** Release a reference to an Fts5Structure object returned by an earlier
+** call to fts5StructureRead() or fts5StructureDecode().
+*/
+static void fts5StructureRelease(Fts5Structure *pStruct){
+ if( pStruct && 0>=(--pStruct->nRef) ){
+ int i;
+ assert( pStruct->nRef==0 );
+ for(i=0; i<pStruct->nLevel; i++){
+ sqlite3_free(pStruct->aLevel[i].aSeg);
+ }
+ sqlite3_free(pStruct);
+ }
+}
+
+static void fts5StructureRef(Fts5Structure *pStruct){
+ pStruct->nRef++;
+}
+
+static void *sqlite3Fts5StructureRef(Fts5Index *p){
+ fts5StructureRef(p->pStruct);
+ return (void*)p->pStruct;
+}
+static void sqlite3Fts5StructureRelease(void *p){
+ if( p ){
+ fts5StructureRelease((Fts5Structure*)p);
+ }
+}
+static int sqlite3Fts5StructureTest(Fts5Index *p, void *pStruct){
+ if( p->pStruct!=(Fts5Structure*)pStruct ){
+ return SQLITE_ABORT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Ensure that structure object (*pp) is writable.
+**
+** This function is a no-op if (*pRc) is not SQLITE_OK when it is called. If
+** an error occurs, (*pRc) is set to an SQLite error code before returning.
+*/
+static void fts5StructureMakeWritable(int *pRc, Fts5Structure **pp){
+ Fts5Structure *p = *pp;
+ if( *pRc==SQLITE_OK && p->nRef>1 ){
+ i64 nByte = sizeof(Fts5Structure)+(p->nLevel-1)*sizeof(Fts5StructureLevel);
+ Fts5Structure *pNew;
+ pNew = (Fts5Structure*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pNew ){
+ int i;
+ memcpy(pNew, p, nByte);
+ for(i=0; i<p->nLevel; i++) pNew->aLevel[i].aSeg = 0;
+ for(i=0; i<p->nLevel; i++){
+ Fts5StructureLevel *pLvl = &pNew->aLevel[i];
+ nByte = sizeof(Fts5StructureSegment) * pNew->aLevel[i].nSeg;
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(pRc, nByte);
+ if( pLvl->aSeg==0 ){
+ for(i=0; i<p->nLevel; i++){
+ sqlite3_free(pNew->aLevel[i].aSeg);
+ }
+ sqlite3_free(pNew);
+ return;
+ }
+ memcpy(pLvl->aSeg, p->aLevel[i].aSeg, nByte);
+ }
+ p->nRef--;
+ pNew->nRef = 1;
+ }
+ *pp = pNew;
+ }
+}
+
+/*
+** Deserialize and return the structure record currently stored in serialized
+** form within buffer pData/nData.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated by one slot. This allows the structure contents
+** to be more easily edited.
+**
+** If an error occurs, *ppOut is set to NULL and an SQLite error code
+** returned. Otherwise, *ppOut is set to point to the new object and
+** SQLITE_OK returned.
+*/
+static int fts5StructureDecode(
+ const u8 *pData, /* Buffer containing serialized structure */
+ int nData, /* Size of buffer pData in bytes */
+ int *piCookie, /* Configuration cookie value */
+ Fts5Structure **ppOut /* OUT: Deserialized object */
+){
+ int rc = SQLITE_OK;
+ int i = 0;
+ int iLvl;
+ int nLevel = 0;
+ int nSegment = 0;
+ sqlite3_int64 nByte; /* Bytes of space to allocate at pRet */
+ Fts5Structure *pRet = 0; /* Structure object to return */
+ int bStructureV2 = 0; /* True for FTS5_STRUCTURE_V2 */
+ u64 nOriginCntr = 0; /* Largest origin value seen so far */
+
+ /* Grab the cookie value */
+ if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
+ i = 4;
+
+ /* Check if this is a V2 structure record. Set bStructureV2 if it is. */
+ if( 0==memcmp(&pData[i], FTS5_STRUCTURE_V2, 4) ){
+ i += 4;
+ bStructureV2 = 1;
+ }
+
+ /* Read the total number of levels and segments from the start of the
+ ** structure record. */
+ i += fts5GetVarint32(&pData[i], nLevel);
+ i += fts5GetVarint32(&pData[i], nSegment);
+ if( nLevel>FTS5_MAX_SEGMENT || nLevel<0
+ || nSegment>FTS5_MAX_SEGMENT || nSegment<0
+ ){
+ return FTS5_CORRUPT;
+ }
+ nByte = (
+ sizeof(Fts5Structure) + /* Main structure */
+ sizeof(Fts5StructureLevel) * (nLevel-1) /* aLevel[] array */
+ );
+ pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);
+
+ if( pRet ){
+ pRet->nRef = 1;
+ pRet->nLevel = nLevel;
+ pRet->nSegment = nSegment;
+ i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);
+
+ for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
+ int nTotal = 0;
+ int iSeg;
+
+ if( i>=nData ){
+ rc = FTS5_CORRUPT;
+ }else{
+ i += fts5GetVarint32(&pData[i], pLvl->nMerge);
+ i += fts5GetVarint32(&pData[i], nTotal);
+ if( nTotal<pLvl->nMerge ) rc = FTS5_CORRUPT;
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc,
+ nTotal * sizeof(Fts5StructureSegment)
+ );
+ nSegment -= nTotal;
+ }
+
+ if( rc==SQLITE_OK ){
+ pLvl->nSeg = nTotal;
+ for(iSeg=0; iSeg<nTotal; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ if( i>=nData ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ assert( pSeg!=0 );
+ i += fts5GetVarint32(&pData[i], pSeg->iSegid);
+ i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst);
+ i += fts5GetVarint32(&pData[i], pSeg->pgnoLast);
+ if( bStructureV2 ){
+ i += fts5GetVarint(&pData[i], &pSeg->iOrigin1);
+ i += fts5GetVarint(&pData[i], &pSeg->iOrigin2);
+ i += fts5GetVarint32(&pData[i], pSeg->nPgTombstone);
+ i += fts5GetVarint(&pData[i], &pSeg->nEntryTombstone);
+ i += fts5GetVarint(&pData[i], &pSeg->nEntry);
+ nOriginCntr = MAX(nOriginCntr, pSeg->iOrigin2);
+ }
+ if( pSeg->pgnoLast<pSeg->pgnoFirst ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ }
+ if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT;
+ if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT;
+ }
+ }
+ if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT;
+ if( bStructureV2 ){
+ pRet->nOriginCntr = nOriginCntr+1;
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5StructureRelease(pRet);
+ pRet = 0;
+ }
+ }
+
+ *ppOut = pRet;
+ return rc;
+}
+
+/*
+** Add a level to the Fts5Structure.aLevel[] array of structure object
+** (*ppStruct).
+*/
+static void fts5StructureAddLevel(int *pRc, Fts5Structure **ppStruct){
+ fts5StructureMakeWritable(pRc, ppStruct);
+ assert( (ppStruct!=0 && (*ppStruct)!=0) || (*pRc)!=SQLITE_OK );
+ if( *pRc==SQLITE_OK ){
+ Fts5Structure *pStruct = *ppStruct;
+ int nLevel = pStruct->nLevel;
+ sqlite3_int64 nByte = (
+ sizeof(Fts5Structure) + /* Main structure */
+ sizeof(Fts5StructureLevel) * (nLevel+1) /* aLevel[] array */
+ );
+
+ pStruct = sqlite3_realloc64(pStruct, nByte);
+ if( pStruct ){
+ memset(&pStruct->aLevel[nLevel], 0, sizeof(Fts5StructureLevel));
+ pStruct->nLevel++;
+ *ppStruct = pStruct;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+/*
+** Extend level iLvl so that there is room for at least nExtra more
+** segments.
+*/
+static void fts5StructureExtendLevel(
+ int *pRc,
+ Fts5Structure *pStruct,
+ int iLvl,
+ int nExtra,
+ int bInsert
+){
+ if( *pRc==SQLITE_OK ){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureSegment *aNew;
+ sqlite3_int64 nByte;
+
+ nByte = (pLvl->nSeg + nExtra) * sizeof(Fts5StructureSegment);
+ aNew = sqlite3_realloc64(pLvl->aSeg, nByte);
+ if( aNew ){
+ if( bInsert==0 ){
+ memset(&aNew[pLvl->nSeg], 0, sizeof(Fts5StructureSegment) * nExtra);
+ }else{
+ int nMove = pLvl->nSeg * sizeof(Fts5StructureSegment);
+ memmove(&aNew[nExtra], aNew, nMove);
+ memset(aNew, 0, sizeof(Fts5StructureSegment) * nExtra);
+ }
+ pLvl->aSeg = aNew;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+static Fts5Structure *fts5StructureReadUncached(Fts5Index *p){
+ Fts5Structure *pRet = 0;
+ Fts5Config *pConfig = p->pConfig;
+ int iCookie; /* Configuration cookie */
+ Fts5Data *pData;
+
+ pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID);
+ if( p->rc==SQLITE_OK ){
+ /* TODO: Do we need this if the leaf-index is appended? Probably... */
+ memset(&pData->p[pData->nn], 0, FTS5_DATA_PADDING);
+ p->rc = fts5StructureDecode(pData->p, pData->nn, &iCookie, &pRet);
+ if( p->rc==SQLITE_OK && (pConfig->pgsz==0 || pConfig->iCookie!=iCookie) ){
+ p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
+ }
+ fts5DataRelease(pData);
+ if( p->rc!=SQLITE_OK ){
+ fts5StructureRelease(pRet);
+ pRet = 0;
+ }
+ }
+
+ return pRet;
+}
+
+static i64 fts5IndexDataVersion(Fts5Index *p){
+ i64 iVersion = 0;
+
+ if( p->rc==SQLITE_OK ){
+ if( p->pDataVersion==0 ){
+ p->rc = fts5IndexPrepareStmt(p, &p->pDataVersion,
+ sqlite3_mprintf("PRAGMA %Q.data_version", p->pConfig->zDb)
+ );
+ if( p->rc ) return 0;
+ }
+
+ if( SQLITE_ROW==sqlite3_step(p->pDataVersion) ){
+ iVersion = sqlite3_column_int64(p->pDataVersion, 0);
+ }
+ p->rc = sqlite3_reset(p->pDataVersion);
+ }
+
+ return iVersion;
+}
+
+/*
+** Read, deserialize and return the structure record.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated as described for function fts5StructureDecode()
+** above.
+**
+** If an error occurs, NULL is returned and an error code left in the
+** Fts5Index handle. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static Fts5Structure *fts5StructureRead(Fts5Index *p){
+
+ if( p->pStruct==0 ){
+ p->iStructVersion = fts5IndexDataVersion(p);
+ if( p->rc==SQLITE_OK ){
+ p->pStruct = fts5StructureReadUncached(p);
+ }
+ }
+
+#if 0
+ else{
+ Fts5Structure *pTest = fts5StructureReadUncached(p);
+ if( pTest ){
+ int i, j;
+ assert_nc( p->pStruct->nSegment==pTest->nSegment );
+ assert_nc( p->pStruct->nLevel==pTest->nLevel );
+ for(i=0; i<pTest->nLevel; i++){
+ assert_nc( p->pStruct->aLevel[i].nMerge==pTest->aLevel[i].nMerge );
+ assert_nc( p->pStruct->aLevel[i].nSeg==pTest->aLevel[i].nSeg );
+ for(j=0; j<pTest->aLevel[i].nSeg; j++){
+ Fts5StructureSegment *p1 = &pTest->aLevel[i].aSeg[j];
+ Fts5StructureSegment *p2 = &p->pStruct->aLevel[i].aSeg[j];
+ assert_nc( p1->iSegid==p2->iSegid );
+ assert_nc( p1->pgnoFirst==p2->pgnoFirst );
+ assert_nc( p1->pgnoLast==p2->pgnoLast );
+ }
+ }
+ fts5StructureRelease(pTest);
+ }
+ }
+#endif
+
+ if( p->rc!=SQLITE_OK ) return 0;
+ assert( p->iStructVersion!=0 );
+ assert( p->pStruct!=0 );
+ fts5StructureRef(p->pStruct);
+ return p->pStruct;
+}
+
+static void fts5StructureInvalidate(Fts5Index *p){
+ if( p->pStruct ){
+ fts5StructureRelease(p->pStruct);
+ p->pStruct = 0;
+ }
+}
+
+/*
+** Return the total number of segments in index structure pStruct. This
+** function is only ever used as part of assert() conditions.
+*/
+#ifdef SQLITE_DEBUG
+static int fts5StructureCountSegments(Fts5Structure *pStruct){
+ int nSegment = 0; /* Total number of segments */
+ if( pStruct ){
+ int iLvl; /* Used to iterate through levels */
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ nSegment += pStruct->aLevel[iLvl].nSeg;
+ }
+ }
+
+ return nSegment;
+}
+#endif
+
+#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
+ assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \
+ memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \
+ (pBuf)->n += nBlob; \
+}
+
+#define fts5BufferSafeAppendVarint(pBuf, iVal) { \
+ (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \
+ assert( (pBuf)->nSpace>=(pBuf)->n ); \
+}
+
+
+/*
+** Serialize and store the "structure" record.
+**
+** If an error occurs, leave an error code in the Fts5Index object. If an
+** error has already occurred, this function is a no-op.
+*/
+static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
+ if( p->rc==SQLITE_OK ){
+ Fts5Buffer buf; /* Buffer to serialize record into */
+ int iLvl; /* Used to iterate through levels */
+ int iCookie; /* Cookie value to store */
+ int nHdr = (pStruct->nOriginCntr>0 ? (4+4+9+9+9) : (4+9+9));
+
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ memset(&buf, 0, sizeof(Fts5Buffer));
+
+ /* Append the current configuration cookie */
+ iCookie = p->pConfig->iCookie;
+ if( iCookie<0 ) iCookie = 0;
+
+ if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, nHdr) ){
+ sqlite3Fts5Put32(buf.p, iCookie);
+ buf.n = 4;
+ if( pStruct->nOriginCntr>0 ){
+ fts5BufferSafeAppendBlob(&buf, FTS5_STRUCTURE_V2, 4);
+ }
+ fts5BufferSafeAppendVarint(&buf, pStruct->nLevel);
+ fts5BufferSafeAppendVarint(&buf, pStruct->nSegment);
+ fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter);
+ }
+
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->iSegid);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->pgnoFirst);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->pgnoLast);
+ if( pStruct->nOriginCntr>0 ){
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->iOrigin1);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->iOrigin2);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->nPgTombstone);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->nEntryTombstone);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->nEntry);
+ }
+ }
+ }
+
+ fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
+ fts5BufferFree(&buf);
+ }
+}
+
+#if 0
+static void fts5DebugStructure(int*,Fts5Buffer*,Fts5Structure*);
+static void fts5PrintStructure(const char *zCaption, Fts5Structure *pStruct){
+ int rc = SQLITE_OK;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(buf));
+ fts5DebugStructure(&rc, &buf, pStruct);
+ fprintf(stdout, "%s: %s\n", zCaption, buf.p);
+ fflush(stdout);
+ fts5BufferFree(&buf);
+}
+#else
+# define fts5PrintStructure(x,y)
+#endif
+
+static int fts5SegmentSize(Fts5StructureSegment *pSeg){
+ return 1 + pSeg->pgnoLast - pSeg->pgnoFirst;
+}
+
+/*
+** Return a copy of index structure pStruct. Except, promote as many
+** segments as possible to level iPromote. If an OOM occurs, NULL is
+** returned.
+*/
+static void fts5StructurePromoteTo(
+ Fts5Index *p,
+ int iPromote,
+ int szPromote,
+ Fts5Structure *pStruct
+){
+ int il, is;
+ Fts5StructureLevel *pOut = &pStruct->aLevel[iPromote];
+
+ if( pOut->nMerge==0 ){
+ for(il=iPromote+1; il<pStruct->nLevel; il++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[il];
+ if( pLvl->nMerge ) return;
+ for(is=pLvl->nSeg-1; is>=0; is--){
+ int sz = fts5SegmentSize(&pLvl->aSeg[is]);
+ if( sz>szPromote ) return;
+ fts5StructureExtendLevel(&p->rc, pStruct, iPromote, 1, 1);
+ if( p->rc ) return;
+ memcpy(pOut->aSeg, &pLvl->aSeg[is], sizeof(Fts5StructureSegment));
+ pOut->nSeg++;
+ pLvl->nSeg--;
+ }
+ }
+ }
+}
+
+/*
+** A new segment has just been written to level iLvl of index structure
+** pStruct. This function determines if any segments should be promoted
+** as a result. Segments are promoted in two scenarios:
+**
+** a) If the segment just written is smaller than one or more segments
+** within the previous populated level, it is promoted to the previous
+** populated level.
+**
+** b) If the segment just written is larger than the newest segment on
+** the next populated level, then that segment, and any other adjacent
+** segments that are also smaller than the one just written, are
+** promoted.
+**
+** If one or more segments are promoted, the structure object is updated
+** to reflect this.
+*/
+static void fts5StructurePromote(
+ Fts5Index *p, /* FTS5 backend object */
+ int iLvl, /* Index level just updated */
+ Fts5Structure *pStruct /* Index structure */
+){
+ if( p->rc==SQLITE_OK ){
+ int iTst;
+ int iPromote = -1;
+ int szPromote = 0; /* Promote anything this size or smaller */
+ Fts5StructureSegment *pSeg; /* Segment just written */
+ int szSeg; /* Size of segment just written */
+ int nSeg = pStruct->aLevel[iLvl].nSeg;
+
+ if( nSeg==0 ) return;
+ pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
+ szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);
+
+ /* Check for condition (a) */
+ for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
+ if( iTst>=0 ){
+ int i;
+ int szMax = 0;
+ Fts5StructureLevel *pTst = &pStruct->aLevel[iTst];
+ assert( pTst->nMerge==0 );
+ for(i=0; i<pTst->nSeg; i++){
+ int sz = pTst->aSeg[i].pgnoLast - pTst->aSeg[i].pgnoFirst + 1;
+ if( sz>szMax ) szMax = sz;
+ }
+ if( szMax>=szSeg ){
+ /* Condition (a) is true. Promote the newest segment on level
+ ** iLvl to level iTst. */
+ iPromote = iTst;
+ szPromote = szMax;
+ }
+ }
+
+ /* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
+ ** is a no-op if it is not. */
+ if( iPromote<0 ){
+ iPromote = iLvl;
+ szPromote = szSeg;
+ }
+ fts5StructurePromoteTo(p, iPromote, szPromote, pStruct);
+ }
+}
+
+
+/*
+** Advance the iterator passed as the only argument. If the end of the
+** doclist-index page is reached, return non-zero.
+*/
+static int fts5DlidxLvlNext(Fts5DlidxLvl *pLvl){
+ Fts5Data *pData = pLvl->pData;
+
+ if( pLvl->iOff==0 ){
+ assert( pLvl->bEof==0 );
+ pLvl->iOff = 1;
+ pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno);
+ pLvl->iOff += fts5GetVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid);
+ pLvl->iFirstOff = pLvl->iOff;
+ }else{
+ int iOff;
+ for(iOff=pLvl->iOff; iOff<pData->nn; iOff++){
+ if( pData->p[iOff] ) break;
+ }
+
+ if( iOff<pData->nn ){
+ i64 iVal;
+ pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1;
+ iOff += fts5GetVarint(&pData->p[iOff], (u64*)&iVal);
+ pLvl->iRowid += iVal;
+ pLvl->iOff = iOff;
+ }else{
+ pLvl->bEof = 1;
+ }
+ }
+
+ return pLvl->bEof;
+}
+
+/*
+** Advance the iterator passed as the only argument.
+*/
+static int fts5DlidxIterNextR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
+
+ assert( iLvl<pIter->nLvl );
+ if( fts5DlidxLvlNext(pLvl) ){
+ if( (iLvl+1) < pIter->nLvl ){
+ fts5DlidxIterNextR(p, pIter, iLvl+1);
+ if( pLvl[1].bEof==0 ){
+ fts5DataRelease(pLvl->pData);
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
+ );
+ if( pLvl->pData ) fts5DlidxLvlNext(pLvl);
+ }
+ }
+ }
+
+ return pIter->aLvl[0].bEof;
+}
+static int fts5DlidxIterNext(Fts5Index *p, Fts5DlidxIter *pIter){
+ return fts5DlidxIterNextR(p, pIter, 0);
+}
+
+/*
+** The iterator passed as the first argument has the following fields set
+** as follows. This function sets up the rest of the iterator so that it
+** points to the first rowid in the doclist-index.
+**
+** pData:
+** pointer to doclist-index record,
+**
+** When this function is called pIter->iLeafPgno is the page number the
+** doclist is associated with (the one featuring the term).
+*/
+static int fts5DlidxIterFirst(Fts5DlidxIter *pIter){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ fts5DlidxLvlNext(&pIter->aLvl[i]);
+ }
+ return pIter->aLvl[0].bEof;
+}
+
+
+static int fts5DlidxIterEof(Fts5Index *p, Fts5DlidxIter *pIter){
+ return p->rc!=SQLITE_OK || pIter->aLvl[0].bEof;
+}
+
+static void fts5DlidxIterLast(Fts5Index *p, Fts5DlidxIter *pIter){
+ int i;
+
+ /* Advance each level to the last entry on the last page */
+ for(i=pIter->nLvl-1; p->rc==SQLITE_OK && i>=0; i--){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[i];
+ while( fts5DlidxLvlNext(pLvl)==0 );
+ pLvl->bEof = 0;
+
+ if( i>0 ){
+ Fts5DlidxLvl *pChild = &pLvl[-1];
+ fts5DataRelease(pChild->pData);
+ memset(pChild, 0, sizeof(Fts5DlidxLvl));
+ pChild->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, i-1, pLvl->iLeafPgno)
+ );
+ }
+ }
+}
+
+/*
+** Move the iterator passed as the only argument to the previous entry.
+*/
+static int fts5DlidxLvlPrev(Fts5DlidxLvl *pLvl){
+ int iOff = pLvl->iOff;
+
+ assert( pLvl->bEof==0 );
+ if( iOff<=pLvl->iFirstOff ){
+ pLvl->bEof = 1;
+ }else{
+ u8 *a = pLvl->pData->p;
+
+ pLvl->iOff = 0;
+ fts5DlidxLvlNext(pLvl);
+ while( 1 ){
+ int nZero = 0;
+ int ii = pLvl->iOff;
+ u64 delta = 0;
+
+ while( a[ii]==0 ){
+ nZero++;
+ ii++;
+ }
+ ii += sqlite3Fts5GetVarint(&a[ii], &delta);
+
+ if( ii>=iOff ) break;
+ pLvl->iLeafPgno += nZero+1;
+ pLvl->iRowid += delta;
+ pLvl->iOff = ii;
+ }
+ }
+
+ return pLvl->bEof;
+}
+
+static int fts5DlidxIterPrevR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
+
+ assert( iLvl<pIter->nLvl );
+ if( fts5DlidxLvlPrev(pLvl) ){
+ if( (iLvl+1) < pIter->nLvl ){
+ fts5DlidxIterPrevR(p, pIter, iLvl+1);
+ if( pLvl[1].bEof==0 ){
+ fts5DataRelease(pLvl->pData);
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
+ );
+ if( pLvl->pData ){
+ while( fts5DlidxLvlNext(pLvl)==0 );
+ pLvl->bEof = 0;
+ }
+ }
+ }
+ }
+
+ return pIter->aLvl[0].bEof;
+}
+static int fts5DlidxIterPrev(Fts5Index *p, Fts5DlidxIter *pIter){
+ return fts5DlidxIterPrevR(p, pIter, 0);
+}
+
+/*
+** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
+*/
+static void fts5DlidxIterFree(Fts5DlidxIter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ fts5DataRelease(pIter->aLvl[i].pData);
+ }
+ sqlite3_free(pIter);
+ }
+}
+
+static Fts5DlidxIter *fts5DlidxIterInit(
+ Fts5Index *p, /* Fts5 Backend to iterate within */
+ int bRev, /* True for ORDER BY ASC */
+ int iSegid, /* Segment id */
+ int iLeafPg /* Leaf page number to load dlidx for */
+){
+ Fts5DlidxIter *pIter = 0;
+ int i;
+ int bDone = 0;
+
+ for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
+ sqlite3_int64 nByte = sizeof(Fts5DlidxIter) + i * sizeof(Fts5DlidxLvl);
+ Fts5DlidxIter *pNew;
+
+ pNew = (Fts5DlidxIter*)sqlite3_realloc64(pIter, nByte);
+ if( pNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ i64 iRowid = FTS5_DLIDX_ROWID(iSegid, i, iLeafPg);
+ Fts5DlidxLvl *pLvl = &pNew->aLvl[i];
+ pIter = pNew;
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p, iRowid);
+ if( pLvl->pData && (pLvl->pData->p[0] & 0x0001)==0 ){
+ bDone = 1;
+ }
+ pIter->nLvl = i+1;
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pIter->iSegid = iSegid;
+ if( bRev==0 ){
+ fts5DlidxIterFirst(pIter);
+ }else{
+ fts5DlidxIterLast(p, pIter);
+ }
+ }
+
+ if( p->rc!=SQLITE_OK ){
+ fts5DlidxIterFree(pIter);
+ pIter = 0;
+ }
+
+ return pIter;
+}
+
+static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){
+ return pIter->aLvl[0].iRowid;
+}
+static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){
+ return pIter->aLvl[0].iLeafPgno;
+}
+
+/*
+** Load the next leaf page into the segment iterator.
+*/
+static void fts5SegIterNextPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter /* Iterator to advance to next page */
+){
+ Fts5Data *pLeaf;
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+ fts5DataRelease(pIter->pLeaf);
+ pIter->iLeafPgno++;
+ if( pIter->pNextLeaf ){
+ pIter->pLeaf = pIter->pNextLeaf;
+ pIter->pNextLeaf = 0;
+ }else if( pIter->iLeafPgno<=pSeg->pgnoLast ){
+ pIter->pLeaf = fts5LeafRead(p,
+ FTS5_SEGMENT_ROWID(pSeg->iSegid, pIter->iLeafPgno)
+ );
+ }else{
+ pIter->pLeaf = 0;
+ }
+ pLeaf = pIter->pLeaf;
+
+ if( pLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf;
+ if( fts5LeafIsTermless(pLeaf) ){
+ pIter->iEndofDoclist = pLeaf->nn+1;
+ }else{
+ pIter->iPgidxOff += fts5GetVarint32(&pLeaf->p[pIter->iPgidxOff],
+ pIter->iEndofDoclist
+ );
+ }
+ }
+}
+
+/*
+** Argument p points to a buffer containing a varint to be interpreted as a
+** position list size field. Read the varint and return the number of bytes
+** read. Before returning, set *pnSz to the number of bytes in the position
+** list, and *pbDel to true if the delete flag is set, or false otherwise.
+*/
+static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
+ int nSz;
+ int n = 0;
+ fts5FastGetVarint32(p, n, nSz);
+ assert_nc( nSz>=0 );
+ *pnSz = nSz/2;
+ *pbDel = nSz & 0x0001;
+ return n;
+}
+
+/*
+** Fts5SegIter.iLeafOffset currently points to the first byte of a
+** position-list size field. Read the value of the field and store it
+** in the following variables:
+**
+** Fts5SegIter.nPos
+** Fts5SegIter.bDel
+**
+** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
+** position list content (if any).
+*/
+static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
+ if( p->rc==SQLITE_OK ){
+ int iOff = pIter->iLeafOffset; /* Offset to read at */
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ int iEod = MIN(pIter->iEndofDoclist, pIter->pLeaf->szLeaf);
+ pIter->bDel = 0;
+ pIter->nPos = 1;
+ if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
+ pIter->bDel = 1;
+ iOff++;
+ if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
+ pIter->nPos = 1;
+ iOff++;
+ }else{
+ pIter->nPos = 0;
+ }
+ }
+ }else{
+ int nSz;
+ fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
+ pIter->bDel = (nSz & 0x0001);
+ pIter->nPos = nSz>>1;
+ assert_nc( pIter->nPos>=0 );
+ }
+ pIter->iLeafOffset = iOff;
+ }
+}
+
+static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ i64 iOff = pIter->iLeafOffset;
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ while( iOff>=pIter->pLeaf->szLeaf ){
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ){
+ if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
+ return;
+ }
+ iOff = 4;
+ a = pIter->pLeaf->p;
+ }
+ iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+}
+
+/*
+** Fts5SegIter.iLeafOffset currently points to the first byte of the
+** "nSuffix" field of a term. Function parameter nKeep contains the value
+** of the "nPrefix" field (if there was one - it is passed 0 if this is
+** the first term in the segment).
+**
+** This function populates:
+**
+** Fts5SegIter.term
+** Fts5SegIter.rowid
+**
+** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
+** the first position list. The position list belonging to document
+** (Fts5SegIter.iRowid).
+*/
+static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ i64 iOff = pIter->iLeafOffset; /* Offset to read at */
+ int nNew; /* Bytes of new data */
+
+ iOff += fts5GetVarint32(&a[iOff], nNew);
+ if( iOff+nNew>pIter->pLeaf->szLeaf || nKeep>pIter->term.n || nNew==0 ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ pIter->term.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+ assert( pIter->term.n<=pIter->term.nSpace );
+ iOff += nNew;
+ pIter->iTermLeafOffset = iOff;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+ pIter->iLeafOffset = iOff;
+
+ if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ }else{
+ int nExtra;
+ pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
+ pIter->iEndofDoclist += nExtra;
+ }
+
+ fts5SegIterLoadRowid(p, pIter);
+}
+
+static void fts5SegIterNext(Fts5Index*, Fts5SegIter*, int*);
+static void fts5SegIterNext_Reverse(Fts5Index*, Fts5SegIter*, int*);
+static void fts5SegIterNext_None(Fts5Index*, Fts5SegIter*, int*);
+
+static void fts5SegIterSetNext(Fts5Index *p, Fts5SegIter *pIter){
+ if( pIter->flags & FTS5_SEGITER_REVERSE ){
+ pIter->xNext = fts5SegIterNext_Reverse;
+ }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pIter->xNext = fts5SegIterNext_None;
+ }else{
+ pIter->xNext = fts5SegIterNext;
+ }
+}
+
+/*
+** Allocate a tombstone hash page array (pIter->apTombstone) for the
+** iterator passed as the second argument. If an OOM error occurs, leave
+** an error in the Fts5Index object.
+*/
+static void fts5SegIterAllocTombstone(Fts5Index *p, Fts5SegIter *pIter){
+ const int nTomb = pIter->pSeg->nPgTombstone;
+ if( nTomb>0 ){
+ Fts5Data **apTomb = 0;
+ apTomb = (Fts5Data**)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data)*nTomb);
+ if( apTomb ){
+ pIter->apTombstone = apTomb;
+ pIter->nTombstone = nTomb;
+ }
+ }
+}
+
+/*
+** Initialize the iterator object pIter to iterate through the entries in
+** segment pSeg. The iterator is left pointing to the first entry when
+** this function returns.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterInit(
+ Fts5Index *p, /* FTS index object */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ if( pSeg->pgnoFirst==0 ){
+ /* This happens if the segment is being used as an input to an incremental
+ ** merge and all data has already been "trimmed". See function
+ ** fts5TrimSegments() for details. In this case leave the iterator empty.
+ ** The caller will see the (pIter->pLeaf==0) and assume the iterator is
+ ** at EOF already. */
+ assert( pIter->pLeaf==0 );
+ return;
+ }
+
+ if( p->rc==SQLITE_OK ){
+ memset(pIter, 0, sizeof(*pIter));
+ fts5SegIterSetNext(p, pIter);
+ pIter->pSeg = pSeg;
+ pIter->iLeafPgno = pSeg->pgnoFirst-1;
+ do {
+ fts5SegIterNextPage(p, pIter);
+ }while( p->rc==SQLITE_OK && pIter->pLeaf && pIter->pLeaf->nn==4 );
+ }
+
+ if( p->rc==SQLITE_OK && pIter->pLeaf ){
+ pIter->iLeafOffset = 4;
+ assert( pIter->pLeaf!=0 );
+ assert_nc( pIter->pLeaf->nn>4 );
+ assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 );
+ pIter->iPgidxOff = pIter->pLeaf->szLeaf+1;
+ fts5SegIterLoadTerm(p, pIter, 0);
+ fts5SegIterLoadNPos(p, pIter);
+ fts5SegIterAllocTombstone(p, pIter);
+ }
+}
+
+/*
+** This function is only ever called on iterators created by calls to
+** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
+**
+** The iterator is in an unusual state when this function is called: the
+** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
+** the position-list size field for the first relevant rowid on the page.
+** Fts5SegIter.rowid is set, but nPos and bDel are not.
+**
+** This function advances the iterator so that it points to the last
+** relevant rowid on the page and, if necessary, initializes the
+** aRowidOffset[] and iRowidOffset variables. At this point the iterator
+** is in its regular state - Fts5SegIter.iLeafOffset points to the first
+** byte of the position list content associated with said rowid.
+*/
+static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
+ int eDetail = p->pConfig->eDetail;
+ int n = pIter->pLeaf->szLeaf;
+ int i = pIter->iLeafOffset;
+ u8 *a = pIter->pLeaf->p;
+ int iRowidOffset = 0;
+
+ if( n>pIter->iEndofDoclist ){
+ n = pIter->iEndofDoclist;
+ }
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ while( 1 ){
+ u64 iDelta = 0;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ /* todo */
+ if( i<n && a[i]==0 ){
+ i++;
+ if( i<n && a[i]==0 ) i++;
+ }
+ }else{
+ int nPos;
+ int bDummy;
+ i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
+ i += nPos;
+ }
+ if( i>=n ) break;
+ i += fts5GetVarint(&a[i], &iDelta);
+ pIter->iRowid += iDelta;
+
+ /* If necessary, grow the pIter->aRowidOffset[] array. */
+ if( iRowidOffset>=pIter->nRowidOffset ){
+ int nNew = pIter->nRowidOffset + 8;
+ int *aNew = (int*)sqlite3_realloc64(pIter->aRowidOffset,nNew*sizeof(int));
+ if( aNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ break;
+ }
+ pIter->aRowidOffset = aNew;
+ pIter->nRowidOffset = nNew;
+ }
+
+ pIter->aRowidOffset[iRowidOffset++] = pIter->iLeafOffset;
+ pIter->iLeafOffset = i;
+ }
+ pIter->iRowidOffset = iRowidOffset;
+ fts5SegIterLoadNPos(p, pIter);
+}
+
+/*
+**
+*/
+static void fts5SegIterReverseNewPage(Fts5Index *p, Fts5SegIter *pIter){
+ assert( pIter->flags & FTS5_SEGITER_REVERSE );
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
+ Fts5Data *pNew;
+ pIter->iLeafPgno--;
+ pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
+ pIter->pSeg->iSegid, pIter->iLeafPgno
+ ));
+ if( pNew ){
+ /* iTermLeafOffset may be equal to szLeaf if the term is the last
+ ** thing on the page - i.e. the first rowid is on the following page.
+ ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
+ if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
+ assert( pIter->pLeaf==0 );
+ if( pIter->iTermLeafOffset<pNew->szLeaf ){
+ pIter->pLeaf = pNew;
+ pIter->iLeafOffset = pIter->iTermLeafOffset;
+ }
+ }else{
+ int iRowidOff;
+ iRowidOff = fts5LeafFirstRowidOff(pNew);
+ if( iRowidOff ){
+ if( iRowidOff>=pNew->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ pIter->pLeaf = pNew;
+ pIter->iLeafOffset = iRowidOff;
+ }
+ }
+ }
+
+ if( pIter->pLeaf ){
+ u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
+ pIter->iLeafOffset += fts5GetVarint(a, (u64*)&pIter->iRowid);
+ break;
+ }else{
+ fts5DataRelease(pNew);
+ }
+ }
+ }
+
+ if( pIter->pLeaf ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ fts5SegIterReverseInitPage(p, pIter);
+ }
+}
+
+/*
+** Return true if the iterator passed as the second argument currently
+** points to a delete marker. A delete marker is an entry with a 0 byte
+** position-list.
+*/
+static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5Iter *pIter){
+ Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** This version of fts5SegIterNext() is only used by reverse iterators.
+*/
+static void fts5SegIterNext_Reverse(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbUnused /* Unused */
+){
+ assert( pIter->flags & FTS5_SEGITER_REVERSE );
+ assert( pIter->pNextLeaf==0 );
+ UNUSED_PARAM(pbUnused);
+
+ if( pIter->iRowidOffset>0 ){
+ u8 *a = pIter->pLeaf->p;
+ int iOff;
+ u64 iDelta;
+
+ pIter->iRowidOffset--;
+ pIter->iLeafOffset = pIter->aRowidOffset[pIter->iRowidOffset];
+ fts5SegIterLoadNPos(p, pIter);
+ iOff = pIter->iLeafOffset;
+ if( p->pConfig->eDetail!=FTS5_DETAIL_NONE ){
+ iOff += pIter->nPos;
+ }
+ fts5GetVarint(&a[iOff], &iDelta);
+ pIter->iRowid -= iDelta;
+ }else{
+ fts5SegIterReverseNewPage(p, pIter);
+ }
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** This version of fts5SegIterNext() is only used if detail=none and the
+** iterator is not a reverse direction iterator.
+*/
+static void fts5SegIterNext_None(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbNewTerm /* OUT: Set for new term */
+){
+ int iOff;
+
+ assert( p->rc==SQLITE_OK );
+ assert( (pIter->flags & FTS5_SEGITER_REVERSE)==0 );
+ assert( p->pConfig->eDetail==FTS5_DETAIL_NONE );
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ iOff = pIter->iLeafOffset;
+
+ /* Next entry is on the next page */
+ while( pIter->pSeg && iOff>=pIter->pLeaf->szLeaf ){
+ fts5SegIterNextPage(p, pIter);
+ if( p->rc || pIter->pLeaf==0 ) return;
+ pIter->iRowid = 0;
+ iOff = 4;
+ }
+
+ if( iOff<pIter->iEndofDoclist ){
+ /* Next entry is on the current page */
+ i64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&pIter->pLeaf->p[iOff], (u64*)&iDelta);
+ pIter->iLeafOffset = iOff;
+ pIter->iRowid += iDelta;
+ }else if( (pIter->flags & FTS5_SEGITER_ONETERM)==0 ){
+ if( pIter->pSeg ){
+ int nKeep = 0;
+ if( iOff!=fts5LeafFirstTermOff(pIter->pLeaf) ){
+ iOff += fts5GetVarint32(&pIter->pLeaf->p[iOff], nKeep);
+ }
+ pIter->iLeafOffset = iOff;
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ }else{
+ const u8 *pList = 0;
+ const char *zTerm = 0;
+ int nList;
+ sqlite3Fts5HashScanNext(p->pHash);
+ sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
+ if( pList==0 ) goto next_none_eof;
+ pIter->pLeaf->p = (u8*)pList;
+ pIter->pLeaf->nn = nList;
+ pIter->pLeaf->szLeaf = nList;
+ pIter->iEndofDoclist = nList;
+ sqlite3Fts5BufferSet(&p->rc,&pIter->term, (int)strlen(zTerm), (u8*)zTerm);
+ pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
+ }
+
+ if( pbNewTerm ) *pbNewTerm = 1;
+ }else{
+ goto next_none_eof;
+ }
+
+ fts5SegIterLoadNPos(p, pIter);
+
+ return;
+ next_none_eof:
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+}
+
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
+** is not considered an error if the iterator reaches EOF. If an error has
+** already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterNext(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbNewTerm /* OUT: Set for new term */
+){
+ Fts5Data *pLeaf = pIter->pLeaf;
+ int iOff;
+ int bNewTerm = 0;
+ int nKeep = 0;
+ u8 *a;
+ int n;
+
+ assert( pbNewTerm==0 || *pbNewTerm==0 );
+ assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );
+
+ /* Search for the end of the position list within the current page. */
+ a = pLeaf->p;
+ n = pLeaf->szLeaf;
+
+ ASSERT_SZLEAF_OK(pLeaf);
+ iOff = pIter->iLeafOffset + pIter->nPos;
+
+ if( iOff<n ){
+ /* The next entry is on the current page. */
+ assert_nc( iOff<=pIter->iEndofDoclist );
+ if( iOff>=pIter->iEndofDoclist ){
+ bNewTerm = 1;
+ if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
+ iOff += fts5GetVarint32(&a[iOff], nKeep);
+ }
+ }else{
+ u64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
+ pIter->iRowid += iDelta;
+ assert_nc( iDelta>0 );
+ }
+ pIter->iLeafOffset = iOff;
+
+ }else if( pIter->pSeg==0 ){
+ const u8 *pList = 0;
+ const char *zTerm = 0;
+ int nList = 0;
+ assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
+ if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
+ sqlite3Fts5HashScanNext(p->pHash);
+ sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
+ }
+ if( pList==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }else{
+ pIter->pLeaf->p = (u8*)pList;
+ pIter->pLeaf->nn = nList;
+ pIter->pLeaf->szLeaf = nList;
+ pIter->iEndofDoclist = nList+1;
+ sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
+ (u8*)zTerm);
+ pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
+ *pbNewTerm = 1;
+ }
+ }else{
+ iOff = 0;
+ /* Next entry is not on the current page */
+ while( iOff==0 ){
+ fts5SegIterNextPage(p, pIter);
+ pLeaf = pIter->pLeaf;
+ if( pLeaf==0 ) break;
+ ASSERT_SZLEAF_OK(pLeaf);
+ if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
+ iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+
+ if( pLeaf->nn>pLeaf->szLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
+ &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
+ );
+ }
+ }
+ else if( pLeaf->nn>pLeaf->szLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
+ &pLeaf->p[pLeaf->szLeaf], iOff
+ );
+ pIter->iLeafOffset = iOff;
+ pIter->iEndofDoclist = iOff;
+ bNewTerm = 1;
+ }
+ assert_nc( iOff<pLeaf->szLeaf );
+ if( iOff>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ }
+ }
+
+ /* Check if the iterator is now at EOF. If so, return early. */
+ if( pIter->pLeaf ){
+ if( bNewTerm ){
+ if( pIter->flags & FTS5_SEGITER_ONETERM ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }else{
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ fts5SegIterLoadNPos(p, pIter);
+ if( pbNewTerm ) *pbNewTerm = 1;
+ }
+ }else{
+ /* The following could be done by calling fts5SegIterLoadNPos(). But
+ ** this block is particularly performance critical, so equivalent
+ ** code is inlined. */
+ int nSz;
+ assert_nc( pIter->iLeafOffset<=pIter->pLeaf->nn );
+ fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
+ pIter->bDel = (nSz & 0x0001);
+ pIter->nPos = nSz>>1;
+ assert_nc( pIter->nPos>=0 );
+ }
+ }
+}
+
+#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
+
+#define fts5IndexSkipVarint(a, iOff) { \
+ int iEnd = iOff+9; \
+ while( (a[iOff++] & 0x80) && iOff<iEnd ); \
+}
+
+/*
+** Iterator pIter currently points to the first rowid in a doclist. This
+** function sets the iterator up so that iterates in reverse order through
+** the doclist.
+*/
+static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){
+ Fts5DlidxIter *pDlidx = pIter->pDlidx;
+ Fts5Data *pLast = 0;
+ int pgnoLast = 0;
+
+ if( pDlidx && p->pConfig->iVersion==FTS5_CURRENT_VERSION ){
+ int iSegid = pIter->pSeg->iSegid;
+ pgnoLast = fts5DlidxIterPgno(pDlidx);
+ pLast = fts5LeafRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
+ }else{
+ Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
+
+ /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
+ ** position-list content for the current rowid. Back it up so that it
+ ** points to the start of the position-list size field. */
+ int iPoslist;
+ if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
+ iPoslist = pIter->iTermLeafOffset;
+ }else{
+ iPoslist = 4;
+ }
+ fts5IndexSkipVarint(pLeaf->p, iPoslist);
+ pIter->iLeafOffset = iPoslist;
+
+ /* If this condition is true then the largest rowid for the current
+ ** term may not be stored on the current page. So search forward to
+ ** see where said rowid really is. */
+ if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
+ int pgno;
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+
+ /* The last rowid in the doclist may not be on the current page. Search
+ ** forward to find the page containing the last rowid. */
+ for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
+ i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, pgno);
+ Fts5Data *pNew = fts5LeafRead(p, iAbs);
+ if( pNew ){
+ int iRowid, bTermless;
+ iRowid = fts5LeafFirstRowidOff(pNew);
+ bTermless = fts5LeafIsTermless(pNew);
+ if( iRowid ){
+ SWAPVAL(Fts5Data*, pNew, pLast);
+ pgnoLast = pgno;
+ }
+ fts5DataRelease(pNew);
+ if( bTermless==0 ) break;
+ }
+ }
+ }
+ }
+
+ /* If pLast is NULL at this point, then the last rowid for this doclist
+ ** lies on the page currently indicated by the iterator. In this case
+ ** pIter->iLeafOffset is already set to point to the position-list size
+ ** field associated with the first relevant rowid on the page.
+ **
+ ** Or, if pLast is non-NULL, then it is the page that contains the last
+ ** rowid. In this case configure the iterator so that it points to the
+ ** first rowid on this page.
+ */
+ if( pLast ){
+ int iOff;
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = pLast;
+ pIter->iLeafPgno = pgnoLast;
+ iOff = fts5LeafFirstRowidOff(pLast);
+ if( iOff>pLast->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ iOff += fts5GetVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+
+ if( fts5LeafIsTermless(pLast) ){
+ pIter->iEndofDoclist = pLast->nn+1;
+ }else{
+ pIter->iEndofDoclist = fts5LeafFirstTermOff(pLast);
+ }
+ }
+
+ fts5SegIterReverseInitPage(p, pIter);
+}
+
+/*
+** Iterator pIter currently points to the first rowid of a doclist.
+** There is a doclist-index associated with the final term on the current
+** page. If the current term is the last term on the page, load the
+** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
+*/
+static void fts5SegIterLoadDlidx(Fts5Index *p, Fts5SegIter *pIter){
+ int iSeg = pIter->pSeg->iSegid;
+ int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
+ Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
+
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+ assert( pIter->pDlidx==0 );
+
+ /* Check if the current doclist ends on this page. If it does, return
+ ** early without loading the doclist-index (as it belongs to a different
+ ** term. */
+ if( pIter->iTermLeafPgno==pIter->iLeafPgno
+ && pIter->iEndofDoclist<pLeaf->szLeaf
+ ){
+ return;
+ }
+
+ pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
+}
+
+/*
+** The iterator object passed as the second argument currently contains
+** no valid values except for the Fts5SegIter.pLeaf member variable. This
+** function searches the leaf page for a term matching (pTerm/nTerm).
+**
+** If the specified term is found on the page, then the iterator is left
+** pointing to it. If argument bGe is zero and the term is not found,
+** the iterator is left pointing at EOF.
+**
+** If bGe is non-zero and the specified term is not found, then the
+** iterator is left pointing to the smallest term in the segment that
+** is larger than the specified term, even if this term is not on the
+** current page.
+*/
+static void fts5LeafSeek(
+ Fts5Index *p, /* Leave any error code here */
+ int bGe, /* True for a >= search */
+ Fts5SegIter *pIter, /* Iterator to seek */
+ const u8 *pTerm, int nTerm /* Term to search for */
+){
+ u32 iOff;
+ const u8 *a = pIter->pLeaf->p;
+ u32 n = (u32)pIter->pLeaf->nn;
+
+ u32 nMatch = 0;
+ u32 nKeep = 0;
+ u32 nNew = 0;
+ u32 iTermOff;
+ u32 iPgidx; /* Current offset in pgidx */
+ int bEndOfPage = 0;
+
+ assert( p->rc==SQLITE_OK );
+
+ iPgidx = (u32)pIter->pLeaf->szLeaf;
+ iPgidx += fts5GetVarint32(&a[iPgidx], iTermOff);
+ iOff = iTermOff;
+ if( iOff>n ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+
+ while( 1 ){
+
+ /* Figure out how many new bytes are in this term */
+ fts5FastGetVarint32(a, iOff, nNew);
+ if( nKeep<nMatch ){
+ goto search_failed;
+ }
+
+ assert( nKeep>=nMatch );
+ if( nKeep==nMatch ){
+ u32 nCmp;
+ u32 i;
+ nCmp = (u32)MIN(nNew, nTerm-nMatch);
+ for(i=0; i<nCmp; i++){
+ if( a[iOff+i]!=pTerm[nMatch+i] ) break;
+ }
+ nMatch += i;
+
+ if( (u32)nTerm==nMatch ){
+ if( i==nNew ){
+ goto search_success;
+ }else{
+ goto search_failed;
+ }
+ }else if( i<nNew && a[iOff+i]>pTerm[nMatch] ){
+ goto search_failed;
+ }
+ }
+
+ if( iPgidx>=n ){
+ bEndOfPage = 1;
+ break;
+ }
+
+ iPgidx += fts5GetVarint32(&a[iPgidx], nKeep);
+ iTermOff += nKeep;
+ iOff = iTermOff;
+
+ if( iOff>=n ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+
+ /* Read the nKeep field of the next term. */
+ fts5FastGetVarint32(a, iOff, nKeep);
+ }
+
+ search_failed:
+ if( bGe==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ return;
+ }else if( bEndOfPage ){
+ do {
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ) return;
+ a = pIter->pLeaf->p;
+ if( fts5LeafIsTermless(pIter->pLeaf)==0 ){
+ iPgidx = (u32)pIter->pLeaf->szLeaf;
+ iPgidx += fts5GetVarint32(&pIter->pLeaf->p[iPgidx], iOff);
+ if( iOff<4 || (i64)iOff>=pIter->pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }else{
+ nKeep = 0;
+ iTermOff = iOff;
+ n = (u32)pIter->pLeaf->nn;
+ iOff += fts5GetVarint32(&a[iOff], nNew);
+ break;
+ }
+ }
+ }while( 1 );
+ }
+
+ search_success:
+ if( (i64)iOff+nNew>n || nNew<1 ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ pIter->iLeafOffset = iOff + nNew;
+ pIter->iTermLeafOffset = pIter->iLeafOffset;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+
+ fts5BufferSet(&p->rc, &pIter->term, nKeep, pTerm);
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+
+ if( iPgidx>=n ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ }else{
+ int nExtra;
+ iPgidx += fts5GetVarint32(&a[iPgidx], nExtra);
+ pIter->iEndofDoclist = iTermOff + nExtra;
+ }
+ pIter->iPgidxOff = iPgidx;
+
+ fts5SegIterLoadRowid(p, pIter);
+ fts5SegIterLoadNPos(p, pIter);
+}
+
+static sqlite3_stmt *fts5IdxSelectStmt(Fts5Index *p){
+ if( p->pIdxSelect==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxSelect, sqlite3_mprintf(
+ "SELECT pgno FROM '%q'.'%q_idx' WHERE "
+ "segid=? AND term<=? ORDER BY term DESC LIMIT 1",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+ return p->pIdxSelect;
+}
+
+/*
+** Initialize the object pIter to point to term pTerm/nTerm within segment
+** pSeg. If there is no such term in the index, the iterator is set to EOF.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterSeekInit(
+ Fts5Index *p, /* FTS5 backend */
+ const u8 *pTerm, int nTerm, /* Term to seek to */
+ int flags, /* Mask of FTS5INDEX_XXX flags */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ int iPg = 1;
+ int bGe = (flags & FTS5INDEX_QUERY_SCAN);
+ int bDlidx = 0; /* True if there is a doclist-index */
+ sqlite3_stmt *pIdxSelect = 0;
+
+ assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
+ assert( pTerm && nTerm );
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->pSeg = pSeg;
+
+ /* This block sets stack variable iPg to the leaf page number that may
+ ** contain term (pTerm/nTerm), if it is present in the segment. */
+ pIdxSelect = fts5IdxSelectStmt(p);
+ if( p->rc ) return;
+ sqlite3_bind_int(pIdxSelect, 1, pSeg->iSegid);
+ sqlite3_bind_blob(pIdxSelect, 2, pTerm, nTerm, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pIdxSelect) ){
+ i64 val = sqlite3_column_int(pIdxSelect, 0);
+ iPg = (int)(val>>1);
+ bDlidx = (val & 0x0001);
+ }
+ p->rc = sqlite3_reset(pIdxSelect);
+ sqlite3_bind_null(pIdxSelect, 2);
+
+ if( iPg<pSeg->pgnoFirst ){
+ iPg = pSeg->pgnoFirst;
+ bDlidx = 0;
+ }
+
+ pIter->iLeafPgno = iPg - 1;
+ fts5SegIterNextPage(p, pIter);
+
+ if( pIter->pLeaf ){
+ fts5LeafSeek(p, bGe, pIter, pTerm, nTerm);
+ }
+
+ if( p->rc==SQLITE_OK && bGe==0 ){
+ pIter->flags |= FTS5_SEGITER_ONETERM;
+ if( pIter->pLeaf ){
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ }
+ if( bDlidx ){
+ fts5SegIterLoadDlidx(p, pIter);
+ }
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ fts5SegIterReverse(p, pIter);
+ }
+ }
+ }
+
+ fts5SegIterSetNext(p, pIter);
+ fts5SegIterAllocTombstone(p, pIter);
+
+ /* Either:
+ **
+ ** 1) an error has occurred, or
+ ** 2) the iterator points to EOF, or
+ ** 3) the iterator points to an entry with term (pTerm/nTerm), or
+ ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
+ ** to an entry with a term greater than or equal to (pTerm/nTerm).
+ */
+ assert_nc( p->rc!=SQLITE_OK /* 1 */
+ || pIter->pLeaf==0 /* 2 */
+ || fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)==0 /* 3 */
+ || (bGe && fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)>0) /* 4 */
+ );
+}
+
+/*
+** Initialize the object pIter to point to term pTerm/nTerm within the
+** in-memory hash table. If there is no such term in the hash-table, the
+** iterator is set to EOF.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterHashInit(
+ Fts5Index *p, /* FTS5 backend */
+ const u8 *pTerm, int nTerm, /* Term to seek to */
+ int flags, /* Mask of FTS5INDEX_XXX flags */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ int nList = 0;
+ const u8 *z = 0;
+ int n = 0;
+ Fts5Data *pLeaf = 0;
+
+ assert( p->pHash );
+ assert( p->rc==SQLITE_OK );
+
+ if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){
+ const u8 *pList = 0;
+
+ p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm);
+ sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList);
+ n = (z ? (int)strlen((const char*)z) : 0);
+ if( pList ){
+ pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
+ if( pLeaf ){
+ pLeaf->p = (u8*)pList;
+ }
+ }
+ }else{
+ p->rc = sqlite3Fts5HashQuery(p->pHash, sizeof(Fts5Data),
+ (const char*)pTerm, nTerm, (void**)&pLeaf, &nList
+ );
+ if( pLeaf ){
+ pLeaf->p = (u8*)&pLeaf[1];
+ }
+ z = pTerm;
+ n = nTerm;
+ pIter->flags |= FTS5_SEGITER_ONETERM;
+ }
+
+ if( pLeaf ){
+ sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
+ pLeaf->nn = pLeaf->szLeaf = nList;
+ pIter->pLeaf = pLeaf;
+ pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
+ pIter->iEndofDoclist = pLeaf->nn;
+
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ fts5SegIterReverseInitPage(p, pIter);
+ }else{
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ }
+
+ fts5SegIterSetNext(p, pIter);
+}
+
+/*
+** Array ap[] contains n elements. Release each of these elements using
+** fts5DataRelease(). Then free the array itself using sqlite3_free().
+*/
+static void fts5IndexFreeArray(Fts5Data **ap, int n){
+ if( ap ){
+ int ii;
+ for(ii=0; ii<n; ii++){
+ fts5DataRelease(ap[ii]);
+ }
+ sqlite3_free(ap);
+ }
+}
+
+/*
+** Zero the iterator passed as the only argument.
+*/
+static void fts5SegIterClear(Fts5SegIter *pIter){
+ fts5BufferFree(&pIter->term);
+ fts5DataRelease(pIter->pLeaf);
+ fts5DataRelease(pIter->pNextLeaf);
+ fts5IndexFreeArray(pIter->apTombstone, pIter->nTombstone);
+ fts5DlidxIterFree(pIter->pDlidx);
+ sqlite3_free(pIter->aRowidOffset);
+ memset(pIter, 0, sizeof(Fts5SegIter));
+}
+
+#ifdef SQLITE_DEBUG
+
+/*
+** This function is used as part of the big assert() procedure implemented by
+** fts5AssertMultiIterSetup(). It ensures that the result currently stored
+** in *pRes is the correct result of comparing the current positions of the
+** two iterators.
+*/
+static void fts5AssertComparisonResult(
+ Fts5Iter *pIter,
+ Fts5SegIter *p1,
+ Fts5SegIter *p2,
+ Fts5CResult *pRes
+){
+ int i1 = p1 - pIter->aSeg;
+ int i2 = p2 - pIter->aSeg;
+
+ if( p1->pLeaf || p2->pLeaf ){
+ if( p1->pLeaf==0 ){
+ assert( pRes->iFirst==i2 );
+ }else if( p2->pLeaf==0 ){
+ assert( pRes->iFirst==i1 );
+ }else{
+ int nMin = MIN(p1->term.n, p2->term.n);
+ int res = fts5Memcmp(p1->term.p, p2->term.p, nMin);
+ if( res==0 ) res = p1->term.n - p2->term.n;
+
+ if( res==0 ){
+ assert( pRes->bTermEq==1 );
+ assert( p1->iRowid!=p2->iRowid );
+ res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : 1;
+ }else{
+ assert( pRes->bTermEq==0 );
+ }
+
+ if( res<0 ){
+ assert( pRes->iFirst==i1 );
+ }else{
+ assert( pRes->iFirst==i2 );
+ }
+ }
+ }
+}
+
+/*
+** This function is a no-op unless SQLITE_DEBUG is defined when this module
+** is compiled. In that case, this function is essentially an assert()
+** statement used to verify that the contents of the pIter->aFirst[] array
+** are correct.
+*/
+static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5Iter *pIter){
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ int i;
+
+ assert( (pFirst->pLeaf==0)==pIter->base.bEof );
+
+ /* Check that pIter->iSwitchRowid is set correctly. */
+ for(i=0; i<pIter->nSeg; i++){
+ Fts5SegIter *p1 = &pIter->aSeg[i];
+ assert( p1==pFirst
+ || p1->pLeaf==0
+ || fts5BufferCompare(&pFirst->term, &p1->term)
+ || p1->iRowid==pIter->iSwitchRowid
+ || (p1->iRowid<pIter->iSwitchRowid)==pIter->bRev
+ );
+ }
+
+ for(i=0; i<pIter->nSeg; i+=2){
+ Fts5SegIter *p1 = &pIter->aSeg[i];
+ Fts5SegIter *p2 = &pIter->aSeg[i+1];
+ Fts5CResult *pRes = &pIter->aFirst[(pIter->nSeg + i) / 2];
+ fts5AssertComparisonResult(pIter, p1, p2, pRes);
+ }
+
+ for(i=1; i<(pIter->nSeg / 2); i+=2){
+ Fts5SegIter *p1 = &pIter->aSeg[ pIter->aFirst[i*2].iFirst ];
+ Fts5SegIter *p2 = &pIter->aSeg[ pIter->aFirst[i*2+1].iFirst ];
+ Fts5CResult *pRes = &pIter->aFirst[i];
+ fts5AssertComparisonResult(pIter, p1, p2, pRes);
+ }
+ }
+}
+#else
+# define fts5AssertMultiIterSetup(x,y)
+#endif
+
+/*
+** Do the comparison necessary to populate pIter->aFirst[iOut].
+**
+** If the returned value is non-zero, then it is the index of an entry
+** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
+** to a key that is a duplicate of another, higher priority,
+** segment-iterator in the pSeg->aSeg[] array.
+*/
+static int fts5MultiIterDoCompare(Fts5Iter *pIter, int iOut){
+ int i1; /* Index of left-hand Fts5SegIter */
+ int i2; /* Index of right-hand Fts5SegIter */
+ int iRes;
+ Fts5SegIter *p1; /* Left-hand Fts5SegIter */
+ Fts5SegIter *p2; /* Right-hand Fts5SegIter */
+ Fts5CResult *pRes = &pIter->aFirst[iOut];
+
+ assert( iOut<pIter->nSeg && iOut>0 );
+ assert( pIter->bRev==0 || pIter->bRev==1 );
+
+ if( iOut>=(pIter->nSeg/2) ){
+ i1 = (iOut - pIter->nSeg/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pIter->aFirst[iOut*2].iFirst;
+ i2 = pIter->aFirst[iOut*2+1].iFirst;
+ }
+ p1 = &pIter->aSeg[i1];
+ p2 = &pIter->aSeg[i2];
+
+ pRes->bTermEq = 0;
+ if( p1->pLeaf==0 ){ /* If p1 is at EOF */
+ iRes = i2;
+ }else if( p2->pLeaf==0 ){ /* If p2 is at EOF */
+ iRes = i1;
+ }else{
+ int res = fts5BufferCompare(&p1->term, &p2->term);
+ if( res==0 ){
+ assert_nc( i2>i1 );
+ assert_nc( i2!=0 );
+ pRes->bTermEq = 1;
+ if( p1->iRowid==p2->iRowid ){
+ return i2;
+ }
+ res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : +1;
+ }
+ assert( res!=0 );
+ if( res<0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pRes->iFirst = (u16)iRes;
+ return 0;
+}
+
+/*
+** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
+** It is an error if leaf iLeafPgno does not exist. Unless the db is
+** a 'secure-delete' db, if it contains no rowids then this is also an error.
+*/
+static void fts5SegIterGotoPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int iLeafPgno
+){
+ assert( iLeafPgno>pIter->iLeafPgno );
+
+ if( iLeafPgno>pIter->pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5DataRelease(pIter->pNextLeaf);
+ pIter->pNextLeaf = 0;
+ pIter->iLeafPgno = iLeafPgno-1;
+
+ while( p->rc==SQLITE_OK ){
+ int iOff;
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ) break;
+ iOff = fts5LeafFirstRowidOff(pIter->pLeaf);
+ if( iOff>0 ){
+ u8 *a = pIter->pLeaf->p;
+ int n = pIter->pLeaf->szLeaf;
+ if( iOff<4 || iOff>=n ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ iOff += fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ break;
+ }
+ }
+ }
+}
+
+/*
+** Advance the iterator passed as the second argument until it is at or
+** past rowid iFrom. Regardless of the value of iFrom, the iterator is
+** always advanced at least once.
+*/
+static void fts5SegIterNextFrom(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ i64 iMatch /* Advance iterator at least this far */
+){
+ int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
+ Fts5DlidxIter *pDlidx = pIter->pDlidx;
+ int iLeafPgno = pIter->iLeafPgno;
+ int bMove = 1;
+
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+ assert( pIter->pDlidx );
+ assert( pIter->pLeaf );
+
+ if( bRev==0 ){
+ while( !fts5DlidxIterEof(p, pDlidx) && iMatch>fts5DlidxIterRowid(pDlidx) ){
+ iLeafPgno = fts5DlidxIterPgno(pDlidx);
+ fts5DlidxIterNext(p, pDlidx);
+ }
+ assert_nc( iLeafPgno>=pIter->iLeafPgno || p->rc );
+ if( iLeafPgno>pIter->iLeafPgno ){
+ fts5SegIterGotoPage(p, pIter, iLeafPgno);
+ bMove = 0;
+ }
+ }else{
+ assert( pIter->pNextLeaf==0 );
+ assert( iMatch<pIter->iRowid );
+ while( !fts5DlidxIterEof(p, pDlidx) && iMatch<fts5DlidxIterRowid(pDlidx) ){
+ fts5DlidxIterPrev(p, pDlidx);
+ }
+ iLeafPgno = fts5DlidxIterPgno(pDlidx);
+
+ assert( fts5DlidxIterEof(p, pDlidx) || iLeafPgno<=pIter->iLeafPgno );
+
+ if( iLeafPgno<pIter->iLeafPgno ){
+ pIter->iLeafPgno = iLeafPgno+1;
+ fts5SegIterReverseNewPage(p, pIter);
+ bMove = 0;
+ }
+ }
+
+ do{
+ if( bMove && p->rc==SQLITE_OK ) pIter->xNext(p, pIter, 0);
+ if( pIter->pLeaf==0 ) break;
+ if( bRev==0 && pIter->iRowid>=iMatch ) break;
+ if( bRev!=0 && pIter->iRowid<=iMatch ) break;
+ bMove = 1;
+ }while( p->rc==SQLITE_OK );
+}
+
+
+/*
+** Free the iterator object passed as the second argument.
+*/
+static void fts5MultiIterFree(Fts5Iter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nSeg; i++){
+ fts5SegIterClear(&pIter->aSeg[i]);
+ }
+ fts5BufferFree(&pIter->poslist);
+ sqlite3_free(pIter);
+ }
+}
+
+static void fts5MultiIterAdvanced(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Iter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ int iMinset /* Minimum entry in aFirst[] to set */
+){
+ int i;
+ for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
+ Fts5SegIter *pSeg = &pIter->aSeg[iEq];
+ assert( p->rc==SQLITE_OK );
+ pSeg->xNext(p, pSeg, 0);
+ i = pIter->nSeg + iEq;
+ }
+ }
+}
+
+/*
+** Sub-iterator iChanged of iterator pIter has just been advanced. It still
+** points to the same term though - just a different rowid. This function
+** attempts to update the contents of the pIter->aFirst[] accordingly.
+** If it does so successfully, 0 is returned. Otherwise 1.
+**
+** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
+** on the iterator instead. That function does the same as this one, except
+** that it deals with more complicated cases as well.
+*/
+static int fts5MultiIterAdvanceRowid(
+ Fts5Iter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ Fts5SegIter **ppFirst
+){
+ Fts5SegIter *pNew = &pIter->aSeg[iChanged];
+
+ if( pNew->iRowid==pIter->iSwitchRowid
+ || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
+ ){
+ int i;
+ Fts5SegIter *pOther = &pIter->aSeg[iChanged ^ 0x0001];
+ pIter->iSwitchRowid = pIter->bRev ? SMALLEST_INT64 : LARGEST_INT64;
+ for(i=(pIter->nSeg+iChanged)/2; 1; i=i/2){
+ Fts5CResult *pRes = &pIter->aFirst[i];
+
+ assert( pNew->pLeaf );
+ assert( pRes->bTermEq==0 || pOther->pLeaf );
+
+ if( pRes->bTermEq ){
+ if( pNew->iRowid==pOther->iRowid ){
+ return 1;
+ }else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
+ pIter->iSwitchRowid = pOther->iRowid;
+ pNew = pOther;
+ }else if( (pOther->iRowid>pIter->iSwitchRowid)==pIter->bRev ){
+ pIter->iSwitchRowid = pOther->iRowid;
+ }
+ }
+ pRes->iFirst = (u16)(pNew - pIter->aSeg);
+ if( i==1 ) break;
+
+ pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
+ }
+ }
+
+ *ppFirst = pNew;
+ return 0;
+}
+
+/*
+** Set the pIter->bEof variable based on the state of the sub-iterators.
+*/
+static void fts5MultiIterSetEof(Fts5Iter *pIter){
+ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ pIter->base.bEof = pSeg->pLeaf==0;
+ pIter->iSwitchRowid = pSeg->iRowid;
+}
+
+/*
+** The argument to this macro must be an Fts5Data structure containing a
+** tombstone hash page. This macro returns the key-size of the hash-page.
+*/
+#define TOMBSTONE_KEYSIZE(pPg) (pPg->p[0]==4 ? 4 : 8)
+
+#define TOMBSTONE_NSLOT(pPg) \
+ ((pPg->nn > 16) ? ((pPg->nn-8) / TOMBSTONE_KEYSIZE(pPg)) : 1)
+
+/*
+** Query a single tombstone hash table for rowid iRowid. Return true if
+** it is found or false otherwise. The tombstone hash table is one of
+** nHashTable tables.
+*/
+static int fts5IndexTombstoneQuery(
+ Fts5Data *pHash, /* Hash table page to query */
+ int nHashTable, /* Number of pages attached to segment */
+ u64 iRowid /* Rowid to query hash for */
+){
+ const int szKey = TOMBSTONE_KEYSIZE(pHash);
+ const int nSlot = TOMBSTONE_NSLOT(pHash);
+ int iSlot = (iRowid / nHashTable) % nSlot;
+ int nCollide = nSlot;
+
+ if( iRowid==0 ){
+ return pHash->p[1];
+ }else if( szKey==4 ){
+ u32 *aSlot = (u32*)&pHash->p[8];
+ while( aSlot[iSlot] ){
+ if( fts5GetU32((u8*)&aSlot[iSlot])==iRowid ) return 1;
+ if( nCollide--==0 ) break;
+ iSlot = (iSlot+1)%nSlot;
+ }
+ }else{
+ u64 *aSlot = (u64*)&pHash->p[8];
+ while( aSlot[iSlot] ){
+ if( fts5GetU64((u8*)&aSlot[iSlot])==iRowid ) return 1;
+ if( nCollide--==0 ) break;
+ iSlot = (iSlot+1)%nSlot;
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Return true if the iterator passed as the only argument points
+** to an segment entry for which there is a tombstone. Return false
+** if there is no tombstone or if the iterator is already at EOF.
+*/
+static int fts5MultiIterIsDeleted(Fts5Iter *pIter){
+ int iFirst = pIter->aFirst[1].iFirst;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+
+ if( pSeg->pLeaf && pSeg->nTombstone ){
+ /* Figure out which page the rowid might be present on. */
+ int iPg = ((u64)pSeg->iRowid) % pSeg->nTombstone;
+ assert( iPg>=0 );
+
+ /* If tombstone hash page iPg has not yet been loaded from the
+ ** database, load it now. */
+ if( pSeg->apTombstone[iPg]==0 ){
+ pSeg->apTombstone[iPg] = fts5DataRead(pIter->pIndex,
+ FTS5_TOMBSTONE_ROWID(pSeg->pSeg->iSegid, iPg)
+ );
+ if( pSeg->apTombstone[iPg]==0 ) return 0;
+ }
+
+ return fts5IndexTombstoneQuery(
+ pSeg->apTombstone[iPg],
+ pSeg->nTombstone,
+ pSeg->iRowid
+ );
+ }
+
+ return 0;
+}
+
+/*
+** Move the iterator to the next entry.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. It is not
+** considered an error if the iterator reaches EOF, or if it is already at
+** EOF when this function is called.
+*/
+static void fts5MultiIterNext(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ int bFrom, /* True if argument iFrom is valid */
+ i64 iFrom /* Advance at least as far as this */
+){
+ int bUseFrom = bFrom;
+ assert( pIter->base.bEof==0 );
+ while( p->rc==SQLITE_OK ){
+ int iFirst = pIter->aFirst[1].iFirst;
+ int bNewTerm = 0;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+ assert( p->rc==SQLITE_OK );
+ if( bUseFrom && pSeg->pDlidx ){
+ fts5SegIterNextFrom(p, pSeg, iFrom);
+ }else{
+ pSeg->xNext(p, pSeg, &bNewTerm);
+ }
+
+ if( pSeg->pLeaf==0 || bNewTerm
+ || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
+ ){
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ fts5MultiIterSetEof(pIter);
+ pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ if( pSeg->pLeaf==0 ) return;
+ }
+
+ fts5AssertMultiIterSetup(p, pIter);
+ assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
+ if( (pIter->bSkipEmpty==0 || pSeg->nPos)
+ && 0==fts5MultiIterIsDeleted(pIter)
+ ){
+ pIter->xSetOutputs(pIter, pSeg);
+ return;
+ }
+ bUseFrom = 0;
+ }
+}
+
+static void fts5MultiIterNext2(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ int *pbNewTerm /* OUT: True if *might* be new term */
+){
+ assert( pIter->bSkipEmpty );
+ if( p->rc==SQLITE_OK ){
+ *pbNewTerm = 0;
+ do{
+ int iFirst = pIter->aFirst[1].iFirst;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+ int bNewTerm = 0;
+
+ assert( p->rc==SQLITE_OK );
+ pSeg->xNext(p, pSeg, &bNewTerm);
+ if( pSeg->pLeaf==0 || bNewTerm
+ || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
+ ){
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ fts5MultiIterSetEof(pIter);
+ *pbNewTerm = 1;
+ }
+ fts5AssertMultiIterSetup(p, pIter);
+
+ }while( (fts5MultiIterIsEmpty(p, pIter) || fts5MultiIterIsDeleted(pIter))
+ && (p->rc==SQLITE_OK)
+ );
+ }
+}
+
+static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
+ UNUSED_PARAM2(pUnused1, pUnused2);
+}
+
+static Fts5Iter *fts5MultiIterAlloc(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ int nSeg
+){
+ Fts5Iter *pNew;
+ i64 nSlot; /* Power of two >= nSeg */
+
+ for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
+ pNew = fts5IdxMalloc(p,
+ sizeof(Fts5Iter) + /* pNew */
+ sizeof(Fts5SegIter) * (nSlot-1) + /* pNew->aSeg[] */
+ sizeof(Fts5CResult) * nSlot /* pNew->aFirst[] */
+ );
+ if( pNew ){
+ pNew->nSeg = nSlot;
+ pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
+ pNew->pIndex = p;
+ pNew->xSetOutputs = fts5IterSetOutputs_Noop;
+ }
+ return pNew;
+}
+
+static void fts5PoslistCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);
+ }
+}
+
+typedef struct PoslistCallbackCtx PoslistCallbackCtx;
+struct PoslistCallbackCtx {
+ Fts5Buffer *pBuf; /* Append to this buffer */
+ Fts5Colset *pColset; /* Restrict matches to this column */
+ int eState; /* See above */
+};
+
+typedef struct PoslistOffsetsCtx PoslistOffsetsCtx;
+struct PoslistOffsetsCtx {
+ Fts5Buffer *pBuf; /* Append to this buffer */
+ Fts5Colset *pColset; /* Restrict matches to this column */
+ int iRead;
+ int iWrite;
+};
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static void fts5PoslistOffsetsCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ PoslistOffsetsCtx *pCtx = (PoslistOffsetsCtx*)pContext;
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ int i = 0;
+ while( i<nChunk ){
+ int iVal;
+ i += fts5GetVarint32(&pChunk[i], iVal);
+ iVal += pCtx->iRead - 2;
+ pCtx->iRead = iVal;
+ if( fts5IndexColsetTest(pCtx->pColset, iVal) ){
+ fts5BufferSafeAppendVarint(pCtx->pBuf, iVal + 2 - pCtx->iWrite);
+ pCtx->iWrite = iVal;
+ }
+ }
+ }
+}
+
+static void fts5PoslistFilterCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ /* Search through to find the first varint with value 1. This is the
+ ** start of the next columns hits. */
+ int i = 0;
+ int iStart = 0;
+
+ if( pCtx->eState==2 ){
+ int iCol;
+ fts5FastGetVarint32(pChunk, i, iCol);
+ if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
+ pCtx->eState = 1;
+ fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
+ }else{
+ pCtx->eState = 0;
+ }
+ }
+
+ do {
+ while( i<nChunk && pChunk[i]!=0x01 ){
+ while( pChunk[i] & 0x80 ) i++;
+ i++;
+ }
+ if( pCtx->eState ){
+ fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
+ }
+ if( i<nChunk ){
+ int iCol;
+ iStart = i;
+ i++;
+ if( i>=nChunk ){
+ pCtx->eState = 2;
+ }else{
+ fts5FastGetVarint32(pChunk, i, iCol);
+ pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
+ if( pCtx->eState ){
+ fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
+ iStart = i;
+ }
+ }
+ }
+ }while( i<nChunk );
+ }
+}
+
+static void fts5ChunkIterate(
+ Fts5Index *p, /* Index object */
+ Fts5SegIter *pSeg, /* Poslist of this iterator */
+ void *pCtx, /* Context pointer for xChunk callback */
+ void (*xChunk)(Fts5Index*, void*, const u8*, int)
+){
+ int nRem = pSeg->nPos; /* Number of bytes still to come */
+ Fts5Data *pData = 0;
+ u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
+ int pgno = pSeg->iLeafPgno;
+ int pgnoSave = 0;
+
+ /* This function does not work with detail=none databases. */
+ assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );
+
+ if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
+ pgnoSave = pgno+1;
+ }
+
+ while( 1 ){
+ xChunk(p, pCtx, pChunk, nChunk);
+ nRem -= nChunk;
+ fts5DataRelease(pData);
+ if( nRem<=0 ){
+ break;
+ }else if( pSeg->pSeg==0 ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }else{
+ pgno++;
+ pData = fts5LeafRead(p, FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, pgno));
+ if( pData==0 ) break;
+ pChunk = &pData->p[4];
+ nChunk = MIN(nRem, pData->szLeaf - 4);
+ if( pgno==pgnoSave ){
+ assert( pSeg->pNextLeaf==0 );
+ pSeg->pNextLeaf = pData;
+ pData = 0;
+ }
+ }
+ }
+}
+
+/*
+** Iterator pIter currently points to a valid entry (not EOF). This
+** function appends the position list data for the current entry to
+** buffer pBuf. It does not make a copy of the position-list size
+** field.
+*/
+static void fts5SegiterPoslist(
+ Fts5Index *p,
+ Fts5SegIter *pSeg,
+ Fts5Colset *pColset,
+ Fts5Buffer *pBuf
+){
+ assert( pBuf!=0 );
+ assert( pSeg!=0 );
+ if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos+FTS5_DATA_ZERO_PADDING) ){
+ assert( pBuf->p!=0 );
+ assert( pBuf->nSpace >= pBuf->n+pSeg->nPos+FTS5_DATA_ZERO_PADDING );
+ memset(&pBuf->p[pBuf->n+pSeg->nPos], 0, FTS5_DATA_ZERO_PADDING);
+ if( pColset==0 ){
+ fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
+ }else{
+ if( p->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ PoslistCallbackCtx sCtx;
+ sCtx.pBuf = pBuf;
+ sCtx.pColset = pColset;
+ sCtx.eState = fts5IndexColsetTest(pColset, 0);
+ assert( sCtx.eState==0 || sCtx.eState==1 );
+ fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
+ }else{
+ PoslistOffsetsCtx sCtx;
+ memset(&sCtx, 0, sizeof(sCtx));
+ sCtx.pBuf = pBuf;
+ sCtx.pColset = pColset;
+ fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistOffsetsCallback);
+ }
+ }
+ }
+}
+
+/*
+** Parameter pPos points to a buffer containing a position list, size nPos.
+** This function filters it according to pColset (which must be non-NULL)
+** and sets pIter->base.pData/nData to point to the new position list.
+** If memory is required for the new position list, use buffer pIter->poslist.
+** Or, if the new position list is a contiguous subset of the input, set
+** pIter->base.pData/nData to point directly to it.
+**
+** This function is a no-op if *pRc is other than SQLITE_OK when it is
+** called. If an OOM error is encountered, *pRc is set to SQLITE_NOMEM
+** before returning.
+*/
+static void fts5IndexExtractColset(
+ int *pRc,
+ Fts5Colset *pColset, /* Colset to filter on */
+ const u8 *pPos, int nPos, /* Position list */
+ Fts5Iter *pIter
+){
+ if( *pRc==SQLITE_OK ){
+ const u8 *p = pPos;
+ const u8 *aCopy = p;
+ const u8 *pEnd = &p[nPos]; /* One byte past end of position list */
+ int i = 0;
+ int iCurrent = 0;
+
+ if( pColset->nCol>1 && sqlite3Fts5BufferSize(pRc, &pIter->poslist, nPos) ){
+ return;
+ }
+
+ while( 1 ){
+ while( pColset->aiCol[i]<iCurrent ){
+ i++;
+ if( i==pColset->nCol ){
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ return;
+ }
+ }
+
+ /* Advance pointer p until it points to pEnd or an 0x01 byte that is
+ ** not part of a varint */
+ while( p<pEnd && *p!=0x01 ){
+ while( *p++ & 0x80 );
+ }
+
+ if( pColset->aiCol[i]==iCurrent ){
+ if( pColset->nCol==1 ){
+ pIter->base.pData = aCopy;
+ pIter->base.nData = p-aCopy;
+ return;
+ }
+ fts5BufferSafeAppendBlob(&pIter->poslist, aCopy, p-aCopy);
+ }
+ if( p>=pEnd ){
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ return;
+ }
+ aCopy = p++;
+ iCurrent = *p++;
+ if( iCurrent & 0x80 ){
+ p--;
+ p += fts5GetVarint32(p, iCurrent);
+ }
+ }
+ }
+
+}
+
+/*
+** xSetOutputs callback used by detail=none tables.
+*/
+static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.nData = pSeg->nPos;
+}
+
+/*
+** xSetOutputs callback used by detail=full and detail=col tables when no
+** column filters are specified.
+*/
+static void fts5IterSetOutputs_Nocolset(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.nData = pSeg->nPos;
+
+ assert( pIter->pIndex->pConfig->eDetail!=FTS5_DETAIL_NONE );
+ assert( pIter->pColset==0 );
+
+ if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
+ /* All data is stored on the current page. Populate the output
+ ** variables to point into the body of the page object. */
+ pIter->base.pData = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ }else{
+ /* The data is distributed over two or more pages. Copy it into the
+ ** Fts5Iter.poslist buffer and then set the output pointer to point
+ ** to this buffer. */
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ }
+}
+
+/*
+** xSetOutputs callback used when the Fts5Colset object has nCol==0 (match
+** against no columns at all).
+*/
+static void fts5IterSetOutputs_ZeroColset(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ UNUSED_PARAM(pSeg);
+ pIter->base.nData = 0;
+}
+
+/*
+** xSetOutputs callback used by detail=col when there is a column filter
+** and there are 100 or more columns. Also called as a fallback from
+** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
+*/
+static void fts5IterSetOutputs_Col(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, pIter->pColset, &pIter->poslist);
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+}
+
+/*
+** xSetOutputs callback used when:
+**
+** * detail=col,
+** * there is a column filter, and
+** * the table contains 100 or fewer columns.
+**
+** The last point is to ensure all column numbers are stored as
+** single-byte varints.
+*/
+static void fts5IterSetOutputs_Col100(Fts5Iter *pIter, Fts5SegIter *pSeg){
+
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+ assert( pIter->pColset );
+
+ if( pSeg->iLeafOffset+pSeg->nPos>pSeg->pLeaf->szLeaf ){
+ fts5IterSetOutputs_Col(pIter, pSeg);
+ }else{
+ u8 *a = (u8*)&pSeg->pLeaf->p[pSeg->iLeafOffset];
+ u8 *pEnd = (u8*)&a[pSeg->nPos];
+ int iPrev = 0;
+ int *aiCol = pIter->pColset->aiCol;
+ int *aiColEnd = &aiCol[pIter->pColset->nCol];
+
+ u8 *aOut = pIter->poslist.p;
+ int iPrevOut = 0;
+
+ pIter->base.iRowid = pSeg->iRowid;
+
+ while( a<pEnd ){
+ iPrev += (int)a++[0] - 2;
+ while( *aiCol<iPrev ){
+ aiCol++;
+ if( aiCol==aiColEnd ) goto setoutputs_col_out;
+ }
+ if( *aiCol==iPrev ){
+ *aOut++ = (u8)((iPrev - iPrevOut) + 2);
+ iPrevOut = iPrev;
+ }
+ }
+
+setoutputs_col_out:
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = aOut - pIter->poslist.p;
+ }
+}
+
+/*
+** xSetOutputs callback used by detail=full when there is a column filter.
+*/
+static void fts5IterSetOutputs_Full(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ Fts5Colset *pColset = pIter->pColset;
+ pIter->base.iRowid = pSeg->iRowid;
+
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_FULL );
+ assert( pColset );
+
+ if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
+ /* All data is stored on the current page. Populate the output
+ ** variables to point into the body of the page object. */
+ const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ int *pRc = &pIter->pIndex->rc;
+ fts5BufferZero(&pIter->poslist);
+ fts5IndexExtractColset(pRc, pColset, a, pSeg->nPos, pIter);
+ }else{
+ /* The data is distributed over two or more pages. Copy it into the
+ ** Fts5Iter.poslist buffer and then set the output pointer to point
+ ** to this buffer. */
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ }
+}
+
+static void fts5IterSetOutputCb(int *pRc, Fts5Iter *pIter){
+ assert( pIter!=0 || (*pRc)!=SQLITE_OK );
+ if( *pRc==SQLITE_OK ){
+ Fts5Config *pConfig = pIter->pIndex->pConfig;
+ if( pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pIter->xSetOutputs = fts5IterSetOutputs_None;
+ }
+
+ else if( pIter->pColset==0 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Nocolset;
+ }
+
+ else if( pIter->pColset->nCol==0 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_ZeroColset;
+ }
+
+ else if( pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Full;
+ }
+
+ else{
+ assert( pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+ if( pConfig->nCol<=100 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Col100;
+ sqlite3Fts5BufferSize(pRc, &pIter->poslist, pConfig->nCol);
+ }else{
+ pIter->xSetOutputs = fts5IterSetOutputs_Col;
+ }
+ }
+ }
+}
+
+
+/*
+** Allocate a new Fts5Iter object.
+**
+** The new object will be used to iterate through data in structure pStruct.
+** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
+** is zero or greater, data from the first nSegment segments on level iLevel
+** is merged.
+**
+** The iterator initially points to the first term/rowid entry in the
+** iterated data.
+*/
+static void fts5MultiIterNew(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Structure *pStruct, /* Structure of specific index */
+ int flags, /* FTS5INDEX_QUERY_XXX flags */
+ Fts5Colset *pColset, /* Colset to filter on (or NULL) */
+ const u8 *pTerm, int nTerm, /* Term to seek to (or NULL/0) */
+ int iLevel, /* Level to iterate (-1 for all) */
+ int nSegment, /* Number of segments to merge (iLevel>=0) */
+ Fts5Iter **ppOut /* New object */
+){
+ int nSeg = 0; /* Number of segment-iters in use */
+ int iIter = 0; /* */
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl;
+ Fts5Iter *pNew;
+
+ assert( (pTerm==0 && nTerm==0) || iLevel<0 );
+
+ /* Allocate space for the new multi-seg-iterator. */
+ if( p->rc==SQLITE_OK ){
+ if( iLevel<0 ){
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ nSeg = pStruct->nSegment;
+ nSeg += (p->pHash && 0==(flags & FTS5INDEX_QUERY_SKIPHASH));
+ }else{
+ nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
+ }
+ }
+ *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
+ if( pNew==0 ){
+ assert( p->rc!=SQLITE_OK );
+ goto fts5MultiIterNew_post_check;
+ }
+ pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
+ pNew->bSkipEmpty = (0!=(flags & FTS5INDEX_QUERY_SKIPEMPTY));
+ pNew->pColset = pColset;
+ if( (flags & FTS5INDEX_QUERY_NOOUTPUT)==0 ){
+ fts5IterSetOutputCb(&p->rc, pNew);
+ }
+
+ /* Initialize each of the component segment iterators. */
+ if( p->rc==SQLITE_OK ){
+ if( iLevel<0 ){
+ Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
+ if( p->pHash && 0==(flags & FTS5INDEX_QUERY_SKIPHASH) ){
+ /* Add a segment iterator for the current contents of the hash table. */
+ Fts5SegIter *pIter = &pNew->aSeg[iIter++];
+ fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
+ }
+ for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
+ for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ Fts5SegIter *pIter = &pNew->aSeg[iIter++];
+ if( pTerm==0 ){
+ fts5SegIterInit(p, pSeg, pIter);
+ }else{
+ fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter);
+ }
+ }
+ }
+ }else{
+ pLvl = &pStruct->aLevel[iLevel];
+ for(iSeg=nSeg-1; iSeg>=0; iSeg--){
+ fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
+ }
+ }
+ assert( iIter==nSeg );
+ }
+
+ /* If the above was successful, each component iterators now points
+ ** to the first entry in its segment. In this case initialize the
+ ** aFirst[] array. Or, if an error has occurred, free the iterator
+ ** object and set the output variable to NULL. */
+ if( p->rc==SQLITE_OK ){
+ for(iIter=pNew->nSeg-1; iIter>0; iIter--){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
+ Fts5SegIter *pSeg = &pNew->aSeg[iEq];
+ if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
+ fts5MultiIterAdvanced(p, pNew, iEq, iIter);
+ }
+ }
+ fts5MultiIterSetEof(pNew);
+ fts5AssertMultiIterSetup(p, pNew);
+
+ if( (pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew))
+ || fts5MultiIterIsDeleted(pNew)
+ ){
+ fts5MultiIterNext(p, pNew, 0, 0);
+ }else if( pNew->base.bEof==0 ){
+ Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
+ pNew->xSetOutputs(pNew, pSeg);
+ }
+
+ }else{
+ fts5MultiIterFree(pNew);
+ *ppOut = 0;
+ }
+
+fts5MultiIterNew_post_check:
+ assert( (*ppOut)!=0 || p->rc!=SQLITE_OK );
+ return;
+}
+
+/*
+** Create an Fts5Iter that iterates through the doclist provided
+** as the second argument.
+*/
+static void fts5MultiIterNew2(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Data *pData, /* Doclist to iterate through */
+ int bDesc, /* True for descending rowid order */
+ Fts5Iter **ppOut /* New object */
+){
+ Fts5Iter *pNew;
+ pNew = fts5MultiIterAlloc(p, 2);
+ if( pNew ){
+ Fts5SegIter *pIter = &pNew->aSeg[1];
+
+ pIter->flags = FTS5_SEGITER_ONETERM;
+ if( pData->szLeaf>0 ){
+ pIter->pLeaf = pData;
+ pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
+ pIter->iEndofDoclist = pData->nn;
+ pNew->aFirst[1].iFirst = 1;
+ if( bDesc ){
+ pNew->bRev = 1;
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ fts5SegIterReverseInitPage(p, pIter);
+ }else{
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ pData = 0;
+ }else{
+ pNew->base.bEof = 1;
+ }
+ fts5SegIterSetNext(p, pIter);
+
+ *ppOut = pNew;
+ }
+
+ fts5DataRelease(pData);
+}
+
+/*
+** Return true if the iterator is at EOF or if an error has occurred.
+** False otherwise.
+*/
+static int fts5MultiIterEof(Fts5Index *p, Fts5Iter *pIter){
+ assert( pIter!=0 || p->rc!=SQLITE_OK );
+ assert( p->rc!=SQLITE_OK
+ || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->base.bEof
+ );
+ return (p->rc || pIter->base.bEof);
+}
+
+/*
+** Return the rowid of the entry that the iterator currently points
+** to. If the iterator points to EOF when this function is called the
+** results are undefined.
+*/
+static i64 fts5MultiIterRowid(Fts5Iter *pIter){
+ assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
+ return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
+}
+
+/*
+** Move the iterator to the next entry at or following iMatch.
+*/
+static void fts5MultiIterNextFrom(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ i64 iMatch
+){
+ while( 1 ){
+ i64 iRowid;
+ fts5MultiIterNext(p, pIter, 1, iMatch);
+ if( fts5MultiIterEof(p, pIter) ) break;
+ iRowid = fts5MultiIterRowid(pIter);
+ if( pIter->bRev==0 && iRowid>=iMatch ) break;
+ if( pIter->bRev!=0 && iRowid<=iMatch ) break;
+ }
+}
+
+/*
+** Return a pointer to a buffer containing the term associated with the
+** entry that the iterator currently points to.
+*/
+static const u8 *fts5MultiIterTerm(Fts5Iter *pIter, int *pn){
+ Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ *pn = p->term.n;
+ return p->term.p;
+}
+
+/*
+** Allocate a new segment-id for the structure pStruct. The new segment
+** id must be between 1 and 65335 inclusive, and must not be used by
+** any currently existing segment. If a free segment id cannot be found,
+** SQLITE_FULL is returned.
+**
+** If an error has already occurred, this function is a no-op. 0 is
+** returned in this case.
+*/
+static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
+ int iSegid = 0;
+
+ if( p->rc==SQLITE_OK ){
+ if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
+ p->rc = SQLITE_FULL;
+ }else{
+ /* FTS5_MAX_SEGMENT is currently defined as 2000. So the following
+ ** array is 63 elements, or 252 bytes, in size. */
+ u32 aUsed[(FTS5_MAX_SEGMENT+31) / 32];
+ int iLvl, iSeg;
+ int i;
+ u32 mask;
+ memset(aUsed, 0, sizeof(aUsed));
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ int iId = pStruct->aLevel[iLvl].aSeg[iSeg].iSegid;
+ if( iId<=FTS5_MAX_SEGMENT && iId>0 ){
+ aUsed[(iId-1) / 32] |= (u32)1 << ((iId-1) % 32);
+ }
+ }
+ }
+
+ for(i=0; aUsed[i]==0xFFFFFFFF; i++);
+ mask = aUsed[i];
+ for(iSegid=0; mask & ((u32)1 << iSegid); iSegid++);
+ iSegid += 1 + i*32;
+
+#ifdef SQLITE_DEBUG
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ assert_nc( iSegid!=pStruct->aLevel[iLvl].aSeg[iSeg].iSegid );
+ }
+ }
+ assert_nc( iSegid>0 && iSegid<=FTS5_MAX_SEGMENT );
+
+ {
+ sqlite3_stmt *pIdxSelect = fts5IdxSelectStmt(p);
+ if( p->rc==SQLITE_OK ){
+ u8 aBlob[2] = {0xff, 0xff};
+ sqlite3_bind_int(pIdxSelect, 1, iSegid);
+ sqlite3_bind_blob(pIdxSelect, 2, aBlob, 2, SQLITE_STATIC);
+ assert_nc( sqlite3_step(pIdxSelect)!=SQLITE_ROW );
+ p->rc = sqlite3_reset(pIdxSelect);
+ sqlite3_bind_null(pIdxSelect, 2);
+ }
+ }
+#endif
+ }
+ }
+
+ return iSegid;
+}
+
+/*
+** Discard all data currently cached in the hash-tables.
+*/
+static void fts5IndexDiscardData(Fts5Index *p){
+ assert( p->pHash || p->nPendingData==0 );
+ if( p->pHash ){
+ sqlite3Fts5HashClear(p->pHash);
+ p->nPendingData = 0;
+ p->nPendingRow = 0;
+ }
+ p->nContentlessDelete = 0;
+}
+
+/*
+** Return the size of the prefix, in bytes, that buffer
+** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
+**
+** Buffer (pNew/<length-unknown>) is guaranteed to be greater
+** than buffer (pOld/nOld).
+*/
+static int fts5PrefixCompress(int nOld, const u8 *pOld, const u8 *pNew){
+ int i;
+ for(i=0; i<nOld; i++){
+ if( pOld[i]!=pNew[i] ) break;
+ }
+ return i;
+}
+
+static void fts5WriteDlidxClear(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int bFlush /* If true, write dlidx to disk */
+){
+ int i;
+ assert( bFlush==0 || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n>0) );
+ for(i=0; i<pWriter->nDlidx; i++){
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
+ if( pDlidx->buf.n==0 ) break;
+ if( bFlush ){
+ assert( pDlidx->pgno!=0 );
+ fts5DataWrite(p,
+ FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
+ pDlidx->buf.p, pDlidx->buf.n
+ );
+ }
+ sqlite3Fts5BufferZero(&pDlidx->buf);
+ pDlidx->bPrevValid = 0;
+ }
+}
+
+/*
+** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
+** Any new array elements are zeroed before returning.
+*/
+static int fts5WriteDlidxGrow(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nLvl
+){
+ if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){
+ Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc64(
+ pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl
+ );
+ if( aDlidx==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ size_t nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx);
+ memset(&aDlidx[pWriter->nDlidx], 0, nByte);
+ pWriter->aDlidx = aDlidx;
+ pWriter->nDlidx = nLvl;
+ }
+ }
+ return p->rc;
+}
+
+/*
+** If the current doclist-index accumulating in pWriter->aDlidx[] is large
+** enough, flush it to disk and return 1. Otherwise discard it and return
+** zero.
+*/
+static int fts5WriteFlushDlidx(Fts5Index *p, Fts5SegWriter *pWriter){
+ int bFlag = 0;
+
+ /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
+ ** to the database, also write the doclist-index to disk. */
+ if( pWriter->aDlidx[0].buf.n>0 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){
+ bFlag = 1;
+ }
+ fts5WriteDlidxClear(p, pWriter, bFlag);
+ pWriter->nEmpty = 0;
+ return bFlag;
+}
+
+/*
+** This function is called whenever processing of the doclist for the
+** last term on leaf page (pWriter->iBtPage) is completed.
+**
+** The doclist-index for that term is currently stored in-memory within the
+** Fts5SegWriter.aDlidx[] array. If it is large enough, this function
+** writes it out to disk. Or, if it is too small to bother with, discards
+** it.
+**
+** Fts5SegWriter.btterm currently contains the first term on page iBtPage.
+*/
+static void fts5WriteFlushBtree(Fts5Index *p, Fts5SegWriter *pWriter){
+ int bFlag;
+
+ assert( pWriter->iBtPage || pWriter->nEmpty==0 );
+ if( pWriter->iBtPage==0 ) return;
+ bFlag = fts5WriteFlushDlidx(p, pWriter);
+
+ if( p->rc==SQLITE_OK ){
+ const char *z = (pWriter->btterm.n>0?(const char*)pWriter->btterm.p:"");
+ /* The following was already done in fts5WriteInit(): */
+ /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */
+ sqlite3_bind_blob(p->pIdxWriter, 2, z, pWriter->btterm.n, SQLITE_STATIC);
+ sqlite3_bind_int64(p->pIdxWriter, 3, bFlag + ((i64)pWriter->iBtPage<<1));
+ sqlite3_step(p->pIdxWriter);
+ p->rc = sqlite3_reset(p->pIdxWriter);
+ sqlite3_bind_null(p->pIdxWriter, 2);
+ }
+ pWriter->iBtPage = 0;
+}
+
+/*
+** This is called once for each leaf page except the first that contains
+** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
+** is larger than all terms written to earlier leaves, and equal to or
+** smaller than the first term on the new leaf.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. If an error
+** has already occurred when this function is called, it is a no-op.
+*/
+static void fts5WriteBtreeTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter, /* Writer object */
+ int nTerm, const u8 *pTerm /* First term on new page */
+){
+ fts5WriteFlushBtree(p, pWriter);
+ if( p->rc==SQLITE_OK ){
+ fts5BufferSet(&p->rc, &pWriter->btterm, nTerm, pTerm);
+ pWriter->iBtPage = pWriter->writer.pgno;
+ }
+}
+
+/*
+** This function is called when flushing a leaf page that contains no
+** terms at all to disk.
+*/
+static void fts5WriteBtreeNoTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter /* Writer object */
+){
+ /* If there were no rowids on the leaf page either and the doclist-index
+ ** has already been started, append an 0x00 byte to it. */
+ if( pWriter->bFirstRowidInPage && pWriter->aDlidx[0].buf.n>0 ){
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[0];
+ assert( pDlidx->bPrevValid );
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, 0);
+ }
+
+ /* Increment the "number of sequential leaves without a term" counter. */
+ pWriter->nEmpty++;
+}
+
+static i64 fts5DlidxExtractFirstRowid(Fts5Buffer *pBuf){
+ i64 iRowid;
+ int iOff;
+
+ iOff = 1 + fts5GetVarint(&pBuf->p[1], (u64*)&iRowid);
+ fts5GetVarint(&pBuf->p[iOff], (u64*)&iRowid);
+ return iRowid;
+}
+
+/*
+** Rowid iRowid has just been appended to the current leaf page. It is the
+** first on the page. This function appends an appropriate entry to the current
+** doclist-index.
+*/
+static void fts5WriteDlidxAppend(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ int i;
+ int bDone = 0;
+
+ for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
+ i64 iVal;
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
+
+ if( pDlidx->buf.n>=p->pConfig->pgsz ){
+ /* The current doclist-index page is full. Write it to disk and push
+ ** a copy of iRowid (which will become the first rowid on the next
+ ** doclist-index leaf page) up into the next level of the b-tree
+ ** hierarchy. If the node being flushed is currently the root node,
+ ** also push its first rowid upwards. */
+ pDlidx->buf.p[0] = 0x01; /* Not the root node */
+ fts5DataWrite(p,
+ FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
+ pDlidx->buf.p, pDlidx->buf.n
+ );
+ fts5WriteDlidxGrow(p, pWriter, i+2);
+ pDlidx = &pWriter->aDlidx[i];
+ if( p->rc==SQLITE_OK && pDlidx[1].buf.n==0 ){
+ i64 iFirst = fts5DlidxExtractFirstRowid(&pDlidx->buf);
+
+ /* This was the root node. Push its first rowid up to the new root. */
+ pDlidx[1].pgno = pDlidx->pgno;
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, 0);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, pDlidx->pgno);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, iFirst);
+ pDlidx[1].bPrevValid = 1;
+ pDlidx[1].iPrev = iFirst;
+ }
+
+ sqlite3Fts5BufferZero(&pDlidx->buf);
+ pDlidx->bPrevValid = 0;
+ pDlidx->pgno++;
+ }else{
+ bDone = 1;
+ }
+
+ if( pDlidx->bPrevValid ){
+ iVal = iRowid - pDlidx->iPrev;
+ }else{
+ i64 iPgno = (i==0 ? pWriter->writer.pgno : pDlidx[-1].pgno);
+ assert( pDlidx->buf.n==0 );
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, !bDone);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iPgno);
+ iVal = iRowid;
+ }
+
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iVal);
+ pDlidx->bPrevValid = 1;
+ pDlidx->iPrev = iRowid;
+ }
+}
+
+static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
+ static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
+ Fts5PageWriter *pPage = &pWriter->writer;
+ i64 iRowid;
+
+ assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );
+
+ /* Set the szLeaf header field. */
+ assert( 0==fts5GetU16(&pPage->buf.p[2]) );
+ fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);
+
+ if( pWriter->bFirstTermInPage ){
+ /* No term was written to this page. */
+ assert( pPage->pgidx.n==0 );
+ fts5WriteBtreeNoTerm(p, pWriter);
+ }else{
+ /* Append the pgidx to the page buffer. Set the szLeaf header field. */
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, pPage->pgidx.n, pPage->pgidx.p);
+ }
+
+ /* Write the page out to disk */
+ iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, pPage->pgno);
+ fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
+
+ /* Initialize the next page. */
+ fts5BufferZero(&pPage->buf);
+ fts5BufferZero(&pPage->pgidx);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
+ pPage->iPrevPgidx = 0;
+ pPage->pgno++;
+
+ /* Increase the leaves written counter */
+ pWriter->nLeafWritten++;
+
+ /* The new leaf holds no terms or rowids */
+ pWriter->bFirstTermInPage = 1;
+ pWriter->bFirstRowidInPage = 1;
+}
+
+/*
+** Append term pTerm/nTerm to the segment being written by the writer passed
+** as the second argument.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5WriteAppendTerm(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nTerm, const u8 *pTerm
+){
+ int nPrefix; /* Bytes of prefix compression for term */
+ Fts5PageWriter *pPage = &pWriter->writer;
+ Fts5Buffer *pPgidx = &pWriter->writer.pgidx;
+ int nMin = MIN(pPage->term.n, nTerm);
+
+ assert( p->rc==SQLITE_OK );
+ assert( pPage->buf.n>=4 );
+ assert( pPage->buf.n>4 || pWriter->bFirstTermInPage );
+
+ /* If the current leaf page is full, flush it to disk. */
+ if( (pPage->buf.n + pPgidx->n + nTerm + 2)>=p->pConfig->pgsz ){
+ if( pPage->buf.n>4 ){
+ fts5WriteFlushLeaf(p, pWriter);
+ if( p->rc!=SQLITE_OK ) return;
+ }
+ fts5BufferGrow(&p->rc, &pPage->buf, nTerm+FTS5_DATA_PADDING);
+ }
+
+ /* TODO1: Updating pgidx here. */
+ pPgidx->n += sqlite3Fts5PutVarint(
+ &pPgidx->p[pPgidx->n], pPage->buf.n - pPage->iPrevPgidx
+ );
+ pPage->iPrevPgidx = pPage->buf.n;
+#if 0
+ fts5PutU16(&pPgidx->p[pPgidx->n], pPage->buf.n);
+ pPgidx->n += 2;
+#endif
+
+ if( pWriter->bFirstTermInPage ){
+ nPrefix = 0;
+ if( pPage->pgno!=1 ){
+ /* This is the first term on a leaf that is not the leftmost leaf in
+ ** the segment b-tree. In this case it is necessary to add a term to
+ ** the b-tree hierarchy that is (a) larger than the largest term
+ ** already written to the segment and (b) smaller than or equal to
+ ** this term. In other words, a prefix of (pTerm/nTerm) that is one
+ ** byte longer than the longest prefix (pTerm/nTerm) shares with the
+ ** previous term.
+ **
+ ** Usually, the previous term is available in pPage->term. The exception
+ ** is if this is the first term written in an incremental-merge step.
+ ** In this case the previous term is not available, so just write a
+ ** copy of (pTerm/nTerm) into the parent node. This is slightly
+ ** inefficient, but still correct. */
+ int n = nTerm;
+ if( pPage->term.n ){
+ n = 1 + fts5PrefixCompress(nMin, pPage->term.p, pTerm);
+ }
+ fts5WriteBtreeTerm(p, pWriter, n, pTerm);
+ if( p->rc!=SQLITE_OK ) return;
+ pPage = &pWriter->writer;
+ }
+ }else{
+ nPrefix = fts5PrefixCompress(nMin, pPage->term.p, pTerm);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
+ }
+
+ /* Append the number of bytes of new data, then the term data itself
+ ** to the page. */
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
+
+ /* Update the Fts5PageWriter.term field. */
+ fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
+ pWriter->bFirstTermInPage = 0;
+
+ pWriter->bFirstRowidInPage = 0;
+ pWriter->bFirstRowidInDoclist = 1;
+
+ assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) );
+ pWriter->aDlidx[0].pgno = pPage->pgno;
+}
+
+/*
+** Append a rowid and position-list size field to the writers output.
+*/
+static void fts5WriteAppendRowid(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ if( p->rc==SQLITE_OK ){
+ Fts5PageWriter *pPage = &pWriter->writer;
+
+ if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+
+ /* If this is to be the first rowid written to the page, set the
+ ** rowid-pointer in the page-header. Also append a value to the dlidx
+ ** buffer, in case a doclist-index is required. */
+ if( pWriter->bFirstRowidInPage ){
+ fts5PutU16(pPage->buf.p, (u16)pPage->buf.n);
+ fts5WriteDlidxAppend(p, pWriter, iRowid);
+ }
+
+ /* Write the rowid. */
+ if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
+ }else{
+ assert_nc( p->rc || iRowid>pWriter->iPrevRowid );
+ fts5BufferAppendVarint(&p->rc, &pPage->buf,
+ (u64)iRowid - (u64)pWriter->iPrevRowid
+ );
+ }
+ pWriter->iPrevRowid = iRowid;
+ pWriter->bFirstRowidInDoclist = 0;
+ pWriter->bFirstRowidInPage = 0;
+ }
+}
+
+static void fts5WriteAppendPoslistData(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ const u8 *aData,
+ int nData
+){
+ Fts5PageWriter *pPage = &pWriter->writer;
+ const u8 *a = aData;
+ int n = nData;
+
+ assert( p->pConfig->pgsz>0 );
+ while( p->rc==SQLITE_OK
+ && (pPage->buf.n + pPage->pgidx.n + n)>=p->pConfig->pgsz
+ ){
+ int nReq = p->pConfig->pgsz - pPage->buf.n - pPage->pgidx.n;
+ int nCopy = 0;
+ while( nCopy<nReq ){
+ i64 dummy;
+ nCopy += fts5GetVarint(&a[nCopy], (u64*)&dummy);
+ }
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
+ a += nCopy;
+ n -= nCopy;
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ if( n>0 ){
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
+ }
+}
+
+/*
+** Flush any data cached by the writer object to the database. Free any
+** allocations associated with the writer.
+*/
+static void fts5WriteFinish(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter, /* Writer object */
+ int *pnLeaf /* OUT: Number of leaf pages in b-tree */
+){
+ int i;
+ Fts5PageWriter *pLeaf = &pWriter->writer;
+ if( p->rc==SQLITE_OK ){
+ assert( pLeaf->pgno>=1 );
+ if( pLeaf->buf.n>4 ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ *pnLeaf = pLeaf->pgno-1;
+ if( pLeaf->pgno>1 ){
+ fts5WriteFlushBtree(p, pWriter);
+ }
+ }
+ fts5BufferFree(&pLeaf->term);
+ fts5BufferFree(&pLeaf->buf);
+ fts5BufferFree(&pLeaf->pgidx);
+ fts5BufferFree(&pWriter->btterm);
+
+ for(i=0; i<pWriter->nDlidx; i++){
+ sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf);
+ }
+ sqlite3_free(pWriter->aDlidx);
+}
+
+static void fts5WriteInit(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int iSegid
+){
+ const int nBuffer = p->pConfig->pgsz + FTS5_DATA_PADDING;
+
+ memset(pWriter, 0, sizeof(Fts5SegWriter));
+ pWriter->iSegid = iSegid;
+
+ fts5WriteDlidxGrow(p, pWriter, 1);
+ pWriter->writer.pgno = 1;
+ pWriter->bFirstTermInPage = 1;
+ pWriter->iBtPage = 1;
+
+ assert( pWriter->writer.buf.n==0 );
+ assert( pWriter->writer.pgidx.n==0 );
+
+ /* Grow the two buffers to pgsz + padding bytes in size. */
+ sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.pgidx, nBuffer);
+ sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.buf, nBuffer);
+
+ if( p->pIdxWriter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
+ "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+
+ if( p->rc==SQLITE_OK ){
+ /* Initialize the 4-byte leaf-page header to 0x00. */
+ memset(pWriter->writer.buf.p, 0, 4);
+ pWriter->writer.buf.n = 4;
+
+ /* Bind the current output segment id to the index-writer. This is an
+ ** optimization over binding the same value over and over as rows are
+ ** inserted into %_idx by the current writer. */
+ sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid);
+ }
+}
+
+/*
+** Iterator pIter was used to iterate through the input segments of on an
+** incremental merge operation. This function is called if the incremental
+** merge step has finished but the input has not been completely exhausted.
+*/
+static void fts5TrimSegments(Fts5Index *p, Fts5Iter *pIter){
+ int i;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ for(i=0; i<pIter->nSeg && p->rc==SQLITE_OK; i++){
+ Fts5SegIter *pSeg = &pIter->aSeg[i];
+ if( pSeg->pSeg==0 ){
+ /* no-op */
+ }else if( pSeg->pLeaf==0 ){
+ /* All keys from this input segment have been transfered to the output.
+ ** Set both the first and last page-numbers to 0 to indicate that the
+ ** segment is now empty. */
+ pSeg->pSeg->pgnoLast = 0;
+ pSeg->pSeg->pgnoFirst = 0;
+ }else{
+ int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */
+ i64 iLeafRowid;
+ Fts5Data *pData;
+ int iId = pSeg->pSeg->iSegid;
+ u8 aHdr[4] = {0x00, 0x00, 0x00, 0x00};
+
+ iLeafRowid = FTS5_SEGMENT_ROWID(iId, pSeg->iTermLeafPgno);
+ pData = fts5LeafRead(p, iLeafRowid);
+ if( pData ){
+ if( iOff>pData->szLeaf ){
+ /* This can occur if the pages that the segments occupy overlap - if
+ ** a single page has been assigned to more than one segment. In
+ ** this case a prior iteration of this loop may have corrupted the
+ ** segment currently being trimmed. */
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5BufferZero(&buf);
+ fts5BufferGrow(&p->rc, &buf, pData->nn);
+ fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
+ fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
+ fts5BufferAppendBlob(&p->rc, &buf,pData->szLeaf-iOff,&pData->p[iOff]);
+ if( p->rc==SQLITE_OK ){
+ /* Set the szLeaf field */
+ fts5PutU16(&buf.p[2], (u16)buf.n);
+ }
+
+ /* Set up the new page-index array */
+ fts5BufferAppendVarint(&p->rc, &buf, 4);
+ if( pSeg->iLeafPgno==pSeg->iTermLeafPgno
+ && pSeg->iEndofDoclist<pData->szLeaf
+ && pSeg->iPgidxOff<=pData->nn
+ ){
+ int nDiff = pData->szLeaf - pSeg->iEndofDoclist;
+ fts5BufferAppendVarint(&p->rc, &buf, buf.n - 1 - nDiff - 4);
+ fts5BufferAppendBlob(&p->rc, &buf,
+ pData->nn - pSeg->iPgidxOff, &pData->p[pSeg->iPgidxOff]
+ );
+ }
+
+ pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
+ fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 1), iLeafRowid);
+ fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
+ }
+ fts5DataRelease(pData);
+ }
+ }
+ }
+ fts5BufferFree(&buf);
+}
+
+static void fts5MergeChunkCallback(
+ Fts5Index *p,
+ void *pCtx,
+ const u8 *pChunk, int nChunk
+){
+ Fts5SegWriter *pWriter = (Fts5SegWriter*)pCtx;
+ fts5WriteAppendPoslistData(p, pWriter, pChunk, nChunk);
+}
+
+/*
+**
+*/
+static void fts5IndexMergeLevel(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Stucture of index */
+ int iLvl, /* Level to read input from */
+ int *pnRem /* Write up to this many output leaves */
+){
+ Fts5Structure *pStruct = *ppStruct;
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureLevel *pLvlOut;
+ Fts5Iter *pIter = 0; /* Iterator to read input data */
+ int nRem = pnRem ? *pnRem : 0; /* Output leaf pages left to write */
+ int nInput; /* Number of input segments */
+ Fts5SegWriter writer; /* Writer object */
+ Fts5StructureSegment *pSeg; /* Output segment */
+ Fts5Buffer term;
+ int bOldest; /* True if the output segment is the oldest */
+ int eDetail = p->pConfig->eDetail;
+ const int flags = FTS5INDEX_QUERY_NOOUTPUT;
+ int bTermWritten = 0; /* True if current term already output */
+
+ assert( iLvl<pStruct->nLevel );
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ memset(&writer, 0, sizeof(Fts5SegWriter));
+ memset(&term, 0, sizeof(Fts5Buffer));
+ if( pLvl->nMerge ){
+ pLvlOut = &pStruct->aLevel[iLvl+1];
+ assert( pLvlOut->nSeg>0 );
+ nInput = pLvl->nMerge;
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1];
+
+ fts5WriteInit(p, &writer, pSeg->iSegid);
+ writer.writer.pgno = pSeg->pgnoLast+1;
+ writer.iBtPage = 0;
+ }else{
+ int iSegid = fts5AllocateSegid(p, pStruct);
+
+ /* Extend the Fts5Structure object as required to ensure the output
+ ** segment exists. */
+ if( iLvl==pStruct->nLevel-1 ){
+ fts5StructureAddLevel(&p->rc, ppStruct);
+ pStruct = *ppStruct;
+ }
+ fts5StructureExtendLevel(&p->rc, pStruct, iLvl+1, 1, 0);
+ if( p->rc ) return;
+ pLvl = &pStruct->aLevel[iLvl];
+ pLvlOut = &pStruct->aLevel[iLvl+1];
+
+ fts5WriteInit(p, &writer, iSegid);
+
+ /* Add the new segment to the output level */
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg];
+ pLvlOut->nSeg++;
+ pSeg->pgnoFirst = 1;
+ pSeg->iSegid = iSegid;
+ pStruct->nSegment++;
+
+ /* Read input from all segments in the input level */
+ nInput = pLvl->nSeg;
+
+ /* Set the range of origins that will go into the output segment. */
+ if( pStruct->nOriginCntr>0 ){
+ pSeg->iOrigin1 = pLvl->aSeg[0].iOrigin1;
+ pSeg->iOrigin2 = pLvl->aSeg[pLvl->nSeg-1].iOrigin2;
+ }
+ }
+ bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);
+
+ assert( iLvl>=0 );
+ for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter, 0, 0)
+ ){
+ Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ int nPos; /* position-list size field value */
+ int nTerm;
+ const u8 *pTerm;
+
+ pTerm = fts5MultiIterTerm(pIter, &nTerm);
+ if( nTerm!=term.n || fts5Memcmp(pTerm, term.p, nTerm) ){
+ if( pnRem && writer.nLeafWritten>nRem ){
+ break;
+ }
+ fts5BufferSet(&p->rc, &term, nTerm, pTerm);
+ bTermWritten =0;
+ }
+
+ /* Check for key annihilation. */
+ if( pSegIter->nPos==0 && (bOldest || pSegIter->bDel==0) ) continue;
+
+ if( p->rc==SQLITE_OK && bTermWritten==0 ){
+ /* This is a new term. Append a term to the output segment. */
+ fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
+ bTermWritten = 1;
+ }
+
+ /* Append the rowid to the output */
+ /* WRITEPOSLISTSIZE */
+ fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( pSegIter->bDel ){
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
+ if( pSegIter->nPos>0 ){
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
+ }
+ }
+ }else{
+ /* Append the position-list data to the output */
+ nPos = pSegIter->nPos*2 + pSegIter->bDel;
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, nPos);
+ fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
+ }
+ }
+
+ /* Flush the last leaf page to disk. Set the output segment b-tree height
+ ** and last leaf page number at the same time. */
+ fts5WriteFinish(p, &writer, &pSeg->pgnoLast);
+
+ assert( pIter!=0 || p->rc!=SQLITE_OK );
+ if( fts5MultiIterEof(p, pIter) ){
+ int i;
+
+ /* Remove the redundant segments from the %_data table */
+ assert( pSeg->nEntry==0 );
+ for(i=0; i<nInput; i++){
+ Fts5StructureSegment *pOld = &pLvl->aSeg[i];
+ pSeg->nEntry += (pOld->nEntry - pOld->nEntryTombstone);
+ fts5DataRemoveSegment(p, pOld);
+ }
+
+ /* Remove the redundant segments from the input level */
+ if( pLvl->nSeg!=nInput ){
+ int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
+ memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
+ }
+ pStruct->nSegment -= nInput;
+ pLvl->nSeg -= nInput;
+ pLvl->nMerge = 0;
+ if( pSeg->pgnoLast==0 ){
+ pLvlOut->nSeg--;
+ pStruct->nSegment--;
+ }
+ }else{
+ assert( pSeg->pgnoLast>0 );
+ fts5TrimSegments(p, pIter);
+ pLvl->nMerge = nInput;
+ }
+
+ fts5MultiIterFree(pIter);
+ fts5BufferFree(&term);
+ if( pnRem ) *pnRem -= writer.nLeafWritten;
+}
+
+/*
+** If this is not a contentless_delete=1 table, or if the 'deletemerge'
+** configuration option is set to 0, then this function always returns -1.
+** Otherwise, it searches the structure object passed as the second argument
+** for a level suitable for merging due to having a large number of
+** tombstones in the tombstone hash. If one is found, its index is returned.
+** Otherwise, if there is no suitable level, -1.
+*/
+static int fts5IndexFindDeleteMerge(Fts5Index *p, Fts5Structure *pStruct){
+ Fts5Config *pConfig = p->pConfig;
+ int iRet = -1;
+ if( pConfig->bContentlessDelete && pConfig->nDeleteMerge>0 ){
+ int ii;
+ int nBest = 0;
+
+ for(ii=0; ii<pStruct->nLevel; ii++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[ii];
+ i64 nEntry = 0;
+ i64 nTomb = 0;
+ int iSeg;
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ nEntry += pLvl->aSeg[iSeg].nEntry;
+ nTomb += pLvl->aSeg[iSeg].nEntryTombstone;
+ }
+ assert_nc( nEntry>0 || pLvl->nSeg==0 );
+ if( nEntry>0 ){
+ int nPercent = (nTomb * 100) / nEntry;
+ if( nPercent>=pConfig->nDeleteMerge && nPercent>nBest ){
+ iRet = ii;
+ nBest = nPercent;
+ }
+ }
+ }
+ }
+ return iRet;
+}
+
+/*
+** Do up to nPg pages of automerge work on the index.
+**
+** Return true if any changes were actually made, or false otherwise.
+*/
+static int fts5IndexMerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
+ int nPg, /* Pages of work to do */
+ int nMin /* Minimum number of segments to merge */
+){
+ int nRem = nPg;
+ int bRet = 0;
+ Fts5Structure *pStruct = *ppStruct;
+ while( nRem>0 && p->rc==SQLITE_OK ){
+ int iLvl; /* To iterate through levels */
+ int iBestLvl = 0; /* Level offering the most input segments */
+ int nBest = 0; /* Number of input segments on best level */
+
+ /* Set iBestLvl to the level to read input segments from. Or to -1 if
+ ** there is no level suitable to merge segments from. */
+ assert( pStruct->nLevel>0 );
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ if( pLvl->nMerge ){
+ if( pLvl->nMerge>nBest ){
+ iBestLvl = iLvl;
+ nBest = nMin;
+ }
+ break;
+ }
+ if( pLvl->nSeg>nBest ){
+ nBest = pLvl->nSeg;
+ iBestLvl = iLvl;
+ }
+ }
+ if( nBest<nMin ){
+ iBestLvl = fts5IndexFindDeleteMerge(p, pStruct);
+ }
+
+ if( iBestLvl<0 ) break;
+ bRet = 1;
+ fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem);
+ if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
+ fts5StructurePromote(p, iBestLvl+1, pStruct);
+ }
+
+ if( nMin==1 ) nMin = 2;
+ }
+ *ppStruct = pStruct;
+ return bRet;
+}
+
+/*
+** A total of nLeaf leaf pages of data has just been flushed to a level-0
+** segment. This function updates the write-counter accordingly and, if
+** necessary, performs incremental merge work.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5IndexAutomerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
+ int nLeaf /* Number of output leaves just written */
+){
+ if( p->rc==SQLITE_OK && p->pConfig->nAutomerge>0 && ALWAYS((*ppStruct)!=0) ){
+ Fts5Structure *pStruct = *ppStruct;
+ u64 nWrite; /* Initial value of write-counter */
+ int nWork; /* Number of work-quanta to perform */
+ int nRem; /* Number of leaf pages left to write */
+
+ /* Update the write-counter. While doing so, set nWork. */
+ nWrite = pStruct->nWriteCounter;
+ nWork = (int)(((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit));
+ pStruct->nWriteCounter += nLeaf;
+ nRem = (int)(p->nWorkUnit * nWork * pStruct->nLevel);
+
+ fts5IndexMerge(p, ppStruct, nRem, p->pConfig->nAutomerge);
+ }
+}
+
+static void fts5IndexCrisismerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct /* IN/OUT: Current structure of index */
+){
+ const int nCrisis = p->pConfig->nCrisisMerge;
+ Fts5Structure *pStruct = *ppStruct;
+ if( pStruct && pStruct->nLevel>0 ){
+ int iLvl = 0;
+ while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){
+ fts5IndexMergeLevel(p, &pStruct, iLvl, 0);
+ assert( p->rc!=SQLITE_OK || pStruct->nLevel>(iLvl+1) );
+ fts5StructurePromote(p, iLvl+1, pStruct);
+ iLvl++;
+ }
+ *ppStruct = pStruct;
+ }
+}
+
+static int fts5IndexReturn(Fts5Index *p){
+ int rc = p->rc;
+ p->rc = SQLITE_OK;
+ return rc;
+}
+
+typedef struct Fts5FlushCtx Fts5FlushCtx;
+struct Fts5FlushCtx {
+ Fts5Index *pIdx;
+ Fts5SegWriter writer;
+};
+
+/*
+** Buffer aBuf[] contains a list of varints, all small enough to fit
+** in a 32-bit integer. Return the size of the largest prefix of this
+** list nMax bytes or less in size.
+*/
+static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
+ int ret;
+ u32 dummy;
+ ret = fts5GetVarint32(aBuf, dummy);
+ if( ret<nMax ){
+ while( 1 ){
+ int i = fts5GetVarint32(&aBuf[ret], dummy);
+ if( (ret + i) > nMax ) break;
+ ret += i;
+ }
+ }
+ return ret;
+}
+
+/*
+** Execute the SQL statement:
+**
+** DELETE FROM %_idx WHERE (segid, (pgno/2)) = ($iSegid, $iPgno);
+**
+** This is used when a secure-delete operation removes the last term
+** from a segment leaf page. In that case the %_idx entry is removed
+** too. This is done to ensure that if all instances of a token are
+** removed from an fts5 database in secure-delete mode, no trace of
+** the token itself remains in the database.
+*/
+static void fts5SecureDeleteIdxEntry(
+ Fts5Index *p, /* FTS5 backend object */
+ int iSegid, /* Id of segment to delete entry for */
+ int iPgno /* Page number within segment */
+){
+ if( iPgno!=1 ){
+ assert( p->pConfig->iVersion==FTS5_CURRENT_VERSION_SECUREDELETE );
+ if( p->pDeleteFromIdx==0 ){
+ fts5IndexPrepareStmt(p, &p->pDeleteFromIdx, sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_idx' WHERE (segid, (pgno/2)) = (?1, ?2)",
+ p->pConfig->zDb, p->pConfig->zName
+ ));
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_bind_int(p->pDeleteFromIdx, 1, iSegid);
+ sqlite3_bind_int(p->pDeleteFromIdx, 2, iPgno);
+ sqlite3_step(p->pDeleteFromIdx);
+ p->rc = sqlite3_reset(p->pDeleteFromIdx);
+ }
+ }
+}
+
+/*
+** This is called when a secure-delete operation removes a position-list
+** that overflows onto segment page iPgno of segment pSeg. This function
+** rewrites node iPgno, and possibly one or more of its right-hand peers,
+** to remove this portion of the position list.
+**
+** Output variable (*pbLastInDoclist) is set to true if the position-list
+** removed is followed by a new term or the end-of-segment, or false if
+** it is followed by another rowid/position list.
+*/
+static void fts5SecureDeleteOverflow(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg,
+ int iPgno,
+ int *pbLastInDoclist
+){
+ const int bDetailNone = (p->pConfig->eDetail==FTS5_DETAIL_NONE);
+ int pgno;
+ Fts5Data *pLeaf = 0;
+ assert( iPgno!=1 );
+
+ *pbLastInDoclist = 1;
+ for(pgno=iPgno; p->rc==SQLITE_OK && pgno<=pSeg->pgnoLast; pgno++){
+ i64 iRowid = FTS5_SEGMENT_ROWID(pSeg->iSegid, pgno);
+ int iNext = 0;
+ u8 *aPg = 0;
+
+ pLeaf = fts5DataRead(p, iRowid);
+ if( pLeaf==0 ) break;
+ aPg = pLeaf->p;
+
+ iNext = fts5GetU16(&aPg[0]);
+ if( iNext!=0 ){
+ *pbLastInDoclist = 0;
+ }
+ if( iNext==0 && pLeaf->szLeaf!=pLeaf->nn ){
+ fts5GetVarint32(&aPg[pLeaf->szLeaf], iNext);
+ }
+
+ if( iNext==0 ){
+ /* The page contains no terms or rowids. Replace it with an empty
+ ** page and move on to the right-hand peer. */
+ const u8 aEmpty[] = {0x00, 0x00, 0x00, 0x04};
+ assert_nc( bDetailNone==0 || pLeaf->nn==4 );
+ if( bDetailNone==0 ) fts5DataWrite(p, iRowid, aEmpty, sizeof(aEmpty));
+ fts5DataRelease(pLeaf);
+ pLeaf = 0;
+ }else if( bDetailNone ){
+ break;
+ }else if( iNext>=pLeaf->szLeaf || pLeaf->nn<pLeaf->szLeaf || iNext<4 ){
+ p->rc = FTS5_CORRUPT;
+ break;
+ }else{
+ int nShift = iNext - 4;
+ int nPg;
+
+ int nIdx = 0;
+ u8 *aIdx = 0;
+
+ /* Unless the current page footer is 0 bytes in size (in which case
+ ** the new page footer will be as well), allocate and populate a
+ ** buffer containing the new page footer. Set stack variables aIdx
+ ** and nIdx accordingly. */
+ if( pLeaf->nn>pLeaf->szLeaf ){
+ int iFirst = 0;
+ int i1 = pLeaf->szLeaf;
+ int i2 = 0;
+
+ i1 += fts5GetVarint32(&aPg[i1], iFirst);
+ if( iFirst<iNext ){
+ p->rc = FTS5_CORRUPT;
+ break;
+ }
+ aIdx = sqlite3Fts5MallocZero(&p->rc, (pLeaf->nn-pLeaf->szLeaf)+2);
+ if( aIdx==0 ) break;
+ i2 = sqlite3Fts5PutVarint(aIdx, iFirst-nShift);
+ if( i1<pLeaf->nn ){
+ memcpy(&aIdx[i2], &aPg[i1], pLeaf->nn-i1);
+ i2 += (pLeaf->nn-i1);
+ }
+ nIdx = i2;
+ }
+
+ /* Modify the contents of buffer aPg[]. Set nPg to the new size
+ ** in bytes. The new page is always smaller than the old. */
+ nPg = pLeaf->szLeaf - nShift;
+ memmove(&aPg[4], &aPg[4+nShift], nPg-4);
+ fts5PutU16(&aPg[2], nPg);
+ if( fts5GetU16(&aPg[0]) ) fts5PutU16(&aPg[0], 4);
+ if( nIdx>0 ){
+ memcpy(&aPg[nPg], aIdx, nIdx);
+ nPg += nIdx;
+ }
+ sqlite3_free(aIdx);
+
+ /* Write the new page to disk and exit the loop */
+ assert( nPg>4 || fts5GetU16(aPg)==0 );
+ fts5DataWrite(p, iRowid, aPg, nPg);
+ break;
+ }
+ }
+ fts5DataRelease(pLeaf);
+}
+
+/*
+** Completely remove the entry that pSeg currently points to from
+** the database.
+*/
+static void fts5DoSecureDelete(
+ Fts5Index *p,
+ Fts5SegIter *pSeg
+){
+ const int bDetailNone = (p->pConfig->eDetail==FTS5_DETAIL_NONE);
+ int iSegid = pSeg->pSeg->iSegid;
+ u8 *aPg = pSeg->pLeaf->p;
+ int nPg = pSeg->pLeaf->nn;
+ int iPgIdx = pSeg->pLeaf->szLeaf;
+
+ u64 iDelta = 0;
+ int iNextOff = 0;
+ int iOff = 0;
+ int nIdx = 0;
+ u8 *aIdx = 0;
+ int bLastInDoclist = 0;
+ int iIdx = 0;
+ int iStart = 0;
+ int iDelKeyOff = 0; /* Offset of deleted key, if any */
+
+ nIdx = nPg-iPgIdx;
+ aIdx = sqlite3Fts5MallocZero(&p->rc, nIdx+16);
+ if( p->rc ) return;
+ memcpy(aIdx, &aPg[iPgIdx], nIdx);
+
+ /* At this point segment iterator pSeg points to the entry
+ ** this function should remove from the b-tree segment.
+ **
+ ** In detail=full or detail=column mode, pSeg->iLeafOffset is the
+ ** offset of the first byte in the position-list for the entry to
+ ** remove. Immediately before this comes two varints that will also
+ ** need to be removed:
+ **
+ ** + the rowid or delta rowid value for the entry, and
+ ** + the size of the position list in bytes.
+ **
+ ** Or, in detail=none mode, there is a single varint prior to
+ ** pSeg->iLeafOffset - the rowid or delta rowid value.
+ **
+ ** This block sets the following variables:
+ **
+ ** iStart:
+ ** The offset of the first byte of the rowid or delta-rowid
+ ** value for the doclist entry being removed.
+ **
+ ** iDelta:
+ ** The value of the rowid or delta-rowid value for the doclist
+ ** entry being removed.
+ **
+ ** iNextOff:
+ ** The offset of the next entry following the position list
+ ** for the one being removed. If the position list for this
+ ** entry overflows onto the next leaf page, this value will be
+ ** greater than pLeaf->szLeaf.
+ */
+ {
+ int iSOP; /* Start-Of-Position-list */
+ if( pSeg->iLeafPgno==pSeg->iTermLeafPgno ){
+ iStart = pSeg->iTermLeafOffset;
+ }else{
+ iStart = fts5GetU16(&aPg[0]);
+ }
+
+ iSOP = iStart + fts5GetVarint(&aPg[iStart], &iDelta);
+ assert_nc( iSOP<=pSeg->iLeafOffset );
+
+ if( bDetailNone ){
+ while( iSOP<pSeg->iLeafOffset ){
+ if( aPg[iSOP]==0x00 ) iSOP++;
+ if( aPg[iSOP]==0x00 ) iSOP++;
+ iStart = iSOP;
+ iSOP = iStart + fts5GetVarint(&aPg[iStart], &iDelta);
+ }
+
+ iNextOff = iSOP;
+ if( iNextOff<pSeg->iEndofDoclist && aPg[iNextOff]==0x00 ) iNextOff++;
+ if( iNextOff<pSeg->iEndofDoclist && aPg[iNextOff]==0x00 ) iNextOff++;
+
+ }else{
+ int nPos = 0;
+ iSOP += fts5GetVarint32(&aPg[iSOP], nPos);
+ while( iSOP<pSeg->iLeafOffset ){
+ iStart = iSOP + (nPos/2);
+ iSOP = iStart + fts5GetVarint(&aPg[iStart], &iDelta);
+ iSOP += fts5GetVarint32(&aPg[iSOP], nPos);
+ }
+ assert_nc( iSOP==pSeg->iLeafOffset );
+ iNextOff = pSeg->iLeafOffset + pSeg->nPos;
+ }
+ }
+
+ iOff = iStart;
+
+ /* Set variable bLastInDoclist to true if this entry happens to be
+ ** the last rowid in the doclist for its term. */
+ if( pSeg->bDel==0 ){
+ if( iNextOff>=iPgIdx ){
+ int pgno = pSeg->iLeafPgno+1;
+ fts5SecureDeleteOverflow(p, pSeg->pSeg, pgno, &bLastInDoclist);
+ iNextOff = iPgIdx;
+ }else{
+ /* Loop through the page-footer. If iNextOff (offset of the
+ ** entry following the one we are removing) is equal to the
+ ** offset of a key on this page, then the entry is the last
+ ** in its doclist. */
+ int iKeyOff = 0;
+ for(iIdx=0; iIdx<nIdx; /* no-op */){
+ u32 iVal = 0;
+ iIdx += fts5GetVarint32(&aIdx[iIdx], iVal);
+ iKeyOff += iVal;
+ if( iKeyOff==iNextOff ){
+ bLastInDoclist = 1;
+ }
+ }
+ }
+
+ /* If this is (a) the first rowid on a page and (b) is not followed by
+ ** another position list on the same page, set the "first-rowid" field
+ ** of the header to 0. */
+ if( fts5GetU16(&aPg[0])==iStart && (bLastInDoclist || iNextOff==iPgIdx) ){
+ fts5PutU16(&aPg[0], 0);
+ }
+ }
+
+ if( pSeg->bDel ){
+ iOff += sqlite3Fts5PutVarint(&aPg[iOff], iDelta);
+ aPg[iOff++] = 0x01;
+ }else if( bLastInDoclist==0 ){
+ if( iNextOff!=iPgIdx ){
+ u64 iNextDelta = 0;
+ iNextOff += fts5GetVarint(&aPg[iNextOff], &iNextDelta);
+ iOff += sqlite3Fts5PutVarint(&aPg[iOff], iDelta + iNextDelta);
+ }
+ }else if(
+ pSeg->iLeafPgno==pSeg->iTermLeafPgno
+ && iStart==pSeg->iTermLeafOffset
+ ){
+ /* The entry being removed was the only position list in its
+ ** doclist. Therefore the term needs to be removed as well. */
+ int iKey = 0;
+ int iKeyOff = 0;
+
+ /* Set iKeyOff to the offset of the term that will be removed - the
+ ** last offset in the footer that is not greater than iStart. */
+ for(iIdx=0; iIdx<nIdx; iKey++){
+ u32 iVal = 0;
+ iIdx += fts5GetVarint32(&aIdx[iIdx], iVal);
+ if( (iKeyOff+iVal)>(u32)iStart ) break;
+ iKeyOff += iVal;
+ }
+ assert_nc( iKey>=1 );
+
+ /* Set iDelKeyOff to the value of the footer entry to remove from
+ ** the page. */
+ iDelKeyOff = iOff = iKeyOff;
+
+ if( iNextOff!=iPgIdx ){
+ /* This is the only position-list associated with the term, and there
+ ** is another term following it on this page. So the subsequent term
+ ** needs to be moved to replace the term associated with the entry
+ ** being removed. */
+ int nPrefix = 0;
+ int nSuffix = 0;
+ int nPrefix2 = 0;
+ int nSuffix2 = 0;
+
+ iDelKeyOff = iNextOff;
+ iNextOff += fts5GetVarint32(&aPg[iNextOff], nPrefix2);
+ iNextOff += fts5GetVarint32(&aPg[iNextOff], nSuffix2);
+
+ if( iKey!=1 ){
+ iKeyOff += fts5GetVarint32(&aPg[iKeyOff], nPrefix);
+ }
+ iKeyOff += fts5GetVarint32(&aPg[iKeyOff], nSuffix);
+
+ nPrefix = MIN(nPrefix, nPrefix2);
+ nSuffix = (nPrefix2 + nSuffix2) - nPrefix;
+
+ if( (iKeyOff+nSuffix)>iPgIdx || (iNextOff+nSuffix2)>iPgIdx ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ if( iKey!=1 ){
+ iOff += sqlite3Fts5PutVarint(&aPg[iOff], nPrefix);
+ }
+ iOff += sqlite3Fts5PutVarint(&aPg[iOff], nSuffix);
+ if( nPrefix2>pSeg->term.n ){
+ p->rc = FTS5_CORRUPT;
+ }else if( nPrefix2>nPrefix ){
+ memcpy(&aPg[iOff], &pSeg->term.p[nPrefix], nPrefix2-nPrefix);
+ iOff += (nPrefix2-nPrefix);
+ }
+ memmove(&aPg[iOff], &aPg[iNextOff], nSuffix2);
+ iOff += nSuffix2;
+ iNextOff += nSuffix2;
+ }
+ }
+ }else if( iStart==4 ){
+ int iPgno;
+
+ assert_nc( pSeg->iLeafPgno>pSeg->iTermLeafPgno );
+ /* The entry being removed may be the only position list in
+ ** its doclist. */
+ for(iPgno=pSeg->iLeafPgno-1; iPgno>pSeg->iTermLeafPgno; iPgno-- ){
+ Fts5Data *pPg = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, iPgno));
+ int bEmpty = (pPg && pPg->nn==4);
+ fts5DataRelease(pPg);
+ if( bEmpty==0 ) break;
+ }
+
+ if( iPgno==pSeg->iTermLeafPgno ){
+ i64 iId = FTS5_SEGMENT_ROWID(iSegid, pSeg->iTermLeafPgno);
+ Fts5Data *pTerm = fts5DataRead(p, iId);
+ if( pTerm && pTerm->szLeaf==pSeg->iTermLeafOffset ){
+ u8 *aTermIdx = &pTerm->p[pTerm->szLeaf];
+ int nTermIdx = pTerm->nn - pTerm->szLeaf;
+ int iTermIdx = 0;
+ int iTermOff = 0;
+
+ while( 1 ){
+ u32 iVal = 0;
+ int nByte = fts5GetVarint32(&aTermIdx[iTermIdx], iVal);
+ iTermOff += iVal;
+ if( (iTermIdx+nByte)>=nTermIdx ) break;
+ iTermIdx += nByte;
+ }
+ nTermIdx = iTermIdx;
+
+ memmove(&pTerm->p[iTermOff], &pTerm->p[pTerm->szLeaf], nTermIdx);
+ fts5PutU16(&pTerm->p[2], iTermOff);
+
+ fts5DataWrite(p, iId, pTerm->p, iTermOff+nTermIdx);
+ if( nTermIdx==0 ){
+ fts5SecureDeleteIdxEntry(p, iSegid, pSeg->iTermLeafPgno);
+ }
+ }
+ fts5DataRelease(pTerm);
+ }
+ }
+
+ /* Assuming no error has occurred, this block does final edits to the
+ ** leaf page before writing it back to disk. Input variables are:
+ **
+ ** nPg: Total initial size of leaf page.
+ ** iPgIdx: Initial offset of page footer.
+ **
+ ** iOff: Offset to move data to
+ ** iNextOff: Offset to move data from
+ */
+ if( p->rc==SQLITE_OK ){
+ const int nMove = nPg - iNextOff; /* Number of bytes to move */
+ int nShift = iNextOff - iOff; /* Distance to move them */
+
+ int iPrevKeyOut = 0;
+ int iKeyIn = 0;
+
+ memmove(&aPg[iOff], &aPg[iNextOff], nMove);
+ iPgIdx -= nShift;
+ nPg = iPgIdx;
+ fts5PutU16(&aPg[2], iPgIdx);
+
+ for(iIdx=0; iIdx<nIdx; /* no-op */){
+ u32 iVal = 0;
+ iIdx += fts5GetVarint32(&aIdx[iIdx], iVal);
+ iKeyIn += iVal;
+ if( iKeyIn!=iDelKeyOff ){
+ int iKeyOut = (iKeyIn - (iKeyIn>iOff ? nShift : 0));
+ nPg += sqlite3Fts5PutVarint(&aPg[nPg], iKeyOut - iPrevKeyOut);
+ iPrevKeyOut = iKeyOut;
+ }
+ }
+
+ if( iPgIdx==nPg && nIdx>0 && pSeg->iLeafPgno!=1 ){
+ fts5SecureDeleteIdxEntry(p, iSegid, pSeg->iLeafPgno);
+ }
+
+ assert_nc( nPg>4 || fts5GetU16(aPg)==0 );
+ fts5DataWrite(p, FTS5_SEGMENT_ROWID(iSegid,pSeg->iLeafPgno), aPg, nPg);
+ }
+ sqlite3_free(aIdx);
+}
+
+/*
+** This is called as part of flushing a delete to disk in 'secure-delete'
+** mode. It edits the segments within the database described by argument
+** pStruct to remove the entries for term zTerm, rowid iRowid.
+*/
+static void fts5FlushSecureDelete(
+ Fts5Index *p,
+ Fts5Structure *pStruct,
+ const char *zTerm,
+ i64 iRowid
+){
+ const int f = FTS5INDEX_QUERY_SKIPHASH;
+ int nTerm = (int)strlen(zTerm);
+ Fts5Iter *pIter = 0; /* Used to find term instance */
+
+ fts5MultiIterNew(p, pStruct, f, 0, (const u8*)zTerm, nTerm, -1, 0, &pIter);
+ if( fts5MultiIterEof(p, pIter)==0 ){
+ i64 iThis = fts5MultiIterRowid(pIter);
+ if( iThis<iRowid ){
+ fts5MultiIterNextFrom(p, pIter, iRowid);
+ }
+
+ if( p->rc==SQLITE_OK
+ && fts5MultiIterEof(p, pIter)==0
+ && iRowid==fts5MultiIterRowid(pIter)
+ ){
+ Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ fts5DoSecureDelete(p, pSeg);
+ }
+ }
+
+ fts5MultiIterFree(pIter);
+}
+
+
+/*
+** Flush the contents of in-memory hash table iHash to a new level-0
+** segment on disk. Also update the corresponding structure record.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5FlushOneHash(Fts5Index *p){
+ Fts5Hash *pHash = p->pHash;
+ Fts5Structure *pStruct;
+ int iSegid;
+ int pgnoLast = 0; /* Last leaf page number in segment */
+
+ /* Obtain a reference to the index structure and allocate a new segment-id
+ ** for the new level-0 segment. */
+ pStruct = fts5StructureRead(p);
+ fts5StructureInvalidate(p);
+
+ if( sqlite3Fts5HashIsEmpty(pHash)==0 ){
+ iSegid = fts5AllocateSegid(p, pStruct);
+ if( iSegid ){
+ const int pgsz = p->pConfig->pgsz;
+ int eDetail = p->pConfig->eDetail;
+ int bSecureDelete = p->pConfig->bSecureDelete;
+ Fts5StructureSegment *pSeg; /* New segment within pStruct */
+ Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */
+ Fts5Buffer *pPgidx; /* Buffer in which to assemble pgidx */
+
+ Fts5SegWriter writer;
+ fts5WriteInit(p, &writer, iSegid);
+
+ pBuf = &writer.writer.buf;
+ pPgidx = &writer.writer.pgidx;
+
+ /* fts5WriteInit() should have initialized the buffers to (most likely)
+ ** the maximum space required. */
+ assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) );
+ assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) );
+
+ /* Begin scanning through hash table entries. This loop runs once for each
+ ** term/doclist currently stored within the hash table. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
+ }
+ while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
+ const char *zTerm; /* Buffer containing term */
+ int nTerm; /* Size of zTerm in bytes */
+ const u8 *pDoclist; /* Pointer to doclist for this term */
+ int nDoclist; /* Size of doclist in bytes */
+
+ /* Get the term and doclist for this entry. */
+ sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
+ nTerm = (int)strlen(zTerm);
+ if( bSecureDelete==0 ){
+ fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm);
+ if( p->rc!=SQLITE_OK ) break;
+ assert( writer.bFirstRowidInPage==0 );
+ }
+
+ if( !bSecureDelete && pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
+ /* The entire doclist will fit on the current leaf. */
+ fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
+ }else{
+ int bTermWritten = !bSecureDelete;
+ i64 iRowid = 0;
+ i64 iPrev = 0;
+ int iOff = 0;
+
+ /* The entire doclist will not fit on this leaf. The following
+ ** loop iterates through the poslists that make up the current
+ ** doclist. */
+ while( p->rc==SQLITE_OK && iOff<nDoclist ){
+ u64 iDelta = 0;
+ iOff += fts5GetVarint(&pDoclist[iOff], &iDelta);
+ iRowid += iDelta;
+
+ /* If in secure delete mode, and if this entry in the poslist is
+ ** in fact a delete, then edit the existing segments directly
+ ** using fts5FlushSecureDelete(). */
+ if( bSecureDelete ){
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( iOff<nDoclist && pDoclist[iOff]==0x00 ){
+ fts5FlushSecureDelete(p, pStruct, zTerm, iRowid);
+ iOff++;
+ if( iOff<nDoclist && pDoclist[iOff]==0x00 ){
+ iOff++;
+ nDoclist = 0;
+ }else{
+ continue;
+ }
+ }
+ }else if( (pDoclist[iOff] & 0x01) ){
+ fts5FlushSecureDelete(p, pStruct, zTerm, iRowid);
+ if( p->rc!=SQLITE_OK || pDoclist[iOff]==0x01 ){
+ iOff++;
+ continue;
+ }
+ }
+ }
+
+ if( p->rc==SQLITE_OK && bTermWritten==0 ){
+ fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm);
+ bTermWritten = 1;
+ assert( p->rc!=SQLITE_OK || writer.bFirstRowidInPage==0 );
+ }
+
+ if( writer.bFirstRowidInPage ){
+ fts5PutU16(&pBuf->p[0], (u16)pBuf->n); /* first rowid on page */
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
+ writer.bFirstRowidInPage = 0;
+ fts5WriteDlidxAppend(p, &writer, iRowid);
+ }else{
+ u64 iRowidDelta = (u64)iRowid - (u64)iPrev;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowidDelta);
+ }
+ if( p->rc!=SQLITE_OK ) break;
+ assert( pBuf->n<=pBuf->nSpace );
+ iPrev = iRowid;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( iOff<nDoclist && pDoclist[iOff]==0 ){
+ pBuf->p[pBuf->n++] = 0;
+ iOff++;
+ if( iOff<nDoclist && pDoclist[iOff]==0 ){
+ pBuf->p[pBuf->n++] = 0;
+ iOff++;
+ }
+ }
+ if( (pBuf->n + pPgidx->n)>=pgsz ){
+ fts5WriteFlushLeaf(p, &writer);
+ }
+ }else{
+ int bDel = 0;
+ int nPos = 0;
+ int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDel);
+ if( bDel && bSecureDelete ){
+ fts5BufferAppendVarint(&p->rc, pBuf, nPos*2);
+ iOff += nCopy;
+ nCopy = nPos;
+ }else{
+ nCopy += nPos;
+ }
+ if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
+ /* The entire poslist will fit on the current leaf. So copy
+ ** it in one go. */
+ fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
+ }else{
+ /* The entire poslist will not fit on this leaf. So it needs
+ ** to be broken into sections. The only qualification being
+ ** that each varint must be stored contiguously. */
+ const u8 *pPoslist = &pDoclist[iOff];
+ int iPos = 0;
+ while( p->rc==SQLITE_OK ){
+ int nSpace = pgsz - pBuf->n - pPgidx->n;
+ int n = 0;
+ if( (nCopy - iPos)<=nSpace ){
+ n = nCopy - iPos;
+ }else{
+ n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
+ }
+ assert( n>0 );
+ fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
+ iPos += n;
+ if( (pBuf->n + pPgidx->n)>=pgsz ){
+ fts5WriteFlushLeaf(p, &writer);
+ }
+ if( iPos>=nCopy ) break;
+ }
+ }
+ iOff += nCopy;
+ }
+ }
+ }
+
+ /* TODO2: Doclist terminator written here. */
+ /* pBuf->p[pBuf->n++] = '\0'; */
+ assert( pBuf->n<=pBuf->nSpace );
+ if( p->rc==SQLITE_OK ) sqlite3Fts5HashScanNext(pHash);
+ }
+ fts5WriteFinish(p, &writer, &pgnoLast);
+
+ assert( p->rc!=SQLITE_OK || bSecureDelete || pgnoLast>0 );
+ if( pgnoLast>0 ){
+ /* Update the Fts5Structure. It is written back to the database by the
+ ** fts5StructureRelease() call below. */
+ if( pStruct->nLevel==0 ){
+ fts5StructureAddLevel(&p->rc, &pStruct);
+ }
+ fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
+ if( p->rc==SQLITE_OK ){
+ pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
+ pSeg->iSegid = iSegid;
+ pSeg->pgnoFirst = 1;
+ pSeg->pgnoLast = pgnoLast;
+ if( pStruct->nOriginCntr>0 ){
+ pSeg->iOrigin1 = pStruct->nOriginCntr;
+ pSeg->iOrigin2 = pStruct->nOriginCntr;
+ pSeg->nEntry = p->nPendingRow;
+ pStruct->nOriginCntr++;
+ }
+ pStruct->nSegment++;
+ }
+ fts5StructurePromote(p, 0, pStruct);
+ }
+ }
+ }
+
+ fts5IndexAutomerge(p, &pStruct, pgnoLast + p->nContentlessDelete);
+ fts5IndexCrisismerge(p, &pStruct);
+ fts5StructureWrite(p, pStruct);
+ fts5StructureRelease(pStruct);
+}
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+*/
+static void fts5IndexFlush(Fts5Index *p){
+ /* Unless it is empty, flush the hash table to disk */
+ if( p->nPendingData || p->nContentlessDelete ){
+ assert( p->pHash );
+ fts5FlushOneHash(p);
+ if( p->rc==SQLITE_OK ){
+ sqlite3Fts5HashClear(p->pHash);
+ p->nPendingData = 0;
+ p->nPendingRow = 0;
+ p->nContentlessDelete = 0;
+ }
+ }
+}
+
+static Fts5Structure *fts5IndexOptimizeStruct(
+ Fts5Index *p,
+ Fts5Structure *pStruct
+){
+ Fts5Structure *pNew = 0;
+ sqlite3_int64 nByte = sizeof(Fts5Structure);
+ int nSeg = pStruct->nSegment;
+ int i;
+
+ /* Figure out if this structure requires optimization. A structure does
+ ** not require optimization if either:
+ **
+ ** 1. it consists of fewer than two segments, or
+ ** 2. all segments are on the same level, or
+ ** 3. all segments except one are currently inputs to a merge operation.
+ **
+ ** In the first case, if there are no tombstone hash pages, return NULL. In
+ ** the second, increment the ref-count on *pStruct and return a copy of the
+ ** pointer to it.
+ */
+ if( nSeg==0 ) return 0;
+ for(i=0; i<pStruct->nLevel; i++){
+ int nThis = pStruct->aLevel[i].nSeg;
+ int nMerge = pStruct->aLevel[i].nMerge;
+ if( nThis>0 && (nThis==nSeg || (nThis==nSeg-1 && nMerge==nThis)) ){
+ if( nSeg==1 && nThis==1 && pStruct->aLevel[i].aSeg[0].nPgTombstone==0 ){
+ return 0;
+ }
+ fts5StructureRef(pStruct);
+ return pStruct;
+ }
+ assert( pStruct->aLevel[i].nMerge<=nThis );
+ }
+
+ nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
+ pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);
+
+ if( pNew ){
+ Fts5StructureLevel *pLvl;
+ nByte = nSeg * sizeof(Fts5StructureSegment);
+ pNew->nLevel = MIN(pStruct->nLevel+1, FTS5_MAX_LEVEL);
+ pNew->nRef = 1;
+ pNew->nWriteCounter = pStruct->nWriteCounter;
+ pNew->nOriginCntr = pStruct->nOriginCntr;
+ pLvl = &pNew->aLevel[pNew->nLevel-1];
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
+ if( pLvl->aSeg ){
+ int iLvl, iSeg;
+ int iSegOut = 0;
+ /* Iterate through all segments, from oldest to newest. Add them to
+ ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest
+ ** segment in the data structure. */
+ for(iLvl=pStruct->nLevel-1; iLvl>=0; iLvl--){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ pLvl->aSeg[iSegOut] = pStruct->aLevel[iLvl].aSeg[iSeg];
+ iSegOut++;
+ }
+ }
+ pNew->nSegment = pLvl->nSeg = nSeg;
+ }else{
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }
+
+ return pNew;
+}
+
+static int sqlite3Fts5IndexOptimize(Fts5Index *p){
+ Fts5Structure *pStruct;
+ Fts5Structure *pNew = 0;
+
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFlush(p);
+ assert( p->nContentlessDelete==0 );
+ pStruct = fts5StructureRead(p);
+ fts5StructureInvalidate(p);
+
+ if( pStruct ){
+ pNew = fts5IndexOptimizeStruct(p, pStruct);
+ }
+ fts5StructureRelease(pStruct);
+
+ assert( pNew==0 || pNew->nSegment>0 );
+ if( pNew ){
+ int iLvl;
+ for(iLvl=0; pNew->aLevel[iLvl].nSeg==0; iLvl++){}
+ while( p->rc==SQLITE_OK && pNew->aLevel[iLvl].nSeg>0 ){
+ int nRem = FTS5_OPT_WORK_UNIT;
+ fts5IndexMergeLevel(p, &pNew, iLvl, &nRem);
+ }
+
+ fts5StructureWrite(p, pNew);
+ fts5StructureRelease(pNew);
+ }
+
+ return fts5IndexReturn(p);
+}
+
+/*
+** This is called to implement the special "VALUES('merge', $nMerge)"
+** INSERT command.
+*/
+static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){
+ Fts5Structure *pStruct = 0;
+
+ fts5IndexFlush(p);
+ pStruct = fts5StructureRead(p);
+ if( pStruct ){
+ int nMin = p->pConfig->nUsermerge;
+ fts5StructureInvalidate(p);
+ if( nMerge<0 ){
+ Fts5Structure *pNew = fts5IndexOptimizeStruct(p, pStruct);
+ fts5StructureRelease(pStruct);
+ pStruct = pNew;
+ nMin = 1;
+ nMerge = nMerge*-1;
+ }
+ if( pStruct && pStruct->nLevel ){
+ if( fts5IndexMerge(p, &pStruct, nMerge, nMin) ){
+ fts5StructureWrite(p, pStruct);
+ }
+ }
+ fts5StructureRelease(pStruct);
+ }
+ return fts5IndexReturn(p);
+}
+
+static void fts5AppendRowid(
+ Fts5Index *p,
+ u64 iDelta,
+ Fts5Iter *pUnused,
+ Fts5Buffer *pBuf
+){
+ UNUSED_PARAM(pUnused);
+ fts5BufferAppendVarint(&p->rc, pBuf, iDelta);
+}
+
+static void fts5AppendPoslist(
+ Fts5Index *p,
+ u64 iDelta,
+ Fts5Iter *pMulti,
+ Fts5Buffer *pBuf
+){
+ int nData = pMulti->base.nData;
+ int nByte = nData + 9 + 9 + FTS5_DATA_ZERO_PADDING;
+ assert( nData>0 );
+ if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nByte) ){
+ fts5BufferSafeAppendVarint(pBuf, iDelta);
+ fts5BufferSafeAppendVarint(pBuf, nData*2);
+ fts5BufferSafeAppendBlob(pBuf, pMulti->base.pData, nData);
+ memset(&pBuf->p[pBuf->n], 0, FTS5_DATA_ZERO_PADDING);
+ }
+}
+
+
+static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
+ u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;
+
+ assert( pIter->aPoslist || (p==0 && pIter->aPoslist==0) );
+ if( p>=pIter->aEof ){
+ pIter->aPoslist = 0;
+ }else{
+ i64 iDelta;
+
+ p += fts5GetVarint(p, (u64*)&iDelta);
+ pIter->iRowid += iDelta;
+
+ /* Read position list size */
+ if( p[0] & 0x80 ){
+ int nPos;
+ pIter->nSize = fts5GetVarint32(p, nPos);
+ pIter->nPoslist = (nPos>>1);
+ }else{
+ pIter->nPoslist = ((int)(p[0])) >> 1;
+ pIter->nSize = 1;
+ }
+
+ pIter->aPoslist = p;
+ if( &pIter->aPoslist[pIter->nPoslist]>pIter->aEof ){
+ pIter->aPoslist = 0;
+ }
+ }
+}
+
+static void fts5DoclistIterInit(
+ Fts5Buffer *pBuf,
+ Fts5DoclistIter *pIter
+){
+ memset(pIter, 0, sizeof(*pIter));
+ if( pBuf->n>0 ){
+ pIter->aPoslist = pBuf->p;
+ pIter->aEof = &pBuf->p[pBuf->n];
+ fts5DoclistIterNext(pIter);
+ }
+}
+
+#if 0
+/*
+** Append a doclist to buffer pBuf.
+**
+** This function assumes that space within the buffer has already been
+** allocated.
+*/
+static void fts5MergeAppendDocid(
+ Fts5Buffer *pBuf, /* Buffer to write to */
+ i64 *piLastRowid, /* IN/OUT: Previous rowid written (if any) */
+ i64 iRowid /* Rowid to append */
+){
+ assert( pBuf->n!=0 || (*piLastRowid)==0 );
+ fts5BufferSafeAppendVarint(pBuf, iRowid - *piLastRowid);
+ *piLastRowid = iRowid;
+}
+#endif
+
+#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \
+ assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \
+ fts5BufferSafeAppendVarint((pBuf), (u64)(iRowid) - (u64)(iLastRowid)); \
+ (iLastRowid) = (iRowid); \
+}
+
+/*
+** Swap the contents of buffer *p1 with that of *p2.
+*/
+static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
+ Fts5Buffer tmp = *p1;
+ *p1 = *p2;
+ *p2 = tmp;
+}
+
+static void fts5NextRowid(Fts5Buffer *pBuf, int *piOff, i64 *piRowid){
+ int i = *piOff;
+ if( i>=pBuf->n ){
+ *piOff = -1;
+ }else{
+ u64 iVal;
+ *piOff = i + sqlite3Fts5GetVarint(&pBuf->p[i], &iVal);
+ *piRowid += iVal;
+ }
+}
+
+/*
+** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
+** In this case the buffers consist of a delta-encoded list of rowids only.
+*/
+static void fts5MergeRowidLists(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Buffer *p1, /* First list to merge */
+ int nBuf, /* Number of entries in apBuf[] */
+ Fts5Buffer *aBuf /* Array of other lists to merge into p1 */
+){
+ int i1 = 0;
+ int i2 = 0;
+ i64 iRowid1 = 0;
+ i64 iRowid2 = 0;
+ i64 iOut = 0;
+ Fts5Buffer *p2 = &aBuf[0];
+ Fts5Buffer out;
+
+ (void)nBuf;
+ memset(&out, 0, sizeof(out));
+ assert( nBuf==1 );
+ sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
+ if( p->rc ) return;
+
+ fts5NextRowid(p1, &i1, &iRowid1);
+ fts5NextRowid(p2, &i2, &iRowid2);
+ while( i1>=0 || i2>=0 ){
+ if( i1>=0 && (i2<0 || iRowid1<iRowid2) ){
+ assert( iOut==0 || iRowid1>iOut );
+ fts5BufferSafeAppendVarint(&out, iRowid1 - iOut);
+ iOut = iRowid1;
+ fts5NextRowid(p1, &i1, &iRowid1);
+ }else{
+ assert( iOut==0 || iRowid2>iOut );
+ fts5BufferSafeAppendVarint(&out, iRowid2 - iOut);
+ iOut = iRowid2;
+ if( i1>=0 && iRowid1==iRowid2 ){
+ fts5NextRowid(p1, &i1, &iRowid1);
+ }
+ fts5NextRowid(p2, &i2, &iRowid2);
+ }
+ }
+
+ fts5BufferSwap(&out, p1);
+ fts5BufferFree(&out);
+}
+
+typedef struct PrefixMerger PrefixMerger;
+struct PrefixMerger {
+ Fts5DoclistIter iter; /* Doclist iterator */
+ i64 iPos; /* For iterating through a position list */
+ int iOff;
+ u8 *aPos;
+ PrefixMerger *pNext; /* Next in docid/poslist order */
+};
+
+static void fts5PrefixMergerInsertByRowid(
+ PrefixMerger **ppHead,
+ PrefixMerger *p
+){
+ if( p->iter.aPoslist ){
+ PrefixMerger **pp = ppHead;
+ while( *pp && p->iter.iRowid>(*pp)->iter.iRowid ){
+ pp = &(*pp)->pNext;
+ }
+ p->pNext = *pp;
+ *pp = p;
+ }
+}
+
+static void fts5PrefixMergerInsertByPosition(
+ PrefixMerger **ppHead,
+ PrefixMerger *p
+){
+ if( p->iPos>=0 ){
+ PrefixMerger **pp = ppHead;
+ while( *pp && p->iPos>(*pp)->iPos ){
+ pp = &(*pp)->pNext;
+ }
+ p->pNext = *pp;
+ *pp = p;
+ }
+}
+
+
+/*
+** Array aBuf[] contains nBuf doclists. These are all merged in with the
+** doclist in buffer p1.
+*/
+static void fts5MergePrefixLists(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Buffer *p1, /* First list to merge */
+ int nBuf, /* Number of buffers in array aBuf[] */
+ Fts5Buffer *aBuf /* Other lists to merge in */
+){
+#define fts5PrefixMergerNextPosition(p) \
+ sqlite3Fts5PoslistNext64((p)->aPos,(p)->iter.nPoslist,&(p)->iOff,&(p)->iPos)
+#define FTS5_MERGE_NLIST 16
+ PrefixMerger aMerger[FTS5_MERGE_NLIST];
+ PrefixMerger *pHead = 0;
+ int i;
+ int nOut = 0;
+ Fts5Buffer out = {0, 0, 0};
+ Fts5Buffer tmp = {0, 0, 0};
+ i64 iLastRowid = 0;
+
+ /* Initialize a doclist-iterator for each input buffer. Arrange them in
+ ** a linked-list starting at pHead in ascending order of rowid. Avoid
+ ** linking any iterators already at EOF into the linked list at all. */
+ assert( nBuf+1<=(int)(sizeof(aMerger)/sizeof(aMerger[0])) );
+ memset(aMerger, 0, sizeof(PrefixMerger)*(nBuf+1));
+ pHead = &aMerger[nBuf];
+ fts5DoclistIterInit(p1, &pHead->iter);
+ for(i=0; i<nBuf; i++){
+ fts5DoclistIterInit(&aBuf[i], &aMerger[i].iter);
+ fts5PrefixMergerInsertByRowid(&pHead, &aMerger[i]);
+ nOut += aBuf[i].n;
+ }
+ if( nOut==0 ) return;
+ nOut += p1->n + 9 + 10*nBuf;
+
+ /* The maximum size of the output is equal to the sum of the
+ ** input sizes + 1 varint (9 bytes). The extra varint is because if the
+ ** first rowid in one input is a large negative number, and the first in
+ ** the other a non-negative number, the delta for the non-negative
+ ** number will be larger on disk than the literal integer value
+ ** was.
+ **
+ ** Or, if the input position-lists are corrupt, then the output might
+ ** include up to (nBuf+1) extra 10-byte positions created by interpreting -1
+ ** (the value PoslistNext64() uses for EOF) as a position and appending
+ ** it to the output. This can happen at most once for each input
+ ** position-list, hence (nBuf+1) 10 byte paddings. */
+ if( sqlite3Fts5BufferSize(&p->rc, &out, nOut) ) return;
+
+ while( pHead ){
+ fts5MergeAppendDocid(&out, iLastRowid, pHead->iter.iRowid);
+
+ if( pHead->pNext && iLastRowid==pHead->pNext->iter.iRowid ){
+ /* Merge data from two or more poslists */
+ i64 iPrev = 0;
+ int nTmp = FTS5_DATA_ZERO_PADDING;
+ int nMerge = 0;
+ PrefixMerger *pSave = pHead;
+ PrefixMerger *pThis = 0;
+ int nTail = 0;
+
+ pHead = 0;
+ while( pSave && pSave->iter.iRowid==iLastRowid ){
+ PrefixMerger *pNext = pSave->pNext;
+ pSave->iOff = 0;
+ pSave->iPos = 0;
+ pSave->aPos = &pSave->iter.aPoslist[pSave->iter.nSize];
+ fts5PrefixMergerNextPosition(pSave);
+ nTmp += pSave->iter.nPoslist + 10;
+ nMerge++;
+ fts5PrefixMergerInsertByPosition(&pHead, pSave);
+ pSave = pNext;
+ }
+
+ if( pHead==0 || pHead->pNext==0 ){
+ p->rc = FTS5_CORRUPT;
+ break;
+ }
+
+ /* See the earlier comment in this function for an explanation of why
+ ** corrupt input position lists might cause the output to consume
+ ** at most nMerge*10 bytes of unexpected space. */
+ if( sqlite3Fts5BufferSize(&p->rc, &tmp, nTmp+nMerge*10) ){
+ break;
+ }
+ fts5BufferZero(&tmp);
+
+ pThis = pHead;
+ pHead = pThis->pNext;
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pThis->iPos);
+ fts5PrefixMergerNextPosition(pThis);
+ fts5PrefixMergerInsertByPosition(&pHead, pThis);
+
+ while( pHead->pNext ){
+ pThis = pHead;
+ if( pThis->iPos!=iPrev ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pThis->iPos);
+ }
+ fts5PrefixMergerNextPosition(pThis);
+ pHead = pThis->pNext;
+ fts5PrefixMergerInsertByPosition(&pHead, pThis);
+ }
+
+ if( pHead->iPos!=iPrev ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pHead->iPos);
+ }
+ nTail = pHead->iter.nPoslist - pHead->iOff;
+
+ /* WRITEPOSLISTSIZE */
+ assert_nc( tmp.n+nTail<=nTmp );
+ assert( tmp.n+nTail<=nTmp+nMerge*10 );
+ if( tmp.n+nTail>nTmp-FTS5_DATA_ZERO_PADDING ){
+ if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
+ break;
+ }
+ fts5BufferSafeAppendVarint(&out, (tmp.n+nTail) * 2);
+ fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
+ if( nTail>0 ){
+ fts5BufferSafeAppendBlob(&out, &pHead->aPos[pHead->iOff], nTail);
+ }
+
+ pHead = pSave;
+ for(i=0; i<nBuf+1; i++){
+ PrefixMerger *pX = &aMerger[i];
+ if( pX->iter.aPoslist && pX->iter.iRowid==iLastRowid ){
+ fts5DoclistIterNext(&pX->iter);
+ fts5PrefixMergerInsertByRowid(&pHead, pX);
+ }
+ }
+
+ }else{
+ /* Copy poslist from pHead to output */
+ PrefixMerger *pThis = pHead;
+ Fts5DoclistIter *pI = &pThis->iter;
+ fts5BufferSafeAppendBlob(&out, pI->aPoslist, pI->nPoslist+pI->nSize);
+ fts5DoclistIterNext(pI);
+ pHead = pThis->pNext;
+ fts5PrefixMergerInsertByRowid(&pHead, pThis);
+ }
+ }
+
+ fts5BufferFree(p1);
+ fts5BufferFree(&tmp);
+ memset(&out.p[out.n], 0, FTS5_DATA_ZERO_PADDING);
+ *p1 = out;
+}
+
+static void fts5SetupPrefixIter(
+ Fts5Index *p, /* Index to read from */
+ int bDesc, /* True for "ORDER BY rowid DESC" */
+ int iIdx, /* Index to scan for data */
+ u8 *pToken, /* Buffer containing prefix to match */
+ int nToken, /* Size of buffer pToken in bytes */
+ Fts5Colset *pColset, /* Restrict matches to these columns */
+ Fts5Iter **ppIter /* OUT: New iterator */
+){
+ Fts5Structure *pStruct;
+ Fts5Buffer *aBuf;
+ int nBuf = 32;
+ int nMerge = 1;
+
+ void (*xMerge)(Fts5Index*, Fts5Buffer*, int, Fts5Buffer*);
+ void (*xAppend)(Fts5Index*, u64, Fts5Iter*, Fts5Buffer*);
+ if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ xMerge = fts5MergeRowidLists;
+ xAppend = fts5AppendRowid;
+ }else{
+ nMerge = FTS5_MERGE_NLIST-1;
+ nBuf = nMerge*8; /* Sufficient to merge (16^8)==(2^32) lists */
+ xMerge = fts5MergePrefixLists;
+ xAppend = fts5AppendPoslist;
+ }
+
+ aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
+ pStruct = fts5StructureRead(p);
+
+ if( aBuf && pStruct ){
+ const int flags = FTS5INDEX_QUERY_SCAN
+ | FTS5INDEX_QUERY_SKIPEMPTY
+ | FTS5INDEX_QUERY_NOOUTPUT;
+ int i;
+ i64 iLastRowid = 0;
+ Fts5Iter *p1 = 0; /* Iterator used to gather data from index */
+ Fts5Data *pData;
+ Fts5Buffer doclist;
+ int bNewTerm = 1;
+
+ memset(&doclist, 0, sizeof(doclist));
+ if( iIdx!=0 ){
+ int dummy = 0;
+ const int f2 = FTS5INDEX_QUERY_SKIPEMPTY|FTS5INDEX_QUERY_NOOUTPUT;
+ pToken[0] = FTS5_MAIN_PREFIX;
+ fts5MultiIterNew(p, pStruct, f2, pColset, pToken, nToken, -1, 0, &p1);
+ fts5IterSetOutputCb(&p->rc, p1);
+ for(;
+ fts5MultiIterEof(p, p1)==0;
+ fts5MultiIterNext2(p, p1, &dummy)
+ ){
+ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
+ p1->xSetOutputs(p1, pSeg);
+ if( p1->base.nData ){
+ xAppend(p, (u64)p1->base.iRowid-(u64)iLastRowid, p1, &doclist);
+ iLastRowid = p1->base.iRowid;
+ }
+ }
+ fts5MultiIterFree(p1);
+ }
+
+ pToken[0] = FTS5_MAIN_PREFIX + iIdx;
+ fts5MultiIterNew(p, pStruct, flags, pColset, pToken, nToken, -1, 0, &p1);
+ fts5IterSetOutputCb(&p->rc, p1);
+ for( /* no-op */ ;
+ fts5MultiIterEof(p, p1)==0;
+ fts5MultiIterNext2(p, p1, &bNewTerm)
+ ){
+ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
+ int nTerm = pSeg->term.n;
+ const u8 *pTerm = pSeg->term.p;
+ p1->xSetOutputs(p1, pSeg);
+
+ assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
+ if( bNewTerm ){
+ if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
+ }
+
+ if( p1->base.nData==0 ) continue;
+
+ if( p1->base.iRowid<=iLastRowid && doclist.n>0 ){
+ for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
+ int i1 = i*nMerge;
+ int iStore;
+ assert( i1+nMerge<=nBuf );
+ for(iStore=i1; iStore<i1+nMerge; iStore++){
+ if( aBuf[iStore].n==0 ){
+ fts5BufferSwap(&doclist, &aBuf[iStore]);
+ fts5BufferZero(&doclist);
+ break;
+ }
+ }
+ if( iStore==i1+nMerge ){
+ xMerge(p, &doclist, nMerge, &aBuf[i1]);
+ for(iStore=i1; iStore<i1+nMerge; iStore++){
+ fts5BufferZero(&aBuf[iStore]);
+ }
+ }
+ }
+ iLastRowid = 0;
+ }
+
+ xAppend(p, (u64)p1->base.iRowid-(u64)iLastRowid, p1, &doclist);
+ iLastRowid = p1->base.iRowid;
+ }
+
+ assert( (nBuf%nMerge)==0 );
+ for(i=0; i<nBuf; i+=nMerge){
+ int iFree;
+ if( p->rc==SQLITE_OK ){
+ xMerge(p, &doclist, nMerge, &aBuf[i]);
+ }
+ for(iFree=i; iFree<i+nMerge; iFree++){
+ fts5BufferFree(&aBuf[iFree]);
+ }
+ }
+ fts5MultiIterFree(p1);
+
+ pData = fts5IdxMalloc(p, sizeof(Fts5Data)+doclist.n+FTS5_DATA_ZERO_PADDING);
+ if( pData ){
+ pData->p = (u8*)&pData[1];
+ pData->nn = pData->szLeaf = doclist.n;
+ if( doclist.n ) memcpy(pData->p, doclist.p, doclist.n);
+ fts5MultiIterNew2(p, pData, bDesc, ppIter);
+ }
+ fts5BufferFree(&doclist);
+ }
+
+ fts5StructureRelease(pStruct);
+ sqlite3_free(aBuf);
+}
+
+
+/*
+** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
+** to the document with rowid iRowid.
+*/
+static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
+ assert( p->rc==SQLITE_OK );
+
+ /* Allocate the hash table if it has not already been allocated */
+ if( p->pHash==0 ){
+ p->rc = sqlite3Fts5HashNew(p->pConfig, &p->pHash, &p->nPendingData);
+ }
+
+ /* Flush the hash table to disk if required */
+ if( iRowid<p->iWriteRowid
+ || (iRowid==p->iWriteRowid && p->bDelete==0)
+ || (p->nPendingData > p->pConfig->nHashSize)
+ ){
+ fts5IndexFlush(p);
+ }
+
+ p->iWriteRowid = iRowid;
+ p->bDelete = bDelete;
+ if( bDelete==0 ){
+ p->nPendingRow++;
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** Commit data to disk.
+*/
+static int sqlite3Fts5IndexSync(Fts5Index *p){
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFlush(p);
+ sqlite3Fts5IndexCloseReader(p);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+static int sqlite3Fts5IndexRollback(Fts5Index *p){
+ sqlite3Fts5IndexCloseReader(p);
+ fts5IndexDiscardData(p);
+ fts5StructureInvalidate(p);
+ /* assert( p->rc==SQLITE_OK ); */
+ return SQLITE_OK;
+}
+
+/*
+** The %_data table is completely empty when this function is called. This
+** function populates it with the initial structure objects for each index,
+** and the initial version of the "averages" record (a zero-byte blob).
+*/
+static int sqlite3Fts5IndexReinit(Fts5Index *p){
+ Fts5Structure s;
+ fts5StructureInvalidate(p);
+ fts5IndexDiscardData(p);
+ memset(&s, 0, sizeof(Fts5Structure));
+ if( p->pConfig->bContentlessDelete ){
+ s.nOriginCntr = 1;
+ }
+ fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0);
+ fts5StructureWrite(p, &s);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying %_data table.
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+static int sqlite3Fts5IndexOpen(
+ Fts5Config *pConfig,
+ int bCreate,
+ Fts5Index **pp,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ Fts5Index *p; /* New object */
+
+ *pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index));
+ if( rc==SQLITE_OK ){
+ p->pConfig = pConfig;
+ p->nWorkUnit = FTS5_WORK_UNIT;
+ p->zDataTbl = sqlite3Fts5Mprintf(&rc, "%s_data", pConfig->zName);
+ if( p->zDataTbl && bCreate ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5CreateTable(pConfig, "idx",
+ "segid, term, pgno, PRIMARY KEY(segid, term)",
+ 1, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexReinit(p);
+ }
+ }
+ }
+
+ assert( rc!=SQLITE_OK || p->rc==SQLITE_OK );
+ if( rc ){
+ sqlite3Fts5IndexClose(p);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
+*/
+static int sqlite3Fts5IndexClose(Fts5Index *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ assert( p->pReader==0 );
+ fts5StructureInvalidate(p);
+ sqlite3_finalize(p->pWriter);
+ sqlite3_finalize(p->pDeleter);
+ sqlite3_finalize(p->pIdxWriter);
+ sqlite3_finalize(p->pIdxDeleter);
+ sqlite3_finalize(p->pIdxSelect);
+ sqlite3_finalize(p->pDataVersion);
+ sqlite3_finalize(p->pDeleteFromIdx);
+ sqlite3Fts5HashFree(p->pHash);
+ sqlite3_free(p->zDataTbl);
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+/*
+** Argument p points to a buffer containing utf-8 text that is n bytes in
+** size. Return the number of bytes in the nChar character prefix of the
+** buffer, or 0 if there are less than nChar characters in total.
+*/
+static int sqlite3Fts5IndexCharlenToBytelen(
+ const char *p,
+ int nByte,
+ int nChar
+){
+ int n = 0;
+ int i;
+ for(i=0; i<nChar; i++){
+ if( n>=nByte ) return 0; /* Input contains fewer than nChar chars */
+ if( (unsigned char)p[n++]>=0xc0 ){
+ if( n>=nByte ) return 0;
+ while( (p[n] & 0xc0)==0x80 ){
+ n++;
+ if( n>=nByte ){
+ if( i+1==nChar ) break;
+ return 0;
+ }
+ }
+ }
+ }
+ return n;
+}
+
+/*
+** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
+** unicode characters in the string.
+*/
+static int fts5IndexCharlen(const char *pIn, int nIn){
+ int nChar = 0;
+ int i = 0;
+ while( i<nIn ){
+ if( (unsigned char)pIn[i++]>=0xc0 ){
+ while( i<nIn && (pIn[i] & 0xc0)==0x80 ) i++;
+ }
+ nChar++;
+ }
+ return nChar;
+}
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+static int sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ int i; /* Used to iterate through indexes */
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pConfig = p->pConfig;
+
+ assert( p->rc==SQLITE_OK );
+ assert( (iCol<0)==p->bDelete );
+
+ /* Add the entry to the main terms index. */
+ rc = sqlite3Fts5HashWrite(
+ p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
+ );
+
+ for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
+ const int nChar = pConfig->aPrefix[i];
+ int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
+ if( nByte ){
+ rc = sqlite3Fts5HashWrite(p->pHash,
+ p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
+ nByte
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Open a new iterator to iterate though all rowid that match the
+** specified token or token prefix.
+*/
+static int sqlite3Fts5IndexQuery(
+ Fts5Index *p, /* FTS index to query */
+ const char *pToken, int nToken, /* Token (or prefix) to query for */
+ int flags, /* Mask of FTS5INDEX_QUERY_X flags */
+ Fts5Colset *pColset, /* Match these columns only */
+ Fts5IndexIter **ppIter /* OUT: New iterator object */
+){
+ Fts5Config *pConfig = p->pConfig;
+ Fts5Iter *pRet = 0;
+ Fts5Buffer buf = {0, 0, 0};
+
+ /* If the QUERY_SCAN flag is set, all other flags must be clear. */
+ assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );
+
+ if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
+ int iIdx = 0; /* Index to search */
+ int iPrefixIdx = 0; /* +1 prefix index */
+ if( nToken>0 ) memcpy(&buf.p[1], pToken, nToken);
+
+ /* Figure out which index to search and set iIdx accordingly. If this
+ ** is a prefix query for which there is no prefix index, set iIdx to
+ ** greater than pConfig->nPrefix to indicate that the query will be
+ ** satisfied by scanning multiple terms in the main index.
+ **
+ ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
+ ** prefix-query. Instead of using a prefix-index (if one exists),
+ ** evaluate the prefix query using the main FTS index. This is used
+ ** for internal sanity checking by the integrity-check in debug
+ ** mode only. */
+#ifdef SQLITE_DEBUG
+ if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
+ assert( flags & FTS5INDEX_QUERY_PREFIX );
+ iIdx = 1+pConfig->nPrefix;
+ }else
+#endif
+ if( flags & FTS5INDEX_QUERY_PREFIX ){
+ int nChar = fts5IndexCharlen(pToken, nToken);
+ for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
+ int nIdxChar = pConfig->aPrefix[iIdx-1];
+ if( nIdxChar==nChar ) break;
+ if( nIdxChar==nChar+1 ) iPrefixIdx = iIdx;
+ }
+ }
+
+ if( iIdx<=pConfig->nPrefix ){
+ /* Straight index lookup */
+ Fts5Structure *pStruct = fts5StructureRead(p);
+ buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
+ if( pStruct ){
+ fts5MultiIterNew(p, pStruct, flags | FTS5INDEX_QUERY_SKIPEMPTY,
+ pColset, buf.p, nToken+1, -1, 0, &pRet
+ );
+ fts5StructureRelease(pStruct);
+ }
+ }else{
+ /* Scan multiple terms in the main index */
+ int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
+ fts5SetupPrefixIter(p, bDesc, iPrefixIdx, buf.p, nToken+1, pColset,&pRet);
+ if( pRet==0 ){
+ assert( p->rc!=SQLITE_OK );
+ }else{
+ assert( pRet->pColset==0 );
+ fts5IterSetOutputCb(&p->rc, pRet);
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
+ if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
+ }
+ }
+ }
+
+ if( p->rc ){
+ sqlite3Fts5IterClose((Fts5IndexIter*)pRet);
+ pRet = 0;
+ sqlite3Fts5IndexCloseReader(p);
+ }
+
+ *ppIter = (Fts5IndexIter*)pRet;
+ sqlite3Fts5BufferFree(&buf);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** Return true if the iterator passed as the only argument is at EOF.
+*/
+/*
+** Move to the next matching rowid.
+*/
+static int sqlite3Fts5IterNext(Fts5IndexIter *pIndexIter){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ assert( pIter->pIndex->rc==SQLITE_OK );
+ fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Move to the next matching term/rowid. Used by the fts5vocab module.
+*/
+static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIndexIter){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ Fts5Index *p = pIter->pIndex;
+
+ assert( pIter->pIndex->rc==SQLITE_OK );
+
+ fts5MultiIterNext(p, pIter, 0, 0);
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
+ fts5DataRelease(pSeg->pLeaf);
+ pSeg->pLeaf = 0;
+ pIter->base.bEof = 1;
+ }
+ }
+
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Move to the next matching rowid that occurs at or after iMatch. The
+** definition of "at or after" depends on whether this iterator iterates
+** in ascending or descending rowid order.
+*/
+static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIndexIter, i64 iMatch){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Return the current term.
+*/
+static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIndexIter, int *pn){
+ int n;
+ const char *z = (const char*)fts5MultiIterTerm((Fts5Iter*)pIndexIter, &n);
+ assert_nc( z || n<=1 );
+ *pn = n-1;
+ return (z ? &z[1] : 0);
+}
+
+/*
+** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
+*/
+static void sqlite3Fts5IterClose(Fts5IndexIter *pIndexIter){
+ if( pIndexIter ){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ Fts5Index *pIndex = pIter->pIndex;
+ fts5MultiIterFree(pIter);
+ sqlite3Fts5IndexCloseReader(pIndex);
+ }
+}
+
+/*
+** Read and decode the "averages" record from the database.
+**
+** Parameter anSize must point to an array of size nCol, where nCol is
+** the number of user defined columns in the FTS table.
+*/
+static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize){
+ int nCol = p->pConfig->nCol;
+ Fts5Data *pData;
+
+ *pnRow = 0;
+ memset(anSize, 0, sizeof(i64) * nCol);
+ pData = fts5DataRead(p, FTS5_AVERAGES_ROWID);
+ if( p->rc==SQLITE_OK && pData->nn ){
+ int i = 0;
+ int iCol;
+ i += fts5GetVarint(&pData->p[i], (u64*)pnRow);
+ for(iCol=0; i<pData->nn && iCol<nCol; iCol++){
+ i += fts5GetVarint(&pData->p[i], (u64*)&anSize[iCol]);
+ }
+ }
+
+ fts5DataRelease(pData);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Replace the current "averages" record with the contents of the buffer
+** supplied as the second argument.
+*/
+static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8 *pData, int nData){
+ assert( p->rc==SQLITE_OK );
+ fts5DataWrite(p, FTS5_AVERAGES_ROWID, pData, nData);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Return the total number of blocks this module has read from the %_data
+** table since it was created.
+*/
+static int sqlite3Fts5IndexReads(Fts5Index *p){
+ return p->nRead;
+}
+
+/*
+** Set the 32-bit cookie value stored at the start of all structure
+** records to the value passed as the second argument.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int sqlite3Fts5IndexSetCookie(Fts5Index *p, int iNew){
+ int rc; /* Return code */
+ Fts5Config *pConfig = p->pConfig; /* Configuration object */
+ u8 aCookie[4]; /* Binary representation of iNew */
+ sqlite3_blob *pBlob = 0;
+
+ assert( p->rc==SQLITE_OK );
+ sqlite3Fts5Put32(aCookie, iNew);
+
+ rc = sqlite3_blob_open(pConfig->db, pConfig->zDb, p->zDataTbl,
+ "block", FTS5_STRUCTURE_ROWID, 1, &pBlob
+ );
+ if( rc==SQLITE_OK ){
+ sqlite3_blob_write(pBlob, aCookie, 4, 0);
+ rc = sqlite3_blob_close(pBlob);
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
+ Fts5Structure *pStruct;
+ pStruct = fts5StructureRead(p);
+ fts5StructureRelease(pStruct);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Retrieve the origin value that will be used for the segment currently
+** being accumulated in the in-memory hash table when it is flushed to
+** disk. If successful, SQLITE_OK is returned and (*piOrigin) set to
+** the queried value. Or, if an error occurs, an error code is returned
+** and the final value of (*piOrigin) is undefined.
+*/
+static int sqlite3Fts5IndexGetOrigin(Fts5Index *p, i64 *piOrigin){
+ Fts5Structure *pStruct;
+ pStruct = fts5StructureRead(p);
+ if( pStruct ){
+ *piOrigin = pStruct->nOriginCntr;
+ fts5StructureRelease(pStruct);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** Buffer pPg contains a page of a tombstone hash table - one of nPg pages
+** associated with the same segment. This function adds rowid iRowid to
+** the hash table. The caller is required to guarantee that there is at
+** least one free slot on the page.
+**
+** If parameter bForce is false and the hash table is deemed to be full
+** (more than half of the slots are occupied), then non-zero is returned
+** and iRowid not inserted. Or, if bForce is true or if the hash table page
+** is not full, iRowid is inserted and zero returned.
+*/
+static int fts5IndexTombstoneAddToPage(
+ Fts5Data *pPg,
+ int bForce,
+ int nPg,
+ u64 iRowid
+){
+ const int szKey = TOMBSTONE_KEYSIZE(pPg);
+ const int nSlot = TOMBSTONE_NSLOT(pPg);
+ const int nElem = fts5GetU32(&pPg->p[4]);
+ int iSlot = (iRowid / nPg) % nSlot;
+ int nCollide = nSlot;
+
+ if( szKey==4 && iRowid>0xFFFFFFFF ) return 2;
+ if( iRowid==0 ){
+ pPg->p[1] = 0x01;
+ return 0;
+ }
+
+ if( bForce==0 && nElem>=(nSlot/2) ){
+ return 1;
+ }
+
+ fts5PutU32(&pPg->p[4], nElem+1);
+ if( szKey==4 ){
+ u32 *aSlot = (u32*)&pPg->p[8];
+ while( aSlot[iSlot] ){
+ iSlot = (iSlot + 1) % nSlot;
+ if( nCollide--==0 ) return 0;
+ }
+ fts5PutU32((u8*)&aSlot[iSlot], (u32)iRowid);
+ }else{
+ u64 *aSlot = (u64*)&pPg->p[8];
+ while( aSlot[iSlot] ){
+ iSlot = (iSlot + 1) % nSlot;
+ if( nCollide--==0 ) return 0;
+ }
+ fts5PutU64((u8*)&aSlot[iSlot], iRowid);
+ }
+
+ return 0;
+}
+
+/*
+** This function attempts to build a new hash containing all the keys
+** currently in the tombstone hash table for segment pSeg. The new
+** hash will be stored in the nOut buffers passed in array apOut[].
+** All pages of the new hash use key-size szKey (4 or 8).
+**
+** Return 0 if the hash is successfully rebuilt into the nOut pages.
+** Or non-zero if it is not (because one page became overfull). In this
+** case the caller should retry with a larger nOut parameter.
+**
+** Parameter pData1 is page iPg1 of the hash table being rebuilt.
+*/
+static int fts5IndexTombstoneRehash(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg, /* Segment to rebuild hash of */
+ Fts5Data *pData1, /* One page of current hash - or NULL */
+ int iPg1, /* Which page of the current hash is pData1 */
+ int szKey, /* 4 or 8, the keysize */
+ int nOut, /* Number of output pages */
+ Fts5Data **apOut /* Array of output hash pages */
+){
+ int ii;
+ int res = 0;
+
+ /* Initialize the headers of all the output pages */
+ for(ii=0; ii<nOut; ii++){
+ apOut[ii]->p[0] = szKey;
+ fts5PutU32(&apOut[ii]->p[4], 0);
+ }
+
+ /* Loop through the current pages of the hash table. */
+ for(ii=0; res==0 && ii<pSeg->nPgTombstone; ii++){
+ Fts5Data *pData = 0; /* Page ii of the current hash table */
+ Fts5Data *pFree = 0; /* Free this at the end of the loop */
+
+ if( iPg1==ii ){
+ pData = pData1;
+ }else{
+ pFree = pData = fts5DataRead(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid, ii));
+ }
+
+ if( pData ){
+ int szKeyIn = TOMBSTONE_KEYSIZE(pData);
+ int nSlotIn = (pData->nn - 8) / szKeyIn;
+ int iIn;
+ for(iIn=0; iIn<nSlotIn; iIn++){
+ u64 iVal = 0;
+
+ /* Read the value from slot iIn of the input page into iVal. */
+ if( szKeyIn==4 ){
+ u32 *aSlot = (u32*)&pData->p[8];
+ if( aSlot[iIn] ) iVal = fts5GetU32((u8*)&aSlot[iIn]);
+ }else{
+ u64 *aSlot = (u64*)&pData->p[8];
+ if( aSlot[iIn] ) iVal = fts5GetU64((u8*)&aSlot[iIn]);
+ }
+
+ /* If iVal is not 0 at this point, insert it into the new hash table */
+ if( iVal ){
+ Fts5Data *pPg = apOut[(iVal % nOut)];
+ res = fts5IndexTombstoneAddToPage(pPg, 0, nOut, iVal);
+ if( res ) break;
+ }
+ }
+
+ /* If this is page 0 of the old hash, copy the rowid-0-flag from the
+ ** old hash to the new. */
+ if( ii==0 ){
+ apOut[0]->p[1] = pData->p[1];
+ }
+ }
+ fts5DataRelease(pFree);
+ }
+
+ return res;
+}
+
+/*
+** This is called to rebuild the hash table belonging to segment pSeg.
+** If parameter pData1 is not NULL, then one page of the existing hash table
+** has already been loaded - pData1, which is page iPg1. The key-size for
+** the new hash table is szKey (4 or 8).
+**
+** If successful, the new hash table is not written to disk. Instead,
+** output parameter (*pnOut) is set to the number of pages in the new
+** hash table, and (*papOut) to point to an array of buffers containing
+** the new page data.
+**
+** If an error occurs, an error code is left in the Fts5Index object and
+** both output parameters set to 0 before returning.
+*/
+static void fts5IndexTombstoneRebuild(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg, /* Segment to rebuild hash of */
+ Fts5Data *pData1, /* One page of current hash - or NULL */
+ int iPg1, /* Which page of the current hash is pData1 */
+ int szKey, /* 4 or 8, the keysize */
+ int *pnOut, /* OUT: Number of output pages */
+ Fts5Data ***papOut /* OUT: Output hash pages */
+){
+ const int MINSLOT = 32;
+ int nSlotPerPage = MAX(MINSLOT, (p->pConfig->pgsz - 8) / szKey);
+ int nSlot = 0; /* Number of slots in each output page */
+ int nOut = 0;
+
+ /* Figure out how many output pages (nOut) and how many slots per
+ ** page (nSlot). There are three possibilities:
+ **
+ ** 1. The hash table does not yet exist. In this case the new hash
+ ** table will consist of a single page with MINSLOT slots.
+ **
+ ** 2. The hash table exists but is currently a single page. In this
+ ** case an attempt is made to grow the page to accommodate the new
+ ** entry. The page is allowed to grow up to nSlotPerPage (see above)
+ ** slots.
+ **
+ ** 3. The hash table already consists of more than one page, or of
+ ** a single page already so large that it cannot be grown. In this
+ ** case the new hash consists of (nPg*2+1) pages of nSlotPerPage
+ ** slots each, where nPg is the current number of pages in the
+ ** hash table.
+ */
+ if( pSeg->nPgTombstone==0 ){
+ /* Case 1. */
+ nOut = 1;
+ nSlot = MINSLOT;
+ }else if( pSeg->nPgTombstone==1 ){
+ /* Case 2. */
+ int nElem = (int)fts5GetU32(&pData1->p[4]);
+ assert( pData1 && iPg1==0 );
+ nOut = 1;
+ nSlot = MAX(nElem*4, MINSLOT);
+ if( nSlot>nSlotPerPage ) nOut = 0;
+ }
+ if( nOut==0 ){
+ /* Case 3. */
+ nOut = (pSeg->nPgTombstone * 2 + 1);
+ nSlot = nSlotPerPage;
+ }
+
+ /* Allocate the required array and output pages */
+ while( 1 ){
+ int res = 0;
+ int ii = 0;
+ int szPage = 0;
+ Fts5Data **apOut = 0;
+
+ /* Allocate space for the new hash table */
+ assert( nSlot>=MINSLOT );
+ apOut = (Fts5Data**)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data*) * nOut);
+ szPage = 8 + nSlot*szKey;
+ for(ii=0; ii<nOut; ii++){
+ Fts5Data *pNew = (Fts5Data*)sqlite3Fts5MallocZero(&p->rc,
+ sizeof(Fts5Data)+szPage
+ );
+ if( pNew ){
+ pNew->nn = szPage;
+ pNew->p = (u8*)&pNew[1];
+ apOut[ii] = pNew;
+ }
+ }
+
+ /* Rebuild the hash table. */
+ if( p->rc==SQLITE_OK ){
+ res = fts5IndexTombstoneRehash(p, pSeg, pData1, iPg1, szKey, nOut, apOut);
+ }
+ if( res==0 ){
+ if( p->rc ){
+ fts5IndexFreeArray(apOut, nOut);
+ apOut = 0;
+ nOut = 0;
+ }
+ *pnOut = nOut;
+ *papOut = apOut;
+ break;
+ }
+
+ /* If control flows to here, it was not possible to rebuild the hash
+ ** table. Free all buffers and then try again with more pages. */
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFreeArray(apOut, nOut);
+ nSlot = nSlotPerPage;
+ nOut = nOut*2 + 1;
+ }
+}
+
+
+/*
+** Add a tombstone for rowid iRowid to segment pSeg.
+*/
+static void fts5IndexTombstoneAdd(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg,
+ u64 iRowid
+){
+ Fts5Data *pPg = 0;
+ int iPg = -1;
+ int szKey = 0;
+ int nHash = 0;
+ Fts5Data **apHash = 0;
+
+ p->nContentlessDelete++;
+
+ if( pSeg->nPgTombstone>0 ){
+ iPg = iRowid % pSeg->nPgTombstone;
+ pPg = fts5DataRead(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid,iPg));
+ if( pPg==0 ){
+ assert( p->rc!=SQLITE_OK );
+ return;
+ }
+
+ if( 0==fts5IndexTombstoneAddToPage(pPg, 0, pSeg->nPgTombstone, iRowid) ){
+ fts5DataWrite(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid,iPg), pPg->p, pPg->nn);
+ fts5DataRelease(pPg);
+ return;
+ }
+ }
+
+ /* Have to rebuild the hash table. First figure out the key-size (4 or 8). */
+ szKey = pPg ? TOMBSTONE_KEYSIZE(pPg) : 4;
+ if( iRowid>0xFFFFFFFF ) szKey = 8;
+
+ /* Rebuild the hash table */
+ fts5IndexTombstoneRebuild(p, pSeg, pPg, iPg, szKey, &nHash, &apHash);
+ assert( p->rc==SQLITE_OK || (nHash==0 && apHash==0) );
+
+ /* If all has succeeded, write the new rowid into one of the new hash
+ ** table pages, then write them all out to disk. */
+ if( nHash ){
+ int ii = 0;
+ fts5IndexTombstoneAddToPage(apHash[iRowid % nHash], 1, nHash, iRowid);
+ for(ii=0; ii<nHash; ii++){
+ i64 iTombstoneRowid = FTS5_TOMBSTONE_ROWID(pSeg->iSegid, ii);
+ fts5DataWrite(p, iTombstoneRowid, apHash[ii]->p, apHash[ii]->nn);
+ }
+ pSeg->nPgTombstone = nHash;
+ fts5StructureWrite(p, p->pStruct);
+ }
+
+ fts5DataRelease(pPg);
+ fts5IndexFreeArray(apHash, nHash);
+}
+
+/*
+** Add iRowid to the tombstone list of the segment or segments that contain
+** rows from origin iOrigin. Return SQLITE_OK if successful, or an SQLite
+** error code otherwise.
+*/
+static int sqlite3Fts5IndexContentlessDelete(Fts5Index *p, i64 iOrigin, i64 iRowid){
+ Fts5Structure *pStruct;
+ pStruct = fts5StructureRead(p);
+ if( pStruct ){
+ int bFound = 0; /* True after pSeg->nEntryTombstone incr. */
+ int iLvl;
+ for(iLvl=pStruct->nLevel-1; iLvl>=0; iLvl--){
+ int iSeg;
+ for(iSeg=pStruct->aLevel[iLvl].nSeg-1; iSeg>=0; iSeg--){
+ Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
+ if( pSeg->iOrigin1<=(u64)iOrigin && pSeg->iOrigin2>=(u64)iOrigin ){
+ if( bFound==0 ){
+ pSeg->nEntryTombstone++;
+ bFound = 1;
+ }
+ fts5IndexTombstoneAdd(p, pSeg, iRowid);
+ }
+ }
+ }
+ fts5StructureRelease(pStruct);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*************************************************************************
+**************************************************************************
+** Below this point is the implementation of the integrity-check
+** functionality.
+*/
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 sqlite3Fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ int iIdx,
+ const char *pTerm,
+ int nTerm
+){
+ int i;
+ u64 ret = iRowid;
+ ret += (ret<<3) + iCol;
+ ret += (ret<<3) + iPos;
+ if( iIdx>=0 ) ret += (ret<<3) + (FTS5_MAIN_PREFIX + iIdx);
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i];
+ return ret;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This function is purely an internal test. It does not contribute to
+** FTS functionality, or even the integrity-check, in any way.
+**
+** Instead, it tests that the same set of pgno/rowid combinations are
+** visited regardless of whether the doclist-index identified by parameters
+** iSegid/iLeaf is iterated in forwards or reverse order.
+*/
+static void fts5TestDlidxReverse(
+ Fts5Index *p,
+ int iSegid, /* Segment id to load from */
+ int iLeaf /* Load doclist-index for this leaf */
+){
+ Fts5DlidxIter *pDlidx = 0;
+ u64 cksum1 = 13;
+ u64 cksum2 = 13;
+
+ for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterNext(p, pDlidx)
+ ){
+ i64 iRowid = fts5DlidxIterRowid(pDlidx);
+ int pgno = fts5DlidxIterPgno(pDlidx);
+ assert( pgno>iLeaf );
+ cksum1 += iRowid + ((i64)pgno<<32);
+ }
+ fts5DlidxIterFree(pDlidx);
+ pDlidx = 0;
+
+ for(pDlidx=fts5DlidxIterInit(p, 1, iSegid, iLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterPrev(p, pDlidx)
+ ){
+ i64 iRowid = fts5DlidxIterRowid(pDlidx);
+ int pgno = fts5DlidxIterPgno(pDlidx);
+ assert( fts5DlidxIterPgno(pDlidx)>iLeaf );
+ cksum2 += iRowid + ((i64)pgno<<32);
+ }
+ fts5DlidxIterFree(pDlidx);
+ pDlidx = 0;
+
+ if( p->rc==SQLITE_OK && cksum1!=cksum2 ) p->rc = FTS5_CORRUPT;
+}
+
+static int fts5QueryCksum(
+ Fts5Index *p, /* Fts5 index object */
+ int iIdx,
+ const char *z, /* Index key to query for */
+ int n, /* Size of index key in bytes */
+ int flags, /* Flags for Fts5IndexQuery */
+ u64 *pCksum /* IN/OUT: Checksum value */
+){
+ int eDetail = p->pConfig->eDetail;
+ u64 cksum = *pCksum;
+ Fts5IndexIter *pIter = 0;
+ int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIter);
+
+ while( rc==SQLITE_OK && ALWAYS(pIter!=0) && 0==sqlite3Fts5IterEof(pIter) ){
+ i64 rowid = pIter->iRowid;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ cksum ^= sqlite3Fts5IndexEntryCksum(rowid, 0, 0, iIdx, z, n);
+ }else{
+ Fts5PoslistReader sReader;
+ for(sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &sReader);
+ sReader.bEof==0;
+ sqlite3Fts5PoslistReaderNext(&sReader)
+ ){
+ int iCol = FTS5_POS2COLUMN(sReader.iPos);
+ int iOff = FTS5_POS2OFFSET(sReader.iPos);
+ cksum ^= sqlite3Fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ }
+ sqlite3Fts5IterClose(pIter);
+
+ *pCksum = cksum;
+ return rc;
+}
+
+/*
+** Check if buffer z[], size n bytes, contains as series of valid utf-8
+** encoded codepoints. If so, return 0. Otherwise, if the buffer does not
+** contain valid utf-8, return non-zero.
+*/
+static int fts5TestUtf8(const char *z, int n){
+ int i = 0;
+ assert_nc( n>0 );
+ while( i<n ){
+ if( (z[i] & 0x80)==0x00 ){
+ i++;
+ }else
+ if( (z[i] & 0xE0)==0xC0 ){
+ if( i+1>=n || (z[i+1] & 0xC0)!=0x80 ) return 1;
+ i += 2;
+ }else
+ if( (z[i] & 0xF0)==0xE0 ){
+ if( i+2>=n || (z[i+1] & 0xC0)!=0x80 || (z[i+2] & 0xC0)!=0x80 ) return 1;
+ i += 3;
+ }else
+ if( (z[i] & 0xF8)==0xF0 ){
+ if( i+3>=n || (z[i+1] & 0xC0)!=0x80 || (z[i+2] & 0xC0)!=0x80 ) return 1;
+ if( (z[i+2] & 0xC0)!=0x80 ) return 1;
+ i += 3;
+ }else{
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+** This function is also purely an internal test. It does not contribute to
+** FTS functionality, or even the integrity-check, in any way.
+*/
+static void fts5TestTerm(
+ Fts5Index *p,
+ Fts5Buffer *pPrev, /* Previous term */
+ const char *z, int n, /* Possibly new term to test */
+ u64 expected,
+ u64 *pCksum
+){
+ int rc = p->rc;
+ if( pPrev->n==0 ){
+ fts5BufferSet(&rc, pPrev, n, (const u8*)z);
+ }else
+ if( rc==SQLITE_OK && (pPrev->n!=n || memcmp(pPrev->p, z, n)) ){
+ u64 cksum3 = *pCksum;
+ const char *zTerm = (const char*)&pPrev->p[1]; /* term sans prefix-byte */
+ int nTerm = pPrev->n-1; /* Size of zTerm in bytes */
+ int iIdx = (pPrev->p[0] - FTS5_MAIN_PREFIX);
+ int flags = (iIdx==0 ? 0 : FTS5INDEX_QUERY_PREFIX);
+ u64 ck1 = 0;
+ u64 ck2 = 0;
+
+ /* Check that the results returned for ASC and DESC queries are
+ ** the same. If not, call this corruption. */
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, flags, &ck1);
+ if( rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_DESC;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ }
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+
+ /* If this is a prefix query, check that the results returned if the
+ ** the index is disabled are the same. In both ASC and DESC order.
+ **
+ ** This check may only be performed if the hash table is empty. This
+ ** is because the hash table only supports a single scan query at
+ ** a time, and the multi-iter loop from which this function is called
+ ** is already performing such a scan.
+ **
+ ** Also only do this if buffer zTerm contains nTerm bytes of valid
+ ** utf-8. Otherwise, the last part of the buffer contents might contain
+ ** a non-utf-8 sequence that happens to be a prefix of a valid utf-8
+ ** character stored in the main fts index, which will cause the
+ ** test to fail. */
+ if( p->nPendingData==0 && 0==fts5TestUtf8(zTerm, nTerm) ){
+ if( iIdx>0 && rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
+ ck2 = 0;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+ }
+ if( iIdx>0 && rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
+ ck2 = 0;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ cksum3 ^= ck1;
+ fts5BufferSet(&rc, pPrev, n, (const u8*)z);
+
+ if( rc==SQLITE_OK && cksum3!=expected ){
+ rc = FTS5_CORRUPT;
+ }
+ *pCksum = cksum3;
+ }
+ p->rc = rc;
+}
+
+#else
+# define fts5TestDlidxReverse(x,y,z)
+# define fts5TestTerm(u,v,w,x,y,z)
+#endif
+
+/*
+** Check that:
+**
+** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and
+** contain zero terms.
+** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and
+** contain zero rowids.
+*/
+static void fts5IndexIntegrityCheckEmpty(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg, /* Segment to check internal consistency */
+ int iFirst,
+ int iNoRowid,
+ int iLast
+){
+ int i;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ for(i=iFirst; p->rc==SQLITE_OK && i<=iLast; i++){
+ Fts5Data *pLeaf = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->iSegid, i));
+ if( pLeaf ){
+ if( !fts5LeafIsTermless(pLeaf) ) p->rc = FTS5_CORRUPT;
+ if( i>=iNoRowid && 0!=fts5LeafFirstRowidOff(pLeaf) ) p->rc = FTS5_CORRUPT;
+ }
+ fts5DataRelease(pLeaf);
+ }
+}
+
+static void fts5IntegrityCheckPgidx(Fts5Index *p, Fts5Data *pLeaf){
+ int iTermOff = 0;
+ int ii;
+
+ Fts5Buffer buf1 = {0,0,0};
+ Fts5Buffer buf2 = {0,0,0};
+
+ ii = pLeaf->szLeaf;
+ while( ii<pLeaf->nn && p->rc==SQLITE_OK ){
+ int res;
+ int iOff;
+ int nIncr;
+
+ ii += fts5GetVarint32(&pLeaf->p[ii], nIncr);
+ iTermOff += nIncr;
+ iOff = iTermOff;
+
+ if( iOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else if( iTermOff==nIncr ){
+ int nByte;
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
+ if( (iOff+nByte)>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5BufferSet(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
+ }
+ }else{
+ int nKeep, nByte;
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nKeep);
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
+ if( nKeep>buf1.n || (iOff+nByte)>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ buf1.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ res = fts5BufferCompare(&buf1, &buf2);
+ if( res<=0 ) p->rc = FTS5_CORRUPT;
+ }
+ }
+ fts5BufferSet(&p->rc, &buf2, buf1.n, buf1.p);
+ }
+
+ fts5BufferFree(&buf1);
+ fts5BufferFree(&buf2);
+}
+
+static void fts5IndexIntegrityCheckSegment(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5StructureSegment *pSeg /* Segment to check internal consistency */
+){
+ Fts5Config *pConfig = p->pConfig;
+ int bSecureDelete = (pConfig->iVersion==FTS5_CURRENT_VERSION_SECUREDELETE);
+ sqlite3_stmt *pStmt = 0;
+ int rc2;
+ int iIdxPrevLeaf = pSeg->pgnoFirst-1;
+ int iDlidxPrevLeaf = pSeg->pgnoLast;
+
+ if( pSeg->pgnoFirst==0 ) return;
+
+ fts5IndexPrepareStmt(p, &pStmt, sqlite3_mprintf(
+ "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d "
+ "ORDER BY 1, 2",
+ pConfig->zDb, pConfig->zName, pSeg->iSegid
+ ));
+
+ /* Iterate through the b-tree hierarchy. */
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iRow; /* Rowid for this leaf */
+ Fts5Data *pLeaf; /* Data for this leaf */
+
+ const char *zIdxTerm = (const char*)sqlite3_column_blob(pStmt, 1);
+ int nIdxTerm = sqlite3_column_bytes(pStmt, 1);
+ int iIdxLeaf = sqlite3_column_int(pStmt, 2);
+ int bIdxDlidx = sqlite3_column_int(pStmt, 3);
+
+ /* If the leaf in question has already been trimmed from the segment,
+ ** ignore this b-tree entry. Otherwise, load it into memory. */
+ if( iIdxLeaf<pSeg->pgnoFirst ) continue;
+ iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, iIdxLeaf);
+ pLeaf = fts5LeafRead(p, iRow);
+ if( pLeaf==0 ) break;
+
+ /* Check that the leaf contains at least one term, and that it is equal
+ ** to or larger than the split-key in zIdxTerm. Also check that if there
+ ** is also a rowid pointer within the leaf page header, it points to a
+ ** location before the term. */
+ if( pLeaf->nn<=pLeaf->szLeaf ){
+
+ if( nIdxTerm==0
+ && pConfig->iVersion==FTS5_CURRENT_VERSION_SECUREDELETE
+ && pLeaf->nn==pLeaf->szLeaf
+ && pLeaf->nn==4
+ ){
+ /* special case - the very first page in a segment keeps its %_idx
+ ** entry even if all the terms are removed from it by secure-delete
+ ** operations. */
+ }else{
+ p->rc = FTS5_CORRUPT;
+ }
+
+ }else{
+ int iOff; /* Offset of first term on leaf */
+ int iRowidOff; /* Offset of first rowid on leaf */
+ int nTerm; /* Size of term on leaf in bytes */
+ int res; /* Comparison of term and split-key */
+
+ iOff = fts5LeafFirstTermOff(pLeaf);
+ iRowidOff = fts5LeafFirstRowidOff(pLeaf);
+ if( iRowidOff>=iOff || iOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
+ res = fts5Memcmp(&pLeaf->p[iOff], zIdxTerm, MIN(nTerm, nIdxTerm));
+ if( res==0 ) res = nTerm - nIdxTerm;
+ if( res<0 ) p->rc = FTS5_CORRUPT;
+ }
+
+ fts5IntegrityCheckPgidx(p, pLeaf);
+ }
+ fts5DataRelease(pLeaf);
+ if( p->rc ) break;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ fts5IndexIntegrityCheckEmpty(
+ p, pSeg, iIdxPrevLeaf+1, iDlidxPrevLeaf+1, iIdxLeaf-1
+ );
+ if( p->rc ) break;
+
+ /* If there is a doclist-index, check that it looks right. */
+ if( bIdxDlidx ){
+ Fts5DlidxIter *pDlidx = 0; /* For iterating through doclist index */
+ int iPrevLeaf = iIdxLeaf;
+ int iSegid = pSeg->iSegid;
+ int iPg = 0;
+ i64 iKey;
+
+ for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iIdxLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterNext(p, pDlidx)
+ ){
+
+ /* Check any rowid-less pages that occur before the current leaf. */
+ for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){
+ iKey = FTS5_SEGMENT_ROWID(iSegid, iPg);
+ pLeaf = fts5DataRead(p, iKey);
+ if( pLeaf ){
+ if( fts5LeafFirstRowidOff(pLeaf)!=0 ) p->rc = FTS5_CORRUPT;
+ fts5DataRelease(pLeaf);
+ }
+ }
+ iPrevLeaf = fts5DlidxIterPgno(pDlidx);
+
+ /* Check that the leaf page indicated by the iterator really does
+ ** contain the rowid suggested by the same. */
+ iKey = FTS5_SEGMENT_ROWID(iSegid, iPrevLeaf);
+ pLeaf = fts5DataRead(p, iKey);
+ if( pLeaf ){
+ i64 iRowid;
+ int iRowidOff = fts5LeafFirstRowidOff(pLeaf);
+ ASSERT_SZLEAF_OK(pLeaf);
+ if( iRowidOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else if( bSecureDelete==0 || iRowidOff>0 ){
+ i64 iDlRowid = fts5DlidxIterRowid(pDlidx);
+ fts5GetVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
+ if( iRowid<iDlRowid || (bSecureDelete==0 && iRowid!=iDlRowid) ){
+ p->rc = FTS5_CORRUPT;
+ }
+ }
+ fts5DataRelease(pLeaf);
+ }
+ }
+
+ iDlidxPrevLeaf = iPg;
+ fts5DlidxIterFree(pDlidx);
+ fts5TestDlidxReverse(p, iSegid, iIdxLeaf);
+ }else{
+ iDlidxPrevLeaf = pSeg->pgnoLast;
+ /* TODO: Check there is no doclist index */
+ }
+
+ iIdxPrevLeaf = iIdxLeaf;
+ }
+
+ rc2 = sqlite3_finalize(pStmt);
+ if( p->rc==SQLITE_OK ) p->rc = rc2;
+
+ /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
+#if 0
+ if( p->rc==SQLITE_OK && iter.iLeaf!=pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }
+#endif
+}
+
+
+/*
+** Run internal checks to ensure that the FTS index (a) is internally
+** consistent and (b) contains entries for which the XOR of the checksums
+** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
+**
+** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
+** checksum does not match. Return SQLITE_OK if all checks pass without
+** error, or some other SQLite error code if another error (e.g. OOM)
+** occurs.
+*/
+static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum, int bUseCksum){
+ int eDetail = p->pConfig->eDetail;
+ u64 cksum2 = 0; /* Checksum based on contents of indexes */
+ Fts5Buffer poslist = {0,0,0}; /* Buffer used to hold a poslist */
+ Fts5Iter *pIter; /* Used to iterate through entire index */
+ Fts5Structure *pStruct; /* Index structure */
+ int iLvl, iSeg;
+
+#ifdef SQLITE_DEBUG
+ /* Used by extra internal tests only run if NDEBUG is not defined */
+ u64 cksum3 = 0; /* Checksum based on contents of indexes */
+ Fts5Buffer term = {0,0,0}; /* Buffer used to hold most recent term */
+#endif
+ const int flags = FTS5INDEX_QUERY_NOOUTPUT;
+
+ /* Load the FTS index structure */
+ pStruct = fts5StructureRead(p);
+ if( pStruct==0 ){
+ assert( p->rc!=SQLITE_OK );
+ return fts5IndexReturn(p);
+ }
+
+ /* Check that the internal nodes of each segment match the leaves */
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
+ fts5IndexIntegrityCheckSegment(p, pSeg);
+ }
+ }
+
+ /* The cksum argument passed to this function is a checksum calculated
+ ** based on all expected entries in the FTS index (including prefix index
+ ** entries). This block checks that a checksum calculated based on the
+ ** actual contents of FTS index is identical.
+ **
+ ** Two versions of the same checksum are calculated. The first (stack
+ ** variable cksum2) based on entries extracted from the full-text index
+ ** while doing a linear scan of each individual index in turn.
+ **
+ ** As each term visited by the linear scans, a separate query for the
+ ** same term is performed. cksum3 is calculated based on the entries
+ ** extracted by these queries.
+ */
+ for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, -1, 0, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter, 0, 0)
+ ){
+ int n; /* Size of term in bytes */
+ i64 iPos = 0; /* Position read from poslist */
+ int iOff = 0; /* Offset within poslist */
+ i64 iRowid = fts5MultiIterRowid(pIter);
+ char *z = (char*)fts5MultiIterTerm(pIter, &n);
+
+ /* If this is a new term, query for it. Update cksum3 with the results. */
+ fts5TestTerm(p, &term, z, n, cksum2, &cksum3);
+ if( p->rc ) break;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( 0==fts5MultiIterIsEmpty(p, pIter) ){
+ cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, 0, 0, -1, z, n);
+ }
+ }else{
+ poslist.n = 0;
+ fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst], 0, &poslist);
+ fts5BufferAppendBlob(&p->rc, &poslist, 4, (const u8*)"\0\0\0\0");
+ while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
+ int iCol = FTS5_POS2COLUMN(iPos);
+ int iTokOff = FTS5_POS2OFFSET(iPos);
+ cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);
+ }
+ }
+ }
+ fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);
+
+ fts5MultiIterFree(pIter);
+ if( p->rc==SQLITE_OK && bUseCksum && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;
+
+ fts5StructureRelease(pStruct);
+#ifdef SQLITE_DEBUG
+ fts5BufferFree(&term);
+#endif
+ fts5BufferFree(&poslist);
+ return fts5IndexReturn(p);
+}
+
+/*************************************************************************
+**************************************************************************
+** Below this point is the implementation of the fts5_decode() scalar
+** function only.
+*/
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** Decode a segment-data rowid from the %_data table. This function is
+** the opposite of macro FTS5_SEGMENT_ROWID().
+*/
+static void fts5DecodeRowid(
+ i64 iRowid, /* Rowid from %_data table */
+ int *pbTombstone, /* OUT: Tombstone hash flag */
+ int *piSegid, /* OUT: Segment id */
+ int *pbDlidx, /* OUT: Dlidx flag */
+ int *piHeight, /* OUT: Height */
+ int *piPgno /* OUT: Page number */
+){
+ *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
+ iRowid >>= FTS5_DATA_PAGE_B;
+
+ *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
+ iRowid >>= FTS5_DATA_HEIGHT_B;
+
+ *pbDlidx = (int)(iRowid & 0x0001);
+ iRowid >>= FTS5_DATA_DLI_B;
+
+ *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
+ iRowid >>= FTS5_DATA_ID_B;
+
+ *pbTombstone = (int)(iRowid & 0x0001);
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
+ int iSegid, iHeight, iPgno, bDlidx, bTomb; /* Rowid compenents */
+ fts5DecodeRowid(iKey, &bTomb, &iSegid, &bDlidx, &iHeight, &iPgno);
+
+ if( iSegid==0 ){
+ if( iKey==FTS5_AVERAGES_ROWID ){
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} ");
+ }else{
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}");
+ }
+ }
+ else{
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%s%ssegid=%d h=%d pgno=%d}",
+ bDlidx ? "dlidx " : "",
+ bTomb ? "tombstone " : "",
+ iSegid, iHeight, iPgno
+ );
+ }
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+static void fts5DebugStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ Fts5Structure *p
+){
+ int iLvl, iSeg; /* Iterate through levels, segments */
+
+ for(iLvl=0; iLvl<p->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
+ " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
+ );
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d",
+ pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast
+ );
+ if( pSeg->iOrigin1>0 ){
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " origin=%lld..%lld",
+ pSeg->iOrigin1, pSeg->iOrigin2
+ );
+ }
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
+ }
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
+ }
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** This is part of the fts5_decode() debugging aid.
+**
+** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
+** function appends a human-readable representation of the same object
+** to the buffer passed as the second argument.
+*/
+static void fts5DecodeStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int rc; /* Return code */
+ Fts5Structure *p = 0; /* Decoded structure object */
+
+ rc = fts5StructureDecode(pBlob, nBlob, 0, &p);
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return;
+ }
+
+ fts5DebugStructure(pRc, pBuf, p);
+ fts5StructureRelease(p);
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** This is part of the fts5_decode() debugging aid.
+**
+** Arguments pBlob/nBlob contain an "averages" record. This function
+** appends a human-readable representation of record to the buffer passed
+** as the second argument.
+*/
+static void fts5DecodeAverages(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int i = 0;
+ const char *zSpace = "";
+
+ while( i<nBlob ){
+ u64 iVal;
+ i += sqlite3Fts5GetVarint(&pBlob[i], &iVal);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal);
+ zSpace = " ";
+ }
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** Buffer (a/n) is assumed to contain a list of serialized varints. Read
+** each varint and append its string representation to buffer pBuf. Return
+** after either the input buffer is exhausted or a 0 value is read.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ int iOff = 0;
+ while( iOff<n ){
+ int iVal;
+ iOff += fts5GetVarint32(&a[iOff], iVal);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
+ }
+ return iOff;
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** The start of buffer (a/n) contains the start of a doclist. The doclist
+** may or may not finish within the buffer. This function appends a text
+** representation of the part of the doclist that is present to buffer
+** pBuf.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ i64 iDocid = 0;
+ int iOff = 0;
+
+ if( n>0 ){
+ iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
+ }
+ while( iOff<n ){
+ int nPos;
+ int bDel;
+ iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDel);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " nPos=%d%s", nPos, bDel?"*":"");
+ iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
+ if( iOff<n ){
+ i64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);
+ iDocid += iDelta;
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
+ }
+ }
+
+ return iOff;
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** This function is part of the fts5_decode() debugging function. It is
+** only ever used with detail=none tables.
+**
+** Buffer (pData/nData) contains a doclist in the format used by detail=none
+** tables. This function appends a human-readable version of that list to
+** buffer pBuf.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is a
+** no-op. If an OOM or other error occurs within this function, *pRc is
+** set to an SQLite error code before returning. The final state of buffer
+** pBuf is undefined in this case.
+*/
+static void fts5DecodeRowidList(
+ int *pRc, /* IN/OUT: Error code */
+ Fts5Buffer *pBuf, /* Buffer to append text to */
+ const u8 *pData, int nData /* Data to decode list-of-rowids from */
+){
+ int i = 0;
+ i64 iRowid = 0;
+
+ while( i<nData ){
+ const char *zApp = "";
+ u64 iVal;
+ i += sqlite3Fts5GetVarint(&pData[i], &iVal);
+ iRowid += iVal;
+
+ if( i<nData && pData[i]==0x00 ){
+ i++;
+ if( i<nData && pData[i]==0x00 ){
+ i++;
+ zApp = "+";
+ }else{
+ zApp = "*";
+ }
+ }
+
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
+ }
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** The implementation of user-defined scalar function fts5_decode().
+*/
+static void fts5DecodeFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ i64 iRowid; /* Rowid for record being decoded */
+ int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
+ int bTomb;
+ const u8 *aBlob; int n; /* Record to decode */
+ u8 *a = 0;
+ Fts5Buffer s; /* Build up text to return here */
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_int64 nSpace = 0;
+ int eDetailNone = (sqlite3_user_data(pCtx)!=0);
+
+ assert( nArg==2 );
+ UNUSED_PARAM(nArg);
+ memset(&s, 0, sizeof(Fts5Buffer));
+ iRowid = sqlite3_value_int64(apVal[0]);
+
+ /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
+ ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
+ ** buffer overreads even if the record is corrupt. */
+ n = sqlite3_value_bytes(apVal[1]);
+ aBlob = sqlite3_value_blob(apVal[1]);
+ nSpace = n + FTS5_DATA_ZERO_PADDING;
+ a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
+ if( a==0 ) goto decode_out;
+ if( n>0 ) memcpy(a, aBlob, n);
+
+ fts5DecodeRowid(iRowid, &bTomb, &iSegid, &bDlidx, &iHeight, &iPgno);
+
+ fts5DebugRowid(&rc, &s, iRowid);
+ if( bDlidx ){
+ Fts5Data dlidx;
+ Fts5DlidxLvl lvl;
+
+ dlidx.p = a;
+ dlidx.nn = n;
+
+ memset(&lvl, 0, sizeof(Fts5DlidxLvl));
+ lvl.pData = &dlidx;
+ lvl.iLeafPgno = iPgno;
+
+ for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
+ sqlite3Fts5BufferAppendPrintf(&rc, &s,
+ " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
+ );
+ }
+ }else if( bTomb ){
+ u32 nElem = fts5GetU32(&a[4]);
+ int szKey = (aBlob[0]==4 || aBlob[0]==8) ? aBlob[0] : 8;
+ int nSlot = (n - 8) / szKey;
+ int ii;
+ sqlite3Fts5BufferAppendPrintf(&rc, &s, " nElem=%d", (int)nElem);
+ if( aBlob[1] ){
+ sqlite3Fts5BufferAppendPrintf(&rc, &s, " 0");
+ }
+ for(ii=0; ii<nSlot; ii++){
+ u64 iVal = 0;
+ if( szKey==4 ){
+ u32 *aSlot = (u32*)&aBlob[8];
+ if( aSlot[ii] ) iVal = fts5GetU32((u8*)&aSlot[ii]);
+ }else{
+ u64 *aSlot = (u64*)&aBlob[8];
+ if( aSlot[ii] ) iVal = fts5GetU64((u8*)&aSlot[ii]);
+ }
+ if( iVal!=0 ){
+ sqlite3Fts5BufferAppendPrintf(&rc, &s, " %lld", (i64)iVal);
+ }
+ }
+ }else if( iSegid==0 ){
+ if( iRowid==FTS5_AVERAGES_ROWID ){
+ fts5DecodeAverages(&rc, &s, a, n);
+ }else{
+ fts5DecodeStructure(&rc, &s, a, n);
+ }
+ }else if( eDetailNone ){
+ Fts5Buffer term; /* Current term read from page */
+ int szLeaf;
+ int iPgidxOff = szLeaf = fts5GetU16(&a[2]);
+ int iTermOff;
+ int nKeep = 0;
+ int iOff;
+
+ memset(&term, 0, sizeof(Fts5Buffer));
+
+ /* Decode any entries that occur before the first term. */
+ if( szLeaf<n ){
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff);
+ }else{
+ iTermOff = szLeaf;
+ }
+ fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4);
+
+ iOff = iTermOff;
+ while( iOff<szLeaf && rc==SQLITE_OK ){
+ int nAppend;
+
+ /* Read the term data for the next term*/
+ iOff += fts5GetVarint32(&a[iOff], nAppend);
+ term.n = nKeep;
+ fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]);
+ sqlite3Fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += nAppend;
+
+ /* Figure out where the doclist for this term ends */
+ if( iPgidxOff<n ){
+ int nIncr;
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr);
+ iTermOff += nIncr;
+ }else{
+ iTermOff = szLeaf;
+ }
+ if( iTermOff>szLeaf ){
+ rc = FTS5_CORRUPT;
+ }else{
+ fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff);
+ }
+ iOff = iTermOff;
+ if( iOff<szLeaf ){
+ iOff += fts5GetVarint32(&a[iOff], nKeep);
+ }
+ }
+
+ fts5BufferFree(&term);
+ }else{
+ Fts5Buffer term; /* Current term read from page */
+ int szLeaf; /* Offset of pgidx in a[] */
+ int iPgidxOff;
+ int iPgidxPrev = 0; /* Previous value read from pgidx */
+ int iTermOff = 0;
+ int iRowidOff = 0;
+ int iOff;
+ int nDoclist;
+
+ memset(&term, 0, sizeof(Fts5Buffer));
+
+ if( n<4 ){
+ sqlite3Fts5BufferSet(&rc, &s, 7, (const u8*)"corrupt");
+ goto decode_out;
+ }else{
+ iRowidOff = fts5GetU16(&a[0]);
+ iPgidxOff = szLeaf = fts5GetU16(&a[2]);
+ if( iPgidxOff<n ){
+ fts5GetVarint32(&a[iPgidxOff], iTermOff);
+ }else if( iPgidxOff>n ){
+ rc = FTS5_CORRUPT;
+ goto decode_out;
+ }
+ }
+
+ /* Decode the position list tail at the start of the page */
+ if( iRowidOff!=0 ){
+ iOff = iRowidOff;
+ }else if( iTermOff!=0 ){
+ iOff = iTermOff;
+ }else{
+ iOff = szLeaf;
+ }
+ if( iOff>n ){
+ rc = FTS5_CORRUPT;
+ goto decode_out;
+ }
+ fts5DecodePoslist(&rc, &s, &a[4], iOff-4);
+
+ /* Decode any more doclist data that appears on the page before the
+ ** first term. */
+ nDoclist = (iTermOff ? iTermOff : szLeaf) - iOff;
+ if( nDoclist+iOff>n ){
+ rc = FTS5_CORRUPT;
+ goto decode_out;
+ }
+ fts5DecodeDoclist(&rc, &s, &a[iOff], nDoclist);
+
+ while( iPgidxOff<n && rc==SQLITE_OK ){
+ int bFirst = (iPgidxOff==szLeaf); /* True for first term on page */
+ int nByte; /* Bytes of data */
+ int iEnd;
+
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nByte);
+ iPgidxPrev += nByte;
+ iOff = iPgidxPrev;
+
+ if( iPgidxOff<n ){
+ fts5GetVarint32(&a[iPgidxOff], nByte);
+ iEnd = iPgidxPrev + nByte;
+ }else{
+ iEnd = szLeaf;
+ }
+ if( iEnd>szLeaf ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+
+ if( bFirst==0 ){
+ iOff += fts5GetVarint32(&a[iOff], nByte);
+ if( nByte>term.n ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ term.n = nByte;
+ }
+ iOff += fts5GetVarint32(&a[iOff], nByte);
+ if( iOff+nByte>n ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
+ iOff += nByte;
+
+ sqlite3Fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], iEnd-iOff);
+ }
+
+ fts5BufferFree(&term);
+ }
+
+ decode_out:
+ sqlite3_free(a);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ fts5BufferFree(&s);
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+/*
+** The implementation of user-defined scalar function fts5_rowid().
+*/
+static void fts5RowidFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ const char *zArg;
+ if( nArg==0 ){
+ sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
+ }else{
+ zArg = (const char*)sqlite3_value_text(apVal[0]);
+ if( 0==sqlite3_stricmp(zArg, "segment") ){
+ i64 iRowid;
+ int segid, pgno;
+ if( nArg!=3 ){
+ sqlite3_result_error(pCtx,
+ "should be: fts5_rowid('segment', segid, pgno))", -1
+ );
+ }else{
+ segid = sqlite3_value_int(apVal[1]);
+ pgno = sqlite3_value_int(apVal[2]);
+ iRowid = FTS5_SEGMENT_ROWID(segid, pgno);
+ sqlite3_result_int64(pCtx, iRowid);
+ }
+ }else{
+ sqlite3_result_error(pCtx,
+ "first arg to fts5_rowid() must be 'segment'" , -1
+ );
+ }
+ }
+}
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+
+typedef struct Fts5StructVtab Fts5StructVtab;
+struct Fts5StructVtab {
+ sqlite3_vtab base;
+};
+
+typedef struct Fts5StructVcsr Fts5StructVcsr;
+struct Fts5StructVcsr {
+ sqlite3_vtab_cursor base;
+ Fts5Structure *pStruct;
+ int iLevel;
+ int iSeg;
+ int iRowid;
+};
+
+/*
+** Create a new fts5_structure() table-valued function.
+*/
+static int fts5structConnectMethod(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ Fts5StructVtab *pNew = 0;
+ int rc = SQLITE_OK;
+
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE xyz("
+ "level, segment, merge, segid, leaf1, leaf2, loc1, loc2, "
+ "npgtombstone, nentrytombstone, nentry, struct HIDDEN);"
+ );
+ if( rc==SQLITE_OK ){
+ pNew = sqlite3Fts5MallocZero(&rc, sizeof(*pNew));
+ }
+
+ *ppVtab = (sqlite3_vtab*)pNew;
+ return rc;
+}
+
+/*
+** We must have a single struct=? constraint that will be passed through
+** into the xFilter method. If there is no valid stmt=? constraint,
+** then return an SQLITE_CONSTRAINT error.
+*/
+static int fts5structBestIndexMethod(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ int i;
+ int rc = SQLITE_CONSTRAINT;
+ struct sqlite3_index_constraint *p;
+ pIdxInfo->estimatedCost = (double)100;
+ pIdxInfo->estimatedRows = 100;
+ pIdxInfo->idxNum = 0;
+ for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){
+ if( p->usable==0 ) continue;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==11 ){
+ rc = SQLITE_OK;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** This method is the destructor for bytecodevtab objects.
+*/
+static int fts5structDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts5StructVtab *p = (Fts5StructVtab*)pVtab;
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Constructor for a new bytecodevtab_cursor object.
+*/
+static int fts5structOpenMethod(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCsr){
+ int rc = SQLITE_OK;
+ Fts5StructVcsr *pNew = 0;
+
+ pNew = sqlite3Fts5MallocZero(&rc, sizeof(*pNew));
+ *ppCsr = (sqlite3_vtab_cursor*)pNew;
+
+ return SQLITE_OK;
+}
+
+/*
+** Destructor for a bytecodevtab_cursor.
+*/
+static int fts5structCloseMethod(sqlite3_vtab_cursor *cur){
+ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
+ fts5StructureRelease(pCsr->pStruct);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance a bytecodevtab_cursor to its next row of output.
+*/
+static int fts5structNextMethod(sqlite3_vtab_cursor *cur){
+ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
+ Fts5Structure *p = pCsr->pStruct;
+
+ assert( pCsr->pStruct );
+ pCsr->iSeg++;
+ pCsr->iRowid++;
+ while( pCsr->iLevel<p->nLevel && pCsr->iSeg>=p->aLevel[pCsr->iLevel].nSeg ){
+ pCsr->iLevel++;
+ pCsr->iSeg = 0;
+ }
+ if( pCsr->iLevel>=p->nLevel ){
+ fts5StructureRelease(pCsr->pStruct);
+ pCsr->pStruct = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the cursor has been moved off of the last
+** row of output.
+*/
+static int fts5structEofMethod(sqlite3_vtab_cursor *cur){
+ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
+ return pCsr->pStruct==0;
+}
+
+static int fts5structRowidMethod(
+ sqlite3_vtab_cursor *cur,
+ sqlite_int64 *piRowid
+){
+ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
+ *piRowid = pCsr->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Return values of columns for the row at which the bytecodevtab_cursor
+** is currently pointing.
+*/
+static int fts5structColumnMethod(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
+ Fts5Structure *p = pCsr->pStruct;
+ Fts5StructureSegment *pSeg = &p->aLevel[pCsr->iLevel].aSeg[pCsr->iSeg];
+
+ switch( i ){
+ case 0: /* level */
+ sqlite3_result_int(ctx, pCsr->iLevel);
+ break;
+ case 1: /* segment */
+ sqlite3_result_int(ctx, pCsr->iSeg);
+ break;
+ case 2: /* merge */
+ sqlite3_result_int(ctx, pCsr->iSeg < p->aLevel[pCsr->iLevel].nMerge);
+ break;
+ case 3: /* segid */
+ sqlite3_result_int(ctx, pSeg->iSegid);
+ break;
+ case 4: /* leaf1 */
+ sqlite3_result_int(ctx, pSeg->pgnoFirst);
+ break;
+ case 5: /* leaf2 */
+ sqlite3_result_int(ctx, pSeg->pgnoLast);
+ break;
+ case 6: /* origin1 */
+ sqlite3_result_int64(ctx, pSeg->iOrigin1);
+ break;
+ case 7: /* origin2 */
+ sqlite3_result_int64(ctx, pSeg->iOrigin2);
+ break;
+ case 8: /* npgtombstone */
+ sqlite3_result_int(ctx, pSeg->nPgTombstone);
+ break;
+ case 9: /* nentrytombstone */
+ sqlite3_result_int64(ctx, pSeg->nEntryTombstone);
+ break;
+ case 10: /* nentry */
+ sqlite3_result_int64(ctx, pSeg->nEntry);
+ break;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Initialize a cursor.
+**
+** idxNum==0 means show all subprograms
+** idxNum==1 means show only the main bytecode and omit subprograms.
+*/
+static int fts5structFilterMethod(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ Fts5StructVcsr *pCsr = (Fts5StructVcsr *)pVtabCursor;
+ int rc = SQLITE_OK;
+
+ const u8 *aBlob = 0;
+ int nBlob = 0;
+
+ assert( argc==1 );
+ fts5StructureRelease(pCsr->pStruct);
+ pCsr->pStruct = 0;
+
+ nBlob = sqlite3_value_bytes(argv[0]);
+ aBlob = (const u8*)sqlite3_value_blob(argv[0]);
+ rc = fts5StructureDecode(aBlob, nBlob, 0, &pCsr->pStruct);
+ if( rc==SQLITE_OK ){
+ pCsr->iLevel = 0;
+ pCsr->iRowid = 0;
+ pCsr->iSeg = -1;
+ rc = fts5structNextMethod(pVtabCursor);
+ }
+
+ return rc;
+}
+
+#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
+
+/*
+** This is called as part of registering the FTS5 module with database
+** connection db. It registers several user-defined scalar functions useful
+** with FTS5.
+**
+** If successful, SQLITE_OK is returned. If an error occurs, some other
+** SQLite error code is returned instead.
+*/
+static int sqlite3Fts5IndexInit(sqlite3 *db){
+#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
+ int rc = sqlite3_create_function(
+ db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
+ );
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_decode_none", 2,
+ SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ static const sqlite3_module fts5structure_module = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ fts5structConnectMethod, /* xConnect */
+ fts5structBestIndexMethod, /* xBestIndex */
+ fts5structDisconnectMethod, /* xDisconnect */
+ 0, /* xDestroy */
+ fts5structOpenMethod, /* xOpen */
+ fts5structCloseMethod, /* xClose */
+ fts5structFilterMethod, /* xFilter */
+ fts5structNextMethod, /* xNext */
+ fts5structEofMethod, /* xEof */
+ fts5structColumnMethod, /* xColumn */
+ fts5structRowidMethod, /* xRowid */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindFunction */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+ };
+ rc = sqlite3_create_module(db, "fts5_structure", &fts5structure_module, 0);
+ }
+ return rc;
+#else
+ return SQLITE_OK;
+ UNUSED_PARAM(db);
+#endif
+}
+
+
+static int sqlite3Fts5IndexReset(Fts5Index *p){
+ assert( p->pStruct==0 || p->iStructVersion!=0 );
+ if( fts5IndexDataVersion(p)!=p->iStructVersion ){
+ fts5StructureInvalidate(p);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** 2014 Jun 09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** This variable is set to false when running tests for which the on disk
+** structures should not be corrupt. Otherwise, true. If it is false, extra
+** assert() conditions in the fts5 code are activated - conditions that are
+** only true if it is guaranteed that the fts5 database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_API int sqlite3_fts5_may_be_corrupt = 1;
+#endif
+
+
+typedef struct Fts5Auxdata Fts5Auxdata;
+typedef struct Fts5Auxiliary Fts5Auxiliary;
+typedef struct Fts5Cursor Fts5Cursor;
+typedef struct Fts5FullTable Fts5FullTable;
+typedef struct Fts5Sorter Fts5Sorter;
+typedef struct Fts5TokenizerModule Fts5TokenizerModule;
+
+/*
+** NOTES ON TRANSACTIONS:
+**
+** SQLite invokes the following virtual table methods as transactions are
+** opened and closed by the user:
+**
+** xBegin(): Start of a new transaction.
+** xSync(): Initial part of two-phase commit.
+** xCommit(): Final part of two-phase commit.
+** xRollback(): Rollback the transaction.
+**
+** Anything that is required as part of a commit that may fail is performed
+** in the xSync() callback. Current versions of SQLite ignore any errors
+** returned by xCommit().
+**
+** And as sub-transactions are opened/closed:
+**
+** xSavepoint(int S): Open savepoint S.
+** xRelease(int S): Commit and close savepoint S.
+** xRollbackTo(int S): Rollback to start of savepoint S.
+**
+** During a write-transaction the fts5_index.c module may cache some data
+** in-memory. It is flushed to disk whenever xSync(), xRelease() or
+** xSavepoint() is called. And discarded whenever xRollback() or xRollbackTo()
+** is called.
+**
+** Additionally, if SQLITE_DEBUG is defined, an instance of the following
+** structure is used to record the current transaction state. This information
+** is not required, but it is used in the assert() statements executed by
+** function fts5CheckTransactionState() (see below).
+*/
+struct Fts5TransactionState {
+ int eState; /* 0==closed, 1==open, 2==synced */
+ int iSavepoint; /* Number of open savepoints (0 -> none) */
+};
+
+/*
+** A single object of this type is allocated when the FTS5 module is
+** registered with a database handle. It is used to store pointers to
+** all registered FTS5 extensions - tokenizers and auxiliary functions.
+*/
+struct Fts5Global {
+ fts5_api api; /* User visible part of object (see fts5.h) */
+ sqlite3 *db; /* Associated database connection */
+ i64 iNextId; /* Used to allocate unique cursor ids */
+ Fts5Auxiliary *pAux; /* First in list of all aux. functions */
+ Fts5TokenizerModule *pTok; /* First in list of all tokenizer modules */
+ Fts5TokenizerModule *pDfltTok; /* Default tokenizer module */
+ Fts5Cursor *pCsr; /* First in list of all open cursors */
+};
+
+/*
+** Each auxiliary function registered with the FTS5 module is represented
+** by an object of the following type. All such objects are stored as part
+** of the Fts5Global.pAux list.
+*/
+struct Fts5Auxiliary {
+ Fts5Global *pGlobal; /* Global context for this function */
+ char *zFunc; /* Function name (nul-terminated) */
+ void *pUserData; /* User-data pointer */
+ fts5_extension_function xFunc; /* Callback function */
+ void (*xDestroy)(void*); /* Destructor function */
+ Fts5Auxiliary *pNext; /* Next registered auxiliary function */
+};
+
+/*
+** Each tokenizer module registered with the FTS5 module is represented
+** by an object of the following type. All such objects are stored as part
+** of the Fts5Global.pTok list.
+*/
+struct Fts5TokenizerModule {
+ char *zName; /* Name of tokenizer */
+ void *pUserData; /* User pointer passed to xCreate() */
+ fts5_tokenizer x; /* Tokenizer functions */
+ void (*xDestroy)(void*); /* Destructor function */
+ Fts5TokenizerModule *pNext; /* Next registered tokenizer module */
+};
+
+struct Fts5FullTable {
+ Fts5Table p; /* Public class members from fts5Int.h */
+ Fts5Storage *pStorage; /* Document store */
+ Fts5Global *pGlobal; /* Global (connection wide) data */
+ Fts5Cursor *pSortCsr; /* Sort data from this cursor */
+ int iSavepoint; /* Successful xSavepoint()+1 */
+ int bInSavepoint;
+#ifdef SQLITE_DEBUG
+ struct Fts5TransactionState ts;
+#endif
+};
+
+struct Fts5MatchPhrase {
+ Fts5Buffer *pPoslist; /* Pointer to current poslist */
+ int nTerm; /* Size of phrase in terms */
+};
+
+/*
+** pStmt:
+** SELECT rowid, <fts> FROM <fts> ORDER BY +rank;
+**
+** aIdx[]:
+** There is one entry in the aIdx[] array for each phrase in the query,
+** the value of which is the offset within aPoslist[] following the last
+** byte of the position list for the corresponding phrase.
+*/
+struct Fts5Sorter {
+ sqlite3_stmt *pStmt;
+ i64 iRowid; /* Current rowid */
+ const u8 *aPoslist; /* Position lists for current row */
+ int nIdx; /* Number of entries in aIdx[] */
+ int aIdx[1]; /* Offsets into aPoslist for current row */
+};
+
+
+/*
+** Virtual-table cursor object.
+**
+** iSpecial:
+** If this is a 'special' query (refer to function fts5SpecialMatch()),
+** then this variable contains the result of the query.
+**
+** iFirstRowid, iLastRowid:
+** These variables are only used for FTS5_PLAN_MATCH cursors. Assuming the
+** cursor iterates in ascending order of rowids, iFirstRowid is the lower
+** limit of rowids to return, and iLastRowid the upper. In other words, the
+** WHERE clause in the user's query might have been:
+**
+** <tbl> MATCH <expr> AND rowid BETWEEN $iFirstRowid AND $iLastRowid
+**
+** If the cursor iterates in descending order of rowid, iFirstRowid
+** is the upper limit (i.e. the "first" rowid visited) and iLastRowid
+** the lower.
+*/
+struct Fts5Cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ Fts5Cursor *pNext; /* Next cursor in Fts5Cursor.pCsr list */
+ int *aColumnSize; /* Values for xColumnSize() */
+ i64 iCsrId; /* Cursor id */
+
+ /* Zero from this point onwards on cursor reset */
+ int ePlan; /* FTS5_PLAN_XXX value */
+ int bDesc; /* True for "ORDER BY rowid DESC" queries */
+ i64 iFirstRowid; /* Return no rowids earlier than this */
+ i64 iLastRowid; /* Return no rowids later than this */
+ sqlite3_stmt *pStmt; /* Statement used to read %_content */
+ Fts5Expr *pExpr; /* Expression for MATCH queries */
+ Fts5Sorter *pSorter; /* Sorter for "ORDER BY rank" queries */
+ int csrflags; /* Mask of cursor flags (see below) */
+ i64 iSpecial; /* Result of special query */
+
+ /* "rank" function. Populated on demand from vtab.xColumn(). */
+ char *zRank; /* Custom rank function */
+ char *zRankArgs; /* Custom rank function args */
+ Fts5Auxiliary *pRank; /* Rank callback (or NULL) */
+ int nRankArg; /* Number of trailing arguments for rank() */
+ sqlite3_value **apRankArg; /* Array of trailing arguments */
+ sqlite3_stmt *pRankArgStmt; /* Origin of objects in apRankArg[] */
+
+ /* Auxiliary data storage */
+ Fts5Auxiliary *pAux; /* Currently executing extension function */
+ Fts5Auxdata *pAuxdata; /* First in linked list of saved aux-data */
+
+ /* Cache used by auxiliary functions xInst() and xInstCount() */
+ Fts5PoslistReader *aInstIter; /* One for each phrase */
+ int nInstAlloc; /* Size of aInst[] array (entries / 3) */
+ int nInstCount; /* Number of phrase instances */
+ int *aInst; /* 3 integers per phrase instance */
+};
+
+/*
+** Bits that make up the "idxNum" parameter passed indirectly by
+** xBestIndex() to xFilter().
+*/
+#define FTS5_BI_MATCH 0x0001 /* <tbl> MATCH ? */
+#define FTS5_BI_RANK 0x0002 /* rank MATCH ? */
+#define FTS5_BI_ROWID_EQ 0x0004 /* rowid == ? */
+#define FTS5_BI_ROWID_LE 0x0008 /* rowid <= ? */
+#define FTS5_BI_ROWID_GE 0x0010 /* rowid >= ? */
+
+#define FTS5_BI_ORDER_RANK 0x0020
+#define FTS5_BI_ORDER_ROWID 0x0040
+#define FTS5_BI_ORDER_DESC 0x0080
+
+/*
+** Values for Fts5Cursor.csrflags
+*/
+#define FTS5CSR_EOF 0x01
+#define FTS5CSR_REQUIRE_CONTENT 0x02
+#define FTS5CSR_REQUIRE_DOCSIZE 0x04
+#define FTS5CSR_REQUIRE_INST 0x08
+#define FTS5CSR_FREE_ZRANK 0x10
+#define FTS5CSR_REQUIRE_RESEEK 0x20
+#define FTS5CSR_REQUIRE_POSLIST 0x40
+
+#define BitFlagAllTest(x,y) (((x) & (y))==(y))
+#define BitFlagTest(x,y) (((x) & (y))!=0)
+
+
+/*
+** Macros to Set(), Clear() and Test() cursor flags.
+*/
+#define CsrFlagSet(pCsr, flag) ((pCsr)->csrflags |= (flag))
+#define CsrFlagClear(pCsr, flag) ((pCsr)->csrflags &= ~(flag))
+#define CsrFlagTest(pCsr, flag) ((pCsr)->csrflags & (flag))
+
+struct Fts5Auxdata {
+ Fts5Auxiliary *pAux; /* Extension to which this belongs */
+ void *pPtr; /* Pointer value */
+ void(*xDelete)(void*); /* Destructor */
+ Fts5Auxdata *pNext; /* Next object in linked list */
+};
+
+#ifdef SQLITE_DEBUG
+#define FTS5_BEGIN 1
+#define FTS5_SYNC 2
+#define FTS5_COMMIT 3
+#define FTS5_ROLLBACK 4
+#define FTS5_SAVEPOINT 5
+#define FTS5_RELEASE 6
+#define FTS5_ROLLBACKTO 7
+static void fts5CheckTransactionState(Fts5FullTable *p, int op, int iSavepoint){
+ switch( op ){
+ case FTS5_BEGIN:
+ assert( p->ts.eState==0 );
+ p->ts.eState = 1;
+ p->ts.iSavepoint = -1;
+ break;
+
+ case FTS5_SYNC:
+ assert( p->ts.eState==1 || p->ts.eState==2 );
+ p->ts.eState = 2;
+ break;
+
+ case FTS5_COMMIT:
+ assert( p->ts.eState==2 );
+ p->ts.eState = 0;
+ break;
+
+ case FTS5_ROLLBACK:
+ assert( p->ts.eState==1 || p->ts.eState==2 || p->ts.eState==0 );
+ p->ts.eState = 0;
+ break;
+
+ case FTS5_SAVEPOINT:
+ assert( p->ts.eState>=1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint>=p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint;
+ break;
+
+ case FTS5_RELEASE:
+ assert( p->ts.eState>=1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint<=p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint-1;
+ break;
+
+ case FTS5_ROLLBACKTO:
+ assert( p->ts.eState>=1 );
+ assert( iSavepoint>=-1 );
+ /* The following assert() can fail if another vtab strikes an error
+ ** within an xSavepoint() call then SQLite calls xRollbackTo() - without
+ ** having called xSavepoint() on this vtab. */
+ /* assert( iSavepoint<=p->ts.iSavepoint ); */
+ p->ts.iSavepoint = iSavepoint;
+ break;
+ }
+}
+#else
+# define fts5CheckTransactionState(x,y,z)
+#endif
+
+/*
+** Return true if pTab is a contentless table.
+*/
+static int fts5IsContentless(Fts5FullTable *pTab){
+ return pTab->p.pConfig->eContent==FTS5_CONTENT_NONE;
+}
+
+/*
+** Delete a virtual table handle allocated by fts5InitVtab().
+*/
+static void fts5FreeVtab(Fts5FullTable *pTab){
+ if( pTab ){
+ sqlite3Fts5IndexClose(pTab->p.pIndex);
+ sqlite3Fts5StorageClose(pTab->pStorage);
+ sqlite3Fts5ConfigFree(pTab->p.pConfig);
+ sqlite3_free(pTab);
+ }
+}
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts5DisconnectMethod(sqlite3_vtab *pVtab){
+ fts5FreeVtab((Fts5FullTable*)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts5DestroyMethod(sqlite3_vtab *pVtab){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ int rc = sqlite3Fts5DropAll(pTab->pConfig);
+ if( rc==SQLITE_OK ){
+ fts5FreeVtab((Fts5FullTable*)pVtab);
+ }
+ return rc;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts5")
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> "column name" and other module argument fields.
+*/
+static int fts5InitVtab(
+ int bCreate, /* True for xCreate, false for xConnect */
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Hash table containing tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pAux;
+ const char **azConfig = (const char**)argv;
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pConfig = 0; /* Results of parsing argc/argv */
+ Fts5FullTable *pTab = 0; /* New virtual table object */
+
+ /* Allocate the new vtab object and parse the configuration */
+ pTab = (Fts5FullTable*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5FullTable));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, argc, azConfig, &pConfig, pzErr);
+ assert( (rc==SQLITE_OK && *pzErr==0) || pConfig==0 );
+ }
+ if( rc==SQLITE_OK ){
+ pTab->p.pConfig = pConfig;
+ pTab->pGlobal = pGlobal;
+ }
+
+ /* Open the index sub-system */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexOpen(pConfig, bCreate, &pTab->p.pIndex, pzErr);
+ }
+
+ /* Open the storage sub-system */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageOpen(
+ pConfig, pTab->p.pIndex, bCreate, &pTab->pStorage, pzErr
+ );
+ }
+
+ /* Call sqlite3_declare_vtab() */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigDeclareVtab(pConfig);
+ }
+
+ /* Load the initial configuration */
+ if( rc==SQLITE_OK ){
+ assert( pConfig->pzErrmsg==0 );
+ pConfig->pzErrmsg = pzErr;
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ sqlite3Fts5IndexRollback(pTab->p.pIndex);
+ pConfig->pzErrmsg = 0;
+ }
+
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ rc = sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, (int)1);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5FreeVtab(pTab);
+ pTab = 0;
+ }else if( bCreate ){
+ fts5CheckTransactionState(pTab, FTS5_BEGIN, 0);
+ }
+ *ppVTab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts5InitVtab().
+*/
+static int fts5ConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts5CreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** The different query plans.
+*/
+#define FTS5_PLAN_MATCH 1 /* (<tbl> MATCH ?) */
+#define FTS5_PLAN_SOURCE 2 /* A source cursor for SORTED_MATCH */
+#define FTS5_PLAN_SPECIAL 3 /* An internal query */
+#define FTS5_PLAN_SORTED_MATCH 4 /* (<tbl> MATCH ? ORDER BY rank) */
+#define FTS5_PLAN_SCAN 5 /* No usable constraint */
+#define FTS5_PLAN_ROWID 6 /* (rowid = ?) */
+
+/*
+** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support index-info flags. In that case this function is a no-op.
+*/
+static void fts5SetUniqueFlag(sqlite3_index_info *pIdxInfo){
+#if SQLITE_VERSION_NUMBER>=3008012
+#ifndef SQLITE_CORE
+ if( sqlite3_libversion_number()>=3008012 )
+#endif
+ {
+ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
+ }
+#endif
+}
+
+static int fts5UsePatternMatch(
+ Fts5Config *pConfig,
+ struct sqlite3_index_constraint *p
+){
+ assert( FTS5_PATTERN_GLOB==SQLITE_INDEX_CONSTRAINT_GLOB );
+ assert( FTS5_PATTERN_LIKE==SQLITE_INDEX_CONSTRAINT_LIKE );
+ if( pConfig->ePattern==FTS5_PATTERN_GLOB && p->op==FTS5_PATTERN_GLOB ){
+ return 1;
+ }
+ if( pConfig->ePattern==FTS5_PATTERN_LIKE
+ && (p->op==FTS5_PATTERN_LIKE || p->op==FTS5_PATTERN_GLOB)
+ ){
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Implementation of the xBestIndex method for FTS5 tables. Within the
+** WHERE constraint, it searches for the following:
+**
+** 1. A MATCH constraint against the table column.
+** 2. A MATCH constraint against the "rank" column.
+** 3. A MATCH constraint against some other column.
+** 4. An == constraint against the rowid column.
+** 5. A < or <= constraint against the rowid column.
+** 6. A > or >= constraint against the rowid column.
+**
+** Within the ORDER BY, the following are supported:
+**
+** 5. ORDER BY rank [ASC|DESC]
+** 6. ORDER BY rowid [ASC|DESC]
+**
+** Information for the xFilter call is passed via both the idxNum and
+** idxStr variables. Specifically, idxNum is a bitmask of the following
+** flags used to encode the ORDER BY clause:
+**
+** FTS5_BI_ORDER_RANK
+** FTS5_BI_ORDER_ROWID
+** FTS5_BI_ORDER_DESC
+**
+** idxStr is used to encode data from the WHERE clause. For each argument
+** passed to the xFilter method, the following is appended to idxStr:
+**
+** Match against table column: "m"
+** Match against rank column: "r"
+** Match against other column: "M<column-number>"
+** LIKE against other column: "L<column-number>"
+** GLOB against other column: "G<column-number>"
+** Equality constraint against the rowid: "="
+** A < or <= against the rowid: "<"
+** A > or >= against the rowid: ">"
+**
+** This function ensures that there is at most one "r" or "=". And that if
+** there exists an "=" then there is no "<" or ">".
+**
+** Costs are assigned as follows:
+**
+** a) If an unusable MATCH operator is present in the WHERE clause, the
+** cost is unconditionally set to 1e50 (a really big number).
+**
+** a) If a MATCH operator is present, the cost depends on the other
+** constraints also present. As follows:
+**
+** * No other constraints: cost=1000.0
+** * One rowid range constraint: cost=750.0
+** * Both rowid range constraints: cost=500.0
+** * An == rowid constraint: cost=100.0
+**
+** b) Otherwise, if there is no MATCH:
+**
+** * No other constraints: cost=1000000.0
+** * One rowid range constraint: cost=750000.0
+** * Both rowid range constraints: cost=250000.0
+** * An == rowid constraint: cost=10.0
+**
+** Costs are not modified by the ORDER BY clause.
+*/
+static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ Fts5Table *pTab = (Fts5Table*)pVTab;
+ Fts5Config *pConfig = pTab->pConfig;
+ const int nCol = pConfig->nCol;
+ int idxFlags = 0; /* Parameter passed through to xFilter() */
+ int i;
+
+ char *idxStr;
+ int iIdxStr = 0;
+ int iCons = 0;
+
+ int bSeenEq = 0;
+ int bSeenGt = 0;
+ int bSeenLt = 0;
+ int bSeenMatch = 0;
+ int bSeenRank = 0;
+
+
+ assert( SQLITE_INDEX_CONSTRAINT_EQ<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_GT<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_GE<SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );
+
+ if( pConfig->bLock ){
+ pTab->base.zErrMsg = sqlite3_mprintf(
+ "recursively defined fts5 content table"
+ );
+ return SQLITE_ERROR;
+ }
+
+ idxStr = (char*)sqlite3_malloc(pInfo->nConstraint * 8 + 1);
+ if( idxStr==0 ) return SQLITE_NOMEM;
+ pInfo->idxStr = idxStr;
+ pInfo->needToFreeIdxStr = 1;
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ int iCol = p->iColumn;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_MATCH
+ || (p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol>=nCol)
+ ){
+ /* A MATCH operator or equivalent */
+ if( p->usable==0 || iCol<0 ){
+ /* As there exists an unusable MATCH constraint this is an
+ ** unusable plan. Set a prohibitively high cost. */
+ pInfo->estimatedCost = 1e50;
+ assert( iIdxStr < pInfo->nConstraint*6 + 1 );
+ idxStr[iIdxStr] = 0;
+ return SQLITE_OK;
+ }else{
+ if( iCol==nCol+1 ){
+ if( bSeenRank ) continue;
+ idxStr[iIdxStr++] = 'r';
+ bSeenRank = 1;
+ }else if( iCol>=0 ){
+ bSeenMatch = 1;
+ idxStr[iIdxStr++] = 'M';
+ sqlite3_snprintf(6, &idxStr[iIdxStr], "%d", iCol);
+ idxStr += strlen(&idxStr[iIdxStr]);
+ assert( idxStr[iIdxStr]=='\0' );
+ }
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ pInfo->aConstraintUsage[i].omit = 1;
+ }
+ }else if( p->usable ){
+ if( iCol>=0 && iCol<nCol && fts5UsePatternMatch(pConfig, p) ){
+ assert( p->op==FTS5_PATTERN_LIKE || p->op==FTS5_PATTERN_GLOB );
+ idxStr[iIdxStr++] = p->op==FTS5_PATTERN_LIKE ? 'L' : 'G';
+ sqlite3_snprintf(6, &idxStr[iIdxStr], "%d", iCol);
+ idxStr += strlen(&idxStr[iIdxStr]);
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ assert( idxStr[iIdxStr]=='\0' );
+ }else if( bSeenEq==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol<0 ){
+ idxStr[iIdxStr++] = '=';
+ bSeenEq = 1;
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ }
+ }
+ }
+
+ if( bSeenEq==0 ){
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ if( p->iColumn<0 && p->usable ){
+ int op = p->op;
+ if( op==SQLITE_INDEX_CONSTRAINT_LT || op==SQLITE_INDEX_CONSTRAINT_LE ){
+ if( bSeenLt ) continue;
+ idxStr[iIdxStr++] = '<';
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ bSeenLt = 1;
+ }else
+ if( op==SQLITE_INDEX_CONSTRAINT_GT || op==SQLITE_INDEX_CONSTRAINT_GE ){
+ if( bSeenGt ) continue;
+ idxStr[iIdxStr++] = '>';
+ pInfo->aConstraintUsage[i].argvIndex = ++iCons;
+ bSeenGt = 1;
+ }
+ }
+ }
+ }
+ idxStr[iIdxStr] = '\0';
+
+ /* Set idxFlags flags for the ORDER BY clause */
+ if( pInfo->nOrderBy==1 ){
+ int iSort = pInfo->aOrderBy[0].iColumn;
+ if( iSort==(pConfig->nCol+1) && bSeenMatch ){
+ idxFlags |= FTS5_BI_ORDER_RANK;
+ }else if( iSort==-1 ){
+ idxFlags |= FTS5_BI_ORDER_ROWID;
+ }
+ if( BitFlagTest(idxFlags, FTS5_BI_ORDER_RANK|FTS5_BI_ORDER_ROWID) ){
+ pInfo->orderByConsumed = 1;
+ if( pInfo->aOrderBy[0].desc ){
+ idxFlags |= FTS5_BI_ORDER_DESC;
+ }
+ }
+ }
+
+ /* Calculate the estimated cost based on the flags set in idxFlags. */
+ if( bSeenEq ){
+ pInfo->estimatedCost = bSeenMatch ? 100.0 : 10.0;
+ if( bSeenMatch==0 ) fts5SetUniqueFlag(pInfo);
+ }else if( bSeenLt && bSeenGt ){
+ pInfo->estimatedCost = bSeenMatch ? 500.0 : 250000.0;
+ }else if( bSeenLt || bSeenGt ){
+ pInfo->estimatedCost = bSeenMatch ? 750.0 : 750000.0;
+ }else{
+ pInfo->estimatedCost = bSeenMatch ? 1000.0 : 1000000.0;
+ }
+
+ pInfo->idxNum = idxFlags;
+ return SQLITE_OK;
+}
+
+static int fts5NewTransaction(Fts5FullTable *pTab){
+ Fts5Cursor *pCsr;
+ for(pCsr=pTab->pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->base.pVtab==(sqlite3_vtab*)pTab ) return SQLITE_OK;
+ }
+ return sqlite3Fts5StorageReset(pTab->pStorage);
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts5OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVTab;
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Cursor *pCsr = 0; /* New cursor object */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+ int rc; /* Return code */
+
+ rc = fts5NewTransaction(pTab);
+ if( rc==SQLITE_OK ){
+ nByte = sizeof(Fts5Cursor) + pConfig->nCol * sizeof(int);
+ pCsr = (Fts5Cursor*)sqlite3_malloc64(nByte);
+ if( pCsr ){
+ Fts5Global *pGlobal = pTab->pGlobal;
+ memset(pCsr, 0, (size_t)nByte);
+ pCsr->aColumnSize = (int*)&pCsr[1];
+ pCsr->pNext = pGlobal->pCsr;
+ pGlobal->pCsr = pCsr;
+ pCsr->iCsrId = ++pGlobal->iNextId;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ *ppCsr = (sqlite3_vtab_cursor*)pCsr;
+ return rc;
+}
+
+static int fts5StmtType(Fts5Cursor *pCsr){
+ if( pCsr->ePlan==FTS5_PLAN_SCAN ){
+ return (pCsr->bDesc) ? FTS5_STMT_SCAN_DESC : FTS5_STMT_SCAN_ASC;
+ }
+ return FTS5_STMT_LOOKUP;
+}
+
+/*
+** This function is called after the cursor passed as the only argument
+** is moved to point at a different row. It clears all cached data
+** specific to the previous row stored by the cursor object.
+*/
+static void fts5CsrNewrow(Fts5Cursor *pCsr){
+ CsrFlagSet(pCsr,
+ FTS5CSR_REQUIRE_CONTENT
+ | FTS5CSR_REQUIRE_DOCSIZE
+ | FTS5CSR_REQUIRE_INST
+ | FTS5CSR_REQUIRE_POSLIST
+ );
+}
+
+static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ Fts5Auxdata *pData;
+ Fts5Auxdata *pNext;
+
+ sqlite3_free(pCsr->aInstIter);
+ sqlite3_free(pCsr->aInst);
+ if( pCsr->pStmt ){
+ int eStmt = fts5StmtType(pCsr);
+ sqlite3Fts5StorageStmtRelease(pTab->pStorage, eStmt, pCsr->pStmt);
+ }
+ if( pCsr->pSorter ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ sqlite3_finalize(pSorter->pStmt);
+ sqlite3_free(pSorter);
+ }
+
+ if( pCsr->ePlan!=FTS5_PLAN_SOURCE ){
+ sqlite3Fts5ExprFree(pCsr->pExpr);
+ }
+
+ for(pData=pCsr->pAuxdata; pData; pData=pNext){
+ pNext = pData->pNext;
+ if( pData->xDelete ) pData->xDelete(pData->pPtr);
+ sqlite3_free(pData);
+ }
+
+ sqlite3_finalize(pCsr->pRankArgStmt);
+ sqlite3_free(pCsr->apRankArg);
+
+ if( CsrFlagTest(pCsr, FTS5CSR_FREE_ZRANK) ){
+ sqlite3_free(pCsr->zRank);
+ sqlite3_free(pCsr->zRankArgs);
+ }
+
+ sqlite3Fts5IndexCloseReader(pTab->p.pIndex);
+ memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan - (u8*)pCsr));
+}
+
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts5CloseMethod(sqlite3_vtab_cursor *pCursor){
+ if( pCursor ){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ Fts5Cursor **pp;
+
+ fts5FreeCursorComponents(pCsr);
+ /* Remove the cursor from the Fts5Global.pCsr list */
+ for(pp=&pTab->pGlobal->pCsr; (*pp)!=pCsr; pp=&(*pp)->pNext);
+ *pp = pCsr->pNext;
+
+ sqlite3_free(pCsr);
+ }
+ return SQLITE_OK;
+}
+
+static int fts5SorterNext(Fts5Cursor *pCsr){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int rc;
+
+ rc = sqlite3_step(pSorter->pStmt);
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ CsrFlagSet(pCsr, FTS5CSR_EOF|FTS5CSR_REQUIRE_CONTENT);
+ }else if( rc==SQLITE_ROW ){
+ const u8 *a;
+ const u8 *aBlob;
+ int nBlob;
+ int i;
+ int iOff = 0;
+ rc = SQLITE_OK;
+
+ pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
+ nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
+ aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);
+
+ /* nBlob==0 in detail=none mode. */
+ if( nBlob>0 ){
+ for(i=0; i<(pSorter->nIdx-1); i++){
+ int iVal;
+ a += fts5GetVarint32(a, iVal);
+ iOff += iVal;
+ pSorter->aIdx[i] = iOff;
+ }
+ pSorter->aIdx[i] = &aBlob[nBlob] - a;
+ pSorter->aPoslist = a;
+ }
+
+ fts5CsrNewrow(pCsr);
+ }
+
+ return rc;
+}
+
+
+/*
+** Set the FTS5CSR_REQUIRE_RESEEK flag on all FTS5_PLAN_MATCH cursors
+** open on table pTab.
+*/
+static void fts5TripCursors(Fts5FullTable *pTab){
+ Fts5Cursor *pCsr;
+ for(pCsr=pTab->pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->ePlan==FTS5_PLAN_MATCH
+ && pCsr->base.pVtab==(sqlite3_vtab*)pTab
+ ){
+ CsrFlagSet(pCsr, FTS5CSR_REQUIRE_RESEEK);
+ }
+ }
+}
+
+/*
+** If the REQUIRE_RESEEK flag is set on the cursor passed as the first
+** argument, close and reopen all Fts5IndexIter iterators that the cursor
+** is using. Then attempt to move the cursor to a rowid equal to or laster
+** (in the cursors sort order - ASC or DESC) than the current rowid.
+**
+** If the new rowid is not equal to the old, set output parameter *pbSkip
+** to 1 before returning. Otherwise, leave it unchanged.
+**
+** Return SQLITE_OK if successful or if no reseek was required, or an
+** error code if an error occurred.
+*/
+static int fts5CursorReseek(Fts5Cursor *pCsr, int *pbSkip){
+ int rc = SQLITE_OK;
+ assert( *pbSkip==0 );
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ int bDesc = pCsr->bDesc;
+ i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);
+
+ rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->p.pIndex, iRowid, bDesc);
+ if( rc==SQLITE_OK && iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
+ *pbSkip = 1;
+ }
+
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
+ fts5CsrNewrow(pCsr);
+ if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ *pbSkip = 1;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Advance the cursor to the next row in the table that matches the
+** search criteria.
+**
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
+** even if we reach end-of-file. The fts5EofMethod() will be called
+** subsequently to determine whether or not an EOF was hit.
+*/
+static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc;
+
+ assert( (pCsr->ePlan<3)==
+ (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE)
+ );
+ assert( !CsrFlagTest(pCsr, FTS5CSR_EOF) );
+
+ if( pCsr->ePlan<3 ){
+ int bSkip = 0;
+ if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
+ rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
+ CsrFlagSet(pCsr, sqlite3Fts5ExprEof(pCsr->pExpr));
+ fts5CsrNewrow(pCsr);
+ }else{
+ switch( pCsr->ePlan ){
+ case FTS5_PLAN_SPECIAL: {
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ rc = SQLITE_OK;
+ break;
+ }
+
+ case FTS5_PLAN_SORTED_MATCH: {
+ rc = fts5SorterNext(pCsr);
+ break;
+ }
+
+ default: {
+ Fts5Config *pConfig = ((Fts5Table*)pCursor->pVtab)->pConfig;
+ pConfig->bLock++;
+ rc = sqlite3_step(pCsr->pStmt);
+ pConfig->bLock--;
+ if( rc!=SQLITE_ROW ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc!=SQLITE_OK ){
+ pCursor->pVtab->zErrMsg = sqlite3_mprintf(
+ "%s", sqlite3_errmsg(pConfig->db)
+ );
+ }
+ }else{
+ rc = SQLITE_OK;
+ }
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+static int fts5PrepareStatement(
+ sqlite3_stmt **ppStmt,
+ Fts5Config *pConfig,
+ const char *zFmt,
+ ...
+){
+ sqlite3_stmt *pRet = 0;
+ int rc;
+ char *zSql;
+ va_list ap;
+
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v3(pConfig->db, zSql, -1,
+ SQLITE_PREPARE_PERSISTENT, &pRet, 0);
+ if( rc!=SQLITE_OK ){
+ *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
+ }
+ sqlite3_free(zSql);
+ }
+
+ va_end(ap);
+ *ppStmt = pRet;
+ return rc;
+}
+
+static int fts5CursorFirstSorted(
+ Fts5FullTable *pTab,
+ Fts5Cursor *pCsr,
+ int bDesc
+){
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Sorter *pSorter;
+ int nPhrase;
+ sqlite3_int64 nByte;
+ int rc;
+ const char *zRank = pCsr->zRank;
+ const char *zRankArgs = pCsr->zRankArgs;
+
+ nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
+ pSorter = (Fts5Sorter*)sqlite3_malloc64(nByte);
+ if( pSorter==0 ) return SQLITE_NOMEM;
+ memset(pSorter, 0, (size_t)nByte);
+ pSorter->nIdx = nPhrase;
+
+ /* TODO: It would be better to have some system for reusing statement
+ ** handles here, rather than preparing a new one for each query. But that
+ ** is not possible as SQLite reference counts the virtual table objects.
+ ** And since the statement required here reads from this very virtual
+ ** table, saving it creates a circular reference.
+ **
+ ** If SQLite a built-in statement cache, this wouldn't be a problem. */
+ rc = fts5PrepareStatement(&pSorter->pStmt, pConfig,
+ "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(\"%w\"%s%s) %s",
+ pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
+ (zRankArgs ? ", " : ""),
+ (zRankArgs ? zRankArgs : ""),
+ bDesc ? "DESC" : "ASC"
+ );
+
+ pCsr->pSorter = pSorter;
+ if( rc==SQLITE_OK ){
+ assert( pTab->pSortCsr==0 );
+ pTab->pSortCsr = pCsr;
+ rc = fts5SorterNext(pCsr);
+ pTab->pSortCsr = 0;
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_finalize(pSorter->pStmt);
+ sqlite3_free(pSorter);
+ pCsr->pSorter = 0;
+ }
+
+ return rc;
+}
+
+static int fts5CursorFirst(Fts5FullTable *pTab, Fts5Cursor *pCsr, int bDesc){
+ int rc;
+ Fts5Expr *pExpr = pCsr->pExpr;
+ rc = sqlite3Fts5ExprFirst(pExpr, pTab->p.pIndex, pCsr->iFirstRowid, bDesc);
+ if( sqlite3Fts5ExprEof(pExpr) ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ }
+ fts5CsrNewrow(pCsr);
+ return rc;
+}
+
+/*
+** Process a "special" query. A special query is identified as one with a
+** MATCH expression that begins with a '*' character. The remainder of
+** the text passed to the MATCH operator are used as the special query
+** parameters.
+*/
+static int fts5SpecialMatch(
+ Fts5FullTable *pTab,
+ Fts5Cursor *pCsr,
+ const char *zQuery
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *z = zQuery; /* Special query text */
+ int n; /* Number of bytes in text at z */
+
+ while( z[0]==' ' ) z++;
+ for(n=0; z[n] && z[n]!=' '; n++);
+
+ assert( pTab->p.base.zErrMsg==0 );
+ pCsr->ePlan = FTS5_PLAN_SPECIAL;
+
+ if( n==5 && 0==sqlite3_strnicmp("reads", z, n) ){
+ pCsr->iSpecial = sqlite3Fts5IndexReads(pTab->p.pIndex);
+ }
+ else if( n==2 && 0==sqlite3_strnicmp("id", z, n) ){
+ pCsr->iSpecial = pCsr->iCsrId;
+ }
+ else{
+ /* An unrecognized directive. Return an error message. */
+ pTab->p.base.zErrMsg = sqlite3_mprintf("unknown special query: %.*s", n, z);
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+/*
+** Search for an auxiliary function named zName that can be used with table
+** pTab. If one is found, return a pointer to the corresponding Fts5Auxiliary
+** structure. Otherwise, if no such function exists, return NULL.
+*/
+static Fts5Auxiliary *fts5FindAuxiliary(Fts5FullTable *pTab, const char *zName){
+ Fts5Auxiliary *pAux;
+
+ for(pAux=pTab->pGlobal->pAux; pAux; pAux=pAux->pNext){
+ if( sqlite3_stricmp(zName, pAux->zFunc)==0 ) return pAux;
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+
+static int fts5FindRankFunction(Fts5Cursor *pCsr){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int rc = SQLITE_OK;
+ Fts5Auxiliary *pAux = 0;
+ const char *zRank = pCsr->zRank;
+ const char *zRankArgs = pCsr->zRankArgs;
+
+ if( zRankArgs ){
+ char *zSql = sqlite3Fts5Mprintf(&rc, "SELECT %s", zRankArgs);
+ if( zSql ){
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v3(pConfig->db, zSql, -1,
+ SQLITE_PREPARE_PERSISTENT, &pStmt, 0);
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pCsr->pRankArgStmt==0 );
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ sqlite3_int64 nByte;
+ pCsr->nRankArg = sqlite3_column_count(pStmt);
+ nByte = sizeof(sqlite3_value*)*pCsr->nRankArg;
+ pCsr->apRankArg = (sqlite3_value**)sqlite3Fts5MallocZero(&rc, nByte);
+ if( rc==SQLITE_OK ){
+ int i;
+ for(i=0; i<pCsr->nRankArg; i++){
+ pCsr->apRankArg[i] = sqlite3_column_value(pStmt, i);
+ }
+ }
+ pCsr->pRankArgStmt = pStmt;
+ }else{
+ rc = sqlite3_finalize(pStmt);
+ assert( rc!=SQLITE_OK );
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pAux = fts5FindAuxiliary(pTab, zRank);
+ if( pAux==0 ){
+ assert( pTab->p.base.zErrMsg==0 );
+ pTab->p.base.zErrMsg = sqlite3_mprintf("no such function: %s", zRank);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ pCsr->pRank = pAux;
+ return rc;
+}
+
+
+static int fts5CursorParseRank(
+ Fts5Config *pConfig,
+ Fts5Cursor *pCsr,
+ sqlite3_value *pRank
+){
+ int rc = SQLITE_OK;
+ if( pRank ){
+ const char *z = (const char*)sqlite3_value_text(pRank);
+ char *zRank = 0;
+ char *zRankArgs = 0;
+
+ if( z==0 ){
+ if( sqlite3_value_type(pRank)==SQLITE_NULL ) rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5ConfigParseRank(z, &zRank, &zRankArgs);
+ }
+ if( rc==SQLITE_OK ){
+ pCsr->zRank = zRank;
+ pCsr->zRankArgs = zRankArgs;
+ CsrFlagSet(pCsr, FTS5CSR_FREE_ZRANK);
+ }else if( rc==SQLITE_ERROR ){
+ pCsr->base.pVtab->zErrMsg = sqlite3_mprintf(
+ "parse error in rank function: %s", z
+ );
+ }
+ }else{
+ if( pConfig->zRank ){
+ pCsr->zRank = (char*)pConfig->zRank;
+ pCsr->zRankArgs = (char*)pConfig->zRankArgs;
+ }else{
+ pCsr->zRank = (char*)FTS5_DEFAULT_RANK;
+ pCsr->zRankArgs = 0;
+ }
+ }
+ return rc;
+}
+
+static i64 fts5GetRowidLimit(sqlite3_value *pVal, i64 iDefault){
+ if( pVal ){
+ int eType = sqlite3_value_numeric_type(pVal);
+ if( eType==SQLITE_INTEGER ){
+ return sqlite3_value_int64(pVal);
+ }
+ }
+ return iDefault;
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** There are three possible query strategies:
+**
+** 1. Full-text search using a MATCH operator.
+** 2. A by-rowid lookup.
+** 3. A full-table scan.
+*/
+static int fts5FilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *idxStr, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc = SQLITE_OK; /* Error code */
+ int bDesc; /* True if ORDER BY [rank|rowid] DESC */
+ int bOrderByRank; /* True if ORDER BY rank */
+ sqlite3_value *pRank = 0; /* rank MATCH ? expression (or NULL) */
+ sqlite3_value *pRowidEq = 0; /* rowid = ? expression (or NULL) */
+ sqlite3_value *pRowidLe = 0; /* rowid <= ? expression (or NULL) */
+ sqlite3_value *pRowidGe = 0; /* rowid >= ? expression (or NULL) */
+ int iCol; /* Column on LHS of MATCH operator */
+ char **pzErrmsg = pConfig->pzErrmsg;
+ int i;
+ int iIdxStr = 0;
+ Fts5Expr *pExpr = 0;
+
+ if( pConfig->bLock ){
+ pTab->p.base.zErrMsg = sqlite3_mprintf(
+ "recursively defined fts5 content table"
+ );
+ return SQLITE_ERROR;
+ }
+
+ if( pCsr->ePlan ){
+ fts5FreeCursorComponents(pCsr);
+ memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
+ }
+
+ assert( pCsr->pStmt==0 );
+ assert( pCsr->pExpr==0 );
+ assert( pCsr->csrflags==0 );
+ assert( pCsr->pRank==0 );
+ assert( pCsr->zRank==0 );
+ assert( pCsr->zRankArgs==0 );
+ assert( pTab->pSortCsr==0 || nVal==0 );
+
+ assert( pzErrmsg==0 || pzErrmsg==&pTab->p.base.zErrMsg );
+ pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+
+ /* Decode the arguments passed through to this function. */
+ for(i=0; i<nVal; i++){
+ switch( idxStr[iIdxStr++] ){
+ case 'r':
+ pRank = apVal[i];
+ break;
+ case 'M': {
+ const char *zText = (const char*)sqlite3_value_text(apVal[i]);
+ if( zText==0 ) zText = "";
+ iCol = 0;
+ do{
+ iCol = iCol*10 + (idxStr[iIdxStr]-'0');
+ iIdxStr++;
+ }while( idxStr[iIdxStr]>='0' && idxStr[iIdxStr]<='9' );
+
+ if( zText[0]=='*' ){
+ /* The user has issued a query of the form "MATCH '*...'". This
+ ** indicates that the MATCH expression is not a full text query,
+ ** but a request for an internal parameter. */
+ rc = fts5SpecialMatch(pTab, pCsr, &zText[1]);
+ goto filter_out;
+ }else{
+ char **pzErr = &pTab->p.base.zErrMsg;
+ rc = sqlite3Fts5ExprNew(pConfig, 0, iCol, zText, &pExpr, pzErr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprAnd(&pCsr->pExpr, pExpr);
+ pExpr = 0;
+ }
+ if( rc!=SQLITE_OK ) goto filter_out;
+ }
+
+ break;
+ }
+ case 'L':
+ case 'G': {
+ int bGlob = (idxStr[iIdxStr-1]=='G');
+ const char *zText = (const char*)sqlite3_value_text(apVal[i]);
+ iCol = 0;
+ do{
+ iCol = iCol*10 + (idxStr[iIdxStr]-'0');
+ iIdxStr++;
+ }while( idxStr[iIdxStr]>='0' && idxStr[iIdxStr]<='9' );
+ if( zText ){
+ rc = sqlite3Fts5ExprPattern(pConfig, bGlob, iCol, zText, &pExpr);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprAnd(&pCsr->pExpr, pExpr);
+ pExpr = 0;
+ }
+ if( rc!=SQLITE_OK ) goto filter_out;
+ break;
+ }
+ case '=':
+ pRowidEq = apVal[i];
+ break;
+ case '<':
+ pRowidLe = apVal[i];
+ break;
+ default: assert( idxStr[iIdxStr-1]=='>' );
+ pRowidGe = apVal[i];
+ break;
+ }
+ }
+ bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
+ pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);
+
+ /* Set the cursor upper and lower rowid limits. Only some strategies
+ ** actually use them. This is ok, as the xBestIndex() method leaves the
+ ** sqlite3_index_constraint.omit flag clear for range constraints
+ ** on the rowid field. */
+ if( pRowidEq ){
+ pRowidLe = pRowidGe = pRowidEq;
+ }
+ if( bDesc ){
+ pCsr->iFirstRowid = fts5GetRowidLimit(pRowidLe, LARGEST_INT64);
+ pCsr->iLastRowid = fts5GetRowidLimit(pRowidGe, SMALLEST_INT64);
+ }else{
+ pCsr->iLastRowid = fts5GetRowidLimit(pRowidLe, LARGEST_INT64);
+ pCsr->iFirstRowid = fts5GetRowidLimit(pRowidGe, SMALLEST_INT64);
+ }
+
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ if( rc!=SQLITE_OK ) goto filter_out;
+
+ if( pTab->pSortCsr ){
+ /* If pSortCsr is non-NULL, then this call is being made as part of
+ ** processing for a "... MATCH <expr> ORDER BY rank" query (ePlan is
+ ** set to FTS5_PLAN_SORTED_MATCH). pSortCsr is the cursor that will
+ ** return results to the user for this query. The current cursor
+ ** (pCursor) is used to execute the query issued by function
+ ** fts5CursorFirstSorted() above. */
+ assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
+ assert( nVal==0 && bOrderByRank==0 && bDesc==0 );
+ assert( pCsr->iLastRowid==LARGEST_INT64 );
+ assert( pCsr->iFirstRowid==SMALLEST_INT64 );
+ if( pTab->pSortCsr->bDesc ){
+ pCsr->iLastRowid = pTab->pSortCsr->iFirstRowid;
+ pCsr->iFirstRowid = pTab->pSortCsr->iLastRowid;
+ }else{
+ pCsr->iLastRowid = pTab->pSortCsr->iLastRowid;
+ pCsr->iFirstRowid = pTab->pSortCsr->iFirstRowid;
+ }
+ pCsr->ePlan = FTS5_PLAN_SOURCE;
+ pCsr->pExpr = pTab->pSortCsr->pExpr;
+ rc = fts5CursorFirst(pTab, pCsr, bDesc);
+ }else if( pCsr->pExpr ){
+ assert( rc==SQLITE_OK );
+ rc = fts5CursorParseRank(pConfig, pCsr, pRank);
+ if( rc==SQLITE_OK ){
+ if( bOrderByRank ){
+ pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
+ rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
+ }else{
+ pCsr->ePlan = FTS5_PLAN_MATCH;
+ rc = fts5CursorFirst(pTab, pCsr, bDesc);
+ }
+ }
+ }else if( pConfig->zContent==0 ){
+ *pConfig->pzErrmsg = sqlite3_mprintf(
+ "%s: table does not support scanning", pConfig->zName
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ /* This is either a full-table scan (ePlan==FTS5_PLAN_SCAN) or a lookup
+ ** by rowid (ePlan==FTS5_PLAN_ROWID). */
+ pCsr->ePlan = (pRowidEq ? FTS5_PLAN_ROWID : FTS5_PLAN_SCAN);
+ rc = sqlite3Fts5StorageStmt(
+ pTab->pStorage, fts5StmtType(pCsr), &pCsr->pStmt, &pTab->p.base.zErrMsg
+ );
+ if( rc==SQLITE_OK ){
+ if( pRowidEq!=0 ){
+ assert( pCsr->ePlan==FTS5_PLAN_ROWID );
+ sqlite3_bind_value(pCsr->pStmt, 1, pRowidEq);
+ }else{
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iFirstRowid);
+ sqlite3_bind_int64(pCsr->pStmt, 2, pCsr->iLastRowid);
+ }
+ rc = fts5NextMethod(pCursor);
+ }
+ }
+
+ filter_out:
+ sqlite3Fts5ExprFree(pExpr);
+ pConfig->pzErrmsg = pzErrmsg;
+ return rc;
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts5EofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ return (CsrFlagTest(pCsr, FTS5CSR_EOF) ? 1 : 0);
+}
+
+/*
+** Return the rowid that the cursor currently points to.
+*/
+static i64 fts5CursorRowid(Fts5Cursor *pCsr){
+ assert( pCsr->ePlan==FTS5_PLAN_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SORTED_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SOURCE
+ );
+ if( pCsr->pSorter ){
+ return pCsr->pSorter->iRowid;
+ }else{
+ return sqlite3Fts5ExprRowid(pCsr->pExpr);
+ }
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts5
+** exposes %_content.rowid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fts5RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int ePlan = pCsr->ePlan;
+
+ assert( CsrFlagTest(pCsr, FTS5CSR_EOF)==0 );
+ switch( ePlan ){
+ case FTS5_PLAN_SPECIAL:
+ *pRowid = 0;
+ break;
+
+ case FTS5_PLAN_SOURCE:
+ case FTS5_PLAN_MATCH:
+ case FTS5_PLAN_SORTED_MATCH:
+ *pRowid = fts5CursorRowid(pCsr);
+ break;
+
+ default:
+ *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
+ break;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** If the cursor requires seeking (bSeekRequired flag is set), seek it.
+** Return SQLITE_OK if no error occurs, or an SQLite error code otherwise.
+**
+** If argument bErrormsg is true and an error occurs, an error message may
+** be left in sqlite3_vtab.zErrMsg.
+*/
+static int fts5SeekCursor(Fts5Cursor *pCsr, int bErrormsg){
+ int rc = SQLITE_OK;
+
+ /* If the cursor does not yet have a statement handle, obtain one now. */
+ if( pCsr->pStmt==0 ){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ int eStmt = fts5StmtType(pCsr);
+ rc = sqlite3Fts5StorageStmt(
+ pTab->pStorage, eStmt, &pCsr->pStmt, (bErrormsg?&pTab->p.base.zErrMsg:0)
+ );
+ assert( rc!=SQLITE_OK || pTab->p.base.zErrMsg==0 );
+ assert( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_CONTENT) );
+ }
+
+ if( rc==SQLITE_OK && CsrFlagTest(pCsr, FTS5CSR_REQUIRE_CONTENT) ){
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ assert( pCsr->pExpr );
+ sqlite3_reset(pCsr->pStmt);
+ sqlite3_bind_int64(pCsr->pStmt, 1, fts5CursorRowid(pCsr));
+ pTab->pConfig->bLock++;
+ rc = sqlite3_step(pCsr->pStmt);
+ pTab->pConfig->bLock--;
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_CONTENT);
+ }else{
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc==SQLITE_OK ){
+ rc = FTS5_CORRUPT;
+ }else if( pTab->pConfig->pzErrmsg ){
+ *pTab->pConfig->pzErrmsg = sqlite3_mprintf(
+ "%s", sqlite3_errmsg(pTab->pConfig->db)
+ );
+ }
+ }
+ }
+ return rc;
+}
+
+static void fts5SetVtabError(Fts5FullTable *p, const char *zFormat, ...){
+ va_list ap; /* ... printf arguments */
+ va_start(ap, zFormat);
+ assert( p->p.base.zErrMsg==0 );
+ p->p.base.zErrMsg = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** This function is called to handle an FTS INSERT command. In other words,
+** an INSERT statement of the form:
+**
+** INSERT INTO fts(fts) VALUES($pCmd)
+** INSERT INTO fts(fts, rank) VALUES($pCmd, $pVal)
+**
+** Argument pVal is the value assigned to column "fts" by the INSERT
+** statement. This function returns SQLITE_OK if successful, or an SQLite
+** error code if an error occurs.
+**
+** The commands implemented by this function are documented in the "Special
+** INSERT Directives" section of the documentation. It should be updated if
+** more commands are added to this function.
+*/
+static int fts5SpecialInsert(
+ Fts5FullTable *pTab, /* Fts5 table object */
+ const char *zCmd, /* Text inserted into table-name column */
+ sqlite3_value *pVal /* Value inserted into rank column */
+){
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int rc = SQLITE_OK;
+ int bError = 0;
+ int bLoadConfig = 0;
+
+ if( 0==sqlite3_stricmp("delete-all", zCmd) ){
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ fts5SetVtabError(pTab,
+ "'delete-all' may only be used with a "
+ "contentless or external content fts5 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageDeleteAll(pTab->pStorage);
+ }
+ bLoadConfig = 1;
+ }else if( 0==sqlite3_stricmp("rebuild", zCmd) ){
+ if( pConfig->eContent==FTS5_CONTENT_NONE ){
+ fts5SetVtabError(pTab,
+ "'rebuild' may not be used with a contentless fts5 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageRebuild(pTab->pStorage);
+ }
+ bLoadConfig = 1;
+ }else if( 0==sqlite3_stricmp("optimize", zCmd) ){
+ rc = sqlite3Fts5StorageOptimize(pTab->pStorage);
+ }else if( 0==sqlite3_stricmp("merge", zCmd) ){
+ int nMerge = sqlite3_value_int(pVal);
+ rc = sqlite3Fts5StorageMerge(pTab->pStorage, nMerge);
+ }else if( 0==sqlite3_stricmp("integrity-check", zCmd) ){
+ int iArg = sqlite3_value_int(pVal);
+ rc = sqlite3Fts5StorageIntegrity(pTab->pStorage, iArg);
+#ifdef SQLITE_DEBUG
+ }else if( 0==sqlite3_stricmp("prefix-index", zCmd) ){
+ pConfig->bPrefixIndex = sqlite3_value_int(pVal);
+#endif
+ }else if( 0==sqlite3_stricmp("flush", zCmd) ){
+ rc = sqlite3Fts5FlushToDisk(&pTab->p);
+ }else{
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigSetValue(pTab->p.pConfig, zCmd, pVal, &bError);
+ }
+ if( rc==SQLITE_OK ){
+ if( bError ){
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageConfigValue(pTab->pStorage, zCmd, pVal, 0);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK && bLoadConfig ){
+ pTab->p.pConfig->iCookie--;
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ }
+
+ return rc;
+}
+
+static int fts5SpecialDelete(
+ Fts5FullTable *pTab,
+ sqlite3_value **apVal
+){
+ int rc = SQLITE_OK;
+ int eType1 = sqlite3_value_type(apVal[1]);
+ if( eType1==SQLITE_INTEGER ){
+ sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, &apVal[2]);
+ }
+ return rc;
+}
+
+static void fts5StorageInsert(
+ int *pRc,
+ Fts5FullTable *pTab,
+ sqlite3_value **apVal,
+ i64 *piRowid
+){
+ int rc = *pRc;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, piRowid);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *piRowid);
+ }
+ *pRc = rc;
+}
+
+/*
+** This function is the implementation of the xUpdate callback used by
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
+** inserted, updated or deleted.
+**
+** A delete specifies a single argument - the rowid of the row to remove.
+**
+** Update and insert operations pass:
+**
+** 1. The "old" rowid, or NULL.
+** 2. The "new" rowid.
+** 3. Values for each of the nCol matchable columns.
+** 4. Values for the two hidden columns (<tablename> and "rank").
+*/
+static int fts5UpdateMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int eType0; /* value_type() of apVal[0] */
+ int rc = SQLITE_OK; /* Return code */
+ int bUpdateOrDelete = 0;
+
+ /* A transaction must be open when this is called. */
+ assert( pTab->ts.eState==1 || pTab->ts.eState==2 );
+
+ assert( pVtab->zErrMsg==0 );
+ assert( nArg==1 || nArg==(2+pConfig->nCol+2) );
+ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER
+ || sqlite3_value_type(apVal[0])==SQLITE_NULL
+ );
+ assert( pTab->p.pConfig->pzErrmsg==0 );
+ if( pConfig->pgsz==0 ){
+ rc = sqlite3Fts5IndexLoadConfig(pTab->p.pIndex);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+
+ /* Put any active cursors into REQUIRE_SEEK state. */
+ fts5TripCursors(pTab);
+
+ eType0 = sqlite3_value_type(apVal[0]);
+ if( eType0==SQLITE_NULL
+ && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL
+ ){
+ /* A "special" INSERT op. These are handled separately. */
+ const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL
+ && 0==sqlite3_stricmp("delete", z)
+ ){
+ if( pConfig->bContentlessDelete ){
+ fts5SetVtabError(pTab,
+ "'delete' may not be used with a contentless_delete=1 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = fts5SpecialDelete(pTab, apVal);
+ }
+ }else{
+ rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
+ }
+ }else{
+ /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
+ ** any conflict on the rowid value must be detected before any
+ ** modifications are made to the database file. There are 4 cases:
+ **
+ ** 1) DELETE
+ ** 2) UPDATE (rowid not modified)
+ ** 3) UPDATE (rowid modified)
+ ** 4) INSERT
+ **
+ ** Cases 3 and 4 may violate the rowid constraint.
+ */
+ int eConflict = SQLITE_ABORT;
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL || pConfig->bContentlessDelete ){
+ eConflict = sqlite3_vtab_on_conflict(pConfig->db);
+ }
+
+ assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
+ assert( nArg!=1 || eType0==SQLITE_INTEGER );
+
+ /* Filter out attempts to run UPDATE or DELETE on contentless tables.
+ ** This is not suported. Except - they are both supported if the CREATE
+ ** VIRTUAL TABLE statement contained "contentless_delete=1". */
+ if( eType0==SQLITE_INTEGER
+ && pConfig->eContent==FTS5_CONTENT_NONE
+ && pConfig->bContentlessDelete==0
+ ){
+ pTab->p.base.zErrMsg = sqlite3_mprintf(
+ "cannot %s contentless fts5 table: %s",
+ (nArg>1 ? "UPDATE" : "DELETE from"), pConfig->zName
+ );
+ rc = SQLITE_ERROR;
+ }
+
+ /* DELETE */
+ else if( nArg==1 ){
+ i64 iDel = sqlite3_value_int64(apVal[0]); /* Rowid to delete */
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, 0);
+ bUpdateOrDelete = 1;
+ }
+
+ /* INSERT or UPDATE */
+ else{
+ int eType1 = sqlite3_value_numeric_type(apVal[1]);
+
+ if( eType1!=SQLITE_INTEGER && eType1!=SQLITE_NULL ){
+ rc = SQLITE_MISMATCH;
+ }
+
+ else if( eType0!=SQLITE_INTEGER ){
+ /* An INSERT statement. If the conflict-mode is REPLACE, first remove
+ ** the current entry (if any). */
+ if( eConflict==SQLITE_REPLACE && eType1==SQLITE_INTEGER ){
+ i64 iNew = sqlite3_value_int64(apVal[1]); /* Rowid to delete */
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
+ bUpdateOrDelete = 1;
+ }
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }
+
+ /* UPDATE */
+ else{
+ i64 iOld = sqlite3_value_int64(apVal[0]); /* Old rowid */
+ i64 iNew = sqlite3_value_int64(apVal[1]); /* New rowid */
+ if( eType1==SQLITE_INTEGER && iOld!=iNew ){
+ if( eConflict==SQLITE_REPLACE ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
+ }
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }else{
+ rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal,*pRowid);
+ }
+ }
+ }else{
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }
+ bUpdateOrDelete = 1;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK
+ && bUpdateOrDelete
+ && pConfig->bSecureDelete
+ && pConfig->iVersion==FTS5_CURRENT_VERSION
+ ){
+ rc = sqlite3Fts5StorageConfigValue(
+ pTab->pStorage, "version", 0, FTS5_CURRENT_VERSION_SECUREDELETE
+ );
+ if( rc==SQLITE_OK ){
+ pConfig->iVersion = FTS5_CURRENT_VERSION_SECUREDELETE;
+ }
+ }
+
+ pTab->p.pConfig->pzErrmsg = 0;
+ return rc;
+}
+
+/*
+** Implementation of xSync() method.
+*/
+static int fts5SyncMethod(sqlite3_vtab *pVtab){
+ int rc;
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
+ pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+ rc = sqlite3Fts5FlushToDisk(&pTab->p);
+ pTab->p.pConfig->pzErrmsg = 0;
+ return rc;
+}
+
+/*
+** Implementation of xBegin() method.
+*/
+static int fts5BeginMethod(sqlite3_vtab *pVtab){
+ fts5CheckTransactionState((Fts5FullTable*)pVtab, FTS5_BEGIN, 0);
+ fts5NewTransaction((Fts5FullTable*)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xCommit() method. This is a no-op. The contents of
+** the pending-terms hash-table have already been flushed into the database
+** by fts5SyncMethod().
+*/
+static int fts5CommitMethod(sqlite3_vtab *pVtab){
+ UNUSED_PARAM(pVtab); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState((Fts5FullTable*)pVtab, FTS5_COMMIT, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xRollback(). Discard the contents of the pending-terms
+** hash-table. Any changes made to the database are reverted by SQLite.
+*/
+static int fts5RollbackMethod(sqlite3_vtab *pVtab){
+ int rc;
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
+ rc = sqlite3Fts5StorageRollback(pTab->pStorage);
+ return rc;
+}
+
+static int fts5CsrPoslist(Fts5Cursor*, int, const u8**, int*);
+
+static void *fts5ApiUserData(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return pCsr->pAux->pUserData;
+}
+
+static int fts5ApiColumnCount(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return ((Fts5Table*)(pCsr->base.pVtab))->pConfig->nCol;
+}
+
+static int fts5ApiColumnTotalSize(
+ Fts5Context *pCtx,
+ int iCol,
+ sqlite3_int64 *pnToken
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ return sqlite3Fts5StorageSize(pTab->pStorage, iCol, pnToken);
+}
+
+static int fts5ApiRowCount(Fts5Context *pCtx, i64 *pnRow){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ return sqlite3Fts5StorageRowCount(pTab->pStorage, pnRow);
+}
+
+static int fts5ApiTokenize(
+ Fts5Context *pCtx,
+ const char *pText, int nText,
+ void *pUserData,
+ int (*xToken)(void*, int, const char*, int, int, int)
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ return sqlite3Fts5Tokenize(
+ pTab->pConfig, FTS5_TOKENIZE_AUX, pText, nText, pUserData, xToken
+ );
+}
+
+static int fts5ApiPhraseCount(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+}
+
+static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
+}
+
+static int fts5ApiColumnText(
+ Fts5Context *pCtx,
+ int iCol,
+ const char **pz,
+ int *pn
+){
+ int rc = SQLITE_OK;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ if( fts5IsContentless((Fts5FullTable*)(pCsr->base.pVtab))
+ || pCsr->ePlan==FTS5_PLAN_SPECIAL
+ ){
+ *pz = 0;
+ *pn = 0;
+ }else{
+ rc = fts5SeekCursor(pCsr, 0);
+ if( rc==SQLITE_OK ){
+ *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
+ *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
+ }
+ }
+ return rc;
+}
+
+static int fts5CsrPoslist(
+ Fts5Cursor *pCsr,
+ int iPhrase,
+ const u8 **pa,
+ int *pn
+){
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+ int rc = SQLITE_OK;
+ int bLive = (pCsr->pSorter==0);
+
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_POSLIST) ){
+
+ if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5PoslistPopulator *aPopulator;
+ int i;
+ aPopulator = sqlite3Fts5ExprClearPoslists(pCsr->pExpr, bLive);
+ if( aPopulator==0 ) rc = SQLITE_NOMEM;
+ for(i=0; i<pConfig->nCol && rc==SQLITE_OK; i++){
+ int n; const char *z;
+ rc = fts5ApiColumnText((Fts5Context*)pCsr, i, &z, &n);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprPopulatePoslists(
+ pConfig, pCsr->pExpr, aPopulator, i, z, n
+ );
+ }
+ }
+ sqlite3_free(aPopulator);
+
+ if( pCsr->pSorter ){
+ sqlite3Fts5ExprCheckPoslists(pCsr->pExpr, pCsr->pSorter->iRowid);
+ }
+ }
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_POSLIST);
+ }
+
+ if( pCsr->pSorter && pConfig->eDetail==FTS5_DETAIL_FULL ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
+ *pn = pSorter->aIdx[iPhrase] - i1;
+ *pa = &pSorter->aPoslist[i1];
+ }else{
+ *pn = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
+ }
+
+ return rc;
+}
+
+/*
+** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
+** correctly for the current view. Return SQLITE_OK if successful, or an
+** SQLite error code otherwise.
+*/
+static int fts5CacheInstArray(Fts5Cursor *pCsr){
+ int rc = SQLITE_OK;
+ Fts5PoslistReader *aIter; /* One iterator for each phrase */
+ int nIter; /* Number of iterators/phrases */
+ int nCol = ((Fts5Table*)pCsr->base.pVtab)->pConfig->nCol;
+
+ nIter = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ if( pCsr->aInstIter==0 ){
+ sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nIter;
+ pCsr->aInstIter = (Fts5PoslistReader*)sqlite3Fts5MallocZero(&rc, nByte);
+ }
+ aIter = pCsr->aInstIter;
+
+ if( aIter ){
+ int nInst = 0; /* Number instances seen so far */
+ int i;
+
+ /* Initialize all iterators */
+ for(i=0; i<nIter && rc==SQLITE_OK; i++){
+ const u8 *a;
+ int n;
+ rc = fts5CsrPoslist(pCsr, i, &a, &n);
+ if( rc==SQLITE_OK ){
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ while( 1 ){
+ int *aInst;
+ int iBest = -1;
+ for(i=0; i<nIter; i++){
+ if( (aIter[i].bEof==0)
+ && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos)
+ ){
+ iBest = i;
+ }
+ }
+ if( iBest<0 ) break;
+
+ nInst++;
+ if( nInst>=pCsr->nInstAlloc ){
+ int nNewSize = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
+ aInst = (int*)sqlite3_realloc64(
+ pCsr->aInst, nNewSize*sizeof(int)*3
+ );
+ if( aInst ){
+ pCsr->aInst = aInst;
+ pCsr->nInstAlloc = nNewSize;
+ }else{
+ nInst--;
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ }
+
+ aInst = &pCsr->aInst[3 * (nInst-1)];
+ aInst[0] = iBest;
+ aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
+ aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
+ if( aInst[1]<0 || aInst[1]>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ sqlite3Fts5PoslistReaderNext(&aIter[iBest]);
+ }
+ }
+
+ pCsr->nInstCount = nInst;
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
+ }
+ return rc;
+}
+
+static int fts5ApiInstCount(Fts5Context *pCtx, int *pnInst){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int rc = SQLITE_OK;
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0
+ || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) ){
+ *pnInst = pCsr->nInstCount;
+ }
+ return rc;
+}
+
+static int fts5ApiInst(
+ Fts5Context *pCtx,
+ int iIdx,
+ int *piPhrase,
+ int *piCol,
+ int *piOff
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int rc = SQLITE_OK;
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0
+ || SQLITE_OK==(rc = fts5CacheInstArray(pCsr))
+ ){
+ if( iIdx<0 || iIdx>=pCsr->nInstCount ){
+ rc = SQLITE_RANGE;
+#if 0
+ }else if( fts5IsOffsetless((Fts5Table*)pCsr->base.pVtab) ){
+ *piPhrase = pCsr->aInst[iIdx*3];
+ *piCol = pCsr->aInst[iIdx*3 + 2];
+ *piOff = -1;
+#endif
+ }else{
+ *piPhrase = pCsr->aInst[iIdx*3];
+ *piCol = pCsr->aInst[iIdx*3 + 1];
+ *piOff = pCsr->aInst[iIdx*3 + 2];
+ }
+ }
+ return rc;
+}
+
+static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
+ return fts5CursorRowid((Fts5Cursor*)pCtx);
+}
+
+static int fts5ColumnSizeCb(
+ void *pContext, /* Pointer to int */
+ int tflags,
+ const char *pUnused, /* Buffer containing token */
+ int nUnused, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int *pCnt = (int*)pContext;
+ UNUSED_PARAM2(pUnused, nUnused);
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
+ (*pCnt)++;
+ }
+ return SQLITE_OK;
+}
+
+static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ int rc = SQLITE_OK;
+
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_DOCSIZE) ){
+ if( pConfig->bColumnsize ){
+ i64 iRowid = fts5CursorRowid(pCsr);
+ rc = sqlite3Fts5StorageDocsize(pTab->pStorage, iRowid, pCsr->aColumnSize);
+ }else if( pConfig->zContent==0 ){
+ int i;
+ for(i=0; i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i]==0 ){
+ pCsr->aColumnSize[i] = -1;
+ }
+ }
+ }else{
+ int i;
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i]==0 ){
+ const char *z; int n;
+ void *p = (void*)(&pCsr->aColumnSize[i]);
+ pCsr->aColumnSize[i] = 0;
+ rc = fts5ApiColumnText(pCtx, i, &z, &n);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5Tokenize(
+ pConfig, FTS5_TOKENIZE_AUX, z, n, p, fts5ColumnSizeCb
+ );
+ }
+ }
+ }
+ }
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_DOCSIZE);
+ }
+ if( iCol<0 ){
+ int i;
+ *pnToken = 0;
+ for(i=0; i<pConfig->nCol; i++){
+ *pnToken += pCsr->aColumnSize[i];
+ }
+ }else if( iCol<pConfig->nCol ){
+ *pnToken = pCsr->aColumnSize[iCol];
+ }else{
+ *pnToken = 0;
+ rc = SQLITE_RANGE;
+ }
+ return rc;
+}
+
+/*
+** Implementation of the xSetAuxdata() method.
+*/
+static int fts5ApiSetAuxdata(
+ Fts5Context *pCtx, /* Fts5 context */
+ void *pPtr, /* Pointer to save as auxdata */
+ void(*xDelete)(void*) /* Destructor for pPtr (or NULL) */
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Auxdata *pData;
+
+ /* Search through the cursors list of Fts5Auxdata objects for one that
+ ** corresponds to the currently executing auxiliary function. */
+ for(pData=pCsr->pAuxdata; pData; pData=pData->pNext){
+ if( pData->pAux==pCsr->pAux ) break;
+ }
+
+ if( pData ){
+ if( pData->xDelete ){
+ pData->xDelete(pData->pPtr);
+ }
+ }else{
+ int rc = SQLITE_OK;
+ pData = (Fts5Auxdata*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Auxdata));
+ if( pData==0 ){
+ if( xDelete ) xDelete(pPtr);
+ return rc;
+ }
+ pData->pAux = pCsr->pAux;
+ pData->pNext = pCsr->pAuxdata;
+ pCsr->pAuxdata = pData;
+ }
+
+ pData->xDelete = xDelete;
+ pData->pPtr = pPtr;
+ return SQLITE_OK;
+}
+
+static void *fts5ApiGetAuxdata(Fts5Context *pCtx, int bClear){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Auxdata *pData;
+ void *pRet = 0;
+
+ for(pData=pCsr->pAuxdata; pData; pData=pData->pNext){
+ if( pData->pAux==pCsr->pAux ) break;
+ }
+
+ if( pData ){
+ pRet = pData->pPtr;
+ if( bClear ){
+ pData->pPtr = 0;
+ pData->xDelete = 0;
+ }
+ }
+
+ return pRet;
+}
+
+static void fts5ApiPhraseNext(
+ Fts5Context *pUnused,
+ Fts5PhraseIter *pIter,
+ int *piCol, int *piOff
+){
+ UNUSED_PARAM(pUnused);
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ *piOff = -1;
+ }else{
+ int iVal;
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ if( iVal==1 ){
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ *piCol = iVal;
+ *piOff = 0;
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ }
+ *piOff += (iVal-2);
+ }
+}
+
+static int fts5ApiPhraseFirst(
+ Fts5Context *pCtx,
+ int iPhrase,
+ Fts5PhraseIter *pIter,
+ int *piCol, int *piOff
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int n;
+ int rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
+ if( rc==SQLITE_OK ){
+ assert( pIter->a || n==0 );
+ pIter->b = (pIter->a ? &pIter->a[n] : 0);
+ *piCol = 0;
+ *piOff = 0;
+ fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
+ }
+ return rc;
+}
+
+static void fts5ApiPhraseNextColumn(
+ Fts5Context *pCtx,
+ Fts5PhraseIter *pIter,
+ int *piCol
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ }else{
+ int iIncr;
+ pIter->a += fts5GetVarint32(&pIter->a[0], iIncr);
+ *piCol += (iIncr-2);
+ }
+ }else{
+ while( 1 ){
+ int dummy;
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ return;
+ }
+ if( pIter->a[0]==0x01 ) break;
+ pIter->a += fts5GetVarint32(pIter->a, dummy);
+ }
+ pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
+ }
+}
+
+static int fts5ApiPhraseFirstColumn(
+ Fts5Context *pCtx,
+ int iPhrase,
+ Fts5PhraseIter *pIter,
+ int *piCol
+){
+ int rc = SQLITE_OK;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int n;
+ if( pSorter ){
+ int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
+ n = pSorter->aIdx[iPhrase] - i1;
+ pIter->a = &pSorter->aPoslist[i1];
+ }else{
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, iPhrase, &pIter->a, &n);
+ }
+ if( rc==SQLITE_OK ){
+ assert( pIter->a || n==0 );
+ pIter->b = (pIter->a ? &pIter->a[n] : 0);
+ *piCol = 0;
+ fts5ApiPhraseNextColumn(pCtx, pIter, piCol);
+ }
+ }else{
+ int n;
+ rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
+ if( rc==SQLITE_OK ){
+ assert( pIter->a || n==0 );
+ pIter->b = (pIter->a ? &pIter->a[n] : 0);
+ if( n<=0 ){
+ *piCol = -1;
+ }else if( pIter->a[0]==0x01 ){
+ pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
+ }else{
+ *piCol = 0;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+static int fts5ApiQueryPhrase(Fts5Context*, int, void*,
+ int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
+);
+
+static const Fts5ExtensionApi sFts5Api = {
+ 2, /* iVersion */
+ fts5ApiUserData,
+ fts5ApiColumnCount,
+ fts5ApiRowCount,
+ fts5ApiColumnTotalSize,
+ fts5ApiTokenize,
+ fts5ApiPhraseCount,
+ fts5ApiPhraseSize,
+ fts5ApiInstCount,
+ fts5ApiInst,
+ fts5ApiRowid,
+ fts5ApiColumnText,
+ fts5ApiColumnSize,
+ fts5ApiQueryPhrase,
+ fts5ApiSetAuxdata,
+ fts5ApiGetAuxdata,
+ fts5ApiPhraseFirst,
+ fts5ApiPhraseNext,
+ fts5ApiPhraseFirstColumn,
+ fts5ApiPhraseNextColumn,
+};
+
+/*
+** Implementation of API function xQueryPhrase().
+*/
+static int fts5ApiQueryPhrase(
+ Fts5Context *pCtx,
+ int iPhrase,
+ void *pUserData,
+ int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCsr->base.pVtab);
+ int rc;
+ Fts5Cursor *pNew = 0;
+
+ rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
+ if( rc==SQLITE_OK ){
+ pNew->ePlan = FTS5_PLAN_MATCH;
+ pNew->iFirstRowid = SMALLEST_INT64;
+ pNew->iLastRowid = LARGEST_INT64;
+ pNew->base.pVtab = (sqlite3_vtab*)pTab;
+ rc = sqlite3Fts5ExprClonePhrase(pCsr->pExpr, iPhrase, &pNew->pExpr);
+ }
+
+ if( rc==SQLITE_OK ){
+ for(rc = fts5CursorFirst(pTab, pNew, 0);
+ rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
+ rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
+ ){
+ rc = xCallback(&sFts5Api, (Fts5Context*)pNew, pUserData);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ break;
+ }
+ }
+ }
+
+ fts5CloseMethod((sqlite3_vtab_cursor*)pNew);
+ return rc;
+}
+
+static void fts5ApiInvoke(
+ Fts5Auxiliary *pAux,
+ Fts5Cursor *pCsr,
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( pCsr->pAux==0 );
+ pCsr->pAux = pAux;
+ pAux->xFunc(&sFts5Api, (Fts5Context*)pCsr, context, argc, argv);
+ pCsr->pAux = 0;
+}
+
+static Fts5Cursor *fts5CursorFromCsrid(Fts5Global *pGlobal, i64 iCsrId){
+ Fts5Cursor *pCsr;
+ for(pCsr=pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->iCsrId==iCsrId ) break;
+ }
+ return pCsr;
+}
+
+static void fts5ApiCallback(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+
+ Fts5Auxiliary *pAux;
+ Fts5Cursor *pCsr;
+ i64 iCsrId;
+
+ assert( argc>=1 );
+ pAux = (Fts5Auxiliary*)sqlite3_user_data(context);
+ iCsrId = sqlite3_value_int64(argv[0]);
+
+ pCsr = fts5CursorFromCsrid(pAux->pGlobal, iCsrId);
+ if( pCsr==0 || pCsr->ePlan==0 ){
+ char *zErr = sqlite3_mprintf("no such cursor: %lld", iCsrId);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ fts5ApiInvoke(pAux, pCsr, context, argc-1, &argv[1]);
+ }
+}
+
+
+/*
+** Given cursor id iId, return a pointer to the corresponding Fts5Table
+** object. Or NULL If the cursor id does not exist.
+*/
+static Fts5Table *sqlite3Fts5TableFromCsrid(
+ Fts5Global *pGlobal, /* FTS5 global context for db handle */
+ i64 iCsrId /* Id of cursor to find */
+){
+ Fts5Cursor *pCsr;
+ pCsr = fts5CursorFromCsrid(pGlobal, iCsrId);
+ if( pCsr ){
+ return (Fts5Table*)pCsr->base.pVtab;
+ }
+ return 0;
+}
+
+/*
+** Return a "position-list blob" corresponding to the current position of
+** cursor pCsr via sqlite3_result_blob(). A position-list blob contains
+** the current position-list for each phrase in the query associated with
+** cursor pCsr.
+**
+** A position-list blob begins with (nPhrase-1) varints, where nPhrase is
+** the number of phrases in the query. Following the varints are the
+** concatenated position lists for each phrase, in order.
+**
+** The first varint (if it exists) contains the size of the position list
+** for phrase 0. The second (same disclaimer) contains the size of position
+** list 1. And so on. There is no size field for the final position list,
+** as it can be derived from the total size of the blob.
+*/
+static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
+ int i;
+ int rc = SQLITE_OK;
+ int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ Fts5Buffer val;
+
+ memset(&val, 0, sizeof(Fts5Buffer));
+ switch( ((Fts5Table*)(pCsr->base.pVtab))->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+
+ /* Append the varints */
+ for(i=0; i<(nPhrase-1); i++){
+ const u8 *dummy;
+ int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
+ sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
+ }
+
+ /* Append the position lists */
+ for(i=0; i<nPhrase; i++){
+ const u8 *pPoslist;
+ int nPoslist;
+ nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
+ sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
+ }
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+
+ /* Append the varints */
+ for(i=0; rc==SQLITE_OK && i<(nPhrase-1); i++){
+ const u8 *dummy;
+ int nByte;
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &dummy, &nByte);
+ sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
+ }
+
+ /* Append the position lists */
+ for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
+ const u8 *pPoslist;
+ int nPoslist;
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &pPoslist, &nPoslist);
+ sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
+ return rc;
+}
+
+/*
+** This is the xColumn method, called by SQLite to request a value from
+** the row that the supplied cursor currently points to.
+*/
+static int fts5ColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
+ Fts5Config *pConfig = pTab->p.pConfig;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc = SQLITE_OK;
+
+ assert( CsrFlagTest(pCsr, FTS5CSR_EOF)==0 );
+
+ if( pCsr->ePlan==FTS5_PLAN_SPECIAL ){
+ if( iCol==pConfig->nCol ){
+ sqlite3_result_int64(pCtx, pCsr->iSpecial);
+ }
+ }else
+
+ if( iCol==pConfig->nCol ){
+ /* User is requesting the value of the special column with the same name
+ ** as the table. Return the cursor integer id number. This value is only
+ ** useful in that it may be passed as the first argument to an FTS5
+ ** auxiliary function. */
+ sqlite3_result_int64(pCtx, pCsr->iCsrId);
+ }else if( iCol==pConfig->nCol+1 ){
+
+ /* The value of the "rank" column. */
+ if( pCsr->ePlan==FTS5_PLAN_SOURCE ){
+ fts5PoslistBlob(pCtx, pCsr);
+ }else if(
+ pCsr->ePlan==FTS5_PLAN_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SORTED_MATCH
+ ){
+ if( pCsr->pRank || SQLITE_OK==(rc = fts5FindRankFunction(pCsr)) ){
+ fts5ApiInvoke(pCsr->pRank, pCsr, pCtx, pCsr->nRankArg, pCsr->apRankArg);
+ }
+ }
+ }else if( !fts5IsContentless(pTab) ){
+ pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
+ rc = fts5SeekCursor(pCsr, 1);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
+ }
+ pConfig->pzErrmsg = 0;
+ }else if( pConfig->bContentlessDelete && sqlite3_vtab_nochange(pCtx) ){
+ char *zErr = sqlite3_mprintf("cannot UPDATE a subset of "
+ "columns on fts5 contentless-delete table: %s", pConfig->zName
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ }
+ return rc;
+}
+
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fts5FindFunctionMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nUnused, /* Number of SQL function arguments */
+ const char *zName, /* Name of SQL function */
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
+ void **ppArg /* OUT: User data for *pxFunc */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ Fts5Auxiliary *pAux;
+
+ UNUSED_PARAM(nUnused);
+ pAux = fts5FindAuxiliary(pTab, zName);
+ if( pAux ){
+ *pxFunc = fts5ApiCallback;
+ *ppArg = (void*)pAux;
+ return 1;
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+/*
+** Implementation of FTS5 xRename method. Rename an fts5 table.
+*/
+static int fts5RenameMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ const char *zName /* New name of table */
+){
+ int rc;
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ pTab->bInSavepoint = 1;
+ rc = sqlite3Fts5StorageRename(pTab->pStorage, zName);
+ pTab->bInSavepoint = 0;
+ return rc;
+}
+
+static int sqlite3Fts5FlushToDisk(Fts5Table *pTab){
+ fts5TripCursors((Fts5FullTable*)pTab);
+ return sqlite3Fts5StorageSync(((Fts5FullTable*)pTab)->pStorage);
+}
+
+/*
+** The xSavepoint() method.
+**
+** Flush the contents of the pending-terms table to disk.
+*/
+static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ int rc = SQLITE_OK;
+ char *zSql = 0;
+ fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
+
+ if( pTab->bInSavepoint==0 ){
+ zSql = sqlite3_mprintf("INSERT INTO %Q.%Q(%Q) VALUES('flush')",
+ pTab->p.pConfig->zDb, pTab->p.pConfig->zName, pTab->p.pConfig->zName
+ );
+ if( zSql ){
+ pTab->bInSavepoint = 1;
+ rc = sqlite3_exec(pTab->p.pConfig->db, zSql, 0, 0, 0);
+ pTab->bInSavepoint = 0;
+ sqlite3_free(zSql);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ pTab->iSavepoint = iSavepoint+1;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** The xRelease() method.
+**
+** This is a no-op.
+*/
+static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ int rc = SQLITE_OK;
+ fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
+ if( (iSavepoint+1)<pTab->iSavepoint ){
+ rc = sqlite3Fts5FlushToDisk(&pTab->p);
+ if( rc==SQLITE_OK ){
+ pTab->iSavepoint = iSavepoint;
+ }
+ }
+ return rc;
+}
+
+/*
+** The xRollbackTo() method.
+**
+** Discard the contents of the pending terms table.
+*/
+static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ int rc = SQLITE_OK;
+ fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
+ fts5TripCursors(pTab);
+ pTab->p.pConfig->pgsz = 0;
+ if( (iSavepoint+1)<=pTab->iSavepoint ){
+ rc = sqlite3Fts5StorageRollback(pTab->pStorage);
+ }
+ return rc;
+}
+
+/*
+** Register a new auxiliary function with global context pGlobal.
+*/
+static int fts5CreateAux(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void *pUserData, /* User data for aux. function */
+ fts5_extension_function xFunc, /* Aux. function implementation */
+ void(*xDestroy)(void*) /* Destructor for pUserData */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pApi;
+ int rc = sqlite3_overload_function(pGlobal->db, zName, -1);
+ if( rc==SQLITE_OK ){
+ Fts5Auxiliary *pAux;
+ sqlite3_int64 nName; /* Size of zName in bytes, including \0 */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+
+ nName = strlen(zName) + 1;
+ nByte = sizeof(Fts5Auxiliary) + nName;
+ pAux = (Fts5Auxiliary*)sqlite3_malloc64(nByte);
+ if( pAux ){
+ memset(pAux, 0, (size_t)nByte);
+ pAux->zFunc = (char*)&pAux[1];
+ memcpy(pAux->zFunc, zName, nName);
+ pAux->pGlobal = pGlobal;
+ pAux->pUserData = pUserData;
+ pAux->xFunc = xFunc;
+ pAux->xDestroy = xDestroy;
+ pAux->pNext = pGlobal->pAux;
+ pGlobal->pAux = pAux;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Register a new tokenizer. This is the implementation of the
+** fts5_api.xCreateTokenizer() method.
+*/
+static int fts5CreateTokenizer(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void *pUserData, /* User data for aux. function */
+ fts5_tokenizer *pTokenizer, /* Tokenizer implementation */
+ void(*xDestroy)(void*) /* Destructor for pUserData */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pApi;
+ Fts5TokenizerModule *pNew;
+ sqlite3_int64 nName; /* Size of zName and its \0 terminator */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+ int rc = SQLITE_OK;
+
+ nName = strlen(zName) + 1;
+ nByte = sizeof(Fts5TokenizerModule) + nName;
+ pNew = (Fts5TokenizerModule*)sqlite3_malloc64(nByte);
+ if( pNew ){
+ memset(pNew, 0, (size_t)nByte);
+ pNew->zName = (char*)&pNew[1];
+ memcpy(pNew->zName, zName, nName);
+ pNew->pUserData = pUserData;
+ pNew->x = *pTokenizer;
+ pNew->xDestroy = xDestroy;
+ pNew->pNext = pGlobal->pTok;
+ pGlobal->pTok = pNew;
+ if( pNew->pNext==0 ){
+ pGlobal->pDfltTok = pNew;
+ }
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ return rc;
+}
+
+static Fts5TokenizerModule *fts5LocateTokenizer(
+ Fts5Global *pGlobal,
+ const char *zName
+){
+ Fts5TokenizerModule *pMod = 0;
+
+ if( zName==0 ){
+ pMod = pGlobal->pDfltTok;
+ }else{
+ for(pMod=pGlobal->pTok; pMod; pMod=pMod->pNext){
+ if( sqlite3_stricmp(zName, pMod->zName)==0 ) break;
+ }
+ }
+
+ return pMod;
+}
+
+/*
+** Find a tokenizer. This is the implementation of the
+** fts5_api.xFindTokenizer() method.
+*/
+static int fts5FindTokenizer(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void **ppUserData,
+ fts5_tokenizer *pTokenizer /* Populate this object */
+){
+ int rc = SQLITE_OK;
+ Fts5TokenizerModule *pMod;
+
+ pMod = fts5LocateTokenizer((Fts5Global*)pApi, zName);
+ if( pMod ){
+ *pTokenizer = pMod->x;
+ *ppUserData = pMod->pUserData;
+ }else{
+ memset(pTokenizer, 0, sizeof(fts5_tokenizer));
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5GetTokenizer(
+ Fts5Global *pGlobal,
+ const char **azArg,
+ int nArg,
+ Fts5Config *pConfig,
+ char **pzErr
+){
+ Fts5TokenizerModule *pMod;
+ int rc = SQLITE_OK;
+
+ pMod = fts5LocateTokenizer(pGlobal, nArg==0 ? 0 : azArg[0]);
+ if( pMod==0 ){
+ assert( nArg>0 );
+ rc = SQLITE_ERROR;
+ *pzErr = sqlite3_mprintf("no such tokenizer: %s", azArg[0]);
+ }else{
+ rc = pMod->x.xCreate(
+ pMod->pUserData, (azArg?&azArg[1]:0), (nArg?nArg-1:0), &pConfig->pTok
+ );
+ pConfig->pTokApi = &pMod->x;
+ if( rc!=SQLITE_OK ){
+ if( pzErr ) *pzErr = sqlite3_mprintf("error in tokenizer constructor");
+ }else{
+ pConfig->ePattern = sqlite3Fts5TokenizerPattern(
+ pMod->x.xCreate, pConfig->pTok
+ );
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ pConfig->pTokApi = 0;
+ pConfig->pTok = 0;
+ }
+
+ return rc;
+}
+
+static void fts5ModuleDestroy(void *pCtx){
+ Fts5TokenizerModule *pTok, *pNextTok;
+ Fts5Auxiliary *pAux, *pNextAux;
+ Fts5Global *pGlobal = (Fts5Global*)pCtx;
+
+ for(pAux=pGlobal->pAux; pAux; pAux=pNextAux){
+ pNextAux = pAux->pNext;
+ if( pAux->xDestroy ) pAux->xDestroy(pAux->pUserData);
+ sqlite3_free(pAux);
+ }
+
+ for(pTok=pGlobal->pTok; pTok; pTok=pNextTok){
+ pNextTok = pTok->pNext;
+ if( pTok->xDestroy ) pTok->xDestroy(pTok->pUserData);
+ sqlite3_free(pTok);
+ }
+
+ sqlite3_free(pGlobal);
+}
+
+static void fts5Fts5Func(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apArg /* Function arguments */
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ fts5_api **ppApi;
+ UNUSED_PARAM(nArg);
+ assert( nArg==1 );
+ ppApi = (fts5_api**)sqlite3_value_pointer(apArg[0], "fts5_api_ptr");
+ if( ppApi ) *ppApi = &pGlobal->api;
+}
+
+/*
+** Implementation of fts5_source_id() function.
+*/
+static void fts5SourceIdFunc(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apUnused /* Function arguments */
+){
+ assert( nArg==0 );
+ UNUSED_PARAM2(nArg, apUnused);
+ sqlite3_result_text(pCtx, "fts5: 2023-11-01 11:23:50 17129ba1ff7f0daf37100ee82d507aef7827cf38de1866e2633096ae6ad81301", -1, SQLITE_TRANSIENT);
+}
+
+/*
+** Return true if zName is the extension on one of the shadow tables used
+** by this module.
+*/
+static int fts5ShadowName(const char *zName){
+ static const char *azName[] = {
+ "config", "content", "data", "docsize", "idx"
+ };
+ unsigned int i;
+ for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
+ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Run an integrity check on the FTS5 data structures. Return a string
+** if anything is found amiss. Return a NULL pointer if everything is
+** OK.
+*/
+static int fts5Integrity(
+ sqlite3_vtab *pVtab, /* the FTS5 virtual table to check */
+ const char *zSchema, /* Name of schema in which this table lives */
+ const char *zTabname, /* Name of the table itself */
+ int isQuick, /* True if this is a quick-check */
+ char **pzErr /* Write error message here */
+){
+ Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
+ Fts5Config *pConfig = pTab->p.pConfig;
+ char *zSql;
+ char *zErr = 0;
+ int rc;
+ assert( pzErr!=0 && *pzErr==0 );
+ UNUSED_PARAM(isQuick);
+ zSql = sqlite3_mprintf(
+ "INSERT INTO \"%w\".\"%w\"(\"%w\") VALUES('integrity-check');",
+ zSchema, zTabname, pConfig->zName);
+ if( zSql==0 ) return SQLITE_NOMEM;
+ rc = sqlite3_exec(pConfig->db, zSql, 0, 0, &zErr);
+ sqlite3_free(zSql);
+ if( (rc&0xff)==SQLITE_CORRUPT ){
+ *pzErr = sqlite3_mprintf("malformed inverted index for FTS5 table %s.%s",
+ zSchema, zTabname);
+ }else if( rc!=SQLITE_OK ){
+ *pzErr = sqlite3_mprintf("unable to validate the inverted index for"
+ " FTS5 table %s.%s: %s",
+ zSchema, zTabname, zErr);
+ }
+ sqlite3_free(zErr);
+ return SQLITE_OK;
+}
+
+static int fts5Init(sqlite3 *db){
+ static const sqlite3_module fts5Mod = {
+ /* iVersion */ 4,
+ /* xCreate */ fts5CreateMethod,
+ /* xConnect */ fts5ConnectMethod,
+ /* xBestIndex */ fts5BestIndexMethod,
+ /* xDisconnect */ fts5DisconnectMethod,
+ /* xDestroy */ fts5DestroyMethod,
+ /* xOpen */ fts5OpenMethod,
+ /* xClose */ fts5CloseMethod,
+ /* xFilter */ fts5FilterMethod,
+ /* xNext */ fts5NextMethod,
+ /* xEof */ fts5EofMethod,
+ /* xColumn */ fts5ColumnMethod,
+ /* xRowid */ fts5RowidMethod,
+ /* xUpdate */ fts5UpdateMethod,
+ /* xBegin */ fts5BeginMethod,
+ /* xSync */ fts5SyncMethod,
+ /* xCommit */ fts5CommitMethod,
+ /* xRollback */ fts5RollbackMethod,
+ /* xFindFunction */ fts5FindFunctionMethod,
+ /* xRename */ fts5RenameMethod,
+ /* xSavepoint */ fts5SavepointMethod,
+ /* xRelease */ fts5ReleaseMethod,
+ /* xRollbackTo */ fts5RollbackToMethod,
+ /* xShadowName */ fts5ShadowName,
+ /* xIntegrity */ fts5Integrity
+ };
+
+ int rc;
+ Fts5Global *pGlobal = 0;
+
+ pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global));
+ if( pGlobal==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ void *p = (void*)pGlobal;
+ memset(pGlobal, 0, sizeof(Fts5Global));
+ pGlobal->db = db;
+ pGlobal->api.iVersion = 2;
+ pGlobal->api.xCreateFunction = fts5CreateAux;
+ pGlobal->api.xCreateTokenizer = fts5CreateTokenizer;
+ pGlobal->api.xFindTokenizer = fts5FindTokenizer;
+ rc = sqlite3_create_module_v2(db, "fts5", &fts5Mod, p, fts5ModuleDestroy);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5IndexInit(db);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5ExprInit(pGlobal, db);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5AuxInit(&pGlobal->api);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5TokenizerInit(&pGlobal->api);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5VocabInit(pGlobal, db);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5", 1, SQLITE_UTF8, p, fts5Fts5Func, 0, 0
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_source_id", 0,
+ SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS,
+ p, fts5SourceIdFunc, 0, 0
+ );
+ }
+ }
+
+ /* If SQLITE_FTS5_ENABLE_TEST_MI is defined, assume that the file
+ ** fts5_test_mi.c is compiled and linked into the executable. And call
+ ** its entry point to enable the matchinfo() demo. */
+#ifdef SQLITE_FTS5_ENABLE_TEST_MI
+ if( rc==SQLITE_OK ){
+ extern int sqlite3Fts5TestRegisterMatchinfo(sqlite3*);
+ rc = sqlite3Fts5TestRegisterMatchinfo(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** The following functions are used to register the module with SQLite. If
+** this module is being built as part of the SQLite core (SQLITE_CORE is
+** defined), then sqlite3_open() will call sqlite3Fts5Init() directly.
+**
+** Or, if this module is being built as a loadable extension,
+** sqlite3Fts5Init() is omitted and the two standard entry points
+** sqlite3_fts_init() and sqlite3_fts5_init() defined instead.
+*/
+#ifndef SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_fts_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ return fts5Init(db);
+}
+
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_fts5_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ return fts5Init(db);
+}
+#else
+SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3 *db){
+ return fts5Init(db);
+}
+#endif
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+struct Fts5Storage {
+ Fts5Config *pConfig;
+ Fts5Index *pIndex;
+ int bTotalsValid; /* True if nTotalRow/aTotalSize[] are valid */
+ i64 nTotalRow; /* Total number of rows in FTS table */
+ i64 *aTotalSize; /* Total sizes of each column */
+ sqlite3_stmt *aStmt[11];
+};
+
+
+#if FTS5_STMT_SCAN_ASC!=0
+# error "FTS5_STMT_SCAN_ASC mismatch"
+#endif
+#if FTS5_STMT_SCAN_DESC!=1
+# error "FTS5_STMT_SCAN_DESC mismatch"
+#endif
+#if FTS5_STMT_LOOKUP!=2
+# error "FTS5_STMT_LOOKUP mismatch"
+#endif
+
+#define FTS5_STMT_INSERT_CONTENT 3
+#define FTS5_STMT_REPLACE_CONTENT 4
+#define FTS5_STMT_DELETE_CONTENT 5
+#define FTS5_STMT_REPLACE_DOCSIZE 6
+#define FTS5_STMT_DELETE_DOCSIZE 7
+#define FTS5_STMT_LOOKUP_DOCSIZE 8
+#define FTS5_STMT_REPLACE_CONFIG 9
+#define FTS5_STMT_SCAN 10
+
+/*
+** Prepare the two insert statements - Fts5Storage.pInsertContent and
+** Fts5Storage.pInsertDocsize - if they have not already been prepared.
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageGetStmt(
+ Fts5Storage *p, /* Storage handle */
+ int eStmt, /* FTS5_STMT_XXX constant */
+ sqlite3_stmt **ppStmt, /* OUT: Prepared statement handle */
+ char **pzErrMsg /* OUT: Error message (if any) */
+){
+ int rc = SQLITE_OK;
+
+ /* If there is no %_docsize table, there should be no requests for
+ ** statements to operate on it. */
+ assert( p->pConfig->bColumnsize || (
+ eStmt!=FTS5_STMT_REPLACE_DOCSIZE
+ && eStmt!=FTS5_STMT_DELETE_DOCSIZE
+ && eStmt!=FTS5_STMT_LOOKUP_DOCSIZE
+ ));
+
+ assert( eStmt>=0 && eStmt<ArraySize(p->aStmt) );
+ if( p->aStmt[eStmt]==0 ){
+ const char *azStmt[] = {
+ "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC",
+ "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC",
+ "SELECT %s FROM %s T WHERE T.%Q=?", /* LOOKUP */
+
+ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* INSERT_CONTENT */
+ "REPLACE INTO %Q.'%q_content' VALUES(%s)", /* REPLACE_CONTENT */
+ "DELETE FROM %Q.'%q_content' WHERE id=?", /* DELETE_CONTENT */
+ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?%s)", /* REPLACE_DOCSIZE */
+ "DELETE FROM %Q.'%q_docsize' WHERE id=?", /* DELETE_DOCSIZE */
+
+ "SELECT sz%s FROM %Q.'%q_docsize' WHERE id=?", /* LOOKUP_DOCSIZE */
+
+ "REPLACE INTO %Q.'%q_config' VALUES(?,?)", /* REPLACE_CONFIG */
+ "SELECT %s FROM %s AS T", /* SCAN */
+ };
+ Fts5Config *pC = p->pConfig;
+ char *zSql = 0;
+
+ switch( eStmt ){
+ case FTS5_STMT_SCAN:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ pC->zContentExprlist, pC->zContent
+ );
+ break;
+
+ case FTS5_STMT_SCAN_ASC:
+ case FTS5_STMT_SCAN_DESC:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zContentExprlist,
+ pC->zContent, pC->zContentRowid, pC->zContentRowid,
+ pC->zContentRowid
+ );
+ break;
+
+ case FTS5_STMT_LOOKUP:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ pC->zContentExprlist, pC->zContent, pC->zContentRowid
+ );
+ break;
+
+ case FTS5_STMT_INSERT_CONTENT:
+ case FTS5_STMT_REPLACE_CONTENT: {
+ int nCol = pC->nCol + 1;
+ char *zBind;
+ int i;
+
+ zBind = sqlite3_malloc64(1 + nCol*2);
+ if( zBind ){
+ for(i=0; i<nCol; i++){
+ zBind[i*2] = '?';
+ zBind[i*2 + 1] = ',';
+ }
+ zBind[i*2-1] = '\0';
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind);
+ sqlite3_free(zBind);
+ }
+ break;
+ }
+
+ case FTS5_STMT_REPLACE_DOCSIZE:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName,
+ (pC->bContentlessDelete ? ",?" : "")
+ );
+ break;
+
+ case FTS5_STMT_LOOKUP_DOCSIZE:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ (pC->bContentlessDelete ? ",origin" : ""),
+ pC->zDb, pC->zName
+ );
+ break;
+
+ default:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName);
+ break;
+ }
+
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int f = SQLITE_PREPARE_PERSISTENT;
+ if( eStmt>FTS5_STMT_LOOKUP ) f |= SQLITE_PREPARE_NO_VTAB;
+ p->pConfig->bLock++;
+ rc = sqlite3_prepare_v3(pC->db, zSql, -1, f, &p->aStmt[eStmt], 0);
+ p->pConfig->bLock--;
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK && pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pC->db));
+ }
+ }
+ }
+
+ *ppStmt = p->aStmt[eStmt];
+ sqlite3_reset(*ppStmt);
+ return rc;
+}
+
+
+static int fts5ExecPrintf(
+ sqlite3 *db,
+ char **pzErr,
+ const char *zFormat,
+ ...
+){
+ int rc;
+ va_list ap; /* ... printf arguments */
+ char *zSql;
+
+ va_start(ap, zFormat);
+ zSql = sqlite3_vmprintf(zFormat, ap);
+
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_exec(db, zSql, 0, 0, pzErr);
+ sqlite3_free(zSql);
+ }
+
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Drop all shadow tables. Return SQLITE_OK if successful or an SQLite error
+** code otherwise.
+*/
+static int sqlite3Fts5DropAll(Fts5Config *pConfig){
+ int rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_data';"
+ "DROP TABLE IF EXISTS %Q.'%q_idx';"
+ "DROP TABLE IF EXISTS %Q.'%q_config';",
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName
+ );
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_docsize';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_content';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+ return rc;
+}
+
+static void fts5StorageRenameOne(
+ Fts5Config *pConfig, /* Current FTS5 configuration */
+ int *pRc, /* IN/OUT: Error code */
+ const char *zTail, /* Tail of table name e.g. "data", "config" */
+ const char *zName /* New name of FTS5 table */
+){
+ if( *pRc==SQLITE_OK ){
+ *pRc = fts5ExecPrintf(pConfig->db, 0,
+ "ALTER TABLE %Q.'%q_%s' RENAME TO '%q_%s';",
+ pConfig->zDb, pConfig->zName, zTail, zName, zTail
+ );
+ }
+}
+
+static int sqlite3Fts5StorageRename(Fts5Storage *pStorage, const char *zName){
+ Fts5Config *pConfig = pStorage->pConfig;
+ int rc = sqlite3Fts5StorageSync(pStorage);
+
+ fts5StorageRenameOne(pConfig, &rc, "data", zName);
+ fts5StorageRenameOne(pConfig, &rc, "idx", zName);
+ fts5StorageRenameOne(pConfig, &rc, "config", zName);
+ if( pConfig->bColumnsize ){
+ fts5StorageRenameOne(pConfig, &rc, "docsize", zName);
+ }
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ fts5StorageRenameOne(pConfig, &rc, "content", zName);
+ }
+ return rc;
+}
+
+/*
+** Create the shadow table named zPost, with definition zDefn. Return
+** SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int sqlite3Fts5CreateTable(
+ Fts5Config *pConfig, /* FTS5 configuration */
+ const char *zPost, /* Shadow table to create (e.g. "content") */
+ const char *zDefn, /* Columns etc. for shadow table */
+ int bWithout, /* True for without rowid */
+ char **pzErr /* OUT: Error message */
+){
+ int rc;
+ char *zErr = 0;
+
+ rc = fts5ExecPrintf(pConfig->db, &zErr, "CREATE TABLE %Q.'%q_%q'(%s)%s",
+ pConfig->zDb, pConfig->zName, zPost, zDefn,
+#ifndef SQLITE_FTS5_NO_WITHOUT_ROWID
+ bWithout?" WITHOUT ROWID":
+#endif
+ ""
+ );
+ if( zErr ){
+ *pzErr = sqlite3_mprintf(
+ "fts5: error creating shadow table %q_%s: %s",
+ pConfig->zName, zPost, zErr
+ );
+ sqlite3_free(zErr);
+ }
+
+ return rc;
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying tables
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+static int sqlite3Fts5StorageOpen(
+ Fts5Config *pConfig,
+ Fts5Index *pIndex,
+ int bCreate,
+ Fts5Storage **pp,
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK;
+ Fts5Storage *p; /* New object */
+ sqlite3_int64 nByte; /* Bytes of space to allocate */
+
+ nByte = sizeof(Fts5Storage) /* Fts5Storage object */
+ + pConfig->nCol * sizeof(i64); /* Fts5Storage.aTotalSize[] */
+ *pp = p = (Fts5Storage*)sqlite3_malloc64(nByte);
+ if( !p ) return SQLITE_NOMEM;
+
+ memset(p, 0, (size_t)nByte);
+ p->aTotalSize = (i64*)&p[1];
+ p->pConfig = pConfig;
+ p->pIndex = pIndex;
+
+ if( bCreate ){
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ int nDefn = 32 + pConfig->nCol*10;
+ char *zDefn = sqlite3_malloc64(32 + (sqlite3_int64)pConfig->nCol * 10);
+ if( zDefn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ int iOff;
+ sqlite3_snprintf(nDefn, zDefn, "id INTEGER PRIMARY KEY");
+ iOff = (int)strlen(zDefn);
+ for(i=0; i<pConfig->nCol; i++){
+ sqlite3_snprintf(nDefn-iOff, &zDefn[iOff], ", c%d", i);
+ iOff += (int)strlen(&zDefn[iOff]);
+ }
+ rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
+ }
+ sqlite3_free(zDefn);
+ }
+
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ const char *zCols = "id INTEGER PRIMARY KEY, sz BLOB";
+ if( pConfig->bContentlessDelete ){
+ zCols = "id INTEGER PRIMARY KEY, sz BLOB, origin INTEGER";
+ }
+ rc = sqlite3Fts5CreateTable(pConfig, "docsize", zCols, 0, pzErr);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "config", "k PRIMARY KEY, v", 1, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageConfigValue(p, "version", 0, FTS5_CURRENT_VERSION);
+ }
+ }
+
+ if( rc ){
+ sqlite3Fts5StorageClose(p);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5StorageOpen().
+*/
+static int sqlite3Fts5StorageClose(Fts5Storage *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ int i;
+
+ /* Finalize all SQL statements */
+ for(i=0; i<ArraySize(p->aStmt); i++){
+ sqlite3_finalize(p->aStmt[i]);
+ }
+
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+typedef struct Fts5InsertCtx Fts5InsertCtx;
+struct Fts5InsertCtx {
+ Fts5Storage *pStorage;
+ int iCol;
+ int szCol; /* Size of column value in tokens */
+};
+
+/*
+** Tokenization callback used when inserting tokens into the FTS index.
+*/
+static int fts5StorageInsertCallback(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags,
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
+ Fts5Index *pIdx = pCtx->pStorage->pIndex;
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
+ pCtx->szCol++;
+ }
+ return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
+}
+
+/*
+** If a row with rowid iDel is present in the %_content table, add the
+** delete-markers to the FTS index necessary to delete it. Do not actually
+** remove the %_content row at this time though.
+*/
+static int fts5StorageDeleteFromIndex(
+ Fts5Storage *p,
+ i64 iDel,
+ sqlite3_value **apVal
+){
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pSeek = 0; /* SELECT to read row iDel from %_data */
+ int rc = SQLITE_OK; /* Return code */
+ int rc2; /* sqlite3_reset() return code */
+ int iCol;
+ Fts5InsertCtx ctx;
+
+ if( apVal==0 ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pSeek, 1, iDel);
+ if( sqlite3_step(pSeek)!=SQLITE_ROW ){
+ return sqlite3_reset(pSeek);
+ }
+ }
+
+ ctx.pStorage = p;
+ ctx.iCol = -1;
+ for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
+ if( pConfig->abUnindexed[iCol-1]==0 ){
+ const char *zText;
+ int nText;
+ assert( pSeek==0 || apVal==0 );
+ assert( pSeek!=0 || apVal!=0 );
+ if( pSeek ){
+ zText = (const char*)sqlite3_column_text(pSeek, iCol);
+ nText = sqlite3_column_bytes(pSeek, iCol);
+ }else if( ALWAYS(apVal) ){
+ zText = (const char*)sqlite3_value_text(apVal[iCol-1]);
+ nText = sqlite3_value_bytes(apVal[iCol-1]);
+ }else{
+ continue;
+ }
+ ctx.szCol = 0;
+ rc = sqlite3Fts5Tokenize(pConfig, FTS5_TOKENIZE_DOCUMENT,
+ zText, nText, (void*)&ctx, fts5StorageInsertCallback
+ );
+ p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
+ if( p->aTotalSize[iCol-1]<0 ){
+ rc = FTS5_CORRUPT;
+ }
+ }
+ }
+ if( rc==SQLITE_OK && p->nTotalRow<1 ){
+ rc = FTS5_CORRUPT;
+ }else{
+ p->nTotalRow--;
+ }
+
+ rc2 = sqlite3_reset(pSeek);
+ if( rc==SQLITE_OK ) rc = rc2;
+ return rc;
+}
+
+/*
+** This function is called to process a DELETE on a contentless_delete=1
+** table. It adds the tombstone required to delete the entry with rowid
+** iDel. If successful, SQLITE_OK is returned. Or, if an error occurs,
+** an SQLite error code.
+*/
+static int fts5StorageContentlessDelete(Fts5Storage *p, i64 iDel){
+ i64 iOrigin = 0;
+ sqlite3_stmt *pLookup = 0;
+ int rc = SQLITE_OK;
+
+ assert( p->pConfig->bContentlessDelete );
+ assert( p->pConfig->eContent==FTS5_CONTENT_NONE );
+
+ /* Look up the origin of the document in the %_docsize table. Store
+ ** this in stack variable iOrigin. */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP_DOCSIZE, &pLookup, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pLookup, 1, iDel);
+ if( SQLITE_ROW==sqlite3_step(pLookup) ){
+ iOrigin = sqlite3_column_int64(pLookup, 1);
+ }
+ rc = sqlite3_reset(pLookup);
+ }
+
+ if( rc==SQLITE_OK && iOrigin!=0 ){
+ rc = sqlite3Fts5IndexContentlessDelete(p->pIndex, iOrigin, iDel);
+ }
+
+ return rc;
+}
+
+/*
+** Insert a record into the %_docsize table. Specifically, do:
+**
+** INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf);
+**
+** If there is no %_docsize table (as happens if the columnsize=0 option
+** is specified when the FTS5 table is created), this function is a no-op.
+*/
+static int fts5StorageInsertDocsize(
+ Fts5Storage *p, /* Storage module to write to */
+ i64 iRowid, /* id value */
+ Fts5Buffer *pBuf /* sz value */
+){
+ int rc = SQLITE_OK;
+ if( p->pConfig->bColumnsize ){
+ sqlite3_stmt *pReplace = 0;
+ rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pReplace, 1, iRowid);
+ if( p->pConfig->bContentlessDelete ){
+ i64 iOrigin = 0;
+ rc = sqlite3Fts5IndexGetOrigin(p->pIndex, &iOrigin);
+ sqlite3_bind_int64(pReplace, 3, iOrigin);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_blob(pReplace, 2, pBuf->p, pBuf->n, SQLITE_STATIC);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ sqlite3_bind_null(pReplace, 2);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Load the contents of the "averages" record from disk into the
+** p->nTotalRow and p->aTotalSize[] variables. If successful, and if
+** argument bCache is true, set the p->bTotalsValid flag to indicate
+** that the contents of aTotalSize[] and nTotalRow are valid until
+** further notice.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageLoadTotals(Fts5Storage *p, int bCache){
+ int rc = SQLITE_OK;
+ if( p->bTotalsValid==0 ){
+ rc = sqlite3Fts5IndexGetAverages(p->pIndex, &p->nTotalRow, p->aTotalSize);
+ p->bTotalsValid = bCache;
+ }
+ return rc;
+}
+
+/*
+** Store the current contents of the p->nTotalRow and p->aTotalSize[]
+** variables in the "averages" record on disk.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageSaveTotals(Fts5Storage *p){
+ int nCol = p->pConfig->nCol;
+ int i;
+ Fts5Buffer buf;
+ int rc = SQLITE_OK;
+ memset(&buf, 0, sizeof(buf));
+
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, p->nTotalRow);
+ for(i=0; i<nCol; i++){
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, p->aTotalSize[i]);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexSetAverages(p->pIndex, buf.p, buf.n);
+ }
+ sqlite3_free(buf.p);
+
+ return rc;
+}
+
+/*
+** Remove a row from the FTS table.
+*/
+static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel, sqlite3_value **apVal){
+ Fts5Config *pConfig = p->pConfig;
+ int rc;
+ sqlite3_stmt *pDel = 0;
+
+ assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
+ rc = fts5StorageLoadTotals(p, 1);
+
+ /* Delete the index records */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
+ }
+
+ if( rc==SQLITE_OK ){
+ if( p->pConfig->bContentlessDelete ){
+ rc = fts5StorageContentlessDelete(p, iDel);
+ }else{
+ rc = fts5StorageDeleteFromIndex(p, iDel, apVal);
+ }
+ }
+
+ /* Delete the %_docsize record */
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iDel);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ /* Delete the %_content record */
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iDel);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Delete all entries in the FTS5 index.
+*/
+static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p){
+ Fts5Config *pConfig = p->pConfig;
+ int rc;
+
+ p->bTotalsValid = 0;
+
+ /* Delete the contents of the %_data and %_docsize tables. */
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DELETE FROM %Q.'%q_data';"
+ "DELETE FROM %Q.'%q_idx';",
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName
+ );
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DELETE FROM %Q.'%q_docsize';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+
+ /* Reinitialize the %_data table. This call creates the initial structure
+ ** and averages records. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexReinit(p->pIndex);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageConfigValue(p, "version", 0, FTS5_CURRENT_VERSION);
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageRebuild(Fts5Storage *p){
+ Fts5Buffer buf = {0,0,0};
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pScan = 0;
+ Fts5InsertCtx ctx;
+ int rc, rc2;
+
+ memset(&ctx, 0, sizeof(Fts5InsertCtx));
+ ctx.pStorage = p;
+ rc = sqlite3Fts5StorageDeleteAll(p);
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageLoadTotals(p, 1);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_SCAN, &pScan, 0);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pScan) ){
+ i64 iRowid = sqlite3_column_int64(pScan, 0);
+
+ sqlite3Fts5BufferZero(&buf);
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 0, iRowid);
+ for(ctx.iCol=0; rc==SQLITE_OK && ctx.iCol<pConfig->nCol; ctx.iCol++){
+ ctx.szCol = 0;
+ if( pConfig->abUnindexed[ctx.iCol]==0 ){
+ const char *zText = (const char*)sqlite3_column_text(pScan, ctx.iCol+1);
+ int nText = sqlite3_column_bytes(pScan, ctx.iCol+1);
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ zText, nText,
+ (void*)&ctx,
+ fts5StorageInsertCallback
+ );
+ }
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, ctx.szCol);
+ p->aTotalSize[ctx.iCol] += (i64)ctx.szCol;
+ }
+ p->nTotalRow++;
+
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageInsertDocsize(p, iRowid, &buf);
+ }
+ }
+ sqlite3_free(buf.p);
+ rc2 = sqlite3_reset(pScan);
+ if( rc==SQLITE_OK ) rc = rc2;
+
+ /* Write the averages record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageSaveTotals(p);
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageOptimize(Fts5Storage *p){
+ return sqlite3Fts5IndexOptimize(p->pIndex);
+}
+
+static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge){
+ return sqlite3Fts5IndexMerge(p->pIndex, nMerge);
+}
+
+static int sqlite3Fts5StorageReset(Fts5Storage *p){
+ return sqlite3Fts5IndexReset(p->pIndex);
+}
+
+/*
+** Allocate a new rowid. This is used for "external content" tables when
+** a NULL value is inserted into the rowid column. The new rowid is allocated
+** by inserting a dummy row into the %_docsize table. The dummy will be
+** overwritten later.
+**
+** If the %_docsize table does not exist, SQLITE_MISMATCH is returned. In
+** this case the user is required to provide a rowid explicitly.
+*/
+static int fts5StorageNewRowid(Fts5Storage *p, i64 *piRowid){
+ int rc = SQLITE_MISMATCH;
+ if( p->pConfig->bColumnsize ){
+ sqlite3_stmt *pReplace = 0;
+ rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_null(pReplace, 1);
+ sqlite3_bind_null(pReplace, 2);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ }
+ if( rc==SQLITE_OK ){
+ *piRowid = sqlite3_last_insert_rowid(p->pConfig->db);
+ }
+ }
+ return rc;
+}
+
+/*
+** Insert a new row into the FTS content table.
+*/
+static int sqlite3Fts5StorageContentInsert(
+ Fts5Storage *p,
+ sqlite3_value **apVal,
+ i64 *piRowid
+){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK;
+
+ /* Insert the new row into the %_content table. */
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){
+ if( sqlite3_value_type(apVal[1])==SQLITE_INTEGER ){
+ *piRowid = sqlite3_value_int64(apVal[1]);
+ }else{
+ rc = fts5StorageNewRowid(p, piRowid);
+ }
+ }else{
+ sqlite3_stmt *pInsert = 0; /* Statement to write %_content table */
+ int i; /* Counter variable */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_INSERT_CONTENT, &pInsert, 0);
+ for(i=1; rc==SQLITE_OK && i<=pConfig->nCol+1; i++){
+ rc = sqlite3_bind_value(pInsert, i, apVal[i]);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pInsert);
+ rc = sqlite3_reset(pInsert);
+ }
+ *piRowid = sqlite3_last_insert_rowid(pConfig->db);
+ }
+
+ return rc;
+}
+
+/*
+** Insert new entries into the FTS index and %_docsize table.
+*/
+static int sqlite3Fts5StorageIndexInsert(
+ Fts5Storage *p,
+ sqlite3_value **apVal,
+ i64 iRowid
+){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK; /* Return code */
+ Fts5InsertCtx ctx; /* Tokenization callback context object */
+ Fts5Buffer buf; /* Buffer used to build up %_docsize blob */
+
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ ctx.pStorage = p;
+ rc = fts5StorageLoadTotals(p, 1);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 0, iRowid);
+ }
+ for(ctx.iCol=0; rc==SQLITE_OK && ctx.iCol<pConfig->nCol; ctx.iCol++){
+ ctx.szCol = 0;
+ if( pConfig->abUnindexed[ctx.iCol]==0 ){
+ const char *zText = (const char*)sqlite3_value_text(apVal[ctx.iCol+2]);
+ int nText = sqlite3_value_bytes(apVal[ctx.iCol+2]);
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ zText, nText,
+ (void*)&ctx,
+ fts5StorageInsertCallback
+ );
+ }
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, ctx.szCol);
+ p->aTotalSize[ctx.iCol] += (i64)ctx.szCol;
+ }
+ p->nTotalRow++;
+
+ /* Write the %_docsize record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageInsertDocsize(p, iRowid, &buf);
+ }
+ sqlite3_free(buf.p);
+
+ return rc;
+}
+
+static int fts5StorageCount(Fts5Storage *p, const char *zSuffix, i64 *pnRow){
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql;
+ int rc;
+
+ zSql = sqlite3_mprintf("SELECT count(*) FROM %Q.'%q_%s'",
+ pConfig->zDb, pConfig->zName, zSuffix
+ );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pCnt = 0;
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pCnt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pCnt) ){
+ *pnRow = sqlite3_column_int64(pCnt, 0);
+ }
+ rc = sqlite3_finalize(pCnt);
+ }
+ }
+
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** Context object used by sqlite3Fts5StorageIntegrity().
+*/
+typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
+struct Fts5IntegrityCtx {
+ i64 iRowid;
+ int iCol;
+ int szCol;
+ u64 cksum;
+ Fts5Termset *pTermset;
+ Fts5Config *pConfig;
+};
+
+
+/*
+** Tokenization callback used by integrity check.
+*/
+static int fts5StorageIntegrityCallback(
+ void *pContext, /* Pointer to Fts5IntegrityCtx object */
+ int tflags,
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;
+ Fts5Termset *pTermset = pCtx->pTermset;
+ int bPresent;
+ int ii;
+ int rc = SQLITE_OK;
+ int iPos;
+ int iCol;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
+
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
+ pCtx->szCol++;
+ }
+
+ switch( pCtx->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+ iPos = pCtx->szCol-1;
+ iCol = pCtx->iCol;
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+ iPos = pCtx->iCol;
+ iCol = 0;
+ break;
+
+ default:
+ assert( pCtx->pConfig->eDetail==FTS5_DETAIL_NONE );
+ iPos = 0;
+ iCol = 0;
+ break;
+ }
+
+ rc = sqlite3Fts5TermsetAdd(pTermset, 0, pToken, nToken, &bPresent);
+ if( rc==SQLITE_OK && bPresent==0 ){
+ pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
+ pCtx->iRowid, iCol, iPos, 0, pToken, nToken
+ );
+ }
+
+ for(ii=0; rc==SQLITE_OK && ii<pCtx->pConfig->nPrefix; ii++){
+ const int nChar = pCtx->pConfig->aPrefix[ii];
+ int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
+ if( nByte ){
+ rc = sqlite3Fts5TermsetAdd(pTermset, ii+1, pToken, nByte, &bPresent);
+ if( bPresent==0 ){
+ pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
+ pCtx->iRowid, iCol, iPos, ii+1, pToken, nByte
+ );
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Check that the contents of the FTS index match that of the %_content
+** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
+** some other SQLite error code if an error occurs while attempting to
+** determine this.
+*/
+static int sqlite3Fts5StorageIntegrity(Fts5Storage *p, int iArg){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK; /* Return code */
+ int *aColSize; /* Array of size pConfig->nCol */
+ i64 *aTotalSize; /* Array of size pConfig->nCol */
+ Fts5IntegrityCtx ctx;
+ sqlite3_stmt *pScan;
+ int bUseCksum;
+
+ memset(&ctx, 0, sizeof(Fts5IntegrityCtx));
+ ctx.pConfig = p->pConfig;
+ aTotalSize = (i64*)sqlite3_malloc64(pConfig->nCol*(sizeof(int)+sizeof(i64)));
+ if( !aTotalSize ) return SQLITE_NOMEM;
+ aColSize = (int*)&aTotalSize[pConfig->nCol];
+ memset(aTotalSize, 0, sizeof(i64) * pConfig->nCol);
+
+ bUseCksum = (pConfig->eContent==FTS5_CONTENT_NORMAL
+ || (pConfig->eContent==FTS5_CONTENT_EXTERNAL && iArg)
+ );
+ if( bUseCksum ){
+ /* Generate the expected index checksum based on the contents of the
+ ** %_content table. This block stores the checksum in ctx.cksum. */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_SCAN, &pScan, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ while( SQLITE_ROW==sqlite3_step(pScan) ){
+ int i;
+ ctx.iRowid = sqlite3_column_int64(pScan, 0);
+ ctx.szCol = 0;
+ if( pConfig->bColumnsize ){
+ rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);
+ }
+ if( rc==SQLITE_OK && pConfig->eDetail==FTS5_DETAIL_NONE ){
+ rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
+ }
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i] ) continue;
+ ctx.iCol = i;
+ ctx.szCol = 0;
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
+ }
+ if( rc==SQLITE_OK ){
+ const char *zText = (const char*)sqlite3_column_text(pScan, i+1);
+ int nText = sqlite3_column_bytes(pScan, i+1);
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ zText, nText,
+ (void*)&ctx,
+ fts5StorageIntegrityCallback
+ );
+ }
+ if( rc==SQLITE_OK && pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
+ rc = FTS5_CORRUPT;
+ }
+ aTotalSize[i] += ctx.szCol;
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ sqlite3Fts5TermsetFree(ctx.pTermset);
+ ctx.pTermset = 0;
+ }
+ }
+ sqlite3Fts5TermsetFree(ctx.pTermset);
+ ctx.pTermset = 0;
+
+ if( rc!=SQLITE_OK ) break;
+ }
+ rc2 = sqlite3_reset(pScan);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ /* Test that the "totals" (sometimes called "averages") record looks Ok */
+ if( rc==SQLITE_OK ){
+ int i;
+ rc = fts5StorageLoadTotals(p, 0);
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( p->aTotalSize[i]!=aTotalSize[i] ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ /* Check that the %_docsize and %_content tables contain the expected
+ ** number of rows. */
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ i64 nRow = 0;
+ rc = fts5StorageCount(p, "content", &nRow);
+ if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
+ }
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ i64 nRow = 0;
+ rc = fts5StorageCount(p, "docsize", &nRow);
+ if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ /* Pass the expected checksum down to the FTS index module. It will
+ ** verify, amongst other things, that it matches the checksum generated by
+ ** inspecting the index itself. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexIntegrityCheck(p->pIndex, ctx.cksum, bUseCksum);
+ }
+
+ sqlite3_free(aTotalSize);
+ return rc;
+}
+
+/*
+** Obtain an SQLite statement handle that may be used to read data from the
+** %_content table.
+*/
+static int sqlite3Fts5StorageStmt(
+ Fts5Storage *p,
+ int eStmt,
+ sqlite3_stmt **pp,
+ char **pzErrMsg
+){
+ int rc;
+ assert( eStmt==FTS5_STMT_SCAN_ASC
+ || eStmt==FTS5_STMT_SCAN_DESC
+ || eStmt==FTS5_STMT_LOOKUP
+ );
+ rc = fts5StorageGetStmt(p, eStmt, pp, pzErrMsg);
+ if( rc==SQLITE_OK ){
+ assert( p->aStmt[eStmt]==*pp );
+ p->aStmt[eStmt] = 0;
+ }
+ return rc;
+}
+
+/*
+** Release an SQLite statement handle obtained via an earlier call to
+** sqlite3Fts5StorageStmt(). The eStmt parameter passed to this function
+** must match that passed to the sqlite3Fts5StorageStmt() call.
+*/
+static void sqlite3Fts5StorageStmtRelease(
+ Fts5Storage *p,
+ int eStmt,
+ sqlite3_stmt *pStmt
+){
+ assert( eStmt==FTS5_STMT_SCAN_ASC
+ || eStmt==FTS5_STMT_SCAN_DESC
+ || eStmt==FTS5_STMT_LOOKUP
+ );
+ if( p->aStmt[eStmt]==0 ){
+ sqlite3_reset(pStmt);
+ p->aStmt[eStmt] = pStmt;
+ }else{
+ sqlite3_finalize(pStmt);
+ }
+}
+
+static int fts5StorageDecodeSizeArray(
+ int *aCol, int nCol, /* Array to populate */
+ const u8 *aBlob, int nBlob /* Record to read varints from */
+){
+ int i;
+ int iOff = 0;
+ for(i=0; i<nCol; i++){
+ if( iOff>=nBlob ) return 1;
+ iOff += fts5GetVarint32(&aBlob[iOff], aCol[i]);
+ }
+ return (iOff!=nBlob);
+}
+
+/*
+** Argument aCol points to an array of integers containing one entry for
+** each table column. This function reads the %_docsize record for the
+** specified rowid and populates aCol[] with the results.
+**
+** An SQLite error code is returned if an error occurs, or SQLITE_OK
+** otherwise.
+*/
+static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol){
+ int nCol = p->pConfig->nCol; /* Number of user columns in table */
+ sqlite3_stmt *pLookup = 0; /* Statement to query %_docsize */
+ int rc; /* Return Code */
+
+ assert( p->pConfig->bColumnsize );
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP_DOCSIZE, &pLookup, 0);
+ if( pLookup ){
+ int bCorrupt = 1;
+ assert( rc==SQLITE_OK );
+ sqlite3_bind_int64(pLookup, 1, iRowid);
+ if( SQLITE_ROW==sqlite3_step(pLookup) ){
+ const u8 *aBlob = sqlite3_column_blob(pLookup, 0);
+ int nBlob = sqlite3_column_bytes(pLookup, 0);
+ if( 0==fts5StorageDecodeSizeArray(aCol, nCol, aBlob, nBlob) ){
+ bCorrupt = 0;
+ }
+ }
+ rc = sqlite3_reset(pLookup);
+ if( bCorrupt && rc==SQLITE_OK ){
+ rc = FTS5_CORRUPT;
+ }
+ }else{
+ assert( rc!=SQLITE_OK );
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnToken){
+ int rc = fts5StorageLoadTotals(p, 0);
+ if( rc==SQLITE_OK ){
+ *pnToken = 0;
+ if( iCol<0 ){
+ int i;
+ for(i=0; i<p->pConfig->nCol; i++){
+ *pnToken += p->aTotalSize[i];
+ }
+ }else if( iCol<p->pConfig->nCol ){
+ *pnToken = p->aTotalSize[iCol];
+ }else{
+ rc = SQLITE_RANGE;
+ }
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow){
+ int rc = fts5StorageLoadTotals(p, 0);
+ if( rc==SQLITE_OK ){
+ /* nTotalRow being zero does not necessarily indicate a corrupt
+ ** database - it might be that the FTS5 table really does contain zero
+ ** rows. However this function is only called from the xRowCount() API,
+ ** and there is no way for that API to be invoked if the table contains
+ ** no rows. Hence the FTS5_CORRUPT return. */
+ *pnRow = p->nTotalRow;
+ if( p->nTotalRow<=0 ) rc = FTS5_CORRUPT;
+ }
+ return rc;
+}
+
+/*
+** Flush any data currently held in-memory to disk.
+*/
+static int sqlite3Fts5StorageSync(Fts5Storage *p){
+ int rc = SQLITE_OK;
+ i64 iLastRowid = sqlite3_last_insert_rowid(p->pConfig->db);
+ if( p->bTotalsValid ){
+ rc = fts5StorageSaveTotals(p);
+ if( rc==SQLITE_OK ){
+ p->bTotalsValid = 0;
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexSync(p->pIndex);
+ }
+ sqlite3_set_last_insert_rowid(p->pConfig->db, iLastRowid);
+ return rc;
+}
+
+static int sqlite3Fts5StorageRollback(Fts5Storage *p){
+ p->bTotalsValid = 0;
+ return sqlite3Fts5IndexRollback(p->pIndex);
+}
+
+static int sqlite3Fts5StorageConfigValue(
+ Fts5Storage *p,
+ const char *z,
+ sqlite3_value *pVal,
+ int iVal
+){
+ sqlite3_stmt *pReplace = 0;
+ int rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_CONFIG, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_text(pReplace, 1, z, -1, SQLITE_STATIC);
+ if( pVal ){
+ sqlite3_bind_value(pReplace, 2, pVal);
+ }else{
+ sqlite3_bind_int(pReplace, 2, iVal);
+ }
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ sqlite3_bind_null(pReplace, 1);
+ }
+ if( rc==SQLITE_OK && pVal ){
+ int iNew = p->pConfig->iCookie + 1;
+ rc = sqlite3Fts5IndexSetCookie(p->pIndex, iNew);
+ if( rc==SQLITE_OK ){
+ p->pConfig->iCookie = iNew;
+ }
+ }
+ return rc;
+}
+
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+/* #include "fts5Int.h" */
+
+/**************************************************************************
+** Start of ascii tokenizer implementation.
+*/
+
+/*
+** For tokenizers with no "unicode" modifier, the set of token characters
+** is the same as the set of ASCII range alphanumeric characters.
+*/
+static unsigned char aAsciiTokenChar[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00..0x0F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10..0x1F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20..0x2F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30..0x3F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40..0x4F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 0x50..0x5F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60..0x6F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 0x70..0x7F */
+};
+
+typedef struct AsciiTokenizer AsciiTokenizer;
+struct AsciiTokenizer {
+ unsigned char aTokenChar[128];
+};
+
+static void fts5AsciiAddExceptions(
+ AsciiTokenizer *p,
+ const char *zArg,
+ int bTokenChars
+){
+ int i;
+ for(i=0; zArg[i]; i++){
+ if( (zArg[i] & 0x80)==0 ){
+ p->aTokenChar[(int)zArg[i]] = (unsigned char)bTokenChars;
+ }
+ }
+}
+
+/*
+** Delete a "ascii" tokenizer.
+*/
+static void fts5AsciiDelete(Fts5Tokenizer *p){
+ sqlite3_free(p);
+}
+
+/*
+** Create an "ascii" tokenizer.
+*/
+static int fts5AsciiCreate(
+ void *pUnused,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK;
+ AsciiTokenizer *p = 0;
+ UNUSED_PARAM(pUnused);
+ if( nArg%2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = sqlite3_malloc(sizeof(AsciiTokenizer));
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ memset(p, 0, sizeof(AsciiTokenizer));
+ memcpy(p->aTokenChar, aAsciiTokenChar, sizeof(aAsciiTokenChar));
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "tokenchars") ){
+ fts5AsciiAddExceptions(p, zArg, 1);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "separators") ){
+ fts5AsciiAddExceptions(p, zArg, 0);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ fts5AsciiDelete((Fts5Tokenizer*)p);
+ p = 0;
+ }
+ }
+ }
+
+ *ppOut = (Fts5Tokenizer*)p;
+ return rc;
+}
+
+
+static void asciiFold(char *aOut, const char *aIn, int nByte){
+ int i;
+ for(i=0; i<nByte; i++){
+ char c = aIn[i];
+ if( c>='A' && c<='Z' ) c += 32;
+ aOut[i] = c;
+ }
+}
+
+/*
+** Tokenize some text using the ascii tokenizer.
+*/
+static int fts5AsciiTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int iUnused,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
+ int rc = SQLITE_OK;
+ int ie;
+ int is = 0;
+
+ char aFold[64];
+ int nFold = sizeof(aFold);
+ char *pFold = aFold;
+ unsigned char *a = p->aTokenChar;
+
+ UNUSED_PARAM(iUnused);
+
+ while( is<nText && rc==SQLITE_OK ){
+ int nByte;
+
+ /* Skip any leading divider characters. */
+ while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
+ is++;
+ }
+ if( is==nText ) break;
+
+ /* Count the token characters */
+ ie = is+1;
+ while( ie<nText && ((pText[ie]&0x80) || a[(int)pText[ie]] ) ){
+ ie++;
+ }
+
+ /* Fold to lower case */
+ nByte = ie-is;
+ if( nByte>nFold ){
+ if( pFold!=aFold ) sqlite3_free(pFold);
+ pFold = sqlite3_malloc64((sqlite3_int64)nByte*2);
+ if( pFold==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ nFold = nByte*2;
+ }
+ asciiFold(pFold, &pText[is], nByte);
+
+ /* Invoke the token callback */
+ rc = xToken(pCtx, 0, pFold, nByte, is, ie);
+ is = ie+1;
+ }
+
+ if( pFold!=aFold ) sqlite3_free(pFold);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+}
+
+/**************************************************************************
+** Start of unicode61 tokenizer implementation.
+*/
+
+
+/*
+** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
+** from the sqlite3 source file utf.c. If this file is compiled as part
+** of the amalgamation, they are not required.
+*/
+#ifndef SQLITE_AMALGAMATION
+
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (unsigned char)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (unsigned char)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (unsigned char)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (unsigned char)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (unsigned char)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (unsigned char)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ } \
+}
+
+#endif /* ifndef SQLITE_AMALGAMATION */
+
+typedef struct Unicode61Tokenizer Unicode61Tokenizer;
+struct Unicode61Tokenizer {
+ unsigned char aTokenChar[128]; /* ASCII range token characters */
+ char *aFold; /* Buffer to fold text into */
+ int nFold; /* Size of aFold[] in bytes */
+ int eRemoveDiacritic; /* True if remove_diacritics=1 is set */
+ int nException;
+ int *aiException;
+
+ unsigned char aCategory[32]; /* True for token char categories */
+};
+
+/* Values for eRemoveDiacritic (must match internals of fts5_unicode2.c) */
+#define FTS5_REMOVE_DIACRITICS_NONE 0
+#define FTS5_REMOVE_DIACRITICS_SIMPLE 1
+#define FTS5_REMOVE_DIACRITICS_COMPLEX 2
+
+static int fts5UnicodeAddExceptions(
+ Unicode61Tokenizer *p, /* Tokenizer object */
+ const char *z, /* Characters to treat as exceptions */
+ int bTokenChars /* 1 for 'tokenchars', 0 for 'separators' */
+){
+ int rc = SQLITE_OK;
+ int n = (int)strlen(z);
+ int *aNew;
+
+ if( n>0 ){
+ aNew = (int*)sqlite3_realloc64(p->aiException,
+ (n+p->nException)*sizeof(int));
+ if( aNew ){
+ int nNew = p->nException;
+ const unsigned char *zCsr = (const unsigned char*)z;
+ const unsigned char *zTerm = (const unsigned char*)&z[n];
+ while( zCsr<zTerm ){
+ u32 iCode;
+ int bToken;
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( iCode<128 ){
+ p->aTokenChar[iCode] = (unsigned char)bTokenChars;
+ }else{
+ bToken = p->aCategory[sqlite3Fts5UnicodeCategory(iCode)];
+ assert( (bToken==0 || bToken==1) );
+ assert( (bTokenChars==0 || bTokenChars==1) );
+ if( bToken!=bTokenChars && sqlite3Fts5UnicodeIsdiacritic(iCode)==0 ){
+ int i;
+ for(i=0; i<nNew; i++){
+ if( (u32)aNew[i]>iCode ) break;
+ }
+ memmove(&aNew[i+1], &aNew[i], (nNew-i)*sizeof(int));
+ aNew[i] = iCode;
+ nNew++;
+ }
+ }
+ }
+ p->aiException = aNew;
+ p->nException = nNew;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Return true if the p->aiException[] array contains the value iCode.
+*/
+static int fts5UnicodeIsException(Unicode61Tokenizer *p, int iCode){
+ if( p->nException>0 ){
+ int *a = p->aiException;
+ int iLo = 0;
+ int iHi = p->nException-1;
+
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( iCode==a[iTest] ){
+ return 1;
+ }else if( iCode>a[iTest] ){
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Delete a "unicode61" tokenizer.
+*/
+static void fts5UnicodeDelete(Fts5Tokenizer *pTok){
+ if( pTok ){
+ Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTok;
+ sqlite3_free(p->aiException);
+ sqlite3_free(p->aFold);
+ sqlite3_free(p);
+ }
+ return;
+}
+
+static int unicodeSetCategories(Unicode61Tokenizer *p, const char *zCat){
+ const char *z = zCat;
+
+ while( *z ){
+ while( *z==' ' || *z=='\t' ) z++;
+ if( *z && sqlite3Fts5UnicodeCatParse(z, p->aCategory) ){
+ return SQLITE_ERROR;
+ }
+ while( *z!=' ' && *z!='\t' && *z!='\0' ) z++;
+ }
+
+ sqlite3Fts5UnicodeAscii(p->aCategory, p->aTokenChar);
+ return SQLITE_OK;
+}
+
+/*
+** Create a "unicode61" tokenizer.
+*/
+static int fts5UnicodeCreate(
+ void *pUnused,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK; /* Return code */
+ Unicode61Tokenizer *p = 0; /* New tokenizer object */
+
+ UNUSED_PARAM(pUnused);
+
+ if( nArg%2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
+ if( p ){
+ const char *zCat = "L* N* Co";
+ int i;
+ memset(p, 0, sizeof(Unicode61Tokenizer));
+
+ p->eRemoveDiacritic = FTS5_REMOVE_DIACRITICS_SIMPLE;
+ p->nFold = 64;
+ p->aFold = sqlite3_malloc64(p->nFold * sizeof(char));
+ if( p->aFold==0 ){
+ rc = SQLITE_NOMEM;
+ }
+
+ /* Search for a "categories" argument */
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ if( 0==sqlite3_stricmp(azArg[i], "categories") ){
+ zCat = azArg[i+1];
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = unicodeSetCategories(p, zCat);
+ }
+
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "remove_diacritics") ){
+ if( (zArg[0]!='0' && zArg[0]!='1' && zArg[0]!='2') || zArg[1] ){
+ rc = SQLITE_ERROR;
+ }else{
+ p->eRemoveDiacritic = (zArg[0] - '0');
+ assert( p->eRemoveDiacritic==FTS5_REMOVE_DIACRITICS_NONE
+ || p->eRemoveDiacritic==FTS5_REMOVE_DIACRITICS_SIMPLE
+ || p->eRemoveDiacritic==FTS5_REMOVE_DIACRITICS_COMPLEX
+ );
+ }
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "tokenchars") ){
+ rc = fts5UnicodeAddExceptions(p, zArg, 1);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "separators") ){
+ rc = fts5UnicodeAddExceptions(p, zArg, 0);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "categories") ){
+ /* no-op */
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ fts5UnicodeDelete((Fts5Tokenizer*)p);
+ p = 0;
+ }
+ *ppOut = (Fts5Tokenizer*)p;
+ }
+ return rc;
+}
+
+/*
+** Return true if, for the purposes of tokenizing with the tokenizer
+** passed as the first argument, codepoint iCode is considered a token
+** character (not a separator).
+*/
+static int fts5UnicodeIsAlnum(Unicode61Tokenizer *p, int iCode){
+ return (
+ p->aCategory[sqlite3Fts5UnicodeCategory((u32)iCode)]
+ ^ fts5UnicodeIsException(p, iCode)
+ );
+}
+
+static int fts5UnicodeTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int iUnused,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
+ int rc = SQLITE_OK;
+ unsigned char *a = p->aTokenChar;
+
+ unsigned char *zTerm = (unsigned char*)&pText[nText];
+ unsigned char *zCsr = (unsigned char *)pText;
+
+ /* Output buffer */
+ char *aFold = p->aFold;
+ int nFold = p->nFold;
+ const char *pEnd = &aFold[nFold-6];
+
+ UNUSED_PARAM(iUnused);
+
+ /* Each iteration of this loop gobbles up a contiguous run of separators,
+ ** then the next token. */
+ while( rc==SQLITE_OK ){
+ u32 iCode; /* non-ASCII codepoint read from input */
+ char *zOut = aFold;
+ int is;
+ int ie;
+
+ /* Skip any separator characters. */
+ while( 1 ){
+ if( zCsr>=zTerm ) goto tokenize_done;
+ if( *zCsr & 0x80 ) {
+ /* A character outside of the ascii range. Skip past it if it is
+ ** a separator character. Or break out of the loop if it is not. */
+ is = zCsr - (unsigned char*)pText;
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( fts5UnicodeIsAlnum(p, iCode) ){
+ goto non_ascii_tokenchar;
+ }
+ }else{
+ if( a[*zCsr] ){
+ is = zCsr - (unsigned char*)pText;
+ goto ascii_tokenchar;
+ }
+ zCsr++;
+ }
+ }
+
+ /* Run through the tokenchars. Fold them into the output buffer along
+ ** the way. */
+ while( zCsr<zTerm ){
+
+ /* Grow the output buffer so that there is sufficient space to fit the
+ ** largest possible utf-8 character. */
+ if( zOut>pEnd ){
+ aFold = sqlite3_malloc64((sqlite3_int64)nFold*2);
+ if( aFold==0 ){
+ rc = SQLITE_NOMEM;
+ goto tokenize_done;
+ }
+ zOut = &aFold[zOut - p->aFold];
+ memcpy(aFold, p->aFold, nFold);
+ sqlite3_free(p->aFold);
+ p->aFold = aFold;
+ p->nFold = nFold = nFold*2;
+ pEnd = &aFold[nFold-6];
+ }
+
+ if( *zCsr & 0x80 ){
+ /* An non-ascii-range character. Fold it into the output buffer if
+ ** it is a token character, or break out of the loop if it is not. */
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( fts5UnicodeIsAlnum(p,iCode)||sqlite3Fts5UnicodeIsdiacritic(iCode) ){
+ non_ascii_tokenchar:
+ iCode = sqlite3Fts5UnicodeFold(iCode, p->eRemoveDiacritic);
+ if( iCode ) WRITE_UTF8(zOut, iCode);
+ }else{
+ break;
+ }
+ }else if( a[*zCsr]==0 ){
+ /* An ascii-range separator character. End of token. */
+ break;
+ }else{
+ ascii_tokenchar:
+ if( *zCsr>='A' && *zCsr<='Z' ){
+ *zOut++ = *zCsr + 32;
+ }else{
+ *zOut++ = *zCsr;
+ }
+ zCsr++;
+ }
+ ie = zCsr - (unsigned char*)pText;
+ }
+
+ /* Invoke the token callback */
+ rc = xToken(pCtx, 0, aFold, zOut-aFold, is, ie);
+ }
+
+ tokenize_done:
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+}
+
+/**************************************************************************
+** Start of porter stemmer implementation.
+*/
+
+/* Any tokens larger than this (in bytes) are passed through without
+** stemming. */
+#define FTS5_PORTER_MAX_TOKEN 64
+
+typedef struct PorterTokenizer PorterTokenizer;
+struct PorterTokenizer {
+ fts5_tokenizer tokenizer; /* Parent tokenizer module */
+ Fts5Tokenizer *pTokenizer; /* Parent tokenizer instance */
+ char aBuf[FTS5_PORTER_MAX_TOKEN + 64];
+};
+
+/*
+** Delete a "porter" tokenizer.
+*/
+static void fts5PorterDelete(Fts5Tokenizer *pTok){
+ if( pTok ){
+ PorterTokenizer *p = (PorterTokenizer*)pTok;
+ if( p->pTokenizer ){
+ p->tokenizer.xDelete(p->pTokenizer);
+ }
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Create a "porter" tokenizer.
+*/
+static int fts5PorterCreate(
+ void *pCtx,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ fts5_api *pApi = (fts5_api*)pCtx;
+ int rc = SQLITE_OK;
+ PorterTokenizer *pRet;
+ void *pUserdata = 0;
+ const char *zBase = "unicode61";
+
+ if( nArg>0 ){
+ zBase = azArg[0];
+ }
+
+ pRet = (PorterTokenizer*)sqlite3_malloc(sizeof(PorterTokenizer));
+ if( pRet ){
+ memset(pRet, 0, sizeof(PorterTokenizer));
+ rc = pApi->xFindTokenizer(pApi, zBase, &pUserdata, &pRet->tokenizer);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ int nArg2 = (nArg>0 ? nArg-1 : 0);
+ const char **azArg2 = (nArg2 ? &azArg[1] : 0);
+ rc = pRet->tokenizer.xCreate(pUserdata, azArg2, nArg2, &pRet->pTokenizer);
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5PorterDelete((Fts5Tokenizer*)pRet);
+ pRet = 0;
+ }
+ *ppOut = (Fts5Tokenizer*)pRet;
+ return rc;
+}
+
+typedef struct PorterContext PorterContext;
+struct PorterContext {
+ void *pCtx;
+ int (*xToken)(void*, int, const char*, int, int, int);
+ char *aBuf;
+};
+
+typedef struct PorterRule PorterRule;
+struct PorterRule {
+ const char *zSuffix;
+ int nSuffix;
+ int (*xCond)(char *zStem, int nStem);
+ const char *zOutput;
+ int nOutput;
+};
+
+#if 0
+static int fts5PorterApply(char *aBuf, int *pnBuf, PorterRule *aRule){
+ int ret = -1;
+ int nBuf = *pnBuf;
+ PorterRule *p;
+
+ for(p=aRule; p->zSuffix; p++){
+ assert( strlen(p->zSuffix)==p->nSuffix );
+ assert( strlen(p->zOutput)==p->nOutput );
+ if( nBuf<p->nSuffix ) continue;
+ if( 0==memcmp(&aBuf[nBuf - p->nSuffix], p->zSuffix, p->nSuffix) ) break;
+ }
+
+ if( p->zSuffix ){
+ int nStem = nBuf - p->nSuffix;
+ if( p->xCond==0 || p->xCond(aBuf, nStem) ){
+ memcpy(&aBuf[nStem], p->zOutput, p->nOutput);
+ *pnBuf = nStem + p->nOutput;
+ ret = p - aRule;
+ }
+ }
+
+ return ret;
+}
+#endif
+
+static int fts5PorterIsVowel(char c, int bYIsVowel){
+ return (
+ c=='a' || c=='e' || c=='i' || c=='o' || c=='u' || (bYIsVowel && c=='y')
+ );
+}
+
+static int fts5PorterGobbleVC(char *zStem, int nStem, int bPrevCons){
+ int i;
+ int bCons = bPrevCons;
+
+ /* Scan for a vowel */
+ for(i=0; i<nStem; i++){
+ if( 0==(bCons = !fts5PorterIsVowel(zStem[i], bCons)) ) break;
+ }
+
+ /* Scan for a consonent */
+ for(i++; i<nStem; i++){
+ if( (bCons = !fts5PorterIsVowel(zStem[i], bCons)) ) return i+1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (m > 0) */
+static int fts5Porter_MGt0(char *zStem, int nStem){
+ return !!fts5PorterGobbleVC(zStem, nStem, 0);
+}
+
+/* porter rule condition: (m > 1) */
+static int fts5Porter_MGt1(char *zStem, int nStem){
+ int n;
+ n = fts5PorterGobbleVC(zStem, nStem, 0);
+ if( n && fts5PorterGobbleVC(&zStem[n], nStem-n, 1) ){
+ return 1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (m = 1) */
+static int fts5Porter_MEq1(char *zStem, int nStem){
+ int n;
+ n = fts5PorterGobbleVC(zStem, nStem, 0);
+ if( n && 0==fts5PorterGobbleVC(&zStem[n], nStem-n, 1) ){
+ return 1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (*o) */
+static int fts5Porter_Ostar(char *zStem, int nStem){
+ if( zStem[nStem-1]=='w' || zStem[nStem-1]=='x' || zStem[nStem-1]=='y' ){
+ return 0;
+ }else{
+ int i;
+ int mask = 0;
+ int bCons = 0;
+ for(i=0; i<nStem; i++){
+ bCons = !fts5PorterIsVowel(zStem[i], bCons);
+ assert( bCons==0 || bCons==1 );
+ mask = (mask << 1) + bCons;
+ }
+ return ((mask & 0x0007)==0x0005);
+ }
+}
+
+/* porter rule condition: (m > 1 and (*S or *T)) */
+static int fts5Porter_MGt1_and_S_or_T(char *zStem, int nStem){
+ assert( nStem>0 );
+ return (zStem[nStem-1]=='s' || zStem[nStem-1]=='t')
+ && fts5Porter_MGt1(zStem, nStem);
+}
+
+/* porter rule condition: (*v*) */
+static int fts5Porter_Vowel(char *zStem, int nStem){
+ int i;
+ for(i=0; i<nStem; i++){
+ if( fts5PorterIsVowel(zStem[i], i>0) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/**************************************************************************
+***************************************************************************
+** GENERATED CODE STARTS HERE (mkportersteps.tcl)
+*/
+
+static int fts5PorterStep4(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>2 && 0==memcmp("al", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'c':
+ if( nBuf>4 && 0==memcmp("ance", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("ence", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 'e':
+ if( nBuf>2 && 0==memcmp("er", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'i':
+ if( nBuf>2 && 0==memcmp("ic", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'l':
+ if( nBuf>4 && 0==memcmp("able", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("ible", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 'n':
+ if( nBuf>3 && 0==memcmp("ant", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>5 && 0==memcmp("ement", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-5) ){
+ *pnBuf = nBuf - 5;
+ }
+ }else if( nBuf>4 && 0==memcmp("ment", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>3 && 0==memcmp("ent", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'o':
+ if( nBuf>3 && 0==memcmp("ion", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1_and_S_or_T(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>2 && 0==memcmp("ou", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>3 && 0==memcmp("ism", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>3 && 0==memcmp("ate", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>3 && 0==memcmp("iti", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'u':
+ if( nBuf>3 && 0==memcmp("ous", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'v':
+ if( nBuf>3 && 0==memcmp("ive", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'z':
+ if( nBuf>3 && 0==memcmp("ize", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep1B2(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>2 && 0==memcmp("at", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ate", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ case 'b':
+ if( nBuf>2 && 0==memcmp("bl", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ble", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ case 'i':
+ if( nBuf>2 && 0==memcmp("iz", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ize", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep2(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>7 && 0==memcmp("ational", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ate", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>6 && 0==memcmp("tional", &aBuf[nBuf-6], 6) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-6) ){
+ memcpy(&aBuf[nBuf-6], "tion", 4);
+ *pnBuf = nBuf - 6 + 4;
+ }
+ }
+ break;
+
+ case 'c':
+ if( nBuf>4 && 0==memcmp("enci", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ence", 4);
+ *pnBuf = nBuf - 4 + 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("anci", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ance", 4);
+ *pnBuf = nBuf - 4 + 4;
+ }
+ }
+ break;
+
+ case 'e':
+ if( nBuf>4 && 0==memcmp("izer", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ize", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 'g':
+ if( nBuf>4 && 0==memcmp("logi", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "log", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 'l':
+ if( nBuf>3 && 0==memcmp("bli", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "ble", 3);
+ *pnBuf = nBuf - 3 + 3;
+ }
+ }else if( nBuf>4 && 0==memcmp("alli", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "al", 2);
+ *pnBuf = nBuf - 4 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("entli", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ent", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>3 && 0==memcmp("eli", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "e", 1);
+ *pnBuf = nBuf - 3 + 1;
+ }
+ }else if( nBuf>5 && 0==memcmp("ousli", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ous", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }
+ break;
+
+ case 'o':
+ if( nBuf>7 && 0==memcmp("ization", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ize", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>5 && 0==memcmp("ation", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ate", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>4 && 0==memcmp("ator", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ate", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>5 && 0==memcmp("alism", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>7 && 0==memcmp("iveness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ive", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>7 && 0==memcmp("fulness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ful", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>7 && 0==memcmp("ousness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ous", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>5 && 0==memcmp("aliti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("iviti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ive", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>6 && 0==memcmp("biliti", &aBuf[nBuf-6], 6) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-6) ){
+ memcpy(&aBuf[nBuf-6], "ble", 3);
+ *pnBuf = nBuf - 6 + 3;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep3(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>4 && 0==memcmp("ical", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ic", 2);
+ *pnBuf = nBuf - 4 + 2;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>4 && 0==memcmp("ness", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>5 && 0==memcmp("icate", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ic", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("iciti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ic", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }
+ break;
+
+ case 'u':
+ if( nBuf>3 && 0==memcmp("ful", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'v':
+ if( nBuf>5 && 0==memcmp("ative", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ *pnBuf = nBuf - 5;
+ }
+ }
+ break;
+
+ case 'z':
+ if( nBuf>5 && 0==memcmp("alize", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep1B(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'e':
+ if( nBuf>3 && 0==memcmp("eed", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "ee", 2);
+ *pnBuf = nBuf - 3 + 2;
+ }
+ }else if( nBuf>2 && 0==memcmp("ed", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_Vowel(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ ret = 1;
+ }
+ }
+ break;
+
+ case 'n':
+ if( nBuf>3 && 0==memcmp("ing", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_Vowel(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ ret = 1;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+/*
+** GENERATED CODE ENDS HERE (mkportersteps.tcl)
+***************************************************************************
+**************************************************************************/
+
+static void fts5PorterStep1A(char *aBuf, int *pnBuf){
+ int nBuf = *pnBuf;
+ if( aBuf[nBuf-1]=='s' ){
+ if( aBuf[nBuf-2]=='e' ){
+ if( (nBuf>4 && aBuf[nBuf-4]=='s' && aBuf[nBuf-3]=='s')
+ || (nBuf>3 && aBuf[nBuf-3]=='i' )
+ ){
+ *pnBuf = nBuf-2;
+ }else{
+ *pnBuf = nBuf-1;
+ }
+ }
+ else if( aBuf[nBuf-2]!='s' ){
+ *pnBuf = nBuf-1;
+ }
+ }
+}
+
+static int fts5PorterCb(
+ void *pCtx,
+ int tflags,
+ const char *pToken,
+ int nToken,
+ int iStart,
+ int iEnd
+){
+ PorterContext *p = (PorterContext*)pCtx;
+
+ char *aBuf;
+ int nBuf;
+
+ if( nToken>FTS5_PORTER_MAX_TOKEN || nToken<3 ) goto pass_through;
+ aBuf = p->aBuf;
+ nBuf = nToken;
+ memcpy(aBuf, pToken, nBuf);
+
+ /* Step 1. */
+ fts5PorterStep1A(aBuf, &nBuf);
+ if( fts5PorterStep1B(aBuf, &nBuf) ){
+ if( fts5PorterStep1B2(aBuf, &nBuf)==0 ){
+ char c = aBuf[nBuf-1];
+ if( fts5PorterIsVowel(c, 0)==0
+ && c!='l' && c!='s' && c!='z' && c==aBuf[nBuf-2]
+ ){
+ nBuf--;
+ }else if( fts5Porter_MEq1(aBuf, nBuf) && fts5Porter_Ostar(aBuf, nBuf) ){
+ aBuf[nBuf++] = 'e';
+ }
+ }
+ }
+
+ /* Step 1C. */
+ if( aBuf[nBuf-1]=='y' && fts5Porter_Vowel(aBuf, nBuf-1) ){
+ aBuf[nBuf-1] = 'i';
+ }
+
+ /* Steps 2 through 4. */
+ fts5PorterStep2(aBuf, &nBuf);
+ fts5PorterStep3(aBuf, &nBuf);
+ fts5PorterStep4(aBuf, &nBuf);
+
+ /* Step 5a. */
+ assert( nBuf>0 );
+ if( aBuf[nBuf-1]=='e' ){
+ if( fts5Porter_MGt1(aBuf, nBuf-1)
+ || (fts5Porter_MEq1(aBuf, nBuf-1) && !fts5Porter_Ostar(aBuf, nBuf-1))
+ ){
+ nBuf--;
+ }
+ }
+
+ /* Step 5b. */
+ if( nBuf>1 && aBuf[nBuf-1]=='l'
+ && aBuf[nBuf-2]=='l' && fts5Porter_MGt1(aBuf, nBuf-1)
+ ){
+ nBuf--;
+ }
+
+ return p->xToken(p->pCtx, tflags, aBuf, nBuf, iStart, iEnd);
+
+ pass_through:
+ return p->xToken(p->pCtx, tflags, pToken, nToken, iStart, iEnd);
+}
+
+/*
+** Tokenize using the porter tokenizer.
+*/
+static int fts5PorterTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int flags,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ PorterTokenizer *p = (PorterTokenizer*)pTokenizer;
+ PorterContext sCtx;
+ sCtx.xToken = xToken;
+ sCtx.pCtx = pCtx;
+ sCtx.aBuf = p->aBuf;
+ return p->tokenizer.xTokenize(
+ p->pTokenizer, (void*)&sCtx, flags, pText, nText, fts5PorterCb
+ );
+}
+
+/**************************************************************************
+** Start of trigram implementation.
+*/
+typedef struct TrigramTokenizer TrigramTokenizer;
+struct TrigramTokenizer {
+ int bFold; /* True to fold to lower-case */
+};
+
+/*
+** Free a trigram tokenizer.
+*/
+static void fts5TriDelete(Fts5Tokenizer *p){
+ sqlite3_free(p);
+}
+
+/*
+** Allocate a trigram tokenizer.
+*/
+static int fts5TriCreate(
+ void *pUnused,
+ const char **azArg,
+ int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK;
+ TrigramTokenizer *pNew = (TrigramTokenizer*)sqlite3_malloc(sizeof(*pNew));
+ UNUSED_PARAM(pUnused);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ pNew->bFold = 1;
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "case_sensitive") ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1] ){
+ rc = SQLITE_ERROR;
+ }else{
+ pNew->bFold = (zArg[0]=='0');
+ }
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ fts5TriDelete((Fts5Tokenizer*)pNew);
+ pNew = 0;
+ }
+ }
+ *ppOut = (Fts5Tokenizer*)pNew;
+ return rc;
+}
+
+/*
+** Trigram tokenizer tokenize routine.
+*/
+static int fts5TriTokenize(
+ Fts5Tokenizer *pTok,
+ void *pCtx,
+ int unusedFlags,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int, int, int)
+){
+ TrigramTokenizer *p = (TrigramTokenizer*)pTok;
+ int rc = SQLITE_OK;
+ char aBuf[32];
+ const unsigned char *zIn = (const unsigned char*)pText;
+ const unsigned char *zEof = &zIn[nText];
+ u32 iCode;
+
+ UNUSED_PARAM(unusedFlags);
+ while( 1 ){
+ char *zOut = aBuf;
+ int iStart = zIn - (const unsigned char*)pText;
+ const unsigned char *zNext;
+
+ READ_UTF8(zIn, zEof, iCode);
+ if( iCode==0 ) break;
+ zNext = zIn;
+ if( zIn<zEof ){
+ if( p->bFold ) iCode = sqlite3Fts5UnicodeFold(iCode, 0);
+ WRITE_UTF8(zOut, iCode);
+ READ_UTF8(zIn, zEof, iCode);
+ if( iCode==0 ) break;
+ }else{
+ break;
+ }
+ if( zIn<zEof ){
+ if( p->bFold ) iCode = sqlite3Fts5UnicodeFold(iCode, 0);
+ WRITE_UTF8(zOut, iCode);
+ READ_UTF8(zIn, zEof, iCode);
+ if( iCode==0 ) break;
+ if( p->bFold ) iCode = sqlite3Fts5UnicodeFold(iCode, 0);
+ WRITE_UTF8(zOut, iCode);
+ }else{
+ break;
+ }
+ rc = xToken(pCtx, 0, aBuf, zOut-aBuf, iStart, iStart + zOut-aBuf);
+ if( rc!=SQLITE_OK ) break;
+ zIn = zNext;
+ }
+
+ return rc;
+}
+
+/*
+** Argument xCreate is a pointer to a constructor function for a tokenizer.
+** pTok is a tokenizer previously created using the same method. This function
+** returns one of FTS5_PATTERN_NONE, FTS5_PATTERN_LIKE or FTS5_PATTERN_GLOB
+** indicating the style of pattern matching that the tokenizer can support.
+** In practice, this is:
+**
+** "trigram" tokenizer, case_sensitive=1 - FTS5_PATTERN_GLOB
+** "trigram" tokenizer, case_sensitive=0 (the default) - FTS5_PATTERN_LIKE
+** all other tokenizers - FTS5_PATTERN_NONE
+*/
+static int sqlite3Fts5TokenizerPattern(
+ int (*xCreate)(void*, const char**, int, Fts5Tokenizer**),
+ Fts5Tokenizer *pTok
+){
+ if( xCreate==fts5TriCreate ){
+ TrigramTokenizer *p = (TrigramTokenizer*)pTok;
+ return p->bFold ? FTS5_PATTERN_LIKE : FTS5_PATTERN_GLOB;
+ }
+ return FTS5_PATTERN_NONE;
+}
+
+/*
+** Register all built-in tokenizers with FTS5.
+*/
+static int sqlite3Fts5TokenizerInit(fts5_api *pApi){
+ struct BuiltinTokenizer {
+ const char *zName;
+ fts5_tokenizer x;
+ } aBuiltin[] = {
+ { "unicode61", {fts5UnicodeCreate, fts5UnicodeDelete, fts5UnicodeTokenize}},
+ { "ascii", {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
+ { "porter", {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
+ { "trigram", {fts5TriCreate, fts5TriDelete, fts5TriTokenize}},
+ };
+
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* To iterate through builtin functions */
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
+ rc = pApi->xCreateTokenizer(pApi,
+ aBuiltin[i].zName,
+ (void*)pApi,
+ &aBuiltin[i].x,
+ 0
+ );
+ }
+
+ return rc;
+}
+
+/*
+** 2012-05-25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/*
+** DO NOT EDIT THIS MACHINE GENERATED FILE.
+*/
+
+
+/* #include <assert.h> */
+
+
+
+/*
+** If the argument is a codepoint corresponding to a lowercase letter
+** in the ASCII range with a diacritic added, return the codepoint
+** of the ASCII letter only. For example, if passed 235 - "LATIN
+** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
+** E"). The resuls of passing a codepoint that corresponds to an
+** uppercase letter are undefined.
+*/
+static int fts5_remove_diacritic(int c, int bComplex){
+ unsigned short aDia[] = {
+ 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995,
+ 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286,
+ 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732,
+ 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336,
+ 3456, 3696, 3712, 3728, 3744, 3766, 3832, 3896,
+ 3912, 3928, 3944, 3968, 4008, 4040, 4056, 4106,
+ 4138, 4170, 4202, 4234, 4266, 4296, 4312, 4344,
+ 4408, 4424, 4442, 4472, 4488, 4504, 6148, 6198,
+ 6264, 6280, 6360, 6429, 6505, 6529, 61448, 61468,
+ 61512, 61534, 61592, 61610, 61642, 61672, 61688, 61704,
+ 61726, 61784, 61800, 61816, 61836, 61880, 61896, 61914,
+ 61948, 61998, 62062, 62122, 62154, 62184, 62200, 62218,
+ 62252, 62302, 62364, 62410, 62442, 62478, 62536, 62554,
+ 62584, 62604, 62640, 62648, 62656, 62664, 62730, 62766,
+ 62830, 62890, 62924, 62974, 63032, 63050, 63082, 63118,
+ 63182, 63242, 63274, 63310, 63368, 63390,
+ };
+#define HIBIT ((unsigned char)0x80)
+ unsigned char aChar[] = {
+ '\0', 'a', 'c', 'e', 'i', 'n',
+ 'o', 'u', 'y', 'y', 'a', 'c',
+ 'd', 'e', 'e', 'g', 'h', 'i',
+ 'j', 'k', 'l', 'n', 'o', 'r',
+ 's', 't', 'u', 'u', 'w', 'y',
+ 'z', 'o', 'u', 'a', 'i', 'o',
+ 'u', 'u'|HIBIT, 'a'|HIBIT, 'g', 'k', 'o',
+ 'o'|HIBIT, 'j', 'g', 'n', 'a'|HIBIT, 'a',
+ 'e', 'i', 'o', 'r', 'u', 's',
+ 't', 'h', 'a', 'e', 'o'|HIBIT, 'o',
+ 'o'|HIBIT, 'y', '\0', '\0', '\0', '\0',
+ '\0', '\0', '\0', '\0', 'a', 'b',
+ 'c'|HIBIT, 'd', 'd', 'e'|HIBIT, 'e', 'e'|HIBIT,
+ 'f', 'g', 'h', 'h', 'i', 'i'|HIBIT,
+ 'k', 'l', 'l'|HIBIT, 'l', 'm', 'n',
+ 'o'|HIBIT, 'p', 'r', 'r'|HIBIT, 'r', 's',
+ 's'|HIBIT, 't', 'u', 'u'|HIBIT, 'v', 'w',
+ 'w', 'x', 'y', 'z', 'h', 't',
+ 'w', 'y', 'a', 'a'|HIBIT, 'a'|HIBIT, 'a'|HIBIT,
+ 'e', 'e'|HIBIT, 'e'|HIBIT, 'i', 'o', 'o'|HIBIT,
+ 'o'|HIBIT, 'o'|HIBIT, 'u', 'u'|HIBIT, 'u'|HIBIT, 'y',
+ };
+
+ unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
+ int iRes = 0;
+ int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aDia[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( key>=aDia[iRes] );
+ if( bComplex==0 && (aChar[iRes] & 0x80) ) return c;
+ return (c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : ((int)aChar[iRes] & 0x7F);
+}
+
+
+/*
+** Return true if the argument interpreted as a unicode codepoint
+** is a diacritical modifier character.
+*/
+static int sqlite3Fts5UnicodeIsdiacritic(int c){
+ unsigned int mask0 = 0x08029FDF;
+ unsigned int mask1 = 0x000361F8;
+ if( c<768 || c>817 ) return 0;
+ return (c < 768+32) ?
+ (mask0 & ((unsigned int)1 << (c-768))) :
+ (mask1 & ((unsigned int)1 << (c-768-32)));
+}
+
+
+/*
+** Interpret the argument as a unicode codepoint. If the codepoint
+** is an upper case character that has a lower case equivalent,
+** return the codepoint corresponding to the lower case version.
+** Otherwise, return a copy of the argument.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+static int sqlite3Fts5UnicodeFold(int c, int eRemoveDiacritic){
+ /* Each entry in the following array defines a rule for folding a range
+ ** of codepoints to lower case. The rule applies to a range of nRange
+ ** codepoints starting at codepoint iCode.
+ **
+ ** If the least significant bit in flags is clear, then the rule applies
+ ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
+ ** need to be folded). Or, if it is set, then the rule only applies to
+ ** every second codepoint in the range, starting with codepoint C.
+ **
+ ** The 7 most significant bits in flags are an index into the aiOff[]
+ ** array. If a specific codepoint C does require folding, then its lower
+ ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
+ **
+ ** The contents of this array are generated by parsing the CaseFolding.txt
+ ** file distributed as part of the "Unicode Character Database". See
+ ** http://www.unicode.org for details.
+ */
+ static const struct TableEntry {
+ unsigned short iCode;
+ unsigned char flags;
+ unsigned char nRange;
+ } aEntry[] = {
+ {65, 14, 26}, {181, 64, 1}, {192, 14, 23},
+ {216, 14, 7}, {256, 1, 48}, {306, 1, 6},
+ {313, 1, 16}, {330, 1, 46}, {376, 116, 1},
+ {377, 1, 6}, {383, 104, 1}, {385, 50, 1},
+ {386, 1, 4}, {390, 44, 1}, {391, 0, 1},
+ {393, 42, 2}, {395, 0, 1}, {398, 32, 1},
+ {399, 38, 1}, {400, 40, 1}, {401, 0, 1},
+ {403, 42, 1}, {404, 46, 1}, {406, 52, 1},
+ {407, 48, 1}, {408, 0, 1}, {412, 52, 1},
+ {413, 54, 1}, {415, 56, 1}, {416, 1, 6},
+ {422, 60, 1}, {423, 0, 1}, {425, 60, 1},
+ {428, 0, 1}, {430, 60, 1}, {431, 0, 1},
+ {433, 58, 2}, {435, 1, 4}, {439, 62, 1},
+ {440, 0, 1}, {444, 0, 1}, {452, 2, 1},
+ {453, 0, 1}, {455, 2, 1}, {456, 0, 1},
+ {458, 2, 1}, {459, 1, 18}, {478, 1, 18},
+ {497, 2, 1}, {498, 1, 4}, {502, 122, 1},
+ {503, 134, 1}, {504, 1, 40}, {544, 110, 1},
+ {546, 1, 18}, {570, 70, 1}, {571, 0, 1},
+ {573, 108, 1}, {574, 68, 1}, {577, 0, 1},
+ {579, 106, 1}, {580, 28, 1}, {581, 30, 1},
+ {582, 1, 10}, {837, 36, 1}, {880, 1, 4},
+ {886, 0, 1}, {902, 18, 1}, {904, 16, 3},
+ {908, 26, 1}, {910, 24, 2}, {913, 14, 17},
+ {931, 14, 9}, {962, 0, 1}, {975, 4, 1},
+ {976, 140, 1}, {977, 142, 1}, {981, 146, 1},
+ {982, 144, 1}, {984, 1, 24}, {1008, 136, 1},
+ {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1},
+ {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1},
+ {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32},
+ {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1},
+ {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38},
+ {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1},
+ {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1},
+ {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6},
+ {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6},
+ {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8},
+ {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2},
+ {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1},
+ {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2},
+ {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2},
+ {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2},
+ {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1},
+ {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16},
+ {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47},
+ {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1},
+ {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1},
+ {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1},
+ {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2},
+ {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1},
+ {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14},
+ {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1},
+ {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1},
+ {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1},
+ {65313, 14, 26},
+ };
+ static const unsigned short aiOff[] = {
+ 1, 2, 8, 15, 16, 26, 28, 32,
+ 37, 38, 40, 48, 63, 64, 69, 71,
+ 79, 80, 116, 202, 203, 205, 206, 207,
+ 209, 210, 211, 213, 214, 217, 218, 219,
+ 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721,
+ 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
+ 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
+ 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
+ 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
+ 65514, 65521, 65527, 65528, 65529,
+ };
+
+ int ret = c;
+
+ assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
+
+ if( c<128 ){
+ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
+ }else if( c<65536 ){
+ const struct TableEntry *p;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ int iRes = -1;
+
+ assert( c>aEntry[0].iCode );
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ int cmp = (c - aEntry[iTest].iCode);
+ if( cmp>=0 ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+
+ assert( iRes>=0 && c>=aEntry[iRes].iCode );
+ p = &aEntry[iRes];
+ if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
+ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
+ assert( ret>0 );
+ }
+
+ if( eRemoveDiacritic ){
+ ret = fts5_remove_diacritic(ret, eRemoveDiacritic==2);
+ }
+ }
+
+ else if( c>=66560 && c<66600 ){
+ ret = c + 40;
+ }
+
+ return ret;
+}
+
+
+static int sqlite3Fts5UnicodeCatParse(const char *zCat, u8 *aArray){
+ aArray[0] = 1;
+ switch( zCat[0] ){
+ case 'C':
+ switch( zCat[1] ){
+ case 'c': aArray[1] = 1; break;
+ case 'f': aArray[2] = 1; break;
+ case 'n': aArray[3] = 1; break;
+ case 's': aArray[4] = 1; break;
+ case 'o': aArray[31] = 1; break;
+ case '*':
+ aArray[1] = 1;
+ aArray[2] = 1;
+ aArray[3] = 1;
+ aArray[4] = 1;
+ aArray[31] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'L':
+ switch( zCat[1] ){
+ case 'l': aArray[5] = 1; break;
+ case 'm': aArray[6] = 1; break;
+ case 'o': aArray[7] = 1; break;
+ case 't': aArray[8] = 1; break;
+ case 'u': aArray[9] = 1; break;
+ case 'C': aArray[30] = 1; break;
+ case '*':
+ aArray[5] = 1;
+ aArray[6] = 1;
+ aArray[7] = 1;
+ aArray[8] = 1;
+ aArray[9] = 1;
+ aArray[30] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'M':
+ switch( zCat[1] ){
+ case 'c': aArray[10] = 1; break;
+ case 'e': aArray[11] = 1; break;
+ case 'n': aArray[12] = 1; break;
+ case '*':
+ aArray[10] = 1;
+ aArray[11] = 1;
+ aArray[12] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'N':
+ switch( zCat[1] ){
+ case 'd': aArray[13] = 1; break;
+ case 'l': aArray[14] = 1; break;
+ case 'o': aArray[15] = 1; break;
+ case '*':
+ aArray[13] = 1;
+ aArray[14] = 1;
+ aArray[15] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'P':
+ switch( zCat[1] ){
+ case 'c': aArray[16] = 1; break;
+ case 'd': aArray[17] = 1; break;
+ case 'e': aArray[18] = 1; break;
+ case 'f': aArray[19] = 1; break;
+ case 'i': aArray[20] = 1; break;
+ case 'o': aArray[21] = 1; break;
+ case 's': aArray[22] = 1; break;
+ case '*':
+ aArray[16] = 1;
+ aArray[17] = 1;
+ aArray[18] = 1;
+ aArray[19] = 1;
+ aArray[20] = 1;
+ aArray[21] = 1;
+ aArray[22] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'S':
+ switch( zCat[1] ){
+ case 'c': aArray[23] = 1; break;
+ case 'k': aArray[24] = 1; break;
+ case 'm': aArray[25] = 1; break;
+ case 'o': aArray[26] = 1; break;
+ case '*':
+ aArray[23] = 1;
+ aArray[24] = 1;
+ aArray[25] = 1;
+ aArray[26] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ case 'Z':
+ switch( zCat[1] ){
+ case 'l': aArray[27] = 1; break;
+ case 'p': aArray[28] = 1; break;
+ case 's': aArray[29] = 1; break;
+ case '*':
+ aArray[27] = 1;
+ aArray[28] = 1;
+ aArray[29] = 1;
+ break;
+ default: return 1; }
+ break;
+
+ }
+ return 0;
+}
+
+static u16 aFts5UnicodeBlock[] = {
+ 0, 1471, 1753, 1760, 1760, 1760, 1760, 1760, 1760, 1760,
+ 1760, 1760, 1760, 1760, 1760, 1763, 1765,
+ };
+static u16 aFts5UnicodeMap[] = {
+ 0, 32, 33, 36, 37, 40, 41, 42, 43, 44,
+ 45, 46, 48, 58, 60, 63, 65, 91, 92, 93,
+ 94, 95, 96, 97, 123, 124, 125, 126, 127, 160,
+ 161, 162, 166, 167, 168, 169, 170, 171, 172, 173,
+ 174, 175, 176, 177, 178, 180, 181, 182, 184, 185,
+ 186, 187, 188, 191, 192, 215, 216, 223, 247, 248,
+ 256, 312, 313, 329, 330, 377, 383, 385, 387, 388,
+ 391, 394, 396, 398, 402, 403, 405, 406, 409, 412,
+ 414, 415, 417, 418, 423, 427, 428, 431, 434, 436,
+ 437, 440, 442, 443, 444, 446, 448, 452, 453, 454,
+ 455, 456, 457, 458, 459, 460, 461, 477, 478, 496,
+ 497, 498, 499, 500, 503, 505, 506, 564, 570, 572,
+ 573, 575, 577, 580, 583, 584, 592, 660, 661, 688,
+ 706, 710, 722, 736, 741, 748, 749, 750, 751, 768,
+ 880, 884, 885, 886, 890, 891, 894, 900, 902, 903,
+ 904, 908, 910, 912, 913, 931, 940, 975, 977, 978,
+ 981, 984, 1008, 1012, 1014, 1015, 1018, 1020, 1021, 1072,
+ 1120, 1154, 1155, 1160, 1162, 1217, 1231, 1232, 1329, 1369,
+ 1370, 1377, 1417, 1418, 1423, 1425, 1470, 1471, 1472, 1473,
+ 1475, 1476, 1478, 1479, 1488, 1520, 1523, 1536, 1542, 1545,
+ 1547, 1548, 1550, 1552, 1563, 1566, 1568, 1600, 1601, 1611,
+ 1632, 1642, 1646, 1648, 1649, 1748, 1749, 1750, 1757, 1758,
+ 1759, 1765, 1767, 1769, 1770, 1774, 1776, 1786, 1789, 1791,
+ 1792, 1807, 1808, 1809, 1810, 1840, 1869, 1958, 1969, 1984,
+ 1994, 2027, 2036, 2038, 2039, 2042, 2048, 2070, 2074, 2075,
+ 2084, 2085, 2088, 2089, 2096, 2112, 2137, 2142, 2208, 2210,
+ 2276, 2304, 2307, 2308, 2362, 2363, 2364, 2365, 2366, 2369,
+ 2377, 2381, 2382, 2384, 2385, 2392, 2402, 2404, 2406, 2416,
+ 2417, 2418, 2425, 2433, 2434, 2437, 2447, 2451, 2474, 2482,
+ 2486, 2492, 2493, 2494, 2497, 2503, 2507, 2509, 2510, 2519,
+ 2524, 2527, 2530, 2534, 2544, 2546, 2548, 2554, 2555, 2561,
+ 2563, 2565, 2575, 2579, 2602, 2610, 2613, 2616, 2620, 2622,
+ 2625, 2631, 2635, 2641, 2649, 2654, 2662, 2672, 2674, 2677,
+ 2689, 2691, 2693, 2703, 2707, 2730, 2738, 2741, 2748, 2749,
+ 2750, 2753, 2759, 2761, 2763, 2765, 2768, 2784, 2786, 2790,
+ 2800, 2801, 2817, 2818, 2821, 2831, 2835, 2858, 2866, 2869,
+ 2876, 2877, 2878, 2879, 2880, 2881, 2887, 2891, 2893, 2902,
+ 2903, 2908, 2911, 2914, 2918, 2928, 2929, 2930, 2946, 2947,
+ 2949, 2958, 2962, 2969, 2972, 2974, 2979, 2984, 2990, 3006,
+ 3008, 3009, 3014, 3018, 3021, 3024, 3031, 3046, 3056, 3059,
+ 3065, 3066, 3073, 3077, 3086, 3090, 3114, 3125, 3133, 3134,
+ 3137, 3142, 3146, 3157, 3160, 3168, 3170, 3174, 3192, 3199,
+ 3202, 3205, 3214, 3218, 3242, 3253, 3260, 3261, 3262, 3263,
+ 3264, 3270, 3271, 3274, 3276, 3285, 3294, 3296, 3298, 3302,
+ 3313, 3330, 3333, 3342, 3346, 3389, 3390, 3393, 3398, 3402,
+ 3405, 3406, 3415, 3424, 3426, 3430, 3440, 3449, 3450, 3458,
+ 3461, 3482, 3507, 3517, 3520, 3530, 3535, 3538, 3542, 3544,
+ 3570, 3572, 3585, 3633, 3634, 3636, 3647, 3648, 3654, 3655,
+ 3663, 3664, 3674, 3713, 3716, 3719, 3722, 3725, 3732, 3737,
+ 3745, 3749, 3751, 3754, 3757, 3761, 3762, 3764, 3771, 3773,
+ 3776, 3782, 3784, 3792, 3804, 3840, 3841, 3844, 3859, 3860,
+ 3861, 3864, 3866, 3872, 3882, 3892, 3893, 3894, 3895, 3896,
+ 3897, 3898, 3899, 3900, 3901, 3902, 3904, 3913, 3953, 3967,
+ 3968, 3973, 3974, 3976, 3981, 3993, 4030, 4038, 4039, 4046,
+ 4048, 4053, 4057, 4096, 4139, 4141, 4145, 4146, 4152, 4153,
+ 4155, 4157, 4159, 4160, 4170, 4176, 4182, 4184, 4186, 4190,
+ 4193, 4194, 4197, 4199, 4206, 4209, 4213, 4226, 4227, 4229,
+ 4231, 4237, 4238, 4239, 4240, 4250, 4253, 4254, 4256, 4295,
+ 4301, 4304, 4347, 4348, 4349, 4682, 4688, 4696, 4698, 4704,
+ 4746, 4752, 4786, 4792, 4800, 4802, 4808, 4824, 4882, 4888,
+ 4957, 4960, 4969, 4992, 5008, 5024, 5120, 5121, 5741, 5743,
+ 5760, 5761, 5787, 5788, 5792, 5867, 5870, 5888, 5902, 5906,
+ 5920, 5938, 5941, 5952, 5970, 5984, 5998, 6002, 6016, 6068,
+ 6070, 6071, 6078, 6086, 6087, 6089, 6100, 6103, 6104, 6107,
+ 6108, 6109, 6112, 6128, 6144, 6150, 6151, 6155, 6158, 6160,
+ 6176, 6211, 6212, 6272, 6313, 6314, 6320, 6400, 6432, 6435,
+ 6439, 6441, 6448, 6450, 6451, 6457, 6464, 6468, 6470, 6480,
+ 6512, 6528, 6576, 6593, 6600, 6608, 6618, 6622, 6656, 6679,
+ 6681, 6686, 6688, 6741, 6742, 6743, 6744, 6752, 6753, 6754,
+ 6755, 6757, 6765, 6771, 6783, 6784, 6800, 6816, 6823, 6824,
+ 6912, 6916, 6917, 6964, 6965, 6966, 6971, 6972, 6973, 6978,
+ 6979, 6981, 6992, 7002, 7009, 7019, 7028, 7040, 7042, 7043,
+ 7073, 7074, 7078, 7080, 7082, 7083, 7084, 7086, 7088, 7098,
+ 7142, 7143, 7144, 7146, 7149, 7150, 7151, 7154, 7164, 7168,
+ 7204, 7212, 7220, 7222, 7227, 7232, 7245, 7248, 7258, 7288,
+ 7294, 7360, 7376, 7379, 7380, 7393, 7394, 7401, 7405, 7406,
+ 7410, 7412, 7413, 7424, 7468, 7531, 7544, 7545, 7579, 7616,
+ 7676, 7680, 7830, 7838, 7936, 7944, 7952, 7960, 7968, 7976,
+ 7984, 7992, 8000, 8008, 8016, 8025, 8027, 8029, 8031, 8033,
+ 8040, 8048, 8064, 8072, 8080, 8088, 8096, 8104, 8112, 8118,
+ 8120, 8124, 8125, 8126, 8127, 8130, 8134, 8136, 8140, 8141,
+ 8144, 8150, 8152, 8157, 8160, 8168, 8173, 8178, 8182, 8184,
+ 8188, 8189, 8192, 8203, 8208, 8214, 8216, 8217, 8218, 8219,
+ 8221, 8222, 8223, 8224, 8232, 8233, 8234, 8239, 8240, 8249,
+ 8250, 8251, 8255, 8257, 8260, 8261, 8262, 8263, 8274, 8275,
+ 8276, 8277, 8287, 8288, 8298, 8304, 8305, 8308, 8314, 8317,
+ 8318, 8319, 8320, 8330, 8333, 8334, 8336, 8352, 8400, 8413,
+ 8417, 8418, 8421, 8448, 8450, 8451, 8455, 8456, 8458, 8459,
+ 8462, 8464, 8467, 8468, 8469, 8470, 8472, 8473, 8478, 8484,
+ 8485, 8486, 8487, 8488, 8489, 8490, 8494, 8495, 8496, 8500,
+ 8501, 8505, 8506, 8508, 8510, 8512, 8517, 8519, 8522, 8523,
+ 8524, 8526, 8527, 8528, 8544, 8579, 8581, 8585, 8592, 8597,
+ 8602, 8604, 8608, 8609, 8611, 8612, 8614, 8615, 8622, 8623,
+ 8654, 8656, 8658, 8659, 8660, 8661, 8692, 8960, 8968, 8972,
+ 8992, 8994, 9001, 9002, 9003, 9084, 9085, 9115, 9140, 9180,
+ 9186, 9216, 9280, 9312, 9372, 9450, 9472, 9655, 9656, 9665,
+ 9666, 9720, 9728, 9839, 9840, 9985, 10088, 10089, 10090, 10091,
+ 10092, 10093, 10094, 10095, 10096, 10097, 10098, 10099, 10100, 10101,
+ 10102, 10132, 10176, 10181, 10182, 10183, 10214, 10215, 10216, 10217,
+ 10218, 10219, 10220, 10221, 10222, 10223, 10224, 10240, 10496, 10627,
+ 10628, 10629, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637,
+ 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647,
+ 10648, 10649, 10712, 10713, 10714, 10715, 10716, 10748, 10749, 10750,
+ 11008, 11056, 11077, 11079, 11088, 11264, 11312, 11360, 11363, 11365,
+ 11367, 11374, 11377, 11378, 11380, 11381, 11383, 11388, 11390, 11393,
+ 11394, 11492, 11493, 11499, 11503, 11506, 11513, 11517, 11518, 11520,
+ 11559, 11565, 11568, 11631, 11632, 11647, 11648, 11680, 11688, 11696,
+ 11704, 11712, 11720, 11728, 11736, 11744, 11776, 11778, 11779, 11780,
+ 11781, 11782, 11785, 11786, 11787, 11788, 11789, 11790, 11799, 11800,
+ 11802, 11803, 11804, 11805, 11806, 11808, 11809, 11810, 11811, 11812,
+ 11813, 11814, 11815, 11816, 11817, 11818, 11823, 11824, 11834, 11904,
+ 11931, 12032, 12272, 12288, 12289, 12292, 12293, 12294, 12295, 12296,
+ 12297, 12298, 12299, 12300, 12301, 12302, 12303, 12304, 12305, 12306,
+ 12308, 12309, 12310, 12311, 12312, 12313, 12314, 12315, 12316, 12317,
+ 12318, 12320, 12321, 12330, 12334, 12336, 12337, 12342, 12344, 12347,
+ 12348, 12349, 12350, 12353, 12441, 12443, 12445, 12447, 12448, 12449,
+ 12539, 12540, 12543, 12549, 12593, 12688, 12690, 12694, 12704, 12736,
+ 12784, 12800, 12832, 12842, 12872, 12880, 12881, 12896, 12928, 12938,
+ 12977, 12992, 13056, 13312, 19893, 19904, 19968, 40908, 40960, 40981,
+ 40982, 42128, 42192, 42232, 42238, 42240, 42508, 42509, 42512, 42528,
+ 42538, 42560, 42606, 42607, 42608, 42611, 42612, 42622, 42623, 42624,
+ 42655, 42656, 42726, 42736, 42738, 42752, 42775, 42784, 42786, 42800,
+ 42802, 42864, 42865, 42873, 42878, 42888, 42889, 42891, 42896, 42912,
+ 43000, 43002, 43003, 43010, 43011, 43014, 43015, 43019, 43020, 43043,
+ 43045, 43047, 43048, 43056, 43062, 43064, 43065, 43072, 43124, 43136,
+ 43138, 43188, 43204, 43214, 43216, 43232, 43250, 43256, 43259, 43264,
+ 43274, 43302, 43310, 43312, 43335, 43346, 43359, 43360, 43392, 43395,
+ 43396, 43443, 43444, 43446, 43450, 43452, 43453, 43457, 43471, 43472,
+ 43486, 43520, 43561, 43567, 43569, 43571, 43573, 43584, 43587, 43588,
+ 43596, 43597, 43600, 43612, 43616, 43632, 43633, 43639, 43642, 43643,
+ 43648, 43696, 43697, 43698, 43701, 43703, 43705, 43710, 43712, 43713,
+ 43714, 43739, 43741, 43742, 43744, 43755, 43756, 43758, 43760, 43762,
+ 43763, 43765, 43766, 43777, 43785, 43793, 43808, 43816, 43968, 44003,
+ 44005, 44006, 44008, 44009, 44011, 44012, 44013, 44016, 44032, 55203,
+ 55216, 55243, 55296, 56191, 56319, 57343, 57344, 63743, 63744, 64112,
+ 64256, 64275, 64285, 64286, 64287, 64297, 64298, 64312, 64318, 64320,
+ 64323, 64326, 64434, 64467, 64830, 64831, 64848, 64914, 65008, 65020,
+ 65021, 65024, 65040, 65047, 65048, 65049, 65056, 65072, 65073, 65075,
+ 65077, 65078, 65079, 65080, 65081, 65082, 65083, 65084, 65085, 65086,
+ 65087, 65088, 65089, 65090, 65091, 65092, 65093, 65095, 65096, 65097,
+ 65101, 65104, 65108, 65112, 65113, 65114, 65115, 65116, 65117, 65118,
+ 65119, 65122, 65123, 65124, 65128, 65129, 65130, 65136, 65142, 65279,
+ 65281, 65284, 65285, 65288, 65289, 65290, 65291, 65292, 65293, 65294,
+ 65296, 65306, 65308, 65311, 65313, 65339, 65340, 65341, 65342, 65343,
+ 65344, 65345, 65371, 65372, 65373, 65374, 65375, 65376, 65377, 65378,
+ 65379, 65380, 65382, 65392, 65393, 65438, 65440, 65474, 65482, 65490,
+ 65498, 65504, 65506, 65507, 65508, 65509, 65512, 65513, 65517, 65529,
+ 65532, 0, 13, 40, 60, 63, 80, 128, 256, 263,
+ 311, 320, 373, 377, 394, 400, 464, 509, 640, 672,
+ 768, 800, 816, 833, 834, 842, 896, 927, 928, 968,
+ 976, 977, 1024, 1064, 1104, 1184, 2048, 2056, 2058, 2103,
+ 2108, 2111, 2135, 2136, 2304, 2326, 2335, 2336, 2367, 2432,
+ 2494, 2560, 2561, 2565, 2572, 2576, 2581, 2585, 2616, 2623,
+ 2624, 2640, 2656, 2685, 2687, 2816, 2873, 2880, 2904, 2912,
+ 2936, 3072, 3680, 4096, 4097, 4098, 4099, 4152, 4167, 4178,
+ 4198, 4224, 4226, 4227, 4272, 4275, 4279, 4281, 4283, 4285,
+ 4286, 4304, 4336, 4352, 4355, 4391, 4396, 4397, 4406, 4416,
+ 4480, 4482, 4483, 4531, 4534, 4543, 4545, 4549, 4560, 5760,
+ 5803, 5804, 5805, 5806, 5808, 5814, 5815, 5824, 8192, 9216,
+ 9328, 12288, 26624, 28416, 28496, 28497, 28559, 28563, 45056, 53248,
+ 53504, 53545, 53605, 53607, 53610, 53613, 53619, 53627, 53635, 53637,
+ 53644, 53674, 53678, 53760, 53826, 53829, 54016, 54112, 54272, 54298,
+ 54324, 54350, 54358, 54376, 54402, 54428, 54430, 54434, 54437, 54441,
+ 54446, 54454, 54459, 54461, 54469, 54480, 54506, 54532, 54535, 54541,
+ 54550, 54558, 54584, 54587, 54592, 54598, 54602, 54610, 54636, 54662,
+ 54688, 54714, 54740, 54766, 54792, 54818, 54844, 54870, 54896, 54922,
+ 54952, 54977, 54978, 55003, 55004, 55010, 55035, 55036, 55061, 55062,
+ 55068, 55093, 55094, 55119, 55120, 55126, 55151, 55152, 55177, 55178,
+ 55184, 55209, 55210, 55235, 55236, 55242, 55246, 60928, 60933, 60961,
+ 60964, 60967, 60969, 60980, 60985, 60987, 60994, 60999, 61001, 61003,
+ 61005, 61009, 61012, 61015, 61017, 61019, 61021, 61023, 61025, 61028,
+ 61031, 61036, 61044, 61049, 61054, 61056, 61067, 61089, 61093, 61099,
+ 61168, 61440, 61488, 61600, 61617, 61633, 61649, 61696, 61712, 61744,
+ 61808, 61926, 61968, 62016, 62032, 62208, 62256, 62263, 62336, 62368,
+ 62406, 62432, 62464, 62528, 62530, 62713, 62720, 62784, 62800, 62971,
+ 63045, 63104, 63232, 0, 42710, 42752, 46900, 46912, 47133, 63488,
+ 1, 32, 256, 0, 65533,
+ };
+static u16 aFts5UnicodeData[] = {
+ 1025, 61, 117, 55, 117, 54, 50, 53, 57, 53,
+ 49, 85, 333, 85, 121, 85, 841, 54, 53, 50,
+ 56, 48, 56, 837, 54, 57, 50, 57, 1057, 61,
+ 53, 151, 58, 53, 56, 58, 39, 52, 57, 34,
+ 58, 56, 58, 57, 79, 56, 37, 85, 56, 47,
+ 39, 51, 111, 53, 745, 57, 233, 773, 57, 261,
+ 1822, 37, 542, 37, 1534, 222, 69, 73, 37, 126,
+ 126, 73, 69, 137, 37, 73, 37, 105, 101, 73,
+ 37, 73, 37, 190, 158, 37, 126, 126, 73, 37,
+ 126, 94, 37, 39, 94, 69, 135, 41, 40, 37,
+ 41, 40, 37, 41, 40, 37, 542, 37, 606, 37,
+ 41, 40, 37, 126, 73, 37, 1886, 197, 73, 37,
+ 73, 69, 126, 105, 37, 286, 2181, 39, 869, 582,
+ 152, 390, 472, 166, 248, 38, 56, 38, 568, 3596,
+ 158, 38, 56, 94, 38, 101, 53, 88, 41, 53,
+ 105, 41, 73, 37, 553, 297, 1125, 94, 37, 105,
+ 101, 798, 133, 94, 57, 126, 94, 37, 1641, 1541,
+ 1118, 58, 172, 75, 1790, 478, 37, 2846, 1225, 38,
+ 213, 1253, 53, 49, 55, 1452, 49, 44, 53, 76,
+ 53, 76, 53, 44, 871, 103, 85, 162, 121, 85,
+ 55, 85, 90, 364, 53, 85, 1031, 38, 327, 684,
+ 333, 149, 71, 44, 3175, 53, 39, 236, 34, 58,
+ 204, 70, 76, 58, 140, 71, 333, 103, 90, 39,
+ 469, 34, 39, 44, 967, 876, 2855, 364, 39, 333,
+ 1063, 300, 70, 58, 117, 38, 711, 140, 38, 300,
+ 38, 108, 38, 172, 501, 807, 108, 53, 39, 359,
+ 876, 108, 42, 1735, 44, 42, 44, 39, 106, 268,
+ 138, 44, 74, 39, 236, 327, 76, 85, 333, 53,
+ 38, 199, 231, 44, 74, 263, 71, 711, 231, 39,
+ 135, 44, 39, 106, 140, 74, 74, 44, 39, 42,
+ 71, 103, 76, 333, 71, 87, 207, 58, 55, 76,
+ 42, 199, 71, 711, 231, 71, 71, 71, 44, 106,
+ 76, 76, 108, 44, 135, 39, 333, 76, 103, 44,
+ 76, 42, 295, 103, 711, 231, 71, 167, 44, 39,
+ 106, 172, 76, 42, 74, 44, 39, 71, 76, 333,
+ 53, 55, 44, 74, 263, 71, 711, 231, 71, 167,
+ 44, 39, 42, 44, 42, 140, 74, 74, 44, 44,
+ 42, 71, 103, 76, 333, 58, 39, 207, 44, 39,
+ 199, 103, 135, 71, 39, 71, 71, 103, 391, 74,
+ 44, 74, 106, 106, 44, 39, 42, 333, 111, 218,
+ 55, 58, 106, 263, 103, 743, 327, 167, 39, 108,
+ 138, 108, 140, 76, 71, 71, 76, 333, 239, 58,
+ 74, 263, 103, 743, 327, 167, 44, 39, 42, 44,
+ 170, 44, 74, 74, 76, 74, 39, 71, 76, 333,
+ 71, 74, 263, 103, 1319, 39, 106, 140, 106, 106,
+ 44, 39, 42, 71, 76, 333, 207, 58, 199, 74,
+ 583, 775, 295, 39, 231, 44, 106, 108, 44, 266,
+ 74, 53, 1543, 44, 71, 236, 55, 199, 38, 268,
+ 53, 333, 85, 71, 39, 71, 39, 39, 135, 231,
+ 103, 39, 39, 71, 135, 44, 71, 204, 76, 39,
+ 167, 38, 204, 333, 135, 39, 122, 501, 58, 53,
+ 122, 76, 218, 333, 335, 58, 44, 58, 44, 58,
+ 44, 54, 50, 54, 50, 74, 263, 1159, 460, 42,
+ 172, 53, 76, 167, 364, 1164, 282, 44, 218, 90,
+ 181, 154, 85, 1383, 74, 140, 42, 204, 42, 76,
+ 74, 76, 39, 333, 213, 199, 74, 76, 135, 108,
+ 39, 106, 71, 234, 103, 140, 423, 44, 74, 76,
+ 202, 44, 39, 42, 333, 106, 44, 90, 1225, 41,
+ 41, 1383, 53, 38, 10631, 135, 231, 39, 135, 1319,
+ 135, 1063, 135, 231, 39, 135, 487, 1831, 135, 2151,
+ 108, 309, 655, 519, 346, 2727, 49, 19847, 85, 551,
+ 61, 839, 54, 50, 2407, 117, 110, 423, 135, 108,
+ 583, 108, 85, 583, 76, 423, 103, 76, 1671, 76,
+ 42, 236, 266, 44, 74, 364, 117, 38, 117, 55,
+ 39, 44, 333, 335, 213, 49, 149, 108, 61, 333,
+ 1127, 38, 1671, 1319, 44, 39, 2247, 935, 108, 138,
+ 76, 106, 74, 44, 202, 108, 58, 85, 333, 967,
+ 167, 1415, 554, 231, 74, 333, 47, 1114, 743, 76,
+ 106, 85, 1703, 42, 44, 42, 236, 44, 42, 44,
+ 74, 268, 202, 332, 44, 333, 333, 245, 38, 213,
+ 140, 42, 1511, 44, 42, 172, 42, 44, 170, 44,
+ 74, 231, 333, 245, 346, 300, 314, 76, 42, 967,
+ 42, 140, 74, 76, 42, 44, 74, 71, 333, 1415,
+ 44, 42, 76, 106, 44, 42, 108, 74, 149, 1159,
+ 266, 268, 74, 76, 181, 333, 103, 333, 967, 198,
+ 85, 277, 108, 53, 428, 42, 236, 135, 44, 135,
+ 74, 44, 71, 1413, 2022, 421, 38, 1093, 1190, 1260,
+ 140, 4830, 261, 3166, 261, 265, 197, 201, 261, 265,
+ 261, 265, 197, 201, 261, 41, 41, 41, 94, 229,
+ 265, 453, 261, 264, 261, 264, 261, 264, 165, 69,
+ 137, 40, 56, 37, 120, 101, 69, 137, 40, 120,
+ 133, 69, 137, 120, 261, 169, 120, 101, 69, 137,
+ 40, 88, 381, 162, 209, 85, 52, 51, 54, 84,
+ 51, 54, 52, 277, 59, 60, 162, 61, 309, 52,
+ 51, 149, 80, 117, 57, 54, 50, 373, 57, 53,
+ 48, 341, 61, 162, 194, 47, 38, 207, 121, 54,
+ 50, 38, 335, 121, 54, 50, 422, 855, 428, 139,
+ 44, 107, 396, 90, 41, 154, 41, 90, 37, 105,
+ 69, 105, 37, 58, 41, 90, 57, 169, 218, 41,
+ 58, 41, 58, 41, 58, 137, 58, 37, 137, 37,
+ 135, 37, 90, 69, 73, 185, 94, 101, 58, 57,
+ 90, 37, 58, 527, 1134, 94, 142, 47, 185, 186,
+ 89, 154, 57, 90, 57, 90, 57, 250, 57, 1018,
+ 89, 90, 57, 58, 57, 1018, 8601, 282, 153, 666,
+ 89, 250, 54, 50, 2618, 57, 986, 825, 1306, 217,
+ 602, 1274, 378, 1935, 2522, 719, 5882, 57, 314, 57,
+ 1754, 281, 3578, 57, 4634, 3322, 54, 50, 54, 50,
+ 54, 50, 54, 50, 54, 50, 54, 50, 54, 50,
+ 975, 1434, 185, 54, 50, 1017, 54, 50, 54, 50,
+ 54, 50, 54, 50, 54, 50, 537, 8218, 4217, 54,
+ 50, 54, 50, 54, 50, 54, 50, 54, 50, 54,
+ 50, 54, 50, 54, 50, 54, 50, 54, 50, 54,
+ 50, 2041, 54, 50, 54, 50, 1049, 54, 50, 8281,
+ 1562, 697, 90, 217, 346, 1513, 1509, 126, 73, 69,
+ 254, 105, 37, 94, 37, 94, 165, 70, 105, 37,
+ 3166, 37, 218, 158, 108, 94, 149, 47, 85, 1221,
+ 37, 37, 1799, 38, 53, 44, 743, 231, 231, 231,
+ 231, 231, 231, 231, 231, 1036, 85, 52, 51, 52,
+ 51, 117, 52, 51, 53, 52, 51, 309, 49, 85,
+ 49, 53, 52, 51, 85, 52, 51, 54, 50, 54,
+ 50, 54, 50, 54, 50, 181, 38, 341, 81, 858,
+ 2874, 6874, 410, 61, 117, 58, 38, 39, 46, 54,
+ 50, 54, 50, 54, 50, 54, 50, 54, 50, 90,
+ 54, 50, 54, 50, 54, 50, 54, 50, 49, 54,
+ 82, 58, 302, 140, 74, 49, 166, 90, 110, 38,
+ 39, 53, 90, 2759, 76, 88, 70, 39, 49, 2887,
+ 53, 102, 39, 1319, 3015, 90, 143, 346, 871, 1178,
+ 519, 1018, 335, 986, 271, 58, 495, 1050, 335, 1274,
+ 495, 2042, 8218, 39, 39, 2074, 39, 39, 679, 38,
+ 36583, 1786, 1287, 198, 85, 8583, 38, 117, 519, 333,
+ 71, 1502, 39, 44, 107, 53, 332, 53, 38, 798,
+ 44, 2247, 334, 76, 213, 760, 294, 88, 478, 69,
+ 2014, 38, 261, 190, 350, 38, 88, 158, 158, 382,
+ 70, 37, 231, 44, 103, 44, 135, 44, 743, 74,
+ 76, 42, 154, 207, 90, 55, 58, 1671, 149, 74,
+ 1607, 522, 44, 85, 333, 588, 199, 117, 39, 333,
+ 903, 268, 85, 743, 364, 74, 53, 935, 108, 42,
+ 1511, 44, 74, 140, 74, 44, 138, 437, 38, 333,
+ 85, 1319, 204, 74, 76, 74, 76, 103, 44, 263,
+ 44, 42, 333, 149, 519, 38, 199, 122, 39, 42,
+ 1543, 44, 39, 108, 71, 76, 167, 76, 39, 44,
+ 39, 71, 38, 85, 359, 42, 76, 74, 85, 39,
+ 70, 42, 44, 199, 199, 199, 231, 231, 1127, 74,
+ 44, 74, 44, 74, 53, 42, 44, 333, 39, 39,
+ 743, 1575, 36, 68, 68, 36, 63, 63, 11719, 3399,
+ 229, 165, 39, 44, 327, 57, 423, 167, 39, 71,
+ 71, 3463, 536, 11623, 54, 50, 2055, 1735, 391, 55,
+ 58, 524, 245, 54, 50, 53, 236, 53, 81, 80,
+ 54, 50, 54, 50, 54, 50, 54, 50, 54, 50,
+ 54, 50, 54, 50, 54, 50, 85, 54, 50, 149,
+ 112, 117, 149, 49, 54, 50, 54, 50, 54, 50,
+ 117, 57, 49, 121, 53, 55, 85, 167, 4327, 34,
+ 117, 55, 117, 54, 50, 53, 57, 53, 49, 85,
+ 333, 85, 121, 85, 841, 54, 53, 50, 56, 48,
+ 56, 837, 54, 57, 50, 57, 54, 50, 53, 54,
+ 50, 85, 327, 38, 1447, 70, 999, 199, 199, 199,
+ 103, 87, 57, 56, 58, 87, 58, 153, 90, 98,
+ 90, 391, 839, 615, 71, 487, 455, 3943, 117, 1455,
+ 314, 1710, 143, 570, 47, 410, 1466, 44, 935, 1575,
+ 999, 143, 551, 46, 263, 46, 967, 53, 1159, 263,
+ 53, 174, 1289, 1285, 2503, 333, 199, 39, 1415, 71,
+ 39, 743, 53, 271, 711, 207, 53, 839, 53, 1799,
+ 71, 39, 108, 76, 140, 135, 103, 871, 108, 44,
+ 271, 309, 935, 79, 53, 1735, 245, 711, 271, 615,
+ 271, 2343, 1007, 42, 44, 42, 1703, 492, 245, 655,
+ 333, 76, 42, 1447, 106, 140, 74, 76, 85, 34,
+ 149, 807, 333, 108, 1159, 172, 42, 268, 333, 149,
+ 76, 42, 1543, 106, 300, 74, 135, 149, 333, 1383,
+ 44, 42, 44, 74, 204, 42, 44, 333, 28135, 3182,
+ 149, 34279, 18215, 2215, 39, 1482, 140, 422, 71, 7898,
+ 1274, 1946, 74, 108, 122, 202, 258, 268, 90, 236,
+ 986, 140, 1562, 2138, 108, 58, 2810, 591, 841, 837,
+ 841, 229, 581, 841, 837, 41, 73, 41, 73, 137,
+ 265, 133, 37, 229, 357, 841, 837, 73, 137, 265,
+ 233, 837, 73, 137, 169, 41, 233, 837, 841, 837,
+ 841, 837, 841, 837, 841, 837, 841, 837, 841, 901,
+ 809, 57, 805, 57, 197, 809, 57, 805, 57, 197,
+ 809, 57, 805, 57, 197, 809, 57, 805, 57, 197,
+ 809, 57, 805, 57, 197, 94, 1613, 135, 871, 71,
+ 39, 39, 327, 135, 39, 39, 39, 39, 39, 39,
+ 103, 71, 39, 39, 39, 39, 39, 39, 71, 39,
+ 135, 231, 135, 135, 39, 327, 551, 103, 167, 551,
+ 89, 1434, 3226, 506, 474, 506, 506, 367, 1018, 1946,
+ 1402, 954, 1402, 314, 90, 1082, 218, 2266, 666, 1210,
+ 186, 570, 2042, 58, 5850, 154, 2010, 154, 794, 2266,
+ 378, 2266, 3738, 39, 39, 39, 39, 39, 39, 17351,
+ 34, 3074, 7692, 63, 63,
+ };
+
+static int sqlite3Fts5UnicodeCategory(u32 iCode) {
+ int iRes = -1;
+ int iHi;
+ int iLo;
+ int ret;
+ u16 iKey;
+
+ if( iCode>=(1<<20) ){
+ return 0;
+ }
+ iLo = aFts5UnicodeBlock[(iCode>>16)];
+ iHi = aFts5UnicodeBlock[1+(iCode>>16)];
+ iKey = (iCode & 0xFFFF);
+ while( iHi>iLo ){
+ int iTest = (iHi + iLo) / 2;
+ assert( iTest>=iLo && iTest<iHi );
+ if( iKey>=aFts5UnicodeMap[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest;
+ }
+ }
+
+ if( iRes<0 ) return 0;
+ if( iKey>=(aFts5UnicodeMap[iRes]+(aFts5UnicodeData[iRes]>>5)) ) return 0;
+ ret = aFts5UnicodeData[iRes] & 0x1F;
+ if( ret!=30 ) return ret;
+ return ((iKey - aFts5UnicodeMap[iRes]) & 0x01) ? 5 : 9;
+}
+
+static void sqlite3Fts5UnicodeAscii(u8 *aArray, u8 *aAscii){
+ int i = 0;
+ int iTbl = 0;
+ while( i<128 ){
+ int bToken = aArray[ aFts5UnicodeData[iTbl] & 0x1F ];
+ int n = (aFts5UnicodeData[iTbl] >> 5) + i;
+ for(; i<128 && i<n; i++){
+ aAscii[i] = (u8)bToken;
+ }
+ iTbl++;
+ }
+ aAscii[0] = 0; /* 0x00 is never a token character */
+}
+
+
+/*
+** 2015 May 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Routines for varint serialization and deserialization.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
+** Except, this version does handle the single byte case that the core
+** version depends on being handled before its function is called.
+*/
+static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){
+ u32 a,b;
+
+ /* The 1-byte case. Overwhelmingly the most common. */
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 0 and 127 */
+ *v = a;
+ return 1;
+ }
+
+ /* The 2-byte case */
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 128 and 16383 */
+ a &= 0x7f;
+ a = a<<7;
+ *v = a | b;
+ return 2;
+ }
+
+ /* The 3-byte case */
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 16384 and 2097151 */
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ *v = a | b;
+ return 3;
+ }
+
+ /* A 32-bit varint is used to store size information in btrees.
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
+ ** A 3-byte varint is sufficient, for example, to record the size
+ ** of a 1048569-byte BLOB or string.
+ **
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very
+ ** rare larger cases can be handled by the slower 64-bit varint
+ ** routine.
+ */
+ {
+ u64 v64;
+ u8 n;
+ p -= 2;
+ n = sqlite3Fts5GetVarint(p, &v64);
+ *v = ((u32)v64) & 0x7FFFFFFF;
+ assert( n>3 && n<=9 );
+ return n;
+ }
+}
+
+
+/*
+** Bitmasks used by sqlite3GetVarint(). These precomputed constants
+** are defined here rather than simply putting the constant expressions
+** inline in order to work around bugs in the RVT compiler.
+**
+** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
+**
+** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
+*/
+#define SLOT_2_0 0x001fc07f
+#define SLOT_4_2_0 0xf01fc07f
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+*/
+static u8 sqlite3Fts5GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ *v = a;
+ return 1;
+ }
+
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ a &= 0x7f;
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 2;
+ }
+
+ /* Verify that constants are precomputed correctly */
+ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
+ assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_2_0;
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
+ return 3;
+ }
+
+ /* CSE1 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_2_0;
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 4;
+ }
+
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ b &= SLOT_2_0;
+ s = a;
+ /* s: p0<<14 | p2 (masked) */
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above in calc'ing s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ a &= SLOT_2_0;
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_4_2_0;
+ b &= SLOT_2_0;
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_4_2_0;
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
+
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
+ b &= SLOT_2_0;
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
+}
+
+/*
+** The variable-length integer encoding is as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+** C = xxxxxxxx 8 bits of data
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** 28 bits - BBBA
+** 35 bits - BBBBA
+** 42 bits - BBBBBA
+** 49 bits - BBBBBBA
+** 56 bits - BBBBBBBA
+** 64 bits - BBBBBBBBC
+*/
+
+#ifdef SQLITE_NOINLINE
+# define FTS5_NOINLINE SQLITE_NOINLINE
+#else
+# define FTS5_NOINLINE
+#endif
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data write will be between 1 and 9 bytes. The number
+** of bytes written is returned.
+**
+** A variable-length integer consists of the lower 7 bits of each byte
+** for all bytes that have the 8th bit set and one byte with the 8th
+** bit clear. Except, if we get to the 9th byte, it stores the full
+** 8 bits and is the last byte.
+*/
+static int FTS5_NOINLINE fts5PutVarint64(unsigned char *p, u64 v){
+ int i, j, n;
+ u8 buf[10];
+ if( v & (((u64)0xff000000)<<32) ){
+ p[8] = (u8)v;
+ v >>= 8;
+ for(i=7; i>=0; i--){
+ p[i] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }
+ return 9;
+ }
+ n = 0;
+ do{
+ buf[n++] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }while( v!=0 );
+ buf[0] &= 0x7f;
+ assert( n<=9 );
+ for(i=0, j=n-1; j>=0; j--, i++){
+ p[i] = buf[j];
+ }
+ return n;
+}
+
+static int sqlite3Fts5PutVarint(unsigned char *p, u64 v){
+ if( v<=0x7f ){
+ p[0] = v&0x7f;
+ return 1;
+ }
+ if( v<=0x3fff ){
+ p[0] = ((v>>7)&0x7f)|0x80;
+ p[1] = v&0x7f;
+ return 2;
+ }
+ return fts5PutVarint64(p,v);
+}
+
+
+static int sqlite3Fts5GetVarintLen(u32 iVal){
+#if 0
+ if( iVal<(1 << 7 ) ) return 1;
+#endif
+ assert( iVal>=(1 << 7) );
+ if( iVal<(1 << 14) ) return 2;
+ if( iVal<(1 << 21) ) return 3;
+ if( iVal<(1 << 28) ) return 4;
+ return 5;
+}
+
+/*
+** 2015 May 08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite virtual table module implementing direct access to an
+** existing FTS5 index. The module may create several different types of
+** tables:
+**
+** col:
+** CREATE TABLE vocab(term, col, doc, cnt, PRIMARY KEY(term, col));
+**
+** One row for each term/column combination. The value of $doc is set to
+** the number of fts5 rows that contain at least one instance of term
+** $term within column $col. Field $cnt is set to the total number of
+** instances of term $term in column $col (in any row of the fts5 table).
+**
+** row:
+** CREATE TABLE vocab(term, doc, cnt, PRIMARY KEY(term));
+**
+** One row for each term in the database. The value of $doc is set to
+** the number of fts5 rows that contain at least one instance of term
+** $term. Field $cnt is set to the total number of instances of term
+** $term in the database.
+**
+** instance:
+** CREATE TABLE vocab(term, doc, col, offset, PRIMARY KEY(<all-fields>));
+**
+** One row for each term instance in the database.
+*/
+
+
+/* #include "fts5Int.h" */
+
+
+typedef struct Fts5VocabTable Fts5VocabTable;
+typedef struct Fts5VocabCursor Fts5VocabCursor;
+
+struct Fts5VocabTable {
+ sqlite3_vtab base;
+ char *zFts5Tbl; /* Name of fts5 table */
+ char *zFts5Db; /* Db containing fts5 table */
+ sqlite3 *db; /* Database handle */
+ Fts5Global *pGlobal; /* FTS5 global object for this database */
+ int eType; /* FTS5_VOCAB_COL, ROW or INSTANCE */
+ unsigned bBusy; /* True if busy */
+};
+
+struct Fts5VocabCursor {
+ sqlite3_vtab_cursor base;
+ sqlite3_stmt *pStmt; /* Statement holding lock on pIndex */
+ Fts5Table *pFts5; /* Associated FTS5 table */
+
+ int bEof; /* True if this cursor is at EOF */
+ Fts5IndexIter *pIter; /* Term/rowid iterator object */
+ void *pStruct; /* From sqlite3Fts5StructureRef() */
+
+ int nLeTerm; /* Size of zLeTerm in bytes */
+ char *zLeTerm; /* (term <= $zLeTerm) paramater, or NULL */
+
+ /* These are used by 'col' tables only */
+ int iCol;
+ i64 *aCnt;
+ i64 *aDoc;
+
+ /* Output values used by all tables. */
+ i64 rowid; /* This table's current rowid value */
+ Fts5Buffer term; /* Current value of 'term' column */
+
+ /* Output values Used by 'instance' tables only */
+ i64 iInstPos;
+ int iInstOff;
+};
+
+#define FTS5_VOCAB_COL 0
+#define FTS5_VOCAB_ROW 1
+#define FTS5_VOCAB_INSTANCE 2
+
+#define FTS5_VOCAB_COL_SCHEMA "term, col, doc, cnt"
+#define FTS5_VOCAB_ROW_SCHEMA "term, doc, cnt"
+#define FTS5_VOCAB_INST_SCHEMA "term, doc, col, offset"
+
+/*
+** Bits for the mask used as the idxNum value by xBestIndex/xFilter.
+*/
+#define FTS5_VOCAB_TERM_EQ 0x01
+#define FTS5_VOCAB_TERM_GE 0x02
+#define FTS5_VOCAB_TERM_LE 0x04
+
+
+/*
+** Translate a string containing an fts5vocab table type to an
+** FTS5_VOCAB_XXX constant. If successful, set *peType to the output
+** value and return SQLITE_OK. Otherwise, set *pzErr to an error message
+** and return SQLITE_ERROR.
+*/
+static int fts5VocabTableType(const char *zType, char **pzErr, int *peType){
+ int rc = SQLITE_OK;
+ char *zCopy = sqlite3Fts5Strndup(&rc, zType, -1);
+ if( rc==SQLITE_OK ){
+ sqlite3Fts5Dequote(zCopy);
+ if( sqlite3_stricmp(zCopy, "col")==0 ){
+ *peType = FTS5_VOCAB_COL;
+ }else
+
+ if( sqlite3_stricmp(zCopy, "row")==0 ){
+ *peType = FTS5_VOCAB_ROW;
+ }else
+ if( sqlite3_stricmp(zCopy, "instance")==0 ){
+ *peType = FTS5_VOCAB_INSTANCE;
+ }else
+ {
+ *pzErr = sqlite3_mprintf("fts5vocab: unknown table type: %Q", zCopy);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3_free(zCopy);
+ }
+
+ return rc;
+}
+
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts5VocabDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts5VocabDestroyMethod(sqlite3_vtab *pVtab){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts5vocab")
+** argv[1] -> database name
+** argv[2] -> table name
+**
+** then:
+**
+** argv[3] -> name of fts5 table
+** argv[4] -> type of fts5vocab table
+**
+** or, for tables in the TEMP schema only.
+**
+** argv[3] -> name of fts5 tables database
+** argv[4] -> name of fts5 table
+** argv[5] -> type of fts5vocab table
+*/
+static int fts5VocabInitVtab(
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Pointer to Fts5Global object */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ const char *azSchema[] = {
+ "CREATE TABlE vocab(" FTS5_VOCAB_COL_SCHEMA ")",
+ "CREATE TABlE vocab(" FTS5_VOCAB_ROW_SCHEMA ")",
+ "CREATE TABlE vocab(" FTS5_VOCAB_INST_SCHEMA ")"
+ };
+
+ Fts5VocabTable *pRet = 0;
+ int rc = SQLITE_OK; /* Return code */
+ int bDb;
+
+ bDb = (argc==6 && strlen(argv[1])==4 && memcmp("temp", argv[1], 4)==0);
+
+ if( argc!=5 && bDb==0 ){
+ *pzErr = sqlite3_mprintf("wrong number of vtable arguments");
+ rc = SQLITE_ERROR;
+ }else{
+ int nByte; /* Bytes of space to allocate */
+ const char *zDb = bDb ? argv[3] : argv[1];
+ const char *zTab = bDb ? argv[4] : argv[3];
+ const char *zType = bDb ? argv[5] : argv[4];
+ int nDb = (int)strlen(zDb)+1;
+ int nTab = (int)strlen(zTab)+1;
+ int eType = 0;
+
+ rc = fts5VocabTableType(zType, pzErr, &eType);
+ if( rc==SQLITE_OK ){
+ assert( eType>=0 && eType<ArraySize(azSchema) );
+ rc = sqlite3_declare_vtab(db, azSchema[eType]);
+ }
+
+ nByte = sizeof(Fts5VocabTable) + nDb + nTab;
+ pRet = sqlite3Fts5MallocZero(&rc, nByte);
+ if( pRet ){
+ pRet->pGlobal = (Fts5Global*)pAux;
+ pRet->eType = eType;
+ pRet->db = db;
+ pRet->zFts5Tbl = (char*)&pRet[1];
+ pRet->zFts5Db = &pRet->zFts5Tbl[nTab];
+ memcpy(pRet->zFts5Tbl, zTab, nTab);
+ memcpy(pRet->zFts5Db, zDb, nDb);
+ sqlite3Fts5Dequote(pRet->zFts5Tbl);
+ sqlite3Fts5Dequote(pRet->zFts5Db);
+ }
+ }
+
+ *ppVTab = (sqlite3_vtab*)pRet;
+ return rc;
+}
+
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts5VocabInitVtab().
+*/
+static int fts5VocabConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts5VocabCreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** Implementation of the xBestIndex method.
+**
+** Only constraints of the form:
+**
+** term <= ?
+** term == ?
+** term >= ?
+**
+** are interpreted. Less-than and less-than-or-equal are treated
+** identically, as are greater-than and greater-than-or-equal.
+*/
+static int fts5VocabBestIndexMethod(
+ sqlite3_vtab *pUnused,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ int iTermEq = -1;
+ int iTermGe = -1;
+ int iTermLe = -1;
+ int idxNum = 0;
+ int nArg = 0;
+
+ UNUSED_PARAM(pUnused);
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ if( p->usable==0 ) continue;
+ if( p->iColumn==0 ){ /* term column */
+ if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_LT ) iTermLe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_GE ) iTermGe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_GT ) iTermGe = i;
+ }
+ }
+
+ if( iTermEq>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_EQ;
+ pInfo->aConstraintUsage[iTermEq].argvIndex = ++nArg;
+ pInfo->estimatedCost = 100;
+ }else{
+ pInfo->estimatedCost = 1000000;
+ if( iTermGe>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_GE;
+ pInfo->aConstraintUsage[iTermGe].argvIndex = ++nArg;
+ pInfo->estimatedCost = pInfo->estimatedCost / 2;
+ }
+ if( iTermLe>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_LE;
+ pInfo->aConstraintUsage[iTermLe].argvIndex = ++nArg;
+ pInfo->estimatedCost = pInfo->estimatedCost / 2;
+ }
+ }
+
+ /* This virtual table always delivers results in ascending order of
+ ** the "term" column (column 0). So if the user has requested this
+ ** specifically - "ORDER BY term" or "ORDER BY term ASC" - set the
+ ** sqlite3_index_info.orderByConsumed flag to tell the core the results
+ ** are already in sorted order. */
+ if( pInfo->nOrderBy==1
+ && pInfo->aOrderBy[0].iColumn==0
+ && pInfo->aOrderBy[0].desc==0
+ ){
+ pInfo->orderByConsumed = 1;
+ }
+
+ pInfo->idxNum = idxNum;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts5VocabOpenMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_vtab_cursor **ppCsr
+){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVTab;
+ Fts5Table *pFts5 = 0;
+ Fts5VocabCursor *pCsr = 0;
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt = 0;
+ char *zSql = 0;
+
+ if( pTab->bBusy ){
+ pVTab->zErrMsg = sqlite3_mprintf(
+ "recursive definition for %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
+ );
+ return SQLITE_ERROR;
+ }
+ zSql = sqlite3Fts5Mprintf(&rc,
+ "SELECT t.%Q FROM %Q.%Q AS t WHERE t.%Q MATCH '*id'",
+ pTab->zFts5Tbl, pTab->zFts5Db, pTab->zFts5Tbl, pTab->zFts5Tbl
+ );
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
+ }
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ if( rc==SQLITE_ERROR ) rc = SQLITE_OK;
+
+ pTab->bBusy = 1;
+ if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
+ i64 iId = sqlite3_column_int64(pStmt, 0);
+ pFts5 = sqlite3Fts5TableFromCsrid(pTab->pGlobal, iId);
+ }
+ pTab->bBusy = 0;
+
+ if( rc==SQLITE_OK ){
+ if( pFts5==0 ){
+ rc = sqlite3_finalize(pStmt);
+ pStmt = 0;
+ if( rc==SQLITE_OK ){
+ pVTab->zErrMsg = sqlite3_mprintf(
+ "no such fts5 table: %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
+ );
+ rc = SQLITE_ERROR;
+ }
+ }else{
+ rc = sqlite3Fts5FlushToDisk(pFts5);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ i64 nByte = pFts5->pConfig->nCol * sizeof(i64)*2 + sizeof(Fts5VocabCursor);
+ pCsr = (Fts5VocabCursor*)sqlite3Fts5MallocZero(&rc, nByte);
+ }
+
+ if( pCsr ){
+ pCsr->pFts5 = pFts5;
+ pCsr->pStmt = pStmt;
+ pCsr->aCnt = (i64*)&pCsr[1];
+ pCsr->aDoc = &pCsr->aCnt[pFts5->pConfig->nCol];
+ }else{
+ sqlite3_finalize(pStmt);
+ }
+
+ *ppCsr = (sqlite3_vtab_cursor*)pCsr;
+ return rc;
+}
+
+static void fts5VocabResetCursor(Fts5VocabCursor *pCsr){
+ pCsr->rowid = 0;
+ sqlite3Fts5IterClose(pCsr->pIter);
+ sqlite3Fts5StructureRelease(pCsr->pStruct);
+ pCsr->pStruct = 0;
+ pCsr->pIter = 0;
+ sqlite3_free(pCsr->zLeTerm);
+ pCsr->nLeTerm = -1;
+ pCsr->zLeTerm = 0;
+ pCsr->bEof = 0;
+}
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts5VocabCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ fts5VocabResetCursor(pCsr);
+ sqlite3Fts5BufferFree(&pCsr->term);
+ sqlite3_finalize(pCsr->pStmt);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+static int fts5VocabInstanceNewTerm(Fts5VocabCursor *pCsr){
+ int rc = SQLITE_OK;
+
+ if( sqlite3Fts5IterEof(pCsr->pIter) ){
+ pCsr->bEof = 1;
+ }else{
+ const char *zTerm;
+ int nTerm;
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ if( pCsr->nLeTerm>=0 ){
+ int nCmp = MIN(nTerm, pCsr->nLeTerm);
+ int bCmp = memcmp(pCsr->zLeTerm, zTerm, nCmp);
+ if( bCmp<0 || (bCmp==0 && pCsr->nLeTerm<nTerm) ){
+ pCsr->bEof = 1;
+ }
+ }
+
+ sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
+ }
+ return rc;
+}
+
+static int fts5VocabInstanceNext(Fts5VocabCursor *pCsr){
+ int eDetail = pCsr->pFts5->pConfig->eDetail;
+ int rc = SQLITE_OK;
+ Fts5IndexIter *pIter = pCsr->pIter;
+ i64 *pp = &pCsr->iInstPos;
+ int *po = &pCsr->iInstOff;
+
+ assert( sqlite3Fts5IterEof(pIter)==0 );
+ assert( pCsr->bEof==0 );
+ while( eDetail==FTS5_DETAIL_NONE
+ || sqlite3Fts5PoslistNext64(pIter->pData, pIter->nData, po, pp)
+ ){
+ pCsr->iInstPos = 0;
+ pCsr->iInstOff = 0;
+
+ rc = sqlite3Fts5IterNextScan(pCsr->pIter);
+ if( rc==SQLITE_OK ){
+ rc = fts5VocabInstanceNewTerm(pCsr);
+ if( pCsr->bEof || eDetail==FTS5_DETAIL_NONE ) break;
+ }
+ if( rc ){
+ pCsr->bEof = 1;
+ break;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Advance the cursor to the next row in the table.
+*/
+static int fts5VocabNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
+ int nCol = pCsr->pFts5->pConfig->nCol;
+ int rc;
+
+ rc = sqlite3Fts5StructureTest(pCsr->pFts5->pIndex, pCsr->pStruct);
+ if( rc!=SQLITE_OK ) return rc;
+ pCsr->rowid++;
+
+ if( pTab->eType==FTS5_VOCAB_INSTANCE ){
+ return fts5VocabInstanceNext(pCsr);
+ }
+
+ if( pTab->eType==FTS5_VOCAB_COL ){
+ for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
+ if( pCsr->aDoc[pCsr->iCol] ) break;
+ }
+ }
+
+ if( pTab->eType!=FTS5_VOCAB_COL || pCsr->iCol>=nCol ){
+ if( sqlite3Fts5IterEof(pCsr->pIter) ){
+ pCsr->bEof = 1;
+ }else{
+ const char *zTerm;
+ int nTerm;
+
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ assert( nTerm>=0 );
+ if( pCsr->nLeTerm>=0 ){
+ int nCmp = MIN(nTerm, pCsr->nLeTerm);
+ int bCmp = memcmp(pCsr->zLeTerm, zTerm, nCmp);
+ if( bCmp<0 || (bCmp==0 && pCsr->nLeTerm<nTerm) ){
+ pCsr->bEof = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
+ memset(pCsr->aCnt, 0, nCol * sizeof(i64));
+ memset(pCsr->aDoc, 0, nCol * sizeof(i64));
+ pCsr->iCol = 0;
+
+ assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
+ while( rc==SQLITE_OK ){
+ int eDetail = pCsr->pFts5->pConfig->eDetail;
+ const u8 *pPos; int nPos; /* Position list */
+ i64 iPos = 0; /* 64-bit position read from poslist */
+ int iOff = 0; /* Current offset within position list */
+
+ pPos = pCsr->pIter->pData;
+ nPos = pCsr->pIter->nData;
+
+ switch( pTab->eType ){
+ case FTS5_VOCAB_ROW:
+ if( eDetail==FTS5_DETAIL_FULL ){
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
+ pCsr->aCnt[0]++;
+ }
+ }
+ pCsr->aDoc[0]++;
+ break;
+
+ case FTS5_VOCAB_COL:
+ if( eDetail==FTS5_DETAIL_FULL ){
+ int iCol = -1;
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
+ int ii = FTS5_POS2COLUMN(iPos);
+ if( iCol!=ii ){
+ if( ii>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ pCsr->aDoc[ii]++;
+ iCol = ii;
+ }
+ pCsr->aCnt[ii]++;
+ }
+ }else if( eDetail==FTS5_DETAIL_COLUMNS ){
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff,&iPos) ){
+ assert_nc( iPos>=0 && iPos<nCol );
+ if( iPos>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ pCsr->aDoc[iPos]++;
+ }
+ }else{
+ assert( eDetail==FTS5_DETAIL_NONE );
+ pCsr->aDoc[0]++;
+ }
+ break;
+
+ default:
+ assert( pTab->eType==FTS5_VOCAB_INSTANCE );
+ break;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IterNextScan(pCsr->pIter);
+ }
+ if( pTab->eType==FTS5_VOCAB_INSTANCE ) break;
+
+ if( rc==SQLITE_OK ){
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ if( nTerm!=pCsr->term.n
+ || (nTerm>0 && memcmp(zTerm, pCsr->term.p, nTerm))
+ ){
+ break;
+ }
+ if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK && pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
+ for(/* noop */; pCsr->iCol<nCol && pCsr->aDoc[pCsr->iCol]==0; pCsr->iCol++);
+ if( pCsr->iCol==nCol ){
+ rc = FTS5_CORRUPT;
+ }
+ }
+ return rc;
+}
+
+/*
+** This is the xFilter implementation for the virtual table.
+*/
+static int fts5VocabFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *zUnused, /* Unused */
+ int nUnused, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ int eType = pTab->eType;
+ int rc = SQLITE_OK;
+
+ int iVal = 0;
+ int f = FTS5INDEX_QUERY_SCAN;
+ const char *zTerm = 0;
+ int nTerm = 0;
+
+ sqlite3_value *pEq = 0;
+ sqlite3_value *pGe = 0;
+ sqlite3_value *pLe = 0;
+
+ UNUSED_PARAM2(zUnused, nUnused);
+
+ fts5VocabResetCursor(pCsr);
+ if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
+ if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
+ if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];
+
+ if( pEq ){
+ zTerm = (const char *)sqlite3_value_text(pEq);
+ nTerm = sqlite3_value_bytes(pEq);
+ f = 0;
+ }else{
+ if( pGe ){
+ zTerm = (const char *)sqlite3_value_text(pGe);
+ nTerm = sqlite3_value_bytes(pGe);
+ }
+ if( pLe ){
+ const char *zCopy = (const char *)sqlite3_value_text(pLe);
+ if( zCopy==0 ) zCopy = "";
+ pCsr->nLeTerm = sqlite3_value_bytes(pLe);
+ pCsr->zLeTerm = sqlite3_malloc(pCsr->nLeTerm+1);
+ if( pCsr->zLeTerm==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pCsr->zLeTerm, zCopy, pCsr->nLeTerm+1);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ Fts5Index *pIndex = pCsr->pFts5->pIndex;
+ rc = sqlite3Fts5IndexQuery(pIndex, zTerm, nTerm, f, 0, &pCsr->pIter);
+ if( rc==SQLITE_OK ){
+ pCsr->pStruct = sqlite3Fts5StructureRef(pIndex);
+ }
+ }
+ if( rc==SQLITE_OK && eType==FTS5_VOCAB_INSTANCE ){
+ rc = fts5VocabInstanceNewTerm(pCsr);
+ }
+ if( rc==SQLITE_OK && !pCsr->bEof
+ && (eType!=FTS5_VOCAB_INSTANCE
+ || pCsr->pFts5->pConfig->eDetail!=FTS5_DETAIL_NONE)
+ ){
+ rc = fts5VocabNextMethod(pCursor);
+ }
+
+ return rc;
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts5VocabEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ return pCsr->bEof;
+}
+
+static int fts5VocabColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ int eDetail = pCsr->pFts5->pConfig->eDetail;
+ int eType = ((Fts5VocabTable*)(pCursor->pVtab))->eType;
+ i64 iVal = 0;
+
+ if( iCol==0 ){
+ sqlite3_result_text(
+ pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
+ );
+ }else if( eType==FTS5_VOCAB_COL ){
+ assert( iCol==1 || iCol==2 || iCol==3 );
+ if( iCol==1 ){
+ if( eDetail!=FTS5_DETAIL_NONE ){
+ const char *z = pCsr->pFts5->pConfig->azCol[pCsr->iCol];
+ sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
+ }
+ }else if( iCol==2 ){
+ iVal = pCsr->aDoc[pCsr->iCol];
+ }else{
+ iVal = pCsr->aCnt[pCsr->iCol];
+ }
+ }else if( eType==FTS5_VOCAB_ROW ){
+ assert( iCol==1 || iCol==2 );
+ if( iCol==1 ){
+ iVal = pCsr->aDoc[0];
+ }else{
+ iVal = pCsr->aCnt[0];
+ }
+ }else{
+ assert( eType==FTS5_VOCAB_INSTANCE );
+ switch( iCol ){
+ case 1:
+ sqlite3_result_int64(pCtx, pCsr->pIter->iRowid);
+ break;
+ case 2: {
+ int ii = -1;
+ if( eDetail==FTS5_DETAIL_FULL ){
+ ii = FTS5_POS2COLUMN(pCsr->iInstPos);
+ }else if( eDetail==FTS5_DETAIL_COLUMNS ){
+ ii = (int)pCsr->iInstPos;
+ }
+ if( ii>=0 && ii<pCsr->pFts5->pConfig->nCol ){
+ const char *z = pCsr->pFts5->pConfig->azCol[ii];
+ sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
+ }
+ break;
+ }
+ default: {
+ assert( iCol==3 );
+ if( eDetail==FTS5_DETAIL_FULL ){
+ int ii = FTS5_POS2OFFSET(pCsr->iInstPos);
+ sqlite3_result_int(pCtx, ii);
+ }
+ break;
+ }
+ }
+ }
+
+ if( iVal>0 ) sqlite3_result_int64(pCtx, iVal);
+ return SQLITE_OK;
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. The
+** rowid should be written to *pRowid.
+*/
+static int fts5VocabRowidMethod(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite_int64 *pRowid
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ *pRowid = pCsr->rowid;
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5VocabInit(Fts5Global *pGlobal, sqlite3 *db){
+ static const sqlite3_module fts5Vocab = {
+ /* iVersion */ 2,
+ /* xCreate */ fts5VocabCreateMethod,
+ /* xConnect */ fts5VocabConnectMethod,
+ /* xBestIndex */ fts5VocabBestIndexMethod,
+ /* xDisconnect */ fts5VocabDisconnectMethod,
+ /* xDestroy */ fts5VocabDestroyMethod,
+ /* xOpen */ fts5VocabOpenMethod,
+ /* xClose */ fts5VocabCloseMethod,
+ /* xFilter */ fts5VocabFilterMethod,
+ /* xNext */ fts5VocabNextMethod,
+ /* xEof */ fts5VocabEofMethod,
+ /* xColumn */ fts5VocabColumnMethod,
+ /* xRowid */ fts5VocabRowidMethod,
+ /* xUpdate */ 0,
+ /* xBegin */ 0,
+ /* xSync */ 0,
+ /* xCommit */ 0,
+ /* xRollback */ 0,
+ /* xFindFunction */ 0,
+ /* xRename */ 0,
+ /* xSavepoint */ 0,
+ /* xRelease */ 0,
+ /* xRollbackTo */ 0,
+ /* xShadowName */ 0,
+ /* xIntegrity */ 0
+ };
+ void *p = (void*)pGlobal;
+
+ return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0);
+}
+
+
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) */
+
+/************** End of fts5.c ************************************************/
+/************** Begin file stmt.c ********************************************/
+/*
+** 2017-05-31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file demonstrates an eponymous virtual table that returns information
+** about all prepared statements for the database connection.
+**
+** Usage example:
+**
+** .load ./stmt
+** .mode line
+** .header on
+** SELECT * FROM stmt;
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB)
+#if !defined(SQLITEINT_H)
+/* #include "sqlite3ext.h" */
+#endif
+SQLITE_EXTENSION_INIT1
+/* #include <assert.h> */
+/* #include <string.h> */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+
+#define STMT_NUM_INTEGER_COLUMN 10
+typedef struct StmtRow StmtRow;
+struct StmtRow {
+ sqlite3_int64 iRowid; /* Rowid value */
+ char *zSql; /* column "sql" */
+ int aCol[STMT_NUM_INTEGER_COLUMN+1]; /* all other column values */
+ StmtRow *pNext; /* Next row to return */
+};
+
+/* stmt_vtab is a subclass of sqlite3_vtab which will
+** serve as the underlying representation of a stmt virtual table
+*/
+typedef struct stmt_vtab stmt_vtab;
+struct stmt_vtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ sqlite3 *db; /* Database connection for this stmt vtab */
+};
+
+/* stmt_cursor is a subclass of sqlite3_vtab_cursor which will
+** serve as the underlying representation of a cursor that scans
+** over rows of the result
+*/
+typedef struct stmt_cursor stmt_cursor;
+struct stmt_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ sqlite3 *db; /* Database connection for this cursor */
+ StmtRow *pRow; /* Current row */
+};
+
+/*
+** The stmtConnect() method is invoked to create a new
+** stmt_vtab that describes the stmt virtual table.
+**
+** Think of this routine as the constructor for stmt_vtab objects.
+**
+** All this routine needs to do is:
+**
+** (1) Allocate the stmt_vtab object and initialize all fields.
+**
+** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
+** result set of queries against stmt will look like.
+*/
+static int stmtConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ stmt_vtab *pNew;
+ int rc;
+
+/* Column numbers */
+#define STMT_COLUMN_SQL 0 /* SQL for the statement */
+#define STMT_COLUMN_NCOL 1 /* Number of result columns */
+#define STMT_COLUMN_RO 2 /* True if read-only */
+#define STMT_COLUMN_BUSY 3 /* True if currently busy */
+#define STMT_COLUMN_NSCAN 4 /* SQLITE_STMTSTATUS_FULLSCAN_STEP */
+#define STMT_COLUMN_NSORT 5 /* SQLITE_STMTSTATUS_SORT */
+#define STMT_COLUMN_NAIDX 6 /* SQLITE_STMTSTATUS_AUTOINDEX */
+#define STMT_COLUMN_NSTEP 7 /* SQLITE_STMTSTATUS_VM_STEP */
+#define STMT_COLUMN_REPREP 8 /* SQLITE_STMTSTATUS_REPREPARE */
+#define STMT_COLUMN_RUN 9 /* SQLITE_STMTSTATUS_RUN */
+#define STMT_COLUMN_MEM 10 /* SQLITE_STMTSTATUS_MEMUSED */
+
+
+ (void)pAux;
+ (void)argc;
+ (void)argv;
+ (void)pzErr;
+ rc = sqlite3_declare_vtab(db,
+ "CREATE TABLE x(sql,ncol,ro,busy,nscan,nsort,naidx,nstep,"
+ "reprep,run,mem)");
+ if( rc==SQLITE_OK ){
+ pNew = sqlite3_malloc64( sizeof(*pNew) );
+ *ppVtab = (sqlite3_vtab*)pNew;
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->db = db;
+ }
+ return rc;
+}
+
+/*
+** This method is the destructor for stmt_cursor objects.
+*/
+static int stmtDisconnect(sqlite3_vtab *pVtab){
+ sqlite3_free(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** Constructor for a new stmt_cursor object.
+*/
+static int stmtOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
+ stmt_cursor *pCur;
+ pCur = sqlite3_malloc64( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ pCur->db = ((stmt_vtab*)p)->db;
+ *ppCursor = &pCur->base;
+ return SQLITE_OK;
+}
+
+static void stmtCsrReset(stmt_cursor *pCur){
+ StmtRow *pRow = 0;
+ StmtRow *pNext = 0;
+ for(pRow=pCur->pRow; pRow; pRow=pNext){
+ pNext = pRow->pNext;
+ sqlite3_free(pRow);
+ }
+ pCur->pRow = 0;
+}
+
+/*
+** Destructor for a stmt_cursor.
+*/
+static int stmtClose(sqlite3_vtab_cursor *cur){
+ stmtCsrReset((stmt_cursor*)cur);
+ sqlite3_free(cur);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance a stmt_cursor to its next row of output.
+*/
+static int stmtNext(sqlite3_vtab_cursor *cur){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ StmtRow *pNext = pCur->pRow->pNext;
+ sqlite3_free(pCur->pRow);
+ pCur->pRow = pNext;
+ return SQLITE_OK;
+}
+
+/*
+** Return values of columns for the row at which the stmt_cursor
+** is currently pointing.
+*/
+static int stmtColumn(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ StmtRow *pRow = pCur->pRow;
+ if( i==STMT_COLUMN_SQL ){
+ sqlite3_result_text(ctx, pRow->zSql, -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_int(ctx, pRow->aCol[i]);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return the rowid for the current row. In this implementation, the
+** rowid is the same as the output value.
+*/
+static int stmtRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ *pRowid = pCur->pRow->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the cursor has been moved off of the last
+** row of output.
+*/
+static int stmtEof(sqlite3_vtab_cursor *cur){
+ stmt_cursor *pCur = (stmt_cursor*)cur;
+ return pCur->pRow==0;
+}
+
+/*
+** This method is called to "rewind" the stmt_cursor object back
+** to the first row of output. This method is always called at least
+** once prior to any call to stmtColumn() or stmtRowid() or
+** stmtEof().
+*/
+static int stmtFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ stmt_cursor *pCur = (stmt_cursor *)pVtabCursor;
+ sqlite3_stmt *p = 0;
+ sqlite3_int64 iRowid = 1;
+ StmtRow **ppRow = 0;
+
+ (void)idxNum;
+ (void)idxStr;
+ (void)argc;
+ (void)argv;
+ stmtCsrReset(pCur);
+ ppRow = &pCur->pRow;
+ for(p=sqlite3_next_stmt(pCur->db, 0); p; p=sqlite3_next_stmt(pCur->db, p)){
+ const char *zSql = sqlite3_sql(p);
+ sqlite3_int64 nSql = zSql ? strlen(zSql)+1 : 0;
+ StmtRow *pNew = (StmtRow*)sqlite3_malloc64(sizeof(StmtRow) + nSql);
+
+ if( pNew==0 ) return SQLITE_NOMEM;
+ memset(pNew, 0, sizeof(StmtRow));
+ if( zSql ){
+ pNew->zSql = (char*)&pNew[1];
+ memcpy(pNew->zSql, zSql, nSql);
+ }
+ pNew->aCol[STMT_COLUMN_NCOL] = sqlite3_column_count(p);
+ pNew->aCol[STMT_COLUMN_RO] = sqlite3_stmt_readonly(p);
+ pNew->aCol[STMT_COLUMN_BUSY] = sqlite3_stmt_busy(p);
+ pNew->aCol[STMT_COLUMN_NSCAN] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_FULLSCAN_STEP, 0
+ );
+ pNew->aCol[STMT_COLUMN_NSORT] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_SORT, 0
+ );
+ pNew->aCol[STMT_COLUMN_NAIDX] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_AUTOINDEX, 0
+ );
+ pNew->aCol[STMT_COLUMN_NSTEP] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_VM_STEP, 0
+ );
+ pNew->aCol[STMT_COLUMN_REPREP] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_REPREPARE, 0
+ );
+ pNew->aCol[STMT_COLUMN_RUN] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_RUN, 0
+ );
+ pNew->aCol[STMT_COLUMN_MEM] = sqlite3_stmt_status(
+ p, SQLITE_STMTSTATUS_MEMUSED, 0
+ );
+ pNew->iRowid = iRowid++;
+ *ppRow = pNew;
+ ppRow = &pNew->pNext;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** SQLite will invoke this method one or more times while planning a query
+** that uses the stmt virtual table. This routine needs to create
+** a query plan for each invocation and compute an estimated cost for that
+** plan.
+*/
+static int stmtBestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ (void)tab;
+ pIdxInfo->estimatedCost = (double)500;
+ pIdxInfo->estimatedRows = 500;
+ return SQLITE_OK;
+}
+
+/*
+** This following structure defines all the methods for the
+** stmt virtual table.
+*/
+static sqlite3_module stmtModule = {
+ 0, /* iVersion */
+ 0, /* xCreate */
+ stmtConnect, /* xConnect */
+ stmtBestIndex, /* xBestIndex */
+ stmtDisconnect, /* xDisconnect */
+ 0, /* xDestroy */
+ stmtOpen, /* xOpen - open a cursor */
+ stmtClose, /* xClose - close a cursor */
+ stmtFilter, /* xFilter - configure scan constraints */
+ stmtNext, /* xNext - advance a cursor */
+ stmtEof, /* xEof - check for end of scan */
+ stmtColumn, /* xColumn - read data */
+ stmtRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+ 0, /* xSavepoint */
+ 0, /* xRelease */
+ 0, /* xRollbackTo */
+ 0, /* xShadowName */
+ 0 /* xIntegrity */
+};
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3 *db){
+ int rc = SQLITE_OK;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ rc = sqlite3_create_module(db, "sqlite_stmt", &stmtModule, 0);
+#endif
+ return rc;
+}
+
+#ifndef SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+SQLITE_API int sqlite3_stmt_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ int rc = SQLITE_OK;
+ SQLITE_EXTENSION_INIT2(pApi);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ rc = sqlite3StmtVtabInit(db);
+#endif
+ return rc;
+}
+#endif /* SQLITE_CORE */
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */
+
+/************** End of stmt.c ************************************************/
+/* Return the source-id for this library */
+SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
+/************************** End of sqlite3.c ******************************/
diff --git a/third_party/rust/libsqlite3-sys/sqlite3/sqlite3.h b/third_party/rust/libsqlite3-sys/sqlite3/sqlite3.h
new file mode 100644
index 0000000000..d4f1c810ce
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlite3/sqlite3.h
@@ -0,0 +1,13257 @@
+/*
+** 2001-09-15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve the right to make minor changes
+** if experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are supposed to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
+*/
+#ifndef SQLITE3_H
+#define SQLITE3_H
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/*
+** Facilitate override of interface linkage and calling conventions.
+** Be aware that these macros may not be used within this particular
+** translation of the amalgamation and its associated header file.
+**
+** The SQLITE_EXTERN and SQLITE_API macros are used to instruct the
+** compiler that the target identifier should have external linkage.
+**
+** The SQLITE_CDECL macro is used to set the calling convention for
+** public functions that accept a variable number of arguments.
+**
+** The SQLITE_APICALL macro is used to set the calling convention for
+** public functions that accept a fixed number of arguments.
+**
+** The SQLITE_STDCALL macro is no longer used and is now deprecated.
+**
+** The SQLITE_CALLBACK macro is used to set the calling convention for
+** function pointers.
+**
+** The SQLITE_SYSAPI macro is used to set the calling convention for
+** functions provided by the operating system.
+**
+** Currently, the SQLITE_CDECL, SQLITE_APICALL, SQLITE_CALLBACK, and
+** SQLITE_SYSAPI macros are used only when building for environments
+** that require non-default calling conventions.
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+#ifndef SQLITE_CDECL
+# define SQLITE_CDECL
+#endif
+#ifndef SQLITE_APICALL
+# define SQLITE_APICALL
+#endif
+#ifndef SQLITE_STDCALL
+# define SQLITE_STDCALL SQLITE_APICALL
+#endif
+#ifndef SQLITE_CALLBACK
+# define SQLITE_CALLBACK
+#endif
+#ifndef SQLITE_SYSAPI
+# define SQLITE_SYSAPI
+#endif
+
+/*
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are supported for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
+**
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
+*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers
+**
+** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
+** evaluates to a string literal that is the SQLite version in the
+** format "X.Y.Z" where X is the major version number (always 3 for
+** SQLite3) and Y is the minor version number and Z is the release number.)^
+** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
+** numbers used in [SQLITE_VERSION].)^
+** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
+** be larger than the release from which it is derived. Either Y will
+** be held constant and Z will be incremented or else Y will be incremented
+** and Z will be reset to zero.
+**
+** Since [version 3.6.18] ([dateof:3.6.18]),
+** SQLite source code has been stored in the
+** <a href="http://www.fossil-scm.org/">Fossil configuration management
+** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
+** a string which identifies a particular check-in of SQLite
+** within its configuration management system. ^The SQLITE_SOURCE_ID
+** string contains the date and time of the check-in (UTC) and a SHA1
+** or SHA3-256 hash of the entire source tree. If the source code has
+** been edited in any way since it was last checked in, then the last
+** four hexadecimal digits of the hash may be modified.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+*/
+#define SQLITE_VERSION "3.44.0"
+#define SQLITE_VERSION_NUMBER 3044000
+#define SQLITE_SOURCE_ID "2023-11-01 11:23:50 17129ba1ff7f0daf37100ee82d507aef7827cf38de1866e2633096ae6ad81301"
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers
+** KEYWORDS: sqlite3_version sqlite3_sourceid
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
+** but are associated with the library instead of the header file. ^(Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus ensure that the application is
+** compiled with matching library and header files.
+**
+** <blockquote><pre>
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+** </pre></blockquote>)^
+**
+** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
+** macro. ^The sqlite3_libversion() function returns a pointer to the
+** to the sqlite3_version[] string constant. The sqlite3_libversion()
+** function is provided for use in DLLs since DLL users usually do not have
+** direct access to string constants within the DLL. ^The
+** sqlite3_libversion_number() function returns an integer equal to
+** [SQLITE_VERSION_NUMBER]. ^(The sqlite3_sourceid() function returns
+** a pointer to a string constant whose value is the same as the
+** [SQLITE_SOURCE_ID] C preprocessor macro. Except if SQLite is built
+** using an edited copy of [the amalgamation], then the last four characters
+** of the hash might be different from [SQLITE_SOURCE_ID].)^
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+*/
+SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
+
+/*
+** CAPI3REF: Run-Time Library Compilation Options Diagnostics
+**
+** ^The sqlite3_compileoption_used() function returns 0 or 1
+** indicating whether the specified option was defined at
+** compile time. ^The SQLITE_ prefix may be omitted from the
+** option name passed to sqlite3_compileoption_used().
+**
+** ^The sqlite3_compileoption_get() function allows iterating
+** over the list of options that were defined at compile time by
+** returning the N-th compile time option string. ^If N is out of range,
+** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
+** prefix is omitted from any strings returned by
+** sqlite3_compileoption_get().
+**
+** ^Support for the diagnostic functions sqlite3_compileoption_used()
+** and sqlite3_compileoption_get() may be omitted by specifying the
+** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
+**
+** See also: SQL functions [sqlite_compileoption_used()] and
+** [sqlite_compileoption_get()] and the [compile_options pragma].
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
+SQLITE_API const char *sqlite3_compileoption_get(int N);
+#else
+# define sqlite3_compileoption_used(X) 0
+# define sqlite3_compileoption_get(X) ((void*)0)
+#endif
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe
+**
+** ^The sqlite3_threadsafe() function returns zero if and only if
+** SQLite was compiled with mutexing code omitted due to the
+** [SQLITE_THREADSAFE] compile-time option being set to 0.
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** ^The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
+** sqlite3_threadsafe() function shows only the compile-time setting of
+** thread safety, not any run-time changes to that setting made by
+** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
+** is unchanged by calls to sqlite3_config().)^
+**
+** See the [threading mode] documentation for additional information.
+*/
+SQLITE_API int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** and [sqlite3_close_v2()] are its destructors. There are many other
+** interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
+
+/*
+** CAPI3REF: 64-Bit Integer Types
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** ^The sqlite3_int64 and sqlite_int64 types can store integer values
+** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
+** sqlite3_uint64 and sqlite_uint64 types can store integer values
+** between 0 and +18446744073709551615 inclusive.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+# ifdef SQLITE_UINT64_TYPE
+ typedef SQLITE_UINT64_TYPE sqlite_uint64;
+# else
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+# endif
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection
+** DESTRUCTOR: sqlite3
+**
+** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
+** for the [sqlite3] object.
+** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
+** the [sqlite3] object is successfully destroyed and all associated
+** resources are deallocated.
+**
+** Ideally, applications should [sqlite3_finalize | finalize] all
+** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and
+** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
+** with the [sqlite3] object prior to attempting to close the object.
+** ^If the database connection is associated with unfinalized prepared
+** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
+** sqlite3_close() will leave the database connection open and return
+** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
+** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
+** it returns [SQLITE_OK] regardless, but instead of deallocating the database
+** connection immediately, it marks the database connection as an unusable
+** "zombie" and makes arrangements to automatically deallocate the database
+** connection after all prepared statements are finalized, all BLOB handles
+** are closed, and all backups have finished. The sqlite3_close_v2() interface
+** is intended for use with host languages that are garbage collected, and
+** where the order in which destructors are called is arbitrary.
+**
+** ^If an [sqlite3] object is destroyed while a transaction is open,
+** the transaction is automatically rolled back.
+**
+** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
+** must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
+** argument is a harmless no-op.
+*/
+SQLITE_API int sqlite3_close(sqlite3*);
+SQLITE_API int sqlite3_close_v2(sqlite3*);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface
+** METHOD: sqlite3
+**
+** The sqlite3_exec() interface is a convenience wrapper around
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
+** that allows an application to run multiple statements of SQL
+** without having to use a lot of C code.
+**
+** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
+** semicolon-separate SQL statements passed into its 2nd argument,
+** in the context of the [database connection] passed in as its 1st
+** argument. ^If the callback function of the 3rd argument to
+** sqlite3_exec() is not NULL, then it is invoked for each result row
+** coming out of the evaluated SQL statements. ^The 4th argument to
+** sqlite3_exec() is relayed through to the 1st argument of each
+** callback invocation. ^If the callback pointer to sqlite3_exec()
+** is NULL, then no callback is ever invoked and result rows are
+** ignored.
+**
+** ^If an error occurs while evaluating the SQL statements passed into
+** sqlite3_exec(), then execution of the current statement stops and
+** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
+** is not NULL then any error message is written into memory obtained
+** from [sqlite3_malloc()] and passed back through the 5th parameter.
+** To avoid memory leaks, the application should invoke [sqlite3_free()]
+** on error message strings returned through the 5th parameter of
+** sqlite3_exec() after the error message string is no longer needed.
+** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
+** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
+** NULL before returning.
+**
+** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
+** routine returns SQLITE_ABORT without invoking the callback again and
+** without running any subsequent SQL statements.
+**
+** ^The 2nd argument to the sqlite3_exec() callback function is the
+** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
+** callback is an array of pointers to strings obtained as if from
+** [sqlite3_column_text()], one for each column. ^If an element of a
+** result row is NULL then the corresponding string pointer for the
+** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
+** sqlite3_exec() callback is an array of pointers to strings where each
+** entry represents the name of corresponding result column as obtained
+** from [sqlite3_column_name()].
+**
+** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
+** to an empty string, or a pointer that contains only whitespace and/or
+** SQL comments, then no SQL statements are evaluated and the database
+** is not changed.
+**
+** Restrictions:
+**
+** <ul>
+** <li> The application must ensure that the 1st parameter to sqlite3_exec()
+** is a valid and open [database connection].
+** <li> The application must not close the [database connection] specified by
+** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
+** <li> The application must not modify the SQL statement text passed into
+** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
+** </ul>
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes
+** KEYWORDS: {result code definitions}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicate success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [extended result code definitions]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* Generic error */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Internal use only */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Not used */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */
+#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes
+** KEYWORDS: {extended result code definitions}
+**
+** In its default configuration, SQLite API routines return one of 30 integer
+** [result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8]
+** and later) include
+** support for additional result codes that provide more detailed information
+** about errors. These [extended result codes] are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API. Or, the extended code for
+** the most recent error can be obtained using
+** [sqlite3_extended_errcode()].
+*/
+#define SQLITE_ERROR_MISSING_COLLSEQ (SQLITE_ERROR | (1<<8))
+#define SQLITE_ERROR_RETRY (SQLITE_ERROR | (2<<8))
+#define SQLITE_ERROR_SNAPSHOT (SQLITE_ERROR | (3<<8))
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8))
+#define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8))
+#define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8))
+#define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8))
+#define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8))
+#define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8))
+#define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8))
+#define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8))
+#define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8))
+#define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8))
+#define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8))
+#define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8))
+#define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8))
+#define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8))
+#define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8))
+#define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8))
+#define SQLITE_IOERR_IN_PAGE (SQLITE_IOERR | (34<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8))
+#define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8))
+#define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8))
+#define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8))
+#define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8))
+#define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8))
+#define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8))
+#define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8))
+#define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8))
+#define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) /* Not Used */
+#define SQLITE_CANTOPEN_SYMLINK (SQLITE_CANTOPEN | (6<<8))
+#define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8))
+#define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8))
+#define SQLITE_CORRUPT_INDEX (SQLITE_CORRUPT | (3<<8))
+#define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8))
+#define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8))
+#define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8))
+#define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8))
+#define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8))
+#define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8))
+#define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8))
+#define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8))
+#define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8))
+#define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8))
+#define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8))
+#define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8))
+#define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8))
+#define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8))
+#define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8))
+#define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8))
+#define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8))
+#define SQLITE_CONSTRAINT_PINNED (SQLITE_CONSTRAINT |(11<<8))
+#define SQLITE_CONSTRAINT_DATATYPE (SQLITE_CONSTRAINT |(12<<8))
+#define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8))
+#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
+#define SQLITE_NOTICE_RBU (SQLITE_NOTICE | (3<<8))
+#define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8))
+#define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8))
+#define SQLITE_OK_LOAD_PERMANENTLY (SQLITE_OK | (1<<8))
+#define SQLITE_OK_SYMLINK (SQLITE_OK | (2<<8)) /* internal use only */
+
+/*
+** CAPI3REF: Flags For File Open Operations
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
+**
+** Only those flags marked as "Ok for sqlite3_open_v2()" may be
+** used as the third argument to the [sqlite3_open_v2()] interface.
+** The other flags have historically been ignored by sqlite3_open_v2(),
+** though future versions of SQLite might change so that an error is
+** raised if any of the disallowed bits are passed into sqlite3_open_v2().
+** Applications should not depend on the historical behavior.
+**
+** Note in particular that passing the SQLITE_OPEN_EXCLUSIVE flag into
+** [sqlite3_open_v2()] does *not* cause the underlying database file
+** to be opened using O_EXCL. Passing SQLITE_OPEN_EXCLUSIVE into
+** [sqlite3_open_v2()] has historically be a no-op and might become an
+** error in future versions of SQLite.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
+#define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_SUPER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_WAL 0x00080000 /* VFS only */
+#define SQLITE_OPEN_NOFOLLOW 0x01000000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_EXRESCODE 0x02000000 /* Extended result codes */
+
+/* Reserved: 0x00F00000 */
+/* Legacy compatibility: */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+
+
+/*
+** CAPI3REF: Device Characteristics
+**
+** The xDeviceCharacteristics method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
+** after reboot following a crash or power loss, the only bytes in a
+** file that were written at the application level might have changed
+** and that adjacent bytes, even bytes within the same sector are
+** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+** flag indicates that a file cannot be deleted when open. The
+** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
+** read-only media and cannot be changed even by processes with
+** elevated privileges.
+**
+** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying
+** filesystem supports doing multiple write operations atomically when those
+** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and
+** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800
+#define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000
+#define SQLITE_IOCAP_IMMUTABLE 0x00002000
+#define SQLITE_IOCAP_BATCH_ATOMIC 0x00004000
+
+/*
+** CAPI3REF: File Locking Levels
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object. These values are ordered from
+** lest restrictive to most restrictive.
+**
+** The argument to xLock() is always SHARED or higher. The argument to
+** xUnlock is either SHARED or NONE.
+*/
+#define SQLITE_LOCK_NONE 0 /* xUnlock() only */
+#define SQLITE_LOCK_SHARED 1 /* xLock() or xUnlock() */
+#define SQLITE_LOCK_RESERVED 2 /* xLock() only */
+#define SQLITE_LOCK_PENDING 3 /* xLock() only */
+#define SQLITE_LOCK_EXCLUSIVE 4 /* xLock() only */
+
+/*
+** CAPI3REF: Synchronization Type Flags
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+**
+** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
+** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
+** settings. The [synchronous pragma] determines when calls to the
+** xSync VFS method occur and applies uniformly across all platforms.
+** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
+** energetic or rigorous or forceful the sync operations are and
+** only make a difference on Mac OSX for the default SQLite code.
+** (Third-party VFS implementations might also make the distinction
+** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
+** operating systems natively supported by SQLite, only Mac OSX
+** cares about the difference.)
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object
+**
+** Every file opened by the [sqlite3_vfs.xOpen] method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The
+** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
+** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
+** to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() upgrades the database file lock. In other words, xLock() moves the
+** database file lock in the direction NONE toward EXCLUSIVE. The argument to
+** xLock() is always on of SHARED, RESERVED, PENDING, or EXCLUSIVE, never
+** SQLITE_LOCK_NONE. If the database file lock is already at or above the
+** requested lock, then the call to xLock() is a no-op.
+** xUnlock() downgrades the database file lock to either SHARED or NONE.
+* If the lock is already at or below the requested lock state, then the call
+** to xUnlock() is a no-op.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [file control opcodes | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts. VFS implementations should
+** return [SQLITE_NOTFOUND] for file control opcodes that they do not
+** recognize.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
+** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
+** <li> [SQLITE_IOCAP_IMMUTABLE]
+** <li> [SQLITE_IOCAP_BATCH_ATOMIC]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Methods above are valid for version 1 */
+ int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
+ int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
+ void (*xShmBarrier)(sqlite3_file*);
+ int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
+ /* Methods above are valid for version 2 */
+ int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
+ int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
+ /* Methods above are valid for version 3 */
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes
+** KEYWORDS: {file control opcodes} {file control opcode}
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** <ul>
+** <li>[[SQLITE_FCNTL_LOCKSTATE]]
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to.
+** This capability is only available if SQLite is compiled with [SQLITE_DEBUG].
+**
+** <li>[[SQLITE_FCNTL_SIZE_HINT]]
+** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
+** layer a hint of how large the database file will grow to be during the
+** current transaction. This hint is not guaranteed to be accurate but it
+** is often close. The underlying VFS might choose to preallocate database
+** file space based on this hint in order to help writes to the database
+** file run faster.
+**
+** <li>[[SQLITE_FCNTL_SIZE_LIMIT]]
+** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that
+** implements [sqlite3_deserialize()] to set an upper bound on the size
+** of the in-memory database. The argument is a pointer to a [sqlite3_int64].
+** If the integer pointed to is negative, then it is filled in with the
+** current limit. Otherwise the limit is set to the larger of the value
+** of the integer pointed to and the current database size. The integer
+** pointed to is set to the new limit.
+**
+** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
+** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
+** extends and truncates the database file in chunks of a size specified
+** by the user. The fourth argument to [sqlite3_file_control()] should
+** point to an integer (type int) containing the new chunk-size to use
+** for the nominated database. Allocating database file space in large
+** chunks (say 1MB at a time), may reduce file-system fragmentation and
+** improve performance on some systems.
+**
+** <li>[[SQLITE_FCNTL_FILE_POINTER]]
+** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with a particular database
+** connection. See also [SQLITE_FCNTL_JOURNAL_POINTER].
+**
+** <li>[[SQLITE_FCNTL_JOURNAL_POINTER]]
+** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer
+** to the [sqlite3_file] object associated with the journal file (either
+** the [rollback journal] or the [write-ahead log]) for a particular database
+** connection. See also [SQLITE_FCNTL_FILE_POINTER].
+**
+** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
+** No longer in use.
+**
+** <li>[[SQLITE_FCNTL_SYNC]]
+** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
+** sent to the VFS immediately before the xSync method is invoked on a
+** database file descriptor. Or, if the xSync method is not invoked
+** because the user has configured SQLite with
+** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
+** of the xSync method. In most cases, the pointer argument passed with
+** this file-control is NULL. However, if the database file is being synced
+** as part of a multi-database commit, the argument points to a nul-terminated
+** string containing the transactions super-journal file name. VFSes that
+** do not need this signal should silently ignore this opcode. Applications
+** should not call [sqlite3_file_control()] with this opcode as doing so may
+** disrupt the operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
+** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
+** and sent to the VFS after a transaction has been committed immediately
+** but before the database is unlocked. VFSes that do not need this signal
+** should silently ignore this opcode. Applications should not call
+** [sqlite3_file_control()] with this opcode as doing so may disrupt the
+** operation of the specialized VFSes that do require it.
+**
+** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
+** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
+** retry counts and intervals for certain disk I/O operations for the
+** windows [VFS] in order to provide robustness in the presence of
+** anti-virus programs. By default, the windows VFS will retry file read,
+** file write, and file delete operations up to 10 times, with a delay
+** of 25 milliseconds before the first retry and with the delay increasing
+** by an additional 25 milliseconds with each subsequent retry. This
+** opcode allows these two values (10 retries and 25 milliseconds of delay)
+** to be adjusted. The values are changed for all database connections
+** within the same process. The argument is a pointer to an array of two
+** integers where the first integer is the new retry count and the second
+** integer is the delay. If either integer is negative, then the setting
+** is not changed but instead the prior value of that setting is written
+** into the array entry, allowing the current retry settings to be
+** interrogated. The zDbName parameter is ignored.
+**
+** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
+** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
+** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary
+** write ahead log ([WAL file]) and shared memory
+** files used for transaction control
+** are automatically deleted when the latest connection to the database
+** closes. Setting persistent WAL mode causes those files to persist after
+** close. Persisting the files is useful when other processes that do not
+** have write permission on the directory containing the database file want
+** to read the database file, as the WAL and shared memory files must exist
+** in order for the database to be readable. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
+** WAL mode. If the integer is -1, then it is overwritten with the current
+** WAL persistence setting.
+**
+** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
+** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
+** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting
+** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
+** xDeviceCharacteristics methods. The fourth parameter to
+** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
+** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
+** mode. If the integer is -1, then it is overwritten with the current
+** zero-damage mode setting.
+**
+** <li>[[SQLITE_FCNTL_OVERWRITE]]
+** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
+** a write transaction to indicate that, unless it is rolled back for some
+** reason, the entire database file will be overwritten by the current
+** transaction. This is used by VACUUM operations.
+**
+** <li>[[SQLITE_FCNTL_VFSNAME]]
+** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
+** all [VFSes] in the VFS stack. The names are of all VFS shims and the
+** final bottom-level VFS are written into memory obtained from
+** [sqlite3_malloc()] and the result is stored in the char* variable
+** that the fourth parameter of [sqlite3_file_control()] points to.
+** The caller is responsible for freeing the memory when done. As with
+** all file-control actions, there is no guarantee that this will actually
+** do anything. Callers should initialize the char* variable to a NULL
+** pointer in case this file-control is not implemented. This file-control
+** is intended for diagnostic use only.
+**
+** <li>[[SQLITE_FCNTL_VFS_POINTER]]
+** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
+** [VFSes] currently in use. ^(The argument X in
+** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
+** of type "[sqlite3_vfs] **". This opcodes will set *X
+** to a pointer to the top-level VFS.)^
+** ^When there are multiple VFS shims in the stack, this opcode finds the
+** upper-most shim only.
+**
+** <li>[[SQLITE_FCNTL_PRAGMA]]
+** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
+** file control is sent to the open [sqlite3_file] object corresponding
+** to the database file to which the pragma statement refers. ^The argument
+** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
+** pointers to strings (char**) in which the second element of the array
+** is the name of the pragma and the third element is the argument to the
+** pragma or NULL if the pragma has no argument. ^The handler for an
+** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
+** of the char** argument point to a string obtained from [sqlite3_mprintf()]
+** or the equivalent and that string will become the result of the pragma or
+** the error message if the pragma fails. ^If the
+** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
+** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA]
+** file control returns [SQLITE_OK], then the parser assumes that the
+** VFS has handled the PRAGMA itself and the parser generates a no-op
+** prepared statement if result string is NULL, or that returns a copy
+** of the result string if the string is non-NULL.
+** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
+** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
+** that the VFS encountered an error while handling the [PRAGMA] and the
+** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA]
+** file control occurs at the beginning of pragma statement analysis and so
+** it is able to override built-in [PRAGMA] statements.
+**
+** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
+** ^The [SQLITE_FCNTL_BUSYHANDLER]
+** file-control may be invoked by SQLite on the database file handle
+** shortly after it is opened in order to provide a custom VFS with access
+** to the connection's busy-handler callback. The argument is of type (void**)
+** - an array of two (void *) values. The first (void *) actually points
+** to a function of type (int (*)(void *)). In order to invoke the connection's
+** busy-handler, this function should be invoked with the second (void *) in
+** the array as the only argument. If it returns non-zero, then the operation
+** should be retried. If it returns zero, the custom VFS should abandon the
+** current operation.
+**
+** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
+** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
+** to have SQLite generate a
+** temporary filename using the same algorithm that is followed to generate
+** temporary filenames for TEMP tables and other internal uses. The
+** argument should be a char** which will be filled with the filename
+** written into memory obtained from [sqlite3_malloc()]. The caller should
+** invoke [sqlite3_free()] on the result to avoid a memory leak.
+**
+** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
+** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
+** maximum number of bytes that will be used for memory-mapped I/O.
+** The argument is a pointer to a value of type sqlite3_int64 that
+** is an advisory maximum number of bytes in the file to memory map. The
+** pointer is overwritten with the old value. The limit is not changed if
+** the value originally pointed to is negative, and so the current limit
+** can be queried by passing in a pointer to a negative number. This
+** file-control is used internally to implement [PRAGMA mmap_size].
+**
+** <li>[[SQLITE_FCNTL_TRACE]]
+** The [SQLITE_FCNTL_TRACE] file control provides advisory information
+** to the VFS about what the higher layers of the SQLite stack are doing.
+** This file control is used by some VFS activity tracing [shims].
+** The argument is a zero-terminated string. Higher layers in the
+** SQLite stack may generate instances of this file control if
+** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
+**
+** <li>[[SQLITE_FCNTL_HAS_MOVED]]
+** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
+** pointer to an integer and it writes a boolean into that integer depending
+** on whether or not the file has been renamed, moved, or deleted since it
+** was first opened.
+**
+** <li>[[SQLITE_FCNTL_WIN32_GET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the
+** underlying native file handle associated with a file handle. This file
+** control interprets its argument as a pointer to a native file handle and
+** writes the resulting value there.
+**
+** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
+** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This
+** opcode causes the xFileControl method to swap the file handle with the one
+** pointed to by the pArg argument. This capability is used during testing
+** and only needs to be supported when SQLITE_TEST is defined.
+**
+** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
+** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
+** be advantageous to block on the next WAL lock if the lock is not immediately
+** available. The WAL subsystem issues this signal during rare
+** circumstances in order to fix a problem with priority inversion.
+** Applications should <em>not</em> use this file-control.
+**
+** <li>[[SQLITE_FCNTL_ZIPVFS]]
+** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
+** VFS should return SQLITE_NOTFOUND for this opcode.
+**
+** <li>[[SQLITE_FCNTL_RBU]]
+** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
+** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for
+** this opcode.
+**
+** <li>[[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]]
+** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then
+** the file descriptor is placed in "batch write mode", which
+** means all subsequent write operations will be deferred and done
+** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]. Systems
+** that do not support batch atomic writes will return SQLITE_NOTFOUND.
+** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to
+** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or
+** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make
+** no VFS interface calls on the same [sqlite3_file] file descriptor
+** except for calls to the xWrite method and the xFileControl method
+** with [SQLITE_FCNTL_SIZE_HINT].
+**
+** <li>[[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically.
+** This file control returns [SQLITE_OK] if and only if the writes were
+** all performed successfully and have been committed to persistent storage.
+** ^Regardless of whether or not it is successful, this file control takes
+** the file descriptor out of batch write mode so that all subsequent
+** write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]]
+** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write
+** operations since the previous successful call to
+** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back.
+** ^This file control takes the file descriptor out of batch write mode
+** so that all subsequent write operations are independent.
+** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without
+** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
+**
+** <li>[[SQLITE_FCNTL_LOCK_TIMEOUT]]
+** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS
+** to block for up to M milliseconds before failing when attempting to
+** obtain a file lock using the xLock or xShmLock methods of the VFS.
+** The parameter is a pointer to a 32-bit signed integer that contains
+** the value that M is to be set to. Before returning, the 32-bit signed
+** integer is overwritten with the previous value of M.
+**
+** <li>[[SQLITE_FCNTL_DATA_VERSION]]
+** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
+** a database file. The argument is a pointer to a 32-bit unsigned integer.
+** The "data version" for the pager is written into the pointer. The
+** "data version" changes whenever any change occurs to the corresponding
+** database file, either through SQL statements on the same database
+** connection or through transactions committed by separate database
+** connections possibly in other processes. The [sqlite3_total_changes()]
+** interface can be used to find if any database on the connection has changed,
+** but that interface responds to changes on TEMP as well as MAIN and does
+** not provide a mechanism to detect changes to MAIN only. Also, the
+** [sqlite3_total_changes()] interface responds to internal changes only and
+** omits changes made by other database connections. The
+** [PRAGMA data_version] command provides a mechanism to detect changes to
+** a single attached database that occur due to other database connections,
+** but omits changes implemented by the database connection on which it is
+** called. This file control is the only mechanism to detect changes that
+** happen either internally or externally and that are associated with
+** a particular attached database.
+**
+** <li>[[SQLITE_FCNTL_CKPT_START]]
+** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint
+** in wal mode before the client starts to copy pages from the wal
+** file to the database file.
+**
+** <li>[[SQLITE_FCNTL_CKPT_DONE]]
+** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint
+** in wal mode after the client has finished copying pages from the wal
+** file to the database file, but before the *-shm file is updated to
+** record the fact that the pages have been checkpointed.
+**
+** <li>[[SQLITE_FCNTL_EXTERNAL_READER]]
+** The EXPERIMENTAL [SQLITE_FCNTL_EXTERNAL_READER] opcode is used to detect
+** whether or not there is a database client in another process with a wal-mode
+** transaction open on the database or not. It is only available on unix.The
+** (void*) argument passed with this file-control should be a pointer to a
+** value of type (int). The integer value is set to 1 if the database is a wal
+** mode database and there exists at least one client in another process that
+** currently has an SQL transaction open on the database. It is set to 0 if
+** the database is not a wal-mode db, or if there is no such connection in any
+** other process. This opcode cannot be used to detect transactions opened
+** by clients within the current process, only within other processes.
+**
+** <li>[[SQLITE_FCNTL_CKSM_FILE]]
+** The [SQLITE_FCNTL_CKSM_FILE] opcode is for use internally by the
+** [checksum VFS shim] only.
+**
+** <li>[[SQLITE_FCNTL_RESET_CACHE]]
+** If there is currently no transaction open on the database, and the
+** database is not a temp db, then the [SQLITE_FCNTL_RESET_CACHE] file-control
+** purges the contents of the in-memory page cache. If there is an open
+** transaction, or if the db is a temp-db, this opcode is a no-op, not an error.
+** </ul>
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_FCNTL_GET_LOCKPROXYFILE 2
+#define SQLITE_FCNTL_SET_LOCKPROXYFILE 3
+#define SQLITE_FCNTL_LAST_ERRNO 4
+#define SQLITE_FCNTL_SIZE_HINT 5
+#define SQLITE_FCNTL_CHUNK_SIZE 6
+#define SQLITE_FCNTL_FILE_POINTER 7
+#define SQLITE_FCNTL_SYNC_OMITTED 8
+#define SQLITE_FCNTL_WIN32_AV_RETRY 9
+#define SQLITE_FCNTL_PERSIST_WAL 10
+#define SQLITE_FCNTL_OVERWRITE 11
+#define SQLITE_FCNTL_VFSNAME 12
+#define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13
+#define SQLITE_FCNTL_PRAGMA 14
+#define SQLITE_FCNTL_BUSYHANDLER 15
+#define SQLITE_FCNTL_TEMPFILENAME 16
+#define SQLITE_FCNTL_MMAP_SIZE 18
+#define SQLITE_FCNTL_TRACE 19
+#define SQLITE_FCNTL_HAS_MOVED 20
+#define SQLITE_FCNTL_SYNC 21
+#define SQLITE_FCNTL_COMMIT_PHASETWO 22
+#define SQLITE_FCNTL_WIN32_SET_HANDLE 23
+#define SQLITE_FCNTL_WAL_BLOCK 24
+#define SQLITE_FCNTL_ZIPVFS 25
+#define SQLITE_FCNTL_RBU 26
+#define SQLITE_FCNTL_VFS_POINTER 27
+#define SQLITE_FCNTL_JOURNAL_POINTER 28
+#define SQLITE_FCNTL_WIN32_GET_HANDLE 29
+#define SQLITE_FCNTL_PDB 30
+#define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE 31
+#define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE 32
+#define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE 33
+#define SQLITE_FCNTL_LOCK_TIMEOUT 34
+#define SQLITE_FCNTL_DATA_VERSION 35
+#define SQLITE_FCNTL_SIZE_LIMIT 36
+#define SQLITE_FCNTL_CKPT_DONE 37
+#define SQLITE_FCNTL_RESERVE_BYTES 38
+#define SQLITE_FCNTL_CKPT_START 39
+#define SQLITE_FCNTL_EXTERNAL_READER 40
+#define SQLITE_FCNTL_CKSM_FILE 41
+#define SQLITE_FCNTL_RESET_CACHE 42
+
+/* deprecated names */
+#define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE
+#define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE
+#define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO
+
+
+/*
+** CAPI3REF: Mutex Handle
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: Loadable Extension Thunk
+**
+** A pointer to the opaque sqlite3_api_routines structure is passed as
+** the third parameter to entry points of [loadable extensions]. This
+** structure must be typedefed in order to work around compiler warnings
+** on some platforms.
+*/
+typedef struct sqlite3_api_routines sqlite3_api_routines;
+
+/*
+** CAPI3REF: File Name
+**
+** Type [sqlite3_filename] is used by SQLite to pass filenames to the
+** xOpen method of a [VFS]. It may be cast to (const char*) and treated
+** as a normal, nul-terminated, UTF-8 buffer containing the filename, but
+** may also be passed to special APIs such as:
+**
+** <ul>
+** <li> sqlite3_filename_database()
+** <li> sqlite3_filename_journal()
+** <li> sqlite3_filename_wal()
+** <li> sqlite3_uri_parameter()
+** <li> sqlite3_uri_boolean()
+** <li> sqlite3_uri_int64()
+** <li> sqlite3_uri_key()
+** </ul>
+*/
+typedef const char *sqlite3_filename;
+
+/*
+** CAPI3REF: OS Interface Object
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system". See
+** the [VFS | VFS documentation] for further information.
+**
+** The VFS interface is sometimes extended by adding new methods onto
+** the end. Each time such an extension occurs, the iVersion field
+** is incremented. The iVersion value started out as 1 in
+** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2
+** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased
+** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6]. Additional fields
+** may be appended to the sqlite3_vfs object and the iVersion value
+** may increase again in future versions of SQLite.
+** Note that due to an oversight, the structure
+** of the sqlite3_vfs object changed in the transition from
+** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0]
+** and yet the iVersion field was not increased.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** [[sqlite3_vfs.xOpen]]
+** ^SQLite guarantees that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname() with an optional suffix added.
+** ^If a suffix is added to the zFilename parameter, it will
+** consist of a single "-" character followed by no more than
+** 11 alphanumeric and/or "-" characters.
+** ^SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter to xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. ^Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** ^(SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_SUPER_JOURNAL]
+** <li> [SQLITE_OPEN_WAL]
+** </ul>)^
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases and their journals, transient
+** databases, and subjournals.
+**
+** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is <i>not</i> used to indicate the file should be opened
+** for exclusive access.
+**
+** ^At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** [[sqlite3_vfs.xAccess]]
+** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The SQLITE_ACCESS_READ
+** flag is never actually used and is not implemented in the built-in
+** VFSes of SQLite. The file is named by the second argument and can be a
+** directory. The xAccess method returns [SQLITE_OK] on success or some
+** non-zero error code if there is an I/O error or if the name of
+** the file given in the second argument is illegal. If SQLITE_OK
+** is returned, then non-zero or zero is written into *pResOut to indicate
+** whether or not the file is accessible.
+**
+** ^SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
+** interfaces are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. ^The xCurrentTime()
+** method returns a Julian Day Number for the current date and time as
+** a floating point value.
+** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
+** Day Number multiplied by 86400000 (the number of milliseconds in
+** a 24-hour day).
+** ^SQLite will use the xCurrentTimeInt64() method to get the current
+** date and time if that method is available (if iVersion is 2 or
+** greater and the function pointer is not NULL) and will fall back
+** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
+**
+** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
+** are not used by the SQLite core. These optional interfaces are provided
+** by some VFSes to facilitate testing of the VFS code. By overriding
+** system calls with functions under its control, a test program can
+** simulate faults and error conditions that would otherwise be difficult
+** or impossible to induce. The set of system calls that can be overridden
+** varies from one VFS to another, and from one version of the same VFS to the
+** next. Applications that use these interfaces must be prepared for any
+** or all of these interfaces to be NULL or for their behavior to change
+** from one release to the next. Applications must not attempt to access
+** any of these methods if the iVersion of the VFS is less than 3.
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+typedef void (*sqlite3_syscall_ptr)(void);
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number (currently 3) */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, sqlite3_filename zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /*
+ ** The methods above are in version 1 of the sqlite_vfs object
+ ** definition. Those that follow are added in version 2 or later
+ */
+ int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
+ /*
+ ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
+ ** Those below are for version 3 and greater.
+ */
+ int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
+ sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
+ const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
+ /*
+ ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
+ ** New fields may be appended in future versions. The iVersion
+ ** value will increment whenever this happens.
+ */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the named directory is both readable and writable
+** (in other words, if files can be added, removed, and renamed within
+** the directory).
+** The SQLITE_ACCESS_READWRITE constant is currently used only by the
+** [temp_store_directory pragma], though this could change in a future
+** release of SQLite.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
+** currently unused, though it might be used in a future release of
+** SQLite.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */
+#define SQLITE_ACCESS_READ 2 /* Unused */
+
+/*
+** CAPI3REF: Flags for the xShmLock VFS method
+**
+** These integer constants define the various locking operations
+** allowed by the xShmLock method of [sqlite3_io_methods]. The
+** following are the only legal combinations of flags to the
+** xShmLock method:
+**
+** <ul>
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
+** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
+** </ul>
+**
+** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
+** was given on the corresponding lock.
+**
+** The xShmLock method can transition between unlocked and SHARED or
+** between unlocked and EXCLUSIVE. It cannot transition between SHARED
+** and EXCLUSIVE.
+*/
+#define SQLITE_SHM_UNLOCK 1
+#define SQLITE_SHM_LOCK 2
+#define SQLITE_SHM_SHARED 4
+#define SQLITE_SHM_EXCLUSIVE 8
+
+/*
+** CAPI3REF: Maximum xShmLock index
+**
+** The xShmLock method on [sqlite3_io_methods] may use values
+** between 0 and this upper bound as its "offset" argument.
+** The SQLite core will never attempt to acquire or release a
+** lock outside of this range
+*/
+#define SQLITE_SHM_NLOCK 8
+
+
+/*
+** CAPI3REF: Initialize The SQLite Library
+**
+** ^The sqlite3_initialize() routine initializes the
+** SQLite library. ^The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+** These routines are designed to aid in process initialization and
+** shutdown on embedded systems. Workstation applications using
+** SQLite normally do not need to invoke either of these routines.
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). ^(Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.)^
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
+**
+** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
+** is not. The sqlite3_shutdown() interface must only be called from a
+** single thread. All open [database connections] must be closed and all
+** other SQLite resources must be deallocated prior to invoking
+** sqlite3_shutdown().
+**
+** Among other things, ^sqlite3_initialize() will invoke
+** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
+** will invoke sqlite3_os_end().
+**
+** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** ^If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** ^The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** <b>The sqlite3_config() interface is not threadsafe. The application
+** must ensure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running.</b>
+**
+** The first argument to sqlite3_config() is an integer
+** [configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [configuration option]
+** in the first argument.
+**
+** For most configuration options, the sqlite3_config() interface
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** The exceptional configuration options that may be invoked at any time
+** are called "anytime configuration options".
+** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
+** [sqlite3_shutdown()] with a first argument that is not an anytime
+** configuration option, then the sqlite3_config() call will return SQLITE_MISUSE.
+** Note, however, that ^sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** ^If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+SQLITE_API int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections
+** METHOD: sqlite3
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument).
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
+** that indicates what aspect of the [database connection] is being configured.
+** Subsequent arguments vary depending on the configuration verb.
+**
+** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
+** the call is considered successful.
+*/
+SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc, xRealloc, and xFree methods must work like the
+** malloc(), realloc() and free() functions from the standard C library.
+** ^SQLite guarantees that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. For example,
+** it might allocate any required mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options
+** KEYWORDS: {configuration option}
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** Most of the configuration options for sqlite3_config()
+** will only work if invoked prior to [sqlite3_initialize()] or after
+** [sqlite3_shutdown()]. The few exceptions to this rule are called
+** "anytime configuration options".
+** ^Calling [sqlite3_config()] with a first argument that is not an
+** anytime configuration option in between calls to [sqlite3_initialize()] and
+** [sqlite3_shutdown()] is a no-op that returns SQLITE_MISUSE.
+**
+** The set of anytime configuration options can change (by insertions
+** and/or deletions) from one release of SQLite to the next.
+** As of SQLite version 3.42.0, the complete set of anytime configuration
+** options is:
+** <ul>
+** <li> SQLITE_CONFIG_LOG
+** <li> SQLITE_CONFIG_PCACHE_HDRSZ
+** </ul>
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Single-thread. In other words, it disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to change the [threading mode] from its default
+** value of Single-thread and so [sqlite3_config()] will return
+** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
+** configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Multi-thread. In other words, it disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Multi-thread [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
+**
+** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
+** <dd>There are no arguments to this option. ^This option sets the
+** [threading mode] to Serialized. In other words, this option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Serialized [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
+**
+** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is
+** a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.)^ ^SQLite makes
+** its own private copy of the content of the [sqlite3_mem_methods] structure
+** before the [sqlite3_config()] call returns.</dd>
+**
+** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mem_methods] structure.
+** The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.)^
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example. </dd>
+**
+** [[SQLITE_CONFIG_SMALL_MALLOC]] <dt>SQLITE_CONFIG_SMALL_MALLOC</dt>
+** <dd> ^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of
+** type int, interpreted as a boolean, which if true provides a hint to
+** SQLite that it should avoid large memory allocations if possible.
+** SQLite will run faster if it is free to make large memory allocations,
+** but some application might prefer to run slower in exchange for
+** guarantees about memory fragmentation that are possible if large
+** allocations are avoided. This hint is normally off.
+** </dd>
+**
+** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
+** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
+** interpreted as a boolean, which enables or disables the collection of
+** memory allocation statistics. ^(When memory allocation statistics are
+** disabled, the following SQLite interfaces become non-operational:
+** <ul>
+** <li> [sqlite3_hard_heap_limit64()]
+** <li> [sqlite3_memory_used()]
+** <li> [sqlite3_memory_highwater()]
+** <li> [sqlite3_soft_heap_limit64()]
+** <li> [sqlite3_status64()]
+** </ul>)^
+** ^Memory allocation statistics are enabled by default unless SQLite is
+** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
+** allocation statistics are disabled by default.
+** </dd>
+**
+** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
+** <dd> The SQLITE_CONFIG_SCRATCH option is no longer used.
+** </dd>
+**
+** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
+** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
+** that SQLite can use for the database page cache with the default page
+** cache implementation.
+** This configuration option is a no-op if an application-defined page
+** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].
+** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
+** 8-byte aligned memory (pMem), the size of each page cache line (sz),
+** and the number of cache lines (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 65536) plus some extra bytes for each
+** page header. ^The number of extra bytes needed by the page header
+** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].
+** ^It is harmless, apart from the wasted memory,
+** for the sz parameter to be larger than necessary. The pMem
+** argument must be either a NULL pointer or a pointer to an 8-byte
+** aligned block of memory of at least sz*N bytes, otherwise
+** subsequent behavior is undefined.
+** ^When pMem is not NULL, SQLite will strive to use the memory provided
+** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
+** a page cache line is larger than sz bytes or if all of the pMem buffer
+** is exhausted.
+** ^If pMem is NULL and N is non-zero, then each database connection
+** does an initial bulk allocation for page cache memory
+** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
+** of -1024*N bytes if N is negative, . ^If additional
+** page cache memory is needed beyond what is provided by the initial
+** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
+** additional cache line. </dd>
+**
+** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
+** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer
+** that SQLite will use for all of its dynamic memory allocation needs
+** beyond those provided for by [SQLITE_CONFIG_PAGECACHE].
+** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
+** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
+** [SQLITE_ERROR] if invoked otherwise.
+** ^There are three arguments to SQLITE_CONFIG_HEAP:
+** An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
+** memory pointer is not NULL then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.
+** The minimum allocation size is capped at 2**12. Reasonable values
+** for the minimum allocation size are 2**5 through 2**8.</dd>
+**
+** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
+** pointer to an instance of the [sqlite3_mutex_methods] structure.
+** The argument specifies alternative low-level mutex routines to be used
+** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of
+** the content of the [sqlite3_mutex_methods] structure before the call to
+** [sqlite3_config()] returns. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
+** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
+** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.)^
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
+** return [SQLITE_ERROR].</dd>
+**
+** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
+** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
+** the default size of lookaside memory on each [database connection].
+** The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE
+** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** option to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.)^ </dd>
+**
+** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is
+** a pointer to an [sqlite3_pcache_methods2] object. This object specifies
+** the interface to a custom page cache implementation.)^
+** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
+**
+** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
+** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
+** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of
+** the current page cache implementation into that object.)^ </dd>
+**
+** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
+** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
+** global [error log].
+** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
+** function with a call signature of void(*)(void*,int,const char*),
+** and a pointer to void. ^If the function pointer is not NULL, it is
+** invoked by [sqlite3_log()] to process each logging event. ^If the
+** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
+** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
+** passed through as the first parameter to the application-defined logger
+** function whenever that function is invoked. ^The second parameter to
+** the logger function is a copy of the first parameter to the corresponding
+** [sqlite3_log()] call and is intended to be a [result code] or an
+** [extended result code]. ^The third parameter passed to the logger is
+** log message after formatting via [sqlite3_snprintf()].
+** The SQLite logging interface is not reentrant; the logger function
+** supplied by the application must not invoke any SQLite interface.
+** In a multi-threaded application, the application-defined logger
+** function must be threadsafe. </dd>
+**
+** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
+** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
+** If non-zero, then URI handling is globally enabled. If the parameter is zero,
+** then URI handling is globally disabled.)^ ^If URI handling is globally
+** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
+** [sqlite3_open16()] or
+** specified as part of [ATTACH] commands are interpreted as URIs, regardless
+** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
+** connection is opened. ^If it is globally disabled, filenames are
+** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
+** database connection is opened. ^(By default, URI handling is globally
+** disabled. The default value may be changed by compiling with the
+** [SQLITE_USE_URI] symbol defined.)^
+**
+** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
+** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
+** argument which is interpreted as a boolean in order to enable or disable
+** the use of covering indices for full table scans in the query optimizer.
+** ^The default setting is determined
+** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
+** if that compile-time option is omitted.
+** The ability to disable the use of covering indices for full table scans
+** is because some incorrectly coded legacy applications might malfunction
+** when the optimization is enabled. Providing the ability to
+** disable the optimization allows the older, buggy application code to work
+** without change even with newer versions of SQLite.
+**
+** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
+** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
+** <dd> These options are obsolete and should not be used by new code.
+** They are retained for backwards compatibility but are now no-ops.
+** </dd>
+**
+** [[SQLITE_CONFIG_SQLLOG]]
+** <dt>SQLITE_CONFIG_SQLLOG
+** <dd>This option is only available if sqlite is compiled with the
+** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
+** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
+** The second should be of type (void*). The callback is invoked by the library
+** in three separate circumstances, identified by the value passed as the
+** fourth parameter. If the fourth parameter is 0, then the database connection
+** passed as the second argument has just been opened. The third argument
+** points to a buffer containing the name of the main database file. If the
+** fourth parameter is 1, then the SQL statement that the third parameter
+** points to has just been executed. Or, if the fourth parameter is 2, then
+** the connection being passed as the second parameter is being closed. The
+** third parameter is passed NULL In this case. An example of using this
+** configuration option can be seen in the "test_sqllog.c" source file in
+** the canonical SQLite source tree.</dd>
+**
+** [[SQLITE_CONFIG_MMAP_SIZE]]
+** <dt>SQLITE_CONFIG_MMAP_SIZE
+** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
+** that are the default mmap size limit (the default setting for
+** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
+** ^The default setting can be overridden by each database connection using
+** either the [PRAGMA mmap_size] command, or by using the
+** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size
+** will be silently truncated if necessary so that it does not exceed the
+** compile-time maximum mmap size set by the
+** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
+** ^If either argument to this option is negative, then that argument is
+** changed to its compile-time default.
+**
+** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
+** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
+** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
+** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
+** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
+** that specifies the maximum size of the created heap.
+**
+** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
+** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
+** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
+** is a pointer to an integer and writes into that integer the number of extra
+** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
+** The amount of extra space required can change depending on the compiler,
+** target platform, and SQLite version.
+**
+** [[SQLITE_CONFIG_PMASZ]]
+** <dt>SQLITE_CONFIG_PMASZ
+** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
+** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
+** sorter to that integer. The default minimum PMA Size is set by the
+** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched
+** to help with sort operations when multithreaded sorting
+** is enabled (using the [PRAGMA threads] command) and the amount of content
+** to be sorted exceeds the page size times the minimum of the
+** [PRAGMA cache_size] setting and this value.
+**
+** [[SQLITE_CONFIG_STMTJRNL_SPILL]]
+** <dt>SQLITE_CONFIG_STMTJRNL_SPILL
+** <dd>^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which
+** becomes the [statement journal] spill-to-disk threshold.
+** [Statement journals] are held in memory until their size (in bytes)
+** exceeds this threshold, at which point they are written to disk.
+** Or if the threshold is -1, statement journals are always held
+** exclusively in memory.
+** Since many statement journals never become large, setting the spill
+** threshold to a value such as 64KiB can greatly reduce the amount of
+** I/O required to support statement rollback.
+** The default value for this setting is controlled by the
+** [SQLITE_STMTJRNL_SPILL] compile-time option.
+**
+** [[SQLITE_CONFIG_SORTERREF_SIZE]]
+** <dt>SQLITE_CONFIG_SORTERREF_SIZE
+** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
+** of type (int) - the new value of the sorter-reference size threshold.
+** Usually, when SQLite uses an external sort to order records according
+** to an ORDER BY clause, all fields required by the caller are present in the
+** sorted records. However, if SQLite determines based on the declared type
+** of a table column that its values are likely to be very large - larger
+** than the configured sorter-reference size threshold - then a reference
+** is stored in each sorted record and the required column values loaded
+** from the database as records are returned in sorted order. The default
+** value for this option is to never use this optimization. Specifying a
+** negative value for this option restores the default behavior.
+** This option is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
+**
+** [[SQLITE_CONFIG_MEMDB_MAXSIZE]]
+** <dt>SQLITE_CONFIG_MEMDB_MAXSIZE
+** <dd>The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter
+** [sqlite3_int64] parameter which is the default maximum size for an in-memory
+** database created using [sqlite3_deserialize()]. This default maximum
+** size can be adjusted up or down for individual databases using the
+** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control]. If this
+** configuration setting is never used, then the default maximum is determined
+** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option. If that
+** compile-time option is not set, then the default maximum is 1073741824.
+** </dl>
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* No longer used */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* no-op */
+#define SQLITE_CONFIG_GETPCACHE 15 /* no-op */
+#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
+#define SQLITE_CONFIG_URI 17 /* int */
+#define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */
+#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */
+#define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */
+#define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */
+#define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */
+#define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */
+#define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */
+#define SQLITE_CONFIG_STMTJRNL_SPILL 26 /* int nByte */
+#define SQLITE_CONFIG_SMALL_MALLOC 27 /* boolean */
+#define SQLITE_CONFIG_SORTERREF_SIZE 28 /* int nByte */
+#define SQLITE_CONFIG_MEMDB_MAXSIZE 29 /* sqlite3_int64 */
+
+/*
+** CAPI3REF: Database Connection Configuration Options
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. ^The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+** <dl>
+** [[SQLITE_DBCONFIG_LOOKASIDE]]
+** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
+** <dd> ^This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** ^The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to a memory buffer to use for lookaside memory.
+** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
+** may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
+** size of each lookaside buffer slot. ^The third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. ^If the second argument to
+** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
+** rounded down to the next smaller multiple of 8. ^(The lookaside memory
+** configuration for a database connection can only be changed when that
+** connection is not currently using lookaside memory, or in other words
+** when the "current value" returned by
+** [sqlite3_db_status](D,[SQLITE_DBSTATUS_LOOKASIDE_USED],...) is zero.
+** Any attempt to change the lookaside memory configuration when lookaside
+** memory is in use leaves the configuration unchanged and returns
+** [SQLITE_BUSY].)^</dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
+** <dd> ^This option is used to enable or disable the enforcement of
+** [foreign key constraints]. There should be two additional arguments.
+** The first argument is an integer which is 0 to disable FK enforcement,
+** positive to enable FK enforcement or negative to leave FK enforcement
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether FK enforcement is off or on
+** following this call. The second parameter may be a NULL pointer, in
+** which case the FK enforcement setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
+** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable triggers,
+** positive to enable triggers or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether triggers are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the trigger setting is not reported back.
+**
+** <p>Originally this option disabled all triggers. ^(However, since
+** SQLite version 3.35.0, TEMP triggers are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** triggers in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_VIEW]]
+** <dt>SQLITE_DBCONFIG_ENABLE_VIEW</dt>
+** <dd> ^This option is used to enable or disable [CREATE VIEW | views].
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable views,
+** positive to enable views or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether views are disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the view setting is not reported back.
+**
+** <p>Originally this option disabled all views. ^(However, since
+** SQLite version 3.35.0, TEMP views are still allowed even if
+** this option is off. So, in other words, this option now only disables
+** views in the main database schema or in the schemas of ATTACH-ed
+** databases.)^ </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
+** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
+** <dd> ^This option is used to enable or disable the
+** [fts3_tokenizer()] function which is part of the
+** [FTS3] full-text search engine extension.
+** There should be two additional arguments.
+** The first argument is an integer which is 0 to disable fts3_tokenizer() or
+** positive to enable fts3_tokenizer() or negative to leave the setting
+** unchanged.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
+** following this call. The second parameter may be a NULL pointer, in
+** which case the new setting is not reported back. </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
+** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
+** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
+** interface independently of the [load_extension()] SQL function.
+** The [sqlite3_enable_load_extension()] API enables or disables both the
+** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
+** There should be two additional arguments.
+** When the first argument to this interface is 1, then only the C-API is
+** enabled and the SQL function remains disabled. If the first argument to
+** this interface is 0, then both the C-API and the SQL function are disabled.
+** If the first argument is -1, then no changes are made to state of either the
+** C-API or the SQL function.
+** The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
+** is disabled or enabled following this call. The second parameter may
+** be a NULL pointer, in which case the new setting is not reported back.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
+** <dd> ^This option is used to change the name of the "main" database
+** schema. ^The sole argument is a pointer to a constant UTF8 string
+** which will become the new schema name in place of "main". ^SQLite
+** does not make a copy of the new main schema name string, so the application
+** must ensure that the argument passed into this DBCONFIG option is unchanged
+** until after the database connection closes.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]]
+** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
+** <dd> Usually, when a database in wal mode is closed or detached from a
+** database handle, SQLite checks if this will mean that there are now no
+** connections at all to the database. If so, it performs a checkpoint
+** operation before closing the connection. This option may be used to
+** override this behavior. The first parameter passed to this operation
+** is an integer - positive to disable checkpoints-on-close, or zero (the
+** default) to enable them, and negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer
+** into which is written 0 or 1 to indicate whether checkpoints-on-close
+** have been disabled - 0 if they are not disabled, 1 if they are.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
+** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
+** the [query planner stability guarantee] (QPSG). When the QPSG is active,
+** a single SQL query statement will always use the same algorithm regardless
+** of values of [bound parameters].)^ The QPSG disables some query optimizations
+** that look at the values of bound parameters, which can make some queries
+** slower. But the QPSG has the advantage of more predictable behavior. With
+** the QPSG active, SQLite will always use the same query plan in the field as
+** was used during testing in the lab.
+** The first argument to this setting is an integer which is 0 to disable
+** the QPSG, positive to enable QPSG, or negative to leave the setting
+** unchanged. The second parameter is a pointer to an integer into which
+** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
+** following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
+** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not
+** include output for any operations performed by trigger programs. This
+** option is used to set or clear (the default) a flag that governs this
+** behavior. The first parameter passed to this operation is an integer -
+** positive to enable output for trigger programs, or zero to disable it,
+** or negative to leave the setting unchanged.
+** The second parameter is a pointer to an integer into which is written
+** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if
+** it is not disabled, 1 if it is.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
+** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
+** [VACUUM] in order to reset a database back to an empty database
+** with no schema and no content. The following process works even for
+** a badly corrupted database file:
+** <ol>
+** <li> If the database connection is newly opened, make sure it has read the
+** database schema by preparing then discarding some query against the
+** database, or calling sqlite3_table_column_metadata(), ignoring any
+** errors. This step is only necessary if the application desires to keep
+** the database in WAL mode after the reset if it was in WAL mode before
+** the reset.
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
+** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
+** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
+** </ol>
+** Because resetting a database is destructive and irreversible, the
+** process requires the use of this obscure API and multiple steps to
+** help ensure that it does not happen by accident. Because this
+** feature must be capable of resetting corrupt databases, and
+** shutting down virtual tables may require access to that corrupt
+** storage, the library must abandon any installed virtual tables
+** without calling their xDestroy() methods.
+**
+** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
+** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
+** "defensive" flag for a database connection. When the defensive
+** flag is enabled, language features that allow ordinary SQL to
+** deliberately corrupt the database file are disabled. The disabled
+** features include but are not limited to the following:
+** <ul>
+** <li> The [PRAGMA writable_schema=ON] statement.
+** <li> The [PRAGMA journal_mode=OFF] statement.
+** <li> The [PRAGMA schema_version=N] statement.
+** <li> Writes to the [sqlite_dbpage] virtual table.
+** <li> Direct writes to [shadow tables].
+** </ul>
+** </dd>
+**
+** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]] <dt>SQLITE_DBCONFIG_WRITABLE_SCHEMA</dt>
+** <dd>The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the
+** "writable_schema" flag. This has the same effect and is logically equivalent
+** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF].
+** The first argument to this setting is an integer which is 0 to disable
+** the writable_schema, positive to enable writable_schema, or negative to
+** leave the setting unchanged. The second parameter is a pointer to an
+** integer into which is written 0 or 1 to indicate whether the writable_schema
+** is enabled or disabled following this call.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]]
+** <dt>SQLITE_DBCONFIG_LEGACY_ALTER_TABLE</dt>
+** <dd>The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates
+** the legacy behavior of the [ALTER TABLE RENAME] command such it
+** behaves as it did prior to [version 3.24.0] (2018-06-04). See the
+** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for
+** additional information. This feature can also be turned on and off
+** using the [PRAGMA legacy_alter_table] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DML]]
+** <dt>SQLITE_DBCONFIG_DQS_DML</dt>
+** <dd>The SQLITE_DBCONFIG_DQS_DML option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DML statements
+** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_DQS_DDL]]
+** <dt>SQLITE_DBCONFIG_DQS_DDL</dt>
+** <dd>The SQLITE_DBCONFIG_DQS option activates or deactivates
+** the legacy [double-quoted string literal] misfeature for DDL statements,
+** such as CREATE TABLE and CREATE INDEX. The
+** default value of this setting is determined by the [-DSQLITE_DQS]
+** compile-time option.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]]
+** <dt>SQLITE_DBCONFIG_TRUSTED_SCHEMA</dt>
+** <dd>The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to
+** assume that database schemas are untainted by malicious content.
+** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite
+** takes additional defensive steps to protect the application from harm
+** including:
+** <ul>
+** <li> Prohibit the use of SQL functions inside triggers, views,
+** CHECK constraints, DEFAULT clauses, expression indexes,
+** partial indexes, or generated columns
+** unless those functions are tagged with [SQLITE_INNOCUOUS].
+** <li> Prohibit the use of virtual tables inside of triggers or views
+** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS].
+** </ul>
+** This setting defaults to "on" for legacy compatibility, however
+** all applications are advised to turn it off if possible. This setting
+** can also be controlled using the [PRAGMA trusted_schema] statement.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]]
+** <dt>SQLITE_DBCONFIG_LEGACY_FILE_FORMAT</dt>
+** <dd>The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates
+** the legacy file format flag. When activated, this flag causes all newly
+** created database file to have a schema format version number (the 4-byte
+** integer found at offset 44 into the database header) of 1. This in turn
+** means that the resulting database file will be readable and writable by
+** any SQLite version back to 3.0.0 ([dateof:3.0.0]). Without this setting,
+** newly created databases are generally not understandable by SQLite versions
+** prior to 3.3.0 ([dateof:3.3.0]). As these words are written, there
+** is now scarcely any need to generate database files that are compatible
+** all the way back to version 3.0.0, and so this setting is of little
+** practical use, but is provided so that SQLite can continue to claim the
+** ability to generate new database files that are compatible with version
+** 3.0.0.
+** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on,
+** the [VACUUM] command will fail with an obscure error when attempting to
+** process a table with generated columns and a descending index. This is
+** not considered a bug since SQLite versions 3.3.0 and earlier do not support
+** either generated columns or descending indexes.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_STMT_SCANSTATUS]]
+** <dt>SQLITE_DBCONFIG_STMT_SCANSTATUS</dt>
+** <dd>The SQLITE_DBCONFIG_STMT_SCANSTATUS option is only useful in
+** SQLITE_ENABLE_STMT_SCANSTATUS builds. In this case, it sets or clears
+** a flag that enables collection of the sqlite3_stmt_scanstatus_v2()
+** statistics. For statistics to be collected, the flag must be set on
+** the database handle both when the SQL statement is prepared and when it
+** is stepped. The flag is set (collection of statistics is enabled)
+** by default. This option takes two arguments: an integer and a pointer to
+** an integer.. The first argument is 1, 0, or -1 to enable, disable, or
+** leave unchanged the statement scanstatus option. If the second argument
+** is not NULL, then the value of the statement scanstatus setting after
+** processing the first argument is written into the integer that the second
+** argument points to.
+** </dd>
+**
+** [[SQLITE_DBCONFIG_REVERSE_SCANORDER]]
+** <dt>SQLITE_DBCONFIG_REVERSE_SCANORDER</dt>
+** <dd>The SQLITE_DBCONFIG_REVERSE_SCANORDER option changes the default order
+** in which tables and indexes are scanned so that the scans start at the end
+** and work toward the beginning rather than starting at the beginning and
+** working toward the end. Setting SQLITE_DBCONFIG_REVERSE_SCANORDER is the
+** same as setting [PRAGMA reverse_unordered_selects]. This option takes
+** two arguments which are an integer and a pointer to an integer. The first
+** argument is 1, 0, or -1 to enable, disable, or leave unchanged the
+** reverse scan order flag, respectively. If the second argument is not NULL,
+** then 0 or 1 is written into the integer that the second argument points to
+** depending on if the reverse scan order flag is set after processing the
+** first argument.
+** </dd>
+**
+** </dl>
+*/
+#define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+#define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
+#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */
+#define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */
+#define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */
+#define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */
+#define SQLITE_DBCONFIG_WRITABLE_SCHEMA 1011 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE 1012 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DML 1013 /* int int* */
+#define SQLITE_DBCONFIG_DQS_DDL 1014 /* int int* */
+#define SQLITE_DBCONFIG_ENABLE_VIEW 1015 /* int int* */
+#define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT 1016 /* int int* */
+#define SQLITE_DBCONFIG_TRUSTED_SCHEMA 1017 /* int int* */
+#define SQLITE_DBCONFIG_STMT_SCANSTATUS 1018 /* int int* */
+#define SQLITE_DBCONFIG_REVERSE_SCANORDER 1019 /* int int* */
+#define SQLITE_DBCONFIG_MAX 1019 /* Largest DBCONFIG */
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes
+** METHOD: sqlite3
+**
+** ^The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. ^The extended result
+** codes are disabled by default for historical compatibility.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid
+** METHOD: sqlite3
+**
+** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
+** has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. ^The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. ^If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
+** the most recent successful [INSERT] into a rowid table or [virtual table]
+** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
+** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred
+** on the database connection D, then sqlite3_last_insert_rowid(D) returns
+** zero.
+**
+** As well as being set automatically as rows are inserted into database
+** tables, the value returned by this function may be set explicitly by
+** [sqlite3_set_last_insert_rowid()]
+**
+** Some virtual table implementations may INSERT rows into rowid tables as
+** part of committing a transaction (e.g. to flush data accumulated in memory
+** to disk). In this case subsequent calls to this function return the rowid
+** associated with these internal INSERT operations, which leads to
+** unintuitive results. Virtual table implementations that do write to rowid
+** tables in this way can avoid this problem by restoring the original
+** rowid value using [sqlite3_set_last_insert_rowid()] before returning
+** control to the user.
+**
+** ^(If an [INSERT] occurs within a trigger then this routine will
+** return the [rowid] of the inserted row as long as the trigger is
+** running. Once the trigger program ends, the value returned
+** by this routine reverts to what it was before the trigger was fired.)^
+**
+** ^An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. ^(When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.)^
+**
+** ^For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** This function is accessible to SQL statements via the
+** [last_insert_rowid() SQL function].
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Set the Last Insert Rowid value.
+** METHOD: sqlite3
+**
+** The sqlite3_set_last_insert_rowid(D, R) method allows the application to
+** set the value returned by calling sqlite3_last_insert_rowid(D) to R
+** without inserting a row into the database.
+*/
+SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the number of rows modified, inserted or
+** deleted by the most recently completed INSERT, UPDATE or DELETE
+** statement on the database connection specified by the only parameter.
+** The two functions are identical except for the type of the return value
+** and that if the number of rows modified by the most recent INSERT, UPDATE
+** or DELETE is greater than the maximum value supported by type "int", then
+** the return value of sqlite3_changes() is undefined. ^Executing any other
+** type of SQL statement does not modify the value returned by these functions.
+**
+** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
+** considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
+** [foreign key actions] or [REPLACE] constraint resolution are not counted.
+**
+** Changes to a view that are intercepted by
+** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
+** returned by sqlite3_changes() immediately after an INSERT, UPDATE or
+** DELETE statement run on a view is always zero. Only changes made to real
+** tables are counted.
+**
+** Things are more complicated if the sqlite3_changes() function is
+** executed while a trigger program is running. This may happen if the
+** program uses the [changes() SQL function], or if some other callback
+** function invokes sqlite3_changes() directly. Essentially:
+**
+** <ul>
+** <li> ^(Before entering a trigger program the value returned by
+** sqlite3_changes() function is saved. After the trigger program
+** has finished, the original value is restored.)^
+**
+** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
+** statement sets the value returned by sqlite3_changes()
+** upon completion as normal. Of course, this value will not include
+** any changes performed by sub-triggers, as the sqlite3_changes()
+** value will be saved and restored after each sub-trigger has run.)^
+** </ul>
+**
+** ^This means that if the changes() SQL function (or similar) is used
+** by the first INSERT, UPDATE or DELETE statement within a trigger, it
+** returns the value as set when the calling statement began executing.
+** ^If it is used by the second or subsequent such statement within a trigger
+** program, the value returned reflects the number of rows modified by the
+** previous INSERT, UPDATE or DELETE statement within the same trigger.
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_total_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** </ul>
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified
+** METHOD: sqlite3
+**
+** ^These functions return the total number of rows inserted, modified or
+** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
+** since the database connection was opened, including those executed as
+** part of trigger programs. The two functions are identical except for the
+** type of the return value and that if the number of rows modified by the
+** connection exceeds the maximum value supported by type "int", then
+** the return value of sqlite3_total_changes() is undefined. ^Executing
+** any other type of SQL statement does not affect the value returned by
+** sqlite3_total_changes().
+**
+** ^Changes made as part of [foreign key actions] are included in the
+** count, but those made as part of REPLACE constraint resolution are
+** not. ^Changes to a view that are intercepted by INSTEAD OF triggers
+** are not counted.
+**
+** The [sqlite3_total_changes(D)] interface only reports the number
+** of rows that changed due to SQL statement run against database
+** connection D. Any changes by other database connections are ignored.
+** To detect changes against a database file from other database
+** connections use the [PRAGMA data_version] command or the
+** [SQLITE_FCNTL_DATA_VERSION] [file control].
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+**
+** See also:
+** <ul>
+** <li> the [sqlite3_changes()] interface
+** <li> the [count_changes pragma]
+** <li> the [changes() SQL function]
+** <li> the [data_version pragma]
+** <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
+** </ul>
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+SQLITE_API sqlite3_int64 sqlite3_total_changes64(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query
+** METHOD: sqlite3
+**
+** ^This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** ^It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** ^If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** ^The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. ^Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statement count reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. ^New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** ^A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+**
+** ^The [sqlite3_is_interrupted(D)] interface can be used to determine whether
+** or not an interrupt is currently in effect for [database connection] D.
+** It returns 1 if an interrupt is currently in effect, or 0 otherwise.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3*);
+SQLITE_API int sqlite3_is_interrupted(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. ^These routines return 1 if the input string
+** appears to be a complete SQL statement. ^A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. ^Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** ^These routines return 0 if the statement is incomplete. ^If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** ^These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.)^
+**
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
+** KEYWORDS: {busy-handler callback} {busy handler}
+** METHOD: sqlite3
+**
+** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
+** that might be invoked with argument P whenever
+** an attempt is made to access a database table associated with
+** [database connection] D when another thread
+** or process has the table locked.
+** The sqlite3_busy_handler() interface is used to implement
+** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
+**
+** ^If the busy callback is NULL, then [SQLITE_BUSY]
+** is returned immediately upon encountering the lock. ^If the busy callback
+** is not NULL, then the callback might be invoked with two arguments.
+**
+** ^The first argument to the busy handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). ^The second argument to
+** the busy handler callback is the number of times that the busy handler has
+** been invoked previously for the same locking event. ^If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] is returned
+** to the application.
+** ^If the callback returns non-zero, then another attempt
+** is made to access the database and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. ^If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** to the application instead of invoking the
+** busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** ^The default busy callback is NULL.
+**
+** ^(There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
+** or evaluating [PRAGMA busy_timeout=N] will change the
+** busy handler and thus clear any previously set busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. In other words,
+** the busy handler is not reentrant. Any such actions
+** result in undefined behavior.
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
+*/
+SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout
+** METHOD: sqlite3
+**
+** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. ^The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. ^After at least "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY].
+**
+** ^Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** ^(There can only be a single busy handler for a particular
+** [database connection] at any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.)^
+**
+** See also: [PRAGMA busy_timeout]
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries
+** METHOD: sqlite3
+**
+** This is a legacy interface that is preserved for backwards compatibility.
+** Use of this interface is not recommended.
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
+**
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** ^(As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+** </pre></blockquote>
+**
+** There are two columns (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array named azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>)^
+**
+** ^The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter and returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the application has finished with the result from sqlite3_get_table(),
+** it must pass the result table pointer to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+** These routines understand most of the common formatting options from
+** the standard library printf()
+** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
+** See the [built-in printf()] documentation for details.
+**
+** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc64()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. ^Both routines return a
+** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf().)^ This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. ^(Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer.)^ We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. ^The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
+**
+** See also: [built-in printf()], [printf() SQL function]
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific [VFS] implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** ^The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** ^If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. ^If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** ^The sqlite3_malloc64(N) routine works just like
+** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
+** of a signed 32-bit integer.
+**
+** ^Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. ^The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** ^The sqlite3_realloc(X,N) interface attempts to resize a
+** prior memory allocation X to be at least N bytes.
+** ^If the X parameter to sqlite3_realloc(X,N)
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N).
+** ^If the N parameter to sqlite3_realloc(X,N) is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(X).
+** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if insufficient memory is available.
+** ^If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc(X,N) and the prior allocation is freed.
+** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
+** prior allocation is not freed.
+**
+** ^The sqlite3_realloc64(X,N) interfaces works the same as
+** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
+** of a 32-bit signed integer.
+**
+** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
+** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
+** sqlite3_msize(X) returns the size of that memory allocation in bytes.
+** ^The value returned by sqlite3_msize(X) might be larger than the number
+** of bytes requested when X was allocated. ^If X is a NULL pointer then
+** sqlite3_msize(X) returns zero. If X points to something that is not
+** the beginning of memory allocation, or if it points to a formerly
+** valid memory allocation that has now been freed, then the behavior
+** of sqlite3_msize(X) is undefined and possibly harmful.
+**
+** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
+** sqlite3_malloc64(), and sqlite3_realloc64()
+** is always aligned to at least an 8 byte boundary, or to a
+** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
+** option is used.
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
+SQLITE_API void sqlite3_free(void*);
+SQLITE_API sqlite3_uint64 sqlite3_msize(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** ^The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
+** ^The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset. ^The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** ^The memory high-water mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. ^The value returned
+** by [sqlite3_memory_highwater(1)] is the high-water mark
+** prior to the reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the built-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** ^A call to this routine stores N bytes of randomness into buffer P.
+** ^The P parameter can be a NULL pointer.
+**
+** ^If this routine has not been previously called or if the previous
+** call had N less than one or a NULL pointer for P, then the PRNG is
+** seeded using randomness obtained from the xRandomness method of
+** the default [sqlite3_vfs] object.
+** ^If the previous call to this routine had an N of 1 or more and a
+** non-NULL P then the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks
+** METHOD: sqlite3
+** KEYWORDS: {authorizer callback}
+**
+** ^This routine registers an authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** ^The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
+** and [sqlite3_prepare16_v3()]. ^At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. ^The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. ^If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. ^When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** ^The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. ^The third through sixth parameters
+** to the callback are either NULL pointers or zero-terminated strings
+** that contain additional details about the action to be authorized.
+** Applications must always be prepared to encounter a NULL pointer in any
+** of the third through the sixth parameters of the authorization callback.
+**
+** ^If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** ^When a table is referenced by a [SELECT] but no column values are
+** extracted from that table (for example in a query like
+** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
+** is invoked once for that table with a column name that is an empty string.
+** ^If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** ^(Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call.)^ ^Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** ^Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+**
+** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
+** returned from the [sqlite3_vtab_on_conflict()] interface.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. ^(The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
+#define SQLITE_RECURSIVE 33 /* NULL NULL */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions
+** METHOD: sqlite3
+**
+** These routines are deprecated. Use the [sqlite3_trace_v2()] interface
+** instead of the routines described here.
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** ^The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
+** SQL statement text as the statement first begins executing.
+** ^(Additional sqlite3_trace() callbacks might occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.)^
+**
+** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
+** the length of [bound parameter] expansion in the output of sqlite3_trace().
+**
+** ^The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. ^The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run. ^The profile callback
+** time is in units of nanoseconds, however the current implementation
+** is only capable of millisecond resolution so the six least significant
+** digits in the time are meaningless. Future versions of SQLite
+** might provide greater resolution on the profiler callback. Invoking
+** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
+** profile callback.
+*/
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*,
+ void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: SQL Trace Event Codes
+** KEYWORDS: SQLITE_TRACE
+**
+** These constants identify classes of events that can be monitored
+** using the [sqlite3_trace_v2()] tracing logic. The M argument
+** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of
+** the following constants. ^The first argument to the trace callback
+** is one of the following constants.
+**
+** New tracing constants may be added in future releases.
+**
+** ^A trace callback has four arguments: xCallback(T,C,P,X).
+** ^The T argument is one of the integer type codes above.
+** ^The C argument is a copy of the context pointer passed in as the
+** fourth argument to [sqlite3_trace_v2()].
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** <dl>
+** [[SQLITE_TRACE_STMT]] <dt>SQLITE_TRACE_STMT</dt>
+** <dd>^An SQLITE_TRACE_STMT callback is invoked when a prepared statement
+** first begins running and possibly at other times during the
+** execution of the prepared statement, such as at the start of each
+** trigger subprogram. ^The P argument is a pointer to the
+** [prepared statement]. ^The X argument is a pointer to a string which
+** is the unexpanded SQL text of the prepared statement or an SQL comment
+** that indicates the invocation of a trigger. ^The callback can compute
+** the same text that would have been returned by the legacy [sqlite3_trace()]
+** interface by using the X argument when X begins with "--" and invoking
+** [sqlite3_expanded_sql(P)] otherwise.
+**
+** [[SQLITE_TRACE_PROFILE]] <dt>SQLITE_TRACE_PROFILE</dt>
+** <dd>^An SQLITE_TRACE_PROFILE callback provides approximately the same
+** information as is provided by the [sqlite3_profile()] callback.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument points to a 64-bit integer which is approximately
+** the number of nanoseconds that the prepared statement took to run.
+** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes.
+**
+** [[SQLITE_TRACE_ROW]] <dt>SQLITE_TRACE_ROW</dt>
+** <dd>^An SQLITE_TRACE_ROW callback is invoked whenever a prepared
+** statement generates a single row of result.
+** ^The P argument is a pointer to the [prepared statement] and the
+** X argument is unused.
+**
+** [[SQLITE_TRACE_CLOSE]] <dt>SQLITE_TRACE_CLOSE</dt>
+** <dd>^An SQLITE_TRACE_CLOSE callback is invoked when a database
+** connection closes.
+** ^The P argument is a pointer to the [database connection] object
+** and the X argument is unused.
+** </dl>
+*/
+#define SQLITE_TRACE_STMT 0x01
+#define SQLITE_TRACE_PROFILE 0x02
+#define SQLITE_TRACE_ROW 0x04
+#define SQLITE_TRACE_CLOSE 0x08
+
+/*
+** CAPI3REF: SQL Trace Hook
+** METHOD: sqlite3
+**
+** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
+** function X against [database connection] D, using property mask M
+** and context pointer P. ^If the X callback is
+** NULL or if the M mask is zero, then tracing is disabled. The
+** M argument should be the bitwise OR-ed combination of
+** zero or more [SQLITE_TRACE] constants.
+**
+** ^Each call to either sqlite3_trace(D,X,P) or sqlite3_trace_v2(D,M,X,P)
+** overrides (cancels) all prior calls to sqlite3_trace(D,X,P) or
+** sqlite3_trace_v2(D,M,X,P) for the [database connection] D. Each
+** database connection may have at most one trace callback.
+**
+** ^The X callback is invoked whenever any of the events identified by
+** mask M occur. ^The integer return value from the callback is currently
+** ignored, though this may change in future releases. Callback
+** implementations should return zero to ensure future compatibility.
+**
+** ^A trace callback is invoked with four arguments: callback(T,C,P,X).
+** ^The T argument is one of the [SQLITE_TRACE]
+** constants to indicate why the callback was invoked.
+** ^The C argument is a copy of the context pointer.
+** The P and X arguments are pointers whose meanings depend on T.
+**
+** The sqlite3_trace_v2() interface is intended to replace the legacy
+** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
+** are deprecated.
+*/
+SQLITE_API int sqlite3_trace_v2(
+ sqlite3*,
+ unsigned uMask,
+ int(*xCallback)(unsigned,void*,void*,void*),
+ void *pCtx
+);
+
+/*
+** CAPI3REF: Query Progress Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
+** function X to be invoked periodically during long running calls to
+** [sqlite3_step()] and [sqlite3_prepare()] and similar for
+** database connection D. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** ^The parameter P is passed through as the only parameter to the
+** callback function X. ^The parameter N is the approximate number of
+** [virtual machine instructions] that are evaluated between successive
+** invocations of the callback X. ^If N is less than one then the progress
+** handler is disabled.
+**
+** ^Only a single progress handler may be defined at one time per
+** [database connection]; setting a new progress handler cancels the
+** old one. ^Setting parameter X to NULL disables the progress handler.
+** ^The progress handler is also disabled by setting N to a value less
+** than 1.
+**
+** ^If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
+**
+** The progress handler callback must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** The progress handler callback would originally only be invoked from the
+** bytecode engine. It still might be invoked during [sqlite3_prepare()]
+** and similar because those routines might force a reparse of the schema
+** which involves running the bytecode engine. However, beginning with
+** SQLite version 3.41.0, the progress handler callback might also be
+** invoked directly from [sqlite3_prepare()] while analyzing and generating
+** code for complex queries.
+*/
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection
+** CONSTRUCTOR: sqlite3
+**
+** ^These routines open an SQLite database file as specified by the
+** filename argument. ^The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). ^(A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object.)^ ^(If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error following a failure of any
+** of the sqlite3_open() routines.
+**
+** ^The default encoding will be UTF-8 for databases created using
+** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
+** created using sqlite3_open16() will be UTF-16 in the native byte order.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. ^(The flags parameter to
+** sqlite3_open_v2() must include, at a minimum, one of the following
+** three flag combinations:)^
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
+** <dd>The database is opened in read-only mode. If the database does
+** not already exist, an error is returned.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
+** <dd>The database is opened for reading and writing if possible, or
+** reading only if the file is write protected by the operating
+** system. In either case the database must already exist, otherwise
+** an error is returned. For historical reasons, if opening in
+** read-write mode fails due to OS-level permissions, an attempt is
+** made to open it in read-only mode. [sqlite3_db_readonly()] can be
+** used to determine whether the database is actually
+** read-write.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
+** <dd>The database is opened for reading and writing, and is created if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().</dd>)^
+** </dl>
+**
+** In addition to the required flags, the following optional flags are
+** also supported:
+**
+** <dl>
+** ^(<dt>[SQLITE_OPEN_URI]</dt>
+** <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
+** <dd>The database will be opened as an in-memory database. The database
+** is named by the "filename" argument for the purposes of cache-sharing,
+** if shared cache mode is enabled, but the "filename" is otherwise ignored.
+** </dd>)^
+**
+** ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
+** <dd>The new database connection will use the "multi-thread"
+** [threading mode].)^ This means that separate threads are allowed
+** to use SQLite at the same time, as long as each thread is using
+** a different [database connection].
+**
+** ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
+** <dd>The new database connection will use the "serialized"
+** [threading mode].)^ This means the multiple threads can safely
+** attempt to use the same database connection at the same time.
+** (Mutexes will block any actual concurrency, but in this mode
+** there is no harm in trying.)
+**
+** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
+** <dd>The database is opened [shared cache] enabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+** The [use of shared cache mode is discouraged] and hence shared cache
+** capabilities may be omitted from many builds of SQLite. In such cases,
+** this option is a no-op.
+**
+** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
+** <dd>The database is opened [shared cache] disabled, overriding
+** the default shared cache setting provided by
+** [sqlite3_enable_shared_cache()].)^
+**
+** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt>
+** <dd>The database connection comes up in "extended result code mode".
+** In other words, the database behaves has if
+** [sqlite3_extended_result_codes(db,1)] where called on the database
+** connection as soon as the connection is created. In addition to setting
+** the extended result code mode, this flag also causes [sqlite3_open_v2()]
+** to return an extended result code.</dd>
+**
+** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
+** <dd>The database filename is not allowed to contain a symbolic link</dd>
+** </dl>)^
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** required combinations shown above optionally combined with other
+** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
+** then the behavior is undefined. Historic versions of SQLite
+** have silently ignored surplus bits in the flags parameter to
+** sqlite3_open_v2(), however that behavior might not be carried through
+** into future versions of SQLite and so applications should not rely
+** upon it. Note in particular that the SQLITE_OPEN_EXCLUSIVE flag is a no-op
+** for sqlite3_open_v2(). The SQLITE_OPEN_EXCLUSIVE does *not* cause
+** the open to fail if the database already exists. The SQLITE_OPEN_EXCLUSIVE
+** flag is intended for use by the [sqlite3_vfs|VFS interface] only, and not
+** by sqlite3_open_v2().
+**
+** ^The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. ^If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** ^If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. ^This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** ^If the filename is an empty string, then a private, temporary
+** on-disk database will be created. ^This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
+**
+** ^If [URI filename] interpretation is enabled, and the filename argument
+** begins with "file:", then the filename is interpreted as a URI. ^URI
+** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
+** set in the third argument to sqlite3_open_v2(), or if it has
+** been enabled globally using the [SQLITE_CONFIG_URI] option with the
+** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
+** URI filename interpretation is turned off
+** by default, but future releases of SQLite might enable URI filename
+** interpretation by default. See "[URI filenames]" for additional
+** information.
+**
+** URI filenames are parsed according to RFC 3986. ^If the URI contains an
+** authority, then it must be either an empty string or the string
+** "localhost". ^If the authority is not an empty string or "localhost", an
+** error is returned to the caller. ^The fragment component of a URI, if
+** present, is ignored.
+**
+** ^SQLite uses the path component of the URI as the name of the disk file
+** which contains the database. ^If the path begins with a '/' character,
+** then it is interpreted as an absolute path. ^If the path does not begin
+** with a '/' (meaning that the authority section is omitted from the URI)
+** then the path is interpreted as a relative path.
+** ^(On windows, the first component of an absolute path
+** is a drive specification (e.g. "C:").)^
+**
+** [[core URI query parameters]]
+** The query component of a URI may contain parameters that are interpreted
+** either by SQLite itself, or by a [VFS | custom VFS implementation].
+** SQLite and its built-in [VFSes] interpret the
+** following query parameters:
+**
+** <ul>
+** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
+** a VFS object that provides the operating system interface that should
+** be used to access the database file on disk. ^If this option is set to
+** an empty string the default VFS object is used. ^Specifying an unknown
+** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
+** present, then the VFS specified by the option takes precedence over
+** the value passed as the fourth parameter to sqlite3_open_v2().
+**
+** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
+** "rwc", or "memory". Attempting to set it to any other value is
+** an error)^.
+** ^If "ro" is specified, then the database is opened for read-only
+** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
+** third argument to sqlite3_open_v2(). ^If the mode option is set to
+** "rw", then the database is opened for read-write (but not create)
+** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
+** been set. ^Value "rwc" is equivalent to setting both
+** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
+** set to "memory" then a pure [in-memory database] that never reads
+** or writes from disk is used. ^It is an error to specify a value for
+** the mode parameter that is less restrictive than that specified by
+** the flags passed in the third parameter to sqlite3_open_v2().
+**
+** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
+** "private". ^Setting it to "shared" is equivalent to setting the
+** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
+** sqlite3_open_v2(). ^Setting the cache parameter to "private" is
+** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
+** ^If sqlite3_open_v2() is used and the "cache" parameter is present in
+** a URI filename, its value overrides any behavior requested by setting
+** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
+**
+** <li> <b>psow</b>: ^The psow parameter indicates whether or not the
+** [powersafe overwrite] property does or does not apply to the
+** storage media on which the database file resides.
+**
+** <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
+** which if set disables file locking in rollback journal modes. This
+** is useful for accessing a database on a filesystem that does not
+** support locking. Caution: Database corruption might result if two
+** or more processes write to the same database and any one of those
+** processes uses nolock=1.
+**
+** <li> <b>immutable</b>: ^The immutable parameter is a boolean query
+** parameter that indicates that the database file is stored on
+** read-only media. ^When immutable is set, SQLite assumes that the
+** database file cannot be changed, even by a process with higher
+** privilege, and so the database is opened read-only and all locking
+** and change detection is disabled. Caution: Setting the immutable
+** property on a database file that does in fact change can result
+** in incorrect query results and/or [SQLITE_CORRUPT] errors.
+** See also: [SQLITE_IOCAP_IMMUTABLE].
+**
+** </ul>
+**
+** ^Specifying an unknown parameter in the query component of a URI is not an
+** error. Future versions of SQLite might understand additional query
+** parameters. See "[query parameters with special meaning to SQLite]" for
+** additional information.
+**
+** [[URI filename examples]] <h3>URI filename examples</h3>
+**
+** <table border="1" align=center cellpadding=5>
+** <tr><th> URI filenames <th> Results
+** <tr><td> file:data.db <td>
+** Open the file "data.db" in the current directory.
+** <tr><td> file:/home/fred/data.db<br>
+** file:///home/fred/data.db <br>
+** file://localhost/home/fred/data.db <br> <td>
+** Open the database file "/home/fred/data.db".
+** <tr><td> file://darkstar/home/fred/data.db <td>
+** An error. "darkstar" is not a recognized authority.
+** <tr><td style="white-space:nowrap">
+** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
+** <td> Windows only: Open the file "data.db" on fred's desktop on drive
+** C:. Note that the %20 escaping in this example is not strictly
+** necessary - space characters can be used literally
+** in URI filenames.
+** <tr><td> file:data.db?mode=ro&cache=private <td>
+** Open file "data.db" in the current directory for read-only access.
+** Regardless of whether or not shared-cache mode is enabled by
+** default, use a private cache.
+** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
+** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
+** that uses dot-files in place of posix advisory locking.
+** <tr><td> file:data.db?mode=readonly <td>
+** An error. "readonly" is not a valid option for the "mode" parameter.
+** Use "ro" instead: "file:data.db?mode=ro".
+** </table>
+**
+** ^URI hexadecimal escape sequences (%HH) are supported within the path and
+** query components of a URI. A hexadecimal escape sequence consists of a
+** percent sign - "%" - followed by exactly two hexadecimal digits
+** specifying an octet value. ^Before the path or query components of a
+** URI filename are interpreted, they are encoded using UTF-8 and all
+** hexadecimal escape sequences replaced by a single byte containing the
+** corresponding octet. If this process generates an invalid UTF-8 encoding,
+** the results are undefined.
+**
+** <b>Note to Windows users:</b> The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
+** features that require the use of temporary files may fail.
+**
+** See also: [sqlite3_temp_directory]
+*/
+SQLITE_API int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Obtain Values For URI Parameters
+**
+** These are utility routines, useful to [VFS|custom VFS implementations],
+** that check if a database file was a URI that contained a specific query
+** parameter, and if so obtains the value of that query parameter.
+**
+** The first parameter to these interfaces (hereafter referred to
+** as F) must be one of:
+** <ul>
+** <li> A database filename pointer created by the SQLite core and
+** passed into the xOpen() method of a VFS implementation, or
+** <li> A filename obtained from [sqlite3_db_filename()], or
+** <li> A new filename constructed using [sqlite3_create_filename()].
+** </ul>
+** If the F parameter is not one of the above, then the behavior is
+** undefined and probably undesirable. Older versions of SQLite were
+** more tolerant of invalid F parameters than newer versions.
+**
+** If F is a suitable filename (as described in the previous paragraph)
+** and if P is the name of the query parameter, then
+** sqlite3_uri_parameter(F,P) returns the value of the P
+** parameter if it exists or a NULL pointer if P does not appear as a
+** query parameter on F. If P is a query parameter of F and it
+** has no explicit value, then sqlite3_uri_parameter(F,P) returns
+** a pointer to an empty string.
+**
+** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
+** parameter and returns true (1) or false (0) according to the value
+** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
+** value of query parameter P is one of "yes", "true", or "on" in any
+** case or if the value begins with a non-zero number. The
+** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
+** query parameter P is one of "no", "false", or "off" in any case or
+** if the value begins with a numeric zero. If P is not a query
+** parameter on F or if the value of P does not match any of the
+** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
+**
+** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
+** 64-bit signed integer and returns that integer, or D if P does not
+** exist. If the value of P is something other than an integer, then
+** zero is returned.
+**
+** The sqlite3_uri_key(F,N) returns a pointer to the name (not
+** the value) of the N-th query parameter for filename F, or a NULL
+** pointer if N is less than zero or greater than the number of query
+** parameters minus 1. The N value is zero-based so N should be 0 to obtain
+** the name of the first query parameter, 1 for the second parameter, and
+** so forth.
+**
+** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
+** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
+** is not a database file pathname pointer that the SQLite core passed
+** into the xOpen VFS method, then the behavior of this routine is undefined
+** and probably undesirable.
+**
+** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
+** parameter can also be the name of a rollback journal file or WAL file
+** in addition to the main database file. Prior to version 3.31.0, these
+** routines would only work if F was the name of the main database file.
+** When the F parameter is the name of the rollback journal or WAL file,
+** it has access to all the same query parameters as were found on the
+** main database file.
+**
+** See the [URI filename] documentation for additional information.
+*/
+SQLITE_API const char *sqlite3_uri_parameter(sqlite3_filename z, const char *zParam);
+SQLITE_API int sqlite3_uri_boolean(sqlite3_filename z, const char *zParam, int bDefault);
+SQLITE_API sqlite3_int64 sqlite3_uri_int64(sqlite3_filename, const char*, sqlite3_int64);
+SQLITE_API const char *sqlite3_uri_key(sqlite3_filename z, int N);
+
+/*
+** CAPI3REF: Translate filenames
+**
+** These routines are available to [VFS|custom VFS implementations] for
+** translating filenames between the main database file, the journal file,
+** and the WAL file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
+** returns the name of the corresponding database file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** passed by the SQLite core into the VFS, or if F is a database filename
+** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
+** returns the name of the corresponding rollback journal file.
+**
+** If F is the name of an sqlite database file, journal file, or WAL file
+** that was passed by the SQLite core into the VFS, or if F is a database
+** filename obtained from [sqlite3_db_filename()], then
+** sqlite3_filename_wal(F) returns the name of the corresponding
+** WAL file.
+**
+** In all of the above, if F is not the name of a database, journal or WAL
+** filename passed into the VFS from the SQLite core and F is not the
+** return value from [sqlite3_db_filename()], then the result is
+** undefined and is likely a memory access violation.
+*/
+SQLITE_API const char *sqlite3_filename_database(sqlite3_filename);
+SQLITE_API const char *sqlite3_filename_journal(sqlite3_filename);
+SQLITE_API const char *sqlite3_filename_wal(sqlite3_filename);
+
+/*
+** CAPI3REF: Database File Corresponding To A Journal
+**
+** ^If X is the name of a rollback or WAL-mode journal file that is
+** passed into the xOpen method of [sqlite3_vfs], then
+** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
+** object that represents the main database file.
+**
+** This routine is intended for use in custom [VFS] implementations
+** only. It is not a general-purpose interface.
+** The argument sqlite3_file_object(X) must be a filename pointer that
+** has been passed into [sqlite3_vfs].xOpen method where the
+** flags parameter to xOpen contains one of the bits
+** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL]. Any other use
+** of this routine results in undefined and probably undesirable
+** behavior.
+*/
+SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*);
+
+/*
+** CAPI3REF: Create and Destroy VFS Filenames
+**
+** These interfaces are provided for use by [VFS shim] implementations and
+** are not useful outside of that context.
+**
+** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
+** database filename D with corresponding journal file J and WAL file W and
+** with N URI parameters key/values pairs in the array P. The result from
+** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
+** is safe to pass to routines like:
+** <ul>
+** <li> [sqlite3_uri_parameter()],
+** <li> [sqlite3_uri_boolean()],
+** <li> [sqlite3_uri_int64()],
+** <li> [sqlite3_uri_key()],
+** <li> [sqlite3_filename_database()],
+** <li> [sqlite3_filename_journal()], or
+** <li> [sqlite3_filename_wal()].
+** </ul>
+** If a memory allocation error occurs, sqlite3_create_filename() might
+** return a NULL pointer. The memory obtained from sqlite3_create_filename(X)
+** must be released by a corresponding call to sqlite3_free_filename(Y).
+**
+** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
+** of 2*N pointers to strings. Each pair of pointers in this array corresponds
+** to a key and value for a query parameter. The P parameter may be a NULL
+** pointer if N is zero. None of the 2*N pointers in the P array may be
+** NULL pointers and key pointers should not be empty strings.
+** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
+** be NULL pointers, though they can be empty strings.
+**
+** The sqlite3_free_filename(Y) routine releases a memory allocation
+** previously obtained from sqlite3_create_filename(). Invoking
+** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
+**
+** If the Y parameter to sqlite3_free_filename(Y) is anything other
+** than a NULL pointer or a pointer previously acquired from
+** sqlite3_create_filename(), then bad things such as heap
+** corruption or segfaults may occur. The value Y should not be
+** used again after sqlite3_free_filename(Y) has been called. This means
+** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
+** then the corresponding [sqlite3_module.xClose() method should also be
+** invoked prior to calling sqlite3_free_filename(Y).
+*/
+SQLITE_API sqlite3_filename sqlite3_create_filename(
+ const char *zDatabase,
+ const char *zJournal,
+ const char *zWal,
+ int nParam,
+ const char **azParam
+);
+SQLITE_API void sqlite3_free_filename(sqlite3_filename);
+
+/*
+** CAPI3REF: Error Codes And Messages
+** METHOD: sqlite3
+**
+** ^If the most recent sqlite3_* API call associated with
+** [database connection] D failed, then the sqlite3_errcode(D) interface
+** returns the numeric [result code] or [extended result code] for that
+** API call.
+** ^The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** The values returned by sqlite3_errcode() and/or
+** sqlite3_extended_errcode() might change with each API call.
+** Except, there are some interfaces that are guaranteed to never
+** change the value of the error code. The error-code preserving
+** interfaces include the following:
+**
+** <ul>
+** <li> sqlite3_errcode()
+** <li> sqlite3_extended_errcode()
+** <li> sqlite3_errmsg()
+** <li> sqlite3_errmsg16()
+** <li> sqlite3_error_offset()
+** </ul>
+**
+** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** (See how SQLite handles [invalid UTF] for exceptions to this rule.)
+** ^(Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.)^
+**
+** ^The sqlite3_errstr() interface returns the English-language text
+** that describes the [result code], as UTF-8.
+** ^(Memory to hold the error message string is managed internally
+** and must not be freed by the application)^.
+**
+** ^If the most recent error references a specific token in the input
+** SQL, the sqlite3_error_offset() interface returns the byte offset
+** of the start of that token. ^The byte offset returned by
+** sqlite3_error_offset() assumes that the input SQL is UTF8.
+** ^If the most recent error does not reference a specific token in the input
+** SQL, then the sqlite3_error_offset() function returns -1.
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+SQLITE_API const char *sqlite3_errstr(int);
+SQLITE_API int sqlite3_error_offset(sqlite3 *db);
+
+/*
+** CAPI3REF: Prepared Statement Object
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement that
+** has been compiled into binary form and is ready to be evaluated.
+**
+** Think of each SQL statement as a separate computer program. The
+** original SQL text is source code. A prepared statement object
+** is the compiled object code. All SQL must be converted into a
+** prepared statement before it can be run.
+**
+** The life-cycle of a prepared statement object usually goes like this:
+**
+** <ol>
+** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
+** <li> Bind values to [parameters] using the sqlite3_bind_*()
+** interfaces.
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the prepared statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits
+** METHOD: sqlite3
+**
+** ^(This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct.)^
+**
+** ^If the new limit is a negative number, the limit is unchanged.
+** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
+** [limits | hard upper bound]
+** set at compile-time by a C preprocessor macro called
+** [limits | SQLITE_MAX_<i>NAME</i>].
+** (The "_LIMIT_" in the name is changed to "_MAX_".))^
+** ^Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper bound.
+**
+** ^Regardless of whether or not the limit was changed, the
+** [sqlite3_limit()] interface returns the prior value of the limit.
+** ^Hence, to find the current value of a limit without changing it,
+** simply invoke this interface with the third parameter set to -1.
+**
+** Run-time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+*/
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories
+** KEYWORDS: {limit category} {*limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+** <dl>
+** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
+**
+** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
+**
+** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>)^
+**
+** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>)^
+**
+** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
+**
+** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement. If [sqlite3_prepare_v2()] or
+** the equivalent tries to allocate space for more than this many opcodes
+** in a single prepared statement, an SQLITE_NOMEM error is returned.</dd>)^
+**
+** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>)^
+**
+** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
+**
+** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
+** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.</dd>)^
+**
+** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
+** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum index number of any [parameter] in an SQL statement.)^
+**
+** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
+** <dd>The maximum depth of recursion for triggers.</dd>)^
+**
+** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
+** <dd>The maximum number of auxiliary worker threads that a single
+** [prepared statement] may start.</dd>)^
+** </dl>
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
+#define SQLITE_LIMIT_WORKER_THREADS 11
+
+/*
+** CAPI3REF: Prepare Flags
+**
+** These constants define various flags that can be passed into
+** "prepFlags" parameter of the [sqlite3_prepare_v3()] and
+** [sqlite3_prepare16_v3()] interfaces.
+**
+** New flags may be added in future releases of SQLite.
+**
+** <dl>
+** [[SQLITE_PREPARE_PERSISTENT]] ^(<dt>SQLITE_PREPARE_PERSISTENT</dt>
+** <dd>The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner
+** that the prepared statement will be retained for a long time and
+** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
+** and [sqlite3_prepare16_v3()] assume that the prepared statement will
+** be used just once or at most a few times and then destroyed using
+** [sqlite3_finalize()] relatively soon. The current implementation acts
+** on this hint by avoiding the use of [lookaside memory] so as not to
+** deplete the limited store of lookaside memory. Future versions of
+** SQLite may act on this hint differently.
+**
+** [[SQLITE_PREPARE_NORMALIZE]] <dt>SQLITE_PREPARE_NORMALIZE</dt>
+** <dd>The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used
+** to be required for any prepared statement that wanted to use the
+** [sqlite3_normalized_sql()] interface. However, the
+** [sqlite3_normalized_sql()] interface is now available to all
+** prepared statements, regardless of whether or not they use this
+** flag.
+**
+** [[SQLITE_PREPARE_NO_VTAB]] <dt>SQLITE_PREPARE_NO_VTAB</dt>
+** <dd>The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler
+** to return an error (error code SQLITE_ERROR) if the statement uses
+** any virtual tables.
+** </dl>
+*/
+#define SQLITE_PREPARE_PERSISTENT 0x01
+#define SQLITE_PREPARE_NORMALIZE 0x02
+#define SQLITE_PREPARE_NO_VTAB 0x04
+
+/*
+** CAPI3REF: Compiling An SQL Statement
+** KEYWORDS: {SQL statement compiler}
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_stmt
+**
+** To execute an SQL statement, it must first be compiled into a byte-code
+** program using one of these routines. Or, in other words, these routines
+** are constructors for the [prepared statement] object.
+**
+** The preferred routine to use is [sqlite3_prepare_v2()]. The
+** [sqlite3_prepare()] interface is legacy and should be avoided.
+** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
+** for special purposes.
+**
+** The use of the UTF-8 interfaces is preferred, as SQLite currently
+** does all parsing using UTF-8. The UTF-16 interfaces are provided
+** as a convenience. The UTF-16 interfaces work by converting the
+** input text into UTF-8, then invoking the corresponding UTF-8 interface.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare(), sqlite3_prepare_v2(),
+** and sqlite3_prepare_v3()
+** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() use UTF-16.
+**
+** ^If the nByte argument is negative, then zSql is read up to the
+** first zero terminator. ^If nByte is positive, then it is the
+** number of bytes read from zSql. ^If nByte is zero, then no prepared
+** statement is generated.
+** If the caller knows that the supplied string is nul-terminated, then
+** there is a small performance advantage to passing an nByte parameter that
+** is the number of bytes in the input string <i>including</i>
+** the nul-terminator.
+**
+** ^If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
+** to NULL. ^If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
+** otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
+** and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
+** The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
+** are retained for backwards compatibility, but their use is discouraged.
+** ^In the "vX" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave differently in three ways:
+**
+** <ol>
+** <li>
+** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
+** retries will occur before sqlite3_step() gives up and returns an error.
+** </li>
+**
+** <li>
+** ^When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. ^The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and the application would have to make a second call to [sqlite3_reset()]
+** in order to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+** </li>
+**
+** <li>
+** ^If the specific value bound to a [parameter | host parameter] in the
+** WHERE clause might influence the choice of query plan for a statement,
+** then the statement will be automatically recompiled, as if there had been
+** a schema change, on the first [sqlite3_step()] call following any change
+** to the [sqlite3_bind_text | bindings] of that [parameter].
+** ^The specific value of a WHERE-clause [parameter] might influence the
+** choice of query plan if the parameter is the left-hand side of a [LIKE]
+** or [GLOB] operator or if the parameter is compared to an indexed column
+** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
+** </li>
+** </ol>
+**
+** <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
+** the extra prepFlags parameter, which is a bit array consisting of zero or
+** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags. ^The
+** sqlite3_prepare_v2() interface works exactly the same as
+** sqlite3_prepare_v3() with a zero prepFlags parameter.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v3(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v3(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPI3REF: Retrieving Statement SQL
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
+** SQL text used to create [prepared statement] P if P was
+** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
+** string containing the SQL text of prepared statement P with
+** [bound parameters] expanded.
+** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
+** string containing the normalized SQL text of prepared statement P. The
+** semantics used to normalize a SQL statement are unspecified and subject
+** to change. At a minimum, literal values will be replaced with suitable
+** placeholders.
+**
+** ^(For example, if a prepared statement is created using the SQL
+** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
+** and parameter :xyz is unbound, then sqlite3_sql() will return
+** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
+** will return "SELECT 2345,NULL".)^
+**
+** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
+** is available to hold the result, or if the result would exceed the
+** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
+**
+** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
+** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time
+** option causes sqlite3_expanded_sql() to always return NULL.
+**
+** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
+** are managed by SQLite and are automatically freed when the prepared
+** statement is finalized.
+** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
+** is obtained from [sqlite3_malloc()] and must be freed by the application
+** by passing it to [sqlite3_free()].
+**
+** ^The sqlite3_normalized_sql() interface is only available if
+** the [SQLITE_ENABLE_NORMALIZE] compile-time option is defined.
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
+#ifdef SQLITE_ENABLE_NORMALIZE
+SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);
+#endif
+
+/*
+** CAPI3REF: Determine If An SQL Statement Writes The Database
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
+** and only if the [prepared statement] X makes no direct changes to
+** the content of the database file.
+**
+** Note that [application-defined SQL functions] or
+** [virtual tables] might change the database indirectly as a side effect.
+** ^(For example, if an application defines a function "eval()" that
+** calls [sqlite3_exec()], then the following SQL statement would
+** change the database file through side-effects:
+**
+** <blockquote><pre>
+** SELECT eval('DELETE FROM t1') FROM t2;
+** </pre></blockquote>
+**
+** But because the [SELECT] statement does not change the database file
+** directly, sqlite3_stmt_readonly() would still return true.)^
+**
+** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
+** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
+** since the statements themselves do not actually modify the database but
+** rather they control the timing of when other statements modify the
+** database. ^The [ATTACH] and [DETACH] statements also cause
+** sqlite3_stmt_readonly() to return true since, while those statements
+** change the configuration of a database connection, they do not make
+** changes to the content of the database files on disk.
+** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
+** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
+** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
+** sqlite3_stmt_readonly() returns false for those commands.
+**
+** ^This routine returns false if there is any possibility that the
+** statement might change the database file. ^A false return does
+** not guarantee that the statement will change the database file.
+** ^For example, an UPDATE statement might have a WHERE clause that
+** makes it a no-op, but the sqlite3_stmt_readonly() result would still
+** be false. ^Similarly, a CREATE TABLE IF NOT EXISTS statement is a
+** read-only no-op if the table already exists, but
+** sqlite3_stmt_readonly() still returns false for such a statement.
+**
+** ^If prepared statement X is an [EXPLAIN] or [EXPLAIN QUERY PLAN]
+** statement, then sqlite3_stmt_readonly(X) returns the same value as
+** if the EXPLAIN or EXPLAIN QUERY PLAN prefix were omitted.
+*/
+SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
+** prepared statement S is an EXPLAIN statement, or 2 if the
+** statement S is an EXPLAIN QUERY PLAN.
+** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
+** an ordinary statement or a NULL pointer.
+*/
+SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Change The EXPLAIN Setting For A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** The sqlite3_stmt_explain(S,E) interface changes the EXPLAIN
+** setting for [prepared statement] S. If E is zero, then S becomes
+** a normal prepared statement. If E is 1, then S behaves as if
+** its SQL text began with "[EXPLAIN]". If E is 2, then S behaves as if
+** its SQL text began with "[EXPLAIN QUERY PLAN]".
+**
+** Calling sqlite3_stmt_explain(S,E) might cause S to be reprepared.
+** SQLite tries to avoid a reprepare, but a reprepare might be necessary
+** on the first transition into EXPLAIN or EXPLAIN QUERY PLAN mode.
+**
+** Because of the potential need to reprepare, a call to
+** sqlite3_stmt_explain(S,E) will fail with SQLITE_ERROR if S cannot be
+** reprepared because it was created using [sqlite3_prepare()] instead of
+** the newer [sqlite3_prepare_v2()] or [sqlite3_prepare_v3()] interfaces and
+** hence has no saved SQL text with which to reprepare.
+**
+** Changing the explain setting for a prepared statement does not change
+** the original SQL text for the statement. Hence, if the SQL text originally
+** began with EXPLAIN or EXPLAIN QUERY PLAN, but sqlite3_stmt_explain(S,0)
+** is called to convert the statement into an ordinary statement, the EXPLAIN
+** or EXPLAIN QUERY PLAN keywords will still appear in the sqlite3_sql(S)
+** output, even though the statement now acts like a normal SQL statement.
+**
+** This routine returns SQLITE_OK if the explain mode is successfully
+** changed, or an error code if the explain mode could not be changed.
+** The explain mode cannot be changed while a statement is active.
+** Hence, it is good practice to call [sqlite3_reset(S)]
+** immediately prior to calling sqlite3_stmt_explain(S,E).
+*/
+SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode);
+
+/*
+** CAPI3REF: Determine If A Prepared Statement Has Been Reset
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
+** [prepared statement] S has been stepped at least once using
+** [sqlite3_step(S)] but has neither run to completion (returned
+** [SQLITE_DONE] from [sqlite3_step(S)]) nor
+** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
+** interface returns false if S is a NULL pointer. If S is not a
+** NULL pointer and is not a pointer to a valid [prepared statement]
+** object, then the behavior is undefined and probably undesirable.
+**
+** This interface can be used in combination [sqlite3_next_stmt()]
+** to locate all prepared statements associated with a database
+** connection that are in need of being reset. This can be used,
+** for example, in diagnostic routines to search for prepared
+** statements that are holding a transaction open.
+*/
+SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. ^Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value. The
+** [sqlite3_value_dup()] interface can be used to construct a new
+** protected sqlite3_value from an unprotected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. An internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** ^The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** ^The sqlite3_value objects returned by [sqlite3_vtab_rhs_value()]
+** are protected.
+** ^The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used as arguments
+** to [sqlite3_result_value()], [sqlite3_bind_value()], and
+** [sqlite3_value_dup()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
+*/
+typedef struct sqlite3_value sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. ^A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
+** METHOD: sqlite3_stmt
+**
+** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifier.)^ ^The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** ^The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** ^The second argument is the index of the SQL parameter to be set.
+** ^The leftmost SQL parameter has an index of 1. ^When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** ^The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. ^The index
+** for "?NNN" parameters is the value of NNN.
+** ^The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
+**
+** ^The third argument is the value to bind to the parameter.
+** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
+** is ignored and the end result is the same as sqlite3_bind_null().
+** ^If the third parameter to sqlite3_bind_text() is not NULL, then
+** it should be a pointer to well-formed UTF8 text.
+** ^If the third parameter to sqlite3_bind_text16() is not NULL, then
+** it should be a pointer to well-formed UTF16 text.
+** ^If the third parameter to sqlite3_bind_text64() is not NULL, then
+** it should be a pointer to a well-formed unicode string that is
+** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
+** otherwise.
+**
+** [[byte-order determination rules]] ^The byte-order of
+** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
+** found in first character, which is removed, or in the absence of a BOM
+** the byte order is the native byte order of the host
+** machine for sqlite3_bind_text16() or the byte order specified in
+** the 6th parameter for sqlite3_bind_text64().)^
+** ^If UTF16 input text contains invalid unicode
+** characters, then SQLite might change those invalid characters
+** into the unicode replacement character: U+FFFD.
+**
+** ^(In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of <u>bytes</u> in the value, not the number of characters.)^
+** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
+** is negative, then the length of the string is
+** the number of bytes up to the first zero terminator.
+** If the fourth parameter to sqlite3_bind_blob() is negative, then
+** the behavior is undefined.
+** If a non-negative fourth parameter is provided to sqlite3_bind_text()
+** or sqlite3_bind_text16() or sqlite3_bind_text64() then
+** that parameter must be the byte offset
+** where the NUL terminator would occur assuming the string were NUL
+** terminated. If any NUL characters occurs at byte offsets less than
+** the value of the fourth parameter then the resulting string value will
+** contain embedded NULs. The result of expressions involving strings
+** with embedded NULs is undefined.
+**
+** ^The fifth argument to the BLOB and string binding interfaces controls
+** or indicates the lifetime of the object referenced by the third parameter.
+** These three options exist:
+** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished
+** with it may be passed. ^It is called to dispose of the BLOB or string even
+** if the call to the bind API fails, except the destructor is not called if
+** the third parameter is a NULL pointer or the fourth parameter is negative.
+** ^ (2) The special constant, [SQLITE_STATIC], may be passed to indicate that
+** the application remains responsible for disposing of the object. ^In this
+** case, the object and the provided pointer to it must remain valid until
+** either the prepared statement is finalized or the same SQL parameter is
+** bound to something else, whichever occurs sooner.
+** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the
+** object is to be copied prior to the return from sqlite3_bind_*(). ^The
+** object and pointer to it must remain valid until then. ^SQLite will then
+** manage the lifetime of its private copy.
+**
+** ^The sixth argument to sqlite3_bind_text64() must be one of
+** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
+** to specify the encoding of the text in the third parameter. If
+** the sixth argument to sqlite3_bind_text64() is not one of the
+** allowed values shown above, or if the text encoding is different
+** from the encoding specified by the sixth parameter, then the behavior
+** is undefined.
+**
+** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** ^A negative value for the zeroblob results in a zero-length BLOB.
+**
+** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
+** [prepared statement] S to have an SQL value of NULL, but to also be
+** associated with the pointer P of type T. ^D is either a NULL pointer or
+** a pointer to a destructor function for P. ^SQLite will invoke the
+** destructor D with a single argument of P when it is finished using
+** P. The T parameter should be a static string, preferably a string
+** literal. The sqlite3_bind_pointer() routine is part of the
+** [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
+** for the [prepared statement] or with a prepared statement for which
+** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
+** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
+** routine is passed a [prepared statement] that has been finalized, the
+** result is undefined and probably harmful.
+**
+** ^Bindings are not cleared by the [sqlite3_reset()] routine.
+** ^Unbound parameters are interpreted as NULL.
+**
+** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
+** [error code] if anything goes wrong.
+** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
+** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
+** [SQLITE_MAX_LENGTH].
+** ^[SQLITE_RANGE] is returned if the parameter
+** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
+ void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*));
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
+
+/*
+** CAPI3REF: Number Of SQL Parameters
+** METHOD: sqlite3_stmt
+**
+** ^This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** ^(This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN form are used,
+** there may be gaps in the list.)^
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_bind_parameter_name(P,N) interface returns
+** the name of the N-th [SQL parameter] in the [prepared statement] P.
+** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.)^
+** ^Parameters of the form "?" without a following integer have no name
+** and are referred to as "nameless" or "anonymous parameters".
+**
+** ^The first host parameter has an index of 1, not 0.
+**
+** ^If the value N is out of range or if the N-th parameter is
+** nameless, then NULL is returned. ^The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()],
+** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name
+** METHOD: sqlite3_stmt
+**
+** ^Return the index of an SQL parameter given its name. ^The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
+** is returned if no matching parameter is found. ^The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
+** [sqlite3_prepare16_v3()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_name()].
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** ^Use this routine to reset all host parameters to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^Return the number of columns in the result set returned by the
+** [prepared statement]. ^If this routine returns 0, that means the
+** [prepared statement] returns no data (for example an [UPDATE]).
+** ^However, just because this routine returns a positive number does not
+** mean that one or more rows of data will be returned. ^A SELECT statement
+** will always have a positive sqlite3_column_count() but depending on the
+** WHERE clause constraints and the table content, it might return no rows.
+**
+** See also: [sqlite3_data_count()]
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set
+** METHOD: sqlite3_stmt
+**
+** ^These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. ^The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. ^The second parameter is the
+** column number. ^The leftmost column is number 0.
+**
+** ^The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** ^If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** ^The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^These routines provide a means to determine the database, table, and
+** table column that is the origin of a particular result column in
+** [SELECT] statement.
+** ^The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. ^The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** ^The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the statement is automatically
+** reprepared by the first call to [sqlite3_step()] for a particular run
+** or until the same information is requested
+** again in a different encoding.
+**
+** ^The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** ^The first argument to these interfaces is a [prepared statement].
+** ^These functions return information about the Nth result column returned by
+** the statement, where N is the second function argument.
+** ^The left-most column is column 0 for these routines.
+**
+** ^If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. ^These routines might also return NULL if a memory allocation error
+** occurs. ^Otherwise, they return the name of the attached database, table,
+** or column that query result column was extracted from.
+**
+** ^As with all other SQLite APIs, those whose names end with "16" return
+** UTF-16 encoded strings and the other functions return UTF-8.
+**
+** ^These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
+**
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result
+** METHOD: sqlite3_stmt
+**
+** ^(The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned.)^ ^If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** ^The returned string is always UTF-8 encoded.
+**
+** ^(For example, given the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** and the following statement to be compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).)^
+**
+** ^SQLite uses dynamic run-time typing. ^So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. ^Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement
+** METHOD: sqlite3_stmt
+**
+** After a [prepared statement] has been prepared using any of
+** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
+** or [sqlite3_prepare16_v3()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
+**
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "vX" interfaces
+** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
+** [sqlite3_prepare16_v2()] or the older legacy
+** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "vX" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** ^With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
+**
+** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. ^If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within an
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** ^[SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** ^With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. ^In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** For all versions of SQLite up to and including 3.6.23.1, a call to
+** [sqlite3_reset()] was required after sqlite3_step() returned anything
+** other than [SQLITE_ROW] before any subsequent invocation of
+** sqlite3_step(). Failure to reset the prepared statement using
+** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
+** sqlite3_step(). But after [version 3.6.23.1] ([dateof:3.6.23.1],
+** sqlite3_step() began
+** calling [sqlite3_reset()] automatically in this circumstance rather
+** than returning [SQLITE_MISUSE]. This is not considered a compatibility
+** break because any application that ever receives an SQLITE_MISUSE error
+** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
+** can be used to restore the legacy behavior.
+**
+** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
+** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "vX" interfaces is recommended.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_data_count(P) interface returns the number of columns in the
+** current row of the result set of [prepared statement] P.
+** ^If prepared statement P does not have results ready to return
+** (via calls to the [sqlite3_column_int | sqlite3_column()] family of
+** interfaces) then sqlite3_data_count(P) returns 0.
+** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
+** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
+** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
+** will return non-zero if previous call to [sqlite3_step](P) returned
+** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
+** where it always returns zero since each step of that multi-step
+** pragma returns 0 columns of data.
+**
+** See also: [sqlite3_column_count()]
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes
+** KEYWORDS: SQLITE_TEXT
+**
+** ^(Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul>)^
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Result Values From A Query
+** KEYWORDS: {column access functions}
+** METHOD: sqlite3_stmt
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
+** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
+** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
+** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
+** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
+** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
+** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an
+** [sqlite3_value|unprotected sqlite3_value] object.
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT result in bytes
+** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
+** datatype of the result
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** ^These routines return information about a single column of the current
+** result row of a query. ^In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. ^The leftmost column of the result set has the index 0.
+** ^The number of columns in the result can be determined using
+** [sqlite3_column_count()].
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
+** each return the value of a result column in a specific data format. If
+** the result column is not initially in the requested format (for example,
+** if the query returns an integer but the sqlite3_column_text() interface
+** is used to extract the value) then an automatic type conversion is performed.
+**
+** ^The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. ^The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
+** The return value of sqlite3_column_type() can be used to decide which
+** of the first six interface should be used to extract the column value.
+** The value returned by sqlite3_column_type() is only meaningful if no
+** automatic type conversions have occurred for the value in question.
+** After a type conversion, the result of calling sqlite3_column_type()
+** is undefined, though harmless. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
+** or sqlite3_column_bytes16() interfaces can be used to determine the size
+** of that BLOB or string.
+**
+** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
+**
+** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
+** the string to UTF-16 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes16() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
+**
+** ^The values returned by [sqlite3_column_bytes()] and
+** [sqlite3_column_bytes16()] do not include the zero terminators at the end
+** of the string. ^For clarity: the values returned by
+** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
+** bytes in the string, not the number of characters.
+**
+** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero-terminated. ^The return
+** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
+**
+** ^Strings returned by sqlite3_column_text16() always have the endianness
+** which is native to the platform, regardless of the text encoding set
+** for the database.
+**
+** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. In a multithreaded environment,
+** an unprotected sqlite3_value object may only be used safely with
+** [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], the behavior is not threadsafe.
+** Hence, the sqlite3_column_value() interface
+** is normally only useful within the implementation of
+** [application-defined SQL functions] or [virtual tables], not within
+** top-level application code.
+**
+** These routines may attempt to convert the datatype of the result.
+** ^For example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. ^(The following table details the conversions
+** that are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is a NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is a NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> [CAST] to BLOB
+** <tr><td> TEXT <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> TEXT <td> FLOAT <td> [CAST] to REAL
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER
+** <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL
+** <tr><td> BLOB <td> TEXT <td> [CAST] to TEXT, ensure zero terminator
+** </table>
+** </blockquote>)^
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li> The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</li>
+** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</li>
+** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</li>
+** </ul>
+**
+** ^Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer references will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** The safest policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** ^The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. ^The memory space used to hold strings
+** and BLOBs is freed automatically. Do not pass the pointers returned
+** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** As long as the input parameters are correct, these routines will only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_column_blob()
+** <li> sqlite3_column_text()
+** <li> sqlite3_column_text16()
+** <li> sqlite3_column_bytes()
+** <li> sqlite3_column_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object
+** DESTRUCTOR: sqlite3_stmt
+**
+** ^The sqlite3_finalize() function is called to delete a [prepared statement].
+** ^If the most recent evaluation of the statement encountered no errors
+** or if the statement is never been evaluated, then sqlite3_finalize() returns
+** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
+** sqlite3_finalize(S) returns the appropriate [error code] or
+** [extended error code].
+**
+** ^The sqlite3_finalize(S) routine can be called at any point during
+** the life cycle of [prepared statement] S:
+** before statement S is ever evaluated, after
+** one or more calls to [sqlite3_reset()], or after any call
+** to [sqlite3_step()] regardless of whether or not the statement has
+** completed execution.
+**
+** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
+**
+** The application must finalize every [prepared statement] in order to avoid
+** resource leaks. It is a grievous error for the application to try to use
+** a prepared statement after it has been finalized. Any use of a prepared
+** statement after it has been finalized can result in undefined and
+** undesirable behavior such as segfaults and heap corruption.
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object
+** METHOD: sqlite3_stmt
+**
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** ^Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** ^The return code from [sqlite3_reset(S)] indicates whether or not
+** the previous evaluation of prepared statement S completed successfully.
+** ^If [sqlite3_step(S)] has never before been called on S or if
+** [sqlite3_step(S)] has not been called since the previous call
+** to [sqlite3_reset(S)], then [sqlite3_reset(S)] will return
+** [SQLITE_OK].
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+** ^The [sqlite3_reset(S)] interface might also return an [error code]
+** if there were no prior errors but the process of resetting
+** the prepared statement caused a new error. ^For example, if an
+** [INSERT] statement with a [RETURNING] clause is only stepped one time,
+** that one call to [sqlite3_step(S)] might return SQLITE_ROW but
+** the overall statement might still fail and the [sqlite3_reset(S)] call
+** might return SQLITE_BUSY if locking constraints prevent the
+** database change from committing. Therefore, it is important that
+** applications check the return code from [sqlite3_reset(S)] even if
+** no prior call to [sqlite3_step(S)] indicated a problem.
+**
+** ^The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions
+** KEYWORDS: {function creation routines}
+** METHOD: sqlite3
+**
+** ^These functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only differences between
+** the three "sqlite3_create_function*" routines are the text encoding
+** expected for the second parameter (the name of the function being
+** created) and the presence or absence of a destructor callback for
+** the application data pointer. Function sqlite3_create_window_function()
+** is similar, but allows the user to supply the extra callback functions
+** needed by [aggregate window functions].
+**
+** ^The first parameter is the [database connection] to which the SQL
+** function is to be added. ^If an application uses more than one database
+** connection then application-defined SQL functions must be added
+** to each database connection separately.
+**
+** ^The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
+** representation, exclusive of the zero-terminator. ^Note that the name
+** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
+** ^Any attempt to create a function with a longer name
+** will result in [SQLITE_MISUSE] being returned.
+**
+** ^The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. ^If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
+**
+** ^The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. The application should set this parameter to
+** [SQLITE_UTF16LE] if the function implementation invokes
+** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
+** implementation invokes [sqlite3_value_text16be()] on an input, or
+** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
+** otherwise. ^The same SQL function may be registered multiple times using
+** different preferred text encodings, with different implementations for
+** each encoding.
+** ^When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+**
+** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
+** to signal that the function will always return the same result given
+** the same inputs within a single SQL statement. Most SQL functions are
+** deterministic. The built-in [random()] SQL function is an example of a
+** function that is not deterministic. The SQLite query planner is able to
+** perform additional optimizations on deterministic functions, so use
+** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
+**
+** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
+** flag, which if present prevents the function from being invoked from
+** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions,
+** index expressions, or the WHERE clause of partial indexes.
+**
+** For best security, the [SQLITE_DIRECTONLY] flag is recommended for
+** all application-defined SQL functions that do not need to be
+** used inside of triggers, view, CHECK constraints, or other elements of
+** the database schema. This flags is especially recommended for SQL
+** functions that have side effects or reveal internal application state.
+** Without this flag, an attacker might be able to modify the schema of
+** a database file to include invocations of the function with parameters
+** chosen by the attacker, which the application will then execute when
+** the database file is opened and read.
+**
+** ^(The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].)^
+**
+** ^The sixth, seventh and eighth parameters passed to the three
+** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL function or
+** aggregate. ^A scalar SQL function requires an implementation of the xFunc
+** callback only; NULL pointers must be passed as the xStep and xFinal
+** parameters. ^An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL pointers for all three function
+** callbacks.
+**
+** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue
+** and xInverse) passed to sqlite3_create_window_function are pointers to
+** C-language callbacks that implement the new function. xStep and xFinal
+** must both be non-NULL. xValue and xInverse may either both be NULL, in
+** which case a regular aggregate function is created, or must both be
+** non-NULL, in which case the new function may be used as either an aggregate
+** or aggregate window function. More details regarding the implementation
+** of aggregate window functions are
+** [user-defined window functions|available here].
+**
+** ^(If the final parameter to sqlite3_create_function_v2() or
+** sqlite3_create_window_function() is not NULL, then it is destructor for
+** the application data pointer. The destructor is invoked when the function
+** is deleted, either by being overloaded or when the database connection
+** closes.)^ ^The destructor is also invoked if the call to
+** sqlite3_create_function_v2() fails. ^When the destructor callback is
+** invoked, it is passed a single argument which is a copy of the application
+** data pointer which was the fifth parameter to sqlite3_create_function_v2().
+**
+** ^It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. ^SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. ^A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. ^A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** ^A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** ^Built-in functions may be overloaded by new application-defined functions.
+**
+** ^An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_window_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*)
+);
+
+/*
+** CAPI3REF: Text Encodings
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1 /* IMP: R-37514-35566 */
+#define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */
+#define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* Deprecated */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Function Flags
+**
+** These constants may be ORed together with the
+** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
+** to [sqlite3_create_function()], [sqlite3_create_function16()], or
+** [sqlite3_create_function_v2()].
+**
+** <dl>
+** [[SQLITE_DETERMINISTIC]] <dt>SQLITE_DETERMINISTIC</dt><dd>
+** The SQLITE_DETERMINISTIC flag means that the new function always gives
+** the same output when the input parameters are the same.
+** The [abs|abs() function] is deterministic, for example, but
+** [randomblob|randomblob()] is not. Functions must
+** be deterministic in order to be used in certain contexts such as
+** with the WHERE clause of [partial indexes] or in [generated columns].
+** SQLite might also optimize deterministic functions by factoring them
+** out of inner loops.
+** </dd>
+**
+** [[SQLITE_DIRECTONLY]] <dt>SQLITE_DIRECTONLY</dt><dd>
+** The SQLITE_DIRECTONLY flag means that the function may only be invoked
+** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], or [generated columns].
+** <p>
+** The SQLITE_DIRECTONLY flag is recommended for any
+** [application-defined SQL function]
+** that has side-effects or that could potentially leak sensitive information.
+** This will prevent attacks in which an application is tricked
+** into using a database file that has had its schema surreptitiously
+** modified to invoke the application-defined function in ways that are
+** harmful.
+** <p>
+** Some people say it is good practice to set SQLITE_DIRECTONLY on all
+** [application-defined SQL functions], regardless of whether or not they
+** are security sensitive, as doing so prevents those functions from being used
+** inside of the database schema, and thus ensures that the database
+** can be inspected and modified using generic tools (such as the [CLI])
+** that do not have access to the application-defined functions.
+** </dd>
+**
+** [[SQLITE_INNOCUOUS]] <dt>SQLITE_INNOCUOUS</dt><dd>
+** The SQLITE_INNOCUOUS flag means that the function is unlikely
+** to cause problems even if misused. An innocuous function should have
+** no side effects and should not depend on any values other than its
+** input parameters. The [abs|abs() function] is an example of an
+** innocuous function.
+** The [load_extension() SQL function] is not innocuous because of its
+** side effects.
+** <p> SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not
+** exactly the same. The [random|random() function] is an example of a
+** function that is innocuous but not deterministic.
+** <p>Some heightened security settings
+** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF])
+** disable the use of SQL functions inside views and triggers and in
+** schema structures such as [CHECK constraints], [DEFAULT clauses],
+** [expression indexes], [partial indexes], and [generated columns] unless
+** the function is tagged with SQLITE_INNOCUOUS. Most built-in functions
+** are innocuous. Developers are advised to avoid using the
+** SQLITE_INNOCUOUS flag for application-defined functions unless the
+** function has been carefully audited and found to be free of potentially
+** security-adverse side-effects and information-leaks.
+** </dd>
+**
+** [[SQLITE_SUBTYPE]] <dt>SQLITE_SUBTYPE</dt><dd>
+** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
+** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
+** Specifying this flag makes no difference for scalar or aggregate user
+** functions. However, if it is not specified for a user-defined window
+** function, then any sub-types belonging to arguments passed to the window
+** function may be discarded before the window function is called (i.e.
+** sqlite3_value_subtype() will always return 0).
+** </dd>
+** </dl>
+*/
+#define SQLITE_DETERMINISTIC 0x000000800
+#define SQLITE_DIRECTONLY 0x000080000
+#define SQLITE_SUBTYPE 0x000100000
+#define SQLITE_INNOCUOUS 0x000200000
+
+/*
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To encourage programmers to avoid
+** these functions, we will not explain what they do.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
+ void*,sqlite3_int64);
+#endif
+
+/*
+** CAPI3REF: Obtaining SQL Values
+** METHOD: sqlite3_value
+**
+** <b>Summary:</b>
+** <blockquote><table border=0 cellpadding=0 cellspacing=0>
+** <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
+** <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
+** <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
+** <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
+** <tr><td><b>sqlite3_value_pointer</b><td>&rarr;<td>Pointer value
+** <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
+** <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
+** the native byteorder
+** <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
+** <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
+** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
+** <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
+** or a UTF-8 TEXT in bytes
+** <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
+** TEXT in bytes
+** <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
+** datatype of the value
+** <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
+** <tr><td><b>sqlite3_value_nochange&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if the column is unchanged in an UPDATE
+** against a virtual table.
+** <tr><td><b>sqlite3_value_frombind&nbsp;&nbsp;</b>
+** <td>&rarr;&nbsp;&nbsp;<td>True if value originated from a [bound parameter]
+** </table></blockquote>
+**
+** <b>Details:</b>
+**
+** These routines extract type, size, and content information from
+** [protected sqlite3_value] objects. Protected sqlite3_value objects
+** are used to pass parameter information into the functions that
+** implement [application-defined SQL functions] and [virtual tables].
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** is not threadsafe.
+**
+** ^These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** ^The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. ^The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
+**
+** ^If [sqlite3_value] object V was initialized
+** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)]
+** and if X and Y are strings that compare equal according to strcmp(X,Y),
+** then sqlite3_value_pointer(V,Y) will return the pointer P. ^Otherwise,
+** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** ^(The sqlite3_value_type(V) interface returns the
+** [SQLITE_INTEGER | datatype code] for the initial datatype of the
+** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^
+** Other interfaces might change the datatype for an sqlite3_value object.
+** For example, if the datatype is initially SQLITE_INTEGER and
+** sqlite3_value_text(V) is called to extract a text value for that
+** integer, then subsequent calls to sqlite3_value_type(V) might return
+** SQLITE_TEXT. Whether or not a persistent internal datatype conversion
+** occurs is undefined and may change from one release of SQLite to the next.
+**
+** ^(The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
+**
+** ^Within the [xUpdate] method of a [virtual table], the
+** sqlite3_value_nochange(X) interface returns true if and only if
+** the column corresponding to X is unchanged by the UPDATE operation
+** that the xUpdate method call was invoked to implement and if
+** and the prior [xColumn] method call that was invoked to extracted
+** the value for that column returned without setting a result (probably
+** because it queried [sqlite3_vtab_nochange()] and found that the column
+** was unchanging). ^Within an [xUpdate] method, any value for which
+** sqlite3_value_nochange(X) is true will in all other respects appear
+** to be a NULL value. If sqlite3_value_nochange(X) is invoked anywhere other
+** than within an [xUpdate] method call for an UPDATE statement, then
+** the return value is arbitrary and meaningless.
+**
+** ^The sqlite3_value_frombind(X) interface returns non-zero if the
+** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()]
+** interfaces. ^If X comes from an SQL literal value, or a table column,
+** or an expression, then sqlite3_value_frombind(X) returns zero.
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+** As long as the input parameter is correct, these routines can only
+** fail if an out-of-memory error occurs during a format conversion.
+** Only the following subset of interfaces are subject to out-of-memory
+** errors:
+**
+** <ul>
+** <li> sqlite3_value_blob()
+** <li> sqlite3_value_text()
+** <li> sqlite3_value_text16()
+** <li> sqlite3_value_text16le()
+** <li> sqlite3_value_text16be()
+** <li> sqlite3_value_bytes()
+** <li> sqlite3_value_bytes16()
+** </ul>
+**
+** If an out-of-memory error occurs, then the return value from these
+** routines is the same as if the column had contained an SQL NULL value.
+** Valid SQL NULL returns can be distinguished from out-of-memory errors
+** by invoking the [sqlite3_errcode()] immediately after the suspect
+** return value is obtained and before any
+** other SQLite interface is called on the same [database connection].
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_nochange(sqlite3_value*);
+SQLITE_API int sqlite3_value_frombind(sqlite3_value*);
+
+/*
+** CAPI3REF: Report the internal text encoding state of an sqlite3_value object
+** METHOD: sqlite3_value
+**
+** ^(The sqlite3_value_encoding(X) interface returns one of [SQLITE_UTF8],
+** [SQLITE_UTF16BE], or [SQLITE_UTF16LE] according to the current text encoding
+** of the value X, assuming that X has type TEXT.)^ If sqlite3_value_type(X)
+** returns something other than SQLITE_TEXT, then the return value from
+** sqlite3_value_encoding(X) is meaningless. ^Calls to
+** [sqlite3_value_text(X)], [sqlite3_value_text16(X)], [sqlite3_value_text16be(X)],
+** [sqlite3_value_text16le(X)], [sqlite3_value_bytes(X)], or
+** [sqlite3_value_bytes16(X)] might change the encoding of the value X and
+** thus change the return from subsequent calls to sqlite3_value_encoding(X).
+**
+** This routine is intended for used by applications that test and validate
+** the SQLite implementation. This routine is inquiring about the opaque
+** internal state of an [sqlite3_value] object. Ordinary applications should
+** not need to know what the internal state of an sqlite3_value object is and
+** hence should not need to use this interface.
+*/
+SQLITE_API int sqlite3_value_encoding(sqlite3_value*);
+
+/*
+** CAPI3REF: Finding The Subtype Of SQL Values
+** METHOD: sqlite3_value
+**
+** The sqlite3_value_subtype(V) function returns the subtype for
+** an [application-defined SQL function] argument V. The subtype
+** information can be used to pass a limited amount of context from
+** one SQL function to another. Use the [sqlite3_result_subtype()]
+** routine to set the subtype for the return value of an SQL function.
+*/
+SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*);
+
+/*
+** CAPI3REF: Copy And Free SQL Values
+** METHOD: sqlite3_value
+**
+** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
+** object D and returns a pointer to that copy. ^The [sqlite3_value] returned
+** is a [protected sqlite3_value] object even if the input is not.
+** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
+** memory allocation fails. ^If V is a [pointer value], then the result
+** of sqlite3_value_dup(V) is a NULL value.
+**
+** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
+** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer
+** then sqlite3_value_free(V) is a harmless no-op.
+*/
+SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*);
+SQLITE_API void sqlite3_value_free(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context
+** METHOD: sqlite3_context
+**
+** Implementations of aggregate SQL functions use this
+** routine to allocate memory for storing their state.
+**
+** ^The first time the sqlite3_aggregate_context(C,N) routine is called
+** for a particular aggregate function, SQLite allocates
+** N bytes of memory, zeroes out that memory, and returns a pointer
+** to the new memory. ^On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function instance,
+** the same buffer is returned. Sqlite3_aggregate_context() is normally
+** called once for each invocation of the xStep callback and then one
+** last time when the xFinal callback is invoked. ^(When no rows match
+** an aggregate query, the xStep() callback of the aggregate function
+** implementation is never called and xFinal() is called exactly once.
+** In those cases, sqlite3_aggregate_context() might be called for the
+** first time from within xFinal().)^
+**
+** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
+** when first called if N is less than or equal to zero or if a memory
+** allocation error occurs.
+**
+** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
+** determined by the N parameter on first successful call. Changing the
+** value of N in any subsequent call to sqlite3_aggregate_context() within
+** the same aggregate function instance will not resize the memory
+** allocation.)^ Within the xFinal callback, it is customary to set
+** N=0 in calls to sqlite3_aggregate_context(C,N) so that no
+** pointless memory allocations occur.
+**
+** ^SQLite automatically frees the memory allocated by
+** sqlite3_aggregate_context() when the aggregate query concludes.
+**
+** The first parameter must be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the xStep or xFinal callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions
+** METHOD: sqlite3_context
+**
+** ^The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data
+** METHOD: sqlite3_context
+**
+** These functions may be used by (non-aggregate) SQL functions to
+** associate auxiliary data with argument values. If the same argument
+** value is passed to multiple invocations of the same SQL function during
+** query execution, under some circumstances the associated auxiliary data
+** might be preserved. An example of where this might be useful is in a
+** regular-expression matching function. The compiled version of the regular
+** expression can be stored as auxiliary data associated with the pattern string.
+** Then as long as the pattern string remains the same,
+** the compiled regular expression can be reused on multiple
+** invocations of the same function.
+**
+** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the auxiliary data
+** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
+** value to the application-defined function. ^N is zero for the left-most
+** function argument. ^If there is no auxiliary data
+** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
+** returns a NULL pointer.
+**
+** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as auxiliary data for the
+** N-th argument of the application-defined function. ^Subsequent
+** calls to sqlite3_get_auxdata(C,N) return P from the most recent
+** sqlite3_set_auxdata(C,N,P,X) call if the auxiliary data is still valid or
+** NULL if the auxiliary data has been discarded.
+** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
+** SQLite will invoke the destructor function X with parameter P exactly
+** once, when the auxiliary data is discarded.
+** SQLite is free to discard the auxiliary data at any time, including: <ul>
+** <li> ^(when the corresponding function parameter changes)^, or
+** <li> ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
+** SQL statement)^, or
+** <li> ^(when sqlite3_set_auxdata() is invoked again on the same
+** parameter)^, or
+** <li> ^(during the original sqlite3_set_auxdata() call when a memory
+** allocation error occurs.)^ </ul>
+**
+** Note the last bullet in particular. The destructor X in
+** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
+** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata()
+** should be called near the end of the function implementation and the
+** function implementation should not make any use of P after
+** sqlite3_set_auxdata() has been called.
+**
+** ^(In practice, auxiliary data is preserved between function calls for
+** function parameters that are compile-time constants, including literal
+** values and [parameters] and expressions composed from the same.)^
+**
+** The value of the N parameter to these interfaces should be non-negative.
+** Future enhancements may make use of negative N values to define new
+** kinds of function caching behavior.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+**
+** See also: [sqlite3_get_clientdata()] and [sqlite3_set_clientdata()].
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+/*
+** CAPI3REF: Database Connection Client Data
+** METHOD: sqlite3
+**
+** These functions are used to associate one or more named pointers
+** with a [database connection].
+** A call to sqlite3_set_clientdata(D,N,P,X) causes the pointer P
+** to be attached to [database connection] D using name N. Subsequent
+** calls to sqlite3_get_clientdata(D,N) will return a copy of pointer P
+** or a NULL pointer if there were no prior calls to
+** sqlite3_set_clientdata() with the same values of D and N.
+** Names are compared using strcmp() and are thus case sensitive.
+**
+** If P and X are both non-NULL, then the destructor X is invoked with
+** argument P on the first of the following occurrences:
+** <ul>
+** <li> An out-of-memory error occurs during the call to
+** sqlite3_set_clientdata() which attempts to register pointer P.
+** <li> A subsequent call to sqlite3_set_clientdata(D,N,P,X) is made
+** with the same D and N parameters.
+** <li> The database connection closes. SQLite does not make any guarantees
+** about the order in which destructors are called, only that all
+** destructors will be called exactly once at some point during the
+** database connection closing process.
+** </ul>
+**
+** SQLite does not do anything with client data other than invoke
+** destructors on the client data at the appropriate time. The intended
+** use for client data is to provide a mechanism for wrapper libraries
+** to store additional information about an SQLite database connection.
+**
+** There is no limit (other than available memory) on the number of different
+** client data pointers (with different names) that can be attached to a
+** single database connection. However, the implementation is optimized
+** for the case of having only one or two different client data names.
+** Applications and wrapper libraries are discouraged from using more than
+** one client data name each.
+**
+** There is no way to enumerate the client data pointers
+** associated with a database connection. The N parameter can be thought
+** of as a secret key such that only code that knows the secret key is able
+** to access the associated data.
+**
+** Security Warning: These interfaces should not be exposed in scripting
+** languages or in other circumstances where it might be possible for an
+** an attacker to invoke them. Any agent that can invoke these interfaces
+** can probably also take control of the process.
+**
+** Database connection client data is only available for SQLite
+** version 3.44.0 ([dateof:3.44.0]) and later.
+**
+** See also: [sqlite3_set_auxdata()] and [sqlite3_get_auxdata()].
+*/
+SQLITE_API void *sqlite3_get_clientdata(sqlite3*,const char*);
+SQLITE_API int sqlite3_set_clientdata(sqlite3*, const char*, void*, void(*)(void*));
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. ^The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function
+** METHOD: sqlite3_context
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** ^The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
+** interfaces set the result of the application-defined function to be
+** a BLOB containing all zero bytes and N bytes in size.
+**
+** ^The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** ^The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** ^SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. ^SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. ^SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 using
+** the same [byte-order determination rules] as [sqlite3_bind_text16()].
+** ^If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** ^If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** ^The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** ^The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. ^By default,
+** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
+** error indicating that a string or BLOB is too long to represent.
+**
+** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
+** error indicating that a memory allocation failed.
+**
+** ^The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** ^The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** ^The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** ^The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** ^The sqlite3_result_text64() interface sets the return value of an
+** application-defined function to be a text string in an encoding
+** specified by the fifth (and last) parameter, which must be one
+** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
+** ^SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** ^If the 3rd parameter to any of the sqlite3_result_text* interfaces
+** other than sqlite3_result_text64() is negative, then SQLite computes
+** the string length itself by searching the 2nd parameter for the first
+** zero character.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result. If the 3rd parameter is non-negative, then it
+** must be the byte offset into the string where the NUL terminator would
+** appear if the string where NUL terminated. If any NUL characters occur
+** in the string at a byte offset that is less than the value of the 3rd
+** parameter, then the resulting string will contain embedded NULs and the
+** result of expressions operating on strings with embedded NULs is undefined.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained
+** from [sqlite3_malloc()] before it returns.
+**
+** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and
+** sqlite3_result_text16be() routines, and for sqlite3_result_text64()
+** when the encoding is not UTF8, if the input UTF16 begins with a
+** byte-order mark (BOM, U+FEFF) then the BOM is removed from the
+** string and the rest of the string is interpreted according to the
+** byte-order specified by the BOM. ^The byte-order specified by
+** the BOM at the beginning of the text overrides the byte-order
+** specified by the interface procedure. ^So, for example, if
+** sqlite3_result_text16le() is invoked with text that begins
+** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the
+** first two bytes of input are skipped and the remaining input
+** is interpreted as UTF16BE text.
+**
+** ^For UTF16 input text to the sqlite3_result_text16(),
+** sqlite3_result_text16be(), sqlite3_result_text16le(), and
+** sqlite3_result_text64() routines, if the text contains invalid
+** UTF16 characters, the invalid characters might be converted
+** into the unicode replacement character, U+FFFD.
+**
+** ^The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy of the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** ^A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an
+** SQL NULL value, just like [sqlite3_result_null(C)], except that it
+** also associates the host-language pointer P or type T with that
+** NULL value such that the pointer can be retrieved within an
+** [application-defined SQL function] using [sqlite3_value_pointer()].
+** ^If the D parameter is not NULL, then it is a pointer to a destructor
+** for the P parameter. ^SQLite invokes D with P as its only argument
+** when SQLite is finished with P. The T parameter should be a static
+** string and preferably a string literal. The sqlite3_result_pointer()
+** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
+ sqlite3_uint64,void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char encoding);
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*));
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
+
+
+/*
+** CAPI3REF: Setting The Subtype Of An SQL Function
+** METHOD: sqlite3_context
+**
+** The sqlite3_result_subtype(C,T) function causes the subtype of
+** the result from the [application-defined SQL function] with
+** [sqlite3_context] C to be the value T. Only the lower 8 bits
+** of the subtype T are preserved in current versions of SQLite;
+** higher order bits are discarded.
+** The number of subtype bytes preserved by SQLite might increase
+** in future releases of SQLite.
+*/
+SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int);
+
+/*
+** CAPI3REF: Define New Collating Sequences
+** METHOD: sqlite3
+**
+** ^These functions add, remove, or modify a [collation] associated
+** with the [database connection] specified as the first argument.
+**
+** ^The name of the collation is a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string in native byte order for sqlite3_create_collation16().
+** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
+** considered to be the same name.
+**
+** ^(The third argument (eTextRep) must be one of the constants:
+** <ul>
+** <li> [SQLITE_UTF8],
+** <li> [SQLITE_UTF16LE],
+** <li> [SQLITE_UTF16BE],
+** <li> [SQLITE_UTF16], or
+** <li> [SQLITE_UTF16_ALIGNED].
+** </ul>)^
+** ^The eTextRep argument determines the encoding of strings passed
+** to the collating function callback, xCompare.
+** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
+** force strings to be UTF16 with native byte order.
+** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
+** on an even byte address.
+**
+** ^The fourth argument, pArg, is an application data pointer that is passed
+** through as the first argument to the collating function callback.
+**
+** ^The fifth argument, xCompare, is a pointer to the collating function.
+** ^Multiple collating functions can be registered using the same name but
+** with different eTextRep parameters and SQLite will use whichever
+** function requires the least amount of data transformation.
+** ^If the xCompare argument is NULL then the collating function is
+** deleted. ^When all collating functions having the same name are deleted,
+** that collation is no longer usable.
+**
+** ^The collating function callback is invoked with a copy of the pArg
+** application data pointer and with two strings in the encoding specified
+** by the eTextRep argument. The two integer parameters to the collating
+** function callback are the length of the two strings, in bytes. The collating
+** function must return an integer that is negative, zero, or positive
+** if the first string is less than, equal to, or greater than the second,
+** respectively. A collating function must always return the same answer
+** given the same inputs. If two or more collating functions are registered
+** to the same collation name (using different eTextRep values) then all
+** must give an equivalent answer when invoked with equivalent strings.
+** The collating function must obey the following properties for all
+** strings A, B, and C:
+**
+** <ol>
+** <li> If A==B then B==A.
+** <li> If A==B and B==C then A==C.
+** <li> If A&lt;B THEN B&gt;A.
+** <li> If A&lt;B and B&lt;C then A&lt;C.
+** </ol>
+**
+** If a collating function fails any of the above constraints and that
+** collating function is registered and used, then the behavior of SQLite
+** is undefined.
+**
+** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** with the addition that the xDestroy callback is invoked on pArg when
+** the collating function is deleted.
+** ^Collating functions are deleted when they are overridden by later
+** calls to the collation creation functions or when the
+** [database connection] is closed using [sqlite3_close()].
+**
+** ^The xDestroy callback is <u>not</u> called if the
+** sqlite3_create_collation_v2() function fails. Applications that invoke
+** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
+** check the return code and dispose of the application data pointer
+** themselves rather than expecting SQLite to deal with it for them.
+** This is different from every other SQLite interface. The inconsistency
+** is unfortunate but cannot be changed without breaking backwards
+** compatibility.
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void *pArg,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks
+** METHOD: sqlite3
+**
+** ^To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** [database connection] to be invoked whenever an undefined collation
+** sequence is required.
+**
+** ^If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** ^A call to either function replaces the existing collation-needed callback.
+**
+** ^(When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
+** required collation sequence.)^
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+#ifdef SQLITE_ENABLE_CEROD
+/*
+** Specify the activation key for a CEROD database. Unless
+** activated, none of the CEROD routines will work.
+*/
+SQLITE_API void sqlite3_activate_cerod(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time
+**
+** The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** ^SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object. If the xSleep() method
+** of the default VFS is not implemented correctly, or not implemented at
+** all, then the behavior of sqlite3_sleep() may deviate from the description
+** in the previous paragraphs.
+**
+** If a negative argument is passed to sqlite3_sleep() the results vary by
+** VFS and operating system. Some system treat a negative argument as an
+** instruction to sleep forever. Others understand it to mean do not sleep
+** at all. ^In SQLite version 3.42.0 and later, a negative
+** argument passed into sqlite3_sleep() is changed to zero before it is relayed
+** down into the xSleep method of the VFS.
+*/
+SQLITE_API int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
+** created by SQLite when using a built-in [sqlite3_vfs | VFS]
+** will be placed in that directory.)^ ^If this variable
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** Applications are strongly discouraged from using this global variable.
+** It is required to set a temporary folder on Windows Runtime (WinRT).
+** But for all other platforms, it is highly recommended that applications
+** neither read nor write this variable. This global variable is a relic
+** that exists for backwards compatibility of legacy applications and should
+** be avoided in new projects.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
+** Except when requested by the [temp_store_directory pragma], SQLite
+** does not free the memory that sqlite3_temp_directory points to. If
+** the application wants that memory to be freed, it must do
+** so itself, taking care to only do so after all [database connection]
+** objects have been destroyed.
+**
+** <b>Note to Windows Runtime users:</b> The temporary directory must be set
+** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various
+** features that require the use of temporary files may fail. Here is an
+** example of how to do this using C++ with the Windows Runtime:
+**
+** <blockquote><pre>
+** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
+** &nbsp; TemporaryFolder->Path->Data();
+** char zPathBuf&#91;MAX_PATH + 1&#93;;
+** memset(zPathBuf, 0, sizeof(zPathBuf));
+** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
+** &nbsp; NULL, NULL);
+** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
+** </pre></blockquote>
+*/
+SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Name Of The Folder Holding Database Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all database files
+** specified with a relative pathname and created or accessed by
+** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
+** to be relative to that directory.)^ ^If this variable is a NULL
+** pointer, then SQLite assumes that all database files specified
+** with a relative pathname are relative to the current directory
+** for the process. Only the windows VFS makes use of this global
+** variable; it is ignored by the unix VFS.
+**
+** Changing the value of this variable while a database connection is
+** open can result in a corrupt database.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [data_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [data_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [data_store_directory pragma] should be avoided.
+*/
+SQLITE_API SQLITE_EXTERN char *sqlite3_data_directory;
+
+/*
+** CAPI3REF: Win32 Specific Interface
+**
+** These interfaces are available only on Windows. The
+** [sqlite3_win32_set_directory] interface is used to set the value associated
+** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
+** zValue, depending on the value of the type parameter. The zValue parameter
+** should be NULL to cause the previous value to be freed via [sqlite3_free];
+** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
+** prior to being used. The [sqlite3_win32_set_directory] interface returns
+** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
+** or [SQLITE_NOMEM] if memory could not be allocated. The value of the
+** [sqlite3_data_directory] variable is intended to act as a replacement for
+** the current directory on the sub-platforms of Win32 where that concept is
+** not present, e.g. WinRT and UWP. The [sqlite3_win32_set_directory8] and
+** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
+** sqlite3_win32_set_directory interface except the string parameter must be
+** UTF-8 or UTF-16, respectively.
+*/
+SQLITE_API int sqlite3_win32_set_directory(
+ unsigned long type, /* Identifier for directory being set or reset */
+ void *zValue /* New value for directory being set or reset */
+);
+SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
+SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);
+
+/*
+** CAPI3REF: Win32 Directory Types
+**
+** These macros are only available on Windows. They define the allowed values
+** for the type argument to the [sqlite3_win32_set_directory] interface.
+*/
+#define SQLITE_WIN32_DATA_DIRECTORY_TYPE 1
+#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE 2
+
+/*
+** CAPI3REF: Test For Auto-Commit Mode
+** KEYWORDS: {autocommit mode}
+** METHOD: sqlite3
+**
+** ^The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. ^Autocommit mode is on by default.
+** ^Autocommit mode is disabled by a [BEGIN] statement.
+** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement
+** METHOD: sqlite3_stmt
+**
+** ^The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. ^The [database connection]
+** returned by sqlite3_db_handle is the same [database connection]
+** that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Return The Schema Name For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_name(D,N) interface returns a pointer to the schema name
+** for the N-th database on database connection D, or a NULL pointer of N is
+** out of range. An N value of 0 means the main database file. An N of 1 is
+** the "temp" schema. Larger values of N correspond to various ATTACH-ed
+** databases.
+**
+** Space to hold the string that is returned by sqlite3_db_name() is managed
+** by SQLite itself. The string might be deallocated by any operation that
+** changes the schema, including [ATTACH] or [DETACH] or calls to
+** [sqlite3_serialize()] or [sqlite3_deserialize()], even operations that
+** occur on a different thread. Applications that need to
+** remember the string long-term should make their own copy. Applications that
+** are accessing the same database connection simultaneously on multiple
+** threads should mutex-protect calls to this API and should make their own
+** private copy of the result prior to releasing the mutex.
+*/
+SQLITE_API const char *sqlite3_db_name(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Return The Filename For A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename
+** associated with database N of connection D.
+** ^If there is no attached database N on the database
+** connection D, or if database N is a temporary or in-memory database, then
+** this function will return either a NULL pointer or an empty string.
+**
+** ^The string value returned by this routine is owned and managed by
+** the database connection. ^The value will be valid until the database N
+** is [DETACH]-ed or until the database connection closes.
+**
+** ^The filename returned by this function is the output of the
+** xFullPathname method of the [VFS]. ^In other words, the filename
+** will be an absolute pathname, even if the filename used
+** to open the database originally was a URI or relative pathname.
+**
+** If the filename pointer returned by this routine is not NULL, then it
+** can be used as the filename input parameter to these routines:
+** <ul>
+** <li> [sqlite3_uri_parameter()]
+** <li> [sqlite3_uri_boolean()]
+** <li> [sqlite3_uri_int64()]
+** <li> [sqlite3_filename_database()]
+** <li> [sqlite3_filename_journal()]
+** <li> [sqlite3_filename_wal()]
+** </ul>
+*/
+SQLITE_API sqlite3_filename sqlite3_db_filename(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine if a database is read-only
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
+** of connection D is read-only, 0 if it is read/write, or -1 if N is not
+** the name of a database on connection D.
+*/
+SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
+
+/*
+** CAPI3REF: Determine the transaction state of a database
+** METHOD: sqlite3
+**
+** ^The sqlite3_txn_state(D,S) interface returns the current
+** [transaction state] of schema S in database connection D. ^If S is NULL,
+** then the highest transaction state of any schema on database connection D
+** is returned. Transaction states are (in order of lowest to highest):
+** <ol>
+** <li value="0"> SQLITE_TXN_NONE
+** <li value="1"> SQLITE_TXN_READ
+** <li value="2"> SQLITE_TXN_WRITE
+** </ol>
+** ^If the S argument to sqlite3_txn_state(D,S) is not the name of
+** a valid schema, then -1 is returned.
+*/
+SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema);
+
+/*
+** CAPI3REF: Allowed return values from sqlite3_txn_state()
+** KEYWORDS: {transaction state}
+**
+** These constants define the current transaction state of a database file.
+** ^The [sqlite3_txn_state(D,S)] interface returns one of these
+** constants in order to describe the transaction state of schema S
+** in [database connection] D.
+**
+** <dl>
+** [[SQLITE_TXN_NONE]] <dt>SQLITE_TXN_NONE</dt>
+** <dd>The SQLITE_TXN_NONE state means that no transaction is currently
+** pending.</dd>
+**
+** [[SQLITE_TXN_READ]] <dt>SQLITE_TXN_READ</dt>
+** <dd>The SQLITE_TXN_READ state means that the database is currently
+** in a read transaction. Content has been read from the database file
+** but nothing in the database file has changed. The transaction state
+** will advanced to SQLITE_TXN_WRITE if any changes occur and there are
+** no other conflicting concurrent write transactions. The transaction
+** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or
+** [COMMIT].</dd>
+**
+** [[SQLITE_TXN_WRITE]] <dt>SQLITE_TXN_WRITE</dt>
+** <dd>The SQLITE_TXN_WRITE state means that the database is currently
+** in a write transaction. Content has been written to the database file
+** but has not yet committed. The transaction state will change to
+** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].</dd>
+*/
+#define SQLITE_TXN_NONE 0
+#define SQLITE_TXN_READ 1
+#define SQLITE_TXN_WRITE 2
+
+/*
+** CAPI3REF: Find the next prepared statement
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. ^If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** ^Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** ^The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** ^Any callback set by a previous call to sqlite3_rollback_hook()
+** for the same database connection is overridden.
+** ^The pArg argument is passed through to the callback.
+** ^If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
+** return the P argument from the previous call of the same function
+** on the same [database connection] D, or NULL for
+** the first call for each function on D.
+**
+** The commit and rollback hook callbacks are not reentrant.
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that running any other SQL statements, including SELECT statements,
+** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
+** the database connections for the meaning of "modify" in this paragraph.
+**
+** ^Registering a NULL function disables the callback.
+**
+** ^When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. ^If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** ^The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
+**
+** ^For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** ^The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+**
+** See also the [sqlite3_update_hook()] interface.
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Autovacuum Compaction Amount Callback
+** METHOD: sqlite3
+**
+** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback
+** function C that is invoked prior to each autovacuum of the database
+** file. ^The callback is passed a copy of the generic data pointer (P),
+** the schema-name of the attached database that is being autovacuumed,
+** the size of the database file in pages, the number of free pages,
+** and the number of bytes per page, respectively. The callback should
+** return the number of free pages that should be removed by the
+** autovacuum. ^If the callback returns zero, then no autovacuum happens.
+** ^If the value returned is greater than or equal to the number of
+** free pages, then a complete autovacuum happens.
+**
+** <p>^If there are multiple ATTACH-ed database files that are being
+** modified as part of a transaction commit, then the autovacuum pages
+** callback is invoked separately for each file.
+**
+** <p><b>The callback is not reentrant.</b> The callback function should
+** not attempt to invoke any other SQLite interface. If it does, bad
+** things may happen, including segmentation faults and corrupt database
+** files. The callback function should be a simple function that
+** does some arithmetic on its input parameters and returns a result.
+**
+** ^The X parameter to sqlite3_autovacuum_pages(D,C,P,X) is an optional
+** destructor for the P parameter. ^If X is not NULL, then X(P) is
+** invoked whenever the database connection closes or when the callback
+** is overwritten by another invocation of sqlite3_autovacuum_pages().
+**
+** <p>^There is only one autovacuum pages callback per database connection.
+** ^Each call to the sqlite3_autovacuum_pages() interface overrides all
+** previous invocations for that database connection. ^If the callback
+** argument (C) to sqlite3_autovacuum_pages(D,C,P,X) is a NULL pointer,
+** then the autovacuum steps callback is canceled. The return value
+** from sqlite3_autovacuum_pages() is normally SQLITE_OK, but might
+** be some other error code if something goes wrong. The current
+** implementation will only return SQLITE_OK or SQLITE_MISUSE, but other
+** return codes might be added in future releases.
+**
+** <p>If no autovacuum pages callback is specified (the usual case) or
+** a NULL pointer is provided for the callback,
+** then the default behavior is to vacuum all free pages. So, in other
+** words, the default behavior is the same as if the callback function
+** were something like this:
+**
+** <blockquote><pre>
+** &nbsp; unsigned int demonstration_autovac_pages_callback(
+** &nbsp; void *pClientData,
+** &nbsp; const char *zSchema,
+** &nbsp; unsigned int nDbPage,
+** &nbsp; unsigned int nFreePage,
+** &nbsp; unsigned int nBytePerPage
+** &nbsp; ){
+** &nbsp; return nFreePage;
+** &nbsp; }
+** </pre></blockquote>
+*/
+SQLITE_API int sqlite3_autovacuum_pages(
+ sqlite3 *db,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*,
+ void(*)(void*)
+);
+
+
+/*
+** CAPI3REF: Data Change Notification Callbacks
+** METHOD: sqlite3
+**
+** ^The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted in
+** a [rowid table].
+** ^Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** ^The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted in a rowid table.
+** ^The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** ^The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** ^The final callback parameter is the [rowid] of the row.
+** ^In the case of an update, this is the [rowid] after the update takes place.
+**
+** ^(The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_sequence).)^
+** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
+**
+** ^In the current implementation, the update hook
+** is not invoked when conflicting rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^The sqlite3_update_hook(D,C,P) function
+** returns the P argument from the previous call
+** on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()],
+** and [sqlite3_preupdate_hook()] interfaces.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache
+**
+** ^(This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.)^
+**
+** This interface is omitted if SQLite is compiled with
+** [-DSQLITE_OMIT_SHARED_CACHE]. The [-DSQLITE_OMIT_SHARED_CACHE]
+** compile-time option is recommended because the
+** [use of shared cache mode is discouraged].
+**
+** ^Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]).
+** In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
+**
+** ^(The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue to use the sharing mode
+** that was in effect at the time they were opened.)^
+**
+** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.)^
+**
+** ^Shared cache is disabled by default. It is recommended that it stay
+** that way. In other words, do not use this routine. This interface
+** continues to be provided for historical compatibility, but its use is
+** discouraged. Any use of shared cache is discouraged. If shared cache
+** must be used, it is recommended that shared cache only be enabled for
+** individual database connections using the [sqlite3_open_v2()] interface
+** with the [SQLITE_OPEN_SHAREDCACHE] flag.
+**
+** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
+** and will always return SQLITE_MISUSE. On those systems,
+** shared cache mode should be enabled per-database connection via
+** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
+**
+** This interface is threadsafe on processors where writing a
+** 32-bit integer is atomic.
+**
+** See Also: [SQLite Shared-Cache Mode]
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory
+**
+** ^The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** ^sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
+** ^The sqlite3_release_memory() routine is a no-op returning zero
+** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
+**
+** See also: [sqlite3_db_release_memory()]
+*/
+SQLITE_API int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Free Memory Used By A Database Connection
+** METHOD: sqlite3
+**
+** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
+** memory as possible from database connection D. Unlike the
+** [sqlite3_release_memory()] interface, this interface is in effect even
+** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
+** omitted.
+**
+** See also: [sqlite3_release_memory()]
+*/
+SQLITE_API int sqlite3_db_release_memory(sqlite3*);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size
+**
+** These interfaces impose limits on the amount of heap memory that will be
+** by all database connections within a single process.
+**
+** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
+** soft limit on the amount of heap memory that may be allocated by SQLite.
+** ^SQLite strives to keep heap memory utilization below the soft heap
+** limit by reducing the number of pages held in the page cache
+** as heap memory usages approaches the limit.
+** ^The soft heap limit is "soft" because even though SQLite strives to stay
+** below the limit, it will exceed the limit rather than generate
+** an [SQLITE_NOMEM] error. In other words, the soft heap limit
+** is advisory only.
+**
+** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of
+** N bytes on the amount of memory that will be allocated. ^The
+** sqlite3_hard_heap_limit64(N) interface is similar to
+** sqlite3_soft_heap_limit64(N) except that memory allocations will fail
+** when the hard heap limit is reached.
+**
+** ^The return value from both sqlite3_soft_heap_limit64() and
+** sqlite3_hard_heap_limit64() is the size of
+** the heap limit prior to the call, or negative in the case of an
+** error. ^If the argument N is negative
+** then no change is made to the heap limit. Hence, the current
+** size of heap limits can be determined by invoking
+** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1).
+**
+** ^Setting the heap limits to zero disables the heap limiter mechanism.
+**
+** ^The soft heap limit may not be greater than the hard heap limit.
+** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N)
+** is invoked with a value of N that is greater than the hard heap limit,
+** the soft heap limit is set to the value of the hard heap limit.
+** ^The soft heap limit is automatically enabled whenever the hard heap
+** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and
+** the soft heap limit is outside the range of 1..N, then the soft heap
+** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the
+** hard heap limit is enabled makes the soft heap limit equal to the
+** hard heap limit.
+**
+** The memory allocation limits can also be adjusted using
+** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit].
+**
+** ^(The heap limits are not enforced in the current implementation
+** if one or more of following conditions are true:
+**
+** <ul>
+** <li> The limit value is set to zero.
+** <li> Memory accounting is disabled using a combination of the
+** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
+** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
+** <li> An alternative page cache implementation is specified using
+** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
+** <li> The page cache allocates from its own memory pool supplied
+** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
+** from the heap.
+** </ul>)^
+**
+** The circumstances under which SQLite will enforce the heap limits may
+** changes in future releases of SQLite.
+*/
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
+SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N);
+
+/*
+** CAPI3REF: Deprecated Soft Heap Limit Interface
+** DEPRECATED
+**
+** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
+** interface. This routine is provided for historical compatibility
+** only. All new applications should use the
+** [sqlite3_soft_heap_limit64()] interface rather than this one.
+*/
+SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
+
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table
+** METHOD: sqlite3
+**
+** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
+** information about column C of table T in database D
+** on [database connection] X.)^ ^The sqlite3_table_column_metadata()
+** interface returns SQLITE_OK and fills in the non-NULL pointers in
+** the final five arguments with appropriate values if the specified
+** column exists. ^The sqlite3_table_column_metadata() interface returns
+** SQLITE_ERROR if the specified column does not exist.
+** ^If the column-name parameter to sqlite3_table_column_metadata() is a
+** NULL pointer, then this routine simply checks for the existence of the
+** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
+** does not. If the table name parameter T in a call to
+** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is
+** undefined behavior.
+**
+** ^The column is identified by the second, third and fourth parameters to
+** this function. ^(The second parameter is either the name of the database
+** (i.e. "main", "temp", or an attached database) containing the specified
+** table or NULL.)^ ^If it is NULL, then all attached databases are searched
+** for the table using the same algorithm used by the database engine to
+** resolve unqualified table references.
+**
+** ^The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively.
+**
+** ^Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. ^Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
+**
+** ^(<blockquote>
+** <table border="1">
+** <tr><th> Parameter <th> Output<br>Type <th> Description
+**
+** <tr><td> 5th <td> const char* <td> Data type
+** <tr><td> 6th <td> const char* <td> Name of default collation sequence
+** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
+** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
+** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
+** </table>
+** </blockquote>)^
+**
+** ^The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid until the next
+** call to any SQLite API function.
+**
+** ^If the specified table is actually a view, an [error code] is returned.
+**
+** ^If the specified column is "rowid", "oid" or "_rowid_" and the table
+** is not a [WITHOUT ROWID] table and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. ^(If there is no
+** [INTEGER PRIMARY KEY] column, then the outputs
+** for the [rowid] are set as follows:
+**
+** <pre>
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+** </pre>)^
+**
+** ^This function causes all database schemas to be read from disk and
+** parsed, if that has not already been done, and returns an error if
+** any errors are encountered while loading the schema.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension
+** METHOD: sqlite3
+**
+** ^This interface loads an SQLite extension library from the named file.
+**
+** ^The sqlite3_load_extension() interface attempts to load an
+** [SQLite extension] library contained in the file zFile. If
+** the file cannot be loaded directly, attempts are made to load
+** with various operating-system specific extensions added.
+** So for example, if "samplelib" cannot be loaded, then names like
+** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
+** be tried also.
+**
+** ^The entry point is zProc.
+** ^(zProc may be 0, in which case SQLite will try to come up with an
+** entry point name on its own. It first tries "sqlite3_extension_init".
+** If that does not work, it constructs a name "sqlite3_X_init" where the
+** X is consists of the lower-case equivalent of all ASCII alphabetic
+** characters in the filename from the last "/" to the first following
+** "." and omitting any initial "lib".)^
+** ^The sqlite3_load_extension() interface returns
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** ^If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** ^Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] or
+** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL)
+** prior to calling this API,
+** otherwise an error will be returned.
+**
+** <b>Security warning:</b> It is recommended that the
+** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this
+** interface. The use of the [sqlite3_enable_load_extension()] interface
+** should be avoided. This will keep the SQL function [load_extension()]
+** disabled and prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+**
+** See also the [load_extension() SQL function].
+*/
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading
+** METHOD: sqlite3
+**
+** ^So as not to open security holes in older applications that are
+** unprepared to deal with [extension loading], and as a means of disabling
+** [extension loading] while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** ^Extension loading is off by default.
+** ^Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+**
+** ^This interface enables or disables both the C-API
+** [sqlite3_load_extension()] and the SQL function [load_extension()].
+** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..)
+** to enable or disable only the C-API.)^
+**
+** <b>Security warning:</b> It is recommended that extension loading
+** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method
+** rather than this interface, so the [load_extension()] SQL function
+** remains disabled. This will prevent SQL injections from giving attackers
+** access to extension loading capabilities.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Automatically Load Statically Linked Extensions
+**
+** ^This interface causes the xEntryPoint() function to be invoked for
+** each new [database connection] that is created. The idea here is that
+** xEntryPoint() is the entry point for a statically linked [SQLite extension]
+** that is to be automatically loaded into all new database connections.
+**
+** ^(Even though the function prototype shows that xEntryPoint() takes
+** no arguments and returns void, SQLite invokes xEntryPoint() with three
+** arguments and expects an integer result as if the signature of the
+** entry point where as follows:
+**
+** <blockquote><pre>
+** &nbsp; int xEntryPoint(
+** &nbsp; sqlite3 *db,
+** &nbsp; const char **pzErrMsg,
+** &nbsp; const struct sqlite3_api_routines *pThunk
+** &nbsp; );
+** </pre></blockquote>)^
+**
+** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
+** point to an appropriate error message (obtained from [sqlite3_mprintf()])
+** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
+** is NULL before calling the xEntryPoint(). ^SQLite will invoke
+** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
+** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
+**
+** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
+** on the list of automatic extensions is a harmless no-op. ^No entry point
+** will be called more than once for each database connection that is opened.
+**
+** See also: [sqlite3_reset_auto_extension()]
+** and [sqlite3_cancel_auto_extension()]
+*/
+SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Cancel Automatic Extension Loading
+**
+** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
+** initialization routine X that was registered using a prior call to
+** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)]
+** routine returns 1 if initialization routine X was successfully
+** unregistered and it returns 0 if X was not on the list of initialization
+** routines.
+*/
+SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading
+**
+** ^This interface disables all automatic extensions previously
+** registered using [sqlite3_auto_extension()].
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void);
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object
+** KEYWORDS: sqlite3_module {virtual table module}
+**
+** This structure, sometimes called a "virtual table module",
+** defines the implementation of a [virtual table].
+** This structure consists mostly of methods for the module.
+**
+** ^A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** ^The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+ /* The methods above are in version 1 of the sqlite_module object. Those
+ ** below are for version 2 and greater. */
+ int (*xSavepoint)(sqlite3_vtab *pVTab, int);
+ int (*xRelease)(sqlite3_vtab *pVTab, int);
+ int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
+ /* The methods above are in versions 1 and 2 of the sqlite_module object.
+ ** Those below are for version 3 and greater. */
+ int (*xShadowName)(const char*);
+ /* The methods above are in versions 1 through 3 of the sqlite_module object.
+ ** Those below are for version 4 and greater. */
+ int (*xIntegrity)(sqlite3_vtab *pVTab, const char *zSchema,
+ const char *zTabName, int mFlags, char **pzErr);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information
+** KEYWORDS: sqlite3_index_info
+**
+** The sqlite3_index_info structure and its substructures is used as part
+** of the [virtual table] interface to
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** ^(The aConstraint[] array records WHERE clause constraints of the form:
+**
+** <blockquote>column OP expr</blockquote>
+**
+** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
+** stored in aConstraint[].op using one of the
+** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
+** ^(The index of the column is stored in
+** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.)^
+**
+** ^The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** ^The aConstraint[] array only reports WHERE clause terms that are
+** relevant to the particular virtual table being queried.
+**
+** ^Information about the ORDER BY clause is stored in aOrderBy[].
+** ^Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The colUsed field indicates which columns of the virtual table may be
+** required by the current scan. Virtual table columns are numbered from
+** zero in the order in which they appear within the CREATE TABLE statement
+** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
+** the corresponding bit is set within the colUsed mask if the column may be
+** required by SQLite. If the table has at least 64 columns and any column
+** to the right of the first 63 is required, then bit 63 of colUsed is also
+** set. In other words, column iCol may be required if the expression
+** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to
+** non-zero.
+**
+** The [xBestIndex] method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. ^If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and might not be checked again by the byte code.)^ ^(The
+** aConstraintUsage[].omit flag is an optimization hint. When the omit flag
+** is left in its default setting of false, the constraint will always be
+** checked separately in byte code. If the omit flag is change to true, then
+** the constraint may or may not be checked in byte code. In other words,
+** when the omit flag is true there is no guarantee that the constraint will
+** not be checked again using byte code.)^
+**
+** ^The idxNum and idxStr values are recorded and passed into the
+** [xFilter] method.
+** ^[sqlite3_free()] is used to free idxStr if and only if
+** needToFreeIdxStr is true.
+**
+** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** ^The estimatedCost value is an estimate of the cost of a particular
+** strategy. A cost of N indicates that the cost of the strategy is similar
+** to a linear scan of an SQLite table with N rows. A cost of log(N)
+** indicates that the expense of the operation is similar to that of a
+** binary search on a unique indexed field of an SQLite table with N rows.
+**
+** ^The estimatedRows value is an estimate of the number of rows that
+** will be returned by the strategy.
+**
+** The xBestIndex method may optionally populate the idxFlags field with a
+** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag -
+** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite
+** assumes that the strategy may visit at most one row.
+**
+** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then
+** SQLite also assumes that if a call to the xUpdate() method is made as
+** part of the same statement to delete or update a virtual table row and the
+** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback
+** any database changes. In other words, if the xUpdate() returns
+** SQLITE_CONSTRAINT, the database contents must be exactly as they were
+** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not
+** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by
+** the xUpdate method are automatically rolled back by SQLite.
+**
+** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
+** structure for SQLite [version 3.8.2] ([dateof:3.8.2]).
+** If a virtual table extension is
+** used with an SQLite version earlier than 3.8.2, the results of attempting
+** to read or write the estimatedRows field are undefined (but are likely
+** to include crashing the application). The estimatedRows field should
+** therefore only be used if [sqlite3_libversion_number()] returns a
+** value greater than or equal to 3008002. Similarly, the idxFlags field
+** was added for [version 3.9.0] ([dateof:3.9.0]).
+** It may therefore only be used if
+** sqlite3_libversion_number() returns a value greater than or equal to
+** 3009000.
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column constrained. -1 for ROWID */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+ /* Fields below are only available in SQLite 3.8.2 and later */
+ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */
+ /* Fields below are only available in SQLite 3.9.0 and later */
+ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */
+ /* Fields below are only available in SQLite 3.10.0 and later */
+ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */
+};
+
+/*
+** CAPI3REF: Virtual Table Scan Flags
+**
+** Virtual table implementations are allowed to set the
+** [sqlite3_index_info].idxFlags field to some combination of
+** these bits.
+*/
+#define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */
+
+/*
+** CAPI3REF: Virtual Table Constraint Operator Codes
+**
+** These macros define the allowed values for the
+** [sqlite3_index_info].aConstraint[].op field. Each value represents
+** an operator that is part of a constraint term in the WHERE clause of
+** a query that uses a [virtual table].
+**
+** ^The left-hand operand of the operator is given by the corresponding
+** aConstraint[].iColumn field. ^An iColumn of -1 indicates the left-hand
+** operand is the rowid.
+** The SQLITE_INDEX_CONSTRAINT_LIMIT and SQLITE_INDEX_CONSTRAINT_OFFSET
+** operators have no left-hand operand, and so for those operators the
+** corresponding aConstraint[].iColumn is meaningless and should not be
+** used.
+**
+** All operator values from SQLITE_INDEX_CONSTRAINT_FUNCTION through
+** value 255 are reserved to represent functions that are overloaded
+** by the [xFindFunction|xFindFunction method] of the virtual table
+** implementation.
+**
+** The right-hand operands for each constraint might be accessible using
+** the [sqlite3_vtab_rhs_value()] interface. Usually the right-hand
+** operand is only available if it appears as a single constant literal
+** in the input SQL. If the right-hand operand is another column or an
+** expression (even a constant expression) or a parameter, then the
+** sqlite3_vtab_rhs_value() probably will not be able to extract it.
+** ^The SQLITE_INDEX_CONSTRAINT_ISNULL and
+** SQLITE_INDEX_CONSTRAINT_ISNOTNULL operators have no right-hand operand
+** and hence calls to sqlite3_vtab_rhs_value() for those operators will
+** always return SQLITE_NOTFOUND.
+**
+** The collating sequence to be used for comparison can be found using
+** the [sqlite3_vtab_collation()] interface. For most real-world virtual
+** tables, the collating sequence of constraints does not matter (for example
+** because the constraints are numeric) and so the sqlite3_vtab_collation()
+** interface is not commonly needed.
+*/
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+#define SQLITE_INDEX_CONSTRAINT_LIKE 65
+#define SQLITE_INDEX_CONSTRAINT_GLOB 66
+#define SQLITE_INDEX_CONSTRAINT_REGEXP 67
+#define SQLITE_INDEX_CONSTRAINT_NE 68
+#define SQLITE_INDEX_CONSTRAINT_ISNOT 69
+#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70
+#define SQLITE_INDEX_CONSTRAINT_ISNULL 71
+#define SQLITE_INDEX_CONSTRAINT_IS 72
+#define SQLITE_INDEX_CONSTRAINT_LIMIT 73
+#define SQLITE_INDEX_CONSTRAINT_OFFSET 74
+#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation
+** METHOD: sqlite3
+**
+** ^These routines are used to register a new [virtual table module] name.
+** ^Module names must be registered before
+** creating a new [virtual table] using the module and before using a
+** preexisting [virtual table] for the module.
+**
+** ^The module name is registered on the [database connection] specified
+** by the first parameter. ^The name of the module is given by the
+** second parameter. ^The third parameter is a pointer to
+** the implementation of the [virtual table module]. ^The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** ^The sqlite3_create_module_v2() interface has a fifth parameter which
+** is a pointer to a destructor for the pClientData. ^SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer. ^The destructor will also
+** be invoked if the call to sqlite3_create_module_v2() fails.
+** ^The sqlite3_create_module()
+** interface is equivalent to sqlite3_create_module_v2() with a NULL
+** destructor.
+**
+** ^If the third parameter (the pointer to the sqlite3_module object) is
+** NULL then no new module is created and any existing modules with the
+** same name are dropped.
+**
+** See also: [sqlite3_drop_modules()]
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
+);
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Remove Unnecessary Virtual Table Implementations
+** METHOD: sqlite3
+**
+** ^The sqlite3_drop_modules(D,L) interface removes all virtual
+** table modules from database connection D except those named on list L.
+** The L parameter must be either NULL or a pointer to an array of pointers
+** to strings where the array is terminated by a single NULL pointer.
+** ^If the L parameter is NULL, then all virtual table modules are removed.
+**
+** See also: [sqlite3_create_module()]
+*/
+SQLITE_API int sqlite3_drop_modules(
+ sqlite3 *db, /* Remove modules from this connection */
+ const char **azKeep /* Except, do not remove the ones named here */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object
+** KEYWORDS: sqlite3_vtab
+**
+** Every [virtual table module] implementation uses a subclass
+** of this object to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
+**
+** ^Virtual tables methods can set an error message by assigning a
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
+** prior to assigning a new string to zErrMsg. ^After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* Number of open cursors */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
+** to loop through the virtual table. Cursors are created using the
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cursors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table
+**
+** ^The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table
+** METHOD: sqlite3
+**
+** ^(Virtual tables can provide alternative implementations of functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
+** must exist in order to be overloaded.)^
+**
+** ^(This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created.)^ ^The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
+*/
+SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** CAPI3REF: A Handle To An Open BLOB
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** ^Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O
+** METHOD: sqlite3
+** CONSTRUCTOR: sqlite3_blob
+**
+** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+** </pre>)^
+**
+** ^(Parameter zDb is not the filename that contains the database, but
+** rather the symbolic name of the database. For attached databases, this is
+** the name that appears after the AS keyword in the [ATTACH] statement.
+** For the main database file, the database name is "main". For TEMP
+** tables, the database name is "temp".)^
+**
+** ^If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. ^If the flags parameter is zero, the BLOB is opened for
+** read-only access.
+**
+** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
+** in *ppBlob. Otherwise an [error code] is returned and, unless the error
+** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
+** the API is not misused, it is always safe to call [sqlite3_blob_close()]
+** on *ppBlob after this function it returns.
+**
+** This function fails with SQLITE_ERROR if any of the following are true:
+** <ul>
+** <li> ^(Database zDb does not exist)^,
+** <li> ^(Table zTable does not exist within database zDb)^,
+** <li> ^(Table zTable is a WITHOUT ROWID table)^,
+** <li> ^(Column zColumn does not exist)^,
+** <li> ^(Row iRow is not present in the table)^,
+** <li> ^(The specified column of row iRow contains a value that is not
+** a TEXT or BLOB value)^,
+** <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
+** constraint and the blob is being opened for read/write access)^,
+** <li> ^([foreign key constraints | Foreign key constraints] are enabled,
+** column zColumn is part of a [child key] definition and the blob is
+** being opened for read/write access)^.
+** </ul>
+**
+** ^Unless it returns SQLITE_MISUSE, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** A BLOB referenced by sqlite3_blob_open() may be read using the
+** [sqlite3_blob_read()] interface and modified by using
+** [sqlite3_blob_write()]. The [BLOB handle] can be moved to a
+** different row of the same table using the [sqlite3_blob_reopen()]
+** interface. However, the column, table, or database of a [BLOB handle]
+** cannot be changed after the [BLOB handle] is opened.
+**
+** ^(If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.)^
+** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
+** ^(Changes written into a BLOB prior to the BLOB expiring are not
+** rolled back by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.)^
+**
+** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. ^The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function may be used to create a
+** zero-filled blob to read or write using the incremental-blob interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+**
+** See also: [sqlite3_blob_close()],
+** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
+** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Move a BLOB Handle to a New Row
+** METHOD: sqlite3_blob
+**
+** ^This function is used to move an existing [BLOB handle] so that it points
+** to a different row of the same database table. ^The new row is identified
+** by the rowid value passed as the second argument. Only the row can be
+** changed. ^The database, table and column on which the blob handle is open
+** remain the same. Moving an existing [BLOB handle] to a new row is
+** faster than closing the existing handle and opening a new one.
+**
+** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
+** it must exist and there must be either a blob or text value stored in
+** the nominated column.)^ ^If the new row is not present in the table, or if
+** it does not contain a blob or text value, or if another error occurs, an
+** SQLite error code is returned and the blob handle is considered aborted.
+** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
+** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
+** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
+** always returns zero.
+**
+** ^This function sets the database handle error code and message.
+*/
+SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
+
+/*
+** CAPI3REF: Close A BLOB Handle
+** DESTRUCTOR: sqlite3_blob
+**
+** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
+** unconditionally. Even if this routine returns an error code, the
+** handle is still closed.)^
+**
+** ^If the blob handle being closed was opened for read-write access, and if
+** the database is in auto-commit mode and there are no other open read-write
+** blob handles or active write statements, the current transaction is
+** committed. ^If an error occurs while committing the transaction, an error
+** code is returned and the transaction rolled back.
+**
+** Calling this function with an argument that is not a NULL pointer or an
+** open blob handle results in undefined behavior. ^Calling this routine
+** with a null pointer (such as would be returned by a failed call to
+** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
+** is passed a valid open blob handle, the values returned by the
+** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB
+** METHOD: sqlite3_blob
+**
+** ^Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. ^The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.)^
+**
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** ^The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** ^An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally
+** METHOD: sqlite3_blob
+**
+** ^(This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.)^
+**
+** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+** ^Unless SQLITE_MISUSE is returned, this function sets the
+** [database connection] error code and message accessible via
+** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
+**
+** ^If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. The size of the
+** BLOB (and hence the maximum value of N+iOffset) can be determined
+** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
+** than zero [SQLITE_ERROR] is returned and no data is written.
+**
+** ^An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** ^Names are case sensitive.
+** ^Names are zero-terminated UTF-8 strings.
+** ^If there is no match, a NULL pointer is returned.
+** ^If zVfsName is NULL then the default VFS is returned.
+**
+** ^New VFSes are registered with sqlite3_vfs_register().
+** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
+** ^The same VFS can be registered multiple times without injury.
+** ^To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** ^(If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.)^
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_PTHREADS
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_PTHREADS and
+** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
+** and Windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().
+**
+** ^The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
+** routine returns NULL if it is unable to allocate the requested
+** mutex. The argument to sqlite3_mutex_alloc() must one of these
+** integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MAIN
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_OPEN
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_PMEM
+** <li> SQLITE_MUTEX_STATIC_APP1
+** <li> SQLITE_MUTEX_STATIC_APP2
+** <li> SQLITE_MUTEX_STATIC_APP3
+** <li> SQLITE_MUTEX_STATIC_VFS1
+** <li> SQLITE_MUTEX_STATIC_VFS2
+** <li> SQLITE_MUTEX_STATIC_VFS3
+** </ul>
+**
+** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
+** cause sqlite3_mutex_alloc() to create
+** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
+** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
+** a pointer to a static preexisting mutex. ^Nine static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. ^For the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** ^The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. Attempting to deallocate a static
+** mutex results in undefined behavior.
+**
+** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. ^If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. ^(Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** In such cases, the
+** mutex must be exited an equal number of times before another thread
+** can enter.)^ If the same thread tries to enter any mutex other
+** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
+**
+** ^(Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable
+** behavior.)^
+**
+** ^The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated.
+**
+** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(),
+** sqlite3_mutex_leave(), or sqlite3_mutex_free() is a NULL pointer,
+** then any of the four routines behaves as a no-op.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the application has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the application
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** ^The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** ^The xMutexInit routine is called by SQLite exactly once for each
+** effective call to [sqlite3_initialize()].
+**
+** ^The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. ^The xMutexEnd()
+** interface is invoked exactly once for each call to [sqlite3_shutdown()].
+**
+** ^(The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+** <ul>
+** <li> [sqlite3_mutex_alloc()] </li>
+** <li> [sqlite3_mutex_free()] </li>
+** <li> [sqlite3_mutex_enter()] </li>
+** <li> [sqlite3_mutex_try()] </li>
+** <li> [sqlite3_mutex_leave()] </li>
+** <li> [sqlite3_mutex_held()] </li>
+** <li> [sqlite3_mutex_notheld()] </li>
+** </ul>)^
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case. The results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. It must be harmless to
+** invoke xMutexInit() multiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. The SQLite core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** The implementation is not required to provide versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+#ifndef NDEBUG
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+#endif
+
+/*
+** CAPI3REF: Mutex Types
+**
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MAIN 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_randomness() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */
+#define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */
+#define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */
+#define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */
+#define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */
+#define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */
+
+/* Legacy compatibility: */
+#define SQLITE_MUTEX_STATIC_MASTER 2
+
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection
+** METHOD: sqlite3
+**
+** ^This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** ^If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files
+** METHOD: sqlite3
+** KEYWORDS: {file control}
+**
+** ^The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. ^The
+** name of the database is "main" for the main database or "temp" for the
+** TEMP database, or the name that appears after the AS keyword for
+** databases that are added using the [ATTACH] SQL command.
+** ^A NULL pointer can be used in place of "main" to refer to the
+** main database file.
+** ^The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. ^The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** A few opcodes for [sqlite3_file_control()] are handled directly
+** by the SQLite core and never invoke the
+** sqlite3_io_methods.xFileControl method.
+** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes
+** a pointer to the underlying [sqlite3_file] object to be written into
+** the space pointed to by the 4th parameter. The
+** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns
+** the [sqlite3_file] object associated with the journal file instead of
+** the main database. The [SQLITE_FCNTL_VFS_POINTER] opcode returns
+** a pointer to the underlying [sqlite3_vfs] object for the file.
+** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter
+** from the pager.
+**
+** ^If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. ^This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. The underlying xFileControl method might
+** also return SQLITE_ERROR. There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method.
+**
+** See also: [file control opcodes]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface
+**
+** ^The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. ^The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FIRST 5
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7 /* NOT USED */
+#define SQLITE_TESTCTRL_FK_NO_ACTION 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14 /* NOT USED */
+#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
+#define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */
+#define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */
+#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17
+#define SQLITE_TESTCTRL_LOCALTIME_FAULT 18
+#define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */
+#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19
+#define SQLITE_TESTCTRL_NEVER_CORRUPT 20
+#define SQLITE_TESTCTRL_VDBE_COVERAGE 21
+#define SQLITE_TESTCTRL_BYTEORDER 22
+#define SQLITE_TESTCTRL_ISINIT 23
+#define SQLITE_TESTCTRL_SORTER_MMAP 24
+#define SQLITE_TESTCTRL_IMPOSTER 25
+#define SQLITE_TESTCTRL_PARSER_COVERAGE 26
+#define SQLITE_TESTCTRL_RESULT_INTREAL 27
+#define SQLITE_TESTCTRL_PRNG_SEED 28
+#define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29
+#define SQLITE_TESTCTRL_SEEK_COUNT 30
+#define SQLITE_TESTCTRL_TRACEFLAGS 31
+#define SQLITE_TESTCTRL_TUNE 32
+#define SQLITE_TESTCTRL_LOGEST 33
+#define SQLITE_TESTCTRL_USELONGDOUBLE 34
+#define SQLITE_TESTCTRL_LAST 34 /* Largest TESTCTRL */
+
+/*
+** CAPI3REF: SQL Keyword Checking
+**
+** These routines provide access to the set of SQL language keywords
+** recognized by SQLite. Applications can uses these routines to determine
+** whether or not a specific identifier needs to be escaped (for example,
+** by enclosing in double-quotes) so as not to confuse the parser.
+**
+** The sqlite3_keyword_count() interface returns the number of distinct
+** keywords understood by SQLite.
+**
+** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
+** makes *Z point to that keyword expressed as UTF8 and writes the number
+** of bytes in the keyword into *L. The string that *Z points to is not
+** zero-terminated. The sqlite3_keyword_name(N,Z,L) routine returns
+** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
+** or L are NULL or invalid pointers then calls to
+** sqlite3_keyword_name(N,Z,L) result in undefined behavior.
+**
+** The sqlite3_keyword_check(Z,L) interface checks to see whether or not
+** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
+** if it is and zero if not.
+**
+** The parser used by SQLite is forgiving. It is often possible to use
+** a keyword as an identifier as long as such use does not result in a
+** parsing ambiguity. For example, the statement
+** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
+** creates a new table named "BEGIN" with three columns named
+** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid
+** using keywords as identifiers. Common techniques used to avoid keyword
+** name collisions include:
+** <ul>
+** <li> Put all identifier names inside double-quotes. This is the official
+** SQL way to escape identifier names.
+** <li> Put identifier names inside &#91;...&#93;. This is not standard SQL,
+** but it is what SQL Server does and so lots of programmers use this
+** technique.
+** <li> Begin every identifier with the letter "Z" as no SQL keywords start
+** with "Z".
+** <li> Include a digit somewhere in every identifier name.
+** </ul>
+**
+** Note that the number of keywords understood by SQLite can depend on
+** compile-time options. For example, "VACUUM" is not a keyword if
+** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also,
+** new keywords may be added to future releases of SQLite.
+*/
+SQLITE_API int sqlite3_keyword_count(void);
+SQLITE_API int sqlite3_keyword_name(int,const char**,int*);
+SQLITE_API int sqlite3_keyword_check(const char*,int);
+
+/*
+** CAPI3REF: Dynamic String Object
+** KEYWORDS: {dynamic string}
+**
+** An instance of the sqlite3_str object contains a dynamically-sized
+** string under construction.
+**
+** The lifecycle of an sqlite3_str object is as follows:
+** <ol>
+** <li> ^The sqlite3_str object is created using [sqlite3_str_new()].
+** <li> ^Text is appended to the sqlite3_str object using various
+** methods, such as [sqlite3_str_appendf()].
+** <li> ^The sqlite3_str object is destroyed and the string it created
+** is returned using the [sqlite3_str_finish()] interface.
+** </ol>
+*/
+typedef struct sqlite3_str sqlite3_str;
+
+/*
+** CAPI3REF: Create A New Dynamic String Object
+** CONSTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_new(D)] interface allocates and initializes
+** a new [sqlite3_str] object. To avoid memory leaks, the object returned by
+** [sqlite3_str_new()] must be freed by a subsequent call to
+** [sqlite3_str_finish(X)].
+**
+** ^The [sqlite3_str_new(D)] interface always returns a pointer to a
+** valid [sqlite3_str] object, though in the event of an out-of-memory
+** error the returned object might be a special singleton that will
+** silently reject new text, always return SQLITE_NOMEM from
+** [sqlite3_str_errcode()], always return 0 for
+** [sqlite3_str_length()], and always return NULL from
+** [sqlite3_str_finish(X)]. It is always safe to use the value
+** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter
+** to any of the other [sqlite3_str] methods.
+**
+** The D parameter to [sqlite3_str_new(D)] may be NULL. If the
+** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
+** length of the string contained in the [sqlite3_str] object will be
+** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
+** of [SQLITE_MAX_LENGTH].
+*/
+SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*);
+
+/*
+** CAPI3REF: Finalize A Dynamic String
+** DESTRUCTOR: sqlite3_str
+**
+** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
+** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
+** that contains the constructed string. The calling application should
+** pass the returned value to [sqlite3_free()] to avoid a memory leak.
+** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
+** errors were encountered during construction of the string. ^The
+** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
+** string in [sqlite3_str] object X is zero bytes long.
+*/
+SQLITE_API char *sqlite3_str_finish(sqlite3_str*);
+
+/*
+** CAPI3REF: Add Content To A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces add content to an sqlite3_str object previously obtained
+** from [sqlite3_str_new()].
+**
+** ^The [sqlite3_str_appendf(X,F,...)] and
+** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
+** functionality of SQLite to append formatted text onto the end of
+** [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
+** onto the end of the [sqlite3_str] object X. N must be non-negative.
+** S must contain at least N non-zero bytes of content. To append a
+** zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
+** method instead.
+**
+** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
+** zero-terminated string S onto the end of [sqlite3_str] object X.
+**
+** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
+** single-byte character C onto the end of [sqlite3_str] object X.
+** ^This method can be used, for example, to add whitespace indentation.
+**
+** ^The [sqlite3_str_reset(X)] method resets the string under construction
+** inside [sqlite3_str] object X back to zero bytes in length.
+**
+** These methods do not return a result code. ^If an error occurs, that fact
+** is recorded in the [sqlite3_str] object and can be recovered by a
+** subsequent call to [sqlite3_str_errcode(X)].
+*/
+SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...);
+SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list);
+SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N);
+SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn);
+SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C);
+SQLITE_API void sqlite3_str_reset(sqlite3_str*);
+
+/*
+** CAPI3REF: Status Of A Dynamic String
+** METHOD: sqlite3_str
+**
+** These interfaces return the current status of an [sqlite3_str] object.
+**
+** ^If any prior errors have occurred while constructing the dynamic string
+** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
+** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns
+** [SQLITE_NOMEM] following any out-of-memory error, or
+** [SQLITE_TOOBIG] if the size of the dynamic string exceeds
+** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
+**
+** ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
+** of the dynamic string under construction in [sqlite3_str] object X.
+** ^The length returned by [sqlite3_str_length(X)] does not include the
+** zero-termination byte.
+**
+** ^The [sqlite3_str_value(X)] method returns a pointer to the current
+** content of the dynamic string under construction in X. The value
+** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
+** and might be freed or altered by any subsequent method on the same
+** [sqlite3_str] object. Applications must not used the pointer returned
+** [sqlite3_str_value(X)] after any subsequent method call on the same
+** object. ^Applications may change the content of the string returned
+** by [sqlite3_str_value(X)] as long as they do not write into any bytes
+** outside the range of 0 to [sqlite3_str_length(X)] and do not read or
+** write any byte after any subsequent sqlite3_str method call.
+*/
+SQLITE_API int sqlite3_str_errcode(sqlite3_str*);
+SQLITE_API int sqlite3_str_length(sqlite3_str*);
+SQLITE_API char *sqlite3_str_value(sqlite3_str*);
+
+/*
+** CAPI3REF: SQLite Runtime Status
+**
+** ^These interfaces are used to retrieve runtime status information
+** about the performance of SQLite, and optionally to reset various
+** highwater marks. ^The first argument is an integer code for
+** the specific parameter to measure. ^(Recognized integer codes
+** are of the form [status parameters | SQLITE_STATUS_...].)^
+** ^The current value of the parameter is returned into *pCurrent.
+** ^The highest recorded value is returned in *pHighwater. ^If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. ^(Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.)^
+** ^(Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.)^
+**
+** ^The sqlite3_status() and sqlite3_status64() routines return
+** SQLITE_OK on success and a non-zero [error code] on failure.
+**
+** If either the current value or the highwater mark is too large to
+** be represented by a 32-bit integer, then the values returned by
+** sqlite3_status() are undefined.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+SQLITE_API int sqlite3_status64(
+ int op,
+ sqlite3_int64 *pCurrent,
+ sqlite3_int64 *pHighwater,
+ int resetFlag
+);
+
+
+/*
+** CAPI3REF: Status Parameters
+** KEYWORDS: {status parameters}
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+** <dl>
+** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
+** <dd>This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
+** <dd>This parameter records the number of separate memory allocations
+** currently checked out.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
+** <dd>This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
+** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
+** <dd>This parameter returns the number of bytes of page cache
+** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.</dd>)^
+**
+** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
+** <dd>This parameter records the largest memory allocation request
+** handed to the [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.</dd>)^
+**
+** [[SQLITE_STATUS_SCRATCH_USED]] <dt>SQLITE_STATUS_SCRATCH_USED</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_SCRATCH_SIZE]] <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
+** <dd>No longer used.</dd>
+**
+** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
+** <dd>The *pHighwater parameter records the deepest parser stack.
+** The *pCurrent value is undefined. The *pHighwater value is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
+** </dl>
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3 /* NOT USED */
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8 /* NOT USED */
+#define SQLITE_STATUS_MALLOC_COUNT 9
+
+/*
+** CAPI3REF: Database Connection Status
+** METHOD: sqlite3
+**
+** ^This interface is used to retrieve runtime status information
+** about a single [database connection]. ^The first argument is the
+** database connection object to be interrogated. ^The second argument
+** is an integer constant, taken from the set of
+** [SQLITE_DBSTATUS options], that
+** determines the parameter to interrogate. The set of
+** [SQLITE_DBSTATUS options] is likely
+** to grow in future releases of SQLite.
+**
+** ^The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. ^If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections
+** KEYWORDS: {SQLITE_DBSTATUS options}
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+** <dl>
+** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
+** <dd>This parameter returns the number of lookaside memory slots currently
+** checked out.</dd>)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
+** <dd>This parameter returns the number of malloc attempts that were
+** satisfied using lookaside memory. Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to the amount of
+** memory requested being larger than the lookaside slot size.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
+** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
+** <dd>This parameter returns the number malloc attempts that might have
+** been satisfied using lookaside memory but failed due to all lookaside
+** memory already being in use.
+** Only the high-water value is meaningful;
+** the current value is always zero.)^
+**
+** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used by all pager caches associated with the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]]
+** ^(<dt>SQLITE_DBSTATUS_CACHE_USED_SHARED</dt>
+** <dd>This parameter is similar to DBSTATUS_CACHE_USED, except that if a
+** pager cache is shared between two or more connections the bytes of heap
+** memory used by that pager cache is divided evenly between the attached
+** connections.)^ In other words, if none of the pager caches associated
+** with the database connection are shared, this request returns the same
+** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are
+** shared, the value returned by this call will be smaller than that returned
+** by DBSTATUS_CACHE_USED. ^The highwater mark associated with
+** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0.
+**
+** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** memory used to store the schema for all databases associated
+** with the connection - main, temp, and any [ATTACH]-ed databases.)^
+** ^The full amount of memory used by the schemas is reported, even if the
+** schema memory is shared with other database connections due to
+** [shared cache mode] being enabled.
+** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
+**
+** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
+** <dd>This parameter returns the approximate number of bytes of heap
+** and lookaside memory used by all prepared statements associated with
+** the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
+** <dd>This parameter returns the number of pager cache hits that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
+** <dd>This parameter returns the number of pager cache misses that have
+** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
+** is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk. Specifically, the number of pages written to the
+** wal file in wal mode databases, or the number of pages written to the
+** database file in rollback mode databases. Any pages written as part of
+** transaction rollback or database recovery operations are not included.
+** If an IO or other error occurs while writing a page to disk, the effect
+** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
+** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(<dt>SQLITE_DBSTATUS_CACHE_SPILL</dt>
+** <dd>This parameter returns the number of dirty cache entries that have
+** been written to disk in the middle of a transaction due to the page
+** cache overflowing. Transactions are more efficient if they are written
+** to disk all at once. When pages spill mid-transaction, that introduces
+** additional overhead. This parameter can be used help identify
+** inefficiencies that can be resolved by increasing the cache size.
+** </dd>
+**
+** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
+** <dd>This parameter returns zero for the current value if and only if
+** all foreign key constraints (deferred or immediate) have been
+** resolved.)^ ^The highwater mark is always 0.
+** </dd>
+** </dl>
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+#define SQLITE_DBSTATUS_CACHE_USED 1
+#define SQLITE_DBSTATUS_SCHEMA_USED 2
+#define SQLITE_DBSTATUS_STMT_USED 3
+#define SQLITE_DBSTATUS_LOOKASIDE_HIT 4
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5
+#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6
+#define SQLITE_DBSTATUS_CACHE_HIT 7
+#define SQLITE_DBSTATUS_CACHE_MISS 8
+#define SQLITE_DBSTATUS_CACHE_WRITE 9
+#define SQLITE_DBSTATUS_DEFERRED_FKS 10
+#define SQLITE_DBSTATUS_CACHE_USED_SHARED 11
+#define SQLITE_DBSTATUS_CACHE_SPILL 12
+#define SQLITE_DBSTATUS_MAX 12 /* Largest defined DBSTATUS */
+
+
+/*
+** CAPI3REF: Prepared Statement Status
+** METHOD: sqlite3_stmt
+**
+** ^(Each prepared statement maintains various
+** [SQLITE_STMTSTATUS counters] that measure the number
+** of times it has performed specific operations.)^ These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** ^(This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS counter]
+** to be interrogated.)^
+** ^The current value of the requested counter is returned.
+** ^If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements
+** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+** <dl>
+** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
+** <dd>^This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
+** <dd>^This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.</dd>
+**
+** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
+** <dd>^This is the number of rows inserted into transient indices that
+** were created automatically in order to help joins run faster.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance by adding permanent indices that do not
+** need to be reinitialized each time the statement is run.</dd>
+**
+** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
+** <dd>^This is the number of virtual machine operations executed
+** by the prepared statement if that number is less than or equal
+** to 2147483647. The number of virtual machine operations can be
+** used as a proxy for the total work done by the prepared statement.
+** If the number of virtual machine operations exceeds 2147483647
+** then the value returned by this statement status code is undefined.
+**
+** [[SQLITE_STMTSTATUS_REPREPARE]] <dt>SQLITE_STMTSTATUS_REPREPARE</dt>
+** <dd>^This is the number of times that the prepare statement has been
+** automatically regenerated due to schema changes or changes to
+** [bound parameters] that might affect the query plan.
+**
+** [[SQLITE_STMTSTATUS_RUN]] <dt>SQLITE_STMTSTATUS_RUN</dt>
+** <dd>^This is the number of times that the prepared statement has
+** been run. A single "run" for the purposes of this counter is one
+** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()].
+** The counter is incremented on the first [sqlite3_step()] call of each
+** cycle.
+**
+** [[SQLITE_STMTSTATUS_FILTER_MISS]]
+** [[SQLITE_STMTSTATUS_FILTER HIT]]
+** <dt>SQLITE_STMTSTATUS_FILTER_HIT<br>
+** SQLITE_STMTSTATUS_FILTER_MISS</dt>
+** <dd>^SQLITE_STMTSTATUS_FILTER_HIT is the number of times that a join
+** step was bypassed because a Bloom filter returned not-found. The
+** corresponding SQLITE_STMTSTATUS_FILTER_MISS value is the number of
+** times that the Bloom filter returned a find, and thus the join step
+** had to be processed as normal.
+**
+** [[SQLITE_STMTSTATUS_MEMUSED]] <dt>SQLITE_STMTSTATUS_MEMUSED</dt>
+** <dd>^This is the approximate number of bytes of heap memory
+** used to store the prepared statement. ^This value is not actually
+** a counter, and so the resetFlg parameter to sqlite3_stmt_status()
+** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED.
+** </dd>
+** </dl>
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+#define SQLITE_STMTSTATUS_AUTOINDEX 3
+#define SQLITE_STMTSTATUS_VM_STEP 4
+#define SQLITE_STMTSTATUS_REPREPARE 5
+#define SQLITE_STMTSTATUS_RUN 6
+#define SQLITE_STMTSTATUS_FILTER_MISS 7
+#define SQLITE_STMTSTATUS_FILTER_HIT 8
+#define SQLITE_STMTSTATUS_MEMUSED 99
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Custom Page Cache Object
+**
+** The sqlite3_pcache_page object represents a single page in the
+** page cache. The page cache will allocate instances of this
+** object. Various methods of the page cache use pointers to instances
+** of this object as parameters or as their return value.
+**
+** See [sqlite3_pcache_methods2] for additional information.
+*/
+typedef struct sqlite3_pcache_page sqlite3_pcache_page;
+struct sqlite3_pcache_page {
+ void *pBuf; /* The content of the page */
+ void *pExtra; /* Extra information associated with the page */
+};
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+**
+** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods2 structure.)^
+** In many applications, most of the heap memory allocated by
+** SQLite is used for the page cache.
+** By implementing a
+** custom page cache using this API, an application can better control
+** the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** The alternative page cache mechanism is an
+** extreme measure that is only needed by the most demanding applications.
+** The built-in page cache is recommended for most uses.
+**
+** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.)^
+**
+** [[the xInit() page cache method]]
+** ^(The xInit() method is called once for each effective
+** call to [sqlite3_initialize()])^
+** (usually only once during the lifetime of the process). ^(The xInit()
+** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
+** The intent of the xInit() method is to set up global data structures
+** required by the custom page cache implementation.
+** ^(If the xInit() method is NULL, then the
+** built-in default page cache is used instead of the application defined
+** page cache.)^
+**
+** [[the xShutdown() page cache method]]
+** ^The xShutdown() method is called by [sqlite3_shutdown()].
+** It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+** ^The xShutdown() method may be NULL.
+**
+** ^SQLite automatically serializes calls to the xInit method,
+** so the xInit method need not be threadsafe. ^The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** ^SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** [[the xCreate() page cache methods]]
+** ^SQLite invokes the xCreate() method to construct a new cache instance.
+** SQLite will typically create one cache instance for each open database file,
+** though this is not guaranteed. ^The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. ^szPage will always a power of two. ^The
+** second parameter szExtra is a number of bytes of extra storage
+** associated with each page cache entry. ^The szExtra parameter will
+** a number less than 250. SQLite will use the
+** extra szExtra bytes on each page to store metadata about the underlying
+** database page on disk. The value passed into szExtra depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** ^The third argument to xCreate(), bPurgeable, is true if the cache being
+** created will be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
+** false will always have the "discard" flag set to true.
+** ^Hence, a cache created with bPurgeable false will
+** never contain any unpinned pages.
+**
+** [[the xCachesize() page cache method]]
+** ^(The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
+** parameter, the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** [[the xPagecount() page cache methods]]
+** The xPagecount() method must return the number of pages currently
+** stored in the cache, both pinned and unpinned.
+**
+** [[the xFetch() page cache methods]]
+** The xFetch() method locates a page in the cache and returns a pointer to
+** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
+** The pBuf element of the returned sqlite3_pcache_page object will be a
+** pointer to a buffer of szPage bytes used to store the content of a
+** single database page. The pExtra element of sqlite3_pcache_page will be
+** a pointer to the szExtra bytes of extra storage that SQLite has requested
+** for each entry in the page cache.
+**
+** The page to be fetched is determined by the key. ^The minimum key value
+** is 1. After it has been retrieved using xFetch, the page is considered
+** to be "pinned".
+**
+** If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. If the requested page is not already in the cache, then the
+** cache implementation should use the value of the createFlag
+** parameter to help it determined what action to take:
+**
+** <table border=1 width=85% align=center>
+** <tr><th> createFlag <th> Behavior when page is not already in cache
+** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
+** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** </table>
+**
+** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
+** will only use a createFlag of 2 after a prior call with a createFlag of 1
+** failed.)^ In between the xFetch() calls, SQLite may
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache.
+**
+** [[the xUnpin() page cache method]]
+** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page must be evicted from the cache.
+** ^If the discard parameter is
+** zero, then the page may be discarded or retained at the discretion of
+** page cache implementation. ^The page cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** The cache must not perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().
+**
+** [[the xRekey() page cache methods]]
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument. If the cache
+** previously contains an entry associated with newKey, it must be
+** discarded. ^Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** [[the xDestroy() page cache method]]
+** ^The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. ^After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods2
+** functions.
+**
+** [[the xShrink() page cache method]]
+** ^SQLite invokes the xShrink() method when it wants the page cache to
+** free up as much of heap memory as possible. The page cache implementation
+** is not obligated to free any memory, but well-behaved implementations should
+** do their best.
+*/
+typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
+struct sqlite3_pcache_methods2 {
+ int iVersion;
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
+ void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
+ unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+ void (*xShrink)(sqlite3_pcache*);
+};
+
+/*
+** This is the obsolete pcache_methods object that has now been replaced
+** by sqlite3_pcache_methods2. This object is not used by SQLite. It is
+** retained in the header file for backwards compatibility only.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+
+/*
+** CAPI3REF: Online Backup Object
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. ^The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+**
+** The backup API copies the content of one database into another.
+** It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** ^SQLite holds a write transaction open on the destination database file
+** for the duration of the backup operation.
+** ^The source database is read-locked only while it is being read;
+** it is not locked continuously for the entire backup operation.
+** ^Thus, the backup may be performed on a live source database without
+** preventing other database connections from
+** reading or writing to the source database while the backup is underway.
+**
+** ^(To perform a backup operation:
+** <ol>
+** <li><b>sqlite3_backup_init()</b> is called once to initialize the
+** backup,
+** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
+** the data between the two databases, and finally
+** <li><b>sqlite3_backup_finish()</b> is called to release all resources
+** associated with the backup operation.
+** </ol>)^
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
+**
+** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
+** [database connection] associated with the destination database
+** and the database name, respectively.
+** ^The database name is "main" for the main database, "temp" for the
+** temporary database, or the name specified after the AS keyword in
+** an [ATTACH] statement for an attached database.
+** ^The S and M arguments passed to
+** sqlite3_backup_init(D,N,S,M) identify the [database connection]
+** and database name of the source database, respectively.
+** ^The source and destination [database connections] (parameters S and D)
+** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
+** an error.
+**
+** ^A call to sqlite3_backup_init() will fail, returning NULL, if
+** there is already a read or read-write transaction open on the
+** destination database.
+**
+** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
+** returned and an error code and error message are stored in the
+** destination [database connection] D.
+** ^The error code and message for the failed call to sqlite3_backup_init()
+** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
+** [sqlite3_errmsg16()] functions.
+** ^A successful call to sqlite3_backup_init() returns a pointer to an
+** [sqlite3_backup] object.
+** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
+**
+** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
+** the source and destination databases specified by [sqlite3_backup] object B.
+** ^If N is negative, all remaining source pages are copied.
+** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
+** are still more pages to be copied, then the function returns [SQLITE_OK].
+** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
+** from source to destination, then it returns [SQLITE_DONE].
+** ^If an error occurs while running sqlite3_backup_step(B,N),
+** then an [error code] is returned. ^As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
+** <ol>
+** <li> the destination database was opened read-only, or
+** <li> the destination database is using write-ahead-log journaling
+** and the destination and source page sizes differ, or
+** <li> the destination database is an in-memory database and the
+** destination and source page sizes differ.
+** </ol>)^
+**
+** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). ^If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
+** sqlite3_backup_step() can be retried later. ^If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. ^(If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal.)^ The application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** ^The first call to sqlite3_backup_step() obtains an exclusive lock
+** on the destination file. ^The exclusive lock is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
+** sqlite3_backup_step() obtains a [shared lock] on the source database that
+** lasts for the duration of the sqlite3_backup_step() call.
+** ^Because the source database is not locked between calls to
+** sqlite3_backup_step(), the source database may be modified mid-way
+** through the backup process. ^If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be automatically
+** restarted by the next call to sqlite3_backup_step(). ^If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is automatically
+** updated at the same time.
+**
+** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
+**
+** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the application
+** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
+** ^The sqlite3_backup_finish() interfaces releases all
+** resources associated with the [sqlite3_backup] object.
+** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
+** active write-transaction on the destination database is rolled back.
+** The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
+** sqlite3_backup_step() errors occurred, regardless or whether or not
+** sqlite3_backup_step() completed.
+** ^If an out-of-memory condition or IO error occurred during any prior
+** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
+** sqlite3_backup_finish() returns the corresponding [error code].
+**
+** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
+** is not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
+** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
+**
+** ^The sqlite3_backup_remaining() routine returns the number of pages still
+** to be backed up at the conclusion of the most recent sqlite3_backup_step().
+** ^The sqlite3_backup_pagecount() routine returns the total number of pages
+** in the source database at the conclusion of the most recent
+** sqlite3_backup_step().
+** ^(The values returned by these functions are only updated by
+** sqlite3_backup_step(). If the source database is modified in a way that
+** changes the size of the source database or the number of pages remaining,
+** those changes are not reflected in the output of sqlite3_backup_pagecount()
+** and sqlite3_backup_remaining() until after the next
+** sqlite3_backup_step().)^
+**
+** <b>Concurrent Usage of Database Handles</b>
+**
+** ^The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** ^If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination
+** [database connection] is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). SQLite does not currently check to see
+** if the application incorrectly accesses the destination [database connection]
+** and so no error code is reported, but the operations may malfunction
+** nevertheless. Use of the destination database connection while a
+** backup is in progress might also cause a mutex deadlock.
+**
+** If running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the disk file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** METHOD: sqlite3
+**
+** ^When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** ^This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** ^This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** ^Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** ^When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. ^After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. ^The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connection's transaction.
+**
+** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().)^
+**
+** ^If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** ^(There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is canceled. ^The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** <b>Callback Invocation Details</b>
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connection's transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. ^If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** <b>Deadlock Detection</b>
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. ^If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. ^Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. ^Any
+** number of levels of indirection are allowed.
+**
+** <b>The "DROP TABLE" Exception</b>
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. ^(If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.)^
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+**
+** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
+** and extensions to compare the contents of two buffers containing UTF-8
+** strings in a case-independent fashion, using the same definition of "case
+** independence" that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_stricmp(const char *, const char *);
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
+** CAPI3REF: String Globbing
+*
+** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
+** string X matches the [GLOB] pattern P.
+** ^The definition of [GLOB] pattern matching used in
+** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
+** SQL dialect understood by SQLite. ^The [sqlite3_strglob(P,X)] function
+** is case sensitive.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strlike()].
+*/
+SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);
+
+/*
+** CAPI3REF: String LIKE Matching
+*
+** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
+** string X matches the [LIKE] pattern P with escape character E.
+** ^The definition of [LIKE] pattern matching used in
+** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
+** operator in the SQL dialect understood by SQLite. ^For "X LIKE P" without
+** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
+** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
+** insensitive - equivalent upper and lower case ASCII characters match
+** one another.
+**
+** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
+** only ASCII characters are case folded.
+**
+** Note that this routine returns zero on a match and non-zero if the strings
+** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
+**
+** See also: [sqlite3_strglob()].
+*/
+SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);
+
+/*
+** CAPI3REF: Error Logging Interface
+**
+** ^The [sqlite3_log()] interface writes a message into the [error log]
+** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
+** ^If logging is enabled, the zFormat string and subsequent arguments are
+** used with [sqlite3_snprintf()] to generate the final output string.
+**
+** The sqlite3_log() interface is intended for use by extensions such as
+** virtual tables, collating functions, and SQL functions. While there is
+** nothing to prevent an application from calling sqlite3_log(), doing so
+** is considered bad form.
+**
+** The zFormat string must not be NULL.
+**
+** To avoid deadlocks and other threading problems, the sqlite3_log() routine
+** will not use dynamically allocated memory. The log message is stored in
+** a fixed-length buffer on the stack. If the log message is longer than
+** a few hundred characters, it will be truncated to the length of the
+** buffer.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
+
+/*
+** CAPI3REF: Write-Ahead Log Commit Hook
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_hook()] function is used to register a callback that
+** is invoked each time data is committed to a database in wal mode.
+**
+** ^(The callback is invoked by SQLite after the commit has taken place and
+** the associated write-lock on the database released)^, so the implementation
+** may read, write or [checkpoint] the database as required.
+**
+** ^The first parameter passed to the callback function when it is invoked
+** is a copy of the third parameter passed to sqlite3_wal_hook() when
+** registering the callback. ^The second is a copy of the database handle.
+** ^The third parameter is the name of the database that was written to -
+** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
+** is the number of pages currently in the write-ahead log file,
+** including those that were just committed.
+**
+** The callback function should normally return [SQLITE_OK]. ^If an error
+** code is returned, that error will propagate back up through the
+** SQLite code base to cause the statement that provoked the callback
+** to report an error, though the commit will have still occurred. If the
+** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
+** that does not correspond to any valid SQLite error code, the results
+** are undefined.
+**
+** A single database handle may have at most a single write-ahead log callback
+** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
+** previously registered write-ahead log callback. ^The return value is
+** a copy of the third parameter from the previous call, if any, or 0.
+** ^Note that the [sqlite3_wal_autocheckpoint()] interface and the
+** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
+** overwrite any prior [sqlite3_wal_hook()] settings.
+*/
+SQLITE_API void *sqlite3_wal_hook(
+ sqlite3*,
+ int(*)(void *,sqlite3*,const char*,int),
+ void*
+);
+
+/*
+** CAPI3REF: Configure an auto-checkpoint
+** METHOD: sqlite3
+**
+** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
+** [sqlite3_wal_hook()] that causes any database on [database connection] D
+** to automatically [checkpoint]
+** after committing a transaction if there are N or
+** more frames in the [write-ahead log] file. ^Passing zero or
+** a negative value as the nFrame parameter disables automatic
+** checkpoints entirely.
+**
+** ^The callback registered by this function replaces any existing callback
+** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
+** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
+** configured by this function.
+**
+** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
+** from SQL.
+**
+** ^Checkpoints initiated by this mechanism are
+** [sqlite3_wal_checkpoint_v2|PASSIVE].
+**
+** ^Every new [database connection] defaults to having the auto-checkpoint
+** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
+** pages. The use of this interface
+** is only necessary if the default setting is found to be suboptimal
+** for a particular application.
+*/
+SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
+** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
+**
+** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
+** [write-ahead log] for database X on [database connection] D to be
+** transferred into the database file and for the write-ahead log to
+** be reset. See the [checkpointing] documentation for addition
+** information.
+**
+** This interface used to be the only way to cause a checkpoint to
+** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
+** interface was added. This interface is retained for backwards
+** compatibility and as a convenience for applications that need to manually
+** start a callback but which do not need the full power (and corresponding
+** complication) of [sqlite3_wal_checkpoint_v2()].
+*/
+SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Checkpoint a database
+** METHOD: sqlite3
+**
+** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
+** operation on database X of [database connection] D in mode M. Status
+** information is written back into integers pointed to by L and C.)^
+** ^(The M parameter must be a valid [checkpoint mode]:)^
+**
+** <dl>
+** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
+** ^Checkpoint as many frames as possible without waiting for any database
+** readers or writers to finish, then sync the database file if all frames
+** in the log were checkpointed. ^The [busy-handler callback]
+** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
+** ^On the other hand, passive mode might leave the checkpoint unfinished
+** if there are concurrent readers or writers.
+**
+** <dt>SQLITE_CHECKPOINT_FULL<dd>
+** ^This mode blocks (it invokes the
+** [sqlite3_busy_handler|busy-handler callback]) until there is no
+** database writer and all readers are reading from the most recent database
+** snapshot. ^It then checkpoints all frames in the log file and syncs the
+** database file. ^This mode blocks new database writers while it is pending,
+** but new database readers are allowed to continue unimpeded.
+**
+** <dt>SQLITE_CHECKPOINT_RESTART<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
+** that after checkpointing the log file it blocks (calls the
+** [busy-handler callback])
+** until all readers are reading from the database file only. ^This ensures
+** that the next writer will restart the log file from the beginning.
+** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
+** database writer attempts while it is pending, but does not impede readers.
+**
+** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
+** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
+** addition that it also truncates the log file to zero bytes just prior
+** to a successful return.
+** </dl>
+**
+** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
+** the log file or to -1 if the checkpoint could not run because
+** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
+** NULL,then *pnCkpt is set to the total number of checkpointed frames in the
+** log file (including any that were already checkpointed before the function
+** was called) or to -1 if the checkpoint could not run due to an error or
+** because the database is not in WAL mode. ^Note that upon successful
+** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
+** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
+**
+** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
+** any other process is running a checkpoint operation at the same time, the
+** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
+** busy-handler configured, it will not be invoked in this case.
+**
+** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
+** exclusive "writer" lock on the database file. ^If the writer lock cannot be
+** obtained immediately, and a busy-handler is configured, it is invoked and
+** the writer lock retried until either the busy-handler returns 0 or the lock
+** is successfully obtained. ^The busy-handler is also invoked while waiting for
+** database readers as described above. ^If the busy-handler returns 0 before
+** the writer lock is obtained or while waiting for database readers, the
+** checkpoint operation proceeds from that point in the same way as
+** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
+** without blocking any further. ^SQLITE_BUSY is returned in this case.
+**
+** ^If parameter zDb is NULL or points to a zero length string, then the
+** specified operation is attempted on all WAL databases [attached] to
+** [database connection] db. In this case the
+** values written to output parameters *pnLog and *pnCkpt are undefined. ^If
+** an SQLITE_BUSY error is encountered when processing one or more of the
+** attached WAL databases, the operation is still attempted on any remaining
+** attached databases and SQLITE_BUSY is returned at the end. ^If any other
+** error occurs while processing an attached database, processing is abandoned
+** and the error code is returned to the caller immediately. ^If no error
+** (SQLITE_BUSY or otherwise) is encountered while processing the attached
+** databases, SQLITE_OK is returned.
+**
+** ^If database zDb is the name of an attached database that is not in WAL
+** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
+** zDb is not NULL (or a zero length string) and is not the name of any
+** attached database, SQLITE_ERROR is returned to the caller.
+**
+** ^Unless it returns SQLITE_MISUSE,
+** the sqlite3_wal_checkpoint_v2() interface
+** sets the error information that is queried by
+** [sqlite3_errcode()] and [sqlite3_errmsg()].
+**
+** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
+** from SQL.
+*/
+SQLITE_API int sqlite3_wal_checkpoint_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of attached database (or NULL) */
+ int eMode, /* SQLITE_CHECKPOINT_* value */
+ int *pnLog, /* OUT: Size of WAL log in frames */
+ int *pnCkpt /* OUT: Total number of frames checkpointed */
+);
+
+/*
+** CAPI3REF: Checkpoint Mode Values
+** KEYWORDS: {checkpoint mode}
+**
+** These constants define all valid values for the "checkpoint mode" passed
+** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
+** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the
+** meaning of each of these checkpoint modes.
+*/
+#define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */
+#define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */
+#define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for readers */
+#define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */
+
+/*
+** CAPI3REF: Virtual Table Interface Configuration
+**
+** This function may be called by either the [xConnect] or [xCreate] method
+** of a [virtual table] implementation to configure
+** various facets of the virtual table interface.
+**
+** If this interface is invoked outside the context of an xConnect or
+** xCreate virtual table method then the behavior is undefined.
+**
+** In the call sqlite3_vtab_config(D,C,...) the D parameter is the
+** [database connection] in which the virtual table is being created and
+** which is passed in as the first argument to the [xConnect] or [xCreate]
+** method that is invoking sqlite3_vtab_config(). The C parameter is one
+** of the [virtual table configuration options]. The presence and meaning
+** of parameters after C depend on which [virtual table configuration option]
+** is used.
+*/
+SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Virtual Table Configuration Options
+** KEYWORDS: {virtual table configuration options}
+** KEYWORDS: {virtual table configuration option}
+**
+** These macros define the various options to the
+** [sqlite3_vtab_config()] interface that [virtual table] implementations
+** can use to customize and optimize their behavior.
+**
+** <dl>
+** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
+** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
+** where X is an integer. If X is zero, then the [virtual table] whose
+** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
+** support constraints. In this configuration (which is the default) if
+** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
+** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
+** specified as part of the users SQL statement, regardless of the actual
+** ON CONFLICT mode specified.
+**
+** If X is non-zero, then the virtual table implementation guarantees
+** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
+** any modifications to internal or persistent data structures have been made.
+** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
+** is able to roll back a statement or database transaction, and abandon
+** or continue processing the current SQL statement as appropriate.
+** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
+** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
+** had been ABORT.
+**
+** Virtual table implementations that are required to handle OR REPLACE
+** must do so within the [xUpdate] method. If a call to the
+** [sqlite3_vtab_on_conflict()] function indicates that the current ON
+** CONFLICT policy is REPLACE, the virtual table implementation should
+** silently replace the appropriate rows within the xUpdate callback and
+** return SQLITE_OK. Or, if this is not possible, it may return
+** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
+** constraint handling.
+** </dd>
+**
+** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implementation
+** prohibits that virtual table from being used from within triggers and
+** views.
+** </dd>
+**
+** [[SQLITE_VTAB_INNOCUOUS]]<dt>SQLITE_VTAB_INNOCUOUS</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implementation
+** identify that virtual table as being safe to use from within triggers
+** and views. Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the
+** virtual table can do no serious harm even if it is controlled by a
+** malicious hacker. Developers should avoid setting the SQLITE_VTAB_INNOCUOUS
+** flag unless absolutely necessary.
+** </dd>
+**
+** [[SQLITE_VTAB_USES_ALL_SCHEMAS]]<dt>SQLITE_VTAB_USES_ALL_SCHEMAS</dt>
+** <dd>Calls of the form
+** [sqlite3_vtab_config](db,SQLITE_VTAB_USES_ALL_SCHEMA) from within the
+** the [xConnect] or [xCreate] methods of a [virtual table] implementation
+** instruct the query planner to begin at least a read transaction on
+** all schemas ("main", "temp", and any ATTACH-ed databases) whenever the
+** virtual table is used.
+** </dd>
+** </dl>
+*/
+#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
+#define SQLITE_VTAB_INNOCUOUS 2
+#define SQLITE_VTAB_DIRECTONLY 3
+#define SQLITE_VTAB_USES_ALL_SCHEMAS 4
+
+/*
+** CAPI3REF: Determine The Virtual Table Conflict Policy
+**
+** This function may only be called from within a call to the [xUpdate] method
+** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
+** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
+** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
+** of the SQL statement that triggered the call to the [xUpdate] method of the
+** [virtual table].
+*/
+SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);
+
+/*
+** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
+**
+** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
+** method of a [virtual table], then it might return true if the
+** column is being fetched as part of an UPDATE operation during which the
+** column value will not change. The virtual table implementation can use
+** this hint as permission to substitute a return value that is less
+** expensive to compute and that the corresponding
+** [xUpdate] method understands as a "no-change" value.
+**
+** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
+** the column is not changed by the UPDATE statement, then the xColumn
+** method can optionally return without setting a result, without calling
+** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
+** In that case, [sqlite3_value_nochange(X)] will return true for the
+** same column in the [xUpdate] method.
+**
+** The sqlite3_vtab_nochange() routine is an optimization. Virtual table
+** implementations should continue to give a correct answer even if the
+** sqlite3_vtab_nochange() interface were to always return false. In the
+** current implementation, the sqlite3_vtab_nochange() interface does always
+** returns false for the enhanced [UPDATE FROM] statement.
+*/
+SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*);
+
+/*
+** CAPI3REF: Determine The Collation For a Virtual Table Constraint
+** METHOD: sqlite3_index_info
+**
+** This function may only be called from within a call to the [xBestIndex]
+** method of a [virtual table]. This function returns a pointer to a string
+** that is the name of the appropriate collation sequence to use for text
+** comparisons on the constraint identified by its arguments.
+**
+** The first argument must be the pointer to the [sqlite3_index_info] object
+** that is the first parameter to the xBestIndex() method. The second argument
+** must be an index into the aConstraint[] array belonging to the
+** sqlite3_index_info structure passed to xBestIndex.
+**
+** Important:
+** The first parameter must be the same pointer that is passed into the
+** xBestMethod() method. The first parameter may not be a pointer to a
+** different [sqlite3_index_info] object, even an exact copy.
+**
+** The return value is computed as follows:
+**
+** <ol>
+** <li><p> If the constraint comes from a WHERE clause expression that contains
+** a [COLLATE operator], then the name of the collation specified by
+** that COLLATE operator is returned.
+** <li><p> If there is no COLLATE operator, but the column that is the subject
+** of the constraint specifies an alternative collating sequence via
+** a [COLLATE clause] on the column definition within the CREATE TABLE
+** statement that was passed into [sqlite3_declare_vtab()], then the
+** name of that alternative collating sequence is returned.
+** <li><p> Otherwise, "BINARY" is returned.
+** </ol>
+*/
+SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info*,int);
+
+/*
+** CAPI3REF: Determine if a virtual table query is DISTINCT
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within an [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this
+** interface from outside of xBestIndex() is undefined and probably harmful.
+**
+** ^The sqlite3_vtab_distinct() interface returns an integer between 0 and
+** 3. The integer returned by sqlite3_vtab_distinct()
+** gives the virtual table additional information about how the query
+** planner wants the output to be ordered. As long as the virtual table
+** can meet the ordering requirements of the query planner, it may set
+** the "orderByConsumed" flag.
+**
+** <ol><li value="0"><p>
+** ^If the sqlite3_vtab_distinct() interface returns 0, that means
+** that the query planner needs the virtual table to return all rows in the
+** sort order defined by the "nOrderBy" and "aOrderBy" fields of the
+** [sqlite3_index_info] object. This is the default expectation. If the
+** virtual table outputs all rows in sorted order, then it is always safe for
+** the xBestIndex method to set the "orderByConsumed" flag, regardless of
+** the return value from sqlite3_vtab_distinct().
+** <li value="1"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 1, that means
+** that the query planner does not need the rows to be returned in sorted order
+** as long as all rows with the same values in all columns identified by the
+** "aOrderBy" field are adjacent.)^ This mode is used when the query planner
+** is doing a GROUP BY.
+** <li value="2"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 2, that means
+** that the query planner does not need the rows returned in any particular
+** order, as long as rows with the same values in all "aOrderBy" columns
+** are adjacent.)^ ^(Furthermore, only a single row for each particular
+** combination of values in the columns identified by the "aOrderBy" field
+** needs to be returned.)^ ^It is always ok for two or more rows with the same
+** values in all "aOrderBy" columns to be returned, as long as all such rows
+** are adjacent. ^The virtual table may, if it chooses, omit extra rows
+** that have the same value for all columns identified by "aOrderBy".
+** ^However omitting the extra rows is optional.
+** This mode is used for a DISTINCT query.
+** <li value="3"><p>
+** ^(If the sqlite3_vtab_distinct() interface returns 3, that means
+** that the query planner needs only distinct rows but it does need the
+** rows to be sorted.)^ ^The virtual table implementation is free to omit
+** rows that are identical in all aOrderBy columns, if it wants to, but
+** it is not required to omit any rows. This mode is used for queries
+** that have both DISTINCT and ORDER BY clauses.
+** </ol>
+**
+** ^For the purposes of comparing virtual table output values to see if the
+** values are same value for sorting purposes, two NULL values are considered
+** to be the same. In other words, the comparison operator is "IS"
+** (or "IS NOT DISTINCT FROM") and not "==".
+**
+** If a virtual table implementation is unable to meet the requirements
+** specified above, then it must not set the "orderByConsumed" flag in the
+** [sqlite3_index_info] object or an incorrect answer may result.
+**
+** ^A virtual table implementation is always free to return rows in any order
+** it wants, as long as the "orderByConsumed" flag is not set. ^When the
+** the "orderByConsumed" flag is unset, the query planner will add extra
+** [bytecode] to ensure that the final results returned by the SQL query are
+** ordered correctly. The use of the "orderByConsumed" flag and the
+** sqlite3_vtab_distinct() interface is merely an optimization. ^Careful
+** use of the sqlite3_vtab_distinct() interface and the "orderByConsumed"
+** flag might help queries against a virtual table to run faster. Being
+** overly aggressive and setting the "orderByConsumed" flag when it is not
+** valid to do so, on the other hand, might cause SQLite to return incorrect
+** results.
+*/
+SQLITE_API int sqlite3_vtab_distinct(sqlite3_index_info*);
+
+/*
+** CAPI3REF: Identify and handle IN constraints in xBestIndex
+**
+** This interface may only be used from within an
+** [xBestIndex|xBestIndex() method] of a [virtual table] implementation.
+** The result of invoking this interface from any other context is
+** undefined and probably harmful.
+**
+** ^(A constraint on a virtual table of the form
+** "[IN operator|column IN (...)]" is
+** communicated to the xBestIndex method as a
+** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use
+** this constraint, it must set the corresponding
+** aConstraintUsage[].argvIndex to a positive integer. ^(Then, under
+** the usual mode of handling IN operators, SQLite generates [bytecode]
+** that invokes the [xFilter|xFilter() method] once for each value
+** on the right-hand side of the IN operator.)^ Thus the virtual table
+** only sees a single value from the right-hand side of the IN operator
+** at a time.
+**
+** In some cases, however, it would be advantageous for the virtual
+** table to see all values on the right-hand of the IN operator all at
+** once. The sqlite3_vtab_in() interfaces facilitates this in two ways:
+**
+** <ol>
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,-1) will return true (non-zero)
+** if and only if the [sqlite3_index_info|P->aConstraint][N] constraint
+** is an [IN operator] that can be processed all at once. ^In other words,
+** sqlite3_vtab_in() with -1 in the third argument is a mechanism
+** by which the virtual table can ask SQLite if all-at-once processing
+** of the IN operator is even possible.
+**
+** <li><p>
+** ^A call to sqlite3_vtab_in(P,N,F) with F==1 or F==0 indicates
+** to SQLite that the virtual table does or does not want to process
+** the IN operator all-at-once, respectively. ^Thus when the third
+** parameter (F) is non-negative, this interface is the mechanism by
+** which the virtual table tells SQLite how it wants to process the
+** IN operator.
+** </ol>
+**
+** ^The sqlite3_vtab_in(P,N,F) interface can be invoked multiple times
+** within the same xBestIndex method call. ^For any given P,N pair,
+** the return value from sqlite3_vtab_in(P,N,F) will always be the same
+** within the same xBestIndex call. ^If the interface returns true
+** (non-zero), that means that the constraint is an IN operator
+** that can be processed all-at-once. ^If the constraint is not an IN
+** operator or cannot be processed all-at-once, then the interface returns
+** false.
+**
+** ^(All-at-once processing of the IN operator is selected if both of the
+** following conditions are met:
+**
+** <ol>
+** <li><p> The P->aConstraintUsage[N].argvIndex value is set to a positive
+** integer. This is how the virtual table tells SQLite that it wants to
+** use the N-th constraint.
+**
+** <li><p> The last call to sqlite3_vtab_in(P,N,F) for which F was
+** non-negative had F>=1.
+** </ol>)^
+**
+** ^If either or both of the conditions above are false, then SQLite uses
+** the traditional one-at-a-time processing strategy for the IN constraint.
+** ^If both conditions are true, then the argvIndex-th parameter to the
+** xFilter method will be an [sqlite3_value] that appears to be NULL,
+** but which can be passed to [sqlite3_vtab_in_first()] and
+** [sqlite3_vtab_in_next()] to find all values on the right-hand side
+** of the IN constraint.
+*/
+SQLITE_API int sqlite3_vtab_in(sqlite3_index_info*, int iCons, int bHandle);
+
+/*
+** CAPI3REF: Find all elements on the right-hand side of an IN constraint.
+**
+** These interfaces are only useful from within the
+** [xFilter|xFilter() method] of a [virtual table] implementation.
+** The result of invoking these interfaces from any other context
+** is undefined and probably harmful.
+**
+** The X parameter in a call to sqlite3_vtab_in_first(X,P) or
+** sqlite3_vtab_in_next(X,P) should be one of the parameters to the
+** xFilter method which invokes these routines, and specifically
+** a parameter that was previously selected for all-at-once IN constraint
+** processing use the [sqlite3_vtab_in()] interface in the
+** [xBestIndex|xBestIndex method]. ^(If the X parameter is not
+** an xFilter argument that was selected for all-at-once IN constraint
+** processing, then these routines return [SQLITE_ERROR].)^
+**
+** ^(Use these routines to access all values on the right-hand side
+** of the IN constraint using code like the following:
+**
+** <blockquote><pre>
+** &nbsp; for(rc=sqlite3_vtab_in_first(pList, &pVal);
+** &nbsp; rc==SQLITE_OK && pVal;
+** &nbsp; rc=sqlite3_vtab_in_next(pList, &pVal)
+** &nbsp; ){
+** &nbsp; // do something with pVal
+** &nbsp; }
+** &nbsp; if( rc!=SQLITE_OK ){
+** &nbsp; // an error has occurred
+** &nbsp; }
+** </pre></blockquote>)^
+**
+** ^On success, the sqlite3_vtab_in_first(X,P) and sqlite3_vtab_in_next(X,P)
+** routines return SQLITE_OK and set *P to point to the first or next value
+** on the RHS of the IN constraint. ^If there are no more values on the
+** right hand side of the IN constraint, then *P is set to NULL and these
+** routines return [SQLITE_DONE]. ^The return value might be
+** some other value, such as SQLITE_NOMEM, in the event of a malfunction.
+**
+** The *ppOut values returned by these routines are only valid until the
+** next call to either of these routines or until the end of the xFilter
+** method from which these routines were called. If the virtual table
+** implementation needs to retain the *ppOut values for longer, it must make
+** copies. The *ppOut values are [protected sqlite3_value|protected].
+*/
+SQLITE_API int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut);
+SQLITE_API int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut);
+
+/*
+** CAPI3REF: Constraint values in xBestIndex()
+** METHOD: sqlite3_index_info
+**
+** This API may only be used from within the [xBestIndex|xBestIndex method]
+** of a [virtual table] implementation. The result of calling this interface
+** from outside of an xBestIndex method are undefined and probably harmful.
+**
+** ^When the sqlite3_vtab_rhs_value(P,J,V) interface is invoked from within
+** the [xBestIndex] method of a [virtual table] implementation, with P being
+** a copy of the [sqlite3_index_info] object pointer passed into xBestIndex and
+** J being a 0-based index into P->aConstraint[], then this routine
+** attempts to set *V to the value of the right-hand operand of
+** that constraint if the right-hand operand is known. ^If the
+** right-hand operand is not known, then *V is set to a NULL pointer.
+** ^The sqlite3_vtab_rhs_value(P,J,V) interface returns SQLITE_OK if
+** and only if *V is set to a value. ^The sqlite3_vtab_rhs_value(P,J,V)
+** inteface returns SQLITE_NOTFOUND if the right-hand side of the J-th
+** constraint is not available. ^The sqlite3_vtab_rhs_value() interface
+** can return an result code other than SQLITE_OK or SQLITE_NOTFOUND if
+** something goes wrong.
+**
+** The sqlite3_vtab_rhs_value() interface is usually only successful if
+** the right-hand operand of a constraint is a literal value in the original
+** SQL statement. If the right-hand operand is an expression or a reference
+** to some other column or a [host parameter], then sqlite3_vtab_rhs_value()
+** will probably return [SQLITE_NOTFOUND].
+**
+** ^(Some constraints, such as [SQLITE_INDEX_CONSTRAINT_ISNULL] and
+** [SQLITE_INDEX_CONSTRAINT_ISNOTNULL], have no right-hand operand. For such
+** constraints, sqlite3_vtab_rhs_value() always returns SQLITE_NOTFOUND.)^
+**
+** ^The [sqlite3_value] object returned in *V is a protected sqlite3_value
+** and remains valid for the duration of the xBestIndex method call.
+** ^When xBestIndex returns, the sqlite3_value object returned by
+** sqlite3_vtab_rhs_value() is automatically deallocated.
+**
+** The "_rhs_" in the name of this routine is an abbreviation for
+** "Right-Hand Side".
+*/
+SQLITE_API int sqlite3_vtab_rhs_value(sqlite3_index_info*, int, sqlite3_value **ppVal);
+
+/*
+** CAPI3REF: Conflict resolution modes
+** KEYWORDS: {conflict resolution mode}
+**
+** These constants are returned by [sqlite3_vtab_on_conflict()] to
+** inform a [virtual table] implementation what the [ON CONFLICT] mode
+** is for the SQL statement being evaluated.
+**
+** Note that the [SQLITE_IGNORE] constant is also used as a potential
+** return value from the [sqlite3_set_authorizer()] callback and that
+** [SQLITE_ABORT] is also a [result code].
+*/
+#define SQLITE_ROLLBACK 1
+/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
+#define SQLITE_FAIL 3
+/* #define SQLITE_ABORT 4 // Also an error code */
+#define SQLITE_REPLACE 5
+
+/*
+** CAPI3REF: Prepared Statement Scan Status Opcodes
+** KEYWORDS: {scanstatus options}
+**
+** The following constants can be used for the T parameter to the
+** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a
+** different metric for sqlite3_stmt_scanstatus() to return.
+**
+** When the value returned to V is a string, space to hold that string is
+** managed by the prepared statement S and will be automatically freed when
+** S is finalized.
+**
+** Not all values are available for all query elements. When a value is
+** not available, the output variable is set to -1 if the value is numeric,
+** or to NULL if it is a string (SQLITE_SCANSTAT_NAME).
+**
+** <dl>
+** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be
+** set to the total number of times that the X-th loop has run.</dd>
+**
+** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
+** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be set
+** to the total number of rows examined by all iterations of the X-th loop.</dd>
+**
+** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
+** <dd>^The "double" variable pointed to by the V parameter will be set to the
+** query planner's estimate for the average number of rows output from each
+** iteration of the X-th loop. If the query planner's estimates was accurate,
+** then this value will approximate the quotient NVISIT/NLOOP and the
+** product of this value for all prior loops with the same SELECTID will
+** be the NLOOP value for the current loop.
+**
+** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the name of the index or table
+** used for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
+** <dd>^The "const char *" variable pointed to by the V parameter will be set
+** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
+** description for the X-th loop.
+**
+** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECTID</dt>
+** <dd>^The "int" variable pointed to by the V parameter will be set to the
+** id for the X-th query plan element. The id value is unique within the
+** statement. The select-id is the same value as is output in the first
+** column of an [EXPLAIN QUERY PLAN] query.
+**
+** [[SQLITE_SCANSTAT_PARENTID]] <dt>SQLITE_SCANSTAT_PARENTID</dt>
+** <dd>The "int" variable pointed to by the V parameter will be set to the
+** the id of the parent of the current query element, if applicable, or
+** to zero if the query element has no parent. This is the same value as
+** returned in the second column of an [EXPLAIN QUERY PLAN] query.
+**
+** [[SQLITE_SCANSTAT_NCYCLE]] <dt>SQLITE_SCANSTAT_NCYCLE</dt>
+** <dd>The sqlite3_int64 output value is set to the number of cycles,
+** according to the processor time-stamp counter, that elapsed while the
+** query element was being processed. This value is not available for
+** all query elements - if it is unavailable the output variable is
+** set to -1.
+** </dl>
+*/
+#define SQLITE_SCANSTAT_NLOOP 0
+#define SQLITE_SCANSTAT_NVISIT 1
+#define SQLITE_SCANSTAT_EST 2
+#define SQLITE_SCANSTAT_NAME 3
+#define SQLITE_SCANSTAT_EXPLAIN 4
+#define SQLITE_SCANSTAT_SELECTID 5
+#define SQLITE_SCANSTAT_PARENTID 6
+#define SQLITE_SCANSTAT_NCYCLE 7
+
+/*
+** CAPI3REF: Prepared Statement Scan Status
+** METHOD: sqlite3_stmt
+**
+** These interfaces return information about the predicted and measured
+** performance for pStmt. Advanced applications can use this
+** interface to compare the predicted and the measured performance and
+** issue warnings and/or rerun [ANALYZE] if discrepancies are found.
+**
+** Since this interface is expected to be rarely used, it is only
+** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
+** compile-time option.
+**
+** The "iScanStatusOp" parameter determines which status information to return.
+** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
+** of this interface is undefined. ^The requested measurement is written into
+** a variable pointed to by the "pOut" parameter.
+**
+** The "flags" parameter must be passed a mask of flags. At present only
+** one flag is defined - SQLITE_SCANSTAT_COMPLEX. If SQLITE_SCANSTAT_COMPLEX
+** is specified, then status information is available for all elements
+** of a query plan that are reported by "EXPLAIN QUERY PLAN" output. If
+** SQLITE_SCANSTAT_COMPLEX is not specified, then only query plan elements
+** that correspond to query loops (the "SCAN..." and "SEARCH..." elements of
+** the EXPLAIN QUERY PLAN output) are available. Invoking API
+** sqlite3_stmt_scanstatus() is equivalent to calling
+** sqlite3_stmt_scanstatus_v2() with a zeroed flags parameter.
+**
+** Parameter "idx" identifies the specific query element to retrieve statistics
+** for. Query elements are numbered starting from zero. A value of -1 may be
+** to query for statistics regarding the entire query. ^If idx is out of range
+** - less than -1 or greater than or equal to the total number of query
+** elements used to implement the statement - a non-zero value is returned and
+** the variable that pOut points to is unchanged.
+**
+** See also: [sqlite3_stmt_scanstatus_reset()]
+*/
+SQLITE_API int sqlite3_stmt_scanstatus(
+ sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
+ void *pOut /* Result written here */
+);
+SQLITE_API int sqlite3_stmt_scanstatus_v2(
+ sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
+ int idx, /* Index of loop to report on */
+ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
+ int flags, /* Mask of flags defined below */
+ void *pOut /* Result written here */
+);
+
+/*
+** CAPI3REF: Prepared Statement Scan Status
+** KEYWORDS: {scan status flags}
+*/
+#define SQLITE_SCANSTAT_COMPLEX 0x0001
+
+/*
+** CAPI3REF: Zero Scan-Status Counters
+** METHOD: sqlite3_stmt
+**
+** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
+**
+** This API is only available if the library is built with pre-processor
+** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
+*/
+SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Flush caches to disk mid-transaction
+** METHOD: sqlite3
+**
+** ^If a write-transaction is open on [database connection] D when the
+** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
+** pages in the pager-cache that are not currently in use are written out
+** to disk. A dirty page may be in use if a database cursor created by an
+** active SQL statement is reading from it, or if it is page 1 of a database
+** file (page 1 is always "in use"). ^The [sqlite3_db_cacheflush(D)]
+** interface flushes caches for all schemas - "main", "temp", and
+** any [attached] databases.
+**
+** ^If this function needs to obtain extra database locks before dirty pages
+** can be flushed to disk, it does so. ^If those locks cannot be obtained
+** immediately and there is a busy-handler callback configured, it is invoked
+** in the usual manner. ^If the required lock still cannot be obtained, then
+** the database is skipped and an attempt made to flush any dirty pages
+** belonging to the next (if any) database. ^If any databases are skipped
+** because locks cannot be obtained, but no other error occurs, this
+** function returns SQLITE_BUSY.
+**
+** ^If any other error occurs while flushing dirty pages to disk (for
+** example an IO error or out-of-memory condition), then processing is
+** abandoned and an SQLite [error code] is returned to the caller immediately.
+**
+** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
+**
+** ^This function does not set the database handle error code or message
+** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
+*/
+SQLITE_API int sqlite3_db_cacheflush(sqlite3*);
+
+/*
+** CAPI3REF: The pre-update hook.
+** METHOD: sqlite3
+**
+** ^These interfaces are only available if SQLite is compiled using the
+** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
+**
+** ^The [sqlite3_preupdate_hook()] interface registers a callback function
+** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
+** on a database table.
+** ^At most one preupdate hook may be registered at a time on a single
+** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
+** the previous setting.
+** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
+** with a NULL pointer as the second parameter.
+** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
+** the first parameter to callbacks.
+**
+** ^The preupdate hook only fires for changes to real database tables; the
+** preupdate hook is not invoked for changes to [virtual tables] or to
+** system tables like sqlite_sequence or sqlite_stat1.
+**
+** ^The second parameter to the preupdate callback is a pointer to
+** the [database connection] that registered the preupdate hook.
+** ^The third parameter to the preupdate callback is one of the constants
+** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
+** kind of update operation that is about to occur.
+** ^(The fourth parameter to the preupdate callback is the name of the
+** database within the database connection that is being modified. This
+** will be "main" for the main database or "temp" for TEMP tables or
+** the name given after the AS keyword in the [ATTACH] statement for attached
+** databases.)^
+** ^The fifth parameter to the preupdate callback is the name of the
+** table that is being modified.
+**
+** For an UPDATE or DELETE operation on a [rowid table], the sixth
+** parameter passed to the preupdate callback is the initial [rowid] of the
+** row being modified or deleted. For an INSERT operation on a rowid table,
+** or any operation on a WITHOUT ROWID table, the value of the sixth
+** parameter is undefined. For an INSERT or UPDATE on a rowid table the
+** seventh parameter is the final rowid value of the row being inserted
+** or updated. The value of the seventh parameter passed to the callback
+** function is not defined for operations on WITHOUT ROWID tables, or for
+** DELETE operations on rowid tables.
+**
+** ^The sqlite3_preupdate_hook(D,C,P) function returns the P argument from
+** the previous call on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
+** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
+** provide additional information about a preupdate event. These routines
+** may only be called from within a preupdate callback. Invoking any of
+** these routines from outside of a preupdate callback or with a
+** [database connection] pointer that is different from the one supplied
+** to the preupdate callback results in undefined and probably undesirable
+** behavior.
+**
+** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns
+** in the row that is being inserted, updated, or deleted.
+**
+** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row before it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE
+** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to
+** a [protected sqlite3_value] that contains the value of the Nth column of
+** the table row after it is updated. The N parameter must be between 0
+** and one less than the number of columns or the behavior will be
+** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE
+** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the
+** behavior is undefined. The [sqlite3_value] that P points to
+** will be destroyed when the preupdate callback returns.
+**
+** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate
+** callback was invoked as a result of a direct insert, update, or delete
+** operation; or 1 for inserts, updates, or deletes invoked by top-level
+** triggers; or 2 for changes resulting from triggers called by top-level
+** triggers; and so forth.
+**
+** When the [sqlite3_blob_write()] API is used to update a blob column,
+** the pre-update hook is invoked with SQLITE_DELETE. This is because the
+** in this case the new values are not available. In this case, when a
+** callback made with op==SQLITE_DELETE is actually a write using the
+** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns
+** the index of the column being written. In other cases, where the
+** pre-update hook is being invoked for some other reason, including a
+** regular DELETE, sqlite3_preupdate_blobwrite() returns -1.
+**
+** See also: [sqlite3_update_hook()]
+*/
+#if defined(SQLITE_ENABLE_PREUPDATE_HOOK)
+SQLITE_API void *sqlite3_preupdate_hook(
+ sqlite3 *db,
+ void(*xPreUpdate)(
+ void *pCtx, /* Copy of third arg to preupdate_hook() */
+ sqlite3 *db, /* Database handle */
+ int op, /* SQLITE_UPDATE, DELETE or INSERT */
+ char const *zDb, /* Database name */
+ char const *zName, /* Table name */
+ sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
+ sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
+ ),
+ void*
+);
+SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_count(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_depth(sqlite3 *);
+SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **);
+SQLITE_API int sqlite3_preupdate_blobwrite(sqlite3 *);
+#endif
+
+/*
+** CAPI3REF: Low-level system error code
+** METHOD: sqlite3
+**
+** ^Attempt to return the underlying operating system error code or error
+** number that caused the most recent I/O error or failure to open a file.
+** The return value is OS-dependent. For example, on unix systems, after
+** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be
+** called to get back the underlying "errno" that caused the problem, such
+** as ENOSPC, EAUTH, EISDIR, and so forth.
+*/
+SQLITE_API int sqlite3_system_errno(sqlite3*);
+
+/*
+** CAPI3REF: Database Snapshot
+** KEYWORDS: {snapshot} {sqlite3_snapshot}
+**
+** An instance of the snapshot object records the state of a [WAL mode]
+** database for some specific point in history.
+**
+** In [WAL mode], multiple [database connections] that are open on the
+** same database file can each be reading a different historical version
+** of the database file. When a [database connection] begins a read
+** transaction, that connection sees an unchanging copy of the database
+** as it existed for the point in time when the transaction first started.
+** Subsequent changes to the database from other connections are not seen
+** by the reader until a new read transaction is started.
+**
+** The sqlite3_snapshot object records state information about an historical
+** version of the database file so that it is possible to later open a new read
+** transaction that sees that historical version of the database rather than
+** the most recent version.
+*/
+typedef struct sqlite3_snapshot {
+ unsigned char hidden[48];
+} sqlite3_snapshot;
+
+/*
+** CAPI3REF: Record A Database Snapshot
+** CONSTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
+** new [sqlite3_snapshot] object that records the current state of
+** schema S in database connection D. ^On success, the
+** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
+** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
+** If there is not already a read-transaction open on schema S when
+** this function is called, one is opened automatically.
+**
+** The following must be true for this function to succeed. If any of
+** the following statements are false when sqlite3_snapshot_get() is
+** called, SQLITE_ERROR is returned. The final value of *P is undefined
+** in this case.
+**
+** <ul>
+** <li> The database handle must not be in [autocommit mode].
+**
+** <li> Schema S of [database connection] D must be a [WAL mode] database.
+**
+** <li> There must not be a write transaction open on schema S of database
+** connection D.
+**
+** <li> One or more transactions must have been written to the current wal
+** file since it was created on disk (by any connection). This means
+** that a snapshot cannot be taken on a wal mode database with no wal
+** file immediately after it is first opened. At least one transaction
+** must be written to it first.
+** </ul>
+**
+** This function may also return SQLITE_NOMEM. If it is called with the
+** database handle in autocommit mode but fails for some other reason,
+** whether or not a read transaction is opened on schema S is undefined.
+**
+** The [sqlite3_snapshot] object returned from a successful call to
+** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
+** to avoid a memory leak.
+**
+** The [sqlite3_snapshot_get()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot **ppSnapshot
+);
+
+/*
+** CAPI3REF: Start a read transaction on an historical snapshot
+** METHOD: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read
+** transaction or upgrades an existing one for schema S of
+** [database connection] D such that the read transaction refers to
+** historical [snapshot] P, rather than the most recent change to the
+** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK
+** on success or an appropriate [error code] if it fails.
+**
+** ^In order to succeed, the database connection must not be in
+** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there
+** is already a read transaction open on schema S, then the database handle
+** must have no active statements (SELECT statements that have been passed
+** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()).
+** SQLITE_ERROR is returned if either of these conditions is violated, or
+** if schema S does not exist, or if the snapshot object is invalid.
+**
+** ^A call to sqlite3_snapshot_open() will fail to open if the specified
+** snapshot has been overwritten by a [checkpoint]. In this case
+** SQLITE_ERROR_SNAPSHOT is returned.
+**
+** If there is already a read transaction open when this function is
+** invoked, then the same read transaction remains open (on the same
+** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT
+** is returned. If another error code - for example SQLITE_PROTOCOL or an
+** SQLITE_IOERR error code - is returned, then the final state of the
+** read transaction is undefined. If SQLITE_OK is returned, then the
+** read transaction is now open on database snapshot P.
+**
+** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
+** database connection D does not know that the database file for
+** schema S is in [WAL mode]. A database connection might not know
+** that the database file is in [WAL mode] if there has been no prior
+** I/O on that database connection, or if the database entered [WAL mode]
+** after the most recent I/O on the database connection.)^
+** (Hint: Run "[PRAGMA application_id]" against a newly opened
+** database connection in order to make it ready to use snapshots.)
+**
+** The [sqlite3_snapshot_open()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
+ sqlite3 *db,
+ const char *zSchema,
+ sqlite3_snapshot *pSnapshot
+);
+
+/*
+** CAPI3REF: Destroy a snapshot
+** DESTRUCTOR: sqlite3_snapshot
+**
+** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
+** The application must eventually free every [sqlite3_snapshot] object
+** using this routine to avoid a memory leak.
+**
+** The [sqlite3_snapshot_free()] interface is only available when the
+** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*);
+
+/*
+** CAPI3REF: Compare the ages of two snapshot handles.
+** METHOD: sqlite3_snapshot
+**
+** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages
+** of two valid snapshot handles.
+**
+** If the two snapshot handles are not associated with the same database
+** file, the result of the comparison is undefined.
+**
+** Additionally, the result of the comparison is only valid if both of the
+** snapshot handles were obtained by calling sqlite3_snapshot_get() since the
+** last time the wal file was deleted. The wal file is deleted when the
+** database is changed back to rollback mode or when the number of database
+** clients drops to zero. If either snapshot handle was obtained before the
+** wal file was last deleted, the value returned by this function
+** is undefined.
+**
+** Otherwise, this API returns a negative value if P1 refers to an older
+** snapshot than P2, zero if the two handles refer to the same database
+** snapshot, and a positive value if P1 is a newer snapshot than P2.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp(
+ sqlite3_snapshot *p1,
+ sqlite3_snapshot *p2
+);
+
+/*
+** CAPI3REF: Recover snapshots from a wal file
+** METHOD: sqlite3_snapshot
+**
+** If a [WAL file] remains on disk after all database connections close
+** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control]
+** or because the last process to have the database opened exited without
+** calling [sqlite3_close()]) and a new connection is subsequently opened
+** on that database and [WAL file], the [sqlite3_snapshot_open()] interface
+** will only be able to open the last transaction added to the WAL file
+** even though the WAL file contains other valid transactions.
+**
+** This function attempts to scan the WAL file associated with database zDb
+** of database handle db and make all valid snapshots available to
+** sqlite3_snapshot_open(). It is an error if there is already a read
+** transaction open on the database, or if the database is not a WAL mode
+** database.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+**
+** This interface is only available if SQLite is compiled with the
+** [SQLITE_ENABLE_SNAPSHOT] option.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb);
+
+/*
+** CAPI3REF: Serialize a database
+**
+** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory
+** that is a serialization of the S database on [database connection] D.
+** If P is not a NULL pointer, then the size of the database in bytes
+** is written into *P.
+**
+** For an ordinary on-disk database file, the serialization is just a
+** copy of the disk file. For an in-memory database or a "TEMP" database,
+** the serialization is the same sequence of bytes which would be written
+** to disk if that database where backed up to disk.
+**
+** The usual case is that sqlite3_serialize() copies the serialization of
+** the database into memory obtained from [sqlite3_malloc64()] and returns
+** a pointer to that memory. The caller is responsible for freeing the
+** returned value to avoid a memory leak. However, if the F argument
+** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations
+** are made, and the sqlite3_serialize() function will return a pointer
+** to the contiguous memory representation of the database that SQLite
+** is currently using for that database, or NULL if the no such contiguous
+** memory representation of the database exists. A contiguous memory
+** representation of the database will usually only exist if there has
+** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
+** values of D and S.
+** The size of the database is written into *P even if the
+** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
+** of the database exists.
+**
+** After the call, if the SQLITE_SERIALIZE_NOCOPY bit had been set,
+** the returned buffer content will remain accessible and unchanged
+** until either the next write operation on the connection or when
+** the connection is closed, and applications must not modify the
+** buffer. If the bit had been clear, the returned buffer will not
+** be accessed by SQLite after the call.
+**
+** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
+** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
+** allocation error occurs.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API unsigned char *sqlite3_serialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to serialize. ex: "main", "temp", ... */
+ sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */
+ unsigned int mFlags /* Zero or more SQLITE_SERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_serialize
+**
+** Zero or more of the following constants can be OR-ed together for
+** the F argument to [sqlite3_serialize(D,S,P,F)].
+**
+** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return
+** a pointer to contiguous in-memory database that it is currently using,
+** without making a copy of the database. If SQLite is not currently using
+** a contiguous in-memory database, then this option causes
+** [sqlite3_serialize()] to return a NULL pointer. SQLite will only be
+** using a contiguous in-memory database if it has been initialized by a
+** prior call to [sqlite3_deserialize()].
+*/
+#define SQLITE_SERIALIZE_NOCOPY 0x001 /* Do no memory allocations */
+
+/*
+** CAPI3REF: Deserialize a database
+**
+** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the
+** [database connection] D to disconnect from database S and then
+** reopen S as an in-memory database based on the serialization contained
+** in P. The serialized database P is N bytes in size. M is the size of
+** the buffer P, which might be larger than N. If M is larger than N, and
+** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is
+** permitted to add content to the in-memory database as long as the total
+** size does not exceed M bytes.
+**
+** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will
+** invoke sqlite3_free() on the serialization buffer when the database
+** connection closes. If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then
+** SQLite will try to increase the buffer size using sqlite3_realloc64()
+** if writes on the database cause it to grow larger than M bytes.
+**
+** Applications must not modify the buffer P or invalidate it before
+** the database connection D is closed.
+**
+** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the
+** database is currently in a read transaction or is involved in a backup
+** operation.
+**
+** It is not possible to deserialized into the TEMP database. If the
+** S argument to sqlite3_deserialize(D,S,P,N,M,F) is "temp" then the
+** function returns SQLITE_ERROR.
+**
+** The deserialized database should not be in [WAL mode]. If the database
+** is in WAL mode, then any attempt to use the database file will result
+** in an [SQLITE_CANTOPEN] error. The application can set the
+** [file format version numbers] (bytes 18 and 19) of the input database P
+** to 0x01 prior to invoking sqlite3_deserialize(D,S,P,N,M,F) to force the
+** database file into rollback mode and work around this limitation.
+**
+** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the
+** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then
+** [sqlite3_free()] is invoked on argument P prior to returning.
+**
+** This interface is omitted if SQLite is compiled with the
+** [SQLITE_OMIT_DESERIALIZE] option.
+*/
+SQLITE_API int sqlite3_deserialize(
+ sqlite3 *db, /* The database connection */
+ const char *zSchema, /* Which DB to reopen with the deserialization */
+ unsigned char *pData, /* The serialized database content */
+ sqlite3_int64 szDb, /* Number bytes in the deserialization */
+ sqlite3_int64 szBuf, /* Total size of buffer pData[] */
+ unsigned mFlags /* Zero or more SQLITE_DESERIALIZE_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3_deserialize()
+**
+** The following are allowed values for 6th argument (the F argument) to
+** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
+**
+** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
+** in the P argument is held in memory obtained from [sqlite3_malloc64()]
+** and that SQLite should take ownership of this memory and automatically
+** free it when it has finished using it. Without this flag, the caller
+** is responsible for freeing any dynamically allocated memory.
+**
+** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
+** grow the size of the database using calls to [sqlite3_realloc64()]. This
+** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
+** Without this flag, the deserialized database cannot increase in size beyond
+** the number of bytes specified by the M parameter.
+**
+** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database
+** should be treated as read-only.
+*/
+#define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */
+#define SQLITE_DESERIALIZE_RESIZEABLE 2 /* Resize using sqlite3_realloc64() */
+#define SQLITE_DESERIALIZE_READONLY 4 /* Database is read-only */
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#if defined(__wasi__)
+# undef SQLITE_WASI
+# define SQLITE_WASI 1
+# undef SQLITE_OMIT_WAL
+# define SQLITE_OMIT_WAL 1/* because it requires shared memory APIs */
+# ifndef SQLITE_OMIT_LOAD_EXTENSION
+# define SQLITE_OMIT_LOAD_EXTENSION
+# endif
+# ifndef SQLITE_THREADSAFE
+# define SQLITE_THREADSAFE 0
+# endif
+#endif
+
+#ifdef __cplusplus
+} /* End of the 'extern "C"' block */
+#endif
+#endif /* SQLITE3_H */
+
+/******** Begin file sqlite3rtree.h *********/
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info;
+
+/* The double-precision datatype used by RTree depends on the
+** SQLITE_RTREE_INT_ONLY compile-time option.
+*/
+#ifdef SQLITE_RTREE_INT_ONLY
+ typedef sqlite3_int64 sqlite3_rtree_dbl;
+#else
+ typedef double sqlite3_rtree_dbl;
+#endif
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+/*
+** Register a 2nd-generation geometry callback named zScore that can be
+** used as part of an R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_query_callback(
+ sqlite3 *db,
+ const char *zQueryFunc,
+ int (*xQueryFunc)(sqlite3_rtree_query_info*),
+ void *pContext,
+ void (*xDestructor)(void*)
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the
+** argument to scored geometry callback registered using
+** sqlite3_rtree_query_callback().
+**
+** Note that the first 5 fields of this structure are identical to
+** sqlite3_rtree_geometry. This structure is a subclass of
+** sqlite3_rtree_geometry.
+*/
+struct sqlite3_rtree_query_info {
+ void *pContext; /* pContext from when function registered */
+ int nParam; /* Number of function parameters */
+ sqlite3_rtree_dbl *aParam; /* value of function parameters */
+ void *pUser; /* callback can use this, if desired */
+ void (*xDelUser)(void*); /* function to free pUser */
+ sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */
+ unsigned int *anQueue; /* Number of pending entries in the queue */
+ int nCoord; /* Number of coordinates */
+ int iLevel; /* Level of current node or entry */
+ int mxLevel; /* The largest iLevel value in the tree */
+ sqlite3_int64 iRowid; /* Rowid for current entry */
+ sqlite3_rtree_dbl rParentScore; /* Score of parent node */
+ int eParentWithin; /* Visibility of parent node */
+ int eWithin; /* OUT: Visibility */
+ sqlite3_rtree_dbl rScore; /* OUT: Write the score here */
+ /* The following fields are only available in 3.8.11 and later */
+ sqlite3_value **apSqlParam; /* Original SQL values of parameters */
+};
+
+/*
+** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
+*/
+#define NOT_WITHIN 0 /* Object completely outside of query region */
+#define PARTLY_WITHIN 1 /* Object partially overlaps query region */
+#define FULLY_WITHIN 2 /* Object fully contained within query region */
+
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
+
+/******** End of sqlite3rtree.h *********/
+/******** Begin file sqlite3session.h *********/
+
+#if !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION)
+#define __SQLITESESSION_H_ 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/*
+** CAPI3REF: Session Object Handle
+**
+** An instance of this object is a [session] that can be used to
+** record changes to a database.
+*/
+typedef struct sqlite3_session sqlite3_session;
+
+/*
+** CAPI3REF: Changeset Iterator Handle
+**
+** An instance of this object acts as a cursor for iterating
+** over the elements of a [changeset] or [patchset].
+*/
+typedef struct sqlite3_changeset_iter sqlite3_changeset_iter;
+
+/*
+** CAPI3REF: Create A New Session Object
+** CONSTRUCTOR: sqlite3_session
+**
+** Create a new session object attached to database handle db. If successful,
+** a pointer to the new object is written to *ppSession and SQLITE_OK is
+** returned. If an error occurs, *ppSession is set to NULL and an SQLite
+** error code (e.g. SQLITE_NOMEM) is returned.
+**
+** It is possible to create multiple session objects attached to a single
+** database handle.
+**
+** Session objects created using this function should be deleted using the
+** [sqlite3session_delete()] function before the database handle that they
+** are attached to is itself closed. If the database handle is closed before
+** the session object is deleted, then the results of calling any session
+** module function, including [sqlite3session_delete()] on the session object
+** are undefined.
+**
+** Because the session module uses the [sqlite3_preupdate_hook()] API, it
+** is not possible for an application to register a pre-update hook on a
+** database handle that has one or more session objects attached. Nor is
+** it possible to create a session object attached to a database handle for
+** which a pre-update hook is already defined. The results of attempting
+** either of these things are undefined.
+**
+** The session object will be used to create changesets for tables in
+** database zDb, where zDb is either "main", or "temp", or the name of an
+** attached database. It is not an error if database zDb is not attached
+** to the database when the session object is created.
+*/
+SQLITE_API int sqlite3session_create(
+ sqlite3 *db, /* Database handle */
+ const char *zDb, /* Name of db (e.g. "main") */
+ sqlite3_session **ppSession /* OUT: New session object */
+);
+
+/*
+** CAPI3REF: Delete A Session Object
+** DESTRUCTOR: sqlite3_session
+**
+** Delete a session object previously allocated using
+** [sqlite3session_create()]. Once a session object has been deleted, the
+** results of attempting to use pSession with any other session module
+** function are undefined.
+**
+** Session objects must be deleted before the database handle to which they
+** are attached is closed. Refer to the documentation for
+** [sqlite3session_create()] for details.
+*/
+SQLITE_API void sqlite3session_delete(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Configure a Session Object
+** METHOD: sqlite3_session
+**
+** This method is used to configure a session object after it has been
+** created. At present the only valid values for the second parameter are
+** [SQLITE_SESSION_OBJCONFIG_SIZE] and [SQLITE_SESSION_OBJCONFIG_ROWID].
+**
+*/
+SQLITE_API int sqlite3session_object_config(sqlite3_session*, int op, void *pArg);
+
+/*
+** CAPI3REF: Options for sqlite3session_object_config
+**
+** The following values may passed as the the 2nd parameter to
+** sqlite3session_object_config().
+**
+** <dt>SQLITE_SESSION_OBJCONFIG_SIZE <dd>
+** This option is used to set, clear or query the flag that enables
+** the [sqlite3session_changeset_size()] API. Because it imposes some
+** computational overhead, this API is disabled by default. Argument
+** pArg must point to a value of type (int). If the value is initially
+** 0, then the sqlite3session_changeset_size() API is disabled. If it
+** is greater than 0, then the same API is enabled. Or, if the initial
+** value is less than zero, no change is made. In all cases the (int)
+** variable is set to 1 if the sqlite3session_changeset_size() API is
+** enabled following the current call, or 0 otherwise.
+**
+** It is an error (SQLITE_MISUSE) to attempt to modify this setting after
+** the first table has been attached to the session object.
+**
+** <dt>SQLITE_SESSION_OBJCONFIG_ROWID <dd>
+** This option is used to set, clear or query the flag that enables
+** collection of data for tables with no explicit PRIMARY KEY.
+**
+** Normally, tables with no explicit PRIMARY KEY are simply ignored
+** by the sessions module. However, if this flag is set, it behaves
+** as if such tables have a column "_rowid_ INTEGER PRIMARY KEY" inserted
+** as their leftmost columns.
+**
+** It is an error (SQLITE_MISUSE) to attempt to modify this setting after
+** the first table has been attached to the session object.
+*/
+#define SQLITE_SESSION_OBJCONFIG_SIZE 1
+#define SQLITE_SESSION_OBJCONFIG_ROWID 2
+
+/*
+** CAPI3REF: Enable Or Disable A Session Object
+** METHOD: sqlite3_session
+**
+** Enable or disable the recording of changes by a session object. When
+** enabled, a session object records changes made to the database. When
+** disabled - it does not. A newly created session object is enabled.
+** Refer to the documentation for [sqlite3session_changeset()] for further
+** details regarding how enabling and disabling a session object affects
+** the eventual changesets.
+**
+** Passing zero to this function disables the session. Passing a value
+** greater than zero enables it. Passing a value less than zero is a
+** no-op, and may be used to query the current state of the session.
+**
+** The return value indicates the final state of the session object: 0 if
+** the session is disabled, or 1 if it is enabled.
+*/
+SQLITE_API int sqlite3session_enable(sqlite3_session *pSession, int bEnable);
+
+/*
+** CAPI3REF: Set Or Clear the Indirect Change Flag
+** METHOD: sqlite3_session
+**
+** Each change recorded by a session object is marked as either direct or
+** indirect. A change is marked as indirect if either:
+**
+** <ul>
+** <li> The session object "indirect" flag is set when the change is
+** made, or
+** <li> The change is made by an SQL trigger or foreign key action
+** instead of directly as a result of a users SQL statement.
+** </ul>
+**
+** If a single row is affected by more than one operation within a session,
+** then the change is considered indirect if all operations meet the criteria
+** for an indirect change above, or direct otherwise.
+**
+** This function is used to set, clear or query the session object indirect
+** flag. If the second argument passed to this function is zero, then the
+** indirect flag is cleared. If it is greater than zero, the indirect flag
+** is set. Passing a value less than zero does not modify the current value
+** of the indirect flag, and may be used to query the current state of the
+** indirect flag for the specified session object.
+**
+** The return value indicates the final state of the indirect flag: 0 if
+** it is clear, or 1 if it is set.
+*/
+SQLITE_API int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect);
+
+/*
+** CAPI3REF: Attach A Table To A Session Object
+** METHOD: sqlite3_session
+**
+** If argument zTab is not NULL, then it is the name of a table to attach
+** to the session object passed as the first argument. All subsequent changes
+** made to the table while the session object is enabled will be recorded. See
+** documentation for [sqlite3session_changeset()] for further details.
+**
+** Or, if argument zTab is NULL, then changes are recorded for all tables
+** in the database. If additional tables are added to the database (by
+** executing "CREATE TABLE" statements) after this call is made, changes for
+** the new tables are also recorded.
+**
+** Changes can only be recorded for tables that have a PRIMARY KEY explicitly
+** defined as part of their CREATE TABLE statement. It does not matter if the
+** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY
+** KEY may consist of a single column, or may be a composite key.
+**
+** It is not an error if the named table does not exist in the database. Nor
+** is it an error if the named table does not have a PRIMARY KEY. However,
+** no changes will be recorded in either of these scenarios.
+**
+** Changes are not recorded for individual rows that have NULL values stored
+** in one or more of their PRIMARY KEY columns.
+**
+** SQLITE_OK is returned if the call completes without error. Or, if an error
+** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
+**
+** <h3>Special sqlite_stat1 Handling</h3>
+**
+** As of SQLite version 3.22.0, the "sqlite_stat1" table is an exception to
+** some of the rules above. In SQLite, the schema of sqlite_stat1 is:
+** <pre>
+** &nbsp; CREATE TABLE sqlite_stat1(tbl,idx,stat)
+** </pre>
+**
+** Even though sqlite_stat1 does not have a PRIMARY KEY, changes are
+** recorded for it as if the PRIMARY KEY is (tbl,idx). Additionally, changes
+** are recorded for rows for which (idx IS NULL) is true. However, for such
+** rows a zero-length blob (SQL value X'') is stored in the changeset or
+** patchset instead of a NULL value. This allows such changesets to be
+** manipulated by legacy implementations of sqlite3changeset_invert(),
+** concat() and similar.
+**
+** The sqlite3changeset_apply() function automatically converts the
+** zero-length blob back to a NULL value when updating the sqlite_stat1
+** table. However, if the application calls sqlite3changeset_new(),
+** sqlite3changeset_old() or sqlite3changeset_conflict on a changeset
+** iterator directly (including on a changeset iterator passed to a
+** conflict-handler callback) then the X'' value is returned. The application
+** must translate X'' to NULL itself if required.
+**
+** Legacy (older than 3.22.0) versions of the sessions module cannot capture
+** changes made to the sqlite_stat1 table. Legacy versions of the
+** sqlite3changeset_apply() function silently ignore any modifications to the
+** sqlite_stat1 table that are part of a changeset or patchset.
+*/
+SQLITE_API int sqlite3session_attach(
+ sqlite3_session *pSession, /* Session object */
+ const char *zTab /* Table name */
+);
+
+/*
+** CAPI3REF: Set a table filter on a Session Object.
+** METHOD: sqlite3_session
+**
+** The second argument (xFilter) is the "filter callback". For changes to rows
+** in tables that are not attached to the Session object, the filter is called
+** to determine whether changes to the table's rows should be tracked or not.
+** If xFilter returns 0, changes are not tracked. Note that once a table is
+** attached, xFilter will not be called again.
+*/
+SQLITE_API void sqlite3session_table_filter(
+ sqlite3_session *pSession, /* Session object */
+ int(*xFilter)(
+ void *pCtx, /* Copy of third arg to _filter_table() */
+ const char *zTab /* Table name */
+ ),
+ void *pCtx /* First argument passed to xFilter */
+);
+
+/*
+** CAPI3REF: Generate A Changeset From A Session Object
+** METHOD: sqlite3_session
+**
+** Obtain a changeset containing changes to the tables attached to the
+** session object passed as the first argument. If successful,
+** set *ppChangeset to point to a buffer containing the changeset
+** and *pnChangeset to the size of the changeset in bytes before returning
+** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to
+** zero and return an SQLite error code.
+**
+** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes,
+** each representing a change to a single row of an attached table. An INSERT
+** change contains the values of each field of a new database row. A DELETE
+** contains the original values of each field of a deleted database row. An
+** UPDATE change contains the original values of each field of an updated
+** database row along with the updated values for each updated non-primary-key
+** column. It is not possible for an UPDATE change to represent a change that
+** modifies the values of primary key columns. If such a change is made, it
+** is represented in a changeset as a DELETE followed by an INSERT.
+**
+** Changes are not recorded for rows that have NULL values stored in one or
+** more of their PRIMARY KEY columns. If such a row is inserted or deleted,
+** no corresponding change is present in the changesets returned by this
+** function. If an existing row with one or more NULL values stored in
+** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL,
+** only an INSERT is appears in the changeset. Similarly, if an existing row
+** with non-NULL PRIMARY KEY values is updated so that one or more of its
+** PRIMARY KEY columns are set to NULL, the resulting changeset contains a
+** DELETE change only.
+**
+** The contents of a changeset may be traversed using an iterator created
+** using the [sqlite3changeset_start()] API. A changeset may be applied to
+** a database with a compatible schema using the [sqlite3changeset_apply()]
+** API.
+**
+** Within a changeset generated by this function, all changes related to a
+** single table are grouped together. In other words, when iterating through
+** a changeset or when applying a changeset to a database, all changes related
+** to a single table are processed before moving on to the next table. Tables
+** are sorted in the same order in which they were attached (or auto-attached)
+** to the sqlite3_session object. The order in which the changes related to
+** a single table are stored is undefined.
+**
+** Following a successful call to this function, it is the responsibility of
+** the caller to eventually free the buffer that *ppChangeset points to using
+** [sqlite3_free()].
+**
+** <h3>Changeset Generation</h3>
+**
+** Once a table has been attached to a session object, the session object
+** records the primary key values of all new rows inserted into the table.
+** It also records the original primary key and other column values of any
+** deleted or updated rows. For each unique primary key value, data is only
+** recorded once - the first time a row with said primary key is inserted,
+** updated or deleted in the lifetime of the session.
+**
+** There is one exception to the previous paragraph: when a row is inserted,
+** updated or deleted, if one or more of its primary key columns contain a
+** NULL value, no record of the change is made.
+**
+** The session object therefore accumulates two types of records - those
+** that consist of primary key values only (created when the user inserts
+** a new record) and those that consist of the primary key values and the
+** original values of other table columns (created when the users deletes
+** or updates a record).
+**
+** When this function is called, the requested changeset is created using
+** both the accumulated records and the current contents of the database
+** file. Specifically:
+**
+** <ul>
+** <li> For each record generated by an insert, the database is queried
+** for a row with a matching primary key. If one is found, an INSERT
+** change is added to the changeset. If no such row is found, no change
+** is added to the changeset.
+**
+** <li> For each record generated by an update or delete, the database is
+** queried for a row with a matching primary key. If such a row is
+** found and one or more of the non-primary key fields have been
+** modified from their original values, an UPDATE change is added to
+** the changeset. Or, if no such row is found in the table, a DELETE
+** change is added to the changeset. If there is a row with a matching
+** primary key in the database, but all fields contain their original
+** values, no change is added to the changeset.
+** </ul>
+**
+** This means, amongst other things, that if a row is inserted and then later
+** deleted while a session object is active, neither the insert nor the delete
+** will be present in the changeset. Or if a row is deleted and then later a
+** row with the same primary key values inserted while a session object is
+** active, the resulting changeset will contain an UPDATE change instead of
+** a DELETE and an INSERT.
+**
+** When a session object is disabled (see the [sqlite3session_enable()] API),
+** it does not accumulate records when rows are inserted, updated or deleted.
+** This may appear to have some counter-intuitive effects if a single row
+** is written to more than once during a session. For example, if a row
+** is inserted while a session object is enabled, then later deleted while
+** the same session object is disabled, no INSERT record will appear in the
+** changeset, even though the delete took place while the session was disabled.
+** Or, if one field of a row is updated while a session is disabled, and
+** another field of the same row is updated while the session is enabled, the
+** resulting changeset will contain an UPDATE change that updates both fields.
+*/
+SQLITE_API int sqlite3session_changeset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
+ void **ppChangeset /* OUT: Buffer containing changeset */
+);
+
+/*
+** CAPI3REF: Return An Upper-limit For The Size Of The Changeset
+** METHOD: sqlite3_session
+**
+** By default, this function always returns 0. For it to return
+** a useful result, the sqlite3_session object must have been configured
+** to enable this API using sqlite3session_object_config() with the
+** SQLITE_SESSION_OBJCONFIG_SIZE verb.
+**
+** When enabled, this function returns an upper limit, in bytes, for the size
+** of the changeset that might be produced if sqlite3session_changeset() were
+** called. The final changeset size might be equal to or smaller than the
+** size in bytes returned by this function.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Load The Difference Between Tables Into A Session
+** METHOD: sqlite3_session
+**
+** If it is not already attached to the session object passed as the first
+** argument, this function attaches table zTbl in the same manner as the
+** [sqlite3session_attach()] function. If zTbl does not exist, or if it
+** does not have a primary key, this function is a no-op (but does not return
+** an error).
+**
+** Argument zFromDb must be the name of a database ("main", "temp" etc.)
+** attached to the same database handle as the session object that contains
+** a table compatible with the table attached to the session by this function.
+** A table is considered compatible if it:
+**
+** <ul>
+** <li> Has the same name,
+** <li> Has the same set of columns declared in the same order, and
+** <li> Has the same PRIMARY KEY definition.
+** </ul>
+**
+** If the tables are not compatible, SQLITE_SCHEMA is returned. If the tables
+** are compatible but do not have any PRIMARY KEY columns, it is not an error
+** but no changes are added to the session object. As with other session
+** APIs, tables without PRIMARY KEYs are simply ignored.
+**
+** This function adds a set of changes to the session object that could be
+** used to update the table in database zFrom (call this the "from-table")
+** so that its content is the same as the table attached to the session
+** object (call this the "to-table"). Specifically:
+**
+** <ul>
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, an INSERT record is added to the session object.
+**
+** <li> For each row (primary key) that exists in the to-table but not in
+** the from-table, a DELETE record is added to the session object.
+**
+** <li> For each row (primary key) that exists in both tables, but features
+** different non-PK values in each, an UPDATE record is added to the
+** session.
+** </ul>
+**
+** To clarify, if this function is called and then a changeset constructed
+** using [sqlite3session_changeset()], then after applying that changeset to
+** database zFrom the contents of the two compatible tables would be
+** identical.
+**
+** It an error if database zFrom does not exist or does not contain the
+** required compatible table.
+**
+** If the operation is successful, SQLITE_OK is returned. Otherwise, an SQLite
+** error code. In this case, if argument pzErrMsg is not NULL, *pzErrMsg
+** may be set to point to a buffer containing an English language error
+** message. It is the responsibility of the caller to free this buffer using
+** sqlite3_free().
+*/
+SQLITE_API int sqlite3session_diff(
+ sqlite3_session *pSession,
+ const char *zFromDb,
+ const char *zTbl,
+ char **pzErrMsg
+);
+
+
+/*
+** CAPI3REF: Generate A Patchset From A Session Object
+** METHOD: sqlite3_session
+**
+** The differences between a patchset and a changeset are that:
+**
+** <ul>
+** <li> DELETE records consist of the primary key fields only. The
+** original values of other fields are omitted.
+** <li> The original values of any modified fields are omitted from
+** UPDATE records.
+** </ul>
+**
+** A patchset blob may be used with up to date versions of all
+** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(),
+** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly,
+** attempting to use a patchset blob with old versions of the
+** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error.
+**
+** Because the non-primary key "old.*" fields are omitted, no
+** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset
+** is passed to the sqlite3changeset_apply() API. Other conflict types work
+** in the same way as for changesets.
+**
+** Changes within a patchset are ordered in the same way as for changesets
+** generated by the sqlite3session_changeset() function (i.e. all changes for
+** a single table are grouped together, tables appear in the order in which
+** they were attached to the session object).
+*/
+SQLITE_API int sqlite3session_patchset(
+ sqlite3_session *pSession, /* Session object */
+ int *pnPatchset, /* OUT: Size of buffer at *ppPatchset */
+ void **ppPatchset /* OUT: Buffer containing patchset */
+);
+
+/*
+** CAPI3REF: Test if a changeset has recorded any changes.
+**
+** Return non-zero if no changes to attached tables have been recorded by
+** the session object passed as the first argument. Otherwise, if one or
+** more changes have been recorded, return zero.
+**
+** Even if this function returns zero, it is possible that calling
+** [sqlite3session_changeset()] on the session handle may still return a
+** changeset that contains no changes. This can happen when a row in
+** an attached table is modified and then later on the original values
+** are restored. However, if this function returns non-zero, then it is
+** guaranteed that a call to sqlite3session_changeset() will return a
+** changeset containing zero changes.
+*/
+SQLITE_API int sqlite3session_isempty(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Query for the amount of heap memory used by a session object.
+**
+** This API returns the total amount of heap memory in bytes currently
+** used by the session object passed as the only argument.
+*/
+SQLITE_API sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession);
+
+/*
+** CAPI3REF: Create An Iterator To Traverse A Changeset
+** CONSTRUCTOR: sqlite3_changeset_iter
+**
+** Create an iterator used to iterate through the contents of a changeset.
+** If successful, *pp is set to point to the iterator handle and SQLITE_OK
+** is returned. Otherwise, if an error occurs, *pp is set to zero and an
+** SQLite error code is returned.
+**
+** The following functions can be used to advance and query a changeset
+** iterator created by this function:
+**
+** <ul>
+** <li> [sqlite3changeset_next()]
+** <li> [sqlite3changeset_op()]
+** <li> [sqlite3changeset_new()]
+** <li> [sqlite3changeset_old()]
+** </ul>
+**
+** It is the responsibility of the caller to eventually destroy the iterator
+** by passing it to [sqlite3changeset_finalize()]. The buffer containing the
+** changeset (pChangeset) must remain valid until after the iterator is
+** destroyed.
+**
+** Assuming the changeset blob was created by one of the
+** [sqlite3session_changeset()], [sqlite3changeset_concat()] or
+** [sqlite3changeset_invert()] functions, all changes within the changeset
+** that apply to a single table are grouped together. This means that when
+** an application iterates through a changeset using an iterator created by
+** this function, all changes that relate to a single table are visited
+** consecutively. There is no chance that the iterator will visit a change
+** the applies to table X, then one for table Y, and then later on visit
+** another change for table X.
+**
+** The behavior of sqlite3changeset_start_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter.
+**
+** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_start(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset /* Pointer to blob containing changeset */
+);
+SQLITE_API int sqlite3changeset_start_v2(
+ sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */
+ int nChangeset, /* Size of changeset blob in bytes */
+ void *pChangeset, /* Pointer to blob containing changeset */
+ int flags /* SESSION_CHANGESETSTART_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_start_v2
+**
+** The following flags may passed via the 4th parameter to
+** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]:
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset while iterating through it. This is equivalent to
+** inverting a changeset using sqlite3changeset_invert() before applying it.
+** It is an error to specify this flag with a patchset.
+*/
+#define SQLITE_CHANGESETSTART_INVERT 0x0002
+
+
+/*
+** CAPI3REF: Advance A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be used with iterators created by the function
+** [sqlite3changeset_start()]. If it is called on an iterator passed to
+** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE
+** is returned and the call has no effect.
+**
+** Immediately after an iterator is created by sqlite3changeset_start(), it
+** does not point to any change in the changeset. Assuming the changeset
+** is not empty, the first call to this function advances the iterator to
+** point to the first change in the changeset. Each subsequent call advances
+** the iterator to point to the next change in the changeset (if any). If
+** no error occurs and the iterator points to a valid change after a call
+** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned.
+** Otherwise, if all changes in the changeset have already been visited,
+** SQLITE_DONE is returned.
+**
+** If an error occurs, an SQLite error code is returned. Possible error
+** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or
+** SQLITE_NOMEM.
+*/
+SQLITE_API int sqlite3changeset_next(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Obtain The Current Operation From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this
+** is not the case, this function returns [SQLITE_MISUSE].
+**
+** Arguments pOp, pnCol and pzTab may not be NULL. Upon return, three
+** outputs are set through these pointers:
+**
+** *pOp is set to one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the type of change that the iterator currently points to;
+**
+** *pnCol is set to the number of columns in the table affected by the change; and
+**
+** *pzTab is set to point to a nul-terminated utf-8 encoded string containing
+** the name of the table affected by the current change. The buffer remains
+** valid until either sqlite3changeset_next() is called on the iterator
+** or until the conflict-handler function returns.
+**
+** If pbIndirect is not NULL, then *pbIndirect is set to true (1) if the change
+** is an indirect change, or false (0) otherwise. See the documentation for
+** [sqlite3session_indirect()] for a description of direct and indirect
+** changes.
+**
+** If no error occurs, SQLITE_OK is returned. If an error does occur, an
+** SQLite error code is returned. The values of the output variables may not
+** be trusted in this case.
+*/
+SQLITE_API int sqlite3changeset_op(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ const char **pzTab, /* OUT: Pointer to table name */
+ int *pnCol, /* OUT: Number of columns in table */
+ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
+ int *pbIndirect /* OUT: True for an 'indirect' change */
+);
+
+/*
+** CAPI3REF: Obtain The Primary Key Definition Of A Table
+** METHOD: sqlite3_changeset_iter
+**
+** For each modified table, a changeset includes the following:
+**
+** <ul>
+** <li> The number of columns in the table, and
+** <li> Which of those columns make up the tables PRIMARY KEY.
+** </ul>
+**
+** This function is used to find which columns comprise the PRIMARY KEY of
+** the table modified by the change that iterator pIter currently points to.
+** If successful, *pabPK is set to point to an array of nCol entries, where
+** nCol is the number of columns in the table. Elements of *pabPK are set to
+** 0x01 if the corresponding column is part of the tables primary key, or
+** 0x00 if it is not.
+**
+** If argument pnCol is not NULL, then *pnCol is set to the number of columns
+** in the table.
+**
+** If this function is called when the iterator does not point to a valid
+** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise,
+** SQLITE_OK is returned and the output variables populated as described
+** above.
+*/
+SQLITE_API int sqlite3changeset_pk(
+ sqlite3_changeset_iter *pIter, /* Iterator object */
+ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
+ int *pnCol /* OUT: Number of entries in output array */
+);
+
+/*
+** CAPI3REF: Obtain old.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** original row values stored as part of the UPDATE or DELETE change and
+** returns SQLITE_OK. The name of the function comes from the fact that this
+** is similar to the "old.*" columns available to update or delete triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_old(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain new.* Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** The pIter argument passed to this function may either be an iterator
+** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
+** created by [sqlite3changeset_start()]. In the latter case, the most recent
+** call to [sqlite3changeset_next()] must have returned SQLITE_ROW.
+** Furthermore, it may only be called if the type of change that the iterator
+** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise,
+** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the vector of
+** new row values stored as part of the UPDATE or INSERT change and
+** returns SQLITE_OK. If the change is an UPDATE and does not include
+** a new value for the requested column, *ppValue is set to NULL and
+** SQLITE_OK returned. The name of the function comes from the fact that
+** this is similar to the "new.*" columns available to update or delete
+** triggers.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_new(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
+);
+
+/*
+** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function should only be used with iterator objects passed to a
+** conflict-handler callback by [sqlite3changeset_apply()] with either
+** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function
+** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue
+** is set to NULL.
+**
+** Argument iVal must be greater than or equal to 0, and less than the number
+** of columns in the table affected by the current change. Otherwise,
+** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
+**
+** If successful, this function sets *ppValue to point to a protected
+** sqlite3_value object containing the iVal'th value from the
+** "conflicting row" associated with the current conflict-handler callback
+** and returns SQLITE_OK.
+**
+** If some other error occurs (e.g. an OOM condition), an SQLite error code
+** is returned and *ppValue is set to NULL.
+*/
+SQLITE_API int sqlite3changeset_conflict(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int iVal, /* Column number */
+ sqlite3_value **ppValue /* OUT: Value from conflicting row */
+);
+
+/*
+** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations
+** METHOD: sqlite3_changeset_iter
+**
+** This function may only be called with an iterator passed to an
+** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
+** it sets the output variable to the total number of known foreign key
+** violations in the destination database and returns SQLITE_OK.
+**
+** In all other cases this function returns SQLITE_MISUSE.
+*/
+SQLITE_API int sqlite3changeset_fk_conflicts(
+ sqlite3_changeset_iter *pIter, /* Changeset iterator */
+ int *pnOut /* OUT: Number of FK violations */
+);
+
+
+/*
+** CAPI3REF: Finalize A Changeset Iterator
+** METHOD: sqlite3_changeset_iter
+**
+** This function is used to finalize an iterator allocated with
+** [sqlite3changeset_start()].
+**
+** This function should only be called on iterators created using the
+** [sqlite3changeset_start()] function. If an application calls this
+** function with an iterator passed to a conflict-handler by
+** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the
+** call has no effect.
+**
+** If an error was encountered within a call to an sqlite3changeset_xxx()
+** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an
+** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding
+** to that error is returned by this function. Otherwise, SQLITE_OK is
+** returned. This is to allow the following pattern (pseudo-code):
+**
+** <pre>
+** sqlite3changeset_start();
+** while( SQLITE_ROW==sqlite3changeset_next() ){
+** // Do something with change.
+** }
+** rc = sqlite3changeset_finalize();
+** if( rc!=SQLITE_OK ){
+** // An error has occurred
+** }
+** </pre>
+*/
+SQLITE_API int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter);
+
+/*
+** CAPI3REF: Invert A Changeset
+**
+** This function is used to "invert" a changeset object. Applying an inverted
+** changeset to a database reverses the effects of applying the uninverted
+** changeset. Specifically:
+**
+** <ul>
+** <li> Each DELETE change is changed to an INSERT, and
+** <li> Each INSERT change is changed to a DELETE, and
+** <li> For each UPDATE change, the old.* and new.* values are exchanged.
+** </ul>
+**
+** This function does not change the order in which changes appear within
+** the changeset. It merely reverses the sense of each individual change.
+**
+** If successful, a pointer to a buffer containing the inverted changeset
+** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and
+** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are
+** zeroed and an SQLite error code returned.
+**
+** It is the responsibility of the caller to eventually call sqlite3_free()
+** on the *ppOut pointer to free the buffer allocation following a successful
+** call to this function.
+**
+** WARNING/TODO: This function currently assumes that the input is a valid
+** changeset. If it is not, the results are undefined.
+*/
+SQLITE_API int sqlite3changeset_invert(
+ int nIn, const void *pIn, /* Input changeset */
+ int *pnOut, void **ppOut /* OUT: Inverse of input */
+);
+
+/*
+** CAPI3REF: Concatenate Two Changeset Objects
+**
+** This function is used to concatenate two changesets, A and B, into a
+** single changeset. The result is a changeset equivalent to applying
+** changeset A followed by changeset B.
+**
+** This function combines the two input changesets using an
+** sqlite3_changegroup object. Calling it produces similar results as the
+** following code fragment:
+**
+** <pre>
+** sqlite3_changegroup *pGrp;
+** rc = sqlite3_changegroup_new(&pGrp);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nA, pA);
+** if( rc==SQLITE_OK ) rc = sqlite3changegroup_add(pGrp, nB, pB);
+** if( rc==SQLITE_OK ){
+** rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
+** }else{
+** *ppOut = 0;
+** *pnOut = 0;
+** }
+** </pre>
+**
+** Refer to the sqlite3_changegroup documentation below for details.
+*/
+SQLITE_API int sqlite3changeset_concat(
+ int nA, /* Number of bytes in buffer pA */
+ void *pA, /* Pointer to buffer containing changeset A */
+ int nB, /* Number of bytes in buffer pB */
+ void *pB, /* Pointer to buffer containing changeset B */
+ int *pnOut, /* OUT: Number of bytes in output changeset */
+ void **ppOut /* OUT: Buffer containing output changeset */
+);
+
+
+/*
+** CAPI3REF: Upgrade the Schema of a Changeset/Patchset
+*/
+SQLITE_API int sqlite3changeset_upgrade(
+ sqlite3 *db,
+ const char *zDb,
+ int nIn, const void *pIn, /* Input changeset */
+ int *pnOut, void **ppOut /* OUT: Inverse of input */
+);
+
+
+
+/*
+** CAPI3REF: Changegroup Handle
+**
+** A changegroup is an object used to combine two or more
+** [changesets] or [patchsets]
+*/
+typedef struct sqlite3_changegroup sqlite3_changegroup;
+
+/*
+** CAPI3REF: Create A New Changegroup Object
+** CONSTRUCTOR: sqlite3_changegroup
+**
+** An sqlite3_changegroup object is used to combine two or more changesets
+** (or patchsets) into a single changeset (or patchset). A single changegroup
+** object may combine changesets or patchsets, but not both. The output is
+** always in the same format as the input.
+**
+** If successful, this function returns SQLITE_OK and populates (*pp) with
+** a pointer to a new sqlite3_changegroup object before returning. The caller
+** should eventually free the returned object using a call to
+** sqlite3changegroup_delete(). If an error occurs, an SQLite error code
+** (i.e. SQLITE_NOMEM) is returned and *pp is set to NULL.
+**
+** The usual usage pattern for an sqlite3_changegroup object is as follows:
+**
+** <ul>
+** <li> It is created using a call to sqlite3changegroup_new().
+**
+** <li> Zero or more changesets (or patchsets) are added to the object
+** by calling sqlite3changegroup_add().
+**
+** <li> The result of combining all input changesets together is obtained
+** by the application via a call to sqlite3changegroup_output().
+**
+** <li> The object is deleted using a call to sqlite3changegroup_delete().
+** </ul>
+**
+** Any number of calls to add() and output() may be made between the calls to
+** new() and delete(), and in any order.
+**
+** As well as the regular sqlite3changegroup_add() and
+** sqlite3changegroup_output() functions, also available are the streaming
+** versions sqlite3changegroup_add_strm() and sqlite3changegroup_output_strm().
+*/
+SQLITE_API int sqlite3changegroup_new(sqlite3_changegroup **pp);
+
+/*
+** CAPI3REF: Add a Schema to a Changegroup
+** METHOD: sqlite3_changegroup_schema
+**
+** This method may be used to optionally enforce the rule that the changesets
+** added to the changegroup handle must match the schema of database zDb
+** ("main", "temp", or the name of an attached database). If
+** sqlite3changegroup_add() is called to add a changeset that is not compatible
+** with the configured schema, SQLITE_SCHEMA is returned and the changegroup
+** object is left in an undefined state.
+**
+** A changeset schema is considered compatible with the database schema in
+** the same way as for sqlite3changeset_apply(). Specifically, for each
+** table in the changeset, there exists a database table with:
+**
+** <ul>
+** <li> The name identified by the changeset, and
+** <li> at least as many columns as recorded in the changeset, and
+** <li> the primary key columns in the same position as recorded in
+** the changeset.
+** </ul>
+**
+** The output of the changegroup object always has the same schema as the
+** database nominated using this function. In cases where changesets passed
+** to sqlite3changegroup_add() have fewer columns than the corresponding table
+** in the database schema, these are filled in using the default column
+** values from the database schema. This makes it possible to combined
+** changesets that have different numbers of columns for a single table
+** within a changegroup, provided that they are otherwise compatible.
+*/
+SQLITE_API int sqlite3changegroup_schema(sqlite3_changegroup*, sqlite3*, const char *zDb);
+
+/*
+** CAPI3REF: Add A Changeset To A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Add all changes within the changeset (or patchset) in buffer pData (size
+** nData bytes) to the changegroup.
+**
+** If the buffer contains a patchset, then all prior calls to this function
+** on the same changegroup object must also have specified patchsets. Or, if
+** the buffer contains a changeset, so must have the earlier calls to this
+** function. Otherwise, SQLITE_ERROR is returned and no changes are added
+** to the changegroup.
+**
+** Rows within the changeset and changegroup are identified by the values in
+** their PRIMARY KEY columns. A change in the changeset is considered to
+** apply to the same row as a change already present in the changegroup if
+** the two rows have the same primary key.
+**
+** Changes to rows that do not already appear in the changegroup are
+** simply copied into it. Or, if both the new changeset and the changegroup
+** contain changes that apply to a single row, the final contents of the
+** changegroup depends on the type of each change, as follows:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th style="white-space:pre">Existing Change </th>
+** <th style="white-space:pre">New Change </th>
+** <th>Output Change
+** <tr><td>INSERT <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>INSERT <td>UPDATE <td>
+** The INSERT change remains in the changegroup. The values in the
+** INSERT change are modified as if the row was inserted by the
+** existing change and then updated according to the new change.
+** <tr><td>INSERT <td>DELETE <td>
+** The existing INSERT is removed from the changegroup. The DELETE is
+** not added.
+** <tr><td>UPDATE <td>INSERT <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>UPDATE <td>UPDATE <td>
+** The existing UPDATE remains within the changegroup. It is amended
+** so that the accompanying values are as if the row was updated once
+** by the existing change and then again by the new change.
+** <tr><td>UPDATE <td>DELETE <td>
+** The existing UPDATE is replaced by the new DELETE within the
+** changegroup.
+** <tr><td>DELETE <td>INSERT <td>
+** If one or more of the column values in the row inserted by the
+** new change differ from those in the row deleted by the existing
+** change, the existing DELETE is replaced by an UPDATE within the
+** changegroup. Otherwise, if the inserted row is exactly the same
+** as the deleted row, the existing DELETE is simply discarded.
+** <tr><td>DELETE <td>UPDATE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** <tr><td>DELETE <td>DELETE <td>
+** The new change is ignored. This case does not occur if the new
+** changeset was recorded immediately after the changesets already
+** added to the changegroup.
+** </table>
+**
+** If the new changeset contains changes to a table that is already present
+** in the changegroup, then the number of columns and the position of the
+** primary key columns for the table must be consistent. If this is not the
+** case, this function fails with SQLITE_SCHEMA. Except, if the changegroup
+** object has been configured with a database schema using the
+** sqlite3changegroup_schema() API, then it is possible to combine changesets
+** with different numbers of columns for a single table, provided that
+** they are otherwise compatible.
+**
+** If the input changeset appears to be corrupt and the corruption is
+** detected, SQLITE_CORRUPT is returned. Or, if an out-of-memory condition
+** occurs during processing, this function returns SQLITE_NOMEM.
+**
+** In all cases, if an error occurs the state of the final contents of the
+** changegroup is undefined. If no error occurs, SQLITE_OK is returned.
+*/
+SQLITE_API int sqlite3changegroup_add(sqlite3_changegroup*, int nData, void *pData);
+
+/*
+** CAPI3REF: Obtain A Composite Changeset From A Changegroup
+** METHOD: sqlite3_changegroup
+**
+** Obtain a buffer containing a changeset (or patchset) representing the
+** current contents of the changegroup. If the inputs to the changegroup
+** were themselves changesets, the output is a changeset. Or, if the
+** inputs were patchsets, the output is also a patchset.
+**
+** As with the output of the sqlite3session_changeset() and
+** sqlite3session_patchset() functions, all changes related to a single
+** table are grouped together in the output of this function. Tables appear
+** in the same order as for the very first changeset added to the changegroup.
+** If the second or subsequent changesets added to the changegroup contain
+** changes for tables that do not appear in the first changeset, they are
+** appended onto the end of the output changeset, again in the order in
+** which they are first encountered.
+**
+** If an error occurs, an SQLite error code is returned and the output
+** variables (*pnData) and (*ppData) are set to 0. Otherwise, SQLITE_OK
+** is returned and the output variables are set to the size of and a
+** pointer to the output buffer, respectively. In this case it is the
+** responsibility of the caller to eventually free the buffer using a
+** call to sqlite3_free().
+*/
+SQLITE_API int sqlite3changegroup_output(
+ sqlite3_changegroup*,
+ int *pnData, /* OUT: Size of output buffer in bytes */
+ void **ppData /* OUT: Pointer to output buffer */
+);
+
+/*
+** CAPI3REF: Delete A Changegroup Object
+** DESTRUCTOR: sqlite3_changegroup
+*/
+SQLITE_API void sqlite3changegroup_delete(sqlite3_changegroup*);
+
+/*
+** CAPI3REF: Apply A Changeset To A Database
+**
+** Apply a changeset or patchset to a database. These functions attempt to
+** update the "main" database attached to handle db with the changes found in
+** the changeset passed via the second and third arguments.
+**
+** The fourth argument (xFilter) passed to these functions is the "filter
+** callback". If it is not NULL, then for each table affected by at least one
+** change in the changeset, the filter callback is invoked with
+** the table name as the second argument, and a copy of the context pointer
+** passed as the sixth argument as the first. If the "filter callback"
+** returns zero, then no attempt is made to apply any changes to the table.
+** Otherwise, if the return value is non-zero or the xFilter argument to
+** is NULL, all changes related to the table are attempted.
+**
+** For each table that is not excluded by the filter callback, this function
+** tests that the target database contains a compatible table. A table is
+** considered compatible if all of the following are true:
+**
+** <ul>
+** <li> The table has the same name as the name recorded in the
+** changeset, and
+** <li> The table has at least as many columns as recorded in the
+** changeset, and
+** <li> The table has primary key columns in the same position as
+** recorded in the changeset.
+** </ul>
+**
+** If there is no compatible table, it is not an error, but none of the
+** changes associated with the table are applied. A warning message is issued
+** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most
+** one such warning is issued for each table in the changeset.
+**
+** For each change for which there is a compatible table, an attempt is made
+** to modify the table contents according to the UPDATE, INSERT or DELETE
+** change. If a change cannot be applied cleanly, the conflict handler
+** function passed as the fifth argument to sqlite3changeset_apply() may be
+** invoked. A description of exactly when the conflict handler is invoked for
+** each type of change is below.
+**
+** Unlike the xFilter argument, xConflict may not be passed NULL. The results
+** of passing anything other than a valid function pointer as the xConflict
+** argument are undefined.
+**
+** Each time the conflict handler function is invoked, it must return one
+** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or
+** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned
+** if the second argument passed to the conflict handler is either
+** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler
+** returns an illegal value, any changes already made are rolled back and
+** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different
+** actions are taken by sqlite3changeset_apply() depending on the value
+** returned by each invocation of the conflict-handler function. Refer to
+** the documentation for the three
+** [SQLITE_CHANGESET_OMIT|available return values] for details.
+**
+** <dl>
+** <dt>DELETE Changes<dd>
+** For each DELETE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all non-primary key columns also match the values stored in
+** the changeset the row is deleted from the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the non-primary key fields contains a value different from the original
+** row value stored in the changeset, the conflict-handler function is
+** invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the
+** database table has more columns than are recorded in the changeset,
+** only the values of those non-primary key fields are compared against
+** the current database contents - any trailing database table columns
+** are ignored.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
+** (which can only happen if a foreign key constraint is violated), the
+** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
+** passed as the second argument. This includes the case where the DELETE
+** operation is attempted because an earlier call to the conflict handler
+** function returned [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>INSERT Changes<dd>
+** For each INSERT change, an attempt is made to insert the new row into
+** the database. If the changeset row contains fewer fields than the
+** database table, the trailing fields are populated with their default
+** values.
+**
+** If the attempt to insert the row fails because the database already
+** contains a row with the same primary key values, the conflict handler
+** function is invoked with the second argument set to
+** [SQLITE_CHANGESET_CONFLICT].
+**
+** If the attempt to insert the row fails because of some other constraint
+** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is
+** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT].
+** This includes the case where the INSERT operation is re-attempted because
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+**
+** <dt>UPDATE Changes<dd>
+** For each UPDATE change, the function checks if the target database
+** contains a row with the same primary key value (or values) as the
+** original row values stored in the changeset. If it does, and the values
+** stored in all modified non-primary key columns also match the values
+** stored in the changeset the row is updated within the target database.
+**
+** If a row with matching primary key values is found, but one or more of
+** the modified non-primary key fields contains a value different from an
+** original row value stored in the changeset, the conflict-handler function
+** is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
+** UPDATE changes only contain values for non-primary key fields that are
+** to be modified, only those fields need to match the original values to
+** avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
+**
+** If no row with matching primary key values is found in the database,
+** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
+** passed as the second argument.
+**
+** If the UPDATE operation is attempted, but SQLite returns
+** SQLITE_CONSTRAINT, the conflict-handler function is invoked with
+** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument.
+** This includes the case where the UPDATE operation is attempted after
+** an earlier call to the conflict handler function returned
+** [SQLITE_CHANGESET_REPLACE].
+** </dl>
+**
+** It is safe to execute SQL statements, including those that write to the
+** table that the callback related to, from within the xConflict callback.
+** This can be used to further customize the application's conflict
+** resolution strategy.
+**
+** All changes made by these functions are enclosed in a savepoint transaction.
+** If any other error (aside from a constraint failure when attempting to
+** write to the target database) occurs, then the savepoint transaction is
+** rolled back, restoring the target database to its original state, and an
+** SQLite error code returned.
+**
+** If the output parameters (ppRebase) and (pnRebase) are non-NULL and
+** the input is a changeset (not a patchset), then sqlite3changeset_apply_v2()
+** may set (*ppRebase) to point to a "rebase" that may be used with the
+** sqlite3_rebaser APIs buffer before returning. In this case (*pnRebase)
+** is set to the size of the buffer in bytes. It is the responsibility of the
+** caller to eventually free any such buffer using sqlite3_free(). The buffer
+** is only allocated and populated if one or more conflicts were encountered
+** while applying the patchset. See comments surrounding the sqlite3_rebaser
+** APIs for further details.
+**
+** The behavior of sqlite3changeset_apply_v2() and its streaming equivalent
+** may be modified by passing a combination of
+** [SQLITE_CHANGESETAPPLY_NOSAVEPOINT | supported flags] as the 9th parameter.
+**
+** Note that the sqlite3changeset_apply_v2() API is still <b>experimental</b>
+** and therefore subject to change.
+*/
+SQLITE_API int sqlite3changeset_apply(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int nChangeset, /* Size of changeset in bytes */
+ void *pChangeset, /* Changeset blob */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase, /* OUT: Rebase data */
+ int flags /* SESSION_CHANGESETAPPLY_* flags */
+);
+
+/*
+** CAPI3REF: Flags for sqlite3changeset_apply_v2
+**
+** The following flags may passed via the 9th parameter to
+** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
+**
+** <dl>
+** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
+** Usually, the sessions module encloses all operations performed by
+** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
+** SAVEPOINT is committed if the changeset or patchset is successfully
+** applied, or rolled back if an error occurs. Specifying this flag
+** causes the sessions module to omit this savepoint. In this case, if the
+** caller has an open transaction or savepoint when apply_v2() is called,
+** it may revert the partially applied changeset by rolling it back.
+**
+** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
+** Invert the changeset before applying it. This is equivalent to inverting
+** a changeset using sqlite3changeset_invert() before applying it. It is
+** an error to specify this flag with a patchset.
+**
+** <dt>SQLITE_CHANGESETAPPLY_IGNORENOOP <dd>
+** Do not invoke the conflict handler callback for any changes that
+** would not actually modify the database even if they were applied.
+** Specifically, this means that the conflict handler is not invoked
+** for:
+** <ul>
+** <li>a delete change if the row being deleted cannot be found,
+** <li>an update change if the modified fields are already set to
+** their new values in the conflicting row, or
+** <li>an insert change if all fields of the conflicting row match
+** the row being inserted.
+** </ul>
+**
+** <dt>SQLITE_CHANGESETAPPLY_FKNOACTION <dd>
+** If this flag it set, then all foreign key constraints in the target
+** database behave as if they were declared with "ON UPDATE NO ACTION ON
+** DELETE NO ACTION", even if they are actually CASCADE, RESTRICT, SET NULL
+** or SET DEFAULT.
+*/
+#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001
+#define SQLITE_CHANGESETAPPLY_INVERT 0x0002
+#define SQLITE_CHANGESETAPPLY_IGNORENOOP 0x0004
+#define SQLITE_CHANGESETAPPLY_FKNOACTION 0x0008
+
+/*
+** CAPI3REF: Constants Passed To The Conflict Handler
+**
+** Values that may be passed as the second argument to a conflict-handler.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_DATA<dd>
+** The conflict handler is invoked with CHANGESET_DATA as the second argument
+** when processing a DELETE or UPDATE change if a row with the required
+** PRIMARY KEY fields is present in the database, but one or more other
+** (non primary-key) fields modified by the update do not contain the
+** expected "before" values.
+**
+** The conflicting row, in this case, is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_NOTFOUND<dd>
+** The conflict handler is invoked with CHANGESET_NOTFOUND as the second
+** argument when processing a DELETE or UPDATE change if a row with the
+** required PRIMARY KEY fields is not present in the database.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** <dt>SQLITE_CHANGESET_CONFLICT<dd>
+** CHANGESET_CONFLICT is passed as the second argument to the conflict
+** handler while processing an INSERT change if the operation would result
+** in duplicate primary key values.
+**
+** The conflicting row in this case is the database row with the matching
+** primary key.
+**
+** <dt>SQLITE_CHANGESET_FOREIGN_KEY<dd>
+** If foreign key handling is enabled, and applying a changeset leaves the
+** database in a state containing foreign key violations, the conflict
+** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument
+** exactly once before the changeset is committed. If the conflict handler
+** returns CHANGESET_OMIT, the changes, including those that caused the
+** foreign key constraint violation, are committed. Or, if it returns
+** CHANGESET_ABORT, the changeset is rolled back.
+**
+** No current or conflicting row information is provided. The only function
+** it is possible to call on the supplied sqlite3_changeset_iter handle
+** is sqlite3changeset_fk_conflicts().
+**
+** <dt>SQLITE_CHANGESET_CONSTRAINT<dd>
+** If any other constraint violation occurs while applying a change (i.e.
+** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is
+** invoked with CHANGESET_CONSTRAINT as the second argument.
+**
+** There is no conflicting row in this case. The results of invoking the
+** sqlite3changeset_conflict() API are undefined.
+**
+** </dl>
+*/
+#define SQLITE_CHANGESET_DATA 1
+#define SQLITE_CHANGESET_NOTFOUND 2
+#define SQLITE_CHANGESET_CONFLICT 3
+#define SQLITE_CHANGESET_CONSTRAINT 4
+#define SQLITE_CHANGESET_FOREIGN_KEY 5
+
+/*
+** CAPI3REF: Constants Returned By The Conflict Handler
+**
+** A conflict handler callback must return one of the following three values.
+**
+** <dl>
+** <dt>SQLITE_CHANGESET_OMIT<dd>
+** If a conflict handler returns this value no special action is taken. The
+** change that caused the conflict is not applied. The session module
+** continues to the next change in the changeset.
+**
+** <dt>SQLITE_CHANGESET_REPLACE<dd>
+** This value may only be returned if the second argument to the conflict
+** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this
+** is not the case, any changes applied so far are rolled back and the
+** call to sqlite3changeset_apply() returns SQLITE_MISUSE.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict
+** handler, then the conflicting row is either updated or deleted, depending
+** on the type of change.
+**
+** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict
+** handler, then the conflicting row is removed from the database and a
+** second attempt to apply the change is made. If this second attempt fails,
+** the original row is restored to the database before continuing.
+**
+** <dt>SQLITE_CHANGESET_ABORT<dd>
+** If this value is returned, any changes applied so far are rolled back
+** and the call to sqlite3changeset_apply() returns SQLITE_ABORT.
+** </dl>
+*/
+#define SQLITE_CHANGESET_OMIT 0
+#define SQLITE_CHANGESET_REPLACE 1
+#define SQLITE_CHANGESET_ABORT 2
+
+/*
+** CAPI3REF: Rebasing changesets
+** EXPERIMENTAL
+**
+** Suppose there is a site hosting a database in state S0. And that
+** modifications are made that move that database to state S1 and a
+** changeset recorded (the "local" changeset). Then, a changeset based
+** on S0 is received from another site (the "remote" changeset) and
+** applied to the database. The database is then in state
+** (S1+"remote"), where the exact state depends on any conflict
+** resolution decisions (OMIT or REPLACE) made while applying "remote".
+** Rebasing a changeset is to update it to take those conflict
+** resolution decisions into account, so that the same conflicts
+** do not have to be resolved elsewhere in the network.
+**
+** For example, if both the local and remote changesets contain an
+** INSERT of the same key on "CREATE TABLE t1(a PRIMARY KEY, b)":
+**
+** local: INSERT INTO t1 VALUES(1, 'v1');
+** remote: INSERT INTO t1 VALUES(1, 'v2');
+**
+** and the conflict resolution is REPLACE, then the INSERT change is
+** removed from the local changeset (it was overridden). Or, if the
+** conflict resolution was "OMIT", then the local changeset is modified
+** to instead contain:
+**
+** UPDATE t1 SET b = 'v2' WHERE a=1;
+**
+** Changes within the local changeset are rebased as follows:
+**
+** <dl>
+** <dt>Local INSERT<dd>
+** This may only conflict with a remote INSERT. If the conflict
+** resolution was OMIT, then add an UPDATE change to the rebased
+** changeset. Or, if the conflict resolution was REPLACE, add
+** nothing to the rebased changeset.
+**
+** <dt>Local DELETE<dd>
+** This may conflict with a remote UPDATE or DELETE. In both cases the
+** only possible resolution is OMIT. If the remote operation was a
+** DELETE, then add no change to the rebased changeset. If the remote
+** operation was an UPDATE, then the old.* fields of change are updated
+** to reflect the new.* values in the UPDATE.
+**
+** <dt>Local UPDATE<dd>
+** This may conflict with a remote UPDATE or DELETE. If it conflicts
+** with a DELETE, and the conflict resolution was OMIT, then the update
+** is changed into an INSERT. Any undefined values in the new.* record
+** from the update change are filled in using the old.* values from
+** the conflicting DELETE. Or, if the conflict resolution was REPLACE,
+** the UPDATE change is simply omitted from the rebased changeset.
+**
+** If conflict is with a remote UPDATE and the resolution is OMIT, then
+** the old.* values are rebased using the new.* values in the remote
+** change. Or, if the resolution is REPLACE, then the change is copied
+** into the rebased changeset with updates to columns also updated by
+** the conflicting remote UPDATE removed. If this means no columns would
+** be updated, the change is omitted.
+** </dl>
+**
+** A local change may be rebased against multiple remote changes
+** simultaneously. If a single key is modified by multiple remote
+** changesets, they are combined as follows before the local changeset
+** is rebased:
+**
+** <ul>
+** <li> If there has been one or more REPLACE resolutions on a
+** key, it is rebased according to a REPLACE.
+**
+** <li> If there have been no REPLACE resolutions on a key, then
+** the local changeset is rebased according to the most recent
+** of the OMIT resolutions.
+** </ul>
+**
+** Note that conflict resolutions from multiple remote changesets are
+** combined on a per-field basis, not per-row. This means that in the
+** case of multiple remote UPDATE operations, some fields of a single
+** local change may be rebased for REPLACE while others are rebased for
+** OMIT.
+**
+** In order to rebase a local changeset, the remote changeset must first
+** be applied to the local database using sqlite3changeset_apply_v2() and
+** the buffer of rebase information captured. Then:
+**
+** <ol>
+** <li> An sqlite3_rebaser object is created by calling
+** sqlite3rebaser_create().
+** <li> The new object is configured with the rebase buffer obtained from
+** sqlite3changeset_apply_v2() by calling sqlite3rebaser_configure().
+** If the local changeset is to be rebased against multiple remote
+** changesets, then sqlite3rebaser_configure() should be called
+** multiple times, in the same order that the multiple
+** sqlite3changeset_apply_v2() calls were made.
+** <li> Each local changeset is rebased by calling sqlite3rebaser_rebase().
+** <li> The sqlite3_rebaser object is deleted by calling
+** sqlite3rebaser_delete().
+** </ol>
+*/
+typedef struct sqlite3_rebaser sqlite3_rebaser;
+
+/*
+** CAPI3REF: Create a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Allocate a new changeset rebaser object. If successful, set (*ppNew) to
+** point to the new object and return SQLITE_OK. Otherwise, if an error
+** occurs, return an SQLite error code (e.g. SQLITE_NOMEM) and set (*ppNew)
+** to NULL.
+*/
+SQLITE_API int sqlite3rebaser_create(sqlite3_rebaser **ppNew);
+
+/*
+** CAPI3REF: Configure a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Configure the changeset rebaser object to rebase changesets according
+** to the conflict resolutions described by buffer pRebase (size nRebase
+** bytes), which must have been obtained from a previous call to
+** sqlite3changeset_apply_v2().
+*/
+SQLITE_API int sqlite3rebaser_configure(
+ sqlite3_rebaser*,
+ int nRebase, const void *pRebase
+);
+
+/*
+** CAPI3REF: Rebase a changeset
+** EXPERIMENTAL
+**
+** Argument pIn must point to a buffer containing a changeset nIn bytes
+** in size. This function allocates and populates a buffer with a copy
+** of the changeset rebased according to the configuration of the
+** rebaser object passed as the first argument. If successful, (*ppOut)
+** is set to point to the new buffer containing the rebased changeset and
+** (*pnOut) to its size in bytes and SQLITE_OK returned. It is the
+** responsibility of the caller to eventually free the new buffer using
+** sqlite3_free(). Otherwise, if an error occurs, (*ppOut) and (*pnOut)
+** are set to zero and an SQLite error code returned.
+*/
+SQLITE_API int sqlite3rebaser_rebase(
+ sqlite3_rebaser*,
+ int nIn, const void *pIn,
+ int *pnOut, void **ppOut
+);
+
+/*
+** CAPI3REF: Delete a changeset rebaser object.
+** EXPERIMENTAL
+**
+** Delete the changeset rebaser object and all associated resources. There
+** should be one call to this function for each successful invocation
+** of sqlite3rebaser_create().
+*/
+SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p);
+
+/*
+** CAPI3REF: Streaming Versions of API functions.
+**
+** The six streaming API xxx_strm() functions serve similar purposes to the
+** corresponding non-streaming API functions:
+**
+** <table border=1 style="margin-left:8ex;margin-right:8ex">
+** <tr><th>Streaming function<th>Non-streaming equivalent</th>
+** <tr><td>sqlite3changeset_apply_strm<td>[sqlite3changeset_apply]
+** <tr><td>sqlite3changeset_apply_strm_v2<td>[sqlite3changeset_apply_v2]
+** <tr><td>sqlite3changeset_concat_strm<td>[sqlite3changeset_concat]
+** <tr><td>sqlite3changeset_invert_strm<td>[sqlite3changeset_invert]
+** <tr><td>sqlite3changeset_start_strm<td>[sqlite3changeset_start]
+** <tr><td>sqlite3session_changeset_strm<td>[sqlite3session_changeset]
+** <tr><td>sqlite3session_patchset_strm<td>[sqlite3session_patchset]
+** </table>
+**
+** Non-streaming functions that accept changesets (or patchsets) as input
+** require that the entire changeset be stored in a single buffer in memory.
+** Similarly, those that return a changeset or patchset do so by returning
+** a pointer to a single large buffer allocated using sqlite3_malloc().
+** Normally this is convenient. However, if an application running in a
+** low-memory environment is required to handle very large changesets, the
+** large contiguous memory allocations required can become onerous.
+**
+** In order to avoid this problem, instead of a single large buffer, input
+** is passed to a streaming API functions by way of a callback function that
+** the sessions module invokes to incrementally request input data as it is
+** required. In all cases, a pair of API function parameters such as
+**
+** <pre>
+** &nbsp; int nChangeset,
+** &nbsp; void *pChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xInput)(void *pIn, void *pData, int *pnData),
+** &nbsp; void *pIn,
+** </pre>
+**
+** Each time the xInput callback is invoked by the sessions module, the first
+** argument passed is a copy of the supplied pIn context pointer. The second
+** argument, pData, points to a buffer (*pnData) bytes in size. Assuming no
+** error occurs the xInput method should copy up to (*pnData) bytes of data
+** into the buffer and set (*pnData) to the actual number of bytes copied
+** before returning SQLITE_OK. If the input is completely exhausted, (*pnData)
+** should be set to zero to indicate this. Or, if an error occurs, an SQLite
+** error code should be returned. In all cases, if an xInput callback returns
+** an error, all processing is abandoned and the streaming API function
+** returns a copy of the error code to the caller.
+**
+** In the case of sqlite3changeset_start_strm(), the xInput callback may be
+** invoked by the sessions module at any point during the lifetime of the
+** iterator. If such an xInput callback returns an error, the iterator enters
+** an error state, whereby all subsequent calls to iterator functions
+** immediately fail with the same error code as returned by xInput.
+**
+** Similarly, streaming API functions that return changesets (or patchsets)
+** return them in chunks by way of a callback function instead of via a
+** pointer to a single large buffer. In this case, a pair of parameters such
+** as:
+**
+** <pre>
+** &nbsp; int *pnChangeset,
+** &nbsp; void **ppChangeset,
+** </pre>
+**
+** Is replaced by:
+**
+** <pre>
+** &nbsp; int (*xOutput)(void *pOut, const void *pData, int nData),
+** &nbsp; void *pOut
+** </pre>
+**
+** The xOutput callback is invoked zero or more times to return data to
+** the application. The first parameter passed to each call is a copy of the
+** pOut pointer supplied by the application. The second parameter, pData,
+** points to a buffer nData bytes in size containing the chunk of output
+** data being returned. If the xOutput callback successfully processes the
+** supplied data, it should return SQLITE_OK to indicate success. Otherwise,
+** it should return some other SQLite error code. In this case processing
+** is immediately abandoned and the streaming API function returns a copy
+** of the xOutput error code to the application.
+**
+** The sessions module never invokes an xOutput callback with the third
+** parameter set to a value less than or equal to zero. Other than this,
+** no guarantees are made as to the size of the chunks of data returned.
+*/
+SQLITE_API int sqlite3changeset_apply_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx /* First argument passed to xConflict */
+);
+SQLITE_API int sqlite3changeset_apply_v2_strm(
+ sqlite3 *db, /* Apply change to "main" db of this handle */
+ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
+ void *pIn, /* First arg for xInput */
+ int(*xFilter)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ const char *zTab /* Table name */
+ ),
+ int(*xConflict)(
+ void *pCtx, /* Copy of sixth arg to _apply() */
+ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
+ sqlite3_changeset_iter *p /* Handle describing change and conflict */
+ ),
+ void *pCtx, /* First argument passed to xConflict */
+ void **ppRebase, int *pnRebase,
+ int flags
+);
+SQLITE_API int sqlite3changeset_concat_strm(
+ int (*xInputA)(void *pIn, void *pData, int *pnData),
+ void *pInA,
+ int (*xInputB)(void *pIn, void *pData, int *pnData),
+ void *pInB,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_invert_strm(
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changeset_start_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changeset_start_v2_strm(
+ sqlite3_changeset_iter **pp,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int flags
+);
+SQLITE_API int sqlite3session_changeset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3session_patchset_strm(
+ sqlite3_session *pSession,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3changegroup_add_strm(sqlite3_changegroup*,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn
+);
+SQLITE_API int sqlite3changegroup_output_strm(sqlite3_changegroup*,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+SQLITE_API int sqlite3rebaser_rebase_strm(
+ sqlite3_rebaser *pRebaser,
+ int (*xInput)(void *pIn, void *pData, int *pnData),
+ void *pIn,
+ int (*xOutput)(void *pOut, const void *pData, int nData),
+ void *pOut
+);
+
+/*
+** CAPI3REF: Configure global parameters
+**
+** The sqlite3session_config() interface is used to make global configuration
+** changes to the sessions module in order to tune it to the specific needs
+** of the application.
+**
+** The sqlite3session_config() interface is not threadsafe. If it is invoked
+** while any other thread is inside any other sessions method then the
+** results are undefined. Furthermore, if it is invoked after any sessions
+** related objects have been created, the results are also undefined.
+**
+** The first argument to the sqlite3session_config() function must be one
+** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The
+** interpretation of the (void*) value passed as the second parameter and
+** the effect of calling this function depends on the value of the first
+** parameter.
+**
+** <dl>
+** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd>
+** By default, the sessions module streaming interfaces attempt to input
+** and output data in approximately 1 KiB chunks. This operand may be used
+** to set and query the value of this configuration setting. The pointer
+** passed as the second argument must point to a value of type (int).
+** If this value is greater than 0, it is used as the new streaming data
+** chunk size for both input and output. Before returning, the (int) value
+** pointed to by pArg is set to the final value of the streaming interface
+** chunk size.
+** </dl>
+**
+** This function returns SQLITE_OK if successful, or an SQLite error code
+** otherwise.
+*/
+SQLITE_API int sqlite3session_config(int op, void *pArg);
+
+/*
+** CAPI3REF: Values for sqlite3session_config().
+*/
+#define SQLITE_SESSION_CONFIG_STRMSIZE 1
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* !defined(__SQLITESESSION_H_) && defined(SQLITE_ENABLE_SESSION) */
+
+/******** End of sqlite3session.h *********/
+/******** Begin file fts5.h *********/
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. Returns SQLITE_OK if successful, or an error
+** code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. Any column filter that applies to
+** phrase iPhrase of the current query is included in $p. For each
+** row visited, the callback function passed as the fourth argument
+** is invoked. The context and API objects passed to the callback
+** function may be used to access the properties of each matched row.
+** Invoking Api.xUserData() returns a copy of the pointer passed as
+** the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension function's
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function,
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 2 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and initialize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, using
+** the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By querying the index for all synonyms of each query term
+** separately. In this case, when tokenizing query text, the
+** tokenizer may provide multiple synonyms for a single term
+** within the document. FTS5 then queries the index for each
+** synonym individually. For example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do so would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entries in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is substituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (3)) or query
+** text (method (2)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pUserData,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppUserData,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pUserData,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+/******** End of fts5.h *********/
diff --git a/third_party/rust/libsqlite3-sys/sqlite3/sqlite3ext.h b/third_party/rust/libsqlite3-sys/sqlite3/sqlite3ext.h
new file mode 100644
index 0000000000..ae0949baf7
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlite3/sqlite3ext.h
@@ -0,0 +1,719 @@
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the SQLite interface for use by
+** shared libraries that want to be imported as extensions into
+** an SQLite instance. Shared libraries that intend to be loaded
+** as extensions by SQLite should #include this file instead of
+** sqlite3.h.
+*/
+#ifndef SQLITE3EXT_H
+#define SQLITE3EXT_H
+#include "sqlite3.h"
+
+/*
+** The following structure holds pointers to all of the SQLite API
+** routines.
+**
+** WARNING: In order to maintain backwards compatibility, add new
+** interfaces to the end of this structure only. If you insert new
+** interfaces in the middle of this structure, then older different
+** versions of SQLite will not be able to load each other's shared
+** libraries!
+*/
+struct sqlite3_api_routines {
+ void * (*aggregate_context)(sqlite3_context*,int nBytes);
+ int (*aggregate_count)(sqlite3_context*);
+ int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
+ int (*bind_double)(sqlite3_stmt*,int,double);
+ int (*bind_int)(sqlite3_stmt*,int,int);
+ int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
+ int (*bind_null)(sqlite3_stmt*,int);
+ int (*bind_parameter_count)(sqlite3_stmt*);
+ int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
+ const char * (*bind_parameter_name)(sqlite3_stmt*,int);
+ int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
+ int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
+ int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
+ int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
+ int (*busy_timeout)(sqlite3*,int ms);
+ int (*changes)(sqlite3*);
+ int (*close)(sqlite3*);
+ int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const char*));
+ int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,
+ int eTextRep,const void*));
+ const void * (*column_blob)(sqlite3_stmt*,int iCol);
+ int (*column_bytes)(sqlite3_stmt*,int iCol);
+ int (*column_bytes16)(sqlite3_stmt*,int iCol);
+ int (*column_count)(sqlite3_stmt*pStmt);
+ const char * (*column_database_name)(sqlite3_stmt*,int);
+ const void * (*column_database_name16)(sqlite3_stmt*,int);
+ const char * (*column_decltype)(sqlite3_stmt*,int i);
+ const void * (*column_decltype16)(sqlite3_stmt*,int);
+ double (*column_double)(sqlite3_stmt*,int iCol);
+ int (*column_int)(sqlite3_stmt*,int iCol);
+ sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
+ const char * (*column_name)(sqlite3_stmt*,int);
+ const void * (*column_name16)(sqlite3_stmt*,int);
+ const char * (*column_origin_name)(sqlite3_stmt*,int);
+ const void * (*column_origin_name16)(sqlite3_stmt*,int);
+ const char * (*column_table_name)(sqlite3_stmt*,int);
+ const void * (*column_table_name16)(sqlite3_stmt*,int);
+ const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
+ const void * (*column_text16)(sqlite3_stmt*,int iCol);
+ int (*column_type)(sqlite3_stmt*,int iCol);
+ sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
+ void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
+ int (*complete)(const char*sql);
+ int (*complete16)(const void*sql);
+ int (*create_collation)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const void*,int,void*,
+ int(*)(void*,int,const void*,int,const void*));
+ int (*create_function)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_function16)(sqlite3*,const void*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*));
+ int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
+ int (*data_count)(sqlite3_stmt*pStmt);
+ sqlite3 * (*db_handle)(sqlite3_stmt*);
+ int (*declare_vtab)(sqlite3*,const char*);
+ int (*enable_shared_cache)(int);
+ int (*errcode)(sqlite3*db);
+ const char * (*errmsg)(sqlite3*);
+ const void * (*errmsg16)(sqlite3*);
+ int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
+ int (*expired)(sqlite3_stmt*);
+ int (*finalize)(sqlite3_stmt*pStmt);
+ void (*free)(void*);
+ void (*free_table)(char**result);
+ int (*get_autocommit)(sqlite3*);
+ void * (*get_auxdata)(sqlite3_context*,int);
+ int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
+ int (*global_recover)(void);
+ void (*interruptx)(sqlite3*);
+ sqlite_int64 (*last_insert_rowid)(sqlite3*);
+ const char * (*libversion)(void);
+ int (*libversion_number)(void);
+ void *(*malloc)(int);
+ char * (*mprintf)(const char*,...);
+ int (*open)(const char*,sqlite3**);
+ int (*open16)(const void*,sqlite3**);
+ int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
+ void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
+ void *(*realloc)(void*,int);
+ int (*reset)(sqlite3_stmt*pStmt);
+ void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_double)(sqlite3_context*,double);
+ void (*result_error)(sqlite3_context*,const char*,int);
+ void (*result_error16)(sqlite3_context*,const void*,int);
+ void (*result_int)(sqlite3_context*,int);
+ void (*result_int64)(sqlite3_context*,sqlite_int64);
+ void (*result_null)(sqlite3_context*);
+ void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
+ void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_value)(sqlite3_context*,sqlite3_value*);
+ void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
+ int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,
+ const char*,const char*),void*);
+ void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
+ char * (*xsnprintf)(int,char*,const char*,...);
+ int (*step)(sqlite3_stmt*);
+ int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,
+ char const**,char const**,int*,int*,int*);
+ void (*thread_cleanup)(void);
+ int (*total_changes)(sqlite3*);
+ void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
+ int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
+ void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,
+ sqlite_int64),void*);
+ void * (*user_data)(sqlite3_context*);
+ const void * (*value_blob)(sqlite3_value*);
+ int (*value_bytes)(sqlite3_value*);
+ int (*value_bytes16)(sqlite3_value*);
+ double (*value_double)(sqlite3_value*);
+ int (*value_int)(sqlite3_value*);
+ sqlite_int64 (*value_int64)(sqlite3_value*);
+ int (*value_numeric_type)(sqlite3_value*);
+ const unsigned char * (*value_text)(sqlite3_value*);
+ const void * (*value_text16)(sqlite3_value*);
+ const void * (*value_text16be)(sqlite3_value*);
+ const void * (*value_text16le)(sqlite3_value*);
+ int (*value_type)(sqlite3_value*);
+ char *(*vmprintf)(const char*,va_list);
+ /* Added ??? */
+ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
+ /* Added by 3.3.13 */
+ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ int (*clear_bindings)(sqlite3_stmt*);
+ /* Added by 3.4.1 */
+ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,
+ void (*xDestroy)(void *));
+ /* Added by 3.5.0 */
+ int (*bind_zeroblob)(sqlite3_stmt*,int,int);
+ int (*blob_bytes)(sqlite3_blob*);
+ int (*blob_close)(sqlite3_blob*);
+ int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,
+ int,sqlite3_blob**);
+ int (*blob_read)(sqlite3_blob*,void*,int,int);
+ int (*blob_write)(sqlite3_blob*,const void*,int,int);
+ int (*create_collation_v2)(sqlite3*,const char*,int,void*,
+ int(*)(void*,int,const void*,int,const void*),
+ void(*)(void*));
+ int (*file_control)(sqlite3*,const char*,int,void*);
+ sqlite3_int64 (*memory_highwater)(int);
+ sqlite3_int64 (*memory_used)(void);
+ sqlite3_mutex *(*mutex_alloc)(int);
+ void (*mutex_enter)(sqlite3_mutex*);
+ void (*mutex_free)(sqlite3_mutex*);
+ void (*mutex_leave)(sqlite3_mutex*);
+ int (*mutex_try)(sqlite3_mutex*);
+ int (*open_v2)(const char*,sqlite3**,int,const char*);
+ int (*release_memory)(int);
+ void (*result_error_nomem)(sqlite3_context*);
+ void (*result_error_toobig)(sqlite3_context*);
+ int (*sleep)(int);
+ void (*soft_heap_limit)(int);
+ sqlite3_vfs *(*vfs_find)(const char*);
+ int (*vfs_register)(sqlite3_vfs*,int);
+ int (*vfs_unregister)(sqlite3_vfs*);
+ int (*xthreadsafe)(void);
+ void (*result_zeroblob)(sqlite3_context*,int);
+ void (*result_error_code)(sqlite3_context*,int);
+ int (*test_control)(int, ...);
+ void (*randomness)(int,void*);
+ sqlite3 *(*context_db_handle)(sqlite3_context*);
+ int (*extended_result_codes)(sqlite3*,int);
+ int (*limit)(sqlite3*,int,int);
+ sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
+ const char *(*sql)(sqlite3_stmt*);
+ int (*status)(int,int*,int*,int);
+ int (*backup_finish)(sqlite3_backup*);
+ sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*);
+ int (*backup_pagecount)(sqlite3_backup*);
+ int (*backup_remaining)(sqlite3_backup*);
+ int (*backup_step)(sqlite3_backup*,int);
+ const char *(*compileoption_get)(int);
+ int (*compileoption_used)(const char*);
+ int (*create_function_v2)(sqlite3*,const char*,int,int,void*,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*));
+ int (*db_config)(sqlite3*,int,...);
+ sqlite3_mutex *(*db_mutex)(sqlite3*);
+ int (*db_status)(sqlite3*,int,int*,int*,int);
+ int (*extended_errcode)(sqlite3*);
+ void (*log)(int,const char*,...);
+ sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64);
+ const char *(*sourceid)(void);
+ int (*stmt_status)(sqlite3_stmt*,int,int);
+ int (*strnicmp)(const char*,const char*,int);
+ int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
+ int (*wal_autocheckpoint)(sqlite3*,int);
+ int (*wal_checkpoint)(sqlite3*,const char*);
+ void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
+ int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
+ int (*vtab_config)(sqlite3*,int op,...);
+ int (*vtab_on_conflict)(sqlite3*);
+ /* Version 3.7.16 and later */
+ int (*close_v2)(sqlite3*);
+ const char *(*db_filename)(sqlite3*,const char*);
+ int (*db_readonly)(sqlite3*,const char*);
+ int (*db_release_memory)(sqlite3*);
+ const char *(*errstr)(int);
+ int (*stmt_busy)(sqlite3_stmt*);
+ int (*stmt_readonly)(sqlite3_stmt*);
+ int (*stricmp)(const char*,const char*);
+ int (*uri_boolean)(const char*,const char*,int);
+ sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
+ const char *(*uri_parameter)(const char*,const char*);
+ char *(*xvsnprintf)(int,char*,const char*,va_list);
+ int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
+ /* Version 3.8.7 and later */
+ int (*auto_extension)(void(*)(void));
+ int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64,
+ void(*)(void*));
+ int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64,
+ void(*)(void*),unsigned char);
+ int (*cancel_auto_extension)(void(*)(void));
+ int (*load_extension)(sqlite3*,const char*,const char*,char**);
+ void *(*malloc64)(sqlite3_uint64);
+ sqlite3_uint64 (*msize)(void*);
+ void *(*realloc64)(void*,sqlite3_uint64);
+ void (*reset_auto_extension)(void);
+ void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
+ void(*)(void*));
+ void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
+ void(*)(void*), unsigned char);
+ int (*strglob)(const char*,const char*);
+ /* Version 3.8.11 and later */
+ sqlite3_value *(*value_dup)(const sqlite3_value*);
+ void (*value_free)(sqlite3_value*);
+ int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
+ int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
+ /* Version 3.9.0 and later */
+ unsigned int (*value_subtype)(sqlite3_value*);
+ void (*result_subtype)(sqlite3_context*,unsigned int);
+ /* Version 3.10.0 and later */
+ int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int);
+ int (*strlike)(const char*,const char*,unsigned int);
+ int (*db_cacheflush)(sqlite3*);
+ /* Version 3.12.0 and later */
+ int (*system_errno)(sqlite3*);
+ /* Version 3.14.0 and later */
+ int (*trace_v2)(sqlite3*,unsigned,int(*)(unsigned,void*,void*,void*),void*);
+ char *(*expanded_sql)(sqlite3_stmt*);
+ /* Version 3.18.0 and later */
+ void (*set_last_insert_rowid)(sqlite3*,sqlite3_int64);
+ /* Version 3.20.0 and later */
+ int (*prepare_v3)(sqlite3*,const char*,int,unsigned int,
+ sqlite3_stmt**,const char**);
+ int (*prepare16_v3)(sqlite3*,const void*,int,unsigned int,
+ sqlite3_stmt**,const void**);
+ int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*));
+ void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*));
+ void *(*value_pointer)(sqlite3_value*,const char*);
+ int (*vtab_nochange)(sqlite3_context*);
+ int (*value_nochange)(sqlite3_value*);
+ const char *(*vtab_collation)(sqlite3_index_info*,int);
+ /* Version 3.24.0 and later */
+ int (*keyword_count)(void);
+ int (*keyword_name)(int,const char**,int*);
+ int (*keyword_check)(const char*,int);
+ sqlite3_str *(*str_new)(sqlite3*);
+ char *(*str_finish)(sqlite3_str*);
+ void (*str_appendf)(sqlite3_str*, const char *zFormat, ...);
+ void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list);
+ void (*str_append)(sqlite3_str*, const char *zIn, int N);
+ void (*str_appendall)(sqlite3_str*, const char *zIn);
+ void (*str_appendchar)(sqlite3_str*, int N, char C);
+ void (*str_reset)(sqlite3_str*);
+ int (*str_errcode)(sqlite3_str*);
+ int (*str_length)(sqlite3_str*);
+ char *(*str_value)(sqlite3_str*);
+ /* Version 3.25.0 and later */
+ int (*create_window_function)(sqlite3*,const char*,int,int,void*,
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void (*xValue)(sqlite3_context*),
+ void (*xInv)(sqlite3_context*,int,sqlite3_value**),
+ void(*xDestroy)(void*));
+ /* Version 3.26.0 and later */
+ const char *(*normalized_sql)(sqlite3_stmt*);
+ /* Version 3.28.0 and later */
+ int (*stmt_isexplain)(sqlite3_stmt*);
+ int (*value_frombind)(sqlite3_value*);
+ /* Version 3.30.0 and later */
+ int (*drop_modules)(sqlite3*,const char**);
+ /* Version 3.31.0 and later */
+ sqlite3_int64 (*hard_heap_limit64)(sqlite3_int64);
+ const char *(*uri_key)(const char*,int);
+ const char *(*filename_database)(const char*);
+ const char *(*filename_journal)(const char*);
+ const char *(*filename_wal)(const char*);
+ /* Version 3.32.0 and later */
+ const char *(*create_filename)(const char*,const char*,const char*,
+ int,const char**);
+ void (*free_filename)(const char*);
+ sqlite3_file *(*database_file_object)(const char*);
+ /* Version 3.34.0 and later */
+ int (*txn_state)(sqlite3*,const char*);
+ /* Version 3.36.1 and later */
+ sqlite3_int64 (*changes64)(sqlite3*);
+ sqlite3_int64 (*total_changes64)(sqlite3*);
+ /* Version 3.37.0 and later */
+ int (*autovacuum_pages)(sqlite3*,
+ unsigned int(*)(void*,const char*,unsigned int,unsigned int,unsigned int),
+ void*, void(*)(void*));
+ /* Version 3.38.0 and later */
+ int (*error_offset)(sqlite3*);
+ int (*vtab_rhs_value)(sqlite3_index_info*,int,sqlite3_value**);
+ int (*vtab_distinct)(sqlite3_index_info*);
+ int (*vtab_in)(sqlite3_index_info*,int,int);
+ int (*vtab_in_first)(sqlite3_value*,sqlite3_value**);
+ int (*vtab_in_next)(sqlite3_value*,sqlite3_value**);
+ /* Version 3.39.0 and later */
+ int (*deserialize)(sqlite3*,const char*,unsigned char*,
+ sqlite3_int64,sqlite3_int64,unsigned);
+ unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*,
+ unsigned int);
+ const char *(*db_name)(sqlite3*,int);
+ /* Version 3.40.0 and later */
+ int (*value_encoding)(sqlite3_value*);
+ /* Version 3.41.0 and later */
+ int (*is_interrupted)(sqlite3*);
+ /* Version 3.43.0 and later */
+ int (*stmt_explain)(sqlite3_stmt*,int);
+ /* Version 3.44.0 and later */
+ void *(*get_clientdata)(sqlite3*,const char*);
+ int (*set_clientdata)(sqlite3*, const char*, void*, void(*)(void*));
+};
+
+/*
+** This is the function signature used for all extension entry points. It
+** is also defined in the file "loadext.c".
+*/
+typedef int (*sqlite3_loadext_entry)(
+ sqlite3 *db, /* Handle to the database. */
+ char **pzErrMsg, /* Used to set error string on failure. */
+ const sqlite3_api_routines *pThunk /* Extension API function pointers. */
+);
+
+/*
+** The following macros redefine the API routines so that they are
+** redirected through the global sqlite3_api structure.
+**
+** This header file is also used by the loadext.c source file
+** (part of the main SQLite library - not an extension) so that
+** it can get access to the sqlite3_api_routines structure
+** definition. But the main library does not want to redefine
+** the API. So the redefinition macros are only valid if the
+** SQLITE_CORE macros is undefined.
+*/
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+#define sqlite3_aggregate_context sqlite3_api->aggregate_context
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_aggregate_count sqlite3_api->aggregate_count
+#endif
+#define sqlite3_bind_blob sqlite3_api->bind_blob
+#define sqlite3_bind_double sqlite3_api->bind_double
+#define sqlite3_bind_int sqlite3_api->bind_int
+#define sqlite3_bind_int64 sqlite3_api->bind_int64
+#define sqlite3_bind_null sqlite3_api->bind_null
+#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
+#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
+#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
+#define sqlite3_bind_text sqlite3_api->bind_text
+#define sqlite3_bind_text16 sqlite3_api->bind_text16
+#define sqlite3_bind_value sqlite3_api->bind_value
+#define sqlite3_busy_handler sqlite3_api->busy_handler
+#define sqlite3_busy_timeout sqlite3_api->busy_timeout
+#define sqlite3_changes sqlite3_api->changes
+#define sqlite3_close sqlite3_api->close
+#define sqlite3_collation_needed sqlite3_api->collation_needed
+#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
+#define sqlite3_column_blob sqlite3_api->column_blob
+#define sqlite3_column_bytes sqlite3_api->column_bytes
+#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
+#define sqlite3_column_count sqlite3_api->column_count
+#define sqlite3_column_database_name sqlite3_api->column_database_name
+#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
+#define sqlite3_column_decltype sqlite3_api->column_decltype
+#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
+#define sqlite3_column_double sqlite3_api->column_double
+#define sqlite3_column_int sqlite3_api->column_int
+#define sqlite3_column_int64 sqlite3_api->column_int64
+#define sqlite3_column_name sqlite3_api->column_name
+#define sqlite3_column_name16 sqlite3_api->column_name16
+#define sqlite3_column_origin_name sqlite3_api->column_origin_name
+#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
+#define sqlite3_column_table_name sqlite3_api->column_table_name
+#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
+#define sqlite3_column_text sqlite3_api->column_text
+#define sqlite3_column_text16 sqlite3_api->column_text16
+#define sqlite3_column_type sqlite3_api->column_type
+#define sqlite3_column_value sqlite3_api->column_value
+#define sqlite3_commit_hook sqlite3_api->commit_hook
+#define sqlite3_complete sqlite3_api->complete
+#define sqlite3_complete16 sqlite3_api->complete16
+#define sqlite3_create_collation sqlite3_api->create_collation
+#define sqlite3_create_collation16 sqlite3_api->create_collation16
+#define sqlite3_create_function sqlite3_api->create_function
+#define sqlite3_create_function16 sqlite3_api->create_function16
+#define sqlite3_create_module sqlite3_api->create_module
+#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
+#define sqlite3_data_count sqlite3_api->data_count
+#define sqlite3_db_handle sqlite3_api->db_handle
+#define sqlite3_declare_vtab sqlite3_api->declare_vtab
+#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
+#define sqlite3_errcode sqlite3_api->errcode
+#define sqlite3_errmsg sqlite3_api->errmsg
+#define sqlite3_errmsg16 sqlite3_api->errmsg16
+#define sqlite3_exec sqlite3_api->exec
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_expired sqlite3_api->expired
+#endif
+#define sqlite3_finalize sqlite3_api->finalize
+#define sqlite3_free sqlite3_api->free
+#define sqlite3_free_table sqlite3_api->free_table
+#define sqlite3_get_autocommit sqlite3_api->get_autocommit
+#define sqlite3_get_auxdata sqlite3_api->get_auxdata
+#define sqlite3_get_table sqlite3_api->get_table
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_global_recover sqlite3_api->global_recover
+#endif
+#define sqlite3_interrupt sqlite3_api->interruptx
+#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
+#define sqlite3_libversion sqlite3_api->libversion
+#define sqlite3_libversion_number sqlite3_api->libversion_number
+#define sqlite3_malloc sqlite3_api->malloc
+#define sqlite3_mprintf sqlite3_api->mprintf
+#define sqlite3_open sqlite3_api->open
+#define sqlite3_open16 sqlite3_api->open16
+#define sqlite3_prepare sqlite3_api->prepare
+#define sqlite3_prepare16 sqlite3_api->prepare16
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_profile sqlite3_api->profile
+#define sqlite3_progress_handler sqlite3_api->progress_handler
+#define sqlite3_realloc sqlite3_api->realloc
+#define sqlite3_reset sqlite3_api->reset
+#define sqlite3_result_blob sqlite3_api->result_blob
+#define sqlite3_result_double sqlite3_api->result_double
+#define sqlite3_result_error sqlite3_api->result_error
+#define sqlite3_result_error16 sqlite3_api->result_error16
+#define sqlite3_result_int sqlite3_api->result_int
+#define sqlite3_result_int64 sqlite3_api->result_int64
+#define sqlite3_result_null sqlite3_api->result_null
+#define sqlite3_result_text sqlite3_api->result_text
+#define sqlite3_result_text16 sqlite3_api->result_text16
+#define sqlite3_result_text16be sqlite3_api->result_text16be
+#define sqlite3_result_text16le sqlite3_api->result_text16le
+#define sqlite3_result_value sqlite3_api->result_value
+#define sqlite3_rollback_hook sqlite3_api->rollback_hook
+#define sqlite3_set_authorizer sqlite3_api->set_authorizer
+#define sqlite3_set_auxdata sqlite3_api->set_auxdata
+#define sqlite3_snprintf sqlite3_api->xsnprintf
+#define sqlite3_step sqlite3_api->step
+#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
+#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
+#define sqlite3_total_changes sqlite3_api->total_changes
+#define sqlite3_trace sqlite3_api->trace
+#ifndef SQLITE_OMIT_DEPRECATED
+#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
+#endif
+#define sqlite3_update_hook sqlite3_api->update_hook
+#define sqlite3_user_data sqlite3_api->user_data
+#define sqlite3_value_blob sqlite3_api->value_blob
+#define sqlite3_value_bytes sqlite3_api->value_bytes
+#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
+#define sqlite3_value_double sqlite3_api->value_double
+#define sqlite3_value_int sqlite3_api->value_int
+#define sqlite3_value_int64 sqlite3_api->value_int64
+#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
+#define sqlite3_value_text sqlite3_api->value_text
+#define sqlite3_value_text16 sqlite3_api->value_text16
+#define sqlite3_value_text16be sqlite3_api->value_text16be
+#define sqlite3_value_text16le sqlite3_api->value_text16le
+#define sqlite3_value_type sqlite3_api->value_type
+#define sqlite3_vmprintf sqlite3_api->vmprintf
+#define sqlite3_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_overload_function sqlite3_api->overload_function
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_clear_bindings sqlite3_api->clear_bindings
+#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
+#define sqlite3_blob_bytes sqlite3_api->blob_bytes
+#define sqlite3_blob_close sqlite3_api->blob_close
+#define sqlite3_blob_open sqlite3_api->blob_open
+#define sqlite3_blob_read sqlite3_api->blob_read
+#define sqlite3_blob_write sqlite3_api->blob_write
+#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
+#define sqlite3_file_control sqlite3_api->file_control
+#define sqlite3_memory_highwater sqlite3_api->memory_highwater
+#define sqlite3_memory_used sqlite3_api->memory_used
+#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
+#define sqlite3_mutex_enter sqlite3_api->mutex_enter
+#define sqlite3_mutex_free sqlite3_api->mutex_free
+#define sqlite3_mutex_leave sqlite3_api->mutex_leave
+#define sqlite3_mutex_try sqlite3_api->mutex_try
+#define sqlite3_open_v2 sqlite3_api->open_v2
+#define sqlite3_release_memory sqlite3_api->release_memory
+#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
+#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
+#define sqlite3_sleep sqlite3_api->sleep
+#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
+#define sqlite3_vfs_find sqlite3_api->vfs_find
+#define sqlite3_vfs_register sqlite3_api->vfs_register
+#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
+#define sqlite3_threadsafe sqlite3_api->xthreadsafe
+#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
+#define sqlite3_result_error_code sqlite3_api->result_error_code
+#define sqlite3_test_control sqlite3_api->test_control
+#define sqlite3_randomness sqlite3_api->randomness
+#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
+#define sqlite3_limit sqlite3_api->limit
+#define sqlite3_next_stmt sqlite3_api->next_stmt
+#define sqlite3_sql sqlite3_api->sql
+#define sqlite3_status sqlite3_api->status
+#define sqlite3_backup_finish sqlite3_api->backup_finish
+#define sqlite3_backup_init sqlite3_api->backup_init
+#define sqlite3_backup_pagecount sqlite3_api->backup_pagecount
+#define sqlite3_backup_remaining sqlite3_api->backup_remaining
+#define sqlite3_backup_step sqlite3_api->backup_step
+#define sqlite3_compileoption_get sqlite3_api->compileoption_get
+#define sqlite3_compileoption_used sqlite3_api->compileoption_used
+#define sqlite3_create_function_v2 sqlite3_api->create_function_v2
+#define sqlite3_db_config sqlite3_api->db_config
+#define sqlite3_db_mutex sqlite3_api->db_mutex
+#define sqlite3_db_status sqlite3_api->db_status
+#define sqlite3_extended_errcode sqlite3_api->extended_errcode
+#define sqlite3_log sqlite3_api->log
+#define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64
+#define sqlite3_sourceid sqlite3_api->sourceid
+#define sqlite3_stmt_status sqlite3_api->stmt_status
+#define sqlite3_strnicmp sqlite3_api->strnicmp
+#define sqlite3_unlock_notify sqlite3_api->unlock_notify
+#define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint
+#define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint
+#define sqlite3_wal_hook sqlite3_api->wal_hook
+#define sqlite3_blob_reopen sqlite3_api->blob_reopen
+#define sqlite3_vtab_config sqlite3_api->vtab_config
+#define sqlite3_vtab_on_conflict sqlite3_api->vtab_on_conflict
+/* Version 3.7.16 and later */
+#define sqlite3_close_v2 sqlite3_api->close_v2
+#define sqlite3_db_filename sqlite3_api->db_filename
+#define sqlite3_db_readonly sqlite3_api->db_readonly
+#define sqlite3_db_release_memory sqlite3_api->db_release_memory
+#define sqlite3_errstr sqlite3_api->errstr
+#define sqlite3_stmt_busy sqlite3_api->stmt_busy
+#define sqlite3_stmt_readonly sqlite3_api->stmt_readonly
+#define sqlite3_stricmp sqlite3_api->stricmp
+#define sqlite3_uri_boolean sqlite3_api->uri_boolean
+#define sqlite3_uri_int64 sqlite3_api->uri_int64
+#define sqlite3_uri_parameter sqlite3_api->uri_parameter
+#define sqlite3_uri_vsnprintf sqlite3_api->xvsnprintf
+#define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2
+/* Version 3.8.7 and later */
+#define sqlite3_auto_extension sqlite3_api->auto_extension
+#define sqlite3_bind_blob64 sqlite3_api->bind_blob64
+#define sqlite3_bind_text64 sqlite3_api->bind_text64
+#define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension
+#define sqlite3_load_extension sqlite3_api->load_extension
+#define sqlite3_malloc64 sqlite3_api->malloc64
+#define sqlite3_msize sqlite3_api->msize
+#define sqlite3_realloc64 sqlite3_api->realloc64
+#define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension
+#define sqlite3_result_blob64 sqlite3_api->result_blob64
+#define sqlite3_result_text64 sqlite3_api->result_text64
+#define sqlite3_strglob sqlite3_api->strglob
+/* Version 3.8.11 and later */
+#define sqlite3_value_dup sqlite3_api->value_dup
+#define sqlite3_value_free sqlite3_api->value_free
+#define sqlite3_result_zeroblob64 sqlite3_api->result_zeroblob64
+#define sqlite3_bind_zeroblob64 sqlite3_api->bind_zeroblob64
+/* Version 3.9.0 and later */
+#define sqlite3_value_subtype sqlite3_api->value_subtype
+#define sqlite3_result_subtype sqlite3_api->result_subtype
+/* Version 3.10.0 and later */
+#define sqlite3_status64 sqlite3_api->status64
+#define sqlite3_strlike sqlite3_api->strlike
+#define sqlite3_db_cacheflush sqlite3_api->db_cacheflush
+/* Version 3.12.0 and later */
+#define sqlite3_system_errno sqlite3_api->system_errno
+/* Version 3.14.0 and later */
+#define sqlite3_trace_v2 sqlite3_api->trace_v2
+#define sqlite3_expanded_sql sqlite3_api->expanded_sql
+/* Version 3.18.0 and later */
+#define sqlite3_set_last_insert_rowid sqlite3_api->set_last_insert_rowid
+/* Version 3.20.0 and later */
+#define sqlite3_prepare_v3 sqlite3_api->prepare_v3
+#define sqlite3_prepare16_v3 sqlite3_api->prepare16_v3
+#define sqlite3_bind_pointer sqlite3_api->bind_pointer
+#define sqlite3_result_pointer sqlite3_api->result_pointer
+#define sqlite3_value_pointer sqlite3_api->value_pointer
+/* Version 3.22.0 and later */
+#define sqlite3_vtab_nochange sqlite3_api->vtab_nochange
+#define sqlite3_value_nochange sqlite3_api->value_nochange
+#define sqlite3_vtab_collation sqlite3_api->vtab_collation
+/* Version 3.24.0 and later */
+#define sqlite3_keyword_count sqlite3_api->keyword_count
+#define sqlite3_keyword_name sqlite3_api->keyword_name
+#define sqlite3_keyword_check sqlite3_api->keyword_check
+#define sqlite3_str_new sqlite3_api->str_new
+#define sqlite3_str_finish sqlite3_api->str_finish
+#define sqlite3_str_appendf sqlite3_api->str_appendf
+#define sqlite3_str_vappendf sqlite3_api->str_vappendf
+#define sqlite3_str_append sqlite3_api->str_append
+#define sqlite3_str_appendall sqlite3_api->str_appendall
+#define sqlite3_str_appendchar sqlite3_api->str_appendchar
+#define sqlite3_str_reset sqlite3_api->str_reset
+#define sqlite3_str_errcode sqlite3_api->str_errcode
+#define sqlite3_str_length sqlite3_api->str_length
+#define sqlite3_str_value sqlite3_api->str_value
+/* Version 3.25.0 and later */
+#define sqlite3_create_window_function sqlite3_api->create_window_function
+/* Version 3.26.0 and later */
+#define sqlite3_normalized_sql sqlite3_api->normalized_sql
+/* Version 3.28.0 and later */
+#define sqlite3_stmt_isexplain sqlite3_api->stmt_isexplain
+#define sqlite3_value_frombind sqlite3_api->value_frombind
+/* Version 3.30.0 and later */
+#define sqlite3_drop_modules sqlite3_api->drop_modules
+/* Version 3.31.0 and later */
+#define sqlite3_hard_heap_limit64 sqlite3_api->hard_heap_limit64
+#define sqlite3_uri_key sqlite3_api->uri_key
+#define sqlite3_filename_database sqlite3_api->filename_database
+#define sqlite3_filename_journal sqlite3_api->filename_journal
+#define sqlite3_filename_wal sqlite3_api->filename_wal
+/* Version 3.32.0 and later */
+#define sqlite3_create_filename sqlite3_api->create_filename
+#define sqlite3_free_filename sqlite3_api->free_filename
+#define sqlite3_database_file_object sqlite3_api->database_file_object
+/* Version 3.34.0 and later */
+#define sqlite3_txn_state sqlite3_api->txn_state
+/* Version 3.36.1 and later */
+#define sqlite3_changes64 sqlite3_api->changes64
+#define sqlite3_total_changes64 sqlite3_api->total_changes64
+/* Version 3.37.0 and later */
+#define sqlite3_autovacuum_pages sqlite3_api->autovacuum_pages
+/* Version 3.38.0 and later */
+#define sqlite3_error_offset sqlite3_api->error_offset
+#define sqlite3_vtab_rhs_value sqlite3_api->vtab_rhs_value
+#define sqlite3_vtab_distinct sqlite3_api->vtab_distinct
+#define sqlite3_vtab_in sqlite3_api->vtab_in
+#define sqlite3_vtab_in_first sqlite3_api->vtab_in_first
+#define sqlite3_vtab_in_next sqlite3_api->vtab_in_next
+/* Version 3.39.0 and later */
+#ifndef SQLITE_OMIT_DESERIALIZE
+#define sqlite3_deserialize sqlite3_api->deserialize
+#define sqlite3_serialize sqlite3_api->serialize
+#endif
+#define sqlite3_db_name sqlite3_api->db_name
+/* Version 3.40.0 and later */
+#define sqlite3_value_encoding sqlite3_api->value_encoding
+/* Version 3.41.0 and later */
+#define sqlite3_is_interrupted sqlite3_api->is_interrupted
+/* Version 3.43.0 and later */
+#define sqlite3_stmt_explain sqlite3_api->stmt_explain
+/* Version 3.44.0 and later */
+#define sqlite3_get_clientdata sqlite3_api->get_clientdata
+#define sqlite3_set_clientdata sqlite3_api->set_clientdata
+#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */
+
+#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
+ /* This case when the file really is being compiled as a loadable
+ ** extension */
+# define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0;
+# define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v;
+# define SQLITE_EXTENSION_INIT3 \
+ extern const sqlite3_api_routines *sqlite3_api;
+#else
+ /* This case when the file is being statically linked into the
+ ** application */
+# define SQLITE_EXTENSION_INIT1 /*no-op*/
+# define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */
+# define SQLITE_EXTENSION_INIT3 /*no-op*/
+#endif
+
+#endif /* SQLITE3EXT_H */
diff --git a/third_party/rust/libsqlite3-sys/sqlite3/wasm32-wasi-vfs.c b/third_party/rust/libsqlite3-sys/sqlite3/wasm32-wasi-vfs.c
new file mode 100644
index 0000000000..4450b7a770
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/sqlite3/wasm32-wasi-vfs.c
@@ -0,0 +1,690 @@
+/*
+** 2010 April 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements an example of a simple VFS implementation that
+** omits complex features often not required or not possible on embedded
+** platforms. Code is included to buffer writes to the journal file,
+** which can be a significant performance improvement on some embedded
+** platforms.
+**
+** OVERVIEW
+**
+** The code in this file implements a minimal SQLite VFS that can be
+** used on Linux and other posix-like operating systems. The following
+** system calls are used:
+**
+** File-system: access(), unlink(), getcwd()
+** File IO: open(), read(), write(), fsync(), close(), fstat()
+** Other: sleep(), usleep(), time()
+**
+** The following VFS features are omitted:
+**
+** 1. File locking. The user must ensure that there is at most one
+** connection to each database when using this VFS. Multiple
+** connections to a single shared-cache count as a single connection
+** for the purposes of the previous statement.
+**
+** 2. The loading of dynamic extensions (shared libraries).
+**
+** 3. Temporary files. The user must configure SQLite to use in-memory
+** temp files when using this VFS. The easiest way to do this is to
+** compile with:
+**
+** -DSQLITE_TEMP_STORE=3
+**
+** 4. File truncation. As of version 3.6.24, SQLite may run without
+** a working xTruncate() call, providing the user does not configure
+** SQLite to use "journal_mode=truncate", or use both
+** "journal_mode=persist" and ATTACHed databases.
+**
+** It is assumed that the system uses UNIX-like path-names. Specifically,
+** that '/' characters are used to separate path components and that
+** a path-name is a relative path unless it begins with a '/'. And that
+** no UTF-8 encoded paths are greater than 512 bytes in length.
+**
+** JOURNAL WRITE-BUFFERING
+**
+** To commit a transaction to the database, SQLite first writes rollback
+** information into the journal file. This usually consists of 4 steps:
+**
+** 1. The rollback information is sequentially written into the journal
+** file, starting at the start of the file.
+** 2. The journal file is synced to disk.
+** 3. A modification is made to the first few bytes of the journal file.
+** 4. The journal file is synced to disk again.
+**
+** Most of the data is written in step 1 using a series of calls to the
+** VFS xWrite() method. The buffers passed to the xWrite() calls are of
+** various sizes. For example, as of version 3.6.24, when committing a
+** transaction that modifies 3 pages of a database file that uses 4096
+** byte pages residing on a media with 512 byte sectors, SQLite makes
+** eleven calls to the xWrite() method to create the rollback journal,
+** as follows:
+**
+** Write offset | Bytes written
+** ----------------------------
+** 0 512
+** 512 4
+** 516 4096
+** 4612 4
+** 4616 4
+** 4620 4096
+** 8716 4
+** 8720 4
+** 8724 4096
+** 12820 4
+** ++++++++++++SYNC+++++++++++
+** 0 12
+** ++++++++++++SYNC+++++++++++
+**
+** On many operating systems, this is an efficient way to write to a file.
+** However, on some embedded systems that do not cache writes in OS
+** buffers it is much more efficient to write data in blocks that are
+** an integer multiple of the sector-size in size and aligned at the
+** start of a sector.
+**
+** To work around this, the code in this file allocates a fixed size
+** buffer of SQLITE_DEMOVFS_BUFFERSZ using sqlite3_malloc() whenever a
+** journal file is opened. It uses the buffer to coalesce sequential
+** writes into aligned SQLITE_DEMOVFS_BUFFERSZ blocks. When SQLite
+** invokes the xSync() method to sync the contents of the file to disk,
+** all accumulated data is written out, even if it does not constitute
+** a complete block. This means the actual IO to create the rollback
+** journal for the example transaction above is this:
+**
+** Write offset | Bytes written
+** ----------------------------
+** 0 8192
+** 8192 4632
+** ++++++++++++SYNC+++++++++++
+** 0 12
+** ++++++++++++SYNC+++++++++++
+**
+** Much more efficient if the underlying OS is not caching write
+** operations.
+*/
+
+#if !defined(SQLITE_TEST) || SQLITE_OS_UNIX
+
+#include "sqlite3.h"
+
+#include <assert.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/file.h>
+#include <sys/param.h>
+#include <unistd.h>
+#include <time.h>
+#include <errno.h>
+#include <fcntl.h>
+
+/*
+** Size of the write buffer used by journal files in bytes.
+*/
+#ifndef SQLITE_DEMOVFS_BUFFERSZ
+# define SQLITE_DEMOVFS_BUFFERSZ 8192
+#endif
+
+/*
+** The maximum pathname length supported by this VFS.
+*/
+#define MAXPATHNAME 512
+
+/*
+** When using this VFS, the sqlite3_file* handles that SQLite uses are
+** actually pointers to instances of type DemoFile.
+*/
+typedef struct DemoFile DemoFile;
+struct DemoFile {
+ sqlite3_file base; /* Base class. Must be first. */
+ int fd; /* File descriptor */
+
+ char *aBuffer; /* Pointer to malloc'd buffer */
+ int nBuffer; /* Valid bytes of data in zBuffer */
+ sqlite3_int64 iBufferOfst; /* Offset in file of zBuffer[0] */
+};
+
+/*
+** Write directly to the file passed as the first argument. Even if the
+** file has a write-buffer (DemoFile.aBuffer), ignore it.
+*/
+static int demoDirectWrite(
+ DemoFile *p, /* File handle */
+ const void *zBuf, /* Buffer containing data to write */
+ int iAmt, /* Size of data to write in bytes */
+ sqlite_int64 iOfst /* File offset to write to */
+){
+ off_t ofst; /* Return value from lseek() */
+ size_t nWrite; /* Return value from write() */
+
+ ofst = lseek(p->fd, iOfst, SEEK_SET);
+ if( ofst!=iOfst ){
+ return SQLITE_IOERR_WRITE;
+ }
+
+ nWrite = write(p->fd, zBuf, iAmt);
+ if( nWrite!=iAmt ){
+ return SQLITE_IOERR_WRITE;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Flush the contents of the DemoFile.aBuffer buffer to disk. This is a
+** no-op if this particular file does not have a buffer (i.e. it is not
+** a journal file) or if the buffer is currently empty.
+*/
+static int demoFlushBuffer(DemoFile *p){
+ int rc = SQLITE_OK;
+ if( p->nBuffer ){
+ rc = demoDirectWrite(p, p->aBuffer, p->nBuffer, p->iBufferOfst);
+ p->nBuffer = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a file.
+*/
+static int demoClose(sqlite3_file *pFile){
+ int rc;
+ DemoFile *p = (DemoFile*)pFile;
+ rc = demoFlushBuffer(p);
+ sqlite3_free(p->aBuffer);
+ close(p->fd);
+ return rc;
+}
+
+/*
+** Read data from a file.
+*/
+static int demoRead(
+ sqlite3_file *pFile,
+ void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ DemoFile *p = (DemoFile*)pFile;
+ off_t ofst; /* Return value from lseek() */
+ int nRead; /* Return value from read() */
+ int rc; /* Return code from demoFlushBuffer() */
+
+ /* Flush any data in the write buffer to disk in case this operation
+ ** is trying to read data the file-region currently cached in the buffer.
+ ** It would be possible to detect this case and possibly save an
+ ** unnecessary write here, but in practice SQLite will rarely read from
+ ** a journal file when there is data cached in the write-buffer.
+ */
+ rc = demoFlushBuffer(p);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ ofst = lseek(p->fd, iOfst, SEEK_SET);
+ if( ofst!=iOfst ){
+ return SQLITE_IOERR_READ;
+ }
+ nRead = read(p->fd, zBuf, iAmt);
+
+ if( nRead==iAmt ){
+ return SQLITE_OK;
+ }else if( nRead>=0 ){
+ return SQLITE_IOERR_SHORT_READ;
+ }
+
+ return SQLITE_IOERR_READ;
+}
+
+/*
+** Write data to a crash-file.
+*/
+static int demoWrite(
+ sqlite3_file *pFile,
+ const void *zBuf,
+ int iAmt,
+ sqlite_int64 iOfst
+){
+ DemoFile *p = (DemoFile*)pFile;
+
+ if( p->aBuffer ){
+ char *z = (char *)zBuf; /* Pointer to remaining data to write */
+ int n = iAmt; /* Number of bytes at z */
+ sqlite3_int64 i = iOfst; /* File offset to write to */
+
+ while( n>0 ){
+ int nCopy; /* Number of bytes to copy into buffer */
+
+ /* If the buffer is full, or if this data is not being written directly
+ ** following the data already buffered, flush the buffer. Flushing
+ ** the buffer is a no-op if it is empty.
+ */
+ if( p->nBuffer==SQLITE_DEMOVFS_BUFFERSZ || p->iBufferOfst+p->nBuffer!=i ){
+ int rc = demoFlushBuffer(p);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ assert( p->nBuffer==0 || p->iBufferOfst+p->nBuffer==i );
+ p->iBufferOfst = i - p->nBuffer;
+
+ /* Copy as much data as possible into the buffer. */
+ nCopy = SQLITE_DEMOVFS_BUFFERSZ - p->nBuffer;
+ if( nCopy>n ){
+ nCopy = n;
+ }
+ memcpy(&p->aBuffer[p->nBuffer], z, nCopy);
+ p->nBuffer += nCopy;
+
+ n -= nCopy;
+ i += nCopy;
+ z += nCopy;
+ }
+ }else{
+ return demoDirectWrite(p, zBuf, iAmt, iOfst);
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Truncate a file. This is a no-op for this VFS (see header comments at
+** the top of the file).
+*/
+static int demoTruncate(sqlite3_file *pFile, sqlite_int64 size){
+#if 0
+ if( ftruncate(((DemoFile *)pFile)->fd, size) ) return SQLITE_IOERR_TRUNCATE;
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Sync the contents of the file to the persistent media.
+*/
+static int demoSync(sqlite3_file *pFile, int flags){
+ DemoFile *p = (DemoFile*)pFile;
+ int rc;
+
+ rc = demoFlushBuffer(p);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ rc = fsync(p->fd);
+ return (rc==0 ? SQLITE_OK : SQLITE_IOERR_FSYNC);
+}
+
+/*
+** Write the size of the file in bytes to *pSize.
+*/
+static int demoFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
+ DemoFile *p = (DemoFile*)pFile;
+ int rc; /* Return code from fstat() call */
+ struct stat sStat; /* Output of fstat() call */
+
+ /* Flush the contents of the buffer to disk. As with the flush in the
+ ** demoRead() method, it would be possible to avoid this and save a write
+ ** here and there. But in practice this comes up so infrequently it is
+ ** not worth the trouble.
+ */
+ rc = demoFlushBuffer(p);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ rc = fstat(p->fd, &sStat);
+ if( rc!=0 ) return SQLITE_IOERR_FSTAT;
+ *pSize = sStat.st_size;
+ return SQLITE_OK;
+}
+
+/*
+** Locking functions. The xLock() and xUnlock() methods are both no-ops.
+** The xCheckReservedLock() always indicates that no other process holds
+** a reserved lock on the database file. This ensures that if a hot-journal
+** file is found in the file-system it is rolled back.
+*/
+static int demoLock(sqlite3_file *pFile, int eLock){
+ return SQLITE_OK;
+}
+static int demoUnlock(sqlite3_file *pFile, int eLock){
+ return SQLITE_OK;
+}
+static int demoCheckReservedLock(sqlite3_file *pFile, int *pResOut){
+ *pResOut = 0;
+ return SQLITE_OK;
+}
+
+/*
+** No xFileControl() verbs are implemented by this VFS.
+*/
+static int demoFileControl(sqlite3_file *pFile, int op, void *pArg){
+ return SQLITE_OK;
+}
+
+/*
+** The xSectorSize() and xDeviceCharacteristics() methods. These two
+** may return special values allowing SQLite to optimize file-system
+** access to some extent. But it is also safe to simply return 0.
+*/
+static int demoSectorSize(sqlite3_file *pFile){
+ return 0;
+}
+static int demoDeviceCharacteristics(sqlite3_file *pFile){
+ return 0;
+}
+
+/*
+** Open a file handle.
+*/
+static int demoOpen(
+ sqlite3_vfs *pVfs, /* VFS */
+ const char *zName, /* File to open, or 0 for a temp file */
+ sqlite3_file *pFile, /* Pointer to DemoFile struct to populate */
+ int flags, /* Input SQLITE_OPEN_XXX flags */
+ int *pOutFlags /* Output SQLITE_OPEN_XXX flags (or NULL) */
+){
+ static const sqlite3_io_methods demoio = {
+ 1, /* iVersion */
+ demoClose, /* xClose */
+ demoRead, /* xRead */
+ demoWrite, /* xWrite */
+ demoTruncate, /* xTruncate */
+ demoSync, /* xSync */
+ demoFileSize, /* xFileSize */
+ demoLock, /* xLock */
+ demoUnlock, /* xUnlock */
+ demoCheckReservedLock, /* xCheckReservedLock */
+ demoFileControl, /* xFileControl */
+ demoSectorSize, /* xSectorSize */
+ demoDeviceCharacteristics /* xDeviceCharacteristics */
+ };
+
+ DemoFile *p = (DemoFile*)pFile; /* Populate this structure */
+ int oflags = 0; /* flags to pass to open() call */
+ char *aBuf = 0;
+
+ if( zName==0 ){
+ return SQLITE_IOERR;
+ }
+
+ if( flags&SQLITE_OPEN_MAIN_JOURNAL ){
+ aBuf = (char *)sqlite3_malloc(SQLITE_DEMOVFS_BUFFERSZ);
+ if( !aBuf ){
+ return SQLITE_NOMEM;
+ }
+ }
+
+ if( flags&SQLITE_OPEN_EXCLUSIVE ) oflags |= O_EXCL;
+ if( flags&SQLITE_OPEN_CREATE ) oflags |= O_CREAT;
+ if( flags&SQLITE_OPEN_READONLY ) oflags |= O_RDONLY;
+ if( flags&SQLITE_OPEN_READWRITE ) oflags |= O_RDWR;
+
+ memset(p, 0, sizeof(DemoFile));
+ p->fd = open(zName, oflags, 0600);
+ if( p->fd<0 ){
+ sqlite3_free(aBuf);
+ return SQLITE_CANTOPEN;
+ }
+ p->aBuffer = aBuf;
+
+ if( pOutFlags ){
+ *pOutFlags = flags;
+ }
+ p->base.pMethods = &demoio;
+ return SQLITE_OK;
+}
+
+/*
+** Delete the file identified by argument zPath. If the dirSync parameter
+** is non-zero, then ensure the file-system modification to delete the
+** file has been synced to disk before returning.
+*/
+static int demoDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ int rc; /* Return code */
+
+ rc = unlink(zPath);
+ if( rc!=0 && errno==ENOENT ) return SQLITE_OK;
+
+ if( rc==0 && dirSync ){
+ int dfd; /* File descriptor open on directory */
+ int i; /* Iterator variable */
+ char zDir[MAXPATHNAME+1]; /* Name of directory containing file zPath */
+
+ /* Figure out the directory name from the path of the file deleted. */
+ sqlite3_snprintf(MAXPATHNAME, zDir, "%s", zPath);
+ zDir[MAXPATHNAME] = '\0';
+ for(i=strlen(zDir); i>1 && zDir[i]!='/'; i++);
+ zDir[i] = '\0';
+
+ /* Open a file-descriptor on the directory. Sync. Close. */
+ dfd = open(zDir, O_RDONLY, 0);
+ if( dfd<0 ){
+ rc = -1;
+ }else{
+ rc = fsync(dfd);
+ close(dfd);
+ }
+ }
+ return (rc==0 ? SQLITE_OK : SQLITE_IOERR_DELETE);
+}
+
+#ifndef F_OK
+# define F_OK 0
+#endif
+#ifndef R_OK
+# define R_OK 4
+#endif
+#ifndef W_OK
+# define W_OK 2
+#endif
+
+/*
+** Query the file-system to see if the named file exists, is readable or
+** is both readable and writable.
+*/
+static int demoAccess(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int flags,
+ int *pResOut
+){
+ int rc; /* access() return code */
+ int eAccess = F_OK; /* Second argument to access() */
+
+ assert( flags==SQLITE_ACCESS_EXISTS /* access(zPath, F_OK) */
+ || flags==SQLITE_ACCESS_READ /* access(zPath, R_OK) */
+ || flags==SQLITE_ACCESS_READWRITE /* access(zPath, R_OK|W_OK) */
+ );
+
+ if( flags==SQLITE_ACCESS_READWRITE ) eAccess = R_OK|W_OK;
+ if( flags==SQLITE_ACCESS_READ ) eAccess = R_OK;
+
+ rc = access(zPath, eAccess);
+ *pResOut = (rc==0);
+ return SQLITE_OK;
+}
+
+/*
+** Argument zPath points to a nul-terminated string containing a file path.
+** If zPath is an absolute path, then it is copied as is into the output
+** buffer. Otherwise, if it is a relative path, then the equivalent full
+** path is written to the output buffer.
+**
+** This function assumes that paths are UNIX style. Specifically, that:
+**
+** 1. Path components are separated by a '/'. and
+** 2. Full paths begin with a '/' character.
+*/
+static int demoFullPathname(
+ sqlite3_vfs *pVfs, /* VFS */
+ const char *zPath, /* Input path (possibly a relative path) */
+ int nPathOut, /* Size of output buffer in bytes */
+ char *zPathOut /* Pointer to output buffer */
+){
+ sqlite3_snprintf(nPathOut, zPathOut, "%s", zPath);
+ zPathOut[nPathOut-1] = '\0';
+
+ return SQLITE_OK;
+}
+
+/*
+** The following four VFS methods:
+**
+** xDlOpen
+** xDlError
+** xDlSym
+** xDlClose
+**
+** are supposed to implement the functionality needed by SQLite to load
+** extensions compiled as shared objects. This simple VFS does not support
+** this functionality, so the following functions are no-ops.
+*/
+static void *demoDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ return 0;
+}
+static void demoDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
+ sqlite3_snprintf(nByte, zErrMsg, "Loadable extensions are not supported");
+ zErrMsg[nByte-1] = '\0';
+}
+static void (*demoDlSym(sqlite3_vfs *pVfs, void *pH, const char *z))(void){
+ return 0;
+}
+static void demoDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ return;
+}
+
+/*
+** Parameter zByte points to a buffer nByte bytes in size. Populate this
+** buffer with pseudo-random data.
+*/
+static int demoRandomness(sqlite3_vfs *pVfs, int nByte, char *zByte){
+ return SQLITE_OK;
+}
+
+/*
+** Sleep for at least nMicro microseconds. Return the (approximate) number
+** of microseconds slept for.
+*/
+static int demoSleep(sqlite3_vfs *pVfs, int nMicro){
+ sleep(nMicro / 1000000);
+ usleep(nMicro % 1000000);
+ return nMicro;
+}
+
+/*
+** Set *pTime to the current UTC time expressed as a Julian day. Return
+** SQLITE_OK if successful, or an error code otherwise.
+**
+** http://en.wikipedia.org/wiki/Julian_day
+**
+** This implementation is not very good. The current time is rounded to
+** an integer number of seconds. Also, assuming time_t is a signed 32-bit
+** value, it will stop working some time in the year 2038 AD (the so-called
+** "year 2038" problem that afflicts systems that store time this way).
+*/
+static int demoCurrentTime(sqlite3_vfs *pVfs, double *pTime){
+ time_t t = time(0);
+ *pTime = t/86400.0 + 2440587.5;
+ return SQLITE_OK;
+}
+
+/*
+** This function returns a pointer to the VFS implemented in this file.
+** To make the VFS available to SQLite:
+**
+** sqlite3_vfs_register(sqlite3_demovfs(), 0);
+*/
+sqlite3_vfs *sqlite3_demovfs(void){
+ static sqlite3_vfs demovfs = {
+ 1, /* iVersion */
+ sizeof(DemoFile), /* szOsFile */
+ MAXPATHNAME, /* mxPathname */
+ 0, /* pNext */
+ "demo", /* zName */
+ 0, /* pAppData */
+ demoOpen, /* xOpen */
+ demoDelete, /* xDelete */
+ demoAccess, /* xAccess */
+ demoFullPathname, /* xFullPathname */
+ demoDlOpen, /* xDlOpen */
+ demoDlError, /* xDlError */
+ demoDlSym, /* xDlSym */
+ demoDlClose, /* xDlClose */
+ demoRandomness, /* xRandomness */
+ demoSleep, /* xSleep */
+ demoCurrentTime, /* xCurrentTime */
+ };
+ return &demovfs;
+}
+
+#endif /* !defined(SQLITE_TEST) || SQLITE_OS_UNIX */
+
+
+#ifdef SQLITE_TEST
+
+#if defined(INCLUDE_SQLITE_TCL_H)
+# include "sqlite_tcl.h"
+#else
+# include "tcl.h"
+# ifndef SQLITE_TCLAPI
+# define SQLITE_TCLAPI
+# endif
+#endif
+
+#if SQLITE_OS_UNIX
+static int SQLITE_TCLAPI register_demovfs(
+ ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
+ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
+ int objc, /* Number of arguments */
+ Tcl_Obj *CONST objv[] /* Command arguments */
+){
+ sqlite3_vfs_register(sqlite3_demovfs(), 1);
+ return TCL_OK;
+}
+static int SQLITE_TCLAPI unregister_demovfs(
+ ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
+ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
+ int objc, /* Number of arguments */
+ Tcl_Obj *CONST objv[] /* Command arguments */
+){
+ sqlite3_vfs_unregister(sqlite3_demovfs());
+ return TCL_OK;
+}
+
+/*
+** Register commands with the TCL interpreter.
+*/
+int Sqlitetest_demovfs_Init(Tcl_Interp *interp){
+ Tcl_CreateObjCommand(interp, "register_demovfs", register_demovfs, 0, 0);
+ Tcl_CreateObjCommand(interp, "unregister_demovfs", unregister_demovfs, 0, 0);
+ return TCL_OK;
+}
+
+#else
+int Sqlitetest_demovfs_Init(Tcl_Interp *interp){ return TCL_OK; }
+#endif
+
+#endif /* SQLITE_TEST */
+
+// Register sqlite3_demovfs
+int sqlite3_os_init()
+{
+ sqlite3_vfs_register(sqlite3_demovfs(), 0);
+ return 0;
+}
+
+int sqlite3_os_end()
+{
+ return 0;
+}
diff --git a/third_party/rust/libsqlite3-sys/src/error.rs b/third_party/rust/libsqlite3-sys/src/error.rs
new file mode 100644
index 0000000000..6c6a29fbd0
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/src/error.rs
@@ -0,0 +1,304 @@
+use std::error;
+use std::fmt;
+use std::os::raw::c_int;
+
+/// Error Codes
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+#[non_exhaustive]
+pub enum ErrorCode {
+ /// Internal logic error in SQLite
+ InternalMalfunction,
+ /// Access permission denied
+ PermissionDenied,
+ /// Callback routine requested an abort
+ OperationAborted,
+ /// The database file is locked
+ DatabaseBusy,
+ /// A table in the database is locked
+ DatabaseLocked,
+ /// A malloc() failed
+ OutOfMemory,
+ /// Attempt to write a readonly database
+ ReadOnly,
+ /// Operation terminated by sqlite3_interrupt()
+ OperationInterrupted,
+ /// Some kind of disk I/O error occurred
+ SystemIoFailure,
+ /// The database disk image is malformed
+ DatabaseCorrupt,
+ /// Unknown opcode in sqlite3_file_control()
+ NotFound,
+ /// Insertion failed because database is full
+ DiskFull,
+ /// Unable to open the database file
+ CannotOpen,
+ /// Database lock protocol error
+ FileLockingProtocolFailed,
+ /// The database schema changed
+ SchemaChanged,
+ /// String or BLOB exceeds size limit
+ TooBig,
+ /// Abort due to constraint violation
+ ConstraintViolation,
+ /// Data type mismatch
+ TypeMismatch,
+ /// Library used incorrectly
+ ApiMisuse,
+ /// Uses OS features not supported on host
+ NoLargeFileSupport,
+ /// Authorization denied
+ AuthorizationForStatementDenied,
+ /// 2nd parameter to sqlite3_bind out of range
+ ParameterOutOfRange,
+ /// File opened that is not a database file
+ NotADatabase,
+ /// SQL error or missing database
+ Unknown,
+}
+
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub struct Error {
+ pub code: ErrorCode,
+ pub extended_code: c_int,
+}
+
+impl Error {
+ #[must_use]
+ pub fn new(result_code: c_int) -> Error {
+ let code = match result_code & 0xff {
+ super::SQLITE_INTERNAL => ErrorCode::InternalMalfunction,
+ super::SQLITE_PERM => ErrorCode::PermissionDenied,
+ super::SQLITE_ABORT => ErrorCode::OperationAborted,
+ super::SQLITE_BUSY => ErrorCode::DatabaseBusy,
+ super::SQLITE_LOCKED => ErrorCode::DatabaseLocked,
+ super::SQLITE_NOMEM => ErrorCode::OutOfMemory,
+ super::SQLITE_READONLY => ErrorCode::ReadOnly,
+ super::SQLITE_INTERRUPT => ErrorCode::OperationInterrupted,
+ super::SQLITE_IOERR => ErrorCode::SystemIoFailure,
+ super::SQLITE_CORRUPT => ErrorCode::DatabaseCorrupt,
+ super::SQLITE_NOTFOUND => ErrorCode::NotFound,
+ super::SQLITE_FULL => ErrorCode::DiskFull,
+ super::SQLITE_CANTOPEN => ErrorCode::CannotOpen,
+ super::SQLITE_PROTOCOL => ErrorCode::FileLockingProtocolFailed,
+ super::SQLITE_SCHEMA => ErrorCode::SchemaChanged,
+ super::SQLITE_TOOBIG => ErrorCode::TooBig,
+ super::SQLITE_CONSTRAINT => ErrorCode::ConstraintViolation,
+ super::SQLITE_MISMATCH => ErrorCode::TypeMismatch,
+ super::SQLITE_MISUSE => ErrorCode::ApiMisuse,
+ super::SQLITE_NOLFS => ErrorCode::NoLargeFileSupport,
+ super::SQLITE_AUTH => ErrorCode::AuthorizationForStatementDenied,
+ super::SQLITE_RANGE => ErrorCode::ParameterOutOfRange,
+ super::SQLITE_NOTADB => ErrorCode::NotADatabase,
+ _ => ErrorCode::Unknown,
+ };
+
+ Error {
+ code,
+ extended_code: result_code,
+ }
+ }
+}
+
+impl fmt::Display for Error {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ f,
+ "Error code {}: {}",
+ self.extended_code,
+ code_to_str(self.extended_code)
+ )
+ }
+}
+
+impl error::Error for Error {
+ fn description(&self) -> &str {
+ code_to_str(self.extended_code)
+ }
+}
+
+// Result codes.
+// Note: These are not public because our bindgen bindings export whichever
+// constants are present in the current version of SQLite. We repeat them here
+// so we don't have to worry about which version of SQLite added which
+// constants, and we only use them to implement code_to_str below.
+
+// Extended result codes.
+
+const SQLITE_ERROR_MISSING_COLLSEQ: c_int = super::SQLITE_ERROR | (1 << 8);
+const SQLITE_ERROR_RETRY: c_int = super::SQLITE_ERROR | (2 << 8);
+const SQLITE_ERROR_SNAPSHOT: c_int = super::SQLITE_ERROR | (3 << 8);
+
+const SQLITE_IOERR_BEGIN_ATOMIC: c_int = super::SQLITE_IOERR | (29 << 8);
+const SQLITE_IOERR_COMMIT_ATOMIC: c_int = super::SQLITE_IOERR | (30 << 8);
+const SQLITE_IOERR_ROLLBACK_ATOMIC: c_int = super::SQLITE_IOERR | (31 << 8);
+const SQLITE_IOERR_DATA: c_int = super::SQLITE_IOERR | (32 << 8);
+const SQLITE_IOERR_CORRUPTFS: c_int = super::SQLITE_IOERR | (33 << 8);
+const SQLITE_IOERR_IN_PAGE: c_int = super::SQLITE_IOERR | (34 << 8);
+
+const SQLITE_LOCKED_VTAB: c_int = super::SQLITE_LOCKED | (2 << 8);
+
+const SQLITE_BUSY_TIMEOUT: c_int = super::SQLITE_BUSY | (3 << 8);
+
+const SQLITE_CANTOPEN_SYMLINK: c_int = super::SQLITE_CANTOPEN | (6 << 8);
+
+const SQLITE_CORRUPT_SEQUENCE: c_int = super::SQLITE_CORRUPT | (2 << 8);
+const SQLITE_CORRUPT_INDEX: c_int = super::SQLITE_CORRUPT | (3 << 8);
+
+const SQLITE_READONLY_CANTINIT: c_int = super::SQLITE_READONLY | (5 << 8);
+const SQLITE_READONLY_DIRECTORY: c_int = super::SQLITE_READONLY | (6 << 8);
+
+const SQLITE_CONSTRAINT_PINNED: c_int = super::SQLITE_CONSTRAINT | (11 << 8);
+const SQLITE_CONSTRAINT_DATATYPE: c_int = super::SQLITE_CONSTRAINT | (12 << 8);
+
+#[must_use]
+pub fn code_to_str(code: c_int) -> &'static str {
+ match code {
+ super::SQLITE_OK => "Successful result",
+ super::SQLITE_ERROR => "SQL error or missing database",
+ super::SQLITE_INTERNAL => "Internal logic error in SQLite",
+ super::SQLITE_PERM => "Access permission denied",
+ super::SQLITE_ABORT => "Callback routine requested an abort",
+ super::SQLITE_BUSY => "The database file is locked",
+ super::SQLITE_LOCKED => "A table in the database is locked",
+ super::SQLITE_NOMEM => "A malloc() failed",
+ super::SQLITE_READONLY => "Attempt to write a readonly database",
+ super::SQLITE_INTERRUPT => "Operation terminated by sqlite3_interrupt()",
+ super::SQLITE_IOERR => "Some kind of disk I/O error occurred",
+ super::SQLITE_CORRUPT => "The database disk image is malformed",
+ super::SQLITE_NOTFOUND => "Unknown opcode in sqlite3_file_control()",
+ super::SQLITE_FULL => "Insertion failed because database is full",
+ super::SQLITE_CANTOPEN => "Unable to open the database file",
+ super::SQLITE_PROTOCOL => "Database lock protocol error",
+ super::SQLITE_EMPTY => "Database is empty",
+ super::SQLITE_SCHEMA => "The database schema changed",
+ super::SQLITE_TOOBIG => "String or BLOB exceeds size limit",
+ super::SQLITE_CONSTRAINT=> "Abort due to constraint violation",
+ super::SQLITE_MISMATCH => "Data type mismatch",
+ super::SQLITE_MISUSE => "Library used incorrectly",
+ super::SQLITE_NOLFS => "Uses OS features not supported on host",
+ super::SQLITE_AUTH => "Authorization denied",
+ super::SQLITE_FORMAT => "Auxiliary database format error",
+ super::SQLITE_RANGE => "2nd parameter to sqlite3_bind out of range",
+ super::SQLITE_NOTADB => "File opened that is not a database file",
+ super::SQLITE_NOTICE => "Notifications from sqlite3_log()",
+ super::SQLITE_WARNING => "Warnings from sqlite3_log()",
+ super::SQLITE_ROW => "sqlite3_step() has another row ready",
+ super::SQLITE_DONE => "sqlite3_step() has finished executing",
+
+ SQLITE_ERROR_MISSING_COLLSEQ => "SQLITE_ERROR_MISSING_COLLSEQ",
+ SQLITE_ERROR_RETRY => "SQLITE_ERROR_RETRY",
+ SQLITE_ERROR_SNAPSHOT => "SQLITE_ERROR_SNAPSHOT",
+
+ super::SQLITE_IOERR_READ => "Error reading from disk",
+ super::SQLITE_IOERR_SHORT_READ => "Unable to obtain number of requested bytes (file truncated?)",
+ super::SQLITE_IOERR_WRITE => "Error writing to disk",
+ super::SQLITE_IOERR_FSYNC => "Error flushing data to persistent storage (fsync)",
+ super::SQLITE_IOERR_DIR_FSYNC => "Error calling fsync on a directory",
+ super::SQLITE_IOERR_TRUNCATE => "Error attempting to truncate file",
+ super::SQLITE_IOERR_FSTAT => "Error invoking fstat to get file metadata",
+ super::SQLITE_IOERR_UNLOCK => "I/O error within xUnlock of a VFS object",
+ super::SQLITE_IOERR_RDLOCK => "I/O error within xLock of a VFS object (trying to obtain a read lock)",
+ super::SQLITE_IOERR_DELETE => "I/O error within xDelete of a VFS object",
+ super::SQLITE_IOERR_BLOCKED => "SQLITE_IOERR_BLOCKED", // no longer used
+ super::SQLITE_IOERR_NOMEM => "Out of memory in I/O layer",
+ super::SQLITE_IOERR_ACCESS => "I/O error within xAccess of a VFS object",
+ super::SQLITE_IOERR_CHECKRESERVEDLOCK => "I/O error within then xCheckReservedLock method",
+ super::SQLITE_IOERR_LOCK => "I/O error in the advisory file locking layer",
+ super::SQLITE_IOERR_CLOSE => "I/O error within the xClose method",
+ super::SQLITE_IOERR_DIR_CLOSE => "SQLITE_IOERR_DIR_CLOSE", // no longer used
+ super::SQLITE_IOERR_SHMOPEN => "I/O error within the xShmMap method (trying to open a new shared-memory segment)",
+ super::SQLITE_IOERR_SHMSIZE => "I/O error within the xShmMap method (trying to resize an existing shared-memory segment)",
+ super::SQLITE_IOERR_SHMLOCK => "SQLITE_IOERR_SHMLOCK", // no longer used
+ super::SQLITE_IOERR_SHMMAP => "I/O error within the xShmMap method (trying to map a shared-memory segment into process address space)",
+ super::SQLITE_IOERR_SEEK => "I/O error within the xRead or xWrite (trying to seek within a file)",
+ super::SQLITE_IOERR_DELETE_NOENT => "File being deleted does not exist",
+ super::SQLITE_IOERR_MMAP => "I/O error while trying to map or unmap part of the database file into process address space",
+ super::SQLITE_IOERR_GETTEMPPATH => "VFS is unable to determine a suitable directory for temporary files",
+ super::SQLITE_IOERR_CONVPATH => "cygwin_conv_path() system call failed",
+ super::SQLITE_IOERR_VNODE => "SQLITE_IOERR_VNODE", // not documented?
+ super::SQLITE_IOERR_AUTH => "SQLITE_IOERR_AUTH",
+ SQLITE_IOERR_BEGIN_ATOMIC => "SQLITE_IOERR_BEGIN_ATOMIC",
+ SQLITE_IOERR_COMMIT_ATOMIC => "SQLITE_IOERR_COMMIT_ATOMIC",
+ SQLITE_IOERR_ROLLBACK_ATOMIC => "SQLITE_IOERR_ROLLBACK_ATOMIC",
+ SQLITE_IOERR_DATA => "SQLITE_IOERR_DATA",
+ SQLITE_IOERR_CORRUPTFS => "SQLITE_IOERR_CORRUPTFS",
+ SQLITE_IOERR_IN_PAGE => "SQLITE_IOERR_IN_PAGE",
+
+ super::SQLITE_LOCKED_SHAREDCACHE => "Locking conflict due to another connection with a shared cache",
+ SQLITE_LOCKED_VTAB => "SQLITE_LOCKED_VTAB",
+
+ super::SQLITE_BUSY_RECOVERY => "Another process is recovering a WAL mode database file",
+ super::SQLITE_BUSY_SNAPSHOT => "Cannot promote read transaction to write transaction because of writes by another connection",
+ SQLITE_BUSY_TIMEOUT => "SQLITE_BUSY_TIMEOUT",
+
+ super::SQLITE_CANTOPEN_NOTEMPDIR => "SQLITE_CANTOPEN_NOTEMPDIR", // no longer used
+ super::SQLITE_CANTOPEN_ISDIR => "Attempted to open directory as file",
+ super::SQLITE_CANTOPEN_FULLPATH => "Unable to convert filename into full pathname",
+ super::SQLITE_CANTOPEN_CONVPATH => "cygwin_conv_path() system call failed",
+ SQLITE_CANTOPEN_SYMLINK => "SQLITE_CANTOPEN_SYMLINK",
+
+ super::SQLITE_CORRUPT_VTAB => "Content in the virtual table is corrupt",
+ SQLITE_CORRUPT_SEQUENCE => "SQLITE_CORRUPT_SEQUENCE",
+ SQLITE_CORRUPT_INDEX => "SQLITE_CORRUPT_INDEX",
+
+ super::SQLITE_READONLY_RECOVERY => "WAL mode database file needs recovery (requires write access)",
+ super::SQLITE_READONLY_CANTLOCK => "Shared-memory file associated with WAL mode database is read-only",
+ super::SQLITE_READONLY_ROLLBACK => "Database has hot journal that must be rolled back (requires write access)",
+ super::SQLITE_READONLY_DBMOVED => "Database cannot be modified because database file has moved",
+ SQLITE_READONLY_CANTINIT => "SQLITE_READONLY_CANTINIT",
+ SQLITE_READONLY_DIRECTORY => "SQLITE_READONLY_DIRECTORY",
+
+ super::SQLITE_ABORT_ROLLBACK => "Transaction was rolled back",
+
+ super::SQLITE_CONSTRAINT_CHECK => "A CHECK constraint failed",
+ super::SQLITE_CONSTRAINT_COMMITHOOK => "Commit hook caused rollback",
+ super::SQLITE_CONSTRAINT_FOREIGNKEY => "Foreign key constraint failed",
+ super::SQLITE_CONSTRAINT_FUNCTION => "Error returned from extension function",
+ super::SQLITE_CONSTRAINT_NOTNULL => "A NOT NULL constraint failed",
+ super::SQLITE_CONSTRAINT_PRIMARYKEY => "A PRIMARY KEY constraint failed",
+ super::SQLITE_CONSTRAINT_TRIGGER => "A RAISE function within a trigger fired",
+ super::SQLITE_CONSTRAINT_UNIQUE => "A UNIQUE constraint failed",
+ super::SQLITE_CONSTRAINT_VTAB => "An application-defined virtual table error occurred",
+ super::SQLITE_CONSTRAINT_ROWID => "A non-unique rowid occurred",
+ SQLITE_CONSTRAINT_PINNED => "SQLITE_CONSTRAINT_PINNED",
+ SQLITE_CONSTRAINT_DATATYPE => "SQLITE_CONSTRAINT_DATATYPE",
+
+ super::SQLITE_NOTICE_RECOVER_WAL => "A WAL mode database file was recovered",
+ super::SQLITE_NOTICE_RECOVER_ROLLBACK => "Hot journal was rolled back",
+
+ super::SQLITE_WARNING_AUTOINDEX => "Automatic indexing used - database might benefit from additional indexes",
+
+ super::SQLITE_AUTH_USER => "SQLITE_AUTH_USER", // not documented?
+
+ _ => "Unknown error code",
+ }
+}
+
+/// Loadable extension initialization error
+#[cfg(feature = "loadable_extension")]
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+#[non_exhaustive]
+pub enum InitError {
+ /// Version mismatch between the extension and the SQLite3 library
+ VersionMismatch { compile_time: i32, runtime: i32 },
+ /// Invalid function pointer in one of sqlite3_api_routines fields
+ NullFunctionPointer,
+}
+#[cfg(feature = "loadable_extension")]
+impl ::std::fmt::Display for InitError {
+ fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
+ match *self {
+ InitError::VersionMismatch {
+ compile_time,
+ runtime,
+ } => {
+ write!(f, "SQLite version mismatch: {runtime} < {compile_time}")
+ }
+ InitError::NullFunctionPointer => {
+ write!(f, "Some sqlite3_api_routines fields are null")
+ }
+ }
+ }
+}
+#[cfg(feature = "loadable_extension")]
+impl error::Error for InitError {}
diff --git a/third_party/rust/libsqlite3-sys/src/lib.rs b/third_party/rust/libsqlite3-sys/src/lib.rs
new file mode 100644
index 0000000000..49ec1d536d
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/src/lib.rs
@@ -0,0 +1,44 @@
+#![allow(non_snake_case, non_camel_case_types)]
+#![cfg_attr(test, allow(deref_nullptr))] // https://github.com/rust-lang/rust-bindgen/issues/2066
+
+// force linking to openssl
+#[cfg(feature = "bundled-sqlcipher-vendored-openssl")]
+extern crate openssl_sys;
+
+#[cfg(all(windows, feature = "winsqlite3", target_pointer_width = "32"))]
+compile_error!("The `libsqlite3-sys/winsqlite3` feature is not supported on 32 bit targets.");
+
+pub use self::error::*;
+
+use std::default::Default;
+use std::mem;
+
+mod error;
+
+#[must_use]
+pub fn SQLITE_STATIC() -> sqlite3_destructor_type {
+ None
+}
+
+#[must_use]
+pub fn SQLITE_TRANSIENT() -> sqlite3_destructor_type {
+ Some(unsafe { mem::transmute(-1_isize) })
+}
+
+#[allow(clippy::all)]
+mod bindings {
+ include!(concat!(env!("OUT_DIR"), "/bindgen.rs"));
+}
+pub use bindings::*;
+
+impl Default for sqlite3_vtab {
+ fn default() -> Self {
+ unsafe { mem::zeroed() }
+ }
+}
+
+impl Default for sqlite3_vtab_cursor {
+ fn default() -> Self {
+ unsafe { mem::zeroed() }
+ }
+}
diff --git a/third_party/rust/libsqlite3-sys/upgrade.sh b/third_party/rust/libsqlite3-sys/upgrade.sh
new file mode 100755
index 0000000000..6c50da6322
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/upgrade.sh
@@ -0,0 +1,43 @@
+#!/bin/sh -e
+
+SCRIPT_DIR=$(cd "$(dirname "$0")" && pwd)
+echo "$SCRIPT_DIR"
+cd "$SCRIPT_DIR" || { echo "fatal error" >&2; exit 1; }
+cargo clean -p libsqlite3-sys
+TARGET_DIR="$SCRIPT_DIR/../target"
+export SQLITE3_LIB_DIR="$SCRIPT_DIR/sqlite3"
+mkdir -p "$TARGET_DIR" "$SQLITE3_LIB_DIR"
+
+# Download and extract amalgamation
+SQLITE=sqlite-amalgamation-3440000
+curl -O https://sqlite.org/2023/$SQLITE.zip
+unzip -p "$SQLITE.zip" "$SQLITE/sqlite3.c" > "$SQLITE3_LIB_DIR/sqlite3.c"
+unzip -p "$SQLITE.zip" "$SQLITE/sqlite3.h" > "$SQLITE3_LIB_DIR/sqlite3.h"
+unzip -p "$SQLITE.zip" "$SQLITE/sqlite3ext.h" > "$SQLITE3_LIB_DIR/sqlite3ext.h"
+rm -f "$SQLITE.zip"
+
+export SQLITE3_INCLUDE_DIR="$SQLITE3_LIB_DIR"
+# Regenerate bindgen file for sqlite3.h
+rm -f "$SQLITE3_LIB_DIR/bindgen_bundled_version.rs"
+cargo update
+# Just to make sure there is only one bindgen.rs file in target dir
+find "$TARGET_DIR" -type f -name bindgen.rs -exec rm {} \;
+env LIBSQLITE3_SYS_BUNDLING=1 cargo build --features "buildtime_bindgen session" --no-default-features
+find "$TARGET_DIR" -type f -name bindgen.rs -exec mv {} "$SQLITE3_LIB_DIR/bindgen_bundled_version.rs" \;
+
+# Regenerate bindgen file for sqlite3ext.h
+# some sqlite3_api_routines fields are function pointers with va_list arg but currently stable Rust doesn't support this type.
+# FIXME how to generate portable bindings without :
+sed -i.bk -e 's/va_list/void*/' "$SQLITE3_LIB_DIR/sqlite3ext.h"
+rm -f "$SQLITE3_LIB_DIR/bindgen_bundled_version_ext.rs"
+find "$TARGET_DIR" -type f -name bindgen.rs -exec rm {} \;
+env LIBSQLITE3_SYS_BUNDLING=1 cargo build --features "buildtime_bindgen loadable_extension" --no-default-features
+find "$TARGET_DIR" -type f -name bindgen.rs -exec mv {} "$SQLITE3_LIB_DIR/bindgen_bundled_version_ext.rs" \;
+git checkout "$SQLITE3_LIB_DIR/sqlite3ext.h"
+rm -f "$SQLITE3_LIB_DIR/sqlite3ext.h.bk"
+
+# Sanity checks
+cd "$SCRIPT_DIR/.." || { echo "fatal error" >&2; exit 1; }
+cargo update
+cargo test --features "backup blob chrono functions limits load_extension serde_json trace vtab bundled"
+printf ' \e[35;1mFinished\e[0m bundled sqlite3 tests\n'
diff --git a/third_party/rust/libsqlite3-sys/upgrade_sqlcipher.sh b/third_party/rust/libsqlite3-sys/upgrade_sqlcipher.sh
new file mode 100755
index 0000000000..fc0b850159
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/upgrade_sqlcipher.sh
@@ -0,0 +1,35 @@
+#!/bin/sh -e
+
+SCRIPT_DIR=$(cd "$(dirname "$0")" && pwd)
+echo "$SCRIPT_DIR"
+cd "$SCRIPT_DIR" || { echo "fatal error" >&2; exit 1; }
+cargo clean -p libsqlite3-sys
+mkdir -p "$SCRIPT_DIR/../target" "$SCRIPT_DIR/sqlcipher"
+export SQLCIPHER_LIB_DIR="$SCRIPT_DIR/sqlcipher"
+export SQLCIPHER_INCLUDE_DIR="$SQLCIPHER_LIB_DIR"
+
+SQLCIPHER_VERSION="4.5.3"
+# Download and generate sqlcipher amalgamation
+mkdir -p $SCRIPT_DIR/sqlcipher.src
+[ -e "v${SQLCIPHER_VERSION}.tar.gz" ] || curl -sfL -O "https://github.com/sqlcipher/sqlcipher/archive/v${SQLCIPHER_VERSION}.tar.gz"
+tar xzf "v${SQLCIPHER_VERSION}.tar.gz" --strip-components=1 -C "$SCRIPT_DIR/sqlcipher.src"
+cd "$SCRIPT_DIR/sqlcipher.src"
+./configure --with-crypto-lib=none
+make sqlite3.c
+cp sqlite3.c sqlite3.h sqlite3ext.h "$SCRIPT_DIR/sqlcipher/"
+cd "$SCRIPT_DIR"
+rm -rf "v${SQLCIPHER_VERSION}.tar.gz" sqlcipher.src
+
+# Regenerate bindgen file for sqlcipher
+rm -f "$SQLCIPHER_LIB_DIR/bindgen_bundled_version.rs"
+
+# cargo update
+find "$SCRIPT_DIR/../target" -type f -name bindgen.rs -exec rm {} \;
+env LIBSQLITE3_SYS_BUNDLING=1 cargo build --features "sqlcipher buildtime_bindgen session"
+find "$SCRIPT_DIR/../target" -type f -name bindgen.rs -exec mv {} "$SQLCIPHER_LIB_DIR/bindgen_bundled_version.rs" \;
+
+# Sanity checks
+cd "$SCRIPT_DIR/.." || { echo "fatal error" >&2; exit 1; }
+cargo update
+cargo test --features "backup blob chrono functions limits load_extension serde_json trace vtab bundled-sqlcipher-vendored-openssl"
+printf ' \e[35;1mFinished\e[0m bundled-sqlcipher-vendored-openssl/sqlcipher tests\n'
diff --git a/third_party/rust/libsqlite3-sys/wrapper.h b/third_party/rust/libsqlite3-sys/wrapper.h
new file mode 100644
index 0000000000..ecbcc44e19
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/wrapper.h
@@ -0,0 +1,5 @@
+#ifdef BINDGEN_USE_WINSQLITE3
+#include <winsqlite/winsqlite3.h>
+#else
+#include "sqlite3.h"
+#endif
diff --git a/third_party/rust/libsqlite3-sys/wrapper_ext.h b/third_party/rust/libsqlite3-sys/wrapper_ext.h
new file mode 100644
index 0000000000..ab1b1f9db3
--- /dev/null
+++ b/third_party/rust/libsqlite3-sys/wrapper_ext.h
@@ -0,0 +1,2 @@
+#include "sqlite3ext.h"
+